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Chapter 1-Literature Review: Fundamental structural and functional properties 

of Aquaporin ion channels found across the kingdoms of life. 

 

Mohamad Kourghi*, Jinxin V Pei, Michael L De Ieso, Saeed Nourmohammadi, Pak 

Hin Chow, and Andrea J Yool 

*corresponding author 

 

Abstract 

Aquaporin (AQPs) are membrane-spanning proteins belonging to the large family of 

Major Intrinsic Proteins (MIP) found across all forms of life from prokaryotes to 

eukaryotes. AQP channels form as tetramers. Some classes allow the transport not 

only of water but other small molecules such as urea, ammonia, boric acid, glycerol, 

CO2, nitric oxide and ions. AQPs are responsible for diverse functions such as 

maintaining osmotic water homeostasis, enabling flow across barrier tissues, 

supporting metabolic demands, as well as cell and matrix adhesions, cellular 

structure, and volume regulation for enhanced cellular migration. Ion channel 

function has been demonstrated for mammalian AQPs 0, 1, 6, Drosophila big brain 

(BIB), soybean nodulin 26 and Arabidopsis thaliana AtPIP2;1. The dual function of 

AQPs as water and ion channels is being investigated for physiological relevance 

using pharmacological agents that differentially modulate AQP channel functions. 

Wound closure experiments revealed that AqB011 (a specific blocker of the central 

ion channel in mammalian AQP1 but not the parallel intrasubunit water pores) was 

able to impair migration of the HT29 colon cancer cells, indicating that the central ion 
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pore of AQP1 possesses a physiological role in promoting cancer cell migration. 

Lens MIP (AQP0) is an anion selective channel which has an important role in 

maintaining the normal structure, integrity and transparency of the eye lens; but its 

role as an ion channel remains to be defined. Drosophila big brain (BIB) channel is 

a monovalent cation channel which acts in parallel with Notch and Delta signalling 

to determine the development fate of fly neuroblast cells via processes of lateral 

inhibition. More recently plant AQP AtPIP2;1, highly expressed in plasma membrane 

of root epidermal cells has been shown to allow ionic permeation, which is inhibited 

by calcium and protons and could be an important mechanism in responding to 

environmental stress. Understanding dual water and ion channel role of AQPs could 

open new windows in developing pharmacological agents in conditions such as 

cerebral ischemia, congestive heart failure, hypertension, angiogenesis, metastasis, 

sickle cell anaemia, reducing cerebrospinal fluid production following traumatic 

injury, and more.  

 

Introduction 

Maintaining water homeostasis is vital to every living organism. Aquaporins (AQPs) 

from the Major Intrinsic Protein (MIP) family form membrane-spanning tetrameric 

pores which allow the transport of water molecules down osmotic or hydrostatic 

pressure gradients. To date 15 different aquaporin genes have been identified in 

mammals (AQP0- AQP14) (Ishibashi 2009, Finn, Chauvigne et al. 2014). AQPs 3, 

7, 9 and 10 are classified as aquaglyceroporins because of their ability to allow 

permeation of small uncharged molecules such as glycerol in addition to water. 
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Numerous MIP channels are expressed in plants. More than 100 different plant-AQP 

loci have been identified and characterised from genomic sequencing analysis 

(Zhang, Ali et al. 2013, Shivaraj, Deshmukh et al. 2017) 

AQPs organize as conserved tetrameric pores in cell membranes that are found 

across all forms of life from prokaryotes and eukaryotes (Agre 2004, Benga 2009, 

Gomes, Agasse et al. 2009). AQPs consist of six membrane spanning helices and 

five loops (loops A to E). N- and C-terminals reside on the cytosolic side (Jung, 

Preston et al. 1994). Loops A and C are extracellular and loop D is intracellular. 

Loops B and E from the inner and the extracellular sides respectively fold back into 

the membrane to form two short half-helices penetrating the membrane as an 

hourglass shape with a highly conserved asparagine-proline-alanine (NPA) 

signature motif (Jung, Preston et al. 1994). 

As shown in figure 2, mammalian aquaporins -0, -1, and -6, fly Drosphila Big Brain, 

plant AtPIP2;1 and Nodulin-26 have been shown to acquire ion channel activity 

(Modesto, Barcellos et al. 1990, Weaver, Shomer et al. 1994, Anthony, Brooks et al. 

2000, Hazama, Kozono et al. 2002, Yanochko and Yool 2002, Byrt, Zhao et al. 

2016). In AQP1 and AtPIP2;1 channels, the central pore of the tetramer has been 

hypothesized as the pathway for cation conductance (Yool and Weinstein 2002, Yu, 

Yool et al. 2006, Byrt, Zhao et al. 2016). The intrasubunit pores have been proposed 

as possible pathways for ion transport in BIB, AQP0 and AQP6 channel (Yasui, 

Hazama et al. 1999, Ikeda, Beitz et al. 2002, Yool 2007). Evidence for intra-subunit 

ion pores in BIB comes from mutational studies in which the mutation of glutamic 

acid at position 71 to aspargine (E71N) in BIB diminished ionic conductance, 
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whereas the equivalent mutation in AQP1 E17N did not prevent ion channel activity, 

but blocked AQP1 water channel function (Yool 2007).  In AQP6 the key residues 

that affect ion channel properties are located in loop B, a domain that is associated 

with water channel function in other AQPs (Yasui, Hazama et al. 1999, Ikeda, Beitz 

et al. 2002).   

 

1.Mammalian Aquaporin-1 ion channels functional properties 

The ion channel activity of AQP1 has been the most comprehensively studied to date 

in terms of physiology, pharmacology, and functional roles.  It is likely that 

understanding of the potentially diverse roles of aquaporin ion channels will continue 

to expand as the initially disputed concept (Agre, Lee et al. 1997) gains acceptance, 

and work in the field expands. Several lines of research have addressed the potential 

roles of AQP1 ion channels in pathological conditions such as cancer metastasis and 

brain oedema.  The responsiveness of mammalian AQP1 ionic conductance to 

cGMP is modulated in part by tyrosine phosphorylation at position 253 (Y253) in 

carboxyl terminal domain of AQP1 channel (Campbell, Birdsell et al. 2012). The role 

of the C-terminus in activation was further supported by work from Boassa and 

colleagues who showed that AQP1 ionic current activation was disrupted when two 

key residues aspartate (D237) and lysine (K243) at the carboxyl terminal domain 

were mutated (Boassa and Yool 2003).  

Another line of evidence supporting the proposed ion channel function of AQP1 

comes from studies of the physiological importance of AQP1 in cancer cell migration. 

A bumetanide derivative AqB011 is a specific blocker of the AQP1 central ion pore 
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but not the water pores. When tested in  HT29 cancer cells with high levels of AQP1-

expression, AqB011 significantly blocked migration as compared to the untreated 

cancer cells (Kourghi, Pei et al. 2016), indicating that the AQP1 ion channel can 

enhance cell motility. Moreover, the ion channel property is not unique to AQP1; 

other members of the MIP family such as lens MIP26 and AQP6 also have been 

shown to have ion conductance properties (Zampighi, Hall et al. 1985) (Yasui, 

Hazama et al. 1999, Ikeda, Beitz et al. 2002).   

 

1.1 The role of AQP1 ion conductance in cancer cell migration 

The characteristics of uncontrolled malignant transformation in cancers include 

proliferation, aberrant apoptosis, angiogenesis, migration and invasion, all 

processes that are influenced by ion channels (Stringer, Cooper et al. 2001, Wang 

H, Zhang Y et al. 2002, Orrenius, Zhivotovsky et al. 2003, Ge, Tai et al. 2009, 

Flourakis, Lehen'kyi et al. 2010, Li, Cubbon et al. 2011, Prevarskaya, Skryma et al. 

2011, Bose, Cieślar-Pobuda et al. 2015). Moreover a subtype of aquaporins (AQPs) 

have empirically been shown to contribute to cancer cell migration and metastasis 

(Hu and Verkman 2006, Li, Lu et al. 2013, Kang, Kim et al. 2015).  

The ion channels such as K+ channels play a crucial role in cell migration by 

regulating the cell volume and membrane potential. (Schwab, Hanley et al. 2008). 

Blocking of K+ permeability reduces cancer cell migration and metastatic potential 

(Girault, Haelters et al. 2011). Second messenger Ca2+ signalling mediated 

pathways influence cellular processes such as facilitating cancer cell migration and 

proliferation (Parekh and Penner 1997, Roderick and Cook 2008, Prevarskaya, 
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Skryma et al. 2011, Monteith, Davis et al. 2012). Stores-operated Ca2+ entry (SOCE) 

is a major source of cellular Ca2+ (Barritt, Litjens et al. 2009). The calcium release-

activated calcium channel protein 1 (Orai1) and stromal interaction molecule 1 

(STIM1), two major components of SOCE, are sensitive to the blockers, SKF96365 

and 2-APB (2-Aminoethyl diphenylborinate), which have been demonstrated to 

decrease cancer cell migration and proliferation in clear cell renal cell carcinoma 

(Kim, Lkhagvadorj et al. 2014). In addition, transient receptor potential (TRP) 

channels are implicated in Ca2+ signalling in cell migration by enabling the entry of 

Ca2+; TRPM7 knockdown abolished the transport of Ca2+ in migrating fibroblasts 

resulting in significant reduction of cell migration (Wei, Wang et al. 2009). Results on 

Ca2+ regulation in normal fibroblasts may provide insight into mechanisms relevant 

in cancer cells (Prevarskaya, Skryma et al. 2011). Furthermore, the epithelial sodium 

channel (ENaC) and acid sensitive ionic channel (ASIC) play important roles in 

cancer invasion and migration (Del Mónaco, Marino et al. 2009, Wang, He et al. 

2013, Yang, He et al. 2015). Knockdown of sodium channels, ASIC1, and epithelial 

sodium channel subunits resulted in inhibition of glioblastoma cell migration (Kapoor, 

Bartoszewski et al. 2009). These evidences suggest the importance of ion channels 

in cell migration and cancer.  AQP1 expression is also associated with tumour 

angiogenesis, and AQP1 knockdown or inhibition is correlated with reduced growth 

and angiogenesis (Saadoun, Papadopoulos et al. 2005, Nicchia, Stigliano et al. 

2013) . 

 AQP1 is also recognized as a dual water and ion channel protein which carries an 

ionic conductance gated by cyclic GMP (cGMP) (Anthony, Brooks et al. 2000, 
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Boassa, Stamer et al. 2006, Campbell, Birdsell et al. 2012). AQPs have four identical 

subunits, forming as tetramers. The central pore in AQP1 channels follows a 

structural pattern of organization generally similar to that of other ion channels such 

as cyclic nucleotide-gated (CNG) channels and K+ channels (Jan and Jan 1992, Yool 

and Weinstein 2002). The AQP1 ion channel mediates currents carried by Na+, K+, 

and Cs+, but is not appreciably permeant to divalent cations or protons (Yool, Stamer 

et al. 1996, Anthony, Brooks et al. 2000). Evidence from molecular dynamic 

modelling and site-directed mutagenesis have converged on the idea that the ion 

permeation pathway in AQP1 is the central pore at the 4-fold axis of symmetry (Yu, 

Yool et al. 2006, Campbell, Birdsell et al. 2012). The gating of the AQP1 ion channel 

depends on cyclic GMP (Anthony, Brooks et al. 2000) which is thought to interact 

with an arginine-rich region of cytoplasmic loop D to open a gate resulting in central 

pore hydration, and subsequent permeation of water and cations (Yu, Yool et al. 

2006). The responsiveness of mammalian AQP1 ionic conductance to cGMP is 

modulated by tyrosine phosphorylation at position 253 (Y253) in carboxyl terminal 

domain of AQP1 channel (Campbell, Birdsell et al. 2012).  Boassa and colleagues 

showed that AQP1 ionic current activation was disrupted when two key residues 

aspartate (D237) and lysine (K243) at the carboxyl terminal domain were mutated 

(Boassa and Yool 2003). Therefore, single amino acids in the C-terminal domain of 

AQP1 do not directly gate the channel but appear to influence the efficacy of cGMP-

mediated activation of ion conductance in AQP1 channels. A bumetanide derivative 

AqB011 acts as a specific blocker of the AQP1 ion channel, but not the water 

channels. The compound binds to the loop D domain of the channel and prevents 
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ion permeation (Kourghi et al., 2017, in preparation). Studies conducted on AQP1 

expressing HT29 colon cancer cells showed that AqB011 impairs cell migration, with 

a dose dependent relationship that matches predicted efficacy based on the dose-

dependent block of the ion channel conductance (Kourghi, Pei et al. 2016). AQP1 

expression is also linked with tumour angiogenesis; AQP1 inhibition or siRNA 

knockdown (75% reduction) is correlated with reduced growth (Nicchia, Stigliano et 

al. 2013).  

The Na+/H+

 

exchanger (NHE1) is an additional player in cell migration, proliferation 

and volume regulation (Grinstein, Rotin et al. 1989, Lang, Busch et al. 1998, Shi, 

Yuan et al. 2013). Inhibition of NHE1 leads to decreased motility (Stock and Schwab 

2009, Stock, Ludwig et al. 2012). It was suggested that NHE1 and AQP1 facilitated 

ions and osmotic water uptake at the leading edge of the cell and help the 

lamellipodium, a cytoskeleton protein actin projection, to be extended, thereby 

contributing to cell migration (Saadoun, Papadopoulos et al. 2005, Schwab, 

Rossmann et al. 2005). AQP1 is involved in the process of lamellipodium extension 

in which it accelerates cancer cell migration (Saadoun, Papadopoulos et al. 2005). 

The ability of AQP1 to function as an ion channel depends on cyclic GMP interaction 

with an arginine- rich region located on loop D of the AQP1 channel (Yu, Yool et al. 

2006). The responsiveness of AQP1 ionic conductance to cGMP is modulated by 

tyrosine phosphorylation at position 253 in carboxyl terminal domain of human 

AQP1,(Campbell, Birdsell et al. 2012) and protein- kinase- C mediated 

phosphorylation at threonine residues 157 and 239 (Zhang, Zitron et al. 2007).   



Page | 23  
 

Knocking down of AQP1 dissociated cadherin/β-catenin/Lin-7/F-actin complexes 

and reduced migration and invasion of tumour cells (Monzani, Bazzotti et al. 2009). 

Moreover, AQP1 promoted migration and metastasis in bone marrow mesenchymal 

stem cells by regulating FAK through PI3K/Akt signalling pathway (Meng, Rui et al. 

2013, Tai, Chen et al. 2015).  

Judging from the breadth of findings gathered thus far, AQP1 might be a critical 

target to slow down the migration and metastasis during cancer progression. 

Therefore, the contribution of AQP1 as ion channel in cancer cell migration might 

have therapeutic significance for anti-cancer treatment in which AQP1 serves a key 

role in metastasis and angiogenesis. 

1.2 The role of AQP1 ion conductance in cerebrospinal fluid (CSF) production 

Choroid plexus is located in the ventricles in the brain and it consists of a single 

layer of cuboidal epithelial cells that interface with the blood capillary system and 

stromal space (Dziegielewska, Ek et al. 2001). The principal role of choroid plexus 

is secreting cerebrospinal fluid (CSF). CSF is found in the brain and spine; it 

provides physical support for the brain and a specialized extracellular environment 

facilitating the transport of nutrients, peptides, and hormones throughout the brain 

(Pollay 1977, Redzic, Preston et al. 2005). The mechanism of CSF production 

involves bulk ion movement from the blood to the ventricle across the choroid 

plexus though transcellular transporters (Segal and Pollay 1977).  In choroid 

plexus, transporters and ion pumps are located on the apical and basal 

membranes to create an apico-basolateral polarity. Studies using inhibitors have 
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suggested that volume regulation in choroid plexus is also mediated by a 

combination of Na+-H+ exchange (NHE) and Cl- - HCO3- exchange (Hughes, 

Pakhomova et al. 2010).  

AQP1 is highly expressed in choroid plexus, specifically on the apical side (Nielsen, 

Smith et al. 1993, Speake, Freeman et al. 2003). The major function of AQP1 in 

choroid plexus is to facilitate water movement from the intracellular side to apical 

side of the barrier (Johansson, Dziegielewska et al. 2005), following the gradient 

created by active transport of sodium ions (Miyajima and Arai 2015). Interestingly, 

Boassa and colleagues in 2006 proposed that the ion channel function of AQP1 

also regulated CSF flow rate in choroid plexus (Boassa, Stamer et al. 2006). Their 

results showed that AQP1 ion channel was activated and CSF production was 

stimulated when atrial natriuretic peptide (ANP) was added. ANP peptide binds to 

an endogenous guanylate cyclase receptor, producing cGMP (Boassa, Stamer et 

al. 2006). When AQP1 ion channels were blocked by Cd2+, CSF production was 

slowed in a primary cell culture model (Boassa, Stamer et al. 2006). Further work in 

vivo is needed to evaluate whether the AQP1 ion channel function is one of the 

many factors regulating CSF secretion in physiological conditions.   

Possible functions of AQP1 dual water and ion channels in other tissues and cells 

remain to be tested, but could be potentially relevant in a variety of processes such 

as angiogenesis, (Saadoun, Papadopoulos et al. 2005), fluid transport in renal 

proximal tubule as was proposed based on computational modelling (Yool and 
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Weinstein 2002), red blood cell adaptation to stressors, and a host of other 

conditions involving AQP1-expressing cells.  

2. Other classes of aquaporins with ion channel activity 

2.1 Mammalian Aquaporin 0 

AQP0, previously known as lens MIP or MIP26, is an intrinsic membrane protein in 

ocular lens fibres (Bloemendal and Hockwin 1982), and is the major protein 

component of isolated lens junctions. AQP0 has been shown to function as a water 

channel when expressed exogenously in Xenopus oocytes (Kushmerick, Rice et al. 

1995, Chandy, Zampighi et al. 1997) and endogenously in membrane vesicles 

generated from freshly isolated preparations of mouse, frog and rabbit lens fibres 

(Varadaraj, Kushmerick et al. 1999, Varadaraj, Kumari et al. 2005, Varadaraj, Kumari 

et al. 2007). However, AQP0 has the lowest water permeability of mammalian AQPs 

1 to 5 (Yang and Verkman 1997), with single channel water permeability about 1/40th 

that of AQP1 (Chandy, Zampighi et al. 1997). The primary functions of AQP0 in the 

lens may include more than just increasing membrane water permeability. AQP0 in 

the lens could function in cell-cell adhesion of lens fibres, and regulation of gap 

junction channels (Liu, Tsujimoto et al. 2011). It is also proposed that AQP0 is 

required for maintaining the transparency and optical accommodation of the ocular 

lens (Chepelinsky 2009). Humans and mice lacking AQP0 developed congenital 

cataracts (Berry, Francis et al. 2000, Chepelinsky 2009). 

 

When reconstituted in bilayers, AQP0 showed ion channel activity (Zampighi, Hall et 

al. 1985, Ehring and Hall 1988, Modesto, Barcellos et al. 1989, Ehring, Zampighi et 
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al. 1990, Shen, Shrager et al. 1991). Bovine AQP0 had a conductance of 200 pS in 

unilamellar vesicles with 100 mM saline. The ion channel was voltage- and pH-

sensitive, open at high H+ concentration, and generally closed at neutral pH showing 

a current amplitude similar to control bilayers (Zampighi, Hall et al. 1985). AQP0 

channels reconstituted in bi-layers exhibit a large single-channel conductance In KCl 

and are permeable to both potassium and sodium ions (Zampighi, Hall et al. 1985). 

(0.1M). AQP0 channel openings had two main conductance states with amplitudes 

of 380 and 160 pS. AQP0 displayed a slight anionic selectivity, symmetrical voltage 

dependence, and rapid opening and slow closing rates (Zampighi, Hall et al. 1985). 

The water channel activity of AQP0 was subsequently shown to be dependent upon 

pH and calcium regulation (Németh-Cahalan and Hall 2000), suggesting regulatory 

mechanisms modulated both the water flux and ion conductance of AQP0.  

Maintaining optimal lens transparency of the eye lens might be in part inked with the 

dual water and ion channel function of AQP0 (Ehring, Zampighi et al. 1990). Noting 

that light scattering contributes to a reduction in transparency, Ehring and colleagues 

postulated that regulating fluid balance and minimizing extracellular space in the 

lens, via ion and water flow into the lens fibres, could reduce light scattering, and in 

turn, assist in maintaining optimal transparency. 

2.2 Mammalian Aquaporin 6 

Aquaporin-6 (AQP6) is a dual anion channel and water channel that is unusual 

among AQPs because atypically it is activated rather than blocked by mercuric 

chloride (HgCl2) (Hazama, Kozono et al. 2002), unlike AQP1 (Preston, Jung et al. 

1993) and other AQPs. AQP6 assembles as a tetramer, possessing monomeric 
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pores for water as well as anions, with a permeability series of NO3>I>>Br>Cl>>F 

(Yasui, Hazama et al. 1999, Ikeda, Beitz et al. 2002). Interestingly, when expressed 

in Xenopus laevis oocytes, AQP6 showed low water permeability. However, when 

AQP6-expressing oocytes were exposed to HgCl2 at concentrations up to 300µM, 

AQP6 water permeability  increased over five-fold, and the ion conductance 

increased more than six-fold (Yasui, Hazama et al. 1999, Hazama, Kozono et al. 

2002). This observation contrasts with other AQPs such as AQP1, -2, and -5 that are 

blocked by HgCl2. Yasui et al. (1999a) discovered that two cysteine residues, C155 

and C190, are important for the HgCl2 gating of AQP6. Moreover, AQP6 water and 

anion conductance was reversibly potentiated by low pH,  suggesting  a mechanism 

of activation with some potential physiological relevance (Yasui, Hazama et al. 

1999).  

 

AQP6 is expressed in intracellular vesicles of renal collecting duct intercalated cells 

in mammals (Yasui, Kwon et al. 1999, Kwon, Hager et al. 2001). In α-intercalated 

cells,  AQP6 was colocalized with H+/ATPases in intracellular vesicles, but not in 

plasma membrane (Yasui, Hazama et al. 1999), and was suggested  to contribute 

to urinary acid secretion and acid/base regulation (Carbrey and Agre 2009). 

Significant upregulation of AQP6 expression was observed in rats exposed to 

chronic alkalosis or water loading, but not chronic acidosis (Promeneur, Kwon et al. 

2000). AQP6 similarly might function as a pH-sensitive chloride channel in kidney 

endosomes (Verkman 2002).  Expression of AQP6 in rat gastrointestinal epithelium, 

near tight junctions and secretory granule membranes in rat parotid acinar cells, and 
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in some ovarian cancers (Matsuki-Fukushima, Hashimoto et al. 2008, Laforenza, 

Gastaldi et al. 2009, Ma, Zhou et al. 2016) has suggested other possible roles in 

tissues involving acid-base regulation, although the physiological significance of 

AQP6 in these systems is not yet understood.   

 

AQP6 has been proposed to contribute a protective role against certain viral 

pathologies (Molinas, Mirazimi et al. 2016), based on studies showing AQP6 

expression levels were inversely correlated with susceptibility to viral infection in host 

cell lines. Molinas and colleagues introduced GFP-tagged AQP6 into mouse 

fibroblast cells, infected with Hazara virus as a model for Crimean–Congo 

hemorrhagic fever. Overexpression of AQP6 reduced infectivity of the Hazara virus, 

cells infected with Hazara virus showed altered cell morphology and a reduced level 

of AQP6 expression at both protein and mRNA levels (Molinas, Mirazimi et al. 2016). 

 

2.3 Arabidopsis thaliana PIP2;1 

The plant aquaporin AtPIP2;1 is a plasma membrane protein highly expressed in 

Arabidopsis roots that is involved in maintaining plant water homeostasis 

(Alexandersson, Fraysse et al. 2005). Water transport studies conducted on 

proteoliposomes showed that the osmotic water permeability of AtPIP2;1 channels 

was impaired by divalent cations, with the highest inhibitory efficacies shown by Ca2+, 

Cd2+ and Mn2. Protons also blocked the water flux, with half-maximal inhibition at 

pH 7.15 (Verdoucq, Grondin et al. 2008). Calcium plays an important role in signal 
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transduction in plants, particularly under stress conditions (Sanders, Pelloux et al. 

2002). 

 

AtPIP2;1 channels expressed in  Xenopus laevis oocytes and analyzed by two-

electrode voltage clamp  also mediate cation currents that are sensitive to block by 

divalent cations and pH (Byrt, Zhao et al. 2016) confirming this channel is another 

example of the expanding list of dual water and ion channel aquaporins. The ionic 

current in AtPIP2;1-expressing oocytes cannot be explained as an indirect result of 

native oocyte channels activating in response to swelling, since the co-expression of 

another related channel (AtPIP1;2) with AtPIP2;1 increased water permeability but 

removed the ionic conductance.  Furthermore, the mutation of glycine at position 103 

to tryptophan (G103W) in AtPIP2;1 similarly impaired ion channel but not water 

channel activity, demonstrating the ion channel function is property that is intrinsic to 

the AtPIP2;1 channel.  AtPIP2:1 ion currents are blocked by extracellular Ca2+ and 

Cd2+ (Byrt, Zhao et al. 2016).  The dose-response curve for conductance as a 

function of EGTA-buffered free Ca2+ levels generated an IC50 value of 0.32 mM, in 

agreement with prior reports of non-selective cation channels in Arabidopsis root 

protoplasts that were blocked by Ca2+. Low external pH also inhibited the ionic 

conductance (IC50 pH 6.8). These data suggest that the AtPIP2;1 might be the 

molecular basis of a cationic conductance in roots that is important for plant 

responses to environmental conditions, but not previously defined at the molecular 

level.   
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Based on patterns of expression, AtPIP2;1 ion channels might contribute to coupled 

ion and water transport to facilitate rapid shrinking responses as well as in guard cell 

closing (MacRobbie 2006, Grondin, Rodrigues et al. 2015), and regulating 

hypoosmotic turgor in plants in the absence of water potential differences (Wegner 

2014). Water permeability through AtPIP2;1 channels is regulated via 

phosphorylation (Prado, Boursiac et al. 2013, Grondin, Rodrigues et al. 2015). It will 

be of interest to analyze consensus phosphorylation sites of AtPIP2;1 to study the 

relationship between phosphorylation state and ionic conductance in AtPIP2;1 

channels.  Precedent for the regulation of aquaporin ion channels by phosphorylation 

has been established for mammalian AQP1, in which the phosphorylation of tyrosine 

253 in the carboxyl terminal domain of AQP1 has been shows to govern the 

responsiveness of the central ion channel pore to cGMP (Campbell, Birdsell et al. 

2012). The probability of AQP1 being available to be gated as an ion channel is 

enhanced when the tyrosine phosphorylated state of the channel is favored via 

treatment with a tyrosine phosphatase inhibitor, bisperoxo (1,10-phenanthroline) 

oxovanadate-(V) (Campbell, Birdsell et al. 2012). Testing whether similar second 

messenger candidate sites influence dual water and ion transport through AtPIP2;1 

in plants is merited, since prior work also suggested connections between cyclic 

nucleotide levels in roots and phosphorylation of proteins, including AQPs (Maurel, 

Kado et al. 1995, Isner, Nuhse et al. 2012).  
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2.4 Drosophila Big Brain 

The transmembrane protein Big Brain (BIB), encoded by a Drosophila neurogenic 

gene, belongs to the MIP channel family (Rao, Bodmer et al. 1992). During 

neurogenesis in the early development of Drosophila, a loss-of-function mutation of 

the big brain gene (bib) causes the overproduction of neuroblasts (Lehmann, 

Jimenez et al. 1983). Similar to other neurogenic genes such as Notch and Delta, 

BIB is involved in the process of lateral inhibition, and its absence leads to the 

pathological phenotype (Lehmann, Jimenez et al. 1983, Rao, Bodmer et al. 1992). 

Unlike most AQPs in the MIP family, BIB has not been found to be permeable for 

water. When expressed in Xenopus oocytes, BIB functions as a monovalent cation 

channel activated by membrane pricking or pharmacological modulation of tyrosine 

kinase signalling pathways. Results from Yanochko and colleagues showed BIB is a 

voltage-insensitive cation channel that was inhibited downstream of insulin-like 

receptor activation of a tyrosine kinase pathway; conversely application of a tyrosine 

kinase inhibitor, lavendustin A, increased the net conductance of BIB-expressing 

oocyte. The involvement of tyrosine was validated by western blot showing tyrosine 

phosphorylation at consensus sites in the carboxyl terminal domain (Yanochko and 

Yool 2002).  The BIB ion channel showed voltage-sensitive block by divalent cations 

such as Ca2+ and Ba2+, suggesting the binding site is within the electrical field.  A 

glutamate residue in the first transmembrane domain Glu71, a position that is highly 

conserved in the MIP family, was defined as essential for divalent cation binding in 

BIB (Yanochko and Yool 2004).            
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3. Summary and future directions 

Acquiring a full perspective on the functional roles and regulatory controls for 

aquaporin dual water and ion channels will be critical for understanding the spectrum 

of potentially important physiological roles that these channels might serve, as well 

as their potential value as targets in an impressively diverse array of applications. 

AQP modulators have promise for future therapeutic interventions in clinical 

disorders including cancer metastasis, renal failure, and brain pathophysiology; for 

enhancing agricultural productivity in challenging environments; for managing 

vectors of transmitted diseases, and much more. 

 

Evolutionary relationships have been evaluated for the broad MIP family of channels 

based on analyses of amino acid sequences, as summarised in review articles 

published by (Reizer, Reizer et al. 1993). Statistical analysis suggest  the two halves 

of the MIP protein have evolved to possess distinct functions, the first half of the 

protein provides a general or similar function of these proteins, while the second, 

structurally divergent half provides the specific function of the protein. The patterns 

from sequence analyses of polygenic tree of members of the MIP family suggest that 

a primordial gene emerged in prokaryotes before the appearance of eukaryotic cells, 

and this gene was vertically transmitted into primitive eukaryotes. Therefore the 

following gene multiplication and division gave rise to kingdom-related subfamilies 

of the MIP family (Reizer, Reizer et al. 1993). 
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The development of AQP ion channel selective blockers such as  AqB011, a first-in-

class compound, has allowed characterization of the AQP1 ionic conductance as a 

key component in HT29 cancer cell migration (Kourghi et al., 2016), and provides 

strong evidence for physiological relevance of AQP1 ionic function. The continuing 

discovery of medicinal blockers of AQP1 that selectively inhibit water permeability 

such as bacopaside II, or that  block both the water and ion channel pores (such as 

bacopaside I) are promising tools for manipulating cell processes that rely on AQP1 

expression (Pei et al., 2016). Value in limiting cancer metastasis awaits validation in 

vivo and potentially in clinical trials. Work in progress (Kourghi et al., unpublished) 

suggests that selective inhibitors of AQP1 also could be a useful in protecting red 

blood cells from pathological changes in cell morphology in sickle cell anaemia.  

Initial studies with AQP6 could open new opportunities to study the roles of AQPs in 

cellular vulnerability to certain viral pathologies such as Hazara virus  (Molinas, 

Mirazimi et al. 2016) 

Dual water and ion channel AQPs appear to be important for modulation of 

transmembrane fluid gradients, volume regulation, signal transduction, and 

adaptation to environment for many different types of organisms.  Exploring the 

multifunctional role of aquaporins offer exciting challenges and opportunities for 

basic research and translational advances, and allows us to appreciate the diversity 

and complexity of AQPs in physiology and pathology across all forms of life.  
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Figure legends 

Figure 1A: Crystal structure of an AQP1 monomer. Highlighted in blue is the loop D 

domain, in red is the double arginine residues at positions 159 and 160 (R159+R160) 

located within the loop D domain. The R159+R160 is the cGMP binding site, and the 

predicted AqB011, bacopaside I interaction sites (Yu, Yool et al. 2006, Kourghi, Pei 

et al. 2016, Pei, Kourghi et al. 2016). In cyan is Cysteine at position 189, which is the 

Mercury binding site (Preston, Jung et al. 1993). In magenta is the Tyrosine at 

position 186, serving as the TEA binding site (Brooks, Regan et al. 2000). In Yellow 

is the Threonine amino acids at position 157, and 239, acting as the PKC regulatory 

site (Zhang, Zitron et al. 2007), and in green is the N-terminal. Figure1B presents the 

membrane topology of AQP1 consisting of 5 membrane spanning helices, connected 

by 5 intracellular and extracellular loops (A and E extracellular, B, C, and D 

intracellular). The Asn-Pro-Ala (NPA) signature motif is located on loops B and E. 

