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Abstract
Wehave studied statisticalmechanics of a gas of vortices in two dimensions.We introduce a new
observable—a condensate fraction ofOnsager vortices—to quantify the emergence of the vortex
condensate. The condensation ofOnsager vortices ismost transparently observed in a single vortex
species system and occurs due to a competition between solid body rotation (see vortex lattice) and
potentialflow (seemultiple quantumvortex state).We propose an experiment to observe the
condensation transition of the vortices in such a single vortex species system.

1. Introduction

Perhaps themost astonishing aspect of turbulence is not the complexity of its dynamics but rather that it feeds
the emergence of ordered structures out of chaos. The ubiquity of large eddies in two-dimensional (2D)fluid
flowswas also noted byOnsagerwho suggested that itmight be possible to obtain a statisticalmechanics
description of hydrodynamic turbulence of 2Dflows based on discrete collections of point-like vortex particles
[1]. In particular, Onsager predicted that turbulent 2D systems could support large scale clustered vortex
structures, later coinedOnsager vortices, and that such structures would correspond to negative absolute
temperature states of the vortex degrees of freedom [2]. Notwithstanding the negative absolute Boltzmann
temperature states were observed in nuclear spin systems [3–5] soon afterOnsager’s theoretical prediction, and
more recently in themotional degrees of freedomof cold atoms confined in optical lattices [6], the negative
temperatureOnsager vortex states in their original context of 2D (super)fluid turbulence have remained elusive,
until recently. Indeed, thefirst experimental observations of negative absolute temperatureOnsager vortex
states in Bose–Einstein condensates have been reported [7, 8]. Themost extreme negative temperature attained
in these experiments was estimated to beT=1.14Tc, whereTc denotes the critical temperature at which the
Onsager vortices first form a condensate.We anticipate that further developmentsmay enable vortex states with
even higher energy to be created and the crossing of the critical temperature to be observed.

Kraichnan developedOnsager’s ideas on 2D turbulence further, conjecturing that a scale invariant inverse
energy cascademechanismof incompressible kinetic energy could dynamically lead to the formation ofOnsager
vortices and even to their condensation and that: ‘The phenomenon is analogous to the Einstein–Bose condensation
of a finite 2D quantum gas’ [9]. In theKraichnanmodel the system scaleOnsager vortex clusters would emerge
due to a termination of the inverse cascade that accumulates energy at ever larger spatial scales. Ultimately, such
a process could potentially lead to the condensation of theOnsager vortices, which correspond to the highest
accessible energy states of the vortex degrees of freedom [9, 10]. In a neutral systemwith Ntot vortices in total, the
condensation ofOnsager vortices occurs at a critical negative temperatureTEBC=−αNtot/4 [11–13], where

k T4s
2

B HHa r k p= = is the critical positive temperature for theHauge–Hemmer pair-collapse transition
[14, 15], which in the case of non-zero vortex core size becomes renormalised to the Berezinskii–Kosterlitz–
Thouless (BKT) critical temperatureTBKT=THH/2 [16–18]. Here kB is the Boltzmann constant, ρs is the
(super)fluid density andκ=h/m is the circulation quantumwith h the Planck’s constant andm the particle
mass. Inspired byKraichnan’s insight [9, 10], we refer to the critical temperature of condensation ofOnsager
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vortices with the acronymEBC,which stands for Einstein–Bose condensation, and in the case of zero-core point
vortices is also known as supercondensation [10].

The recent developments of imaging andmanipulating compressible superfluids have sparked renewed
interest inOnsager’s statistical hydrodynamics theory of turbulence. Experiments employing harmonically
trapped Bose–Einstein condensates of atoms have ranged from studies of dynamics of vortex dipoles [19] or few
vortices [20] to three- [21] and 2D [22–25] quantum turbulence.Moreover, uniform atom traps are becoming
increasingly popular [7, 8, 26–33] andwill be particularly useful for studies of quantum turbulence. This is partly
becausewell defined trapwalls enhance the vortex clustering signal in comparison to harmonically trapped
systems [13, 23, 34, 35]. In the latter case, strong clustering has not been observed although in both casesOnsager
vortices in decaying 2Dquantum turbulence has been predicted to emerge via an evaporative heating
mechanismof vortices [13, 34].

The successes of the recent experimental developments have also spawned novel theoretical investigations
[13, 34–45]. In addition to visual inspection, the presence ofOnsager vortices has been associatedwith indicators
such as the vortex dipolemoment [13, 34], vortex clusteringmeasures [7, 8, 36, 37, 40], or a peak in the power
spectral density of incompressible kinetic energy [8, 13, 38, 46]. However, ameasurable that would quantify the
degree of condensation of the vortices as opposed to their clustering, has been lacking.Herewe use a vortex–
particle duality to define a condensate fraction that enables quantitativemeasurements of condensation of
Onsager vortices in these 2D systems [47].We have implemented a vortex classification algorithmbased on the
prescription by Reeves et al [37], which can be used as a quantitativemeasure of vortex clustering. Together with
the condensate fractionmeasurable introduced here that uniquely identifies the condensate ofOnsager vortices,
these two observables enable acquisition of detailed information on clustering and condensation of vortices.We
find that the condensate fraction exhibits universal behaviour independent of the number of vortices in the
bounded circular system. In contrast to condensation, clustering of vortices is present at all negative
temperatures in the sense that the total number of vortices belonging to vortex clusters of varying size is greater
than zero [45]. Vortex clustering is a precursor to the condensation ofOnsager vortices and is reminiscent of the
quasi-condensation that precedes the superfluid phase transitions in low-dimensional quantum gas systems
[48–51].

