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SUMMARY
Assessing drug response within live native tissue provides increased fidelity with regards to optimizing effi-
cacy while minimizing off-target effects. Here, using longitudinal intravital imaging of a Rac1-Förster reso-
nance energy transfer (FRET) biosensor mouse coupled with in vivo photoswitching to track intratumoral
movement, we help guide treatment scheduling in a live breast cancer setting to impair metastatic progres-
sion. We uncover altered Rac1 activity at the center versus invasive border of tumors and demonstrate
enhanced Rac1 activity of cells in close proximity to live tumor vasculature using optical window imaging.
We further reveal that Rac1 inhibition can enhance tumor cell vulnerability to fluid-flow-induced shear stress
and therefore improves overall anti-metastatic response to therapy during transit to secondary sites such as
the lung. Collectively, this study demonstrates the utility of single-cell intravital imaging in vivo to demon-
strate that Rac1 inhibition can reduce tumor progression and metastases in an autochthonous setting to
improve overall survival.
INTRODUCTION

Intravital imaging is emerging as a key advance that allows us to

track cellular processes within a variety of live tissues (Conway

et al., 2014; Follain et al., 2020; Miller and Weissleder, 2017).

Applying real-time in vivo imaging to assess tumor progression

in its local environment has revealed time and spatial depen-

dence of drug targeting vulnerabilities in various cancers (Con-

way et al., 2017; Ebrahim and Weigert, 2019; Ellenbroek and

van Rheenen, 2014; Fruhwirth et al., 2011; Nobis et al., 2018;

Scheele et al., 2016). To this end, we and others have employed

the use of Förster resonance energy transfer (FRET) biosensor

mice to explore a wide range of proteins involved in cancer pro-
Cel
This is an open access article under the CC BY-N
gression and metastasis and their pharmacological inhibition

(Festy et al., 2007; Hirata et al., 2015; Hiratsuka et al., 2015;

Matsuda and Terai, 2020). For example, we have assessed fluc-

tuations and targeting of the non-receptor tyrosine kinase Src

during cancer invasion (Nobis et al., 2013), CDK1 activity in

response to chemotherapy and extracellular matrix (ECM)

manipulation (Vennin et al., 2017, 2019), and Akt activity in

response to drug targeting in moving hypoxic regions of live tu-

mors (Conway et al., 2018). While others have revealed stratified

drug targeting and resistance to epidermal growth factor recep-

tor (EGFR)/ERK pathway targeting in breast cancer (Komatsu

et al., 2015) or altered apoptotic response to therapy in vivo using

a caspase-3-CAAX biosensor (Janssen et al., 2013).
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The small GTPase Rac1 is a key regulator of actin cytoskeletal

organization and is also known to drive tumor progression and

the production of reactive oxygen species (ROS) in multiple can-

cer types (Lindsay et al., 2011; Mack et al., 2012; Myant et al.,

2013). In normal breast tissue homeostasis, Rac1 has been

shown to be involved in tissue remodeling during mammary

gland gestation (Akhtar et al., 2016). In a breast cancer setting,

the activity of Rac1 can be co-opted and has been demonstrated

to be upregulated in many cancers (Feng et al., 2014; Vega and

Ridley, 2008; Yamaguchi et al., 2020). This has been partially

linked to the deregulation of specific Rac1 GEFs (guanine nucle-

otide exchange factors) such as Tiam1 (Adams et al., 2010;

Bourguignon et al., 2000a, 2000b; Li et al., 2016) or P-Rex1 (Bar-

rio-Real et al., 2014, 2016; Liu et al., 2016; Srijakotre et al., 2020;

Zhong et al., 2019) and can also be attributed to alterations of

GEF/GAP (GTPase activating proteins) ratios or GDI (guanine

nucleotide disassociation inhibitor) de-regulation (Hall and

Nobes, 2000; Machesky and Sansom, 2012; Ridley, 2015). In

some cases, this upregulation in activity can also be due to spe-

cific point mutations in Rac1 (Kawazu et al., 2013) or the upregu-

lation of the alternative splice isoform of Rac1b (Schnelzer et al.,

2000). Since Rac1 can play a key role in controllingmajor steps in

the metastatic cascade, including coordination of cell motility,

invasion, and EMT-to-MET plasticity during extravasation and

colonization, it is an attractive target molecule in the treatment

of cancer metastasis (Bid et al., 2013; De et al., 2019; Katz

et al., 2012; Marei andMalliri, 2017). Rac1 activates the suppres-

sor of cyclic AMP receptor mutation andWASP and verprolin ho-

mologous protein (SCAR/WAVE) complex, consequently leading

to Apr2/3 actin nucleation and polymerization, which promotes

lamellipodia formation and partially drives actin-based motility

in 2D (Hall, 1998; Machesky and Insall, 1998). In 3D contexts,

Rac1 activity has also been demonstrated to be important in

the turnover of invadopodia, specific cellular structures involved

in the degradation of the surrounding ECM, which often pre-

cedes tumor cell invasion and spread to secondary sites (Eddy

et al., 2017; Moshfegh et al., 2014).

Using FRET imaging in vitro, we have previously achieved lon-

gitudinal quantification of Rac1 activity at the single-cell and

subcellular level during neutrophil ROS production while also

monitoring Rac1 dynamics during nascent adhesion formation

in these cells prior to tracking coordinated cell migration and pro-

trusion events during chemotaxis (Johnsson et al., 2014). Having

demonstrated the potential for monitoring the volatile and rapid

signaling of Rac1 GTPase in vitro using these highly migratory

immune cells, we therefore sought to explore changes in Rac1

signaling along the steps of the metastatic cascade in a live tu-

mor setting. In live tumors, Rac1 is also subject to oscillation to

facilitate maximum tumor spread depending on the stage or

site of progression (Bolado-Carrancio et al., 2020). As such, a

more detailed understanding of this process is required if we

are to effectively target this vital molecular switch during the

multifaceted process of metastasis. Here, we aimed to look at

targeting Rac1 activity in a metastatic breast cancer setting dur-

ing primary growth, local invasion, dissemination in the vascula-

ture, and subsequent colonization of metastatic sites. Using 3D

organotypic modeling of tumor-ECM interactions, fluid-flow-

induced shear stress assessment, and intravital imaging of
2 Cell Reports 36, 109689, September 14, 2021
Rac1 signaling in live tissue, we were able to show the benefits

of inhibiting Rac1 at each step of the metastatic cascade, which

could help guide fine-tuned targeting of Rac1 in breast cancer

progression and spread.

RESULTS

Rac1 activity is upregulated in invasive mammary
carcinoma and is spatially regulated at distinct areas
within locally invasive tumors
The genetically engineered MMTV-polyoma-middle-T antigen

driven mouse model of invasive and metastatic breast cancer

(MMTV-PyMT), recapitulates key features of breast cancer pro-

gression and mimics locally invasive disease (Lin et al., 2003).

In order to monitor Rac1 activity during disease progression,

the Rac1-FRET biosensor mouse was crossed to the MMTV-

PyMT-driven breast cancer model and allowed to develop

invasive carcinomas for 118 ± 10 days (Figures 1A and S1A, con-

firming carcinoma staging via H&E; Guy et al., 1992a; Johnsson

et al., 2014). Using fluorescent lifetime imaging microscopy

(FLIM) to measure the lifetime of the donor fluorophore within

the intramolecular and reversible Rac1-Raichu FRET reporter

(Itoh et al., 2002), we could readily assess FRET and thereby

Rac1 activity at the single-cell and subcellular level in complex

microenvironments (Video S1). In the lifetime colormaps, inactive

Rac1 (low-FRET) is represented by red/yellow colors, areas of

active Rac1 (high-FRET) are represented as green/blue colors,

and black depicts areas of no signal (Figures 1B and S1B). Life-

time assessments were carried out by single-cell plasma-mem-

brane-based region of interest (ROI) selection based on the

ECFP signal (Figure S1C). Age-matched wild-type (WT) mam-

mary ducts were therefore compared to invasive carcinomas

at 18 ± 3 weeks of age to reveal that Rac1 activity was highly up-

regulated in MMTV-PyMT-driven mammary carcinomas

(average lifetime, 1.77 ± 0.04 ns; Figure 1B, green/blue in the life-

time colormap) compared to basal levels found in WT mammary

glands (average lifetime, 2.20 ± 0.04 ns; Figure 1B, red/yellow in

the lifetime colormap).

Having established that the overall activity of Rac1 was higher

in primary carcinomas compared to normal mammary glands,

we assessed whether Rac1 activity in these highly invasive car-

cinomas, which are known to progress to full metastases, is

altered within different zones of the tumor. To achieve this, we

employed mammary optical windows surgically implanted in

mice with primary MMTV-PyMT tumors, allowing us to assess

Rac1 activity in real time in the context of an intact vasculature

and regions of local invasion (Figures 1C–1E; Video S2; Gligori-

jevic et al., 2009; Nobis et al., 2017; Ritsma et al., 2012, 2013,

2014). For optical windows imaging, movement artifacts induced

by respiration, heartbeat, and blood flow can often interfere with

FLIM-FRET imaging at the single-cell level in live tumors and act

as a barrier to obtaining detailed intratumoral activity within the

topology of a given tumor. To address this, we have recently

developed an in-house image stabilization software package

(Galene; Warren et al., 2018) for FLIM-FRET imaging to over-

come this limitation (Figure 1Ci-ii; Video S3). This now allowed

us to readily assess the single-cell activity of tumor cells in close

proximity to live blood vasculature during flow and at sites of
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Figure 1. Rac1 signaling is increased in MMTV-PyMT-driven metastatic breast cancer

(A) Schematic of Rac1-FRET biosensor in FRET conformation upon GTP loading and Rac1 activation in cells crossed to the MMTV-PyMT-driven breast cancer

model.

(B) Representative images and quantification of upregulated Rac1 activity in primary MMTV-PyMT-driven mammary tumors compared to WT mammary glands

(n = 7 mice per condition, 991 cells in total).

