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Abstract 

 Canopy management is one of the key aspects of vineyard management. Understanding 

the canopy structure can provide valuable insights and guide canopy management to improve 

vineyard performance. Unmanned aerial vehicles (UAV), in combination with different sensors, 

can be used to capture high-resolution imagery to analyse canopy structure. To explore the 

potentials of UAV, innovative UAV applications, including monitoring canopy development, 

evaluating canopy management outcomes and detecting canopy gaps, were studied in 

vineyards across South Australia. Customised computer codes were developed to analyse the 

imagery collected and process the reconstructed three-dimensional vineyard models (digital 

surface model and point cloud). Ground imagery analysis and manual measurements were used 

as ground-truth validations. Results showed UAV can effectively estimate canopy structure. 

Imagery and canopy models can provide canopy structure volumetric information that are 

otherwise challenging to achieve in field. Future improvements should focus on creating more 

easily operated, open-sourced and reliable UAV systems for canopy structure measurements. 
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Chapter 1. Introduction 

Chapter 1. Introduction 

In the production of grapes, a healthy and balanced grapevine canopy structure can 

improve yield and crop quality traits. Canopy management regulates the need of mineral 

nutrients and water inputs to achieve the balance between proper canopy structure and yield 

(Iland et al., 2011). Understanding canopy structure can help guide canopy management 

practices more efficiently. To estimate canopy structure, various optical sensing measurements 

can be used, ranging from ground-based direct leaf harvesting and ground-based proximal 

sensing to remote sensing through the use of manned and unmanned aerial vehicles (UAV) and 

satellite (Hall, 2018; Jones & Vaughan, 2010). Optical sensing has strong practical potentials 

in estimating the health of canopy structure and any spatial variations in the canopy structure 

across the vineyard (Hall, 2018). 

 

To manage canopy structure, different training systems and applications of shoot 

thinning, bunch removal and leaf plucking are common approaches (Dry, 2000; Iland et al., 

2011; Petrie & Clingeleffer, 2006; Wang et al., 2019). These different practices and their 

combinations can increase light exposure and air movement within the canopy (Smart et al., 

1985). As a result, improved fruit quality and yield potential, optimal leaf area to fruit ratio and 

better disease control can be achieved (Reynolds & Vanden Heuvel, 2009). In contrast , poorly 

managed canopies can lead to unfavourable dense canopy or overly exposing canopy (Smart 

et al., 1985; De Bei et al., 2019). In addition, grapevine diseases and water and nutrient 

deficiency can also adversely influence the canopy structure (Mancha et al., 2021; Savi et al., 

2018). By estimating the canopy structure properties, canopy measurements can supply critical 

information regarding canopy health and the detection of diseases.  

 

Currently, the most accurate direct canopy estimation of using leaf harvesting and area 

measurement are labour intensive, cumbersome and destructive (Liang et al., 2012). To 

overcome these limitations, optical sensing applications for grapevine canopy have been 

studied. These applications have been used to measure different canopy structure parameters 

to provide specific information regarding canopy dimensions, grapevine water status and 

canopy health. To name a few, digital imagery analysis based plant area index (PAI) for 
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measuring canopy cover, normalized difference vegetation index (NDVI) for estimating 

canopy photosynthetic activity and digital canopy model (DCM) for the three-dimensional 

information of the canopy structure (Njoku, 2014). Generally, the same index/parameter can 

be measured by a proximal ground approach as well as aerial remote sensing. For example, 

PAI can be measured by hemispherical canopy cover photography on the ground as well as 

aerial-based spectral indices, according to empirical relationships (Fournier et al., 2017; Jones 

& Vaughan, 2010). Three dimensional DCM can be captured by a laser scanner mounted on a 

ground vehicle or reconstructed from high resolution aerial imagery using photogrammetry 

(Siebers et al., 2018). To apply these innovative measurements in the field, research and 

commercialisation efforts have been focusing on providing suitable solutions for field 

applications.  

 

Recent developments in optical sensing technologies have introduced new hardware 

and software solutions. To list a few, smartphone applications that calculate PAI using non-

hemispherical canopy cover imagery can achieve similar accuracy to destructive measurements 

(De Bei et al., 2016; Orlando et al., 2016; Savi et al., 2018). Ground vehicles are integrated to 

carry multiple optical sensors for proximal canopy sensing and canopy structure modelling 

(Gatti et al., 2016; Grocholsky et al., 2012). UAV has been increasingly used for optical canopy 

sensing for the collection of high-resolution imagery (Pádua et al., 2018). Photogrammetric 

software can then reconstruct a canopy point cloud from the imagery which was previously 

only capable of using laser scanning (de Castro et al., 2018). Integrated application of remote 

sensing and interpolation can help identify vineyard canopy variations through the creation of 

maps of the targeted indices (Bramley, 2005; Di Gennaro et al., 2019; Kalua et al., 2020). With 

various levels of complexities collected through remote sensing, the selection of the optimal 

approach should be considered in conjunction with their costs and the challenges in data 

processing (Andújar et al., 2019; Savi et al., 2018). 

 

 This research project was sponsored by Wine Australia and the University of Adelaide 

through the provision of research infrastructure, funding and stipend. It is expected that the 

project explores the potential future applications of UAV to monitor vineyard performance 

more efficiently and effectively.  
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1.1 Objectives of the Research  

The research objectives of this thesis include: 

i) To investigate the feasibility of using UAV remote sensing for monitoring vineyard 

canopy development. 

ii) To explore the potential of using UAV for various vineyard monitoring purposes 

that are otherwise challenging as ground/manual measurements.  

iii) To develop innovative approaches in the analysis of two-dimensional imagery and 

three-dimensional models collected by the UAV. 

iv) To recommend the suitable application scenarios for using UAV in vineyard 

monitoring.  

1.2 Linking Statement 

The research in this work is presented in chapters, including three research chapters each 

represents one manuscript written in the styles of peer-review journals. Two manuscripts have 

been accepted by peer-reviewed journals. 

• Chapter 1 is the introduction and the objective of the thesis. 

• Chapter 2 is a review of previous published literature. Starting with the physiology 

of  a grapevine canopy and how can canopy management can change vineyard 

performance, followed by review of ground and aerial imagery analysis approaches 

and how they can be used for vineyard monitoring. Advantages and limitations of 

each approach are also mentioned. A summary of the literature and aims of the 

research are presented in the end.  

• Chapter 3 is a prepared manuscript, describing a study monitored vineyard 

development across two growing seasons. The study demonstrates that canopy 

monitoring can be performed using both ground and UAV based approaches. These 

approaches were also used for subsequent studies. The findings of this study 

showcase the feasibility of UAV remote sensing for vineyard monitoring on a 

regular basis during the growing season. 

• Chapter 4 is an published and peer-reviewed manuscript, describing a study that 

used UAV remote sensing to evaluate the outcomes of a range of canopy 

management practices, including leaf removal, shoot thinning and bunch thinning. 
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The findings show that, except for bunch removal, UAV can effectively evaluate 

canopy changes after the management practices.  

• Chapter 5 is also an published and peer-reviewed manuscript. It describes a study 

that used canopy volume, from point clouds obtained by UAV, to detect the decline 

in canopy development and canopy gaps in a vineyard impacted by Eutypa dieback. 

Point cloud analysis procedures were developed in the study to extract the low 

canopy volume sections along the grapevine row. The findings of this study 

demonstrate an innovative application of using UAV remote sensing for vineyard 

monitoring. Compared with tedious ground measurements, UAV can determine the 

length and distribution of canopy gaps in a vineyard rapidly.  

• Chapter 6 is the general discussion on the findings of this research. Three studies 

with different monitoring purposes are described in Chapter 3-5. Based on the 

findings of these studies the most suitable monitoring approach for different 

purposes are discussed. Various data analysis approaches for processing the data 

collected are compared. The limitations of both UAV and ground monitoring 

approaches are explained. Finally, the potential future improvements, aimed at 

improving the reliability and practicability of the UAV remote sensing, are 

described.   
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Chapter 2. Literature Review 

Chapter 2. Literature Review 

2.1 Introduction  

This literature review focuses on four aspects related to vineyard canopy management 

and monitoring based on previous research. These include the physiology of a grapevine 

canopy and how canopy management can alter the grape quality and yield; various approaches 

for measuring canopy structure using ground, aerial, and satellite platforms.  

2.2 Canopy Structure Management 

Light and Canopy Relationships 

During canopy development and berry formation, light properties including light 

intensity (Photosynthetically Active Radiation (PAR) or photosynthetic Photon Flux Density  

(PPFD)), quality (quantum flux ratio of red to far-red light, R:FR), and photoperiod (duration 

of light exposure) are influential at all major growing stages (Iland et al., 2011). For example, 

high light intensity before bud burst has been shown to increase the number of inflorescence 

primordia in dormant buds, which is an important indicator of fruitfulness (Buttrose, 1969; 

May et al., 1976; Sánchez & Dokoozlian, 2005). The incidence of primary bud necrosis, a 

grapevine physiological disorder that reduces fruitfulness, has also been found to be reduced 

by improved light conditions (Dry & Coombe, 1994; Morgan et al., 1985; Morrison & Iodi, 

1990; Perez & Kliewer, 1990). During early shoot development, leaf photosynthetic rate is 

limited under low light conditions, and shaded leaves have a lower net assimilation rate 

(Cartechini & Palliotti, 1995; Iland et al., 2011). Row orientation also influences light 

distribution as east-west orientated rows receive more variable light intensity than north-south 

oriented rows (Meyers et al., 2011; Trought et al., 2017).  

 

 Yield and quality components, such as bunch architecture and berry chemical 

composition, have been shown closely related to the canopy light environment, as the light 

condition influences these components throughout the stages of inflorescence primordia 

development to fully mature (Cook et al., 2015; Haselgrove et al., 2000). Various studies have 
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shown that total soluble solids, juice pH, flavanols, and varietal thiols increased with greater 

light exposure, while titratable acidity generally declined (Bergqvist et al., 2001; Ristic et al., 

2007; Šuklje et al., 2014). For example, Gregan et al. (2012) found total phenolics within the 

berry skins increased significantly with more light exposure. A recent study on flavanols, by 

Friedel et al. (2016), showed that the expression of flavanol synthases was absent in shaded 

bunches but recovered quickly under re-illumination. The anthocyanins level was also found 

to increase linearly with light exposure (Bergqvist et al., 2001). In addition, it is suggested that 

the response of anthocyanin levels is determined by the sensitivities of grapevine cultivars to 

the light (Haselgrove et al., 2000; Oliveira & Nieddu, 2015). In summary, having the right light 

environment in the canopy structure can improve the yield and fruit quality.  

Direct Canopy Management Methods  

To alter the canopy light microclimate by changing the canopy structure, various direct 

and indirect manipulation methods are used. For example, different trellis systems, leaf 

removal, shoot/bunch thinning practices combined with various mid-row cover crops, and 

irrigation practices have been extensively studied and applied. Their primary goals are to 

regulate yield, control excessive canopy vigour, improve canopy zone light exposure and, 

ultimately, improve grape quality (Dry, 2000; Wolf et al., 2003). 

 

Training/trellis systems, used for establishing and maintaining the canopy structure, can 

improve the amount of light exposure and increase fruitfulness and yield per node (Dry, 2000). 

In many commercial vineyards, widely applied trellis systems include vertical shoot positioned 

(VSP), cane pruning, Scott Henry, Smart Dyson, and minimal pruning, among others. Detailed 

descriptions of these systems can be found in Smart & Robinson, (1991). When choosing the 

training system, an ideal candidate should be labour-efficient, capable of working with 

vineyard machinery and producing the fruit of the desired quality (Cavallo et al., 2001; Wolf 

et al., 2003).  

 

Shoot thinning, bunch thinning, and leaf removal practices are destructive practices that 

manipulate the canopy structure by directly removing shoots, bunches or leaves from the 

canopy during the growing season. Research studies on these practices have shown that the 

timing and intensity of their applications can significantly influence their outcomes on the crop 
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yield and quality (Table 1 and Table 2). Applications of leaf removal at early growing stages 

can improve the light interception in the bunch zone and improve the accumulation of sugars 

and anthocyanins; key colour compounds in red grapes (Cook et al., 2015; Lemut et al., 2015). 

Similarly, bunch thinning can also facilitate sugar content accumulation (Reynolds et al., 2005). 

However, excessive removal of leaves can also negatively impact the accumulation of sugar in 

the berry, while excessive bunch thinning can negatively impact yield without improving the 

overall quality (Vasconcelos & Castagnoli, 2000). Leaf removal after harvest can also reduce 

bud fruitfulness in the following growing seasons (Greven et al., 2016). Additionally, shoot 

thinning can serve as a complementary method to winter pruning to further balance fruit yield 

and berry composition with grapevine vigour, especially for cultivars that are susceptible to 

excessive crop with poor quality and high lateral shoot growth (Morris et al., 2004). In general, 

these destructive canopy management practices are usually used in conjunction with different 

training systems to provide continuous canopy regulation throughout the growing season. 

 

Indirect Canopy Management Methods  

Cover crops and deficit irrigation can help manage and modify the soil water and 

nutrient contents and be used as an indirect strategy to manage canopy structures. The cover 

crop can help to control overly vigorous grapevines (Centinari et al., 2016). Cover crops have 

been shown to significantly reduce canopy density, average yield, and increase fruit exposure 

to sunlight (Hickey et al., 2016). Another study by Vogelweith & Thiéry (2017) found that 

cover crops can also increase the population of beneficial insects and reduce the pest stress in 

the vineyard, contributing to canopy health.   

 

Regulated deficit irrigation has been used to improve water use efficiency and alter 

berry composition (Cooley et al., 2017; McCarthy, 1997). In support of that, research showed 

that the intensity and period of deficit irrigation have a significant influence on the grape 

berries' composition. Niculcea et al. (2014) showed that water deficit could modify the levels 

of plant hormones, including indole-3-acetic acid, abscisic acid, salicylic acid, and jasmonic 

acid. As a result, berry size reduced, amine accumulation, and skin mass increased. Total skin 

anthocyanin increased with a shift from di-hydroxylated form to trihydroxilated form with 

deeper colour in grapevines under water stress (Cook et al., 2015; Niculcea et al., 2014). Study 

by  
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Indirect canopy management, especially deficit irrigation, offers alternative choices for 

canopy management. However, it is also shown the indirect canopy management used in 

conjunction with direct canopy management need to be monitored carefully to minimise 

potential adverse effects (Mancha et al., 2021). The vineyard soil type should also be taken into 

consideration as highly permeable soil types can significantly reduce the water holding 

capacity of the soil and can cause excessive vine stress under extreme heat (Savi et al., 2018). 

Satellite remote sensing has also shown the potentials for evaluating the economic benefits of 

deficit irrigation, by comparing the canopy vigour levels in NDVI imagery captured before and 

after the application (Bellvert et al., 2021). 

2.3 Approaches for Measuring Canopy Structure  

     With direct and indirect canopy management approaches available and their 

outcomes depending on their application intensity, it is crucial to obtain accurate measurements 

of the canopy structure to guide canopy management decisions (Di Profio et al., 2011). Also, 

the time and effort required to capture canopy structure accurately need to be considered to 

understand its practicability for vineyard management (Preszler et al., 2010). It is impractical 

to directly measure every vine's condition and estimate canopy structure destructively due to 

the tedious and costly process. With developments in imagery analysis methods, various 

indirect and non-destructive canopy structure assessments developed by researchers will now 

be introduced. 

Direct canopy structure measurements 

To directly assess the canopy performance and its structure, developed methods 

including point quadrat analysis (PQA), vineyard scoring, and destructive defoliation have 

been implemented and practiced (Smart & Robinson, 1991). To perform the PQA, a thin metal 

rod is inserted horizontally into the canopy's fruit zone, and any contacts with leaves and 

bunches are recorded. The insertion of a metal rod is to mimic the light interception and 

contacts of the rod with the leaves and bunches are an estimate of their exposure to light (Smart 

& Robinson, 1991). For all insertions, the average leaf layer number (LLN) is calculated 

according to the number of contacts with leaves, and a LLN value between 1-1.5 is suggested 

to be ideal. Being a direct and easy-to-understand method, PQA only samples a limited canopy 

section each time, and no spatial information regarding the information is collected (Meyers & 
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Vanden Heuvel, 2008). Another direct assessment approach, vineyard scoring, requires the 

assessor to stand in front of the grapevine and assess the canopy development according to set 

guidelines highly subjective and based on an assessor's expertise and experience (Smart & 

Robinson, 1991).  

 

To better quantify the canopy structure, leaf area index (LAI) was developed and 

defined by Watson (1947) as the total one-sided area of leaf tissue per unit ground surface area. 

Another similar parameter, plant area index (PAI) has also been widely used, which is the sum 

of leaf and other plant material (such as the shoots and bunches) relative to the ground area 

(Bréda, 2003). Studies on various crops and trees have shown LAI and PAI’s close 

relationships to photosynthesis net assimilation rate, spectral reflectance, absorption of 

photosynthetically active radiation (PAR), and evapotranspiration (Asrar et al., 1984; Bréda, 

2003; Jordan, 1969; Watson, 1958). To directly measure LAI, destructive leaf defoliation and 

the manual area measurement for each leaf area are required. Using a digital scanning 

planimeter can make the leaf area measurement faster, but all leaves still need to be collected 

before being scanned individually (Jonckheere et al., 2004). Therefore, the overall destructive 

LAI measurement approach is considered slow, highly precise, and limited to scientific 

research. Alternatively, allometric relationships between the leaf mass and its area can be used 

to estimate LAI. Leaf samples are collected, dried, weighed, and multiplied by the leaf area 

factor (cm2g-1), which is variety specific, to obtain the total leaf area (Gower et al., 1999). LAI 

can then be calculated by dividing the total leaf area against the ground area (Gower et al., 

1999; Grace, 1987; Sellin, 2000).  

 

Direct measurements of LAI are time-consuming, tedious, and destructive to the 

canopy structure (Bréda, 2003; De Bei et al., 2016). In practice, the direct measurement's 

sampling volume is also limited due to its destructive nature and loss made to yield (Gower et 

al., 1999). Therefore, the direct methods are unfavourable for providing canopy monitoring for 

vineyard management purposes and mostly serve as validation methods for indirect 

measurements because of high accuracy (De Bei et al., 2016; Doring et al., 2014; Ollat et al., 

1998).  

Indirect canopy structure measurements 
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To overcome the limitations of direct canopy structure measurements mentioned above, 

optical sensing is used to monitor canopy structure indirectly. Mabrouk & Sinoquet (1998) 

showed the virtual simulation of the canopy, using imagery analysis software, could be used to 

calculate some structural and spectral indices for describing the attributes of the light 

microclimate. The study by Dobrowski et al. (2002) utilized spectral indices measuring single 

vines in the field and aerial image analysis at the vineyard scale to demonstrate that the results 

are similar to measurement results from woodland and forest environments.  

 

The indirect estimation theories are based on the level of light interception and 

transmission by the canopy (Fournier & Hall, 2017). With the energy for photosynthesis 

coming from photosynthetic active radiation (PAR) (between wavelength 400-700 nm), a 

single, mature, and exposed grapevine leaf can absorb 87% PAR and transmit 6% PAR to the 

ground (Smart & Robinson, 1991). Also, the ratio of red to far-red light changes after 

transmission (from 1.2 to 0.18) due to stronger red light absorption by the leaf (Iland et al., 

2011). Therefore, by measuring the intensity and composition of transmitted light underneath 

the canopy, the canopy structure can be assessed by estimating the LAI and PAI. Compared 

with direct measurements, indirect estimation has also been more convenient in processing 

large sample sets with less time taken for each sampling (Jonckheere et al., 2004).  

 

Another parameter, the light extinction coefficient (k), which describes the canopies 

efficiency in intercepting light, also holds a key role in different indirect approaches (Campbell, 

1986). A high k value indicates that most of the light has been intercepted by the canopy. In 

contrast, a low k value indicates high light transmission. To use the k, the study by Vose et al. 

(1995) on hardwood forest species showed that k needs to be calibrated specifically according 

to the sampling site and species. The k value is also linked with seasonal changes but 

independent of major environmental parameters, including temperature, precipitation, and LAI 

(Zhang et al., 2014). For grapevine, it is suggested that the k value of 0.7 is the most accurate 

for the canopies trained as a vertically shoot positioned (VSP) trellis system (De Bei et al., 

2016; Sigfredo Fuentes et al., 2012). However, limited information is available about the k 

value for different grapevine cultivars, growing regions, and training systems which can have 

profound influences on the actual canopy structure. It requires more investigation to calibrate 

the k value in different application scenarios for more accurate results.  
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Non-foliage canopy structure components, aside from leaves, including the trunk, 

shoots, and bunches, can also absorb PAR. When calculating the canopy light absorption from 

transmitted light, the result includes PAR absorption by these non-foliage components (De Bei 

et al., 2016). Rather than obtaining LAI, the result is more likely to represent the PAI, 

potentially overestimating LAI (Neumann et al., 1989). For grapevine, parameters like vine 

age (representing trunk and cordon size) and training systems (for example, spur vs. cane 

pruning) can change the canopy structure and influence the accuracy of LAI estimation (De 

Bei et al., 2016). To overcome this, measurements of some non-foliage canopy components, 

such as trunk and cordon, during grapevine dormancy or early in the season can be used to 

quantify their contributions to PAI and be deducted to obtain a more accurate LAI (Sigfredo 

Fuentes et al., 2008). The necessity of calibration is therefore recommended to obtain the most 

accurate results. However, the contribution of bunches on PAI remains hard to assess as they 

only develop during the growing season.   