2. Vortex–particle duality

It is not possible to localise the position of a real vortex inside an area smaller than the vortex core. Consequently,
any zero-core point vortexmodel with ξ=0 violatesHeisenberg uncertainty principle and fails to correctly
describe the physics of the condensate ofOnsager vortices. It is therefore paramount to introduce a non-
vanishing vortex core size to the point vortexmodel in order to describe physics of the low entropy negative
temperature states withT/TEBC<1.Hence, to avoid the unphysical consequences in the high energy states of
the point vortexmodel, from this point on and unless otherwise stated, wewill replace the point vortices with
hard core vortices. In practice, this can be implemented by constraining theHamiltonian, equation (1), by not
allowing the centres of any two vortices to be located closer than one vortex core diameter from each other.

Wefirst considerNtot singly quantised point-like vortices with a hard core of radius ξ and equal numbers of
clockwise and counter-clockwise circulations confined in a circular disc of radiusR◦, unless stated otherwise.
The pseudo-Hamiltonian describing our system is [13, 52]:
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2 2 2= + and xj and yj are the dimensionless Cartesian coordinates of the jth vortexmeasured in units

of the system radiusR◦ and sj=±1 determines the circulation direction of the jth vortex. Thefirst, single vortex,
logarithmic term is due to the interaction of each vortexwith its own image, the second represents the pairwise
2DCoulomb-like interaction between ith and jth vortex separated by distance rij and the last term, due to the
circular boundary, represents the interaction of system vortices with the images of all other vortices.

The dynamics of the point-like vortices are determined by the equations ofmotion [1]
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Todraw a closer correspondence withHamiltonianmechanics, wemay assign for each vortex a canonical
coordinate qj=R◦ xj andmomentum p m R yj v j0w= - ◦ , wheremv is the vortexmass [53] andω0 is an angular
frequency. Thus the set of vortex coordinates {xj, yj} in the real space aremapped onto points in the phase space
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{qj, pj} spanned by the canonical conjugate variables. In thisHamiltonian description the vortex particlesmove
in one-dimensional (1D) real space tracing out orbits in the 2Dphase space, which is bounded by the circular
wall of radiusR◦. Equation (2) establishes the vortex–particle duality—that a vortex in a 2D fluidmay behave as a
particle in a 1D space.

Motivated by the vortex–particle duality and in contrast to Kraichnan’s conjecture, we anticipate the
condensation ofOnsager vortices to be analogous to the condensation of a finite 1D quantumgas. Interestingly,
in the 2Dfluid picture the vortex condensate corresponds tomaximumkinetic energy states of the fluidwhereas
in the 1Ddual picture the condensate corresponds to zeromomentum state of the 1D vortex particles.

3. Ideal vortex gas approximation

By ignoring the vortex–vortex interactionswe obtain an ideal-gasmodel of vortex particles. AMaclaurin series
expansion of the single vortex term in equation (1)with respect to rj formally yields a 1Dharmonic oscillator
Hamiltonian

H k s r
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energy spectrumwith respect to the canonical case.Within the harmonic approximation, a single vortex v of this
systemwill travel along a periodic phase space orbit q p R t m R t, cos , sinv v v v v v v0w w w= -{ } { ( ) ( )}, with orbital
angular frequencyωv and semi-axisRv.

The Einstein–Brillouin–Keller semiclassical quantisation rule [54]
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wherewe have integrated over one period,T=2π/ωv, of the vortex orbit. The 1Doscillatorymotion has two
classical turning points, k=2, and therefore the quantisation rule, the combination of equations (4) and (5),
yields the energy spectrum E n m Rn v v

1

2 0
1

2 0
2 2w w= + =( ) . This implies aminimum semi-axismin(Rv)=ξ

for the vortex trajectories and yields the zero-point energy E mv0
1

2 0
2 2w x= . In correspondencewith the

Heisenberg uncertainly relation,ΔqΔp ÿ/2, the zero-point energy carries the information that the area of the
phase space is quantised in units of ÿ=mvω0ξ

2. This reflects the stated fact that it is not possible to localise the
position of the vortex inside an area smaller than the vortex core.

4. Interacting vortex gas approximation

The velocityfield induced by the vorticesmediates strong vortex–vortex interactions such that the ideal-vortex
approximation is strictly only valid for one vortex near the centre of the disk.However, the second term in
equation (1)may be approximated as amean-field potential by integrating out the spatial scales smaller than the
intervortex spacing.

A neutral superfluid that locally rotates at an orbital angular frequencyΩwithNv vortices of the same sign
mimics the rotation of a classical fluid by having an areal vortex density
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Hence, themean superfluid velocity is v(r)=Ωr, where r is the distancemeasured from the centre of such a
rotating cluster of vortices with radiusR. In contrast, in a high-winding number vortex withNv circulation
quanta, the superfluid velocity field v r
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which is a combination of solid body rotation for r R*< and potential flow for r R*> , whereR* is the radius of
the vortex cluster. The kinetic energy associatedwith such aflowfieldmay therefore be approximated by a
mean-field interaction
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Thefinal term in theHamiltonian, equation (1), describes the remaining interactionwith image vortices and
yields an energy shift
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Combining equations (3), (9), and (10), we thus arrive at the effective 1D vortex–particleHamiltonian,
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that describes a systemof 1D strongly interacting harmonic oscillators. Itmay beworth pointing out that the two
forms in equation (9) have quite different interpretations. Thefirst line is a long-range interaction of the vortices
in 2D,whereas the last line is a strong contact interaction between 1Dvortex particles with a coupling strength
that is runningwith the energy scale set by the radiusR* of the cluster. In the Tonks–Girardeau-like limit of