The key regulatory sites presented in A is also highlighted in this figure with the 

addition of Tyrosine 259 (Y259), functioning as the Tyrosine phosphorylation site.  

 

Figure 2: Two models for the proposed pathway for ion flow for AQP1, AtPIP2;1, BIB, 

AQP0 and AQP6 channels. The ion permeation for AQP1 and AtPIP2;1 channels is 

likely to be through the central pore, located at the middle of the tetramer subunits 

(Yool and Weinstein 2002, Yu, Yool et al. 2006, Byrt, Zhao et al. 2016), and water 

transport through the individual monomers (Jung, Preston et al. 1994, Preston, Jung 

et al. 1994). Whereas for BIB, AQP 0 and AQP6 ion permeation is predicted to be 

mediated through the individual intrasubunit pores (Yasui, Hazama et al. 1999, 
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Ikeda, Beitz et al. 2002, Yool 2007). Water permeation in all aquaporin channels is 

thought to occur primarily through the individual intrasubunit pores, with exceptions 

of the Big Brain channel which shows no appreciable water permeability (Yanochko 

and Yool 2004). 

 

Figure 3: AqB011 is a specific blocker of AQP1 ion channel and impairs cancer cell 

migration in HT29 cancer cells (Kourghi, Pei et al. 2016). AqB011 is predicted to bind 

with loop D domain of the channel. Bottom panel: view of the putative binding of the 

ligand indicating interaction with two conserved arginine residues in the loop D gating 

domain.   

 

Figure 4: Live cell-imaging assay showing the effects of AQP1 water channel blocker 

bacopaside II on HT29 colon cancer cells motility and migration. Circular wounds 

were created on confluent monolayers of HT29 cancer cells. Single cells at the edge 

of the wounds were tracked with time lapse images taken over 24 hour periods for 

cells treated with and without 15 M bacopaside II. For clarity only images at 8 hour 

intervals are shown. White arrows indicate a single cell for each treatment at 0 hours, 

and follow the same cell in each subsequent frame. It is clear that cells treated with 

bacopaside II exhibit a reduced level of migration and movement as compared to 

untreated cells.  

 

Figure 5: Amino acid alignment comparing the loop D region between BIB, hAQP1, 

AtPIP2;1 AtPIP2;2 and AtPIP2;7. The predicted interaction site of AqB011 in the 
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preserved poly Arginine box present in hAQP1, is absent in BIB, AtPIP2;1 AtPIP2;2 

and AtPIP2;7 Aquaporins.  
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Abstract  

Aquaporins (AQPs) in the major intrinsic family of proteins mediate fluxes of water 

and other small solutes across cell membranes. AQP1 is a water channel, and under 

permissive conditions, a nonselective cation channel gated by cGMP. In addition to 

mediating fluid transport, AQP1 expression facilitates rapid cell migration in cell types 

including colon cancers and glioblastoma. Work here defines new pharmacological 

derivatives of bumetanide that selectively inhibit the ion channel but not the water 

channel activity of AQP1. Human AQP1 was analyzed in the Xenopus laevis oocyte 

expression system by two-electrode voltage clamp and optical osmotic swelling 

assays.  AqB011 was the most potent blocker of the AQP1 ion conductance (IC50 14 

M) with no effect on water channel activity (at up to 200 M). The order of potency 

for inhibition of the ionic conductance was AqB011> AqB007>> AqB006≥ AqB001. 

Migration of human colon cancer (HT29) cells was assessed with a wound-closure 

assay in presence of a mitotic inhibitor. AqB011 and AqB007 significantly reduced 

migration rates of AQP1-positive HT29 cells without affecting viability. The order of 

potency for AQP1 ion channel block matched the order for inhibition of cell migration, 

as well as in silico modeling of the predicted order of energetically favored binding. 

Docking models suggest that AqB011 and AqB007 interact with the intracellular loop 

D domain, a region involved in AQP channel gating. Inhibition of AQP1 ionic 

conductance could be a useful adjunct therapeutic approach for reducing metastasis 

in cancers that upregulate AQP1 expression. 
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Introduction  

Osmotic water transport across biological membranes is facilitated via membrane 

proteins known as aquaporins (AQPs), found in all kingdoms of life (Reizer, Reizer 

et al. 1993, Park and Saier 1996, Campbell, Ball et al. 2008). To date, at least fifteen 

mammalian subfamilies have been identified, AQP0-AQP14 (Ishibashi 2009, Finn, 

Chauvigne et al. 2014) . Aquaporin is organised as a tetramer of subunits, each 

comprising six transmembrane domains and five loops (A to E), and carrying a 

monomeric pore that allows the movement of water or other small solutes (Jung, 

Bhat et al. 1994, Fu, Libson et al. 2000, Sui, Han et al. 2001).     

There is increasing recognition that certain classes of aggressive cancers depend 

on upregulation of AQP1 for fast migration and metastasis (Monzani, Shtil et al. 

2007). Though the precise mechanism for AQP1-enhanced motility remains 

unknown, both ion channels and water channels are essential in the cellular 

migration process (Schwab, Nechyporuk-Zloy et al. 2007). AQP1 expression has 

been linked to metastasis and invasiveness of colon cancer cells (Jiang 2009, 

Yoshida, Hojo et al. 2013). In mammary and melanoma cancer cells, AQP1 

facilitates tumor cell migration in vitro and metastasis in vivo (Hu and Verkman 2006). 

Increased levels of AQP1 expression in astrocytoma correlate with clinical grade, 

serving as a diagnostic indicator of poor prognoses (El Hindy, Bankfalvi et al. 2013).  

AQP1-facilitated cell migration in glioma cannot be substituted by AQP4, indicating 

more than simple water channel function is involved in the migration-enhancing 

mechanism (McCoy and Sontheimer 2007).     
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A subset of aquaporins have been shown to have ion channel function, including 

AQP0, AQP1, AQP6, plant nodulin, and Drosophila Big Brain (Yool and Campbell 

2012). In AQP1, multiple lines of evidence have shown the cGMP-dependent 

monovalent cation channel is located in the central pore at the four-fold axis of 

symmetry, and is pharmacologically distinct from the monomeric water pores 

(Anthony, Brooks et al. 2000, Saparov, Kozono et al. 2001, Boassa and Yool 2003, 

Yu, Yool et al. 2006, Zhang, Zitron et al. 2007).  The AQP1 ion channel has a unitary 

conductance of 150 pS in physiological saline, slow activation and deactivation 

kinetics, and is permeable to Na+, K+, and Cs+ but not divalent cations (Yool, Stamer 

et al. 1996, Anthony, Brooks et al. 2000). Loop D has been shown previously to be 

involved in cGMP-dependent gating of AQP1 ion channels (Yu, Yool et al. 2006). 

The low proportion of AQP1 water channels available to be gated as ion channels in 

reconstituted bilayers and heterologous expression systems has prompted 

uncertainty regarding the physiological relevance of the dual water and ion channel 

function in AQP1 (Saparov, Kozono et al. 2001, Tsunoda, Wiesner et al. 2004). 

Further work has indicated that the availability of AQP1 ion channels to be activated 

by cGMP depends in part on tyrosine phosphorylation at the carboxyl terminal 

domain (Campbell, Birdsell et al. 2012).   

Our characterization here of selective non-toxic pharmacological blockers of the 

AQP1 ion channel opens the first opportunity to define the functional roles of the 

AQP1 ion conductance. Prior to 2009, available AQP1 blockers were limited by low 

potency, lack of specificity, or toxicity. Mercury potently blocks AQP1 water 

permeability by covalent modification of a cysteine residue in loop E (Preston, Jung 
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et al. 1993) but is highly toxic. Tetrethylammonium ion blocks the AQP1 water pore  

though not in all cell types (Brooks, Regan et al. 2000, Detmers, de Groot et al. 2006, 

Sogaard and Zeuthen 2008), and cadmium ion blocks the AQP1 ion channel 

(Boassa, Stamer et al. 2006); but both lack selectivity for aquaporins. Effective 

compounds discovered recently include the arylsulfonamides AqB013 which blocks 

AQP1 and AQP4 water channel permeability (Migliati, Meurice et al. 2009), and 

AqF026 which strongly potentiates AQP1 water channel activity (Yool, Morelle et al. 

2013).  Other arylsulfonamides have been proposed as blockers of AQP4 channels 

(Huber, Tsujita et al. 2009). A distinct class of agents acting on the external side of 

the membrane to block human AQP1 water flux has been identified as a source of 

candidate lead compounds for drug development (Seeliger, Zapater et al. 2013).  

Work here characterizes a novel set of AqB compounds (Aq: aquaporin ligand;  B: 

bumetanide derivative) that differentially block the AQP1 ion channel without 

affecting water permeability.  The most potent of these, AqB011, is a promising tool 

for dissecting the role of the AQP1 ion channel, while sparing osmotic water 

permeability. Understanding functional roles and regulation of AQP1 is essential for 

determining the full range of physiological roles it might serve, and its possible value 

as a therapeutic target in cancer metastasis. 
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Materials and Methods 

 Oocyte preparation and injection 

 The use of animals in this study has been carried out in accord with the Guide for 

the Care and Use of Laboratory Animals, licensed under the South Australian Animal 

Welfare Act 1985, with protocols approved by University of Adelaide Animal Ethics 

Committee. Unfertilized oocytes were harvested from anesthetized Xenopus laevis  

frogs and defoliculated by incubation in Type 1A collagenase (2 mg/ml) with trypsin 

inhibitor (0.3 mg/ml) in OR-2 saline (82 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 5 mM 

HEPES; pH 7.3) at 16-18°C for 2-3 hours.  Human Aquaporin-1 cDNA was provided 

by Prof P Agre (Preston et al., 1992; GenBank accession number NM_198098). 

AQP1 subcloned into a X. laevis -globin plasmid was linearized with BamHI and 

transcribed in vitro (T3 mMessage mMachine; Ambion Inc., Austin TX USA), and 

cRNA was resuspended in sterile water. Prepared oocytes were injected with 50 nl 

of water (non-AQP1-expressing control oocytes), or 50 nl of water containing 1 ng of 

AQP1 cRNA, and incubated for 2 or more days at 16°C in ND96 saline (96 mM NaCl, 

2 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES, pH 7.3) to allow protein 

expression.  Successful expression was confirmed by osmotic swelling assays. 

Batches of AQP1-expressing oocytes which lacked robust cGMP-activated 

conductance responses were further incubated overnight in ND96 saline with the 

tyrosine phosphatase inhibitor bisperoxovanadium (100 M; Santa Cruz 

Biotechnology, Dallas TX USA) as per published methods (Campbell, Birdsell et al. 

2012). Chemicals were purchased from Sigma-Aldrich (St. Louis MO USA) unless 

otherwise specified.  
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AqB compounds: synthesis and preparation  

The AqB compounds (custom-designed bumetanide derivatives) were synthesized 

by Dr G Flynn (Spacefill Enterprises LLC, Oro Valley AZ USA) as described in US-

8,835,491-B2. To make AqB001, bumetanide was mixed with diazomethane 

(CH2N2) generated  by reaction with Diazald® to create bumetanide methyl ester 

(MW 344.8; ClogP 2.10), which was dissolved in hot CHCl3, diluted with hexanes, 

and allowed to cool to provide the purified methyl ester as white flakes, whose mass 

and NMR spectra were consistent with the desired product.  Reaction of bumetanide 

with 1.2 equivalents of 1,1'-carbonyldiimidazole (CDI) in ethyl acetate (EtOAC) under 

argon with heating afforded an intermediate imidazolide, which upon cooling formed 

a white solid that could be isolated by filtration and stored under argon for later use. 

Alternatively, the imidazolide solution could be reacted in situ with 2 equivalents of 

an amine to form the corresponding amides.  In a typical reaction, the reaction 

mixture would be partitioned between water and ethyl acetate (EtOAc), the organic 

layer washed with brine, the solution filtered and concentrated, and the residue 

crystalized to form EtOAc/hexanes. AqB-006 (MW 413.9; ClogP 1.04) was prepared 

using morpholine as the amine; AqB007 (MW 470.0; ClogP 0.79) resulted from 2-(4-

methylpiperazine-1-yl) ethylamine; and AqB011 (MW 434.9; ClogP 1.80) was 

prepared using 2-(morpholine-1-yl)ethylamine.  The structures of all compounds 

were confirmed by high resolution mass spectrometry and NMR analysis.   

Chemicals were purchased from Sigma-Aldrich (St. Louis MO USA) unless 

otherwise specified. 
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Powdered compounds were dissolved in dimethyl sulfoxide (DMSO) to create 1000x 

stock solutions for each desired final dosage. An equal dilution of DMSO (0.1%) 

alone in saline was used as the vehicle control.  

Quantitative Swelling Assay 

For double-swelling assays, each oocyte served as its own control. Swelling rates 

were assayed first without drug treatment (S1), then oocytes incubated for 2 h in 

isotonic saline with or without the AqB compounds were reassessed in a second 

swelling assay (S2). Swelling rates in 50% hypotonic saline (isotonic Na saline 

diluted with an equal volume of water) were quantified by relative increases in 

oocyte cross-sectional area imaged by videomicroscopy (charge-coupled device 

camera; Cohu, San Diego, CA) at 0.5 frames per second for 30s using NIH ImageJ 

software. Rates were measured as slopes of linear regression fits of relative 

volume as a function of time using Prism (GraphPad Software Inc., San Diego CA 

USA).  

Electrophysiology  

For two-electrode voltage clamp, capillary glass electrodes (1–3 M) were filled with 

1 M KCl.  Recordings were done in standard Na+ bath saline containing 100 mM 

NaCl, 2 mM KCl, 4.5 mM MgCl2, and 5 mM HEPES, pH 7.3. cGMP was applied 

extracellularly at a final concentration of 10-20 M using the membrane-permeable 

cGMP analog [Rp]-8-[para-chlorophenylthio]-cGMP. Ionic conductance was 

monitored for at least 20 min after cGMP addition to allow development of maximal 

plateau responses. Conductance was determined by voltage step protocols from +60 
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to -110mV from a holding potential of -40 mV.  Recordings were made with a 

GeneClamp amplifier and pClamp 9.0 software (Molecular Devices, Sunnyvale CA 

USA).  

Circular Wound Closure Assay 

The cancer cell lines used in this study were HT29 human colorectal 

adenocarcinoma cells (Chen, Drabkowski et al. 1987) purchased from ATCC (HTB-

38; American Type Culture Collection; Manassas VA USA) which strongly express 

endogenous AQP1; and SW480 human colorectal adenocarcinoma cells (CCL-228; 

from ATCC) which express AQP5 but show little AQP1 expression. mRNA levels 

were evaluated by quantitative PCR and protein levels by western blot (H Dorward 

et al., MS in review). Confluent cultures of HT29 and SW480 cells were used in 

migration assays to measure effects of AqB treatments on rates of wound closure. 

Cells were plated in flat-bottom 96-well plates at 1.25 x 105 cells/well in DMEM media 

with 10% fetal bovine serum, and incubated at 37°C and 5% CO2 for 12-18 hours to 

allow monolayer formation. Circular wounds were created by aspirating a central 

circle of cells with a p10 pipette. Wells were washed 2-3 times with phosphate-

buffered saline to remove cell debris. Culture media (DMEM with 2% bovine calf 

serum) containing either vehicle or drug treatments in the presence of a mitotic 

inhibitor 5-fluoro-2'-deoxyuridine (100 ng/ml) were administered into the wells. 

Cultures were imaged at 0 and 24 h, and analysed using ImageJ software to 

calculate percent wound closure by the change in area:   

 ((Area0 – Area24)/Area0) x 100  
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Cytotoxicity Assay 

Cell viability was quantified using the AlamarBlue cell viability assay (Molecular 

Probes, Eugene OR USA). Cells were plated at 104 cells/well in 96-well plates, and 

fluorescence signal levels were measured with a FLUOstar Optima microplate 

reader after 24 h incubation with concentrations of AqB011 from 1 to 80 M, to obtain 

quantitative measures of cell viability. Mercuric chloride (20 M) was used as a 

positive control for cytotoxicity. 

 

Molecular Modelling 

In silico modeling was conducted with methods reported previously (Yool, Morelle et 

al. 2013).  The crystal structure of human AQP1 was obtained from the Protein Data 

Bank (PDB ID: 1FQY). The tetrameric model (Supplemental Data) was generated in 

Pymol (Version 1.7.4 Schrödinger, LLC) using coordinates provided in the pdb file. 

Renderings of the AqB ligands were generated in Chemdraw (Version 13.0, 

PerkinElmer), then converted into pdb format using the on-line SMILES translation 

tool (National Cancer Institute, US Dept Health and Human Services). Both AQP1 

and ligand coordinates were prepared for docking using MGLtools (Version 1.5.4, 

Scripps Institute, San Diego CA USA). The docking was carried using Autodock Vina 

(Trott and Olson 2010) with a docking grid covering the intracellular face of tetrameric 

pore.  

Data Compilation and Statistics  

Results compiled from replicate experiments are presented as box plots. The boxes 

represent 50% of the data, the error bars indicate the full range, and the horizontal 
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bars are the median values. n values are in italics above the x-axis. Statistical 

differences were analyzed with one-way ANOVA and post-hoc Bonferroni tests and 

reported as  ** p< 0.0001, * p<0.05, and not significant (NS; p>0.05). 

Results 

AQP1 ion channel inhibition by novel bumetanide derivatives 

 A set of four related compounds with structural modifications at the carboxylic acid 

moiety of bumetanide were tested for effects on the cGMP-activated ionic 

conductance in AQP1-expressing oocytes. Two-electrode voltage clamp recordings 

of AQP1-expressing oocytes (Figure 1) illustrate inhibition of the ionic conductance 

by extracellular application of AqB007 (200 M) and AqB011 (20 M), but no 

appreciable block of the AQP1 ion channel with 200 M AqB001 or AqB006. Initial 

recordings before cGMP application, and responses to the first application of cGMP 

recordings showed typical cGMP-dependent activation, as described previously 

(Anthony, Brooks et al. 2000). Oocytes were then transferred into saline with the 

indicated agents for 2 hours, during which time the ionic conductances uniformly 

recovered to initial levels (Figure 2).  In response to the second application of cGMP, 

oocytes treated with vehicle (DMSO), AqB001 or AqB006 showed increases in 

conductance comparable to the first response. However, the cGMP-activated 

conductance responses were inhibited after treatment with AqB007 or AqB011.  

Trend plots (Fig 2A) show that the ionic conductance in AQP1-expressing oocytes 

was initially low, and was activated by the first bath application of membrane 

permeable cGMP. The ionic conductance then recovered to basal level during a 2h 

incubation without cGMP, and was tested for reactivation by a second application of 
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cGMP after treatment with vehicle or AqB compounds.  Recordings for oocytes 

incubated in saline without DMSO during the recovery period were comparable to 

those for the DMSO-treated group (not shown). Non-AQP1-expressing control 

oocytes showed no ionic conductance response to cGMP and no effect of the vehicle 

or drug treatments (Fig 2B).    

Compiled data for the cGMP-activated ionic conductance values in AQP1-

expressing oocytes are shown in the box plot (Fig 3A), and indicate the levels of 

block by 200 M AqB007 and 20 M AqB011 were statistically significant as 

compared with vehicle treated AQP1-expressing oocytes.  Dose-response 

relationships (Fig 3B) yielded estimated IC50 values of 14 M for AqB011 and 170 

M for AqB007. 

AqB ion channel blockers have no effect on osmotic water permeability  

Data for oocyte volumes standardized as a percentage of initial volume at time zero 

illustrate the mean swelling responses over 60 seconds after introduction of the 

oocytes into 50% hypotonic saline (Fig 4A). AQP1-expressing oocytes showed 

consistent osmotic swelling which was unaffected by treatment with vehicle (DMSO 

0.1%) or AqB compounds at 200M each. Non-AQP1-expressing control oocytes 

showed little osmotic water permeability.   

To analyze possible effects of the AqB compounds on water channel activity, a 

double-swelling assay was used (Fig 4B). After the first swelling (S1) in hypotonic 

saline, oocytes were incubated in isotonic saline with or without the AqB compounds 

(200 M) for 2 h before assessing the second swelling response (S2).  There were 

no significant differences between the first and second swelling rates in any of the 
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treatment groups, confirming that the AqB ion channel agents did not affect AQP1 

osmotic water permeability. 

 

Molecular modelling of candidate intracellular binding sites 

Putative binding sites on the AQP1 ion pore for AqB011 and AqB007 in the 

intracellular loop D domain can be suggested based on structural modelling and 

docking analyses (Figure 5). In silico modeling suggested the sites for the most 

favorable energies of interaction for AqB007 and AqB011 were located at the 

intracellular face of the central pore (Fig 5A). Interestingly, the model predicted 

hydrogen bonding between the uniquely elongated moieties of the two effective AqB 

ligands and the initial pairs of arginine residues in the highly conserved loop D motifs 

from two adjacent subunits (Fig 5B); the same arginines (R159 and R160 in human 

AQP1) have been shown to be involved in AQP1 ion channel gating but not water 

channel activity in prior work (Yu, Yool et al. 2006). The more compact AqB006 

docked weakly at a different position in the central vestibule (not shown). While in 

silico modeling does not define actual binding sites, it provides a testable hypothesis 

for future work, and offers intriguing support for the role of loop D in modulating AQP1 

ion channel gating. The most favorable energy of interaction was calculated for 

AqB011 (at -9.2 kcal/mol).  The next most favorable energy of interaction for AqB 

compounds with the AQP1 channel was for AqB007 (at -7.0 kcal/mol), followed by 

AqB006 (at -6.0 kcal/mol). This order of interaction strength for the AqB series 

matched their order of efficacy for inhibition of the AQP1 ion channel conductance 

(Figure 3). 
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Inhibition of AQP1 ion channel activity slows cancer cell migration  

The effects of AqB006, AqB007 and AqB011 were tested in migration assays of 

human HT29 colon cancer cells (Figure 6) which natively express AQP1. Net 

migration rates were calculated from the percent closure of a circular wound area at 

24 h (Fig 6A). Results showed that cancer cell migration was not impaired by 

AqB006, but was impaired significantly by AqB007 at 100 µM, and AqB011 at 50 µM 

and 100 µM, as compared with vehicle-treated control HT29 cells (Fig 6B).  AqB011 

was more effective than AqB007 in blocking migration, consistent with relative 

efficacies of the agents as blockers of the ion channel conductance. In contrast, 

AqB011 at 100 M had no effect on the migration rate of SW480 colon cancer cells 

(Fig. 6B) which express AQP5, but not AQP1, suggesting that the inhibitory effect of 

AqB011 appears to be selective for AQP1. 

AqB compounds show low cytotoxicity  

There was no significant difference in viability between vehicle-treated and untreated 

cells, and no effect of treatment with  AqB011 for HT29 cells (Table 1).  Cell viability 

was assessed with alamarBlue assays. The persistence of the fluorescent signal at 

24 h confirmed there was no appreciable cytotoxic effect of AqB011 treatment on 

HT29 cells at concentrations up to 80 M.  Mercuric chloride as a positive control 

caused significant cell death, measured as a decrease in fluorescence.  AqB011 at 

doses used to block the AQP1 ionic conductance  and cancer cell migration did not 

impact cell viability.     
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Discussion  

The aim of this study was to search for selective small-molecule pharmacological 

agents capable of blocking the cGMP-activated cationic conductance in AQP1.  

Discovery of pharmacological modulators for AQP1 channels has been an important 

goal in the aquaporin field. AQP1 antagonist and agonist agents are expected to be 

useful for defining the complex roles of aquaporins in fundamental biological 

processes, as well as for characterizing AQP1 modulators as potential clinical agents 

in various conditions, such as cancer metastasis (Yool, Brown et al. 2009). AQP1 

expression is upregulated in subtypes of aggressive cancer cells in which it facilitates 

cancer migration. Results here show that selective blockers of the AQP1 ion channel 

slow migration of human colon cancer cells in culture. Pharmacological inhibition of 

AQP1 is predicted to have a protective effect in reducing metastasis in cancer, but 

remains to be demonstrated in vivo. 

Using bumetanide as a starting scaffold, we created an array of novel synthetic 

derivatives.  Based on pilot data indicating a small inhibitory effect of AqB050 on the 

AQP1 ion channel at high doses (unpublished observations), we investigated a 

series of structurally related derivatives AqB006, AqB007, and AqB011, as well as a 

simple methylated version of bumetanide AqB001, to test for possible inhibitors of 

the AQP1 ionic conductance. Our findings demonstrated that AqB007 and AqB011 

are effective inhibitors of the central ion pore of AQP1, with estimated IC50 values of 

170 and 14 µM, respectively. Both AqB007 and AqB011 showed dose-dependent 

inhibition of the central ion pore, whereas the intrasubunit water pores were 

unaffected, enabling the first dissection of physiological roles of the distinct channel 
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functions. Measuring fluorescence signal intensity with the alumarBlue cell viability 

assay showed that AqB011 was not cytotoxic at doses that produced maximal ion 

channel inhibition. 

The inhibition by AqB011 of AQP1 ionic conductance was consistent with molecular 

docking studies suggesting the site of interaction is at the intracellular face of the 

central pore. Results revealed that AqB011 is the most energetically favored 

compound followed by AqB007. The predicted interaction site of AqB011 and 

AqB007 with AQP1 is at the loop D domain. Differences in the structures and 

efficacies of AqB006, AqB007 and AqB011 indicate that the structure-activity 

relationship of ion channel inhibition is sensitive to specific chemical modifications at 

the carboxylic acid position of bumetanide. The length and structure of the 

modification appears to be critical, and appears based on in silico modeling to be the 

region that interacts with the AQP1 channel gating loop D domain. The absence of 

cytotoxic effects of AqB011 at doses sufficient to block the AQP1 ion channel activity 

indicates that the inhibition of migration is not due indirectly to cell death. The 

observation that AqB011 inhibited migration in AQP1-expressing HT29 colon cancer 

cells, but had no effect on the migration of AQP-5 expressing SW480 colon cancer 

cells provides support for the idea that AqB011 is selective for AQP1.  The inhibition 

of migration seen with AqB011 is unlikely to result from off-target effects on general 

metabolic function, cytoskeletal organization, actin polymerization, or signaling 

pathways involved in cell motility, since SW480 cell migration remained unaffected 

by the presence of AqB011.  
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AQP1 is present in barrier epithelia involved in fluid movement in the body, including 

proximal tubule and choroid plexus (Agre, Preston et al. 1993). It is also expressed 

in peripheral microvasculature, dorsal root ganglion cells, eye ciliary epithelium and 

trabecular meshwork, heart ventricle, and other regions in which a direct role for 

osmotic water flux is less evident (Yool 2007).  Additional roles suggested for AQP1 

include angiogenesis (Nicchia, Stigliano et al. 2013); signal transduction (Oshio, 

Watanabe et al. 2006); increased mechanical compliance to changes in pressure 

(Baetz, Hoffman et al. 2009);  axonal regeneration of spinal nerves (Zhang and 

Verkman 2015); recovery from injury (Hara-Chikuma and Verkman 2006); and 

exocytosis (Arnaoutova, Cawley et al. 2008). Relative contributions of the ion and 

the water channel functions in these diverse processes remain to be defined. 

A possible role for the AQP1 ionic conductance (potentially in combination with water 

fluxes) in the control of cell volume associated with migration was supported by the 

results of the wound closure assays with AQP1-expressing HT29 cells.  Cell 

migration was significantly impaired by AqB011 and AqB007, but not by AqB006.   

The greatest efficacy of migration block was seen with administration of AqB011. 

The comparable orders of efficacy for block of AQP1 ion channels in the oocyte 

expression system, and for block of cell migration in HT29 cultures, support the idea 

that the AqB011 effect on migration is mediated by block of the AQP1 ion channels 

directly.   These data provide evidence that the ion channel activity of AQP1 has 

physiological relevance. Further work is needed to evaluate effects of blocking both 

water and ion channel activities of AQP1 together in migrating cells. 



Page | 82  
 

AqB011 is a new research tool for probing the physiological role of the AQP1 ion 

channel function in biological systems.  This compound holds future promise as a 

possible adjunct clinical intervention in cancer metastasis.  Exciting opportunities are 

likely to emerge from continuing discovery of pharmacological modulators for 

aquaporins for new treatments in cancers and other diseases. 
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Figure Legends  

Figure 1. Chemical structures of selected bumetanide derivatives and 

electrophysiology traces showing representative effects of AqB001, AqB006, 

AqB007, and AqB011 on the ionic conductance responses activated by bath 

application of CPT-cGMP, before and after 2 h incubation in saline with and without  

the AqB compounds.  See Methods for details.  

Figure 2.  Trend plots showing the ionic conductance responses for individual 

oocytes measured prior to cGMP (initial), after the first cGMP application, after 2 h 

incubation in saline without cGMP containing DMSO (vehicle) or AqB agents, and 

after the second application of cGMP.  Reversible cGMP-dependent activation of an 

ionic conductance in AQP1-expressing oocytes (A) was not seen in non-AQP1 

control oocytes (B). Inhibition was seen after treatment with AqB007, and AqB011, 

but not with vehicle, AqB001, or AqB006. 

Figure 3. Dose-dependent block of the AQP1 ionic conductance. (A) Compiled box 

plot data showing statistically significant block of the cGMP-activated ionic 

conductance in AQP1-expressing oocytes by AqB007 and AqB011, but not with 

vehicle, AqB001, or AqB006. See Methods for details. (B) Dose response curves 

showing percent block of the activated ionic conductance in AQP1 expressing 

oocytes and estimated IC50 values.  n values for dose-response data (in order of 

increasing concentration) for AqB007 were 8, 4, 2, 8; and for AqB011 were 8, 2, 2, 

3, 6, 4, 3. 
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Figure 4.  Lack of effect of AqB compounds on AQP1 osmotic water permeability 

measured by optical swelling assays. (A) Mean oocyte volume, standardized as a 

percentage of the initial volume for each oocyte, as a function of time after 

introduction into 50% hypotonic saline, with and without 2 h pre-treatment with AqB 

compounds at 200 M, or vehicle (0.1% DMSO). (B) Compiled boxplot data showing  

the absence of any statistically significant differences between the first and second 

swelling rates, measured before (S1) and after (S2) 2 h incubations in saline alone 

or saline with 200 M AqB compounds as indicated. See Methods for details. 

Figure 5. In silico modeling of the energetically favored binding site for AqB011 in 

the center of the tetrameric channel of AQP1 (grey) at the intracellular side, 

bracketed by the gating loop D domains (green).  The putative binding site suggests 

an interaction with two of the loop D domains from adjacent subunits. (A) is the full 

view of the tetramer, and (B) is a closer view slightly rotated to show proximity of the 

ligand to the conserved arginine residues in loop D.  

Figure 6. Block of cell migration in AQP1-expressing HT29 but not SW480 cells 

treated with AqB011. (A) Illustrative diagram of the circular wound healing method, 

showing substantial closure of the wounded area in normal culture medium by 24 

hours.  (B) Compiled boxplot data from wound closure assays showing the dose-

dependent inhibitory effects of AqB007 and AqB011, compared to DMSO and 

AqB006,  on wound closure at 24 h in HT29 cell cultures. Migration of SW480 cells 

was not altered by AqB011. 

