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Abstract

This thesis focuses on building an object-centric 3D map given an RGB image
sequence, in which the basic elements are object instances. This is fundamentally
different from conventional visual Simultaneous Localisation and Mapping (SLAM)
that describes the geometry of an environment using geometric entities, such as
3D points, voxels or surfels. Representing an environment at the level of objects
captures both the semantic and geometric information of an environment. It is
more natural, compact, and closer to how human beings perceive the environment.
Specifically, we investigate methods where well-studied geometry and deep learning
can be combined to achieve object-centric mapping in general scenes.

We first build upon recent advances in deep learning for single-view object
reconstruction, a task of recovering full 3D object shape from a single RGB image.
An open question when using deep networks to solve this question is how to generate
object shape efficiently. To this end, we propose a novel multi-view representation
to generate dense point cloud efficiently. Although this pure deep learning paradigm
shows impressive results on synthetic data, the lack of a large amount of annotated
real images leads to a domain gap when inference on real images.

We then introduce a new single-view object reconstruction method by combining
well-studied geometry and a deep learned shape prior. This new approach optimises
an object’s shape and pose using both 2D image cues, such as object silhouette,
and constraints on learned object shape prior at inference time. Although we only
address the single-view object reconstruction in this work, the online refinement
makes it straightforward to incorporate more observations.

We introduce our first object-centric mapping system – FroDO (From Detections
to Objects) based on our works on single-view object reconstruction. It takes
as input an RGB image sequence and infers object location, pose, and shape
in a coarse-to-fine manner, meaning that we reconstruct an object-centric map
starting from a set of 2D object detections, through a 3D bounding box, to a sparse
point cloud, and a dense mesh progressively. Although FroDO shows promising
results on general and cluttered indoor scenes, it is neither an online system nor
capable of handling object motions.

To address the limitations of FroDO, we subsequently present MO-LTR (Multiple
Object Localisation, Tracking, and Reconstruction). It combines a monocular object



detector for object pose and scale prediction, a shape embedding network for shape
modelling, and an IMM filter for tracking. Although each component’s contribution
is relatively incremental, as a system, it achieves dynamic object-centric mapping
for both indoor and outdoor scenes.
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1
Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions and Thesis Outline . . . . . . . . . . . . . 4
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Background

Simultaneous Localisation and Mapping (SLAM) is the problem of localising

a moving agent in a previously unknown environment and reconstructing the

surrounding simultaneously given sensor information. There is a wide range of

sensors that can be used for SLAM, but in the domain of this thesis, we focus

on visual SLAM that employs a single camera as the input sensor. One of many

challenges of SLAM is that the agent has no a priori knowledge of the environment.

To localise itself, it has to incrementally create a persistent representation (i.e.

mapping) of the environment as it moves.

In early SLAM systems, the mapping is to serve localisation. To make the system

work more efficiently given limited computation power at the time, a common choice

of map representation is a set of sparse 3D feature points as landmarks for tracking

1
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(Davison et al., 2007; Klein et al., 2007). However, the sparse reconstruction cannot

provide information about free space in the environment, which is a limitation

for applications involving path planning and obstacle avoidance. By leveraging

increased computation power from GPU, a number of dense SLAM systems are

introduced where dense TSDF (Newcombe et al., 2011a) or surfels (Whelan et al.,

2015) is used for reconstruction.

The study of SLAM has achieved a level of sophistication leading to a few

commercial products in our daily life – autonomous vacuum cleaners where SLAM

techniques are used to assist path planning, and AR/VR headsets where SLAM is

used to track device poses to name a few. However, advanced intelligent systems

require a deeper understanding of the environment not only from the geometric

perspective but also from the semantic perspective. For instance, a service robot

that does housework will need to recognise objects and understand their shape

for interaction. In the AR/VR domain, when a user interacts with an object,

the system has to track the dynamic element as a whole (by understanding it is

an object). Furthermore, parsing the surroundings semantically will be able to

facilitate semantic-based reasoning, which exploits the relationship between semantic

entities (i.e. object co-existence, affordance) for better mapping, navigation, and

interaction with human beings.

To bring the aforementioned futuristic applications closer to reality, a crit-

ical component of an intelligent system is the capability of understanding the

environment semantically at an object level. This involves both recognition and

reconstruction, where the system needs to identify semantically meaningful entities

in the environment and recover their 3D structure. The task of building an object-

centric reconstruction that consists of separate and meaningful object entities is

termed as object-centric mapping in this thesis.

1.2 Motivation

This thesis aims to develop an object-centric mapping system in a relatively simple

sensor setup (i.e. a monocular RGB camera). Despite early attempts, with the rise
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of deep learning, we believe it is the right time to explore ways, where traditional

geometry and modern deep learning can be combined, for a robust and generic object-

centric mapping system. There are two strong themes in this thesis. Firstly, we

investigate how deep learning can be used in the task of object shape reconstruction.

The second is building an object-centric mapping system that leverages the deep-

learning recognition and reconstruction modules.

The capability of object recognition is a distinctive feature of object-centric

mapping from geometric-only mapping. In recent years, we have witnessed im-

pressive progress of deep learning in 2D recognition tasks(e.g. image classification,

object detection, and instance segmentation), and deep networks (Convolution

Neural Networks (CNN) to be precise) have become the standard approach for

these tasks. An increasingly popular research trend is applying deep learning to

geometry problems such as single view depth estimation, surface normal estimation,

and visual odometry.

From the perspective of object-centric mapping, we are specifically interested in

object shape inference using deep networks. Humans can effortlessly infer the 3D

structure of objects from incomplete viewpoints or even just from a single observation.

This leads us to the first question we would like to answer in this thesis: can we use

a deep network to infer the complete 3D shape of objects from limited viewpoints or

even just a single image? Furthermore, given that shape reconstruction using a deep

network is a mapping function from image space to shape space, what constraints

would be needed to ensure that the reconstructed shape is consistent with multi-view

geometry, and how to update the shape when more observations are available?

Moving from the task of shape reconstruction to an object-centric mapping

system, we here highlight a few key features that we aim to achieve with our

new paradigm of object-centric mapping:

• It employs deep nets as “sensors” for object recognition and reconstruction. By

processing the raw sensor data (i.e. RGB images), deep nets are used to identify

meaningful objects and provide an initial guess for object reconstruction.
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• It is an online system, which means the system can only use data received

up to the current state, and the map is incrementally built. Therefore, it is

important for an online system to be able to refine object reconstruction when

new observations become available.

• It is capable of modelling object motion independently because humans could

move objects during an interaction.

1.3 Contributions and Thesis Outline

We first dedicate Chapter 2 to review related works in object shape reconstruction

from image(s), semantic SLAM, and object-centric mapping.

In Chapter 3, we present our first attempt to applying deep learning on object

shape reconstruction from a single view observation. This work comes at a time

when researchers started to use deep networks to learn a mapping from image(s) to

object shape. An open question is: “what is an efficient object shape representation

for network training?” To this end, we propose a novel and highly efficient deformed

multi-view depth map representation for object shape. We also show how a neural

network can be trained with this novel representation with a multi-view consistency

loss. Given a single RGB image of an object, the network can predict a dense

point cloud that models an object surface by fusing depth maps from multiple

canonical viewpoints.

Although the work described in Chapter 3 shows promising results on object

shape reconstruction from a single image, the object shape reconstruction by a feed-

forward only neural network is undesirable for an object-centric mapping system for

two reasons. Firstly, the shape reconstruction cannot be incrementally refined when

more images are available. Secondly, a well-known problem of deep nets is the lack

of transparency (i.e. a function approximator in a black box). It is not bounded

by any geometry constraints used in geometry-based reconstruction methods (e.g.

photometric consistency or silhouette consistency). Chapter 4 aims to develop a

better shape reconstruction module to overcome these limitations. Instead of using
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a deep network as a direct mapping from raw image observation(s) to an object

shape, we leverage the non-linear dimension reduction of deep networks to learn

a shape embedding. We cast the single-view object shape reconstruction as an

optimisation problem where we minimise the discrepancy between the reconstructed

3D shape and visual observations by changing the latent variable (i.e. shape code) in

the embedding. To enforce prior knowledge of object shape in the shape embedding,

we show that a simple Gaussian Mixture Model (GMM) prior fitted in the space

can help predicting plausible 3D object shapes from just single-view observation.

We present our first object-centric mapping solution — FroDO in Chapter 5

based on the optimizable shape reconstruction proposed in the previous chapter.

FroDO takes as input RGB sequences of real-world multi-object scenes and infers

an object-centric map, leveraging 2D recognition, learning-based 3D reconstruction,

and multi-view optimisation with shape priors. We also introduce a novel deep

joint shape embedding that allows simultaneous decoding to sparse point cloud

and continuous SDF representations and enables faster shape optimisation in

a coarse-to-fine manner.

Although FroDO can generate object object-centric maps, it is limited to static

environments, and its data association module works in an offline fashion. It is

clear that object motions would exist in many robotic applications. Unlike some

traditional SLAM approaches that consider object motions as outliers, it is crucial to

capture these motions in object-centric mapping. In Chapter 6, we explore ways to

handle dynamic objects and develop a truly online system. To this end, we propose

MO-LTR, a unified framework for object-centric mapping, which can localise, track,

and reconstruct multiple objects in an online fashion given monocular RGB image

sequences. The proposed system, by combining deep learned 3D detection and

shape prior, and multiple model Bayesian filter, achieves superior performance in

object localisation, tracking, and reconstruction.

We summarise the research presented in the thesis and discuss future research

direction in Chapter 7.
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1.4 Publications

The research described in this thesis has led to the following articles that have

been published, or under review.

• Kejie Li, Trung Pham, Huangying Zhan, Ian Reid. “Efficient Dense Point

Cloud Object Reconstruction Using Deformation Vector Fields” Proceedings

of the European Conference on Computer Vision (ECCV) 2018

• Kejie Li, Ravi Garg, Ming Cai, Ian Reid. “Single-view Object Shape

Reconstruction Using Deep Shape Prior and Silhouette” 30th British Machine

Vision Conference (BMVC) 2019

• Hosseinzadeh Mehdi, Kejie Li, Yasir Latif, Ian Reid. “Real-Time Monocular

Object-Model Aware Sparse SLAM” International Conference on Robotics

and Automation (ICRA) 2019

• Kejie Li*, Martin Rünz*, Meng Tang, Lingni Ma, Chen Kong, Tanner

Schmidt, Ian Reid, Lourdes Agapito, Julian Straub, Steven Lovegrove, Richard

Newcombe. “FroDO: From Detections to 3D Objects” Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020

• Kejie Li, Hamid Rezatofighi, Ian Reid. “MO-LTR: Multiple Object Localisa-

tion, Tracking and Reconstruction from Monocular RGB Videos”. Accepted

in IEEE Robotics and Automation Letters (RAL)

* indicates equal contribution
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The purpose of this chapter is to provide a broad overview of techniques that

are relevant to object-centric mapping, examine the advantages and disadvantages

of previous approaches, and highlight the novelties of our works. We start with

approaches that use deep learning for recognition and geometry problems, followed

by a detailed discussion on object reconstruction from images. We then discuss the

evolution of geometric mapping systems from sparse to dense representations. Moti-

vated by the limitation of geometric-only mapping, we discuss recent developments

in semantic mapping and object-centric mapping.
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2.1 An Overview of Deep Learning

Deep learning has revolutionised the field of computer vision in recent years. This

section covers significant developments of deep learning and its relation to the

works described throughout the thesis.

2.1.1 Deep learning for recognition

AlexNet (Krizhevsky et al., 2017) first shows the potential of deep learning on

image classification when a large amount of labelled data is available for training

in the early 2010s. Deeper and more powerful network architectures (generally

referred to backbones), such as VGG (Simonyan et al., 2014), and ResNet (He

et al., 2016), further improve deep network performance.

Soon after its success in image classification, deep learning has been applied to

more recognition tasks. Object detection is a task to classify and localise the extent

of objects of interest within an image via bounding boxes. RCNN (Girshick et al.,

2015) proposes a selective search algorithm to generate regions of interest within an

image. Object detection can then be achieved by image classification in each region

of interest. Fast RCNN (Girshick, 2015) introduces an ROI pooling operation,

where features for each region proposal are processed in a single forward pass,

to achieve faster inference and more surpassing performance than RCNN. Faster

RCNN (Ren et al., 2016), taking a step forward to integrate region proposal into

the deep network, is differentiable from predictions to the input image, and thus can

be trained end-to-end. They showed that this end-to-end approach outperformed

previous methods in terms of both speed and accuracy. Mask RCNN (He et al.,

2017), tackling another recognition task – instance segmentation – is based on

Faster RCNN. It generates a binary mask as an object silhouette for each detected

object. We use Mask RCNN as our recognition module in Chapter 5.

More recently, DETR (Carion et al., 2020) introduces a new pipeline for object de-

tection that does not rely on region proposals. A transformer-like network (Vaswani

et al., 2017) predicts a set of bounding boxes and their classes directly. Our
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monocular 3D detector in Chapter 6 extends DETR by adding more prediction

heads for additional attributes (e.g. depth, object size, and rotation).

Deep learning based approaches have also achieved state-of-the-art perfor-

mance on dense pixel-wise prediction task, such as semantic segmentation (Long

et al., 2015), image generation (Goodfellow et al., 2014), and style transfer (J.

Zhu et al., 2017).

In addition to the applications mentioned above that take as input an image(s),

extracting semantic information from geometric input(e.g. point cloud, voxel, and

mesh) has attracted researchers’ attention recently.

PointNet (Qi et al., 2017), OctNet (Riegler et al., 2017) have been proposed to

classify objects given a 3D shape of an object. While works above focus on a single

object, there are many works for semantic segmentation (Dai et al., 2018), object

detection (Qi et al., 2019), and instance segmentation (Hou et al., 2019) given a point

cloud or voxel grid of a scene. More recently, an object-centric mapping solution

using point cloud as input data — RfD-Net (Nie et al., 2020) have been proposed.

It first segments object instances given an input point cloud and then completes

each segmented object’s full 3D shape. A key difference from our works presented in

Chapter 5 and 6 is the input modality. RfD-Net takes as input a complete geometric

reconstruction, while in contrast, we use sequences of images. A major disadvantage

of taking as input a 3D geometric reconstruction for object-centric mapping is the

inability to model object dynamics. In Chapter 6, we show how our video-based

method can effectively model object dynamics using a Bayesian filter.

It is worth mentioning ScanNet (Dai et al., 2017a), a large-scale RGBD video

dataset with semantically annotated reconstructions. It contains about 1500 scans

in different indoor environments, each of which has instance-level annotations

on the reconstructed mesh. Thanks to ScanNet, the deep learning approaches

working with point cloud and voxels can be trained and evaluated on a massive

amount of labelled data. We use ScanNet to benchmark our object-centric mapping

approaches presented in Chapter 5 and 6.
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2.1.2 Deep learning for geometry

Deep learning has also gained attraction in geometry and 3D vision tasks following

its success in recognition tasks. It has shown promising results in applications

ranging from low-level feature extraction and matching to high-level reconstruc-

tion and tracking.

While classic feature descriptors, such as SIFT (Lowe, 2004), SURF (Bay et al.,

2008), and ORB (Rublee et al., 2011), are handcrafted, SuperPoint (DeTone et al.,

2018) demonstrates how a deep network could be trained to discover salient feature

points, whose features are used for matching between two frames. In subsequent

work, SuperGlue (Sarlin et al., 2020) takes a step further toward an end-to-end

data-driven image matching framework by learning the matching between two

images using a graph neural network.

Researchers have applied CNNs to dense pixel-wise geometric prediction, such

as monocular depth estimation (Eigen et al., 2014), normal estimation (X. Wang

et al., 2015), optical flow (Fischer et al., 2015), and stereo reconstruction (Kendall

et al., 2017). While most early works rely on labelled data for training, which is

expensive to collect, an increasingly popular trend is to use well-studied geometry

constraints as a training signal. Garg et al. (2016) proposes to train a deep network

for monocular depth estimation supervised by a photometric loss between stereo

pairs. Rather than learning depth from stereo image pairs, Zhou et al. (2017) shows

how both camera trajectory and depth could be optimised jointly using temporal

pairs using photometric loss. Photometric loss is also used extensively in Chapter

5 for object shape and pose optimisation at inference time.

A deep network can also be used for recognition and geometry jointly. Eigen

et al. (2015) shows that predicting geometry and semantic information jointly is

complementary. It is worth noting that the detector used in Chapter 6 that predicts

not only 2D bounding boxes but also objects’ 3D location from a single image is

another example of using deep learning for recognition and geometry jointly.
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2.2 Object Reconstruction

Object reconstruction aims at recovering object 3D shape from an image(s). In

this section, we review the literature on object reconstruction from a single view

and multiple views using either traditional geometry-based or deep learning based

methods. We also discuss different representations for object shape.

2.2.1 Single-view reconstruction

3D object reconstruction from a single image is an extremely ill-posed problem.

That is to say, there are infinite combinations of object shape and pose that can

result in the same image observation. Therefore, an important research direction is

to use prior knowledge to reduce the search space of object shapes. If objects to

be reconstructed can be categorised into classes, prior knowledge of a category –

which often captured via a low-dimensional shape embedding – can be leveraged

to address the task.

Various dimension reduction techniques have been used to this end. Principal

Component Analysis (PCA) have been utilised to capture the variance in object

shapes represented by Signed Distance Function (SDF) (Tsai et al., 2003). Dambre-

ville et al. (2008a) introduced kernel PCA to learn a non-linear shape embedding

and showed that it outperformed linear PCA. Prisacariu et al. (2012) learned a

probabilistic and non-linear shape embedding via Gaussian Process Latent Variable

Models (GP-LVM). However, the techniques above are limited to object categories

with low shape variance, such as cars, aeroplanes, and human bodies, and the

reconstructions can only capture low-frequency details. Instead, we use a deep

autoencoder to learn shape embedding, which we demonstrate in this thesis can

work with object categories with high shape variance or even multiple object classes.

More recently, similar to other computer vision tasks, end-to-end deep learning

based approaches have been proposed to learn a mapping from a single RGB image

to complex and generic object shapes. Early works involving deep networks aimed

to map an RGB image to a sparse point cloud (Fan et al., 2017a) or a low-resolution
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voxel grid (Choy et al., 2016a). These representations have their advantages and

disadvantages, which is discussed in section 2.2.3.

Girdhar et al. (2016) is a pioneering work with the insight of learning a shape

embedding explicitly to improve single-view object reconstruction. They propose

to train two networks for single-view object reconstruction. The first network is

an AutoEncoder trained to map an object shape represented by a voxel grid to a

shape embedding, and then reconstruct the input shape using the decoder. The

second network is a Convolution Neural Network that mapps an input image to

the shape embedding. When reconstructing an object shape from a single image,

the trained CNN maps the image to a shape code in the embedding, decoded by

the decoder to an object shape. A low-dimensional embedding as an intermediate

representation is a distinctive feature of this work over previous works that train

a network to map an image to an object shape directly. This idea of training

a deep shape embedding has inspired many works, including ours. We develop

our probabilistic shape embedding in Chapter 4 and the joint embedding that

works with both sparse point cloud representation and DeepSDF, a dense implicit

representation, in Chapter 5. An active research direction in single-view object

reconstruction currently is investigating what representation to be used in a deep

learning framework, which is covered in Section 2.2.3.

An important research direction of single-view object reconstruction is weakly

supervised learning that uses multi-view geometry instead of 3D ground-truth

shape as training signal for deep networks. The motivation is twofold: 1) It

is time-consuming and labour-intensive to acquire ground-truth object shapes

from real images. 2) As a result, deep learning based approaches often resort

to using CAD models of objects, such as ShapeNet (Chang et al., 2015). A

large number of synthetic images are rendered from different viewpoints of a

CAD model. Rendered images and the CAD models can then be used as input

and target for network training, respectively. However, the domain gap between

synthetic images in the training and real images in testing deteriorates network

performance at inference time.
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The main principle in weakly supervised learning is to minimise the inconsistency

between a predicted 3D object shape and the corresponding image observations.

The observations can be object silhouette (Tulsiani et al., 2017a; Yan et al., 2016)

or texture (Kanazawa et al., 2018). However, inference using the trained network

still solely relies on the mapping function controlled by network weights and is not

bounded by any geometric constraint. In contrast, our approaches in Chapter 4

and 5 enforce the geometric consistency explicitly at inference time.

Instead of using a single RGB image, some works propose to complete a full 3D

object shape from a single depth observation. Dai et al. (2017b) first completes

a low-resolution full 3D shape from a single depth observation, followed by an

up-sampling procedure by leveraging a shape database with high-resolution models.

B. Yang et al. (2018) proposes to use a conditional Generative Adversarial Network

(cGAN) to complete a high-resolution voxel reconstruction directly from a single

depth view to bypass the need of a CAD model database.

2.2.2 Sparse multi-view reconstruction

While classic SfM and SLAM approaches require a dense number of viewpoints for

feature matching and correspondence estimation, another set of approaches focuses

on reconstructing object shapes from a sparse set of viewpoints arbitrarily distributed.

In the scope of sparse multi-view reconstruction, the baseline between observations

is often too large to apply feature matching for reconstruction as done in traditional

SfM/SLAM. We dedicate this section to methods in a sparse multi-view setup, and

SfM/SLAM based approaches for object reconstruction are discussed in 2.4.2.

Shape from silhouette (Pujari, 1993) is a classic algorithm in sparse multi-view

reconstruction. Each contour image of an object (i.e. silhouette) was unprojected

to 3D using known camera intrinsic parameters to form a visual cone. A visual

hull, the 3D reconstruction, was obtained by intersecting multiple visual cones

from different viewpoints. Shape from silhouette is simple in the sense that it

does not require any knowledge on lighting condition or texture. However, a
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reconstruction degenerates when the number of viewpoints is too few to capture

the entire shape, or the 3D shape is concave.

To handle concavity, Seitz et al. (1999) and Kutulakos et al. (2000) extended

visual hull by reasoning texture and colour assuming Lambertian reflection. Shape

from shading (Zhang et al., 1999) is able to recover concave surfaces but requires

prior knowledge of the lighting direction. To some extent, the work we describe in

Chapter 4 can be considered as a shape from silhouette approach with a deep learnt

shape prior. Unlike the traditional shape from silhouette that requires viewpoints

with a large baseline to recover a full 3D shape, we show that if a category-wise

shape prior is available, the full 3D shape can be recovered given only a single view.

