
Fully Convolutional Instance-level Visual
Recognition

Zhi Tian

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

The University of Adelaide

May 14, 2021

iii

Contents

Abstract xv

Declaration of Authorship xvii

Acknowledgements xxv

1 Introduction 1
1.1 Object Detection . 2
1.2 Keypoint Detection . 3
1.3 Instance Segmentation . 3
1.4 Instance Segmentation with Box Annotations 4

2 Literature Review 5
2.0.1 Object Detection . 5
2.0.2 Keypoint Detection . 6
2.0.3 Instance Segmentation and Conditional Convolutions 7
2.0.4 Box-supervised Segmentation 8

3 FCOS: Fully Convolutional One-Stage Object Detection 11
3.1 Introduction . 11
3.2 Our Approach . 14

3.2.1 Fully Convolutional One-Stage Object Detector 15
3.2.2 Multi-level Prediction with FPN for FCOS 17
3.2.3 Center-ness for FCOS . 19

3.3 Experiments . 19
3.3.1 Analysis of FCOS . 21

Best Possible Recall (BPR) of FCOS 21
Ambiguous Samples in FCOS 22
The Effect of Center-ness . 22
Other Design Choices . 23

3.3.2 FCOS vs. Anchor-based Counterparts 25
3.3.3 Comparison with State-of-the-art Detectors on COCO 25
3.3.4 Real-time FCOS . 27
3.3.5 FCOS on CrowdHuman . 28

3.4 Conclusions . 30

iv

4 DirectPose: Direct End-to-End Multi-Person Pose Estimation 31
4.1 Introduction . 31
4.2 Our Approach . 34

4.2.1 End-to-End Multi-Person Pose Estimation 34
4.2.2 Keypoint Alignment (KPAlign) Module 35
4.2.3 Regularization from Heatmap Learning 37

4.3 Experiments . 37
4.3.1 Ablation Experiments . 38

Baseline: the naive end-to-end framework 38
Keypoint alignment (KPAlign) module 38
Grouped KPAlign . 39
Using separate convolutional features 39
Where to sample features in KPAlign? 39
Regularization from heatmap learning 40

4.3.2 Combining with Bounding Box Detection 40
4.3.3 Comparisons with State-of-the-art Methods 41
4.3.4 Visualization of KPAlign . 43
4.3.5 Visualization of Keypoint Detections 43

4.4 Conclusions . 44

5 Conditional Convolutions for Instance Segmentation 47
5.1 Introduction . 47
5.2 Instance Segmentation with CondInst 50

5.2.1 Overall Architecture . 50
5.2.2 Network Outputs and Training Targets 52
5.2.3 Loss Functions . 53
5.2.4 Inference . 54

5.3 Experiments . 55
5.3.1 Implementation Details . 55
5.3.2 Architectures of the Mask Head 56
5.3.3 Design Choices of the Mask Branch 57
5.3.4 How Important to Upsample Mask Predictions? 57
5.3.5 CondInst without box Detection 58
5.3.6 Comparisons with State-of-the-art Methods 58

5.4 Conclusions . 59

6 High-Performance Instance Segmentation with Box Annotations 61
6.1 Introduction . 61
6.2 Approach . 64

6.2.1 Projection and Pairwise Affinity Mask Loss 64
6.2.2 Learning without Mask Annotations 66

6.3 Experiments . 68
6.3.1 Implementation Details . 68

v

6.3.2 Projection and Pairwise Affinity Loss for Mask Learning 68
6.3.3 Box-supervised Instance Segmentation 68
6.3.4 Comparisons with State-of-the-art 71
6.3.5 Experiments on Pascal VOC 71
6.3.6 Extensions: Semi-supervised Instance Segmentation 72
6.3.7 Extensions: Box-supervised Character Segmentation 73

6.4 Conclusions . 73

7 Conclusions 75

Bibliography 77

vii

List of Figures

1.1 Instance-level recognition tasks. From left to right: object detec-
tion; keypoint detection; and instance segmentation. 2

3.1 Overall concept of FCOS. As shown in the left image, FCOS works
by predicting a 4D vector (l, t, r, b) encoding the location of a bounding
box at each foreground pixel (supervised by ground-truth bounding
box information during training). The right plot shows that when a
location residing in multiple bounding boxes, it can be ambiguous in
terms of which bounding box this location should regress. 11

3.2 The network architecture of FCOS, where C3, C4, and C5 denote
the feature maps of the backbone network and P3 to P7 are the feature
levels used for the final prediction. H ×W is the height and width of
feature maps. ‘/s’ (s = 8, 16, ..., 128) is the down-sampling ratio of the
feature maps at the level to the input image. As an example, all the
numbers are computed with an 800× 1024 input. 14

3.3 Speed/accuracy trade-off between FCOS and several recent
methods: CenterNet Zhou, Wang, and Krähenbühl, 2019, YOLOv3
Redmon and Farhadi, 2018 and RetinaNet Lin et al., 2017b. Speed is
measured on a NVIDIA 1080Ti GPU. 15

3.4 Center-ness. Red, blue, and other colors denote 1, 0 and the values
between them, respectively. Center-ness is computed using Eq. (3.3)
and decays from 1 to 0 as the location deviates from the center of the
object. 20

3.5 Qualitative results of applying the center-ness scores to clas-
sification scores. A point in the figure denotes a bounding box. The
dashed line is the line y = x. As shown in the right figure, after ap-
plying the center-ness scores, the boxes with low IoU scores but high
confidence scores (i.e., under the line y = x) are reduced substantially. 23

3.6 Qualitative results. FCOS works well with a wide range of objects
including crowded, occluded, extremely small and very large objects.
Best viewed on screen. 27

3.7 Qualitative results on the CrowdHuman val set with the ResNet-50-
FPN backbone. Best viewed on screen. 28

viii

4.1 The naive direct end-to-end keypoint detection framework.
As shown in the figure, the framework requires a single feature vector
on the final feature maps to encode all the essential information of an
instance (e.g., the precise locations of some keypoints for the instance,
denoted as (x0, y0), ...(xk−1, yk−1)). 32

4.2 The proposed direct end-to-end multi-person pose estimation
framework. The framework shares a similar architecture with one-
stage object detectors such as FCOS Tian et al., 2019b but the box
branch is replaced with a keypoint branch. KPAlign: the proposed
keypoint alignment module, as described in Sec. 4.2.2. Heatmaps: the
branch for jointly heatmap-based learning and will be removed when
testing. Keypoints: the branch for keypoint detection. Classification is
from FCOS and used to classify the locations on the feature maps into
“person" or “not person". Center-ness is also from FCOS. 33

4.3 The proposed keypoint detection framework with the Key-
point Alignment (KPAlign) module. Feature pyramid networks
(FPNs) are not shown here. The aligner consists a locator and a sam-
pler. The locator is essentially a 3 × 3 convolution layer and predicts
the rough locations of the keypoints. Next, the feature sampler samples
feature vectors at these locations. Thus, the aligner can roughly align
the features and the predicted keypoints. The predictor employs these
aligned feature vectors to make the final keypoint predictions. 34

4.4 The loss curves of training with or without the heatmap learn-
ing. As shown in the figure, with the heatmap learning, the model can
achieve a significantly lower loss value and thus much better performance. 41

4.5 Visualization results of KPAlign on MS-COCO minival. The
first image in each group shows the outputs of the locator in KPAlign
(i.e., the locations where the sampler samples the features used to pre-
dict the keypoints). The orange point denotes the original location
where the features will be used if KPAlign is not used. The second im-
age shows the final keypoint detection results. As shown in the figure,
the proposed KPAlign can make use of the features near the keypoints
to predict them. The final image shows that the ground-truth key-
points. Zoom in for a better look. 43

4.6 Visualization results of the proposed DirectPose on MS-COCO
minival. DirectPose can directly detect a wide range of poses. Note
that some small-scale people do not have ground-truth keypoint anno-
tations in the training set of MS-COCO, thus they might be missing
when testing. 44

4.7 Visualization results of the proposed DirectPose with the si-
multaneous box detection on MS-COCO minival. 45

ix

5.1 CondInst uses instance-aware mask heads to predict the masks
for each instance. K is the number of instances to be predicted.
The filters in the mask head vary with different instances, which are
conditioned on the target instance. ReLU is used as the activation
function (excluding the last conv. layer). 48

5.2 Qualitative comparisons with other methods. We compare the
proposed CondInst against YOLACT Bolya et al., 2019a and Mask R-
CNN He et al., 2017. Our masks are generally of higher quality (e.g.,
preserving more details). 50

5.3 The overall architecture of CondInst. C3, C4 and C5 are the
feature maps of the backbone network (e.g., ResNet-50). P3 to
P7 are the FPN feature maps as in FCOS. Fmask is the mask branch’s
output and F̃mask is obtained by concatenating the relative coordinates
to Fmask. The classification head is the same as in FCOS. The con-
troller generates the filter parameters θθθx,y of the mask head for the
instance. Note that the heads in the dashed box are repeatedly applied
to P3 · · ·P7. The mask head is instance-aware, and is applied to F̃mask

as many times as the number of instances in the image (refer to Fig. 5.1). 51
5.4 More qualitative results of CondInst. Best viewed on screen. . . 60

6.1 The two proposed loss terms. Top row: the projections onto x-axis
and y-axis of the mask and the box, and the projections should be the
same, where (x0, y0) and (x1, y1) are the two corners of the box. Bottom
row: the pairwise term. For each pixel, we compute the pairwise label
consistency between the pixel and its 8 neighbours (with dilation rate
2). Thus each pixel has 8 edges and we have 8 consistency maps in
the right. The white locations in the right figure are the edges we have
the supervision derived from the color similarity, and other edges are
discarded in the loss computation. 62

6.2 Some qualitative results of BoxInst with the ResNet-101 based
model achieving 33.0% mask AP on COCO val2017. The model is
trained without any mask annotations and can infer at 10 FPS on a
1080Ti GPU. Best viewed on screen. 63

6.3 The relationship between the edges’ labels and the color sim-
ilarity thresholds. ‘blue curve’: the proportion of the positive edges
in the edges with color similarity above the threshold. ‘red curve’: the
proportion of the supervised positive edges in all the positive edges. The
number of positive edges are computed with the ground-truth masks of
the COCO val2017 split. 67

6.4 Character masks predicted by BoxInst. No mask annotations are used
for training. 73

xi

List of Tables

3.1 The best possible recall (BPR) of anchor-based RetinaNet under a va-
riety of matching rules and the BPR of FCOS on the COCO val2017

split. 20
3.2 The ratios of the ambiguous samples to all the positive samples in

FCOS. 1, 2 and ≥ 3 denote the number of ground-truth boxes a location
should be associated to. If the number is greater than 1, the location
is defined as an “ambiguous sample" in this work. 21

3.3 FCOS vs. RetinaNet on val2017 split with ResNet-50-FPN as the
backbone. All experiments use the same training settings. The pro-
posed anchor-free FCOS achieves even better performance than anchor-
based RetinaNet. #A: the number of anchors per location. RetinaNet
(#A=9): the original RetinaNet from Detectron2 Wu et al., 2019.
RetinaNet w/ imprv. RetinaNet with the universal improvements in
FCOS including Group Normalization (GN) Wu and He, 2018, GIoU
loss 2019 and scalars in regression, using P5 instead of C5 and NMS
threshold 0.6 instead of 0.5. We have tried our best to make all
the details consistent. As shown the table, even without the center-
ness branch, the much simpler FCOS already outperforms "RetinaNet
(#A=9) w/ imprv" by 0.4% in AP. With the center-ness branch, the
performance is further improved to 38.9% in AP. 21

3.4 Ablation study for the proposed center-ness branch on the
val2017 split. ctr.-ness†: using the center-ness computed from the
predicted regression vector when testing (i.e., replacing the ground-
truth values with the predicted ones in Eq. (3.3)). w/ ctr.-ness (L1):
using L1 instead of BCE as the loss to optimize the center-ness. 22

3.5 Ablation study for design choices in FCOS. w/o GN: without using
Group Normalization (GN) for the convolutional layers in heads. w/
IoU: using IoU loss in Yu et al., 2016 instead of GIoU. w/ C5: using
C5 instead of P5. 24

3.6 Ablation study for the radius r of positive sample regions (defined in
Section 3.2.1). 24

xii

3.7 Ablation study for different strategies of assigning objects to FPN lev-
els. FPN: the strategy of assigning object proposals (i.e., ROIs) to
FPN levels in the original FPN, described in the text. h∗ and w∗ are
the height and width of a ground-truth box, respectively. l∗, t∗, r∗

and b∗ are the distances from a location to the four boundaries of a
ground-truth box. “max(l∗, t∗, r∗, b∗)" (used by FCOS) has the best
performance. 24

3.8 FCOS vs. other state-of-the-art two-stage or one-stage detectors (single-
model results). FCOS outperforms a few recent anchor-based and
anchor-free detectors by a considerable margin. 26

3.9 Real-time FCOS (FCOS-RT) models. AP (%) is on COCO val

split. “shtw.": sharing towers (i.e., 4× conv. layers shown in Fig. 3.2)
between the classification and regression branches. The inference time
is measured with a single 1080Ti or Titan XP GPU (these two GPUs’
speeds are close). 27

3.10 FCOS for crowded object detection on the CrowdHuman dataset.
Even on the highly crowded benchmark, FCOS still attains even better
performance than anchor-based RetinaNet. Note that lower MR−2 is
better. “MIP w. set NMS”: Multiple Instance Prediction, which pre-
dicts multiple instances from a single location as proposed by Chu et
al., 2020. Note that we are not pursuing the state-of-the-art perfor-
mance on the benchmark. We only show that the anchor boxes are not
necessary even on the highly-crowded benchmark. 28

4.1 Ablation experiments on COCO minival for the proposed KPAlign
module. Baseline: the naive keypoint detection framework, as shown
in Fig. 4.1. “w/ KPAlign†": using the KPAlign module in the naive
framework but disabling the aligner in it. “w/ KPAlign": using the
full-featured KPAlign module. 38

4.2 Ablation experiments on COCO minival for the design choices
in KPAlign. “+ Grouped": using Grouped KPAlign. “+ Sep. fea-
tures": using separate (but slimmer) feature maps for different keypoint
groups. “+ Better sampling": the predictor samples features on finer
feature maps (i.e., from PL to PL−1). 39

4.3 Ablation experiments on COCO minival for DirectPose with
heatmap prediction. Baseline: without the heatmap learning. “16×
Heatmaps": predicting the heatmaps with downsampling ratio being
16. “8× Heatmaps": predicting the heatmaps with downsampling ratio
being 8 (i.e., using P3). “+ Long sched.": increasing the number of
training epochs from 25 to 100. 40

xiii

4.4 Our framework with person box detection on COCO minival.
The proposed framework can achieve reasonable person detection re-
sults (55.3% in AP). As a reference, the Faster R-CNN person detector
in Mask R-CNN He et al., 2017 achieves 53.7% in AP. 40

4.5 The performance of our proposed end-to-end framework on
COCO test-dev split. ∗ and † respectively denote using refining and
multi-scale testing. 42

5.1 Instance segmentation results by varying the depth of the
mask head (width = 8) on MS-COCO val2017 split. “depth":
the number of layers in the mask head. “time": the milliseconds that
the mask head takes for processing 100 instances. 55

5.2 Instance segmentation results by varying the width of the
mask head (with depth = 3) on MS-COCO val2017 split.
“time": the milliseconds that the mask head takes for processing 100

instances. 55
5.3 The instance segmentation results by varying the number of

channels of the mask branch output (i.e., Cmask) on MS-COCO
val2017 split. 56

5.4 Ablation study of the input to the mask head on MS-COCO
val2017 split. As shown in the table, without the relative coordinates,
the performance drops significantly from 35.7% to 31.4% in mask AP.
Using the absolute coordinates cannot improve the performance re-
markably. If the mask head only takes as input the relative coordinates
(i.e., no appearance in this case), CondInst also achieves modest per-
formance. 56

5.5 The instance segmentation results on MS-COCO val2017 split
by changing the factor used to upsample the mask predictions.
“resolution" denotes the resolution ratio of the mask prediction to the
input image. 57

5.6 Instance segmentation results with different NMS algorithms.
Mask-based NMS can obtain the same overall performance as box-based
NMS, which suggests that CondInst can totally eliminate the box de-
tection. 58

5.7 Comparisons with state-of-the-art methods on MS-COCO test-
dev. “Mask R-CNN" is the original Mask R-CNN He et al., 2017 and
“Mask R-CNN∗" is the improved Mask R-CNN in Detectron2 Wu et
al., 2019. “aug.": using multi-scale data augmentation during training.
“sched.": the used learning rate schedule. 1× is 90K iterations. ‘w/
sem": using the auxiliary semantic segmentation task. 59

xiv

6.1 The projection and pairwise affinity mask loss vs. the original
pixelwise one in the fully-supervised settings. As we can see here,
they attain very similar mask AP on the COCO split val2017. 68

6.2 Varying the color similarity threshold τ in the proposed mask loss
on the COCO val2017 split. “prop." is the proportion of the positive
edges in the edges with Se ≥ τ . “fully-sup.": fully-supervised results. . 69

6.3 Varying the size and dilation of the local patches (with τ = 0.1)
in the proposed mask loss on the COCO val2017 split. “prop." is the
proportion of the positive edges in the edges with Se ≥ τ . “fully-sup.":
fully-supervised results. As shown in Table 6.2, by using τ = 0.1,
BoxInst can achieve 30.7 mask AP with only box annotations, which
is close the fully-supervised mask AP (35.4%) and significantly better
localization precision than boxes (10.6% mask AP as shown in Table 6.4). 69

6.4 The mask AP on COCO val2017 by applying the different loss
terms. “box mask": using the masks generated by boxes. 69

6.5 Comparisons with state-of-the-art methods on the COCO test-
dev split. “†" means that the results are on the COCO val2017 split.
BBTP only reported the results on the val2017 split. Our BoxInst
outperforms the previous best reported mask AP by over absolute 10%
mask AP. Ours even outperforms two recent fully supervised meth-
ods, YOLACT and PolarMask, and is close to state-of-the-art fully-
supervised results. ‘1×’ means 90K iterations. 70

6.6 Results on Pascal VOC val2012. Here, BBTP∗ denotes the results
after we fix the issue 2020 in its Matlab evaluation code. Clearly, Box-
Inst achieves significantly improved mask AP, outperforming previous
best by about 10%. Here, the GrabCut obtains the instance masks by
taking as input the boxes generated by BoxInst. Thus, the only differ-
ence between the GrabCut and BoxInst is the way to obtain the masks.
. 71

6.7 BoxInst for semi-supervised instance segmentation. These mod-
els are trained with the 20 classes mask annotations and the other 60
classes (i.e., unseen classes) are only with box annotations. 72

6.8 BoxInst for semi-supervised instance segmentation. The models
are trained with the 60 classes mask annotations and other 20 classes
(i.e., unseen classes) are only with box annotations. 72

xv

University of Adelaide

Abstract

Fully Convolutional Instance-level Visual Recognition

by Zhi Tian

Instance-level recognition such as object detection and instance segmentation are the
fundamental problems in computer vision, which underpins many downstream com-
puter vision applications. In this thesis, we propose a series of new methods to solve
the problems with the simple and effective fully convolutional networks.

First, we propose a fully convolutional one-stage object detector (FCOS) to solve
object detection in a per-pixel prediction fashion. Unlike previous detectors, FCOS
completely avoids the complicated computation related to anchor boxes such as cal-
culating the intersection over union (IoU) scores during training. More importantly,
we also avoid all hyper-parameters related to anchor boxes. We demonstrate a much
simpler and flexible detection framework achieving improved detection accuracy.

Second, we propose the first direct end-to-end multi-person pose estimation frame-
work, termed DirectPose. The proposed framework directly predicts instance-aware
keypoints for all the instances from a raw input image, eliminating the heuristic group-
ing in bottom-up methods or box detection and RoI operations in top-down ones.

Third, we propose a simple yet effective instance segmentation framework, termed
CondInst (conditional convolutions for instance segmentation). Top-performing in-
stance segmentation methods such as Mask R-CNN rely on ROI operations (typically
ROIPool or ROIAlign) to obtain the final instance masks. In contrast, we propose to
solve instance segmentation with dynamic instance-aware networks, conditioned on
instances. For the first time, we demonstrate a simpler instance segmentation method
that can achieve improved performance in both accuracy and inference speed.

Finally, we present a high-performance method that can achieve mask-level instance
segmentation with only box annotations for training. Our core idea is to redesign
the loss of learning masks in CondInst, with no modification to the network itself.
The new loss functions can supervise the mask training without relying on mask
annotations. Our excellent experiment results on COCO and Pascal VOC indicate
that our method dramatically narrows the performance gap between weakly and fully
supervised instance segmentation.

Codes are publicly available at https://github.com/aim-uofa/AdelaiDet.

http://www.adelaide.edu.au
https://github.com/aim-uofa/AdelaiDet

xvii

Declaration of Authorship

I certify that this work contains no material which has been accepted for the award of
any other degree or diploma in my name, in any university or other tertiary institution
and, to the best of my knowledge and belief, contains no material previously published
or written by another person, except where due reference has been made in the text.
In addition, I certify that no part of this work will, in the future, be used in a
submission in my name, for any other degree or diploma in any university or other
tertiary institution without the prior approval of the University of Adelaide and where
applicable, any partner institution responsible for the joint-award of this degree.

I acknowledge that copyright of published works contained within this thesis resides
with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on
the web, via the University’s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University to
restrict access for a period of time.

I acknowledge the support I have received for my research through the provision of
an Australian Government Research Training Program Scholarship.

Zhi Tian

May 14, 2021

xxv

Acknowledgements
I have spent wonderful years at the University of Adelaide. First of all, I would
appreciate my principal supervisor Prof. Chunhua Shen for his great help in these
years. I am very lucky to have had such an awesome supervisor. He helped me
improve my comprehensive research skills and also taught me many things other than
research. Without his help, I cannot succeed in my PhD career.

I am also grateful to my co-authors and peers. Thank you for your constructive
discussions with me. These discussions gave me much inspiration. They are Tong He,
Hao Chen, Yuliang Liu, Rufeng Zhang, Bohan Zhuang, Zhipeng Cai, Qichang Hu,
Hu Wang, Wei Yin, Yifan Liu, Libo Sun, Yunzhi Zhuge, Jiawang Bian, Xinyu Zhang,
Dong Gong, Yang Zhao, Yutong Dai, Peng Chen, Xinlong Wang, Weian Mao, Bowen
Zhang, Xinyu Wang and Rafael Felix. I also want to thank Google, LLC for their
generous financial support with the Google PhD fellowship.

Moreover, thank the coffee machine in our lab. It has made thousands of cups of coffee
for me. The great coffee makes me energetic when I am coding or writing papers. Last
but not least, I would like to thank my family for their selfless support.

xxvii

Publications

This thesis contains the following works that have been published or prepared for
publication:

• FCOS: Fully Convolutional One-Stage Object Detection.
Zhi Tian, Chunhua Shen, Hao Chen, Tong He.
The International Conference on Computer Vision (ICCV), 2019.

• FCOS: A Simple and Strong Anchor-free Object Detector.
Zhi Tian, Chunhua Shen, Hao Chen, Tong He.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2020.

• DirectPose: Direct End-to-End Multi-Person Pose Estimation.
Zhi Tian, Hao Chen, Chunhua Shen.
ArXiv Preprint, 2020.

• Conditional Convolutions for Instance Segmentation.
Zhi Tian, Chunhua Shen, Hao Chen.
The European Conference on Computer Vision (ECCV), 2020.

• BoxInst: High-Performance Instance Segmentation with Box Annotations.
Zhi Tian, Chunhua Shen, Xinlong Wang, Hao Chen.
The Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

In addition, I have the following papers not included in this thesis:

• Decoders Matter for Semantic Segmentation: Data-Dependent Decoding En-
ables Flexible Feature Aggregation.
Zhi Tian, Tong He, Chunhua Shen, Youliang Yan.
The Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

• Learning and Memorizing Representative Prototypes for 3D Point Cloud Se-
mantic and Instance Segmentation.
Tong He, Dong Gong, Zhi Tian, Chunhua Shen.
The European Conference on Computer Vision (ECCV), 2020.

• BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation.
Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yongming Huang, Youliang
Yan.
The Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

xxviii

• NAS-FCOS: Fast Neural Architecture Search for Object Detection.
Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian, Chunhua Shen.
The Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

• Mask Encoding for Single Shot Instance Segmentation.
Rufeng Zhang, Zhi Tian, Mingyu You, Chunhua Shen, Youliang Yan.
The Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

• Convolutional Character Networks.
Linjie Xing, Zhi Tian, Weilin Huang, Matthew Scott.
The International Conference on Computer Vision (ICCV), 2019.

• Knowledge Adaptation for Efficient Semantic Segmentation.
Tong He, Chunhua Shen, Zhi Tian, Dong Gong, Changming Sun, Youliang
Yan.
The Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

1

Chapter 1

Introduction

Instance-level visual recognition, one of the most fundamental tasks in computer vi-
sion, requires the computer algorithms to recognize each individual instance (e.g.,
persons, cars, dogs, and cats) in an image. For each instance, the computer might be
required to output a bounding-box tightly covering the entire instance, the keypoints
of the instance, and/or the per-pixel mask of the instance. It results in three computer
vision tasks — object detection, keypoint detection and instance segmentation, respec-
tively. The targets of the three tasks are shown in Fig. 1.1. The three tasks are of
great importance in modern computer vision systems, and also underpin many down-
stream applications such as tracking Wang et al., 2019, person re-identification Milan
et al., 2016, and image retrieval Plummer et al., 2015, to name just a few.

There have been many different methods developed to solve these tasks. For exam-
ple, for object detection, we have one-stage anchor-based detectors such as SSD Liu
et al., 2016b, YOLO Redmon and Farhadi, 2017; Redmon and Farhadi, 2018, and
RetinaNet Lin et al., 2017b, as well as two-stage region proposals based methods such
as Fast R-CNN Girshick, 2015 and Faster R-CNN Ren et al., 2015. For instance seg-
mentation, we have the region proposals based Mask R-CNN He et al., 2017. These
methods have achieved unprecedented performance on these tasks.

Although these methods look totally different, at the core of these methods, they all
rely on fully convolutional networks (FCNs) Long, Shelhamer, and Darrell, 2015 to
obtain the dense features of an input image. Built on the dense features, different
designs are used for these tasks. For example, anchor boxes and ROIPooling are used
for object detection; ROIAlign He et al., 2017 is used for instance segmentation; and
Part Affinity Fields (PAFs) Cao et al., 2017 are for keypoint detection. These task-
specific operations require special coding implementation and optimization, and make
these methods deviate from the neat fully convolutional frameworks. Recently, the
fully convolutional frameworks have achieved tremendous success in dense prediction
tasks such as semantic segmentation Long, Shelhamer, and Darrell, 2015; Tian et al.,
2019a; He et al., 2019a, depth estimation Liu et al., 2016a; Yin et al., 2019, keypoint
detection Chen et al., 2017b and counting. It is natural to ask a question: Can we
solve all these instance-level recognition tasks in the neat fully convolutional fashion,

2 Chapter 1. Introduction

University of Adelaide 1

Figure 5 – Visualization results of KPAlign on MS-COCO minival. The first image in each group shows the outputs of the locator in
KPAlign (i.e., the locations where the sampler samples the features used to predict the keypoints). The orange point denotes the original
location where the features will be used if KPAlign is not used. The second image shows the final keypoint detection results. As shown
in the figure, the proposed KPAlign can make use of the features near the keypoints to predict them. The final image shows that the
ground-truth keypoints. Zoom in for a better look.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., pages 770–778, 2016. 6

[11] Lichao Huang, Yi Yang, Yafeng Deng, and Yinan Yu. Dense-
box: Unifying landmark localization with end to end object
detection. arXiv preprint arXiv:1509.04874, 2015. 1

[12] Shaoli Huang, Mingming Gong, and Dacheng Tao. A coarse-
fine network for keypoint localization. In Proc. IEEE Int.
Conf. Comp. Vis., pages 3028–3037, 2017. 8

[13] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres,
Mykhaylo Andriluka, and Bernt Schiele. Deepercut: A

deeper, stronger, and faster multi-person pose estimation
model. In Proc. Eur. Conf. Comp. Vis., pages 34–50.
Springer, 2016. 3

[14] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Proc. IEEE Conf. Comp.
Vis. Patt. Recogn., pages 2117–2125, 2017. 4

[15] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Proc.
IEEE Conf. Comp. Vis. Patt. Recogn., pages 2980–2988,
2017. 3, 6

Figure 1.1. Instance-level recognition tasks. From left to right:
object detection; keypoint detection; and instance segmentation.

analogue to FCNs for semantic segmentation Long, Shelhamer, and Darrell, 2015, for
example? Thus those fundamental vision tasks can be unified in the fully convolutional
framework. We show in this thesis that the answer is affirmative.

