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Abstract 

 
Whenever a person moves to intercept an object, they engage in a complex set of 

predictions, about the object’s trajectory, and about the set of motions required to 

intercept it. However, the way that people use perceptual information to intercept 

rapidly moving objects is currently not well understood. This is because the prob- 

lem is multifaceted, as there are delays in receptor transduction, neural conduction, 

processing and muscle activation. There is considerable as to how the two systems 

interact, there is some evidence that they do (Watamaniuk & Heinen, 2003). In order 

to assess the differences between trajectory prediction for perceptual judgments and 

pointing movements we examined participants using the same stimulus, a moving 

random dot cinematogram (Watamaniuk & Heinen, 1999; Williams & Sekuler, 1984), 

which was manipulated across conditions. We used a within subjects repeated meas- 

ures design to compare participants’ performance on two tasks, a perceptual (two al- 

ternative forced-choice) task and a pointing task (N = 6). For both tasks we assessed 

participants’ precision in extrapolating the trajectory of the cinematogram, as well as 

their response latency. If the two systems use the same visual information, we would 

expect that precision for each task changes similarly across the conditions. We found 

similar patterns of error for both tasks, with lower durations and higher bandwidth 

motion signals displaying greater directional error. This provides further insight into 

how we use visual information to guide movement. In particular, it provides insight 

as to how differences in motion perception affects interceptive movements. 

 

keywords: motion perception, vision-for-action, predictive mechanisms, sensor- 

imotor integration, goal-directed movement 
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1. Introduction 

 
People have amazing precision when intercepting moving targets, which is sur- 

prising given the speed of the nervous system (Brenner & Smeets, 2015). Interception 

of moving objects involves different sources of information that need to be brought 

together. To determine the future position of an object we must predict its trajectory 

from its current motion. Similarly, in order to make a reaching movement towards 

an object we must calculate the current position of our arm, the future position of our 

arm required to intercept the object, then calculate the muscle expansions and con- 

tractions (or muscle torque) need to make the movement. There is currently no com- 

plete explanation as to how this process is accomplished. This paper will first look 

broadly at theories of motion perception and motor control, then more closely at how 

these systems interact, with a focus on the predictive components of these accounts 

before discussing experimental findings around trajectory prediction and intercep- 

tion strategies. We  then outline the current study which aims to further examine  

the way that trajectory extrapolation in motion perception interacts with interception 

strategies. 

 
1.1 Motion perception 

 
1.1.1 Models of motion perception 

 
Before intercepting a moving object, a person must first detect that the object is 

in motion. There are a few different models of motion processing. Most involve the 

use of a "motion sensor" that detects and tracks the direction of changes in luminance 

over time. These include models based on Reichardt detectors (e.g. Santen & Sper- 

ling, 1985), Adelson and Bergen’s (1985) energy model and Grzywacz et al.’s (1995) 

network model. 

The earliest model for a motion detector was the Reichardt detector that was con- 

structed through studying motion perception in flies (Reichardt, 1967). Reichardt de- 

tectors use a simple mathematical model to compare incoming retinal signals with 
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delayed retinal signals and from this can determine whether a tracked object has 

moved from one location to another. Santen and Sperling (1985) propose an elabor- 

ated version that incorporates spatial input filters instead of Reichardt’s point-based 

detector, creating a model for motion detection out of a series of detectors. 

Adelson and Bergen’s (1985) energy model, rather than using a delay and com- 

pare system, uses a measurement of motion energy information. This model has two 

stages, an initial stage of spatiotemporally oriented linear filters tuned in spatial fre- 

quency. Pairs of these filters, 90 degrees out of phase with each other (quadrature 

pairs), are squared and summed resulting in a measure of motion energy which can 

account for directional selectivity in a way that a simple Reichardt detector cannot. 

Their approach can account for the same results of Reichardt detector-based models 

but posits a qualitatively different way of thinking about motion detection. 

How is this simple motion detected represented in the brain? Newsome et al. 

(1989) looked at motion perception in monkeys, finding that neural performance from 

single cell recordings showed similar performance to psychophysical thresholds. Us- 

ing a similar stimulus to the one in the present study (a random dot cinematogram) 

they varied the amount of signal dots moving coherently (i.e. moving in the same 

direction) against a field of randomly moving dots. By varying the ratio of signal to 

noise dots they were able to determine a measure of neuronal activity and a percep- 

tual threshold. Neuronal performance was found to detect the motion as well as the 

monkeys’ psychophysical performance, indicating it is possible that the activity of a 

small group of neurons is responsible for detecting motion signals. 

Building on the results of Watamaniuk et al. (1995), Grzywacz et al. (1995) pro- 

pose any model based on local motion detectors will not be able to account for the 

data on our ability to detect motion trajectories in noise. A motion trajectory in this 

case was the displacement of a dot in a constant direction over successive frames. 

Watamaniuk et al. (1995) used a random dot cinematogram similar to those explained 

above, though rather than varying the amount of dots moving coherently they used 

a single dot against noise dots and varied both the step-size (how far the dots were 
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displaced frame by frame), the duration, noise density as well as the shape and tem- 

poral structure of the trajectory. Grzywacz et al. (1995) constructed a network traject- 

ory model to explain this phenomenon, as other models were unable to account for 

the results. 

This model involves three stages, a local stage, similar to the above elaborated 

Reichardt or motion energy models, followed by a coherence stage and finally an 

outlier selection stage. As the local stage is akin to the models already discussed we 

will discuss the latter two stages here, the coherence stage and outlier stage. The 

coherence stage involves accumulation of rough directional information from adja- 

cent cells over time through a network. The outlier stage, which is a more high-level, 

potentially cognitively influenced stage, accounts for outliers across multiple coher- 

ence stage neighbourhoods. In doing so this model is able to account for extended 

trajectories in noise that the other models based only on local integration stages or 

those based on “position cues” (essentially detecting motion as forming a “shape”) 

are unable to account for. 

It is important to consider this type of model of motion perception when looking 

at manual interception, as interacting with moving objects often involves predicting 

motion over large spatial expanses. While these models only discuss motion percep- 

tion and the tasks involved do not involve either eye or hand movement, they give 

us indications as to an important building block in determining how we intercept 

moving objects. 

 
1.1.2 Local versus global motion 

 
Most important to note about the models in these studies is that in order to integ- 

rate direction information from across local receptors an integration time of 80-120ms 

is required (Grzywacz et al., 1995). This gives us a limit on how quickly trajectory in- 

formation can be determined, which informs the amount of time a motion signal must 

be present for the perception of direction. When using a RDC there are several ways 

to manipulate a motion signal to examine integration time. One is to manipulate the 
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duration of the signal (which is the number of frames shown in succession divided 

by the frame-rate) (Watamaniuk et al., 1989). Another is to manipulate the directional 

noise bandwidth, or the distribution of directions. For example, uniform distribu- 

tions of directions up to 180° around a mean direction have been shown to be pro- 

duce a percept of motion in the mean direction of the dots (Williams & Sekuler, 1984). 

These have been shown to decrease direction discrimination thresholds, but only at 

bandwidths higher than 17° and very low durations (Watamaniuk et al., 1989). 

 
1.1.3 Motion prediction and ensemble processing 

 
One way of looking at the integration of motion signals is as an example of a more 

general strategy that the brain uses, that of ensemble perception (Whitney & Leib, 

2017). This theory is used in an attempt to explain findings on demonstrating the 

limited amount of information available to awareness (Cohen et al., 2016). Whitney 

and Leib (2017) demonstrate many examples of situations in which visual informa- 

tion is likely represented in the form of a summary statistic. Both motion trajectory 

extrapolation and ensemble perception involve what can be thought of as predictive 

components. For example, the averaging process performed in the perception of a 

random dot cinematogram can be seen as a prediction being made about the direc- 

tion of any one dot in the signal. 

These strategies demonstrate examples of the leveraging of statistical regularities 

in the environment to encode information more efficiently. This will become import- 

ant when we later discuss predictive coding and active inference in section 1.4.2. 

Having looked at motion and different facets of direction discrimination in vision, 

the next section will look at theories on the working of the motor system, with an eye 

to examining the interaction between the two systems. 

