
 

  

  

 

 

 

 

Investigation of the Maisotsenko Cycle Based Air Conditioning Systems 

 

By  

 

Hamed Sadighi Dizaji 

 

Supervisors 

Associate Professor Eric Hu 

Dr. Lei Chen 

 

School of Mechanical Engineering 

The University of Adelaide 

 

 

 

This thesis is submitted for the degree of 

 Doctor of Philosophy 

 

February 2021 



i 
 

Summary 

Water evaporative based air coolers become more and more popular because of 

their lower energy consumption compared to the compressor-refrigerant based 

coolers. Low cooling capacity (theoretically wet-bulb temperature at 100% relative 

humidity), adding moisture to the product air and probable health issues due to the 

contaminated water droplets are the main shortcomings of direct evaporative air 

coolers. Although conventional indirect evaporative air cooler (which is direct 

evaporative cooler + a heat exchanger) overcomes some of the mentioned 

shortcomings (i.e. adding no moisture to the product air), the minimum achievable 

temperature would even be increased and remains as the main weakness of the 

indirect evaporative air coolers. 

Maisotsenko-cycle (M-cycle) based indirect evaporative cooler (IEC) 

overcomes all mentioned problems as it is able to provide lower air temperature 

(below the wet-bulb temperature towards the dew point temperature) without 

adding moisture to the product air and without further energy consumption. 

Besides, M-cycle cooler does not have any negative impact on environment and it 

does not have any potential health issue due to the probable contaminated water 

droplets.  

However, the research on M-cycle IEC is limited. No potential analytical 

model has been provided before for M-cycle IEC, and cumbersome time-

consuming numerical simulations have been employed for design and analysis 

purposes. Hence, this research aims to develop better understanding on the thermal-

exergetic behaviour of M-cycle cooler by developing new high-accurate quick 

analytical models for different working conditions. Experimental set-up is 

developed to validate the results of the programmed analytical models and then the 
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models are employed to perform a comprehensive sensitivity analysis of the key 

operation and design parameters of the M-cycle IEC.      

Two high accurate quick solving analytical models are developed and 

presented for two main different working conditions of multi-stage Maisotsenko-

cycle based indirect evaporative coolers termed water-spray mechanism and wet-

surface mechanism. The models are able to generate cooling characteristics of the 

cooler very quick (compared to the numerical solutions) and accurate. The models 

are also able to provide temperature/humidity distribution (as a function of the 

locations inside the cooler) in addition to the outlet characteristics. Thus, the models 

can be considered as a strong research and design tool for M-cycle coolers. The 

models are further expanded to analyse the exergetic characteristics of the M-cycle 

cooler as well.      

Although M-cycle IEC was first developed as the air conditioning system, 

other potential applications of M-cycle is proposed in this research as a novel air 

pre-cooling technology for gas turbine based power plants which suffer lower 

output power problem in summers (due to hot intake air temperature). The proposed 

system is based on a hybrid cycle of M-cycle and absorption chiller. The absorption 

chiller is powered by the released heat from the exhaust gas of the turbine, and the 

required water of M-cycle could be provided by the condensed water of the 

saturated air which make the system as an efficient air pre-cooling technology. 

This thesis is presented in the form of a collection of the published papers which 

are the results of research. These five papers have been chosen to best demonstrate 

the study of M-cycle based air coolers. Additional background information is also 

provided in order to establish the context and significance of this work. 
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Chapter 1 

Introduction 

1.1. Background and introduction 

A clean, fresh and temperate indoor condition directly affects people’s productivity, 

well-being and tranquility in both their workplace and home. Moreover, recent issues 

due to the Covid-19 quarantines highlighted the significance of ventilation process 

and providing continuous fresh air. However, high energy cost and greenhouse gases  

emissions are still the main challenges in high quality heating, cooling and ventilation 

process for home/office users, electricity producers (power plants) and governments.  

The required energy for heating process during the cold seasons is mainly supplied 

in the form of both electricity (heat pumps and electrical heater) and natural gas (oil 

fuels). That is why normally no peak electricity demand is shown in cold seasons of 

the year for air heating process. However, some countries consider the electrical 

heating as a safe and green method. Nonetheless, for countries with natural gas 

resources, heating by gas fuel is a basic, cheap and efficient method. 

However, as all types of air coolers work based on electrical power, a critical 

situation is created for power plants (to work with higher or maximum capacity) to 

overcome the simultaneous electricity demand by all domestic, industrial and office 

buildings for air cooling process. Moreover, users have to pay more for electricity 

due to the high power consumption by the majority of the air coolers particularly 

compression based ones. Irrespective of electricity aspect, environmental issues such 

as using chlorofluorocarbons (Ozone destruction) by some cooling techniques are 

other major concerns discussed by environmental specialists.  

Generally, three common cooling techniques exist for air cooling process 

including refrigerant compression method, air-water direct evaporative cooling 
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(swamp coolers) and air-water indirect evaporative cooling. The first group deals 

with chlorofluorocarbons and higher electricity consumption despite the enough 

cooling capacity. Moreover, their operation/maintenance cost is relatively higher 

than cost of the other techniques (because of moving parts, refrigerant required etc.). 

Direct evaporative cooler works based on direct contact between air and water 

fluid. As shown in Fig. 1, the minimum achievable temperature in any direct 

evaporative cooling process is the wet-bulb temperature (occurs on saturation line, 

100% relative humidity) of the inlet air entering to the channel.  

 

 

 

 

 

 

 

 

Fig. 1. Cooling process in direct evaporative cooler 

For example, if the air inlet temperature is around 40 oC with humidity ratio of 19 

g/kg (Point 1 in Fig. 1), the minimum theoretical outlet temperature is 28 oC (point 2 

in Fig. 1). However, because of limitation of allowed humidity and also real 

efficiency of the cooler, the practical outlet temperature is warmer than this value. 

Although, direct evaporative cooler requires lower electricity power and has lower 

capital/maintenance cost, its cooling capacity is limited. Moreover, swamp cooler 

significantly increases the moisture of the product air which is not ideal. Besides, 

because of the direct contact between the product air and water droplets, clean 
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drinkable water must be employed in the cooling process to avoid health issues due 

to the probable contaminated water droplets (drinkable water is valuable and costly).  

Indirect evaporative cooler (IEC), which is a direct evaporative cooler plus a heat 

exchanger (see Fig. 2), seems to be a solution for mentioned weaknesses as it does 

not add any moisture to the product air and does not require higher energy (compared 

to the compression based coolers). The working principle of the wet channel of the 

IEC is the same as direct evaporative cooler. Hence, the minimum achievable 

temperature of the wet-channel (which goes outside of the room) is wet-bulb 

temperature of the inlet air into the wet channel. As the inlet air into the wet-channel 

of the conventional IEC is ambient temperature, the minimum outlet temperature of 

the wet channel is wet-bulb temperature of the ambient temperature (Point 3 in Fig. 

2). Hence, based on the principle of any heat exchanger, the outlet temperature of the 

dry channel (product air goes to the room) will be warmer than the outlet temperature 

of the wet-channel (Point 2 in Fig. 2). Thus, the product temperature of the 

conventional IEC is warmer than the product temperature of the direct evaporative 

cooler. That is why IEC was not commercialized in large scale as an air cooler. 

 

 

 

 

 

 

 

 

Fig. 2. Cooling process in conventional indirect evaporative coolers 
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Finally, Maisotsenko-cycle (see Fig. 3) revolutionized the whole indirect 

evaporative cooling process so that it is able to reduce the inlet air temperature below 

the wet-bulb temperature (toward the dew-point temperature). As can be seen in Fig. 

3, a portion of the dry channel air is employed as the working fluid of wet-channel 

(instead of ambient air). It is mentioned that, the principle of direct evaporative 

cooling process (through the wet channel) is still valid i.e. the minimum achievable 

temperature along the wet channel is the wet-bulb temperature of its inlet air.  

 

 

 

 

 

 

 

 

Fig. 3. Cooling process in M-cycle indirect evaporative coolers 

However, it is clear that, the inlet air into the wet channel in M-cycle cooler is not 

ambient temperature and it is colder than the ambient temperature as it is first cooled 

through the dry channel (via the sensible and latent heat transfer). Hence, the air fluid 

through the wet-channel can be cooled until the wet-bulb temperature of number 2 

(its inlet condition) via direct evaporative cooling process (Point 3a in Fig. 3). As the 

wet-bulb temperature of number 2 is colder than the wet-bulb temperature of ambient 

air, the air fluid of dry channel can go below the wet-bulb temperature of the ambient 

air (its inlet air) due to the heat transfer principle of the heat exchangers.  
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The working principle of M-cycle is so interesting and requires deep thinking to 

be understandable. For example, the outlet temperature of wet channel can be either 

colder or warmer than its inlet temperature. Depending on the ambient condition, 

flow properties and the geometry of the channel, the cooling process through the wet 

channel can be finished at point 3a or 3b shown in Fig. 3. In the first option, the outlet 

temperature of the wet channel is colder than its inlet temperature while in the second 

option, the outlet temperature of the wet channel becomes warmer than its inlet 

temperature. In point 3a, the air is fully saturated and hence it is not able to reduce its 

temperature by water evaporation. Nonetheless, as its temperature is colder than the 

inlet temperature of dry channel, the heat can still be transferred to the wet channel 

(from dry channel) via sensible heat transfer and increases the temperature of the 

working air (i.e process 3a until 3b occurs). However, the outlet temperature of the 

wet-channel is always colder than the ambient temperature (inlet temperature to the 

dry channel). 

 M-cycle system maintains the advantage of conventional direct evaporative 

cooling (i.e. lower power consumption) while overcomes its two major weaknesses 

(i.e. M-cycle does not add any moisture to the product air and the minimum 

achievable temperature by M-cycle is dew-point temperature rather than wet-bulb). 

Fig. 4 shows a multi-stage M-cycle cooler in which the air fluid is gradually 

discharged into the wet channel instead of a sudden discharge at the end of the 

channel. This structure reduces the fluid pressure drop due to the gradual discharging 

process. The working principle of the perforated (multi-stage) cooler is the same as 

single-stage. The commercialized M-cycle coolers mainly work based on multi-stage 

structure in either counter flow (Fig. 4) or cross flow (Fig. 5) configuration. It is 
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mentioned that, cross flow configuration can only be in multi-stage structure (single 

stage structure is not meaningful for cross-flow configuration).   

 

    

   

 

Fig. 4 Multi-stage M-cycle cooler 

 

 

 

 

 

 

Fig. 5 Cross flow configuration of M-cycle cooler 

Based on a comprehensive literature review, all previous investigations of multi-

stage M-cycle coolers have been carried out using the numerical simulations or 

experimental techniques as no analytical solution has been proposed. Besides, the 

few provided analytical solutions for the single-stage M-cycle cooler were developed 

based on very simplified assumptions (constant wet plate temperature). Previous 

investigations of the M-cycle IEC are comprehensively discussed in the literature 

review section (Chapter 2).  

In this dissertation, two high accurate analytical models are provided for two main 

different working principles of the multi-stage M-cycle cooler. These models are able 

to generate the cooling characteristics of the multi-stage M-cycle cooler so faster 

(compared to the numerical simulations) and accurately which means they can be 

employed as the strong design and optimization tools for these types of coolers in 

W
et

-c
h
a
n

n
el

 

6



 

both academic area and industrial sectors. Providing temperature/humidity 

distribution (in addition to the outlet characteristics) along the dry channel, wet 

channel and wet-surface as a function of location is another unique strong feature of 

the present validated models. 

Sprayed-water mechanism and wet-surface mechanism are two possible working 

conditions of the M-cycle cooler. Sprayed water mechanism is the main working 

principle of the conventional M-cycle coolers while the wet-surface mechanism is 

mainly employed in the recent generations of the M-cycle coolers. In wet-surface 

mechanism, the water mass flow rate is as possible as small to only keep the middle-

surface thoroughly wet (i.e. wet side of the middle surface). In other words, the water 

flow rate is the same as evaporated water which is replaced simultaneously (any 

further water stream reduces the efficiency of the cooler compared to the ideal wet-

surface theory). Both latent and sensible heat transfers play key roles in the wet-

surface theory and that is why the cooler is able to cool the air even if the water inlet 

temperature is the same as air inlet temperature. The M-cycle cooler can reach to its 

maximum capacity under this working condition as described in Chapter 4. In a real 

cooler, a specific ultra-thin material (curtain) is required as the middle plate to absorb 

the water fluid and keep the surface thoroughly wet in the wet-side (like a tissue or 

porous media) while stays dry and impermeable in the dry-side of the cooler. The 

recent invented material is discussed in mentioned Chapter 4 as well. However, 

instantaneous water replacement on the wet surface without further water streams is 

not practical (at least with current technology for water distribution systems) in real 

coolers and water flow rate has to be higher than the evaporated water to avoid 

creation of dry areas on the wet side of the surface. Hence, exact considerations are 

7



 

required to make the efficiency of the cooler close to the theoretical wet-surface 

efficiency.  

In sprayed-water mechanism, however, the water mass flow rate is large and is 

sprayed with a high pressure from the top side of the cooler and recirculates from the 

bottom side. Because of a continuous water fluid flow, the middle plate does not 

necessarily need to absorb the water and create a wet-surface. Hence, the material of 

the middle plate is not complicated (i.e. any ultra-thin impenetrable single material 

can be employed) which reduces the final cost of the cooler (and also the cooling 

capacity of the cooler). Because of the high water mass flow rate, the temperature of 

the middle plate is dominated by the water temperature and it has the same 

temperature as water. Sensible heat transfer plays a key role in this working condition 

and latent heat role becomes marginal. Hence, the water inlet temperature should be 

colder than the inlet air temperature (ambient air). The created noises due to the high-

pressure water injection may make this working condition unsuitable for some 

inside-room applications. Indeed, this mechanism is only appropriate when cheap 

moderate cooling of hot air is expected without adding moisture to the product air 

(such as cooling process of a big exhibition through a hot day). 

1.2.Aim and objectives 

The aim of the present study is to develop better understanding of the thermal and 

exergetic characteristics of single and multi-stage Maisotsenko air cooler and then to 

improve its characteristics by addressing the research gaps identified. 

The tasks (objectives) which have been taken in order to achieve the aforesaid 

aim are described in the following. 

1. New high-accurate analytical model is developed and validated to investigate 

the cooling behaviour of the single and multi-stage M-cycle cooler.  
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2. The new model is programmed (via Maple programming software) and 

validated with the M-cycle test-rig (fabricated in the lab) at the University of 

Adelaide. 

3. As no analytical parametric study has been provided before for multi-stage M-

cycle cooler, a comprehensive analytical sensitivity analysis is performed by the new 

validated model to clarify the impact of various operational and design parameters 

on the performance of the M-cycle air cooler. 

4. As extremely few exergetic evaluations have been performed for M-cycle air 

coolers (no exergetic study for multi-stage), a comprehensive exergetic analysis is 

performed for M-cycle air cooler to indicate how to enhance the performance of M-

cycle from the viewpoint of the second law of thermodynamics. 

5. Other probable application of M-cycle (beyond air conditioning systems) is 

investigated which resulted in proposition of a novel hybrid cycle of M-cycle and 

absorption chiller for air inlet temperature reduction of gas turbine power plants. 

1.3. Thesis outline 

This thesis is presented through several chapters. Each chapter (2 to 6) is based on a 

published paper. Chapter 1 is general concepts and the background of the research.  

 Chapter 2 provides a comprehensive literature review of Maisotsenko-cycle 

based air conditioning systems. All previous researches of M-cycle air coolers are 

classified based on research methodology including numerical simulation, analytical 

approach, statistical methods, parametric analysis and experimental techniques.  

Chapter 3 provides an analytical model for perforated Maisotsenko air coolers 

based on the water-spray mechanism. The model validated with previous 

numerical/experimental research results in the same working conditions. 
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Chapter 4 provides a novel analytical model which is based on the wet-surface 

theory. This model is validated with the test-rig built at the University of Adelaide. 

Moreover, the impact of the key operational and design parameters of the cooler on 

cooling characteristics of the cooler is evaluated via the validated model.  

Chapter 5 evaluates the M-cycle cooler from the viewpoint of the second law of 

thermodynamics. The validated model in Chapter 4 is employed to determine the 

outlet characteristics of the cooler and then the inlet and outlet characteristics are 

inserted to the exergetic model to evaluate the exergetic characteristics of the cooler. 

Chapter 6 proposes a novel industrial application for M-cycle cooler (hybrid cycle 

of M-cycle and absorption chiller which can be used to reduce the air inlet 

temperature of gas turbine based power plants). Air temperature reduction causes 

increment of electrical power production by the power plant. 

Chapter 7 provides a general conclusion and provides some recommendations for 

the future work. 
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1.4. Publications arising from this thesis 

Based on the chapters described in the previous section, each chapter was published 

as a paper in high-rank international journals as listed in the following. 

List of Publications Journal  
Impact  

Factor 

1 

Dizaji HS, Hu EJ, Chen L. A comprehensive review of the 

Maisotsenko-cycle based air conditioning systems. Energy. 2018 Aug 

1;156:725-49. 

Energy  

(Published) 

5.53 

(Q1) 

2 

Dizaji HS, Hu EJ, Chen L, Pourhedayat S. Development and validation 

of an analytical model for perforated (multi-stage) regenerative M-cycle 

air cooler. Applied energy. 2018 Oct 15;228:2176-94. 

Applied Energy 

(Published) 

8.42 

(Q1) 

3 

Dizaji, H.S., Hu, E.J., Chen, L. and Pourhedayat, S., 2020. 

Analytical/experimental sensitivity study of key design and operational 

parameters of perforated Maisotsenko cooler based on novel wet-surface 

theory. Applied Energy, 262, p.114557. 

Applied Energy 

(Published) 

8.42 

(Q1) 

4 

Dizaji HS, Hu EJ, Chen L, Pourhedayat S. Comprehensive exergetic 

study of regenerative Maisotsenko air cooler; formulation and sensitivity 

analysis. Applied Thermal Engineering. 2019 Apr 1;152:455-67. 

Applied Thermal 

Engineering 

(Published) 

4.02 

(Q1) 

5 

Dizaji HS, Hu EJ, Chen L, Pourhedayat S. Using novel integrated 

Maisotsenko cooler and absorption chiller for cooling of gas turbine inlet 

air. Energy Conversion and Management. 2019 Sep 1;195:1067-78. 

Energy Conversion 

and Management 

(Published) 

7.18 

(Q1) 

 

1.5. Format 

The thesis has been submitted as a portfolio of the publications, according to the 

formatting requirements of The University of Adelaide. The printed and online 

versions of this thesis are identical.  
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Chapter 2 

Literature Review 

This chapter has been published as 

Dizaji HS, Hu EJ, Chen L. A comprehensive review of the Maisotsenko-cycle 

based air conditioning systems. Energy. 2018 Aug 1;156:725-49.1;76:118-25 

(DOI: 10.1016/j.energy.2018.05.086). 

This chapter provides a comprehensive literature review of Maisotsenko-based air 

conditioning systems. All previous researches of M-cycle air coolers are classified 

based on research methodology including numerical simulation, analytical 

approach, statistical methods, parametric analysis and experimental techniques. It 

was found that no analytical solution was previously provided for multi-stage M-

cycle cooler and analytical models for single stage M-cycle cooler have been 

significantly simplified  with many assumptions.  
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a b s t r a c t

Maisotsenko cycle (M-cycle) is a promising air cooling technique which can reduce the temperature of air
flow until dew point which was not possible either in direct contact techniques or former indirect
evaporative methods. M-cycle systems have been employed previously on gas turbines, air conditioning
systems, cooling towers, electronic cooling etc. Simultaneous consideration of all of them prevents
detailed presentation. For that reason and because of the wide application of air conditioning systems,
this paper focuses only on the use of M-cycle on air conditioning systems. Moreover, former types of
indirect evaporative air coolers which do not work based on Maisotsenko cycle are not considered in the
present study. Researchers have evaluated the M-cycle characteristics via different methods including
analytical solution, numerical simulation, statistical design methods and experimental-techniques all of
which is divided into several categories as well. All said methods are organizedly discussed and
compared in this paper. It has been tried to provide an evolutionary viewpoint for analytical solutions of
M-cycle. Thus, analytical solutions were reorganized with unique abbreviations in order to become more
understandable and comparable with each other. All M-cycle parameters (which have been analyzed via
numerical or experimental ways) are coherently systematized and then a comprehensive-compact view
of obtained results is presented. Finally, the current status of M-cycle industry is summarized and the
future research direction on M-cycle is proposed.

© 2018 Elsevier Ltd. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
2. Evaluation methods of indirect evaporative coolers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730
3. Analytical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

3.1. Maclaine-cross model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
3.2. Stoitchkov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
3.3. Alonso model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
3.4. Ren model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
3.5. Cui model (LMTD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

3.5.1. Assumptions of Cui method (LMTD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
3.5.2. Mathematical development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734

3.6. Hassan [42] method (modified ε - NTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
3.6.1. Mathematical development of ε - NTU model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

3.7. Liu model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
3.8. Chen model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737

4. Numerical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
4.1. Numerical ε-NTU method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739

* Corresponding author.
E-mail addresses: Hamed.SadighiDizaji@adelaide.edu.au, HamedSadighiDizaji@

gmail.com (H. Sadighi Dizaji), eric.hu@adelaide.edu.au (E.J. Hu), lei.chen@
adelaide.edu.au (L. Chen).

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier .com/locate/energy

https://doi.org/10.1016/j.energy.2018.05.086
0360-5442/© 2018 Elsevier Ltd. All rights reserved.

Energy 156 (2018) 725e749

14

mailto:Hamed.SadighiDizaji@adelaide.edu.au
mailto:HamedSadighiDizaji@gmail.com
mailto:HamedSadighiDizaji@gmail.com
mailto:eric.hu@adelaide.edu.au
mailto:lei.chen@adelaide.edu.au
mailto:lei.chen@adelaide.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2018.05.086&domain=pdf
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2018.05.086
https://doi.org/10.1016/j.energy.2018.05.086
https://doi.org/10.1016/j.energy.2018.05.086


4.2. Finite element/difference/volume method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
5. Statistical design methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

5.1. RSM method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
5.2. GMDG type neural network method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742

6. Experimental investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
7. Industrial status of M-cycel air coolers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
8. Future research direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

1. Introduction

International Energy Outlook (2017) [1] has recently reported
notable information regarding energy consumption by buildings.
Rising standards of living in non-OECD (Organization for Economic
Co-operation and Development) countries increase the demand for
appliances, personal equipment, and commercial services [1]. It is
projected that electricity use in buildings grows 2% annually, while
total energy consumptions in buildings would increase by 32%
between 2015 and 2040. The buildings sector (both commercial
and residential), would account for almost twenty-one percent of
the world's delivered energy consumption in 2040 [1]. Air condi-
tioning systems are key energy consumer, using nearly fifty percent
of the total consumed electricity in the buildings [2e4]. Hence,
recognizing efficient air conditioning systems is required to reduce
energy use in buildings.

Current air coolers especially compressor-based coolers increase
significantly the electrical consumption in warm seasons, as they
require electrical power to make cooling and circulate air. Most
power-plants have to work with their maximum capacity in hot
seasons in order to produce required extra electrical power which
is mostly due to air conditioning systems. Moreover, increment of
air temperature reduces gas-turbine-plants (one of the common
powerhouses) performance which aggravates their working con-
ditions. Subsequently, electrical power outage may occur in some
regions of each country. Regardless the extra applied load on
electrical power-plants, current air coolers increase the electrical
power consumption cost for both home-users and industrial con-
sumers as well. Hence, some governments have to allocate specific
subsidies for electrical power consumers for some hot-weather
regions of their country in summers. Obviously, this policy has its

own economic issues and can't be considered as a permanent so-
lution. Irrespective of economic features, all air coolers which work
based on refrigerants may cause irreparable damages on our
environment (particularly Ozone layer). Furthermore, burning of
fossil fuels to generate extra electrical power causes air pollution
too.

Employment of air-water direct contact coolers (Fig. 1a) instead
of compressor-based systems may seem as a solution, as they only
require electrical power for air circulation and cooling is made by
water evaporation (into the air) without external power input.
Although electrical consumption of direct contact evaporative air
coolers (Fig. 1a) is usually less than the compressor-based coolers,
they have some unavoidable disadvantages as below.

1. They are not able to reduce the air flow temperature less than
wet-bulb temperature of inlet air. In other words, the minimum
theoretical ideal temperaturewhich can be achieved is wet-bulb
temperature of inlet air (Fig. 1b).

2. Direct contact between the air and water fluid increases air-
moisture which not only results in people's discomfort but
also is harmful to electrical devices. Moreover, the water con-
sumption of direct contact coolers is high and there is a possi-
bility of health issues which can be due to unclean droplets of
water fluid are evaporated by direct contact with the air.

3. This type of evaporator does not work on humid climate and the
performance of such direct evaporative mechanisms signifi-
cantly is affected by climates.

Because of different problems in both compressor-refrigerant
based cooling techniques and direct-evaporative method (as
mentioned above), researchers enthusiastically started to study on

Nomenclature

A area (m2)
c Specific heat of moist air (Kj/Kg. oC)
h Specific enthalpy (Kj/Kg)
hg Specific enthalpy of water vapor (J/Kg)
hfg Latent heat of vaporization of water (J/Kg)
kp Thermal conductivity of plate (W/m oC)
L Length (m)
Le Lewis factor
q Heat transfer rate (W)
R Thermal resistance (m2K/W)
T Temperature (oC)
Tf Water film temperature (oC)
U Overall heat transfer coefficient (Kw/m2 oC)
_m Mass transfer rate (Kg/s)
w Humidity ratio (Kg moisture/Kg dry air)

W Mass transfer between water film and moist air (Kg/
s)

Special characters
z Ratio between the change of enthalpy and wet-bulb

temperature
dp Thickness of plate (m)
dw Thickness of water film (m)
a Convective heat transfer coefficient (W/m2 K)
b Convective mass transfer coefficient (W/m K)

Subscripts
wa Working air (secondary air)
Pa Primary air (product air)
f water film
wb wet-bulb
s saturated
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indirect evaporative coolers (see Fig. 2a). Although the initial type
of indirect evaporative cooler which basically combines a DEC and a
heat exchanger (HE) as shown in Fig. 2a does not add any moisture
to the product air, ie. overcomes the disadvantage 2 of DEC
mentioned above, its performance is low in comparison with
former direct contact evaporators. The outlet temperature of
product air could reach the wet-bulb temperature of the incoming
air theoretically [5]. Moreover, in completely ideal condition, outlet
temperature of wet side of air flow could increase from its inlet
wet-bulb temperature into the product air inlet dry bulb temper-
ature (at saturated condition). Said ideal condition requires infinite
amount of surface area and pure counter flow configuration.
However, in real condition, temperature of dry side reaches only
point “c” in Fig. 2b. Hence, for many years, indirect evaporative air
coolers were not commercialized because of poor heat transfer rate
which does not justify the excessive material and manufacturing
cost.

Finally, Maisotsenko (at around 2000) presented a novel form of
indirect evaporative exchanger in which all aforesaid problems of
indirect evaporative method were solved. Based on Maisotsenko
cycle, the wet side air fluid is pre-cooled before entering the wet
channel. However, this precooling process can be occurred via
different techniques. Fig. 3 (modified from Ref. [6]) illustrates
different counter flow configurations of precooling process of wet
side air flow by ownwet channel. In Fig. 3a, wet channel air fluid is
pre-cooled via another dry channel on the other side of wet

channel. However, in Fig. 3b, a fraction of air-fluid of the main dry
channel (which has been cooled) is returned into the wet channel
at the end of the dry channel which is termed regenerative heat and
mass exchanger. Maisotsenko technology causes reduction of dry
side outlet air temperature under we-bulb temperature (until dew-
point temperature) without adding any moisture. All other prob-
lems of direct contact evaporators and also former kind of indirect
evaporative techniques have been solved in this novel form of in-
direct evaporative system. Psychometric chart related to Fig. 3b is
illustrated in Fig. 3c from Ref. [10]. Fig. 4 [4e6] shows a perforation
type of working channel in M-cycle heat exchanger which causes
reduction of pressure drop across the exhaust channel [5].

Nonetheless, counter flow configuration of M-cycle air coolers
was not commercialized for many years. Indeed, pure counter-flow
configuration in a plate heat exchanger cannot be fabricated
because of the geometry of the plates with air entering and evac-
uating on the same direction [5e7]. Hence, cross flow arrangement
was presented which is easy to manufacture as a unit (see Fig. 5)
and is produced by Coolerado Corporation [8] (see Fig. 6 [9] in
which “1” is the primary air flow in dry channel, “2” is the working
air streamwhich at first flow along the dry duct then it is delivered
to the wet-channel, and “3” is the secondary air wet channel [4]).

As the working principle of M-cycle IEC, it could theoretically
overcome disadvantages 1, 2 and 4 of DEC [10e12]. Hence, the main
advantages of the novel M-cycle air conditioning systems can be
described as below.

Fig. 1. Air-water direct contact mechanism a) general view b) process in psychometric chart.

Fig. 2. Air-water indirect contact mechanism a) general view b) real process in psychometric chart.
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Fig. 3. Two main counter flow configurations of indirect evaporative based on main idea of M-cycle and the air conditions on the psychrometric chart [6e10].

Fig. 4. Perforated type of counter flow configuration of indirect evaporative based on M-cycle [4,6].
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1. M-cycle coolers are able to reduce the air temperature until
dew-point temperature (which is not possible in DEC coolers)
with very lower electrical-power-consumption in comparison
with compressor-based air coolers.

2. Although both DEC coolers and M-cycle coolers use water fluid
as a cooling mechanism, M-cycle coolers do not add any mois-
ture to the product air stream. Moreover, in the same cooling
power, M-cycle uses lesser water. Compressor-based coolers do
not add moisture to the air as well. However, they use CFC in
order to reach this aim not water fluid.

3. In comparison with DEC coolers, the possibility of health issues
from contaminated water is zero in M-cycle coolers because of
no direct contact between product air and water fluid.

4. M-cycle's cooling capacity enhances with increment of
incoming air temperature [14].

5. As there is no compressor, condenser, evaporator, refrigerant
etc. in M-cycle coolers, it has a very competitive initial and
operating cost with compressor-based air coolers [14].

6. M-cycle coolers Provide healthier indoor atmosphere by incor-
porating 100% fresh air.

Nonetheless, some researchers believe that M-cycle is not
appropriate for humid climates yet and it should be combined with
desiccant systems in order to get higher efficiency. Thus, combi-
nation of liquid-desiccant or solid desiccant with M-cycle has been
recently argued. These systems comprise of two processes: mois-
ture removal by dehumidifier and sensible heat removal by M-cy-
cle. Obviously, the effectiveness of the first stage impresses on the

working quality of the second stage. Required power to drive
desiccant system can be obtained by low-grade heat sources such
as solar energy [16e19].

Despite the fact that the first idea of M-cycle evaporative cooler
was developed around 1980, this type of M-cycle air coolers started
to be developed and commercialized in this century [10e12].
Although Maisotsenko cycle is used in different applications such
as gas turbine [20e31], cooling towers [32e35] and electronic
cooling [36,37], this paper only focuses on the employment of M-
cycle on air conditioning systems. Mahmood et al. [7] have pre-
sented the only review paper in any reputed journal on M-cycle
systems in which the application of Maisotsenko cycle has been
classified into 3 main parts (HVAC, cooling tower, gas turbine) and
each part has been fundamentally discussed. However, present
paper discusses only on Maisotsenko air conditioning systems in
order to provide extra detail on this major application of M-cycle.
Different evaluation methods of M-cycle air conditioning systems
including analytical solution, numerical simulation, statistical
design methods and experimental techniques which have been
proposed by researchers are organized and discussed in this
research. It has been tried to provide an evolutionary viewpoint for
analytical solutions of M-cycle. Thus, analytical solutions were
reorganized with unique abbreviations in order to become more
understandable and comparable with each other. All M-cycle pa-
rameters (which have been analyzed via numerical or experimental
ways) are systematized and then a comprehensive-compact viewof
obtained results is presented. Finally, the status of current M-cycle
industry and the future research direction for M-cycle technology

Fig. 5. Cross flow arrangement of M-cycle [6].

Fig. 6. Cross flow M-cycle HMX of Coolerado Corporation from Ref. [9].
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are discussed.

2. Evaluation methods of indirect evaporative coolers

Generally, evaluation techniques of indirect M-cycle evaporative
cooler can be classified into four main groups as shown in Fig. 7.
Eight main analytical solutions of M-cycle are reorganized with
unique abbreviations in order to become comparable with each
other. The relationship between analytical solutions is discovered
and discussed. Actually, it is tried to provide an evolutionary
viewpoint for analytical solutions of M-cycle. M-cycle characteris-
tics which have been evaluated by numerical or experimental
techniques are discussed by some graphical representations.

3. Analytical approaches

The core of the M-cycle IEC modeling is to model/analyze heat
and mass transfer on wet surface. Although some researches
(Mickley [46] at 1949 and Pescod [47] at 1968) provided some basic

theories on wet surface heat exchangers, it can be said that
Makline-Cross theory [38] at 1980 is the leading general modeling
of wet surface heat exchangers and its application to regenerative
evaporative cooling. The main difference among analytical models
is related to their assumptions. Indeed, some researchers prefer to
simplify their modeling by considering some conditions while
other researchers would not like to sacrifice accuracy for simplicity
of the solution. Nonetheless, some of them have unique or new
formulations (compared to the Maclaine model) which will be
discussed with more detail of their formulations. Table 1 shows
assumptions used in all analytical models reviewed, in which as-
sumptions used in each modeling have been identified by “*”mark.

Lewis factor (assumption 7 in Table 1) plays a key role in eval-
uation of heat and mass transfer between liquids and gases. Lewis
factor (Le) is a dimensionless number and generally is defined as
the ratio of thermal diffusivity to mass diffusivity. Lewis [48] stated
that the Le is approximately equal with “1” for air/water mixtures.
Although according to [49,50] the proof given by Lewis was not
strictly correct, this assumption has been used in most analytical

Fig. 7. Evaluation methods of M-cycle air conditioning systems [114,115].
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models.

Le ¼ a

bcwa
¼ 1 (1)

Thus:

a ¼ b cwa (2)

Where cwa is the specific heat of moist air and
cwa ¼ 1.006 þ 1.86w. Eq. (2) creates a relationship between
convective heat transfer coefficient (a) and convective mass
transfer coefficient (b).

It should bementioned that, each analytical model may focus on

particular geometry (configuration) of direct contact heat ex-
changers. Thermal-flow configuration of each model has been
provided in Table 2.

3.1. Maclaine-cross model

Maclaine and Banks [38] presented a general theory of wet
surface heat exchanger and its application to regenerative evapo-
rative cooling. They proposed a liner approximate model of wet
surface heat exchanger by analogizing with dry surface heat
exchanger [45]. Maclaine method proposed a linear approximate
and graphical representation which can be employed to evaluate
the wet surface heat exchanger effectiveness. A general view of wet
surface heat exchanger is shown in Fig. 8.

Maclaine model is based on eight equations which four of them
are based on assumptions (Table 1) and rest of them are based on
conservation of energy or mass as below.

Conservation of energy for product air stream:

UA
�
TfeTpa

�
¼ _mpacpa

vTpa
vx

Lpa (3)

Energy balance between two channels:

Table 1
Main assumptions of analytical modeling of indirect evaporative systems.