1.1 Object Detection

Among the three tasks, object detection is the simplest one and is often used as the
first step in other two tasks. The basic idea to solve object detection is to exhaustively
examine every possible location on an image with sliding-windows or region propos-
als. In the context of deep learning, the sliding-windows in traditional detectors have
been transformed into anchor boxes, which are some initial boxes on the convolu-
tional feature maps. Anchor boxes can take advantages of the sharing computation in
convolutional neural networks (CNNs), which makes the detector tremendously faster
and thus becomes very popular in object detection. All current mainstream detectors
such as Faster R-CNN Ren et al., 2015, SSD Liu et al., 2016b and YOLOv2, v3 Red-
mon and Farhadi, 2018 rely on a set of pre-defined anchor boxes and it has long been
believed that the use of anchor boxes is the key to modern detectors’ success. Despite
the great success, anchor-based detectors still suffer some drawbacks. For example,
the scales and aspect ratios of anchor boxes are kept fixed once trained, and thus
detectors encounter difficulties to deal with object candidates with large shape varia-
tions. In this thesis, we propose to solve object detection in the fashion of per-pixel
prediction, eliminating the anchor boxes. Specifically, we directly predict a 4D vector
plus a class category at each spatial location on a level of feature maps. The 4D vec-
tor depicts the relative offsets from the four sides of a bounding box to the location.
The framework is similar to the FCNs for semantic segmentation, except that each
location is required to regress a 4D continuous vector. We term the proposed detector
fully convolutional one-stage object detector (FCOS). FCOS can bypass all of the
drawbacks mentioned before since it does not use anchor boxes at all. It is the first
anchor-free detector achieving improved detection performance than its anchor-based
counterparts. Details are in Chapter 3.

1.2. Keypoint Detection 3

1.2 Keypoint Detection

The key challenge in multi-person keypoint detection is how to obtain the instance-
level keypoints. In other words, the detected keypoints need to be grouped according
to the instance they belong to. Currently, the mainstream methods tackle this chal-
lenge with bottom-up or top-down methodologies. Top-down methods He et al., 2017;
Cheng et al., 2020a employ ROI operations, which can make the FCNs only focus on
a single instance in the second stage. The ROIs come with some drawbacks. For
example, 1) ROIs are forwarded separately and cannot share the convolutional com-
putation. Thus, the inference time of these methods heavily depends on the number
of instances in the image, which impedes these methods from being real-time; 2) the
top-down methods cannot be end-to-end trainable since the ROIs are often obtained
from a person detector; 3) these ROI-based methods also rely on the localization
quality of the ROIs, which may harm the keypoint detection performance. On the
other hand, bottom-up methods Cao et al., 2017; Newell, Huang, and Deng, 2017 do
not rely on ROIs. They first detect instance-agnostic keypoints and then employ a
grouping post-processing to obtain the full-body results. The processing of assembling
the keypoints is usually heuristic and involves many hyper-parameters, making these
methods more complicated.

As mentioned before, in FCOS, we solve object detection by directly regressing two
corners of a target bounding-box (i.e., the four relative offsets). The straightforward
and effective solution for object detection gives rise to a question: can keypoint detec-
tion be solved with this simple framework as well? It is easy to see that the keypoints
for an instance can be considered as a special bounding-box with more than two cor-
ner points, and thus the task could be solved by attaching more output heads to
the object detection networks. Based on this idea, we propose a direct end-to-end
keypoint detection framework, termed DirectPose, which is fully convolutional and
able to directly map a raw input image to the desired instance-aware keypoints. The
keypoint alignment (KPAlign) module is also proposed to align the features and the
keypoint predictions, improving the performance by a large margin. DirectPose can
avoid the shortcomings of both top-down and bottom-up methods as it needs neither
grouping or bounding-box detection. Moreover, it shares the same methodology as
the detector FCOS, unifying the two tasks into the same pipeline. We will elaborate
it in Chapter 4.

1.3 Instance Segmentation

Similar to keypoint detection, the key challenge of instance segmentation is also how
to obtain instance-level results. We have shown before that, in keypoint detection,
the challenge can be addressed by extending FCOS. However, it is hard to use the
same idea for instance segmentation. Unlike the keypoints of an instance, which
are structured (only several 2D coordinates) and can be parameterized as easily as

4 Chapter 1. Introduction

a box, the mask of an instance is a map, which are not structured and hard to be
parameterized. In this thesis, instead of parameterizing the mask itself, we propose
to use a set of filters to encode the mask, and the final mask can be decoded by
applying the set of filters to the CNN’s feature maps. The set of filters are dynamically
generated by introducing a new branch to FCOS, which is similar to dynamic filter
networks Jia et al., 2016 or conditional convolutions Yang et al., 2019a. We term
our method conditional convolutions for instance segmentation (CondInst). CondInst
eliminates the RoI operations of previous methods Lee and Park, 2020; He et al.,
2017; Liu et al., 2018, thus being fully convolutional. CondInst also enjoys many
other advantages over previous methods. Details will be introduced in Chapter 5.

1.4 Instance Segmentation with Box Annotations

CondInst has almost made the previously much more challenging instance segmen-
tation task be as simple and fast as bounding-box object detection. For example, it
only introduces less than 10% computation overhead, compared to FCOS. Instance
segmentation is able to provide more accurate and fine mask-level object location than
detection. Thus, given that the extra computation cost is negligible, instance segmen-
tation should be preferred over bounding box detection in many cases. For example, if
a robot wants to grasp an object, an accurate mask will be much more helpful than a
box. Now the only obstacle that impedes instance segmentation replacing box detec-
tion is the significantly heavier pixel-wise mask annotations. Compared to box-level
annotations required by object detection, annotating pixel-level masks is notoriously
time-consuming, as shown in Bearman et al., 2016; Everingham et al., 2010; Kulharia
et al., 2020. Here, we aim to eliminate this obstacle by training instance segmentation
using box annotations only. We will show that with some clever designs, CondInst
can be trained with only box annotations and yield high-quality instance masks. We
term our method BoxInst and will introduce it in Chapter 6.

In summary, in this thesis, we propose three novel methods for object detection, key-
point detection and instance segmentation, respectively, and solve these challenging
instance-level recognition tasks in the simple fully convolutional frameworks. Addi-
tionally, we also present BoxInst, which can obtain the high-quality instance masks
with only box annotations, largely reducing the cost of the mask annotations in in-
stance segmentation.

5

Chapter 2

Literature Review

Here we review some works that are closest to ours.

2.0.1 Object Detection

Anchor-based Detectors. Anchor-based detectors inherit the ideas from traditional
sliding-window and proposal based detectors such as Fast R-CNN Girshick, 2015. In
anchor-based detectors, the anchor boxes can be viewed as pre-defined sliding windows
or proposals, which are classified as positive or negative patches, with an extra offsets
regression to refine the prediction of bounding box locations. Therefore, the anchor
boxes in these detectors may be viewed as training samples. Unlike previous detectors
like R-CNN Girshick et al., 2014, which compute image features for each sliding
window/proposal repeatedly, anchor boxes make use of the feature maps of CNNs
and avoid repeated feature computation, speeding up detection process dramatically.
The design of anchor boxes are popularized by Faster R-CNN in its RPNs Ren et al.,
2015, SSD Liu et al., 2016b and YOLOv2 Redmon and Farhadi, 2017, and has become
the convention in a modern detector.

However, as described before, anchor boxes result in excessively many hyper-parameters,
which typically need to be carefully tuned in order to achieve good performance. Be-
sides the hyper-parameters describing anchor shapes, the anchor-based detectors also
need other hyper-parameters to label each anchor box as a positive, ignored or neg-
ative sample. Previous works often employ intersection over union (IOU) between
anchor boxes and ground-truth boxes to determine the label of an anchor box (e.g., a
positive anchor if its IOU is in [0.5, 1]). These hyper-parameters have shown a great
impact on the final accuracy, and require heuristic tuning. Meanwhile, these hyper-
parameters are specific to detection tasks, making detection tasks deviate from a neat
fully convolutional network architectures used in other dense prediction tasks such as
semantic segmentation.

Anchor-free Detectors. The most popular anchor-free detector might be YOLOv1
Redmon et al., 2016. Instead of using anchor boxes, YOLOv1 predicts bounding boxes
at points near the center of objects. Only the points near the center are used since
they are considered to be able to produce higher-quality detection. However, since

6 Chapter 2. Literature Review

only points near the center are used, YOLOv1 suffers from low recall as mentioned
in YOLOv2 Redmon and Farhadi, 2017. As a result, YOLOv2 Redmon and Farhadi,
2017 employs anchor boxes as well. CornerNet Law and Deng, 2018 is a recently pro-
posed one-stage anchor-free detector, which detects a pair of corners of a bounding
box and groups them to form the final detected bounding box. CornerNet requires
much more complicated post-processing to group the pairs of corners belonging to
the same instance. An extra distance metric is learned for the purpose of grouping.
Another family of anchor-free detectors such as Yu et al., 2016 are based on Dense-
Box Huang et al., 2015. The family of detectors have been considered unsuitable for
generic object detection due to difficulty in handling overlapping bounding boxes and
the recall being relatively low. In FCOS, we show that both problems can be largely
alleviated with multi-level prediction (i.e., FPNs). Moreover, we also show that to-
gether with our proposed center-ness branch, the much simpler detector can achieve
much better detection performance than its anchor-based counterparts. Recently,
FSAF Zhu, He, and Savvides, 2019 was proposed to employ an anchor-free detection
branch as a complement to an anchor-based detection branch since they consider that
a totally anchor-free detector cannot achieve good performance. They also make use
of a feature selection module to improve the performance of the anchor-free branch,
making the anchor-free detector have a comparable performance to its anchor-based
counterpart. However, in this work, we surprisingly show that the totally anchor-free
detector can actually obtain better performance than its anchor-based counterpart,
without the need for the feature selection module in FSAF. Even more surprisingly, it
can outperform the detectors in FSAF that combine the anchor-free and anchor-based
designs. As a result, the long-standing anchor-boxes can be completely eliminated,
making detection significantly simpler.

Some other anchor-free detectors were developed concurrently to FCOS. For example,
CenterNet Zhou, Wang, and Krähenbühl, 2019 predicts the center, width and height
of objects with hourglass networks Newell, Yang, and Deng, 2016, demonstrating
promising performance. Compared to CenterNet, FCOS enjoys faster training, and
has a better accuracy/speed trade-off. RepPoints Yang et al., 2019b represents the
boxes by a set of points and uses converting functions to predict the target boxes. In
contrast, FCOS is a more concise and straightforward method for box detection.

2.0.2 Keypoint Detection

Top-down Methods. Top-down methods Sun et al., 2019; Fang et al., 2017;
Pishchulin et al., 2012; Gkioxari et al., 2014; Papandreou et al., 2017; Chen et al.,
2018; Xiao, Wu, and Wei, 2018; Chen et al., 2017b break the multi-person pose esti-
mation task into two sub-tasks – person detection and single-person pose estimation.
The person detection predicts a bounding-box for each instance in the input image.
Next, the instance is cropped from the original image and a single-person pose esti-
mation is applied to predict the keypoints for the cropped instance. Moreover, some

Chapter 2. Literature Review 7

approaches such as Mask R-CNN He et al., 2017 crop convolutional features rather
than raw images, improving the efficiency of these methods. Top-down methods of-
ten have better performance but have higher computational complexity as it needs to
repeatedly run the single-person pose estimation for each instance. Moreover, it also
suffers from early commitment. In other words, it is difficult for these methods to
recover an instance if it is missing in detection results.

Bottom-up Methods. In contrast to top-down methods, which first identify indi-
vidual instances by a detector, bottom-up methods Cao et al., 2017; Pishchulin et al.,
2016; Insafutdinov et al., 2016 first detect all possible keypoints in an instance-agnostic
fashion. Afterwards, a grouping process is employed to assemble these keypoints into
full-body keypoints. Bottom-up methods can take advantage of the sharing convolu-
tional computation, thus being faster than top-down methods. However, the grouping
process is heuristic and involves many tricks and hyper-parameters. Recently, a one-
stage framework Nie et al., 2019 makes the grouping process simpler. Compared to
this work, our end-to-end framework further reduces the design complexity of a hu-
man pose estimation framework by directly mapping an input image to the desired
keypoints.

2.0.3 Instance Segmentation and Conditional Convolutions

Instance Segmentation. To date, the dominant framework for instance segmenta-
tion is still Mask R-CNN. Mask R-CNN first employs an object detector to detect the
bounding-boxes of instances (e.g., ROIs). With these bounding-boxes, an ROI oper-
ation is used to crop the features of the instance from the feature maps. Finally, a
compact FCN head is used to obtain the desired instance masks. Many works Chen et
al., 2019a; Liu et al., 2018; Huang et al., 2019 with top performance are built on Mask
R-CNN. Moreover, some works have explored to apply FCNs to instance segmenta-
tion. InstanceFCN Dai et al., 2016 may be the first instance segmentation method
that is fully convolutional. InstanceFCN proposes to predict position-sensitive score
maps with vanilla FCNs. Afterwards, these score maps are assembled to obtain the
desired instance masks. Note that InstanceFCN does not work well with overlapping
instances. Others Neven et al., 2019; Newell, Huang, and Deng, 2017; Fathi et al.,
2017 attempt to first perform segmentation and the desired instance masks are formed
by assembling the pixels of the same instance. Novotny et al. Novotny et al., 2018
propose semi-convolutional operators to make FCNs applicable to instance segmenta-
tion. To our knowledge, thus far none of these methods can outperform Mask R-CNN
both in accuracy and speed on the public COCO benchmark dataset.

Recently AdaptIS Sofiiuk, Barinova, and Konushin, 2019 proposes to solve panoptic
segmentation with FiLM Perez et al., 2018. The idea shares some similarity with
CondInst in that information about an instance is encoded in the coefficients generated
by FiLM. Since only the batch normalization coefficients are dynamically generated,
AdaptIS needs a large mask head to achieve good performance. In contrast, CondInst

8 Chapter 2. Literature Review

directly encodes them into conv. filters of the mask head, thus having much stronger
capacity. As a result, even with a very compact mask head, we believe that CondInst
can achieve instance segmentation accuracy that would not be possible for AdaptIS
to attain.

Conditional Convolutions. Unlike traditional convolutional layers, which have
fixed filters once trained, the filters of conditional convolutions are conditioned on the
input and are dynamically generated by another network (i.e., a controller). This idea
has been explored previously in dynamic filter networks Jia et al., 2016 and CondConv
Yang et al., 2019a mainly for the purpose of increasing the capacity of a classification
network. In CondInst, we extend this idea to solve the significantly more challenging
task of instance segmentation.

2.0.4 Box-supervised Segmentation

Box-supervised Semantic Segmentation. A few works attempted to obtain se-
mantic masks using box annotations. For example, BoxSup Dai, He, and Sun, 2015
uses the region proposals from MCG as the pseudo labels to train an FCN, and
an iterative training algorithm is used to refine the estimated masks. The recent
Box2Seg Kulharia et al., 2020 method employs the masks generated by GrabCut to
supervise training of the mask prediction model. In addition, a per-class attention
map is also predicted by the model to make the per-pixel cross entropy loss focus on
foreground pixels and refine the segmentation boundaries. This method shows excel-
lent performance on Pascal VOC Everingham et al., 2010. Song et al., 2019 propose
to use the unsupervised CRF Krähenbühl and Koltun, 2011 to generate the seg-
ment proposals. Additionally, a class-wise filling rate loss to supervise the models for
training, resulting in improved segmentation performance. One of the crucial steps in
these methods is to employ the pseudo labels generated by unsupervised segmentation
methods such as MCG Pont-Tuset et al., 2016 or GrabCut Rother, Kolmogorov, and
Blake, 2004. This is because these method all rely on pixel-wise mask loss functions,
thus not being able to work without mask annotations. In this work, we remove the
dependency on pixel-wise mask losses, as a result, eliminating the region proposals.
Our new loss functions ensure that mask prediction can still be imperfectly supervised
without using any mask annotations.

Box-supervised Instance Segmentation. In the context of deep learning, instance
segmentation with box annotations has not explored too much yet. SDI Khoreva et al.,
2017 might be the first instance segmentation framework with box annotations. Sim-
ilar to the methods for semantic segmentation, SDI also relies on the region proposals
generated by MCG. Then they make use of an iterative training procedure to further
refine the segmentation results. Recently, BBTP Hsu et al., 2019 formulates the box-
supervised instance segmentation into a multiple instance learning (MIL) problem.
BBTP is built on Mask R-CNN and samples the positive and negative bags according
to the ROIs on CNN feature maps. In contrast, our method is built on the ROI-free

Chapter 2. Literature Review 9

CondInst and employs our proposed projection loss term to supervise the mask learn-
ing, eliminating the need for sampling. BBTP also makes use of the pairwise term.
However, their pairwise term is defined on the set containing all neighboring pixel
pairs with the oversimplified assumption of spatially neighboring pixel pairs being
encouraged to have the same label, inevitably introducing heavily noisy supervision.
Our experiments show that, the heavily noisy supervision can have a negative impact
on accuracy. In BoxInst, we take advantage of the crucial prior derived from proximal
pixels’ colors. As a result, we significantly outperform the mask AP of BBTP on
COCO by an absolute 10%.

11

rl

b

t

Figure 3.1. Overall concept of FCOS. As shown in the left image,
FCOS works by predicting a 4D vector (l, t, r, b) encoding the location
of a bounding box at each foreground pixel (supervised by ground-
truth bounding box information during training). The right plot shows
that when a location residing in multiple bounding boxes, it can be
ambiguous in terms of which bounding box this location should regress.

Chapter 3

FCOS: Fully Convolutional
One-Stage Object Detection

3.1 Introduction

Object detection requires an algorithm to predict a bounding box location and a
category label for each instance of interest in an image. Prior to deep learning, the
sliding-window approach was the main method Viola and Jones, 2001; Shen et al.,
2013; Dollár et al., 2014, which exhaustively classifies every possible location, thus
requiring feature extraction and classification evaluation to be very fast. With deep
learning, detection has been largely shifted to the use of fully convolutional networks
(FCNs) since the invention of Faster R-CNN Ren et al., 2015. All current mainstream
detectors such as Faster R-CNN Ren et al., 2015, SSD Liu et al., 2016b and YOLOv2,

12 Chapter 3. FCOS: Fully Convolutional One-Stage Object Detection

v3 Redmon and Farhadi, 2018 rely on a set of pre-defined anchor boxes and it has
long been believed that the use of anchor boxes is the key to modern detectors’ success.
Despite their great success, it is important to note that anchor-based detectors suffer
some drawbacks:

• As shown in Faster R-CNN and RetinaNet Lin et al., 2017b, detection perfor-
mance is sensitive to the sizes, aspect ratios and number of anchor boxes. For
example, in RetinaNet, varying these hyper-parameters affects the performance
up to 4% in AP on the COCO benchmark Lin et al., 2014. As a result, these
hyper-parameters need to be carefully tuned in anchor-based detectors.

• Even with careful design, because the scales and aspect ratios of anchor boxes are
kept fixed, detectors encounter difficulties to deal with object candidates with
large shape variations, particularly for small objects. The pre-defined anchor
boxes also hamper the generalization ability of detectors, as they need to be
re-designed on new detection tasks with different object sizes or aspect ratios.

• In order to achieve a high recall rate, an anchor-based detector is required to
densely place anchor boxes on the input image (e.g., more than 180K anchor
boxes in feature pyramid networks (FPN) Lin et al., 2017a for an image with
its shorter side being 800). Most of these anchor boxes are labeled as negative
samples during training. The excessive number of negative samples aggravates
the imbalance between positive and negative samples in training.

• Anchor boxes also involve complicated computation such as calculating the
intersection-over-union (IoU) scores with ground-truth bounding boxes.

Recently, per-pixel prediction FCNs Long, Shelhamer, and Darrell, 2015 have achieved
tremendous success in dense prediction tasks such as semantic segmentation Long,
Shelhamer, and Darrell, 2015; Tian et al., 2019a; He et al., 2019a, depth estimation
Liu et al., 2016a; Yin et al., 2019, keypoint detection Chen et al., 2017b and counting.
As one of high-level vision tasks, object detection might be the only one deviating
from the neat fully convolutional per-pixel prediction framework mainly due to the
use of anchor boxes.

It is natural to ask a question: Can we solve object detection in the neat per-pixel
prediction fashion, analogue to FCN for semantic segmentation, for example? Thus
those fundamental vision tasks can be unified in (almost) one single framework. We
show in this work that the answer is affirmative. Moreover, we demonstrate that, the
much simpler FCN-based detector can surprisingly achieve even better performance
than its anchor-based counterparts.

In the literature, some works attempted to leverage the per-pixel prediction FCNs for
object detection such as DenseBox Huang et al., 2015. Specifically, these FCN-based
frameworks directly predict a 4D vector plus a class category at each spatial location
on a level of feature maps. As shown in Fig. 3.1 (left), the 4D vector depicts the relative

3.1. Introduction 13

offsets from the four sides of a bounding box to the location. These frameworks are
similar to the FCNs for semantic segmentation, except that each location is required to
regress a 4D continuous vector. However, to deal with bounding boxes with different
sizes, DenseBox Huang et al., 2015 crops and resizes training images to a fixed scale.
Thus, DenseBox has to perform detection on image pyramids, which is against FCN’s
philosophy of computing all convolutions once.

Besides, more significantly, these methods are mainly used in special domain objection
detection such as scene text detection Zhou et al., 2017; He et al., 2018 or face detection
Yu et al., 2016; Huang et al., 2015, since it is believed that these methods do not
work well when applied to generic object detection with highly overlapped bounding
boxes. As shown in Fig. 3.1 (right), the highly overlapped bounding boxes result in
an intractable ambiguity: it is not clear w.r.t. which bounding box to regress for the
pixels in the overlapped regions.

In the sequel, we take a closer look at the issue and show that with FPN this ambiguity
can be largely eliminated. As a result, our method can already obtain similar or even
better detection accuracy with those traditional anchor based detectors. Furthermore,
we observe that our method may produce a number of low-quality predicted bounding
boxes at the locations that are far from the center of an target object. It is easy to
see that the locations near the center of its target bounding box can make more
reliable predictions. As a result, we introduce a novel “center-ness” score to depict
the deviation of a location to the center, as defined in Eq. (3.3), which is used to
down-weigh low-quality detected bounding boxes and thus helps to suppress these low-
quality detections in NMS. The center-ness score is predicted by a branch (only one
layer) in parallel with the bounding box regression branch, as shown in Fig. 3.2. The
simple yet effective center-ness branch remarkably improves the detection performance
with a negligible increase in computational time.

This new detection framework enjoys the following advantages.

• Detection is now unified with many other FCN-solvable tasks such as semantic
segmentation, making it easier to re-use ideas from those tasks. An example is
shown in Liu et al., 2020b, where a structured knowledge distillation method was
developed for dense prediction tasks. Thanks to the standard FCN framework
of FCOS, the developed technique can be immediately applied to FCOS based
object detection.

• Detection becomes proposal free and anchor free, which significantly reduces
the number of design parameters. The design parameters typically need heuris-
tic tuning and many tricks are involved in order to achieve good performance.
Therefore, our new detection framework makes the detector, particularly its
training, considerably simpler.

• By eliminating the anchor boxes, our new detector completely avoids the com-
plicated computation related to anchor boxes such as the IOU computation and

14 Chapter 3. FCOS: Fully Convolutional One-Stage Object Detection

C5

C4

C3

P7

P6

P5

P4

P3

Heads

Backbone Feature Pyramid

Heads

Heads

Heads

Heads

Classification + Center-ness + Regression

100 x 128 /8

50 x 64 /16

25 x 32 /32

13 x 16 /64

7 x 8 /128

H x W /s

800 x 1024

x4
H x W x256

Classification
H x W x C

Center-ness
H x W x 1x4

Regression
H xW x 4

Shared Heads Between Feature Levels
H x W x256

Figure 3.2. The network architecture of FCOS, where C3, C4,
and C5 denote the feature maps of the backbone network and P3 to
P7 are the feature levels used for the final prediction. H ×W is the
height and width of feature maps. ‘/s’ (s = 8, 16, ..., 128) is the down-
sampling ratio of the feature maps at the level to the input image. As
an example, all the numbers are computed with an 800× 1024 input.

matching between the anchor boxes and ground-truth boxes during training,
resulting in faster training and testing than its anchor-based counterpart.

• Without bells and whistles, we achieve state-of-the-art results among one-stage
detectors. Given its improved accuracy of the much simpler anchor-free detector,
we encourage the community to rethink the necessity of anchor boxes in object
detection, which are currently considered as the de facto standard for designing
detection methods.

• With considerably reduced design complexity, our proposed detector outper-
forms previous strong baseline detectors such as Faster R-CNN Ren et al., 2015,
RetinaNet Lin et al., 2017b, YOLOv3 Redmon and Farhadi, 2018 and SSD Liu
et al., 2016b. More importantly, due to its simple design, FCOS can be easily
extended to solve other instance-level recognition tasks with minimal modifi-
cation, as already evidenced by instance segmentation Xie et al., 2020; Zhang
et al., 2020; Lee and Park, 2020; Chen et al., 2020, keypoint detection Tian,
Chen, and Shen, 2019, text spotting Liu et al., 2020c, and tracking Wang et al.,
2020a; Guo et al., 2020. We expect to see more instance recognition methods
built upon FCOS.

3.2 Our Approach

In this section, we first reformulate object detection in a per-pixel prediction fash-
ion. Next, we show that how we make use of multi-level prediction to improve the
recall and resolve the ambiguity resulted from overlapped bounding boxes. Finally,
we present our proposed “center-ness" branch, which helps suppress the low-quality
detected bounding boxes and improves the overall performance by a large margin.

3.2. Our Approach 15

20 30 40 50 60 70
FPS

28

30

32

34

36

38

40

42

AP

FCOS-RT
FCOS
CenterNet
YOLOv3
RetinaNet

Figure 3.3. Speed/accuracy trade-off between FCOS and
several recent methods: CenterNet Zhou, Wang, and Krähenbühl,
2019, YOLOv3 Redmon and Farhadi, 2018 and RetinaNet Lin et al.,

2017b. Speed is measured on a NVIDIA 1080Ti GPU.

3.2.1 Fully Convolutional One-Stage Object Detector

Let Fi ∈ RH×W×C be the feature maps at layer i of a backbone CNN and s be the
total stride until the layer. The ground-truth bounding boxes for an input image are
defined as {Bi}, where Bi = (x

(i)
0 , y

(i)
0 , x

(i)
1 y

(i)
1 , c(i)) ∈ R4×{1, 2 ... C}. Here (x(i)0 , y

(i)
0)

and (x
(i)
1 y

(i)
1) denote the coordinates of the left-top and right-bottom corners of the

bounding box. c(i) is the class that the object in the bounding box belongs to. C is
the number of classes, which is 80 for the MS-COCO dataset.

For each location (x, y) on the feature map Fi, we can map it back onto the input
image as (b s2c + xs,

⌊
s
2

⌋
+ ys), which is near the center of the receptive field of the

location (x, y). Different from anchor-based detectors, which consider the location
on the input image as the center of (multiple) anchor boxes and regress the target
bounding box with these anchor boxes as references, we directly regress the target
bounding box at the location. In other words, our detector directly views locations
as training samples instead of anchor boxes in anchor-based detectors, which is the
same as FCNs for semantic segmentation Long, Shelhamer, and Darrell, 2015.