 
1.2 Motor control 

 
To understand how the motor system interacts with motion perception, we need 

to understand the calculations the motor system performs by looking at some mo- 
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tor control models. First, we need to consider the fact that the eyes, hand, torso and 

the objects we interact with are all positioned differently. Second, these models need 

to take into account the “curse of dimensionality” - “vividly illustrated if we con- 

sider the 600 or so muscles in the human body as being, for extreme simplicity, either 

contracted or relaxed. This leads to 2600 possible motor activations, more than the 

number of atoms in the universe.” (Wolpert & Ghahramani, 2000, p. 1212). This is 

further complicated by the fact that motor plans are underconstrained (Sober & Sabes, 

2005; Wolpert et al., 2011) meaning that given infinite possible trajectories and infin- 

ite possible paths, at each point along that path there are a huge number of possible 

joint angle combinations (Harris & Wolpert, 1998). In order to do this, we must dis- 

cuss different reference frames, both for perception-action interaction and for motor 

control. 

 
1.2.1 Reference FRAME TRANSFORMATIONS for MOVEMENT planning 

 
Where the trajectory extrapolation of a perceived motion signal amounts to a pre- 

diction about the future position of the signal, a reaching movement to intercept an 

object is a prediction about the necessary future position of the hand. A person enga- 

ging in manual interception of a moving object is engaging in the estimation of two 

trajectories (that of the object and that of the hand) (Fiehler et al., 2019). These are po- 

tentially encoded in two different reference frames (Goodale & Milner, 1992; Schenk, 

2006). 

Why two different reference frames? In order to determine the trajectory of a mov- 

ing object a person needs to perceive that object is in motion (see the above discussion 

of motion detectors), the coordinate frame that this occurs in is not explicitly relative 

to the observer, but rather the object is seen relative to its past position (though there 

are exceptions, for example, objects approaching the observer, for which the rate of 

expansion would be a more relevant metric, Lee and Reddish, 1981). This reference 

frame is generally referred to as being allocentric (Crawford et al., 2011). This must 

then be converted into an egocentric reference frame (one centred on the hand, or the 
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hand’s position relative to that of the eye) where the absolute size and spatial location 

of the object is relevant. Why is this important? The easiest way of demonstrating the 

importance of this conversion is to think about how people achieve the correct grip 

aperture to engage with objects. Relative spatial relationships in retinocentric (or eye- 

centred) coordinates, while useful for making perceptual judgments of size, shape or 

direction of motion, are not easily turned into motor commands as motor commands 

must conform to the exact dimensions of an object. There are several different explan- 

ations for how this transformation occurs (see section 1.3). 

 
1.2.2 Neural underpinnings of reference frame transformations 

 
There is evidence that movement planning occurs in eye centered coordinates 

(Batista et al., 1999; Buneo & Andersen, 2006). There are neurons in posterior parietal 

cortex, specifically the area referred to as the parietal reach region that encode hand 

position and eye position in eye centered coordinates (Buneo & Andersen, 2006). 

Buneo and Andersen (2006) refer to this area as “encoding a ‘displacement vector  

in eye coordinates”’ (p. 2596). They argue that this displacement is encoded in a way 

such that systems responsible for moving the eyes and the hand are able to access a 

single information source that each system decodes relative to itself (because when 

viewing activations, this relationship goes both ways). There is also evidence that 

there are neurons in the PPC that encode both hand and eye position and appear to 

be involved in reference frame transformations (Buneo & Andersen, 2006). 

 
1.3 Vision-for-action and vision-for-perception 

 
One prominent theory as to how visual perception and movement interact sug- 

gests that the brain splits visual information across two streams, one for action, one 

for perceptual judgment. Goodale and Milner (1992) proposed, building on the work 

of Ungerleider and Mishkin (1982), that there is an anatomical separation between 

two streams. One being a ventral stream that projects from striate cortex to inferotem- 

poral cortex that facilitates the perceptual identification of objects the other a dorsal 
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stream from the striate cortex to the posterior parietal cortex that facilitates visually 

guided movement. These streams are sometimes seen to correspond respectively to 

the allocentric and egocentric coordinate systems mentioned above (Schenk, 2006). 

This theory has come under some scrutiny, with many suggesting the distinc- 

tion is poorly characterised (Schenk & McIntosh, 2010). One convincing case made 

by Smeets and Brenner (2010) is that rather than requiring a dorsal visual stream, 

proprioceptive position information can be combined with allocentric visual inform- 

ation, creating a system that is more robust to errors (as error signals from either 

modality can apply to the other). This is echoed in the idea that the dorsal stream is 

better viewed as a centre of multimodal sensory integration, rather than being expli- 

citly “visual” (Jackson, 2010). It also accords more closely with the findings around 

neural representations of reference frame transformations above. 

Having looked at motion perception and some of the interactions between per- 

ception and action in the next section we will discuss some models of motor control. 

 
1.3.1 Models of MOTOR control 

 
We will consider two different paradigms of motor control, the presently dom- 

inant paradigm, optimal control theory (Friston, 2011), and specifically the use of in- 

ternal forward models combined with feedback mechanisms (Todorov, 2004; Todorov 

& Jordan, 2002) and one based on predictive coding (Adams et al., 2013; Friston et al., 

2010; Friston et al., 2011). Both accounts are solving some of the same problems, so 

these will be discussed first. 

In addition to the idea that there are different reference frames that must be com- 

puted to engage in a reaching movement towards an object, there are also different 

kinds of information that must be used. A kinematic transformation involves the 

coding of the current state or placement of the limb in space in terms of joint angles. 

In order to make a reaching movement, a person must determine where their arm is 

presently located, this is known as an inverse kinematic transformation. They must 

then determine the transformation required to perform the reaching movement, this 
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is known as a forward kinematic transformation. To get there though, this trajectory 

must be turned into a set of torques and subsequently a set of muscle activations to 

actuate the movement, this is called a kinetic (or dynamic) transformation. (Sober & 

Sabes, 2003; Wolpert et al., 2011) 

These are also sometimes referenced relative to the reference frames mentioned 

earlier, with visually based allocentric and egocentric coordinate systems referred to 

as extrinsic and information based on the proprioceptive system (e.g. muscle lengths, 

joint angles) as intrinsic (Wolpert et al., 2012). 

The dominant theory for understanding motor behaviour currently is optimal 

control theory (Friston, 2011; Todorov, 2004). This theory is powerful in that unlike 

other theories of motor control that require more detailed inputs in order to model 

movement, optimal control theory takes a goal state (e.g. an object that needs to be in- 

tercepted through a certain kinematic transformation) as an input and searches for the 

control strategy that achieves optimal performance (Todorov, 2004). This technique 

is used in other fields and involves minimising or maximising a predefined perform- 

ance criterion or mathematical function (Umberger & Miller, 2017). This strategy is 

useful because it allows systems to “solve a control problem completely rather than 

complete its solution” (Bernshtein, 1967 in Todorov, 2004, p. 908). In other words, the 

way that you get to a solution is dynamically controlled rather than having to to 

calculate each solution individually. 

 
1.4 Prediction across systems 

 
Having discussed some of the more dominant models of motion perception and 

motor control, it’s informative to discuss these in the context of more general theories 

of how our brains process information. Trajectory prediction and manual intercep- 

tion of moving objects are notable as they constitute a particularly salient instance of 

prediction. Prediction is thought to be a more general strategy we use to interact with 

the environment (both because of its efficiency and its ability to account for neural 

delays). One theory as to how the brain engages in predictions is that of predictive 



9 

MOTION TRAJECTORIES: PERCEPTION AND ACTION 
 

 

 

coding and for motor control, active inference. The following section touches on the 

basics of predictive coding and active inference and some alternative ways of think- 

ing about the role of prediction in motor control. 

 
1.4.1 Predictive coding 

 
Predictive coding models are a system for looking at cortical architecture in a gen- 

eral sense that offer a somewhat different perspective on perception and in particular 

on motor control than other systems (Mumford, 1992). While there are many different 

variations of predictive coding they all possess the following characteristics (Shipp, 

2016). They all involve the generation of models refined by sensory data. These mod- 

els are hierarchical, in that they involve gradual levels of abstraction. They use error 

signals derived from sensory data in order to refine the model. It is important to note 

that this prediction is not the prediction of the future state of the system, but rather a 

prediction about what is likely to be happening in adjacent areas of the cortical hier- 

archy (Hogendoorn & Burkitt, 2019). Rao and Ballard (1999) have used the approach 

to computationally model vision in a way that accounts for some effects that other 

models have difficulty accounting for. 