No Assumptions Maclaine
[38]

Stoitchkov
[39]

Alonso
[40]

Ren
[41]

Hassan
[42]

Liu
[43]

Cui
[44]

1 Zero fluid thermal and moisture diffusivity in the flow directions * * * * * * *
2 No heat transfer to the surrounding occurs * * * * * * *
3 The passage walls are impervious to mass transfer * * * * * * *
4 Pressures and mass flow rates are constant and uniform for both streams * * * * * * *
5 c, h, a and U are constant and uniform; * * * * e e *
6 The passage geometry is uniform throughout the heat exchanger * * * e e e *
7 The Lewis relation is satisfied (Eq. (1)) * * e e * * *
8 The specific enthalpy of moist air hwa is a linear function of Twa

and wwa, thus hwa ¼ a þ cwaTwa þ hgwwa

* e e e e e e

9 The evaporating water film is stationary and continuously replenished at its surface with water at
the same temperature.

* e e e e e e

10 The humidity ratio wf of the air in equilibrium with the
water surface is a linear function of the water surface temperature Tf so that the model saturation
line is given by wf ¼ d þ eTf

* e e * e e e

11 Other type of 9: The water is distributed uniformly all over the channels and wets all the surface * e e e e * *
12 Interface temperature is assumed to be the bulk water temperature e e e * e e e

13 The interface between moist air and water film is saturated at the wate film temperature Tf e e e e * e *
14 Air flow is laminar and also fully developed e e e e e e *

Table 2
Heat exchanger type of each analytical model.

Models Geometry of Heat exchanger

Maclaine [38] Parallel and counter flow heat exchanger
Stoitchkov [39] Cross flow plate heat exchanger
Alonso [40] Cross flow heat exchanger
Ren [41] Parallel and counter flow heat exchanger
Hassan [42] Counter/parallel and usable for cross flow
Liu [43] Counter flow heat exchanger
Cui [44] Counter flow and expandable to cross flow
Chen [45] Counter flow heat exchanger

Fig. 8. A general view of wet surface heat exchanger (redrawn modified from Ref. [38]).
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awaAwa

�
TwaeTf

�
þ bAwahfg

�
wwaewf

�
þ UA

�
TpaeTf

�
¼ 0

(4)

Conservation of water vapor in the moist air stream

_mpa Lwa
vwwa

vy
¼ b Awa

�
wfewpa

�
(5)

Conservation of energy for working air:

_mwa
vhwa

vy
Lwa ¼ awaAwa

�
TfeTwa

�
þ b Awahg

�
wfewpa

�
(6)

According to assumption 7, 8 and 10:

a ¼ b cwa (7)

hwa ¼ aþ cwaTwa þ hgwwa (8)

wf ¼ dþ eTf (9)

The approximation psychometric equation is written as below
in which/indicates the adiabatic saturation state defined using the
linearized or model saturation line of assumption 10.

wwa ¼ w=
wa þ

�
T=wa � Twa

� cwa

hfg
(10)

Inlet working air temperature and humidity ratio and also
product air inlet temperature are constant and known as the
boundary conditions of solving aforesaid eight equations.

Regarding to Eq. (9), although the actual saturation line in real
psychometric chart is not linear, Maclaine assumed a linear
behaviour (Eq. (9)) for saturation line (see Fig. 9). Indeed, if the
constants “d” and “e” in Eq. (9) are chosen to give an approximate
least square fit to the actual saturation line over the range of water

surface temperature, this model can present actual performance.
The recommended values for “d” and “e” by Maclaine are as below.

e ¼ Wf ;max �Wf ;min

Tf ;max � Tf ;min
(11)

d ¼
2
�
Wf ;min þWf ;mean

�
�Wf ;max

3� eTf ;min
(12)

Where Tf, min and Tf, max are the estimates of the minimum and
maximum water surface temperature. Tf, mean is the average of Tf,
min and Tf, max.

See Fig. 9 to understand graphical concepts of these values.
Indeed, the estimated values of Tfmin, Tf max and Tf mean are used to
plot the points Wmin, Wmax and Wf on the actual saturation line.
The straight line joining Wmin and Wmax is drawn, then, parallel to
this line and two-thirds of the way from it towards point W mean,
another line is drawn. This is Maclaine model saturation line [39].
Maclaine solved these eight equations by some methods found in
literature in order to determine the thermal performance of char-
acteristics of indirect evaporative exchanger.

3.2. Stoitchkov model

Stoitchkov [39] indicated three deficiencies for Maclaine model
as listed below:

� Maclaine did not show how the mean surface temperature
should be estimated.

� The values of total to sensible heat ratio for different mean
surface temperatures given in a table are calculated for a baro-
metric pressure of 101325 Pa. Hence, for other pressures, the
outcomes will have a source of error.

� In Maclaine model, the evaporating water film is stationary and
continuously replenished at with water at the same tempera-
ture (assumption 9 in Table 1). However, in a real heat
exchanger, the evaporated water is much less than the mass
flow rate of sprayed water which causes reduction of effec-
tiveness of the wet surface heat exchanger compared to the
Maclaine assumption.

Hence, Stoitchkov further improved the Maclaine model. How-
ever, this model focuses on cross flow plate heat exchanger.
Stoitchkov and Dimitrov improved Maclaine method by following
considerations:

� Determination of the mean surface temperature for any defined
thermal and geometrical specification.

� Presenting a correlation (approach) to estimate the barometric
pressure [39].

3.3. Alonso model

Alonso provided a user-friendly simplified model by providing
an equivalent water temperature [45] in Maclaine solution. The
model obtained based on the models developed by Maclaine [38].

3.4. Ren model

Ren and Yang [41] believed that previous simplified models
sacrifice accuracy for simplicity of the solution. Most simplified
models assume a unity Lewis factor and neglect the water losses
due to evaporation. They indicated following deficiencies for allFig. 9. Maclaine Model saturation line (modified redrawn from Ref. [38]).
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previous modeling. All these deficiencies were applied to simplify
the former models.

� The moisture content of the air has been considered a linear
function of the water surface temperature.

� Lewis factor is satisfied
� The evaporating water film was stationary and continuously
replenished with water.

� Wet surface is assumed completely wetted.

Hence, they expanded an analytical model for indirect evapo-
rative cooler with parallel/counter flow configuration with variable
surface wettability and Lewis factor [45]. Their model is sophisti-
cated which is due to non-unity Lewis factor, surface wettability,
varying spray water temperature and spray water enthalpy change
[44]. Briefly, Ren model consists of below characteristics which
can't be found in former analytical modes.

� Incomplete surface wetting condition: The wall surface cannot
be entirely wetted because of low distance between the surface
and high value of sprayed water which creates more tension.
This leads to reduction of mass transfer area.

� Non-unity Lewis factor: Lewis factor is not necessary equal with
unity even for entirely wetted surface [7].

� Consideration of spray water evaporation
� Consideration of spray water temperature variation
� Consideration of spray water enthalpy change through the heat
exchanger

Nonetheless, humidity ratio is steel assumed to have a linear
relationship with water surface temperature. However, the error of
this condition can be minimized by choosing suitable values of “e”
and “d” in Eq. (9). Assumptions of this model can be seen in Table 1.
The effect of condition 12 (in Table 1) is minor because of very large
heat transfer coefficient betweenwater film and air-water interface
[8,50].

After the development of the model, Ren compared the per-
formance of four different configurations of indirect evaporative air
cooler as shown in Fig. 10. The results evaluated by Ren model
reviled higher performance for case “a” compared to the three
other cases. However, with negligible spray water flow rate and
complete wetting surface, case “a” and case “b” showed the same
performance.

3.5. Cui model (LMTD)

Conventional LMTD method is a well-known method of evalu-
ation of heat exchangers which deal with sensible heat transfer. The
final aim in this technique is finding a correlation for total Q as
Q¼A UDTLMTD in which the value of DTLMTD is evaluated only by
inlet and outlet temperatures. LMTD is appropriate for in-
vestigations in which temperature distribution is not considered as
a main factor. In other words, LMTD works based on inlet/outlet,
surface and some other bulk characteristics of heat exchangers.
Contrary to numerical methods, this technique is neither cumber-
some nor high time required. Nonetheless, conventional LMTD
method should be modified in order to become usable in indirect
evaporative systems. Indeed, latent heat transfer is an intrinsic
feature of indirect evaporators which has not been applied in basic
format of LMTD. For this reason, Cui et al. [44] presented amodified
LMTD method to analyze counter flow indirect evaporative heat
exchangers. This method provides better precision if the temper-
ature variation in the heat exchanger is not linear and the
maximum temperature difference at one end of the heat exchanger
is higher than twice the temperature difference at the other end of
the heat exchanger [44].

3.5.1. Assumptions of Cui method (LMTD)
As briefly stated in Table 1, the assumptions of this method are

as below.

1) The distribution of water on the wet surface is uniform and
even.

2) Heat and mass transfer occur in direction normal to the air flow.
3) Air flow is laminar and also fully developed and the system is

well insulated.
4) Water fluid in the wet channel behaves as a thin static film

because thewater flow rate by convection is negligible (heat and
mass transfer between water film and plate is assumed to be
occurred only by conduction).

5) Thin moist air layer at the water-air interface is saturated at the
water film temperature.

6) It is reasonable to assume that the enthalpy difference between
two points has a linear function with wet bulb temperature
difference for small operating range of temperatures. Indeed, on
Psychrometric chart, the wet-bulb temperature lines are nearly
parallel with constant enthalpy lines for small operating range

Fig. 10. Different arrangements evaluated by Ren analytical model [41].
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of temperatures [44,45]. Hence, the parameter x is defined as the
ratio between the change of enthalpy and the change of wet-

bulb temperature
�
x ¼ Dh

DTwb

�
and is estimated by input and

output condition of wet channel (Dh¼ x DTwb).
7) Lewis factor is unity

3.5.2. Mathematical development
Fig. 11 shows the defined computational element which com-

prises half of the product channel and working channel (due to
geometrical symmetry) of a plate type indirect evaporative cooler
[44]. Where Upa, Tpa, Tf, Twa, hfg and a are overall heat transfer co-
efficient of primary air, temperature of primary air, temperature of
water film, temperature of secondary air, latent heat of water
evaporation and convection heat transfer coefficient respectively.
dp, kp, dw, kw are thickness of plate, thermal conductivity of plate,
thickness of water-film and thermal conductivity of water
respectively.

According to conservation principle of energy for primary air,
dry side heat transfer rate can be calculated from Eq. (13).

dq ¼ � _mpacpadTpa 0
yields

dTpa ¼ � dq
m_pacpa

(13)

Besides, based on conservation principle of energy for working
air and assumption “6”, wet side heat transfer rate can be calculated
from Eq. (14).

dq ¼ � _mwadhwaz� _mwaxdTwa;wb 0
yields

dTwa;wb ¼ � dq
m_wax

(14)

Subtracting Eq. (14) from Eq. (13) gives Eq. (15).

d
�
Tpa � dTwa;wb

� ¼ �
�

1
_mpacpa

� 1
_mwax

�
dq (15)

Eq. (15) can't be integrated unless a correlation is found for dq.

Hence, attempts are made to provide a correlation for dq as below.
Obviously, heat transfer rate between a fluid flowand a plate can

be evaluated via Newton's Law of Cooling too. Thus, heat transfer on
the dry side of heat exchanger (which is only sensible and occurs
between product air and water-film) is evaluated by.

dq ¼ UpadA
�
TpaeTf

�
(16)

Upa ¼ 1
1
a þ

dp
kp
þ df

kf

(17)

In wet side of heat exchanger, there are two types of heat
transfer as below:

dqsensible ¼ a dA
�
TfeTwa

�
(18)

dqlatent ¼ hfg: dW (19)

dqlatent is due towater evaporation inwhich dW is mass transfer
rate between thewater film andmoist air and is calculated from Eq.
(20) (b is mass transfer coefficient and w is humidity ratio).

dW ¼ b dA
�
wfewwa

�
(20)

Hence, latent heat transfer is calculated by:

dqlatent ¼ hfg b dA
�
wfewwa

�
(21)

Total heat transfer rate on wet side is sum of the sensible heat
and latent heat as below.

dq ¼ dqsensible þ dqlatent ¼ a dA
�
TfeTwa

�
þ hfgb dA

�
wfewwa

�
(22)

According to Eq. (2) (from assumption “7”), Eq. (22) can be
rewritten as below.

Fig. 11. One dimensional cross flow indirect heat exchanger [modified from 44].

dq ¼ bcwadA
�
TfeTwa

�
þ hfg b dA

�
wf ewwa

�
¼ b dA

h�
cwaTf þ hfgwfeðcwaTwa þ hfgwwa

�i

��������!h¼cTþ hfgw
dq ¼ b dA

h
hs

�
Tf
�
ehwa

i (23)

H. Sadighi Dizaji et al. / Energy 156 (2018) 725e749734

23



hs(Tf ) is saturation enthalpy of air fluid in water film tempera-
ture. According to Eq. (23), it can be said that, the driving force of
total heat transfer inwet channel is calculated by enthalpy variation
between the saturated air at water surface and the main moist air
stream [11]. Eq. (23) can be rewritten based on assumption “6”
(Dh¼ x DTwb) as follow (this is why modified thermal resistance in
Fig. 10 is 1/x b).

dq ¼ x b dA
�
TfeTwa;wb

�
¼ UwadA

�
TfeTwa;wb

�
(24)

Uwa is modified overall heat transfer coefficient in wet channel.
If Eq. (16) is rearranged based on Tf and then is substituted for Tf in
Eq. (24), yields,

dq ¼ UpaUwa

Upa þ Uwa
dA

�
Tpa � Twa;wb

� ¼ U dA
�
Tpa � Twa;wb

�
(25)

U is the modified overall heat transfer coefficient which is
related to both dry and wet channel.

U ¼ 1
1
apa

þ dp
kp
þ dw

kw
þ 1

x b

(26)

Now, Eq. (25) can be substituted for dq in Eq. (17) which yields
Eq. (27).

d
�
Tpa � dTwa;wb

�
Tpa � Twa;wb

¼ �U
�

1
_mwacwa

� 1
_mwax

�
dA (27)

Eq. (27) can now be integrated over the entire surface as below.

ZA
0

�
Tpa � Twa;wb

�
Twa � Twa;wb

¼ �
ZA
0

U
�

1
_mwacwa

� 1
_mwax

�
dA (28)

Ln
�
TpaeTwa;wb

�		A
0 ¼ �U

�
1

_mwacwa
� 1

_mwax

�
A
				
A

0
(29)

Ln

�
TpaeTwa;wb

�
A�

TpaeTwa;wb
�
0

¼ �U
�

1
_msacsa

� 1
_msax

�
A (30)

For a counter flow IEHX for example, Eq. (30) can be rewritten as
below.

Ln
Tpa;outleteTwa;wb;inlet

Tpa;inleteTwa;wb;outlet
¼ �U

�
1

_mwacwa
� 1

_mwax

�
A (31)

Integrating Eq. (13) and Eq. (14) over the entire length of
channel yields:

Q ¼ _mpacpa
�
Tpa; inlet � Tpa; outlet

�
0

yields 1
_mpacpa

¼ Q
Tpa; inlet � Tpa; outlet

(32)

Q ¼ _mwax
�
Twa; wb; outlet � Twa;wb; inlet

�
0

yields 1
_mwax

¼ Q�
Twa; wb; outlet � Tsa;wb; inlet

(33)

Substituting Eq. (32) and Eq. (33) in Eq. (31) and after some
simplification yields:

Q ¼ U A

�
Tpa;inleteTwa;wb; outlet

�
�
�
Tpa;outleteTwa;wb;inlet

�

Ln
�

Tpa; inlet�Twa; wb; outlet
Tpa; outlet�Twa;wb; inlet

�

(34)

Eq. (34) is the final format of heat transfer rate of a counter flow
indirect heat exchanger based on LMTD method (comparable with
conventional LMDT method) in which:

LMTD ¼
�
Tpa;inleteTwa;wb;outlet

�
�
�
Tpa;outleteTwa;wb;inlet

�

Ln
�
Tpa; inlet�Twa; wb; outlet
Tpa; outlet�Twa;wb;inlet

�

(35)

3.6. Hassan [42] method (modified ε - NTU)

Hassan used modified analytical ε-NTU method to study the
evaporative coolers and it may not be considered as a separate
analytical model (usually “model” refers to a full distribution of the
parameters inside the exchanger while “method” only allows to
give outlet parameters on the basis of inlet parameters). Conven-
tional ε-NTU is one of the well-known methods for solving heat
transfer problems for sensible heat exchangers. Hasan [42] used the
modified version of this technique which can be used for indirect
evaporative heat exchangers. Sensible format of this technique
can't be employed for indirect heat exchanger because of the ex-
istence of two gradients [42] including 1: temperature gradient
between the air fluid in dry channel and water film and 2: enthalpy
gradient between the saturated air-water film interface and the
moist air. In the modified ε-NTU method attempts are made to
create a connection between temperature of dry side channel and
“h” in thewet channel by a unique gradient. Asmentioned before in
Table 1, the assumptions of this model are listed as below.

1) The cooler is well insulated to the surrounding.
2) Thermal conduction in the wall through longitudinal is

neglected.
3) Heat and mass transfer coefficient inside each passage are

constant.
4) Lewis number is unity.
5) Interface between moist air and water film is saturated at the

water film temperature (Tf).

3.6.1. Mathematical development of ε - NTU model
The same equations (16e23) form LMTD method are the

beginningmathematical process in this method too. Hence, Eq. (23)
is rewritten here.

dq ¼ b dA
h
hs

�
Tf
�
ehwa

i
(36)

hs(Tf) is saturation enthalpy of air fluid in water film tempera-
ture. Totally, it can be assumed that, there is a linear relation be-
tween air saturation temperature and its enthalpy (saturated
enthalpy) as below.

hsðTÞ ¼ aTþ b0
so
hs

�
Tf
�
¼ aTf þ b (37)

where hs(T) is saturated enthalpy of air at temperature of T and “a”
is the slope of the saturation line (this assumption should not result
in a significant error for small temperature ranges). Substituting Eq.
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(37) into Eq, (36) gives:

dq ¼ b dA
�
aTf þ behwa

�
(38)

Parameter Tf can be replaced with from Eq. (16).

dq ¼ b dA
�
a
�
Tpa � dq

UdA

�
þ b� hwa

�
0

yields
dq

¼ aTpa þ b� hwa
a
U þ 1

b

dA (39)

It should be noted that, according to Eq. (37), the term (aTpa þ b)
is hs(Tpa) which means air saturated enthalpy at the primary air
(dry side) temperature. Thus, Eq. (39) becomes

dq ¼ 1
a
U þ 1

b

dA


hs

�
Tpa

�� hwa
�

(40)

1
a
Uþ 1

b

is new transfer coefficient. Eq. (40) connects Tpa in dry

channel with hwa in the wet channel by one equation based on
unique enthalpy gradient ð½hs ðTpaÞ � hwa�Þ: It should be noted that,
the modified enthalpy form ½hs ðTpaÞ] represents the thermal con-
tent of air fluid flow in dry side. The value of this modified enthalpy
at the inlet and outlet of dry channel are hs(Tpa, inlet) and
hs(Tpa,outlet). Generally, the amount of heat transfer rate through dry
channel is dq¼ _mc (Tinlet e Toutlet)¼ _m(hinlet - houtlet). However,
hs(Tpa, inlet) and hs(Tpa,outlet) are modified enthalpy (not real
enthalpy). Hence, a modified mass transfer rate should be defined
which can be found from heat balance on dry air side as below.

_mpacpa
�
Tpa; inlet � Tpa; outlet

�
¼ _m�

pa

h
hs

�
Tpa; inlet

�

� hs

�
Tpa;outlet

�i
(41)

Rearranging this equation:

_m�
pa ¼ _mpacpa

Tpa; inlet � Tpa;outlet

hs

�
Tpa;inlet

�
� hs

�
Tpa;outlet

� ¼ _mpacpa
a

(42)

where “a” is the slope of the temperature-enthalpy saturation line.
Conventional ε-NTU method of sensible heat exchangers is based
on (T, c and _m). The correlations of ε-NTUmethod based on (T, c and
_m) and its temperature profile is illustrated in Fig. 12. However,
thermal profile of indirect evaporative was achieved based on
modified enthalpy and modified mass flow rate as shown in
Fig. 13a. It is mentioned that, these modified parameters can con-
nect dry channel to wet channel via one equation and unique
enthalpy gradient which is necessary in ε-NTU evaluation method.

And that is interest reason of this type of modified parameters. The
ε-NTU method can be applied for indirect heat exchanger if proper
redefining of sensible parameters is made by compering Figs. 12
and 13a. These adjustments are shown in Fig. 13b. The expression
for the effectiveness ε

*¼ f(NTU*, Cr) takes similar forms as equa-
tions of sensible heat exchangers by replacing NTU by NTU*. Heat
transfer occurs from the fluid in dry side (hot air) to the fluid in wet
side. Hassan method can be employed for different flow configu-
rations in IEC coolers (regenerative, counter and parallel flow).
Iteration is not necessary for counter and parallel flow configura-
tion. However, for the regenerative configuration, iterations are
needed because the wet side inlet air temperature is equal to the
dry side outlet temperature which is unknown [42].

3.7. Liu model

Liu [43] stated two deficiencies for Hassan ε-NTU model as
below:

� Hassanmodel introduced a coefficient “a” to present the slope of
the saturation line and did not discussed how to evaluate this
coefficient.

� Hassan's model has been validated only by one operation con-
dition without discussing its verification with other operation
condition.

Thus, Lui presented a simplified thermal modeling based on
ε-NTUmethod and then validated utilizing experimental data from
the literature in a wide range of operating conditions. The model
highlights several improvements over the previous simplified
models, including the detailed procedure for UA value calculation
for laminar and turbulent IEHX channel flows [43].

The initial formulations of this model are the same equations
used in Hassan model. Eq. (16) and Eq. (23) from Hassan's model
are rewritten here.

dq ¼ UpadA
�
TpaeTf

�
(43)

dq ¼ awa

cwa
dA

h�
Tf
�
ehwa

i
(44)

Both Eq. (43) and Eq. (44) have the same functional form. If the
enthalpies in Eq. (44) could be expressed as a function of temper-
ature only, this equation can be used as a part of series heat transfer
path with equation 43 [43].

For moist air, the enthalpy is expresed as Eq. (45) in which cpa is
specific heat of moist air and is calculating with
cpa ¼ 1.006 þ 1.86 W (Kj/Kg C) and hfg is evaporation of water at
0 celsious. However, Liu approximated the enthalpy of moist air at
its wet-bulb (saturation) temperature condition as seen in Eq. (46)).Fig. 12. Temperature profile and ε-NTU correlations in sensible heat exchangers [42].

Fig. 13. Temperature profile and modified ε-NTU correlations in indirect heat ex-
changers [42].
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Liu used simmilar assumption for calculating of hs(Tf ) which is
enthalpy of saturated air-water interface layer (Eq. (47)).

hwa ¼ cpaTþwhfg (45)

hwa ¼ cpaTwaðwbÞ þwwaðwbÞhfg (46)

hs

�
Tf
�
¼ cpaTf þws

�
Tf
�
hfg (47)

Difference between Eq. (46) and Eq. (47) shows that [hs(Tf )
ehwa] in Eq. (44) can be expresed a linear equation of Tf - TwaðwbÞ
as shown below.

dq ¼ awa

cwa
dA

h
hs

�
Tf
�
ehwa

i
z
awa

cwa
KðdAs

�
Tf � TwaðwbÞ

�
(48)

where K is the slope of the enthalpy-saturation temperaturion
curve. Eq. (48) reveales that the difference between water film
temperature and working air wet-bulb temperature is the driving
force for energy transfer from the water film to the working air
stream [43]. If Eq. (48) and Newton's Law of Cooling is compared, it
is obvious that the term K awa

cwa
is analogous to the local heat transfer

coefficient betweenwater film and working air. Hence, as shown in
Fig. 14 (modified version of Fig. 2 from Ref. [43]), total, overall

thermal resistance and its corresponding heat flux between pri-
mary air and working air are presented as Eq. (49) and Eq. (50)
respectively.

1
U
¼ 1

apa
þ dp
kp

þ df
kf

þ cwa

Kawa
(49)

dq ¼ UdA
�
Tpa � TwaðwbÞ� (50)

Based on conservation of energy for working air:

q ¼ _mwa
�
hwa; outlet � hwa; inlet

�
(51)

Parameter K (is diferent from K) is introduced and defined as the
ratio of wet-bulb temperature difference between thewet side inlet
and outlet and their enthalpy difference; Equation 51 can then be
rewritten as:

q ¼ _mwaK
�
Twb
wa; outlet � Twb

wa; inlet

�
(52)

Based on conservation of energy for primary air:

q ¼ _mpacpa
�
Tpa; inletr � TPa; outlet

�
(53)

Now, a modified ε-NTU method can be applied through equa-
tions 50, 52 and 53 as shown in Fig. 15. Indeed, modified Cc, Ch and
other parameters of modified ε-NTU mehod is expressed by
comparing equations 50, 52 and 53 with the sensible format of
those equaions (for sensible heat exchnagers). The amount of a or
other parametres for calculating U is definite and depends on flow
regime etc. Hence, Liu [35] has discussed the method by which the
value of U is evaluated for laminar or turbulante flow. Furthermore,
determination of K has been presented as well by Liu for this model
which can be found in Ref. [35].

3.8. Chen model

Chen [45] believed that none of previous analytical in-
vestigations has consider the effect of condensation on the per-
formance of IEC units. Indeed, in humid area condensation may
occur in the fresh air side which causes reduction of the cooler
performance [45]. Former studies has not applied this consider-
ation because of two reasons: 1) the humidity of the fresh air is low
(indirect evaporative cooler is usually used in dry regions) and 2)

Fig. 14. Thermal resistance across the exchnager [43].

Fig. 15. Liu modified ε-NTU model.
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outdoor fresh air is used for both working air and primary air so
that the plate surface temperature is higher than the dew point
temperature of the air. Hence, Chen's model evaluates the perfor-
mance of IEC form three viewpoints including non-condensation,
totally condensation and partially condensation.

As a result, if a high-accurate analysis of M-cycle is required, Ren
model will be the best model. However, this model is sophisticated
and requires complex calculation. Maclaine-cross model and Sto-
tichkov model is low accurate but quick-respond model and are
appropriate for initial designing of M-cycle cooler. If the tempera-
ture distribution along the exchanger is not considered, Cui model
(LMTD) will be useful which provides outlet specifications of M-
cycle cooler based on inlet flow and geometric characteristics. Be-
sides, Cui model can be used for both designing aim and calculating

aim. In the first mode, an M-cycle cooler is designed by knowing
the inlet/outlet condition of the cooler while in the second mode,
the outlet parameters of a given cooler is determined. If the effect of
condensation on the performance of M-cycle cooler is considered
as an important parameter, Chen model will be the only helpful
model. Both Hassan and Liu model are based on modified ε-NTU
method will be suitable when the outlet temperature of the cooler
are not known.

4. Numerical modeling

According to Fig. 16, M-cycle numerical modeling is classified
into three main categories (based on analysis method) including
ε-NTU, finite element/difference/volume, Statistical Design

Fig. 16. A comprehensive compact view on investigated parameters of M-cycler via numerical simulations [51e67,88,90e99,107].
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methods. However, Statistical Design Tool can be indicated as a
distinct method (as seen in Fig. 7) and in this paper is discussed as a
separate part. An overall-compact view on investigated parameters
of M-cycle via all numerical simulations can be seen in Fig. 16.
Numerical simulations revealed that the work of M-cycle
exchanger is dependent on the interaction of many important
factors including aerodynamic, hydrodynamic, thermodynamic,
structure and others [51e53]. Perforations decrease the pressure
loss of air which may allow for a significant reduction in the unit's
operation costs [51]. However, it has lower cooling capacity which
is due to the warm air inlet wet channel through the entire length
of heat exchanger [51].

4.1. Numerical ε-NTU method

In most engineering applications, an engineer is interested in
receiving bulk average values rather than variable distributions. For
these cases, numerical ε-NTU method is preferred to other nu-
merical simulations methods.

Most numerical analysis of M-cycle exchanger has been per-
formed by ε-NTU technique. However, almost all ε-NTU-based
evaluations have been carried out by one group of authors Sergey

Anisimov and Demis Pandelidis [52] who tried to find different
thermal features of M-cycle with their own ε-NTU modeling.
Although the final formulations of themethod have been presented
in their publications, the references which have been cited for the
origin of the formulations [74e77] are not online accessible.

A glimpse-view on the effect of different parameters on M-cycle
characteristics (part A and B in Fig.16which have been evaluated by
numerical ε-NTUmethod for cross-flow exchangers) is presented in
Table 3. The signs “þ” and “-“mean increment and decrement of
that characteristics respectively. As can be seen in Table 3, incre-
ment of inlet humidity ratio or decrement of inlet air temperature
reduces the cooling capacity of m-cycle air coolers which empha-
size again the unsuitability of M-cycle coolers for humid and rela-
tively cold climate conditions.

Regarding to part C in Fig. 16, the condition of comparison
should be clearly stated because of the different structures of
analyzed exchangers. Comparison has been carried out under real
operating condition [6] of each exchanger. All exchangers have the
same dimensions, the same plate thickness and the same channel
height. Nonetheless, they have different secondary to primary air
ratio. According to [53] the best air ratio (which provides higher
effectiveness) for cross flow exchangers equals 1. However, it is

Table 3
Effect of different parameters on cross-flow exchanger characteristics which have been evaluated by numerical ε-NTU method [51e58].

Parameters Cooler characteristics

Output air temperature Dew point effectiveness Specific cooling capacity

Increment of air inlet temperature þ þ þ
Increment of inlet air relative humidity þ þ e

Increment of inlet air humidity ratio þ þ e

Increment of channel height þ e þ
Increment of dry channel length e þ þ
Increment of wet channel length e þ þ
Increment of air flow velocity þ e e

Increment of secondary to primary air flow ratio e þ þ
Increment of number of perforated holes þ N e

Fig. 17. Different types of M-cycle exchanger a) modified counter flow HMX, b) regenerative HMX c) perforated regenerative HMX d) cross flow HMX and e) modified cross flow
HMX [6].
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impossible to have the air ratio of 1 for regenerative exchangers
(case “b” and “c” in Fig. 17) because of their construction. Indeed, all
primary air streams from dry channel have to be delivered to wet
side in order to have air ratio of 1 (but the cooling capacity of such
would be zero). To that reason, the air ratio of case “b” and “c” was
chosen around 0.3 which was suggested for these cases [13,78e81].
For all working condition (different inlet air temperature or
different relative humidity) the arrange (order) of cooling capacity
is shown in Fig. 19.

Different positions and arrangements of perforations in cross
flowM-cycle (see Fig. 18) create different thermal characteristics of
M-cycle. For each specific arrangement of perforation, changing of
thermal-fluid condition causes creation of different output char-
acteristics as well. However, maximum cooling capacity and wet-
bulb effectiveness were obtained for case “h” (Fig. 18) and mini-
mum values of said parameters were observed for case “a”.

4.2. Finite element/difference/volume method

Table 4 shows a compact view of the numerical M-cycle in-
vestigations which have been studied via finite element/difference/
volume method.

Zhang et al. [4], evaluated the specifications of the ISAW cooler
[87] (which works based on M-cycle theory) using the finite-
element method. The air flow through the channels was consid-
ered to be laminar. They varied each parameter while other pa-
rameters were remaining unchanged. According to finite element
difference analysis of this air cooler, for desired supply air tem-
perature (26 �C), air humidity, air velocity in dry channel and wet
channels should not be higher than 65%, 1.77m/s and 0.7m/s
respectively.

The main results (effect of different parameters on cooler
characteristics) of finite element/volume/difference analysis of M-
cycle cooler can be summarized as below.

� Increment of inlet air temperature increases product air tem-
perature (warmer supply air) but it does not mean lower effi-
ciency or cooling capacity.

� Increment of inlet air temperature improves cooling capacity,
wet-bulb effectiveness and COPwhich showsM-cycle suitability
for warm weather.

� Increment of air relative humidity enhances wet-bulb effec-
tiveness and supply air temperature but decreases COP and
cooling capacity. These results prove that, wet-bulb

Fig. 18. Eight types of Coolerado corporation M-cycle HMX (See part D in Fig. 16) [55].

Fig. 19. Comparison between different types M-cycle exchanger (see Fig. 17).

Table 4
Numerical studies via finite element/difference/volume method.

Reference year Investigated
method

Structure Explanation

Zhang [4] 2011 Finite element Cross flow Effect of various parameters on cross-flow M-cycle performance
Cui [104] 2015 Finite element

(Comsol)
Counter
flow

Combination of indirect evaporative cooler and compression air cooler

Heidarianejad
[100]

2015 Finite difference Cross flow Presenting a new model for M-cycle cross flow with consideration of spray water variation and wall longitudinal
heat conduction along exchanger

Moshari [101] 2015 Finite difference
(Matlab)

Counter&
Cross

Performance comparison between counter flow, cross flow and four-stage indirect evaporative cooler with the
same air and exchanger parameters

Cui [102] 2016 Finite element
(EES)

Counter
flow

Providing a performance correlation for counter flow regenerative M-cycle exchanger

Cui [103] 2016 Finite element
(Comsol)

Counter
flow

Combination of liquid desiccant dehumidification and regenerative M-cycle cooler

Jafarian [105] 2017 Finite Volume Counter
flow

Momentum, energy and mass transfer are simultaneously solved for counter flow M-cycle

Wan [106] 2017 Finite Volume Counter
flow

Providing a performance correlation for counter-flow M-cycle coolers
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effectiveness should not be considered as an independent
characterize the performance of the IEC.

� Increment of air speed (air flow rate) increases wet-bulb effec-
tiveness and supply air temperature but decreases cooling ca-
pacity and COP.

� Increment of air passage height increases supply air tempera-
ture and reduces cooling capacity wet-bulb effectiveness.
However, COP showed an ascending-descending behaviour.
Nonetheless, the maximum point of COP should not be
considered as the best condition because of very low cooling
capacity and wet-bulb effectiveness in that point.

� Increment of dry channel or wet channel length decreases
supply air temperature (colder air) and COP and increases
cooling capacity and wet-bulb effectiveness.

� In comparison with conventional cross-flow exchanger (in
which M-cycle has not been used), this exchanger provides 16%
higher wet-bulb effectiveness and around 60W higher cooling
capacity in the same characteristics.

5. Statistical design methods

Response surface methodology (RSM), Fuzzy inference system
(FIS), Adaptive neuro-fuzzy inference system (ANFIS), Multiple
linear regression (MLR), Genetic programing (GP), Artificial neural
network (ANN) are different type of statistical design method
(SCST) [63] which can be used instead of numerical models to
analyze the performance of Maisotsenko exchanger. The re-
quirements of this method are: 1) basic knowledge of parameters
that affect the system characteristics and 2) enough numerical or
experimental data from the system operation. Some researchers
have evaluated the indirect evaporative via SCST method as shown
in Fig. 7. Pandelidis and Anisimov [4,62] believed that numerical
models based on partial differential and algebraic equations require
higher amount of calculation time and they are complex and
cumbersome for everyday use [4]. Hence, an accurate fast mathe-
matical model based on response surface regression procedure was
developed as below which may be applied for engineers.

5.1. RSM method

This technique describes the basic performance of cross-flowM-
cycle exchangers and can be used for optimization of M-cycle
because of its lower calculation time.

As described in Ref. [82], Response surface methodology (RSM)
comprises of some basic steps as below:

1) Screening: experiments are performed with the aim of
providing the vital few control parameters.

2) Modeling: experiments are performedwith the aim of modeling
the quality characteristic of interest (response) as a function of
control parameters;

3) Optimization: response model is evaluated to find the variable
settings in which optimum conditions are obtained.

Detail explanations about Response SurfaceMethodology can be
found in Refs. [82e86]. The analysis of M-cycle exchanger by RSM
method can be classified into two main group as below.