Several deep learning approaches are introduced in recent years to recover a

3D object shape given a sparse set of viewpoints. 3D-R2N2 (Choy et al., 2016a)

proposes to fuse information from multiple images via a Recurrent Neural Network

(RNN) to predict an object shape. Instead of using an RNN, Sridhar et al. (2019)

and Wiles et al. (2017) use permutation invariant operations, such as max pooling

or average pooling, to fuse multi-view information. In Learnt Stereo Machine (Kar

et al., 2017), 2D image features are unprojected and transformed into a 3D feature

volume using the known camera intrinsic and extrinsic parameters. A 3D CNN

takes as input the 3D feature volume and generates the final 3D reconstruction.

LSM shows that the 3D feature volume is crucial for multi-view fusion.

2.2.3 Shape representation

Memory consumption of different representations must be taken into account

carefully when training deep networks for shape generation. Choy et al. (2016a)

and Girdhar et al. (2016) use a stack of 3D deconvolution layers to generate 3D

voxel grids to represent object shapes, which is analogous to the 2D deconvolution

operation producing dense pixel-wise predictions. However, a reconstructed voxel

grid is limited to low resolution due to the memory growth in cubic order. Efficient

data structures, such as Octree (Tatarchenko et al., 2017) have been proposed to

alleviate this problem. Recognising object shapes can be parameterised by a set of
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bases, Johnston et al. (2017) propose to map an image to the bases of the Discrete

Cosine Transform. An inverse DCT operation replaces the expensive deconvolution

layers to reconstruct voxel grids at the desired resolution.

A limitation of voxel-based representation despite extensions mentioned earlier

for higher resolution is that it needs voxels to indicate occupancy for the entire

discretised space. In contrast, mesh and point cloud are two popular choices besides

voxel for efficiency because only the surface of an object shape needs to be modelled.

Early works with mesh representation (N. Wang et al., 2018; Henderson et al., 2018)

learn to deform a simple template (e.g. ellipsoid and cube) or a retrieved shape

template (Pontes et al., 2018) to model different object shapes. These methods,

however, fail to reconstruct shapes that have different topology from the templates.

Although MeshRCNN (Gkioxari et al., 2019) still uses mesh deformation, it was

initialised by a low-resolution voxel reconstruction, which is likely to have a similar

topology with the target shape, and thus improved the final mesh reconstruction.

Fan et al. (2017a) introduces a method for single-view object reconstruction

using point clouds. However, it is confined to a sparse set of points because the

number of learnable parameters grows proportional to the point cloud. Moreover,

the loss functions working with point clouds (Chamfer Distance (CD) or Earth

Mover Distance (EMD)) become intractable for dense point clouds. Instead of

directly predicting a dense point cloud, Lin et al. (2018a) propose to predict

multiple depth maps from a set of fixed viewpoints. A dense point cloud can be

generated by unprojecting the depth maps and transforming into the pre-defined

canonical pose. Nevertheless, this representation is not as efficient as possible

because not every pixel in a depth map is used to model object shape. They predict

a binary mask to filter out background pixels in a depth map that do not intersect

with the object surface after unprojection. As a result, a substantial amount of

computation for the background pixels are wasted, and it also leads to the sparsity

of the fused point cloud. Our work in Chapter 3 presents a novel framework

to generate dense point cloud more efficiently. The novelty lies in the use of our
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deformable vector field, which alters the direction of unprojection rays of each pixel

such that every ray can intersect with the object surface.

More recently, Implicit representations introduced in DeepSDF (Park et al.,

2019a) and Occupancy Net (Mescheder et al., 2019a) have attracted significant

attention in the community. The core of these representations is a learned mapping

function from a 3D coordinate to a classification result of whether this 3D coordinate

is inside or outside the object shape boundary. However, a large number of inquiries

(by passing a 3D coordinate to the network) are needed to recover the entire

object shape. Therefore, although these representations have shown to be more

expressive for shape modelling and can potentially represent shapes to arbitrarily fine

resolution, they come with the cost of many network forward operations. Methods

like (S. Liu et al., 2019) that use geometry constraints to optimise an object shape

represented by a DeepSDF embedding requires forward and backward through

the network for hundreds of iterations. The computation cost is prohibitively

expensive for any online systems. To alleviate this issue, we introduce a novel joint

embedding, where a shape code can be decoded to either a sparse point cloud or

a dense DeepSDF representation in Chapter 5. Therefore, our method can use

the sparse point cloud representation for efficient optimisation before switching

to deepSDF for further dense refinement.

2.3 Geometric-only Mapping

Geometric mapping from image observations is most commonly formulated as

Structure from Motion (SfM) or Simultaneous Localisation And Mapping (SLAM)

problem. While both SfM and SLAM involve solving camera poses and scene

geometry jointly, SfM is often solved in a batch mode via a technique called

Bundle Adjustment (BA) (Triggs et al., 1999), but SLAM is solved online and

incrementally, which is more attractive to many robotic and AR/VR applications.

In this section, we focus mainly on the mapping part of SLAM, particularly for

the interest of this thesis.
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Early SLAM approaches, such as MonoSLAM (Davison et al., 2007) and

PTAM (Klein et al., 2007), with the main focus on localising camera in a previously

unknown environment, use a sparse set of salient feature points for feature matching.

At this stage, the sparse feature points that describe the geometry of the environment

come as a side product for camera tracking. Although sparse feature points do

not provide a dense reconstruction, which is crucial for obstacle avoidance, they

are lightweight and still used in modern SLAM systems (Mur-Artal et al., 2017).

While PTAM (Klein et al., 2007) uses sparse feature points for mapping, the idea

of separating tracking and mapping has facilitated significant developments on

mapping, such as denser reconstruction and incorporating semantic information.

Unlike feature-based approaches described above that only use a subset of pixels

for mapping, direct methods utilise all image pixels’ gradient. DTAM (Newcombe

et al., 2011b) is a novel work on this direction. It estimates the depth map of

each RGB image by reprojecting the depth values into a cost volume where the

photometric cost is minimised. A smoothing term is applied to help reconstruction

in texture-less regions. Camera poses are tracked by optimising the per-pixel

photometric cost in a Lucas-Kanade style warp.

Researchers have tried to incorporate a higher level of entities than 3D points in

the map. Lovegrove (2012) proposes a plane mosaicing algorithm to fuse multiple

visual observation into a single plane. More recently, the work from Hosseinzadeh

et al. (2017), building upon Orb-SLAM (Mur-Artal et al., 2017), takes 3D planes

as an additional geometric entity for mapping. The addition of planes generates

a denser mapping and enables point-plane constraint and plane-plane constraint

to improve accuracy. Similarly, S. Yang et al. (2016) demonstrate that 3D planes

can improve dense mapping, especially in low-texture environments.

The rise of commodity RGBD sensors like Kinect from Microsoft and PrimeSense

has promoted the development of RGBD mapping systems. The RGB-D mapping

proposed by Henry et al. (2014) uses a combination of depth observations and

feature point matching in a joint optimisation for both camera pose and mapping,

represented by surfels. KinectFusion (Newcombe et al., 2011a), while using a similar
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technique for tracking, adopts the Truncated Signed Distance Field (TSDF) as

a volume representation for reconstruction where depth measurements could be

fused into a volume by weighted averaging. KinectFusion demonstrates how noisy

depth reading can be fused for accurate mapping and subsequently has encouraged

a series of “fusion” approaches.

While the TSDF used in KinectFusion limits its scalability, ElasticFusion (Whe-

lan et al., 2015) adopts a surfel-based representation, which extends the mapping

to room-scale environments. It achieves globally consistent mapping by using

loop closure and non-rigid surface deformations. While all aforementioned systems

assume a static environment, DynamicFusion (Newcombe et al., 2015) is proposed

to handle non-rigid objects presented in a scene.

More recently, Bloesch et al. (2018a) present a key frame based SLAM, where

the depth map of each keyframe is represented by a compact low-dimensional latent

code. The depth map can be optimised using photometric consistency with nearby

views. Our works in Chapter 4, 5, and 6 share common ground with this work

in using a deep network to learn a compact embedding for geometry.

2.4 Semantic Mapping

While dense reconstruction has enabled obstacle avoidance and path planning, it

is increasingly clear that semantic information is critical for more complex tasks.

Furthermore, human beings perceive the surrounding semantically, and it would

benefit interactive applications if the robots can also parse the environment as we

do. Semantic mapping, referring to associating semantic concepts to geometric

entities in a robot’s surrounding (Cadena et al., 2016), has been proposed to fill in

the gap. Semantic mapping can be divided into two groups: one that parses the

semantic information at a category level, and the other that takes the concept of

object instance into account, which we refer to object-centric mapping in this thesis.
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2.4.1 Category-level semantic mapping

Early works in semantic mapping adopt a two-stage framework, where the first

stage is building a geometric mapping, followed by the second stage attaching

semantic class labels to the geometric mapping. Kahler et al. (2013) use KinectFu-

sion (Newcombe et al., 2011a) to build a geometric reconstruction, which is then

labeled semantically by Decision Tree Field (Nowozin et al., 2011) and Regression

Tree Field (Jancsary et al., 2012). Similarly, Pham et al. (2015) also rely on

KinectFusion for geometric reconstruction, but they use a hierarchical Conditional

Random Field to label category-level semantic information.

Unlike the off-line approaches where geometric reconstruction and semantic

labelling is decoupled, online approaches reconstruct and label semantically simul-

taneously. Given a new incoming frame, Hermans et al. (2014) infer 2D semantic

segmentation map using Randomised Decision Forests. The 2D segmentation

map is unprojected to 3D using the depth observations and fused to the 3D

semantic model via a Bayesian update. A dense pairwise Conditional Random

Field regularises the update on the 3D point cloud. Instead of automatically

using a trained model for semantic information inference, SemanticPaint (Valentin

et al., 2015) labels the environment semantically guided by a user input while

an RGBD sensor scans the environment.

More recently, an extensive and ongoing body of work uses deep networks for

semantic segmentation when building a semantic mapping pipeline. A famous work

on this direction is SemanticFusion (McCormac et al., 2017) that is built upon

ElasticFusion, a geometric only SLAM framework. It uses a semantic segmentation

network to infer a 2D semantic segmentation map from each incoming RGB

image. The predicted semantic segmentation map is unprojected to 3D using

the depth map from the depth sensor. This new prediction is fused into the

reconstruction probabilistically.

Similarly, CNN-SLAM (Tateno et al., 2017), using a deep network to infer 2D

semantic segmentation map, explores the possibility of using a monocular depth

estimation network to replace the “depth” channel of an RGBD camera. The
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semantic representation of both CNN-SLAM and SemanticFusion is incrementally

fused into the 3D map from 2D semantic segmentation predictions. A recent work,

SceneCode (Zhi et al., 2019), built upon a latent code based CodeSLAM, proposes to

jointly embed depth map and semantic segmentation map in a learned latent space.

2.4.2 Object-centric mapping

While associating category-level semantic information to a geometric reconstruction

is a critical step toward more “meaningful” reconstruction, not all advanced robotic

tasks can be facilitated by category-level semantic information. For instance,

fetching an object requires not only pixel-level semantic labelling but also the

concept of an object instance. Therefore, another direction researchers have begun to

explore focus on creating a reconstruction with instance-level semantic information,

namely, object-centric mapping.

SLAM++ (Salas-Moreno et al., 2013a) is an important milestone in the devel-

opment of object-centric mapping. It relies on a pre-constructed object database.

When a hand-held depth camera traverses in a scene, it employs Point-Pair Features

to match depth observations with object reconstructions in the database. If matched,

the reconstruction is placed into the scene using the object pose estimated by Hough

voting using the Point-Pair Features. However, the apparent drawback of SLAM++

is the need for the pre-defined object database that limits its practicality to an

arbitrarily new scene with unregistered object instances.

Some following works leverage shape prior knowledge to bypass the need for

a pre-defined object database. Dame et al. (2013) combines a dense SLAM with

object pose and shape optimization. The authors proposed to capture shape prior

knowledge in low-dimensional embedding using a Gaussian Process Latent Variable

Machine (GPLVM). Photometric consistency and depth information used in the

dense SLAM system can be utilised to optimise object shape represented in this

embedding and object pose. It is one of the earliest works to show that shape prior

information can enhance the completeness and accuracy of geometric reconstruction.
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In a similar formulation, Bao et al. (2013a) solve an off-line Structure from Motion

problem with shape prior information.

The main theme in this thesis is leveraging deep learning to learn a better shape

prior. GP-LVM used in Dame et al. (2013) does not scale well to be trained on large

datasets or learn priors on high-dimension shape representations. This forces Dame

et al. (2013) to use frequency-based compression techniques (i.e. Discrete Cosine

Transformation) leading to loss of thin and other high-frequency object structures.

Compared to Dame et al. (2013), our object-centric mapping system in Chapter 5 is

more practical because i) we can handle multiple objects by solving data association

effectively; 2) the deep shape prior we used shows that we can model challenging

object shapes with high shape variance in different categories.

Instead of densely modelling the shape of an object, there are works interested

in representing objects in a coarse manner. Rubino et al. (2017) show that an

object could be localised and represented by a 3D ellipsoid by reasoning its multiple

2D detections. Nicholson et al. (2018) replace the algebraic error function with a

geometric error function and proposed to solve the problem in an online fashion.

However, both systems require ground-truth data associations between 2D object

detections. Hosseinzadeh et al. (2019) not only present a data association algorithm

but also attempt to incorporate more accurate object shape represented by a point

cloud using a monocular object shape prediction network. Orthogonal to the

quadric representation, CubeSLAM (S. Yang et al., 2019a) represents each object

using a 3D bounding box. In Chapter 5, we also leverage quadric representation

to localise objects in a scene before further refining their pose and shape using

point cloud and DeepSDF.

By replacing semantic segmentation networks used in (McCormac et al., 2017;

Tateno et al., 2017) with an instance segmentation network Mask-RCNN (He et al.,

2017), there are various approaches for dense object-centric mapping using RGBD

camera. Fusion++ (McCormac et al., 2018a) uses Mask-RCNN to identify object

instances, which were fused individually into an object-level volumetric map. Simi-

larly, Mid-Fusion (Xu et al., 2019) extends Fusion++ by modelling dynamic objects
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and using efficient Octree representation for object shapes. MaskFusion (Runz

et al., 2018) instead uses surfels to model object shape.

Almost all semantic mapping or object-centric mapping solutions using deep

learning involve semantic/instance segmentation mask prediction to identify seman-

tic entities. In contrast to these approaches, Sünderhauf et al. (2017) employ

an object detection network. They then leverage depth information and 2D

bounding boxes to generate instance segmentation masks without using an instance

segmentation network.

More recently, shape prior based reconstruction has re-emerged by leveraging

modern deep learning. A concurrent work of our work in Chapter 5, NodeSLAM (Su-

car et al., 2020), learns a low-dimention shape embedding via a Variational

AutoEncoder (VAE). Object shapes represented by latent code and pose are jointly

optimised using the depth information.

In summary, there are mainly two types of approach to object-centric mapping. A

line of works use 2D instance segmentation masks (obtained from a deep network) to

associate instance-level semantic entities to a geometric reconstruction. This line of

research has recently attracted a considerable amount of interest mainly because deep

learning can provide impressive results on 2D instance segmentation. However, there

is no direct connection between object geometry and semantic reasoning. Object

geometry is obtained by running traditional geometry reconstruction algorithms,

such as KinectFusion. Semantic identities are an additional layer on top of the

geometry reconstruction. A significant drawback of these approaches is that it cannot

model invisible parts. In contrast, human beings can effortlessly complete the full 3D

shape of an object given partial observations using prior knowledge of object shapes.

In contrast, the second type adopts a tighter connection between geometry

reconstruction and semantic reasoning. The object geometry is based on object

shapes (using a pre-defined object database (Salas-Moreno et al., 2013b) or a

low-dimension shape embedding (Dame et al., 2013)). This line of research

is less explored in the era of deep learning because it is not clear how deep

learning can be leveraged initially. Our works in Chapter 5 and 6 are pioneering
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works on investigating how deep learning can be used for both recognition and

reconstruction jointly.
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In this chapter we introduce our work on reconstructing a 3D representation of

an object given a single view of that object. To tackle this ill-posed problem, prior

knowledge of object shape has been used extensively in the community. Recently, after

witnessing the success of Convolution Neural Networks (CNN) on various image

recognition tasks, a large body of works apply CNN to learn a mapping function

from a single RGB image to an object shape. Shape prior information is embedded

in the network weights after training with thousands of samples. A challenge of

24
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applying Convolution Neural Networks (CNN) to object shape reconstruction is

that Euclidean convolution kernel operation cannot be used efficiently on traditional

object representations, such as triangular meshes, voxel occupancy grid, and point

cloud. To this end we develop a novel multi-view representation where each view

representing the visible surface from this particular viewpoint comprises a depth

map and the corresponding deformation field that ensures every pixel-depth pair

in the depth map lies on the object surface. The deformed depth maps are then

unprojected and fused to a dense point cloud that models the 3D shape. We show that

a deep network using the proposed representation outperforms methods working with

voxel and point cloud representation. Furthermore we test the generalization of the

proposed representation on real images. The work described in this chapter has been

published at European Conference on Computer Vision 2018 (K. Li et al., 2018).

3.1 Introduction

Although humans can effortlessly infer an object’s 3D structure from a single image,

it is, however, an ill-posed problem in computer vision. To make it well-posed,

researchers have been using hand-crafted 3D cues such as “Shape from X” (e.g.,

shading, texture) (Braunstein et al., 1993; Aloimonos, 1988; Prados et al., 2006) ,

and planarity (Saxena et al., 2008; M. Liu et al., 2014). More recently, there has

been considerable interest in using deep networks to regress from an image to its

depth (F. Liu et al., 2015; Garg et al., 2016; Godard et al., 2017; Zhan et al., 2018)

for scene geometry reconstruction, and in particular from an image of an object to its

3D shape for object geometry reconstruction. There is no settled or the best way to

represent 3D objects, with methods including meshes (Sinha et al., 2017; Kong et al.,

2017), point clouds (Fan et al., 2016; Lin et al., 2018a; Tatarchenko et al., 2016), or

voxel occupancy grids (Choy et al., 2016a; Girdhar et al., 2016; Tatarchenko et al.,

2017) , each having both advantages and disadvantages in terms of the efficiency and

convenience of the representation, and – importantly for our purposes – for learning.

For volumetric representation methods, most existing CNN-based methods

simply extend 2D deconvolutions to 3D deconvolutions on 3D regular grids, as
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Figure 3.1: The overall pipeline of our approach. Given a single RGB image of an
object from an arbitrary viewpoint, the CNN outputs a set of 2D pre-deformation depth
maps and corresponding deformation fields at pre-defined canonical viewpoints. These
are passed to a Grid Deformation Unit (GDU) that transforms the regular grid of the
depth map to a deformed depth map. Finally, we transform the deformed depth maps
into a common coordinate frame to fuse all 3D points into a single dense point cloud.
The colours of points indicate different depth values, and the arrow direction represents
the image grid deformation.

done in Choy et al. (2016a) and Girdhar et al. (2016). For each voxel, the network

predicts the score of being occupied by the object. Thresholding the volumetric score

map results in a 3D occupancy object representation. Nevertheless, 3D volumetric

representations are very expensive in both computation and memory when working

with deep networks — the required memory increases cubically with the grid

resolution. Notably, only a small portion of the voxels are occupied by the object,

leaving the rest wasteful. Consequentially, volumetric representation is limited to a

low-resolution reconstruction (e.g. 64× 64× 64), thus losing the surface granularity.

Furthermore, it is generally non-trivial to find a suitable threshold to generate precise

object surfaces for different object classes or even different objects in the same class.

Intuitively, it is more efficient to directly predict an object’s surface, rather than

the entire 3D space. Fan et al. (2016) propose Point Set Generation Net (PSGN)

representing object surface by an orderless point cloud. However, because PSGN

adopts a multi-layer perceptron to generate 3D points, the number of parameters



3. Efficient Dense Point Cloud Reconstruction 27

grows linearly to the number of points, and thus it is not scalable to a dense point

cloud. Furthermore, due to the orderless nature of this point cloud representation,

the training loss needs to be permutation invariant, and thus it is costly — for

instance, for N prediction points along with N ground-truth points, the complexity

of the Chamfer Distance used in (Fan et al., 2016) is O(N2).

To tackle this issue, Lin et al. (2018a) and Tatarchenko et al. (2016) use a set of

depth maps from different viewpoints relative to the object, which are then easily

fused into a point cloud. The supervision (or losses) operates in 2D depth space

instead of the 3D point cloud. However, the predicted depth maps from a deep neural

net inherently cover not only object points but also unnecessary background. To

classify foreground and background points, Lin et al. (2018a) and Tatarchenko et al.

(2016) also predict a binary (i.e., foreground/background) mask for each predicted

depth map, where each pixel is the score of being foreground. Background depth

pixels that do not intersect with object surface after unprojection are discarded.

This depth-mask representation is undesirable for several reasons. Firstly, it is

inefficient because the computation for background depth pixels is wasted. Secondly,

it leads to the sparsity of the fused point cloud. Lastly, our experiments show that

it is non-trivial to find a suitable foreground/background threshold as it varies in

different object instances and different object classes. A key research question we

would like to answer in this work is how to better utilize the depth pixels that

cannot intersect with an object surface to address the aforementioned issues.

Learning to regress depth from images often generates noisy points around

the surface (Tatarchenko et al., 2016). The fusion of multiple partial-view point

clouds escalates the noise. Lin et al. (2018a) propose to improve the quality of

fused point clouds by a multi-view consistency supervision based on binary masks

and depth maps. The idea is to project the predicted 3D point cloud to novel

viewpoints to generate new depth maps and masks at these viewpoints, supervised

by the corresponding ground-truth depth maps and binary masks. However, this

supervision, being similar to the shape from silhouette technique (Martin et al.,

1983) and voxel-based multi-view consistency supervision in deep learning based
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methods (Yan et al., 2016; Tulsiani et al., 2017a), encourages masking out the

points projected to the background and further reduces the density of the predicted

point clouds and harms the surface coverage.

