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ABSTRACT 1 

Early studies into hyperspectral reflectance demonstrated that the spectra of different 2 

plants have the potential for taxonomic discrimination and classification, though this 3 

came with the caveat that misidentification was a frequent impediment as a result of 4 

small sample sizes, inter-class similarity and intra-class variability.  5 

The aim of this thesis was to develop methods of improving the ratio between intra and 6 

inter-class variability in hyperspectral vegetation spectra, and ultimately increasing 7 

classification accuracy, reliability and generalisability.  8 

This was addressed in three ways: (1) reviewing the hyperspectral classification 9 

literature of the past two decades, while also performing pre-processing and 10 

classification trials on a vegetation hyperspectral dataset, (2) increasing the number 11 

and distribution of classifier training samples through data augmentation, and (3) 12 

improving the intra/inter-class relationship with deep generative sample 13 

transformation.    14 

For objective one the last two decades of hyperspectral vegetation classification 15 

literature was systematically reviewed, specifically focusing on waveband/feature 16 

selection. Additionally, waveband selection trials were performed on a curated 17 

hyperspectral dataset in order to test the findings of the review.  Both the review and 18 

waveband selection trials indicated that all characteristics of hyperspectral plant 19 

studies influence the wavebands selected for classification. However, the considerable 20 

variability in waveband selection caused by the chosen feature selection method 21 

effectively masked analysis of any variability in waveband selection caused by other 22 

aspects of the studies in the review. For this reason caution is suggested in relying upon 23 

waveband recommendations from the literature to guide waveband selections or 24 

classifications for new plant discrimination applications. As such recommendations 25 

appear to be weakly generalizable between studies. 26 

The data augmentation performed for objective two was realised through the use of a 27 

generative adversarial network (GAN), a type of generative deep learning model that 28 

could produce realistic synthetic hyperspectral vegetation data. After being trained on 29 
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vegetation spectra the GAN was able to generate synthetic samples that visually 1 

matched the training spectra as well as statistically matched the distribution of each 2 

vegetation class in the training data. Creation of an augmented dataset consisting of 3 

synthetic and original samples produced training datasets with far greater sample sizes. 4 

Under almost all circumstances increases in classification accuracy of multiple classifiers 5 

was seen following their training with the augmented dataset. 6 

Objective three expanded upon the data augmentation abilities of the GAN used in 7 

objective two, introducing the ability to replicate sample spectra whilst transforming 8 

them based upon the learned features of the other classes in the study. These 9 

transformations were performed to manipulate the intra/inter-class relationships in a 10 

desired manner. This was performed on both the training and evaluation subsets of a 11 

hyperspectral vegetation dataset producing n transformed replicates of every sample 12 

where n is the number of classes in the study. Training and then evaluating the 13 

accuracy of each of these transformed subsets with multiple classification methods 14 

produced accuracies significantly higher than that of the original dataset. This 15 

significant increase in accuracy was then further improved following the ensembling of 16 

the n classification results. Visualisation of the samples used in the ensembled 17 

classification following projection to 2d space showed samples to be tightly clustered 18 

by class, indicating the successful reduction of intra-class variance as well the reduction 19 

in inter-class overlap. 20 

This thesis represents a significant step towards eliminating the lack of generalisability 21 

and transferability of vegetation classification models resulting from the pronounced 22 

effects of intra-class variance and inter-class similarity. It presents the opportunity for 23 

remote sensing practitioners to deploy their classification models to greater spatial and 24 

temporal extents whilst giving extra utility to hyperspectral samples contained within 25 

spectral libraries.  26 
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1.1 Background 1 

The need to map and take inventory of vegetation around the globe has become 2 

essential for the protection of our natural floristic resources. These resources offer more 3 

beyond their intrinsic ecological value: they provide habitats for wildlife, affect soil 4 

condition and water availability, and have considerable economic, scenic and societal 5 

value. Factors such as overgrazing, land clearing, invasive species, and poor land 6 

management all threaten the condition, distribution and biodiversity of the world’s 7 

vegetation. As well as these impacts, the effects of climate change are ever increasing, 8 

resulting in migrations across latitude and elevation gradients, phenotypic responses, 9 

and changes in biodiversity. Due to the scale required to map and monitor the world’s 10 

vegetation, fast, wide ranging, repeatable, objective methods that provide results that 11 

can be quickly and easily shared and analysed are required. One such potential method 12 

is the use of reflectance spectra recorded from leaves, entire plant canopies or plant 13 

communities. Reflectance spectroscopy in optical wavelengths of the electromagnetic 14 

spectrum fulfils these requirements, producing objective, digital measurements that can 15 

be easily shared and quickly analysed with semi-automated procedures in a repeatable 16 

and objective manner. Reflectance spectra of plants have the potential to classify 17 

samples into varying taxonomic and functional groups, while also providing information 18 

on general condition, including productivity, stress, and lifecycle phase. Early studies into 19 

spectral reflectance demonstrated that the spectra of different plants have the potential 20 

for discrimination and classification, though this came with the caveat that 21 

misidentification was a real possibility as a result of low sample size, spectral mixing, 22 

interspecies similarity and within-species variability (Price 1994). 23 

The degree of taxonomic and functional discrimination possible is highly dependent on 24 

the taxa being classified, the key factor being the degree of dissimilarity between the 25 

spectra of all taxa or groups included in the study. This is often the case when classifying 26 

and mapping invasive species, as the invasive plant regularly exhibits differences in 27 

growth form or phenological cycle in comparison to native or agricultural species 28 

(Underwood, Ustin et al. 2003, Bolch, Santos et al. 2020, Papp, van Leeuwen et al. 2021 29 

). However, due to the convergent nature of many plant traits, plants that are closely 30 

related, or unrelated though growing under the same environmental conditions often 31 
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express very similar traits, and therefore spectral reflectance. Despite this, many studies 1 

have succeeded in classifying plants with high accuracy, even when closely related or 2 

physically similar. However, a decrease in classification accuracy is evident in studies 3 

including multiple species of the same genus (Pu 2009), with a greater decrease seen for 4 

genera that share particular environmental adaptations (Goodwin, Turner et al. 2005). 5 

Although classification between closely related taxa is possible, Cavender-Bares, 6 

Meireles et al. (2016) have demonstrated a substantial increase in classification accuracy 7 

when expanding from population to species to clade levels. The methods used in studies 8 

that include both closely related and unrelated plants may also decrease accuracy in 9 

discriminating the closely related species. For example, Peerbhay, Mutanga et al. (2013) 10 

noted that the dimensionality reduction technique and subsequent statistical selection 11 

of maximally discriminative bands may favour discrimination between unrelated taxa, 12 

with the minor variations between closely related species being discarded. 13 

Solar radiation follows the distribution of a black body at 5800 K from 200 to 2500 nm, 14 

with a peak at ~500 nm. It is for this reason that photosynthetic pigments absorb in the 15 

region of maximum solar irradiance of 400 -700 nm, as well as being the reason that 16 

reflectance spectroscopy generally covers the region of ~350 – 2500 nm. While 17 

definitions are often dependant on context the wavelengths tend to be broken into 18 

three spectral regions:  visible (~400 – ~700 nm), near infrared (~700 - ~1400 nm), and 19 

shortwave infrared (~1400 - ~2500 nm) (Asner 1998). 20 

Reflection of plants in the visible wavelengths (400 – 700 nm) is dominated by 21 

absorptions from foliar pigments, with chlorophyll a and b having the strongest influence 22 

in this region. Absorption from less influential pigments such as carotenoids and 23 

anthocyanins are predominantly masked by that of chlorophyll, only becoming dominant 24 

during periods of senescence or stress (Curran 1989). 25 

The red edge encompasses the region from the red reflectance minimum around 680 26 

nm to the near infrared (NIR) shoulder at approximately 780 nm and indicates the sharp 27 

increase in reflectance from the visible (VIS) to the NIR plateau (Jacquemoud, Verhoef et 28 

al. 2009). The red edge region has been described as one of the most informative and 29 

frequently selected regions, its importance has been attributed to its correlation with 30 
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chlorophyll abundance, nitrogen concentration, water content and structural features 1 

such as Leaf Area Index (LAI) (Clark, Roberts et al. 2005, Dalponte, Bruzzone et al. 2009, 2 

Cho, Debba et al. 2010, Dalponte, Bruzzone et al. 2012). The NIR plateau (780 – 1327 3 

nm) is a region of high reflectance resulting from scattering of photons within the leaf 4 

structure due to a change in the refractive index from liquid water to air within the inter-5 

cellular spaces (Knipling 1970). High levels of intraspecific variability have been identified 6 

in the NIR related to leaf age, water and chlorophyll concentration, as well as herbivory, 7 

necrosis and epiphyll cover (Datt 2000, Clark, Roberts et al. 2005). 8 

The shortwave infrared wavelengths (SWIR) can be divided into two distinct regions, the 9 

near SWIR (NSWIR) from 1350 – 1800 nm including the strong water absorption feature 10 

at 1350 – 1450 nm, and the far SWIR (FSWIR) from 1800 -2500 nm, including another 11 

strong water absorption feature from 1800 – 2000 nm. Reflectance from the SWIR is 12 

reported as being associated with water absorption (Datt 2000, Thenkabail, Enclona et 13 

al. 2004, Adam, Mutanga et al. 2012, Ferreira, Grondona et al. 2013, Thenkabail, 14 

Mariotto et al. 2013, Fassnacht, Neumann et al. 2014, Shang and Chisholm 2014, 15 

Ferreira, Zortea et al. 2016) or the weak harmonic and overtone absorptions from 16 

biochemicals such as lignin, starch, and cellulose (Thenkabail, Enclona et al. 2004, Wang, 17 

Xu et al. 2009, Jones, Coops et al. 2010, Ferreira, Grondona et al. 2013, Thenkabail, 18 

Mariotto et al. 2013, Alonzo, Bookhagen et al. 2014, Shang and Chisholm 2014, 19 

Lehmann, Große-Stoltenberg et al. 2015, Ferreira, Zortea et al. 2016). 20 

Variability in plant spectral properties complicates supervised classifications, as there 21 

may be considerable differences between reference spectra used for training and the 22 

spectra or imagery targeted for classification. Sources of variability in the spectra fall 23 

within three categories: measurement, leaf level, and canopy level.  24 

1.1.1 Measurement Variability 25 

Spectral variability that occurs during measurement is dependent upon the method of 26 

capture, whether collected in the laboratory or field, at leaf, stem or canopy level, or 27 

remotely sensed at canopy scale. Each of these methods must contend with different 28 

illumination conditions as well as differing soil or background reflectance. 29 

Measurements at leaf scale reduce much of the variability inherent in other methods. 30 
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However, leaf level measurements may not be representative of the entire plant, as 1 

foliar reflectance will vary within a leaf, and between leaves of the same plant (Castro-2 

Esau, Sánchez-Azofeifa et al. 2006, Tirado, St Dennis et al. 2020). Laboratory 3 

measurements allow for control and standardisation of both illumination and 4 

background reflectance, while field measurements have the option to control 5 

background reflectance, although generally rely upon natural solar illumination.  6 

Variation in natural solar irradiance is the biggest variable for reflectance measurements, 7 

with sun angle relative to the sample having the greatest effect. Sun angle varies 8 

throughout the day and year and is dependent on the latitude of the observations.  As 9 

well as solar angle, the amount of light incident on a surface can be varied by absorption 10 

and scattering of the incoming photons by atmospheric gases and dust particles as the 11 

light traverses the atmosphere. Different atmospheric gases absorb at specific 12 

wavelengths, the most significant of which are associated with water vapour. Almost 13 

complete absorption by water occurs at ~1400 and ~1900 nm, with smaller bands at 14 

~900 and ~1100 nm (Salisbury 1998). Along with this ubiquitous atmospheric effect are 15 

intermittent atmospheric effects such as cloud cover, smoke, dust and pollution, all of 16 

which will influence measured reflectance and must be taken into consideration during 17 

spectral collection. To account for this variation in solar irradiance at the time of spectral 18 

measurement, the recording of a standard surface with known reflectance values can be 19 

used for the calibration of spectra from target samples (Held, Phinn et al. 2015). 20 

Additionally, post-processing methods such as physical atmospheric correction of fully 21 

shaded pixels in comparison to directly illuminated areas enables the aerosol optical 22 

thickness to be estimated and corrected (Schläpfer, Hueni et al. 2018). 23 

Collection of imagery from airborne or satellite imagers must also contend with spatial 24 

distortions as well as increased atmospheric effects, as the reflected radiation must also 25 

traverse the atmosphere before being recorded. Image restoration procedures to 26 

correct for these variations include radiometric restoration (Guo, Wang et al. 1998), 27 

which attempts to remove or reduce spectral distortions, and geometric restoration that 28 

corrects for spatial distortions and registers the image to conventional mapping 29 

coordinates (Richards and Richards 1999, Richter, Schläpfer et al. 2011). Methods for 30 

atmospheric correction include empirical approaches that remove atmospheric effects 31 
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by dividing pixels by the average spectrum of a scene (Kruse 1988) or applying a 1 

transformation derived from an area of neutral spectral reflectance within the scene 2 

(Roberts, Yamaguchi et al. 1986). Other empirical methods require field measurements 3 

of at least one bright and one dark target within the scene allowing for the derivation of 4 

gain and offset curves (Curtiss 1987). Alternatively, radiative transfer models have been 5 

used to simulate the transmission spectrum of water vapour and other gases dominant 6 

in the 400 – 2500 nm region (Gao, Heidebrecht et al. 1993, Thompson, Natraj et al. 7 

2018). Hybrid models have also been developed using both radiative transfer modelling 8 

and empirical field spectral measurements (Goetz, Boardman et al. 1997). 9 

1.1.2 Leaf Level Variability 10 

Variability in leaf level reflectance can be determined with Price’s (1994) metrics D and 11 

θ, which compute the root mean square difference (D), and the angle difference (θ) 12 

between two spectra, allowing for a quantitative comparison between two spectra in 13 

multidimensional space. The use of these metrics demonstrates just how variable leaf 14 

reflectance can be, and not just between species. Spectral variation has been seen 15 

within the same leaf, leaves of the same branch and plant, and of different plants of the 16 

same species in close proximity (Williams 1991, Castro-Esau, Sánchez-Azofeifa et al. 17 

2006), with even greater variability between the same species at different sites (Hesketh 18 

and Sánchez-Azofeifa 2012).  This variability, along with interspecific similarity, 19 

confounds classification attempts based on reflectance spectra (Ollinger 2011). Despite 20 

this, an ever-increasing number of studies successfully use field or remotely sensed 21 

spectra for classification, with high accuracy. However, this accuracy does decline in sites 22 

with high diversity, such as the tropics: in fact there a linear relationship between 23 

accuracy and species number has been identified (Castro-Esau, Sánchez-Azofeifa et al. 24 

2006).  25 

Based on a study of 1449 species of Amazonian trees Asner, Martin et al. (2014) found 26 

that variability of spectral leaf reflectance between species is greatest in the near-27 

infrared region (720 – 1400 nm) (NIR), followed by shortwave infrared (1400 – 2500 nm) 28 

(SWIR) to a lesser degree, though still showing strong variation. The visible wavelength 29 

region (400-700 nm) (VIS) demonstrated the lowest degree of variability, which has been 30 

attributed to the fact that pigments are abundant in healthy leaves and strongly absorb 31 
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in the visible region. Although the degree of variability seen amongst Asner’s Amazonian 1 

samples is far greater than that shown by other studies, the trend of lower variability 2 

within the visible region in comparison to the longer wavelengths is consistent (Castro-3 

Esau, Sánchez-Azofeifa et al. 2004).  4 

Despite minimal variability, wavelength bands that fall within the visible region are 5 

frequently selected by various statistical techniques for discrimination of plant groups. In 6 

fact, many studies are solely reliant upon visible and near infrared regions as their 7 

spectral measurements do not extend beyond ~ 900 - 1000 nm. Bands selected from the 8 

visible region are often related to the blue-green edge, green peak, and red edge 9 

chlorophyll absorption features (Castro-Esau, Sánchez-Azofeifa et al. 2006). However, 10 

classification studies relying upon a selection of reflectance bands have utilised bands 11 

from across the optical spectrum, such as at wavelengths in the near-infrared and 12 

shortwave-infrared associated with fundamental bond vibrations (stretching and 13 

bending) in chemical constituents (Manley 2014). The range of bands selected 14 

throughout the 400 – 2500 nm wavelength range for different studies is influenced by 15 

the spectral data used and the taxa within the study. 16 

1.1.3 Canopy Level Variability 17 

Canopy level variability is influenced by the foliar reflectance properties previously 18 

mentioned, though it is dominated by the structure of the vegetation (Asner 1998, Gara, 19 

Darvishzadeh et al. 2018). Often this structure is described in a simplified manner as the 20 

Leaf Area Index (LAI), which is defined as the ratio between total single sided leaf area to 21 

ground area, and by Leaf Angle Distribution (LAD), which describes the gradient of leaf 22 

angles between horizontal and vertical that occur within the canopy.  23 

LAI is a combination of a number of structural characteristics such as crown shape, 24 

canopy density and volume, clumping and gap fraction and has been successfully 25 

remotely sensed with normalised difference vegetation index (NDVI) products 26 

(Tesemma, Wei et al. 2014). These all affect the likelihood that a photon may be 27 

absorbed or scattered by the vegetation and the depth within the canopy that the 28 

interaction may occur. Increases in LAI have been shown to increase reflectance though 29 

limited to NIR region and saturated at high LAI values (Ollinger 2011). With the exception 30 
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of soil reflectance in sparse canopies LAI has the highest contribution to canopy 1 

reflectance variability (Asner 1998). 2 

LAI is highly dependent on resource availability, showing high variation between poor 3 

and favourable growing conditions (Whitehead and Beadle 2004). Along with growing 4 

conditions, LAI can vary temporally, rapidly increasing with growth of young vegetation, 5 

before reaching a peak then lowering to a more constant value at maturity. The effect of 6 

seasonality is dependent on vegetation type with deciduous and annual species showing 7 

large degrees of cyclical variation, whilst evergreens show low to medium variability 8 

induced by seasonal variations in temperature, solar irradiance, and water availability 9 

(Tesemma, Wei et al. 2014). The relationship between LAI and environmental water 10 

conditions has been exploited to provide remotely sensed data for pre-dawn water 11 

potential, soil water potential, evapotranspiration, aridity index (Palmer, Fuentes et al. 12 

2010), and soil conditions (Lausch, Zacharias et al. 2013).  13 

The orientation of leaves within a canopy can have a dramatic effect on crown shape 14 

and therefore canopy reflectance. Estimated by LAD, this orientation has a large impact 15 

on the scattering and absorption of photons within the canopy. A canopy with 16 

predominantly vertically orientated leaves will demonstrate increased penetration of 17 

incident radiation resulting in increased scattering and absorption within the canopy, 18 

having the effect of lowering the canopy’s overall reflectance. LAD has a greater effect 19 

on reflectance variability than LAI, with reflectance substantially decreasing as leaf angle 20 

increased from horizontal. Unlike LAI, LAD variability is not limited to NIR wavelengths, 21 

instead showing a change in reflectance across the spectrum, though to a lesser degree 22 

in VIS wavelengths (Ollinger 2011). Leaf angles vary depending on position within the 23 

canopy or latitude, with leaves in the upper canopy being more vertical than those in the 24 

mid and lower canopy, as well as leaves at the equator being the most horizontal (Miller 25 

and Lin 1985, Hollinger 1989, Huemmrich 2013). 26 

1.1.4 Intra-specific Variability 27 

In classification studies, it is common for spectral variation within taxa or functional 28 

groups to reduce the accuracy of classification or prevent the use of a model derived 29 

from a sampling site being used on another spatially or temporally distinct site. This 30 
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issue plays into the “one place, one time” problem identified by Woodcock (2002), 1 

where studies are often spatially and temporally constrained, limiting their insight and 2 

applicability to other related contexts. Varying edaphic and climatic conditions between 3 

sampling locations such as temperature, water availability, soil mineral nutrients, and 4 

solar irradiance are all known to influence geographic intra-specific variation (Carter 5 

