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Abstract

We have studied statistical mechanics of a gas of vortices in two dimensions. We introduce a new
observable—a condensate fraction of Onsager vortices—to quantify the emergence of the vortex
condensate. The condensation of Onsager vortices is most transparently observed in a single vortex
species system and occurs due to a competition between solid body rotation (see vortex lattice) and
potential flow (see multiple quantum vortex state). We propose an experiment to observe the
condensation transition of the vortices in such a single vortex species system.

1. Introduction

Perhaps the most astonishing aspect of turbulence is not the complexity of its dynamics but rather that it feeds
the emergence of ordered structures out of chaos. The ubiquity of large eddies in two-dimensional (2D) fluid
flows was also noted by Onsager who suggested that it might be possible to obtain a statistical mechanics
description of hydrodynamic turbulence of 2D flows based on discrete collections of point-like vortex particles
[1]. In particular, Onsager predicted that turbulent 2D systems could support large scale clustered vortex
structures, later coined Onsager vortices, and that such structures would correspond to negative absolute
temperature states of the vortex degrees of freedom [2]. Notwithstanding the negative absolute Boltzmann
temperature states were observed in nuclear spin systems [3—5] soon after Onsager’s theoretical prediction, and
more recently in the motional degrees of freedom of cold atoms confined in optical lattices [6], the negative
temperature Onsager vortex states in their original context of 2D (super)fluid turbulence have remained elusive,
until recently. Indeed, the first experimental observations of negative absolute temperature Onsager vortex
states in Bose—Einstein condensates have been reported [7, 8]. The most extreme negative temperature attained
in these experiments was estimated to be T = 1.14 T, where T, denotes the critical temperature at which the
Onsager vortices first form a condensate. We anticipate that further developments may enable vortex states with
even higher energy to be created and the crossing of the critical temperature to be observed.

Kraichnan developed Onsager’s ideas on 2D turbulence further, conjecturing that a scale invariant inverse
energy cascade mechanism of incompressible kinetic energy could dynamically lead to the formation of Onsager
vortices and even to their condensation and that: “The phenomenon is analogous to the Einstein—Bose condensation
of a finite 2D quantum gas’[9]. In the Kraichnan model the system scale Onsager vortex clusters would emerge
due to a termination of the inverse cascade that accumulates energy at ever larger spatial scales. Ultimately, such
aprocess could potentially lead to the condensation of the Onsager vortices, which correspond to the highest
accessible energy states of the vortex degrees of freedom [9, 10]. In a neutral system with N, vortices in total, the
condensation of Onsager vortices occurs at a critical negative temperature Tggc = —Nyoi/4 [11-13], where
a = p,k?/4mky = Typ is the critical positive temperature for the Hauge—Hemmer pair-collapse transition
[14, 15], which in the case of non-zero vortex core size becomes renormalised to the Berezinskii—Kosterlitz—
Thouless (BKT) critical temperature Tgxr = Typ/2 [16—18]. Here kg is the Boltzmann constant, p; is the
(super)fluid density and k = h/m is the circulation quantum with % the Planck’s constant and m the particle
mass. Inspired by Kraichnan’s insight [9, 10], we refer to the critical temperature of condensation of Onsager
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vortices with the acronym EBC, which stands for Einstein—-Bose condensation, and in the case of zero-core point
vortices is also known as supercondensation [10].

The recent developments of imaging and manipulating compressible superfluids have sparked renewed
interest in Onsager’s statistical hydrodynamics theory of turbulence. Experiments employing harmonically
trapped Bose—Einstein condensates of atoms have ranged from studies of dynamics of vortex dipoles [19] or few
vortices [20] to three- [21] and 2D [22-25] quantum turbulence. Moreover, uniform atom traps are becoming
increasingly popular [7, 8, 26—33] and will be particularly useful for studies of quantum turbulence. This is partly
because well defined trap walls enhance the vortex clustering signal in comparison to harmonically trapped
systems [13, 23, 34, 35]. In the latter case, strong clustering has not been observed although in both cases Onsager
vortices in decaying 2D quantum turbulence has been predicted to emerge via an evaporative heating
mechanism of vortices [13, 34].

The successes of the recent experimental developments have also spawned novel theoretical investigations
[13, 34-45]. In addition to visual inspection, the presence of Onsager vortices has been associated with indicators
such as the vortex dipole moment [ 13, 34], vortex clustering measures [7, 8, 36, 37, 40], or a peak in the power
spectral density of incompressible kinetic energy [8, 13, 38, 46]. However, a measurable that would quantify the
degree of condensation of the vortices as opposed to their clustering, has been lacking. Here we use a vortex—
particle duality to define a condensate fraction that enables quantitative measurements of condensation of
Onsager vortices in these 2D systems [47]. We have implemented a vortex classification algorithm based on the
prescription by Reeves et al [37], which can be used as a quantitative measure of vortex clustering. Together with
the condensate fraction measurable introduced here that uniquely identifies the condensate of Onsager vortices,
these two observables enable acquisition of detailed information on clustering and condensation of vortices. We
find that the condensate fraction exhibits universal behaviour independent of the number of vortices in the
bounded circular system. In contrast to condensation, clustering of vortices is present at all negative
temperatures in the sense that the total number of vortices belonging to vortex clusters of varying size is greater
than zero [45]. Vortex clustering is a precursor to the condensation of Onsager vortices and is reminiscent of the
quasi-condensation that precedes the superfluid phase transitions in low-dimensional quantum gas systems
[48-51].