In this work, we present a novel and highly efficient framework (shown in Fig.

3.1) to generate dense point clouds representing the 3D shape of objects. Given

a single image of an object of interest taken from an arbitrary viewpoint, our

network generates multiple partial surfaces of the object, each at a pre-defined

canonical viewpoint. The critical difference to existing multi-view representation

Tatarchenko et al. (2016) and Lin et al. (2018a) is that each surface is defined

by a depth map and the corresponding deformation field (instead of a binary

mask). In the Grid Deformation Unit (GDU), a point on the surface is obtained

by first shifting a pixel on the depth map image grid by the amount given by

the deformation field and then back-projecting (to the corresponding depth). The

resulting set of points can then be considered a (dense) point cloud, though it

is not an orderless one. The final 3D object representation is obtained by fusing

the point-cloud surfaces into a single point cloud.

At training time, we use a combination of per-view and multi-view losses.

Because each pixel in depth maps and deformation fields has its corresponding

ground-truth value, the per-view loss can be evaluated in O(n) time (where n

is the number of points). This in contrast to, for instance, Chamfer Distance

usually required for unordered point-sets, leading to O(n2) complexity. The novel

multi-view loss encourages the 3D points back-projected from a particular view to

be consistent across novel views. More specifically when a predicted 3D point is

re-projected into a novel viewpoint but falls outside of the object silhouette, our

network incurs a loss based on the distance of the point to the boundary, rather

than penalizing a binary cross entropy loss as done in (Lin et al., 2018a; Yan et al.,

2016; Tulsiani et al., 2017a). Our extensive experiments demonstrate that using

these combined per-view and multi-view losses yields more accurate and dense

point cloud representations than any previous method.

Our contributions are summarized as follows:
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• We propose a novel deformed depth map representation for 3D object re-

construction based on multiple canonical views that is efficient and bypasses

foreground/background thresholding;

• We show how this representation can be effectively regressed using a deep

network from a single view;

• We introduce a novel loss for our network that combines a per-view loss –

that can be efficiently calculated thanks to our unique representation – with

a novel multi-view loss based a distance field.

• We evaluate our method extensively showing more accurate and denser

point clouds than previous methods. We include ablation experiments that

demonstrate the value of the contributions above separately and together.

3.2 Related Work

Shape from X is a series of classic methods in single view reconstruction. “X” can

be texture (Aloimonos, 1988), shading (Zhang et al., 1999), or silhouette (Martin

et al., 1983). An object reconstruction is found by minimising an energy function

that described the image formation process. To make the single-view object

reconstruction less ill-posed, prior knowledge is often used. One of the simplest prior

knowledge is smoothness constraints, which generally encourage adjacent pixels

with similar intensity to be unprojected to nearby positions in 3D.

If objects can be categorised into different classes, shape regularity of a category

can be captured as another form of prior knowledge, which improves resilience to

incorrect feature matching and concavity (e.g., chairs should be concave between

two arms). Kar et al. (2015) leverage the strong regularity of objects. For a

specific object category, they learn deformable templates from a large collection of

images with the object of interest presented and the corresponding segmentation

masks. Dame et al. (2013) show how a low-dimensional shape embedding learnt

by a GP-LVM can be used to improve reconstruction in a SLAM framework.
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Together with the shape embedding as a shape prior, the object shape and pose

are optimised by minimising the depth and photometric error given a sequence

of images. Rather than learning a shape embedding, methods like Huang et al.

(2015) and Kurenkov et al. (2017) use image features to retrieve similar 3D shapes,

from which they deform to the target shapes.

Even though our method also uses deformation, the difference between our

deformation and that of their approaches is twofold: Firstly, we perform 2D

deformation on an image grid, such that the deformed image grid matches the

object silhouette, while they deform the 3D shape directly. Secondly, they perform

deformation on 3D basis models with small variants while ours deforms a regular

grid into any 2D shape.

Since large repositories of CAD models become available (e.g., ShapeNet (Chang

et al., 2015)), it is easy to render a large number of 2D images from CAD models.

A large number of 2D-3D ground-truth pairs make it seamless to use a powerful yet

data-hungry framework — deep networks. Several deep learning based methods to

generate 3D object shapes from single images have been proposed recently.

The pioneering works are from Choy et al. (2016a) and Girdhar et al. (2016)

that use 3D CNNs to produce voxel reconstruction that is limited to low-resolution

voxel grids. Octree data structure (Tatarchenko et al., 2017; Häne et al., 2017)

and Discrete Cosine Transform technique (Johnston et al., 2017) have been used

to scale up the voxel grid. More recently, Fan et al. (2016) propose an alternative

approach that predicts an orderless point cloud to model the surface of objects

directly. Nevertheless, this method is limited to a sparse point cloud because 1)

the number of learnable parameters increases linearly as the number of predicted

points and 2) the direct 3D distance metrics (e.g., Chamfer Distance) are also

intractable for dense point clouds. Thus, this method is not scalable in terms

of memory and training time.

The most relevant works to us are Lin et al. (2018a) and Tatarchenko et al.

(2016). We all advocate that, in order to generate dense point clouds, one should

resort to partial surfaces each represented by a structured point cloud. However, the
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fundamental difference between our approach and Lin et al. (2018a) and Tatarchenko

et al. (2016) is how to shape these surfaces. Their methods shape an object surface

by predicting a binary mask along with the depth map to filter out background

points that do not intersect to the object surface. The negative aspect of this

multi-view representation is firstly, it is an enormous computation waste as pixels

for the background are discarded, especially for objects with thin structures such as

lamp, aeroplane and chair; secondly, foreground/background thresholding inherits

the thresholding issue from 3D voxel grid representation. Instead, we predict the

surface directly by deforming the regular depth map to circumvent issues above,

as demonstrated in Fig. 3.2.

Moreover, although Lin et al. (2018a) have realised that the fusion of multiple

partial surfaces generates noisy points and thus developed a multi-view consistency

supervision based on binary masks and depths to address this issue. However,

the binary cross entropy penalty leads more points to be discarded and thus,

the surface coverage is sacrificed. In contrast, we develop a novel multi-view

supervision framework based on a continuous distance field that does not suffer

from the surface coverage trade-off.

Subsequent to this work being published, some works propose novel implicit

representations for object shapes (Park et al., 2019a; Mescheder et al., 2019b).

Object shape surface is recovered by querying 3D positions whether they are

inside/outside object surface. While implicit representations can convert to explicit

representations (e.g. mesh, voxel and point cloud) in arbitrarily fine resolution,

they are not as efficient because many queries are needed for high resolution. In

Chapter 5, we show how explicit and implicit representations are complementary

by representing object shapes in a joint embedding.

3.3 Method

Our goal is to train a CNN that is able to reconstruct a dense 3D point cloud to

represent 3D object shape from a single RGB image. We first introduce how we
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Figure 3.2: A 1D example of Depth-Mask back-projection and Deform-Depth back-
projection. Blue points are pixel-depth pairs on a 1D regular grid. Dark red arrows are
deformation flow. Dark red points are pixel-depth pairs shifted by the deformation flow.
Orange lines are the target 2D surface. Green points are 2D points back-projected to
reconstruct the 2D surface. (a) In previous work (Lin et al., 2018a), because pixels are
filtered out by a binary mask, there are fewer points to reconstruct the surface. (b) In
our deformed depth representation, the deformed grid is aligned with the surface, so that
all pixels are used to reconstruct the surface.

represent a partial surface of an object using a deformed depth map and the per-

view supervision for the deformed depth map, followed by a multi-view consistency

supervision based on distance fields. Lastly, we detail the implementation details,

including network architecture and training procedure.



3. Efficient Dense Point Cloud Reconstruction 33

3.3.1 Deformed Depth Map

One way to represent a view-dependent object surface is to use a depth map D.

For each pixel p at location (xp, yp) with a depth value zp, we can unproject p to

a 3D point p through an inverse perspective transformation, i.e.,

p = R−1(K−1
[
xp yp zp

]T
− t), (3.1)

where K, R and t are the camera intrinsic matrix, rotation matrix, and translation

vector respectively. Learning a network to reconstruct the 3D object shape becomes

learning to predict a set of depth maps, as done in Lin et al. (2018a) and Tatarchenko

et al. (2016). Note that the size of the depth images need not be equal to the

size of the input RGB image. The main issue of this representation is that not

all pixels are back-projected to the object’s surface, therefore the network must

additionally predict a binary segmentation mask for each depth map to suppress

background points. The abandoned points become wasteful.

Notice that in Eq. (3.1), the pixel locations (xp, yp) are fixed in a regular

image grid, which is not flexible to model the object’s surface. Our insight is that

regardless of depth values, the projection ray of every pixel should hit the object’s

surface. Specifically, for each pixel p at pixel location (xp, yp), our network predicts

a deformation vector [up, vp] (besides its depth value zp). The position of this

pixel is shifted by the deformation flow. Then the new position of this pixel after

deformation is x′p = xp + up, y′p = yp + vp. An 1D illustration is presented in Fig.

3.2. We denote the entire deformation field for an entier image grid as [U,V]. The

same inverse perspective transformation can be applied on the deformed depth

map to back-project to 3D space,

p = R−1(K−1
[
x′p y

′
p zp

]T
− t). (3.2)

Training losses for deformed depth map During training, the deformation

flow is supervised by a pseudo ground-truth (see the section below). The pixel-wise

L1 deformation flow losses for x and y directions are given below,

LU = ‖U−Ugt‖1 LV = ‖V−Vgt‖1. (3.3)
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Figure 3.3: Left image is a binary mask; middle image is the corresponding level set
where the silhouette boundary is shown in red line. To define the deformed position for
point p, the closest point on the boundary p0 is located, followed by finding the point at
the maximum level pmax and point at the minimum level pmin along the line of p and
p0. Then, p should be normalized to the range between p0 and pmin. Right images show
a pair of uniform grid and its corresponding deformed grid. The color indicates point
correspondence before and after deformation.

where the Ugt and Vgt are the ground-truth deformation fields on x-direction

and y-direction respectively.

However, the direct pixel-wise loss cannot be used between a regular ground-

truth depth map and a deformed depth map as pixel-wise correspondences have

been changed due to deformation. To supervise the deformed depth map, we use

the pseudo ground-truth deformation flow to deform the ground-truth depth map

to obtain the deformed ground-truth depth map, which is given below,

Ld = ‖f(Dpred|Ugt,Vgt)− f(Dgt|Ugt,Vgt)‖, (3.4)

where f(D|Ugt,Vgt) is the deformation operation on a depth map D given the

pseudo ground-truth deformation flow. The Dgt and Dpred are the ground-truth

and predicted depth respectively.

Pseudo ground-truth deformation flow To train the network to predict de-

formation field, we need to define a ground-truth deformation vector for each

pixel; however, the deformation vector is not unique. The criterion of an ideal

deformation field is 1) every pixel should be shifted into the silhouette (i.e., the

regular grid should be deformed to fit the silhouette), 2) the deformed grid should

be uniformly dense. To this end, we define a function that takes an object binary
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mask (silhouette as foreground and the rest as background) on a regular grid as

input and outputs a vector field for deformation.

More specifically, we first convert the binary mask into a level set, where

the inside silhouette is negative levels, the background is positive levels, and the

silhouette boundary is at the zero level set (shown by the red line in Fig. 3.3). For

each pixel p at coordinate (xp, yp) on the regular grid, it finds its closest pixel at the

zero level set (silhouette boundary) called p0. The deformation direction for a pixel

outside of the silhouette is −−→pp0, and that of a point inside of the silhouette is −−→p0p.

After the direction is determined, we then calculate the magnitude for defor-

mation. As illustrated in Fig. 3.3, along the line of p and p0, we find the local

maximum point pmax and the local minimum point pmin in the level set. The

deformation flow for pixel p is defined below,

x′p = xp
‖xmin − x0‖
‖xmax − xmin‖

, y′p = yp
‖ymin − y0‖
‖ymax − ymin‖

(3.5)

U[xp, yp] = x′p − xp, V[xp, yp] = y′p − yp. (3.6)

The Eq. (3.5) ensures that a point along the line between pmax and pmin moves to a

point on the line between p0 and pmin, such that the pixel is in the silhouette (the

first criteria satisfied). Moreover, no pixels are collided (the second criteria satisfied).

3.3.2 Distance Field Multi-view Consistency

As mentioned earlier, the 3D points unprojected from a predicted depth map are

often noisy viewed from other viewpoints. Fig. 3.4(a) visualises this problem,

where the point cloud back-projected from the front view of a chair contains

many noisy points between the front and back legs of the chair. To alleviate this

problem, we introduce a novel multi-view consistency supervision, which encourages

the 3D points to project into the object silhouette (i.e., foreground) but not the

background at novel viewpoints.

To that end, we transform ground-truth binary masks (at novel viewpoints) into

a distance field, where the foreground pixels’ values are zero in the distance field

(meaning no penalty), whereas the values of the background pixels are the distance
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Deformed depth 
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Figure 3.4: (a) An example of a noisy reconstruction using only the depth as supervision.
(b) Our distance field multi-view consistency. Given a ground-truth binary mask at a
novel viewpoint, it is transformed to a distance field using distance transform Borgefors,
1986. 3D points are projected onto the distance field. The projection points are supervised
by the multi-view consistency loss Ldf to move toward the object silhouette. Note that in
the example above, the projected points move on the 1D surface only for the purpose of
visualization. In reality, it moves on the 2D distance field surface.

to the closest boundary. Fig. 3.4(b) demonstrates an example of distance field.

Such distance fields are used as the supervision signal to pull outliers (i.e., points

projected to the outside of the silhouettes) back to the object silhouettes (in 2D).

Technically, a 3D point p (Xp, Yp, Zp) is projected to the distance field using the

transformation and camera matrices at the novel viewpoint n, i.e.,

[xp, yp, 1]T = Kn(Rnp + tn), (3.7)

where [xp, yp] is the projection point coordinate in the distance field.
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The multi-view consistency training loss Ldf becomes:

Ldf =
N∑
n

P∑
p

L
(n,p)
df , (3.8)

where N is the number of viewpoints and P is the number of 3D points. L(n,p)
df is de-

fined as:

L
(n,p)
df =

H∑
h

W∑
w

Fn[h,w] max(0, 1− |xp − h|) max(0, 1− |yp − w|), (3.9)

where H and W are the height and width of the distance field respectively, Fn

is the distance field at viewpoint n, and Fn[h,w] is the distance value at pixel

location [h,w].

Given a point at [xp, yp], the values (distances) of the four neighbouring pixels

are interpolated to approximate the corresponding distance field F[xp, yp]. By

minimising Eq. 3.9, this point is supervised to move toward the object silhouettes.

This technique, called differentiable bilinear interpolation, was used in (Jaderberg

et al., 2015) for differential image warping.
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Figure 3.5: Network Architecture

3.3.3 Network Architecture and Training

Training details Our framework is implemented using the Tensorflow library

(Martın Abadi et al., 2015). We train the network with the deformed depth map

loss, deformation flow loss, and the distance field loss jointly. The final loss function is

L =
M∑
m

(Lmd + LmU + LmV ) + λ
N∑
n

Lndf , (3.10)
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whereM is the six fixed viewpoints and N is the number of distance field from novel

viewpoints. We take a two-stage training procedure for all experiments. In the first

stage, the network is trained to predict a coarse reconstruction with the per-view

losses alone by setting the weight factor λ of multi-view loss to zero. The second

stage is a refinement stage using the multi-view loss and per-view losses jointly,

where λ = 1. During training, the network is optimised using Adam (Kingma et al.,

2014) with a momentum of 0.95 and initial learning rate of 1e−4.

Network architecture We use an autoencoder-like network where the encoder

extracts image features and projects them into a latent space. The decoder comprises

several 2D deconvolution layers to generate pairs of a pre-deformation depth map

and a deformation flow map from 6 fixed viewpoints which are the faces of a

cube centred at the object of interest. Details of the network architecture are

depicted in Figure 3.5.

3.4 Experiments

We evaluate our proposed method beginning with ablation study of key components

of our framework: deformed depth map and the distance field based multi-view

consistency loss, followed by comparison to the prior art on single-view 3D object

reconstruction. In addition, we test our method on a recently published real

dataset to test its generalization ability to real images and compare with other

methods reported.

3.4.1 Data Preparation

Following previous methods, we use a subset of ShapeNet, which contains objects

in 13 categories, to train and evaluate our network. We render six depth maps

along with the binary masks from fixed viewpoints of 6 faces of a cube where a 3D

object is centred. The binary mask is used to construct the pseudo ground-truth

deformation field. Additionally, we also render 24 RGB images along with its binary

mask from arbitrarily sampling azimuth and elevation in [0, 360), [−20, 30] degrees
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respectively. The RGB images are input images to the network, and the binary

masks are preprocessed to a distance field for multi-view consistency loss.

3.4.2 Quantitative Measurement

To evaluate results quantitatively, we use the average point-wise 3D Euclidean

distance called Chamfer Distance between predicted and ground-truth point clouds.

D(S1, S2) =
∑
pi∈S1

min
pj∈S2

‖pi − pj‖2 +
∑
pj∈S2

min
pi∈S1

‖pi − pj‖2 (3.11)

DS1→S2 =
∑
pi∈S1

min
pj∈S2

‖pi − pj‖2 (3.12)

DS2→S1 =
∑
pj∈S2

min
pi∈S1

‖pi − pj‖2 (3.13)

where S1 is the predicted point cloud and S2 is the ground-truth point cloud.

As demonstrated by Lin et al. (2018a), while the Chamfer Distance can evaluate

the overall performance, it is also essential to report the prediction to ground-truth

distance Eq. (3.12) and ground-truth to prediction distance Eq. (3.13) individually

as they evaluate different aspects of the prediction point cloud. The former shows

how far each prediction point to the closest ground-truth point (i.e., how accurate

the prediction is), and the latter reports the distance from each ground-truth point

to the closest prediction point indicating the surface coverage. Note that all numbers

reported in the experiment section are scaled up by 100 for readability.

3.4.3 Ablation Study

In this section, we evaluate two key components of our framework: the deformed

depth map and the distance field based multi-view consistency loss individually.

Deformed depth map We train two networks with our proposed deformed depth

representation and the depth-mask representation (as a baseline) respectively in an

identical training setting. This experiment shows that the depth-mask representation

suffers from setting an appropriate threshold for foreground/background.

The networks are trained and evaluated on three categories (plane, car and chair).

The per category results are reported in Fig. 3.6. It shows that the deformed depth
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Figure 3.6: Chamfer Distance comparison with different foreground/background
thresholds for the existing multi-view representation. The lines with triangle marks
are the results of the proposed method, while the lines with round dots are the results of
the depth-mask baseline. The lower gt → pred loss of our method demonstrates that our
method provides better coverage than the baseline. Even though the baseline can achieve
lower pred → gt loss when setting the threshold higher (e.g., threshold ≥ 0.6) by only
preserve points with high confidence, the penalty of coverage offset the accuracy increases
leading to a higher overall loss.

representation consistently achieves lower loss under different threshold setting for

the depth-mask baseline (shown in two red lines). There is a difficult trade-off

between the prediction point accuracy and surface coverage in the baseline. When the

Dpred→gt gradually decreases as the threshold rises (i.e., only good prediction points

are preserved), the surface coverage loss increases significantly. More importantly,

another disadvantage of depth-mask representation revealed from the experiment is

that it is not trivial to select an optimal threshold for different object categories in

a class-agnostic network, or even for different instances. To better visualize this

issue, a few qualitative examples from Lin et al. (2018a) are given in Fig. 3.7.

Distance field multi-view consistency To evaluate our distance field based

multi-view consistency loss, we compare to a baseline in which the loss is disabled,

and a prior art Lin et al. (2018a) that use a binary mask multi-view consistency

loss. The results reported in Table 3.1 show that after applying our distance field
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Input image Lin et al.
(threshold=0.5) Ours GT GTOursInput imageLin et al.

(threshold=0.3)
Lin et al.

(threshold=0.5)
Lin et al.

(threshold=0.3)

Figure 3.7: Visual comparison to Lin et al. (2018a)

Methods overall CD prediction points
Lin et al. (2018a)

(binary mask multi-view loss) 3.240 / 3.531 31972 / 25401

Ours
(distance field multi-view loss) 3.102 / 2.987 98304 / 98304

Table 3.1: Comparison on different multi-view consistency losses. The numbers reported
in overall CD and the number of prediction points are: without multi-view consistency /
with multi-view consistency

multi-view consistency, the network outperforms the baseline. Since our consistency

loss does not simply mask out more points to reduce outliers, our method also

outperforms the binary masked multi-view consistency Lin et al., 2018a.

3.4.4 Comparison with Prior Art

We compare our method against existing methods using point cloud or voxel grid

representation in a synthetic setup and a real dataset in this section.

Comparison to PSGN The pre-trained model of PSGN (Fan et al., 2016) provided

by the authors generates a point cloud aligned with the input image while ours is

in a canonical pose. To be consistent in object pose, we use their published code

to retrain their network to output point clouds in the canonical pose. Both PSGN

and our network train on our rendered input images using the same training-test

split. Our method outperforms PSGN in the overall performance in most of the

categories (11 out of 13) as reported in Table 3.2.

To resolve the measurement bias to the density of predicted points, we also

report the results of a densified PSGN, where we densify the point cloud size from
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Figure 3.8: Visual comparison with PSGN

Figure 3.9: Densified PSGN Comparison

1024 to 98304 (the same size of our prediction) using linear interpolation between

neighbouring points as a post-processing step. This densified PSGN is evaluated on

five categories (chair, car, plane, bench and table) and the mean Chamfer Distance

reported in Fig. 3.9. This graph shows that a densified/interpolated reconstruction

cannot capture the finer 3D details that our method can. To contrast both methods

visually, we present some qualitative examples in Fig.3.8.