 
1.4.2 Active inference 

 
An alternative viewpoint on motor control derived from predictive coding, is that 

of active inference (Adams et al., 2013; Friston et al., 2010). Where predictive coding 

schemes generally minimize errors by using sensory information to change predic- 

tions, in active inference the motor system minimizes prediction errors by engaging 

in actions to produce predicted sensations (Friston, 2011). One advantage of this 

predictive coding scheme in explaining hand motion is that it does not require an 

optimality criterion (Adams et al., 2013; Friston, 2011). Adams et al. (2013) posit a 

theoretical argument about the anatomy of the motor system, arguing that where tra- 

ditionally we would view motor control as the production of motor “commands” as 

mentioned above, it would make more sense to think of the motor system as making 
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and fulfilling sensory “predictions”. This method ties into the above ideas around 

ensemble prediction and trajectory extrapolation. In all cases sensory signals are ex- 

pressed as top down predictions that are updated through sensory stimuli. 

 
1.5 Manual Interception 

 
Given that manual interception of moving objects is an informative example of 

humans using prediction, how do we do it? The following section looks at some 

more experimental findings that are important considering the above discussion of 

different models of motor planning. There are conflicting ideas on how we are able to 

engage in accurate manual interception of moving objects. Though this ability does 

appear to be somewhat task-dependent (Zago et al., 2009). 

Having looked at theories of motion perception, motor control, as well as some 

theories as to how the two interact we will discuss closer to the present study. An 

important consideration in much of the experimental literature on interception is 

whether people predominantly use online (sometimes referred to as continuous) con- 

trol in which sensory signals constantly update movements or pre-programmed (or 

model based) control in order to guide their movements, in which more of the move- 

ment is planned in advance (Brenner & Smeets, 2018; Zhao & Warren, 2015). What is 

considered in these types of studies is how rapidly visual information is acted upon 

to guide movement. This is difficult to study because the outcome of either method 

might be similar. There is conflicting evidence as to whether this is possible. There are 

some findings suggesting that we mainly use model-based control for example when 

intercepting falling objects that had their trajectories occluded, participants were no 

less accurate (Scaleia et al., 2015). Some suggest that the use of model-based control 

might predominate for certain tasks (for example, hitting a ball, e.g. Tresilian, 2005). 

Others suggest that online control is essential particularly as people seem to keep 

their eyes on objects until just before their interaction with it is complete (Brenner & 

Smeets, 2018; Land, 2009). Brenner and Smeets (2017) suggest that we combine both 

model-based and online control, using a model that we continuously update. 
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Work on interception in natural environments has shown varying results, and the 

methods used are increasingly considered to be task dependent (Zago et al., 2009). 

While there is evidence that the last portion of visual information about a trajectory 

is not used (Bosco et al., 2015; Zago et al., 2008, 2009), there is also evidence that 

depending on the task it is possible to intercept very briefly presented targets (Mrotek 

et al., 2004). There is also evidence that predictive information could be different for 

eye movement and manual interception (Bosco et al., 2015; Eggert et al., 2005; Wexler 

& Klam, 2001). Our experience with gravity might also have an effect (Brenner et al., 

2016). These findings indicate task-dependent use of visual information. This makes 

sense if we think of seeing as a way of acting within an environment (Gibson, 1979; 

O’Regan & Noë, 2001). The next section will discuss the current study into how visual 

information and motion trajectory extrapolation differs across modalities. 

 
1.6 The present study 

 
Previous studies using a similar stimulus to the one used in the current study 

have shown that when looking at the difference between perceptual thresholds and 

smooth pursuit eye movements there is a similar amount of internal noise between 

the perceptual and oculomotor systems (Watamaniuk & Heinen, 1999). Contrary to 

the above suggestions around differences between vision-for-perception and vision- 

for-action this would suggest that the same information is being used by each system, 

at least in this circumstance. There is also evidence that the quality of visual inform- 

ation at the outset and throughout a reach is a more important predictor than motor 

noise as to the precision of a movement (Ma-Wyatt & McKee, 2006, 2007). 

The present study aims to investigate the way that we extrapolate trajectories from 

motion information by varying the motion signal in a similar manner to that done in 

Watamaniuk and Heinen’s earlier experiments on oculomotor performance. To ac- 

complish this we conducted an experiment involving two tasks, a perceptual task 

and a reaching task using the same stimulus (a random dot cinematogram). We com- 

pared visual thresholds with hand direction error and precision to determine whether 
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changes in the quality of the visual information were reflected similarly in the preci- 

sion of psychophysical judgments and reaching performance. Previous experiments 

suggest the quality of the visual information should be the limiting factor on motor 

performance. As an additional parameter we looked at two different interception 

points (in the form of circles at which the imagined stimulus trajectory had to be ex- 

trapolated to). We also investigated the extent to which degraded visual information 

affected the timing of movements, in order to determine whether the timescale of 

reaching (in movement latency and time) was affected by the quality of the visual 

information. Especially whether the time required for integrating signals with a large 

amount of directional noise resulted in an increase in movement time or latency. 

Based on previous findings, we expect that shorter durations and increased direc- 

tional noise will result in decreases in precision for both the perceptual and reaching 

task and that these two parameters will interact. We also expect that directional noise 

will result in longer movement latencies and movement times for the reaching task, as 

the motion signal will take longer to integrate. In addition, participants should show 

less precision in the 25° circle than the 12° circle as there is a wider area extrapolated 

across. 
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2. Method 
 

2.1 Participants 

 
A total of six participants completed both the perceptual task and the touch task, 

one of whom was involved in programming the experiment, the remainder of whom 

were naïve to the purposes of the experiment. All participants were right-handed 

and had normal or corrected to normal vision, no participants had motor deficits. 

The study received ethics approval from the University of Adelaide School of 

Psychology Ethics Committee, and the Institutional Review Board of Wright State 

University (USA) which is the American equivalent of an Australian ethics commit- 

tee. Participants could withdraw their consent at any point during the experiment 

without penalty. 

 
2.2 Apparatus 

 
The experiments were run on a computer with an Intel(R) i7 processor running 

at 3.07 GHz, with 12 GB RAM, running Windows XP, using custom software written 

in Matlab with extensions from the Psychophysics toolbox (Brainard, 1997; Kleiner et 

al., 2007; Pelli, 1997). Stimuli were displayed on and touch responses collected using 

a 17” ELO screen with a 1024 x 768 resolution and a 75Hz refresh rate with an overlaid 

touch responsive layer. A keyboard was used to collect responses for the perceptual 

task. A chin rest was secured to the table, to allow the participant to comfortably 

rest their chin while completing the experiment at a viewing distance of 40cm. A 

computer mouse was secured to the desk with Velcro, directly in front of the chin rest 

and in line with the participant’s midline. 

 
2.3 Stimulus 

 
The stimuli used were random dot cinematograms that measured 12 degrees of 

visual angle in diameter. This consisted of a field of dots that moved from frame to 

frame. See figure 1. 
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Four parameters were manipulated for each of the two tasks. These were the 

number of frames displayed (i.e. the duration of the stimulus - 4, 6 or 12 frames, 

corresponding to 50, 80, 160ms), the directional noise bandwidth (0° or 160°), the 

direction of the motion signal (180°, 225°, 270°, 315°, 360° (referred to throughout as 

0°) and the diameter of the surrounding circle (12° or 25°). 

 
2.3.1 Directional Noise 

 
Directional noise was added by varying the direction of the dots around a mean 

direction. Two noise bandwidths were used, a 0° bandwidth, in which all of the  

dots moved in the same direction and 160° bandwidth in which the dots varied their 

directions randomly from frame to frame within a 160° range, again with the same 

mean direction. 

 
2.4 Procedure 

 
A within subjects, repeated measures design was used. Each participant com- 

pleted both the perceptual and pointing tasks. Participants completed two blocks 

for each pointing condition, which was equivalent to 20 repeats of each condition at 
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each of the 5 directions. The order of tasks and conditions was not identical across 

participants. Data were collected at the University of Adelaide and Wright State Uni- 

versity (USA) on comparable equipment, across separate sessions between 2016 and 

2019. Data in Adelaide were collected in the same period across the end of 2016 and 

early 2017. Data from Wright State were collected in 2017. The tasks are described 

below. 

 
2.4.1 Perceptual Task 

 
The perceptual task used a method of single stimuli paradigm. Thresholds meas- 

ured with this task have been just as effective as those measured using a compar- 

ison interval (Morgan et al., 2000).  Each trial involved the participant beginning  

the trial by hitting the space-bar, which would initiate the stimulus. The motion 

stimulus was shown, and then a target dot was shown on the circumference of the 

circle. The participant then pressed a key corresponding to the direction (clockwise 

or counter-clockwise) in which they perceived the dots were deviating from the tar- 

get dot. Proportion clockwise was then collated across blocks and trials to calculate a 

psychophysical threshold for each condition. 5 blocks of each condition were used to 

calculate perceptual thresholds. 