Specifically, location (x, y) is considered as a positive sample if it falls into the center
area of any ground-truth box, by following 2019. The center area of a box centered at
(cx, cy) is defined as the sub-box (cx− rs, cy− rs, cx+ rs, cy+ rs), where s is the total
stride until the current feature maps and r is a hyper-parameter being 1.5 on COCO.
The sub-box is clipped so that it is not beyond the original box. Note that this is
different from our original conference version Tian et al., 2019b, where we consider the

16 Chapter 3. FCOS: Fully Convolutional One-Stage Object Detection

locations positive as long as they are in a ground-truth box. The class label c∗ of the
location is the class label of the ground-truth box. Otherwise it is a negative sample
and c∗ = 0 (background class). Besides the label for classification, we also have a 4D
real vector ttt∗ = (l∗, t∗, r∗, b∗) being the regression targets for the location. Here l∗, t∗,
r∗ and b∗ are the distances from the location to the four sides of the bounding box, as
shown in Fig. 3.1 (left). If a location falls into the center area of multiple bounding
boxes, it is considered as an ambiguous sample. We simply choose the bounding box
with minimal area as its regression target. In the next section, we will show that with
multi-level prediction, the number of ambiguous samples can be reduced significantly
and thus they hardly affect the detection performance. Formally, if location (x, y) is
associated to a bounding box Bi, the training regression targets for the location can
be formulated as,

l∗ = (x− x(i)0)/s, t∗ = (y − y(i)0)/s,

r∗ = (x
(i)
1 − x)/s, b∗ = (y

(i)
1 − y)/s,

(3.1)

where s is the total stride until the feature maps Fi, which is used to scale down
regression targets and prevents the gradients from exploding during training. Together
with these designs, FCOS can detect objects in an anchor-free fashion, and everything
is learned by the networks without the need for any pre-defined anchor-boxes. It is
worth noting that this is not identical to an anchor-based detector with one anchor-
box per location, and the crucial difference is the way we define positive and negative
samples. The single-anchor detector still uses pre-defined anchor-boxes as a prior and
uses IoUs between the anchor-boxes and ground-truth boxes to determine the labels
for these anchor-boxes. In FCOS, we remove the need for the prior and the locations
are labeled by their inclusion in ground-truth boxes. In the experiments, we show
that using a single anchor can only achieve inferior performance.

Network Outputs. Corresponding to the training targets, the final layer of our
networks predicts an 80D vector ppp for classification and a 4D vector ttt = (l, t, r, b)

encoding bounding-box coordinates. Following Lin et al., 2017b, instead of training a
multi-class classifier, we train C binary classifiers. Similar to Lin et al., 2017b, we add
two branches, respectively with four convolutional layers (exclude the final prediction
layers) after the feature maps produced by FPNs for classification and regression tasks,
respectively. Moreover, since the regression targets are always positive, we employ
ReLU(x) to map any real number to (0,∞) on the top of the regression branch. It
is worth noting that FCOS has 9× fewer network output variables than the popular
anchor-based detectors Lin et al., 2017b; Ren et al., 2015 with 9 anchor boxes per
location, which is of great importance when FCOS is applied to keypoint detection
Tian, Chen, and Shen, 2019 or instance segmentation Tian, Shen, and Chen, 2020.

Loss Function. We define our training loss function as follows:

L({pppx,y}, {tttx,y}) =
1

Npos

∑
x,y

Lcls(pppx,y, c
∗
x,y) +

λ

Npos

∑
x,y

1{c∗x,y>0}Lreg(tttx,y, ttt
∗
x,y), (3.2)

3.2. Our Approach 17

where Lcls is focal loss as in Lin et al., 2017b and Lreg is the GIoU loss Rezatofighi
et al., 2019. As shown in experiments, the GIoU loss achieves better performance
than the IoU loss in UnitBox Yu et al., 2016, which is used in our preliminary version
Tian et al., 2019b. Npos denotes the number of positive samples and λ being 1 in this
paper is the balance weight for Lreg. The summation is calculated over all locations
on the feature maps Fi. 1{c∗i>0} is the indicator function, being 1 if c∗i > 0 and 0

otherwise.

Inference. Performing inference for FCOS is straightforward. Given an input images,
we forward it through the network and obtain the classification scores pppx,y and the
regression prediction tttx,y for each location on the feature maps Fi. Following Lin
et al., 2017b, we choose the location with px,y > 0.05 as positive samples and invert
Eq. (3.1) to obtain the predicted bounding boxes.

3.2.2 Multi-level Prediction with FPN for FCOS

Here we show that how two possible issues of the proposed FCOS can be resolved
with multi-level prediction with FPN Lin et al., 2017a.

First, the large stride (e.g., 16×) of the final feature maps in a CNN can result in a
relatively low best possible recall (BPR)1. For anchor based detectors, low recall rates
due to the large stride can be compensated to some extent by lowering the IOU score
requirements for positive anchor boxes. For FCOS, at the first glance one may think
that the BPR can be much lower than anchor-based detectors because it is impossible
to recall an object which no location on the final feature maps encodes due to a large
stride. Here, we empirically show that even with a large stride, FCOS is still able
to produce a good BPR, and it can even better than the BPR of the anchor-based
detector RetinaNet Lin et al., 2017b in the official implementation Detectron Girshick
et al., 2018 (refer to Table 3.1). Therefore, the BPR is actually not a problem of
FCOS. Moreover, with multi-level FPN prediction Lin et al., 2017a, the BPR can be
improved further to match the best BPR the anchor-based RetinaNet can achieve.

Second, as shown in Fig. 3.1 (right), overlaps in ground-truth boxes can cause in-
tractable ambiguity, i.e., which bounding box should a location in the overlap regress?
This ambiguity results in degraded performance. In this work, we show that the am-
biguity can be greatly resolved with multi-level prediction (and center sampling), and
FCOS can obtain on par, sometimes even better, performance compared with anchor-
based ones.

Specifically, following FPN Lin et al., 2017a, we detect different size objects on dif-
ferent feature map levels. we make use of five levels of feature maps defined as
{P3, P4, P5, P6, P7}. As shown in Fig. 3.2, P3, P4 and P5 are produced by the backbone
CNNs’ feature maps C3, C4 and C5 with the top-down connections as in Lin et al.,
2017a. P6 and P7 are produced by applying one 3 × 3 convolutional layer with the

1Upper bound of the recall rate that a detector can achieve.

18 Chapter 3. FCOS: Fully Convolutional One-Stage Object Detection

stride being 2 on P5 and P6, respectively. Note that this is different from the original
RetinaNet, which obtain P6 and P7 from the backbone feature maps C5. We find
both schemes achieve similar performance but the one we use has fewer parameters.
Moreover, the feature levels P3, P4, P5, P6 and P7 have strides 8, 16, 32, 64 and 128,
respectively.

Anchor-based detectors assign different scale anchor boxes to different feature levels.
Since anchor boxes and ground-truth boxes are associated by their IoU scores, this
naturally enables different FPN feature levels to detect objects of different scales.
However, this couples the sizes of anchor boxes and the target object sizes of each FPN
level, which is problematic. The anchor box sizes should be data-specific, which might
be changed from one dataset to another. The target object sizes of each FPN level
should depend on the receptive field of the FPN level, which depends on the network
architecture. FCOS removes the coupling as we only need focus on the target object
sizes of each FPN level and need not design the anchor box sizes. Unlike anchor-
based detectors, in FCOS, we directly limit the range of bounding box regression
for each level. More specifically, we first compute the regression targets l∗, t∗, r∗

and b∗ for each location on all feature levels. Next, if a location at feature level i
satisfies max(l∗, t∗, r∗, b∗) ≤ mi−1 or max(l∗, t∗, r∗, b∗) ≥ mi, it is set as a negative
sample and thus not required to regress a bounding box anymore. Here mi is the
maximum distance that feature level i needs to regress. In this work, m2, m3, m4,
m5, m6 and m7 are set as 0, 64, 128, 256, 512 and ∞, respectively. We argue that
bounding the maximum distance is a better approach to determine the range of target
objects for each feature level because this makes sure that the complete objects are
always in the receptive field of each feature level. Moreover, since objects of different
sizes are assigned to different feature levels and overlapping mostly happens between
objects with considerably different sizes, the aforementioned ambiguity can be largely
alleviated. If a location, even with multi-level prediction used, is still assigned to more
than one ground-truth boxes, we simply choose the ground-truth box with minimal
area as its target. As shown in our experiments, with the multi-level prediction, both
anchor-free and anchor-based detectors can achieve the same level performance.

Finally, following Lin et al., 2017a; Lin et al., 2017b, we share the heads between
different feature levels, not only making the detector parameter-efficient but also im-
proving the detection performance. However, we observe that different feature levels
are required to regress different size range (e.g., the size range is [0, 64] for P3 and
[64, 128] for P4), and therefore it may not be the optimal design to make use of iden-
tical heads for different feature levels. In our preliminary version Tian et al., 2019b,
this issue is addressed by multiplying a learnable scalar to the convolutional layer’s
outputs. In this version, since the regression targets are scaled down by the stride of
FPN feature levels, as shown in Eq. (3.1), the scalars become less important. However,
we still keep them for compatibility.

3.3. Experiments 19

3.2.3 Center-ness for FCOS

With the multi-level prediction, FCOS can already achieve better performance than
its anchor-based counterpart RetinaNet. Furthermore, we have observed that there
are many low-quality detections produced by the locations that are far away from the
center of an object.

Here we propose a simple yet effective strategy to suppress these low-quality detec-
tions. Specifically, we add a single-layer branch, in parallel with the regression branch
(as shown in Fig. 3.2) to predict the “center-ness" of a location. The center-ness de-
picts the normalized distance from the location to the center of the object that the
location is responsible for, as shown in Fig. 3.4. Given the regression targets l∗, t∗, r∗

and b∗ for a location, the center-ness target is defined as,

centerness∗ =

√
min(l∗, r∗)

max(l∗, r∗)
× min(t∗, b∗)

max(t∗, b∗)
. (3.3)

We employ
√
· here to slow down the decay of the center-ness. The center-ness ranges

from 0 to 1 and can thus be trained with binary cross entropy (BCE) loss. This loss is
added to the loss function in Eq. (3.2). During testing, the final score sssx,y (it is used
for ranking the detections in NMS) is the square root of the product of the predicted
center-ness ox,y and the corresponding classification score pppx,y. Formally,

sssx,y =
√
pppx,y · ox,y, (3.4)

where
√
· is used to calibrate the order of magnitude of the final score and has no

effect on average precision (AP).

Consequently, center-ness can down-weight the scores of bounding boxes far from the
center of an object. As a result, with high probability, these low-quality bounding
boxes might be filtered out by the final non-maximum suppression (NMS) process,
improving the detection performance remarkably.

3.3 Experiments

Our experiments are conducted on the large-scale detection benchmark COCO Lin
et al., 2014. Following the common practice Lin et al., 2017b; Lin et al., 2017a; Ren et
al., 2015, we use the COCO train2017 split (115K images) for training and val2017

split (5K images) as validation for our ablation study. We report our main results on
the test-dev split (20K images) by uploading our detection results to the evaluation
server.

Training Details. Unless otherwise specified, we use the following implementation
details. ResNet-50 He et al., 2016 is used as our backbone networks and the same
hyper-parameters with RetinaNet Lin et al., 2017b are used. Specifically, our network

20 Chapter 3. FCOS: Fully Convolutional One-Stage Object Detection

t*

r*l*

b*

Figure 3.4. Center-ness. Red, blue, and other colors denote 1, 0
and the values between them, respectively. Center-ness is computed
using Eq. (3.3) and decays from 1 to 0 as the location deviates from

the center of the object.

method w/ FPN Low-quality matches BPR (%)
RetinaNet X Not used 88.16
RetinaNet X ≥ 0.4 91.94
RetinaNet X All 99.32
FCOS - 96.34
FCOS X - 98.95

Table 3.1. The best possible recall (BPR) of anchor-based RetinaNet
under a variety of matching rules and the BPR of FCOS on the COCO

val2017 split.

is trained with stochastic gradient descent (SGD) for 90k iterations with the initial
learning rate being 0.01 and a mini-batch of 16 images. The learning rate is reduced
by a factor of 10 at iteration 60k and 80k, respectively. Weight decay and momentum
are set as 0.0001 and 0.9, respectively. We initialize our backbone networks with the
weights pre-trained on ImageNet Deng et al., 2009. For the newly added layers, we
initialize them as in Lin et al., 2017b. Unless specified, the input images are resized
to have their shorter side being 800 and their longer side less or equal to 1333.

Inference Details. We firstly forward the input image through the network and
obtain the predicted bounding boxes with the predicted class scores. The next post-
processing of FCOS exactly follows that of RetinaNet Lin et al., 2017b. The post-
processing hyper-parameters are also the same except that we use NMS threshold 0.6

instead of 0.5 in RetinaNet. We carry out experiments to show the impact of the
NMS threshold in the sequel. Moreover, we use the same sizes of input images as in
training.

3.3. Experiments 21

w/ ctr. sampling w/ FPN 1 2 ≥ 3

76.60% 20.05% 3.35%
X 92.58% 6.97% 0.45%

X 96.52% 3.34% 0.14%
X X 97.34% 2.59% 0.07%

Table 3.2. The ratios of the ambiguous samples to all the positive
samples in FCOS. 1, 2 and ≥ 3 denote the number of ground-truth
boxes a location should be associated to. If the number is greater
than 1, the location is defined as an “ambiguous sample" in this work.

method AP AP50 AP75 APS APM APL AR1 AR10 AR100

RetinaNet (#A=9) 35.9 55.8 38.4 20.6 39.8 46.6 31.0 49.8 53.0
RetinaNet (#A=1) w/ imprv. 35.2 55.6 37.0 19.9 39.2 45.2 30.4 49.9 53.5
RetinaNet (#A=9) w/ imprv. 37.6 56.6 40.6 21.5 42.1 48.0 32.1 52.2 56.4
FCOS w/o ctr.-ness 38.0 57.2 40.9 21.5 42.4 49.1 32.1 52.4 56.2
FCOS w/ ctr.-ness 38.9 57.5 42.2 23.1 42.7 50.2 32.4 53.8 57.5

Table 3.3. FCOS vs. RetinaNet on val2017 split with ResNet-50-
FPN as the backbone. All experiments use the same training settings.
The proposed anchor-free FCOS achieves even better performance
than anchor-based RetinaNet. #A: the number of anchors per lo-
cation. RetinaNet (#A=9): the original RetinaNet from Detectron2

Wu et al., 2019. RetinaNet w/ imprv. RetinaNet with the universal
improvements in FCOS including Group Normalization (GN) Wu and
He, 2018, GIoU loss 2019 and scalars in regression, using P5 instead
of C5 and NMS threshold 0.6 instead of 0.5. We have tried our best
to make all the details consistent. As shown the table, even without
the center-ness branch, the much simpler FCOS already outperforms
"RetinaNet (#A=9) w/ imprv" by 0.4% in AP. With the center-ness

branch, the performance is further improved to 38.9% in AP.

3.3.1 Analysis of FCOS

Best Possible Recall (BPR) of FCOS

We first address the concern that is FCOS might not provide a good best possible
recall (BPR) (i.e., upper bound of the recall rate). In the section, we show that the
concern is not necessary by comparing BPR of FCOS and that of its anchor-based
counterpart RetinaNet on the COCO val2017 split. The following analyses are based
on the FCOS implementation in git.io/AdelaiDet.

Formally, BPR is defined as the ratio of the number of ground-truth boxes that a
detector can recall at the most to the number of all ground-truth boxes. A ground-
truth box is considered recalled if the box is assigned to at least one training sample
(i.e., a location in FCOS or an anchor box in anchor-based detectors), and a training
sampling can be associated to at most one ground-truth box. As shown in Table 3.1,
both with FPN, FCOS and RetinaNet obtain similar BPR (98.95 vs 99.32). Due
to the fact that the best recall of current detectors are much lower than 90%, the
small BPR gap (less than 0.5%) between FCOS and the anchor-based RetinaNet will
not actually affect the performance of a detector. It is also confirmed in Table 3.3,
where FCOS achieves better or similar AR than RetinaNet under the same training

https://git.io/AdelaiDet

22 Chapter 3. FCOS: Fully Convolutional One-Stage Object Detection

and testing settings. Even more surprisingly, only with feature level P4 with stride
being 16 (i.e., no FPN), FCOS can obtain a decent BPR of 96.34%. The BPR is
much higher than the BPR of 91.94% of the RetinaNet in the official implementation
Detectron Girshick et al., 2018, where only the low-quality matches with IOU ≥ 0.4

are used. Therefore, the concern about low BPR may not be necessary.

Ambiguous Samples in FCOS

The second concern about the FCN-based detector may be that it may have a large
number of ambiguous samples due to the overlap in ground-truth boxes, as shown in
Fig. 3.1 (right). In Table 3.2, we show the ratios of the ambiguous samples to all
positive samples on the val2017 split. If a location should be associated to multiple
ground-truth boxes without using the rule of choosing the box with the minimum
area, the location is defined as an “ambiguous sample". As shown in the table, there
are indeed a large amount of ambiguous samples (23.40%) if the FPN is not used
(i.e., only P4 used). However, with FPN, the ratio can be significantly reduced to
only 7.42% since most of overlapped objects are assigned to different feature levels.
Furthermore, if the center sampling is employed, the number of ambiguous samples
can be further reduced. As shown in Table 3.2, even without FPN, the ratio is only
3.48%. By further applying FPN, the ratio is reduced to 2.66%. Note that it does
not imply that there are 2.66% locations where FCOS makes mistakes. As mentioned
earlier, these locations are associated with the smallest one among the ground-truth
boxes associated to the same location. Therefore, these locations only take the risk
of missing some larger objects. In other words, it may negatively impact the recall of
FCOS. However, as shown in Table 3.1, the recall gap between FCOS and RetinaNet
is negligible, which suggests that the ratio of the missing objects is extremely low.

The Effect of Center-ness

We have proposed “center-ness" to suppress the low-quality detected bounding boxes
produced by the locations that are far from the center of an object. As shown in
Table 3.4, the center-ness branch can boost AP from 38.0% to 38.9%. Compared to
our conference version Tian et al., 2019b, the gap is relatively smaller since we make

AP AP50 AP75 APS APM APL

w/o ctr.-ness 38.0 57.2 40.9 21.5 42.4 49.1
w/ ctr.-ness† 37.5 56.5 40.2 21.6 41.5 48.5
w/ ctr.-ness (L1) 38.9 57.6 42.0 23.0 42.3 51.0
w/ ctr.-ness 38.9 57.5 42.2 23.1 42.7 50.2

Table 3.4. Ablation study for the proposed center-ness
branch on the val2017 split. ctr.-ness†: using the center-ness com-
puted from the predicted regression vector when testing (i.e., replac-
ing the ground-truth values with the predicted ones in Eq. (3.3)). w/
ctr.-ness (L1): using L1 instead of BCE as the loss to optimize the

center-ness.

3.3. Experiments 23

Figure 3.5. Qualitative results of applying the center-ness
scores to classification scores. A point in the figure denotes a
bounding box. The dashed line is the line y = x. As shown in the
right figure, after applying the center-ness scores, the boxes with low
IoU scores but high confidence scores (i.e., under the line y = x) are

reduced substantially.

use of the center sampling by default and it already eliminates a large number of
false positives. However, the improvement is still impressive as the center-ness branch
only adds negligible computational time. Moreover, we later show that the center-
ness can considerably boost the performance for crowded scenarios. One may note
that center-ness can also be computed with the predicted regression vector without
introducing the extra center-ness branch. However, as shown in Table 3.4, the center-
ness computed from the regression vector cannot improve the performance and thus
here the separate center-ness is necessary.

We visualize the effect of applying the center-ness in Fig. 3.5. As shown in the figure,
after applying the center-ness scores to the classification scores, the boxes with low
IoU scores but high confidence scores are largely eliminated (i.e., the points under the
line y = x in the Fig. 3.4), which are potential false positives.

Other Design Choices

Other design choices are also investigated. As shown Table 3.5, removing group
normalization (GN) Wu and He, 2018 in both the classification and regression heads
drops the performance by 1% AP. By replacing GIoU Rezatofighi et al., 2019 with the

24 Chapter 3. FCOS: Fully Convolutional One-Stage Object Detection

AP AP50 AP75 APS APM APL

baseline 38.9 57.5 42.2 23.1 42.7 50.2
w/o GN 37.9 56.4 40.9 22.1 41.8 48.8
w/ IoU 38.6 57.2 41.9 22.4 42.1 49.8
w/ C5 38.5 57.4 41.7 22.8 42.1 49.3

Table 3.5. Ablation study for design choices in FCOS. w/o GN:
without using Group Normalization (GN) for the convolutional layers
in heads. w/ IoU: using IoU loss in Yu et al., 2016 instead of GIoU.

w/ C5: using C5 instead of P5.

r AP AP50 AP75 APS APM APL

1.0 38.5 57.2 41.5 22.6 42.3 49.7
1.5 38.9 57.5 42.2 23.1 42.7 50.2
2.0 38.8 57.7 41.7 22.7 42.6 49.9

Table 3.6. Ablation study for the radius r of positive sample regions
(defined in Section 3.2.1).

origin IoU loss in Yu et al., 2016, the performance drops by 0.3% AP. Using C5 instead
of P5 also degrades the performance. Moreover, using P5 can reduce the number of
the network parameters. We also conduct experiments for the radius r of positive
sample regions. As shown in Table 3.6, r = 1.5 has the best performance on COCO
val split. We also attempted to change the sampling area from square sub-boxes to
the rectangle sub-boxes with the same aspect ratio as the ground-truth boxes, which
results in similar performance. It suggests that the shape of the sampling area may
be not sensitive to the final performance.

We also conduct experiments with different strategies of assigning objects to FPN
levels. First, we experiment with the assigning strategy that FPN Lin et al., 2017a
assigns the object proposals (i.e., ROIs) to FPN levels. It assigns the objects according
to the formulation k = bk0 + log2(

√
wh/224)c, where k ∈ {3, 4, 5, 6, 7} is the target

FPN level, w and h are the ground-truth box’s width and height, respectively, and
k0 is the target level which an object with scale 224 should be mapped into. We use
k0 = 5. As shown in Table 3.7, this strategy results in degraded performance (37.7%
AP). We conjecture that it may be because the strategy cannot make sure the complete

strategy AP AP50 AP75 APS APM APL

FPN 37.7 56.6 40.6 22.2 40.9 49.7√
(h∗ × w∗)/2 37.6 56.5 40.6 22.4 41.6 47.3

max(h∗, w∗)/2 38.1 57.0 41.3 22.5 41.8 48.7
max(l∗, t∗, r∗, b∗) 38.9 57.5 42.2 23.1 42.7 50.2

Table 3.7. Ablation study for different strategies of assigning objects
to FPN levels. FPN: the strategy of assigning object proposals (i.e.,
ROIs) to FPN levels in the original FPN, described in the text. h∗ and
w∗ are the height and width of a ground-truth box, respectively. l∗,
t∗, r∗ and b∗ are the distances from a location to the four boundaries
of a ground-truth box. “max(l∗, t∗, r∗, b∗)" (used by FCOS) has the

best performance.

3.3. Experiments 25

object is within the receptive field of the target FPN level. Similarly,
√
(h∗ × w∗)/2

and max(h∗, w∗)/2 also deteriorate the performance. Eventually, max(l∗, t∗, r∗, b∗)

achieves the best performance as the strategy makes sure that the complete target
objects are always in the effective receptive field of the FPN level. Moreover, this
implies that the range hyper-parameters of each FPN level (i.e., mi) is mainly related
to the network architecture (which determines the receptive fields). This is desirable
since it eliminates the hyper-parameter tuning when FCOS is applied to different
datasets.

3.3.2 FCOS vs. Anchor-based Counterparts

Here, we compare FCOS with its anchor-based counterpart RetinaNet on the chal-
lenging benchmark COCO, demonstrating that the much simpler anchor-free FCOS
is superior.

In order to make a fair comparison, we add the universal improvements in FCOS to
RetinaNet. The improved RetinaNet is denoted as “RetinaNet w/ imprv." in Table 3.3.
As shown the table, even without the center-ness branch, FCOS achieves 0.4% better
AP than “RetinaNet (#A=9) w/ imprv." (38.0% vs 37.6% in AP). The performance
of FCOS can be further boosted to 38.9% with the help of the proposed center-ness
branch. Moreover, it is worth noting that FCOS achieves much better performance
than the RetinaNet with a single anchor per location “RetinaNet (#A=1) w/ imprv."
(38.0% vs 35.2%), which suggests that FCOS is not equivalent to the single-anchor
RetinaNet. The major difference is FCOS does not employ IoU scores between anchor
boxes and ground-truth boxes to determine the training labels.

Given the superior performance and merits of the anchor-free detector (e.g., much
simpler and fewer hyper-parameters), we encourage the community to rethink the
necessity of anchor boxes in object detection.

3.3.3 Comparison with State-of-the-art Detectors on COCO

We compare FCOS with other state-of-the-art object detectors on test-dev split of
MS-COCO benchmark. For these experiments, following previous works Lin et al.,
2017b; Liu et al., 2016b, we make use of multi-scale training. To be specific, during
training, the shorter side of the input image is sampled from [640, 800] with a step
of 32. Moreover, we double the number of iterations to 180K (with the learning rate
change points scaled proportionally). Other settings are exactly the same as the model
with AP 38.9% on val2017 in Table 3.3.

As shown in Table 3.8, with ResNet-101-FPN, FCOS outperforms the original Reti-
naNet with the same backbone by 4.1% AP (43.2% vs. 39.1%). Compared to other
one-stage detectors such as SSD Liu et al., 2016b and DSSD Fu et al., 2017, we also
achieve much better performance. Moreover, FCOS also surpasses the classical two-
stage anchor-based detector Faster R-CNN by a large margin (43.2% vs. 36.2%). To

26 Chapter 3. FCOS: Fully Convolutional One-Stage Object Detection

method backbone AP AP50 AP75 APS APM APL

Two-stage methods:
Faster R-CNN+++ ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w/ FPN ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN by G-RMI Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w/ TDM Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1
One-stage methods:
YOLOv2 DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
SSD513 Liu et al., 2016b ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8
YOLOv3 608× 608 Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9
DSSD513 Fu et al., 2017 ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet Lin et al., 2017b ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2
CornerNet Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9
FSAF ResNeXt-64x4d-101-FPN 42.9 63.8 46.3 26.6 46.2 52.7
CenterNet511 Hourglass-104 44.9 62.4 48.1 25.6 47.4 57.4
HoughNet Hourglass-104 46.4 65.1 50.7 29.1 48.5 58.1
CPN Duan et al., 2020 Hourglass-104 49.2 67.4 53.7 31.0 51.9 62.4
FCOS ResNet-101-FPN 43.2 62.4 46.8 26.1 46.2 52.8
FCOS ResNeXt-32x8d-101-FPN 44.1 63.7 47.9 27.4 46.8 53.7
FCOS ResNeXt-64x4d-101-FPN 44.8 64.4 48.5 27.7 47.4 55.0
FCOS w/ deform. conv. v2 ResNeXt-32x8d-101-FPN 46.6 65.9 50.8 28.6 49.1 58.6
FCOS ResNet-101-BiFPN 45.0 63.6 48.7 27.0 47.9 55.9
FCOS ResNeXt-32x8d-101-BiFPN 46.2 65.2 50.0 28.7 49.1 56.5
FCOS w/ deform. conv. v2 ResNeXt-32x8d-101-BiFPN 47.9 66.9 51.9 30.2 50.3 59.9
w/ test-time augmentation:
FCOS ResNet-101-FPN 45.9 64.5 50.4 29.4 48.3 56.1
FCOS ResNeXt-32x8d-101-FPN 47.0 66.0 51.6 30.7 49.4 57.1
FCOS ResNeXt-64x4d-101-FPN 47.5 66.4 51.9 31.4 49.7 58.2
FCOS w/ deform. conv. v2 ResNeXt-32x8d-101-FPN 49.1 68.0 53.9 31.7 51.6 61.0
FCOS ResNet-101-BiFPN 47.9 65.9 52.5 31.0 50.7 59.7
FCOS ResNeXt-32x8d-101-BiFPN 49.0 67.4 53.6 32.0 51.7 60.5
FCOS w/ deform. conv. v2 ResNeXt-32x8d-101-BiFPN 50.4 68.9 55.0 33.2 53.0 62.7

Table 3.8. FCOS vs. other state-of-the-art two-stage or one-stage de-
tectors (single-model results). FCOS outperforms a few recent anchor-

based and anchor-free detectors by a considerable margin.

our knowledge, this is the first time that an anchor-free detector, without any bells and
whistles, outperforms anchor-based detectors by a large margin. Moreover, FCOS also
outperforms the previous anchor-free detector CornerNet Law and Deng, 2018 and
CenterNet Duan et al., 2019 while being much simpler since they requires to group
corners with embedding vectors, which needs special design for the detector. Thus, we
argue that FCOS is more likely to serve as a strong and simple alternative to current
mainstream anchor-based detectors. Some qualitative results are shown in Fig. 3.6.
It appears that FCOS works well with a variety of challenging cases.