� Describing (prediction) of the basic performance of cross flow
M-cycle exchanger including outlet air flow temperature, dew
point effectiveness, cooling capacity and COP

� Optimization of five influence factors including inlet tempera-
ture, relative humidity, primary air mass flow rate, working to
primary air ratio and relative length of the initial part in order to
determine the optimal range of operational and geometrical
conditions.

The results obtained from this method are the same observed in
numerical simulations. However, according to [61], optimization
based on single performance factor is not suitable at all for M-cycle.
In other words, it is impossible to optimize on the basis of single
performance factor because the optimum value for one parameter
is not favourable from the view point of other parameters. Hence, a
compromise multi-optimization technique is required to deter-
mine an appropriate working condition for M-cycle air coolers. To
that reason, a multi-parameter optimization was carried out in
Ref. [62]. Authors [62] used the concepts of Harrington's desir-
ability function and Compertz-curve for multivariate quality opti-
mization (phase 3 of RSM method) in order to find suitable climate
zones for the cross flow M-cycle exchanger. Gompertz curves show
the effect of varying one parameter while keeping the others con-
stant. More explanation about the concept of desirability function
can be found in Ref. [82].

Based on RSM multi-optimization analysis, M-cycle is suitable
for most of the typical climate condition. However, for really moist
regions (more than 65% relative humidity) and also cold regions
(around 25 �C) are considered as the unsuitable climates for M-
cycle. Nonetheless, for hot and verymoist weathers, combination of
dehumidifier and M-cycle can solve the humidity problem. Cross
flow M-cycle has a potential of wide application around the world
[61].

Table 5
Experimental studies of M-cycle air conditioning systems.

Experimental investigations Year Description

Riangvilaikul & Kumar [78] 2010 Experimental study of a novel indirect evaporative air cooler
Zhan et al. [68] 2011 Comparison between counter-flow and cross-flow exchanger of M-cycle
Zube & Gillan [71] 2011 Evaluating a commercialized type of M-cycle air cooler
Gao et al. [73] 2014 Combination of liquid desiccant and indirect M-cycle cooler
Rogdakis et al. [72] 2014 Analysis of the M-cycle air cooler for Greek climate condition
Khalid et al. [69] 2016 Design and analysis of counter flow exchanger for M-cycle
Khalid et al. [70] 2016 Investigation of an improved M-cycle cooler under low velocity condition
Duan et al. [108] 2016 Analysis of the M-cycle air cooler for China climate condition
Antonellis et al. [109] 2016 Analysis of a cross flow indirect evaporative
Xu et al. [110] 2017 The use of an innovative exchanger for M-cycle air cooler
Duan et al. [111] 2017 Operational performance and impact factors of a counter-flow regenerative M-cycle
Antonellis et al. [112] 2017 Effect of wettability factor and adiabatic humidification on a cross flow heat exchanger
Lin et al. [113] 2017 Effect of dehumidification on cross-flow M-cycle cooler
Shahzad et al. [79] 2018 Combination of solid desiccant with cross flow M-cycle cooler
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5.2. GMDG type neural network method

Group method of data handling-type neural network (GMDH) is
a self-organizer predictive approach which is a subset of artificial
neural network (ANN) family [63]. This technique was employed to
perform a multi-objective performance optimization of Coolerado
M50 M-cycle unit [63]. Average annual values of COP and cooling
capacity were simultaneously maximized while inlet air velocity
and working to air ratio were decision variables of optimizations.
This optimization was carried out for twelve Koppen-Geigers
classification. Koppen Geigers is one of the most widely used
climate classification systems in all over the worlds. The GMDH
model was used to predict the product air temperature as a func-
tion of inlet temperature, inlet humidity, inlet velocity and non-
dimensional channel length. According to GMDH model, M-cycle
is applicable for cooling season of all 12 classes of Koppen-Geigers
climate classification system. Other results can be briefly described
as below.an experimental study.

� Optimized velocity decreases with decrement of inlet air
temperature

� Optimized velocity decreases with increment of inlet relative
humidity

� M-50 Coolerado velocity is very close to the obtained optimum
velocity range by GMDH model. Hence, there is no need to
change the system's fan.

� Optimized working to air ratio decreased with reduction of inlet
temperature or humidity.

� M-50 Coolerado working to air ratio is significantly higher than
the achieved working to air ratio by GMD model.

6. Experimental investigations

The main experimental investigations on Maisotsenko type of
indirect evaporative coolers ate illustrated in Table 5. It should be
notes that, former type of indirect evaporative coolers (which are
not worked based on Maisotsenko cycle) are not covered. As can be
seen in Table 5, the previous experimental studies on M-cycle air

coolers are mainly discussed below considerations.

� Comparison of cross flow and counter flow under various
operating condition

� Evaluation of the current existence commercialized M-cycle
coolers

� Investigation on the combination of M-cycle and desiccants
� Sensitivity (parametric) analysis of different types of M-cycle air
cooler

� The use of existence M-cycle cooler for a defined region with
specific climate

� Effect of wettability factor and dehumidification

Operating condition of each experimental investigation is
different from each other. Characteristics of each experimental
study and their operating parameters and key results are illustrated
in Table 6. Type of cooling device, inlet condition including velocity
and temperature, geometric specifications, obtained wet-bulb
effectiveness and dew-point effectiveness are presented in this
table.

Some researchers (for example [71]) have employed the
commercialized M-cycle cooler for their experiments. However,
most researchers have preferred to use unique test-rig for the test.
A schematic view of some of the previously used experimental test-
rigs is shown in Fig. 20.

Although each experimental study has different flow, thermal
and geometrical condition, the curve behaviour of sensitive anal-
ysis (parametric study) are the same for all of them through a
specific type of air cooler (single M-cycle or combination of M-cycle
and desiccants). Hence, it is possible to provide a compact-
comprehensive view of the results of parameter analysis of M-cy-
cle air conditioning systems. In this regard, M-cycle experimental
investigations can be classified into two main categories. In First
category, the researchers have focused on the effect of various pa-
rameters on single M-cycle characteristics and in the second cate-
gory, the effect of said parameters were studied on combined M-
cycle-desiccant systems. A comprehensive compact view of the first
and second categories and their results are shown in Fig. 21 and

Table 6
Experiment condition of each experimental study of M-cycle.

Arrangement Inlet air
Tem

Inlet air
humidity

Inlet air
volume

Channel
gap

Channel length Channel
width

Outlet Tem Wet-bulb Eff Dew-point Eff

Riangvilaikul
[78]

Counter flow 25-45 �C 7-26 g/kg 1.5e6m/s 5mm 1200mm 80mm 15-32 �C 92-114% 58-84%

Zhan [68] Counter
&Cross flow

25-45 �C 11 g/kg 2000m3/
h

5mm 1000mm e Counter: 16e18 �C
Cross: 18e20 �C

Counter: 130e138%
Cross: 110e120%

Counter: 70e80%
Cross: 75e80%

Zube [71] Couner 40 �C 0.128m3/s e e e e e e e

Gao [73] Cross flow 24-38 �C 14 g/kg 0.2 kg/s 2.2mm 500mm 500mm e e 90-140%
Rogdakis [72] Cross flow 32-36 �C e e e e e 21e22.3 �C e e

Khalid [69] Counter flow 25-45 �C 12-18 g/kg 0.88
e1.5m/s

4mm 900mm 40mm 18-25 �C 100-120% 70-80%

Khalid [70] Cross flow 25-45 �C 11-19 g/kg 0.5
e1.1m/s

4mm Dry:058mm
Wet:203mm

25mm 18-24 �C 90-120% 60-80%

Duan et al.
[108]

Counter flow 27-37 �C e e 6mm 900mm 314mm 18-28 �C 74-82% e

Antonellis
et al. [109]

Cross flow 30-36 �C 10 g/kg 1400m3/
h

3.35mm 500mm 500mm 23-24 �C 65-80% e

Xu et al. [110] Counter flow 30
e37.8 �C

e 750m3/h e 1000mm 800mm e 67-76% e

Duan et al.
[111]

Counter flow 24-34 �C e 0.6e3m/s 6mm 900mm 314mm 19-24 �C 38-80% 20-45%

Antonellis
et al. [112]

Cross flow 29-35 �C 10-11 g/kg 1400m3/
h

3.21mm 470mm 470mm 21-23 �C e e

Lin et al.
[113]

Cross flow 30 �C 12-13 g/kg 2800m3/
h

3mm e e 20-28 �C 85% 62%

Shahzad [79] Cross flow 25-45 �C 12-18 g/kg 660 kg/h 5mm 900mm 280mm 17-25 �C e e
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Fig. 20. Schematic view of some of the previously used experimental test-rigs [68,70,73,78,79].
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Fig. 22 respectively which were extracted from [68e73] and
[78,79]. For example, according to Fig. 21, increment of inlet air
humidity causes enhancement of product air temperature and dew
point effectiveness and causes reduction of wet bulb effectiveness.
The results obtained from experiments are comparable with the
numerical results mentioned above (in Table 3).

7. Industrial status of M-cycel air coolers

Maisotsenko cycle is protected by more than 200 patents all
over the world [15]. Coolerado cooperation produced the first
practical realization of the M-cycle cooler technology [17] for
different aims including commercial, residential, solar and hybrid
M-cycle air coolers. According to the experiments which were
carried out by National Renewable Energy Laboratory (NREL),
Coolerado's H-80 air cooler used 80% less energy than compressor-
based air conditioning systems under hot and dry climate condition
[17]. Coolerado air conditioners can be found inmarkets around the
world. Coolerado products are classified into three main categories
including HMX, M50 and C60. A general view of these air coolers
can be seen in Figs. 23e25 which was extracted from Coolerado
catalogs. Nowadays, other corporations such as Climate Wizards
(Adelaide, Australia) etc. produced different types of M-cycle in-
direct evaporative air coolers particularly for big halls. Their
applicability for big halls (which is installed on the roof of halls) is

more prevalent than those for residential. Indirect evaporative
cooler installed in the Hub central at the University of Adelaide is
the first large IEC system utilization in Australia [89].

8. Future research direction

Through the literature review described above, it was found
that, most of the previous analytical solutions of M-cycle air cooler
have made several assumptions to simplify their model and reduce
the calculation time, but sacrificing their accuracies. Moreover,
previous analytical models are developed only on the simplest
structure (without perforation) of M-cycle coolers. Therefore, re-
searchers may interested in develop new analytical models for
perforated or other more complex structures of M-cycle. Perforated
M-cycle for example are investigated only via numerical or exper-
imental methods which requires further time and cost. Obviously,
formulations of current analytical model cannot be simply
employed for complicated structures of M-cycle coolers.

Despite the importance of the second law of thermodynamic
consideration in any thermodynamic process, extremely few ana-
lyses have been carried out for M-cycle coolers from the view point
of the second law of thermodynamic. Hence, clarification of exer-
getic aspect of M-cycle system and developing (via either numer-
ical or experimental techniques) is another research direction
which should be bridged. Therefore, the research directions of the

Fig. 21. The effect of various parameters on single M-cycle characteristics (experimental investigations).
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M-cycle cooler can be briefly described as below.

- Lack of high accurate thermal analytical model for other struc-
tures of M-cycle cooler.

- Lack of enough M-cycle evaluation from the view point of the
second law of thermodynamic.

- Lack of enough exergetic sensitive analysis of M-cycle.

Furthermore, it seems that, extra investigation is required to

determine how M-cycle can be appropriately developed for resi-
dential aims in additional to big public places. In other words, it
may be tried to reduce the size (weight) of M-cycle coolers without
reduction of their performance so that it can be employed easily for
any area. Moreover, the results of some investigations showed that
the specifications of commercialized M-cycle coolers are not the
best-optimized ones. Hence, further analysis and optimization via
other methods is required. Although the use of perforation through
the separator plate reduces the pressure drop, it reduces thermal

Fig. 22. The effect of various parameters on single desiccant M-cycle characteristics (experimental investigations).
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performance and causes complexity of manufacture and increment
of production cost. Thus, other simple novel techniques should be
developed in order to reduce the pressure drop along the
exchanger. As a general result a lot of investigations should be
carried out to find the best operational condition, geometry and
other aspects of M-cycle air conditioning systems.

9. Conclusion

The present study provides a comprehensive review on Mai-
sotsenko air conditioning systems, regarding its evaluation
methods, obtained results, industrial situation and future research
direction. The main analytical solutions of M-cycle (indirect evap-
orative) were evolutionary and briefly discussed. The relationship

Fig. 23. HMX Coolerado air cooler [from brochure].

Fig. 24. C60 Coolerado air cooler [from brochure].

Fig. 25. M50 Coolerado air cooler [from brochure].
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between analytical solutions was provided. The significant results
which have been obtained from numerical simulation or experi-
mental techniques were graphically presented. Statistical Design
Tool is another analysis method for M-cycle which has been
employed by some researchers. The application of said methods
and their features (advantages) were explained. The current in-
dustrial situation of M-cycle air coolers was demonstrated.
Coolerado-corporation which is the first corporation produced M-
cycle coolers was chosen for this aim. The study concludes that,
despite the commercialization of Maisotsenko air coolers, a lot of
exact researches are required to improve the M-cycle coolers. A
geometrical modification can be used instead of perforations to
reduce the pressure drop through the exchanger. M-cycle should be
evaluated from the view point of the second law of thermodynamic
in addition to the first law of thermodynamic. Extremely few
experimental investigations have been performed compared to the
other methods.
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desiccant system with cross-flow Maisotsenko cycle heat and mass
exchanger. Energy Build 2016 Jul 1;123:136e50.

[60] Pandelidis D, Anisimov S, Worek WM, Drąg P. Analysis of different applica-
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powietrza za pomocą odparowania cieczy. In: Anisimov S, editor.
Wsp�ołczesne metody i techniki w Badaniach system�ow in _zynieryjnych.
Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej; 2011. p. 81e7.

[78] Riangvilaikul B, Kumar S. An experimental study of a novel dew point
evaporative cooling system. Energy Build 2010;42:637e44.

[79] Shahzad MK, Chaudhary GQ, Ali M, Sheikh NA, Khalil MS, Rashid TU.
Experimental evaluation of a solid desiccant system integrated with cross
flow Maisotsenko cycle evaporative cooler. Appl Therm Eng 2018 Jan 5;128:
1476e87.

[80] Zhao X, Li J, Riffat SB. Numerical study of a novel counter-flow heat and mass
exchanger for dew point evaporative cooling. Appl Therm Eng 2008;28:
1942e51.

[81] Anisimov S, Vasiljev V. Renewable energy utilization in indirect evaporative
air coolers under combined airflow conditions. In: Proceedings of clima 2007
well being indoors, REHVA world congress, Helsinki, Finland, 10e14 June;
2007. p. 1650.

[82] Costa NR, Lourenço J, Pereira ZL. Desirability function approach: a review and
performance evaluation in adverse conditions. Chemometr Intell Lab Syst
2011;107(2):234e44. Jul 31.

[83] Carley KM, Kamneva NY, Reminga J. Response surface, methodology, CASOS
technical report. Carnegie Mellon University; October 2004. CMU-ISRI-
04e136.

[84] Khuri AI, Mukhopadhyay S. Response surface methodology. WIREs Comp
Stat 2010;2:128e49. 10.1002/wics.73.

[85] Myers Raymond H, Montgomery DC. Response Surface Methodology: pro-
cess and product optimization using designed experiment. A Wiley-
Interscience Publication; 2002.

[86] Khuri AI, Cornell JA. Response surfaces. second ed. New York: Marcel Dekker;
1996.

[87] Kiran TR, Rajput SP. An effectiveness model for an indirect evaporative
cooling (IEC) system: comparison of artificial neural networks (ANN),
adaptive neuro-fuzzy inference system (ANFIS) and fuzzy inference system
(FIS) approach. Appl Soft Comput 2011 Jun 30;11(4):3525e33.

[88] ISAW. Natural air conditioner (heat and mass exchanger) catalogues. Hang-
zhou, China: ISAW Corporation Ltd; 2005.

[89] Chen ML, Liu XL, Hu E. Indirect Evaporative Coolingean energy efficient way
for air conditioning. In advanced materials research, vol. 608. Trans Tech
Publications; 2013. p. 1198e203.
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Chapter 3 

Analytical modelling (sprayed water theory) 

This chapter has been published as 

Dizaji HS, Hu EJ, Chen L, Pourhedayat S. Development and validation of an 

analytical model for perforated (multi-stage) regenerative M-cycle air cooler. Applied 

energy. 2018 Oct 15;228:2176-94. (DOI: 10.1016/j.apenergy.2018.07.018). 

This chapter provides an analytical model for perforated Maisotsenko air coolers. 

In this model, it is assumed that, the water flow rate is so higher than the air flow 

rate (sprayed water mechanism). The model is validated with previous 

numerical/experimental researches in the same working condition. It was concluded 

that the M-cycle cooler under sprayed water mechanism is not able to reach its 

maximum cooling capacity (compared to the dew-point temperature) and water 

inlet temperature plays a key role on cooling characteristics if the cooler as the 

impact of sensible heat transfer is major (in comparison with latent heat transfer). 

In this working condition, the temperature of the middle plate is dominated with 

water inlet temperature and that is why the water inlet temperature should be colder 

than the ambient temperature.  
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H I G H L I G H T S

• Previous analytical models of M-cycle
cooler are reviewed.

• An analytical model is presented for
multi-stage M-cycle cooler.

• The model is validated by numerical
results.

• An application of the model is pre-
sented.

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O
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A B S T R A C T

Maisotsenko cycle based coolers are able to reduce the air temperature below the wet-bulb temperature of the inlet
air without adding any moisture to the product air and without the use of any compressor or refrigerant (CFC). These
positive features of M-cycle have encouraged the researchers to enthusiastically consider the thermal-fluid char-
acteristics of M-cycle cooler via numerical, analytical and experimental techniques. In this paper attempts are made
to present an analytical solution for thermal behavior of perforated (multi-stage) regenerative M-cycle exchanger
which has not been carried out before. Indeed, all previous analytical solutions of M-cycle have been provided for the
simplest structure of M-cycle exchanger (single-stage, without perforation) and the perforated M-cycle cooler (multi-
stage) has been investigated only via experimental and numerical techniques (including finite difference method,
numerical ε-NTU technique, statistical design tools all of which are sophisticated and require high computational
time). However, the precision aspect and analysis speed of analytical approach is undeniable and it is considered as
the priority in most engineering problems. Hence, in this study, an analytical model is developed for three-stage
regenerative M-cycle exchanger which can be developed for any number of perforations. All modeling process is
described in detail (step by step) to make it ease understanding for readers. Evaluation methods of all required
parameters are described in detail as well. Finally, the model is verified with numerical results.

1. Introduction

Generally, air cooling methods used in air conditioning systems can
be classified into four main groups including compressor-based air

coolers, air-water direct contact coolers, conventional air-water indirect
air coolers and M-cycle indirect coolers. Very high electrical con-
sumption, using of chlorofluorocarbons and complex moving parts
which lead to higher maintenance costs are the main defectiveness of
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compressor-based air conditioning systems which has been explained in
detail by Mahmood et al. [1] and Sadighi Dizaji et al. [2] as well. Al-
though the power consumption of air-water direct contact coolers is less
than the first group, they are not able to reduce the air temperature
below the wet-bulb temperature of inlet air. Indeed, wet-bulb tem-
perature is the minimum ideal theoretical temperature that can be
reached by adding moist to the air (latent heat). Irrespective of cooling
capacity, humidity-increment not only results in people’s discomfort
but also is harmful for electrical devises. Furthermore, water con-
sumption of direct contact coolers is high and has potential health is-
sues from contaminated water droplets entering spaces as well. Defec-
tiveness of the first three groups (explained above) has recently
encouraged both academic researchers and industrial sectors to further
focus on M-cycle systems. As described in [1], M-cycle are protected by
various patents all over the world and its application has been ex-
panded to other aspects such as pollution control (i.e. NOx reduction in
gas turbines) as well which shows the applicability and potential of M-
cycle system.

Indirect evaporative cooling technique has neither the problems of
compressor-based nor air-water direct contact coolers. Nonetheless,
conventional indirect evaporative coolers (see Fig. 1a) was not able to

reduce the air temperature significantly which prevented widespread
application of this type of cooling method in air conditioning systems.
Providing an ingenious idea by Professor Valeriy Maisotsenko con-
verted the indirect evaporative cooling as a highly efficient cooling
system. The principal aspect of this idea is precooling of the wet-side air
fluid before entering to the working channel (see Fig. 1b).

Researchers presented different configurations of M-cycle exchanger
as shown in Fig. 2. Generally, all investigations of M-cycle can be
classified into four main categories including analytical approaches,
numerical simulations, statistical design methods and experimental
techniques. Each category is divided into some other classifications
which is shown graphically on Fig. 3.

All configurations (in Fig. 2) have been studied via numerical or
experimental techniques. Analytical solution has been presented only
for the simplest structure of indirect evaporative-cooler (without per-
foration) as briefly described in the following.

Maclaine and Banks [3] presented a general theory of wet-surface
heat exchanger. They proposed a liner approximate model of wet-sur-
face heat exchanger by analogizing with dry surface heat exchanger.
Maclaine method proposed a linear approximate and graphical re-
presentation which can be employed to evaluate the wet-surface heat

Nomenclature

a geometry in Fig. 4
b geometry in Fig. 4
B1, B2, B3 defined in Eq. (33), (40), (41) respectively
A area (m2)
c specific heat (kJ/kg °C)
ca specific heat of dry air (kJ/kg °C)
cv specific heat of water vapor (kJ/kg °C)
dh hydraulic diameter (m)
iv specific enthalpy of water vapor (kJ/kg)
ifg evaporation heat of water at 0 °C

∗cf defined in Eq. (8)
∗cw defined in Eq. (42)

kp thermal conductivity of plate (W/m2 °C)
L length (m)
La, Lb, Lc lengths in Fig. 4 (m)
Le Lewis factor
NTU number of heat transfer units
Nu Nusselt number
Pr Prandtl Number
q heat transfer rate (W)
r defined in Eq. (7)
Re Reynolds number
Rcw defined in Eq. (43)
R thermal resistance (m2 K/W)
T temperature (°C)
Tf water film temperature (°C)
U overall heat transfer coefficient (KW/m2 °C)
V velocity (m/s)

ṁ mass transfer rate (kg/s)
P atmospheric pressure of moist air
pv partial pressure of water vapor
w humidity ratio (kgmoisture/kg dry air)

Special characters

ε mass transfer ratio between working and primary air
δp thickness of the plate (m)
δw thickness of water film (m)
α convective heat transfer coefficient (W/m2 K)
β convective mass transfer coefficient (W/mK)
σ wettability factor
ρ density (kg/m3)

Subscripts

1 or Pa primary air (product air)
2 or wa working air (secondary air)
f water film
wb wet-bulb
w water
A, B, C point A, B, C in Fig. 4
La, Lb, Lc length La, Lb, Lc in Fig. 4

Superscripts

′ inlet
″ outlet

Fig. 1. (a) Conventional indirect evaporative cooling and (b) M-cycle indirect evaporative cooling.
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exchanger effectiveness. Maclaine model is based on eight equations
which four of them are based on assumptions and rest of them are based
on conservation of energy or mass.

Stoitchkov [4] indicated three deficiencies for Maclaine model as
listed below:

• Maclaine did not show how the mean surface temperature should be
estimated.

• The values of total to sensible heat ratio for different mean surface
temperatures given in a table are calculated for a barometric pres-
sure of 101,325 Pa. Hence, for other pressures, the outcomes will
have a source of error.

• Maclaine model is based on a very important condition that the
evaporating water film is stationary and continuously is replenished
at its surface with water at the same temperature. However, in real
heat exchanger, the mass flow rate of sprayed water is much more
than that of the evaporated water which causes reduction of wet
surface heat exchanger effectiveness compared to the Maclaine as-
sumption.

Hence, Stoitchkov further improved the Maclaine model with an
approach to determine the mean water-surface temperature with

known geometrical and dry heat transfer characteristics, mass flow rate
and initial temperature conditions. Alonso [5] developed a more user-
friendly simplified model by introducing an equivalent water tem-
perature in Maclaine solution. Ren and Yang [6] believed that all pre-
vious simplified models have sacrificed accuracy for simplicity of so-
lution. Most simplified models assume unity Lewis factor and neglect
the water losses due to evaporation. Hence, they developed an analy-
tical model for IEC with parallel/counter flow configuration con-
sidering variable Lewis factor and surface wettability. Their model is
sophisticated which is due to non-unity values of Lewis factor, surface
wettability, varying spray water temperature and spray water enthalpy
change. Briefly, Ren model consists of some characteristics which can’t
be found in previous analytical models including incomplete surface
wetting condition, non-unity values of Lewis factor, consideration of
spray water evaporation, consideration of spray water temperature
variation, consideration of spray water enthalpy change along the heat
exchanger surface. Hasan [7] presented a modified version of ε-NTU
technique which can be used for indirect evaporative heat exchangers.
Conventional sensible format of this technique can’t be employed for
indirect heat exchanger because of the existence of two gradients [7]
including 1: temperature gradient between the air temperature in dry
passage and the water film temperature and 2: enthalpy gradient

Fig. 2. Different M-cycle configurations modified from [2].

H. Sadighi Dizaji et al. Applied Energy 228 (2018) 2176–2194

2178
44



between the saturated air-water film interface and the moist air. In the
modified ε-NTU method attempts are made to create a connection be-
tween the temperature of dry side channel and “h” in the wet channel
by a unique gradient. Liu [8] stated two deficiencies for Hassan ε-NTU
model. Hassan model introduces a coefficient “a” to present the slope of
the saturation line and does not discuss how to evaluate this coefficient.
Hassan’s model has been validated only by one operation condition
without discussing its verification with other operation condition. Thus,
Lui [8] presented a simplified thermal modeling based on ε-NTU
method and then validated utilizing experimental data from the lit-
erature in a wide range of operating conditions. The model highlights
several improvements over the previous simplified models, including
the detailed procedure for “UA” value calculation for laminar and
turbulent IEHX channel flows [8]. Cui et al. [9] presented a modified
LMTD method to analyze counter flow indirect evaporative heat ex-
changers (IEHX). This method provides better accuracy when the
temperature change in the IEHX (indirect evaporative heat exchanger)
is non-linear and the greatest temperature difference at one end of the
IEHX is more than twice the temperature difference at the other end of
the IEHX [9].

The most recent selective investigations on indirect evaporative
systems are presented as well. Kim et al. [58] evaluated the cooling
performance of two different types of cross-flow indirect evaporative
coolers including general type and regenerative type of cooler. They
concluded that both of them provide similar cooling capacity per unit
volume under equal primary and secondary air flow. Cui et al. [59]
presented a novel energy-efficient dew-point evaporative air cooler
which was designed based on a counter-flow closed-loop configuration
consisting of separated working channels and product channels. Their
cooler was able to obtain higher wet-bulb and dew-point effectiveness.
Lin et al. [60] reminded that the method which have been used to es-
timate the heat/mass transfer coefficient in previous studied is the
employment of Nusselt number and Sherwood number under constant

condition of wet-surface which may not be the actual heat and mass
transfer of the cooler. Hence, they tried to provide a mechanism to
estimate the heat and mass transfer coefficient of M-cycle cooler. Chen
et al. [61] reported a controller used in indirect evaporative cooler.
Indeed, this controller causes a stable indoor temperature under dif-
ferent ambient air conditions.

As described above, analytical solutions of M-cycle have been pre-
sented only for the simplest structure of indirect evaporative cooler
(without perforation) and no analytical model has yet been presented
for perforated (multi-stage) M-cycle exchangers which are used in
commercialized M-cycle air coolers. Thus, an analytical model is pre-
sented and verified for perforated M-cycle air cooler in this paper.
Former evaluations of perforated M-cycle exchanger have been carried
out only via elaborated numerical methods or experimental techniques
which require further time, cost and energy. However, this paper shows
that the thermal behavior of perforated regenerative M-cycle exchanger
(Fig. 2d) can be analytically modeled and solved. The final outcomes of
the model can be considered as a strong M-cycle initial-designing-tool
so that the thermal characteristics of perforated M-cycle can be calcu-
lated very quickly by this model compared to the numerical or other
techniques.

2. Physical modeling

Fig. 4a shows a schematic general view of a simple (without per-
foration) regenerative M-cycle exchanger, Fig. 4b illustrates a one-di-
mensional view of the regenerative M-cycle exchanger with two per-
forations (three-stage) and Fig. 4c represents a differential element in
an arbitrary location along the exchanger. Temperature (T), humidity
ratio (W) and mass flow rate (ṁ) of each point are illustrated in Table 1.
Geometrical characteristics are shown in Fig. 4 as well. All parameters
of primary air (dry channel) have been shown with subscripts “1” and
all parameters of working air (wet channel) have been shown with
subscript “2”. It is also mentioned that, ′x (in which “x” is any para-
meter) means the value of parameter “x” at the inlet of exchanger and

″x means the value of parameter x at the outlet of exchanger. For ex-
ample, ′T1 means temperature of primary air at inlet of dry channel, ″T2
means temperature of working air at the outlet of wet channel and T1

A

means the temperature of primary air at point A. The fraction of dry air
which is discharged into the wet channel is shown with εa, εb and εc (for
three stage) from the top side of exchanger respectively. Hence, for a

three stage M-cycle = ′εa
ṁ
ṁ

1
A

1
, = ′εb

ṁ
ṁ

1
D

1
and = ′

′εc
ṁ
ṁ

2
1
and + + <ε ε ε 1a b c .

The physical modeling of single-stage M-cycle can be explained as
below.

(a) The inlet air of dry side ( ′T )1 moves through the dry channel while
its temperature is gradually reduced due to the sensible heat
transfer process with wet channel. The humidity ratio of dry air
never changes in this process because of no direct contact with
water fluid. Obviously, the temperature of dry air at the outlet of
dry channel ( ″T )1 has been reduced.

(b) A fraction of cooled dry air is discharged into the room and used as
the product air and the remaining ( ′ṁ ε1 a) returned into the wet
channel and used as a working air. It is clear that the temperature
and humidity ratio of working air at the inlet of the wet-channel are
the same as product air. Working air flows along the wet channel.
Contrary to the dry channel (in which the heat transfer process is
occurred only via sensible format) energy variation of working air is
occurred via both sensible and latent heat because of direct contact
between working air and water film. Indeed, energy variation of
working air is because of convective heat transfer (between
working air and water film) and evaporation of water (latent heat).
Although, the temperature of working air is reduced along the wet
channel, its humidity ratio significantly increases as well.

(c) The outlet air from the wet channel is discharged into the outside of

Fig. 3. Graphical view of the investigations of M-cycle [3–57].
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the air-conditioning room and that’s why the M-cycle coolers have
two exhausts one of which leads to the outside of the room by a
chimney (related to working air) and the other is flowed into the
room.

The physical modeling of perforated M-cycle cooler is similar to the
single-stage M-cycle. However, in perforated M-cycle exchanger the dry
air is gradually discharged into the wet-channel in order to reduce the
pressure drop of heat exchanger. For example, according to Fig. 4b, a
fraction of dry air (εa) is discharged into the wet-channel at point “A”
and the remaining moves along the rest of the channel. This process is
repeated again in point “B” and the end of the dry channel with two
other value of εb and εc. It should be noted that, contrary to the bottom

point of exchanger in which ′ = ″T T ,2 1 there is a gas mixture between
points A, B and C in the middle section of exchanger and that is why

≠T Tc A and ≠T TD E (see Fig. 4). This explanation is valid for hu-
midity ratio as well (note carefully to Table 1 for the value of each
characteristic or parameter in each location).

3. Mathematical model

In this section analytical formulation is presented for three-stage M-
cycle air cooler. ṁw is water mass flow rate, ṁ1 is mass flow rate of
primary air, c1 is specific heat of primary air, T1 is temperature of pri-
mary air, U is overall heat transfer coefficient between primary air and
water film, Tw is water film temperature, A1 is interface area of primary

Fig. 4. (a) A general view of single stage M-cycle (b) one dimensional view of three-stage M-cycle and (c) differential element on an arbitrary location.

Table 1
Temperature, humidity ratio and mass flow rate of each point shown in Fig. 4b.

Inlet of
primary air

Outlet of primary
air

Inlet of working air Outlet of working
air

A B C D E F

T ′T1 ″T1 ′ = ″T T2 1 ″T2 T1
A T2

B T2
C T2

D T2
E T2

F

W ′W1 ″ = ′W W1 1 ′ = ″ = ′W W W2 1 1 ″W2 = ′W W1
A

1 W2
B W2

C = ′W W1
D

1 W2
E W2

F

ṁ ′ṁ1 ″ = ′ṁ ṁ1 1
(1- εa - εb - εc)

′ = ′ṁ ε ṁ2 c 1 ″ = ′ṁ ṁ2 1
(εa + εb + ε )c

= ′ṁ ε ṁ1
A

a 1 = ′ṁ ṁ2
B

1
(εa + ε )b

= ′ṁ ṁ2
C

1
(εa + +ε εb c)

= ′ṁ ṁ ε1
D

1 b = ′ṁ ṁ2
E

1
(εc + ε )b

= ′ṁ ε ṁ2
E

c 1
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air, Lpa is flow length in direction of primary air and xpa (or x )1 is space
coordinate originated from the inlet of primary air. ṁ2 is mass flow rate
of working-air (humid air), i2 is specific enthalpy of working air, α2 is
convective heat transfer coefficient of working air, iυ is specific en-
thalpy of water vapor at water-film temperature, β is convective mass-
transfer coefficient, weq is humidity ratio of working air where it is in
equilibrium with water surface, w2 is humidity ratio of working air, σ is
wettability factor, A2 is interface area of working air, Lwa is flow length
in direction of working air and xwa (or x )2 is space coordinate originated
from the inlet of working air (for parallel and counter flow exchanger

=L Lwa pa =L). The perforations in an arbitrary locations along the
exchanger have divided the exchanger into separate lengths termed La,
Lb and Lc.

Energy balance of primary air, energy balance of wet channel, mass
balance of working air and energy balance for all differential element
should be written with regard to Fig. 4c. It is noted that the temperature
of primary air (T1), temperature of working air (T2), water fluid tem-
perature (T )w , and humidity ratio of working air (w )2 are the most
significant parameters in the analysis of M-cycle system by which the
performance characteristics of M-cycle cooler can be evaluated. Hence,
it will be tried to arrange the differential-equations based on dT2, dw2,
dT1, dTw and dweq. Furthermore, it is interested to arrange the equations
as a function of Number of Thermal Units (NTU) (for wet channel) and
Lewis factor (Lef ). Lewis factor plays a key role in the evaluation of heat
and mass transfer between liquids and gases. Lewis factor is di-
mensionless number and generally is defined as the ratio of thermal
diffusivity to mass diffusivity.

= αNTU A
ṁ c

2 2

2 a (1)

= αLe
β cf

2

a (2)

The assumptions for expansion and solving of these differential
equations are described as below in present study.

(1) Thermal diffusivity occurs only in the normal to flow direction and
all system is entirely insulated.

(2) The value of mass transfer coefficient, heat transfer coefficient and
specific heat of fluids are constant along exchanger surface.

(3) “weq” has a linear function with water surface temperature
(weq =F+eT )w

(4) Mass flow rate of sprayed water flow is so larger than the mass flow
rate of working air flow ( ≫ṁ ṁw 2). This assumption is applicable
for the type of M-cycle coolers in which the spray-water is the
mechanism for wetting the plate of exchanger. As described by Ren
[6] as well, several previous analytical models of single-stage M-
cycle were derived by assuming a constant or theoretically constant
spray water temperature [62], similar to that reviewed by Erns and
Dreyer [63] and utilized by Hasan [64,65] to interpretation of ex-
perimental data for getting the relevant heat and mass transfer
coefficient [6]. This assumption was recommended for the evalua-
tion of smaller systems and for initial design purpose. As the com-
plexity of Multi-stage is much more than the single-stage, this
model has been developed by that assumption as well.