 
2.4.2 Reaching Task 

 
The pointing task involved the same stimuli as the perceptual task. Participants 

sat in front of the touchscreen monitor with their hand on the computer mouse se- 

cured to the desk and and in line with the participant’s mid-line. The participant 

pressed the mouse button to begin each trial once a tone was sounded to indicate the 

onset of the trial. The onset of this tone was randomised from trial to trial. Upon  

the release of the button the stimulus was presented on the screen. The participant 

reached and touched the screen at the point at which they believed the array of dots 

would intersect the circle had they continued to be visible. They were given feedback 

to indicate if their response was more than 2 degrees from the target direction, or too 
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slow (more than 1 sec for movement time). Previous work from Ma-Wyatt’s lab has 

shown that a fast reach over 40cm will usually be in the range of 400-500ms, so this 

feedback was provided as a guide. As we were interested in the pattern of errors,  

all data were included in analyses. Data were then collated across conditions and 

the following measures calculated: movement latency (the time between when the 

stimulus appeared and the participant released their hand from the mouse button), 

movement time (the time from the release of the mouse button to the touch response 

on the screen), directional error (the direction that the participant indicated the target 

moved in) and the pointing precision (the variable error associated with this direction 

judgement). 
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3. Results 
 

3.1 Data collation and processing 

 
For the perceptual task,  data were collated across all repeats of each condition, 

for each participant,  and psychometric curves were then fitted to these data.   Step 

sizes were consistent across all direction conditions for a given block of trials.  Most 

direction conditions resulted in data that could be fitted with a psychometric curve. 

However, there were a few instances in which it was not possible to fit psychometric 

functions to 1 or more of the 60 conditions in a block.  In those cases, the threshold 

estimate was removed from further analyses.  This criterion resulted in the removal 

of 65 thresholds out of a total of 360.  No more than 22 were removed from any one 

participant. To quantify the perceptual judgement, we converted the proportion cor- 

rect to Z scores. We then took the difference between the 75 point and the 50 percent 

point.  We used this estimate, equivalent to a dJ  of 1 given the psychometric curve 

(Ma-Wyatt & McKee, 2006) as an estimate of precision for the perceptual judgement. 

This fitting was carried out in Excel. 

For the reaching data, we quantified movement latency as the time between the 

cue to start the trial and when the participant released the mouse button. Move- 

ment time was defined as the time between the release of the mouse button and the 

participant’s finger hitting the touchscreen. The location of the touch was registered 

by the screen. We calculated the difference between this touch and the true location 

for each trial. As we were interested in how participants predicted the trajectory of 

the motion signal, we calculated this distance by rotating all direction locations to 

one axis and then calculate the distance of the deviation from that "true" direction. 

We included all data for analyses since as it was believed that any directional error 

or differences in movement latency would be informative. From this, we were able 

to collate the reach errors for each condition. All data processing for the reach was 

conducted using custom written software in Matlab. 
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3.2 Statistical model 

 
All analyses were performed using a linear mixed model (LMM) conducted using 

the gamlj package in jamovi (Galluci, 2019; jamovi project, 2019). The fixed effects 

examined by each model were the duration of the signal (4, 6 or 12 frames at 75Hz), 

the circle circumference (12° or 25°), the direction (180°, 225°, 270°, 315°, 0) and the 

directional noise bandwidth (either 0° or 160°).  From these models we were able   

to determine the amount of the variance explained by the fixed effects, expressed 

as the marginal R2 value (R2
 ) as well as the amount of variance explained 

by the fixed and random effects combined, expressed as the conditional R2 value 

2 
GLMM(c) 

)(Nakagawa & Schielzeth, 2013). The random effect for each of the mod- 

els was to vary the intercept for each participant. The significant main effects were 

then further examined using post-hoc t-tests with a Bonferroni correction for multiple 

comparisons. 

As there is not agreed upon way of measuring effect size for linear mixed models 

(see Snijders, Bosker et al., 1999, and no agreed upon method for conducting power 

analyses for models with fixed and random effects these were not included (Brysbaert 

& Stevens, 2018). 

 
3.3 Reaching Task 

 
3.3.1 Movement latency 

 
First we looked at movement latency. More of the variance was explained by 

combining the fixed and random effects (R-squared conditional) (71% of the vari- 

2 
GLMM(c) 

= .71) than was explained by the fixed effects alone (R-squared mar- 

ginal) (6.58% of the variance, (R2
 = .06)). There were significant main effects 

for duration (F(2, 525) = 7.32, p < .001), directional noise bandwidth (F(1, 525) = 

66.68, p < .001) and circle size (F(1, 525) = 10.55, p = .001). There was no significant 

main effect of direction (F(4, 525) = 0.63, p = .63). Significant interaction effects were 

also found between the effect of duration and circle size (F(2, 525) = 3.4, p = .034) 

 

(R 

ance, R 
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and duration and bandwidth (F(2, 525) = 3.33, p = .036). 

Post-hoc tests. The effect of duration, bandwidth and circle size on movement 

latency are shown in figure 2. Interestingly there was no significant difference between 

4 frames (M = 550ms, SD = 63.6ms) and 12 frames (M = 555ms, SD = 80.3ms) for 

mean movement latency. However, participants were significantly faster for the 6 

frame condition (M = 537ms, SD = 92.3ms) than for either the 4 frame condition 

(t(525) = 2.5, p = 0.038) or the 12 frame condition (t(525) = −3.76, p < .001). Par- 

ticipants showed significantly faster movement latencies for the 0° condition (M = 

532ms, SD = 75.4ms) than the 160° condition (M = 564ms, SD = 80.9ms). There 

were also significant differences for circle size, with slightly longer movement laten- 

cies for the 12° circle (M = 553ms, SD = 70.3ms) than for the 25° circle (M  =  

542ms, SD = 87.7ms). 
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3.3.2 Movement time 

 
We next looked at movement time. For mean movement time the fixed effects ex- 

plained only 9.5% of the variance (R2
 = .095) where the fixed and random 

effects combined explained 75% of the variance (R2
 = .75), indicating that 

most of the variation in movement time was explained by differences between the 

participants, rather than by the manipulations. However, there were a number of sig- 

nificant main effects that explain this small variance, including duration (F(2, 525) = 

20.54, p < .001), directional noise bandwidth (F(1, 525) = 29.38, p < .001), circle size 

(F(1, 525) = 28.09, p < .001) and direction (F(4, 525) = 3.18, p = .013). There were 

significant interaction effects between duration and circle size (F(2, 525) = 7.23, p < 

.001), duration and bandwidth (F(2, 525) = 32.23, p < .001) and circle size and band- 

width (F(1, 525) = 8.35, p = .004) 

Post-hoc tests. The results for movement time for across duration, bandwidth 

and circle size are displayed in figure 3. We observed significantly lower movement 
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times for 4 frames (M = 473ms, SD = 111ms) than for 6 frames (M = 500ms, SD = 

148ms) (t(525) = −2.91, p =  .011) as well as for 6 frames compared to 12 frames  

(M = 524ms, SD = 178ms) (t(525) = −3.47, p = .002). There were significantly 

longer movement times for the 0° noise bandwidth condition (M = 525ms, SD = 

169ms) than for the 160° condition  (M  = 483ms, SD  = 124ms) (t(525) = 5.42, p  < 

.001).  There were also significantly shorter movement times for the 12° circle size 

(M = 483ms, SD = 124ms) than the 25° circle (M = 515ms, SD = 168ms). 

 

 
3.3.3 Reaching accuracy 

 
We conducted a simple analysis to examine the relationship between where parti- 

cipants touched the screen and the true direction of the target. A simple linear regres- 

sion was used to determine participants’ accuracy by predicting the true direction 

of the stimulus against participants’ direction for hand direction distance, finding a 

significant relationship (R2 = 0.76, F(1, 588) = 1960, p < .001). As demonstrated in 
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figure 4 accuracy was lower for the 12° circle (R2 = 0.67, F(1, 288) = 611, p < .001) 

than for the 25° circle (R2 = 0.88, F(1, 298) = 2383, p < .001). 

 
3.3.4 Reaching precision 

 
For directional error in the reaching task the fixed effects explained only 13% of the 

variance (R2
 = .13) while the fixed and random effects combined explained 

52% of the variance (R2
 = .52). There were significant main effects of duration 

(F(2, 525) = 21.183, p < .001), directional noise bandwidth (F(2, 525) = 32.881, p < 

.001), and direction (F(4, 525) = 5.265, p < .001). Interestingly, there was also a signi- 

ficant main effect of circle size (F(1, 525) = 4.403, p = 0.036). There were also signific- 

ant interaction effects between duration and bandwidth (F(2, 525) = 3.47, p = .032), 

circle size and direction (F(4, 525) = 2.87, p = .023), and bandwidth and direction 

(F(4, 525) = 6.76, p < .001). 