We also introduce some complementary techniques to FCOS. First, deformable con-
volutions are used in stages 3 and 4 of the backbone, and also replace the last con-
volutional layers in the classification and regression towers (i.e., the 4× convolutions
shown in Fig. 3.2). As shown in Table 3.8, by applying deformable convolutions Dai
et al., 2017; Zhu et al., 2019 to ResNeXt-32x8d-101-FPN based FCOS, the perfor-
mance is improved from 44.1% to 46.6% AP, as shown in Table 3.8. In addition, we

3.3. Experiments 27

Figure 3.6. Qualitative results. FCOS works well with a wide range
of objects including crowded, occluded, extremely small and very large

objects. Best viewed on screen.

method FPS AP AP test-dev
YOLOv3 (Darknet-53) Redmon and Farhadi, 2018 26 − 33.0
CenterNet (DLA-34) Zhou, Wang, and Krähenbühl, 2019 52 37.4 37.3
FCOS-RT (R-50) 38 40.2 40.2
FCOS-RT (DLA-34-BiFPN) 43 42.1 42.2
FCOS-RT (DLA-34) 46 40.3 40.3
FCOS-RT w/ shtw. (DLA-34) 52 39.1 39.2

Table 3.9. Real-time FCOS (FCOS-RT) models. AP (%) is on
COCO val split. “shtw.": sharing towers (i.e., 4× conv. layers shown
in Fig. 3.2) between the classification and regression branches. The
inference time is measured with a single 1080Ti or Titan XP GPU

(these two GPUs’ speeds are close).

also attempt to replace FPN in FCOS with BiFPN Tan, Pang, and Le, 2020. We
make use of BiFPN in the D3 model in Tan, Pang, and Le, 2020. To be specific, the
single cell of BiFPN is repeated 6 times and the number of its output channels is set
to 160. Note that unlike the original BiFPN, we do not employ depth-wise separable
convolutions here. As a result, BiFPN generally improves all FCOS models by ∼ 2%

AP and pushes the performance of the best model to 47.9%.

We also report the results of using test-time data augmentation. Specifically, in in-
ference, the input image is respectively resized to [400, 1200] pixels with step 100. At
each scale, the original image and its horizontal flip are evaluated. The results from
these augmented images are merged by NMS. As shown in Table 3.8, the test-time
augmentation improves the best performance to 50.4% AP.

3.3.4 Real-time FCOS

We also design a real-time version FCOS-RT. In the real-time settings, we decrease
the shorter side of input images from 800 to 512 and the maximum longer size from
1333 to 736, which decreases the inference time per image by ∼ 50%. With the
smaller input size, the higher feature levels P6 and P7 become less important. Thus,
following BlendMask-RT Chen et al., 2020, we remove P6 and P7, further reducing the
inference time. Moreover, in order to boost the performance of the real-time version,
we employ a more aggressive training strategy. Specifically, during training, multi-
scale data augmentation is used and the shorter size of input image is sampled from

28 Chapter 3. FCOS: Fully Convolutional One-Stage Object Detection

Figure 3.7. Qualitative results on the CrowdHuman val set with
the ResNet-50-FPN backbone. Best viewed on screen.

256 to 608 with interval 32. Synchronized batch normalization (SyncBN) is used. We
also increase the training iterations to 360K (i.e., 4×). The learning rate is decreased
by a factor of 10 at iteration 300K and 340K.

The resulting real-time models are shown in Table 3.9. With ResNet-50, FCOS-RT can
achieve 40.2% AP at 38 FPS on a single 1080Ti GPU card. We further replace ResNet-
50 with the backbone DLA-34 Yu et al., 2018, which results in a better speed/accuracy
trade-off (40.3% AP at 46 FPS). In order to compare with CenterNetZhou, Wang,
and Krähenbühl, 2019, we share the towers (i.e., 4× conv. layers shown in Fig. 3.2)
between the classification and regression branches, which improves the speed from 46

FPS to 52 FPS but deteriorate the performance by 1.2% AP. However, as shown in
Table 3.9, the model still outperforms CenterNet Zhou, Wang, and Krähenbühl, 2019
by 1.7% AP at the same speed. For the real-time models, we also replace FPN with
BiFPN as in Section 3.3.3, resulting 1.8% AP improvement (from 40.3% to 42.1%)
at a similar speed. A speed/accuracy comparison between FCOS and a few recent
detection methods is shown in Fig. 3.3.

3.3.5 FCOS on CrowdHuman

AP MR−2 JI
RetinaNet w/ imprv. 81.60 57.36 72.88
FCOS w/o ctr.-ness 83.16 59.04 73.09
FCOS w/ ctr.-ness 85.0 51.34 74.97

+ MIP (K = 2) 85.19 51.60 75.14
+ Set NMS Chu et al., 2020 87.28 51.21 77.34

Table 3.10. FCOS for crowded object detection on the
CrowdHuman dataset. Even on the highly crowded benchmark,
FCOS still attains even better performance than anchor-based Reti-
naNet. Note that lower MR−2 is better. “MIP w. set NMS”: Multiple
Instance Prediction, which predicts multiple instances from a single
location as proposed by Chu et al., 2020. Note that we are not pursu-
ing the state-of-the-art performance on the benchmark. We only show
that the anchor boxes are not necessary even on the highly-crowded

benchmark.

3.3. Experiments 29

We also conduct experiments on the highly crowded dataset CrowdHuman Shao et
al., 2018. CrowdHuman consists of 15K images for training, 4, 370 for validation
and 5, 000 images for testing. Following previous works on crowded benchmark Chu
et al., 2020; Shao et al., 2018, we use AP, long-average Miss Rate on False Positive
Per Image in [10−2, 100] (MR−2) Dollar et al., 2011 and Jaccard Index (JI) as the
evaluation metrics. Note that lower MR−2 is better. Following Chu et al., 2020, all
experiments here are trained on the train split for 30 epochs with batch size 16 and
then evaluated on the val split. Two small changes are made when FCOS is applied
to the benchmark. First, the NMS threshold is set as 0.5 instead of 0.6. We find
that it has large impact on MR−2 and JI. Second, when a location is supposed to
be associated to multiple ground-truth boxes, on COCO, we choose the object with
minimal area as the target for the location. On CrowdHuman, we instead choose the
target with minimal distance to the location. The distance between a location and
an object is defined as the distance from the location to the center of the object. On
COCO, both schemes result in similar performance. However, the latter has much
better performance than the former on the highly crowded dataset. Other settings
are the same as that of COCO.

First, we count the ambiguous sample ratios on CrowdHuman val set. With FPN-
based FCOS, there are 84.47% unambiguous positive samples (with one ground-truth
box), 13.63% with two ground-truth boxes, 1.69% with three ground-truth boxes and
the rest (< 0.3%) with more than three ground-truth boxes. Given the much higher
ambiguous sample ratio than COCO, it is expected that FCOS will have inferior
performance on the highly crowded dataset.

We compare FCOS without center-ness with the the improved RetinaNet (i.e., “Reti-
naNet w/ imprv."). To our surprise, even without center-ness, FCOS can already
achieve decent performance. As shown in Table 3.10, FCOS compares favorably with
its anchor-based counterpart RetinaNet on two out of three metrics (AP and JI),
which suggests that anchor-based detectors have no large advantages even under the
highly crowded scenario. The higher MR−2 of FCOS denotes that FCOS might have a
large number of false positives with high confidence. By using the center-ness, MR−2

can be significantly reduced from 59.04% to 51.34%. As a result, FCOS can achieve
better results under all the three metrics.

Furthermore, as shown in Chu et al., 2020, it is more reasonable to let one proposal
make multiple predictions under the highly crowded scenario (i.e., multiple instance
prediction (MIP)). After that, these predictions are merged by Set NMS Chu et al.,
2020, which skips the suppression for the boxes from the same location. A similar
idea can be easily incorporated into FCOS. To be specific, if a location should be
associated to multiple objects, instead of choosing a single target (i.e., the closest one
to the location), the location’s targets are set as the K-closest objects. Accordingly,
the network is required to make K predictions per location. Moreover, we do not
make use of the earth mover’s distance (EMD) loss for simplicity. Finally, the results

30 Chapter 3. FCOS: Fully Convolutional One-Stage Object Detection

are merged by Set NMS Chu et al., 2020. As shown in Table 3.10, with MIP and Set
NMS, improved performance is achieved under all the three metrics. Some qualitative
results are shown in Fig. 3.7.

3.4 Conclusions

In this work, we have proposed an anchor-free and proposal-free one-stage detector
FCOS. Our experiments demonstrate that FCOS compares favourably against the
widely-used anchor-based one-stage detectors, including RetinaNet, YOLO and SSD,
but with much less design complexity. FCOS completely avoids all computation and
hyper-parameters related to anchor boxes and solves the object detection in a per-
pixel prediction fashion, similar to other dense prediction tasks such as semantic
segmentation. Given its effectiveness and efficiency, we hope that FCOS can serve as
a strong and simple alternative of current mainstream anchor-based detectors.

31

Chapter 4

DirectPose: Direct End-to-End
Multi-Person Pose Estimation

4.1 Introduction

Multi-person pose estimation (a.k.a. keypoint detection) is a crucial step in the under-
standing of human behavior in images and videos. Previous methods for the task can
be roughly categorized into bottom-up Cao et al., 2017; Newell, Huang, and Deng,
2017; Papandreou et al., 2018; Pishchulin et al., 2016 and top-down He et al., 2017;
Sun et al., 2019; Fang et al., 2017; Chen et al., 2018 methods. Bottom-up meth-
ods first detect all the possible keypoints in an input image in an instance-agnostic
fashion, which are followed by a grouping or assembling process to produce the final
instance-aware keypoints. The grouping process is often heuristic and many tricks are
involved to achieve a good performance. In contrast, top-down methods first detect
each individual instance with a box and then reduce the task to single-instance key-
point detection. Although top-down methods can avoid the heuristic grouping process,
they come with the price of long computational time since they cannot fully leverage
the sharing computation mechanism of convolutional neural networks (CNNs). More-
over, the running time of top-down methods depends on the number of instances in
the image, making them unreliable in some instant applications such as autonomous
vehicles. Importantly, both bottom-up and top-down methods are not end-to-end1,
which is in conflict with deep learning’s philosophy of learning everything together.

As shown before, the anchor-free detector FCOS has demonstrated superior perfor-
mance than previous anchor-based ones. It directly regresses two corners of a target
box, without using pre-defined anchor boxes. The straightforward and effective solu-
tion for object detection gives rise to a question: can keypoint detection be solved with
this simple framework as well? It is easy to see that the keypoints for an instance can
be considered as a special box with more than two corner points, and thus the task
could be solved by attaching more output heads to the object detection networks.

1Here we mean ‘direct end-to-end’; i.e., the model is trained end-to-end with keypoint annotations
solely during training, and for inference, the model is able to map an input to keypoints for each
individual instance without box detection and grouping post-processing.

32 Chapter 4. DirectPose: Direct End-to-End Multi-Person Pose Estimation

Backbone Final Predictions

(x0, y0)
(x1, y1)

(xk-2, yk-2)
(xk-1, yk-1)

…

Figure 4.1. The naive direct end-to-end keypoint detection
framework. As shown in the figure, the framework requires a single
feature vector on the final feature maps to encode all the essential
information of an instance (e.g., the precise locations of some keypoints

for the instance, denoted as (x0, y0), ...(xk−1, yk−1)).

This solution is intriguing since 1) it is end-to-end trainable (i.e., directly mapping a
raw input image to the desired instance-aware keypoints). 2) It can avoid the short-
comings of both top-down and bottom-up methods as it needs neither grouping or box
detection. 3) It can unify object detection and keypoint detection in a single simple
and elegant framework.

However, we show that such a naive approach performs unsatisfactorily, mainly due
to the fact that these object detectors resort to a single feature vector to regress all
the keypoints of interest for an instance, with the hope that the single feature vector
can faithfully preserve the essential information (e.g., the precise locations of all the
keypoints) in its receptive field, as shown in Fig. 4.1. While the single feature vector
may be sufficiently good to carry information for simple box detection as shown in
Tian et al., 2019b, where only two corner points are involved in a box, it has difficulties
in encoding rich information for the more challenging keypoint detection. As shown
in our experiments, this straightforward approach yields inferior performance.

In this work, we propose a keypoint alignment (KPAlign) mechanism to largely over-
come the aforementioned problem of the solution. Instead of using a single feature
vector to regress all the keypoints for an instance, the proposed KPAlign aligns the
convolutional features with a target keypoint (or a group of keypoints) as possible
as it can, and then predicts the location of the target keypoint(s) with the aligned
features. Since the target keypoints and the used features are roughly aligned, the

4.1. Introduction 33

Heads

Heads

Heads

Heads

Heads

C5

C4

C3 P3

P4

P5

p6

P7

Backbone Feature Pyramid Networks Keypoint Detection Heads

H×W×256

×4

Classification

×4 H×W×2K

H×W×1

H×W×1

Centerness

KeypointsKPAlign

Heads

×2 H×W×K

Heatmaps

Available for P3 only

Figure 4.2. The proposed direct end-to-end multi-person
pose estimation framework. The framework shares a similar ar-
chitecture with one-stage object detectors such as FCOS Tian et al.,
2019b but the box branch is replaced with a keypoint branch. KPAlign:
the proposed keypoint alignment module, as described in Sec. 4.2.2.
Heatmaps: the branch for jointly heatmap-based learning and will be
removed when testing. Keypoints: the branch for keypoint detection.
Classification is from FCOS and used to classify the locations on the
feature maps into “person" or “not person". Center-ness is also from

FCOS.

features are only required to encode the information in its neighborhood. It is evident
that encoding the neighborhood is much easier than encoding the whole receptive
field, which thus results in an improved performance. Moreover, the KPAlign mod-
ule is differentiable, thus keeping the model end-to-end trainable. Additionally, it is
well-known that learning a regression-based model is difficult. However, in this work,
we find the regression task can largely benefit from a heatmap-based learning. As
a result, we propose to jointly learn the two tasks during training. When testing,
the heatmap-based branch is disabled and thus does not impose any overheads to the
framework.

To summarize, the proposed one-stage regression-based keypoint detection enjoys the
followings advantages over previous top-down or bottom-up approaches.

• The proposed framework is direct, totally end-to-end trainable. To predict, it
maps an input image to keypoints for each individual instance directly, relying
on neither intermediate operators like RoI feature cropping, nor grouping post-
processing, which sets our work apart from previous frameworks He et al., 2017;
Cao et al., 2017 with multiple steps.

• Our proposed framework can bypass the major shortcomings of both top-down
and bottom-up methods. For example, compared to top-down methods, our
framework can avoid the issue of early commitment and decouple computa-
tional complexity from the number of instances in an input image. Compared
to bottom-up methods, our framework eliminates the heuristic post-processing
assembling the detected keypoints into full-body instances.

• Finally, the framework suggests that the keypoint detection task can also be

34 Chapter 4. DirectPose: Direct End-to-End Multi-Person Pose Estimation

…Feature
Sampler

Predictor

…

K offsets

Final PredictionsBackbone

(x0, y0)
(x1, y1)

(xk-2, yk-2)
(xk-1, yk-1)

…

Keypoint Aligment (KPAlign) Module

Aligner

Conv1x1

…

K offsets

KPAlign

Conv1x1

Conv1x1

Conv1x1

…

Locator

Features

Figure 4.3. The proposed keypoint detection framework with
the Keypoint Alignment (KPAlign) module. Feature pyramid
networks (FPNs) are not shown here. The aligner consists a locator
and a sampler. The locator is essentially a 3 × 3 convolution layer
and predicts the rough locations of the keypoints. Next, the feature
sampler samples feature vectors at these locations. Thus, the aligner
can roughly align the features and the predicted keypoints. The pre-
dictor employs these aligned feature vectors to make the final keypoint

predictions.

solved with the same methodology as box detection (i.e., directly regressing all
the keypoints or the corners of boxes), resulting in a unifying framework for
both tasks.

4.2 Our Approach

In this section, we first show how FCOS can be extended to keypoint detection. Next,
we illustrate our proposed KPAlign module, which allows the framework to leverage
the feature-prediction alignment and improves the performance by a large margin.
Finally, we present that how the jointly learning of the regression-based task and a
heatmap-based task can be used to further boost the precision of keypoint localization.

4.2.1 End-to-End Multi-Person Pose Estimation

Extending FCOS to Keypoint Detection. It is straightforward to extend the
FCOS to keypoint detection. Specifically, we increase the scalars that each pixel re-
gresses from 4 to 2K, where K is the number of keypoints for each instance. Similarly,
the 2K scalars denote the relative coordinates to the current pixel. In other words,
we regard keypoints as a special box with K corner points.

Our End-to-End Framework. As shown in Fig. 4.2, the framework is implemented
by applying a convolutional branch on all levels of the output feature maps of FPN
Lin et al., 2017a (i.e., P3, P4, P5, P6 and P7). The downsampling ratios of these
feature maps to the input image are 8, 16, 32, 64 and 128, respectively. Note that
the parameters of the branch are shared between FPN levels as in the box detection
branch of the FCOS detector. The output channels of the branch is 2K, where K is

4.2. Our Approach 35

the number of keypoints for each instance. The original box branch can be kept for
simultaneous keypoint and box detection. Moreover, for keypoint-only detection, it is
worth noting that we only use keypoint annotations without boxes. However, during
training, FCOS requires a box for each instance to determine a positive or negative
label for each location on the FPN feature maps. Here, we employ the minimum
enclosing rectangles of keypoints of the instances as pseudo-boxes for computing the
training labels.

4.2.2 Keypoint Alignment (KPAlign) Module

We conduct preliminary experiments with the aforementioned naive keypoint detec-
tion framework. However, as shown in our experiments, it has inferior performance.
We attribute the inferior performance to the lack of the alignment between the fea-
tures and the predicted keypoints. Essentially, the naive framework makes use of a
single feature vector at a location on the input feature maps to regress all the key-
points for an instance. As a result, the single feature vector is required to encode all
the required information for the instance. This is difficult because many keypoints
are far away from the center of the feature vector’s receptive field and it has been
shown in Luo et al., 2016 that the intensity of the feature’s response decays quickly
as the input signal deviates from the center of its receptive field. As shown in many
FCN-based frameworks He et al., 2017; Long, Shelhamer, and Darrell, 2015, keeping
the feature and prediction aligned is crucial to good performance. Thus the feature
only needs to encode the information in a local patch, which is much easier.

In this work, we propose a keypoint alignment (KPAlign) module to recover the
feature-prediction alignment in the framework. KPAlign is used to replace the convo-
lutional layer for the final keypoint detection in the naive framework and take as input
the same feature maps, denoted as F ∈ RH×W×C , where C being 256 is the number
of channels of the feature maps. Analogous to a convolution operation, KPAlign is
densely slid through the input feature maps F. For simplicity, we take as an example
a specific location (i, j) on F to illustrate how KPAlign works. As shown in Fig. 4.3,
KPAlign consists of two components — an aligner ζ and a predictor φ. The aligner
consists of a locator and a feature sampler, and outputs the aligned feature vectors.
The aligner can be formulated as,

ooo0, ooo1, ..., oooK−1, vvv0, vvv1, ..., vvvK−1 = ζ(F), (4.1)

where ooot ∈ R2, produced by the locator in Fig. 4.3, is the location where the feature
vector used to predict the t-th keypoint of an instance should be sampled. vvvt ∈ RC

is the sampled feature vector. Note that the location ooot is defined over R2 and thus
it can be fractional. Following Dai et al., 2017; He et al., 2017, we make use of
bilinear interpolation to compute the features at a fractional location. Additionally,
the location is encoded as the coordinates relative to (i, j) and thus is translation
invariant.

36 Chapter 4. DirectPose: Direct End-to-End Multi-Person Pose Estimation

Next, the predictor φ takes the outputs of the aligner as inputs to predict the final
coordinates of the keypoints. As shown in Fig. 4.3, the predictor includes K convolu-
tion layers (i.e., one for each keypoint). Let us assume that we are looking for the t-th
keypoint for the instance and let φt denote the t-th convlutional layer in the predictor.
φt takes vvvt as input and predicts the coordinates of the t-th keypoint relative to the
location where vvvt is sampled (i.e., ooot). Finally, the coordinates of the t-th keypoint,
denoted as xxxt, are the sum of the two sets of coordinates. Formally,

xxxt = φt(vvvt) + ooot, t = 0, 1, ...,K − 1. (4.2)

Note that the coordinates need to be re-scaled by the down-sampling ratio of F.
We omit the re-scaling operator here for simplicity. Note that all the operations in
KPAlign module are differentiable and therefore the whole model can be trained in an
end-to-end fashion with standard back-propagation, which sets our work apart from
previous bottom-up or top-down keypoint detection frameworks such as CMU-Pose
Cao et al., 2017 or Mask R-CNN He et al., 2017. Being end-to-end trainable also
makes the locator be able to learn to localize the keypoints without explicit supervision,
which is critically important to KPAlign.

Grouped KPAlign. The aforementioned KPAlign module is required to sample K
feature vectors forK keypoints. This is actually not necessary because some keypoints
(e.g., nose, eyes and ears) always populate in a local area. Therefore, we propose to
group the keypoints and the keypoints in the same group will use the same feature
vector, which reduces the number of sampled feature vectors fromK to G and achieves
a similar performance, where G is the number of groups.

Using Separate Convolutional Features. In the KPAlign described before, all of
the keypoint groups use the feature maps F as the input. However, we find that the
performance can be improved remarkably if we use separate feature maps for the G
keypoint groups (i.e., using Ft, t = 0, 1, ..., G − 1). In that way, the demand for the
information encoded in a single Ft can be further mitigated. In order to reduce the
computational complexity, the number of channels of each Ft is set as C

4 (i.e., from
256 to 64).

Where to Sample Features? For the sake of convenience, the sampler in the
aforementioned aligner samples features on the input feature maps of the locator, and
therefore the predictor and locator take as inputs the same feature maps. However,
it is not reasonable as the locator and predictor require different levels of feature
maps. The locator predicts the initial but imprecise locations for all the keypoints
(or keypoint groups) of an instance and thus requires high-level features with a larger
receptive field. In contrast, the predictor needs to make precise predictions but only
for the keypoints in a local area because the features have been aligned by the aligner.
As a result, the predictor prefers high-resolution low-level features with a smaller
receptive field. To this end, we feed lower levels of feature maps into the sampler.

4.3. Experiments 37

Specifically, if a locator uses feature maps PL and PL is not the finest feature maps,
the sampler will take PL−1 as the input. If PL is already the finest feature maps, the
sampler will still sample on it.

4.2.3 Regularization from Heatmap Learning

It is well-known that regression-based tasks are difficult to learn Glorot and Bengio,
2010; Sun et al., 2018 and have poor generalization. As a result, we need to seek a way
that can make the regression-based task easier to learn and generalize. To this end,
given the fact that heatmap-based learning is much easier, we use the heatmap-based
prediction task as an auxiliary task. Thus, the heatmap-based task can serve as a hint
for the regression-based task and thus can regularize the task. In our experiments,
the jointly learning significantly boosts the performance of the regression-based task.
Note that the heatmap-based task is only used as an auxiliary loss during training. It
is removed when testing.

Heatmap Prediction. As shown in Fig. 4.2, the heatmap prediction task takes
as input the FPN feature maps P3 with downsampling ratio being 8. Afterwards,
two 3× 3 conv layers with channel being 128 are applied here, which are followed by
another 3×3 conv layer with output channel being K for the final heatmap prediction,
where K is the number of keypoints for each instance.

Ground-truth Heatmaps and Loss Function. The ground-truth heatmaps are
generated as follows. On the heatmaps, if a location is the nearest location to a
keypoint with type t, the classification label for the location is set as t, where t ∈
{1, 2, ...,K}. Otherwise, the label is 0.2 Finally, in order to overcome the imbalance
between positive and negative samples, we use focal loss Lin et al., 2017b as the loss
function.

4.3 Experiments

Our experiments are conducted on human keypoint detection task of the large-scale
benchmark COCO dataset Lin et al., 2014. The dataset contains more than 250K

person instances with 17 annotated keypoints. Following the common practice Cao
et al., 2017; He et al., 2017, we use the COCO trainval35k split (57K images) for
training and minival split (5K images) as validation for our ablation study. We
report our main results on the test-dev split (20K images). Unless specified, we
only make use of the human keypoint annotations without boxes. The performance is
computed with Average Percision (AP) based on Object Keypoint Similarity (OKS).

Implementation Details. Unless specified, ResNet-50 He et al., 2016 is used as
our backbone networks. We use two training schedules. The first is quick and used
to train a fast prototype of our models in ablation experiments. Specifically, the

2Strictly speaking, the generated ground-truth is a set of binary labels, rather than the conven-
tional real-valued heatmap. We slightly abuse the term here.

38 Chapter 4. DirectPose: Direct End-to-End Multi-Person Pose Estimation

APkp APkp
50 APkp

75 APkp
M APkp

L

Baseline 43.4 73.8 45.1 38.9 50.9
w/ KPAlign† 43.0 74.2 43.9 39.0 49.6
w/ KPAlign 50.5 77.6 54.9 44.4 60.0

Table 4.1. Ablation experiments on COCO minival for the
proposed KPAlign module. Baseline: the naive keypoint detection
framework, as shown in Fig. 4.1. “w/ KPAlign†": using the KPAlign
module in the naive framework but disabling the aligner in it. “w/

KPAlign": using the full-featured KPAlign module.

models are trained with stochastic gradient descent (SGD) on 8 V100 GPUs for 25

epochs with a mini-batch of 16 images. For the main results on test-dev split, we
use a longer training schedule; the models are trained for 100 epochs with a mini-
batch of 32 images. We set the initial learning rate to 0.01 and use a linear schedule
base_lr×(1− iter

max_iter) to decay it. Weight decay and momentum are set as 0.0001 and
0.9, respectively. We initialize our backbone networks with the weights pre-trained on
ImageNet Deng et al., 2009. For the newly added layers, we initialize them as in Lin
et al., 2017b. When training, the images are randomly resized and horizontally flipped
with probability being 0.5, and the images are also randomly cropped into 800× 800

patches. When testing, we run inference on the whole image and the testing images
are resized to have its shorter side being 800 and their longer side less or equal to
1333. If box detection is available, NMS is applied to the detected boxes. Otherwise,
we do NMS on the minimum enclosing rectangles of keypoints of the instances. The
NMS threshold is set as 0.5 for all experiments.

4.3.1 Ablation Experiments

Baseline: the naive end-to-end framework

We first experiment with the naive end-to-end keypoint detection framework in Fig. 4.1
by replacing the box head in FCOS with the keypoint detection head. Moreover, as
described before, we use pseudo-boxes to compute the label for each location on FPN
feature maps during training. As shown in Table 4.1, the naive framework can only
obtain low performance (43.4% in APkp). As mentioned before, the low performance
is due to the misalignment between the features and keypoint predictions. In the
following experiments, we will show that our proposed KPAlign can overcome the
issue.

Keypoint alignment (KPAlign) module

In this section, we equip the above naive framework with our proposed KPAlign
module. As shown in Fig. 4.2, KPAlign serves as the final prediction layer, which
was a standard convolutional layer in the naive framework. As shown in Table 4.1,
KPAlign improves the keypoint detection performance by a large margin (more than
7 points in APkp). In order to demonstrate that the improvement is indeed due to the

4.3. Experiments 39

APkp APkp
50 APkp

75 APkp
M APkp

L

KPAlign 50.5 77.6 54.9 44.4 60.0
+ Grouped 50.6 77.5 55.4 44.3 60.2
+ Sep. features 51.4 78.2 55.6 45.6 60.6
+ Better sampling 52.2 78.3 56.6 46.3 61.7

Table 4.2. Ablation experiments on COCO minival for the
design choices in KPAlign. “+ Grouped": using Grouped KPAlign.
“+ Sep. features": using separate (but slimmer) feature maps for
different keypoint groups. “+ Better sampling": the predictor samples

features on finer feature maps (i.e., from PL to PL−1).

retained alignment between the features and keypoint predictions rather than other
factors (e.g., slightly more network parameters), we conduct another experiment in
which the aligner of KPAlign is disabled. In other words, the offsets predicted by
the locator are ignored and thus all the keypoints of an instance are predicted with
the same features as in the naive framework. As shown in Table 4.1, without the
aligner, the performance drops dramatically to 43.0% in APkp, which is nearly the
same as the performance of the naive framework. Therefore, it is safe to claim that
the improvement is due to the retained alignment.

