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Abstract  

Geotechnical failures usually involve changes in the state of partially saturated soils under different 

loading and saturation regimes resulting in significant differences in its nonlinear responses observed 

in experiments. The macro inelastic behaviour of partially saturated soils is intrinsically linked to the 

coupled mechanical and hydraulic dissipations governed by the interaction between frictional sliding, 

grain rearrangement and ruptures of liquid bridges and their redistributions at the grain contacts. This 

nature of the grain scale interaction leads to strong coupling between plastic strains and irrecoverable 

degree of saturation as two key internal variables in thermodynamics-based continuum modelling of 

partially saturated soils. This thesis focuses on the development of a new generic thermo-mechanical 

approach reflecting these underlying mechanisms in modelling the coupled hydro-mechanical 

behaviour of unsaturated soils. A generic form of dissipation potential is developed in this study to 

capture the interdependence of thermodynamic forces, internal variables and their rates. The proposed 

dissipation potential allows the derivation of constitutive models possessing a unique yield surface 

dependent on both stress and suction, and two evolutions rules for irrecoverable saturation and plastic 

strain, both of which share the same “plastic” multiplier. This feature automatically guarantees 

simultaneous activation and evolution of both hydraulic and mechanical yielding responses, reflecting 

the inseparable nature of grain-scale hydro-mechanical interactions and their effects on macro 

behaviour. It makes the current approach distinct from other thermodynamics-based approaches 

where multiple yield functions are usually needed as a consequence of adding more internal variables 

and a decoupling of dissipative stresses from all the rates of internal variables.  

The potential of the proposed generic approach is elucidated through a specific constitutive model for 

partially saturated soils. Two explicitly defined free energy and dissipation potentials are used for the 

formulation of a thermodynamically consistent critical state model encapsulating a path-dependent 



 

 

water retention curve. The model is able to naturally capture the interdependence between wetting-

drying and loading-unloading paths without having to use a separate Soil Water Characteristic Curve 

(SWCC) for inelastic behaviour, as usually found in existing unsaturated soil models. The benefit of 

this approach is the reduction in the number of parameters and the identification and calibration of 

all parameters based on standard tests. Extensive analyses of coupled hydro-mechanical dissipation 

characteristics and experimental validation show the capabilities of the model and the advantages of 

the proposed thermodynamics-based approach. 

Hydro-mechanical coupling is also a crucial element in modelling localised failures in the form of 

shear banding and size effects commonly observed in partially saturated soils, given the dependence 

of the onset and orientation of localisation bands on material properties and different 

hydromechanical conditions. Deformation and saturation in such cases are inhomogeneous, with 

irreversible behaviours taking place inside the shear band, while the zone outside it usually undergoes 

reversible processes, invalidating the classical homogenous assumption implicitly adopted in all 

existing continuum models for partially saturated soils. This characteristic, along with properties of 

the mesoscale shear band (inclination, thickness) and specimen size, is essentially incorporated into 

a thermodynamics-based approach for localised behaviour of partially saturated soils. In this double-

scale approach, enrichment terms for both kinematics and degree of saturation are used to take into 

account strong variations of strain and saturation degree outside and inside the shear band. The 

proposed formulation automatically leads to a size-dependent constitutive structure capable of 

describing the transition correctly from diffuse to localised stages of deformation. A bifurcation 

criterion taking into account a wide range of loading-unloading and wetting-drying paths is used to 

determine the onset of localisation and orientation of the localisation band. The promising features of 

the proposed double-scale formulation are illustrated using a model based on critical state soil 

mechanics and data in suction-controlled triaxial tests.  

The developed generic thermodynamics-based approach and models are used in a mixed formulation 

for flow through partially saturated porous media. The governing equations are implemented in a 

numerical code based on the Smoothed Particle Hydrodynamics (SPH) for the solutions of Boundary 

Value Problems involving partially saturated porous media. The adoption of the above-proposed 

thermodynamics-based model allows a better reflection of the intrinsic behavioural mechanisms of 

partially saturated soils at the constitutive level, where the inseparable relationship between plasticity 

and hydraulic irreversibility is captured. This distinguishes the current approach from other existing 

SPH studies for flow through partially saturated porous media. The performance of the SPH approach 

is investigated through a range of numerical examples of Boundary Value Problems under various 

loading and saturation conditions.  
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Chapter 1.  Introduction 

1.1. Background 

Partially saturated soil is defined as a three-phase media consisting of a deformable soil skeleton and 

two fluid phases (water, air). It is a state of the soil (Gens et al., 2006; Sheng, 2011) falling within the 

range between the dry and saturated conditions, dependent on how much fluid is in pores of porous 

media. The majority of soil structures are constructed in soils well above the groundwater table, which 

usually are partially saturated over their entire service life (Wheeler & Sivakumar, 1995; Vanapalli 

et al., 1999). Thus, unsaturated soil mechanics is usually related to a variety of issues in industries, 

such as mining (e.g. hydromechanical processes of heap leach materials, mine tailings, mineral 

products such as coal, stored mine wastes, geo-covers placed on mine wastes on rehabilitation), geo-

environmental engineering (e.g. thermal-hydro-mechanical process of deep geological storage or 

disposal for the long-term confinement of heat-emitting, high-level nuclear waste) and geotechnical 

engineering. To illustrate how significant unsaturated soil mechanics is in geotechnical engineering, 

the three most frequently encountered problems involving partially saturated soils in Australia are 

discussed as follows:  

Foundation and pavement design/construction: Expansive and collapsible soils pose one of the 

most problematic issues geotechnical engineers have to face. In this concern, Australia is one of the 

countries with the broadest coverage of expansive soils. According to investigations, they cover 20 

per cent of the total area of the Australian surface soils (Richards et al., 1983). Given this, Australia 

is amongst the nations most affected by geotechnical problems related to this kind of soil, with 

damage associated with residential buildings and traffic infrastructure, which is estimated at millions 

of AU dollars annually (Li et al., 2014; Pupazzoni, 2020; Goetze, 2020), as can be seen in examples 

provided in Figure 1.1 and 1.2. Expansive or collapsible soils can be regarded as a particular form of 

partially saturated soils with the coupled hydromechanical characteristics. The practical analysis 

revealed that the failure mechanism of building footing and road structures on such soils is related to 

the occurrence and evolution of cracking due to excessive structure settlements as a result of soil 

movements in response to the wetting/drying process under the impact of the external environment 

(Li & Guo, 2017). Despite this, most conventional foundation or pavement practices are mainly based 

on fully saturated soil mechanics in which the influence of hydraulic behaviour is usually neglected 

for simplicity (Vanapalli & Oh, 2010). This conservative approach may lead to incorrect 

interpretation of failure and the lack of the efficiency and cost-effectiveness of design or construction 

procedures. Therefore, intensifying research activities in unsaturated soils mechanics and expanding 
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the application thereof to the practices of residential construction projects is incredibly significant in 

Australia.   

 

Figure 1.1. (a) A cracked road in Adelaide, Australia (b) A cracked wall of the South Australia Art 

Gallery, Adelaide, Australia (Considine et al., 1984). 

 

Figure 1.2. (a) Large settlement and cracking of the concrete curb (b) Distortion above the front 

entry door (c) Crack on the interior wall above the doorway to the kitchen (d) Cracking below a 

window of a bedroom of a residential building in a southwest suburb of Melbourne, Australia (Li & 

Guo, 2017). 

(a) (b) 

(a) (b) 

(c) (d) 
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Rainfall-induced landslide: Landslides have become increasingly severe and frequent in Australia 

among the other most frequent natural hazards, leading to serious safety problems and substantial 

economic losses (Buscarnera, 2010). For instance, Leiba (2013) has documented reports of at least 

138 people killed and 114 others injured by 114 different landslides from 1842 to 2011; 

approximately 370 buildings destroyed or damaged by 83 slope failure events; 300 other landslides 

during the 2000-2011 period, causing severe disruptions or damages to strategic infrastructure (roads, 

railways, bridges) as seen in Figure 1.3 - all of which are estimated to cost approximately $82 million 

AU dollars throughout the period between 1842 and 2011 in Australia. Furthermore, as reported in 

the Australian Building Codes Board (ABCB), the Australian Geomechanics Society (2015, p.5) 

claims that “The most common cause of landslides in Australia is water infiltration”. These statistics 

can be a serious wake-up call for the Australian geomechanics community to devote increasing 

attention to the issues of rainfall-induced landslides. Most importantly, the triggering of rainfall-

induced landslides is closely linked to the failure mechanisms of unsaturated soils. A piece of 

evidence points strongly to this conclusion that the decrease of suction and surface-tension effect due 

to the wetting process under heavy rainfalls is responsible for the swelling heave and the loss of shear 

strength that trigger geostructural collapses. Therefore, putting forward a serious attempt to improve 

the understanding of the behaviour of unsaturated soils is a worthwhile contribution to the 

development of hazard assessment methodologies pertinent to rainfall-induced landslides.   

 

Figure 1.3. (a) Thredbo landslide  (Leventhal & Kotze, 2008) (b) Typical landslides in Northern 

New South Wales, Australia (Ravindran et al., 2019) 

Embankment dam engineering: Australia occupies the world’s driest inhabited continent, with a 

great susceptibility to drought. As a drought-affected country, acknowledging the severe devastation 

of droughts on the landscape, the agricultural economy and personal lives, the Australian Government 

(a) (b) 
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has been considering building more and more small earth dams. These dams are known as water 

supply reservoirs, as one of the essential drought mitigation actions in such harsh conditions. The 

safety of dams is dependent on the changes of water content and pore-water pressure due to the 

potential seepage through the structure of the dams (see an example in Figure 1.4) and the compaction 

of the soil as fill material in both construction and operation stages. All these features should be 

investigated and interpreted using unsaturated soils mechanics. 

 

Figure 1.4. Talgai dam leak in Southern Queensland, Australia (Bavas et al., 2020) 

Given the importance of unsaturated soil mechanics, the behaviour of partially saturated soils has 

received significant attention recently across fundamental and practical levels (Gens et al., 2006; 

Zhou et al., 2018; Hu et al., 2014). Despite some successes, obtaining an adequate understanding of 

their behavioural features, associated with the complicated interactions between the various phases 

(solid, water, air), is still challenging in the field of computational geomechanics (Sheng, 2011), 

leading to over-or under-engineering in geotechnical practices. In particular, it is neither 

straightforward convincingly demonstrated how the coupled hydro-mechanical behavioural features 

of various loading and hydraulic paths are coherently incorporated into a constitutive framework, 

consistent with the nature of physical thermodynamics or how it is adequately solved using 

computational methods. The existing numerical approaches are, therefore, for the most part, not 

rigorous and somewhat incomplete to reflect the actual failure mechanisms of partially saturated soils. 

That could hinder the development of state-of-the-art numerical techniques for facilitating a better 

prediction of geotechnical hazards.  

1.2. Aims and Scope   

Failure mechanisms of geohazards have been extensively investigated and elucidated in a wide range 

of laboratory tests on partially saturated soils, ranging from the microscopic scale (e.g. X-ray 

computed tomography, Scanning Electron Microscopy images, Mercury Intrusion Porosimetry) to 

the macroscopic scale (e.g. isotropic compression, direct shear, triaxial shear). These experiments 
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reflect essential features of the coupled hydro-mechanical behaviour under different loading and 

saturation conditions, such as irreversible swelling/shrinkage upon wetting/drying, load/deformation-

dependency of capillary irreversibility, together with effects of hydraulic irreversibility on shear 

strength, stiffness, and dilation. A constitutive modelling and numerical method being able to predict 

the soil behaviour under a wide range of both mechanical loading and saturation conditions is required 

for the prediction of geotechnical failure involving partially saturated soils to improve the safety and 

cost-efficiency of geotechnical designs and construction. This is a challenge given the complex and 

coupled hydro-mechanical interactions at the grain scale that intrinsically govern the macro inelastic 

responses.  

In line with the goal mentioned above, this thesis focuses on a new generic thermodynamics-based 

approach which is developed as a versatile means to connect all essential characteristics of partially 

saturated soil behaviour under a wide variety of both loading/unloading and wetting/drying conditions. 

It aims to bring benefits in achieving a good balance between simplicity, number of parameters and 

performance in the derived constitutive models. Fundamentally, this thesis attempts to provide a more 

rigorous way to capture the coupled mechanical and hydraulic dissipations produced by the grain 

scale interaction between particle rearrangements due to frictional sliding and rupture of water 

menisci. In thermodynamics-based continuum modelling, these coupled grain-scale processes can be 

represented by plastic strains and an irrecoverable degree of saturation. Due to the nature of the grain-

scale interaction, the thermodynamic forces associated with these internal variables should be 

dependent on their rates, in addition to stress and suction. In reflecting on this mechanism, a generic 

form of dissipation potential or some kinematic constraint equations are pursued to result in a single 

yield surface and two flow rules with a single “plastic” multiplier, encapsulating the strong coupling 

between plastic strains and irrecoverable degree of saturation. This automatically leads to 

simultaneous activation of both hydraulic and mechanical dissipative mechanisms upon yielding, and 

hence different hydro-mechanical responses in wetting-drying and loading-unloading paths. The 

proposed formulation allows quantifying the amounts of hydraulic and mechanical energy 

dissipations while always guaranteeing the thermodynamic admissibility of the derived models. It is 

noted that explicit representations of grain-scale details are missing in the model, given the proposed 

approach is based on continuum mechanics interpreted as the averaged behaviour over a particular 

volume element. Only the effects of grain-scale mechanisms appear at the continuum scale through 

the use of two internal variables. This continuum-based approach, despite still being 

phenomenological, is computationally efficient and hence will allow modelling practical geotechnical 

engineering problems with reasonable computational costs when implemented in a powerful 

computational platform for the solutions of Boundary Value Problems (BVPs). 
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On the basis of the proposed general approach, a specific thermo-mechanical framework is 

systematically constructed to describe the inter-dependence between mechanical and hydraulic 

yielding responses in conditions of homogeneous deformation at a material scale, with emphasis on 

the concept of the critical state. The basis of this framework is the isotropic compression interaction 

between volumetric and hydraulic energy dissipations, which are vanished to make room for the shear 

dissipation occupying the total dissipation at the critical state. The whole model, formulated under 

the infinitesimal strain assumption, is derived from two explicitly defined free energy and dissipation 

potentials to address a range of experimental features obtained from drained and undrained tests, 

warranting a smooth transition between different regimes/responses (e.g. saturated and partially 

saturated, isotropic compression and triaxial shear, hardening and softening). This model provides a 

path-dependent hydraulic response, reflecting the nature of the hydro-mechanical interactions at the 

grain scale while eliminating the use of a separate Soil Water Characteristic Curve (SWCC). The 

benefits are the reduction in the number of parameters in conjunction with the identification and 

calibration of all model parameters from standard tests. In this model, it is assumed that the partially 

saturated soil behaves isotropically in both cases of recoverable and irrecoverable 

deformation/saturation, although it is acknowledged that the behaviour of wet granular materials is 

realistically anisotropic due to highly inhomogeneous textures due to the effects of liquid bridges. 

Hydro-mechanical coupling is also indispensable for the localised failure, which induces strong non-

homogeneous deformation and fluid distribution within a variably saturated soil structure, leading to 

the size-dependent constitutive behaviour and breaking down the classical homogeneous assumption. 

Experimental observations in several triaxial shearing tests on partially saturated soils indicate that 

the onset and orientation of localisation bands in partially saturated soils are intrinsically dependent 

upon different mechanical loading and saturation conditions, besides material properties. The 

localisation band splits the soil specimen into two separate zones (inside and outside this band), where 

they behave very differently under the condition of total stress equilibrium with strong variations in 

strain and saturation degree. This requires an adequate description of the constitutive model to handle 

the transition from diffuse to localised modes, with an appropriate hydromechanical bifurcation 

criterion for partially saturated soils. In response to this concern, details on inclination and thickness 

of the shear band and specimen size will be embedded into the proposed generic formulation to 

establish a two-scale framework for addressing the lack of coupled hydro-mechanical effects of strain 

localisation in the existing continuum models. In this framework, the tangent stiffness with cross-

coupling terms always guarantees hydro-mechanical coupling upon yielding, facilitating the 

bifurcation analysis for the onset of localisation and corresponding orientation of shear bands under 

different hydromechanical conditions. The introduction of features related to sizes of the shear band 
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and specimen in the constitutive relations benefits it to give more correct predictions of the mixed 

material-structural response and size effects of partially saturated soils. It is noted that this framework 

is only to capture essential characteristics of the macro behaviour observed in triaxial shear tests under 

drained conditions while temporarily ignoring undrained conditions. Besides, this thesis only 

investigates localised failures under the forms of a single tabular shear band, which is assumed to 

remain unchanged, while issues related to the multiple localisation bands are outside the scope of the 

present thesis. 

To investigate hydromechanical coupling issues in solving BVPs, a new mathematical framework of 

the coupled flow deformation process is developed. It encompasses the aforementioned homogeneous 

constitutive relationships and a mixed form of the governing conservation laws for three-phase porous 

media based on the mixture theory. It is assumed that this framework is only applicable for modelling 

laminar flow, thus paving the way for the appropriate use of Darcy’s law. The obtained formulation 

implemented in a Smoothed Particle Hydrodynamics (SPH) code (Bui et al., 2008) for the Boundary 

Value Problems solutions. The use of SPH, a mesh-free method, allows tackling failures involving 

large deformations in geotechnical engineering (Bui et al., 2008; 2011) and avoiding mesh distortion 

issues usually encountered in Finite Element (FE) simulations involving large deformations. The 

proposed SPH-based approach results in a simple, highly efficient and relatively inexpensive 

computation framework that do not impair the advanced performance in predicting geotechnical 

failures when subjected to diverse hydromechanical external forces and mixed-boundary conditions 

(e.g. infiltration-induce slope instability, bearing capacity of partially saturated soils under shallow 

foundations,). In comparison with existing numerical methods for porous media, the current method 

inherits advanced features of the above-described generic thermodynamic approach and its derived 

constitutive models, inspired by the strong hydro-mechanical coupling at the grain scale, allowing for 

a better representation of responses of each material point. Solving all balance laws through a single 

set of Lagrangian particles in SPH and updating stress-like variables based on a unique 

hydromechanical yield locus bring an effective solution in simplifying the computational procedure. 

Noting that the focus of the current SPH-based approach is on improving the performance at the 

constitutive level to better reflect the intrinsic failure mechanisms of partially saturated soils and not 

on algorithms for more accurate numerical simulations of BVPs. Therefore, simple and proven 

algorithms (Bui et al., 2008; Bui & Fukagawa, 2011) make the numerical implementation adequate 

and acceptable in simulating essential behavioural features instead of pursuing high-performance 

algorithms.  
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1.3. Outline of the thesis  

To address aims and scopes, this thesis is organised into seven Chapters, proceeding from generic to 

specific formulations, homogeneous to inhomogeneous deformation conditions and material to 

structural scales to provide a thorough picture of modelling partially saturated porous media. After 

the significance, aims, scope and outline of this thesis in this Chapter, the contents of the six other 

successive chapters are briefly summarised as follows: 

Chapter 2 is to undertake a literature review for providing background and outstanding issues on the 

problems under consideration relevant to aims and scope, as mentioned in Chapter 1. This chapter 

first provides a comprehensive review on salient features of the fully coupled hydro-mechanical 

behaviour of partially saturated soils at the continuum level observed in different suction-controlled 

and water content-controlled tests. It is followed by an analysis of hydromechanical dissipative 

mechanisms drawn from both micro-scale reasoning and experiments. These physical observations 

are then used as a basis for a comparative analysis to weigh the pros and cons of existing continuum 

models for partially saturated soils. Another emphasis of this literature review is placed on Boundary 

Values Problems involving partially saturated soils for computational geomechanics. This makes an 

overview of recent improvements in numerical approaches (e.g. SPH, FEM, Generalised 

Interpolation Material Point Method (GIMPM) for predicting geotechnical failure with the focus on 

constitutive models for partially saturated soils. This Chapter also discusses the current progress 

existing studies made towards addressing the hydromechanical effects on strain localisation, which 

are discussed after a brief review of essential characteristics related to how the onset and evolution 

of shear bands are dependent on different loading and hydraulic paths and vice versa. At the end of 

this Chapter, several discussions are made to gain an overall picture of both advantages and 

limitations of previous studies, motivating the development of a new computational approach for 

modelling coupled hydro-mechanical responses of partially saturated soils at both material and 

structural levels.   

The aim of Chapter 3 is to provide a generalised framework of coupled flow deformation processes, 

opening the path for more extensive theoretical developments in the successive chapters of this thesis. 

In this framework, to describe the three-phase transport in unsaturated porous media, the mixture 

theory is used to furnish field equations of kinematic variables (e.g. porosity, saturation degree, solid 

velocity, Darcy seepage velocity) after reviewing relevant basic concepts and assumptions. These 

equations are coupled with the novel homogeneous constitutive law (e.g. stress-strain, SWCC) of a 

generic thermodynamics-based model based on a full coupling between plasticity and hydraulic 

irreversibility using mechanisms at the microscale for physical interpretations. General formulations 
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of the tangent stiffness tensor and semi-implicit stress return algorithm of the proposed constitutive 

model are then constructed.  

In Chapter 4, following the proposed general formulation in Chapter 3, a particular constitutive 

model for unsaturated soils is suggested and investigated to indicate good potentials of the generic 

approach in balancing simplicity and predictive performance. In the course of the formulation 

development of this model, new specific forms of free energy and dissipation potentials are assumed, 

taking into account some essential critical-state-based features of suction-and water content-

controlled experiments at low stresses. A systematic procedure is employed to construct a Modified 

Cam-Clay family yield surface and corresponding flow rules. Dissipation properties follow this to 

investigate the thermodynamic admissibility and coupling level between plasticity and hydraulic 

irreversibility. This chapter then describes the numerical implementation algorithms and their 

verification. The parameter identification and determination are presented in the next part of the 

Chapter, followed by the validation and demonstration of the capabilities of the proposed model in 

performing fully coupled hydro-mechanical behaviour from a wide range of stress/suction paths and 

testing conditions. The advantages of this model, compared to a well-established one, the Barcelona 

Basic Model (Alonso et al., 1990), are also highlighted. 

Chapter 5 is devoted to developing a double-scale approach describing localised failure mechanisms 

of partially saturated soils for an inhomogeneous representative volume element (RVE) under drained 

conditions. This Chapter starts with general fundamental relationships with the evolving thickness of 

the localisation band. It is derived by using generic expressions of Helmholtz energy and dissipation 

potentials of a new thermo-mechanical approach based on kinematic enhancements accounting for 

the difference in the hydromechanical response outside and inside the shear band. This is succeeded 

by the formulation of a specific two-scale constitutive model through specifications of both energy 

and dissipation potentials inspired from experimental observations of suction-controlled triaxial tests 

based on the homogeneous model developed in Chapter 4. This framework is then applied to the 

construction of macro constitutive structures for a volume element containing a shear band, covering 

a physically meaningful transition of responses over the two regimes: homogeneous inelastic 

deformation, onset of localisation and post-localisation. The Chapter then moves on to describe the 

numerical algorithms for detecting the discontinuous bifurcation condition and modelling the post-

localisation behaviour of the generic model. A numerical verification is then provided before giving 

several numerical examples to analyse and validate the performance of the derived specific model.  

Chapter 6 is concerned with the development of SPH formulation and algorithms for the simulations 

of BVPs involving coupling between fluid flow and deformation fields in porous media employing 
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the generic three-phase flow framework and formulations in Chapter 3.  Particular forms of Darcy 

seepage velocity, saturation degree rate, solid velocity rate, strain rate and porosity rate are first 

summarised based on expressions provided in Chapter 3. This is followed by formulations of two 

specific hydromechanical constitutive laws based on Drucker-Prager and Modified Cam-Clay yield 

criteria, where their behavioural features are briefly discussed. The developed multi-phase flow 

framework is then used for the formulations of the SPH approximation for the solutions of field 

equations in the temporal and spatial domains. Key features (e.g. time integration, stress return 

algorithm, boundary treatments) are presented in the implementation procedure of the proposed 

numerical approach and accuracy is then verified by several examples. Towards the end of this 

Chapter, the performances of this SPH-based approach in predicting failures of partially saturated 

soils are elucidated through BVPs under different loading and hydraulic conditions and validated 

against several sets of experimental data.  

Finally provided in Chapter 7 are a summary and conclusions on the most salient contributions of 

the present numerical approach. Limitations of this study are then identified, and several 

recommendations are made for potential future lines of research for further improvements.  
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Chapter 2.  Literature review 

2.1. Introduction  

A better understanding of how unsaturated soils behave in constitutive modelling at the material level 

will help to improve the safety and cost-efficiency of geotechnical designs and construction. This 

process is central to any numerical simulation in geotechnical engineering projects as it captures 

mechanisms of soil collapse. In recent decades, there have been numerous studies of experimental, 

constitutive models and computational methods at different levels of complexity and applicability to 

advance knowledge of the response of partially saturated soils. In an attempt to assess the current 

progress of these existing studies, in this Chapter, a comprehensive review, focusing on constitutive 

models for partially saturated soils, is carried out to address two critical aspects of the aims of this 

thesis (see Chapter 1) as follows:  

Intrinsic mechanisms behind the hydromechanical behaviour of soil in constitutive modelling 

of partially saturated soils: Concerning this aspect, data from several experimental tests are 

discussed to highlight important behavioural features of partially saturated soils under different stress 

paths and hydraulic states at both particle and material scales. This is to emphasize that the nonlinear 

behaviour of unsaturated soils is governed by the fully coupled hydro-mechanical dissipation 

phenomenon due to the irrecoverable movement of particles and fluids, which serves as a benchmark 

for reviewing the performance of existing constitutive models. In this review, instead of examining 

several models on a case-by-case basis, these models are grouped and assessed in relation to the 

underlying mechanisms governing the responses of partially saturated soils, with a focus on plasticity 

theory and thermodynamics-based formulation at the continuum level. This review leads to the 

conclusion that the underlying hydromechanical dissipation mechanism is usually accounted for in 

existing constitutive models by using separate evolution rules for plastic deformation and saturation, 

linked with two yield conditions for stress and suction. This is not sufficient to account for the hydro-

mechanical coupling and hence considered as an outstanding issue. The conclusion provides a basis 

for the development of a new thermo-mechanical approach to constitutive modelling of partially 

saturated soils that allows the use of a single yield surface, incorporating the effects of both stress and 

suction.  

BVPs of partially saturated soils: In response to this problem, the limitations of existing numerical 

methods in predicting failure mechanisms of partially saturated soils for BVPs are also discussed, 

highlighting the lack of an adequate hydromechanical model for capturing different responses in 
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wetting-drying and loading-unloading paths at the material level despite its importance in capturing 

failure mechanisms. The primary purpose of this review is to give a background for the development 

of a new SPH method, possessing the advantages of SPH in addressing mesh-distortion and 

computationally expensive problems encountered in FEM and IGMPM, respectively, for predicting 

fully coupled solid deformation-fluid flow in partially saturated deformable porous media.  

Additionally, a review of several experimental results is provided to interpret localised failure 

mechanisms of partially saturated soils briefly. Given these mechanism features, this chapter analyses 

several existing continuum models to examine whether they can adequately reflect the onset of 

localisation and post-localisation responses under different hydromechanical conditions. Through this 

review, it can be found that the effect of thickness/orientation of shear bands and their dependence 

on irreversible saturation in the modelling of partially saturated soils has been missing in the literature, 

despite its importance in governing post-localisation behaviour. This serves as a motivation for the 

development of a new constitutive model for partially saturated soils, possessing two scales of hydro-

mechanical responses (meso and macro), in this study. 

2.2. The behaviour of partially unsaturated soils 

2.2.1. Macro behaviour 

Experimental observations under different loading and hydraulic paths  

The behaviour of partially saturated soils has been investigated extensively in a range of constant net 

stress wetting/drying (Cunningham et al., 2003; Tarantino, 2009; Sharma, 1998; Raveendiraraj, 2009), 

constant suction triaxial (Alonso, 1987; Cui & Delage, 1996; Wheeler & Sivakumar, 1995; Chen, 

2007; Macari et al., 2003), constant water content triaxial (Thu et al., 2006; Marinho et al., 2016; 

Rahardjo et al., 2004; Maleki & Bayat, 2012; Li, 2015; Zhang, 2016) and constant suction direct shear 

tests (Hossain & Yin, 2010; 2015). Through the experimental results observed in these tests, several 

vital behavioural features of partially saturated soils can be discussed, as follows:  

Hydraulic path: The water retention behaviour (or SWCC) is represented by the constitutive 

relationship between the saturation degree (𝑆𝑟) (or volumetric water content, 𝜙𝑤) and suction (𝑠), 

which varies across three different regimes of water saturation (capillary, funicular, and pendular). 

As can be seen in Figure 2.1a, the pendular regime involves very low levels of saturation degree, 

while the capillary regime is related to the residual state of saturation degree at 𝑆𝑟 ≈ 1. The transition 

between pendular and capillary regimes is reflected through the funicular regime by a sharp change 

in saturation degree. In the literature, to describe the unique reversible link between suction and 

saturation degree, different mathematical expressions are proposed (Brooks & Corey, 1964; van 



2-3 

 

Genuchten, 1980; Fredlund & Xing, 1994), without accounting for the mechanical history, as 

compared in Figure 2.1b and written in the following forms:  

𝑆𝑟 = [1 + (𝑎𝑣𝑠)𝑛𝑣]−𝑚𝑣 (van Genuchten, 1980) (2.1) 

{
𝑆𝑟 = 1            𝑠 < 𝑠𝑒

𝑆𝑟 = (
𝑠𝑒

𝑠
)

𝜆𝑏

𝑠 > 𝑠𝑒

 (Brooks & Corey, 1964) (2.2) 

𝑆𝑟 = [𝑙𝑛 (2.71828 + (
𝑠

𝑎𝑓
)

𝑛𝑓

)]
−𝑚𝑓

(Fredlund & Xing, 1994) (2.3) 

where 𝑎𝑣, 𝑛𝑣, 𝑚𝑣, 𝜆𝑏, 𝑎𝑓, 𝑛𝑓, 𝑚𝑓 are the material parameters and 𝑠𝑒 is the air entry value.  

 

Figure 2.1. (a) Soil-water characteristic curve under a constant net stress test on clayey silt (after 

Cunningham et al., 2003) (b) Comparison of one set of soil-water characteristic curve data fitted 

using various models for a silty loam soil (after Sillers & Fredlund, 2001) 

However, the SWCC of a soil sample is experimentally observed not to be unique due to its 

dependence on changes in stress (see Figure 2.2a) and volume (see Figure 2.2b) (Vanapalli et al., 

1999; Tarantino, 2009; Miller et al., 2008; Mbonimpa et al., 2006; Masin, 2010). In this case, for 

example, Gallipoli et al. (2003) added void ratio (𝑒) to the form (van Genuchten, 1980), as given in 

Eq. (2.4), to capture the shifting of the water retention curve along the axis of suction governed by 

the volume change as follows:  

𝑆𝑟 = [1 + (𝑎𝑔𝑒𝑏𝑔𝑠)
𝑛𝑔

]
−𝑚𝑔

 (2.4) 

where 𝑎𝑔, 𝑏𝑔, 𝑛𝑔 and 𝑚𝑔 are material parameters.  
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Figure 2.2. Water retention curves (a) at different vertical stresses (after Tarantino, 2009) (b) at 

different specific volumes (after Vanapalli et al., 1999) 

Furthermore, Figures 2.3a and 2.3b illustrate that a sample of partially saturated soil can exhibit the 

same level of suction at more than two different saturation degrees of wetting and drying paths, 

reflecting the irreversible characteristic of the hydraulic response (Sharma, 1998; Tarantino, 2009). 

Also observed in Figures 2.3a and 2.3b is the irrecoverable change in volume during wetting-drying 

cycles. This feature is one of the indicators of the interdependence between plasticity and capillary 

irreversibility. The wetting-drying difference in SWCC is accounted for in several hydraulic models 

in the literature (Li, 2005; Nuth & Laloui, 2008). For instance, Nuth & Laloui (2008) proposed a 

hydraulic yield criterion based on an elastoplastic analogy between mechanical consolidation and the 

retention curve, as illustrated in Figure 2.4.  

 

Figure 2.3. The wetting-drying difference in water retention curves under constant net stress tests 

(a) at �̅� = 20 kPa (after Sharma, 1998) (b) at �̅� = 10 kPa (after Raveendiraraj, 2009) 
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Figure 2.4. The analogy between (a) mechanical consolidation plasticity and (b) hydraulic 

irreversibility (Nuth & Laloui, 2008) 

Isotropic compression path: The data in Figures 2.5-2.6 demonstrate experimentally observed 

responses of soils in isotropic compression tests at different suction levels. In particular, at each level 

of suction, the stress path is at first reversible in both mechanical and hydraulic responses. In this 

stage, no profound change in the slope of the Normal Compression Line (NCL) is observed over the 

suction range. Once the stress path reaches the initial yield point, irreversible changes in both the 

specific volume and saturation degree activate and develop simultaneously (see Figures 2.5-2.6). 

During this yielding stage, the initial yield stress is observed to increase if the suction gets higher (see 

Figure 2.7). NCL shifts with suction where the compression index was found to decrease (Alonso, 

1987; Alonso et al., 1990; Cui & Delage, 1996; Zhang & Lytton, 2009; Zhan, 2003) (see Figure 2.5) 

or increase (Wheeler & Sivakumar, 1995; Matsuoka et al., 2002; Sun et al., 2000; 2004) (see Figure 

2.6) with increasing suction. Figures 2.5-2.6 show that the degree of saturation is raised during 

compression, despite the constant suction. This, in turn, increases the compressibility of the soil. 

These observations are clear signs of coupled hydro-mechanical responses.  
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Figure 2.5. Drained isotropic compression test of the compacted partially saturated expansive clay 

(after Zhan, 2003) 

 

Figure 2.6. Drained isotropic compression test of the compacted speswhite kaolin (after Wheeler & 

Sivakumar, 1995) 
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Figure 2.7. Comparison of different yield curves in the �̅�: 𝑠 space for different soil compaction 

conditions 

Next, experimental data of the undrained isotropic compression test at different levels of gravimetric 

water content (𝑤) are investigated. As illustrated in Figure 2.8, the slope of NCL becomes steeper 

and more curved away from the initial yield point if the gravimetric water content increases. 

Decreases in suction and saturation degree are observed during loading, and they are more profound 

at the lower levels of gravimetric water content. Besides, Figure 2.9 reveals that there is a concurrent 

occurrence between the plastic volumetric strain and the irrecoverable saturation degree when both 

loading and wetting paths reach the yielding regime. From this point on, both NCL and SWCC exhibit 

the same yield points at any instant during further isotropic loading, reflecting the non-uniqueness 

and wetting-drying difference of SWCC induced by the loading-unloading process.  
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Figure 2.8. Undrained isotropic compression tests on the mixture of Fairbanks silt and Kaolin clay 

(after Li, 2015) 

 

Figure 2.9. ABCD loading paths in undrained isotropic compression tests on Fairbanks silt at 𝑤 =

8.3% (after Zhang, 2016) (a) �̅� − 𝜈 (b) 𝑠 − 𝑆𝑟 

Shearing path: The plots presented in Figure 2.10 depict the experimental trend of shear response 

drawn from triaxial compression tests at different levels of suction and gravimetric water content. As 

can be seen, the sheared sample first experiences a negligible nonlinear response that can usually be 

considered as elastic behaviour, where a rapid increase in shear stress, volumetric strain and saturation 

degree is observed. This elastic stage is ongoing until the stress paths reach the initial yield points. 

The next stage involves the softening/hardening response with the activation and development of 

irrecoverable changes in the strain and saturation degree. Figure 2.11a illustrates that the yield loci 

expand with increasing suction in both �̅�: 𝑞 and 𝑝′: 𝑞 spaces, indicating that the increase in suction 

results in a growth in the shear resistance of partially saturated soils. A gradual transition between 

hardening, perfect plasticity and softening responses under different suctions are demonstrated in 

Figure 2.10. The more dilative response is observed at lower suctions (see Figure 2.10a) and higher 
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gravimetric water contents (see Figure 2.10b). The capillary effect on dilation is also shown in Figure 

2.11b, where the dilatancy ratio becomes greater with decreasing suction.  

  

Figure 2.10. (a) Drained triaxial compression tests on compacted silty sand at 𝜎33 = 100 kPa (after 

Patil, 2014) (b) Undrained triaxial compression tests on residual sandy clay at 𝜎33 = 150 kPa (after 

Toll & Ong, 2003) 

 

Figure 2.11. (a) Yield points at different suction levels (after Uchaipichat, 2005; Uchaipichat & 

Khalili, 2009) (b) Effects of suction on dilation in suction-controlled triaxial compression test on 

compacted Zaoyang clay at 𝜎33 = 50 kPa (after Chen, 2007) 
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At the end of the shearing process, changes in shear stress, volumetric strain and saturation 

degree/volumetric water strain become progressively slower until approaching the steady state, whilst 

the shear strain keeps changing, reflecting the critical state of partially saturated soils (see Figure 

2.10). This is of great concern, given its importance for understanding the ultimate behaviour of the 

post-failure stage. With that in mind, the last periods have triggered numerous studies on the critical 

state of unsaturated soils, based upon the analysis of a large number of shear test results at the macro-

level, which sometimes give rise to a heated debate about the constraints for the critical state, along 

with the existence and uniqueness/non-uniqueness of the critical state line. Most prominently, many, 

such as Zhao (2014), Chen (2007), D’Onza et al. (2011), Chiu (2002), Al-Sharrad (2013) and Toll & 

Ong (2003), agree that the increments of shear strength, volumetric strain, and notably saturation 

degree, are around zero, whilst the shear strain keeps changing at the ultimate state. This is related to 

the existence and uniqueness of the Critical State Line in �̅�: 𝑞 or 𝑝′: 𝑞 space (see Figure 2.12) and 

Critical State Plane (CSP) in the �̅�: 𝑞: 𝑠 space (see Figure 2.13), with a constant slope regardless of 

the variations in suction (Sivakumar, 1993; Wheeler & Sivakumar, 1995; Lloret, 2011; Al-Sharrad, 

2013; Tarantino, 2007). Suction only has effects on the upward shift in the position of CSL through 

creating tensile strength/cohesion for partially saturated soils, as shown in Figure 2.12a. They are 

then verified theoretically within the thermodynamic-based frameworks suggested by Zhao et al. 

(2014) and Li (2007). One must bear in mind that this is just one stand-point of particular concern: 

there are others about the nature of the steady state of partially saturated soils. Nevertheless, this 

viewpoint can be considered to be of sufficient significance, since it is suggested by a majority of 

experimental works on unsaturated soils with some theoretical clarifications and has advantages of 

simplicity and convenience, in the context of difficulties in defining actual critical state conditions 

for boned soils (Toll & Ong, 2003).  
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Figure 2.12. Critical state lines from suction-controlled triaxial tests (after Al-Sharrad et al., 2017) 

(a) in �̅�: 𝑞 plane (b) in 𝑝′: 𝑞 plane 

 

Figure. 2.13. Critical state planes in �̅�: 𝑞: 𝑠 space from (a) drained triaxial tests (after Thu, 2006) (b) 

water content-controlled triaxial tests (after Marinho et al., 2016) 

Summary of the coupling behaviour from the test at the continuum level 

Given the experimental observations in different hydraulic and loading cases, it can be said that 

hydro-mechanical coupling is part of the intrinsic nature of unsaturated soil behaviour. It is reflected 

at the continuum level through the interactions between SWCC (hydro-) and stress-strain (mechanical) 

relationships. The results of these studies primarily reveal the dependence of strength and deformation 

characteristics on suction. In particular, when increases in suction do occur, the shear strength (Vaunat 

et al., 2007; Toyota et al., 2001), yield limit (Alonso et al., 1990; Wheeler & Sivakumar, 1995; Cui 

& Delage, 1996) and dilatancy (Ng & Zhou, 2005; Cui & Delage, 1996) increase; whereas the 

elastoplastic stiffness (Alonso, 1987; Alonso et al., 1990; Cui & Delage, 1996; Zhang & Lytton, 2009; 

Charlier et al., 1997; Geiser et al., 2000) decreases or increases (Wheeler & Sivakumar, 1995; 

Matsuoka et al., 2002; Sun et al., 2000; 2004), while the contribution of suction on the change in 
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elastic stiffness is generally minor, or even negligible (Alonso et al., 1990; Cui & Delage, 1996). All 

of the features described above are underpinned by the volume change behaviour related to swelling 

in the wetting process (suction decrease) and shrinkage in the drying process (suction increase), which 

is one of the most fundamental properties of unsaturated soils, according to Sheng et al. (2008). 

Accordingly, the equations of volume change, usually the equations of the normal compression line 

and loading/unloading line, reveal an essential basis for theory development of unsaturated soil 

mechanics, not only because they provide information on the constitutive relationship but also 

because they matter for the hardening laws. In this sense, through the experimental results obtained, 

there have been many attempts to propose different formulas for the volume variation. Many of them, 

such as Alonso et al. (1990), Fredlund & Rahardjo (1993) and Sheng et al. (2008), postulate that the 

normal compression line tends to shift with suction in the logarithmic mean stress-specific volume 

space. Although these results generate good predictions, there are still growing concerns about their 

inadequacies related to the role of the saturation degree under constant suction conditions, leading to 

several debates. For example, some studies (Sun et al., 2010; Zhou et al., 2012) show that the degree 

of saturation is raised during compression, despite the constant suction. This, in turn, increases the 

compressibility of the soil. In identical values of net stress, suction and volume, two soil samples may 

produce different degrees of saturation: the reason being that there are differences in the numbers of 

voids filled with bulk water and influenced by meniscus water. The two specimens are, therefore, 

distinct from each other in terms of the inter-particle contact forces, as a result of which their 

mechanical responses are not the same. Such evidence indicates the important role of saturation 

degree in understanding the behaviour of unsaturated soils. To address this, the influence of saturation 

change on the stress-strain response has been studied both theoretically and experimentally by several 

authors, such as Gallipoli et al. (2003), Wheeler et al. (2003), Sun et al. (2010). These studies found 

that there are also considerable changes in the texture of the granular material, characterized by 

comprising the volumetric strain, shear strength, yield stress, soil stiffness and dilatancy due to 

variations in the degree of saturation, corresponding with suction along the SWCC curve. 

Furthermore, the stiffnesses in geomaterials are different between drying and wetting paths at the 

same saturation. Drawing on the above discussions, both suction and saturation degree usually link 

together in SWCC and have considerable effects on the mechanical responses of unsaturated soils. 

Thus, it can be seen that water retention behaviour plays a fundamental role when studying the actual 

mechanism of wetting/drying-induced collapses in soil mechanics.  

On the other hand, the effect of hydraulic behaviour on the mechanical strength is governed by several 

factors associated with the stress state (Nuth & Laloui, 2008; Masin, 2010; Uchaipichat, 2010; Miller 

et al., 2008), volume change (Gallipoli et al., 2003; Vanapalli et al., 1999; Pham, 2005; Nuth & Laloui, 
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2008) and soil density (Tarantino, 2009; Masin, 2010; Simms & Yanful, 2004; Mbonimpa et al., 2006; 

Sun et al., 2007). A range of those studies agree that the volume change (volumetric strain, porosity, 

and void ratio) during loading and unloading cause shifting of the water retention curve along the 

axis of suction. This can be explained by the observation that the specific volume variation modifies 

the dimensions of voids and connecting passageways between voids. A change of suction is 

henceforth required to be compatible with a given degree of saturation. To better gauge this coupling 

mechanism, Wheeler et al. (2003) suggest that only the irreversible part of the volumetric strain 

affects the translation of the primary drying and primary curve. The wetting-drying difference in 

SWCC, through the appearance of irrecoverable saturation, should be another matter of considerable 

concern for an in-depth understanding of how partially saturated soils behave. Regarding this, 

McNamara (2014) states that “Less mechanical energy is required to make dry soil wet than to make 

that wet soil dry”. In light of the information gathered through these discussions, the interactive 

relationship between the hydraulic and mechanical processes must be the key to understanding the 

actual behaviour of unsaturated soils.  

2.2.2. Micromechanical insights 

In partially saturated soils, the distributions of sizes/shapes of both grains (Blonquist Jr et al., 2006; 

Heinse et al., 2007) and fluid pores (Gili & Alonso, 2002; Revil & Cathles, 1999) characterise soil 

properties. The interfaces between the three phases are governed by the grain surface profiles, their 

hydrophilicity and thermodynamic characteristics (Blake & Haynes, 1969; Bachmann et al., 2003; 

Goebel et al., 2004; Lourenco et al., 2012; Russell & Buzzi, 2012). Therefore, the above-described 

experimental features of hydro-mechanical coupling at the continuum level are intrinsically linked to 

the grain-scale phenomena related to grain arrangement and liquid-bridge distribution, which can be 

discussed with the focus on granular materials and water menisci as below:  

Grain-scale properties of liquid bridges 

Fluid pressures and surface tension, changes that occur with the variation of water content during the 

wetting/drying processes, have long been recognized as fundamental factors of the unsaturated soil 

condition for understanding the failure mechanisms of soils. They produce the capillary forces exerted 

by water menisci and affect the grain-to-grain contact behaviour. The behavioural mechanism of 

liquid bridges and air-water interfaces on the soil skeleton is considered as a debonding action upon 

wetting and a bonding action due to any suction increase. Soil grains are pulled together by the 

contractile films at interfaces between the wetting and non-wetting phases of these liquid bridges (see 

Figure 2.14). Furthermore, a specimen of partially saturated soils can be subjected to the same value 

of suction at more than two different saturation degrees of wetting and drying curves, reflecting their 
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dependence on the hydraulic history of responses. This phenomenon is the key feature of SWCC and 

attributed to geometric or ink-bottle effects, entrapment of a non-wetting phase and the shrinking and 

swelling of pores (Gan et al., 2013; Morrow, 1975; Tindall et al., 1999; Lappalainen et al., 2009; 

Pereira & Arson, 2013), and variations in contact angles during wetting and drying (Gan et al., 2013). 

The nature of this yielding hydraulic response lies in the irreversible movement of air-water interfaces 

and rate-independent hysteresis of the contact angle, which can be demonstrated through the 

difference in morphology of the water phase between drying and wetting processes at the same 

saturation degree, as seen in the experimental example in Figure 2.15. The here-mentioned 

microstructural phenomenon can be regarded as the physical mechanism of the irrecoverable 

wetting/drying process, associated with the irreversible changes of saturation at the macro-scale, as 

mentioned by Wheeler et al. (2003).  

 

Figure 2.14. (a) Illustration of water meniscus between contacting spheres (Farouk et al., 2004) (b) 

Free body diagram for evaluating interparticle forces between two spheres (Bozkurt et al., 2017) 

 

Figure 2.15. CT images of moisture distribution in the unsaturated Estaillades limestone at 

saturation of 92% (a) prepared by drying (b) prepared by wetting (after Cadoret et al., 1998). 
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Grain-scale properties of soil skeletons  

Mechanical yielding behaviour is attributable to the rearrangement of particles through the 

sliding/rolling contact, leading to plastic strain (an internal mechanical variable) (Collins, 2005; Li, 

2007). Soil skeleton stress is the stress at inter-particle contacts, playing a fundamental role in 

governing deformation and failure of partially saturated soils. Experimental observations in several 

microstructural testing techniques (X-ray computed tomography (Moscariello et al., 2016; Manahiloh 

& Meehan, 2017; Higo et al., 2013), Scanning Electron Microscopy images (Louati et al., 2015; 2017), 

and Mercury Intrusion Porosimetry (Romero & Simms, 2008)) suggest that the soil skeleton stress of 

partially saturated soils is linked with the frictional and capillary forces of grain-to-grain contacts. 

The frictional force (repulsive) stems from the sliding between grains, while the capillary force 

(attractive) is induced by fluid pressures (air and water) and surface tensions of water meniscuses 

around the particle contact points (see Figure 2.14). The capillary force serves as an internal 

tensioning/cohesion to maintain the stability of the soil structure by raising the strength and stiffness 

of the soil skeleton. It is accommodated by the morphology of the water phase, which is very different 

in the three saturation regimes (pendular, funicular, and capillary) (see Figure 2.16) (Louati et al., 

2017; Wang et al., 2017). In particular, the water phase in the pendular regime is formed into isolated 

liquid bridges between pairs of grains. In the funicular state, liquid clusters between more than two 

grains are constructed through the coalescence of water bridges. The capillary regime exhibits a 

continuous water phase with small air bubbles. In the literature, there have been many attempts to 

propose mathematical expressions of the attractive capillary force between two idealized particles 

(spheres) for the pendular regime (Taibi et al., 2009; Cho & Santamaria, 2001; Chateau et al., 2002; 

Hicher & Chang, 2007; Farouk et al., 2004; Likos & Lu, 2004) and three idealized particles for the 

funicular regime (Wang et al., 2017), accounting for the effects of the separation distance between 

the particles and water-air-solid contact angles on liquid volumes (see Figure 2.17).  
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Figure 2.16. Liquid bridge distribution and cohesion in different saturation regimes (water in light 

blue, the air in black and solid in light brown) (Wang et al., 2017) 

 

Figure 2.17. Effects of separation distance and meniscus volume between particles on capillary 

force (Bozkurt et al., 2017) 

Grain-scale mechanisms of hydromechanical coupling  

For partially saturated soils, the reversible responses of the mechanical part are produced by the 

elastically compressed grains, which can recover to their previous states upon unloading (Collins, 

2005), while that of the hydraulic part stems from the reversible movement of the air-water interfaces 
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or water meniscuses against the rewetting/redrying cycle (Wheeler et al., 2003). Furthermore, it is 

worth noting that, due to the heterogeneous structure of unsaturated soils, not all of such elastically 

compressed particles and elastically wetted/dried meniscuses return to their previous states since 

many of them can be trapped within the compacted grain (Collins, 2005) and liquid bridge networks 

(Wei & Dewoolkar, 2006) during reloading and rewetting/redrying, respectively. In this situation, 

their recovery modes (expanding and giving up stored elastic energies) can only take place if there 

are simultaneous rearrangements of the grains and redistribution of the water meniscuses in the 

surrounding area. It proves that the irreversible changes of strain and saturation degree can cause 

trapped elastic energies, known as stored plastic or frozen/locked energies (Collins, 2005; Collins & 

Kelly, 2002). Collins (2005) states that such locked energies are considered to be scalars or “memory 

parameters”, and these induce the hydromechanical hardening effect (Li, 2007) (see Figure 2.18). In 

particular, in the family of critical-state-based models, they have a crucial role in generating the 

dilatancy, which can be explained by the “sawtooth” analogy. Despite such understandings of the real 

presence of stored plastic energies, it can be assumed, for simplicity, that the concept of locked energy 

is irrelevant to this study. Additionally, the coupling in the reversible regime is very slight, such that 

this study can consider it as a minor feature to account for in the prediction of the current model. For 

instance, many experimental data show that the soil stiffness of elastic behaviour associated with the 

slope of the unloading-loading line in the specific volume–mean stress space is independent or 

inconsiderably dependent on the change of suction (Alonso et al., 1990; Wheeler & Sivakumar, 1995; 

Cui & Delage, 1996). 

 

Figure 2.18. The change in coupling effect of capillary-related locked energy in soil skeleton with 

saturation degree (𝑆𝑟1 < 𝑆𝑟2 < 𝑆𝑟3 < 𝑆𝑟4) (after Li, 2007) 

A strong coupling between mechanical and hydraulic responses is intrinsically observed in the 

inelastic stage. It can be physically demonstrated that such a coupled hydro-mechanical mechanism 

can be highlighted in the coupled dissipative process triggered by internal structural changes of soil 
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particles and pore fluids pertaining to mechanical and hydraulic responses, respectively. These two 

grain-scale phenomena activate and develop simultaneously and have mutual effects on each other 

(Li, 2007; Hu et al., 2015; Wheeler et al., 2003). For example, during the wetting/drying process, the 

redistribution of water menisci induces changes of capillary forces between grains and hence their 

inter-particle contact forces, leading to the rearrangement of particles that are usually represented in 

continuum modelling by plastic deformation. They have effects on the average stress acting on the 

soil skeleton and the cementing effect on the soil packing where their air-water interfaces with surface 

tensions and specific interface areas are in the nature of the grain-to-grain contacts of porous media. 

The pore water pressure in the meniscus water rings induces the additional normal force at inter-

particle contacts, reducing the possibility of slippage at the inter-particle contacts. Under mechanical 

loadings, the movement of particles triggers the imbibition/drainage of pore throats and rupture of 

fluid bridges (see Figure 2.20). This rupture of liquid bridges, as an irrecoverable process, results in 

changes of macro suction and saturation. To micro-mechanically illustrate this, the irreversibility of 

the porosity change, associated with the movement of particles in the porous packing, triggers local 

instabilities to be propagated to the fluid interfaces. Consequently, instantaneous jumps between 

stable configurations give rise to a discontinuous process of fluid phases, including 

imbibition/drainage of pore throats/bodies and bridge rupture. Additionally, this phenomenon of grain 

rearrangement itself makes a significant contribution to varying capillary pressures, which are mainly 

dependent on inter-particle distances, which elongate during the volumetric dilation and shortening 

processes during the volumetric contraction. Alongside this, the difference in such capillary forces 

enables liquid bridges to redistribute. As a result, the suction-saturation curve is different in wetting 

and drying, as experimentally observed in several experiments (see Figure 2.3). In the light of the 

information gathered through these discussions, the two dissipations of plastic strain and irreversible 

saturation degree, associated with yielding, activate and develop simultaneously (see Figure 2.19). 

These two have effects on one another during the loading or saturation processes. This is the central 

mechanism for the fully coupled hydro-mechanical response. It should be of great concern, given its 

importance to understanding the realistic yielding behaviour of partially saturated soils in continuum 

theory.  
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Figure 2.19. The loading-unloading difference in NCL of drained isotropic compression test of the 

highly expansive clays at 𝑠 = 200 kPa (after Sharma, 1998) 

 

Figure 2.20. Interaction between grain rearrangement and liquid bridge redistribution in the granular 

medium during loading (after Bianchi et al., 2016) 

2.2.3. Requirements in continuum modelling of partially saturated soils  

As discussed earlier, the overall response of partially saturated soils is dependent on the state of the 

solid skeleton, how the water and air phases are connected, and the way internal forces interact along 

these interfaces at the microscopic scale. From the aspects of constitutive modelling, the material 

behaviour at the microscopic level can be reflected simply by the representative macroscopic 

variables and their evolutions during loading and wetting/drying for computational processes. In 

continuum modelling, an approximate manner is used to capture the microscopically observed 

mechanisms of partially saturated soils, where details of the model are required to satisfy the rigorous 
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link between experimental observation at the continuum level and the micromechanical nature of the 

interactions of all constituents (soil skeleton, and fluids) to reduce ad hoc assumptions.  

In principle, the underlying micromechanical forces can be characterized by a few representative 

macroscopic stress-like variables in continuum modelling. Effective stress and suction can be 

interpreted as important and widely-used stress-like variables at the continuum level for specifying 

the responses of each constituent in the overall behaviour of partially saturated soils. Physically, the 

effective stress here can be understood as the stress at the inter-particle contacts, related to the 

deformation and failure of the soil skeleton, and governed by both the external load and contact-level 

capillary action. From the micromechanical point of view, there must be two contributions to the 

capillarity of the average skeleton stress, including suction and surface tension forces along the 

contours between the grains and liquid bridges (Wan et al., 2014; Li, 2003; Likos, 2014), both of 

which affect the form of Bishop’s effective stress parameter 𝜒 . The latter still needs further 

investigation (Likos, 2014) and is not always taken into account in constitutive modelling (Gallipoli 

et al., 2003; Hu et al., 2014). There have been attempts at phenomenological expressions of the 

effective stress parameter 𝜒, which can be represented as either a function of the saturation degree 

(e.g. Hassanizadeh & Gray, 1990; Muraleetharan & Wei, 1999) or the air-entry value (Khalili & 

Khabbaz, 1998), to capture the transition between fully and partially saturated states. Despite their 

usefulness being demonstrated in Russell & Khalili (2006), Khalili et al. (2008), Loret & Khalili 

(2002), extensive research on the micromechanical aspects for better forms of Bishop’s effective 

stress parameter 𝜒 is still needed (Wan et al., 2014; Li, 2003). This research is, therefore, not covered 

within the scope of this study. On the other hand, internal fluid pressures at the micro-scale can be 

represented by the modified suction representing the hydraulic conductivity of bulk fluids, where 

porosity is accommodated to demonstrate the explicit effect of volumetric changes on the saturation 

processes. These stress-like variables are work conjugate with the strain-like variables (e.g. strain and 

saturation degree) to generate a certain amount of work input associated with a change in the state of 

a system (Houlsby, 1997). 

All the underlying micro-mechanisms of deformation and saturation can be encompassed in 

constitutive modelling in an indirect way by means of macroscopic irreversible quantities. These 

quantities are regarded as internal variables and corresponding internal forces of the energy 

dissipation processes to record the history of changes of the state variables within a system.  In 

principle, an infinite number of internal variables can be used in the constitutive equations to replicate 

accurately the evolution of microstructural processes for the realistic behaviour of partially saturated 

soils. Nevertheless, only a few internal variables are selected in practice for simplicity to give 

reasonable approximations to the real response. For example, movements and reorganisations of soil 



2-21 

 

grains are usually represented by the plastic strain tensor to encapsulate the history of inelastic 

deformation or mechanical dissipation in many existing plasticity models for solids. Within three-

phase porous media, the moisture/fluid pore redistribution, induced by the formation and breakage of 

water meniscuses, takes place to produce the yielding hydraulic responses. In this case, the 

irreversible saturation degree can be selected as an additional internal variable to identify the essential 

mechanisms of saturation and hydraulic energy dissipation, capturing the process of local structural 

rearrangements related to the change of moisture distribution. The strong coupling between hydraulic 

irreversibility and plasticity gives rise to the existence of a single yield function, controlling the 

simultaneous evolution of all internal variables to facilitate the simulation of material behaviour under 

a wide range of loading and hydraulic cases. This is a crucial requirement for constitutive modelling 

of partially saturated soils to reflect the coupled hydro-mechanical grain-scale processes associated 

with the interdependence of mechanical and hydraulic internal forces and their dependence on all 

internal variables, in addition to effective stress and suction. To illustrate, experimental data indicate 

that there is a concurrent occurrence between the plastic volumetric strain and the irrecoverable 

degree of saturation changes when the stress paths reach the yield curve (Zhang & Lyttom, 2012). In 

other words, they exhibit the same yield points at any instant (see Figure 2.9). Closely linked to these 

findings is the actual existence of the unique yield locus, the embodiment of a material’s behaviour, 

for both state processes of volume and saturation changes in unsaturated soils (Delage & Graham 

1996; Sivakumar & Doran, 2000; Zhang & Lyttom, 2012). Drawing on the above discussions, the 

water retention curve (e.g. the suction-saturation degree relationship) and the inseparable nature of 

plasticity and hydraulic irreversibility in the energy loss play a fundamental role in studying the actual 

mechanism of collapses in unsaturated soil mechanics. This feature is the focus of this thesis. It sets 

out the challenges ahead in the development of constitutive modelling of partially saturated soils. 

Against that background, the following section briefly reviews whether the existing frameworks are 

adequate. 

2.3. Constitutive modelling of partially saturated soils  

The above key characteristics of partially saturated soil behaviour should be reflected in a constitutive 

model to capture the transition between partially- and fully-saturated conditions (Zhou & Sheng, 2009; 

Sheng, 2011). At a glimpse, it is found that a countless number of continuum models for partially 

saturated soils exist in the literature and can be grouped into several categories, each of which 

corresponds to a particular choice of stress variables. Among them, there are two most prominent 

groups of elastoplastic models, one that is generated by the pair of net stress and suction (Alonso et 

al., 1990; Wheeler & Sivakumar, 1995; Cui & Delage, 1996; Sheng et al., 2008), and another one 

based on the average skeleton stress (Bolzon et al., 1996; Loret & Khalili, 2002; Sheng et al., 2004; 
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Sun et al., 2007; Tamagnini & Pastor, 2004). It is undeniable that the latter choice can capture the 

transition between unsaturated and saturated states at a material point level thanks to the reflection of 

variations in saturation degree, while the former cannot. Despite all the disputes, several authors 

(Houlsby, 1997; Coussy et al., 2010) have reached one radical consensus: that both are just inadequate 

approximations of the much more complex behaviour of unsaturated soils. In such a case, two other 

stress-like variables, namely, the effective stress and modified suction (the product between porosity 

and suction), have instead been chosen to be work conjugate to the changes of strain and saturation 

degree, respectively, on the basis of the equation of energy input in multiphase porous media, as 

suggested by Houlsby (1997). Such a conjugate pair of variables then constitutes the prerequisite 

theoretical foundations for the development of several other models for unsaturated soils, proposed 

by Wheeler et al. (2003), Buscarnera & Nova (2009) and Li (2007). It should be noted that any form 

of stress variables is geared towards the ultimate goal of understanding the coupling of the hydraulic 

and mechanical behaviour of partially saturated soils. 

2.3.1. Model without saturation degree 

On the basis of such choices of stress-strain variables, existing models of unsaturated soils can more 

or less address the experimental observations outlined in Section 2.2.1. The effects of suction on the 

stress-strain relationships have been addressed in several papers (e.g. Alonso et al., 1990 (see Figure 

2.21); Wheeler & Sivakumar, 1995; Cui & Delage, 1996; Sun et al., 2000; Stropeit et al., 2008; Blatz 

& Graham, 2003; Macari et al., 2003; Farias et al., 2006; Solowski & Sloan, 2015). The fundamental 

characteristics of these frameworks are the enhancement of classical critical state models, taking into 

account the evolution of the pre-consolidation pressure with increasing matric suction. In particular, 

suction was used in the loading-collapse yield function and volume equations to capture plastic 

compression under the effects of suction. This approach is able to capture several important 

behavioural features of unsaturated soils. For example, the effects of suction on soil stiffness observed 

in suction-controlled tests are reproduced reasonably effectively by these models. These bring several 

significant advantages for unsaturated mechanics by representing several stress paths related to 

independent stress state variables (e.g. net stress and suction) in a simple way. They allow the model 

to capture the collapse mechanism of wetting-induced swelling and the increase of shear strength 

with suction. This is linked to the influence of suction on the yield limit, where the shape of the yield 

surface is influenced by the suction change and where the increase of suction widens the size of the 

yield surface (see Figure 2.21). However, the link between the suction and degree of saturation was 

missing in these models, making it hard to reproduce the dependence of model responses on different 

saturation regimes (capillary in fully saturated conditions, funicular at high saturations, and pendular 

at low saturations), although SWCC is indicated as being an indispensable component for partially 
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saturated soils to capture the realistic responses of partially saturated soils.  To illustrate this, the 

relative area associated with water and air pressures is dependent on the saturation degree, affecting 

the number and intensity of capillary-induced inter-particle forces at the microscopic scale. Therefore, 

constitutive models with suction alone for hydraulic responses are inadequate to describe realistic 

mechanisms of unsaturated soils. Furthermore, these models are not capable of capturing the 

transition between saturated and unsaturated states due to the lack of saturation degree effects. To 

address this, Zhou et al. (2012) and Zhou & Sheng (2015) used an NCL with a soil compression index 

varying with the effective degree of saturation, while Alonso et al. (2013) proposed an NCL 

dependent on both the suction and saturation degrees. Wheeler et al. (2003), Tamagnini (2004), Xie 

& Shao (2006) and Buscarnera & Nova (2009) suggested different hardening constitutive laws 

governing the coexistence of the strain and saturation rates. These studies demonstrate that both the 

suction and saturation degrees play an indispensable role in modelling the wetting/drying-induced 

collapses of partially saturated soils. 

 

Figure 2.21. Yield surfaces of BBM model (Alonso et al., 1990) in (a) (�̅�, 𝑞, 𝑠) space, (b) (�̅�, 𝑞) 

space and (c) (�̅�, 𝑠) space 

2.3.2. Model with SWCC  

The use of an SWCC, independent of the volumetric behaviour, has been the focus in several models 

(Thu et al., 2007; Zhou & Sheng, 2009; Russell & Khalili, 2006; Kohler & Hofstetter, 2007; Wong 

et al., 2010) to reflect the effects of the degree of saturation and suction on mechanical behaviour. 
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For example, Russell & Khalili (2006) proposed a unified constitutive model for unsaturated soils 

presented through critical state bounding surface plasticity theory, using the concepts of effective 

stress for unsaturated granular materials. Zhou & Sheng (2009) extend the SFG model (Sheng et al., 

2008) to provide a consistent presentation of the dependence of yield stress, shear strength, dilation 

and volume change behaviour of partially saturated soils on suction to capture extensive experimental 

data for describing the volume change during drying under constant stresses, volume change during 

constant suction isotropic compression tests and shear strength during direct suction-controlled shear 

and triaxial compression tests. In general, all of these models are effective to demonstrate how a 

volumetric collapse phenomenon, due to hydraulic debonding/bonding effects, can be described by 

constitutive models in different saturation regimes. The transition between partially and fully 

saturated conditions is naturally captured by this model thanks to the use of the saturation degree. 

However, all of them (Thu et al., 2007; Zhou & Sheng, 2009; Russell & Khalili, 2006; Kohler & 

Hofstetter, 2007; Wong et al., 2010) only take into account the one-way interaction, commonly 

encompassing the effects of hydraulic behaviour on the stress-strain relationship and, as such, are 

considered to be at the level of partial coupling. They neglect the non-uniqueness of SWCC observed 

and addressed in several other papers (Nuth & Laloui, 2008; Miller et al., 2008, Gallipoli et al., 2003; 

Vanapalli et al., 1999; Tarantino, 2009; Masin, 2010; Mbonimpa et al., 2006). In other words, the key 

point of these models lies in the mainstreaming of the suction and saturation degree into the function 

of yield surface to capture plastic compression due to the wetting-induced collapse behaviour over 

different saturation regimes, but without any consideration of the mechanical impacts on the hydraulic 

response. Regardless of whether these mainstreaming approaches are rigorous or not, the ignorance 

of the stress/strain-dependent SWCC is a notable demerit of these frameworks and constitutes a 

significant impediment to an adequate understanding of the realistic response of unsaturated soils 

with the simultaneous processes of deformation and saturation because the degree of saturation 

increases with the void ratio, even when the value of the suction is constant. Furthermore, although 

the identification and determination of the model parameters are widely regarded as serving an 

essential role in determining the model’s applicability and predictive ability, the selection of the input 

data in existing models of unsaturated soils is generally arbitrary and has unclear links with the testing 

procedures applied.  

Other models employing an SWCC dependent on volume change to have stronger interactions 

between the hydraulic and mechanical responses have also been proposed (e.g. Buscarnera, 2010; 

Buscarnera & Nova, 2009). In this type of model, Bishop’s stress, with the effects of both suction and 

saturation, is used as a stress-like variable for the mechanical part. Meanwhile, the modified suction 

is used as a hydraulic stress-like variable to demonstrate the influence of porosity on the saturation-
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suction relationship in representing the mechanical effect of hydraulic behaviour for unsaturated soils. 

The appealing feature of this class of models is the introduction of a coupled hydromechanical form 

of elastoplastic stiffness matrix, allowing for a shifting SWCC with volume change. These models 

have proven successful in taking the concurrent existence of hydraulic effects towards mechanical 

changes and vice versa into consideration in constitutive formulations. These models provide good 

results on stress state changes under hydraulic paths in the net and skeleton stress space where 

different key behavioural features are reasonably captured, such as the dependency of strain on the 

stress–suction path, accumulation of expansion and compression strain during suction cycles at 

different confining stresses, and the effects of suction on dilatancy. Despite their successes in taking 

into account hydro-mechanical coupling in the constitutive behaviour of partially saturated soils, the 

difference in wetting and drying paths was not taken into account in these models. The irreversible 

degree of saturation was missing in these models, thus hindering them from reproducing the macro 

behaviour generated by the interactions between grain contact sliding and capillary irreversibility at 

the grain scale, as discussed earlier. Furthermore, the model parameters have not carefully been 

identified and determined during model development, leading to somewhat arbitrary choices of model 

parameters.  

2.3.3. The model with wetting-drying differences in SWCC 

In order to remedy deficiencies associated with hydro-mechanical coupling in the approaches 

mentioned above, several alternative models are proposed. More complete representations of water 

retention behaviour, taking into account the irreversibility between the wetting and drying processes, 

have been successfully presented in several fully coupled hydro-mechanical models (e.g. Gallipoli et 

al., 2003; Loret & Khalili, 2000; 2002; Wheeler et al., 2003; Hu et al., 2014; Khalili et al., 2008; 

Muraleetharan et al., 2009; Liu & Muraleetharan, 2012; Sheng et al., 2008; Sun et al., 2007; 2010; 

Sun & Sun, 2012; Zhou et al., 2012; 2018; Zhou & Sheng, 2015; Lloret-Cabot et al., 2017; Ghorbani 

et al., 2018; Gholizadeh & Latifi, 2018; Bruno & Gallipoli, 2019; Kodikara et al., 2020). Some of 

these models are briefly presented below in two groups (i) Model without internal hydraulic variables 

(e.g. irreversible saturation) and (ii) Model with internal hydraulic variables (e.g. irreversible 

saturation). 

Without using the internal hydraulic variable 

In Khalili et al. (2008), the effective stress principle with the effective stress parameter defined as a 

function of suction, air entry and air expulsion suction values are used for quantifying the contribution 

of suction to the stress on a solid skeleton, taking into account the effects of hysteresis due to wetting 

and drying. A novel constitutive formulation is derived, with the hydromechanical coupling described 
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through the combination of the governing equations for seepage flow and the bounding surface 

plasticity model for elastoplastic deformation behaviour. These two components are linked together 

through plastic hardening, taking into account the effect of suction and the effective stress equation. 

This model presents the explicit effect of mechanical behaviour on a separate SWCC by shifting the 

primary drying and primary wetting curves to the right due to density through the function of air entry 

and air expulsion suction values, which are explicitly dependent on the change in density. On the 

other hand, Zhou et al. (2012), (2018) and Zhou & Sheng (2015) propose a new volume change 

equation, accounting for the stress and degree of saturation, to better represent the nonlinear variation 

of soil compressibility in the case of constant suction. In this sense, the soil compression index is 

dependent on the effective degree of saturation interpolated from its compressibility at the fully 

saturated state. An alternative approach for simulating the wetting-drying difference and its coupling 

with plasticity is then suggested, allowing users to calculate the effective degree of saturation under 

different complicated mechanical and hydraulic paths. From the proposed equation of volume change, 

a loading-collapse yield surface dependent on the effective degree of saturation and Bishop’s effective 

stress is derived to simulate plastic behaviour under the effects of saturation degree, which are 

different between drying and wetting paths.  In general, these models are assessed to be adequate, 

robust and effective in reproducing many important behavioural features of partially saturated soils, 

such as the effects of volume change on wetting-drying differences in SWCC, transitions between 

softening and hardening, the soaking-induced deviator strain when the stress ratio is kept constant, 

the dependence of compressive and dilative volume changes on both wetting/drying and shearing, 

and changes in the saturation degree owing to both wetting/drying and shearing in different tests (e.g. 

drying–wetting cycle tests, isotropic and triaxial loading tests and undrained cyclic triaxial tests). 

However, the concern here is that they adopt a separate law of hydraulic hysteresis, in which each 

drying and wetting path possesses different parameters, as a result of neglecting internal hydraulic 

variables for reflecting the formation and/or breakage of water menisci. This hinders these models 

from presenting the hydraulic dissipation properties of partially saturated soils, which are very 

important to capture the mechanisms of hydromechanical coupling inspired by the interdependence 

between pore fluid redistribution and grain rearrangement at the grain scale, as previously discussed. 

These models are hence not capable of modelling the simultaneous activation and development 

between yield stress and suction in a wide range of loading and saturation conditions, which are 

usually observed in experiments. 

Using the internal hydraulic variable  

Several other models use an additional variable for hydraulic irreversibility as a potential way to 

represent the effects of wetting-drying differences in modelling responses of partially saturated soils. 
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For example, Muraleetharan et al. (2009), Liu & Muraleetharan (2012), Ghasemzadeh et al. (2017) 

and Ghasemzadeh & Amiri (2013) used the evolution of the irrecoverable volume fraction of water 

and hysteresis within the framework of classical isotropic cyclic plasticity to describe the nature of 

hydraulic irreversibility. In this group of models, the conjugated stress-strain variables for both hydro 

and mechanical responses are proposed where the bounding surface plasticity concept is used to 

derive a hysteretic model for SWCCs. The incorporation of the bounding surface plasticity concept 

enables simulation of different complex hydromechanical responses of partially saturated soils under 

multiple cycles of wetting and drying, or multiple cycles of loading and unloading. While the 

hydromechanical hysteresis and accumulation of permanent deformation during repetitive loading 

cycles are described by the concept of bounding surface plasticity, a separate law for hydraulic 

hysteresis, requiring different sets of parameters for drying and wetting paths, is still required in these 

models to capture the wetting-drying differences in behaviour (see Figure 2.22). Furthermore, the 

identification and calibration of several parameters in these models (e.g. Liu & Muraleetharan, 2012) 

is a challenge for their applications. In particular, these models need many parameters, some of which 

possess unclear physical meanings, to gain insight into the behavioural mechanism of 

hydromechanical coupling in partially saturated porous media.  

 

Figure 2.22. Separate law of soil-water characteristic curve in the model of Muraleetharan et al. 

(2009) 

Note:  
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where 𝜙𝑤𝑠𝑎𝑡 is the saturated volumetric water content; 𝜙𝑤𝑟𝑒𝑠 is the residual volumetric 

water content at very high suction; 𝑓1, 𝑑1, 𝑓2, 𝑑2 are material parameters 
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Irreversible saturation is incorporated into hydro-mechanical coupling in some other models (e.g. 

Wheeler et al., 2003; Sheng et al., 2004; Lloret-Cabot et al., 2017), requiring the use of multiple yield 

surfaces (see Figure 2.23 and 2.24), e.g. one mechanical (Loading Collapse; LC) and two hydraulic 

(Suction Increase/Decrease; SI/SD, usually as horizontal straight lines) with complicated treatments 

for the coupled evolutions of all yield functions (Wheeler et al., 2003; Sheng et al., 2004). For instance, 

Wheeler et al. (2003) introduce the equations of the irreversible increments of strain and saturation 

degree with the coupling parameters controlling the path traced by the corner between yield curves 

in the mean stress-modified suction-volumetric strain space and the mean stress-modified suction-

saturation degree space, to reflect the coupled movements of the various yield curves. Thanks to this 

technique, the effect of irreversible changes of degree of saturation on the stress-strain behaviour and 

the influence of plastic volumetric strains on SWCC are accounted for, indicating the ability of these 

models to reflect realistic mechanisms of full hydromechanical coupling. As a result, these fully 

coupled models can capture several essential features of coupled hydro-mechanical behaviour under 

different loading and saturation conditions, such as irreversible swelling/shrinkage upon 

wetting/drying, load/deformation-dependency of capillary hysteresis, together with the effects of 

hydraulic hysteresis on shear strength, stiffness, and dilation, which are validated through extensive 

variations of the experimental conditions (suction-controlled isotropic loading and soaking tests, 

undrained isotropic compression tests, suction-controlled triaxial tests, and undrained triaxial tests). 

Despite some successes in using internal hydraulic variables (the irrecoverable volume fraction or 

saturation degree) to capture the interaction between wetting-drying differences and plasticity, these 

models are generated based on weakly-coupled forms through the interconnections of multiple 

separate yielding surfaces. Owing to the discretization of the yield functions, the activation and/or 

evolution of the energy-dissipation phenomena, induced by both grain rearrangements and water-

meniscus redistributions, are highly unlikely to be concurrent. This is inconsistent with what occurred 

during the irreversible changes of partially saturated soils, as mentioned earlier. It poses a significant 

obstacle to actualizing the coupled hydro-mechanical evolutions in the size, shape and position of 

these distinct yield surfaces to be compatible with those observed in laboratory tests. Thus, the 

dependence of all internal forces on stress, suction, plastic strain and irrecoverable saturation and 

their rates cannot be described in this model, leading to a weak hydromechanical coupling and hence 

hindering it from faithfully capturing the actual behaviour of partially saturated soils. To further 

illustrate by experimental evidence, Delage & Graham (1996) and Tang & Graham (2002) found that 

LC and SI/SD should merge into a single yield locus to capture the micromechanical nature of coupled 

hydro-mechanical yielding. This issue has been investigated through a combination of drained 

isotropic compression and drying tests by Sivakumar & Doran (2000) (see Figure 2.25b) and the 

extended Barcelona Basic model of Pedroso & Farias (2011). On the other hand, net stress-controlled 



2-29 

 

experiments by Thu et al. (2007) and Sivakumar & Doran (2000) showed that these widely adopted 

horizontal straight lines for SI/SD are not reasonable (see Figure 2.25) despite their usefulness in 

constitutive modelling, as discussed in several papers (e.g. Delage & Graham, 1996; Robles & Elorza, 

2002; Tang & Graham, 2002; Zhang et al., 2009). Another inadequacy of these models principally 

revolves around the methodology, in which the mathematically defined yielding surfaces and flow 

rules are determined without full thermodynamic consistency, despite their usefulness in some 

applications. No specific link between the dissipation rate and the stress state (or yielding condition) 

in the inelastic regime is provided in the models mentioned above, requiring the use of many ad hoc 

assumptions in the model formulation.  

 

Figure 2.23. Yield surfaces of the model of Wheeler et al. (2003) in (a) (𝑝′, 𝑠∗) space, (b) (𝑝′, 𝑞, 𝑠∗) 
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Figure 2.24. Yield surfaces of the SFG model (Sheng et al., 2008) in (a) (�̅�, 𝑠) space, (b) (�̅�, 𝑞, 𝑠) 

space 

 

Figure 2.25. Experimental results of yield curves in the �̅�: 𝑠 plane (a) Thu (2006) (b) Sivakumar & 

Doran (2000) 

2.3.4. Thermodynamics-based model for unsaturated soils  

In principle, the essential components of a constitutive model can be established separately without 

defining the connection between the dissipation properties and the yield criterion of materials. The 

requirement for thermodynamic admissibility is a necessary, but not sufficient, condition for 

constitutive modelling, as it can be applied retrospectively after completing the derivation of the 

model formulation. The key advantage of such developments is that all essential behavioural 

characteristics of geomaterials in general, and unsaturated soils in particular, can be rigorously 
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incorporated in a thermodynamics-based model, while the number of arbitrary assumptions and 

model parameters can be reduced without compromising the model’s performance (e.g. Collins & 

Hilder, 2002; Einav, 2007; Buscarnera & Einav, 2012). A thermodynamics-based approach can help 

constitutive models to understand the nature of microscopic work and the microscopic forces involved 

in a complex system, where the state of a system is dependent on both the instantaneous values of the 

state variables and the previous history of these variables. The success of such approaches to 

constitutive modelling has been demonstrated for a wide range of engineering materials (Buscarnera 

& Einav, 2012; Liu et al., 2018; Zhang, Z, 2017; Balieu & Kringos, 2015; Nguyen et al., 2015; Lai 

et al., 2016; Al-Rub & Darabi, 2012; Darabi et al., 2018). For soils, the relationship between 

continuum theory and the thermodynamic framework can be found in well-known critical state 

models such as Cam-Clay and Modified Cam-Clay by Roscoe & Burland (1968) and Schofield & 

Wroth (1968). Although the key methodology of these classical model developments is experimental 

analysis to determine elastoplastic features, including the function of the yield surface, constitutive 

stress-strain relationship, hardening law and flow rule, all of these can be interpreted in 

thermodynamics-based formulations. In this sense, some authors (Collins & Houlsby, 1997; Houlsby 

& Puzrin, 2000; Collins & Kelly, 2002) revisit such critical state models regarding the 

thermodynamic concept in a more rigorous way. Through these works, they demonstrate the 

generality and promising features of explicit application of thermodynamics laws to soil modelling 

but only when applied to dry and fully saturated soils where the mechanical behaviour related to the 

stress-strain conjugate is the sole focus of thermodynamic discussions. It will be a different matter in 

the case of unsaturated soils, where thermodynamic laws must comply with the coupled 

hydromechanical behaviour.  

The development of thermodynamic-based approaches to constitutive modelling of partially saturated 

soils has attracted considerable attention over the last 15 years (Sheng et al., 2004; Tamagnini & 

Pastor, 2004; Uchaipichat, 2005; Santagiuliana & Schrefler, 2006; Li, 2007; Coussy et al., 2010; 

Buscarnera & Einav, 2012; Dangla & Pereira, 2014; Hu et al., 2015; Lei et al., 2016).  Yet, the papers 

remain still too few, given the demands of theoretical improvements in unsaturated soil mechanics. 

Despite the attempts and successes, full coupling between plasticity and hydraulic irreversibility has 

usually not been adequate in previous thermodynamics-based approaches. In particular, the hydraulic 

dissipation attributed to the irrecoverable change of saturation degree is overlooked in Tamagnini & 

Pastor (2004), Uchaipichat (2005), Coussy et al. (2010), Buscarnera & Einav (2012), Dangla & 

Pereira (2014) and Lei et al. (2016). Consequently, these models cannot naturally capture different 

responses under wetting and drying paths. Furthermore, the investigation of their associated hydro-

mechanical dissipation properties is essential yet often overlooked or inadequate in some existing so-
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called thermodynamic-based models. The proof for thermodynamic admissibility (non-negativeness 

of the dissipation rate function) is frequently missing in several approaches. That is responsible for 

the inadequate details of thermodynamic admissibility and strong coupling between plasticity and 

hydraulic hysteresis in unsaturated soils. Additionally, despite bringing the usefulness, the use of 

multiple yield surfaces in several models (Sheng et al., 2004; Santagiuliana & Schrefler, 2006; Hu et 

al., 2015) does not reflect the inseparable nature of hydro-mechanical interactions at the grain scale, 

given the dissipative stresses are not dependent on the rates of all internal variables. This is because 

the dissipation potential in these approaches is decomposed into two additive parts (e.g. mechanical 

and hydraulic) which are homogeneous first order in the rate of a corresponding internal variable, 

leading to the so-called weak coupling between plastic strain and irreversible saturation.  

2.4. Boundary Values Problems involving partially saturated soils 

The development of a robust computational platform with an advanced theoretical framework of 

porous media is essential for predicting geohazards. In this sense, FEM, one of the most prevailing 

mesh-based techniques in geotechnical engineering, has increasingly become a powerful tool for 

simulating the coupled dynamic flow-deformation response of partially saturated soils. For example, 

in recent years, numerous studies on FEM have been undertaken ranging over different applications 

for unsaturated soils such as bearing capacity of foundation (Kim, 2000; Tang & Taiebat, 2015; 

Mehndiratta & A, Sawant, 2017; Ng & Small, 2000; Song & Borja, 2014); compressed air support in 

tunnelling (Nagel & Meschke, 2010); unsaturated slope stability under the effects of rainfall and water 

level fluctuation (Xiong et al., 2019; Hamdhan & Schweiger, 2013; Griffiths & Lu, 2005; Oh & Lu, 

2015; Johari & Talebi, 2019; Oka et al., 2010; Callari & Abati, 2009; Huang & Jia, 2009); rainfall-

induced landslides (Leshchinsky et al., 2015; Jeong et al., 2017); unsupported vertical cuts on 

unsaturated sand (Song & Borja, 2014); and liquefaction of unsaturated sand (Bian et al., 2017; Zhang 

& Muraleetharan, 2018). Although fruitful results in establishing numerical simulations pertaining to 

the full hydromechanical interaction have been obtained in these existing studies, they have 

limitations associated with severe mesh distortion issues compromising solution accuracy in 

modelling large deformations (see Figure 2.26). To avoid the mesh-distortion issues encountered with 

the use of FEM, Particle Finite Element Method (Oñate et al., 2004; Idelsohn et al., 2004) was 

introduced based on the combination of FEM and an efficient remeshing procedure given the fixed 

nodes of the previous mesh. Nevertheless, this method requires ad-hoc techniques to recover 

boundaries during the remeshing process. In addition, GIMPM (Bardenhagen & Kober, 2004), an 

extension of the Material Point Method (MPM), has gained attention over recent years for predicting 

coupled flow deformation processes in partially saturated soils (Yerro, 2015; Yerro et al., 2015; Wang 

et al., 2018; Alonso et al., 2015; Lei et al., 2020; Bandara et al., 2016; Vardon et al., 2017). In this 
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method, the computational domain is based on both the mesh and the particle. Despite the benefits 

that GIMPM brings in capturing large plastic deformation of unsaturated soils, it is often 

computationally expensive due to the use of high dimensional shape functions (Soga et al., 2016). In 

computational geomechanics, SPH, a particle-based method, has already been proven successful in 

avoiding the issue of large-deformation grid distortion encountered in FEM and is computationally 

cheaper than IGMPM (Bui, 2007; Bui et al., 2011; Bui & Nguyen, 2017; Bui & Fukagawa, 2011; 

Nonoyama et al., 2015; Zhao, 2019). Despite these advantages, there is a shortage of studies (Bui & 

Nguyen, 2017; Fadaei-Kermani et al., 2019; Zhao, 2019) exploring and examining the application of 

SPH for capturing the response of partially saturated soils. SPH is therefore lagging behind FEM and 

MPM in handling coupled solid deformation-fluid flow in deformable porous media. For these 

reasons, the SPH method is used to investigate the behaviour of geotechnical failures numerically 

under unsaturated conditions in this thesis, focusing on the constitutive models used to represent the 

coupled hydro-mechanical response. 

 

Figure 2.26. Example of extreme mesh distortion using FEM to simulate deformation problems 

(Rohe & Vermeer, 2014) 

2.4.1. Constitutive modelling of partially saturated soils implemented in BVPs  

The coupled flow deformation problem is of importance in geotechnical engineering, involving 

complicated fluid flow patterns and large deformations of the solid phase due to the complex 

multiphase interactions in unsaturated porous media under different loading and saturation 

conditions.  In this case, the matric suction (or saturation degree) and its dependence on volume 

change in different wetting-drying paths are one of the salient, fundamental factors controlling the 

failure mechanisms of partially saturated soils that have been observed in various field studies. For 

instance, the decrease in suction due to the wetting process under heavy rainfalls is responsible for 
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the swelling heave and the loss of shear strength that trigger and govern geostructural collapses (Jeong 

et al., 2017; Yang et al., 2020; Ng et al., 2003; Xie et al., 2020). On the other hand, the drying process 

results in the desiccation shrinkage and cracking of expansive soils when suction increases (Jiang et 

al., 2018; Abdujauwad et al., 1998; Li & Guo, 2017; Caunce, 2010; Dessouky et al., 2015). 

Furthermore, under external loading, the localisation bands in the post-localisation stage, defined by 

the concentration of plastic strain, become a fluid flow barrier or fluid pathway, inducing the 

redistribution of liquids associated with the wetting-drying difference inside these bands (Song, 

2014). The results of these field tests are consistent with the experimental observations made in a 

wide range of laboratory tests for partially saturated soils, such as the bearing capacity of shallow 

foundations (Shwan, 2015; Alabdullah, 2010) and the stability of slopes (Okura et al., 2002; 

Schnellmann et al., 2010; Lee et al., 2011; Kim et al., 2018; Ahmadi-adli et al., 2017; Xie et al., 2020; 

Xiong et al., 2018; 2019). Given these structural failure mechanisms of partially saturated soils in 

field and laboratory tests, a proper representation of the wetting-drying difference in SWCC and its 

interdependence with inelastic deformation should be an essential requirement for numerical 

modelling of coupled flow–deformation problems. The success and reliability of numerical 

simulations are mainly dependent on material models that represent constitutive relationships 

between the applied, or in-situ, stresses/fluid pressures and the resultant deformations/saturations (or 

vice versa) for soils of several known material properties. Thus, in this review, the attention in this 

thesis is drawn to the hydromechanical coupling in constitutive models for simulating the coupled 

flow deformation problem of partially saturated soils in existing BVPs. It is a concern that constitutive 

modelling for unsaturated soils in BVPs will generally be considered to be adequate if its physical 

arguments can address a sufficient number of experimental mechanisms, as outlined above. 

Moreover, when developing a continuum model, attention needs to be paid to warranting the 

simplicity of the numerical implementation and high flexibility in analysing BVPs at a structural 

level.  

To address coupled flow deformation problems of partially saturated soils, many conventional 

geotechnical engineering practices/designs (e.g. Sheng et al., 2003; Xiong et al., 2014; Bandara et al., 

2016; Lei et al., 2020; Wang et al., 2018) are predominantly based on classical models, themselves 

based on saturated soil mechanics (e.g. Modified Camclay or Drucker Prager) in which the influence 

of hydraulic behaviour is neglected in constitutive relationships for the sake of simplicity.  In this 

approach, a separate function of SWCC is used as an additional function to compute the suction from 

the saturation degree and vice versa, where it does not interact with the stress-strain relationship, to 

describe the behaviour at the material point. The results of these works demonstrate that these 

methods are relatively efficient and able to capture the simple interaction between failure responses 
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and seepage flows under several loading and hydraulic processes thanks to the hydromechanical 

coupling recognised in the mixing mass and momentum conservation laws of three phases. To be 

more specific, the effects of fluid transport on the stiffness reduction and localised failure reflected 

in the onset and development of inelastic strain and yield stresses can be handled. However, in 

principle, the underlying mechanism of failure of partially saturated soils, which is the significant 

dependence of properties of the soil skeleton (e.g. strength and deformation) on the saturation 

condition at both material levels are ignored in these simulations, hindering them from correctly 

predicting the realistic behaviour of the material. This is due to the lack of appropriate hardening laws 

reflecting the dependence of the yield strength of hydraulic variables (e.g. the suction or saturation 

degree).   