R 0* the effective coupling constant g ln R

R1 *
µ  ¥( )◦ and equation (11) reduces to a semi-classical version

of the Lieb–Linigermodel [55].
Figure 1 shows the independent contributions of the three terms in theHamiltonian, equation (1), for a

systemof 100 like-signed vortices as functions of reduced temperature. The details of this calculation are
described in section 8. For comparison, the energy contributions due to the harmonic oscillator andmean-field
approximations, equations (3) and (9), respectively, are shown by dashed lines. The harmonic oscillator
approximation, equation (3), is better at lower reduced temperatures because the vortices clump close to the
centre of the disk.However, since themean-field term, equation (9), is proportional toN2

v, it is overwhelmingly
larger than the single vortex terms, which are proportional toNv. These results establish that themean-field
Hamiltonian equation (11) is a reasonable approximation for equation (1) in this system.

Figure 1.The three energy terms (a)–(c) of equation (1), solid lines, and the respective approximations equations (3) and (9), dashed
lines, as functions of reduced temperature forNv=100 single species, s=+1, vortices. The large statisticalfluctuations evident in (c)
arise due to stray vortices that escape the central vortex cluster and approach their image vortices closer to the boundaries of the
system.However, themagnitude of these fluctuations is insignificant in comparison to the energy scale in (b).
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5. Fraction of condensed vortices

On the basis of the vortex–particle duality, we anticipate condensation ofOnsager vortices when the phase space
density nvλv1.Here nv is the 1Dmean vortex density and

h
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is the thermal vortex de-Broglie wavelength, which in the vortex dual is inversely proportional to the size of an
average temperature-dependent vortex orbit in the phase space. ForN* vortices confinedwithin length R2 * the
condensation criterion becomes N R R 1v

2* *p x á ñ ~ , which shows that condensation is expectedwhen the

vortices concentrate into a phase-space cluster with size of the order of N*x .
These considerations lead us to define the fraction of condensed vortices as the ratio,N0/N, ofN0 vortices of

a given sign in a singlemany-vortex cluster to the total number of vorticesN of that same sign in the system. The
highest density of vortices is foundwithin clusters and by denoting N* to be the number of vortices in the largest
cluster, whichwill be thefirst to condense, and A N N mv

0
0

2* * w x= = and A N m rv 0 nn
2* * w= á ñ to be,
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Thus the condensate fraction is the product of the largest cluster fraction N N* and the square of the ratio of
single vortex core radius ξ to themean radius rnná ñof the effective area occupied by a vortexwithin the cluster,
where rnn is one half of the distance between the centres of nearest neighbour vortices in such a cluster. Although
for single vortex species systems N N 1* = , in general, the system contains both vortices and antivortices and
tomeasure N N* < in such systems, clusters of like-signed vorticesmust first be identified by a vortex
classification algorithm.

6. Vortex classification algorithm

To quantitatively study clustering and condensation of vortices we have implemented a vortex classification
algorithmbased on the prescription by Reeves et al [37].We assign each vortex in a given configuration ofN
vortices a unique and arbitrarily chosen label from the set v v v, , , N1 2 ¼{ }. The vortex configuration is then
described by a corresponding set of positions z z z, , , N1 2 ¼{ } (in 2D complex co-ordinates, where zj=xj+iyj)
and circulation signs s s s, , , N1 2 ¼{ }, which here take the value sj=±1, denoting clockwise or anti-clockwise
circulation. The algorithmdoes not prioritise any vortex and yields the same classification outcome regardless of
the choice of vortex labelling. Figure 2 shows an example configuration of twelve judiciously numbered point
vortices. The vortex classification algorithm is outlined below.

6.1. Step 1: Find dipole and cluster candidates
For each vortex vj, we locate the nearest opposite sign (NOS) vortex and label it as (vNOS)j (i.e. the nearest vortex
which satisfies sj (sNOS)j<0).We define the distance to this vortex to be R z zj j jNOS NOSº -( ) ∣ ( ) ∣.We then
check to see if any other vortices (which are same-sign, by necessity) fall within the disk of radiusRNOS centred at
vortex vj.

(i) Dipoles:If not, then v jNOS( ) is labelled as a dipole candidate for vj (e.g. in figure 2(a), v2 is labelled as a dipole
candidate for v1).

(ii) Clusters:If there are nj�1 vortices which are nearer to vj than v jNOS( ) , then these are labelled as cluster
candidates for vj (e.g. vortex v10 infigure 2(a), for which v9, v11 and v12 are cluster candidates).

Each vortex vjnowhas a corresponding set of candidate vortex labels, whichwedenote by lj . For case (i), lj consists
of a singleopposite sign vortex,which is a dipole candidate. For case (ii), lj is a list ofnj same-sign cluster candidates.

Table 1 belowdisplays the lists lj that are constructed in Step 1 of the algorithmwhen it is applied to the
configuration shown infigure 2.