 

Applications for vineyard monitoring 

In practice, purposely designed LAI/PAI sensors have been developed to measure the 

transmitted PAR to estimate canopy size and vigour (e.g. SunSCAN by Delta-T). Another 

approach is to use a hemispherical image captured with a fisheye lens, which is then analysed 

to calculate the gap fraction in the image, which is analogous to light transmittance and allows 

for LAI determination (e.g. LI-COR sensors). These purposely designed LAI tools have been 

widely used in various viticulture research (Doring et al., 2014; Hall et al., 2008; López‐Lozano 

& Casterad, 2013; Petrie et al., 2004; Walker et al., 2000). However, there is a considerable 

financial input to obtain and maintain the specific device, with specific training being essential 

to interpret the data obtained. As a result, their practicabilities for vineyard monitoring by grape 

growers and industry practitioners are limited.  

 

More recently, with easier access to smartphones or tablets, these digital platforms have 

been used to create novel approaches for LAI estimation. For example, in a series of studies by 

De Bei et al. (2016), Fuentes et al. (2008), and Fuentes et al. (2014), a smartphone application 

(smart-app) VitiCanopy has been developed to calculate PAI based on the upward-looking 



12 

 

digital images captured under the vine by the on-board camera. In these studies, the app is an 

accurate, cost-effective, and easy-to-use method to estimate the spatial and temporal LAI and 

canopy structure, compared to standard measurements obtained from the professional 

instrumentation (with a R2 value of 0.89). Similarly, another smartphone application, 

PocketLAI, developed by Confalonieri et al. (2013), was applied to measure PAI and compared 

with the results from hemispherical photography and destructive measurements (Orlando et al., 

2016). The major difference between this application and the previously mentioned VitiCanopy 

is that the image is obtained at the sensor angle of 57.5° off-nadir upward, compared to 90° 

upward VitiCanopy. This specific angle is suggested to reduce the negative effect of leaf 

clumping (Baret et al., 2010).  

 

With the rapid development of imagery analysis algorithms, LAI and PAI's calculation 

to estimate the canopy structure has been greatly simplified. However, LAI's measurement via 

novel indirect methods still requires more research to reduce the inaccuracies caused by factors 

such as leaf clumping, variable light conditions, and different phenological developmental 

stages. It is also necessary to adapt, calibrate and validate these methods to different canopy 

manipulation practices and trellis systems (De Bei et al., 2016; Jonckheere et al., 2004; 

Macfarlane et al., 2007). 

2.4 Platforms for Canopy Sensing  

Optical sensing to obtain canopy structure parameters require remote sensing platforms 

that include hand-held devices, ground vehicles, manned and unmanned aircraft, and satellites. 

With increasing distance between the platform and the canopy, larger sensing coverage is 

achieved in a single capture but potentially reduced precision. Various costs and skills are also 

required to perform canopy sensing when using different platforms. Therefore, it is crucial to 

understand each platform's advantages and limitations and select the most suitable tool for 

vineyard monitoring according to the desired end-use.  

 

Hand-held devices and ground vehicles   

Canopy sensing using ground vehicles as the carrier platform has several advantages. 

First, canopy measurements are obtained with higher resolutions at a much closer sensing 
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distance. Second, most growers have ground vehicles, such as tractors or all-terrain vehicles, 

meaning the deployment of field sensing activities can be more conveniently managed and 

responsive to immediate demands and is less constrained by the weather conditions. Third, 

canopy monitoring can be performed concurrently with common vineyard operations, such as 

spraying, shoot trimming, and slashing (Bramley et al., 2007; Gatti et al., 2016). 

 

Historically, canopy sensing with hand-held devices evolved from Hill's fisheye lens to 

characterize forest light conditions (Evans & Coombe, 1959). Sensors held by hand or 

supported by specially designed stands are the most common forms of canopy sensing 

platforms using both hemispherical imagery and normal digital imagery. For instance, the 

professional canopy analyser and smartphone apps (VitiCanopy and PocketLAI) discussed in 

a previous section are based on hand-held devices (De Bei et al., 2016; Orlando et al., 2016). 

 

Hand-held devices with sensors have the advantages that (i) provide real-time 

information on current canopy performance and (ii) serve as a ground-truthing method for 

remote sensing-based systems, algorithms, or instruments (e.g., used for the UAV platform 

accuracy assessments). However, hand-held sensors' limitations include the discrete data 

points, limited capacity to build 3D canopy architecture models, and the time-consuming nature 

of data collection in the field. Nonetheless, with the convenience and accessibility of having a 

smartphone capable of acquiring, storing, and processing high-resolution images, hand-held 

devices' potential should not be underestimated. 

 

Canopy sensing using ground vehicles to measure grapevine vegetative parameters 

generally uses similar indices as aerial remote sensing. Different studies have designed various 

novel systems. Stamatiadis et al. (2006) investigated the relationship between NDVI and 

several grapevine properties, including pruning weight and berry sugar content. Additionally, 

with multispectral sensors mounted on a tractor, images can be obtained at nadir and side view 

angles. Results showed that the images from nadir view (R2=0.64) were more correlated with 

biomass than from side view (R2=0.41). A high correlation was also found between NDVI and 

the biomass (R2=0.80).  
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In more recent studies, Grocholsky et al. (2012) and Nuske et al. (2014) described a 

tractor-mounted laser scanning system to: (i) measure the canopy shape and volume and (ii) 

estimate yield based on berry texture, colour, and shape; where both approaches were within 

10% error. Similarly, Gatti et al. (2016) introduced the multi-sensor MECS-VINE® system, 

which measures Canopy Index (CI) using two sideway RGB sensors. CI is a novel index for 

describing canopy wall biomass that takes the canopy size and canopy wall thickness into 

account. The results showed the system was suited to small-sized vineyards, especially for 

those less than two ha. It also suggested that the 3D canopy point cloud can be converted into 

a 3D occupancy grid to reduce the large dataset generated. For applications beyond the growing 

seasons, Kicherer et al. (2017) designed a dormant cane analysis system that used depth map 

calculation and image segmentation to estimate pruning weight. The system claims to serve as 

an objective method to select healthy canes for propagation phenotypically.  

 

In addition to new systems, commercially available methods also attract critical 

evaluation to examine their application capacity in different growing environments. Bramley 

et al. (2007) tested the feasibility of measuring canopy porosity using the tractor-based system, 

Grapesense developed by Lincoln Venture (Lincoln, New Zealand) for Australian vineyards. 

However, the system was shown to have difficulties in controlling the distance between leaves 

and the camera during driving, and the problem became more significant as the canopy vigour 

level increased during the growing season. Suggested improvements include hardware and 

software design changes for late-season measurements and relocation of the camera from the 

rear to the front so that the 3-point linkage at the back of the tractor can be reserved for 

fieldwork machinery. Similar to studies mentioned before, sensors with a mounting height of 

0.7m on a tractor were shown to be most suitable and accurate for these measurements. 

 

Satellite and airborne platforms 

As widely used remote sensing platforms, satellite and manned aircraft have been used 

to monitor vineyard performance for scientific research and commercial production purposes. 

Satellites carrying multispectral or hyperspectral sensors can generally capture metre level 

resolution imagery, such as Landsat (30m resolution) and Sentinel (10m resolution) series 

satellites, with some more recent high-resolution candidates capable of achieving sub-meter 

level resolutions, such as WorldView series satellites (Di Gennaro et al., 2019; Jones et al., 
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2020; Sun et al., 2017). Manned aircraft can achieve higher resolutions at sub-metre or 

centimetre levels, depended on the flight height (Bellvert et al., 2016). Unmanned aerial vehicle 

(UAV or more commonly known as ‘drone’) can further acquire sub-centimetre resolution 

imagery with the advantage of low flight height but at the cost of much smaller coverage, 

compared with satellite and manned aircraft (Hall, 2018). For both satellites and aircrafts, a 

wide range of sensors can be carried, such as Red-Blue-Green (RGB), multispectral, 

hyperspectral, thermal, and laser sensors (Colomina & Molina, 2014; Hall et al., 2018) 

 

Different imagery resolutions captured by satellite and manned aircraft can be used for 

various monitoring purposes. Metre level resolution imagery can be used to show the spatial 

canopy variability in the vineyard and divide the whole vineyard or block into zones with 

different canopy structures using classification algorithms (Bramley, 2005; Sun et al., 2017). 

However, it is challenging for metre level resolution imagery to distinguish canopy and the 

background soil in the imagery when a single pixel is wider than the canopy width. Because 

each pixel, being the basic component of the imagery and cannot be further divided, can contain 

the combined reflectance from the canopy and the ground (Njoku, 2014). When the inter-row 

background soil is included in the imagery, it reduces the canopy structure estimation accuracy 

(Ouyang et al., 2020). Ground interference can be introduced if ground vegetation is present in 

the vineyard. Similarly, the segmentation and analysis of an individual vine will also be 

difficult with limited resolution since each pixel can potentially contain reflectance from 

different vines (Chanussot et al., 2005, Jones et al., 2020).  

  

Improved resolution from metre to even centimetre levels allows identifying the row 

pattern of the established grapevine canopy in the vineyard (Bellvert et al., 2016). It also 

enables the segmentation of the canopy from the background soil and offers much stronger 

capabilities to identify the vineyard's spatial variabilities. The interference from the ground 

vegetation can also be filtered out by either extracting canopy-related pixels according to 

spectral indices thresholds or according to the polygon masks defining individual rows' 

boundaries. Identifying individual vines in the imagery can also be achieved with higher 

resolution, which offers great value to precision vineyard management. The improvement in 

imagery resolution by using better sensors or captured at a closer distance also quantifies the 
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spatiotemporal uncertainties in the data and improve the overall data quality (Kalua et al., 

2020). 

 

UAV, defined by the International Civil Aviation Organization, is “a pilotless aircraft 

which is flown without a pilot-in-command on-board and fully controlled from another place”. 

The rapid development in the UAV design and manufacturing has further enabled this platform 

to carry a wide range of optical sensors, similar to those carried by manned aircraft and satellite. 

Compared with aircraft or satellite sensing, UAV sensing demonstrates advantages in its 

flexibility, high image resolution, precision and the ability to capture individual grapevine 

vigour discontinuity (Gatti et al., 2017; Matese et al., 2015). Therefore, the gaps in continuous 

canopy or missing vines common in commercial vineyards can be detected (de Castro et al., 

2018).  

 

Various studies using the UAV platform for estimating canopy structure correlated with 

ground measurement or other remote sensing approaches (Table 3). For example, studies 

presented by Mathews and Jensen (2013) and Poblete-Echeverría et al. (2017) demonstrate that 

the LAI predicted from point clouds, reconstructed from overlapped RGB imagery captured by 

UAV, has moderate to good correlations with ground based measurements. Additionally, 

canopy models can be used to identify canopy, canopy shadow, and the background soil 

according to height differences (Weiss & Baret, 2017). The canopy structure's dimensions 

calculated from the 3D models, such as canopy height and canopy volume, also align with 

ground-based canopy dimension measurements (de Castro et al., 2018; Pádua et al., 2018). The 

3D models created by UAV-based imagery enable the creation of large-scale vineyard models 

without expensive laser scanning techniques. They can deliver more practical measurements 

for vineyard management (Njoku, 2014). Despite the advantages mentioned above, various 

studies also outline UAV limitations, such as limited coverage from a single flight and the 

requirement for regular battery changes, due to the limited power in each battery (Table 3). 

Similarly, carrying multiple sensors for capturing multiple types of data also 

substantially reduces the coverage in a single flight, due to an increase in payload and a 

potential increase in power requirement if there is a need to power additional sensor(s). For 

vineyard monitoring, UAV operations for the vineyard area above 50 ha have been less cost-

effective than air-plane and satellite (Andújar et al., 2019; Matese et al., 2015). The operating 
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costs of satellite and aircraft to capture imagery over a large growing area generally involve 

marginal increases (Matese et al., 2015). In comparison, UAV operating in the same scenario 

will require a substantially higher payload to carry a larger battery or change batteries 

considerably more frequently, both of which can increase the operational costs (Andújar et al., 

2019; Matese et al., 2015).  

Some other limitations when using UAV include complicated and customized image 

analysis algorithms, software, and systems involved in analysing the UAV imagery (Jones & 

Grant, 2015; Matese et al., 2015). This may create difficulties in transforming research 

outcomes into practical systems for vineyard monitoring. In future studies, creating UAV-

based canopy sensing systems that are light in weight, open-source in algorithms, and 

reliability tested under various environments can significantly improve the system's 

practicability and reliability. 

   

2.5 Data Analysis for Canopy Optical Sensing 

Data analysis approaches  

Depending on the platform and the onboard sensor, various types of data can be 

collected during the optical sensing of canopy structure; examples include imagery, video, and 

point cloud (by LiDAR scanning, (Siebers et al., 2018)). Currently, imagery is the main data 

type collected, with a wide range of imagery sensors available and a rich range of computer 

vision algorithms. Depending on the spectral band collected, panchromatic, RGB, 

multispectral, and hyperspectral imagery can be collected. For satellite remote sensing, 

panchromatic imagery, which represents the sum of all spectral bands sensed, is also collected 

and can be used to improve the resolution of RGB and multispectral imagery, using the process 

called pan-sharpening (Njoku, 2014). As mentioned previously, with photogrammetry 

development, digital models of the vineyard, including the digital surface model (DSM) and 

point cloud, can be reconstructed from digital imagery. This allows for the creation of 3D 

canopy models without laser scanning techniques (LiDAR) and allows more information to be 

extracted from the aerial imagery analysis (Mathews & Jensen, 2013).   
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Data collected using sensors in handheld devices is generally as discrete points created 

as the assessor walks along the rows, such as PAI measurements reported in De Bei et al., 

(2016), Wang et al. (2019), and Orlando et al. (2016). This approach is useful as a random 

sampling approach for understanding canopy size and development. The data volume and 

complexities in the data processing are also substantially reduced with the discrete sampling 

points. As such, measurement results are available promptly in the field, avoiding complicated 

data processing for continuously collected data, such as sensors mounted on the tractor (Nuske 

et al., 2014; Siebers et al., 2018). Compared with purposely designed measurement equipment 

(such as LI-COR and GreenSeeker sensors), the sampling locations' geographic coordinates 

can be collected by the smartphone app during the sampling process, using the internal GPS 

receiver (Orlando et al., 2016). However, it cannot achieve a continuous measurement of the 

canopy structure, leading to an undetected canopy between data points. For example, missing 

grapevine and canopy gaps may not be captured during the process if not sampled intensively 

in the area of interest. 

 

For processing large volumes of data generated from continuous canopy sensing, the 

rich range of machine learning (ML) algorithms available for computer vision applications has 

also been used by researchers (de Castro et al., 2018; Jones et al., 2020; Poblete-Echeverría et 

al., 2017). Using ML algorithms, the precision in canopy detection can be improved, and the 

time required for data processing can be reduced. To apply ML, the majority of the data is used 

to train the classification model. In contrast, a small set of data is used to validate the training 

results, and the training repeats itself multiple times until a satisfactory detection accuracy is 

achieved. The model in the training stage will constantly adjust itself to improve the detection 

accuracy. A confusion matrix is often used to quantify detection accuracy by comparing the 

manual classification and the ML classification algorithms' output (de Castro et al., 2018; 

Poblete-Echeverría et al., 2017). During multispectral image analysis, the combinations of 

different wavelengths allow various vegetative indices to be generated. To determine the most 

suitable indices for canopy monitoring, they can also be fed into different training models to 

select the one that has the strongest correlation to the validation data or the ground 

measurement (Albetis et al., 2017; Poblete-Echeverría et al., 2017). In the study by Poblete-

Echeverría et al. (2017), four classification methods K-means, artificial neural networks 

(ANN), random forest (RForest), and spectral indices (SI) were applied to detect canopy related 

pixels in the UAV imagery. Results showed that the ANN and the SI method complemented 
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with the Otsu method for thresholding presented the best performance in canopy classification. 

In Jones et al. (2020), a convolutional neural network was automatically used to detect and 

segment vineyards across Australia using satellite imagery.  

 

Mapping vineyard spatial variation  

Spatial variation of canopy development in vineyards is widely observed and causes 

variability in yield and crop quality in different zones within the same vineyard (Bramley et 

al., 2017; Ledderhof et al., 2017). In light of that, various studies have focused on using canopy 

sensing to characterize vineyard performance and identify the causes of spatial canopy 

variation. Identifying the spatial variability also allows for zonal management to be applied to 

mitigate and reduce variability. The precise locations of the underperforming canopy 

determined by canopy sensing can greatly benefit growers when planning and executing 

vineyard management practices. 

 

Using remote sensing imagery in different spectral bands, Romero et al. (2018) and 

Bellvert et al. (2016) used UAV-based multispectral imagery and airborne thermal imagery, 

respectively, to estimate the water status in vineyards treated with different irrigation 

treatments. Results demonstrate the strong potential of these imagery types to be used as a 

trigger for irrigation application to maximize the efficiency of irrigation water usage. High-

resolution imagery can also demonstrate the difference in water stress on a plant-by-plant basis, 

which can be an important indicator for plant health. Using satellite imagery-based canopy 

sensing, which has a lower resolution than imagery obtained using UAV and aircraft, vineyards 

can be divided into different zones, representing various canopy development stages, yield, 

and even crop quality. Sun et al. (2017) used Landsat multispectral imagery derived NDVI and 

LAI indices to identify zones with different canopy development in the vineyard. The yield 

prediction generated by satellite remote sensing recorded less than 20% error, compared with 

the yield at harvest. Similarly, the study by Carrillo et al. (2016) showed that canopy sensing 

could assist yield prediction and improve the prediction accuracy by 5-7%. However, yield 

predictions for the next growing season using satellite imagery did not show comparable results 

compared with bud dissection results (Cunha et al., 2010).  
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With a combination of remote sensing and data collection in the field, a series of studies 

by Bramley and Hamilton (2004), Bramley (2005), Bramley et al. (2011), Scarlett et al. (2014), 

and Bramley et al. (2017) demonstrate the process of identification and mapping of spatial 

variability in vineyard. These studies focused on identifying the spatial variability of yield and 

distribution of the rotundone compound, contributing to ‘pepper’ flavours in the grape. A 

combination of remote and proximal canopy sensing, high-resolution electromagnetic 

induction EM38 soil surveys, geographic information collection in field and berry component 

chemical analysis was performed to achieve these targets. Results show that differences in soil 

types, water availability and topographic formations of the vineyard were found to be the 

important drivers for within-vineyard variation.  

 

To deliver a more uniform quality crop at harvest, zonal management in the vineyard 

is suggested to be the key approach for mitigating and reducing spatial variability. In Bellvert 

et al. (2021), Bellvert et al. (2016) and Savi et al. (2018), different irrigation sectors were set 

up according to remotely sensed canopy vegetation indices and the economic returns of the 

crop were improved, as a result. In Di Gennaro et al. (2019) and Sun et al. (2017), zones set up 

according to vegetation indices correlates well with the crop yield at harvest and provide 

potential solutions for selective harvest. Apart from these previous studies, zonal management 

can also be used for vineyard management applications such as variable mulching rates and 

canopy manipulation intensities.  

 

Various ground and aerial remote sensing-based approaches have effectively mapped 

spatial canopy variability in vineyards. However, further improvements and research are 

needed for system design, software-hardware integration testing, open-source development, 

and system robustness. As previous studies have proven the feasibility of using image analysis 

approaches for canopy monitoring and setting up zonal management, future studies can focus 

on developing practical applications and case studies for specific vineyard management 

purposes. These monitoring systems can be explored, assessed, and improved. By addressing 

these aspects, the reliability of innovative canopy monitoring approaches can be enhanced and, 

therefore, improve the wine industry's productivity. 
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2.6 Conclusion 

Canopy structure directly affects yield and fruit quality and is influenced by multiple 

environmental factors, especially light conditions. Canopy structure can be manipulated by 

various canopy management practices to balance vegetative growth and fruit development. 

Applying management practices at different input levels and during different canopy 

developmental stages can influence the canopy structure. To measure and quantify the canopy 

structure, the indirect measurements of canopy vigour using aerial or ground imagery analysis 

are superior to direct measurements as they are more cost-effective and convenient. Among 

various optical sensing parameters, LAI calculated from RGB imagery has a strong correlation 

with destructive measurements. Multispectral imagery can provide additional information on 

the canopy performance. Point cloud can offer precise three-dimensional measurements to the 

canopy structure. Various ground and airborne vehicles can be employed as the sensor carrier 

platforms for canopy structure measurement with multiple advantages and limitations. Future 

studies should focus on creating tools/systems tailored for practical purposes such as canopy 

development monitoring, canopy manipulation evaluation, and grapevine decline detection 

with the limited adoption of imagery analysis in vineyard monitoring.  
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Highlights 

• Canopy volume calculated from UAV based point cloud offers accurate 

measurements of canopy structure for the whole vineyard.  