Comparison to Hierarchical Surface Prediction (HSP) As PSGN has shown

superior performance of point cloud representation over low-resolution voxel grid
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Category PSGN (Fan et al., 2016) Ours
plane 2.582 2.66
car 3.253 2.897
chair 4.110 3.731
table 3.916 3.271
bench 3.660 3.357
cabinet 4.835 4.037
display 5.010 4.343
lamp 5.105 4.933

speaker 5.707 5.532
gun 2.949 3.259
sofa 4.644 4.267

telephone 3.999 3.588
watercraft 3.921 3.894

Table 3.2: Comparison with PSGN Fan et al. (2016) on 13 classes using Chamfer
Distance.

Methods Chair Plane Car Table Bench
HSP 4.716 3.878 3.487 4.072 4.467
Ours 3.731 2.660 2.897 3.271 3.357

Table 3.3: Chamfer Distance between ours and HSP

representation (e.g., 3D-R2N2), we provide a quantitative comparison between our

method and HSP in Table 3.3. HSP up-scales the voxel grid to 5123 by using Octree

data structure. Five categories of the ShapeNet are evaluated using input images and

a pre-trained model provided by the author of HSP. To calculate Chamfer Distance

for the HSP reconstructions, we generate a mesh from the voxels using the marching

cube algorithm and sample uniformly the same number of points as ours from the

mesh. Although the Octree method increases the resolution efficiently, it still suffers

from the non-trivial occupancy thresholding and the “structurally unaware” cross

entropy loss (i.e., missing thin structures), leading to poorer performance than ours.

3.4.5 Generalisation to Real Images

Pix3D (Sun et al., 2018), a large scale real dataset with high-quality image-shape

pairs, has become available. To accommodate the varying background in real

images, we train our method on synthetic images with backgrounds randomly

selected from the SUN dataset (Xiao et al., 2016). After training, we evaluate
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Methods CD ↓ EMD ↓
3D-R2N2 0.239 0.211
PSGN 0.200 0.216
3D-VAE-GAN 0.182 0.176
DRC 0.160 0.144
MarrNet 0.144 0.136
AtlasNet 0.125 0.128
Pix3D 0.124 0.124
Ours 0.124 0.125
Pix3D (w/pose) 0.118 0.119

Table 3.4: 3D shape reconstruction results on Pix3D dataset

on Pix3D images directly without finetuning on real images. Table 3.4 shows our

method generalizes well to real data and achieves comparable performance to the

state-of-the-art method then. Note that the best performance quoted in that paper

uses joint training for object pose and 3D shape.

3.5 Conclusions

In this chapter, we introduced our work on using deep learning to reconstruct

object shape from just a single-view observation. Specifically, we presented a

novel framework to efficiently reconstruct 3D object surface via a dense point

cloud fused by multiple deformed depth maps. Experiments have shown that our

method can generate not only much denser but also higher quality point cloud

than previous methods. Moreover, to refine the fused point cloud, we proposed

a distance field based multi-view consistency loss during training. The ablation

studies have shown the superior performance of the individual component over

their baseline respectively. However, we also realized the limitations of a pure

deep learning based shape reconstruction approach when we tried to integrate our

method into an object SLAM system (Hosseinzadeh et al., 2019). Due to the lack

of a large number of real images with ground-truth object shape annotations, we

resort to synthetic images rendered from object CAD models for training, which

causes a domain gap between training data and testing data. Furthermore, we also
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observed that the object reconstructions given the deep network might not satisfy

well-defined geometry constraints used in traditional reconstruction pipelines. We

show our approach to addressing these issues in the next chapter.
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In this chapter we propose a new paradigm for single-view object reconstruction.

Instead of learning an end-to-end mapping from an image to an object shape,

inspired by traditional shape-prior-based approaches, we present a framework that

brings together the best attributes of traditional geometry constraints and modern

deep learning. We use an AutoEncoder and a Gaussian Mixture Model to learn a

probabilistic low-dimension shape embedding to capture class specific shape prior

information. During inference time, we first predict a shape code in this learnt

46
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shape embedding by mapping an image of an object of interest to the learnt shape

embedding via a Convolution Neural Network. The shape code and object pose are

iteratively refined by minimizing the silhouette and shape prior constraint. Although

the scope of this work is still reconstructing object shape given a single observation,

the joint reasoning using shape prior and geometry constraints paves the way to a

multi-view setup (by including additional image evidences into the objective function).

We show how the proposed method can be integrated in a object-centric mapping

system in Chapter 5. Part of this chapter has been published at British Machine

Vision Conference 2019 (K. Li et al., 2019).

4.1 Introduction

The recent successes of deep learning have motivated researchers, including us, to

depart from traditional multi-view reconstruction methods and directly learn the

image to object-shape mapping using CNNs (Choy et al., 2016a; Fan et al., 2017b).

These feed-forward networks show impressive results, with prior information about

shape captured at training time and represented implicitly in the network’s weights.

However, the drawbacks of these approaches became more apparent when we

tried to integrate our single-view object shape reconstruction network into an

object SLAM (Hosseinzadeh et al., 2019). First, the reconstruction given by a

neural network is not optimised to satisfy well-studied geometry constraints (e.g.

silhouette/photometric consistency). Second is the domain gap. Due to the lack of

training data in real images for 3D object shape, it is common to train a neural

network using synthetic images rendered from CAD models. Networks trained

with synthetic images cannot reliably reconstruct objects given real images that

are significantly different from its training data.

An alternative to an end-to-end mapping approach is to reason about the

object shape and pose by combining 2D image cues (e.g. object silhouette) and

prior knowledge of object shapes. This framework has been successfully used for

inferring 3D shape from images before the resurgence of deep learning by Prisacariu

et al. (2012) and Prisacariu et al. (2011) in single-view and Bao et al. (2013b)
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and Dame et al. (2013) in multi-view reconstruction frameworks. Prisacariu et al.

(2012) and Prisacariu et al. (2011) propose to estimate the 3D object shape and

pose given a single silhouette. To make this highly ill-posed problem well-posed,

these works learn a probabilistic latent space embedding using a Gaussian Process

Latent Variable Model (GPLVM). Object shape and pose inference is formulated

as an optimisation problem to find the most likely shape (i.e. generated from the

low variance area of the learned latent space) which can be projected using the

optimal pose to the image plane. A silhouette consistency that minimises the

discrepancy between the projection and the object silhouette is used to guide the

optimisation. Using a non-linear dimensional reduction and an inference method

which successfully accounts for the variance of the generated shape, Prisacariu et al.

(2012) and Prisacariu et al. (2011) achieved the state-of-the-art reconstructions

for a simple object like cars in the presence of heavy occlusion and background

clutter. Furthermore, the iterative nature of these algorithms leads very naturally

to an extension to a tracking framework of temporal refinement as pose or even

shape change dynamically (Prisacariu et al., 2012).

These methods worked reasonably for object categories with small shape varia-

tions (i.e. lack of high-frequency details) – like cars or human bodies – and they can

produce a dense and accurate volumetric reconstruction. However, more complex

objects like chairs and tables, with larger shape variation and thin structures, were

significant failure cases. Some of the limitations arise due to the use of GPLVM for

dimensionality reduction. GPLVM does not scale well to be trained on large datasets

or to learn priors on high-dimensional shape representations. This forces Prisacariu

et al. (2012) to use frequency based compression techniques as a pre-processing

step leading to loss of thin and other high-frequency object structures.

Deep learning has emerged as an attractive alternative to address these issues,

and we explore the possibilities in this work. In particular, given a set of object

CAD models, we learn a shape embedding represented by the bottleneck layer

of an AutoEncoder. The shape embedding is given a probabilistic interpretation

using a Gaussian Mixture Model (GMM) fitted on the shape codes. Given an
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Figure 4.1: Given a single image, a deep neural net predicts the silhouette of the object,
and also initializes the object pose and latent code of the object, both of which are then
optimized by fitting the silhouette while remaining to be plausible explained by the shape
prior.

image of an object of interest at inference time, we use a CNN to initialise object

shape code and pose with respect to the input image, which are optimised in a

manner that is analogous to traditional iterative approaches; i.e. by optimising

the alignment between the image silhouette and the expected projection of the

object, guided by the GMM shape prior. The image silhouette is obtained using

a conventional segmentation network, and the learned shape prior helps avoid

unrealistic shapes (because these correspond to low confidence regions of the GMM).

Figure 4.1 encapsulates our framework.

In summary, our contributions are as follows:

• By leveraging the power of modern deep learning for non-linear dimensionality

reduction, we show that a simple GMM fitting into this latent space can

effectively be a probabilistic shape prior that plays a crucial role in our

optimisation framework

• Instead of using a deep network as a black box to learn an end-to-end mapping

from an image to an object shape for single-view object reconstruction, we

present the first fully deep shape-prior aware inference method for single-view

object reconstruction. We show that our framework – essentially a deep

version of Prisacariu et al. (2011) – improves previous methods by a large

margin.
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4.2 Related Work

A large body of literature on object shape reconstruction has been covered in

Chapter 2 and Section 3.2. We focus on shape-prior-based approaches and the

differences in our proposed method from previous methods in this section.

Shape prior information has been used extensively in the object shape recon-

struction community. An important realisation is that valid 3D shapes of objects

belonging to a specific category are highly correlated. Deformable shape model,

an idea of representing any object shape within an object category by deforming a

mean shape using a set of shape bases, has been explored in Kar et al. (2015).

Dimensionality reduction also emerges as a prominent tool to model object

shapes. For example, Gaussian Process Latent Variable Model or (Kernel) Principal

Component Analysis is employed to learn a compact latent space of object shapes

in Dambreville et al. (2008a), Prisacariu et al. (2012), Dame et al. (2013), and

Engelmann et al. (2016). Recently deep AutoEncoders (Hinton et al., 2006; Vincent

et al., 2008), Variational AutoEncoders (VAE) (Kingma et al., 2013), and Generative

Adversarial Networks (GAN) (Goodfellow et al., 2014; Wu et al., 2016a) are

alternatives based on deep learning.

With the resurgence of deep learning, there are many end-to-end systems

proposed to solve the object shape reconstruction problem from a single RGB image

directly (Choy et al., 2016a; Girdhar et al., 2016; Gwak et al., 2017; Tulsiani et al.,

2017a; Wu et al., 2017a). However, a purely data-driven approach does not follow

any well-studied geometry constraints and suffers from generalisation to real images.

Tulsiani et al. (2017a) and Yan et al. (2016) aim to embed silhouette consistency in

a network by using a projection consistency loss where the discrepancy between the

projection of a reconstructed shape and the ground-truth silhouette is penalised

for training a neural network. Nevertheless, it is still not guaranteed that the

silhouette consistency is minimised at inference time.

More recently, there are several methods that take advantage of 2D image cues

during inference to refine one-shot prediction from a deep neural net. For the

scene-level geometry reconstruction, CodeSLAM (Bloesch et al., 2018a) uses nearby
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Figure 4.2: (a) We train the point cloud AutoEncoder to learn a latent space for 3D
shapes (b) A set of 3D point clouds are mapped to the latent codes by the trained point
cloud encoder. A GMM as a probabilistic model of the latent space is learned by fitting
on this set of latent codes. (c) At inference time, we jointly estimate the shape and pose
guided by the probabilistic shape prior via the learned GMM and the silhouette-shape
constraint. The orange, green, blue, and purple blocks correspond to the components
for shape, pose, silhouette, and loss terms respectively. The red arrows −→ represent the
gradient flow with respect to the latent code and the object pose during inference.

views to form a photometric loss, minimised by searching in the learned latent space

of depth maps. MarrNet (Wu et al., 2018) and R. Zhu et al. (2018) enforce the

2.5D (silhouette, depth, or normal) - 3D shape constraint and photometric loss

respectively to search in the latent space of object shapes at inference time. However,

a common disadvantage of these works, which we address in our work, is that they

do not consider a probabilistic prior in the latent space explicitly when they perform

optimisation, which we show is essential for the optimisation in this work.

4.3 Method

This work aims to reconstruct a 3D shape of an object and its pose with respect

to the camera from a single image. Our framework closely follows traditional

object prior based 3D reconstruction methods by framing the reconstruction as an

optimisation problem with respect to the object shape and pose assuming that a

deep neural network provides us with the object silhouette. This inference method

is described in the section 4.3.1. To facilitate the inference, we require a latent
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space which encodes the object shape in low dimensions, a learned probabilistic

prior on this latent space providing us with the likelihood of any point in the

latent space, and a single view object silhouette prediction to guide the shape

and pose optimisation and initialisation for object shape and pose. How we learn

the relevant prerequisites for inference is elaborated in section 4.3.2. Figure 4.2

illustrates the pipeline of our method.

4.3.1 Inference as Optimization

At inference, we are given Ssil, l0, R0, and t0, which are sampled points from

the predicted silhouette, initial latent code of shape, initial pose (rotation and

translation) by neural nets respectively. Additionally, the learned probabilistic

shape prior is a GMM on the latent space. There are two terms in our objective

function to minimize: the silhouette-shape constraint Lsil and the probabilistic

shape prior Lshape, as shown in Equation (4.1). Within this optimization, we want

to minimize the objective function with respect to l, R and t.

L(l,R, t) = Lsil + λLshape, (4.1)

where λ is the weighting factor between these two loss terms.

Silhouette-shape constraint The projection of a 3D object shape in the

camera frame should be consistent with the object’s silhouette on the image. This

can be achieved in the form of point cloud by defining a 2D Chamfer loss between the

projection of the transformed 3D point cloud and sampled points of the predicted

silhouette shown in Equation (4.2).

S = dec(l)

Lsil(P ,S,Ssil) =
∑
si∈S

min
sj∈Ssil

‖Psi − sj‖2

+
∑

sj∈Ssil

min
si∈S
‖Psi − sj‖2,

(4.2)

where S is a point cloud reconstruction in a predefined canonical pose generated by

a latent code l through the decoder. P is a transformation matrix that is composed
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of K[R|t], camera intrinsic matrix K, object rotation R and its translation t. Ssil
is a set of 2D sampled points from a predicted silhouette.

Shape prior constraint Because of the highly unconstrained nature of the

silhouette-shape constraint, we devise this shape prior term to interpret the likelihood

of a latent code given a probabilistic model – GMM in our case. This can mitigate

the problem of generating unrealistic 3D shapes. Specifically, the shape prior is

defined as to minimise the negative log likelihood of a latent code in the GMM,

which can be written as follows.

Lshape(l) = −log(
K∑
k=0

πkN (l|µk,Σk)), (4.3)

where πk, µk, and Σk are the weight, mean, and covariance matrix of the kth

Gaussian component, and K is the number of Gaussian components.

4.3.2 Learning

As explained in section 4.3.1, our inference method requires learning a probabilistic

low-dimensional representation of object shape from data and three networks

predicting object silhouette, initial object pose and object shape in the form of a

latent code. In this section we describe how we learn these components.

Learning shape latent space and prior

Our inference method heavily relies on learning a low-dimensional latent space

of shape from which a decoder network can map a latent code l to a unique 3D

point cloud S. We train an AutoEncoder network to learn this latent embedding

of the object shapes. The encoder enc(.) maps a point cloud S to a latent code

l, followed by the decoder dec(.) reconstructing a point cloud Ŝ. This network

is trained using 3D Chamfer loss as defined below:

Lcd(Ŝ,S) =
∑
ŝi∈Ŝ

min
sj∈S
‖ŝi − sj‖2 +

∑
si∈S

min
ŝj∈Ŝ
‖ŝj − si‖2, (4.4)

To learn a probabilistic model as the shape prior, we fit a GMM to the

learned latent space. Technically, we map point clouds {S1...SN} in the training
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set to the latent space using the trained point cloud encoder, to get a set of

latent codes {l1...lN}. A GMM is learned by fitting this set of codes with the

Maximum Likelihood Estimate (MLE) of its parameters (Equation (4.5)), where

the Expectation-maximisation algorithm is used.

min
π1...πK ,
µ1...µK ,
Σ1...ΣK

−
N∑
i=0

log(
K∑
k=0

πkN (li|µk,Σk)) (4.5)

where πk, µk, and Σk is the weight, mean and covariance matrix of the kth

Gaussian component, and N and K are the number of observations and the number

of Gaussian components. The number of Gaussian component K is chosen by

maximizing the GMM likelihood on a holdout set.

There are a number of generative models that can be used as a shape prior. We

employ GMM with a simple AutoEncoder following the recent study of Achlioptas

et al. (2018) which empirically shows that, in the form of the point cloud, among

variants of GAN, and GMM, the latter outperforms other models in terms of

generalisation and diversity of shapes, indicating that the GMM captures a better

distribution of object shapes.

Learning segmentation and initialization

Our inference requires three networks, each taking an RGB image containing the

object of interest as the input. These networks are: (i) The 3D-net predicts the

latent code l0 corresponding to an image which can be used to initialise the object

shape using the decoder dec(.). (ii) The Keypoint (KP)-net predicts the projection

locations of 8 corner points of the object 3D bounding box, which are used to

recover the initial object pose R0 and t0 with respect to the camera. (iii) the Sil-net

predicts the object’s silhouette in the image that guides the inference. In this

section, we outline the procedure adopted in this work to train these components.

3D-net. This network consists of two parts. An image regressor learns to map

an image to a latent code, which is decoded by the learned dec(.) introduced in

Section 4.3.2 to generate a 3D point cloud. During training, the image regressor

is trained by minimising the L1 loss between its prediction and the ground-truth
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latent code produced by the trained encoder. At inference, the image regressor

maps the input image to a latent code l0 as initialisation of object shape in the

latent space. While this process looks similar to Chapter 3, where we map an

image to an object shape using a deep network, the difference is twofold: i) We

have built a low-dimensional shape embedding. An image is first mapped to the

shape embedding and then decoded to an object shape. ii) Instead of using the

network prediction as the reconstruction, the shape and pose are further refined

using the silhouette constraint.

KP-net. We define eight corner points of the object’s 3D bounding box in the

predefined canonical pose as 3D keypoints. The KP-net learns to predict these eight

points’ projection locations onto the image plane using the ground-truth object

pose available at the training time. L1 loss between the ground-truth 2D locations

of the keypoints and the prediction is employed to supervise the training.

The 2D-3D keypoint correspondence is used to recover the object pose with

respect to the camera, which is an initialisation for inference. More specifically,

during inference time, we retrieve the 3D corner points X3d from the point cloud

reconstruction of the 3D-net, together with the KP-net prediction X2d to form the

correspondence, which is formulated as a PnP problem as shown in Equation (4.6)

and solved iteratively using the Levenberg Marquardt algorithm (Moré, 1978).

L(R, t) = ‖K(RX3d + t)−X2d‖2, (4.6)

Sil-net. A straight-forward U-net structure is adopted to map an RGB image

to an object silhouette, from which we sample points used in the silhouette-shape

constraint. The network training is supervised by the binary cross entropy loss.

Instead of training the Sil-net from scratch, our framework can also use an off-the-

shelf semantic segmentation network (He et al., 2017; Chen et al., 2018) or finetune

from such a network with pretrained network weights.
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4.3.3 Implementation Details

Network architecture We denote the convolution and transposed convolution

operation as Conv(k, s, f) and Deconv(k, s, f) respectively. The k, s, f denote

the kernel size, stride, and the number of output feature channels respectively.

Additionally, we use FC(f) to represent a fully connected layer, where f is the

number of output channels. All learnable layers are connected via a non-linear

activation layer – Rectified Linear Unit (ReLU) except for the last layer.

The network architectures of four networks in our framework are given as follows:

Point cloud AutoEncoder We adapt the network architecture from PointNet

(Qi et al., 2017). Features of each 3D point are extracted independently using 1D

convolutions. Max pooling on the features of each 3D point is used to extract

global features of the entire point cloud.

Input Point Cloud (2048, 3) - Conv(1, 1, 128) - Conv(1, 1, 128) - Conv(1, 1, 256)

- Conv(1, 1, 512) - Max Pooling - FC(256) - FC(256) - FC(512) - FC(2048× 3)

- Reshape(2048, 3).

Image regressor

Input Image (128, 128, 3) - Conv(3, 2, 32) - Conv(3, 1, 32) - Conv(3, 1, 32) -

Conv(3, 2, 64) - Conv(3, 1, 64) - Conv(3, 1, 64) - Conv(3, 2, 128) - Conv(3, 1, 128) -

Conv(3, 1, 128) - Conv(3, 2, 256) - Conv(3, 1, 256) - Conv(3, 1, 256) - Conv(3, 2, 256)

- Conv(3, 1, 256) - Conv(3, 1, 256) - Conv(3, 2, 512) - FC(1024) - FC(512) - FC(256).

Sil-net

Input Image (128, 128, 3) - Conv(3, 2, 32) - Conv(3, 1, 32) - Conv(3, 1, 32) -

Conv(3, 2, 64) - Conv(3, 1, 64) - Conv(3, 1, 64) - Conv(3, 2, 128) - Conv(3, 1, 128) -

Conv(3, 1, 128) - Conv(3, 2, 256) - Conv(3, 1, 256) - Conv(3, 1, 256) - Conv(3, 2, 256)

- Conv(3, 1, 256) - Conv(3, 1, 256) - Conv(3, 2, 512) -Deconv(5, 2, 384) -Deconv(5, 2, 384)

- Deconv(5, 2, 384) - Deconv(5, 2, 192) - Deconv(5, 2, 96) - Deconv(5, 2, 1).

KP-net

Input Image (128, 128, 3) - Conv(3, 2, 32) - Conv(3, 1, 32) - Conv(3, 1, 32) -

Conv(3, 2, 64) - Conv(3, 1, 64) - Conv(3, 1, 64) - Conv(3, 2, 128) - Conv(3, 1, 128) -

Conv(3, 1, 128) - Conv(3, 2, 256) - Conv(3, 1, 256) - Conv(3, 1, 256) - Conv(3, 2, 256)
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- Conv(3, 1, 256) - Conv(3, 1, 256) - Conv(3, 2, 512) - FC(1024) - FC(512) - FC(256)

- FC(16).

Training details Data to train all networks is generated from the ShapeNet

dataset (Chang et al., 2015). We render synthetic images from the textured 3D

CAD models from random viewpoints and overlay random background on the

rendered objects to simulate the background clutter present in the real images.