Supplemental Data.  Molecular modelling data in Protein Data Bank (pdb) format 

showing the compound AqB011 docked at the intracellular side of the tetrameric 
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human AQP1 channel (PDB ID: 1FQY), and interacting with loop D domains of 

subunits surrounding the central pore. 
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Table 1.  HT29 cell levels of cytotoxicity after treatment with furfural, structurally 

related compounds, or HgCl2 in the culture medium. 

Agent             

[AqB011] (M) 

Mean normalized cell 

viability (%)  ± SEM § 

n value  

0 (untreated) 100.0  ±  0.70 8 --- 

0 (0.1% DMSO) 103.9  ±  0.91 8 NS 

1 104.0  ±  1.06 4 NS 

5 102.3  ±  2.26 4 NS 

10 110.6  ±  2.12 4 NS 

20 114.0  ±  0.84 4 NS 

40 111.8  ±  1.33 4 NS 

80 102.4  ±  2.95 4 NS 

HgCl2  (100 M)   16.2  ±  0.20 3 ** 

 

§  Percent viability was standardized as a percentage of the untreated mean value, 

measured as changes in alumarBlue fluorescence signal intensity. See Methods for 

details.  
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Appendix 1- Additional data provided in response to examiner’s request on showing 

AQP1 and AQP5 are both expressed in HT29 colon cancer cell line 

 

 

 

 

 

 

 

 

 

 

 

Appendix1: AQP1 and AQP5 protein expression level in HT29 colon cancer cell 

line. AQP1 protein expression was determined by western blot, with GAPDH used 

as a reference protein. Cultured cells were lysed with RIPA buffer for 10 minutes and 

centrifuged at 4°C for 15 minutes. Each sample was resolved by SDS-PAGE and 

transferred to polyvinylidene fluoride membranes. Membranes were blocked with 

Tris-buffered saline for 1 hour and incubated overnight at 4°C with rabbit anti-AQP1 

and mouse anti-GAPDH antibodies. Membranes were then incubated with goat anti-

rabbit IgG 800 infarred secondary antibody and donkey anti-mouse IgG 600 infrared 

antibody. Precision Plus Protein Dual Colour Standards protein ladder was used.  
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Chapter 3: Electrophysiological confirmation of the site of 

interaction of the inhibitor AqB011 in the loop D domain of the 

human Aquaporin 1 ion channel  

Mohamad Kourghi, Saeed Nourmohammadi, Jinxin V. Pei, and Andrea J. Yool 

Abstract 

Aquaporins are membrane integral proteins that assemble on the membrane and 

facilitate the transport of water and other small neutral molecules. Mammalian 

aquaporin 1 (AQP1) allows H2O permeation and CO2 transport. In addition AQP1 

functions as a cation channel activated by cGMP. The cation channel of AQP1 was 

shown previously to be blocked by small molecule sulfonamide compounds, AqB007 

(IC50 170 M) and AqB011 (IC50 14 M). The interaction site of the molecules with 

the channel was predicted by in silico docking modelling to be at loop D domain of 

the human AQP1 channel, in a proposed gating domain involving a pair of arginine 

residues at positions 159 and 160. Work here tested the hypothesis that AQP1 

channels modified by mutation of the two predicted binding site arginine residues to 

alanines would have reduced sensitivity to block by AqB011. Human AQP1 channels 

with the double mutation (AQP1 R159A+R160A) and wild type AQP1 channels were 

expressed in Xenopus laevis oocytes and investigated by two-electrode voltage 

clamp, optical osmotic swelling assays and pharmacological analyses. The results 

revealed that the double mutation of R159 and R160 in the gating loop D domain 

caused a significant slowing of the rate of ion conductance activation as compared 

with wild type in response to application of membrane-permeable cGMP, and that 

the cGMP-dependent current in AQP1 R159A+R160A showed no significant 
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sensitivity to AqB011 at concentrations up to 50 M, whereas the AQP1 wild type 

channel was blocked effectively by AqB011. These findings extend our 

understanding of the role of the loop D domain in ion channel activation in AQP1, 

and provide direct support for the location of the predicted site of interaction of 

AqB011 in the loop D domain of hAQP1. 
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Introduction 

Aquaporins (AQPs) are classified as major intrinsic proteins (MIPs) (Reizer, Reizer 

et al. 1993).  In mammals, classes of AQPs are differentially expressed in 

endothelial, epithelial and other cell types, and comprise key components of 

mechanisms for fluid homeostasis in single cells, barrier tissues and organs such 

as brain, kidneys, stomach, intestines and lungs which depend on facilitation of 

water transport across membranes (Benga, Popescu et al. 1986, Agre, Preston et 

al. 1993). Some classes of aquaporin channels have been found shown to 

transport molecules other than water across the cell membrane, including glycerol, 

ammonia, urea, protons, as well as CO2 and O2 gases (Uehlein, Lovisolo et al. 

2003, Holm, Jahn et al. 2005, Hibuse, Maeda et al. 2006, Zhao, Bankir et al. 2006, 

Herrera and Garvin 2011, Uehlein, Sperling et al. 2012, Zwiazek, Xu et al. 2017).  

Aquaporin ion channel function is not exclusive to AQP1.  Recent work has shown 

that a plant aquaporin channel (AtPIP2;1) serves as a non-selective cation channel 

that is sensitive to Ca2+ and pH (Byrt, Zhao et al. 2016); the aquaporin-related Big 

Brain channel in Drosophila has been shown to carry a cationic conductance 

regulated by tyrosine kinase signalling (Yanochko and Yool 2002); and other 

members of the aquaporin family including lens MIP, AQP0, and AQP6 have been 

characterised as ion channels (Zampighi, Hall et al. 1985, Ehring and Hall 1988, 

Ehring, Zampighi et al. 1990, Yasui, Kwon et al. 1999).  

What distinguishes AQP1 ion channels from other members of the family described 

thus far is its ability to conduct solutes through separate pathways with constitutive 

water transport mediated through the individual pores of the tetramer and ion 
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transport mediated by the central pore, which allows monovalent cations to pass 

through the channel after activation by intracellular cGMP.   The AQP1 ion pore is 

highly permeable to K+, Na+, Cs+, and Li+;  moderately permeable to TEA+ and not 

appreciably permeable to divalent cations such as Ca2+ (Yool, Stamer et al. 1996). 

 

Previous work identified two pharmacological blockers of AQP1 ion channel, AqB007 

and AqB011, with AqB011 being the more potent blocker (Kourghi, Pei et al. 2016).  

Osmotic water fluxes were not altered, indicating the block was selective for the 

central pore region. Molecular dynamic simulations predicted that a pair of arginine 

residues located at positions 159 and 160 in the loop D domain of human AQP1 were 

involved in gating of the ion channel, and that mutation of the arginines impaired ion 

channel activation (Yool and Campbell 2012). Molecular docking studies 

independently converged on the same arginine residues as the candidate binding 

site for the AQP1 ion channel inhibitor AqB011 (Kourghi, Pei et al. 2016).  

 

The purpose of this study was to test the proposed binding site of AqB011 compound 

by mutation of the candidate docking site.  Arginine residues at positions 159 and 

160 in the Loop D domain of human AQP1 were mutated to alanines. Human AQP1 

wild-type and hAQP1 R159A+R160A mutant channels were expressed in Xenopus 

laevis oocytes and analysed by osmotic swelling assays, electrophysiology, and 

pharmacology. Results here show that the AQP1 R159A+R160A mutant channel 

could be activated by cGMP, although much more slowly than wild type, and the 

activated current though reduced in amplitude compared to wild type was insensitive 
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to the blocker AqB011.  These results confirm the in silico predicted binding site of 

AqB011 on the loop D domain of hAQP1, and provide further support for the idea 

that the AQP1 central pore is the pathway for the gated cation current.  

 

Materials and Methods 

Site directed mutagenesis of AQP1 

Site-directed mutations were generated in hAQP1, cloned in the X. 

laevis expression vector construct (pxBGev), using the QuikChange site-directed 

mutagenesis kit (Agilent Technologies, Forest Hills, VIC, Australia) with custom-

synthesized primers as described previously (Yu, Yool et al. 2006). The correct 

sequence of the construct was confirmed by replicate DNA sequencing of the full-

length cDNA constructs. Wild-type AQP1 and mutant R159A+R160A cDNAs were 

linearized using BamHI and transcribed with T3 RNA polymerase using the 

mMessage mMachine kit (Ambion, Austin, TX). 

 

Oocyte preparation and injection 

 Unfertilized oocytes were harvested by partial ovariectomy from anesthetized 

Xenopus laevis frogs following Australian national guidelines and protocols 

approved by the University of Adelaide Animal Ethics Committee.  Oocytes were 

defolliculated with collagenase (type 1A, 1 mg/ml; Sigma-Aldrich, St. Louis, MO) in 

the presence of trypsin inhibitor (0.05 mg/ml; Sigma-Aldrich, St. Louis, MO) for 1 to 

1.5 hours in OR-2 saline (96 mM NaCl, 2 mM KCl, 5 mM MgCl2, penicillin 100 

units/ml, streptomycin 0.1 mg/ml, and 5 mM HEPES; pH7.6). Oocytes were then 
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washed 4 times with OR-2 saline at approximately 10 minute intervals before 

storage in isotonic Frog Ringers saline [96 mM NaCl, 2mM KCl, 5 mM MgCl2, 0.6 

mM CaCl2, 5mM HEPES buffer, horse serum (5%; Sigma-Aldrich, St. Louis, MO), 

penicillin 100 units/ml streptomycin 0.1 mg/ml, and tetracycline 0.5mg/ml, pH 7.6]. 

Oocytes were injected with 50 nl of water (control oocytes), or 50 nl of water 

containing 1ng of AQP1 wild type cRNA, or 2ng of AQP1 R159A+R160A mutant 

cRNA. Oocytes were then transferred to sterile dishes containing Frog Ringers 

saline and incubated at 16 to 18 °C for 48 hours to allow time for protein 

expression. To confirm post hoc the successful expression of AQP1 channels in 

the oocyte membranes, after electrophysiological recordings the AQP1 wild type, 

mutant or control oocytes were placed in distilled water. AQP1-wt oocytes swelled 

and burst typically within 3-5 minutes, AQP1 R159A+R160A mutant oocytes 

showed membrane disruption due to swelling by approximately 8 minutes, whereas 

control oocytes remained generally unaffected in morphology for longer than 10 

minutes in distilled water. Isotonic Na saline used for electrophysiology and osmotic 

swelling assays contained (in mM):   NaCl 96 mM, KCl  2 mM,  MgCl2 5 mM,  CaCl2  

0.6 mM, and  HEPES  5 mM,  pH 7.3, without antibiotics or serum. 

 

Expression of human AQP1 channel on oocyte membrane 

Swelling assays were performed in 50% hypotonic saline (isotonic Na saline diluted 

with equal volume of water).  Prior to swelling assay the control (non-AQP 

expressing), AQP1-wt and AQP1 R159A+R160A oocytes were rinsed in isotonic 
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saline (without horse serum and antibiotics) for 10 minutes. Oocytes were then 

introduced to 50% hypotonic saline. 

Rates of swelling were imaged using a grayscale camera device (Cohu, San Diego, 

CA) fixed on a dissecting microscope (Olympus SZ-PT; Olympus, Macquarie Park, 

Australia). Images were captured at 0.5 per second for 60 s. Swelling of the oocyte 

membrane were assessed with Image J software from National Institutes of Health 

(http://rsbweb.nih.gov/ij/). Swelling rates were measured as the slopes of the linear 

regression fits of relative volume as a function of time using Prism (GraphPad 

Software Inc.,San Diego, CA). 

 

Electrophysiological recordings  

Two-electrode voltage clamp recordings were performed at room temperature in 

standard isotonic Na+ saline. Capillary glass pipettes (1–3 MΩ) were filled with 1 M 

KCl. Initial conductances were determined from current-voltage relationships 

measured prior to cGMP application. The membrane permeable compound 8-pCPT-

cGMP (8-(4-chlorophenylthio)-guanosine-3′,5′-cyclic monophosphate) (Anthony, 

Brooks et al. 2000) was added as a bolus to the bath saline and diluted to the final 

concentration (10-20 M) by trituration. Repeated steps to +40 mV at 6 s intervals 

were used to monitor activation of the ion current response. After recording the final 

conductance in cGMP, oocytes were transferred into isotonic Na saline with or 

without AqB011 for two hours which allowed recovery back to initial conductance 

levels, as described previously (Kourghi, Pei et al. 2016). Oocytes were then 

evaluated again with voltage clamp to determine the response to a second 

http://rsbweb.nih.gov/ij/
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application of bath CPT-cGMP, using the amplitude of reactivation to test for block 

by AqB011. From a holding potential of -40, voltage steps from +60 to -110mV were 

applied using a GeneClamp amplifier and Clampex 9.0 software (pClamp 9.0 

Molecular Devices, Sunnyvale, CA, USA). Data were filtered at 2 kHz and stored to 

hard disk for analysis.  

 

Results 

Two-electrode voltage clamp recordings showed that the cGMP-activated ionic 

conductance of AQP1 wild type channels was inhibited by incubation in AqB011 (50 

M), but no appreciable block by AqB011 (50 M) was observed for the AQP1 

R159A+R160A mutant channels. Initial recordings were measure before the 

application of cGMP followed by increased ionic conductance in response to batch 

application of CPT-cGMP. The oocytes were then incubated in salines containing 50 

M AqB011 for 2 hours. During the incubation period the ionic conductance 

recovered to initial levels (Fig. 1A). In response to the second application of cGMP, 

oocytes treated with vehicle (DMSO) and AQP1 R159A+R160A  mutants showed  

increases in conductance that were similar to the first response to cGMP. However, 

the ionic conductances in AQP1 wild type oocytes were not re-activated by 

application of second cGMP, indicating an inhibition of the ion current after AqB011 

treatment. AQP1 R159A+R160A mutant channels were insensitive to the blocker.  

Figure 1B illustrates the compiled box plot data for the ionic conductance values for 

AQP1-wt and AQP1 R159A+R160A mutants. Figure 1C shows the trend plots, in 

which the initial conductance in AQP1-wt and QP1 R159A+R160A expressing 
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oocytes were low. Followed by bath application of cGMP and achieving maximal 

activation response. Post incubation in 50 M AqB011, and response to 2nd bath 

application of cGMP, in which the oocytes expressing wt AQP1 stayed blocked, and 

not reactivated, however there was no block in oocytes expressing AQP1 

R159A+R160A mutants.   

Figure 2A shows that the conductance responses differed in rates of activation after 

the bath application of CPT-cGMP. Oocytes expressing the AQP1 wild type channels 

activated more rapidly and reach a higher maximal current amplitude that did those 

expressing AQP1 R159A+R160A channels. cGMP activated currents were not 

observed in non-AQP1 expressing oocytes. The maximal activation in oocytes 

expressing AQP1 wild type was reached within 25 min, reaching a conductance 

averaging 20 S. In contrast, approximately double that time was required to achieve 

maximal conductance in oocytes expressing AQP1 R159A+R160A mutants, to reach 

a conductance averaging 10S.   

The latency to the onset of activation was also considerably slower in the mutant 

construct (Fig 2B).  The current in AQP1 wild type expressing oocytes began to rise 

above the initial baseline by 10 to 15 min after cGMP application; whereas in oocytes 

expressing R159A+R160A channels, the onset of a current response to cGMP was 

not observed until approximately 30 minutes.  The long latency to activation 

observed here for the arginine double mutant construct is consistent with prior work 

which reported a lack of appreciable activation of the R159A+R160A mutant 

channels when assessed in a relatively short time frame needed for activation of 

AQP1 wild type channels (8 min after application of the nitric oxide donor, sodium 
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nitroprusside, which was used to stimulate endogenous oocyte cGMP production to 

activate AQP1 channels (Yu, Yool et al. 2006). 

Fig 2C shows a scatter plot of times to half-maximal activation of the ion conductance 

in responses to cGMP. Significantly less time was required to activate the ionic 

conductance of the AQP1 wild type as compared to AQP1 R159A+R160A mutant 

channels.  

Figure 3 shows osmotic water permeability data that confirmed successful 

expression of functional wild type and mutant AQP1 channels in oocyte plasma 

membrane. Based on relative osmotic water fluxes, the level of expression of the 

AQP1 R159A+R160A mutant channel appeared to be less than wild type, but both 

were significantly greater than non-AQP1 expressing control oocytes. A reduced 

efficacy of expression thus could explain approximately 10% of the reduced 

amplitude observed for the maximal ionic conductance response of the mutant as 

compared to wild type. However the overall conductance response in the arginine 

double mutant was half that of wild type, suggesting the ion conductance response 

was also impaired by reduced efficacy of ion channel gating.  The mutation of AQP1 

did not preclude the water channel activity that showed the channel was expressed, 

assembled and trafficked to the plasma membrane of oocytes.  
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Discussion  

The aim of this study was to evaluate the candidate binding site for AqB011 in the 

loop D domain of AQP1, as postulated from previous in silico modelling.  Previous 

work characterized the AqB011 compound as a novel inhibitor of the ion channel 

function of AQP1 (Kourghi, Pei et al. 2016) and showed that block of the AQP1 ion 

channel activity slowed migration of colon cancer cells (Kourghi, Pei et al. 2016) that 

rely on AQP1 expression for high motility.  Molecular docking studies suggested that 

AqB011 showed the most favourable energy of interaction with a pair of positively 

charged arginine residues located on loop D domain of AQP1, a region that has been 

suggested to be involved in gating of the central pore of the AQP1 channel (Yu, Yool 

et al. 2006).  To test this hypothesis, we used a mutant construct of the AQP1 

channel in which the positively charged arginine residues in positions 159 and 160 

of the human AQP1 amino acid sequence were replaced with alanine. 

A concern that raised from introducing the double arginine mutations at positions 159 

and 160 of AQP1 mRNA is the mutation could prevent the assembly and expression 

of AQP1. Prior work conducted by (Kitchen, Conner et al. 2016) and (Campbell, 

Birdsell et al. 2012) showed that the mutation does reduce the assembly and the 

level of expression of AQP1 channel on the phospholipid membrane. However the 

mutation does not completely prevent the expression of AQP1 channel on 

membrane (Campbell, Birdsell et al. 2012). The mutation impaired the ion channel 

function of AQP1 much more than the water permeability, showing that the loss of 

function could not be due solely to a loss of membrane expression.  
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Here we have confirmed prior work showing that the mutation did not prevent the 

channel from being expressed on the membrane of oocytes, and added new results 

showing that the AQP1R159A+R160A mutant, which was previously thought to be 

non-functional as an ion channel (Yu, Yool et al. 2006), can be activated by cGMP 

albeit at significantly slower rates, at a lower maximal amplitude, and a longer latency 

than for AQP wild type channels. Nonetheless the reduced ion channel function in 

the double arginine mutant was significantly different from controls and thus allowed 

evaluation of sensitivity to block by AqB011.  

 

AqB011 had no effect on the activation of the ion conductance in the mutant channel 

in response to cGMP; however, the ion conductance in AQP wild type was 

significantly inhibited in agreement with prior work (Kourghi, Pei et al. 2016).  

In sum, the results support the hypothesis of predicted interaction site of AqB011 on 

double Arginine residue on loop D domain of AQP1 ion channel.  In addition our 

result provides a line of evidence to support the previous idea that the proposed 

central pore is the pathway for ion flux (Campbell, Birdsell et al. 2012). 
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Figure legends 

Figure1.  The sensitivity of human AQP1 wild type ion channels to block by AqB011 

is removed by mutation of loop D arginine residues (R159 and R160).   

(A) Electrophysiology traces showing ion currents in AQP1 wild type and AQP1 

R159A+R160A expressing oocytes in initial conditions, after the first cGMP 

activation, and after the second cGMP application following two hour incubation in 

saline with or without 50M AqB011. (B) Compiled box plot data showing a 

statistically significant block of AQP1 wild type with 50 M AqB011 as compared to 

vehicle control (DMSO), and absence of a blocking effect of AqB011 on AQP1 

R159A+R160 channels. (C) Trend plots showing the ionic conductance of AQP1 wild 

type or AQP1 R159A+R160A for each oocyte measured before cGMP (initial), after 

cGMP, and after 2-hour incubation in saline without cGMP containing DMSO 

(vehicle) or 50M AqB011. The ionic conductance in AQP1 activated by cGMP was 

not observed in control (non-AQP1 expressing) oocytes.  

 

Figure 2. The time required to reach half maximal activation of the cGMP-activated 

current at +40 mV is significantly greater for AQP1 R159A+R160A expressing 

oocytes than for AQP1 wild type. (A) Development of the ionic conductance 

response was monitored after cGMP using brief repeated +40 mV steps (10 per 

minute). Traces only at every 40 minutes are displayed for clarity to illustrated 

differences in the relative rates of activation. (B) Scatter plot comparing the times to 

half-maximal activation of cGMP-activated currents in minutes (y axis) for AQP1 wild 

type and AQP1 R159A+R160A mutant expressing oocytes (x axis).  
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Figure 3. Schematic illustration of distinct pathways for water and ion transport 

through AQP1 wild type channels, expressed as tetramers in the phospholipid 

membrane bi-layer. Positively charged arginine residues located on the loop D 

domain of central pore serve as the predicted interaction site with AqB011. 

 

Fig 4.  Functional expression of AQP1 wild type and AQP1 R159A+R160 mutant 

channels in oocytes, confirmed by high osmotic water permeabilities as compared 

to non-AQP1 expressing controls. (A) AQP1 wild type (circles) and AQP1 

R159A+R160 mutant (squares) show high osmotic water permeabilities assessed 

by quantitative swelling assays compared with nonAQP1-expressing control X. 

laevis oocytes (filled triangles). Relative volume changes as a function of time were 

measured from video-imaged cross-sectional areas. Data are mean ± S.D. for all 

oocytes in a representative experiment (n = 6 per group). (B) Compiled box plot data 

show osmotic water flux in oocytes expressing AQP1 wild type and AQP1 

R159A+R160 mutant were significantly greater than non-AQP1 expressing controls. 
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Abstract  

Aquaporin-1 (AQP1) is a major intrinsic protein that facilitates flux of water and other 

small solutes across cell membranes. In addition to its function as a water channel in 

maintaining fluid homeostasis, AQP1 also acts as a non-selective cation channel 

gated by cGMP, a property shown previously to facilitate rapid cell migration in an 

AQP1-expressing colon cancer cell line. Here we report two new modulators of AQP1 

channels, bacopaside I and bacopaside II, isolated from the medicinal plant Bacopa 

monnieri. Screening was conducted in the Xenopus oocyte expression system, using 

quantitative swelling and two-electrode voltage clamp techniques. Results showed 

bacopaside I blocked both the water (IC50 117 M) and ion channel activities of 

AQP1 but did not alter AQP4 activity, whereas bacopaside II selectively blocked the 

AQP1 water channel (IC50 18 M) without impairing the ionic conductance. These 

results fit with predictions from in silico molecular modelling. Both bacopasides were 

tested in migration assays using HT29 and SW480 colon cancer cell lines, with high 

and low levels of AQP1 expression respectively. Bacopaside I (IC50 48 M) and 

bacopaside II (IC50 14 M) impaired migration of HT29 cells, but had minimal effect 

on SW480 cell migration. Results here are the first to identify differential AQP1 

modulators isolated from a medicinal plant.  Bacopasides could serve as novel lead 

compounds for pharmaceutical development of selective aquaporin modulators.   
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Introduction  

Aquaporin (AQP) water channels are in the family of major intrinsic proteins found from 

bacteria to humans (Agre, Preston et al. 1993, Reizer, Reizer et al. 1993, Calamita, 

Bishai et al. 1995), and are targets for the discovery of selective pharmacological 

modulators.  Classes of aquaporins transport water and small uncharged molecules 

such as glycerol and urea through individual pores located in each subunit (Fu, Libson 

et al. 2000, Tajkhorshid, Nollert et al. 2002).  

An expanding role for aquaporins as multifunctional channels is being recognized (Yool 

and Campbell 2012). In addition to facilitating water flux through intrasubunit pores, 

AQP1 also functions as a non-selective monovalent cation channel using the central 

pore at the four-fold axis of symmetry (Yool and Weinstein 2002, Yu, Yool et al. 2006, 

Campbell, Birdsell et al. 2012). The ion channel conductance is activated by interaction 

of cGMP in the intracellular Loop D domain, and modulated by the carboxyl terminal 

domain (Anthony, Brooks et al. 2000, Saparov, Kozono et al. 2001, Boassa and Yool 

2003, Zhang, Zitron et al. 2007). cGMP appears to trigger opening of cytoplasmic 

hydrophobic barriers in the central pore, allowing hydration and cation permeation (Yu, 

Yool et al. 2006).  Inhibition of the AQP1 ion channel has been shown to slow cell 

migration rates in a colon cancer cell line that expresses high levels of AQP1 (Kourghi, 

Pei et al. 2016).   

Defining pharmacological modulators of aquaporins has been an area of keen interest 

(Papadopoulos and Verkman 2008, Devuyst and Yool 2010, Seeliger, Zapater et al. 

2013). Early work identified blockers such as mercury (Preston, Jung et al. 1993), silver 

and gold (Niemietz and Tyerman 2002), acetazolamide (Gao, Wang et al. 2006), and 
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tetraethylammonium ion  (Brooks, Regan et al. 2000, Yool, Brokl et al. 2002, Detmers, 

de Groot et al. 2006), but these remained limited in usefulness because of toxicity, lack 

of specificity, or variable efficacy across experimental systems (Yang, Kim et al. 2006, 

Yool 2007). More recently, small molecule pharmacological agents with therapeutic 

potential have been identified. Complexes of gold-based compounds have promise for 

the selective block of specific classes of aquaporins; functionalized bipyrene and 

terpyridines coordinating Au(III) were shown to block aquaglyceroporin AQP3 with little 

effect on AQP1 (Martins, Ciancetta et al. 2013). Intracellular arylsulfonamide 

modulators of AQP1 include the bumetanide derivative, AqB013, which blocks AQP1 

and AQP4 water permeability (Migliati, Meurice et al. 2009); AqB011 which blocks the 

AQP1 cation channel (Kourghi, Pei et al. 2016); and the furosemide derivative AqF026 

which potentiates water channel activity of AQP1 (Yool, Morelle et al. 2013). Other 

arylsulfonamide agents have been proposed as blockers of AQP4 (Huber, Tsujita et 

al. 2007, Huber, Tsujita et al. 2009). , Growing evidence is demonstrating that specific 

arylsulfonamides act as AQP modulators in vitro and in vivo (Pei, Burton et al. 2016).  

Diverse small molecules acting at the extracellular side present a valuable array of 

novel inhibitors of AQP1 (Seeliger, Zapater et al. 2013), indicating that other 

compounds in addition to coordinated metal ligands and arylsulfonamides are of 

interest for the development of AQP modulators.  Lack of effects for a broad panel of 

AQP modulators tested in one study might reflect problems with synthesis or 

solubilization of the agents, or could indicate that the type of bioassay used influences 

apparent drug efficacy (Esteva-Font, Jin et al. 2016).  
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The present study was aimed at broadening the panel of AQP modulatory agents by 

evaluating natural medicinal plants as sources of active compounds. Quantitative 

swelling assays of mammalian AQP1 and AQP4 channels in the Xenopus expression 

system were used for screening extracts from a variety of traditional medicinal herbs, 

and identified Bacopa monnieri as one of several promising sources. Work here tested 

the hypothesis that chemical constituents of B. monnieri could be identified and 

characterized as pharmacological agents that modulate mammalian AQP1 by 

interacting at domains associated with pore functions.  

Data here show that bacopaside I blocks both the water and ion channel activities of 

AQP1 but does not alter AQP4 activity, and bacopaside II selectively blocks the AQP1 

water channel without impairing the ionic conductance. Results fit well with in silico 

docking for predicted energies of interaction at a pore-occluding intracellular site. 

Bacopasides I and II showed the same order of efficacy in blocking migration of AQP1-

expressing HT29 colon cancer cells, with minimal effects on SW480 cells that express 

AQP1 at low levels. Results here are the first to identify AQP1 channels as one of the 

candidate targets of action of the Ayurvedic medicinal plant, water hyssop, and to 

define new lead compounds for the development of AQP modulators.   

 

Materials and Methods 

Bacopa methanol extraction and fractionation 

Bacopa monnieri stems and leaves were obtained with permission from The Botanic 

Gardens of Adelaide (Adelaide, South Australia). Chopped bacopa plant material (100 

g) was dried, then refluxed in 500ml of methanol for 2 hours at room temperature. The 
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suspension was filtered using Whatman No. 1 paper to obtain a methanol extract of 

whole bacopa (meWB). Half of the meWB extract was aliquoted into microfuge tubes, 

dried under vacuum (SpeedVac) into a solid brown paste, and reconstituted in saline 

for oocyte swelling assays. The other half of the meWB was fractionated using small-

scale reverse phase C18 silica column (Alltech Prevail C18, Grace; Deerfield, IL). The 

mobile phases used for fractionation were a series of six water-methanol mixtures with 

H2O:CH3OH ratios ranging from 5:0 to 0:5. The fractions were dried in under vacuum 

and reconstituted in saline for oocyte swelling assays. Fractions containing AQP1 

blocking activity were analyzed with mass spectrometry by Flinders Analytical (Flinders 

University, South Australia). Bacopaside I was identified by precise molecular weight 

as a major component in the active fractions, and bacopasides I and II were purchased 

from a commercial source (Chromadex; Irvine CA USA), solubilized in methanol to 

yield 100x stock solutions, and stored at -20°C. Experimental solutions were prepared 

by mixing the bacopaside stocks (1 part in 100) with isotonic saline or culture medium 

to yield final concentrations of 10 to 200 M.  Vehicle control salines were made using 

the same volume of methanol alone in isotonic saline or culture medium.    

    

Oocyte preparation and cRNA injection 

Unfertilized oocytes were isolated from Xenopus laevis frogs in accord with University 

Animal Ethics Committee-approved protocols, defolliculated by treatment with 

collagenase (type 1A, 2 mg/ml; Sigma, St. Louis, MO) and trypsin inhibitor  (0.67 

mg/ml; Sigma, St. Louis, MO) in OR-2 saline (82 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 

and 5 mM HEPES; pH 7.6) at 16°C for 1.5 hours, washed in OR-2 saline, and then 
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incubated in isotonic oocyte saline [96 mM NaCl, 2 mM KCl, 0.6 mM CaCl2, 5 mM 

MgCl2, and 5 mM HEPES supplemented with 10% horse serum (Sigma, St. Louis, 

MO), 100 U/ml penicillin, 100 g/ml streptomycin and 50 g/ml tetracycline, pH 7.6] at 

16°C. Oocytes were injected with 1-4 ng of AQP1, AQP4 or AQP1 R159A+R160A 

cRNA in 50 nl sterile water and incubated for 2 to 3 days at 16-18°C to allow protein 

expression. Oocytes not injected with cRNA served as non-AQP-expressing control 

cells.  

Human AQP1 (National Center for Biotechnology Information NCBI GenBank: 

BC022486.1) and rat AQP4 (AF144082.1) cDNAs from P. Agre (The Johns Hopkins 

University, Baltimore, MD) were subcloned into a modified Xenopus -globin 

expression plasmid.   The double mutant construct human AQP1 R159A+R160A cDNA 

was generated by site-direct mutation (QuikChange; Stratagene, La Jolla, CA) and 

sequenced to confirm no errors were introduced (Yu, Yool et al. 2006). cDNAs were 

linearized with BamHI and transcribed using T3 polymerase (T3 mMessage 

mMachine; Ambion Inc., Austin, TX). cRNAs were resuspended in sterile water and 

stored at -80°C. 