• Ground-based PAI from imaging can be used as a rapid and convenient 

parameter related to canopy structure in the field.  
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• Other capabilities and limitations of ground and UAV optical grapevine 

canopy sensing were summarized. 

• The selection of UAV or ground measurements should be determined by 

the purpose of the monitoring. 

 

Abstract 

Monitoring grapevine canopy development is an important practice for vineyard 

management. However, measuring canopy architecture is a complex task. Aerial 

remote sensing using unmanned aerial vehicles (UAV) can capture high-resolution 

images and create three-dimensional point cloud data. This study aimed to compare 

UAV-based remote sensing with ground measurements to monitor canopy 

architecture and its development. UAV flights were conducted over a vineyard in 

South Australia, and RGB and multispectral imagery were collected. Vegetative 

indices from UAV imagery, including normalized difference vegetation index (NDVI), 

plant area index (PAI), and canopy volume calculated from point cloud data were 

compared to PAI calculated from ground canopy cover imagery. Results showed that 

both UAV-derived and ground measurements detected peak canopy size around 

veraison. Canopy volume correlated well with ground-based PAI (R2>0.6, p<0.05). 

However, at early developmental stages, the accuracies of spectral indices were 

impacted by inter-row ground vegetation. For the latter case, point cloud data analysis 

by height variation can effectively filter out ground vegetation and only extract the 

canopy structure for monitoring canopy development. At the peak of canopy size, PAI 

calculated from aerial imagery was overestimated compared with ground 

measurement due to lower canopy porosity captured in the UAV imagery than 

ground imagery. This study showed that UAV remote sensing could be an alternative 

approach to ground measurements for vineyard monitoring. Still, UAV remote 

sensing in viticulture faces the challenges of integrating sensors, running customized 

image analysis procedures and fulfilling specific weather conditions. As a general 

guide, the selection of ground and/or UAV approaches for canopy development 

monitoring should be based upon the targeted levels of detail and precision required 

for management purposes.  
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Introduction 

Maximizing grape quality traits and yield can be achieved by manipulating 

grapevine canopy architecture (Jackson and Lombard, 1993). More open canopies, 

with high porosity that allow more light to reach the fruit zone have been reported to 

improve the accumulation of colour and flavour in berries. In contrast, dense canopies 

can reduce them (Dokoozlian and Kliewer, 1995). Moreover, grapevine diseases, such 

as trunk disease, can adversely impact canopy development (Sosnowski et al., 2008; 

Valtaud et al., 2011). Therefore, canopy architecture is a key factor of vineyard 

performance as it is closely related to the yield and quality of grapes (Dry, 2000; Smart 

and Robinson, 1991). 

 

To assess canopy architecture, leaf area index (LAI), defined as the total one-

sided area of leaf tissue per unit ground surface area, has been widely used 

(Vasconcelos and Castagnoli, 2000; Wang et al., 2019; Watson, 1947). To accurately 

calculate LAI, labor-intensive destructive measurements are usually required (Gower 

et al., 1999; Jonckheere et al., 2004). Similar procedures are also needed for plant area 

index (PAI), which is defined as the sum of LAI and woody structures or non-leaf 

material (Bréda, 2003). To overcome this disadvantage, indirect measurements of LAI 

and PAI performed by capturing canopy cover images have been developed (Fuentes 

et al., 2014) and were shown to achieve very close correlation with the destructive 

measurements (R2 = 0.9; De Bei et al., 2016; Orlando et al., 2016).  

 

 Remote sensing is used to monitor grapevine canopy development. Aircraft 

and satellite-based remote sensing have been used to detect spatial and temporal 

variation in canopy development using spectral vegetative indices such as normalized 

difference vegetation index (NDVI) and plant cell density (PCD) (Hall, 2018). 

Recently, unmanned aerial vehicles (UAV) have gained increasing research interest in 

capturing high-resolution vineyard images (Matese et al., 2015). These images can be 

used to create high-resolution vineyard orthomosaic images and point clouds 

containing the three-dimensional (3D) structural information (Blaschke et al., 2014; 

Njoku, 2014). Recent studies have applied UAV remote sensing to monitor canopy 

health, disease incidence, and grapevine water status (Albetis et al., 2017; de Castro et 

al., 2018; Romero et al., 2018; Su et al., 2016). The potential to monitor spatial-temporal 

changes in grapevine canopy structure (e.g., canopy height, area, and volume) has 

also been investigated (Pádua et al., 2018).  

 



27 

 

Point cloud analysis created from UAV imagery offers great potential for 

canopy monitoring (Mathews and Jensen, 2013). Point cloud analysis has been 

commercially used to quantify forest canopy volume (Lisein et al., 2013; Njoku, 2014; 

Tanhuanpaa et al., 2016). However, its applications to monitor grapevine canopy 

development are still relatively limited to scientific research. Unlike forest models, 

vineyard-focused models trained with continuous canopy systems contain a 

repetitive row-space pattern at a high density. The latter normalizes the background 

inter-row terrain in vineyards more technically challenging, with the terrain partially 

covered by the canopy (Ballesteros et al., 2015; de Castro et al., 2018). Therefore, the 

vineyard point cloud requires the precise detection and extraction of canopy points 

before being used to monitor canopy structure.  

 

When implementing UAV-based remote sensing for vineyard management, it 

is critical to compare ground and UAV based monitoring outcomes and how their 

accuracy changes during the growing season. Summaries of the advantages and 

limitations of UAV applications will also help guide similar work in the future. With 

this in mind, this research aims to explore and compare practices of monitoring 

spatial-temporal vineyard canopy development using ground and UAV-based 

measurements, including imagery and point cloud analysis.  

 

Materials and methods  

Site description, vineyard management 

The vineyard used for this study was located at the Waite Campus, University 

of Adelaide (South Australia, Australia; Lat 34°58'3.0"S, Lon 138°38'0.6"E). Grapevines 

were trained to a bilateral spur-pruned cordon with vertical shoot positioning (VSP) 

at a cordon height of 0.8m. A Shiraz block (11 rows) and a Semillon block (9 rows) 

with 14 panels per row were monitored in this study (Figure 1). At the same panel 

length of 5.4m, there are two vines per panel with 2.7m spacing in the Shiraz block. In 

the Semillon block, there are three vines per panel at the 1.8m spacing. The total 

vineyard area monitored was 0.5 ha (683 plants). Rows are set up in a north-south 

orientation with a spacing of 3m. Standard canopy management practices were 

applied across the two growing seasons (Table 1).  
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Figure 1. The monitored vineyard in South Australia, containing a Shiraz block 

(□) and a Semillon (□) block. Dots denote the locations of ground imaging. 

 

Table 1. Canopy management practices applied to the monitored vineyard 

(DAB: Day after budburst; PS: phenological stage, defined by E-L stages) 

(Coombe, 1995). 

DAB PS Canopy management practices 

68 20 Foliage wire lifting 

77 31 Leaf removal in the bunch zone 

79 31 Second foliage wire lifting and shoot trimming 

114 36 Overhead netting for bird control applied (no further UAV flights) 

 

Ground PAI measurements 

Upward-looking digital cover images were acquired in the vineyard using the 

method described in De Bei et al. (2016) and the VitiCanopy smartphone app. Two 

images were taken from each panel using the front camera of an iPhone 7 (Apple Inc., 
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Cupertino, CA, USA) with a resolution of 7.2 megapixels, for a total of 28 images per 

row. The images were taken at ground level (0.8m below the cordon) every three to 

four weeks from budburst (E-L stage 4) to harvest (E-L stage 38, Table 2, (Coombe, 

1995). During each measurement time point, 560 images were acquired from the 

Shiraz (n=308) and Semillon (n=252) blocks. More than 7000 images were collected 

across the two growing seasons. 

Table 2. Ground image acquisition dates and the corresponding days after 

budburst (DAB) across the two growing seasons (2017-18 and 2018-19). 

2017-18 DAB 2018-19 DAB 

20/9/17 4 3/10/18 13 

15/10/17 27 18/10/18 28 

20/11/17 63 31/10/18 41 

6/12/17 79 15/11/18 56 

21/12/17 94 28/11/18 69 

16/1/18 120 11/12/18 82 

  4/1/19 106 

 

 

Ground-based PAI (PAIg) and foliage projective cover (FCg), which has been 

defined as the “proportion of ground area covered by the vertical projection of foliage 

and branches,” were calculated from the imagery (De Bei et al., 2016; Macfarlane et al., 

2007). The same position was used for image acquisition in all measurements across 

the two growing seasons (Figure 2). A length measurement was carried out to collect 

the imaging position (considered to be more precise than those recorded by the 

smartphone’s GPS on the fly (±5m)). The distance (l) between every image and the 

posts at the row end was recorded in the length measurement. The posts' geographic 

coordinates at the row end (x, y) and the row angle (β) were recorded from the geo-

referenced orthomosaic imagery. The geographic coordinates (xi, yi) of all locations of 

imaging were calculated as follows: 

 
xi = x + l/ sinβ 

yi = y + l/ cosβ (1) 

xi  and yi (dots in Figure 1) were also used as the coordinates for extracting remote 

sensing measurements to compare with ground-based measurements.  
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Figure 2. Example of images captured during the development of the same 

Shiraz canopy section in the 2017-18 growing season, days after budburst 

(DAB), and ground-based PAI values (PAIg) calculated by the VitiCanopy app 

are shown below each image. 
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UAV-based aerial measurements  

UAV flights were performed at the same stage as ground measurements. Seven 

flights were carried out in both growing seasons. Flights were conducted around solar 

noon (between 1200 and 1400 hr, solar time) to minimize the shadow effect and 

enhance the color segmentation between vegetation and ground (Poblete-Echeverría 

et al., 2017).  

UAV flight plans were set and controlled by a remote controller with flight 

routes set through the flight control software Pix4Dcapture (Pix4D, 2018a). Flights 

were maintained at an altitude of 30m and a speed of 2m/s. Nadir imagery acquisition 

was triggered automatically at the 85% overlap ratio between two nearby images. The 

geographic coordinates of all images were recorded during the flight.  

Both RGB and multispectral imagery were collected during the flight using the 

same UAV. RGB images were captured by the integrated Phantom 4 Pro quadcopter 

camera with 20 megapixels resolution (DJI, Shenzhen, China). Multispectral images 

were acquired with a Sequoia multispectral camera (Parrot SA, Paris, France) with 1.2 

megapixels resolution, recording reflectance at green (550nm, bandwidth 40nm), red 

(660nm, bandwidth 40nm), red edge (735nm, bandwidth 10nm), and near-infrared 

(NIR, 790nm, bandwidth 40nm) bands. The multispectral images were radiometrically 

calibrated by a downwelling sunlight sensor and a calibrated reflectance panel 

(MicaSense, Seattle, USA). The average ground sampling distance for the RGB and 

multispectral images were 0.9cm and 3.6cm, respectively. In the 2017-18 growing 

season, a single grid flight route was used while a double grid route was applied in 

2018-19 to test the potential of improving reconstructed point cloud quality. 

 

Point cloud analysis for calculating canopy volume and area 

From aerial RGB and multispectral images, vineyard orthomosaic image and 

point cloud were reconstructed using the commercial structure-from-motion images 

processing software Pix4Dmapper (Pix4D, 2018b). After reconstruction, orthomosaic 

imagery was geographically referenced to ground control points. Point clouds were 

stored in a polygon file format containing about 11-15 million points for the 0.5 ha 

vineyard.    

For the point cloud analysis, a customised point cloud analysis procedure was 

developed in Matlab ver.2018b (Matlab®, 2018; Figure 3). The method includes canopy 
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feature selection, grapevine row extraction for the canopy volume, and area (surface 

and projected) calculations. In the procedure, the point cloud was first displayed at a 

perspective view, and canopy point cloud centres at the first and last rows were then 

manually selected. Intermediate row centre 1coordinates were calculated from the 

row spacing distance and the first and last row coordinates (step 1). When using row 

coordinates, the vineyard point cloud was separated into individual row point clouds 

(step 2). A single-row point cloud was further divided into individual panel point 

clouds (step 3). In each panel point cloud, the ground points (purple) and canopy 

points (green) were identified by the MLESAC method (Torr and Zisserman, 2000) 

using limited angular distance among neighbouring points (step 4). Generally, in a 

single panel point cloud, less than half of the total points were canopy points with 

other points corresponding to ground, floor vegetation, trunk, and overhanging 

shoots (Figure 4). An alpha shape was created from the canopy points using the set 

alpha radius (α=0.2m, step 5) (Edelsbrunner et al., 1983). With an increasing α, the 

alpha shape expands to a convex hull, potentially overestimating the actual canopy 

structure (Milella et al., 2019). The volume and area (surface and projected) of the 

alpha shape were calculated as the canopy volume (V, m3/m) and area (As and Ap, 

m2/m). 

 

Figure 3. Flowchart for the point cloud analysis program for canopy volume 

and area (projected and surface) calculations for an individual panel using a 

vineyard point cloud.  
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Figure 4. From left to right: (a) Single panel point cloud; (b) ground point cloud; 

(c) extracted from the original point cloud using the MLESAC method; (d) 

canopy point cloud after the exclusion of ground points and points below the 

cordon height. 
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Multispectral and RGB orthomosaic calculations   

Spectral indices NDVI and PCD, were calculated from individual red (660nm) 

and near-infrared (NIR, 790nm) band images with the following equations: 

 
𝐍𝐃𝐕𝐈 =

𝐍𝐈𝐑 − 𝐑𝐞𝐝

𝐍𝐈𝐑 + 𝐑𝐞𝐝
 

 

𝐏𝐂𝐃 =
𝐍𝐈𝐑

𝐑𝐞𝐝
 

                              (2) 

 

                              (3) 

The canopy pixel layer was extracted from the vineyard raster using 

unsupervised classification. With fixed vine and row spacing, a single vine raster was 

extracted from the canopy pixel layer, and the mean spectral index value per vine was 

calculated.  

RGB orthomosaic image was processed using a Lab colour space profile 

threshold to extract green canopy pixels, resulting in another canopy pixel layer. The 

canopy pixel layer was then converted into a binary raster, and UAV-based PAI and 

FC (PAIu and FCu) were calculated from the binary raster based on Beer’s Law (De Bei 

et al., 2016; Fuentes et al., 2019; Macfarlane et al., 2007). 

Statistical analysis 

The development of ground and UAV based measurements during the 

growing seasons were plotted using GraphPad Prism (ver. 8.0). Correlation matrices 

were also created to calculate the coefficient of determination (R2) values, based on 

linear relationship assumption, using the curve fitting toolbox in Matlab (MathWorks 

Inc, 2018). It should be noted that the NDVI, PCD, PAIu, and FCu data collected before 

DAB 30-40 contained a high level of background interference from ground vegetation. 

This data was excluded from the correlation calculation to improve the overall 

accuracy (see discussion below). It also allowed the assessment of performance 

measurements for these measurements during the critical growth stage of grapevine 

flowering and veraison.  
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Results and discussion 

Canopy development monitoring by ground and UAV-based measurements 

Similar canopy development patterns were observed for the two varieties over 

two growing seasons in both ground and aerial-based point cloud measurements 

(Figure 5). Point cloud-derived canopy volume and area (V, As, and Ap) and ground-

based PAI and FC (PAIg and FCg) increased from budburst (DAB 0) and peaked at 

around veraison (DAB 100) (Figure 5 and Figure 6). PAIg increased rapidly from 

values of 0.2-0.3 to 1.8-2.0, reflecting a rapid increase in shoot length, leaf number, and 

leaf size during spring. After the peak in PAIg, canopy management practices were 

applied to regulate canopy development. Around one month before veraison (DAB 

90), V and Ap also peaked at the same stage, similar to Pádua et al. (2018). After the 

peak at veraison, values remained stable until the last measurement (at DAB 110). 

In comparison, spectral indices (PCD and NDVI) and UAV-based PAI 

measurements (PAIu and FCu) demonstrated a clear overestimation at early 

development stages (Figure 5 and Figure 6), likely caused by the interference of 

vineyard floor vegetation in the vineyard during winter and spring (discussed later). 

The measured values declined after DAB 30-40 with the reduction in floor vegetation 

and then increased and peaked again at around DAB 100 due to canopy growth.   
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Figure 5. Canopy structure parameters monitored in a Shiraz block, South Australia, during 2017-18 (●) and 2018-19 (◦) 

growing seasons. Measurements dates were recorded as days after budburst (DAB). Parameters shown are: canopy volume 

per meter canopy length (V, m3/m); canopy surface area per meter canopy length (As, m2/m); canopy projective area per meter 

cordon length (Ap, m2/m); foliage cover calculated from UAV imagery (FCu); plant area index calculated from UAV imagery 

(PAIu); plant cell density (PCD); normalized difference vegetation index (NDVI); foliage cover calculated from ground imagery 

(FCg) ; plant area index calculated from ground imagery (PAIg). Except for point cloud-derived parameters (V, As, and Ap), all 

other measurements are unitless. Error bars show the standard error of the mean of each measurement. 
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Figure 6. Canopy structure parameters monitored in a Semillon block, South Australia, during 2017-18 (●) and 2018-19 (◦) 

growing seasons. Measurements dates were recorded as days after budburst (DAB). Parameters shown are: canopy volume 

per meter canopy length (V, m3/m); canopy surface area per meter canopy length (As, m2/m); canopy projective area per meter 

cordon length (Ap, m2/m); foliage cover calculated from UAV imagery (FCu); plant area index calculated from UAV imagery 

(PAIu); plant cell density (PCD); normalized difference vegetation index (NDVI); foliage cover calculated from ground imagery 

(FCg) ; plant area index calculated from ground imagery (PAIg). Except for point cloud-derived parameters (V, As, and Ap), all 

other measurements are unitless. Error bars show the standard error of mean of each measurement. 



38 

 

In the correlation matrix for Shiraz (Table 3(a)), canopy volume (V) showed a 

high correlation with most of the other measurements (R2 ranging between 0.72 and 

0.88), except for NDVI (R2=0.58 in both seasons). The latter results demonstrate the 

potential of using canopy volume as a representative parameter for measuring the 

canopy structure.  
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Table 3. Correlation matrix, showing the coefficient of determination (R2) values, 

for all canopy parameters monitored in the (a) Shiraz and (b) Semillon block, 

during 2017-19 growing seasons. R2 values shown are colour-coded: green for 

strong correlation (> 0.8), yellow for moderate correlation (0.5-0.8) and red for 

poor correlation (< 0.5). Parameters compared are: canopy volume per meter 

canopy length (V, m3/m); canopy surface area per meter canopy length (As, 

m2/m); canopy projective area per meter cordon length (Ap, m2/m); foliage cover 

calculated from UAV imagery (FCu); plant area index calculated from UAV 

imagery (PAIu); plant cell density (PCD); normalized difference vegetation index 

(NDVI); foliage cover calculated from ground imagery (FCg); plant area index 

calculated from ground imagery (PAIg).   

(a) Shiraz 2017-18 
V As Ap FCu PAIu PCD NDVI FCg PAIg 

2018-19 

V  0.66 0.66 0.73 0.55 0.72 0.58 0.74 0.65 
As 0.88  0.52 0.47 0.47 0.54 0.63 0.51 0.69 
Ap 0.77 0.55  0.87 0.82 0.23 0.38 0.52 0.62 
FCu 0.83 0.72 0.66  1 0.71 0.7 0.8 0.67 
PAIu 0.86 0.69 0.72 0.99  0.68 0.64 0.70 0.52 
PCD 0.72 0.53 0.50 0.74 0.75  0.89 0.70 0.66 
NDVI 0.58 0.43 0.60 0.58 0.52 0.85  0.72 0.64 
FCg 0.83 0.72 0.61 0.85 0.75 0.69 0.61  0.81 
PAIg 0.77 0.56 0.65 0.72 0.74 0.70 0.73 0.84  

 

(b) Semillon 2017-18 

V As Ap FCu PAIu PCD NDVI FCg PAIg 

2018-19 

V   0.72 0.68 0.71 0.64 0.52 0.64 0.69 0.62 

As 0.96   0.72 0.58 0.42 0.47 0.51 0.79 0.52 

Ap 0.68 0.56   0.87 0.83 0.53 0.61 0.69 0.54 
FCu 0.75 0.71 0.61   1 0.59 0.60 0.72 0.53 
PAIu 0.70 0.53 0.59 0.99   0.50 0.44 0.62 0.65 
PCD 0.76 0.71 0.38 0.53 0.53   0.82 0.77 0.64 
NDVI 0.67 0.71 0.37 0.35 0.43 0.82   0.66 0.63 
FCg 0.75 0.70 0.49 0.78 0.60 0.77 0.73   0.87 

PAIg 0.71 0.58 0.61 0.54 0.66 0.62 0.64 0.93   

 

The correlation between V and PAIg, in the 2018-19 Shiraz dataset, with an R2 of 

0.77, was higher than the R2 between the similar PAI measurements of PAIg and PAIu 

(R2 = 0.86) in the same block. This can potentially be explained by removing the early-

developmental stage PAIu data that reduced the value range of the data points in the 

DAB scale and lowered the R2 value. The R2 values (0.54-0.66) of the canopy surface 
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and projected area (As and Ap), compared against PAIg, were also found to be lower 

than V. Potential reasons reduced the accuracy of the area measurements from UAV 

imagery will be discussed in the following section. Comparisons between 

measurements derived from the same data are also shown to have higher R2 values, 

as can be found in pairs such as PAIg vs FCg, PAIu vs FCu and NDVI vs PCD. 