(5) The whole surface of the plate is wetted ( =σ 1) and Lewis factor is

Fig. 5. Inputs and outputs of present analytical model.
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satisfied which means = =Le 1α
f βc

2
a

. Hence, = 1σ
Lef

(as said above,
Lewis factor is dimensionless number and generally is defined as the
ratio of thermal diffusivity to mass diffusivity).

It should be noted that, Lewis [66] showed that the Le is approxi-
mately equal with unity for air/water mixtures and that’s why most
researchers have used this assumption in their models.

With this assumptions, the inputs and outputs of the model will be
extracted as shown in Fig. 5.

According to Ren [6], the initial differential equations of energy and
mass conservation for primary air (dry channel) and working air (wet
channel) in a steady-state condition can be written as below.

Energy balance of primary air (dry channel) along differential ele-
ment dx:

Obviously, for an insulated exchanger, energy variation of primary-
air (along dx) equals with convective heat transfer rate between dry air
and wall (water film) which is shown mathematically by Eq. (3).

= −ṁ c dT U(T T)A dx
L1 1 1 w 1 1

1
(3)

Rearrangement based on d T1:

= −dT U
ṁ c

(T T)A dx
L1

1 1
w 1 1

1

pa (4)

Rewritten based on NTU:

= ⎡
⎣⎢

× ⎤
⎦⎥

−
α

αdT ṁ c
ṁ c

UA
A

A
ṁ c

(T T)dx1
2 a

1 1

1

2 2

2 2

2 a
w 1 1

(5)

= −∗
r

C
dT NTU(T T)dx

f
1 w 1 1

(6)

=
α

Where r UA
A

1

2 2 (7)

=∗C ṁ c
ṁ cf

1 1

2 a (8)

=dx dx
L1

1

pa (9)

Mass balance of working air in wet channel (two equations):

= −ṁ dw β(w w )σ A dx
L2 2 eq 2 2

2
(10)

= −dṁ ṁ dww 2 2 (11)

Eq. (10) is rearranged based on d w2:

= −dw β
ṁ

(w w )σ A dx
L2

2
eq 2 2

2

(12)

= − αdw σ (w w ) A
ṁ c

dxα2
βc

eq 2
2 2

2 a
22

a (13)

= − = −ddw σ
Le

(w w ) NTU dx & ṁ ṁ dw2
f

eq 2 2 w 2 2 (14)

Energy balance of wet channel:
Contrary to dry channel in which energy variation occurs only in the

form of sensible heat transfer, energy variation of working-air occurs in
the form of both sensible and latent heat transfer. In other words, en-
ergy variation of working air has spent on convective heat transfer
(between working air and water film) and evaporation of water (latent
heat) which mathematically is shown by Eq. (15).

= − + −αṁ di [ (T T ) i β(w w )σ]A dx
L2 2 2 w 2 υ eq 2 2

2

wa (15)

It should be noted that, i2 is specific enthalpy of humid air which
equals with the summation of specific enthalpy of dry air (i )a and a

coefficient of the specific enthalpy of water vapor (i )υ as shown below.

= +i i w i2 a 2 υ (16)

In Eq. (16) ia is specific enthalpy of dry air and iυ is specific enthalpy
of water vapor at constant pressure which are calculated from Eq. (17)
and (18) respectively.

=i c Ta a 2 (17)

= +i c T iυ υ 2 fg (18)

The constants ca in Eq. (17), cυ and ifg in Eq. (18) are specific heat of
dry air, specific heat of water vapor at constant pressure and eva-
poration heat of water at 0 °C.

=
=
=

c 1 KJ/kg
c 1.84 KJ/kg
i 2501 KJ/kg

a

υ

fg

Substituting Eq. (17) and (18) in Eq. (16) yields;

= + +i (c w c )T w i2 a 2 υ 2 2 fg (19)

Therefore, di2 can be obtained from i2 (Eq. (19)). It is noted that,
both w2 and T2 are variable in direction of x, and differential of the first
term ((ca + w c2 υ) T2) should be expanded via the “Product Rule for
Derivatives” as shown in Eq. (20).

= + + +di (c w c )dT T c dw i dw2 a 2 υ 2 2 υ 2 fg 2 (20)

= + + +di (c w c )dT dw (i T c )2 a 2 υ 2 2 fg 2 υ (21)

Now, di2 can be substituted in Eq. (15) and rearranged based on d T2:

+ + +

= − + −α

ṁ [(c w c )dT (i T c )dw ]

[ (T T ) i β(w w )σ]A dx
L

2 a 2 υ 2 fg 2 υ 2

2 w 2 υ eq 2 2
2

(22)

= − + −
+

−
+

+
αdT [ (T T ) i β(w w )σ] A dx

(c w c )ṁ L
(i T c )dw

(c w c )2 2 w 2 υ eq 2
2 2

a 2 υ 2

fg 2 υ 2

a 2 υ

(23)

= −
+

+
−

+
−

+
+

αdT (T T )A dx
(c w c )ṁ L

i β(w w )σA dx
(c w c )ṁ L

(i T c )dw
(c w c )

.2
2 w 2 2 2

a 2 υ 2

υ eq 2 2 2

a 2 υ 2

fg 2 υ 2

a 2 υ (24)

dw2 can be replaced by Eq. (14) and = dxdx
L 2

2

= −
+

+
−

+

−
+ −

+

αdT (T T )A dx
(c w c )ṁ L

i β(w w )σA dx
(c w c )ṁ L

(i T c ) (w w )NTU dx

(c w c )

2
2 w 2 2 2

a 2 υ 2

υ eq 2 2 2

a 2 υ 2

fg 2 υ
σ

Le eq 2 2

a 2 υ

f

(25)

= −
+

+
−

+

−
+ −

+

αdT (T T )A dx
(c w c )ṁ

i β(w w )σA dx
(c w c )ṁ

(i T c ) (w w )NTU dx

(c w c )

2
2 w 2 2 2

a 2 υ 2

υ eq 2 2 2

a 2 υ 2

fg 2 υ
σ

Le eq 2 2

a 2 υ

f

(26)

= −

+
+

−

+

−
+ −

+

( ) ( )

( )

α α

α
dT (T T )A dx

c 1 w ṁ

i β(w w )σA dx

c 1 w ṁ

(i T c ) (w w )NTU dx

c 1 w

2
2 w 2 2 2

a 2
c
c 2

υ 2 eq 2 2 2

2 a 2
c
c 2

fg 2 υ
σ

Le eq 2 2

a 2
c
c

υ
a

υ
a

f

υ
a (27)

After a time-consuming rearrangement of Eq. (27), following
equation is obtained for dT2.

=
⎡

⎣
⎢
⎢

− +
− − − ⎤

⎦
⎥
⎥ +( )

dT (T T )
(w w )(i i T c )

c
1

1 w
NTU dx2 w 2

σ
Le eq 2 υ fg 2 υ

a 2
c
c

2
f

υ
a (28)

According to Eq. (18) − =i i cυ fg υ T2, hence,
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=
⎡

⎣
⎢
⎢

− +
− ⎤

⎦
⎥
⎥ +( )

dT (T T )
(w w )(0)

c
1

1 w
NTU dx2 w 2

σ
Le eq 2

a 2
c
c

2
f

υ
a (29)

= − +
+( )

dT [(T T ) 0] 1

1 w
NTU dx2 w 2

2
c
c

2
υ
a (30)

= −
+

dT [(T T )] 1
(1 w )

NTU dx2 w 2
2

c
c

2υ
a (31)

= −
B

dT [(T T )] 1 NTU dx2 w 2
1

2 (32)

where

= +B 1 w c
c1 2

υ

a (33)

It should be noted that, as the value of w2 is so smaller than the
unity (1), the value of B1 is approximately equal to one.

Hence,

= −dT (T T )NTU dx2 w 2 2 (34)

Energy balance for differential element:

+ + + =ṁ c dT c T dṁ ṁ c dT ṁ di 0w w w w w w 1 1 1 2 2 (35)

Eq. (35) is rearranged based on d Tw:

= −⎡
⎣⎢

+ + ⎤
⎦⎥

dT c T dṁ
ṁ c

ṁ c dT
ṁ c

ṁ di
ṁ cw

w w w

w w

1 1 1

w w

2 2

w w (36)

dṁw, d T1 and di2 in Eq. (36) are substituted with Eq. (14), Eq. (6) and
Eq. (20) respectively and = −dx dx1 2.

= −
⎡

⎣

⎢
⎢

− −
−

+
+ + ⎤

⎦

⎥
⎥

∗

dT c T ṁ dw
ṁ c

ṁ c NTU(T T)dx

ṁ c

ṁ [(c w c )dT i dw ]
ṁ c

r
C

w
w w 2 2

w w

1 1 w 1 2

w w

2 a 2 υ 2 fg 2

w w

f

(37)

dT2 and dw2 are substituted with Eq. (34) and Eq. (14) respectively.

= −
⎡

⎣

⎢
⎢

− −
−

−

+
+ − + − ⎤

⎦

⎥
⎥

∗

( )

dT
c T ṁ (w w )NTU dx

ṁ c

ṁ c NTU(T T)dx

ṁ c

ṁ [(c w c ) T B NTU dx i (w w )NTU dx ]

ṁ c

r
C

w
w w 2

σ
Le eq 2 2

w w

1 1 w 1 2

w w

2 a 2 υ
T
B 2 1 2 fg

σ
Le eq 2 2

w w

ff

w
0 f

(38)

Rearrangement of Eq. (38) gives Eq. (39):

= ⎡
⎣⎢

− − − − − − ⎤
⎦⎥

∗dT B
i
c

σ
Le

(w w ) r(T T ) B (T T ) 1
C

NTU dxw 2
fg

a f
eq 2 1 w 3 w 2

w
2

(39)

where

= −B 1 R T
2

cw w
i
c
fg

a (40)

= +B 1 w c
c

υ
3 2

a (41)

=∗C ṁ c
ṁ cw

w w

2 a (42)

=R c
ccw

w

a (43)

It is noted that, B2 and B3 can be approximated with unity as well
and the equation can be written as below.

= ⎡
⎣⎢

− − − − − − ⎤
⎦⎥

∗dT
i
c

σ
Le

(w w ) r(T T ) (T T ) 1
C

NTU dxw
fg

a f
eq 2 1 w w 2

w
2

(44)

“weq” is the final parameter for which a relationship should be devel-
oped. Almost all analytical modeling of M-cycle have assumed that
“weq” has a linear function with water surface temperature Tw as below
where “F” and “e” are constant.

= +w F eTeq w (45)

Hence, differential equation of weq can be illustrated as below.

=dw e dTeq w (46)

Substituting Eq. (44) in Eq. (46) yields:

= ⎡
⎣⎢

− − − − − − ⎤
⎦⎥

∗dw e
i
c

σ
Le

(w w ) r(T T ) (T T ) 1
C

NTU dx ]eq
fg

a f
eq 2 1 w w 2

w
2

(47)

Eq. (6), (14), (34), (44) and (47) are five differential equations
(written as a set of differential equations in Eq. (44)) which solving
them through the exchanger from x=0 to x= L ( =x 0 to =x 1) can
provide required thermal specifications of M-cycle. However, these
equations should be further rearranged to get a systemized set of dif-
ferential equations.

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

= −

= −
= −

= ⎡
⎣

− − − − − − ⎤
⎦

= ⎡
⎣

− − − − − − ⎤
⎦

∗

∗

∗

r

r

dT NTU(T T)dx

dT NTU(T T )dx
dw (w w )NTU dx

dT (w w ) (T T ) (T T ) NTU dx

dw (w w ) (T T ) (T T ) NTU dx

1
r

C w 1 1

2 w 2 2

2
σ

Le eq 2 2

w
i
c

σ
Le eq 2 1 w w 2

1
C 2

eq
i
c

σ
Le eq 2 1 w w 2

e
C 2

f

f

fg

a f w

fg

a f w (48)

This system of equations can be solved for different operational
conditions of M-cycle cooler which depends on real working condition
of air cooler. However, according to assumption 4, the equations are
solved for the condition in which the mass flow rate of water is so much
than the mass flow rate of working air ≫ṁ ṁw 2. This condition is
occurred for coolers in which the system is worked based on sprayed
water. The concept of this condition is that the value of =∗Cw

ṁ c
ṁ c

w w
2 a

tends to ∞. Under this condition ∗
1

Cw
tends to zero and the dTw becomes

equal with zero which means that the temperature variation of water
film through the exchanger is zero and subsequently the water film
along the exchanger has the same temperature of water inlet tem-
perature. For this condition, wall temperature is the same temperature
of water temperature. Moreover, the value of d weq is zero as well.
Hence, the system of equations can be finally written as following.

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

= −

= −
= −

= ⎯ →⎯⎯⎯⎯ =

= ⎯ →⎯⎯⎯⎯ =

∗dT NTU(T T)dx

dT NTU(T T )dx
dw (w w )NTU dx

dT 0 T Constant

dw w Constant

1
r

C w 1 1

2 w 2 2

2
σ

Le eq 2 2

w
yields

w

eq
yields

eq

f

f

(49)

In this condition, all differential equations are transformed into
independent equations that can be integrated independently. It should
be noted that, Tw and weq (in the first and the third equations) are not
change along “x” (which is clear in the fourth and fifth equations). By
applying the assumption 6 and some rearrangements the system of
equations (49) is rewritten as below.
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⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

=

=

=

=
=

−

−

−

∗ NTU dx

NTU dx

NTU dx

T Constant
w Constant

r
C

w

dT
(T T ) 1

dT
(T T ) 2

dw
( w ) 2

w

eq

f

eq

1
w 1

2
w wa

2
2

(50)

For a given cooler, inlet temperature of dry air ( ′T1, ambient tem-
perature), Tw (water inlet temperature), ′w1 (humidity ratio of inlet air)
and geometrical characteristics are known-input parameters. NTU, “r”
and weq should be determined before the solving of the equations as
described in the following. These equations can be used vice versa as
well. Indeed, if the value of NTU and outlet conditions are given, the
geometries of cooler is determinable.

It is noted that, according to Fig. 4, the directions of xwa and xpa
which were chosen based on flow direction are vice versa
( = −dx dxwa pa). In other words, =x 1pa is the top side of exchanger and

=x 1wa is the bottom side of exchanger.

4. Solving the model for three-stage exchanger

Generally, Eq. (50) can be integrated from =x γ1 until =x γ2 via the
mathematical integration rule shown in Eq. (51) if the flow parameter
of working air (ṁ )2 does not change between γ1 and γ2 in order to have
an exclusive NTU in that distance. For example, for a single-stage ex-
changer all equations of Eq. (50) can be integrated from =x 0 until

=x 1 via the mathematical integration rule shown in Eq. (51). It is
noted that the flow parameter of working air (i.e. ṁ )2 is not changed
between =x 0 and =x 1 in a single stage M-cycle and then it is possible
to consider a unit NTU for all exchanger.

∫ +
=

+
+

c
ax b

dx c
a

Ln
aγ b
aγ bγ

γ 2

11

2

(51)

However, for a perforated M-cycle exchanger the Eq. (50) cannot be
integrated along the whole exchanger ( =x 0 until =x 1) all at once.
Therefore, the differential equations should be integrated through se-
parated lengths (between any two consecutive perforations) as shown
mathematically in Eq. (52).

∫ ∫ ∫ ∫= + + ⋯+
=

=
Function Function Function Function

x

x

0

1

0

γ

γ

γ

γ

11

1

2

n

(52)

In other words, the equations is firstly integrated from the beginning
of the plate until the first perforation (L )a and then from the first per-
foration to the second perforation (L )b etc. The thermal fluid condition
of each point were shown in Fig. 4 and Table 1 before. Now, equations
should be integrated for each three length separately. Eq. (51) should
be integrated for La, Lb and Lc.

Integration from top side of exchanger until the end of La:

∫ ∫

∫ ∫

∫ ∫

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

=

=

=

=
=

−

−

−

=
=

∗ =
=

=
+

=

=
+

=

=
+

=

=
+

=
L :

NTU dx

NTU dx

NTU dx

T Constant
w Constant

a

x

x
dT

(T T )
r

C L x

x

1

x
x dT

(T T ) L x
x

2

x
x dw

(w w ) L x
x

2

w

eq

1 0
1 La

L 1
w 1

La

fLa
a 1 0

1 La
L

2
Lb Lc

L

2 1 2
w 2 a

2
Lb Lc

L

2 1

2
Lb Lc

L

2 1 2
eq 2 a

2
Lb Lc

L

2 1

(53)

Integration for Lb:

∫ ∫

∫ ∫

∫ ∫

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
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=

=

=
=

−

−

−

=

=
+

∗ =

=
+

=

=
+

=

=
+

=

=
+

=

=
+
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NTU dx

NTU dx

NTU dx

T Constant
w Constant

r
C

w

b

x

x
dT

(T T ) L x

x

1

x

x
dT

(T T ) L x

x

2

x

x
dw

( w ) L x

x

2

w

eq

La
L f

La
L

eq

1

1
La Lb

L 1
w 1

Lb

Lb
b 1

1
La Lb

L

2 Lc
L

2
Lb Lc

L 2
w 2 b 2 Lc

L

2
Lb Lc

L

2 Lc
L

2
Lb Lc

L 2
2 b 2 Lc

L

2
Lb Lc

L

(54)

Integration for Lc:

∫ ∫

∫ ∫

∫ ∫

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

=

=

=

=
=

−

−

−

=
+

=
∗

=
+

=

=
=

=
=

=
=

=
=L :

NTU dx

NTU dx

NTU dx

T Constant
w Constant

r
C

c

x
x dT

(T T ) L x
x

1

x

x
dT

(T T ) L x

x

2

x

x
dw

(w w ) L x

x

2

w

eq

L
f

L1
La Lb

1 1 1
w 1

Lc

Lc
c

1
La Lb

1 1

2 0
2 Lc

L 2
w 2 c 2 0

2 Lc
L

2 0
2 Lc

L 2
eq 2 c 2 0

2 Lc
L

(55)

Now, the integrations can be solved in accordance with the Eq. (51)
(for left sides) as shown below.

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

= − −
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=
=

−

−

−

−
+

−

−
+

=

=
∗
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=
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=
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( )
( )

( )
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Ln
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NTU 1

NTU 1
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a

T T

T T
r

C L
L
L

T T

T T L
L L

L

w w

w w L
L L

L

w

eq

w 1
|x1
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Lb Lc
L

a
b c

eq 2|x2 1

eq 2
|x2

Lb Lc
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(56)
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w
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w
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eq
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(57)
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Solving, L :

Ln NTU 1

Ln NTU 0
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T Constant
w Constant

r
C

w

w

c
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T T L
L L

L
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T T L
L
L

w

w L
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L

w
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fLc

eq
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w 1|x1 1
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L
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c
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w 2
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Lc
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c

c

2
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L

2|x2 0
c

c

(58)

It is noted that again, the concept of =T1|x1 1 is the amount of T1 at
=x 11 . Moreover, NTULa, rLa and

∗CfLa mean the amount of NTU, r and ∗Cf
for section La. The symbols of parameters are substituted according to
Fig. 4c (For example, = ′ = ″=T T T2 2 1|x2 0 and =

=
T T2 B

|x2
Lb
L

) and the equa-

tions are rearranged based on exponential function as shown below.
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Therefore, obtained equations (algebraic equations) can be sum-
marized as below.
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(62)

As can be seen in Eq. (62), there are thirteen unknown parameters
including TA, ″T2, ″w2, ″T1, TB, WB, Tc, wc, TD, TE, wE, TF and wF. However,
there are only nine equations with said parameters. Hence, four other
equations should be arranged in order to become solvable the above
system of equations. These four new equations can be found from the
enthalpy balance and moisture balance between the points A, B, C and
D, E, F as below.

Enthalpy balance between A, B and C:

= +ṁ i ṁ i ṁ ic c A A B B (63)

In which specific enthalpy of air (i) can be evaluated by:

= + +i (c w c )T w iA a A υ A A fg (64)

= + +i (c w c )T w iB a B υ B B fg (65)

= + +i (c w c )T w iC a c υ c c fg (66)

So,

+ + = + +

+ + +

ṁ [(c w c )T w i ] ṁ [(c w c )T w i ]

ṁ [(c w c )T w i ]

c a c υ c c fg A a A υ A A fg

B a B υ B B fg (67)

Mass transfer of each point is substituted.

+ + ′ + + = ′ + +

+ ′ + + +

ε ε ε ε m

m ε ε

( )ṁ [(c w c )T w i ] ̇ [(c w c )T w i ]

̇ ( )[(c w c )T w i ]

a b c a

c b

1 a c υ c c fg 1 a A υ A A fg

1 a B υ B B fg

(68)

Removing ′m1 and replacing ′w1 with wA yields:

=

+ ′ + ′ + + + +

− + +
+ + +

ε w w ε ε

ε ε ε
ε ε ε

T

[(c c )T i ] ( )[(c w c )T w i ]

( )w i
( )(c w c )

a c b

a b c

a b c
c

a 1 υ A 1 fg a B υ B B fg

c fg

a c υ

(69)

Moisture balance:

= +ṁ w ṁ w ṁ wc c A A B B (70)

+ + = ′ + +(ε ε ε )w ε w (ε ε )wa b c c a 1 c b B (71)

=
′ + +

+ +
ε w ε ε

ε ε ε
W

( )w
( )

a c b

a b c
c

1 B

(72)

Enthalpy balance between D, F and E:

+ =ṁ i ṁ i ṁ iD D F F E E (73)

In which specific enthalpy of air (i) can be evaluated by:

= + +i (c w c )T w iD a D υ D D fg (74)

= + +i (c w c )T w iF a F υ F F fg (75)

= + +i (c w c )T w iE a E υ E E fg (76)

So,

+ + + + +

= + +

ṁ [(c w c )T w i ] ṁ [(c w c )T w i ]

ṁ [(c w c )T w i ]

D a D υ D D fg F a F υ F F fg
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Mass transfer of each point is substituted.
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ε m m ε

ε ε m
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( ) ̇ [(c w c )T w i ]

b c
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Removing ′m1 and replacing ′w1 with wD yields:

=
+ + ′ + + + − +

+ +

′ε ε ε ε
ε ε

T
[(c w c )T w i ] ( )[(c w c )T w i ] ( )w i
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(79)

Moisture balance:

+ =ṁ w ṁ w ṁ wD D F F E E (80)

′ + = +ε w ε ε ε( )w ( )wb c c b1 F E (81)

=
′ +

+
ε w ε

ε ε
W

( )w
( )

b c

c b
E

1 F

(82)

Therefore, thirteen final algebraic equations can be written a below
which can be solved easily now.
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It is noted that, each required parameter to evaluate a defined
characteristic is calculated in previous lines. For example, wE should be
known to calculate” WB”. Hence, wE has been evaluated in former line.
Thus, the model should be employed in the arrangements shown in Eq.
(83) to become ease solvable.

5. Evaluation of NTU, r, ∗Cf and weq

5.1. Evaluation of NTU

Evaluation of = αNTU A
ṁ c

2 2

2 a
means the evaluation of α2 that should

be evaluated for each separate section of exchanger. The value of α2 for
laminar flow is different from that for turbulent flow. Thus, it should be
discussed separately. The example is related to the three-stage.

5.1.1. Evaluation of NTU for laminar flow
Generally, the flow regime between the plates of M-cycle cooler is

turbulent flow because of the so small width of the channels and high
air flow rates. Nonetheless, in order to generalize the current model,
evaluation of NTU for laminar flow is presented as well. For any la-
minar flow between two parallel plates with uniform wall temperature
it has been demonstrated that the amount of Nusselt number is constant
7.54 [67]. Hence, the value of α2 can be calculated as below.

= → = → = = = = ×Nu α Nu α α α ααd
K

K
d

7.54 K
dL L L

h so
2

h

so
2, 2, 2, 2

h
a b c

(84)

K is the thermal conductivity of air fluid. The mount of K for air fluid
between temperature of 20 °C and 40 °C is around 0.026W/m°C. dh is
hydraulic dimeter of channel (with rectangular cross-section) and is
calculated with = = =×

+ +dh
4 A

P
4ab

2(a b)
2ab
a b

= = +

+

α 0.196 0.098( a b)
ab2 2ab

a b (85)

Although the value of α2 is the same for all sections (if flow regime is
laminar in all of them), mass flow rate of working air (ṁ2) is different
for each section. Hence, the amount of NTU for each section should be
evaluated separately which were termed NTULa, NTULa and NTULc

previously in equations. Thus, NTULa, NTULb and NTULc are expanded
as below.

= ×A b LL aa (86)

= ×A b LL bb (87)

= ×
= ′ + +

A b L
ṁ ṁ (ε ε ε )

L c

2,L 1 a b c

c

a (88)

= ′ +ṁ ṁ (ε ε )2,L 1 b cb (89)

= ′ṁ ṁ ε2,L 1 cc (90)
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′ + +
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+
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b L

ṁ (ε ε ε )c
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ṁ (ε ε ε )cL

2 L
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0.098(a b)
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1 a b c a
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1 a b c a
a

a

a (91)

= =
×

′ +
= + ×

′ +

+
α

a
NTU

A
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= =
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= + ×
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b L
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0.098( a b) L

c ṁ εL
2 L
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0.098(a b)
ab c

1 c a

b

a 1 c
c

c

c (93)

Specific heat capacity of dry air (c )a for temperature range of air
conditioning systems can be estimated by unity with a very good ac-
curacy.

5.1.2. Evaluation of NTU for turbulent flow
In the case of turbulent air flow between two parallel plates, Nusselt

number correlation of circular tube is employed to evaluate the Nusselt
number of plates by replacing the tube diameter by effective diameter
[68]. Although for 0.1 < Pr < 104 the accuracy of said method is
logical [68], a correlation which has been exclusively developed for
parallel plates is used in present research.

Depending on the working condition of M-cycle air cooler, Nusselt
number (heat transfer coefficient) of turbulent flow between two par-
allel plates can be calculated via different empirical correlations.
Uniform heat flux and uniform wall-temperature are two main working
conditions for which various empirical correlations have been provided
in literate. In this study wall temperature was assumed to be equal with
water inlet temperature (because of large mass flow rate of spread
water). Hence, uniform wall temperature condition is preferred in
present work.

For uniform wall-temperature, Shibni and Ozisik [68] presented a
solution (correlation) for Nusselt number of turbulent heat transfer flow
between parallel plates as shown in Eq. (94).

= + < < < <Nu Re Pr Pr Re12 0.03 , 0.1 10 , 10 10a a 4 4 61 2 (94)

= −
+ Pr

a 0.88 0.24
(3.6 )1 (95)

= + −a 0.33 0.5e Pr
2

0.6 (96)

The value of Pr for air fluid varies between 0.715 and 0.703 in
temperature range of 0–100 °C. Thus, for air conditioning systems a
constant value of air Prandtl number (0.7) can be employed. The mount
of Reynolds number can be evaluated via:

=Re ρ V d
μ

h

(97)
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=
+

d 2ab
a bh (98)

=V ṁ
ρ ab (99)

Hence, convective heat transfer coefficient can be calculated from
Eq. (101) and (103):

= Nuα K
d2

h (100)

=
Nu

α
K

d2,L
2,L

h
a

a

(101)

=
Nu

α
K

d2,L
2,L

h
b

b

(102)

=
Nu

α
K

d2,L
2,L

h
b

c

(103)

It should be noted that, although all Nu2,La and Nu2,Lb, Nu2,Lc are
calculated via Eq. (94), each section has its own value of Reynolds
number that should be replaced in Eq. (94). In other words, the value of
Nusselt number is different for each section. After evaluation of α2,La,
α2,Lb and α2,Lc the amounts of NTULa, NTULb and NTULc can be found
from below equations.

=
α

NTU
A

ṁ cL
2 L

2,L a
a

a

a (104)

=
α

NTU
A

ṁ cL
2 L

2,L a
b

b

b (105)

=
α

NTU
A

ṁ cL
2 L

2,L a
c

c

c (106)

5.2. Evaluation of r, ∗Cf

For a parallel or counter flow the value of A1 and A2 is the same.
Hence, the amount of “r” can be determined via Eq. (107).

= =
α

αr UA
A

U1

2 2
2 (107)

The overall heat transfer coefficient between primary air and water
film (U) can be estimated from Eq. (108).

=
+ +

U 1
1
α

δ
k

δ
k1

p

p
w
w (108)

where α1 is the heat transfer coefficient of primary air, δp, δw, kp and kw
are thickness of plate, thickness of water film, thermal conductivity of
plate and thermal conductivity of water respectively. The value of α1
can be calculated from the same method which was used to determine
the heat transfer coefficient of the working air. Thermal conductivity of
water is around 0.6W/m°C. Overall heat transfer coefficient should be
evaluated for La, Lb and Lc separately if the value of α1 is different for
each length (in turbulent flow). Therefore, rLa and rLb can be calculated
via below equations.

=r
U
αL

L

2,L
a

a

a (109)

=r
U
αL

L

2,L
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b

b (110)

=r
U
αL

L

2,L
c

c

c (111)

∗Cf for each section ∗CfLa
and ∗CfLb

can be determined via ( =c 1)a :

=∗C ṁ c
ṁ cf

1 1

2 a (112)

=∗C
ṁ c
ṁ L

f
1,L 1

2, a
La

a

(113)

=∗C
ṁ c

ṁf
1,L 1

2,L
Lb

b

b (114)

=∗C
ṁ c

ṁf
1,L 1

2,L
Lb

c

c (115)

5.3. Evaluation of weq

Humidity ratio of saturated air at inlet water temperature (w )eq can
be directly extracted from psychometric chart or can be evaluated based
on Ideal Gas Law from below correlation.

=
−

w 0.621945 P
P Peq

υ

υ (116)

where Pυ is partial pressure of water-vapor in moist air and P is atmo-
spheric pressure of moist air (in wet channel). For the zone in which
working air is in equilibrium with water surface (w )eq , Pυ is saturation
pressure (P )sat and can be calculated from Hyland and Wexler formula as
below and P can be assumed equal with the standard atmospheric
pressure (101,325 Pa).

⎜ ⎟= ⎛
⎝

− × ⎞
⎠

+ − ×

+ × × − × ×

+ × ×

− −

LnP 0.58002206 10
T

(1.3914993) (0.048640239 T )

(0.41764768 10 T ) (0.14452093 10 T )

(0.65459673 10 LnT )

sat
4

w
w

4
w
2 7

w
3

w (117)

T is in Kelvin in Eq. (117). Specific heat of primary air (c1) which
generally comprises of dry air and water vapor can be evaluated as
below (primary air is not necessarily completely dry).

=
+ ′

+
′

+ ′
c 1

1 w
c

w
1 w

c1
1

a
1

1
υ

(118)

where ca and cυ are specific heat of dry air and specific heat of water
vapor and are calculated as below.

= + × ′−c 1.0029 (5.4 10 T )a
5

1 (119)

= + × ′−c 1.856 (2 10 T )υ
4

1 (120)

6. Flowchart of the analytical model

Programming flow-chart is presented in Fig. 6.
It is noted that, the recognition of flow regime in this model is based

on Reynolds number. Hence, if the flow regime of Lc in the wet channel
is turbulent, the flow regime of the rest of the channel (Lb and La) are
turbulent as well. Because, the flow rate of Lb and La in the wet channel
is higher than the flow rate of Lb. However, if the flow regime of Lb is
laminar, no conclusion can be considered about the flow regime of the
rest of the channel. There is a similar condition in dry channel as well.
Indeed, if the flow regime of La in dry channel is laminar, the flow
regime of the rest of the channel (Lb and Lc) are laminar as well. This
principle has been used in flowchart.

7. Model validation

Equations obtained from analytical solution (Eq. (83)) is validated
from the results obtained from numerical solving of Eq. (50) and some
results from Pandelidis et al. [27] as described in the following.

Differential Eq. (50) (which was obtained from governing equa-
tions) is true for any single-stage M-cycle. Thus, it was written (as
presented in Eq. (121)) for each section (La, Lb and Lc)and then solved
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numerically (via Matlab software) simultaneously with their own
boundary conditions provided in Eq. (122). The limitation of each set of
differential equations can be seen in Eq. (121) too. The results obtained

from numerical solution are compared with the curve trend obtained
from the analytical model in two modes. In the first mode, the inlet air
temperature was kept constant and the water inlet temperature was

Fig. 6. Flowchart of three-stage regenerative M-cycle.
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changed in five different values. In the second mode, the water-inlet
temperature was remained in a constant value and the inlet air tem-
perature was varied at five different values. The input parameters for
which the numerical solution and analytical model were solved are
shown in Table 2.

Input flow and thermal parameters (Table 2) are the same used in
Pandelidis et al. [27]. Some results for three-stage M-cycle have been
provided in their study [27] (Fig. 5 in [27]). They validated their results
with experimental results performed by Riangvilaikul and Kumar [69].
Hence, the results of present model are compared with [27] as well. As
they do not change the water inlet temperature, the comparison is
performed only for the second mode in which the water-inlet tem-
perature is constant and the inlet air is varied.

Comparison between numerical results and analytical results is
presented in Fig. 7 which shows a good agreement between numerical
solution, analytical model and Pandelidis [27]. The deviation between
the model and results from Pandelidis [27] most probably is related to
the assumption 4 used in present model.
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8. Application analysis (an example)

As an application example of the model, two important parameters
of Multi-stage M-cycle air coolers including (La, Lb, Lc) and (εa, εb, εc)
are discussed. Variations of “L” and “ε” are presented in Table 3. In case
1, all perforations are in similar distance with each other. In Case2 and
Case 3 perforations (point “A” and “D” in Fig. 4) are closer to the
bottom side of exchanger. In Case4 and Case5, perforations are closer to
the top side of exchanger. Similar explanation is valid for “ε” as well.
The results of this evaluation is shown in Fig. 8a and b.

The programming code to simulate the model (written by Visual
Basic) is presented in Appendix which may help other researchers who
are interested to analyse the perforated M-cycle exchanger via this
analytical model.

As can be seen in Fig. 8a, case 5 and case 4 in which the perforations
(point “A” and “D”) are closer to the top side of exchanger, provides
better (lower) product air temperature. Case 2 and case 3 in which the

Table 2
Input parameters of analytical/numerical simulation.

Parameter Value

a (m) 0.003
b (m) 0.5
L (m) 0.7
La (m) 0.231
Lb (m) 0.231
Lc (m) 0.238
Inlet air temperature (C) 40 or variant
Humidity ratio of inlet air kg/kg 0.006
Inlet-air velocity (m/s) 3
εa 0.066
εb 0.066
εc 0.066

Fig. 7. Comparison between numerical solution, analytical model and
Pandelidis study [27]

Table 3
Variation of separated lengths and returned air flows.

Case 1 Case 2 Case 3 Case 4 Case 5

Effect of location of perforations (all ε = 0.2 and ′ṁ1 = 1 kg/s)
La 1 2 2.5 0.5 0.25
Lb 1 0.5 0.25 0.5 0.25
Lc 1 0.5 0.25 2 2.5

Effect of allocation of each ε (all Lx= 1 and ′ṁ1 = 1 kg/s)
εa 0.2 0.4 0.5 0.1 0.05
εb 0.2 0.1 0.05 0.1 0.05
εc 0.2 0.1 0.05 0.4 0.5
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perforations are closer to the bottom side exchanger provides higher
product temperature. Case 1 obtains product temperature between
these two groups. It is clear that the location of perforations sig-
nificantly influence the outlet temperature of the cooler. It is noted that,
it is not expected to achieve the same results for other primary air mass
flow rates because other flow rates may create turbulent or laminar
flows which provides different heat transfer coefficient. In other words,
the location arrangements of the perforations can be different for la-
minar and turbulent flows. On the other hand, various values of “ε”may
create different conditions in each section of exchanger. Indeed, the
flow pattern may act as a turbulent or laminar regime flow in each
section because of different flow rates in each section. It is obvious that,
all these criteria should be considered simultaneously to achieve an
optimum design condition. Hence, further exact studied are required in
this regard.