Although simple saturated soil models can still provide satisfactory results in some loading and 

saturation cases, the constitutive formulations of stress-strain and suction-saturation degree 

relationships for the behaviour of material points in BVPs in rigorous theoretical formulations are 

essential for describing the macroscopic behaviour of materials. In this sense, in recent years, more 

studies have been turning their attention to the potential of constitutive models of unsaturated soils 

implemented in numerical methods (e.g. FEM, MPM and SPH) as a critical component to simulate 

the failure mechanism of three-phase porous media accurately. In general, the vast majority of these 

models focused on the incorporation of hydraulic factors (e.g. the suction and saturation degree) into 

hardening laws to better reflect the reduction in shear strengths due to the transition from unsaturated 

to saturated conditions. For example, the Barcelona Basic Model (BBM) given by Alonso et al. (1990) 

is implemented in FEM by Rutqvist et al. (2011), Li et al. (1999), Abed & Vermeer (2004) to include 

the effect of suction on the yielding behaviour at the material point. The adoption of two separate 

loading functions (e.g. LC and SI) in BBM model causes certain difficulties for their computational 

implementation in terms of correlating these separate surfaces with the experimentally obtained data 

and its evolution to failure (Pedroso & Farias, 2011). They are, perhaps, the indefinite gradients in 

the flow rule in the case of stress paths passing through discontinuous intersections between separate 

yield surfaces, on the one hand, and cumbersome/complicated manipulations in checking and 

determining the activation of coupled hydro-mechanical yielding states on the other. Furthermore, a 

Cam-clay yield model is extended in Oka et al. (2010) by modifying an isotropic yield pressure with 

the influence of both saturation degree and suction to present the expansion of a yield surface with 

saturation processes. In Zhao (2019), an SPH method is enhanced for modelling the coupled 

multiphase flow in deformable porous media, based on the Lagrangian particle discretization of soil-

water-air coupled governing equations (Oka et al., 2010). In this approach, simple suction, dependent 

on the Mohr-Coulomb softening model given by Yerro (2015) for MPM, is used to describe the plastic 
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behaviour of soils under hydraulic effects, going with a separate SWCC in the classical van 

Genuchten form (van Genuchten, 1980). It can be said that these approaches are capable of 

performing the change of soil stiffness and yield stresses with suction and saturation degree. These 

approaches can reproduce vital features of wetting-induced collapse behaviour of partially saturated 

soils due to the degradation of soil strengths, which are validated through extensive experimental tests 

(e.g. water infiltration tests and rainfall-induced slope failures). However, they are unable to capture 

the non-uniqueness and wetting-drying difference of SWCC at the constitutive level.  

In addressing this issue, Ghorbani et al. (2018) and Tamagnini (2005) improve FEM to account for 

the effect of hydraulic hysteresis in a constitutive model for partially saturated soils. In these two 

models, a Modified Cam-clay model is extended using an LC yield surface dependent on the change 

of the plastic volumetric strain and saturation degree, along with a water retention curve accounting 

for the hydraulic hysteresis. These studies provided good numerical results, highlighting its success 

in predicting the realistic behaviour of unsaturated soils with the effect of hydraulic hysteresis on 

failure mechanisms. Nonetheless, they use a separate SWCC with the primary drying and wetting 

curves defined by various parameters. The irreversible saturation degree associated with the coupled 

hydro-mechanical dissipation mechanism is missing in these models, making them hard to use to 

describe the intrinsic nature of the wetting-drying difference and its interdependence with inelastic 

deformation, as discussed earlier.  

2.4.2. Localised failure 

One of the most indispensable features during the investigation on BVPs is the effect of strain 

localisation on structural behaviour in the post-localisation stage. Strain localisation involves the 

inception and propagation of shear dilation/compaction bands, characterized by thickness and 

inclination angle (see Figure 2.27). It is found ubiquitously as a critical precursor to geomaterial 

failures (Peric et al., 2014). In this context, much attention has been given over the past few decades 

to studying this phenomenon on fully saturated soils (e.g. Muhlhaus & Vardoulakis, 1987; Muhlhaus, 

1986; Vardoulakis, 1989; Nova, 1989, 1994; Darve, 1994; 1996; Darve et al., 1986, 2004; Desrues 

& Viggiani, 2004; Daouadji et al., 2010; Loret & Rizzi, 1999; Mallikarachchi & Soga, 2019; Guo & 

Stolle, 2013; Nguyen & Bui, 2020). However, in practice, the fully saturated state is rarely reached 

in most geotechnical structures throughout the entire life of the service (Wheeler & Sivakumar, 1995; 

Vanapalli et al., 1999). Responses of partially saturated soils under different loading and hydraulic 

conditions are usually recognised in geohazards. Therefore, localisation of deformation at a partially 

saturated condition is of fundamental significance for understanding the failure mechanism of soils.  
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Figure 2.27. Thickness and inclination of a shear band of triaxial shear test on partially saturated 

dense Toyoura sand (Higo et al., 2013) 

Localised failure: lab-scale observation  

Localised failure’s importance can be seen from several examples at a structural scale, such as failure 

of a tunnel during the drainage process of underground excavation, a rainfall-induced landslide, or 

the instability of dam abutments affected by the phreatic surface (Callari et al., 2010). Given the 

localised failure of partially saturated soils are an indispensable mechanism of soil collapse, its 

behaviour at material scale has been studied extensively in several triaxial (Patil et al., 2017; 

Kasangaki, 2012; Cui & Delage, 1996; Cunningham et al., 2003; Higo et al., 2011; 2013) and biaxial 

(Cruz et al., 2012; Alabdullah, 2010) tests. The experimental evidence suggests that partially saturated 

soils exhibit a localised stage of deformation after a homogeneous (diffuse) stage of deformation and 

wetting process (Cunningham et al., 2003; Higo et al., 2011; 2013). It is indicated through 

observations of a rapid reduction of shear strength, volumetric strain and saturation degree beyond 

the bifurcation (see Figure 2.28).  Such stress losses and water retention capability degrades always 

come with the formation of shear bands whose onset (discontinuous bifurcation) is usually triggered 

at around the pre-peak (Song, 2014) or post-peak (Higo et al., 2011; 2013) moment of shear strength 

and where the width is roughly five times the mean grain size 𝑑50 (Kido et al., 2017).  
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Figure 2.28. Evolution of shear band and softening response of triaxial shear test on partially 

saturated dense Toyoura sand (Higo et al., 2013) 

As can be seen in Figures 2.29 and 2.30, localisation bands are observed to be more apparent, and 

their inclination angles increase, reflecting higher brittleness in conjunction with stronger 

dilatancy/strain-softening when suction increases (Patil et al., 2017; Kasangaki, 2012; Cunningham 

et al., 2003; Alabdullah, 2010). All of the features mentioned above are governed by the intrinsic 

nature of hydro-mechanical coupling due to the interactions between the grain rearrangement and 

liquid-bridge redistribution. In particular, solid deformation induces a change in the topology of the 

pore space, which varies the transport properties (i.e., permeability) and storage capacities (i.e., water 

retention law) of the fluid flow. On the other hand, wetting/drying processes lead to a variation in the 

capillary force on particles at their point of contact and hence their effective stress, manifesting the 

change in soil stiffness and brittleness. These micro-scale mechanisms must be used to obtain 

constraints on the interactions of internal variables, reflected in the dependence of all internal forces 

associated with plastic strains and irrecoverable saturation on stress, suction and plastic strain 

alongside irrecoverable saturation and their rates inside the localisation band. 
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Figure 2.29. Patterns of localised failure at (a) partially saturated state (b) fully saturated state 

(Marinho et al., 2016) 

 

Figure 2.30. Effects of suction on the localized failure of drained triaxial compression tests at 𝜎33 =

300 kPa (a) 𝑠 = 50 kPa (b) 𝑠 = 250 kPa (c) 𝑠 = 500 kPa (d) 𝑠 = 750 kPa (Patil et al., 2017) 

In addition, these experiments show that the changes of strain, porosity and saturation degree inside 

the localisation zone are predominant compared to those of the surrounding zone in the localised stage 

(Kido et al., 2017; Higo et al., 2011). In such cases, microstructural changes governing irrecoverable 

behaviour largely (or fully) take place inside the localisation region (see Figure 2.31). This suggests 

that the material outside this region usually undergoes insignificant deformation and saturation 

compared with that inside the shear band. This feature is consistent with the numerical results of strain 

and saturation degree distributions from finite element simulations of the plane-strain compression 

test in Song & Borja (2014) (see Figure 2.32). Thus, the overall response must be subject to the 

inhomogeneous mode of deformation and hydraulic fields over the whole Representative Volume 

Element (REV) once localised failure takes place.  

 

 

(a) (b) 

𝑠 = 50 kPa 𝑠 = 250 kPa 𝑠 = 500 kPa 𝑠 = 750 kPa 
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Figure 2.31. The microstructural change observed outside and inside the shear bands during 

shearing from 𝜀11 = 0.15 to 𝜀11 = 0.2  (Higo et al., 2013) 

 

Figure 2.32. FE contours of (a) volumetric strain (b) shear strain (c) saturation degree in a 

rectangular soil sample of the plane-strain compression test (Song, 2014). 
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In addition, when localised failure does take place, the overall experimental curves of stress-strain 

and suction-saturation degree relationships are generally considered to be not unique, to represent the 

behaviour of soils and their tendency to vary depending on the specimen size due to their mixed 

material-structural properties (see Figure 2.33). It is defined as the effect of the characteristic structure 

size on the post-peak load-displacement response and the strength of the structure where the 

‘statistical size effect’ and ‘deterministic size effect’ are considered (Nguyen & Bui, 2020). In 

particular, the statistical size effect is used to describe the variations in strength due to the probability 

that the presence of flaws and defects increases with the size of the structure, while the deterministic 

size effect is associated with the change in the post-peak load-displacement response and stress 

redistributions induced by the formation and propagation of localisation bands. This indicates that the 

size effect is crucial when using a constitutive model to predict a structural response, as well as during 

the development of a constitutive model (Nguyen & Bui, 2020). 

 

Figure 2.33. Size effects in undrained triaxial compression tests on fully saturated uniformly-graded 

Ottawa sand at 𝜎33 = 300 kPa (after Omar & Sadrekarimi, 2015) using specimens with a 38 mm 

and 50 mm height. 

Numerical modelling of partially saturated soils involving localised failure 

Given the above observation, the coupled hydro-mechanical behaviour, taking into account strain 

localisation, should be addressed in theoretical frameworks to account for the transition from a diffuse 

to a localised mode and the associated size effects in different saturation regimes. The development 

of such frameworks remains hugely few, although there has been a wide range of advanced 

constitutive models for partially saturated soils in the literature (e.g. Hu et al., 2014; Khalili et al., 

2008; Sheng et al., 2008; Wheeler et al., 2003; Zhou et al., 2012ab; 2018; Zhou & Sheng, 2015; 

Muraleetharan et al., 2009).  
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Bifurcation: All recent works only attempt to provide solutions for the localization detection of 

partially saturated soils at the material level. Some bifurcation criteria for partially saturated soils 

have been introduced for analysing the bifurcation of homogeneous stress-like fields into non-unique 

stress-like states as a consequence of non-unique deformation and saturation fields. These bifurcation 

criteria are used to set an upper limit to soil stability. For instance, Buscarnera & Nova (2011) 

employed the second-order work concept (which becomes negative) as a discontinuous bifurcation 

criterion to investigate the wetting/drying-induced instability in triaxial testing (see Figure 2.34). In 

this approach, on the basis of work input (Houlsby, 1997), effective stress and modified suction can 

also be chosen as stress-like variables to conjugate with the stress and saturation degree as train-like 

variables for explaining the conceptual links between Hill’s stability criterion (e.g. the second-order 

work concept) and the notion of test controllability of unsaturated soils. This condition can be applied 

to any specific constitutive model to check the stability conditions based on the hydro-mechanical 

response retrieved from laboratory tests. In this approach, the onset of localised failure is observed to 

occur exactly at the peak stress (see Figure 2.34), although acoustic emission measurements and 

microstructural observations (Higo et al., 2011; 2013) commonly indicate that the onset of 

localisation occurs somewhere in the vicinity of the peak stress (e.g. the pre-and post-peak stress). 

Furthermore, this approach is unable to capture the orientation of the failure plane at the bifurcation 

point. For soils, consideration of the formation and propagation of shear bands is needed in these 

models because these bands cause material separation and then the soil collapses. Miss-predicting the 

orientation of the localisation band in constitutive modelling leads to incorrect predictions of the 

localised failure. In Schiava & Etse (2006), the discontinuous bifurcation theory of Rudnicki & Rice 

(1975) (the zero or negative determinant of the acoustic tensor) has been developed to detect the 

activation of the shear band, considering the suction-dependent inclination angle but without the soil-

water characteristic curve (SWCC) to reproduce the transition between the saturation regimes (see 

Figure 2.35). SWCC is taken into consideration in the discontinuous bifurcation condition in Borja 

(2004), in which both the suction and the saturation degree are incorporated into the tangent stiffness 

tensor of an extended Modified Cam-Clay model, and its first zero eigenvalues are investigated to 

detect the limit point bifurcation and determine the inclination of the shear bands under both 

undrained and drained conditions of partially saturated soils. Regardless of the advantages it offers, 

the non-uniqueness of water retention behaviour (Nuth & Laloui, 2008; Gallipoli et al., 2003; 

Vanapalli et al., 1999; Tarantino, 2009) is neglected in this framework, thus hindering its ability to 

reflect the effects of mechanical deformation on hydraulic responses. Peric et al. (2014) and Song et 

al. (2018) suggest analytical solutions using more complete localisation criteria where the dependence 

of SWCC on the volume change can be addressed. The obtained solutions are then incorporated into 

the bounding surface plasticity model for partially saturated soils (Khalili et al., 2008) to detect the 
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inception and computing orientation of strain localization with critical hardening moduli in the case 

of constant water content and drained loadings. The solutions take into account the simultaneous fluid 

flow and their complex interactions with the solid skeleton. They can collapse to that for fully 

saturated porous materials to capture the transition between fully and partially saturated conditions. 

Nevertheless, these two approaches are not yet capable of capturing the wetting-drying difference in 

generating the onset of localisation. They neglect the effect of hydraulic internal variables related to 

the intrinsic mechanism for the tight interaction between grain rearrangement and liquid redistribution 

behind the macro response of unsaturated soils inside localisation bands at the moment of bifurcation.  

 

Figure 2.34. The onset of instability predicted by the second-order work (after Buscarnera & 

Mihalache, 2014) 

 

Figure 2.35. The onset of instability predicted by the discontinuous bifurcation theory of Rudnicki 

& Rice (1975) (after Schiava & Etse, 2006) 
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Post-localisation behaviour:  None of the existing constitutive models is able to describe the post-

localisation behaviour of partially saturated soils correctly. This is owing to their assumption of 

homogeneous deformation through the adoption of a single set of strain and saturation degree 

measurements for the whole REV crossed by a shear band. They neglect details about the size of the 

shear band and the evolution of the material behaviour inside it. Consequently, their performance 

fails to give a correct description of the size-dependent responses induced by localised failures, 

leading to mathematical ill-posedness of the boundary value problems in numerical simulations at a 

structural level (Oliver et al., 1999; 2012). To illustrate this, owing to the inhomogeneity within a 

structure induced by the localisation, the uniqueness of fields (stress, fluid pressure, strain, and 

saturation degree) is lost, resulting in physically meaningless continuum definitions or measures of 

stress-like and strain-like variables of the whole RVE and hence the variation of the results in 

accordance with the spatial discretisation mesh size due to the interaction between material and 

structural properties (see Figure 2.36).  

 

Figure 2.36. Mesh sensitivity in the FEM simulation of the partially saturated silica-concrete sand 

specimen subjected to vertical compression in plane strain test (after Song, 2014) 

To describe the post-localisation behaviour of partially saturated soils, several attempts have been 

made concerning numerical treatments of size effects. In particular, Callari et al. (2010) adopted 

enhancements to the discretisation of partially saturated poroplastic solids using a multi-scale 

framework, which involves the response of the strong discontinuity (the Strong Discontinuity 

Approach). There have been other higher-order continuum theories, such as the Cosserat continuum 

(Li, 2015), non-local/gradient (Mroginski et al., 2011; Menon & Song, 2019; Song & Khalili, 2019), 

and viscoplasticity (Ehlers et al., 2004; Zhang & Schrefler, 2004), using an extra parameter of length 

scale associated with the width of the localisation band to regularise BVPs. The fundamental principle 
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of these methods is to allow the preservation of the ellipticity of the governing partial differential 

equations (PDEs) in the post-localisation stage, hence eliminating the spatial discretisation 

dependency. These approaches can all adequately tackle the scale effect and guarantee meaningful 

convergence of numerical solutions upon discretisation refinement. Despite some successes in 

tackling the effects of strain localisation, these treatments are relatively phenomenological, failing to 

address the underlying mechanisms of localised failure in partially saturated soils. On the other hand, 

these regularisations are usually applied ad hoc after the formulation of a constitutive level, while the 

performance and calibration of the model are usually carried out without taking into account 

localisation. This is an inconsistency that has been overlooked in the literature, not only in constitutive 

modelling of partially saturated soils but also in a wide range of geomaterials. This is due to the 

mixing of the material behaviour and numerical techniques for BVPs, used to analyse the 

inhomogeneous deformation. Such a mixing always requires the inseparability of the parameter 

identification/calibration and solutions of BVPs. It leads to difficulties in performing model 

calibration and validation at a material scale in these enriched models, making their application in 

practice a challenge. Additionally, their base constitutive relationships for partially saturated soils are 

inadequate to capture the micromechanical nature of coupled hydro-mechanical yielding, in which 

different responses under wetting and drying paths are not accounted for.  

2.5. Summary and discussions 

The above literature review is summarized, and several vital motivations are briefly discussed in 

terms of the following three aspects:  

2.5.1. Constitutive model for partially saturated soils 

Macro behaviour is governed by the coupled hydro-mechanical mechanism due to the interaction 

between the two grain-scale phenomena, (i) grain sliding and rearrangement, and (ii) ruptures of 

liquid bridges and their redistributions. These grain-scale phenomena result in observable hydro-

mechanical coupling at the continuum level that has been extensively investigated in several net stress 

constant, suction-controlled and constant water content triaxial tests. In particular, when the suction 

increases (or the saturation degree decreases), the shear strength, yield limit and dilatancy increase. 

SWCC is not unique and is dependent on histories of both deformation and saturation. Furthermore, 

these experimental findings are somehow related to the existence and uniqueness of CSL with an 

independent slope in the coupled hydro-mechanical spaces defined by deviatoric stress, mean stress, 

suction, specific volume and saturation degree. All of the features described above lead to dependence 

on mechanical and hydraulic thermodynamic forces on both of their rates, in addition to stress and 
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suction. In this sense, constitutive models should possess only a single yield surface with two 

evolution rules to better represent the effects of hydro-mechanical coupling in a rigorous way.   

There have been several attempts and successes in developing constitutive models for unsaturated 

soils to capture these experimentally observed characteristics over the last 30 years. In particular, the 

suction-dependent mechanical responses have been investigated in many models without SWCC (e.g. 

Alonso et al., 1990; Wheeler & Sivakumar, 1995; Cui & Delage, 1996; Sun et al., 2000). In some 

others (Thu et al., 2007; Zhou & Sheng, 2009; Russell & Khalili, 2006), the hydraulic influence 

through  SWCC is added to distinguish the effects of different saturation regimes on the mechanical 

behaviour, but the effects of mechanical behaviour on hydraulic responses were not accounted for in 

these models. The non-uniqueness of SWCC has been well recognised and was taken into account in 

Buscarnera & Nova (2011). However, these studies neglect the wetting-drying difference in the 

behaviour, which has been successfully addressed in several other models (e.g. Wheeler et al., 2003; 

Khalili et al., 2008; Muraleetharan et al., 2009). For example, Muraleetharan et al. (2009) adopt a 

separate law of hydraulic hysteresis in which each drying and wetting path possesses different 

parameters, while others (e.g. Wheeler et al., 2003) employ the multiple yield surface. Nevertheless, 

the micromechanical nature of coupled hydro-mechanical yielding should be represented by a unique 

yield locus. Furthermore, several net stress-controlled experiments indicate the irrationality of 

horizontal straight lines for the SI/SD curves adopted in these models. The thermodynamic-based 

approaches to constitutive modelling of partially saturated soils have recently been brought to the 

attention of several studies. They bring benefits in minimizing the number of arbitrary assumptions 

and model parameters. Despite some successes, the inadequacy in capturing the full coupling between 

plasticity and hydraulic irreversibility can be seen in these existing studies. For instance, hydraulic 

dissipation is overlooked in some models (Tamagnini & Pastor, 2004; Uchaipichat, 2005; Coussy et 

al., 2010; Buscarnera & Einav, 2012; Dangla & Pereira, 2014; Lei et al., 2016). The use of multiple 

yield surfaces in existing models does not naturally reflect the inseparable nature of the hydro-

mechanical coupling because they use a decoupling of dissipative stresses from all the rates of internal 

variables (Sheng et al., 2004; Santagiuliana & Schrefler, 2006; Hu et al., 2015). There also remain a 

limited number of experimentally validated and operational models derived from thermodynamics. 

Full coupling between plasticity and hydraulic irreversibility and their associated hydro-mechanical 

dissipation properties have not usually been explored at length in previous thermodynamics-based 

models. Furthermore, a good balance between the rigour, simplicity, number of parameters and 

performance in the derived constitutive models has not always been the case in the existing models. 

In a bid to address the above challenges, a more rigorous thermodynamics-based constitutive model 

is needed to reflect better the experimentally observed influences of deformation on the water 
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retention curve and vice versa in the mixed mode of loading and saturation conditions. In this sense, 

central to this development is the dependence of all thermodynamic forces on stress, suction, plastic 

strain and irrecoverable saturation and their rates, inspired by the inseparable nature of the interaction 

between frictional sliding, grain rearrangement and ruptures of liquid bridges and their redistributions 

at the grain contacts. Attention also needs to be paid to obtaining a good balance between several 

factors (rigour, simplicity, number of parameters and performance). Towards this aim, a framework, 

derived from strongly and generically based fundamentals, is put forward to reproduce the 

experimentally observed influences of mechanical deformation on SWCC and vice versa, 

systematically and consistently, in a mixed mode of loading and hydraulic conditions. The full 

coupling between dissipative mechanisms of plastic deformation and hydraulic irreversibility can be 

investigated rigorously by using a unified thermodynamically admissible approach: whereby a single 

loading function can be established to capture the simultaneous activation and development of both 

mechanical and hydraulic yielding adequately at any instant, with the coupled evolution laws for 

plastic strain and irreversible saturation rates sharing a unique plastic multiplier. Beneficially, the 

coupled changes in the shape/size of this yielding surface can naturally reflect the cross-interaction 

hardening laws in a smooth transition between saturated and unsaturated conditions. Thanks to such 

a systematic approach being taken, the new model will provide a small and manageable number of 

identifiable parameters that all have explicit physical meanings. This model will be adequately 

validated with a broader range and larger number of loading and hydraulic conditions obtained from 

experiments (e.g. suction-, water content- and net stress-controlled experiments) when compared with 

existing thermodynamic-based modelling of unsaturated soils. Going hand in hand with this, also 

provided will be a corresponding calibration method, possessing a close and consistent connection 

with the laboratory procedures and data associated therewith, for identifying the physically-based 

parameters.  

2.5.2. BVPs for partially saturated soils  

Regarding BVPs, this thesis focuses on two aspects, including the constitutive model for partially 

saturated soils implemented in BVPs and strain localisation due to their importance in understanding 

the realistic mechanisms of soil failure. These are summarized along with corresponding motivations 

as follows.  

Constitutive model for partially saturated soils implemented in BVPs 

The coupled flow deformation problem of partially saturated soils involves complex seepage flow 

patterns and large deformations of the solid phase under the various loading and saturation conditions 

observed in many field and laboratory tests in the literature. To solve these coupled hydro-mechanical 
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BVPs, the SPH technique is proven more advantageous than FEM in tackling mesh distortion issues 

and GIMPM in reducing computational cost when simulating large-deformation problems (Bui & 

Nguyen, 2017). Nevertheless, there has been not much attention paid to the development of SPH for 

simulating the coupled flow deformation problems of partially saturated soils. On the other hand, the 

constitutive model is a vital component for the accuracy and robustness of numerical simulations 

when predicting realistic phenomena of soil collapse. Nevertheless, most of the existing numerical 

approaches for partially saturated soils adopt several models with plastic strain as the only internal 

variable representing the effects of microstructural changes, neglecting micro-scale mechanisms 

associated with irreversible saturation to reflect wetting-drying differences in SWCC. None of them 

can describe the dependence of all internal forces on stress, suction and internal variables, which 

restricts the model’s capability to capture faithfully the actual response of partially saturated soils 

associated with the strong interaction between plasticity and hydraulic irreversibility under a wide 

range of stress paths and testing conditions.  

Given this review, further SPH developments for partially saturated soils are still needed to 

incorporate an additional hydraulic internal variable (e.g. the irreversible saturation degree), taking 

into account the effects of underlying mechanisms of hydromechanical coupling that cannot be 

captured by plastic strain alone. Within the SPH approach in this thesis, the proposed single yield 

surface model for unsaturated soils is used to show how each SPH particle responds in the case of the 

coupled hydro-mechanical large-deformation condition, where the interaction between the SPH 

particles is described by a mixed form of governing equations of three phases. It is expected to be 

simplified, reliable and economical for applications that involve fundamental mechanisms of 

unsaturated soils.  

Strain localisation of partially saturated soils 

Hydro-mechanical coupling makes a substantial contribution to the localized failure behaviour of 

partially saturated soils. This postulation is drawn from the ubiquitous observation of a very rapid 

reduction of the shear strength beyond the peak in many triaxial shear tests of unsaturated soils. This 

significant loss of stress always comes with the formation of shear bands, characterised by inclination 

and thickness. The experimental evidence illustrates that partially saturated soils are more brittle at 

higher levels of suction, where shear bands get clearer with an increase in the inclination angle. It is 

intrinsically linked to energy dissipation, which is entirely governed by the rearrangement (sliding 

and rotation) of soil grains and the disruption of water meniscuses associated with inelastic material 

behaviour, irreversible deformation and saturation occurring inside the localisation band. The 

material outside the band usually behaves reversibly in both mechanical and hydraulic processes 
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because of the negligible microstructural changes. This difference in deformation and saturation 

between the localisation band and the surrounding material induces the size effect observed in 

experiments.  

To address strain localisation in partially saturated soils, several attempts have been made to provide 

solutions for detecting the onset of localized failure in partially saturated soils (Buscarnera & Nova, 

2011; Schiava & Etse, 2006; Borja et al., 2004; Peric et al., 2014; Song et al., 2018). Nonetheless, 

none of them addresses the hydraulic irreversibility of SWCC in governing the coupled hydro-

mechanical discontinuous bifurcation condition. Furthermore, localisation of deformation in the form 

of shear bands leads to the breakdown of the assumption of homogenous deformation of classical 

continuum models for partially saturated soils due to the considerable variations in the strain and 

saturation degree across the shear band. In this sense, traditional continuum models are unable to 

capture localised failure of soils correctly because they ignore the effects of inclination, thickness and 

the evolution of the shear band in constitutive equations, leading to ill-posed boundary value problems 

and discretisation-dependent numerical solutions. On the other hand, existing enrichment approaches 

(e.g. non-local and gradient dependent regularizations) and discretization-based enhancements, 

although having reached a mature state of development, are usually mixed with the numerical 

methods for solving boundary value problems. As a consequence, the analysis of localised failures 

and size effects always have to depend on the analysis of boundary value problems. These approaches 

are also complicated to implement in a numerical code and/or computationally expensive for broad 

applications in engineering design.  

The above analysis has demonstrated the need to develop better models for describing strain 

localisation of partially saturated soils, taking into account the interdependence between mechanical 

and hydraulic yielding responses. In this sense, this study follows a new line of development in which 

the size and orientation of the shear band are embedded directly in the constitutive structure of 

coupled hydro-mechanical models to naturally describe the localised failure mechanism of partially 

saturated soils at the material level. A physically meaningful transition between homogeneous 

inelastic deformation, the onset of localisation and localised deformation is captured through a 

rigorous thermodynamics-based two-scale approach (Nguyen & Bui, 2020) for partially saturated 

soils, accounting for the interdependence between loading-unloading and wetting-drying differences.  
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Chapter 3.  Hydro-mechanical coupling of partially saturated soils: 

governing equations and a generic thermodynamic approach to 

constitutive modelling  

3.1. Introduction  

The main objective of this Chapter is to present a generalized framework accounting for the most 

fundamental features of the coupling between the matrix of porous material and fluid flow in partially 

saturated soils, aiming to strike a good balance between rigour and simplicity in formulations. It forms 

a basis for the developments of specific models in the later chapters. 

In this framework, basic concepts of Biot’s three-phase continuum mixture theory are first reviewed 

before presenting how mass and momentum conservation laws for individual phases of the mixture 

can be derived from the Reynolds transport theorem. These governing equations of the separate 

phases are combined to construct a generic seepage flow model for partially saturated soils in a simple 

mixed form of essential field variables (e.g. porosity, saturation degree, solid velocity, Darcy seepage 

velocity) following the motion of the solid skeleton. The distinct feature of this framework lies in the 

development of a generic thermodynamics-based approach for a hydromechanical constitutive 

relationship (stress-strain and suction-saturation degree) inspired from the inseparable nature of grain 

rearrangement and liquid-bridge redistribution at the microscale, compared to existing ones. Such 

intrinsic micro-scale mechanisms are used to obtain constraints on the interactions between plastic 

strains (internal mechanical variable) and irrecoverable saturation (internal hydraulic variable) at the 

macro scale, reflected in the dependence of all thermodynamic forces on stress and suction. These 

required characteristics for constitutive models are the outcomes of the review and assessment of the 

behaviour of partially saturated soils at both macro and grain scales in the previous Chapter. All these 

appear in a generic special form of the dissipation potential or kinematic constraint equations, leading 

to a single yield function dependent on stress and suction and two flow rules with a single “plastic” 

multiplier. In inelastic behaviour, any change in irrecoverable saturation automatically leads to plastic 

deformation, and vice versa, given a single yield surface plastic multiplier. The above features are 

different from unsaturated models in the literature that possess more than one yield surface and hence 

more than one “plastic” multipliers. The proposed approach brings benefits in minimizing the number 

of arbitrary assumptions and parameters. Following the thermomechanical formulation, this chapter 

preliminarily addresses the computational aspect of the proposed model where tangent stiffness tensor 

and semi-implicit stress return algorithm are presented in generic forms.  
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3.2. Seepage flow model  

The properties of seepage flow depend on the microstructure of the pores related to fluid pressures in 

different saturation regimes and its interactions with the behaviour of deformable soil skeleton 

represented through effective stresses and deformation fields (Lewis & Schrefler, 1998). In principle, 

an uncoupled hydrological approach can be used for analysing problems of unsaturated soils where a 

non-deformable body of soil skeleton can be assumed to derive the continuity equations of seepage 

flow (Richard, 1992; Li & Cameron, 1996; Sheng et al., 2003). Several essential fields of fluid phases 

(e.g. seepage velocity, saturation degree, suction) obtained from these simplified equations are then 

used as inputs and incorporated into the mechanical equations for the solid displacements (e.g. solid 

velocity, porosity, stress, strain) to simulate the effect of fluid transports on the mechanical response. 

Despite the simplicity and some successes, this approach lacks the consistency between the continuity 

equations of fluid phases in the case of a rigid soil skeleton and the mechanical equations for a 

deformable medium. As a result, it is unable to describe the effect of volume change over time on the 

variation of seepage flow, leading to the inaccuracy in capturing important mechanisms of coupled 

deformation-flow processes. On the other hand, the coupled hydro-mechanical seepage flow model 

(Alonso et al., 1988; Thomas & He, 1995; Loret & Khalili, 2000; Sheng et al., 2003; Borja, 2004) is 

conceptually more rigorous, complete and accurate in simulating the coupling between deformation 

and fluid transport within the deformable body of partially saturated soils. This is due to the fact that 

both hydraulic and mechanical properties of material inspired from the coupling between grain and 

liquid dynamics can be approximately quantified through a system of governing equations derived 

from a series of basic balance laws in three-phase porous media without assumptions about fluid 

transports in the rigid soil skeleton. These governing equations are simultaneously solved and 

rigorously linked together through appropriate laws representing the interaction between three phases 

(e.g. seepage forces, mixture theory). Thus, this approach, a mainstream in modelling seepage flow 

and deformation of unsaturated soils (Sheng et al., 2003), will be applied and studied in this section.  

3.2.1. Basic concepts of the mixture theory  

This section is to present several vital basic principles and concepts of Biot’s mixture theory (Biot, 

1941; Zienkiewicz et al., 1990). In the mixture theory, partially saturated porous media are made up 

of three constituents (soil, water, air) as described by the superposition in Figure 3.1, where each of 

them is assumed to be continuous and occupy every material point in the space at any arbitrary time 

instant. In principle, a microscopic quantity over volume and area of a REV is integrated and averaged 

to determine the averaged macroscopic quantities (Lewis & Schrefler, 1998), which are summarized 

as follows.  
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Figure 3.1. Continuum approximation of partially saturated porous media (a) Unsaturated porous 

media (b) Phases (after Selker & Or, 2018) 

Volume fractions  

The concept of volume fraction is fundamental for the mixture theory (Mills, 1966; Morland, 1972). 

As can be seen in Figure 3.1, its basis is the current total volume 𝑉 (superimposed continua) defined 

as the sum of the partial volumes 𝑉𝜘:  

𝑉 = 𝑉𝑠 + 𝑉𝑤 + 𝑉𝑎 (3.1) 

and the pore volume (𝑉𝑝) which is defined as: 

𝑉𝑝 = 𝑉𝑤 + 𝑉𝑎 (3.2) 

in which the superscript 𝜘 is used to denote the constituent where “𝜘” stands for “𝑠” for solid or “𝑤” 

for water or “𝑎” for air.  

From Eqs. (3.1) and (3.2), Eulerian porosity 𝜙 can be defined as a variable related to the current 

volume 𝑉 as:  
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𝜙 =
𝑉𝑝

𝑉
 (3.3) 

In addition, a Lagrangian porosity �̅� is introduced denoting the ratio between the current pore volume 

𝑉𝑝 and the initial volume 𝑉0: 

�̅� =
𝑉𝑝

𝑉0
 (3.4) 

Saturation degree 𝑆𝑟 is given by:  

𝑆𝑟 =
𝑉𝑤

𝑉𝑝
 (3.5) 

Eqs. (3.1-3.5) allow writing the volume 𝑉𝜘 occupied by the 𝜘 phase as follows:  

𝑉𝑤 = 𝜙𝑆𝑟𝑉 = �̅�𝑆𝑟𝑉0 (3.6) 

𝑉𝑎 = 𝜙(1 − 𝑆𝑟)𝑉 = �̅�(1 − 𝑆𝑟)𝑉0 (3.7) 

𝑉𝑠 = (1 − 𝜙)𝑉 (3.8) 

The volume fraction 𝜍𝜘 of phase 𝜘 is written in the following forms:  

𝜍𝑤 =
𝑉𝑤

𝑉
= 𝜙𝑆𝑟 (3.9) 

𝜍𝑎 =
𝑉𝑎

𝑉
= 𝜙(1 − 𝑆𝑟) (3.10) 

𝜍𝑠 =
𝑉𝑠

𝑉
= 1 − 𝜙 (3.11) 

which satisfy the closure condition:  

𝜍𝑤 + 𝜍𝑎 + 𝜍𝑠 = 1 (3.12) 

Density of mixture 

The average mass density of the mixture 𝜌 is defined by the following expression:  

𝜌 = 𝜌ҧ𝑠 + 𝜌ҧ𝑤 + 𝜌ҧ𝑎 = 𝜍𝑠𝜌𝑠 + 𝜍𝑤𝜌𝑤 + 𝜍𝑎𝜌𝑎 (3.13) 

where 𝜌ҧ𝜘 = 𝜍𝜘𝜌𝜘 is the partial mass density and 𝜌𝜘 is the intrinsic mass density of constituent 𝜘.  

Definition of the effective and partial stresses of the fluid-solid mixture theory 

The total stress tensor 𝜎𝑖𝑗 of the three-phase mixture is made up by the sum of partial stresses 𝜎𝑖𝑗
𝜘, 

being of the form:  

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑠 + 𝜎𝑖𝑗

𝑤 + 𝜎𝑖𝑗
𝑎 = 𝜍𝑠𝜎𝑖𝑗

𝑠 + 𝜍𝑤(−𝑝𝑤)𝛿𝑖𝑗 + 𝜍𝑎(−𝑝𝑎)𝛿𝑖𝑗 (3.14) 
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where  𝜎𝑖𝑗
𝑠  is the intrinsic stress of soil skeleton; 𝑝𝑤 and 𝑝𝑎 denote intrinsic pore pressures acting on 

water and air constituents; 𝛿𝑖𝑗 is the Kronecker delta. Physically, Eq. (3.14) can be interpreted using 

the sum of averaged microscopic stress tensor at the microscale (Lewis & Schrefler, 1998; Lu, 2008).  

The matric suction is defined as (see Figure 3.2):  

𝑠 = 𝑝𝑎 − 𝑝𝑤 (3.15) 

The definition of net stress tensor reads:  

𝜎𝑖𝑗 = 𝜎𝑖𝑗 − 𝑝𝑎𝛿𝑖𝑗 (3.16) 

In Eqs. (3.15) & (3.16), while 𝜎𝑖𝑗 serves as the external stress provided during the loading process, 

fluid pressures of air and water phases can be experimentally measured through different testing 

techniques such as axis-translation Technique (Fredlund, 1989), suction Probe (Ridley & 

Burland,1993), time-domain reflectometry (Topp et al., 1980), electrical conductivity sensors 

(Skinner et al., 1997), thermal conductivity sensor (Phene et al., 1971; Lee & Fredlund, 1984; 

Fredlund & Wong, 1989), in-contact filter paper technique (McKeen, 1980; Chandler & Gutierez, 

1986; Chandler et al., 1992; Houston et al., 1994; Fredlund et al., 1995; Ridley, 1995; Leong et al., 

2002). The effective stress in this model takes the Bishop’s form, as commonly used in many papers 

on constitutive modelling of unsaturated soils (Wheeler et al., 2003; Sheng et al., 2004; Houlsby, 

1997; Coussy et al., 2010) (see Figure 3.3). Its Cauchy form can be expressed as:  

𝜎𝑖𝑗
′ = 𝜎𝑖𝑗 + 𝑆𝑟𝑠𝛿𝑖𝑗 (3.17) 

 

Figure 3.2. Illustration of scale definition difference among air-water-solid REV, soil water REV, 

and soil air REV where air-water-solid REV include air-water-solid system, soil water REV, and 

soil air REV involving only pore or subpore scale (Lu, 2008). 

𝑝𝑎 

𝑝𝑎 𝑝𝑎 

𝑝𝑎 

𝑝𝑤 

𝑝𝑤 𝑝𝑤 

𝑝𝑤 

Soil-Air REV Soil-Water REV 

Soil-Water-Air REV 
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Figure 3.3. Schematic representation of stress components for air-water-solid REV of partially 

saturated soils based on Bishop’s effective stress (Lu, 2008). 

Kinematics  

The material (or Lagrangian) time derivative of a field variable 𝜓(𝑥𝑖, 𝑡) following the motion of the 

𝜘-constituent is given by the following expressions (“𝜘” stands for “𝑠” (solid) or “𝑤” (water)):  

𝐷𝑠𝜓

𝐷𝑡
=

𝜕𝜓

𝜕𝑡
+ 𝑣𝑖

𝑠 𝜕𝜓

𝜕𝑥𝑖
 (3.18) 

𝐷𝑤𝜓

𝐷𝑡
=

𝜕𝜓

𝜕𝑡
+ 𝑣𝑖

𝑤 𝜕𝜓

𝜕𝑥𝑖
 (3.19) 

where 𝑣𝑖
𝜘 is the velocity of phase 𝜘, 

𝜕𝜓

𝜕𝑡
 is the Eulerian time derivative representing the time rate of 

change of the field variable 𝜓(𝑥𝑖, 𝑡) at a fixed point within a reference coordinate system.  It is noted 

that 
𝐷𝜘𝜓

𝐷𝑡
 is a scalar operator which can be used either for a scalar quantity or a vector quantity (Lewis 

& Schrefler, 1998).  

Combining Eqs. (3.18) and (3.19) gives:  

𝐷𝑤𝜓

𝐷𝑡
=

𝐷𝑠𝜓

𝐷𝑡
+ (𝑣𝑖

𝑤 − 𝑣𝑖
𝑠)

𝜕𝜓

𝜕𝑥𝑖
=

𝐷𝑠𝜓

𝐷𝑡
+ 𝑣𝑖

𝑤𝑠 𝜕𝜓

𝜕𝑥𝑖
 (3.20) 

with 𝑣𝑖
𝑤𝑠 = 𝑣𝑖

𝑤 − 𝑣𝑖
𝑠 

Balance laws 

The balance laws for individual constituents can be derived from the Reynolds transport theorem 

(Takatsu, 2017; Haltas & Ulusoy, 2015) given in the following form: 

𝜎11 − 𝑝𝑎 

1 

2 

3 
𝜎22 − 𝑝𝑎 

𝑆𝑟𝑠 

𝑆𝑟𝑠 

𝜎12 

𝜎13 

𝜎21 

𝜎23 

𝜎31 

𝜎32 
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𝑑𝜘

𝑑𝑡
∫ 𝜓𝑑𝑉𝜘
𝑉𝜘(𝑡)

= ∫ [
𝜕𝜓

𝜕𝑡
+

𝜕(𝜓𝑣𝑖
𝜘)

𝜕𝑥𝑖
] 𝑑𝑉𝜘

𝑉𝜘(𝑡)
 (3.21) 

Mass balance 

Since the mass exchange between phases is assumed to be negligible, the mass balance of each phase 

can be expressed using the transport theorem for a material volume 𝑉𝜘(𝑡) as follows:   

𝑑𝜘

𝑑𝑡
∫ 𝜌ҧ𝜘𝑑𝑉𝜘
𝑉𝜘(𝑡)

= ∫ [
𝜕�̅�𝜘

𝜕𝑡
+

𝜕(�̅�𝜘𝑣𝑖
𝜘)

𝜕𝑥𝑖
] 𝑑𝑉𝜘 = 0

𝑉𝜘(𝑡)
 (3.22) 

Eq. (3.22) can be rewritten as:  

𝑑𝜘

𝑑𝑡
∫ 𝜌ҧ𝜘𝑑𝑉𝜘
𝑉𝜘(𝑡)

= ∫ [
𝜕�̅�𝜘

𝜕𝑡
+ 𝑣𝑖

𝜘 𝜕�̅�𝜘

𝜕𝑥𝑖
+ 𝜌ҧ𝜘

𝜕𝑣𝑖
𝜘

𝜕𝑥𝑖
] 𝑑𝑉𝜘 = 0

𝑉𝜘(𝑡)
 (3.23) 

It is noted that the volume 𝑉𝜘(𝑡) is arbitrary, and the integrals of both sides of Eq. (3.23) are equal. 

By applying the Gauss theorem for Eq. (3.23), the following expression can be obtained:  

𝜕�̅�𝜘

𝜕𝑡
+ 𝑣𝑖

𝜘 𝜕�̅�𝜘

𝜕𝑥𝑖
+ 𝜌ҧ𝜘

𝜕𝑣𝑖
𝜘

𝜕𝑥𝑖
= 0 (3.24) 

From Eqs. (3.18-3.19) and (3.24), the conservation of mass of each constituent is given by the 

following form:   

𝐷𝜘�̅�𝜘

𝐷𝑡
= −𝜌ҧ𝜘

𝜕𝑣𝑖
𝜘

𝜕𝑥𝑖
 (3.25) 

Linear momentum balance 

The momentum of a constituent is conservative in the sense that the momentum change is equal to 

the total external force on its volume. This is reflected through the following form:  

𝑑

𝑑𝑡
∫ 𝜌ҧ𝜘𝑣𝑖

𝜘𝑑𝑉𝜘
𝑉𝜘(𝑡)

= ∫ (𝜎𝑖𝑗
ϰ �̅�𝑗)𝑑𝑆𝜘

𝑆𝜘(𝑡)
+ ∫ 𝜌ҧ𝜘𝐵𝑖𝑑𝑉𝜘

𝑉𝜘(𝑡)
+ ∫ 𝑅𝑖

𝜘𝑑𝑉𝜘
𝑉𝜘(𝑡)

 (3.26) 

In the above expression, 𝜎𝑖𝑗
ϰ �̅�𝑗  represents the partial traction force acting on the surface area 𝑑𝑆𝜘 of 

volume 𝑉𝜘 with �̅�𝑗  being the outward unit normal vector on this surface, 𝐵𝑖 is the body force of the 

mass  𝜌ҧ𝜘𝑑𝑉𝜘 induced by the gravity acceleration constant 𝑔 and 𝑅𝑖
𝜘 denotes the viscous drag force 

acting on the 𝜘-phase.  

The Reynolds transport theorem in Eq. (3.21) is adopted for the term on the left-hand side of Eq. 

(3.26), leading to:  

𝑑𝜘

𝑑𝑡
∫ 𝜌ҧ𝜘𝑣𝑖

𝜘𝑑𝑉𝜘
𝑉𝜘(𝑡)

= ∫ [
𝜕(�̅�𝜘𝑣𝑖

𝜘)

𝜕𝑡
+

𝜕(�̅�𝜘𝑣𝑖
𝜘𝑣𝑖

𝜘)

𝜕𝑥𝑖
] 𝑑𝑉𝜘

𝑉𝜘(𝑡)
 (3.27) 

which then gives:  
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𝑑𝜘

𝑑𝑡
∫ 𝜌ҧ𝜘𝑣𝑖

𝜘𝑑𝑉𝜘
𝑉𝜘(𝑡)

= ∫ [𝑣𝑖
𝜘 (

𝜕�̅�𝜘

𝜕𝑡
+ 𝑣𝑖

𝜘 𝜕�̅�𝜘

𝜕𝑥𝑖
) + 𝜌ҧ𝜘 (

𝜕𝑣𝑖
𝜘

𝜕𝑡
+ 𝑣𝑖

𝜘 𝜕𝑣𝑖
𝜘

𝜕𝑥𝑖
) + 𝜌ҧ𝜘𝑣𝑖

𝜘 𝜕𝑣𝑖
𝜘

𝜕𝑥𝑖
] 𝑑𝑉𝜘

𝑉𝜘(𝑡)
 (3.28) 

By adopting Eqs. (3.18-3.19), Eq. (3.28) becomes:  

𝑑𝜘

𝑑𝑡
∫ 𝜌ҧ𝜘𝑣𝑖

𝜘𝑑𝑉𝜘
𝑉𝜘(𝑡)

= ∫ (𝑣𝑖
𝜘 𝐷𝜘�̅�𝜘

𝐷𝑡
+ 𝜌ҧ𝜘

𝐷𝜘𝑣𝑖
𝜘

𝐷𝑡
+ 𝜌ҧ𝜘𝑣𝑖

𝜘 𝜕𝑣𝑖
𝜘

𝜕𝑥𝑖
)𝑑𝑉𝜘

𝑉𝜘(𝑡)
 (3.29) 

Substitution of Eq. (3.25) into Eq. (3.29) gives the expression:  

𝑑𝜘

𝑑𝑡
∫ 𝜌ҧ𝜘𝑣𝑖

𝜘𝑑𝑉𝜘
𝑉𝜘(𝑡)

= ∫ (𝜌ҧ𝜘
𝐷𝜘𝑣𝑖

𝜘

𝐷𝑡
) 𝑑𝑉𝜘

𝑉𝜘(𝑡)
 (3.30) 

From Eqs. (3.26) and (3.30), the balance of linear momentum for phase 𝜘 can be written using the 

Gauss theorem as follows:  

𝜌ҧ𝜘
𝐷𝜘𝑣𝑖

𝜘

𝐷𝑡
=

𝜕�̅�𝑖𝑗
𝜘

𝜕𝑥𝑗
+ 𝜌ҧ𝜘𝐵𝑖 + 𝑅𝑖

𝜘 (3.31) 

The linear momentum balance in Eq. (3.31) can be then used to derive formulations of seepage flow 

velocity and solid velocity in porous media.  

3.2.2. Governing equations 

Due to interactions between different phases in a wide range of loading and saturation cases, the 

behaviour of three-phase porous media is usually complicated (Bear, 2018). It is incredibly complex 

and costly to account for every physical detail related to these interactions in the numerical 

framework, requiring a significant number of material parameters (Sheng et al., 2003). Thus, 

assumptions are essential and unavoidable for the development of a theoretical model, which should 

be required to strike a balance between rigour, performance and simplicity to describe necessary 

behavioural features of unsaturated soils for specific purposes and to make the theoretical framework 

more accessible to practical engineering (Sheng et al., 2003). In principle, from basic balance laws, 

different frameworks can be derived, depending on what the set of assumptions is used to eliminate 

the irrelevant and redundant features for a certain focus at hand. In this sense, given principle 

governing equations in Eqs. (3.25) and (3.31), mathematical modelling of the coupled hydro-

mechanical seepage flow within partially saturated soils is formulated in this section quantifying 

change rates of seepage force, solid velocity, porosity and saturation degree in coordinates with 

respect to the motion of the solid phase. Several common assumptions adopted during the derivation 

procedure of this model are shown and discussed as follows:  

(i) No mass, entropy and internal energy exchanges among constituents (Zienkiewicz, 1982; 

Lewis & Schrefler, 1998; Bui & Nguyen, 2017).  
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(ii) Isothermal process: The temperature of the system is constant where the thermal effects are 

neglected. Particularly, heat conduction, vapour diffusion, heat convection, latent heat transfer 

induced by the change of water phase (e.g. evaporation, condensation) inside the pores and relevant 

thermal fields are not taken into account in this model (Zienkiewicz, 1982; Lewis & Schrefler, 1998; 

Borja & White, 2010).  

(iii) Neglecting the air phase: The mobility of the air phase is larger than that of the water phase in 

the case of the same condition (e.g. both fluids have similar relative permeabilities) (Zienkiewicz, 

1982). As a result, any pressure difference in the air constituent can be equilibrated far faster than 

that in the water constituent (Zienkiewicz, 1982). Furthermore, the pressure acting on the air phase 

can usually be set to zero (e.g. atmospheric) for shallow, non-dynamic solid deformation where the 

pore air remains passive due to its connection with the atmosphere (Borja & White, 2010; Song & 

Borja, 2014; Tamagnini, 2005; Sheng et al., 2003). The mass of air can reasonably be assumed to be 

relatively small and hence ignored (Borja & White, 2010; Song & Borja, 2014; Tamagnini, 2005; 

Sheng et al., 2003). These assumptions lead to an elimination of equations associated with the flow 

of air from the system of governing equations (Zienkiewicz, 1982).  

(iv) Constant solid and water densities: Without loss of generality, all phases of porous media are 

assumed to be incompressible (Borja & White, 2010; Bear, 2018; Tamagnini, 2005; Sheng et al., 

2003; Song & Borja, 2014; Zienkiewicz, 1982) where densities remain unchanged and are considered 

as model parameters. This is a realistic and common assumption for many geotechnical applications 

(Borja & White, 2010).  

(v) Neglecting the gradient of porosity and saturation degree: This assumption implies that the 

changes of volume fractions with the location within the soil body are sufficiently small and was used 

by Lewis & Schrefler (1998), Oka et al. (2010) to derive the formulation for simulating the motion 

of fluids. It is acknowledged that this simplifying assumption is somewhat inconsistent with what 

takes place within the soil structure when the localised failure occurs with a strong discontinuity in 

deformation and saturation fields (see review in Chapter 2). However, this is not covered in the scope 

of the current study for the sake of simplicity.  

(vi) Neglecting the inertia force of water phase and macroscopic viscous effects: The seepage 

flow is laminar in the case of low velocities in which fluid particles follow smooth paths in layers 

with little or no lateral mixing between these layers. Therefore, the acceleration of the water phase 

and macroscopic viscous effects are considered to be sufficiently inconsiderable (Zienkiewicz, 1982; 

Lewis & Schrefler, 1998; Borja & White, 2010). This assumption facilitates the derivation of Darcy’s 

law.    
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Seepage forces  

Apart from stress and suction, the seepage force is another indispensable variable for describing 

coupled solid deformation-fluid flow in partially saturated deformable porous media. For Darcy’s 

law, seepage force is considered as one of the main components in governing the overall rate of 

energy loss associated with the friction at the interphase between water and solid (Zienkiewicz, 1982; 

Bear, 1972; Lewis & Schrefler, 1998). It can be adopted in whatever form being able to reproduce 

mechanisms of the fluid transport effectively. In this sense, because of being already verified and 

validated to be sufficiently robust in many existing simulation models for unsaturated soils, the 

viscous drag force is of the simple form (Oka et al., 2010; Zienkiewicz, 1982; Borja & White, 2010): 

𝑅𝑖
𝑤 = −

𝜙𝑆𝑟𝜌
𝑤𝑔

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡
𝜙𝑆𝑟𝑣𝑖

𝑤𝑠 (3.32) 

In the above expression, 𝐾𝑠𝑎𝑡 is the saturated hydraulic conductivity, and 𝑘𝑢𝑛𝑠𝑎𝑡 is a scalar relative 

permeability coefficient in the partially saturated regime dependent at least on saturation degree. They 

are dependent on the geometric characteristics of the pores (e.g. volumetric fraction, capillary effects, 

fluid-fluid momentum exchange terms) (Zienkiewicz, 1982; Lewis & Schrefler, 1998) and possess 

significant effects on the velocity of the infiltration process. In the literature, 𝐾𝑠𝑎𝑡 and 𝑘𝑢𝑛𝑠𝑎𝑡 can be 

determined for a given pore geometry through Stokes equations of REV (Valdes-Parada et al., 2009). 

Alternatively, standardised laboratory or field experiments (e.g. constant head permeameter tests, 

parallel capillary tubes) were used to propose different empirical or semi-empirical forms of 𝑘𝑢𝑛𝑠𝑎𝑡 

(Ergun 1952; Carman, 1956; Gardner, 1958; Childs & Collis-George, 1950; Irmay, 1954; Corey, 

1957; Brooks & Corey, 1964; Mualem, 1976; van Genuchten, 1980; Hillel, 1971). Among them, the 

simple relationship between 𝑘𝑢𝑛𝑠𝑎𝑡 and 𝑆𝑟 given by Hillel (1971) is selected in this study due to its 

simplicity in the formulation, implementation and parameter identification (Yerro, 2015), taking the 

following form: 

𝑘𝑢𝑛𝑠𝑎𝑡 = (𝑆𝑟)  (3.33) 

with 휁 being an empirical constant that lies in the interval of 2-4 (Yerro, 2015). As can be seen, the 

relative permeability varies between 0 and 1, reflecting the transition between fully and partially 

saturated conditions. It can be seen in Eq. (3.33) that the current hydraulic conductivity is explicitly 

independent from several mechanical field quantities (porosity, stress), that may be inadequate for 

describing the behaviour of the post-failure flow. Nonetheless, the present form of seepage force is 

acknowledged just as a relatively simple example to demonstrate the applicability of the proposed 

generic framework in capturing the hydro-mechanical coupling of partially saturated soils in an 
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acceptable manner. More comprehensive forms of seepage forces can be considered in my future 

works.  

Darcy seepage velocity 

To derive Darcy seepage velocity, this formulation can start with the linear momentum balance of 

water constituent, which is expressed based on Eq. (3.31) as follows:  

𝜌ҧ𝑤
𝐷𝑤𝑣𝑖

𝑤

𝐷𝑡
=

𝜕�̅�𝑖𝑗
𝑤

𝜕𝑥𝑗
+ 𝜌ҧ𝑤𝐵𝑖 + 𝑅𝑖

𝑤 (3.34) 

If 𝑝𝑎 = 0 (assumption iii) then Eq. (3.15) result in:  

𝑠 = −𝑝𝑤 (3.35) 

Substituting 𝜌ҧ𝑤 = 𝜙𝑆𝑟𝜌
𝑤, 𝜎𝑖𝑗

𝑤 = 𝜙𝑆𝑟(−𝑝𝑤)𝛿𝑖𝑗 (see Eqs. (3.13-3.14)) and Eq. (3.35) into Eq. (3.34) 

and assuming 
𝜕(𝜙𝑆𝑟)

𝜕𝑥𝑗
= 0 (assumption v), one gets: 

𝜙𝑆𝑟𝜌
𝑤 𝐷𝑤𝑣𝑖

𝑤

𝐷𝑡
= 𝜙𝑆𝑟 (

𝜕𝑠

𝜕𝑥𝑗
𝛿𝑖𝑗 + 𝜌𝑤𝐵𝑖) + 𝑅𝑖

𝑤 (3.36) 

If  
𝐷𝑤𝑣𝑖

𝑤

𝐷𝑡
= 0 is assumed (assumption vi), then the seepage force can be determined as:  

𝑅𝑖
𝑤 = −𝜙𝑆𝑟 (

𝜕𝑠

𝜕𝑥𝑗
𝛿𝑖𝑗 + 𝜌𝑤𝐵𝑖) (3.37) 

Eq. (3.37) is an extended Darcy’s law describing the energy dissipation due to the relative motion 

between solid and fluid phases in partially saturated soils. Darcy seepage velocity is to describe the 

relative velocity between moving water and solid phases (𝑣𝑖
𝑤𝑠 = 𝑣𝑖

𝑤 − 𝑣𝑖
𝑠). Comparing Eqs. (3.37) 

and (3.32), one obtains:  

𝜙𝑆𝑟𝜌
𝑤𝑔

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡
𝜙𝑆𝑟𝑣𝑖

𝑤𝑠 = 𝜙𝑆𝑟 (
𝜕𝑠

𝜕𝑥𝑗
𝛿𝑖𝑗 + 𝜌𝑤𝐵𝑖) (3.38) 

After rearranging the above expression, Darcy’s seepage velocity can be obtained as follows:  

𝑣𝑖
𝑤𝑠 =

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝜙𝑆𝑟𝑔
(

1

𝜌𝑤

𝜕𝑠

𝜕𝑥𝑗
𝛿𝑖𝑗 + 𝐵𝑖) (3.39) 

As can be seen in Eq. (3.39), 𝑣𝑖
𝑤𝑠  is an apparent velocity through the bulk of porous media 

proportional to permeability coefficients and hydraulic gradient for predicting the travel time of fluid 

flow. This law is only valid for the slow flow of a macroscopically inviscid fluid through partially 

saturated soils (Lewis & Schrefler, 1998). Porosity is explicitly taken into consideration in this 

velocity, reflecting the effect of solid deformation on the wetting/drying processes. It is noted that 



3-12 

 

Darcy’s seepage velocity is different from and greater than the discharge velocity (or Darcy’s volume 

flux) 𝑞𝑖
𝑤𝑠 which is considered for a total cross-sectional area within porous media in the form of 

𝑞𝑖
𝑤𝑠 = 𝜙𝑆𝑟𝑣𝑖

𝑤𝑠. This velocity is written in the form of volume-averaged relative velocity measured 

from experiments (Lewis & Schrefler, 1998).  

Solid velocity rate and strain rate tensor 

Solid velocity and strain are considered as the mechanical field variables of soil skeleton, a 

representation of deformation and failure of the solid phase.  Based on Eq. (3.31), the form of 

momentum balance for the solid phase can be expressed as follows:  

𝜌ҧ𝑠
𝐷𝑠𝑣𝑖

𝑠

𝐷𝑡
=

𝜕�̅�𝑖𝑗
𝑠

𝜕𝑥𝑗
+ 𝜌ҧ𝑠𝐵𝑖 + 𝑅𝑖

𝑠 (3.40) 

Substitution of (1 − 𝜙)𝜌𝑠 in place of 𝜌ҧ𝑠 (from Eq. (3.13)) and (𝜎𝑖𝑗 − 𝜙𝑆𝑟𝑠𝛿𝑖𝑗) in place of 𝜎𝑖𝑗
𝑠  (from 

Eq. (3.14) with 𝑝𝑎 = 0) in Eq. (3.40) leads to: 

𝐷𝑠𝑣𝑖
𝑠

𝐷𝑡
=

1

(1−𝜙)𝜌𝑠

𝜕(𝜎𝑖𝑗−𝜙𝑆𝑟𝑠𝛿𝑖𝑗)

𝜕𝑥𝑗
+ 𝐵𝑖 +

1

(1−𝜙)𝜌𝑠 𝑅𝑖
𝑠 (3.41) 

Due to the assumption of  
𝜕(𝜙𝑆𝑟)

𝜕𝑥𝑗
= 0 (assumption v), Eq. (3.41) can be rewritten as:  

𝐷𝑠𝑣𝑖
𝑠

𝐷𝑡
=

1

(1−𝜙)𝜌𝑠

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
−

𝜙𝑆𝑟

(1−𝜙)𝜌𝑠

𝜕𝑠

𝜕𝑥𝑗
𝛿𝑖𝑗 + 𝐵𝑖 +

1

(1−𝜙)𝜌𝑠 𝑅𝑖
𝑠 (3.42) 

On the other hands, the balance of momentum must satisfy the following constraint:  

𝑅𝑘
𝑠 + 𝑅𝑘

𝑤 = 0 (3.43) 

Using constraint in Eq. (3.43) and substituting Eq. (3.37) into Eq. (3.43) results in:  

𝑅𝑖
𝑠 = −𝑅𝑖

𝑤 = 𝜙𝑆𝑟 (
𝜕𝑠

𝜕𝑥𝑗
𝛿𝑖𝑗 + 𝜌𝑤𝐵𝑖) (3.44) 

The final form of solid velocity rate can be derived by substituting Eq. (3.44) into Eq. (3.42), so 

obtaining:  

𝐷𝑠𝑣𝑖
𝑠

𝐷𝑡
=

1

(1−𝜙)𝜌𝑠

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+

[(1−𝜙)𝜌𝑠+𝜙𝑆𝑟𝜌
𝑤]

(1−𝜙)𝜌𝑠
𝐵𝑖 (3.45) 

Ignoring the density of air phase (assumption iii), Eq. (3.13) yields:  

𝜌 = 𝜌ҧ𝑠 + 𝜌ҧ𝑤 = (1 − 𝜙)𝜌𝑠 + 𝜙𝑆𝑟𝜌
𝑤 (3.46) 

Therefore, Eq. (3.45) can be rewritten as:  
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𝐷𝑠𝑣𝑖
𝑠

𝐷𝑡
=

1

(1−𝜙)𝜌𝑠
(
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝐵𝑖) (3.47) 

To further derive the rate of solid velocity, the form of the total stress is used where it can be 

formulated directly from the definition of Bishop’s effective stress (see Eq. (3.17)) as:  

𝜎𝑖𝑗 = 𝜎𝑖𝑗
′ − 𝑆𝑟𝑠𝛿𝑖𝑗 (3.48) 

Bishop’s effective stress will be further discussed in Section 3.3.  

Substituting Eq. (3.48) into Eq. (3.47) gives:  

𝐷𝑠𝑣𝑖
𝑠

𝐷𝑡
=

1

(1−𝜙)𝜌𝑠 [
𝜕(𝜎𝑖𝑗

′ −𝑆𝑟𝑠𝛿𝑖𝑗)

𝜕𝑥𝑗
+ 𝜌𝐵𝑖] (3.49) 

If one assumes  
𝜕𝑆𝑟

𝜕𝑥𝑗
= 0 (assumption v), the solid acceleration in Eq. (3.49) simplifies to the form:  

𝐷𝑠𝑣𝑖
𝑠

𝐷𝑡
=

1

(1−𝜙)𝜌𝑠
(
𝜕𝜎𝑖𝑗

′

𝜕𝑥𝑗
− 𝑆𝑟

𝜕𝑠

𝜕𝑥𝑗
𝛿𝑖𝑗 + 𝜌𝐵𝑖) (3.50) 

According to Eq. (3.50), the velocity rate of solid phase within porous media is governed not only by 

effective stress but also by suction and saturation degree. It reflects the capacity of this approach in 

capturing the influence of the fluid infiltration process on the soil displacement within deformable 

three-phase porous media. Eq. (3.50) is used to update the solid velocity, which allows this framework 

to compute the strain rate tensor given as below:  

𝐷𝑠
𝑖𝑗

𝐷𝑡
=

1

2
(

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑗
+

𝜕𝑣𝑗
𝑠

𝜕𝑥𝑖
) (3.51) 

Combining Eqs. (3.50) and (3.51) reveals that, in a porous medium domain, the perturbation of the 

total/external stress and fluid pressures produced by fluid motion, or by loading the porous medium 

domain, the stress on soil skeleton varies, causing its displacement and distortion (Lewis & Schrefler, 

1998). This means that the solid matrix of partially saturated soils is “strained” due to the 

hydromechanical coupling. In the case of small strain, the strain rate tensor is the combination of two 

components: shear/deviatoric strain representing the change in the shape of the structure (i.e. changes 

in angles, sliding) and volumetric strain defining the relative change in volume of the solid body (i.e. 

no changes in angles, no sliding).  

Porosity rate  

From Eq. (3.25), the mass conservation of the solid constituent takes the following form:  

𝐷𝑠�̅�𝑠

𝐷𝑡
= −𝜌ҧ𝑠

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑖
 (3.52) 
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After substituting 𝜌ҧ𝑠 = (1 − 𝜙)𝜌𝑠 into Eq. (3.52), the following expression is obtained:  

𝐷𝑠[(1−𝜙)𝜌𝑠]

𝐷𝑡
= −[(1 − 𝜙)𝜌𝑠]

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑖
 (3.53) 

Taking 𝜌𝑠 = 𝑐𝑜𝑛𝑠𝑡 (assumption iv), Eq. (3.53) can be rewritten as: 

𝐷𝑠𝜙

𝐷𝑡
= (1 − 𝜙)

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑖
 (3.54) 

Eq. (3.54) represents the reciprocity between incremental forms of porosity and volumetric strain (e.g. 

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑖
) thanks to the assumption of incompressible soil skeleton. This form is analogous to that used by 

Buscarnera (2010).  

Saturation degree 

Using Eq. (3.25), the mass balance for the water phase takes the following form:  

𝐷𝑤�̅�𝑤

𝐷𝑡
= −𝜌ҧ𝑤

𝜕𝑣𝑖
𝑤

𝜕𝑥𝑖
 (3.55) 

or 

𝐷𝑤(𝜙𝑆𝑟𝜌𝑤)

𝐷𝑡
= −(𝜙𝑆𝑟𝜌

𝑤)
𝜕𝑣𝑖

𝑤

𝜕𝑥𝑖
 (3.56) 

From Eq. (3.56), using the assumption of 𝜌𝑤 = 𝑐𝑜𝑛𝑠𝑡  (assumption iv) facilitates the following 

relation:  

𝑆𝑟
𝐷𝑤𝜙

𝐷𝑡
+ 𝜙

𝐷𝑤𝑆𝑟

𝐷𝑡
= −𝜙𝑆𝑟

𝜕𝑣𝑖
𝑤

𝜕𝑥𝑖
 (3.57) 

By applying Eq. (3.20) for  𝜙 and 𝑆𝑟 while eliminating convective terms ( 
𝜕𝜙

𝜕𝑥𝑗
, 

𝜕𝑆𝑟

𝜕𝑥𝑗
) (assumption v), 

𝐷𝑤𝜙

𝐷𝑡
=

𝐷𝑠𝜙

𝐷𝑡
 and 

𝐷𝑤𝑆𝑟

𝐷𝑡
=

𝐷𝑠𝑆𝑟

𝐷𝑡
 are obtained, allowing Eq. (3.57) to be rewritten as follows:  

𝑆𝑟
𝐷𝑠𝜙

𝐷𝑡
+ 𝜙

𝐷𝑠𝑆𝑟

𝐷𝑡
= −𝜙𝑆𝑟

𝜕𝑣𝑖
𝑤

𝜕𝑥𝑖
 (3.58) 

from which and Eq. (3.54), the saturation rate can be given by the following equation:   

𝐷𝑠𝑆𝑟

𝐷𝑡
= −𝑆𝑟

𝜕𝑣𝑖
𝑤𝑠

𝜕𝑥𝑖
−

𝑆𝑟

𝜙

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑖
 (3.59) 

In order to further derive the rate of saturation degree, Eq. (3.39) is substituted into Eq. (3.59), 

resulting in the form below:  
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𝐷𝑠𝑆𝑟

𝐷𝑡
= −𝑆𝑟

𝜕[
𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝑔𝜙𝑆𝑟
(

1

𝜌𝑤
𝜕𝑠

𝜕𝑥𝑗
𝛿𝑖𝑗+𝐵𝑖)]

𝜕𝑥𝑖
−

𝑆𝑟

𝜙

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑖
 (3.60) 

By assuming  
𝜕𝑆𝑟

𝜕𝑥𝑗
= 0 and 

𝜕𝜙

𝜕𝑥𝑗
= 0 (assumption v), the rate for the degree of saturation reduces to the 

following:  

𝐷𝑠𝑆𝑟

𝐷𝑡
= −

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝑔𝜌𝑤𝜙

𝜕2𝑠

𝜕𝑥𝑖𝜕𝑥𝑗
𝛿𝑖𝑗 −

𝑆𝑟

𝜙

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑖
 (3.61) 

The above expression of saturation rate is analogous to that used by Borja & White (2010), Tamagnini 

(2005), Sheng et al. (2003) for partially saturated soils. The change in water volume, in this case, is 

produced by the second-order suction gradient and the first-order solid velocity gradient, apart from 

the inclusion of porosity and saturation degree. It is consistent with the physical phenomenon that 

when the deformation of the binary phase medium is triggered, the compression of the soil skeleton 

leads to the movement of fluid through the pores. 

Summary on governing equations  

As can be seen, there are seven variables in this coupled flow-deformation problem, including: 

𝑣𝑖
𝑤𝑠, 𝑆𝑟 , 𝑣𝑖

𝑠 , 휀𝑖𝑗 , 𝜙 , 𝜎𝑖𝑗
′  and 𝑠 , requiring a system of seven corresponding equations in the 

mathematical principle. Among them,  𝑣𝑖
𝑤𝑠, 𝑆𝑟, 𝑣𝑖

𝑠, 휀𝑖𝑗 and 𝜙 are determined by Eqs. (3.39), (3.50), 

(3.51), (3.54) and (3.61), which can be rewritten as follows:  

 𝑣𝑖
𝑤𝑠 =

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝜙𝑆𝑟𝑔
(

1

𝜌𝑤

𝜕𝑠

𝜕𝑥𝑗
𝛿𝑖𝑗 + 𝐵𝑖) (3.62) 

𝐷𝑠𝑆𝑟

𝐷𝑡
= −

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝑔𝜌𝑤𝜙

𝜕2𝑠

𝜕𝑥𝑖𝜕𝑥𝑗
𝛿𝑖𝑗 −

𝑆𝑟

𝜙

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑖
 (3.63) 

𝐷𝑠𝑣𝑖
𝑠

𝐷𝑡
=

1

(1−𝜙)𝜌𝑠
(
𝜕𝜎𝑖𝑗

′

𝜕𝑥𝑗
− 𝑆𝑟

𝜕𝑠

𝜕𝑥𝑗
𝛿𝑖𝑗 + 𝜌𝐵𝑖) (3.64) 

𝐷𝑠
𝑖𝑗

𝐷𝑡
=

1

2
(

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑗
+

𝜕𝑣𝑗
𝑠

𝜕𝑥𝑖
) (3.65) 

𝐷𝑠𝜙

𝐷𝑡
= (1 − 𝜙)

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑖
 (3.66) 

Among the equations mentioned above, Eqs. (3.62) and (3.63) are to present the expressions of 

hydraulic field variables, including Darcy seepage velocity and saturation degree representing the 

fluid transport through porous media. In this seepage flow model, the motion of the fluid phases is 

described in terms of mass-averaged velocities relative to the moving solid, where the evolution of 

hydraulic field variables can be expressed with reference to those of the corresponding soil skeleton 
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thanks to the use of relative velocities and kinematics in porous media theory (Lewis & Schrefler, 

1998).  

To complete this coupled dynamic flow-deformation response of partially saturated soils, two more 

constitutive equations for linking effective stress 𝜎𝑖𝑗
′  and suction 𝑠  with the above-described 

equations are needed. In this case, increments of strain and saturation given by governing equations 

in Eqs. (3.63) and (3.64-3.65) can serve as inputs to return increments of stress and suction as outputs 

through appropriate constitutive models (e.g. stress-strain, SWCC). It is well known that constitutive 

models are to simulate the behaviour of materials and are an important element for any analysis within 

the continuum mechanics framework, that is the focus of this thesis. Without proper constitutive laws 

(e.g. stress-strain, suction-saturation), numerical methods for modelling coupled flow-deformation 

processes in three-phase porous media find it hard to adequately reproduce mechanisms of failure 

due to the interaction between irreversible deformation and fluid transport in the inelastic regime 

under a wide range of loading and saturation conditions. As discussed in Chapter 2, for unsaturated 

soils, constitutive models are required to consider the intrinsic interaction between grain 

rearrangements and liquid-bridge redistributions at the grain scale, reflected in the simultaneous 

activation and evolution of mechanical and hydraulic yielding responses observed at the continuum 

level. This nature requires the interdependence of mechanical and hydraulic internal forces and their 

dependence on all internal variables (e.g. plastic strain, irreversible saturation), in addition to effective 

stress and suction, leading to a single yield locus governed by a unique “plastic” multiplier with two 

flow rules. A constitutive model that miss-predicts this micromechanical nature of coupled hydro-

mechanical yielding behaviour may give unreasonable predictions and unphysical results of the 

realistic hydromechanical process of unsaturated soils in different loading and hydraulic cases. 

However, the importance of the determination of this coupling mechanism is not always recognised 

in existing constitutive modelling of partially saturated soils where multiple yield surfaces (Wheeler 

et al., 2003; Sheng et al., 2008) and separate laws of SWCC with different parameter sets for wetting 

and drying paths (Khalili et al., 2008; Zhou et al., 2012ab; 2018 and Zhou & Sheng, 2015) are usually 

used despite significant benefits that they bring in matching a wide range of experimental data. 

Furthermore, the violation of thermodynamics laws maybe not guaranteed in these models, and the 

crucial properties of energy dissipation are not always addressed in the literature to interpret failure 

mechanisms of partially saturated soils. Without recourse to thermodynamic principles, constructions 

of many existing models for partially saturated soils are sometimes not rigorous and arbitrary through 

incoherent combinations of different theories. These requirements need to be addressed to move 

towards the aim of establishing better constitutive models in more rigorous ways to describe the 

coupled hydro-mechanical mechanisms of unsaturated soils, focusing on stress-strain and suction-
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saturation degree relationships. The next section will be dedicated to this feature and is the emphasis 

of this thesis.   

3.3. Constitutive relationship  

As discussed beforehand in Chapter 2, the inelastic behaviour of partially saturated soils is 

experimentally observed in the interdependence between loading-unloading and wetting-drying 

differences. It is intrinsically linked to the inseparability of mechanical and hydraulic dissipations 

produced by the interaction between the rearrangements of particles and water meniscuses. This 

observable behaviour of partially saturated soils requires coupling between internal variables 

representing the hydro-mechanical behaviour in constitutive modelling. A generic thermodynamic 

approach is described in this section under assumptions of rate-independent and homogeneous 

deformation to serve as a basis for the interaction between the mechanical and hydraulic responses 

represented by plastic strain and irrecoverable saturation, respectively. The inseparable nature of this 

interaction will be reflected in the proposed approach through the interdependence of plastic strain 

and irrecoverable saturation where a single yield surface in stress-suction space with two evolution 

rules for plastic strains and irrecoverable saturation is derived from two new forms of free energy and 

dissipation potentials in different ways. The proposed formulation has the advantage of being able to 

naturally perform a bi-directional interaction between mechanical and hydraulic yielding responses 

at any instant with a small number of parameters. 

3.3.1.  A generalized thermodynamics-based formulation  

State variables  

The first step in the development of this framework involves the proper choice of stress and strain 

variables. It is admitted that at least two stress/strain-like variables must be needed to capture the 

concurrent existence of both the mechanical (stress-strain relationship) and hydraulic (SWCC) 

responses, that is the first-and necessary condition to guarantee the success of the fully-coupled 

hydro-mechanical model predictions for unsaturated soils (Buscarnera & Nova, 2009). Addressing 

this, several existing models choose the net stress and suction in conjugation with the Cauchy strain 

and saturation degree (Sheng et al., 2004) or water ratio strain (Vaunat et al., 2000; Buisson & 

Wheeler, 2000) as they are at an advantage in allowing for convenient implementations of Finite 

Element Method (FEM) using normally total stresses (Sheng et al., 2004) and simple representations 

of stress paths from experimental data (Gallipoli et al., 2018). However, such choices are somehow 

improper regarding the thermo-mechanical considerations. According to Houlsby (1997) and Coussy 

et al. (2010), these stress-like and strain-like variables can be arbitrarily selected in different ways, 
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but provided that these are work conjugate to guarantee the theoretical rigour and thermodynamic 

consistency of the entire formulation in continuum models. Under such conditions, the proper form 

of work input will serve as a fundamental basis to plausibly identify energy conjugated stress/strain 

variables for continuum modelling. Recognizing the importance of that matter, there have been 

numerous studies and attempts to make progress on the closed-form expression of work input for 

unsaturated soils, such as works of Houlsby (1997), Gray et al. (2009), Li (2007) and Coussy et al. 

(2010). In general, they indeed share many similar features in the work-input form and relevant 

variables, and the controversy among them mainly revolves around the energy of the air-water 

interface. It is essential to take into account the effect of the fluid interface in the expression of energy 

input and then the constitutive framework. However, this research point of view is considered beyond 

the scope of this thesis and will be addressed in future works. Instead, the form of work input, without 

the surface tension or other terms related to the fluid interface, as suggested by Coussy et al. (2010), 

is employed in this study for simplicity and convenience in model development where its derivation 

can be reviewed as follows.  

Water 𝑉𝑤 and air 𝑉𝑎 volumes take the following forms:  

𝑉𝑤 = 𝑉0�̅�𝑆𝑟  (3.67) 

𝑉𝑎 = 𝑉0�̅�(1 − 𝑆𝑟)  (3.68) 

Water and air volume rates are then written as:  

�̇�𝑤 = 𝑉0 (𝑆𝑟�̇̅� + �̅��̇�𝑟)  (3.69) 

�̇�𝑎 = 𝑉0 [(1 − 𝑆𝑟)�̇̅� − �̅��̇�𝑟]  (3.70) 

If the soil is assumed to be incompressible, the following expression can be written:   

�̇̅� = −휀�̇�  (3.71) 

where 휀𝜈 is volumetric strain.  

The infinitesimal work �̃� supplied to the solid skeleton can be expressed as:  

�̃� = −𝑝�̇� + 𝑝𝑤�̇�𝑤 + 𝑝𝑎�̇�𝑎  (3.72) 

with 𝑝 denoting the total mean stress.  

Substituting Eqs (3.69-3.70) into Eq. (3.72), Eq. (3.72) yields:   

�̇� = −𝑝�̇� + 𝑝𝑤𝑉0(−𝑆𝑟휀�̇� + �̅��̇�𝑟) + 𝑝𝑎𝑉0[−(1 − 𝑆𝑟)휀�̇� − �̅��̇�𝑟]  (3.73) 
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Dividing Eq. (3.73) by 𝑉0, the work input �̃� can be obtained as follows:  

�̃� =
�̇�

𝑉𝑜
= −𝑝

�̇�

𝑉𝑜
+ 𝑝𝑤(−𝑆𝑟휀�̇� + �̅��̇�𝑟) + 𝑝𝑎[−(1 − 𝑆𝑟)휀�̇� − �̅��̇�𝑟]  (3.74) 

Thanks to 휀�̇� = −
�̇�

𝑉𝑜
, Eq. (3.74) is rewritten as:  

�̃� = [𝑝 − 𝑝𝑎 + 𝑆𝑟(𝑝
𝑎 − 𝑝𝑤)]휀�̇� + �̅�(𝑝𝑎 − 𝑝𝑤)(−�̇�𝑟)  (3.75) 

or,  

�̃� = (𝑝ҧ + 𝑆𝑟𝑠)휀�̇� + �̅�𝑠(−�̇�𝑟)  (3.76) 

Eq. (3.76) can be extended to the form for triaxial stress conditions. Thus, the rate of work input can 

be expressed as:  

�̃� = (𝑝ҧ + 𝑆𝑟𝑠)휀�̇� + 𝑞휀�̇� + �̅�𝑠(−�̇�𝑟) = 𝑝′휀�̇� + 𝑞휀�̇� + 𝑠∗(−�̇�𝑟)  (3.77) 

where 𝑝ҧ, 𝑝′, 𝑞, 𝑠∗, 휀𝑣  and 휀𝑠  are the net mean stress, effective mean stress, shear stress, modified 

suction, volumetric strain and shear strain, respectively. It can be seen that the modified suction, 𝑠∗ =

𝑠�̅�  with porosity explicitly representing the effect of volumetric changes on the hydraulic 

conductivity of the bulk fluid, is used as a conjugate of the strain-like variable −�̇�𝑟, according to 

Houlsby (1997), Coussy et al. (2010) and Buscarnera & Einav (2012). It agrees with Lu (2008) and 

Vaunat et al. (2000) that suction can be considered a stress-like variable. Under geotechnical sign 

convention (compression positive) and assumption of incompressible solid grains, the volumetric 

strain can be expressed as 휀𝑣 = �̅�0 − �̅�, with �̅�0 being the initial porosity. The triaxial stresses (𝑝′, 𝑞) 

and triaxial strains (휀𝑣, 휀𝑠) can be expressed in terms of Cauchy stress (𝜎𝑖𝑗
′ ) and strain tensors (휀𝑖𝑗), 

respectively.  

𝑝′ = −
1

3
𝜎𝑘𝑘

′       𝑞 = √
3

2
(𝜎𝑖𝑗

′ −
1

3
𝜎𝑘𝑘

′ 𝛿𝑖𝑗) (𝜎𝑖𝑗
′ −

1

3
𝜎𝑘𝑘

′ 𝛿𝑖𝑗)     (3.78) 

휀𝑣 = 휀𝑘𝑘          휀𝑠 = √
2

3
(휀𝑖𝑗 −

1

3
휀𝑣𝛿𝑖𝑗) (휀𝑖𝑗 −

1

3
휀𝑣𝛿𝑖𝑗)    (3.79) 

The limitation of the work input (Eq. (3.77)) is acknowledged in neglecting the work due to moving 

air-fluid interface in a partially saturated volume element, as explained in Houlsby (1997), the 

consequence of which is the simplest form of Bishop’s effective stress parameter, 𝜒 = 𝑆𝑟 . As 

discussed earlier in Chapter 2, the effective stress here can be understood as the stress at inter-particle 

contacts related to the deformation and failure of the soil skeleton, governed by both external load 

and contact-level capillary action. There have been attempts to make progress on the closed-form 

expression of effective stress (𝑝′ = 𝑝ҧ + 𝜒𝑠) for unsaturated soils. These studies mainly revolve 
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around the form of effective stress parameter 𝜒 which can be a function of saturation degree (e.g. 

Hassanizadeh & Gray, 1990; Muraleetharan & Wei, 1999) or air-entry value (Khalili & Khabbaz, 

1998) to reproduce the fully-partially saturated transition. Nevertheless, the effect of air-entry value 

in the effective stress considered to be beyond the scope of this thesis despite its robustness 

demonstrated in Russell & Khalili (2006), Khalili et al. (2008), Loret & Khalili (2002). On the other 

hand, it is acknowledged that there must be two contributions on the capillarity of the average skeleton 

stress, including suction and surface tension forces along the contours between grains and liquid 

bridges (Wan et al., 2014; Li, 2003; Likos, 2014). The latter still needs further investigations (Likos, 

2014) and hence is not always taken into account in constitutive modelling (Gallipoli et al., 2003; Hu 

et al., 2014). This research is, therefore, not covered within the scope of this study. To address this 

problem, the micro-mechanical approach (Nicot & Darve, 2005) can be adopted to infer the global 

response of a granular soil from its local properties with the grain interaction and liquid-bridge 

distribution, using the statistical description of the fabrics for a force-displacement model.   

Fundamental relations 

For the isothermal process with the temperature 휃, the first law of thermodynamics reads (Houlsby 

& Puzrin, 2000; Nguyen, 2005):  

�̃� + 𝜗𝑘,𝑘 = �̇�′  (3.80) 

where 𝑢′ is the specific internal energy, 𝜗𝑘,𝑘 is the heat supply to a volume element.  

The second law of thermodynamics is of the following form:  

휂̇ ≥ −(
𝜗𝑘

𝜃
)
,𝑘

= −(
𝜗𝑘,𝑘

𝜃
−

𝜗𝑘𝜃,𝑘

𝜃2 )  (3.81) 

with 휂 denoting the entropy and 
𝜗𝑘

𝜃
 being the entropy flux. Eq. (3.81) can be expanded as follows:  

휃휂̇ + 𝜗𝑘,𝑘 −
𝜗𝑘𝜃,𝑘

𝜃
≥ 0  (3.82) 

From Eq. (3.82), the dissipation function Φ̃ including mechanical (휃휂̇ + 𝜗𝑘,𝑘) and thermal (−
𝜗𝑘𝜃,𝑘

𝜃
) 

dissipations can be written in the following form:  

Φ̃ = 휃휂̇ + 𝜗𝑘,𝑘 −
𝜗𝑘𝜃,𝑘

𝜃
≥ 0  (3.83) 

The tilde symbol “~” is used here to indicate the path-dependent nature of the work input and 

dissipation; only their rates can be defined.  

In the case that the thermal dissipation is negligible, Eq. (3.83) then writes:  
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𝜗𝑘,𝑘 = 휃휂̇ − Φ̃  (3.84) 

From Eqs. (3.84) and (3.80), the following equation can be obtained:  

Φ̃ = �̃� + 휃휂̇ − �̇�′ ≥ 0  (3.85) 

where the Helmholtz specific free energy Ψ is defined as:  

Ψ = 𝑢′ − 휃휂  (3.86) 

Making differentiation of Eq. (3.86), the rate of internal energy then yields:  

�̇�′ = Ψ̇ + 휃휂̇ + 휃̇휂  (3.87) 

From Eqs. (3.87) and (3.85), under isothermal conditions, the energy balance is of the form:  

�̃� = Ψ̇ + Φ̃    (3.88) 

For a thermodynamics-based approach, a few internal variables are used to represent the evolution of 

the complicated underlying physics of micro-scale mechanisms. The appropriate selection of internal 

variables and their interactions is important in a consistent thermodynamics-based approach to enable 

the model to have a sound physical basis. For partially saturated soils, the energy dissipation reflects 

the inseparable nature of the interaction between frictional sliding, grain rearrangement and ruptures 

of liquid bridges and their redistributions at the grain contacts. In particular, grain-scale frictional 

sliding leads to rupture of liquid bridges and hence the change of saturation; on the other hand, change 

of liquid bridges leads to change of grain-scale frictional resistance and hence macro shear strength 

of the material. These coupled hydro-mechanical processes lead to the irreversible deformation and 

saturation observed at the macro scale. In constitutive modelling of partially saturated soils, the use 

of irrecoverable saturation degree 𝑆𝑟
p
 has also been adopted in some papers (Wheeler et al., 2003; Li, 

2007a; Hu et al., 2015). These irreversible strains and strain-like variable (volumetric plastic strain 

휀𝜈
p
, and deviatoric plastic strain 휀𝑠

p
 and irrecoverable saturation degree 𝑆𝑟

p
) govern the dissipation and 

hence are used as internal variables controlling the behaviour of the proposed partially saturated soil 

model. The Helmholtz free energy can assume the following general form:  

Ψ = Ψ(휀𝜈 , 휀𝑠, −𝑆𝑟 , 휀𝜈
p
, 휀𝑠

p
, −𝑆𝑟

p
)    (3.89) 

Therefore, its rate is:  

Ψ̇ =
𝜕Ψ

𝜕 𝜈
휀�̇� +

𝜕Ψ

𝜕 𝑠
휀�̇� +

𝜕Ψ

𝜕(−𝑆𝑟)
(−𝑆�̇�) +

𝜕Ψ

𝜕 𝜈
p 휀�̇�

p
+

𝜕Ψ

𝜕 𝑠
p 휀�̇�

p
+

𝜕Ψ

𝜕(−𝑆𝑟
p
)
(−�̇�𝑟

p
)    (3.90) 

By substituting Eq. (3.90) into Eq. (3.88), the following expression can be obtained:  
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�̃� =
𝜕Ψ

𝜕 𝜈
휀�̇� +

𝜕Ψ

𝜕 𝑠
휀�̇� +

𝜕Ψ

𝜕(−𝑆𝑟)
(−𝑆�̇�) +

𝜕Ψ

𝜕 𝜈
p 휀�̇�

p
+

𝜕Ψ

𝜕 𝑠
p 휀�̇�

p
+

𝜕Ψ

𝜕(−𝑆𝑟
p
)
(−�̇�𝑟

p
) + Φ̃    (3.91) 

Comparing Eq. (3.91) with Eq. (3.77), the following fundamental relationships are obtained:  

𝑝′ =
𝜕Ψ

𝜕 𝜈
    (3.92) 

𝑞 =
𝜕Ψ

𝜕 𝑠
    (3.93) 

𝑠∗ =
𝜕Ψ

𝜕(−𝑆𝑟)
    (3.94) 

and 

Φ̃ = −
𝜕Ψ

𝜕 𝜈
p 휀�̇�

p
−

𝜕Ψ

𝜕 𝑠
p 휀�̇�

p
−

𝜕Ψ

𝜕(−𝑆𝑟
p
)
(−�̇�𝑟

p
) = 𝜒ҧ𝜈휀�̇�

p
+ 𝜒ҧ𝑠휀�̇�

p
+ 𝜒ҧℎ(−�̇�𝑟

p
)    (3.95) 

in which the generalised stresses 𝜒ҧ𝜈 = −
𝜕Ψ

𝜕 𝜈
p , 𝜒ҧ𝑠 = −

𝜕Ψ

𝜕 𝑠
p and 𝜒ҧℎ = −

𝜕Ψ

𝜕(−𝑆𝑟
p
)
 are the thermodynamic 

conjugates to the volumetric plastic strain 휀𝜈
p

, shear plastic strain 휀𝑠
p

 and irrecoverable saturation 

degree −𝑆𝑟
p
, respectively.  

For rate-independent behaviour (Houlsby & Puzrin, 2000), the dissipation is a homogeneous function 

of order one in terms of 휀�̇�
p
 , 휀�̇�

p
 and −�̇�𝑟

p
:  

Φ̃ =
𝜕Φ̃

𝜕 ̇𝜈
p 휀�̇�

p
+

𝜕Φ̃

𝜕 ̇𝑠
p 휀�̇�

p
+

𝜕Φ̃

𝜕(−�̇�𝑟
p
)
(−�̇�𝑟

p
) = 𝜒𝜈휀�̇�

p
+ 𝜒𝑠휀�̇�

p
+ 𝜒ℎ(−�̇�𝑟

p
)    (3.96) 

where 𝜒𝜈, 𝜒𝑠 and 𝜒ℎ are volumetric, shear and hydraulic dissipative generalised stresses, respectively. 