6.2. Step 2: Findmutually agreeing candidates
In the second step of the algorithm, the lists lj are checked sequentially formutualmembers. This process is
shown schematically infigure 3 for the example configuration shown infigure 2 and table 1.
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(i) Dipoles:If a list lj consists of a single dipole candidate vk, then the list lk is checked to see if it contains (only)
the vortex vj. If so, then the two vortices aremutual nearest neighbours of opposite sign, and are classified as
a dipole (e.g. vortices v1 and v2 infigure 3). If not, then the vortices are left unclassified (e.g. vortices v6 and v5
infigure 3).

(ii) Clusters:If a list lj consists of a set of cluster candidate vortices vk{ }, then the lists lk{ }are all checked to see if
they contain the vortex vj. For each list lk that does contain vj, the two vortices vj and vk are labelled as
belonging to the same cluster (e.g. infigure 3, vortex v4 ‘checks’ both l3 and l5 to see if it is amember of
either. It is found to be amember of both, so all three vortices are placed in a single cluster). For each list lk

that does not contain vj, neither vortex label is updated (e.g. vortex v7 and v10 infigure 3). Note that not all
members of a single cluster have to bemutual candidates of one another. In the example shown infigure 3,

Figure 2.A configuration of twelve point vortices, (a) before and (b) after the classification algorithmhas been applied. Vortices are
drawn in blue, while antivortices are drawn in green. In panel (a), dashed circles are drawn centred on v1 and v10, denoting the
respective distances (RNOS)j to the nearest opposite signed vortex. Because v2 is the closest vortex to v1 and is of opposite sign, v2 is
labelled as a dipole candidate for v1. Vortex v10, on the other hand, is closer to v9, v11 and v12 than it is to v7; hence, these three vortices
become cluster candidates for v10. The lines joining clustered vortices in (b) are drawnusing aminimum spanning tree algorithm,
which is applied once all vortices have been labelled into the sets of clusters, dipoles or free vortices.

Table 1.Collation of lj lists for the configuration shown in figure 2 after dipole and cluster candidates have been
identified. Each row corresponds to a particular vortex vj (leftmost column) and the list of all other vortices,
ordered from left to right in increasing distance from vj. Vortices/antivortices vk are denotedwith blue/green font
if z z Rj k jNOS-∣ ∣ ( ) . All vortices for which z z Rj k jNOS- >∣ ∣ ( ) are coloured in grey, as these cannot be dipole or
cluster candidates. The lists lj consist of either a single opposite sign vortex (e.g. row 1, corresponding to vortex v1,
which has l v1 2= { }), or a set of�1 same-sign vortices (e.g. row 4, corresponding to vortex v4, for
which l v v,4 3 5= { }).
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v9 is only amutual neighbourwith v10, but is still placed in the same cluster as v11 and v12. As the algorithm
proceeds, vorticesmay be assigned to existing clusters, or previously classified clustersmay becomemerged.

Any vortices left unclassified after this process are classified as free vortices, as they have nomutual dipole or
cluster neighbours (e.g. vortex v6 infigure 3).

Infigure 3(b), any two vortices that are connected by a two-directional link are part of the same cluster or
dipole, while any vortex that has no two-directional links is a free vortex.

To reduce computation, the checkingofmutual candidates canbe restricted such that it is only initiated for vj and
vk if j>k. Alternatively, once apair of vortices has been checked, then vj couldbe removed from lk andvice versa.

7. Two vortex species results

To study the thermodynamics of the condensation ofOnsager vortices, we have performedMonte Carlo
calculations using aMetropolis algorithm tofind the equilibrium vortex configurations as functions of
temperature for systemswith 10, 20, 50, 100, 200, 300 and 400 vortices [12, 13]. TheMonte Carlo calculations,
and the conclusions drawn from the results, are obtained using canonical ensemblewith hard core vortex core
regularisation. A hard core diameter of 2ξ=0.001R◦was imposed on each vortex in the results presented. The
Monte Carlo samplings were performed for temperature in the rangeT , 0Î -¥ -( )with 106microstates at

Figure 3.The process of identifyingmutual neighbours, shown equivalently as (a) a table of candidate lists lj taken from table 1, and
(b)drawn directly onto the example vortex configuration fromfigure 2. An arrow is drawn from each vortex vj to all themembers of its
candidate list lj . Onlywhen arrows point in both directions between vj and vk are they defined to bemutual neighbours. All arrows that
are one-directional have been crossed out in both panels. In panel (b), shaded ovals are drawn around clusters (blue/green for
positive/negative), dipoles (red) and free vortices (black).

Figure 4.Representative neutral vortex configurations (a)–(c) at respective temperaturesT/TEBC=106, 1.022, and 0.778, with
TEBC=−0.25αNtot andNtot=200. Vortices in vortex and antivortex clusters are connected by blue and green lines, respectively,
vortex and an antivortex in vortex dipoles are connected by red lines and free vortices aremarked by isolated filled circles. The
streamlines illustrate the velocity field generated by the collection of vortices. The red vertical line indicates the location of the
condensation transition pointTEBC between (b) and (c).
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each temperature after initial burn in of 106 steps. Out of the 106microstates, 1000 uniformly spaced
configurationswere recorded and used for vortex classification analysis.