 

Quantitative oocyte swelling assays 

Immediately prior to swelling assays, control and AQP-expressing oocytes were 

preincubated in isotonic saline (serum- and antibiotic-free) with or without meWB or 

bacopaside compounds or with methanol vehicle at 16-18°C, for incubation periods as 

indicated. Osmotic water permeability was determined as the linear rate of change in 

volume as a function of time, immediately after introduction into 50% hypotonic saline 
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(isotonic saline diluted with equal volume of water).  Oocytes were imaged using a 

computer controlled charge-coupled-device grayscale camera (Cohu, San Diego, CA) 

mounted on a dissecting microscope (Olympus SZ-PT; NSW Australia). Images were 

taken at 0.5 frames per second for 60 seconds; cross-sectional areas were quantified 

using ImageJ software (Research Services Branch; National Institutes of Health, MD 

USA). Swelling rates were calculated as the slopes of linear regression fits of volume 

as a function of time in hypotonic saline. Data were analyzed and compiled for multiple 

batches of oocytes for statistical analyses and to generate dose-response curves, 

which were fit by sigmoidal non-linear variable-slope dose-response regression 

functions using Prism (GraphPad Software Inc., San Diego, CA USA).    

 

Molecular docking    

In silico modeling was done with methods reported previously (Yool et al., 2013). The 

protein crystal structures for human AQP1 (PDB ID. 1FQY) and human AQP4 (PDB 

ID. 3GDB) were obtained from the protein data bank (NCBI Structure). Bacopaside I 

and II structures were obtained from PubChem (NCBI) and converted into a software-

compatible 3D structures in .pdb format using the Online SMILES Translator and 

Structure File Generator (National Cancer Institute, US Dept Health and Human 

Services). Ligand and receptor coordinates were prepared for docking using Autodock 

(Version 4.2, Scripps Research Institute, La Jolla, CA USA). Autodock Vina (Trott and 

Olson 2010) was used to run the flexible ligand docking simulations with two docking 

grids covering both intracellular and extracellular faces of the monomeric pores. 3D 

docking result files and docking energy values were exported from Autodock, and 
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results were viewed using PyMol software (Version 1.8, Schrödinger, LLC).  Data for 

AQP1 and AQP4 docking results in .pse format are provided as Supplemental Files 1 

and 2. 

 

Electrophysiology 

For two-electrode voltage clamp, capillary glass electrodes (1–3 M) were filled with 

1 M KCl. Recordings were done in standard isotonic Na+ bath saline containing 100 

mM NaCl, 2 mM KCl, 4.5 mM MgCl2, and 5 mM HEPES, pH 7.3. cGMP was applied 

extracellularly at a final concentration of 10-20 M using the membrane-permeable 

cGMP analog [Rp]-8-[para-chlorophenylthio]-cGMP (Sigma Chemical, Castle Hill NSW 

Australia). Ionic conductance was monitored for at least 20 min after cGMP addition to 

allow development of maximal plateau responses. Conductance was determined by 

linear fit of the current amplitude as a function of voltage, with a step protocol from +60 

to -110mV and holding potential of -40 mV.  After the first activation by cGMP, oocytes 

were incubated in isotonic saline with or without bacopaside I or bacopaside II for two 

hours to allow recovery. After incubation, a second application of cGMP was used to 

test for reactivation, to determine if any block of the ionic conductance was evident. 

Using the same protocol, AQP1-expressing oocytes were demonstrated previously to 

show cGMP-dependent activation, complete recovery during a 2 h incubation in saline 

alone, and full reactivation of the ionic conductance response to a second application 

of cGMP, whereas non-AQP1-expressing control oocytes showed a low ionic 

conductance and no significant response to drug treatments throughout the same 
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protocol (Kourghi, Pei et al. 2016). Recordings were made with a GeneClamp amplifier 

and pClamp 9.0 software (Molecular Devices, Sunnyvale CA USA). 

 

Cancer cell culture and migration assays 

HT29 and SW480 colon cancer cell lines (from American Type Culture Collection 

ATCC, Manassas, VA USA) were cultured in complete medium composed of 

Dulbecco's Modified Eagles Medium (DMEM) supplemented with 1 x glutaMAX™ (Life 

Technologies Mulgrave, VIC, Australia), penicillin and streptomycin (100 U/ml each) 

and 10% fetal bovine serum (FBS). Cultures were maintained in 5% CO2 at 37°C. Cells 

were seeded in a flat-bottom 96-well plates at 1.25 x 106 cells/ml to produce a confluent 

monolayer. For 12 to 18 hours prior to wounding, cells were serum-starved in 2% FBS, 

in the presence of 400 nM of the mitotic inhibitor 5-fluoro-2'-deoxyuridine, FUDR 

(Parsels, Parsels et al. 2004). For wounding, a sterile p10 pipette tip was attached to 

the end of a vacuum tube, and a circular wound was created by brief perpendicular 

contact of the tip with base of the well. Each well was then washed three times with 

phosphate buffered saline (PBS) to remove detached cell debris. Cultures were 

maintained during the wound closure assay in 2% FBS medium with FUDR. Wound 

images were imaged at 10x magnification with a Canon 6D camera mounted on a 

Olympus inverted microscope. Image dimensions and pixel density were standardized 

across each image series using XnConvert software. Linear outlines and areas of the 

wound were generated using ImageJ software (National Institutes of Health). Wound 

closure data as a function of time were calculated as a percentage of the initial wound 

areas for the same wells. 
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Quantitative RT-PCR 

Cells at 70-80% confluence were harvested and RNA extracted using the PureLinkTM 

RNA Mini kit (Life Technologies). RNA was quantified using the NanoDrop 2000 

spectrophotometer (Thermo Scientific, Waltham, MA, USA) and the integrity (RIN 

score) assessed using the 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, 

USA). RNA (500 ng) was reverse transcribed using the iScriptTM cDNA synthesis kit 

(Bio-rad, Carlsbad, CA, USA). qPCR of AQP1 and the reference gene 

phosphomannose mutase 1 (PMM1) was performed using multiplex Taqman 

expression assays (Life Technologies) and SsoFast™ probes supermix (Bio-rad) in 

triplicate in the Rotorgene 6000 (Qiagen).  

 

Western blot 

Cultured cells were lysed with RIPA buffer containing 1% β-mercaptoethanol, 1% 

HALT protease inhibitor 100X solution, 150 U Benzonase (all from Sigma, St Louis, 

MO, USA) on ice for 10 minutes, homogenized by passing through a 21 gauge syringe 

and centrifuged 14,000 x g for 15 minutes at 4◦C to pellet the cell debris. Protein was 

quantified (EZQ® assay, Life Technologies). Each sample (50 µg) was resolved by 

SDS-PAGE on a 12% Mini-PROTEAN® TGX Stain-Free™ Gels (Bio Rad) and 

transferred to PVDF membranes using the Trans-Blot® Turbo™ Transfer Pack and 

System (Bio Rad). Membranes were blocked with TBST containing 5% skim milk for 

1hour and incubated overnight at 4◦C with anti- AQP1 (H-55) (1/500; Santa Cruz, 

USA).  Following three washes in TBST, membranes were incubated with goat anti-
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rabbit IgG HRP secondary antibody (1/ 2000) and Streptactin-HRP Conjugate 

(1/10000) (both Bio-Rad) at room temperature for 1h, and washed.  

Chemiluminescence using Clarity™ Western ECL Blotting Substrate (Bio-Rad) was 

used for detection and blots imaged using the ChemiDoc™ Touch Imaging System 

(Bio-Rad). Image Lab™ Software was used to validate western blotting data via total 

protein normalization (Bio-Rad). 

 

Immunocytochemistry   

HT29 and SW480 cells grown on coverslips to 50% confluence were fixed with 4% 

paraformaldehyde and permeabilized with 0.5% Triton X-100.  Image-iT® FX Signal 

Enhancer (Life Technologies) was used as per manufacturer’s instructions.  AQP1 was 

labelled with a 1/400 dilution of rabbit polyclonal anti-human AQP1 (Abcam®, 

Cambridge, UK), visualized with a secondary antibody at 1/200 dilution (goat anti rabbit 

IgG H&L Alexa Fluor® 568; Life Technologies).  Cells were counterstained with 

NucBlue® Fixed Cell Ready ProbesTM Reagent (Life Technologies). Coverslips were 

mounted in ProLong® Gold antifade reagent (Life Technologies) and imaged with a 

Zeiss LSM 700 microscope (Carl Zeiss, Jena, Germany). 

 

Live cell imaging 

Cells were seeded on an 8-well uncoated Ibidi µ-Slide (Ibidi, Munich Germany) at a 

density of 1.0 x 106 cells/ml.  For 12 to 18 hours prior to wounding, cells were serum-

starved in medium with 2% FBS in the presence of FUDR (400 nM).  Five circular 

wounds were created in each well using techniques described for the migration assays 

(above). The slide was mounted on a Nikon Ti E Live Cell Microscope (Nikon, Tokyo 
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Japan) in an enclosed chamber kept at 37 °C with 5% CO2.  Images were taken at 5 

min intervals for 24 hours, using Nikon NIS-Elements software (Nikon, Japan). AVI 

files were exported from NIS-Elements and converted into TIFF files using ImageJ 

(NIH). Converted files were analyzed using Fiji software (Schindelin, Arganda-

Carreras et al. 2012) with the Manual Tracking plug-in.   

 

Cytotoxicity assay 

HT29 cell viability was quantified using the AlamarBlue assay (Molecular Probes, 

Eugene, OR USA). Cells were plated at 104 cells/well in 96-well plates, and 

fluorescence signal levels were measured with a FLUOstar Optima microplate reader 

after 24 h incubation with concentrations of bacopaside I from 0 to 100 M or 

bacopaside II from 0 to 30 M, to obtain quantitative measures of cell viability. Mercuric 

chloride (100 M) was used as a positive control for cytotoxicity. 
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Results 

Extracted compounds from Bacopa monnieri inhibited AQP1 water channel 

activity.   

Methanol-extracted whole Bacopa (meWB) reconstituted in isotonic saline inhibited the 

water permeability of AQP1-expressing oocytes (Fig 1A). After 2 hours preincubation 

in 1 mg/ml meWB, swelling rates of AQP1-expressing oocytes were significantly 

reduced (p<0.001) as compared with untreated AQP1-expressing oocytes. 

Fractionated samples of meWB reconstituted at 0.1 mg/ml each were tested for 

biological activity using oocyte swelling assays (Fig 1B) after 2 hours preincubation. 

AQP1-mediated swelling was significantly decreased by fractions 3 and 4; other 

fractions had no effect. Combined fractions 3 and 4 were analyzed by mass 

spectrometry and revealed the presence of a major compound identified by precise 

molecular weight as bacopaside I. Commercially purchased bacopasides I and II were 

found to block osmotic water permeability in AQP1-expressing oocytes (Fig 1C) and 

showed a dose-dependent effect (Fig 1D).  The inhibition of AQP1-mediated osmotic 

water fluxes showed IC50 values of approximately 18 M for bacopaside II, and 

approximately 117 M for bacopaside I. 

 

Inhibition  bacopasides I and II was time-dependent and reversible. 

 AQP4-expressing oocytes showed no block of water channel activity after 2 h 

preincubation in isotonic saline containing bacopaside I at 178 M (Fig 2A).  The 

blocking effect of bacopaside was specific for AQP1.  The inhibitory effect of 

bacopasides I and II on AQP1 water channel activity took time to develop, with near 
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maximum block achieved by approximately 2 h (Fig 2B).  The magnitude of inhibition 

of AQP water flux increased as a function of the duration of preincubation in 178 M 

bacopaside I or 35 M bacopaside II. For bacopaside I, half-maximal block was 

reached after approximately 50 min, and maximum block after 120 min of 

preincubation. For bacopaside II, half-maximal block was reached after approximately 

30 min, and maximum block after 80 min of preincubation. Longer times provided no 

appreciable further enhancement of the magnitude of inhibition. Comparably slow 

time-dependent onset of block has been noted previously for other AQP1 ligands such 

as AqB013, AqB011 and AqF026, which are thought to bind at the intracellular side of 

the channel (Migliati, Meurice et al. 2009, Yool, Morelle et al. 2013, Kourghi, Pei et al. 

2016), and require time to travel across the plasma membrane to the cytoplasmic side.  

The blocking effects of bacopasides I and II on AQP1 water channel activity were 

reversible (Fig 2C). AQP1 channels were preincubated 2 hours with 178 M 

bacopaside I or 35 M bacopaside II, followed by washout of the drug with isotonic 

saline.  The osmotic water permeability showed approximately 25% recovery by 120 

min after the washout of bacopaside I, and half-maximal recovery by 160 min. For 

bacopaside II, water permeability showed 25% recovery by 150 min after washout of 

the blocker, and half-maximal recovery by 200 min.   

 

The ion channel conductance of AQP1 was inhibited by bacopaside I but not by 

bacopaside II.  

Two-electrode voltage clamp recordings from AQP1-expressing oocytes demonstrated 

the cGMP-dependent activation of the ionic conductance (Fig 3A) as described 
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previously (Anthony, Brooks et al. 2000), which was reversible by 2 h incubation in 

saline without membrane-permeable cGMP (Kourghi, Pei et al. 2016). Re-activation of 

the ionic response by a second dose of cGMP was partly blocked in AQP1-expressing 

oocytes after 2 h incubation in 50 M bacopaside I, and strongly blocked at 100 M 

bacopaside I.  In contrast, the reactivation of the ion conductance was unimpaired after 

incubation with 10 M or 20 M bacopaside II (Fig 3B). 

 

Identification of candidate intracellular binding sites.  

Protein crystal structures of AQP1 and AQP4, and three-dimensional structural 

renditions of bacopaside I and bacopaside II were prepared and run on interaction 

simulations using Autodock Vina software to identify predicted binding sites. An array 

of candidate docking sites for bacopasides I and II on AQP1 and -4 channels were 

considered with in silico computational docking analyses. Of a total of 8 possible 

positions evaluated for bacopaside I, the dominant energetically-favored 

configurations for intracellular binding yielded values of -9.2 Kcal/mol for AQP1, and -

8.0 Kcal/mol for AQP4. Similarly out of all possible positions evaluated, the 

energetically-favored configurations for bacopaside II yielded values of -9.3 Kcal/mol 

for AQP1, and -7.8 Kcal/mol for AQP4.    

In the poses reflecting the most favored docking positions, the intracellular face of the 

water pore was effectively occluded by bacopasides I and II in AQP1, but not in AQP4 

channels (Fig 4A,B,C,D).  For AQP1, the bacopasides appeared to nest well into the 

internal vestibule of the intrasubunit water pore. For AQP4 the optimal interaction was 

seen for bacopaside sitting in a groove between transmembrane domains 4 and 5, a 
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position where subunits interface near the central pore that might not be accessible in 

the assembled tetrameric channel.  

Closer inspection of specific amino acid residues in the predicted AQP1 docking site 

(using Chimera visualization software) suggested that the poly-arginine motif in the 

Loop D domain could enable hydrogen bond formation with the sulfonyl moiety on the 

glucopyranosyl sugar of bacopaside I (Fig 4E) at residues corresponding to R159 and 

R160 in human AQP1. These arginines are part of a highly conserved amino acid 

pattern seen in AQP1 channels from diverse species, and required for cGMP gating of 

the AQP1 ionic conductance (Yu, Yool et al. 2006).  The site-directed double mutation 

of arginines R159 and R160 to alanines did not prevent normal expression of AQP1-

mediated osmotic water permeability, indicating that the AQP1 mutant constructs were 

expressed and targeted to the oocyte plasma membrane as described previously (Yu, 

Yool et al. 2006); however, the efficacy of bacopaside I in inhibiting osmotic water 

permeability was abolished in the mutant construct at doses up to 100 M (Figure 1D, 

supporting the suggested role of the loop D arginine residues in stabilizing the docking 

of the bacopaside I ligand.  

  

Bacopaside II was more effective than bacopaside I in blocking migration of 

AQP1-expressing colon cancer cells.  HT29 cells have a higher endogenous level 

of AQP1 expression as compared with SW480 cells, as demonstrated by quantitative 

RT-PCR (Fig. 5A), western blot (Fig. 5B), and immunocytochemistry (Fig 5C) analyses.   

Wound closure assays showed robust migration of HT29 cells in medium with vehicle 

(Fig 6A), resulting in little open area remaining at 24 h. In contrast, treatment with 
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bacopaside II (Fig. 6B) substantially reduced the amount of wound closure.Dose-

dependent block of cell migration measured by wound closure (Fig 6C) was observed 

for both bacopaside I and bacopaside II on HT29 cells. The calculated IC50 value for 

bacopaside I was approximately 48 M and for bacopaside II was 14 M in HT29 cells. 

There was a small reduction of migration observed for SW480 cells treated with 

bacopaside II (Fig 6C), which was consistent with the relatively low expression of 

AQP1 channels in this cell line. 

 

Time-lapse imaging demonstrated bacopasides I and II differentially decreased 

the rate of migration of AQP1-expressing HT29 colon cancer cells.  Cultured HT29 

cancer cells showed different rates of migration into the open wound areas in  in vehicle 

bacopaside I and bacopaside II treatment conditions (Fig 7A,B,C). Time lapse images 

showed the rates of cell migration were significantly impeded in 50 µM bacopaside I 

and in 15 µM bacopaside II (Fig 7B,C) as compared with vehicle-treated HT29 cells 

(Fig 7A). No appreciable difference in cell viability was observed in any of the treatment 

groups during the 24 time course of the experiment.    

In the vehicle-treated group, trajectory plots of individual cells sampled at 50 min 

intervals over 24 h (Fig 7D) showed generally directional movements of HT29 cells into 

the open wound spaces. In bacopaside I treatment group, the HT29 cells lacked 

directional migration and moved short distances between successive frames. In the 

bacopaside II treated group, the impairment of movement was evident but less severe. 

The collective trend of trajectories of the vehicle-treated group appeared to be linear 

and extended, whereas that in the bacopaside I treated group was recursive and 
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compressed; the bacopaside II group showed an intermediate level of restriction of 

movement.  

The net displacement (distance travelled) per time interval was greater in the vehicle 

treated than the bacopasides I or II treated groups.  Frequency histograms showing 

the number of events observed were compiled as binned values of distances travelled 

per 50 min interval (Fig 7E), and showed that more cells travelled longer distances in 

the vehicle treated group as compared with the bacopasides I and II treated groups. 

Distances moved per 50 min interval were well fit by Gaussian distributions. The 

decreased mean distances moved in both bacopaside I and II treated groups were 

seen as a left shift in the peaks of the frequency histograms. Compiled data in a 

summary histogram (Fig 7F) confirmed the significant decrease in mean total distance 

travelled by cells during the 24 hours of tracking in bacopaside I or II as compared with 

vehicle treated cells.  Analysis of cytotoxicity by AlamarBlue assay showed that 

bacopaside I  had no significant effect on cell viability at 50 or 75 M, and bacopaside 

II had no effect on viability at 15 or 20 M (Table 1). Concentrations of bacopasides 

that significantly blocked AQP1 water channel activity and HT29 cell migration were 

not appreciably cytotoxic.  
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Discussion  

Results here demonstrated that two structurally similar compounds, bacopaside I and 

bacopaside II derived from a medicinal herb, act differentially as pharmacological 

inhibitors of mammalian aquaporin channels. In silico modeling predicted that 

bacopasides I and II have favorable energies of interaction at the intracellular vestibule 

of AQP1, occluding the intrasubunit water pore. Modeling results were consistent with 

observed effects of these agents as AQP1 inhibitors. Predicted energies of interaction 

for docking on AQP1 were higher for bacopaside II than bacopaside I, fitting the 

observed order of efficacy in blocking AQP1-mediated swelling of oocytes and the 

same order of efficacy in blocking migration of AQP1-expressing HT29 colon cancer 

cells, with minimal effects on SW480 cells that express little AQP1. The docking of 

bacopasides I and II to occlude the water pore appeared principally to involve the 

trisaccharide rings, which projected down into the AQP1 intrasubunit pore. Future work 

exploring polysaccharides and related osmolytes as endogenous modulators of AQP 

channels could be of interest.  The lack of a favorable docking interaction of 

bacopaside with the AQP4 water pore was consistent with the insensitivity of AQP-4 

expressing oocytes to bacopaside I in osmotic swelling assays. Based on the docking 

model, candidate residues that could contribute to the proposed binding of bacopaside 

sugar rings in the hAQP1 intracellular water pore appear to include amino acids  serine 

71 in the loop B region, and  tyrosine 97 in the adjacent membrane spanning domains, 

but remain to be defined. 

Inhibition of AQP1 water channel activity by bacopasides I and II showed a slow onset 

that was consistent with prerequisite transit of the agent across the plasma membrane 
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to access the intracellular side. The latency period (approximately 2 h) was comparable 

to that described for other aquaporin modulators AqB013 and AqF026, also thought to 

act at the cytoplasmic side (Migliati, Meurice et al. 2009, Yool, Morelle et al. 2013).   

Accumulating evidence suggests pharmacological agents can be defined with subtype 

selectivity for AQP classes. Prior work showed that external application of AqF026 

potentiated water permeability in AQP1 (EC50 3.3 M), but a 15-fold higher 

concentration was required to potentiate AQP4 (Yool, Morelle et al. 2013). Metal 

complexes acted as blockers of glycerol permeability in AQP3 (at an external site 

predicted to involve  cysteine (C40) and arginine (R218) residues), with comparatively 

small effects on AQP1 water permeability (Martins, Ciancetta et al. 2013). Results here 

for bacopaside I showed block of osmotic water permeability for AQP1 but not AQP4 

channels. This difference in bacopaside sensitivity between related aquaporins 

suggests that the inhibitory effects seen for AQP1 are exerted directly on the 

heterologously expressed channel, and not due to side effects on endogenous oocyte 

channels or transporters.  

The reversibility of block indicated that functional properties and expression of the 

channels in plasma membrane were not impaired.  Data here cannot rule out possible 

actions of bacopasides on other molecules not yet assessed; however, the lack of 

effect of bacopaside treatment on migration in a cancer cell line SW480 with low AQP1 

expression suggests the mechanism of action is reasonably selective, and does not 

appreciably impact diverse signalling and transport processes needed for basic 

maintenance and non-AQP1 dependent motility. Cytotoxicity assays showed that the 
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viability of AQP1-expressing HT29 cancer cells was not affected by bacopasides I and 

II at doses that significantly blocked ion flux and cell migration. 

Bacopasides I and II are triterpene glycosides, composed of a hydrophobic pentacyclic 

terpene backbone (estimated logP value approximately 9; enabling membrane 

permeability), and three linked polar sugar groups (arabinofuranosyl—

glucopyranosyl—arabinopyranose in bacopaside I; and arabinofuranosyl—sulfonyl-

glucopyranosyl—glucopyranose in bacopaside II) that appear from in silico modeling 

to lodge via H-bonds into the water pore entrance of AQP1, with the exception of the 

sulfonyl group which appears to require an interface with positively charged residues 

(arginines in the adjacent AQP1 Loop D domain).  Mutation of the key Loop D arginines 

to alanines appeared to cause destabilization of the overall binding of the bacopaside 

I compound on AQP1, seen as a decreased efficacy of water pore block and increased 

IC50 value in the R159A+R160A mutant.  

The ability of modulators to differentially block the ionic conductance is an important 

consideration in processes such as rapid cell migration which appear to require AQP1 

cation channel function (Kourghi, Pei et al. 2016).  Interaction of the sulfonyl group with 

Loop D arginines was consistent with the observed block of the cGMP-activated ionic 

conductance by bacopaside I not II.  Bacopaside I showed a lower IC50 value for 

inhibiting HT29 cancer cell migration (~48 M) than for inhibiting the AQP1 ionic 

conductance alone (~117 M), and the cell migration trajectories in bacopaside I-

treated group were more compressed than those in the bacopaside II-treated group, 

suggesting that simultaneous block of both water and ion channel activities of AQP1 
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might be more effective in blocking AQP1-dependent cell migration than impairing 

either function alone.  

Although the overall amino acid sequence similarity between AQP1 and AQP4 

channels is high (>40% identity and 60% homology), AQP4-mediated osmotic swelling 

was not sensitive to block by bacopaside I. The docking model suggested the bulky 

terpene might sterically hinder docking near the AQP4 water pore. As well, the Loop 

D domain of AQP4 lacks the key arginines 159 and 160 suggested here to be important 

for the sulfonyl group coordination, showing instead serine and lysine in the equivalent 

positions, which might be less effective as putative coordination sites.  

The identification of bacopasides as novel AQP modulators expands the database of 

pharmacophore properties of AQP ligands.  Bacopasides I and II themselves might not 

be ideal as drug candidates, exceeding limits of Lipinski's Rule of Five for molecular 

weight, hydrophobicity, and numbers of hydrogen bond donors and acceptors— 

although natural products often show biological activity as exceptions to the rule 

(Ganesan 2008). Bacopasides administered in vivo are likely to act as metabolic 

derivatives as well as intact compounds. More work is needed to define in vivo 

metabolites of bacopasides and characterize their effects on aquaporins. Nonetheless, 

bacopasides could serve as lead compounds for the design of small-molecule blockers 

of aquaporins. Results here suggest the trisaccharide moiety is a key component. An 

intriguing idea would be to design compact membrane-permeable trisaccharides for 

blocking water flux; while addition of key sulfonyl or other groups could inhibit parallel 

AQP functions. Endogenous polysaccharide osmolytes in cells might function as 
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natural modulators of aquaporin channels, a concept that has not to our knowledge 

been considered previously.  

Bacopa monnieri extract (also known as brahmi) has been used in Ayurvedic remedies 

since ancient times to improve memory and treat anxiety and depression (Russo and 

Borrelli 2005). Brahmi has been suggested to have beneficial effects on psychological 

state, cognitive performance, and memory in human subjects and animal models; 

neuroprotective effects after ischemic brain injury; and anti-inflammatory actions in 

processes linked to neurodegenerative disorders (Singh and Dhawan 1982, Sairam, 

Dorababu et al. 2002, Rehni, Pantlya et al. 2007, Zhou, Shen et al. 2007, Saraf, 

Prabhakar et al. 2010, Aguiar and Borowski 2013, Downey, Kean et al. 2013, Liu, Yue 

et al. 2013, Kongkeaw, Dilokthornsakul et al. 2014, Williams, Munch et al. 2014).  A 

meta-analysis of human clinical studies (generally with B. monnieri administered 250-

450 mg/day for up to several months) improved mental response time and attention, 

and had potential benefits on memory (Kongkeaw, Dilokthornsakul et al. 2014). No 

serious adverse events were noted; minor side effects included diarrhea and dry 

mouth.  

Beneficial outcomes ascribed to brahmi could in part involve block of AQP1 channels. 

AQP1 is expressed abundantly in brain choroid plexus where cerebral spinal fluid is 

produced (Boassa and Yool 2005, Johansson, Dziegielewska et al. 2005), and in 

proximal kidney to facilitate water reabsorption (Nielsen and Agre 1995).  AQP1 is 

found in peripheral vasculature endothelia, red blood cells, and other cell types 

(Nielsen, Smith et al. 1993). Block of AQP1 could contribute to the anti-inflammatory 

benefits of brahmi treatment. Macrophages express AQP1 channels, which are 
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required for IL-1 release and neutrophilic inflammation responses (Rabolli, Wallemme 

et al. 2014). An alcoholic extract of B. monnieri decreased TNF-alpha production in 

mouse macrophages preincubated for 1 h, with an IC50 near 1 mg/ml  (Williams, Munch 

et al. 2014).   

Pharmacological inhibitors of AQP1 channels could be useful for intervention in many 

conditions, including slowing metastasis in AQP1-positive cancer subtypes. In a subset 

of aggressive cancers, AQP1 expression is upregulated (Saadoun, Papadopoulos et 

al. 2002, Moon, Soria et al. 2003, Yool, Brown et al. 2009, El Hindy, Bankfalvi et al. 

2013). AQP1 channels located at lamellipodial edges have been implicated in 

enhancing migration and metastasis (Hu and Verkman 2006, McCoy and Sontheimer 

2007). Block of the AQP1 ion channel has been shown to slow migration in AQP1-

expressing HT29 colon cancer cells (Kourghi, Pei et al. 2016).   

A comprehensive portfolio of effective and selective aquaporin modulators is needed 

for clinical and basic research. Further exploration of AQP modulators in traditional 

herbal medicines is merited (Pei, Burton et al. 2016). New ligand modulators of 

aquaporin channel activity could be present in the armamentarium of traditional herbal 

medicines, but remain to be discovered.          
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Table 1.  Analysis of cytotoxicity in HT29 colon cancer cells at 24 h treatment, using 

an AlumarBlue fluorescence assay. 

 

Concentration (M) Mean normalized cell n value  signif          

  viability (%), mean ± SEM §      

 

 

 

 

bacopaside I  

 0 108 ± 4.8 17   NS 

 0 (vehicle) 100 ± 3.1 17  --- 

 50 97 ± 2.1  8  NS 

 75 79 ± 4.2  8  NS 

 100   59 ± 3.2  8   * 

bacopaside II  

 0 113 ± 6.2 16   NS 

 0 (vehicle) 100 ± 5.7 16  --- 

 15 104 ± 18  8  NS 

 20 123 ± 17  8  NS 

 30   47 ± 5.7  8   * 

      HgCl2  

 100    16.1 ± 4.6  6   * 
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§  Percent viability was standardized as a percentage of the vehicle-treated mean 

value, measured as changes in AlumarBlue fluorescence signal intensity. See 

Methods for details. * Statistically significant differences (p<0.05), compared with 

vehicle-treated, were analyzed by ANOVA with post-hoc Dunnett's multiple 

comparison test (GraphPad Prism). NS is not significant.
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Figure Legends 

Figure 1.  Block of osmotic water permeability in AQP1-expressing oocytes by water 

hyssop (Bacopa monnieri) extract, and constituent compounds bacopaside I and 

bacopaside II.  A. Mean swelling responses of AQP1-expressing oocytes in 50% 

hypotonic saline, standardized to the initial volume V0, were blocked by 2 h 

preincubation in reconstituted extract of water hyssop (at 1 mg/ml). Control non-

AQP1 oocytes showed little change in volume. Data are mean values for all oocytes 

assessed from a single batch of oocytes; error bars are SEM; n values are 6 per 

treatment group.   B. Column elution of methanol-extracted Bacopa identified two 

active fractions which caused block of AQP1 osmotic water permeability at 0.1 

mg/ml each (which were further analyzed by mass spectroscopy to identify 

candidate compounds). Data are mean ± SEM, n values in italics are above the x-

axis.   C. Candidate compounds bacopaside I and bacopaside II at 50 µM 

differentially blocked osmotic water permeability in AQP1-expressing oocytes, 

causing a decrease in the rate of swelling as compared with untreated AQP1-

expressing oocytes. Data are mean ± SEM; n values are 8 (AQP1 untreated), 5 

(bacopaside I), 7 (bacopaside II), and 8 (non-AQP1 control).  D. Dose-dependent 

block of AQP1-mediated osmotic swelling by bacopasides I and II, with estimated 

IC50 values of 117 µM and 18 µM, respectively.  No sensitivity to bacopaside I was 

seen for the  AQP1 R159,160A double mutant at doses up to 100 µM.    E.  Chemical 

structures of bacopasides I and II. 
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Figure 2.  Subtype selectivity and temporal properties of block onset and recovery with 

bacopaside I in AQP1-but not AQP4-expressing oocytes.   A.  Mean swelling 

responses of AQP4-expressing oocytes in 50% hypotonic saline were not affected 

after 2 h preincubation in 178 µM bacopaside I. Data are mean ± SEM;  n values 

are 8 (AQP4 alone), 8 (AQP4 with bacopaside I), and 6 (non-AQP4 control).  B.  