Comparing Eq. (3.96) with Eq. (3.95), a form of Ziegler’s orthogonality condition (Ziegler, 1983; 

Houlsby & Puzin, 2000; Puzrin & Houlsby, 2001) can be obtained:  

𝜒𝜈 = 𝜒ҧ𝜈    (3.97) 

𝜒𝑠 = 𝜒ҧ𝑠    (3.98) 

𝜒ℎ = 𝜒ҧℎ    (3.99) 

Dissipation function, loading function and evolution laws 

Making an explicit link between loading function/evolution laws and dissipation potential by 

performing the degenerate Legendre transformation is a central principle and advantage of the 

thermodynamics-based framework (Collins & Houlsby, 1997; Houlsby & Puzrin, 2007). In general, 

for rate-independent models, the dissipation potential Φ̃ can assume any form that is first-order 

homogeneous in the rates of internal variables provided the thermodynamic admissibility is met. It is 

noted that explicit representations of grain-scale details are missing in this model, given the proposed 

approach is based on continuum mechanics. It will be addressed in future works to move towards a 
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better model where micromechanics-based approaches (e.g. Nguyen & Gan, 2014; Bignonnet et al., 

2016; Fang et al., 2017; Nicot & Darve, 2007; Yin et al., 2009) can be adopted. In this paper, 

microscale mechanisms are used only to obtain constraints on the interactions of internal variables, 

reflected in the dependence of all thermodynamic forces on stress, suction, plastic strain and 

irrecoverable saturation and their rates. The inseparable nature of the grain scale hydro-mechanical 

coupling described earlier requires that 𝜒𝜈, 𝜒𝑠, and 𝜒ℎ be dependent on stress, suction, all internal 

variables and their rates representing the dissipative processes. Mathematically they can be written 

as (𝑖 stands for 𝜈, 𝑠, or ℎ): 

𝜒𝑖 = 𝜒𝑖(𝑝, 𝑞, 𝑠∗, 휀�̇�
p
, 휀�̇�

p
, �̇�𝑟

p
)    (3.100) 

Although a decoupling of 𝜒𝑖  from all the rates of internal variables can be used to simplify the 

formulation as can be seen in several thermodynamics-based models in the literature (Sheng et al., 

2004; Li, 2007; Hu et al., 2015; Santagiuliana & Schrefler, 2006), this decoupling at this level leads 

to the employment of different loading functions to describe the interactions between different 

dissipative processes. Instead, a tighter coupling between these processes is pursued in this study. To 

address it, two generic approaches associated with dissipation function can be adopted to derive a 

single loading function and corresponding evolution laws to encapsulate the tight connection of 

plastic strains and irrecoverable saturation, including a special form of dissipation potential and 

constraints. Both approaches can allow dissipative stresses to be intrinsically dependent on each other 

and all internal variables, aside from their interactions through the constitutive relationships. They 

are presented as follows.  

A special form of dissipation potential  

In this approach, a special form of first-order homogeneous dissipation potential (Collins & Houlsby, 

1997; Collins & Kelly, 2002; Collins & Hilder, 2002; Collins, 2003; Einav et al., 2007) is used to 

obtain the required form of generalised dissipative stresses in Eq. (3.100). This generic form of 

dissipation potential has been used successfully in modelling dissipative processes involving more 

than one dissipative mechanisms. Examples include coupling plastic strains with breakage (Einav, 

2007ab; Nguyen & Einav, 2009) and damage with plastic strains (Nguyen et al., 2012; Guiamatsia & 

Nguyen, 2012; Mir et al., 2018). The dissipation potential takes the following generic form: 

Φ̃ = √(𝜙1
𝜈)2 + (𝜙𝑠)2 + (𝜙ℎ)2 + 𝜙2

𝜈    (3.101) 

In the above expression, 𝜙1
𝜈, and 𝜙2

𝜈 are first-order homogeneous functions of 휀�̇�
p
 ; they are required 

for the introduction of dilation behaviour in the model. Functions 𝜙𝑠 , and 𝜙ℎ  are first-order 

homogeneous with respect to 휀�̇�
p
, and �̇�𝑟

p
, respectively. The specific expressions of these functions 
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(𝜙1
𝜈, 𝜙2

𝜈, 𝜙𝑠, and 𝜙ℎ) govern the behaviour of the constitutive model and will be presented in the 

next chapters.  

The generalised dissipative stresses take the following generic forms: 

𝜒𝜈 =
𝜕Φ̃

𝜕 ̇𝜈
p =

𝜕Φ̃

𝜕𝜙1
𝜈

𝜕𝜙1
𝜈

𝜕 ̇𝜈
p +

𝜕Φ̃

𝜕𝜙2
𝜈

𝜕𝜙2
𝜈

𝜕 ̇𝜈
p =

𝜙1
𝜈

√(𝜙1
𝜈)2+(𝜙𝑠)2+(𝜙ℎ)

2

𝜕𝜙1
𝜈

𝜕 ̇𝜈
p +

𝜕𝜙2
𝜈

𝜕 ̇𝜈
p     (3.102) 

𝜒𝑠 =
𝜕Φ̃

𝜕 ̇𝑠
p =

𝜕Φ̃

𝜕𝜙𝑠

𝜕𝜙𝑠

𝜕 ̇𝑠
p =

𝜙𝑠

√(𝜙1
𝜈)2+(𝜙𝑠)2+(𝜙ℎ)

2

𝜕𝜙𝑠

𝜕 ̇𝑠
p    (3.103) 

𝜒ℎ =
𝜕Φ̃

𝜕(−�̇�𝑟
p
)
=

𝜕Φ̃

𝜕𝜙ℎ

𝜕𝜙ℎ

𝜕(−�̇�𝑟
p
)
=

𝜙ℎ

√(𝜙1
𝜈)2+(𝜙𝑠)2+(𝜙ℎ)

2

𝜕𝜙ℎ

𝜕(−�̇�𝑟
p
)
    (3.104) 

Thanks to the properties of first-order homogeneous functions, the following equation can be deduced 

from Eqs. (3.102-3.104):  

𝜒𝜈휀�̇�
p

+ 𝜒𝑠휀�̇�
p

+ 𝜒ℎ(−�̇�𝑟
p
) = Φ̃    (3.105) 

Thus, the dissipation rate function in Eq. (3.101) can be written as follows:  

Φ̃ = Φ̃𝜈 + Φ̃𝑠 + Φ̃ℎ  (3.106) 

where Φ̃𝜈 = 𝜒𝜈휀�̇�
p
  , Φ̃𝑠 = 𝜒𝑠휀�̇�

p
 and Φ̃ℎ = 𝜒ℎ(−�̇�𝑟

p
) are denoted as volumetric, shear and hydraulic 

parts of the total dissipation rate, respectively. The above properties allow the investigation of 

dissipation characteristics of any partially saturated models derived from this proposed generic 

framework, given the explicitly defined dissipation potential (see Eq. (3.101)). This will be illustrated 

in Chapter 4. 

As can be seen in Eqs. (3.102-3.104), all generalised dissipative stresses 𝜒𝑖 are dependent on all rates 

of internal variables, 휀�̇�
p
, 휀�̇�

p
, and −�̇�𝑟

p
. Thanks to this, the degenerate Legendre transformation of the 

dissipation potential (Puzrin & Houlsby, 2001) leads to a single yield function 𝑦∗ in generalised stress 

space (𝜒𝜈, 𝜒𝑠, and 𝜒ℎ): 

𝑦∗ =
(𝜒𝜈−

𝜕𝜙2
𝜈

𝜕�̇�𝜈
p)

2

(
𝜕𝜙1

𝜈

𝜕�̇�𝜈
p)

2 +
(𝜒𝑠)

2

(
𝜕𝜙𝑠

𝜕�̇�𝑠
p)

2 +
(𝜒ℎ)2

(
𝜕𝜙ℎ

𝜕(−�̇�𝑟
p

)
)

2 − 1 ≤ 0    (3.107) 

Eq. (3.107) represents an ellipsoid, as shown in Figure 3.4. The role of 𝑦∗ is similar to that of a plastic 

potential in classical plasticity theory. Three evolution laws (or flow rules) for the rates of plastic 

strains and irreversible saturation rates, sharing a single multiplier �̇�𝑝 can then be expressed as:  
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휀�̇�
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝜈
= �̇�𝑝

2(𝜒𝜈−
𝜕𝜙2

𝜈

𝜕�̇�𝜈
p)

(
𝜕𝜙1

𝜈

𝜕�̇�𝜈
p)

2     (3.108) 

휀�̇�
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝑠
= �̇�𝑝

2𝜒𝑠

(
𝜕𝜙𝑠

𝜕�̇�𝑠
p)

2    (3.109) 

−�̇�𝑟
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒ℎ
= �̇�𝑝

2𝜒ℎ

(
𝜕𝜙ℎ

𝜕(−�̇�𝑟
p

)
)

2    (3.110) 

 

Figure 3.4. Geometric representation of yield potential in dissipative stress space for the approach 

of “using a specifical form of dissipation potential.” 

Using the orthogonality conditions in the forms 𝜒𝜈 = 𝜒ҧ𝜈 = −
𝜕Ψ

𝜕 𝜈
p, 𝜒𝑠 = 𝜒ҧ𝑠 = −

𝜕Ψ

𝜕 𝑠
p, and 𝜒ℎ = 𝜒ҧℎ =

−
𝜕Ψ

𝜕(−𝑆𝑟
p
)
, the generic yield surface 𝑦 in true stress space can be obtained as:  

𝑦(𝑝′, 𝑞, 𝑠∗, 휀𝜈
p
, 휀𝑠

p
, −𝑆𝑟

p
) =

(−
𝜕Ψ

𝜕𝜀𝜈
p−

𝜕𝜙2
𝜈

𝜕�̇�𝜈
p)

2

(
𝜕𝜙1

𝜈

𝜕�̇�𝜈
p)

2 +
(−

𝜕Ψ

𝜕𝜀𝑠
p)

2

(
𝜕𝜙𝑠

𝜕�̇�𝑠
p)

2 +
(−

𝜕Ψ

𝜕(−𝑆𝑟
p

)
)

2

(
𝜕𝜙ℎ

𝜕(−�̇�𝑟
p

)
)

2 − 1 ≤ 0    (3.111) 

Eqs. (3.92-3.94) and (3.107-3.111) present a generic form of thermodynamic-based models for 

partially saturated soils. The specifications of functions 𝜙1
𝜈, 𝜙2

𝜈, 𝜙𝑠, and 𝜙ℎ complete the definition 

of a specific model. This coupling allows capturing the simultaneous activation and development of 

both mechanical and hydraulic yielding at any instant without requiring arbitrary and complicated 

treatments, in comparison with the use of multiple yield surfaces and plastic multipliers (e.g. Wheeler 

et al., 2003; Sheng et al., 2004; Santagiuliana & Schrefler, 2006). The specifications of both energy 

𝜕𝜙1
𝜈

𝜕휀�̇�
p  

𝜕𝜙𝑠

𝜕휀�̇�
p  

𝜒𝑠 

𝜒𝜈 −
𝜕𝜙2

𝜈

𝜕휀�̇�
p  

𝜒ℎ 
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and dissipation potentials to formulate a specific constitutive model for partially saturated soils will 

be described in Chapter 4. 

Using kinematic constraint equations  

In an alternative way, the interdependent and inseparable evolutions of mechanical and hydraulic 

dissipative processes reflecting underlying grain-scale hydromechanical mechanisms can be 

incorporated into the model formulation through another approach by means of constraint equations. 

In this approach, dissipation potential takes the form set out below: 

Φ̃ = 𝜑𝜈휀�̇�
p

+ 𝜑𝑠휀�̇�
p

+ 𝜑ℎ(−�̇�𝑟
p
) ≥ 0   (3.112) 

In the above expression, functions 𝜑𝜈, 𝜙𝑠, and 𝜙ℎ are first-order homogeneous with respect to 휀�̇�
p
, 

휀�̇�
p
, and �̇�𝑟

p
, respectively. Eq. (3.112) can be understood as a weak form of coupled hydro-mechanical 

dissipation function because the interaction between 𝜒𝜈 , 𝜒𝑠 and 𝜒ℎ is only valid in the constitutive 

equations. In a thermodynamic form of weak coupling, two separate yield surfaces, one for 

controlling the evolution rule of plasticity and one for controlling that of capillarity, can be derived 

from Eq. (3.112). Noting that the non-negative plastic-type multipliers of each are distinct. Such a 

weak approach can be found in several existing thermodynamic-based frameworks of Sheng et al. 

(2004), Santagiuliana & Schrefler (2006) and Hu et al. (2015), where the non-negative value of every 

additive part within the dissipation function is stringently required to warrant the compliance with the 

second laws of thermodynamic.  

In this framework, to reflect kinematic interdependencies between three internal variables 휀�̇�
p
, 휀�̇�

p
, and 

�̇�𝑟
p
, two following kinematic constraint equations (𝐶1, 𝐶2) are introduced:  

𝐶1 = 𝐵′휀�̇�
p

+ 𝐴′휀�̇�
p

= 0   (3.113) 

𝐶2 = 𝐶′휀�̇�
p

+ 𝐴′(−�̇�𝑟
p
) = 0   (3.114) 

where 𝐴′, 𝐵′ and 𝐶′ are general functions dependent on stresses and suction (e.g. 𝑝′,𝑞,𝑠∗) to capture 

the interdependence between internal variables. As can be seen in Eqs. (3.113-3.114), kinematic 

constraint equations are also homogeneous first-order functions in terms of the rates of internal 

variables.  Thanks to zero values, they can be used to supplement the dissipation potential to obtain 

an equivalent dissipation function using the standard method of Lagrangian multipliers (Houlsby & 

Puzrin, 2000; Nguyen & Bui, 2020) as follows:  

Φ̃ = Φ̃ + 𝛬1𝐶1 + 𝛬2𝐶2 = 𝜑𝜈휀�̇�
p
+ 𝜑𝑠휀�̇�

p
+ 𝜑ℎ(−�̇�𝑟

p
) + 𝛬1(𝐵

′휀�̇�
p

+ 𝐴′휀�̇�
p
) + 𝛬2[𝐶

′휀�̇�
p

+

𝐴′(−�̇�𝑟
p
)] ≥ 0  (3.115) 
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in which 𝛬1 and 𝛬2 are Lagrangian kinematic multipliers. Using Eqs. (3.115) and (3.96), generalized 

dissipative stresses take the following forms:  

𝜒𝜈 =
𝜕Φ̃

𝜕 ̇𝜈
p = 𝜑𝜈 + 𝐵′𝛬1 + 𝐶′𝛬2    (3.116) 

𝜒𝑠 =
𝜕Φ̃

𝜕 ̇𝑠
p = 𝜑𝑠 + 𝛬1𝐴

′    (3.117) 

𝜒ℎ =
𝜕Φ̃

𝜕(−�̇�𝑟
p
)
= 𝜑ℎ + 𝛬2𝐴

′    (3.118) 

By combining Eqs. (3.116-3.118), the loading function in the dissipative stress space 𝑦∗ is obtained:  

𝜒𝜈 = 𝜑𝜈 +
𝐵′

𝐴′
(𝜒𝑠 − 𝜑𝑠) +

𝐶′

𝐴′
(𝜒ℎ − 𝜑ℎ)    (3.119) 

As can be seen in Eq. (3.119), all generalised dissipative stresses 𝜒𝑖 are interdependent and dependent 

on all rates of internal variables, 휀�̇�
p

, 휀�̇�
p

, and −�̇�𝑟
p

. Thanks to this, a single yield function 𝑦∗  in 

generalised stress space (𝜒𝜈, 𝜒𝑠, and 𝜒ℎ) can be obtained from Eq. (3.119) as: 

𝑦∗ = 𝐴′𝜒𝜈 − 𝐵′𝜒𝑠 − 𝐶′𝜒ℎ − 𝐴′𝜑𝜈 + 𝐵′𝜑𝑠 + 𝐶′𝜑ℎ ≤ 0    (3.120) 

Of numerous existing models for partially saturated soils, none suggests a general yield function of 

the linear surface, including the hydraulic component as such, as shown in Figure 3.5. By taking its 

derivatives with respect to 𝜒𝜈 , 𝜒𝑠 and 𝜒ℎ, the associated flow rules in the space of dissipative stresses, 

sharing a single non-negative plastic-type multiplier, can be cast in the following formats to capture 

the initiation and evolution of plastic strain-like variables and their couplings at the same instant of 

the failure process.  Along with this, the final expressions for the coupled hydro-mechanical flow 

rules are hence obtained as follows:  

휀�̇�
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝜈
= �̇�𝑝𝐴′    (3.121) 

휀�̇�
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝑠
= −�̇�𝑝𝐵

′    (3.122) 

−�̇�𝑟
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒ℎ
= −�̇�𝑝𝐶′    (3.123) 
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Figure 3.5. Geometric representation of yield potential in dissipative stress space for the approach 

of “using constraint equations.” 

Substituting the orthogonality conditions in the forms 𝜒𝜈 = 𝜒ҧ𝜈 = −
𝜕Ψ

𝜕 𝜈
p, 𝜒𝑠 = 𝜒ҧ𝑠 = −

𝜕Ψ

𝜕 𝑠
p, and 𝜒ℎ =

𝜒ҧℎ = −
𝜕Ψ

𝜕(−𝑆𝑟
p
)
 (see Eqs. (3.95) and (3.97-3.99)) into Eq. (3.120), the following yield surface 𝑦 in true 

stress space can be obtained as follows:  

𝑦(𝑝′, 𝑞, 𝑠∗, 휀𝜈
p
, 휀𝑠

p
, −𝑆𝑟

p
) = 𝐴′ (−

𝜕Ψ

𝜕 𝜈
p) − 𝐵′ (−

𝜕Ψ

𝜕 𝑠
p) − 𝐶′ [−

𝜕Ψ

𝜕(−𝑆𝑟
p
)
] − 𝐴′𝜑𝜈 + 𝐵′𝜑𝑠 + 𝐶′𝜑ℎ ≤ 0   

 (3.124) 

Eqs. (3.92-3.94) and (3.120-3.124) can be understood as another generic form of thermodynamic-

based models for unsaturated soils using kinematic constraint equations. It is of particular advantage 

for describing a great variety of physical responses through a wide range of yield conditions and 

evolution rules, thanks to the flexibility of selecting functions 𝐴′, 𝐵′, 𝐶′, 𝜑𝜈, 𝜑𝑠 and 𝜑ℎ.  

Summary and comparison of two thermodynamic approaches for dissipation potential, loading 

function and flow rules  

As discussed earlier in Chapter 2, based on physical observations on the tight interaction between 

mechanical and hydraulic processes at both continuum and grain levels, it is essential to establish a 

constitutive model for partially saturated soils with a single yield locus governed by a unique “plastic” 

multiplier with two flow rules. It is a consequence of the interdependence of thermodynamic forces 

and their dependence on all internal variables, in addition to effective stress and suction. This feature 

can be handled through two thermodynamics-based approaches: using a special form of dissipation 

𝜑𝜈 −
𝐵′

𝐴′
𝜑𝑠 −

𝐶′

𝐴′
𝜑ℎ 

−
𝐴

′

𝐵
′
𝜑

𝜈
+

𝜑
𝑠
+

𝐶
′

𝐵
′
𝜑

ℎ
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potential (see Eqs. (3.101-3.111)) and using constraint equations (see Eqs. (3.115-3.124)). A 

comparison between the two proposed thermodynamic approaches is carried out to analyse their 

similarity and difference. For this purpose, the following table summarises the model description 

derived from such approaches, pointing out several criteria (i) Helmholtz free energy (ii) Dissipation 

function (iii) True stresses (iv) Thermodynamic forces (v) Yield function in generalised stress space 

(vi) Yield function in true stress space (vii) Evolution rules.  

Table 3.1. Comparison of the model description between approaches of “using a special form of 

dissipation potential” and “using constraint equations”.  

Using a special form of dissipation potential Using constrain equations 

(i) Helmholtz free energy 

Ψ = Ψ(휀𝜈 , 휀𝑠, −𝑆𝑟 , 휀𝜈
p
, 휀𝑠

p
, −𝑆𝑟

p
)  

Ψ = Ψ(휀𝜈 , 휀𝑠, −𝑆𝑟 , 휀𝜈
p
, 휀𝑠

p
, −𝑆𝑟

p
)  

(ii) Dissipation function  

Φ̃ = √(𝜙1
𝜈)2 + (𝜙𝑠)2 + (𝜙ℎ)2 + 𝜙2

𝜈  
Φ̃ = 𝜑𝜈휀�̇�

p
+ 𝜑𝑠휀�̇�

p
+ 𝜑ℎ(−�̇�𝑟

p
) + 𝛬1𝐶1 +

𝛬2𝐶2 ≥ 0  

𝐶1 = 𝐵′휀�̇�
p

+ 𝐴′휀�̇�
p

= 0  

𝐶2 = 𝐶′휀�̇�
p

+ 𝐴′(−�̇�𝑟
p
) = 0  

(iii) True stresses 

𝑝′ =
𝜕Ψ

𝜕 𝜈
  

𝑞 =
𝜕Ψ

𝜕 𝑠
  

𝑠∗ =
𝜕Ψ

𝜕(−𝑆𝑟)
  

𝑝′ =
𝜕Ψ

𝜕 𝜈
  

𝑞 =
𝜕Ψ

𝜕 𝑠
  

𝑠∗ =
𝜕Ψ

𝜕(−𝑆𝑟)
  

(iv) Thermodynamic forces  

𝜒𝜈 =
𝜕Φ̃

𝜕 ̇𝜈
p =

𝜙1
𝜈

√(𝜙1
𝜈)2+(𝜙𝑠)2+(𝜙ℎ)

2

𝜕𝜙1
𝜈

𝜕 ̇𝜈
p +

𝜕𝜙2
𝜈

𝜕 ̇𝜈
p   

𝜒𝑠 =
𝜕Φ̃

𝜕 ̇𝑠
p =

𝜙𝑠

√(𝜙1
𝜈)2+(𝜙𝑠)2+(𝜙ℎ)

2

𝜕𝜙𝑠

𝜕 ̇𝑠
p  

𝜒𝜈 =
𝜕Φ̃

𝜕 ̇𝜈
p = 𝜑𝜈 + 𝐵′𝛬1 + 𝐶′𝛬2    

𝜒𝑠 =
𝜕Φ̃

𝜕 ̇𝑠
p = 𝜑𝑠 + 𝛬1𝐴

′  

𝜒ℎ =
𝜕Φ̃

𝜕(−�̇�𝑟
p
)
= 𝜑ℎ + 𝛬2𝐴

′  
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𝜒ℎ =
𝜕Φ̃

𝜕(−�̇�𝑟
p
)
=

𝜙ℎ

√(𝜙1
𝜈)2+(𝜙𝑠)2+(𝜙ℎ)

2

𝜕𝜙ℎ

𝜕(−�̇�𝑟
p
)
  

(v) Yield function in generalised stress space 

𝑦∗ =
(𝜒𝜈−

𝜕𝜙2
𝜈

𝜕�̇�𝜈
p)

2

(
𝜕𝜙1

𝜈

𝜕�̇�𝜈
p)

2 +
(𝜒𝑠)

2

(
𝜕𝜙𝑠

𝜕�̇�𝑠
p)

2 +
(𝜒ℎ)2

(
𝜕𝜙ℎ

𝜕(−�̇�𝑟
p

)
)

2 − 1 ≤ 0  

𝑦∗ = 𝐴′𝜒𝜈 − 𝐵′𝜒𝑠 − 𝐶′𝜒ℎ − 𝐴′𝜑𝜈 + 𝐵′𝜑𝑠 +

𝐶′𝜑ℎ ≤ 0  

(vi) Yield function in true stress space 

𝑦 =
(−

𝜕Ψ

𝜕𝜀𝜈
p−

𝜕𝜙2
𝜈

𝜕�̇�𝜈
p)

2

(
𝜕𝜙1

𝜈

𝜕�̇�𝜈
p)

2 +
(−

𝜕Ψ

𝜕𝜀𝑠
p)

2

(
𝜕𝜙𝑠

𝜕�̇�𝑠
p)

2 +
(−

𝜕Ψ

𝜕(−𝑆𝑟
p

)
)

2

(
𝜕𝜙ℎ

𝜕(−�̇�𝑟
p

)
)

2 − 1 ≤

0  

𝑦 = 𝐴′ (−
𝜕Ψ

𝜕 𝜈
p) − 𝐵′ (−

𝜕Ψ

𝜕 𝑠
p) − 𝐶′ [−

𝜕Ψ

𝜕(−𝑆𝑟
p
)
] −

𝐴′𝜑𝜈 + 𝐵′𝜑𝑠 + 𝐶′𝜑ℎ ≤ 0  

(vii) Evolution rules 

휀�̇�
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝜈
= �̇�𝑝

2(𝜒𝜈−
𝜕𝜙2

𝜈

𝜕�̇�𝜈
p)

(
𝜕𝜙1

𝜈

𝜕�̇�𝜈
p)

2   

휀�̇�
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝑠
= �̇�𝑝

2𝜒𝑠

(
𝜕𝜙𝑠

𝜕�̇�𝑠
p)

2  

−�̇�𝑟
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒ℎ
= �̇�𝑝

2𝜒ℎ

(
𝜕𝜙ℎ

𝜕(−�̇�𝑟
p

)
)

2  

휀�̇�
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝜈
= �̇�𝑝𝐴′  

휀�̇�
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝑠
= −�̇�𝑝𝐵

′  

−�̇�𝑟
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒ℎ
= −�̇�𝑝𝐶′  

As can be seen, these two methods have the same expression of Helmholtz free energy, leading to 

similar forms of true stresses and constitutive relationships. The main distinction between the two 

lies in the form of dissipation potential and the way how they result in essential properties of the 

hydromechanical coupling. To be more specific, in the approach of “using a special form of 

dissipation potential”, the interdependence of thermodynamic forces and internal variables can be 

produced through the mathematical properties of derivatives of the square root 

( √(𝜙1
𝜈)2 + (𝜙𝑠)2 + (𝜙ℎ)2 ). Alternatively, multiple kinematic constraint equations of internal 

variables (𝐶1 = 𝐵′휀�̇�
p

+ 𝐴′휀�̇�
p

= 0, 𝐶2 = 𝐶′휀�̇�
p

+ 𝐴′(−�̇�𝑟
p
) = 0) are incorporated into the standard 

form of dissipation potential based on the mathematical method of Lagrangian multipliers (𝛬1, 𝛬2) 

to manipulate these dependent relationships for the approach of “using constraints”. This leads to the 
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difference in the form/shape of generic loading function in generalised stress space between these 

approaches where “ellipsoid” is for “using a special form of dissipation potential” and “linear surface” 

is for “using constraint equations”. Although the proposed approaches are different in the generic 

mathematical expressions, they are expected to derive the same specific models meeting 

thermodynamic admissibility and possessing similar dissipation properties through appropriate and 

consistent detailed formulations of 𝜙1
𝜈, 𝜙2

𝜈, 𝜙𝑠, and 𝜙ℎ for the solution of “using a special form of 

dissipation potential” and 𝐴′, 𝐵′, 𝐶′, 𝜑𝜈, 𝜑𝑠 and 𝜑ℎ for the solution of “using constraint equations”. 

This feature is one of the outstanding findings regarding the thermodynamic theory for partially 

saturated soils in this thesis that cannot be seen in existing studies.  Its potential will be elucidated in 

specific models presented in Chapter 4 and Appendix A.  

3.3.2. Coupled hydro-mechanical tangent stiffness tensor  

A consistent tangent stiffness matrix linking stress-like variables and strain-like variables at the 

material level is one of the indispensable components in the numerical implementation of the 

constitutive model. In the case of unsaturated soils models, the tangent stiffness matrix is used to 

represent both incremental stress-strain and suction-saturation degree relationships and serve as an 

explicit indicator of the interaction between mechanical and hydraulic processes in the inelastic 

regime. For the purpose of formulation derivation of the tangent stiffness, several essential 

formulations of the generic model based on two approaches (e.g. a special form of dissipation 

potential, constraints) are first shown in tensorial forms. In particular, the tensorial stress-strain and 

suction-saturation relationships can be derived from Eqs. (3.92-3.94) as follows: 

𝜎𝑖𝑗
′ =

𝜕Ψ

𝜕 𝑖𝑗
    (3.125) 

𝑠∗ =
𝜕Ψ

𝜕(−𝑆𝑟)
    (3.126) 

From Eqs. (3.108-3.111) and (3.121-3.124), the yield function and evolution rules are of the following 

generic forms for both approaches:  

𝑦 = 𝑦(𝑝′, 𝑞, 𝑠∗, 휀𝜈
p
, 휀𝑠

p
, −𝑆𝑟

p
)    (3.127) 

휀�̇�𝑗
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝑖𝑗
= �̇�𝑝 (

𝜕𝑦∗

𝜕𝜒𝜈

𝜕𝜒𝜈

𝜕𝜒𝑖𝑗
+

𝜕𝑦∗

𝜕𝜒𝑠

𝜕𝜒𝑠

𝜕𝜒𝑖𝑗
)  (3.128) 

−�̇�𝑟
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒ℎ
 (3.129) 

where 휀𝑖𝑗 is total strain tensor and 휀𝑖𝑗
p

 is the plastic strain tensor. It is noted that the generic form of 

yield surface in Eq. (3.127) is obtained thanks to the use of Eqs. (3.111) and (3.124) where −
𝜕Ψ

𝜕 𝜈
p, 
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−
𝜕Ψ

𝜕 𝑠
p and −

𝜕Ψ

𝜕(−𝑆𝑟
p
)
 are functions of true stresses (𝑝′, 𝑞, 𝑠∗) and internal variables (휀𝜈

p
, 휀𝑠

p
, −𝑆𝑟

p
) while 

Eq. (3.128) is the combination of Eqs. (3.108-3.109) or (3.121-3.122).  

From Eqs. (3.125-3.126), using an assumption of 
𝜕2Ψ

𝜕 𝑖𝑗𝜕 𝑘𝑙
= −

𝜕2Ψ

𝜕 𝑖𝑗𝜕 𝑘𝑙
p , 

𝜕2Ψ

𝜕 𝑖𝑗𝜕(−𝑆𝑟)
= −

𝜕2Ψ

𝜕 𝑖𝑗𝜕(−𝑆𝑟
p
)
, 

𝜕2Ψ

𝜕(−𝑆𝑟)𝜕 𝑘𝑙
= −

𝜕2Ψ

𝜕(−𝑆𝑟)𝜕 𝑘𝑙
p , 

𝜕2Ψ

𝜕(−𝑆𝑟)2
= −

𝜕2Ψ

𝜕(−𝑆𝑟)𝜕(−𝑆𝑟
p
)
, the incremental forms of the effective stress tensor 

�̇�𝑖𝑗
′  and modified suction �̇�∗ can be described as:  

�̇�𝑖𝑗
′ =

𝜕2Ψ

𝜕 𝑖𝑗𝜕 𝑘𝑙
(휀�̇�𝑙 − 휀�̇�𝑙

p
) +

𝜕2Ψ

𝜕 𝑖𝑗𝜕(−𝑆𝑟)
[(−�̇�𝑟) − (−�̇�𝑟

p
)]  (3.130) 

�̇�∗ =
𝜕2Ψ

𝜕(−𝑆𝑟)𝜕 𝑘𝑙
(휀�̇�𝑙 − 휀�̇�𝑙

p
) +

𝜕2Ψ

𝜕(−𝑆𝑟)2
[(−�̇�𝑟) − (−�̇�𝑟

p
)]  (3.131) 

Using the yield function in Eq. (3.127), the consistency condition can be written as:   

�̇� =
𝜕𝑦

𝜕𝜎𝑖𝑗
′ �̇�𝑖𝑗

′ +
𝜕𝑦

𝜕𝑠∗ �̇�
∗ +

𝜕𝑦

𝜕
𝑖𝑗
p 휀�̇�𝑗

p
+

𝜕𝑦

𝜕(−�̇�𝑟
p
)
(−�̇�𝑟

p
) = 0  (3.132) 

Substituting Eqs. (3.128-3.131) into Eq. (3.132) leads to:  

𝜕𝑦

𝜕𝜎𝑖𝑗
′

𝜕2Ψ

𝜕 𝑖𝑗𝜕 𝑘𝑙
(휀�̇�𝑙 − �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑘𝑙
) +

𝜕𝑦

𝜕𝜎𝑖𝑗
′

𝜕2Ψ

𝜕 𝑖𝑗𝜕(−𝑆𝑟)
[(−�̇�𝑟) − �̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
] +

𝜕𝑦

𝜕𝑠∗

𝜕2Ψ

𝜕(−𝑆𝑟)𝜕 𝑘𝑙
(휀�̇�𝑙 − �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑘𝑙
) +

𝜕𝑦

𝜕𝑠∗

𝜕2Ψ

𝜕(−𝑆𝑟)2
[(−�̇�𝑟) − �̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
] +

𝜕𝑦

𝜕
𝑖𝑗
p �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑖𝑗
+

𝜕𝑦

𝜕(−�̇�𝑟
p
)
�̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
= 0  (3.133) 

Given 휀�̇�𝑙 and �̇�𝑟, the multiplier �̇�𝑝 can be obtained from Eq. (3.133) in the following form:  

�̇�𝑝 = 𝑀𝑘𝑙휀�̇�𝑙 + 𝐻(−�̇�𝑟)  (3.134) 

where 

𝑀𝑘𝑙 =

𝜕2Ψ

𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙

𝜕𝑦

𝜕𝜎𝑖𝑗
′ +

𝜕2Ψ

𝜕(−𝑆𝑟)𝜕𝜀𝑘𝑙

𝜕𝑦

𝜕𝑠∗

(
𝜕2Ψ

𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
+

𝜕2Ψ

𝜕𝜀𝑖𝑗𝜕(−𝑆𝑟)

𝜕𝑦∗

𝜕𝜒ℎ
)

𝜕𝑦

𝜕𝜎𝑖𝑗
′ +(

𝜕2Ψ

𝜕(−𝑆𝑟)𝜕𝜀𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
+

𝜕2Ψ

𝜕(−𝑆𝑟)2
𝜕𝑦∗

𝜕𝜒ℎ
)

𝜕𝑦

𝜕𝑠∗
−

𝜕𝑦∗

𝜕𝜒𝑖𝑗

𝜕𝑦

𝜕𝜀
𝑖𝑗
p −

𝜕𝑦∗

𝜕𝜒ℎ

𝜕𝑦

𝜕(−𝑆𝑟
p

)

  (3.135) 

𝐻 =

𝜕2Ψ

𝜕𝜀𝑖𝑗𝜕(−𝑆𝑟)

𝜕𝑦

𝜕𝜎𝑖𝑗
′ +

𝜕2Ψ

𝜕(−𝑆𝑟)2
𝜕𝑦

𝜕𝑠∗

(
𝜕2Ψ

𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
+

𝜕2Ψ

𝜕𝜀𝑖𝑗𝜕(−𝑆𝑟)

𝜕𝑦∗

𝜕𝜒ℎ
)

𝜕𝑦

𝜕𝜎𝑖𝑗
′ +(

𝜕2Ψ

𝜕(−𝑆𝑟)𝜕𝜀𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
+

𝜕2Ψ

𝜕(−𝑆𝑟)2
𝜕𝑦∗

𝜕𝜒ℎ
)

𝜕𝑦

𝜕𝑠∗
−

𝜕𝑦∗

𝜕𝜒𝑖𝑗

𝜕𝑦

𝜕𝜀
𝑖𝑗
p −

𝜕𝑦∗

𝜕𝜒ℎ

𝜕𝑦

𝜕(−𝑆𝑟
p

)

  (3.136) 

By substituting Eq. (3.134) into Eqs. (3.130-3.131), the incremental coupled hydro-mechanical 

relationships can be written as:  

�̇�𝑖𝑗
′ =

𝜕2Ψ

𝜕 𝑖𝑗𝜕 𝑘𝑙
{휀�̇�𝑙 − [𝑀𝑘𝑙휀�̇�𝑙 + 𝐻(−�̇�𝑟)]

𝜕𝑦∗

𝜕𝜒𝑘𝑙
} +

𝜕2Ψ

𝜕 𝑖𝑗𝜕(−𝑆𝑟)
{(−�̇�𝑟) − [𝑀𝑘𝑙휀�̇�𝑙 + 𝐻(−�̇�𝑟)]

𝜕𝑦∗

𝜕𝜒ℎ
} 

 (3.137) 
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�̇�∗ =
𝜕2Ψ

𝜕(−𝑆𝑟)𝜕 𝑘𝑙
{휀�̇�𝑙 − [𝑀𝑘𝑙휀�̇�𝑙 + 𝐻(−�̇�𝑟)]

𝜕𝑦∗

𝜕𝜒𝑘𝑙
} +

𝜕2Ψ

𝜕(−𝑆𝑟)2
{(−�̇�𝑟) − [𝑀𝑘𝑙휀�̇�𝑙 + 𝐻(−�̇�𝑟)]

𝜕𝑦∗

𝜕𝜒ℎ
} 

 (3.138) 

Eqs. (3.137-3.138) can be rewritten as:  

�̇�𝑖𝑗
′ = [

𝜕2Ψ

𝜕 𝑖𝑗𝜕 𝑘𝑙
(1 − 𝑀𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
) −

𝜕2Ψ

𝜕 𝑖𝑗𝜕(−𝑆𝑟)
𝑀𝑘𝑙

𝜕𝑦∗

𝜕𝜒ℎ
] 휀�̇�𝑙 + [

𝜕2Ψ

𝜕 𝑖𝑗𝜕(−𝑆𝑟)
(1 − 𝐻

𝜕𝑦∗

𝜕𝜒ℎ
) −

𝜕2Ψ

𝜕 𝑖𝑗𝜕 𝑘𝑙
𝐻

𝜕𝑦∗

𝜕𝜒𝑘𝑙
] (−�̇�𝑟) = 𝛬𝑖𝑗𝑘𝑙휀�̇�𝑙 + 𝛱𝑖𝑗(−�̇�𝑟)  (3.139) 

�̇�∗ = [
𝜕2Ψ

𝜕(−𝑆𝑟)𝜕 𝑘𝑙
(1 − 𝑀𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
) −

𝜕2Ψ

𝜕(−𝑆𝑟)2
𝑀𝑘𝑙

𝜕𝑦∗

𝜕𝜒ℎ
] 휀�̇�𝑙 + [

𝜕2Ψ

𝜕(−𝑆𝑟)2
(1 − 𝐻

𝜕𝑦∗

𝜕𝜒ℎ
) −

𝜕2Ψ

𝜕(−𝑆𝑟)𝜕 𝑘𝑙
𝐻

𝜕𝑦∗

𝜕𝜒𝑘𝑙
] (−�̇�𝑟) = 𝛺𝑘𝑙  휀�̇�𝑙 + 𝛶(−�̇�𝑟)  (3.140) 

in which 𝛬𝑖𝑗𝑘𝑙, 𝛱𝑖𝑗 , 𝛺𝑘𝑙 and 𝛶 are terms of the tangent stiffness tensor expressed in terms of 𝜎𝑖𝑗
′  and 

𝑠∗:  

𝛬𝑖𝑗𝑘𝑙 =
𝜕2Ψ

𝜕 𝑖𝑗𝜕 𝑘𝑙
(1 − 𝑀𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
) −

𝜕2Ψ

𝜕 𝑖𝑗𝜕(−𝑆𝑟)
𝑀𝑘𝑙  (3.141) 

𝛱𝑖𝑗 =
𝜕2Ψ

𝜕 𝑖𝑗𝜕(−𝑆𝑟)
(1 − 𝐻

𝜕𝑦∗

𝜕𝜒ℎ
) −

𝜕2Ψ

𝜕 𝑖𝑗𝜕 𝑘𝑙
𝐻

𝜕𝑦∗

𝜕𝜒𝑘𝑙
  (3.142) 

𝛺𝑘𝑙 =
𝜕2Ψ

𝜕(−𝑆𝑟)𝜕 𝑘𝑙
(1 − 𝑀𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
) −

𝜕2Ψ

𝜕(−𝑆𝑟)2
𝑀𝑘𝑙

𝜕𝑦∗

𝜕𝜒ℎ
  (3.143) 

𝛶 =
𝜕2Ψ

𝜕(−𝑆𝑟)2
(1 − 𝐻

𝜕𝑦∗

𝜕𝜒ℎ
) −

𝜕2Ψ

𝜕(−𝑆𝑟)𝜕 𝑘𝑙
𝐻

𝜕𝑦∗

𝜕𝜒𝑘𝑙
  (3.144) 

The expressions of constitutive relationship in Eqs. (3.139-3.140) can be presented in the form of the 

Voigt notations as follows:  

(

 
 
 
 
 

�̇�11
′

�̇�22
′

�̇�33
′

�̇�12
′

�̇�23
′

�̇�31
′

�̇�∗ )

 
 
 
 
 

=

[
 
 
 
 
 
 
𝛬1111 𝛬1122 𝛬1133 𝛬1112 𝛬1123 𝛬1131 𝛱11

𝛬2211 𝛬2222 𝛬2233 𝛬2212 𝛬2223 𝛬2231 𝛱22

𝛬3311 𝛬3322 𝛬3333 𝛬3312 𝛬3323 𝛬3331 𝛱33

𝛬1211 𝛬1222 𝛬1233 𝛬1212 𝛬1223 𝛬1231 𝛱12

𝛬2311 𝛬2322 𝛬2333 𝛬2312 𝛬2323 𝛬2331 𝛱23

𝛬3111 𝛬3122 𝛬3133 𝛬3112 𝛬3123 𝛬3131 𝛱31

𝛺11 𝛺22 𝛺33 𝛺12 𝛺23 𝛺31 𝛶 ]
 
 
 
 
 
 

(

 
 
 
 

휀1̇1

휀2̇2

휀3̇3

휀1̇2

휀2̇3

휀3̇1

−�̇�𝑟)

 
 
 
 

  (3.145) 

As can be seen in Eqs. (3.139-3.140) (or alternatively, Eq. (3.145)), the cross-coupling terms 𝛱𝑖𝑗, and 

𝛺𝑘𝑙 indicate the inter-dependence between mechanical and hydraulic responses. As a consequence, 

the water retention curve (or SWCC; Eq. (3.140)) generated by the model (not imposed like any other 

existing ones) is path-dependent, governed by both states (stress and suction) and hydro-mechanical 

loading paths. This path-dependence nature of both mechanical and hydraulic responses induces 

different responses under wetting/drying and mechanical loading conditions, reflecting the 

inseparable nature of the coupling rooting from grain-scale interactions. With cross-coupling terms, 
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the hydro-mechanical coupling is always guaranteed by the tangent stiffness upon yielding, enabling 

the proposed model to describe the simultaneous activation and development of plasticity and 

hydraulic irreversibility under any condition of loading and saturation. These are the key 

characteristics of the proposed model that are advanced from existing models in the literature 

possessing multiple yield surfaces and thus multiple “plastic” multipliers as a result of adding more 

internal variables, as presented in Chapter 2. Due to a decoupling of dissipative stresses from all the 

rates of internal variables, the inseparable nature of the hydro-mechanical coupling cannot be 

naturally reflected by the adoption of more than one yield surfaces and corresponding forms of 

tangent stiffness in such existing models.  

3.3.3. Semi-implicit stress return algorithm for the behaviour in the homogeneous 

stage  

The semi-implicit stress return algorithm is employed in this constitutive model for the stress and 

suction update, given the input total strain ∆휀𝑘𝑙  and saturation degree (−∆𝑆𝑟)  increments. This 

method is to compute and correct trial stress back onto the yield surface if it is located outside the 

yield surface (Crisfield, 1993). As illustrated in Figure 3.6, in the first step of this algorithm, the 

values of effective stress (𝜎𝑖𝑗
′trial) and modified suction (𝑠∗trial) at trial state (see Figure 3.6) are 

calculated from the effective stress tensor (𝜎𝑖𝑗
′𝑛) and modified suction (𝑠∗𝑛) at step 𝑛, respectively.  

𝜎𝑖𝑗
′trial = 𝜎𝑖𝑗

′𝑛 + ∆𝜎𝑖𝑗
′trial = 𝜎𝑖𝑗

′𝑛 +
𝜕2Ψ𝑛

𝜕 𝑖𝑗𝜕 𝑘𝑙
∆휀𝑘𝑙 +

𝜕2Ψ𝑛

𝜕 𝑖𝑗𝜕(−𝑆𝑟)
(−∆𝑆𝑟)  (3.146) 

𝑠∗trial = 𝑠∗𝑛 + ∆𝑠∗trial = 𝑠∗𝑛 +
𝜕2Ψ𝑛

𝜕(−𝑆𝑟)𝜕 𝑘𝑙
∆휀𝑘𝑙 +

𝜕2Ψ𝑛

𝜕(−𝑆𝑟)2
(−∆𝑆𝑟)  (3.147) 

in which 
𝜕2Ψ𝑛

𝜕 𝑖𝑗𝜕 𝑘𝑙
, 

𝜕2Ψ𝑛

𝜕 𝑖𝑗𝜕(−𝑆𝑟)
, 

𝜕2Ψ𝑛

𝜕(−𝑆𝑟)𝜕 𝑘𝑙
 and 

𝜕2Ψ𝑛

𝜕(−𝑆𝑟)2
 denote terms of the secant elastic stiffness evaluated 

at state 𝑛. 

If yielding takes place, e.g. 𝑦trial(𝜎𝑖𝑗
′trial, 𝑠∗trial, 𝑝𝑐

′) > 0  (see Figure 3.6), a first-order Taylor 

expansion is applied to the yield function at trial point B (see Figure 3.6), resulting in  

𝑦new = 𝑦trial + ∆𝜎𝑖𝑗
′corrt 𝜕𝑦

𝜕𝜎𝑖𝑗
′ |

trial

+ ∆𝑠∗corrt 𝜕𝑦

𝜕𝑠∗|
trial

+ ∆휀𝑖𝑗
p 𝜕𝑦

𝜕
𝑖𝑗
p |

trial

+ (−∆𝑆𝑟
p
)

𝜕𝑦

𝜕(−𝑆𝑟
p
)
|
trial

  (3.148) 

where ∆𝜎𝑖𝑗
′corrt and ∆𝑠∗corrt (see Figure 3.6) are the corrective terms to effective stress tensor and 

modified suction, respectively, in the following form, given ∆휀𝑘𝑙 and (−∆𝑆𝑟) have been applied to 

move from points A to B (see Figure 3.6):  

∆𝜎𝑖𝑗
′corrt = 𝜎𝑖𝑗

′𝑛+1 − 𝜎𝑖𝑗
′trial = −

𝜕2Ψ𝑛

𝜕 𝑖𝑗𝜕 𝑘𝑙
∆휀𝑘𝑙

p
−

𝜕2Ψ𝑛

𝜕 𝑖𝑗𝜕(−𝑆𝑟)
(−∆𝑆𝑟

p
)  (3.149) 
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∆𝑠∗corrt = 𝑠∗𝑛+1 − 𝑠∗trial = −
𝜕2Ψ𝑛

𝜕(−𝑆𝑟)𝜕 𝑘𝑙
∆휀𝑘𝑙

p
−

𝜕2Ψ𝑛

𝜕(−𝑆𝑟)2
(−∆𝑆𝑟

p
)  (3.150) 

With the use of flow rules in Eqs. (3.128) and (3.129), the substitution of Eqs. (3.149-3.150) into Eq. 

(3.148) leads to:   

𝑦new = 𝑦trial − ∆𝜆𝑝 (
𝜕2Ψ𝑛

𝜕 𝑖𝑗𝜕 𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
+

𝜕2Ψ𝑛

𝜕 𝑖𝑗𝜕(−𝑆𝑟)

𝜕𝑦∗

𝜕𝜒ℎ
)

𝜕𝑦

𝜕𝜎𝑖𝑗
′ |

trial

− ∆𝜆𝑝 (
𝜕2Ψ𝑛

𝜕(−𝑆𝑟)𝜕 𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
+

𝜕2Ψ𝑛

𝜕(−𝑆𝑟)2
𝜕𝑦∗

𝜕𝜒ℎ
)

𝜕𝑦

𝜕𝑠∗
|
trial

+ ∆𝜆𝑝
𝜕𝑦∗

𝜕𝜒𝑖𝑗

𝜕𝑦

𝜕
𝑖𝑗
p |

trial

+ ∆𝜆𝑝
𝜕𝑦∗

𝜕𝜒ℎ

𝜕𝑦

𝜕(−𝑆𝑟
p
)
|
trial

  (3.151) 

Enforcing the yield condition 𝑦new = 0 results in the plasticity multiplier ∆𝜆𝑝 as:  

∆𝜆𝑝 =
𝑦trial

(
𝜕2Ψ

𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
+

𝜕2Ψ

𝜕𝜀𝑖𝑗𝜕(−𝑆𝑟)

𝜕𝑦∗

𝜕𝜒ℎ
)

𝜕𝑦

𝜕𝜎𝑖𝑗
′ |

trial

+(
𝜕2Ψ

𝜕(−𝑆𝑟)𝜕𝜀𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
+

𝜕2Ψ

𝜕(−𝑆𝑟)2
𝜕𝑦∗

𝜕𝜒ℎ
)

𝜕𝑦

𝜕𝑠∗
|
trial

−
𝜕𝑦∗

𝜕𝜒𝑖𝑗

𝜕𝑦

𝜕𝜀
𝑖𝑗
p |

trial

−
𝜕𝑦∗

𝜕𝜒ℎ

𝜕𝑦

𝜕(−𝑆𝑟
p

)
|

trial
 

 (3.152) 

Once ∆𝜆𝑝  is obtained, the new increments of effective stress tensor (∆𝜎𝑖𝑗
′ ) and modified suction 

(∆𝑠∗) can be obtained as follows:  

∆𝜎𝑖𝑗
′ = ∆𝜎𝑖𝑗

′trial + ∆𝜎𝑖𝑗
′corrt  (3.153) 

∆𝑠∗ = ∆𝑠∗trial + ∆𝑠∗corrt  (3.154) 

These increments are then used to update the effective stress tensors and modified suction, or 

alternatively net stress tensor and matric suction:  

𝜎𝑖𝑗
′𝑛+1 = 𝜎𝑖𝑗

′𝑛 + ∆𝜎𝑖𝑗
′   (3.155) 

𝑠∗𝑛+1 = 𝑠∗𝑛 + ∆𝑠∗  (3.156) 

𝜎𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗

′𝑛+1 − 𝑆𝑟
𝑛+1𝑠𝑛+1𝛿𝑖𝑗  (3.157) 

𝑠𝑛+1 =
𝑠∗𝑛+1

�̅�𝑛+1  (3.158) 

where �̅�𝑛+1 and 𝑆𝑟
𝑛+1 are updated porosity and saturation degree, respectively.  
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Figure 3.6. Schematic representation of the stress update algorithm in three-dimensional space. 

3.4. Closure 

This chapter focuses on the development of a generic coupled hydro-mechanical framework, 

identifying key fundamentals to develop specific models for partially saturated soils in successive 

Chapters of this thesis. The formulations in this framework are rigorous, generic and well structured, 

hence bringing benefit in reducing the number of parameters and arbitrary assumptions. With the use 

of the mixture theory, a mixed form of field variables (e.g. seepage force, solid velocity, porosity, 

saturation degree) is derived from the combination of mass and momentum conservation laws of all 

constituents of the mixture to reflect the coupled solid deformation-fluid laminar flow within three-

phase porous media in respect to the motion of solid skeleton. To complete this framework, additional 

constitutive relationships between stress-like (stress, suction) and strain-like (strain, saturation degree) 

variables are provided through a generic thermodynamics-based approach with the focus on the nature 

of the interaction between grain contact sliding and capillary irreversibility at the grain scale. The 

novelty of this approach is the incorporation of the irreversible degree of saturation and its strong 

coupling with plastic strain in a special form of dissipation potential or constraint equations. It leads 

to a single yield function with different evolution rules for plastic strains and irrecoverable saturation 

degree without requiring a separate SWCC and different sets of parameters for drying and wetting 

paths. This feature is a numerical advantage as a hydro-mechanical coupling in the inelastic regime 

is always automatically guaranteed. The proposed approach allows addressing the lack of hydraulic 

𝑞 

𝑝𝑐
′𝑛 

𝑝𝑐
′𝑛+1 

𝑝′ 

𝑠∗ 

𝑦𝑛 

𝑦𝑛+1 

𝑦trial 

ቌ
𝑝′trial

𝑞trial

𝑠∗trial
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ቌ
𝑝′𝑛+1

𝑞𝑛+1

𝑠∗𝑛+1

ቍ 

𝐴 

𝐵 

𝐶 

൭
𝑝′𝑛

𝑞𝑛

𝑠∗𝑛
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dissipation and interdependence of thermodynamic forces in some earlier models for partially 

saturated soils where multiple yield functions are usually needed due to the lack of micro-mechanical 

insights about the inseparable nature of grain rearrangements and liquid redistributions as discussed 

in Chapter 2.  

It is noted that the current model does not explicitly incorporate details associated with underlying 

micro-mechanisms, although their importance to understanding proper responses of partially 

saturated soils. The focus of this paper is the continuum modelling based on observations at the 

macroscale. Microscopic mechanisms are used here only as a means to obtain constraints on the 

interactions of internal variables in the continuum models, in particular their inter-dependency in 

energy dissipation at the continuum scale. Furthermore, the current approach has not yet accounted 

for the effects of localised deformation where no details on orientation and thickness of the shear 

band are incorporated into the constitutive equations that will be addressed in Chapter 5.  
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Chapter 4.  A thermodynamics-based critical state model for 

partially saturated soils  

4.1. Introduction  

A critical state model is described in this section following the generic formulation in Chapter 3 to 

serve as an example to indicate its promising performances in simulating suction- and water content-

controlled tests at low stresses without the transition to void closure and pressurised saturation. This 

chapter aims for the establishment of a rigorous thermodynamics-based approach that leads to a good 

balance between rigour, simplicity, number of parameters and performance in the derived constitutive 

models. In this model, two free energy and dissipation potentials are explicitly defined, reflecting the 

energy transformation between isotropic compression (e.g. volumetric and hydraulic energy 

dissipations occupy the total dissipation) and critical states (e.g. shear dissipation occupies the total 

dissipation) in both drained and undrained triaxial shear tests. Given these two potentials, the 

proposed thermodynamic formulation is used as a versatile means to connect all essential behavioural 

characteristics of partially saturated soils, resulting in a single yield surface in stress-suction space 

and two evolution rules for plastic strains and irrecoverable saturation with a single “plastic” 

multiplier. This is thanks to the inter-dependence of mechanical and hydraulic dissipations in the 

proposed dissipation potential, providing smooth transitions from fully to partially saturated states 

and from contraction to dilation responses under homogeneous deformation conditions. This coupling 

naturally induces the effects of mechanical behaviour on the saturation-suction relationship. As a 

result, models derived from this approach possess an implicitly defined SWCC dependent on the 

volumetric behaviour, reflecting the hydro-mechanical interactions at the grain scale. This is 

consistent with suggestions in Wheeler et al. (2003), based on both micro-mechanical reasoning and 

experiments (e.g. Sharma, 1998; Gallipoli et al., 2003), that the irreversible part of the volumetric 

strain, arising from the mechanical energy lost due to slippage at inter-particle contacts, results in the 

translation of the water retention curve. The proposed thermodynamic formulation also helps 

minimise the number of parameters required while not compromising the performance of the derived 

models. The obtained model, formulated under infinitesimal strain assumption, possesses a small 

number of identifiable parameters, which have clear physical meanings and can be calibrated from 

standard tests on partially saturated soils. The model performance is assessed and validated against a 

range of experiments on partially saturated soils.  

The outline of this chapter is as follows. In section 4.2, the formulation of a critical state thermo-

mechanical model for partially saturated soils is described where two approaches of “using a special 
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form of dissipation potential” and “using constraint equations” are presented. This is followed by its 

dissipation properties. Section 4.3 describes the numerical implementation algorithms and their 

verification. The parameter identification and determination are presented in Section 4.4, followed 

by the validation and demonstration of the capabilities of the proposed model in Section 4.5.  

4.2. Model formulation  

This section is to present a rigorous and systematic procedure for deriving the specific formulation of 

a thermodynamics-based critical state model for partially saturated soils based on the generic 

approach developed beforehand in Chapter 3.  

4.2.1. Helmholtz specific energy potential and constitutive relationships  

The Helmholtz specific energy potential can be assumed of the following form: 

Ψ = 𝜅𝑝0
′ exp [

( 𝑣− 𝜈
p
)

𝜅
]

⏞          
𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑎𝑟𝑡

+
3

2
𝐺(휀𝑠 − 휀𝑠

p
)
2⏞        

𝑆ℎ𝑒𝑎𝑟 𝑝𝑎𝑟𝑡

+

𝜅ℎ(𝑝𝑢 + 𝑠0
∗) exp {

𝑆𝑟0+[(−𝑆𝑟)−(−𝑆𝑟
p
)]

𝜅ℎ
} − [(−𝑆𝑟) − (−𝑆𝑟

p
)]𝑝𝑢 + (−𝑆𝑟

p
)𝑝𝑏

⏞                                            
𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑝𝑎𝑟𝑡

  (4.1) 

where 𝜅 is the elastic index controlling the pressure-dependent elastic behaviour of the model; 𝐺 is 

the shear moduli; 𝜅ℎ  is to control the amount of reversible energy stored in the water menisci 

(Buscarnera & Einav, 2012); 𝑝𝑢 = 1 kPa  is to make the unit consistent and 𝑝𝑏  is a parameter 

controlling the stored irreversible hydraulic energy. Initial values of 𝑝′, 𝑠∗ and 𝑆𝑟 are denoted as  𝑝0
′ , 

𝑠0
∗ and 𝑆𝑟0 , respectively.  

Eq. (4.1) indicates that the Helmholtz free energy is a combination of stored energies induced by both 

mechanical and hydraulic processes. They are produced by the compressed grains, which can recover 

to their previous states (Collins, 2005) and the reversible movement of the air-water interfaces 

(Wheeler et al., 2003). The last term of Eq. (4.1), (−𝑆𝑟
p
)𝑝𝑏, represents the irrecoverable hydraulic 

energy that is stored in the volume element, reflecting the entrapment of fluid menisci in the 

heterogeneous structure during wetting-drying processes (Wei & Dewoolkar, 2006). It is noted that 

the Helmholtz free energy potential is of phenomenological form, and the elastic behaviour does not 

possess strong hydro-mechanical coupling, given the focus on the dissipation properties and inelastic 

behaviour. 
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Using Eqs. (3.92-3.94) and (4.1), the true stresses are:  

𝑝′ =
𝜕Ψ

𝜕 𝜈
= 𝑝0

′ exp [
( 𝑣− 𝜈

p
)

𝜅
]  (4.2) 

𝑞 =
𝜕Ψ

𝜕 𝑠
= 3𝐺(휀𝑠 − 휀𝑠

p
)  (4.3) 

𝑠∗ =
𝜕Ψ

𝜕(−𝑆𝑟)
= (𝑝𝑢 + 𝑠0

∗) exp {
𝑆𝑟0+[(−𝑆𝑟)−(−𝑆𝑟

p
)]

𝜅ℎ
} − 𝑝𝑢  (4.4) 

The generalised stresses can also be obtained from the Helmholtz free energy potential in Eq. (4.1) 

as:  

�̅�𝜈 = −
𝜕Ψ

𝜕 𝜈
p = 𝑝0

′ exp [
( 𝑣− 𝜈

p
)

𝜅
] = 𝑝′  (4.5) 

�̅�𝑠 = −
𝜕Ψ

𝜕 𝑠
p = 3𝐺(휀𝑠 − 휀𝑠

p
) = 𝑞  (4.6) 

�̅�ℎ = −
𝜕Ψ

𝜕(−𝑆𝑟
p
)
= (𝑝𝑢 + 𝑠0

∗) exp {
𝑆𝑟0+[(−𝑆𝑟)−(−𝑆𝑟

p
)]

𝜅ℎ
} − 𝑝𝑢 − 𝑝𝑏 = 𝑠

∗ − 𝑝𝑏  (4.7) 

Eq. (4.2) implies the pressure-dependent elastic soil bulk employing a linear relationship between ln𝜈 

and ln𝑝′ (Butterfield, 1979; Hashiguchi, 1995; Callari et al., 1998; Collins & Kelly, 2002). In an 

alternative way, the elastic moduli of soils can be assumed to be independent on pressure for 

simplicity without compromising the model performance, that will be further explored in the next 

chapters. Since 𝑠∗ = 𝑠�̅�, and 휀𝑣 = 𝜙0 − �̅� (Chapter 3) hydraulic effects on the elastic stiffness are 

accounted for in the (𝑝′, 𝑠) space. However, these effects are usually considered insignificant and can 

be neglected (Alonso et al., 1990; Sheng et al., 2004). Eqs. (4.2 & 4.4) can be expanded to forms of 

net mean stress and suction to expose the interaction between NCL and SWCC as:  

�̅� + 𝑆𝑟𝑠 = (�̅�0 + 𝑆𝑟0𝑠0) exp [
( 𝑣− 𝜈

p
)

𝜅
]  (4.8) 

�̅�𝑠 = {(𝑝𝑢 + 𝜙0𝑠0) exp {
𝑆𝑟0+[(−𝑆𝑟)−(−𝑆𝑟

p
)]

𝜅ℎ
} − 𝑝𝑢}  (4.9) 

where �̅�0 and 𝑠0 are initial values of mean net stress and suction. From Eqs. (4.8 & 4.9), the net mean 

stress and suction can be expressed as:  

�̅� = (�̅�0 + 𝑆𝑟0𝑠0) exp [
( 𝑣− 𝜈

p
)

𝜅
] −

𝑆𝑟

�̅�
{(𝑝𝑢 + 𝜙0𝑠0) exp {

𝑆𝑟0+[(−𝑆𝑟)−(−𝑆𝑟
p
)]

𝜅ℎ
} − 𝑝𝑢}  (4.10) 

𝑠 =
1

�̅�
{(𝑝𝑢 + 𝜙0𝑠0) exp {

𝑆𝑟0+[(−𝑆𝑟)−(−𝑆𝑟
p
)]

𝜅ℎ
} − 𝑝𝑢}  (4.11) 

As can be seen in Eqs. (4.10) and (4.11), both suction and saturation have an influence on the change 

of net stress and hence the elastic stiffness.  
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4.2.2. Dissipation potential, yield function and flow rules  

Chapter 3 provides two different approaches (using a special form of dissipation potential, using 

constraint equations) to construct yield function and evolution rules from the dissipation potential. 

Although these two methods are somewhat different in the mathematical formulation, they have one 

thing in common: A strong coupling between irrecoverable changes of strain and saturation degree is 

governed by a unique yield surface of both stress and suction associated with a single “plastic” 

multiplier of two flow rules, as a result of the dependence of generalised stresses on others and the 

rate of all internal variables. Their potential can be indicated through the following systematic 

procedure for constructing a specific critical state yield criterion for partially saturated soils.  

Using a special form of dissipation potential  

(i) Generic formulation  

In this approach, the nature of grain-scale interactions leads to the proposal of a suitable form of 

dissipation potential that reflects the hydro-mechanical coupling in the inelastic behaviour of 

unsaturated soils. From Eq. (3.101), the special form of dissipation potential can be rewritten as:  

Φ̃ = √(𝜙1
𝜈)2 + (𝜙𝑠)2 + (𝜙ℎ)2 + 𝜙2

𝜈    (4.12) 

which results in a single yield function 𝑦∗ in generalised stress space (𝜒𝜈, 𝜒𝑠, and 𝜒ℎ) (see details on 

how to obtain them in Chapter 3): 

𝑦∗ =
(𝜒𝜈−

𝜕𝜙2
𝜈

𝜕�̇�𝜈
p)

2

(
𝜕𝜙1

𝜈

𝜕�̇�𝜈
p)

2 +
(𝜒𝑠)

2

(
𝜕𝜙𝑠

𝜕�̇�𝑠
p)

2 +
(𝜒ℎ)

2

(
𝜕𝜙ℎ

𝜕(−�̇�𝑟
p
)
)

2 − 1 ≤ 0    (4.13) 

and flow rules for three internal variables take the following generic forms:  

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝜈
= �̇�𝑝

2(𝜒𝜈−
𝜕𝜙2

𝜈

𝜕�̇�𝜈
p)

(
𝜕𝜙1

𝜈

𝜕�̇�𝜈
p)

2     (4.14) 

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑠
= �̇�𝑝

2𝜒𝑠

(
𝜕𝜙𝑠

𝜕�̇�𝑠
p)

2    (4.15) 

−�̇�𝑟
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
= �̇�𝑝

2𝜒ℎ

(
𝜕𝜙ℎ

𝜕(−�̇�𝑟
p
)
)

2    (4.16) 

 

 



4-5 

 

(ii) Specific form of dissipation potential  

Functions 𝜙1
𝜈 , 𝜙2

𝜈 , 𝜙𝑠  and 𝜙ℎ  in the dissipation potential (see Eq. (4.12)) take the below specific 

forms: 

𝜙1
𝜈 =

1

√exp[−𝛽(1−𝑆𝑟)]
𝐴휀�̇�

p
  (4.17) 

𝜙2
𝜈 =

𝑝𝑐(𝑢𝑠)
′

𝑟
휀�̇�
p
  (4.18) 

𝜙𝑠 = 𝐵휀�̇�
p
  (4.19) 

𝜙ℎ =
1

√1−exp[−𝛽(1−𝑆𝑟)]

(𝑠∗−𝑝𝑏)

(𝑝′−
𝑝𝑐(𝑢𝑠)
′

𝑟
)

(−�̇�𝑟
p
)𝐴  (4.20) 

The dimensionless parameter 𝛽 (0 < 𝛽 ≤ 1) is used to govern the coupling between saturation and 

volumetric deformation upon yielding. Its role will be elaborated in Sections 4.4 and 4.5.1. Parameter 

𝑟 is defined as “spacing ratio” in the range of 1.5-∞ to control the dilatancy (Crouch et al., 1994; Yu, 

1998; Collins & Hilder, 2002; Lai et al., 2016). Noting in these formulations above that 𝑝𝑐(𝑢𝑠)
′  is 

considered as the main component in governing the overall rate of energy loss associated with the 

slippage at inter-particle or inter-packet contacts under the effect of meniscus water rings, thus 

justifying the name hardening function. The evolving threshold pressure 𝑝𝑐(𝑢𝑠)
′  can take different 

forms of evolution laws based on experimentally observed responses at low stresses (e.g. Alonso et 

al., 1990; Wheeler et al., 2003; Sheng et al., 2008; Tamagnini, 2004; Khalili et al., 2008) or high 

stresses (Mun & McCartney, 2017; Loret & Khalili, 2002; Alonso et al., 2013; Zhou et al., 2018). A 

relatively simple law is presented in this study to reproduce experimental trends at low pressures; any 

other forms can be used given the generic thermodynamic framework proposed in this study. In 

particular, the form of the employed hardening law is selected based on several experimental 

observations on NCL in (𝑝′, 𝜈) of drained isotropic compression tests (e.g. Zhan, 2003; Mun & 

McCartney, 2017). In this case, function 𝑝𝑐(𝑢𝑠)
′   is expressed as a function of  𝑠∗ and 휀𝜈

p
:  

𝑝𝑐(𝑢𝑠)
′ = 𝑝𝑅

′ (
𝑝𝑐
′

𝑝𝑅
′ )

𝜆−𝜅

𝜆𝑢𝑠−𝜅 = 𝑝𝑅
′ [

𝑝𝑐0
′ exp(

𝜀𝜈
p

𝜆−𝜅
)

𝑝𝑅
′ ]

𝜆−𝜅

𝜆[(1−𝜉)exp(−𝜇𝑠∗)+𝜉]−𝜅

  (4.21) 

The above evolution law is based on the combination of pre-consolidation effective mean pressure 

for saturated conditions (Collins & Hilder, 2002), 

𝑝𝑐
′ = 𝑝𝑐0

′ exp[휀𝜈
p (𝜆 − 𝜅)⁄ ] (4.22) 

and stiffness parameter for partially saturated conditions, 
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𝜆𝑢𝑠 = 𝜆[(1 − 𝜉)exp(−𝜇𝑠
∗) + 𝜉] (4.23) 

with 𝜆  representing the slope of the virgin compression line in the ln𝜈: ln𝑝′  plane for saturated 

conditions; 𝑝𝑐0
′  is the initial yield pressure under isotropic compression at fully saturated condition; 

𝑝𝑅
′  denotes the stress parameter controlling the yield curve; 𝜉 is a dimensionless parameter controlling 

the maximum soil stiffness, and 𝜇 is a constant related to the change of soil stiffness with modified 

suction.  

As demonstrated in Figures 4.1-4.2, the hardening law in Eqs. (4.21-4.23) results in good agreement 

with experimental data. It is similar to the wetting-induced hardening law proposed in Alonso et al. 

(1990), which has been shown to be adequate in several models for partially saturated soils (e.g. 

Alonso et al., 1990; Bolzon et al., 1996; Cui & Delage, 1996; Al-Sharrad, 2013; Sun & Sun, 2012; 

Macari et al., 2003). However, it is acknowledged that only volume change responses at low stresses 

were investigated in such cases. Therefore, the hardening law represented by Eqs. (4.21-4.23) is not 

suitable or even invalid for modelling responses of partially saturated soils under high-stress levels 

(Khalili & Nguyen, personal communication, 29th Nov. 2019), including the transition to void closure 

and pressurised saturation (Mun & McCartney, 2015; 2017). Figure 4.1 shows the responses and the 

performance of the model using the hardening law (Eqs. (4.21-4.23)) in such cases. The current study 

also acknowledges several limitations of drained tests for determining yield curves (Zhang & Li, 2011; 

Zhang, 2016) and so the inadequacy of the proposed hardening laws in capturing yielding behaviour 

under more complicated stress paths (Loret & Khalili, 2002). 
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Figure 4.1. NCL in (𝑝′, 𝜈) of drained isotropic compression test of the compacted partially saturated 

expansive clay at 𝑠 = 25 𝑘𝑃𝑎 and 𝑠 = 100 𝑘𝑃𝑎 (after Zhan, 2003); 𝜅 = 0.015, 𝜆 = 0.05,𝑝𝑐0
′ =

80 𝑘𝑃𝑎 , 𝑝𝑅
′ = 50 𝑘𝑃𝑎, 𝜇 = 0.025 𝑘𝑃𝑎−1, 𝜉 = 0.3 

 

 

Figure 4.2. NCL in (𝑝′, 𝜈) of drained isotropic compression test of the Boulder clay at 𝑠 = 0 𝑘𝑃𝑎 

and 𝑠 = 90 𝑘𝑃𝑎 (after Mun & McCartney, 2017); 𝜅 = 0.003,𝜆 = 0.025, 𝑝𝑐0
′ = 250 𝑘𝑃𝑎, 𝑝𝑅

′ =

300 𝑘𝑃𝑎, 𝜇 = −0.005 𝑘𝑃𝑎−1, 𝜉 = 0.05 
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(iii) Derivation of yield surface and flow rules  

Using Eqs. (4.17-4.20), the yield function in dissipative stress space (Eq. (4.13)) can be obtained as:  

𝑦∗ =
(𝜒𝜈−

𝑝𝑐(𝑢𝑠)
′

𝑟
)

2

[
1

√exp[−𝛽(1−𝑆𝑟)]
𝐴]
2 +

(𝜒𝑠)
2

(𝐵)2
+

(𝜒ℎ)
2

[
 
 
 
 
 

1

√1−exp[−𝛽(1−𝑆𝑟)]

(𝑠∗−𝑝𝑏)

(𝑝′−
𝑝𝑐(𝑢𝑠)
′

𝑟
)

𝐴

]
 
 
 
 
 
2 − 1 ≤ 0    (4.24) 

Using Eqs. (3.97-3.99), (4.5-4.7) and the orthogonality conditions in the forms 𝜒𝜈 = �̅�𝜈 = 𝑝
′, 𝜒𝑠 =

�̅�𝑠 = 𝑞, and 𝜒ℎ = �̅�ℎ = 𝑠
∗ − 𝑝𝑏, the yield surface 𝑦 in true stress space can be obtained as:  

𝑦 =
(𝑝′−

𝑝𝑐(𝑢𝑠)
′

𝑟
)

2

𝐴2
+
(𝑞)2

𝐵2
− 1 ≤ 0  (4.25) 

which governs the following evolution rules:  

휀�̇�
p
= �̇�𝑝

2(𝑝′−
𝑝𝑐(𝑢𝑠)
′

𝑟
)

𝐴2
exp[−𝛽(1 − 𝑆𝑟)]    (4.26) 

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑠
= �̇�𝑝

2𝑞

𝐵2
    (4.27) 

−�̇�𝑟
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
= �̇�𝑝

2(𝑝′−
𝑝𝑐(𝑢𝑠)
′

𝑟
)

2

(𝑠∗−𝑝𝑏)𝐴
2
{1 − exp[−𝛽(1 − 𝑆𝑟)]}    (4.28) 

 

Figure 4.3. Yield surface in (a) (𝑝′ −
𝑝𝑐(𝑢𝑠)
′

𝑟
, 𝑞, 𝑠∗) space, (b) (𝑝′ −

𝑝𝑐(𝑢𝑠)
′

𝑟
, 𝑞) space and (c) 
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As can be seen in Figure 4.3, in the (𝑝′ − 𝑝𝑐(𝑢𝑠)
′ 𝑟⁄ , 𝑞) plane, the yield function in Eq. (4.25) is the 

upper half of an ellipse of radii 𝐴 and 𝐵. The change of its shape towards increasing 𝑠∗ reflects the 

effect of suction on shear strength. The ellipse axes coincide with the normal consolidation line (NCL) 

when 휀�̇�
p
= 0 and critical state line (CSL) when 휀�̇�

p
= 0, respectively.  

Functions 𝐴 and 𝐵 in Eqs. (4.17), (4.19-4.20) and then (4.25) govern the behaviour of the model. A 

systematic procedure (Collins, 2003; Collins & Hilder, 2002) is conducted to determine their specific 

forms. This procedure first investigates the dependence of functions 𝐴 and 𝐵 on stress-like variables, 

based on details given in Eqs. (3.102-3.104) and (4.12-4.28).  

From Eqs. (3.102-3.103), the following expressions can be written:  

𝜒𝜈 −
𝜕𝜙2

𝜈

𝜕 ̇𝜈
p =

𝜙1
𝜈

Φ̃−𝜙2
𝜈

𝜕𝜙1
𝜈

𝜕 ̇𝜈
p     (4.29) 

𝜒𝑠 =
𝜙𝑠

Φ̃−𝜙2
𝜈

𝜕𝜙𝑠

𝜕 ̇𝑠
p    (4.30) 

Substituting Eqs. (4.17-4.19) into Eqs. (4.29-4.30) yields:  

𝜒𝜈 −
𝑝𝑐(𝑢𝑠)
′

𝑟
=

𝐴2 ̇𝜈
p

Φ̃−
𝑝𝑐(𝑢𝑠)
′

𝑟
̇𝜈
p

1

exp[−𝛽(1−𝑆𝑟)]
    (4.31) 

𝜒𝑠 =
𝐵2 ̇𝑠

p

Φ̃−
𝑝𝑐(𝑢𝑠)
′

𝑟
̇𝜈
p
    (4.32) 

Invoking Eqs. (3.97-3.99), (3.105-3.106) and (4.5-4.7), Eqs. (4.31-4.32) become:  

𝑝′ −
𝑝𝑐(𝑢𝑠)
′

𝑟
=

𝐴2 ̇𝜈
p

(𝑝′−
𝑝𝑐(𝑢𝑠)
′

𝑟
) ̇𝜈
p
+𝑞 ̇𝑠

p
+(𝑠∗−𝑝𝑏)(−�̇�𝑟

p
)

1

exp[−𝛽(1−𝑆𝑟)]
    (4.33) 

𝑞 =
𝐵2 ̇𝑠

p

(𝑝′−
𝑝
𝑐(𝑢𝑠)
′

𝑟
) ̇𝜈
p
+𝑞 ̇𝑠

p
+(𝑠∗−𝑝𝑏)(−�̇�𝑟

p
)

    (4.34) 

The relationship between −�̇�𝑟
p
 and 휀�̇�

p
 can be derived from flow rules in Eqs. (4.26) and (4.28) as 

follows:  

(𝑠∗ − 𝑝𝑏)(−�̇�𝑟
p
) =

1−exp[−𝛽(1−𝑆𝑟)]

exp[−𝛽(1−𝑆𝑟)]
(𝑝′ −

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ) 휀�̇�

p
  (4.35) 

Substitution of Eq. (4.35) into Eqs. (4.33-4.34), with some mathematical arrangements, one obtains 

the following functions for 𝐴 and 𝐵:  
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𝐴 = ±
√
exp[−𝛽(1−𝑆𝑟)](𝑝′−

𝑝𝑐(𝑢𝑠)
′

𝑟
)[(𝑝′−

𝑝
𝑐(𝑢𝑠)
′

𝑟
)

1

exp[−𝛽(1−𝑆𝑟)]
̇𝜈
p
+𝑞 ̇𝑠

p
]

̇𝜈
p   (4.36) 

𝐵 = ±
√
𝑞[(𝑝′−

𝑝𝑐(𝑢𝑠)
′

𝑟
)

1

exp[−𝛽(1−𝑆𝑟)]
̇𝜈
p
+𝑞 ̇𝑠

p
]

̇𝑠
p   (4.37) 

Based on Eq. (4.36), the stress derivatives of the function 𝐴 are written as follows:  

𝜕𝐴

𝜕𝑝′
=
[2(𝑝′−

𝑝𝑐(𝑢𝑠)
′

𝑟
) ̇𝜈
p
]+exp[−𝛽(1−𝑆𝑟)]𝑞 ̇𝑠

p

2𝐴 ̇𝜈
p   (4.38) 

𝜕𝐴

𝜕𝑞
=
exp[−𝛽(1−𝑆𝑟)](𝑝

′−
𝑝𝑐(𝑢𝑠)
′

𝑟
) ̇𝑠
p

2𝐴 ̇𝜈
p   (4.39) 

𝜕𝐴

𝜕𝑝𝑐(𝑢𝑠)
′ =

2(−
1

𝑟
)(𝑝′−

𝑝𝑐(𝑢𝑠)
′

𝑟
) ̇𝜈
p
+(−

1

𝑟
)exp[−𝛽(1−𝑆𝑟)]𝑞 ̇𝑠

p

2𝐴 ̇𝜈
p   (4.40) 

With Eqs. (4.38-4.40), the following form can be expressed as:  

𝜕𝐴

𝜕𝑝′
𝑝′ +

𝜕𝐴

𝜕𝑞
𝑞 +

𝜕𝐴

𝜕𝑝𝑐(𝑢𝑠)
′ 𝑝𝑐(𝑢𝑠)

′ =
[2(𝑝′−

𝑝𝑐(𝑢𝑠)
′

𝑟
)𝑝′ ̇𝜈

p
]+exp[−𝛽(1−𝑆𝑟)]𝑝

′𝑞 ̇𝑠
p

2𝐴 ̇𝜈
p +

exp[−𝛽(1−𝑆𝑟)](𝑝
′−
𝑝𝑐(𝑢𝑠)
′

𝑟
)𝑞 ̇𝑠

p

2𝐴 ̇𝜈
p +

2(−
1

𝑟
)(𝑝′−

𝑝𝑐(𝑢𝑠)
′

𝑟
)𝑝𝑐(𝑢𝑠)

′ ̇𝜈
p
+(−

1

𝑟
)exp[−𝛽(1−𝑆𝑟)]𝑞𝑝𝑐(𝑢𝑠)

′ ̇𝑠
p

2𝐴 ̇𝜈
p     (4.41) 

Or,  

𝜕𝐴

𝜕𝑝′
𝑝′ +

𝜕𝐴

𝜕𝑞
𝑞 +

𝜕𝐴

𝜕𝑝𝑐(𝑢𝑠)
′ 𝑝𝑐(𝑢𝑠)

′ =
2exp[−𝛽(1−𝑆𝑟)](𝑝

′−
𝑝𝑐(𝑢𝑠)
′

𝑟
)[(𝑝′−

𝑝𝑐(𝑢𝑠)
′

𝑟
)

1

exp[−𝛽(1−𝑆𝑟)]
̇𝜈
p
+𝑞 ̇𝑠

p
]

2𝐴 ̇𝜈
p = 𝐴    (4.42) 

Similarly, the following form can be obtained:  

𝜕𝐵

𝜕𝑝′
𝑝′ +

𝜕𝐵

𝜕𝑞
𝑞 +

𝜕𝐵

𝜕𝑝𝑐(𝑢𝑠)
′ 𝑝𝑐(𝑢𝑠)

′ = 𝐵    (4.43) 

Eqs. (4.42-4.43) indicate that 𝐴 and 𝐵 must be homogeneous functions of degree one in terms of the 

three defining effective stress variables 𝑝′, 𝑞 and 𝑝𝑐(𝑢𝑠)
′ . For simplicity, they are assumed to be in 

linear forms (Collins & Hilder, 2002):  

𝐴 = 𝑎1𝑝
′ + 𝑎2𝑞 + 𝑎3𝑝𝑐(𝑢𝑠)

′   (4.44) 

𝐵 = 𝑏1𝑝
′ + 𝑏2𝑞 + 𝑏3𝑝𝑐(𝑢𝑠)

′   (4.45) 

where 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3  are dimensionless coefficients governing dissipative micromechanical 

mechanisms. To determine them, the yielding behaviour of the wet granular material under isotropic 
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compression and decompression is examined where 휀�̇�
p
= 0 or 𝑞 = 0. In this case, Eq. (4.44) can be 

reduced to the following expression:  

𝑝′ −
1

𝑟
𝑝𝑐(𝑢𝑠)
′ = ±𝐴 = ±[𝑎1𝑝

′ + 𝑎3𝑝𝑐(𝑢𝑠)
′ ]  (4.46) 

In Eq. (4.46), 𝑝′ = 𝑝𝑐(𝑢𝑠)
′  for the plus sign of the yielding compression and 𝑝′ = 0 for the minus sign 

of the yielding expansion (see Figure 4.3). Employing this, 𝑎1 and 𝑎3 can be deduced from Eq. (4.46) 

that: 

𝑎1 = 1 −
2

𝑟
  and 𝑎3 =

1

𝑟
 (4.47) 

The coefficient 𝑎2 is determined to be zero by assuming similarity between deviatoric extension and 

compression (Uchaipichat, 2005; Collins, 2003). Therefore:  

𝐴 = (1 −
2

𝑟
) 𝑝′ +

1

𝑟
𝑝𝑐(𝑢𝑠)
′   (4.48) 

Parameters 𝑏1, 𝑏2, 𝑏3 can be identified by examining the yielding response at the critical state where 

the volumetric strain and saturation degree remain constant (Zhao et al., 2014; Chen, 2007). With 

휀�̇�
p
= 0, if 𝑝𝐶𝑆𝐿

′  and 𝑞𝐶𝑆𝐿 respectively denote the effective mean and shear stresses at the critical state, 

Eqs. (4.25) and (4.26) are therefore simplified as (𝑞𝐶𝑆𝐿)
2 = 𝐵2 and 𝑝𝐶𝑆𝐿

′ =
1

𝑟
𝑝𝑐(𝑢𝑠)
′ . With the use of 

Eq. (4.45), these equations lead to:  

(𝑞𝐶𝑆𝐿)
2 = [𝑏1(𝑝𝐶𝑆𝐿

′ ) + 𝑏2(𝑞𝐶𝑆𝐿) + 𝑏3𝑟(𝑝𝐶𝑆𝐿
′ )]2  (4.49) 

So,  

𝑞𝐶𝑆𝐿 = ±
(𝑏1+𝑏3𝑟)𝑝𝐶𝑆𝐿

′

(1−𝑏2)
  (4.50) 

Suppose that the compressive (positive) and extensive (negative) shear stresses in Eq. (4.50) are 

similar. Consequently, 𝑏2 is null (Uchaipichat, 2005; Collins, 2003). Furthermore, the uniqueness of 

CSL with a constant slope 𝑀 in the 𝑝′: 𝑞 plane is assumed (Russell & Khalili, 2006; Khalili et al., 

2008). In this sense, Eq. (4.50) provides that:  

𝑞𝐶𝑆𝐿

𝑝𝐶𝑆𝐿
′ = 𝑀 = 𝑏1 + 𝑏3𝑟  (4.51) 

The dimensionless parameter 𝛼 (0 < 𝛼 ≤ 1) is now introduced to enable Eq. (4.51) to give:  

𝑏1 = (1 − 𝛼)𝑀  and 𝑏3 =
𝛼

𝑟
𝑀 (4.52) 

Consequently,  
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𝐵 = (1 − 𝛼)𝑀𝑝′ +
𝛼

𝑟
𝑀𝑝𝑐(𝑢𝑠)

′   (4.53) 

in which 𝛼 is a parameter governing the strength of the material and non-associativity of the flow 

rules via the tear-drop shape and convexity near the origin of the yield surface.  

In summary, from Eqs. (4.48) and (4.53), functions 𝐴 and 𝐵 are first-order homogeneous in terms 

of 𝑝′ and 𝑝𝑐(𝑢𝑠)
′  and take the following forms: 

𝐴 = (1 −
2

𝑟
) 𝑝′ +

1

𝑟
𝑝𝑐(𝑢𝑠)
′   (4.54) 

𝐵 = (1 − 𝛼)𝑀𝑝′ +
𝛼

𝑟
𝑀𝑝𝑐(𝑢𝑠)

′   (4.55) 

For completeness, with obtained functions 𝐴 and 𝐵, the final form of yield surface is expressed as:  

𝑦 =
(𝑝′−

𝑝𝑐(𝑢𝑠)
′

𝑟
)

2

𝐴2
+
(𝑞)2

𝐵2
− 1 =

(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 +
𝑞2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2
− 1 ≤ 0  (4.56) 

In conjunction with this yield surface, the evolution rules in Eqs. (4.26-4.28) now become:  

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝜈
= �̇�𝑝

2(𝑝′−
𝑝𝑐(𝑢𝑠)
′

𝑟
)

𝐴2
exp[−𝛽(1 − 𝑆𝑟)] = �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 − 𝑆𝑟)]  (4.57) 

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑠
= �̇�𝑝

2𝑞

𝐵2
= �̇�𝑝

2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

  (4.58) 

−�̇�𝑟
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
= �̇�𝑝

2(𝑝′−
𝑝𝑐(𝑢𝑠)
′

𝑟
)

2

(𝑠∗−𝑝𝑏)𝐴
2
{1 − exp[−𝛽(1 − 𝑆𝑟)]} = �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

(𝑠∗−𝑝𝑏)[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 [1 −

exp[−𝛽(1 − 𝑆𝑟)]]  (4.59) 

Using constraint equations  

(i) Generic formulation  

As shown beforehand in Eq. (3.115) of Chapter 3, the dissipation potential can be supplemented by 

kinematic constraint equations using Lagrangian multipliers as:  

Φ̃ = 𝜑𝜈휀�̇�
p
+ 𝜑𝑠휀�̇�

p
+ 𝜑ℎ(−�̇�𝑟

p
) + 𝛬1(𝐵

′휀�̇�
p
+ 𝐴′휀�̇�

p
) + 𝛬2[𝐶

′휀�̇�
p
+ 𝐴′(−�̇�𝑟

p
)] ≥ 0  (4.60) 

As a result of this, a unique yield function 𝑦∗ dependent on all thermodynamic forces (𝜒𝜈, 𝜒𝑠, and 𝜒ℎ)  

can be established (see Eq. (3.120)) as: 

𝑦∗ = 𝐴′𝜒𝜈 − 𝐵
′𝜒𝑠 − 𝐶

′𝜒ℎ − 𝐴
′𝜑𝜈 + 𝐵′𝜑𝑠 + 𝐶′𝜑ℎ ≤ 0    (4.61) 
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which goes with flow rules of internal variables taking the following generic forms (see Eqs. (3.121-

3.123):  

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝜈
= �̇�𝑝𝐴

′    (4.62) 

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑠
= −�̇�𝑝𝐵

′    (4.63) 

−�̇�𝑟
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
= −�̇�𝑝𝐶

′    (4.64) 

(ii) Specific form of dissipation potential and kinematic constraint equations  

Taking 𝐴′, 𝐵′, 𝐶′, 𝜑𝜈, 𝜑𝑠 and 𝜑ℎ as functions of 𝑝′, 𝑞 and 𝑝𝑐(𝑢𝑠)
′  to govern the contribution of each 

individual dissipative mechanism in the total dissipation rate, with 𝐴′, 𝐵′, 𝜑𝜈 and 𝜑𝑠 representing the 

particle rearrangements and 𝐶′ , 𝜑ℎ  representing the liquid bridge redistribution, their specific 

expressions can be assumed as:  

𝜑𝜈 =
𝑝𝑐(𝑢𝑠)
′

𝑟
   (4.65) 

𝜑ℎ = 0   (4.66) 

𝜑𝑠 =
[(1−𝛼)𝑝′+

𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

𝑞
   (4.67) 

𝐴′ =
2(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 − 𝑆𝑟)]   (4.68) 

𝐵′ = −
2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

   (4.69) 

𝐶′ = −
2(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

(𝑠∗−𝑝𝑏)[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 [1 − exp[−𝛽(1 − 𝑆𝑟)]]   (4.70) 

(iii) Derivation of yield surface and flow rules  

Substitution of Eqs. (4.65-4.70) into Eq. (4.61) leads to:  

𝑦∗ =
2(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 − 𝑆𝑟)]𝜒𝜈 +
2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2
𝜒𝑠 +

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

(𝑠∗−𝑝𝑏)[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 [1 −

exp[−𝛽(1 − 𝑆𝑟)]]𝜒ℎ −
2(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 − 𝑆𝑟)]
𝑝𝑐(𝑢𝑠)
′

𝑟
−

2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

𝑞
≤ 0    (4.71) 

By substituting the orthogonality conditions with 𝜒𝜈 = �̅�𝜈 = 𝑝
′, 𝜒𝑠 = �̅�𝑠 = 𝑞, and 𝜒ℎ = �̅�ℎ = 𝑠

∗ −

𝑝𝑏 into Eq. (4.71), the yield surface in true stress space can be established as:  
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𝑦 =
2(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 − 𝑆𝑟)]𝑝
′ +

2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2
𝑞 +

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

(𝑠∗−𝑝𝑏)[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 [1 −

exp[−𝛽(1 − 𝑆𝑟)]](𝑠
∗ − 𝑝𝑏) −

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 − 𝑆𝑟)]
𝑝𝑐(𝑢𝑠)
′

𝑟
−

2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

𝑞
≤ 0    (4.72) 

After some mathematical manipulations in Eq. (4.72), a single yield surface dependent on stresses 

and suction can be obtained as:  

𝑦 =
(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 +
𝑞2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2
− 1 ≤ 0    (4.73) 

Along with this, the expressions for the coupled hydro-mechanical flow rules are hence obtained as 

follows:  

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝜈
= �̇�𝑝𝐴

′ = �̇�𝑝
2(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 − 𝑆𝑟)]    (4.74) 

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑠
= −�̇�𝑝𝐵

′ = �̇�𝑝
2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

    (4.75) 

−�̇�𝑟
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
= −�̇�𝑝𝐶

′ = �̇�𝑝
2(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

(𝑠∗−𝑝𝑏)[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 [1 − exp[−𝛽(1 − 𝑆𝑟)]]    (4.76) 

Summary and discussion  

It can be found that two approaches allow constructing the same formulations of yield surface and 

evolutions rules which are summarised below (Eqs. (4.56-4.59) and Eqs. (4.73-4.76)):  

𝑦 =
(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 +
𝑞2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2
− 1 ≤ 0    (4.77) 

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝜈
= �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 − 𝑆𝑟)]    (4.78) 

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑠
= �̇�𝑝

2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

    (4.79) 

−�̇�𝑟
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
= �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

(𝑠∗−𝑝𝑏)[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 [1 − exp[−𝛽(1 − 𝑆𝑟)]]    (4.80) 

As can be seen in Eqs. (4.78-4.80), the activation and evolution of both plastic deformation and 

irrecoverable saturation takes place simultaneously, given the same multiplier �̇�𝑝 , reflecting the 
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inseparable nature of the hydro-mechanical coupling at the grain scale (Zhang & Lytton, 2009ab; 

Delage & Graham, 1996; Tang & Graham, 2002). In particular, the inelastic volumetric response (see 

Eq. (4.78)) and evolution of irrecoverable saturation (see Eq. (4.80)) take into account the coupled 

hydro-mechanical effects through stresses, volumetric plastic strain, suction and saturation.  