Figure 4 shows typical vortex configurations of disordered and strongly clusteredneutral vortex states of
Ntot=200 vortices obtained from theMonteCarlo calculations at different temperatures. The same sign clusters,
dipoles and free vortices are identified using the vortex classification algorithmand the velocityfield stream lines
are included to visualise the superflowaround the vortices. Figure 4(a) shows a vortex configuration at a high
negative temperatureT=106 TEBC revealing a fairly disordered configurationof vorticeswith an abundance of
vortexdipoles and small clusters. Figure 4(b) shows a vortex configuration atT=1.022 TEBC close to the critical
temperature. Infigure 4(b)nearly all the vortices have already clustered into two largeOnsager vortices although
the condensate fraction remains zero. Figure 4(c) showsOnsager vortices at temperatureT=0.778 TEBCwhere
the systemhas a condensate fraction ofN0/N≈0.1. The prominent dipolar shape of the streamlines in (b) and (c)
is a byproduct that emerges enroute to condensationof theOnsager vortices and is observable before the critical
pointT=TEBC, indicated by the red vertical line, see also supplementalfigure S1(b)of [13].

Figure 5 shows (a) the largest cluster fraction, (b) the condensate fraction, and (c) themean radius of the
largest cluster in the system as functions of temperature in units of the critical temperatureTEBC=−0.25αNtot.
The largest cluster fraction figure 5(a) is strongly dependent on the total number of vortices in the system. In
contrast, the condensate fraction, shown infigure 5(b), remains zero at all temperatures T TEBC>∣ ∣ ∣ ∣and
thereafter increases as the absolute negative zero is approached. Figure 5(c) shows themean radii of the largest
vortex clusters as functions of temperature. As the critical temperature is approached from the disordered side,
the largest cluster tends to grow in size as evermore vortices are joining the cluster. In the condensed phase the
cluster rapidly shrinks as the phase-space density, and hence the condensate fraction, increases. Importantly, the
condensate fraction shows universality in the sense that it is consistent with data collapsing onto a single curve,
indicating the condensate fraction becoming a vortex number independent quantity in the large vortex number
limit.

With the ability to quantify the condensation ofOnsager vortices, we have revisited the dynamicalmean-
field simulations of [34]. Figure 6 shows a typical result revealing that in this neutral vortex system, the largest
cluster fraction and vortex dipolemoment are practically equivalent observables. However, although the system
is continually evaporatively heated, the condensate fraction remains zero for all times. The initial vortex number
in this simulation is 100 and it decays to the final value of 12. Comparing the largest cluster fraction infigure 6
with 5(a) shows that this system is initially at temperature T TEBC∣ ∣ ∣ ∣and evaporatively heats reaching afinal
temperature of T TEBC∣ ∣ ∣ ∣. Quantitatively, the temperature of the vortex system can be found using the vortex
thermometry based on the fraction of clustered vortices in the system [45]. However, once the systembecomes
fully clustered, the evaporative heatingmechanism switches off [13] and the condensation is unable to proceed.

Figure 5. Fraction of vortices in the largest cluster (a), the condensate fraction, equation (13), (b) and themean cluster radius
R r4Std j* = ( ), where rj is the vector of positions of the vortices in the largest cluster (c) as functions of scaled temperature. Data is
shown for systemswith different vortex numbers as indicated in the legend. The function 1−T/TEBC, whereTEBC=−0.25αNtot, is
shown as a solid line in (b) for T TEBC<∣ ∣ ∣ ∣and the vertical dashed linemarks the critical point. All quantities are ensemble averaged.
The few percent standard statistical uncertainty in the data, 1 1000 , yields a reasonable estimate outside thefluctuation region
despite being a lower bound due to the inherent correlations of theMarkov chainMonteCarlomethod employed.
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8.One vortex species results

Clustering of vortices and their condensation are two separate phenomena. Vortex clusters exist at all negative
temperatures [45], where as non-zero condensate fraction only exists in the temperature range 0>T>TEBC.
To demonstrate thismore clearly, we have performedMonte Carlo calculations for a charge-polarised,

s Ni
N

i v1
vå == , case where only one species of vortices is present in the system. Figures 7(a)–(c) shows the vortex

configurations at three different temperatures. These vortex configurations illustrate the fact that the vortex
positions suddenly collapse when the radius of the hostOnsager vortex cluster drops below a critical value,Rc.
The transition illustrated infigure 4 corresponds to independent condensation of two-species of vortices at the
same temperature due to the equal numbers of vortices and antivortices. In vortex number imbalanced systems
there are two, vortex number dependent, critical temperaturesTmaj=−αNmaj/2 andTmin≈−αNmin/2.

The critical temperature for the condensation of anOnsager vortex in a single vortex species systemmay be
predicted by a similar free energy argument as for two vortex species systems [11, 13]. TheHelmholtz free
energy, F=E−TS, of a vortex configurationwhere allNv vortices are concentrated inside a circular region of
radius R* is
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where the energy E is that of amultiply quantised vortex of core radiusR* and the entropy S is obtained as the
logarithmof a statistical weight of the configuration. A change in the sign of the free energy signifies that the
probability p eF

F k TBµ - of observing such a configuration becomes exceedingly likely and predicts a critical
temperature

Figure 6.Dipolemoment of the vortex configuration (solid blue) expressed in units of d0=κR◦N, largest cluster fraction (solid
orange) and condensate fraction (dashed purple) as functions of time calculated from adynamicalmean-field simulation. The unit of
time is t0=ÿ/μGPE, whereμGPE is the chemical potential of theGross–Pitaevskii equation. The initial vortex number is 100 and as the
system evaporatively heats up, the vortex number decays to a value of 12 at the end of the simulation, see [34] for details.