2. Vortex—particle duality

Itis not possible to localise the position of a real vortex inside an area smaller than the vortex core. Consequently,
any zero-core point vortex model with £ = 0 violates Heisenberg uncertainty principle and fails to correctly
describe the physics of the condensate of Onsager vortices. It is therefore paramount to introduce a non-
vanishing vortex core size to the point vortex model in order to describe physics of the low entropy negative
temperature states with T/ Tgpc < 1. Hence, to avoid the unphysical consequences in the high energy states of
the point vortex model, from this point on and unless otherwise stated, we will replace the point vortices with
hard core vortices. In practice, this can be implemented by constraining the Hamiltonian, equation (1), by not
allowing the centres of any two vortices to be located closer than one vortex core diameter from each other.

We first consider N, singly quantised point-like vortices with a hard core of radius £ and equal numbers of
clockwise and counter-clockwise circulations confined in a circular disc of radius R.,, unless stated otherwise.
The pseudo-Hamiltonian describing our system is [13, 52]:

2 2 2
H = akg Z siln(l — rj) — akg Z sisj In(rj)
j i<j
+ akg Y sisjIn(1 — 2x;x; — 2yy; + i), (1)
i<j
where rjz = sz + yjz and xjand y;are the dimensionless Cartesian coordinates of the jth vortex measured in units
of the system radius R, and s; = %1 determines the circulation direction of the jth vortex. The first, single vortex,
logarithmic term is due to the interaction of each vortex with its own image, the second represents the pairwise
2D Coulomb-like interaction between ith and jth vortex separated by distance r;; and the last term, due to the
circular boundary, represents the interaction of system vortices with the images of all other vortices.
The dynamics of the point-like vortices are determined by the equations of motion [1]
Oxj  OH %, OH
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To draw a closer correspondence with Hamiltonian mechanics, we may assign for each vortex a canonical
coordinate g; = R, xjand momentum p == m,woR, Vi where m, is the vortex mass [53] and wy is an angular
frequency. Thus the set of vortex coordinates {x;, y;} in the real space are mapped onto points in the phase space
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{gj> p;} spanned by the canonical conjugate variables. In this Hamiltonian description the vortex particles move
in one-dimensional (1D) real space tracing out orbits in the 2D phase space, which is bounded by the circular
wall of radius R,,. Equation (2) establishes the vortex—particle duality—that a vortex in a 2D fluid may behave as a
particleina 1D space.

Motivated by the vortex—particle duality and in contrast to Kraichnan’s conjecture, we anticipate the
condensation of Onsager vortices to be analogous to the condensation of a finite 1D quantum gas. Interestingly,
in the 2D fluid picture the vortex condensate corresponds to maximum kinetic energy states of the fluid whereas
in the 1D dual picture the condensate corresponds to zero momentum state of the 1D vortex particles.

3.Ideal vortex gas approximation

By ignoring the vortex—vortex interactions we obtain an ideal-gas model of vortex particles. A Maclaurin series
expansion of the single vortex term in equation (1) with respect to r; formally yields a 1D harmonic oscillator
Hamiltonian

2

p; 1
Hy, = oszZsjz In(1 — rjz) N =) L —mywig?] 3)
F 7\2m, 2 ]
where the oscillator frequency is defined as wy = [— X in terms of the elastic constant k = 2 R2 , with an inverted

energy spectrum with respect to the canonical case. W1th1n the harmonic approximation, a single vortex v of this
system will travel along a periodic phase space orbit {g,, p,} = {R, cos(w,t), —m,wyR, sin(w, 1)}, with orbital
angular frequency w, and semi-axis R,..

The Einstein—Brillouin—Keller semiclassical quantisation rule [54]

$ p.da, = (n + S)h @

where # is the principal quantum number and k is the Keller—-Maslov index then evaluates to

T 2
f p,dg, = f w, mywoR 2 sin®(w, t)dt = mm,woR?, (5)
0 0

where we have integrated over one period, T = 27/w,, of the vortex orbit. The 1D oscillatory motion has two
classical turning points, k = 2, and therefore the quantisation rule, the combination of equations (4) and (5),
yields the energy spectrum E, = (n + )ﬁwo mvaR . This implies a minimum semi-axis min(R,) = &

for the vortex trajectories and yields the zero-point energy Ey = 7m ,wi&2. In correspondence with the
Heisenberg uncertainly relation, AqAp 2> h/2, the zero-point energy carries the information that the area of the
phase space is quantised in units of A = m1,we&”. This reflects the stated fact that it is not possible to localise the
position of the vortex inside an area smaller than the vortex core.

4. Interacting vortex gas approximation

The velocity field induced by the vortices mediates strong vortex—vortex interactions such that the ideal-vortex
approximation is strictly only valid for one vortex near the centre of the disk. However, the second term in
equation (1) may be approximated as a mean-field potential by integrating out the spatial scales smaller than the
intervortex spacing.

A neutral superfluid that locally rotates at an orbital angular frequency €2 with N, vortices of the same sign
mimics the rotation of a classical fluid by having an areal vortex density

N, ms2
n, = =0 ©)
TR v
Hence, the mean superfluid velocity is v(r) = Qr, where r is the distance measured from the centre of such a
rotating cluster of vortices with radius R. In contrast, in a high-winding number vortex with N, circulation

quanta, the superfluid velocity field v(r) = —ﬁ is a gradient of a scalar phase function. In general, the velocity
field is therefore
oor
y(r) = N,———; r < R*, 7
) = N %)
v(r) = szl; r > R¥, 8)
mr
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Figure 1. The three energy terms (a)—(c) of equation (1), solid lines, and the respective approximations equations (3) and (9), dashed
lines, as functions of reduced temperature for N, = 100 single species, s = +1, vortices. The large statistical fluctuations evident in (c)
arise due to stray vortices that escape the central vortex cluster and approach their image vortices closer to the boundaries of the
system. However, the magnitude of these fluctuations is insignificant in comparison to the energy scale in (b).