1993). Although this problem has been noted in many studies, few have attempted to 6 

quantify spectro-spatial variability and its relationship to the climatic and edaphic 7 

conditions that cause it.  8 

Of studies that have, most have generally focused on changes along an elevation 9 

gradient. Although elevation is a single environmental variable in and of itself, it is 10 

correlated with many of the previously mentioned determinants of intra-specific 11 

variability. Due to this, studies such as Richardson, Berlyn et al. (2001), and Richardson 12 

and Berlyn (2002) relate observed spectro-spatial variability along an elevation gradient 13 

to stress, as the studied taxa approach the edges of their respective range limits. The 14 

phenotypic responses to the stressors included reduction in overall chlorophyll, as well 15 

as an increase in the carotenoid : chlorophyll a ratio, and a reduction in photosynthetic 16 

radiation efficiency. The Asner, Martin et al. (2014) study of Amazonian trees showed a 17 

similar trend, as productivity decreased with a decrease in photosynthetic pigments and 18 

foliar nitrogen along an elevation gradient. As well as elevation, the effect of soil fertility 19 

was examined amongst the Amazonian trees. It was found that trees from a low soil 20 

fertility environment contained low concentrations of macro- and micro-nutrients whilst 21 

having increased concentrations of defence compounds including phenols, tannins and 22 

lignin. This variability results in a significant decrease in classification accuracy, as 23 

demonstrated by Castro-Esau, Sánchez-Azofeifa et al. (2006), where classification within 24 

a site was successful, though classification between sites was not.  25 

Changing of the seasons sees changes in precipitation, average temperature, and solar 26 

irradiance, resulting in phenological responses from plants such as leaf flush, flowering, 27 

fruiting, stress and senescence responses.  As with the previously discussed spatial 28 

variability in intraspecific reflectance, temporal variability brought about by this suite of 29 

changes limits transferability of classifications to the season in which the spectra were 30 

recorded. This is highlighted by across season studies from tropical regions that have 31 
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recorded as much as a tenfold decrease in classification accuracy between wet and dry 1 

and seasons (Castro-Esau, Sánchez-Azofeifa et al. 2006, Hesketh and Sánchez-Azofeifa 2 

2012).  3 

However, contrary to this, some studies have utilised spectro-temporal variability to 4 

increase spectral separability of taxa, and therefore increase classification accuracy. For 5 

example, when studying the spectro-temporal variability caused by changes in the 6 

phenological cycle of English moorland plant functional groups, Cole, McMorrow et al. 7 

(2014) identified the optimal spectral indices to maximise spectral separation for each 8 

month. Amongst the moorland groups, the spring/summer months of April and July 9 

offered the greatest spectral separability between all groups using the Plant Senescence 10 

Reflection Index (PSRI). However, between specific groups other indices out-performed 11 

PSRI, such as Red Edge Position (REP) for the shrub and bryophytes group. As well as the 12 

optimal indices changing between groups, different indices optimally described 13 

variability for each month, with Photochemical Reflectance Index (PRI) and Cellulose 14 

Absorption Index (CAI) outperforming PSRI in June for all groups. The results of this 15 

study demonstrate the complex interactions between vegetation seasonal responses 16 

and spectral reflectance, and how knowledge of these responses amongst target 17 

samples can help to guide timing of spectral collection and wavelength selection. The 18 

Cole, McMorrow et al. (2014) study builds upon and expands the knowledge in this area, 19 

which so far has been limited to a small number of studies, such as for Australian 20 

seagrasses (Fyfe 2003), South African wetland trees (Van Deventer, Cho et al. 2013), C3 21 

and C4 grasses (Wang, Hunt Jr et al. 2013), European boreal forests (Grigorieva, Brovkina 22 

et al. 2020), and Hawaiian invasive species (Asner, Martin et al. 2006). 23 

A method to handle intra-class variability and alleviate the one place, one time problem 24 

would greatly increase the applicability of classification models, allowing them to utilise 25 

more classes from wider ranging spatial and temporal distances. Hyperspectral remote 26 

sensing is currently focused on improving classification results by including more spatial, 27 

structural and textural information to the analysis to aid in class differentiation. Despite 28 

this focus of the wider community, this thesis aims to improve the information that can 29 

be gained solely from spectral signals.  For this reason, this thesis attempts to develop 30 

such a methodology, aided by significant advances in machine and deep learning. My 31 
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research investigates the use of data augmentation, the process of artificially expanding 1 

the sample size of a dataset as a way to handle intra-class variability and inter-class 2 

confusion amongst hyperspectral plant reflectance spectra. Data augmentation has 3 

become widespread in the machine learning community, particularly so for image 4 

classification as it offers novel views of a sample image to the training classification 5 

model. Whilst not as commonly used with 1-dimensional data its successful use for 6 

timeseries (Harada, Hayashi et al. 2019) sound synthesis (Donahue, McAuley et al. 2018), 7 

or anonymising medical data (Esteban, Hyland et al. 2017) demonstrates its potential. 8 

1.2. Research Aims & Objectives 9 

As outlined in section 1.1, hyperspectral data are capable of classifying vegetation to 10 

high levels of accuracy between closely related and functionally similar taxa, though is 11 

extremely susceptible to the relationship between intra and inter-class variability. I 12 

believe this is a significant roadblock to wider adoption of hyperspectral vegetation 13 

classification due to the increased data gathering and processing required to overcome 14 

it, as well as the associated reduced generalizability and transferability of classification 15 

models. 16 

Therefore, it is the primary aim of this thesis to develop methods of improving the ratio 17 

between intra and inter-class variability in hyperspectral vegetation spectra, and 18 

ultimately increasing classification accuracy and reliability. An important criterion 19 

associated with this aim is to develop methods that do not require collection of new 20 

hyperspectral or supportive data so that they can be easily applied to previously 21 

collected hyperspectral data. The specific objectives of this thesis are threefold: 22 

1. To assess the influence of class variability and methodologies of overcoming it by 23 

reviewing the last two decades of hyperspectral vegetation classification 24 

literature, particularly focusing on waveband selection frequency; waveband 25 

selection frequency variation by taxonomic, structural or functional group; and 26 

the influence of feature selection choice on resultant classification accuracy, 27 

generalizability, and transferability.  28 

2. To determine the viability of synthesising hyperspectral plant data via a 29 

generative deep learning model for the purpose of data augmentation. 30 



12 

 

3. Refining the previous generative deep learning model, to produce transformed 1 

replications of hyperspectral plant classes with reduced intra-class variability 2 

whilst exaggerating inter-class differences. 3 

1.3. Thesis Structure 4 

This thesis comprises five chapters. Chapter one summarises the relevant literature, 5 

highlighting key knowledge gaps whilst providing context for the motivations behind this 6 

thesis and methodologies to be used. Drawing from this review, feature selection trials 7 

were performed to examine how study design (number of classes, number of samples, 8 

included species, and feature selection method) influenced waveband selection. 9 

Chapters two, three and four make up the body of research directly addressing the 10 

objectives of the thesis and are presented as published papers or manuscripts intended 11 

for publication. Chapter five consists of the discussion and conclusion, highlighting key 12 

results, presenting the significance and contributions of this thesis as well as suggesting 13 

future research opportunities. The following summaries highlight the content of each 14 

research chapter. 15 

Chapter two: Hyperspectral Classification of Plants: A Review of Waveband Selection 16 

Generalisability. Published as Hennessy, A., K. Clarke and M. Lewis (2020). 17 

"Hyperspectral Classification of Plants: A Review of Waveband Selection 18 

Generalisability." Remote Sensing 12(1): 113. 19 

This chapter consists of a review of the hyperspectral vegetation classification literature 20 

from 1996 to 2018 focusing on the methods and results from the selection of 21 

informative spectral wavebands or regions. This study found large degrees of variability 22 

in the feature selection of spectral regions between studies, driven by study parameters 23 

beyond characteristics of the target classes, most specifically the choice of feature 24 

selection algorithm. These findings are based on both the review of the literature as well 25 

as feature selection experiments designed to determine which elements of the study 26 

design most contributed to variation seen in selected wavebands. It was found that this 27 

variability was enough to prevent determination of generalizable and therefore 28 

transferable spectral regions for specific taxonomic discrimination, though broad trends 29 

such as the importance of VIS and red edge wavelengths were apparent. As a result of 30 
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these findings caution was suggested in relying upon feature selection recommendations 1 

from the literature to guide waveband selections or classifications for new plant 2 

discrimination applications, as such recommendations appear to be weakly generalizable 3 

between studies. 4 

Chapter three: Generative adversarial network synthesis of hyperspectral vegetation 5 

data. Published as Hennessy, A., K. Clarke and M. Lewis (2021). "Generative adversarial 6 

network synthesis of hyperspectral vegetation data." Remote Sensing 13(12): 2243. 7 

This chapter aims to improve classification accuracy and generalisability by increasing 8 

training dataset sample sizes and improving class distributions to better reflect the 9 

evaluation dataset via data augmentation. This was achieved by applying advances in 10 

generative deep learning models to produce realistic synthetic hyperspectral vegetation 11 

data, whilst maintaining class relationships. Specifically, a generative adversarial network 12 

(GAN) was trained on two vegetation hyperspectral datasets, demonstrating the ability 13 

to approximate the distribution of the training samples. These synthetic samples are 14 

then combined with the original spectra to produce an augmented dataset for use in 15 

training supervised classification models. This chapter demonstrates that increasing the 16 

number of samples available for training classifiers can increase classification accuracy, 17 

though ultimately has minimal effect on the intra/inter-class ratio of the datasets. 18 

Chapter four: Generative adversarial network-based style transfer for data 19 

augmentation of hyperspectral vegetation data. Submitted for publication as Hennessy, 20 

A., K. Clarke and M. Lewis (Submitted) “Generative adversarial network-based style 21 

transfer for data augmentation of hyperspectral vegetation data.” Remote Sensing. 22 

This chapter aims to build upon the previous data augmentation and hyperspectral 23 

synthesis method to further reduce intra-class variability and to decrease the possibility 24 

of inter-class overlap in order to improve classification accuracy. This was achieved by 25 

adding the ability to transfer the style (reflectance characteristics) of a hyperspectral 26 

class to another class creating new transformed hybrid samples. These hybrid samples 27 

were synthesised as a replicate of each real sample with the GAN model, rather than 28 

synthesizing novel samples from a learned class distribution as previously done. Now 29 

with the capability of producing one-to-one representations of real samples the GAN 30 
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model can be used to introduce transformations into the replicated spectra, either by 1 

use of class specific GAN models or latent space interpolation. The data augmentation 2 

presented within this chapter directly addresses all three initial issues of low sample size, 3 

interspecies similarity and within-species variability, resulting in significant increases in 4 

classification accuracy. 5 

Chapter five: Discussion and Conclusion 6 

This chapter brings together and highlights the key findings of the previous chapters. It 7 

emphasises the significant contributions to the field of hyperspectral vegetation 8 

classification whilst additionally providing recommendations for future research. 9 
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Abstract 1 

Hyperspectral sensing, measuring reflectance over visible to shortwave infrared 2 

wavelengths, has enabled the classification and mapping of vegetation at a range of 3 

taxonomic scales, often down to species level. Classification with hyperspectral 4 

measurements, acquired by narrow band spectroradiometers or imaging sensors, has 5 

generally required some form of spectral feature selection to reduce the dimensionality 6 

of the data to a level suitable for the construction of a classification model. Despite the 7 

large number of hyperspectral plant classification studies, an in-depth review of feature 8 

selection methods and resultant waveband selections has not yet been performed. Here 9 

we present a review of the last 22 years of hyperspectral vegetation classification 10 

literature that evaluates overall waveband selection frequency; waveband selection 11 

frequency variation by taxonomic, structural or functional group; and the influence of 12 

feature selection choice by comparing methods such as Stepwise Discriminant Analysis 13 

(SDA), Support Vector Machines (SVM), and Random Forests (RF). 14 

This review determined that all characteristics of hyperspectral plant studies influence 15 

the wavebands selected for classification. This includes the taxonomic, structural and 16 

functional groups of the target samples, the methods and scale at which hyperspectral 17 

measurements are recorded, and the feature selection method used. Furthermore, 18 

these influences do not appear to be consistent. Moreover, the considerable variability 19 

in waveband selection caused by the feature selectors effectively masks analysis of any 20 

variability between studies related to plant groupings. Additionally, questions are raised 21 

about the suitability of SDA as a feature selection method, with it producing waveband 22 

selections at odds with the other feature selectors.  23 

Caution is recommended when choosing a feature selector for hyperspectral plant 24 

classification: we recommend multiple methods being performed. The resultant sets of 25 

selected spectral features can be either evaluated individually by multiple classification 26 

models or combined as an ensemble for evaluation by a single classifier. Additionally, we 27 

suggest caution in relying upon waveband recommendations from the literature to guide 28 

waveband selections or classifications for new plant discrimination applications, as such 29 

recommendations appear to be weakly generalizable between studies. 30 
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2.1. Introduction 1 

Classification of reflectance spectra to determine broad plant type or species has been 2 

explored increasingly over the past two decades. This has been driven by the increased 3 

availability of hyperspectral sensing from imaging spectrometers and field 4 

spectroradiometers, and increasing need from environmental conservation, agriculture 5 

and forestry groups (Fassnacht, Latifi et al. 2016). High classification accuracies, 6 

particularly at fine taxonomic units such as species or even clones for grapevine varieties 7 

(Fernandes, Melo-Pinto et al. 2015) has in some cases been enabled by hyperspectral 8 

observation (Clark, Roberts et al. 2005) Hyperspectral measurements have been used to 9 

classify a variety of plant types including annual gramineous weeds (Deng, Huang et al. 10 

2016), food crops (Mariotto, Thenkabail et al. 2013), arid zone shrubs (Lewis 2002) and 11 

montane/sub-alpine trees (Sommer, Holzwarth et al. 2015), growing in equally varied 12 

environments from tropical wetlands (Prospere, McLaren et al. 2014), urban 13 

streetscapes (Alonzo, Bookhagen et al. 2014), savanna plains (Cho, Debba et al. 2010), 14 

and alpine forests (Dalponte, Bruzzone et al. 2012). Due to the scale required to map 15 

and monitor the world’s vegetation, fast, generalizable, and objective methods that 16 

provide results that can be quickly and easily shared and analysed are required. 17 

Hyperspectral imagery and data can fulfil these requirements, producing digital 18 

measurements that can be easily shared and quickly analysed with semi-automated 19 

procedures in a repeatable and objective manner. However, the potential 20 

generalisability of classification models has yet to be fully evaluated. 21 

Hyperspectral measurements consist of numerous, finely spaced, contiguous 22 

measurements (wavebands) providing considerably more information about targets 23 

than broadband multispectral observations. These advantages come at the cost of high 24 

dimensionality and large data volumes. Hyperspectral instruments record radiance 25 

within the range 350 to 2500 nm of the electromagnetic spectrum, with bandwidths 26 

often between 1 and 10 nm. The number of wavebands per observation varies from 27 

hundreds to thousands. Training a classification model with such large numbers of 28 

spectral features requires a large sample size. However, since the collection of samples 29 

for hyperspectral studies is onerous, with high costs for imagery and arduous fieldwork 30 

for gathering field measurements, sample sizes tend to be small. Data of this high 31 
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dimensionality is prone to the Hughes phenomenon, also known as the curse of 1 

dimensionality, where an increasing number of features originally aids in improving 2 

classification, before the addition of more features decreases performance as noise and 3 

sparsity of the feature space increases (Alonso, Malpica et al. 2011). This problem is 4 

exacerbated by small sample sizes (Hughes 1968).  5 

In order to overcome this, either the dimensionality of the data must first be reduced or 6 

a classification method less susceptible to the curse of dimensionality used (Pal and 7 

Foody 2010). Hyperspectral measurements tend to include noisy or redundant features, 8 

with high levels of collinearity between wavebands. The elimination of collinearity can 9 

substantially improve classification efforts and is in fact a requirement of parametric 10 

statistical methods that assume independence of all variables (Fassnacht, Neumann et 11 

al. 2014, Richter, Reu et al. 2016). Additionally, feature selection inherently reveals the 12 

spectral regions that offer the greatest discriminatory power for a set of samples. Long 13 

held associations between specific spectral regions or individual wavebands and 14 

biophysical or biochemical foliar traits (Curran 1989) have often guided researchers in 15 

selecting features to differentiate species or plant types. The overall aim of this review is 16 

to assess these assumptions in light of evidence from 22 years of hyperspectral plant 17 

studies. 18 

2.1.1. Review Scope and Approach 19 

Here we address some important questions that motivate much hyperspectral plant 20 

research. Do the taxonomic, structural or functional characteristics of plant types or 21 

species influence the spectral regions that are most important in classification, or are 22 

particular spectral regions consistently selected across a diversity of plant or ecological 23 

types? Review of selected features from the hyperspectral literature could identify best 24 

practices for feature selection methods, as well as detect wave-regions of high-utility, 25 

those that best generalize across taxonomic or ecological boundaries. 26 

The search for literature spanned two decades from January 1996 to December 2018, 27 

focusing on peer reviewed journals in the English language. Search was performed with 28 

Google Scholar using combinations of the keywords Hyperspectral, Spectra, Vegetation, 29 

Plant, Tree, Species, Identi*, Discriminat*, Classif*, Map, Feature Select*, Waveband, 30 
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Band, UAV, Drone. In order to be included a study must have performed a feature 1 

selection technique on hyperspectral vegetation data with an aim to classify plant 2 

samples.  3 

Many studies fulfilled the initial requirement, but did not report selected wavebands 4 

with sufficient specificity, and therefore could not be included. Here we present 5 

waveband selections derived from 38 hyperspectral vegetation classification studies. 6 

When applicable, studies that included multiple feature selection techniques were 7 

broken into sub-studies, increasing the total number of reviewed studies to 61 (Table 1, 8 

2). These included studies are from a wide variety of scales (leaf, branch, canopy), 9 

recording methods (lab, field, aerial, satellite), taxonomic units, and bandwidths.  10 

Additionally, a dataset was synthesised from hyperspectral measurements of 22 species 11 

of New Zealand plants collected as field spectra from 4 locations on the north island 12 

(Hueni 2006). This dataset was used to examine how study design (number of classes, 13 

number of samples, included species, and feature selection method) influenced 14 

waveband selection. This was performed with the aim of determining which elements of 15 

the study design most contributed to variation seen in selected wavebands.   16 

The remainder of this paper is structured in the following way: Section 2 provides a 17 

meta-analysis of the selected wavebands, broken down by spectral region; Section 3 18 

identifies and describes feature selection techniques from these studies, and where 19 

possible highlights their effects on waveband selection; Section 4 examines study design 20 

influence on waveband selection; Section 5 presents a synthesis of results and 21 

conclusions. 22 
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Table 1. Overview of VIS/NIR studies included in this review. 