(C) Spatiotemporal monitoring of live Rac1 activity in the context of the native tumor microenvironment showing the local vasculature (Qdot655) and second

harmonic generation (SHG) imaging visualizing the local ECM monitored by optical window imaging in primary tumors (i). Longitudinal imaging can be achieved

using these windows and further improved by image stabilization, allowing for the assessment of Rac1 activity in relation to tumor microenvironment (ii).

(D) Tracking of Rac1 activity in relation to the proximity of cells to local tumor vasculature, with example excerpts showing cells proximal and distal to the local

vasculature (n = 5 mice, 166 cells).

(E) Upregulation of Rac1 activity at the invasive border of primary tumors as quantified through an optical window (n = 5 mice, 180 cells).

Columns show averages, and error bars represent SEM; scale bars, 50 mm. Unpaired Welch’s t test, ****p < 0.0001 and *p < 0.05 (B and E); one-way ANOVA,

*p < 0.05 (D).
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local invasion such as the tumor border versus center in locally

invasive zones within carcinomas (Figures 1D and 1E).

Intravital imaging of intravenously injected Quantum dot

tracker 655 as a live vascular marker (Video S2) revealed that

Rac1 activity was significantly upregulated in those cells that

are proximal (<20 mm) to the local vasculature and that this activ-

ity was reduced in cells further away from blood vessels within a

tumor (Figure 1D; Video S2). Spatial mapping of Rac1 activity

using second harmonic generation (SHG) imaging to guide

assessment of tumor border versus center also revealed a signif-

icant increase in active Rac1 at the invasive border of these tu-

mors compared to the core, in line with their highly aggressive

and metastatic potential (Figure 1E, confirmed by immunohisto-

chemistry (IHC) of phospho-PAK (S199); see Figures S1D–S1F,

control WT versus heterozygous deletion of Rac1 tissue,

showing a marked decrease of PAK phosphorylation; Samuel

et al., 2011).

A link between upregulated Rac1 signaling in the context of

ErbB2 (Her2)-drivenmammary carcinoma has also been demon-

strated previously via Rac1 GEF deregulation (Grasso et al.,

2017; Sosa et al., 2010; Srijakotre et al., 2020). Rac1-FRET

mice were therefore crossed to MMTV-Her2 mice (Guy et al.,

1992b) and allowed to develop invasive carcinomas, as

described above. Here, Rac1 activity was also observed to be

upregulated in MMTV-Her2 tumors compared to WT mammary

glands (Figure S1G), and spatial mapping via FLIM-FRET imag-

ing revealed enhanced Rac1 activity in cells proximal versus

distal to live tumor vasculature (Figure S1H). Moreover,

increased Rac1 activity was evident at the tumor border

compared to the core (see Figure S1I, confirmed by phospho-

PAK (S199) IHC; Figures S1J and S1K). These data suggest

that intratumoral spatial deregulation of Rac1 may be a general

phenomenon in live tumors and led us to assess the spatiotem-

poral deregulation of Rac1 during motility and invasion in more

detail using fluorescent primary biosensor cells generated from

locally invasive carcinomas of the MMTV-PyMT; Rac1-FRET

biosensor mouse.

Spatiotemporal and context-dependent inhibition of
Rac1 during mammary cancer cell invasion
Next, primary cells were isolated from invasive carcinomas from

MMTV-PyMT; Rac1-FRET mice, and fluorescent biosensor cell

lines were established (Figure 2A, inset showing fluorescent
Figure 2. NSC 23766 reduces Rac1 activity and inhibits invasion on 3D

(A) Schematic of the isolation of a primary cell line from a MMTV-PyMT;Rac1-FR

(B and C) Endogenous Rac1 levels in MMTV-PyMT;Rac1-FRET cells and compare

loading control (C).

(D) Rac1 is activated in awound scratch assay, with representative images at 10-m

(E) Rac1 activity quantified over time after scratch wound ±Rac1 inhibitors NSC 23

(ii) (n = 3).

(F) Representative images of wound closure in a scratch assay, immediately and

(G) Schematic of an organotypicmatrix (i), example FLIM image of Rac1 activity in

of Rac1 activity in relation to penetration depth of cells (iii) (n = 225 cells). Represe

14-day period ± Rac1 inhibitors NSC 23766 or EHT 1864 and respective quantifica

(iv) (n = 4). Invasion index of cells treated with Rac1 inhibitors (v) (n = 4).

(H) IHC staining and quantification of organotypic matrices with cleaved caspase

Columns and lines show averages, and error bars represent SEM; scale bars, 100

*p < 0.05, **p < 0.01, and ***p < 0.001 (F, Giii, and H).
biosensor expression at the single-cell level). Cells were

analyzed for levels of endogenous Rac1 expression, and no

difference was detected between cell lines expressing the

Rac1-FRET biosensor and WT MMTV-PyMT cell lines isolated

from tumors lacking the biosensor expression (Figures 2B and

2C). We further validated these biosensor cells as an accurate

tool to assess Rac1 activity by performing overexpression ex-

periments of known Rac1 GEFs such as Tiam1 (Malliri et al.,

2002; Woodcock et al., 2009) and P-Rex1 (Liu et al., 2016) as

well as Rac1 GAPs and negative regulators alpha2-Chimaerin

(Beg et al., 2007) and CRYI-B (Fort et al., 2018), demonstrating

expected Rac1 activation and inhibition responses respectively

(Figure S2A). As Rac1 plays a key role in cytoskeletal organiza-

tion and coordinated cell migration through the formation of la-

mellipodia at the leading edge of cells (Nobes and Hall, 1995;

Ridley et al., 1992; Timpson et al., 2001), we initially performed

2D scratch assays to assess whether the primary biosensor cells

respond to this spatial stimulus, as demonstrated previously in

the skin and other contexts (Aoki et al., 2017; Hiratsuka et al.,

2015; Kondo et al., 2021). Here, we revealed activation of Rac1

in cells at thewound edge (see Figure 2D, quantified in Figure 2Ei;

Video S4), which is maintained for 16 h (Figure 2Eii), and a

gradient of activation propagates from regions close to the

wound edge to distal cells over time (Figures S2B and S2C).

This was further validated by Rac1-GTP pull-down and phos-

pho-PAK (S199) western blot (Figures S2D and S2E), where mul-

tiple wounds were required in order to detect these subtle and

localized levels of Rac1 activation, as demonstrated previously

for RhoA (Timpson et al., 2011a). FLIM-FRET imaging was then

used to track Rac1 activity in tumor cells for up to 16 h during

wound healing in the presence or absence of two commercially

available proof-of-principle Rac1 inhibitors at previously estab-

lished inhibitory concentrations: (1) NSC 23766 (50 mM), which

interferes with Rac1-GEF interactions (Gao et al., 2004), and (2)

EHT 1864 (20 mM) (Katz et al., 2012; Shutes et al., 2007), which

binds to the active pocket of Rac1 inhibiting GTP loading (Fig-

ure 2E). Using FLIM-FRET imaging we confirmed that both

Rac1 inhibitors reduced Rac1 activity and inhibited wound

closure which was monitored for up to 48 h (Figure 2F), and re-

vealed that EHT 1864 more effectively reduced 2D migration

compared to NSC 23766. To test whether either Rac1 inhibitor

affected proliferation or apoptosis, cells were stained for Ki67

and cleaved caspase-3 (CC3), respectively. This revealed that
matrices

ET+/� primary mammary tumor, scale bar, 50 mm.

d to three different MMTV-PyMTWT cell lines (B), quantified using GAPDH as a

in intervals, prior to and up to 2 h after a scratchwound (n = 3; scale bar, 50 mm).

766 or EHT 1864 (i), showing sustained Rac1 activation up to 16 h post-scratch

after 24 h, quantified up to 48 h following the scratch wound (n = 4).

cells during invasion (ii; Rac1 active cells, white arrowheads), and quantification

ntative H&E and FLIM images of MMTV-PyMT;Rac1-FRET cells invading over a

tion (Rac1 active cells, white arrowheads; Rac1 inactive cells, red arrowheads)

-3 (CC3) and Ki67 (black arrowheads) (n = 3; scale bar, 50 mm).

mm. UnpairedWelch’s t test, *p < 0.05 (C, D, Eii, Giv, and Gv); one-way ANOVA,
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while neither compound had an effect on cell proliferation in 2D,

a pronounced increase in CC3 levels was observed after treat-

ment with EHT 1864 (Figure S2F), indicating potential off-target

apoptotic effects for EHT 1864.

One of the first steps along the metastatic cascade in vivo in-

volves local invasion of mammary carcinoma cells in a more

complex environment and requires remodeling or break down

of ECM components to facilitate invasion (Friedl and Alexander,

2011; Macpherson et al., 2014; Spence et al., 2012; Young et al.,

2016). We opted to employ 3D-organotypic invasion assays in

order to model this process more accurately, as previously

described (Erami et al., 2016; Herrmann et al., 2014; Timpson

et al., 2011b; Vennin et al., 2017, 2019). Here, cancer cells are

placed upon a 3D-fibrillar collagen matrix, which had been con-

tracted, cross-linked, and remodeled over 14 days by fibro-

blasts. Once formed, tumor cells are seeded on top of this matrix

and can readily interact with the ECM and invade toward a

chemotactic gradient (see schematic, Figures 2Gi and S2G). Us-

ing this assay, we can mimic invasive behavior in a spatially

controlled environment and accurately assess Rac1 activity dur-

ing this process. Multi-photon based FLIM-FRET imaging of

actively invading cells within the matrix was then performed at

20 mm steps, in line with our in vivo assessment (Figures 1D,

S1G, and S2H). This analysis revealed that cells infiltrating the

matrix displayed a gradient of increased Rac1 activity concom-

itant with the depth of invasion (Figure 2Gii, comparing cells on

top of the matrix [yellow/red in lifetime colormap] to actively

invading cells [arrowheads], which appear blue in lifetime color-

map, indicating full activation, quantified in Figure 2Giii). These

data are in line with the local activation of Rac1 at the border

of tumors in vivo (Figures 1E and S1I), indicating that the organo-

typic invasion model mimics this phenomenon in a spatially

controlled 3D setting. Furthermore, to confirm these biosensor

cells are an accurate tool to readout a role for Rac1 in 3D invasion

in this setting, a decrease in Rac1 activity and invasion was also

observed in cells overexpressing known negative Rac1 regulator

CYRI-B and heterozygous knockout of the GEF P-Rex1 (Figures

S3A and S3B; Fort et al., 2018; Srijakotre et al., 2020).