Background images are acquired from SUN dataset (Xiao et al., 2016). Random

flips, crops and image colour augmentation are used for training. To get the ground-

truth 2D keypoint locations for training the KP-net, we use the 3D coordinates

of corner points of the ground-truth shape’s bounding box. We transform and

project the bounding box coordinates to the image plane using the corresponding

object pose, which is used to render the image.

The point cloud AutoEncoder is trained for 400 epochs, and the image regressor

is trained for 25 epochs. The KP-net and Sil-net are trained end-to-end for 60

epochs and 25 epochs respectively. Adam optimiser (Kingma et al., 2014) is used

to train all these networks.

Inference details 6-DoF object pose and the shape latent code are optimised

jointly reusing Adam optimiser in Tensorflow (Martın Abadi et al., 2015). It is

important to note that we only update the latent code corresponding to inferred

object shape and not the decoder network’s weights while doing gradient descent.

The optimisation is terminated when the rate of change in loss function diminishes,

or the maximum 2000 iterations are reached.

4.4 Experiments

We provide experimental results of our framework in single-view object reconstruc-

tion and object pose estimation. A series of ablation studies are also presented to

analyse the effect of our inference procedure and the probabilistic shape prior.
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Figure 4.3: Qualitative Results on Pix3D. We compare our full model against the baseline
(without optimization at inference time), and optimization without the probabilistic shape
prior. From left to right: input image, predicted silhouette, ground-truth point cloud,
baseline output, optimize without shape prior, full model.

4.4.1 Testing Data and Evaluation Protocol

We take advantage of a recently published Pix3D (X. Sun et al., 2018) dataset – a

dataset consisting of diverse shapes aligned with corresponding real images. We

choose the examples of chair class to demonstrate our method for two reasons.

Firstly, chair class is a major component of this dataset and exhibits the most

shape diversity. There are 2894 images of chair corresponding 221 unique chair

shapes to be used, which outnumbers other object classes greatly. For instance,

the table, being the second largest class, only has 738 images corresponding to

63 shapes. Secondly, the authors of Pix3D publish benchmark results for most

state-of-the-art methods on the chair class, facilitating a convenient comparison

of our work with existing methods.

Other alternatives to Pix3D that have been used popularly in the community

are either purely synthetic datasets like ShapeNet (Chang et al., 2015), or PASCAL

3D+ (Xiang et al., 2014) which was created by associating a small number of

overlapping 3D CAD models per category for both training and test images of a
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Methods CD ↓ EMD ↓
3D-R2N2 0.239 0.211
PSGN 0.200 0.216
3D-VAE-GAN 0.182 0.176
DRC 0.160 0.144
MarrNet 0.144 0.136
AtlasNet 0.125 0.128
Chapter 3 0.124 0.125
Pix3D 0.119 0.118
Ours (baseline) 0.107 0.116
Ours 0.099 0.112

Table 4.1: 3D shape reconstruction results on Pix3D dataset

particular object category to create pseudo ground truth. Due to this reason, as

discussed in Tulsiani et al. (2017a) and Wu et al. (2017a) PASCAL 3D+ is not

deemed fit for shape reconstruction evaluation.

We use 3D Chamfer Distance (CD as defined in (4.4)) and Earth Mover Distance

(EMD as defined in (4.7)) as evaluation metrics for shape reconstruction.

EMD(S1, S2) = 1
‖S1‖

min
φ:S1→S2

∑
x∈S1

‖x− φ(x)‖2, (4.7)

where φ : S1 → S2 is a bijection that matchs a point in S1 to a point in S2 such that

the cost (distance) of all matched pairs is minimized. We use the approximation

implemented in Pix3D benchmark to calculate the EMD efficiently.

Following the prior art, we evaluate pose using the MedErr: median of geodesic

distance between the predicted rotation and ground-truth rotation defined in

Equation (4.8) and the Accuπ
6
: percentage of geodesic distance smaller than π

6 .

∆(Rp,Rgt) =
‖log(RT

gtRp)‖F√
2

, (4.8)

4.4.2 Shape Reconstruction on Pix3D

We compare the performance of our 3D shape prediction pipeline with prior art

including 3D-VAE-GAN (Wu et al., 2016a), 3D-R2N2 (Choy et al., 2016a), PSGN

(Fan et al., 2017b), DRC (Tulsiani et al., 2017a), MarrNet (Wu et al., 2017a) and
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Pix3D (Wu et al., 2018) which is a variant of MarrNet that decouples shape and

pose prediction. The quantitative result is reported in Table 4.1. The performance

evaluation for most of these methods listed above is taken from Pix3D paper (X. Sun

et al., 2018). “Ours (baseline)” in Table 4.1 refers to the one-shot deep network

prediction without any optimization during inference time outlined in Section 4.3.1.

It is notable that our baseline already outperforms the prior art. We believe that

this performance boost is due to a unique combination of the best practices carefully

picked from the prior art to design our one-shot prediction baseline. For instance,

our method predicts a canonical point cloud to represent an object shape. Other

methods are either opting for in-pose point cloud representation (Fan et al., 2017b),

i.e., coupling the shape pose or they work with volumetric or mesh representation

for object shapes. In addition, similar to TL-embedding network (Girdhar et al.,

2016) and 3D-VAE-GAN (Wu et al., 2016a), we learn a latent space of 3D shape

explicitly instead of a direct image to shape mapping. The advantage of building a

shape embedding for object shapes becomes apparent when comparing to our work

in the previous Chapter. Although we only predict a sparse point cloud in this work,

we still outperform Chapter 3 because we train an embedding for object shapes.

More importantly, the most significant point we want to emphasise from the

results in Table 4.1 is that our probabilistic shape prior aware optimisation method

for shape and pose outperforms this solid baseline (along with other previous

methods) by a significant margin. More qualitative examples of our in-pose

reconstruction are shown in Figure 4.6 and 4.7 at the end of this Chapter.

Methods Shape Pose
CD ↓ EMD ↓MedErr ↓ Accuπ

6
↑

baseline 0.107 0.116 12.22 0.75
Lsil only 0.102 0.117 11.40 0.77
Lsil + Lshape 0.099 0.112 11.00 0.77

w/ GT
Silhouette 0.093 0.111 9.47 0.78

Table 4.2: Quantitative analysis on the effect of silhouette-shape constraint and
probabilistic shape prior at inference.
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Figure 4.4: loss by IoU. We visualize the performance gap on shape reconstruction
between optimization with and without shape prior at different IoU levels of the predicted
silhouette. It is clear that the shape prior increases the robustness of the optimization to
noisy silhouettes.

4.4.3 Ablation Study on Shape prior

In this section, we analyse the effect of different components used in our shape

and pose inference quantitatively (Table 4.2) and qualitatively (Figure 4.3). In

particular, we demonstrate that the proposed probabilistic shape prior plays a

crucial part in shape and pose estimation. To that end, we conduct an ablation

study on the shape prior constraint Lshape. We compare performance among our

one-shot baseline, optimisation using the silhouette constraint, and optimisation

using both silhouette and the shape prior constraint.

Figure 4.3 visualises the input images, predicted silhouettes, and shape recon-
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struction given by different inference schemes. It is clear that after optimisation

using both the shape prior and silhouette constraint can lead to a reconstruction

that is closer to the ground-truth shape than that of one-shot prediction. Notably,

if the shape prior is discarded, optimising with Lsil alone is likely to generate

unnatural shapes, such as uneven chair seat, chair arms with different heights, and

unrealistic short chair legs, highlighted by red boxes in the figure.

As for the quantitative comparison, it can be seen that minimising silhouette-

shape constraint alone only lowers the Chamfer Distance, but worsens when

measured by EMD. This may reflect that the estimated reconstructions overfit to

the CD metric, which is used as the training loss. When we minimise the objective

function, which takes into account the likelihood of the learned latent embedding of

shapes, the reconstruction performance improves on both measures significantly.

To put this performance boost in perspective, we use the ground-truth silhouette

annotations available in Pix3D to optimise the silhouette constraint. By leveraging

the shape prior constraint, the optimisation is less affected by imperfect silhouette

predictions that are inevitable in practice.

Further, we analyse this performance gap with different accuracy levels of

the predicted silhouette in figure 4.4. We plot the performance gap between the

silhouette-only optimisation and the shape-prior aware optimisation measured by

the median CD and EMD respectively in the top and bottom part of the figure

corresponding to different silhouette prediction accuracy quantified in terms of mean

IOU. The height of a bar reflects how much worse the silhouette-only optimisation

compared to the shape prior aware counterpart given different qualities of the

predicted silhouettes (measured by the IoU against the ground-truth silhouette).

It is clear that when the predicted silhouettes are inaccurate, the silhouette-only

optimisation performs the worst. It demonstrates the evaluation of having the

shape prior term in the energy function.

Our contention is that the learned shape prior avoids the regions of the latent

space to restrict the inferred shape to be limited to realistic object-like solutions.

To further explore this hypothesis, we choose three points from the latent space
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Mean_0 Mean_1 Mean_2

Figure 4.5: Exploration on the latent space. We denote the likelihood of a shape
explained by the GMM using colors. Red means high likelihood whereas blue represent
low likelihood.

Methods MedErr ↓ Accuπ
6
↑

Regression 21.99 0.63
Classification 15.41 0.71
Keypoint 12.22 0.75

Table 4.3: Quantitative results on object pose estimation.

corresponding to the mean of different Gaussian components and interpolate linearly

in the latent space to generate intermediate sample chair shapes. The results are

visualized in figure 4.5. It can be seen that the latent space learned using deep

AutoEncoder constitutes of highly unlikely points corresponding to very unlikely

chair shapes, but all these shapes have high variance – for instance, between the

latent code of a four-legged chair (mean_0) and that of a swivel chair (mean_1),

the likelihood of an unrealistic shape as a mix of two structures is particularly low.

4.4.4 Pose Estimation using Keypoints

We compare our keypoint based approach with direct classification and regression

approaches, which directly predict the rotation parameters in a classification or

regression manner. To have a fair comparison to these approaches, we use the same

training data and similar network architectures except for the last output layer of all

these approaches because of different output dimensions. Our keypoint based method

outperforms both regression and classification approaches, as shown in Table 4.3.
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4.5 Conclusion

Inspired by traditional shape prior based reconstruction methods from a single

view, we presented a deep learning based framework that takes the silhouette

constraint and a probabilistic shape prior explicitly into account. In particular,

to enforce the geometry constraint during inference time, we reframed the single

view object reconstruction as an optimization problem, where we not only reasoned

about the silhouette-shape constraint but also applied a probabilistic shape prior in

the latent space of shape. Our proposed method outperformed previous methods

on a large-scale real-image dataset.

While this chapter’s focus is still reconstructing object shape from a single

observation, the inference as optimization scheme provided a better way to aggregate

information from multiple observations than the one-shot network prediction. We

will introduce how we extend what we have learned in this chapter to a multi-

object and multi-view setup in Chapter 5, where we introduce our first object-

centric mapping system.
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Figure 4.6: From left to right: input image, aligned view of reconstruction (the shape is
transformed by the predicted pose), 2 views of reconstruction, and 2 views of GT.
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Figure 4.7: From left to right: input image, aligned view of reconstruction (the shape is
transformed by the predicted pose), 2 views of reconstruction, and 2 views of GT.
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We propose a novel paradigm for object-centric mapping in a monocular modality

dubbed FroDO — From Detections to 3D Objects in this chapter. In a coarse

to fine fashion, FroDO progressively localizes objects using 3D bounding boxes,

reconstructs their coarse 3D shape in the form of a sparse point cloud, and lastly

reconstruct high-fidelity object shapes represented by Truncated Signed Distance

Functions (TSDF). FroDO first associates 2D detections from images by a line

segment clustering algorithm. The associated 2D detections together with camera

67
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Ground Truth for ReferenceDense OptimizationPoint-Cloud Optimization3D Bounding-Box PredictionInput

Figure 5.1: Given an RGB sequence and extrinsic parameters of each image, FroDO
dectects objects and infers their poses and a progressively fine grained and expressive
object shape representation. Results on a real-world sequence from ScanNet (Dai et al.,
2017a)

poses are used to fit a 3D ellipsoid for object localization. The key to the coarse-to-

fine shape optimization paradigm is a joint shape embedding where we can switch

seamlessly between point cloud and SDF. FroDO, as an object-centric mapping

approach, shows superior performance over geometric-only reconstruction algorithm

by completing missing regions due to either invisibility or low texture. FroDO also

outperforms other learning based methods on object reconstruction as a result of

the novel shape embedding and the coarse-to-fine optimization. The development

presented in this chapter has been published at Computer Vision and Pattern

Recognition 2020 (Runz et al., 2020).

5.1 Introduction

From a sparse set of 3D points (Davison et al., 2007) to a dense TSDF (Newcombe

et al., 2011a), we have seen a progression towards a denser geometric reconstruction.

However, it is increasingly clear that a geometric-only reconstruction regardless of

its density is insufficient for advanced robotic tasks where interactions with the

environment and humans are expected. An object-centric mapping system offers a

natural and compact way to capture geometric and semantic information or even

the dynamic elements of an environment. Although object-centric mapping has

been tackled extensively, few works have sufficiently presented a system that can

work in the wild. For instance, the famous work SLAM++ (Salas-Moreno et al.,

2013b) relies on a pre-defined object database. To address this limitation, Dame

et al. (2013) built a probabilistic low-dimensional shape embedding via a Gaussian
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Process Latent Variable Model (GP-LVM) to represent various object shapes within

a category. However, it only works for object categories with small shape variance,

such as cars. Furthermore, it can only handle a single object in the scene due to

the absence of a data association module. That is to say, associating 2D object

detections that belong to the same object instance across different frames in a video.

However, with the development of Chapter 4, we believe it is the right time to

revisit shape prior based object-centric mapping. What we proposed in Chapter 4 is a

method for single-view object reconstruction combining deep learning and silhouette

consistency. As shown in Fig. 4.1, we built a probabilistic low-dimensional shape

embedding using GMM and AutoEncoder. Object shape represented by a shape

code in this embedding and pose are optimised by maximising the shape likelihood

in the embedding and silhouette consistency. We showed in experiments that our

approach generalises well to real images. Furthermore, framing reconstruction as an

iterative optimisation problem offers the potential of incorporating new observations.

To extend Chapter 4 to an object-centric mapping system, the first question to

be addressed is data association, which we propose to solve by casting it as a line

segment clustering problem. Moreover, unlike the single-view setup, where we can

only apply silhouette consistency, we have opportunities to leverage more geometry

constraints, such as photometric consistency, in a video-based setup.

Choosing the best shape representation remains an open problem in 3D object

reconstruction. Signed Distance Functions (SDF) have emerged as a powerful

representation for learning-based reconstruction (Park et al., 2019a; Mescheder

et al., 2019a), but they are not as compact or efficient as point clouds. We believe

that the best object representation should be subject to task requirements. Close

interactions with objects might require a high-fidelity object representation like

SDF, but the sparse but efficient point cloud representation is sufficient for short-

term tracking and localisation. Therefore, we propose a novel joint embedding

for FroDO, in which shape codes can be decoded to both a sparse point cloud

and a dense SDF. An example of a single shape code decoded to a sparse point

cloud and DeepSDF mesh is shown in Fig. 5.4.
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As Fig. 5.2 illustrates, FroDO takes as input an image sequence with each

image’s intrinsic and extrinsic parameters and proceeds in four distinct steps: 2D

detection, data association, single-view shape code inference, and multi-view shape

code optimization. Firstly, per-frame 2D bounding box detections are inferred using

an off-the-shelf method (He et al., 2017). Secondly, bounding boxes of multiple

frames are associated using the line segment clustering algorithm, and then we fit a

3D ellipsoid using the associated 2D detections. Next, a 64D code is predicted for

each detection of an object instance, using the shape encoder network. Per-image

shape codes of the same instance are fused into a single code. Finally, each object’s

shape code and pose are further refined by minimising loss functions based on

geometric, photometric and silhouette cues using our joint embedding as a shape

prior. Our system’s final outputs are dense object meshes placed in the correct

position and orientation in the scene.

The contributions of FroDO are as follows:

• We present an object-centric mapping framework — FroDO. It takes as

input RGB sequences of real-world multi-object scenes and infers an object-

centric map of the environment, leveraging 2D deep learning detection and

segmentation, learning-based 3D reconstruction and multi-view optimisation

with shape prior.

• We introduce a novel deep joint shape embedding that allows simultaneous

decoding to sparse point cloud and continuous SDF representation.

• We propose a coarse-to-fine multi-view optimisation approach that combines

photometric and silhouette consistency costs with our deep shape prior.

• FroDO outperforms the state-of-the-art 3D reconstruction methods on real-

world datasets — Pix3D (Sun et al., 2018) for a single-object single-view

setup and Redwood-OS (Choi et al., 2016) for a single-object multi-view setup.

We demonstrate multi-class and multi-object reconstructions on challenging

sequences from the ScanNet dataset (Dai et al., 2017a).
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Figure 5.2: Given an RGB image sequence along with each image’s extrinsic and intrinsic
parameters, FroDO detects objects and infers their shape code and per-frame poses in a
coarse-to-fine manner. We demonstrate FroDO on challenging sequences from real-world
datasets that contain a single object (Redwood-OS) or multiple objects (ScanNet).

5.2 Related Work

At its core, our proposed system infers dense object shape reconstructions from RGB

frames, so it relates to multiple areas in 3D scene reconstruction and understanding.

Single-view learning-based shape prediction In recent years, 3D object shape

and pose estimation from images has moved from being purely geometric towards

learning techniques, which typically depend on synthetic rendering of ShapeNet (Chang

et al., 2015) or realistic 2d-3d datasets like Pix3d (Sun et al., 2018). These

approaches can be categorised based on the shape representation, for example,

occupancy grids (Choy et al., 2016b; Wu et al., 2016b), point clouds (Fan et al.,

2017a), meshes (N. Wang et al., 2018), or implicit functions (Mescheder et al., 2019b).

Gkioxari et al. (2019) jointly trained detection and reconstruction by augmenting

Mask RCNN with an extra head that outputs volume and mesh. Our single-

view reconstruction network leverages a novel joint embedding that simultaneously

outputs point cloud and SDF (Fig. 5.3). Our quantitative evaluation shows that

our approach provides a better single view reconstruction than competing methods.

Multi-view category-specific shape estimation Structure-from-Motion (SfM)

and Simultaneous Localisation and Mapping (SLAM) are useful to reconstruct 3D

structure from image collections or videos. However, traditional methods are prone

to failure when there is a large gap between viewpoints, generally have difficulty

with filling featureless areas, and cannot reconstruct occluded surfaces. Deep
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learning approaches like 3D-R2N2 (Choy et al., 2016b), LSM (Kar et al., 2017), and

Pix2Vox (Xie et al., 2019) have been proposed for 3D object shape reconstruction.

These can infer object shape from either single or multiple observations using

RNN or voxel-based fusion. However, these pure deep learning fusion techniques

trained on synthetic images have difficulty with generalisation to real images, and

data association is assumed known.

3D reconstruction with shape priors These methods are the most closely

related to our approach since they also take as input RGB videos and optimise object

shape and pose using 3D or image-based reprojection losses such as photometric

and/or silhouette terms while assuming, often category-specific, learnt compact

latent shape spaces. Some examples of the low dimensional latent spaces used

are PCA (R. Wang et al., 2019a), GPLVM (Victor Adrian Prisacariu et al., 2012;

Prisacariu et al., 2011; Dame et al., 2013) or a learnt neural network (Lin et al.,

2019a) and Chapter 4.

In a similar spirit to the prior art, we optimise a shape code for each object,

using both 2D and 3D alignment losses, but we propose a new shape embedding

that jointly encodes point cloud and DeepSDF representations and show that our

coarse-to-fine optimisation leads to more accurate results. These latent codes have

also been used to infer the overall shapes of the entire scenes (Bloesch et al., 2018b;

Sitzmann et al., 2019) without lifting the representation to the level of objects.

Concurrent work (S. Liu et al., 2019) proposes to optimise DeepSDF embeddings

via sphere tracing, closely related to FroDO’s dense optimisation stage.

Object-centric SLAM Although our system is not sequential or real-time, it

shares common ground with recent object-centric SLAM methods. Visual SLAM has

recently evolved from purely geometric mapping (point, surface or volumetric based)

to object-level representations which encode the scene as a collection of reconstructed

object instances. SLAM++ (Salas-Moreno et al., 2013a) demonstrated one of the

first RGB-D object-centric mapping systems where a set of previously known object

instances were detected and mapped using an object pose graph. In contrast,

others have focused on online object discovery and modeling (Choudhary et al.,
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2014) to deal with unknown object instances, dropping the need for known models

and pre-trained detectors. Recent RGB-D object-centric SLAM methods leverage

the power of state-of-the-art 2D instance semantic segmentation masks (He et al.,

2017) to obtain object-level scene graphs and per-object reconstructions (McCormac

et al., 2018b) even in the case of dynamic scenes (Runz et al., 2018; Xu et al.,

2019). Object-centric SLAM has also been extended to the case of monocular

RGB-only (Nicholson et al., 2018; Parkhiya et al., 2018; Hosseinzadeh et al., 2019;

Gálvez-López et al., 2015) or visual inertial inputs (Fei et al., 2018). Hosseinzadeh

et al. (2019) and Nicholson et al. (2018) fit per-object 3D quadric surfaces while

CubeSLAM (S. Yang et al., 2019b) proposes a multi-step object reconstruction

pipeline where initial cuboid proposals, generated from single view detections, are

further refined through a multi-view bundle-adjustment.

5.3 Method

FroDO infers an object-centric map of a scene, in a coarse-to-fine manner, given

an RGB image. We assume camera poses and a sparse point cloud have been

estimated using standard SLAM or SfM methods such as ORB-SLAM (Mur-Artal

et al., 2015). We represent the object-centric map as a set of object poses {T kwo}

with associated 3D bounding boxes {bbk3} and shape codes {zk}. Tba denotes a

transformation from coordinate system a to b.

The steps in our pipeline are illustrated in Fig. 5.2. First, objects are detected

in input images using any off-the-shelf detector (He et al., 2017), correspondences

are established between detections of the same object instance in different images

(Sec. 5.3.2). Second, associated 2D detections are used to localise an object in 3D

via a quadric fitting procedure. The 3D ellipsoid then enables occlusion reasoning

for view selection (Sec. 5.3.3). Third, a shape code is predicted for each selected

detection of the same object, using a Convolutional Neural Network (Sec. 5.3.4).

