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Abstract 

 

Aquaporin water channels (AQPs) are a group of specialised water-selective transporters that plays a 

role in cancer cell migration. AQP-5, an AQP subtype that has a -low expression in the normal colonic 

epithelium is upregulated in colorectal cancer (CRC). AQP-5 plays a role in cancer metastasis, and 

knockdown of AQP-5 increases the sensitivity of CRC to chemotherapy, but there are no 

pharmacological reagents that target AQP-5. Emodin and epicatechin gallate (ECG) are traditional 

Chinese medicines that suppress the migration and invasion of cancer cells. This project aims to 

investigate if emodin and ECG reduce CRC cell migration by targeting AQP-5. The rate of migration 

was quantified using a circular wound closure assay and the rate of invasion was quantified through 

a transwell invasion assay. Emodin and ECG were tested on SW480 CRC cell line, with high 

expression of AQP-5. Results showed that emodin derived from rhubarb significantly blocked cell 

migration at a range of concentrations (50M, p<0.0001). Emodin also reduced cell invasion at 

100M (p<0.05) with no significant cytotoxic effects on the SW480 cells. In contrast, ECG 

significantly inhibited cell migration (25M, p<0.0001) but do not block cell invasion (p>0.05) in 

SW480 cells. The effects of emodin and ECG were conducted on AQP-5 expressing oocytes using a 

quantitative swelling assay. Results show that emodin and ECG do not block AQP-5 (NS, p>0.05). 

These results are the first to demonstrate that the anti-migratory effects of emodin on SW480 cell line 

are not through the inhibition of AQP-5. 
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Introduction 

 

Aquaporin water channels. AQPs are a family of membrane water channel that maintains the 

water balance in response to osmotic gradients created by the active transport of solutes1. In 1992, 

the discovery of an AQP subtype, AQP-1 (previously known as CHIP28) was made through the 

injection of CHIP28 RNA into a Xenopus laevis oocyte, and this caused the oocyte plasma 

membrane to be highly permeable to water2. AQPs ability to transport water is dependent on its 

structure. AQPs are arranged in a homo-tetrameric structure. Each monomer consists of six 

transmembrane domains connected by five loops, with both carboxylic and amino terminals located 

in the cytoplasm3.  In classical aquaporins (AQP-0, AQP-1, AQP-2, AQP-4, AQP-5, AQP-6, AQP-

8), the transport selectivity in the pore of the channel is characterised by two regions of constriction. 

The first constriction is formed by two highly conservative Asn-Pro-Ala (NPA) motif in loops B 

and E, allowing a selective, bi-directional and single-file passage of water through the pore4. The 

second constriction is referred to as the ar/R selectivity filter in the extracellular end of the pore, 

allowing AQPs to selectively allow the entry of water molecules5. 

 

Colorectal cancer (CRC). To date, CRC remains the second most common cause of death in 

Australians of all ages, particularly in people over the age of 706. In 2012-2016, it was reported that 

70.1% of patients diagnosed with CRC survived 5 years after diagnosis, which is largely due to 

early diagnosis and improved postoperative care6. Surgery, colectomy or segmental resection and 

chemotherapy are the most common treatments in the early and late stages of CRC. However, 

tumour recurrence happens in 30-50% of all cases, generally presenting metastasis7. A study 

reported that dormant residual tumour cells were present in patients post-treatment8. After the 

withdrawal of chemotherapy, the remaining dormant residual cells would resume growth and are 

more resistant to chemotherapy8. It is important to note that chemotherapy damages the intestinal 
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mucosal lining due to its rapid turnover rate as chemotherapy treatment does not distinguish between 

normal and cancer cells7, 9. 

 

Aquaporins in Cancer. The metastatic cascade is a process where primary tumour reaches a distant 

organ (common sites are lungs, liver, bone and brain) and develop metastases10. AQPs play a role in 

the metastatic cascade of cancer cells which involves tumour angiogenesis, migration, invasion and 

proliferation4. The expression of AQP is upregulated in most cancer cells (Table 1).  