Next organotypic matrices were treated with Rac1 inhibitors

during the process of invasion for up to 14 days, and Rac1 activ-

ity, as well as overall invasion, was quantified. Interestingly, while

FLIM-FRET imaging showed that both inhibitors impaired Rac1

activity, statistically significant inhibition throughout the matrix

was only observed for NSC 23766 (Figure 2Giv). Furthermore,
Figure 3. Rac1 inhibition reduces viability during shear stress conditio

(A) Schematic of automated shear stress induction and subsequent FACs and p

(B) Representative images of FACS analysis of MMTV-PyMT;Rac1-FRET cell viab

showing an increase in total (ii) and late apoptosis (iii). Invasion after shear stress ±

of Cyclin-B1 and Cyclin-A2 cell cycle markers before and after shear stress ± NS

(C andD) Anchorage-independent growth (AIG) assays of MMTV-PyMT;Rac1-FRE

quantified in (D) (i). AIG assessment of Rac1 activity at the outer versus inner cel

(E and F) Schematic of tail vein injection of MMTV-PyMT;Rac1-FRET cells ± tr

dissemination of injected cells (F).

(G) Lung imaging ofMMTV-PyMT; Rac1-FRET cells showing effective inhibition of

Rac1 activity in established metastases after 14 days (ii) (n = 3–5 mice per group

(H) Quantification of the total number of lung metastases up to 500 mm depth in 1

condition).

Columns show averages, and error bars represent SEM; scale bars, 50 mm. Unp
only NSC 23766 caused a significant decrease in invasion in

this 3D setting (Figure 2Gv). Specifically, in NSC 23766 treated

matrices, cells remained on the surface and exhibited a robust

inactivation of Rac1 and invasion (see Figure 2Giv, middle panel,

red/yellow in lifetime colormap [red arrowheads]). In the EHT

1864 treated matrices, many cells maintained active Rac1

signaling and continued to invade into the matrix (see Fig-

ure 2Giv, third panel, red/yellow in lifetime colormap on top of

the matrix but remaining activated/blue within the matrix during

invasion [white arrowheads]). Furthermore, the decrease in inva-

sion elicited by NSC 23766 treatment was found to be indepen-

dent of changes in proliferation or apoptosis as demonstrated by

Ki67 or CC3 staining (Figure 2H). However, in EHT 1864 condi-

tions, CC3 staining again revealed a significantly elevated level

of apoptosis in cells, which could potentially account for any

subtle anti-invasive capacity (in line with wound-healing data;

Figure S2F) and could indicate indirect toxicity for future in vivo

assessment of this drug. We therefore focused on treatment

using the inhibitor NSC 23766 as a proof-of-principle compound

in subsequent experiments having demonstrated a robust 3D

anti-invasive efficacy in line with the spatial activation of Rac1

we observed in invasive tumor borders in vivo (Figure 1E).

Rac1 inhibition enhances vulnerability to fluid-flow-
induced shear stress and results in decreased
dissemination and invasion of mammary cancer cells in
the lung
Looking at the next key steps in the metastatic cascade, we em-

ployed fluid-flow-based shear stress tomodel the environmental

changes cancer cells experience after traversing the endothelial

layer of the vasculature (Follain et al., 2018, 2020). To mimic

shear stress forces and flow, cells were subjected to automated

shear stress at a flow rate of 100 mL/s with a tmax = 250 Pa, which

is within the range of shear stress found in physiological condi-

tions (Figure 3A). This was repeated for five cycles, in the pres-

ence or absence of NSC 23766, as previously described (Barnes

et al., 2012; Vennin et al., 2017). After exposure to shear stress,

cells were assessed for alterations in early to late apoptosis by

fluorescence-activated cell sorting (FACS) via Annexin V/propi-

dium iodide staining and subjected to parallel testing of their

post-shear stress invasive capacity (Figure 3A, flow chart, and

Figure 3Bi). Critically, no significant difference in apoptosis was

observed in cells pretreated with NSC 23766 before shear stress

(P0); however, in cells that had undergone shear stress (P5), we
ns and reduces the establishment of lung metastasis

ost-shear stress invasion assays.

ility before (P0) and after shear stress (P5) ± Rac1 inhibition with NSC 23766 (i)

Rac1 inhibition with NSC 23766 showing a decrease in invasion (iv). Response

C 23766 (v).

T cells showing effective inhibition of Rac1 byNSC 23766 after 4 h and 24 h (C),

l layer before and after treatment with NSC 23766 (ii) (n = 3, 1,905 cells).

eatment with NSC 23766 (E) and IVIS imaging after 1 h, demonstrating lung

initially Rac1 activity 1 h after i.v. injection of cells (i) and overall plateaued basal

, 718 cells).

00-mm serial sections in mice ± Rac1 inhibition with NSC 23766 (n = 5 mice per

aired t test, *p < 0.05, **p < 0.01, and ****p < 0.0001.
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observed a significant increase in late and total apoptosis in NSC

23766 pretreated conditions (Figure 3Bii-iii). In parallel, cell inva-

sion for 14 days post-shear stress was also examined and re-

vealed inhibition of invasion by NSC 23766 treatment (Fig-

ure 3Biv). Coupled with the increase in apoptosis, NSC 23766

treated cells also showed decreased cyclin-A2 and B1 following

shear stress, indicative of a G1 cell-cycle arrest (Figure 3Bv;

Yoshida et al., 2010). Examining adhesion of MMTV-PyMT;

Rac1-FRET cells to cell-derived matrices (CDMs), Rac1 was

found to be effectively inhibited by treatment with NSC 23766

(Figure S3C); however, this did not result in a decrease in overall

cell adhesion post-shear stress (Figure S3D). Collectively these

data indicate that beyond inhibiting primary tumor invasion (Fig-

ure 2Giv-v), Rac1 inhibitionmay also have whole-body effects on

tumor cell survival during transit in the circulation, and addition-

ally, for those cells that do survive in the circulation, their capac-

ity to colonize and subsequently invade into secondary tissue

may be impaired. Moreover, when analyzing Rac1 activity in an

anchorage-independent growth (AIG) assay to mimic cell

behavior in the absence of substrate adhesion, we observed

activated Rac1 in suspension which we could readily inhibit us-

ing NSC 23766 after 4 h and 24 h of treatment, respectively (see

Figures 3Cand3Di, average cluster size of 75± 4 mm;Figure S3E;

Video S5). This is in line with Rac1 and other GTPases playing an

active role in AIG and cancer cell survival in transit (Follain et al.,

2020; Hervieu et al., 2020; Vennin et al., 2017). Interestingly, the

outer versus inner cells of AIGs were further assessed, and while

cells on the periphery of clusters were inherently more inactive

than cells within the center of the cluster, they were also more

readily inactivated by treatment with Rac1 inhibition than cells

on the inside (Figure 3Dii). This suggests that in cell clusters, a

gradient of Rac1 activity may exist and cells within the center

can benefit from an additional level of protection from drugs dur-

ing transit.

Having explored the effects of Rac1 inhibition at several steps

of dissemination, we next employed a tail vein injection model of

metastatic colonization to the lung (see schematic in Figure 3E).

Here, mice were treated with NSC 23766 by intraperitoneal (i.p.)

injection for up to 14 days following tail vein injection of MMTV-

PyMT biosensor cells. MMTV-PyMT cells could readily be

detected in the lung by IVIS imaging 1 h after intravenous (i.v.) in-

jection (Figure 3F). Moreover, single-cell FLIM-FRET imaging of

the lungs at this time point allowed us to monitor Rac1 activity

in cells during the early phase of extravasation and colonization

and demonstrated that while Rac1 was active during this early

stage of colonization (Figure 3Gi; Video S6), we could readily
Figure 4. Rac1 inhibitor NSC 23766 treatment can be monitored live in v

lung metastasis in PyMT mice

(A) Schematic and timeline of in vivo pharmacodynamic monitoring of Rac1 inhib

(B) Representative intensity images (top: Rac1-FRET reporter in cyan and SHG i

inhibition with NSC 23766 through optical imaging windows in control mice treate

(C) Schematic and timeline of the establishment of Dendra2-expressing PyMT

inhibition.

(D) Representative images of Dendra2 imaging post-photoswitching and quantifi

(E and F) Quantification of tumor burden MMTV-PyMT mice ± daily treatment of

(G) Quantification of lung metastasis in MMTV-PyMT mice (n = 5 mice per treatm

Columns show averages, and error bars represent SEM; scale bars, 50 mm.One-w

(D and G); and log-rank Mantel-Cox test, **p < 0.01 (F).
impair Rac1 activity in the lungs. Interestingly, Rac1 activity

was also imaged 14 days post-injection to reveal that Rac1 ac-

tivity had plateaued to baseline levels, impairing the capacity

for further inhibition in late-stage metastases (see Figure 3Gii).

Further examination of the lungs after 14 days post-colonization

by H&E staining confirmed that Rac1 inhibition caused a signifi-

cant decrease in the number of late-stage established lung

metastases, which may partially be due to impaired survival of

cells in the vasculature due to fluid-flow-induced shear stress

and an impaired capacity to invade into and colonize secondary

tissue post-shear stress (Figure 3H). Overall, this suggests

that reduced metastatic burden observed at endpoint may be

due to early-stage inactivation of Rac1 during extravasation

rather than late-stage inhibition in fully formed metastases in

the lung, where Rac1 levels have reduced to baseline levels,

impairing the opportunity for further inhibition in late stage tumor

metastases.