Fourth, codes are fused into a unique object shape code (Sec. 5.3.5). Finally,

object poses and shape codes are incrementally refined by minimising energy terms
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Figure 5.3: Our joint shape embedding leverages the advantages of sparse point-based
(efficiency) and dense surface (expressiveness) object shape representations.

Pointcloud Decoder

ShapeNet Reference

SDF Decoder

Figure 5.4: Joint latent shape space interpolation between 3 ShapeNet instances with
ground-truth codes. Point cloud and SDF decodings of intermediate codes are coherent.

based on geometric and multi-view photometric consistency cues using our joint

shape embedding as a prior (Sec. 5.3.5).

5.3.1 Joint Shape Code Embedding

We propose a joint shape embedding to represent and instantiate complete object

shapes in a compact way. This embedding is different from the one in Chapter 4

from several aspects. Firstly, this joint embedding can decode to different object

representations, and we strongly believe that this would be compelling to future

research when the best shape representation is task-specific. An immediate ad-

vantage of this joint embedding is that it outperforms an embedding of a single

representation in shape reconstruction shown empirically in the experiments section.

We believe this is loss functions for different representation are complementary.

Secondly, although it would be trivial to incorporate the Gaussian Mixture Model

prior, we do not apply it to this joint embedding. Unlike the single-view setup in

Chapter 4, initial tests indicate that object shapes are less likely to degenerate in
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the multi-view setup that we are interested in this chapter.

We parameterise an object shape as a latent code z ∈ R64, which can be jointly

decoded by two generative models X = Gs(z) and φ = Gd(z) into an explicit sparse

3D point cloud X and an implicit signed distance function φ. While the point cloud

decoder generates 2048 samples on the object surface, the SDF decoder represents the

surface densely via its zero-level set. The decoders are trained simultaneously using a

supervised reconstruction loss against ground-truth shapes on both representations:

L = λ1DC(Gs(z),Xgt) + λ2Lφ + 1
σ2‖z‖

2, (5.1)

where DC and Lφ are the reconstruction loss for point cloud and DeepSDF rep-

resentation respectively, and computed as below:

Lφ = |clamp(Gd(z), δ)− clamp(dgt, δ)|, (5.2)

DC(A,B) = 1
|A|

∑
x∈A

min
y∈B
‖x− y‖2

2 (5.3)

+ 1
|B|

∑
y∈B

min
x∈A
‖x− y‖2

2

We use 3D models from the CAD model repository ShapeNet (Chang et al., 2015)

as ground-truth shapes. The original DeepSDF architecture (Park et al., 2019b)

is employed for the SDF decoder, and a variant of PSGN (Fan et al., 2017a) is

used as the point cloud decoder. Its architecture is described in detail in section

5.3.6. The idea of simultaneously decoding to both point cloud and mesh from

the joint embedding is illustrated in Fig. 5.4.

While inspired by Muralikrishnan et al. (2019) to use multiple shape repre-

sentations, our embedding offers two advantages. Firstly, the same latent code

is used by both decoders, which avoids the need for a latent code consistency

loss (Muralikrishnan et al., 2019). Secondly, by employing an AutoDecoder (Park

et al., 2019a) as opposed to AutoEncoder, training a shape encoder for each

representation is not required.
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Figure 5.5: Data association: 3D line segment clustering to predict 2D detected bounding
box correspondences. Colors denote instance IDs.

Figure 5.6: Examples of 2D detections filtering based on the projection of 3D bounding
box. The red and green boxes are 2D detections and projections of 3D bounding boxes
respectively. From left to right: reject due to size, reject due to occlusion, reject due to
overlap, accept.

5.3.2 Object Detection and Data Association

We use a standard instance segmentation network (He et al., 2017) to detect object

bounding boxes bb2
i and object masks M in the input RGB video. We predict

correspondences between multiple 2D detections of each 3D object instance to

enable multi-view fusion and data aggregation for object shape inference. Since

the 3D ray through the centre of a 2D bounding box points in the object centre’s
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direction, the set of rays from all corresponding detections should approximately

intersect. Knowledge of the object class sets reasonable bounds on the object scale

to further restrict the expected object centre location in 3D to a line segment as

indicated by the thicker line segments in Fig. 5.5.

Object instance data association can then be cast as a clustering problem,

in which the goal is to identify an unknown number of line segment sets that

approximately intersect in a single point in 3D. We adopt an efficient iterative non-

parametric clustering approach similar to Dirichlet Process (DP)-means (Kulis et al.,

2011) where the observations are line segments, and the cluster centres are 3D points.

DP-mean clustering is similar to K-mean clustering as it also runs in an

Expectation-maximisation manner. A key difference is that the total number

of cluster is unknown at first. A new cluster is generated when the distance

between a line segment and any existing clusters is larger than a cluster penalty

threshold, which we set to 0.4 meters. Our clustering algorithm runs as follows:

we calculate the distance between this new line segment and existing clusters for

each line segment. If the distance is larger than the cluster penalty threshold,

this observation becomes a new cluster, and the cluster centre is initialised at the

midpoint of the line segment. Algorithm 1 details each step.

5.3.3 Quadric Fitting and Detection Filtering

After clustering, each object instance k is associated with a set of 2D image detections

{Ik}. An oriented 3D bounding box bb3
k is computed from the associated bounding

box detections by fitting a dual quadric whose projections are tangent to the 2D

bounding boxes as done in Nicholson et al. (2018).

Because the single-view shape inference network (Section 5.3.4) and the following

optimisation (Section 5.3.5) assume a complete view of an object (i.e. not truncated

by the image boundary, or not occluded by another object), we use the estimated

ellipsoid to select “good” 2D bounding boxes for the single-view shape inference

network by employing a pruning scheme. We use three criteria to reject frames

based on (1) bounding box size, (2) occlusions and (3) overlap with other objects.
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Algorithm 1: DP-mean clustering for 3D line segments
Input: r1, r2, ..., rn : n rays

λ : cluster penalty threshold
Output: c1, c2, ..., cm : m object clusters
1. init. µ1 = mid(r1), mid() is to compute the middle point of a ray;
2. while not converged do

for each ri do
dij = min

µ1...k
dist(µk, ri);

if dij ≥ λ then
set k = k + 1;
µk = mid(ri);

else
zi = j;

end
end
k clusters are generated, where ck = {ri|zi = k};
for each ci do
µi = lstsq(ck);

end
end

(1) is implemented via a threshold on the bounding box’s width and height, and

(2,3) are implemented using a threshold on the intersection over union (IoU) of the

bounding boxes. Figure 5.6 illustrates these strategies. The filtered set of image

detections {I ′k} is used in all the following steps.

5.3.4 Single-view Shape Code Inference

As illustrated in Fig. 5.2, a 64D object shape code is predicted for each filtered

detection. We train a new encoder network that takes as input a single image

patch cropped by the 2D bounding box and regresses to its associated shape code

zi ∈ R64 in the joint latent space described in Sec. 5.3.1.

The network is trained in a fully supervised way. However, due to the lack of 3D

shape annotations for real-world image datasets, we train the image encoder using

synthetic ShapeNet (Chang et al., 2015) renderings. Specifically, we generate training

data by rendering ShapeNet CAD models with random viewpoints, materials,

environment mapping, and background. We also perturb bounding boxes of
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rendered objects and feed perturbed crops to the encoder during training. We

choose a standard ResNet architecture, modifying its output to the size of the

embedding vector. During training, we minimise the Huber loss between predicted

and target embeddings, which we know for all CAD models. More training details

are covered in Sec. 5.3.6.

5.3.5 Multi-view Optimization with Shape Priors

For each object instance k we fuse all single-view shape codes {zi|i ∈ I ′k} into a

unique code z0
k. We propose two fusion approaches and evaluate them in Table 5.5:

(i) Average – we average shape codes to form a mean code zmean
k ; (ii) Majority voting

– We find the 4 nearest neighbors of each predicted code zi among the models in

the training set. The most frequent of these is chosen as zvote
k . Unlike the average

code, zvote
k guarantees valid shapes from the object database.

For each object instance k, all images with non-occluded detections are used as

input to an energy optimisation approach to estimate object pose T kwo and shape

code zk in two steps. First, we optimise the energy over a sparse set of surface

points, using the point decoder Gs(z) as a shape prior. This step is fast and efficient

due to the sparse nature of the representation and the lightweight of the point

cloud decoder. Second, we further refine the pose and shape minimising the same

energy over dense surface points, using the DeepSDF decoder Gd(z) as the prior.

This slower process is more accurate than the sparse point cloud since the loss is

evaluated overall surface points and not sparse samples.

Energy. Our energy is a combination of losses on the 2D silhouette Es, photometric

consistency Ep and geometry Eg with a shape code regularizer Er:

E = λs · Es + λp · Ep + λg · Eg + λr · Er , (5.4)

where λs,p,g,r weigh the contributions of individual terms. The regularisation term

Er = 1
σ2‖z‖2

2 encourages shape codes to take values in valid regions of the embedding,

analogously to the regularizer in Eq. 5.1. Note that the same energy terms are used
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for sparse and dense optimisation – the main differences being the number of points

over which the loss is evaluated, and the decoder G(z) used as a shape prior.

Initialization. The 64D shape code is initialised to the fused shape code (Sec. 5.3.5),

while the pose Two is initialised from the 3D bounding box bb3
k (Sec. 5.3.2):

translation is set to the vector joining the origin of the world coordinate frame

with the 3D bounding box centroid, scale to the 3D bounding box height and

rotation is initialised using exhaustive search for the best rotation about the gravity

direction – under the assumption that objects are supported by a ground-plane

perpendicular to gravity.

Sparse Optimization. Throughout the sparse optimisation, the energy E is

defined over the sparse set of 2048 surface points X, decoded with the point-based

decoder Gs(z). The energy E is minimised using the Adam optimizer (Kingma

et al., 2014) with autodiff. We now define the energy terms.

• The photometric loss Ep encourages the colour of 3D points to be consistent

across views. In the sparse case, we evaluate Ep by projecting points in X to N

nearby frames via known camera poses Tcw and comparing colors in reference IR

and source ISi images under a Huber norm ‖.‖h:

Ep(X, IR, IS1 , ..., ISN) = 1
N · |X|

N∑
i=1

∑
x∈X
‖r(IR, ISi )‖h

r(IR, IS) = IR(π(TR
cwx))− IS(π(TS

cwx))
(5.5)

where π(x) projects 3D point x into the image.

• The silhouette loss Es penalises discrepancies between the 2D silhouette obtained

via the projection of the current 3D object shape estimate and the mask predicted

by MaskRCNN (He et al., 2017). In practice, we penalize points that project

outside the predicted mask using the 2D Chamfer distance:

Es(zk,Tk
wo) = DC(M, π(TcwTk

woG(z))) (5.6)

where M is the set of 2D samples on the predicted mask and DC is the symmetric

Chamfer distance defined in Eq. 5.3.

• The geometric loss Eg minimizes the 3D Chamfer distance between 3D SLAM

(or SfM) points and points on the current object shape estimate:
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Eg(zk,Tk
wo) = DC(Xslam,Tk

woG(z)), (5.7)

Dense Optimization. The shape code and pose estimated with the sparse

optimisation can be further refined with a dense optimisation over all surface

points and using the DeepSDF decoder Gd(z). Since Gd(z) uses an implicit

representation of the object surface, we compute a proxy mesh at each iteration

and formulate the energy over its vertices. This strategy proved faster than sphere

tracing (S. Liu et al., 2019), while achieving on-par accuracy, see Table 5.3. We

now describe the dense energy terms.

• The photometric and geometric losses Ep, Eg are equivalent to those used in the

sparse optimization (see Eq. 5.5, 5.7). However, they are evaluated densely, and

the photometric optimisation makes use of a Lucas-Kanade style warp.

• The silhouette loss Es takes a different form to the sparse case. We follow

traditional level set approaches, comparing the projections of object estimates with

observed foreground and background probabilities Pf,b:

Es =
∫

Ω
H(φ)Pf (x) + (1−H(φ))Pb(x)dΩ, (5.8)

where φ is a 3D or 2D shape-kernel, and H a mapping to a 2D foreground probability

field, resembling an object mask of the current state. Empirically, we found that 3D

shape-kernels (Victor A Prisacariu et al., 2012) provide higher quality reconstructions

than a 2D formulation (Victor Adrian Prisacariu et al., 2012) because more regions

contribute to gradients. While H is a Heaviside function in the presence of 2D

level-sets, we interpret signed distance samples of the DeepSDF volume as logits

and compute a per-pixel foreground probability by accumulating samples along

rays, similar to (Victor Adrian Prisacariu et al., 2012):

H = 1− exp
∏

x on ray
(1− sig(ζ · φ(x))) , (5.9)

where ζ is a smoothing coefficient, and 1− sig(ζ · φ(x)) the background probability

at a sampling location x. A step-size of r
50 is chosen, where r is the depth range

of the object-space unit-cube.
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5.3.6 Implementation details

Decoder of the joint embedding. Following Park et al. (2019a), we use

AutoDecoder (not AutoEncoder) to train our embedding and decoder network. The

AutoDecoder comprises a set of embedding in RN×64, where N is the number of

training CAD models, and 64 is the embedding dimension, and a decoder network.

Note that both the embedding and network weights are randomly initialised and

optimised during training. The decoder is split into two independent branches

for point cloud and DeepSDF respectively. The point cloud branch comprises

four fully connected layers, each with 512, 1024, 2048, and 2048 × 3 as output

dimensions. The DeepSDF branch comprises eight fully connected layers, each with

256 as output dimensions. The final SDF value is obtained with hyperbolic tangent

non-linear activation. We use ReLU as a non-linear activation function following

each fully connected layer except the last one. The joint AutoDecoder is trained

for 2000 epochs with a batch size of 64. There are 16384 SDF samples for each

shape. The learning rate for network parameters and latent vectors are 5 · 10−3,

and 10−3 respectively, decayed by 0.5 every 500 epochs.

Encoder Network. After we train the decoder network, we obtain a set of

embeddings z ∈ R64 for the corresponding CAD models. In the second stage, we

train an encoder network that maps an image to the latent code. We tailor ResNet50

to output a vector of dimension 64 and initialise the network with pretrained models.

We train the network for 50 epochs to minimise a Huber loss with a polynomial

decaying learning rate of 10−3. The network for the embedding is trained in a way

similar to Y. Li et al. (2015). However, our deep learning based shape embedding

is very different from the non-parametric embedding used in Y. Li et al. (2015).

Off-the-shelf MaskRCNN (He et al., 2017) is used to predict object detections

and masks. We run Orb-SLAM (Mur-Artal et al., 2015) to estimate trajectories

and keypoints for experiments on Redwood-OS but use the provided camera poses

and no keypoints on ScanNet.
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Figure 5.7: Examples of single view reconstruction on Pix3D dataset (Sun et al., 2018).
Ground truth on the right for reference.

5.4 Experiments

Our focus is to evaluate the performance of FroDO on real-world datasets wherever

possible. We evaluate quantitatively in two scenarios: (i) single-view, single object on

Pix3D (Sun et al., 2018); and (ii)multi-view, single object on the Redwood-OS (Choi

et al., 2016) dataset. In addition, we evaluate our full approach qualitatively on

challenging sequences from the real-world ScanNet dataset (Dai et al., 2017a) that

contain multiple object instances in different object categories.

5.4.1 Single-View Object Reconstruction

First, we evaluate the performance of our single-view shape code prediction network

(Sec. 5.3.4) on the real-world dataset Pix3D (Sun et al., 2018). Table 5.1 shows a

comparison with competing approaches on the chair category. The evaluation proto-

col described in (Sun et al., 2018) was used to compare IoU, Earth Mover Distance



5. FroDO: From Detections to 3D Objects 84

IoU ↑ EMD ↓ CD ↓
3D-R2N2 (Choy et al., 2016b) 0.136 0.211 0.239
PSGN (Fan et al., 2017a) N/A 0.216 0.200
3D-VAE-GAN (Wu et al., 2016b) 0.171 0.176 0.182
DRC (Tulsiani et al., 2017b) 0.265 0.144 0.160
MarrNet (Wu et al., 2017b) 0.231 0.136 0.144
AtlasNet (Groueix et al., 2018) N/A 0.128 0.125
Sun et al. (2018) 0.282 0.118 0.119
Ours (DeepSDF Embedding) 0.302 0.112 0.103
Ours (Joint Embedding) 0.325 0.104 0.099

Table 5.1: Results on Pix3D (Sun et al., 2018). Our method gives the highest Intersection
over Union and lowest Earth Mover’s and Chamfer Distances.

Optim. Method Energy Terms CD (cm.)
Sparse Es + Er 8.97
Sparse Es + Ep + Eg + Er 8.59

Sparse + Dense Es + Er 7.41
Sparse + Dense Es + Ep + Eg + Er 7.38

Table 5.2: Ablation study of estimates after sparse and dense optimization stages on
the Redwood-OS dataset. We compare the effect of different energy terms in Eq. (5.4).

(EMD) and Chamfer Distance (CD) errors (results of competing methods are from

(Sun et al., 2018)). Our proposed encoder network outperforms related works in all

metrics. Table 5.1 also shows an improvement in performance when our new joint

shape embedding is used (Ours Joint Embedding) instead of DeepSDF (Park et al.,

2019b) (Ours DeepSDF Embedding). Figure 5.7 shows example reconstructions.

5.4.2 Multi-View Single Object Reconstruction

We quantitatively evaluate our complete multi-view pipeline on the chair category of

the real-world Redwood-OS dataset (Choi et al., 2016). We perform two experiments:

an ablation study to motivate the choice of terms in the energy function (Table

5.2) and a comparison with related methods (Table 5.5). Table 5.3 includes a

comparison of our dense photometric optimization with the two closest related

approaches (Lin et al., 2019a; S. Liu et al., 2019) on a commonly-used synthetic

dataset (Lin et al., 2019a).
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PMO (o) PMO (r) DIST (r) Ours (r)
Cars 0.661 1.187 0.919 1.202
Planes 1.129 6.124 1.595 1.382

Table 5.3: Non-symmetric Chamfer distance (completion) on first 50 instances of the
synthetic PMO (Lin et al., 2019a) test set. While (o) indicates the original PMO method
with its own initialization, (r) indicates random initialization.

Method sec. /iteration # of iteration

PMO Lin et al. (2019a) 12.59 100
Optim. Dense 4.96 100
Optim. Sparse 0.07 200

Table 5.4: Speed comparison between PMO (Lin et al., 2019a) and our method on the
same sequence of 60 frames.

Ablation study. Table 5.2 shows the result of an ablation study on different

energy terms in our sparse and dense optimizations (Eq. 5.4). The combination

of geometric and photometric cues with a regulariser on the latent space achieves

the best result. We also compare the proposed fusion techniques (average and

majority voting) in Table 5.5. “Average” outperforms “majority voting” slightly

and it is also more efficient.

Joint embedding gain The joint embedding achieves better performance in single-

view reconstruction than the DeepSDF-only embedding as shown in the last two

rows in Table 5.1. Moreover, an important motivation for using a joint embedding

is that the efficiency of a sparse optimisation can be leveraged, while exploiting

richer information when subsequently applying fewer dense iterations. A compari-

son of optimization run-times shows that the pointcloud-based representation is

approximately two orders of magnitude faster than the mesh optimization used by

PMO (Lin et al., 2019a) and DeepSDF (Park et al., 2019b) as shown in Table 5.4.

Synthetic dataset. Table 5.3 shows a direct comparison of the performance on

the synthetic PMO test set (Lin et al., 2019a) of our dense optimization when

only the photometric loss Ep is used in our energy (for fair comparison), with the

two closest related methods: PMO (Lin et al., 2019a) and DIST (S. Liu et al.,

2019). Notably, both DIST and our approach achieve comparable results to PMO
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from only random initialisations. When PMO is also initialised randomly, the

results degrade substantially.

Redwood-OS dataset. Table 5.5 shows a comparison with Pix2Vox (Xie et al.,

2019), a purely deep learning approach, and with PMO (Lin et al., 2019a). For

reference, we also compare with COLMAP (Schönberger et al., 2016a; Schönberger et

al., 2016b), a traditional SfM approach that generates geometric-only reconstructions.

Since COLMAP reconstructs the full scene without segmenting objects, we only

select points within the ground-truth 3D bounding box for evaluation. We report

errors using: Chamfer distance (CD), accuracy (ACC (5cm)), completion (COMP

(5cm)) and F1 score – all four commonly used when evaluating on Redwood-OS.

Chamfer distance (CD) measures the symmetric error, while shape accuracy captures

the 3D error as the distance between predicted points to their closest point in the

ground truth shape and vice-versa in the case of shape completion. Both shape

accuracy and completion are measured in percentage of points with an error below

5cm. Following (Lin et al., 2019a), we use an average of 35 input frames sampled

from the RGB sequences, though for completeness we show results with 350 views.

Fig. 5.8 shows some qualitative results and more examples can be found in Figure

5.10 at the end of this Chapter.

We outperform Xie et al. (2019) by a significant margin which could point to

the lack of generalisation of purely learning-based approaches. We also outperform

PMO (Lin et al., 2019a), a shape prior based optimisation approach like ours, but

lacks our joint embedding and the coarse-to-fine shape optimisation. Although

COLMAP achieves high accuracy regardless of the number of viewpoints, it fails

to reconstruct full 3D shapes when the number of input images or the baseline of

viewpoints is limited as it cannot leverage shape priors. Although, as expected, the

performance of COLMAP increases drastically with the number of input images, it

requires hundreds of views to perform comparably to our approach. A distinction

to COLMAP is that we are reconstructing at the object level, while COLMAP’s

reconstructions do not represent the environment semantically.
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Method Few observations (average 35 views) Over-complete observations (average 350 views)

CD (cm) ACC (5cm) COMP (5cm) F1 score CD (cm) ACC (5cm) COMP (5cm) F1 score

COLMAP 10.58 84.16 54.28 65.99 6.05 91.41 94.59 92.97

Pix2Vox 12.12 55.27 64.74 59.63 11.87 55.88 66.09 60.56
PMO 12.13 53.08 69.42 60.16 11.93 54.80 69.54 61.30
FroDO
Code Fusion (Vote) 12.19 60.74 60.55 60.64 11.97 61.37 58.20 59.74

FroDO
Code Fusion (Avg.) 10.74 61.31 72.11 66.27 10.57 61.06 72.14 66.14

FroDO
Optim. Sparse 8.69 70.58 79.10 74.60 8.59 71.69 81.63 76.34

FroDO
Optim. Dense 7.38 73.70 80.85 76.64 7.37 74.78 81.08 77.32

Table 5.5: Quantitative evaluation on 86 sequences of Redwood-OS. We compare state
of the art competitors Pix2Vox (Xie et al., 2019) and PMO (Lin et al., 2019a) with the
results at different stages of our multi-view pipeline (code fusion −→ sparse optimization
−→ dense optimization).