which is a combination of solid body rotation for r < R* and potential flow for r > R*, where R™ is the radius of
the vortex cluster. The kinetic energy associated with such a flow field may therefore be approximated by a
mean-field interaction

Hiny = —akg Y sisIn(r)

i<j

~ j;zw j;Ro %psvz(r)rdrdﬁ

A1 R
=mp N> = + In] =2|. 9
s Vm2(4 * n(R*)) ©

The final term in the Hamiltonian, equation (1), describes the remaining interaction with image vortices and
yields an energy shift

—p = akBZs,-s]- In(1 — 2x;x; — 2yy; + r,-zr]v2 . (10)
i<j

Combining equations (3), (9), and (10), we thus arrive at the effective 1D vortex—particle Hamiltonian,

2

N P 1 k2 o1 R
He = Hy + Hie — p~ =Y | = +—mvw2.2+5—Nv2——|—ln(—°) — 11
ff 0 ¢ — M 2\ om, T2 04; r 7 R iz (11)

that describes a system of 1D strongly interacting harmonic oscillators. It may be worth pointing out that the two
forms in equation (9) have quite different interpretations. The first line is a long-range interaction of the vortices
in 2D, whereas the last line is a strong contact interaction between 1D vortex particles with a coupling strength
that is running with the energy scale set by the radius R* of the cluster. In the Tonks—Girardeau-like limit of

R* — 0 the effective coupling constant g o< In (%) — 00 and equation (11) reduces to a semi-classical version
of the Lieb—Liniger model [55].

Figure 1 shows the independent contributions of the three terms in the Hamiltonian, equation (1), for a
system of 100 like-signed vortices as functions of reduced temperature. The details of this calculation are
described in section 8. For comparison, the energy contributions due to the harmonic oscillator and mean-field
approximations, equations (3) and (9), respectively, are shown by dashed lines. The harmonic oscillator
approximation, equation (3), is better at lower reduced temperatures because the vortices clump close to the
centre of the disk. However, since the mean-field term, equation (9), is proportional to N2, itis overwhelmingly
larger than the single vortex terms, which are proportional to N,. These results establish that the mean-field
Hamiltonian equation (11) is a reasonable approximation for equation (1) in this system.

4
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5. Fraction of condensed vortices

On the basis of the vortex—particle duality, we anticipate condensation of Onsager vortices when the phase space
density n,\, 2 1. Here n, is the 1D mean vortex density and

:LN 2mE?
) (R

(12)

is the thermal vortex de-Broglie wavelength, which in the vortex dual is inversely proportional to the size of an
average temperature-dependent vortex orbit in the phase space. For N* vortices confined within length 2R* the
condensation criterion becomes TN*¢2/(R,) R* ~ 1, which shows that condensation is expected when the
vortices concentrate into a phase-space cluster with size of the order of £ JN*.
These considerations lead us to define the fraction of condensed vortices as the ratio, Ny /N, of N, vortices of
a given sign in a single many-vortex cluster to the total number of vortices N of that same sign in the system. The
highest density of vortices is found within clusters and by denoting N* to be the number of vortices in the largest
cluster, which will be the first to condense, and A’ = N*7 = N*m,wy&? and A* = N*m, wy (r,)? to be,
respectively, the minimum possible phase space area occupied by the N* vortices and the phase space area
actually covered by them, we obtain
N N'A_N* @ )
N N A* N {rm)?

Thus the condensate fraction is the product of the largest cluster fraction N*/N and the square of the ratio of
single vortex core radius £ to the mean radius (r,,) of the effective area occupied by a vortex within the cluster,
where ,,,, is one half of the distance between the centres of nearest neighbour vortices in such a cluster. Although
for single vortex species systems N*/N = 1, in general, the system contains both vortices and antivortices and
tomeasure N* < N in such systems, clusters of like-signed vortices must first be identified by a vortex
classification algorithm.

6. Vortex classification algorithm

To quantitatively study clustering and condensation of vortices we have implemented a vortex classification
algorithm based on the prescription by Reeves et al [37]. We assign each vortex in a given configuration of N
vortices a unique and arbitrarily chosen label from the set {vy, 15, ..., vy }. The vortex configuration is then
described by a corresponding set of positions {z, z, ..., zy} (in 2D complex co-ordinates, where z; = x; + iy;)
and circulation signs {s, s, ..., sy}, which here take the value s; = £1,denoting clockwise or anti-clockwise
circulation. The algorithm does not prioritise any vortex and yields the same classification outcome regardless of
the choice of vortex labelling. Figure 2 shows an example configuration of twelve judiciously numbered point

vortices. The vortex classification algorithm is outlined below.

6.1. Step 1: Find dipole and cluster candidates

For each vortex v, we locate the nearest opposite sign (NOS) vortex and label it as (vy0s); (i.€. the nearest vortex
which satisfies s; (snos); < 0). We define the distance to this vortex to be (Ryos); = |z — (znos)j|- We then
check to see if any other vortices (which are same-sign, by necessity) fall within the disk of radius Ryos centred at
vortex v;.

(i) Dipoles: If not, then (vnos); is labelled as a dipole candidate for v; (e.g. in figure 2(a), v, is labelled as a dipole
candidate for v;).

(ii) Clusters: If there are n; > 1 vortices which are nearer to v; than (vyos);, then these are labelled as cluster
candidates for v; (e.g. vortex vy, in figure 2(a), for which vy, v;; and vy, are cluster candidates).

Each vortex v;now has a corresponding set of candidate vortex labels, which we denote by I;. For case (i), I; consists
of asingle opposite sign vortex, which is a dipole candidate. For case (ii), J; is alist of n; same-sign cluster candidates.

Table 1 below displays the lists I; that are constructed in Step 1 of the algorithm when it is applied to the
configuration shown in figure 2.