Rac1 inhibition reduces tumor progression,
intratumoral migration, and metastases in an
autochthonous setting to improve overall survival
Having established that Rac1 inhibition displays significant ef-

fects during key steps of metastatic dissemination both in vitro

and in vivo, we next wanted to explore this effect in the fully

developed genetically engineered mouse (GEM) model of

MMTV-PyMT-driven metastatic breast cancer. To this end,

MMTV-PyMT; Rac1-FRET mice were allowed to form primary

mammary tumors and were engrafted with optical imaging win-

dows (Figure 4A). This allowed for the longitudinal monitoring of

drug targeting before and after treatment of a single dose of

4mg/kg by i.p. injection. In control treatments, Rac1 baseline ac-

tivity remained at steady levels over a period of 2 h (quantified in

Figure 4Bi). When injected with NSC 23766, inhibition of Rac1

was evident 50 min post-injection and maintained for up to 6 h

in live tumor tissue (Figure 4Bii, middle panel, from blue to yel-

low/red colors showing Rac1 inactivity, confirmed by orthogonal

IHC staining for phospho-PAK (S199); Figures S4A and S4B). At

24 h post-injection, Rac1 activity returned to basal levels (quan-

tified in Figure 4Bii). The longitudinal monitoring of Rac1 inhibi-

tion within live native tissue allowed us to gauge the maximal

effect on Rac1 activity post treatment and guided how often

the drug should be administered to be effective in vivo. Interest-

ingly, in vivo validation of a higher dose of the Rac1 inhibitor

(8 mg/kg) showed no improved efficacy toward Rac1 inhibition

kinetics. Specifically, inhibition was also evident within 50–

60 min of administration, and reactivation of Rac1 was similarly
ivo and leads to reduced intratumoral cell motility and a reduction in

ition using optical imaging windows over primary PyMT mammary tumors.

maging in magenta) and quantification of Rac1 activity (bottom: FLIM) ± Rac1

d with vehicle (i) and mice treated with 4 mg/kg NSC 23766 i.p. (ii) (n = 3 mice).

primary tumors and in vivo monitoring of intratumoral cell migration ± Rac1

cation of the area of spread normalized to 0 h (n = 6 versus 6 mice).

Rac1 inhibitor NSC 23766 (E) and overall survival (F).

ent condition).

ay ANOVA, ****p < 0.0001 and ***p < 0.001 (B); unpairedWelch’s t test, *p < 0.05
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evident at 24 h, comparable to the lower-dose treatment

regimen (Figure S4C, schematic; and Figure S4D, middle panel,

from blue to yellow/red colors showing Rac1 inactivity).

Guided by this single-cell in vivo assessment, we therefore

opted to use the lower dose to maximize Rac1 inhibition, while

minimizing potential off-target effects. In conjunction with this,

we also assessed whether this 24-h pulsed regimen of Rac1 in-

hibition would result in any functional readouts within this time

frame, such as changes in intratumoral migration, which can

often precede invasion. Primary MMTV-PyMT cells expressing

the Dendra2 photoswitchable probe were allowed to form pri-

mary tumors for 53 ± 2 days in the mammary fat pad of mice

and implanted with optical imaging windows (Figure 4C; Canel

et al., 2010; Kedrin et al., 2008). UV-mediated photoswitching

in a defined region of the tumor was then performed in the pres-

ence or absence of Rac1 inhibition, allowing us to track cell

movement within live tumors over a 24-h time period (see Fig-

ure 4D, pre-photoswitched cancer cells [Dendra2-green] versus

a demarcated zone of photoswitched cancer cells in red, at

time 0 h and 24 h). A significant decrease in the area of photo-

switched cells was observed 24 h post-photoswitch with the

Rac1 inhibitor compared to controls, which was independent

of effects on cell proliferation as assessed by Ki67 staining

(see Figure S4E) and changes in overall cell numbers per photo-

switched ROI (see Figure S4F). This indicated that the single-cell

in vivo assessment described above resulted in a potential

impairment of intratumoral migration within this short 24-h time

frame concurrent with the kinetics of Rac1 inactivation within tu-

mors (Figure 4D; Video S7).

Steered by this reduction in intratumoral migration, we as-

sessed whether Rac1 inhibition every 24 h altered tumor onset,

burden, and metastasis in long-term survival studies. Here, we

found that once palpable primary tumors were identified

(average size 24.9 ± 12.7 mm3; Figure 4E; STAR Methods), i.p.

injections of 4 mg/kg NSC 23766 every 24 h resulted in a signif-

icant increase in overall survival of these mice compared to

control (Figure 4F). Importantly, the total number of metastases

detected in the lungs of these mice was significantly decreased

following pulsed Rac1 inhibition, which could partially play a role

in the improved survival of these mice compared to control

(Figure 4G). Collectively, these data demonstrated the potential

therapeutic benefit in targeting Rac1 signaling in the context of

metastatic breast cancer and demonstrates the utility of intra-

vital-imaging-based guidance for drug targeting at distinct

stages of the metastatic cascade.

DISCUSSION

The 5-year survival rate of patients with breast cancer has pro-

gressively increased over the past decades due to earlier tumor

detection and improved treatment opportunities. However, once

breast cancer becomes invasive and spreads to secondary

sites, the 5-year survival rate drastically drops from 99% for

localized tumors to 27% for distant breast cancer (Siegel et al.,

2020). Consequently, the development of more effective strate-

gies to target and treat breast cancer spread are urgently needed

(Steeg, 2016). Using a proof-of-principle Rac1 inhibitor in the

context of 3D organotypics, fluid-flow-based shear stress
10 Cell Reports 36, 109689, September 14, 2021
assessment, and the intravital imaging approaches outlined in

this study, we demonstrate howmonitoring key aspects of tumor

metastasis in breast cancer can provide a more informed route

to effectively target key molecules involved in distinct aspects

of metastatic spread. Being able to resolve the spatiotemporal

regulation of Rac1 in a continuous and holistic manner at

different sites and organs opens up new avenues for us to

dissect the potential global or whole-body effects of targeting

Rac1 at multiple stages of disease progression and warrants

fine-tuned targeting in future with standard-of-care therapy.

Rac1 activity has been shown to play an integral part in breast

cancer signaling (Schnelzer et al., 2000), which was evident here

by upregulation of Rac1 activity in primary lesions of MMTV-

PyMT- and MMTV-Her2-driven breast cancers. We and others

have recently shown that this activation is partially dependent

on the activity of the Rac1 GEF P-Rex1 in both tumor models

(Srijakotre et al., 2020) and breast cancer migration (Marei

et al., 2016). Spatially defined Rac1 activity at the locally invasive

sites of both MMTV-PyMT- and MMTV-Her2-driven tumors was

particularly striking here and a similar observation of spatially

defined Rac1 activity at the invasive edge in a glioblastoma

model has been described previously (Hirata et al., 2012). These

observations in turn may be due to the recently demonstrated

involvement of the small GTPase in sensing and increasing

cellular surface stiffness to enhance invasion into extracellular

spaces (Kunschmann et al., 2019). Furthermore, higher Rac1 ac-

tivity encountered in close proximity to local tumor vasculature

may point toward cells being more poised tomove when in prox-

imity to vessels than further inside the solid tumor mass. This

could also be associated with alteration of the actin cytoskeleton

during the early stages of intravasation (Yamaguchi andCondee-

lis, 2007), which could be activated in response to either chemo-

tactic gradient from growth factors in the local vasculature or

changes in hypoxic gradients within the tumor microenviron-

ment. In this current study, we demonstrate that Rac1 activity

gradually increased as cells invade toward a chemotactic

gradient (Figure 2Gii-iii). Moreover, the altered Rac1 activity

found in invasive cells may be induced as a response to alter-

ations in the hypoxic gradient previously found in these settings

(Conway et al., 2018), where cells encounter increased levels of

hypoxia as they invade deeper within the 3D organotypic matrix.

This is in line with previous work demonstrating that hypoxia can

induce Rac1 activity (Du et al., 2011; Hirota and Semenza, 2001;

Wang et al., 2019) and that hypoxia can drive local sites of inva-

sion (Hoffmann et al., 2018; Lehmann et al., 2017; Liao et al.,

2007).

The utility of intravital imaging andmolecular FLIM-FRET read-

outs such as the Rac1-FRET biosensor mouse is highlighted by

potential off-target effects of previously described proof-of-prin-

ciple Rac1 inhibitors that have been shown in a number of set-

tings (D€utting et al., 2015; Hou et al., 2014; Levay et al., 2013;

Mills et al., 2018). These findings were corroborated by orthog-

onal CC3 IHC staining in this study, showing increased

apoptosis in response to EHT 1864 (Figures 2H and S2F).

FLIM-FRET biosensor imaging was further highlighted to be

crucial in elucidating the role of volatile small GTPase signaling

in light of a recent study showing the inaccurate epitope recog-

nition of a commonly used Rac1-GTP-specific antibody in
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immunofluorescence staining (Baker et al., 2020). Based on this

study, this antibody may not be appropriate to visualize and vali-

date Rac1 activity by Rac1-GTP staining, and more robust ways

to measure the rapid oscillations of Rac1 activity in live tissue,

such as using the Rac1-FRET biosensor mouse described

here, may help bridge this gap.

In this study we also reveal that Rac1 plays a role in protect-

ing cells from apoptosis in response to physical forces that can

be found in the circulation including fluid-flow-induced shear

stress (Figure 3; Follain et al., 2018, 2020). Mechanical

stressors experienced by cancer cells during dissemination

can further include the initial intravasation as well as later

extravasation events, during which cells have to physically

deform to traverse the endothelial layer. During these pro-

cesses, nuclei of the cells are drastically deformed, which can

governmechanical stress sensing and apoptosis induction (De-

nais et al., 2016; Lomakin et al., 2020; Venturini et al., 2020).

Components of the actin cytoskeletal machinery have been

shown to be involved in nuclear deformation during migration,

such as Arp2/3 (Thiam et al., 2016) and Rac1 via Pak1 and

tubulin (Colón-Bolea et al., 2020). Rac1 has also been linked

directly to the nuclear envelope and its modulation via its

GEF, Tiam1, and may therefore play a key role in regulating

cell survival during these processes (Woroniuk et al., 2018).