Post-hoc tests. There was a significantly greater directional error for the 4 frame 

condition (M = 36.5, SD = 32.4) than for the 6 frame condition (M = 22.9, SD = 

23.6) (t(525) = 5.83, p < .001). There was no significant difference in precision 

between the 6 frame and 12 frame condition (M = 24.0, SD = 29.7) (t(525) = 

−1.04, p = 1.0). There was a significantly greater directional error for the 160 ° band- 

width condition (M = 33.4, SD = 31.0) than for the 0° condition (M = 22.3, SD = 

26.7) (t(525) = −5.73, p < .001). These effects are shown in figure 5. 

Interestingly there was also a significant difference in precision present between 

the two circle sizes for the reaching task. The directional error was significantly 

greater for the 12° circle (M = 30.0, SD = 32.0) than the 25° circle (M = 25.8, SD = 

26.6) (t(525) = 2.10, p = .036). The possible reasons for this will be elaborated upon 

in the discussion. The difference for each bandwidth and duration between the two 

circle sizes are shown in figure 6. Directional error for each bandwidth, duration and 

circle size is shown in figure 7. 
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3.4 Perceptual Task 
 
3.4.1 Delta direction threshold 

 
Precision performance on the perceptual task was analysed using the same lin- 

ear mixed model outlined above. The fixed effects explained a moderate 37.2% of 

the variance (R2
 = .37) and the random and fixed effects together explained 

44.1% of the variance (R2
 = 0.44). As expected from previous research there 

were significant main effects of duration (F(2, 233) = 22.83, p < .001), directional 

noise bandwidth (F(1, 234) = 72.98, p < .001) and direction (F(4, 233) = 8.86, p < 

.001). In contrast to the effect of circle size found for reaching precision, there was no 

significant main effect of circle size (F(1, 233) = 1.56, p = .21). Significant interaction 

effects were found between duration and bandwidth (F(2, 233) = 9.15, p < .001) and 

bandwidth and direction (F(4, 232) = 2.82, p = .026). 
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Post-hoc tests. There was a significant effect of duration on precision, with greater 

errors for 4 (M = 10.2, SD = 5.89) than 6 frames (M = 7.32, SD = 4.90) (t(233) = 

4.14, p < .001) as well as for 6 than 12 frames (M = 6.60, SD = 3.59) (t(233) =
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2.66, p = .025), in contrast to the results for the perceptual task. There was also a sig- 

nificant effect of directional noise bandwidth on precision with significantly greater 

direction error for the 160° condition (M = 9.82, SD = 5.75) than the 0° condition 

(M = 6.35, SD = 3.68) (t(234) = −8.53, p < .001). These effects are shown in figure 5 

for both the perceptual and reaching task. 

 
3.5 Comparing the Perceptual and Reaching Task 

 
3.5.1 Combined precision estimates 

 
An LMM was used to compare the perceptual and reaching task. This model used 

the same parameters as the above models, it combined the two precision variables 

as an outcome variable and included task as an additional fixed effect. The fixed 

effects explained 36% of the variance (R2
 = 0.36) and the random and fixed 

effects combined explained 51% of the variance (R2
 = 0.51). Significant main 

effects were found for directional noise bandwidth (F(1, 759) = 30.15, p < .001), 

duration (F(2, 758) = 14.25, p < .001), direction (F(4, 759) = 3.72, p = .005), and 

task "(F(1, 483) = 127.82, p < .001). No significant main effect was found for circle 

size (F(1, 758) = 2.32, p = .12). 

Post-hoc tests. As was expected, errors were significantly greater for the reaching 

task (M = 27.9, SD = 29.4) than for the perceptual task (M = 7.88, SD = 5.01) 

(t(489) = 11.1, p < .001). Errors were also significantly greater for the 160° (M = 

26.2, SD = 28.2) than the 0° directional noise bandwidth (M = 16.6, SD = 22.8). 

Significantly greater error was found for the 4 (M = 28.6, SD = 29.8) than the 12 

frame (M = 17.7, SD = 25.2) conditions (t(759) = 4.96, p < .001) and the 4 and 6 

frame (M = 17.6, SD = 20.7) conditions (t(758) = 4.48, p < .001). No significant 

differences were found between the 6 and 12 frame conditions (t(759) = 0.32, p = 

1.00). 
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4. Discussion 

 
This study considers how we use visual information in the form of motion tra- 

jectory prediction in order to make perceptual judgements and engage in interceptive 

movements. We were interested in comparing differences between the way the visual 

information is used in making perceptual judgments and reaching movements. This 

is a particularly salient instance of a more general strategy of prediction it is believed 

we use to contend with neural processing delays and more efficiently engage with 

our environment. However, comparing these two systems is difficult because of dif- 

ferences in task demands for each modality. We compared the tasks across several 

different parameters, varying the signal strength (noise bandwidth, duration), the 

area extrapolated across (two different circle sizes) over five mean directions. We ob- 

tained movement latency, movement time, accuracy and precision measurements for 

the reaching task. This precision estimate allowed us to compare the precision of the 

perceptual task to that of the reaching task across conditions. For the perceptual task 

we measured precision using a two-alternative forced-choice design to determine a 

precision estimate to compare to the reaching task. Previous work has indicated that 

increased stimulus duration should result in greater precision and higher directional 

noise bandwidths should result in lower precision (Watamaniuk et al., 1989). Both 

of which were supported in this study for the perceptual task and partially for the 

reaching task (no difference was found between the 6 and 12 frame condition for the 

reaching task). 

 
4.1 Movement Latency 

 
Measuring movement latency was thought to give us some insight into whether 

a degraded motion signal (in the form of increased directional noise in particular) 

would result in people delaying their movements in order for signal processing to 

occur. While there was a significant relationship between stimulus duration and 

movement latency the results obtained are somewhat ambiguous as there was no  

significant difference between the longest and shortest durations (4 and 12 frames), 
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however, latencies were significantly faster for the 6 frame condition than either. It is 

important to note that there was quite high variability between participants in their 

movement latency, with very little variance explained by the manipulations. Band- 

width had more of an effect on movement latency with a 32ms difference between 

the conditions, with the more ambiguous 160° stimulus resulting in longer move- 

ment latencies. This would accord with participants requiring longer on average to 

integrate the motion signal for the 160° condition, though the substantial variability 

amongst participants must again be considered. 

 
4.2 Movement Time 

 
Movement time increased with longer durations indicating that people may have 

made use of visual information obtained during the movement. This is backed up 

by the length of the movement times (~400-600ms) combined with the movement 

latency (<500ms) compared with the length of the sensorimotor loop (the length of 

delays introduced by the nervous system, ~200ms, Wolpert et al., 2012). This could 

mean that feedback mechanisms were being used to facilitate corrective movements 

based on additional information obtained from the stimulus. That only the 0° con- 

dition (the less ambiguous visual information) resulted in longer movement times 

across durations further indicates that participants might have been using visual in- 

formation obtained throughout the reach (see 3). This accords with previous findings 

indicating that the presence of visual information throughout a reach can determ- 

ine endpoint precision (Ma-Wyatt & McKee, 2007). This is also in line with findings 

around motion perception indicating that we need time to integrate motion inform- 

ation. The time it takes varies, for more coherent motion takes ~80-120ms and for 

more noisy stimuli can take up to 400ms (Grzywacz et al., 1995). Though this ef-  

fect was clear, again, there was considerable variability amongst participants in their 

movement times, with the fixed effects of the model only explaining a small propor- 

tion of the variance. This indicates differences in the way that participants were ac- 

complishing the task, which combined with the similarly large amount of variance in 
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movement latency potentially indicates either that participants had differing abilities 

with regards to the task, different understandings of the task or employed different 

strategies when completing the task. 

 
4.3 Movement Accuracy 

 
Despite this individual variability, participants were reasonably accurate as is 

shown in figure 4. A considerable amount of the variance in accuracy seems to be 

from single participant in the 12° condition is readily observed in figure 4. This in- 

dicates that while the task was difficult, and there was sizeable variability in people’s 

precision, that they were in fact able to complete the task - the task was difficult but 

not impossible. 

 
4.4 Precision 

 
A key result from earlier studies that was replicated was the effect of degraded 

visual stimuli on the performance of both the perceptual and reaching task. This 

was evidenced in increased error for signals with more directional noise (160° vs. 