For measurements impacted by ground vegetation interference, after removing 

data points collected in the early stages in both varieties and years, PCD and NDVI 

demonstrated moderate to strong relationships with PAIg (R2 = 0.62-0.73, Table 3). The 

current R2 values were also in line with previous studies using satellite images of VSP 

trained vineyards where the correlation between LAI and NDVI showed values R2 

between 0.5 and 0.8 (Döring et al., 2014; Johnson et al., 2003; Sun et al., 2017).  

Comparisons between some parameters, such as those between spectral indices 

and point cloud-based canopy area measurements (As and Ap) showed poor 

correlations. Although various canopy management strategies changed canopy 

structure substantially, canopy greenness, measured by spectral indices, remained 

relatively stable. Therefore, it suggests that spectral indices might not be reliable 

measurements to assess the impact of canopy management practices. However, it 

remained unclear why some other canopy measurements, such as V and PAIg, had 

better correlations with spectral indices. Potential explanations can be canopy area 

measurements (As and Ap) can contain higher levels of error when the canopy 

management changed the canopy structure, caused by the incomplete reconstruction 

of the canopy (discussed below).  

 

Canopy monitoring at early developmental stages 

Point cloud analysis demonstrated its potential to monitor canopy development 

at early developmental stages (before DAB 40). During this period, the growth of 

cover crops and weeds in the mid-row and under-vine area are stimulated by rainfall 

during winter and early spring. By extracting canopy points based on height 

variations, points cloud analysis effectively filtered out the ground and floor 

vegetation, regardless of their colour or spectral properties. Figure 7 shows extracted 

canopy point cloud at DAB 13 demonstrated clear row patterns of the established vine 

rows as only canopy-related points were extracted. Volume and areas of the canopy 

(V, As, and Ap) were shown to be low at early developmental stages as they measured 

the dormant cordons and early shoot development (Figures 5 and 6).  



41 

 

 

Figure 7. Comparisons between original UAV remote sensing data (point cloud, 

RGB, and PCD orthomosaic imagery) and processed canopy data after filtering 

out ground pixels/points. Data was collected at DAB 13 and DAB 106 during the 

2018-19 growing season to demonstrate canopy growth at early and middle 

developmental stages in the growing season. RGB: red, green, and blue imagery; 

PCD: plant cell density imagery. 

 

The average PAI from ground images for both cultivars was around 0.2-0.3 at 

early developmental stages (Figures 5 and 6), similar to the results generated from 

point cloud analysis. These values corresponded to the bare cordon contribution, 

which was similar to values observed by De Bei et al. (2016) and Fuentes et al. (2014). 

The upward-looking images used for the ground measurements effectively excluded 

floor vegetation (Figure 2). No differences in canopy development were found 

between varieties.  
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During the same period, in contrast to point cloud and ground measurements, 

RGB and multispectral remote sensing accuracy were negatively impacted by floor 

vegetation in the vineyard (Figures 5 and 6). In both growing seasons, PAIu, PCD, and 

NDVI values are high at the early developmental stages (1.4-1.5, 8-10, and 0.65-0.75, 

respectively). However, the actual canopy only consisted of young shoots with small 

leaves and low leaf numbers at early developmental stages. This can be proved by the 

lower PAIg measurement results where ground vegetation was not captured in the 

imagery. Therefore, it is inferred that the high vegetative indices captured were due 

to the vineyard floor vegetation interference.  

Since the similarities in reflectance properties and colour profiles of the canopy 

and the floor vegetation caused unsatisfactory extraction of the canopy pixels, 

substantial inter-row vegetation area cannot be effectively removed in the extracted 

RGB and PCD raster (Figure 7). Similar to the overestimation of spectral indices, the 

low porosity within the extract RGB raster due to dense floor vegetation also led to 

the overestimation of foliage coverage (FCu) and the plant area index (PAIu) from 

aerial imagery. The current study supports that, without the effective control of 

vineyard floor vegetation, it remains difficult to monitor early canopy development 

using either RGB or multispectral orthomosaic imagery from UAV.  
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Canopy monitoring of established canopy 

Flowering and veraison are the two critical phenological stages of canopy 

monitoring for management purposes. These are the stages when the canopy structure 

is an important indicator of the potential yield and fruit quality at harvest (Jones and 

Grant, 2015). Therefore, it is important to investigate the performance of different 

canopy structure measurements at these stages. When reaching full canopy size at 

DAB 100, Shiraz had a larger canopy volume and area than Semillon. Shiraz's 

maximum canopy volume ranged between 3.5-4m3 compared with 1.5-2m3 in 

Semillon (Figures 5 and 6). Compared to Semillon, Shiraz is known to have longer 

mature shoots due to longer internodes resulting in a larger canopy volume 

(Champagnol, 1984; Louarn et al., 2007). de Castro et al. (2018) also found varietal 

differences in canopy volume, when estimated by UAV remote sensing: Merlot, 

Albariño, and Chardonnay vineyards grown under similar conditions had different 

canopy volumes, ranging between 1.5 and 3 m3 per vine. Despite various studies 

showing the potential of point cloud and RGB orthomosaic imagery for vineyard 

monitoring, as introduced previously, in the current study, it was found that there are 

still several aspects that require extra attention during their application, especially 

when measuring dense canopies. 

An incomplete reconstruction of the point cloud was observed in large and 

dense canopies, especially in the Shiraz block. Figure 8a shows that trimmed Shiraz 

canopies allowed creating a fully-enclosed point cloud without any obvious gaps 

(Figure 8b). For untrimmed canopy (Figure 8c), the reconstructed point cloud can 

contain incomplete sections due to missing points under the sprawling canopy (Figure 

8d). When generating the alpha shape, the point cloud contained incomplete sections 

resulting in a lower volume calculation as the alpha shape dented inward. In extreme 

cases, the whole alpha shape could fail to enclose and created a hollow alpha shape. 

These hollow alpha shapes can result in low volume values while the canopy surface 

area is exaggerated as both internal and external surfaces were calculated. The 

possible reason for incomplete sections to occur was due to sprawling shoots (Figure 

8c). With low light penetration and shadow covering, these shoots can create 

shadowed areas during point cloud reconstruction, resulting in incomplete point 

clouds.  
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Figure 8. Trimmed Shiraz canopy (subplot a) and the corresponding fully 

enclosed canopy point cloud (subplot b). In comparison, untrimmed Shiraz 

canopy (subplot c; sprawling shoots highlighted) and the corresponding point 

cloud with incomplete sections (subplot d; the point cloud hole highlighted). 

 

It was also found that UAV flight routes with more overlap, from the single 

grid in 2017-18 to double grids in 2018-19, did not improve the quality of the point 

cloud and the canopy alpha shape derived from the point cloud. Although the R2 

values related to the canopy volume in the 2018-19 season are higher than those in the 

2017-18 season, it can also be caused by the one extra flight conducted in 2018-19. 

Future improvements in UAV photogrammetry should focus on eliminating these 

incomplete point cloud reconstructions. Modifications to fill defective areas by 

creating points from averaging nearest points coordinates can overcome the issue but 

at the cost of creating potentially redundant points and artifacts. It is suggested that 

the point cloud reconstruction quality should always be monitored, and the presence 

of incomplete reconstruction be checked when using UAV remote sensing in 

vineyards with dense canopies. 

Another factor to consider for point cloud applications is selecting an 

appropriate alpha value (α) for creating a canopy alpha shape. Canopy digital 

simulations showed that VSP trained grapevines had lower canopy volume than other 

non-VSP trained canopies at the same LAI (Louarn et al., 2008a, 2008b). It was found 
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in this study that an α value can significantly influence the canopy volume. For 

example, by increasing the α value from 0.2m to 0.4m, the canopy volume can increase 

substantially (up 60% and 54% for point cloud at DAB 28 and 82, respectively). 

Therefore, it is suggested that the α value should be variable according to the different 

training systems and canopy manipulation practices, even though the canopy may 

have the same PAIg value. Future studies to improve canopy alpha shape creation can 

temporally calibrate the most suitable α values for different training and canopy 

manipulation practices by using more precise ground laser scanning (LiDAR), depth 

camera scanning, or direct allometric/destructive modeling (Iandolino et al., 2013; 

Milella et al., 2019; Siebers et al., 2018). 

 

The canopy size can also influence the calculation accuracy of PAIu and FCu 

from the RGB orthomosaic imagery using Beer’s law. It can potentially generate 

overestimation when applied on a dense canopy. In the parallel comparison between 

ground-based and aerial imagery of the same canopy section, the PAI and PAIu of a 

sparse canopy showed similar results (1.12 vs 1.08, Figure 9). However, in an 

established dense canopy, the overestimation of PAIu in the orthomosaic imagery was 

observed (3.45 vs 4.85). The overestimation was suggested to be caused by the higher 

foliage cover (FCu) in the orthomosaic imagery. With lower resolution in the aerial 

imagery and the different image capturing approach (downward-looking in aerial 

imagery vs upward-looking in-ground imagery), it is found that canopy orthomosaic 

imagery tended to contain fewer canopy pores than the ground imagery, especially 

around the canopy edges, and resulted in higher foliage cover. Therefore, it is 

suggested that the calculation of PAIu for dense canopies should be checked in 

conjunction with ground imagery samples to prevent potential overestimations.   
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Figure 9. Comparisons between the ground canopy cover imagery (a and c) 

and UAV based orthomosaic imagery (b and d) of the same canopy sections, at 

two different canopy structures (sparse and dense). Samples were selected 

from the same Shiraz block, captured on the same date (DAB 106) during the 

2018-19 growing season. The original imagery and its binary imagery are 

shown in each sample with the plant area index (PAI) and foliage cover (FC). 
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Selecting the ideal UAV or ground-based measurement 

UAV remote sensing, as so far discussed, can be used to quantify canopy 

development by calculating a range of canopy architecture estimations using point 

cloud and spectral indices. Vineyard point cloud, containing tens of millions of points 

with 3D coordinates, also offers a wide range of possibilities for understanding and 

mapping canopy structure (de Castro et al., 2018; Mathews and Jensen, 2013; Pádua et 

al., 2018; Weiss and Baret, 2017). In this study, it showed advantages, compared to 

other methods, when monitoring the vineyard at early developmental stages. 

However, with the scarcity of commercially available point cloud analysis programs 

tailored for vineyards, point cloud analysis requires a high level of expertise. It often 

relies on the creation of customized programs or codes. Incomplete reconstructions, 

as mentioned above, can also increase the difficulty of analysing the point cloud. Point 

cloud processing also requires higher computational and storage capacity than 2D 

RGB and multispectral rasters. During the same UAV data collection, the current one-

hectare vineyard point cloud required 400-500MB of storage space with more than 10 

million points, while around 200MB is needed for RGB orthomosaic less than 100MB 

for PCD and NDVI rasters. If the point cloud also requires RGB colour matrices, the 

file size will increase substantially. 

Inexpensive UAVs usually include an RGB sensor that is readily available for 

capturing RGB images that can be used to create RGB orthomosaic imagery and point 

cloud. For UAV-based multispectral remote sensing, a specialized UAV or custom 

integration between sensors and UAVs is generally required, as in the current study 

and previous studies (Albetis et al., 2017; Romero et al., 2018; Vanegas et al., 2018). 

Also, extra sensors implemented on the UAV require additional calibrations due to 

interference between the sensor and the aircraft, such as the inertial measurement unit 

(IMU) and compass calibration. The sensors themselves as radiometric and compass 

calibration. A range of factors, such as the flight route’s overlapping ratio and the 

flight height, can influence image quality during a flight. High overlap ratios and/or 

low flight heights can help reduce GSD (higher resolution) and improve point cloud 

details and increase point count. However, a longer flying time requires more batteries 

to cover a given area. The feasibility of applying multirotor UAV remote sensing on a 

large growing area is dependent on regular battery replacements. Many recent studies 

where a multirotor UAV was used as the sensor carrier platform used vineyard areas 

equal to or lower than one hectare (de Castro et al., 2018; Pádua et al., 2018; Poblete et 

al., 2017; Weiss and Baret, 2017).  
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Geo-tagged ground-based canopy cover imagery can be used to map spatial 

canopy variability. The sampling distance, or the imaging frequency, needs to be 

carefully planned to achieve the best mapping outcomes. More frequent image 

acquisition will improve map resolution and enhance spatial variability detection, but 

it can also increase the time required. Ground imaging helps growers record canopy 

development and measure canopy structure variances between cultivars from a few 

images. Apps for ground measurement, such as VitiCanopy used in this study, can 

supply on-the-go assessment and return measurement results immediately in the field. 

This is advantageous to UAV remote sensing, which involves complicated image 

processing, sometimes across several programs/software. UAV remote sensing can 

provide imagery with high spatial resolution, and the point cloud reconstructed to 

provide detailed and continuous canopy structure information. It was also more cost-

effective than integrated mobile ground systems (Andújar et al., 2019). 

Based on the previous discussions, Table 4 summarises UAV and ground-

based image analysis approaches' advantages and limitations. UAV aerial remote 

sensing can provide 2D, 3D, and spectral measurements to the canopy structure, while 

ground measurements can supply more detailed measurements on the canopy 

architecture. UAV can monitor a large growing area with more complicated 

processing than the ground approach. However, with a higher cost and more strict 

operational conditions, UAV remote sensing may be more suited to high-resolution 

vineyard mapping during critical growing stages.  
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Table 4. Comparisons between the ground and UAV-based image analysis 

applied in this study for vineyard canopy development monitoring. 

 Ground UAV - RGB & Multispectral 

Measurements PAIg and FCg V, PAIu, PCD, etc. 

Major advantage Detailed canopy 

architectural 

information 

High resolution, vineyard 

scale measurement 

Image acquisition 

procedures 

Planned and acquired 

by the assessor 

Planned by the operator and 

automatically triggered 

Image type  Upward looking Downward looking (nadir) 

Image quality 

requirements 

Avoid direct sunlight 

exposure 

Avoid canopy projected 

shadow and ground 

vegetation, except for point 

cloud 

Image processing Simple and on-the-go Complicated processing 

Geographic coordinate 

precision 

Meter level inaccuracy Centimetre level inaccuracy 

Map resolution Medium High 

Maximum 

measurement time  

Several hours per 

battery charge 

Around 30 minutes per 

battery charge 

Cost Low Medium to high 

Weather requirements Avoid rain Avoid rain and strong winds 

Other requirements - Operating license(s)*, sensor 

integration and calibration, 

etc. 

*Dependent on the jurisdiction.  
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Conclusion 

Point cloud-derived canopy volume was closely related to the ground-based 

PAI throughout the whole season (R2>0.6). Point cloud was also able to achieve more 

representative results at early developmental stages when the vigorous floor 

vegetation influenced RGB orthomosaic imagery and spectral indices analysis. At 

peak canopy size, incomplete point cloud reconstruction can reduce point cloud 

analysis accuracy, and PAI calculation from RGB orthomosaic imagery can generate 

overestimation due to the lack of canopy porosity. UAV remote sensing and ground 

measurements were shown to have their strengths and limitations. It is concluded that 

the most suitable approach should be selected with clearly identified monitoring 

purposes. 

 

Acknowledgments 

This research was supported by research funding from the University of Adelaide and 

Wine Australia. Wine Australia invests in and manages research, development, and 

extension on behalf of Australia’s grape growers and winemakers and the Australian 

Government.  



51 

 

References 

Albetis, J., Duthoit, S., Guttler, F., Jacquin, A., Goulard, M., Poilvé, H., Féret, J.-B., Dedieu, G., 

2017. Detection of Flavescence dorée grapevine disease using unmanned aerial vehicle 

(UAV) multispectral imagery. Remote Sens. 9, 308. https://doi.org/10.3390/rs9040308 

Ballesteros, R., Ortega, J.F., Hernández, D., Moreno, M.Á., 2015. Characterization of Vitis 

vinifera L. canopy using unmanned aerial vehicle-based remote sensing and 

photogrammetry techniques. Am. J. Enol. Vitic. 66, 120–129. 

https://doi.org/10.5344/ajev.2014.14070 

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van 

der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 2014. Geographic object-based 

image analysis - towards a new paradigm. ISPRS J Photogramm Remote Sens. 87, 180–

191. https://doi.org/10.1016/j.isprsjprs.2013.09.014 

Champagnol, F., 1984. Éléments de physiologie de la vigne et de viticulture générale. Francois 

Champagnol, Saint-Gely-du-Fesc: France. 

Coombe, B.G., 1995. Growth stages of the grapevine: adoption of a system for identifying 

grapevine growth stages. Aust. J. Grape Wine Res. 1, 104–110. 

De Bei, R., Fuentes, S., Gilliham, M., Tyerman, S., Edwards, E., Bianchini, N., Smith, J., Collins, 

C., 2016. VitiCanopy: a free computer app to estimate canopy vigor and porosity for 

grapevine. Sensors  16, 585. https://doi.org/10.3390/s16040585 

de Castro, A., Jiménez-Brenes, F., Torres-Sánchez, J., Peña, J., Borra-Serrano, I., López-

Granados, F., 2018. 3-D characterization of vineyards using a novel UAV imagery-based 

OBIA procedure for precision viticulture applications. Remote Sens. 10, 584. 

https://doi.org/10.3390/rs10040584 

Dokoozlian, N.K., Kliewer, W.M., 1995. The light environment within grapevine canopies. II. 

Influence of leaf area density on fruit zone light environment and some canopy 

assessment parameters. Am. J. Enol. Vitic. 46, 219–226. 

Doring, J., Stoll, M., Kauer, R., Frisch, M., Tittmann, S., 2014. Indirect estimation of leaf area 

index in VSP-trained grapevines using plant area index. Am. J. Enol. Vitic. 65, 153–158. 

https://doi.org/10.5344/ajev.2013.13073 

Dry, P.R., 2000. Canopy management for fruitfulness. Aust. J. Grape Wine Res. 6, 109–115. 

https://doi.org/10.1111/j.1755-0238.2000.tb00168.x 

Edelsbrunner, H., Kirkpatrick, D., Seidel, R., 1983. On the shape of a set of points in the plane. 

IEEE Trans. Inf. Theory 29, 551–559. https://doi.org/10.1109/TIT.1983.1056714 

Fuentes, S., Chacon, G., Torrico, D.D., Zarate, A., Gonzalez Viejo, C., 2019. Spatial variability 

of aroma profiles of cocoa trees obtained through computer vision and machine learning 

modelling: a cover photography and high spatial remote sensing application. Sensors 19, 

3054. 

Fuentes, S., Poblete-Echeverria, C., Ortega-Farias, S., Tyerman, S., De Bei, R., 2014. Automated 

estimation of leaf area index from grapevine canopies using cover photography, video 



52 

 

and computational analysis methods. Aust. J. Grape Wine Res. 20, 465–473. 

https://doi.org/10.1111/ajgw.12098 

Gower, S.T., Kucharik, C.J., Norman, J.M., 1999. Direct and indirect estimation of leaf area 

index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens. 

Environ. 70, 29–51. https://doi.org/10.1016/s0034-4257(99)00056-5 

Hall, A., 2018. Remote sensing application for viticultural terroir analysis. Elements 14, 185–

190. https://doi.org/10.2138/gselements.14.3.185 

Iandolino, A.B., Pearcy, R.W., Williams, L.E., 2013. Simulating three-dimensional grapevine 

canopies and modelling their light interception characteristics. Aust. J. Grape Wine Res. 

19, n/a-n/a. https://doi.org/10.1111/ajgw.12036 

Jackson, D.I., Lombard, P.B., 1993. Environmental and management-practices affecting grape 

composition and wine quality - A review. Am. J. Enol. Vitic. 44, 409–430. 

Johnson, L.F., 2003. Temporal stability of an NDVI‐LAI relationship in a Napa Valley vineyard. 

Aust. J. Grape Wine Res. 9, 96–101. https://doi.org/10.1111/j.1755-0238.2003.tb00258.x 

Johnson, L.F., Roczen, D.E., Youkhana, S.K., Nemani, R.R., Bosch, D.F., 2003. Mapping 

vineyard leaf area with multispectral satellite imagery. Comput. Electron. Agric. 38, 33–

44. https://doi.org/10.1016/S0168-1699(02)00106-0 

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F., 2004. Review 

of methods for in situ leaf area index determination - Part I. Theories, sensors and 

hemispherical photography. Agric. For. Meteorol. 121, 19–35. 

https://doi.org/10.1016/j.agrformet.2003.08.027 

Jones, H.G., Grant, O.M., 2015. Remote sensing and other imaging technologies to monitor 

grapevine performance. Grapevine a Chang. Environ., Wiley Online Books. 

https://doi.org/doi:10.1002/9781118735985.ch8 

Jones, H.G., Vaughan, R.A., 2010. Remote sensing of vegetation: principles, techniques, and 

applications. Oxford University Press. 