 

 

Table 1. AQP expression in human tumours. From Papadopoulos and Saadoun, 201511. 
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Cell migration. AQPs accelerate cell migration via two roles: (1) Facilitates a rapid change 

in cell volume and cell shape, allowing migrating cells to squeeze through the extracellular space1; 

(2) Rapid formation and retraction of cell membrane protrusion (lamellipodia) due to osmolarity 

changes at the leading edge facilitates cell migration (Fig. 1)1. Ions uptake and actin cleavage at the 

leading edge creates an osmotic gradient which increases the osmotic water permeability12. The 

entry of water increases local hydrostatic pressure, causing the formation of membrane protrusion, 

creating space for actin polymerisation which stabilises membrane protrusions, resulting in an 

enhanced cell migration1, 12, 13. An in-vivo study showed that AQP-1 expressing tumour cells have 

an increased lamellipodia area and increased metastatic potential and invasiveness1, 13. In the 

absence of AQPs, cell migration occurs at a slower rate because the lipid bilayer is slightly 

permeable to water12.  

 

Figure 1. Factors involved in tumour cell migration and invasion: (1) Aquaporins 

facilitates cell migration by facilitating the formation of lamellipodia, (2) Arp2/3 complex 

is a regulatory protein of actin polymerisation that drives the formation of lamellipodia, 

(3) Matrix Metalloproteinases (MMPs) are proteolytic enzymes for matrix degradation. 

Adapted from Hu and Verkman, 2006; Yamaguchi and Condeelis, 200713, 14. 
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Angiogenesis. Formation of new blood vessels (angiogenesis) to supply nutrients and 

oxygen and remove waste is essential for tumour growth15. A study has shown that subcutaneous 

implantation of melanoma cells in AQP-1 null mice reduced tumour growth due to impaired 

angiogenesis with a reduced tumour microvessel proliferation and the presence of necrotic tissues 

around viable tumour cells12. Another in-vivo study showed similar results whereby AQP-1 

deficiency in breast tumour resulted in reduced tumour growth due to impaired angiogenesis with 

fewer and smaller micro-vessels compared to wild-type mice15. 

 

Cell proliferation. Studies showed that AQP-3 and AQP-5 play a role in tumour 

proliferation11, 16-19. An in-vivo study by Hara-Chikuma and Verkman showed that skin tumour 

proliferation was impaired in AQP-3 null mice16. It is proposed that AQP-3 deficient mice impaired 

glycerol transport, which is closely related to cellular proliferation as glycerol supplementation 

corrected the reduced proliferation in AQP-3 null mice11, 16. In colon cancer, the overexpression of 

AQP-5 activated the Ras-MAPK pathway which enhanced the transcription of genes involved in 

cell proliferation20. Another study showed that in AQP-5 null mice, there is a reduced proliferation 

and metastasis of lung cancer due to a decreased activation of the MAPK/ERK signalling pathway18. 

Huang also reported similar results whereby the inhibition of AQP-5 through the administration of 

acetazolamide reduced the proliferation and migration of human gastric carcinoma cell line19. These 

studies show a link between AQP-3 and AQP-5 in tumour cell proliferation, but further studies are 

required to confirm the role of AQPs in cell proliferation.  

 

AQP-5. AQP-5 is present in the lacrimal gland, salivary gland and sweat duct21. Multiple studies 

have reported that the overexpression of AQP-1, AQP-3 and AQP-5 in CRC is associated with 

increased lymphatic metastasis17, 19, 20, 22-27. Our interest lies in AQP-5 because they are over-

expressed on colorectal carcinoma cells with a minimal expression on normal colonic surface 
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epithelium as opposed to AQP-319-22. The extracellular-signal-regulated kinase (ERK) pathway 

induces epithelial-mesenchymal transition, one of the first steps in the metastatic progression of 

cancer cells20, 28. Kang et al. reported that there was a significant association of AQP-5 expression 

and liver metastasis in CRC through the activation of ERK pathway20. It was recently reported that 

AQP-5 knockout significantly enhanced the sensitivity of CRC cell lines HT29 and HCT116 to 5-

fluorouracil (a chemotherapy drug) by enhancing cell apoptosis29. AQP-5 serves as an attractive 

drug target due to its low expression on normal colonic epithelium, thus reducing the damage to the 

intestinal mucosal lining20. As of now, there is no pharmacological reagent that targets AQP-5. 