Finally, Rac1 has been shown to be involved in nuclear DNA

stress responses previously (Johnson et al., 2013), and most

recently, the modulation of actin has been implicated in replica-

tion stress via nuclear actin (Lamm et al., 2020). Of note, ROCK,

which is a downstream target of the related GTPase RhoA, has

also been partially linked to maintaining cellular architecture

and shape during transit and has recently been shown to play

a key role in cell survival in the circulation or during cellular

compression (Boyle et al., 2020; Moose et al., 2020; Vennin

et al., 2017). Importantly, short-term transient priming of

ROCK rather than chronic treatment was shown to be beneficial

in reducing pancreatic cancer progression and spread, illus-

trating that fine-tuned stage-specific treatment and optimized

timing of therapy during metastatic disease can result in

improved outcomes while minimizing potentially unwanted

off-target effects in live tumor settings.

Quantification of cellular spread inside live primary tumors

using the photoswitchable probe Dendra2 in conjunction with

optical windows demonstrated partial inhibition of intratumoral

migration of MMTV-PyMT breast cancer cells following our

optimized treatment regimen with Rac1 inhibition in vivo. As

this represents an orthotopic injection model, there may also

be other factors at play influencing baseline Rac1 activity, such

as apoptosis by primary tumor cell turnover and proliferation. A

difference in cell proliferation by Ki67 staining and cell number

assessment of the photoswitched regions between the control

and treatment cohort, however, was not observed, further indi-

cating a stalling in intratumoral movement post-Rac1 inhibition.

Furthermore, single-cell assessment of Rac1 in native mammary

tissue allowed us to assess the pharmacodynamics and phar-

macokinetics of Rac1 inhibition in the fully developed primary tu-

mor of the GEMmodel to maximize drug dosing regimens, while

minimizing potential off-target effects of unnecessarily higher

drug dosing levels and administration schedules. The utility of
longitudinal imaging in this way could therefore facilitate lower

doses of anti-metastatic drugs to be administered in combina-

tion with standard-of-care therapy in the future, thereby

improving the effectiveness of multiple drug combination ap-

proaches. Of particular interest are non-steroidal anti-inflamma-

tory drugs (NSAIDs) currently in clinical use to treat metastatic

ovarian cancer that have been demonstrated to inhibit Rac1 ac-

tivity (Guo et al., 2015a; Oprea et al., 2015) and prolong survival

in patients (Guo et al., 2015b; (Forget et al., 2014)). Specifically,

the R-enantiomer of ketorolac has been demonstrated to inhibit

Rac1 GTP loading and is indicated in suppressing early breast

cancer relapse (Desmedt et al., 2018; Retsky et al., 2012).

Aberrant activity of GEF/GAP or GDIs is associated with Rac1

deregulation in breast cancers (Cherfils and Zeghouf, 2013;

Marei and Malliri, 2017; Srijakotre et al., 2020), and active

Rac1-GTP has been shown to be linked to shorter disease-free

survival in patients with breast cancer receiving endocrine or

chemotherapy (Yamaguchi et al., 2020). Specifically, P-Rex1

knockout in two models of mammary cancer has been demon-

strated to slow cancer progression and reduce Rac1 activity in

a dose-dependent manner measured by FLIM-FRET in WT, het-

erozygous, and homozygous knockout animals (Srijakotre et al.,

2020). The approaches used in this study could therefore be

readily performed in other specific genetic backgrounds which

mimic these amplifications, mutations, or altered expression

and activation profiles. In doing so, this form of stage-specific

assessment could be used to inform whether (i) Rac1 activity is

differentially activated at key stages of the metastatic cascade

depending on the aberration modeled, and (ii) this information

could be utilized to inform when best to treat and intervene in

the respective genetic backgrounds in the future. Similarly, re-

purposing the assessment of Rac1 activity outlined in this study

could be used to assess how other proto-typical Rho-GTPases

such as RhoA and Cdc42 (Hodgson et al., 2016; Nobis et al.,

2017, 2020), which are also known to be hijacked in cancer,

can best be targeted in this disease. It has also been demon-

strated previously (Byrne et al., 2016; Lawson and Burridge,

2014; Machacek et al., 2009; Ridley, 2015; Ridley and Hall,

1992; Spiering and Hodgson, 2011) that Rho and Rac activation,

depending on the cell-type-specific context, may have antago-

nistic effects but in other contexts often also occur sequentially

to promote coordinated protrusions of cells. This phenomenon

could be further investigated in the future in a full tumor setting,

for example, by the use of multiplexed FRET imaging (Roebroek

et al., 2021) and employing optogenetic near-infrared fluoro-

phores to simultaneously image several small GTPases (Shcher-

bakova et al., 2018). Furthermore, while a number of clinically

relevant ROCK inhibitors are currently under assessment (clin-

ical phase 2 trial KD025; Flynn et al., 2016), our in vivo model

described here could also be used as a platform to assess

new Rac1 inhibitor pipelines in development (Cardama et al.,

2014; Marei and Malliri, 2017; Montalvo-Ortiz et al., 2012).

Finally, a number of other ancillary mechanisms have been

demonstrated to be co-opted in cancer to drive disease

progression and metastasis. Fortunately, a large portfolio of

reversible FRET biosensors have been developed to assess

aberrations in many of these pathways (Newman et al., 2011;

Vennin et al., 2016) and as such can also be examined at the
Cell Reports 36, 109689, September 14, 2021 11
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single-cell to subcellular level in live tumor tissue to optimize

pharmacokinetics and pharmacodynamics in situ. This should

provide a more accurate assessment of when best to target

these interconnected networks or hallmarks of cancer in a live

complex tumor niche, thereby more accurately recapitulating

tumor response in the context of its surrounding tissue for

maximal effect.
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Colón-Bolea, P., Garcı́a-Gómez, R., Shackleton, S., Crespo, P., Bustelo, X.R.,

and Casar, B. (2020). RAC1 induces nuclear alterations through the LINC com-

plex to enhance melanoma invasiveness. Mol. Biol. Cell 31, 2768–2778.

Conway, J.R.W., Carragher, N.O., and Timpson, P. (2014). Developments in

preclinical cancer imaging: innovating the discovery of therapeutics. Nat.

Rev. Cancer 14, 314–328.

Conway, J.R.W., Warren, S.C., and Timpson, P. (2017). Context-dependent

intravital imaging of therapeutic response using intramolecular FRET biosen-

sors. Methods 128, 78–94.

Conway, J.R.W., Warren, S.C., Herrmann, D., Murphy, K.J., Cazet, A.S., Ven-

nin, C., Shearer, R.F., Killen, M.J., Magenau, A., Mélénec, P., et al. (2018).
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Reagent or Resource Source Identifier

Antibodies

Mouse monoclonal IgG1 anti-Rac1 Cytoskeleton Cat# ARC03, RRID:AB_10709099

Rabbit poly-clonal IgG anti-GFP Abcam Cat# ab290, RRID:AB_303395

Rabbit monoclonal IgG1 anti-GAPDH Cell Signaling Cat# 2118, RRID:AB_561053

Sheep-anti-Mouse IgG HRP-linked GE healthcare Cat# NA931, RRID:AB_772210

Donkey-anti-Rabbit IgG HRP-linked GE healthcare Cat# NA934, RRID:AB_772206

Rabbit monoclonal IgG1 anti-Ki67 ThermoFisher Scientific Cat# RM-9106-S1, RRID:AB_149792

Rabbit polyclonal anti-cleaved Caspase-3 Cell Signaling Cat# 9661, RRID:AB_2341188

Rabbit monoclonal anti-Cyclin B1 (EPR17060) Abcam Cat# ab181593, RRID:AB_2820245

Rabbit polyclonal anti- Cyclin A2 (C-19) Santa Cruz Biotechnology Cat# sc-596

Rabbit polyclonal anti-PAK1 Cell Signaling Cat# 2602, RRID:AB_330222

Rabbit polyclonal anti-PAK1 (Ser199/204)/PAK2

(Ser192/197)

Cell Signaling Cat# 2605, RRID:AB_2160222

Mouse Monoclonal anti-beta-actin (clone AC-15) Merck (SigmaAldrich) Cat# A5441, RRID:AB_476744

Bacterial and virus strains

E. coli DH5a ThermoFisher Scientific Cat# 18265017

Chemicals, peptides and recombinant proteins

Qtracker 655 Vascular Label ThermoFisher Scientific Cat# Q21021MP

AnnexinV-Cy5 BioVision Cat# 1013

Propidium iodide Merck, Sigma-Aldrich Cat# P4170

SalI Promega Cat# R6051

NdeI New England Biolabs Cat# R0111S

Rac1 Pull-down Activation Assay Biochem Kit CytoSkeleton Inc. Cat# BK035

Experimental models: Cell lines

PyMT 20065 (from mouse 20065, female) SEARCHBreast https://searchbreast.org/

MMTV-PyMT;Rac1-FRET

(from mouse 8625, female)

This study N/A

MMTV-PyMT;Rac1-FRET;P-Rex1 ±

(from mouse 138509, female)

This study N/A

Experimental models: Organisms/strains

Rac1-FRET mice (ubiquitously expressed, ‘‘ON’’) Prof. Heidi CE Welch, Babraham

Institute, UK, Johnsson et al. 2014

N/A

MMTV-Her2 mice The Jackson Laboratory Stock# 002376

MMTV-PyMT mice The Jackson Laboratory Stock# 002374

K14-CreER mice The Jackson Laboratory Stock# 005107

LSL-K-Ras G12D mice The Jackson Laboratory Stock# 008179

Rac1-flox mice Prof L. Machesky, Prof O. Sansom,

CRUK Beatson Institute, University

of Glasgow

N/A

P-Rex1 KO mice Prof. Heidi CE Welch, Babraham

Institute, UK,

Welch et al. 2005

N/A

FVB/NJ (Ausb) mice The Jackson Laboratory Stock# 001800

NOD.Cg-Prkdc < scid > IL2rg

< tm1Wjl > /SzJ (Ausb) mice

The Jackson Laboratory Stock# 005557

BALB/c-Fox1nu (Ausb) mice Charles River Strain# 194

(Continued on next page)
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Oligonucleotides