6.2. Step 2: Find mutually agreeing candidates
In the second step of the algorithm, the lists I; are checked sequentially for mutual members. This process is
shown schematically in figure 3 for the example configuration shown in figure 2 and table 1.
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Figure 2. A configuration of twelve point vortices, (a) before and (b) after the classification algorithm has been applied. Vortices are
drawn in blue, while antivortices are drawn in green. In panel (a), dashed circles are drawn centred on v; and v, denoting the
respective distances (Ryos); to the nearest opposite signed vortex. Because v, is the closest vortex to v| and is of opposite sign, v, is
labelled as a dipole candidate for v;. Vortex v, on the other hand, is closer to vy, v, ; and v, than it is to v;; hence, these three vortices
become cluster candidates for v;. The lines joining clustered vortices in (b) are drawn using a minimum spanning tree algorithm,
which is applied once all vortices have been labelled into the sets of clusters, dipoles or free vortices.

Table 1. Collation of I; lists for the configuration shown in figure 2 after dipole and cluster candidates have been
identified. Each row corresponds to a particular vortex v; (leftmost column) and the list of all other vortices,
ordered from left to right in increasing distance from v;. Vortices/antivortices vi are denoted with blue/green font
if|z; — zx| < (Rnos);. All vortices for which |z; — z| > (Rnos); are coloured in grey, as these cannot be dipole or
cluster candidates. The lists I; consist of either a single opposite sign vortex (e.g. row 1, corresponding to vortex v,
whichhas I} = {1,}), orasetof >1 same-sign vortices (e.g. row 4, corresponding to vortex v, for

which Iy = {v3, vs}).

’l)j lj
V1 V2 V3 V9 V4 V10 Vs V11 V7 Vg V12 V8
V2 V1 Vo V3 V1o V4 V11 V7 V12 Vs Vg Vs
(%] Vg D7 V2 Vs Vg Vg V10 U7y V11 Vg V12
V4 Vg Vg Vg Vg2 V1 Y9 V7 V19 Vg V11 V12
Vs V4 Ve V3 V8 V2 Vr U V10 Vg9 V11 712
Ve Us (] (Vird V4 V3 V1o V2 Y9 V12 V11 V1
U7 V10 V12 V11 Vg Vg Vg Vg Vs V3 Vg4 V1
Vs Vg V7 Us V1o V4 V12 V11 V3 Vg Vg Vi
Vg Vio U2 V11 V12 V7 V1 VU3 Vg Vg Us Vg
V1o Vi1 V9 V12 U7 V2 Us V1 VU3 Vg V4 Us
V11 V12 V10 Y9 Y7 V2 V1 Vg V3 Vg V4 Vs
V12 Vi1 V10 V7 V9 V2 Vs Vg V1 V3 Vg Us

(i) Dipoles: Ifalist I; consists of a single dipole candidate vy, then the list J; is checked to see if it contains (only)
the vortex v;. If so, then the two vortices are mutual nearest neighbours of opposite sign, and are classified as
adipole (e.g. vortices v; and v, in figure 3). If not, then the vortices are left unclassified (e.g. vortices v and vs
in figure 3).

(i) Clusters: Ifalist I; consists of a set of cluster candidate vortices { v}, then the lists { I} are all checked to see if
they contain the vortex v;. For each list I; that does contain v}, the two vortices v;and v, are labelled as
belonging to the same cluster (e.g. in figure 3, vortex v, ‘checks’ both I; and I5 to see if it is a member of
either. It is found to be a member of both, so all three vortices are placed in a single cluster). For each list I
that does not contain v}, neither vortex label is updated (e.g. vortex v; and vy in figure 3). Note that not all
members of a single cluster have to be mutual candidates of one another. In the example shown in figure 3,
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(a) ,

Vs %‘ Vs
v, % Vio
Vg % Vs

Vo T Vi

Vio Vi1 Vo Vi2

Vi1 Vi2 V1o \Z]
—X v,

Vi2 Vi1 V1o

Figure 3. The process of identifying mutual neighbours, shown equivalently as (a) a table of candidate lists [; taken from table 1, and
(b) drawn directly onto the example vortex configuration from figure 2. An arrow is drawn from each vortex v; to all the members of its
candidate list ;. Only when arrows point in both directions between v;and v are they defined to be mutual neighbours. All arrows that

are one-directional have been crossed out in both panels. In panel (b), shaded ovals are drawn around clusters (blue/green for
positive/negative), dipoles (red) and free vortices (black).

Figure 4. Representative neutral vortex configurations (a)—(c) at respective temperatures T/ Tgpc = 10% 1.022, and 0.778, with
Tgpc = —0.25aN,o and Ny, = 200. Vortices in vortex and antivortex clusters are connected by blue and green lines, respectively,
vortex and an antivortex in vortex dipoles are connected by red lines and free vortices are marked by isolated filled circles. The
streamlines illustrate the velocity field generated by the collection of vortices. The red vertical line indicates the location of the
condensation transition point Tgpc between (b) and (¢).

Vo is only a mutual neighbour with vy, but is still placed in the same cluster as v;; and v1,. As the algorithm
proceeds, vortices may be assigned to existing clusters, or previously classified clusters may become merged.

Any vortices left unclassified after this process are classified as free vortices, as they have no mutual dipole or
cluster neighbours (e.g. vortex v4 in figure 3).

In figure 3(b), any two vortices that are connected by a two-directional link are part of the same cluster or
dipole, while any vortex that has no two-directional links is a free vortex.

To reduce computation, the checking of mutual candidates can be restricted such that it is only initiated for v;and
viifj > k. Alternatively, once a pair of vortices has been checked, then v; could be removed from I; and vice versa.