Figure 7.Representative charge-polarised vortex configurations (a)–(c) at respective temperaturesT/TEBC=2.000, 1.031, and 0.769,
withTEBC=−0.5αNv andNv=100. The streamlines illustrate the velocity field generated by the collection of vortices. The red
vertical line indicates the location of the condensation transition point between (b) and (c).
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which is the same for a single species systemwithNv vortices as it is for a two-species systemwith the same
number,Nv=Ntot/2 , of vortices of one species.

In the general imbalanced case withN+ vortices andN−antivortices with N N N N Ntot maj min= + = ++ -
andNmaj>Nmin there are two critical temperatures corresponding to separate condensation of each of the two
vortex species.When the temperature approaches negative zero, themajority species condenses first at
Tmaj=−αNmaj/2, followed by the condensation of theminority species atTmin≈−αNmin/2, where the latter
is shifted slightly toward negative zero due to the interactionwith the condensate of themajority species.

The condensation ofOnsager vorticesmay be viewed from the point of view of competition between solid
body rotationwithin the core of the vortex cluster and potential flowoutside the cluster, see equations (7) and
(8). Balancing the kinetic energy contributions of these two velocity fields in themean-field interaction energy
term in equation (11) predicts a critical cluster radius

R R Re 0.778800 , 16c
1 4= »- ( )◦ ◦

such that forT/TEBC>1 thewhole systemprefers tomimic solid body rotation of a classical fluid, figures 7(a)
and (b), whereas forT/TEBC<1 the systemprefers tomimic the velocity field of a quantised superfluid vortex,
figure 7(c).

Figure 8 shows the condensate fractionmeasured using equation (13). ForT/TEBC>1, vortices are found
scattered everywhere within the circular boundary and the condensate fraction is strictly zero. Near the
transition, the vortices begin to clump and at critical radiusRc the vortex cluster suddenly begins to collapse.
Accompaniedwith the shrinking of the vortex cluster, the condensate fraction grows almost linearly with the
reduced temperature.

According to equation (14) the specific heat at the transition
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where in the last stepwe have assumed linear dependence of the cluster radius on the temperature in the vicinity
of the transition, as suggested byfigure 8.

Figure 9(a) shows the phase space density, nv vlá ñof the vortices as functions of position and reduced
temperature. The 1D vortex–particle density n(x) is obtained bymodelling each vortex–particle by a normalised
Gaussianwave packet of waistλv. The frames (b)–(d) show the 1Ddensity n(x) of the vortex gas for three
different temperaturesT/TEBC=2,1.031, and 0.769. ForT/TEBC>1 the vortex density is spread over the
whole systemwhile below the transition the vortex density becomes localised both in real space and in vortex
momentum space.

On approaching the condensation transition from the infinite temperature side the asymptotic formof the
2D real space vortex density is predicted to be [56, 57]
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Figure 8.Condensate fraction ofNv=100 single species, s=+1, vortices as a function of temperature (right axis, solid line) and the
radius,R*, of the vortex cluster, (left axis, dashed line), as a function of reduced temperature.
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forT/TEBC>1, with normalisation

r r r N2 d . 19
R

v v
0
òp r =( ) ( )

◦

Figures 9(e)–(g) shows the least squares fits of the function (18) to the radial 2D real space vortex density
measured from theMonte Carlo calculations. Using the temperatureT as the solefitting parameter the best
fitting temperatures aremeasured to beTfit/TEBC=2.004, 1.033, and (1.005) and the resulting density profiles
predicted by equation (18) are shown as orange curves. The parentheses are used here to denote that
equation (18) is used in a regime outside its validity.While the theory prediction, equation (18), for the radial 2D
vortex densities is in excellent agreement with theMonte Carlo data shown infigures 9(e) and (f), the theory
curve infigure 9(g) is clearly unphysical because the prediction of equation (18) diverges atT=TEBC and cannot
be used formodelling the vortex density in the condensed phase forwhichT/TEBC<1. This is evident in
figure 9(g)where the best fitting function hasTfit/TEBC=(1.005), as opposed to the actual temperature
T/TEBC=0.769, of the state.

Figure 9.Phase-space density (a) as functions of position and reduced temperature, 1D vortex–particle densities (b)–(d) as functions
of position corresponding to the representative charge-polarised vortex configurations at respective temperatures
T/TEBC=2.000,1.031, and 0.769, forNv=100withTEBC=−0.5αNv, and (e)–(g) the 2Ddensity of the vortices in real space as
functions of radial distance from the centre of the disc at temperatures corresponding to (b)–(d). The orange solid lines in (e)–(g) are
least squaresfits to theoretical vortex density function in equation (18)withTfit/TEBC=2.004, 1.033, and (1.005).
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Figure 10 shows the 2D vortex density as a function of radial position forT/TEBC=0.244. The condensed
vortices within the cluster seem to form afluid like incompressible corewith a constant vortex density. The
number of vortices within the shaded region corresponds to the condensate and is equal toN0.