 

Emodin and Epicatechin Gallate. Emodin, a natural anthraquinone derivative in rhubarb decreases 

the progression of multiple cancer cells30, 31. Ok et al. reported that emodin downregulates CXCR4 

expression, a key receptor involved in the metastasis, invasion and proliferation of tumour cells in 

prostate and lung cancer30. Another study reported that emodin suppresses the growth, migration 

and invasion of CRC cells through the inhibition of vascular endothelial growth factor receptor, a 

receptor that regulates endothelial migration and proliferation31. Another interesting candidate, ECG, 

abundant in tea, is found to induce CRC cell line apoptosis by inducing p53, a protein mutated in 

most cancer32. Besides, ECG is found to inhibit the migration and invasion of lung cancer cells by 

reversing the epithelial-mesenchymal transition33. We predict that emodin and ECG targeted AQP-

5 as there is an overexpression of AQP-5 in the cancer cell type mentioned4. 

 

Hypothesis and Aims. Based on the analysis above, we hypothesised that emodin and ECG reduce 

the migration and invasion of CRC SW480 cell line through the inhibition of AQP-5. Moon et al. 

confirmed the expression of AQP-1, AQP-3 and AQP-5 in SW480 cell line through reverse 

transcriptase-PCR, western blot assay and in-situ hybridisation27. This study aimed to investigate 

the effects of emodin and ECG in cancer cell migration and invasion through a circular wound 

closure assay and transwell assay. The second aim was to investigate the effects of emodin and ECG 
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on AQP-5 through an oocyte swelling assay where AQP-5 complementary RNA was injected into 

Xenopus laevis oocytes in order to express AQP-5 water channels. 

  



 9 

Materials and Methods 

 

Cell line. The human colorectal adenocarcinoma cell line SW480 (ATCC CCL-228TM) was cultured 

in Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies, Grand Island, NY, USA) 

supplemented with 10% fetal bovine serum (FBS; Life Technologies, Grand Island, NY, USA), 1% 

Gibco GlutaMAX (Life Technologies, Grand Island, NY, USA) and 100 units/ml of penicillin-

streptomycin (Life Technologies), at 37C in a humidified 5% CO2 incubator until it reached the 

desired confluency. 

 

Drug Treatment. Anthraquinone derivative emodin from frangula bark and flavonoid derivative (–)-

ECG from green tea were purchased from Sigma-Aldrich. Powdered emodin was dissolved in 

dimethyl sulfoxide (DMSO; Sigma-Aldrich) to create 5000x, 10000x and 20000x stock solutions and 

ECG was dissolved in Milli-Q water to create 10000x stock solution. Stock solutions were stored in 

an airtight vial. Mitotic inhibitor 5-fluoro-2’-deoxyuridine (FuDR; Sigma Aldrich) was added in the 

working solutions (DMEM, 10% FBS, 1% Gibco GlutaMAX, penicillin-streptomycin and FuDR) to 

prevent cell proliferation. Emodin and ECG were diluted in FuDR-drug DMEM to achieve the final 

concentrations required in circular wound closure assay, transwell invasion assay, and cytotoxicity 

assay. DMSO (1L/ml) was used as vehicle control. For the oocyte swelling assay, emodin and ECG 

stock solutions were diluted in 10x isotonic solution to achieve the final concentration. 

 

Circular Wound Closure Assay. Circular Wound Closure Assay was performed based on the 

methods established by Deloso and Pei34. SW480 cells were plated in FuDR-containing drug DMEM 

in a 96 well-plate; a confluent monolayer was achieved at 24 hours following plating. Circular 

wounds were created with a sterile p10 pipette tip attached to a sterile p200 pipette tip. Cells were 

washed two times with phosphate-buffered saline to remove cell debris, and 100L of media with 

and without emodin or ECG or vehicle in FuDR-drug DMEM was applied to each well. Complete 
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wounds were imaged after 20 hours at 10x magnification with a Canon 6D camera on a Nikon 

inverted microscope. Microscopic images were standardised using XnCoverter software, and wound 

areas were quantified using Fiji software (ImageJ; version 1.52; U.S. National Institutes of Health). 

All experiments were repeated in duplicate wells. The percentage of wound closure was calculated 

as a percentage of initial wound area for the same well as a function of time.  

[
𝐴𝑟𝑒𝑎0 − 𝐴𝑟𝑒𝑎24

𝐴𝑟𝑒𝑎0
] × 100% 

 

Transwell Invasion Assay. The assay was performed using a 6.5 mm Corning® Transwell® 

polycarbonate membrane cell culture inserts with 8 M pore size (cat #CLS3422; Sigma-Aldrich, St. 