7. Two vortex species results

To study the thermodynamics of the condensation of Onsager vortices, we have performed Monte Carlo
calculations using a Metropolis algorithm to find the equilibrium vortex configurations as functions of
temperature for systems with 10, 20, 50, 100, 200, 300 and 400 vortices [12, 13]. The Monte Carlo calculations,
and the conclusions drawn from the results, are obtained using canonical ensemble with hard core vortex core
regularisation. A hard core diameter of 2£ = 0.001 R, was imposed on each vortex in the results presented. The
Monte Carlo samplings were performed for temperature in the range T € (—o0, —0) with 10® microstates at

7
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Figure 5. Fraction of vortices in the largest cluster (a), the condensate fraction, equation (13), (b) and the mean cluster radius

R* = 4Std(r;), where r;is the vector of positions of the vortices in the largest cluster (c) as functions of scaled temperature. Data s
shown for systems with different vortex numbers as indicated in the legend. The function 1 — T/Tgpc, where Tggc = —0.25aN,o, 1s
shown as asolidline in (b) for |T| < |Tzpc|and the vertical dashed line marks the critical point. All quantities are ensemble averaged.
The few percent standard statistical uncertainty in the data, 1/4/1000, yields a reasonable estimate outside the fluctuation region
despite being alower bound due to the inherent correlations of the Markov chain Monte Carlo method employed.

each temperature after initial burn in of 10° steps. Out of the 10° microstates, 1000 uniformly spaced
configurations were recorded and used for vortex classification analysis.

Figure 4 shows typical vortex configurations of disordered and strongly clustered neutral vortex states of
Niot = 200 vortices obtained from the Monte Carlo calculations at different temperatures. The same sign clusters,
dipoles and free vortices are identified using the vortex classification algorithm and the velocity field stream lines
are included to visualise the superflow around the vortices. Figure 4(a) shows a vortex configuration at a high
negative temperature T = 10° Typc revealing a fairly disordered configuration of vortices with an abundance of
vortex dipoles and small clusters. Figure 4(b) shows a vortex configuration at T = 1.022 Tgpc close to the critical
temperature. In figure 4(b) nearly all the vortices have already clustered into two large Onsager vortices although
the condensate fraction remains zero. Figure 4(c) shows Onsager vortices at temperature T = 0.778 Tgpc where
the system has a condensate fraction of Ny/N =~ 0.1. The prominent dipolar shape of the streamlines in (b) and (c)
isa by product that emerges enroute to condensation of the Onsager vortices and is observable before the critical
point T' = Tgpc, indicated by the red vertical line, see also supplemental figure S1(b) of [13].

Figure 5 shows (a) the largest cluster fraction, (b) the condensate fraction, and (c) the mean radius of the
largest cluster in the system as functions of temperature in units of the critical temperature Tggc = —0.25N 4
Thelargest cluster fraction figure 5(a) is strongly dependent on the total number of vortices in the system. In
contrast, the condensate fraction, shown in figure 5(b), remains zero at all temperatures |T| > |Tgpc| and
thereafter increases as the absolute negative zero is approached. Figure 5(c) shows the mean radii of the largest
vortex clusters as functions of temperature. As the critical temperature is approached from the disordered side,
the largest cluster tends to grow in size as ever more vortices are joining the cluster. In the condensed phase the
cluster rapidly shrinks as the phase-space density, and hence the condensate fraction, increases. Importantly, the
condensate fraction shows universality in the sense that it is consistent with data collapsing onto a single curve,
indicating the condensate fraction becoming a vortex number independent quantity in the large vortex number
limit.

With the ability to quantify the condensation of Onsager vortices, we have revisited the dynamical mean-
field simulations of [34]. Figure 6 shows a typical result revealing that in this neutral vortex system, the largest
cluster fraction and vortex dipole moment are practically equivalent observables. However, although the system
is continually evaporatively heated, the condensate fraction remains zero for all times. The initial vortex number
in this simulation is 100 and it decays to the final value of 12. Comparing the largest cluster fraction in figure 6
with 5(a) shows that this system is initially at temperature | T| >> |Tgpc| and evaporatively heats reaching a final
temperature of | T| 2 |Tgpc|- Quantitatively, the temperature of the vortex system can be found using the vortex
thermometry based on the fraction of clustered vortices in the system [45]. However, once the system becomes
fully clustered, the evaporative heating mechanism switches off [ 13] and the condensation is unable to proceed.
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Figure 6. Dipole moment of the vortex configuration (solid blue) expressed in units of d, = xkR,N, largest cluster fraction (solid
orange) and condensate fraction (dashed purple) as functions of time calculated from a dynamical mean-field simulation. The unit of
timeis ty = 1/ pigpg, Where figpg is the chemical potential of the Gross—Pitaevskii equation. The initial vortex number is 100 and as the
system evaporatively heats up, the vortex number decays to a value of 12 at the end of the simulation, see [34] for details.

Figure 7. Representative charge-polarised vortex configurations (a)—(c) at respective temperatures 7/ Tgpc = 2.000, 1.031,and 0.769,
with Tgpc = —0.5a N, and N, = 100. The streamlines illustrate the velocity field generated by the collection of vortices. The red
vertical line indicates the location of the condensation transition point between (b) and (c).