Figure 5.8: Example 3D reconstructions achieved with different approaches on three
sample sequences from Redwood-OS. In all cases 35 input views were used.

5.4.3 Multi-object Reconstruction

We demonstrate qualitative results of our full approach on the ScanNet dataset (Dai

et al., 2017a) on challenging real-world scenes with multiple object instances of two

object categories (table and chair) in Fig. 5.1 and Fig. 5.9. The association of object

detections to 3D object instances becomes an additional challenge when dealing with

multi-object scenarios. Our results show that our line segment clustering approach

successfully associates detected bounding boxes across frames, and our coarse-to-fine

optimisation scheme provides high-quality object poses and reconstructions.
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Figure 5.9: Qualitative results on four ScanNet RGB input sequences. We reconstruct
multiple instances of the chair and table classes. While outputs are satisfactory for the
first three scenes, the last one highlights failures due to heavy occlusions and partial
observations. Top row: Object instances reconstructed by FroDO are shown in colour
while grey shows the ground-truth background (not reconstructed by our method) for
reference. Bottom row: full ground-truth scan for comparison.

5.5 Conclusion

In this chapter, we introduced FroDO, a novel object-centric mapping framework

that takes as input monocular RGB images and their extrinsic parameters and

infers the location, pose and accurate shape of objects in a scene. Key to FroDO is

using a novel deep learnt shape encoding throughout the different shape estimation

steps. We demonstrated FroDO on challenging sequences from real-world datasets

in single-view, multi-view and multi-object settings.

Currently, FroDO is not an online system because the line segment clustering

for data association takes as input object detections from an entire sequence. As

shown in the rightmost column in Fig. 5.9, while the detection pruning using the

3D ellipsoid can help to remove truncated detections, objects that are occluded

by other objects are difficult to be reconstructed. Furthermore, FroDO is only

well suited to a static environment.

Ideally, an object-centric mapping should be able to handle object motion poten-

tially caused by humane interactions. The next chapter addresses the limitations

above by introducing an online object-centric mapping framework that jointly

detects, tracks, and reconstructs objects in a scene.
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Figure 5.10: Comparison of different approaches to object shape reconstruction on some
examples from Redwood-OS dataset.
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In Chapter 5 we introduced FroDO, a framework to reconstruct a scene at the

level of objects given a monocular video in a coarse-to-fine manner. While clustering

2D detections using unprojected 3D line segments can localize objects in 3D, it is an

90
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Input images 3D bounding boxes Object reconstruction

Figure 6.1: A subset of input RGB images are represented by blue frustums at the
left image. Detection and tracking are shown on the middle image, in which the colored
rays indicate the associated detections to different object instances. The object-centric
reconstruction from MO-LTR is shown on the right image. Note that the scene mesh is
not used by MO-LTR, but shown for visualization purpose only.

off-line operation and assumes a static environment. We tackle these limitations

in this chapter by proposing MO-LTR— Multiple Object Localization, Tracking,

and Reconstruction given a monocular video. MO-LTR, shifting away from 2D

detections and line segment clustering based data association, adopts monocular 3D

detection to localize objects in the scene from a single view. Although single-view

3D detections are noisy, they provide a strong cue for our on-line data association

module in 3D. Objects are localized using the aggregated 3D detections, and object

motion is tracked by a multiple model Bayesian filter. Like FroDO, object shape is

represented by a shape code in a learned shape embedding, which is progressively

refined by the associated detections. MO-LTR not only addresses the fundamental

limitations of FroDO but also shows superior performance over FroDO in static

environments. This work is accepted in IEEE Robotics and Automation Letters.

6.1 Introduction

In this chapter, we are concerned with the problem of online detection, tracking,

and reconstruction of potentially dynamic objects from monocular videos. Although

elements of this problem have been tackled extensively, few works have adequately

addressed all three – online, dynamic, and monocular – simultaneously. Our system

MO-LTR, judiciously combines a number of traditional and deep learning techniques
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to address the problem. Given a new RGB frame, a monocular 3D detector is used

to localise objects presented in this view, and each detected object is mapped to

a learned shape embedding by our shape encoder. Meanwhile, the state, which

includes kinematics and motion status (i.e. dynamic/static), of each existing object

in the map is tracked via a multiple model Bayesian filter. Matchable objects

(more details to be covered in 6.3.4), selected based on the motion state, are used

to associate to the newly detected objects, after which, associated detections are

merged to the map, the filters are updated, and object shapes are incrementally

refined by shape code fusion.

While approaches like Fusion++ (McCormac et al., 2018a) and FroDO (Runz

et al., 2020) assume a static environment, we argue that it is necessary to handle

dynamic objects, because an agent (either a robot or a user in an AR/VR headset) is

very likely to move objects when it interacts with the environment. Given the diverse

motion patterns (e.g. static, dynamic, and switch between these two), we employ a

multiple model Bayesian filter to track object kinematics and motion status.

Modelling the motion status explicitly gives us further advantage to manage the

termination of object trajectory during tracking. In contrast to common practice

in most Multiple Object Tracking (MOT) approaches (Weng et al., 2020; Shenoi

et al., 2020), which use a predefined fixed time threshold to terminate object

trajectories if not observed, we maintain static objects in the map even if they

have not been observed for a long time. The intuition behind is that static objects

would persist whether they are observed or not while dynamic objects are more

likely to move out from the environment.

MO-LTR also stands out from previous object-centric mapping approaches

in terms of input modality. Unlike most existing systems that require a depth

sensor (McCormac et al., 2018a; Xu et al., 2019; Runz et al., 2018), MO-LTR takes

just monocular RGB images as input. Although works like MOTSFusion (Luiten

et al., 2020) also tried to replace a depth sensor with a monocular depth estimation

network, the disadvantages of our approach are twofold: 1) depth prediction on object

boundaries is extremely noisy, and fusion using the noisy prediction accumulates
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error whereas the object surface of our reconstruction is smooth and clean by

leveraging shape prior knowledge; 2) The depth map based reconstruction is not

as complete as our shape prior based reconstruction because fusing multiple depth

maps can only recover the visible surfaces. We show quantitatively in experiments

that the object reconstruction produced by the depth network is less accurate

than our shape prior based reconstruction.

To summarise, the main contributions of this chapter are:

• We present MO-LTR, a unified framework for object-centric mapping, which

can localise, track, and reconstruct multiple objects in an online fashion given

monocular RGB videos.

• We demonstrate that the combination of monocular 3D detection, multiple

model Bayesian filter and deep learned shape prior leads to robust multiple

object tracking and reconstruction.

• We evaluate the proposed system extensively showing more accurate recon-

struction and robust tracking than previous approaches on both indoor and

outdoor datasets.

6.2 Related Work

In recent years, we have seen impressive progress in semantic reconstruction.

Early works (Stückler et al., 2014; Hermans et al., 2014; Pham et al., 2015)

use graphical models to assign semantic labels to a geometric reconstruction.

SemanticFusion (McCormac et al., 2017) employs a deep network to predict pixel-

wise semantic labels given RGB frames, which are then fused into a semantic mapping

by leveraging the geometric reconstruction from an RGBD SLAM. Although these

approaches enrich the geometric reconstruction by attaching semantic labels, they

are not object-centric as they cannot separate objects of the same class.

Pioneering works on the object-centric mapping are based on template matching

and thus is limited to a set of a-priori known objects. Gálvez-López et al. (2016)
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propose a monocular-based SLAM that matches detections against objects in a

database using bags of binary words. SLAM++ (Salas-Moreno et al., 2013b), an

RGBD SLAM, uses point pair features to detect and align CAD models into the

map. To remove the object template database, a number of approaches turn to

deformable template (Bao et al., 2013a; Parkhiya et al., 2018).

Learning a shape prior that takes advantage of object shape regularity is another

research trend for object shape reconstruction. Intra-class full 3D shape variance is

captured in a learnt latent space. Object shape is optimised in this latent space given

image or depth evidence, and thus full 3D objects can be reconstructed even if only

partial observations are available. Shape latent space is often learnt via (Kernal)

PCA (Dambreville et al., 2008b; R. Wang et al., 2019b) or GP-LVM (Prisacariu

et al., 2012; Dame et al., 2013).

Motivated by the success of deep learning in scene recognition, deep networks are

used as function approximators that map an image (Fan et al., 2017b; Tulsiani et al.,

2017a) or images (Choy et al., 2016a; Xie et al., 2019) to a 3D object shape. Instead

of a direct mapping, another line of works (Wu et al., 2016a; R. Zhu et al., 2018; Lin

et al., 2019b) including ours presented in Chapter 4 apply deep networks as powerful

dimension compression tools to learn a shape embedding. Object shapes can be

optimised in the embedding given visual observations. However, these methods are

often constrained to single-object scenes where all observations can be assigned

to the same object. When there are multiple objects in a scene (e.g., a dining

room with a table surrounded by multiple chairs), data association that assigns

observations to different objects is essential to apply those methods.

Although Chapter 5 and this chapter share common ground in using shape

prior for object reconstruction, the line segment clustering algorithm in Chapter 5

assumes a static environment whereas we can work with both dynamic and static

objects in this chapter. Additionally, MO-LTR is an on-line approach, whereas

FroDO is off-line.

There are several RGBD based approaches that leverage modern instance seg-

mentation networks to fuse depth maps of each object instance separately to achieve
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object-centric mapping. Assuming a static environment, Fusion++ (McCormac

et al., 2018a) generates a TSDF reconstruction for each object detected given

a RGBD image sequence. MID-Fusion (Xu et al., 2019) takes a step forward

by tracking each object’s pose to handle dynamic objects. Co-Fusion (Rünz

et al., 2017) and MaskFusion (Runz et al., 2018) using surfels to represent object

shapes can also handle dynamic objects by tracking the object motion using

Iterative Closest Point (ICP). Recently, Sucar et al. (2020), following shape prior

reconstruction, propose to optimise object shapes in a learnt embedding given

multiple depth observations. In contrast to methods aforementioned focusing on the

indoor environment, DynSLAM (Bârsan et al., 2018) is a stereo-based system for

dynamic object tracking reconstruction in the outdoor environment. The distinctive

advantage of MO-LTR over these methods is our simple sensory input being a

monocular RGB camera. While Luiten et al. (2020) explores the possibility to

replace the depth sensor with a monocular depth estimation network, fusing multiple

noisy depth prediction is error-prone. An additional benefit of our reconstruction

using shape prior is the completeness of the reconstruction.

6.3 Method

We first give an overview of the system, and then describe the details of the system

components in the subsequent sections, as indicated below.

6.3.1 System Overview

Given a new RGB frame, MO-LTR first employs a monocular 3D detector to predict

a 9-DoF object pose, object class label, and 2D bounding box (6.3.2). For each

detected object, an image patch cropped by the 2D bounding box of an object

is mapped to a shape code in a learnt shape embedding (6.3.3). State (i.e. pose

and motion status) of each existing object in the map is modelled by a multiple

model Bayesian filter. Prior to data association, we use the filter to predict object

location and decide whether an object is matchable using the predicted motion

status. The new detections are associated with the matchable objects based on
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Figure 6.2: MO-LTR pipeline. Given a new RGB frame, we predict 6-DoF object pose
with respect to the camera Tm+1

co and object scale s (i.e. 3D dimension) for each object
of interest, which is visualised as an oriented 3D bounding box. We also predict object
class and 2D bounding box for each object. An image patch cropped by the 2D bounding
box is mapped to a single-view shape code via the shape encoder. The state of objects in
the map is tracked by a multiple model Bayesian filter. The motion status is indicated by
different background colours of object poses. After filter prediction, matchable objects
are used to associate to the new set of detections. A matched detection is attached to the
object track, and the shape is progressively reconstructed by decoding the fused shape
codes.

a simple but practical pairwise cost (i.e. 3D Generalized IoU (Rezatofighi et al.,

2019)) as the matching cost. We solve the linear assignment problem using the

Munkres algorithm (Munkres, 1957) to decide whether a detection merges to an

object track or instantiates a new object in the map. Filters are updated using the

associated detections (6.3.4). To reconstruct an object shape, multiple single-view

shape codes are fused into a single one by taking the mean, which is decoded by the
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shape decode to a TSDF. The object shape is transformed to the world coordinate

using the updated object pose (6.3.5). Lastly, we introduce an approach to solve

the scale ambiguity in monocular SLAM using our object shape reconstruction

(6.3.6). Fig. 6.2 illustrates the pipeline of our system.

6.3.2 3D Localisation

First, MO-LTR detects objects of interest given an RGB image. We apply a

monocular 3D detector that takes a single RGB image as input and outputs both

2D attributes (i.e. object class and 2D bounding box) and 3D attributes (i.e.

object translation tco and viewpoint Rco with respect to the camera, and object

3D dimension (sx, sy, sz)). Technically, the detector is trained to predict an offset

(∆x,∆y) between the center of the 2D bounding box (x2d, y2d) and the projection

center of the 3D shape (x3d, y3d) on the image plane. We also predict the object

depth value z. Assuming we know the camera intrinsic parameters fx, fy, cx, cy,

the object’s 3D center tco in camera coordinate frame is recovered as follows:

tco = (x2d + ∆x− cx
fx

z,
y2d + ∆y − cy

fy
z, z) (6.1)

To handle the multi-modal nature of symmetric objects, we reformulate object

viewpoint prediction as a classification problem, where azimuth Razi and elevation

Rele are discretised into 36 and 10 bins respectively. The rotation matrix is

Rco = ReleRazi. The transformation matrix Tco ∈ SE(3) from the canonical object

space to camera coordinate frame is:

Tco =
[
Rco tco
0 1

]
(6.2)

Together with the scale parameters, each detected object is localized as an oriented

3D bounding in the camera coordinate frame.

6.3.3 Shape Embedding and Inference

As a shape prior based reconstruction, we are interested in reconstructing the

complete object shape even if only a partial observation is available. The formulation
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of our shape embedding and inference follows Chapter 5 closely. We use compact

k-dimension shape codes l ∈ Rk embedded in a learnt latent space to parameterise

normalised object shapes in a canonical pose throughout our system. This latent

representation effectively allows us to leverage the learnt latent space as a shape

prior. A TSDF, where the zero-crossing level set is the object surface, can be

decoded from the latent code via a DeepSDF decoder G(l) (Park et al., 2019a).

After each object has been detected, we estimate a single-view shape code by

mapping its cropped 2D bounding box to the shape embedding using the shape

encoder. Note that at this point we do not reconstruct the shape by decoding

the single-view shape code; instead, the shape is decoded later, once shape codes

have been fused over time, as described in 6.3.5.

6.3.4 Tracking

Because single-view detections are mostly noisy, a common approach in Multiple

Object Tracking is to apply a Bayesian filter on the object motion to smooth the

tracking trajectory (Weng et al., 2020; Shenoi et al., 2020), and to provide motion

predictions for better data association. To deal with both dynamic and static

objects, because there is no one-size-fit-all motion model for use within a Bayesian

filter, we employ the well-known Interacting Multiple Model (IMM) filter (Blom

et al., 1988). The state vector of the IMM filter comprises µ = (x, π) two parts:

x for object’s kinematics, and π for mode probability (i.e. how likely an object

has the motion status of dynamic/static).

Given a new RGB frame, we first use the IMM filter to predict each existing

object’s state (i.e. kinematics and motion status) from the previous frame to the

current frame. Because there are N (N = 2 in our case) parallel filters in an

IMM filter, the prediction involves three steps:

1) computing the mixed initial conditions:

x̄it−1 =
∑
j

x̂jt−1µ
j|i
t−1, (6.3)
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where x̄it−1 is the mixed initial state of the ith filter, x̂jt−1 is the updated state

of the jth filter at the t − 1 frame, and µ
j|i
t−1 is the mixing probability of the jth

filter in the ith filter computed as below:

µ
j|i
t−1 = πjiµ

j
t−1/µ̃

i
t, (6.4)

µ̃it =
∑
j

πjiµ
j
t−1, (6.5)

where πji is the transition probability from the jth filter to the ith filter, µ̃it is the

predicted mode probability, and µjt−1 is the jth filter’s updated mode probability

at t − 1 frame.

2) computing each filter’s prediction using the mixed initial condition:

x̃it = Fix̄it−1, (6.6)

where x̃it is the predicted state of the ith filter, and Fi is the state transition matrix.

3) computing the mixed prediction using the weighted sum of each filter:

x̃t =
∑
i

x̃itµ̃
i
t, (6.7)

where x̃t is the predicted state of the IMM filter, and πi is the mode probability

of the ith filter.

After objects’ states are predicted to the current frame, the next step is to

associate the new detections to the existing objects. We do not match all existing

objects though, an object is matchable if its probability in the static mode is larger

than that of the dynamic mode, or it was visible at least once in the previous t

frames. We construct aM×N cost matrix betweenM new detections in the current

frame and N matchable objects in the map, where each element represents the

cost for associating the mth detected objects to the nth objects in the map, and the

cost is measured by the negative of pairwise 3D generalised IoU (Rezatofighi et al.,

2019). To calculate the IoU, the detections are transformed to world coordinate

where the existing objects are. The optimal matching is found by the Munkres

algorithm (Munkres, 1957).
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Each IMM filter is updated using the associated detections as follows: 1)

update of each Kalman filter:

rit = zt −Hix̃it, (6.8)

x̂it = x̃it + Ki
tr
i
t, (6.9)

where x̂it is the updated state of the ith Kalman filter, Ki
t is the Kalman gain, rit

is the measurement residual, and zt is the measurement given by the monocular

3D detector; 2) update mode probability for the next frame:

Lit = N (rit|0,Sit), (6.10)

µ̂it = µ̃itL
i
t∑

j µ̃
j
tL

j
t

, (6.11)

where Lit is the model likelihood in the ith filter assuming Gaussian noise, Sit is

residual covariance, and µ̂it is the ith filter’s updated mode probability; 3) update

the mixed IMM state:

xt =
∑
i

x̂ikµ̂
i
k, (6.12)

where xt is the the IMM fse, there are two dynamic models of interest: a constant

velocity model for the dynamic state and a stationary model for stationary state,

each of which is represented by a Kalman Filter.

Similar to any MOT approaches that have to handle trajectory birth and death,

we deal with trajectory birth via the standard method, which is instantiating

a tentative trajectory from an unassociated detection. A tentative trajectory is

turned to a confirmed trajectory only if it is observed n consecutive times. We

treat trajectory termination differently. The death of an object trajectory is not

controlled by a predefined fixed time threshold. Instead, an object trajectory is

terminated only if it is a dynamic object and it is not observed in the last n frames

(i.e. static objects remain in the map even if not observed). Objects with a live

trajectory are considered matchable objects in the data association step.

If an object instance is moved during an unobserved period, it is considered

a new object instance when re-observed. The old object instance (if the old
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position is visible later) is pruned using negative information. Technically, if the

largest 2D IoU between the projection of a 3D object shape and all detected 2D

bounding boxes of an image is less than 0.5, then this object is considered not

visible and pruned for this time step.

6.3.5 Reconstruction

After object tracking, the last step of MO-LTR at each RGB frame is to reconstruct

each object’s dense shape in the map. In Chapter 5, we investigated two fusion

techniques for shape codes, averaging and majority voting, and empirical experiments

(Table 5.5) suggests that averaging outperforms majority voting. Therefore, we

fuse all single-view shape codes up to the current frame by averaging them into a

single code lf = 1
N

∑N
i li. A TSDF that represents an object shape in the canonical

object coordinate is decoded from the shape decoder Xo = G(lf) given the fused

shape code. An object shape mesh is extracted from the TSDF by the Marching

Cube algorithm (Lorensen et al., 1987). The mesh is then transformed to the world

coordinate using updated pose from object tracking:

Xw = TwoSXo (6.13)

S =

sx 0 0
0 sy 0
0 0 sz

 (6.14)

where Two is the rigid transformation from object coordinate to world coordinate

and S is the scale matrix.

The shape and pose can be further optimised using visual cues, such as silhouette

and photometric consistency, as shown in Chapter 5.

6.3.6 Scale Recovery of Camera Trajectory

It is commonly known that the camera trajectory and reconstruction given by a

monocular SLAM is only up to a free scale parameter. That is to say, the camera

trajectory and the reconstruction is consistent with each other but not in metric

units, and a scale parameter is needed to scale the trajectory and reconstruction

up/down to the metric units. This scale ambiguity caused by the unknown absolute
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baseline between two images is fundamental in a monocular geometric-only SLAM.

However, we here show an approach to recover the scale parameter by leveraging our

reconstructed object shapes and scale, which further demonstrates the benefit

of object-centric mapping.

Given an RGB image, our 3D detector can localise objects in the metric scale.

Together with the object meshes, we are able to render a depth map Dobj at this

viewpoint. We can also project the sparse feature points P of the monocular

SLAM to the same image plane.

[
i j z

]T
=

fx 0 cx
0 fy cy
0 0 1

 P, (6.15)

where fx, fy, cx, cy are camera intrinsic parameters, and [i, j] are the pixel locations.