References Wavelengths/Bandwidths Classes Pre-processing Feature Selection Method 

No. bands 

selected 

 

 

Accuracy % Study Context and Spatial Scale or Resolution 

Aneece and Epstein 

(2015) 

 

350 – 1025 nm, 3 nm  12 Band depth Segmented PCA 12 77.0 Successional plant communities from canopy field spectra 

Cao et al. (2018) 454 – 950 nm, 4 nm 8 Smoothing SDA 14 91.4 Mangrove forest field canopy spectra 

Cao et al. (2018) 454 – 950 nm, 4 nm 8 Smoothing CFS 23 92.3 Mangrove forest field canopy spectra 

Cao et al. (2018) 454 – 950 nm, 4 nm 8 Smoothing SPA 23 93.1 Mangrove forest field canopy spectra 

Cho et al. (2010) 

 

384.8 – 1054.3 nm, 9.23 

nm 

10  SAM Band Selector Addon 31 53.0 Savanna tree species from airborne imagery (1.12 m) 

Dalponte et al. (2012) 

 

403 – 989 nm, 4.6 nm 8  Sequential Forward Floating Selection 43 74.1 Alpine tree species and 2 non-species classes, airborne imagery (1 m) 

Dian et al. (2014) 

 

400 – 900 nm, 1 nm 13  Spec angle and dist., feature parameters 7 96.2 Varied plant species from lab leaf spectra 

Eddy et al. (2014) 400 – 1000 nm, 10 nm 5  PCA, SDA, Manual selection 7 ~91.4 Crop and weed species from field imagery (1.25 m) 

Fung et al. (2003) 400 – 900 nm, 2.6 nm 25 Smoothing Hierarchical Clustering 13 89.0 Sub-tropical tree species from lab leaf spectra 

Gross and Heumann 

(2014) 

 

475 – 900 nm, 1 nm 22  Forward Feature Selection 8 43.0 Herbaceous wetland species from field leaf spectra 

Hoa et al. (2017) 325 – 1075 nm, 2 nm 6 Smoothing SDA 6 92.0 Mangrove forest field canopy spectra 

Hoa et al. (2017) 325 – 1075 nm, 2 nm 6 Smoothing, CR SDA 17 93.6 Mangrove forest field canopy spectra 

Lewis (2002) 400 – 900 nm, 1.4 nm 8  PCA, Discriminant Analysis 13 57.0 Arid zone plant groups from field leaf spectra 

Naidoo et al. (2012) 384.8 – 1054.3, 9.23 nm 9  Random Forest, Gini Index 8 80.3 Savanna tree species from airborne imagery (1.3 m) 

Naidoo et al. (2012) 384.8 – 1054.3, 9.23 nm 9 Continuum removed Random Forest, Gini Index 9 ~79.0 Savanna tree species from airborne imagery (1.3 m) 

Peerbhay et al. (2013) 393 – 900 nm, 2.2 nm 6  PLSDA VIP score 78 88.8 Forestry species from airborne imagery (2.4 m) 

Pu et al. (2012) 400 – 800 nm, 3 nm 3  Two Sample T-test 5 69.1 Seagrass species field canopy spectra 

Pu et al. (2012) 400 – 800 nm, 3 nm 3 Normalized Two Sample T-test 5 66.0 Seagrass species field canopy spectra 

Pu et al. (2012) 400 – 800 nm, 3 nm 3 Normalized 1st Derivative Two Sample T-test 5 71.1 Seagrass species field canopy spectra 

Pu et al. (2012) 400 – 800 nm, 3 nm 3 Normalized 2nd Derivative Two Sample T-test 5 73.2 Seagrass species field canopy spectra 

Pu et al. (2012) 400 – 800 nm, 3 nm 3 1st Derivative Two Sample T-test 5 69.1 Seagrass species field canopy spectra 

Pu et al. (2012) 400 – 800 nm, 3 nm 3 2nd Derivative Two Sample T-test 5 67.0 Seagrass species field canopy spectra 

Sommer et al. (2015) 400 – 1000 nm, 3 nm 13 Normalisation PCA, Correlation matrix, Band variance 53 77.0 European forest trees species from airborne imagery (1.6 m) 
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Table 2. Overview of VIS/SWIR studies included in this review. 

References Wavelengths/Bandwidth

s 

Class

es 

Pre-processing Feature Selection Method Bands Accuracy % Study Context and Spatial Scale or Resolution 

Adam and Mutanga 

(2009) 

350 – 2500 nm @ 3, 10 

nm 

4  ANOVA, CART 8 97.4 Wetland species from field canopy spectra 

Adam et al. (2012) 350 – 2500 nm @ 3, 10 

nm 

4 Resampled  Random Forest 10 90.5 Wetland species from field canopy spectra 

Alonzo et al. (2014) 385 – 2450 nm @ 9.6 nm 29  Forward Feature Selection 7 79.2 Urban street tree species from airborne imagery (3.7 m) 

Aneece et al. (2018) 427 – 2355 nm @ 10 nm  4  PCA 15 86.3 Agricultural crops, Hyperion (30 m) 

Beh et al. (2017) 350 – 2500 nm @ 10nm 6 Resampled ANOVA, LDA 26 77.0 Mangrove species leaf scale 

Chan and Paelinckx 

(2008) 

400 – 2500 nm @ 16 nm 16  Best-First Search Algorithm 21 ~69.5 Temperate forest ecotopes from airborne imagery (4 m) 

Chan and Paelinckx 

(2008) 

400 – 2500 nm @ 16 nm 16  Random Forest 21 ~69.5 Temperate forest ecotopes from airborne imagery (4 m) 

Das et al. (2018) 350 – 2350 nm @ 1 nm 14  ANOVA (Tukey HSD), CART 17 98.0 Rice genotypes from canopy spectra 

Datt (2000) 400 – 2500 nm @ 10 nm 7 Resampled Stepwise Discriminant Analysis 12 70.4 Eucalypt forest species from lab leaf spectra 

Datt (2000) 400 – 2500 nm @ 10 nm 7 Resampled, 1st Derivative Stepwise Discriminant Analysis 13 72.4 Eucalypt forest species from lab leaf spectra 

Deng et al. (2016) 350 – 2500 nm @ 1.4, 2 

nm 

7  PCA 8 84.3 Cabbage crops and weed species from field canopy spectra 

Fernandes et al. (2013) 350 – 2450 nm @ 3, 

10nm 

4  Kruskal-Wallis post hoc Dunn, CART 56 ~95 Giant Reed and coexisting vegetation from field canopy spectra 

Ferreira et al. (2016) 400 – 2400 nm @ 4, 6 

nm 

8 Smoothing Stepwise Regression Wrapper 30 ~70.0 Tropical tree species from airborne imagery (1 m) 

George et al. (2014) 400 – 2350 nm @ 10 nm 6 Continuum Removed Stepwise Discriminant Analysis 29 82.3 Himalayan forest species from satellite imagery (30 m) 

Jones et al. (2010) 429 – 2400 nm @ 2 nm 11  Stepwise Discriminant Analysis 40 ~98.0 Canadian forest tree species from lab leaf spectra 

Jones et al. (2010) 429 – 2400 nm @ 2 nm 11 1st Derivative Stepwise Discriminant Analysis 40 ~98.0 Canadian forest tree species from lab leaf spectra 

Jones et al. (2010) 429 – 2400 nm @ 2 nm 11 2nd Derivative Stepwise Discriminant Analysis 40 ~98.0 Canadian forest tree species from lab leaf spectra 

Mariotto et al. (2013) 426.5 – 2355 nm @ 10 

nm 

5  LS-means, SDA, PCA, LL-R2 29 90.2 Crop species from satellite imagery (30 m) 

Mariotto et al. (2013) 426.5 – 2355 nm @ 10 

nm 

5 Resampled LS-means, SDA, PCA, LL-R2 21 92.0 Crop species from canopy field spectra 

Papes et al. (2010) 415 – 2340 nm @ 10 nm 5  Stepwise Discriminant Analysis 25 100 Amazon tree species from satellite imagery (30 m) 

Papes et al. (2010) 415 – 2340 nm @ 10 nm 5  Stepwise Discriminant Analysis 25 100 Amazon tree species from satellite imagery (30 m) 

Prospere et al. (2014) 400 – 2400 nm @ 5 nm 46 Smoothing, Normalization PCA 20 82.6 Tropical wetland species from field leaf spectra 

Prospere et al. (2014) 400 – 2400 nm @ 5 nm 46 Smoothing, Normalization Mann-Whitney U-test 21 86.8 Tropical wetland species from field leaf spectra 

Prospere et al. (2014) 400 – 2400 nm @ 5 nm 46 Smoothing, Normalization ANOVA 23 83.4 Tropical wetland species from field leaf spectra 

Prospere et al. (2014) 400 – 2400 nm @ 5 nm 46 Smoothing, Normalization SVM 20 87.1 Tropical wetland species from field leaf spectra 

Prospere et al. (2014) 400 – 2400 nm @ 5 nm 46 Smoothing, Normalization Random Forest 20 86.1 Tropical wetland species from field leaf spectra 

Prospere et al. (2014) 400 – 2400 nm @ 5 nm 46 Smoothing, Normalization Random Forest (a) 20 84.8 Tropical wetland species from field leaf spectra 

Raczko et al. (2018) 413 – 2440 nm @ 0.6, 11 

nm 

6  PCA 40 87.0  

Schmidt and Skidmore 

(2003) 

400 – 2500 nm @ 2, 6, 

10 nm 

27 Smoothing, Continuum removed Mann-Whitney U-test, Manual Selection 6 - Saltmarsh vegetation types from field canopy spectra 

Shang and Chisholm 

(2014) 

350 – 2500 nm @ 3, 10 

nm 

7  ANOVA – post hoc Tukey-Kramer 9 94.7 Australian forest species from lab leaf spectra 
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Thenkabail et al. (2004) 390 – 2360 nm @ 10 nm 4 Resampled PCA, LL-R2 , SDA, DGVI 22 97.0 Crops and savanna cover types from field canopy spectra 

Thenkabail et al. (2013) 350 – 2350 nm @ 10 nm 8  Stepwise Discriminant Analysis 20 95.0 Crop types from field canopy spectra 

Vaiphasa et al. (2005) 350 – 2500 nm @ 3, 10 

nm 

16  Genetic Algorithm 4 ~80.0 Mangrove species from lab leaf spectra 

Vaiphasa et al. (2007) 350 – 2500 nm @ 3, 10 

nm 

16  Genetic Algorithm (30*4) ~80.0 Mangrove species from lab leaf spectra 

Van Aardt and Wynne 

(2007) 

400 – 2500 nm @ 10 nm 3  Stepwise Discriminant Analysis 10 65.0 Pine tree species from airborne imagery (3.4 m) 

Van Aardt and Wynne 

(2007) 

400 – 2500 nm @ 10 nm 3 1st Derivative Stepwise Discriminant Analysis 10 77.0 Pine tree species from airborne imagery (3.4 m) 

Van Aardt and Wynne 

(2007) 

400 – 2500 nm @ 10 nm 3 2nd Derivative Stepwise Discriminant Analysis 10 72. Pine tree species from airborne imagery (3.4 m) 

Wang et al. (2009) 350 – 2500 nm @ 10 nm 3 Resampled ANOVA, Linear Discriminant Analysis 15 90.0 Mangrove species from lab leaf spectra 
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2.2. Meta-Analysis 1 

The delineation of spectral regions in this review follows that of (Clark, Roberts et al. 2 

2005) as adapted from (Asner 1998). Imaging and non-imaging hyperspectral 3 

instruments have different sampling intervals, so direct comparison of selected 4 

wavebands between studies is not possible. This was resolved by aggregating selected 5 

wavebands into 50 nm bins based on their band centres (Figure 1). The design and 6 

presentation of the binned wavelengths is adapted from (Fassnacht, Latifi et al. 2016) 7 

with adjustments. Additionally, the bin size of the histogram has the benefit of grouping 8 

highly correlated and often redundant wavebands together, reducing noise from 9 

selection of correlated features from the analysis. The percentage of studies that 10 

selected wavebands within each 50 nm region is presented in the histogram, giving the 11 

selection rate for each 50 nm spectral region. The binned table, and selection rate 12 

histogram (Figure 1) only gives an indication of the rate with which a spectral region was 13 

selected and does not include information on the number of bands selected in each 50 14 

nm bin nor the determined importance of a selected band for subject discrimination. 15 

2.2.1. Spectral Range 16 

Of the studies that met the rules for inclusion in this review, 38 used hyperspectral data 17 

spanning most of the range 350-2500 nm. However, a number of studies utilised devices 18 

that recorded a more restricted wavelength range between 350 and 1100 nm, generally 19 

from 400 nm to 800 nm or 1000 nm (Table 1). These studies are presented separately as 20 

the absence of SWIR and much of the NIR has shown to have an influence on waveband 21 

selection for the VIS and partial NIR (Rivard, Sanchez-Azofeifa et al. 2008). Although 22 

selection rates in the VIS/NIR studies appear similar to those from broader wavelength 23 

hyperspectral studies there are some notable differences.  The initial peak in selection 24 

rates present in both sets is shifted towards shorter blue wavelengths, and a greater 25 

importance of the red edge over the red minimum is evident for the VIS/NIR studies. 26 

However, the overall pattern is the same with two peaks in the rate of selection at both 27 

the blue/green and red reflectance minima, with yellow wavelength bands having the 28 

lowest selection rate save for the sub 400 nm bands that appear in a very limited 29 

number of studies. Although the VIS/NIR studies do not cover the full NIR region, 30 

selection rates for the red edge and shorter wavelength NIR are closely matched 31 
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between both groups (Figure 1). The overall higher rates present in the VIS/NIR table 1 

results from the smaller number of studies in that group, with selection rates tending to 2 

decrease as more studies are added. Additionally, the relatively small number of studies 3 

included in the VIS/NIR group prevents the analysis of specific subsets such as canopy 4 

and leaf. The following discussion of selection rates refers to VIS/SWIR studies (Table 2) 5 

and is generally applicable to the VIS/NIR studies, although, particular discussion of the 6 

VIS/NIR studies is included when required.  7 
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Figure 1. Waveband selection binned at 50 nm intervals for the VIS/SWIR studies (350 -2500 nm) green, 1 

VIS/NIR studies (350 – 1100 nm) blue. Orange filled cells represent waveband regions removed from a 2 

study due to noise. Selection rate is the percentage of studies that selected a given 50 nm region for 3 

species classification. Each row of the table is an individual study, with each column being a 50 nm range 4 

bin. Green/blue shaded bins represent at least one waveband being selected from within that range, 5 

orange shaded bins represent removed wavelength regions (e.g. major water absorption regions). 6 

Wavelength bins were only removed if the entire 50 nm region was removed due to noise/atmospheric 7 

effects in that particular study. 8 
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2.2.2. Visible (VIS; 400 – 700 nm) 1 

Primarily a region of low reflectance in living foliage, typically as low as 5 – 10% with the 2 

exception of the green peak at ~550 nm where reflectance can be more than twice that 3 

of surrounding wavelengths (Figure 2). Reflection in the visible wavelengths is 4 

dominated by absorptions from foliar pigments. Differences in leaf pigments between 5 

species have been identified by many studies as important factors for discrimination 6 

(Fernandes, Aguiar et al. 2013), despite variability in the VIS being generally low 7 

compared to longer wavelengths (Asner 1998, Ollinger 2011). Of the pigments, 8 

chlorophyll a and b have the strongest influence over absorption in this region, followed 9 

by that of carotenoids, and anthocyanins whose effects are predominantly masked by 10 

that of chlorophyll. The visible region is one of the most influential regions for 11 

classification, with the vast majority of studies in this review selecting bands from within 12 

it.  The visible wavelengths can be divided into three regions of high discriminatory value 13 

spanning almost the entire visible range; the blue/blue-green edge (400 – 499 nm), the 14 

green peak centred around 550 nm, and the red reflectance minimum (650 – 700 nm) 15 

(Figure 2). Of these, the red reflectance minimum, specifically bands near 680 nm has 16 

previously been identified as the most commonly selected and critical band centre for 17 

crop type discrimination (Thenkabail, Smith et al. 1999). The continued selection of 680 18 

nm, along with neighbouring bands in later studies has validated the importance of this 19 

region amongst agricultural crop studies (Thenkabail, Smith et al. 2002, Thenkabail, 20 

Enclona et al. 2004, Mariotto, Thenkabail et al. 2013, Eddy, Smith et al. 2014), as well as 21 

for other vegetation types (Fung, Yan Ma et al. 2003, Galvão, Roberts et al. 2009, Cho, 22 

Debba et al. 2010, Naidoo, Cho et al. 2012, Ferreira, Grondona et al. 2013, Peerbhay, 23 

Mutanga et al. 2013, Fassnacht, Neumann et al. 2014, Gross and Heumann 2014, Shang 24 

and Chisholm 2014, Richter, Reu et al. 2016). In addition to the obvious relationship with 25 

chlorophyll, absorption in the red region has been related to anthocyanin content, a 26 

foliar pigment responsible for the red colouration in leaves (Blackburn 2006), particularly 27 

evident in juvenile leaves of certain species (Peerbhay, Mutanga et al. 2013). 28 
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Figure 2. Example hyperspectral reflectance of 3 species of tree and key broad regions of the 1 

electromagnetic spectrum (400 – 2400 nm). 2 

The green region has the second highest selection rate amongst both the VIS and entire 3 

measured spectrum (Figure 1). Wavebands selected in this region tend to be focused 4 

around the green reflectance peak at approximately 550 nm, which is strongly correlated 5 

with chlorophyll content (Thomas and Gausman 1977). The green peak, either manually 6 

chosen as a spectral variable as a representation of chlorophyll content or selected via 7 

feature selection, has demonstrated importance in classifying species (Castro-Esau, 8 

Sánchez-Azofeifa et al. 2006, Pu 2009, Jones, Coops et al. 2010, Peerbhay, Mutanga et al. 9 

2013, Alonzo, Bookhagen et al. 2014).  Additionally, absorption in wavebands within the 10 

green region adjacent to the reflectance peak is associated with xanthophylls and 11 

anthocyanins. Xanthophyll pigments protect against photo-oxidation of the 12 

photosynthesis reaction centres during high light conditions (Demmig-Adams and Adams 13 

1996), resulting in short term changes in reflectance at 531 nm. This band, along with 14 

570 nm, makes up the photochemical reflectance index (Gamon, Penuelas et al. 1992). 15 

Anthocyanins can be estimated by an index using anthocyanin’s absorption maximum 16 

near 550 nm, and a band from the red edge, usually 700 nm (Gitelson, Merzlyak et al. 17 

2001). Although not necessarily associated with these additional pigments, studies have 18 

selected bands along the leading edge of the green reflectance peak between 500 – 550 19 

nm (Cho, Debba et al. 2010). 20 

Selection from the blue region (400 – 449 nm) has the third highest rate in the VIS 21 

region, though the blue-green edge (450-499 nm) has an almost equal rate of selection 22 

to the green region (55.8% and 58.8% respectively). The importance of blue bands has 23 
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been established for discriminating within groups of conifers and between conifers and 1 

broadleaf species (Gong, Pu et al. 1997, van Aardt 2000), though its inclusion in 2 

approximately half of the studies, many of which include non-coniferous species, 3 

indicates its importance in general for a wider range of vegetation types. Some of these 4 

non-coniferous studies focused on the savanna ecosystem where blue bands along with 5 

the red reflectance minimum and red edge were informative (Cho, Debba et al. 2010, 6 

Naidoo, Cho et al. 2012). Blue wavelengths are strongly influenced by chlorophyll 7 

absorption, along with carotenoid absorption features present in the 450 – 499 nm 8 

region. Carotenoids have proven important for discrimination of senescent leaves, when 9 

decay of chlorophyll and the diminishing of the strong chlorophyll-absorption feature 10 

reveal the carotenoid absorption feature (Richter, Reu et al. 2016). 11 

However, studies have noted that strong similarities between the visible reflectance of 12 

different species can decrease the significance of VIS wavelengths for classification 13 

purposes. In one such study the NIR region was more informative at distinguishing 14 

species than the VIS, with spectral differences in the VIS region being non-significant 15 

between species (Karlovska, Grīnfelde et al. 2016). Additionally, in a study of tropical 16 

trees, (Rivard, Sanchez-Azofeifa et al. 2008) performed feature selection and 17 

classification on various datasets derived from the same original spectra. One dataset 18 

included the wavelengths 350 – 2500 nm, another excluded the VIS, while another 19 

excluded the SWIR. Although it was found that the full spectrum produced greater 20 

overall classification accuracy, and both reduced datasets produced lower overall 21 

accuracies, individual accuracies for certain species remained high. The classification 22 

model excluding the VIS region maintained high accuracies for 6 out of 20 species, 23 

whereas the model excluding the SWIR maintained high accuracies for 5 out 20 species. 24 

Although the importance of the VIS region has been described by many authors and is 25 

clearly seen in the binned data, studies such as (Rivard, Sanchez-Azofeifa et al. 2008) 26 

demonstrate that wavelength importance is dependent on the species included in the 27 

study. 28 

2.2.3. Red Edge (680-780 nm) 29 

The red edge encompasses the region from the red reflectance minimum around 680 30 

nm to the NIR shoulder at approximately 780 nm, and indicates the sharp increase in 31 
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reflectance from the VIS to NIR regions associated with strong chlorophyll absorptions 1 

and internal leaf structure (Figure 2). The inflection point of the slope in this region has 2 

been defined as the Red Edge Position (REP) (Clevers, De Jong et al. 2002), and its strong 3 

correlation with chlorophyll concentration has seen it used as an indicator of stress and 4 

senescence in vegetation (Dawson and Curran 1998, Gholizadeh, Mišurec et al. 2016). In 5 

the VIS-SWIR studies the red edge region as represented by the 700-749 nm bin has the 6 

same rate of selection as the red minimum bin, whereas the VIS-NIR studies have a 7 

slightly higher red edge rate than red minimum. However, as previously stated, the 8 

delineation between the red minimum bin (650-699nm) and the red edge bin (700 – 9 