Primer: This study N/A

piggy- 3terminalR

GGTCTGTATATCGAGGTTTAT

Primer: This study N/A

piggy- 5terminalF

ACTATAACGACCGCGTGAG

Recombinant DNA

pDendra2-C Evrogen Cat# FP821

pMCV-hyPBase Sanger Institute N/A

pPB-Cag.EBNXN Sanger Institute N/A

pPB-CAG-Dendra2-C This study N/A

pLV430G-ofl-2TA-EGFP A kind gift from Dr Bian Rabinovich,

The University of Texas

M. D. Anderson Cancer Center, USA

N/A

pMD2.G Trono Lab Packaging and Envelope

Plasmids (unpublished)

Addgene #12259

pRVS-Rev Dull et al., 1998 Addgene #12253

pMDLg/pRRE Dull et al., 1998 Addgene #12251

pCGN-P-Rex1-HA A kind gift from Dr Lisa Ooms/ Prof Christina

Mitchell, Monash University, Australia

N/A

pcDNA.3-Tiam1-HA A kind gift from Prof Angeliki Malliri,

CRUK Manchester Institute, University

of Manchester, UK

N/A

pLHCX-CYRI-B-FLAG A kind gift from Prof Laura Machesky, CRUK

Beatson Institute, University of Glasgow, UK

N/A

pNice-HA-alpha2-Chimaerin Beg et al., 2007 Addgene #59315

Software and algorithms

FLIMFit v5.1.1. Github/FLIMfit https://flimfit.org/

Galene v2.2.0 GitHub https://github.com/flimfit/Galene/

releases/tag/2.2.0

ImspectorPro v2.5.0.0 LaVision Biotech https://www.lavisionbiotec.com/

ImageJ NIH https://imagej.nih.gov/ij/

QuPath v0.2.0-m8 Github https://qupath.github.io/

FlowJo v7.6 Tree Star Inc. https://www.flowjo.com/

Prism 8 GraphPad https://www.graphpad.com

Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to, and will be fulfilled by the corresponding author

and Lead Contact, Max Nobis (m.nobis@garvan.org.au).

Materials availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

Data and code availability
The published article includes all data generated or analyzed during this study. All data reported in this paper will be shared by the

lead contact upon reasonable request. This paper does not report original code. Any additional information required to reanalyze the

data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal models
Animal experiments were conducted in accordance with the Australian code of practice for care and use of animals for scientific

purposes, in compliance with the Garvan/St Vincents Animal Ethics Committee guidelines (ARA 16/13, 19/13) and in compliance

with the UK Home office guidelines under PPL 60/4264, respectively. FVB/NJAusb mice (imported to the Australian BioResource

(ABR) from The Jackson Laboratory in 2014), BALB/c-Fox1nuAusb (received by the Australian BioResource from the University of

New South Wales in 2008), Rac1-FRET (kindly provided by Prof Heidi CE Welch; Johnsson et al., 2014), MMTV-PyMT (The Jackson

Laboratory; Guy et al., 1992a), MMTV-Her2 (The Jackson Laboratory; Guy et al., 1992b), P-Rex1 KO mice (kindly provided by Prof

Heidi CE Welch; Welch et al., 2005) and K14-CreER;LSL-KRasG12D;Rac1+/� (kindly provided by Prof Mike Olson; Samuel et al.,

2011) were kept in IVC isolator cages on a 12h light/dark cycle and fed ad libitum. After acclimatisation for at least seven days, 7

to 9 week old female BALB/c-Fox1nuAusb mice were injected in the inguinal mammary fat pad with 100 mL of a

suspension of 2 3 106 PyMT 20065 Dendra2 tumor cells in Hank’s balanced salt solution (HBSS, GIBCO). Orthotopic

tumors were grown for 53 ± 2 days to generate fully formed primary tumors. Mice were then weighed every day until regaining

pre-surgical weight and once weekly afterward until a primary tumor at the site of injection was visible or palpable. Mice were

then weighed three times a week and the tumor was measured using callipers. For the survival experiment MMTV-PyMT;Rac1-

FRET mice were enrolled on treatment at an average tumor size of 24.9 ± 12.7 mm3. For lung colonization experiments 7 to

9 week old female FVB/NJAusb mice were injected i.v. with 13 106 syngeneic PyMT 20065 luciferase cells or 7 to 9 week old female

NOD.Cg-Prkdc < scid > IL2rg < tm1Wjl > / SzJAusbmicewith 13 106MMTV-PyMT;Rac1-FRET cells tomonitor late and earlymetas-

tasis respectively.

Cell culture
MMTV-PyMT;Rac1-FRET cells, MMTV-PyMT;Rac1-FRET;P-Rex1+/� and PyMT 20065 cells were maintained in DMEM (Dulbecco’s

modified Eagle medium, GIBCO, Cat#: 11995-065 containing 25mMGlucose, 40 mMPhenol Red, 4 mM L-Glutamine, 1 mM Sodium

Pyruvate) supplemented with 10% FBS, 1% penicillin/streptomycin (P/S), 5 mg/mL insulin, 10 ng/mL epidermal growth factor (EGF)

and 10 ng/mL Cholera Toxin A and Telomerase-immortalized fibroblasts (TIFs) in DMEM, 10% FBS, 1% P/S at 37�C and 5% CO2.

Cell lines were checked and confirmed free of mycoplasma.

METHOD DETAILS

Plasmid constructs
Dendra2 was cloned into a PiggyBac mediated transposon backbone plasmid pPB-Cag.EBNXN via restriction digest of the vectors

with SalI (Promega) and NdeI (New England Biolabs) and overnight ligation of the isolated fragments using T4 ligase (New England

Biolabs). Ampicillin resistant positive clones were picked, analyzed by sequencing using the following primers: piggy- 3terminalR:

‘GGTCTGTATATCGAGGTTTAT’; piggy- 5terminalF: ‘ACTATAACGACCGCGTGAG’ and amplified using QIAmp DNA Midi Kits

(QIAGEN).

Transient transfections and stable cell line establishment
For validation experiments MMTV-PyMT;Rac1-FRET cells were transfected with either pCGN-P-Rex1-HA (kind gift from Dr Lisa

Ooms/Prof Christina Mitchell), pcDNA.3-Tiam1-HA (kind gift from Prof Angeliki Malliri), pLHCX-CYRI-B-FLAG (kind gift from Prof

Laura Machesky) or pNice-HA-alpha2-Chimaerin (kind gift from Prof Peter Scheiffele, Addgene plasmid # 59315) LipofectamineTM

3000 Reagent as per the manufacturers’ instructions.

In order to establish a PyMT 20065 Dendra2 cell line, PyMT 20065 cells were transfected using LipofectamineTM 3000 Reagent as

per the manufacturers’ instructions. Briefly, 5 mg DNA (at a ratio of 1:3 of the pPB-CAG-Dendra2-C and pCMV-hyPBase plasmids)

were mixed with 10 mL P3000TM Reagent in 250 mL Opti-MEMTM medium and the lipofectamine. Following an incubation at 37�C for

15 min the mixture was added to the cells in a 6 well dish and incubated overnight. Stable pools of cells expressing Dendra2 were

established by FACS sorting (BD FACS Aria II).

To establish a PyMT 20065-luciferase cell line, lentiviral vectors were produced in HEK293T cells as described previously (Vennin

et al., 2017). HEK293T cells were seeded at a density of 2 3 106 cells per 10 cm2 dish. The following day the cells were transfected

using the calcium phosphate-mediated transfection with helper plasmids encoding for viral envelope glycoprotein VSV-G in pMD2.G

and packaging proteins gag, pol, rev and tat in psPAX2 and the target construct in pLV430G-ofl-2TA-EGFP. On the third day, the

medium was replaced on the transfected cells with 6 mL of DMEM, 20% FBS, 1% P/S. On the same day recipient PyMT 20065 cells

were seeded at a density of 1 3 105 cells per well in a 6 well dish. After overnight incubation viral particles were harvested, passed

through a 0.45 mm filter and added to the PyMT cells supplemented with 10 ng/mL polybrene. To generate stable pools cells were

FACS sorted using the EGFP expression.

In order to generate MMTV-PyMT;Rac1-FRET;CYRI-B cells, Phoenix-AMPHO cells were seeded at a density of 2 3 106 cells per

10 cm2 dish and were transfected using the calcium phosphate-mediated transfection with the pLHCX-CYRI-B-FLAG plasmid. The

medium was replaced on the transfected cells with 6 mL of DMEM, 20% FBS, 1% P/S the following day. On the same day recipient
Cell Reports 36, 109689, September 14, 2021 e3
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MMTV-PyMT;Rac1-FRET cells were seeded at a density of 13 105 cells per well in a 6 well dish. After overnight incubation viral par-

ticles were harvested, passed through a 0.45 mm filter and added to the PyMT cells supplemented with 10 ng/mL polybrene. Stable

pools were generated by selection with 500 mg/mL hygromycin.

2D Scratch Assay
MMTV-PyMT;Rac1-FRET were seeded at a density of 10,000 per well in a 96 well format and allowed to reach confluency overnight.

The next day using aWoundmaker96 (Essen Bioscience) a scratchwoundwasmade in eachwell and thewells treated in sextuplicate

with ± DMSO, 20 mM EHT 1864 and 50 mM NSC 23766 and imaged every 2 h for up to 48 h on an IncuCyte Zoom Kinetic Imaging

System (Essen Bioscience). The area of the wound was measured in ImageJ (NIH) and plotted and analyzed in Prism 8 (GraphPad).

Organotypic Invasion
3D organotypic invasion assays were set up as described previously (Nobis et al., 2013; Timpson et al., 2011b; Vennin et al., 2017).