9. Conclusion

The present study provides an analytical modeling for multi-stage

(perforated) M-cycle air cooler. All former analytical modeling of M-
cycle coolers have been presented only for single-stage (without per-
foration) M-cycle cooler and multi-stage coolers have been evaluated
only via numerical or experimental methods which require further
time, cost and energy. The present model can provide the specifications
of any multi-stage M-cycle cooler very quickly. The comparison be-
tween analytical model, numerical solution and previous studies
showed a good agreement between them. Present model can be con-
sidered as powerful initial design utility. Furthermore, with significant
reduction of calculation time, this analytical model can be easily em-
ployed as an optimization utility as well by other researchers or in-
dustrial sectors. However, further study is required to eliminate the
main assumption of this model (assumption 5) to consider the water
temperature variation along the exchanger. The eliminating of this as-
sumption significantly increases the complexity of the model and no
analytical model (solution) is presented for multi-stage M-cycle cooler
in which the water (wall) temperature is varied along the exchanger.

Appendix A. Programming code by Visual Basic

Private Sub Command1_Click()
ThicknessOfPlate = Val(Text1.Text)
PlateThermalConductivity = Val(Text2.Text)
WaterFilmThicness = Val(Text3.Text)
a = Val(Text4.Text)
b = Val(Text5.Text)
L = Val(Text6.Text)
La = Val(Text7.Text)
Lb = Val(Text8.Text)
Lc = Val(Text9.Text)
InletAirTem = Val(Text10.Text)
InletHumidity = Val(Text11.Text)
InletairMassflow = Val(Text12.Text)
InletWaterTem = Val(Text13.Text)
Ea = Val(Text14.Text)
Eb = Val(Text15.Text)
Ec = Val(Text16.Text)
mdat1La = InletairMassflow
mdat1Lb = InletairMassflow ∗ (1 - Ea)

Fig. 8. (a) Effect of the locations of perforations and (b) effect of returned air flows to wet-channel.
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mdat1Lc = InletairMassflow ∗ (1 - Ea - Eb)
mdat2La = InletairMassflow ∗ (Ea + Eb + Ec)
mdat2Lb = InletairMassflow ∗ (Eb + Ec)
mdat2Lc = InletairMassflow ∗ (Ec)
ca = 1.0029 + (5.4 ∗ InletAirTem ∗ (10 ^ -5))
cv = 1.856 + (2 ∗ InletAirTem ∗ 10 ^ -4)
c1 = (ca ∗ (1/(1 + InletHumidity))) + (cv ∗ (InletHumidity/(1 + InletHumidity)))
ifg = 2501 'Kj/kg
Miuoo = 1.8 ∗ (10 ^ -5) 'Ns/m2
Pr = 0.7
K = 0.026/1000 'air KW/m0C
dh = (2 ∗ a ∗ b)/(a + b)
Kwater = 0.6/1000 'water KW/m0C
Ro = ((1 + InletHumidity)/(461.56 ∗ (0.62195 + InletHumidity))) ∗ (101325/(InletAirTem + 273.15)) 'm3/kg
V1La = (mdat1La/(Ro ∗ a ∗ b))
V1Lb = (mdat1Lb/(Ro ∗ a ∗ b))
V1Lc = (mdat1Lc/(Ro ∗ a ∗ b))
V2La = (mdat2La/(Ro ∗ a ∗ b))
V2Lb = (mdat2Lb/(Ro ∗ a ∗ b))
V2Lc = (mdat2Lc/(Ro ∗ a ∗ b))
Re1La = (Ro ∗ V1La ∗ dh)/Miuoo
Re1Lb = (Ro ∗ V1Lb ∗ dh)/Miuoo
Re1Lc = (Ro ∗ V1Lc ∗ dh)/Miuoo
Re2La = (Ro ∗ V2La ∗ dh)/Miuoo
Re2Lb = (Ro ∗ V2Lb ∗ dh)/Miuoo
Re2Lc = (Ro ∗ V2Lc ∗ dh)/Miuoo
ALa = b ∗ La
Alb = b ∗ Lb
Alc = b ∗ Lc
If Re2Lc > 10 Then
Nu2La = 12 + ((0.03 ∗ (Re2La ^ ((0.88 - (0.24/(3.6 + Pr)))))) ∗ (Pr ^ ((0.33 + (0.5 ∗ (2.7182 ^ (-0.6 ∗ Pr)))))))
Nu2Lb = 12 + ((0.03 ∗ (Re2Lb ^ ((0.88 - (0.24/(3.6 + Pr)))))) ∗ (Pr ^ ((0.33 + (0.5 ∗ (2.7182 ^ (-0.6 ∗ Pr)))))))
Nu2Lc = 12 + ((0.03 ∗ (Re2Lc ^ ((0.88 - (0.24/(3.6 + Pr)))))) ∗ (Pr ^ ((0.33 + (0.5 ∗ (2.7182 ^ (-0.6 ∗ Pr)))))))
Alfa2La = (K ∗ Nu2La)/dh
Alfa2Lb = (K ∗ Nu2Lb)/dh
Alfa2Lc = (K ∗ Nu2Lc)/dh
NTU2La = (Alfa2La ∗ ALa)/(mdat2La ∗ ca)
NTU2Lb = (Alfa2Lb ∗ Alb)/(mdat2Lb ∗ ca)
NTU2Lc = (Alfa2Lc ∗ Alc)/(mdat2Lc ∗ ca)
Else
Alfa2Lc = (0.107 ∗ (a + b))/(a + b)
NTU2Lc = (((0.107 ∗ (a + b))/(a ∗ b)) ∗ Alc)/(mdat2Lc ∗ ca)
If Re2Lb > 10 Then
Nu2La = 12 + ((0.03 ∗ (Re2La ^ ((0.88 - (0.24/(3.6 + Pr)))))) ∗ (Pr ^ ((0.33 + (0.5 ∗ (2.7182 ^ (-0.6 ∗ Pr)))))))
Nu2Lb = 12 + ((0.03 ∗ (Re2Lb ^ ((0.88 - (0.24/(3.6 + Pr)))))) ∗ (Pr ^ ((0.33 + (0.5 ∗ (2.7182 ^ (-0.6 ∗ Pr)))))))
Alfa2La = (K ∗ Nu2La)/dh
Alfa2Lb = (K ∗ Nu2Lb)/dh
ALa = b ∗ La
Alb = b ∗ Lb
NTU2La = (Alfa2La ∗ ALa)/(mdat2La ∗ ca)
NTU2Lb = (Alfa2Lb ∗ Alb)/(mdat2Lb ∗ ca)
Else
Alfa2Lb = (0.107 ∗ (a + b))/(a + b)
NTU2Lb = (((0.107 ∗ (a + b))/(a ∗ b)) ∗ Alb)/(mdat2Lb ∗ ca)
If Re2La > 10 Then
Nu2La = 12 + ((0.03 ∗ (Re2La ^ ((0.88 - (0.24/(3.6 + Pr)))))) ∗ (Pr ^ ((0.33 + (0.5 ∗ (2.7182 ^ (-0.6 ∗ Pr)))))))
Alfa2La = (K ∗ Nu2La)/dh
ALa = b ∗ La
NTU2La = (Alfa2La ∗ ALa)/(mdat2La ∗ ca)
Else
Alfa2La = (0.107 ∗ (a + b))/(a + b)
NTU2La = (((0.107 ∗ (a + b))/(a ∗ b)) ∗ ALa)/(mdat2La ∗ ca)
End If
End If
End If
If Re1La < 10 Then
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Alfa1La = (0.107 ∗ (a + b))/(a ∗ b)
Alfa1Lb = Alfa1La
Alfa1Lc = Alfa1La
U1La = 1/((1/Alfa1La) + (ThicknessOfPlate/PlateThermalConductivity) + (WaterFilmThicness/Kwater))
U1Lb = U1La
U1Lc = U1La
Else
Nu1La = 12 + ((0.03 ∗ (Re1La ^ ((0.88 - (0.24/(3.6 + Pr)))))) ∗ (Pr ^ ((0.33 + (0.5 ∗ (2.7182 ^ (-0.6 ∗ Pr)))))))
Alfa1La = (K ∗ Nu1La)/dh
If Re1Lb < 10 Then
Alfa1Lb = (0.107 ∗ (a + b))/(a ∗ b)
Alfa1Lc = (0.107 ∗ (a + b))/(a ∗ b)
Else
Nu1Lb = 12 + ((0.03 ∗ (Re1Lb ^ ((0.88 - (0.24/(3.6 + Pr)))))) ∗ (Pr ^ ((0.33 + (0.5 ∗ (2.7182 ^ (-0.6 ∗ Pr)))))))
Alfa1Lb = (K ∗ Nu1Lb)/dh
If Re1Lc < 10 Then
Alfa1Lc = (0.107 ∗ (a + b))/(a ∗ b)
Else
Nu1Lc = 12 + ((0.03 ∗ (Re1Lc ^ ((0.88 - (0.24/(3.6 + Pr)))))) ∗ (Pr ^ ((0.33 + (0.5 ∗ (2.7182 ^ (-0.6 ∗ Pr)))))))
Alfa1Lc = (K ∗ Nu1Lc)/dh
End If
End If
U1La = 1/((1/Alfa1La) + (ThicknessOfPlate/PlateThermalConductivity) + (WaterFilmThicness/Kwater))
U1Lb = 1/((1/Alfa1Lb) + (ThicknessOfPlate/PlateThermalConductivity) + (WaterFilmThicness/Kwater))
U1Lc = 1/((1/Alfa1Lc) + (ThicknessOfPlate/PlateThermalConductivity) + (WaterFilmThicness/Kwater))
End If
RLa = U1La/Alfa2La
RLb = U1Lb/Alfa2Lb
RLc = U1Lc/Alfa2Lc
CstarFLa = (mdat1La ∗ c1)/(ca ∗ mdat2La)
CstarfLb = (mdat1Lb ∗ c1)/(ca ∗ mdat2Lb)
CstarfLc = (mdat1Lc ∗ c1)/(ca ∗ mdat2Lc)
Pv = 2.7182 ^ ((-0.58002206 ∗ (10 ^ 4)/(InletWaterTem + 273.15)) + (1.39149) - (0.048640239 ∗ (InletWaterTem + 273.15)) + (0.417647 ∗

(10 ^ -4) ∗ ((InletWaterTem+ 273.15) ^ 2)) - (0.14452 ∗ (10 ^ -7) ∗ ((InletWaterTem+ 273.15) ^ 3)) + (0.654596 ∗ 10 ∗ Ln(InletWaterTem+
273.15)))

Weq = 0.621945 ∗ (Pv/(101325 - Pv))
TA = InletWaterTem - ((InletWaterTem - InletAirTem) ∗ (2.7182 ^ (-1 ∗ ((RLa/CstarFLa) ∗ NTU2La ∗ (La/L)))))
TD = InletWaterTem - ((InletWaterTem - TA) ∗ (2.7182 ^ (-1 ∗ ((RLb/CstarfLb) ∗ NTU2Lb ∗ (Lb/L)))))
WF = Weq - ((Weq - InletHumidity) ∗ (2.7182 ^ (-1 ∗ (NTU2Lc ∗ (Lc/L)))))
Tzegon1 = InletWaterTem - ((InletWaterTem - TD) ∗ (2.7182 ^ (-1 ∗ ((RLc/CstarfLc) ∗ NTU2Lc ∗ (1 - ((La + Lb)/L))))))
TF = InletWaterTem - ((InletWaterTem - Tzegon1) ∗ (2.7182 ^ (-1 ∗ (NTU2Lc ∗ (Lc/L)))))
WE = ((Eb ∗ InletHumidity) + (WF ∗ (Ec)))/(Ec + Eb)
WB = Weq - ((Weq - WE) ∗ (2.7182 ^ (-1 ∗ (NTU2Lb ∗ (Lb/L)))))
gg = Ea ∗ InletHumidity
hh = WB ∗ (Ec + Eb)
Wc = ((gg) + (hh))/(Ec + Eb + Ec)
Wzegon2 = Weq - ((Weq - Wc) ∗ (2.7182 ^ (-1 ∗ (NTU2La ∗ (1 - ((Lb + Lc)/L))))))
aa = ((ca + (InletHumidity ∗ cv)) ∗ TD) + (InletHumidity ∗ ifg)
bb = ((ca + (WF ∗ cv)) ∗ TF) + (WF ∗ ifg)
TE = ((Eb ∗ [aa]) + ((Ec) ∗ [bb]) - ((Ec + Eb) ∗ WE ∗ ifg))/((Ec + Eb) ∗ (ca + (WE ∗ cv)))
TB = InletWaterTem - ((InletWaterTem - TE) ∗ (2.7182 ^ (-1 ∗ (NTU2Lb ∗ (Lb/L)))))
aaa = ((ca + (InletHumidity ∗ cv)) ∗ TA) + (InletHumidity ∗ ifg)
bbb = ((ca + (WB ∗ cv)) ∗ TB) + (WB ∗ ifg)
Tc = ((Ea ∗ [aaa]) + ((Ec + Eb) ∗ [bbb]) - ((Ec + Eb + Ec) ∗ Wc ∗ ifg))/((Ea + Ec + Eb) ∗ (ca + (Wc ∗ cv)))
Tzegon2 = InletWaterTem - ((InletWaterTem - Tc) ∗ (2.7182 ^ (-1 ∗ (NTU2La ∗ (1 - ((Lb + Lc)/L))))))
Text17.Text = TA
Text18.Text = TD
Text19.Text = WF
Text20.Text = Tzegon1
Text21.Text = TF
Text22.Text = WE
Text23.Text = WB
Text24.Text = Wc
Text25.Text = Wzegon2
Text26.Text = TE
Text27.Text = TB
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Text28.Text = Tc
Text29.Text = Tzegon2
End Sub
Public Function Ln(x)
Ln = Log(x)/Log(2.718281)
End Function
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Chapter 4 

Analytical modelling (wet-surface theory), related experiments and 

sensitivity analysis 

This chapter has been submitted as 

Dizaji, H.S., Hu, E.J., Chen, L. and Pourhedayat, S., 2020. Analytical/experimental 

sensitivity study of key design and operational parameters of perforated Maisotsenko 

cooler based on novel wet-surface theory. Applied Energy, 262, p.114557. 

This chapter provides a novel analytical model which is based on the proposed 

wet-surface theory as described in the introduction section. This model is validated 

with our test-ring at the University of Adelaide in this chapter. Moreover, the impact 

of key operational and design parameters of the cooler on cooling characteristics of 

the cooler is evaluated via validated model in this chapter as well. The model works 

based on wet-surface theory in which the water flow rate is as possible as small to 

only keep the whole surface wetly while the cooler is working (any further water 

flow rate causes reduction of cooling capacity which will discuss in the paper). 

 The maximum cooling capacity of M-cycle cooler is achieved under this 

working condition in which the latent heat transfer plays a key role because of a 

high surface evaporation due to ultra-thin water film. Specific porous material is 

required in real application to instantly absorb the water and create the mentioned 

thin water film (without water stream). M-cycle under wet-surface theory is able to 

reduce the air temperature even if the water inlet temperature is the same as air inlet 

temperature. Moreover, contrary to the sprayed-water mechanism, the temperature 

of the middle plate is not constant along the plate and is dominated by water 

evaporation rate (which subsequently is dominated by thermal fluid condition 

through the cooler). 
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Analytical/experimental sensitivity study of key design and operational
parameters of perforated Maisotsenko cooler based on novel wet-surface
theory
Hamed Sadighi Dizaji⁎, Eric Jing Hu⁎, Lei Chen, Samira Pourhedayat
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H I G H L I G H T S

• A new analytical model is presented
for M-cycle based on novel we-surface
theory.

• The model is able to generate tem-
perature/humidity distribution.

• The validated model was employed for
sensitivity analysis of key parameters.

• Given M-cycle obtains its maximum
cooling capacity under Wet-Surface
theory.

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Keywords:
Maisotsenko cycle
Experimental
Sensitivity analysis
M-cycle
Air cooler
HVAC
Wet-Surface theory

A B S T R A C T

Only one analytical model was previously proposed for multi-stage M-cycle cooler which is based on Sprayed-
Water Theory in which the temperature of the wet plate was assumed constant, equal to water inlet temperature,
(as the water flow rate was assumed so high). Said preliminary model was only able to predict outlet char-
acteristics of the cooler (not parameters distribution along the cooler). This paper presents a new model for
multi-stage M-cycle cooler based on the novel Wet-Surface theory in which the temperature of the wet-plate
varies along the cooler (real working condition) and the model is able to generate the temperature/humidity
distribution in addition to the outlet characteristics. The concept of the novel Wet-Surface theory and its po-
tentials are discussed in the paper. Maximum theoretic cooling capacity of a given M-cycle cooler is obtained
when it works based on Wet-Surface Theory. The model is experimentally validated with a unique test-rig and
then the impacts of key operation and design parameters of multi-stage M-cycle cooler (i.e. inlet temperature,
humidity ratio, mass flow rate, mass flow ratio, channel gap, channel length, channel height and the location of
perforation) on its cooling characteristics (including outlet temperatures, outlet humidity ratio, wet-bulb ef-
fectiveness and dew-point effectiveness) are studied by the validated model.

1. Introduction

As can be seen in Fig. 1(a), all indirect evaporative coolers deal with

two channels so-called working (secondary or wet) channel and product
(primary or dry) channel. Contrary to conventional indirect evaporative
coolers (Fig. 1(a)) in which the air fluid of the working channel is
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provided from the ambient air, the air fluid of working channel in M-
cycle (Fig. 1b and c) coolers is supplied from the cooled down primary
air [1] which prevents cooling loss by existence heat in the ambient air.
In other words, as both sensible and latent heat transfer participate in
cooling mechanism of indirect evaporative air cooler, lower tempera-
ture of the secondary air at the inlet of the working channel increases
the quality of the sensible heat (from primary air into the secondary air)
along the cooler.

Main analytical models of indirect evaporative cooler are illustrated
in Fig. 2. The concept of Sprayed Water Theory (previous analytical
model by Sadighi Dizaji et al. [2] for multi-stage M-cycle cooler) is first
summarized in the following and then the concept of the present Wet-
Surface Theory is described.

The quality of latent heat transfer depends on the water evaporation
rate and consequently depends on the material of wet plate (the effect
of material will be explained). It is noted that, higher water flow rate
does not means higher water evaporation rate or higher cooling capa-
city. Indeed, higher water flow rate increases the thickness of the water
film and significantly reduces the water evaporation rate and cooling
capacity of the cooler. In such condition (in which water flow rate is so
higher than the air flow rate), the temperature of the wet-plate can be

assumed constant (equal to the water inlet temperature) and approxi-
mately only sensible heat transfer participates in cooling process. Under
this condition, which is termed Sprayed-Water Theory, water inlet
temperature should be colder than the air inlet temperature. Otherwise,
the cooler will not be able to reduce the air temperature because of
weak water evaporation rate (which results in weak latent heat
transfer). In Sprayed-Water Theory, the water temperature dominates
the wet-plate temperature; and air flow condition is not able to affect
the temperature distribution along wet-plate. Moreover, obtained
cooling capacity of the cooler is away from the ideal condition and it
severely depends on water inlet temperature (the concept of the present
Wet-Surface Theory is described as below).

Contrary to the previous sprayed-water theory [2], in Wet-Surface
Theory, the mass flow rate of the water is theoretically zero (compared
to the air flow rate) while the wet-plate is continuously wet (without
water stream on it) and the water evaporation from the surface does not
make it dry (in other words, the evaporated water from the surface is
continuously replenished). Practically (in real working condition), a
specific wet-plate material is required to comply the wet-surface theory.

Nomenclature

a gap between plates (m) (Fig. 5)
b width of the channel
A area (m2)
c specific heat (KJ/kg °C)
ca specific heat of dry air (KJ/kg °C)
cv specific heat of water vapor (KJ/kg °C)
cf

m c
m c

1 1
2 a

cw
m c
m c

w w
2 a

dh hydraulic diameter (m)
e in defined of weq (Fig. 6) or Napier number
F in defined of weq (Fig. 6)
iv specific enthalpy of water vapor (KJ/kg)
ifg evaporation heat of water at 0 °C
if̄g i /cfg a
kp thermal conductivity of plate (W/m2 °C)
L length of the channel in flow direction, (m)
La, Lb refer to Fig. 5
Le Lewis factor( )c

2
a

NTU number of heat transfer units
Nu Nusselt number
Pr Prandtl Number
q heat transfer rate (W)
r UA

A
1

2 2
Re Reynolds number
Rcw

c
c
w
a

R thermal resistance (m2K/W)
T temperature (°C)
Tf water film temperature (°C)
U overall heat transfer coefficient (KW/m2 °C)

V velocity (m/s)
m mass transfer rate (kg/s)
P atmospheric pressure of moist air
pv partial pressure of water vapor
w humidity ratio (kg moisture/kg dry air)
weq humidity ratio of moist air in equilibrium with water

surface (kg moisture/kg dry air)
ε mass transfer ratio

p thickness of the plate (m)
w thickness of water film (m)

coefficient of convective heat transfer (KW/m2 °C)
coefficient of convective mass transfer (W/m K)
wettability factor
density (kg/m3)

+1 eif̄g

Subscripts

1 or Pa primary air (product air)
2 or wa working air (secondary air)
dp dew point
f water film
wb wet-bulb
w water
A, B, C refer to Fig. 5
La, Lb refer to Fig. 5

Superscripts

′ inlet
′′ outlet

Fig. 1. (a) Conventional indirect evaporative cooler and (b) Single stage M-
cycle indirect evaporative cooler.

Fig. 2. Previous analytical models on indirect evaporative coolers.
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This material should be able to absorb the water and remain itself
thoroughly wet (like a tissue) and the evaporated water from the wet-
surface should be replenished with a small water mass flow rate (the
water mass flow rate is as possible as small to only keep the whole plate
continuously wetly without creation of water stream on the surface).
Under wet-surface theory, the rate of water evaporation is so high and
latent heat transfer plays a key role of heat transfer process. Besides, in
wet-surface theory, the temperature of the wet-plate varies along the
channel and it is not affected by water temperature. Contrary to the
Sprayed Water Theory, in Wet-Surface Theory, the air fluid flow dom-
inates the water evaporation rate and consequently dominates the
temperature distribution along the wet plate. In Wet-Surface Theory,
the cooler is able to reduce the air temperature even if the water inlet
temperature is the same as air inlet temperature. An ultra-thin specific
material (0.4 mm thickness) was employed in this research to comply
the wet-surface theory in real working condition and will be described
in the experimental section.

As the methodologies of the present work are analytical and ex-
perimental, the main analytical investigations of indirect evaporative
air coolers are summarized in the following. Maclaine and Banks model
[3] is one of the main initial analytical models of indirect evaporative
air cooler. Stotichkov [4], Alonso [5] and Ren [6] tried to expand the
Maclaine model by eliminating some of the assumptions. Hassan [7]
suggested a modified version of ε-NTU method which can be applicable
for indirect evaporative cooling. Liu [8] worked further on Hassan
model and tried to improve the model by removing some vague features
of the Liu model. Cui [9] employed a modified version of the well-
known LMTD technique (which is utilized in heat exchangers deals with
only sensible heat transfer) for M-cycle exchanger. Chen [10] con-
sidered the effect of condensation of air fluid in the performance of the
cooler which has not been applied in the previous models. Nonetheless,
all mentioned analytical models have been developed for single-stage
M-cycle cooler and they do not provide temperature/humidity dis-
tribution along the channels. Recently, Dizaji et al. [2] provided an
analytical model for multi-stage M-cycle cooler for the first time.
However, it was developed based on sprayed-water theory (as described
above) and similar to previous models it only is able to provide outlet
characteristics of the cooler without temperature/humidity distribution
through the channels. The main numerical and experimental studies of
M-cycle have been summarised in the review paper by Dizaji et al. [1]
and it is highlighted in Table 1.

Present research shows how an analytical model can be developed
and solved for multi-stage M-cycle cooler based on real working con-
dition (variant wet-plate temperature). The model was developed based
on wet-surface theory which was explained above. Besides, this model
is able to generate temperature/humidity distribution along the dry
channel, wet channel and wet plate for multi-stage M-cycle cooler. The
model is validated with a unique experimental test-rig and then is
employed to clarify the effect of all key design and operational para-
meters on cooling characteristic of the multi-stage M-cycle cooler. All
key operational and design characteristics are covered in this study
which can be applicable for real industrial-based applications. The test-
rig was built transparent to exactly clarify the working principle of the
M-cycle cooler.

2. Analytical model based on the novel Wet-Surface Theory

The concept of Wet-Surface Theory was explained completely in
introduction section. Fig. 4 illustrates a general parallel configuration of
indirect evaporative cooler. The related main governing equations of
the cooler (shown in Fig. 3) are presented in Eq. (1).

=

= =

= +

+ + + =

= +

Energy balance of primary air: m c dT U(T T )A dx̄
Mass balance of working air:
m dw (w w ) A and dm m dw

Energy balance of wet channel:
m di [ (T T ) i (w w ) ]A

Energy balance for differential element:
m c dT c T dm m c dT m di 0
linear function between W water surface temperatur

e: w F eT

1 1 1 w 1 1

2 2 eq 2 2
dx
L w 2 2

2 2 2 w 2 eq 2 2
dx
L

w w w w w w 1 1 1 2 2

eq

eq w

2

2
wa

(1)

Similar to the long simplification process presented by Dizaji et al.
[2] (Eqs. (1) to (48) in [2]), Eq. (1) can be rewritten as Eq. (2). In wet-
surface theory (present model), the water flow rate is as possible as
small to only the plate wetly without further water stream. The math-
ematical concept of wet-surface theory is that the value of Cw =
m c /m cw w 2 a tends to zero. By consideration of wet-surface theory the
Eq. (2) can be rewritten as Eq. (3).

Table 1
Some main experimental, theoretical and numerical researches on Maisotsenko coolers.

Ref. Studying on Evaluation method

[18] Proposing an improved M-cycle cooler Experimental
[19] Effect of geometry on M-cycle performance Numerical ε-NTU method
[20] Proposing a control technique for M-cycle to reduce power consumption Theoretical
[16] Comparison between eight types of Coolerado M-cycle coolers Numerical ε-NTU method
[21] Effect of flow/geometric parameters on M-cycle performance Numerical finite element
[22] Performance correlation for counter-flow M-cycle cooler Numerical/Experimental
[23] General study on M-cycle Numerical finite volume
[24] Experimental research of a novel indirect evaporative air cooler Experimental
[25] Counter-flow and cross-flow configurations are compared with each other Experimental
[26] Analysis of a commercialized M-cycle cooler Experimental
[27] Application of liquid desiccant for M-cycle coolers Experimental
[28] Analysis of M-cycle air cooler under Greek climate condition Experimental
[29] Proposing and analysis of a counter flow exchanger for Maisotsenko coolers Experimental
[30] Studying of an modified Maisotsenko cooler under low velocity condition Experimental
[17] Analysis of M-cycle air cooler under china climate condition Experimental
[31] Investigation of the cross-flow exchanger of M-cycle Experimental
[32] Providing an innovative exchanger for Maisotsenko coolers Experimental
[33] Operational performance and impact factors of a counter-flow M-cycle Experimental
[34] Consideration of wettability factor on M-cycle exchangers Experimental
[35] Impact of dehumidification on cross-flow exchangers of Maisotsenko cooler Experimental
[36] Application of solid desiccant for cross flow exchangers of M-cycle cooler Experimental

H. Sadighi Dizaji, et al. Applied Energy 262 (2020) 114557

3
66



=

=
=

= +

= +

dT (T T) NTUdx̄

dT (T T )NTUdx̄
dw (w w )NTUdx̄

dT [ (w w ) r(T T )

(T T )] NTUdx̄

dw [ (w w ) r(T T )

(T T )] NTUdx̄

1 w 1
r

C

2 w 2

2 Le eq 2

w
i
c Le eq 2 1 w

w 2
1

C

eq
i
c Le eq 2 1 w

w 2
e

C

f

f

fg
a f

w
fg

a f

w (2)

=

=
=

+ + =
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where NTU is Number of Heat Transfer Units ( )A
m c

2 2
2 a
, Cf is defined as

m c
m c

1 1
2 a
, “ r” is defined as UA

A
1

2 2
, Cw is calculated bym c

m c
w w
2 a

and Lef is Lewis

factor ( )c
2
a
. If the latest correlation of Eq. (3) rearranged as a function of

Tw and replaced in the first two correlations, Eq. (3) will be appeared in
the form of Eq. (4) (by applying a couple of assumptions including
satisfying of Lewis factor =( 1)Lef

and weq = F + eTw and some ar-
rangements.
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where = +1 eif̄gandif̄g = i /cfg a. Unlike Fig. 3 (which is parallel
flow), M-cycle cooler works in counter flow configuration (see Fig. 4).
Hence, for M-cycle cooler, the Eq. (4) is rewritten as shown in Eq. (5)
based on flow direction of dry air (x̄1).

= +

=

=

+

+
+ +

+

{i¯ F i¯ w T T } NTU

{i¯ F i¯ w (1 r )T rT } NTU
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dx̄ fg fg 2 2 1

1
(r )

dw
dx̄ fg

(r )
e fg

(r )
e 2 2 1

e
(r )

1
1 f
2
1

2
1 (5)

Eq. (5) can be written in a general form as shown in Eq. (6.1).
Analytical solution methods such as Laplace Transformations Tech-
nique or Euler Technique can be employed to solve the Eq. (6) as it is a
first order linear differential equation which contains constant coeffi-
cients. It is noted that, the coefficients “G, …, Q” are calculated for any
given cooler and then are replaced in Eq. (6.1). By solving the Eq. (6.1),
the temperature and humidity of the channels are obtained as the
functions of x̄1 (temperature and humidity distribution). Eq. (6.3) is the

boundary condition for Eq. (6.1) for single stage M-cycle cooler.
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'
1

2 1 1
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For a multi-stage M-cycle as shown in Fig. 5, (the aim of present
study), Eq. (6) should be written and solved separately for each section
of cooler (La and L )b with their own unique boundary conditions.
Moreover, the value of the parameters “G” to “Q” is different for each
section that is calculated separately for each section with its own
characteristics (the calculation process of the required parameters to
evaluate the constant coefficients G,…,Q are shown graphically in

Fig. 3. General view of the conventional indirect evaporative cooler.

Fig. 4. General view of the M-cycle air cooler.
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Fig. 6). Hence, Eq. (6) is written for a two-stage M-cycle as shown in Eq.
(7). It is noted that, the boundary condition of each section is different
and should be specified carefully (see Fig. 5). For example, the humidity
ratio of the inlet of working channel for section Lb is the same as the

humidity ratio of inlet primary air. However, the humidity ratio of the
inlet of working channel for section La is equal with Wc which has still
unknown value.

Fig. 5. A general view of two-stage M-cycle cooler.

Fig. 6. Calculation process of required parameters to evaluate the coefficients G, …, Q (example for La).
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For multi-stage cooler, after solving the Eq. (7) by analytical Laplace
Transforms Method the obtained results still contain some unknown
parameters including TA, Tc and Wc. They can be calculated from the
enthalpy balance and moisture balance between the points A, B, C as

described in [2] which resulted in below correlations for Tc andWc (Eqs.
(8) and (9)). By replacement of Tc and Wc in the analytical result, all
unknown parameters will be evaluated. Solving of Eq. (7) provides the
temperature of the dry channel, working channel and water tempera-
ture as a function of dimension (x) which is temperature/humidity
distribution. For obtaining the temperature of any location of the ex-
changer (for example outlet characteristics), the value of dimension “x”
of that location is placed in the equation.
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3. Sample solving of the model

The model is solved for a given two-stage M-cycle cooler with
characteristics shown in Table 2.

Required constants (including rLa, rLb, Cf,La, Cf,Lb, NTULa, NTULb e
nad F) to evaluate the coefficients of (G', … , Q')can be calculated for
the information provided in Table 2 as was shown schematically in
Fig. 6. The coefficients related to Lb i.e.G", … , Q" is similar to La (note
that all characteristics should be extracted from the characteristics of
Lb). After the calculation of required parameters for both La and Lb (in
two-stage), the coefficients of (G', … , Q' and G", … , Q") are simply
evaluated for that given cooler by Eq. (7.2). The obtained values of
coefficients are replaced in Eq. (7) which yields Eq. (10.1) as differ-
ential equation and 10.2 as the boundary conditions.
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Eq. (10.1) can be solved via analytical Laplace transformations
Technique (Maple software is helpful) and the temperature of dry side,
wet side and humidity of wet side are achieved as a function of x̄1 as
shown in Eq. (11) (“e” is Napier number in these equations). Hence, in
order to calculate the value of TA, T"2,W"2, T"1, TB andWB, their location
(i.e. =x̄ 01 and 1

2
for La and =x̄1

1
2 and 1 for Lb) should be substituted in

Eq. (11) which yields Eq. (12).

Table 2
Input parameters of the given two-stage M-cycle cooler.

Parameter Value

a (m) 0.005
b (m) 0.2
L (m) 1
La(m) 0.5
Lb(m) 0.5
Inlet air temperature (°C) 35
Humidity ratio of inlet air kg/kg 0.016
Inlet-air mass flow rate (Kg/s) 0.009
a 0.25
b 0.25

kp 0.00250 kW/m2C

p 0.0005 m
kw 0.6 × 10 3 kW/m2C

w 0.0001 m
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It is clear that the amount ofTc, Wc, TA (which comes from boundary
conditions) are still unknown and should be evaluated by Eqs. (8)–(9).
By calculation of Tc, Wc, TA and substitution in Eq. (12), the final value
of T"1, T"2 and W"2 will be 26.5 °C, 20 °C and 0.023 respectively.
Moreover, By substitution of Tc, Wc, TA in Eq. (11), the temperature/
humidity distribution along the channel will be obtained as the func-
tions of “ x̄1” as show in Eq. (13) which can be graphically drawn as seen
in Fig. 7 as well. It is noted that curve trends can vary depending on
operational and design parameters which will be discussed in the next
sections.

Fig. 7. Distribution for a two-stage M-cycle (a) primary air temperature, (b) working air temperature, (c) working air humidity ratio and (d) wet-surface temperature.
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4. Experiments and model validation

To validate the analytical model based on wet-surface theory, a
unique test-rig was developed which is able to simulate M-cycle
working condition based on wet-surface theory. The concept of wet-
surface theory was described in the introduction section. Fig. 8 shows a
general view of the test rig. The middle wet plate of the cooler is a
specific ultra-thin surface. One side of this material is similar to a tissue
while the other side is an impermeable nylon (see Fig. 8c). The tissue

side can absorb and remain the water on itself which (working channel)
avoid requirement of continuous water stream on the surface. The inlet
of the cooler was designed by 3-D printer (inside of the inlet contains
parallel plates) in order to provide uniform air flow through the channel
(see Fig. 8b).