Grouped KPAlign

As described before, it is not necessary to sampleK (i.e., 17 on COCO) feature vectors
(one feature vector per keypoint) as some keypoints are always together and thus can
be predicted with the same feature vector. In this experiments, we divide the keypoints
into 9 groups3, which reduces the number of the sampled feature vectors from 17 to
9 and makes the module faster. As shown in Table 4.2, the Grouped KPAlign can
achieve slightly better performance than the original KPAlign. Therefore, in the
sequel, we will use the Grouped KPAlign for all the following experiments. We also
attempted other ways forming the groups but they achieve a similar performance.

Using separate convolutional features

As shown in Table 4.2, using separate feature maps can boost the performance by
0.8% in APkp (from 50.6% to 51.4%). Note that the number of channels of these
separate feature maps is reduced from 256 to 64, and thus the model has similar
computational complexity to the original one.

Where to sample features in KPAlign?

In this experiment, the sampler samples on finer feature maps, as described in Sec. 4.2.2.
As shown in Table 4.2 (“+ Better Sampling"), using the sampling strategy can im-
prove the performance to 52.2%. Note that using the sampling strategy does not

3These groups respectively include (nose, left eye, right eye, left ear, right ear), (left shoulder,),
(left elbow, left wrist), (right shoulder,), (right elbow, right wrist), (left hip,), (left knee, left ankle),
(right hip,) and (right knee, right ankle).

40 Chapter 4. DirectPose: Direct End-to-End Multi-Person Pose Estimation

APkp APkp
50 APkp

75 APkp
M APkp

L

Baseline 52.2 78.3 56.6 46.3 61.7
w/ 16× Heatmap 57.7 82.8 63.1 51.8 66.9
w/ 8× Heatmap 58.0 82.5 63.3 52.7 66.6
+ Longer sched. 63.1 85.6 68.8 57.7 71.3

Table 4.3. Ablation experiments on COCO minival for
DirectPose with heatmap prediction. Baseline: without the
heatmap learning. “16× Heatmaps": predicting the heatmaps with
downsampling ratio being 16. “8× Heatmaps": predicting the
heatmaps with downsampling ratio being 8 (i.e., using P3). “+ Long
sched.": increasing the number of training epochs from 25 to 100.

increase the computational complexity of the model. Moreover, the better sampling
strategy improves the APkp50 and APkp75 by 0.1% and 1.0%, respectively, which implies
that the sampling strategy can result in more accurate keypoint predictions because
the improvement mainly comes from the APkps at higher thresholds.

Regularization from heatmap learning

As shown in Table 4.3 (“w/ 8× Heatmaps"), by jointly learning the regression-based
model with a heatmap prediction task, the performance of the regression-based task
can be largely improved from 52.2% to 58.0%. Note that the heatmap prediction is
only used during training to provide the multi-task regularization. Moreover, we also
conduct experiments with the heatmap prediction with a lower resolution (i.e., “w/
16× Heatmaps"). As shown in Table 4.3, even with the low-resolution heatmaps, the
model can still yield a similar performance. This suggests that our method is not
sensitive to the design choices for the heatmap learning. In order to demonstrate the
impact of the heatmap learning, we plot the loss curves of training with or without
the heatmap learning in Fig. 4.4. As shown in the figure, the heatmap learning can
greatly help the training of the model and make the model achieve a much lower loss
value, thus resulting in much better performance.

Moreover, we find that our method is highly under-fitting and previous methods such
as Sun et al., 2019 with heatmaps learning are trained with much more epochs than
ours, and therefore we increase the number of epochs from 25 to 100. As shown in
Table 4.3, this improves the performance by 5.1% in APkp.

4.3.2 Combining with Bounding Box Detection

w/ BBox APbb APbb
50 APbb

75 APkp APkp
50 APkp

75

- - - 63.1 85.6 68.8
X 55.3 81.5 59.9 61.5 84.3 67.5

Table 4.4. Our framework with person box detection on
COCO minival. The proposed framework can achieve reasonable
person detection results (55.3% in AP). As a reference, the Faster R-
CNN person detector in Mask R-CNN He et al., 2017 achieves 53.7%

in AP.

4.3. Experiments 41

0 5 10 15 20 25
Epoch

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ke
yp

oi
nt

 R
eg

re
ss

io
n

Lo
ss

w/o Heatmap Learning
w/ Heatmap Learning

Figure 4.4. The loss curves of training with or without the
heatmap learning. As shown in the figure, with the heatmap learn-
ing, the model can achieve a significantly lower loss value and thus

much better performance.

As mentioned before, by simply adding a box branch, the proposed framework can
simultaneously detect bounding boxes and keypoints. Here we confirm it by the exper-
iment. The box detection is implemented by adding the original box detection head
of FCOS to the framework. As shown in Table 4.4, our framework can achieve a rea-
sonable person detection performance, which is similar to the Faster R-CNN detector
in Mask R-CNN (55.3% vs. 53.7%). Although Mask R-CNN can also simultaneously
detect boxes and keypoints, we further unify the two tasks into the same methodology.

4.3.3 Comparisons with State-of-the-art Methods

In this section, we evaluate the proposed end-to-end keypoint detection framework
on MS-COCO test-dev split and compare it with previous bottom-up and top-down
ones. We make use of the best model in ablation experiments. As shown in Table 4.5,
without any bells and whistles (e.g., multi-scale and flipping testing, the refining in
Cao et al., 2017; Newell, Huang, and Deng, 2017, and any other tricks), the end-to-
end framework achieves 62.2% and 63.3% in APkp on COCO test-dev split, with
ResNet-50 and ResNet-101 as the backbone, respectively. With multi-scale testing,
our framework can achieve 63.0% and 64.8% with ResNet-50 and ResNet-101, respec-
tively.

Compared to Bottom-up Methods. The performance of our ResNet-50 based

42 Chapter 4. DirectPose: Direct End-to-End Multi-Person Pose Estimation

method APkp APkp
50 APkp

75 APkp
M APkp

L

Top-down Methods
Mask R-CNN He et al., 2017 62.7 87.0 68.4 57.4 71.1
CPN Chen et al., 2018 72.1 91.4 80.0 68.7 77.2
RMPE Fang et al., 2017 72.3 89.2 79.1 68.0 78.6
CFN Huang, Gong, and Tao, 2017 72.6 86.1 69.7 78.3 64.1
HRNet-W48 Sun et al., 2019 75.5 92.5 83.3 71.9 81.5

Bottom-up Methods
CMU-Pose∗† Cao et al., 2017 61.8 84.9 67.5 57.1 68.2
AE Newell, Huang, and Deng, 2017 56.6 81.8 61.8 49.8 67.0
AE∗ 62.8 84.6 69.2 57.5 70.6
AE∗† 65.5 86.8 72.3 60.6 72.6
PersonLab Papandreou et al., 2018 65.5 87.1 71.4 61.3 71.5
PersonLab† 67.8 89.0 75.4 64.1 75.5

Direct End-to-end Methods
Ours (R-50) 62.2 86.4 68.2 56.7 69.8
Ours (R-50)† 63.0 86.8 69.3 59.1 69.3
Ours (R-101) 63.3 86.7 69.4 57.8 71.2
Ours (R-101)† 64.8 87.8 71.1 60.4 71.5

Table 4.5. The performance of our proposed end-to-end
framework on COCO test-dev split. ∗ and † respectively denote

using refining and multi-scale testing.

end-to-end framework is better (62.2% vs. 61.8%) than the strong baseline CMU-
Pose Cao et al., 2017 that uses multi-scale testing and post-processing with CPM
Wei et al., 2016, and filters the results with an object detector. Our framework also
achieves much better performance than the bottom-up method AE Newell, Huang,
and Deng, 2017 (63.3% vs. 56.6%) and is even better than the method with refining.
Compared to PersonLab, with the same backbone ResNet-101 and single-scale testing,
our proposed framework also has a competitive performance with it (63.3% vs. 65.5%).
Note that our proposed framework is much simpler than these bottom-up methods,
in both training and testing.

Compared to Top-down Methods. With the same backbone ResNet-50, the
proposed method has a similar performance with previous strong baseline Mask R-
CNN (62.2% vs. 62.7%). Our model is still behind other top-down methods. However,
it is worth noting that these methods often employ a separate box detector to obtain
person instances. These instances are then cropped from the original image and
a single person pose estimation method is separately applied to each the cropped
image to obtain the final results. As noted before, this strategy is slow as it cannot
take advantage of the sharing computation mechanism in CNNs. In contrast, our
proposed end-to-end framework is much simpler and faster since it directly maps
the raw input images to the final instance-aware keypoint detections with a fully
convolutional network.

Timing. The averaged inference time of our model on COCO minival split is 74ms
and 87ms per image with ResNet-50 and ResNet-101, respectively, which is slightly
faster than Mask R-CNN with the same hardware and backbones (Mask R-CNN takes

4.3. Experiments 43

Locator’s Outputs Final Detection Ground-Truth Locator’s Outputs Final Detection Ground-Truth

Figure 4.5. Visualization results of KPAlign on MS-COCO
minival. The first image in each group shows the outputs of the
locator in KPAlign (i.e., the locations where the sampler samples the
features used to predict the keypoints). The orange point denotes
the original location where the features will be used if KPAlign is not
used. The second image shows the final keypoint detection results.
As shown in the figure, the proposed KPAlign can make use of the
features near the keypoints to predict them. The final image shows

that the ground-truth keypoints. Zoom in for a better look.

78ms per image with ResNet-50). Additionally, the running time of Mask R-CNN
depends on the number of the instances while our model, similar to one-stage object
detectors, has nearly constant inference time for any number of instances.

4.3.4 Visualization of KPAlign

The visualization results of KPAlign are shown in Fig. 4.5. As shown in the figure, the
proposed KPAlign can make use of the features near the keypoints to predict them.
Thus, the feature vectors can avoid encoding the keypoints far from their spatial
location, which results in improved performance.

4.3.5 Visualization of Keypoint Detections

We show more visualization results of DirectPose in Fig. 4.6. As shown in the figure,
the proposed DirectPose can directly detect all the desired instance-aware keypoints

44 Chapter 4. DirectPose: Direct End-to-End Multi-Person Pose Estimation

Figure 4.6. Visualization results of the proposed DirectPose
on MS-COCO minival. DirectPose can directly detect a wide range
of poses. Note that some small-scale people do not have ground-truth
keypoint annotations in the training set of MS-COCO, thus they might

be missing when testing.

without the need for the grouping post-processing or box detection. The results of
the proposed DirectPose with simultaneous box detection are also shown in Fig. 4.7.

4.4 Conclusions

We have proposed the first direct end-to-end human pose estimation framework,
termed DirectPose. Our proposed model is end-to-end trainable and can directly map
a raw input image to the desired instance-aware keypoint detections with almost con-
stant inference time, eliminating the grouping post-processing in bottom-up methods
or the box detection and RoI operations in top-down ones. Experiments demonstrate
that the new end-to-end method can obtain competitive or better performance than
previous bottom-up and top-down methods.

4.4. Conclusions 45

Figure 4.7. Visualization results of the proposed DirectPose
with the simultaneous box detection on MS-COCO minival.

47

Chapter 5

Conditional Convolutions for
Instance Segmentation

5.1 Introduction

Instance segmentation is a fundamental yet challenging task in computer vision, which
requires an algorithm to predict a per-pixel mask with a category label for each in-
stance of interest in an image. Despite a few works being proposed recently, the
dominant framework for instance segmentation is still the two-stage method Mask
R-CNN He et al., 2017, which casts instance segmentation into a two-stage detection-
and-segmentation task. Mask R-CNN first employs an object detector Faster R-CNN
to predict a box for each instance. Then for each instance, regions-of-interest (ROIs)
are cropped from the networks’ feature maps using the ROIAlign operation. To pre-
dict the final masks for each instance, a compact fully convolutional network (FCN)
(i.e., mask head) is applied to these ROIs to perform foreground/background segmen-
tation. However, this ROI-based method may have the following drawbacks. 1) Since
ROIs are often axis-aligned boxes, for objects with irregular shapes, they may con-
tain an excessive amount of irrelevant image content including background and other
instances. This issue may be mitigated by using rotated ROIs, but with the price of
a more complex pipeline. 2) In order to distinguish between the foreground instance
and the background stuff or instance(s), the mask head requires a relatively larger
receptive field to encode sufficiently large context information. As a result, a stack
of 3 × 3 convolutions is needed in the mask head (e.g., four 3 × 3 convolutions with
256 channels in Mask R-CNN). It considerably increases computational complexity of
the mask head, resulting that the inference time significantly varies in the number of
instances. 3) ROIs are typically of different sizes. In order to use effective batched
computation in modern deep learning frameworks A. Paszke et al., 2019; M. Abadi
et al., 2016, a resizing operation is often required to resize the cropped regions into
patches of the same size. For instance, Mask R-CNN resizes all the cropped regions to
14× 14 (upsampled to 28× 28 using a deconvolution), which restricts the output res-
olution of instance segmentation, as large instances would require higher resolutions
to retain details at the boundary.

48 Chapter 5. Conditional Convolutions for Instance Segmentation

output
instance masks

…

co
nv

co
nv

co
nv

mask head K

co
nv

co
nv

co
nv

mask head 1

…

instance-aware
mask heads

features
w/ rel. coord.

…
Figure 5.1. CondInst uses instance-aware mask heads to pre-
dict the masks for each instance. K is the number of instances
to be predicted. The filters in the mask head vary with different in-
stances, which are conditioned on the target instance. ReLU is

used as the activation function (excluding the last conv. layer).

In computer vision, the closest task to instance segmentation is semantic segmen-
tation, for which fully convolutional networks (FCNs) have shown dramatic success
Long, Shelhamer, and Darrell, 2015; Chen et al., 2017a; Tian et al., 2019a; He et al.,
2019b; Liu et al., 2020a. FCNs also have shown excellent performance on many other
per-pixel prediction tasks ranging from low-level image processing such as denoising,
super-resolution; to mid-level tasks such as optical flow estimation and contour de-
tection; and high-level tasks including the single-shot object detection such as FCOS,
monocular depth estimation Liu et al., 2016a; Yin et al., 2019; Yin et al., 2020; Bian
et al., 2019; Bian et al., 2020 and counting Boominathan, Kruthiventi, and Babu,
2016. However, almost all the instance segmentation methods based on FCNs1 lag
behind state-of-the-art ROI-based methods. Why do the versatile FCNs perform
unsatisfactorily on instance segmentation? We observe that the major difficulty of
applying FCNs to instance segmentation is that the similar image appearance may
require different predictions but FCNs struggle at achieving this. For example, if two
persons A and B with the similar appearance are in an input image, when predicting
the instance mask of A, the FCN needs to predict B as background w.r.t. A, which
can be difficult as they look similar in appearance. Therefore, an ROI operation is
used to crop the person of interest, i.e., A; and filter out B. The ROI operation is the
de facto core operation making the model attend to instances. In contrast, CondInst
attends to the instances by using instance-sensitive convolutional filters.

Specifically, we advocate a new solution that uses instance-aware FCNs for instance
1By FCNs, we mean the vanilla FCNs in Long, Shelhamer, and Darrell, 2015 that only involve

convolutions and pooling.

5.1. Introduction 49

mask prediction. In other words, instead of using a standard ConvNet with a fixed
set of convolutional filters as the mask head for predicting all instances, the network
parameters are adapted according to the instance to be predicted. Inspired by dy-
namic filtering networks Jia et al., 2016 and CondConv Yang et al., 2019a, for each
instance, a controller sub-network (see Fig. 5.3) dynamically generates the mask FCN
network parameters (conditioned on the center area of the instance), which is then
used to predict the mask of this instance. It is expected that the network parame-
ters can encode the characteristics (e.g., relative position, shape and appearance) of
this instance, and only fires on the pixels of this instance, which thus bypasses the
difficulty mentioned above. These conditional mask heads are applied to the whole
feature maps, eliminating the need for ROI operations. At the first glance, the idea
may not work well as instance-wise mask heads may incur a large number of network
parameters provided that some images contain as many as dozens of instances. How-
ever, we show that a very compact FCN mask head with dynamically-generated filters
can already outperform previous ROI-based Mask R-CNN, resulting in much reduced
computational complexity per instance than that of the mask head in Mask R-CNN.

We summarize our main contributions as follow.

• We attempt to solve instance segmentation from a new perspective. To this
end, we propose the CondInst instance segmentation framework, which achieves
improved instance segmentation performance than existing methods such as
Mask R-CNN while being faster. To our knowledge, this is the first time that a
new instance segmentation framework outperforms recent state-of-the-art both
in accuracy and speed.

• CondInst is fully convolutional and avoids the aforementioned resizing operation
used in many existing methods, as CondInst does not rely on ROI operations.
Without having to resize feature maps leads to high-resolution instance masks
with more accurate edges.

• Unlike previous methods, in which the filters in its mask head are fixed for all
the instances once trained, the filters in our mask head are dynamically gener-
ated and conditioned on instances. As the filters are only asked to predict the
mask of only one instance, it largely eases the learning requirement and thus
reduces the load of the filters. As a result, the mask head can be extremely
light-weight, significantly reducing the inference time per instance. Compared
with the bounding box detector FCOS, CondInst needs only ∼10% more com-
putational time, even processing the maximum number of instances per image
(i.e., 100 instances).

• Without resorting to longer training schedules as needed in recent works Chen
et al., 2019b; Bolya et al., 2019a, CondInst achieves state-of-the-art perfor-
mance while being faster in inference. We hope that CondInst can be a new

50 Chapter 5. Conditional Convolutions for Instance Segmentation

ours ours YOLACT M-RCNN ours ours YOLACT M-RCNN

ours ours YOLACT M-RCNN ours ours YOLACT M-RCNN

Figure 1. Qualitative comparisons with other methods. We compare the proposed CondInst against YOLACT [1] and Mask
R-CNN [2]. Our masks are generally of higher quality (e.g., preserving more details). Best viewed on screen.

the major difficulty of applying FCNs to instance segmen-
tation is that the similar image appearance may require dif-
ferent predictions but FCNs struggle at achieving this. For
example, if two persons A and B with the similar appear-
ance are in an input image, when predicting the instance
mask of A, the FCN needs to predict B as background w.r.t.
A, which can be difficult as they look similar in appearance.
Therefore, the ROI operation is used to crop the person of
interest, e.g., A; and filter out B. Essentially, instance seg-
mentation needs two types of information: 1) appearance
information to categorize objects; and 2) location informa-
tion to distinguish multiple objects belonging to the same
category. Almost all methods rely on ROI cropping, which
explicitly encodes the location information of instances. In
contrast, CondInst exploits the location information by us-
ing location/instance-sensitive convolution filters as well as
relative coordinates that are appended to the feature map.

Thus, we advocate a new solution that uses instance-
aware FCNs for instance mask prediction. In other words,
instead of using a standard ConvNet with a fixed set of
convolutional filters as the mask head for predicting all in-
stances, the network parameters are adapted according to
the instance to be predicted. Inspired by dynamic filtering
networks [10] and CondConv [11], for each instance, a con-
troller sub-network (see Fig. 2) dynamically generates the
mask FCN network parameters (conditioned on the center
area of the instance), which is then used to predict the mask
of this instance. It is expected that the network parameters
can encode the characteristics of this instance, and only fires
on the pixels of this instance, which thus bypasses the dif-
ficulty mentioned above. These conditional mask heads are
applied to the whole feature maps, eliminating the need for

ROI operations. At the first glance, the idea may not work
well as instance-wise mask heads may incur a large number
of network parameters provided that some images contain
as many as dozens of instances. However, we show that a
very compact FCN mask head with dynamically-generated
filters can already outperform previous ROI-based Mask R-
CNN, resulting in much reduced computational complexity
per instance than that of the mask head in Mask R-CNN.

We summarize our main contributions as follow.

• We attempt to solve instance segmentation from a new
perspective. To this end, we propose the CondInst in-
stance segmentation framework, which achieves im-
proved instance segmentation performance than exist-
ing methods such as Mask R-CNN while being faster.
To our knowledge, this is the first time that a new
instance segmentation framework outperforms recent
state-of-the-art both in accuracy and speed.

• CondInst is fully convolutional and avoids the afore-
mentioned resizing operation in many existing meth-
ods, as CondInst does not rely on ROI operations.
Without having to resize feature maps leads to high-
resolution instance masks with more accurate edges.

• Unlike previous methods, in which the filters in its
mask head are fixed for all the instances once trained,
the filters in our mask head are dynamically gener-
ated and conditioned on instances. As the filters are
only asked to predict the mask of only one instance,
it largely eases the learning requirement and thus re-
duces the load of the filters. As a result, the mask
head can be extremely light-weight, significantly re-
ducing the inference time per instance. Compared with

2

Figure 5.2. Qualitative comparisons with other methods. We
compare the proposed CondInst against YOLACT Bolya et al., 2019a
and Mask R-CNN He et al., 2017. Our masks are generally of higher

quality (e.g., preserving more details).

strong alternative to popular methods such as Mask R-CNN for the instance
segmentation task.

Moreover, CondInst can be immediately applied to panoptic segmentation due to its
flexible design. We believe that with minimal re-design effort, the proposed CondInst
can be used to solve all instance-level recognition tasks that were previously solved
with an ROI-based pipeline.

5.2 Instance Segmentation with CondInst

5.2.1 Overall Architecture

Given an input image I ∈ RH×W×3, the goal of instance segmentation is to predict
the pixel-level mask and the category of each instance of interest in the image. The
ground-truths are defined as {(Mi, ci)}, whereMi ∈ {0, 1}H×W is the mask for the i-th
instance and ci ∈ {1, 2, ..., C} is the category. C is 80 on MS-COCO Lin et al., 2014.
Unlike semantic segmentation, which only requires to predict one mask for an input
image, instance segmentation needs to predict a variable number of masks, depending
on the number of instances in the image. This poses a challenge when applying
traditional FCNs Long, Shelhamer, and Darrell, 2015 to instance segmentation. In
this work, our core idea is that for an image with K instances, K different mask heads
will be dynamically generated, and each mask head will contain the characteristics of
its target instance in their filters. As a result, when the mask is applied to an input,
it will only fire on the pixels of the instance, thus producing the mask prediction of
the instance. We illustrate the process in Fig. 5.1.

5.2. Instance Segmentation with CondInst 51

m
as

k
br

an
ch

assign to

co
nv

co
nv

co
nv

mask FCN head …

output instance masks

append
rel. coord.

head

head

head

head

head

Convs

Convs

classification px, y

controller
(generating filters !x, y)

shared head

Figure 5.3. The overall architecture of CondInst. C3, C4

and C5 are the feature maps of the backbone network (e.g.,
ResNet-50). P3 to P7 are the FPN feature maps as in FCOS. Fmask

is the mask branch’s output and F̃mask is obtained by concatenating
the relative coordinates to Fmask. The classification head is the same
as in FCOS. The controller generates the filter parameters θθθx,y of the
mask head for the instance. Note that the heads in the dashed box
are repeatedly applied to P3 · · ·P7. The mask head is instance-aware,
and is applied to F̃mask as many times as the number of instances in

the image (refer to Fig. 5.1).

Recall that Mask R-CNN employs an object detector to predict the boxes of the
instances in the input image. The boxes are actually the way that Mask R-CNN rep-
resents instances. Similarly, CondInst employs the instance-aware filters to represent
the instances. In other words, instead of encoding the instance concept into the boxes,
CondInst implicitly encodes it into the parameters of the mask heads, which is a much
more flexible way. For example, it can easily represent the irregular shapes that are
hard to be tightly enclosed by a box. This is one of CondInst’s advantages over the
previous ROI-based methods.

Similar to the way that ROI-based methods obtain boxes, the instance-aware filters
can also be obtained with an object detector. In this work, we build CondInst on
the object detector FCOS. The elimination of anchor-boxes in FCOS can also save
the number of parameters and the amount of computation of CondInst. As shown
in Fig. 5.3, following FCOS, we make use of the feature maps {P3, P4, P5, P6, P7}
of feature pyramid networks (FPNs) Lin et al., 2017a, whose down-sampling ratios
are 8, 16, 32, 64 and 128, respectively. As shown in Fig. 5.3, on each feature level
of the FPN, some functional layers (in the dash box) are applied to make instance-
related predictions. For example, the class of the target instance and the dynamically-
generated filters for the instance. In this sense, CondInst can be viewed as the same
as Mask R-CNN, both of which first attend to instances in an image and then predict
the pixel-level masks of the instances (i.e., instance-first).

52 Chapter 5. Conditional Convolutions for Instance Segmentation

Besides the detector, as shown in Fig. 5.3, there is also a mask branch, which provides
the feature maps that our generated mask heads take as inputs to predict the desired
instance mask. The feature maps are denoted by Fmask ∈ RHmask×Wmask×Cmask . The
mask branch is connected to FPN level P3 and thus its output resolution is 1

8 of the
input image resolution. The mask branch has four 3×3 convolutions with 128 channels
before the last layer. Afterwards, in order to reduce the number of the generated
parameters, the last layer of the mask branch reduces the number of channels from
128 to 8 (i.e., Cmask = 8). Surprisingly, using Cmask = 8 can already achieve superior
performance and using a larger Cmask here (e.g., 16) cannot improve the performance,
as shown in our experiments. Even more aggressively, using Cmask = 2 only degrades
the performance by ∼ 0.3% in mask AP. Moreover, as shown in Fig. 5.3, Fmask is
combined with a map of the coordinates, which are relative coordinates from all the
locations on Fmask to the location (x, y) (i.e., where the filters of the mask head are
generated). Then, the combination is sent to the mask head to predict the instance
mask. The relative coordinates provide a strong cue for predicting the instance mask,
as shown in our experiments. Moreover, a single sigmoid is used as the final output
of the mask head, and thus the mask prediction is class-agnostic. The class of the
instance is predicted by the classification head in parallel with the controller, as shown
in Fig. 5.3.

The resolution of the original mask prediction is same as the resolution of Fmask,
which is 1

8 of the input image resolution. In order to produce high-resolution instance
masks, a bilinear upsampling is used to upsample the mask prediction by 4, resulting
in 400×512 mask prediction (if the input image size is 800×1024). We will show that
the upsampling is crucial to the final instance segmentation performance of CondInst
in experiments. Note that the mask’s resolution is much higher than that of Mask
R-CNN (only 28× 28 as mentioned before).

5.2.2 Network Outputs and Training Targets

Similar to FCOS, each location on the FPN’s feature maps Pi either is associated
with an instance, thus being a positive sample, or is considered a negative sample.
The associated instance and label for each location are determined as follows. Let us
consider the feature maps Pi ∈ RH×W×C and let s be its down-sampling ratio. As
shown in previous works Ren et al., 2015; He et al., 2015, a location (x, y) on the
feature maps can be mapped back onto the input image as (b s2c+xs, b

s
2c+ys). If the

mapped location falls in the center region of an instance, the location is considered to
be responsible for the instance. Any locations outside the center regions are labeled as
negative samples. The center region is defined as the box (cx−rs, cy−rs, cx+rs, cy+
rs), where (cx, cy) denotes the mass center of the instance, s is the down-sampling
ratio of Pi and r is a constant scalar being 1.5 as in FCOS. As shown in Fig. 5.3, at
a location (x, y) on Pi, CondInst has the following output heads.

5.2. Instance Segmentation with CondInst 53

Classification Head. The classification head predicts the class of the instance asso-
ciated with the location. The ground-truth target is the instance’s class ci or 0 (i.e.,
background). As in FCOS, the network predicts a C-D vector pppx,y for the classification
and each element in pppx,y corresponds to a binary classifier, where C is the number of
categories.