Briefly, collagen was isolated from 12 to 14 frozen adolescent rat tails by extraction of the tendons into 1.5 L pre-cooled 0.5 M acetic

acid keeping themixture under stirring at 4�C for 48 - 72 h. Remaining sheaths were removed by filtering the collagen extract through

amesh towel before the addition of 10% (w/v) NaCl to precipitate the collagen. After stirring for 30 to 60min to obtain a homogeneous

mixture, the extract was then centrifuged for 30 min at 10,000 rpm. The precipitate was then re-dissolved in 300 mL of 0.25 M pre-

cooled acetic acid by stirring at 4�C for 24 h. Subsequent dialysis was performed against six to eight changes of 5 L Millipore water

containing 17.5mMacetic acid. The collagenwas centrifuged at 14,000 rpm for 1.5 h and the supernatant was placed in a sterile flask

and stored at 4�C. For approximately 12 organotypic matrices, 25 mL collagen was mixed with 3 mL MEM 10x media (GIBCO) and

neutralized by titration of 0.22 M NaOH. Telomerase-immortalized fibroblasts (TIFs; Munro et al., 2001) were resuspended in 3 mL

FBS and added to the collagen mixture. 2.5 mL of this collagen/fibroblast mix per matrix was then plated in 6-well culture dishes

and allowed to solidify for 30 min at 37�C and 5%CO2. 1 mL of basic growth medium was added per well and the matrices detached

to contract freely. The organotypic matrices were allowed to contract for approximately 10-14 days at 37�C and 5% CO2, while the

media was changed every second day. The organotypic matrices were cleared of the fibroblasts by the addition of 10 mg/mL Puro-

mycin to the medium for three days and subsequent washing of the matrices with PBS three times. MMTV-PyMT;Rac1-FRET cells

were seeded onto the matrices in a 24 well plate at 105 cells/mL overnight. Tripods were created from stainless steel grids and au-

toclaved prior to use in invasion assays. The sterile grid was then placed in a 6 cm dish and media was added, so that the grid was

covered. The matrices were then be placed on the grids and an air/liquid interface was formed. This allowed invasion of the cells

seeded on top of the matrices as a gradient of cell culture medium was created. A triplicate of matrices per condition was treated

daily with vehicle, or the respective Rac1 inhibitors 20 mM EHT 1864 or 50 mM NSC 23766 in DMEM, 10% FBS, 1% P/S and cells

allowed to invade for up to 14 days. Following this, the matrices were imaged using the FLIM-FRET analysis outlined below and fixed

in 10% neutral buffered formalin (NBF). They were then processed for histological analysis, by paraffin embedding, microtomy and

Haematoxylin and Eosin (H&E) as well as automated Cleaved Caspase-3 (CC3) and Ki-67 staining were performed as described

below.

Shear Stress and FACS analysis
Shear stress was performed as described previously (Barnes et al., 2012; Vennin et al., 2017). MMTV-PyMT;Rac1-FRET cells were

cultured in T75 culture flasks for 72 hours prior to shear stress ± 50 mMNSC 23766 refreshed daily to reach confluence on the day of

shear stress. Cells were trypsinized and centrifuged for 5 min at 300 x g. After filtering through 100 mm cell strainers, the cell suspen-

sion was diluted to 53 105 cells/mL in culture medium. Cells in approximately 9 mL of this suspension were then subjected to shear

stress while a second aliquot was kept as a passage 0 control (P0). Cells were subjected to five repeated exposures of shear stress

(P5) at an automated constant flow rate of 100 ml/sec through a 30-gauge needle. Here, shear stress wasmeasured using Poiseuille’s

equation; t = 4Qh/R3, with tmax = 250 Pa, Qwas the flow rate (0.1 cm3/s), hwas the fluid viscosity of themedia (0.783 10�3 N.s/m2)

and Rwas the radius of the needle (R = 7.953 10�3 cm). The cells were directly transferred from one needle into the next syringe until

all five passages were completed. After recounting the cells, 53 105 cells per condition (+/� drug and ± shear stress) were seeded in

T25 culture flasks for FACS sorting the day after and 1.23 105 cells seeded on organotypic matrices were used for post-shear stress

invasion experiments. Cell death through shear stress ± previous NSC 23766 treatment was assessed by FACS analysis. Briefly, cells

were trypsinized and centrifuged as described before and then resuspended in FACS buffer containing 1:500 Annexin V-Cy5 (Bio-

Vision) and 1 mg/mL Propidum iodide (PI, Sigma-Aldrich). Mono-stained and unstained cells were used as controls. The culturemedia

from overnight incubation and the PBS from the washing step were collected as well to avoid exclusion of dead floating cells from the

analysis. The cells were passed through the 100 mm filter mesh containing lids into FACS tubes to obtain mainly single cells and flow

cytometry was performed using FACS Canto II (Becton Dickinson). The acquired data was analyzed using FlowJo software (version

7.6, Tree Star Inc.) and Prism 8 (GraphPad).

Cellular derived matrix (CDM) attachment assay
CDMs were established as described previously (Cukierman et al., 2001). For CDMs constructed on glass, the surface was coated

with 2%Gelatine (Sigma, G1393) and allowed to set at 37�C for 2 hours then rinsed twice with Dulbecco’s PBS and formalin fixed at

room temperature for 30 min. Fixed gelatine crosslinks were quenched in 1 M sterile glycine (Sigma, G7126) for 30 min at room
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temperature and coated plates rinsed twice with PBS and once with DMEM prior to cell seeding. TIFs were allowed to expand until

confluent. Ascorbic acid (50 mg/ml) was then added to refreshed medium every other day for 7 days. TIFs were removed at day 7

(Extraction Buffer: 0.5% (w/v) Triton X-100, 20 mM Ammonium Hydroxide, 1% (w/v) Sodium Deoxycholate) and CDMs were rinsed

with Phosphate buffer saline (PBS) prior to seeding cancer cells and imaging. Cell adhesion was imaged up to 24 h on a live cell mi-

croscope (Leica DMI 6000), prior to (P0) and post shear stress (P5) with the differential interference contrast (DIC) Z stacks at 2.5 mm

steps for 50 mm acquired every 30 min, with 3 regions of interest (ROIs) imaged per condition per time point. Following acquisition,

imageswere processed in ImageJ (NIH), by Z stack projection, application of aGaussian Blur at
P

= 2 and background subtraction to

remove the CDM background, prior to automatic thresholding and area coverage calculation of attached cells. Values were normal-

ized to the t = 0 control reading of each timeseries and presented as fold changes. For FLIM analysis of MMTV-PyMT;Rac1-FRET cell

attachment, 10 cells per condition per time point were imaged in an untreated control and cells treatedwith NSC23766. The recorded

values were then plotted and analyzed in Prism 8 (GraphPad).

Anchorage Independent Growth (AIG) Assay
AIG assays were set up as described previously. Briefly, autoclaved solutions of Low Melting Point Agarose (SeaPlaque Agarose,

Lonza) at 10% and 3% (w/v) were melted in a waterbath at 42�C or microwaved shortly and diluted in phenol red free medium

(DMEM, 10% FBS, 1% P/S, 5 mg/mL insulin, 10 ng/mL EGF and 10 ng/mL Cholera Toxin A) to reach a final concentration of 1%.

A bottom layer of 750 mL 1% Agarose was poured into a 24 well glass bottom dish and left to solidify for 45 min at room temperature.

Afterward, molten 3%Agarose was diluted to 0.3%with the appropriate phenol red free medium. The 0.3%Agarose was thenmixed

at a 2:1 ratio with medium containing the trypsinized, centrifuged and resuspendedMMTV-PyMT;Rac1-FRET cells to a final concen-

tration of 10,000 cells per well for a 0.2% Agarose to be obtained. The mixture was added on top of the base layer, so that growth of

single cells within this layer could be observed and imaged. After 45 min at room temperature, 1 mL of phenol red free medium was

added on top of the Agarose layers. Wells were treated with 50 mMNSC 23766 for 4 h and 24 h respectively and FLIM-FRET imaging

performed as described below.

Immunohistochemistry
Tissues and organotypic matrices were fixed in 10% Neutral Buffered Formalin for 24 hours, processed on the Leica Peloris II and

embedded in paraffin using the TissuTek Embedding Station. 4 mm sections were cut using LeicaMicrotome RM2235, sections were

placed on Superfrost Plus Slides and allowed to incubate in a 60�C oven for 2 h and overnight for tissues and organotypic matrices,

respectively. Slides were deparaffinised with xylene and rehydrated with washes in decreasing concentrations of ethanol, performed

on the Leica Autostainer XL. The same autostainer was used for H&E staining and counterstaining with Haematoxylin (Shandon

Instant Haematoxylin Kit), before the slides were automatically coverslipped with the Leica CV5030 Robotic Coverslipper and left

to dry overnight. The Aperio Scanscope image capture device was used to acquire images of all slides at 20x magnification. Total

number of metastasis per lung were quantified per mouse up to 1 mm depth at 100 mm steps in serial sections by examination in

QuPath (v0.2.0-m8; Bankhead et al., 2017).

Stainings for Cleaved Caspase-3 and Ki67 were performed as described previously (Vennin et al., 2017, 2019) with a Leica Bond

RX fully automated research stainer and the Leica Bond Polymer Refine Detection kit. Heat-induced epitope retrieval with Bond

Epitope Retrieval Solution 2 (EDTA based, pH 9) at 93�C for 30 min and 20min was performed for Ki67 and CC3 staining respectively

and at 100�C for 40 minutes for phospho-PAK (S199). The slides were stained according to the IHC-F 60 min Ab incubation protocol

using either a 1:500 dilution of the Ki67 Rabbit antibody (ThermoScientific), a 1:200 dilution of theCleavedCaspase-3 Polyclonal Rab-

bit antibody (Cell Signaling) or 1:25 for phospho-PAK (S199) (Cell signaling) as primary antibodies (see Figures S1D,E,I and S4A,B and

G). Slides were counterstained, coverslipped and scanned as described above. Phospho-PAK (S199) stained section were quanti-

fied using QuPath (v0.2.0-m8), with DAB and hematoxylin optical densities computed for each pixel using color deconvolution and

border and central regions of tumorsmanually identified. Awatershed cell detection based on the hematoxylin counterstain was used

to identify nuclei within these regions. Single cells were identified by applying a 5 mm nuclei detection radius and the average DAB

optical density computed for each cell. Using a constant threshold applied, cells were classed as either positive or negative for DAB

staining and values averaged for 5 to 6 tumors per condition.