749nm) means that bands selected from the lower point of the red edge would be 10 

included in the red minimum bin, potentially skewing red edge band selection rates.  11 

The red edge region has been described as one of the most informative and frequently 12 

selected regions in a number of studies, where the authors have attributed its 13 

importance to its correlation with chlorophyll abundance, nitrogen concentration, water 14 

content and structural features such as Leaf Area Index (LAI) (Clark, Roberts et al. 2005, 15 

Dalponte, Bruzzone et al. 2009, Cho, Debba et al. 2010, Dalponte, Bruzzone et al. 2012). 16 

Additionally, significant variation of the red edge region between species has been 17 

documented after a first derivative transformation has been applied to the spectra 18 

(Cochrane 2000). The red edge has proven especially important in studies discriminating 19 

species with high levels of chlorophyll and high LAI values such as the giant reed (Arundo 20 

donax), in which a distinctive “red shift” is seen where the REP is located at higher 21 

wavelengths (Adam and Mutanga 2009, Fernandes, Aguiar et al. 2013). This “red shift” 22 

mirrors the “blue shift” of the REP where its position is shifted towards the shorter blue 23 

wavelengths associated with a decrease in chlorophyll and used to monitor senescence 24 

or stress (Rock, Hoshizaki et al. 1988).  25 

2.2.4. Near Infrared (NIR) (700-1327 nm) 26 

The NIR is often defined to include wavelengths within the red edge region (680 -780 27 

nm) (Jones, Coops et al. 2010): as this region has been previously discussed, this section 28 

focusses on the NIR plateau (780 – 1327 nm). The high reflectance of the plateau results 29 

from scattering of photons within the leaf structure due to a change in the refractive 30 

index from liquid water to air within the inter-cellular spaces (Knipling 1970). Two minor 31 
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water absorption features at ~ 980 nm and ~ 1200 nm are the only major features of 1 

plateau. Along with water content, the depth and width of these absorptions can be 2 

influenced by the spectral recording method. Canopy scale spectra tend to produce 3 

deeper and wider absorption features compared to leaf scale, at which absorption 4 

features can vary with leaf stack thickness (Clark, Roberts et al. 2005). High levels of 5 

intraspecific variability have been identified in the NIR and related to leaf age, water and 6 

chlorophyll concentration, as well as herbivory, necrosis and epiphyll cover (Datt 2000, 7 

Clark, Roberts et al. 2005). Wavebands selected in studies reporting these high levels of 8 

intraspecific variation have generally been limited to the water absorption features (Datt 9 

2000, Dalponte, Bruzzone et al. 2012), although it has been suggested to avoid band 10 

selection from within or near water absorption features due to this high level of within 11 

class variability, specifically for Eucalypts (Kumar 2007, Kumar, Skidmore et al. 2010, 12 

Shang and Chisholm 2014). Despite this, (Clark, Roberts et al. 2005) reported greater 13 

interspecific variability in the NIR, particularly at the canopy scale, potentially related to 14 

species specific photon scattering caused by differences in canopy architecture, a result 15 

also reported by other studies (van Aardt 2000, Karlovska, Grīnfelde et al. 2016). 16 

However, it has been suggested that the importance of the NIR and SWIR in (Clark, 17 

Roberts et al. 2005) is linked to the time delay between leaf collection and spectral 18 

measurement, causing a decrease in water content and affecting waveband importance 19 

(Ferreira, Grondona et al. 2013). 20 

Even when the high selection rate of the red edge is included, the average selection rate 21 

of the NIR is close to being half of that of the VIS, placing it third after the near SWIR. 22 

However, there are two small peaks in the rate of selection within the NIR, in bins 950 – 23 

999 nm and 1150 – 1199 nm, both of which are associated with water absorption 24 

features near 980 and 1200 nm. Despite having one of the lowest rates, some studies 25 

have reported that bands in the NIR plateau are the most strongly discriminating 26 

(Schmidt and Skidmore 2003, Wang, Xu et al. 2009).  27 

2.2.5. Shortwave Infrared (SWIR) (1328 – 2500 nm) 28 

Based on the binned results (Figure 1) the SWIR can be divided into two distinct regions, 29 

the near SWIR (NSWIR) from 1350 – 1800 nm including the strong water absorption 30 

feature at 1350 – 1450 nm, and the far SWIR (FSWIR) from 1800 -2500 nm, including 31 
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another strong water absorption feature from 1800 – 2000 nm. The wavebands 1 

associated with these water absorption features that mark the start of the SWIR and 2 

separate the near and far SWIR are often removed from spectra due to high levels of 3 

noise, as are the bands at the far end of the SWIR above 2400 nm. Selection rates within 4 

the NSWIR is on average the second highest, primarily caused by high rates of selection 5 

at 1350 – 1450 and 1700 – 1750 nm. This initial high selection rate spanning two 6 

consecutive bins is associated with the water absorption feature focused around 1400 7 

nm. However, these bins are often removed in studies, primarily when hyperspectral 8 

imagery is used due to increased noise that is not as prevalent in lab or field spectra. 9 

Selection rates then drop in the mid-NSWIR bands before peaking again for the 1700-10 

1750 nm bin, containing wavebands often associated with lignin, cellulose, tannins, and 11 

other biochemical constituents of foliar and non-foliar plant matter (Curran 1989, 12 

Elvidge 1990). The FSWIR has the lowest average band selection rate with its highest 13 

selection at bin 2250 – 2299 nm most likely associated with weak absorption features of 14 

cellulose and lignin present at 2270nm (Curran 1989, Elvidge 1990). 15 

As the selection results suggest, wavebands selected from the SWIR are reported in the 16 

literature as being associated with water absorption (Datt 2000, Thenkabail, Enclona et 17 

al. 2004, Adam, Mutanga et al. 2012, Ferreira, Grondona et al. 2013, Thenkabail, 18 

Mariotto et al. 2013, Fassnacht, Neumann et al. 2014, Shang and Chisholm 2014, 19 

Ferreira, Zortea et al. 2016) or the weak harmonic and overtone absorptions from 20 

biochemicals such as lignin, starch, and cellulose (Thenkabail, Enclona et al. 2004, Wang, 21 

Xu et al. 2009, Jones, Coops et al. 2010, Ferreira, Grondona et al. 2013, Thenkabail, 22 

Mariotto et al. 2013, Alonzo, Bookhagen et al. 2014, Shang and Chisholm 2014, 23 

Lehmann, Große-Stoltenberg et al. 2015, Ferreira, Zortea et al. 2016). However, as 24 

described in regards to the NIR, selection of bands in or near water absorption features 25 

may not be suitable for classification in field or lab spectra, due to high levels of 26 

intraspecific variance (Kumar, Skidmore et al. 2010, Shang and Chisholm 2014). 27 

Additionally, bands selected from leaf scale spectra in the two major water absorption 28 

features would not be applicable to remotely sensed imagery as they coincide with low 29 

irradiance levels resulting from atmospheric water absorption. The observation of higher 30 

selection rates in the NSWIR compared to the FSWIR has previously been made with 31 



41 

 

studies noting the importance of NSWIR bands and absence of selection from the FSWIR 1 

(Jones, Coops et al. 2010, Alonzo, Bookhagen et al. 2014), even when visual differences 2 

between species were apparent (Wang, Xu et al. 2009). Possible reasons for this reduced 3 

selection of the FSWIR could be high levels of LAI or leaf water content masking the 4 

biochemical features present in this region (Kokaly, Asner et al. 2009), or high 5 

correlation between the FSWIR, NSWIR and VIS bands (Alonzo, Bookhagen et al. 2014). 6 

2.2.6. Canopy and Leaf Scale Spectral Selection Rates 7 

The red edge has been demonstrated as one of the most frequently selected regions 8 

(Figure 1), though the remainder of the NIR (consisting of 12 bins from 750 – 1349 nm) 9 

has the second lowest mean selection rate, only slightly higher than the FSWIR. As the 10 

literature has identified an increase in importance of the NIR for canopy spectra, a 11 

comparison of band selection rates for each bin was made between canopy and leaf 12 

scale spectral studies (Figure 3). Leaf spectra were defined as only containing pure leaf 13 

reflectance, with canopy being primarily leaf spectra, though also containing non-14 

photosynthetic vegetation and potentially background reflectance. This comparison 15 

shows a clear increase in selection rates for the NIR bins associated with water 16 

absorption features for the canopy studies, and a related decrease amongst the leaf 17 

scale spectra. Differences are also apparent in the visible regions with a substantial 18 

increase in selection of the leading edge of the green peak, and a decrease in selection 19 

of the trailing edge of the green peak for leaf scale studies compared to canopy level 20 

(Figure 3). This would indicate a blue-shift for green bands selected in leaf scale spectra, 21 

and a red-shift of selected bands for canopy spectra. Differences in spectral reflectance 22 

for the VIS region have been identified at different scales, with branch/canopy spectra 23 

including reflectance characteristics from non-foliar sources, shadows and uneven 24 

lighting, as well as generally displaying an increase in pigment absorption features (Asner 25 

1998, Clark, Roberts et al. 2005). Variation in selection rates is also evident in the SWIR, 26 

most notably a broad region of increased selection for canopy spectra across four bins 27 

from 1950 to 2149 nm, and a sudden peak at 1800 – 1850 nm. The selection peaks of the 28 

canopy spectra correspond to regions of water absorption which have demonstrated an 29 

increase in depth and width in canopy studies. However, the disparity between canopy 30 

and leaf scale spectra is potentially exaggerated by the fact that a majority of canopy 31 
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studies eliminate these wavebands due to noise concerns, with the remaining few 1 

studies selecting these wavebands as being discriminatory. Increased selection of the 2 

broader region could also be related to water absorption, as well as structural 3 

components such as lignin and cellulose, particularly from non-photosynthetic material 4 

in the canopy (Clark, Roberts et al. 2005). The NSWIR however demonstrates the highest 5 

degree of conformity for a large region, covering 9 bins from 1300 – 1750 nm. 6 

 

Figure 3. Waveband selection rates for 350 – 2500 nm studies (Table 2) per 50 nm bins of both canopy and 7 

leaf scale spectra. 8 

2.3. Feature selection 9 

Feature selection is implemented to select a subset of features to improve 10 

generalization and computation requirements while preserving or improving 11 

classification accuracy. In this review feature selection and waveband selection is used 12 

interchangeably. Feature selection techniques are generally divided into three 13 

categories: filter, wrapper, and embedded methods. Filter methods are named as such 14 

as they act as a pre-processing step that filters out irrelevant features. Filter methods 15 

are known to be computationally fast and efficient, though are generally outperformed 16 

by the other methods, as well as not being able to handle nonlinear relationships 17 

(Alonso-Atienza, Rojo-Álvarez et al. 2012).  18 

2.3.1. Filter methods 19 

Analysis of variance (ANOVA) is a parametric statistical filter method to determine 20 
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significant differences between group means. Related to ANOVA is the non-parametric 1 

Mann-Whitney U-test, and the Kruskal-Wallis test which extends the Mann-Whitney U-2 

test for more than two groups (Schmidt and Skidmore 2003). Following initial 3 

dimensionality reduction by one of these methods a secondary feature selection step to 4 

further reduce the number of selected features is used, such as LDA (Wang, Xu et al. 5 

2009), Classification and Regression Trees (CART) (Adam and Mutanga 2009, Fernandes, 6 

Aguiar et al. 2013), or manual selection of known influential bands (Schmidt and 7 

Skidmore 2003, Prospere, McLaren et al. 2014, Shang and Chisholm 2014). This 8 

secondary selection step found important bands in the VIS and SWIR, with reduced 9 

selection of NIR bands (Wang, Xu et al. 2009, Fernandes, Aguiar et al. 2013), however, 10 

the reverse was found by (Adam and Mutanga 2009) where CART secondary selection 11 

was restricted to NIR wavelengths. The remainder of the studies manually selected 12 

bands that differentiated the greatest number of species pairs (Prospere, McLaren et al. 13 

2014), or selected known influential bands from the wavelengths that demonstrated 14 

high levels of pairwise group variance (Schmidt and Skidmore 2003, Shang and Chisholm 15 

2014). 16 

 17 

2.3.2. Wrapper methods 18 

Wrapper methods search for a subset of features that gives the best classification 19 

performance, with the best performing subset being selected. Although generally 20 

considered to outperform filter methods, wrappers are known to be computationally 21 

demanding and can suffer from overfitting (Alonso-Atienza, Rojo-Álvarez et al. 2012). 22 

Two of the studies reviewed implemented Genetic Algorithms (GA), in which wavebands 23 

are encoded as genes that are subsequently grouped into chromosomes. These 24 

chromosomes are allowed to evolve over many generations where their fitness, as 25 

determined by a classifier, controls their likelihood to reproduce and pass their genes 26 

onto the next generation. Fitness of chromosomes is determined each generation by a 27 

chosen classifier, with the classification accuracy of each chromosome being its fitness 28 

score, chromosomes with increased fitness are more likely to reproduce. Both studies 29 

used the same dataset of lab measured tropical mangrove leaves (Vaiphasa, 30 

Ongsomwang et al. 2005, Vaiphasa, Skidmore et al. 2007). Selection of bands differed 31 
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between the two studies despite the use of the same dataset and feature selector, 1 

though methodologies did differ. The variability of selected bands with similar 2 

classification performance seen between these studies demonstrates that multiple band 3 

selections can perform classification equally well. The ensemble of chromosomes used in 4 

(Vaiphasa, Skidmore et al. 2007) helped identify key regions for discriminating target 5 

species related to biophysical and biochemical aspects of the vegetation that may have 6 

been missed if a study was reliant upon the first single chromosome to reach the 7 

stopping criterion. This is apparent when comparing the bands selected in both studies, 8 

with (Vaiphasa, Ongsomwang et al. 2005) selecting no VIS bands, resulting in the authors 9 

concluding that pigments were not significant for the discrimination of the target 10 

species. However, the importance of the VIS, particularly the green region became 11 

apparent in (Vaiphasa, Skidmore et al. 2007) where 21 out of 120 total bands were 12 

selected from 513 +/- 19 nm.  13 

Forward feature selection (FFS) is a wrapper method of feature selection that begins 14 

with a model containing a single feature that best discriminates the classes, with new 15 

features iteratively added to the model based on their ability to improve class 16 

discrimination (Pudil, Novovičová et al. 1994). FFS was implemented by (Gross and 17 

Heumann 2014) in their comparison between floral and leaf spectra: only the results for 18 

leaf spectra are discussed here. The leaf spectra within this study were constrained to 19 

475 – 900 nm at 1 nm increments, with only 8 wavebands being selected. These bands 20 

came from narrow regions of the spectra, occurring in the blue, red minimum and red 21 

edge regions. In a similar spectral range of 402.9 to 989.1 nm of airborne collected 22 

spectra a very different feature selection trend was observed by (Dalponte, Bruzzone et 23 

al. 2012) following use of the FFS variant Sequential Floating Feature Selection (SFFS). 24 

Wavebands were selected from across the entire reduced spectrum, with a notable gap 25 

in selection occurring in the NIR between 800-849 nm. Selection differences exhibited 26 

between these studies could be related to the differences in target species, leaf or 27 

canopy scale spectra, or version of FFS used. The only VIS-SWIR study in this review to 28 

use FFS applied it to AVIRIS imagery of urban street trees (Alonzo, Bookhagen et al. 29 

2014). However, feature selection was only performed to identify spectral regions 30 

responsible for species separability, with all bands used for classification. These 31 
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informative spectral regions matched a number of known informative regions from the 1 

literature, such as water absorption in the NIR, cellulose and lignin features in the SWIR, 2 

and bands associated with photosynthetic pigments in the VIS. Interestingly however, 3 

the highly selected red minimum and red edge were not selected in this study, along 4 

with the majority of the NIR. 5 

2.3.3. Embedded methods 6 

Despite being described as a wrapper method in (Prospere, McLaren et al. 2014), 7 

Recursive Feature Elimination with a Support Vector Machine (SVM-RFE) is considered to 8 

be an embedded method (Guyon, Weston et al. 2002). Embedded methods differ from 9 

wrappers, as they do not treat the classifier as a black box, rather, features are selected 10 

using information gained whilst training the classifier (Deng and Runger 2012). A claimed 11 

strength of SVMs as a classifier is its reported independence of the Hughes effect or 12 

curse of dimensionality (Melgani and Bruzzone 2004, Pal and Mather 2004). However, it 13 

has been shown that SVM classifications can be affected by the Hughes effect and can 14 

benefit from dimensionality reduction of its inputs, especially when sample sizes are 15 

small (Pal and Foody 2010).  16 

In order to be used as a feature selection method, (Prospere, McLaren et al. 2014) 17 

implemented Recursive Feature Elimination (RFE) with a SVM, determining that from the 18 

original 401 bands the optimal number of features to include for classification is 20, after 19 

1-5, 10, 15, 20 and 30 where all evaluated. The 20 bands selected demonstrated a 20 

number of trends that were not apparent in the other feature selection methods 21 

implemented in the same study. Firstly, the bands formed four distinct contiguous 22 

clusters at 520 – 530 nm, 745 – 775 nm, 1005 – 1030 nm, 2295 – 2305 nm, and then a 23 

final single band at 2345 nm at 5 nm bandwidths. Secondly, the wavelengths of certain 24 

selected bands were also unique amongst the methods used, with SVM-RFE being the 25 

only method to select bands from the NIR plateau out of all feature selection methods 26 

implemented in (Prospere, McLaren et al. 2014). Additionally, being the only method to 27 

not select bands from the NSWIR. Although not reported in a manner suitable for 28 

inclusion in Table 1, (Fassnacht, Neumann et al. 2014) also performed feature ranking 29 

with a SVM. As with (Prospere, McLaren et al. 2014), (Fassnacht, Neumann et al. 2014) 30 

identified the optimal number of features to be between 15 and 20, depending on the 31 
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dataset, pre-processing, and feature selection methods used. Unlike (Prospere, McLaren 1 

et al. 2014) where the SVM selected bands from distinct contiguous regions, (Fassnacht, 2 

Neumann et al. 2014) report the SVM selecting bands evenly spread over the entire 3 

spectrum. 4 

Random Forest (RF) is an ensemble classification method, in which a number of decision 5 

tree classifiers are trained from a sub-sample of the dataset, with their results combined 6 

via a voting system. One third of samples are retained for validation purposes known as 7 

the out-of-bag (OOB) samples with the remaining in-the-bag samples being used to 8 

construct the decision tree (Breiman 2001).  9 

Of the original 72 bands in (Naidoo, Cho et al. 2012) between 384.8 nm and 1054.3 nm, 10 

8 were selected for classification via RF. Although no other feature selection method was 11 

implemented in this study, a previous study by (Cho, Debba et al. 2010) performed 12 

feature selection with the Spectral Angle Mapper (SAM) add-on Selector using the same 13 

data. This resulted in the selection of a far greater 31 bands. Upon binning of the bands 14 

at 50 nm a clear difference in the selection methods are evident (Figure 1). The RF 15 

selected bands of (Naidoo, Cho et al. 2012) are focused in the 400 – 550 nm region with 16 

a single band from the red edge at 706 nm, whereas the SAM bands are focused along 17 

the red edge and NIR plateau between 650 and 950 nm, with additional bands in the 350 18 

– 450 and 1000 – 1050 nm regions.  19 

As with the bands selected in Naidoo, Cho et al. (2012), the RF selected bands in Chan 20 

and Paelinckx (2008) fell within 4 bins in the VIS and VNIR regions. However, in Naidoo, 21 

Cho et al. (2012) band selection was focused on the green region with limited selection 22 

apparent in the red and NIR plateau with the exception of a single band near the Red 23 