0°) for both tasks as well as for shorter durations (4 frames > 6 frames > 12 frames) 

for the perceptual task. These results were partially carried over for the reaching 

task, though no significant difference was found between the 6 and 12 frame condi- 

tions. There was also an interaction effect between directional noise bandwidth and 

duration for both tasks. This interaction has been demonstrated in previous studies 

looking at perceptual judgements using similar stimuli (Watamaniuk et al., 1989). 

The results for the perceptual task are in line with previous literature that shows 

that directional precision decreases with larger bandwidths and shorter durations 

(Watamaniuk et al., 1989). Though in that study much longer durations were used. 

This was partially supported for the reaching task, though there was no difference 

found between the 6 and 12 frame conditions potentially indicating that these were 

equally difficult. Pilot tests showed that 4, 6, and 12 frames at 75Hz were suitable dur- 

ations for finding an effect, and while this was the case with the perceptual task, there 
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was no significant difference between the 6 and 12 frame durations for the reaching 

task. It is possible that a longer duration condition might have shown a greater effect. 

 
4.4.1 Circle size 

 
One unexpected result was that directional error was greater for the smaller 12° 

than for the 25° circle for the reaching task. An explanation for this might be that, 

though people were not primed to actually make an interception (they were told to 

indicate where the stimulus would intersect the surrounding circle, rather than when), 

it is possible they nonetheless acted as though they were attempting an interception. 

This is further supported by the movement time and latency results, both of which 

were significantly lower for the 12° than the 25° circle. People were altering the timing 

of their movements according to the size of the surrounding circle. 

There are several variables that need to be taken into account when thinking about 

trajectory interception. The two main variables under control are the timing of the in- 

terception (influenced by the size, speed and distance of the target) and the spatial 

position of the endpoint (i.e. the hand/foot). Brenner and Smeets (2015) suggest  

that the optimal strategy people use for precise interception involves estimating the 

time required to intercept a target’s path and then adjusting their movement path in 

space to "fine-tune" the movement and more precisely intercept the target. This is 

because spatial adjustments are faster than temporal ones (Brenner & Smeets, 2015). 

The fixed interception point used (i.e. the circle) could mean that a different strategy 

had was used. As a result of this fixed interception point, participants may have tried 

to speed up their movements for the smaller circle size, resulting in a speed-accuracy 

trade-off (i.e. Fitt’s Law, Fitts, 1954). This also accords with the above results regard- 

ing duration affecting movement times suggesting that visual information obtained 

throughout the reach could have been used to engage in this fine-tuning for the larger 

circle size and not for the smaller circle. If participants were influenced by the circle 

size to increase their speed in order to intercept the signal at the correct time, rather 

than merely at the correct location, this might necessarily result in less precision. 
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What is also notable about this finding regarding circle size is that in the 25° con- 

dition participants were able to accurately extrapolate the trajectory of a very briefly 

presented motion signal. Previous studies suggest that trajectory motion produces 

activity in directional motion detectors that allow people to determine where an oc- 

cluded moving object should reappear (Watamaniuk, 2005; Watamaniuk & McKee, 

1995). These findings present further evidence that this sort of trajectory extrapola- 

tion is possible. 

Differences in spatial localization capabilities might also account for this. As the 

12° circle is much closer to the signal dots, local position judgements may be altering 

the trajectory estimates so as to decrease precision. However, there was no significant 

difference between the circle sizes for the perceptual task, which makes this prospect 

less likely. 

 
4.5 Limitations 

 
A major limitation of the present study is that the task turned out to be more 

difficult for participants than pilot trials indicated. This was evident for both the 

perceptual and reaching task. For the reaching task this resulted in much less pre- 

cision when compared with results from people making reaches when examining 

simple static stimuli at similar eccentricities (Ma-Wyatt & McKee, 2006). It was also 

impossible to fit a psychophysical function for some conditions as participants’ er- 

ror rates did not track changes in the stimulus. There was a considerable variability 

between participants, seen in the gap between the fixed and random effects and in the 

large error bars. This was particularly surprising for the perceptual task, as we had 

to remove some data points to which we were unable to fit a psychometric function. 

For the reaching task, there was evidence of some large directionally specific errors 

as well. Methods to mitigate these effects are discussed in section 4.6 below. 

This could also be due to the nature of the task more generally. For the perceptual 

task, participants had to make a judgement as to the motion of the stimulus relative 

to a fixed reference point. The reaching task, on the other hand, contained no such 
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reference point (largely because this was unnecessary). This difference instantiates 

different reference frames in the task itself. The perceptual task involves making a 

judgement in an allocentric reference frame, where the reaching task involves mul- 

tiple reference frames (allocentric and egocentric). 

As will be discussed below, an eye movement-based task could help bridge this 

gap. Instead of thinking about the task as involving perception and action, it might 

be more instructive to think of it as involving a reference frame comparison, as this 

is arguably just as relevant a distinction (Schenk & McIntosh, 2010). Eye movement 

involves information in a reference frame more closely mimicking the perceptual task 

(though there is likely considerable interaction between these systems, see Mather 

and Lackner, 1981), while still involving a motor control element and therefore might 

be useful to consider in conjunction with the perceptual and reaching metrics. 

There is also the question of differences in the temporal nature of the two tasks. If 

we consider that the use of online or model-based control when engaging in intercep- 

tion may be largely task dependent (Zago et al., 2009), then visual information may 

also be used in a task dependent manner. The perceptual task contains no element 

of timing, where most tasks involving manual interception do. If we consider, as 

Brenner et al. (2016) suggest, that people first decide when they will intercept a target, 

engaging in a movement, before making more precise spatial corrections based on 

updated visual information (as it is faster to make spatial adjustments than temporal 

ones, see: Brenner et al., 1998). 

 
4.6 Future directions 

 
When examining the data for the reaching task there were much larger directional 

errors for some directions than others, and this effect varied across participants. This 

may have been a function of the way in which the step sizes for the stimulus were 

chosen. As is common when using this kind of stimulus the step size of the motion 

signal was adjusted for each participant . For this trial the step size was only varied 

participant to participant and not by direction, resulting in directional differences that 
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were difficult for some participants to discriminate demonstrate disproportionately 

large errors. 

Given the somewhat surprising finding around precision and circle size for the 

reaching task, one potential avenue might be to further investigate this effect. Some 

additional manipulations that could be used would be to examine the effect would 

be to use more that two different circle sizes. This could help determine whether 

this increase in precision scales with circle size and, if so, the limits of this effect. 

Another potential manipulation would be to increase the size of the stimulus (e.g.  

to use a 25° RDC for the 25° circle condition, rather than a 12° RDC) to determine 

whether this effect of circle size is due to motion extrapolation, movement error, or 

to local position-based effects (Westheimer & McKee, 1977). This could, however, 

also introduce a new confound, as people have been shown to have better motion 

detection and discrimination when observing larger RDCs (Heinen & Watamaniuk, 

1998). 

Based on the way that mean movement time increased with stimulus duration,  

it could be helpful to look at how this visual information is being used. Examining 

hand movement data could provide further information as to how people are using 

visual information. By measuring peak velocity of the movement we could determ- 

ine whether people are making last minute corrections based on visual information 

obtained throughout the reach. 

As mentioned above, in addition to changes to the stimulus, it would also be in- 

formative to conduct a study tracking smooth pursuit eye movements, in addition to 

the reaching and perceptual data. This could use a similar stimulus setup to the one in 

the current study (though perhaps with some alterations discussed above to accom- 

modate some of the limitations). As oculomotor performance has been studied in a 

similar manner previously, and it has been found, using a similar stimulus, that after 

accounting for inherent motor noise, oculomotor and psychophysical performance 

showed evidence that they are governed by a common motion processing stage, lim- 

iting performance for both systems (Kowler & McKee, 1987; Stone & Krauzlis, 2003; 
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Watamaniuk & Heinen, 1999). Comparing the way that these two motor systems use 

visual information would allow us to further understand the interaction between the 

perception and different motor systems. As mentioned above, it may also provide 

additional insight into how visual information is used in different reference frames. 

 
4.7 Conclusion 

 
This study aimed to further investigate the complex interrelationship between 

visual perception and hand movements. While we managed to find patterns of dif- 

ferences between our conditions, including increased directional noise in a motion 

signal causing decreases in precision and effects on movement time, there was also 

considerable variability between participants. The perceptual and movement sys- 

tems are methodologically difficult to analyse, as it is difficult design experiments 

that dissociate the modalities in order to compare them. Nonetheless, analysing these 

systems together provide does provide some insight into how humans are able to ac- 

count for processing delays. The interaction between motion processing and traject- 

ory interception involves examining two important predictive processes people use 

to engage with the environment. This is also a particularly explicit instance of a more 

general class of predictive strategies it is thought we use to engage with the world. 