The air fluid in the working channel goes through the tissue side and
causes evaporation of the water film which significantly reduces the
temperature of the wet plate (similarly, a cooling sense is felt on our
skin when a rubbing alcohol is spread on it is because of alcohol eva-
poration and latent heat). That is why it can be said that in wet-surface
theory, the fluid flow condition (which affects the water evaporation)
controls the temperature distribution on the wet-surface (not water
inlet temperature). A minimum water flow rates is required to keep the
surface wetly. In this case, the role of water distribution mechanism
which should continuously replenish the evaporated water on the sur-
face (with the minimum possible flow rate) is very important. Although
the minimum required water flow rate can be calculated, its

Fig. 8. (a) Experimental set-up including 1: Test-rig, 2: Blower, 3: Suction, 4: Dc supplier, 5: Hot-wire flow meter, 6: Humidity meter, 7: Temperature data logger, 8:
Hot-wire flow meter, 9: Water reservoir, 10: Air inlet, 11: Working air outlet, 12: Fan speed controller, 13: Water Rota-meter (b) parts of the test-rig and (c) Wet-
surface material (c1) tissue side (c2) nylon side.
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distribution method is a problem in the real application. In wet-surface
theory, lack of appropriate water distributer system may cause some
dry parts on the wet-surface. It is mentioned again that, although larger
water flow rate can rapidly replenish the water on the wet-surface, it
will reduce the role of the surface evaporation (latent heat) and sub-
sequently reduces the cooling capacity of the cooler.

As can be seen in Fig. 8, the primary air is injected to the dry
channel via an air fan. The speed of fan is controlled by a dimmer to
adjust arbitrary air flow rate. The body of the test-rig was made from 2-
cm thickness Plexiglass to provide a transparent insulator wall. The dry
air is going through the primary channel. A percentage of the air is
discharged into the working channel in the mid and at the end of the
channel. However, if the perforations in the middle of the channel are
covered, the cooler will work as a single-stage cooler. The water fluid is
spread on the wet-surface by a perforated tube (placed in a created
groove in the body of plexiglass) with a small flow rate. Another fan at
the end of the working channel sucks the working air. Another dimmer
controls the speed of this fan to provide different values of “ε”. The
water is collected into a reservoir. The temperature and air flow rate in
the primary and working channels (at inlets and outlets) are measured
by hot-wire mechanism and K-type thermocouples. The humidity ratio
of the working air at the end of the channel is recorded by a humidity
meter. A hair drier was employed to provide warmer inlet temperature.
A DC supplier was employed to apply Dc voltage to the air fans. The
name and characteristics of the instruments can be seen in Table 3. All
data was recorded at steady-state condition for different air flow rates
and inlet temperatures.

The geometric characteristics (see Fig. 8) and flow parameters (see
Fig. 9) of the experiments were put in the model and the outlet tem-
peratures and humidity ratio were evaluated and then were compared
with experimental measurements. The comparison is illustrated in
Fig. 9 which shows a good agreement with maximum deviation of 5%
for outlet temperature and maximum deviation of 14% for humidity
ratio. The model predicts higher cooling capacity (colder outlet tem-
perature and higher outlet humidity ratio) compared to the experi-
mental results. It is noted that, wet-surface theory (current model)
provides the maximum water evaporation rate because of lack of any
physical water stream on the surface and its other features described in
the introduction section. However, in real experimental condition, it is
not possible (at least with current technology) to ideally make the wet-
surface theory as water mass flow rate should be more than the eva-
porated water to prevent the creation of dry areas on the surface (which
makes water streams on the surface and causes reduction of the water
evaporation rate compared to the theoretical model). That is why outlet
humidity during the experiments is smaller than the analytical model
(poor water evaporation compared to the model). Moreover, the di-
rection of the water stream is the same as air flow in the model.
However, in the test-rig the water comes down from top side of the
plate and therefore its direction is normal to the air flow direction
(design limitations) which may increase the experimental errors. Be-
sides, some heat losses is always unavoidable during the experiments.
Hence, in real working condition, it should be tried to provide the
practical wet-surface as close as to the theoretical concept with novel
ideas on water distribution mechanisms (as described before, in Wet-
Surface theory, the wet plate is always thoroughly wet and water
evaporation does not make it dry at all).

5. Sensitivity analysis

After the validation, the model was employed to clarify the impact
of all operational and design parameters (presented in Table 4) on
cooling characteristics of a two-stage M-cycle cooler. The impact of all
parameters on outlet temperatures/humidity, wet-bulb and dew-point
effectiveness (so-called dry-bulb effectiveness) are studied where wet-

bulb and dew-point effectiveness are defined as T T

T T
"

wb

1
'

1

1
'

1,
'

and T T

T T
"

dp

1
'

1

1
'

1,
'

respectively. Refer to Fig. 5 to see the definition of design parameters.

5.1. Impact of operational parameters

Temperature, humidity, mass flow rate, mass flow ratios ( a and b)
are the main operational parameters of M-cycle cooler. The impact of
said parameters on outlet temperature of primary air, outlet tempera-
ture of working air, outlet humidity of working air, wet-bulb effec-
tiveness and dew-point effectiveness are evaluated and the results are
provided in Figs. 10–12.

As shown in Fig. 10(a), increment of primary air inlet temperature
(T )'

1 increases the outlet temperature of both primary air and working
air which is logical. However, it is noted that the temperature difference
between the inlet and outlet temperature of primary air (T T" )'

1 1 has
increased. In other words, the cooling capacity of M-cycle cooler is
increased by increment of environment temperature (inlet temperature
into the cooler). The increment slope of T"1 (outlet of primary air) is
more than the increment slope of T"2 because of the higher evaporation
rate in higher temperature. In other words, the portion of the heat (in
working air) which is allocated to water evaporation (latent heat) in-
creases with increment of air inlet temperature into the working
channel and that is why the humidity ratio at at the outlet of the
working channel has been increases by increment of T'1 as well. Actu-
ally, higher inlet temperature through the working channel increases
the water evaporation rate along the wet channel.

Although the cooling capacity of the cooler has enhanced with in-
crement of air inlet temperature, the wet-bulb effectiveness of the
cooler has been decreased. It is noted that, although the value of
T T"'

1 1 (numerator of effectiveness) increases with increment of T'
1,

the amount of T T'
1

'
1,wb (denominator of effectiveness) increases as

well with severer slope (as can be seen in Fig. 13) which leads to re-
duction of wet-bulb effectiveness. However, obtained curve behavior is
not a constant rule. Generally, the effectiveness of the cooler may en-
hance, decrease or even remain constant with increment of air inlet
temperature depending on other effective factors which can be seen in
previous studies. For example, Fig. 9 in [11], Fig. 8 in [12] and Fig. 9 in
[13] show that the increment of air inlet temperature reduces the
amount of wet-bulb effectiveness while Fig. 10(c) in [14] shows a
constant value of wet-bulb effectiveness for different values of air inlet
temperatures. However, wet bulb effectiveness has increased with in-
crement of air inlet temperature based on Fig. 11(a) in [15] (for relative
humidity of 30%). In the same figure (Fig. 11 (a) in [15]), wet bulb
effectiveness has reduced and remained constant with increment of air
inlet temperature for humidity ratio of 50% and 70% respectively.

As shown in Fig. 10(b), increment of air inlet humidity ratio causes
increment of outlet temperature of both primary air and working air
which is predictable. Humidity ratio through the working channel has
intensified as well. Indeed, higher inlet humidity reduces the heat ab-
sorbing capacity (latent heat) in the working channel. However,
warmer outlet temperature at the outlet of primary channel does not
mean smaller value of effectiveness as can be seen in Fig. 10(b). As was
explained before by [16] (Fig. 14(b) in that paper), enhancement of wet
bulb effectiveness with the increment of air inlet humidity can be ex-
plained by the nonlinearity of the saturation line (refer to Fig. 14(c) in

Table 3
Instruments used through the experiments.

Item Type Accuracy Resolution

Air fan TAFENG/D20R50 – –
12-channel data logger MTM-4208 0.5 °C 0.1 °C
Anemometer YK-2004AH 5% 0.1 m/s
Humidity meter YK-90HT 3% 0.01%
Water flow meter ROTA-METER 0.5 LPM 0.5 LPM

H. Sadighi Dizaji, et al. Applied Energy 262 (2020) 114557

9
72



[16]). Indeed, increment of air inlet humidity (for a constant air inlet
temperature) increases its wet bulb temperature with nonlinearity be-
haviour (while increment of outlet air temperature is linear). Hence,
increment of humidity of the inlet air reduces the numerator of effec-
tiveness equation with linear behavior and denominator with non-
linearity trend which results in the increment of wet bulb effectiveness.
It is mentioned that, other researches have provided other behaviour
for the variation of wet-bulb effectiveness with inlet humidity. For in-
stance, Fig. 10 (d) in [14] shows almost constant value of wet bulb
effectiveness for different values of inlet air humidity. However, Fig. 18
(a) in [17] shows a descending and ascending trend for wet bulb ef-
fectiveness against inlet humidity for counter flow and cross flow heat
exchanger respectively. Fig. 10 shows the effect of a and b on cooling
characteristic of the cooler while the other parameters of the cooler are
constant as shown in Table 4. As can be seen Fig. 11 (a), some peak
points have been created through the curves of outlet temperature of
the primary channel and working channel which can be discussed as
following.

It is obvious that, any change of a or b directly impresses the value
of Reynolds number in each part of channel. As can be seen in Fig. 5,
whole cooler can be divided into four parts including La,1 (dry channel,
section a), Lb,1 (dry channel, section b), La,2 (wet channel, section a) and
Lb,2 (wet channel section b). The Reynolds number of said parts are
shown with Re1La, Re1Lb, Re2La and Re2La respectively. Based on the
Reynolds number criteria, the flow regime of each part can be laminar
flow or turbulent flow. For each value of a and b the flow regime of
each part is provided in Fig. 13 (b). Fig. 13 (a) shows an example curve
behaviour extracted from Fig. 11. It is clear that, the flow regime
through the channels justifies the curve trends of Fig. 11. For example,

outlet temperature of working channel is increased with increment of
ain the range of 0.1 < a< 0.3 in which the flow regime through the
all dry channel is turbulent and flow regime through the all wet channel
is laminar. By further increment of a, the Reynolds number of part La,2
changes to turbulent flow as well which causes a sudden reduction of
outlet temperature of working channel. The reason of any peak point
which is shown in Fig. 11 is the variation of flow regime through one or
two parts of the cooler. Despite the ascending-descending behaviour of
outlet temperatures, no sharp change was observed for effectiveness.
Both wet-bulb and dew-point effectiveness increase with a small as-
cending slope for all value of air a or b which means that the nu-
merator and denominator of effectiveness change with almost the same
behaviour. Humidity ratio of working air is generally decreased with
increment of a or b which is logical. Indeed, higher a or b increases
the weight of existent dry air through the working channel which re-
sults in the reduction of working air humidity ratio. Fig. 12 illustrates
the variation of cooling characteristics of the cooler against the primary
air inlet mass flow rate. It is clear that, higher mass flow rate increases
the outlet temperature of the dry channel (as the cooling capacity of the
cooler is the same). Mass flow rate of the primary air does not show
significant effect on the effectiveness and humidity ratio of working air.

5.2. Impact of design parameters

Channel gap (a), channel height (b), channel length (L) and the
location of perforation (La/L) are the design parameters which are
studied in present study (refer to Fig. 5 for definition of the design
parameters). The range of all parameters was provided in Table 4. The
impacts of “a”, “b” on cooling characteristics are presented in Fig. 14
and the impact of “L” and “ La/L” is illustrated on Fig. 15.

Based on Fig. 14 (a), increment of channel gap (a), increases
(warmer) the outlet temperature of the cooler (both outlet temperature
of primary channel and working channel) which is predictable. In a
constant air inlet mass flow rate, increment of channel gap reduces the
air velocity (Reynolds number) through the channels which results in
the reduction of heat transfer rates between two channels. Humidity
ratio through the working channel has been reduced which shows that
the increment of channel gap reduces the water evaporation rate which
is another reason for the reduction of heat transfer rate (latent heat).
Both wet-bulb effectiveness and dew-point effectiveness has been re-
duced with increment of channel gap as well. Hence, it seems that,
channel gap plays a key role in the improvement of the cooling capacity
of the cooler.

Although, for a constant mass flow rate, increment of “b” reduces
the air velocity and Reynolds number (negative feature) of the fluid
flow, it increases the heat transfer area (positive feature). Hence, con-
trary to the channel gap, channel height does not impress sharply on
cooling parameters. Nonetheless, higher value of “b” has provided
colder outlet temperature and higher effectiveness which means that

Fig. 9. Comparison between analytical results and experimental data.

Table 4
Sensitivity analysis, related parameters and their ranges.

Operational parameters Design parameters

T'1 (°C) W'1 (g/kg) m'1 (kg/s) =a
m1

A

m1
' =b

m2
B

m1
'

a (mm) b (m) L (m) La
L

Impact of operational parameters impact of T'1 25–55 15 0.01 0.2 0.2 5 0.2 1 0.5
impact of W'1 45 5–25 0.01 0.2 0.2 5 0.2 1 0.5
impact of m'1 45 15 0.01–0.09 0.2 0.2 5 0.2 1 0.5
impact of a 45 15 0.01 0.1–0.7 0.2 5 0.2 1 0.5
impact of b 45 15 0.01 0.2 0.1–0.7 5 0.2 1 0.5

Impact of design parameters impact of a 45 15 0.01 0.2 0.2 1–5 0.2 1 0.5
impact of b 45 15 0.01 0.2 0.2 5 0.2–0.6 1 0.5
impact of L 45 15 0.01 0.2 0.2 5 0.2 0.4–1.2 0.5

impact of La
L

45 15 0.03 0.2 0.2 5 0.2 1 0.2–0.7
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the positive feature of the larger “b” overweight its negative feature.
Humidity ratio of the working air is increased with increment of “b”
which is due to the larger contact area between working air and wet
plate. However, its increment slope is small because of the smaller air
velocity in larger channel height.

As can be seen in Fig. 15 (a), larger channel length (in direction of
fluid flow) reduces the outlet temperature of the cooler which its reason
is larger heat transfer area again. The effect of channel length on outlet
temperature is linear. Humidity ratio of the working air has been en-
hanced which means higher water evaporation. Higher water eva-
poration is because of the further residence time of the air fluid along
the channel. Larger channel length has provided higher effectiveness as
well. However, it is mentioned that, larger channel length makes the
cooler bigger and heavier and the optimized value of channel length
should be selected. The impact of the location of middle perforation
(La/L) is provided in Fig. 15(b). Larger La/L means that the perforation
is closer to the end of the product channel. Both outlet temperature of
primary air and working air increase (warmer) and then decrease
(colder) with increment of La/L. It is noted that, one of the important

Fig. 10. (a) The impact of T'1 on T"1, T"2, W"2, wet-bulb effectiveness and dry-bulb effectiveness and (b) The impact of W'1 on T"1, T"2, W"2, wet-bulb effectiveness and
dry-bulb effectiveness.

Fig. 11. (a) The impact of a on T"1, T"2, W"2, wet-bulb effectiveness and dry-bulb effectiveness and (b) the impact of b on T"1, T"2, W"2, wet-bulb effectiveness and
dry-bulb effectiveness.

Fig. 12. (a) The impact of m'1 on T"1, T"2, W"2, wet-bulb effectiveness and dry-
bulb effectiveness.
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advantages of perforated M-cycle cooler “compared to the single stage”
is its smaller pressure drop. However, as in single stage M-cycle, the
residence time of fluid in through both dry channel and working
channel is higher (compared to the multi stage), its cooling capacity is

better. That’s why when the perforation of the present cooler (two-
stage) is closer to the beginning or end of the channel it works similar to
a single stage and provides colder outlet temperature. When the loca-
tion of the perforation is closer to the end of the channel, larger length

Fig. 13. Flow regime of each part of the cooler based on Reynolds criteria.

Fig. 14. (a) The impact of “a” on and “b” on cooling characteristics of the cooler.

Fig. 15. (a) The impact of “L” and La/L on cooling characteristics of the cooler.
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of the working channel deals with higher air flow rate (Reynolds
number) and causes higher water evaporation and colder outlet tem-
perature at the end of the working channel. If the perforation is placed
in the middle of the plate, the outlet temperature of the dry side will be
higher. However, it does not mean that the middle location is not ap-
propriate because of the frictional parameter role. Generally, the de-
signing process of the perforations should be performed based on both
thermal and frictional characteristics.

6. Conclusion

A new analytical model has been developed for multi-stage M-cycle
cooler in this paper based on novel wet-surface theory and then vali-
dated with a unique M-cycle test-rig. After validation, the impacts of
key operational and design parameters on the performance of a two-
stage M-cycle cooler were studied. The model works based on wet-
surface theory in which the wet plate is continuously wet without water
stream on the surface and the water evaporation does not make the wet
surface dry i.e. the evaporated water is continuously replenished on the
wet plate (practically, it requires a specific material for wet-plate which
is able to absorb the water and keep itself wet while the evaporated
water is replenished with a water flow rate as possible as small). The
model is able to generate the temperature/humidity distribution
through the channels. The effects of inlet temperatures, humidity, mass
flow rate, mass flow ratio, channel gap, channel length, channel height
and the location of perforation on the cooling performance of the cooler
have been studied which can be employed as an optimization tool in
either industrial sectors or academic researches as summarized below.

• Although the increment of the ambient temperature increases the
outlet temperature of the product air (going to room), the obtained
temperature-drop is enhanced which means increment of air cooling
capacity for warmer ambient temperatures.
• Despite the increment of temperature-drop (cooling capacity) for
warmer ambient temperatures, the wet-bulb effectiveness was re-
duced. Nonetheless, for other conditions, the wet-bulb effectiveness
may enhance or remain constant with increment of ambient tem-
perature as described in the paper.
• Changing of the discharged air into the wet channel, can increase or
decrease the outlet product temperature depending on the created
Reynolds number for each part of the cooler which varies based on
mass flow ratios.
• Smaller channel gap provides colder outlet temperature with a sharp
curve behavior. However, channel height does not impress the
cooling capacity as severity as channel gap.
• By moving the middle perforation towards the end of the dry
channel, the outlet temperature of product air is first increased and
then decreased so that the maximum (warmer) temperature occurs
when the perforation is in the middle of the channel.

Generally, the effect of each operational or design parameter may
vary depending on the values of other parameters which were specified.
Hence, the multiple optimization and simultaneous parameters varia-
tion are required to comprehensively clarify the behavior of M-cycle
cooler.
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Chapter 5 

Exergetic Study of M-cycle cooler 

This chapter has been published as 

Dizaji HS, Hu EJ, Chen L, Pourhedayat S. Comprehensive exergetic study of 

regenerative Maisotsenko air cooler; formulation and sensitivity analysis. Applied 

Thermal Engineering. 2019 Apr 1;152:455-67. (DOI: 

10.1016/j.applthermaleng.2019.02.067). 

This chapter evaluates the M-cycle cooler from the viewpoint of the second law 

of thermodynamics (Exergetic Study). The validated model Chapter 4 is employed 

to determine the outlet characteristics of the cooler and then the inlet and outlet 

characteristics are inserted to the exergetic model to evaluate the exergetic 

characteristics. The provided model is able to predict the exergetic characteristics 

of the M-cycle cooler successfully through the very short processing time 

(compared to the numerical simulation). Key operating and design parameters are 

varied to identify their impacts on exergetic factors of the M-cycle cooler. It is 

concluded that all geometric factors of the cooler should be selected through the 

optimisation process to minimise the exergy destruction of the cooling process. 
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H I G H L I G H T S

• A new exergetic analysis is provided for M-cycle cooler.

• Outlet characteristics of cooler is evaluated via analytical solution.

• Impact of all thermal/flow parameters on exergetic characteristics are discussed.

• Lower air flow rates provided higher exergetic efficiency.

• Higher air inlet temperature or flow rate increased exergy destruction.

A R T I C L E I N F O

Keywords:
Maisotsenko cycle
Exergy analysis
Air conditioner
M-cycle
Indirect evaporative

A B S T R A C T

Great achievements have been made in the researches of thermal characteristics of Maisotsenko air cooler.
However, a clear gap is still in existence on exergetic behaviour of M-cycle coolers. The significance of exergy
analysis of M-cycle air coolers is highlighted when they were employed as a temperature reducer of intake air of
gas-turbines in power plants to improve the efficiency of the system. Obviously, economic analysis of any
thermodynamic system underlines the exergetic evaluations of the whole parts of the system which has been
resulted in the emergence of professional expressions such as “exergoeconomic” and “thermoeconomic”. This
paper reports a comprehensive exergetic formulation and analysis of regenerative M-cycle air cooler which can
be employed in air conditioning industry and other applications of M-cycle cooler for better decision making.
Higher inlet air mass flow rate, inlet air temperature and air flow ratio between two channels caused further
exergy destruction. Exergetic efficiency of humid air is found more than the exergetic efficiency of dry air in M-
cycle coolers. In order to prevent the severe exergy destruction through the cooler, the air velocity along the
channels should not have large value. It is noted that, in the same total inlet air flow rate, the air velocity along
the channels can be controlled by the numbers of the employed parallel plates in the designing process of M-
cycle based on the second law of thermodynamics.

1. Introduction

The maximum useful work that can be obtained from a system as
the system comes into equilibrium with the surrounding is termed ex-
ergy. Contrary to the energy, exergy can generate and destroy through a
thermodynamic process. Exergy depends on the specifications of the
external environment (such as temperature, chemical composition and
electric potential). In other words, the availability of exergy is defined
by the contrast between the thermodynamic system and its environ-
ment. Hence, higher difference between the system and its environment
(in terms of temperature, gravitational, electrical or chemical potential)
means greater exergy of the mentioned thermodynamic system.

Moreover, different energy sources with identical energy potentials
may have different values of exergy. The energy in the form of heat has
less exergy than the same energy in the form of electricity (in an
identical value). In other words, 1KJ of electrical energy exactly cor-
responds to 1KJ of exergy. Any irreversibility (such as finite tempera-
ture difference or heat transfer causes exergy destruction in the pro-
cesses.

It is noted that, heat transfer is one of the major reasons of the
exergy destruction. On the other hand, the main role of any heat ex-
changer (such as cooler) is heat transfer. Hence, it seems that, any
improvement of thermal performance of heat exchangers (advantage)
results in exergy destruction (disadvantage). Nonetheless, exergetic
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analysis of heat exchangers is required as one of the main components
of energy production processes (in power plants). The exergy analysis of
a whole power plant for example, provides information on useful ac-
cessible work which is consumed by the process.

Maisotsenko cycle (M-cycle) is an indirect evaporative mechanism
which is employed to reduce the temperature of air fluid without
adding humid to the product air. The application of M-cycle has been
expanded to different engineering area including, cooling of electronic
devices, air temperature reducer of gas turbines etc. Generally, a single
unit of M-cycle comprises of two parallel channels one of which is wet
channel (because of the sprayed water) and the other is dry channel.

The air comes inside the cooler from the inlet of dry channel and its
temperature is gradually reduced because of the latent and sensible
heat transfer with wet channel (see Fig. 1 in Section 2). At the end of
the dry channel, a portion of the cooled air is discharged into the wet
channel. The enthalpy of discharged air (not necessarily its tempera-
ture) is continuously increased along the wet channel and finally goes
to the surrounding (outside of the room). The outlet air from dry
channel is employed as the product air. As there is no contact between
primary air and water fluid, the humidity ratio of the primary air re-
mains constant along the all cooling process.

Due to the widespread application of M-cycle cooling technology,

Nomenclature

a geometry in Fig. 3
b geometry in Fig. 3
A area (m2)
c specific heat (KJ/kg °C)
cp,da specific heat of dry air (KJ/kg °C)
cv specific heat of water vapor (KJ/kg °C)
dh hydraulic diameter (m)
e specific exergy (KJ/kg)
e constant in assumption 3
Ex total exergy (KW)
F defined in assumption 3
h specific enthalpy of primary air
h (T)f enthalpy of saturated water at T
s (T)f entropy of saturated water at T
iv specific enthalpy of water vapor (KJ/kg)
ifg evaporation heat of water at 0 °C
cf

m c
m c

1 1
2 a

cw
m c
m c

w w
2 a

kp thermal conductivity of plate (W/m2°C)

L length (m)
La, Lb lengths in Fig. 3 (m)
Le Lewis factor
NTU number of heat transfer units
Nu Nusselt number
P pressure (Pas)
p (T)sat saturated water pressure at T
Pw,0 partial pressure of water at reference temperature
Pr Prandtl Number
q heat transfer rate (W)
Rda specific ideal gas constant of air (KJ/kg K)
r UA

A
1

2 2
Re Reynolds number
Rcw

c
c
w
a

R thermal resistance (m2 K/W)
s entropy generation (KW/K)
T temperature (°C)
Tf water film temperature (°C)
U overall heat transfer coefficient (KW/m2 °C)

V velocity (m/s)
m mass transfer rate (kg/s)
P atmospheric pressure of moist air
pv partial pressure of water vapor
Rv specific ideal gas constant of water vapor
weq humidity ratio of moist air in equilibrium with water

surface (kg moisture/kg dry air)

Special characters

ε mass transfer ratio between working and primary air
p thickness of the plate (m)
w thickness of water film (m)

convective heat transfer coefficient (KW/m2 °C)
convective mass transfer coefficient (W/m K)
wettability factor
density (kg/m3)
humidity ratio (kg moisture/kg dry air)
mole fraction ration of air

Ψ exergetic efficiency

Subscripts

des destruction
in, da inlet of dry air
in, w inlet of water
out, da outlet of dry air
out, ha outlet of humid air
out, w outlet of water
0 reference condition (25 °C)
1 or Pa primary air (product air)
2 or wa working air (secondary air)
f water film
wb wet-bulb
w water
A, B point A, B in Fig. 3

Superscripts

′ inlet
″ outlet

Fig. 1. Regenerative M-cycle cooler and related control volume.
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great thermal researches (numerical, experimental and analytical) have
been presented by many investigators. As the thermal evaluations of M-
cycle is not the main aim of present research, the researches in this
regard are briefly illustrated in Table 1. All thermal investigations of M-
cycle was previously reviewed by Mahmood et al. [1] and recently by
Sadighi Dizaji et al. [2]. The exergetic evaluations of indirect eva-
porative cooling is summarized in the following.

Caliskan et al. [3,4] studied the thermodynamic performance of a
novel form of Maisotsenko coolers. They evaluated the effect of dead
state condition on various thermodynamic parameters of M-cycle
cooler. However, it seems that they have employed direct evaporative
control volume for M-cycle cooler (which is indirect evaporative
cooling). In other words, M-cycle cooler contains two input streams
(dry air and water flow) and three output streams (dry air, humid air
and water). They have not considered exergy output by dry air in their
control volume and humid air is going inside the room (Fig. 1 in [3]).
Eslamian [5] studied the cross flow M-cycle cooler using entropy gen-
eration minimisation analysis. Both tube type and plate type indirect
evaporative coolers were investigated. Exergetic study of indirect eva-
porative cooling by CFD simulation was carried out by Chengqin [6].
Chen et al. [7] and Ren et al [8] showed that the exergetic efficiency of
indirect evaporative cooling process is higher that the exergetic effi-
ciency obtained in direct evaporative cooling process. Farmahini-Far-
ahani et al. [9] experimentally investigated the exergetic characteristics
of both direct and indirect evaporative coolers for different cities (cli-
mate conditions) of Iran. An independent fan was employed to provide
the secondary air of indirect evaporative cooler (conventional indirect
evaporative coolers) which means that it does not work based on M-
cycle concept in which a portion of cooled outlet primary air is em-
ployed as the secondary air. Hence, obviously its exergetic behaviour
will be different from M-cycle which is studied in present study.

The emergence of some professional expressions such as “ex-
ergoeconomic” or “thermoeconomic” implies the importance of ex-
ergetic analysis of any thermodynamic system. However, as described
above, extremely few studies have been carried out for the evaluation of
M-cycle technology from the view point of second law of thermo-
dynamics. No investigation of the exergetic evaluation of regenerative
M-cycle cooler and also no analytical sensitivity analysis of input
thermal/fluid parameters on exergetic characteristics of M-cycle cooler
have ever been reported. That is why a comprehensive exergetic ana-
lysis including formulation and sensitivity analysis are presented for

regenerative Maisotsenko air cooler in this research. The required
outlet specifications of cooler to calculate the exergetic parameters
were obtained via thermal analytical solution of M-cycle cooler.

2. Formulations of exergetic characteristics

Fig. 1 shows a regenerative M-cycle cooler. The whole cooler is
considered as a control volume as shown in Fig. 1. Inlet dry air and inlet
water flow import exergy into the control volume. Outlet dry air
(product air), outlet humid air (working air) and outlet water flow exit
the exergy from the control volume. Hence, exergy balance for re-
generative M-cycle cooler is illustrated as below.

=Ex Ex Ex Exdes in out loss (1)

where Exdes, Exin and Exloss are exergy destruction rate, total exergy
input rate (by inlet dry air and inlet water flow) and total exergy output
rate (by outlet dry air, outlet humid air and outlet water flow) and Exloss
is exergy losses rate. Hence, Eq. (1) can be rewritten as below.

= + + +Ex [Ex Ex ] [Ex Ex Ex ] Exdes in,da in.w out,da out,ha out.w loss (2)

where Exin,da and Exin.w are exergy input rate of dry air and exergy input
rate of water. Exout,da, Exout,ha and Exout.w are exergy output rate of dry
air, exergy output rate of humid air and exergy output rate of water
flow respectively. Total exergies (E) are multiplication of mas flow rate
and specific exergy ( = ×E m e). Thus, Eq. (2) is rewritten as Eq. (3).

= + +
+

Ex [m e m e ] [m e m e
m e ] Ex

des in,da in,da w,in w,in out,da out,da ha out,ha

w,out w,out loss (3)

where ein,da and ew,in are specific input flow exergy of dry air. eout,da,
eout,ha and ew,out are specific output flow exergy of dry air, specific
output flow exergy of humid air and specific output flow exergy of
water flow respectively. Water outlet flow rate is calculated from

=m m m ( " )out,da w,in ha 2 2
' . Specific flow exergy of any humid air

(e )ha at temperature (T) is calculated by Eq. (4). Indeed, as described by
Shukuya et al. [41], the specific total flow exergy of humid air can be
obtained by definition of the physical flow exergy applied to a mixture
of ideal gases ([41] and Bejan, 1988 [42]).

Table 1
Numerical and experimental investigations of M-cycle coolers.

References Studying on Evaluation method

[10–12] Effect of geometry on M-cycle performance Numerical ε-NTU method
[13] Effect of flow parameters on M-cycle performance Numerical ε-NTU method
[14] Comparison between eight types of Coolerado M-cycle coolers Numerical ε-NTU method
[15–17] Effect of flow/geometric parameters on M-cycle performance Numerical finite element method
[18–20] Cross flow configuration of M-cycle Numerical finite difference method
[21,22] General study on M-cycle Numerical finite volume method
[23,24] General study on M-cycle Statistical tools (RSM)
[25] General study on M-cycle Statistical tools (Neural network)
[26] Experimental research of a novel indirect evaporative air cooler Experimental
[27] Counter-flow and cross-flow configurations are compared with each other Experimental
[28] Analysis of a commercialized M-cycle cooler Experimental
[29] Application of liquid desiccant for M-cycle coolers Experimental
[30] Analysis of M-cycle air cooler under Greek climate condition Experimental
[31] Proposing and analysis of a counter flow exchanger for Maisotsenko coolers Experimental
[32] Studying of an modified Maisotsenko cooler under low velocity condition Experimental
[33] Analysis of M-cycle air cooler under china climate condition Experimental
[34] Investigation of the cross-flow exchanger of M-cycle Experimental
[35] Providing an innovative exchanger for Maisotsenko coolers Experimental
[36] Operational performance and impact factors of a counter-flow regenerative M-cycle Experimental
[37] Consideration of wettability factor on M-cycle exchangers Experimental
[38] Impact of dehumidification on cross-flow exchangers of Maisotsenko cooler Experimental
[39] Application of solid desiccant for cross flow exchangers of Maisotsenko cooler Experimental
[40] Analytical thermal solution of multi-stage M-cycle cooler Analytical
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= + + +

+ + +
+

+ w

e (c c )T T
T

1 ln T
T

(1 )R T ln p
p

R T [(1 )ln 1
1

ln ]

ha p p 0
0 0

da 0
0

da 0
0

0

,da v

(4)

where cpda is specific heat of dry air (1.003 KJ/kg K), is humidity ratio
(specific humidity) which represents the number of kilograms of water
to 1 kg of dry air in the given mixture, cpv is specific heat capacity of
water vapor (1.872 KJ/kg K), T0 is reference temperature (dead state
temperature = 25 °C), T is dry-bulb temperature of air, is mole
fraction ratio of air which represents the number of moles of water
corresponding to 1 mol of dry air in the given mixture (≈1.608 ), Rda
is specific ideal gas constant of dry air (0.287 KJ/kg K), P is pressure of
air, p0 is reference pressure (dead state pressure = 1 atm) and 0 is
mole fraction ratio of the dead state condition (1.608

0 = 1.608 0.622

1p
psat T

0
0 ( 0)

= 0.0040). Specific flow exergy of any dry air

(e )da at temperature (T) is deduced by setting “ ” and " " to zero in Eq.
(4). Therefore, specific flow exergy of dry air is evaluated from Eq. (5).

= + + +pe (c )T T
T

1 ln T
T

R T ln
p

R T Ln(1 )da p 0
0 0

da 0
0

da 0 0,da (5)

Specific flow exergy of liquid water (e )w at temperature T is cal-
culated by (Bejan, 1988 [42]):

= +e h (T) h (T ) T (s (T) s (T )) (p p (T)) (T)

R T ln(
P

P
)

w f g 0 0 f g 0 sat f

v 0
w,0

sat(T )0 (6)

It is noted that, P
P

w,0
sat(T0)

is 0and the value of (p p (T)) (T)sat f is

negligible compared to the R T ln( )v 0
P

P
w,0

sat(T0)
. Hence, specific exergy of li-

quid water can be approximated via following correlation.

=e h (T) h (T ) T (s (T) s (T )) R T ln( )w f g 0 0 f g 0 v 0 0 (7)

where h (T)f is Enthalpy of saturated water at temperature T, h (T )g 0 is
Enthalpy of saturated water vapor at reference temperature, s (T)f is
Entropy of saturated water at temperature T, Ts ( )g 0 is Entropy (gas) of
saturated water vapor at reference temperature, p (T)sat is Saturated

water pressure at temperature T, (T)f is specific volume rate of satu-
rated water at temperature T, Rv is Specific ideal gas constant of water
vapor (0.4165 KJ/kgK), Pw,0 is partial pressure of water at reference
temperature. Moreover, Exloss in Eq. (3) is evaluated from Eq. (8) [4].

=Ex Q (1 T
T

)loss cooling
0

1
' (8)

=Q m (h h )cooling out,da in,da out,da (9)

Specific enthalpy of primary air (dry air) is calculated from Eqs. (10)
and (11) in inlet and outlet (h andhin,da out,da).

= + +h (c c )T hin,da a 1
'

in,da 1
'

fg (10)

= + +h (c c )T hin,da a 1
'

out,da 1
'

fg (11)

According to Eqs. (4)–(6), specific exergy of dry air (inlet and
outlet), humid air (outlet) and water flow (inlet and outlet) in Eq. (3)
are evaluated via below correlations.

= + + +e c T T
T

1 ln T
T

R T ln
p
p

R T ln(1 )in,da p 0
1
'

0

1
'

0
da 0

1
'

0
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out,ha p 2 p 0
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2

0
2 da 0

2

0

a 0 2
0

2
2

2
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(14)

=e h (T ) h (T ) T (s (T ) s (T )) R T ln( )w,in f w,in g 0 0 f w,in g 0 v 0 0 (15)

=e h (T ) h (T ) T (s (T ) s (T )) R T ln( )w,out f w,out g 0 0 f w,out g 0 v 0 0 (16)

The ratio of exergy destruction to dead state is termed entropy
generation (s) and is evaluated via Eq. (17). The Exergetic efficiency of
M-cycle cooler is defined as Eq. (18). A brief view of exergetic calcu-
lations is schematically shown in Fig. 2 (relative humidity, temperature

Fig. 2. A brief view of exergetic formulation of exergy destruction.
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and pressure of dead state condition are 0.12, 273 K and 1Atmosfere
respectively).