8. One vortex species results

Clustering of vortices and their condensation are two separate phenomena. Vortex clusters exist at all negative
temperatures [45], where as non-zero condensate fraction only exists in the temperature range 0 > T > Tgpc.
To demonstrate this more clearly, we have performed Monte Carlo calculations for a charge-polarised,
Zf\il s; = N,, case where only one species of vortices is present in the system. Figures 7(a)—(c) shows the vortex
configurations at three different temperatures. These vortex configurations illustrate the fact that the vortex
positions suddenly collapse when the radius of the host Onsager vortex cluster drops below a critical value, R..
The transition illustrated in figure 4 corresponds to independent condensation of two-species of vortices at the
same temperature due to the equal numbers of vortices and antivortices. In vortex number imbalanced systems
there are two, vortex number dependent, critical temperatures T},,j = —QNp,j/2 and Tryin = —aNpin/2.
The critical temperature for the condensation of an Onsager vortex in a single vortex species system may be
predicted by a similar free energy argument as for two vortex species systems [ 11, 13]. The Helmholtz free
energy, F = E — TS, ofa vortex configuration where all N, vortices are concentrated inside a circular region of
radius R is

2 * \ 2N,
Fr ”;_”Nf ln(%) ~ Thy ln(%) , (14)
T

where the energy E is that of a multiply quantised vortex of core radius R" and the entropy Sis obtained as the
logarithm of a statistical weight of the configuration. A change in the sign of the free energy signifies that the
probability p. oc e /BT of observing such a configuration becomes exceedingly likely and predicts a critical
temperature
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Figure 8. Condensate fraction of N, = 100 single species, s = +1, vortices as a function of temperature (right axis, solid line) and the
radius, R*, of the vortex cluster, (left axis, dashed line), as a function of reduced temperature.
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which is the same for a single species system with N,, vortices as it is for a two-species system with the same
number, N,, = N/2 , of vortices of one species.

In the general imbalanced case with N vortices and N_antivortices with Nyot = Ny + N_ = N + Npin
and Ny,,j > Np,i, there are two critical temperatures corresponding to separate condensation of each of the two
vortex species. When the temperature approaches negative zero, the majority species condenses first at
Timaj = —@Np,j/2, followed by the condensation of the minority species at Ty &2 —aNmin/2, where the latter
is shifted slightly toward negative zero due to the interaction with the condensate of the majority species.

The condensation of Onsager vortices may be viewed from the point of view of competition between solid
body rotation within the core of the vortex cluster and potential flow outside the cluster, see equations (7) and
(8). Balancing the kinetic energy contributions of these two velocity fields in the mean-field interaction energy
term in equation (11) predicts a critical cluster radius

R, = e /4R, ~ 0.778800R., (16)

15)

such thatfor T/ Tgpc > 1 the whole system prefers to mimic solid body rotation of a classical fluid, figures 7(a)
and (b), whereas for T/ Tggc < 1 the system prefers to mimic the velocity field of a quantised superfluid vortex,
figure 7(c).

Figure 8 shows the condensate fraction measured using equation (13). For T/ Tgpc > 1, vortices are found
scattered everywhere within the circular boundary and the condensate fraction is strictly zero. Near the
transition, the vortices begin to clump and at critical radius R, the vortex cluster suddenly begins to collapse.
Accompanied with the shrinking of the vortex cluster, the condensate fraction grows almost linearly with the
reduced temperature.

According to equation (14) the specific heat at the transition

I —NZPSHZLM
! "4x R OT

o< (T — Tepc) ™ 17)
Tesc
where in the last step we have assumed linear dependence of the cluster radius on the temperature in the vicinity
of the transition, as suggested by figure 8.

Figure 9(a) shows the phase space density, n, (A, ) of the vortices as functions of position and reduced
temperature. The 1D vortex—particle density n(x) is obtained by modelling each vortex—particle by a normalised
Gaussian wave packet of waist \,. The frames (b)—(d) show the 1D density n(x) of the vortex gas for three
different temperatures T/ Tgpc = 2,1.031, and 0.769. For T/ Tgpc > 1 the vortex density is spread over the
whole system while below the transition the vortex density becomes localised both in real space and in vortex
momentum space.

On approaching the condensation transition from the infinite temperature side the asymptotic form of the
2D real space vortex density is predicted to be [56, 57]

—1
_ I, Tesc Tegc 5 ?
p,(r) = 7T[(1 T )(1 + T TEBCr ) ] (18)
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Figure 9. Phase-space density (a) as functions of position and reduced temperature, 1D vortex—particle densities (b)—(d) as functions
of position corresponding to the representative charge-polarised vortex configurations at respective temperatures

T/Tgpc = 2.000,1.031,and 0.769, for N, = 100 with Tggc = —0.5c N,, and (e)—(g) the 2D density of the vortices in real space as
functions of radial distance from the centre of the disc at temperatures corresponding to (b)—(d). The orange solid lines in (e)—(g) are
least squares fits to theoretical vortex density function in equation (18) with Tg/ Tgpc = 2.004, 1.033, and (1.005).

for T/ Tgpc > 1, with normalisation
R,
27 f p,(r)rdr = N,. (19)
0

Figures 9(e)—(g) shows the least squares fits of the function (18) to the radial 2D real space vortex density
measured from the Monte Carlo calculations. Using the temperature T as the sole fitting parameter the best
fitting temperatures are measured to be T,/ Trpc = 2.004, 1.033, and (1.005) and the resulting density profiles
predicted by equation (18) are shown as orange curves. The parentheses are used here to denote that
equation (18)is used in a regime outside its validity. While the theory prediction, equation (18), for the radial 2D
vortex densities is in excellent agreement with the Monte Carlo data shown in figures 9(e) and (f), the theory
curve in figure 9(g) is clearly unphysical because the prediction of equation (18) diverges at T = Tgpc and cannot
be used for modelling the vortex density in the condensed phase for which T/ Tgpc < 1. Thisis evidentin
figure 9(g) where the best fitting function has T,/ Trsc = (1.005), as opposed to the actual temperature
T/Tgpc = 0.769, of the state.
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Figure 10. Two-dimensional vortex density in real space as a function of radial distance measured from the centre-of-mass of the
vortex cluster. The temperature, condensate fraction and condensate radius of this state are, respectively, T/ Tgpc = 0.244,

No/N = 0.773,and R ona/Ro = 0.004. The condensate corresponds to the shaded area with flat, incompressible, density of the vortex
fluid.