Controller Head. The controller head, which has the same architecture as the above
classification head, is used to predict the parameters of the mask head for the instance
at the location. The mask head predicts the mask of this particular instance. This
is the core contribution of our work. To predict the parameters, we concatenate all
the parameters of the filters (i.e., weights and biases) together as an N -D vector θθθx,y,
where N is the total number of the parameters. Accordingly, the controller head has
N output channels. The mask head is a very compact FCN architecture, which has
three 1× 1 convolutions, each having 8 channels and using ReLU as the activation
function except for the last one. No normalization layer such as batch normalization
Ioffe and Szegedy, 2015 is used here. The last layer has 1 output channel and uses
sigmoid to predict the probability of being foreground. The mask head has 169

parameters in total (#weights = (8 + 2) × 8(conv1) + 8 × 8(conv2) + 8 × 1(conv3)

and #biases = 8(conv1)+8(conv2)+1(conv3)). As mentioned before, the generated
filters contain information about the instance at the location, and thus, ideally, the
mask head with the filters will only fire on the pixels of the instance, even taking as
the input the whole feature maps.

Box Head. The box head is the same as that in FCOS, which predicts a 4-D vector
encoding the four distances from the location to the four boundaries of the bounding-
box of the target instance. Conceptually, CondInst can eliminate the box head since
CondInst needs no ROIs. However, we find that if we make use of box-based NMS,
the inference time will be much reduced. Thus, we still predict boxes in CondInst.
We would like to highlight that the predicted boxes are only used in NMS and do
not involve any ROI operations. Moreover, as shown in Table 5.6, the box prediction
can be removed if no box information is used (e.g., mask NMS Wang et al., 2020c).
This is fundamentally different from previous ROI-based methods, in which the box
prediction is mandatory.

Center-ness Head. Like FCOS, at each location, we also predict a center-ness score.
The center-ness score depicts how the location deviates from the center of the target
instance. In inference, it is used to down-weight the boxes predicted by the locations
far from the center, which might be unreliable. We refer readers to Chapter 3 for the
details.

5.2.3 Loss Functions

Formally, the overall loss function of CondInst can be formulated as,

Loverall = Lfcos + λLmask, (5.1)

54 Chapter 5. Conditional Convolutions for Instance Segmentation

where Lfcos and Lmask denote the original loss of FCOS and the loss for instance
masks, respectively. λ being 1 in this work is used to balance the two losses. We refer
readers to FCOS for the details of Lfcos. Lmask is defined as,

Lmask({θθθx,y}) =
1

Npos

∑
x,y

1{c∗x,y>0}Ldice(MaskHead(F̃x,y;θθθx,y),M
∗
x,y), (5.2)

where c∗x,y is the classification label of location (x, y), which is the class of the instance
associated with the location or 0 (i.e., background) if the location is not associated
with any instance. Npos is the number of locations where c∗x,y > 0. 1{c∗x,y>0} is the
indicator function, being 1 if c∗x,y > 0 and 0 otherwise. θθθx,y is the generated filters’
parameters at location (x, y). F̃x,y ∈ RHmask×Wmask×(Cmask+2) is the combination of
Fmask and a map of coordinates Ox,y ∈ RHmask×Wmask×2. As described before, Ox,y

is the relative coordinates from all the locations on Fmask to (x, y) (i.e., the location
where the filters are generated). MaskHead denotes the mask head, which consists
of a stack of convolutions with dynamic parameters θθθx,y. M∗x,y ∈ {0, 1}H×W×C is
the mask of the instance associated with location (x, y). Ldice is the dice loss as
in Milletari, Navab, and Ahmadi, 2016, which is used to overcome the foreground-
background sample imbalance. We do not employ focal loss here as it requires special
initialization, which cannot be realized if the parameters are dynamically generated.
Note that, in order to compute the loss between the predicted mask and the ground-
truth mask M∗x,y, they are required to have the same size. As mentioned before, the
prediction is upsampled by 4 and thus the resolution of the final prediction is half of
that of the ground-truth mask M∗x,y. We downsample M∗x,y by 2 to make the sizes
equal. These operations are omitted in Eq. (5.2) for clarification.

Moreover, as shown in YOLACT and BlendMask Bolya et al., 2019a; Chen et al.,
2020, the instance segmentation task can benefit from a joint semantic segmentation
task. Thus, we also conduct experiments with the joint semantic segmentation task.
However, unless explicitly specified, all the experiments in the paper are without the
semantic segmentation task. If used, the semantic segmentation loss is added to
Loverall.

5.2.4 Inference

Given an input image, we forward it through the network to obtain the outputs
including classification confidence pppx,y, center-ness scores, box prediction tttx,y and
the generated parameters θθθx,y. We first follow the steps in FCOS to obtain the box
detections. Afterwards, box-based NMS with the threshold being 0.6 is used to remove
duplicated detections and then the top 100 boxes are used to compute masks. Different
from FCOS, these boxes are also associated with the filters generated by the controller.
Let us assume that K boxes remain after the NMS, and thus we have K groups of
the generated filters. The K groups of filters are used to produce K instance-specific
mask heads. These instance-specific mask heads are applied, in the fashion of FCNs,

5.3. Experiments 55

depth time AP AP50 AP75 APS APM APL

1 2.2 30.9 52.9 31.4 14.0 33.3 45.1
2 3.3 35.5 56.1 37.8 17.0 38.9 50.8
3 4.5 35.7 56.3 37.8 17.1 39.1 50.2
4 5.6 35.7 56.2 37.9 17.2 38.7 51.5

Table 5.1. Instance segmentation results by varying the
depth of the mask head (width = 8) on MS-COCO val2017

split. “depth": the number of layers in the mask head. “time": the
milliseconds that the mask head takes for processing 100 instances.

width time AP AP50 AP75 APS APM APL

2 2.5 34.1 55.4 35.8 15.9 37.2 49.1
4 2.6 35.6 56.5 38.1 17.0 39.2 51.4
8 4.5 35.7 56.3 37.8 17.1 39.1 50.2
16 4.7 35.6 56.2 37.9 17.2 38.8 50.8

Table 5.2. Instance segmentation results by varying the
width of the mask head (with depth = 3) on MS-COCO
val2017 split. “time": the milliseconds that the mask head takes

for processing 100 instances.

to the F̃x,y (i.e., the combination of Fmask and Ox,y) to predict the masks of the
instances. Since the mask head is a very compact network (three 1 × 1 convolutions
with 8 channels and 169 parameters in total), the overhead of computing masks is
extremely small. For example, even with 100 detections (i.e., the maximum number
of detections per image on MS-COCO), only less 5 milliseconds in total are spent
on the mask heads, which only adds ∼ 10% computational time to the base detector
FCOS. In contrast, the mask head of Mask R-CNN has four 3×3 convolutions with 256

channels, thus having more than 2.3M parameters and taking longer computational
time.

5.3 Experiments

We evaluate CondInst on the large-scale benchmark MS-COCO Lin et al., 2014. Fol-
lowing the common practice He et al., 2017; Lin et al., 2017b, our models are trained
with split train2017 (115K images) and all the ablation experiments are evaluated
on split val2017 (5K images). Our main results are reported on the test-dev split
(20K images).

5.3.1 Implementation Details

Unless specified, we make use of the following implementation details. Following
FCOS, ResNet-50 He et al., 2016 is used as our backbone network and the weights
pre-trained on ImageNet Deng et al., 2009 are used to initialize it. For the newly
added layers, we initialize them as in FCOS. Our models are trained with stochastic
gradient descent (SGD) over 8 V100 GPUs for 90K iterations with the initial learning
rate being 0.01 and a mini-batch of 16 images. The learning rate is reduced by a factor

56 Chapter 5. Conditional Convolutions for Instance Segmentation

Cmask AP AP50 AP75 APS APM APL

1 34.8 55.9 36.9 16.7 38.0 50.1
2 35.4 56.2 37.6 16.9 38.9 50.4
4 35.5 56.2 37.9 17.0 39.0 50.8
8 35.7 56.3 37.8 17.1 39.1 50.2
16 35.5 56.1 37.7 16.4 39.1 51.2

Table 5.3. The instance segmentation results by varying the
number of channels of the mask branch output (i.e., Cmask)

on MS-COCO val2017 split.

of 10 at iteration 60K and 80K, respectively. Weight decay and momentum are set as
0.0001 and 0.9, respectively. Following Detectron2 Wu et al., 2019, the input images
are resized to have their shorter sides in [640, 800] and their longer sides less or equal
to 1333 during training. Left-right flipping data augmentation is also used during
training. When testing, we do not use any data augmentation and only the scale of
the shorter side being 800 is used. The inference time in this work is measured on a
single V100 GPU with 1 image per batch.

w/ abs. coord. w/ rel. coord. w/ Fmask AP AP50 AP75 APS APM APL AR1 AR10 AR100

X 31.4 53.5 32.1 15.6 34.4 44.7 28.4 44.1 46.2
X 31.3 54.9 31.8 16.0 34.2 43.6 27.1 43.3 45.7

X X 32.0 53.3 32.9 14.7 34.2 46.8 28.7 44.7 46.8
X X 35.7 56.3 37.8 17.1 39.1 50.2 30.4 48.8 51.5

Table 5.4. Ablation study of the input to the mask head
on MS-COCO val2017 split. As shown in the table, without the
relative coordinates, the performance drops significantly from 35.7%
to 31.4% in mask AP. Using the absolute coordinates cannot improve
the performance remarkably. If the mask head only takes as input the
relative coordinates (i.e., no appearance in this case), CondInst also

achieves modest performance.

5.3.2 Architectures of the Mask Head

In this section, we discuss the design choices of the mask head in CondInst. To our
surprise, the performance is insensitive to the architectures of the mask head. Our
baseline is the mask head of three 1×1 convolutions with 8 channels (i.e., width = 8).
As shown in Table 5.1 (3rd row), it achieves 35.7% in mask AP. Next, we first conduct
experiments by varying the depth of the mask head. As shown in Table 5.1, apart
from the mask head with depth being 1, all other mask heads (i.e., depth = 2, 3 and
4) attain similar performance. The mask head with depth being 1 achieves inferior
performance as in this case the mask head is actually a linear mapping, which has
overly weak capacity. Moreover, as shown in Table 5.2, varying the width (i.e., the
number of the channels) does not result in a remarkable performance change either
as long as the width is in a reasonable range. We also note that our mask head is
extremely light-weight as the filters in our mask head are dynamically generated. As
shown in Table 5.1, our baseline mask head only takes 4.5 ms per 100 instances (the
maximum number of instances on MS-COCO), which suggests that our mask head

5.3. Experiments 57

factor resolution AP AP50 AP75 APS APM APL

1 1/8 34.4 55.4 36.2 15.1 38.4 50.8
2 1/4 35.8 56.4 38.0 17.0 39.3 51.1
4 1/2 35.7 56.3 37.8 17.1 39.1 50.2

Table 5.5. The instance segmentation results on MS-COCO
val2017 split by changing the factor used to upsample the
mask predictions. “resolution" denotes the resolution ratio of the

mask prediction to the input image.

only adds small computational overhead to the base detector. Moreover, our baseline
mask head only has 169 parameters in total. In sharp contrast, the mask head of
Mask R-CNN He et al., 2017 has more than 2.3M parameters and takes ∼ 2.5×
computational time (11.4 ms per 100 instances).

5.3.3 Design Choices of the Mask Branch

We further investigate the impact of the mask branch. We first change Cmask, which
is the number of channels of the mask branch’s output feature maps (i.e., Fmask). As
shown in Table 5.3, as long as Cmask is in a reasonable range (i.e., from 2 to 16), the
performance keeps almost the same. Cmask = 8 is optimal and thus we use Cmask = 8

in all other experiments by default.

As mentioned before, before taken as the input of the mask heads, the mask branch’s
output Fmask is concatenated with a map of relative coordinates, which provides a
strong cue for the mask prediction. As shown in Table 5.4 (2nd row), the performance
drops significantly if the relative coordinates are removed (35.7% vs. 31.4%). The
significant performance drop implies that the generated filters not only encode the
appearance cues but also encode the shape (and relative position) of the target in-
stance. It can also be evidenced by the experiment only using the relative coordinates.
As shown in Table 5.4 (2rd row), only using the relative coordinates can also obtain
decent performance (31.3% in mask AP). We would like to highlight that unlike Mask
R-CNN, which encodes the shape of the target instance by a box, CondInst implicitly
encodes the shape into the generated filters, which can easily represent any shapes
including irregular ones and thus is much more flexible. We also experiment with
the absolute coordinates, but it cannot largely boost the performance as shown in
Table 5.4 (32.0%). This suggests that the generated filters mainly carry translation-
invariant cues such as shapes and relative position, which is preferable.

5.3.4 How Important to Upsample Mask Predictions?

As mentioned before, the original mask prediction is upsampled and the upsampling is
of great importance to the final performance. We confirm this in the experiment. As
shown in Table 5.5, without using the upsampling (1st row in the table), in this case
CondInst can produce the mask prediction with 1

8 of the input image resolution, which
merely achieves 34.4% in mask AP because most of the details (e.g., the boundary)
are lost. If the mask prediction is upsampled by factor = 2, the performance can be

58 Chapter 5. Conditional Convolutions for Instance Segmentation

NMS AP AP50 AP75 APS APM APL

box 35.7 56.3 37.8 17.1 39.1 50.2
mask 35.7 56.7 37.7 17.2 39.2 50.5

Table 5.6. Instance segmentation results with different NMS
algorithms. Mask-based NMS can obtain the same overall perfor-
mance as box-based NMS, which suggests that CondInst can totally

eliminate the box detection.

significantly improved by 1.4% in mask AP (from 34.4% to 35.8%). In particular, the
improvement on small objects is large (from 15.1% to 17.0), which suggests that the
upsampling can greatly retain the details of objects. Increasing the upsampling factor
to 4 slightly worsens the performance (from 35.8% to 35.7% in mask AP), probably
due to the relatively low-quality annotations of MS-COCO. We use factor = 4 in all
other models as it has the potential to produce high-resolution instance masks.

5.3.5 CondInst without box Detection

Although we still keep the box detection branch in CondInst, it is conceptually feasible
to totally eliminate it if we make use of the NMS using no boxes. In this case, all the
foreground samples (determined by the classification head) will be used to compute
instance masks, and the duplicated masks will be removed by mask-based NMS. As
shown in Table 5.6, with the mask-based NMS, the same overall performance can be
obtained as box-based NMS (35.7% vs. 35.7% in mask AP).

5.3.6 Comparisons with State-of-the-art Methods

We compare CondInst against previous state-of-the-art methods on MS-COCO test-
dev split. As shown in Table 5.7, with 1× learning rate schedule (i.e., 90K itera-
tions), CondInst outperforms the original Mask R-CNN by 0.8% (35.4% vs. 34.6%).
CondInst also achieves a much faster speed than the original Mask R-CNN (49ms
vs. 65ms per image on a single V100 GPU). To our knowledge, it is the first time
that a new and simpler instance segmentation method, without any bells and whis-
tles outperforms Mask R-CNN both in accuracy and speed. CondInst also obtains
better performance (35.9% vs. 35.5%) and on-par speed (49ms vs 49ms) than the
well-engineered Mask R-CNN in Detectron2 (i.e., Mask R-CNN∗ in Table 5.7). Fur-
thermore, with a longer training schedule (e.g., 3×) or a stronger backbone (e.g.,
ResNet-101), a consistent improvement is achieved as well (37.8% vs. 37.5% with
ResNet-50 3× and 39.1% vs. 38.8% with ResNet-101 3×). Moreover, as shown in
Table 5.7, with the auxiliary semantic segmentation task, the performance can be
boosted from 37.8% to 38.8% (ResNet-50) or from 39.1% to 40.1% (ResNet-101),
without increasing the inference time. For fair comparisons, all the inference time
here is measured by ourselves on the same hardware with the official codes.

We also compare CondInst with the recently-proposed instance segmentation meth-
ods. Only with half training iterations, CondInst surpasses TensorMask Chen et al.,

5.4. Conclusions 59

method backbone aug. sched. AP AP50 AP75 APS APM APL

Mask R-CNN He et al., 2017 R-50-FPN 1× 34.6 56.5 36.6 15.4 36.3 49.7
CondInst R-50-FPN 1× 35.4 56.4 37.6 18.4 37.9 46.9
Mask R-CNN∗ R-50-FPN X 1× 35.5 57.0 37.8 19.5 37.6 46.0
Mask R-CNN∗ R-50-FPN X 3× 37.5 59.3 40.2 21.1 39.6 48.3
TensorMask Chen et al., 2019b R-50-FPN X 6× 35.4 57.2 37.3 16.3 36.8 49.3
CondInst R-50-FPN X 1× 35.9 56.9 38.3 19.1 38.6 46.8
CondInst R-50-FPN X 3× 37.8 59.1 40.5 21.0 40.3 48.7
CondInst w/ sem. R-50-FPN X 3× 38.8 60.4 41.5 21.1 41.1 51.0
Mask R-CNN R-101-FPN X 6× 38.3 61.2 40.8 18.2 40.6 54.1
Mask R-CNN∗ R-101-FPN X 3× 38.8 60.9 41.9 21.8 41.4 50.5
YOLACT-700 R-101-FPN X 4.5× 31.2 50.6 32.8 12.1 33.3 47.1
TensorMask R-101-FPN X 6× 37.1 59.3 39.4 17.4 39.1 51.6
CondInst R-101-FPN X 3× 39.1 60.9 42.0 21.5 41.7 50.9
CondInst w/ sem. R-101-FPN X 3× 40.1 62.1 43.1 21.8 42.7 52.6

Table 5.7. Comparisons with state-of-the-art methods on
MS-COCO test-dev. “Mask R-CNN" is the original Mask R-CNN
He et al., 2017 and “Mask R-CNN∗" is the improved Mask R-CNN in
Detectron2 Wu et al., 2019. “aug.": using multi-scale data augmenta-
tion during training. “sched.": the used learning rate schedule. 1× is
90K iterations. ‘w/ sem": using the auxiliary semantic segmentation

task.

2019b by a large margin (38.8% vs. 35.4% for ResNet-50 and 39.1% vs. 37.1% for
ResNet-101). CondInst is also ∼ 8× faster than TensorMask (49ms vs 380ms per
image on the same GPU) with similar performance (37.8% vs. 37.1%). Moreover,
CondInst outperforms YOLACT-700 Bolya et al., 2019a by a large margin with the
same backbone ResNet-101 (40.1% vs. 31.2% and both with the auxiliary semantic
segmentation task). Moreover, as shown in Fig. 5.2, compared with YOLACT-700
and Mask R-CNN, CondInst can preserve more details and produce higher-quality
instance segmentation results. More qualitative results are shown in Fig. 5.4.

5.4 Conclusions

We have proposed a new and simpler instance segmentation framework, named CondInst.
Unlike previous method such as Mask R-CNN, which employs the mask head with
fixed weights, CondInst conditions the mask head on instances and dynamically gener-
ates the filters of the mask head. This not only reduces the parameters and computa-
tional complexity of the mask head, but also eliminates the ROI operations, resulting
in a faster and simpler instance segmentation framework. To our knowledge, CondInst
is the first framework that can outperform Mask R-CNN both in accuracy and speed,
without longer training schedules needed. We believe that CondInst can be a new
strong alternative to Mask R-CNN for instance segmentation.

60 Chapter 5. Conditional Convolutions for Instance Segmentation

Figure 5.4. More qualitative results of CondInst. Best viewed
on screen.

61

Chapter 6

High-Performance Instance
Segmentation with Box
Annotations

6.1 Introduction

Instance segmentation requires the algorithm to predict the pixel-wise masks and cat-
egories of instances of interest, and is one of the most fundamental tasks in computer
vision. The performance of instance segmentation has been significantly advanced
by a number of successful methods He et al., 2017; Huang et al., 2019; Wang et al.,
2020d; Wang et al., 2020b; Cheng et al., 2020b; Chen et al., 2020. These methods have
almost made the previously much more challenging instance segmentation task be as
simple and fast as box object detection. For example, built on the detector FCOS,
our CondInst only adds very compact dynamic mask heads to predict instance masks,
and thus only introduces less than 10% computation overhead, compared to FCOS.
Instance segmentation is able to provide more accurate and fine mask-level object
location than detection. Thus, given that the extra computation cost is negligible,
instance segmentation should be preferred over bounding box detection in many cases.
For example, if a robot wants to grasp an object, an accurate mask will be much more
helpful than a box. Now the only obstacle that impedes instance segmentation replac-
ing box detection is the significantly heavier pixel-wise mask annotations. Compared
to box-level annotations required by object detection, annotating pixel-level masks is
notoriously time-consuming. As shown in Bearman et al., 2016; Everingham et al.,
2010; Kulharia et al., 2020, pixel-level mask annotations are about 35 times more ex-
pensive than box-level annotations. Here we aim to eliminate this obstacle by training
instance segmentation using box annotations only.

A few works Song et al., 2019; Dai, He, and Sun, 2015; Kulharia et al., 2020; Pa-
pandreou et al., 2015; Hsu et al., 2019; Khoreva et al., 2017; Rajchl et al., 2016;
Arun, Jawahar, and Kumar, 2020 attempted to obtain (semantic or instance-level)
mask prediction with box-level annotations. Among them, most methods such as

62 Chapter 6. High-Performance Instance Segmentation with Box Annotations

image mask box mask

pairwise relationship

projection
loss term

pairwise
loss term

…

the 8 consistency maps

y1

y0

x0 x1

Figure 6.1. The two proposed loss terms. Top row: the pro-
jections onto x-axis and y-axis of the mask and the box, and the pro-
jections should be the same, where (x0, y0) and (x1, y1) are the two
corners of the box. Bottom row: the pairwise term. For each pixel,
we compute the pairwise label consistency between the pixel and its 8
neighbours (with dilation rate 2). Thus each pixel has 8 edges and we
have 8 consistency maps in the right. The white locations in the right
figure are the edges we have the supervision derived from the color
similarity, and other edges are discarded in the loss computation.

BoxSup Dai, He, and Sun, 2015 and Box2Seg Kulharia et al., 2020 rely on the region
proposals that are generated by MCG Pont-Tuset et al., 2016 or GrabCut Rother,
Kolmogorov, and Blake, 2004. One drawback might be the slow training procedure
since these algorithms are hard to be parallelized by modern GPUs. Moreover, in
order to achieve good performance, some methods often require iterative training,
resulting in a complicated training pipeline and more hyper-parameters. Most impor-
tantly, none of these methods is able to show strong weakly-supervised performance on
large benchmarks such as COCO Lin et al., 2014. Thus almost all of them are only
evaluated on small datasets such as Pascal VOC Everingham et al., 2010.

In this work, we propose a simple, single-shot and high-performance box-supervised
instance segmentation method, built upon the fully convolutional instance segmen-
tation framework CondInst. Our core idea is to replace the original pixel-wise mask
losses in CondInst with a carefully designed mask loss consisting of two terms. The
first term minimizes the discrepancy between the horizontal and vertical projections
of the predicted mask and the ground-truth box (see Fig. 6.1 top). This essentially
ensures that the tightest box covering the predicted mask matches the ground-truth box.
Since the ground-truth mask and ground-truth box have the same projections on the

6.1. Introduction 63

Figure 6.2. Some qualitative results of BoxInst with the
ResNet-101 based model achieving 33.0% mask AP on COCO
val2017. The model is trained without any mask annotations and

can infer at 10 FPS on a 1080Ti GPU. Best viewed on screen.

two axes1, this can be also viewed as a surrogate term that minimizes the discrep-
ancy between the projections of the predicted mask and ground-truth mask. This loss
term can be computed when we only have box annotations. Clearly, with this projec-
tion term, multiple masks can be projected to a same box. Therefore the projection
loss alone would not suffice. Thus, we introduce the second loss term, encouraging
the prediction and ground-truth masks have the same pairwise similarity in proximal
pixels (Fig. 6.1 bottom). At first glance, the pairwise similarity of the ground-truth
masks cannot be computed if we do not have the mask annotations. With only box
annotations available, in principle this pairwise supervision signal is inevitably noisy.
However, an important observation is that the proximal pixels with similar colors are
very likely to have the same label. Thus, we show that it is empirically plausible to
determine a color similarity threshold such that only confident pairs of pixels having a
same label are used in the loss computation (the white regions in the bottom right of
Fig. 6.1), thus largely eliminating supervision noises. Using these two loss terms, we
achieve stunning instance segmentation results without using any mask annotations.
Some qualitative results are shown in Fig. 6.2.

Even though ideas that are relevant to either of our two observations mentioned above
were studied more or less in the literature, ranging from non-deep learning methods
such as CRF Krähenbühl and Koltun, 2011 and GrabCut Rother, Kolmogorov, and
Blake, 2004 to deep learning-based methods such as Box2Seg Kulharia et al., 2020
and BBTP Hsu et al., 2019, none of these works effectively incorporates them into a
simple and appropriate framework. As a result, and more importantly, performance
of existing methods on large challenging datasets (e.g., COCO) is far away from that
of the full potential of box-supervised instance segmentation that is achievable, as
we are going to reveal here. In summary, our method, termed BoxInst, enjoys the
following advantages.

1This may not hold if the instance mask consists multiple disjointed regions.

64 Chapter 6. High-Performance Instance Segmentation with Box Annotations

• The proposed method can achieve instance segmentation with box supervision
by introducing two loss terms to the instance segmentation framework CondInst.
BoxInst is simple as it does not modify the network model of CondInst at all,
only using different loss terms. This means that the inference process of the
proposed BoxInst is exactly the same as CondInst, thus naturally inheriting all
desirable properties of CondInst.

• BoxInst attains excellent instance segmentation performance on large-scale in-
stance segmentation benchmark COCO. With the ResNet-101 backbone and
3× training schedule, our BoxInst achieves 33.2% mask AP on COCO with no
mask annotations used in training, outperforming a few recent fully supervised
methods using the same backbone and trained with mask annotations, including
YOLACT Bolya et al., 2019b (31.2% AP) and PolarMask Xie et al., 2020 (32.1%
AP). mask AP of BoxInst can be further improved, as expected (§6.3.6).

• Since instance masks can provide much more precise localization than boxes,
we envision that BoxInst can be used in many downstream tasks to boost their
performance without extra effort of annotating ground-truth masks.

Instance segmentation has long been believed to be much more challenging to solve
than bounding box detection. Our strong performance of instance segmentation using
only box supervision shows that it may not necessarily be the case.

6.2 Approach

6.2.1 Projection and Pairwise Affinity Mask Loss

Projection loss term. As mentioned before, the first term supervises the horizontal
and vertical projections of the predicted mask using the ground-truth box annotation,
which ensures that the tightest box covering the predicted mask matches the ground-
truth box. Formally, let bbb ∈ {0, 1}H×W be the mask generated by assigning 1 to the
locations in the ground-truth box and 0 otherwise, as shown in Fig. 6.1 (top-right).
Then we have

Projx(bbb) = lllx, Projy(bbb) = llly, (6.1)

where Projx : RH×W → RW and Projy : RH×W → RH indicate that projecting the
mask onto x-axis and y-axis, respectively. lllx ∈ {0, 1}W denotes the 1-D segmentation
mask on x-axis and the same applies to llly. The process of projection is illustrated in
Fig. 6.1 (top row).

The projection operation can be implemented by a max operation along with each
axis. Formally, we define

Projx(bbb) = maxy(bbb) = lllx, Projy(bbb) = maxx(bbb) = llly, (6.2)

6.2. Approach 65

where maxy and maxx are the max operations along with y-axis and x-axis, respec-
tively.

Let m̃mm ∈ (0, 1)H×W be the network predictions for the instance mask, which can
be viewed as the probabilities being foreground (i.e., the label is 1). We apply the
same projection operations of Eq. (6.2) to the mask predictions and obtain the corre-
sponding projections l̃llx and l̃lly. We then compute the loss between the projections of
the ground-truth box and the predicted mask. Formally, the projection loss term is
defined as:

Lproj = L(Projx(m̃mm),Projx(bbb)) + L(Projy(m̃mm),Projy(bbb))

= L(maxy(m̃mm),maxy(bbb)) + L(maxx(m̃mm),maxx(bbb))

= L(̃lllx, lllx) + L(̃llly, llly),

(6.3)

where L(·, ·) is the Dice loss as in CondInst2. Note that all the operations in the last
equation are (sub-)differentiable. This loss function is applied to all the instances in
a training image and the final loss is their average. As shown in our experiments, by
using this projection loss term, we can already obtain decent instance segmentation
results without using any mask annotations, which can already provide much better
localization quality than a box detector.