The key idea is that if the SLAM reconstruction is indeed in the metric scale, then

the depth values of the feature points should be consistent with the rendered depth

map from the object shape reconstructions in the metric scale. Therefore, the scale

factor α can be obtained by minimizing the discrepancy between the rendered depth

map from shape reconstructions and the depth values of the sparse feature points:

L(α) = (1(Dobj[i, j]− αz)), (6.16)

where 1 is an indicator, whose value is 1 if the pixel location [i, j] has a valid

depth value from rendered depth map. A pixel does not have a valid depth value

if object meshes do not project onto it. We render a single depth map from all

visible objects to take care of object occlusions. Because there is only a single

scale parameter of the entire sequence, we optimise the α by minizing the loss

over all N frames in the sequence:

α = arg min
α

N∑
i

L(α), (6.17)

6.3.7 Implementation Details

We dedicate this section to describe the implementation details of each component

in the pipeline.
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Our detector is built on top of a 2D detector DETR (Carion et al., 2020).

DETR takes an image and a set of object queries, each of which is represented by a

vector, and predicts each query’s 2D bounding box, and object class. To predict

the additional 3D attributes – 3D dimension, translate, and rotation, we extend

the original DETR by adding an independent prediction feed-forward network for

each additional attribute. For indoor scenes, we train the 3D detector on the

ScanNet (Dai et al., 2017a) images. Because ScanNet annotations do not provide

object dimensions and orientation that we need for training our detector, we use

the CAD model annotations provided by Scan2CAD (Avetisyan et al., 2019). We

finetune the detector from the official release on the official ScanNet train/val

split for 10 epochs. For outdoor scenes, we use an off-the-shelf 3D monocular

detector from X. Zhou et al. (2020).

We use k = 64 dimensions for our shape embedding. The architecture of our

shape decoder is identical to the original DeepSDF (Park et al., 2019a), and we

closely follow DeepSDF in the training procedure. The only difference is that

we train separate embeddings for indoor classes(e.g. chair, table and display),

and outdoor classes (e.g. car). The architecture of our shape encoder is modified

from the ResNet18 by changing the original output dimension to our embedding

dimension. It is trained on synthetic images rendered from the ShapeNet (Chang

et al., 2015) CAD models with random backgrounds.

We formulate the state vector of the IMM filter as a 7-dimensional vector µ =

(x, π), where x = [cx, cy, cz, vx, vy, vz] is a 6-dimensional vector that represents the

centre and velocity of an object and π is the model selection variable. Object centre

observation is from the monocular 3D detector, and the measurement covariance is

set to 0.01I ∈ R3×3 and 0.25I ∈ R3×3 (based on empirical results shown in Table 6.2)

for indoor and outdoor environment respectively. We use zero velocity and the

first observation to initialise the state mean, and covariance is initialised using

identity matrix I ∈ R6×6. We use a constant velocity model (with acceleration as

process noise) and a zero velocity model (also known as random walk) for dynamic

and static motion model respectively. The transition probability matrix is set
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to[[0.6, 0.4]; [0.4, 0.6]]. An object is classified as static if p(π = static) > p(π =

dynamic). Note that at present, we do not incorporate object rotation in the filter

state. One complexity of doing so is that the noise of rotation observation predicted

by the deep network is non-Gaussian due to object symmetry. For instance, given

a car’s side-view image, the network prediction has two modes being the left and

right side of the car. We attempt to capture this categorical distribution using

a Particle Filter for object rotation, but it is discarded later in the development

due to the concern about speed.

The data association gating threshold measured by the 3D Generalised IoU is set

to 1.75 for outdoor scenes and 0.25 for indoor scenes. We need a higher threshold

in the outdoor environment to accommodate that outdoor objects move faster.

We use ground-truth camera poses in our experiments on KITTI and ScanNet for

a fair comparison, but the proposed system could work with any off-the-shelf SLAM

systems to obtain camera poses. We also demonstrate that our system can work with

estimated camera trajectory from DF-VO (Zhan et al., 2020) on KITTI dataset.

6.4 Experiments

6.4.1 Datasets

We quantitatively evaluate MO-LTR on KITTI (Geiger et al., 2012) and Scan-

Net (Dai et al., 2017a). KITTI is a popular dataset used for object tracking

benchmark in outdoor scenes. It consists of image sequences captured by a camera

mounted on a moving vehicle in different road conditions. In contrast, sequences

in ScanNet are captured in various indoor scenes (e.g., offices, living rooms, or

conference rooms) using a handheld device. However, because the annotated

bounding boxes in ScanNet are subject to occlusion or reconstruction failure that

leads to incomplete bounding boxes, following FroDO, we instead use the annotations

from Scan2CAD (Avetisyan et al., 2019) to obtain amodal 3D bounding boxes for

evaluation. Since objects in ScanNet are static, we demonstrate indoor dynamic

objects using self-recorded videos qualitatively.
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Figure 6.3: Object tracking on KITTI dataset. The tracking is consistent, and we
correctly label dynamic/static objects using the mode selection variable in the IMM filter.
The reconstruction of vehicles are also highlighted. Lidar points are used for visualization
purpose.

6.4.2 Localization

We compare MO-LTR with FroDO (Runz et al., 2020) on object localisation in

3D to demonstrate the effect of our monocular 3D detector and data association.

Table 6.1 presents the comparison with FroDO on three common object categories

(i.e., chair, table and display) in indoor scenes. The evaluation metric is the widely

adopted mean Average Precision (mAP) in object detection, and the Intersection

over Union threshold is set to 0.5.

We outperform FroDO on both chair and display class and have similar perfor-

mance on table class. We believe that the improvement is due to the differences in

our detection and data association approach. FroDO used 2D detections and a ray

clustering approach for data association. The 3D bounding boxes are obtained by

triangulating associated 2D detections. The ray clustering based data association

suffers from local minima and leads to incorrect matching if objects are close to

each other. MO-LTR circumvents this problem by using monocular 3D detection,
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mAP @ IoU=0.5 Chair ↑ Table ↑ Display ↑
FroDO (Chapter 5) 0.32 0.06 0.04
Ours 0.39 0.06 0.10

Table 6.1: 3D detection comparison

and thus the following data association works in the 3D space directly. Qualitative

results of MO-LTR on ScanNet is shown in Fig. 6.4. It can be seen that the proposed

method is more effective on chairs than tables (consistent with the results shown in

Table 6.1), large dining table or conference table in particular. This is because the

3D detector tends to perform worse on truncated views (that cannot observe the

full extent of an object) of objects. If an image only captures a corner of a table,

it is hard to determine how far this table would extend beyond the image frame.

Hence, the predictions on dimension and object translation are more uncertain.

6.4.3 Tracking

In the conventional KITTI benchmark evaluation, results of 3D MOT are evaluated

following the 2D MOT evaluation, where 3D tracking results are projected to the

image plane for evaluation. Therefore, it fails to reflect errors on depth direction (i.e.

an object located at any point along with the projection ray results in the same error).

We instead use the 3D MOT evaluation recently proposed in AB3DMOT Weng et al.,

2020. The evaluation metrics are Multiple Object Tracking Accuracy (MOTA),

Multiple Object Tracking Precision (MOTP) and ID Switches (IDS).

We use CenterTrack (X. Zhou et al., 2020), a monocular 3D multiple object

tracking framework, as a baseline. While we share the same monocular 3D

detector, the main difference is in the motion tracking and data association method.

CenterTrack predicts the 2D object motion on the image plane using a deep

network, and associates detections between adjacent frames using the IoU between

2D bounding boxes as a matching cost. Matches are found by a greedy search. We

model each object motion using an independent IMM filter in the 3D space and

choose Munkres algorithm (Munkres, 1957) over a greedy search.



6. MO-LTR: Multiple Object Localization, Tracking, and Reconstruction 107

Methods MOTA ↑ MOTP ↑ IDS ↓
CenterTrack (X. Zhou et al., 2020) 0.34 0.53 68
Ours (No filter) 0.37 0.53 12
Ours (σ=0.1) 0.39 0.53 7
Ours (σ=1) 0.36 0.51 4
Ours (σ=0.25) 0.39 0.53 0
CenterTrack (X. Zhou et al., 2020)(w/VO) 0.31 0.51 68
Ours (w/VO) 0.36 0.52 0

Table 6.2: 3D Object Tracking comparison on KITTI (Geiger et al., 2012), σ is multiplier
on the diagonal covariance matrix.

Methods Error metrics accuracy
RMSE ↓ log RMSE ↓ Abs Rel ↓ Seq Rel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

MOTSFusion (Mono.) 5.33 0.26 0.17 1.71 0.76 0.91 0.94
Ours 2.09 0.13 0.12 0.50 0.88 0.97 0.99

Table 6.3: Quantitative depth comparison to MOTSFusion

The quantitative result is shown in Table 6.2. We reduce ID-switches significantly.

We believe the reason for the improvement is twofold: 1) We perform object tracking

and data association in the 3D space so objects in similar depth direction but with

different values can be separate easily; 2) we solve the linear assignment problem

in data association instead of a greedy search. The object ID consistency is

crucial for object-centric mapping as duplicate object instances degenerate the

reconstruction quality. We visualise our tracking result and the motion state

estimation by the IMM filter in Fig. 6.3.

To verify that our approach can also work with estimated camera poses from a

SLAM or VO system, we also run evaluation with estimated camera poses from

the state-of-the-art Visual Odometry system – DF-VO (Zhan et al., 2020). The

performance of both CenterTrack and our method drops slightly due to the camera

tracking error, but note that ours still outperform CenterTrack.

6.4.4 Reconstruction

We compare MO-LTR against the monocular MOTSFusion, where they use a

monocular depth estimation network followed by an instance segmentation net-

work for object reconstruction to recover the visible surfaces of objects. Because
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Scene mesh

Reconstruction 
overlay

Second view

Figure 6.4: Localization and reconstruction on ScanNet sequences. Top row: Ground-
truth scan mesh for reference, middle row: objects overlay on the ground-truth mesh to
show localization quality. Bottom row: object shape reconstruction. Scan mesh is for
visualization purpose only. The input to MO-LTR is camera poses and RGB images only.

MOTSFusion does not reconstruct full 3D shape, our method would be favoured

if we were to evaluate reconstruction in 3D. Instead for a fairer comparison, we

render our full 3D shape onto the image plane as a depth map and compare the

reconstruction quality against MOTSFusion via depth map evaluation.

Our shape prior driven approach outperforms MOTSFusion by a large margin,

as shown in Table 6.3. MOTSFusion particularly suffers from RMSE, indicating

it is affected by the blurry object edge from the depth prediction and instance

segmentation. To better contrast both methods, we visualise the comparison in

Fig. 6.5. Even when MOTSFusion can reconstruct the surface accurately, our

shape prior-based reconstruction is still advantageous as we can reconstruct an

object’s full 3D shape.

6.4.5 Indoor Tracking and Reconstruction

We run MO-LTR on a self-recorded video1 with the focus on demonstrating tracking

objects whose motion status switches between dynamic and static throughout the
1https://youtu.be/oTG3nF3aUF8
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Figure 6.5: Reconstruction comparison to monocular MOTSFusion on KITTI. Left
column: Current frame, middle column: reconstruction by MOTSFusion, right column:
our reconstruction. Note that colored lidar points are used for visualization only, not part
of the processing.

video. MO-LTR is able to classify whether an object is static or dynamic accurately

at each time step, which indicates that our IMM filter captures the model switching

behaviour. Another highlight of this video is that a chair is tracked successfully

even though it was entirely occluded by another object for a period of time. That

is because the chair in the red bounding box is classified as static correctly, and we

use the motion status to control object trajectory termination. The occluded chair

is at risk of being discarded if we follow common MOT practice of a predefined

fixed time threshold to terminate unobserved objects.

Figure 6.6: Camera trajectories comparison between ours, ours with ground-truth scale,
ours without scale recovery, and the monocular VISO2 on KITTI sequences 06, 07, 09, 10
from left to right.
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monocular VISO2 Ours Ours (GT scale)
Seqs. ATE RPE (m) RPE (◦) ATE RPE (m) RPE (◦) ATE RPE (m) RPE (◦)
06 40.7 0.56 0.15 23.1 0.21 0.03 4.8 0.05 0.03
07 18.3 0.32 0.35 7.8 0.08 0.03 3.7 0.04 0.03
09 52.6 0.34 0.16 25.1 0.15 0.04 15.3 0.14 0.04
10 57.2 1.12 0.33 34.9 0.15 0.05 6.7 0.08 0.05

Table 6.4: Quantitative odometry evaluation on KITTI odometry sequences

Seqs. 06 07 09 10 Avg.
Relative error 14.1% 7.0% 8.1% 13.9% 10.7%

Table 6.5: relative error on scale recovry

6.4.6 Scale Recovery

The input to our scale recovery algorithm is camera trajectories estimated by a

monocular SLAM (Mur-Artal et al., 2017) (shown as red colour in Fig. 6.6). The

goal is to bring these unscaled camera trajectories to metric scale. We first measure

the performance using the relative error between our estimation and the ground-

truth scale parameter obtained by running the SIM(3) alignment (i.e. pose and

scale) to the ground-truth camera trajectories. The result is reported in Table

6.5. To better showcase the effect of the scale on odometry evaluation, we also

compare our method to the monocular VISO2 (Geiger et al., 2011), which assumes

a fixed camera height over the ground plane to estimate the scale factor. Comparing

trajectories are aligned to the ground-truth trajectories using SE(3) optimisation,

such that the scale error is reflected on the metrics. We also report the errors of

our camera trajectories aligned the ground-truth scale, which is the upper bound of

our scale recovery method. The trajectory comparison is shown in Table 6.4 and

visualised in Fig. 6.6. It is clear that the scale of camera trajectories after applying

our scale estimation is closer to the ground-truth than VISO2.

6.4.7 Runtime analysis

All experiments are run on an Intel Core i7 desktop with 16 GB RAM and an

Nvidia GeForce GTX 1070 GPU. The runtime cost for each component is shown in
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stage Detection shape
encode association shape

decode
time
(ms) 111/frame 4/det. obj. 3/frame 35/obj.

Table 6.6: Runtime analysis breakdown for each system component. det. obj. refers to
detected object

Table 6.6. In practice, we can run between 2 - 4 Hz in a scene with five objects.

6.5 Conclusion

In this chapter, we presented MO-LTR, a framework for multi-object localization,

tracking and reconstruction given monocular image sequences. We leveraged the

deep shape prior for complete and accurate shape reconstruction and the IMM filter

to jointly track an object’s motion and discriminate motion status. We evaluated

MO-LTR extensively on both indoor and outdoor scenes under both static and

dynamic environments. While we have shown that the data association using 3D

GIoU works in practice, an interesting future direction is to develop a learning-

based approach for data association. This could furthermore pave the way for

an end-to-end learnable system. We observed that the filter over-smooths object

motion due to a predefined high measurement noise to handle the noisy single-view

detections. It is worth exploring probabilistic object detection to improve the

tracking performance. Another immediate step to extend MO-LTR is to integrate it

into a full SLAM framework such that the object prior knowledge could be leveraged

in SLAM for a scale-consistent camera trajectory.
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7.1 Thesis summary

This thesis has explored methods of combining deep learning and traditional

geometry to achieve object-centric mapping. We started by addressing the problem

of object shape reconstruction given a single image. Although deep networks have

shown expressive results on this topic, traditional representations used for shapes,

such as voxels and point clouds, do not scale well. Thus, reconstructions generated

by a deep network are generally limited to a low resolution due to the memory

limitation of GPUs. To generate a dense point cloud, Lin et al. (2018b) proposed a

multi-view representation that predicted multiple depth maps from fixed viewpoints,

which can then fused into a dense point cloud using the known camera intrinsic

and extrinsic parameters. However, this representation leads to the undesirable

sparsity of the fused point cloud because a predicted mask filters out background

depth pixels that cannot be unprojected to the object surface. To address this

112
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problem, we proposed a novel representation in Chapter 3. Instead of predicting a

binary mask to filter out background pixels, we predict a deformation field to alter

pixel locations on the depth map image plane before unprojecting them to a 3D

point using the predicted depth values. Moreover, the other disadvantage of using

a predicted mask to filter out background pixels is that a threshold must be set to

binarise the mask. We showed in our experiments that there is no universally fit

threshold across different object instances. As a result, our efficient representation

can reconstruct an object shape using a denser and more accurate point cloud.

While we tried to integrate our deep learning based single-view object recon-

struction network into an object SLAM system (Hosseinzadeh et al., 2019), we

identified several undesirable properties of the pure deep learning based shape

inference approach. Firstly, there is a domain gap between synthetic images used

for training and the real images when testing. Secondly, the prediction cannot

be updated when information that may help improve the reconstruction (e.g. a

new observation, object silhouette) are available. Chapter 4 introduced a new

approach for single-view object reconstruction to address the limitations above.

The core of this approach is the probabilistic deep shape prior. We first map object

shapes into a low-dimensional embedding using an AutoEncoder. We then fit a

Gaussian Mixture Model in this embedding to obtain a probabilistic shape prior.

The single-view object reconstruction is cast as an optimisation problem, in which

the energy function consists of a silhouette consistency term and a shape prior

term, and the variables to be optimised are the object shape and object pose. We

demonstrated that our approach outperforms the prior art on a benchmark dataset

for single-view object reconstruction. The shape prior term induced by the GMM

is crucial to generate plausible object shapes when the predicted silhouette from

a semantic segmentation network is not accurate.

Largely built upon the techniques developed in Chapter 3 and 4, we introduced

our object-centric mapping system – FroDO – in Chapter 5. Taking as input an

RGB image sequence and their poses, FroDO can represent a scene by a set of object

reconstructions and their poses. We proposed to use a ray clustering algorithm to
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address the data association problem. Object shape and pose are jointly optimised

given the associated observations using a set of geometry constraints. Following

Chapter 4, each object shape is encoded in a low-dimensional shape embedding,

However, to make the best of different shape representations, we proposed a joint

embedding for point cloud (fast to inference, but sparse) and DeepSDF (slow, but

accurate and dense). FroDO is the first object-centric mapping system that combines

deep-learnt shape prior and traditional geometry using RGB-only image sequences.

FroDO focused on static scenes, but object motions are inevitable in many

applications, especially in those that involve human interactions. To this end, we

introduced MO-LTR in Chapter 6 as an effort to achieve object-centric mapping

in dynamic environments. While we relied on multiple associated 2D bounding

boxes to localise an object in 3D in FroDO, we proposed a single-view 3D object

detector in this chapter. Although the 3D predictions are noisy, they provide a

strong cue for data association. We employed an Interactive Multiple Models(IMM)

filter to smooth the noisy predictions and track an object’s motion. We showed that

MO-LTR could handle object motions in both indoor and outdoor environments.

7.2 Future work

The works presented in this thesis demonstrate the possibility of building an object-

centric mapping system that combines both traditional geometry and modern deep

learning. However, there is still a long way for object-centric mapping to reach

a maturity level for successful commercial applications. Some exciting research

directions are discussed in this section.

End-to-end object detection and tracking This is a promising research

direction that we have not had a chance to explore in this thesis. Detection and

tracking have never been addressed entirely in a unified deep learning framework.

However, researchers are moving toward this direction. For instance, Sarlin et al.

(2020) trained a graph neural network to match feature points between two images.

Similar ideas can be applied to transform heuristic-driven data association used

in the thesis to a data-driven approach. Brasó et al. (2020) proposed to train a
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message passing graph neural network to solve the Multiple Object Tracking (MOT)

problem. However, this approach still needs to take input from an external detector.

An end-to-end detection and tracking network is likely to offer improvements

as follows: Firstly, unlike estimating objects’ 3D location from a single image in

MO-LTR, an end-to-end framework that takes input as an image sequence can

leverage multi-view information for 3D object detection. Secondly, tracking will

be more robust to detector errors by training jointly. A tracker taking input from

an external detector cannot rectify detection errors in existing detection-based

tracking frameworks. In contrast, training detection and tracking in a unified

framework may alleviate the problem of error propagation. Lastly, while we only

used geometry for data association in Chapter 5 and 6, an end-to-end network

could extract object feature for matching.

Semi-supervised learning on object detection and tracking Training an

end-to-end network for 3D object detection and tracking in a fully supervised manner

comes with the cost of much expensive data annotation. Annotating each objects’

location in 3D at every frame for millions of images is unimaginably expensive using

the current annotation tools. A strong motivation for developing an object-centric

mapping system in this thesis is for advanced robotic and AR/VR applications.

When AR/VR headsets gain popularity in the mainstream, there would be many

images and videos recorded/uploaded everyday. Exploring semi-supervised learning

methods to train a network using a small subset of labelled data is more feasible

than annotating all these images and videos. Generative Pretrained Transformer-

3 (GPT3) (Brown et al., 2020) showed that a language model could be trained

unsupervised. They demonstrated impressive results on various Natural Language

Processing (NLP) tasks by finetuning this pretrained model. Does that mean

we can also train an “pretrained image model” using similar techniques when we

have enough images? We then can use the subset of labelled data to finetune the

“pretrained image model” for any specific image-related tasks.

Deformable Objects This thesis has focused on rigid objects. We cap-

tured category-level shape variances using a low-dimensional shape embedding.
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Deformable objects are also crucial in object-centric mapping. An example of

deformable objects is human body shapes. Kocabas et al. (2020) showed impressive

results on human body shape reconstruction in a video. However, this work is

limited to a single person and does not handle occlusion well. Further work on

data association and multi-person occlusion would be the key to apply this method

to videos in the wild. Besides human body shapes, furniture could also become

deformable due to the interaction with human beings. For instance, a human can

adjust the height of an office chair; he/she can open a drawer of a cabinet. Object

part recognition (Qi et al., 2017) and affordance reasoning (Do et al., 2018) could

offer some opportunities to deal with furniture deformation.

Unifying object-centric mapping and scene layout understanding Our

work on object-centric mapping focus on objects solely and handle each object

independently. However, many other elements could help a system to perceive the

environment better. We have exploited shape prior knowledge in this thesis inspired

by human beings’ ability to complete an object shape given limited observations

using experience. There might be scene prior knowledge at a room level that

captures room structures, room types, room configuration, and object relationships.

There is some preliminary research on this direction (Purkait et al., 2020), but

they are limited to simple scene configurations. A top-down approach utilising

scene prior and shape prior jointly could enforce more constraints to robustify the

mapping. Furthermore, a mapping system that reasons from detailed object shapes

to high-level scene configurations would facilitate research in many directions, such

as visual navigation and visual question answering.
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