9.Discussion

The physics of the vortex system in the vicinity of the critical negative absolute temperature
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whereωk is the kelvon frequency andm0 is the vortexmass per unit length [53], has been discussed extensively in
the recent literature [13, 34–43, 45, 58] yet the nature of the condensate has remained unclear. This is partly
because of the divergent behaviour of the zero-core point vortexmodel that becomes invalid at the critical point
of condensation and is unable to yield predictions for the condensed phase. The situation is the same as in the
positive temperature sidewhere theHauge–Hemmer transition to pair-collapsed phase in the zero-core point
vortexmodel is divergent and the structure of the vortex core, which is always present in any real physical system,
must be accounted for. Including the effects of non-zero vortex cores in the positive temperature systems allows
correct treatment of the BKTphase transitionwhose critical temperature is shifted by a factor of 2with respect to
theHauge–Hemmer transition that occurs atTHH=α [15]. Similarly, any self-consistent treatment of the
negative absolute temperatureOnsager vortex condensatemust include the effects of non-zero size of the vortex
core. For the sake of clarity, we discuss the one and two vortex species cases separately below.

9.1.One vortex species case
Considering the single vortex species system shows that the condensation of theOnsager vortices occurs when
the vortex cores within a cluster of vortices begin tomerge into a single vortex structure withmultiple circulation
quanta, signifying the emergence of large degeneracy in the quasiparticle degrees of freedomof the vortices.

We briefly recall the underpinnings of the quantumHall effect of 2D electron gas in a strong external
magnetic field corresponding to extremely large kinetic energy per electron. This 2Dproblem is often
theoreticallymapped onto a dual 1Dharmonic oscillator problem,which reveals that the topological phase
transitions to the integer quantumHall states occurwhen the electrons condense in the highly degenerate lowest
Landau level. Although the electronsmove in 2D space, the topological phase transitions are quantified in terms
of the eigenstates of a 1Dharmonic oscillator.

Similar physics is pertinent to theOnsager vortex condensation transition. It is therefore useful to consider
the closest knownphysical realisation of theOnsager’s point vortexmodel, which is a Bose–Einstein condensate
with quantised vortices nucleated in themacroscopic condensate wavefunction. A trial wave function for such a
systemmay be expressed as

r fr e , 21
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Figure 10.Two-dimensional vortex density in real space as a function of radial distancemeasured from the centre-of-mass of the
vortex cluster. The temperature, condensate fraction and condensate radius of this state are, respectively,T/TEBC=0.244,
N0/N=0.773, andRcond/R◦=0.004. The condensate corresponds to the shaded area withflat, incompressible, density of the vortex
fluid.
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where r x x y yj j j
2 2= - + -( ) ( ) and f is the smooth condensate particle density in the absence of the

vortices, x x y yarg ij j jq = - + -[( ) ( )]are the additive phase functionswith singularities at the vortex
locations {xj, yj}, and the (soft) vortex core function
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of the state (21)defines the superfluid velocity field vs, the incompressible component of which is remarkably
well approximated by the velocity field ofOnsager’s point vortexmodel [59].

The elementary excitation spectrumof a 2D vortex configuration is obtained by solving the Bogoliubov–de
Gennes (BdG) eigenvalue problem [60]. TheNv phase singularities due to theNv quantised vortices in the system
yieldNv low energy quasiparticle eigenstates [61] that satisfy the bosonic commutation relations

, ; , , 0, 24q p q p q p q p,h h d h h h h= = =[ ] [ ] [ ] ( )† † †

where ηq
†and ηq are the usual Bogoliubov quasiparticle creation and annihilation operators. In accordance with

the quasiparticle picture of superfluids, themacroscopicmultiply connectedwave function, equation (21), may
be expressed in terms of the countably infinite set of such quasiparticle states [60]. These Bogoliubov
quasiparticles are bosons and this property is inherited by the host vortices whose circulation is quantised.

For a single vortex withNv circulation quanta the condensate wave functionmay be expressed as
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is the structure function of the vortex core withNv circulation quanta. The BdGquasiparticle excitation
spectrumof such a state has only one vortex eigenmode, corresponding to the one phase singularity, with orbital
angularmomentumquantumnumber equal toℓ=−Nv [62]. This high-winding number bosonic quasiparticle
mode is a BECofNvBogoliubov quasiparticles associatedwith theNv vortex circulation quanta, in essence
forming a ‘vortex BEC in a BECof atoms’. Such quasiparticle condensates are not unusual. For example,
magnons (spin-waves) have previously been observed to formBose–Einstein condensates of their ownwithin
their host BECs [63–65].

The circulation

v d 27
C

G = ∮ ℓ· ( )

of a classical point vortexmeasured along a pathC that encloses the vortex is invariant with respect to continuous
deformations of the pathC precisely as for a quantised vortex in a BECof atoms. In a BECof atoms the vortex
cores trap the bosonic quasiparticles (kelvons) andwhen these localised bosonicmodes overlap theymay form a
condensate. The vortex density of the point-like vortex cores thus effectivelymeasures the density of states of the
Bogoliubov quasiparticles attached to the vortices and the overlapping of the vortex cores is tantamount to the
condensation of theNvBdGquasiparticles associatedwith the vortex degrees of freedom. It is in this sense that
the classical point vortexHamiltonian describes the bosonic degrees of freedomof the quantised vortices and
their quantum statistical condensation atTEBC. Indeed, equation (14) applies equally well for both classical point
vortices and for quantised vortices in a BEC.

The vortex–particle duality allows a 1D treatment of the 2D vortex gas andmotivates the definition of the
vortex condensate fraction as
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The condensate fraction is equal to the area ratio of theminimumpossible phase-space area occupied by theNv

vortices to the area actually occupied by them.A high vortex condensate fraction is equivalent to strong overlap
between the BdGquasiparticlemodes of the quantised vortices. The point vortexmodel descriptionworkswell
in this extreme states of vortices because in such situations kinetic energy of the BECof atoms is overwhelmingly
larger than the usualmean-field atom–atom interaction.