Pairwise affinity loss term. In almost all instance segmentation frameworks such
as Mask R-CNN and CondInst, they supervise the predicted masks in a per-pixel
fashion. The pixelwise supervision becomes unavailable if we do not have the mask
annotations. Here, we attempt to supervise the mask in a pairwise way, and we will
show this supervision can be partially available even if we do not have any mask
annotations.

Now, assume we have the ground-truth masks. Consider an undirected graph G =

(V,E) built on an image, where V is the set of the pixels in the image, and E is the
set of the edges. Each pixel is connected with its K ×K − 1 neighbours (the dilation
trick may be applied), as shown in Fig. 6.1 (bottom left). Then we define ye ∈ {0, 1}
be the label for an edge e, where ye = 1 means the two pixels of the edge have the
same label and ye = 0 means their labels are different. Let pixels (i, j) and (l, k) be
the two endpoints of the edge e. The network prediction m̃mmi,j ∈ (0, 1) can be viewed
as the probability of pixel (i, j) being foreground. Then the probability of ye = 1 is

P (ye = 1) = m̃mmi,j · m̃mmk,l + (1− m̃mmi,j) · (1− m̃mmk,l), (6.4)

and P (ye = 0) = 1− P (ye = 1). By convention, the probability distribution from the
network prediction can be trained with the binary cross entropy (BCE) loss. Formally,

2One can also use the cross-entropy loss here.

66 Chapter 6. High-Performance Instance Segmentation with Box Annotations

the loss function is

Lpairwise = −
1

N

∑
e∈Ein

ye logP (ye = 1) + (1− ye) logP (ye = 0), (6.5)

where Ein is the set of the edges containing at least one pixel in the box. Using Ein
instead of E here can prevent the loss from being dominated by a large number of the
pixels outside the box. N is the number of the edges in Ein.

If only the pairwise loss is used to supervise the mask learning (in the fully-supervised
setting), ideally, two possible solutions may be obtained. The first one is the same
as the ground-truth mask mmm, which is desirable. The second solution is the inverse
1−mmm. Fortunately, the second solution can be easily eliminated as long as we have a
resolved label for any pixel. This can be achieved by the projection loss term because
it ensures that the pixels outside the box is background. Note that the edges in Ein
still involve some pixels outside the box, which are of great importance to help the
model get rid of the undesirable solutions. Overall, the total loss for mask learning
can be formulated as

Lmask = Lproj + Lpairwise. (6.6)

We will show in experiments that the redesigned mask loss can have similar perfor-
mance to the original pixelwise one in the fully-supervised settings.

6.2.2 Learning without Mask Annotations

So far, we have shown that we can employ Eq. (6.6) to supervise the masks. In
Eq. (6.6), the first term Lproj is always valid no matter we have box or mask anno-
tations. At first glance, the second term Lpairwise still requires the mask annotations
to compute the edge’s label ye. However, an important observation is that if two
pixels have similar colors, they are very likely to have the same labels as well (i.e., the
corresponding edge’s label is 1). Thus, we may determine a color similarity threshold
τ such that the edge’s label is 1 with a high probability if its color similarity is above
τ . Formally, let us define the color similarity as

Se = S(ccci,j , cccl,k) = exp

(
−
||ccci,j − cccl,k||

θ

)
, (6.7)

where Se be the color similarity of the edge e, and ccci,j and cccl,k are, respectively, the
color vectors of the two pixels (i, j) and (l, k) linked by the edge. Here we use the
LAB color space as it is closer to human perception. θ is a hyper-parameter, being 2

in this work.

In order to confirm our hypothesis above, we visualize the proportion of the posi-
tive edges in all the edges with color similarity above the threshold τ on the COCO
val2017 split. Fig. 6.3 (blue curve) shows that the proportions of the positive edges
in all the edges with Se ≥ τ as the threshold τ increases. As shown in figure, if the

6.2. Approach 67

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Color Similarity Thresholds

0.94

0.95

0.96

0.97

0.98

0.99

Pr
op

. o
f P

os
iti

ve
 E

dg
es

Prop. of Positive Edges

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

. o
f S

up
. P

os
iti

ve
 E

dg
esProp. of Sup. Positive Edges

Figure 6.3. The relationship between the edges’ labels and
the color similarity thresholds. ‘blue curve’: the proportion of the
positive edges in the edges with color similarity above the threshold.
‘red curve’: the proportion of the supervised positive edges in all the
positive edges. The number of positive edges are computed with the

ground-truth masks of the COCO val2017 split.

threshold is 0.1, more than 98% of the edges are positive. The proportion can be fur-
ther improved if we continue to increase τ , but an overlarge threshold would reduce
the number of the supervised edges (red curve in Fig. 6.3). In experiments, we found
that the threshold is not sensitive to the final performance.

Given the high proportion of positive edges, during training, we can safely assume
that all the edges with Se ≥ τ are positive and then only compute the pairwise loss
for them. Other edges are discarded during the loss computation. As a result, the
pairwise loss becomes

Lpairwise = −
1

N

∑
e∈Ein

1{Se≥τ} logP (ye = 1), (6.8)

where 1{Se≥τ} is the indicator function, being 1 if Se ≥ τ and 0 otherwise. Eq. (6.8)
only involves the term in Eq. (6.5) for positive edges because we can only infer that an
edge e is positive if Se ≥ τ . If Se < τ , the label is agnostic. As we only have positive
labels in Eq. (6.8), one may note this would result in two possible trivial solutions,
i.e., the masks of all the pixels being 0 or 1. However, the masks with all pixels being
0 do not meet the projection term; and the masks of all pixels being 1 almost never
appear since the pairwise term encourages the pixels near the box boundaries to be
negative if their colors are similar to that of the negative pixels outside the box.

68 Chapter 6. High-Performance Instance Segmentation with Box Annotations

mask loss AP AP50 AP75 APS APM APL

Dice loss 35.6 56.3 37.8 16.9 38.9 51.0
proposed 35.4 55.9 37.6 17.0 38.8 50.7

Table 6.1. The projection and pairwise affinity mask loss vs.
the original pixelwise one in the fully-supervised settings. As we
can see here, they attain very similar mask AP on the COCO split

val2017.

6.3 Experiments

We conduct experiments on COCO Lin et al., 2014 and Pascal VOC Everingham et
al., 2010. For COCO, the models are trained with train2017 (115K images) and the
ablation experiments are evaluated on val2017 (5K images). Unless specified, only
box annotations are used during training. Our main results are reported on test-dev.
For Pascal VOC, following previous works Hsu et al., 2019; Khoreva et al., 2017, we
train the models on the augmented Pascal VOC 2012 dataset Hariharan et al., 2011
with 10, 582 training images, and evaluate them on Pascal VOC 2012 val split with
1, 449 images.

6.3.1 Implementation Details

On the COCO dataset, BoxInst has the same training and testing details as that of
CondInst. The only exception is that we increase the channels of the mask heads from
8 to 16, which can result in better performance with negligible extra computational
overhead, and the compared baselines are adjusted accordingly. For the pairwise loss
term, we compute the pairwise relationship within 3 × 3 patches with the dilation
rate being 2. On Pascal VOC, following Hsu et al., 2019, we use batch size 8 and the
number of iterations is 20K. The learning rate is reduced by a factor of 10 at step
15K. Only left-right flipping is used as the data augmentation during training. Other
settings are the same as on COCO. The inference is the same as the original CondInst
on both benchmarks. The performance is evaluated with the COCO-style mask AP.

6.3.2 Projection and Pairwise Affinity Loss for Mask Learning

We first demonstrate that the redesigned mask loss can have similar performance to
the original pixelwise mask loss in the fully-supervised settings. The experiments are
conducted on COCO. We replace the original Dice loss for mask training in CondInst
with the proposed one, and keep other settings exactly the same. As shown in Ta-
ble 6.1, the proposed mask loss can have similar performance (35.4% vs. 35.6% mask
AP), which suggests that using the proposed loss for mask learning is feasible.

6.3.3 Box-supervised Instance Segmentation

The key advantage of the proposed mask loss is that it can still supervise the predicted
masks with only box annotations. We confirm this here and conduct experiments to

6.3. Experiments 69

prop. AP AP50 AP75 APS APM APL

fully-sup. - 35.4 55.9 37.6 17.0 38.8 50.7
τ = 0 94.1% 9.4 30.3 3.3 7.6 10.3 11.4
τ = 0.1 98.3% 30.7 52.2 31.1 13.8 33.1 45.7
τ = 0.2 98.4% 30.6 52.6 30.9 13.9 32.8 45.5

Table 6.2. Varying the color similarity threshold τ in the pro-
posed mask loss on the COCO val2017 split. “prop." is the proportion
of the positive edges in the edges with Se ≥ τ . “fully-sup.": fully-

supervised results.

size dilation AP AP50 AP75 APS APM APL

3 1 29.7 52.0 29.6 13.4 32.3 44.4
3 2 30.7 52.2 31.1 13.8 33.1 45.7
5 1 30.5 52.3 30.7 13.7 33.0 45.7
5 2 29.9 51.9 30.0 13.8 32.1 45.0

Table 6.3. Varying the size and dilation of the local patches
(with τ = 0.1) in the proposed mask loss on the COCO val2017

split. “prop." is the proportion of the positive edges in the edges with
Se ≥ τ . “fully-sup.": fully-supervised results. As shown in Table 6.2,
by using τ = 0.1, BoxInst can achieve 30.7 mask AP with only box
annotations, which is close the fully-supervised mask AP (35.4%) and
significantly better localization precision than boxes (10.6% mask AP

as shown in Table 6.4).

Lproj Lpairwise AP AP50 AP75 APS APM APL

box mask 10.6 32.2 4.6 5.7 11.3 15.6
X 21.2 45.2 17.7 10.0 21.4 32.5
X X 30.7 52.2 31.1 13.8 33.1 45.7

Table 6.4. The mask AP on COCO val2017 by applying the
different loss terms. “box mask": using the masks generated by boxes.

investigate the hyper-parameters in the proposed mask loss.

Varying the threshold of color similarity. As mentioned before, we use a color
similarity threshold τ to determine the edges that will be used to compute the pairwise
loss. Here, we conduct experiments by varying τ . When τ = 0, all of the edges defined
by the size of neighborhood are used to compute the loss. As shown in Table 6.2, in
this case, 94.1% of the edges are truly positive, and ∼6% of the edges are negative.
Since we consider positive all the edges with Se ≥ τ , as shown in Eq. (6.8), the loss
computation would introduce ∼6% noisy labels and all of the truly negative edges
are wrongly labelled positive. Thus, unsurprisingly, this experiment yields a trivial
solution with poor performance (9.4% mask AP) that almost all pixels in the box are
predicted as foreground. If we increase τ to 0.1, the proportion of the truly positive
edges are improved to 98.3%, and only less than ∼2% of the edges are wrongly labelled.
As a result, the model can yield high-quality instance masks, achieving 30.7% mask AP
(vs. fully-supervised counterpart 35.4%). This result is even better than that of some
fully-supervised methods such as YOLACT and PolarMask. Some qualitative results
are shown in Fig. 6.2. If we further increase the threshold τ to 0.2, the performance

70 Chapter 6. High-Performance Instance Segmentation with Box Annotations

method backbone aug. sched. AP AP50 AP75 APS APM APL

fully supervised methods:
Mask R-CNN ResNet-50-FPN X 3× 37.5 59.3 40.2 21.1 39.6 48.3
CondInst ResNet-50-FPN X 3× 37.8 59.1 40.5 21.0 40.3 48.7
Mask R-CNN ResNet-101-FPN X 3× 38.8 60.9 41.9 21.8 41.4 50.5
YOLACT-700 ResNet-101-FPN X 4.5× 31.2 50.6 32.8 12.1 33.3 47.1
PolarMask ResNet-101-FPN X 2× 32.1 53.7 33.1 14.7 33.8 45.3
CondInst ResNet-101-FPN X 3× 39.1 60.9 42.0 21.5 41.7 50.9
box-supervised methods:
BBTP† (prev. best) ResNet-101-FPN 1× 21.1 45.5 17.2 11.2 22.0 29.8
BoxInst † ResNet-101-FPN 1× 31.6 54.0 31.9 13.9 34.2 48.2
BoxInst ResNet-50-FPN X 3× 32.1 55.1 32.4 15.6 34.3 43.5
BoxInst ResNet-101-FPN X 1× 32.5 55.3 33.0 15.6 35.1 44.1
BoxInst ResNet-101-FPN X 3× 33.2 56.5 33.6 16.2 35.3 45.1
BoxInst ResNet-101-BiFPN X 3× 33.9 57.7 34.5 16.5 36.1 46.6

Table 6.5. Comparisons with state-of-the-art methods on the
COCO test-dev split. “†" means that the results are on the COCO
val2017 split. BBTP only reported the results on the val2017 split.
Our BoxInst outperforms the previous best reported mask AP by over
absolute 10% mask AP. Ours even outperforms two recent fully super-
vised methods, YOLACT and PolarMask, and is close to state-of-the-

art fully-supervised results. ‘1×’ means 90K iterations.

slightly drops to 30.6% mask AP. This might be because the number of the supervised
positive edges decreases as we increase the threshold, as shown in Fig. 6.3.

Varying the neighborhood of the pixels. We conduct experiments with the
different neighbours for each pixel. The size (i.e., K) defines how many surrounding
pixels of each pixel are used to compute the pairwise loss with the pixel. Additionally,
we may use the dilation trick to enlarge the scope (as in dilated convolutions). As
shown in Table 6.3, by increasing the size from 3 × 3 to 5 × 5, the performance is
boosted from 29.7% to 30.5%. This suggests that a relatively long-distance pairwise
relationship is important to the final performance. However, using 5 × 5 makes the
training relatively slower and costs more memory footprint. Thus, we apply the
dilation rate 2 to the 3 × 3 patches. This can capture the long-distance relationship
without increasing the computational overheads, thus achieving a similar performance
(30.7%). The performance cannot be further improved by applying the dilation trick
to the 5× 5 patches because the assumption, two pixels with similar colors probably
have the same label, might not hold if the two pixels are far from each other.

The contribution of each loss term. Table 6.4 shows the contribution of each
loss term. Even if only the first projection term is used, we can also achieve decent
performance (21.2% mask AP), which can already provide much higher localization
precision than boxes (10.6% mask AP). By further using the proposed pairwise term,
high-quality instance masks can be obtained and the performance is much improved
to 30.7%.

6.3. Experiments 71

method backbone AP AP50 AP75

GrabCut Rother, Kolmogorov, and Blake, 2004 ResNet-101 17.8 37.8 15.5
SDI Khoreva et al., 2017 VGG-16 - 44.8 16.3
BBTP Hsu et al., 2019 ResNet-101 23.1 54.1 17.1
BBTP w/ CRF ResNet-101 27.5 59.1 21.9
BBTP∗ ResNet-101 20.5 51.1 14.3
BBTP∗ w/ CRF ResNet-101 25.0 56.9 18.9
BoxInst ResNet-50 32.2 58.1 31.0
BoxInst ResNet-101 34.4 60.1 34.6

Table 6.6. Results on Pascal VOC val2012. Here, BBTP∗ de-
notes the results after we fix the issue 2020 in its Matlab evaluation
code. Clearly, BoxInst achieves significantly improved mask AP, out-
performing previous best by about 10%. Here, the GrabCut obtains
the instance masks by taking as input the boxes generated by BoxInst.
Thus, the only difference between the GrabCut and BoxInst is the way

to obtain the masks.

6.3.4 Comparisons with State-of-the-art

We compare BoxInst with state-of-the-art fully/box supervised instance segmentation
methods on the COCO dataset. As shown in Table 6.5, with the same backbone and
training settings, BoxInst significantly surpasses the previous best reported result Hsu
et al., 2019 by absolute 10.5% mask AP (e.g., from 21.1% to 31.6%). BoxInst, without
using any mask annotations, performs even better than some recent fully-supervised
methods such as PolarMask Xie et al., 2020 and YOLACT Bolya et al., 2019b, with
the same backbones and similar training and testing settings (32.5% with R-101 1×
vs. PolarMask 32.1% R-101 2× and YOLACT-700 31.2% R-101 4.5×). BoxInst also
demonstrates competitive performance with top-performing fully-supervised instance
segmentation methods. For example, with the same backbone ResNet-50-FPN and 3×
training schedule, BoxInst achieves 32.1% mask AP (vs. 37.8% of the fully-supervised
CondInst). Notably, Some qualitative results are shown in Fig. 6.2. The excellent
performance shows that BoxInst dramatically narrows the performance gap between
the fully supervised and box-supervised instance segmentation, and for the first time,
the great potential of box-supervised instance segmentation is revealed.

6.3.5 Experiments on Pascal VOC

We also conduct experiments on Pascal VOC. As shown in Table 6.6, BoxInst achieves
state-of-the-art instance segmentation with only box annotations. With the same
backbone and training settings, BoxInst outperforms BBTP both in AP50 and AP75 by
a large margin. Notably, the AP75 is improved by more than relative 200% (14.3% vs.
34.6% mask AP), which suggests BoxInst can produce the masks of much higher qual-
ity. BoxInst is even much better than the BBTP with CRF. Additionally, BoxInst also
performs much better than SDI Khoreva et al., 2017. We also compare BoxInst with
the traditional unsupervised segmentation method GrabCut Rother, Kolmogorov, and
Blake, 2004. In the experiment, GrabCut takes as input the bounding-boxes predicted
by the ResNet-101 based FCOS in BoxInst. Thus the only difference between BoxInst
and GrabCut is the way of obtaining instance masks. As shown in Table 6.6, BoxInst

72 Chapter 6. High-Performance Instance Segmentation with Box Annotations

Lproj Lpairwise
all 80 classes 60 unseen classes

AP AP50 AP75 AP AP50 AP75

24.7 44.6 24.2 19.9 38.3 18.5
X 31.8 52.5 33.2 29.7 49.3 31.0
X X 32.5 53.0 34.0 30.9 50.1 32.4
box supervised 30.7 52.2 31.1 29.6 49.7 30.4

Table 6.7. BoxInst for semi-supervised instance segmenta-
tion. These models are trained with the 20 classes mask annotations
and the other 60 classes (i.e., unseen classes) are only with box anno-

tations.

Lproj Lpairwise
all 80 classes 20 unseen classes

AP AP50 AP75 AP AP50 AP75

32.1 51.6 33.9 25.5 45.5 25.1
X 33.1 53.8 34.3 31.6 57.4 30.0
X X 33.8 54.3 35.7 35.9 60.9 36.3
box supervised 30.7 52.2 31.1 29.6 49.7 30.4

Table 6.8. BoxInst for semi-supervised instance segmenta-
tion. The models are trained with the 60 classes mask annotations
and other 20 classes (i.e., unseen classes) are only with box annota-

tions.

is far better than GrabCut (17.8% vs. 34.4% mask AP). Moreover, BoxInst is fully
convolutional and can benefit from the highly-efficient GPUs, thus inferring tens of
times faster than GrabCut.

6.3.6 Extensions: Semi-supervised Instance Segmentation

In this section, we show that our method can also help the model generalize to unseen
categories in the semi-supervised setting where only partial classes have the mask
annotations. Following previous works Zhou et al., 2020; Hu et al., 2018; Kuo et al.,
2019 in this setting, we conduct the experiments on the COCO dataset and split the
80 classes in COCO into two groups – 20 classes present in Pascal VOC and 60 classes
not in Pascal VOC. Then the models are trained with the mask annotations of one
group of classes, and another group of classes only have the box annotations. The
generalization ability is evaluated with the mask AP averaged over the group of classes
without mask annotations (i.e., unseen classes).

We first train the model with the 20 classes mask annotations. As shown in Table 6.7
(1st row), if our proposed loss terms are not used, where the mask loss is only computed
for the instances with mask annotations and other instances are discarded during the
mask learning, the model can only achieve 25.5% mask AP on the unseen categories.
This low performance suggests that the model is difficult to generalize to unseen
classes. If we use the Lproj term for the 60 classes without the mask annotations
during training, as shown in the table (2nd row), the performance can be dramatically
improved to 29.7%. If we further apply the pairwise term Lpairwise, the performance
can be boosted to 30.9%. Moreover, compared to the setting only using the box

6.4. Conclusions 73

Figure 6.4. Character masks predicted by BoxInst. No mask anno-
tations are used for training.

annotations (last row in Table 6.7), the performance on the unseen classes is also
improved from 29.6% to 30.9%, which suggests that the totally box-supervised model
can also benefit from the partial mask annotations. Additionally, the experimental
results with the 60 classes masks are shown in Table 6.8, and the same conclusions
can be drawn.

6.3.7 Extensions: Box-supervised Character Segmentation

In order to demonstrate the generality of BoxInst, we conduct experiments to obtain
the character masks with character box annotations. Our experiments are conducted
on the ICDAR 2019 ReCTS dataset Zhang et al., 2019, which contains 20K training
images and 5K testing images and these images are annotated with text-line and
character-level boxes. We train our model with the character boxes. All the training
settings are the same as that of COCO. Since we do not have mask annotations
for the testing set, it is impossible to report the mask AP. We instead show some
qualitative results in Fig. 6.4, demonstrating that BoxInst can obtain high-quality
character masks. It is well known that the text masks provide useful cues for detecting
and recognising text of arbitrary shapes Lyu et al., 2018; Liu et al., 2020d. We believe
that the ability of BoxInst generating character masks automatically may inspire new
applications on this task.

6.4 Conclusions

In this work, we have proposed BoxInst that can achieve high-quality instance seg-
mentation with only box annotations. The core idea of BoxInst is to replace the
original pixelwise mask loss with the proposed projection and pairwise affinity mask

74 Chapter 6. High-Performance Instance Segmentation with Box Annotations

loss. With the proposed mask loss, we show excellent instance segmentation perfor-
mance without using any mask annotations on COCO and Pascal VOC, significantly
improving the state-of-the-art.

75

Chapter 7

Conclusions

In this thesis, we have proposed a series of novel methods for instance-level visual
recognition with fully convolutional networks. These proposed methods are simple yet
effective, as evidenced by the excellent performance on some challenging benchmarks.

First, we present the anchor-free detector FCOS. Without using anchor boxes, FCOS
works by predicting the distances from the locations of the feature maps to the four
boundaries of the boxes. We empirically show that the much simpler solution can
work reliably in many challenging cases. We also conducted many analyses about the
anchor boxes in this thesis. These analyses surprisingly show that the long-standing
anchor boxes might not be as important as we thought. Our anchor-free detector can
have almost the same recall rates and even better performance. Moreover, due to
the elimination of the anchor boxes, the detector becomes very simple and flexible,
and it can be easily extended to downstream computer vision tasks such as keypoint
detection and instance segmentation. To our knowledge, FCOS is the first anchor-
free detector that demonstrates improved object detection performance on challenging
benchmarks such as MS-COCO.

Inspired by FCOS, we propose DirectPose to extend FCOS to the keypoint detection
task. Unlike previous keypoint detection methods, which rely on ROI operations or
grouping processing, DirectPose directly regresses all the instance-agnostic keypoints
with the fully convolutional networks, and thus it is able to directly map a raw input
image to the final keypoint results, making the task much simpler. It can also unify
object detection and keypoint detection in a single simple and elegant framework.
However, the naive DirectPose framework has difficulty in localizing precise keypoints
since it relies on a single feature vector to encode all the keypoints of an instance as
well as the convolutional features and the predictions are misaligned. In DirectPose,
we address the issues with the proposed KPAlign module. The KPAlign module is
able to align the convolutional features and the target keypoints and avoids that a
single feature vector encodes all the keypoints of an instance, thus improving the final
performance by a large margin.

Moreover, we also propose CondInst for instance segmentation. Previous top-performing
instance segmentation methods rely on ROI operations. The ROI operations are the

76 Chapter 7. Conclusions

core operation making the model attend to instances. However, the ROI operations
come with some drawbacks. In CondInst, for the first time, CondInst proposes to em-
ploy the mask heads based on dynamic filters (or conditional convolutions) to attend
to the instances. This is made possible because the weights of the dynamic filters are
dynamically-generated in inference and conditioned on the instance to be predicted.
As a result, the mask head based on the dynamic filter can distinguish the instance
mask from the masks of other instances. In that way, CondInst eliminates the ROI
operations in previous methods and solves instance segmentation in the fully convo-
lutional fashion. Moreover, since the mask head of CondInst is dynamic and is asked
to predict the mask only for one instance, the mask head can be very compact (i.e.,
only hundreds of weights). Thus, the mask head only takes negligible inference time
per instance. This makes CondInst infer faster and have almost constant inference
time regardless of the number of the instances in the image. CondInst also yields the
instance masks of much higher quality. For example, we improve the mask’s resolution
of Mask R-CNN by tens of times.

Finally, to avoid the cost of the mask annotations in instance segmentation, built on
CondInst, we propose BoxInst to solve instance segmentation with only box annota-
tions. The core idea of BoxInst is to redesign the mask loss in CondInst as the original
pixelwise mask loss cannot supervise the mask learning if the mask annotations are
not available. The redesigned mask loss first ensures that the tightest box covering the
predicted mask of an instance matches the ground-truth box of the instance. Second,
the redesigned mask loss encourages that the predicted mask of an instance has the
same pairwise label similarity as the ground-truth mask of the instance. The pairwise
label similarity can be partially derived by exploiting the prior that the proximal pixels
with similar colors in an image are very likely to have the same category label. Thus,
the resigned mask loss can still be partially supervised even if the mask annotations
are not available. Our experiments show that BoxInst can yield high-quality instance
masks with only box-level supervision, largely closing the gap between fully-supervised
and box-supervised instance segmentation. It has been long believed that obtaining
the instance masks is a very challenging task. Our strong performance without using
any mask annotations shows that it may not necessarily be the case.

We believe that the proposed methods in this thesis can substantially change the
status quo of the instance-level visual recognition, and we have seen many works
built upon our methods so far. We hope that our proposed methods can lay a solid
foundation for many tasks and applications that require instance-level recognition and
bring some new insights to the entire computer vision community.

77

Bibliography

(2019). https://github.com/yqyao/FCOS_PLUS.
(2020). https://github.com/chengchunhsu/WSIS_BBTP/issues/11.
A. Paszke et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Proc. Advances in Neural Inf. Process. Syst. Pp. 8024–8035.

Arun, Aditya, C. V. Jawahar, and Pawan Kumar (2020). “Weakly Supervised Instance
Segmentation by Learning Annotation Consistent Instances”. In: Proc. Eur. Conf.
Comp. Vis.

Bearman, Amy, Olga Russakovsky, Vittorio Ferrari, and Li Fei-Fei (2016). “What’s
the point: Semantic segmentation with point supervision”. In: Proc. Eur. Conf.
Comp. Vis. Pp. 549–565.

Bian, Jia-Wang, Huangying Zhan, Naiyan Wang, Tat-Jun Chin, Chunhua Shen, and
Ian Reid (2020). “Unsupervised Depth Learning in Challenging Indoor Video: Weak
Rectification to Rescue”. In: arXiv preprint arXiv:2006.02708.

Bian, Jiawang, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen, Ming-
Ming Cheng, and Ian Reid (2019). “Unsupervised scale-consistent depth and ego-
motion learning from monocular video”. In: Advances in neural information pro-
cessing systems, pp. 35–45.

Bolya, Daniel, Chong Zhou, Fanyi Xiao, and Yong Jae Lee (2019a). “YOLACT: real-
time instance segmentation”. In: Proc. IEEE Int. Conf. Comp. Vis. Pp. 9157–9166.

Bolya, Daniel, Chong Zhou, Fanyi Xiao, and Yong Jae Lee (2019b). “YOLACT: Real-
time Instance Segmentation”. In: Proc. IEEE Int. Conf. Comp. Vis.

Boominathan, Lokesh, Srinivas SS Kruthiventi, and R Venkatesh Babu (2016). “Crowd-
net: A deep convolutional network for dense crowd counting”. In: Proc. ACM Int.
Conf. Multimedia. ACM, pp. 640–644.

Cao, Zhe, Tomas Simon, Shih-En Wei, and Yaser Sheikh (2017). “Realtime multi-
person 2d pose estimation using part affinity fields”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7291–7299.