The proposed yield surface (see Figures 4.4 & 4.5) is identical with the Modified Cam-Clay (MCC; 

see Collins, 2003) model for 𝑟 = 2  and 𝛼 = 1  under saturated condition (𝑠∗ = 0  and 𝑆𝑟 = 1 ), 

allowing a smooth transition between saturated and partially saturated conditions. The shape of the 

yield locus reflects the experimental observations of suction-controlled or water content-controlled 

tests for partially saturated soils: (i) tear-drop shape of the yield surface (see Figures 4.4b & 4.5b); 

(ii) increasing effective yield pressure with modified suction (see Figures 4.4c & 4.5c), and (iii) 

apparent cohesion thanks to 𝑆𝑟𝑠 (Jommi, 2000).  

Furthermore, it can be said that outstanding features of volumetric response are addressed by the 

evolution rules in a comprehensive manner, taking into account all physics of dilation and contraction 

under the effect of capillarity. In accordance with principles of critical state soil models, the geometric 

interactions among stress paths, critical state line and initial yield curve in the 𝑝′: 𝑞 plane help the 

current model identify whether the geomaterials are dilative or contractive. For example, according 

to Eq. (4.78), with 𝑝′ <
1

𝑟
𝑝𝑐(𝑢𝑠)
′  in relation to shear tests of dense soils and relatively high confining 

stresses, the phenomenon of dilatancy is triggered when the stress path meets the critical state line 

before it intersects the initial yield loci. Such geometric interactions rely significantly on saturation 

degree and suction in partially saturated soils, meaning the dependence of dilatancy on SWCC can 

be effectively generated by this model. On the other hand, this model can deal with mechanisms of 

hydraulic irreversibility through the evolution rule of irrecoverable saturation degree in Eq. (4.80) 

where 𝑝′ and 𝑝𝑐(𝑢𝑠)
′  have certain contributions.  
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Figure 4.4. Yield surface (a) in (𝑝′, 𝑞, 𝑠∗) space; (b) front view (c) top view 

 

Figure 4.5. Yield surface (a) in (�̅�, 𝑞, 𝑠) space; (b) front view (c) top view 

The above-mentioned features make the proposed approach different from other critical-state-based 

models for partially saturated soils. For example, a comparison between the proposed model and 

BBM (Alonso et al., 1990) is carried out regarding the model description. This comparison is briefly 

summarized in Table 4.1. As can be seen, the differences between them are pointed out based on 

different criteria (i) Methodology (ii) SWCC (iii) Stress-like variables (iv) Strain-like variables (v) 

Cohesion (vi) Yield surface (vii) Flow rules (viii) Hardening law.  
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Table 4.1. Comparison of the model description between the present model and BBM.  

Barcelona Basic Model (BBM) 

(see Table 4.2 for further details) 

Present model 

(i) Methodology 

Conventional elastoplastic approach Thermodynamic-based approach 

(ii) SWCC (wetting/drying difference, volume-dependent SWCC) 

No  Yes 

(iii) Stress-like variables 

Net stress: 𝜎𝑖𝑗 (�̅� and 𝑞) 

Suction: 𝑠 

Effective stress: 𝜎𝑖𝑗
′  (𝑝′and 𝑞) 

Modified suction: 𝑠∗ 

(iv) Strain-like variables 

Strain: 휀𝑖𝑗  Strain: 휀𝑖𝑗  

Saturation degree: 𝑆𝑟 

(v) Cohesion  

𝑘𝑠𝑠 

 

𝑆𝑟𝑠 

(vi) Yield surface 

𝑦(𝐿𝐶) = 𝑞
2 −𝑀2(�̅� + 𝑘𝑠𝑠)(�̅�𝑐(𝑢𝑠) − �̅�) ≤ 0   

𝑦(𝑆𝐼) = 𝑠 − 𝑠𝑐 ≤ 0  
𝑦 =

(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 +
𝑞2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2
−

1 ≤ 0   

(vii) Flow rules 

휀�̇�
p
= 휀�̇�(𝐿𝐶)

p
+ 휀�̇�(𝑆𝐼)

p
= �̇�𝑝(𝐿𝐶)𝑀

2(2�̅� + 𝑘𝑠𝑠 −

�̅�𝑐(𝑢𝑠))+�̇�𝑝(𝑆𝐼)   

 

휀�̇�
p
= �̇�𝑝(𝐿𝐶)2𝛾𝑞  

 

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝜈
= �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 −

𝑆𝑟)]  

 

휀�̇�
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑠
= �̇�𝑝

2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

  

−�̇�𝑟
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
= �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

(𝑠∗−𝑝𝑏)[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 [1 −

exp[−𝛽(1 − 𝑆𝑟)]]   

 

(viii) Hardening law 
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�̅�𝑐(𝑢𝑠) = �̅�𝑅 [
�̅�𝑐𝑜 exp(

𝜈𝜀
𝜈(𝐿𝐶)
p

�̅�−�̅�
)

�̅�𝑅
]

�̅�−�̅�

�̅�[(1−�̅�)exp(−�̅�𝑠)+�̅�]−�̅�

  

𝑠𝑐 = (𝑠𝑐0 + 𝑝𝑎𝑡) exp (
𝜈 𝜈(𝑆𝐼)
p

𝜆𝑠−𝜅𝑠
) − 𝑝𝑎𝑡  

𝑝𝑐(𝑢𝑠)
′ = 𝑝𝑅

′ [
𝑝𝑐0
′ exp(

𝜀𝜈
p

𝜆−𝜅
)

𝑝𝑅
′ ]

𝜆−𝜅

𝜆[(1−𝜉)exp(−𝜇𝑠∗)+𝜉]−𝜅

  

Table 4.2. Definitions of parameters and variables of BBM (Alonso et al., 1990).  

𝑘𝑠 
constant controlling the apparent cohesion  

�̅� the slope of URL in the 𝜈: ln�̅� plane for saturated conditions 

�̅� the slope of NCL in the 𝜈: ln�̅� plane for saturated conditions 

𝜅𝑠 elastic stiffness parameter for changes in suction 

𝜆𝑠 stiffness parameter for changes in suction for virgin states of the soil 

𝛾 parameter controlling the non-associated flow rule 

�̅� parameter controlling the change of soil stiffness with suction 

𝜉̅ parameter controlling the maximum soil stiffness 

�̅�𝑅 parameter controlling the yield curve  

𝑝𝑎𝑡 atmospheric pressure  

�̅�𝑐(𝑢𝑠) the yield pressure under isotropic compression at the partially saturated condition 

�̅�𝑐0 the initial yield pressure under isotropic compression at the fully saturated 

condition 

𝑠𝑐 hardening parameter of the suction increase yield locus 

𝑠𝑐0 the initial hardening parameter of the suction increase yield locus 

𝑦(𝐿𝐶) Loading-Collapse yield surface  

𝑦(𝑆𝐼) Suction-Increase yield surface  

휀𝜈(𝐿𝐶)
p

 plastic volumetric strain associated with the Loading-Collapse yield surface 

휀𝜈(𝑆𝐼)
p

 plastic volumetric strain associated with the Suction-Increase yield surface 

�̇�𝑝(𝐿𝐶) the non-negative plasticity-like multiplier of the Loading-Collapse yield surface 

�̇�𝑝(𝑆𝐼) the non-negative plasticity-like multiplier of the Suction-Increase yield surface 

  

As can be seen in the table above, the proposed model has a few notable advances compared to the 

BBM (i) Thermomechanical rigour (ii) A single yield surface (iii) Saturation degree (iv) inherent 

SWCC as an integral part of the model (v) Fully coupled hydro-mechanical response taking into 

account the volume-dependent SWCC (vi) Non-linear increase in cohesion with 𝑆𝑟𝑠  (vii) 
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wetting/drying difference. These features are associated with some main distinctions between the two 

in terms of parameters as follows: (i) In hardening laws of the current model, parameters 𝜅, 𝜆, 𝑝𝑅
′  , 𝜇 

and 𝜉 are used for effective stress and modified suction. Therefore, their effects on responses of the 

proposed model are different from those of the BBM. (ii) 𝑟 and 𝛼 are adopted in the present model to 

provide a more extensive/flexible yielding behaviour in comparison with the BBM. In particular, they 

allow constructing the tear-drop shape of the yield surface to mimic a wide variety of experimentally 

observed initial shear yield surface. (iii) In the BBM, parameter 𝑘𝑠  is used to describe the linear 

increase in cohesion with suction. Instead, the term 𝑆𝑟𝑠 in Bishop’s effective stress is to describe the 

non-linear relationship between cohesion and suction in the current model. (iv) Additional parameters  

𝜅ℎ, 𝛽 and 𝑝𝑏 for SWCC are needed for this model, which cannot be found in the BBM. With the 

above-mentioned advances, the present model yields better predictions of the 휀𝑠: 𝑞  and 휀𝑠: 휀𝑣 

responses in suction-controlled triaxial shearing test on Speswhite Kaolin at 𝑠 = 200 kPa and 𝜎33 =

75 kPa (Raveendiraraj, 2009), as compared to the BBM (see Figure 4.6).  Additionally, Figure 4.6b 

demonstrates the ability of the proposed approach to capture the increase in saturation degree during 

shearing, which cannot be predicted by the BBM. Nevertheless, the limitation associated with an 

abrupt change in the stress-strain curve (see Figure 4.6a) is acknowledged. It is noted that the 

conventional approach of the stress return algorithm is adopted in the current work for the purpose of 

describing the predictive capacity of the proposed model.  This limitation can be addressed in my 

future works using the sub-loading surface approach (Salomoni & Fincato, 2012) to reproduce the 

smooth transition between elastic to plastic regimes.  

To further highlight the advanced features of the current model, in future works, it can be compared 

to performances of more recently developed models for partially saturated soils such as Wheeler et 

al. (2003), Khalili et al. (2008), Sheng et al. (2008).  
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Figure 4.6. Drained triaxial compression tests on Speswhite Kaolin at 𝑠 = 200 𝑘𝑃𝑎 and 𝜎33 =

75 𝑘𝑃𝑎 (after Raveendiraraj, 2009) (a) 휀𝑠 − 𝑞, 휀𝑠 − 휀𝜈 (b) �̅� − 𝑆𝑟; 𝜅 = 0.01; 𝜆 = 0.3; 𝑀 = 0.889; 

𝐺 = 3000 𝑘𝑃𝑎; 𝜅ℎ = 0.75; 𝑝𝑅
′ = 120 𝑘𝑃𝑎; 𝜇 = 0.06 𝑘𝑃𝑎−1; 𝜉 = 0.6; 𝑝𝑐0

′ = 200 𝑘𝑃𝑎; 𝑟 = 2.5; 

𝛼 = 0.7; 𝛽 = 0.005; 𝑝𝑏 = 70 𝑘𝑃𝑎 

On the other hand, thanks to the use of the systematic thermomechanical approach, the proposed 

model has a well-defined structure with a small number of parameters (13 parameters). To highlight 

this advantage, a comparison of the number of parameters in existing coupled hydro-mechanical 

models for partially saturated soils is shown in the following table.  

Table 4.3. Comparison of the number of parameters in existing coupled hydro-mechanical models.  

Model 
Number of parameters 

Khalili et al. (2008) “A fully coupled flow deformation model for cyclic 

analysis of unsaturated soils including hydraulic and mechanical 

hysteresis.” 

17 

Hu et al. (2015) “A coupled stress-strain and hydraulic hysteresis model 

for unsaturated soils: Thermodynamic analysis and model evaluation.” 

16 

Liu & Muraleetharan (2011) “Coupled Hydro-Mechanical Elastoplastic 

Constitutive Model for Unsaturated Sands and Silts” 

32 

Ghasemzadeh et al. (2017) “Elastoplastic model for hydro-mechanical 

behaviour of unsaturated soils.” 

18 
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Gholizadeh & Latifi (2018) “A coupled hydro-mechanical constitutive 

model for unsaturated frictional and cohesive soil.” 

21 

Sun & Sun (2012) “Coupled modelling of hydro-mechanical behaviour 

of unsaturated compacted expansive soils.” 

13 

Muraleetharan et al. (2009) “An elastoplastic framework for coupling 

hydraulic and mechanical behaviour of unsaturated soils.” 

12 (isotropic behaviour 

only) 

Bruno & Gallipoli (2019) “A coupled hydromechanical bounding 

surface model predicting the hysteretic behaviour of unsaturated soils.” 

 12 (isotropic behaviour 

only) 

However, for the sake of simplicity, it is assumed that the partially saturated soil behaves isotropically 

in both cases of recoverable and irrecoverable deformation/saturation, although the behaviour of wet 

granular materials can be anisotropic because of highly inhomogeneous textures due to the effects of 

liquid bridges. It is also acknowledged that the proposed model can still be improved to capture the 

transition between fully and partially saturated states with the effects of air-entry suction (Sheng, 

2011; Sheng et al., 2008; Khalili et al., 2008; Loret & Khalili, 2000; 2002), to have closed-shape yield 

surface (Thu et al., 2007b; Sivakumars & Doran, 2000; Delage & Graham, 1996; Tang & Graham, 

2002), to predict yielding behaviour of more complex experimental loading paths (Loret & Khalili, 

2000; 2002), and to simulate NCL with pressurized saturation and the transition to full-void closure 

at high stresses (Mun & McCartney, 2015; 2017; Zhou et al., 2018). Furthermore, with some sets of 

parameters, the convexity of the LC loading surface is not assured. It is not a physical matter since 

the thermodynamic admissibility in this framework is always guaranteed. Nonetheless, this issue 

should be avoided if possible during calibration to minimise numerical errors in implementations. In 

order to sidestep these problems, a general approach should be focused on the enhancement of 

Helmholtz free energy and dissipation potentials, taking into account relevant physical features drawn 

from experimental observations.  

4.2.3. Dissipation properties  

Based on the review in Chapter 2, it is found that full coupling between plasticity and hydraulic 

irreversibility and their associated hydro-mechanical dissipation properties are usually not explored 

at length in previous thermodynamics-based approaches. In other words, the investigation of the bi-

directional hydro-mechanical dissipation properties (positiveness) is essential yet often overlooked 

or inadequate in such models. That is responsible for uncertain details on the thermodynamic 

admissibility and full coupling between plasticity and hydraulic irreversibility. Therefore, studying 
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the dissipation properties of the proposed model in this section is essential and significant, 

distinguishing it from others in the literature.  

Using Eq. (3.106) and Eqs. (4.78-4.80), the dissipations due to plastic volumetric deformation, plastic 

shear deformation and irrecoverable saturation can be expressed as:  

Φ̃𝜈 = 𝜒𝜈휀�̇�
p
= 𝑝′휀�̇�

p
= �̇�𝑝

2𝑝′(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 − 𝑆𝑟)]  (4.81) 

Φ̃𝑠 = 𝜒𝑠휀�̇�
p
= 𝑞휀�̇�

p
= �̇�𝑝

2𝑞2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

  (4.82) 

Φ̃ℎ = 𝜒ℎ(−�̇�𝑟
p
) = (𝑠∗ − 𝑝𝑏)(−�̇�𝑟

p
) = �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 {1 − exp[−𝛽(1 − 𝑆𝑟)]}  (4.83) 

Utilising Eq. (4.77) and Eqs. (4.81-4.83) allows expressing Eq. (3.106) in the following form: 

Φ̃ = Φ̃𝜈 + Φ̃𝑠 + Φ̃ℎ = 2�̇�𝑝 {1 +
1

𝑟
𝑝𝑐(𝑢𝑠)
′ (𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 − 𝑆𝑟)]}  (4.84) 

Since exp[−𝛽(1 − 𝑆𝑟)] ≤ 1, the following relation can be written: 

Φ̃ ≥ 2�̇�𝑝 {
[(1−

2

𝑟
)𝑝′]

2
+(3−

4

𝑟
)
1

𝑟
𝑝′𝑝𝑐(𝑢𝑠)

′

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 } exp[−𝛽(1 − 𝑆𝑟)] (4.85) 

Given 𝑟 ≥ 1.5, the numerator of the bracketed expression in Eq. (4.85) is always positive, and hence 

the positiveness of the total dissipation is always guaranteed. However, due to dilation, Φ̃𝜈 can admit 

negative values, while Φ̃𝑠 and Φ̃ℎ are always positive. From Eqs. (4.81-4.85), the dissipation ratios 

R𝜈 , R𝑠, Rℎ between Φ̃𝜈 , Φ̃𝑠, Φ̃ℎ and Φ̃ can be expressed as:  

R𝜈 =
Φ̃𝜈

Φ̃
=

𝑝′(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )exp[−𝛽(1−𝑆𝑟)] 

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
+
1

𝑟
𝑝𝑐(𝑢𝑠)
′ (𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )exp[−𝛽(1−𝑆𝑟)]

  (4.86) 

R𝑠 =
Φ̃𝑠

Φ̃
=

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
−(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2
 

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
+
1

𝑟
𝑝𝑐(𝑢𝑠)
′ (𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )exp[−𝛽(1−𝑆𝑟)]

  (4.87) 

Rℎ =
Φ̃ℎ

Φ̃
=

(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2
[1−exp[−𝛽(1−𝑆𝑟)]] 

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
+
1

𝑟
𝑝𝑐(𝑢𝑠)
′ (𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )exp[−𝛽(1−𝑆𝑟)]

  (4.88) 

For 𝑆𝑟 = 1, Rℎ = 0 indicates purely mechanical dissipation under saturated condition. At the critical 

state where 𝑝′ = 𝑝𝑐(𝑢𝑠)
′ /𝑟, volumetric and hydraulic energy dissipations totally vanish, reflecting the 

fact that the total energy dissipation is fully governed by only the sliding of soil grains. These 

dissipation properties will be further illustrated using experimental data later in Section 4.5.3.  
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4.3. Numerical implementation 

A specific numerical implementation algorithm of the proposed model is briefly presented in this 

section, following the generic formulations in Section 3.3.2 and 3.3.3 of Chapter 3.  For 

implementation purpose, the model descriptions can be summarised and rewritten in tensorial form 

as follows. 

The stress-strain and suction-saturation relationships: 

𝑝′ = 𝑝0
′ exp [

( 𝑣− 𝜈
p
)

𝜅
]  (4.89) 

𝑞 = 3𝐺(휀𝑠 − 휀𝑠
p
)  (4.90) 

𝑠∗ = (𝑝𝑢 + 𝑠0
∗) exp {

𝑆𝑟0+[(−𝑆𝑟)−(−𝑆𝑟
p
)]

𝜅ℎ
} − 𝑝𝑢  (4.91) 

The yield function and evolution rules: 

𝑦 =
(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 +
𝑞2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2
− 1 ≤ 0  (4.92) 

휀�̇�𝑗
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑖𝑗
= �̇�𝑝 (

𝜕𝑦∗

𝜕𝜒𝜈

𝜕𝜒𝜈

𝜕𝜒𝑖𝑗
+
𝜕𝑦∗

𝜕𝜒𝑠

𝜕𝜒𝑠

𝜕𝜒𝑖𝑗
)  (4.93) 

−�̇�𝑟
p
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
= �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

(𝑠∗−𝑝𝑏)[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 [1 − exp[−𝛽(1 − 𝑆𝑟)]]  (4.94) 

where 𝑝𝑐(𝑢𝑠)
′  has been defined in Eqs. (4.21-4.23), and  𝜒𝜈 = 𝑝

′, 𝜒𝑠 = 𝑞, 𝜒ℎ = 𝑠
∗ − 𝑝𝑏, and  

𝜕𝑦∗

𝜕𝜒𝜈
 and 

𝜕𝑦∗

𝜕𝜒𝑠
 are in Eqs. (4.78-4.79). 

4.3.1. Coupled hydro-mechanical tangent stiffness tensor  

The incremental forms of the effective stress tensor �̇�𝑖𝑗
′  and modified suction �̇�∗ can be derived from 

Eqs. (4.89-4.91) as follows:  

�̇�𝑖𝑗
′ = 𝐷𝑖𝑗𝑘𝑙

𝑒 (휀�̇�𝑙 − 휀�̇�𝑙
p
) = [(

𝑝′

𝜅
−
2

3
𝐺) 𝛿𝑖𝑗𝛿𝑘𝑙 + 𝐺(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)] (휀�̇�𝑙 − 휀�̇�𝑙

p
)  (4.95) 

�̇�∗ =
(𝑠∗+𝑝𝑢)

𝜅ℎ
[(−�̇�𝑟) − (−�̇�𝑟

p
)]  (4.96) 

where 휀𝑘𝑙
p

 is the plastic strain tensor and 𝐷𝑖𝑗𝑘𝑙
𝑒 = (

𝑝′

𝜅
−
2

3
𝐺) 𝛿𝑖𝑗𝛿𝑘𝑙 + 𝐺(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)  is the 

pressure-dependent elastic stiffness tensor.  

The consistency condition of the yield function in Eq. (4.92) is written as:   
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�̇� =
𝜕𝑦

𝜕𝜎𝑖𝑗
′ �̇�𝑖𝑗

′ +
𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′ �̇�𝑐(𝑢𝑠)

′ =
𝜕𝑦

𝜕𝜎𝑖𝑗
′ �̇�𝑖𝑗

′ +
𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑠∗
�̇�∗ +

𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐
′

𝜕𝑝𝑐
′

𝜕 𝜈
p 휀�̇�

p
= 0  (4.97) 

where explicit forms of 
𝜕𝑦

𝜕𝜎𝑖𝑗
′ , 

𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′ , 

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐
′  and 

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑠∗
 are detailed as follows.  

The derivatives of the yield function in Eq. (4.92) with respect to effective stress takes the following 

explicit form:  

𝜕𝑦

𝜕𝜎𝑖𝑗
′ =

𝜕𝑦

𝜕𝑝′
𝜕𝑝′

𝜕𝜎𝑖𝑗
′ +

𝜕𝑦

𝜕𝑞

𝜕𝑞

𝜕𝜎𝑖𝑗
′   (4.98) 

in which  

𝜕𝑦

𝜕𝑝′
=

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 −
2(1−

2

𝑟
)(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

3 −
2(1−𝛼)𝑞2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

3
𝑀2

  (4.99) 

𝜕𝑦

𝜕𝑞
=

2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

  (4.100) 

𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′  is written as follows:  

𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′ =

2(−
1

𝑟
)(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 −
2(
1

𝑟
)(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

3 −
2(
𝛼

𝑟
)𝑞2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

3
𝑀2

  (4.101) 

From Eqs. (4.21-4.23), the derivative of 𝑝𝑐(𝑢𝑠)
′  with respect to 𝑝𝑐

′  and 𝑠∗ are expressed as:  

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐
′ = [

𝜆−𝜅

𝜆((1−𝜉)exp(−𝜇𝑠∗)+𝜉)−𝜅
] (

𝑝𝑐
′

𝑝𝑅
′ )

𝜆−𝜆((1−𝜉)exp(−𝜇𝑠∗)+𝜉)

𝜆((1−𝜉)exp(−𝜇𝑠∗)+𝜉)−𝜅
  (4.102) 

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑠∗
= 𝑝𝑅

′ (
𝑝𝑐
′

𝑝𝑅
′ )

𝜆−𝜅

𝜆((1−𝜉)exp(−𝜇𝑠∗)+𝜉)−𝜅
ln (

𝑝𝑐
′

𝑝𝑅
′ )

(𝜆−𝜅)𝜆(1−𝜉)𝜇exp(−𝜇𝑠∗)

[𝜆((1−𝜉)exp(−𝜇𝑠∗)+𝜉)−𝜅]
2  (4.103) 

From Eqs. (4.93-4.97), the incremental coupled hydro-mechanical relationships can be obtained as 

follows:  

�̇�𝑖𝑗
′ = 𝐷𝑖𝑗𝑘𝑙

𝑒 {휀�̇�𝑙 − [𝑀𝑘𝑙휀�̇�𝑙 + 𝐻(−�̇�𝑟)]
𝜕𝑦∗

𝜕𝜒𝑘𝑙
}  (4.104) 

�̇�∗ =
(𝑠∗+𝑝𝑢)

𝜅ℎ
{(−�̇�𝑟) − [𝑀𝑘𝑙휀�̇�𝑙 + 𝐻(−�̇�𝑟)]

𝜕𝑦∗

𝜕𝜒ℎ
}  (4.105) 

where 

𝑀𝑘𝑙 =
𝐷𝑖𝑗𝑘𝑙
𝑒 𝜕𝑦

𝜕𝜎𝑖𝑗
′

(
𝜕𝑦

𝜕𝜎𝑖𝑗
′ )

𝑇

𝐷𝑖𝑗𝑘𝑙
𝑒 𝜕𝑦∗

𝜕𝜒𝑘𝑙
+

𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑠∗
(𝑠∗+𝑝𝑢)

𝜅ℎ

𝜕𝑦∗

𝜕𝜒ℎ
−

𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐
′

𝑝𝑐
′

(𝜆−𝜅)

𝜕𝑦∗

𝜕𝜒𝜈

  (4.106) 
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𝐻 =

(𝑠∗+𝑝𝑢)

𝜅ℎ

𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑠∗

(
𝜕𝑦

𝜕𝜎𝑖𝑗
′ )

𝑇

𝐷𝑖𝑗𝑘𝑙
𝑒 𝜕𝑦∗

𝜕𝜒𝑘𝑙
+

𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑠∗
(𝑠∗+𝑝𝑢)

𝜅ℎ

𝜕𝑦∗

𝜕𝜒ℎ
−

𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐
′

𝑝𝑐
′

(𝜆−𝜅)

𝜕𝑦∗

𝜕𝜒𝜈

  (4.107) 

Eqs. (4.104-4.105) can be rewritten as:  

�̇�𝑖𝑗
′ = [𝐷𝑖𝑗𝑘𝑙

𝑒 (1 − 𝑀𝑘𝑙
𝜕𝑦∗

𝜕𝜒𝑘𝑙
)] 휀�̇�𝑙 + (−𝐷𝑖𝑗𝑘𝑙

𝑒 𝐻
𝜕𝑦∗

𝜕𝜒𝑘𝑙
) (−�̇�𝑟) = 𝛬𝑖𝑗𝑘𝑙휀�̇�𝑙 + 𝛱𝑖𝑗(−�̇�𝑟)  (4.108) 

�̇�∗ = [−
(𝑠∗+𝑝𝑢)

𝜅ℎ

𝜕𝑦∗

𝜕𝜒ℎ
𝑀𝑘𝑙] 휀�̇�𝑙 + [

(𝑠∗+𝑝𝑢)

𝜅ℎ
(1 − 𝐻

𝜕𝑦∗

𝜕𝜒ℎ
)] (−�̇�𝑟) = 𝛺𝑘𝑙  휀�̇�𝑙 + 𝛶(−�̇�𝑟)  (4.109) 

in which  

𝛬𝑖𝑗𝑘𝑙 = 𝐷𝑖𝑗𝑘𝑙
𝑒 (1 − 𝑀𝑘𝑙

𝜕𝑦∗

𝜕𝜒𝑘𝑙
)  (4.110) 

𝛱𝑖𝑗 = −𝐷𝑖𝑗𝑘𝑙
𝑒 𝐻

𝜕𝑦∗

𝜕𝜒𝑘𝑙
  (4.111) 

𝛺𝑘𝑙 = −
(𝑠∗+𝑝𝑢)

𝜅ℎ

𝜕𝑦∗

𝜕𝜒ℎ
𝑀𝑘𝑙  (4.112) 

𝛶 =
(𝑠∗+𝑝𝑢)

𝜅ℎ
(1 − 𝐻

𝜕𝑦∗

𝜕𝜒ℎ
)  (4.113) 

Alternatively, the above incremental coupled hydro-mechanical relationships in Eqs. (4.108-4.109) 

can also be expressed in terms of net stress 𝜎𝑖𝑗 and suction 𝑠. To do that, the constitutive relationships 

Eqs. (4.95-4.96) can be rewritten using Bishop’s effective stress (𝜎𝑖𝑗
′ = 𝜎𝑖𝑗 + 𝑆𝑟𝑠𝛿𝑖𝑗) and modified 

suction (𝑠∗ = 𝑠�̅�), as:  

�̇�𝑖𝑗 = �̇�𝑖𝑗
′ − 𝑠�̇�𝑟𝛿𝑖𝑗 − 𝑆𝑟�̇�𝛿𝑖𝑗  (4.114) 

�̇� =
1

�̅�
(�̇�∗ − 𝑠�̇̅�) =

1

�̅�
(�̇�∗ + 𝑠𝛿𝑘𝑙휀�̇�𝑙)  (4.115) 

Substituting Eqs. (4.108-4.109) in the above equations, �̇�𝑖𝑗 and �̇� can be obtained as:  

�̇�𝑖𝑗 = [𝛬𝑖𝑗𝑘𝑙 −
𝑆𝑟𝛿𝑖𝑗 (�̅�𝑘𝑙+𝑠𝛿𝑘𝑙)

�̅�
] 휀�̇�𝑙 + [𝛱𝑖𝑗 + (𝑠 −

𝑆𝑟𝛶

�̅�
) 𝛿𝑖𝑗] (−�̇�𝑟) = 𝛬̅𝑖𝑗𝑘𝑙휀�̇�𝑙 +𝛱𝑖𝑗(−�̇�𝑟)  (4.116) 

 

�̇� = [
(𝛺𝑘𝑙+𝑠𝛿𝑘𝑙)

�̅�
] 휀�̇�𝑙 + (

𝛶

�̅�
) (−�̇�𝑟) = �̅�𝑘𝑙 휀�̇�𝑙 + �̅�(−�̇�𝑟)  (4.117) 

with 𝛬̅𝑖𝑗𝑘𝑙 = 𝛬𝑖𝑗𝑘𝑙 −
𝑆𝑟𝛿𝑖𝑗 (�̅�𝑘𝑙+𝑠𝛿𝑘𝑙)

�̅�
;  𝛱𝑖𝑗 = 𝛱𝑖𝑗 + (𝑠 −

𝑆𝑟𝛶

�̅�
) 𝛿𝑖𝑗;  �̅�𝑘𝑙 =

(𝛺𝑘𝑙+𝑠𝛿𝑘𝑙)

�̅�
 and �̅� =

𝛶

�̅�
 

expressed in terms of net stress 𝜎𝑖𝑗 and suction 𝑠.  
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4.3.2. Semi-implicit stress return algorithm 

The increments of trial effective stress (𝜎𝑖𝑗
′trial) and trial modified suction (𝑠∗trial) can be of the 

following forms:   

∆𝜎𝑖𝑗
′trial = 𝐷𝑖𝑗𝑘𝑙

𝑒𝑛 ∆휀𝑘𝑙  (4.118) 

∆𝑠∗trial =
(𝑠∗𝑛+𝑝𝑢)

𝜅ℎ
(−∆𝑆𝑟)  (4.119) 

in which the 𝐷𝑖𝑗𝑘𝑙
𝑒𝑛  denotes secant elastic stiffness evaluated at state 𝑛. 

In the yielding regime (𝑦trial(𝜎𝑖𝑗
′trial, 𝑠∗trial, 𝑝𝑐

′) > 0), the first-order Taylor expansion of the yield 

function at a trial point is written as follows:  

𝑦new = 𝑦trial + ∆𝜎𝑖𝑗
′corrt 𝜕𝑦

𝜕𝜎𝑖𝑗
′ |
trial

+ ∆𝑠∗corrt
𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑠∗
|
trial

+ ∆휀𝜈
p 𝑝𝑐

′

(𝜆−𝜅)

𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐
′ |

trial

  (4.120) 

Corrective terms to effective stress tensor and modified suction take the following forms:  

∆𝜎𝑖𝑗
′corrt = −𝐷𝑖𝑗𝑘𝑙

𝑒𝑛 ∆휀𝑘𝑙
p

  (4.121) 

∆𝑠∗corrt = −
(𝑠∗𝑛+𝑝𝑢)

𝜅ℎ
(−∆𝑆𝑟

p
)  (4.122) 

Eq. (4.120) can be rewritten using flow rules in Eqs. (4.93-4.94) and the above equations:   

𝑦new = 𝑦trial − 𝐷𝑖𝑗𝑘𝑙
𝑒𝑛 ∆𝜆𝑝

𝜕𝑦∗

𝜕𝜒𝑘𝑙

∂𝑦

∂𝜎𝑖𝑗
′ |
trial

−
(𝑠∗𝑛+𝑝𝑢)

𝜅ℎ
∆𝜆𝑝

𝜕𝑦∗

𝜕𝜒ℎ

𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑠∗
|
trial

+

𝑝𝑐
′

(𝜆−𝜅)
∆𝜆𝑝

𝜕𝑦∗

𝜕𝜒𝜈

𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐
′ |

trial

  (4.123) 

The plasticity multiplier ∆𝜆𝑝  is then obtained by enforcing the yield condition 𝑦new = 0  in Eq. 

(4.123):  

∆𝜆𝑝 =
𝑦trial

(
𝜕𝑦

𝜕𝜎𝑖𝑗
′ )

𝑇

𝐷𝑖𝑗𝑘𝑙
𝑒𝑛 𝜕𝑦∗

𝜕𝜒𝑘𝑙
|

trial

+
𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑠∗
(𝑠∗𝑛+𝑝𝑢)

𝜅ℎ

𝜕𝑦∗

𝜕𝜒ℎ
|

trial

−
𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐
′

𝑝𝑐
′

(𝜆−𝜅)

𝜕𝑦∗

𝜕𝜒𝜈
|

trial
  (4.124) 

which is used to update stress tensor and matric suction through Eqs. (3.153-3.158) in Chapter 3. It 

is noted that the present investigation is based on infinitesimal strain assumption and focuses on the 

constitutive behaviour (equivalent to a single integration point). This is the first and essential step in 

formulating and validating a constitutive model, as has been widely adopted and followed in the 

literature.  



4-27 

 

4.3.3. An algorithm for mixed-control loading 

An algorithm is developed for mixed-control loading where some components of stress, strain and 

suction are used to control the loading. An example based on the suction-controlled triaxial test is 

used to demonstrate the performance of such an algorithm. In this case, net confining pressures and 

suction are fixed at constant imposed levels of 𝜎22(i) = 𝜎33(i) and 𝑠(i), respectively. The difference 

between the imposed and computed quantities can be written as a residual vector as follows:  

𝐫𝐞𝐬 = (
𝜎22
𝜎33
𝑠
) − (

𝜎22(i)
𝜎33(i)
𝑠(i)

)  (4.125) 

Given constant lateral net stress and constant suction imposed, the first-order Taylor expansion of the 

residual in Eq. (4.125) at the previous state is:  

𝐫𝐞𝐬new = 𝐫𝐞𝐬previous + (
𝛿𝜎22
𝛿𝜎33
𝛿𝑠

)  (4.126) 

in which  

𝐫𝐞𝐬previous = (

𝜎22
previous

𝜎33
previous

𝑠previous

) − (

𝜎22(i)
𝜎33(i)
𝑠(i)

)  (4.127) 

is the residual vector computed at the previous state.  

The constitutive relationship in Eqs. (4.116-4.117) can be rewritten in the below form of the Voigt 

notations:  

(

 
 
 
 

𝛿𝜎11
𝛿𝜎22
𝛿𝜎33
𝛿𝜎12
𝛿𝜎23
𝛿𝜎31
𝛿𝑠 )

 
 
 
 

=

[
 
 
 
 
 
 
 
𝛬1̅111 𝛬1̅122 𝛬1̅133 𝛬1̅112 𝛬1̅123 𝛬1̅131 𝛱11
𝛬̅2211 𝛬̅2222 𝛬̅2233 𝛬̅2212 𝛬̅2223 𝛬̅2231 𝛱22
𝛬̅3311 𝛬̅3322 𝛬̅3333 𝛬̅3312 𝛬̅3323 𝛬̅3331 𝛱33
𝛬1̅211 𝛬1̅222 𝛬1̅233 𝛬1̅212 𝛬1̅223 𝛬1̅231 𝛱12
𝛬̅2311 𝛬̅2322 𝛬̅2333 𝛬̅2312 𝛬̅2323 𝛬̅2331 𝛱23
𝛬̅3111 𝛬̅3122 𝛬̅3133 𝛬̅3112 𝛬̅3123 𝛬̅3131 𝛱31
�̅�11 �̅�22 �̅�33 �̅�12 �̅�23 �̅�31 �̅� ]

 
 
 
 
 
 
 

(

 
 
 
 

𝛿휀11
𝛿휀22
𝛿휀33
𝛿휀12
𝛿휀23
𝛿휀31
−𝛿𝑆𝑟)

 
 
 
 

  (4.128) 

From Eq. (4.128), after some mathematical manipulations, the below expression can be derived:  

(
𝛿𝜎22
𝛿𝜎33
𝛿𝑠

) = [

𝛬̅2211 𝛬̅2212 𝛬̅2223 𝛬̅2231
𝛬̅3311 𝛬̅3312 𝛬̅3323 𝛬̅3331
�̅�11 �̅�12 �̅�23 �̅�31

](

𝛿휀11
𝛿휀12
𝛿휀23
𝛿휀31

) + [

𝛬̅2222 𝛬̅2233 𝛱22
𝛬̅3322 𝛬̅3333 𝛱33
�̅�22 �̅�33 �̅�

] (
𝛿휀22
𝛿휀33
−𝛿𝑆𝑟

)  (4.129) 

Substituting Eq. (4.129) into Eq. (4.126) leads to:  
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𝐫𝐞𝐬new = 𝐫𝐞𝐬previous + [

𝛬̅2211 𝛬̅2212 𝛬̅2223 𝛬̅2231
𝛬̅3311 𝛬̅3312 𝛬̅3323 𝛬̅3331
�̅�11 �̅�12 �̅�23 �̅�31

](

𝛿휀11
𝛿휀12
𝛿휀23
𝛿휀31

)+

[

𝛬̅2222 𝛬̅2233 𝛱22
𝛬̅3322 𝛬̅3333 𝛱33
�̅�22 �̅�33 �̅�

] (
𝛿휀22
𝛿휀33
−𝛿𝑆𝑟

)  (4.130) 

The requirement of 𝐫𝐞𝐬new = 0  in Eq. (4.130) is enforced to obtain the incremental vector of 

(𝛿휀22 𝛿휀33 −𝛿𝑆𝑟)
𝑇 as:  

(

𝛿휀22
𝛿휀33
−𝛿𝑆𝑟

) = [

𝛬̅2222 𝛬̅2233 𝛱22
𝛬̅3322 𝛬̅3333 𝛱33
�̅�22 �̅�33 �̅�

]

−1

{−𝐫𝐞𝐬previous − [

𝛬̅2211 𝛬̅2212 𝛬̅2223 𝛬̅2231
𝛬̅3311 𝛬̅3312 𝛬̅3323 𝛬̅3331
�̅�11 �̅�12 �̅�23 �̅�31

](

𝛿휀11
𝛿휀12
𝛿휀23
𝛿휀31

)} 

 (4.131) 

The obtained strain and saturation degree increments in Eq. (4.131) are then used to update stress and 

suction through the semi-implicit algorithm in Section 4.3.2. The residual vector is used to assess the 

performance of the algorithm for mixed stress-strain control:  

|
𝑟𝑒𝑠1

�̅�22(i)
| ≤ TOLERANCE and |

𝑟𝑒𝑠2

�̅�33(i)
| ≤ TOLERANCE and |

𝑟𝑒𝑠3

𝑠(i)
| ≤ TOLERANCE (4.132) 

with TOLERANCE being a small positive number (10−4 ÷ 10−3 is considered acceptable). The use 

of residual from the previous step in the current step (see Eq. (4.131)), while avoiding iterations, helps 

obtain reasonable results for small enough increments and also removes issues of error accumulation. 

The numerical implementation and verification also include the following: (i) quantitative 

assessments at special conditions (e.g. at the saturated condition when 𝑠 = 0, 𝑆𝑟 = 1 and 
∆𝑞

∆𝑝′
= 3, at 

critical state when ∆휀𝜈
p
= 0, ∆𝑆𝑟

p
= 0 and ∆𝑞 = 0 while ∆휀𝑠

p
≠ 0) (ii) controlling the residuals (see 

Eq. (4.132)), and (iii) verifications using different approaches (e.g. analytical solution).  

In the present approach of numerical implementation, the semi-implicit stress return algorithm is used 

in conjunction with the algorithm for the mixed-control loading (stress- and strain- controlled) to 

simulate appropriate loading paths of experimental data.  
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4.3.4. Numerical verification   

In this section, several numerical examples are performed to verify the proposed integration algorithm 

described in Section 4.3.2 and 4.3.3.  

Strain increment sensitivity  

The first example focuses on the effect of strain increment size (∆휀𝜈) on its numerical accuracy under 

drained isotropic compression condition. In this example, the following parameters are used: 𝜅 =

0.02 ; 𝜆 = 0.11 ; 𝜅ℎ = 1.1 ; 𝑝𝑅
′ = 45.31 kPa ; 𝜇 = 0.15 kPa−1 ; 𝜉 = 0.39 ; 𝑝𝑐0

′ = 77.32 kPa ; 𝑟 =

3.704; 𝛽 = 0.05; 𝑝𝑏 = 80 kPa. Five numerical simulations are carried out using five volumetric 

strain increments (∆휀𝜈 = 2 × 10
−6 ; 2 × 10−5 ; 2 × 10−4 ; 2 × 10−3 ; 2 × 10−2 ) with a constant 

suction of 𝑠 = 100 kPa . They all are isotropically loaded from the initial net pressure of �̅�0 =

19.18 kPa, the specific volume of 𝜈0 = 1.732 and saturation degree of 𝑆r0 = 0.728. Responses in 

 �̅�: 𝜈 and 𝜈: 𝑠 are plotted in Figure 4.7a and 4.7b, respectively. Also depicted in Figure 4.7b are the 

relative errors |
𝑠−𝑠(i)

𝑠(i)
| between imposed and computed suctions. It can be seen in Figure 4.7a that the 

algorithm in Section 4.3.3 performs well for small enough increments (∆휀𝜈 < 2 × 10
−3). Larger 

errors can be seen if the strain increments are high enough. However, the algorithm is stable, given 

no error accumulation and the steady decrease of error towards the end of the numerical test, despite 

no iterations were used, thanks to the use of residual control in the algorithm (Eq. (4.131)). Numerical 

solutions in a suction-controlled test (see Figure 4.7b) helps maintain constant suction of 𝑠 =

100 kPa for strain increment within a reasonable range (∆휀𝜈 = 2 × 10
−6 ÷ 2 × 10−4). 

 

Figure 4.7. Performance of the proposed stress update algorithm under different values of ∆휀𝜈 (a) 

�̅� − 𝜈 and (b) 𝜈 − 𝑠, 𝜈 − |
𝑠−𝑠(𝑖)

𝑠(𝑖)
| 
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Verification against semi-analytical and analytical algorithm for isotropic 

compression condition  

The performance of the proposed algorithm in Section 4.3.3 is also verified against a semi-analytical 

algorithm which uses the semi-implicit stress return algorithm in Section 4.3.2 combined with the 

analytical enforcement of constant suction condition. This semi-analytical algorithm can be briefly 

presented as follows.  

Given ∆휀𝜈 and 𝑠, the trial values of effective mean stress (𝑝′trial) and modified suction (𝑠∗trial) in 

the first step of this algorithm are calculated using the following form:  

𝑝′trial = 𝑝′𝑛 + ∆𝑝′trial = 𝑝′𝑛 +
𝑝′𝑛

𝜅
∆휀𝜈  (4.133) 

𝑠∗trial = 𝑠∗𝑛 + ∆𝑠∗trial = 𝑠∗𝑛 + (−𝑠∆휀𝜈)  (4.134) 

with 𝑝′𝑛 being effective mean stress at step 𝑛 

From Eq. (4.124), ∆𝜆𝑝 in the case of isotropic compression tests takes the following form:  

∆𝜆𝑝 =
𝑦trial

𝜕𝑦

𝜕𝑝′
𝑝′𝑛

𝜅

𝜕𝑦∗

𝜕𝜒𝜈
|
trial

+
𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑠∗
(𝑠∗𝑛+𝑝𝑢)

𝜅ℎ

𝜕𝑦∗

𝜕𝜒ℎ
|

trial

−
𝜕𝑦

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐(𝑢𝑠)
′

𝜕𝑝𝑐
′

𝑝𝑐
′

(𝜆−𝜅)

𝜕𝑦∗

𝜕𝜒𝜈
|

trial  (4.135) 

The new increment of effective mean stress (𝑝′) can be computed using ∆𝜆𝑝 as follows:  

∆𝑝′ = ∆𝑝′trial + ∆𝑝′corrt  (4.136) 

With ∆𝜆𝑝 obtained, the increment of saturation degree (−∆𝑆𝑟) can be expressed as:  

−∆𝑆𝑟 =
𝜅ℎ

(𝑠∗𝑛+𝑝𝑢)
∆𝑠∗trial + ∆𝜆𝑝

𝜕𝑦∗

𝜕𝜒ℎ
|
trial

  (4.137) 

The effective mean stress or alternatively net stress are then updated using the following equations:  

𝑝′𝑛+1 = 𝑝′𝑛 + ∆𝑝′  (4.138) 

�̅�𝑛+1 = 𝑝′𝑛+1 − 𝑆𝑟
𝑛+1𝑠  (4.139) 

where 𝑆𝑟
𝑛+1 is updated saturation degree thanks to Eq. (4.137).  

In this example, ∆휀𝜈 = 2 × 10
−6  is used and three different suction levels of 0 ;  25 ; 100 kPa 

corresponding to initial conditions of �̅�0 = 20.64; 19.01; 19.18  kPa; 𝜈0 = 1.802; 1.792; 1.732 and 

𝑆𝑟0 = 1; 0.768; 0.728, respectively. The same set of parameters in the previous example is adopted. 

At various suction levels(𝑠 = 0, 25, 100 kPa), 𝜈 and 𝑆𝑟 are plotted against �̅� in Figure 4.8 to present 

the results obtained using both algorithms. For 𝑠 = 0 the Unloading-Reloading Line (URL) and 

Normal Compression Line (NCL) are also plotted and considered by an analytical solution for the 
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case of saturated behaviour. As indicated in Figure 4.8, both numerical and semi-analytical solutions 

are identical, and they also coincide with the analytical result for the case of saturated behaviour (𝑠 =

0). These features highlight the numerical stability of the proposed stress return algorithm and the 

effectiveness of the iterative algorithm to enforce constant suction condition. 

 

Figure 4.8. Verification of the proposed stress update algorithms in isotropic compressions (a) �̅� −

𝜈 (b) �̅� − 𝑆𝑟  

Verification against the algorithm based on mean effective and deviatoric stresses 

For the triaxial shearing tests, the current numerical implementations in this study are based on the 

tensorial stress (𝜎𝑖𝑗
′ -based algorithm). It is now assessed against a counterpart using mean effective 

and deviatoric stresses (𝑝′, 𝑞 - based algorithm). To do so, an example on the suction-controlled 

triaxial test is presented using the following model parameters: 𝜅 = 0.006; 𝜆 = 0.09; 𝑀 = 1.17; 

𝐺 = 7000 kPa; 𝜅ℎ = 0.56; 𝑝𝑅
′ = 140.41 kPa; 𝜇 = 0.0229 kPa−1; 𝜉 = 0.652; 𝑝𝑐0

′ = 200 kPa; 𝑟 =

1.818; 𝛼 = 0.5; 𝛽 = 0.05; 𝑝𝑏 = 70 kPa. In this example, during shearing, the lateral net stress is 

kept constant at 100 kPa while suctions are fixed at 0, 100, and 300 kPa with 𝜈0 = 1.576, 1.578, 

1.576, and 𝑆𝑟0 = 1, 0.4, 0.2 respectively. A small axial strain increment of ∆휀11 = 10
−6 is used. 
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Figure 4.9 shows a good match between the two algorithms in terms of deviatoric stress, volumetric 

strain and saturation degree against the axial strain under a range of suction levels. For the case of 

zero suction, the behaviour of a critical state model (Collins, 2003) are also sketched in Figures 4.9a 

and 4.9b, and match well with the numerical results produced by the proposed model. The results in 

Figure 4.9 again verify the implementation and the capability of the model in handling the transition 

between saturated and partially saturated conditions.  

 

Figure 4.9. Verification of the proposed stress update algorithms in triaxial compressions (a) 휀11 −

𝑞 (b) 휀11 − 휀𝜈 and (c) 휀11 − 𝑆𝑟 
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4.4. Model parameters  

The proposed model possesses 13 parameters categorised into five groups, namely Group 1 

(𝜅, 𝐺, 𝜆, 𝑝𝑐0
′ , 𝑀), Group 2 (𝜅ℎ), Group 3 (𝑝𝑅

′ , 𝜇, 𝜉), Group 4 (𝑟, 𝛼) and Group 5 (𝛽, 𝑝𝑏). This section 

aims to provide details on the calibration of these model parameters, using a suction-controlled 

triaxial test on Bourke silt (Uchaipichat, 2005; Uchaipichat & Khalili, 2009). A step by step approach 

is presented in which parameters in each group are calibrated using relevant sets of experimental data. 

An assessment of the model behaviour against experimental data, using the calibrated parameters, 

will then be provided at the end of the Section to demonstrate the effectiveness of the calibration. 

In Group 1, parameters 𝜅, 𝐺, 𝜆, 𝑝𝑐0
′  and 𝑀 are calibrated following the same procedure applicable to 

MCC for saturated soils. Particularly, by fitting the equations of NCL and URL to their experimental 

counterparts in the saturated state, 𝜅, 𝜆 and 𝑝𝑐0
′  can be determined. Based on Eq. (4.3),  𝐺 is estimated 

from the average gradients of the 휀𝑠 − 𝑞 plots obtained from laboratory shear tests. The ratio between 

effective mean and deviatoric stresses at the ultimate state is used to determine 𝑀. For Bourke silt-

SCT, 𝜅 = 0.006;  𝜆 = 0.09; 𝑝𝑐0
′ = 200 kPa;  𝑀 = 1.17 (Uchaipichat, 2005) and 𝐺 = 7000 kPa are 

found to match well with the experimental data on the saturated state.  

 

Figure 4.10. Calibration of 𝜅ℎ based on SWCC obtained from net pressure-controlled tests on 

Bourke silt (Uchaipichat, 2005; Uchaipichat & Khalili, 2009)  

The parameter 𝜅ℎ (Group 2) governs the 𝑠: 𝑆𝑟 relationship, and also affect the mechanical behaviour 

due to the hydro-mechanical coupling (see Eqs. (4.109) and (4.117)). Figure 4.10 shows the best fit 

to the measured data using 𝜅ℎ = 0.16 for drying tests under constant net mean stresses of 50 kPa, 

100 kPa, 150 kPa and 200 kPa.  
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Figure 4.11. Calibration of 𝑝𝑅
′ , 𝜇 and 𝜉 based on suction-controlled isotropic compression tests on 

Bourke silt (Uchaipichat, 2005; Uchaipichat & Khalili, 2009) 

Parameters listed in Group 3 are to control the shape of the initial yield surface in the space of true 

stress and modified suction. At each level of suction, the model produces higher initial yield stresses 

and therefore lower rates of saturation degree at lower values of 𝑝𝑅
′ , 𝜉 and higher values of 𝜇. This is 

closely linked to the expansion of yield surface when 𝑝𝑅
′ , 𝜉 get smaller, and 𝜇 becomes bigger. The 

slope of NCL in the stage before yielding is insensitive to changes in these parameters, while that in 

the yielding stage becomes steeper if 𝑝𝑅
′ , 𝜇 decrease and 𝜉 increases. Furthermore, one should note 

that different suctions exhibit different effect levels of 𝑝𝑅
′ , 𝜉 and 𝜇 on the model performance. Their 

effects are less profound at lower suctions for 𝑝𝑅
′ , 𝜉  and higher suction for 𝜇. It is well matched with 

the more convergence in yield curves of different 𝜉 and 𝑝𝑅
′  when a lower suction is imposed, and that 

of different 𝜇 with a higher suction. These features are shown to be good indicators of their significant 

roles in controlling the soil stiffness and yielding response under hydraulic effects. Especially, these 

parameters (𝑝𝑅
′ , 𝜇 and 𝜉) play significant roles in generating the wetting/drying-induced collapse 

mechanism. Using a best-fitting least-square procedure, they can be selected to make the LC curve in 

the 𝑝′: 𝑠∗ plane fit with initial yield values of effective mean stress and modified suction provided by 

isotropic compression tests. Given 𝜅 = 0.006;  𝜆 = 0.09; 𝑝𝑐0
′ = 200 kPa  in Group 1, the following 

parameters are chosen for Group 3: 𝑝𝑅
′ = 140.41 kPa;  𝜇 = 0.0229 kPa−1; 𝜉 = 0.652 to allow the 

initial 𝑝′: 𝑠∗ yield curve to fit well with that from experimental data of Bourke silt-SCT, as illustrated 

in Figure 4.11.  

Effective mean stress: 𝑝′(kPa) 
  

M
o

d
if

ie
d
 s

u
ct

io
n
: 
𝑠
∗
 (
k
P
a)

 

 



4-35 

 

 

Figure 4.12. Calibration of 𝛼 based on suction-controlled triaxial tests on Bourke silt (Uchaipichat, 

2005; Uchaipichat & Khalili, 2009) (a) 𝑝′ − 𝑞 (b) 𝑝′ − 𝑞 − 𝑠∗ 

Parameters 𝑟 and 𝛼 in Group 4 govern the shear strength and dilation. Particularly, the yield surface 

expands towards the upper right direction in the 𝑝′: 𝑞 space when 𝑟 decreases. This is consistent with 

the increase in the initial shear stress with decreasing 𝑟, that is stronger at a higher suction. Along 

with this, at the same shear strain 휀𝑠 in the yielding stage, lower values of 𝑟 imply a more profound 

dilative behaviour and a smaller saturation degree. This can be explained by the growth of the 

effective mean stress at the critical state because CSL tends to shift towards NCL in the 𝑝′: 𝜈 plane if 

𝑟  is reduced. As a result, the positive increment of plastic volumetric strain becomes smaller. 

Reduction in 𝑟 is physically related to a denser state of soils where the particle rotation is more 

constrained by interlocking and the shear resistance increases. That results in a more upward 

movement of the plastic sliding at the inter-particle contact during shearing. On the other hand, the 

dilation becomes more profound in the saturated state with decreasing 𝛼 . The sensitivity of the 

dilative response to the parameter 𝛼 can be clarified through its main contribution in generating the 

plastic change of shear strain which significantly affects both direction and magnitude of the non-

associated plastic flow vector. This model uses 𝑟 = exp[(𝑁 − 𝛤)/(𝜆 − 𝜅)] (Uchaipichat, 2005) as 

an empirical equation representing the spacing between NCL and CSL in the 𝑝′: 𝜈 plane to estimate 

𝑟 , where 𝑁  and 𝛤  are reference specific volumes of NCL and CSL under saturated conditions, 

respectively. With 𝜅 = 0.006; 𝜆 = 0.09 , 𝑁 = 2.0472  and 𝛤 = 1.997  given in the laboratory 

(Uchaipichat, 2005), 𝑟  is estimated as 1.818 for Bourke silt-SCT.  Once 𝑟  is obtained, 𝛼  can be 

determined by adjusting it until reaching a best-fit between predictive and measured data of initial 

yield surface in the 𝑝′: 𝑞 space at 𝑠 = 0 kPa. For example, Figure 4.12a shows a good agreement 
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between the experimental and theoretical results of Bourke silt-SCT for 𝛼 = 0.5. The calibrated 

initial yield surface of Bourke silt-SCT in (𝑝′, 𝑞, 𝑠∗) space is depicted in Figure 4.12b.  

 

Figure 4.13. Calibration of 𝛽 based on dilatancy ratio obtained from suction-controlled triaxial tests 

on Bourke silt under 𝑠 = 100 𝑘𝑃𝑎 and 𝜎33 = 100 𝑘𝑃𝑎 (Uchaipichat, 2005; Uchaipichat & Khalili, 

2009) 

Group 5 includes two parameters, 𝛽 and 𝑝𝑏, both of which are only present in the flow rules (Eqs. 

(4.78 & 4.80)). Parameter 𝛽 is a coupling parameter governing the effect of saturation degree on the 

proportion between 휀�̇�
p

 and 휀�̇�
p

, so-called plastic dilatancy ratio, while 𝑝𝑏  influences the hydraulic 

dissipative generalised stress. Reducing 𝑝𝑏 increases in the hydraulic energy lost and therefore affects 

the irrecoverable rate of saturation degree. 𝛽 can be iteratively calibrated to achieve the best match 

in terms of the ratio 휀�̇�
p
/휀�̇�
p
 between the experimental result and its theoretical counterpart obtained 

from Eqs. (4.78-4.79): 

̇𝜈
p

̇𝑠
p =

(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )[(1−𝛼)𝑝′+

𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

𝑞[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 − 𝑆𝑟)]  (4.140) 

For simplicity, it is assumed that the elastic deformation is very small, and hence the experimentally 

measured strains are approximately equal to plastic strains (Wong & Wong, 1975). For Bourke silt-

SCT, the experimental result of the shear test under 𝑠 = 100 kPa and 𝜎33 = 100 kPa is used. As 

illustrated in Figure 4.13, the numerical results are in good agreement with experimental data for 𝛽 =

0.05. After obtaining 𝑟 and 𝛽,  𝑝𝑏 can be calibrated using the following equation derived from Eqs. 

(4.78) and (4.80): 

𝑝𝑏 = 𝑠
∗ −

[1−exp[−𝛽(1−𝑆𝑟)]]

exp[−𝛽(1−𝑆𝑟)]
(𝑝′ −

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

̇𝜈
p

(−�̇�𝑟
p
)
  (4.141) 
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where 
̇𝜈
p

(−�̇�𝑟
p
)
≈

̇𝜈

(−�̇�𝑟)
 is assumed and variables (𝑝′, 𝑠∗, 휀�̇� , �̇�𝑟 , 𝑆𝑟 ) are collected from only a single 

isotropic compression test. Using Eq. (4.141),  𝑝𝑏 = 70 kPa is obtained using the isotropic loading 

case with 𝑠 = 100 kPa.   

 

Figure 4.14. Validation with drained isotropic compression tests on Bourke silt (after Uchaipichat, 

2005; Uchaipichat & Khalili, 2009) (a) 𝑠 = 0 kPa (b) 𝑠 = 100 kPa (c) 𝑠 = 300 kPa 

The calibrated parameters 𝜅 = 0.006; 𝜆 = 0.09; 𝜅ℎ = 0.16; 𝑝𝑅
′ = 140.41 kPa; 𝜇 = 0.0229 kPa−1; 

𝜉 = 0.652; 𝑝𝑐0
′ = 200 kPa; 𝑟 = 1.818; 𝛽 = 0.05 and 𝑝𝑏 = 70 kPa result in good agreement with 

experiments on drained isotropic compression test at different suction levels (𝑠 = 0 kPa; 100 kPa 

and 300 kPa) (see Figure 4.14).  

4.5. Model behaviour and validation 

This section is to present several examples to highlight the predictive capacity of the proposed model. 

The model performance is assessed against experimental results of both isotropic compression and 

triaxial shear tests under drained and undrained conditions.  
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4.5.1. Isotropic compression test  

The heavily compacted sand-bentonite mixture, constant suction tests (Sun et al., 

2009; Sun & Sun, 2012) 

In the first example, the drained oedometer test on the heavily compacted sand-bentonite mixture is 

examined with 𝑝𝑐0
′ = 550 kPa (Sun et al., 2009; Sun & Sun, 2012). The following parameters: 𝜅 =

0.017;  𝜆 = 0.085; 𝑝𝑅
′ = 422.38 kPa; 𝜇 = 0.0124 kPa−1 and 𝜉 = 0.357 are calibrated to best fit the 

initial yield curve in the 𝜎v
′: 𝑠∗  plane. The data on 𝑠 = 600 kPa is used to obtain 𝜅ℎ = 0.25; 𝑟 =

1.299;  𝛽 = 0.05 and 𝑝𝑏 = 70 kPa. The comparison between the model prediction and measured 

data at four suction levels of 𝑠 = 300 kPa, 600 kPa, 1200 kPa, and 1500 kPa is illustrated in Figure 

4.15.  

The results show that the model is able to provide a good match to experimentally observed behaviour. 

In the elastic regime, the 𝜎v
′: 𝑠∗ stress paths are inside the yield surface (see Figure 4.15d), and no 

change in the slope of the NCL in the (𝜎v
′ , 𝜈) plane is observed (see Figure 4.15c) while in the (𝜎v, 𝜈) 

plane (Figure 4.15a) it is sensitive to the variation of suction. Once the stress path crosses the initial 

yield surface, the irreversible changes of both specific volume and saturation degree are triggered 

simultaneously. The initial yield stress is observed to increase when suction increases owing to the 

characteristic of wetting-induced hardening law in Eq. (4.21). The decrease of the NCL slope with 

increasing suction is attributed to the hydraulic effect on soil stiffness (see Eq. (4.23)). Furthermore, 

Figure 4.15b demonstrates that a significant increase in saturation degree is captured, although suction 

remains unchanged during loading. This is an indication that the mechanical effect on SWCC 

(Gallipoli et al., 2003; Nuth & Laloui, 2008) is taken into consideration in this model.  
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Figure 4.15. Validation with drained oedometer tests on the heavily compacted sand-bentonite 

mixture (after Sun et al., 2009; Sun & Sun, 2012) (a) 𝜎𝑣 − 𝜈 (b) 𝜎𝑣 − 𝑆𝑟 (c) 𝜎𝑣
′ − 𝜈 (d) 𝜎𝑣

′ − 𝑠∗ 

Compacted unsaturated expansive clay, constant suction tests (Zhan, 2003) 

The drained isotropic compression test on the compacted unsaturated expansive clay (Zhan, 2003) is 

examined. The calibration of the following parameters is based on the initial yield curve, resulting in 

𝜅 = 0.015;  𝜆 = 0.05; 𝑝𝑐0
′ = 80 kPa; 𝑝𝑅

′ = 50 kPa; 𝜇 = 0.025 kPa−1 and 𝜉 = 0.3. The data on 𝑠 =

25 kPa  is adopted to determine 𝜅ℎ = 0.55; 𝑟 = 2;  𝛽 = 0.2  and 𝑝𝑏 = 70 kPa . The predicted and 

measured data at 𝑠 = 25 kPa;  50 kPa;  100 kPa and 200 kPa are illustrated in Figure 4.16. As can 

be seen, the model can provide a good match to experimental responses, except for some 

discrepancies at 𝑠 = 200 kPa. In particular, the simultaneous activation in irreversible changes of 

both volume and saturation degree is well captured. The initial yield stress increases, and the NCL 

slope decreases when suction increases. Furthermore, saturation degree is observed to significantly 

increase despite unchanged suction, indicating the model’s ability in predicting the mechanical effect 

on SWCC.  
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Figure 4.16. Validation with a drained isotropic compression test on compacted unsaturated 

expansive clay (after Zhan, 2003) (a) �̅� − 𝜈 (b) �̅� − 𝑆𝑟 

Fairbanks silt, constant water content tests (Zhang, 2016) 

Next, the undrained isotropic compression test under constant gravimetric water content of 𝑤 = 8.3% 

on Fairbanks silt (Zhang, 2016) is simulated. The parameters for this simulation are taken as follows: 

𝜅 = 0.006;  𝜆 = 0.026 ; 𝜅ℎ = 0.05 ; 𝑝𝑅
′ = 206.78 kPa ; 𝜇 = 0.0157 kPa−1 ; 𝜉 = 0.628 ; 𝑝𝑐0

′ =

250 kPa; 𝑟 = 1.5; 𝛽 = 0.1; 𝑝𝑏 = 80 kPa. In this example, the soil specimen is first loaded from A 

to B (phase 1) and from B (�̅� = 300 kPa), an unloading is then conducted ending at point C (�̅� =

100 kPa; phase 2). After that, phase 3 experiences a reloading along CD until �̅� = 600 kPa.  
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Figure 4.17. Validation with undrained isotropic compression tests on Fairbanks silt at 𝑤 = 8.3% 

(after Zhang, 2016) (a) �̅� − 𝜈 (b) 𝑠 − 𝜈 (c) �̅� − 𝑆𝑟 (d) 𝑠 − 𝑆𝑟 (e) �̅� − 𝑠 (f) 𝑝′ − 𝑠∗ 

As can be seen in Figure 4.17, the whole experimental trends are well reproduced by the model. In 

phase 1 and 3, together with the reduction in specific volume, the model behaviour exhibits a decrease 

in matric suction and an increase in saturation degree, and a fairly good prediction of the 

experimentally measured SWCC can be seen (see Figure 4.17d). In phase 2, a drying response is 

induced by the unloading process. Both stress-strain and SWCC relationships cannot recover their 

previous states upon unloading, indicating the ability of the model to produce different responses 

under wetting and drying. A similar response pattern can also be observed in the case of 𝑤 = 9.9%, 

as shown in Figure 4.18. Remarkably, these responses are simulated through the adoption of only a 

unique yield locus of effective stress and modified suction without using a separate SWCC and 
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different parameters of drying and wetting processes. This feature represents an advance of the current 

model compared to others in the literature.  

 

Figure 4.18. Validation with undrained isotropic compression tests on Fairbanks silt at 𝑤 = 9.9% 

(after Zhang, 2016) (a) �̅� − 𝜈  (b) 𝑠 − 𝑆𝑟 

Also provided in this test is a sensitivity analysis to investigate the role of parameter 𝛽 governing the 

mechanical effects on the wetting-drying difference of SWCC. Figure 4.19 shows cycles of loading 

from A to B1, B2, B3 and unloading from B1, B2, B3 to C1, C2, C3 using 𝛽 = 0, 0.1, and 0.15 , 

respectively. As depicted in Figure 4.19a, the mechanical behaviour is relatively insensitive to the 

change of 𝛽, facilitating the calibration, while in Figure 4.19b, 𝛽 has a strong effect on the water 

retention curves. The change of saturation degree is fully recoverable despite the irrecoverable 

specific volume if 𝛽 = 0, indicating pure mechanical dissipation. When 𝛽 ≠ 0, the coupled hydro-

mechanical dissipation is activated to allow the proposed model to capture the wetting-drying 

difference during the loading-unloading process, making the current approach distinct from previous 

studies.  
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Figure 4.19. Effects of different values of 𝛽 on the model responses under undrained isotropic 

compression tests on Fairbanks silt (after Zhang, 2016) (a) �̅� − 𝜈 (b) 𝑠 − 𝑆𝑟 

The mixture of Fairbanks silt and Kaolin clay, constant water content tests (Li, 2015) 

The numerical prediction under the undrained isotropic compression condition is validated against 

the experiments on the mixture of Fairbanks silt and Kaolin clay carried out by Li (2015). Three 

different levels of gravimetric water content are investigated: 𝑤 = 11.85%, 11.99% and 15.91%. 

The model parameters are: 𝜅 = 0.0076; 𝜆 = 0.043; 𝜅ℎ = 0.03; 𝑝𝑅
′ = 120 kPa; 𝜇 = 0.022 kPa−1; 

𝜉 = 0.376;  𝑝𝑐0
′ = 150 kPa;  𝑟 = 1.5;  𝛽 = 0.95;  𝑝𝑏 = 40 kPa  where 𝜅, 𝜆, 𝑝𝑅

′ , 𝜇, 𝜉  and 𝑝𝑐0
′  are 

identified using initial yield points obtained from experiments. The calibrations of 𝜅ℎ, 𝑟, 𝛽 and 𝑝𝑏 are 

based on the experimental loading case of 𝑤 = 11.99% . Computed and measured results are 

compared in Figure 4.20. It can be seen that the model predictions agree closely with the experimental 

data. The variation of the soil response with 𝑤 is also well-captured. In particular, the initial yield 

stress and the NCL slope increase with increased gravimetric water content in the net stress space. 

Lower gravimetric water content corresponding to the higher initial suction exhibits a more profound 

reduction in suction. The increase in saturation degree is more significant for the higher levels of 

gravimetric water content. Furthermore, the non-uniqueness of SWCC is observed through its 

dependence on NCL during loading.  
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Figure 4.20. Validation with undrained isotropic compression tests on the mixture of Fairbanks silt 

and Kaolin clay (after Li, 2015) (a) �̅� − 𝜈 (b) 𝑠 − 𝜈 (c) �̅� − 𝑆𝑟 (d) 𝑠 − 𝑆𝑟 (e) �̅� − 𝑠 (f) 𝑝′ − 𝑠∗ 

4.5.2. Triaxial compression tests  

Zaoyang clay, constant suction tests (Chen, 2007) 

A numerical analysis on the effect of suction on the shear behaviour of the model is conducted through 

the suction-controlled triaxial shearing test on compacted Zaoyang clay at two levels of suction 𝑠 =

25 kPa and 𝑠 = 100 kPa (Chen, 2007). The net confining pressure is kept as a constant value of 
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𝜎33 = 50 kPa  during shearing. This simulation uses the following parameters: 𝜅 = 0.018; 𝜆 =

0.11; 𝜅ℎ = 0.9; 𝑝𝑅
′ = 45.31 kPa; 𝜇 = 0.15 kPa−1; 𝜉 = 0.39; 𝑝𝑐0

′ = 77.32 kPa;  𝑟 = 3.704;  𝛽 =

0.05;  𝑝𝑏 = 70 kPa,  which are calibrated to best match the experimental results of the suction-

controlled isotropic compression test (𝑠 = 25 kPa and 𝑠 = 100 kPa) as presented in Figure 4.21. The 

shear test at constant suction 𝑠 = 25 kPa is also adopted to calibrate other constitutive parameters, 

resulting in 𝑀 = 1.29; 𝐺 = 15000 kPa and 𝛼 = 0.38.  

 

Figure 4.21. Effects of suction on the model responses in suction-controlled isotropic compression 

test of the compacted Zaoyang clay (after Chen, 2007) (a) �̅� − 𝜈 (b) �̅� − 𝑆𝑟 (c) 𝑝′ − 𝑠∗ 

As depicted in Figures 4.22a-c, the numerical results show reasonable agreement with the 

experimental data. In particular, higher suctions tend to produce higher yield shear stresses, as can be 

explained through the isotropic expansion of yield loci with increasing suction in the 𝑝′: 𝑞 space (see 

Figure 4.22d). Additionally, the model can capture the evolution trend in specific volume and 

saturation degree during shearing. This feature is shown to be a good indicator of the effect of 

deviatoric stress/strain on hydraulic behaviour. The effect of suction on dilation behaviour (see Figure 

4.22e) can also be reproduced by the model. Although an acceptable match between the model 

prediction and measured data is achieved, there are observable discrepancies in specific volume and 

dilatancy ratio at 𝑠 = 100 kPa (see Figure 4.22b). This may be due to the assumption that CSL is 

unique and the effect of anisotropy on soil response (Stropeit et al., 2008; Al-Sharrad, 2013; 

Anandarajah, 2008; Hashiguchi & Mase, 2007; Wood & Graham, 1990; Lai et al., 2009; 2016) is 

overlooked regardless of the hydraulic variation.  
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Figure 4.22. Effects of suction on the model response in suction-controlled triaxial compression test 

on compacted Zaoyang clay (after Chen, 2007) (a) 휀11 − 𝑞 (b) 휀11 − 𝜈 (c) 휀11 − 𝑆𝑟 (d) 𝑝′ − 𝑞 (e) 
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It can be seen in Figure 4.22a that very slight softening responses can be seen while volumetric strain 

indicates compaction (hardening trend; see Figure 4.22d) and saturation degree increases in this test. 

However, the softening behaviour, in this case, is minor and may be attributed to the effects of 

inhomogeneity at the grain scale that are hard or impossible to account for in a continuum model. For 

example, both grain size and pore size distributions vary in the specimen, resulting in local actions 

(such as pore collapse and grain rearrangements) that are different across the whole specimen. Due 

to these local inhomogeneities, the macro response can slightly vary from the overall hardening trend. 

A continuum model (that is built on the assumption of homogenous deformation at the scale of a 

Representative Volume Element (REV), well above the grain scale) cannot capture the effects of local 

inhomogeneities below the RVE scale.  
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Kurnell sand, constant suction tests (Russell, 2004) 

The shear behaviour of the model is next investigated using data obtained from drained triaxial tests 

on Kurnell sand at 𝑠 = 0 kPa; 100 kPa and 200 kPa with the net confining pressure 𝜎33 = 50 kPa 

(Russell, 2004). This example uses the experimental results of 𝑠 = 0 kPa to calibrate and obtain the 

following parameters 𝜅 = 0.01; 𝐺 = 4300 kPa;  𝜆 = 0.25; 𝑝𝑐0
′ = 600 kPa; 𝑟 = 2.5; 𝑀 = 1.28 and 

𝛼 = 0.45. Other parameters: 𝜅ℎ = 0.004; 𝑝𝑅
′ = 363.31 kPa; 𝜇 = 0.0601 kPa−1; 𝜉 = 0.6; 𝛽 = 0.05; 

𝑝𝑏 = 70 kPa are calibrated to best fit the test results at 𝑠 = 100 kPa. As depicted in Figure 4.23, the 

numerical results show reasonable agreement with the experimental data. In particular, higher 

suctions tend to produce higher yield shear stresses. The model can also give a fairly good prediction 

of suction-dependent dilation responses (see Figure 4.23b). However, some discrepancies between 

numerical and experimental data are found at about the peak of shear stress in the case of 𝑠 = 100 kPa 

and 200 kPa (see Figure 4.23a). This is probably due to the ignorance of strain localisation.  

 

Figure 4.23. Validation with a drained triaxial compression test on the Kurnell sand (after Russell, 

2004) (a) 휀𝑠 − 𝑞 (b) 휀𝑠 − 휀𝜈 

Sand-silt-kaolinite mixture, constant water content tests (Maleki & Bayat, 2012) 

The model performance is further assessed using the triaxial shearing test on compacted dry sand-

silt-kaolinite mixture under the condition of constant gravimetric water content (Maleki & Bayat, 

2012). The following model parameters are calibrated using experimental results of 𝑤 = 6.1%: 𝜅 =

0.006;  𝜆 = 0.15;  𝑀 = 1.54;  𝐺 = 7000 kPa;  𝜅ℎ = 0.15;  𝑝𝑅
′ = 143.41 kPa;  𝜇 = 0.0589 kPa−1; 

𝜉 = 0.372;  𝑝𝑐0
′ = 300 kPa;  𝑟 = 1.85;  𝛼 = 0.55;  𝛽 = 0.5;  𝑝𝑏 = 90 kPa . The plot presented in 
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Figure 4.24 is obtained results at two levels of the constant water content of 𝑤 = 6.1% and 7.23%, 

under a net radial stress of 𝜎33 = 50 kPa.  

 

Figure 4.24. Effects of different values of gravimetric water content on the model response under 

undrained triaxial compression tests on the compacted dry sand-silt-kaolinite mixture (Maleki & 

Bayat, 2012) (a) 휀11 − 𝑞 (b) 휀11 − 휀𝜈 (c) 휀11 − 𝑠 

The results in Figure 4.24 show the capability of the model in reproducing the experimental trend 

drawn from the undrained triaxial compression test. The abrupt slope change in Figure 4.24a is a 

typical feature and also a limitation of elastoplastic models in capturing the smooth transition from 

elastic to plastic behaviour. Improvement to capture this smooth transition using sub-loading surface 

(Salomoni & Fincato, 2012) or a unification of hypo-plastic and elastoplastic theories (Einav, 2012). 

In this test, a dilation response is observed in which deviatoric stress and volumetric strain initially 

experience a rapid increase before reaching a peak and then a drop until they become stable at the 
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critical state, while suction follows the opposite trend. The influence of different gravimetric water 

contents on the undrained shear behaviour is also reflected in the behaviour of the proposed model. 

The shear strength is observed to be higher, and the change of suction is more remarkable at lower 

gravimetric water content. The volumetric strain is more dilative if 𝑤 decreases.   

Bourke silt, constant suction tests (Uchaipichat, 2005; Uchaipichat & Khalili, 2009) 

In the next example, the shearing stage of Bourke silt-SCT (Uchaipichat, 2005; Uchaipichat & Khalili, 

2009) is used to validate and demonstrate the performance of the model. This test was conducted at 

three levels of imposed suction 𝑠 = 0 kPa, 𝑠 = 100 kPa  and 𝑠 = 300 kPa . The net confining 

pressure is controlled at 𝜎33 = 50, 100  and 150 kPa  during shearing. The parameter set of this 

example, as obtained in Section 4.4, is summarized as follows: 𝜅 = 0.006; 𝜆 = 0.09; 𝑀 = 1.17; 𝐺 =

7000 kPa;  𝜅ℎ = 0.16;  𝑝𝑅
′ = 140.41 kPa;  𝜇 = 0.0229 kPa−1;  𝜉 = 0.652;  𝑝𝑐0

′ = 200 kPa;  𝑟 =

1.818;  𝛼 = 0.5;  𝛽 = 0.05;  𝑝𝑏 = 70 kPa . Figures 4.25-4.27 show the comparison between 

experimental and numerical results on deviatoric stress and volumetric strain plotted against the shear 

strain. A good match between the results obtained from the numerical analyses and their experimental 

counterparts can be seen, except some minor discrepancies in the case of 𝑠 = 300 kPa and 𝜎33 =

150. These mismatches may be results of using homogeneous assumption, ignoring shear localisation, 

especially when softening occurs (e.g. 𝜎33 = 50 kPa, 𝑠 = 0 kPa). The effects of strain localisation 

have not yet been considered in this model despite its importance for the failure mechanism of soils 

(Hashiguchi & Tsutsumi, 2007; Mroginski et al., 2011; Nguyen et al., 2016; Nguyen & Bui, 2020). 

The readers can refer to Nguyen et al. (2016) and Nguyen & Bui (2020) for issues and treatments for 

localisation effects at the constitutive level. The current approach will be improved in Chapter 5 to 

take into account the effects of strain localisation, using the framework proposed in Nguyen & Bui 

(2020).  
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Figure 4.25. Drained triaxial compression tests on Bourke silt at 𝑠 = 0 kPa (after Uchaipichat 2005; 

Uchaipichat & Khalili, 2009) (a) 휀𝑠 − 𝑞 (b) 휀𝑠 − 휀𝜈 
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Figure 4.26. Drained triaxial compression tests on Bourke silt at 𝑠 = 100 kPa (after Uchaipichat 

2005; Uchaipichat & Khalili, 2009) (a) 휀𝑠 − 𝑞 (b) 휀𝑠 − 휀𝜈 
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Figure 4.27. Drained triaxial compression tests on Bourke silt at 𝑠 = 300 kPa (after Uchaipichat 

2005; Uchaipichat & Khalili, 2009) (a) 휀𝑠 − 𝑞 (b) 휀𝑠 − 휀𝜈 

4.5.3. Model performance under complex loading conditions 

Based on the above validation, the proposed model is subjected to a series of combined mechanical-

hydraulic loading paths using the same set of parameters for Bourke silt-SCT to explore its 

performance further. Five loading paths starting at different states are shown in Figure 4.28. In path 

1, the soil specimen is isotropically compressed in the saturated state from A (�̅� = 1 kPa, 𝜈 =

1.8, 𝑠 = 0, 𝑆𝑟 = 1) to B (�̅� = 40 kPa), C (�̅� = 70 kPa), D (�̅� = 100 kPa) and beyond. Path 2 is the 

drying process at constant net mean stresses of �̅� = 40 kPa, 70 kPa and 100 kPa from B, C and D to 

B’, C’ and D’, respectively, to reach 𝑠 = 50 kPa. Another isotropic loading initiated from B’ is 

carried out under constant suction of 𝑠 = 50 kPa in path 3. BB2, CC2 and DD2 are drained shearing 

loading path 4 when the soil specimen is fully saturated. Path 5 (B’B’2, C’C’2, D’D’2) is the suction-

controlled triaxial shearing test at 𝑠 = 50 kPa.  
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Figure 4.28. Loading and hydraulic paths in (�̅�, 𝑞, 𝑠) space 

The numerical results on paths 1,2, and 3 are plotted in Figure 4.29. The shearing stress paths 4 and 

5 are illustrated in both the (𝑝′, 𝑞) and (�̅�, 𝑞) spaces, as seen in Figure 4.30. Figures 4.31-4.32 plots 

the deviatoric stress, volumetric strain, saturation degree and dissipation ratios against the axial strain 

for paths 4 and 5, respectively. Figures 4.29-4.32 demonstrate that the model behaves as expected 

under the saturated condition where the hydraulic dissipation ratio Rℎ (hydraulic/total) remains zero 

during isotropic compression and shearing under  𝑠 = 0 kPa. The water retention curve depicted in 

Figure 29d shows the variation of saturation from high (at B, C, D) to low (at B’, C’, D’) produced 

by the model. This demonstrates the capability of the model in capturing a smooth transition from 

fully saturated to saturated conditions.  

As illustrated in Figures 4.30-4.32, the sheared sample first experiences elastic response where early 

parts of stress paths 4 and 5 are entirely located inside the initial yield surfaces. Plastic response with 

the activation and development of irrecoverable changes in strain and saturation degree takes place 

after these paths cross the initial yield surfaces. Coupled hydro-mechanical dissipation dominated by 

shear dissipation can be seen in Figures 4.31d-f and Figures 4.32d-f. Thereafter, with further shearing, 

the evolutions of shear stress, volumetric strain and saturation degree gradually stop and attain the 

steady state at which only the change of shear strain exists. At this state, the dissipation ratios R𝜈 

(between volumetric and total) and Rℎ  (between hydraulic and total) approach zero while R𝑠 

(shear/total) is equal to 1.  
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The proper unified forms of yield surface, flow rules and hardening law endow the model with 

advantages in capturing gradual transitions between hardening, perfect plasticity and softening 

responses with the changes of net confining pressure and suction. As sketched in Figure 4.31-4.32, 

the proposed hydro-mechanical coupling can capture different responses, from hardening (𝜎33 =

100 kPa at 𝑠 = 0 kPa; 𝜎33 = 70, 100 kPa at 𝑠 = 50 kPa), to perfect plasticity (𝜎33 = 70 kPa at 𝑠 =

0 kPa) and softening (𝜎33 = 40 kPa at 𝑠 = 0 kPa; and 𝜎33 = 40 kPa at 𝑠 = 50 kPa). To illustrate, 

during shearing in the yielding stage, the contractive/hardening response involves the increase in 

deviatoric stress and volumetric strain corresponding to the decrease in the positive value of 𝑅𝜈 and 

the rise in 𝑅𝑠. These features are consistent with what is observed in Figure 4.30 that shearing stress 

paths first reach initial yield curves (with 𝑝′ >
1

𝑟
𝑝𝑐(𝑢𝑠)
′ ) and then make loading surfaces more 

expansive before touching CSL. For the response of perfect plasticity, shear strength and volumetric 

strain are unchanged, whereby 𝑅𝜈 ≈ 0 and  𝑅𝑠 ≈ 1 from the initial yield point to the end of the 

shearing process. In this case, Figure 4.30 illustrates that the stress path traverses the intersection 

point between the initial yield curve and CSL at which 𝑝′ =
1

𝑟
𝑝𝑐(𝑢𝑠)
′ . The softening behaviour follows 

the opposite trend in 𝑞, 휀𝜈 , 𝑆𝑟 , 𝑅𝜈  and 𝑅𝑠  to that of the hardening behaviour. Such a dilative 

phenomenon is also associated with physical mechanisms observed in Figure 4.30. In this case, after 

crossing CSL, stress paths keep moving towards reaching yield curves with 𝑝′ <
1

𝑟
𝑝𝑐(𝑢𝑠)
′ . With 

further shearing, they then go back and touch CSL to obtain a steady-state where the yield surface is 

narrowed. Drawing on the above analyses, the more dilative response is observed at lower values of 

radial stress and suction. The net confining pressure plays a more significant role in controlling the 

contraction-dilation transition owing to its dominance in the soil skeleton stress.  
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Figure 4.29. The behaviour of the proposed model under load paths 1, 2 and 3 (a) �̅� − 𝜈 (b) 𝑠 − 𝜈 

(c) �̅� − 𝑆𝑟 (d) 𝑠 − 𝑆𝑟 (e) 𝑝′ − 𝑠∗ 
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Figure 4.30. Initial yield surface and stress paths of the proposed model under load paths 4 and 5 (a) 

𝑝′ − 𝑞 (b) �̅� − 𝑞 

 

Figure 4.31. The behaviour of the proposed model under load path 4 and 𝑠 = 0 kPa (a) 휀11 − 𝑞 (b) 

휀11 − 휀𝜈 (c) 휀11 − 𝑆𝑟 (d) 휀11 − R𝜈 (e) 휀11 − Rs (f) 휀11 − Rℎ 
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Figure 4.32. The behaviour of the proposed model under load path 5 and 𝑠 = 50 kPa (a) 휀11 − 𝑞 (b) 

휀11 − 휀𝜈 (c) 휀11 − 𝑆𝑟 (d) 휀11 − R𝜈 (e) 휀11 − Rs (f) 휀11 − Rℎ 

4.6.  Closure 

In the proposed critical state constitutive model for partially saturated soils derived from the generic 

thermodynamics-based approach in Chapter 3, the current study strikes a good balance between 

rigour, simplicity, number of parameters and performance. The rigour in the formulation of the 

proposed model guarantees thermodynamic admissibility. The obtained model described in equations 

(4.89-4.94) is simple in its structure given it possesses a single yield surface with effects of both stress 

and suction, and corresponding evolution laws for plastic strains and irreversible saturation. This 

leads to strong hydro-mechanical coupling through the simultaneous activation of both hydraulic and 

mechanical dissipative mechanisms upon yielding, and simplifies the implementation given there is 

only one yield surface. This continuum scale feature reflects the inseparable nature of the interaction 

between grain rearrangement and liquid-bridge redistribution at the grain scale while removing the 
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use of a separate SWCC in the model. Different hydro-mechanical responses obtained in wetting-

drying and loading-unloading paths are the consequences of this strong hydro-mechanical coupling 

in the constitutive structure. This feature makes the current model distinct from existing models for 

partially saturated soils, which usually disregard or underestimate mechanisms of hydromechanical 

coupling at the grain level to evaluate how close the constitutive formulations are to given 

experimental observations of unsaturated soils at the continuum level as discussed in Chapter 2 and 

hence use multiple yield surfaces. Furthermore, the concept of critical state is well reflected in the 

model where only the sliding of soil grains governs the whole energy dissipation with the vanishing 

of the evolutions of shear stress, volumetric strain and saturation degree at the critical state. The model 

requires only 13 parameters, of which 5 are for a classical Modified Cam Clay model; all of them 

have been shown in Section 4.4 to be calibrated from standard tests on partially saturated soils. Its 

efficacy is assessed against a range of experimentally measured behaviour of partially saturated soils, 

demonstrating the model’s predictive capability for a wide range of hydro-mechanical interactions 

(e.g. hydraulic effects on soil stiffness, dilation, shear strength and mechanical effects on the wetting-

drying difference of SWCC). All of the above-mentioned features indicate that the proposed critical 

state model is able to address a range of requirements for constitutive modelling of partially saturated 

soils, as reviewed in Chapter 2.  

However, it is noted that the proposed critical state model is an example to illustrate the applicability 

of the generic thermodynamic framework (see Chapter 3) in capturing the coupled hydro-mechanical 

dissipation of partially saturated soils. Further planned improvements include (i) effects of air-entry 

suction on yielding, (ii) different forms of NCL under high stresses and more complex loading paths, 

(iii) anisotropic behaviour, (iv) closed-shape yield surface, and (v) the mechanisms of lower scale 

grain to grain contacts (e.g. Nguyen & Gan, 2014; Bignonnet et al., 2016; Fang et al., 2017; Nicot & 

Darve, 2007; Yin et al., 2009) for a mechanism-based expression of effective stress. The 

incorporation of the mechanisms of localised failure in the constitutive structure discussed and 

presented in Nguyen & Bui (2020) are also essential. These features will be addressed in future works 

towards better models for partially saturated soils. 
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Chapter 5.  Meso-macro connection in a mechanism-based 

approach to constitutive modelling of unsaturated soils under the 

drained shearing condition 

5.1. Introduction  

As addressed in Chapter 2, localised failure in geomaterials in general and partially saturated soils in 

particular results in very different responses in the specimens, with high deformation inside the 

localisation band and much outside this band. This can be considered as an indispensable mechanism 

of soil collapse, requiring a new generic constitutive structure taking into account the orientation and 

thickness of the localisation band (Nguyen et al., 2012, 2014, 2016; Nguyen & Bui, 2020). It is 

essential to describe intrinsic inelastic mechanisms of the localised failure in variably saturated soils 

at the meso-macro scale that underpins the macro scale nonlinear responses. In particular, as the 

assumption on homogeneity in Continuum Mechanics breaks down in post-localisation regime, 

classical constitutive models for partially saturated soils are no longer valid in this regime. Attempts 

to capture post-localisation behaviour at the constitutive level are not physically meaningful if not 

accompanied with enhancements to account for the high strain gradient across the soil sample. A 

rigorous and systematic thermodynamics-based formulation with two explicitly defined free energy 

and dissipation potentials (Nguyen & Bui, 2020) is adopted and further developed in this study to 

correctly describe both pre-and post-localisation responses of partially saturated soils at the 

constitutive level. 