Edge inflection point. This focus was seemingly switched in Chan and Paelinckx (2008) 24 

with bands falling into the bins along the Red Edge up to the NIR plateau shoulder, with 25 

the remaining bin occurring at the blue/green edge. The Chan and Paelinckx (2008) 26 

study also offers a comparison to an alternative feature selection method using the best-27 

first search (BFS) algorithm as a wrapper. The band selection techniques differ greatly in 28 

the VIS and VNIR regions with only the bins at 450-499 and 700-749 in common. 29 
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However, band selection is more similar at longer wavelengths where the majority of 1 

bands were selected by both methods.  2 

The wavebands selected via RF in Prospere, McLaren et al. (2014) are in direct 3 

opposition to those selected by RF in Chan and Paelinckx (2008). Selected bands in Chan 4 

and Paelinckx (2008) mainly occurred along the red edge and NIR plateau shoulder, no 5 

band was selected in this region by Prospere, McLaren et al. (2014). Instead, focus was 6 

placed on the green, yellow, and red regions of the VIS wavelengths, an area completely 7 

ignored by Chan and Paelinckx (2008) RF selector, though significant for their BFS 8 

selection. Additionally, Prospere, McLaren et al. (2014) provided the top 20 informative 9 

bands determined by a RF classifier using the full 201 waveband dataset. Although these 10 

two implementations of RF differed in selecting bands, the overall trend was very similar 11 

with high selection rates in the VIS, low in the NIR and similar selection throughout the 12 

SWIR.  13 

Additionally a study by Adam, Mutanga et al. (2012) produced waveband selections 14 

similar to those in Prospere, McLaren et al. (2014) with similar results in the VIS with the 15 

exception of no selection in the early green (500 – 549 nm), and selection of the red 16 

edge bin rather than the red minimum. The biggest difference between Adam, Mutanga 17 

et al. (2012) and all other RF studies is the reduced selection at longer wavelengths, 18 

although all studies essentially ignored the NIR, only selected 2 bands from the SWIR, 19 

both within the same NSWIR bin at the water absorption feature near 1400 – 1449 nm. 20 

2.3.4. Comparison of Stepwise Discriminant Analysis (SDA) with non-21 

SDA feature selectors 22 

Stepwise discriminant analysis is a filter method that selects a subset of features by 23 

attempting to minimise within-class variation while simultaneously maximising between-24 

class variation (Huberty 1994). Although a number of metrics are available to determine 25 

class separability, Wilk’s lambda is by far the most frequently used to enter and remove 26 

variables from the selection in a stepwise manner. Some studies reported Wilk’s lambda 27 

approaching zero and becoming asymptotic, indicating near perfect separation of classes 28 

(Thenkabail, Mariotto et al. 2013). Features selected after this point can be safely 29 

removed from the model as they will not substantially increase classification accuracy. 30 
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This normally resulted in the selection of 10 – 20 wavebands (Datt 2000, Thenkabail, 1 

Enclona et al. 2004, Van Aardt and Wynne 2007, Mariotto, Thenkabail et al. 2013, 2 

Thenkabail, Mariotto et al. 2013). 3 

SDA in general selects wavebands more uniformly across the spectrum than other 4 

methods, though the greatest number of selected bands is still found in the VIS (Figure 5 

4). The most significant difference for selection rates is the increased importance of the 6 

NIR beyond the red edge. The NIR demonstrates significant selection with the use of SDA 7 

in all bar a first derivative dataset from Van Aardt and Wynne (2007), and Datt (2000), 8 

with the author of the latter suggesting high levels of intraspecific variance due to 9 

differences in leaf maturity as the reason no bands were selected in this region. 10 

Upon comparing the selection rates of SDA studies compared to non-SDA, a clear 11 

difference in selection of NIR bands is apparent. As with the difference between canopy 12 

and leaf scale spectra the increased selection is focused around the NIR water 13 

absorption features (Figure 4). Additionally, in the VIS there is significantly higher 14 

selection for the blue, green and red regions in SDA studies. In order to determine if 15 

spectral acquisition scale or feature selection technique had greater influence on band 16 

selection the selection rates were further subset into canopy studies using SDA and non-17 

SDA feature selection and leaf scale studies using SDA and non-SDA selection (Figure 5). 18 

It is apparent that the feature selection method has a greater impact on band selection 19 

rates, with SDA selecting from the NIR with far greater rates than the non-SDA methods 20 

in both canopy and leaf scale studies. The non-SDA methods demonstrated minimal 21 

selection in the NIR beyond the red edge for leaf scale spectra, with only a slight increase 22 

in selection for canopy spectra focused around the water absorption wavelengths from 23 

1150-1250 nm. The studies that did select from the NIR with leaf scale samples via non-24 

SDA methods stated that the selected bands represented differences in internal 25 

reflectance for leaf scale spectra (Vaiphasa, Skidmore et al. 2007). The blue and red 26 

shifts around the green peak for canopy and leaf scale spectra are still evident once the 27 

data has been subset into SDA/non-SDA, although it becomes apparent that the high 28 

rates of selection in many parts of the VIS is driven by the SDA studies. However, the use 29 

of SDA does not explain the selection rates of the VIS for the reduced spectral domain 30 

VIS/NIR studies, as only a single study used SDA for feature selection, perhaps indicating 31 
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an alternate driving force. The red edge demonstrates its robustness to variations in 1 

measurement scale and band selection technique as it was frequently selected for all 2 

study subsets, although slightly less frequently for leaf scale spectra with non-SDA 3 

feature selection. 4 
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Figure 4. Waveband selection rates for 350 – 2500 nm studies that used SDA feature selection, and 1 

selection rate of all other feature selection methods combined. 2 

 

 

Figure 5. Waveband selection rates for 350 – 2500 nm studies that used SDA feature selection subset by 3 

canopy and leaf scale spectra, and selection rate of all other feature selection methods combined subset 4 

by canopy and leaf scale spectra. 5 

According to Thompson (1989) “Stepwise analytic methods may be among the most 6 

popular research practices employed in both substantive and validity research”. Despite 7 

this statement being made in the late 1980s the use of SDA in approximately a third of 8 

the studies included in this review demonstrates its continued popularity, being by far 9 

the most used method encountered. However, the widespread use of stepwise methods 10 
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has prompted strong arguments against its usage (Huberty 1994, Thompson 1995, 1 

Whitaker 1997, Flom and Cassell 2007), particularly so when utilised in a predictive 2 

discriminant analysis application such as feature selection for classification (Huberty and 3 

Barton 1989). The studies that utilised SDA in this review made no mention of these 4 

criticisms and therefore no direct attempt to mitigate them. Despite this, Eddy, Smith et 5 

al. (2014) did validate their model with 20 repetitions of 1000 random samples, with the 6 

final feature subset being based on the selection rates of features across the repetitions, 7 

consideration of important features identified in the literature from Lewis (2002) and 8 

Thenkabail, Enclona et al. (2004) as well as the results from Principal Component 9 

Analysis (PCA). PCA is a mathematical transformation used to produce uncorrelated 10 

features from the spectral features, reducing dimensionality whilst retaining the most 11 

informative spectral data. Additionally, Thenkabail, Enclona et al. (2004), and Mariotto, 12 

Thenkabail et al. (2013), included SDA as part of an ensemble of feature selection 13 

methods, again determining the final feature subset based on the selection rates of 14 

features across all methods within the ensemble. Although one of these ensemble 15 

methods (Lambda – Lambda plots) allows for the identification and removal of 16 

correlated features, in both cases it was run in parallel to SDA with removal of correlated 17 

features occurring after features had been selected. The remaining studies reported no 18 

efforts to mitigate the concerns of using SDA for feature selection (Datt 2000, Van Aardt 19 

and Wynne 2007, Jones, Coops et al. 2010, Papeş, Tupayachi et al. 2010, Thenkabail, 20 

Mariotto et al. 2013, George, Padalia et al. 2014). 21 

It must be acknowledged that the sub-setting of reviewed studies into canopy and leaf 22 

scale, and then into SDA and non-SDA meant each class was only represented by a small 23 

number of samples (~8 per class), though leaf-SDA was only represented by 5 studies 24 

extracted from 2 papers. As a result of this, a few outliers are evident, such as the 100% 25 

selection in bin 1700 - 1749 nm and the 100% selection of the 500 - 549 nm bin, both 26 

associated with the low leaf-SDA sample size. Additionally, the comparison of SDA to 27 

non-SDA may disguise selection biases of the non-SDA methods as they are often only 28 

represented by one or two studies, with any bias they may exhibit being masked by the 29 

selection rates of the other methods. 30 
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2.4. Study design influence 1 

All aspects of a study design influence waveband selection. However, many of these 2 

aspects may be outside the control or be heavily constrained for the researcher, such as 3 

target classes, number of samples and collection method, though the researcher often 4 

has control over data pre-processing, feature selection, and classification methods. Due 5 

to this, and the apparent influence of feature selectors previously described we focus on 6 

how choice of feature selection method effects waveband selection.  7 

In order to ascertain any influence feature selection may have over waveband selection, 8 

some of the most common feature selection methods were applied to a synthesised 9 

dataset. A key requirement for these experiments is the need for a dataset with many 10 

species with large numbers of samples, something generally lacking in vegetation 11 

hyperspectral data. To accomplish this a hyperspectral synthesis method was created 12 

(Hennessy, Clarke et al. 2021) to allow for the creation of any number of samples from 13 

22 species of New Zealand plants. The synthesised dataset consisted of 500 samples per 14 

class with 540 wavebands from 350 – 2450 nm at 3 nm bandwidths, excluding regions of 15 

high noise. 16 

Three experiments were devised. First, each feature selection method was performed on 17 

the same dataset cross-validated 10 times (eg. rf_0, rf_1 … rf_9) selecting the top 30 18 

discriminative wavebands, revealing any possible biases in waveband selection resulting 19 

from the choice of feature selection method (Figure 6, 7). Secondly, feature selection 20 

was performed on datasets consisting of different classes and samples to simulate many 21 

different studies, giving an idea if attributes of the samples affects the wavebands being 22 

selected, which will impact generalizability and transferability. Variants of this 23 

experiment were performed were the classes used remained the same as did the 24 

number of samples, though actual samples were randomly selected, additionally the 25 

same classes with differing numbers of samples. Results for these variants did not 26 

significantly differ and therefore aren’t shown here. 27 
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Figure 6. a) Histogram of band feature selection binned at 50nm, ordered by dataset. Four feature selectors 
run on the same dataset 10x cross-validation (new dataset consisting of 10 classes and 200 samples for each 
cross-val.). b) Results of Fig. 6 an ordered by feature selection method. (RF = Random Forest, SDA = Stepwise 

Discriminant Analysis, SFFS = Sequential Floating Feature Selection, SVM = Support Vector Machine) 
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Figure 7. a) PCA dimensional reduction of histogram waveband feature selection. b) T-SNE dimensional 
reduction of histogram waveband feature selection. c) UMAP dimensional reduction of histogram 

waveband feature selection. 

Each dataset produced significantly different waveband selections. This is especially 1 

evident in (Figure 6b) where the histogram is ordered by feature selector, placing each 2 

repetition with a new dataset next to each other. Here it is clear the RF favours the red 3 

edge and NIR bands, essentially ignoring the SWIR. SFFS has higher selection in the VIS, 4 

especially at shorter wavelengths, minimal selection in the NIR and medium selection in 5 

late SWIR. SDA and SVM are the most similar due to both selecting broadly and relatively 6 

evenly along the entire spectrum. Dimensionality reduction techniques offer a way to 7 

visualize the relationship between selection histograms (Figure 7a,b,c). Due to their 8 

broad general selection, SDA and SVM are grouped close to each other with SFFS and RF 9 

adjacent though separate. Further, the histograms are clearly grouped by feature 10 

selection method rather than by dataset, indicating that feature selection method is a 11 

dominant factor as to which wavebands are selected. 12 

2.5. Conclusion 13 

This review of hyperspectral vegetation classification literature has determined that 14 

every aspect of a study can greatly influence selected wavebands and classification 15 

performance. However, despite this we have identified some important and consistent 16 

patterns that appear throughout the literature. Visible wavelengths and their 17 

associations with photosynthetic pigments have played important discriminatory roles in 18 

a wide range of studies, their high levels of selection clearly evident in this review (Figure 19 

1). Selection rates in the VIS showed only minor variations between VIS/SWIR studies 20 

and the VIS/NIR (Figure 1), although the comparisons between canopy and leaf scale 21 

spectra demonstrated significant differences (Figure 3). The discriminatory value of the 22 

red edge has been well documented with its close relationship to chlorophyll 23 
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concentration and structural features. This is reflected in the consistently high rates of 1 

selection of the red edge as well as the robustness of its selection with only minor 2 

variation in magnitude between the comparisons. The inclusion of structural features in 3 

canopy spectra can provide high levels of interspecific variation in the NIR, primarily in 4 

the form of differences in albedo, rather than spectral shape (van Aardt 2000). However, 5 

selection rates from the non-red edge NIR are low, with the selected bands generally 6 

being related to water absorption features and potentially high levels of within class 7 

variability. Additionally, the NIR has demonstrated the greatest degree of variability 8 

between the canopy and leaf scale spectra studies. Wavebands selected in the SWIR are 9 

associated with water absorption and non-photosynthetic biochemicals, with selection 10 

rates heavily skewed towards the NSWIR over the FSWIR.   11 

The reported importance of NIR bands (Schmidt and Skidmore 2003, Wang, Xu et al. 12 

2009) seems to be contentious, primarily being driven by the use of a single feature 13 

selection technique. Comparisons between selection rates for the NIR with and without 14 

the use of SDA as the feature selector are starkly contrasted, with NIR importance being 15 

significantly higher with the use of SDA. The criticisms of SDA and stepwise methods in 16 

general perhaps offer an answer to the selection biases presented in this review. 17 

It is clearly apparent that there is no single best feature selection method, with the same 18 

method performing very differently within and between studies. This suggests that 19 

either multiple methods should be applied to the data or an ensemble of multiple 20 

methods may be the best practice, a conclusion recognized by this review, previously 21 

suggested by some studies (Chan and Paelinckx 2008). Additionally, multiple subsets of 22 

selected features have proven to discriminate species equally well (Prospere, McLaren et 23 

al. 2014), or alternatively, no feature selection, with the original data outperforming 24 

feature selected subsets (Chan and Paelinckx 2008, Alonzo, Bookhagen et al. 2014, 25 

Sommer, Holzwarth et al. 2015). Additionally, as computation power, dataset sizes, and 26 

machine learning techniques all increase, the need for feature selection as a data 27 

reduction technique becomes less necessary. 28 

This review has established that the variability in waveband selection seen between 29 

studies, driven by study parameters beyond characteristics of the target samples 30 



56 

 

prevents determination of generalizable high utility spectral regions for specific 1 

taxonomic discrimination. Broad trends such as the importance of VIS and red edge 2 

wavelengths are apparent, independent of plant groupings, though in and of themselves 3 

they are not sufficiently specific for taxonomic discrimination. The possibility of 4 

discriminatory spectral regions being associated with specific taxonomic, structural or 5 

functional groupings of plants is inconclusive due to the large degree of variability 6 

apparent between studies. This is further highlighted by the apparent dominance of 7 

feature selector choice over other parameters for waveband selection (Figure 6, 7).  8 
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Abstract 1 

New, accurate and generalisable methods are required to transform the ever-2 

increasing amount of raw hyperspectral data into actionable knowledge for 3 

applications such as environmental monitoring and precision agriculture. Here we apply 4 

advances in generative deep learning models to produce realistic synthetic 5 

hyperspectral vegetation data, whilst maintaining class relationships. Specifically, a 6 

Generative adversarial network (GAN) is trained using the Cramér distance on two 7 

vegetation hyperspectral datasets, demonstrating the ability to approximate the 8 

distribution of the training samples.  9 

Evaluation of the synthetic spectra shows that they respect many of the statistical 10 

properties of the real spectra, conforming well to the sampled distributions of all real 11 

classes. Creation of an augmented dataset consisting of synthetic and original samples 12 

was used to train multiple classifiers with increases in classification accuracy seen 13 

under almost all circumstances. Both datasets showed improvements in classification 14 

accuracy ranging from a modest 0.16 % for the Indian Pines set and a substantial 15 

increase of 7.0 % for the New Zealand vegetation. Selection of synthetic samples from 16 

sparse or outlying regions of the feature space of real spectral classes demonstrated 17 

increased discriminatory power over those from more central portions of the 18 

distributions.  19 
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3.1. Introduction 1 

Hyperspectral (HS) Earth observation has increased in popularity in recent years, driven 2 

by advancements in sensing technologies, increased data availability, research and 3 

institutional knowledge. The big data revolution of the 2000s and significant advances 4 

in data processing and machine learning (ML) have seen hyperspectral approaches used 5 

in a broad spectrum of applications, with methods of data acquisition covering wide-6 

ranging spatial and temporal resolutions. 7 

For researchers aiming to classify or evaluate vegetation, hyperspectral remote sensing 8 

offers rich spectral information detailing the influences of pigments, biochemistry, 9 

structure and water absorption whilst having the benefits of being non-destructive, 10 

rapid, and repeatable. These phenological variations imprint a sort of ‘spectral 11 

fingerprint’ that allows hyperspectral data to differentiate vegetation at taxonomic 12 

units ranging from broad ecological types to species and cultivars (Hennessy, Clarke et 13 

al. 2020). Acquiring labelled hyperspectral measurements of vegetation is expensive 14 

and time-consuming, resulting in limited training datasets for supervised classification 15 

techniques. However, this has been slightly alleviated through multi/hyperspectral 16 

data-sharing portals such as ECOSTRESS (JPL/NASA 2021) and SPECCHIO (Hueni, 17 

Chisholm et al. 2020). Supervised classification of such high dimensional data has had 18 

to rely on feature reduction or selection techniques in order to overcome small training 19 

sample sizes and avoid the curse of dimensionality, also called the ‘Hughes 20 

phenomenon’. Additionally, the general requirement of large training datasets in ML 21 

has meant limited success has been had when trying to leverage recent ML progress 22 

towards classification of HS data, often leading to overfitting of models and poor 23 

generalizability. 24 

Data augmentation (DA), the process of artificially increasing training sample size, has 25 

been implemented by the ML community when the problem of small or imbalanced 26 

datasets has been encountered. DA methods vary from simple pre-processing steps 27 

such as mirroring, rotating or scaling of images (Taylor and Nitschke 2017), to more 28 

complicated simulations (Goodenough and Brown 2017, Wang 2019) and generative 29 

models (Bissoto, Perez et al. 2018, Wang, Kang et al. 2018). DA for time series or 1D 30 

data consists of the addition of noise, or methods such as time dilation, or cut & paste 31 
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(Wen, Sun et al. 2020). However, when dealing with non-spatial HS data these methods 1 

would be unsuitable, as it is important to maintain reflectance and waveband 2 

relationships in order to ensure class labels are preserved. Methods of DA such as 3 

physics-based models (Jacquemoud, Verhoef et al. 2009), or noise injection (Slavkovikj, 4 

Verstockt et al. 2015, Nalepa, Myller et al. 2019) have been applied to HS data. Whilst 5 

successful, these methods are either simplifications of reality and require domain-6 

dependent knowledge of target features in the case of physical models or rely upon 7 

random noise, potentially producing samples that only approximate the true 8 

distribution. 9 

Generative Adversarial Networks (GANs) have been used successfully in many fields as 10 

a DA technique, often for images, timeseries/1D (Harada, Hayashi et al. 2019), sound 11 

synthesis (Donahue, McAuley et al. 2018), or anonymising medical data (Esteban, 12 

Hyland et al. 2017). GANs consist of two neural networks trained in an adversarial 13 

manner. The generator (G) network produces synthetic copies mimicking the real 14 

training data while the discriminator (D) network attempts to identify if a sample was 15 

from the real dataset or produced by G. The D is scored on its accuracy in identifying 16 

real from synthetic data, before passing feedback to G allowing it to learn how best to 17 

fool D and improve generation of synthetic samples (Goodfellow, Pouget-Abadie et al. 18 

2014). 19 

The use of GANs to generate synthetic HS data is a relatively new field of study. GANs 20 

of varying architectures ranging from 1D spectral (Audebert, Le Saux et al. 2018, Zhan , 21 

Hu et al. 2017, Xu, Du et al. 2018) to 2D (Feng, Yu et al. 2019), and 3D spectral-spatial 22 

(Zhu, Chen et al. 2018) with differing data embeddings including individual spectra, HS 23 

images, and principal components have been examined. All have been able to 24 

demonstrate the ability to generate synthesized hyperspectral data and to improve 25 

classification outcomes to varying degrees whether through DA or conversion of the 26 