=s Ex
T

des

0 (17)

= Ex
Ex

out

in (18)

As shown in Fig. 2, calculation of exergetic characteristics of M-
cycle cooler depends on only inlet and outlet parameters (including
inlet/outlet temperature and humidity). Although inlet parameters of
any given cooler are available, the outlet characteristics of the cooler
(T"2, w"2, T"1 and Tw,out) are not available. Hence, in order to provide a
sensitivity exergetic analysis of M-cycle cooler (by changing of inlet/
geometric/flow parameters), the outlet parameters should be calculated
for any value of input parameters. Outlet characteristics (which is re-
lated to thermal analysis) are calculated via analytical solution pre-
sented in appendix A. As explained in the appendix A, the analytical
thermal model of regenerative M-cycle results in following non-
homogeneous system of first order linear differential equations with
constant coefficients (Eq. (18)) that can be solved analytically via dif-
ferent methods such as Euler method or Laplace transformations tech-
nique. The model was developed with below assumptions for M-cycle
cooler shown in Fig. 3.

Assumptions.

1. No thermal diffusivity parallel to the flow direction and cooler is
insulated

2. Heat/mass transfer coefficients are constant along the exchanger
3. “weq” has a linear function with water surface temperature

(weq =F+ eT )w
4. The system works on wet-surface mechanism which means that

water mass flow rate is negligible compare to the air flow rate (mw
< < m2) which results in variant wet-wall temperature.

5. The plate is completely wetted ( = 1) and Lewis factor is satisfied
which means = 1Lef

.

= + + +

= + + +

= + + +

< <

G Hw IT JT

K Lw MT NT

O Zw VT QT

Differential equations |0 x 1

T
x

T
x
W
x

d
d 2 2 1

d
d 2 2 1

d
d 2 2 1

1

1
1

2
1
2
1 (18)

= = =
= = =
= = =

x
x x
x x

Boundary conditions
T ( 0) T T'
T ( 1) T ( 1)

W ( 1) W ( 1)

inlet1 1 1

2 1 1 1

2 1 1 1 (19)

Fig. 3. Schematic view of regenerative M-cycle cooler.
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For any given cooler, the values of all constant coefficients (G, …, L)
in Eq. (18) can be calculated with input parameters. The analysis pro-
cedure (and cooler characteristics) is shown in Table 2. It is noted that,
inlet temperature and humidity ratio are related to boundary conditions
and do not have effect on the values of constant coefficients (G, …, L).

A general brief view of the exergetic analysis process of M-cycle is
shown in Fig. 4. As was described, inlet and outlet parameters of cooler
(including inlet/outlet temperatures and humidity) are required to
evaluate the exergetic characteristics of M-cycle and therefore the
outlet parameters are calculated first by analytical solution from given
inlet parameters (for a given cooler) and then the exergetic character-
istics are calculated using inlet and obtained outlet parameters. The
process is repeated with new values of inlet parameters to provide ex-
ergetic sensitivity analysis.

3. Solvation and sensitivity exergetic analysis

3.1. Effect of air inlet temperature and humidity ratio

In this section, the inlet air temperature/humidity are varied while
all other parameters are constant (as shown in Table 2) and the effect of
inlet air temperature/humidity on exergetic parameters are studied and
discussed.

If the required constant coefficients (Eq. (20)) are evaluated for the
first/second raw of Table 2, the Eqs. (18) and (19) will be transformed
in the form of Eq. (21). It is noted that, inlet temperature and humidity
do not have effect of the values of constant coefficients and they related
to boundary conditions only. Hence, Eq. (21) will be solved for a
boundary condition in which the value of air inlet temperature and
humidity are variant parameters (see Eq. (22)). In other words, air inlet
temperature and humidity in boundary conditions are substituted by
parameter T'1 and W'1 respectively and outlet characteristics are ob-
tained as the functions of mentioned parameters. Any arbitrary value of
T'1 and W'1 can be then replaced in final outcome.

= + +

= + +

= +

< <

w T T

w T T

T T

Differential equations

6.83 247.26 0.1 0.51

6.5 235 0.8 0.4

0.013 0.5 0.00015 0.00067

|0 x 1

T
x

T
x

x

d
d 2 2 1

d
d 2 2 1

d
d 2 2 1

1

1
1

2
1

2
1

(21)

= =
= = =

= = = =

x
x x

x x
Boundary conditions

T ( 0) T'
T ( 1) T ( 1)

( 1) ( 1) 0.01

1 1 1

2 1 1 1

2 1 1 1 (22)

If the Eq. (21) is solved (via analytical methods, Maple software was
employed), temperature of primary air (T )1 , temperature of working air
T2 and humidity of working air (W )2 are achieved as the functions of x1
(see appendix B for the answer of Eq. (21)). As only the inlet/outlet
characteristics are required for exergetic evaluations, = =x 0 or x 11 1
is replaced in the said functions which results in Eq. (23) (it is noted
that the outlet characteristics are occurred at =x 01 for working air and
at =x 11 for working air (see Fig. 3(b)).

As described above, by replacing = =x 0 or x 11 1 in those func-
tions, final equations (outcome) of outlet characteristics are obtained as
shown in the following equation.

= +
= +

= + +
Results (outlets)

T" 0.67T' 178.34W' 4.99
T" 0.11T' 189.69W' 5.33
" 0.00048T 0.67W' 0.0083

1 1 1

2 1 1

2
'
1 1 (23)

The outlet characteristics for any value of inlet air temperature and
inlet air humidity are available now, ant it is possible to analyze the
effect of air inlet temperature/humidity on exergetic parameters. The
value of ein,da, eout,da, eout,ha and Exloss in Eq. (3) are evaluated using Eqs.
(12)–(14) and Eq. (8) respectively. It is noted that, the obtained unit of
temperature in Eq. (23) is Celsius (temperature units in exergy corre-
lations (Eqs. (12)–(14)) is Kelvin). If the correlation of all parameters
are replaced in Eq. (3) the below total correlation is obtained.
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(24)

If the final value of each parameter is substituted (using Fig. (2), Eq.
(23) and Table 2), the value of Exdes is obtained for any input value of
T1

' or W1
' shown in Fig. 5 (input values of T1

' and W1
' can be seen in

Table 2.
According to Fig. 5, increment of inlet air temperature increases the

value of exergy destruction. Contrary to inlet temperature, increment of
air inlet humidity reduces the exergy destruction of M-cycle cooler.
Based on previous researches, the thermal performance of Maisotsenko
coolers in hot-dry weathers is better which means that the temperature
reduction of primary air through dry channel (and working air through
wet-channel) is increased with increment of inlet air temperature.
Fig. 6(a) shows the temperature reduction of primary air and working
air for different values of inlet air temperature. It is clear that, the M-

Table 2
Exergetic procedure of regenerative M-cycle (variant parameters are bold).

Thermal/flow parameters Geometric parameters

T'1 (°C) W'1 (kg/g) m'1 (kg/s) a (mm) b (m) L (m)

Impact of T'1 25–60 10 0.009 0.25 5 0.2 1
Impact of W'1 40 5–25 0.009 0.25 5 0.2 1
Impact of m'1 40 10 0.01–0.09 0.25 5 0.2 1
Impact of 40 10 0.009 0.25–0.75 5 0.2 1
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cycle cooler can further decrease the air temperature for higher air inlet
temperature. It can be concluded that, the average temperature dif-
ference between two channels (dry and wet channel) is increased by
increment of air inlet temperature. The mentioned average temperature
difference between two channels (

+ + )(T T )
2

(T T )
2

dry,inlet dry,outlet wet,inlet wet,outlet

is provided in Fig. 6(b). As the finite temperature difference is one of
the main reasons of exergy destruction in any thermodynamic process,
mentioned temperature difference has been caused further exergy de-
struction in M-cycle coolers. Although the M-cycle thermal efficiency is
higher for warmer weathers, exergetic efficiency behaves vice versa
which shows the importance of exergetic evaluation in addition to the
first law analysis.

Based on Fig. 5(b), higher humidity ratio reduces the exergy

destruction during the cooling process. In addition to the finite tem-
perature difference which was discussed as one of the reasons of exergy
destruction, humidity and water flow are other key factors of exergy
transfer and destruction (see Eq. (3)) through the cooler. However, they
do not seem independent from temperature role. In other words, hu-
midity and water flow influence the temperature distribution which is
the reason of exergy destruction. Variation of “exergy output by humid
air” (Ex )out,ha and “exergy output by water flow” (Exout.w) with air inlet
humidity are presented in Fig. 7(a). Higher humidity ratio causes
higher Exout,ha and Exout.wwhich means that lower amount of input
exergy by fluids has interfered in heat/mass transfer (which results in
smaller exergy destruction). It is noted that, higher humidity of inlet air
reduces the water evaporation rate in the wet channel which increases
the water outlet mass flow rate (because a higher percentage of inlet

Fig. 4. A brief general view of exergetic analysis procedure.

Fig. 5. (a) Variation of exergy destruction with inlet air temperature and (b) variation of exergy destruction with inlet air humidity ratio.
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water flow rate leave the cooler without interfering in evaporation
process, (Fig. 7(b) shows the outlet water flow rate against air inlet
humidity). Obviously, reduction of water evaporation means poor heat
transfer rate and consequently less exergy destruction.

As can be seen in Fig. 5, the curve trends of the exergetic efficiency
and exergy destruction are vice versa (in both the impact of inlet
temperature and impact of inlet humidity). In other words, increment
of air inlet temperature increases the exergy destruction but it decreases
the exergetic efficiency. Moreover, higher inlet humidity reduces the
exergy destruction and provides higher exergetic efficiency. As de-
scribed above and based on Eq. (1), higher exergy destruction means
smaller value of Exout. Indeed, as the exergy of input air fluid is des-
tructed along the cooler, the exergy of outlet fluid is less than the inlet
fluid and that is why higher exergy destruction means smaller value of
Exout. On the other hand, according to definition of the exergetic effi-
ciency (Eq. (18)), reduction of Exout reduces the exergetic efficiency and
increment of Exout increases the exergetic efficiency. Irrespective to the
formula justification, it is clear that the exergy destruction implies a
negative concept while the exergy efficiency induce a positive feature.
Thereupon, any reason of exergy destruction causes reduction of ex-
ergetic performance.

3.2. Effect of air mass flow rate (m) and air mass flow ratio (ε)

In this section, the inlet air mass flow rate or air mass flow ratio are
varied while all other parameters are constant as was shown in Table 2.
Similar to previous section, Eq. (18) should be solved for any value of
mass flow rate of mass flow ratio in order to fined outlet characteristics
of the cooler. It is noted that, as the value of mass flow rate and mass
flow ratio affects the values of constants coefficients of Eq. (18), that
equation (Eq. (18)) should be solved for each value of mentioned
parameters separately which causes longer calculation process.

The effect of inlet air mass flow rate and mass flow ratio between
two channels are shown in Fig. 8. It is clear that the increment of both
mass flow rate and mass flow ratio increases the exergy destruction
through the cooler. Subsequently, exergetic efficiency is reduced by
enhancement of mentioned parameters. It is mentioned that the slope of
exergy destruction due to the increment of mas flow ratio is reduced
after = 0.25 (see Fig. 8(b)). In order to clarify the increment reason of
exergy destruction due to the increment of mass flow rate or mass flow
ratio, the exergy output by dry air and exergy output by humid air are
determined separately in Fig. 9. According to Fig. 9 all effective para-
meters in total exergy destruction i.e. Ein,da, Eout,da and Eout,ha are
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enhanced by increment of air inlet mass flow rate. However, the en-
hancement slope of Ein,da (exergy input) is severer than the enhance-
ment slope of both Eout,da and Eout,ha which results in further exergy
destruction by increment of inlet mass flow rate. It is noted that, higher
air flow rate means higher fluid velocity along the heat exchanger
which reduces the temperature drop (not necessarily heat transfer rate)
along the wet channel (because of increment of fluid residential time
through the channel). Curve behavior of Ein,da, Eout,da and Eout,ha in
Fig. 9(b) (effect of ε) is different from Fig. 9(a). In Fig. 9(b), as the total
air mass flow rate is constant, the value of Ein,da is the same for all
amounts of mass flow ratio. Eout,ha and Eout,da is increased and decreased
respectively by increment of mass flow ratio. It is noted that, incre-
ment/reduction of exergy (E) does not necessarily mean increment/
reduction of specific exergy (e) as well. For example, despite the in-
crement of Eout,ha by increment of inlet air mass flow rate, specific ex-
ergy (e )out,ha is reduced by increment of air mass flow rate which its
reason is related to the direct effect of mass flow rate on E (E = m×e).
Although the value of eout,ha is reduced by increment of air mass flow
rate, the value of m is increased (with stronger slope) which is shown in
Fig. 10. Hence, the multiplication of m and e (i.e. E) is increased. It is
concluded that it is betted choose smaller value of air velocity through
the channel to reduce the exergy destruction of fluid flow along the M-
cycle cooler which means using further number of parallel plates

Fig. 8. Effect of air inlet mass flow rate and mass flow ratio on total exergy destruction.
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instead of long plates (with lower numbers). It is clear that, reduction of
air mass flow rate dos not necessarily requires reduction of air-fan
power. It can be controlled in design process of the cooler by optimizing
of the number of channels and other effective factors. A general view of
all investigated parameters and their impact is illustrated in Fig. 11.

4. Conclusion

Exergetic analysis of regenerative M-cycle cooler was performed in
present paper. Exergetic formulation was provided in detail for this type
of air cooler. Outlet characteristics of the cooler (for any given value of
inlet characteristics) were evaluated via analytical solution and then
exergetic specifications were calculated using inlet and outlet char-
acteristics. Exergy destruction, exergetic efficiency, exergy input/
output by dry air, humid air and water fluid were evaluated and their
behaviour by changing of main inlet thermal-flow factors was

discussed. Inlet air temperature, inlet air humidity ratio, inlet air mass
flow rate and mas flow ratio between two channels were considered as
variant parameters. As the increment of air mass flow rate and mass
flow ratio between two channels increased the exergy destruction
through cooling process, it is recommenced to employ an optimum
number of channels in the designing process of the cooler to allocate a
logical value of air mass flow rate for any individual channel. Indeed, in
the same total inlet air flow rate, the air velocity along the channels can
be controlled by the employed numbers of parallel channels in the
designing process of M-cycle based on the second law of thermo-
dynamics. In other words, in a constant air inlet flow rate, it is possible
to increase the plate numbers and increase the exergetic efficiency
without reduction of thermal efficiency of the cooler. Humid air caused
smaller value of exergy destruction and augmented the exergetic effi-
ciency. Exergetic efficiency was enhanced by reduction of air inlet
temperature, air inlet flow rate and mass flow ratio.

Appendix A. Analytical thermal solution of regenerative M-cycle

The preliminary governing equations for parallel flow indirect evaporative cooler are presented in the following.

=
= =

= +
+ + + =

= +

Energy balance of primary air d U dx
Mass balance of working air d and d d

Energy balance of wet channel
Energy balance for differential element d d d

has a linear function with water surface temperature F e
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After some mathematical operations (similar to Eqs. (1)–(48) in [2]), the following equation was obtained.

Fig. 11. A brief general view of all investigated parameters and their impacts.
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The fourth relation in Eq. (4) can be rearranged based on Tw as shown below.

=
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Now, if the parameters Tw and weq in the first three relations are replaced with Eq. (5) and assumption “3″ respectively, Eq. (4) is transformed into
a 3-differential equation as shown in the following.
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It should be noted that, Eq. (7) was expanded for the general parallel flow indirect flow configuration. As regenerative M-cycle air cooler works
based on counter-flow configuration, the second and third relation ( T

x
d
d

2 and w
x

d
d

2 ) of Eq. (7) should be multiplied to “-1”. Indeed, as =dx dx2 1, for
regenerative M-cycle exchanger, differential equations are written as below based on x1.
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The validation of the model was performed with numerical solvation for below condition (Table A1) and the result is provided in Table A2 and
Fig. A1 (in appendix).

Table A1
Characteristics for which the model was solved numeri-
cally and analytically.

Parameter Value

a (m) 0.005
b (m) 0.2
L (m) 1
T'1(C) 40, 35, 30, 25
W'1kg/kg 0.016

m1
' (Kg/s) 0.009

0.5
kp 0.00250 KW/m C2

p 0.0005 m
kw 0.6 ×10 3 KW/m C2

w 0.0001 m
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Appendix B

The obtained functions by solving Eq. (21) via Laplace transformations technique:

= + + + + +
= + + + +
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Chapter 6 

Application of M-cycle in the cooling of gas turbine inlet air 

This chapter has been published as 

Dizaji HS, Hu EJ, Chen L, Pourhedayat S. Using novel integrated Maisotsenko cooler 

and absorption chiller for cooling of gas turbine inlet air. Energy Conversion and 

Management. 2019 Sep 1;195:1067-78. (DOI: 10.1016/j.enconman.2019.05.064). 

This chapter provides a new industrial application of  M-cycle and provides a 

novel hybrid cycle of M-cycle and absorption chiller which can be used to reduce 

the air inlet temperature of gas turbine power plants. Air temperature reduction 

causes increment of electrical power production by gas turbine. 

 It was found that the proposed hybrid cycle is able to efficiently reduce the inlet 

air temperature of the gas turbine. The air fluid is first cooled through the M-cycle 

cooler (up to dew-point temperature) and then is further cooled on saturation line 

by the absorption chiller. The condensed water through the cooling process on 

saturation line can be employed as the required water by M-cycle. If all mentioned 

cooling process is performed by absorption refrigeration systems, extremely huge 

capacity of absorption chiller is required which increases the capital and 

maintenance costs due to their more complicated structures.  
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A B S T R A C T

Performance reduction of gas turbine power plants during the hot seasons has persuaded the specialists to
propose different inlet air temperature reducer techniques. Accessible free heat at the exhaust of the turbine
justifies the absorption chiller as a potential solution. However, based on the evaluations of present research,
almost for all climate conditions a huge capacity/size/number of absorption chillers are required to reach the
ISO condition (15 °C and RH 100% which is the design point of gas turbine) which means considerable amount of
initial, operating and maintenance cost. As the M-cycle cooler (which has very simpler structure and lower costs)
is able to reduce the air temperature toward the dew point temperature without adding any moisture, present
research proposes an integrated cycle of M-cycle and absorption chiller (which notably reduces the whole cost of
the cooling process) for said aim. In present novel cycle, the air is precooled by M-cycle toward its dew point
temperature before entering to the absorption chiller which significantly reduces the required capacity of ab-
sorption chiller for the rest of the cooling process. The most amazing feature of the integrated cycle is that the
condensed water from the air during the cooling process by absorption chiller can be employed as the M-cycle
water consumption. For some climate conditions, M-cycle is able to provide ISO condition (or colder tem-
peratures) without the requirement of absorption chiller. Many other outstanding results are obtained which can
be used in real industrial applications.

1. Introduction

During the hot seasons of the year, gas turbine based power plants
deal with two major challenges. First, the electricity demand is sharply
increased which is commonly due to the simultaneous use of air con-
ditioning systems by all domestic and industrial customers. Second, the
efficiency and subsequently the electricity production capacity by
power plants are reduced in hot days of the years. Indeed, the perfor-
mance of gas turbines is reduced by increment of the air inlet tem-
perature into the compressor. Researchers have proposed different
techniques to reduce the inlet air temperature to the compressor of gas
turbine power plants. Fogging, swirl-Flash, media cooling method, ice
storage and absorption chiller are the main suggested air inlet cooling
techniques. Among mentioned methods, absorption chiller does not add
any moisture (or water droplets) to the air fluid and that is why it does
not have any negative effect such as erosion, corrosion etc. on blades
and other parts of gas turbine. Moreover, the energy required by ab-
sorption chiller can be obtained from the wasted heat at the outlet of
the turbine. However, as a huge size and capacity of absorption chiller
is required for this aim, initial, maintenance and operation cost of

absorption chiller are higher than the other methods. Normally, several
jointed large commercial size absorption chillers should work si-
multaneously to provide ISO inlet condition.

Most recently, some researchers proposed the Maisotsenko coolers
as the novel air inlet temperature reducers in gas turbines. Contrary to
the other methods which work based on direct water evaporation me-
chanism, M-cycle is an indirect evaporative cooler and it does not add
any water droplets into the air fluid stream. Nonetheless, it is not able
to reduce the air temperature below the dew-point temperature of
ambient air. Dew-point temperature of most climate conditions is
higher (warmer) than the 15 °C (ISO condition) which will be discussed
in detail in the next sections. Irrespective of said limited cooling ca-
pacity of M-cycle, it requires a considerable amount of water for this
application (gas turbine) in which the air flow rate is high. The in-
vestigations of absorption chiller in gas turbines and also the researches
of the application of M-cycle in gas turbine power plants are reviewed
in the following to provide the recent developments and progresses in
this regard and then the main aims of present research will be ex-
plained.

Hadik [1] studied the impact of various weather parameters
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including ambient temperature, relative humidity and ambient pressure
on gas turbine efficiency. It was concluded that the pressure and re-
lative humidity have negligible effects while the impact of temperature
on turbine efficiency is significant. Najjar [2] studied the application of
the absorption chiller as a precooling technique in gas turbine. A heat
recovery boiler was utilized to recover the heat at the exhaust and inject
it into the generator of the chiller. Up to 30% efficiency improvement
was reported in said research. Ameri and Hejazi [3] worked on the
application of absorption chiller in the Chabahar gas turbine power
plant. Installation of the absorption chiller enhanced the output power
of the whole system around 11%. They also estimated that the payback
period will be around four years. Boonnasa et al. [4] investigated the
combined cycle power plant in which an absorption chiller was em-
ployed to boost the performance of the power plant. They indicated that
the best air fluid conditions before entering the air compressor are 15 °C
(ISO) and 100% RH which were considered in their calculations. Power
output of gas turbine was enhanced around 10.5% based on their study
and payback period was obtained about 3.8 years. Sa and Zubaidy [5]
provided an empirical correlation between the ambient temperature
and gas turbine power output. According to their findings, 1 °C incre-
ment of ambient air temperature causes reduction of gas turbine power
output around 1.5MW. Exergy-economic analysis of absorption chiller
used in gas turbine was presented by Ehyaei et al. [6]. The exergetic
efficiency was enhanced around 30% by employment of absorption
chiller in gas turbine power plants. Ahmadi et al. [7] provided a ther-
modynamic model and then worked on optimization of gas turbine with
absorption chiller. Another research on the application of absorption
chiller on gas turbines was performed by Kwon et al. [8] in which the
thermal performance augmentation of gas turbine was reported around
16%. Mohammadi et al. [9] proposed and analysed a combined gas
turbine, ORC cycle and absorption chiller for a CCHP system. The

mentioned hybrid system is able to provide electrical power, cooling
and also hot water with an efficiency of 67.6%. Based on their results,
gas turbine inlet temperature is the most influential parameter on the
performance of the systems. Kwon et al. [10] provided a comparative
study between the application of absorption chiller and mechanical
chiller. The power boost by absorption chiller was found larger than the
mechanical one. Besides, they presented an economic analysis as well
which showed the feasibility of their proposed dual cooling system.
Among the different systems studied in that research, the maximum
power enhancement was achieved around 8.2%. Recently, Radchenko
et al. [11] studied the effect of absorption-ejector chiller on perfor-
mance of gas turbine. They believe that the excessive cooling capacity is
obtained by this cycle compared to the unite absorption chiller. Sohani
et al. [12] suggested the employment of M-cycle cooler as a pre-cooling
method in gas-turbine power plants. They also worked on the best in-
vestment strategy in this regard. According to their results, the M-cycle
inlet air cooler for pre-cooling of gas turbine power plant is able to
increase the annual generated power around 9%. Saghafifar and Ga-
dalla [13–14] employed integrated solid desiccant and Maisotsenko
cooler as an innovative technology for air inlet cooling process in gas
turbine power plants. They believe that the M-cycle system with life
span of 25 years is the most economically justified air cooler technology
for gas turbines. Zhu et al. [15] compared a CCHP system primed with
M-cycle cooler with a simple gas turbine with recuperator. They also
provided analysis of M-cycle open gas turbine power cycle in another
research [16]. They discussed the advantages and disadvantages of M-
cycle for this aim and performed a comparison between the M-cycle and
humid air gas turbine cycle. Some studies on other methods of air inlet
cooling of gas turbine power plants are presented in the following as
well. Moon et al. [17] suggested the coolant inter cooling as a method
to boost the performance of the gas turbine. Najjar et al. [18] employed

Nomenclature

H Specific enthalpy (KJ/kg)
hvapor Enthalpy of saturated vapor (KJ/kg)
m Mass flow rate (kg/s)
P Pressure (Pa)
pg Saturation pressure (Pa)

q Heat transfer rate (W)
T Temperature (°C)
ω Humidity ratio (kg moisture/kg dry air)
φ Relative humidity (%)
ν Specific volume ( )m

kg
3

Fig. 1. Air stream on the cooling coil of absorption chiller (evaporator).
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the wasted heat from the turbine to reduce the air inlet temperature to
the compressor of gas turbine. Their system comprises of organic
Rankine cycle and gas refrigeration. The system reduced the tempera-
ture around 15 °C and the overall efficiency of the power plant was
enhanced around 50%. A comparison between two conventional
cooling technique including evaporative media and a mechanical
chiller and a novel technique was performed by Farzane-Gord and
Deymi-Dashtebayaz [19]. Barakat et al. [20] employed the earth to air
heat exchanger (EAHE) as an air cooler technology for gas turbines.
They numerically evaluated the performance, net power and fuel con-
sumption of the power plant under EAHE application. Thermal

Table 1
The air inlet conditions of gas turbine.

1 % T1 (°C)

= 15%1 20 25 30 35 40 45 50 55
= 25%1 20 25 30 35 40 45 50 55
= 35%1 20 25 30 35 40 45 50 55
= 45%1 20 25 30 35 40 45 50 55
= 55%1 25 20 25 30 35 40 45 50
= 65%1 20 25 30 35 40 45 50 55

Fig. 2. a) Required cooling capacity to reach ISO condition at the inlet of compressor and b) produced condensed water during this cooling process and c) a quick
brief analysis.

H. Sadighi Dizaji, et al. Energy Conversion and Management 195 (2019) 1067–1078

1069
99



performance of the system was increased 4.8% by their technique. Al-
Ansary et al. [21] investigated the effect of the application of a hybrid
turbine inlet air cooling for arid climates.

In present research, an integrated cycle is proposed in which both
M-cycle cooler and absorption chiller are simultaneously employed as a
novel air inlet cooling technology for gas turbine power plants. Present
novel cycle overcomes all defectiveness of sole application of absorp-
tion chiller and sole application of M-cycle. In this cycle, the air fluid is
firstly precooled by Maisotsenko cooler toward its dew point tem-
perature and then is cooled again through absorption chiller up to ISO
condition. It is noted that, if the whole cooling process until ISO con-
dition is performed by only absorption chiller, huge amount of chiller
cooling capacity will be required which means further initial, operating
and maintenance cost (some clime conditions require more than five
commercial size absorption chiller which is not logical). It is not pos-
sible to reach ISO condition only by M-cycle cooling technology for
most clime conditions as well because dew-point is the minimum
achievable temperature in M-cycle cooler. Irrespective of cooling lim-
itation of M-cycle, huge amount of water flow is required. However, in
the novel present cycle all mentioned issues are solved and the con-
densed water through the cooling process in the absorption chiller will
be used as the required water by M-cycle cooler which is one of the
remarkable and interesting features of the new proposed cycle. At the

first step of this research, required cooling capacity (and related ab-
sorption chiller) is evaluated for gas turbine under different inlet am-
bient conditions toward to ISO condition (15 °C and 100%RH) and the
results are discussed. At the second step, the new integrated cycle is
presented and the required capacity of absorption chiller and produced
condensed water, required water by M-cycle etc. are discussed, ana-
lysed and compared with the first step.

2. Application of sole absorption chiller

2.1. Thermodynamic model (required cooling capacity and volume of
condensed water)

In this section a mathematical calculation is provided by which the
required capacity of absorption chiller is clarified to reduce the air
temperature from any given ambient condition to ISO condition. It is
tried to clarify the number (capacity) of required absorption chiller for
any climate condition from commercial brochure. The condensed water
is evaluated as well which may be employed in M-cycle integrated
system. As described by [4], the most efficient condition of air intake to
the compressor is 15 °C and 100% RH which is the design point of gas
turbine and is considered as the calculations criteria in present study.
However, more power output can be obtained in lower temperatures.

Table 2
Selected commercial absorption chiller for different climate conditions.

1 (%) T1 (oC) qcv(MW) Selected commercial absorption chiller Number of chillers Condensed water (ton/h)

15% 50 19 One 3307H2 model and one 1984H2 model 2 1.9
55 25 Two 3307H2 model and one 661H2 model 3 7.8

25% 40 14 One 3307H2 model and one 661H2 model 2 1.8
45 21 Two 3307H2 model 2 8.2
50 29 Two 3307H2 model and one 1653H2 model 3 16.2
55 39 Three 3307H2 model and one 1157H2 model 4 26.4

35% 35 12 One 2646H2 model and one 827H2 model 2 1.3
40 20 Two 3307H2 model 2 10.3
45 28 Two 3307H2 model and one 1653H2 model 3 19.4
50 39 Three 3307H2 model and one 1157H2 model 4 31
55 52 Four 3307H2 model and one 1488H2 model 5 45.6

45% 30 19 One 3307H2 model and one 2646H2 2 2.5
35 17 One 3307H2 model and one 1488H2 2 9.7
40 26 Two 3307H2 model and one 1157H2 model 3 19
45 37 Three 3307H2 model and one 661H2 model 4 30.9
50 50 Four 3307H2 model and one 992H2 5 46
55 66.5 Five 3307H2 model and one 2646H2 model 6 65.5

55% 25 5.5 One 1653H2 model 1 0.6
30 12.8 One 2646H2 model and one 827H2 model 2 7.4
35 21.6 Two 3307H2 model 2 16.3
40 32.2 Three 3307H2 model 3 27.8
45 45.2 Four 3307H2 model 4 42.6
50 61.2 Five 3307H2 model and one 992H2 model 6 61.7
55 81.1 Seven 3307H2 model 7 86

65% 25 8 One 2646H2 model 1 4.2
30 16.2 One 3307H2 model and one 1488H2 model 2 12.4
35 26.2 Two 3307H2 model and one 827H2 model 3 23
40 38.4 Three 3307H2 model and one 1157H2 model 4 36.8
45 53.58 Four 3307H2 model and one 1984H2 model 5 54
50 72.43 Six 3307H2 model and one 744H2 model 7 77.6
55 97 Eight 3307H2 model and one 1157H2 model 9 107.3

Fig. 3. Various models of steam-operated single effect lithium bromide absorption chiller based on cooling capacity [22].
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Nonetheless, it is noted that, the inlet air temperature can be reduced
until occurrence of icing phenomenon. The icing usually occurs at 5 °C
and may be considered as another interested principle as well. A view of
the application of absorption chiller on gas turbines is shown in Fig. 1.

Required cooling capacity by which the inlet air flow reaches to
15 °C with 100% relative humidity is calculated. The conservation of
mass and also the first law of thermodynamics are written for the air
fluid for the selected control volume shown in Fig. 1.

Conservation of mass for dry air:

= =m m mair, 1 air, 2 air (1)

Conservation of mass for existent vapor in the air fluid:

= +m m mvapor, 1 vapor, 2 condensed water (2)

The first law of thermodynamics:

+ +

= + +

q m m

m m m

h h

h h h
C.V air air, 1 vapor, 1 vapor, 1

air air, 2 vapor, 2 vapor, 2 water water (3)

Eq. (3) is divided to mair and rewritten as Eq. (4).

+ + = + +
q
m

m
m

m
m

m
m

h h h h hC.V

air
air,1

vapor, 1

air
vapor, 1 air, 2

vapor, 2

air
vapor, 2

water

air
water

(4)

It is noted that m
m
vapor, 1

air
and m

m
vapor, 2

air
are the humidity ratio (ω) at the

inlet and outlet of the cooling coil respectively. Thus, Eq. (4) is re-
written as below.

= + +
q
m

(h h ) h h ( )hC.V

air
air, 2 air, 1 2 vapor, 2 1 vapor, 1 1 2 water (5)

If the air is assumed as an ideal gas, the humidity ratio can be
calculated from Eqs. (6) and (7) in which pv is partial pressure of water
vapor existent in the fluid and pair is pressure of dry air.

= 0.622
p

p1
v1

air 1 (6)

= 0.622
p

p2
v2

air 2 (7)

=p pv1 1 g1 (8)

=p pv2 2 g2 (9)

=p p pair1 total v1 (10)

=p p pair2 total v2 (11)

If Eqs. (8)–(11) are substituted in Eqs. (9)–(7), Eqs. (12) and (13) are
obtained.

Fig. 4. A general view of the proposed novel integrated cycle.
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= 0.622
p

p ( p )1
1 g1

total 1 g1 (12)

= 0.622
p

p p2
g2

total g2 (13)

It is noted that, pg is saturation pressure and can be obtained from
thermodynamic tables for any temperature. Furthermore, hvapor (en-
thalpy of saturated vapor) can be red from thermodynamic table as
well. The value of h hair, 2 air,1 in Eq. (5) can be evaluated from Eq.

(14).

=h h c (T T ))air, 2 air, 1 p 2 1 (14)

Now, Eq. (5) can be written as below.

= + +
q
m

c (T T ) h 0.622
h p

p ( p )
h

0.622 p
p ( p )

C V
air
.

p 2 1 2 varpor, 2
varpor, 1 1 g1

total 1 g1
water

1 g1

total 1 g1
2

(15)

Eq. (15) is based on per kilogram of mass flow rate. Eq. (15) is

Fig. 5. Working principle of M-cycle cooler [23–27].

Fig. 6. (a). Temperature that can be reached by M-cycle for different climate condition and b) reduced temperature by M-cycle.
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written as blow. The unit of obtained value for qC.V from Eq. (16) is KW.

= +

+

q m c (T T ) h 0.622
h p

p ( p )

h
0.622 p

p ( p )

C.V air p 2 1 2 varpor, 2
varpor, 1 1 g1

total 1 g1

water
1 g1

total 1 g1
2

(16)

Produced condensed water during the cooling process by chiller can
be estimated from Eq. (17).

=m m ( )con, water air 1 2 (17)

Now, for any inlet condition (ambient condition) the cooling ca-
pacity of required absorption chiller (or any other cooling method) can
be determined via Eq. (16). For different ambient conditions (presented
in Table 1) the amount of qC.V (MW) and also the amount of produced
condensed water during the cooling process (ton/hour) are evaluated
and the results are illustrated in Fig. 2.

Fig. 2(a) shows the required cooling capacity to reach the ISO
condition from various climate conditions. Fig. 2(b) illustrates the
produced condensed water during cooling process. According to Eq. (4)
positive cooling capacity (above the horizontal axis) indicates that the
total specific enthalpy of inlet air +( )h hm

mair, 1 vapor,1
vapor, 1

air
is less than the

specific enthalpy of ISO condition and therefore it is not possible to
reach the ISO condition by pure cooling process. Based on Fig. 2(a)
higher humidity or higher temperature increases the required cooling
capacity. For example, required cooling capacity for humidity ratio of
65% (in temperature of 55 °C) is around 100MW while in humidity
ratio of 15% (in the same temperature) the required cooling capacity is
around 20MW. According to Eq. (17), negative water production in
Fig. 2(b) means that the absolute humidity of inlet air is less than the
absolute humidity of outlet air and no water is condensed. Based on
Fig. 2(b), higher inlet temperature or higher inlet humidity ratio causes
enhancement of condensed water production during the cooling pro-
cess.