Following the approach of Nguyen & Bui (2020), the kinematics of constitutive structure is enriched, 

allowing two separate hydro-mechanical responses outside and inside the localisation band to be 

connected to describe correctly all essential characteristics of the macro behaviour observed in 

suction-controlled tests on partially saturated soils. Beyond the bifurcation, the material outside the 

localisation zone is assumed to undergo negligible irreversible deformation, while irreversible 

behaviour inside this localisation zone is the main source of dissipation of the whole volume element 

under consideration. This irreversible hydro-mechanical behaviour inside the localisation band is 

described by a constitutive model for partially saturated soils possessing a single yield surface in 

stress-suction space governing the interdependence of two evolution rules for plastic strain and 

irrecoverable saturation degree. These two constitutive relationships are linked by the traction and 

pore pressure continuity condition across the boundary of the shear band. As a result, this allows to 

naturally derive a criterion for the onset of localised deformation, taking into account the 

irreversibility between wetting and drying processes, which has not yet been addressed in the 
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literature. The effects of mechanical behaviour on SWCC can also be naturally reproduced in the 

evolution of behaviour inside the localisation region, reflecting the inter-dependence of mechanical 

and hydraulic dissipations at the grain scale. Furthermore, the proposed framework can be backward 

compatible with classical constitutive models for responses under homogenous and fully saturated 

conditions, permitting smooth transitions from diffuse to localised failure and from fully to partially 

saturated states. The size-dependent behaviour is automatically met for any model derived from the 

proposed constitutive structure, as the size and orientation of shear band and specimen size are taken 

into account in the generic formulation. The promising features of this approach are elucidated and 

the behaviour validated against a range of experimental data obtained from drained tests. Details on 

the model used for irreversible hydro-mechanical behaviour inside the localisation band have been 

presented in Chapter 3. It is noted that the generic structure of the proposed approach allows the use 

of any constitutive models for the behaviour at the mesoscale of the localisation band. 

This chapter is organised as follows. In Section 5.2, a general thermomechanical framework is 

presented to describe fundamental relationships. It is followed by formulations of macro constitutive 

structures for homogeneous irreversible deformation, the onset of localisation and post-localisation 

behaviour based on the interactions between the hydromechanical response outside and inside the 

shear band in Section 5.3. Next, Section 5.4 briefly describes the numerical implementation of this 

generic framework where bifurcation and two-level stress return algorithms are provided, going with 

several examples of numerical verification. Identification and calibration of model parameters are 

then briefly presented in Section 5.5. Sections 5.6 and 5.7 are dedicated to presenting performances 

of this model, which are validated and investigated through a range of numerical examples.  

5.2. A generic thermodynamics-based formulation  

A generic thermodynamic approach is described in this section to provide a basis for enhancements 

to the framework considering two scales for partially saturated soils at the constitutive level.  
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Figure 5.1. A volume element (with volume 𝑉) crossed by a finite thickness localisation zone and 

schematic illustration of displacement and strain profiles in the localised stage of failure. 

The key difference between the proposed approach and existing models for partially saturated soils 

is the details of the shear band. In this framework, only a single tabular shear band is considered for 

simplicity, although it is acknowledged that the multiple intersecting localisation bands can occur 

over the sheared specimen (Patil, 2014; Nguyen et al., 2017). As can be seen in Figure 5.1, this band 

is defined by surface area 𝑆, thickness ℎ and normal vector �̅�𝑖  representing the orientation. It is 

embedded within an RVE of arbitrary shape and size with volume 𝑉 and effective size 𝐻′ which can 

be computed from the specimen size and orientation of localisation band through 𝐻′ = 𝑉

𝑆
.  

The volume fraction is introduced as a new parameter capturing the size-dependent behaviour induced 

by localised failure (Nguyen et al., 2012, 2014, 2016; Nguyen & Bui, 2020):  

𝑓 =
𝑆ℎ

𝑉
=

𝑆ℎ

𝑆𝐻′
=

ℎ

𝐻′
  (5.1) 

It is acknowledged that Eq. (5.1) is just an assumption for the sake of simplicity to approximately 

measure the relative relationship between localised failure and specimen size. Physically, 𝑓 can vary 

with loading paths in the post- localisation stage as tackled in (Nguyen & Bui, 2020). However, this 

feature is not yet considered in the current framework, where 𝑓 is assumed to be constant.  

Given 𝑓, the macro strain rate 휀�̇�𝑗 can be computed as a volume-averaged quantity of strain rates 

inside 휀�̇�𝑗
i  and outside 휀�̇�𝑗

o  the localisation band through the homogenisation as follows (Nguyen et al., 

2012):  

1 

2 

3 

�̅�𝑖 𝜑 
Shear band 

𝜑 

𝑉: specimen volume 

ℎ 

𝐿 
𝑆 

𝑢𝑖 
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휀�̇�𝑗 = (1 − 𝑓)휀�̇�𝑗
o + 𝑓휀�̇�𝑗

i   (5.2) 

The strain rate across the band boundary is not continuous. In this case, a jump between  휀�̇�𝑗
i  and 휀�̇�𝑗

o  

can be measured from the relative velocity �̇�𝑖 between two faces of the localisation band through the 

following form (Neilsen & Schreyer, 1993) (see Figure 5.1): 

휀�̇�𝑗
i − 휀�̇�𝑗

o =
1

ℎ
(�̇�𝑖�̅�𝑗)

s
  (5.3) 

From Eqs. (5.2) and (5.3), 휀�̇�𝑗
o  and 휀�̇�𝑗

i  can be expressed using primary variables of macro strain rate 

휀�̇�𝑗 and velocity �̇�𝑖 as:  

휀�̇�𝑗
o = 휀�̇�𝑗 −

𝑓

ℎ
(�̇�𝑖�̅�𝑗)

s
  (5.4) 

휀�̇�𝑗
i = 휀�̇�𝑗 +

1−𝑓

ℎ
(�̇�𝑖�̅�𝑗)

s
  (5.5) 

Given the above kinematic enrichment, a generic thermodynamics-based framework is then 

developed to describe the coupled hydro-mechanical behaviour of partially saturated soils accounting 

for size effects. The rate of work input �̃� (Houlsby, 1997; Coussy et al., 2010) (with the tilde sign 

“∼” representing a pseudo-time-derivative) can be expressed in the form of Bishop’s effective stress 

𝜎𝑖𝑗
′  and modified suction 𝑠∗ as (see Chapter 3):  

�̃� = 𝜎𝑖𝑗
′ 휀�̇�𝑗 + 𝑠

∗(−�̇�𝑟) = (𝜎𝑖𝑗 + 𝑠𝑆𝑟𝛿𝑖𝑗)휀�̇�𝑗 − �̅�𝑠�̇�𝑟  (5.6) 

where 𝑠∗ = �̅�𝑠 has been used. In the case of zero air pressure (𝑝𝑎 = 0) (assumption iii, Chapter 3) 

and incompressible solid phase (휀�̇�𝑗𝛿𝑖𝑗 = −�̇̅�), Eq. (5.6) can be rewritten in the form of total stress 

𝜎𝑖𝑗 and suction 𝑠 as:  

�̃� = 𝜎𝑖𝑗휀�̇�𝑗 − 𝑠 (�̅��̇�𝑟 + 𝑆𝑟�̇̅�) = 𝜎𝑖𝑗휀�̇�𝑗 + 𝑠 (−�̇̅�𝑤)  (5.7) 

with �̅�𝑤 = �̅�𝑆𝑟 denoting the Lagrangian volumetric water content.  

The following energy balance is expressed for the isothermal process (Ziegler, 1983):  

�̃� = Φ̃ + Ψ̇    (5.8) 

As previously mentioned in Chapter 2, localised failure induces strong non-homogeneous 

deformation and saturation within partially saturated soils. In this case, the shear band splits the soil 

specimen into two separate parts with different responses. Particularly, irrecoverable hydro-

mechanical processes can be reasonably assumed to take place within the localisation band, while the 

behaviour of the surrounding bulk can be reasonably assumed to be recoverable (see Figure 2.31). In 
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this sense, the Helmholtz free energy of the system can be written considering the configuration of a 

composite material consisting of two phases as follows:  

Ψ = (1 − 𝑓)Ψo(휀𝑖𝑗
o , −𝑆𝑟

o) + 𝑓Ψi(휀𝑖𝑗
i , −𝑆𝑟

i , 휀𝑖𝑗
ip
, −𝑆𝑟

ip
)  (5.9) 

in which 휀𝑖𝑗
x  and −𝑆𝑟

x (“x” stands for “i” or “o”) are the total strain and saturation degree of the zone 

“x” with the corresponding Helmholtz energy potential Ψx. Internal variables (휀𝑖𝑗
ip
, −𝑆𝑟

ip
) only appear 

in Ψi to indicate that during post-localisation, the energy dissipation process of the whole REV takes 

place entirely inside the localisation band.  

The following form can be obtained after substituting the differential of Eq. (5.9) into Eq. (5.8):  

�̃� = Φ̃ + (1 − 𝑓) [
𝜕Ψo

𝜕𝜀𝑖𝑗
o 휀�̇�𝑗

o +
𝜕Ψo

𝜕(−𝑆𝑟
o)
(−�̇�𝑟

o)] + 𝑓 [
𝜕Ψi

𝜕𝜀𝑖𝑗
i 휀�̇�𝑗

i +
𝜕Ψi

𝜕(−𝑆𝑟
i)
(−�̇�𝑟

i) +
𝜕Ψi

𝜕𝜀
𝑖𝑗
ip 휀�̇�𝑗

ip
+

𝜕Ψi

𝜕(−𝑆𝑟
ip
)
(−�̇�𝑟

ip
)] 

 (5.10) 

The material responses are assumed to be homogeneous for a unit volume element in each zone 

outside and inside the shear band. Therefore, the constitutive relationships in Eqs. (3.92-3.94) of 

Chapter 3 can be used to define the corresponding stress-like variables of each zone as follows:  

𝜕Ψx

𝜕𝜀𝑖𝑗
x = 𝜎𝑖𝑗

′x = 𝜎𝑖𝑗
x + 𝑠x𝑆𝑟

x𝛿𝑖𝑗  (5.11) 

𝜕Ψx

𝜕(−𝑆𝑟
x)
= 𝑠∗x = �̅�x𝑠x  (5.12) 

where 𝜎𝑖𝑗
′x, 𝜎𝑖𝑗

x , 𝑠∗x, 𝑠x and �̅�x are Cauchy effective stress, Cauchy total stress (or Cauchy net stress 

𝜎𝑖𝑗 due to 𝑝𝑎 = 0), modified suction, suction and Lagrangian porosity of zone “x”, respectively.  

Substituting Eqs. (5.11) and (5.12) into Eq. (5.10) leads to:  

�̃� = Φ̃ + (1 − 𝑓)𝜎𝑖𝑗
o휀�̇�𝑗

o + 𝑓𝜎𝑖𝑗
i 휀�̇�𝑗

i + (1 − 𝑓)𝑠o (−�̇̅�𝑤
o) + 𝑓𝑠i (−�̇̅�𝑤

i ) + 𝑓 [
𝜕Ψi

𝜕𝜀
𝑖𝑗
ip 휀�̇�𝑗

ip
+

𝜕Ψi

𝜕(−𝑆𝑟
ip
)
(−�̇�𝑟

ip
)]  (5.13) 

with �̅�𝑤
x = �̅�x𝑆𝑟

x being the Lagrangian volumetric water content associated with region “x”.   

After substituting Eqs. (5.4-5.5) in the above expression and rearranging it, the following expression 

can be obtained: 
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�̃� = Φ̃ + [(1 − 𝑓)𝜎𝑖𝑗
o + 𝑓𝜎𝑖𝑗

i ]휀�̇�𝑗 −
𝑓(1−𝑓)

ℎ
(𝜎𝑖𝑗

o − 𝜎𝑖𝑗
i )(�̇�𝑖�̅�𝑗)

s
+ (1 − 𝑓)𝑠o (−�̇̅�𝑤

o) + 𝑓𝑠i (−�̇̅�𝑤
i ) +

𝑓 [
𝜕Ψi

𝜕𝜀
𝑖𝑗
ip 휀�̇�𝑗

ip
+

𝜕Ψi

𝜕(−𝑆𝑟
ip
)
(−�̇�𝑟

ip
)]  (5.14) 

For suction-controlled (drained) triaxial shear tests, the drainage process is carried out over a long 

period. The continuity can be usually observed in the relative flow vector of fluid mass between 

spaces inside and outside the shear band. Therefore, pore pressure can be reasonably assumed to be 

continuous (𝑠 = 𝑠i = 𝑠o) across the localisation band (Mroginski et al., 2011; Schiava & Etse, 2006; 

Borja et al., 2004). With this condition, Eq. (5.14) can be rewritten as:  

�̃� = Φ̃ + [(1 − 𝑓)𝜎𝑖𝑗
o + 𝑓𝜎𝑖𝑗

i ]휀�̇�𝑗 −
𝑓(1−𝑓)

ℎ
(𝜎𝑖𝑗

o − 𝜎𝑖𝑗
i )(�̇�𝑖�̅�𝑗)

s
+ 𝑠 [(1 − 𝑓) (−�̇̅�𝑤

o) + 𝑓 (−�̇̅�𝑤
i )] +

𝑓 [
𝜕Ψi

𝜕𝜀
𝑖𝑗
ip 휀�̇�𝑗

ip
+

𝜕Ψi

𝜕(−𝑆𝑟
ip
)
(−�̇�𝑟

ip
)]  (5.15) 

For the comparison purpose, Eq. (5.7) is recalled as follows:  

�̃� = 𝜎𝑖𝑗휀�̇�𝑗 + 𝑠 (−�̇̅�𝑤)  (5.16) 

The comparison between Eqs. (5.15) and (5.16) allows obtaining the following relationships: 

𝜎𝑖𝑗 = (1 − 𝑓)𝜎𝑖𝑗
o + 𝑓𝜎𝑖𝑗

i   (5.17) 

(−�̇̅�𝑤) = (1 − 𝑓) (−�̇̅�𝑤
o) + 𝑓 (−�̇̅�𝑤

i )  (5.18) 

Eqs. (5.17) and (5.18) present the weighted sum of the two stress fields and volumetric water contents 

inside and outside the shear band to determine macro homogenised stress and volumetric water 

content.   

In this case, the dissipation potential can be obtained as:  

Φ̃ =
𝑓(1−𝑓)

ℎ
(𝜎𝑖𝑗

o − 𝜎𝑖𝑗
i )(�̇�𝑖�̅�𝑗)

s
− 𝑓 [

𝜕Ψi

𝜕𝜀
𝑖𝑗
ip 휀�̇�𝑗

ip
+

𝜕Ψi

𝜕(−𝑆𝑟
ip
)
(−�̇�𝑟

ip
)] ≥ 0  (5.19) 

It can be assumed that the energy dissipation is fully governed by irreversible changes of strain and 

saturation degree inside the localisation band, given the strain rate 휀�̇�𝑗
i  (Eq. (5.5)) inside the 

localisation band and its irreversible part, 휀�̇�𝑗
ip

, are the primary variables governing the inelastic 

mechanics' behaviour inside this band. This is an assumption that leads to a physically meaningful 

condition for internal equilibrium and useful constitutive structure (Nguyen & Bui, 2020).  Thus, the 

first term in Eq. (5.19) should vanish: 

(𝜎𝑖𝑗
o − 𝜎𝑖𝑗

i )(�̇�𝑖�̅�𝑗)
s
= 0  (5.20) 
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Eq. (5.20) must be met for any non-zero velocity jump �̇�𝑖 . Hence, for a non-trivial solution, the 

following condition is required:  

(𝜎𝑖𝑗
o − 𝜎𝑖𝑗

i )�̅�𝑗 = 0  (5.21) 

It can be seen that Eq. (5.21) is the classical traction equilibrium condition across the boundary of the 

localisation zone, which appears naturally from the proposed thermodynamic formulation. 

Given the condition in Eq. (5.21), the dissipation in Eq. (5.19) now reduces to: 

Φ̃ = −𝑓 [
𝜕Ψi

𝜕𝜀
𝑖𝑗
ip 휀�̇�𝑗

ip
+

𝜕Ψi

𝜕(−𝑆𝑟
ip
)
(−�̇�𝑟

ip
)] ≥ 0  (5.22) 

Or,  

Φ̃ = −𝑓 [
𝜕Ψi

𝜕𝜀𝜈
ip 휀�̇�

ip
+

𝜕Ψi

𝜕𝜀𝑠
ip 휀�̇�

ip
+

𝜕Ψi

𝜕(−𝑆𝑟
ip
)
(−�̇�𝑟

ip
)] = 𝑓[�̅�𝜈휀�̇�

ip
+ �̅�𝑠휀�̇�

ip
+ �̅�ℎ(−�̇�𝑟

ip
)] ≥ 0  (5.23) 

From Eqs. (5.9) and (5.23), a rate-independent yield criterion can be derived in much the same way 

as that presented in Chapter 3 with the following generic form of yield function:  

𝑦 = 𝑦(𝑝′i, 𝑞i, 𝑠∗i, 휀𝜈
ip
, 휀𝑠
ip
, −𝑆𝑟

ip
)    (5.24) 

and flow rules: 

휀�̇�
ip
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝜈
    (5.25) 

휀�̇�
ip
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑠
    (5.26) 

−�̇�𝑟
ip
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
    (5.27) 

The above expressions present a generic form of thermodynamic-based two-scale framework for 

unsaturated soils, which is able to capture the transition between diffuse (𝑓 = 1, 𝜎𝑖𝑗 = 𝜎𝑖𝑗
o = 𝜎𝑖𝑗

i , 

�̇̅�𝑤 = �̇̅�𝑤
o = �̇̅�𝑤

i ) and localised (𝑓 < 1 , 𝜎𝑖𝑗 ≠ 𝜎𝑖𝑗
o ≠ 𝜎𝑖𝑗

i , �̇̅�𝑤 ≠ �̇̅�𝑤
o ≠ �̇̅�𝑤

i  ) stages of failure in a 

rigorous way. To formulate specific two-scale models based on the above generic formulation, 

explicitly defined energy and dissipation potentials are needed.  

5.3. Constitutive structure  

A more comprehensive and correct description of the failure is obtained by capturing the transition 

from diffuse to localised mode, triggered by a bifurcation point. Following fundamental relationships 

described in Section 5.2, this section focuses on a constitutive structure that can handle homogeneous 
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inelastic deformation, the onset of localisation and post-localisation behaviour in the case of constant 

suction triaxial shear tests (see Figure 5.2).  

 

Figure 5.2. Schematic illustration of homogeneous inelastic deformation, the onset of localisation 

and post-localisation behaviour in the case of axial stress-strain relationship. 

5.3.1. Diffuse stage  

Before the bifurcation point, materials undergo homogeneous deformation and continuous saturation 

when 𝑓 = 1. Eqs. (5.2), (5.17) and (5.18) result in a single set of stress-strain and suction-saturation 

relationships to describe the behaviour of the whole REV. In this case, the generic double-scale 

formulation in Section 5.2 collapses to the homogeneous one presented in Section 3.3.1 of Chapter 3. 

Description of the homogeneous model 

To be consistent with the generic thermodynamics-based formulation presented in Section 5.2, the 

constitutive model used in this stage is almost the same as that proposed in Chapter 4, possessing a 

good balance between rigour, simplicity, number of parameters and performance. The advantages of 

this constitutive modelling are that it allows the incorporation of the irreversible degree of saturation 

and its strong coupling with plastic strain for producing a single critical state yield function and a 

unique “plastic” multiplier with different evolution rules for internal variables. This is a result of a 

rigorous thermodynamics-based approach accounting for the interdependence of mechanical and 

A
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hydraulic thermodynamic forces and their dependence on all internal variables, in addition to 

effective stress and suction to reflect the interactions between grain contact sliding and capillary 

irreversibility at the grain scale. Thanks to these features, this model is able to simulate the 

simultaneous activation and evolution between yield stress/plastic strain and yield suction/irreversible 

saturation in a variety of loading and hydraulic conditions without the use of a separate water retention 

curve and different parameter sets for wetting and drying paths which are usually encountered in 

many existing constitutive models for partially saturated soils.  

An extensive analysis of model performance and dissipation characteristics based on experimental 

data of partially saturated soils is conducted in Chapter 4 to highlight promising features of the current 

approach in capturing the dependence of soil stiffness, dilation, shear strength on hydraulic effects 

(e.g. suction, saturation degree), effects of stress and strain on the wetting-drying difference of 

SWCC, the smooth transitions between regimes of saturation (capillary, funicular, and pendular), 

loading (drying, isotropic compression, shearing),  dilation (hardening, perfect plasticity, softening). 

These behavioural features are modelled using only a small number of parameters, all of which can 

be calibrated from standard tests on partially saturated soils through a systematic procedure.  

A minor modification employed to the formulation of the model in Chapter 4,  the pressure-dependent 

elastic moduli of soils is replaced by the pressure-independent one for simplicity thanks to the use of 

the Helmholtz specific energy potential expressed as follows:   

Ψ =
𝐸

6(1−2𝜚)
(휀𝜈 − 휀𝜈

p
)
2
+
3

4

𝐸

(1+𝜚)
(휀𝑠 − 휀𝑠

p
)
2
+ 𝜅ℎ(𝑝𝑢 + 𝑠0

∗) exp [
𝑆𝑟0+(−𝑆𝑟)−(−𝑆𝑟

p
)

𝜅ℎ
] − [(−𝑆𝑟) −

(−𝑆𝑟
p
)]𝑝𝑢 + (−𝑆𝑟

p
)𝑝𝑏  (5.28) 

where 𝐸 is the Young modulus; 𝜚 is the Poisson’s ratio.  

From Eq. (5.28), constitutive relationships can be obtained as follows:  

�̇�′ =
𝜕2Ψ

𝜕(𝜀𝜈)2
=

𝐸

3(1−2𝜚)
(휀�̇� − 휀�̇�

p
)  (5.29) 

�̇� =
𝜕2Ψ

𝜕(𝜀𝑠)2
=
3

2

𝐸

(1+𝜚)
(휀�̇� − 휀�̇�

p
)  (5.30) 

�̇�∗ =
𝜕2Ψ

𝜕(−𝑆𝑟)2
=
(𝑠∗+𝑝𝑢)

𝜅ℎ
[(−�̇�𝑟) − (−�̇�𝑟

p
)]  (5.31) 

The incremental stress-strain relationship in Eqs. (5.29-5.30) can be rewritten in the tensorial form 

as:  

�̇�𝑖𝑗
′ = 𝐷𝑖𝑗𝑘𝑙

𝑒 (휀�̇�𝑙 − 휀�̇�𝑙
p
)  (5.32) 
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where 𝐷𝑖𝑗𝑘𝑙
𝑒 =

𝐸

2(1+𝜚)
(
2𝜚

1−2𝜚
𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)  is the pressure-independent elastic stiffness 

tensor.  

A yield surface in the 𝑝′: 𝑞: 𝑠∗ space can be derived in the same way as for the model in Chapter 4 as 

follows:  

𝑦 =
(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 +
(𝑞)2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2
− 1 ≤ 0  (5.33) 

which governs the following evolution rules:  

휀�̇�
p
= �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 exp[−𝛽(1 − 𝑆𝑟)]  (5.34) 

휀�̇�
p
= �̇�𝑝

2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2
𝑀2

  (5.35) 

−�̇�𝑟
p
= �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)
′ )

2

(𝑠∗−𝑝𝑏)[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)
′ ]

2 [1 − exp[−𝛽(1 − 𝑆𝑟)]]  (5.36) 

Further details on the development of this model formulation can be found in Chapter 4. It is noted 

that 𝑝𝑐(𝑢𝑠)
′ , in this case, is similar to that given in Eqs. (4.21-4.23), except that 𝜅 = 0 and  𝜆 is replaced 

by the hardening parameter 𝜆′.  

𝑝𝑐(𝑢𝑠)
′ = 𝑝𝑅

′ [
𝑝𝑐0
′ exp(

𝜀𝜈
p

𝜆′
)

𝑝𝑅
′ ]

1

[(1−𝜉)exp(−𝜇𝑠∗)+𝜉]

  (5.37) 

Noting that the minor changes in parameters related to soil stiffness (e.g. 𝐸, 𝜚, 𝜆′) make the model 

simpler, but do not compromise the model performance.  

Constitutive relationship in the diffuse stage   

Constitutive relationships in the diffuse regime can be written using Eqs. (3.139-3.140) as follows:  

�̇�𝑖𝑗
′ = 𝛬𝑖𝑗𝑘𝑙휀�̇�𝑙 + 𝛱𝑖𝑗(−�̇�𝑟)  (5.38) 

�̇�∗ = 𝛺𝑘𝑙 휀�̇�𝑙 + 𝛶(−�̇�𝑟)  (5.39) 

where 𝛬𝑖𝑗𝑘𝑙, 𝛱𝑖𝑗, 𝛺𝑘𝑙 and 𝛶 take the same form as those in Eqs. (3.141-3.144).  

The above expressions are constructed in the same procedure as that illustrated in the preceding 

chapters (Chapter 3 and 4). Alternatively, the above incremental coupled hydro-mechanical 

relationships can be rewritten in terms of total stress 𝜎𝑖𝑗 (or net stress 𝜎𝑖𝑗 due to 𝑝𝑎 = 0) and suction 

𝑠 following the same procedure as shown in Eqs. (4.116-4.117).  
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�̇�𝑖𝑗 = 𝛬̅𝑖𝑗𝑘𝑙휀�̇�𝑙 + 𝛱𝑖𝑗(−�̇�𝑟)  (5.40) 

�̇� = �̅�𝑘𝑙 휀�̇�𝑙 + �̅�(−�̇�𝑟)  (5.41) 

For drained triaxial shear tests, suction is fixed at a constant imposed level (�̇� = 0), allowing Eq. 

(5.41) to be rewritten as:  

(−�̇�𝑟) = (�̅�)
−1�̅�𝑘𝑙 휀�̇�𝑙  (5.42) 

Substituting the above equation in Eq. (5.40), one gets:  

�̇�𝑖𝑗 = [𝛬̅𝑖𝑗𝑘𝑙 − (�̅�)
−1𝛱𝑖𝑗�̅�𝑘𝑙]휀�̇�𝑙 = 𝐷𝑖𝑗𝑘𝑙휀�̇�𝑙 (5.43) 

with 𝐷𝑖𝑗𝑘𝑙 = 𝛬̅𝑖𝑗𝑘𝑙 − (�̅�)
−1𝛱𝑖𝑗�̅�𝑘𝑙 being the homogeneous tangent stiffness.  

5.3.2. Onset of localisation  

The discontinuous bifurcation criterion can be naturally established from the generic framework in 

Section 5.2 using the continuity of traction across the boundary of the localisation zone. To derive it, 

this sub-section can start with the internal equilibrium condition in Eq. (5.21) in the following rate 

form:  

(�̇�𝑖𝑗
o − �̇�𝑖𝑗

i )�̅�𝑗 = 0  (5.44) 

At the onset of localisation, the materials outside and inside the shear band are assumed to follow the 

same constitutive law associated with the homogeneous tangent stiffness tensor 𝐷𝑖𝑗𝑘𝑙 (see Eq. (5.43)), 

leading to:  

�̇�𝑖𝑗
o = 𝐷𝑖𝑗𝑘𝑙휀�̇�𝑙

o   (5.45) 

�̇�𝑖𝑗
i = 𝐷𝑖𝑗𝑘𝑙휀�̇�𝑙

i   (5.46) 

Substitution of Eqs. (5.45-5.46) into Eq. (5.44) results in:  

(휀�̇�𝑙
o − 휀�̇�𝑙

i )𝐷𝑖𝑗𝑘𝑙�̅�𝑗 = 0  (5.47) 

from which and Eq. (5.3), the necessary condition for a discontinuous bifurcation can be obtained as 

follows:  

(
1

ℎ
𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) �̇�𝑘 = 0  (5.48) 

For a non-trivial solution, the discontinuous bifurcation condition can be met if the acoustic tensor 

(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) has a zero or negative determinant for the loss of ellipticity as follows:  

det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) ≤ 0  (5.49) 
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Eq. (5.49) is an extension of the classical discontinuous bifurcation condition (Rudnicki & Rice, 

1975) for detecting the emergence of a single tabular shear band in constant suction triaxial shear 

tests. It implies that the material becomes unstable if a small perturbation in the form of a wave cannot 

propagate along the normal to the localisation band. This bifurcation condition includes 𝐷𝑖𝑗𝑘𝑙 =

𝛬̅𝑖𝑗𝑘𝑙 − (�̅�)
−1𝛱𝑖𝑗�̅�𝑘𝑙  with cross-coupling terms (see Eq. (5.43)), reflecting the inter-dependence 

between mechanical and hydraulic responses inspired from the inseparable nature of grain 

rearrangement and liquid-bridge redistribution at the micro-scale. Consequently, a path-dependent 

water retention curve automatically appears, allowing this discontinuous bifurcation criterion to 

capture the different responses under wetting/drying and mechanical loading paths. This distinguishes 

the proposed approach from existing ones for partially saturated soils.  

Within the discontinuous bifurcation criterion, the matrix form of  �̅�𝑗  is dependent on the loading 

paths of experiments. In this sense, examples of how to determine �̅�𝑗  in the matrix form for the 

suction-controlled plane strain biaxial test and tests in a three-dimensional space are illustrated below.  

Plane strain biaxial test  

 

Figure 5.3. (a) Experimental specimen failure (b) Illustration of the direction vector of the 

localisation band under plane strain condition. 

For the plane strain condition, the constitutive relationship in Eq. (5.43) can take the following form 

of the Voigt notations:  

(

�̇�11
�̇�22
�̇�33
�̇�12

) = [

𝐷1111 𝐷1122 𝐷1133 𝐷1112
𝐷2211 𝐷2222 𝐷2233 𝐷2212
𝐷3311 𝐷3322 𝐷3333 𝐷3312
𝐷1211 𝐷1222 𝐷1233 𝐷1212

](

휀1̇1
휀2̇2
휀3̇3
휀1̇2

) (5.50) 

𝜑 �̅�𝑖 

�̅�2 

�̅�1 

1 

2 

3 

ℎ 

(a) 

(b) 

Shear band 
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Based on Figure 5.3, the definition of the unit direction vector of the localisation zone is written as:  

�̅�𝑖 = (
�̅�1
�̅�2
) = (

cos𝜑
sin𝜑) (5.51) 

where 𝜑 is the angle between the normal to the localisation band and the vertical axis.  

The traction vector 𝑡̅̇𝑖 = �̇�𝑖𝑗�̅�𝑗 acting on the failure plane can be written in the form of the Voigt 

notations as:  

𝑡̅̇𝑖 = (
𝑡̅1̇

𝑡̅̇2
) = [

�̇�11 �̇�12
�̇�21 �̇�22

] (
�̅�1
�̅�2
) = (

�̇�11�̅�1 + �̇�12�̅�2
�̇�21�̅�1 + �̇�22�̅�2

) = [
�̅�1 0 0 �̅�2
0 �̅�2 0 �̅�1

](

�̇�11
�̇�22
�̇�33
�̇�12

) (5.52) 

The matrix form of �̅�𝑗  for the plane strain condition can be derived from the above equation as 

follows: 

�̅�𝑖 = [
�̅�1 0 0 �̅�2
0 �̅�2 0 �̅�1

] = [
cos𝜑 0 0 sin𝜑
0 sin𝜑 0 cos𝜑

] (5.53) 

Tests in three-dimensional space  

Regarding the tests in three-dimensional space, the constitutive relationship (Eq. (5.43)) in the form 

of the Voigt notations can be expressed as:  

(

 
 
 

�̇�11
�̇�22
�̇�33
�̇�12
�̇�23
�̇�31)

 
 
 
=

[
 
 
 
 
 
𝐷1111 𝐷1122 𝐷1133 𝐷1112 𝐷1123 𝐷1131
𝐷2211 𝐷2222 𝐷2233 𝐷2212 𝐷2223 𝐷2231
𝐷3311 𝐷3322 𝐷3333 𝐷3312 𝐷3323 𝐷3331
𝐷1211 𝐷1222 𝐷1233 𝐷1212 𝐷1223 𝐷1231
𝐷2311 𝐷2322 𝐷2333 𝐷2312 𝐷2323 𝐷2331
𝐷3111 𝐷3122 𝐷3133 𝐷3112 𝐷3123 𝐷3131]

 
 
 
 
 

(

 
 
 

휀1̇1
휀2̇2
휀3̇3
휀1̇2
휀2̇3
휀3̇1)

 
 
 

 (5.54) 

Figure 5.4 demonstrates that the unit direction vector of the localisation zone can be defined using a 

standard spherical coordinate system as follows:  

�̅�𝑖 = (
�̅�1
�̅�2
�̅�3

) = (

cos𝜑
sin𝜑cos𝜔
sin𝜑sin𝜔

) (5.55) 

with 𝜑 representing the zenith angle between the normal to the localisation band and the vertical axis 

while 𝜔 denoting the azimuthal angle in the 23-plane from the 2-axis.  

Using Voigt notations, the expression of traction vector 𝑡̅̇𝑖 = �̇�𝑖𝑗�̅�𝑗 in the three-dimensional space can 

take the following form:  
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𝑡̅̇𝑖 = (

𝑡̅1̇

𝑡̅̇2

𝑡̅̇3

) = [

�̇�11 �̇�12 �̇�13
�̇�21 �̇�22 �̇�12
�̇�31 �̇�32 �̇�33

] (
�̅�1
�̅�2
�̅�3

) = (

�̇�11�̅�1 + �̇�12�̅�2 + �̇�13�̅�3
�̇�21�̅�1 + �̇�22�̅�2 + �̇�23�̅�3
�̇�31�̅�1 + �̇�32�̅�2 + �̇�33�̅�3

) =

[

�̅�1 0 0 �̅�2 0 �̅�3
0 �̅�2 0 �̅�1 �̅�3 0
0 0 �̅�3 0 �̅�2 �̅�1

]

(

 
 
 

�̇�11
�̇�22
�̇�33
�̇�12
�̇�23
�̇�31)

 
 
 

 (5.56) 

The matrix form of �̅�𝑗  for tests in the three-dimensional space can be deduced from Eq. (5.56) as: 

�̅�𝑖 = [

�̅�1 0 0 �̅�2 0 �̅�3
0 �̅�2 0 �̅�1 �̅�3 0
0 0 �̅�3 0 �̅�2 �̅�1

] =

[

cos𝜑 0 0 sin𝜑cos𝜔 0 sin𝜑sin𝜔
0 sin𝜑cos𝜔 0 cos𝜑 sin𝜑sin𝜔 0
0 0 sin𝜑sin𝜔 0 sin𝜑cos𝜔 cos𝜑

] (5.57) 

 

Figure 5.4. Illustration of the direction vector of the localisation band for tests in three-dimensional 

space. 

5.3.3. Localised stage  

Beyond the bifurcation point, the material behaviour is inhomogeneous in both inelastic deformation 

and saturation with 𝑓 < 1. In this stage, for the considered volume element, there are two separate 

constitutive relationships for the localisation zone and the volume outside that zone. These parts 

behave under conditions of stress equilibrium with strong variation in strain and saturation across the 

shear band. The behaviour inside this band is different from the one in the outside zone. Particularly, 

within the localised band, the material behaves plastically due to a significant movement of soil 

particles, while the surrounding bulk, of several orders of magnitude in extent, is under elastic 

�̅�𝑖 

�̅�2 
�̅�3 

�̅�1 
𝜑 

𝜔 

1 

2 

3 
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unloading because of a small change in the grain arrangement (see Figure 5.5). It is assumed that the 

constitutive model for elastic and inelastic behaviour inside and outside the localisation zone remains 

the same as used for describing the behaviour in the diffuse stage (see Section 5.3.1).   

 

Figure 5.5. Distribution of the incremental shear strain obtained by the DIC analysis at 휀11 = 0.2 

(Higo et al., 2013) 

Constitutive relationship outside the shear band  

The behaviour of surrounding bulk outside the localisation band is assumed to be recoverable as 

inconsiderable deformation and saturation within this region are usually observed in experiments. 

Therefore, from Eqs. (5.9) and (5.11-5.12), the incremental response of a unit volume element outside 

the localisation band can be expressed in the following form:  

�̇�𝑖𝑗
o + 𝑠o�̇�𝑟

o𝛿𝑖𝑗 + 𝑆𝑟
o�̇�o𝛿𝑖𝑗 =

𝜕2Ψo

𝜕𝜀𝑖𝑗
o 𝜕𝜀𝑘𝑙

o 휀�̇�𝑙
o +

𝜕2Ψo

𝜕𝜀𝑖𝑗
o 𝜕(−�̇�𝑟

o)
(−�̇�𝑟

o) (5.58) 

𝑠o�̇̅�o + �̅�o�̇�o =
𝜕2Ψo

𝜕(−�̇�𝑟
o)𝜕𝜀𝑘𝑙

o 휀�̇�𝑙
o +

𝜕2Ψo

𝜕(−𝑆𝑟
o)2
(−�̇�𝑟

o) (5.59) 

Due to �̇̅�o = −𝛿𝑘𝑙휀�̇�𝑙
o  (incompressible solid grains) and �̇�o = 0 (𝑠 = 𝑠i = 𝑠o = const), Eqs. (5.58) 

and (5.59) can be rewritten as:  

�̇�𝑖𝑗
o − 𝑠o𝛿𝑖𝑗(−�̇�𝑟

o) =
𝜕2Ψo

𝜕𝜀𝑖𝑗
o 𝜕𝜀𝑘𝑙

o 휀�̇�𝑙
o +

𝜕2Ψo

𝜕𝜀𝑖𝑗
o 𝜕(−�̇�𝑟

o)
(−�̇�𝑟

o) (5.60) 

−𝑠o𝛿𝑘𝑙휀�̇�𝑙
o =

𝜕2Ψo

𝜕(−�̇�𝑟
o)𝜕𝜀𝑘𝑙

o 휀�̇�𝑙
o +

𝜕2Ψo

𝜕(−𝑆𝑟
o)2
(−�̇�𝑟

o) (5.61) 

By combining these above equations, the following constitutive relationship outside the shear band 

is obtained:  

�̇�𝑖𝑗
o = [

𝜕2Ψo

𝜕𝜀𝑖𝑗
o 𝜕𝜀𝑘𝑙

o − (
𝜕2Ψo

𝜕𝜀𝑖𝑗
o 𝜕(−�̇�𝑟

o)
+ 𝑠o𝛿𝑖𝑗) (

𝜕2Ψo

𝜕(−𝑆𝑟
o)2
)
−1

(
𝜕2Ψo

𝜕(−�̇�𝑟
o)𝜕𝜀𝑘𝑙

o + 𝑠
o𝛿𝑘𝑙)] 휀�̇�𝑙

o = 𝐷𝑖𝑗𝑘𝑙
o 휀�̇�𝑙

o  (5.62) 

Inside shear band 

Outside shear band 
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with 𝐷𝑖𝑗𝑘𝑙
o =

𝜕2Ψo

𝜕𝜀𝑖𝑗
o 𝜕𝜀𝑘𝑙

o − (
𝜕2Ψo

𝜕𝜀𝑖𝑗
o 𝜕(−�̇�𝑟

o)
+ 𝑠o𝛿𝑖𝑗) (

𝜕2Ψo

𝜕(−𝑆𝑟
o)2
)
−1

(
𝜕2Ψo

𝜕(−�̇�𝑟
o)𝜕𝜀𝑘𝑙

o + 𝑠
o𝛿𝑘𝑙)  being the tangent 

stiffness tensor outside the shear band.  

Constitutive relationship inside the shear band  

Using Eqs. (5.9) and (5.11-5.12), the incremental forms of effective stress tensor and modified suction 

inside the localisation zone can be expressed as:  

�̇�𝑖𝑗
′i =

𝜕2Ψi

𝜕𝜀𝑖𝑗
i 𝜕𝜀𝑘𝑙

i (휀�̇�𝑙
i − 휀�̇�𝑙

ip
) +

𝜕2Ψi

𝜕𝜀𝑖𝑗
i 𝜕(−𝑆𝑟

i)
[(−�̇�𝑟

i) − (−�̇�𝑟
ip
)]  (5.63) 

�̇�∗i =
𝜕2Ψi

𝜕(−𝑆𝑟
i)𝜕𝜀𝑘𝑙

i (휀�̇�𝑙
i − 휀�̇�𝑙

ip
) +

𝜕2Ψi

𝜕(−𝑆𝑟
i)
2 [(−�̇�𝑟

i) − (−�̇�𝑟
ip
)]  (5.64) 

From Eqs. (5.24-5.27) and (5.63-5.64), following the same procedures demonstrated in the preceding 

section on the formulation for the homogeneous constitutive relationships (see Eqs. (5.38-5.43)), this 

sub-section ends up here with the constitutive relationship of the material inside the shear band as:  

�̇�𝑖𝑗
i = [𝛬̅𝑖𝑗𝑘𝑙

i − (�̅�i)
−1
𝛱𝑖𝑗
i �̅�𝑘𝑙

i ] 휀�̇�𝑙
i = 𝐷𝑖𝑗𝑘𝑙

i 휀�̇�𝑙
i  (5.65) 

in which 𝐷𝑖𝑗𝑘𝑙
i = 𝛬̅𝑖𝑗𝑘𝑙

i − (�̅�i)
−1
𝛱𝑖𝑗
i �̅�𝑘𝑙

i  is the tangent stiffness tensor inside the shear band, which is 

exactly in the same form as 𝐷𝑖𝑗𝑘𝑙, but using Ψi, 휀𝑖𝑗
i , 𝑆𝑟

i , 𝜎𝑖𝑗
i  and 𝑠i.  

Macro constitutive relationship 

These obtained incremental constitutive relationships (see Eqs. (5.62) and (5.65)) can be linked 

together to construct the formulation representing the incremental macro response of the entire 

volume element.  

Substituting Eqs. (5.62) and (5.65) in the incremental traction continuity condition in Eq. (5.44) gives: 

(𝐷𝑖𝑗𝑘𝑙
o 휀�̇�𝑙

o − 𝐷𝑖𝑗𝑘𝑙
i 휀�̇�𝑙

i )�̅�𝑗 = 0  (5.66) 

Eq. (5.66) can be expanded using the kinematic enhancements presented in Eqs. (5.4-5.5) as follows:  

𝐷𝑖𝑗𝑘𝑙
o [휀�̇�𝑙 −

𝑓

ℎ
(�̇�𝑘�̅�𝑙)

s] �̅�𝑗 − 𝐷𝑖𝑗𝑘𝑙
i [휀�̇�𝑙 +

1−𝑓

ℎ
(�̇�𝑘�̅�𝑙)

s] �̅�𝑗 = 0  (5.67) 

After rearranging the above expression, the incremental displacement jump �̇�𝑘 can be obtained as:  

�̇�𝑘 = 𝐶𝑖𝑘
−1(𝐷𝑖𝑗𝑚𝑛

o − 𝐷𝑖𝑗𝑚𝑛
i )휀�̇�𝑛�̅�𝑗  (5.68) 

where 

𝐶𝑖𝑘 =
𝑓

ℎ
𝐷𝑖𝑗𝑘𝑙
o �̅�𝑙�̅�𝑗 +

1−𝑓

ℎ
𝐷𝑖𝑗𝑘𝑙
i �̅�𝑙�̅�𝑗  (5.69) 



5-17 

 

As can be seen in Eq. (5.69), 𝐶𝑖𝑘 is the localisation or acoustic tensor with a combination of both 

tangent stiffness tensors outside and inside the localisation band at the constitutive level, bridging 

both diffuse and localised responses.  

From Eqs. (5.4-5.5) and (5.68), the expression of strain rate outside and inside the localisation region 

can be obtained as:  

휀�̇�𝑙
o = 휀�̇�𝑙 −

𝑓

ℎ
[𝐶𝑖𝑘

−1(𝐷𝑖𝑗𝑚𝑛
o − 𝐷𝑖𝑗𝑚𝑛

i )휀�̇�𝑛�̅�𝑗�̅�𝑙]
s
  (5.70) 

휀�̇�𝑙
i = 휀�̇�𝑙 +

1−𝑓

ℎ
[𝐶𝑖𝑘

−1(𝐷𝑖𝑗𝑚𝑛
o − 𝐷𝑖𝑗𝑚𝑛

i )휀�̇�𝑛�̅�𝑗�̅�𝑙]
s
  (5.71) 

Using Eqs. (5.17), (5.62) and (5.65), the macro stress increment can be determined as the volume-

averaged one using incremental stresses inside and outside the shear band through the following form:  

�̇�𝑝𝑞 = (1 − 𝑓)𝐷𝑝𝑞𝑘𝑙
o 휀�̇�𝑙

o + 𝑓𝐷𝑝𝑞𝑘𝑙
i 휀�̇�𝑙

i   (5.72) 

Substituting Eqs. (5.70-5.71) into the above equation and rearranging the obtained expression, one 

obtains:  

�̇�𝑝𝑞 = {(1 − 𝑓)𝐷𝑝𝑞𝑚𝑛
o + 𝑓𝐷𝑝𝑞𝑚𝑛

i −
𝑓(1−𝑓)

ℎ
𝐶𝑖𝑘

−1(𝐷𝑖𝑗𝑚𝑛
o −𝐷𝑖𝑗𝑚𝑛

i )�̅�𝑗�̅�𝑙(𝐷𝑝𝑞𝑘𝑙
o − 𝐷𝑝𝑞𝑘𝑙

i )} 휀�̇�𝑛 =

𝐷𝑝𝑞𝑚𝑛
T 휀�̇�𝑛  (5.73) 

in which 𝐷𝑝𝑞𝑚𝑛
T  is the macro tangent stiffness tensor taking the below form:  

𝐷𝑝𝑞𝑚𝑛
T = (1 − 𝑓)𝐷𝑝𝑞𝑚𝑛

o + 𝑓𝐷𝑝𝑞𝑚𝑛
i

⏟                
upper bound

−
𝑓(1−𝑓)

ℎ
𝐶𝑖𝑘

−1(𝐷𝑖𝑗𝑚𝑛
o − 𝐷𝑖𝑗𝑚𝑛

i )�̅�𝑗�̅�𝑙(𝐷𝑝𝑞𝑘𝑙
o − 𝐷𝑝𝑞𝑘𝑙

i )⏟                              
enhancement

  (5.74) 

Eq. (5.74) indicates that the macro tangent stiffness tensor consists of two components corresponding 

to the upper bound solution and an enhancement term accounting for the interaction between 

responses outside and inside the shear band. This interaction is established thanks to the appearance 

of orientation and size of the localisation band, allowing the proposed framework to naturally capture 

the mixed material-structural response and size effect in the post-localisation stage. For 𝑓 = 1 the 

proposed form of the macro tangent stiffness tensor 𝐷𝑝𝑞𝑚𝑛
T  can automatically become the classical 

form for homogeneous deformation and saturation 𝐷𝑖𝑗𝑘𝑙, capturing the transition between diffuse and 

localised regimes.   

5.4. Numerical implementation  

The numerical implementation algorithm of this framework involves three responses: homogenous 

deformation, the onset of localisation and post-localisation. While the behavioural performance of 

homogeneous inelastic deformation is numerically implemented following the semi-implicit stress 



5-18 

 

return algorithm of the classical framework as presented in Chapter 3 (see Eqs. (3.146-3.158)), the 

algorithms for detecting the onset of bifurcation, the orientation of localisation band, and updating 

stress and suction in the post-localisation stage are described in this section.  

5.4.1. Bifurcation detection algorithm  

In this section, two different approaches of bifurcation detection are described;  a numerical algorithm 

and an analytical algorithm. These two algorithms are expected to provide the same solution to 

determine the onset and orientation of the localisation band during loading.  

Numerical algorithm   

In the numerical algorithm, to detect the initiation of localised failure, all possible orientations from 

0𝑜 to 180𝑜 need to be scanned to determine the corresponding �̅�𝑗  at each step from the beginning of 

the shearing process (Nguyen et al., 2016). Given �̅�𝑗  and 𝐷𝑖𝑗𝑘𝑙  at each step, the determinant of 

acoustic tensor det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙)  is computed. The minimum value of det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙)  and the 

corresponding angle is then checked among scanned angles (Nguyen et al., 2016). The onset of 

localisation can be detected when the minimisation of det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) < 0 is first satisfied. The angle 

𝜑 obtained at this point is the final orientation of the shear band used for the rest of the computation. 

In this approach, the more angles are scanned, the more solutions are accurate.   

Analytical algorithm   

In this part, an example of an analytical solution for the plane strain biaxial tests is derived to exactly 

determine the minimisation of acoustic tensor and corresponding orientation of the shear band. In this 

case, the acoustic tensor can be expanded explicitly in the form of the Voigt notations as:  

𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙 = [
�̅�1 0 0 �̅�2
0 �̅�2 0 �̅�1

] [

𝐷1111 𝐷1122 𝐷1133 𝐷1112
𝐷2211 𝐷2222 𝐷2233 𝐷2212
𝐷3311 𝐷3322 𝐷3333 𝐷3312
𝐷1211 𝐷1222 𝐷1233 𝐷1212

] [

�̅�1 0
0 �̅�2
0 0
�̅�2 �̅�1

] =

[
(�̅�1𝐷1111 + �̅�2𝐷1211)�̅�1 + (�̅�1𝐷1112 + �̅�2𝐷1212)�̅�2 (�̅�1𝐷1122 + �̅�2𝐷1222)�̅�2 + (�̅�1𝐷1112 + �̅�2𝐷1212)�̅�1
(�̅�2𝐷2211 + �̅�1𝐷1211)�̅�1 + (�̅�2𝐷2212 + �̅�1𝐷1212)�̅�2 (�̅�2𝐷2222 + �̅�1𝐷1222)�̅�2 + (�̅�2𝐷2212 + �̅�1𝐷1212)�̅�1

]

 (5.75) 

The function of the determinant of localisation tensor in Eq. (5.75) is constructed as follows:   

det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) = {𝐷1111𝐷1212(�̅�1)
4 + 𝐷1212𝐷2222(�̅�2)

4 + [𝐷1111(𝐷2212 + 𝐷1222) +

𝐷1212(𝐷1112 + 𝐷1211)](�̅�1)
3�̅�2 + [𝐷2222(𝐷1112 + 𝐷1211) + 𝐷1212(𝐷2212 +𝐷1222)]�̅�1(�̅�2)

3 +

[(𝐷1112 + 𝐷1211)(𝐷2212 + 𝐷1222) + 𝐷1111𝐷2222 + (𝐷1212)
2](�̅�1�̅�2)

2} − {𝐷1112𝐷1211(�̅�1)
4 +
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𝐷1222𝐷2212(�̅�2)
4 + [𝐷1112(𝐷2211 + 𝐷1212) + 𝐷1211(𝐷1122 + 𝐷1212)](�̅�1)

3�̅�2 + [𝐷2212(𝐷1122 +

𝐷1212) + 𝐷1222(𝐷2211 + 𝐷1212)]�̅�1(�̅�2)
3 + [𝐷1112𝐷2212 + 𝐷1222𝐷1211 + (𝐷1122 + 𝐷1212)(𝐷2211 +

𝐷1212)](�̅�1�̅�2)
2} (5.76) 

which is then mathematically manipulated to become:  

det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) = (𝐷1111𝐷1212 − 𝐷1112𝐷1211)(�̅�1)
4 + (𝐷2222𝐷1212 −𝐷1222𝐷2212)(�̅�2)

4 +

(𝐷1111𝐷2212 + 𝐷1111𝐷1222 − 𝐷1112𝐷2211 − 𝐷1211𝐷1122)(�̅�1)
3𝑛2 + (𝐷2222𝐷1112 + 𝐷2222𝐷1211 −

𝐷2212𝐷1122 − 𝐷1222𝐷2211)�̅�1(�̅�2)
3 + (𝐷1112𝐷1222 + 𝐷1211𝐷2212 + 𝐷1111𝐷2222 − 𝐷1122𝐷2211 −

𝐷1122𝐷1212 − 𝐷1212𝐷2211)(�̅�1�̅�2)
2 (5.77) 

Due to properties of the plane strain biaxial tests, Eq. (5.77) can be rewritten as:  

det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) = (𝐷1111𝐷1212)(�̅�1)
4 + (𝐷2222𝐷1212)(�̅�2)

4 + (𝐷1111𝐷2222 − 𝐷1122𝐷2211 −

𝐷1122𝐷1212 − 𝐷1212𝐷2211)(�̅�1�̅�2)
2 (5.78) 

or,  

det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) = (𝐷1111𝐷1212)(cos𝜑)
4 + (𝐷2222𝐷1212)(sin𝜑)

4 + (𝐷1111𝐷2222 − 𝐷1122𝐷2211 −

𝐷1122𝐷1212 − 𝐷1212𝐷2211)(cos𝜑sin𝜑)
2 (5.79) 

Eq. (5.79) can be rewritten as:  

det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) =
1

4
{(𝐷1111𝐷1212)(1 − cos2𝜑)

2 + (𝐷2222𝐷1212)(1 + cos2𝜑)
2 + (𝐷1111𝐷2222 −

𝐷1122𝐷2211 − 𝐷1122𝐷1212 −𝐷1212𝐷2211)[1 − (cos2𝜑)
2]} (5.80) 

 

det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) is minimum if the following condition is met:  

𝜕[det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙)]

𝜕(cos2𝜑)
=
1

2
[−(𝐷1111𝐷1212)(1 − cos2𝜑) + (𝐷2222𝐷1212)(1 + cos2𝜑) − (𝐷1111𝐷2222 −

𝐷1122𝐷2211 − 𝐷1122𝐷1212 −𝐷1212𝐷2211)cos2𝜑] = 0 (5.81) 

Consequently,  

cos2𝜑 = −
𝐷2222𝐷1212−𝐷1111𝐷1212

𝐷1111𝐷1212+𝐷2222𝐷1212−(𝐷1111𝐷2222−𝐷1122𝐷2211−𝐷1122𝐷1212−𝐷1212𝐷2211)
 (5.82) 

Therefore, from Eqs. (5.80) and (5.82), the bifurcation condition based on the analytical algorithm 

can be obtained through the following expressions:  

[det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙)]𝑚𝑖𝑛 =
1

4
{(𝐷1111𝐷1212) (1 +

𝐷2222𝐷1212−𝐷1111𝐷1212

𝐷1111𝐷1212+𝐷2222𝐷1212−𝐷1111𝐷2222+𝐷1122𝐷2211+𝐷1212+𝐷1212𝐷2211
)
2

+ (𝐷2222𝐷1212) (1 −
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𝐷2222𝐷1212−𝐷1111𝐷1212

𝐷1111𝐷1212+𝐷2222𝐷1212−𝐷1111𝐷2222+𝐷1122𝐷2211+𝐷1122𝐷1212+𝐷1212𝐷2211
)
2

+ (𝐷1111𝐷2222 − 𝐷1122𝐷2211 −

𝐷1122𝐷1212 − 𝐷1212𝐷2211) [1 −

(−
𝐷2222𝐷1212−𝐷1111𝐷1212

𝐷1111𝐷1212+𝐷2222𝐷1212−𝐷1111𝐷2222+𝐷1122𝐷2211+𝐷1122𝐷1212+𝐷1212𝐷2211
)
2

]} ≤ 0 (5.83) 

5.4.2. Stress return algorithm for post-localisation behaviour  

Different from conventional constitutive models, this framework requires a numerical algorithm of 

two-level stress return procedure (macro and local/localisation zone) to capture inhomogeneous 

responses in the post-localisation stage (see Figure 5.6). In this algorithm (Nguyen et al., 2016; 

Nguyen & Bui, 2020), the local level is to bridge the enhanced framework and the classical 

constitutive behaviour for partially saturated soils, while the macro level is considered as an interface 

between the proposed framework and BVPs. In particular, the conventional semi-algorithm stress 

return algorithm (see Section 3.3.3, Chapter 3) can be adopted to update stress and suction inside and 

outside the localisation band for the local level, using strain and saturation degree increments inside 

and outside the band obtained from the macro level. For the macro level, the mixed-control loading 

algorithm (see further details in Chapter 4) is applied to mimic experimental loading conditions 

involving macro variables (e.g. constant confining pressure and constant suction for the suction-

controlled triaxial test), while the traction continuity condition can be enforced to compute the 

incremental displacement jump for determination of macro tangent stiffness tensor through the 

following algorithm.  
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Figure 5.6. A flowchart for stress return algorithm (Nguyen et al., 2016) 

Due to numerical error, there is a residual traction vector �̅�𝑖 representing the difference between the 

traction vectors outside (𝑡�̅�
o = 𝜎𝑖𝑗

o �̅�𝑗) and inside (𝑡�̅�
i = 𝜎𝑖𝑗

i �̅�𝑗) the discontinuity plane in the following 

form:  

�̅�𝑖 = 𝑡�̅�
o − 𝑡�̅�

i = (𝜎𝑖𝑗
o − 𝜎𝑖𝑗

i )�̅�𝑗   (5.84) 

At the previous state, the first-order Taylor expansion of the residual in the above expression can be 

written as:  

�̅�𝑖
new = �̅�𝑖

previous + (δ𝜎𝑖𝑗
o − δ𝜎𝑖𝑗

i )�̅�𝑗   (5.85) 

where �̅�𝑖
previous is the residual traction vector at the previous state, taking the form below:  

�̅�𝑖
previous = (δ𝜎𝑖𝑗

o,previous
− δ𝜎𝑖𝑗

i,previous
)�̅�𝑗  (5.86) 

From Eqs. (5.62) and (5.65), two following local constitutive relationships reflecting the responses 

inside and outside the localisation zone are written: 

δ𝜎𝑖𝑗
o = 𝐷𝑖𝑗𝑘𝑙

o δ휀𝑘𝑙
o   (5.87) 

δ𝜎𝑖𝑗
i = 𝐷𝑖𝑗𝑘𝑙

i δ휀𝑘𝑙
i   (5.88) 

Given macro strain ∆휀𝑘𝑙 as input 

Compute ∆𝑢𝑘  using the traction 

continuity condition (Eq. (5.68)) 

 ∆𝑢𝑘 = 𝐶𝑖𝑘
−1(𝐷𝑖𝑗𝑚𝑛

o − 𝐷𝑖𝑗𝑚𝑛
i )∆휀𝑚𝑛�̅�𝑗 

Compute ∆휀𝑘𝑙
i  inside (Eq.(5.4)) and ∆휀𝑘𝑙

o   

outside (Eq. (5.5)) the localisation band 

∆휀𝑘𝑙
o = ∆휀𝑘𝑙 −

𝑓

ℎ
(∆𝑢𝑘�̅�𝑙)

s  

∆휀𝑘𝑙
i = ∆휀𝑘𝑙 +

1−𝑓

ℎ
(∆𝑢𝑘�̅�𝑙)

s  

 

Compute ∆𝜎𝑖𝑗
i  using ∆휀𝑘𝑙

i  and ∆𝜎𝑖𝑗
o  using ∆휀𝑘𝑙

o    

  

Compute macro stress increment   

∆𝜎𝑖𝑗 = (1 − 𝑓)∆𝜎𝑖𝑗
o + 𝑓∆𝜎𝑖𝑗

i  

  

Outer level: calculate 

∆𝑢𝑘, ∆휀𝑘𝑙
i  and ∆휀𝑘𝑙

o   

Inner level: update stresses 

inside and outside the band 
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in which local strain increments δ휀𝑘𝑙
o  and δ휀𝑘𝑙

i  are expressed based on kinematic compatibility 

conditions in Eqs. (5.4-5.5) as follows:  

δ휀𝑘𝑙
o = δ휀𝑘𝑙 −

𝑓

ℎ
(δ𝑢𝑘�̅�𝑙)

s  (5.89) 

δ휀𝑘𝑙
i = δ휀𝑘𝑙 +

1−𝑓

ℎ
(δ𝑢𝑘�̅�𝑙)

s  (5.90) 

Substituting Eqs, (5.89-5.90) into Eq. (5.85) results in:  

�̅�𝑖
new = �̅�𝑖

previous + (𝐷𝑖𝑗𝑘𝑙
o − 𝐷𝑖𝑗𝑘𝑙

i )δ휀𝑘𝑙�̅�𝑗 − 𝐷𝑖𝑗𝑘𝑙
o 𝑓

ℎ
(δ𝑢𝑘�̅�𝑙)

s�̅�𝑗 − 𝐷𝑖𝑗𝑘𝑙
i 1−𝑓

ℎ
(δ𝑢𝑘�̅�𝑙)

s�̅�𝑗  (5.91) 

To enforce the traction equilibrium condition, �̅�𝑖
new = 0 in Eq. (5.91) needs to be met, leading to the 

incremental displacement jump δ𝑢𝑘 as: 

δ𝑢𝑘 = (
𝑓

ℎ
𝐷𝑖𝑗𝑘𝑙
o �̅�𝑙�̅�𝑗 +

1−𝑓

ℎ
𝐷𝑖𝑗𝑘𝑙
i �̅�𝑙�̅�𝑗)

−1

[�̅�𝑖
previous + (𝐷𝑖𝑗𝑘𝑙

o − 𝐷𝑖𝑗𝑘𝑙
i )δ휀𝑘𝑙�̅�𝑗] = 𝐶𝑖𝑘

−1[�̅�𝑖
previous +

(𝐷𝑖𝑗𝑘𝑙
o − 𝐷𝑖𝑗𝑘𝑙

i )δ휀𝑘𝑙�̅�𝑗]  (5.92) 

The strain increments δ휀𝑖𝑗
i  and δ휀𝑖𝑗

o  can be then determined from δ𝑢𝑘  before computing stress 

increments δ𝜎𝑖𝑗
o  and δ𝜎𝑖𝑗

i . Once δ𝜎𝑖𝑗
o  and δ𝜎𝑖𝑗

i  are updated, the macro stress increment can be 

obtained based on Eq. (5.17) as:  

δ𝜎𝑖𝑗 = (1 − 𝑓)δ𝜎𝑖𝑗
o + 𝑓δ𝜎𝑖𝑗

i   (5.93) 

Solutions of this algorithm are required to satisfy the following criterion:  

|
�̅�1

�̅�1
o| ≤ TOLERANCE and |

�̅�2

𝑡̅2
o| ≤ TOLERANCE (5.94) 

5.4.3. Numerical verification  

This section is to verify the algorithm of the numerical implementation described in Section 5.4 by 

performing several numerical examples. In the first example, the numerical accuracy on the algorithm 

of bifurcation detection in Section 5.4.1 of the suction-controlled biaxial test on Hostun sand at 𝑠 =

20 kPa  (Alabdullah, 2010) is verified against an analytical algorithm, adopting the following 

parameters:𝐸 = 30000 kPa;  𝜚 = 0.25;  𝜆′ = 0.15;𝑀 = 1.05;  𝜅ℎ = 0.88;  𝑝𝑅
′ = 12.41 kPa;  𝜉 =

0.652; 𝜇 = 0.0629 kPa−1;  𝑝𝑐0
′ = 1000 kPa;  𝑟 = 1.5;  𝛼 = 0.5;  𝛽 = 0.8;  𝑝𝑏 = 50 kPa . In Figure 

5.7, the results obtained from both algorithms are presented where minimum values of det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) 

and 𝜑 are plotted against 휀11 at two levels of confining pressure: 𝜎22 = 50 kPa and 𝜎22 = 100 kPa. 

As illustrated, numerical and analytical solutions are found to agree well, highlighting the numerical 

stability of the proposed algorithm to detect the onset of localisation. 
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Figure 5.7. Verification of the algorithm for the bifurcation detection in biaxial compressions 

Another example based on the drained biaxial test on Hostun sand (Alabdullah, 2010) is conducted 

to investigate the performance of the proposed two-level algorithm in Section 5.4.2 with 𝜎22 =

50 kPa and 𝑠 =  20 kPa. This example adopts the same set of parameters in the previous example, 

adding ℎ = 24.755 𝑚𝑚  and 𝐻′ = 55.012 𝑚𝑚  for post-localisation behaviour. A comparison 

between numerical results of the current algorithm of four different axial strain increments (∆휀11 =

1.5 × 10−7 , 1.5 × 10−6 , 1.5 × 10−5  and 1.5 × 10−4 ) is carried out by plotting macro deviatoric 

stress, volumetric strain, traction and relative error against axial strain in Figures 5.8-5.10. As can be 

seen, solutions of  ∆휀11 = 1.5 × 10
−7, 1.5 × 10−6 and 1.5 × 10−5 are convergent to each other and 

exhibit small errors. This reveals an adequate performance of the present iterative algorithm in 

enforcing the traction continuity condition. However, it should be noted that this integration algorithm 

is unstable for implementations with large strain steps, as seen in the results of ∆휀11 = 1.5 × 10
−4. 

The present approach is based on infinitesimal strain and limited only to single integration points. In 

numerical simulations using the Finite Element Method (FEM), or Smoothed Particle Hydrodynamic 

(SPH), the infinitesimal sizes of strain-like increments cannot always be guaranteed, and hence sub-

stepping in combination with this semi-implicit algorithm or full implicit stress return should be used 

(Nguyen & Bui, 2020). All these algorithms have been tested in Nguyen et al. (2016) and Nguyen & 

Bui (2020) and can be applied to this model in the future. 
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Figure 5.8. Performance of the proposed stress update algorithm under different values of ∆휀11 (a) 

휀11 − 𝑞 (b) 휀11 − 휀𝜈 , 𝑆𝑟 
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Figure 5.9. Traction of the proposed stress update algorithm under different values of ∆휀11 

 

 

Figure 5.10. The relative error of the proposed stress update algorithm under different values of 

∆휀11 

Next, the mixed-control loading algorithm of the two-level stress return procedure is assessed through 

a simulation on the response of the triaxial shear test on compacted silty (Patil, 2014) in the saturated 

state. In this example, suction is kept constant at 𝑠 = 0 kPa with 𝑆𝑟0 = 1  while the total lateral 

pressures are fixed at 𝜎33 = 200 kPa and 𝜎33 = 300 kPa during shearing. The following parameters 
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are taken as: 𝐸 = 55000 kPa;  𝜚 = 0.25;  𝜆′ = 0.25;𝑀 = 1.2;  𝜅ℎ = 0.26;  𝑝𝑅
′ = 450 kPa;  𝜉 =

0.26; 𝜇 = 0.0055 kPa−1;  𝑝𝑐0
′ = 1100 kPa;  𝑟 = 1.5;  𝛼 = 0.85;  𝛽 = 0.01;  𝑝𝑏 = 90 kPa;  𝐻

′ =

79.598 mm and ℎ = 39.8 mm. As can been in Figure 5.12, the macro total confining pressures are 

kept constant, while confining total pressures outside and inside the shear band vary along two 

separate paths after the bifurcation point. It can also be observed that the 𝑞: 𝑝′path is always a linear 

line with the slope of 
∆𝑞

∆𝑝′
= 3, although the materials inside and outside the localisation band follow 

different nonlinear loading paths in the post-localisation regime. These results demonstrate that the 

proposed mixed-control loading algorithm is accurate in mimicking triaxial loading conditions. 

Furthermore, 𝑆𝑟 keeps unchanged at 1 throughout the loading procedure of the test (see Figure 5.11), 

indicating the ability of the numerical algorithm in facilitating the transition between saturated and 

unsaturated conditions.  

 

Figure 5.11. Macro performance of the proposed stress update algorithms in triaxial compressions 

in the saturated state 
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Figure 5.12. Macro and local performances of the proposed stress update algorithms in triaxial 

compressions in the saturated state (a) 휀11 − 𝜎33 and (b) 𝑝′ − 𝑞 

 

5.5. Model parameters  

As can be seen in Eqs. (5.17-5.18), (5.21), (5.29-5.31) and (5.33-5.37), the proposed model has 15 

parameters that can be calibrated following a step by step procedure for relevant experimental data 

obtained from a series of combined mechanical-hydraulic loading paths. The performance of this 

calibration approach will be elaborated through an example based on the suction-controlled triaxial 

shear test on compacted Kaolin soil using specimens with a 100 mm height and 50 mm diameter (Thu, 

2006).  
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subject to any conditions associated with the model of localised failure. Therefore, these parameters 

can be calibrated in much similar ways as that of the homogeneous model presented in the preceding 

chapter (Chapter 4). In particular, experimental results of isotropic compression tests are used to 

calibrate 𝐸, 𝜚, 𝜆′, 𝑝𝑐0
′ , 𝑝𝑅

′ , 𝜇, 𝑟, 𝜉, 𝛽 and 𝑝𝑏 by fitting NCLs to their experimental counterparts, while 

the parameter 𝜅ℎ can be found to match well with the experimental data of the water retention curve 

based on drying/wetting tests under the constant net mean stress. By following this calibration 

procedure, the numerical results of SWCC (drying test under constant net mean stress of �̅� =

100 kPa, see Figure 5.13a), NCLs (suction-controlled isotropic compression tests at 𝑠 = 100 kPa, 

200 kPa, 300 kPa, see Figure 5.13b), are in the best agreement with experimental data in the case of 

𝐸 = 25000 kPa;  𝜚 = 0.25;  𝜆′ = 0.06;  𝜅ℎ = 0.16;  𝑝𝑅
′ = 22 kPa;  𝜉 = 0.6 ; 𝜇 = 0.0601 kPa−1; 

𝑝𝑐0
′ = 300 kPa; 𝑟 = 1.97; 𝛽 = 0.05; 𝑝𝑏 = 70 kPa. Besides, 𝛼 and  𝑀 are associated with the shape 

of the initial yield surface in the 𝑝′: 𝑞 space. Thus, they can be identified by adjusting them until 

establishing a best match between predicted and measured initial yield curves. For instance, for the 

suction-controlled triaxial shear test on compacted Kaolin soil (Thu, 2006), data on the initial yield 

curve in the loading case of 𝑠 = 200 kPa can be used to determine 𝑀 = 1.25 and 𝛼 = 0.85 (see 

Figure 5.14).  

 

Figure 5.13. (a) Calibration of 𝜅ℎ based on SWCC obtained from net pressure-controlled tests (b) 

calibration of 𝐸, 𝜚, λ′, 𝑝𝑐0
′ , 𝑟, 𝑝𝑅

′ , 𝜉, 𝜇, 𝛽 and 𝑝𝑏 based on suction-controlled isotropic compression 

tests on Kaolin soil (after Thu, 2006) 
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Figure 5.14. Calibration of 𝑀 and 𝛼 based on yield surface obtained from suction-controlled triaxial 

tests on Kaolin soil at 𝑠 = 200 𝑘𝑃𝑎 (after Thu, 2006) 

5.5.2. Size-dependent parameters involving localised stage  

In the localised stage, the inhomogeneous deformation and size-dependent behaviour take place 

within the test specimens. To take this into account, parameters (𝐻′, 𝑓 or ℎ) related to the size of the 

localisation band and specimen are needed in this approach, apart from parameters of the base model 

as described earlier. Along with this, an appropriate procedure of calibration is essential to allow this 

constitutive model to be consistent with the proposed two-scale constitutive approach. In principle, 

these parameters can be experimentally obtained by making a rough estimation based on experimental 

shapes of localised failures. In particular, 𝐻′  can be estimated through the formulation of 𝐻′ =

𝐿𝑐𝑜𝑠𝜑  with 𝐿  denoting the height of the specimen (see Figure 5.1) where 𝜑  can be determined 

approximately through the experimental shape of localised failure (Nguyen et al., 2016). Nevertheless, 

𝐿  and 𝜑 change throughout the loading process. Therefore, it is hard to determine an accurate value 

of 𝐻′ if experiments do not provide sufficiently the evolutions in 𝐿  and 𝜑 during shearing. On the 

other hand, physically, the width of shear band ℎ is dependent on the material microstructures and 

also loading paths (Nguyen et al., 2016; Nguyen & Bui, 2020). The thickness of the localisation band 

always evolves with deformation during the transition from diffuse to localised failure (Nguyen & 

Bui, 2020). This evolution of thickness of localisation band has been observed in soils (Ando et al., 

2012; Ando, 2013) and also rocks (Verma et al., 2019) using advanced image-based instrumentation. 

The very thin (or zero thickness) band experimentally observed at the end of the test is the final 

thickness of this band after this evolution (see Figure 5.15). It is, therefore, not a good representative 

of the thickness. This evolution should be taken into account if experimental data on the evolution 
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and correlation with mechanical behaviour are available. However, given the unavailability of such 

data for partially saturated soils, the evolution of shear band thickness is not taken into account in this 

model. Instead, an assumed value of shear band thickness, as a representative to reproduce the 

dissipation and experimentally observed behaviour of the specimen, is used in the model. For these 

reasons, 𝐻′ = 50.46 𝑚𝑚 and 𝑓 = 0.65 are chosen in the suction-controlled triaxial shear test on 

compacted Kaolin soil (Thu, 2006) as an appropriate way to capture the softening response at 𝑠 =

200 kPa, 𝜎33 = 100 kPa as depicted in Figure 5.15.  

 

Figure 5.15.  Assuming 𝑓 for the best fit with the softening behaviour (𝑠 = 200 𝑘𝑃𝑎, 𝜎33 =

100 𝑘𝑃𝑎) and preventing the unphysical snapbacks in the numerical analysis obtained from 

suction-controlled triaxial test compression tests on Kaolin soil (after Thu, 2006) (a) 휀11 − 𝑞 (b) 

휀11 − 휀𝜈 

5.6. Model validation  

In this section, the prediction capacity of this constitutive model possessing two scales of behaviour 

is assessed against different experimental results of both triaxial and biaxial shear tests on partially 

saturated soils under constant suction conditions. The onset and orientation of shear bands are 

predicted, and shear band geometry (thickness and orientation) along with its hydro-mechanical 

behaviour are important elements in post-localisation responses of the samples. It is essential to 

address that the proposed double-scale model for partially saturated soils in this chapter aims at 

correctly describing and capturing the responses of partially saturated soil samples in both pre-and 

post-localisation regimes. This is, to the best of my knowledge, an impossible task for existing 

constitutive models for partially saturated soils. It is noted that the current two-scale model is only 
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considered as an initial step towards a better and more rigorous approach for modelling localised 

failures of partially saturated soils involving the size-dependent behaviour that cannot be found in 

previous studies. At the current stage of research, this study lacks a strong calibration method for 

parameters related to size-dependent behaviour despite its importance in constitutive modelling due 

to the lack of available and accessible experimental data providing sufficient data evolving thickness 

of the localisation band (Nguyen & Bui, 2020).  

5.6.1. Hostun sand, biaxial compression test (Alabdullah, 2010) 

The model predictions are first validated against the drained biaxial shear test on Hostun sand 

(Alabdullah, 2010) at two different levels of suction (0 kPa and 20 kPa). In this test, rectangular 

(prismatic) soil specimens with a width of 100 mm, height of 120 mm and thickness of 40 mm are 

loaded under confining pressures of 𝜎22 = 50 kPa  and 𝜎22 = 100 kPa . The following model 

parameters: 𝐸 = 30000 kPa;  𝜚 = 0.25;  𝜆′ = 0.15;𝑀 = 1.05;  𝜅ℎ = 0.88;  𝑝𝑅
′ = 12.41 kPa;  𝜉 =

0.652; 𝜇 = 0.0629 kPa−1;  𝑝𝑐0
′ = 1000 kPa;  𝑟 = 1.5;  𝛼 = 0.5;  𝛽 = 0.8  and 𝑝𝑏 = 50 kPa  are 

identified through a calibration procedure based on the experimental results at 𝜎22 = 50 kPa . 

Nonetheless, there are also no clear experimental details on the formation and width of shear bands 

under various levels of confining pressure and suction in this test. Therefore, parameters related to 

post-localisation behaviour can be assumed as 𝐻′ = 55.012 mm and 𝑓 = 0.45. It is acknowledged 

that the selection of these input parameters, mainly based on the curve-fitting technique, is generally 

arbitrary and has poor linkages with the testing procedures applied. This shortcoming will be 

addressed in future works. Given this parameter set, a close agreement between the computed and 

measured results on shear stress and volumetric strain are presented in Figures 5.16a, 5.16b, 5.17a 

and 5.17b. Furthermore, the band orientations measured in experiments are also reasonably captured 

by the model, as shown in Figures 5.16c and 5.17c. Nevertheless, there are disparities between 

numerical and experimental data encountered in the volumetric strain at 𝑠 = 20 kPa. This may be 

attributed to missing representations of evolution in the band size in the present model, given the 

proposed approach is based on the assumption of a constant width and inclination angle of the 

localisation band during shearing.  
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Figure 5.16. Validation with a drained biaxial compression test on Hostun sand at 𝜎22 = 50 kPa 

(after Alabdullah, 2010) (a) 휀11 − 𝑞 (b) 휀11 − 휀𝜈 (c) 𝜑 − det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) at bifurcation point 
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Figure 5.17. Validation with a drained biaxial compression test on Hostun sand at 𝜎22 = 100 kPa 

(after Alabdullah, 2010) (a) 휀11 − 𝑞 (b) 휀11 − 휀𝜈 (c) 𝜑 − det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) at bifurcation point 

5.6.2. Kaolin soil, triaxial compression test (Thu, 2006) 

The next example analyses the suction-controlled triaxial shear test on Kaolin soil (Thu, 2006). With 

calibrated parameters in Section 5.5, the results of model simulations generally are in good agreement 

with that of experiments on drained triaxial shear test at different suction (𝑠 = 100 kPa, 200 kPa and 

300 kPa) and confining pressures (𝜎33 = 200 kPa and 𝜎33 = 300 kPa) levels (see Figures 5.19-

5.21), except the results of volumetric strain in the case of 𝑠 = 300 kPa and 𝜎33 = 300 kPa (see 

Figure 5.21b) and inclination angles of the shear band at  𝑠 = 200 𝑘𝑃𝑎, 𝜎33 = 100 kPa (see Figure 

5.18).  
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Figure 5.18. The orientation of the shear band obtained from suction-controlled triaxial tests on 

Kaolin soil (after Thu, 2006) (a) 𝜑 − 𝑑𝑒𝑡(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) at bifurcation point (𝑠 = 200 𝑘𝑃𝑎, 𝜎33 =

100 𝑘𝑃𝑎) (b) The measured orientation of shear band (𝑠 = 200 𝑘𝑃𝑎, 𝜎33 = 100 𝑘𝑃𝑎) (c) The 

predicted orientation of shear band (𝑠 = 200 𝑘𝑃𝑎, 𝜎33 = 100 𝑘𝑃𝑎) 
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Figure 5.19. Validation with a drained triaxial compression test on Kaolin soil at 𝑠 = 100 kPa (after 

Thu, 2006) (a) 휀11 − 𝑞 (b) 휀11 − 휀𝜈 

 

Figure 5.20. Validation with a drained triaxial compression test on Kaolin soil at 𝑠 = 200 kPa (after 

Thu, 2006) (a) 휀11 − 𝑞 (b) 휀11 − 휀𝜈 
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Figure 5.21. Validation with a drained triaxial compression test on Kaolin soil at 𝑠 = 300 kPa (after 

Thu, 2006) (a) 휀11 − 𝑞 (b) 휀11 − 휀𝜈 

 

5.6.3. Compacted silty, triaxial compression test (Patil, 2014) 

The model performance is further investigated involving the suction-controlled triaxial shear test on 

compacted silty sand at four levels of suction 𝑠 = 50 kPa, 250 kPa, 500 kPa and 750 kPa under a 

constant net confining pressure of 𝜎33 = 300 kPa (Patil, 2014). This experiment is conducted on 

cylindrical specimens of 71.12 mm in diameter and 142.24 mm in height. This simulation adopts the 

experimental data at 𝑠 = 250 kPa to calibrate the following parameters: 𝐸 = 55000 kPa; 𝜚 = 0.25; 

𝜆′ = 0.25;𝑀 = 1.2;  𝜅ℎ = 0.26;  𝑝𝑅
′ = 450 kPa;  𝜉 = 0.26; 𝜇 = 0.0055 kPa−1;  𝑝𝑐0

′ = 1100 kPa; 

𝑟 = 1.5;  𝛼 = 0.85;  𝛽 = 0.01;  𝑝𝑏 = 90 kPa . For size effects, despite the availability of several 

experimental data on shapes of localised failure in this test, there is no consensus on measuring it due 

to the lack of experimental data reflecting its evolution (Nguyen & Bui, 2020). In this sense, ℎ or 𝑓 

is assumed to be a constant at 𝐻′ = 79.598 mm and 𝑓 = 0.5 which can be selected to capture well 

the experimental softening response and prevent the unphysical snapbacks in the numerical analysis. 

This is acknowledged as one of the limitations of the present study on strain localisation.   

Numerical and experimental results on deviatoric stress and volumetric strain plotted against the axial 

strain are shown in Figure 5.22. In addition, at various suction levels, the determinant of the acoustic 

tensor is plotted against the inclination angle of the shear band in Figure 5.23 to investigate the 

performance of this model in capturing the localised failure patterns observed in experiments. As 
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illustrated, the computed results reasonably agree with their measured counterparts in the case of 𝑠 =

250 kPa and 500 kPa. However, there is a mismatch between the model prediction and measurement 

at 𝑠 = 50 kPa because the orientation and thickness of the localisation band are assumed to remain 

unchanged despite their variation with loading paths in the post-localisation stage (Nguyen & Bui, 

2020). Furthermore, the assumption of a single tabular shear band leads to the discrepancy between 

numerical and experimental data in the case of 𝑠 = 750 kPa  where the multiple intersecting 

localisation bands are experimentally observed (see Figure 5.23d).  

 

Figure 5.22. Validation with a drained triaxial compression test on compacted silty at 𝜎33 =

300 kPa (after Patil, 2014) (a) 휀11 − 𝑞 (b) 휀11 − 휀𝜈 
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Figure 5.23. Validation with a drained triaxial compression test on compacted silty at bifurcation 

point at 𝜎33 = 300 kPa (after Patil, 2014) (a) 𝑠 = 50 kPa (b) 𝑠 = 250 kPa (c) 𝑠 = 500 kPa (d) 𝑠 =

750 kPa 

5.6.4. Kurnell sand, triaxial compression test (Russell, 2004) 

The drained triaxial compression test with confining pressure of 𝜎33 = 50 kPa under two suction 

levels of 𝑠 = 0 kPa and 400 kPa (Russell, 2004) is investigated on specimens of Kurnell sand which 

are cylindrical, 50 mm in diameter and 51 mm in height. Parameters are taken as 𝐸 = 11000 kPa; 

𝜚 = 0.25;  𝜆′ = 0.3;𝑀 = 1.28;  𝜅ℎ = 0.16;  𝑝𝑅
′ = 363.31 kPa;  𝜉 = 0.6; 𝜇 = 0.0601 kPa−1;  𝑝𝑐0

′ =

550 kPa; 𝑟 = 2.5; 𝛼 = 0.65; 𝛽 = 0.05; 𝑝𝑏 = 70 kPa, which are calibrated to achieve the best fit 

between the experimental result and its theoretical counterpart at 𝑠 = 400 kPa. Due to the lack of 

appropriate experimental data for localisation bands, 𝐻′ = 35.46 mm and 𝑓 = 0.8 are assumed in 

this example to enable the predicted data to agree with measured data in reflecting the softening 

response and avoid problems of unphysical snapbacks. As can be seen in Figure 5.24, the 

experimental results are reasonably reproduced by the current model where partially saturated soils 

(𝑠 = 400 kPa) are more brittle than fully saturated soils (𝑠 = 0 kPa).    
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Figure 5.24. Validation with a drained triaxial compression test on Kurnell sand at 𝜎33 = 50 kPa 

(after Russell, 2004) (a) 휀11 − 𝑞 (b) 휀11 − 휀𝜈 (c) 𝜑 − det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) at bifurcation point 

5.7. Predictive model behaviour 

In this section, several numerical examples are presented to demonstrate promising features of the 

proposed approach in simulating post-localisation responses of unsaturated soil samples in the 

suction-controlled triaxial shear test on Kaolin soil (Thu, 2006).  
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5.7.1. Onset and orientation of localisation band 

The next examples pertain to an analysis of the model behaviour in capturing the effects of strain 

localisation, with the focus on the onset of localised failure and post-localisation responses using the 

same parameters in the previous example (see Section 5.5).  

Effects of 𝑴 and 𝜶 on onset and orientation of localisation band  

The bifurcation response of the proposed model (𝑠 = 200 kPa, 𝜎33 = 100 kPa) under the effects of 

𝑀 and 𝛼 is first explored. For this purpose, a series of numerical simulations are performed for a 

range of 𝑀 = 0.9, 1.1, 1.25 and 𝛼 = 0.35 , 0.65 , 1 , as demonstrated in Figures 5.25 and 5.26, 

respectively. As depicted in Figures 5.25a and 5.26a, the model produces higher orientations of the 

localisation band at higher values of 𝑀 and lower values of 𝛼. These features are consistent with what 

is observed in Figures 5.25b and 5.26b that decreasing 𝑀 expands the yield surface towards the upper 

right direction in the 𝑝′: 𝑞 space, while decreasing 𝛼 leads to an expansion in the part of the yield 

curve located on the lower right side and a narrowing in that located on the upper left side of the 

straight line with the 1:𝑀 slope. This observation corresponds to the increase in the initial shear stress 

when increasing 𝑀  and decreasing 𝛼 . The strong sensitivity of the bifurcation response to the 

parameter 𝛼 and 𝑀 can be clarified through their contribution in generating the plastic change of 

shear strain which significantly affects the tangent stiffness tensor.  
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Figure 5.25. Effects of different values of 𝑀 on the onset of localisation under drained triaxial shear 

tests on Kaolin soil: (a) 𝜑 − 𝑑𝑒𝑡(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) at bifurcation point (b) 𝑝′ − 𝑞 
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Figure 5.26. Effects of different values of 𝛼 on the onset of localisation under drained triaxial shear 

tests on Kaolin soil: (a) 𝜑 − 𝑑𝑒𝑡(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) at bifurcation point (b) 𝑝′ − 𝑞 

Effects of suction on onset and orientation of localisation band  

A sensitivity analysis on the effect of suction on the bifurcation behaviour of the model is conducted 

by varying 𝑠 = 20 kPa, 50 kPa and 200 kPa at 𝜎33 = 100 kPa. At each level of suction, apart from 

the 휀11: 𝑞 and 휀11: [det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙)]𝑚𝑖𝑛results in Figure 5.27a, the variation of the acoustic tensor 

determinant det(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) with the band inclination angle at the bifurcation point is also depicted in 

Figure 5.27b. It can be seen that the orientation of the localisation band increases with increasing 

suction. This is closely linked to higher initial yield shear stresses due to the expansion of yield surface 

in the 𝑝′: 𝑞 space if suction becomes bigger. Physically, partially saturated soils are stiffer and more 

brittle because of the development in the shear resistance by vanishing the spatial distribution of water 

menisci when suction increases.  
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Figure 5.27. Effects of different levels of suction on the onset of localisation under drained triaxial 

shear tests on Kaolin soil: (a) 휀11 − 𝑞, [𝑑𝑒𝑡(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙)]𝑚𝑖𝑛 (b) 𝜑 − 𝑑𝑒𝑡(𝐷𝑖𝑗𝑘𝑙�̅�𝑗�̅�𝑙) at the 

bifurcation point. 

Effects of 𝜿𝒉 on onset and orientation of localisation band  

As also shown in this section, a parametric study provides an assessment of the effect of varying 𝜅ℎ =

0.05, 2 and 7. According to Figure 5.28, increasing 𝜅ℎ signifies a decrease in the inclination of the 

localisation band, owing to the corresponding growth in the capillary effect (𝑠𝑆𝑟) on the soil skeleton 

stress. As can be seen, 𝜅ℎ also appears in Eqs. (5.39) for computing the stress increment. Thus, its 

variation provides different results of the tangent stiffness tensor, reflecting the coupled hydro-

mechanical characteristic in the proposed discontinuous bifurcation criterion. 
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Figure 5.28. Effects of different 𝜅ℎ on the onset of localisation under drained triaxial shear tests on 

Kaolin soil 

Effects of 𝜷 on onset and orientation of localisation band  

A parametric study is here performed out to investigate the effects of 𝛽 on the onset of localisation. 

At different 𝛽 = 0, 0.5 and 0.9, det(𝐷𝑖𝑗𝑘𝑙𝑛𝑗𝑛𝑙) is plotted against 𝜑 in Figure 5.29. It can be found 

that the decrease in 𝛽 reduces the brittleness of the material where 𝜑𝑚𝑖𝑛 increases. This is because 

the capillary irreversibility is observed to be stronger at a higher 𝛽. As can be seen in Eqs. (5.34) and 

(5.36), 𝛽 is present in the flow rules for the irrecoverable rate of volumetric strain and saturation 

degree, and therefore affects the coupled hydro-mechanical energy lost. Furthermore, 𝛽 governs the 

influence of saturation degree on the plastic dilatancy ratio 휀�̇�
p
/휀�̇�
p
 (see Eqs. (5.34-5.35)). The change 

of saturation degree is purely recoverable despite the occurrence of the plastic change in strain if 𝛽 is 

equal to zero. This feature fails to properly reproduce the simultaneous activation and development 

of both mechanical and hydraulic dissipation. When 𝛽 ≠ 0, the bi-directional hydro-mechanical 

dissipation is activated to allow the proposed model to have a better performance in the discontinuous 

bifurcation condition where the wetting-drying difference is captured during the loading-unloading 

process. This is an advance as compared with existing bifurcation theories for partially saturated soils.  
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Figure 5.29. Effects of different 𝛽 on the onset of localisation under drained triaxial shear tests on 

Kaolin soil (after Thu, 2006) 

5.7.2. Post-localisation behaviour   

To highlight the predictive capacity of the proposed model in capturing the responses inside and 

outside the shear band as the underlying ones controlling the macro behaviour in the post-localisation 

regime, a further example is presented in the case of 𝑠 = 200 kPa. As illustrated in Figure 5.30, at 

each level of confining pressure (𝜎33 = 100 kPa, 200 kPa, and 300 kPa), the loading paths are first 

homogeneous in both mechanical and hydraulic responses where the minimum determinant of the 

acoustic tensor is positive. In this homogeneous stage, there is no difference in stress, volumetric 

strain and saturation degree between materials inside and outside the localisation zone. Once the 

localisation is detected, the inhomogeneous changes of both strain and saturation degree are triggered 

simultaneously. From this point on, a further loading pushes the loading paths inside the localisation 

band to deviate from the unloading paths outside the band. In conjunction with this, a significant 

difference in volumetric strain and saturation degree between two local responses (outside and inside 

the shear band) is reproduced. In this case, volumetric strain and saturation degree of the bulk material 

exhibit reversible changes while that of the shear band undergo irreversible changes. The combination 

of these two components results in the averaged macro softening behaviour of the whole unit volume 

element, which is considered as the material behaviour measured from experiments.  
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Figure 5.30. Macro behaviour and corresponding response outside and inside the localisation band 

of the drained triaxial compression test on Kaolin soil at 𝑠 = 200 kPa (a) 휀11
x − 𝑞x (b) 휀11

x − 휀𝜈
x (c) 

휀11
x − 𝑆𝑟

x (d) �̅�x − 𝑞x (e) 𝑝′x − 𝑞x (f) 휀11
x − 𝜎33 (“x” stands for “i” or “o” and also “macro”). 