It is interesting to recall the structure of a simple vortex in a superfluid or a superconductor. Outside the
vortex core the superfluid or superconducting order parameter is at its bulk valuewhereas in the vortex core
region the superfluid order parameter vanishes and the original symmetry of the fullHamiltonian is locally
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restored. A local observer spatially traversing across a vortex core in such systemsmeasures superfluid-normal-
superfluid phase changes along their path.

For a two vortex problem, the change in the phase space topology of the point vortexmodel has been
quantified by identification of the phase-space wall that divides the two regions of phase spacewhere the vortex
trajectories are either overlapping or non-overlapping [66].We conjecture that similar phase-space dividing
walls are associatedwith any numberNv of vortices and that associatedwith the condensation ofOnsager
vortices amultiply connected phase-space topology transforms to a single connected region. In this sense, the
condensation ofOnsager vortices could be viewed as a topological phase transition.

9.2. Two vortex species case
In the neutral two vortex species case, theOnsager vortex condensation transition described above for single
vortex species systems occurs in both of the vortex types separately, and simultaneously. In the case of vortex-
imbalanced system themajority vortex species condenses first at

T N 2, 29maj maja= - ( )

followed by the condensation of theminority species at

T N 2, 30min mina» - ( )

whereTmin shifted slightly toward negative zero due to the interactionwith the condensate of themajority
species.

Before the condensation of theOnsager vortices proceeds, the vortices become spatially phase separated as
shown e.g. infigure 4 and in the supplemental figure S1(b) of [13]. Such phase separation is one step in the
sequence of phase space compactification leading to the EBC transition.Hence, the apparent symmetry breaking
associatedwith the spatial separation of the centres ofmass of the two vortex species is a by product that emerges
enroute to the Einstein–Bose condensation of theOnsager vortices. The critical temperature is the same for a
single species systemwithNv vortices as it is for a two-species systemwith the same number,Nv=Ntot/2 , of
vortices of one species, and the condensation transition occurs in both systems. In contrast, the phase separation
is specific to the two-species case.

10. Conclusions

In conclusion, we have employed a vortex–particle duality to establish a correspondence between vortices in a
2Dfluid and a 1D gas of vortex particles. Using thismapping, we have provided a quantitativemeasure for the
condensation ofOnsager vortices—a vortex condensate fraction. The vortex condensate forms due to the
overlap of the vortex cores. Ultimately, deep in the condensed phase a phase-spaceWigner crystallisation of
vortices with hard cores takes place [13]while soft core vortices should yieldmultiple quantum vortex state [62].
The situation bears resemblance to rapidly rotating neutral superfluids that are predicted to undergo phase
changes when the vortex cores begin to significantly overlap and thefilling factor, or the number of fluid
particles per vortex, approaches unity [67, 68]. One interesting future directionwould indeed be to consider a
quantised formof the 1D vortexHamiltonian and to study the potentially emerging fractional quantumHall-
like states in theOnsager vortex condensates. Another directionwould be to study connections between the 1D
vortex particle theory and other 1D systems [55, 69, 70].

Thefirst observations of negative absolute temperatures andOnsager vortices in neutral vortex gas, where
absolute negative temperature states are readily associatedwith the emergence of conspicuous vortex clusters,
has recently been reported in two landmark experiments [7, 8]. Themost extreme negative temperature states
realised so farwere estimated to correspond to a vortex temperature ofT=1.14TEBC and a condensate fraction
N0/N≈18/572 [7]. Since the largest cluster in these experiments had on average 9 vortices, and if theminimum
size of a condensate should be 2 vortices, the critical temperatureTEBC in such a systemwould, due to afinite size
effect, correspond to a condensate fraction of 2/9. Thismeans that to observe the condensation ofOnsager
vortices, even higher vortex energy states are required.

It seems that themost suitable system to study the critical physics of Einstein–Bose condensation ofOnsager
vortices is a single species vortex system.We therefore propose an experiment to observe condensates ofOnsager
vortices using a BECor superfluid Fermi gas of atoms by creating a giant vortexwithmultiple circulation quanta
using, e.g., topological phase imprinting [71] or high-winding number Laguerre–Gauss laser beams [72], to
imprint amultiply quantised,Nv?2, quantumvortex into a superfluid in a preferably uniform trap [7, 8,
26–33]. Subsequentlymonitoring the slow decay of the state intoNv singly quantised vortices, evolving from
configurations akin tofigure 7(c) to those shown in (b), will enable quantitative observation of crossing the
critical temperatureTEBC. The vortex decaymay be initiated by dynamical instabilities [73–75]with the
subsequent quantum turbulent ergodic dynamics allowing the vortices to equilibrate to awell defined vortex
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temperature [45]. Hence, starting from a 100%EBC, the vortices are anticipated to slowly evaporate from the
condensate, ultimately leaving only a quantum turbulent thermal cloud of single quantum vortices in the
system. An additional benefit of this approach is that it does not require detection of the vortex circulation signs
[8, 25, 76]. Directmeasurement of the vortex positions and their core sizes enables directmeasurement of the
condensate fractionN0/N, equation (28), in the condensed phase forT/TEBC<1. Equation (18) enables
explicit and accuratemeasurement of the vortex temperature forT/TEBC>1, as shown infigures 9(e) and (f).
In combination, these twomeasurements will enable direct and quantitative experimental observation of the
condensation transition of theOnsager vortices.
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