Lisein, J., Pierrot-Deseilligny, M., Bonnet, S., Lejeune, P., 2013. A photogrammetric workflow 

for the creation of a forest canopy height model from small unmanned aerial system 

imagery. Forests 4, 922–944. https://doi.org/10.3390/f4040922 

Louarn, G., Dauzat, J., Lecoeur, J., Lebon, E., 2008a. Influence of trellis system and shoot 

positioning on light interception and distribution in two grapevine cultivars with 

different architectures: an original approach based on 3D canopy modelling. Aust. J. 

Grape Wine Res. 14, 143–152. https://doi.org/10.1111/j.1755-0238.2008.00016.x 

Louarn, G., Guedon, Y., Lecoeur, J., Lebon, E., 2007. Quantitative Analysis of the Phenotypic 

Variability of Shoot Architecture in Two Grapevine (Vitis vinifera) Cultivars. Ann. Bot. 99, 

425–437. https://doi.org/10.1093/aob/mcl276 

Louarn, G., Lecoeur, J., Lebon, E., 2008b. A three-dimensional statistical reconstruction model 

of grapevine (Vitis vinifera) simulating canopy structure variability within and between 

cultivar/training system pairs. Ann. Bot. 101, 1167–1184. 

https://doi.org/10.1093/aob/mcm170 



53 

 

Macfarlane, C., Hoffman, M., Eamus, D., Kerp, N., Higginson, S., McMurtrie, R., Adams, M., 

2007. Estimation of leaf area index in eucalypt forest using digital photography. Agric. 

For. Meteorol. 143, 176–188. https://doi.org/10.1016/j.agrformet.2006.10.013 

Matese, A., Toscano, P., Di Gennaro, S.F., Genesio, L., Vaccari, F.P., Primicerio, J., Belli, C., 

Zaldei, A., Bianconi, R., Gioli, B., 2015. Intercomparison of UAV, aircraft and satellite 

remote sensing platforms for precision viticulture. Remote Sens. 7, 2971–2990. 

https://doi.org/10.3390/rs70302971 

Mathews, A.J., Jensen, J.L.R., 2013. Visualizing and quantifying vineyard canopy LAI using 

an unmanned aerial vehicle (UAV) collected high density structure from motion point 

cloud. Remote Sens. 5, 2164–2183. https://doi.org/10.3390/rs5052164 

MathWorks Inc, 2018. <https://www.mathworks.com/products/matlab.html>. 

Milella, A., Marani, R., Petitti, A., Reina, G., 2019. In-field high throughput grapevine 

phenotyping with a consumer-grade depth camera. Comput. Electron. Agric. 156, 293–

306. https://doi.org/https://doi.org/10.1016/j.compag.2018.11.026 

Njoku, E.G., 2014. Encyclopedia of remote sensing, Encyclopedia of Earth Sciences Series. 

Springer-Verlag , New York. 

Orlando, F., Movedi, E., Coduto, D., Parisi, S., Brancadoro, L., Pagani, V., Guarneri, T., 

Confalonieri, R., 2016. Estimating leaf area index (LAI) in vineyards using the PocketLAI 

smart-app. Sensors 16, 2004. 

Pádua, L., Marques, P., Hruška, J., Adão, T., Peres, E., Morais, R., Sousa, J.J., 2018. Multi-

temporal vineyard monitoring through UAV-based RGB imagery. Remote Sens. 10, 1907. 

https://doi.org/10.3390/rs10121907 

Pix4D, 2018a. https://www.pix4d.com/product/pix4dcapture. 

Pix4D, 2018b. https://www.pix4d.com/product/pix4dmapper-photogrammetry-software. 

Poblete-Echeverría, C., Olmedo, G., Ingram, B., Bardeen, M., 2017. Detection and 

segmentation of vine canopy in ultra-high spatial resolution RGB imagery obtained from 

unmanned aerial vehicle (UAV): a case study in a commercial vineyard. Remote Sens. 9, 

268. 

Poblete, T., Ortega-Farías, S., Moreno, M., Bardeen, M., 2017. Artificial Neural Network to 

Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained 

from an Unmanned Aerial Vehicle (UAV). Sensors 17, 2488. 

Romero, M., Luo, Y.C., Su, B.F., Fuentes, S., 2018. Vineyard water status estimation using 

multispectral imagery from an UAV platform and machine learning algorithms for 

irrigation scheduling management. Comput. Electron. Agric. 147, 109–117. 

https://doi.org/10.1016/j.compag.2018.02.013 

Siebers, M.H., Edwards, E.J., Jimenez-Berni, J.A., Thomas, M.R., Salim, M., Walker, R.R., 2018. 

Fast phenomics in vineyards: development of GRover, the grapevine rover, and LiDAR 

for assessing grapevine traits in the field. Sensors 18, 2924. 

https://doi.org/10.3390/s18092924 



54 

 

Smart, R., Robinson, M., 1991. Sunlight into wine: a handbook for winegrape canopy 

management. Winetitles, Adelaide, South Australia, Australia. 

Sosnowski, M.R., Creaser, M.L., Wicks, T.J., Lardner, R., Scott, E.S., 2008. Protection of 

grapevine pruning wounds from infection by Eutypa lata. Aust. J. Grape Wine Res. 14, 

134–142. https://doi.org/10.1111/j.1755-0238.2008.00015.x 

Su, B.F., Xue, J.R., Xie, C.Y., Fang, Y.L., Song, Y.Y., Fuentes, S., 2016. Digital surface model 

applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or 

abiotic effects on grapevine canopies. Int J Agric Biol Eng 9, 119–130. 

Sun, L., Gao, F., Anderson, M.C., Kustas, W.P., Alsina, M.M., Sanchez, L., Sams, B., McKee, L., 

Dulaney, W., White, W.A., Alfieri, J.G., Prueger, J.H., Melton, F., Post, K., 2017. Daily 

mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards. 

Remote Sens. 9, 317. https://doi.org/10.3390/rs9040317 

Tanhuanpaa, T., Saarinen, N., Kankare, V., Nurminen, K., Vastaranta, M., Honkavaara, E., 

Karjalainen, M., Yu, X.W., Holopainen, M., Hyyppa, J., 2016. Evaluating the performance 

of high-altitude aerial image-based digital surface models in detecting individual tree 

crowns in mature boreal forests. Forests 7, 143. https://doi.org/10.3390/f7070143 

Torr, P.H.S., Zisserman, A., 2000. MLESAC: a new robust estimator with application to 

estimating image geometry. Comput. Vis. Image Underst. 78, 138–156. 

https://doi.org/10.1006/cviu.1999.0832 

Valtaud, C., Thibault, F., Larignon, P., Berstch, C., Fleurat-Lessard, P., Bourbouloux, A., 2011. 

Systemic damage in leaf metabolism caused by esca infection in grapevines. Aust. J. 

Grape Wine Res. 17, 101–110. https://doi.org/10.1111/j.1755-0238.2010.00122.x 

Vanegas, F., Bratanov, D., Powell, K., Weiss, J., Gonzalez, F., 2018. A novel methodology for 

improving plant pest surveillance in vineyards and crops using UAV-based 

hyperspectral and spatial data. Sensors 18, 260. https://doi.org/10.3390/s18010260 

Vasconcelos, M.C., Castagnoli, S., 2000. Leaf canopy structure and vine performance. Am. J. 

Enol. Vitic. 51, 390–396. 

Wang, X., De Bei, R., Fuentes, S., Collins, C., 2019. Influence of canopy management practices 

on canopy architecture and reproductive performance of Semillon and Shiraz grapevines 

in a hot climate. Am. J. Enol. Vitic. 70, 360 LP – 372. 

https://doi.org/10.5344/ajev.2019.19007 

Watson, D.J., 1947. Comparative physiological studies in the growth of field crops. I. Variation 

in net assimilation rate and leaf area between species and varieties, and within and 

between years. Ann. Bot. 11, 41–76. 

Weiss, M., Baret, F., 2017. Using 3D point clouds derived from UAV RGB imagery to describe 

vineyard 3D macro-structure. Remote Sens. 9, 111. https://doi.org/10.3390/rs9020111 

  



55 

 

Chapter 4.  Published Article 

Chapter 4. Published Article: UAV-Based Imagery Analysis Detects Canopy 

Structure Changes after Canopy Management Applications 

 

Published article – Submitted to Oeno One and accepted in October 2020.  



56 

 



 

57 
 

UAV and Ground-Based Imagery Analysis 

Detects Canopy Structure Changes after Canopy 

Management Applications  
 

Jingyun Ouyang1, Roberta De Bei1, Sigfredo Fuentes2, Cassandra Collins1,3* 

1The University of Adelaide, School of Agriculture, Food and Wine, Waite Research 

Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia 
2The University of Melbourne, School of Agriculture and Food, Melbourne, Victoria, 

3010, Australia 
3ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite 

Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia. 

 

*Corresponding author: email cassandra.collins@adelaide.edu.au 
 

ABSTRACT 

Aim: To analyse unmanned aerial vehicle (UAV)-based imagery to assess canopy 

structural changes after the application of different canopy management practices in the 

vineyard. 

Methods and results: Four different canopy management practices: i–ii) leaf removal 

within the bunch zone (eastern side/both eastern and western sides), iii) bunch thinning 

and iv) shoot trimming were applied to grapevines at veraison, in a commercial 

Cabernet-Sauvignon vineyard in McLaren Vale, South Australia. UAV-based imagery 

captures were taken: i) before the canopy treatments, ii) after the treatments and iii) at 

harvest to assess the treatment outcomes. Canopy volume, projected canopy area and 

normalized difference vegetation index (NDVI) were derived from the analysis of RGB 

and multispectral imagery collected using the UAV. Plant area index (PAI) was 

calculated using the smartphone app VitiCanopy as a ground-based measurement for 

comparison with UAV-derived measurements. Results showed that all three types of 

UAV-based measurements detected changes in the canopy structure after the 

application of canopy management practices, except for the bunch thinning treatment. 

As expected, ground-based PAI was the only technique to effectively detect internal 

canopy structure changes caused by bunch thinning. Canopy volume and PAI were 

found to better detect variations in canopy structure compared to NDVI and projected 

canopy area. The latter were negatively affected by the interference of the trimmed 

shoots left on the ground. 

mailto:cassandra.collins@adelaide.edu.au
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Conclusions: UAV-based tools can provide accurate assessments to some canopy 

management outcomes at the vineyard scale. Among different UAV-based 

measurements, canopy volume was more sensitive to changes in canopy structure, 

compared to NDVI and projected canopy area, and demonstrated a greater potential to 

assess the outcomes of a range of canopy management practices.   

Significance and impact of the study: Canopy management practices are widely 

applied to regulate canopy growth, improve grape quality and reduce disease pressure 

in the bunch zone. Being able to detect major changes in canopy structure, with some 

limitations when the practice affects the internal structure (i.e., bunch thinning), UAV-

based imagery analysis can be used to measure the outcome of common canopy 

management practices and it can improve the efficiency of vineyard management.   

 

INTRODUCTION  

Among the vineyard management practices, canopy management is widely applied to 

regulate canopy growth, reduce disease pressure, improve bud fertility and improve berry 

quality (Dry, 2008; Mirás-Avalos et al., 2017; Trought et al., 2017; Wolf et al., 2003). 

Commonly applied canopy management practices such as leaf removal, shoot trimming and 

bunch thinning aim to modify the source–sink relationship by reducing leaf density and/or crop 

load (Smart & Robinson, 1991). By selecting different practices and their levels/intensity of 

application, canopy treatments can have various outcomes. Low levels of input often have a 

limited impact on the canopy structure and are inefficient. In contrast, excessive application 

can negatively impact yield and quality including increasing the risk of exposing the crop to 

extreme weather conditions, such as heat waves (Caravia et al., 2016; Reynolds et al., 2005; 

Vasconcelos & Castagnoli, 2000). 

 

To effectively apply canopy management practices, it is crucial to have convenient and 

accurate assessments of their outcomes. One approach could be to directly compare the 

differences in canopy structure before and after the application of canopy management 

practices, through the assessment of parameters such as plant area index (PAI: total leaf and 

cordon area per unit ground area) (Bréda, 2003; De Bei et al., 2016) and canopy volume. 

However, the most accurate estimations for these parameters involve destructive and labour-

intensive sampling practices in the field (Gower et al., 1999; Jonckheere et al., 2004). To 

overcome these disadvantages, there have been recent developments in smartphone apps that 
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analyse upward-looking canopy cover imagery and offer an objective and accurate solution to 

the measurement of PAI (De Bei et al., 2016; Fuentes et al., 2014; Poblete-Echeverria et al., 

2015). These tools, that estimate PAI, have been effectively applied to assess changes in canopy 

structure during the growing season (De Bei et al., 2019; Wang et al., 2019). 

 

Alternatively, optical remote sensing using unmanned aerial vehicles (UAV), aircraft 

and satellite platforms can be applied to estimate canopy structure (Hall, 2018). Amongst these 

platforms, recent advancements in UAV related research have led to a wide range of UAV 

applications for monitoring vineyard performance such as the rate of canopy development, 

canopy structure spatial variability, disease incidence and canopy water status (Albetis et al., 

2018; de Castro et al., 2018; Mathews & Jensen, 2013; Pádua et al., 2018; Romero et al., 2018; 

Su et al., 2016). Through the collection of high-resolution red/green/blue (RGB), multispectral 

or hyperspectral imagery, UAV-mounted sensors are capable of providing data to create high-

resolution RGB and spectral indices maps at the vineyard scale, e.g., normalized difference 

vegetation index (NDVI) and plant cell density (PCD) maps (Xue & Su, 2017). In addition, 

three-dimensional digital models, including vineyard point cloud and digital canopy model 

(DCM), can be created from overlapping images captured by the UAV (Comba et al., 2018). 

From vineyard digital models, parameters such as canopy height, projected area and volume 

can be calculated and provide detailed information regarding the canopy structure (Matese & 

Di Gennaro, 2018; Weiss & Baret, 2017). Compared with manned aircraft and satellite-based 

remote sensing, UAV also offers convenience in simple flight preparation, flexible operation 

options (Khaliq et al., 2019) and is more cost-effective for small and medium-size vineyards 

(Andújar et al., 2019; Matese et al., 2015). These advantages can help obtain a prompt 

evaluation of canopy management outcomes during critical developmental stages. Despite the 

demonstrated potential of these techniques, applying UAV remote sensing for measuring 

canopy management outcomes is currently limited. 

 

This study aimed to assess whether UAV remote sensing can detect canopy structure 

changes after the application of different canopy management practices. These assessments 

were compared to ground-based PAI measured at the same time as the UAV flights. The 

advantages and limitations of using UAV as a monitoring platform in evaluating canopy 

structure changes are discussed. 

 

MATERIALS AND METHODS  
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Study vineyard and experimental design 

 

A commercial Cabernet-Sauvignon vineyard in the wine region McLaren Vale, South 

Australia (Lat—35.218, Long—138.542) was used for the study during the 2017–18 growing 

season. The climate of the region is classified as Mediterranean with low summer rainfall and 

the soil type is red/brown loamy sand (Wine Australia, 2020). In the study vineyard, vine and 

row spacings were 2 m and 3 m, respectively, and row orientation was north to south. Vines 

were trained with spur pruning and develops a sprawling canopy at the approximate width of 

1.3 m and the cordon height of 1.1 m. The commercial vineyard was managed with standardised 

management practices, drip irrigated and no cover crop was grown in the mid-row or under-

vine. 

 

At veraison (E-L stage 35), four canopy management treatments were applied: i) leaf 

removal on the eastern side of the canopy, ii) leaf removal on both sides of the canopy, iii) 

bunch thinning and iv) shoot trimming on the eastern side of the canopy (Table 1). Removing 

leaves and/or shoot trimming on the eastern side only is often performed to reduce canopy 

density while protecting the bunches on the western side from the intense afternoon sunlight 

(Reynolds & Vanden Heuvel, 2009). A randomised replicate design was used to apply the 

treatments in the vineyard. As shown in Figure 1, each replicate consisted of six vines (two 

panels) and the different coloured sections in the figure correspond to different treatments. 

Each treatment was replicated six times; 180 grapevines in total were monitored and measured 

in the study.  
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Table 1. Treatment code, description and purpose of the different canopy management practices applied 

at veraison (E-L stage 35) in the study vineyard, during the 2017-18 growing season.  

Code Treatment description Purpose of treatment 

C Control No canopy management applied 

LR-E Leaf removal at bunch zone on east side only Reduce canopy density and increase light 

penetration in the bunch zone on the east 

side 

LR-B Leaf removal at bunch zone on both sides (east 

and west) 

Increase light into bunch zone on both 

sides 

BT Bunch thinning Reduce bunch number by 50% 

ST-E Shoot trimming east side only Reduce shoot length/canopy size by 50% 
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Figure 1. Cabernet-Sauvignon experimental trial vineyard in McLaren Vale, South Australia. Four 

different canopy management practices were applied: i) leaf removal on the eastern side of the canopy 

(LR-E), ii) leaf removal on both sides of the canopy (eastern and western, LR-B), iii) bunch thinning 

(BT) and iv) shoot trimming on the eastern side of the canopy (ST-E) (colour-coded according to the 

treatments received). Each treatment was applied to six replicates. The background RGB orthomosaic 

image was captured at veraison (E-L stage 35).  
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2.2 Ground and UAV-based Imagery Acquisition and Analysis 

To measure the impact of treatments on canopy structure, a combination of ground and 

aerial imagery analysis was used. Measurements were taken: i) before treatment application 

(E-L stage 35), ii) one week after treatment application and iii) at harvest (E-L stage 38). For 

the ground measurement, two images were acquired from the middle vine in each panel, one 

on the left and one on the right side of the trunk. A total of 24 images were acquired per 

treatment at each measurement. From these images, PAI was calculated using the smartphone 

app VitiCanopy (University of Adelaide, South Australia, Australia). The ground imagery was 

captured by the frontal RGB camera of an Apple iPhone 7 at a resolution of 7.2 megapixels 

(Apple Inc., Cupertino, CA, USA), detailed procedures for image capture and PAI calculation 

can be found in De Bei et al. (2016). The PAI was also calibrated against real LAI, measured 

by destructive leave removal measurements in the same study site, and their correlations can 

be found in the supplementary information. 

UAV flights were performed to acquire RGB and multispectral imagery of the study 

vineyard. RGB imagery was captured by the RGB sensor of a Phantom 4 Pro quadcopter (DJI, 

Shenzhen, China) at a resolution of 20 megapixels. Multispectral imagery was acquired by the 

Parrot Sequoia multispectral sensor (Parrot SA, Paris, France) recording spectral bands at green 

(550 nm), red (660 nm), red edge (735 nm) and near-infrared (790 nm) bands, at a resolution 

of 1.2 megapixels. The Sequoia camera was integrated into a Phantom 3 Adv (DJI, Shenzhen, 

China) quadcopter using a customized integration package (MicaSense, v1.3, Seattle, USA). 

The multispectral images were radiometrically calibrated by the onboard downwelling sunlight 

sensor during the flight and a calibrated reflectance panel on the ground (MicaSense, Seattle, 

USA). On a clear day, the flights were conducted at solar noon to minimise any shadow effect. 

The single-grid routes covering all replicate panels at an overlap ratio of 80 % were set. The 

aircraft was maintained at a height of 30 m above ground and a constant speed of 2 m/s during 

the flight. The geographic coordinates of images captured were recorded by the onboard Global 

Positioning System (GPS) receiver. 

The commercial photogrammetry software PIX4Dmapper (v.4.4.12; Pix4D SA, 

Lausanne, Switzerland) was used for UAV imagery reconstruction, the RGB orthomosaic 

images and the digital surface model (DSM) rasters of the vineyard were reconstructed from 

RGB images (Figure 2). Using multispectral images, single-band orthomosaic images were 

created from images of each spectral band. The average ground sampling distances (GSD) of 

the RGB and single-band orthomosaic images were 0.8 cm and 3.2 cm, respectively. Using a 
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customized processing procedure in ArcGIS (v.10.5.1; ESRI, Redlands, CA, USA), the DSM 

was normalized to generate the digital canopy model (DCM) rasters. Using the image 

processing toolbox in Matlab (v.2019b, Natick, Massachusetts, United States), green canopy 

pixels in the RGB orthomosaic imagery were extracted according to the Lab colour space 

profile to create the canopy layer for projected canopy area calculation. 

  



 

65 
 

 

Figure 2. Flow chart of the unmanned aerial vehicle (UAV)-based RGB/multispectral imagery 

processing procedures for generating canopy volume, projected canopy area and normalized difference 

vegetation index (NDVI) in the current study. 

 

To create the normalized difference vegetation index (NDVI) raster for the study 

vineyard, a calculation was performed using single band orthomosaic images as follows: 

 

 
NDVI =

NIR − Red

NIR + Red
 

(Rouse et al., 1974) 

Where: 

NIR = Near infrared band orthomosaic image; 

Red = Red band orthomosaic image.  