Louis, MO). The upper surface of the insert was coated with 40L of extracellular matrix gel from 

Engelbreth-Holm-Swarm murine sarcoma (Sigma-Aldrich, St. Louis, MO) that was diluted in Milli-

Q water. Inserts were dehydrated in the laminar hood for 24 hours and were rehydrated for 1-2 hours 

in the incubator with 50L of serum-free medium (0% FBS). SW480 cells were cultured in normal 

conditions until the plate reaches 40% confluency and cells were starved in reduced-serum medium 

(2% FBS) for 24-36 hours prior to plating in the upper chamber. Cells were detached and resuspended 

in full-serum medium (10% FBS). 1.5 x 106 of SW480 cells in 100L was added to the upper chamber, 

making a total of 150L cell suspension per transwell. 700L of pharmacological treatment in full-

serum medium (10% FBS) was added in the lower chamber that acts as a chemo-attractant for cells 

to invade (Fig. 2). Cells were then incubated for 24 hours at 37C in a humidified 5% CO2 incubator. 

Non-migrated cells at the top of the membrane were removed using a cotton-tipped applicator. Inserts 

were soaked in 70% ethanol for 10 minutes to allow cell fixation (allowing it to dry for 10-15 minutes 

upon removal from ethanol); followed with soaking in 0.2% crystal violet for 5-10 minutes for 

staining, excess crystal violet was washed in distilled water and was allowed to dry. Migrated cells 

at the bottom of the membrane were imaged at 10x and 20x magnification with a Canon 6D camera 

on a Nikon inverted microscope; cell count was performed and averaged for statistical analysis. 
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Figure 2. Illustration of Transwell Invasion Assay. Adapted from Creative Bioarray35. 

 

Oocyte Swelling Assay. Extraction was done by Professor Andrea Yool in accordance with the 

Australian Code for the care and use of animals for scientific purposes. An adult female Xenopus 

laevis frog was anaesthetised and unfertilised oocytes were extracted. Harvested oocytes were 

defolliculated with collagenase (type 1A, 2mg/ml; Sigma-Aldrich, St. Louis, MO) in isotonic saline 

(100mM NaCl, 5mM MgCl2, 2mM KCl and 5mM HEPES; pH 7.6) for 1.5 hours at 18C. Healthy 

oocytes were washed three times with isotonic solution before being injected with 0.5L of wild-type 

AQP-5 cRNA. Injected oocytes were incubated in frog Ringer’s saline (100mM NaCl, 5mM MgCl2, 

2mM KCl, 5mM HEPES,  0.6mM CaCl2, 5% horse serum, 100 U/ml penicillin, 50 g/ml tetracycline 

and 100 g/ml streptomycin; pH 7.6) at 18C for 48 hours to allow protein expression.  

 

Human AQP-5 cDNA subcloned in a Xenopus -globin expression plasmid was transcribed using T3 

polymerase (T3 mMessage mMachine; Ambion, Austin, TX), synthesised by Saeed 

Nourmohammadi. cRNA was resuspended in sterile water and stored at –80C.  

 

Prior to experimental assay, control and AQP-5 expressing oocytes were pre-incubated in isotonic 

saline (without serum, antibiotic-free) for an hour. The experimental assay was conducted by Dr Pak 
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Hin Chow. Each oocyte acted as its own control. Each oocyte was first assayed without drug treatment 

and was incubated for 2 hours in isotonic saline with vehicle or drug treatments and then reassessed 

in a second swelling assay (Fig. 3). Swelling rates were measured in 50% hypotonic saline (50% 

isotonic saline + 50% diluted water). Oocytes were imaged using a grayscale camera (Cohu, San 

Diego, CA) attached to a dissecting microscope (Olympus SZ-PT; Olympus, Macquarie Park, 

Australia) at one frame per second for 30 seconds. Swelling rates were calculated as the slope values 

of linear regression fits of the change in volume as a function of time in hypotonic solution using 

GraphPad Prism. 

 

Figure 3. Illustration of Oocyte Swelling Assay. Adapted from Bianchi and Driscoll, 

200636. 
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Cytotoxicity Assay. Cell viability was quantified using an alamarBlue assay, following the 

manufacturer’s guidelines (Life Technologies). Cells were plated at 1x104 cells/ml in 96-well plates, 

in the same FuDR-drug DMEM used in the circular wound closure assay. Treatments were applied 

at 24 hours after plating, and cells were incubated further for 24 hours. Cells were then treated with 

10% alamarBlue solution for 1-2 hours. Fluorescence signal levels were measured with a FLUOstar 

Optima microplate reader (BMG Labtech, Victoria, Australia) for control and treatment groups. No-

cell control was included to confirm low background fluorescence.  