Figure 10 shows the 2D vortex density as a function of radial position for T/ Tgpc = 0.244. The condensed
vortices within the cluster seem to form a fluid like incompressible core with a constant vortex density. The
number of vortices within the shaded region corresponds to the condensate and is equal to Nj,.

9. Discussion

The physics of the vortex system in the vicinity of the critical negative absolute temperature

Tipe = — k0N, Moy 20)
2kB m 4kB m

where wy is the kelvon frequency and my, is the vortex mass per unit length [53], has been discussed extensively in
the recent literature [13, 34—43, 45, 58] yet the nature of the condensate has remained unclear. This is partly
because of the divergent behaviour of the zero-core point vortex model that becomes invalid at the critical point
of condensation and is unable to yield predictions for the condensed phase. The situation is the same as in the
positive temperature side where the Hauge—Hemmer transition to pair-collapsed phase in the zero-core point
vortex model is divergent and the structure of the vortex core, which is always present in any real physical system,
must be accounted for. Including the effects of non-zero vortex cores in the positive temperature systems allows
correct treatment of the BKT phase transition whose critical temperature is shifted by a factor of 2 with respect to
the Hauge—-Hemmer transition that occurs at Ty = a[15]. Similarly, any self-consistent treatment of the
negative absolute temperature Onsager vortex condensate must include the effects of non-zero size of the vortex
core. For the sake of clarity, we discuss the one and two vortex species cases separately below.

9.1. One vortex species case

Considering the single vortex species system shows that the condensation of the Onsager vortices occurs when
the vortex cores within a cluster of vortices begin to merge into a single vortex structure with multiple circulation
quanta, signifying the emergence of large degeneracy in the quasiparticle degrees of freedom of the vortices.

We briefly recall the underpinnings of the quantum Hall effect of 2D electron gas in a strong external
magnetic field corresponding to extremely large kinetic energy per electron. This 2D problem is often
theoretically mapped onto a dual 1D harmonic oscillator problem, which reveals that the topological phase
transitions to the integer quantum Hall states occur when the electrons condense in the highly degenerate lowest
Landau level. Although the electrons move in 2D space, the topological phase transitions are quantified in terms
of the eigenstates of a 1D harmonic oscillator.

Similar physics is pertinent to the Onsager vortex condensation transition. It is therefore useful to consider
the closest known physical realisation of the Onsager’s point vortex model, which is a Bose—Einstein condensate
with quantised vortices nucleated in the macroscopic condensate wavefunction. A trial wave function for such a
system may be expressed as

N,
() = [ a0 fe, 1)
j=1
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where r; = \/ (x—x)* 4+ (y — yj)2 and fis the smooth condensate particle density in the absence of the

vortices, 0; = arg[(x — x;) + i(y — )9)] are the additive phase functions with singularities at the vortex
locations {x;, y;}, and the (soft) vortex core function

"
X)) = == (22)
N rf Y=
The probability current
j= %[‘I’(l‘)*v‘l’(l’) = U VIHn)] = [T v (23)
mi

of the state (21) defines the superfluid velocity field v,, the incompressible component of which is remarkably
well approximated by the velocity field of Onsager’s point vortex model [59].

The elementary excitation spectrum of a 2D vortex configuration is obtained by solving the Bogoliubov—de
Gennes (BdG) eigenvalue problem [60]. The N, phase singularities due to the N, quantised vortices in the system
yield N, low energy quasiparticle eigenstates [61] that satisfy the bosonic commutation relations

[ 1) = 845 [0 mp] = [, 7] = 0, 24)

where 77,; and ), are the usual Bogoliubov quasiparticle creation and annihilation operators. In accordance with
the quasiparticle picture of superfluids, the macroscopic multiply connected wave function, equation (21), may
be expressed in terms of the countably infinite set of such quasiparticle states [60]. These Bogoliubov
quasiparticles are bosons and this property is inherited by the host vortices whose circulation is quantised.

For a single vortex with N, circulation quanta the condensate wave function may be expressed as

W(r) = Xy, (1) ffeN?, (25)

with
’

(N = —=

is the structure function of the vortex core with N, circulation quanta. The BAdG quasiparticle excitation
spectrum of such a state has only one vortex eigenmode, corresponding to the one phase singularity, with orbital
angular momentum quantum number equal to £ = —N,,[62]. This high-winding number bosonic quasiparticle
mode is a BEC of N, Bogoliubov quasiparticles associated with the N, vortex circulation quanta, in essence
forminga ‘vortex BEC in a BEC of atoms’. Such quasiparticle condensates are not unusual. For example,
magnons (spin-waves) have previously been observed to form Bose—Einstein condensates of their own within
their host BECs [63—65].

The circulation

(26)

r:ygv-df 27)

of a classical point vortex measured along a path Cthat encloses the vortex is invariant with respect to continuous
deformations of the path Cprecisely as for a quantised vortex in a BEC of atoms. In a BEC of atoms the vortex
cores trap the bosonic quasiparticles (kelvons) and when these localised bosonic modes overlap they may form a
condensate. The vortex density of the point-like vortex cores thus effectively measures the density of states of the
Bogoliubov quasiparticles attached to the vortices and the overlapping of the vortex cores is tantamount to the
condensation of the N, BAG quasiparticles associated with the vortex degrees of freedom. It is in this sense that
the classical point vortex Hamiltonian describes the bosonic degrees of freedom of the quantised vortices and
their quantum statistical condensation at Tgpc. Indeed, equation (14) applies equally well for both classical point
vortices and for quantised vortices in a BEC.

The vortex—particle duality allows a 1D treatment of the 2D vortex gas and motivates the definition of the
vortex condensate fraction as

N _ &
N (Fan)?