Time-dependent establishment of block of AQP1-mediated osmotic water 

permeability required preincubation of oocytes in 178 µM bacopaside I or 35 µM 

bacopaside II, with approximately 2 h needed to achieve maximal inhibition.  n 

values are 12 to 14 oocytes per time point;  each oocyte was used for a single 

measurement.  C. Time-dependent recovery from block in AQP1-expressing 

oocytes preincubated 2 h in 178 µM bacopaside I or 35 µM bacopaside II, and 

assessed at different intervals after transfer back into standard isotonic saline at 

time 0 ('washout'). n values are 10 to 13 oocytes per time point; each oocyte was 

used for a single measurement. 

 

Figure 3.  Block of the cGMP-dependent ionic conductance of AQP1-expressing 

oocytes by bacopaside I, but not bacopaside II.   A. Representative sets of traces 

recorded by two-electrode voltage clamp of AQP1-expressing oocytes showing the 

initial conductance; the response induced by the first application of membrane-

permeable cGMP; the recovery of the response to near initial levels after 2 h 

incubation in isotonic saline containing bacopaside I (50 or 100 µM) or bacopaside 

II (10 or 20 µM); and the final response to a second application of cGMP.   B. Trend 

plots showing the amplitude of the ionic currents, before and after the first activation 
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by GMP, the recovery after incubation, and the response reactivated by a second 

cGMP application. Consistent recovery was seen after 10 or 20 µM bacopaside II, 

but not after incubation with 50 or 100 µM bacopaside I indicating establishment of 

ion channel block. n values are between 3 to 6 for each treatment. (The levels of 

block by 50 or 100 µM bacopaside I were statistically significant (p<0.05) as 

compared with vehicle treated AQP1 expressing oocytes). 

 

Figure 4. In silico docking models illustrating predictions for the most favorable sites 

of interaction of bacopaside I and bacopaside II on AQP1 and AQP4 subunit 

proteins.  AQP subunit models were assembled from crystal structural data for 

human AQP1 (PDB ID. 1FQY) and human AQP4 (PDB ID. 3GDB); see Methods for 

details.  Subunit views are from the cytoplasmic side with the water pore in the 

center. The intracellular domain for Loop D, adjacent to the channel tetrameric axis 

of symmetry, is highlighted in dark gold. A.  Bacopaside I is predicted by in silico 

docking to occlude the cytoplasmic side of the intrasubunit water pore in AQP1.   B.  

Favorable interactions at the AQP4 water pore are not evident for bacopaside I; this 

ligand appears to interact poorly with AQP4, and the best fit is seen near membrane-

spanning domains distant from the pore (inset).  C. Bacopaside II is predicted to 

have the most favorable energy of interaction at a position occluding the cytoplasmic 

side of the AQP1 water pore.  D. Predicted binding of bacopaside II with AQP4 is 

distant from the water pore (inset), in a position similar to that seen for bacopaside 

I.  E. Enlarged view of the predicted interaction of the sugar-linked sulfur group of 

bacopaside I with the conserved Loop D arginine residues in AQP1. F. Enlarged 
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view of the predicted binding of the trisaccharide moiety of bacopaside II deep into 

the cytoplasmic vestibule of the AQP1 water pore. 

 

Figure 5. HT29 cells have higher level of AQP1 expression than SW480 cells.   A. The 

AQP1 RNA level was higher in HT29 cell line as compared to SW480 cellas 

demonstrated using quantitative RT-PCR.  B. The AQP1 protein level was higher in 

HT29 than SW480 cells as demonstrated by western blot.  C. The AQP1 positive 

signal (green) was stronger in HT29 than in SW480 cells. Cell nucleii were 

counterstained (blue).  See Methods for details. 

 

 

Figure 6.  Dose-dependent inhibition of migration by bacopasides I and II in AQP1-

expressing HT29 cells, but not in SW480 cells with low AQP1 expression. Cell 

migration was assessed in the presence of a mitotic inhibitor by rates of closure of 

circular wounds created by aspiration with a pipette tip in confluent cultures (see 

Methods for details).   A, B.  Cell migration was assessed in vehicle (A) or with 15 

µM bacopaside II (B), added immediately after wounding. Images are shown for 

confluent HT29 cultures after initial wounding at time 0 (upper panels) and at 24 h 

(lower panels).     C. Dose-dependent block of HT29 cell migration was seen with 

bacopasides I and II, with IC50 values estimated at 48 and 14 µM respectively.  

Partial block of SW480 migration at the highest doses tested did not exceed 20%.  

Doses beyond the ranges shown were not considered valid due to the onset of 

concomitant cytotoxicity.  
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Figure 7.  Live-cell imaging of the inhibitory effect of bacopaside I and II on migration 

of HT29 cells. Single cells at the boundaries of circular wounds were tracked with 

time-lapse images taken at 25 minute intervals for 10 hours at 37°C.  A, B, C. Panels 

of six images each from  time-lapse series for clarity shown at 50 minute intervals.  

(A) HT29 cells with vehicle treatment (upper set);   (B) HT29 cells treated with 50 

mM bacopaside I; and  (C)  HT29 cells treated with 15 mM bacopaside II.   D. 

Trajectory plots of 10 individual cells per treatment group, monitored by cell nucleus 

position as a function of time.  Data were converted to absolute values and 

referenced to the starting position at time 0. Plots illustrate the cumulative total 

movement of 10 single cells over a duration of 600 min, with vehicle, bacopaside I 

or with bacopaside II.    E. Frequency histograms of the distances moved by 

individual cells per 50 minute interval over 600 min of imaging, sampled for 10 cells 

per treatment group. Histograms were fit with Gaussian distribution functions (R2 

values >0.94); best-fit values for the mean distances moved per cell per 50 min 

interval were 10.1 ± 0.5 for untreated, 4.7 ± 0.2 for bacopaside I treated and 7.8 ± 

0.2 for bacopaside II treated (mean ± SEM).  F. Summary histogram showing the 

total distance travelled by single cells in 600 min, showing significant inhibition of 

cell motility by both bacopaside I and II compared to vehicle treated cells (ANOVA 

test; p < 0.05).  Data are mean ± SEM; n values are 10 cells per treatment group.   

Distances shown are in pixels; the conversion is 7.45 pixels per 1mm. 

  



 

167 
 

Figure 1 

 

  



 

168 
 

Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Chapter 5: A therapeutic agent used for treatment of sickle cell 

anaemia, 5-hydroxymethyl-2-furfural, is a blocker of the Aquaporin 1 

ion conductance  

Mohamad Kourghi, Saeed Nourmohammadi, Andrea Yool 

 

Abstract 

Sickle cell disease (SCD) is a set of disorders caused by inherited mutations in the 

oxygen-carrying molecule haemoglobin (Hb) in red blood cells (RBCs).  The 

pathological shape change ('sickling') of RBCs under hypoxic conditions is associated 

with activation of a cationic leak current (the Psickle current), which is known to be 

involved in cellular dehydration leading to Hb polymerisation, and blocked by 

application of 1 mM 5-hydroxylmethyl-2-furfural (5HMF). The RBC sickling 

phenomenon has been linked previously to K+ channels and transporters, but the 

molecular basis of the non-selective cation leak current has remained a mystery.  

Human aquaporin-1 (AQP1) channels, expressed in membranes of many cells 

including RBCs, have previously been shown to function as non-selective cation 

channels gated by cGMP.  Work here is the first to test the hypothesis that AQP1 ion 

channels are involved in mediating the Psickle current.  Human AQP1 channels 

expressed in Xenopus oocytes were analysed for sensitivity to 5HMF and four 

structurally related compounds, with ion conductance measured by two-electrode 

voltage clamp and osmotic water permeability by optical swelling assays. The known 

AQP1 ion channel blocker AqB011 served as a positive control.  None of the furfural-

related agents affected AQP1 water channel activity at concentrations up to 5 mM. Of 
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the furfural-related compounds, 5HMF was the most potent blocker of the AQP1 ion 

conductance (IC50 of 432 M) The order of potency for inhibition of the ionic 

conductance was 5HMF> 5-Nitro-2-Furoic acid (IC50 ~1.2 mM) > 5-Acetoxymethyl-2-

Furaldehyde (IC50 3.2 mM), and no block of ionic conductance was observed with 

Methyl 5-nitro-2-furoate. The dose-dependent block of AQP1 ion conductance by 

5HMF fit with the doses known to be needed for therapeutic effects in RBCs from SCD 

patients, suggesting AQP1 is a logical candidate for the Psickle molecular mechanism. 

Blocking the AQP1 cationic conductance with furfural agents would be predicted to 

slow dehydration and RBC sickling, consistent with the observed protective effects 

against sickling seen in vivo. 

 

Introduction 

Sickle cell disease SCD arises when a person inherits two copies of the abnormal 

haemoglobin gene (HbS), one from each parent. The predominant class of mutation 

results in glutamic acid being replaced by valine at the position 6 of Beta Hb chain. 

The loss of negatively charged residues is thought to promote polymerisation of HbS 

to form long rigid polymers that distort RBC shape and cause the sickling (Perutz and 

Mitchison 1950, Higgs 1986). Clinical complications fall into two categories: (i) a 

chronic anaemia from reduced circulating RBC numbers, and (ii) acute ischaemia due 

to the occlusion of capillaries and small vessels by sickled cells which block the 

microvasculature. A broad range of clinical symptoms depends on the organ(s) 

involved, and the severity differs between individuals (Steinberg 1999, Nagel 2001).  

As there are no cure for SCD (Steinberg 1999, Rees, Williams et al. 2010), 
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investigations have looked for other approaches as effective therapies. Other methods 

include the development of compounds which directly interpolate with HbS molecules 

and thereby reduce polymerization upon deoxygenation. Naturally occurring 5-

hydroxymethyl-2-furfural (5HMF) form Schiff bases with HbS, allosterically increasing 

its oxygen affinity, and reducing polymerization and RBC sickling (Zaugg, Walder et 

al. 1977, Abdulmalik, Safo et al. 2005). 5HMF also knows as Aes-103 is currently in 

phase II clinical trials in SCD patients in the USA and UK (National Institutes of 

Health, 2013).  5HMF is likely to be acting at more than one level. Other work has 

shown that 5HMF also has a beneficial effect by increasing the expression of mRNA 

gene encoding Hgbβmi, and also attenuated colitis in WT and HgbβmaKO mice 

(Gorczynski, Alexander et al. 2017). Moreover 5HMF has shown to reduce anti-oxidant 

glutathione (GSSH) levels thereby causing a decrease in inflammatory cytokine 

production and also protect from colitis (Janzowski, Glaab et al. 2000, Gorczynski, 

Alexander et al. 2017). Less well understood but potentially important is the ability of 

5HMF to block the Psickle current associated with the RBC dehydration that appears to 

facilitate the sickling shape change in affected RBCs (Hannemann, Cytlak et al. 2014).   

 

(Joiner 1993,  numerous cation pathways that are associated with the SCD There are

–+These include the K . Gibson and Ellory 2002, Lew and Bookchin 2005)

channel (or Gardos channel),  +activated K-2+cotransporter (or KCC) and the Ca −Cl

of  mechanismhe T ’.sickleas ‘P third pathway that is less well understood knownplus a 

conductance to be a cation  pathways is yet to be identified, however it is likely sickleP

HbS polymerization and  activated due to RBC change of shape, that is

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198013/#b40
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 sickle. P(Joiner, Dew et al. 1988, Joiner 1993, Ma, Rees et al. 2012) deoxygenation

(Ortiz, Lew et al. 1990, Willcocks, exit 2+ Mgentry, and  
2+activation results in Ca

Mulquiney et al. 2002). As a consequence the loss of cellular cations leads to 

dehydration and increased concentration of HbS, therefore increased HbS 

polymerisation and cell sickling (Brugnara 1993).  

 

1 (AQP1) is a -, Aquaporin(Agre, Saboori et al. 1987)Discovered in the late 1980s 

ember of the family of intrinsic membrane proteins expressed in plasma m

membranes of  many tissues. AQP1, expressed in organs including kidney, vascular 

(Venero, Vizuete et al. 2001, Badaut, Lasbennes et al. 2002, system, heart and brain 

 as well as in the ,Papadopoulos, Krishna et al. 2002, Speake, Freeman et al. 2003)

plasma membrane of red blood cells (Ma, Yang et al. 1998, Maeda, Hibuse et al. 

2009).  

A number of classes of AQPs have been shown to function as ion channels, including 

(Campbell, PIP2;1  Big Brain, and plant nodulin and ophilaDrosAQP0, AQP1, AQP6, 

To date, 15 classes of AQPs have been . Birdsell et al. 2012, Byrt, Zhao et al. 2016)

 . (Ishibashi 2009, Finn, Chauvigne et al. 2014)AQP14 -identified in mammals: AQP0

 (Yu, Yool et al. 2006)AQP1 is regulated by cGMP activation at the loop D domain 

selective monovalent cation channel at the central pore, -and functions as a non

(Anthony, Brooks et al. 2000, Saparov, distinct from the monomeric water pores 

. The AQP1 ion Kozono et al. 2001, Boassa and Yool 2002, Zhang, Zitron et al. 2007)

cations with a unitary conductance of 150  +, and Cs+, K+channel is permeable to Na

picosiemens in physiological saline, and shows slow activation and deactivation 
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with efficacy of gating  (Yool, Stamer et al. 1996, Anthony, Brooks et al. 2000)kinetics 

(Campbell, dependent on tyrosine phosphorylation at the carboxyl terminal domain 

  .012)Birdsell et al. 2 

 

conductance of red blood cells  sickleThe possible role of AQP1 ion channels in the P

has not previously been considered. Work here tested the hypothesis that the 

therapeutic agent furfural acts as a pharmacological inhibitor of the AQP1 cation 

permeability.  This work is the first to suggest AQP1 could be a key component of the 

current.  Future work will be needed to compare  sickleof the P molecular mechanisms

the effects of AQP1 ion channel blockers on sickle cell and normal RBCs, to 

determine if AQP1 ion channel inhibition slows the solute loss and dehydration that 

accompany HbS polymerisation and RBC sickling. Potential therapeutic agents 

targeted to AQP1 ion channels could be of interest for expanding the range of clinical 

options available for treating sickle cell disease. 

  

Materials and Methods 

Oocyte preparation and injection 

 Unfertilized oocytes were harvested from Xenopus laevis frogs and were 

defoliculated by incubation in collagenase (type 1A, 1 mg/ml; Sigma-Aldrich, St. 

Louis, MO) and trypsin inhibitor (0.05 mg/ml; Sigma-Aldrich, St. Louis, MO) in OR-2 

, penicillin 100units/ml streptomycin 0.1 2saline (96 mM NaCl, 2 mM KCl, 5 mM MgCl

mg/ml, and 5 mM HEPES pH7.6) for 1 to 1.5 hours. Oocytes were stored in Frog 

, 5mM 2, 0.6 mM CaCl2Ringer saline consisting of 96 mM NaCl, 2mM KCl, 5 mM MgCl
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HEPES buffer, horse serum (5%; Sigma-Aldrich, St. Louis, MO), penicillin 100 

units/ml streptomycin 0.1 mg/ml, and tetracycline 0.5mg/ml, pH 7.6. Oocytes were 

injected slowly (over 5-10s) with 5o nl of water (control oocytes), or 50 nl of water 

containingng 1ng of AQP1 cRNA. Oocytes were then incubated for a minimum of 48 

, 1.8 mM 2(96 mM NaCl, 2 mM KCl, 1 mM MgClat 16°C in Frog Ringer saline  hours

) to allow sufficient time for translation and the , and 5 mM HEPES, pH 7.32CaCl

expression of the channel on cell membrane before electrophysiology. Successful 

expression was confirmed by swelling tests, in which AQP1 expressing and control 

oocytes (sham injected) were placed in distilled water. AQP1 expressing oocytes 

swelled and burst within few minutes whereas control oocytes remained intact for up 

to 10 minutes in distilled water.  

 

Osmotic Swelling Assay 

For double-swelling assays, each oocyte served as its own control. Swelling rates 

were assayed first without drug treatment (S1), and then oocytes incubated for 2 

hours in isotonic saline with or without the 5HMF or related compounds were 

reassessed in a second swelling assay (S2). Swelling rates in 50% hypotonic saline 

(isotonic Na saline diluted with an equal volume of water) were quantified by relative 

increases in the oocyte cross-sectional area imaged by videomicroscopy (charge-

coupled device camera; Cohu, San Diego, CA) at 0.5 frames per second for 30 

seconds using National Institutes of Health ImageJ software (Bethesda, MD). Rates 

were measured as the slopes of the linear regression fits of relative volume as a 

function of time using Prism (GraphPad Software Inc.,San Diego, CA). 
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Electrophysiology  

For two-electrode voltage clamp, capillary glass electrodes (1–3 MΩ) were  filled with 

1 M KCl. Unless specified, all recordings were done in standard divalent free Na+ bath 

saline containing 100 mM NaCl, 2 mM KCl, 4.5 mM MgCl2, and 5 mM HEPES, pH 7.3. 

Two electrode recording pipettes were used conventionally to control voltage and 

deliver current. Ionic conductance was monitored throughout by voltage step protocols 

from a holding potential of -40, with voltage steps from +60 to -110mV used to calculate 

the conductance. Recordings were made using a GeneClamp amplifier and Clampex 

9.0 software (pClamp 9.0 Molecular Devices, Sunnyvale, CA, USA). Data were filtered 

at 2 kHz, digitized at 2 kHz, and stored to hard disk for analysis. 

 

 Data Compilation and Statistics  

Results compiled from replicate experiments are presented as box plots or scatter 

plots to show the full range of data points. The box represents 50% of the data, the 

error bars indicate the full range, and the horizontal bar is the median value. 

Statistical differences were analyzed using one-way ANOVA with Bonferroni post-hoc 

test and reported as P<0.0001 (***), p< 0.0020 (**), p<0.05 (*) and not significant 

(NS; P>0.05). 
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Results 

Inhibition of AQP1 ionic conductance by 5HMF and related compounds. 5HMF and 3 

structurally similar compounds (5-Nitro-2-Furoic acid, 5-Acetoxymethyl-2-

Furaldehyde, Methyl 5-nitro-2-furoate) were tested for effects on AQP1 ionic 

conductance expressed in oocytes. Two-electrode voltage clamp recordings shows 

that the cGMP activated ionic conductance of AQP1 is inhibited by incubation in 5HMF 

(1mM), 5-Nitro-2-Furoic acid (3mM), and 5-Acetoxymethyl-2-Furaldehyde (5mM), but 

no appreciable block of Methyl 5-nitro-2-furoate (5mM) on the AQP1 ion channel.  

 

Initial recordings were measured before the bath application of CPT-cGMP, followed 

by bath application of CPT-cGMP which triggered an activation of ionic conductance 

in AQP1 expressing oocytes.  

 The Oocytes were then incubated in salines with the indicated agents for 1 hour. 

During the incubation period the ionic conductance recovered to initial levels (Fig. 1). 

In response to the second application of CPT-cGMP, oocytes treated with vehicle 

(DMSO) and 5mM Methyl 5-nitro-2-furoate showed an increase in conductance that 

were similar to the first response. This observation shows that Methyl 5-nitro-2-furoate 

is not a blocker of the AQP1 ion channel. However the AQP 1 ionic conductance 

responses did not reactivate in response to second cGMP application post 1 hour 

incubation in 1mM 5HMF, 3mM 5-Nitro-2-Furoic acid, and 5mM 5-Acetoxymethyl-2-

Furaldehyde indicating an inhibition of ionic conductance. Trend plots (Fig 2) show that 

the initial conductance in AQP1-expressing oocytes were low. The conductance 

responses were increased after the application of membrane permeable CPT-CGMP. 
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The oocytes were then transferred into salines containing the mentioned agents to test 

for any blocking effect. After the incubation period the current was measured again 

prior to second cGMP application during which the conductance had recovered to initial 

levels. After the application of second cGMP the ionic current remained blocked by 

5HMF, 5-Nitro-2-Furoic acid and 5-Acetoxymethyl-2-Furaldehyde, however it was 

reactivated by DMSO and Methyl 5-nitro-2-furoate indicating no block. Non AQP1 

expressing control oocytes did not show any ionic conductance in response to cGMP 

and to vehicle and any of the drug treatments. 

  

Figure 3 shows the compiled box plot data for the AQP1 ionic conductance values, 

indicating the amount of block by 1mM 5HMF, 3 mM 5-Nitro-2-Furoic acid and 5mM 

Methyl 5-nitro-2-furoate were statistically significant as compared with initial responses 

to cGMP before treatment. Dose response relationships reveal that the IC50 value for 

5HMF is 432 M, 1.193 mM for 5-Nitro-2-Furoic acid, and approximately 3.2 mM for 5-

Acetoxymethyl-2-Furaldehyde (Fig 3B). 

Figure 4 shows the maximum block of AQP1 cationic conductance was achieved at 1 

hr incubation. The oocytes were tested in 15 minutes, 30 minutes and 1 hour time sets 

in 1 mM 5HMF. At 1 hr incubation maximum block of 80% of AQP1 cationic 

conductance was observed, 40% block at half hour and 20% block at 15 minutes. 

 

5HMF and the 3 related compounds have no effect on the water permeability of AQP1 

measure by osmotic swelling assay (Fig 5). AQP1 expressing oocytes were transferred 

into 50% hypotonic saline over 60 seconds to measure the first swelling assay (S1). 
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Then the oocytes were transferred into saline containing the compounds at 5mM over 

1 hour to test for block on osmotic water permeability followed by second swelling (S2). 

There were no significant differences between the first and second swelling rates in 

any of the treatment groups, indicating that the 5HMF and the 3 structurally related 

compounds have no effect on AQP1 osmotic water permeability. 

 

Discussion  

Sickle cell anemia is a hereditary disease caused by change in structure and function 

of HbS. Hemolytic and vaso-occlusive crises are the main symptoms of sickle cell 

anaemia (Cagici, Asma et al. 2016).  Hypoxic conditions may result in intracellular HbS 

polymerization, which changes the cell morphology and flexibility. This sickling of 

RBCs results in occlusion of the capillaries and subsequent vaso-occlusive crises. 

Vaso-occlusive crises are experienced as severe pain attacks. Cellular loss of K+, Cl- 

and water leads to dehydration and increased concentration of HbS in patients with 

SCD (Joiner 1993, Gibson and Ellory 2002, Lew and Bookchin 2005). This increase in 

HbS leads to change in kinetics of HbS by delaying the time upon deoxygenation and 

increased HbS polymerisation and sickling. Therefore considerable amount of interest 

is dedicated to sickle cell dehydration (Brugnara 1993). AQP1 water channel is the 

second member of the family of intrinsic membrane proteins expressed in endothelial 

and epithelial membrane of many tissue including on membrane of RBCs (Ma, Yang 

et al. 1998, Agre 2004, Maeda, Hibuse et al. 2009). In addition to maintaining water 

homeostasis AQP1 also functions as a non-selective cation channel activated by 

cGMP (Anthony, Brooks et al. 2000, Boassa and Yool 2002). Previously it is shown 
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that 5HMF allosterically interacts with HbS and decreases polymerisation and sicking. 

Should 5HMF block the cationic conductance of AQP1 it is possible that it has dual 

function of also retaining cellular cation loss thus enhancing the hydration state of RBC. 

Therefore in this study we investigated if 5HMF and 3 selected structurally related 

compounds were capable of blocking the cGMP-activated cationic conductance in 

AQP1. The results showed that 5HMFsignificantly blocked the cationic conductance of 

AQP1  with IC50 of 432 M. The order of potency of block is 5HMF> 5-Nitro-2-Furoic 

acid > 5-Acetoxymethyl-2-Furaldehyde > Methyl 5-nitro-2-furoate. Osmotic swelling 

assay results showed that the compounds had no effect in water permeability of AQP1 

indicating that they are specific blockers for ion channel, not the water channel.  
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Figure legends 

Figure 1: Electrophysiology IV traces showing the representative effects of 5HMF, 5-

Nitro-2-Furoic acid, 5-Acetoxymethyl-2-Furaldehyde and Methyl 5-nitro-2-furoate on 

the ionic conductance of AQP1 after 2-hour incubation in saline with and without the 

compounds. The predicted energy of interaction is presented on the right for each 

compound. (B) Table of the name and structure of each compound tested for blocking 

effect on AQP1 central ion pore.  

 

Figure 2: Trend plots illustrating the AQP1 ionic conductance for each oocyte 

measured before cGMP (initial), after cGMP, after 2-hour incubation in saline without 

cGMP containing DMSO (vehicle) or 5HMF and related compounds and after the 

application of the second cGMP. The ionic conductance in AQP1 activated by cGMP 

(A) is not observed in control (non-AQP1 expressing) oocytes (B). The current was 

blocked with 5HMF, 5-Nitro-2-Furoic acid and 5-Acetoxymethyl-2-furaldehyde but not 

with vehicle or Methyl 5-nitro-2-furoate. 

 

Figure 3: Dose dependent block of cGMP activated AQP1 ionic conductance. (A) 

Compiled box plot data showing a statistically significant block with 5HMF, acid and 5-

Acetoxymethyl-2-furaldehyde but not with vehicle or methyl 5-nitro-2-furoate on the 

cGMP activated ionic conductance of AQP1. Data are mean ± SEM, n values are 

shown above the x-axis. See Materials and Methods for details. (B) Dose-response 
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curves of percent block and estimated IC50 values of the activated ionic conductance 

in AQP1-expressing oocytes. 

Figure 4: Time recovery of block of AQP1 ionic conductance from 1mM 5HMF at 

different time points. At 1 hour incubation in 1mM 5HMF 75-80% block is observed in 

AQP1 ionic current. At 30 minutes 35 to 40% block is observed and at 15 minutes 

incubation in 1mM 5HMF 20% block in AQP1 ionic conductance is observed. Data are 

mean ± SEM; n values are displayed above the x-axis.   

 

Figure 5: The 5HMF and related compounds do not affect the osmotic water 

permeability of AQP1 measured by optical swelling assays. (A) Mean of swelling 

responses of AQP1 untreated, and AQP1 incubated in 5mM 5HMF, 5mM 5-methoxy-

2-furoic acid, 5mM 5-Acetoxymethyl-2-furaldehyde, Methyl 5-nitro-2-furoate in 50% 

hypotonic saline. Non-AQP expressing oocytes showed little change in volume. Data 

are mean values for all oocytes assessed from different batches of oocytes; error bars 

are S.E.M.; n values are 6 per treatment group. (B) Compiled box plot data showing 

lack of any statistically significant differences between the swelling rates measured 

before (S1) and after (S2) 2-hour incubations in saline alone or saline containing 5mM 

5HMF and compounds as indicated. See Materials and Methods for details.  
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 

A 



 

198 
 

Chapter 6. Statement of authorship 



 

199 
 

 



 

200 
 

Published Manuscript 

 

Chapter 6: Non-selective cation channel activity of aquaporin 

AtPIP2;1 regulated by Ca2+ and pH 
 

 

Caitlin S. Byrt, Manchun Zhao, Mohamad Kourghi, Jayakumar Bose, Sam W. 

Henderson, Jiaen Qiu, Matthew Gilliham, Carolyn Schultz, Manuel Schwarz, Sunita 

A. Ramesh, Andrea Yool & Steve Tyerman 

 

 

Australian Research Council Centre of Excellence in Plant Energy Biology, Waite 

Research Institute and School of Agriculture, Food and Wine, The University of 

Adelaide, Glen Osmond, South Australia 5064, Australia (CSB, MZ, JB, SWH, JQ, 

MG, CS, MS, SAR, ST) 

  

Discipline of Physiology, School of Medicine, University of Adelaide, South Australia 

5005, Australia and 3Waite Research Institute and School of Agriculture, Food and 

Wine,The University of Adelaide, Glen Osmond, South Australia 5064, Australia 

(MK, AJY)  

 

Key-words: ion transport; PIP; plasma membrane; root; water transport. 



 

Page | 201  
 

Corresponding Author:  

Professor Stephen Tyerman 

University of Adelaide 

Plant Research Centre: School of Agriculture, Food and Wine 

Tel: +61 8 3136663 

Fax: 8313 0431 

e-mail: steve.tyerman@adelaide.edu.au 

 

 
  



 

Page | 202  
 

ABSTRACT 

The aquaporin AtPIP2;1 is an abundant plasma membrane intrinsic protein in 

Arabidopsis thaliana that is implicated in stomatal closure, and is highly expressed in 

plasma membranes of root epidermal cells. When expressed in Xenopus laevis 

oocytes, AtPIP2;1 increased water permeability and induced a non-selective cation 

conductance mainly associated with Na+. A mutation in the water pore, G103W, 

prevented both the ionic conductance and water permeability of PIP2;1. Coexpression 

of AtPIP2;1 with AtPIP1;2 increased water permeability but abolished the ionic 

conductance. AtPIP2;2 (93% identical to AtPIP2;1) similarly increased water 

permeability but not ionic conductance. The ionic conductance was inhibited by the 

application of extracellular Ca2+ and Cd2+, with Ca2+ giving a biphasic dose–response 

with a prominent IC50 of 0.32mм comparable with a previous report of Ca2+ sensitivity 

of a non-selective cation channel (NSCC) in Arabidopsis root protoplasts. Low external 

pH also inhibited ionic conductance (IC50 pH6.8). Xenopus oocytes and 

Saccharomyces cerevisiae expressing AtPIP2;1 accumulated more Na+ than controls. 

Establishing whether AtPIP2;1 has dual ion and water permeability in planta will be 

important in understanding the roles of this aquaporin and if AtPIP2;1 is a candidate 

for a previously reported NSCC responsible for Ca2+ and pH sensitive Na+ entry into 

roots. 
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INTRODUCTION 

Plant aquaporins are membrane proteins that transport water and a range of neutral 

solutes. Some aquaporins transport only water and others transport gases (carbon 

dioxide and ammonia), metalloids (boron, silicon and arsenic) or reactive oxygen 

species (hydrogen peroxide) (Uehlein et al. 2003; Loqué et al. 2005; Ma et al. 2006; 

Takano et al. 2006; Dynowski et al. 2008; Kamiya et al. 2009). A subset of animal 

aquaporins transport water and ions (Yool & Campbell 2012), but there is limited 

evidence of transport of ions by plant aquaporins (Weaver et al. 1994; Rivers et al. 

1997; Holm et al. 2005). If a subset of aquaporins co-transports water and ions in 

planta, then there may be novel roles for aquaporins in plant nutrient transport and 

osmotic adjustment. Root water uptake and stress-induced inhibition of root hydraulic 

conductivity are mediated by plasma membrane intrinsic proteins (PIPs) (Tournaire-

Roux et al. 2003). One of the most highly expressed aquaporins in Arabidopsis roots 

is AtPIP2;1 (Alexandersson et al. 2005). AtPIP2;1 is a plasma membrane intrinsic 

protein that facilitates the transport of water across the plasma membrane. The 

function of AtPIP2;1 is important for maintaining whole plant water status, and the 

water channel activity is inhibited by divalent cations (Verdoucq et al. 2008). For 

example, when AtPIP2;1 is mislocalized in the endoplasmic reticulum instead of the 

plasma membrane, a 36–45% reduction in root hydraulic conductivity is observed 

(Sorieul et al. 2011). In Arabidopsis, root plasma membrane vesicles show water 

channel activity that is inhibited by Ca2+ with an IC50 of 75μM (Gerbeau et al. 2002), 

and similarly in AtPIP2;1-expressing proteoliposomes water channel activity is 

inhibited by Ca2+, with an IC50 of 42μM (+/25μM) (Verdoucq et al. 2008). A range of 
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divalent cations inhibited the osmotic water permeability of AtPIP2;1 expressing 

proteoliposomes, particularly Ca2+, Cd2+ and Mn2+, and the permeability to water was 

blocked by H+, with a half inhibition at pH7.15 (Verdoucq et al. 2008). AtPIP2;1 is also 

important for light-dependent changes in leaf water transport, where hydraulic 

conductivity in the rosette under darkness is influenced by PIP2;1 phosphorylation at 

Ser-280 and Ser-283 (Prado et al. 2013). When Arabidopsis roots are exposed to salt 

the abundance and phosphorylation status of PIP2;1 changes. NaCl treatment 

increases the trafficking of AtPIP2 isoforms between the plasma membrane and 

intracellular compartments, reducing the abundance of PIP2 proteins on the plasma 

membrane and the hydraulic conductivity of salt-stressed root cells (Boursiac et al. 