GANs discriminator model to a classifier. However, issues such as training instability 27 

and mode collapse, a common form of overfitting are prevalent. 28 

The work presented in this paper applies advances in generative models to overcome 29 

limitations previously encountered by (Audebert, Le Saux et al. 2018) to produce more 30 
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realistic synthetic HS vegetation data and eliminate reliance on PCA to reduce 1 

dimensionality and stabilise training. Specifically, we train a GAN using the Cramér 2 

distance on two vegetation HS datasets, demonstrating the ability to approximate the 3 

distribution of the training samples while encountering no evidence of mode collapse. 4 

We go on to demonstrate the use of these synthetic samples for data augmentation 5 

and reducing under sampling of class distributions. 6 

3.2. Generative adversarial networks - Background  7 

GANs are a type of generative machine learning algorithm known as an implicit density 8 

model. This type of model does not directly estimate or fit the data distribution but 9 

rather generates its own data which is used to update the model. Since first being 10 

introduced by (Goodfellow, Pouget-Abadie et al. 2014) GANs have become a dominant 11 

field of study within ML/DL, with numerous variants and being described as “the most 12 

interesting idea in the last 10 years in machine learning” by leading AI researcher 13 

(LeCun 2016).  Although sometimes utilizing non-neural network architectures, GANs 14 

generally consist of two neural networks, sometimes more, that compete against each 15 

other in a minimax game. This is where one neural network, the discriminator, 16 

attempts to reduce its “cost” or error as much as possible. This occurs in an adversarial 17 

manner, where the discriminator is trained to maximize the probability of correctly 18 

labelling whether a sample originates from the original data distribution or has been 19 

produced by the generator. Simultaneously the generator is trained to minimize the 20 

probability that the discriminator correctly labels the sample (Gui, Sun et al. 2020). 21 

Because of this the training of GANs is notoriously unstable, with issues such as the 22 

discriminator’s cost quickly becoming zero and providing no gradient to update the 23 

generator, or the generator converging onto a small subset of samples that regularly 24 

fool the discriminator, a common issue known as mode collapse.  Considerable 25 

research has gone into attempting to alleviate these issues, improve training stability 26 

and improve quality of synthetic samples, so much so that during 2018 more than one 27 

GAN-related paper was being released every hour (Gui, Sun et al. 2020).  28 

Unlike non-adversarial neural networks, the loss function of a GAN doesn't converge to 29 

an optimal state, making the loss values meaningless in respect to evaluating the 30 
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performance of the model. In an attempt to alleviate this problem the Wasserstein 1 

GAN (WGAN) was developed to use the Wasserstein distance, also known as the Earth 2 

Mover’s (EM) distance which results in an informative loss function for both D and G 3 

that converges to a minimum (Arjovsky, Chintala et al. 2017). Rather than the D having 4 

sigmoid activation in its final layer producing a binary classification of real or fake, 5 

WGAN approximates the Wasserstein distance which is a regression task detailing the 6 

distance between the real and fake distributions. Due to gradient loss being a common 7 

weakness with WGANs they were improved by applying weight clipping to the losses 8 

with a gradient penalty (GP) (Gulrajani, Ahmed et al. 2017) further improving training 9 

stability. 10 

3.3. Experimental design  11 

Here we implement the CramérGAN, a GAN variant using the Cramér/energy distance 12 

as the Ds loss, reportedly offering improved training stability and increased generative 13 

diversity over WGANs (Bellemare, Danihelka et al. 2017). This choice was informed by 14 

our preliminary testing of wGAN and wGAN-GP that produced noisy synthesized 15 

samples and lower standard deviations, in addition to the learning instability and poor 16 

convergence previously reported for wGAN, which may explain mode collapse 17 

encountered by (Audebert, Le Saux et al. 2018).  18 

Individual models were trained for each hyperspectral class, for a total of 38 models. 19 

Each model was trained for 50,000 epochs, at a ratio of 5:1 (5 training iterations of D 20 

for every 1 of G) using the Adam optimizer at a learning rate of 0.0001, with beta1 = 0.5 21 

and beta2 = 0.9. The latent noise vector was generated from a normal distribution with 22 

length 100. The G consists of two fully connected dense layers followed by two 23 

convolution layers, all using the ReLu activation function save for the final convolution 24 

layer using Sigmoid activation. The final layer of G reshaped the output to be a 2D array 25 

with shape (batch size * number of bands). A similar architecture was used for the D, 26 

though reversed. Starting with two convolution layers into a flatten layer, followed by 2 27 

fully connected dense layers, all layers of D used Leaky ReLu activation except the final 28 

layer which used a linear function (Figure 8). 29 
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 1 

Figure 8. Schematic of GAN architecture 2 

The three classification models (SVM, RF and NN) were evaluated in four permutations: 3 

trained on real data and evaluated on real data (real – real); trained on real data and 4 

evaluated on synthetic data (real – synthetic); trained on synthetic data and evaluated 5 

on synthetic data (synthetic– synthetic); and trained on synthetic data and evaluated 6 

on real data (synthetic– real). Each dataset was split into training and testing subsets 7 

with 10 times cross-validation. All synthetic datasets were restricted to the same 8 

number of samples per class as the real datasets unless specified otherwise. The real - 9 

real experiments were expected to have the highest accuracy and offer a baseline of 10 

comparison for the synthetic samples. If the accuracy of real – synthetic is significantly 11 

higher than real - real it potentially indicates the generator has not fully learned the 12 

true distribution of the training samples. Conversely, accuracy being significantly lower 13 

could mean the synthetic samples are outside the true distribution and are an 14 

unrealistic representation of the spectra.  15 

Extending this analysis, synthetic-synthetic and synthetic-real experiments were 16 

performed with the number of synthesized training samples increasing from 10 to 490 17 

samples by increments of 10 samples per class. The real – synthetic and real – real were 18 

included for comparison with a consistent number of training samples, though training 19 

and evaluation subsets differed every iteration. The initial DA experiment was 20 

performed with the same number of samples for real and synthetic datasets with the 21 

augmented set having twice the number before the number of synthetic samples were 22 

incremented by 10 from 10 to 490 samples per class.  23 
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The data augmentation capabilities of the synthetic spectra were evaluated by similar 1 

methods. First the three classifiers were trained with either real, synthetic or both 2 

combined into an augmented dataset and tested against an evaluation dataset that was 3 

not used in the training of the GAN. 4 

All code was written and executed in Python 3.7. The CramérGAN based upon (Song 5 

2017) using the Tensorflow 1.8 framework. Support Vector Machine (SVM), and 6 

Random Forests (RF) classifiers make use of the Scikit-Learn 0.22.2 library, with 7 

Tensorflow 1.8 utilised for the neural network (NN) classifier. Additionally, Scikit-Learn 8 

0.22.2 provided the dimensionality reduction functions for Principal Components 9 

Analysis (PCA) and t-distributed Stochastic Neighbourhood Embedding (t-SNE), with 10 

Uniform Manifold Approximation and Projection (UMAP) being a standalone library. 11 

Hyperparameters for all functions are provided in Appendix A. 12 

Potential classification power of a sample was estimated with the C metric devised in 13 

(Mountrakis and Xi 2013) for the purpose of predicting the likelihood of correctly 14 

classifying an unknown sample by measuring its Euclidean distance in feature space to 15 

samples in the training dataset. (Mountrakis and Xi 2013) demonstrated a strong 16 

correlation between close proximity to number of training samples and likelihood of 17 

correctly being classified. The C metric is bound between -1 indicating low likelihood 18 

and 1 high likelihood of successful classification. 19 

Rather than focusing on the proximity of an unknown sample to a classifier’s training 20 

data we are interested in the distance of each synthesized sample to that of the real 21 

data in order to evaluate any potential increase in information density. We hypothesise 22 

that a C value closer to the lower bound for a synthetic sample would indicate it being 23 

further away from real data points and of any synthetic samples with C values close to 24 

the upper bound. Such a sample could potentially contain greater discriminatory power 25 

for the classifier as it essentially fills a gap in feature space of the class distribution.  26 

To determine whether some samples of the NZ dataset provide more information to 27 

the classifier than others, and that the improvement in classification accuracy is not 28 

purely from increased sample size, the distance of each generated sample was 29 

measured to all real samples of its class before being converted to a C value as per 30 
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(Mountrakis and Xi 2013), with an h value range of 1-50 at increments of 1. Two data 1 

subsets were then created using the first 100 spectral samples after all synthetic 2 

samples were ordered by their C value in ascending (most distant) and descending 3 

(least distant) order. The first 100 samples from each ordered dataset rather than the 4 

full 500 were used to maximize differences, reduce computation time and simplify 5 

figures. 6 

3.4. Datasets 7 

Two hyperspectral datasets were used to train the GAN: Indian Pines agricultural land 8 

cover types (INDI); and New Zealand plant spectra (NZ). The Indian Pines dataset (INDI) 9 

recorded by the AVIRIS airborne hyperspectral imager over North-west Indiana, USA, is 10 

made available by Purdue University and comprises 145x145 pixels at 20 m spatial 11 

resolution and 224 spectral reflectance bands from 400-2500 nm (Baumgardner, Biehl 12 

et al. 2015). Removal of water absorption bands by the provider reduced these to 200 13 

wavebands, and then reflectance of each pixel was scaled between 0 and 1. Fifty pixels 14 

were randomly selected as training samples except for three classes with fewer than 50 15 

total samples, for which 15 samples were used for training (Table 3). 16 

The New Zealand (NZ) dataset used in this study is a sub-sample of hyperspectral 17 

spectra for 22 species taken from a dataset of 39 native New Zealand plant spectra 18 

collected from four different sites around the North Island of New Zealand and made 19 

available on the SPECCHIO database (Hueni, Chisholm et al. 2020). These spectra were 20 

acquired with an ASD FieldSpecPro spectroradiometer at 1 nm sampling intervals 21 

between 350 – 2500 nm. Following acquisition from the SPECCHIO database, spectra 22 

were resampled to 3 nm and noisy bands associated with atmospheric water 23 

absorption were removed (1326 – 1464, 1767 – 2004, 2337 – 2500) resulting in 540 24 

bands per spectra. Eighty percent of samples per class were used for training the GAN 25 

and 20 % held aside to evaluate classifier performance (Table 4). 26 

  27 
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Table 3. Land cover classes, training and evaluation sample numbers for Indian Pines dataset. 1 

Class ID Class name Training samples Evaluation samples 

INDI1 Alfalfa 15 31 

INDI2 Corn-no-till 50 1378 

INDI3 Corn-min-till 50 780 

INDI4 Corn 50 187 

INDI5 Grass-pasture 50 433 

INDI6 Grass-trees 50 680 

INDI7 Grass-pasture-mowed 15 13 

INDI8 Hay-windrowed 50 428 

INDI9 Oats 15 5 

INDI10 Soybean-no-till 50 922 

INDI11 Soybean-min-till 50 2405 

INDI12 Soybean-clean 50 543 

INDI13 Wheat 50 155 

INDI14 Woods 50 1215 

INDI15 Buildings-Grass-Trees-Drives 50 336 

INDI16 Stone-Steel-Towers 50 43 

 

Table 4. Plant species classes, training and evaluation sample numbers for New Zealand dataset. 2 

Class ID Common name Botanical name Training samples Evaluation samples 

NZ0 Manuka Leptospermum scoparium 58 14 

NZ1 Pohutukawa Metrosideros excelsa 32 8 

NZ2 Koromiko Hebe stricta 42 10 

NZ3 Lemonwood Pittosporum eugenioides 46 12 

NZ4 Kawakawa Macropiper excelsum 34 9 

NZ5 Whiteywood Melicytus ramiflorus 48 12 

NZ6 Totara Podocarpus totara 34 8 

NZ7 New Zealand Flax Phormium tenax 36 9 

NZ8 Akiraho Olearia paniculata 8 2 

NZ9 Rata Metrosideros robusta 9 2 

NZ10 Ngaio Myoporum laetum 38 10 

NZ11 Mapou Myrsine australis 36 9 

NZ12 Cabbage tree Cordyline australis 32 8 

NZ13 Karaka Corynocarpus laevigatus 34 9 

NZ14 Kauri Agathis australis 15 3 

NZ15 Silver fern Cyathea dealbata 28 7 

NZ16 Tangle fern Gleichenia dicarpa var. alpina 14 4 

NZ17 Black tree fern Cyathea medullaris 18 4 

NZ18 Pigeonwood Hedycarya arborea 18 5 

NZ19 Rangiora Brachyglottis repanda 12 3 

NZ20 Karamu Coprosma robusta 13 3 

NZ21 Red Pine Dacrydium cupressinum 16 4 

 3 



76 

 

3.5. Results & Discussion 1 

3.5.1 Mean and standard deviation of training and synthetic spectra 2 

In order to visualize similarities between synthetic and real spectra the mean and 3 

standard deviation for each class are shown for the real, evaluation, and synthetic 4 

datasets. All low frequency spectral features, as well as mean and standard deviations 5 

appear to be reproduced with high accuracy by the GAN. At finer scales of 3-5 6 

wavebands noise is present, most notably throughout the near infra-red (NIR) plateau 7 

(Figure 9). Smoothing of synthesized data by a number of methods resulted in either no 8 

improvement or decreased performance in a number of tests; for this reason, no pre-9 

processing was performed on synthesized samples. Due to the high frequency and 10 

random nature of the noise, once mean and STD statistics are calculated the spectra 11 

appear smooth. 12 

Class 0 is one of the NZ classes with the largest number of samples, resulting in its 13 

mean and standard deviation being similar between its real, evaluation, and synthetic 14 

subsets. However, this is not the case for all classes, with NZ-9 showing the mean and 15 

standard deviation of the randomly selected evaluation samples being vastly different 16 

to those of real and synthetic spectra (Figure 10). The same is seen amongst INDI 17 

classes, with class 2 matching across all 3 data subsets, and class 4 with only 40 samples 18 

showing substantial difference between evaluation and real samples, especially in the 19 

visible wavebands (Figure 11). Although some classes may struggle to represent the 20 

evaluation dataset due to the initial random splitting of the datasets, in general mean 21 

and standard deviation of the synthetic samples very closely match the real training 22 

data. 23 

  24 
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Figure 9. Synthetic spectra of NZ class 0, 350-2400nm at 3nm bandwidths 1 

 

Figure 10. Mean and  +/- 1 STD for training (real), synthetic, and evaluation (real) datasets. (A NZ class 0; 2 

Manuka (L. scoparium), (B NZ class 9; Rata (M. robusta). 3 

 

Figure 11. Mean and  +/- 1 STD for training (real), synthetic, and evaluation (real) datasets. (A INDI class 4 

2; Corn-notill, (B INDI class 4; Corn. 5 
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3.5.2 Generation & distribution of spectra 1 

Here we demonstrate the ability of the GAN to reproduce realistic spectral shapes and 2 

to capture the statistical distribution of the class populations. Three dimensionality 3 

reduction methods — PCA, t-SNE, and UMAP — were applied to both the real and 4 

synthetic datasets of INDI and NZ spectra to reduce their 200 and 540 wavebands 5 

(respectively) down to a plottable 2D space (Figure 12, 13). Upon visual inspection the 6 

class clusters formed by the augmented data across all reduction methods mimic the 7 

distribution of those of the real data. Additionally, due to its small sample sizes the 8 

structure of clusters for the real NZ data is sparse and unclear, though is emphasised by 9 

the large number of synthetic samples.  10 

Such strong replication of the 2D representation of the classes is a good indication of 11 

the generative model’s ability to learn distributions. Even when the models are trained 12 

separately for each class the relationship between classes is maintained. However, the 13 

increased sample number in the synthetic datasets do in some cases extend beyond the 14 

bounds of the real samples. Whilst some may represent potential outliers the majority 15 

are artefacts of increased sample sizes. This is most evident in the UMAP 16 

representation where a parameter that defines minimum distance between samples 17 

can be set, a larger value of which results in increased spread of samples in the 2D 18 

representation (McInnes, Healy et al. 2018). This is most notable in the INDI dataset, 19 

with classes 1, 7, and 8 extending more broadly than the real dataset (Figure 12F).  20 
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Figure 12. Dimensional reduced representations of INDI real and synthetic datasets; highlighted classes 1 

INDI1 - Alfalfa (green), INDI11 – Soybean-min-till (blue). A) Real dataset; PCA reduction, B) Synthetic 2 

dataset; PCA reduction, C) Real dataset; t-SNE reduction, D) Synthetic dataset; t-SNE reduction, E) Real 3 

dataset; UMAP reduction, F) Synthetic dataset; UMAP reduction. 4 
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Figure 13. Dimensional reduced representations of NZ real and synthetic datasets; + highlighted classes 1 

NZ0 – Manuka (L. scoparium) (green), NZ9 – Rata (M. robusta) (blue). A) Real dataset; PCA reduction, B) 2 

Synthetic dataset; PCA reduction, C) Real dataset; t-SNE reduction, D) Synthetic dataset; t-SNE reduction, 3 

E) Real dataset; UMAP reduction, F) Synthetic dataset; UMAP reduction. 4 
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3.5.3 Training classification ability 1 

In order to further examine the similarity of synthetic spectra to the real training data, 2 

three classifiers were trained (SVM, RF, NN), with four permutations of each (real – 3 

real, real – synthetic, synthetic – synthetic, and synthetic - real) (Table 5). With few 4 

exceptions the neural network classifier outperformed the others, with SVM being the 5 

second most accurate, followed by RF. The INDI dataset recorded highest accuracy for 6 

real - real test with RF and NN classifiers at 74.76 % and 84.13 % respectively, although 7 

the highest accuracy for the SVM classifier occurred during the synthetic- real test with 8 

81.42 %.  Comparing the four combinations of real and synthetic, real-real had the 9 

highest accuracy for four experiments, with INDI synthetic-real with the SVM, and NZ 10 

real-synthetic with the RF classifier being the only exceptions.  11 

Table 5. Classification accuracies for classifiers trained on real or synthesised spectral data and evaluated 12 

on either real or synthesised data for both Indian Pines and New Zealand datasets based on real class 13 

sample sizes. 14 

INDI SVM RF NN 

Real - Real 73.48 74.76 84.13 

Real - Synthetic 77.04 66.68 76.50 

Synthetic - Synthetic 79.48 69.38 80.91 

Synthetic - Real 81.42 70.51 81.66 

NZ 

Real - Real 79.86 47.65 95.76 

Real - Synthetic 78.73 60.23 80.54 

Synthetic - Synthetic 74.20 51.33 91.82 

Synthetic - Real 78.19 54.76 81.13 

 

To further evaluate the synthetic spectra, synthetic-synthetic and synthetic-real 15 

experiments were performed with the number of synthesized training samples 16 

increasing from 10 to 490 samples by increments of 10 samples per class (Figure 14). 17 

Synthetic-synthetic accuracy improves with more samples: this too is to be expected as 18 

this simply adds more training samples from the same distribution. Most importantly 19 

synthetic-real accuracy, though often slightly lagging synthetic-synthetic improves in 20 

the same manner, indicating that the synthetic samples are a good representation of 21 

the true distribution and that increasing their number for training a classier is an 22 

effective method of data augmentation. The main exception to this is the NN NZ 23 

classier, where synthetic-synthetic quickly reaches ~100 % accuracy while synthetic-real 24 
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maintains ~80 % before slowly decreasing in accuracy as more samples are added. This 1 

could indicate the NN classifier focuses on different features than the other classifiers, 2 

potentially being more affected by the small-scale noise apparent in the NZ generated 3 

samples as the noise isn’t as apparent in the INDI data and the INDI NN classifier 4 

doesn’t show such a discrepancy between synthetic-synthetic and synthetic-real. 5 

6 
Figure 14. Classification accuracies for classifiers trained on real or synthesised spectral data and 7 

evaluated on either real or synthesised data for both Indian Pines and New Zealand datasets ranging 8 

from 10 - 490 samples per class. (A New Zealand dataset; SVM classifier, (B Indian Pines dataset; SVM 9 

classifier, (C New Zealand dataset; RF classifier, (D Indian Pines dataset; RF classifier, (E New Zealand 10 

dataset; NN classifier, (F Indian Pines dataset; NN classifier. 11 

3.5.4 Data augmentation 12 

In order to test the viability of the synthetic data for data augmentation the same three 13 

classifiers were trained with either real, synthetic or both combined into an augmented 14 

dataset and tested against an evaluation dataset (Table 6). All classifiers had higher 15 

accuracy when trained on the real dataset compared to synthetic, though the highest 16 

accuracy overall was with the augmented dataset. For the INDI data this increase was 17 

minor, being < 1 % for all classifiers. A far more significant improvement was seen for 18 

the NZ data with increases of 3.54 % (to 86.55 %), 0.53 % (to 50.80 %), and 3.73 % (to 19 