(28)

The condensate fraction is equal to the area ratio of the minimum possible phase-space area occupied by the N,
vortices to the area actually occupied by them. A high vortex condensate fraction is equivalent to strong overlap
between the BAG quasiparticle modes of the quantised vortices. The point vortex model description works well
in this extreme states of vortices because in such situations kinetic energy of the BEC of atoms is overwhelmingly
larger than the usual mean-field atom—atom interaction.

Itis interesting to recall the structure of a simple vortex in a superfluid or a superconductor. Outside the
vortex core the superfluid or superconducting order parameter is at its bulk value whereas in the vortex core
region the superfluid order parameter vanishes and the original symmetry of the full Hamiltonian is locally
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restored. A local observer spatially traversing across a vortex core in such systems measures superfluid-normal-
superfluid phase changes along their path.

For a two vortex problem, the change in the phase space topology of the point vortex model has been
quantified by identification of the phase-space wall that divides the two regions of phase space where the vortex
trajectories are either overlapping or non-overlapping [66]. We conjecture that similar phase-space dividing
walls are associated with any number N, of vortices and that associated with the condensation of Onsager
vortices a multiply connected phase-space topology transforms to a single connected region. In this sense, the
condensation of Onsager vortices could be viewed as a topological phase transition.

9.2. Two vortex species case

In the neutral two vortex species case, the Onsager vortex condensation transition described above for single
vortex species systems occurs in both of the vortex types separately, and simultaneously. In the case of vortex-
imbalanced system the majority vortex species condenses first at

Tmaj = _aNmaj/za (29)
followed by the condensation of the minority species at
Tmin ~ _aNmin /2: (30)

where T, shifted slightly toward negative zero due to the interaction with the condensate of the majority
species.

Before the condensation of the Onsager vortices proceeds, the vortices become spatially phase separated as
shown e.g. in figure 4 and in the supplemental figure S1(b) of [ 13]. Such phase separation is one step in the
sequence of phase space compactification leading to the EBC transition. Hence, the apparent symmetry breaking
associated with the spatial separation of the centres of mass of the two vortex species is a by product that emerges
enroute to the Einstein—Bose condensation of the Onsager vortices. The critical temperature is the same for a
single species system with N, vortices as it is for a two-species system with the same number, N, = Nio/2 , of
vortices of one species, and the condensation transition occurs in both systems. In contrast, the phase separation
is specific to the two-species case.

10. Conclusions

In conclusion, we have employed a vortex—particle duality to establish a correspondence between vortices in a
2D fluid and a 1D gas of vortex particles. Using this mapping, we have provided a quantitative measure for the
condensation of Onsager vortices—a vortex condensate fraction. The vortex condensate forms due to the
overlap of the vortex cores. Ultimately, deep in the condensed phase a phase-space Wigner crystallisation of
vortices with hard cores takes place [13] while soft core vortices should yield multiple quantum vortex state [62].
The situation bears resemblance to rapidly rotating neutral superfluids that are predicted to undergo phase
changes when the vortex cores begin to significantly overlap and the filling factor, or the number of fluid
particles per vortex, approaches unity [67, 68]. One interesting future direction would indeed be to consider a
quantised form of the 1D vortex Hamiltonian and to study the potentially emerging fractional quantum Hall-
like states in the Onsager vortex condensates. Another direction would be to study connections between the 1D
vortex particle theory and other 1D systems [55, 69, 70].

The first observations of negative absolute temperatures and Onsager vortices in neutral vortex gas, where
absolute negative temperature states are readily associated with the emergence of conspicuous vortex clusters,
has recently been reported in two landmark experiments [7, 8]. The most extreme negative temperature states
realised so far were estimated to correspond to a vortex temperature of T = 1.14 Tgpc and a condensate fraction
No/N = 18/57[7]. Since the largest cluster in these experiments had on average 9 vortices, and if the minimum
size of a condensate should be 2 vortices, the critical temperature Tgpc in such a system would, due to a finite size
effect, correspond to a condensate fraction of 2/9. This means that to observe the condensation of Onsager
vortices, even higher vortex energy states are required.

It seems that the most suitable system to study the critical physics of Einstein—Bose condensation of Onsager
vortices is a single species vortex system. We therefore propose an experiment to observe condensates of Onsager
vortices using a BEC or superfluid Fermi gas of atoms by creating a giant vortex with multiple circulation quanta
using, e.g., topological phase imprinting [71] or high-winding number Laguerre—Gauss laser beams [72], to
imprint a multiply quantised, N,, >> 2, quantum vortex into a superfluid in a preferably uniform trap [7, 8,
26-33]. Subsequently monitoring the slow decay of the state into N, singly quantised vortices, evolving from
configurations akin to figure 7(c) to those shown in (b), will enable quantitative observation of crossing the
critical temperature Tgpc. The vortex decay may be initiated by dynamical instabilities [73—75] with the
subsequent quantum turbulent ergodic dynamics allowing the vortices to equilibrate to a well defined vortex
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temperature [45]. Hence, starting from a 100% EBC, the vortices are anticipated to slowly evaporate from the
condensate, ultimately leaving only a quantum turbulent thermal cloud of single quantum vortices in the
system. An additional benefit of this approach is that it does not require detection of the vortex circulation signs
[8,25, 76]. Direct measurement of the vortex positions and their core sizes enables direct measurement of the
condensate fraction N,/ N, equation (28), in the condensed phase for T/Tgpc < 1. Equation (18) enables
explicit and accurate measurement of the vortex temperature for T/Tgpc > 1, as shown in figures 9(e) and (f).
In combination, these two measurements will enable direct and quantitative experimental observation of the
condensation transition of the Onsager vortices.
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