It is clear from this study that much further research can be done in examining the 

interaction between motion perception, trajectory extrapolation and movement using 

these types of stimuli. By combining low level motion perception (briefly presented 

motion stimuli) and reaching movements it is possible to get closer to understanding 

how visual information is used to inform interceptive movements. 



35 

 

 

References 

Adams, R. A., Shipp, S. & Friston, K. J. (2013). Predictions not commands: Active in- 

ference in the motor system. Brain Structure & Function, 218(3), 611–643. https: 

//doi.org/10/f4wkqx 

Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the percep- 

tion of motion. Journal of the Optical Society of America A, 2(2), 284–299. https: 

//doi.org/10.1364/josaa.2.000284 

Batista, A. P., Buneo, C. A., Snyder, L. H. & Andersen, R. A. (1999). Reach Plans in Eye- 

Centered Coordinates. Science, 285(5425), 257–260. https://doi.org/10/fd5x89 

Bernshte˘ın, N. (1967). The Coordination and Regulation of Movements. Pergamon Press. 

Bosco, G., Monache, S. D., Gravano, S., Indovina, I., Scaleia, B. L., Maffei, V., Zago, M. 

& Lacquaniti, F. (2015). Filling gaps in visual motion for target capture. Front. 

Integr. Neurosci., 1–17. https://doi.org/10/gc9zz7 

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. https: 

//doi.org/10/c7g6rj 

Brenner, E., Smeets, J. B. J. & de Lussanet, M. H. E. (1998). Hitting moving targetsCon- 

tinuous control of the acceleration of the hand on the basis of the target’s velo- 

city. Experimental Brain Research, 122(4), 467–474. https://doi.org/10/b9vs7b 

Brenner, E., Rodriguez, I. A., Muñoz, V. E., Schootemeijer, S., Mahieu, Y., Veerkamp, 

K., Zandbergen, M., van der Zee, T. & Smeets, J. B. (2016). How Can People 

Be so Good at Intercepting Accelerating Objects if They Are so Poor at Visu- 

ally Judging Acceleration? i-Perception, 7(1), 1–13. https://doi.org/10.1177/ 

2041669515624317 

Brenner, E. & Smeets, J. B. J. (2015). How people achieve their amazing temporal pre- 

cision in interception. Journal of Vision, 15(3), 1–21. https://doi.org/10/f7dpt8 

Brenner, E. & Smeets, J. B. J. (2017). Chapter 4 - Accumulating visual information for 

action. In C. J. Howard (Ed.), Progress in Brain Research (pp. 75–95). Elsevier. 

https://doi.org/10.1016/bs.pbr.2017.07.007 

Brenner, E. & Smeets, J. B. J. (2018). Continuously updating one’s predictions under- 

lies successful interception. Journal of Neurophysiology, 120(6), 3257–3274. https: 

//doi.org/10/gg2wv3 

Brysbaert, M. & Stevens, M. (2018). Power Analysis and Effect Size in Mixed Effects 

Models: A Tutorial. Journal of Cognition, 1(1), 9. https://doi.org/10/gcsmn2 

Buneo, C. A. & Andersen, R. A. (2006). The posterior parietal cortex: Sensorimotor 

interface for the planning and online control of visually guided movements. 

Neuropsychologia, 44(13), 2594–2606. https://doi.org/10/cckjkg 



36 

MOTION TRAJECTORIES: PERCEPTION AND ACTION 
 

 

 

Cohen, M. A., Dennett, D. C. & Kanwisher, N. (2016). What is the Bandwidth of Per- 

ceptual Experience? Trends in Cognitive Sciences, 20(5), 324–335. https:// doi. 

org/10.1016/j.tics.2016.03.006 

Crawford, J. D., Henriques, D. Y. & Medendorp, W. P. (2011). Three-Dimensional 

Transformations for Goal-Directed Action. Annual Review of Neuroscience, 34(1), 

309–331. https://doi.org/10.1146/annurev-neuro-061010-113749 

Eggert, T., Rivas, F. & Straube, A. (2005). Predictive strategies in interception tasks: 

Differences between eye and hand movements. Experimental Brain Research, 

160(4), 433–449. https://doi.org/10/cptfwg 

Fiehler, K., Brenner, E. & Spering, M. (2019). Prediction in goal-directed action. Journal 

of Vision, 19(9), 1–21. https://doi.org/10.1167/19.9.10 

Fitts, P. M. (1954). The information capacity of the human motor system in controlling 

the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–391. 

https://doi.org/10.1037/h0055392 

Friston, K. J. (2011). What Is Optimal about Motor Control? Neuron, 72(3), 488–498. 

https://doi.org/10/b3fk4b 

Friston, K. J., Daunizeau, J., Kilner, J. & Kiebel, S. J. (2010). Action and behavior: A 

free-energy formulation. Biological Cybernetics, 102(3), 227–260. https:// doi. 

org/10/c8zhrp 

Friston, K. J., Mattout, J. & Kilner, J. (2011). Action understanding and active infer- 

ence. Biological Cybernetics, 104(1), 137–160. https://doi.org/10/d5jmw3 

Galluci, M. (2019). GAMLJ: General analyses for linear models. https://gamlj.github.io/ 

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Psychology Press 

OCLC: 914056891. 

Goodale, M. A. & Milner, A. D. (1992). Separate visual pathways for perception and 

action. Trends in Neurosciences, 15(1), 20–25. https://doi.org/10.1016/0166- 

2236(92)90344-8 

Grzywacz, N. M., Watamaniuk, S. N. J. & McKee, S. P. (1995). Temporal coherence 

theory for the detection and measurement of visual motion. Vision Research, 

35(22), 3183–3203. https://doi.org/10.1016/0042-6989(95)00102-6 

Harris, C. M. & Wolpert, D. M. (1998). Signal-dependent noise determines motor plan- 

ning. Nature, 394(6695), 780–784. https://doi.org/10.1038/29528 

Heinen, S. J. & Watamaniuk, S. N. J. (1998). Spatial integration in human smooth pur- 

suit. Vision Research, 38(23), 3785–3794. https://doi.org/10/dkwrr2 

Hogendoorn, H. & Burkitt, A. N. (2019). Predictive Coding with Neural Transmis- 

sion Delays: A Real-Time Temporal Alignment Hypothesis. eNeuro, 6(2), e0412. 

https://doi.org/10.1523/eneuro.0412-18.2019 

Jackson, S. R. (2010). Is the visual dorsal stream really very visual after all? Cognitive 

Neuroscience, 1(1), 68–69. https://doi.org/10/ft9k75 



37 

MOTION TRAJECTORIES: PERCEPTION AND ACTION 
 

 

 

jamovi project. (2019). Jamovi (Version 1.1). https://www.jamovi.org 

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R. & Broussard, C. (2007). 

What’s new in psychtoolbox-3. Perception, 36(14), 1–16. 

Kowler, E. & McKee, S. P. (1987). Sensitivity of smooth eye movement to small differ- 

ences in target velocity. Vision Research, 27(6), 993–1015. https://doi.org/10/ 

dvnhhk 

Land, M. F. (2009). Vision, eye movements, and natural behavior. Visual Neuroscience, 

26(1), 51–62. https://doi.org/10/c87pr5 

Lee, D. N. & Reddish, P. E. (1981). Plummeting gannets: A paradigm of ecological 

optics. Nature, 293(5830), 293–294. https://doi.org/10/bpws8x 

Mather, J. A. & Lackner, J. R. (1981). The influence of efferent, proprioceptive, and tim- 

ing factors on the accuracy of eye-hand tracking. Experimental Brain Research, 

43(3), 406–412. https://doi.org/10/cj3jmw 

Ma-Wyatt, A. & McKee, S. P. (2006). Initial visual information determines endpoint 

precision for rapid pointing. Vision Research, 46(28), 4675–4683. https:// doi. 

org/10/fncbn2 

Ma-Wyatt, A. & McKee, S. P. (2007). Visual information throughout a reach determ- 

ines endpoint precision. Experimental Brain Research, 179(1), 55–64. https://doi. 

org/10.1007/s00221-006-0767-1 

Morgan, M. J., Watamaniuk, S. N. J. & McKee, S. P.  (2000). The use of an impli-      

cit standard for measuring discrimination thresholds. Vision Research, 40(17), 

2341–2349. https://doi.org/10.1016/s0042-6989(00)00093-6 

Mrotek, L. A., Flanders, M. & Soechting, J. F. (2004). Interception of targets using brief 

directional cues. Experimental Brain Research, 156(1), 94–103. https://doi.org/ 

10/bbf832 

Mumford, D. (1992). On the computational architecture of the neocortex. Biological 