85.14 %) for SVM, RF, and NN respectively.  20 
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Table 6. Classification accuracies for classifiers trained on real, synthesised, or augmented spectral data 1 

and evaluated on an evaluation dataset for both Indian Pines and New Zealand datasets based on real 2 

class sample sizes. 3 

INDI SVM RF NN 

Real – Evaluation 70.40 66.40 62.06 

Synthetic - Evaluation 62.82 57.73 51.30 

Augmented - Evaluation 70.56 66.91 62.76 

NZ 

Real - Evaluation 83.01 50.27 81.41 

Synthetic - Evaluation 63.02 36.69 68.60 

Augmented - Evaluation 86.55 50.80 85.14 

 4 

Of course, however, the number of synthetic samples does not have to be limited in 5 

such a manner. As with previous experiments the number of synthetic samples started 6 

at 10 and incremented by 10 to a total of 490, demonstrating the potential of this data 7 

augmentation method. Dramatic increases in accuracy were seen for the synthetic 8 

dataset, with the smallest increase being 5.13 % for INDI-SVM occurring at 490 9 

samples, the largest being 20.47 % for NZ-RF at 420 samples. These increases brought 10 

the synthetic dataset very close to the accuracy of the real samples or even above in 11 

the cases of INDI-NN, NZ-RF, and NZ-NN.  Increases in accuracy were also seen in the 12 

augmented dataset, though not as dramatic as those for the synthetic dataset. 13 

Improvements in accuracy ranged from 0.16 % for INDI-SVM at 10 synthetic samples to 14 

9.45 % for NZ-RF at 280 synthetic samples. These improvements raise the highest 15 

accuracy for the INDI dataset from 70.40 % to 70.56 %, resulting in an increase of 0.16 16 

% over the highest achieved by just the real data. A larger increase was seen in the NZ 17 

dataset with the previous highest accuracy raising from 86.55 % to 90.01 %, an increase 18 

of 3.45 % from the previous augmented classification with restricted sample size, and a 19 

7% increase over the real dataset alone (Table 7).  20 



84 

 

Table 7. Classification accuracies for classifiers trained on real, synthesised, or augmented spectral data 1 

and evaluated on an evaluation dataset for both Indian Pines and New Zealand datasets with sample 2 

sizes ranging from 10 to 490 per class for synthetic and augmented while real contained all real samples. 3 

INDI SVM / Sample size RF / Sample size NN / Sample size 

Real – Evaluation 70.40 / All 66.40 / All 62.06 / All 

Synthetic - Evaluation 67.95 / 490 65.59 / 490 65.05 / 50 

Augmented - Evaluation 70.56 / 10 68.25 / 140 69.77 / 320 

NZ 

Real - Evaluation 83.01 / All 50.27 / All 81.41 / All 

Synthetic - Evaluation 81.35/ 490 57.16 / 420 87.78 /450 

Augmented - Evaluation 90.01/ 120 60.25 / 280 89.25 / 120 

 

3.5.5 Classification power of a synthetic sample  4 

Ordering the synthetic samples by their C value before iteratively adding a single 5 

sample at a time from each class to the training dataset of an SVM classifier shows the 6 

differing classification power of the synthetic samples from lower to upper bounds of C 7 

and vice versa (Figure 15). 8 

 

Figure 15. Classification accuracy of a SVM classifier for C metric ascending and descending ordered 9 

synthetic datasets incremented by single samples. 10 

When in ascending order from lower to upper bounds classification accuracy increases 11 

dramatically, reaching ~60 % accuracy with ~100 samples, while 200 samples were 12 

required for similar accuracy in descending order. At approximately half the number of 13 

samples accuracies converge, then increase at the same rate before reaching 80 % 14 

accuracy at 500 samples. These classification accuracies (Figure 15) provide the first 15 

insight into increased discriminatory power associated with synthetic samples that 16 

occur at distance to real samples. Although not encountered here, a maximum limit to 17 
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this distance would be present with synthetic samples needing to remain within the 1 

bounds of their respective class distributions.  2 

A similar though reduced trend can be seen when the ordered synthetic samples are 3 

used to augment the real dataset. Both ascending and descending datasets improve 4 

classification over that of the real dataset when samples are iteratively added to the 5 

classifiers training dataset (Figure 16). Despite descending ordered samples 6 

outperforming ascending at times, on average ascending achieved ~1.5 % higher 7 

accuracy across the classifications with an average value of 79.72 % to 78.24 % of 8 

descending samples.  9 

 

Figure 16. Classification accuracy of a SVM classifier for C metric ascending and descending augmented 10 

datasets with randomly ordered real dataset incremented by single samples. 11 

This artificial selection of synthetic data points distant or close to the real data 12 

influences sample distribution used to train the classifiers. As one might expect the 13 

ordered data points come from the edges or sparse regions of the real data 14 

distribution, dramatically shifting the mean and standard deviation of the ordered 15 

datasets (Figure 17). 16 

 

Figure 17. A) Mean and B) STD of C metric ascending, descending, and randomly ordered synthetic 17 

datasets incremented by single samples. 18 
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The inclusion of synthetic data points selected at random provides a baseline for 1 

comparison with the ordered datasets. Once the number of samples increases beyond 2 

a few points the means for descending and random converge and stay steady 3 

throughout. Mean values for ascending start significantly higher, though initially begin 4 

to converge towards the other datasets before plateauing at a higher level. Whilst 5 

being averaged across all classes and all wavebands of spectra, the mean reflectance 6 

for the ascending data is consistently higher. Standard deviation of the descending 7 

dataset is consistently low, only slightly increasing as samples are added. This is in stark 8 

difference to the STD of the ascending dataset being ~5 – 6 x higher across all n 9 

samples. The mean of the randomly selected dataset occurs between the means of the 10 

two ordered, though closer to the ascending mean, indicating the samples that make 11 

up the descending dataset are highly conserved.  12 

To further illustrate the relationship of the ordered datasets and the real distribution, a 13 

PCA of one of the classes is shown (Figure 18). As the mean and STD indicated the 14 

descending samples are tightly grouped near the mean and densest area of the real 15 

data distribution, with the ascending samples generally occurring along the border of 16 

the real distribution. Whilst ascending selects for samples with low C and greater 17 

distance from real samples it is important to note that these synthetic samples still 18 

appear to conform to the natural shape of the real distribution, a further indication the 19 

generative model is performing well. 20 
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Figure 18. PCA of NZ class 0; Manuka (L. scoparium) real samples, with first 100 samples of the ascending 1 

and descending C ordered synthetic datasets. 2 

3.6. Conclusions 3 

In this paper we have successfully demonstrated the ability to train a generative 4 

machine learning model for synthesis of hyperspectral vegetation spectra. Evaluation of 5 

the synthetic spectra shows that they respect many of the statistical properties of the 6 

real spectra, conforming well to the sampled distributions of all real classes. Further to 7 

this we have shown that the synthetic spectra generated by our models are suitable for 8 

data augmentation of a classification models training dataset. Addition of synthetic 9 

samples to the real training samples of a classifier produced increased overall 10 

classification accuracy under almost all circumstances examined. Of the two datasets, 11 

the New Zealand vegetation showed a maximum increase of 7.0 % in classification 12 

accuracy with Indian Pines demonstrating a more modest improvement of 0.16 %. 13 

Selection of synthetic samples from sparse or outlying regions of the feature space of 14 

real spectral classes demonstrated increased discriminatory power over those from 15 

more central portions of the distributions. We believe further work regarding this could 16 

see targeted generation to maximize the information content of a synthetic sample 17 

that would result in improved classification accuracy and generalizability with a smaller 18 

augmented dataset. The use of these synthesized spectra to augment real spectral 19 

datasets allows for the training of classifiers that benefit from large sample numbers 20 
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without a researcher needing to collect additional labelled spectra from the field. This is 1 

of increasing significance as modern machine and deep learning algorithms tend to 2 

require larger datasets.   3 
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Abstract 1 

The significant issue of intra-class variance and inter-class overlap has severely reduced 2 

the generalisability of hyperspectral vegetation classification models, resulting in many 3 

studies being singular and ad-hoc, lacking in spatial or temporal transferability. In order 4 

to rectify this, we apply advances in generative deep learning models to produce 5 

realistic synthetic hyperspectral vegetation data, whilst transforming them based upon 6 

the learned features (styles) of the other classes in the study. Specifically, a generative 7 

adversarial network (GAN) is trained on a vegetation hyperspectral dataset, 8 

demonstrating the ability to manipulate their intra/inter-class relationships in a 9 

desirable manner.  10 

Transformations were performed on both the training and evaluation subsets of a 11 

hyperspectral vegetation dataset producing n transformed replicates of every sample 12 

where n is the number of classes in the study. Training classification models and then 13 

evaluating subsets with the same style transformations produced accuracies 14 

significantly higher than those of the original dataset. An accuracy of 97.38 % was 15 

achieved for a single transformed dataset, an increase of 11.95 % over the original 16 

dataset classification accuracy of 85.43 %. This significant increase in accuracy was then 17 

surpassed following the ensembling of all transformed subsets classification results, 18 

reaching an accuracy of 98.62 %. Evaluation of the transformed synthetic spectra shows 19 

the samples to be tightly clustered by class, indicating the successful reduction of intra-20 

class variance as well the reduction in inter-class overlap.  21 
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4.1. Introduction 1 

Hyperspectral (HS) imagery and field recorded spectra contains information detailing 2 

the structure and biochemistry from the surface and internals of plants leaves, as well 3 

as overall architecture and plant structure from branches and trunks. Extracting this 4 

information from the HS measurements can offer insights into plant growth stage, 5 

general health, and even taxonomy. Identification of plant types is a common goal in 6 

remote sensing, from locating invasive species, forestry monitoring, agriculture and 7 

biodiversity monitoring. 8 

 Supervised classification of plants from HS data relies upon the members of a 9 

taxonomic or functional group having similar spectral features to each other whilst 10 

having features distinct from members of other groups within the data. No matter the 11 

taxonomic or phenological resolution of the classes being classified, accuracy is 12 

dependent upon minimising intra-class variability while maximizing inter-class.  13 

Driven by environmental conditions such as nutrient, sunlight and water availability, as 14 

well as growth-stage and seasonality effects, intra-class variability within leaf spectra of 15 

a single plant species can be substantial (Castro-Esau, Sánchez-Azofeifa et al. 2006). For 16 

this reason, classification models are often found to have limited generalisability and 17 

transferability across spatial and temporal distances, with collection of further labelled 18 

reference samples and training of new classification models required for wider 19 

application. This issue plays into the “one place, one time” problem identified by  20 

Woodcock (2002), where studies are often spatially and temporally constrained limiting 21 

their insight and applicability to other related studies. 22 

With the launch of PRISMA (Lopinto and Ananasso 2020), as well as further planned HS 23 

satellites in the near future and technological advancements and reductions in cost 24 

making drone and airborne HS measurements increasingly commonplace more and 25 

more of the environment is being recorded as HS data.  In order to convert these 26 

measurements into actionable knowledge the aforementioned limitations of 27 

generalisability and transferability need to be overcome. Having previously addressed 28 

this issue with generative models and data augmentation with some degree of success 29 

(Hennessy, Clarke et al. 2021), as has others (Nicolas Audebert 2018), we now 30 
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investigate a method analogous to neural style transfer (NST). Conventionally, data 1 

augmentation aims to expand an available training dataset by synthesizing additional 2 

novel views of the original data, whereas here we explore the use of generative models 3 

to synthesize transformations of the original data in a way that moves the intra-4 

class/inter-class balance in our favour. Rather than expanding the training dataset to 5 

better encapsulate the evaluation data, here we aim to demonstrate that such NST 6 

style transformations can force the evaluation data into the training data’s feature 7 

space respective of classes. Contraction of a classes distribution within feature space in 8 

such a manner would decrease intra-class variance, however, the ultimate success in 9 

improving classification accuracy and generalisability will be determined by the 10 

transformations effects on inter-class distances. 11 

Originally NST was performed on imagery with a convolutional neural network 12 

specifically designed for the task of separating style and content of images before 13 

recombining them in novel ways (Gatys, Ecker et al. 2016). Now a fast developing field 14 

of its own with academic, artistic and industrial implementations (Jing, Yang et al. 2019) 15 

we borrow inspiration from NST to synthesis unique transformations of HS vegetation 16 

data. We say analogous to NST as the method presented here does not explicitly learn 17 

styles or contents of the data. Rather we sample from either interpolated regions of the 18 

learned latent space or from latent vectors representing regions outside of the training 19 

data’s feature space, both of which result in replicated samples that exhibit stylized 20 

features of other classes. For what we believe to be the first time reported in the 21 

literature we go on to use these stylized replicated spectra in an ensemble classification 22 

model to produce dramatic increases in classification accuracy. 23 

4.2. Experimental design  24 

Here we implement a further refined version of the CramérGAN architecture utilized by 25 

Hennessy, Clarke et al. (2021). While that approach generated realistic vegetation 26 

spectra with minimal noise and no signs of mode collapse, modifications were required 27 

to improve learning stability and interpretability of the model’s latent space.  28 

The most significant change in this study from the previous approach lies with the 29 

latent noise vector. Previously this 100 length vector was generated from a normal 30 

distribution before being sent to the generator (Hennessy, Clarke et al. 2021). Although 31 
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still generated from a normal distribution, in our new approach the latent vector 1 

consists of 3 smaller vectors with lengths 64, 16, and 16 which were concatenated 2 

together to a total length of 96. The 64 length vector is a simple normally distributed 3 

noise vector, the first 16 length vector was generated as a 4 length normally distributed 4 

noise vector before being reshaped to a 2x2 matrix that was 2 x convolved to shape 4x4 5 

then flattened. The second 16 length vector was generated as a single random value 6 

from a normal distribution before being duplicated to length 16 (Figure 19). This latent 7 

structure was based on Alharbi and Wonka (2020) to aid in disentangling the learned 8 

latent space and making the latent space to feature space back to latent space mapping 9 

more coherent. They demonstrated the injection of noise in this grid-based structure 10 

provided greater generative control over the model without requiring labelled data or 11 

modifications to the network’s architecture. 12 

 13 

Figure 19. Construction of a 96 length latent vector from 3 smaller vectors sampled from a normal 14 

distribution with shapes 64,4,1 before being expanded to 64,16,16 and concatenated together. 15 

Generative models were trained for 100,000 epochs, at a ratio of 5:1 (5 training 16 

iterations of D for every 1 of G) using the RSMP optimizer at a learning rate of 0.0001, 17 

with beta1 = 0.5 and beta2 = 0.9. The G consists of two fully connected dense layers 18 

followed by two convolution layers, all using the ReLu activation function save for the 19 

final convolution layer using Sigmoid activation. The final layer of G reshaped the 20 

output to be a 2D array with shape (batch size * number of bands) (Table 8). A simpler 21 

architecture was used for the D, consisting of 3 fully connected dense layers, all layers 22 

of D used Leaky ReLu activation except the final layer which used a linear function 23 

(Table 9).  24 

a a b b

… 64 … a b a a b b e

c d c c d d

c c d d

… 64 … + a a b b a a b b c c d d c c d d + e e e e e e e e e e e e e e e e



100 

 

Table 8. Layer architecture of the GANs Generator. 1 

Layer type / parameters Shape Activation 

Conv1D (100,100) ReLU 

Conv1D (100,50) ReLU 

Conv1D (100,10) ReLU 

Flatten   

Dense 2048 Leaky ReLU (alpha = 0.2) 

Batch Normalization (momentum = 0.4)   

Dropout (0.5)   

Dense 4096 Leaky ReLU (alpha = 0.2) 

Batch Normalization (momentum = 0.4)   

Dropout (0.5)   

Dense 2048 Leaky ReLU (alpha = 0.2) 

Batch Normalization (momentum = 0.4)   

Dropout (0.5)   

Dense 22 Softmax 

 

Table 9. Layer architecture of the GANs Discriminator. 2 

Layer type / parameters Shape Activation 

Dense 1024 Leaky ReLU (alpha = 0.2) 

Dense 1024 Leaky ReLU (alpha = 0.2) 

Dense 256 Linear 

 3 

Generative models were trained on either all classes or individual models for each class 4 

for all samples in the training data subset (Table 11). Following training, synthetic 5 

datasets were generated using randomly sampled latent vectors with 10,000 samples 6 

for the combined all class model and 5,000 samples from each individual class model. 7 

Each synthetic sample paired with its generating latent vector was used to train a multi-8 

regression analysis (MRA) with the synthetic spectral sample as the independent axis 9 

and its latent vector as the dependent. In order to test prediction accuracy and speed 10 

of analysis six variants of the MRA were performed for each sample with varying 11 

numbers of features being passed as independent variables. Number of features were 12 

all 540 wavebands, every fifth for 108, tenth for 54, twentieth for 27, twenty seventh 13 
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for 20, and fifty fourth for 10 wavebands. Predicted latent vectors were generated for 1 

the training and evaluation subsets which were in turn passed as input to the generator 2 

in order to generate a synthetic replicate of each of the training and evaluation 3 

samples. Accuracy of these generated replicas were assessed by calculating the 4 

difference between the replica and its real counterpart for the total Euclidean distance 5 

between the spectra and a number of hyperspectral indices (Table 10). 6 

Table 10. Hyperspectral indices used in replication comparison. 7 

Name Equation Reference 

Modified Simple Ratio 705/445 750nm − 445 nm / 705 nm − 445 nm Sims and Gamon (2002) 

Anthocyanin reflectance index 1 / 550 nm – 1 / 700 nm Gitelson, Merzlyak et al. (2001) 

Cellulose Absorption Index 2 0,5(2020 nm + 2220 nm) – 2100 nm Nagler, Daughtry et al. (2000) 

Difference 1725/970 Difference LAI 1725 nm − 970 nm Le Maire, François et al. (2008) 

Disease water stress index 802 nm + 547 nm / 1657 nm + 682 nm Galvao, Formaggio et al. (2005) 

Normalized Difference 1094/1205 Leaf 

water VI 2 

1094 nm − 1205 nm / 1094 nm + 1205 

nm 

Galvao, Formaggio et al. (2005) 

 

Upon selection of the best performing MRA hyperparameters the final regressed 8 

replicates of the real spectra were generated. Either all samples were generated from 9 

the single all class trained model (Figure 21), or every sample was generated from each 10 

individual class-trained model, resulting in 22 alternate versions for each class. To 11 

assess the classification potential of all versions three classifiers were trained on 12 

various combinations of real and replicated subsets: these were a support vector 13 

machine (SVM), random forest (RF), and neural network (NN) (Figure 20).  14 

Selection of a single subset to represent a class from the 22 alternative subsets per 15 

class was performed. The method for this selection was based on the idea that the 16 

replicate produced from its correct class GAN model would be most similar to the 17 

original sample that was used in the regression to produce its latent vector. Similarities 18 

were calculated by distance in feature space between the real and replicate samples. 19 