 

 

D
ev

ia
to

r 
st

re
ss

: 
𝑞
x
 (

k
P

a)
 

Axial strain: 휀11
x  

V
o
lu

m
et

ri
c 

st
ra

in
: 
휀 𝜈
x
 

S
at

u
ra

ti
o
n
 d

eg
re

e:
 𝑆
𝑟x

 

C
o
n
fi

n
in

g
 p

re
ss

u
re

: 
𝜎
3
3x
 (

k
P

a)
 

Effective mean stress: 𝑝′x(kPa) 
  

Net mean stress: �̅�x(kPa) 

   

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Axial strain: 휀11
x  

Axial strain: 휀11
x  Axial strain: 휀11

x  

D
ev

ia
to

r 
st

re
ss

: 
𝑞
x
 (

k
P

a)
 

D
ev

ia
to

r 
st

re
ss

: 
𝑞
x
 (

k
P

a)
 



5-47 

 

5.7.3. Size-dependent behaviour: a parametric study  

A parametric study investigating the size-dependent behaviour at the constitutive level is provided by 

varying 𝑓 = 0.4, 0.6 and 1. In this study, the effects of 𝑓 on the macro dilation response (𝑞: 휀11, 

휀𝜈: 휀11, 𝑆𝑟: 휀11) at 𝜎33 = 100 kPa and 𝑠 = 200 kPa are depicted in Figure 5.31. As illustrated, higher 

deviatoric stresses, higher rates of volumetric strain and saturation degree are produced when 𝑓 gets 

higher. This is consistent with the illustration of dissipation energy inside the localisation band in 

Figure 5.32, where the total energy dissipation scales with the expansion of the reversible unloading 

zone and the narrowing in the irreversible loading zone when reducing 𝑓. Furthermore, the result of 

this double-scale model coincides with that of the classical model for partially saturated soils by 

setting 𝑓 = 1 (or ℎ = 𝐻′ ), facilitating a transition between homogeneous and inhomogeneous 

conditions. These scale-effect characteristics are expected to allow the numerical solutions of BVPs 

to be convergent upon discretisation refinement.  

 

Figure 5.31. Size-dependent behaviour of the drained triaxial compression test on Kaolin soil (a) 

휀11 − 𝑞 (b) 휀11 − 휀𝜈 , 𝑆𝑟 
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Figure 5.32. Size-dependent behaviour of the drained triaxial compression test on Kaolin soil (a) 

휀11 − Φ̃𝜈 , Φ̃ℎ (b) 휀11 − Φ̃, Φ̃𝑠 

5.8. Closure 

The motivation of this Chapter is the development of a novel approach to balance rigour, adequacy 

and simplicity in modelling the post-localisation response of partially saturated soils. This chapter 

proposes a generic constitutive formulation to handle the transition between homogeneous and 

localised regimes of failure with orientation and thickness of the shear band to allow capturing the 

coupled hydro-mechanical response possessing size effects, that is totally overlooked in existing 

constitutive models for partially saturated soils. For this purpose, the strong inhomogeneous 

deformation and saturation are reflected through the use of the kinematically enriched approach, 

which is integrated into a thermodynamics-based two-scale framework reproducing key behavioural 

features under drained shearing conditions. The whole framework is rigorously derived from two 

explicitly defined free energy and dissipation potentials taking into account different responses inside 

(irreversibility) and outside (reversibility) the localisation zone, in conjunction with their interaction 

under the equilibrium condition of total traction and suction. The behaviour inside the shear band 

follows the constitutive law of the generic approach in Chapter 3, in which the strong interdependence 
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of plastic deformation rate and irrecoverable saturation rate is used for the derivation of a single yield 

surface incorporating the effects of both stress and suction. This automatically leads to a bifurcation 

criterion and post-localisation behaviour accounting for the wetting-drying difference in the water 

retention response under the effects of the volume change, which cannot be found in the literature.  

Following the general formulation, a specific double-scale constitutive model is proposed for 

capturing some essential responses observed in suction-controlled triaxial and biaxial shear tests as 

described in Sections 5.6 and 5.7. This model possesses a small number of identifiable parameters, 

all of which can be calibrated from standard tests on unsaturated soils considering the effects of strain 

localisation with details on onset and orientation of the shear band. Its capabilities in predicting the 

experimental results are investigated through several numerical examples to highlight the 

applicability of the current approach. Although a good agreement between the numerical and 

experimental results demonstrates the potential of the generic approach and its derived model, the 

current study is not yet capable of capturing the post-localisation responses involving (i) multiple 

intersecting localisation bands (ii) evolution in thickness and orientation of the shear band during 

shearing (iii) undrained condition and (iv) investigation on the mesh convergence of the numerical 

solutions of BVPs upon discretisation refinement (v) consistent and rigorous calibration approach for 

determining parameters related to size-effects due to insufficiency and inadequacy of appropriate 

experimental data on the thickness and evolution of the shear band.  
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Chapter 6.  Analysis of failure using the Smoothed Particle 

Hydrodynamics  

6.1. Introduction  

The review in Chapter 2 has shown the need to develop a robust SPH method for the determination 

of collapse mechanisms of geomaterials subjected to a wide range of both mechanical loading and 

saturation cases. In this sense, this chapter develops algorithms for implementation in the mesh-free 

SPH method to carry out the coupled flow deformation analysis in partially saturated porous media. 

It is the early stage of studying constitutive modelling of partially saturated soils within the scope of 

the SPH method. What makes the current approach distinct from other works regarding SPH is its 

ability to handle the interaction between deformation and fluid flow at both constitutive and structural 

levels, taking advantages of the generic framework and specific models established beforehand in 

Chapter 3, 4, 5 and Appendix A. The irrecoverable degree of saturation and its tight interaction with 

plastic strain is considered for the first time for the coupled dynamic flow-deformation simulation of 

the SPH method to capture the grain-scale mechanism of hydromechanical coupling. All balance laws 

and constitutive relationships are solved through a single set of Lagrangian particles following the 

solid phase motion, making it simple in the numerical implementation.  

This chapter is organised as follows. Section 6.2 presents the specific formulation of coupled solid 

deformation-fluid flow process in partially saturated soils, including both governing and constitutive 

equations. This is succeeded by an approach for approximate solutions of partial differential equations 

in Section 6.3, where several fundamental aspects of the SPH method are summarized. In Section 6.4, 

the numerical algorithm of the proposed SPH approach for two-dimensional (2D) problems is briefly 

given, along with an example of numerical verification. Various numerical examples are provided 

towards the end of this chapter (Section 6.5) to demonstrate the capability of the present SPH model 

in handling the coupling between solid deformation and seepage flow under different loading and 

hydraulic conditions.  

6.2. A mathematical framework of unsaturated flow  

This section presents a simple formulation for fully coupled solid deformation-fluid flow in partially 

saturated deformable porous media to provide the theoretical basis for the present SPH approach. It is 

derived from the generic framework presented in Chapter 3 by specifying the form of governing 

equations and constitutive relationships.  
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6.2.1. Governing equations of seepage flow   

This sub-section aims at setting up a specific system of governing equations to describe the flow of 

water in deformable unsaturated soils. As described in Chapter 3, to describe the coupling between 

deformation and fluid transport within the deformable body of partially saturated soils, it is essential 

to develop a coupled hydro-mechanical seepage flow model in a mixed form where governing 

equations of three phases in porous media are simultaneously solved and tightly linked together 

through following equations (see Chapter 3).  

𝑣𝑖
𝑤𝑠 =

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝜙𝑆𝑟𝑔
(

1

𝜌𝑤

𝜕𝑠

𝜕𝑥𝑗
𝛿𝑖𝑗 + 𝐵𝑖) (6.1) 

𝐷𝑠𝑆𝑟

𝐷𝑡
= −

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝑔𝜌𝑤𝜙

𝜕2𝑠

𝜕𝑥𝑖𝜕𝑥𝑗
𝛿𝑖𝑗 −

𝑆𝑟

𝜙

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑖
 (6.2) 

𝐷𝑠𝑣𝑖
𝑠

𝐷𝑡
=

1

(1−𝜙)𝜌𝑠
(

𝜕𝜎𝑖𝑗
′

𝜕𝑥𝑗
− 𝑆𝑟

𝜕𝑠

𝜕𝑥𝑗
𝛿𝑖𝑗 + 𝜌𝐵𝑖) (6.3) 

𝐷𝑠𝜀𝑖𝑗

𝐷𝑡
=

1

2
(

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑗
+

𝜕𝑣𝑗
𝑠

𝜕𝑥𝑖
) (6.4) 

𝐷𝑠𝜙

𝐷𝑡
= (1 − 𝜙)

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑖
 (6.5) 

with 𝑘𝑢𝑛𝑠𝑎𝑡 = (𝑆𝑟)𝜁 

The above-mentioned equations are to present the evolution of both hydraulic (Darcy's seepage 

velocity (Eq. (6.1)), saturation degree (Eq. (6.2))) and mechanical (solid velocity (Eq. (6.3), strain (Eq. 

(6.4), porosity (Eq. (6.5)) field variables representing fluid transport through porous media and its 

interaction with deformation. In this model, it is noted that the motion of the fluid phases is presented 

with reference to those of the corresponding soil skeleton.  

6.2.2. Constitutive relationship  

For completeness of this mathematical framework of the coupled flow deformation process of partially 

saturated soils, the following sub-section provides specific constitutive relationships (e.g. stress-strain, 

SWCC). In the light of the foregoing discussion in Chapter 2 and 3, the inelastic behaviour of partially 

saturated soils is experimentally realised through the interdependence between plasticity and hydraulic 

irreversibility. Its intrinsic nature is the inseparability of mechanical and hydraulic internal variables 

produced by the hydromechanical interaction at the grain scale. A constitutive model being capable 

of handling this feature is essentially required for predicting the actual responses of unsaturated soils, 

and hence is an important element for this numerical analysis. To indicate the flexibility of the generic 

constitutive approach mentioned in Chapter 3, two different coupled hydro-mechanical models based 

on Modified Cam-Clay (critical state model) and Drucker-Prager yield criteria as developed in 
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Chapters 4, 5 and Appendix A, respectively, are adopted in this chapter. The following sub-sections 

only summarise the key equations and omit the intermediate details of model formulations which can 

be found in Chapter 4, 5 (Modified Cam-Clay) and Appendix A (Drucker-Prager).  

Model based on Modified Cam-Clay yield criterion 

The formulation of this Modified Cam-Clay yield criterion is rigorously developed in Chapter 4 and 

5. This model uses the state laws for true stresses (see Eqs. (5.28-5.31)) as follows: 

𝑝′ =
𝐸

3(1−2𝜚)
(휀𝜈 − 휀𝜈

p
) (6.6) 

𝑞 =
3

2

𝐸

(1+𝜚)
(휀𝑠 − 휀𝑠

p
) (6.7) 

𝑠∗ = (𝑝𝑢 + 𝑠0
∗) exp {

𝑆𝑟0+[(−𝑆𝑟)−(−𝑆𝑟
p

)]

𝜅ℎ
} − 𝑝𝑢  (6.8) 

From Eq. (4.77) or Eq. (5.33), the coupled hydro-mechanical loading function for the Modified Cam-

Clay yield criterion is rewritten as:  

𝑦 =
(𝑝′−

1

𝑟
𝑝𝑐(𝑢𝑠)

′ )
2

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)

′ ]
2 +

(𝑞)2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)

′ ]
2

𝑀2
− 1 ≤ 0  (6.9) 

And, its flow rules are given as (see Eqs. (4.78-4.80) or Eqs. (5.34-5.36)):   

휀�̇�
p

= �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)

′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)

′ ]
2 exp[−𝛽(1 − 𝑆𝑟)]  (6.10) 

휀�̇�
p

= �̇�𝑝
2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)

′ ]
2

𝑀2
  (6.11) 

−�̇�𝑟
p

= �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)

′ )
2

(𝑠∗−𝑝𝑏)[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)

′ ]
2 [1 − exp[−𝛽(1 − 𝑆𝑟)]]  (6.12) 

In the above expressions, 𝑝𝑐(𝑢𝑠)
′  is the hardening effect dependent upon the hydraulic history of soils 

associated with the effects of bonding and debonding due to a cementing action, taking the following 

form (see Eqs. (5.37)):  

𝑝𝑐(𝑢𝑠)
′ = 𝑝𝑅

′ [
𝑝𝑐0

′ exp(
𝜀𝜈

p

𝜆′ )

𝑝𝑅
′ ]

1

[(1−𝜉)exp(−𝜇𝑠∗)+𝜉]

  (6.13) 

Eqs. (6.6-6.13) demonstrate that a single Modified Cam-Clay yield locus is established in a simple 

form governed by a small number of parameters, delimiting the reversible domain of both mechanical 

and hydraulic processes.  Outstanding features of volumetric response are addressed by the evolution 
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rules in a comprehensive manner, taking into account all physics of dilation and contraction under the 

effect of hydraulic irreversibility thanks to the appearance of irreversible saturation. Further details on 

the model formulation, its dissipation properties, along with implementation algorithms, verification 

and validation are presented in Chapter 4 and 5. 

Model based on Drucker-Prager yield criterion  

As presented in Appendix A, the extended Drucker-Prager model for partially saturated soils can be 

established following the generic approach accounting for thermodynamic kinematic constraints as 

established beforehand in Chapter 3 through the use of two explicitly defined Helmholtz free energy 

and dissipation potentials. Its formulation can be summarised as follows.  

The constitutive relationship of this model is written as (see Eqs. (A.2-A.4)):  

𝑝′ =
𝐸

3(1−2𝜚)
(휀𝜈 − 휀𝜈

p
) (6.14) 

𝑞 =
3

2

𝐸

(1+𝜚)
(휀𝑠 − 휀𝑠

p
) (6.15) 

𝑠∗ = 𝐾ℎ[1 + (−𝑆𝑟) − (−𝑆𝑟
p

)]  (6.16) 

where 𝐾ℎ is the constant controlling the amount of reversible hydraulic energy (see Appendix A). Eqs. 

(6.14-6.16) demonstrate that both mechanical and hydraulic constitutive relationships of this model 

are assumed to be linear in the reversible regime for the sake of simplicity. 

From Eqs. (A.26-A.29) in Appendix A, the Drucker-Prager yield criterion for partially saturated soils 

is demonstrated through the following yield surface (see Figure 6.1):  

𝑦 = 𝑞 − 𝜇′𝑝′ − 𝑐′ ≤ 0    (6.17) 

and the evolution rules as follows:  

휀�̇�
p

= −�̇�𝑝exp[−𝛽(1 − 𝑆𝑟)]𝜇′    (6.18) 

휀�̇�
p

= �̇�𝑝    (6.19) 

−�̇�𝑟
p

= −�̇�𝑝
𝑝′

(𝑠∗−𝑝𝑏)
{1 − exp[−𝛽(1 − 𝑆𝑟)]}𝜇′ (6.20) 

in which 𝑐′ and 𝜇′ are functions controlling the size of yield surface and the dilation behaviour to 

reflect frictional dissipative mechanisms triggered by internal structural changes of soil particles and 

pore fluids. In this case, 𝑐′  and 𝜇′   can be expressed in an exponential form dependent on the 

accumulated plastic strain and modified suction (Yerro, 2015; Alonso et al., 2015) as follows: 

𝜇′ = 𝜇0
′ + 𝜔𝜇𝑠∗   (6.21) 
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𝑐′ = 𝑐0
′ exp(−휂𝑐휀𝑝) + 𝑐𝑚

′ [1 − exp(−𝜔𝑐𝑠∗)]   (6.22) 

In the above expressions, 𝜇0
′ , 𝑐0

′  and 휂𝑐 are parameters of the classical Drucker-Prager yield criterion 

in the fully saturated state (Nguyen & Bui, 2020); 𝑐𝑚
′ , 𝜔𝜇  and 𝜔𝑐  are parameters controlling the 

hydraulic effects on inelastic behaviour (Yerro, 2015; Alonso et al., 2015); 휀𝑝 is the accumulated 

plastic strain linked with the plastic volumetric and shear strains through constants 𝑎𝑑 and 𝑏𝑑, taking 

the following form (Nguyen & Bui, 2020):  

휀�̇� = 𝑎𝑑휀�̇�
p

+ 𝑏𝑑휀�̇�
p

= �̇�𝑝 (𝑎𝑑
𝜕𝑦∗

𝜕𝜒𝜈
+ 𝑏𝑑

𝜕𝑦∗

𝜕𝜒𝑠
)    (6.23) 

 

Figure 6.1. Yield surface of model for partially saturated soils based on Drucker-Prager yield 

criterion in (𝑝′, 𝑞, 𝑠∗) space 

The Drucker-Prager model for partially saturated soils presented above in Eqs. (6.14-6.20) can capture 

the intrinsic interdependence between mechanical and hydraulic internal variables, thanks to the use 

of a single yield function dependent on stress and suction with a single "plastic" multiplier. The yield 

function of this model in Eq. (6.17) is represented by a cut-off yield surface in the 𝑝′: 𝑞: 𝑠∗space, 

acting as the failure surface of partially saturated soils, as demonstrated in Figure 6.1. It is able to 

reproduce the increase of initial yield shear stress with increasing suction. The proposed model in Eqs. 

(6.17-6.20) becomes the classical Drucker-Prager model at 𝑠 = 0 and 𝑆𝑟 = 1, allowing it to capture 

the transition from fully to partially saturated states and vice versa.  

Discussion 

As mentioned earlier, the main concern in this SPH approach is constitutive relationships (stress-

strain, suction-saturation degree) to capture the nonlinear inelastic behaviour of unsaturated soils, 

which serve as the main component in governing the mechanism of soil collapses under effects of 

𝑐′(𝑠∗ = 0) 

𝜇′(𝑠∗ = 0) 

𝑐′(𝑠∗) 

𝜇′(𝑠∗) 

𝑠∗ 𝑞 

𝑝′ 

Yield surface 



6-6 

 

both loading and seepage flow. These two constitutive models (Modified Cam-Clay, Drucker-Prager) 

(see Eqs. (6.6-6.23)) are used as examples in this chapter to demonstrate this. It is worth noting that 

the whole formulations of both models are based on the general thermodynamic framework as 

previously developed in Chapter 3 and hence inherits advantages of this generic approach, realized 

through the rigour and simplicity in capturing the inseparable nature of the coupling rooting from 

grain-scale interactions. In these models, using a single yield surface and two flow rules with a single 

"plastic" multiplier brings benefits to effectively and simply handle the tight interaction between 

mechanical and hydraulic yielding responses in the numerical implementation at any instant in time 

without the use of a separate water retention curve, thus removing complicated treatments and 

simplifying the computational procedure. This feature will be elucidated in Sections 6.4 and 6.5 

through several SPH simulations. The thermodynamic admissibility in these models is always 

guaranteed while underlying dissipative mechanisms are adequately examined (see Chapter 4, 

Appendix A). This is one of the main distinctions of the present SPH approach compared to existing 

ones for partially saturated soils.  

As can be seen in the results provided in Appendix B, it is apparent that the Modified Cam-Clay model 

yields better predictions in comparison with the Drucker-Prager model. The main limitation of the 

constitutive model based on Drucker–Prager yield criterion lies in its incapability of addressing the 

isotropic compression behaviour and the transition between hardening and softening regimes over the 

change of loading and saturation conditions, which can be effectively handled by the critical state 

model (e.g. Modified Cam-Clay) for partially saturated soils. Another deficiency of this model is that 

the yielding behaviour never takes place towards the positive direction of the effective mean stress 

axis, as a consequence of the open-shaped failure surface, which can be addressed by adding a 

hardening cap surface (Kohler & Hofstetter, 2008). Furthermore, the Drucker–Prager yield criterion 

uses a simple linear relationship between 𝜇′ and 𝑠∗, although their nonlinear relationship is usually 

encountered in experiments to describe the dependence of the internal friction on suction and 

saturation degree. However, noting that the Drucker-Prager model is used in this thesis as only one of 

typical examples for the derivation of a wide range of models for partially saturated soils from the 

proposed generic thermodynamics-based approach provided in Chapter 3 to indicate its versatility. 

Additionally, the advantage of the Drucker–Prager criterion is the simplicity over the Modified Cam-

Clay criterion. This is the reason why it has been practically and extensively applied in the field of 

computational geomechanics in parallel with more sophisticated and adequate Critical State Soil 

Mechanics models presented in the following formulation.   
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6.3. Solution approximation using the SPH method 

6.3.1. Basic of the SPH method based on the solid phase motion 

By passing intermediate details on the mathematical derivation, this section provides a brief summary 

of the basic SPH formulations where further details can be found in Lucy (1977), Gingold & 

Monaghan (1977), Monaghan (1992), Bui (2007), Bui & Fukagawa (2008, 2009), Bui et al. (2008, 

2011) and Bui & Nguyen (2017;2020). The fundamental of the SPH method is the weighted averaging 

interpolation process based on the kernel function. Properties of a particle 𝑎 defined on the spatial 

coordinate 𝑥𝑖
𝑎 are studied through its interaction with the neighbouring counterpart 𝑏 located at the 

position of 𝑥𝑖
𝑏 (see Figure 6.2) where 𝑖 is to represent the coordinate system.  

 

Figure 6.2. (a) Particle interactions in SPH within the influence domain (b) Kernel function 

 

 

 (a) 

 
(b) 

A three-phase SPH particle  

𝑥2 

𝑥1 
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Particle approximation of the field variable following the solid phase motion  

The interpolation process of approximating a field variable 𝜓𝑎 of particle 𝑎 is a result of the integral 

representation of the corresponding field variable 𝜓𝑏 of particle 𝑏 as follows:  

𝜓𝑎 ≈ ∫ 𝜓𝑏𝑊𝑎𝑏
𝛺′ 𝑑𝑥𝑖

𝑏 (6.24) 

In Eq. (6.24), 𝑊𝑎𝑏(𝑥𝑖
𝑎𝑏 , 𝑙) is the smoothing function of an interpolation domain 𝛺′, expressed in 

terms of the distance between particles 𝑥𝑖
𝑎𝑏 = 𝑥𝑖

𝑎 − 𝑥𝑖
𝑏 and the smoothing length 𝑙 (see Figure 6.2). 

In principle, it must be a Dirac Delta Function when 𝑙 approaches to zero, while satisfying both the 

normalization condition (∫ 𝑊𝑎𝑏
𝛺′ 𝑑𝑥𝑖

𝑏 = 1) and the compact support condition (𝑊𝑎𝑏 = 0  when 

|𝑥𝑖
𝑎𝑏| > 2𝑙) accommodating a  limited number of "neighbouring" particles in the kernel estimation. 

The kernel function plays an important role in governing the stability of the computational domain. 

For the SPH method, Gaussian and Cubic-spline can be seen as the most well-known and widely used 

kernel functions in the literature (Bui, 2007; Bui & Nguyen, 2020). However, they usually suffer from 

the issue regarding the paring instability in the numerical simulations where particles clump together 

(or tensile instability) in the case of a large supporting domain, as a result of the negative Fourier 

transform of SPH kernel functions for some wave vectors (Dehnen & Aly, 2012). Wendland C2kernel 

(Wendland, 1995) was found to be more stable than Gaussian and Cubic-spline kernel functions in 

maintaining the relatively good particle distributions in the large supporting domain, thus removing 

the tensile instability (Dehnen & Aly, 2012; Bui & Nguyen, 2020). For this reason, the present SPH 

approach uses the Wendland C2 kernel (Wendland, 1995), which is of the form:  

𝑊𝑎𝑏 = {

7

4𝜋𝑙2 (1 −
1

2

|𝑥𝑖
𝑎𝑏|

𝑙
)

4

(2
|𝑥𝑖

𝑎𝑏|

𝑙
+ 1)         0 ≤

|𝑥𝑖
𝑎𝑏|

𝑙
< 2

0                                                                   
|𝑥𝑖

𝑎𝑏|

𝑙
> 2

 (6.25) 

Eq. (6.24) can be discretised onto a finite number of particles 𝑁 of each kernel interpolation based on 

the Gaussian quadrature rule in the following form:  

𝜓𝑎 ≈ ∑ (
𝑚𝑠

�̅�𝑠
)

𝑏
𝑁
𝑏=1 𝜓𝑏𝑊𝑎𝑏  (6.26) 

where (𝑚𝑠)𝑏 and (�̅�𝑠)𝑏 are mass and density of the solid phase carried by particle 𝑏, respectively.  

Noting that the mass and density of the solid phase are used in the formulation of particle 

approximation in Eq. (6.26) because all field variables of the current framework are solved through a 

single set of SPH particles following the solid phase motion.  
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Kernel Approximation of first-order function derivatives 

The first-order gradient of 𝜓𝑎 can be approximated using the following integral form: 

𝜕𝜓𝑎

𝜕𝑥𝑖
𝑎 ≈ ∫

𝜕𝜓𝑏

𝜕𝑥𝑖
𝑏 𝑊𝑎𝑏

𝛺′ 𝑑𝑥𝑖
𝑏 (6.27) 

Invoking properties of 𝑊𝑎𝑏, the integration by parts of Eq. (6.27) gives:  

𝜕𝜓𝑎

𝜕𝑥𝑖
𝑎 = ∫ 𝜓𝑏 𝜕𝑊𝑎𝑏

𝜕𝑥𝑖
𝑎 𝑑𝑥𝑖

𝑏
𝛺′  (6.28) 

From Eq. (6.28), the SPH approximation of 
𝜕𝜓𝑎

𝜕𝑥𝑖
𝑎 can be obtained by replacing the integral with a 

summation:  

𝜕𝜓𝑎

𝜕𝑥𝑖
𝑎 ≈ ∑ (

𝑚𝑠

�̅�𝑠 )
𝑏

𝑁
𝑏=1 𝜓𝑏 𝜕𝑊𝑎𝑏

𝜕𝑥𝑖
𝑎  (6.29) 

Kernel Approximation of second-order function derivatives 

As presented in Section 6.2 of this Chapter, the second-order gradient of suction appears in Eq. (6.2) 

for computing the rate of saturation degree. In principle, the conventional approach, similar to the 

Kernel approximation of the first derivative, can be used to numerically approximate this equation 

(Bui & Nguyen, 2020). Nevertheless, it may lead to a significant numerical instability (Chen et al., 

1999) owing to the change in the sign convention of the second-order derivatives of kernel functions. 

Therefore, a special SPH treatment for approximating the second-order gradient of a scalar function 

or vector quantities is needed to avoid adopting the second derivatives of the kernel function, that can 

be found in Monaghan (1992) and Brookshaw (1985). Here, the way given by Brookshaw (1985) is 

adopted and briefly presented to furnish a basis for approximating the second-order partial derivatives 

of variables by SPH due to its simplicity and stability (Bui & Nguyen, 2020).  

In this approach, to approximate the second-order partial derivative of 𝜓𝑎, the second-order Taylor 

expansion of 𝜓𝑏 about 𝑥𝑖
𝑎 can be taken as given below:  

𝜓𝑏 = 𝜓𝑎 + (𝑥𝑖
𝑏 − 𝑥𝑖

𝑎)
𝜕𝜓𝑎

𝜕𝑥𝑖
𝑎 +

1

2
(𝑥𝑖

𝑏 − 𝑥𝑖
𝑎)(𝑥𝑗

𝑏 − 𝑥𝑗
𝑎)

𝜕2𝜓𝑎

𝜕𝑥𝑖
𝑎𝜕𝑥𝑗

𝑎 (6.30) 

Eq. (6.30) can be rearranged as follows:  

𝜓𝑏𝑎

𝑥𝑖
𝑏𝑎 =

𝜕𝜓𝑎

𝜕𝑥𝑖
𝑎 +

1

2
𝑥𝑗

𝑏𝑎 𝜕2𝜓𝑎

𝜕𝑥𝑖
𝑎𝜕𝑥𝑗

𝑎 (6.31) 

with 𝜓𝑏𝑎 = 𝜓𝑏 − 𝜓𝑎 and 𝑥𝑖
𝑏𝑎 = 𝑥𝑖

𝑏 − 𝑥𝑖
𝑎 
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Eq. (6.31) can be expanded to be an integral form after convolving it with 
𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎 = −

𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑏 :  

∫
𝜓𝑏𝑎

𝑥𝑖
𝑏𝑎

𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎

𝑑𝑥𝑗
𝑏

𝛺′ = −
𝜕𝜓𝑎

𝜕𝑥𝑖
𝑎 ∫

𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑏 𝑑𝑥𝑗

𝑏
𝛺′ −

1

2

𝜕2𝜓𝑎

𝜕𝑥𝑖
𝑎𝜕𝑥𝑗

𝑎 ∫ 𝑥𝑗
𝑏𝑎 𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑏 𝑑𝑥𝑗

𝑏
𝛺′  (6.32) 

Based on properties of the smoothing function, integrations by parts can also be applied to the right-

hand side of Eq. (6.32), leading to:  

𝜕2𝜓𝑎

𝜕𝑥𝑖
𝑎𝜕𝑥𝑗

𝑎
= 2 ∫

𝜓𝑏𝑎

𝑥𝑖
𝑏𝑎

𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎

𝑑𝑥𝑗
𝑏

𝛺′  (6.33) 

Therefore, the SPH approximation of 
𝜕2𝜓𝑎

𝜕𝑥𝑖
𝑎𝜕𝑥𝑗

𝑎 can be deduced from Eq. (6.33) as follows:   

𝜕2𝜓𝑎

𝜕𝑥𝑖
𝑎𝜕𝑥𝑗

𝑎 ≈ 2 ∑ (
𝑚𝑠

�̅�𝑠 )
𝑏 𝜓𝑏𝑎

𝑥𝑖
𝑏𝑎

𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎

𝑁
𝑏=1  (6.34) 

As can be seen in Eq. (6.34), only the first derivative of the kernel function 
𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎  is employed for the 

Kernel approximation of second-order function derivatives, hence helping to remedy the numerical 

instability encountered in using the traditional approach accounting for the second derivative of the 

kernel function. 

6.3.2. Solution approximation using the SPH method  

In this section, approximate solutions of partial differential equations (Eqs. (6.1-6.5)) are proposed, 

following the particle discretization scheme given in Eqs. (6.29) and (6.34). The derivation of SPH 

kernel approximation for field variables is similar to procedures established and illustrated in Bui 

(2007), Bui & Fukagawa (2008, 2009), Bui et al. (2008, 2011), Bui & Nguyen (2017), Bui & Nguyen 

(2020) where the relative difference and link between the quantities of particles 𝑎 and 𝑏 for a given 

interacting pair are considered (Bui, 2007).  

Darcy seepage velocity  

To compute the Darcy seepage velocity, Eq. (6.1) can be represented in the expanded form as:  

𝑣𝑖
𝑤𝑠 =

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝑔𝜌𝑤𝜙𝑆𝑟
(

𝜕𝑠

𝜕𝑥𝑗
− 𝑠

𝜕1

𝜕𝑥𝑗
) 𝛿𝑖𝑗 +

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝑔𝜙𝑆𝑟
𝐵𝑖 (6.35) 

The particle discretization method in Eq. (6.29) is adopted to transform Eq. (6.35) into the following 

approximate form:  

(𝑣𝑖
𝑤𝑠)𝑎 = (

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝑔𝜌𝑤𝜙𝑆𝑟
)

𝑎
∑ (

𝑚𝑠

�̅�𝑠 )
𝑏

𝑠𝑏𝑎 𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎

𝑁
𝑏=1 𝛿𝑖𝑗 + (

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝑔𝜙𝑆𝑟
)

𝑎

𝐵𝑖 (6.36) 
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It is demonstrated in Eq. (6.36) that the above-mentioned SPH approximate solution of Darcy's 

seepage velocity is dependent on the difference between interacting particles in suction instead of 

using the summation technique with only suction of neighbouring particles. This treatment helps to 

make the computational procedure less complicated and the numerical solution more accurate in 

practice (Bui, 2007; Bui et al., 2008).  

Saturation degree rate  

From Eq. (6.2), an expanded equation of the saturation degree rate is provided below: 

𝐷𝑠𝑆𝑟

𝐷𝑡
= −

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝑔𝜌𝑤𝜙

𝜕2𝑠

𝜕𝑥𝑖𝜕𝑥𝑗
𝛿𝑖𝑗 −

𝑆𝑟

𝜙
(

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑖
− 𝑣𝑖

𝑠 𝜕1

𝜕𝑥𝑖
) (6.37) 

Adopting the SPH approximation approach in Eqs. (6.29) and (6.34) to recast the above equation 

leading to:  

(
𝐷𝑠𝑆𝑟

𝐷𝑡
)

𝑎

= −2 (
𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝑔𝜌𝑤𝜙
)

𝑎
∑ (

𝑚𝑠

�̅�𝑠 )
𝑏 𝑠𝑏𝑎

𝑥𝑖
𝑏𝑎

𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎 𝛿𝑖𝑗

𝑁
𝑏=1 − (

𝑆𝑟

𝜙
)

𝑎
∑ (

𝑚𝑠

�̅�𝑠 )
𝑏

(𝑣𝑖
𝑠)𝑏𝑎 𝜕𝑊𝑎𝑏

𝜕𝑥𝑖
𝑎

𝑁
𝑏=1  (6.38) 

with 𝑠𝑏𝑎 = 𝑠𝑏 − 𝑠𝑎 

Solid velocity rate     

For the solid velocity rate, Eq. (6.3) can be rewritten as:  

𝐷𝑠𝑣𝑖
𝑠

𝐷𝑡
=

𝜕

𝜕𝑥𝑗
(

𝜎𝑖𝑗
′

�̅�𝑠
) +

𝜎𝑖𝑗
′

(�̅�𝑠)2

𝜕�̅�𝑠

𝜕𝑥𝑗
− 𝑆𝑟 [

𝜕

𝜕𝑥𝑗
(

𝑠

�̅�𝑠) +
𝑠

(�̅�𝑠)2

𝜕�̅�𝑠

𝜕𝑥𝑗
] 𝛿𝑖𝑗 +

𝜌

�̅�𝑠 𝐵𝑖 (6.39) 

Using Eq. (6.29), the SPH approximation of Eq. (6.39) can then take the following form:  

(
𝐷𝑠𝑣𝑖

𝑠

𝐷𝑡
)

𝑎

= ∑ (𝑚𝑠)𝑏 {[
𝜎𝑖𝑗

′

(�̅�𝑠)2
]

𝑏

+ [
𝜎𝑖𝑗

′

(�̅�𝑠)2
]

𝑎

}
𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎

𝑁
𝑏=1 − (𝑆𝑟)𝑎 ∑ (𝑚𝑠)𝑏 {[

𝑠

(�̅�𝑠)2
]

𝑏

+ [
𝑠

(�̅�𝑠)2
]

𝑎

}
𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎

𝑁
𝑏=1 𝛿𝑖𝑗 +

(
𝜌

�̅�𝑠)
𝑎

𝐵𝑖 (6.40) 

In the above expression, the SPH approximation of solid velocity rate is based on the interaction in a 

pair of interacting particles through the summation of their stress and suction. This approximation 

technique was proved to be more effective in stabilising the numerical solution compared to the 

treatment used for Darcy seepage velocity and saturation degree rate (Bui, 2007). To handle shock 

waves and to prevent the unphysical penetration of particles or forming clumps, an artificial viscosity 

Д𝑖𝑗
𝑎𝑏 and a repulsive force 𝑓𝑛

𝑎𝑏 in a state of particles under tension are incorporated into Eq. (6.40), 

following the approach suggested by Bui et al. (2008). In this case, Eq. (6.40) can be expanded as:  
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(
𝐷𝑠𝑣𝑖

𝑠

𝐷𝑡
)

𝑎

= ∑ (𝑚𝑠)𝑏 {[
𝜎𝑖𝑗

′

(�̅�𝑠)2]
𝑏

+ [
𝜎𝑖𝑗

′

(�̅�𝑠)2]
𝑎

− Д𝑖𝑗
𝑎𝑏𝛿𝑖𝑗 + 𝑓𝑛

𝑎𝑏(Л𝑖𝑗
𝑎 + Л𝑖𝑗

𝑏 )}
𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎

𝑁
𝑏=1 −

(𝑆𝑟)𝑎 ∑ (𝑚𝑠)𝑏 {[
𝑠

(�̅�𝑠)2]
𝑏

+ [
𝑠

(�̅�𝑠)2]
𝑎

}
𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎

𝑁
𝑏=1 𝛿𝑖𝑗 + (

𝜌

�̅�𝑠)
𝑎

𝐵𝑖 (6.41) 

where 𝛿𝑖𝑗 is the Kronecker delta; Л𝑖𝑗
𝑎  and Л𝑖𝑗

𝑏  are the rotation of the local artificial stress tensor to their 

principal values. Further details on this treatment can be found in Bui et al. (2008).  

Strain rate tensor 

The strain rate tensor in Eq. (6.4) can be rewritten as follows:  

𝐷𝑠𝜀𝑖𝑗

𝐷𝑡
=

1

2
(

𝜕𝑣𝑖
𝑠

𝜕𝑥𝑗
− 𝑣𝑖

𝑠 𝜕1

𝜕𝑥𝑗
) +

1

2
(

𝜕𝑣𝑗
𝑠

𝜕𝑥𝑖
− 𝑣𝑗

𝑠 𝜕1

𝜕𝑥𝑖
) (6.42) 

Applying the approximation technique (Eq. (6.29)) to each term of the right-hand side in the above 

equation, one obtains:  

(
𝐷𝑠𝜀𝑖𝑗

𝐷𝑡
)

𝑎

=
1

2
∑ (

𝑚𝑠

�̅�𝑠 )
𝑏

(𝑣𝑖
𝑠)𝑏𝑎 𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎

𝑁
𝑏=1 +

1

2
∑ (

𝑚𝑠

�̅�𝑠 )
𝑏

(𝑣𝑗
𝑠)

𝑏𝑎 𝜕𝑊𝑎𝑏

𝜕𝑥𝑖
𝑎

𝑁
𝑏=1  (6.43) 

with (𝑣𝑖
𝑠)𝑏𝑎 = (𝑣𝑖

𝑠)𝑏 − (𝑣𝑖
𝑠)𝑎   

The strain rate tensor is approximated in a similar way as for the third term in Eqs. (6.37-6.38) of 

saturation degree rate using the relative velocities between the investigated particle and all the other 

particles in the support domain.  

Porosity rate  

By adopting the approach similar to that for the strain rate tensor and passing intermediate details of 

mathematical manipulations, the SPH particle discretization of the void fraction rate can be deduced 

from Eq. (6.5) as:  

(
𝐷𝑠𝜙

𝐷𝑡
)

𝑎

= (1 − 𝜙𝑎) ∑ (
𝑚𝑠

�̅�𝑠 )
𝑏

(𝑣𝑖
𝑠)𝑏𝑎 𝜕𝑊𝑎𝑏

𝜕𝑥𝑖
𝑎

𝑁
𝑏=1  (6.44) 

which helps to capture effectively the change of porosity induced by the variation between interaction 

particles in the velocity of the solid constituent.   
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6.4. Numerical implementation  

6.4.1. Brief on SPH algorithms  

This sub-section centres on the numerical algorithms of the proposed SPH approach based on Bui 

(2007), Bui & Fukagawa (2008, 2009), Bui et al. (2008, 2011) and Bui & Nguyen (2017, 2020), in 

which key features of two-dimensional (2D) problems are briefly presented below. All SPH 

algorithms discussed here have been implemented in the SPH code provided by A/Prof Ha H. Bui 

(Monash University), co-supervisor of this thesis, for academic purposes. Only minor changes are 

needed for the implementation of all models for partially saturated soils in this study. The proposed 

algorithm is expected to provide a high degree of accuracy with an acceptable simulation time. Further 

details on the numerical algorithms of SPH and their applicability can be found in the references (Bui, 

2007; Bui & Nguyen, 2020). 

Initial setup and configuration process: At the start of the computational procedure, spatial domains 

are constructed through polygons, representing the initial geometry of problems. SPH particles are 

then uniformly generated inside these polygons, carrying initial physical properties.  In this step, it is 

noted that an appropriate number of particles based on a certain threshold is chosen to guarantee the 

stability and accuracy of the SPH approximation procedure, depending on specific applications.  

Particle approximation: After determining interaction pairs, Eqs. (6.36), (6.38), (6.41), (6.43) and 

(6.44) are used to compute Darcy's seepage velocity, saturation degree rate, void fraction rate, solid 

velocity rate and strain tensor rate at time 𝑡, respectively.  

Time integration: Standard numerical techniques such as the accurate second-order leapfrog, 

predictor-corrector and Runge-Kutta schemes can be adopted for the numerical integration of the 

ordinary time-dependent differential governing equations where rates of some field variables (void 

fraction, solid velocity) as computed beforehand are utilised. Among these methods of time 

integration, the leapfrog algorithm is usually employed for the SPH method thanks to its advantage in 

reducing the memory storage required in the computational procedure compared to others (Bui et al., 

2008; 2011; Bui & Nguyen, 2017; 2020). Thus, the Leap-Frog algorithm is performed in this study 

for advancing solid velocity and porosity at a half time step while updating location in a full-time step 

(see Figure 6.3) as described in the forms below:  

𝑣𝑘
𝑠 (𝑡 +

∆𝑡

2
) = 𝑣𝑘

𝑠 (𝑡 −
∆𝑡

2
) + ∆𝑡

𝐷𝑠𝑣𝑘
𝑠

𝐷𝑡
(𝑡) (6.45) 

𝜙 (𝑡 +
∆𝑡

2
) = 𝜙 (𝑡 −

∆𝑡

2
) + ∆𝑡

𝐷𝑠𝜙

𝐷𝑡
(𝑡) (6.46) 

𝑥𝑘(𝑡 + ∆𝑡) = 𝑥𝑘(𝑡) + ∆𝑡𝑣𝑘
𝑠 (𝑡 +

∆𝑡

2
) (6.47) 
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where ∆𝑡 is the size of each time step which must be controlled at a small enough constant or meet 

the following Courant-Friedrichs-Levy condition with the use of material sound speed 𝑐𝑠 (Bui, 2007; 

Bui & Nguyen, 2020) to maintain the accuracy and stability of integrated solutions:  

∆𝑡 ≤ 0.1
𝑙

𝑐𝑠
 (6.48) 

 

 

Figure 6.3. Schematic description of the Leap-Frog algorithm for the time integration 

Stress return algorithm: Stress and suction are updated using the semi-implicit stress return 

algorithm presented in Chapter 3, in which increments of strain and saturation degree are computed 

as follows:  

(∆휀𝑖𝑗)
𝑎

= (
𝐷𝑠𝜀𝑖𝑗

𝐷𝑡
)

𝑎

∆𝑡 (6.49) 

(∆𝑆𝑟)𝑎 = (
𝐷𝑠𝑆𝑟

𝐷𝑡
)

𝑎

∆𝑡 (6.50) 

Acknowledging that the numerical implementation of constitutive relationships in this SPH model is 

limited only to single integration points where a simple algorithm is adopted to make the numerical 

solutions adequate and acceptable enough in simulating BVPs, requiring the use of small enough sizes 

of the time step. Thus, further research work is required to enhance the present stress return algorithm. 

For example, further improvement to the exactness of the scheme for updating stresses and suction 

with any size of time step can also be obtained through the sub-stepping in combination with this 

semi-implicit algorithm or full implicit stress return (Nguyen & Einav, 2009). 

Boundary treatments: In the literature, several techniques such as ghost particles and virtual particles 

have been widely used to tackle this problem (Libersky & Petschek, 1991; Takeda et al., 1994; 

Randles & Libersky, 1996; Morris et al., 1997; Bui, 2007; Bui et al., 2008). These boundary conditions 

have been proven to be robust and efficient in simulating SPH boundary lines aligned with the axis of 

the Cartesian coordinate and preventing the penetration of real particles into boundary walls and the 

Kernel truncation (Bui, 2007; Bui & Nguyen, 2017). A similar approach (Bui, 2007) is taken in this 

study to flexibly simulate any shape of the wall boundary through the use of polygonal domains. 
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Particularly, in this approach, walls are treated as polygonal domains of boundary particles 𝑎 where 

their field variables (𝜓𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)𝑎 can be set to a prescribed value 𝜓𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑:  

(𝜓𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)𝑎 = 𝜓𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 (6.51) 

or determined by making use of the interpolation process (Bui, 2007; Zhao, 2019) based on 

information of their real neighbours 𝑏 (see Figure 6.4):   

(𝜓𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)𝑎 =
∑ (

𝑚𝑠

�̅�𝑠 )
𝑏

𝜓𝑏𝑊𝑎𝑏𝑁
𝑏=1

∑ (
𝑚𝑠

�̅�𝑠 )
𝑏

𝑊𝑎𝑏𝑁
𝑏=1

 (6.52) 

It is noted that Eqs. (6.51-6.52) are generic forms of boundary condition used in the present SPH 

model to describe how field variables of boundary particles are defined. Specifications of 𝜓𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

are identified in specific conditions based on appropriate assumptions.  

 

Figure 6.4. Arrangement of boundary and real particles in SPH 

For the coupled flow deformation simulation of partially saturated soils, the boundary wall can be 

defined as a combination of several types of mechanical and hydraulic boundary conditions, which 

are developed from Eqs. (6.51-6.52) and summarised in Table 6.1 and Table 6.2, respectively. As can 

be seen in Table 6.1, for rigid boundary condition, the velocities of all boundary particles are kept 

fixed at zero while their effective stresses are computed to be the same as that of their neighbouring 

real counterparts through the interpolation process, producing repulsive forces to prevent real particles 

from penetrating the boundary. The prescribed velocity boundary condition is used to describe the 

movement of wall boundary induced by external forces (e.g. surcharge loadings, pressures of 

footing/foundation on soils) where a constant velocity is prescribed to all boundary particles and their 
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effective stress is interpolated and explained in the same way as for the rigid boundary condition to 

prevent the penetration of real particles into the boundary wall.  

Table 6.1. Mechanical boundary conditions  

Rigid boundary condition  

(𝜎𝑖𝑗
′𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

)
𝑎

=
∑ (

𝑚𝑠

�̅�𝑠 )
𝑏

𝜎𝑖𝑗
′𝑏𝑊𝑎𝑏𝑁

𝑏=1

∑ (
𝑚𝑠

�̅�𝑠 )
𝑏

𝑊𝑎𝑏𝑁
𝑏=1

  

(𝑣𝑖
𝑠,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

)
𝑎

= 0  

The prescribed velocity boundary 

condition   

(𝜎𝑖𝑗
′𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

)
𝑎

=
∑ (

𝑚𝑠

�̅�𝑠 )
𝑏

𝜎𝑖𝑗
′𝑏𝑊𝑎𝑏𝑁

𝑏=1

∑ (
𝑚𝑠

�̅�𝑠 )
𝑏

𝑊𝑎𝑏𝑁
𝑏=1

  

(𝑣𝑖
𝑠,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

)
𝑎

= 𝑣𝑖
𝑠,𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑

  

Table 6.2 shows that two types of boundary condition for the fluid phase are proposed in this SPH 

model, including impermeable and permeable (pore pressure) boundary conditions. The impermeable 

one is based on the condition that the suction of particles on the boundary layer is set equal to that of 

the nearby real particles using the interpolation technique as presented in Eq. (6.52). This is to describe 

that there is no seepage flow across the boundary where the flow velocity vanishes due to 
𝜕𝑠

𝜕𝑥𝑗
= 0 or 

∑ (
𝑚𝑠

�̅�𝑠 )
𝑏

[𝑠𝑏 − (𝑠𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)𝑎]
𝜕𝑊𝑎𝑏

𝜕𝑥𝑗
𝑎

𝑁
𝑏=1 𝛿𝑖𝑗 = 0  (see Eqs. (6.35-6.36)). It is noted that the current 

condition for impermeable boundary does not always strictly satisfy the Neumann condition where 

the fluid pressure of a boundary particle must be set to that of a real particle in the normal direction 

across the walls (Shao & Lo, 2003, Bui & Nguyen, 2017). Acknowledging that the current treatment 

is simple for the ease of implementation and verified to be acceptable in Bui & Fukagawa (2013), 

requiring further developments. On the other hand, the Dirichlet boundary condition is used to model 

the pore pressure boundary condition by imposing a constant suction on boundary particles. In the 

current model, conditions related to flux across the boundary wall are ignored for simplicity, although 

they are necessary to simulate the coupled flow deformation problems comprehensively. This 

shortcoming will be tackled in future works.  

Table 6.2. Hydraulic boundary conditions  

Impermeable boundary condition  

(𝑠𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)𝑎 =
∑ (

𝑚𝑠

�̅�𝑠 )
𝑏

𝑠𝑏𝑊𝑎𝑏𝑁
𝑏=1

∑ (
𝑚𝑠

�̅�𝑠 )
𝑏

𝑊𝑎𝑏𝑁
𝑏=1
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Permeable (pore pressure) boundary 

condition   

(𝑠𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)𝑎 = 𝑠𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑  

 

6.4.2. Verification  

Verification of the implementation of SPH approximation  

To verify the accuracy of the proposed SPH approach, a simple example of the groundwater flow 

through a rigid soil skeleton is analysed where 𝑣𝑖
𝑠 = 0, 𝜙 = �̅� = 𝑐𝑜𝑛𝑠𝑡 and 𝑆𝑟

p
= 0. In this situation, 

Eq. (6.2) is simplified to:  

𝐷𝑠𝑆𝑟

𝐷𝑡
= −

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡

𝑔𝜌𝑤𝜙

𝜕2𝑠

𝜕𝑥𝑖𝜕𝑥𝑗
𝛿𝑖𝑗 (6.53) 

while Eq. (6.16) can be rewritten as follows: 

𝐷𝑠𝑆𝑟

𝐷𝑡
= −

𝜙

𝐾ℎ

𝐷𝑠𝑠

𝐷𝑡
 (6.54) 

Substitution of Eq. (6.54) into Eq. (6.53) yields the following relation:  

𝐷𝑠𝑠

𝐷𝑡
=

𝑘𝑢𝑛𝑠𝑎𝑡𝐾𝑠𝑎𝑡𝐾ℎ

𝑔𝜌𝑤𝜙2

𝜕2𝑠

𝜕𝑥𝑖𝜕𝑥𝑗
𝛿𝑖𝑗 = 𝐶𝑠

𝜕2𝑠

𝜕𝑥𝑖𝜕𝑥𝑗
𝛿𝑖𝑗 (6.55) 

For simplicity, in this example, the following assumption is made:  

𝐶𝑠 =
𝐾𝑠𝑎𝑡𝐾ℎ

𝑔𝜌𝑤𝜙2 = 𝑐𝑜𝑛𝑠𝑡 (6.56) 

which is the coefficient of consolidation due to 𝑘𝑢𝑛𝑠𝑎𝑡 = 1.  

Boundary conditions of this problem are all rigid and permeable, with 𝑠𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 = 𝑠𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑(𝑡𝑜𝑝) 

for the top wall and 𝑠𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 = 0 for three others. In this situation, Eq. (6.55) can be manipulated 

mathematically by a Fourier transform to obtain the 2D analytical solution (Tracy, 1995), as shown 

below:  

𝑠

𝑠𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑(𝑡𝑜𝑝)
=

4

𝐿𝑐
∑

sin[
(2𝑖−1)𝜋

𝐿𝑐
𝑥2]

[
(2𝑖−1)𝜋

𝐿𝑐
]

× {
sinh[

(2𝑖−1)𝜋

𝐿𝑐
𝑥1]

sinh[
(2𝑖−1)𝜋

𝐿𝑐
𝐻𝑐]

+∞
𝑖=1

2

𝐶𝑠𝐻𝑐
∑

(−1)𝑗(
𝑗𝜋

𝐻𝑐
)𝐶𝑠

(
(2𝑖−1)𝜋

𝐿𝑐
)

2
+(

𝑗𝜋

𝐻𝑐
)

2
∞
𝑗=1 sin (

𝑗𝜋

𝐻𝑐
𝑥1) exp [−

(
(2𝑖−1)𝜋

𝐿𝑐
)

2
+(

𝑗𝜋

𝐻𝑐
)

2

𝐶𝑠
𝑡]} (6.57) 

where 𝑥1  ( 0 ≤ 𝑥1 ≤ 𝐻𝑐 ) and 𝑥2  ( 0 ≤ 𝑥2 ≤ 𝐿𝑐 ) are positions along the vertical and horizontal 

directions, respectively.  
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For the purpose of verification, a rectangular soil column being 𝐻𝑐 = 0.6𝑚 in height and 𝐿𝑐 = 1𝑚 in 

width is examined using the following parameters for seepage flow: 𝜙 = 0.3, 𝜌𝑤 = 1000 𝑘𝑔/𝑚3, 

𝐾𝑠𝑎𝑡 = 16.67 × 10−3𝑚/𝑠 ; 𝑘𝑢𝑛𝑠𝑎𝑡 = 1 𝑚/𝑠  and 𝐾ℎ = 1000 N/m2  in which an SPH domain is 

discretised by 6000 particles. Its geometry and boundary conditions corresponding to the solution in 

Eq. (6.57) are presented in Figure 6.5 with 𝑠𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑(𝑡𝑜𝑝) = 500 N/m2 for the top wall. Figures 6.6 

and 6.7 are given to illustrate variations of suction with location (𝑥1 = 0.1 𝑚,  0.5 𝑚 and 𝑥2 = 0.1 𝑚 

, 0.5 𝑚) at 𝑡 = 30𝑠 and 𝑡 = 50𝑠, computed by both SPH based on the condition of rigid soil skeleton 

and analytical approaches. As can be seen, there is almost no difference between the results from the 

two approaches. This feature provides evidence to confirm the accuracy of the present SPH method 

in performing the simulation of the unsaturated seepage flow through solid earth structures. The same 

results can be obtained by adopting the normalised SPH approximations for Kernel derivatives. 

Snapshots of numerical data on suction within the soil column shown in Figures 6.8 indicate the 

propagation process of drying (𝑠 = 500 N/m2) along the downward direction from the top surface.  

These results are also compared to the numerical solution obtained from the SPH model for the 

deformable soil skeleton through the use of the constitutive model based on Drucker Prager yield 

criterion with the following parameters: 𝐸 = 106 N/m2 ; 𝜚 = 0.3; 𝜇0
′ = 0.5; 𝑐0

′ = 8 × 105 N/m2 ; 

휂𝑐 = 0; 𝑎𝑑 = 0.5; 𝑏𝑑 = 0.5; 𝜔𝜇 = 10−7 m2/N; 𝑐𝑚
′ = 9 × 105 N/m2 ; 𝜔𝑐 = 7 × 10−7 m2/N; 𝑝𝑏 =

104N/m2 ; 𝛽 = 0.01 ; 𝜌𝑠 = 1800 kg/m3 . These parameters are assumed to maintain the elastic 

deformation of the soil column during the whole infiltration process. This leads to a small 

displacement of soil structure, allowing consistency with solutions in the case of rigid soil skeleton. 

As shown in Figures 6.6 and 6.7, the SPH result under the condition of deformable soil skeleton 

closely agrees with analytical and SPH data obtained by assuming a rigid soil skeleton. These features 

indicate an acceptable result of numerical implementation in the proposed SPH approach for 

computing the seepage flow inside deformable porous media despite some discrepancies at 𝑡 = 30𝑠.  
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Figure 6.5. Geometrical data used in the numerical analysis 

 

Figure 6.6. Verification of the proposed SPH algorithm using the infiltration test (a)  
𝑠

500
− 𝑥1  (b) 

𝑥2 −
𝑠

500
 at 𝑡 = 30𝑠 

 

𝑥2 

𝑥1 𝐿𝑐 = 1𝑚 

𝐻
𝑐

=
0

.6
 𝑚

 

Pore pressure boundary  𝑠𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 = 0 N/m2 

Pore pressure boundary  𝑠𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 = 500 N/m2 

Soil domain  
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Figure 6.7. Verification of the proposed SPH algorithm using the infiltration test (a)  
𝑠

500
− 𝑥1  (b) 

𝑥2 −
𝑠

500
 at 𝑡 = 50𝑠 

 

Figure 6.8. The evolution of suction in the soil column during the infiltration process (a) 𝑡 = 0𝑠  (b) 

𝑡 = 30𝑠 (c) 𝑡 = 50𝑠 

Verification of the implementation of the constitutive model 

The proposed SPH approach is next verified through studying collapse mechanisms of a slope under 

external mechanical loading of footing, being of interest in investigating the stress return algorithm of 

the constitutive model. The geometry of the example is shown in Figure 6.9.  The structure is rigid 

and impermeable at the bottom and lateral edges. It is subjected to a vertical downward displacement 

on the top edge of the structure through a prescribed velocity (see Figure 6.9). This SPH analysis is 

conducted using 5105 particles.  In this example, stress and suction are computed through the adoption 

of Modified Cam-clay yield criterion with the following set of parameters: 𝐸 = 2 × 106 N/m2; 𝜅ℎ =

0.1 ; 𝜚 = 0.3 ; 𝑀 = 0.7 ; 𝜆′ = 0.5 ; 𝑝𝑐0
′ = 2 × 105 N/m2 ; 𝑟 = 3 ; 𝛼 = 0.11 ; 𝑝𝑅

′ = 1.9 × 105N/m2 ; 

𝜉 = 0.65; 𝜇 = 0.02 m2/N; 𝑝𝑏 = 7 × 104N/m2; 𝛽 = 0.05; 𝜌𝑠 = 1650 kg/m3; 𝜌𝑤 = 1000 kg/m3; 

휁 = 2; 𝐾𝑠𝑎𝑡 = 9 × 10−4m/s. Figure 6.10 give computed contour data of plastic shear strain at two 

representative times to demonstrate the evolution of yielding behaviour during loading. As illustrated, 

the behavioural trend of this test is reasonably captured by the current SPH model where the 
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localization of plastic shear strain into a narrow band is triggered, initiating from the slope crest under 

the footing and spreading towards the slope toe to create a slip surface. This phenomenon gives rise 

to a movement of the soil mass along the slip surface without any boundary deficiency effect. The 

formation of shear bands goes with a rapid reduction of the shear strength beyond the peak, which is 

intrinsically linked to the interaction between the rearrangement (sliding and rotation) of soil grains 

and the disruption of water meniscuses inside shear bands associated with irreversible deformation 

and saturation. The behaviour of material outside the band is reversible due to the negligible 

microstructural changes. These features can be seen in Figure 6.11, presenting numerical stress paths 

at point A (see Figure 6.9), which are compared to the result implemented in a constitutive driver 

using increments of strains and saturation from the SPH solution. As demonstrated in Figure 6.11, 

both solutions are identical, highlighting the numerical stability of the proposed stress return algorithm 

in the current SPH approach. 

 

Figure 6.9. Geometrical data used in the numerical analysis 

 

Figure 6.10. Development of plastic shear strain at (a) 𝑡 = 0.2 𝑠 (b) 𝑡 = 0.5 𝑠 
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Figure 6.11. Verification of the proposed stress update algorithms of constitutive model based on 

Modified Cam-Clay yield criterion in SPH for results at point A (a) 휀𝑠 − 𝑞, 휀𝑠 − 𝑠 (b) 𝑝′ − 𝑞 

To verify further the numerical implementation of the constitutive model in SPH, this chapter next 

examines responses of a partially saturated soils domain loaded with a rigid footing, using the model 

based on the Drucker-Prager yield criterion. This example is based on a discrete computational domain 

4 m long and 2 m wide with 6480 particles, as geometrically represented by Figure 6.12. The top wall 

is limited within the area of footing in which prescribed velocity and impermeable boundary 

conditions are adopted to form it. All the remaining boundaries are defined by rigid and impermeable 

conditions. In this simulation, the following parameters are assumed: 𝐸 = 2 × 106 N/m2 ;  𝐾ℎ =

106 N/m2; 𝜚 = 0.3; 𝜇0
′ = 0.1; 𝑐0

′ = 8 × 103N/m2; 휂𝑐 = 0.3; 𝑎𝑑 = 0.5; 𝑏𝑑 = 0.5; 𝜔𝜇 = 10−6 m2/

N ; 𝑐𝑚
′ = 9 × 103 N/m2 ; 𝜔𝑐 = 7 × 10−6 m2/N ; 𝑝𝑏 = 104N/m2 ; 𝛽 = 0.01 ; 𝜌𝑠 = 1800 kg/m3 ; 

𝜌𝑤 = 1000 kg/m3 ; 휁 = 2 ; 𝐾𝑠𝑎𝑡 = 10−4m/s . The contours of plastic volumetric strain and 

irreversible saturation are also plotted in Figure 6.13 to observe the pattern of deformation and 

seepage flow within the soil structure. This external loading process leads to the loss of strength, then 

the slope stability is no longer maintained and start to experience localised failures after a period of 

time. From this point onward, the inelastic response of partially saturated soils is induced by the 
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initiation of shear bands as well as their propagation determined by the strong interaction between 

plastic strain and irreversible saturation that cannot be found in existing SPH models. This analysis is 

to demonstrate how the coupled hydro-mechanical dissipation affects the evolution of strain 

localisation and then indicate advanced features of the current model compared to others. Especially, 

the obtained results of numerical analyses show a considerable correspondence with what is usually 

observed for problems on the load-bearing capacity of footings in the literature (Vesic, 1973; 

Terzaghi, 1943; Meyerhof 1978; Hanna 1982; Cerato & Lutenegger 2006). This indicates the 

reasonable implementation of the proposed SPH approach. In particular, the external load makes soil 

particles move in horizontal and downward directions, thus pushing soil out from beneath the footing. 

At early stages, the failure process begins with inclined shear bands (BD, CD) initiating from the two 

lower corners of the rigid footing and then propagates along two other curved bands (DGE, DHF) 

toward the upper corners of the soil specimen. Two faint localised bands along GI and HK can also 

be observed. All these bands divide the collapsed structure into three wedge-shaped zones, including 

Rankin active zone (BCD), Prandtl's radial shear zone (BDGI, CDHK) and Rankin passive zone (EGI, 

FHK). Figure 6.14 presents a good match between results of SPH and constitutive driver in terms of 

deviatoric stress, suction, plastic strains and irreversible saturation degree against the shear strain 

computed at point A. This again confirms the accuracy of numerical implementation in updating 

stresses and suction.  

 

Figure 6.12. Geometrical data used in the numerical analysis 
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Figure 6.13. (a) Plastic volumetric strain (b) Irreversible saturation at 𝑡 = 2 𝑠 

 

Figure 6.14. Verification of the proposed stress update algorithms of constitutive model based on 

Drucker-Prager yield criterion in SPH for results at point A (a) 휀𝑠 − 𝑞, 휀𝑠 − 𝑠 (b) 휀𝑠 − 휀𝜈
p
, 휀𝑠 − 휀𝑠

p
, 

휀𝑠 − 𝑆𝑟
p
 

6.5. Numerical examples  

This section is dedicated to numerical analyses under plane-strain conditions to investigate whether 

the proposed SPH approach is able to capture key features of the coupled flow deformation problems. 

Here attention is paid to the coupled hydro-mechanical failure mechanism of partially saturated soils 

under different loading and hydraulic conditions. This SPH approach focuses on describing simple 

examples to demonstrate how the tight interaction between mechanical (plastic strain) and hydraulic 
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(irreversible saturation) internal variables can be incorporated into the constitutive formulation, which 

is implemented in SPH by means of generic formulations as developed in Chapter 3. It is noted that 

the expectation of this chapter here is only to provide satisfactory trends of the coupled hydro-

mechanical behaviour in terms of BVPs, in lieu of attempting to produce the excellent fits with 

experimental data at this research stage. 

6.5.1. Stability of unsaturated soil slopes subjected to an external load (Suhail et al., 

2018) 

Based on the test on alluvial soil carried out by Suhail et al. (2018), the next example describes the 

response of an unsaturated soil embankment under a strip footing placed on the embankment crest 

using the model based on Modified Cam-Clay yield criterion, with the following material properties: 

𝐸 = 2 × 106 N/m2 ;  𝜅ℎ = 0.1 ; 𝜚 = 0.3 ; 𝑀 = 0.7 ; 𝜆′ = 0.5 ; 𝑝𝑐0
′ = 2 × 105 N/m2 ; 𝑟 = 2.5 ; 𝛼 =

0.11 ; 𝑝𝑅
′ = 1.9 × 105N/m2 ; 𝜉 = 0.65 ; 𝜇 = 0.02 m2/N ; 𝑝𝑏 = 7 × 104N/m2 ; 𝛽 = 0.05 ; 𝜌𝑠 =

1650 kg/m3; 𝜌𝑤 = 1000 kg/m3; 휁 = 2; 𝐾𝑠𝑎𝑡 = 9 × 10−4m/s.  It is noted that these parameters are 

acceptably assumed based on several general soil properties of alluvial soil given by Suhail et al. 

(2018), and they are not calibrated rigorously due to the lack of appropriate experimental data for 

yielding behaviour (e.g. isotropic compression tests, triaxial shear tests, wetting/drying tests) as 

presented in Chapter 4 and 5. This is acknowledged as a limitation of the current study and will be 

addressed in future works. The embankment geometry is illustrated in Figure 6.15. In this problem, 

boundary conditions along lateral and bottom edges are rigid and impervious, while a vertical 

downward velocity on the top edge of the structure is prescribed. A total number of 4152 SPH particles 

are used to set up the initial numerical domain of this simulation.  
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Figure 6.15. Geometrical data of slope used in the numerical analysis 

The distribution of the plastic strain and irreversible saturation degree of the numerical analysis at 𝑡 =

0.5 𝑠 is shown in Figure 6.16 to illustrate the failure mode of this test. It is demonstrated that the major 

mechanisms triggering the embankment failure are reasonably captured by the current model with the 

high concentration of plastic strain inside slipping zones (see Figure 6.16a). Furthermore, it can be 

seen in Figure 6.16b that the irrecoverable saturation degree can be observed inside the localised shear 

bands but not in the surrounding bulk materials.  In particular, a downward movement of particles can 

be observed under the external loading where soils are pushed out from beneath the footing, causing 

the loss of soil strength and then slope instability. After a few seconds, two inclined localisation bands 

initiate from the two lower corners of the foundation, spreading along BD and CD and intersecting at 

point D. With increasing loads, the shear band CD keeps propagating until reaching the point close to 

the slope toe and then dominates the failure process, while the band BD stops propagating at the 

joining point D and nearly disappears at the end of the loading process. Shortly after that, the soil mass 

above the major localisation band CDE detaches slightly from the undeformed region under this band 

(see Figure 6.19). Along with this, a dilation response is observed in which deviatoric stress initially 

experience a rapid increase before reaching a peak, and then a drop as shown through numerical results 

of stress paths, shear stress-strain, plastic shear strain rate and irreversible saturation rate plotted for 

point A (see Figure 6.17). Figure 6.17 illustrates that changes in stress, suction, strain, saturation 

degree and internal variables during shearing activate and develop simultaneously and have effects on 

one another. This allows capturing the strong coupling between mechanical and hydraulic yielding 

responses at any instant. 
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Figure 6.16. (a) Plastic shear strain (b) Irreversible saturation at 𝑡 = 0.5 𝑠 

 

Figure 6.17. (a) Stress path and the yield curve 𝑝′ − 𝑞 (b) Shear stress-strain curve 휀𝑠 − 𝑞 (c) 

Modified suction-effective mean stress 𝑝′ − 𝑠∗ (d) plastic shear strain 휀𝑠 − 휀𝑠
p
 and irreversible 

saturation 휀𝑠 − 𝑆𝑟
p
 at point A 

Figure 6.18 depicts the profiles of suction and Darcy seepage velocity in the soil slope at 𝑡 = 0.5 𝑠 to 

describe the behaviour of subsurface seepage flow induced by the deformation of the soil structure 

owing to the external load. A seepage flow activates and develops inside shear bands within the 

structure (see Figure 6.18) in parallel with this mechanical process, creating a hydromechanical 

resonance during the collapse.  Figure 6.18b illustrates that Darcy seepage velocity inside shear bands 

is higher than that of other regions due to the increase in their suction, as demonstrated in Figure 6.18a. 

The highest change in suction and Darcy's seepage velocity is found to concentrate inside the region 
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of intense plastic strain (see Figure 6.18), demonstrating that the hydraulic process is one of the driving 

forces behind the localized failure in partially saturated soils. All the above-mentioned features 

indicate the ability of the proposed SPH approach to predict the coupled fluid flow caused by the 

settlement beneath the footing. To illustrate this phenomenon, the movement of particles in the porous 

packing causes local instabilities propagated to fluid interfaces. As a result, instantaneous jumps 

between stable configurations cause the discontinuity of water phases such as imbibition or drainage 

of pore throats and bridge rupture. In addition, this process of grain rearrangement leads to the 

variation of capillary pressures, which enables liquid bridges to redistribute. These results also 

demonstrate the inter-dependence of effective stress and suction on others and the rate of all internal 

variables, reflecting the grain-scale mechanism of hydromechanical coupling thanks to the advantages 

of the proposed constitutive approach.  

 

Figure 6.18. (a) Suction (b) Darcy's seepage velocity at 𝑡 = 0.5 𝑠 

To simply validate this simulation, experimental and numerical failure shape are provided in Figure 

6.19. Figure 6.19 indicates that the experimental trend on the final slope configuration of this test are 

reasonably reproduced by the proposed model where the initiation of localisation band takes place in 

front of the slope crest, and it then propagates towards a point close to the slope toe. Nevertheless, the 

model predicts a less steep failure plane in comparison with that observed in experiments, although it 

is noted that this observation is unclear. This discrepancy is acknowledged as a weakness of the 

proposed approach, which may have arose as a result of simplifying assumptions in the 

phenomenological description of seepage force. Another reason for this discrepancy may be that the 

dependence of the deviatoric response on the Lode angle and anisotropic mechanisms are not 

accounted for in the model. This discrepancy may also come from the use of inadequate calibration 

procedures and inappropriate input parameters as there is not enough experimental data associated 

with the inelastic behaviour of partially saturated soils. Furthermore, the current approach does not 

contain any information related to the width and inclination of the shear band in constitutive 
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formulations to describe the size-dependent response when localised failures take place within the 

embankment. These features should be further examined in future studies.  

 

Figure 6.19. (a) Configuration of slope failure in simulation presented by the contour of horizontal 

solid velocity (b) Configuration of slope failure in the experiment. 

Next, a parametric analysis gives results about the influence of the resolution of spatial discretisation 

on the performance of the proposed model. In SPH, the size of the element is represented by the size 

of the Kernel supporting domain (Bui & Nguyen, 2020). In this study, different numerical simulations 

at  𝑙 = 0.026 𝑚, 0.0271 𝑚 and 0.0275 𝑚 are investigated at point A (see Figure 6.20). Figure 6.20 

demonstrates that there is a significant divergence in shear stress-strain curves of different 𝑙. Reducing 

𝑙  causes a rise in shear stress, demonstrating the numerical problem associated with the mesh 

dependence of the proposed model. This is due to the fact that localisation of deformation in the form 

of shear bands during material failure leads to the breakdown of the assumption of homogenous 

deformation used in the current model due to considerable variation of strain and saturation across the 

shear band involving the size-dependent behaviour (see Chapter 2, 5).  The present model does not 

contain any information related to the width, inclination and evolution of inside shear band (inelastic) 

in governing formulations and address strain localisation using phenomenological enhancements such 

𝑣2
𝑠 (𝑚/𝑠) 
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as rate-dependent or nonlocal regularisations. This issue can be addressed by integrating the two-scale 

model proposed in Chapter 5 into the current SPH-based scheme to warrant the convergence of the 

numerical results upon discretisation refinement. This is, however, not covered within the scope of 

this thesis, given it requires much more details about the soil properties and soil tests for these 

properties, including the evolution of localisation and shear band, all of which could not be found in 

the literature. This shortcoming is acknowledged and will be addressed in future works. 

 

Figure 6.20. Performance of the proposed model under the resolution of spatial discretisation 

Also in this problem, a parametric study for examining the effect of coupling parameter 𝛽 (see flow 

rules in Eqs. (6.10) and (6.12)) on structural responses are given to indicate the main distinction and 

advance of the proposed approach in reflecting the interdependence between plastic strain and 

irreversible saturation degree compared to existing numerical methods for partially saturated soils. In 

this example, parameters are the same as for the previous simulation, except that 𝛽 varies (𝛽 = 0; 

𝛽 = 0.1). It is worth pointing out that the irreversible change of saturation degree is found for 

numerical simulations at 𝛽 = 0.1 (see Figure 6.21b), that cannot be performed when 𝛽 = 0  (see 

Figure 6.21a).  As shown in Figure 6.22, shear strength decreases while suction increases with 

increasing 𝛽. These results are shown to be good indicators of a significant role of 𝛽 in controlling 

the hydromechanical yielding response of partially saturated soils because it can facilitate the model 

to manifest the interaction between the hydraulic dissipation in SWCC and the elastoplastic behaviour 

through the use of a single yield surface dependent on both stress and suction. This is one of 

the distinguishing features of this SPH solution as compared to existing ones.  
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Figure 6.21. Effects of different values of 𝛽 (a) 𝛽 = 0 (b) 𝛽 = 0.1  on the model responses at 𝑡 =

0.5 𝑠 

 

Figure 6.22. Effects of different values of 𝛽 on the model responses of point A at 𝑡 = 0.5 𝑠 (a) 휀𝑠 −

𝑞 (b) 휀𝑠 − 𝑠 

By using the same set of parameters, a parametric study is performed to illustrate the influence of 

initial suction on the mechanical responses during loading. In this analysis, the results of plastic shear 

strain (see Figure 6.23) are observed at three levels of initial suction: 𝑠0 = 5000 N/m2; 7000 N/m2 

and 20000 N/m2 . Computed data at 𝑡 = 0.5 𝑠  of these simulations show that the soil structure 

exhibits a higher resistance when subjected to a higher level of suction, going with a more pronounced 

and earlier failure mode. The thickness of the shear band remains almost unchanged, but its orientation 

varies when initial suction changes. The process of localised failure takes place in a relatively 
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shallower depth measured from the crest at a higher suction. These observations are consistent with 

behavioural results for partially saturated soils at the constitutive level as investigated beforehand in 

Chapter 4 and 5, revealing that the current numerical method is able to capture the hydraulic effects 

on the soil deformation at the structural level. This is due to the significant effect of suction on the 

change of the Bishop's effective stress. Furthermore, the yield stress increases when suction increases 

thanks to the use of wetting-induced hardening law in Eq. (6.13). 

 

Figure 6.23. Effects of different initial suction levels (a) 𝑠 = 5000 𝑃𝑎 (b) 𝑠 = 7000 𝑃𝑎 (c) 𝑠 =

20000 𝑃𝑎 on the model responses at 𝑡 = 0.5 𝑠 

6.5.2. The wetting-induced slope failure of a partially saturated soil embankment 

(Kitamura et al., 2017)  

Additionally provided is a numerical analysis of BVPs subjected to the external hydraulic pressures 

to further explore the promising performance of the present approach, with the emphasis on the effect 

of fluid transport on the mechanical deformation and failure of soil skeleton. In this sense, an 

infiltration test of a soil embankment made of unsaturated Shirasu soil (Kitamura et al., 2007) is 

selected to demonstrate the capability of the present approach in capturing the wetting collapse 

mechanism. In this simulation, the soil structure is subjected to a process of water injection. All the 

geometrical data of the analysed structure are illustrated in Figure 6.24. Impervious and rigid boundary 

conditions are applied to the left (EF) and bottom (HG) edges. The hydraulic boundary condition 

along the horizontal lower surface (EH) of the embankment is permeable with 𝑠𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 =

2500 N/m2 , while its mechanical constraint is defined by the rigid condition to simulate the 

infiltration process generated by a water injection placed along EH in the real test. The extended 

Drucker-Prager model for partially saturated soils is used to represent the stress-strain and water 

retention responses. To numerically discretise it, this simulation adopts 2840 particles which are 

characterized by the following parameters (Ando et al., 2015; Xiong et al., 2014; Zhao, 2019): 𝐸 =

2 × 106 N/m2 ; 𝐾ℎ = 2 × 104 N/m2 ; 𝜚 = 0.3; 𝜇0
′ = 0.3; 𝑐0

′ = 0 N/m2 ; 휂𝑐 = 0.3;  𝑎𝑑 = 0.5; 𝑏𝑑 =

0.5 ; 𝜔𝜇 = 0 m2/N ; 𝑐𝑚
′ = 2.3 × 103 N/m2 ; 𝜔𝑐 = 5 × 10−4  m2/N ; 𝑝𝑏 = 104N/m2 ; 𝛽 = 0.01 ; 

𝜌𝑠 = 2450 kg/m3; 𝜌𝑤 = 1000 kg/m3; 휁 = 2; 𝐾𝑠𝑎𝑡 = 7.75 × 10−5m/s. In this example, the initial 
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stresses are assumed to be induced by gravity representing the equilibrium state of the undisturbed 

body due to the lack of appropriate experimental data. To describe it, the 𝐾0-method is adopted where 

the vertical stress is determined from a product between the unit weight of soil and its elevation (Bui 

& Fukagawa, 2013). A product between the earth pressure coefficient 𝐾0 and the vertical stress is 

used to compute the lateral stresses (Bui & Fukagawa, 2013). Owing to the insufficiency of essential 

experimental data for describing the soil failure related to the inelastic response, these constants are 

assumed using appropriate information provided in Ando et al. (2015); Xiong et al. (2014) and Zhao 

(2019) without the use of a consistent calibration method. It is acknowledged that this feature is a 

shortcoming of the present work. Therefore, a more rigorous and adequate calibration procedure is 

required in future works to have a better connection between BVPs and experimental data.  

Furthermore, according to Alonso et al. (2015), a small-time increment is required in the explicit 

formulation of the numerical analysis to give stable solutions, leading to very long computational time 

for the explicit code in the case of low permeability. In this case, to reduce the computational time, 

the permeability can be artificially increased. Along with this, experimental and numerical times can 

be comparative using the dimensionless time (Alonso et al., 2015; Yerro, 2015) as: 𝑡̅ =
𝑡

𝑡𝑓
 in which 𝑡 

is the real time and 𝑡𝑓 is the time to failure (Alonso et al., 2015). It is acknowledged that this approach 

is just a simple treatment to make the computational time shorter.  
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Figure 6.24. Geometrical data used in the numerical analysis (a) Initial geometry for the test (b) 

Image of testing apparatus. 

To figure out how the partially saturated fluid transport and the corresponding progressive failure 

process take place inside the embankment, contour plots of suction and seepage velocity are illustrated 

in Figure 6.25 at several time steps ( 𝑡̅ = 0.167; 0.333;  0.5; 0.833;  0.983  and 1 ). By way of 

illustration, starting from the bottom edge EH, the coupled hydro-mechanical seepage flow travels in 

down-to-up or left-to-right directions within the soil structure. The comparison between experimental 

and numerical results on suction plotted against the dimensionless time at four points A, B, C, D 

within the slope is shown in Figure 6.26. Figure 6.26 show that the proposed SPH model is capable 

of providing a good match to experimentally observed behaviour where suction at these points 

decreases during the infiltration process. However, there are several quantitative mismatches between 

predicted and measured data in regards to the change in suction at points C and D. This issue may be 

attributed to the fact that several explicit effects of mechanical field quantities (porosity, stress) on the 

hydraulic conductivity have not yet been considered in governing equations of seepage flow.  
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Figure 6.25. The evolution of suction in the slope during the infiltration process at (a) 𝑡̅ = 0.167 (b) 

𝑡̅ = 0.333 (c) 𝑡̅ = 0.5 (d) 𝑡̅ = 0.833 (e) 𝑡̅ = 0.983 (f) 𝑡̅ = 1 

 

Figure 6.26. Validation with experimental data in terms of suction (after Kitamura et al., 2007) (a) 

Point A (b) Point B (c) Point C (d) Point D. 
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Additionally depicted in Figure 6.27 is the contour of plastic shear strain at 𝑡̅ = 0.5; 0.95; 0.983 and 

1 to represent the failure mode. Due to the reduction in matric suction during infiltration, slope 

instability occurs ∆𝑡̅ = 0.5  after the beginning of the process of water infiltration, going with a 

circular arc-shaped shear band which initiates from the slope toe G and then spreads towards the 

middle of the slope crest. Within this shear band, the simultaneous activation and evolution of plastic 

deformation and irreversible saturation are observed, describing the inseparable nature of coupled 

hydro-mechanical behaviour at the grain scale that none of the previous numerical methods for 

unsaturated soils can address (see Figure 6.28). A complete slip surface is then formed, triggering the 

global soil collapse. The structure exhibits a progressive detachment of the soil mass above the 

localisation band from the undeformed region under it until reaching the maximum displacement, 

reflecting the loss in the soil strength induced by the wetting process. The onset and development of 

the localisation band create a channel of fluid flow within the slope, readjusting the direction and 

magnitude of Darcy's seepage velocity (see Figure 6.28b). These features support the view that the 

wetting-induced collapse mechanism of partially saturated soils can be well captured by the proposed 

SPH method.  

 

Figure 6.27. The evolution of plastic shear strain in the slope during the infiltration process at (a) 

𝑡̅ = 0.5 (b) 𝑡̅ = 0.95 (c) 𝑡̅ = 0.983 (d) 𝑡̅ = 1 
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Figure 6.28. (a) Irreversible saturation (b) Darcy's seepage velocity (c) Plastic volumetric strain (d) 

Solid velocity at 𝑡̅ = 1. 

When 𝛽 = 0, there is no irreversible saturation and hence no hydraulic dissipation, a pure mechanical 

dissipation is observed where the irrecoverable change of saturation degree totally vanishes although 

the soil structure still exhibits the plastic deformation (see Figure 6.29). This is the case of existing 

SPH models for partially saturated soils, which fail to give a meaningful measure of the simultaneous 

activation and development of both hydraulic and mechanical yielding responses at any instant in the 

inelastic regime, even though they yield adequate results matching those of experiments in some cases. 

The occurrence of irreversible saturation at 𝛽 ≠ 0 (see Figure 6.28) enables the present approach to 

capture the inseparable nature of mechanical and hydraulic energy dissipations inspired from 

microscale interactions between grain contact sliding and capillary irreversibility. It is important to 

note that plastic strain and irreversible saturation activate and develop simultaneously inside these 

shear bands during loading (see Figure 6.28), as a result of using the strong coupling approach based 

on the intrinsic dependence of generalised dissipative stresses on each other and also on internal 

variables apart from their interactions through the constitutive equations. These obtained results reflect 

that taking into account the irreversible change of saturation degree, a sign for the wetting-drying 

difference, is essential for predicting the failure of partially saturated soils. This again confirms the 

effectiveness of the proposed SPH model in capturing actual mechanisms of the coupled hydro-

mechanical yielding behaviour of partially saturated soils and makes it distinct from other SPH 

models.  
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Figure 6.29. (a) Irreversible saturation (b) Plastic shear strain at 𝑡̅ = 1 when 𝛽 = 0. 

6.6. Closure 

This chapter focuses on the development of a simple and rigorous SPH approach to studying the 

coupled solid deformation/fluid diffusion in deformable partially saturated soils subjected to a wide 

range of loading and hydraulic boundary conditions for addressing concerns as mentioned in Chapter 

1 and 3. This approach is simple in its formulation, given the use of a single Lagrangian layer 

representing the mix of solid and fluid phases whose field quantities are solved simultaneously. 

Governing and constitutive equations of this method are rigorously and systematically constructed 

using the generic approach provided in Chapter 3, 4, 5 and Appendix A, thanks to the specifications 

of thermodynamic potentials. One of the unique features that distinguishes the proposed SPH model 

from other existing ones for partially saturated soils is the inclusion of irreversible saturation and its 

interaction with plastic strain in the constitutive relationships of Modified Cam-Clay and Drucker 

Prager yield criteria, allowing to reproduce the hydraulic dissipation and thus the hydraulic 

irreversibility of SWCC. This approach is able to provide the strong hydromechanical coupling 

reflected in an intrinsic dependence of all thermodynamic forces on stress, suction, internal variables 

and their rates through a single-yield surface model encapsulating the simultaneous evolution of 

plastic strains and irrecoverable saturation inspired from the inseparable interaction between grain 

rearrangement and liquid-bridge redistribution at the grain scale as discussed earlier in Chapters 2,3 

and 4. Several numerical examples showing the capability of the proposed approach in simulating the 

tight coupling between seepage flow and large deformation of partially saturated soils are presented 

where the strength loss and soil collapse due to both external loading and infiltration processes in 

some typical tests are reasonably captured.  

Notwithstanding, this work is just in an early stage for researching the behaviour of partially saturated 

soils by the SPH-based scheme. It is geared towards the goal of interpreting mechanisms involving 

the interdependence between plasticity and hydraulic irreversibility instead of pursuing an excellent 

match to particular sets of experimentally measured data. It is acknowledged that there is a lack of 

strong validations of numerical simulation results while the determination of parameters has not 
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carefully been addressed in the current study with somewhat arbitrary choices, owing to an 

insufficiency of appropriate experimental evidence for inelastic behavioural features of partially 

saturated soils. Furthermore, the current SPH model totally ignores details on thickness and orientation 

of localisation band in constitutive equations and numerical regularization techniques, resulting in the 

ill-posed boundary problems in the post-localisation regime. The double-scale model for partially 

saturated soils, as proposed in Chapter 5, can be incorporated into the present SPH approach to remedy 

this problem. It is, however, not yet adopted in this study, and the realization of this enhancement is 

left here as future work on the SPH model development.  
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Chapter 7.  Conclusion and future research 

7.1.  Summary and conclusion  

The emphasis of this thesis is placed on the development of new thermodynamics-based approaches 

and associated constitutive models incorporating better coupling between mechanical (stress-strain) 

and hydraulic (SWCC) responses in a framework of coupled flow-deformation problem to simulate 

failure mechanisms of partially saturated soils under different loading and saturation conditions. The 

key focus is a good balance between rigour, simplicity, number of parameters and performance of all 

approaches and models.  

The basis of the model development is the intrinsic nature of the interaction between grain 

rearrangement and redistribution of liquid bridges at the grain contacts, which governs the 

simultaneous activation and evolution of both mechanical and hydraulic yielding responses at the 

continuum level. This study pursues more rigorous formulations to better reflect these underlying 

mechanisms in continuum constitutive models through the inseparable relationship between plastic 

strains and irrecoverable degree of saturation, employed as two key internal variables in 

thermodynamics-based continuum modelling of partially saturated soils. This is achieved thanks to 

the dependence of all thermodynamic forces on stress, suction and their rates in a new thermodynamic 

approach. Alternatively, it has also been shown that the use of constraints in thermodynamic 

formulations could also be a good and simple way to achieve the goal of having a single loading 

function with two evolution rules for plastic strain and irrecoverable saturation. The key findings and 

contribution in this thesis are:  

(i) Development of a thermodynamic approach for constitutive modelling of partially saturated soils 

within the framework of coupled solid deformation-fluid flow in porous media. The key feature that 

makes this thermodynamic approach distinct from existing ones is the strong coupling between 

hydraulic and mechanical responses realised in a single yield surface dependent on both stress and 

suction and two flow rules for the rates of plastic strains and irreversible saturation rates, sharing a 

single plastic multiplier (see Chapter 3). An alternative option, employing constraints in 

thermodynamics-based formulations for constitutive models for partially saturated soils, has also 

been explored and shown promising potential in obtaining models with a single yield surface and two 

evolution rules for plastic strain and irrecoverable saturation. 

(ii) Systematic establishment of a critical state model for partially saturated soils following the generic 

formulation with a thorough and rigorous investigation of the thermodynamic admissibility and 

dissipation properties. This model offers good potential for predicting essential experimental features 
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observed in suction- and water content-controlled tests at low stresses using a small number of 

parameters, all of which can be calibrated using standard tests through a systematic procedure (see 

Chapter 4).  

(iii) Extension to the general thermodynamics-based approach for constitutive modelling partially 

saturated soils taking into account strain localisation. This is the first attempt to describe and capture 

correctly both pre-and post-localisation responses of partially saturated soils at the material level. 

This approach allows the ability to capture the gradual transition from homogeneous to localised 

failure, along with a coupled hydro-mechanical discontinuous bifurcation criterion accounting for the 

difference between wetting and drying. For the first time, the details on the localisation band 

(thickness, orientation) are incorporated into the constitutive equations to allow modelling the size-

dependent behaviour of partially saturated soils under drained conditions (see Chapter 5).  

(iv) Implementation of the proposed coupled hydro-mechanical framework in a meshfree scheme 

(SPH) to examine the potential applicability of the proposed approach to predict water transports and 

soil collapses in BVPs of three-phase porous media under a wide range of loading and hydraulic 

conditions. This is the first time that the irrecoverable degree of saturation is taken into account in an 

SPH-based approach to capture the effects of the wetting-drying difference of SWCC on the coupled 

flow deformation process of partially saturated soils (see Chapter 6).  

These contributions and their corresponding limitations are further discussed in the following sub-

sections:  

7.1.1. Generic coupled flow deformation framework 

This thesis develops a generic hydromechanical framework for the coupled solid deformation-fluid 

laminar flow within three-phase porous media based on the continuum theory of mixture and 

plasticity. In this framework, field variables (e.g. seepage force, solid velocity, porosity, saturation 

degree) following the movement of the solid skeleton are formulated in a simple mixed form by 

combining basic laws of mass and momentum conservation of all constituents in the mixture. Its 

constitutive models with coupling between mechanical (stress-strain) and hydraulic responses 

(SWCC) are formulated on the basis of a generalised thermodynamics-based approach possessing the 

strong coupling between volumetric, shear and hydraulic dissipation processes. Central to this 

development is the adoption of a special form of dissipation potential inspired from mechanisms at 

the grain scale for physical interpretations of the interdependence of thermodynamic forces, internal 

variables and their rates.  In the context of unsaturated soil modelling, this is the first time such a 

strong coupling is used for coupling irreversible degree of saturation with plastic strain, resulting in 
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a model with a single yield surface and two flow rules for the irrecoverable degree of saturation and 

plastic strain. It distinguishes the proposed approach from several other thermodynamics-based 

approaches, which require more than one yield function due to the decoupling of dissipative stresses 

from all stresses and suction when adding the internal hydraulic variable. 

The proposed thermodynamic approach for constitutive modelling of partially saturated soils enables 

a more natural evolution of yield surface under coupled hydro-mechanical effects, in lieu of using 

arbitrary and complicated treatments for the coupled evolution of multiple yield functions as seen in 

several existing models for partially saturated soils. Thanks to this, the cross-coupling terms of 

tangent stiffness tensor reflecting the inter-dependence between mechanical and hydraulic responses 

upon yielding are automatically obtained. As a result, SWCC in this framework has a path-

dependence nature governed by hydro-mechanical loading paths of both stress and suction, inducing 

different responses under wetting/drying and mechanical loading conditions. This feature reflects the 

inseparable nature of the tight hydromechanical coupling rooting from grain-scale interactions and 

permits removing the use of a separate water retention curve for inelastic behaviour, as commonly 

found in many existing studies. The proposed generic formulations for flow through and constitutive 

models of partially saturated porous media possess versatility for the development of different 

constitutive models and their implementation for solutions of BVPs involving partially saturated soils 

through the specifications of seepage force and both energy and dissipation potentials.  