2005; Sutka et al. 2011). A rapid (half-time, 45min) decrease (70%) in root hydraulic 

conductivity was observed after exposure to 100mм NaCl (Boursiac et al. 2005). In 

standard conditions, Arabidopsis roots contain poly-phosphorylated, singly 

phosphorylated and dephosphorylated forms of AtPIP2;1 in a relative abundance ratio 

of 1:1:2 (Prak et al. 2008). NaCl acts on AtPIP2;1 with unphosphorylated Ser283 to 

favour intracellular accumulation. NaCl treatment resulted in a 30% decrease in the 

level of Ser283 phosphorylation and an increase in the relative abundance of singly and 

unphosphorylated forms (Prak et al. 2008). The physiological importance of salt 

induced cycling of AtPIP2;1 in standard conditions, or under environmental stresses is 

not yet clear (Verdoucq et al. 2014). If Na+ permeated AtPIP2;1 in planta, then 

internalization of AtPIP2;1 from the root epidermal plasma membrane in response to 

salt stress could be a mechanism to avoid Na+ accumulation. Given that a non-

selective cation channel in the plasma membrane of protoplasts isolated from 
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Arabidopsis roots was inhibited by Ca2+ and low pH (Demidchik & Tester 2002), and 

that both Ca2+ and low pH have been reported to inhibit water channel activity of 

AtPIP2;1 (Verdoucq et al. 2008; Tournaire-Roux et al. 2003) we investigated if 

AtPIP2;1 could confer a cation conductance when expressed in heterologous systems 

and if this was sensitive to Ca2+ and external pH. Here, we report that in heterologous 

systems AtPIP2;1 induces a Na+ conductance that is inhibited by external Ca2+ and low 

external pH. 

MATERIALS AND METHODS Chemicals 

All chemicals were supplied by Sigma (St Louis, MO, USA) except where stated 

otherwise. 

Cloning, preparation of constructs and cRNA 

Complementary DNA made from RNA extracted from Arabidopsis thaliana (Col-0) was 

used to amplify fragments coding for the plasma membrane intrinsic proteins (PIPs) of 

interest. The primers used for amplification of AtPIP2;1 (At3g53420), AtPIP1;2 

(At2g45960), AtPIP1;4 (At4g00430), AtPIP1;5 (At4g23400), AtPIP2;2 (At2g37170), 

AtPIP2;6 (At2g39010) and generating the G103W AtPIP2;1 mutant by site-directed 

mutagenesis are reported in Table S1.Previous research indicated that the AtPIP2;1 

G103W mutation blocks the water pore (Shelden et al. 2009). Standard PCR conditions 

were used (98°C for 30s, 25 cycles of 98°C for 10s, 55°C for 30s, 72°C for 30s; final 

extension 72°C for 10min for AtPIP2;1) with Phusion High-Fidelity DNA Polymerase. 

The amplified products were cloned into pENTR TOPO® vector using a pENTR 

Directional TOPO® Cloning Kit (Invitrogen, Carlsbad, CA, USA), transformed into 

chemically competent Escherichia coli One shot® TOPO10 cells (Invitrogen). AtPIP2;1 
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cDNA was then recombined by Gateway LR recombination reactions using LR 

ClonaseTM into pGEMHE-DEST (Gateway enabled) following Preuss et al. (2011), and 

the pYES3-DEST expression vector, transformed into E. coli and confirmed by 

sequencing. pYES3-DEST (Shelden et al. 2009) is a modified version of pYES2 

(Invitrogen) converted to a Gateway enabled vector using the Gateway Vector 

Conversion System (Invitrogen). It has the GAL1 promoter for galactose inducible 

expression and the URA3 gene for uracil selection. Plasmid DNA was extracted using 

a Sigma Genelute Plasmid Purification Kit. One microgram quantities of 

pGEMHEDEST plasmid DNA containing the genes of interest were linearized, in 

preparation for cRNA synthesis, with the restriction enzyme Nhe I or Sph I (New 

England BioLabs Inc., Beverly, MA, USA). 

A DNA fragment encoding the AtPIP2.1-mCherry fusion protein was PCR amplified 

from the binary vector PM-RK (Nelson et al. 2007) using Phusion high-fidelity 

polymerase. The reaction consisted of 5ng plasmid template, 0.2 units of Phusion 

polymerase and 500nM forward (5′-ATGGCAAAGGATGTGGAAG-3′) and reverse (5′-

TTAAGATCTGTACAGCTCGTCC-3′) primers. The PCR fragment was A-tailed with 

Taq polymerase (NewEngland BiolabsInc.), subcloned into pCR8/GW/TOPO 

(LifeTechnologies, Rockville, MD, USA) and recombined into the Xenopus laevis 

expression vector pGEMHE-DEST (Shelden et al. 2009) using LR Clonase II enzyme 

(Life Technologies). The pGEMHE expression vector harbouring AtPIP2;1-mCherry 

was linearized with NheI restriction endonuclease, purified by phenol/chloroform 

extraction and used as a template for in vitro capped RNA (cRNA) synthesis. cRNA 

was synthesized using the mMESSAGE mMACHINE T7 kit (Ambion, Austin, TX, USA) 
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following manufacturer’s instructions. The cRNA was purified by phenol/chloroform 

extraction and was ethanol precipitated and resuspended in nuclease-free water. 

 

Preparation of Xenopus laevis oocytes 

Unfertilized oocytes were harvested from X.laevis frogs and defoliculated by 

incubation in collagenase (type 1A, 2mgmL1) and trypsin inhibitor (1mgmL1) in 96mм 

NaCl, 2mм KCl, 5mм MgCl2 and 5mм HEPES, pH7.6 for 1 to 1.5h. The majority of the 

experiments were conducted in a laboratory in the Plant Research Centre at the Waite 

Campus, with the exception experiments investigating the influence of varying Ca2+ 

concentrations and solutions with Cd2+ on AtPIP2;1 ionic conductance, which were 

conducted in the Medical School South Building, North Terrace Campus, and the 

respective differences in protocols are as indicated. At Waite, oocytes were stored at 

18°C in Ringer’s solution: 96mм NaCl, 2mм KCl, 5mм MgCl2, 0.6 mм CaCl2, 5mм 

Hepes, 5% (v/v) horse serum and antibiotics (0.05mgmL1 tetracycline, 100 units/mL 

penicillin/0.1mgmL1 streptomycin); replaced daily. Oocytes were injected with 46nL of 

RNAse-free water using a micro-injector (Nanoinject II, automaticnanolitre injector, 

Drummond Scientific) with varied concentrations of cRNA (1–25ng). Water-injected 

oocytes as controls were included in all experiments. The oocytes were incubated in 

Ringer’s solution as defined above prior to experimentation. In the Medical School 

South Building, oocytes were injected with 50nL of RNAse-free water containing 0 or 

12ng of AtPIP2;1 cRNA and ooyctes were incubated in 62mм NaCl, 36mм KCl, 5mм 

MgCl2, 0.6mм CaCl2, 5mм HEPES buffer, 5% horse serum, 100 units/mL penicillin, 

0.1mgmL1 streptomycin, 0.5mgmL1 tetracycline, pH7.6 for 1 to 1.5days prior to 

experiments. AtPIP2;1 expression was confirmed in a subset of oocytes from each 
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injected batch by swelling tests where AtPIP2;1-cRNA and water injected oocytes 

were placed in distilled water; AtPIP2;1 expressing oocytes swelled and burst within 

a few minutes whereas water injected oocytes remained intact for up to 10min.   

 

Localization of AtPIP2;1 in Xenopus laevis oocytes 

Oocytes were injected with 11ng of AtPIP2;1-mCherry cRNA, or with nuclease-free 

water, in a total volume of 46nL. Oocytes were incubated post-injection in Ringer’s 

solution. Oocytes were imaged 2days post-injection on chambered glass slides using 

a Zeiss LSM 5 Pascal laser scanning confocal microscope equipped with a Plan-

Neofluar 10×/0.3 objective lens. The mCherry fluorophore was excited using a 543nm 

HeNe laser. The emission spectrum was collected though a 560nm long pass filter. 

Raw data was processed using Zeiss AIM software (Carl Zeiss, Oberkochen, 

Germany). 

 

Water permeability 

Twenty-four hours after injection with cRNA or nuclease-free water, oocytes were 

transferred to 5mL hypo-osmotic solution, Ringers’ solution diluted fivefold with sterile 

water. The osmolality of each solution was determined using a Fiske® 210 Micro-

Sample freezing-point osmometer (Advanced Instruments, Inc., USA). Oocytes were 

viewed with a Nikon SMZ800 light microscope (Nikon, Japan) with the 1.5× objective 

lens WD45. The changes in volume were captured with a Vicam colour camera 

(Pacific Communications, Australia) at 2× magnification and recorded with IC 

CAPTURE 2.0 software (The Imagine Source, USA) as AVI format video files. Images 
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were acquired every 3s for 1.5min for each oocyte. Image J software (National 

Institute of Health, USA) was used to calculate the change in total area of the oocytes 

captured in the AVI video file. Osmotic permeability (Pos) was calculated from the 

increase in volume with time (n=5–10) using the following equation Pos =Vo(d 

(V/Vo)/dt)/S×Vw (Osmin Osmout), where Vo is the initial oocyte volume (mm3); d(V/Vo)/dt 

is the rate of initial relative cell volume change (mm3 s1); S is the initial surface area 

(mm3); Vw is the partial molar volume of water 18cm3 mol1; Osmin Osmout is the change 

in osmolality. 

Electrophysiology 

Two-electrode voltage clamp (TEVC) was performed on X. laevis oocytes between 24 

and 48h post injection with water, with or without cRNA following Preuss et al. (2011). 

Borosilicate glass pipettes (Harvard Apparatus, GC150F-10, 1.5mm O.D.×0.86mm 

I.D.) for voltage and current injecting electrodes were pulled to give between 0.5 and 

1MΩ resistance in ND96 solution (see below) with a filling solution of 3M KCl. A bath 

clamp system was used to minimize the effect of series resistance in the bath solution. 

The bath current and voltage sensing electrodes consisted of a silver–silver chloride 

electrode connected to the bath by 2% agar/3M KCl bridges. The bath solution was 

continuously perfused during the experiments. Each oocyte was carefully stabbed 

with the voltage and current electrodes and membrane voltage allowed to stabilize. 

TEVC experiments were conducted on oocytes with membrane potentials, when in 

ND96 between 25 and 50mV, and hyperpolarized oocytes with lower membrane 

potentials were avoided. Voltage clamp experiments were performed with an Oocyte 

Clamp OC-725C (Warner Instruments, Hamden, CT, USA) with a Digidata 1440A 
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data acquisition system interface (Axon Instruments, Foster City, CA, USA) at room 

temperature (20–22°C). The voltage clamp protocol was set upas follows: 40mVfor 

0.5s;then, the membrane potential was decreased in 20mV steps from 40 through to 

100 or 110mV; each voltage was held for 2s, followed by 40mV for 0.5s. Recordings 

were made using a GeneClamp amplifier and CLAMPEX 9.0 software (pClamp 9.0 

Molecular Devices, CA, USA). TEVC was initially performed in ND96 solution 

consisting of 96mм NaCl, 2mм KCl, 1mм MgCl2, 1.8mм CaCl2, 5mм HEPES pH7.5 

with TRIS base. Solutions with lower NaCl had otherwise the same composition as 

ND96 and were made isotonic with ND96 using mannitol. A series of solutions with 

constant Na+ concentration of 50mм and varied Cl concentration were made using 

MES (2-(Nmorpholino) ethanesulfonic acid) as a substitute anion. Ethylene glycol-bis 

(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA)-buffered divalent free saline 

(96mм NaCl, 2mм KCl, 5mм HEPES, 10mм EGTA, pH7.6) and divalent free salines 

containing varying EGTA-buffered calcium concentrations were used in experiments 

with defined and lower Ca2+ or Cd2+. The required total concentration of Ca2+ needed 

to achieve the desired free Ca2+ concentration in 10mм EGTA was calculated using 

http://maxchelator.stanford.edu/ CaEGTA-NIST.htm. 

Ion-selective microelectrode flux measurements 

The water and cRNA injected oocytes were incubated for 48h in Ringer’s solution; then, 

the oocytes were transferred to basal salt medium (BSM; 5mм NaCl, 2mм KCl, 50 μм 

CaCl2, 5mм HEPES) with the osmolality (adjusted with D-mannitol) of 231mosmolkg1; 

the net Na+ flux was measured noninvasively using ion-selective microelectrodes (the 

MIFETM technique; University of Tasmania, Hobart, Australia), as described previously 

http://maxchelator.stanford.edu/CaEGTA-NIST.htm
http://maxchelator.stanford.edu/CaEGTA-NIST.htm
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(Newman 2001). Microelectrode fabrication, conditioning and calibration followed 

Jayakannan et al. (2011), Bose etal. (2013) and Shabalaetal. (2013).During 

measurements, the ion-selective electrodes were positioned using a 3D-

micromanipulator (MMT-5, Narishige, Tokyo, Japan), 100μm from the oocyte surface. 

A computer-controlled stepper motor moved the electrode between two positions (100 

and 200μm, respectively) from the oocyte surface in 6s cycles. The CHART software 

(Newman 2001) recorded the potential difference between the two positions and 

converted them into electrochemical potential differences using the calibrated Nernst 

slope of the electrode. Net ion fluxes were calculated using the MIFEFLUX software 

for spherical geometry (Newman 2001). 

Yeast growth assay and ion content 

The pYES3-DEST-AtPIP2;1 vector and pYES3-DEST empty vector were transformed 

into Saccharomyces cerevisiae strain INVSc2 (Invitrogen) using the LiAc method, and 

selected on synthetic defined medium without uracil supplemented with 2% (w/v) D-

glucose. Twenty-millilitre liquid cultures (5.7% (w/v) Yeast Nitrogen Base without amino 

acids, phosphates or NaCl, MP Biomedicals; 95mgL1 L-Histidine-HCL, 1% (w/v) 

KH2PO4, pH5.5 with TRIS and either no NaCl, 0.1м NaCl or 0.5м NaCl as specified 

and 2% (w/v) D-galactose) in 50mL conical flasks were inoculated with 50μL of 

transformed yeast from 1mL starter cultures with 2% (w/v) D-glucose at an OD600 of 

0.5. Cultures were grown at 28°C for 24h at 200rpm. Cells were extracted by 

centrifugation (1500g, 3 min) and washed twice with solution of an equal osmolality 

(1.1м sorbitol, 20mм MgCl2). Cell pellet weight was measured. Pellets were frozen at 

20°C for 24h, then resuspended in 2mL of MilliQ water and boiled for 30min to lyse 
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cells. Samples were diluted 1:10, and the Na+ and K+ contents of cells grown in liquid 

culture were measured by flame photometry (model 420 Flame Photometer, 

Sherwood, Cambridge, UK). 

Statistics 

All graphs and statistics were performed in Graphpad Prism 6. All data shown are 

mean±SEM. Different letters indicate significance (P<0.05) between values as 

determined by analysis of variance with post hoc tests as detailed in the figure legends 

or text. 

 

RESULTS Water permeation through AtPIP2;1 and interaction with AtPIP1;2 

Previously, AtPIP2;1 has been shown to facilitate water permeability in 

proteoliposomes (Verdoucq et al. 2008), guard cell protoplasts and X.laevis oocytes 

(Grondin et al. 2015). We confirmed that AtPIP2;1 increased water permeability (Pos) 

in X. laevis oocytes and was localized to the plasma membrane (Fig.1 and Supporting 

Information Fig. S1). Various other Arabidopsis PIPs were examined for water 

permeation; AtPIP2;2, AtPIP2;6, AtPIP1;4, AtPIP1;5 and AtPIP1;2, of which only 

AtPIP2;2 and AtPIP2;6 increased Pos when expressed alone (Fig. 1a and Supporting 

Information Fig. S2). AtPIP1;2, AtPIP1;4 and AtPIP1;5 did not increase Pos above 

control levels when expressed alone, but they further increased Pos when co-

expressed with AtPIP2;1, with AtPIP1;2 and AtPIP1;5 being the most effective at 

increasing Pos (Fig. 1b and Supporting Information Fig. S2). 
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AtPIP2;1 elicited currents in Xenopus laevis oocytes 

A survey of some of the PIP aquaporins from Arabidopsis expressed in X.laevis 

oocytes revealed that AtPIP2;1 was not only a water channel but also was associated 

with ionic currents inND96bath saline (Fig.2and Supporting Information Fig. S3; at 

100mV: Im =795nA, SEM=65nA, n=28 oocytes combined from two frogs; controls at 

100mV: Im =355nA, SEM=33nA, n=32). AtPIP2;1 gave conductances of 10.3 and 

11.4μS in batches of oocytes from two frogs (Fig. 2c,d), which were significantly higher 

than the control conductance (3 and 4.6μS). These conductances are measured as 

the slope of the linear portion of the current versus voltage cure through the reversal 

potential (crossing the x-axis). AtPIP1;2 and AtPIP2;2 expressing oocytes in ND96 

saline did not display ionic conductances that were significantly different from those of 

water injected controls (Fig. 2a,b,c). When AtPIP2;1 was co-expressed with AtPIP1;2, 

the ionic conductance was not significantly different to that of water injected controls 

(Fig. 2d and Supporting Information Fig. S3); however, water permeability was 

significantly increased when these two PIPs were co-expressed (Fig. 1b). Additional 

experiments over a period of four years involving four different experimenters and two 

laboratories with different sets of cRNA and re-cloned AtPIP2;1 gave similar results for 

PIP2;1-induced ion conductance. Comparison of amplitudes of water permeabilities 

and ionic conductances measured in ND96 as a function of the amount cRNA injected 

showed saturation of both Pos and ionic conductance at higher concentrations of cRNA 

(Fig. 3a). The data were fitted to the Michaelis–Menten equation and indicated close 

similarity between the responses of ionic conductance and Pos with the amount of 

cRNA injected. This is reflected in the linear relationship between ionic conductance 

and Pos shown in Fig. 3b. Given that PIP2;1 induced a much higher water permeability 
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in oocytes compared to water injected controls (Fig. 1), we tested the possibility that a 

slight imbalance in bathing medium osmolality from isotonic may induce a swelling 

response in the PIP2;1 expressing oocytes that could have activated a native oocyte 

channel or transporter. For a 50mosmolkg1 reduction in osmolality (from 234 to 

183mosmolkg1) neither the controls nor PIP2;1 injected oocytes showed any change 

in current–voltage curve characteristic when bathed in 50mм NaCl or 50mм NaNO3 

solutions (Supporting Information Fig. S4). AtPIP2;1 water permeability and 

conductance were affected by a glycine to tryptophan mutation at residue 103 

Previously, we showed that a naturally occurring PIP from grapevine (Vitis vinifera L. 

cv Cabernet Sauvignon) was nonfunctional as a water channel when expressed in 

X.laevis (Shelden et al. 2009). This was due to a tryptophan substituting for a glycine 

in Loop B, which was suggested to block the water pore based on a homology model 

of SoPIP2;1 (Shelden et al. 2009). This mutation (G100W in VvPIP2;1 corresponding 

to G103W in AtPIP2;1) was previously tested for AtPIP2;1 to explore CO2 permeation 

induced by AtPIP2;1 in X. laevis oocytes (Wang et al. 2016). We tested the effect of 

the G103W mutation on water permeation using oocyte swelling assays. The AtPIP2;1 

G103W mutant did not induce an increase in water permeability when expressed alone 

(Fig. 4a,c), but when co-expressed with AtPIP1;2 there was an increase in Pos, 

however, not to the level observed for AtPIP2;1 alone or AtPIP1;2: AtPIP2;1 WT (Fig. 

4b,c). This G103W mutation was also tested for effects on the ionic conduction through 

AtPIP2;1. Current–voltage curves for water injected controls, AtPIP2;1 and AtPIP2;1 

G103W expressing X. laevis oocytes in a series of solutions were compared to explore 

the selectivity of the ionic current (Fig. 5). The Na+ concentration was held 
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approximately constant while Cl concentration was varied using MES as a substitute 

anion. With this sequence of solutions there was no change in conductance of the 

water injected controls and no significant change in reversal potential (Fig. 5a). 

AtPIP2;1-expressing oocytes showed increasing conductance as MES was substituted 

by Cl with the inward current increasing more so than the outward current (Fig. 5b). All 

the curves intersected the control current–voltage curve at approximately 13mVas an 

estimate of the reversal potential after subtraction of control current– voltage curves. 

These results are best explained by the current being predominately carried by Na+ 

because there was no substantial shift in reversal potential; however, conductance 

increased with increasing Cl concentration, suggesting potential allosteric modulation. 

The AtPIP2;1 G103W mutant showed a similar response to controls indicating that it 

did not induce an ionic conductance.
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AtPIP2;1 ion currents in Xenopus laevis oocytes were carried by Na+ 

We further explored the selectivity of the ionic currents by examining changes in 

reversal potentials (controls subtracted) with changes in NaCl concentrations. 

Increasing NaCl concentration while keeping the solution isotonic with sorbitol caused 

a positive shift in the reversal potential (Fig. 6). Four separate experiments are shown 

in Fig. 6 from four separate frogs and three different experimenters. In every case, the 

reversal potential shifted positive when NaCl concentration was increased at the 

higher NaCl concentrations. This indicates that the AtPIP2;1 induced currents were 

predominately carried by Na+ in these solutions. The reversal potentials were 

compared with calculated Nernst potentials for Na+ and Cl taking either literature 

values for internal oocyte concentrations (Weber 1999), or those that we measured 

for our oocytes after incubation in ND96 during expression of AtPIP2;1. For all 

experiments, the measured reversal potentials at 10mм external NaCl were similar to 

predicted Nernst potentials for Na+, while at high NaCl concentrations the reversal 

potentials were sometimes closer to the Cl Nernst potential. The Nernst potential for 

K+ was 100mV, using published values for internal K+ concentration, and 86mV for our 

measured internal K+ concentrations for all solutions used in Fig. 6. 

Exploring the selectivity of the AtPIP2;1-induced currents further, we measured the 

concentration of K+, Na+ and Cl in oocytes that were incubated in ND96 for 3days after 

either injection with water, un-injected or injected with AtPIP2;1 cRNA (10ng). The 

internal Na+ concentration was significantly elevated in AtPIP2;1-injected oocytes 

compared to both un-injected and water-injected oocytes (Fig. 7a). There was a 

reduction in K+ concentration in AtPIP2;1 injected oocytes when compared with un-

injected oocytes but not compared to water injected oocytes (Fig. 7b). There were no 
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significant differences observed in Cl concentrations (Fig. 7c). The Na+/K+ ratio was 

significantly lower for AtPIP2;1 injected oocytes relative to controls because of both 

the increase in Na+ and decrease in K+ concentrations (Fig. 7d). It should be noted 

that the volume of oocytes used to calculate these concentrations was on average 

1.21mm3, and the mean volume did not differ between water injected and AtPIP2;1 

injected oocytes (Supporting Information Fig. S5). 

Given that AtPIP2;1 appeared to induce an increase in Na+ permeability, we examined 

the net fluxes of Na+ after a sudden reduction in external NaCl concentration using the 

microelectrode ion flux estimation (MIFE) technique. This technique works best at low 

external concentrations of the measured ions, so measurements of Na+ efflux were 

performed after reducing the Na+ concentration from 96mм to 5mм while maintaining 

a constant osmolality. Initial net Na+ efflux after reducing the NaCl concentration was 

significantly larger for AtPIP2;1 expressing oocytes compared to controls (two-way 

repeated measures ANOVA, P<0.05) (Fig. 8a and Supporting Information Fig. S6). 

There was no significant difference between PIP1;2+PIP2;1 and controls (Fig. 8b), or 

PIP1;2 and controls (P>0.05) (Fig. 8b) consistent with the TEVC results indicating that 

co-expression of PIP1;2 with PIP2;1 abolishes the ionic conductance (Fig. 2). 

 

AtPIP2;1 was permeable to Na+ when expressed in Saccharomyces cerevisiae 

Saccharomyces cerevisiae was used as an alternative heterologous system to 

explore whether expression of AtPIP2;1 caused increased accumulation of Na+ as 

compared with yeast containing empty vectors. Yeast expressing AtPIP2;1 

accumulated more Na+ than yeast containing empty vectors when incubated for 24h 
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in growth media containing 0.1м or 0.5м NaCl (Fig. 9a). At low external Na+ 

concentrations, yeast K+ concentration tended to be lower than empty vector controls 

(Fig. 9b), consistent with the Xenopus oocyte results; however, at 0.5м external NaCl 

the K+ concentrations were significantly elevated in the PIP2;1 expressing cells. 

AtPIP2;1 ionic conductance was inhibited by divalent cations and protons 

As noted above, the AtPIP2;1 conductances we observed were relatively small under 

the solution conditions initially used and compared to other transporters expressed in 

Xenopus oocytes, such as High-affinity Potassium (K+) Transporters (HKTs) (Munns 

et al. 2012; Byrt et al. 2014). It has previously been shown that AtPIP2;1 water 

permeation is strongly inhibited by Ca2+, other divalent metals including Cd2+ and 

protons (Verdoucq et al. 2008), and that non-selective cation channels in roots have 

been found to be inhibited by high Ca2+ and low pH (Demidchik & Tester 2002). With 

this information in mind, we tested the possibility that AtPIP2;1-induced conductances 

may be inhibited by the standard Ca2+ concentration (1.8mм; free Ca2+ =0.6mм) in 

ND96 saline, as used in the experiments described above. We measured ionic 

conductances of water injected controls and AtPIP2;1 injected oocytes in Ca2+ and 

Cd2+ free conditions, and in conditions with various concentrations of Ca2+ or 1mм Cd2+ 

in a modified ND96 solution (96mм NaCl, 2mм KCl, 5mм HEPES (4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid), pH7.6 with various EGTA buffered Ca2+ or Cd2+ 

concentrations as indicated). Ca2+ and Cd2+ inhibited AtPIP2;1 ionic conductance (Fig. 

10 and Supporting Information Figs S7 and S8). A small reduction in conductance is 

associated with changing external solutions (Fig. 10a). A significant reduction in 

conductance was observed with the addition of just 50 μм free Ca2+ (Fig. 10b). Further 
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increase in free Ca2+ to 0.4mм gave more substantial inhibition (Fig. 10c). We observed 

that the inward current was more inhibited by Ca2+ than the outward current (Supporting 

Information Fig. S9). External Cd2+ at 1mм inhibited the conductance similarly to high 

external free Ca2+ concentration (Fig. 10d). Examples of the current versus time traces 

are shown in the Supporting Information Fig. S7. We consistently observed higher 

conductances (slope of the current versus voltage curve through the reversal potential) 

for AtPIP2;1 injected oocytes when bathed in the lower Ca2+ concentrations. At close 

to zero Ca2+ concentration, the mean conductance was 33.3+/2.1μS (SEM) while water 

injected controls under these conditions had conductances of 3.96+/ 0.46μS SEM. 

Conductances of individual oocytes in the initial ‘zero’ Ca2+ concentration and then 

when the bath saline was perfused with the higher concentration of Ca2+ or Cd2+ are 

included in the Supporting Information Fig. S8. These experiments were used to 

construct a dose–response curve for the AtPIP2;1 induced ionic conductance 

expressed as values relative to the initial conductance in the near zero external Ca2+ 

concentration (Fig. 11a). Complex responses were obtained and were best fitted by a 

biphasic dose–response curve where about 50% of the conductance was inhibited by 

very low external Ca2+ (IC50 =5.7 μм free Ca2+), and the remainder inhibited by a higher 

concentration (IC50 =0.32mм free Ca2+). It should be noted that inhibition was not 

complete at higher external Ca2+ because even at 0.6mм free external Ca2+ (in ND96), 

there was still a conductance that was significantly higher than that of the water injected 

controls as was also evidenced by the experiments reported in Figs 2, 3 and 5. We 

also investigated the effect of external pH on the PIP2;1 induced current relative to 

control water-injected oocytes. The conductance of PIP2;1 expressing oocytes relative 



 

Page | 220  
 

to that of the water injected controls in the same solution was inhibited by low pH (Fig. 

11b). The fitted dose–response curve shown gives an IC50 of pH6.8. 

 

Discussion  

The Arabidopsis plasma membrane aquaporin, PIP2;1, conducted both water and ions 

when expressed in X. laevis oocytes (Figs 2, 3, 5 & 10). There was a close correlation 

between the water permeability induced by PIP2;1 and the ionic conductance when 

variable amounts of cRNA were injected (Fig. 3). This ionic conductance was not 

associated with higher water permeability in of itself because it was specifically 

associated with the expression of AtPIP2;1, that is, in similar conditions AtPIP2;2, a 

protein 93.4% identical to AtPIP2;1, also conducted water but did not induce an ionic 

conductance. A hypo-osmotic gradient induced by reducing the osmolality of the 

bathing medium did not alter the ionic currents in PIP2;1 injected oocytes or water 

injected controls. This result indicates that the ionic currents induced by PIP2;1 

expression were not as a consequence of a higher water permeability or a swelling 

response activating native oocyte channels. Furthermore, an AtPIP2;1 mutant with a 

single amino acid substitution in the pore (G103W) did not induce an ionic current (Figs 

4 & 5) but was expressed in the oocyte membrane based on the positive interaction 

with AtPIP1;2. This indicates that the ionic conductance observed for AtPIP2;1 is 

unlikely to be an artefact of aquaporin associated expression or swelling in X.laevis 

oocytes and that the AtPIP2;1 protein is unlikely to be interacting with a native oocyte 

ion transporter to induce the conductance based on the AtPIP2;1 G103W results. 

Co-expression of AtPIP2;1 with AtPIP1;2 increased water permeability relative to 

AtPIP2;1 expression alone, yet abolished ionic conductance and higher Na+ efflux 
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when associated with AtPIP2;1 (Figs 1, 2 & 8). This provides further evidence that the 

ionic conductance and Na+ flux associated with AtPIP2;1 were not an artefact. 

Interestingly CO2 permeability induced by NtAQP1 (a PIP1) also seems to be abolished 

by interaction with NtPIP2;1, and this has been used as an argument for the 

homotetrameric structure being critical for CO2 permeation (Otto et al. 2010). AtPIP2;1 

is abundant in all Arabidopsis tissues and was reported to be present in the homomeric 

form in roots (Prak et al. 2008; Li et al. 2015), but we lack information about the relative 

proportions of AtPIP2;1 in homo- and heteromeric forms, and involvement of the 

subunits in complexes with other proteins such as AtPIP1;2 in different plant tissues 

and in varying environmental conditions (Yaneff et al. 2014; Yaneff et al. 2015). 