 

Statistical Analyses. XnConverter and ImageJ software were used to process microscopic images 

generated from the experiments. Statistical analyses were performed using GraphPad Prism 8.4.3 

software. Statistical differences were evaluated using one-way ANOVA with Dunnett’s multiple 

comparisons, Kruskal-Wallis with Dunn’s multiple comparisons, paired t-test, simple linear 

regression and logarithm and normality tests as indicated in the figures. Symbols in the figures show 

P>0.05 (NS); P<0.05 (*); P<0.001 (***) or P<0.0001 (****).  
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Results 

 

Emodin and ECG block wound closure in SW480 CRC cell line. Circular wound closure assays 

were carried out to investigate the effects of emodin and ECG on AQP-5 expressing SW480 cell line. 

Emodin (at 25 to 150M) and ECG (at 25 to 150M) significantly impaired wound closure compared 

to vehicle control, at 51% (n=8) wound closure (Fig. 4). Besides that, emodin showed a dose-

dependent response, where increased dosage had a more significant effect on wound closure. Emodin 

at 50M had a 26% (p<0.0001) wound closure whereas ECG at 25M had a 35% (p<0.0001) wound 

closure. A visual representation in fig. 5 shows the outline of circular wounds at 0 hours and 20 hours 

after incubation.  
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Figure 4. Wound closure assay showed a blocking effect of emodin and ECG on SW480 

Colorectal Cancer cell line. Emodin and ECG at all dosage significantly reduced cell 

migration. Emodin showed a dose-response blocking effect. All treatments were n=8. 

Data were standardised for results to vehicle group. The error bar shows the min and max 

values; box indicates 50% of data; median is denoted by the horizontal line. ***: 

P<0.0005, ****: P<0.0001 (one-way ANOVA with Dunnett’s). 

 

 

Figure 5. Outlines of circular wounds at 0hr (black line) and 20hr (grey line) of 

incubation. 

 

Emodin, but not ECG, inhibited CRC invasiveness. Cell migration involves a three-dimensional 

penetration of cells through the extracellular matrix (ECM). The effects of emodin and ECG were 

investigated through a transwell invasion assay that quantifies the number of cells that pass through 

an ECM gel towards a chemo-attractant, visualised by staining of cell nuclei with crystal violet. 
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Treatment with emodin at 100M reduced SW480 cell invasion by 86.5% (P<0.05) compared to 

vehicle at 24 hours post-treatment; while the lower dosage, 50M had no significant effect (P>0.05) 

(Fig. 6). This suggests that emodin affected a motility mechanism in vitro. Treatment with ECG at 

50M and 100M did not significantly reduce cell invasion (P>0.05), suggesting that ECG did not 

target AQP-5 (Fig. 6).  

 

Figure 6. Transwell invasion assay showed that Emodin at 100M significantly reduced 

cell invasion. Data were normalised to vehicle. The error bar shows the full range of the 

data; box indicates 50% of data; median is denoted by the horizontal line. *: P<0.05 

(Kruskal-Wallis with Dunn’s). 
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Emodin and ECG did not inhibit AQP-5 osmotic water permeability. Oocyte swelling assays 

were conducted to investigate if emodin and ECG blocked the migration and invasion of SW480 CRC 

cell line through the inhibition AQP-5. The osmotic water permeability of AQP-5 expressing oocytes 

was first assessed (S1) in 50% hypotonic solution and transferred into isotonic saline with vehicle or 

drug treatments (emodin 50M, 75M and 100M; ECG 50M) for 2 hours. After incubation (S2), 

swelling rates of oocytes were tested again with 50% hypotonic solution (Fig. 7A). The results from 

paired t-tests showed that there were no significant differences (NS, p>0.05) between the first and 

second swelling within each treatment groups, indicating that emodin and ECG do not have any 

effects on AQP-5 (Fig. 7B). 
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Figure 7. Osmotic water permeability of AQP-5 expressing oocytes. (A) Linear 