It is noted that details associated with underlying mechanisms at the grain scale are not explicitly 

incorporated into constitutive equations of the current model framework despite their importance for 

an accurate understanding of the actual responses of partially saturated soils. Microscopic 

mechanisms are used here only as a means to identify constraints on the interdependence of internal 

variables (e.g. plastic strain tensor and irreversible saturation degree) in thermodynamics-based 

continuum modelling where their strong coupling in energy dissipation at the continuum level is the 

focus of this thesis. The inseparable interaction between grain rearrangement and liquid-bridge 

redistribution at the microscopic scale is understood as fundamentals for the purpose of clarifying the 

current selection of Helmholtz specific energy potential and energy dissipation at the macro averaged 

behaviour over a certain volume element. It is acknowledged that the proposed approaches and 

models do not possess explicit links between grain-scale processes and their continuum 

representatives, plastic strain and irrecoverable saturation. These explicit links that require grain-scale 

modelling and homogenisation are not within the scope of this study. Instead, several simplifying 

assumptions in the phenomenological descriptions of the essential mechanisms have been used in the 

current approach. Their appropriateness and validity are the subjects of future study. 
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7.1.2. Constitutive modelling of partially saturated soils  

Following the proposed general thermodynamic approach, a particular constitutive model based on 

the concept of critical state is constructed. The fundamental of this model is the inelastic responses 

of partially saturated soils at the critical state where volumetric and hydraulic energy dissipations 

totally vanish, and the total dissipation is fully governed by shear strain only. Helmholtz specific 

energy and dissipation potentials are explicitly defined, taking into account some key behavioural 

features of suction-and water content-controlled triaxial shear tests at low pressures to derive this 

whole model through a systematic procedure with a small number of assumptions. This leads to the 

construction of a three-dimensional Modified Cam-Clay family yield surface whose tear-drop shape 

in 𝑝′: 𝑞: 𝑠∗ space can be expanded with suction through a simple monotonic function of hardening 

law. In comparison with the previous unsaturated soil models, this model possesses fewer parameters 

(13 parameters), all of which can be consistently calibrated through a step-by-step process linked with 

different experimental loading paths of standard tests.  

Various numerical examples are performed to demonstrate that the current approach can offer the 

capacity to handle fully coupled hydro-mechanical responses of partially saturated soils under a broad 

range of testing conditions. In particular, this model gives a good performance on the transition 

between different states (e.g. saturated and partially saturated, isotropic compression and triaxial 

shear, hardening and softening) and hydromechanical coupling (e.g. effects of suction and saturation 

degree on soil stiffness, dilation, shear strength and effects of stress and strain on the wetting-drying 

difference of SWCC). The advantages of the present approach in quantifying the amounts of hydraulic 

and mechanical energy dissipations and guaranteeing the thermodynamic admissibility are also 

demonstrated in extensive analyses on coupled hydro-mechanical dissipation characteristics.  

However, the present critical state model is acknowledged just as a relatively simple example to 

emphasize the applicability of the generic framework in capturing the coupled hydro-mechanical 

dissipation of partially saturated soils. As always, there are shortcomings. For instance, the 

anisotropic nature of behaviour is not addressed in this model, resulting in the incapacity to reproduce 

experimental data on distorted or rotated tear-drop shapes of the yield surface (Cui & Delage, 1996; 

Zhan, 2003). In addition, the model neglects the explicit effect of air entry value on effective stress 

and the Loading-Collapse curve, which is important to understanding the actual transition between 

fully and partially saturated states. Another shortcoming lies in the open-shaped yield curve in the 

𝑝′: 𝑠∗ plane that hinders adequate simulations of hydraulic paths under the constant net stress in some 

experimental situations because of the indefinite yield limit with suction increase. Furthermore, no 

attention has been paid to modelling responses of partially saturated soils at high-stress levels, 
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involving the transition to full-void closure and pressurised saturation. These features lead to some 

mismatches in simulating experiments, as noted in Chapter 4.   

7.1.3. Strain localisation of partially saturated soils  

To capture the inhomogeneous deformation induced by the localised failure in partially saturated 

soils, this thesis proposes a new mechanism-based model to embed essential shear band details 

(orientation and thickness) in the constitutive relationships. Within this model, two separate 

hydromechanical responses outside (reversibility) and inside (irreversibility) the localisation band are 

connected by means of the kinematically enriched approach under drained conditions, all of which 

appear naturally through rigorous procedures following a thermodynamically consistent approach 

based on two explicitly defined energy potentials. The model, constructed in this manner, is capable 

of capturing the transition between pre-and post-localization responses in a physically meaningful 

way as it can reduce to be identical to a classical constitutive model for homogeneous deformation.  

The model also facilitates a natural derivation of the in-built criterion for detecting onset and 

orientation of the localisation band, accounting for the difference between wetting and drying under 

various loading and saturation conditions, all of which have not yet been considered in the literature. 

The irreversible change of saturation degree (a sign for the wetting-drying difference) is taken into 

account in the discontinuous bifurcation condition. The incorporation of a length scale related to the 

width of the localisation zone and the size of the volume element (specimen) into the constitutive 

equations allows this model to describe post-localisation correctly and hence size-dependent 

behaviour, removing the needs for additional ad hoc regularisations for the numerical analysis of 

BVPs involving localised failure.  

The ability of the proposed double-scale approach in taking the concurrent existence of hydraulic 

effects (suction, saturation degree) towards mechanical processes (stress, strain, porosity) and vice 

versa into consideration in the bifurcation criterion and post-localisation behaviour is highlighted to 

some extents in different verification, validation and parametric studies at the material level. Through 

a consistent calibration method covering size-effect parameters, a good agreement between predicted 

and measured data on the orientation of the localisation band and the softening response of several 

suction-controlled triaxial shear tests are obtained, indicating the potential of this approach.  

Although the obtained results demonstrate that considerable progress has been made in modelling the 

localised failure of partially saturated soils, several weaknesses exist in the current model. For 

example, the gradual variation of the width of the localisation band during the transition from diffuse 

to localised failure is ignored, although its dependence on the loading history and the underlying 
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complicated nonlinear microstructural processes is usually observed in experiments. The proposed 

approach does not consider the effects of the shape of the volume element and positions of the 

localisation band in the specimen, given the fact that the formulation assumes idealised conditions to 

simplify the derivation. Since no consensus has been reached on measuring thickness and inclination 

angle of the shear band in experiments, a very simple method is used to calibrate the length scale for 

fitting the experimental data on the softening behaviour. Furthermore, only a single tabular shear 

band of the localised failure is considered in the current model, making it hard to reproduce the 

experimental responses related to the appearance of multiple intersecting bands over the sheared 

specimen (Patil, 2014; Nguyen et al., 2017). All of these deficiencies in the physical definition of the 

length scale are regarded as possible explanations for mismatches between predicted and measured 

results in some loading cases, as demonstrated in Chapter 5. On the other hand, the proposed 

formulation is applicable only to drained conditions of partially saturated soils where strain 

localisation involving undrained loading paths has not yet been investigated.  

7.1.4. Study of Boundary Value Problems  

The potential applicability of the proposed continuum approach for simulating the coupled flow 

deformation process in the solutions of BVPs is investigated using the Smoothed Particle 

Hydrodynamics. In this implementation, the necessary detailed forms of seepage force and 

thermodynamic potentials (Helmholtz specific energy, dissipation) are assumed to derive specific 

solutions of partial differential equations. Two constitutive models for partially saturated soils based 

on Drucker-Prager and Modified Cam-Clay yield criteria are used, following generic formulations 

and procedures established in Chapter 3.  

This study is expected to represent a significant advancement towards developing a simple but robust 

SPH-based continuum framework to yield an appropriate reflection of the underlying nature of the 

grain scale interaction in modelling the coupled hydro-mechanical behaviour of unsaturated soils. In 

particular, its simplicity is realised through the adoptions of a single set of Lagrangian particles for 

solving the system of governing differential equations (single-layer approach) and a unique yield 

locus for updating stress and suction. The promising performance of the proposed approach in 

handling failure mechanisms of partially saturated soils is demonstrated through a broad range of 

numerical examples (e.g. verification, validation, parametric study) under different mechanical and 

hydraulic boundary conditions. Full coupling between fluid flow patterns and large 

deformations/failures of the solid phase are captured relatively well. It is worth noting here that the 

developed SPH framework possesses advantages compared to existing ones thanks to the advanced 
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constitutive models used, with the capacity to tackle the difference in wetting and drying and the 

simultaneous activation and development of yield stress and suction at any instant in time.  

It should be emphasized that this study is only an initial step towards a better strategy for simulating 

failures of partially saturated soils by the SPH-based framework involving the intrinsic nature of 

interdependence between plasticity and hydraulic irreversibility. This thesis mainly attempts to 

develop a rigorous approach with the promising potential of applications in constitutive modelling of 

partially saturated soils in different deformation and saturation states. In this sense, the current 

constitutive model is just intended to demonstrate the capacity of the new continuum modelling 

approach with acceptable trends of behaviour rather than to produce a perfect match with experiments. 

At this stage, there is a lack of adequate experimental data in existing laboratory or field tests that can 

provide sufficient details of inelastic responses of partially saturated soils. This brings challenges to 

the development of a consistent and appropriate calibration procedure to determine parameters 

associated with yield criteria for reaching a good fit between predictive and measured results. 

Furthermore, the integration of thickness and orientation of shear band in the constitutive 

relationships is not considered in the SPH simulations due to the lack of experimental data with 

sufficient details on the correlation between hydro-mechanical responses and the evolution of 

localisation bands. Nevertheless, the importance of shear localisation in controlling the actual 

behaviour of unsaturated soils is acknowledged. The use of rate-dependent or nonlocal regularisations 

will also be considered in the near future to overcome issues associated with localised failure in the 

analysis of BVPs involving softening and/or localisations.  

7.2.  Future research directions   

Given the above-mentioned limitations, further works and investigations are required to improve the 

approach and models developed in this study. For this purpose, several possible research directions 

are currently being planned for the future as follow up to this project. They are briefly described as 

follows:  

7.2.1. Micromechanical enrichments 

Local components for micromechanical responses (e.g. surface tension, contact angle, traction) are 

missing in the current approach, despite their indispensability in generating actual behaviour of 

partially saturated soils. This requires further theoretical research to better understand the phenomena 

at both grain and macro (continuum) scales and their effects on the macro hydro-mechanical 

behaviour of unsaturated soils (e.g. micro-macro links). As a step towards this, the present 

thermodynamics-based continuum model can be further enhanced by adding the micromechanics-
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based details to constitutive equations. This development can start with a new closed-form work input 

of the volume element, including particle information (size, shape) and modes of micromechanical 

interaction (surface tension, contact angle, air-water interfacial area) based on a microscale analysis 

of conservation equations and thermodynamic statements. This is expected to lead to better forms of 

stress-like variables (effective stress, hydraulic variables) accounting for the micromechanical aspects. 

From this, with the use of appropriate energy potentials (Helmholtz specific free energy, dissipation), 

a corresponding model can be constructed through a procedure similar to the one described in this 

thesis where the observed microscopic components are automatically accommodated in the 

constitutive structure.  

In an alternative way, a new micromechanics-based approach based on Nguyen & Gan (2014) can be 

put forward to gain physical insights into bridging both macroscopic and microscopic responses at 

the constitutive level. In this approach, the material is treated as a composite one possessing two 

separate phases (scales): localized (micro) and bulk (macro), where several possible contact surface 

across the volume element are idealized to define the localized phase. The bulk behaviour can follow 

the constitutive law of the continuum model developed in Chapter 3 and 4, while the response of the 

localized phase can be represented by grain to grain contact laws of friction and capillary forces, 

including essential micromechanical details in different saturation and deformation regimes. The 

interaction between these two phases is then established through an internal equilibrium to maintain 

the traction continuity across the contact surface, leading to an overall constitutive relationship of the 

volume element containing both micro and macroscale responses. This planned research is expected 

to bring in a fruitful way to reproduce the realistic behaviour of partially saturated soils faithfully, in 

comparison with continuum approaches mapping everything onto a single constitutive relationship.  

7.2.2. Improving model behaviour  

Another potential direction for future research can involve several further enhancements in the 

responses of the current critical state model in Chapter 4. In this regard, the main concern is the 

reconstruction of the loading function to offer a combination of advanced features found in several 

existing studies to move towards a closer representation of unsaturated soil response. For example, 

the anisotropic behaviour can be taken into account in the dissipation potential to derive the yield 

locus in distorted tear-drop shapes to match with some experimental observations closely. The yield 

curve can also be improved to incorporate the effects of air-entry suction (Sheng et al., 2008; 2011; 

Khalili et al., 2008; Loret & Khalili, 2000; 2002) to achieve a better reflection on the transition 

between fully and partially saturated states thanks to the modifications to the equations of effective 

stress and volume change. In addition, a closed-shape yield surface (Thu et al., 2007b; Sivakumars & 
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Doran, 2000; Delage & Graham, 1996; Tang & Graham, 2002) is essential to better predict water 

retention curves of stress-controlled drying tests, requiring several behavioural features observed in 

these tests to appear in thermodynamic potentials. The hardening law for the loading function still 

needs further modifications to allow the model to capture yielding responses under more complicated 

loading paths (Loret & Khalili, 2000; 2002) and high stresses related to the pressurized saturation and 

the transition to full-void (Mun & McCartney, 2015; 2017; Zhou et al., 2018). 

7.2.3. Localisation of deformation  

Future study should address the evolution of the thickness of the shear band to complete the 

description of the current double-scale approach for better predictive capabilities with the general 

idea rooting from Nguyen & Bui (2020). In this development, the volume fraction 𝑓 (length scale) 

representing the width of the localisation zone is inserted into the thermodynamics-based constitutive 

formulation as an internal variable instead of a constant input parameter. Different constituents for 

the behaviour inside and outside the localisation zone and the rate-dependent evolution of this zone 

can be then rigorously constructed using a similar procedure to that given in Chapter 5. Another 

extension of the current two-scale model for capturing the nested scale nature of the localised failure 

with multiple shear bands is also needed (Nguyen et al., 2017). To address it, one of the possible 

improvements is the introduction of multiple length scales and variables (stress, suction, strain, 

saturation degree) in the current thermodynamics-based size-dependent framework, each of which is 

defined for a localisation band based on an existing approach for progressive compaction localisation 

(Nguyen et al., 2017). Furthermore, the size-dependent behaviour under undrained conditions is 

neglected in this thesis but should be studied in the near future as it could open doors to a more 

comprehensive understanding and simulation of localised failure of partially saturated soils. Towards 

this goal, the movement of all three phases (air, water, solid) as one material and thus the mass 

conservation of fluid phases in the solid matrix motion can be assumed (Borja, 2004), allowing the 

use of balance laws (mass, momentum) to derive an appropriate condition describing the distribution 

of suction and saturation degree across the boundary of the shear band. This condition is then 

incorporated into a thermodynamics-based framework for further steps.  

7.2.4. Regularisation to deal with softening and localisation in the analysis of BVPs 

The numerical implementation of the current SPH model (Chapter 6) is limited to the homogeneous 

deformation without the details on the localisation band (orientation, thickness) characterising the 

post-localisation behaviour, hence leading to the lack of convergence of numerical solutions with 

respect to the mesh refinement. This problem can be remedied in the future by an implementation of 

the two-scale model developed in Chapter 5 into the SPH-based scheme presented in Chapter 6, going 
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with adequate analysis of regularisation effects for the solutions of BVPs. In this analysis, the width 

of the localisation band (ℎ) is considered as an intrinsic material property where it is presumably fixed 

during loading and remains the same in all particle discretisation sizes. The effective size of the 

volume element (𝐻′) in this case is defined by the effective size of an SPH particle (size of the Kernel 

supporting domain) crossed by the shear band, which can vary depending on the resolution of the 

spatial discretisation. As demonstrated in several publications on the fracture of solids and also soil 

cracking (Nguyen et al., 2014; 2016; Wang et al., 2019; 2020; Tran et al., 2019), the numerical 

solutions are expected to converge upon the refinement of the spatial discretisation, thanks to the 

intrinsic regularisation of the approach. This approach is computationally efficient and can be used 

to analyse large scale failure, given the fact that SPH particles can be larger than the thickness of the 

localisation band, thanks to the embedded localisation band in the constitutive structure. For small 

scale analysis, the size of the SPH particles can be smaller than the thickness of the localisation band, 

facilitating the application of classical regularisation techniques such as nonlocal/gradient (Pijaudier-

Cabot & Bazant, 1987; Chen & Schreyer, 1987; Peerlings et al., 1996) and rate-dependent 

regularisations (Das et al., 2013; Mir et al., 2018) based on Perzyna’s visco-plasticity (Perzyna, 1966; 

Sluys, 1992; Borst et al., 1993). 
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Appendix A. Model based on Drucker Prager yield criterion for 

partially saturated soils  

A.1. Formulation  

A.1.1. Helmholtz specific energy potential 

The Helmholtz free energy potential can be assumed in the following specific form: 

Ψ =
𝐸

6(1−2𝜚)
(휀𝜈 − 휀𝜈

p
)

2
+

3

4

𝐸
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p
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+
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2
𝐾ℎ[1 + (−𝑆𝑟) − (−𝑆𝑟

p
)]

2
+ (−𝑆𝑟

p
)𝑝𝑏  (A.1) 

where 𝐸 is the Young modulus; 𝜚 is the Poisson’s ratio and 𝐾ℎ is the constant controlling the amount 

of reversible hydraulic energy.  

The state laws for true stresses are obtained from Eq. (A.1) as:   

𝑝′ =
𝜕Ψ

𝜕𝜀𝜈
=

𝐸

3(1−2𝜚)
(휀𝜈 − 휀𝜈

p
) (A.2) 

𝑞 =
𝜕Ψ

𝜕𝜀𝑠
=

3

2

𝐸

(1+𝜚)
(휀𝑠 − 휀𝑠

p
) (A.3) 

𝑠∗ =
𝜕Ψ

𝜕(−𝑆𝑟)
= 𝐾ℎ[1 + (−𝑆𝑟) − (−𝑆𝑟

p
)] (A.4) 

Eqs. (A.2) and (A.3) indicate that elastic bulk and shear moduli are independent on the pressure. On 

the other hand, similar to many existing models for unsaturated soils (Alonso et al., 1990; Sheng et 

al., 2004; Wheeler et al., 2003), effects of suction and saturation degree on the elastic soil stiffness 

are assumed to be so insignificant that they can be negligible in this model.  

Eq. (A.1) also results in the generalised stresses, as shown below:  

�̅�𝜈 = −
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p =

𝐸

3(1−2𝜚)
(휀𝜈 − 휀𝜈

p
) = 𝑝′  (A.5) 
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p

)
= 𝐾ℎ[1 + (−𝑆𝑟) − (−𝑆𝑟

p
)] − 𝑝𝑏 = 𝑠∗ − 𝑝𝑏  (A.7) 

A.1.2. Dissipation potential, yield function and flow rules  

From Eq. (3.115) of Chapter 3, the generic dissipation potential with kinematic constraint equations 

can be rewritten as:  

Φ̃ = 𝜑𝜈휀�̇�
p
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p
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A single yield function 𝑦∗ in the space of all thermodynamic forces (𝜒𝜈, 𝜒𝑠, and 𝜒ℎ)  can be derived 

from the above expression as (see Eq. (3.120)): 

𝑦∗ = 𝐴′𝜒𝜈 − 𝐵′𝜒𝑠 − 𝐶′𝜒ℎ − 𝐴′𝜑𝜈 + 𝐵′𝜑𝑠 + 𝐶′𝜑ℎ ≤ 0    (A.9) 

The generic flow rules of plastic strain and irreversible saturation take the following forms (see Eqs. 

(3.121-3.123):  

휀�̇�
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝜈
= �̇�𝑝𝐴′    (A.10) 

휀�̇�
p
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𝜕𝑦∗
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= −�̇�𝑝𝐵′    (A.11) 

−�̇�𝑟
p
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𝜕𝑦∗

𝜕𝜒ℎ
= −�̇�𝑝𝐶′    (A.12) 

For an explicitly defined dissipation potential, specific expressions 𝜑𝜈, 𝜑ℎ, 𝜑𝑠, 𝐴′, 𝐵′ and 𝐶′ in Eqs. 

(A.8-A.12) are needed and take the following forms: 

𝜑𝜈 = 0   (A.13) 

𝜑ℎ = 0   (A.14) 

𝜑𝑠 = 𝑐′   (A.15) 

𝐴′ = −exp[−𝛽(1 − 𝑆𝑟)]𝜇′   (A.16) 

𝐵′ = −1   (A.17) 

𝐶′ =
𝑝′

(𝑠∗−𝑝𝑏)
{1 − exp[−𝛽(1 − 𝑆𝑟)]}𝜇′   (A.18) 

where 𝑐′ and 𝜇′ are functions controlling the size of yield surface and the dilation behaviour, taking 

the following forms: 

𝜇′ = 𝜇0
′ + 𝜔𝜇𝑠∗   (A.19) 

𝑐′ = 𝑐0
′ exp(−𝜂𝑐휀𝑝) + 𝑐𝑚

′ [1 − exp(−𝜔𝑐𝑠∗)]   (A.20) 

with 𝜇0
′ , 𝑐0

′  and 𝜂𝑐  being parameters of the classical Drucker-Prager yield criterion in the fully 

saturated state; 𝑐𝑚
′ , 𝜔𝜇 and 𝜔𝑐 representing parameters controlling the hydraulic effects on inelastic 

behaviour; 휀𝑝 denoting the accumulated plastic strain whose increment can be expressed as follows:  

휀�̇� = 𝑎𝑑휀�̇�
p

+ 𝑏𝑑휀�̇�
p
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𝜕𝜒𝑠
)    (A.21) 

By adopting Eqs. (A.13-A.18), the loading function in the dissipative stress space 𝑦∗ is obtained from 

Eq. (A.9) as: 

𝑦∗ = −exp[−𝛽(1 − 𝑆𝑟)]𝜇′𝜒𝜈 + 𝜒𝑠 −
𝑝′

(𝑠∗−𝑝𝑏)
{1 − exp[−𝛽(1 − 𝑆𝑟)]}𝜇′𝜒ℎ − 𝑐′ ≤ 0    (A.22) 
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In this model, Ziegler’s orthogonality condition (Eqs. (3.97-3.99)) reads:  

𝜒𝜈 = �̅�𝜈 = 𝑝′    (A.23) 

𝜒𝑠 = �̅�𝑠 = 𝑞    (A.24) 

𝜒ℎ = �̅�ℎ = 𝑠∗ − 𝑝𝑏    (A.25) 

Substituting Eqs. (A.23-A.25) into Eq. (A.22), after rearranging the obtained expression, the function 

of yield surface in true stress space can be established as: 

𝑦 = 𝑞 − 𝜇′𝑝′ − 𝑐′ ≤ 0    (A.26) 

From Eqs. (A.10-A.12) and (A.16-A.18), flow rules are formulated as follows:  

휀�̇�
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝜈
= −�̇�𝑝exp[−𝛽(1 − 𝑆𝑟)]𝜇′    (A.27) 

휀�̇�
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝑠
= �̇�𝑝    (A.28) 

−�̇�𝑟
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒ℎ
= −�̇�𝑝

𝑝′

(𝑠∗−𝑝𝑏)
{1 − exp[−𝛽(1 − 𝑆𝑟)]}𝜇′ (A.29) 

Combining Eqs. (A.27) and (A.28) leads to the following tensorial form:  

휀�̇�𝑗
p

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝑖𝑗
= �̇�𝑝 (

𝜕𝑦∗

𝜕𝜒𝜈

𝜕𝜒𝜈

𝜕𝜒𝑖𝑗
+

𝜕𝑦∗

𝜕𝜒𝑠

𝜕𝜒𝑠

𝜕𝜒𝑖𝑗
)  (A.30) 

A.2. Dissipation properties 

For the sake of completeness, what follows are detailed analyses of the bi-directional hydro-

mechanical dissipation of the proposed model. Of importance to these analyses is to provide 

formulations for use in the proof of thermodynamic admissibility and connections between individual 

dissipation mechanisms. By using Ziegler’s orthogonality condition in Eqs. (A.23-A.25) and flow 

rules in Eqs. (A.27-A.29), volumetric, shear and hydraulic parts of the total dissipation rate are written 

as:  

Φ̃𝜈 = 𝜒𝜈휀�̇�
p

= 𝑝′휀�̇�
p

= −𝑝′�̇�𝑝exp[−𝛽(1 − 𝑆𝑟)]𝜇′  (A.31) 

Φ̃𝑠 = 𝜒𝑠휀�̇�
p

= 𝑞휀�̇�
p

= 𝑞�̇�𝑝  (A.32) 

Φ̃ℎ = 𝜒ℎ(−�̇�𝑟
p

) = (𝑠∗ − 𝑝𝑏)(−�̇�𝑟
p

) = −�̇�𝑝𝑝′{1 − exp[−𝛽(1 − 𝑆𝑟)]}𝜇′  (A.33) 

As can be seen in Eqs. (A.31-A.33), the positiveness of  Φ̃𝑠 is always guaranteed while Φ̃𝜈 and Φ̃ℎ 

are always negative. Noting that the negativeness of volumetric and hydraulic dissipations has 

nothing to violate the second thermodynamic principle if the total energy lost is guaranteed to be non-

negative. This reveals that the restriction of thermodynamic admissibility used here is less stringent 

to enable the proposed framework to more flexibly generate the full coupling between different 
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phases of unsaturated soils (Houlsby & Puzrin, 2007). As the dissipation potential is a homogeneous 

function of degree one in terms of internal variables for the rate-independent material, it can result 

from a combination of Eqs. (A.31-A.33) as follows:  

Φ̃ = Φ̃𝜈 + Φ̃𝑠 + Φ̃ℎ = 𝑞�̇�𝑝 − 𝑝′�̇�𝑝exp[−𝛽(1 − 𝑆𝑟)]𝜇′ − �̇�𝑝𝑝′{1 − exp[−𝛽(1 − 𝑆𝑟)]}𝜇′ =

(𝑞 − 𝑝′𝜇′)�̇�𝑝  (A.34) 

Substitution Eq. (A.26) into Eq. (A.34), one gets:  

Φ̃ = 𝑐′�̇�𝑝 ≥ 0  (A.35) 

As can readily be seen in Eq. (A.35), the positiveness of the total dissipation rate is always satisfied 

for any loading and saturation condition, emphasizing the thermodynamically admissible process of 

this model. Furthermore, in the above expressions, an explicit link is adequately established between 

the proportion of energy lost due to plasticity and hydraulic irreversibility. It can be described by the 

dissipation ratios R𝜈 , R𝑠, Rℎ between Φ̃𝜈 , Φ̃𝑠, Φ̃ℎ and Φ̃ as follows:  

R𝜈 =
Φ̃𝜈

Φ̃
= −

𝑝′�̇�𝑝exp[−𝛽(1−𝑆𝑟)]𝜇′ 

𝑐′�̇�𝑝
= −

𝑝′exp[−𝛽(1−𝑆𝑟)]𝜇′ 

𝑐′   (A.36) 

R𝑠 =
Φ̃𝑠

Φ̃
=

𝑞�̇�𝑝 

𝑐′�̇�𝑝
=

𝑞 

𝑐′  (A.37) 

Rℎ =
Φ̃ℎ

Φ̃
= −

�̇�𝑝𝑝′{1−exp[−𝛽(1−𝑆𝑟)]}𝜇′ 

𝑐′�̇�𝑝
= −

𝑝′{1−exp[−𝛽(1−𝑆𝑟)]}𝜇′ 

𝑐′   (A.38) 

The above expressions allow quantifying how amounts of hydraulic and mechanical energy are 

expended within the total budget, hence interpreting essential hydro-mechanical responses under the 

guarantee of thermodynamic admissibility. This feature highlights one of the key differences between 

our approach and other existing models for partially saturated soils. 

A.3. Semi-implicit stress return algorithm 

In this subsection, the specification of the semi-implicit stress return algorithm in Chapter 3 is briefly 

described for this proposed Drucker-Prager model. Under the setting described above in Eqs. (A.2-

A.4), the following incremental stress-strain and suction-saturation degree relationships can be 

written as:  

�̇�𝑖𝑗
′ = 𝐷𝑖𝑗𝑘𝑙

𝑒 (휀�̇�𝑙 − 휀�̇�𝑙
p

)  (A.39) 

�̇�∗ = 𝐾ℎ[(−�̇�𝑟) − (−�̇�𝑟
p

)]  (A.40) 

where 𝐷𝑖𝑗𝑘𝑙
𝑒 =

𝐸

2(1+𝜚)
(

2𝜚

1−2𝜚
𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)  is the pressure-independent elastic stiffness 

tensor.  
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Based on Eqs. (3.146-3.147) and (A.39-A.40), the values of effective stress (𝜎𝑖𝑗
′trial) and modified 

suction (𝑠∗trial) at the trial state read:  

𝜎𝑖𝑗
′trial = 𝜎𝑖𝑗

′𝑛 + 𝐷𝑖𝑗𝑘𝑙
𝑒 ∆휀𝑘𝑙  (A.41) 

𝑠∗trial = 𝑠∗𝑛 + 𝐾ℎ(−∆𝑆𝑟)  (A.42) 

In the inelastic regime when 𝑦trial ≥ 0, the first-order Taylor expansion of the yield function about 

the elastic trial point can be taken as:  

𝑦new = 𝑦trial − 𝐷𝑖𝑗𝑘𝑙
𝑒 ∆𝜆𝑝

𝜕𝑦∗

𝜕𝜒𝑘𝑙

∂𝑦

∂𝜎𝑖𝑗
′ |

trial

− 𝐾ℎ∆𝜆𝑝
𝜕𝑦∗

𝜕𝜒ℎ
(

𝜕𝑦

𝜕𝜇′

𝜕𝜇′

𝜕𝑠∗ +
𝜕𝑦

𝜕𝑐′

𝜕𝑐′

𝜕𝑠∗)|
trial

+ ∆𝜆𝑝 (𝑎𝑑
𝜕𝑦∗

𝜕𝜒𝜈
+

𝑏𝑑
𝜕𝑦∗

𝜕𝜒𝑠
)

𝜕𝑦

𝜕𝑐′

𝜕𝑐′

𝜕𝜀𝑝
|

trial

  (A.43) 

If 𝑦new = 0 is enforced, the following expression of plasticity multiplier can be obtained:  

∆𝜆𝑝 =
𝑦trial

(
𝜕𝑦

𝜕𝜎𝑖𝑗
′ )

𝑇

𝐷𝑖𝑗𝑘𝑙
𝑒 𝜕𝑦∗

𝜕𝜒𝑘𝑙
|

trial

+(
𝜕𝑦

𝜕𝜇′
𝜕𝜇′

𝜕𝑠∗ +
𝜕𝑦

𝜕𝑐′
𝜕𝑐′

𝜕𝑠∗)𝐾ℎ
𝜕𝑦∗

𝜕𝜒ℎ
|
trial

−
𝜕𝑦

𝜕𝑐′
𝜕𝑐′

𝜕𝜀𝑝
(𝑎𝑑

𝜕𝑦∗

𝜕𝜒𝜈
+𝑏𝑑

𝜕𝑦∗

𝜕𝜒𝑠
)|

trial
  (A.44) 

in which explicit forms of 
𝜕𝑦

𝜕𝜎𝑖𝑗
′ , 

𝜕𝑦

𝜕𝑠∗, 
𝜕𝑦

𝜕𝜀𝑝
, 

𝜕𝑦

𝜕𝜇′, 
𝜕𝑦

𝜕𝑐′, 
𝜕𝜇′

𝜕𝑠∗, 
𝜕𝑐′

𝜕𝑠∗ and 
𝜕𝑐′

𝜕𝜀𝑝
 are written as follow:  

𝜕𝑦

𝜕𝜎𝑖𝑗
′ =

𝜕𝑦

𝜕𝑝′

𝜕𝑝′

𝜕𝜎𝑖𝑗
′ +

𝜕𝑦

𝜕𝑞

𝜕𝑞

𝜕𝜎𝑖𝑗
′ = −𝜇′ 𝜕𝑝′

𝜕𝜎𝑖𝑗
′ +

𝜕𝑞

𝜕𝜎𝑖𝑗
′   (A.45) 

𝜕𝑦

𝜕𝜇′ = −𝑝′  (A.46) 

𝜕𝑦

𝜕𝑐′ = −1  (A.47) 

𝜕𝜇′

𝜕𝑠∗
= 𝜔𝜇  (A.48) 

𝜕𝑐′

𝜕𝑠∗ = 𝜔𝑐𝑐𝑚
′ exp(−𝜔𝑐𝑠∗)  (A.49) 

𝜕𝑐′

𝜕𝜀𝑝
= −𝜂𝑐𝑐0

′ exp(−𝜂𝑐휀𝑝)  (A.50) 

𝜕𝑦

𝜕𝑠∗ = −𝑝′𝜔𝜇 − 𝜔𝑐𝑐𝑚
′ exp(−𝜔𝑐𝑠∗)  (A.51) 

𝜕𝑦

𝜕𝜀𝑝
= 𝜂𝑐𝑐0

′ exp(−𝜂𝑐휀𝑝)  (A.52) 

After obtaining ∆𝜆𝑝 through Eq. (A.44), Eqs. (3.153-3.158) in Chapter 3 are then applied for updating 

stress tensor and matric suction.  
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Appendix B.  Validation with a drained triaxial compression test on 

silty soil (Estabragh & Javadi, 2008) 

This Appendix aims to provide simple numerical examples to briefly illustrate the capacity of the 

proposed constitutive models in capturing the shear behaviour based on drained triaxial tests, apart 

from many other results presented in Chapter 4 and 5. In particular, the drained triaxial shear test on 

the silty soil (Estabragh & Javadi, 2008) is used to validate the performance of the present models 

where results at four levels of imposed suction 𝑠 = 0 kPa ; 100 kPa ; 200 kPa  and 300 kPa  are 

studied to investigate the Modified Cam-Clay model. In this simulation, the net confining pressure 

remains unchanged at 𝜎33 = 50 kPa; 100 kPa; 200 kPa; 300 kPa; 400 kPa during shearing. This 

simulation uses the following parameters: 𝐸 = 100000 kPa; 𝜚 = 0.25; 𝜆′ = 0.08; 𝑀 = 1.33; 𝜅ℎ =

0.004; 𝑝𝑅
′ = 363.31 kPa; 𝜉 = 0.6; 𝜇 = 0.0601 kPa−1; 𝑝𝑐0

′ = 550 kPa; 𝑟 = 2; 𝛼 = 0.85; 𝛽 = 0.05 

and 𝑝𝑏 = 70 kPa, which are calibrated by fitting predictive results to their experimental counterparts 

in the case of 𝑠 = 0 kPa and 100 kPa. On the other hand, another example is given to show the 

effectiveness of the Drucker-Prager model for capturing the experimental response at different 

suction levels (100 kPa; 200 kPa) observed in drained triaxial tests on this soil where the net 

confining pressure is maintained at 𝜎33 = 50 kPa (Estabragh & Javadi, 2008). Parameters used in 

this validation example are listed as follows: 𝐸 = 100000 kPa; 𝜚 = 0.25; 𝐾ℎ = 2000 kPa; 𝜇0
′ =

0.27 ; 𝑐0
′ = 200 kPa ; 𝜂𝑐 = 3 ; 𝑎𝑑 = 0.5 ; 𝑏𝑑 = 1 ; 𝜔𝜇 = 0.0008 kPa−1 ; 𝑐𝑚

′ = 50 kPa ; 𝜔𝑐 =

0.05 kPa−1; 𝛽 = 0.05 and 𝑝𝑏 = 70 kPa where they are calibrated to make the numerical results fit 

with testing data under constant suction of 𝑠 = 100 kPa. In Figures B.1-B.5, 𝑞 and 𝜀𝜈 are plotted 

against 𝜀11 to describe the model validation results. As can be seen, these validation examples are 

provided to show acceptable agreements between experimental observations and model performances 

in terms of drained triaxial tests, demonstrating the applicability of both models in reflecting the 

hydraulic effects on shear stress and volumetric strain. In particular, this model can manifest the shear 

responses after the initial yield shear stress, where higher yield shear stresses are produced at higher 

suctions and confining pressures. This is thanks to the gradual expansion of the yield surface towards 

the positive side of the modified suction axis when suction increases. Nevertheless, it is noted that 

the numerical volumetric curves are not relatively close to the measured ones in some loading cases 

despite a reasonable reflection on the experimental trend due to missing details of shear bands related 

to the size-dependent behaviour in the case of localised failures.  
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Figure B.1. Validation with a drained triaxial compression test on silty soil at 𝑠 = 0 kPa  (after 

Estabragh & Javadi, 2008) for the extended Modified Cam-Clay model (a) 𝜀11 − 𝑞 (b) 𝜀11 − 𝜀𝜈 
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Figure B.2. Validation with a drained triaxial compression test on silty soil at 𝑠 = 100 kPa (after 

Estabragh & Javadi, 2008) for the extended Modified Cam-Clay model (a) 𝜀11 − 𝑞 (b) 𝜀11 − 𝜀𝜈 
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Figure B.3. Validation with a drained triaxial compression test on silty soil at 𝑠 = 200 kPa (after 

Estabragh & Javadi, 2008) for the extended Modified Cam-Clay model (a) 𝜀11 − 𝑞 (b) 𝜀11 − 𝜀𝜈 
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Figure B.4. Validation with a drained triaxial compression test on silty soil at 𝑠 = 300 kPa (after 

Estabragh & Javadi, 2008) for the extended Modified Cam-Clay model (a) 𝜀11 − 𝑞 (b) 𝜀11 − 𝜀𝜈 
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Figure B.5. Validation with a drained triaxial compression test on silty soil at 𝜎33 = 50 kPa (after 

Estabragh & Javadi, 2008) for the extended Drucker-Prager model (a) 𝜀11 − 𝑞 (b) 𝜀11 − 𝜀𝜈 
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Constitutive modelling of partially saturated soils: 
Hydro-mechanical coupling in a generic 
thermodynamics-based formulation 

Dat G. Phan a, Giang D. Nguyen a,*, Ha H. Bui b, Terry Bennett a 

a School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, Australia 
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A R T I C L E  I N F O   
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Critical state 

A B S T R A C T   

Hydro-mechanical coupling is a crucial element in constitutive modelling of partially saturated 
soils, given the dependence of the macro behaviour on the interaction between frictional sliding, 
grain rearrangement and ruptures of liquid bridges and their redistributions at the grain contacts. 
The inseparable nature of this interaction requires the interdependence of all internal variables 
describing the inelastic behaviour of a continuum model. We propose a new generic 
thermodynamics-based approach to coupling the effects of deformation and saturation in 
modelling partially saturated soils taking into account the interdependence of all internal vari-
ables. This approach allows the derivation of models from only two explicitly defined energy and 
dissipation potentials, leading to coupled hydro-mechanical behaviour governed by a single yield 
surface in stress-suction space and two evolution rules for plastic strains and irrecoverable 
saturation. This coupling provides a path-dependent hydraulic response, reflecting the nature of 
the hydro-mechanical interactions at the grain scale, while removing the use of a separate Soil 
Water Characteristic Curve (SWCC). The benefits are the reduction in number of parameters in 
conjunction with the identification and calibration of all model parameters from standard tests. 
An extensive experimental validation shows the capabilities of the model and the advantages of 
the proposed thermodynamics-based approach.   

1. Introduction 

The majority of geotechnical structures are constructed in soils well above the groundwater table which are normally partially 
saturated over their entire service life (Wheeler and Sivakumar, 1995; Vanapalli et al., 1999). Thus, geohazards usually involve 
partially saturated soils and their responses under different loading and hydraulic conditions. A constitutive model being able to 
predict the soil behaviour under a wide range of both mechanical loading and saturation conditions is essentially needed for the 
prediction of geotechnical failure involving unsaturated soils. This is a challenge given the complex and coupled hydro-mechanical 
interactions at the grain scale that govern the macro responses. For example, suction and surface tension along with interfaces be-
tween phases at the grain scale have long been recognised as key factors governing the macro responses (Gallipoli et al., 2003; Likos, 
2014). They produce the capillary forces exerted by water menisci and affect the grain-to-grain contact behaviour (Gallipoli et al., 
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2003; Hoxha et al., 2007; Xie and Shao, 2006). The macro behaviour is therefore governed by the coupled hydro-mechanical 
mechanism due to the interaction between the two grain scale phenomena, (i) grain sliding and rearrangement, (ii) ruptures of 
liquid bridge and their redistributions (Bianchi et al., 2016; Mani et al., 2013). These grain-scale phenomena result in observable 
hydro-mechanical coupling at the continuum level that has been extensively investigated in several suction-controlled (i.e. Alonso, 
1987; Cui and Delage, 1996; Wheeler and Sivakumar, 1995; Chen, 2007; Macari et al., 2003) and constant water content triaxial tests 
(Thu et al., 2006; Marinho et al., 2016; Rahardjo et al., 2004; Maleki and Bayat, 2012; Li, 2015; Zhang, 2016). Particularly, when 
suction increases, the shear strength (Vaunat et al., 2007; Toyota et al., 2001), yield limit (Alonso et al., 1990; Wheeler and Sivakumar, 
1995; Cui and Delage, 1996) and dilatancy (Ng and Zhou, 2005; Cui and Delage, 1996) increases. All of the features described above 
are accompanied by the volume change associated with irreversible change of saturation (Sharma, 1998; Wheeler et al., 2003), both of 
which are induced by coupled mechanical and wetting/drying processes. This volume change is considered as one of the most 
fundamental properties of partially saturated soils (Sheng et al., 2008). 

The above key characteristics of partially saturated soil behaviour should be reflected in a constitutive model to capture the 
transition between partially and fully-saturated conditions (Zhou and Sheng, 2009; Sheng, 2011). For example, the effects of suction on 
the stress-strain relationships have been addressed in several papers (e.g. Alonso et al., 1990; Wheeler and Sivakumar, 1995; Cui and 
Delage, 1996; Sun et al., 2000; Stropeit et al., 2008; Blatz and Graham, 2003; Macari et al., 2003). In particular, suction was used in a 
loading-collapse (LC) yield function to capture the plastic compression due to the wetting-induced collapse behaviour. The normal 
compression line (NCL) shifts with suction where the compression index was found to decrease (Alonso, 1987; Alonso et al., 1990; Cui 
and Delage, 1996; Zhang et al., 2009a,b) or increase (Wheeler and Sivakumar, 1995; Matsuoka et al., 2002; Sun et al., 2000, 2004) 
with increasing suction. However, the link between suction and degree of saturation was missing in these models, making it hard to 
reproduce the dependence of model responses on different saturation regimes (capillary in fully saturated conditions, funicular at high 
saturations, pendular at low saturations). For example, cohesion induced by the distributions of liquid bridges between particles are 
very different in the three saturation regimes (Louati et al., 2015, 2017; Wang et al., 2017). To address this, Zhou et al. (2012a,b) and 
Zhou and Sheng (2015), used an NCL with soil compression index varying with effective degree of saturation, while Alonso et al. 
(2013) proposed a NCL dependent on both suction and saturation degree. Wheeler et al. (2003), Tamagnini (2004), Xie and Shao 
(2006) and Buscarnera and Nova (2009) suggested different hardening constitutive laws governing the coexistence of strain and 
saturation rates. These studies demonstrate that both suction and saturation degree play an indispensable role in modelling the 
wetting/drying-induced collapses of partially saturated soils.  

Nomenclature 
κ  elastic index 
λ  slope of NCL in the lnν : lnp’ plane for saturated conditions  
λus  stiffness parameter for partially saturated conditions 
p’

c0  the initial yield pressure under isotropic compression at fully saturated condition 
M  slope of CSL 
G  shear moduli 
N  reference specific volumes of NCL under the saturated condition 
Γ  reference specific volumes of CSL under the saturated condition 
κh  parameter controlling the amount of reversible energy stored in the water menisci 
μ  parameter controlling the change of soil stiffness with modified suction 
ξ  parameter controlling the maximum soil stiffness 
p’

R  parameter controlling the yield curve 
r  spacing ratio 
α  parameter governing the strength of the material and non-associativity of the flow rules 
β  parameter governing the coupling between saturation and volumetric deformation upon yielding 
pb  parameter controlling the stored irreversible hydraulic energy 
pu  unity pressure 
ν  specific volume 
ϕ  Lagrangian porosity 
ϕ0  initial Lagrangian porosity 
ϕn  Lagrangian porosity at step n  
w  gravimetric water content 
Sr  total saturation degree 
Sp

r  irreversible saturation degree 
Sr0  total saturation degree at initial state 
Sn

r  total saturation degree at step n  
εv  total volumetric strain 
εp

ν  plastic volumetric strain 
εs  total shear strain 
εp

s  plastic shear strain 
εij  total strain tensor 
εp

ij  plastic strain tensor 

s  matric suction 
sn  matric suction at step n  
s*  modified suction 

(continued on next page) 
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(continued ) 

s*
0  initial modified suction 

s*n  modified suction at step n  
s*trial  trial modified suction 
s*corrt  corrective modified suction 
p  net mean stress 
pn  net mean stress at step n  
p’  Bishop’s effective mean stress 
χ  effective stress parameter 
p’

0  Initial Bishop’s effective mean stress 
p’n  effective mean stress at step n  
p’trial  trial effective mean stress 
p’corrt  corrective effective mean stress 
p’

c  pre-consolidation stress at the saturated condition 
p’

c(us) yield stress at the partially saturated condition 

p’
CSL  effective mean stress at the critical state 

σ’
v  Bishop’s effective vertical stress 

σv  net vertical stress 
q  shear stress 
qCSL  shear stress at the critical state 
σ’

ij  effective stress 

σ’n
ij  effective stress at step n  

σ’trial
ij  trial effective stress 

σ’corrt
ij  corrective effective stress 

σij  net stress 
σn

ij  net stress at step n  

W̃  rate of work input 
Ψ  Helmholtz specific free energy 
Φ̃  dissipation potential 
χν  thermodynamic conjugates of volumetric plastic strain rate ε̇p

ν  
χs  thermodynamic conjugates of shear plastic strain rate ε̇p

s  
χh  thermodynamic conjugates of irrecoverable saturation rate − Ṡp

r  
χν  volumetric dissipative generalised stresses 
χs  shear dissipative generalised stresses 
χh  hydraulic dissipative generalised stresses 
χij  dissipative generalised stress tensor 

Φ̃ν  volumetric part of the total dissipation rate 

Φ̃s  shear part of the total dissipation rate 

Φ̃h  hydraulic part of the total dissipation rate 
Rν  volumetric dissipation ratio 
Rs  shear dissipation ratio 
Rh  hydraulic dissipation ratio 
φν

1, φν
2  first order homogeneous functions of ε̇p

ν  
φs  first order homogeneous function of ε̇p

s  

φh  first order homogeneous function of − Ṡp
r  

A, B  functions governing the behaviour of the model 
y*  yield function in generalised stress space (χν, χs, and χh)  
y  yield function in true stress space (p’, q, and s*)  
yn  loading function in true stress space at n state  
ytrial  trial loading function in true stress space 
ynew  new loading function in true stress space 
λp  non-negative plasticity-like multiplier 
De

ijkl  pressure-dependent elastic stiffness tensor 
Den

ijkl  secant elastic stiffness evaluated at state n  
Λijkl,Πij ,Ωkl,Υ  terms of the tangent stiffness tensor expressed in terms of σ’

ij and s*  

Λijkl,Πij ,Ωkl,Υ  terms of the tangent stiffness tensor expressed in terms of σij and s  
res  residual vector 
resnew  new residual vector 
resprevious  previous residual vector  

The use of a SWCC independent of the volumetric behaviour has been the focus in several models (Thu et al., 2007a; Zhou and 
Sheng, 2009; Russell and Khalili, 2006) to reflect the effects of degree of saturation and suction on the mechanical behaviour. This kind 
of SWCC can facilitate the development of the models, despite neglecting its non-uniqueness observed and addressed in several papers 
(Nuth and Laloui, 2008; Miller et al., 2008; Gallipoli et al., 2003; Vanapalli et al., 1999; Tarantino, 2009; Mašín, 2010; Mbonimpa 
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et al., 2006). Other models employing a SWCC dependent on volume change to have stronger interactions between hydraulic and 
mechanical responses have also been proposed (i.e. Buscarnera and Nova, 2009; Chiu and Ng, 2003; Jommi, 2000; Bolzon et al., 1996). 
Despite their successes in taking into account the hydro-mechanical coupling in the constitutive behaviour of partially saturated soils, 
the difference in wetting and drying paths was not taken into account in these models. 

More complete representations of water retention behaviour, taking into account the irreversibility between wetting and drying 
processes, has been successfully addressed in several fully coupled hydro-mechanical models (e.g. Gallipoli et al., 2003; Loret and 
Khalili, 2000, 2002; Wheeler et al., 2003; Hu et al., 2014; Khalili et al., 2008; Muraleetharan et al., 2009; Liu & Muraleetharan, 2011a, 
b; Sheng et al., 2008; Sun et al., 2007, 2010; Sun and Sun, 2012; Zhou et al., 2012a,b; 2018; Zhou and Sheng, 2015; Lloret-Cabot et al., 
2017; Ghorbani et al., 2018; Gholizadeh and Latifi, 2018; Bruno and Gallipoli, 2019; Kodikara et al., 2020). These fully coupled models 
can capture several important features of the coupled hydro-mechanical behaviour under different loading and saturation conditions, 
such as irreversible swelling/shrinkage upon wetting/drying, load/deformation-dependency of capillary hysteresis, together with 
effects of hydraulic hysteresis on shear strength, stiffness, and dilation. Nevertheless, the identification and calibration of several 
parameters in these models (e.g. Bruno and Gallipoli, 2019; Gholizadeh and Latifi, 2018; Liu & Muraleetharan, 2011a,b; Zhou et al., 
2012a,b; 2018) is a challenge for their applications. To capture the wetting-drying difference in the behaviour, several models (e.g. 
Khalili et al., 2008; Muraleetharan et al., 2009; Liu & Muraleetharan, 2011a,b; Zhou et al., 2018; Sun and Sun, 2012; Kodikara et al., 
2020) adopted a separate law for hydraulic hysteresis requiring different sets of parameters for drying and wetting paths. In addition, 
the hydro-mechanical coupling in some models (e.g. Wheeler et al., 2003; Sheng et al., 2004; Muraleetharan et al., 2009; Sun et al., 
2010; Lloret-Cabot et al., 2017; Kodikara et al., 2020) requires the use of multiple yield surfaces, e.g. one mechanical (Loading 
Collapse; LC) and two hydraulic (Suction Increase/Decrease; SI/SD, usually as horizontal straight lines) with complicated treatments 
for the coupled evolutions of all yield functions (Wheeler et al., 2003; Sheng et al., 2004). Delage and Graham (1996) and Tang and 
Graham (2002) found that LC and SI/SD should merge into a single yield locus to capture the micromechanical nature of coupled 
hydro-mechanical yielding. This issue has been investigated through the combination of drained isotropic compression and drying 
tests of Sivakumars and Doran (2000) and the extended Barcelona Basic model of Pedroso and Farias (2011). On the other hand, net 
stress-controlled experiments by Thu et al. (2007b) and Sivakumars and Doran (2000) showed that these widely adopted horizontal 
straight lines for SI/SD are not reasonable despite their usefulness in constitutive modelling as discussed in several papers (e.g. Delage 
and Graham, 1996; Robles et al., 2002; Tang and Graham, 2002; Zhang et al., 2009). 

The development of thermodynamic-based approaches to constitutive modelling of partially saturated soils have attracted 
considerable attention in the last 15 years (Sheng et al., 2004; Tamagnini and Pastor, 2005; Uchaipichat, 2005; Santagiuliana and 
Schrefler, 2006; Li, 2007a,b; Coussy et al., 2010; Buscarnera and Einav, 2012; Dangla and Pereira, 2014; Hu et al., 2015; Lei et al., 
2016). The key advantage of such developments is that all essential behavioural characteristics of the considered material can be 
rigorously incorporated in a thermodynamics-based model, whilst the number of arbitrary assumptions and also model parameters can 
be reduced without compromising the model performance. The success of such approaches to constitutive modelling has been 
demonstrated for not only partially unsaturated soils, but a wide range of engineering materials (Buscarnera and Einav, 2012; Liu et al., 
2018; Zhang, 2017; Balieu and Kringos, 2015; Nguyen et al., 2015; Lai et al., 2016; Al-Rub and Darabi, 2012; Darabi et al., 2018). 
Despite the attempts and some successes, full coupling between plasticity and hydraulic irreversibility and their associated 
hydro-mechanical dissipation properties are usually not adequate in previous thermodynamics-based approaches. In particular, the 
hydraulic dissipation attributed to the irrecoverable change of saturation degree is overlooked in Tamagnini and Pastor (2005), 
Uchaipichat (2005), Coussy et al. (2010), Buscarnera and Einav (2012), Dangla and Pereira (2014) and Lei et al. (2016). Consequently, 
these models cannot naturally capture different responses under wetting and drying paths. Additionally, despite bringing the use-
fulness, the use of multiple yield surfaces in several models (Sheng et al., 2004; Santagiuliana and Schrefler, 2006; Hu et al., 2015) does 
not reflect the inseparable nature of the hydro-mechanical interactions at the grain scale, given the dissipative stresses are not 
dependent on the rates of all internal variables. 

In this paper, a new generic thermodynamics-based approach incorporating key characteristics of partially saturated soil behaviour 
is developed. We aim for the establishment of a rigorous thermodynamics-based approach that leads to a good balance between rigour, 
simplicity, number of parameters and performance in the derived constitutive models. From the above literature review, this balance 
has not always been the case in existing models. The proposed thermodynamic formulation is used as a versatile means to connect all 
essential behavioural characteristics of partially saturated soils, resulting in a single yield surface in stress-suction space and two 
evolution rules for plastic strains and irrecoverable saturation with a single “plastic” multiplier. This is thanks to the inter-dependence 
of mechanical and hydraulic dissipations in the proposed dissipation potential, providing a smooth transition between saturated and 
partially saturated conditions. This coupling naturally induces the effects of mechanical behaviour on the saturation-suction rela-
tionship. As a result, models derived from this approach possess an implicitly defined SWCC dependent on the volumetric behaviour, 
reflecting the hydro-mechanical interactions at the grain scale. This is consistent with suggestions in Wheeler et al. (2003), based on 
both micro-mechanical reasoning and experiments (e.g. Sharma, 1998; Gallipoli et al., 2003), that the irreversible part of the volu-
metric strain, arising from the mechanical energy lost due to slippage at inter-particle contacts, results in the translation of the water 
retention curve. The proposed thermodynamic formulation also helps minimise the number of parameters required, while not 
compromising the performance of the derived models. The obtained model, formulated under infinitesimal strain assumption, pos-
sesses a small number of identifiable parameters, which have clear physical meanings and can be calibrated from standard tests on 
partially saturated soils. The model performance is assessed and validated against a range of experiments on partially saturated soils. 

The outline of this paper is as follows. In section 2, a critical state thermo-mechanical framework for partially saturated soils is 
described to provide a basis for the development of constitutive models. This is followed by the formulation of a model and its 
dissipation properties. Section 3 describes the numerical implementation algorithms and their verification. The parameter 
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identification and determination are presented in Section 4, followed by the validation and demonstration of the capabilities of the 
proposed model in Section 5. 

2. A thermodynamics-based model for partially saturated soils 

2.1. A generic thermodynamics-based framework 

The experimentally observed behaviour of partially saturated soils requires coupling between internal variables representing the 
hydro-mechanical behaviour in constitutive modelling. In this section, a generic thermodynamic approach is described to serve as a 
basis for the interaction between the mechanical and hydraulic responses represented by plastic strain and irrecoverable saturation, 
respectively. The inseparable nature of this interaction will be reflected in the proposed approach through interdependence of plastic 
strain and irrecoverable saturation. 

Following Houlsby (1997) and Coussy et al. (2010), the rate of work input can be expressed as: 

W̃= (p + Srs)ε̇v + qε̇s − ϕsṠr = p’ε̇v + qε̇s + s*
(

− Ṡr

)

(1)  

where p, p’, q, s, s*, εv, εs, Sr,ϕ are the net mean stress, effective mean stress, shear stress, matric suction, modified suction, volumetric 
strain, shear strain, saturation degree and Lagrangian porosity, respectively. It can be seen that the modified suction, s* = sϕ with 
porosity explicitly representing the effect of volumetric changes on the hydraulic conductivity of bulk fluid, is used as a conjugate of 
the strain-like variable − Ṡr, according to Houlsby (1997), Coussy et al. (2010) and Buscarnera and Einav (2012). It agrees with Lu 
(2008) and Vaunat et al. (2000) that suction can be considered a stress-like variable. Under geotechnical sign convention (compression 
positive) and assumption of incompressible solid grains, the volumetric strain can be expressed as εv = ϕ0 − ϕ, with ϕ0 being the initial 
porosity. The triaxial stresses (p’,q) and triaxial strains (εv, εs) can be expressed in terms of Cauchy stress (σ’

ij) and strain tensors (εij), 
respectively (with δij being the Kronecker delta). 

p’ = −
1
3

σ’
kk q=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3
2

(

σ’
ij −

1
3

σ’
kkδij

)(

σ’
ij −

1
3

σ’
kkδij

)√

(2)  

εv = εkk εs =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3

(

εij −
1
3

εvδij

)(

εij −
1
3

εvδij

)√

(3) 

We acknowledge the limitation of the work input (Eq. (1)) in neglecting the work due to moving air-fluid interface in a partially 
saturated volume element, as explained in Houlsby (1997), the consequence of which is the simplest form of Bishop’s effective stress 
parameter, χ = Sr. Physically, the effective stress here can be understood as the stress at inter-particle contacts related to the defor-
mation and failure of the soil skeleton, governed by both external load and contact-level capillary action. From the micromechanical 
point of view, there must be two contributions to the capillarity of the average skeleton stress, including suction and surface tension 
forces along the contours between grains and liquid bridges (Wan et al., 2014; Li, 2003; Likos, 2014), both of which affect the form of 
Bishop’s effective stress parameter χ. The latter still needs further investigation (Likos, 2014) and is not always taken into account in 
constitutive modelling (Gallipoli et al., 2003; Hu et al., 2014). On the other hand, there have been attempts for phenomenological 
expressions of effective stress parameter χ, which can be represented as either a function of saturation degree (e.g. Hassanizadeh and 
Gray, 1990; Muraleetharan and Wei, 1999) or air-entry value (Khalili and Khabbaz, 1998) to capture the transition between fully and 
partially saturated states. Despite their usefulness demonstrated in Russell and Khalili (2006), Khalili et al. (2008), Loret & Khalili 
(2002), extensive research on the micromechanical aspects for better forms of Bishop’s effective stress parameter χ is still needed (Wan 
et al., 2014; Li, 2003). This research is therefore not covered within the scope of this study. 

Under isothermal conditions, the energy balance is of the form (Ziegler, 1983): 

W̃ = Ψ̇ + Φ̃ (4) 

with Ψ̇ being the rate of Helmholtz specific free energy and Φ̃ ≥ 0 denoting the energy dissipation. The tilde symbol “~” is used 
here to indicate the path-dependent nature of the work input and dissipation; only their rates can be defined. For partially saturated 
soils, the mechanical energy dissipation is attributable to the rearrangement of particles through the sliding/rolling contact, leading to 
plastic strain (Collins, 2005; Li, 2007a). The pore fluid redistribution is induced by this grain rearrangement, resulting in the formation 
and/or breakage of water menisci that are associated with irreversible change of saturation (Wheeler et al., 2003; Mani et al., 2013). 
These two grain scale dissipations activate and develop simultaneously and have mutual effects on each another (Li, 2007a; Hu et al., 
2015; Wheeler et al., 2003). For example, during the wetting/drying process, the redistribution of water menisci induce changes of 
capillary forces between grains and hence their inter-particle contact forces, leading to the rearrangement of particles. Under me-
chanical loadings, the movement of particles triggers the imbibition/drainage of pore throats and rupture of fluid bridges. Addi-
tionally, the change of inter-particle distances induces variation of capillary pressures enabling liquid bridges to redistribute. These 
coupled hydro-mechanical processes lead to the irreversible deformation and saturation observed at the macro scale. In constitutive 
modelling of partially saturated soils, the use of irrecoverable saturation degree Sp

r has also been adopted in some papers (Wheeler 
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et al., 2003; Li, 2007a; Hu et al., 2015). These irreversible strains and strain-like variable (volumetric plastic strain εp
ν, and deviatoric 

plastic strain εp
s and irrecoverable saturation degree Sp

r ) govern the dissipation and hence are used as internal variables controlling the 
behaviour of the proposed partially saturated soil model. The Helmholtz free energy can assume the following general form: 

Ψ=Ψ
(
εν, εs, − Sr , εp

ν , εp
s , − Sp

r

)
(5) 

Therefore its rate is: 

Ψ̇=
∂Ψ
∂εν

ε̇ν +
∂Ψ
∂εs

ε̇s +
∂Ψ

∂(− Sr)
(− Ṡr)+

∂Ψ
∂εp

ν
ε̇p

ν +
∂Ψ
∂εp

s
ε̇p

s +
∂Ψ

∂
(
− Sp

r
)
(
− Ṡp

r

)
(6) 

By substituting Eq. (6) into Eq. (4), we obtain: 

W̃ =
∂Ψ
∂εν

ε̇ν +
∂Ψ
∂εs

ε̇s +
∂Ψ

∂(− Sr)
(− Ṡr)+

∂Ψ
∂εp

ν
ε̇p

ν +
∂Ψ
∂εp

s
ε̇p

s +
∂Ψ

∂
(
− Sp

r
)
(
− Ṡ

p
r

)
+ Φ̃ (7) 

Comparing Eq. (7) with Eq. (1), the following fundamental relationships are obtained: 

p’ =
∂Ψ
∂εν

(8)  

q=
∂Ψ
∂εs

(9)  

s* =
∂Ψ

∂(− Sr)
(10)  

and 

Φ̃= −
∂Ψ
∂εp

ν
ε̇p

ν −
∂Ψ
∂εp

s
ε̇p

s −
∂Ψ

∂
(
− Sp

r
)
(
− Ṡp

r

)
= χνε̇p

ν + χsε̇
p
s + χh

(
− Ṡp

r

)
(11) 

in which the generalised stresses χν = − ∂Ψ
∂εp

ν
, χs = − ∂Ψ

∂εp
s 

and χh = − ∂Ψ
∂(− Sp

r )
are the thermodynamic conjugates to the volumetric plastic 

strain εp
ν, shear plastic strain εp

s and irrecoverable saturation degree − Sp
r , respectively. 

On the other hand, for rate-independent behaviour (Houlsby and Puzrin, 2000) the dissipation is a homogeneous function of order 
one in terms of ε̇p

ν, ε̇
p
s and − Ṡp

r : 

Φ̃=
∂Φ̃
∂ε̇p

ν
ε̇p

ν +
∂Φ̃
∂ε̇p

s
ε̇p

s +
∂Φ̃

∂
(
− Ṡp

r

)
(
− Ṡp

r

)
= χνε̇p

ν + χsε̇
p
s + χh

(
− Ṡp

r

)
(12)  

where χν, χs and χh are volumetric, shear and hydraulic dissipative generalised stresses, respectively. Comparing Eq. (11) with Eq. (12), 
a form of Ziegler’s orthogonality condition (Ziegler, 1983; Houlsby and Puzrin, 2000; Puzrin and Houlsby, 2001) can be obtained: 

χν = χν (13)  

χs = χs (14)  

χh = χh (15) 

In general, for rate-independent models, the dissipation potential Φ̃ can assume any forms that are first order homogeneous in the 
rates of internal variables, provided the thermodynamic admissibility is met. We note that explicit representations of grain scale details 
are missing in this model, given the proposed approach is based on continuum mechanics. It will be addressed in our future works to 
move towards a better model where micromechanics-based approaches (e.g. Nguyen and Gan, 2014; Bignonnet et al., 2016; Fang et al., 
2017; Nicot and Darve, 2007; Yin et al., 2009) can be adopted. In this paper, micro scale mechanisms are used only to obtain con-
straints on the interactions of internal variables, reflected in the dependence of all thermodynamic forces on stress, suction, plastic 
strain and irrecoverable saturation and their rates. The inseparable nature of the grain scale hydro-mechanical coupling described 
earlier requires that χν, χs, and χh be dependent on stress, suction, all internal variables and their rates representing the dissipative 
processes. Mathematically they can be written as (i stands for ν, s, or h): 

χi = χi

(
p, q, s*, ε̇p

ν , ε̇
p
s , Ṡ

p
r

)
(16) 

Although a decoupling of χi from all the rates of internal variables can be used to simplify the formulation as can be seen in several 
thermodynamics-based models in the literature (Sheng et al., 2004; Li, 2007a,b; Hu et al., 2015; Santagiuliana and Schrefler, 2006), 
this decoupling at this level leads to the employment of different loading functions to describe the interactions between different 
dissipative processes. Instead, a tighter coupling between these processes is pursued in this study, in which a special form of first order 
homogeneous dissipation potential (Collins and Houlsby, 1997; Collins and Kelly, 2002; Collins and Hilder, 2002; Collins, 2003; Einav 
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et al., 2007) is used to obtain the required form of dissipative generalised stresses in Eq. (16). This generic form of dissipation potential 
has been used successfully in modelling dissipative processes involving more than one dissipative mechanisms. Examples include 
coupling plastic strains with breakage (Einav, 2007a,b; Nguyen and Einav, 2009) and damage with plastic strains (Nguyen et al., 2012; 
Guiamatsia and Nguyen, 2012; Mir et al., 2018). The dissipation potential takes the following generic form: 

Φ̃=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(φν
1)

2
+ (φs)

2
+ (φh)

2
√

+ φν
2 (17) 

In the above expression, φν
1, and φν

2 are first order homogeneous functions of ε̇p
ν ; they are required for the introduction of dilation 

behaviour in the model. Functions φs, and φh are first order homogeneous with respect to ε̇p
s , and Ṡp

r , respectively. The specific ex-
pressions of these functions (φν

1, φν
2, φs, and φh) govern the behaviour of the constitutive model and will be presented in the next sub- 

section. 
The dissipative generalised stresses take the following generic forms: 

χν =
∂Φ̃
∂ε̇p

ν
=

∂Φ̃
∂φν

1

∂φν
1

∂ε̇p
ν
+

∂Φ̃
∂φν

2

∂φν
2

∂ε̇p
ν
=

φν
1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(φν
1)

2
+ (φs)

2
+ (φh)

2
√

∂φν
1

∂ε̇p
ν
+

∂φν
2

∂ε̇p
ν

(18)  

χs =
∂Φ̃
∂ε̇p

s
=

∂Φ̃
∂φs

∂φs

∂ε̇p
s
=

φs
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(φν
1)

2
+ (φs)

2
+ (φh)

2
√

∂φs

∂ε̇p
s

(19)  

χh =
∂Φ̃

∂
(
− Ṡp

r

)=
∂Φ̃
∂φh

∂φh

∂
(
− Ṡp

r

)=
φh

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(φν
1)

2
+ (φs)

2
+ (φh)

2
√

∂φh

∂
(
− Ṡp

r

) (20) 

Thanks to the properties of first order homogeneous functions, the following equation can be deduced from Eqs. (18-20): 

χνε̇p
ν + χsε̇

p
s + χh

(
− Ṡ

p
r

)
= Φ̃ (21) 

Thus, the dissipation rate function in Eq. (17) can be written as follows: 

Φ̃= Φ̃ν + Φ̃s + Φ̃h (22)  

where Φ̃ν = χνε̇p
ν , Φ̃s = χsε̇p

s and Φ̃h = χh(− Ṡp
r ) are denoted as volumetric, shear and hydraulic parts of the total dissipation rate, 

respectively. The above properties allow the investigation of dissipation characteristics of any partially saturated models derived from 
this proposed generic framework, given the explicitly defined dissipation potential (see Eq. (17)). This will be illustrated in sub-section 
2.3. 

As can be seen in Eqs. (18-20), all dissipative generalised stresses χi are dependent on all rates of internal variables, ε̇p
ν, ε̇

p
s , and − Ṡp

r . 
Thanks to this, the degenerate Legendre transformation of the dissipation potential (Puzrin and Houlsby, 2001) leads to a single yield 
function y* in generalised stress space (χν, χs, and χh): 

Fig. 1. Geometric representation of yield potential in dissipative stress space.  
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y* =

(

χν −
∂φν

2
∂ε̇p

ν

)2

(
∂φν

1
∂ε̇p

ν

)2 +
(χs)

2

(
∂φs

∂ε̇p
s

)2 +
(χh)

2

(
∂φh

∂(− Ṡp
r )

)2 − 1 ≤ 0 (23) 

Eq. (23) represents an ellipsoid as shown in Fig. 1. The role of y* is similar to that of a plastic potential in classical plasticity theory. 
Three evolution laws (or flow rules) for the rates of plastic strains and irreversible saturation rates, sharing a single multiplier λ̇p can 
then be expressed as: 

ε̇p
ν = λ̇p

∂y*

∂χν
= λ̇p

2
(

χν −
∂φν

2
∂ε̇p

ν

)

(
∂φν

1
∂ε̇p

ν

)2 (24)  

ε̇p
s = λ̇p

∂y*

∂χs
= λ̇p

2χs
(

∂φs

∂ε̇p
s

)2 (25)  

− Ṡ
p
r = λ̇p

∂y*

∂χh
= λ̇p

2χh
(

∂φh

∂(− Ṡp
r )

)2 (26) 

Eqs. (8-10) and (23-26) present a generic form of thermodynamic-based models for partially saturated soils. The specifications of 
functions φν

1, φν
2, φs, and φh complete the definition of a specific model. This coupling allows capturing the simultaneous activation and 

development of both mechanical and hydraulic yielding at any instant without requiring arbitrary and complicated treatments, in 
comparison with the use of multiple yield surfaces and plastic multipliers (e.g. Wheeler et al., 2003; Sheng et al., 2004; Santagiuliana 
and Schrefler, 2006). The specifications of both energy and dissipation potentials to formulate a specific constitutive model for 
partially saturated soils will be described in the next sub-section. 

2.2. A constitutive model based on critical state soil mechanics for partially saturated soils 

A critical state model is described in this section following the generic formulation in Section 2.1 to serve as an example to indicate 
its promising performances in simulating suction- and water content-controlled tests at low stresses. 

2.2.1. Helmholtz specific energy potential 
The Helmholtz specific energy potential can be assumed of the following form: 

Ψ= κp’
0 exp

[( εv − εp
ν
)

κ

]⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
Volumetric part

+
3
2

G
(
εs − εp

s

)2
⏞̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅⏞

Shear part

+ κh
(
pu + s*

0

)
exp
{

Sr0 +
[
(− Sr) −

(
− Sp

r

)]

κh

}

−
[
(− Sr) −

(
− Sp

r

)]
pu +

(
− Sp

r

)
pb

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
Hydraulic part

(27)  

where κ is the elastic index controlling the pressure-dependent elastic behaviour of the model; G is the shear moduli; κh is to control the 
amount of reversible energy stored in the water menisci (Buscarnera and Einav, 2012); pu = 1 kPa is to make the unit consistent and pb 

is a parameter controlling the stored irreversible hydraulic energy. Initial values of p’, s* and Sr are denoted as p’
0, s*

0 and Sr0 , 
respectively. 

Eq. (27) indicates that the Helmholtz free energy is a combination of stored energies induced by both mechanical and hydraulic 
processes. They are produced by the compressed grains which can recover to their previous states (Collins, 2005) and the reversible 
movement of the air-water interfaces (Wheeler et al., 2003). The last term of Eq. (27), ( − Sp

r )pb, represents the irrecoverable hydraulic 
energy that is stored in the volume element, reflecting the entrapment of fluid menisci in the heterogeneous structure during 
wetting-drying processes (Wei and Dewoolkar, 2006). It is noted that the Helmholtz free energy potential is of phenomenological form 
and the elastic behaviour does not possess strong hydro-mechanical coupling, given the focus on the dissipation properties and in-
elastic behaviour. 

Using Eqs. (8)–(10) and (27), the true stresses are: 

p’ =
∂Ψ
∂εν

= p’
0 exp

[( εv − εp
ν
)

κ

]

(28)  

q=
∂Ψ
∂εs

= 3G
(
εs − εp

s

)
(29)  
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s* =
∂Ψ

∂(− Sr)
=
(
pu + s*

0

)
exp
{

Sr0 +
[
(− Sr) −

(
− Sp

r

)]

κh

}

− pu (30) 

The generalised stresses can also be obtained from the Helmholtz free energy potential in Eq. (27) as: 

χν = −
∂Ψ
∂εp

ν
= p’

0 exp
[( εv − εp

ν
)

κ

]

= p’ (31)  

χs = −
∂Ψ
∂εp

s
= 3G

(
εs − εp

s

)
= q (32)  

χh = −
∂Ψ

∂
(
− Sp

r
)=
(
pu + s*

0

)
exp
{

Sr0 +
[
(− Sr) −

(
− Sp

r

)]

κh

}

− pu − pb = s* − pb (33) 

Eq. (28) implies the pressure-dependent elastic soil bulk employing a linear relationship between lnν and lnp’ (Butterfield, 1979; 
Hashiguchi, 1995; Callari et al., 1998; Collins and Kelly, 2002). Since s* = sϕ, and εv = ϕ0 − ϕ (Section 2.1) hydraulic effects on the 
elastic stiffness are accounted for in the (p’, s) space. However these effects are usually considered insignificant and can be neglected 
(Alonso et al., 1990; Sheng et al., 2004). Eqs. (28) and (30) can be expanded to forms of net mean stress and suction to expose the 
interaction between NCL and SWCC. Further details can be found in Appendix A. 

2.2.2. Dissipation potential 
The nature of grain scale interactions leads to the proposal of a suitable form of dissipation potential (see Eq. (17)) that reflects the 

hydro-mechanical coupling in the inelastic behaviour of unsaturated soils. Functions φν
1, φν

2, φs and φh in the dissipation potential (see 
Eq. (17)) take the below specific forms: 

φν
1 =

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
exp[ − β(1 − Sr)]

√ Aε̇p
ν (34)  

φν
2 =

p’
c(us)

r
ε̇p

ν (35)  

φs =Bε̇p
s (36)  

φh =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − exp[ − β(1 − Sr)]

√
(s* − pb)
(

p’ −
p’

c(us)
r

)
(
− Ṡp

r

)
A (37) 

The dimensionless parameter β (0 < β ≤ 1) is used to govern the coupling between saturation and volumetric deformation upon 
yielding. Its role will be elaborated in Sections 4 and 5.1. Parameter r is defined as “spacing ratio” in the range of 1.5-∞ to control the 
dilatancy (Crouch et al., 1994; Yu, 1998; Collins and Hilder, 2002; Lai et al., 2016). The evolving threshold pressure p’

c(us) can take 
different forms of evolution laws based on experimentally observed responses at low stresses (e.g. Alonso et al., 1990; Wheeler et al., 
2003; Sheng et al., 2008; Tamagnini, 2004; Khalili et al., 2008) or high stresses (Mun and McCartney, 2017; Loret and Khalili, 2002; 
Alonso et al., 2013; Zhou et al., 2018). We present in this study a relatively simple law that can reproduce experimental trends at low 
pressures (see further details in Appendix B); any other forms can be used given the generic thermodynamic framework proposed in 
this study. Function p’

c(us) is expressed as a function of s* and εp
ν: 

p’
c(us) = p’

R

(
p’

c

p’
R

) λ− κ
λus − κ

= p’
R

⎡

⎢
⎣

p’
c0 exp

(
εp

ν
λ− κ

)

p’
R

⎤

⎥
⎦

λ− κ
λ[(1− ξ)exp(− μs* )+ξ]− κ

(38) 

The above evolution law is based on the combination of pre-consolidation effective mean pressure for saturated conditions (Collins 
and Hilder, 2002), 

p’
c = p’

c0 exp
[
εp

ν
/
(λ − κ)

]
(39) 

and stiffness parameter for partially saturated conditions, 

λus = λ[(1 − ξ)exp(− μs*)+ ξ] (40) 

with λ representing the slope of the virgin compression line in the lnν : lnp’ plane for saturated conditions; p’
c0 is the initial yield 

pressure under isotropic compression at fully saturated condition; p’
R denotes the stress parameter controlling the yield curve; ξ is a 

dimensionless parameter controlling the maximum soil stiffness and μ is a constant related to the change of soil stiffness with modified 
suction. 

Functions A and B in Eqs. (34) and (36-37) govern the behaviour of the model. They are first order homogeneous in terms of p’ and 
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p’
c(us) and take the following forms (see details on how to obtain them in Appendices C.1 & C.2): 

A=

(

1 −
2
r

)

p’ +
1
r
p’

c(us) (41)  

B=(1 − α)Mp’ +
α
r

Mp’
c(us) (42) 

in which α is a parameter governing the strength of the material and non-associativity of the flow rules, via the teardrop shape and 
convexity near the origin of the yield surface. The slope of the CSL, M = qCSL/p’

CSL, is also assumed to be unaffected by suction and 
saturation (Alonso et al., 1990; Al-Sharrad, 2013; Russell and Khalili, 2006; Khalili et al., 2008). 

2.2.3. Yield function and flow rules 
Using Eqs. (34-37), the yield function in dissipative stress space (Eq. (23)) can be obtained as: 

y* =

(
χν −

p’
c(us)
r

)2

[
1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

exp[− β(1− Sr)]
√ A

]2 +
(χs)

2

(B)2 +
(χh)

2

⎡

⎢
⎣ 1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− exp[− β(1− Sr )]
√ (s* − pb)(

p’ −
p’

c(us)
r

)A

⎤

⎥
⎦

2 − 1 ≤ 0 (43) 

Using Eqs. (13-15), (31-33), (41-42) and the orthogonality conditions in the forms χν = χν = p’, χs = χs = q, and χh = χh = s* −

pb, we can obtain the yield surface y in true stress space as: 

y=

(
p’ −

p’
c(us)
r

)2

A2 +
(q)2

B2 − 1=

(

p’ − 1
rp

’
c(us)

)2

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2 +
(q)2

[
(1 − α)p’ + α

rp
’
c(us)

]2
M2

− 1 ≤ 0 (44) 

As can be seen in Fig. 2, in the (p’ − p’
c(us)/r, q) plane, the yield function in Eq. (44) is the upper half of an ellipse of radii A and B. The 

change of its shape towards increasing s* reflects the effect of suction on shear strength. The ellipse axes coincide with the normal 
consolidation line (NCL) when ε̇p

ν = 0 and critical state line (CSL) when ε̇p
s = 0, respectively. 

In conjunction with this yield surface, the evolution rules in Eqs. (24-26) now become: 

ε̇p
ν = λ̇p

∂y*

∂χν
= λ̇p

2
(

p’ − 1
rp

’
c(us)

)

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2 exp[ − β(1 − Sr)] (45)  

ε̇p
s = λ̇p

∂y*

∂χs
= λ̇p

2q
[
(1 − α)p’ + α

rp
’
c(us)

]2
M2

(46)  

Fig. 2. Yield surface in (a) 
(

p’ −
p’

c(us)
r , q, s*

)
space, (b) 

(
p’ −

p’
c(us)
r , q

)
space and (c) 

(
p’ −

p’
c(us)
r , s*

)
space.  
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− Ṡ
p
r = λ̇p

∂y*

∂χh
= λ̇p

2
(

p’ − 1
rp

’
c(us)

)2

(s* − pb)

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2 [1 − exp[ − β(1 − Sr)]] (47) 

As can be seen in Eqs. (45-47), the activation and evolution of both plastic deformation and irrecoverable saturation takes place 
simultaneously, given the same multiplier λ̇p, reflecting the inseparable nature of the hydro-mechanical coupling at the grain scale 
(Zhang et al., 2009a,b; Delage and Graham, 1996; Tang and Graham, 2002). In particular, the inelastic volumetric response (see Eq. 
(45)) and evolution of irrecoverable saturation (see Eq. (47)) take into account the coupled hydro-mechanical effects through stresses, 
volumetric plastic strain, suction and saturation. 

The proposed yield surface (see Fig. 3) is identical with the Modified Cam Clay (MCC; see Collins, 2003) model for r = 2 and α = 1 
under saturated condition (s* = 0 and Sr = 1), allowing a smooth transition between saturated and partially saturated conditions. The 
shape of the yield locus reflects the experimental observations of suction-controlled or water content-controlled tests for partially 
saturated soils: (i) tear-drop shape of the yield surface (see Fig. 3b); (ii) increasing effective yield pressure with modified suction (see 
Fig. 3c), and (iii) apparent cohesion thanks to Srs (Jommi, 2000). The above-mentioned features make our approach different from 
other critical-state-based models for partially saturated soils. A comparison with the Barcelona Basic Model (BBM) (Alonso et al., 1990) 
is presented in Appendix D. Thanks to the use of the systematic thermomechanical approach, the proposed model has a well-defined 
structure with a small number of parameters (13 parameters). To highlight this advantage, a comparison on the number of parameters 
in existing coupled hydro-mechanical models for partially saturated soils is shown in Appendix E. 

However, for the sake of simplicity, it is assumed that the partially saturated soil behaves isotropically in both cases of recoverable 
and irrecoverable deformation/saturation, although the behaviour of wet granular materials can be anisotropic because of highly 
inhomogeneous textures due to the effects of liquid bridges. We also acknowledge that the proposed model can still be improved to 
capture the transition between fully and partially saturated states with the effects of air-entry suction (Sheng et al., 2008, 2011; Khalili 
et al., 2008; Loret and Khalili, 2000, 2002), to have closed-shape yield surface (Thu et al., 2007b; Sivakumar and Doran, 2000; Delage 
and Graham, 1996; Tang and Graham, 2002), to predict yielding behaviours of more complex experimental loading paths (Loret and 
Khalili, 2000, 2002), and to simulate NCL with pressurized saturation and the transition to full-void closure at high stresses (Mun and 
McCartney, 2015, 2017; Zhou et al., 2018). 

2.3. Dissipation properties 

Using Eq. (22) and Eqs. (45-47), the dissipations due to plastic volumetric deformation, plastic shear deformation and irrecoverable 
saturation can be expressed as: 

Φ̃ν = χνε̇p
ν = p’ε̇p

ν = λ̇p

2p’
(

p’ − 1
rp

’
c(us)

)

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2 exp[ − β(1 − Sr)] (48) 

Fig. 3. Yield surface (a) in (p’, q, s*) space; (b) front view (c) top view.  
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Φ̃s = χsε̇
p
s = qε̇p

s = λ̇p
2q2

[
(1 − α)p’ + α

rp
’
c(us)

]2
M2

(49)  

Φ̃h = χh
(
− Ṡ

p
r

)
=(s* − pb)

(
− Ṡ

p
r

)
= λ̇p

2
(

p’ − 1
rp

’
c(us)

)2

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2 {1 − exp[ − β(1 − Sr)]} (50) 

Utilising Eq. (44) and Eqs. (48-50) allows us to express Eq. (22) in the following form: 

Φ̃= 2λ̇p

⎧
⎪⎪⎨

⎪⎪⎩

1+

1
rp

’
c(us)

(

p’ − 1
rp

’
c(us)

)

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2 exp[ − β(1 − Sr)]

⎫
⎪⎪⎬

⎪⎪⎭

(51) 

Since exp[ − β(1 − Sr)] ≤ 1, we can write: 

Φ̃ ≥ 2λ̇p

⎧
⎪⎪⎨

⎪⎪⎩

[(

1 − 2
r

)

p’
]2

+

(

3 − 4
r

)
1
rp

’p’
c(us)

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2

⎫
⎪⎪⎬

⎪⎪⎭

exp[ − β(1 − Sr)] (52) 

Given r ≥ 1.5, the numerator of the bracketed expression in Eq. (52) is always positive, and hence the positiveness of the total 
dissipation is always guaranteed. However due to dilation, Φ̃ν can admit negative values, while Φ̃s and Φ̃h are always positive. From 
Eqs. (48-51), the dissipation ratios Rν,Rs,Rh between Φ̃ν, Φ̃s, Φ̃h and Φ̃ can be expressed as: 

Rν =
Φ̃ν

Φ̃
=

p’
(

p’ − 1
rp

’
c(us)

)

exp[ − β(1 − Sr)]

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2

+ 1
rp

’
c(us)

(

p’ − 1
rp

’
c(us)

)

exp[ − β(1 − Sr)]

(53)  

Rs =
Φ̃s

Φ̃
=

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2

−

(

p’ − 1
rp

’
c(us)

)2

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2

+ 1
rp

’
c(us)

(

p’ − 1
rp

’
c(us)

)

exp[ − β(1 − Sr)]

(54)  

Rh =
Φ̃h

Φ̃
=

(

p’ − 1
rp

’
c(us)

)2

[1 − exp[ − β(1 − Sr)]]

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2

+ 1
rp

’
c(us)

(

p’ − 1
rp

’
c(us)

)

exp[ − β(1 − Sr)]

(55) 

For Sr = 1, we have Rh = 0 indicating purely mechanical dissipation under saturated condition. At critical state where p’ = p’
c(us)/ r, 

volumetric and hydraulic energy dissipations totally vanish, reflecting the fact that the total energy dissipation is fully governed by 
only the sliding of soil grains. These dissipation properties will be further illustrated using experimental data later in Section 5.3. 

3. Numerical implementation 

For implementation purpose, the model descriptions can be summarized and rewritten in tensorial form as follows. 
The stress-strain and suction-saturation relationships: 

σ’
ij =De

ijkl(εkl − εp
kl) (56)  

s* =
(
pu + s*

0

)
exp
{

Sr0 +
[
(− Sr) −

(
− Sp

r

)]

κh

}

− pu (57)  

where εp
ij is the plastic strain tensor and De

ijkl is the pressure-dependent elastic stiffness tensor of the following form: 

De
ijkl =

(
p’

κ
−

2
3

G
)

δijδkl + G
(
δikδjl + δilδjk

)
(58) 

The yield function and evolution rules: 
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y=

(

p’ − 1
rp

’
c(us)

)2

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2 +
q2

[
(1 − α)p’ + α

rp
’
c(us)

]2
M2

− 1 ≤ 0 (59)  

ε̇p
ij = λ̇p

∂y*

∂χij
= λ̇p

(
∂y*

∂χν

∂χν
∂χij

+
∂y*

∂χs

∂χs

∂χij

)

(60)  

− Ṡp
r = λ̇p

∂y*

∂χh
= λ̇p

2
(

p’ − 1
rp

’
c(us)

)2

(s* − pb)

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2 [1 − exp[ − β(1 − Sr)]] (61)  

where p’
c(us) has been defined in Eqs. (38-40), and χν = p’, χs = q, χh = s* − pb, and ∂y*

∂χν 
and ∂y*

∂χs 
are in Eqs. (45) and (46). 

3.1. Coupled hydro-mechanical tangent stiffness tensor 

From Eqs. (56) and (57), the incremental forms of effective stress tensor σ̇’
ij and modified suction ṡ* can be described as: 

σ̇’
ij =De

ijkl(ε̇kl − ε̇p
kl) (62)  

ṡ* =
(s* + pu)

κh

[
(− Ṡr) −

(
− Ṡp

r

)]
(63) 

Using the yield function in Eq. (59), we can write the following consistency condition: 

ẏ=
∂y

∂σ’
ij
σ̇’

ij +
∂y

∂p’
c(us)

ṗ’
c(us) =

∂y
∂σ’

ij
σ̇’

ij +
∂y

∂p’
c(us)

∂p’
c(us)

∂s* ṡ* +
∂y

∂p’
c(us)

∂p’
c(us)

∂p’
c

∂p’
c

∂εp
ν
ε̇p

ν = 0 (64)  

where explicit forms of ∂y
∂σ’

ij
, ∂y

∂p’
c(us)

, 
∂p’

c(us)
∂p’

c 
and 

∂p’
c(us)

∂s* are detailed in Appendix F. 

Substituting Eqs. (60-63) in Eq. (64), we get: 

∂y
∂σ’

ij
De

ijkl

(

ε̇kl − λ̇p
∂y*

∂χkl

)

+
∂y

∂p’
c(us)

∂p’
c(us)

∂s*
(s* + pu)

κh

[

(− Ṡr) − λ̇p
∂y*

∂χh

]

+
∂y

∂p’
c(us)

∂p’
c(us)

∂p’
c

p’
c

(λ − κ)
λ̇p

∂y*

∂χν
= 0 (65) 

Given ε̇kl and Ṡr, the multiplier λ̇p can be obtained from Eq. (65) in the following form: 

λ̇p =Mklε̇kl + H(− Ṡr) (66)  

where 

Mkl =

De
ijkl

∂y
∂σ’

ij
(

∂y
∂σ’

ij

)T

De
ijkl

∂y*

∂χkl
+ ∂y

∂p’
c(us)

∂p’
c(us)

∂s*
(s*+pu)

κh

∂y*

∂χh
− ∂y

∂p’
c(us)

∂p’
c(us)

∂p’
c

p’
c

(λ− κ)
∂y*

∂χν

(67)  

H =

(s*+pu)
κh

∂y
∂p’

c(us)

∂p’
c(us)

∂s*

(

∂y
∂σ’

ij

)T

De
ijkl

∂y*

∂χkl
+ ∂y

∂p’
c(us)

∂p’
c(us)

∂s*
(s*+pu)

κh

∂y*

∂χh
− ∂y

∂p’
c(us)

∂p’
c(us)

∂p’
c

p’
c

(λ− κ)
∂y*

∂χν

(68) 

By substituting Eq. (66) into Eqs. (62) and (63), the incremental coupled hydro-mechanical relationships can be written as: 

σ̇’
ij =De

ijkl

{

ε̇kl − [Mklε̇kl +H(− Ṡr)]
∂y*

∂χkl

}

(69)  

ṡ* =
(s* + pu)

κh

{

(− Ṡr) − [Mklε̇kl +H(− Ṡr)]
∂y*

∂χh

}

(70) 

We can rewrite Eqs. (69) and (70) as: 
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σ̇’
ij =

[

De
ijkl

(

1 − Mkl
∂y*

∂χkl

)]

ε̇kl +

(

− De
ijklH

∂y*

∂χkl

)

(− Ṡr)=Λijklε̇kl + Πij(− Ṡr) (71)  

ṡ* =

[

−
(s* + pu)

κh

∂y*

∂χh
Mkl

]

ε̇kl +

[
(s* + pu)

κh

(

1 − H
∂y*

∂χh

)]

(− Ṡr)=Ωkl ε̇kl + Υ(− Ṡr) (72) 

in which Λijkl,Πij,Ωkl and Υ are terms of the tangent stiffness tensor expressed in terms of σ’
ij and s*: 

Λijkl =De
ijkl

(

1 − Mkl
∂y*

∂χkl

)

(73)  

Πij = − De
ijklH

∂y*

∂χkl
(74)  

Ωkl = −
(s* + pu)

κh

∂y*

∂χh
Mkl (75)  

Υ =
(s* + pu)

κh

(

1 − H
∂y*

∂χh

)

(76) 

Alternatively, the above incremental coupled hydro-mechanical relationships in Eqs. (71) and (72) can also be expressed in terms of 
net stress σij and suction s. To do that, the constitutive relationships Eqs. (62) and (63) can be rewritten using Bishop’s effective stress 
(σ’

ij = σij + Srsδij) and modified suction (s* = sϕ), as: 

σ̇ij = σ̇’
ij − sṠrδij − Srṡδij (77)  

ṡ =
1
ϕ
(ṡ* − sϕ̇) =

1
ϕ

(

ṡ* + sδklε̇kl

)

(78) 

Substituting Eqs. (71) and (72) in the above equations, we obtain: 

σ̇ij =

[

Λijkl −
Srδij (Ωkl + sδkl)

ϕ

]

ε̇kl +

[

Πij +

(

s −
SrΥ
ϕ

)

δij

](

− Ṡr

)

= Λijklε̇kl + Πij

(

− Ṡr

)

(79)  

ṡ =
[
(Ωkl + sδkl)

ϕ

]

ε̇kl +
(Υ

ϕ

)(

− Ṡr

)

= Ωkl ε̇kl + Υ
(

− Ṡr

)

(80)  

with Λijkl = Λijkl −
Srδij (Ωkl+sδkl)

ϕ ; Πij = Πij +

(

s − SrΥ
ϕ

)

δij; Ωkl =
(Ωkl+sδkl)

ϕ and Υ = Υ
ϕ expressed in terms of net stress σij and suction s. 