Chen, Hao, Kunyang Sun, Zhi Tian, Chunhua Shen, Yongming Huang, and Youliang
Yan (2020). “BlendMask: Top-down meets bottom-up for instance segmentation”.
In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. Pp. 8573–8581.

Chen, Kai, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jianping Shi, Wanli Ouyang, et al. (2019a). “Hybrid task cas-
cade for instance segmentation”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
Pp. 4974–4983.

https://github.com/yqyao/FCOS_PLUS
https://github.com/chengchunhsu/WSIS_BBTP/issues/11

78 Bibliography

Chen, Liang-Chieh, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan
Yuille (2017a). “Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected CRFs”. In: IEEE Trans. Pattern Anal.
Mach. Intell. 40.4, pp. 834–848.

Chen, Xinlei, Ross Girshick, Kaiming He, and Piotr Dollár (2019b). “Tensormask: A
foundation for dense object segmentation”. In: Proc. IEEE Conf. Comp. Vis. Patt.
Recogn. Pp. 2061–2069.

Chen, Yilun, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, and Jian
Sun (2018). “Cascaded pyramid network for multi-person pose estimation”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7103–7112.

Chen, Yu, Chunhua Shen, Xiu-Shen Wei, Lingqiao Liu, and Jian Yang (2017b). “Ad-
versarial PoseNet: A Structure-aware Convolutional Network for Human Pose Es-
timation”. In: Proc. IEEE Int. Conf. Comp. Vis.

Cheng, Bowen, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S Huang, and Lei
Zhang (2020a). “Higherhrnet: Scale-aware representation learning for bottom-up
human pose estimation”. In: pp. 5386–5395.

Cheng, Tianheng, XinggangWang, Lichao Huang, andWenyu Liu (2020b). “Boundary-
preserving Mask R-CNN”. In: Proc. Eur. Conf. Comp. Vis.

Chu, Xuangeng, Anlin Zheng, Xiangyu Zhang, and Jian Sun (2020). “Detection in
Crowded Scenes: One Proposal, Multiple Predictions”. In: Proc. IEEE Conf. Comp.
Vis. Patt. Recogn.

Dai, Jifeng, Kaiming He, Yi Li, Shaoqing Ren, and Jian Sun (2016). “Instance-sensitive
fully convolutional networks”. In: Proc. Eur. Conf. Comp. Vis. Springer, pp. 534–
549.

Dai, Jifeng, Kaiming He, and Jian Sun (2015). “Boxsup: Exploiting bounding boxes to
supervise convolutional networks for semantic segmentation”. In: Proc. IEEE Int.
Conf. Comp. Vis. Pp. 1635–1643.

Dai, Jifeng, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen
Wei (2017). “Deformable convolutional networks”. In: Proc. IEEE Int. Conf. Comp.
Vis. Pp. 764–773.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei (2009). “Ima-
geNet: A large-scale hierarchical image database”. In: Proc. IEEE Conf. Comp. Vis.
Patt. Recogn. IEEE, pp. 248–255.

Dollár, Piotr, Ron Appel, Serge Belongie, and Pietro Perona (2014). “Fast Feature
Pyramids for Object Detection”. In: IEEE Trans. Pattern Anal. Mach. Intell.

Dollar, Piotr, Christian Wojek, Bernt Schiele, and Pietro Perona (2011). “Pedestrian
detection: An evaluation of the state of the art”. In: IEEE Trans. Pattern Anal.
Mach. Intell. 34.4, pp. 743–761.

Duan, Kaiwen, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian
(2019). “CenterNet: Keypoint triplets for object detection”. In: Proc. IEEE Int.
Conf. Comp. Vis. Pp. 6569–6578.

Bibliography 79

Duan, Kaiwen, Lingxi Xie, Honggang Qi, Song Bai, Qingming Huang, and Qi Tian
(2020). “Corner Proposal Network for Anchor-free, Two-stage Object Detection”.
In: Proc. Eur. Conf. Comp. Vis.

Everingham, Mark, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman (2010). “The Pascal visual object classes (VOC) challenge”. In: Int. J.
Comput. Vision 88.2, pp. 303–338.

Fang, Hao-Shu, Shuqin Xie, Yu-Wing Tai, and Cewu Lu (2017). “Rmpe: Regional
multi-person pose estimation”. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 2334–2343.

Fathi, Alireza, Zbigniew Wojna, Vivek Rathod, Peng Wang, Hyun Oh Song, Sergio
Guadarrama, and Kevin P Murphy (2017). “Semantic instance segmentation via
deep metric learning”. In: arXiv: Comp. Res. Repository.

Fu, Cheng-Yang, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander Berg (2017).
“DSSD: Deconvolutional single shot detector”. In: arXiv preprint arXiv:1701.06659.

Girshick, Ross (2015). “Fast R-CNN”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
Pp. 1440–1448.

Girshick, Ross, Jeff Donahue, Trevor Darrell, and Jitendra Malik (2014). “Rich feature
hierarchies for accurate object detection and semantic segmentation”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 580–
587.

Girshick, Ross, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár, and Kaiming He
(2018). Detectron. https://github.com/facebookresearch/detectron.

Gkioxari, Georgia, Bharath Hariharan, Ross Girshick, and Jitendra Malik (2014).
“Using k-poselets for detecting people and localizing their keypoints”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3582–
3589.

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp. 249–256.

Guo, Dongyan, Jun Wang, Ying Cui, Zhenhua Wang, and Shengyong Chen (2020).
“SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual
Tracking”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.

Hariharan, Bharath, Pablo Arbeláez, Lubomir Bourdev, Subhransu Maji, and Jitendra
Malik (2011). “Semantic contours from inverse detectors”. In: Proc. IEEE Int. Conf.
Comp. Vis. Pp. 991–998.

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick (2017). “Mask r-cnn”.
In: Proceedings of the IEEE international conference on computer vision, pp. 2961–
2969.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Spatial pyramid
pooling in deep convolutional networks for visual recognition”. In: IEEE Trans.
Pattern Anal. Mach. Intell. 37.9, pp. 1904–1916.

https://github.com/facebookresearch/detectron

80 Bibliography

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep residual
learning for image recognition”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
Pp. 770–778.

He, Tong, Chunhua Shen, Zhi Tian, Dong Gong, Changming Sun, and Youliang Yan
(2019a). “Knowledge Adaptation for Efficient Semantic Segmentation”. In: Proc.
IEEE Conf. Comp. Vis. Patt. Recogn.

He, Tong, Chunhua Shen, Zhi Tian, Dong Gong, Changming Sun, and Youliang Yan
(2019b). “Knowledge adaptation for efficient semantic segmentation”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 578–
587.

He, Tong, Zhi Tian, Weilin Huang, Chunhua Shen, Yu Qiao, and Changming Sun
(2018). “An end-to-end textspotter with explicit alignment and attention”. In: Proc.
IEEE Conf. Comp. Vis. Patt. Recogn. Pp. 5020–5029.

Hsu, Cheng-Chun, Kuang-Jui Hsu, Chung-Chi Tsai, Yen-Yu Lin, and Yung-Yu Chuang
(2019). “Weakly supervised instance segmentation using the bounding box tightness
prior”. In: Proc. Advances in Neural Inf. Process. Syst. Note that the mask AP
results on COCO are in the supplementary, available at https://tinyurl.com/
yyjovxn6.

Hu, Ronghang, Piotr Dollár, Kaiming He, Trevor Darrell, and Ross Girshick (2018).
“Learning to segment every thing”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
Pp. 4233–4241.

Huang, Lichao, Yi Yang, Yafeng Deng, and Yinan Yu (2015). “Densebox: Unifying
landmark localization with end to end object detection”. In: arXiv: Comp. Res.
Repository abs/1509.04874.

Huang, Shaoli, Mingming Gong, and Dacheng Tao (2017). “A coarse-fine network
for keypoint localization”. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 3028–3037.

Huang, Zhaojin, Lichao Huang, Yongchao Gong, Chang Huang, and Xinggang Wang
(2019). “Mask scoring R-CNN”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
Pp. 6409–6418.

Insafutdinov, Eldar, Leonid Pishchulin, Bjoern Andres, Mykhaylo Andriluka, and
Bernt Schiele (2016). “Deepercut: A deeper, stronger, and faster multi-person pose
estimation model”. In: European Conference on Computer Vision. Springer, pp. 34–
50.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167.

Jia, Xu, Bert De Brabandere, Tinne Tuytelaars, and Luc Van Gool (2016). “Dynamic
filter networks”. In: Proc. Advances in Neural Inf. Process. Syst. Pp. 667–675.

Khoreva, Anna, Rodrigo Benenson, Jan Hosang, Matthias Hein, and Bernt Schiele
(2017). “Simple does it: Weakly supervised instance and semantic segmentation”.
In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. Pp. 876–885.

https://tinyurl.com/yyjovxn6
https://tinyurl.com/yyjovxn6

Bibliography 81

Krähenbühl, Philipp and Vladlen Koltun (2011). “Efficient inference in fully connected
CRFs with Gaussian edge potentials”. In: Proc. Advances in Neural Inf. Process.
Syst. Pp. 109–117.

Kulharia, Viveka, Siddhartha Chandra, Amit Agrawal, Philip Torr, and Ambrish
Tyagi (2020). “Box2Seg: AttentionWeighted Loss and Discriminative Feature Learn-
ing for Weakly Supervised Segmentation”. In: Proc. Eur. Conf. Comp. Vis.

Kuo, Weicheng, Anelia Angelova, Jitendra Malik, and Tsung-Yi Lin (2019). “Shape-
Mask: Learning to segment novel objects by refining shape priors”. In: Proc. IEEE
Int. Conf. Comp. Vis. Pp. 9207–9216.

Law, Hei and Jia Deng (2018). “Cornernet: Detecting objects as paired keypoints”. In:
Proc. Eur. Conf. Comp. Vis. Pp. 734–750.

Lee, Youngwan and Jongyoul Park (2020). “CenterMask: Real-Time Anchor-Free In-
stance Segmentation”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.

Lin, Tsung-Yi, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie (2017a). “Feature pyramid networks for object detection”. In: Proc.
IEEE Conf. Comp. Vis. Patt. Recogn. Pp. 2117–2125.

Lin, Tsung-Yi, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár (2017b).
“Focal loss for dense object detection”. In: Proc. IEEE Conf. Comp. Vis. Patt.
Recogn. Pp. 2980–2988.

Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and Lawrence Zitnick (2014). “Microsoft COCO: Common
objects in context”. In: Proc. Eur. Conf. Comp. Vis. Pp. 740–755.

Liu, Fayao, Chunhua Shen, Guosheng Lin, and Ian Reid (2016a). “Learning Depth
from Single Monocular Images Using Deep Convolutional Neural Fields”. In: IEEE
Trans. Pattern Anal. Mach. Intell.

Liu, Shu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia (2018). “Path aggregation
network for instance segmentation”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
Pp. 8759–8768.

Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg (2016b). “SSD: Single shot multibox detector”. In:
Proc. Eur. Conf. Comp. Vis. Springer, pp. 21–37.

Liu, Yifan, Changyong Shu, Jingdong Wang, and Chunhua Shen (2020a). “Structured
knowledge distillation for dense prediction”. In: IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence.

Liu, Yifan, Changyong Shun, Jingdong Wang, and Chunhua Shen (2020b). “Struc-
tured Knowledge Distillation for Dense Prediction”. In: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence. eprint: 1903 . 04197. url: https : / /
ieeexplore.ieee.org/document/9115859.

Liu, Yuliang, Hao Chen, Chunhua Shen, Tong He, Lianwen Jin, and Liangwei Wang
(2020c). “ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Net-
work”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.

1903.04197
https://ieeexplore.ieee.org/document/9115859
https://ieeexplore.ieee.org/document/9115859

82 Bibliography

Liu, Yuliang, Hao Chen, Chunhua Shen, Tong He, Lianwen Jin, and Liangwei Wang
(2020d). “ABCNet: Real-Time Scene Text Spotting With Adaptive Bezier-Curve
Network”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.

Long, Jonathan, Evan Shelhamer, and Trevor Darrell (2015). “Fully convolutional net-
works for semantic segmentation”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
Pp. 3431–3440.

Luo, Wenjie, Yujia Li, Raquel Urtasun, and Richard Zemel (2016). “Understanding
the effective receptive field in deep convolutional neural networks”. In: Advances in
neural information processing systems, pp. 4898–4906.

Lyu, Pengyuan, Minghui Liao, Cong Yao, Wenhao Wu, and Xiang Bai (2018). “Mask
TextSpotter: An End-to-End Trainable Neural Network for Spotting Text with Ar-
bitrary Shapes”. In: Proc. Eur. Conf. Comp. Vis.

M. Abadi et al. (2016). “TensorFlow: A system for large-scale machine learning”. In:
USENIX Symp. Operating Systems Design & Implementation (OSDI), pp. 265–283.

Milan, Anton, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler (2016).
“MOT16: A benchmark for multi-object tracking”. In: arXiv preprint arXiv:1603.00831.

Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi (2016). “V-net: Fully con-
volutional neural networks for volumetric medical image segmentation”. In: Proc.
Int. Conf. 3D Vision (3DV). IEEE, pp. 565–571.

Neven, Davy, Bert De Brabandere, Marc Proesmans, and Luc Van Gool (2019). “In-
stance segmentation by jointly optimizing spatial embeddings and clustering band-
width”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. Pp. 8837–8845.

Newell, Alejandro, Zhiao Huang, and Jia Deng (2017). “Associative embedding: End-
to-end learning for joint detection and grouping”. In: Proc. Advances in Neural Inf.
Process. Syst. Pp. 2277–2287.

Newell, Alejandro, Kaiyu Yang, and Jia Deng (2016). “Stacked hourglass networks for
human pose estimation”. In: Proc. Eur. Conf. Comp. Vis. Springer, pp. 483–499.

Nie, Xuecheng, Jiashi Feng, Jianfeng Zhang, and Shuicheng Yan (2019). “Single-Stage
Multi-Person Pose Machines”. In: The IEEE International Conference on Computer
Vision (ICCV).

Novotny, David, Samuel Albanie, Diane Larlus, and Andrea Vedaldi (2018). “Semi-
convolutional Operators for Instance Segmentation”. In: Proceedings of the European
Conference on Computer Vision (ECCV).

Papandreou, George, Liang-Chieh Chen, Kevin Murphy, and Alan Yuille (2015).
“Weakly- and semi-supervised learning of a deep convolutional network for semantic
image segmentation”. In: Proc. IEEE Int. Conf. Comp. Vis. Pp. 1742–1750.

Papandreou, George, Tyler Zhu, Liang-Chieh Chen, Spyros Gidaris, Jonathan Tomp-
son, and Kevin Murphy (2018). “Personlab: Person pose estimation and instance
segmentation with a bottom-up, part-based, geometric embedding model”. In: Pro-
ceedings of the European Conference on Computer Vision (ECCV), pp. 269–286.

Papandreou, George, Tyler Zhu, Nori Kanazawa, Alexander Toshev, Jonathan Tomp-
son, Chris Bregler, and Kevin Murphy (2017). “Towards accurate multi-person pose

Bibliography 83

estimation in the wild”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4903–4911.

Perez, Ethan, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville
(2018). “Film: Visual reasoning with a general conditioning layer”. In: Proc. AAAI
Conf. Artificial Intell.

Pishchulin, Leonid, Eldar Insafutdinov, Siyu Tang, Bjoern Andres, Mykhaylo An-
driluka, Peter V Gehler, and Bernt Schiele (2016). “Deepcut: Joint subset partition
and labeling for multi person pose estimation”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 4929–4937.

Pishchulin, Leonid, Arjun Jain, Mykhaylo Andriluka, Thorsten Thormählen, and
Bernt Schiele (2012). “Articulated people detection and pose estimation: Reshaping
the future”. In: 2012 IEEE Conference on Computer Vision and Pattern Recogni-
tion. IEEE, pp. 3178–3185.

Plummer, Bryan A, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hock-
enmaier, and Svetlana Lazebnik (2015). “Flickr30k entities: Collecting region-to-
phrase correspondences for richer image-to-sentence models”. In: Proceedings of the
IEEE international conference on computer vision, pp. 2641–2649.

Pont-Tuset, Jordi, Pablo Arbelaez, Jonathan Barron, Ferran Marques, and Jitendra
Malik (2016). “Multiscale combinatorial grouping for image segmentation and object
proposal generation”. In: IEEE Trans. Pattern Anal. Mach. Intell. 39.1, pp. 128–
140.

Rajchl, Martin, Matthew Lee, Ozan Oktay, Konstantinos Kamnitsas, Jonathan Passerat-
Palmbach, Wenjia Bai, Mellisa Damodaram, Mary Rutherford, Joseph Hajnal, Bern-
hard Kainz, et al. (2016). “Deepcut: Object segmentation from bounding box an-
notations using convolutional neural networks”. In: IEEE Trans. Medical Imaging
36.2, pp. 674–683.

Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi (2016). “You only
look once: Unified, real-time object detection”. In: Proc. IEEE Conf. Comp. Vis.
Patt. Recogn. Pp. 779–788.

Redmon, Joseph and Ali Farhadi (2017). “YOLO9000: better, faster, stronger”. In:
Proc. IEEE Conf. Comp. Vis. Patt. Recogn. Pp. 7263–7271.

Redmon, Joseph and Ali Farhadi (2018). “Yolov3: An incremental improvement”. In:
arXiv: Comp. Res. Repository abs/1804.02767.

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun (2015). “Faster R-CNN: To-
wards real-time object detection with region proposal networks”. In: Proc. Advances
in Neural Inf. Process. Syst. Pp. 91–99.

Rezatofighi, Hamid, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and
Silvio Savarese (2019). “Generalized intersection over union: A metric and a loss for
bounding box regression”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. Pp. 658–
666.

84 Bibliography

Rother, Carsten, Vladimir Kolmogorov, and Andrew Blake (2004). “GrabCut: inter-
active foreground extraction using iterated graph cuts”. In: ACM Trans. Graphics
23.3, pp. 309–314.

Shao, Shuai, Zijian Zhao, Boxun Li, Tete Xiao, Gang Yu, Xiangyu Zhang, and Jian Sun
(2018). “Crowdhuman: A benchmark for detecting human in a crowd”. In: arXiv:
Comp. Res. Repository abs/1805.00123.

Shen, Chunhua, Peng Wang, Sakrapee Paisitkriangkrai, and Anton van den Hengel
(2013). “Training Effective Node Classifiers for Cascade Classification”. In: Int. J.
Comput. Vision 103.3, pp. 326–347.

Sofiiuk, Konstantin, Olga Barinova, and Anton Konushin (2019). “Adaptis: Adaptive
instance selection network”. In: Proc. IEEE Int. Conf. Comp. Vis. Pp. 7355–7363.

Song, Chunfeng, Yan Huang, Wanli Ouyang, and Liang Wang (2019). “Box-driven
class-wise region masking and filling rate guided loss for weakly supervised semantic
segmentation”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. Pp. 3136–3145.

Sun, Ke, Bin Xiao, Dong Liu, and Jingdong Wang (2019). “Deep High-Resolution
Representation Learning for Human Pose Estimation”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5693–5703.

Sun, Xiao, Bin Xiao, Fangyin Wei, Shuang Liang, and Yichen Wei (2018). “Integral
human pose regression”. In: Proceedings of the European Conference on Computer
Vision (ECCV), pp. 529–545.

Tan, Mingxing, Ruoming Pang, and Quoc Le (2020). “EfficientDet: Scalable and effi-
cient object detection”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.

Tian, Zhi, Hao Chen, and Chunhua Shen (2019). “DirectPose: Direct End-to-End
Multi-Person Pose Estimation”. In: arXiv: Comp. Res. Repository abs/1911.07451.

Tian, Zhi, Tong He, Chunhua Shen, and Youliang Yan (2019a). “Decoders Matter
for Semantic Segmentation: Data-Dependent Decoding Enables Flexible Feature
Aggregation”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. Pp. 3126–3135.

Tian, Zhi, Chunhua Shen, and Hao Chen (2020). “Conditional Convolutions for In-
stance Segmentation”. In: Proc. Eur. Conf. Comp. Vis.

Tian, Zhi, Chunhua Shen, Hao Chen, and Tong He (2019b). “FCOS: Fully Convolu-
tional One-Stage Object Detection”. In: Proc. IEEE Int. Conf. Comp. Vis.

Viola, Paul and Michael Jones (2001). “Robust Real-time Object Detection”. In: Int.
J. Comput. Vision.

Wang, Guangting, Chong Luo, Xiaoyan Sun, Zhiwei Xiong, and Wenjun Zeng (2020a).
“Tracking by Instance Detection: A Meta-Learning Approach”. In: Proc. IEEE Conf.
Comp. Vis. Patt. Recogn.

Wang, Xinlong, Tao Kong, Chunhua Shen, Yuning Jiang, and Lei Li (2020b). “SOLO:
Segmenting Objects by Locations”. In: Proc. Eur. Conf. Comp. Vis.

Wang, Xinlong, Rufeng Zhang, Tao Kong, Lei Li, and Chunhua Shen (2020c). “SOLOv2:
Dynamic and Fast Instance Segmentation”. In: Proc. Advances in Neural Informa-
tion Processing Systems (NeurIPS).

Bibliography 85

Wang, Xinlong, Rufeng Zhang, Tao Kong, Lei Li, and Chunhua Shen (2020d). “SOLOv2:
Dynamic and Fast Instance Segmentation”. In: Proc. Advances in Neural Inf. Pro-
cess. Syst.

Wang, Zhongdao, Liang Zheng, Yixuan Liu, and Shengjin Wang (2019). “Towards
Real-Time Multi-Object Tracking”. In: arXiv preprint arXiv:1909.12605.

Wei, Shih-En, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh (2016). “Con-
volutional pose machines”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4724–4732.

Wu, Yuxin and Kaiming He (2018). “Group normalization”. In: Proc. Eur. Conf.
Comp. Vis. Pp. 3–19.

Wu, Yuxin, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick
(2019). Detectron2. https://github.com/facebookresearch/detectron2.

Xiao, Bin, Haiping Wu, and Yichen Wei (2018). “Simple baselines for human pose
estimation and tracking”. In: Proceedings of the European Conference on Computer
Vision (ECCV), pp. 466–481.

Xie, Enze, Peize Sun, Xiaoge Song, Wenhai Wang, Xuebo Liu, Ding Liang, Chunhua
Shen, and Ping Luo (2020). “Polarmask: Single shot instance segmentation with
polar representation”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. Pp. 12193–
12202.

Yang, Brandon, Gabriel Bender, Quoc V Le, and Jiquan Ngiam (2019a). “CondConv:
Conditionally Parameterized Convolutions for Efficient Inference”. In: Proc. Ad-
vances in Neural Inf. Process. Syst. Pp. 1305–1316.

Yang, Ze, Shaohui Liu, Han Hu, Liwei Wang, and Stephen Lin (2019b). “Reppoints:
Point set representation for object detection”. In: Proc. IEEE Int. Conf. Comp. Vis.
Pp. 9657–9666.

Yin, Wei, Yifan Liu, Chunhua Shen, and Youliang Yan (2019). “Enforcing geometric
constraints of virtual normal for depth prediction”. In: Proc. IEEE Int. Conf. Comp.
Vis.

Yin, Wei, XinlongWang, Chunhua Shen, Yifan Liu, Zhi Tian, Songcen Xu, Changming
Sun, and Dou Renyin (2020). “DiverseDepth: Affine-invariant Depth Prediction
Using Diverse Data”. In: arXiv preprint arXiv:2002.00569.

Yu, Fisher, Dequan Wang, Evan Shelhamer, and Trevor Darrell (2018). “Deep layer
aggregation”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. Pp. 2403–2412.

Yu, Jiahui, Yuning Jiang, Zhangyang Wang, Zhimin Cao, and Thomas Huang (2016).
“Unitbox: An advanced object detection network”. In: Proc. ACM Int. Conf. Mul-
timedia. ACM, pp. 516–520.

Zhang, Rufeng, Zhi Tian, Chunhua Shen, Mingyu You, and Youliang Yan (2020).
“Mask Encoding for Single Shot Instance Segmentation”. In: Proc. IEEE Conf.
Comp. Vis. Patt. Recogn.

https://github.com/facebookresearch/detectron2

86 Bibliography

Zhang, Rui, Yongsheng Zhou, Qianyi Jiang, Qi Song, Nan Li, Kai Zhou, Lei Wang,
Dong Wang, Minghui Liao, Mingkun Yang, et al. (2019). “ICDAR 2019 robust read-
ing challenge on reading chinese text on signboard”. In: Proc. Int. Conf. Document
Analysis Recogn. Pp. 1577–1581.

Zhou, Xingyi, Dequan Wang, and Philipp Krähenbühl (2019). “Objects as Points”. In:
arXiv: Comp. Res. Repository. Vol. abs/1904.07850.

Zhou, Xinyu, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He, and Jiajun
Liang (2017). “EAST: an efficient and accurate scene text detector”. In: Proc. IEEE
Conf. Comp. Vis. Patt. Recogn. Pp. 5551–5560.

Zhou, Yanzhao, Xin Wang, Jianbin Jiao, Trevor Darrell, and Fisher Yu (2020). “Learn-
ing Saliency Propagation for Semi-supervised Instance Segmentation”. In: Proc.
IEEE Conf. Comp. Vis. Patt. Recogn.

Zhu, Chenchen, Yihui He, and Marios Savvides (2019). “Feature Selective Anchor-Free
Module for Single-Shot Object Detection”. In: Proc. IEEE Conf. Comp. Vis. Patt.
Recogn.

Zhu, Xizhou, Han Hu, Stephen Lin, and Jifeng Dai (2019). “Deformable convnets v2:
More deformable, better results”. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
Pp. 9308–9316.

	Abstract
	Declaration of Authorship
	Acknowledgements
	Introduction
	Object Detection
	Keypoint Detection
	Instance Segmentation
	Instance Segmentation with Box Annotations

	 Literature Review
	Object Detection
	Keypoint Detection
	Instance Segmentation and Conditional Convolutions
	Box-supervised Segmentation

	 FCOS: Fully Convolutional One-Stage Object Detection
	Introduction
	Our Approach
	Fully Convolutional One-Stage Object Detector
	Multi-level Prediction with FPN for FCOS
	Center-ness for FCOS

	Experiments
	Analysis of FCOS
	Best Possible Recall (BPR) of FCOS
	Ambiguous Samples in FCOS
	The Effect of Center-ness
	Other Design Choices

	FCOS vs. Anchor-based Counterparts
	Comparison with State-of-the-art Detectors on COCO
	Real-time FCOS
	FCOS on CrowdHuman

	Conclusions

	 DirectPose: Direct End-to-End Multi-Person Pose Estimation
	Introduction
	Our Approach
	End-to-End Multi-Person Pose Estimation
	Keypoint Alignment (KPAlign) Module
	Regularization from Heatmap Learning

	Experiments
	Ablation Experiments
	Baseline: the naive end-to-end framework
	Keypoint alignment (KPAlign) module
	Grouped KPAlign
	Using separate convolutional features
	Where to sample features in KPAlign?
	Regularization from heatmap learning

	Combining with Bounding Box Detection
	Comparisons with State-of-the-art Methods
	Visualization of KPAlign
	Visualization of Keypoint Detections

	Conclusions

	 Conditional Convolutions for Instance Segmentation
	Introduction
	Instance Segmentation with CondInst
	Overall Architecture
	Network Outputs and Training Targets
	Loss Functions
	Inference

	Experiments
	Implementation Details
	Architectures of the Mask Head
	Design Choices of the Mask Branch
	How Important to Upsample Mask Predictions?
	CondInst without box Detection
	Comparisons with State-of-the-art Methods

	Conclusions

	 High-Performance Instance Segmentation with Box Annotations
	Introduction
	Approach
	Projection and Pairwise Affinity Mask Loss
	Learning without Mask Annotations

	Experiments
	Implementation Details
	Projection and Pairwise Affinity Loss for Mask Learning
	Box-supervised Instance Segmentation
	Comparisons with State-of-the-art
	Experiments on Pascal VOC
	Extensions: Semi-supervised Instance Segmentation
	Extensions: Box-supervised Character Segmentation

	Conclusions

	 Conclusions
	Bibliography