 

With the NDVI raster for the whole vineyard, unsupervised classification was 

performed to extract the canopy-related pixels using the Iso Cluster Unsupervised 

Classification function in ArcGIS. As a result, the raster was classified into two classes: 

background and grapevine canopy. The canopy class was extracted as the classified NDVI 

raster for the calculation of mean NDVI per vine. 

Vineyard rasters of DCM, RGB imagery of green canopy layer and classified NDVI 

containing only canopy-related pixels were stored in the tagged image file format (.tiff) image 

files. Rasters were geo-referenced using ground control points and experimental replicates 

were marked using the high-resolution RGB imagery by identifying posts separating individual 

panels. Polygon vectors for replicates were then created and used as masks to extract replicate 

rasters. According to the fixed planting distance, single grapevine rasters were further separated 

from the individual replicate rasters. Using the single vine rasters, canopy volume per vine (m3) 

were calculated from the DCM using volume above the cordon height plane (1.1 m above 

ground). Projected canopy area per vine (m2) was calculated using the sum of the single canopy 
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pixel area in the RGB green pixel layer. The mean NDVI per vine was calculated from the 

mean NDVI values of all extracted canopy class pixels.    

 

2.3 Statistical Analysis 

Analysis of variance (ANOVA) was performed to determine if canopy treatments led 

to significantly different canopy structures (p < 0.05). Statistics were performed in the statistics 

and machine learning toolbox of Matlab and GraphPad Prism (v.8; GraphPad Software, San 

Diego, USA). Mean values, standard errors of the mean and statistical significance of 

measurements have been reported. 

 

RESULTS AND DISCUSSION 

 

With the application of canopy treatments, changes in the canopy structure were 

observed (Figure 3). Significant reductions in the mean canopy volume per vine were observed 

after leaf removal (LR-E and LR-B) and shoot trimming (ST-E). Leaf removal and shoot 

trimming applied to one side of the canopy (LR-E and ST-E) had also lowered canopy volume 

(from 1.29 m3 to 1.06 m3 and from 1.37 m3 to 1.12 m3, respectively). Double-sided leaf 

removal reduced canopy volume (from 1.42 m3 to 0.82 m3) more than the single-sided 

application. No difference in canopy volume was found when bunch thinning was applied and 

compared to the control group. This was expected as bunch thinning only removed bunches at 

the bunch zone inside the canopy which was covered by leaves and shoots, meaning the overall 

dimensions of the canopy were not altered. At harvest, the canopy volume of all treatment 

groups declined to significantly lower levels than after treatment application. The general 

decline in the canopy volume can be explained by the seasonal reduction in canopy 

development due to leaf senescence leading to leaf fall and the reduction in irrigation 

application (Pádua et al., 2018). 
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Figure 3. Canopy structure measurements from UAV-captured imagery. (a) canopy volume (m3) per 

vine, (b) projected canopy (m2) area per vine, (c) normalized difference vegetation index (NDVI) and 

(d) ground-based plant area index (PAI). Four different treatments applied were: leaf removal on the 

eastern side of the canopy (LR-E), leaf removal on both sides of the canopy (LR-B), bunch thinning 

(BT) and shoot trimming on the eastern side of the canopy (ST-E). Canopy treatments were applied at 

veraison (E-L stage 35). Measurements were performed at three timepoints: 1) before the treatment, 2) 

one week after the treatment and 3) at harvest (E-L stage 38) to track changes in canopy structure. In 

each graph, bars are grouped by treatment and within each group, measurements at different timepoints 

are shown. Significant differences (p < 0.05) between measurements in the same group are annotated 

by different letters and bars show the standard errors of the mean value. 

 

Similar to canopy volume, projected canopy area and NDVI values in the treatment 

groups where leaf removal and shoot trimming were applied (LR-E, LR-B and ST-E) were 

reduced while the control and bunch thinning groups (C and BT) remained relatively 

unchanged. Ground-based PAI measurements recorded significant differences in all treatment 

groups, including the bunch thinning treatment which was not detected by the UAV based 

remote sensing approaches. PAI was calculated from upward-looking canopy cover imagery 

(De Bei et al., 2016), and was shown to be capable of detecting the changes of internal canopy 

structure under foliage cover, such as the removal of bunches (Figure 4). In addition, canopy 

porosity, which is an important indicator of the light conditions inside the canopy and closely 
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related to PAI, can also be generated from the canopy cover imagery (De Bei et al., 2016). 

Thus, PAI was found to be more advantageous in detecting variations in both internal and 

external dimensions in the canopy structure than remote sensing approaches which only 

detected external dimension and spectral value variations. 

 

 

Figure 4. Examples of ground-based canopy cover images for (a) control and (b) bunch thinning. Note 

the decrease in the bunch number in the bunch thinning group, compared with the control group. 

 

Comparing different measurements for the same treatment group, canopy volume and 

PAI were found to detect greater differences in canopy structure after canopy management 

practices were applied. When comparing measurements taken before and after treatment 

application (Figure 5), canopy volume and PAI demonstrate the largest percentage changes for 

leaf removal and shoot trimming treatments. In contrast, very little change was observed in 

NDVI values with the largest decline of 13 % when double-sided leaf removal was applied. 

The same treatment recorded reductions of 43 % and 30 % in canopy volume and PAI measures, 

respectively. At harvest (Figure 5), canopy volume recorded the biggest percentage change 

across all measurements, followed by PAI. This may have been accentuated by leaf fall. 

Canopy volume and PAI measures detected greater differences in canopy structure and may be 

more useful measures for making informed decisions and determining the effectiveness of 

canopy management practices. 
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Figure 5. Percentages of change in the measured parameters for the same treatment group between 

stages. (a) between pre and post canopy treatments at veraison (both at E-L stage 35); (b): between post-

treatment (E-L stage 35) and harvest (E-L stage 38). The data were grouped by four different treatments 

and within each group, the mean percentage change of four measured parameters are shown (canopy 

volume (m3), projected canopy area (m2), NDVI and PAI). Treatments applied were leaf removal on 

the eastern side of the canopy (LR-E), leaf removal on both sides of the canopy (LR-B), bunch thinning 

(BT) and shoot trimming on the eastern side of the canopy (ST-E). 

 

The treatments used in this study showed the limitations of NDVI and canopy area 

measurements in detecting changes in canopy structure. As discussed previously, bunch 

thinning cannot be detected by remote sensing approaches due to foliage cover. In addition, it 

was also found, in the shoot trimming group (ST-E), that the leaves and portion of shoots that 

were trimmed and left on the ground were detected by the NDVI and canopy area 

measurements using unsupervised classification (Figure 6a and b). The portion of the canopy 

that was removed at trimming likely had similar spectral properties to the canopy that remained 

on the vine. When unsupervised classification was applied, both pixels on the grapevine and 

on the ground (residual pixels) were extracted and these residual pixels reduced the accuracies 

of NDVI and canopy area. For the canopy area, residual pixels increased the total canopy pixel 

number for the measured grapevine and, as a result, increased the canopy area. By setting 

higher thresholds in the Lab colour space profile when extracting canopy pixels, some residual 

pixels in the RGB orthomosaic were filtered out (Figure 6c). Nonetheless, strict thresholds also 

filtered out part of the canopy pixels and resulted in the underestimation of the projected canopy 

area. With these measurements already taken one week after the shoots were trimmed, they are 

unlikely to be capable of providing accurate real-time assessments of the canopy structure 

immediately after shoot trimming. Therefore, it is suggested that NDVI and canopy area 

measurements using UAV-based two-dimensional rasters (e.g., spectral indices and RGB 
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rasters) for the assessment of shoot trimming should be avoided to minimise any potential 

errors. 
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Figure 6. A comparison of different remote sensing approaches for extracting the grapevine canopy. 

Rasters of the canopy that received shoot trimming, captured one week after the application at veraison 

(E-L stage 35), are shown: (a) NDVI raster (overlaying RGB orthomosaic image), (b) canopy pixel 

raster for calculating projected canopy area, (c) canopy pixel raster with the higher extraction threshold 

for green pixels and (d) digital canopy model (DCM) for calculating canopy volume. Note the trimmed 

shoots and leaves left on the ground (residual pixels) were captured by NDVI (a) and canopy area 

measurements (b). Canopy pixel extraction with the higher threshold (c) filtered out most ground 

residual pixels but also reduced the actual projected canopy area in the canopy zone. In comparison, 

DCM (d) can effectively filter out ground interference. 

 

In Figure 6d, DCM was shown to contain only the grapevine canopy after filtering out 

shoots left on the ground during DSM normalization. Without the interference from ground 

residual pixels, the canopy volume calculated from the DCM reflected more accurately the 

volume measurements of the grapevine canopy. Canopy volume measurements can also be 

obtained immediately after canopy management practices are applied without the interference 

of the trimmed shoots or leaves on the ground, unlike NDVI and projected canopy volume 

measures. In addition, although no ground vegetation (weed or cover crop) grew in the study 

vineyard, it has been found that DCM can also filter out the interference from ground vegetation 

as only the partial volume of the DCM that was above the cordon height was included (Vanegas 

et al., 2018; Weiss & Baret, 2017). With these advantages, canopy volume calculated from 

DCM displayed potential as a suitable tool for monitoring canopy management outcomes. 

Compared with UAV, the ground-based PAI measurement has a simpler process and 

offers the convenience of collecting and analysing the data quickly. It can assess the outcomes 
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of the canopy management practice and report the results in the field which allows growers to 

promptly adjust their management practices. Nonetheless, as the canopy cover imagery for the 

PAI calculation was collected discretely between vines, the sampling distances between images 

should be considered in conjunction with target map resolution when using this method for 

mapping the spatial variability. By integrating the ground imagery acquisition system with 

vineyard vehicles can potentially enable the on-the-go canopy structure assessment, as 

explored in previous studies (Bramley et al., 2007; Liu et al., 2017; Rose et al., 2016). However, 

these systems often require regular calibrations during the operation for capturing suitable 

imagery under the dynamic light conditions in the field and more research is required to 

improve the robustness of the integrated system. 

Between UAV-based remote sensing approaches, the processes for data collection and 

primary analysis were similar, both in terms of the UAV flight and the vineyard raster 

reconstruction. For canopy volume, DSM needs to be normalized to create the DCM which 

was more complicated than the canopy pixel classification and extraction for the NDVI and 

projected canopy area calculation. However, the collection of multispectral imagery for NDVI 

calculation required integrating extra multispectral sensors while the DCM was created from 

the RGB imagery captured by the originally on-board RGB sensor. Therefore, the cost and 

labour required for the acquisition and integration of multispectral sensors can be avoided by 

using DCM. In addition, DCM can also be used to provide the surface area of the canopy and 

knowing the volume and surface area of the canopy can potentially be useful for guiding other 

canopy management operations. For example, it can be used to advise the chemical spray 

volume required and the spray application rate can be adjusted during the operation according 

to the canopy size (Llorens et al., 2010; Llorens et al., 2011). The latter authors proposed the 

use of ultrasonic and LIDAR sensors for the proximal sensing of canopies in vineyards and 

concluded that these sensors could provide valuable information on canopy volume and leaf 

are index. However, they also concluded that the post-processing of LIDAR-acquired 

information can be a limiting factor to its usability. Similarly, the work from Siebers et al. 

(2018) has demonstrated that proximal sensing in viticulture could provide useful information 

on canopy architecture; the authors developed a proximal sensing platform, the Grover, 

equipped with LiDAR but with the capability to host and test multiple sensors. Diago et al. 

(2019) proposed the use of an on-the-go system to collect RGB images for the assessment of 

grapevine canopy parameters with successful results. Similar to our findings an on-the-go 

system can be used as a tool to assess the efficiency of canopy management operations. 
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UAV-based remote sensing can be used to provide assessments of the whole area before 

or after the application of canopy management practices to advise the optimal input level and 

assess outcomes. Various flight control software also helps maintain the course and speed of 

the aircraft automatically during the flight which greatly reduces the difficulties and 

complexities in capturing overlapped imagery suitable for the reconstruction of orthomosaic 

imagery using photogrammetry. The operational flexibility of UAV also allows the timely 

assessment of the canopy management outcomes, compared with manned aircraft and satellite 

remote sensing. 

 

CONCLUSION 

The UAV-based canopy volume assessment was able to account for differences obtained 

through canopy management, specifically the canopy structure. Canopy volume is more 

sensitive to changes in the canopy structure compared to NDVI and projected canopy area. It 

is also a more cost-effective measure than the multispectral index NDVI, where a multispectral 

sensor is required, increasing costs of hardware and analysis and interpretation requirements. 

The accuracies of NDVI and projected canopy area measurements were negatively impacted 

when practices such as shoot trimming, which leave plant material on the ground were applied. 

Due to the cover of foliage, UAV-based measurements cannot be used to measure the impact 

of bunch thinning on canopy structure. However, UAV-based approaches can be used to 

provide vineyard scale measurements that cover all the grapevines in the vineyard and have the 

potential to be integrated with other vineyard management practices, such as targeted chemical 

spraying. PAI calculated from ground-based canopy cover imagery can be used to measure all 

three types of canopy management practices (leaf removal, shoot trimming and bunch thinning) 

assessed in this study and was a convenient approach for in-field assessments. 
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ABSTRACT 

Aim: This study aimed to validate the use of UAV-based point cloud analysis to detect canopy decline 

severity and its spatial distribution in vineyards. 

A new approach of assessing canopy decline, caused by Eutypa dieback-like symptoms, using 

unmanned aerial vehicle (UAV) remote sensing was compared with ground visual assessment in the 

vineyard.  

Methods and results: Canopy point cloud captured by UAV-based imagery during the growing season 

was analysed by a customized program to determine canopy decline severity and spatial distribution in 

a symptomatic Shiraz vineyard in Eden Valley, South Australia. Experienced assessors performed a 

ground visual assessment in the vineyard at E-L stage 15. k-means clustering was used to detect reduced 

canopy volume due to Eutypa dieback-like symptoms. Results from point cloud analysis showed that 

12.5 % of the total canopy length in the vineyard had Eutypa dieback symptoms while the ground visual 

assessment detected 11.4 %. Confusion matrix results show an accuracy of 87.4 % and a kappa 

coefficient of 0.43 compared with ground visual assessments. Additionally, automatic analysis of the 

point cloud was quicker than the ground visual assessment and generated precise geographic 

coordinates of the symptomatic canopy sections.  

Conclusions: Point cloud analysis can detect Eutypa dieback severity and its spatial distribution with 

87.4 % accuracy, compared with the ground assessment. Similar to ground visual assessment, E-L stage 

15 appears to be a suitable stage to apply point cloud analysis to make Eutypa dieback-like symptom 

assessments.  

Significance and impact of the study: Grapevine canopy decline, caused by various factors such as 

Eutypa dieback and inadequate management, can cause grapevine canopy decline, yield reduction and 

mailto:cassandra.collins@adelaide.edu.au
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threaten vineyard longevity. Compared with tedious ground visual assessments, point cloud analysis 

can accelerate the assessment of canopy decline in vineyards and help with the planning of remedial 

practices using precise geographic coordinates of the affected sections. 

 

INTRODUCTION  

In the vineyard, canopy decline can lead to yield losses and quality reductions  (Magarey et al., 

2000). Canopy decline can be caused by factors such as grapevine trunk diseases, virus and 

inappropriate canopy management practices (Bowman, 2018). Grapevine trunk diseases as an example, 

which include diseases such as Eutypa dieback and Botryosphaeria dieback, contribute to grapevine 

decline and threaten the longevity of vineyards globally (Sipiora and Cuellar, 2015). In Australia, 

Eutypa dieback is widespread with all major grapevine varieties grown being susceptible (Wine 

Australia, 2019). It has also been found that, if trunk disease is detected early and preventive practices 

are applied, the lifespan of an infected vineyard can be extended by between 26 %–47 % (Kaplan et al., 

2016).  

 

As a major cause for canopy decline, Eutypa dieback infection can occur when fungal spores 

enter through pruning wounds on the grapevine (Gramaje et al., 2018). As the infection develops along 

the cordon, the foliar symptoms of dieback will appear on shoots and gradually grow towards the trunk 

at the speed of around 50 mm per year (Sosnowski et al., 2008). Due to its slow development, the 

canopy structure between infected and healthy vines and even between cordons of the same infected 

grapevine can be highly variable. Remedial surgery on infected cordons has been shown to improve 

productivity (Sosnowski et al., 2011). Remedial surgery practices include cordon removal, retraining 

and replanting and the application of each differs depending on the severity of Eutypa dieback (Creaser 

and Wicks, 2004; Sosnowski et al., 2011). Therefore, mapping of the severity and spatial distribution 

of canopy decline in a vineyard is crucial to plan preventative and remedial activities. Knowing the 

proportion of canopy decline relative to total canopy length can also indicate the reduction in potential 

yield (Munkvold et al., 1994). 

 

To assess canopy decline symptoms such as Eutypa dieback, visual assessments of foliar 

symptoms in the field are commonly carried out in spring, when shoot length is around 30–70 cm, 

between E-L stages 12–17 (Bertsch et al., 2013). During these developmental stages, Eutypa dieback 

incidence, severity and spatial distribution can be estimated. Currently, this practice is performed by 

experienced viticulturists and can be tedious and costly for large vineyards. Another potential option to 

assess canopy decline is the use of digital applications on portable devices. Recently, several 
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smartphone applications such as VitiCanopy have been developed to calculate plant area index (PAI) 

from canopy cover imagery (De Bei et al., 2016; Fuentes et al., 2014; Poblete-Echeverria et al., 2015). 

PAI is a measurement of the canopy structure and corresponds to the total area of leaf and cordon per 

unit ground area (Bréda, 2003). The use of PAI to quantify canopy size and structure may also be useful 

in assessing the canopy decline.    

 

Remote sensing has been applied to measure the severity and distribution of grapevine canopy 

decline in the vineyard with the advantages of lowering labour requirements and costs (Andújar et al., 

2019; Delenne et al., 2010; Hall, 2018). Red-green-blue (RGB) and multispectral imagery captured by 

aircraft and satellites have been used to detect missing grapevines and spectral reflectance changes in 

the canopy due to disease infection (Albetis et al., 2018; Chanussot et al., 2005; MacDonald et al., 2016). 

However, for Eutypa dieback-derived canopy decline assessment, analysis of aerial imagery captured 

in spring can be challenging due to interference from ground vegetation (Matese et al., 2015; Poblete-

Echeverría et al., 2017). The inclusion of ground vegetation in imagery analysis has been found to 

reduce the accuracy of detecting missing grapevines and can potentially reduce the accuracy of canopy 

decline detection and decline severity assessments (Delenne et al., 2010). Therefore, it remains unclear 

whether the canopy development stages (E-L 12–17), suitable for ground visual assessment, still apply 

to UAV remote sensing.  

 

Alternatively, point clouds reconstructed from high-resolution RGB imagery captured by an 

unmanned aerial vehicle (UAV) can potentially be used. Point cloud data contains three-dimensional 

canopy information that can be analysed to calculate canopy height, surface area and volume values (de 

Castro et al., 2018; Pádua et al., 2018). As a result, severity and distribution of canopy decline may be 

detected from low volume canopy sections, potentially representing stunted shoots and bare cordons 

with no canopy growth. The analysis of point cloud can also effectively filter out floor vegetation, by 

only extracting points above the cordon height, to reduce the interference of ground vegetation in two-

dimensional imagery (Weiss and Baret, 2017). Therefore, point cloud analysis may have greater 

potential for measuring canopy decline in spring when the symptoms are most obvious and ground 

vegetation is more likely to be present.    

 

This study aims to investigate the potential of point cloud analysis in the estimation of canopy 

decline severity and spatial distribution. To achieve this, UAV flights were performed and compared 

with ground visual assessments that are typically used to assess canopy decline, in a vineyard infected 

by Eutypa dieback. Subsequent UAV flights were also performed through the whole growing season 
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(spring to autumn) to compare the performance of point cloud analysis at different developmental 

growth stages. 

 

MATERIALS AND METHODS  

1. Experimental site details 

A 1.2 hectare Shiraz vineyard block in Eden Valley, South Australia, Australia (Lat 

34°37'57.0"S, Lon 139°06'56.8"E, elevation 386.8 m) was selected for this study during the 2018-19 

growing season. In the vineyard, grapevines displayed canopy decline, likely caused by the symptoms 

of Eutypa dieback (Figure 1). However, the distribution and severity of canopy decline were unclear. 

The block contained 20 rows of grapevines at a row spacing of 3.2 m and rows orientated east-west. 

Each row consisted of panels of three vines, planted at a spacing of 2 m. The grapevines were trained 

to a vertical shoot position (VSP) trellis system and the cordon height was 1.3 m above ground. Standard 

commercial vineyard management and irrigation practices were applied in the vineyard during the study 

period.  
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Figure 1. Examples of a (a) healthy grapevine canopy, (b) canopy with stunted shoots and uneven development 

and (c) canopy section with no growth. Images were taken at E-L stage 15 (Coombe 1995) in a Shiraz block used 

for this study in Eden Valley, South Australia.  