regression fits of responses of the first swelling (S1) vs second swelling (S2). (B) Linear 

regression fits of responses were used to calculate slope values which indicated the 

swelling rate. Swelling rates of AQP-5 expressing oocytes were measured before (S1) 

and after (S2) 2 hours of incubation with vehicle or drug treatments. No treatment groups 

showed responses that were different from vehicle. n values are above the x-axis. The 

error bar shows the full range of the data; box indicates 50% of data; median is denoted 

by the horizontal line. NS: P>0.05 (Simple linear regression and Paired t-test). 
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Emodin and ECG are not toxic to SW480 CRC cell line. Cytotoxicity assays measured the 

metabolic activity of the cells. There were no significant differences between vehicle and treatment 

groups (emodin and ECG at 50M, 75M, 100M, 150M and 200M) (NS, P>0.05) (Fig. 8). 

Results were normalised to the metabolic activity of vehicle group, and indicated that the effects of 

emodin and ECG in SW480 cell line observed were not due to cell death. Emodin and ECG at high 

concentrations did not have any effects on the metabolic activity of cells, suggesting that the drugs 

were not toxic to SW480 cell line. There was a slight increase in metabolic activity when ECG was 

applied, but results were not significant (P>0.05). 

 

Figure 8. Absence of dose-dependent cytotoxic effects of emodin and ECG at a range of 

concentrations in SW480 cell line. There were no significant differences between vehicle 
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and treatment groups (Kruskal-Wallis with Dunn’s). All treatments were n=6. Data were 

normalised to vehicle. The error bar shows the full range of the data; box indicates 50% 

of data; median is denoted by the horizontal line.   
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Discussion 

 

Metastasis accounts for 90% of cancer deaths, but there is no treatment available for it37.  ~50% of 

CRC patients display micro-metastasis post-treatment, particularly developing liver metastases, 

which could be the main reason why CRC remains the second most common cause of death in 

Australia6, 38. Current cancer treatments (chemotherapy and radiotherapy) target cancer proliferation 

and there are no treatments targeting cancer metastases4. AQP facilitates the transport of water 

molecules across the plasma membrane that causes the formation of lamellipodia at the leading edge 

facilitates cell migration1. A summary by Papadopoulos and Saadoun confirmed that CRC displays a 

high expression of AQP 1, 3 and 5 (Table 1)11. Expression of AQP-1, 3 and 5 are present across seven 

CRC cell lines27. Although current treatment is effective in treating CRC, tumour recurrence 

generally presenting metastasis remains a huge problem. Currently, there are no treatment targeting 

AQP-5, which is involved in the migration of cancer cells. Traditional Chinese medicine has proved 

to be highly effective in tumour treatments and are a rich source for new drug discovery39. Previous 

pharmaceutical studies have shown that emodin and ECG inhibit the migration and invasion in several 

cancer cells, but the exact target has not been identified30, 31, 33. Hence, this study aimed to determine 

the effects of emodin and ECG on AQP-5. 

 

This study showed that emodin significantly suppressed cancer cell migration and invasion, whereas 

ECG only reduced cancer cell migration. This indicated that ECG does not target the chemotaxis 

mechanisms in cancer cell migration because they are not able to pass the ECM, a process essential 

for cancer metastasis as it is the initial step of cell migration. Cordero-Herrera et al. found that ECG 

induces SW480 cell line apoptosis through the induction of p53, but cytotoxicity assays from our 

study showed that ECG did not cause cell death in SW480 cell line32. As of now, not many studies 

have investigated the effects of ECG in the SW480 cell line and studies to identify the mechanism 

that ECG target is required. Emodin at a concentration high enough to block cell migration and 
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invasion did not have cytotoxic effects on CRC, showing effects were not due to cell death. Previous 

studies reported that emodin has anti-proliferative effects in cancer cells, so we applied mitotic 

inhibitor to stop the proliferation of SW480 cells, ensuring that we are only measuring the migration 

rate30, 31. Emodin also shows a dose-response effect, where increased concentrations have a more 

significant effect on cell migration. Hence, we concluded that the anti-migration and anti-invasion 

effects of emodin are attributed to the inhibition of a migrative mechanism. 

 

We hypothesised that the effects of emodin on SW480 CRC cell migration were through the 

inhibition of AQP-5 water channels, but results from the oocyte swelling assays disproved this idea. 