As can be seen in Eqs. (71) and (72) (or alternatively, Eqs. (79) and (80)), the cross-coupling terms Πij, and Ωkl indicate the inter- 
dependence between mechanical and hydraulic responses. As a consequence, the water retention curve (or SWCC; Eq. (80)) is path- 

Fig. 4. Schematic representation of the stress update algorithm in three-dimensional space.  

D.G. Phan et al.                                                                                                                                                                                                        



International Journal of Plasticity 136 (2021) 102821

15

dependent, governed by both states (stress, and suction) and hydro-mechanical loading paths. This path-dependence nature of both 
mechanical and hydraulic responses induces different responses under wetting/drying and mechanical loading conditions, reflecting 
the inseparable nature of the coupling rooting from grain scale interactions. These are the key characteristics of the proposed model 
that are advanced from existing models in the literature. 

3.2. Semi-implicit stress return algorithm 

The semi-implicit stress return algorithm is employed in this constitutive model for the stress and suction update, given the input 
total strain Δεkl and saturation degree (− ΔSr) increments. This method is to compute and correct trial stress back onto the yield surface 
if it is located outside of the yield surface (Crisfield, 1993). As illustrated in Fig. 4, in the first step of this algorithm, the values of 
effective stress (σ’trial

ij ) and modified suction (s*trial) at trial state (see Fig. 4) are calculated from the effective stress tensor (σ’n
ij ) and 

modified suction (s*n) at step n, respectively. 

σ’trial
ij = σ’n

ij + Δσ’trial
ij = σ’n

ij + Den
ijklΔεkl (81)  

s*trial = s*n +Δs*trial = s*n +
(s*n + pu)

κh
(− ΔSr) (82)  

in which the Den
ijkl denotes secant elastic stiffness evaluated at state n. 

If yielding takes place, e.g. ytrial(σ’trial
ij , s*trial, p’

c) > 0 (see Fig. 4), a first-order Taylor expansion is applied to the yield function at trial 
point B (see Fig. 4), resulting in 

ynew = ytrial +Δσ’corrt
ij

∂y
∂σ’

ij

⃒
⃒
⃒
⃒
⃒

trial

+Δs*corrt ∂y
∂p’

c(us)

∂p’
c(us)

∂s*

⃒
⃒
⃒
⃒

trial

+ Δεp
ν

p’
c

(λ − κ)
∂y

∂p’
c(us)

∂p’
c(us)

∂p’
c

⃒
⃒
⃒
⃒

trial

(83)  

where Δσ’corrt
ij and Δs*corrt (see Fig. 4) are the corrective terms to effective stress tensor and modified suction, respectively, in the 

following form, given Δεkl and (− ΔSr) have been applied to move from points A to B (see Fig. 4): 

Δσ’corrt
ij = σ’n+1

ij − σ’trial
ij = − Den

ijklΔεp
kl (84)  

Δs*corrt = s*n+1 − s*trial = −
(s*n + pu)

κh

(
− ΔSp

r

)
(85) 

With the use of flow rules in Eqs. (60) and (61), substitution of Eqs. (84) and (85) into Eq. (83) leads to: 

ynew = ytrial − Den
ijklΔλp

∂y*

∂χkl

∂y
∂σ’

ij

⃒
⃒
⃒
⃒
⃒

trial

−
(s*n + pu)

κh
Δλp

∂y*

∂χh

∂y
∂p’

c(us)

∂p’
c(us)

∂s*

⃒
⃒
⃒
⃒

trial

+
p’

c

(λ − κ)
Δλp

∂y*

∂χν

∂y
∂p’

c(us)

∂p’
c(us)

∂p’
c

⃒
⃒
⃒
⃒

trial

(86) 

Enforcing the yield condition ynew = 0 results in the plasticity multiplier Δλp as: 

Δλp =
ytrial

(

∂y
∂σ’

ij

)T

Den
ijkl

∂y*

∂χkl

⃒
⃒
⃒
⃒
⃒

trial

+ ∂y
∂p’

c(us)

∂p’
c(us)

∂s*
(s*n+pu)

κh

∂y*

∂χh

⃒
⃒
⃒
⃒

trial

− ∂y
∂p’

c(us)

∂p’
c(us)

∂p’
c

p’
c

(λ− κ)
∂y*

∂χν

⃒
⃒
⃒
⃒

trial
(87) 

Once Δλp is obtained, the new increments of effective stress tensor (Δσ’
ij) and modified suction (Δs*) can be obtained as follows: 

Δσ’
ij =Δσ’trial

ij + Δσ’corrt
ij (88)  

Δs* =Δs*trial + Δs*corrt (89) 

These increments are then used to update the effective stress tensors and modified suction, or alternatively net stress tensor and 
matric suction: 

σ’n+1
ij = σ’n

ij + Δσ’
ij (90)  

s*n+1 = s*n + Δs* (91)  

σn+1
ij = σ’n+1

ij − Sn+1
r sn+1δij (92)  

sn+1 =
s*n+1

ϕn+1 (93)  
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where ϕn+1 and Sn+1
r are updated porosity and saturation degree, respectively. 

It is noted that the present investigation is based on infinitesimal strain assumption and focuses on the constitutive behaviour 
(equivalent to a single integration point). This is the first and essential step in formulating and validating a constitutive model, as has 
been widely adopted and followed in the literature. In numerical simulations using the Finite Element Method (FEM), or Smoothed 
Particle Hydrodynamic (SPH), the infinitesimal sizes of strain-like increments cannot always be guaranteed, and hence sub-stepping in 
combination with this semi-implicit algorithm or full implicit stress return should be used (Nguyen and Einav, 2009). All these al-
gorithms have been tested on different advanced models for geomaterials (Nguyen and Einav, 2009) and can be applied to this un-
saturated soil model in the future. 

3.3. An algorithm for mixed-control loading 

An algorithm is developed for mixed-control loading where some components of stress, strain and suction are used to control the 
loading. An example based on suction-controlled triaxial test is used to demonstrate the performance of such an algorithm. In this case, 
net confining pressures and suction are fixed at constant imposed levels of σ22(i) = σ33(i) and s(i), respectively. The difference between 
the imposed and computed quantities can be written as a residual vector as follows: 

res=

⎛

⎝
σ22
σ33
s

⎞

⎠ −

⎛

⎝
σ22(i)
σ33(i)
s(i)

⎞

⎠ (94) 

Given constant lateral net stress and constant suction imposed, the first order Taylor expansion of the residual in Eq. (94) at the 
previous state is: 

resnew = resprevious +

⎛

⎝
δσ22
δσ33
δs

⎞

⎠ (95)  

in which 

resprevious =

⎛

⎜
⎜
⎝

σprevious
22

σprevious
33

sprevious

⎞

⎟
⎟
⎠ −

⎛

⎝
σ22(i)
σ33(i)
s(i)

⎞

⎠ (96) 

is the residual vector computed at the previous state. 
The constitutive relationship in Eqs. (79) and (80) can be rewritten in the below form of the Voigt notations: 
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

δσ11
δσ22
δσ33
δσ12
δσ23
δσ31
δs

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ1111 Λ1122 Λ1133 Λ1112 Λ1123 Λ1131 Π11
Λ2211 Λ2222 Λ2233 Λ2212 Λ2223 Λ2231 Π22
Λ3311 Λ3322 Λ3333 Λ3312 Λ3323 Λ3331 Π33
Λ1211 Λ1222 Λ1233 Λ1212 Λ1223 Λ1231 Π12
Λ2311 Λ2322 Λ2333 Λ2312 Λ2323 Λ2331 Π23
Λ3111 Λ3122 Λ3133 Λ3112 Λ3123 Λ3131 Π31
Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Υ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

δε11
δε22
δε33
δε12
δε23
δε31
− δSr

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(97) 

From Eq. (97), after some mathematical manipulations, we obtain: 

⎛

⎝
δσ22
δσ33
δs

⎞

⎠ =

⎡

⎢
⎣

Λ2211 Λ2212 Λ2223 Λ2231
Λ3311 Λ3312 Λ3323 Λ3331
Ω11 Ω12 Ω23 Ω31

⎤

⎥
⎦

⎛

⎜
⎜
⎝

δε11
δε12
δε23
δε31

⎞

⎟
⎟
⎠+

⎡

⎢
⎣

Λ2222 Λ2233 Π22
Λ3322 Λ3333 Π33
Ω22 Ω33 Υ

⎤

⎥
⎦

⎛

⎝
δε22
δε33
− δSr

⎞

⎠ (98) 

Substituting Eq. (98) into Eq. (95) leads to: 

resnew = resprevious +

⎡

⎢
⎣

Λ2211 Λ2212 Λ2223 Λ2231
Λ3311 Λ3312 Λ3323 Λ3331
Ω11 Ω12 Ω23 Ω31

⎤

⎥
⎦

⎛

⎜
⎜
⎝

δε11
δε12
δε23
δε31

⎞

⎟
⎟
⎠+

⎡

⎢
⎣

Λ2222 Λ2233 Π22
Λ3322 Λ3333 Π33
Ω22 Ω33 Υ

⎤

⎥
⎦

⎛

⎝
δε22
δε33
− δSr

⎞

⎠ (99) 

The requirement of resnew = 0 in Eq. (99) is enforced to obtain the incremental vector of ( δε22 δε33 − δSr )
T as: 

⎛

⎝
δε22
δε33
− δSr

⎞

⎠ =

⎡

⎢
⎣

Λ2222 Λ2233 Π22
Λ3322 Λ3333 Π33
Ω22 Ω33 Υ

⎤

⎥
⎦

− 1
⎧
⎪⎪⎨

⎪⎪⎩

− resprevious −

⎡

⎢
⎣

Λ2211 Λ2212 Λ2223 Λ2231
Λ3311 Λ3312 Λ3323 Λ3331
Ω11 Ω12 Ω23 Ω31

⎤

⎥
⎦

⎛

⎜
⎜
⎝

δε11
δε12
δε23
δε31

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

(100) 

The obtained strain and saturation degree increments in Eq. (100) are then used to update stress and suction through the semi- 
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implicit algorithm in Section 3.2. The residual vector is used to assess the performance of the algorithm for mixed stress-strain control: 
⃒
⃒
⃒
⃒
res1

σ22(i)

⃒
⃒
⃒
⃒≤TOLERANCE and

⃒
⃒
⃒
⃒
res2

σ33(i)

⃒
⃒
⃒
⃒≤TOLERANCE and

⃒
⃒
⃒
⃒
res3

s(i)

⃒
⃒
⃒
⃒ ≤ TOLERANCE (101) 

with TOLERANCE being a small positive number (10− 4 ÷ 10− 3 is considered acceptable in our experience). The use of residual from 
previous step in the current step (see Eq. (100)), while avoiding iterations, helps obtain reasonable results for small enough increments 
and also removes issues of error accumulation. The numerical implementation and verification also include the following: (i) quan-
titative assessments at special conditions (e.g. at saturated condition when s = 0, Sr = 1 and Δq

Δp’ = 3, at critical state when Δεp
ν = 0, 

ΔSp
r = 0 and Δq = 0 while Δεp

s ∕= 0) (ii) controlling the residuals (see Eq. (101)), and (iii) verifications using different approaches (e.g. 
analytical solution). 

3.4. Numerical verification 

In this section, several numerical examples are performed to verify the proposed integration algorithm described in Section 3.2 and 
3.3. The first example focuses on the effect of strain increment size (Δεν) on its numerical accuracy under drained isotropic 
compression condition. In this example, the following parameters are used: κ = 0.02; λ = 0.11; κh = 1.1; p’

R = 45.31 kPa; μ = 0.15; 
ξ = 0.39; p’

c0 = 77.32 kPa; r = 3.704; β = 0.05; pb = 80 kPa. Five numerical simulations are carried out using five volumetric strain 
increments (Δεν = 2× 10− 6; 2× 10− 5; 2× 10− 4; 2× 10− 3; 2× 10− 2) with a constant suction of s = 100 kPa. They all are isotropically 
loaded from the initial net pressure of p0 = 19.18 kPa, specific volume of ν0 = 1.732 and saturation degree of Sr0 = 0.728. Responses 

in p : ν and ν : s are plotted in Fig. 5a and b, respectively. Also depicted in Fig. 5b are the relative errors 
⃒
⃒
⃒
⃒
s− s(i)
s(i)

⃒
⃒
⃒
⃒ between imposed and 

computed suctions. It can be seen in Fig. 5a that the algorithm in Section 3.3 performs well for small enough increments (Δεν < 2×

10− 3). Larger errors can be seen if the strain increments are high enough. However, the algorithm is stable, given no error accu-
mulation and the steady decrease of error towards the end of the numerical test, despite no iterations were used, thanks to the use of 
residual control in the algorithm (Eq. (100)). Numerical solutions in suction-controlled test (see Fig. 5b) helps maintain constant 
suction of s = 100 kPa for strain increment within a reasonable range (Δεν = 2× 10− 6 ÷ 2× 10− 4). 

The performance of the proposed algorithm in Section 3.3 is also verified against a semi-analytical algorithm which uses the semi- 
implicit stress return algorithm in Section 3.2 combined with the analytical enforcement of constant suction condition (see 
Appendix G). We use Δεν = 2 × 10− 6 and three different suction levels of 0; 25; 100 kPa corresponding to initial conditions of p0 =

20.64;19.01;19.18  kPa; ν0 = 1.802;1.792;1.732 and Sr0 = 1; 0.768;0.728, respectively. The same set of parameters in the previous 
example is adopted. At various suction levels (s = 0, 25, 100 kPa), ν and Sr are plotted against p in Fig. 6 to present the results obtained 
using both algorithms. For s = 0 the Unloading-Reloading Line (URL) and Normal Compression Line (NCL) are also plotted and 
considered analytical solution for the case of saturated behaviour. As indicated in Fig. 6, both numerical and semi-analytical solutions 
are identical, and they also coincide with the analytical result for the case of saturated behaviour (s = 0). These features highlight the 
numerical stability of the proposed stress return algorithm, and the effectiveness of the iterative algorithm to enforce constant suction 
condition. 

For the triaxial shearing tests, our numerical implementations in this study are based on the tensorial stress (σ’
ij-based algorithm). It 

is now assessed against a counterpart using mean effective and deviatoric stresses (p’, q - based algorithm). To do so, an example on the 
suction-controlled triaxial test is presented using the following model parameters: κ = 0.006; λ = 0.09; M = 1.17; G = 7000 kPa; 
κh = 0.56; p’

R = 140.41 kPa; μ = 0.0229; ξ = 0.652; p’
c0 = 200 kPa; r = 1.818; α = 0.5; β = 0.05; pb = 70 kPa. In this example, 

during shearing, the lateral net stress is kept constant at 100 kPa while suctions are fixed at 0, 100, and 300 kPa with ν0 = 1.576, 
1.578, 1.576, and Sr0 = 1, 0.4, 0.2 respectively. A small axial strain increment of Δε11 = 10− 6 is used. Fig. 7 shows a good match 
between the two algorithms in terms of deviatoric stress, volumetric strain and saturation degree against the axial strain under a range 

Fig. 5. Performance of the proposed stress update algorithm under different values of Δεν (a) p − ν and (b) ν − s, ν −
⃒
⃒
⃒
⃒
s− s(i)
s(i)

⃒
⃒
⃒
⃒.  
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of suction levels. For the case of zero suction, the behaviour of a critical state model (Collins, 2003) are also sketched in Fig. 7a and b, 
and match well with the numerical results produced by the proposed model. The results in Fig. 7 again verify the implementation and 
the capability of the model in handling transition between saturated and partially saturated conditions. 

4. Model parameters 

The proposed model possesses 13 parameters categorised into five groups, namely Group 1 (κ,G, λ, p’
c0,M), Group 2 (κh), Group 3 

(p’
R,μ,ξ), Group 4 (r, α) and Group 5 (β,pb). This section aims to provide details on the calibration of these model parameters, using a 

suction-controlled triaxial test on Bourke silt (Bourke silt-SCT, Uchaipichat, 2005; Uchaipichat and Khalili, 2009). A step by step 
approach is presented in which parameters in each group are calibrated using relevant sets of experimental data. An assessment of the 
model behaviour against experimental data, using the calibrated parameters, will then be provided at the end of the Section to 
demonstrate the effectiveness of the calibration. 

In Group 1, parameters κ, G, λ, p’
c0 and M are calibrated following the same procedure applicable to MCC for saturated soils. 

Particularly, by fitting the equations of NCL and URL to their experimental counterparts in the saturated state, κ, λ and p’
c0 can be 

determined. Based on Eq. (29), G is estimated from the average gradients of the εs − q plots obtained from laboratory shear tests. The 
ratio between effective mean and deviatoric stresses at ultimate state is used to determine M. For Bourke silt-SCT, κ = 0.006; λ = 0.09;
p’

c0 = 200 kPa; M = 1.17 (Uchaipichat, 2005) and G = 7000 kPa are found to match well with the experimental data on saturated 
state. 

The parameter κh (Group 2) governs the s : Sr relationship, and also affect the mechanical behaviour due to the hydro-mechanical 
coupling (see Eqs. (71) and (79)). Fig. 8 shows the best fit to the measured data using κh = 0.16 for drying tests under constant net 
mean stresses of 50 kPa, 100 kPa, 150 kPa and 200 kPa. 

Parameters listed in Group 3 are to control the shape of the initial yield surface in the space of true stress and modified suction. 
These parameters (p’

R, μ and ξ) play significant roles in generating the wetting/drying-induced collapse mechanism. Using a best fitting 
least-square procedure, they can be selected to make the LC curve in the p’ : s* plane fit with initial yield values of effective mean stress 
and modified suction provided by isotropic compression tests. Given κ = 0.006; λ = 0.09; p’

c0 = 200 kPa in Group 1, the following 
parameters are chosen for Group 3: p’

R = 140.41 kPa; μ = 0.0229; ξ = 0.652 to allow the initial p’ : s* yield curve to fit well with that 
from experimental data of Bourke silt-SCT, as illustrated in Fig. 9. 

Parameters r and α in Group 4 govern the shear strength. We use r = exp[(N − Γ) /(λ − κ)] (Uchaipichat, 2005) as an empirical 
equation representing the spacing between NCL and CSL in the p’ : ν plane to estimate r, where N and Γ are reference specific volumes 

Fig. 6. Verification of the proposed stress update algorithms in isotropic compressions (a) p − ν (b) p − Sr .  
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Fig. 7. Verification of the proposed stress update algorithms in triaxial compressions (a) ε11 − q (b) ε11 − εν and (c) ε11 − Sr .  

Fig. 8. Calibration of κh based on SWCC obtained from net pressure-controlled tests on Bourke silt (Uchaipichat, 2005; Uchaipichat and Kha-
lili, 2009). 
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of NCL and CSL under saturated conditions, respectively. With κ = 0.006; λ = 0.09, N = 2.0472 and Γ = 1.997 given in the laboratory 
(Uchaipichat, 2005), r is estimated as 1.818 for Bourke silt-SCT. Once r is obtained, α can be determined by adjusting it until reaching a 
best-fit between predictive and measured data of initial yield surface in the p’ : q space at s = 0 kPa. For example, Fig. 10a shows a 
good agreement between the experimental and theoretical results of Bourke silt-SCT for α = 0.5. The calibrated initial yield surface of 
Bourke silt-SCT in (p’,q, s*) space is depicted in Fig. 10b. 

Group 5 includes two parameters, β and pb, both of which are only present in the flow rules (Eqs. (45) and (47)). Parameter β is a 
coupling parameter governing the effect of saturation degree on the proportion between ε̇p

ν and ε̇p
s , so-called plastic dilatancy ratio, 

while pb influences the hydraulic dissipative generalised stress. Reducing pb increases in the hydraulic energy lost and therefore affects 
the irrecoverable rate of saturation degree. We can calibrate β iteratively to achieve the best match in terms of the ratio ε̇p

ν/ ε̇p
s between 

the experimental result and its theoretical counterpart obtained from Eqs. (45) and (46): 

ε̇p
ν

ε̇p
s
=

(

p’ − 1
rp

’
c(us)

)[
(1 − α)p’ + α

rp
’
c(us)

]2
M2

q
[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2 exp[ − β(1 − Sr)] (102) 

For simplicity, it is assumed that the elastic deformation is very small and hence the experimentally measured strains are 
approximately equal to plastic strains (Wong and Wong, 1975). For Bourke silt-SCT, the experimental result of shear test under s =
100 kPa and σ33 = 100 kPa is used. As illustrated in Fig. 11, the numerical results are in good agreement with experimental data for 
β = 0.05. After obtaining r and β, pb can be calibrated using the following equation derived from Eqs. (45) and (47): 

Fig. 9. Calibration of p’
R, μ and ξ based on suction-controlled isotropic compression tests on Bourke silt (Uchaipichat, 2005; Uchaipichat and 

Khalili, 2009). 

Fig. 10. Calibration of α based on suction-controlled triaxial tests on Bourke silt (Uchaipichat, 2005; Uchaipichat and Khalili, 2009) (a) p’ − q (b) 
p’ − q − s*. 
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pb = s* −
[1 − exp[ − β(1 − Sr)]]

exp[ − β(1 − Sr)]

(

p’ −
1
r
p’

c(us)

)
ε̇p

ν(
− Ṡp

r

) (103)  

where ε̇p
ν

(− Ṡp
r )
≈ ε̇ν

(− Ṡr)
is assumed and variables (p’,s*, ε̇ν, Ṡr,Sr) are collected from only a single isotropic compression test. Using Eq. (103), 

pb = 70 kPa is obtained using the isotropic loading case with s = 100 kPa. 
The calibrated parameters κ = 0.006; λ = 0.09; κh = 0.16; p’

R = 140.41 kPa; μ = 0.0229; ξ = 0.652; p’
c0 = 200 kPa; r = 1.818; β =

0.05 and pb = 70 kPa result in good agreement with experiments on drained isotropic compression test at different suction levels (s =
0 kPa; 100 kPa and 300 kPa) (see Fig. 12). 

5. Model behaviour and validation 

This section is to present several examples to highlight the predictive capacity of the proposed model. The model performance is 
assessed against experimental results of both isotropic compression and triaxial shear tests under drained and undrained conditions. 

Fig. 11. Calibration of β based on dilatancy ratio obtained from suction-controlled triaxial tests on Bourke silt under s = 100 kPa and σ33 = 100 kPa 
(Uchaipichat, 2005; Uchaipichat and Khalili, 2009). 

Fig. 12. Validation with drained isotropic compression tests on Bourke silt (after Uchaipichat, 2005; Uchaipichat and Khalili, 2009) (a) s = 0 kPa 
(b) s = 100 kPa (c) s = 300 kPa. 
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5.1. Isotropic compression test 

Heavily compacted sand-bentonite mixture, constant suction tests (Sun et al., 2009; Sun and Sun, 2012) 
In the first example, we examine the drained oedometer test on heavily compacted sand-bentonite mixture with p’

c0 = 550 kPa (Sun 
et al., 2009; Sun and Sun, 2012). The following parameters: κ = 0.017; λ = 0.085; p’

R = 422.38 kPa; μ = 0.0124 and ξ = 0.357 are 
calibrated to best fit the initial yield curve in the σ’

v : s* plane. The data on s = 600 kPa is used to obtain κh = 0.25; r = 1.299; β = 0.05 
and pb = 70 kPa. The comparison between the model prediction and measured data at four suction levels of s = 300 kPa; 600 kPa;
1200 kPa and 1500 kPa is illustrated in Fig. 13. 

The results show that the model is able to provide a good match to experimentally observed behaviour. In elastic regime, the σ’
v : s* 

stress paths are inside the yield surface (see Fig. 13d) and no change in the slope of the NCL in the (σ’
v, ν) plane is observed (see Fig. 13c) 

while in the (σv, ν) plane (Fig. 13a) it is sensitive to the variation of suction. Once the stress path crosses the initial yield surface, the 
irreversible changes of both specific volume and saturation degree are triggered simultaneously. The initial yield stress is observed to 
increase when suction increases owing to the characteristic of wetting-induced hardening law in Eq. (38). The decrease of the NCL 
slope with increasing suction is attributed to the hydraulic effect on soil stiffness (see Eq. (40)). Furthermore, Fig. 13b demonstrates 
that a significant increase in saturation degree is captured although suction remains unchanged during loading. This is an indication 
that the mechanical effect on SWCC (Gallipoli et al., 2003; Nuth and Laloui, 2008) is taken into consideration in this model. 

Fairbanks silt, constant water content tests (Zhang, 2016) 
Next, the undrained isotropic compression test under constant gravimetric water content of w = 8.3% on Fairbanks silt (Zhang, 

2016) is simulated. The parameters for this simulation are taken as follows: κ = 0.006; λ = 0.026; κh = 0.05; p’
R = 206.78 kPa; μ =

0.0157; ξ = 0.628; p’
c0 = 250 kPa; r = 1.5; β = 0.1; pb = 80 kPa. In this example, the soil specimen is first loaded from A to B (phase 

1), and from B (p = 300 kPa), an unloading is then conducted ending at point C (p = 100 kPa; phase 2). Thereafter, phase 3 expe-
riences a reloading along CD until p = 600 kPa. 

As can be seen in Fig. 14, the whole the experimental trends are well reproduced by the model. In phase 1 and 3, together with the 

Fig. 13. Validation with drained oedometer tests on heavily compacted sand-bentonite mixture (after Sun et al., 2009; Sun and Sun, 2012) (a) σv− ν 
(b) σv − Sr (c) σ’

v − ν (d) σ’
v − s*. 
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reduction in specific volume, the model behaviour exhibits a decrease in matric suction and an increase in saturation degree, and a 
fairly good prediction of the experimentally measured SWCC can be seen (see Fig. 14d). In phase 2, a drying response is induced by the 
unloading process. Both stress-strain and SWCC relationships cannot recover their previous states upon unloading, indicating the 
ability of the model to produce different responses under wetting and drying. 

Also provided in this test is a sensitivity analysis to investigate the role of parameter β governing the mechanical effects on the 
wetting-drying difference of SWCC. Fig. 15 shows cycles of loading from A to B1, B2, B3 and unloading from B1, B2, B3 to C1, C2, C3 using 
β = 0, 0.1, and 0.15, respectively. As depicted Fig. 15a the mechanical behaviour is relatively insensitive to change of β, facilitating 
the calibration, while in Fig. 15b, β has strong effect on the water retention curves. The change of saturation degree is fully recoverable 
despite the irrecoverable specific volume if β = 0, indicating pure mechanical dissipation. When β ∕= 0, the coupled hydro-mechanical 
dissipation is activated to allow the proposed model to capture the wetting-drying difference during the loading-unloading process, 
making our approach distinct from previous studies. 

Mixture of Fairbanks silt and Kaolin clay, constant water content tests (Li, 2015) 
The numerical prediction under the undrained isotropic compression condition is validated against the experiments on the mixture 

of Fairbanks silt and Kaolin clay carried out by Li (2015). Three different levels of gravimetric water content are investigated: w =

11.85%, 11.99% and 15.91%. The model parameters are: κ = 0.0076; λ = 0.043; κh = 0.03; p’
R = 120 kPa; μ = 0.022; ξ = 0.376; p’

c0 =

150 kPa; r = 1.5; β = 0.95; pb = 40 kPa where κ, λ, p’
R, μ, ξ and p’

c0 are identified using initial yield points obtained from experiments. 
The calibrations of κh, r, β and pb are based on the experimental loading case of w = 11.99%. Computed and measured results are 
compared in Fig. 16. It can be seen that the model predictions agree closely with the experimental data. The variation of the soil 

Fig. 14. Validation with undrained isotropic compression tests on Fairbanks silt at w = 8.3% (after Zhang, 2016) (a) p − ν (b) s− ν (c) p− Sr (d) s−
Sr (e) p − s (f) p’ − s*. 
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response with w is also well-captured. In particular, the initial yield stress and the NCL slope increase with increased gravimetric water 
content in the net stress space. Lower gravimetric water content corresponding to the higher initial suction exhibits a more profound 
reduction in suction. The increase in saturation degree is more significant for the higher levels of gravimetric water content. 
Furthermore, the non-uniqueness of SWCC is observed through its dependence on NCL during loading. 

5.2. Triaxial compression tests 

Zaoyang clay, constant suction tests (Chen, 2007) 
A numerical analysis on the effect of suction on the shear behaviour of model is conducted through the suction-controlled triaxial 

shearing test on compacted Zaoyang clay at two levels of suction s = 25 kPa and s = 100 kPa (Chen, 2007). The net confining pressure 
is kept as a constant value of σ33 = 50 kPa during shearing. In this simulation, we use the following parameters: κ = 0.018; λ = 0.11;
κh = 0.9; p’

R = 45.31 kPa; μ = 0.15; ξ = 0.39; p’
c0 = 77.32 kPa; r = 3.704; β = 0.05; pb = 70 kPa which are calibrated to best match the 

experimental results of suction-controlled isotropic compression test (s = 25 kPa and s = 100 kPa) as presented in Fig. 17. The shear 
test at constant suction s = 25 kPa is also adopted to calibrate other constitutive parameters, resulting in M = 1.29;G = 15000 kPa and 
α = 0.38. 

As depicted in Fig. 18a–c, the numerical results show reasonable agreement with the experimental data. In particular, higher 
suctions tend to produce higher yield shear stresses, as can be explained through the isotropic expansion of yield loci with increasing 
suction in the p’ : q space (see Fig. 18d). Additionally, the model can capture the evolution trend in specific volume and saturation 
degree during shearing. This feature is shown to be a good indicator of the effect of deviatoric stress/strain on the hydraulic behaviour. 
The effect of suction on dilation behaviour (see Fig. 18e) can also be reproduced by the model. Although an acceptable match between 
the model prediction and measured data is achieved, there are observable discrepancies in specific volume and dilatancy ratio at s =
100 kPa (see Fig. 18b). This may be due to the assumption that CSL is unique and the effect of anisotropy on soil response (Stropeit 
et al., 2008; Al-Sharrad, 2013; Anandarajah, 2008; Hashiguchi and Mase, 2007; Wood and Graham, 1990; Lai et al., 2009, 2016) is 
overlooked regardless of the hydraulic variation. 

It can be seen in Fig. 18a that very slight softening responses can be seen while volumetric strain indicates compaction (hardening 
trend; see Fig. 18d) and saturation degree increases in this test. However the softening behaviour in this case is minor and may be 
attributed to the effects of inhomogeneity at the grain scale that are hard or impossible to account for in a continuum model. For 
example, both grain size and pore size distributions vary in the specimen, resulting in local actions (such as pore collapse and grain 
rearrangements) that are different across the whole specimen. Due to these local inhomogeneities, the macro response can slightly vary 
from the overall hardening trend. A continuum model (that is built on the assumption of homogenous deformation at the scale of a 
Representative Volume Element (REV), well above the grain scale) cannot capture the effects of local inhomogeneities below the RVE 
scale. 

Sand-silt-kaolinite mixture, constant water content tests (Maleki and Bayat, 2012) 
The model performance is further assessed using the triaxial shearing test on compacted dry sand-silt-kaolinite mixture under the 

condition of constant gravimetric water content (Maleki and Bayat, 2012). The following model parameters are calibrated using 
experimental results of w = 6.1%: κ = 0.006; λ = 0.15; M = 1.54; G = 7000 kPa; κh = 0.15; p’

R = 143.41 kPa; μ = 0.0589; ξ = 0.372;
p’

c0 = 300 kPa; r = 1.85; α = 0.55; β = 0.5; pb = 90 kPa. The plot presented in Fig. 19 are obtained results at two levels of constant 
water content of w = 6.1% and 7.23%, under a net radial stress of σ33 = 50 kPa. 

The results in Fig. 19 show the capability of the model in reproducing the experimental trend drawn from the undrained triaxial 
compression test. The abrupt slope change in Fig. 19a is a typical feature and also limitation of elasto-plastic models in capturing the 

Fig. 15. Effects of different values of β on the model responses under undrained isotropic compression tests on Fairbanks silt (after Zhang, 2016) (a) 
p − ν (b) s − Sr . 
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smooth transition from elastic to plastic behaviour. Improvement to capture this smooth transition using sub-loading surface (Salo-
moni and Fincato, 2012) or a unification of hypo-plastic and elasto-plastic theories (Einav, 2012). In this test, a dilation response is 
observed in which deviatoric stress and volumetric strain initially experience a rapid increase before reaching a peak and then a drop 
until they become stable at the critical state, while suction follows the opposite trend. The influence of different gravimetric water 
contents on the undrained shear behaviour is also reflected in the behaviour of the proposed model. The shear strength is observed to 
be higher and the change of suction is more remarkable at lower gravimetric water content. The volumetric strain is more dilative if w 
decreases. 

Bourke silt, constant suction tests (Uchaipichat, 2005; Uchaipichat and Khalili, 2009) 
In the next example, the shearing stage of Bourke silt-SCT (Uchaipichat, 2005; Uchaipichat and Khalili, 2009) is used to validate 

and demonstrate the performance of the model. This test was conducted at three levels of imposed suction s = 0 kPa, s = 100 kPa and 
s = 300 kPa. The net confining pressure is controlled at σ33 = 50, 100 and 150 kPa during shearing. The parameter set of this example, 
as obtained in Section 4, is summarized as follows: κ = 0.006; λ = 0.09; M = 1.17; G = 7000 kPa; κh = 0.16; p’

R = 140.41 kPa; μ =

0.0229; ξ = 0.652; p’
c0 = 200 kPa; r = 1.818; α = 0.5; β = 0.05; pb = 70 kPa. Figs. 20–22 show the comparison between experimental 

Fig. 16. Validation with undrained isotropic compression tests on the mixture of Fairbanks silt and Kaolin clay (after Li, 2015) (a) p− ν (b) s− ν (c) 
p − Sr (d) s − Sr (e) p − s (f) p’ − s*. 
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Fig. 17. Effects of suction on the model responses in suction-controlled isotropic compression test of the compacted Zaoyang clay (after Chen, 2007) 
(a) p − ν (b) p − Sr (c) p’ − s*. 

Fig. 18. Effects of suction on the model response in suction-controlled triaxial compression test on compacted Zaoyang clay (Chen, 2007) (a) ε11− q 
(b) ε11 − ν (c) ε11 − Sr (d) p’ − q (e) q

p −
δεp

ν
δεp

s
. 
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and numerical results on deviatoric stress and volumetric strain plotted against the shear strain. A good match between the results 
obtained from the numerical analyses and their experimental counterparts can be seen, except some minor discrepancies in the case of 
s = 300 kPa and σ33 = 150. These mismatches may be results of using homogeneous assumption, ignoring shear localisation especially 
when softening occurs (e.g. σ33 = 50 kPa, s = 0 kPa). The effects of strain localisation have not yet been considered in this model 
despite its importance for the failure mechanism of soils (Hashiguchi and Tsutsumi, 2007; Mroginski et al., 2011; Nguyen et al., 2016; 
Nguyen and Bui, 2020). The readers can refer to Nguyen et al. (2016) and Nguyen and Bui (2020) for issues and treatments for 
localisation effects at the constitutive level. The current approach will be improved in the future to take into account the effects of 
strain localisation, using the framework proposed in Nguyen and Bui (2020). 

Fig. 19. Effects of different values of gravimetric water content on the model response under undrained triaxial compression tests on compacted dry 
sand-silt-kaolinite mixture (Maleki and Bayat, 2012) (a) ε11 − q (b) ε11 − εν (c) ε11 − s. 
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5.3. Model performance under complex loading conditions 

Based on the above validation, we subject the proposed model to a series of combined mechanical-hydraulic loading paths using the 
same set of parameters for Bourke silt-SCT to further explore its performance. Five loading paths starting at different states are shown 
in Fig. 23. In path 1, the soil specimen is isotropically compressed in the saturated state from A (p= 1 kPa, ν= 1.8, s= 0, Sr = 1) to B 
(p = 40 kPa), C (p = 70 kPa), D (p= 100 kPa) and beyond. Path 2 is the drying process at constant net mean stresses of p = 40 kPa,

Fig. 20. Drained triaxial compression tests on Bourke silt at s = 0 kPa (after Uchaipichat, 2005; Uchaipichat and Khalili, 2009) (a) εs− q (b) εs − εν.  

Fig. 21. Drained triaxial compression tests on Bourke silt at s = 100 kPa (after Uchaipichat, 2005; Uchaipichat and Khalili, 2009) (a) εs− q (b) εs − εν.  
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70 kPa and 100 kPa from B, C and D to B′, C′ and D′, respectively, to reach s = 50 kPa. Another isotropic loading initiated from B′ is 
carried out under constant suction of s = 50 kPa in path 3. BB2, CC2 and DD2 are drained shearing loading path 4 when the soil 
specimen is fully saturated. Path 5 (B’B’2, C’C’2, D’D’2) is the suction-controlled triaxial shearing test at s = 50 kPa. 

The numerical results on paths 1,2 and 3 are plotted in Fig. 24. The shearing stress paths 4 and 5 are illustrated in both the (p’,q) and 
(p,q) spaces, as seen in Fig. 25. Figs. 26–27 plots the deviatoric stress, volumetric strain, saturation degree and dissipation ratios against 
the axial strain for paths 4 and 5, respectively. Figs. 24–27 demonstrate that the model behaves as expected under saturated condition 
where the hydraulic dissipation ratio Rh (hydraulic/total) remains zero during isotropic compression and shearing under s = 0 kPa. 
The water retention curve depicted in Fig. 24d shows the variation of saturation from high (at B, C, D) to low (at B′, C′, D’) produced by 
the model. This demonstrates the capability of the model in capturing a smooth transition from fully saturated to saturated conditions. 

As illustrated in Figs. 25–27, the sheared sample first experiences elastic response where early parts of stress paths 4 and 5 are 

Fig. 22. Drained triaxial compression tests on Bourke silt at s = 300 kPa (after Uchaipichat, 2005; Uchaipichat and Khalili, 2009) (a) εs− q (b) εs − εν.  

Fig. 23. Loading and hydraulic paths in (p, q, s) space.  
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Fig. 24. Behaviour of the proposed model under load paths 1, 2 and 3 (a) p − ν (b) s − ν (c) p − Sr (d) s − Sr (e) p’ − s*.  

Fig. 25. Initial yield surface and stress paths of the proposed model under load paths 4 and 5 (a) p’ − q (b) p − q.  
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entirely located inside the initial yield surfaces. Plastic response with the activation and development of irrecoverable changes in strain 
and saturation degree takes place after these paths cross the initial yield surfaces. Coupled hydro-mechanical dissipation dominated by 
shear dissipation can be seen in Fig. 26d–f and Fig. 27d–f. Thereafter, with further shearing, the evolutions of shear stress, volumetric 
strain and saturation degree gradually stop and attain the steady state at which only the change of shear strain exists. At this state, the 
dissipation ratios Rν (between volumetric and total) and Rh (between hydraulic and total) approach zero while Rs (shear/total) is equal 
to 1. As sketched in Figs. 26–27, the proposed hydro-mechanical coupling can capture different responses, from hardening (σ33 =

100 kPa at s = 0 kPa; σ33 = 70, 100 kPa at s = 50 kPa), to perfect plasticity (σ33 = 70 kPa at s = 0 kPa) and softening (σ33 = 40 kPa at 
s = 0 kPa; and σ33 = 40 kPa at s = 50 kPa). 

6. Conclusions 

In the proposed generic thermodynamics-based framework for partially saturated soils and a constitutive model derived from it, we 
strike a good balance between rigour, simplicity, number of parameters and performance. The rigour in the formulation of the pro-
posed generic framework guarantees the thermodynamic admissibility of any models derived from it. The obtained model described in 
equations (56)–(61) is simple in its structure given it possesses a single yield surface with effects of both stress and suction, and 
corresponding evolution laws for plastic strains and irreversible saturation. This leads to strong hydro-mechanical coupling through 
the simultaneous activation of both hydraulic and mechanical dissipative mechanisms upon yielding, and simplifies the imple-
mentation given there is only one yield surface. This continuum scale feature reflects the inseparable nature of the interaction between 
grain rearrangement and liquid-bridge redistribution at the grain scale, while removing the use of a separate SWCC in the model. 
Different hydro-mechanical responses obtained in wetting-drying and loading-unloading paths are the consequences of this strong 

Fig. 26. Behaviour of the proposed model under load path 4 and s = 0 kPa (a) ε11 − q (b) ε11 − εν (c) ε11 − Sr (d) ε11 − Rν (e) ε11− Rs (f) ε11 − Rh.  
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hydro-mechanical coupling in the constitutive structure. The model requires only 13 parameters, of which 5 are for a classical Modified 
Cam Clay model; all of them have been shown in Section 4 to be calibrated from standard tests on partially saturated soils. Its efficacy is 
assessed against a range of experimentally measured behaviour of partially saturated soils, demonstrating the model’s predictive 
capability for a wide range of hydro-mechanical interactions (e.g. hydraulic effects on soil stiffness, dilation, shear strength and 
mechanical effects on the wetting-drying difference of SWCC). 

The proposed critical state model is an example to illustrate the applicability of our generic thermodynamic framework in capturing 
the coupled hydro-mechanical dissipation of partially saturated soils. Further planned improvements include (i) effects of air-entry 
suction on yielding, (ii) different forms of NCL under high stresses and more complex loading paths, (iii) anisotropic behaviour, 
(iv) closed-shape yield surface, and (v) the mechanisms of lower scale grain to grain contacts (e.g. Nguyen and Gan, 2014; Bignonnet 
et al., 2016; Fang et al., 2017; Nicot and Darve, 2007; Yin et al., 2009) for a mechanism-based expression of effective stress. The 
incorporation of the mechanisms of localised failure in the constitutive structure, discussed and presented in Nguyen and Bui (2020) 
are also essential. These features will be addressed in our future works towards better models for partially saturated soils. 
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Appendix A. Suction/saturation dependent elasticity 

Eqs. (28) and (30) can be expanded as follows: 

p+ Srs=(p0 + Sr0s0)exp
[( εv − εp

ν
)

κ

]

(A.1)  

ϕs =
{

(pu + ϕ0s0)exp
{

Sr0 +
[
( − Sr) −

(
− Sp

r

) ]

κh

}

− pu

}

(A.2)  

where p0 and s0 are initial values of mean net stress and suction. From Eqs. (A.1 & A.2), the net mean stress and suction can be 
expressed as: 

p =

(

p0 + Sr0s0

)

exp
[( εv − εp

ν
)

κ

]

−
Sr

ϕ

{

(pu + ϕ0s0)exp
{

Sr0 +
[
( − Sr) −

(
− Sp

r

) ]

κh

}

− pu

}

(A.3)  

s =
1
ϕ

{

(pu + ϕ0s0)exp
{

Sr0 +
[
( − Sr) −

(
− Sp

r

) ]

κh

}

− pu

}

(A.4) 

As can be seen in Eqs. (A.3)-(A.4), both suction and saturation have influence on the change of net stress and hence the elastic 
stiffness. 

Appendix B. hardening law 

The form of the employed hardening law is selected based on several experimental observations on NCL in (p’, ν) of drained 
isotropic compression tests (e.g. Zhan, 2003; Mun and McCartney, 2017). As demonstrated in Figs. 28 and 29, the hardening law in 
Eqs. (38)–(40) results in good agreement with experimental data. It is similar to the wetting-induced hardening law proposed in Alonso 
et al. (1990) which has been shown to be adequate in several models for partially saturated soils (e.g. Alonso et al., 1990; Bolzon et al., 
1996; Cui and Delage, 1996; Al-Sharrad, 2013; Sun and Sun, 2012; Macari et al., 2003). However, it is acknowledged that only volume 
change responses at low stresses were investigated in such cases. Therefore the hardening law represented by Eqs. (38)–(40) is not 
suitable or even invalid for modelling responses of partially saturated soils under high stress levels (Khalili & Nguyen, personal 
communication, 29th Nov. 2019), including the transition to void closure and pressurized saturation (Mun and McCartney, 2015, 
2017). Fig. 29 shows the responses and the performance of the model using the hardening law (38)–(40) in such cases. We also 
acknowledge several limitations of drained tests for determining yield curves (Zhang and Li, 2010; Zhang, 2016) and so the inadequacy 
of the proposed hardening laws in capturing yielding behaviour under more complicated stress paths (Loret and Khalili, 2002).  
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Fig. 28. NCL in (p’,ν) of drained isotropic compression test of the compacted partially saturated expansive clay at s = 25 kPa and s = 100 kPa (after 
Zhan, 2003); κ = 0.015, λ = 0.05,p’

c0 = 80 kPa , p’
R = 50 kPa, μ = 0.025, ξ = 0.3.  

Fig. 29. NCL in (p’,ν) of drained isotropic compression test of the Boulder clay at s = 0 kPa and s = 90 kPa (after Mun and McCartney, 2017); κ =

0.003,λ = 0.025, p’
c0 = 250 kPa, p’

R = 300 kPa, μ = − 0.005, ξ = 0.05. 

Appendix C.1. Functions A and B 

We first investigate the dependence of functions A and B on stress-like variables, based on details given in Section 2.1 and 2.2. 
From Eqs. (17-19), we can write: 

χν −
∂φν

2

∂ε̇p
ν
=

φν
1

Φ̃ − φν
2

∂φν
1

∂ε̇p
ν

(C.1.1)  

χs =
φs

Φ̃ − φν
2

∂φs

∂ε̇p
s

(C.1.2) 

Substituting Eqs. (34-36) into Eqs. (C.1.1-C.1.2) yields: 

χν −
p’

c(us)

r
=

A2ε̇p
ν

Φ̃ −
p’

c(us)
r ε̇p

ν

1
exp[ − β(1 − Sr)]

(C.1.3) 
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χs =
B2ε̇p

s

Φ̃ −
p’

c(us)
r ε̇p

ν

(C.1.4) 

Invoking Eqs. (13-15), (21) and (31-33), Eqs. (C.1.3-C.1.4) become: 

p’ −
p’

c(us)

r
=

A2ε̇p
ν

(
p’ −

p’
c(us)
r

)
ε̇p

ν + qε̇p
s + (s* − pb)

(
− Ṡ

p
r

)
1

exp[ − β(1 − Sr)]
(C.1.5)  

q=
B2ε̇p

s
(

p’ −
p’

c(us)
r

)
ε̇p

ν + qε̇p
s + (s* − pb)

(
− Ṡp

r

) (C.1.6) 

The relationship between − Ṡp
r and ε̇p

ν can be derived from flow rules in Eqs. (45) and (47) as follows: 

(s* − pb)
(
− Ṡp

r

)
=

1 − exp[ − β(1 − Sr)]

exp[ − β(1 − Sr)]

(

p’ −
1
r
p’

c(us)

)

ε̇p
ν (C.1.7) 

Substitution of Eq. (C.1.7) into Eqs. (C.1.5-C.1.6), with some mathematical arrangements, one obtains the following functions for A 
and B: 

A= ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

exp[ − β(1 − Sr)]
(

p’ −
p’

c(us)
r

)[(
p’ −

p’
c(us)
r

)
1

exp[− β(1− Sr )]
ε̇p

ν + qε̇p
s

]

ε̇p
ν

√
√
√
√
√

(C.1.8)  

B= ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

q
[(

p’ −
p’

c(us)
r

)
1

exp[− β(1− Sr)]
ε̇p

ν + qε̇p
s

]

ε̇p
s

√
√
√
√
√

(C.1.9) 

Based on Eq. (C.1.8), the stress derivatives of the function A are written as follows: 

∂A
∂p’ =

[
2
(

p’ −
p’

c(us)
r

)
ε̇p

ν

]
+ exp[ − β(1 − Sr)]qε̇p

s

2Aε̇p
ν

(C.1.10)  

∂A
∂q

=
exp[ − β(1 − Sr)]

(
p’ −

p’
c(us)
r

)
ε̇p

s

2Aε̇p
ν

(C.1.11)  

∂A
∂p’

c(us)
=

2
(

− 1
r

)(
p’ −

p’
c(us)
r

)
ε̇p

ν +

(

− 1
r

)

exp[ − β(1 − Sr)]qε̇p
s

2Aε̇p
ν

(C.1.12) 

With Eqs. (C.1.10-C.1.12), the following form can be expressed as: 

∂A
∂p’p

’ +
∂A
∂q

q+
∂A

∂p’
c(us)

p’
c(us) =

[
2
(

p’ −
p’

c(us)
r

)
p’ε̇p

ν

]
+ exp[ − β(1 − Sr)]p’qε̇p

s

2Aε̇p
ν

+
exp[ − β(1 − Sr)]

(
p’ −

p’
c(us)
r

)
qε̇p

s

2Aε̇p
ν

+

2
(

− 1
r

)(
p’ −

p’
c(us)
r

)
p’

c(us)ε̇
p
ν +

(

− 1
r

)

exp[ − β(1 − Sr)]qp’
c(us)ε̇

p
s

2Aε̇p
ν

(C.1.13)  

Or, 

∂A
∂p’p

’ +
∂A
∂q

q+
∂A

∂p’
c(us)

p’
c(us) =

2exp[ − β(1 − Sr)]
(

p’ −
p’

c(us)
r

)[(
p’ −

p’
c(us)
r

)
1

exp[− β(1− Sr )]
ε̇p

ν + qε̇p
s

]

2Aε̇p
ν

=A (C.1.14) 

Similarly, we can obtain: 
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∂B
∂p’p

’ +
∂B
∂q

q+
∂B

∂p’
c(us)

p’
c(us) =B (C.1.15) 

Eqs. (C.1.14)-(C.1.15) indicate that A and B must be homogeneous functions of degree one of p’, q and p’
c(us). 

Appendix C.2. Determining functions A and B 

We conduct a systematic procedure (Collins, 2003; Collins and Hilder, 2002) to determine specific forms of functions A and B. A and 
B must be homogeneous functions of degree one in terms of the three defining effective stress variables p’, q and p’

c(us) (see 
Appendix C.1). For simplicity, they are assumed to be in linear forms (Collins and Hilder, 2002): 

A= a1p’ + a2q + a3p’
c(us) (C.2.1)  

B= b1p’ + b2q + b3p’
c(us) (C.2.2)  

where a1, a2, a3, b1, b2, b3 are dimensionless coefficients governing dissipative micromechanical mechanisms. To determine them, let 
us examine the yielding behaviour of the wet granular material under isotropic compression and decompression where ε̇p

s = 0 or q =

0. In this case, Eq. (C.2.1) can be reduced to the following expression: 

p’ −
1
r
p’

c(us) = ±A= ±
[
a1p’ + a3p’

c(us)

]
(C.2.3) 

In Eq. (C.2.3), p’ = p’
c(us) for the plus sign of the yielding compression and p’ = 0 for the minus sign of the yielding expansion (see 

Fig. 2). Employing this, we can deduce from Eq. (C.2.3) that: 

a1 = 1 −
2
r

and a3 =
1
r

(C.2.4) 

The coefficient a2 is determined to be zero by assuming a similarity between deviatoric extension and compression (Uchaipichat, 
2005; Collins, 2003). Therefore: 

A=

(

1 −
2
r

)

p’ +
1
r
p’

c(us) (C.2.5) 

Parameters b1, b2, b3 can be identified by examining the yielding response at the critical state where the volumetric strain and 
saturation degree remain constant (Zhao et al., 2014; Chen, 2007). With ε̇p

ν = 0, if p’
CSL and qCSL respectively denote the effective mean 

and shear stresses at the critical state, Eqs. (44) and (45) are therefore simplified as (qCSL)
2
= B2 and p’

CSL = 1
rp

’
c(us). With the use of Eq. 

(C.2.2), these equations lead to: 

(qCSL)
2
=
[
b1
(
p’

CSL

)
+ b2(qCSL) + b3r

(
p’

CSL

)]2 (C.2.6)  

So that, 

qCSL = ±
(b1 + b3r)p’

CSL

(1 − b2)
(C.2.7) 

Suppose that the compressive (positive) and extensive (negative) shear stresses in Eq. (C.2.7) are similar. Consequently, b2 is null 
(Uchaipichat, 2005; Collins, 2003). Furthermore, the uniqueness of CSL with a constant slope M in the p’ : q plane is assumed (Russell 
and Khalili, 2006; Khalili et al., 2008). In this sense, Eq. (C.2.7) provides that: 

qCSL

p’
CSL

=M = b1 + b3r (C.2.8) 

Let us now introduce the dimensionless parameter α (0< α≤ 1) to enable Eq. (C.2.8) to give: 

b1 =(1 − α)M and b3 =
α
r

M (C.2.9) 

Consequently, 

B=(1 − α)Mp’ +
α
r

Mp’
c(us) (C.2.10)  

Appendix D. Comparative study against Barcelona Basic Model (BBM) 

A comparison between the proposed model and BBM (Alonso et al., 1990) is carried out regarding the model description. This 
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comparison is briefly summarized in Table 1. As can be seen, the differences between them are pointed out based on different criteria 
(i) Methodology (ii) SWCC (iii) Stress-like variables (iv) Strain-like variables (v) Cohesion (vi) Yield surface (vii) Flow rules (viii) 
Hardening law.  

Table 1 
Comparison on the model description between the present model and BBM.  

Barcelona Basic model (BBM) 
(see Table 2 for further details) 

Present model 

(i) Methodology 
Conventional elastoplastic approach Thermodynamic-based approach 
(ii) SWCC (wetting/drying difference, volume-dependent SWCC) 
No Yes 
(iii) Stress-like variables 
Net stress: σij (p and q) 

Suction: s  
Effective stress: σ’

ij (p’and q) 
Modified suction: s*  

(iv) Strain-like variables 
Strain: εij  Strain: εij 

Saturation degree: Sr  

(v) Cohesion 
kss  Srs  
(vi) Yield surface 
y(LC) = q2 − M2(p + kss)(pc(us) − p) ≤ 0 

y(SI) = s − sc ≤ 0  y =

(

p’ −
1
r
p’

c(us)

)2

[(

1 −
2
r

)

p’ +
1
r
p’

c(us)

]2 +
q2

[
(1 − α)p’ +

α
r
p’

c(us)

]2
M2

− 1 ≤ 0  

(vii) Flow rules 
ε̇p

ν = ε̇p
ν(LC) + ε̇p

ν(SI) = λ̇p(LC)M2(2p + kss − pc(us)) + λ̇p(SI)

ε̇p
s = λ̇p(LC)2γq  ε̇p

ν = λ̇p

2
(

p’ −
1
r
p’

c(us)

)

[(

1 −
2
r

)

p’ +
1
r
p’

c(us)

]2 exp[ − β(1 − Sr)]

ε̇p
s = λ̇p

2q
[
(1 − α)p’ +

α
r
p’

c(us)

]2
M2 

− Ṡp
r = λ̇p

2
(

p’ −
1
r
p’

c(us)

)2

(s* − pb)

[(

1 −
2
r

)

p’ +
1
r
p’

c(us)

]2 [1 − exp[ − β(1 − Sr)]]

(viii) Hardening law 

pc(us) = pR

⎡

⎢
⎢
⎣

pco exp
(νεp

ν(LC)

λ − κ

)

pR

⎤

⎥
⎥
⎦

λ − κ
λ[(1 − ξ)exp(− μs) + ξ] − κ 

sc = (sc0 + pat)exp
( νεp

ν(SI)

λs − κs

)

− pat  

p’
c(us) = p’

R

⎡

⎢
⎣

p’
c0 exp

(
εp

ν

λ − κ

)

p’
R

⎤

⎥
⎦

λ − κ
λ[(1 − ξ)exp(− μs*) + ξ] − κ    

Table 2 
Definitions of parameters and variables of BBM (Alonso et al., 1990).  

ks  constant controlling the apparent cohesion 
κ  slope of URL in the ν : lnp plane for saturated conditions  
λ  slope of NCL in the ν : lnp plane for saturated conditions  
κs  elastic stiffness parameter for changes in suction 
λs  stiffness parameter for changes in suction for virgin states of the soil 
γ  parameter controlling the non-associated flow rule 
μ  parameter controlling the change of soil stiffness with suction 
ξ  parameter controlling the maximum soil stiffness 
pR  parameter controlling the yield curve 
pat  atmospheric pressure 
pc(us) the yield pressure under isotropic compression at partially saturated condition 
pc0  the initial yield pressure under isotropic compression at fully saturated condition 
sc  hardening parameter of the suction increase yield locus 
sc0  the initial hardening parameter of the suction increase yield locus 
y(LC) Loading-Collapse yield surface 
y(SI) Suction-Increase yield surface 
εp

ν(LC) plastic volumetric strain associated with the Loading-Collapse yield surface 

(continued on next page) 
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Table 2 (continued ) 

εp
ν(SI) plastic volumetric strain associated with the Suction-Increase yield surface 

λ̇p(LC) non-negative plasticity-like multiplier of the Loading-Collapse yield surface 

λ̇p(SI) non-negative plasticity-like multiplier of the Suction-Increase yield surface  

As can be seen in the table above, the proposed model has a few notable advances compared to the BBM (i) Thermomechanical 
rigour (ii) A single yield surface (iii) Saturation degree (iv) inherent SWCC as an integral part of the model (v) Fully coupled hydro- 
mechanical response taking into account the volume-dependent SWCC (vi) Non-linear increase in cohesion with Srs (vii) wetting/ 
drying difference. 

These features are associated with some main distinctions between the two in terms of parameters as follows: (i) In our hardening 
laws, parameters κ, λ, p’

R, μ and ξ are used for effective stress and modified suction. Therefore, their effects on responses of our model 
are different from those of the BBM. (ii) r and α are adopted in the present model to provide a more extensive/flexible yielding 
behaviour in comparison with the BBM. Particular, they allow us to construct the tear-drop shape of the yield surface to mimic a wide 
variety of experimentally observed initial shear yield surface. (iii) In the BBM, parameter ks is used to describe the linear increase in 
cohesion with suction. Instead, the term Srs in the Bishop’s effective stress is to describe the non-linear relationship between cohesion 
and suction in our model. (iv) Additional parameters κh, β and pb for SWCC are needed for this model which cannot be found in the 
BBM. 

With above-mentioned advances, the present model yields better predictions of the εs : q and εs : εv responses in suction-controlled 
triaxial shearing test on Speswhite Kaolin at s = 200 kPa and σ33 = 75 kPa (Raveendiraraj, 2009), as compared to the BBM (see 
Fig. 30a). Additionally, Fig. 30b demonstrates the ability of our approach to capture the increase in saturation degree during shearing, 
which cannot be predicted by the BBM. 

Fig. 30. Drained triaxial compression tests on Speswhite Kaolin at s = 200 kPa and σ33 = 75 kPa (after Raveendiraraj, 2009) (a) εs− q, εs− εν (b) p −
Sr .κ = 0.01;λ = 0.3;M = 0.889;G = 3000 kPa;κh = 0.75;p’

R = 120 kPa;μ = 0.06;ξ = 0.6;p’
c0 = 200 kPa;r = 2.5;α = 0.7;β = 0.005;pb = 70 kPa. 

Appendix E. Number of parameters in existing coupled hydro-mechanical models 

Table 3 
Comparison on the number of parameters in existing coupled hydro-mechanical models.  

Model Number of parameters 

Khalili et al. (2008) “A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and 
mechanical hysteresis” 

17 

Hu et al. (2015) “A coupled stress-strain and hydraulic hysteresis model for unsaturated soils: Thermodynamic analysis and model 
evaluation” 

16 

Liu Muraleetharan (2012) “Coupled Hydro-Mechanical Elastoplastic Constitutive Model for Unsaturated Sands and Silts” 32 
Ghasemzadeh et al. (2017) “Elastoplastic model for hydro-mechanical behaviour of unsaturated soils” 18 
Gholizadeh and Latifi (2018) “A coupled hydro-mechanical constitutive model for unsaturated frictional and cohesive soil” 21 
Sun and Sun (2012) “Coupled modelling of hydro-mechanical behaviour of unsaturated compacted expansive soils” 13 
Muraleetharan et al. (2009) “An elastoplatic framework for coupling hydraulic and mechanical behaviour of unsaturated soils” 12 (isotropic behaviour 

only) 
Bruno and Gallipoli (2019) “A coupled hydromechanical bounding surface model predicting the hysteretic behaviour of unsaturated 

soils” 
12 (isotropic behaviour 
only)  

Appendix F. Derivatives of the yield function 

The derivatives of the yield function in Eq. (59) with respect to effective stress takes the following explicit form: 

∂y
∂σ’

ij
=

∂y
∂p’

∂p’

∂σ’
ij
+

∂y
∂q

∂q
∂σ’

ij
(F.1) 
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in which, 

∂y
∂p’ =

2
(

p’ − 1
rp

’
c(us)

)

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2 −

2
(

1 − 2
r

)(

p’ − 1
rp

’
c(us)

)2

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]3 −
2(1 − α)q2

[
(1 − α)p’ + α

rp
’
c(us)

]3
M2

(F.2)  

∂y
∂q

=
2q

[
(1 − α)p’ + α

rp
’
c(us)

]2
M2

(F.3) 

∂y
∂p’

c(us)
is written as follows: 

∂y
∂p’

c(us)
=

2
(

− 1
r

)(

p’ − 1
rp

’
c(us)

)

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]2 −

2
(

1
r

)(

p’ − 1
rp

’
c(us)

)2

[(

1 − 2
r

)

p’ + 1
rp

’
c(us)

]3 −
2
(

α
r

)
q2

[
(1 − α)p’ + α

rp
’
c(us)

]3
M2

(F.4) 

From Eq. (38), the derivative of p’
c(us) with respect to p’

c and s* are expressed as: 

∂p’
c(us)

∂p’
c

=

[
λ − κ

λ((1 − ξ)exp(− μs*) + ξ) − κ

](
p’

c

p’
R

)λ− λ((1− ξ)exp(− μs* )+ξ)
λ((1− ξ)exp(− μs* )+ξ)− κ

(F.5)  

∂p’
c(us)

∂s* = p’
R

(
p’

c

p’
R

) λ− κ
λ((1− ξ)exp(− μs* )+ξ)− κ

ln
(

p’
c

p’
R

)
(λ − κ)λ(1 − ξ)μexp(− μs*)

[λ((1 − ξ)exp(− μs*) + ξ) − κ]2
(F.6)  

Appendix G. Semi-analytical algorithm for simulating suction-controlled isotropic compression test 

Given Δεν and s, the trial values of effective mean stress (p’trial) and modified suction (s*trial) in the first step of this algorithm are 
calculated using the following form: 

p’trial = p’n + Δp’trial = p’n +
p’n

κ
Δεν (G.1)  

s*trial = s*n +Δs*trial = s*n + (− sΔεν) (G.2)  

with p’n being effective mean stress at step n 
From Eq. (87), Δλp in the case of isotropic compression tests takes the following form: 

Δλp =
ytrial

∂y
∂p’

p’n

κ
∂y*

∂χν

⃒
⃒
⃒
⃒

trial

+ ∂y
∂p’

c(us)

∂p’
c(us)

∂s*
(s*n+pu)

κh

∂y*

∂χh

⃒
⃒
⃒
⃒

trial

− ∂y
∂p’

c(us)

∂p’
c(us)

∂p’
c

p’
c

(λ− κ)
∂y*

∂χν

⃒
⃒
⃒
⃒

trial (G.3) 

The new increment of effective mean stress (p’) can be computed using Δλp as follows: 

Δp’ =Δp’trial + Δp’corrt (G.4) 

With Δλp obtained, the increment of saturation degree ( − ΔSr) can be expressed as: 

− ΔSr =
κh

(s*n + pu)
Δs*trial + Δλp

∂y*

∂χh

⃒
⃒
⃒
⃒

trial

(G.5) 

The effective mean stress or alternatively net stress are then updated using following equations: 

p’n+1 = p’n + Δp’ (G.6)  

pn+1 = p’n+1 − Sn+1
r s (G.7)  

where Sn+1
r is updated saturation degree thanks to Eq. (G.5) 
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Houlsby, G., 1997. The work input to an unsaturated granular material. Géotechnique 47 (1), 193–196. https://doi.org/10.1680/geot.1997.47.1.193. 

D.G. Phan et al.                                                                                                                                                                                                        

https://doi.org/10.1016/j.ijplas.2012.01.002
http://refhub.elsevier.com/S0749-6419(20)30084-X/sref2
http://refhub.elsevier.com/S0749-6419(20)30084-X/sref3
https://doi.org/10.1680/geot.11.P.134
https://doi.org/10.1680/geot.11.P.134
https://doi.org/10.1680/geot.1990.40.3.405
https://doi.org/10.1016/j.ijplas.2007.07.012
https://doi.org/10.1016/j.ijplas.2015.03.006
https://doi.org/10.1007/s10035-016-0673-6
https://doi.org/10.1007/s10035-016-0673-6
https://doi.org/10.1016/j.ijplas.2015.07.003
https://doi.org/10.1680/geot.2003.53.1.113
https://doi.org/10.1680/geot.1996.46.2.279
https://doi.org/10.1680/geot.1996.46.2.279
https://doi.org/10.1016/j.compgeo.2019.02.025
https://doi.org/10.1680/geot.10.P.118
https://doi.org/10.1002/nag.756
http://refhub.elsevier.com/S0749-6419(20)30084-X/sref15
https://doi.org/10.1016/S0749-6419(98)00050-3
https://doi.org/10.1016/S0749-6419(98)00050-3
http://refhub.elsevier.com/S0749-6419(20)30084-X/sref17
http://refhub.elsevier.com/S0749-6419(20)30084-X/sref17
https://doi.org/10.1680/geot.2003.53.9.809
https://doi.org/10.1680/geot.2003.53.9.809
https://doi.org/10.1016/S0020-7683(03)00226-9
https://doi.org/10.1016/S0020-7683(03)00226-9
https://doi.org/10.1680/geot.2005.55.5.373
https://doi.org/10.1680/geot.2005.55.5.373
https://doi.org/10.1098/rspa.1997.0107
https://doi.org/10.1680/geot.2002.52.7.507
https://doi.org/10.1002/nag.247
https://doi.org/10.1016/j.compgeo.2009.09.003
http://refhub.elsevier.com/S0749-6419(20)30084-X/sref25
https://doi.org/10.1061/(ASCE)0733-9399(1994)120:11(2251)
https://doi.org/10.1061/(ASCE)0733-9399(1994)120:11(2251)
https://doi.org/10.1680/geot.1996.46.2.291
https://doi.org/10.1680/geot.1996.46.2.291
https://doi.org/10.2136/vzj2013.06.0110
https://doi.org/10.1016/j.ijplas.2018.06.006
http://refhub.elsevier.com/S0749-6419(20)30084-X/sref30
http://refhub.elsevier.com/S0749-6419(20)30084-X/sref30
http://refhub.elsevier.com/S0749-6419(20)30084-X/sref31
http://refhub.elsevier.com/S0749-6419(20)30084-X/sref31
https://doi.org/10.1016/j.jmps.2006.11.003
https://doi.org/10.1016/j.jmps.2006.11.004
https://doi.org/10.1016/j.ijsolstr.2012.02.003
https://doi.org/10.1016/j.ijplas.2017.01.011
https://doi.org/10.1016/j.ijplas.2017.01.011
https://doi.org/10.1680/geot.2003.53.1.123
https://doi.org/10.1016/j.sandf.2017.05.005
https://doi.org/10.1016/j.compgeo.2017.11.010
https://doi.org/10.1016/j.compgeo.2017.11.010
https://doi.org/10.1016/j.cma.2018.03.008
https://doi.org/10.1016/j.compscitech.2011.11.012
http://refhub.elsevier.com/S0749-6419(20)30084-X/sref41
https://doi.org/10.1016/j.ijplas.2007.07.011
https://doi.org/10.1016/j.ijplas.2007.07.011
https://doi.org/10.1016/j.ijplas.2006.08.005
https://doi.org/10.1016/0309-1708(90)90040-B
https://doi.org/10.1680/geot.1997.47.1.193


International Journal of Plasticity 136 (2021) 102821

41

Houlsby, G., Puzrin, A., 2000. A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plast. 16 (9), 1017–1047. 
https://doi.org/10.1016/S0749-6419(99)00073-X. 

Hoxha, D., Giraud, A., Homand, F., Auvray, C., 2007. Saturated and unsaturated behaviour modelling of Meuse–Haute/Marne argillite. Int. J. Plast. 23 (5), 733–766. 
https://doi.org/10.1016/j.ijplas.2006.05.002. 

Hu, R., Chen, Y.-F., Liu, H.-H., Zhou, C.-B., 2015. A coupled stress–strain and hydraulic hysteresis model for unsaturated soils: thermodynamic analysis and model 
evaluation. Comput. Geotech. 63, 159–170. https://doi.org/10.1016/j.compgeo.2014.09.006. 

Hu, R., Liu, H.-H., Chen, Y., Zhou, C., Gallipoli, D., 2014. A constitutive model for unsaturated soils with consideration of inter-particle bonding. Comput. Geotech. 59, 
127–144. https://doi.org/10.1016/j.compgeo.2014.03.007. 

Jommi, C., 2000. Remarks on the Constitutive Modelling of Unsaturated Soils’, Experimental Evidence and Theoretical Approaches in Unsaturated Soils, pp. 139–153. 
Khalili, N., Habte, M., Zargarbashi, S., 2008. A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical 

hystereses. Comput. Geotech. 35 (6), 872–889. https://doi.org/10.1016/j.compgeo.2008.08.003. 
Khalili, N., Khabbaz, M., 1998. A unique relationship for χ for the determination of the shear strength of unsaturated soils. Géotechnique 48 (5), 681–687. https://doi. 
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Thu, T.M., Rahardjo, H., Leong, E.-C., 2006. Shear strength and pore-water pressure characteristics during constant water content triaxial tests. J. Geotech. 

Geoenviron. Eng. 132 (3), 411–419. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(411). 
Thu, T.M., Rahardjo, H., Leong, E.-C., 2007a. Elastoplastic model for unsaturated soil with incorporation of the soil-water characteristic curve. Can. Geotech. J. 44 (1), 

67–77. https://doi.org/10.1139/t06-091. 
Thu, T.M., Rahardjo, H., Leong, E.-C., 2007b. Soil-water characteristic curve and consolidation behavior for a compacted silt. Can. Geotech. J. 44 (3), 266–275. 

https://doi.org/10.1139/t06-114. 
Toyota, H., Sakai, N., Nishimura, T., 2001. Effects of stress history due to unsaturation and drainage condition on shear properties of unsaturated cohesive soil. Soils 

Found. 41 (1), 13–24. https://doi.org/10.3208/sandf.41.13. 
Uchaipichat, A., 2005. Experimental Investigation and Constitutive Modelling of Thermo-Hydro-Mechanical Coupling in Unsaturated Soils. University of New South 

Wales. 
Uchaipichat, A., Khalili, N., 2009. Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt. Géotechnique 59 (4), 339–353. https:// 
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Abstract The nonlinear behaviour of unsaturated soils is governed by the fully coupled 

hydro-mechanical phenomenon due to the irrecoverable movement of particles and flu-

ids. It is usually accounted for in constitutive modeling using separate evolution rules 

for plastic deformation and saturation, linked with two yield conditions for stress and 

suction. In this paper, a new generic thermodynamics-based approach is developed to 

provide a more rigorous way to capture these underlying mechanisms. A special form 

of dissipation potential leading to strong inter-dependence of mechanical and hydraulic 

internal variables is used for the derivation of a single yield surface. A specific critical 

state model using a small number of identifiable parameters is derived from the pro-

posed formulation. Its capabilities in predicting the drained and undrained experimental 

results are investigated to highlight the applicability of our approach. 

 

Keywords: Unsaturated soils, constitutive modelling, thermodynamics, coupled hydro-

mechanical 

 

 

1   Introduction 

An intrinsic nature of unsaturated soil behaviour is the hydro-mechanical coupling due 

to interactions between grain rearrangement and liquid-bridge redistribution. It is re-

flected at the continuum level through the effects of suction on strength and volumetric 

behaviour, and capillary hysteresis, which have been observed in several drained and 

undrained tests. There have been several attempts and some successes to develop con-

stitutive models for unsaturated soils to capture these experimentally observed charac-

teristics in the last 30 years. Particularly, the suction-dependent mechanical responses 

have been investigated in many models without the soil water characteristic curve 

(SWCC) (e.g. Alonso et al., 1990). In some others, the hydraulic influence through a 

SWCC is added (e.g. Thu et al., 2007a) to distinguish the effects of different saturation 

regimes on the mechanical behaviour. However the effects of mechanical behaviour on 

hydraulic responses, represented by the SWCC, were not accounted for in these models. 

The non-uniqueness of SWCC has been well recognised (e.g. Nuth & Laloui, 2008; 

Tarantino, 2009) and was taken into account in Buscarnera and Nova (2009). However, 



2  

this study neglects the wetting-drying difference in the behaviour which has been suc-

cessfully addressed in several models. For example, Khalili et al. (2008) adopts a sepa-

rate law of hydraulic hysteresis in which each drying and wetting path possesses differ-

ent parameters. Others (e.g. Wheeler et al., 2003) employ the multiple yield surface 

(Loading Collapse (LC), Suction Increase/Decrease (SI/SD)). Nevertheless, according 

to Delage and Graham (1996), the micromechanical nature of coupled hydro-mechani-

cal yielding should be represented by a unique yield locus. Furthermore, net stress-con-

trolled experiments (Thu et al., 2007b) indicate the irrationality of horizontal straight 

lines for SI/SD curves adopted in these models.  

 

In this paper, a generic thermodynamics-based approach is developed to describe the 

interdependence of plastic strain and irrecoverable saturation, as two key internal vari-

ables of an unsaturated model. The proposed approach brings benefits in minimizing the 

number of arbitrary assumptions and model parameters. It uses a single yield surface in 

stress-suction space with two evolution rules for plastic strains and irrecoverable satu-

ration. The whole model is derived from two explicitly defined free energy and dissipa-

tion potentials, and can address the lack of hydraulic dissipation in some earlier thermo-

dynamics-based models (e.g. Buscarnera & Einav, 2012). The interaction between 

mechanical and hydraulic yielding responses can be captured with a small number of 

parameters. The promising features of this approach are elucidated through a specific 

critical state model whose performances are validated against a range of experimental 

data obtained from drained and undrained tests.  

2   A generic thermodynamics-based formulation  

The rate of work input can be expressed as:  

�̃� = (�̅� + 𝑆𝑟𝑠)𝜀�̇� + 𝑞𝜀�̇� − 𝜙𝑠�̇�𝑟 = 𝑝′𝜀�̇� + 𝑞𝜀�̇� + 𝑠∗(−�̇�𝑟) = Ψ̇ + Φ̃ (1) 

where �̅�, 𝑝′, 𝑞, 𝑠, 𝑠∗, 𝜀𝑣, 𝜀𝑠, 𝑆𝑟 , 𝜙 are the net mean stress, effective mean stress, shear 

stress, matric suction, modified suction, volumetric strain, shear strain, saturation degree 

and porosity, respectively. The Helmholtz free energy is assumed as a function of strains 

and saturation. Therefore, its rate Ψ̇ takes form:  

Ψ̇ =
𝜕Ψ

𝜕𝜀𝜈
𝜀�̇� +

𝜕Ψ

𝜕𝜀𝑠
𝜀�̇� +

𝜕Ψ

𝜕(−𝑆𝑟)
(−𝑆�̇�) +

𝜕Ψ

𝜕𝜀𝜈
𝑝 𝜀�̇�

𝑝
+

𝜕Ψ

𝜕𝜀𝑠
𝑝 𝜀�̇�

𝑝
+

𝜕Ψ

𝜕(−𝑆𝑟
𝑝

)
(−�̇�𝑟

𝑝
)  (2) 

From Eqs. (1) and (2), the following relationships are obtained: 

𝑝′ =
𝜕Ψ

𝜕𝜀𝜈
,     𝑞 =

𝜕Ψ

𝜕𝜀𝑠
,     𝑠∗ =

𝜕Ψ

𝜕(−𝑆𝑟)
  (3) 

and,  

�̅�𝜈 = −
𝜕Ψ

𝜕𝜀𝜈
𝑝,     �̅�𝑠 = −

𝜕Ψ

𝜕𝜀𝑠
𝑝,     �̅�ℎ = −

𝜕Ψ

𝜕(−𝑆𝑟
𝑝

)
  (4) 
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in which �̅�𝜈 , �̅�𝑠 and �̅�ℎ are the thermodynamic conjugates to plastic volumetric strain 

𝜀�̇�
𝑝
, plastic shear strain 𝜀�̇�

𝑝
 and irreversible saturation degree −�̇�𝑟

𝑝
, respectively.  

For rate-independent behavior, the dissipation potential Φ̃ is a homogeneous function 

of order one in terms of 𝜀�̇�
𝑝
, 𝜀�̇�

𝑝
 and �̇�𝑟

𝑝
: 

Φ̃ = √(𝜙1
𝜈)2 + (𝜙𝑠)2 + (𝜙ℎ)2 + 𝜙2

𝜈 
(5) 

where 𝜙1
𝜈, 𝜙2

𝜈; 𝜙𝑠 and 𝜙ℎ are first order homogeneous functions of 𝜀�̇�
𝑝
; 𝜀�̇�

𝑝
 and �̇�𝑟

𝑝
, re-

spectively. From Eq. (5), the volumetric (𝜒𝜈), shear (𝜒𝑠) and hydraulic (𝜒ℎ) dissipative 

generalised stresses take the following forms: 

𝜒𝜈 =
𝜕Φ̃

𝜕�̇�𝜈
𝑝,     𝜒𝑠 =

𝜕Φ̃

𝜕�̇�𝑠
𝑝,     𝜒ℎ =

𝜕Φ̃

𝜕(−�̇�𝑟
𝑝

)
  (6) 

The degenerate Legendre transformation of Eq. (5) leads to a single yield function 𝑦∗ in 

the space of  𝜒𝜈 , 𝜒𝑠 ,  and 𝜒ℎ 

𝑦∗ =
(𝜒𝜈−

𝜕𝜙2
𝜈

𝜕�̇�𝜈
𝑝 )

2

(
𝜕𝜙1

𝜈

𝜕�̇�𝜈
𝑝 )

2 +
(𝜒𝑠)2

(
𝜕𝜙𝑠

𝜕�̇�𝑠
𝑝)

2 +
(𝜒ℎ)2

(
𝜕𝜙ℎ

𝜕(−�̇�𝑟
𝑝

)
)

2 − 1 ≤ 0   (7) 

Three flow rules, sharing a single multiplier �̇�𝑝, can then be expressed as:  

𝜀�̇�
𝑝

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝜈
,   𝜀�̇�

𝑝
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒𝑠
,   − �̇�𝑟

𝑝
= �̇�𝑝

𝜕𝑦∗

𝜕𝜒ℎ
   (8) 

Eqs. (3), (7) and (8) present a generic form of thermodynamic-based models for unsatu-

rated soils. Further details on the above generic formulation and its features from which 

unsaturated soils model can be defined using explicitly defined energy and dissipation 

potentials can be found in Phan et al. (2020). The following Section provides an example 

of such unsaturated soil models formulated based on the above generic formulation. 

3   A critical state model for unsaturated soils based on thermody-

namics 

The Helmholtz free energy potential can assume the following specific form (Phan et  

al., 2020): 

Ψ = 𝜅𝑝0
′ 𝑒𝑥𝑝 [

(𝜀𝑣 − 𝜀𝜈
𝑝

)

𝜅
] +

3

2
𝐺(𝜀𝑠 − 𝜀𝑠

𝑝
)

2

+ 𝜅ℎ(𝑝𝑢 + 𝑠0
∗) 𝑒𝑥𝑝 {

𝑆𝑟0 + [(−𝑆𝑟) − (−𝑆𝑟
𝑝

)]

𝜅ℎ

}

− [(−𝑆𝑟) − (−𝑆𝑟
𝑝

)]𝑝𝑢 + (−𝑆𝑟
𝑝

)𝑝𝑏  

(9) 
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where 𝜅 is the elastic index; 𝐺 is the shear moduli; 𝜅ℎ is to control the amount of re-

versible energy stored in the water menisci (Buscarnera & Einav, 2012); 𝑝𝑢 = 1 kPa 

and 𝑝𝑏  is a parameter controlling the stored irreversible hydraulic energy; 𝑝0
′ , 𝑠0

∗ and 𝑆𝑟0 

are initial values of 𝑝′, 𝑠∗ and 𝑆𝑟 , respectively.  

 

For an explicitly defined dissipation potential, functions 𝜙1
𝜈, 𝜙2

𝜈, 𝜙𝑠 and 𝜙ℎ in Eq. (5) 

are needed, and take the following forms (Phan et  al, 2020): 

𝜙1
𝜈 =

1

√e−𝛽(1−𝑆𝑟)
[(1 −

2

𝑟
) 𝑝′ +

1

𝑟
𝑝𝑐(𝑢𝑠)

′ ] 𝜀�̇�
𝑝
 (10) 

𝜙2
𝜈 =

𝑝𝑐(𝑢𝑠)
′

𝑟
𝜀�̇�

𝑝
   

(11) 

𝜙𝑠 = [(1 − 𝛼)𝑀𝑝′ +
𝛼

𝑟
𝑀𝑝𝑐(𝑢𝑠)

′ ] 𝜀�̇�
𝑝
   (12) 

𝜙ℎ =
1

√1−e−𝛽(1−𝑆𝑟)

(𝑠∗−𝑝𝑏)

(𝑝′−
𝑝𝑐(𝑢𝑠)

′

𝑟
)

[(1 −
2

𝑟
) 𝑝′ +

1

𝑟
𝑝𝑐(𝑢𝑠)

′ ] (−�̇�𝑟
𝑝

)  (13) 

in which 𝛽 (0 < 𝛽 ≤ 1) is to govern the hydro-mechanical coupling, 𝛼 is a parameter 

governing the strength of the material, 𝑟 is defined as “spacing ratio” to control the 

dilatancy (Collins & Hilder, 2002), 𝑀 is the slope of the critical state line. 𝑝𝑐(𝑢𝑠)
′  is 

hardening law based on drained tests at low stresses which takes the following form: 

𝑝𝑐(𝑢𝑠)
′ = 𝑝𝑅

′ [
𝑝𝑐0

′ 𝑒𝑥𝑝(
𝜀𝜈

𝑝

𝜆−𝜅
)

𝑝𝑅
′ ]

𝜆−𝜅

𝜆((1−𝜉)𝑒𝑥𝑝(−𝜇𝑠∗)+𝜉)−𝜅

  (14) 

with 𝜆 being the slope of the normal compression line (NCL) at 𝑠 = 0 kPa; 𝑝𝑐0
′  being 

the initial yield mean pressure at 𝑠 = 0 kPa; 𝑝𝑅
′ , 𝜉 and 𝜇 being parameters controlling 

the change of soil stiffness and yield stress.  

 

Using Eqs. (3) and (9), the following constitutive relationships are obtained: 

𝑝′ =
𝜕Ψ

𝜕𝜀𝜈
= 𝑝0

′ e
(

𝜀𝑣−𝜀𝜈
𝑝

𝜅 )
   (15) 

𝑞 =
𝜕Ψ

𝜕𝜀𝑠
= 3𝐺(𝜀𝑠 − 𝜀𝑠

𝑝
)   (16) 

𝑠∗ =
𝜕Ψ

𝜕(−𝑆𝑟)
= (𝑝𝑢 + 𝑠0

∗) e
{

𝑆𝑟0+[(−𝑆𝑟)−(−𝑆𝑟
𝑝

)]

𝜅ℎ
}

−𝑝𝑢    
(17) 
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Adopting Eqs. (7), (9), (10-13) and Ziegler’s orthogonality conditions in the forms 𝜒𝜈 =

�̅�𝜈 = −
𝜕Ψ

𝜕𝜀𝜈
𝑝 = 𝑝′, 𝜒𝑠 = �̅�𝑠 = −

𝜕Ψ

𝜕𝜀𝑠
𝑝 = 𝑞, and 𝜒ℎ = �̅�ℎ = −

𝜕Ψ

𝜕(−𝑆𝑟
𝑝

)
= 𝑠∗ − 𝑝𝑏 , we can 

obtain the yield surface 𝑦 in true stress space as:  

(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)

′ )
2

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)

′ ]
2 +

(𝑞)2

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)

′ ]
2

𝑀2
− 1 ≤ 0  (18) 

The evolution rules in Eq. (8) can be expressed as follows:  

𝜀�̇�
𝑝

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝜈
= �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)

′ )

[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)

′ ]
2 e−𝛽(1−𝑆𝑟)  (19) 

𝜀�̇�
𝑝

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒𝑠
= �̇�𝑝

2𝑞

[(1−𝛼)𝑝′+
𝛼

𝑟
𝑝𝑐(𝑢𝑠)

′ ]
2

𝑀2
  (20) 

−�̇�𝑟
𝑝

= �̇�𝑝
𝜕𝑦∗

𝜕𝜒ℎ
= �̇�𝑝

2(𝑝′−
1

𝑟
𝑝𝑐(𝑢𝑠)

′ )
2

(𝑠∗−𝑝𝑏)[(1−
2

𝑟
)𝑝′+

1

𝑟
𝑝𝑐(𝑢𝑠)

′ ]
2 [1 − e−𝛽(1−𝑆𝑟)]  (21) 

 

For 𝑟 = 2 and 𝛼 = 1 the proposed model in Eqs. (18-21) becomes Modified Cam Clay 

at 𝑠 = 0 and 𝑆𝑟 = 1, allowing it to capture the transition from fully to partially saturated 

behaviour, and vice versa. Further details on the model formulation, its characteristics a 

dissipation properties, along with implementation algorithms and verification are pre-

sented in our forth coming paper (Phan et al., 2020). 

5   Validation with experiments 

5.1 Drained tests 

Firstly, the drained isotropic compression test on the compacted unsaturated expansive 

clay (Zhan, 2003) is examined. The calibration of the following parameters is based on 

the initial yield curve, resulting in 𝜅 = 0.015;  𝜆 = 0.05; 𝑝𝑐0
′ = 80 kPa; 𝑝𝑅

′ =
50 kPa; 𝜇 = 0.025 and 𝜉 = 0.3. The data on 𝑠 = 25 kPa is adopted to determine 𝜅ℎ =
0.55; 𝑟 = 2;  𝛽 = 0.2 and 𝑝𝑏 = 70 kPa. The predicted and measured data at 𝑠 =
25 kPa;  50 kPa;  100 kPa and 200 kPa are illustrated in Fig. 1. As can be seen, the 

model can provide a good match to experimental responses, except some discrepancies 

at 𝑠 = 200 kPa. In particular, the simultaneous activation in irreversible changes of both 

volume and saturation degree are well captured. The initial yield stress increases and the 

NCL slope decreases when suction increases. Furthermore, saturation degree is ob-

served to significantly increase despite unchanged suction, indicating the model’s ability 

in predicting the mechanical effect on SWCC.  
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Fig. 1  Drained isotropic compression test on compacted unsaturated expansive clay (after Zhan, 2003) 

(a) �̅�: 𝜈 (b) �̅�: 𝑆𝑟 

The shear behaviour of model is investigated using data obtained from drained triaxial 

tests on Kurnell sand at 𝑠 = 0 kPa; 100 kPa and 200 kPa with the net confining pres-

sure 𝜎33 = 50 kPa (Russell, 2004). We use the experimental results of 𝑠 = 0 kPa to 

calibrate and obtain the following parameters 𝜅 = 0.01; 𝐺 = 4300 kPa;  𝜆 = 0.25; 

𝑝𝑐0
′ = 600 kPa; 𝑟 = 2.5; 𝑀 = 1.28 and 𝛼 = 0.45. Other parameters: 𝜅ℎ = 0.004; 𝑝𝑅

′ =
363.31 kPa; 𝜇 = 0.0601; 𝜉 = 0.6; 𝛽 = 0.05; 𝑝𝑏 = 70 kPa are calibrated to best fit the 

test results at 𝑠 = 100 kPa. As depicted in Fig. 2, the numerical results show reasonable 

agreement with the experimental data. In particular, higher suctions tend to produce 

higher yield shear stresses. The model can also give a fairly good prediction of suction-

dependent dilation responses (see Fig. 2b).  

 

Fig. 2  Drained triaxial compression test on the Kurnell sand (after Russell, 2004) (a) 𝜀𝑠: 𝑞 (b) 𝜀𝑠: 𝜀𝜈 

5.2 Undrained tests  

The undrained isotropic compression test with water content 𝑤 = 9.9% on Fairbanks 

silt (Zhang, 2016) is investigated in three phases: loading AB (phase 1), unloading from 

BC (phase 2) and reloading CD (phase 3). Parameters are : 𝜅 = 0.006; 𝜆 = 0.026; 𝜅ℎ =
0.05; 𝑝𝑅

′ = 206.78 kPa; 𝜇 = 0.0157; 𝜉 = 0.628; 𝑝𝑐0
′ = 250 kPa; 𝑟 = 1.5; 𝛽 = 0.1; 

𝑝𝑏 = 80 kPa. As can be seen in Fig. 3, the experimental trends of NCL and SWCC are 
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reasonably reproduced by the model. Particularly, matric suction and specific volume 

decrease while saturation degree increases in phase 1 and 3. Upon unloading in phase 2, 

both stress-strain and SWCC relationships cannot recover their previous states, indicat-

ing the ability of the model to perform the wetting-drying difference.  

 

Fig. 3 Undrained isotropic compression test of the Fairbanks silt at 𝑤 = 9.9% (after Zhang, 2016) (a) 

�̅�: 𝜈 (b)  𝑠: 𝑆𝑟  

6   Conclusions  

This study focuses on the development of a new generic thermo-mechanical approach 

for coupled hydro-mechanical behavior in modelling unsaturated soils. This approach 

allows the derivation of constitutive models possessing a single yield function and three 

evolution laws for 𝜀�̇�
𝑝
, 𝜀�̇�

𝑝
 and −�̇�𝑟

𝑝
 to reproduce the macro behavior generated by the 

interactions between grain contact sliding and capillary irreversibility at the grain scale. 

Its benefit is the reduction in the number of parameters and the identification and cali-

bration of all parameters based on standard tests. Following the general formulation, an 

example of a critical state constitutive model is proposed for capturing some essential 

features of unsaturated soil responses under drained and undrained triaxial loading con-

ditions. Good agreement between the numerical and experimental results demonstrates 

the potential of the generic approach and its derived model.  
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