 

2. UAV imagery collection and process 

From budburst to harvest, UAV flights were performed approximately every two weeks, with 

a total of 11 flights performed. Among the data collected, the focus of analysis in this paper was 

concentrated on the second flight at E-L stage 15, considered the optimal stage for ground assessments 

(Bertsch et al., 2013). Using a Phantom 4 Pro UAV (DJI, Shenzhen, China), the on-board RGB sensor 

was used to capture nadir imagery at 20 megapixels resolution. The UAV flight plan was set and 

controlled by a remote controller connected to a smartphone installed with the flight planning software 

Pix4DCapture (v.4.2; Pix4D SA, Lausanne, Switzerland). A double-grid flight route covering the whole 

block and an imagery overlap ratio of 85 % were set for every flight and the aircraft was maintained at 

a constant travel speed of 2 m/s and height of 30 m above ground. Each flight took around 1hr to capture 

the entire block. During each UAV flight, around 1000 images were collected and the geographic 

coordinates of the imagery were recorded by the onboard Global Positioning System (GPS) receiver.  

Using the commercial photogrammetry software PIX4Dmapper (v.4.4.12; Pix4D SA, Lausanne, 

Switzerland), the orthomosaic images and the point clouds of the vineyard block were reconstructed 

from the RGB images and stored as .ply files. The orthomosaic images had an average ground sampling 

distance (GSD) of 0.69 cm and point clouds covering the study block contained around 40 million points 

on average. Using the MATLAB computer vision toolbox and statistics and machine learning toolbox 

(v.2019b; Natick, Massachusetts, United States), a customized process was developed to analyse the 

vineyard point cloud and extract canopy points.  

In the process, the vineyard densified point cloud (DPC) was first rotated to horizontal view. In 

this view, the coordinates of the first and last row centroids were manually selected, and middle row 

centroid coordinates were calculated automatically using the fixed row spacing (Figure 2, step 1). With 

row coordinates determined, region of interest (ROI) polygons (2 m wide), wider than the canopy width 
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but narrower than row spacing, were created and vineyard point cloud was separated into individual 

row point clouds (Figure 2, step 2). According to the panel length, the single row point cloud was then 

further divided into separate panel point clouds (Figure 2, step 3). The ground points in each panel point 

cloud were identified using the MLESAC method (Torr and Zisserman, 2000). This was achieved by 

setting the maximum absolute angular distance among neighbouring points and maximum Euclidean 

distance of points from the plane. With the ground plane determined, all points were categorized as 

either canopy points (green) or non-canopy points (purple, Figure 2, step 4). After categorization, 

canopy points were appended into a separate canopy point cloud which included around 6–10 million, 

depending on the canopy size at different growing stages. An alpha shape (polyhedra) was created from 

the canopy point cloud (Figure 2, step 5) (Edelsbrunner et al., 1983; Milella et al., 2019). The volume 

(m3) of the alpha shape was calculated as the corresponding grapevine canopy volume. 

 

 

Figure 2. Point cloud analysis procedure for canopy volume calculation.  

 

To detect canopy-decline-induced canopy volume reduction, canopy point clouds were divided 

into subsections (0.05 m wide) along the row orientation (Figure 3). The volume of all the subsections 

followed a normal distribution. Any stunted or no growth canopy subsections were detected when their 

volume was below the set thresholds. Fixed thresholds for defining low canopy volume were unsuitable 

for the rapidly expanding canopy in the spring. To create thresholds for detecting low canopy volume 

between different growing stages, the k-means clustering was used to categorize the subsection volume 

values at each stage into five classes. The number of classes was adopted from the classification 

approach described in Sosnowski et al. (2016). Subsections with volume above the first (smallest) class 

threshold were labelled as “healthy”. Sections with volume below that threshold were labelled as either 
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“stunted” or “no growth”. The first class was then further divided into another five classes with the first 

two smallest classes labelled as ‘no growth’ and the larger three classes as “stunted”. The threshold 

between “no growth” and “stunted” category within the class was determined empirically according to 

their ratio in the ground assessment. With all sub-sections labelled, consecutive subsections labelled as 

“stunted” or “no growth" longer than 0.2 m (four subsections) were recorded. The length threshold of 

0.2 m was used to filter out gaps from the natural spacing between shoots and could be variable for 

different vineyards according to the shoot density.  

 

 

Figure 3. Example of the point cloud analysis process for detecting canopy decline: (a) the grapevine cordons 

were found to contain both healthy canopy, stunted growth and no growth sections; (b) corresponding single 

grapevine point cloud selected from the vineyard point cloud; (c) canopy points selected from the vine point cloud 

and divided into sections (0.05 m in length). For all canopy sections, k-means clustering was used to generate 

labels of “healthy”, “stunted” and “no growth” (colour coded). In this study, any stunted canopy or no growth 

sections longer than 0.2 m on a target grapevine were recorded. Point coordinates are for illustration only, not the 

actual geographic coordinates.  

 

3. Ground assessments of the canopy decline  

To provide the ground truth measurements, the grapevines in the study block were assessed by 

a combination of visual assessment, canopy cover imagery analysis and canopy development 

measurements. The visual ground assessment was performed at E-L stage 15 in spring to better capture 

stunted canopy sections and no growth sections before they were filled or covered by rapidly developing 

healthy shoots. During the assessment, experienced assessors walked through all rows in the block and 

visually evaluated canopy health and searched for foliar symptoms on every vine. Plants displaying 

canopy decline had (1) the severity (%) estimated; (2) the recorded section location as either left cordon, 

trunk or right cordon of the vine recorded (Figure 4) and (3) length of the sections measured. The 

smartphone app, VitiCanopy was used to capture canopy cover imagery and calculate PAI, in parallel 

with ground visual assessments. PAI measurement was used to measure the difference in canopy 

structure. Briefly, one image was collected for each of the two cordons per vine (sampling distance = 1 
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m; n = 2160) and detailed procedures can be found in De Bei et al. (2016). The severity of the canopy 

decline was also assessed by counting the total shoot number and measuring mean shoot length from 

three randomly selected shoots. Sections found without any shoot development were labelled as no 

growth. For comparison with the canopy structure of declined canopy, the shoot number and shoot 

length of 20 randomly selected grapevines with healthy canopy were also recorded.  

 

Figure 4. Location of grapevine canopy decline during visual assessments was classified as either left cordon, 

trunk or right cordon.  

 

4. Canopy decline mapping and accuracy analysis   

To enable the mapping of the multiple measurements taken, the geographic coordinates of 

individual grapevines are necessary. Theoretically, with fixed plant spacing, the geographic coordinates 

of all grapevines in any given vineyard can be calculated from the point cloud. The precision (centimetre 

level) of the coordinates calculated from the point cloud was also considered to be higher than what 

portable Global Navigation Satellite System (GNSS) terminal can achieve (2–3 metres) unless more 

complicated and expensive professional systems are used (e.g. differential GNSS or real-time 

kinematic). However, due to variable plant spacing in row-end panels in the vineyard, additional in-

field measurements were taken to obtain the vine number and spacing in the end panels. With the vine 

coordinates, the spatial distribution of Eutypa dieback-like symptoms and PAI can be interpolated from 

field measurement points using kriging in QGIS (v.3.12.0, QGIS Project) with the spherical model used 

for the empirical semivariogram.  

To map the distribution of canopy decline, centroid coordinates of low canopy volume sections 

detected by point cloud were calculated. For ground measurements, the centroid coordinates were 

calculated from the combination of relative positions of sections on the vine and vine coordinates. Using 
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the length and centroid coordinates of the stunted canopy section and no growth sections, polygon 

vector geometries were created and stored as shapefiles (.shp) to represent sections displaying canopy 

decline. To determine the accuracy of the point cloud analysis, compared with ground visual 

assessments, a confusion matrix was constructed using QGIS and the kappa coefficient was calculated 

(Landis and Koch, 1977). 

To assess the variance in shoot length, shoot number and canopy volume measurements, mean 

value and standard error of mean were calculated using MATLAB statistics and the machine learning 

toolbox (v.2019b; Natick, Massachusetts, United States).  
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RESULTS AND DISCUSSION 

Eutypa dieback-like symptom detection: ground vs. point cloud   

The severity of the Eutypa dieback infection, representing the level of canopy decline, 

measured by visual assessment, can be visualised in Figure 5. The severity of Eutypa dieback (Figure 

5a), was found to be higher in the northern part of the block and lower towards the south which clearly 

demonstrated the progression of the Eutypa dieback-induced canopy decline. In comparison, the PAI 

map Figure 5b) shows variable patches in the vineyard with lower canopy growth, which do not fully 

align with Eutypa dieback-like symptom distribution. As will be discussed later, this can be explained 

by the spatial variability in canopy development caused by a range of factors, such as soil profile, water 

availability, management variability, etc. It is important to note that since canopy variability can be 

influenced by multiple factors and weak canopy growth without obvious foliage symptoms can still be 

healthy. Furthermore, PAI at this development stage is relatively low and demonstrates the challenges 

with assessment at early developmental stages and vineyard variation when using imagery. 
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Figure 5. Field measurement results; (a) Eutypa dieback infection level per vine (%) and (b) Plant area index 

(PAI) of the study block at E-L stage 15. Eutypa dieback infection level was assessed according to foliar 

symptoms of the Eutypa dieback. PAI was calculated from canopy cover imagery using VitiCanopy. 

 

Average shoot number, shoot length and canopy volume, were also found to be significantly 

impacted by Eutypa dieback (Table 1). At E-L stage 15, the mean shoot number in stunted canopy 

sections was significantly less than healthy sections and stunted shoots were less than half of the length 

of healthy shoots. For no growth sections, no shoots were present and the mean shoot length was zero. 

Mean canopy volume, derived from point cloud analysis, of the stunted canopy and no growth sections 

were significantly smaller than healthy canopy sections. Although cordons with no growth contained 

no shoots, the canopy volume of the canopy gaps was greater than 0. The residual canopy volume 

reflects the volume of the bare cordons, as shown in Figure 3. Only in the case of cordon removal, was 

a canopy volume of zero recorded. Using the no growth section volume, point cloud analysis also 

provides the potential to distinguish between dead cordons and missing cordon/grapevines which can 
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be otherwise challenging for two-dimensional imagery analysis of RGB and multispectral imagery 

(Delenne et al., 2010; Poblete-Echeverría et al., 2017; Puletti et al., 2014).  

 

Table 1. Canopy growth parameters of healthy, stunted and no growth sections at E-L stage 15. Average 

shoot number per metre and shoot length (cm) were measured during ground visual assessments. Canopy 

volume per metre (m3/m) was calculated using point cloud analysis. For each measurement, the standard 

error of mean is also shown. 

Canopy types Average shoot number 

per metre 

Average shoot length (cm) Canopy volume (m3/m) 

Healthy canopy 13.7 (0.48) 47.2 (1.22) 1.2 (0.13) 

Stunted canopy 4.4 (0.33) 20.0 (0.64) 0.3 (0.07) 

No growth 0.0 (0.00) 0.0 (0.00) 0.2 (0.03) 

 

From point cloud analysis, the study block’s total canopy length was 2398.1 m (Table 2). 

Ground visual assessment found 181.1 m stunted canopy (7.6 % of total length) and 91.8 m no growth 

cordon (3.8 %). With the k-means clustering categorizing the canopy volume, point cloud analysis 

detected 207.8 m stunted canopy (8.7 %) and 91.7 m canopy gaps (3.8 %). The total length of the stunted 

canopy and no growth cordon was found to be 272.9 m (11.4 %) and 299.5 (12.5 %), as measured by 

ground assessment and point cloud analysis, respectively.   
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Ground visual assessment revealed that both stunted canopy and no growth sections were 

present in every single row (Figure 6). Point cloud analysis also identified widespread stunted and no 

growth canopy sections. Both approaches detected large sections of canopy decline in the first three 

rows in the north of the block, indicating the severity of the Eutypa dieback problem. However, as can 

be observed in Figure 6, the ground visual assessment identified more short canopy sections with 

dieback symptoms than the point cloud analysis. This can be explained by the multiple factors used to 

grade the Eutypa dieback-induced canopy decline in ground assessment, including foliage symptoms 

and the overall canopy growth. As a result, ground measurement provided a more detailed but subjective 

assessment of the canopy decline.   

 

 

 

 

 

Table 2. Summary of ground visual assessment and point cloud analysis results for Eutypa dieback-like symptom 

detection in the study block, measured at E-L stage 15. The grapevine canopy was categorized into three types: 

healthy, stunted and no growth. The total length of each reported in metres and percentages of each relative to 

the total canopy length are also shown. 

Total canopy length in the block: 2398.1 m (20 rows) 

Type Ground visual assessment Point cloud analysis 

Healthy canopy (m) 2125.2 2098.6 

Stunted canopy (m) 181.1 207.8 

No growth (m) 91.8 91.7 

Stunted + no growth (m) 272.9 299.5 

Healthy canopy (%) 88.6% 87.5% 

Stunted canopy (%) 7.6% 8.7% 

No growth (%) 3.8% 3.8% 

Stunted + no growth (%) 11.4% 12.5% 
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Figure 6. A comparison of the stunted and no growth canopy section detection using (a) ground visual 

assessment and (b) point cloud analysis at E-L stage 15. Green = healthy canopy, yellow = stunted canopy, 

red = no growth. The length of the rectangles was determined by the length of canopy sections impacted by 

Eutypa dieback-like symptoms. The boundaries of individual grapevine canopy are marked with black 

rectangles. 

 

Using the confusion matrix of the classification accuracy, the performance of the point cloud 

analysis for canopy decline detection was quantified (Tables 3 and 4). When thresholds were set for 

point cloud analysis to detect the similar total length of symptomatic sections with ground assessments, 

87.4 % (cells in green) of the categorization by point cloud analysis matched with sections detected by 

ground measurement (Table 4). However, the chances of false positives (healthy canopy classified as 

stunted or no growth in point cloud analysis) and false negatives (stunted or no growth canopy detected 

as healthy in point cloud analysis) were 4.3 % (cells in red of the first column) and 5.1 % (cells in red 

of the first row), respectively (Table 3). In addition, 3.3 % (cells in yellow) of the detection were 

misclassified between stunted or no growth classes (Table 3). The kappa coefficient of 0.43 also showed 
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moderate agreement between the point cloud analysis and ground visual assessment (Table 4). The 

percentage agreement observed is also higher than the percentage agreement expected by chance. The 

analysis of point cloud demonstrates interesting and promising results that with further development 

may become a method for canopy decline assessment in vineyards. 
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Table 3. Confusion matrix of the canopy decline detection accuracy of UAV-based point cloud analysis, 

compared against ground visual assessment. Detection accuracies are colour-coded to show the correct and 

incorrect classifications. Green stands for the correct classifications between point cloud analysis and ground 

visual assessment. Red stands for incorrect classifications of the healthy canopy as declined categories (stunted 

or no growth) and vice versa. Orange stands for incorrect classifications between the declined categories. 

  Ground Visual Assessment 

  Healthy Stunted No Growth 

Point Cloud 

Analysis 

Healthy 
82.5 % 2.8 % 2.3 % 

Stunted 
3.3 % 3.7 % 1.7 % 

No 

Growth 1.0 % 1.6 % 1.2 % 

 

Table 4. Summary of the %observed agreements, %agreements expected by chance, kappa coefficient (kappa), 

weighted kappa and standard error (SE) of kappa for canopy decline detection accuracy of UAV-based point cloud 

analysis, compared against ground visual assessment.  

 

 

 

 

 

 

 

Several potential reasons for Eutypa dieback-like symptom detection variations between 

ground and point cloud analysis approaches have been found and summarised: 

Potential reasons leading to the location variations include: 

1. The locations of the ground measurements were less precise than results from point cloud 

analysis. The ground measurement only recorded relative locations (left cordon, trunk or 

right cordon) of the infected sections on the grapevine. In comparison, point cloud analysis 

provided more precise geographic coordinates of the infected sections with sub-centimetre 

level precision (0.69 cm Ground Sample Distance (GSD)).    

Parameter Result 

%observed agreements 87.4 % 

%agreements expected by chance 77.9 % 

Kappa 0.43 

Weighted kappa 0.46 

SE of kappa 0.02 
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2. Real grapevine cordon length could be variable. This was caused by the existing remedial 

surgery practices that cut back some severely infected or dead cordons and extended healthy 

cordon from another grapevine to fill in the canopy gap (Sosnowski et al., 2011). It can also 

be caused by the differences that occurred during the initial vineyard set up. Therefore, the 

actual grapevine boundary could be different to the boundary from point cloud analysis, 

calculated according to fixed grapevine spacing. The boundary detection in continuous 

canopy point cloud remains difficult and the accuracy of Eutypa dieback-like symptoms 

detection at the grapevine level can be reduced as a result. 

Potential reasons leading to the classification variations include: 

1. Inaccuracies from the point cloud analysis program. As the infected canopy has a smaller 

size and fewer points in the point cloud than a healthy canopy point cloud, the canopy alpha 

shape created from a reduced number of points can be less accurate (Park et al., 2005) and 

the accuracy of the canopy volume may be influenced, as a result. Points representing posts 

between panels can also be counted as canopy points due to similar height. Although these 

points have a different colour profile to the canopy points, colour thresholds for more 

precisely selecting canopy points were not applied in the current study. Increasing the point 

density during point cloud reconstruction and the additional analysis of point colour may 

help improve classification accuracy but potentially at the cost of longer processing time 

and larger point cloud file size.  

2. Human error from ground visual assessment as it depends on the experience and judgement 

of the assessor.  

3. Canopy sections with low volume detected by point cloud analysis may also be influenced 

by other environmental factors (Iland et al., 2011; White, 2015). Ground assessors 

identified canopy sections with Eutypa dieback-like symptoms according to foliar 

symptoms and asymptomatic grapevines, even with relatively smaller canopies but healthy, 

were not recorded. For point cloud analysis, the detection of the infected canopy was solely 

dependent on the canopy volume and its accuracy can be reduced when canopy growth 

variations are large across the vineyard. This is considered to be a limiting factor for the 

current photogrammetry for point cloud reconstruction. Unless the RGB imagery resolution 

is much higher to be able to reveal the foliage symptom of the Eutypa dieback-induced 

canopy decline, it remains challenging for point cloud to distinguish between weak growth 

canopy and Eutypa dieback-induced canopy decline. This range of error for point cloud 

analysis will also increase with the canopy structure variability in the vineyard. 
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Implications of mapping Eutypa dieback-like symptoms for vineyard management  

 

Areas with high levels of Eutypa dieback-like symptoms may require remedial surgery to 

control the further spread of Eutypa dieback and the application of pruning wound protection in nearby 

rows may become necessary (Sosnowski and Mundy, 2019). The mitigation of Eutypa dieback using 

remedial surgery practices (e.g., top work to re-establish the cordon or replanting) can be expensive and 

result in a loss in productivity for several years (Sosnowski et al., 2011). Preventive measures on early 

symptoms can improve the economics and effectiveness of application (Kaplan et al., 2016). Using 

point cloud analysis to combine the spatial distribution of Eutypa dieback-like infected canopy, 

infection severity and their percentages of the total productive canopy may provide important 

information when making decisions on preventative measures, reworking and whether or not to replant 

the vineyard when considering overall vineyard performance (Baumgartner et al., 2019; Munkvold et 

al., 1994). 

For the 1.2 ha study block, the ground visual assessment took four experienced assessors eight 

hours, equivalent to 32 man-hours, and the capture of canopy cover imagery for LAI calculation took 

three man-hours.  In comparison, the UAV flight and the data preparation took around four man-hours 

and the automatic analysis workflow can complete the analysis of vineyard point cloud in around two 

hours. However, it is important to note that the development and implementation of the codes needed 

for the point cloud analysis program took a considerable amount of time to complete and test.   

The Eutypa dieback-like symptom detection provided by point cloud analysis offers a convenient 

and labour-saving alternative to visual assessment. It also suggests that point cloud analysis may be 

especially useful when assessing large vineyards where performing ground visual assessment can be 

very costly and not practically feasible. The automatic point cloud analysis process also limits potential 

human errors when using ground assessments which are related to the experience and judgement of the 

assessor (Kaplan et al., 2016). The highly precise geographic coordinates of the infected canopy 

extracted from the point cloud also offer other integration potentials, e.g., variable chemical spray rates 

for healthy and stunted canopy and the option to stop spraying where the cordon is bare (Wandkar et 

al., 2018).  

 

     Eutypa dieback-like symptom detection through the growing season using point cloud 

analysis 

 

Across the whole growing season, 11 UAV flights were performed and the percentages of 

stunted and no growth canopy sections at each flight were calculated from point clouds (Figure 7). The 
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highest levels of stunted and no growth canopy sections were detected at E-L stage 11 in the first flight. 