Other factors  that might be a target for pharmacological blockers (actin polymerisation, cell adhesion 

and matrix degradation) are involved in cell migration and invasion40. The ability of emodin to target 

both cell migration and invasion suggested that it might play a role in one of these cell migration 

components. Actin polymerisation drives the formation of lamellipodia in cancer cells, which is 

dependent on the generation of barbed ends of actin filaments at the leading edge (fig. 1)41. In 

colorectal carcinogenesis, Arp2/3 complex, one of the key regulatory proteins of actin polymerisation, 

is involved in cancer migration and invasion and is controlled by tumour-stromal interaction40. A 

study has shown that emodin inhibited the actin polymerisation in mouse leukemia cell line42. More 

recently, Liu et al. found that Arp2/3 complex inhibitor inhibited the accumulation of AQP-2 in rat 

kidneys and Lewis lung carcinoma cells in-vitro43. Emodin might be an Arp2/3 complex inhibitor 

which in turn inhibits the accumulation of AQP-5 at the leading edge of migrating cells. 

 

Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in matrix degradation. MMPs 

facilitate cancer cell migration and invasion by degrading the ECM and basement membrane of cells, 

playing a role in the metastases of cancer cells44. Multiple studies have shown that emodin 

significantly reduced the secretion of MMP-2, MMP-7 and MMP-9 in breast cancer, tongue cancer, 

colon cancer and CRC cell lines44-47. The MAPK/ERK signalling pathway is involved in the 
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regulation of MMPs. Previously, Kang et al. showed that the activation of AQP-5 in CRC tissue and 

cell line is associated with the activation of the ERK pathway20. Zhang et al. also reported similar 

findings where AQP-5 facilitates lung cancer proliferation and migration through the activation of 

the MAPK/ERK pathway18. Taking all these observations into consideration, it is possible that 

emodin is targeting the MAPK/ERK pathway or the Arp2/3 complex, which might have an indirect 

connection with the expression of AQP-5 in the SW480 cell line. 

 

Although our results showed that emodin at 50-200M did not decrease the metabolic activity of 

cells, other studies have highlighted that emodin at 20-80M shows nephrotoxicity and hepatotoxicity 

through the induction of apoptosis when administered in the human kidney cell line48, 49. In contrast, 

Lee et al. found that emodin prevents liver damage in rats by downregulating the production of 

cytokines that activates pro-inflammatory cascades50.  Sun et al. reported that emodin at 10-80M 

has no significant effects on the cell viability of breast cancer cell line at 24 hours, and further 

administration of emodin at 40mg/kg in breast cancer-induced mouse for 8 weeks showed that there 

were no effects on liver and kidney function44. Emodin displays varying cytotoxic effects in different 

cell lines and more research is needed to investigate why this occurs. Emodin does have poor 

pharmacokinetics in that it rapidly undergoes glucuronide metabolism, but co-administration of 

tetrahydroxy-stilbene glucoside can slow the metabolism of emodin in rats51. Further experiments on 

the effectiveness of emodin dosage with co-administration of metabolic inhibitors would be needed 

to ensure that emodin is safe for pharmaceutical use and human consumption.  

 

Limitations. In this study, only SW480 CRC cell line with high expression of AQP-5 was used to 

examine to effects of emodin and ECG. Additional CRC cell lines should be used to investigate if the 

effects of emodin and ECG on SW480 cell line can be observed in other CRC cell lines. Furthermore, 

due to time constraints, only one AQP channel was investigated in my studies with oocytes, though 

AQP-1 and 3 are also present in the SW480 cell line. Investigating the possible inhibitory effects of 
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emodin on other classes of AQPs present in the SW480 cell line would allow us to define or rule out 

the concept that emodin acts by blocking AQPs. Furthermore, because this study was conducted in-

vitro, it may not translate to in-vivo, since the in-vivo model involves whole body mechanisms and 

our assays are limited to the effects on single cells.  

 

Conclusion. To summarise, my study has shown a link between emodin and cancer cell metastasis 

and invasion. Results here show that emodin reduces cancer cell migration and invasion in-vitro, but 

not by blocking AQP-5. Emodin may serve as an adjunct to current cancer therapies but future 

research should explore the mechanisms of target of emodin in CRC and investigate the cross-talk 

between AQP-5 and the MAPK/ERK pathway and the Arp2/3 complex which would provide us 

insights on the target that emodin works on.  
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