Xenopus laevis oocytes expressing AtPIP2;1 consistently displayed greater ionic 

conductance than controls in the presence of NaCl. In response to an increase in 

external NaCl we observed, a positive shift in reversal potential compatible with Na+ 

transport through AtPIP2;1 channels (Figs 5b & 6). There was no evidence of a 

negative shift in reversal potential associated with increased external Cl, but increased 

conductance of Na+ in the presence of Cl rather than MES indicates that conductance 

by AtPIP2;1 might require the presence of Cl. We also observed that X.laevis oocytes 

and S. cerevisiae expressing AtPIP2;1 accumulated more Na+ than control cells in the 

presence of relatively high external NaCl (Figs 7 & 9). However, the reversal potentials 

measured in voltage clamp recordings indicated the current is most likely to be a non-

selective cation conductance rather than a strictly Na+ selective conductance. Our data 

showed that both K+ and Na+ concentrations were altered in oocytes and yeast 

expressing AtPIP2;1. Further research is needed to examine whether AtPIP2;1 
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conducts other physiologically important monovalent cations such as K+, NH+
4 or 

anions such as NO3 or H2CO3 . Of central importance will be determining whether 

AtPIP2;1 conducts ions and the nature of the ion selectivity in planta. There is a 

precedent for dual water and ion conducting aquaporins functioning as non-selective 

monovalent cation channels. The human AQP1 is a water channel that functions as a 

non-selective monovalent cation channel when activated by secondary messengers 

(Anthony et al. 2000; Yool & Campbell 2012) and AQP6 has been shown to be a NO3 

selective channel (Ikeda et al. 2002). We know from previous studies that AtPIP2;1 

water permeability is gated by divalent cations such as Ca2+ and Cd2+ (Verdoucq et al. 

2008), and here we demonstrate that AtPIP2;1 ionic conductance is also inhibited by 

Ca2+ and Cd2+ (Figs 10 & 11). These observations are reminiscent of the Ca2+ block 

observed for the Drosophila dual ion and water conducting aquaporin Big Brain (BIB) 

(Yanochko & Yool 2002, 2004). The signalling role for Ca2+ in regulating BIB 

conductance is likely to be physiologically important in neuronal cell fate determination 

(Yanochko & Yool 2004). In plants, where changes in free Ca2+ have important 

signalling roles particularly in response to stress (Sanders et al. 2002; Choi et al. 2014), 

the inhibition of AtPIP2;1 ionic conductance by Ca2+ may be physiologically important. 

The biphasic dose–response curve that we observed for external Ca2+ inhibition of 

the ionic conductance in X.laevis oocytes is reminiscent of the biphasic curve 

observed for water permeation through aquaporins in Beta vulgaris where a high 

affinity (IC50 =5nM) and a lower affinity component (IC50 =200μM) of Ca2+ inhibition on 

the cytoplasmic face of the membrane was observed (Alleva et al. 2006). A Cd2+ 
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binding site (presumed to bind Ca2+ in vivo) of SoPIP2;1 is located on the N-terminus 

that stabilizes the closed state of the channel by interaction with loop D and loop B 

(Törnroth-Horsefield et al. 2006). A second Cd2+ binding site (also presumed to 

mediate Ca2+ binding in vivo) has been identified on the C-terminus interacting with 

loop D (Frick et al. 2013). Both of these sites are located on the cytoplasmic side and 

thought to be important in gating the channel. Although it would be tempting to suggest 

that the biphasic dose–response we observed for ionic conductance here could be 

linked to these two binding sites, it is difficult to reconcile the sidedness of the 

extracellular effect in our experiments with the intracellular location of the sites 

identified in prior work. One possibility is that Ca2+ and Cd2+ may gain access via the 

ion conducting pore to interact with potentially intracellular sites. The prospect that 

ions could permeate AtPIP2;1 in planta brings to mind three key particularly interesting 

physiological implications. The first is a function for AtPIP2;1 in regulating coupled ion 

and water flow that could drive rapid shrinking responses as occurs during guard cell 

closing (Macrobbie 2006; Grondin et al. 2015) or hypoosmotic turgor regulation 

(Findlay 2001). The second is at the root epidermis where AtPIP2;1 is highly 

expressed and could be considered as a candidate for facilitating the Na+ currents 

associated with non-selective cation channels observed in protoplasts from 

Arabidopsis root cells —which are blocked by H+ (pK~6) and Ca2+ (IC50 ~0.1mм), 

voltage independent, and weakly selective for monovalent cations (Demidchik & 

Tester 2002). These characteristics are remarkably similar to the Ca2+ and pH 

sensitivity we have shown for AtPIP2;1 expressed in X. laevis oocytes and 

investigations of the pharmacological profile of the AtPIP2;1 ionic currents may further 
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test this link. The third implication is that AtPIP2;1 becomes a candidate for having a 

role in the water and ion co-transport into the xylem that sustains water flow in plants 

in the absence of water potential differences (Wegner 2014; Fricke 2015; Wegner 

2015). 

Phosphorylation regulates water permeability through AtPIP2;1 (Pradoet al. 2013; 

Grondinet al. 2015)and protein localization (Prak et al. 2008). This indicates that we 

need to explore relationships between the AtPIP2;1 phosphorylation state and the ionic 

conductance via AtPIP2;1. In a previous study, variation in Na+ sensitivity of yeast 

expressing CsPIP2;1 was associated with phosphorylation at Ser273 (Jang et al. 

2014), and kinase activity regulated HsAQP1 ion channel activity (Zhang et al. 2007). 

The phosphorylation of tyrosine Y253 in the carboxyl terminal domain of AQP1 is 

described as a master switch for regulating the responsiveness of AQP1 ion channels 

to cyclic nucleotide activators (Campbell et al. 2012; Yool & Campbell 2012). Testing 

of whether similar secondary messengers influence dual ion and water aquaporin 

function in plants and animals may be warranted, as links have been reported between 

(1) cyclic nucleotide levels in roots and phosphorylation of root proteins including 

aquaporins (Maurel et al. 1995; Isner et al. 2012), and Na+ uptake (Maathuis & Sanders 

2001); and (2) between cyclic nucleotide levels and Ca2+ and abscisic signalling 

(Sanders et al. 2002; Dubovskaya et al. 2011). 

We have demonstrated that AtPIP2;1 expression induces an ionic conductance in 

X.laevis oocytes that can be carried at least in part by Na+ and that this can explain the 

changes in Na+ concentration in both oocytes and yeast expression systems. The 

AtPIP2;1-induced ionic conductance is inhibited by Ca2+, Cd2+ and protons. This finding 
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necessitates further research to establish whether AtPIP2;1 is part of a subset of plant 

aquaporins with dual ion and water conducting roles in plants, which may function to 

couple ion and water flow across key membranes. 
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Additional Supporting Information may be found in the online version of this article at 

the publisher’s web-site: 

Table S1. Primers used in the study 

Figure S1. Fluorescence of the plasma membrane of Xenopus laevis oocytes injected 

with cRNA encoding AtPIP2;1mCherry or water. 

Figure S2. Water permeability of Xenopus laevis induced by different Arabidopsis 

PIP1s and interactions with PIP2;1 and PIP2;6 compared to water injected controls. 

Figure S3. Example current versus time traces of cRNA injected Xenopus laevis 

oocytes for: AtPIP2;1, AtPIP1;2 : AtPIP2;1 co-injected, AtPIP1;2, and water injected 

controls. Figure S4. Hyposomotic conditions did not alter ionic conductance in PIP2;1 

expressing or water injected Xenopus laevis oocytes. 

Figure S5. Oocyte volumes in ND96 of PIP2;1 expressing or water injected Xenopus 

laevis oocytes. 

Figure S6. Sodium efflux measured after transition to low bath Na+ concentration with 

the microelectrode ion flux estimation technique (MIFE) comparing PIP2;1 expressing 

and water injected Xenopus laevis oocytes. 

Figure S7. Examples of current versus time traces of PIP2;1 expressing Xenopus 

laevis oocytes in different free Ca2+ concentrations in the bath. 

Figure S8. Initial and final conductances of AtPIP2;1 expressing and water injected 

Xenopus laevis oocytes before and after addition of different free Ca2+ concentrations 

in the bath and in response to 1mM Cd2+. 

Figure S9. Rectification of currents for AtPIP2;1 expressing Xenopus laevis oocytes 

as a function of free Ca2+ concentration in the bath. 
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Figure Legends 

Figure 1: PIP-induced swelling of Xenopus laevis oocytes is dependent on PIP-

isoform and the amount of cRNA injected. Osmotic water permeabilities (Pos) from 

oocyte swelling experiments comparingAtPIP2;1, AtPIP2;2, AtPIP1;2, andco-

expressed AtPIP1;2 and AtPIP2;1, compared with water injected controls. (a) 

AtPIP2;1 and AtPIP2;2 (11.5ng cRNA each). (b) AtPIP2;1 and AtPIP1;2, and co-

expression with cRNA amounts indicated. Significant differences (P< 0.05) are 

indicated by different letters using one way ANOVAwith Holm–Sidak’s multiple 

comparisons test. Individual data points and mean+/ SEM, n=5 to 20 oocytes from 

two frogs are shown.  

 

Figure 2: AtPIP2;1 elicits ionic currents when heterologously expressed in Xenopus 

laevis oocytes. Steady-state current–voltage curves of X.laevis oocytes injected with 

(a) AtPIP1;2, (b) AtPIP2;2, (c) AtPIP2;1 and (d) AtPIP1;2 and AtPIP2;1 cRNA in ND96 

(pH7.5). Currents are from oocytes injected with water or cRNA (6ng per oocyte) from 

the same batch. Conductances are indicated for the linear part of the curves across 

the reversal potential. Mean +/ SEM. (a) n =17 for controls, n= 13 for PIP1;2 (b) n= 5 

for controls, n =5 for PIP2;2 (c) Same controls as (a), n=7 for PIP2;1 (d) n= 15 for 

controls, n=21 for PIP2;1 and n=20 for PIP2;1 co-expressed with PIP1;2. For AtPIP2;1 

expressing oocytes, at 100 mV: Im =795nA, SEM =65nA, n =28 oocytes combined 

from two frogs; controls at 100mV: Im =355nA, SEM =33nA, n=32. 
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Figure 3: Water and ion transport of oocytes display similar dependence on the 

amount of AtPIP2;1 cRNA injected. (a) Ionic conductance (left y-axis, solid triangles) 

for Xenopus laevis oocytes expressingAtPIP2;1in ND96pH7.5comparedwithPos 

(swelling in 1/5 ND96 pH 7.5) (right y-axis, open circles) as a function of cRNA injected 

(n =11–17 oocytes for swelling assays, n=6–15 oocytes for conductance in same batch 

of oocytes). The data were fitted with a Michaelis–Menten curve (R2 =0.92 for 

conductance and R2 =0.59 for Pos), and fitted parameters were conductance Km 

=2.75ng, Vmax =17.7μS; Pos Km =1.71ng, Vmax =0.019cms1. (b) The linear relationship 

between ionic conductance and Pos taken from the data in (a) (linear regression+/ 95% 

confidence intervals, R2 =0.97). Mean +/ SEM. 

 

Figure 4: G103W mutation of AtPIP2;1 reduces water permeability. Pos comparing 

AtPIP1;2, AtPIP2;1 and AtPIP2;1 G103W from three separate experiments (frogs); 

10ng of cRNAwas injected. (a) Comparing AtPIP2;1 with AtPIP2;1 G103Wand water 

injected controls. (b) Comparing AtPIP1;2, AtPIP2;1, AtPIP1;2:AtPIP2;1 co-injected, 

AtPIP1;2:AtPIP2;1 G103Wand water injected controls. (c) Comparing AtPIP1;2, 

AtPIP2;1, AtPIP2;1 G103W, AtPIP1;2: AtPIP21 G103Wand water injected controls. 

Significant differences (P< 0.05) are indicated by different letters using one-way 

ANOVAwith Holm–Sidak’s multiple comparisons test. Individual data points and 

mean+/ SEM are shown. 

Figure 5: AtPIP2;1 Na+ conductance is Cl dependent and abolished by G103W 

substitution. Current–voltage curves (steady state) for (a) water injected controls 
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(n=4, mean conductance shown for all solutions at the left of the curve), (b) AtPIP2;1 

(n= 18) and (c) AtPIP2;1 G103W (n =10, common conductance shown) in a range of 

Cl concentrations with constant Na+ concentration, pH7.5. Conductances shown are 

for the linear part of curve through the reversal potential. Mean +/ SEM. 

 Figure 6: Reversal potentials from a series of two-electrode voltage clamp 

experiments where the NaCl concentration in the bathing solution was changed. 

Reversal potentials are plotted against the Na+ concentration (log scale) because Cl 

concentration was slightly higher from other salts in the buffer. The reversal potentials 

were taken as the intersection with control current–voltage curves. Same symbols 

connected by dotted lines indicate the same oocytes (n =3–8 oocytes) from the same 

frog. Additionally shown are Nernst potentials for Na+ (dashed lines, red shade) and 

Cl (solid lines, blue shade) based on literature values for internal oocyte 

concentrations (red lines) and those calculated from our measurements of internal 

concentration (blue lines). Error bars, where indicated, are 95% confidence intervals 

of the reversal potential based on linear regressions through the linear part of the 

current–voltage curves that cross the voltage axis (controls subtracted). 

Figure 7: Expression of AtPIP2;1 alters the internal Na+ concentration of Xenopus 

laevis oocytes. Internal oocyte ion concentrations measured on oocytes after 

incubation in 96mм Na+ for three days for un-injected oocytes, water injected oocytes 

and AtPIP2;1 cRNA injected (10ng) oocytes. (a) Na+ concentrations, (b) K+ 

concentrations, (c) Cl concentrations, (d) Na+/K+ ratio. In each case, the error bars 
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indicate the range of the data, while the box indicates the SEM of the mean (horizontal 

internal bar) for n =21 (uninjected), n =17 (water injected), n =29 (cRNA injected). 

Significant differences were determined by one-way ANOVA; significant differences 

(P < 0.05) are indicated by different letters using one-way ANOVA with Holm–Sidak’s 

multiple comparisons test. Individual data points and mean+/ SEM are shown. 

Figure 8: Decreasing external NaCl concentration resultedin a larger Na+ efflux from 

AtPIP2;1 expressing oocytes compared with controls. Larger Na+ efflux was observed 

for AtPIP2;1 expressing oocytes relative to water injected oocytes (a), 

AtPIP2;1+AtPIP1;2 co-injected (b) and AtPIP1;2 injected oocytes (c). Na+ efflux 

(indicated as a negative flux) as a function of time after transferring oocytes from 

ND96 (containing 96 mм NaCl) to a solution consisting of 5mм NaCl, 2mм KCl, 50μм 

CaCl2, 5mм HEPES pH7.5 which was isotonic, with ND96 (mannitol, 231mosmol kg1). 

In (a), (b) and (c), the water injected control oocytes are the same data and shown 

for comparison with gene-injected oocytes. The fluxes were obtained using the 

microelectrode ion flux estimation (MIFE) technique; electrodes were placed adjacent 

to the animal pole of the oocyte. Mean+/ SEM, n=7–8 oocytes. 

Figure 9: Expression of AtPIP2.1 changes the Na+/K+ ratio of yeast cells. Na+ (a) and 

K+ (b) concentrations in yeast empty vector controls or AtPIP2;1 expressing cells at 

three external Na+ concentrations. Individual data points and mean+/ SEM are shown. 

Significant differences between empty vector and PIP2;1 are indicated for each 
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external Na+ concentration from two-way ANOVAwith Sidak’s multiple comparison (*P 

< 0.05; **P < 0.01; ***P < 0.001) for three replicate batches of cells. 

 

Figure10: AtPIP2.1 ion currents in Xenopus laevis oocytes are inhibited by divalent 

cations. Examples of current–voltage curves from single oocytes illustrating the effect 

of external Ca2+ and Cd2+ on AtPIP2;1 induced currents. In each case, the currents 

are relative (Relative Im) to the initial current at 60mVand do not have the water 

injected control currents subtracted. Zero (effectively) Ca2+ and Cd2+ concentration is 

the initial current–voltage curve (square symbol) and the treatment current–voltage 

curves are after solution replacement with (a) 0μм external Ca2+; (b) 50μм external 

Ca2+; (c) 400μM external Ca2+; (d) 1mм external Cd2+. 

Figure 11: External Ca2+ (a) and pH (b) dose–response relationships for the ionic 

conductance induced by AtPIP2;1 expressed in Xenopus laevis oocytes. (a) The data 

are expressed relative to the initial conductance from experiments such as those 

shown in Fig. 10 and Supporting Information Fig. S7. The mean relative conductance 

in the very low external Ca2+ concentration is less than 100%, but not significantly so, 

because sometimes when substituting with the same solution the conductance 

decreased slightly. The data have been fitted by a single-component dose–response 

to all the data from very low Ca2+ (dotted line) and to the data for higher Ca2+(solid 

line, R =0.75, IC50 =0.321mм). Mean+/ SEM, n=3–6 oocytes for each point. (b) Ionic 

conductance for AtPIP2;1 expressing oocytes relative to that of controls in solutions 



 

Page | 240  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

of 10mм NaMES at pH 5.5, 6.5, 7.5 and 8.5. pH adjusted with Tris-base/MES, free 

Ca2+ approximately 0.6mм; mean +/  SEM n= 6. Dose–response curve fitted to the 

data gives IC50 of pH6.8. 
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Chapter 7: Comparison of the functional and pharmacological 

properties of Aquaporin cation-conducting channels from plant, 

vertebrate and invertebrate species. 
 

 

Mohamad Kourghi, Saeed Nourmohammadi, Jinxin V. Pei, Caitlin Byrt, Stephen 

Tyerman, and Andrea J. Yool 

 

Abstract 

Aquaporins (AQPs) facilitate water fluxes across barrier membranes and enable 

dynamic adjustment of volume in living cells across all forms of life. A subset of AQPs 

also serve as monovalent non-selective cation or anion-conducting channels. Recent 

work by Byrt and colleagues identified block by Ca2+ as a key mechanism of regulation 

for a newly described plant aquaporin ion channel, AtPIP2;1.  Results here show that 

AQP ion channel block by divalent cations is a general mechanism, evident across 

diverse species. Work here also identifies a new plant AQP ion channel, AtPIP2:2, 

previously missed because of its high sensitivity to block by Ca2+. Electrophysiological 

recordings in the Xenopus oocyte expression system in EGTA-buffered salines were 

used to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+) on ionic 

conductances in oocytes expressing human HsAQP1, Arabidopsis thaliana AtPIP2;1, 

AtPIP2;2,  and Drosophila melanogaster big brain (DmBIB) channels. The classes of 

AQP ion channels showed differential sensitivity to block by different divalent ions, as 

well as voltage-sensitive rectification. The order of sensitivity to block by Ca2+ ion was 

AtPIP2;2 (10 M)  > AtPIP2;1 (100 M) > HsAQP1 (1000 M) > DmBIB.  Though less 

effective, Mg2+ showed the same order of potency. Block by Ba2+ was associated with 

strong outward rectification and voltage-dependent relief of block, with AtPIP2;2 > 

AtPIP2:1 > HsAQP1.  Conversely, DmBIB channels showed enhanced outward current 
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with Ba2+, suggesting competitive unblocking of the channel from chronic inhibition.  

Similarly, the channels with highest sensitivity to Ca2+, AtPIP2;1 and AtPIP2;2, both 

showed relief of Ca2+ block by co-application of Ba2+. The plant AtPIP2;7 showed no 

ionic conductance under any of the conditions tested.   AQP1, AtPIP2;2, AtPIP2;1 and 

BIB ion channels were blocked uniformly by Cd2+ (1 mM). The plant AQP channels 

were not blocked by the bumetanide derivative AqB011 characterized previously as a 

blocker of the HsAQP1 ion channel, consistent with the observation that the plant 

aquaporins lack the arginine sequence proposed as the intracellular docking site for 

AqB011 in the human AQP1 channel. Understanding the properties and modulation of 

AQP ion channels could be important in improving salinity tolerance in plants, reducing 

cancer metastasis, or controlling angiogenesis, hypertension and cerebral ischemia. 

 

Introduction 

Water is an essential element of life, therefore maintaining water homeostasis in living 

organisms is fundamental to survival. The major intrinsic proteins (MIPs), referred to 

as aquaporins facilitate the transport of water and other solutes across biological 

membranes and play important roles in physiological functions (Anthony, Brooks et al. 

2000, Holm, Jahn et al. 2005, Hibuse, Maeda et al. 2006, Zhao, Bankir et al. 2006, 

Herrera and Garvin 2011).  

AQPs are comprised of six membrane spanning helices and 5 loops (loops A to E). 

(Jung et al., 1994), and are distinguished by the conserved asparagine-proline-alanine 

(NPA) signature motif located in loops B and E. AQPs organize as tetrameric pores in 

cell membranes that are found across all forms of life from prokaryotes to eukaryotes 
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(Agre, Preston et al. 1993, Jung, Preston et al. 1994, Murata, Mitsuoka et al. 2000, 

Sui, Han et al. 2001). 

Up to date 15 different aquaporin genes have been identified in various mammalian 

tissues (AQP0- AQP14) (Ishibashi 2009, Finn, Chauvigne et al. 2014). Plants appear 

to have more diversity with between 20–60 different AQP loci occurring within single 

species of flowering plants (Zhang, Ali et al. 2013). 

One of the five sub-families of plant aquaporins, referred to as Plasma membrane 

Intrinsic Proteins (PIPs) has been classified into two groups, PIP1 and PIP2, forming 

a group of 5 and 8 members respectively out of a total of 35 different aquaporins in 

the model plant Arabidopsis thaliana (Soto, Alleva et al. 2012). Osmotic water 

permeability assays conducted on Xenopus oocytes have shown that the PIP2 

channels have high water channel activity, whereas PIP1 proteins show little or no 

response in Xenopus (Daniels, Mirkov et al. 1994, Kammerloher, Fischer et al. 1994, 

Yamada, Katsuhara et al. 1995). This observation could in part be due to lack of 

targeting pf PIP1 channels to the Xenopus oocyte membranes, as the coexpression 

of a PIP1 with a PIP2 can increase water permeability in a synergistic fashion 

indicating that PIP1 can transport water but requires PIP2 for membrane targeting 

and function (Fetter, Van Wilder et al. 2004).  

Despite the similarities between the amino acid sequence of the PIP1 and PIP2 

aquaporins, they differ in the length of N and C terminal ends (Yaneff, Sigaut et al. 

2014). AtPIP2;1 and AtPIP2;2 are widely and highly expressed in the plasma 

membranes of Arabidopsis and are prominent in roots. They generally play important 

roles in maintaining water homeostasis in several “gatekeeper” cells including 
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stomatal guard cells (Grondin et al. 2015). Studies conducted on suspensions of 

Arabidopsis cells revealed that the plasma membrane water permeability is regulated 

by Ca2+ and pH. Studies revealed that Ca2+ was able to reduce the water 

permeability by up to 60%, whereas other divalent cations such as Ba2+, Sr2+, and 

Mg2+ caused a decrease in permeability only by 25-30%. Lowering the pH was also 

shown to inhibit water transport in vesicles expressing the water channels (Gerbeau, 

Amodeo et al. 2002). 

AQP1, previously known as CHIP28, was the first discovered water channel protein 

and is widely expressed in epithelial and endothelial tissues. In addition to facilitating 

the transport of water molecules through the tetrameric pores, AQP1 allows the 

passage of cations through the central pore (Yool and Weinstein 2002, Yu, Yool et al. 

2006). The ion channel function of AQP1 depends on cGMP for activation (Anthony, 

Brooks et al. 2000). AQP1 expression has been associated with migration and 

metastasis in in sub-types of aggressive cancers including colon, melanoma, 

mammary, astrocytoma and glioma cancer cell lines (Hu and Verkman 2006, Jiang 

2009, El Hindy, Bankfalvi et al. 2013, El Hindy, Rump et al. 2013, Yoshida, Hojo et al. 

2013). Early work on characterizing AQP blockers showed that AQP1 water 

permeability is blocked by mercury ions (Hg2+) (Preston, Jung et al. 1993) while the 

central ion pore is blocked by cadmium ions (Cd2+) (Boassa, Stamer et al. 2006). 

However both blockers are toxic and lack specificity. An arylsulfonamide, AqB013, has 

been shown to block water permeability in AQP1 and AQP4 channels (Migliati, Meurice 

et al. 2009). In contrast, a bumetanide, AqB011, is a potent inhibitor of the AQP1 ion 

channel permeability while sparing water permeability (Kourghi, Pei et al. 2016). More 
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recently bacopaside I and bacopaside II, two structurally related compounds from the 

medicinal plant Bacopa monnieri, have been identified as efficient AQP1 water channel 

blockers. Bacopaside I however, also blocks the ionic permeation at high doses (Pei, 

Kourghi et al. 2016). These newly identified AQP1 modulators could serve as powerful 

tools in unravelling the diverse physiological roles of AQP1 and their importance in 

pathology such as in cancer metastasis. 

 

Ion channel function has been demonstrated for other members of the MIP family. Lens 

MIP AQP 0 has been shown to be anion selective and regulated by pH (Zampighi, Hall 

et al. 1985, Ehring and Hall 1988, Ehring, Zampighi et al. 1990).  Patch clamp 

recordings have shown that mammalian AQP6, an intracellular vesicle water channel 

has an anion permeability activated by low pH or HgCl2 (Yasui, Kwon et al. 1999). More 

recently the plant AQP, AtPIP2;1 shows monovalent cation transport when expressed 

in Xenopus laevis oocytes and yeast (Byrt, Zhao et al. 2016). The cation function of 

AtPIP2;1 is  blocked by Ca2+, Cd2+ and low pH  (Byrt, Zhao et al. 2016) as is the water 

permeation (Gerbeau, Amodeo et al. 2002). The modulation of AtPIP2;1 by Ca2+ and 

pH could be physiologically important in guard cell closing in response to stress, or in 

control of volume and turgor in other cell types (Findlay 2001, MacRobbie 2006, 

Grondin, Rodrigues et al. 2015). Non Selective Cation Channels (NSCC) of 

Arabidopsis thaliana roots expressed in epidermal protoplast membranes are voltage 

independent and are inhibited by Ca2+ and pH (Demidchik and Tester 2002) and it is 

hypothesised that AtPIP2;1 may be a candidate for these channels (Byrt, Zhao et al. 
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2016). Calcium is important in plant signalling, volume regulation, development, 

maintaining structure and growth (Rudd and Franklin-Tong 2001).   

The insect AQP, Drosophila Big Brain (BIB), is an important protein in early 

development of the fly nervous system and has been demonstrated to have cationic 

permeability when expressed in the Xenopus oocyte system, activated by pricking the 

membrane (Yanochko and Yool 2002). The cationic permeation of wild type BIB is 

blocked by divalent cations Ca2+ and Ba2+, but not with Mg2+ (Yanochko and Yool 

2004). Interestingly a mutation in the conserved glutamate residue at position 71 

(Glu71) makes the BIB channel sensitive to block by Mg2+ (Yanochko and Yool 2004). 

Block by divalent cations in ion channels is physiologically important in signal 

transduction, feedback regulation and voltage dependence.  

Other channels such as the voltage gated Na+ channels are also regulated by Ca2+ 

ions. The binding of Ca2+ not only blocks Na+ channels but it also shortens the time 

course of closure of the activation gates (Armstrong and Cota 1999). Similarly Shaker 

potassium channels are also blocked by extracellular calcium ions (Gomez-Lagunas, 

Melishchuk et al. 2003). 

 Store Operated Calcium Channels (SOCs) of non-excitable cells are regulated by 

Ca2+. These channels are voltage independent Ca2+ channels and are activated when 

endoplasmic reticulum Ca2+ stores are depleted. SOC channels play important roles in 

Ca2+ oscillations and Ca2+ homeostasis (Parekh and Penner 1997), and are highly 

selective for Ca2+ (Hoth and Penner 1993).  Interestingly in Arabidopsis, the root 

plasma membrane AtPIP2;1 water permeability is blocked by Ca2+, Cd2+, Mn2+ and H+ 
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(Verdoucq, Grondin et al. 2008), and the ionic permeation similarly is blocked by Ca2+, 

Cd2+ and H+ (Byrt, Zhao et al. 2016). 

 

In the current study we compare and contrast the effects of divalent cations on AQP 

ion channels from different phyla. Understanding the regulation of AQP ion channels 

and their different properties is essential in determining their diverse physiological roles 

and their value in pathological conditions.  

 

Methods 

Preparation and injection of Xenopus laevis oocytes 

The use of animals in this study has been carried out in accordance with the Guide for 

the Care and Use of Laboratory Animals, licensed under the South Australian Animal 

Welfare Act 1985, under protocols approved by the University of Adelaide Animal 

Ethics Committee. Oocytes used in this study were obtained from adult female 

Xenopus laevis frogs kept at the University of Adelaide Animal Laboratory Services.  

Oocytes were defoliculated through incubation in collagenase (type 1A, 1 mg/ml; 

Sigma-Aldrich, St. Louis, MO) and trypsin inhibitor (0.05 mg/ml; Sigma-Aldrich, St. 

Louis, MO) in calcium free OR-2 saline containing 96 mM NaCl, 2 mM KCl, 5 mM 

MgCl2, penicillin 100 units/ml streptomycin 0.1 mg/ml, and 5 mM HEPES at pH7.6 for 

1 to 1.5 hours. After collagenase treatment oocytes were kept at 16°C in Frog Ringer 

saline consisting of 96 mM NaCl, 2mM KCl, 5 mM MgCl2, 0.6 mM CaCl2, 5mM HEPES 

buffer, horse serum (5%; Sigma-Aldrich, St. Louis, MO), penicillin 100 units/ml 

streptomycin 0.1 mg/ml, and tetracycline 0.5 mg/ml, pH 7.6. Stage V-VI oocytes were 
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selected and injected slowly (over 5-10s) with 50 nl of RNAse-free water containing 1 

ng of HsAQP1 cRNA or 12 ng of AtPIP2;7, AtPIP2;2 and AtPIP2;1 CRNA, or 20ng of 

drosophila big brain (bib) cRNA using a micro injector (manual oocyte microinjection 

pipette, Drummond Scientific). RNAase-free Water injected oocytes served as controls 

in this experiment. AQP1 and BIB expressing oocytes were incubated in Frog Ringer 

saline while oocytes injected with AtPIP2;7, AtPIP2;2 and AtPIP2;1 CRNA were 

incubated at 16°C in high potassium Frog Ringer saline (62 mM NaCl, 36 mM KCl, 5 

mM MgCl2, 0.6 mM CaCl2, 5mM HEPES buffer, horse serum 5%, penicillin 100 

units/ml, streptomycin 0.1mg/ml, and tetracycline 0.5mg/ml, pH 7.6) for 1 to 1.5 days 

and a minimum of 2-5 days for oocytes injected with AQP1 or bib cRNA in the same 

saline to allow sufficient time for expression prior to electrophysiology. Swelling assays 

were used to test for successful expression in which oocytes expressing AtPIP2;7, 

AtPIP2;2 AtPIP2;1 and HsAQP1 swelled and burst within 3-5 minutes after emersion 

in distilled water. Water injected control oocytes remained intact and unchanged for up 

to 10 minutes. Experiments were conducted at the University of Adelaide, Medical 

School North.  

 

Two electrode voltage clamp recordings 

Two electrode voltage clamp (TEVC) recordings were used to investigate the 

functional properties and modulation of AQP ion channels on Xenopus oocytes 

between 24 to 48 hours after injection with water with or without cRNA. Capillary glass 

electrodes were pulled to achieve 1-3MΩ of resistance in ND96 solution and were filled 

with 1M KCl. Recordings were performed in EGTA (ethylene glycol-bis(β-aminoethyl 
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ether)-N,N,N',N'-tetraacetic acid)-buffered divalent free saline  containing 100 mM 

NaCl, 2 mM KCl, and 5 mM HEPES, pH 7.6 at room temperature. The total 

concentration of Ca2+ required to achieve the desired free Ca2+ concentration in 20mм 

EGTA was calculated using http://maxchelator.stanford.edu/CaEGTA-NIST.htm. 