This was considered to reflect the natural shoot spacing and variation in shoot development at early 

development stages (before E-L stage 10) more than Eutypa dieback infection. After the first 

measurement, the percentages of stunted canopy and no growth sections declined substantially with 

canopy development. At E-L stage 15, when the ground visual assessment was performed, an infection 

level of 12.5 % was found and it dropped to around 8 % at E-L stage 17 and 25. The estimated infection 

levels reduced further to around 5 % at E-L stage 27 and remained stable until harvest (E-L stage 38). 
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Figure 7. The percentages of total canopy length in the study block detected with stunted canopy (yellow) 

and no growth (red) sections during the 2018–19 growing season, calculated by point cloud analysis. At E-

L stage 15 (highlighted), both the UAV flight and the ground visual assessment were performed. Percentage 

of symptomatic canopy length (11.4 %) determined by ground visual assessment were shown as the 

horizontal red dash line (---).  

 

The ideal stage for performing ground visual assessments for Eutypa dieback has been 

suggested to be between E-L stages 12-17 when the symptoms are most obvious (Bertsch et al., 2013). 

The point cloud analysis at stage 15 in this study generated similar results to ground measurements. In 

Figure 7, the percentage of the stunted canopy and no growth sections found after this stage were lower 

suggest a limitation to the application of point cloud analysis. Therefore, these findings support previous 

studies, which indicated that a suitable time to apply point cloud analysis is around E-L stage 15. 

Conclusion 

 

The analysis of the vineyard point cloud at E-L stage 15 can be used to assess Eutypa dieback-

induced canopy decline in a vineyard. Canopy health classifications by the point cloud were accurate 

during this stage when compared with ground visual assessment (87.4 %). Point cloud analysis also 

supplied the precise geographic coordinates of the infected canopy to map the spatial distribution of 

Eutypa dieback-like symptoms and facilitate the application of remedial practices. The automatic 
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analysis of the point cloud is more convenient and less labour-intensive than ground visual assessment. 

However, factors including existing canopy remedial surgery, limited point density and the vineyard 

environmental conditions can influence the accuracy of point cloud analysis. Results from this study 

suggest that E-L stage 15 is suitable for Eutypa dieback detection using point cloud analysis as it aligns 

well with visual assessments. The number of infected canopy sections this method can detect declines 

later in the season as the canopy develops.  
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Chapter 6. General Discussion 

Chapter 6. General Discussion 

 

As demonstrated in the previous three chapters, vineyard monitoring was performed 

using UAV-based aerial remote sensing across three consecutive growing seasons in vineyards 

across South Australia. The performance of UAV-based systems in multiple aspects was 

assessed and compared with ground-based measurements. In the first study, canopy 

development was measured from budburst to veraison by regular UAV flights during the same 

period. The second study explored the potential use of UAV to evaluate the changes in the 

canopy structure after applying a range of common canopy management practices. The third 

study investigated the feasibility of using UAV to detect canopy decline potentially caused by 

grapevine trunk diseases. With the knowledge gaps identified in the literature review, these 

three studies were designed to explore tools/systems/approaches suitable for practical purposes 

in the vineyard. These studies showed the feasibility and potential use of UAV as an approach 

to monitor canopy development during the growing season, especially at critical developmental 

stages.  

 

Based on research findings, ground-based canopy imagery analysis is also a suitable 

approach to monitor canopy development. Being a more convenient and straightforward 

approach requires a simpler skillset than the requirements to conduct UAV flights and the 

analysis afterwards. With a lower input cost, the ground measurements may also be more 

effective and convenient than UAV-based remote sensing, depended on the monitoring 

purposes. However, ground-based measurements can require more time and labour to complete 

if high-resolution maps or complicated measurements are required. In summary, a clear 

definition of the vineyard monitoring purposes will largely determine the most suitable 

monitoring approach, either from the air or on the ground. 

6.1 Monitoring Purpose(s) 

To understand and improve vineyard performance, vineyard monitoring purposes can 

be diverse, ranging from calculating planting area, estimating canopy dimensions, measuring 

plant water status, to disease incidence and severity detection. Depending on the purpose, the 
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systems used to conduct measurement can differ significantly. For example, thermal sensors 

are used to measure vine water status, while RGB or LiDAR sensors are used to measure 

canopy dimensions.  

 

In this work, UAV imagery's potential to monitor canopy development, evaluate 

canopy manipulation outcomes, and detect canopy decline were studied. The sensors used to 

capture imagery were either RGB and/or multispectral sensors for monitoring canopy 

development. RGB and vegetation indices rasters representing the whole growing area can be 

reconstructed from individual imagery using photogrammetry. By comparing rasters, canopy 

development at different phenological developmental stages within and between seasons can 

be visualized. The general trends in canopy development across the vineyard can also be better 

understood. The potential management decisions made from spatial variability monitoring can 

help set up the vineyard's zonal management, such as zones with different canopy management 

practices, irrigation regimes, fertilization application rates, mulch application rates, etc.  

 

Imagery resolution is an important factor for planning UAV flight and is determined by 

the amount of details required to make a management decision. The suitable imagery resolution 

should be determined by the monitoring purpose(s) and examples of different imagery 

resolutions are shown in Figure 1. In examples A to D, the GSDs of NDVI rasters provided for 

vineyard monitoring, from high to low resolution, range from 10m (A, metre level, representing 

low-resolution satellite imagery), 3m (B, metre level, representing medium resolution pan-

sharpened/unsharpened satellite imagery), 0.5m (C, sub-metre level, representing low-

resolution UAV imagery captured at high flight height, manned aircraft imagery or high-

resolution pan-sharpened satellite imagery) to 0.04m (D, centimetre level, representing high-

resolution UAV imagery captured at low flight height).  

 

It is clear that 10m resolution can only provide very limited information and is too 

coarse for defining zones within the vineyard. Higher resolution (3m) imagery offers more 

details regarding spatial variability, but individual vines and mid-row crop identification are 

still challenging. Fine resolution (0.04m and 0.5m) imagery offers more detailed information 

regarding the development of individual vines and mid-row crops. It should also be noted that 
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0.04m resolution imagery only provided limited additional information than the 0.5m 

resolution imagery. For more specific monitoring purposes such as detecting canopy gaps, 

having the 0.04m resolution may help the accurate measurement of the gap length. Therefore, 

considering the effort required to acquire higher resolution imagery rasters and the large dataset 

needed to be analysed, it is crucial to select the most suitable and efficient imagery resolution. 

From the studies conducted in this study, it is recommended that a submeter resolution or 

higher (examples C and D in Figure 1) will generate the optimal outcomes.   

   

Image stitching may be one of the main limitations of UAV compared to other remote 

sensing platforms, namely, manned-aircraft and satellite. Imagery stitching for UAV imagery 

to form a vineyard raster or imagery reconstruction, is a time-consuming step because the 

coverage of individual UAV imagery can be quite small, especially at the low flight height 

when trying to obtain high resolution imagery. To form a vineyard raster, it can take hundreds 

of images per hectare and several hours of highly intense computation to perform the stitching, 

as described in the first study. Examples of commercially available imagery stitching software 

include Pix4D (Pix4D S.A., Prilly, Switzerland) and Agisoft (Agisoft LLC, St. Petersburg, 

Russia). In comparison, manned aircraft can acquire imagery with much larger coverage and 

thus reduce the reconstruction effort and satellite imagery generally does not require 

reconstruction as a single imagery can cover hundreds of square kilometres in a single capture. 

The resolutions of these approaches are also increasing gradually with better sensors. Since 

timing is critical for vineyard management, this is especially important that UAV imagery can 

be analysed in a timely way, even if at the cost of imagery resolution.  

 

The purposes of vineyard monitoring can be diverse, ranging from the basic calculation 

of planting area to estimating canopy dimensions, measuring plant water status, disease 

detection, etc. Depended on the actual purpose, the systems used to conduct measurement can 

also differ significantly. In this work, evaluating canopy manipulation outcomes and detecting 

unproductive canopy were studied. Results showed that these two targets require high-

resolution RGB imagery to precisely measure the external dimensions of the canopy structure. 

The dataset generated for the UAV vineyard monitoring can also vary significantly from the 

RGB imagery, such as DSM in the second study and the point cloud in the third study. 

Understanding the information provided by different data types and choosing the most 
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appropriate and efficient way to analyse data was the key to ensuring a successful outcome of 

vineyard monitoring.  

6.2 Data Analysis Approaches 

Different types of data are generated during the UAV flight. Datasets need to be 

analysed with various programs to extract the most useful and relevant information. 

Photogrammetry and GIS platforms are usually the essential tools for imagery stitching, spatial 

analysis, raster visualization, and data mapping, etc. Some other customized programs may 

also be required for specific steps, such as point cloud generation and analysis, multi-sources 

data fusion, and customized geometry calculation and analysis, depended on the complexity. It 

is worth mentioning that with limited commercialised tools currently available for vineyard 

monitoring purposes, all three studies conducted in this work involved creating customized 

programs in Matlab, which increased the technical complexity, impacting the use for 

practitioners. In the future, having customised commercial programs for vineyard monitoring 

would improve the adoption of UAV based vineyard remote sensing.  

 

Depended on the purpose, the UAV flights can be conducted flexibly at a weekly or 

monthly basis. The data collected should be simple to reduce the complexities and time 

required in data analysis so that results can be generated promptly. In the first study, 

multispectral imagery consisting of multiple visible and invisible bands and RGB imagery were 

collected. Without the requirement to use a complicated classification or machine learning 

approach, simple unsupervised classification was shown to be effective and efficient enough 

to separate the established canopy from the background soil and floor vegetation.  

 

 However, it should be noted that if a large portion of the vineyard floor is covered by 

vegetation, either be vineyard weeds or cover crops, the accuracy of the unsupervised 

classification might be reduced significantly due to the highly similar spectral properties 

between the canopy and the floor vegetation. This is demonstrated by the unsatisfactory 

classification results in the first study during early developmental stages where canopy 

measures were not accurate. One potential mitigation to that challenge can be using geometric 

definition to reduce the inclusion of non-canopy-related pixels by only selecting pixels from 
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the vine row and within the canopy width. In the future, either classification methods, 

unsupervised, supervised or machine learning, used in combination with the vine row's 

geometric definition should be explored to improve the accuracy of canopy monitoring. This 

can be achieved by creating vine row polygons at the canopy width as masks to extract pixels 

inside the polygons. As a result, the floor vegetation in the row spacing can be filtered out.  

 

The three-dimensional (3D) models of the vineyard, including DSM and point cloud, 

were more sensitive to the change in canopy structure than two-dimensional RGB and spectral 

indices rasters due to an additional dimension of canopy height. Canopy manipulation and the 

detection of canopy decline by trunk diseases are the two examples where 3D models were 

used in this work. Compared with rasters, 3D models can also measure the canopy structure at 

early developmental stages by filtering out ground vegetation using height differences. This 

advantage is particularly useful for assessing canopy decline during early developmental stages 

where the symptoms are the most obvious and the canopy gaps are not covered by canopy 

development of healthy vines.  

 

The steps to create 3D vineyard models are more complicated as the canopy structure 

needs to be extracted from the background. DSM needs to be normalized to create a digital 

canopy model (DCM) and ground points and points below the canopy height removed before 

calculating the canopy volume and area parameters. A few different approaches to achieve 

canopy extraction and analysis are proposed and detailed in this work and demonstrate that the 

canopy structure can be accurately extracted. With the extra steps required, which involves 

additional programming, software, and setting up various input parameters, such as canopy 

height threshold and the alpha value, the processing time is generally longer. A deeper 

understanding of the 3D canopy model is also required for the user. 
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6.3 Limitations and Future Improvements 

The limitations of using UAV captured imagery include the complex skills required, 

limited system reliability under various environments, and costs associated with hardware and 

analysis software. Having a better understanding of these limitations and their causes can also 

help users to choose the most fit-for-purpose monitoring approach (Table 4).  

 

As a useful measurement, point cloud’s potential to improve vineyard management has 

not been fully utilized in a way that allows for easy adoption. Research conducted using point 

cloud generally involves complicated hardware and software systems (Andújar et al. 2019; 

Siebers et al. 2018). The algorithms used to process the data can also be complicated and 

difficult to customise (Siebers et al. 2018; Weiss & Baret 2017). If UAV operations are offered 

as a commercial service, complications in integrating the sensor and platform, conducting the 

flight operation, and data processing need to be resolved as these challenges will increase the 

operation and maintenance costs substantially.  

 

Ground monitoring using either manual or canopy cover imagery analysis can generate 

data at megabyte level per hectare (MB/ha). In comparison, UAV-based aerial remote sensing 

can generate much larger datasets at gigabyte level per hectare (GB/ha), such as high-density 

point clouds and high-resolution rasters. However, large datasets can pose challenges for the 

storage, analysis, and spatial-temporal data comparisons. Future research should determine the 

optimal point density and GSD for point cloud and raster, respectively, to reduce data size and 

retain critical information, such as canopy dimensions and canopy pixels. More scientific and 

commercialization efforts will be required to overcome these limitations and make the UAV-

based systems more reliable and economical to their end-users.   

 

Based on the findings in this work, the canopy structure measurements using UAV 

systems can provide valuable information for understanding the spatial variability of the 

vineyard. It can also assist with vineyard management in achieving specific targets, such as 

evaluating canopy management outcomes and measuring the severity and location of canopy 

decline. Depending on the monitoring purposes, the most suitable ground and aerial-based 

approaches should be selected in combination with different sensor and data analysis choices. 
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Point cloud analysis has demonstrated a strong potential to measure canopy structure with 

accuracy and robustness, especially during early development stages. Future research in 

vineyard canopy sensing could focus more on creating more easily operated, open-sourced, 

and reliable systems to improve practicability, reliability, and accuracy.  
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Table 1. Summary of impacts of leaf removal on grapevine and wine properties, with additional notable findings from individual studies. 

Studies are categorized by the growing stage when manipulation was applied (modified E-L stage, Coombe, 1995). 

 General findings  Application stage  Other findings 

Leaf 

removal 

• Reduced leaf layer numbers and 

improve canopy light environment. 

• Increase soluble solids accumulation 

in berries at harvest. 

• Yield reduction at around 20 to 

30%. 

• Improve fruit and wine quality (e.g. 

higher total phenolics and total 

anthocyanins). 

• Reduced lateral shoot development. 

Early 

(0-14) 

• Improved control on microbial population, bud fruitfulness and reduced bunch rot risk (Gatti et 

al., 2015; Komm & Moyer, 2015; Lemut et al., 2015). 

• Lower leaf-area-to-yield ratio (Bubola et al., 2017). 

• The total skin anthocyanins can be further improved when applied with regulated deficit irrigation 

(Cook et al., 2015).   

• The relative developments of berry properties are affected independently from absolute berry 

mass (Tardaguila et al., 2010). 

Flowering-veraison 

(15-35) 

• Reduced bunch compactness, fruitfulness and yield when applied in cold climate (Acimovic et 

al., 2016). 

• Reduction in potassium accumulation, malic to tartaric acid ratio and wine pH (Coniberti et al., 

2012). 

• Soluble solids decreased when excessive leaves removed (Vasconcelos & Castagnoli, 2000). 

Harvest 

(36-38) 

• Applied at around 16-17 °Brix was reported to be most effective in delaying sugar accumulation 

in Sangiovese berries (Palliotti et al., 2013).  

Post-harvest (39-43) 
• Reduced carbohydrate and nitrogen reserve in permanent structure and reduced bud fruitfulness 

over several consecutive seasons (Greven et al., 2016).  
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Table 2. Summary of impacts of leaf removal and bunch thinning on grapevine and wine properties, with additional notable findings from 

individual studies. Studies are categorized by the growing stage when manipulation was applied (modified E-L stage, Coombe, 1995). 

 

 General findings  Application stage Other findings 

Shoot/ 

bunch 

thinning 

• Reduced average bunch number per vine. 

• Increase average shoot weight and length with 

higher average leaf area. 

• Significantly higher soluble solids, total phenolics 

and anthocyanins accumulation in the berry. 

• Elevated pH level. 

Early (prior to stage 

14, inclusive) 

• The influence on titratable acidity accumulation depended on the cultivar 

(Reynolds et al., 2005).  

• Cluster thinning was found affecting only red cultivars (Morris et al., 2004).  

Fruitset 

(stage 15-34) 

• Lower leaf layer numbers and better leaf and cluster exposures compared with 

early shoot thinning (Reynolds et al., 2005). 

• Improved  resveratrol level in wine with in better antioxidant capacity (Prajitna et 

al., 2007).  
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Table 3. Summary of recent UAV based optical remote sensing studies conducted in vineyards.   

Authors 
Target 

parameter(s) 
Data type Accuracy assessments 

Sampled 

vineyard(s) 

(area) 

Study 

duration 
Remarks Limitations 

Mathews and 

Jensen (2013) 

Leaf Area 

Index (LAI) 
RGB images 

Ground LAI measurement 

(R2=0.567) 

One 

(1.9 ha) 

Single 

flight 

Potential to estimate 

LAI using slow from 

motion (SfM) point 

cloud and 3D modelling. 

Limited data obtained from 

single flight. 

Ballesteros et 

al. (2015) 

  

LAI, green 

canopy cover 

(GCC) and 

canopy 

volume (V) 

RGB images 
Ground LAI analyser 

(0.84<R2<0.93) 

Two 

(2.5 ha) 

Three 

growing 

seasons 

Exponential polynomial 

and second-order 

polynomial models fit 

for estimating LAI from 

GCC. 

The relationship between 

LAI, GCC and V need to 

be calibrated for trellis 

systems, irrigation systems 

and plant canopy types. 

Kalisperakis et 

al. (2015) 

  

LAI 

Hyperspectral 

and RGB 

images 

Ground leaf counting and 

reflectance measurements 

(R2>0.73) 

One 

(area not 

available) 

Single 

flight 

Hyperspectral and 3D 

canopy model achieved 

higher correlation than 

RGB orthomosaic 

images. 

LAI subject to 

overestimation with sparse, 

weak or unhealthy canopy. 

Sepúlveda-

Reyes et al. 

(2016) 

 

Crop water 

stress index 

(CWSI) 

Thermal 

images 

Ground thermal images 

(R2=0.8) 

One 

(area not 

available) 

Single 

growing 

season 

CWSI has stronger 

correlation with plant-

based variable when 

under water stress. 

Low values of R2 were 

obtained in the beginning 

and the end of growing 

season. 
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 (Table 3 continue) 

 

Poblete-

Echeverría et 

al. (2017) 

  

Canopy 

detection 
RGB images 

A confusion matrix is used to 

test the classification accuracy 

of machine learning 

(Accuracy: 80%-100%) 

One 

(Area not 

available) 

Single 

growing 

season 

Machine learning 

methods can improve 

the accuracy of vineyard 

canopy segmentation. 

Limited flight number over 

the season (6 flights); 

human interventions 

required for calibrating the 

models with training data. 

Weiss and 

Baret (2017) 

  

Vineyard 3D 

macro-

structure 

RGB images 

Ground measurements (root 

mean square error = 9.8, 8.7 and 

7 cm for row height, width and 

spacing, respectively) 

Twenty 

100m2 

plots 

(0.2 ha) 

Single 

growing 

season 

Sufficient images need 

to be taken to ensure 

point cloud quality.  

 

Insufficient RGB images 

reduced the quality of 

DPC; DPC density is lower 

at row edges. 

 

Albetis et al.  

(2017) 

  

Grapevines 

canopy 

disease 

Flavescence 

dorée 

identification 

Multispectral 

images 

 

Discrimination of infected vine 

and severity in field 

(%identification: red 

cultivar >87%; white cultivars 

<80%) 

Four 

(3.1 ha) 

Single 

flight 

Infected vines from red 

cultivars were more 

easily identified while 

white cultivars 

identification was 

unfavourable. 

A systemic overestimation 

of %infection at parcel 

scale existed. 

Romboli et al. 

(2017) 

  

Normalised 

difference 

vegetation 

index (NDVI) 

Multispectral 

images 

Indirectly validated by juice and 

wine sample chemical analysis 

 

One 

(0.38 ha) 

Single 

growing 

season 

Temperature at fruiting 

zone and bunch level is 

strongly influenced by 

vine vigour. 

 

Ground measurements on 

grapevine vigour level 

should be made to 

compared with NDVI. 
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Table 4. Comparisons of capabilities and limitations of UAV and ground measurement 

approaches for vineyard monitoring. 

 UAV Ground 

Major capabilities High resolution imagery, 

vineyard scale measurement and 

canopy gap detection 

Canopy architectural 

measurements 

Image analysis Complicated and customised Simple and on-the-go 

Geographic 

coordinate 

precision 

Centimetre level inaccuracy Meter level inaccuracy 

Map resolution High Medium 

Cost Medium to high Low 

Weather 

limitations 

Rain and strong winds Rain 

Other 

requirements 

Operating license(s)*, sensor 

integration and calibration, etc. 

- 

      *Dependent on the jurisdiction. 
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Figure 1. The NDVI rasters of the same Chardonnay block with high spatial variability, 

captured by UAV flights during the 2020 growing seasons in the Adelaide Hills region, 

Australia. Rasters with four different ground sample distances (GSD) are shown: (A) 

10m (meter level), (B) 3m (meter level), (C) 0.5m (sub-meter level) and (D) 0.04m 

(centimetre level), representing different levels of details and information within the 

imagery. Rasters A-C are for indication only and representing simulated results from 

the recalculation of the original raster D.  
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