Cybernetics, 66(3), 241–251. https://doi.org/10/fc636h 

Nakagawa, S. & Schielzeth, H. (2013). A general and simple method for obtaining R2 

from generalized linear mixed-effects models. Methods in Ecology and Evolution, 

4(2), 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x 

_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.2041-210x.2012.00261.x 

Newsome, W. T., Britten, K. H. & Movshon, J. A. (1989). Neuronal correlates of a 

perceptual decision. Nature, 341(6237), 52–54. https://doi.org/10/dmwkcn 

O’Regan, J. K. & Noë, A. (2001). A sensorimotor account of vision and visual con- 

sciousness. Behavioral and Brain Sciences, 24(5), 939–973. https://doi.org/10/ 

b3dbnv 

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transform- 

ing numbers into movies. Multisensory research, 10(4), 437–442. https:// doi. 

org/10/fb9s55 



38 

MOTION TRAJECTORIES: PERCEPTION AND ACTION 
 

 

 

Rao, R. P. N. & Ballard, D. H. (1999). Predictive coding in the visual cortex: A func- 

tional interpretation of some extra-classical receptive-field effects. Nature Neur- 

oscience, 2(1), 79–87. https://doi.org/10/drddxm 

Reichardt, W. (1967). Autocorrelation, a Principle for the Evaluation of Sensory In- 

formation by the Central Nervous System. In W. A. Rosenblith (Ed.), Sens-  

ory Communication (pp. 302–317). The MIT Press. https://doi.org/10.7551/ 

mitpress/9780262518420.003.0017 

Santen, J. P. H. V. & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the 

Optical Society of America A: Optics and Image Science, and Vision, 2(2), 300–321. 

https://doi.org/10.1364/josaa.2.000300 

Scaleia, B. L., Zago, M. & Lacquaniti, F. (2015). Hand interception of occluded motion 

in humans: A test of model-based vs. on-line control. Journal of neurophysiology. 

https://doi.org/10/f7spzr 

Schenk, T. (2006). An allocentric rather than perceptual deficit in patient D.F. Nature 

Neuroscience, 9(11), 1369–1370. https://doi.org/10/fjfbqh 

Schenk, T. & McIntosh, R. D. (2010). Do we have independent visual streams for per- 

ception and action? Cognitive Neuroscience, 1(1), 52–62. https://doi.org/10/ 

csc2gb 

Shipp, S. (2016). Neural Elements for Predictive Coding. Frontiers in Psychology, 7. 

https://doi.org/10/f9cc9c 

Smeets, J. B. J. & Brenner, E. (2010). Vision for action is not veridical. Cognitive Neur- 

oscience, 1(1), 69–69. https://doi.org/10/dj64zm 

Snijders, T. A., Bosker, R. J. et al. (1999). An introduction to basic and advanced mul- 

tilevel modeling. Sage, London. WONG, GY, y MASON, WM (1985): The Hier- 

archical Logistic Regression. Model for Multilevel Analysis, Journal of the American 

Statistical Association, 80(5), 13–524. 

Sober, S. J. & Sabes, P. N. (2003). Multisensory Integration during Motor Planning. 

Journal of Neuroscience, 23(18), 6982–6992. https://doi.org/10/gg2pqt 

Sober, S. J. & Sabes, P. N. (2005). Flexible strategies for sensory integration during mo- 

tor planning. Nature Neuroscience, 8(4), 490–497. https://doi.org/10/cpwhcr 

Stone, L. S. & Krauzlis, R. J. (2003). Shared motion signals for human perceptual de- 

cisions and oculomotor actions. Journal of Vision, 3(11), 725–736. https://doi. 

org/10/fsrskt 

Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 

7(9), 907–915. https://doi.org/10/b3p5gj 

Todorov, E. & Jordan, M. I. (2002). Optimal feedback control as a theory of motor co- 

ordination. Nature Neuroscience, 5(11), 1226–1235. https://doi.org/10/drpq85 



39 

MOTION TRAJECTORIES: PERCEPTION AND ACTION 
 

 

 

Tresilian, J. R. (2005). Hitting a moving target: Perception and action in the timing  

of rapid interceptions. Perception & Psychophysics, 67(1), 129–149. https://doi. 

org/10/cv84wc 

Umberger, B. R. & Miller, R. H. (2017). Optimal Control Modeling of Human Move- 

ment. In B. Müller, S. I. Wolf, G.-P. Brueggemann, Z. Deng, A. McIntosh, F. 

Miller & W. S. Selbie (Eds.), Handbook of Human Motion (pp. 1–22). Springer 

International Publishing. https://doi.org/10.1007/978-3-319-30808-1_177-1 

Ungerleider, L. G. & Mishkin, M. (1982). Two Cortical Visual Systems. In D. Ingle, 

M. A. Goodale & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549– 

586). MIT Press. 

Watamaniuk, S. N. J. (2005). The predictive power of trajectory motion. Vision Re- 

search, 45(24), 2993–3003. https://doi.org/10.1016/j.visres.2005.07.027 

Watamaniuk, S. N. J. & Heinen, S. J. (1999). Human smooth pursuit direction discrim- 

ination. Vision Research, 39(1), 59–70. https://doi.org/10/fjv7ft 

Watamaniuk, S. N. J. & Heinen, S. J. (2003). Perceptual and oculomotor evidence of 

limitations on processing accelerating motion. Journal of Vision, 3(11), 5. https: 

//doi.org/10.1167/3.11.5 

Watamaniuk, S. N. J. & McKee, S. P. (1995). Seeing motion behind occluders. Nature, 

377(6551), 729–730. https://doi.org/10/fj9p93 

Watamaniuk, S. N. J., McKee, S. P. & Grzywacz, N. M. (1995). Detecting a traject-  

ory embedded in random-direction motion noise. Vision Research, 35(1), 65–77. 

https://doi.org/10/d44kgh 

Watamaniuk, S. N. J., Sekuler, R. & Williams, D. W. (1989). Direction perception in 

complex dynamic displays: The integration of direction information. Vision Re- 

search, 29(1), 47–59. https://doi.org/10/fhzxs2 

Westheimer, G. & McKee, S. P. (1977). Spatial configurations for visual hyperacuity. 

Vision Research, 17(8), 941–947. https://doi.org/10/d8bhwd 

Wexler, M. & Klam, F. (2001). Movement prediction and movement production. Journal 

of Experimental Psychology: Human Perception and Performance, 27(1), 48–64. https: 

//doi.org/10/d8z5gm 

Whitney, D. & Leib, A. Y. (2017). Ensemble Perception. Annual Review of Psychology, 

69, 105–129. https://doi.org/10.1146/annurev-psych-010416-044232 

Williams, D. W. & Sekuler, R. (1984). Coherent global motion percepts from stochastic 

local motions. Vision Research, 24(1), 55–62. https://doi.org/10/bhsh5f 

Wolpert, D. M., Diedrichsen, J. & Flanagan, J. R. (2011). Principles of sensorimotor 

learning. Nature Reviews Neuroscience, 12(12), 739–751. https:// doi. org/ 10 / 

brjqb2 



40 

MOTION TRAJECTORIES: PERCEPTION AND ACTION 
 

 

 

Wolpert, D. M. & Ghahramani, Z. (2000). Computational principles of movement 

neuroscience. Nature Neuroscience, 3(11), 1212–1217. https : / / doi . org / 10 / 

fmxm5h 

Wolpert, D. M., Pearson, K. G. & Ghez, C. P. J. (2012). The Organization and Plan- 

ning of Movement. In E. Kandel (Ed.), Principles of Neural Science (Fifth Edition, 

pp. 743–767). McGraw-Hill Education. 

Zago, M., McIntyre, J., Senot, P. & Lacquaniti, F. (2008). Internal models and prediction 

of visual gravitational motion. Vision Research, 48(14), 1532–1538. https://doi. 

org/10/brhbjq 

Zago, M., McIntyre, J., Senot, P. & Lacquaniti, F. (2009). Visuo-motor coordination 

and internal models for object interception. Experimental Brain Research, 192(4), 

571–604. https://doi.org/10/dhbh6n 

Zhao, H. & Warren, W. H. (2015). On-line and model-based approaches to the visual 

control of action. Vision Research, 110, 190–202. https:// doi. org/ 10 . 1016 / j . 

visres.2014.10.008 