2.2. Selection of absorption chiller

Based on the calculated cooling capacity, the commercial existent

absorption chiller can be selected from the available brochures.
Required absorption chiller is presented in Table 2 for various climate
conditions (the climate conditions in which no condensed water is
produced were removed). The chillers were selected from SHUANGLI-
ANG catalogue. Between different kinds of absorption chiller (direct
fired, steam operated, hot water operated and fuel gas operated),
Steam-Operated Single Effect Lithium Bromide Absorption Chiller is
appropriate for present aim (steam can be provided as shown in Fig. 4).
Indeed, as described in the catalogue, steam-operated lithium bromide
absorption chiller is a kind of large-size refrigeration facility with low
pressure steam as the driving energy and lithium bromide solution as
the absorbent and water as refrigerant. Moreover, Steam Effect chiller,
using steam or waste steam as the energy source, not only reduces
greatly the cost for electricity but also possess great economic potential
in applications where this source of energy is available [22]. Different
model of mentioned chiller is shown in Fig. 3 (based on cooling capa-
city).

As can be seen in Table 2, most climate conditions require more
than one commercial size absorption chiller to reach the ISO condition
at the inlet of compressor of the GT power plants. Usually, simultaneous
employment of more than three unit absorption chiller is not logical
and affordable from the view point of economic condition, operational
condition, maintenance cost, required space etc.

3. Novel integrated cycle (absorption chiller and Maisotsenko
cooler)

3.1. General evaluations and comparison with previous section

A general view of the proposed novel integrated cycle is presented
in Fig. 4. The air fluid is precooled by M-cycle cooler toward its dew
point temperature by M-cycle before entering to the absorption chiller.
The water of M-cycle is provided from the condensed water from the air
in the cooling coil of absorption chiller.

Required capacity of absorption chiller in this new system is com-
pared with previous section (in which only absorption chiller was
employed to reduce the air inlet temperature). As the M-cycle cooler
reduces the air temperature toward the dew point temperature of its
inlet air temperature (see Fig. 5), at the first step, the dew point

Fig. 7. (a). Required cooling capacity of absorption chiller for integrated cycle and b) required cooling capacity of absorption chiller for usual cycle shown in Fig. 1.

H. Sadighi Dizaji, et al. Energy Conversion and Management 195 (2019) 1067–1078

1073
103



temperature of considered climate conditions (investigated in previous
section) are presented to clarify the possible temperature reduction of
any climate condition by M-cycle. Note that, it is assumed that both
absorption chiller and M-cycle work with their nominal capacity in this
research. The temperature that can be reached by M-cycle cooler (T )outlet
and the amount of T Tinlet outlet for any climate condition is illustrated
in Fig. 6(a) and (b) respectively (point 1 in Fig. 5 is ambient air and
point 2 is going to absorption chiller). It is noted that φ in Fig. 6 is inlet
relative humidity to the M-cycle cooler (ambient condition).

The outlet air temperature from M-cycle (which is going into the
absorption chiller) is now available and the required cooling capacity of
absorption chiller can be calculated by Eq. (16) for the new conditions.
It is mentioned that, as no humidity is added to the product air in M-
cycle cooler, humidity ratio (ω) of the air remains constant as shown in
Eq. (18). According to Eq. (12), Eq. (18) can be written as Eq. (19). In
the novel integrated cycle, the outlet temperature of the M-cycle (in
Fig. 6) plays the role of T1 (inlet temperature to the absorption chiller)
in Eq. (16). It is noted that, by employment of Eq. (19), it is not required
to separately calculate the relative humidity of the air at the inlet of the
absorption chiller because the value of

p
101 ( p )

g

g
has been remained

constant through the M-cycle. However, hvapor, 1 should be extracted for
the new T1 (into the absorption chiller) from the thermodynamics

tables. The new qC.V (required cooling capacity of absorption chiller for
integrated cycle) are illustrated in Fig. 7(a). Moreover, Fig. 7(b) is re-
lated to the previous section (sole absorption chiller) that can be
compared with Fig. 7(a) simultaneously now. Table 3 shows the se-
lected absorption chiller for different climate conditions for the in-
tegrated cycle. Previous and new cooling capacity and also number of
required commercial absorption chiller can be compared with each
other in Table 3.

= = =ambient inlet to M cycle oulet of M cycle inlet to the absorption chiller (18)

(19)

According to Eqs. (17) and (18), the condensed water in the new
cycle should be the same as previous cycle. Indeed, as the temperature
does not go under the dew point temperature in M-cycle cooler, no
vapor is condensed through M-cycle cooling. Thus, all condensed water
is generated through cooling process of absorption chiller.

Table 3
Selected commercial absorption chiller based on novel integrated cycle.

1 % T1 Required qcv for absorption chiller (MW) Selected absorption chiller (for novel integrated cycle) Number of chillers

Former Novel Reduction % Integrated cycle

15 50 19 2.4 87% One 744H2 model 1
55 25 8.5 66% One 26467H2 model 1

25 40 14 1.7 88% One 661H2 model 1 or 0
45 21 8.7 58% One 2646H2 model 1
50 29 16.4 43% One 3307H2 model and one 1488H2 model 2
55 39 24 36% Two 3307H2 model 2

35 35 12 3.3 72% One 992H2 model 1
40 20 10.7 46% One 3307H2 model 1
45 28 19.1 32% Two 26467H2 model 2
50 39 29.7 24% Three 2646H2 model 3
55 52 42.1 19% Three 3307H2 model and one 3646H2 4

45 30 19 2.8 85% One 827H2 model 1
35 17 9.8 42% One 3307H2 model 1
40 26 18.8 28% One 3307H2 model and one 198H2 model 2
45 37 29.7 20% Three 2646H2 model 3
50 50 42.4 15% Three 3307H2 model and one 2646H2 4
55 66.5 58.1 12% Five 3307H2 model 5

55 25 5.5 0.4 92% One 661H2 model 0
30 12.8 7.7 40% One 2646H2 model 1
35 21.6 16.4 24% One 3307H2 model and one 14884H2 2
40 32.2 27 16% Three 2646H2 model 3
45 45.2 39.2 13% Three 3307H2 model and one 1653H2 4
50 61.2 54.8 10% Five 3307H2 model 5
55 81.1 75 7% Seven 3307H2 model 7

65 25 8 4.5 44% One 1323H2 model 1
30 16.2 12 22% One 3307H2 model 1
35 26.2 22 16% Two 3307H2 model 2
40 38.4 34 11% Three 3307H2 model 3
45 53.5 49 8% Four 3307H2 model 4
50 72.4 67.5 7% Six 3307H2 model 6
55 97 91.7 6% Eight 3307H2 model 8
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As can be seen in Table 3, the novel integrated cycle has sig-
nificantly reduced the required cooling capacity of absorption chiller.
This reduction of cooling capacity reduces the required number/capa-
city/size of absorption chiller. Three number of absorption chillers
(irrespective of their capacity) seems the maximum logical number that
can be employed which are available for most climate conditions (green
colour in Table 3) by integrated cycle.

It is mentioned that, for some of the regions no absorption chiller is
required and M-cycle is able to obtain ISO condition or close to the ISO
condition. The climate conditions for which no absorption chiller is
required and M-cycle capability is enough to reach ISO condition is
shown in Fig. 8 (all points on red line). However, even for these areas, it
can be still obtained colder temperatures (less than ISO condition) by
adding an absorption chiller. Integrated cycle is appropriate for all
points above the red line (an example is shown on the Psychrometric
chart). For extreme right regions (above the red line) the percentage of
cooling by M-cycle is increased compared to the absorption chiller. By
moving (on a vertical line) toward the top side of the chart (humid

weathers), bigger size of absorption chiller and smaller size of M-cycle
are required. It is clear that, the humidity ratio (ω) of the all points
below the red line is lower than the humidity ratio of ISO condition and
therefore it is impossible to reach the ISO point without adding
moisture to the air; and pure cooling process (without adding any
moisture) will provide colder temperatures i.e. less than ISO tempera-
ture (which is not necessarily negative feature especially from the net
output power viewpoint).

3.2. Water consumption by M-cycle comparison with condensed water by
absorption chiller

As described before, one of the remarkable features of novel in-
tegrated cycle is that the condensed water from the air during the
cooling process through the absorption chiller can be employed as the
required water consumption by the Maisotsenko cooler. However, the
water consumption of the M-cycle (which depends on the cooling ca-
pacity of the M-cycle cooler) should be evaluated and compared with

Fig. 8. (a). A brief of the outcome of the research and the conceptual operation of the novel integrated cycle.
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the volume of the condensed water which was presented in Table 2. In
order to calculate the water consumption by M-cycle cooler for any
climate condition, the required cooling capacity of M-cycle should be
first determined. Total required cooling capacity for any clime condi-
tion (to reach ISO condition) was calculated and presented in Table 2 in
which all cooling process was assumed to be performed by absorption
chiller. Also, required cooling capacity of absorption chiller in integrate
cycle was presented in Table 3. Hence, the difference between these two
cooling capacities should be provided by M-cycle cooler. Required
cooling capacity for any climate condition is illustrated in Fig. 9.

Based on the provided information by Coolerado Corporation [28]
(which is the pioneer in the development of M-cycle coolers), the water
consumption by M-cycle coolers is is approximately two gallons (3.7 kg
water) per ton-hour (3.5 kW-hour) of cooling. Hence, the water con-
sumption of M-cycle cooler can be evaluated for any climate condition
based on required cooling capacity by M-cycle. As explained in Fig. 9 as
well, required cooling capacity by M-cycle is increased by reduction of
humidity ratio (for a given ambient temperature). Obviously, for a
given humidity ratio, higher ambient temperature requires larger ca-
pacity of M-cycle cooler. The water consumption by M-cycle cooler in
the novel integrated cycle is presented in Fig. 10 per one hour working
of the whole system.

According to Fig. 10, for most climate conditions the condensed
water in the cooling process through the absorption chiller is so higher
than the required water by M-cycle for the integrated cycle which is a
strong aspect of the novel integrated cycle. The remaining produced
water can be used in other parts of the power plant. For the regions
under the red line (see Fig. 9) it is possible to reduce the air temperature
toward the 15 °C (but not RH 100%) by either absorption chiller or M-

cycle. However, for these regions, the application of absorption chiller
seems to be more logical compared to the M-cycle because no con-
densed water is available to be used in M-cycle. Hence, other sources
should be provided for water consumption of the M-cycle. Nonetheless,
if the water source is available (such as a river etc.), the application of
M-cycle is suggested instead of absorption chiller because of simpler
structure, lower initial and operation cost.

4. Conclusion

In this study, a novel integrated absorption chiller and Maisotsenko
cycle is proposed as an air inlet temperature reducer technique in gas
turbine power plants. The air fluid is precooled first by M-cycle toward
its dew point temperature and then enters into the absorption chiller. If
the whole of this cooling process is done by sole absorption chiller, very
huge capacity/size of commercial absorption chiller will be required.
The condensed water from the air through the cooling process in the
absorption chiller can be used as the required water by M-cycle which is
one of the most positive features of the integrated cycle. For some cli-
mate conditions, it is possible to obtain ISO condition by only M-cycle
application. However, the water should be available for the cooling
process by M-cycle. Integrated cycle was found as an appropriate
cooling technology in gas turbine power plants. For most climate con-
ditions, maximum three commercial absorption chillers will be enough
for the integrated cycle. Sole application of M-cycle is not viable be-
cause it is not able to reduce the air temperature less than dew point. All
these disadvantages of sole application of M-cycle or sole application of
absorption chiller overcome in the novel integrated cycle.

Fig. 9. Required cooling capacity of M-cycle for any climate condition (to reach the dew-point temperature of the ambient air).
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Fig. 10. a) Required water by M-cycle cooler and b) Condensed water in by absorption chiller and c) Comparison between “a” and “b”.
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Chapter 7 

Conclusion and Future Work 

7.1. Conclusions 

Indirect evaporative cooler is a cooling mechanism in which the temperature of 

product air is reduced via water evaporation without adding moisture to the product 

air. M-cycle type of indirect evaporative coolers is able to reduce the air temperature 

below the wet-bulb temperature towards the dew-point temperature of ambient air. 

Indirect evaporative cooler consists of two main parts including dry channel and 

wet channel. These two channels are separated from each other using an ultra-thin 

plate (to minimize the thermal conductivity resistance). The working principle of 

the cooler is associated with sensible heat transfer, latent heat transfer, water 

evaporation, mass transfer and prose surface (material of the channels’ separator) 

which significantly complicates the numerical simulation of the cooling processes 

by M-cycle (however, in the absence of analytical solution (model) for any 

thermodynamic process, employment of numerical solutions is unavoidable). In 

this thesis, a high accurate quick solving analytical model was developed for multi-

stage M-cycle based air conditioning systems. 

Previous simplified models are only valid for single stage conventional indirect 

evaporative coolers (with constant wall temperature which is not real) and provides 

only outlet temperature/humidity of the cooler. However, current model was 

developed for multi-stage M-cycle type of indirect evaporative coolers (much more 

efficient comparted to the conventional coolers) which works based on real working 

condition (variant wall temperature, wet-surface theory) and it was able to provide 

temperature/humidity distributions through the cooler (in addition to the outlet 

parameters). All previous evaluations of multi-stage M-cycle cooler were carried 
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out only via cumbersome sophisticated numerical simulations because of lack of 

analytical model. The proposed models are applicable for M-cycle dew point 

coolers. However, mathematically, the difference between traditional indirect 

evaporative cooler and M-cycle cooler, is their boundary conditions. Hence, the 

new high-accurate quick analytical model can also be employed for traditional 

coolers by modifying the boundary conditions through the beginning of the 

programing code.  

The proposed model is able to generate the characteristics of the cooler for a set 

of given inlet parameters. Moreover, the temperature and humidity distribution 

through the dry channel, wet channel and middle separator curtain are provided by 

the model as a function of “x” which makes the model as strong analysis/designing 

tool of M-cycle coolers. The solution time of the cooler using the proposed 

analytical model is significantly shorter than the numerical simulation without the 

reduction of accuracy. The model was validated with experimental data and 

employed to perform a comprehensive sensitivity analysis of multi-stage M-cycle 

cooler. The model also was employed to evaluate the cooler from the second law 

of thermodynamic viewpoint. The main conclusions of this research are 

summarized in the following. 

7.1.1. Analytical model based on sprayed-water mechanism 

Working principle of indirect evaporative cooler can be classified into two main 

categories including sprayed-water mechanism and wet-surface mechanism. Both 

of these mechanisms can be employed in the cooler depending on the application 

of the cooler (indoor cooler, outdoor cooling, size of the cooling environment), size 

of the cooler, expected temperature reduction of the air, availability of the water, 

pressure drop through the channels, production cost of the cooler and so on. In 
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sprayed-water mechanism the water fluid comes down from the top side of the 

cooler (and recirculated from the bottom side again) with roughly large value of 

water mass flow rate. The water fluid continuously comes flows and creates 

continuous water streams on the middle surface (separator surface between wet and 

dry channel). That is why, the middle surface is not supposed to have specific 

material (such as porous media or tissue-like materials to absorb the water) which 

reduces the price of the cooler. This working condition is appropriate for high 

temperature range of weather conditions, big halls and outdoor cooling (this method 

has been used in most conventional type of indirect evaporative coolers). As the 

most portion of thermal process occurs in sensible heat transfer form, the cooling 

capacity of cooler is low (compared to the wet-surface mechanism). The first 

analytical model was developed under this working condition. As the water fluid is 

sprayed with high mass flow rate, it dominates the temperature of the middle 

surface. The temperature of the middle surface is almost the same as water inlet 

temperature through the whole surface and that is what the inlet temperature of the 

water should be colder than the ambient air temperature. Otherwise, the cooler is 

not be able to cool the air. The latent heat transfer mechanism does not have 

significant role in the sprayed-water mechanism. The created noise due to the the 

high pressure sprayed-water system may make them unsuitable for inside-room 

applications.   

7.1.2. Analytical model based on wet-surface mechanism 

Contrary to the sprayed-water mechanism, the water flow rate in wet-surface 

theory should be as possible as small. In this systems, the water is absorbed by the 

middle surface to create a continuous wet-surface. That is why the material of the 

middle surface is important if this mechanism. The wet-side of the middle ultra-thin 
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surface should be tissue-like (porous) to absorb the water and keep the surface wetly 

all the time while the dry side of the middle surface should be impermeable (nylon 

like). The material with mentioned specifications is employed in recent generations 

of M-cycle coolers. Theoretically, the water flow rate is the same as evaporated 

water and is replaced immediately and without the creation of any water stream. 

The M-cycle under this working condition achieves its maximum cooling capacity. 

However, water distribution system causes some limitations in real cooler as it is 

not possible to replace the evaporated water with small water flow rates. Any further 

water flow rate (and creation of water streams on the surface) is reduced the cooling 

capacity of the cooler. Thus, in real coolers, the idea of the water distribution system 

will play a key role on the performance of the cooler. Because of the major role of 

latent heat transfer in this mechanism, the cooler is able to reduce the air 

temperature even if the water inlet temperature is the same as air inlet (ambient) 

temperature. Contrary to the sprayed-water mechanism, the temperature of the 

middle surface varies through the “x” and its temperature is dominated with fluid 

flow conditions through the channels (not water inlet temperature). In other words, 

the surface evaporation of the ultra-thin water film (evaporation rate depends on 

fluid flow condition through the both channels) dominates the temperature 

distribution through the middle surface. Innovative materials which can absorb the 

water and spread it through the whole surface quickly makes the performance of 

the real cooler to the theoretical performance. Nonetheless, it is noted that, the dew-

point temperature of the ambient temperature is the minimum achievable 

temperature for any type of indirect evaporative coolers. The second analytical 

model was developed based on the mentioned wet-surface theory. The model is able 

able to provide the outlet characteristics of the cooler and also temperature/humidity 
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distribution along the dry/wet channel and middle surface. Required experimental 

test-rig was designed to validate the analytical model with experimental data. The 

M-cycle cooler under wet-surface mechanism can be employed in any room size 

through a wide range of weather conditions.  

All thermal/fluid and geometric parameters were then changed to provide a 

comprehensive sensitivity analysis using the analytical model with below 

conclusions. 

 Although the increment of the ambient temperature increases the outlet 

temperature of the product air, the temperature-drop is enhanced which means 

higher cooling efficiency for warmer ambient temperatures. 

 Changing of the discharged air into the wet channel, can increase or decrease 

the outlet product temperature depending on the created Reynolds number for 

each part of the cooler which varies based on mass flow ratios. 

 Smaller channel gap provides colder outlet temperature with a sharp curve 

behavior. However, channel height does not impress the cooling capacity as 

severity as channel gap. 

 By moving the middle perforation towards the end of the dry channel, the 

outlet temperature of product air is first increased and then decreased so that 

the maximum (warmer) temperature occurs when the perforation is in the 

middle of the channel.       

7.1.3. Exergetic viewpoint of M-cycle cooler 

Exergy analysis of any thermodynamic process is important as it is associated 

with economic analysis of the engineering systems. The emergence of some 

specific expressions such as exergoeconomic and thermoeconomic further reveals 

the significance of exergy analysis of systems. Exergoeconomy is strong tool to 
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optimize the engineering systems from cost-efficiency and economic viewpoints. 

Moreover, exergy analysis of any individual unit (system) is required when it works 

as a subset of a large whole system (such as power plant) to provide general 

economic considerations and marketing related decision-makings. That is why, as 

M-cycle cooler can be employed in a wide range of cooling applications, an strategy 

for exergetic analysis of M-cycle is required which was provided in this research as 

well. It was showed how the provided analytical model can be expanded and 

employed for exergetic analysis of M-cycle cooler. The impact of key operational 

and design parameters on exergetic characteristics of the cooler was evaluated and 

discussed.  

Increment of air mass flow rate and mass flow ratio between two channels 

increased the exergy destruction through cooling process. Hence, it is recommenced 

to employ an optimum number of channels in the designing process of the cooler 

to allocate a logical value of air mass flow rate for any individual channel. Indeed, 

in the same total inlet air flow rate, the air velocity along the channels can be 

controlled by the numbers of parallel channels in the designing process of M-cycle 

based on the second law of thermodynamics. In other words, in a constant air inlet 

flow rate, it is possible to increase the plate numbers and increase the exergetic 

efficiency of the cooler without reduction of thermal efficiency of the cooler. 

Humid air reduced the exergy destruction and augmented the exergetic efficiency 

of M-cycle cooler. Exergetic efficiency were enhanced by reduction of air inlet 

temperature, air inlet flow rate and mass flow ratio. Based on the application of M-

cycle cooler (as an air conditioning systems or other applications), the cooler can 

be designed in a manner to meet the required exergetic characteristics of the cooler. 
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7.1.4. Other potential application of M-cycle cooler 

Although Maisotsenko-cycle based air coolers was firstly developed as air 

conditioning systems, many other potential applications of M-cycle cooler lately 

were proposed by researchers. As the M-cycle working principle was 

comprehensively investigated in this research, other innovative probable 

applications of M-cycle was considered as well. Most recently, the M-cycle cooler 

was proposed as a pre-cooler technology for gas turbine based power plants. 

Generally, the output power of gas turbines is significantly reduced during the hot 

days of the year (because of lower density and subsequently low air mass flow rate 

of intake air to the gas turbine). Exhaust hot gas at the outlet of the turbine is a 

potential source for running the absorption chiller and that is why this mechanism is 

mainly employed for the mentioned aim. However, the required size/capacity of 

absorption chiller is high which leads to higher initial/operation/maintenance cost. 

That is why, the combination of M-cycle and absorption chiller (hybrid cycle) is a 

promising solution which is proposed as the last part of this research. In this hybrid 

cycle, the air fluid is first pre-cooled by M-cycle cooler before entering to the 

absorption chiller. Hence, the required capacity and size of the absorption chiller is 

significantly reduced. One significant feature of the hybrid cycle is that a large 

portion of the required water for  M-cycle cooler can be supplied from the condensed 

water through the cooling process by absorption chiller. For some climate 

conditions, the application of M-cycle would be enough without the requirement of 

any absorption chiller. Obviously the working principle of M-cycle is so simpler 

than the absorption chiller and its general costs is lower. It is noted that, direct 

evaporative cooler can not be employed for this application because of the probable 

issues (due to the water droplets) such as erosion and corrosion. The results of this 
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part of the research showed the applicability of proposed hybrid cycle for gas turbine 

intake air pre-cooler.  

7.2. Future Work 

The proposed hybrid cycle at the last part of this research needs further 

consideration from different viewpoints. Although the general idea was 

qualitatively proposed, it is still unclear how many MW quantitatively can be 

increased by the employment of this cycle for gas turbine power plants. Hence, it is 

proposed as a future work to focus on the application of M-cycle for gas turbine 

based power plants and identify its characteristics. 

As described in the wet-surface theory, the water flow rate is as possible as small 

to create a wet-surface. However, in real practical M-cycle coolers, the water mass 

flow rate is neither such small (such as wet-surface theory) nor large. Thus, it is 

proposed to modify the current analytical model with consideration of any arbitrary 

limit water mass flow rate. Mathematically, the ratio of water mass flow rate to the 

air flow rate should be tend for a constant vale rather than zero (in wet-surface 

theory). The modified model will be more complicated to solve but with more 

accurate results compared to the real working condition of the M-cycle cooler. 

However, it is noted that, the maximum cooling of the cooler is occurred in under 

wet-surface mechanism. However, it is impossible (at least with current water 

distribution systems) to practically apply the wet-surface mechanism.    
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Appendix A, Programming code of wet-surface theory 

restart; 

Round := proc (x, n) options operator, arrow; parse(sprintf("%.*f", n, x)) end 

proc; 

parameters(TC, WC); 

ThicknessOfPlate := 0.5e-3; 

PlateThermalConductivity := 0.25e-2; 

WaterFilmThicness := 0.1e-3; 

P := 101325; 

a := 0.5e-2; 

b := .2; 

L := 1; 

LatoL := .75; 

Nesbat := LatoL; 

La := Nesbat*L; 

Lb := L-La; 

InletAirTem := 25; 

InletHumidity := 0.15e-1; 

InletairMassflow := 0.1e-1; 

InletWaterTem := 30; 

Ea := .2; 

Eb := .2; 

mdat1La := InletairMassflow; 

mdat1Lb := InletairMassflow*(1-Ea); 

mdat2La := InletairMassflow*(Ea+Eb); 
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mdat2Lb := InletairMassflow*Eb; 

ca := 1.0029+5.4*InletAirTem*10^(-5); 

cv := 1.856+2*InletAirTem*10^(-4); 

c1 := ca/(1+InletHumidity)+cv*InletHumidity/(1+InletHumidity); 

ifg := 2501; 

ibarfg := ifg/ca; 

Miuoo := 1.8*10^(-5); 

Pr := .7; 

K := 0.26e-1/1000; 

dh := 2*a*b/(a+b); 

Kwater := .6/1000; 

Ro := 

101325*(1+InletHumidity)/((461.56*(.62195+InletHumidity))*(InletAirTem+273

.15)); 

V1La := mdat1La/(Ro*a*b); 

V1Lb := mdat1Lb/(Ro*a*b); 

V2La := mdat2La/(Ro*a*b); 

V2Lb := mdat2Lb/(Ro*a*b); 

Re1La := Ro*V1La*dh/Miuoo; 

Re1Lb := Ro*V1Lb*dh/Miuoo; 

Re2La := Ro*V2La*dh/Miuoo; 

Re2Lb := Ro*V2Lb*dh/Miuoo; 

ALa := b*La; 

Alb := b*Lb; 
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if Re2Lb > 3000 or Re2Lb = 3000 then f2La := 1/(.79*ln(Re2La)-1.64)^2; f2Lb 

:= 1/(.79*ln(Re2Lb)-1.64)^2; Nu2La := (1/8)*f2La*Pr*(Re2La-

1000)/(1+(12.7*(Pr^(2/3)-1))*((1/8)*f2La)^.5); Nu2Lb := 

(1/8)*f2Lb*Pr*(Re2Lb-1000)/(1+(12.7*(Pr^(2/3)-1))*((1/8)*f2Lb)^.5); Alfa2La 

:= K*Nu2La/dh; Alfa2Lb := K*Nu2Lb/dh; NTU2La := 

Alfa2La*ALa/(mdat2La*ca); NTU2Lb := Alfa2Lb*Alb/(mdat2Lb*ca) else 

Nu2Lb := 4.36; Alfa2Lb := K*Nu2Lb/dh; NTU2Lb := 

Alfa2Lb*Alb/(mdat2Lb*ca); if Re2La > 3000 or Re2La = 3000 then f2La := 

1/(.79*ln(Re2La)-1.64)^2; Nu2La := (1/8)*f2La*Pr*(Re2La-

1000)/(1+(12.7*(Pr^(2/3)-1))*((1/8)*f2La)^.5); Alfa2La := K*Nu2La/dh; ALa := 

b*La; NTU2La := Alfa2La*ALa/(mdat2La*ca) else Nu2La := 4.36; Alfa2La := 

K*Nu2La/dh; NTU2La := Alfa2La*ALa/(mdat2La*ca) end if end if; 

if Re1La < 3000 then Nu1La := 4.36; Nu1Lb := 4.36; Alfa1La := K*Nu1La/dh; 

Alfa1Lb := K*Nu1Lb/dh; U1La := 

1/(1/Alfa1La+ThicknessOfPlate/PlateThermalConductivity+WaterFilmThicness/

Kwater); U1Lb := U1La else f1La := 1/(.79*ln(Re1La)-1.64)^2; Nu1La := 

(1/8)*f1La*Pr*(Re1La-1000)/(1+(12.7*(Pr^(2/3)-1))*((1/8)*f1La)^.5); Alfa1La 

:= K*Nu1La/dh; if Re1Lb < 3000 then Nu1Lb := 4.36; Alfa1Lb := K*Nu1Lb/dh 

else f1Lb := 1/(.79*ln(Re1Lb)-1.64)^2; Nu1Lb := (1/8)*f1Lb*(Re1Lb-

1000)*Pr/(1+12.7*((1/8)*f1Lb)^.5*(Pr^(2/3)-1)); Alfa1Lb := K*Nu1Lb/dh end if; 

U1La := 

1/(1/Alfa1La+ThicknessOfPlate/PlateThermalConductivity+WaterFilmThicness/

Kwater); U1Lb := 

1/(1/Alfa1Lb+ThicknessOfPlate/PlateThermalConductivity+WaterFilmThicness/

Kwater) end if; 
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RLa := U1La/Alfa2La; 

RLb := U1Lb/Alfa2Lb; 

CstarFLa := mdat1La*c1/(ca*mdat2La); 

CstarfLb := mdat1Lb*c1/(ca*mdat2Lb); 

twmin := InletWaterTem; 

twmax := twmin+1; 

Psatmin := 2.7182^(-.58002206*10^4/(twmin+273.15)+1.39149-0.48640239e-

1*(twmin+273.15)+.417647*10^(-4)*(twmin+273.15)^2-.14452*10^(-

7)*(twmin+273.15)^3+(.654596*10)*ln(twmin+273.15)); 

Psatmax := 2.7182^(-.58002206*10^4/(twmax+273.15)+1.39149-0.48640239e-

1*(twmax+273.15)+.417647*10^(-4)*(twmax+273.15)^2-.14452*10^(-

7)*(twmax+273.15)^3+(.654596*10)*ln(twmax+273.15)); 

weqmin := .621945*Psatmin/(P-Psatmin); 

weqmax := .621945*Psatmax/(P-Psatmax); 

weqmean := (weqmin+weqmax)*(1/2); 

e := (weqmax-weqmin)/(twmax-twmin); 

F := (2*(weqmin+weqmean)-weqmax)/(-e*twmin+3); 

eta := e*ibarfg+1; 

GLa := Round(-RLa*NTU2La*ibarfg*F/(CstarFLa*(RLa+eta)), 2); 

HLa := Round(-GLa/F, 2); 

ILa := Round(-GLa/(F*ibarfg), 2); 

JLa := Round(GLa*eta/(F*ibarfg), 2); 

KLa := Round(ibarfg*NTU2La*F/(RLa+eta), 2); 

LLa := Round(-KLa/F, 2); 

MLa := Round(-(1-RLa-eta)*NTU2La/(RLa+eta), 2); 
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NLa := Round(ILa*CstarFLa, 2); 

OLa := Round(F*NTU2La*e*(ibarfg-(RLa+eta)/e)/(RLa+eta), 4); 

ZLa := Round(-OLa/F, 4); 

VLa := Round(-NTU2La*e/(RLa+eta), 5); 

QLa := Round(-NTU2La*RLa*e/(RLa+eta), 4); 

GLb := Round(-RLb*NTU2Lb*ibarfg*F/(CstarfLb*(RLb+eta)), 2); 

HLb := Round(-GLb/F, 2); 

ILb := Round(-GLb/(F*ibarfg), 2); 

JLb := Round(GLb*eta/(F*ibarfg), 2); 

KLb := Round(ibarfg*NTU2Lb*F/(RLb+eta), 2); 

LLb := Round(-KLb/F, 2); 

MLb := Round(-(1-RLb-eta)*NTU2Lb/(RLb+eta), 2); 

NLb := Round(ILb*CstarfLb, 2); 

OLb := Round(F*NTU2Lb*e*(ibarfg-(RLb+eta)/e)/(RLb+eta), 4); 

ZLb := Round(-OLb/F, 4); 

VLb := Round(-NTU2Lb*e/(RLb+eta), 5); 

QLb := Round(-NTU2Lb*RLb*e/(RLb+eta), 4); 

sys_odeLa := diff(T1(x), x) = GLa+HLa*W2(x)+ILa*T2(x)+JLa*T1(x), 

diff(T2(x), x) = KLa+LLa*W2(x)+MLa*T2(x)+NLa*T1(x), diff(W2(x), x) = 

OLa+ZLa*W2(x)+VLa*T2(x)+QLa*T1(x); 

bcsLa := T1(0) = InletAirTem, T2(Nesbat) = Tc, W2(Nesbat) = Wc; 

sLa := evalf(simplify(evalf(simplify(dsolve({bcsLa, sys_odeLa}))))); 

sLa := subs(I = 0, sLa); 

xx := T1(x); 

T1 := subs(sLa, xx); 



122 
 

T1nesbat := subs(x = Nesbat, T1); 

M1 := TA-T1nesbat = 0; 

yy := T2(x); 

T2 := subs(sLa, yy); 

T20 := evalf(subs(x = 0, T2)); 

M2 := Tzegon2-T20 = 0; 

zz := W2(x); 

W2 := subs(sLa, zz); 

W20 := evalf(subs(x = 0, W2)); 

M3 := Wzegon2-W20 = 0; 

sys_odeLb := diff(t1lb(x), x) = GLb+HLb*w2lb(x)+ILb*t2lb(x)+JLb*t1lb(x), 

diff(t2lb(x), x) = KLb+LLb*w2lb(x)+MLb*t2lb(x)+NLb*t1lb(x), diff(w2lb(x), x) 

= OLb+ZLb*w2lb(x)+VLb*t2lb(x)+QLb*t1lb(x); 

bcsLb := t1lb(1) = t2lb(1), t1lb(Nesbat) = TA, w2lb(1) = InletHumidity; 

sLb := evalf(simplify(evalf(simplify(dsolve({bcsLb, sys_odeLb}))))); 

sLb := subs(I = 0, sLb); 

xxx := t1lb(x); 

t1lb := subs(sLb, xxx); 

t11lb := evalf(subs(x = 1, t1lb)); 

M4 := Tzegon1-t11lb = 0; 

yyy := t2lb(x); 

t2lb := subs(sLb, yyy); 

T2Nesbat := evalf(subs(x = Nesbat, t2lb)); 

M5 := TB-T2Nesbat = 0; 

zzz := w2lb(x); 
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w2lb := subs(sLb, zzz); 

W2nesbat := evalf(subs(x = Nesbat, w2lb)); 

M6 := WB-W2nesbat = 0; 

M7 := Wc-(Ea*InletHumidity+Eb*WB)/(Ea+Eb) = 0; 

aaa := (cv*InletHumidity+ca)*TA; 

bbb := (ifg*InletHumidity+aaa)*Ea; 

ccc := (WB*cv+ca)*TB; 

ddd := WB*ifg; 

eee := (ccc+ddd)*Eb; 

fff := (Ea+Eb)*Wc*ifg; 

ggg := (Ea+Eb)*(Wc*cv+ca); 

hhh := (bbb+eee-fff)/ggg; 

M8 := Tc-hhh = 0; 

M := M1, M2, M3, M4, M5, M6, M7, M8; 

Results := solve({M}, {TA, TB, Tc, Tzegon1, Tzegon2, WB, Wc, Wzegon2}); 

qq := Tzegon1; 

ww := TB; 

tt := WB; 

uu := Wc; 

ii := Tc; 

oo := TA; 

pp := Tzegon2; 

aa := Wzegon2; 

Tzegon1 := subs(Results, qq); 

TB := subs(Results, ww); 
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WB := subs(Results, tt); 

Wc := subs(Results, uu); 

Tc := subs(Results, ii); 

TA := subs(Results, oo); 

Tzegon2 := subs(Results, pp); 

Wzegon2 := subs(Results, aa); 

T1xLa := evalf(T1); 

T2xLa := evalf(T2); 

W2xLa := evalf(W2); 

TwxLa := -(ibarfg*(F-W2xLa)-T2xLa-RLa*T1xLa)/(RLa+eta); 

T1xLb := evalf(t1lb); 

T2xLb := evalf(t2lb); 

W2xLb := evalf(w2lb); 

TwxLb := -(ibarfg*(F-W2xLb)-T2xLb-RLa*T1xLb)/(RLb+eta); 

 

 

 

 

 

 