Western Blotting and Rac1 Pulldown
Cell lysates were prepared in RIPA lysis buffer (50 mM HEPES, 1% Trition X-100 (v/v), 0.5% Sodium deoxycholate, 0.1% SDS,

0.5 mM EDTA, 50 mM NaF, 10 mM NA3VO4 and 1x protease inhibitor cocktail [CompleteTM Mini, EDTA-free, Roche]). Protein con-

centration was determined by Bradford (Bio-Rad Protein Assay Dye Reagent Concentrate) assay and volumes adjusted according to

measurements. Protein separation was performed by gel electrophoresis using 4%–12% Bis-Tis Protein Gels (NuPageTM,

ThermoFisher Scientific), and transferred onto PVDF membranes (Immobilon-P, Millipore) and blocked at room temperature

in 5% (TBST) skim milk in TBST. Rinsed (TBST) membranes were incubated overnight at 4�C in primary antibody solutions

(TBS/BSA). Primary antibodies were diluted in 1% BSA in TBST at 1:500 for anti-Rac1 (Cytoskeleton), 1:1,000 for anti-GFP (abcam),

1:1,000 for Cyclin-A2 (abcam), 1:1,000 for Cyclin-B1 (Santa Cruz Biotechnology), 1:1,000 for Beta-actin (Sigma), 1:1,000 for phos-

pho-PAK (S199) and at 1:5,000 anti-GAPDH (Cell Signaling). TBST rinsedmembranes were then incubated with HRP-linked second-

ary anti-rabbit and anti-mouse antibody (GE Healthcare, 1:5,000, diluted in 1% skim milk/TBST), for 2 hours at room temperature.
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Ultra-ECL and ECL reagents (Western Lighting Plug-ECL, PerkinElmer) were used to visualize signal imaged on a Fusion FX (Vilber).

GAPDH was used as a loading control and the levels of endogenous Rac1 in 3 MMTV-PyMT cell lines (isolated from mice without

biosensor expression) compared to the MMTV-PyMT;Rac1-FRET cell line.

For the Rac1 pulldown MMTV-PyMT;Rac1-FRET cells were seeded in 10 cm2 dishes at a density of 8 3 106 cells. Dishes were

supplemented with serum-free medium overnight and differential amount of wounds performed per dish (zero, single and multiple

[60 per 10 cm2 dish]). Samples were isolated on ice, snap frozen and processed as per themanufacturer’s instructions (Cytoskeleton,

Rac1 Pull-down Activation Assay) using GST-tagged PAK-PBD protein beads to pull-down GTP loaded Rac.

Mammary imaging window
The application of mammary imaging windows for in vivo imaging and their insertion into the skin was described previously (Kedrin

et al., 2008; Nobis et al., 2017) and was performed following the standard operation procedure ‘Mammary Window Surgery’

approved by the Garvan/St Vincents Animal Ethics Committee (ARA 16/13, 19/13). All surgical instruments were autoclaved in Ster-

ilope steam sterilization autoclave bags or by using a bead steriliser (Germinator) and equipment and surfaces were sterilized by

wiping downwith 70%ethanol. Cyanoacrylate was applied to the edges of a titanium ring (Russel Symes &Company) and a coverslip

of 12mmdiameter was placed into the inset of that ring 24 h prior to surgery. The windowwas disinfected with 70% ethanol end kept

in a sterile 50 mL tube after excess glue had been removed and the tightness of the window had been assessed. 24h prior to and at

least 72 h post surgery 5 mg/kg of Carprofen (Rimadyl; Ingrao et al., 2013) was administered to the mice in the drinking water.

Anaesthesia was induced and maintained by inhalation of the gas isoflurane using a calibrated vaporizer. The animal was first

placed in a chamber containing 4% isoflurane in O2 and maintained unconscious by ventilation of 1.5%–2% isoflurane in O2 via a

mask using a Bain pediatric circuit. The mouse was then placed on a heating pad to maintain the body temperature and the eyes

were lubricated with eye ointment (LacriLube) to prevent dehydration. Anaesthesia with regular reflex testing on the footpad was

maintained throughout the entire procedure. Subcutaneous injection of 100 mL of 0.075 mg/kg buprenorphine was used for further

pain management prior to and 6h after the surgery. The incision site was shaved to clear any hair, depilated using hair removal cream

(Nair) and disinfected using 0.5% chlorhexidine/ 70% ethanol. An incision was made in the skin overlying the palpable tumor using

microdissection scissors and the skin blunt dissected around the incision site. A purse string suture was applied through the skin

around the incision. The imaging window was then placed into the incision by careful insertion of the skin into the lateral groove

of the window. Subcutaneous aspiration of any trapped air beneath the window allowed for a tight fit of the window to the tumor

mass. The mice were allowed to recover for 72 h post-surgery and weaned off Carprofen prior to in vivo imaging being performed.

Recovery gel and/or sunflower seeds are provided to aid recovery post-surgery and in order to minimize damage to the window by

the mice and cage surroundings, metal food hoppers and plastic domes are removed from the cages and feed supplied in food trays

on the floor of the cage. Paper mache domes with the bottom of the entry hole removed are supplied as cage enrichment along with

tissues as nesting material.

In vivo and Ex vivo Imaging, Single Cell FLIM analysis and Motion Correction
Excised tumors or lungs were imaged ex vivo for a maximum of 30-60 minutes post removal. For lung imaging in the control setting

52 ± 14 cells per mouse and in the NSC 23766 treatment cohort 53 ± 20 cells per mouse were detected and imaged. Mice bearing an

optical window were imaged under 1%–2% isoflurane on a heated stage (Digital Pixel, UK) prior to and after i.p. injection of the H2O

vehicle, 4 mg/kg or 8 mg/kg NSC 23766 respectively. For imaging of Rac1 activity away from the vasculature > 175 cells per mouse

model were recorded. In vivo imagingwas performed as described previously on a Nikon Eclipse TE2000-U invertedmicroscopewith

an Olympus long working distance 203 0.95 NA water immersion lens. A Titanium:Sapphire (Ti:Sapphire) femtosecond pulsed laser

(Coherent Chameleon) was used as an excitation source tuned to optimal ECFP excitation wavelengths of 840 nm. A dichroic filter

(Chroma 455 nm) was used to separate the second harmonic signal from the donor ECFP. SHG and ECFP signals were passed

through band pass filters (Semrock 435/60 and 460/60 respectively) and detected by non-descanned detectors (Hamamatsu).

For FLIM a 16-anode PMT (FLIMx16, LaVision Biotec) was used for time correlated single photon counting (TSCPC). Fluorescent

lifetimes were analyzed using ImSpectorPro (Version 2.5.0.0, LaVision Biotech) by computing the half-life (t) of the single exponential

function fit to the fluorescence decay data. Lifetime maps were further generated with intensity thresholds set to the average back-

ground pixel value for each recording. The raw data was smoothed 33 3 and a standard rainbow color look up table (LUT) applied.

Finally, for smoothing purposes, a 53 5 median filter was further applied. Alternatively, multi-photon imaging was performed using a

Leica DMI 6000 SP8 confocal microscope using a 25 3 0.95 NA water immersion objective on an inverted stage. The Ti:Sapphire

femtosecond laser (Coherent Chameleon Ultra II, Coherent) excitation source operating at 80 MHz was tuned to a pumping wave-

length of 840 nm. RLD-HyD detectors were used with 435/40 nm and 483/40 nm bandpass emission filters to detect the second har-

monic generation (SHG) of the collagen I and ECFP respectively. For imaging of the local tumor vasculature non-targeted Quantum

dots 655 (Qtracker655) were injected i.v. in the tail vein of mice and imaged using either 840 nm Ti:Saph or an optical parametric

oscillator (OPO) tuned to 1120 nm excitation and a 617/60 filter. Images were acquired at a line rate of 700 Hz, 512x512 pixel and

at a total of 203 frames per image. Realignment of the data was performed using Galene (v2.0.2; Warren et al., 2018) using the

warp realignment mode, 10 realignment points, a smoothing radius of 2px and a realignment threshold of 0.4 applied for the SHG

channel and 0.6 for the ECFP signal. Single cell analysis was performed using either ImspectorPro (v2.5.0.0) or FLIMfit (v5.1.1) by

drawing ROIs around the cell membranes (see Figures S1C and S3F) and thresholding. For in vitro imaging a merged image of
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the FLIM signal and the intensity is shown to highlight subcellular structures such as the plasmamembranemore clearly, while for the

majority of images so purely the FLIM heatmaps are depicted. For the lung imaging a phasor segmentation was performed to remove

tissue autofluorescence and isolate the FLIM signal of the Rac1-FRET reporter. For Dendra2 imaging the Ti:Sapphire laser was tuned

to excitation wavelength of 920 nm. The green and red fluorescence of the photoconvertible protein and SHG signal from collagen I

were detected using 525/50 nm (Chroma), 585/40 nm (Chroma) and 435/40 nm (Semrock), respectively. For photoswitching a 405

laser was used and selected areas of 93.18 mm x 93.18 mm up to 133.21 mm x 133.21 mm in a 465.91 mm x 465.91 mm field of view

(FOV) were exposed to a line rate of 400 Hz for up to 30 s. Z stack images were acquired at 2.5 mm steps for up to 150 mm depth. The

area of photoswitched cells was quantified in ImageJ (NIH), by Z-projection of the Dendra2-red collected Z stacks and normalization

of the area measured to the control photoswitched regions at t = 0. Fold changes in area per region 3-4 regions per mouse per con-

dition were plotted and analyzed using Prism 8 (GraphPad).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using Prism 8 (GraphPad, v8.4.3) software and the following tests performed as indicated in the

respective figure legends: unpaired t test with aWelch correction, Kruskal-Wallis test, One-way ANOVA, Sidak Two-way ANOVA and

a log-rank Mantel-Cox test for survival. Significances were reported as **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05.
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