Two electrode recording pipettes were used conventionally to control voltage and 

deliver current. Membrane permeable analogue of cGMP, CPT-cGMP (Rp)-8-(para-

chlorophenylthio)-cGMP (8-CPT-cGMP; 10 μM; Sigma-Aldrich) was applied to the 

recording saline to initiate ionic conductance in AQP1 expressing oocytes. Ionic 

conductance was monitored throughout the experiments by repeated steps to +40mV 

(800-ms duration) every 6 s from a holding potential of -40mV. Recordings were made 

using a GeneClamp amplifier and Clampex 9.0 software (pClamp 9.0 Molecular 

Devices, Sunnyvale, CA, USA). Data were filtered at 2 kHz, digitized at 2 kHz, and 

stored to hard disk for analysis. Quantitative values of the magnitude of relative 

outward rectification were calculated by standardizing outward current amplitude (at 

+60 mV) to inward current amplitude (at -80 mV). Statistical analyses were done with 

one-way ANOVA with Bonferroni post-hoc tests; p values are indicated in the figure 

legends. 

 

Bath application of divalent cations 

The effects of divalent cations Ca2+, Mg2+, Ba2+ and Cd2+ were tested in oocytes 

expressing AQP1, AtPIP2;7, AtIP2;2, AtPIP2,1 and BIB channels. Oocytes were 

placed in EGTA-buffered divalent free saline for initial electrophysiological recordings. 

After recording the initial conductance, the current flow was monitored over 30 minutes 
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for oocytes expressing AQP1 to reach maximal activation, and 2 to 3 minutes for 

oocytes expressing BIB, AtPIP2;1 and AtPIP2;2 since these channels showed 

activation from the time the recording electrodes were placed in the oocyte membrane. 

After recording the initial activated responses, the bath saline was perfused with test 

salines containing Ca2+, Mg2+ or Ba2+. New steady state response levels was achieved 

rapidly within 1 to 2 mins. Each divalent cation was added after washing away the 

effect of the previous cation using the perfusion system. The final conductance values 

were measured at 6 minutes after achieving a steady state response to the cation.  

 

Osmotic swelling assays 

Immediately before the swelling assays, control and AQP-expressing oocytes were 

rinsed in calcium free saline for 10 minutes. Swelling assays were performed in 50% 

hypotonic saline (calcium free saline diluted with equal volume of water). Oocytes 

were placed in 50% hypotonic saline and changes in cross-sectional area of oocytes 

membranes were imaged using a grayscale camera device (Cohu, San Diego, CA) 

fixed on a dissecting microscope (Olympus SZ-PT; Olympus, Macquarie Park, 

Australia). Images were captured at 0.5 per second for 60 s. Swelling rates of the 

oocytes were assessed with Image J software from National Institutes of Health 

(http://rsbweb.nih.gov/ij/), and measured as the slopes of the linear regression fits of 

relative volume as a function of time using Prism (GraphPad Software Inc.,San 

Diego, CA). 

 

  

http://rsbweb.nih.gov/ij/
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Results 

Expression of AQP channels on oocyte membranes 

To confirm the expression of functional AQP channels in the Xenopus oocytes, swelling 

assays were performed for AtPIP2;7, AtPIP2;2, AtPIP2;1 and HsAQP1 cRNA injected 

oocytes. Prior to experiments water injected controls and AQP expressing oocytes 

were rinsed in divalent free saline for 10 minutes. The increase in volume recorded 

over 60s was not significantly different between oocytes expressing AtPIP2;7, 

AtPIP2;2, AtPIP2;1 and HsAQP1 channels injected with the same quantity of cRNA, 

but was significantly greater than water-injected controls, confirming the expression of 

the channels on the oocyte membrane (Figure 1A). Figure 1B is box plot summary of 

data presented in A. BIB channels have not been found to mediate osmotic water 

permeability (Yanochko and Yool 2002). The expression of BIB channels on oocyte 

plasma membranes was previously confirmed by (Yanochko and Yool 2002) using 

immunocytochemistry and confocal microscopy. 

  

Differential sensitivity of AQP ion currents to block by Ca2+  

Two electrode voltage clamp recording were used to measure AQP ion channel 

currents in Xenopus oocytes (Figure 2). Water injected control oocytes and oocytes 

expressing AtPIP2;7 channels did not show any ionic activation 30 minutes after 

recording the ionic conductance, and were unresponsive to Ca2+ or Mg2+ applications 

. AQP1 expressing oocytes were activated after bath application of 10M CPT-

cGMP. Maximum activation was achieved approximately 30 minutes after CPT-

cGMP application. Ionic conductance in AtPIP2;1, AtPIP2;2 and Drosophila big brain 

(BIB) expressing oocytes were evident upon the insertion of recording electrodes 



 

Page | 265  
 

showing that these channels were already active in the expression system (Figure 

2A). Current traces were recorded for control and AQP-expressing oocytes after 

maximal activation in divalent-free saline; after perfusion of bath saline with Mg2+; 

and after washout and application of EGTA-buffered Ca2+ saline for the same 

oocytes (Figure 2A). AtPIP2;2 and AtPIP2;1 currents were reduced by Mg2+ at 1 mM, 

however both channels are very sensitive to Ca2+. Maximum block can be achieved 

at 100 M CaCl2 concentration in oocytes expressing AtPIP2;1, and 10 M CaCl2   in 

AtPIP2;2 expressing oocytes. While AQP1 ion channel was not sensitive to Mg2+, it 

was blocked by Ca2+ cations at a concentration of 1 mM. Similar to AQP1 ion 

conductance, BIB channels were not blocked by Mg2+; however a block in 

conductance was observed with 1 mM Ca2+ added to the saline. Figure 2B shows a 

summary box plot for data presented in Figure 2A. Figure 2C illustrates current-

voltage relationships for the oocytes shown in Figure 2A.  

  

Voltage-sensitive block of AQP ion channels by Ba2+ 

In subsequent experiments we tested the effect of BaCl2 on ion channel function of 

each AQP. After recording the initial or activated conductance, 1 mM BaCl2 was 

applied to the bath saline followed by recording the different responses (Figure 3A). 

Wild type AtPIP2;1, AtPIP2;2, AQP1 and BIB channels have an approximately linear 

current-voltage relationship in response to Mg2+ application (Figure 2C). However 

when 1mM BaCl2 was applied to the recording saline, oocytes expressing AtPIP2;1, 

AtPIP2;2, AQP1 and BIB channels display outward rectification by Ba2+ suggesting 

that there is an apparent unblocking by Ba2+.  AtPIP2;2 ion channels showed more 
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sensitivity to block by Ba2+ ions as compared to AtPIP2;1, AQP1 and BIB channels  

(Figure 3B) as seem for data is summarized in a box plot. Figure 3C illustrates the 

current-voltage relationship for current versus time for traces shown in A. Figure 3D 

shows compiled data for current ratios (I+60/ I-80) for wildtype AQP1, BIB, AtPIP2;1 and 

AtPIP2;2 channels at initial (before Ba2+ application) and after external application of 1 

mM Ba2+. For all channels the magnitude of outward rectification current ratio was 

significantly greater in saline with Ba2+ as compared to without Ba2+, (p<0.001, one-

way ANOVA).  

 

Inhibition of AQP ion channel by Cd2+ 

The effect of 1 mM Cd2+ was tested on non-AQP expressing control oocytes and on 

oocytes expressing AQP1, AQP4, AQP5, AtPIP2;1 and AtPIP2;2. After full activation 

in Ca2+ free saline, 1 mM CdCl2 was perfused into the recording saline and the 

response was recorded (Figure 4A). Oocytes expressing, AQP1, AtPIP2;1 and 

AtPIP2;2 showed block after the application of 1 mM Cd2+. Figure 4B illustrates the 

current voltage relationships for oocytes presented in Figure 4A. Reversal potentials 

in salines with Cd2+ were not different between AQP1, AtPIP2;1 and AtPIP2;2 

expressing oocytes. Wildtype AQP1, AtPIP2;1 and AtPIP2;2 have an approximately 

linear current-voltage relationship in the recording saline, but show outward 

rectification with the addition of Cd2+, indicating a relief of block by Cd2+ at 

depolarized membrane potentials. Figure 4D shows the compiled data for the effect 

of 1 mM CdCl2 on AQP1, AtPIP2;1 and AtPIP2;2 expressing oocytes. The block is 

significant for AQP1, AtPIP2;1, and AtPIP2;2 treated with Cd2+. Figure 4E shows 
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compiled data for current ratios (I+60 / I-80) for wildtype AQP1, BIB, AtPIP2;1 and 

AtPIP2;2 at initial (before Cd2+ application) and after bath application of 1 mM Cd2+. 

For all channels the magnitude of outward rectification was significantly greater in 

saline with Cd2+ as compared to without Cd2+, (p<0.001, one-way ANOVA).  

 

Relief of Ca2+ block by the addition of Ba2+ 

 Combined application of Ca2+ followed by Ba2+ was used to investigate possible 

competitive interactions between divalent cation blockers (Figure 5). After recording 

the initial traces in Ca2+ free solution (Figure 5A), CaCl2 was applied to the recording 

chamber. 1 mM CaCl2 was added to the recording saline of oocytes expressing 

AQP1 and BIB channels, 100 M to AtPIP2;1 and 10 M to AtPIP2;2 expressing 

oocytes. The response to CaCl2 was recorded for each oocyte. This was followed by 

application of 1mM BaCl2 in addition to the CaCl2. The subsequent application of 

1mM BaCl2 to the presence of the CaCl2 resulted in unblocking of the outward 

rectification current in oocytes expressing AtPIP2;1 and AtPIP2;2 channels. Oocytes 

expressing AQP1 and BIB channels did not show a similar recovery (Figure 5A right) 

Figure 5B shows box plots of data shown in Figure 5A. Figure 5C illustrates the 

current voltage relationship for traces shown in A.  

 

Analysis of other AQP ion conducting properties with AqB011 

The bumetanide derivative AqB011 was previously shown to block the human AQP1 

ion Channel function. In the subsequent experiment we investigated the possible 

blocking effect of AqB011 on AtPIP2;1 and AtPIP2;2 channels (Figure 6). Oocytes 
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expressing HsAQP1 were activated by CPT-cGMP, then incubated 2 h in divalent free 

saline with or without 20 μM AqB011, and re-tested for activation by CPT-cGMP. 

Results here confirm the inhibition of the HsAQP1 ion channel by AqB011 (Figure 6A). 

AtPIP2;1 and AtPIP;2 expressing oocytes were recorded in initial normal saline, then 

incubated 2 hours with 100μM AqB011, and recorded again. In comparison with 

HsAQP1, AqB011 treatment had no effect on AtPIP2;1 and AtPIP2;2 expressing 

oocytes (Figure 6A). This suggests that AQP1 is a selective blocker for mammalian 

AQP1. Non-AQP expressing control oocytes displayed minimal basal baseline 

conductance and 2 h incubation in 100 M AqB011 had no effect on the oocytes. 
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Discussion 

 

AQP ion channels carry different functional properties and are regulated differently 

among different species. HsAQP1 is activated via cGMP interaction with poly 

arginine residues on the loop D domain (Anthony, Brooks et al. 2000). The activation 

is influenced by tyrosine phosphorylation at position 253 (Y253) at the carboxyl 

terminal domain (Campbell, Birdsell et al. 2012). Ionic conductance is not a feature of 

all AQPs since no ionic conductance was observed in oocytes expressing HsAQP4, 

HsAQP5 or AtPIP2;7 aquaporins. The bath application of 10 M CPT-cGMP failed to 

trigger an ionic response in oocytes expressing HsAQP4 and HsAQP 5 channels. 

This observation is important since it rejects the possibility that the ionic 

conductances observed in AtPIP2;2, AtPIP2;1, HsAQP1 and DmBIB channels is 

simply due to other indirect mechanisms such as activation of native oocyte 

channels, or removal of extracellular divalent cations during recording sessions. 

AtPIP2;1, AtPIP2;2 and BIB channels moreover showed ionic conductance upon the 

insertion of recording electrodes into the oocyte membrane, thus it is possible that 

the activation observed in AtPIP2;1, AtPIP2;2 and BIB channels could have been 

constitutively on in the oocyte system, or rapidly triggered via intracellular signalling 

cascades (Yanochko and Yool 2002, Byrt, Zhao et al. 2016). External ion sensitive 

electrodes also demonstrated that AtPIP2;1 was functioning to transport Na+ 

independently of any “pricking” response (Byrt, Zhao et al. 2016). Possible 

contributions of the native oocyte Cl- current activated by intracellular Ca2+ were 
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minimized by using a holding potential of -40 mV for the voltage-clamp recordings, 

which results in inactivation of the native voltage-gated Ca2+ channels. 

Results here are the first to show that the plant AQP AtPIP2;2 from Arabidopsis 

functions to conduct ionic current when expressed in Xenopus oocytes in Ca2+-free 

saline. The ionic conductance recorded for these ion-conducting AQPs was not 

observed in non-AQP expressing oocytes treated in the same experimental conditions 

nor in AtPIP2;7 expressing oocytes, reducing the possibility that the ionic conductance 

observed is as an artefact, due to the exclusion of external Ca2+, or as a result of 

recruiting or activating a native oocyte cation channel by the exogenous expression of 

the aquaporins.  

The expression of the AQPs on oocyte membranes was confirmed using swelling 

assays, where oocytes expressing the HsAQP1, HsAQP4, HaAQP5, AtPIP2;7, 

AtPIP2;2 and AtPIP2;1 channels were placed in 50% hypotonic saline and the 

expansion of the oocyte membrane was recorded using a camera connected to a 

computer. The rates of oocyte swelling were significantly higher in oocytes expressing 

HsAQP1, AtPIP2;7, AtPIP2;2 and AtPIP2;1 channels as compared to non-AQP 

controls, confirming the expression of the channels on the membrane. Since BIB 

channels do not show osmotic permeability, the expression of BIB channels on oocyte 

membranes was previously confirmed using western blot and immunocytochemistry 

as described by (Yanochko and Yool 2002). 
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Effect of divalent cations on the ionic conductance 

We have demonstrated that both AtPIP2;1, and AtPIP2;2 ion channels are blocked by 

Ca2+ cations. In comparison with AtPIP2;1, the AtPIP2;2 channels are more sensitive 

to Ca2+, while both channels show less sensitivity to Mg2+. Previous studies have 

shown that AtPIP2;1 and AtPIP2;2  water permeability are inhibited by Ca2+ (Verdoucq, 

Grondin et al. 2008). In this study we show that the ionic component is also blocked 

by Ca2+. This property could be physiologically important, especially in response to 

stress, or during shrinking (Gerbeau, Amodeo et al. 2002).  AQP1 and BIB channels 

on the other hand show no sensitivity to Mg2+ ions, but both channels are blocked by 

Ca2+
 at 1 mM (Figure 2). HsAQP1, BIB, AtPIP2;1, and AtPIP2;2 channels are also 

blocked by Ba2+ cations, and show a voltage dependent unblocking of the outward 

rectification current in response to Ba2+ application (Figure 3).  

Oocytes expressing HsAQP1, BIB, AtPIP2;1 and AtPIP2;2 also show block of ionic 

conductance by Cd2+.  Moreover the application of Cd2+ to the bath saline causes an 

outward rectification in oocytes expressing HsAQP1, BIB, AtPIP2;1 and AtPIP2;2 

channels (Figure 4). It is interesting to mention that Cd2+ directly interacts with Asp28 

and Glu31 residues of spinach SoPIP2;1 (Spinacia oleracea PIP2;1) channel (Tornroth-

Horsefield, Wang et al. 2006). The equivalent residues are present in AtPIP2;1 and 

AtPIP2;2 channels, at positions Asp28 and Glu31 for AtPIP2;1 channels, and Asp26 and 

Glu29 for AtPIP2;2 channels. Therefore the equivalent site might serve as a Cd2+ 

binding site in AtPIP2;1 and AtPIP2;2 channels. When comparing AtPIP2;1 and 

AtPIP2;2 with HsAQP1 channels, AtPIP2;1 and AtPIP2;2 are more sensitive to block 

by Ca2+ as compared to Cd2+, on the other hand HsAQP1 ion conductance is more 
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sensitive to block by Cd2+ as compared to Ca2+. This difference in sensitivity to Ca2+ 

and Cd2+ between AQP1, AtPIP2;1 and AtPIP2;2 channels could be due to the 

difference in the amino acid sequences between the AQP1 and the AtPIP2;1, AtPIP2;2 

channels, such as in extracellular loop A region, as illustrated in Figure 7. AtPIP2;1 

channels also have aspartic acid residues at positions 67 and 74, (Asp67, 74), which in 

AtPIP2;2 are located at positions 65 and 72 (Asp65, 72). HsAQP1channels have a single 

Aspartic acid residue at position 48 (Asp48), while BIB channels do not have any 

negatively charged residues in loop A.  The difference in sensitivity to Ca2+ could be 

that Ca2+ is binding to Asp residues in loop A, therefore AtPIP2;1 and AtPIP2;2 

channels are more sensitive to Ca2+ compared to HsAQP1 due to more negatively 

charged residues in loop A.   

We were interested in testing the dual effect of Ca2+ and Ba2+ in oocytes expressing 

HsAQP1, BIB, AtPIP2;1 and AtPIP2;2 channels. The application of Ca2+ caused a 

block in AQP1, BIB, AtPIP2;1 and AtPIP2;2 ionic conductance, while AtPIP2;1 and 

AtPIP2;2 channels are more sensitive to Ca2+ ions as shown in this work. The 

application of Ba2+ in addition to Ca2+ in the saline caused an outward rectification at 

positive membrane potentials in oocytes expressing AtPIP2;1 and AtPIP2;2 (Figure 5). 

This suggests that both Ca2+ and Ba2+ are competing for the same binding site in 

AtPIP2;1 and AtPIP2;2 channels, while Ba2+ has lower binding affinity for the site. 

Another possibility is Ca2+ and Ba2+ are competing for binding to a double Aspartic acid 

resides on positions 244 and 245 (Asp 244, 245) of AtPIP2;2, equivalent to Asp 246, 247 of 

AtPIP2;1 on extracellular loop E domain between the 5th and 6th region. This negatively 

charged resides are not present in AQP1 nor BIB channels (Figure 7). The loop E 
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domain is demonstrated as the interaction site with mercury and TEA in HsAQP1 

channels (Preston, Jung et al. 1993, Brooks, Regan et al. 2000).  

 

AqB011 block 

In this study we confirmed the Inhibition of ion HsAQP1 ion channel function by 

AqB011, which was not observed in oocytes expressing AtPIP2;1 or AtPIP2;2 

channels. AqB011 previously was predicted to interact with the loop D gating domain 

at the intracellular side of the AQP1 channel (Kourghi, Pei et al. 2016), precisely with 

the first two arginine residues within a series of four arginines that is highly conserved 

among vertebrate AQP1 channels, and is also suggested as the cGMP-mediated 

activation site of the ionic conductance in AQP1 (Yu, Yool et al. 2006). Interestingly, 

this pair of arginine residues are absent in AtPIP2;1 or AtPIP2;2 sequences, instead 

have a proline residue as the first residue in the series (Figure 7). These results are 

in agreement with the hypothesis that the loop D domain of AQP1 functions as the 

interaction site of AqB011, and support the idea that AQP pharmacological agents 

can have differential effects based on differences in amino acid sequences between 

the AQP channels. 

 

Further research is needed to validate the possible interaction sites between the 

divalent cation blockers and the AQP channels, and further investigation is needed to 

study if the ionic pathway in AtPIP2;1 and AtPIP2;2 channels is through the central 

pore, or through the individual water pores of the monomers. In HsAQP1 evidence 

indicates that ions pass through the central channel, distinct from the water pores (Yool 
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and Weinstein 2002, Yu, Yool et al. 2006), while in BIB it is proposed that the individual 

monomer pores might serve as the permeation pathway for anions (Yool 2007). 

 

In this study we have demonstrated that AQP ion channel channels respond differently 

to the same pharmacological agents and have different sensitivities to block by divalent 

cations.  Understanding the regulation of AQP ion channels using pharmacology and 

divalent cations is an important step in unravelling their different properties, which will 

help us in understanding their diverse physiological roles such as in cancer metastasis, 

and improving salinity tolerance in plants. 
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Figure legends 

Figure 1: Osmotic water permeability assays confirm the expression of AQP1, AQP4, 

AQP5, AtPIP2;7, AtPIP2;2, and AtPIP2;1 channels on xenopus oocyte membranes. 

(A) Mean of swelling responses as a function of time of HsAQP1, AtPIP2;7, AtPIP2;2, 

and AtPIP2;1 expressing oocytes in 50% hypotonic saline. Water injected oocytes 

showed significantly lower changes in volume. Data are mean values for all oocytes 

assessed from different batches; error bars are S.E.M.; n = 6 per treatment group. (B) 

Box plots of swelling rates calculated from the data in A.  

 

Figure 2: Effects of Mg2+ and Ca2+ divalent cations on ionic current responses in 

oocytes expressing different classes of AQPs. (A) Superimposed currents as a 

function of time measured by voltage clamp steps from -110 to +60 mV, from a 

holding potential of -40 mV at maximal activation in divalent free saline (left), after 

application of Mg2+ (middle), and after application of Ca2+ (right). Control and 

AtPIP2;7-expressing oocytes lacked appreciable ionic conductances. (B) Current 

voltage relationships for the traces illustrated in A. (D) Box plot summary of the ionic 

conductance responses compiled for AQP types and treatments. **** (p<0.0001); ** 

(p < 0.01); * (p < 0.05); NS (not significant). n values are in italics above the x-axis.  

The data presented in A is summarized as box plots of ionic conductance in B. (C) 

Standardized current-voltage relationships for the traces illustrated in A.  

 

Figure 3: AtPIP2;1, AtPIP2;2  AQP1 and BIB ion channels display a voltage dependent 

unblocking of the outward current in response to BaCl2 treatment (A) Electrophysiology 
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traces recorded at initial or after activation (before treatment) and after bath application 

of 1 mM BaCl2. (B) Ionic conductance as box plots of the data presented in A. (C) 

Current-voltage relationships for data presented in A. (D) Diagram of relative 

rectification for HsAQP1, AtPIP2;1 and AtPIP2;2 and BIB channels recorded before 

and after Ba2+ application. Rectification values are the ratios of currents at +60 to that 

at -80 mV. Asterisks indicate significance (*p < 0.01, ** p <0.001, one-way ANOVA, 

Bonferroni post-hoc test). 

 

Figure 4: HsAQP1, BIB, AtPIP2;1 and AtPIP2;2 channels are sensitive to block by 

cadmium. (A) Superimposed current as a function of time for each clamped membrane 

potential illustrating the effect of CdCl2 on HsAQP1, HsAQP4, HsAQP5, AtPIP2;1 and 

AtPIP2;2 channels recorded in divalent free saline initially and after the bath application 

of 1 mM CdCl2. (B) Current voltage relationship for traces illustrated in A. (C) Decrease 

in current amplitude with time after bath application of 1 mM CdCl2 in recording saline 

monitored with repeated steps to +40 mV. (D) Summary box plots of the ionic 

conductance illustrating the effect of 1 mM CdCl2 on HsAQP1, AtPIP2;1 and AtPIP2;2 

ion channels. (E) Summary of outward rectification for HsAQP1, AtPIP2;1 and 

AtPIP2;2 and BIB channels recorded at initial (before CdCl2 application) and after bath 

application of 1 mM CdCl2. Rectification values are the ratio of current measured at 

+60 to that at -80 mV. Asterisks indicate significance (*p < 0.01, ** p <0.001, one-way 

ANOVA, Bonferroni post-hoc test).  
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Figure 5: Accumulative effect of subsequent application of Ca2+ followed by Ba2+ on 

different classes of AQP channels. (A) Superimposed traces showing the 

accumulative effect of Ca2+ followed by Ba2 application on AtPIP2;2, AtPIP2;1, 

HsAQP1 and BIB expressing oocytes recorded in divalent-free saline (left), after 

perfusion of saline containing the indicated amount of free Ca2+ (middle), and after 

application of Ba2+ in the continuing presence of the same concentration of Ca2+ 

(right) (B) Summary box plots of the ionic conductance in AtPIP2;2, AtPIP2;1, 

HsAQP1 and BIB expressing oocytes in different divalent salines. **** (p<0.0001); ** 

(p < 0.01);* (p < 0.05); NS (not significant); n values are above the x-axis (C) Current-

voltage relationships for traces shown in A. 

 

Figure 6: AqB011 blocks the HsAQP1 ionic conductance but not that carried by 

AtPIP2;1 and AtPIP2;2. (A) Traces recorded initially for AtPIP2;1 and AtPIP2;2 or 

after cGMP activation of HsAQP1, and after incubation in AqB011. HsAQP1 

expressing oocytes were incubated in 20 M AqB011 for 2 h and did not reactivate in 

response to a second cGMP application. AtPIP2;1 and AtPIP2;2 expressing oocytes 

were incubated in 100M AqB011 and remained unblocked after 2 h of incubation. 

(B)  Box plot summary of the conductance levels before and after treatment with 

AqB011. **** (p<0.0001); NS (not significant); n values are below the x-axis. 

 
Figure 7: Amino acid sequence alignment of HsAQP1, HsAQP4, HsAQP5, 

AtPIP2;1, AtPIP2;2, AtPIP2;7 and DmBIB. Subunit topology domains were assigned 

by structural prediction software (http://www.cbs.dtu.dk/services/TMHMM/) and visual 

inspection. 

http://www.cbs.dtu.dk/services/TMHMM/
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Amino acid sequences from the Protein Data Bank (PDB) were aligned using 

Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). Symbols: asterisk (*) 

identical residues across all sequences; colon (:) conserved substitutions; period (.) 

semi-conserved substitutions. Colors illustrate physiochemical properties: basic 

(magenta), acidic (blue), amine or sulfhydryl groups (green), small hydrophobic (red). 

Highlighted in yellow is the NPA (Asn-Pro-Ala) signature motif located in loops B and 

E, conserved in most aquaporins. 
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CONCLUSION 

Mohamad Kourghi 
 

 

Water is an essential compound for survival. Its homeostasis is mediated by a group 

of Membrane Intrinsic Proteins (MIP) known as Aquaporins (AQPs) found in all 

kingdoms of life. Not only do AQPs maintain water homeostasis, they also allow 

pathways for ion transport in a subset of AQPs. The mammalian AQPs 0, 1, and 6, 

the insect Drosophila big brain (BIB), and the plant nodulin 26, AtPIP2;1 and AtPIP2;2 

channels have been shown to have ionic activity (Yool and Campbell 2012, Byrt, Zhao 

et al. 2016). AQP1 might be an unusual member of the mammalian AQP family, given 

its ability to allow water permeability through the individual pores of the tetramer and 

cationic transport at the central pore gated via cGMP (Anthony, Brooks et al. 2000, 

Yu, Yool et al. 2006), however other classed of AQPs might yet be found to act as ion 

channels when the correct array of stimuli are identified.  Whether the ionic transport 

through AQP1 was of physiological relevance was an area of debate (Saparov, 

Kozono et al. 2001). Recent evidence supporting a functional role of the AQP1 ion 

channel in processes such as cancer cell migration (Kourghi, Pei et al. 2016, Pei, 

Kourghi et al. 2016) has opened the door for new research opportunities.  AQP1 plays 

an important role in migration and metastasis of subtypes of aggressive cancers such 

as mammary, melanoma, astrocytoma and glioblastoma (Hu and Verkman 2006, 

McCoy and Sontheimer 2007, El Hindy, Bankfalvi et al. 2013). Therefore it is possible 

that if we can impair water transport by blocking AQP1 channels, we can slow down 

the rate of cancer cell migration.  

Results gained using newly developed pharmacological inhibitors of the ion channel 

and the water channels of AQP1 (Kourghi, Pei et al. 2016, Pei, Kourghi et al. 2016) 



 

Page | 303  
 

have shown that both play a significant role in the migration of cancer cells. Two AQP1 

ion channel blockers AqB007 and AqB011, from a custom library of bumetanide 

derivatives synthesised by collaborator Dr Gary Flynn (Spacefill Enterprises; Montana 

USA),  are specific blockers of the AQP1 central pore, without inhibiting the water 

permeability of AQP1 (Kourghi, Pei et al. 2016). Results have shown that AqB011 is 

the more potent blocker with an IC50 value of 14 M. AqB007 and AqB011 were tested 

in two colon cancer cell lines: HT29 with high AQP1 expression, and SW480 with high 

AQP5 expression, evaluating effects on migration rate using wound closure assay.  

Both compounds, AqB007 and AqB011 slowed down the rate of wound closure in 

HT29 cancer cells, without appreciable effects on SW480 cells, indicating that the 

inhibitory effects of the compounds are likely to be selective for AQP1. AqB011 caused 

a greater block of migration as compared to AqB007, as predicted from the relative 

order of potency observed in electrophysiology analyses or AQP1 channels recorded 

in the Xenopus oocyte expression system (Kourghi, Pei et al. 2016).  

Molecular docking analysis predicted a pair of arginine residues located in positions 

159 and 160 in loop of D domain of human AQP1 to be the interaction site for the 

blocker AqB011 (Chapter 3 in this thesis). This prediction was tested using voltage 

clamp recordings of a double arginine mutant construct AQP1 R159A+R160A, which 

showed no sensitivity to block. These data supported the in silico model, showing that 

the gating loop D domain is necessary for AqB011-mediated block of the AQP1 central 

pore. Taken together our findings have demonstrated that AQP1 ion channel function 

is physiologically important in facilitating migration of cancer cells, and blocking AQP1 

ionic conductance can significantly reduce migration in cancer cells expressing AQP1.  
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Further research in the field has led to the discovery of two additional AQP1 water 

channel inhibitors, bacopaside I and bacopaside II, derived from the medicinal plant 

Bacopa monnieri. Results showed that bacopaside II is a potent blocker with an IC50 

value of 14 M compared to bacopaside I (IC50 48 M).  Wound closure experiments 

conducted on HT29 cancer cell lines revealed that both bacopaside I and bacopaside 

II slowed down the rate of migration in HT29 cell lines (Pei, Kourghi et al. 2016).  It will 

be interesting to test whether combined block of ionic conductance with AqB011 and 

water flux with Bacopaside II could have synergistic effect in blocking cancer cell 

migration in cell lines expressing AQP1. The newly identified AQP1 water and ion 

channel blockers open the opportunity for in vitro and in vivo experiments to test these 

AQP1 water and ion channel functions in vivo, and possibly in future clinical trials.  

 

AQP1 is also highly expressed in cell membrane of red blood cells (RBCs). Sickle cell 

anaemia is a genetic disorder that affects RBCs, caused by inherited mutations in the 

oxygen-carrying haemoglobin (Hb) molecule. Dehydration of the affected RBCs leads 

to aggregation of HbS, forming long polymers that induce the sickling morphology 

characteristic of sickle cell anaemia.. This change in morphology of RBC follows the 

activation of a leak pathway known as the Psickle current; loss of cations from the cell 

causes dehydration, promoting the sickle state of RBC. 5-hydroxymethyl furfural 

(5HMF) is an agent used to reduce the severity of the disease, however the target site 

is not well understood. We have shown that 5HMF is a blocker of AQP1 ion channel. 

Therefore it is possible that 5HMF is preventing the leak current and promoting the 

hydration state of RBC via targeting AQP1 ion channels. Therefore it is possible to 

further enhance the hydration state of RBC and reduce the sickling via a more potent 

blocker such as AqB011, yet to be validated by in vivo experiments.  
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Our research has led to the discovery of two new AQP ion channels, AtPIP2;1 and 

AtPIP2;2 from the plant AQP family. Based on experimental recordings it’s suggested 

that they may function as a non-selective cation channel through the central pore, 

much like the AQP1 channel. Both AtPIP2;1 and AtPIP2;2 are highly sensitive to 

calcium, and this could be an important physiological role, particularly in response to 

stress. This finding has opened new research opportunities to investigate the 

physiological implications of AtPIP2;1 and AtPIP2;2 ion channels. One possible 

suggestion could be improving salt tolerance in plants (Byrt, Zhao et al. 2016).  

These findings helps to reform our perception of AQPs as just simple water channels 

and opens new exciting opportunities to further investigate the importance and the 

diverse roles that AQP ion channels can play in physiology and pathology. 
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