Post processing of the spectra was performed before the distance calculations to help 20 

emphasise differences between samples. Distances were calculated on either the raw 21 

spectra, albedo normalised spectra based upon (Pu, Bell et al. 2012), or 1st or 2nd order 22 

derivatives created with the Savitzky-Golay smoothing algorithm. 23 
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While the single class GAN models inherently produce style transferred replicates, the 1 

single all-class GAN model requires a different approach. Interpolation between latent 2 

vectors to produce smooth transitions between generated features is commonplace in 3 

the generative machine learning community for generating novel views of the learned 4 

data and exploring the learned latent space. Here we use it as a form of style transfer 5 

to generate replicate spectra that have been moved in feature space towards the mean 6 

spectra of a given class (Figure 21). The production of replicates interpolated towards 7 

the mean spectral value for all classes allows us to compare the ensemble classification 8 

techniques of the individual class models with that of the all class model. In order to 9 

interpolate the latent vector of a sample towards a classes mean value, first the 10 

spectral mean is calculated for a class before feeding it through the trained MRA model 11 

for a latent vector to be predicted. Interpolation between these two latent vectors 12 

occurred with step sizes of 1/10th. For example at step 0 the interpolated vector 13 

matches that of the replicate samples MRA predicted vector, with step 10 seeing it 14 

match the classes mean, with each interstitial step moving the latent vectors values 15 

from that of the replicate sample towards that of the class means. 16 
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Figure 20. Workflow for stylized replicate generation and ensemble classification. 1 
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Figure 21. Workflow for stylized replicate generation through latent interpolation and ensemble 1 

classification. 2 

All code was written and executed in Python 3.7. The CramérGAN based upon Song 3 

(2017) using the Tensorflow 1.8 framework. Support Vector Machine (SVM), and 4 

Random Forests (RF) classifiers make use of the Scikit-Learn 0.22.2 library, with 5 

Tensorflow 1.8 utilised for the neural network (NN) classifier. Additionally, Scikit-Learn 6 

0.22.2 provided the dimensionality reduction functions for Principal Components 7 

Analysis (PCA) and t-distributed Stochastic Neighbourhood Embedding (t-SNE), with 8 

Uniform Manifold Approximation and Projection (UMAP) being a standalone library. 9 

Hyperparameters for all functions are provided in Appendix B. 10 

4.3. Datasets 11 

The New Zealand (NZ) dataset used in this study is a sub-sample of hyperspectral 12 

spectra for 22 species taken from a dataset of 39 native New Zealand plant spectra 13 

collected from four different sites around the North Island of New Zealand and made 14 

available on the SPECCHIO database (Hueni, Chisholm et al. 2020). These spectra were 15 

acquired with an ASD FieldSpecPro spectroradiometer at 1 nm sampling intervals 16 
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between 350 – 2500 nm. Following acquisition from the SPECCHIO database, spectra 1 

were resampled to 3 nm and noisy bands associated with atmospheric water 2 

absorption were removed (1326 – 1464, 1767 – 2004, 2337 – 2500 nm) resulting in 540 3 

bands per spectra. Eighty percent of samples per class were used for training the GAN 4 

and 20 % held aside to evaluate classifier performance (Table 11). 5 

Table 11. Plant species classes, training and evaluation sample numbers for New Zealand dataset. 6 

Class ID Common name Botanical name Training samples Evaluation samples 

NZ0 Manuka Leptospermum scoparium 58 14 

NZ1 Pohutukawa Metrosideros excelsa 32 8 

NZ2 Koromiko Hebe stricta 42 10 

NZ3 Lemonwood Pittosporum eugenioides 46 12 

NZ4 Kawakawa Macropiper excelsum 34 9 

NZ5 Whiteywood Melicytus ramiflorus 48 12 

NZ6 Totara Podocarpus totara 34 8 

NZ7 New Zealand Flax Phormium tenax 36 9 

NZ8 Akiraho Olearia paniculata 8 2 

NZ9 Rata Metrosideros robusta 9 2 

NZ10 Ngaio Myoporum laetum 38 10 

NZ11 Mapou Myrsine australis 36 9 

NZ12 Cabbage tree Cordyline australis 32 8 

NZ13 Karaka Corynocarpus laevigatus 34 9 

NZ14 Kauri Agathis australis 15 3 

NZ15 Silver fern Cyathea dealbata 28 7 

NZ16 Tangle fern Gleichenia dicarpa var. alpina 14 4 

NZ17 Black tree fern Cyathea medullaris 18 4 

NZ18 Pigeonwood Hedycarya arborea 18 5 

NZ19 Rangiora Brachyglottis repanda 12 3 

NZ20 Karamu Coprosma robusta 13 3 

NZ21 Red Pine Dacrydium cupressinum 16 4 

 

4.4. Results & Discussion 7 

4.4.1 Regressed latent vector 8 

In order to evaluate the regressed latent vectors ability to reproduce the spectrum of a 9 

real sample we examine the average Euclidean and spectral index distances of all 10 

training samples for each regression feature step. In general, based on these metrics 11 

the regressed latent vectors from an MRA with more independent features generate 12 

spectra that better match their real counterpart (Table 12 and Appendix B boxplots). 13 

Although the values were often close those generated with a regression feature step of 14 
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5 giving a feature length of 108 generally produced the most accurate replication for 1 

both all class and single class generator models. Additionally, the reduction from 540 2 

features down to 108 for the independent axis produced a significant increase in speed 3 

for training and making predictions from the MRA model. Based on this, all replicated 4 

spectra in subsequent sections were produced with a regression feature step size of 5. 5 

Table 12. Step size with lowest mean absolute difference between replicated and real samples for each 6 

similarity metric, averaged across all classes. 7 

MODELS EUC mSR705 anth_RI cel_abs dif_LAI d_water_stress nd_leaf_water 

KERAS2-ALL-C39 5 5 10 10 5 5 5 

KERAS2-C1model 5 5 5 5 1 5 1 

 

 

Figure 22. Mean spectra of class 0 for real spectra, all class replicates, and individual class replicates 8 

generated with a feature step size of 5. 9 

4.4.2 Training classification ability 10 

In order to examine the classification potential of the replicated spectra SVM, RF and 11 

NN classifiers were trained with varying permutations of training and evaluation data 12 

subsets (Table 13). The neural network classifier outperformed all others for every 13 

combination of data, with SVM being the second most accurate, followed by RF. 14 

Classifiers trained then evaluated on the real dataset offer a baseline for comparison 15 

with accuracies in accordance with those previously achieved with this dataset 16 

(Hennessy, Clarke et al. 2021). All classifiers trained with the real spectra then 17 

evaluated on subsets replicated with the all class model or individual class models 18 

perform significantly worse, indicating a poor match between the training and 19 
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evaluation datasets and therefore a poor replication of the evaluation dataset. The 1 

inverse of this is also seen to be true with classifiers trained on replicated spectra failing 2 

to classify the real evaluation spectra with acceptable accuracy. 3 

Whilst the replicated spectra appear visually similar to the real spectra (Figure 22) 4 

these initial classifications clearly show the replicated samples, either as a training or 5 

evaluation subset are mismatched to the real samples distribution. This is further 6 

shown by replicated data’s ability to classify itself. Replicates generated from the all 7 

class GAN model achieves classification accuracies only slightly below that of the real 8 

data’s baseline, with the NN classifier managing 83.77 %, 1.66 % below the real spectra 9 

85.43 %. 10 

Similarly this is seen when the classifiers are trained and evaluated with replicates from 11 

the single class GAN models as well. All classifiers perform extremely well when trained 12 

and evaluated on replicated datasets generated from their respective class GAN models 13 

demonstrating an increase of 15 – 20 % over the real dataset baseline, with the NN 14 

classifier even achieving 100 % accuracy. This of course introduces a significant data 15 

leak in that the class labels for the replicated evaluation subset must be used in order 16 

to determine which GAN model to generate them from. However, this does show the 17 

classification potential of the replicated spectra.  18 
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Table 13. Classification accuracies (%) for classifiers trained on real or synthesised spectral data and 1 

evaluated on either real or synthesised data for New Zealand datasets based on real class sample sizes. 2 

Train - Evaluation SVM RF NN 

Real - Evaluation 82.80 55.39 85.43 

Real – Replicate Eval. (All) 17.62 05.98 24.55 

Real – Replicate Eval. (single) 18.38 06.16 25.36 

    

All class model    

Replicate Train – Replicate Eval. 75.67 52.09 83.77 

Replicate Train – Eval. 13.61 09.36 19.15 

    

Single class model    

Replicate Train – Replicate Eval.* 98.03 75.26 1.0 

Replicate Train – Eval. 09.14 04.31 11.02 

Replicate Train – Replicate Eval.** 39.94 34.12 40.32 

* classifications using replicates generated from their respective class GAN  3 

** classifications using replicates selected based on their similarity to their real sample 4 

In an attempt to eliminate the use of the replicated evaluation subsets class labels 5 

every evaluation sample was generated from each of the 22 class GAN models 6 

following the reconstruction of their latent vectors. This produced 22 variants of each 7 

sample from which one can be selected to represent each evaluation sample. Following 8 

testing of numerous distance based metrics, correlation and cosine were found to 9 

produce the best results. Clear differences in shape and albedo can been seen between 10 

replicates of the same sample generated from GAN model 0 and GAN model 1 (Figure 11 

23). Whilst the replication processes generally achieves accurate replication of spectral 12 

shape, albedo is often higher in the replicate than the real sample. To counter this both 13 

the replicate and real sample are normalized allowing the distance metrics to focus on 14 

shape rather than overall reflectance. Similarly, taking the 1st and 2nd derivates of the 15 

spectra highlight the changes in slope and changes in the slopes slope respectively, with 16 

the 2nd derivative ultimately providing the greatest distinction between replicates 17 

generated from each GAN model (Figure 23). The highest correct assignment to class 18 

model was 44.24% based on 2nd derivate samples with both correlation and cosine 19 

distance metrics providing the same results. However, using these selections achieved 20 

a classification accuracy of only around 40% (table 13**).  21 
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Figure 23. Comparison between real sample from class 0 and replicates of it generated by GAN model 0 1 

and GAN model 1 a) standard reflectance as generated by the GAN, b) albedo normalised, c) 1st order 2 

derivative, d) 2nd order derivates. 3 

4.4.3 Ensemble classification 4 

Along with the previously generated variants of each evaluation sample, 22 variants of 5 

each sample from the training dataset were also generated in order to train and 6 

evaluate the classifiers on fully transformed datasets. All classifiers were trained with a 7 

replicate of every sample from the same GAN model variant before being evaluated on 8 

the evaluation subset generated from the same GAN model (Figure 20). Whilst never 9 

reaching the classification accuracy of the previous section utilizing the class labels of 10 

the evaluation subset to select which GAN model to select them from, accuracies were 11 

overall very high, independent of which GAN model generated the replicates (Table 12 

14). The lowest accuracies achieved for each classifier all occurred from the same GAN 13 

model which had trained only with the real training subset of class 4, 34 samples in 14 

total. Whilst being the lowest they still achieved accuracies similar to those when the 15 

classifiers were trained and evaluated on the real data subsets. The highest accuracies 16 

seen came from GAN model 19 for the RF and NN classifiers, though from GAN model 17 

12 for SVM, with model 19 being its second highest accuracy. These high classification 18 

accuracies represent 10-20 % increases over those produced by the real – real 19 

classifiers.  20 
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An even greater increase in accuracy was seen after ensembling the predictions from 1 

each of the 22 variant classification models for each of the classifiers. Interestingly, 2 

although each of the individual results differed between the SVM and NN classifiers 3 

their final ensembled accuracy was the same at 98.62 %, a dramatic increase of 15.82 % 4 

and 13.19 % respectively over the original real spectra classifications. While only 5 

reaching a comparative low of 85.81 % the ensembled RF classifier saw an 6 

improvement of 30.42 %.  7 

Table 14. Classification accuracies (%) for each individual classification and ensembled classification for 8 

replicates generated from individual class GAN models. 9 

Train - Evaluation SVM RF NN 

GAN model 0 87.49 53.81 87.18 

GAN model 1 89.84 44.57 82.50 

GAN model 2 90.14 50.70 92.28 

GAN model 3 92.63 50.25 91.14 

GAN model 4 85.98* 55.65* 82.32* 

GAN model 5 89.26 56.99 90.34 

GAN model 6 92.78 56.47 90.00 

GAN model 7 93.71 67.85 95.46 

GAN model 8 93.44 59.64 94.09 

GAN model 9 93.40 70.98 92.18 

GAN model 10 90.52 70.14 93.36 

GAN model 11 94.18 54.67 93.98 

GAN model 12 97.33** 59.02 93.96 

GAN model 13 94.70 62.59 94.05 

GAN model 14 95.77 69.15 94.49 

GAN model 15 94.31 62.30 94.17 

GAN model 16 94.50 64.49 94.40 

GAN model 17 95.33 73.52 93.97 

GAN model 18 89.23 57.13 95.48 

GAN model 19 96.69 75.03** 97.38** 

GAN model 20 94.74 63.22 93.17 

GAN model 21 93.49 70.87 94.55 

Ensembled 98.62 85.81 98.62 

* Lowest achieved accuracy for each classifier 10 
** Highest achieved accuracy for each classifier 11 

Such a style transfer-like post processing method is only made possible because there 12 

are individual GAN models for each class. In order to test a similar method and 13 

ensemble classification on the single GAN model trained on all classes an interpolation 14 

of latent vectors was used. The optimum level of interpolation was found to be 3 steps 15 

towards the mean of each class, resulting in only a small style transformation of the 16 
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replicated spectra. Interpolated latents were produced for each training and evaluation 1 

sample before being generated by the all class model (Figure 21). As with the previous 2 

ensemble method each classifier was trained and evaluated with variants of each class 3 

before their individual predictions were ensembled together (Table 15). Increases of ~5 4 

% were seen for the SVM and RF ensembled classifications over the all class model 5 

classifications on the non-style transferred replicates raising from 75.67 To 80.49 % and 6 

55.09 To 60.32 % respectively. However, the NN classifier performed poorly with 7 

individual variant results ranging from 48.85 % to 61.98 % resulting in an ensembled 8 

accuracy of 60.97 % only slightly higher than that of the RF. Whilst having the benefit of 9 

only requiring the training and generation from a single GAN model and producing 10 

higher accuracies than the previous best for the replicated spectra from the single all 11 

class model this method ultimately did not outperform the original spectra.   12 
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Table 15. Classification accuracies (%) for each individual classification and ensembled classification for 1 

replicates generated from latent interpolation of the all classes GAN model. 2 

Train - Evaluation SVM RF NN 

Class 0 77.23 55.15 50.45 

Class 1 68.68* 44.18* 51.79 

Class 2 77.00 55.04 48.93 

Class 3 76.93 53.41 52.83 

Class 4 76.20 55.80 56.81 

Class 5 78.08 54.68 48.85* 

Class 6 79.70 54.11 55.33 

Class 7 76.72 55.12 56.40 

Class 8 72.53 52.77 52.82 

Class 9 72.96 53.33 56.46 

Class 10 78.67 57.70 53.76 

Class 11 79.72 56.73 55.26 

Class 12 80.39 60.73** 59.26 

Class 13 78.23 58.83 56.27 

Class 14 79.93 59.91 57.96 

Class 15 80.99** 55.62 58.23 

Class 16 79.08 59.96 58.08 

Class 17 77.44 54.73 54.98 

Class 18 78.88 55.14 61.98** 

Class 19 74.78 55.81 56.61 

Class 20 79.49 60.22 58.81 

Class 21 80.15 56.94 59.72 

Ensembled 80.49 60.32 60.97 

* Lowest achieved accuracy for each classifier 3 
** Highest achieved accuracy for each classifier 4 

 

4.5. Increased classification potential of replicate spectra  5 

Whilst the ensembled classifications returned the highest accuracy, the individual 6 

classifications that create it performed as well as, or better than, classifications of the 7 

original real spectra. This would indicate the process of replicating the training and 8 

evaluation subsets inherently improves classification power. Focusing on replicates 9 

from GAN models 4 and 19 which produced the lowest and highest accuracies 10 

respectively we examine the differences between replicated and real spectra and 11 

attempt to interpret the mechanism behind this.12 
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Table 16. Confusion matrix of classification accuracy from SVM classifier trained and evaluated on replicates generated from GAN model 19. 1 

CLASS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 TOTAL 

PRODUCERS 

ACCURACY 

0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 100 
1 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 87.5 

2 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

3 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 100 

4 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 100 

5 0 1 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 91.7 

6 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 100 

7 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 100 

8 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 100 

9 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 100 

10 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 10 100 

11 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 9 100 

12 0 0 1 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 8 87.5 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 9 100 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 3 100 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 7 100 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 4 100 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 4 100 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 100 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 3 66.7 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 3 66.7 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 100 

TOTAL 15 8 11 12 9 11 8 9 2 2 10 9 7 10 3 7 4 5 5 2 2 4 155 
 

USERS 

ACCURAC

Y 

93.3 87.5 90.9 100 100 100 100 100 100 100 100 100 100 90 100 100 100 80 100 100 100 100 
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Table 17. Confusion matrix of classification accuracy from SVM classifier trained and evaluated on replicates generated from GAN model 4. 1 

CLASS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 TOTAL 

PRODUCERS 

ACCURACY 

ACC. 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 100 

1 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 8 87.5 

2 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

3 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 100 

4 2 1 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 66.7 

5 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 100 

6 1 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 87.5 

7 0 0 0 0 0 0 0 8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 9 88.9 

8 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 50 

9 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 

10 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 10 100 

11 0 0 0 1 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 9 88.9 

12 0 0 0 0 1 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 8 87.5 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 9 100 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 3 100 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 1 0 0 7 85.7 

16 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 4 50 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 4 100 

18 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 5 80 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 3 33.3 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 3 33.3 

21 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 75 

TOTAL 19 9 12 14 7 12 8 8 1 0 10 8 7 10 3 9 2 4 5 2 1 4 155 
 

USERS 

ACCURACY 

% ACC. 

73.7 77.8 83.3 85.7 85.7 100 87.5 100 100 0 100 100 100 90 100 66.7 100 100 80 50 100 75 
  

2 
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The differences in classification accuracy are highlighted by the users and producers 1 

accuracies in the confusion matrix for the replicates generated from model 4 and 19 2 

(Table 16, 17). Replicates that were erroneously classified differed between the two 3 

subsets without being concentrated to any particular classes. To further investigate the 4 

differences between the replicates of these two subsets we focus upon class 4 which 5 

can be seen to produce 3 errors of omission and 1 of commission when generated by 6 

model 4 and to produce no errors when generated by model 19.  7 

The mean spectra for both the training and evaluation subsets form two distinct 8 

groupings based on the GAN model they were generated from demonstrating the 9 

significant style transfer effect. The mean spectra replicated for classes 0, 1, 4 and 6 10 

from model 4 more closely match the real mean spectra of class 4 than those replicated 11 

from model 19 do for the real mean spectra of class 19 (Figure 24). Despite the clear 12 

differences between the generation models there do not appear to be differences 13 

between the mean of the training and evaluation subsets that would explain the 14 

improved classification performance of those generated from model 19 over those 15 

from model 4 or the real spectra.  16 
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Figure 24. Top) training spectra, Bottom) evaluation spectra. Real mean of c4, real mean of c19, replicate 1 

mean from its own model, replicate mean ofc4 and replicate mean of c19 for classes 0,1,4, and 6. 2 

Dimensionality reduction however does provide insight into the differing classification 3 

potential of each replicate subset. Clear differences in intra and inter-class relationships 4 

in both the training and evaluation subsets are identified following the plotting of the 5 

UMAP reduced spectra (Figure 25). Replicates generated from model 19 demonstrate 6 

clear tight clusters for each class with minimal outliers. While the clustering of model 4 7 

replicates visually appears significantly less obvious, though classes do appear more 8 

organised compared to the real samples. However, this is a potential visual artifact of 9 

the overall reduced variance of the subset with x/y spreads of 10/14 units for model 4 10 

replicates and 45/50 for the real spectra. This is further backed up with model 4 11 

replicates and real spectra producing very similar classification accuracies with 85.98 % 12 

and 85.43 % being the highest recorded respectively, indicating similar class 13 

relationships.  14 
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 1 

Figure 25. UMAP transformed representation x = class0, * = class1, o = class4, v = class6. Top left) real 2 

spectra training subset, top right) real spectra evaluation subset, bottom left) replicate spectra training 3 

subsets, bottom right) replicate spectra evaluation subsets (Blue model 4)(Green model 19). 4 

4.6. Conclusions 5 

In this paper we have demonstrated the ability to replicate hyperspectral samples of 6 

numerous New Zealand plants by use of a generative adversarial network. Training 7 

classifiers with these replicated spectra produced large increases in classification 8 

accuracy. We believe the driving force for this increase to be a type of style transfer 9 

that occurs when generating a spectrum from a model trained on a different class. This 10 

results in the replicated spectrum being imprinted with attributes of the GAN models 11 

training class, ultimately creating a hybrid class with differing intra and inter-class 12 

relationships compared to its real spectra. We have seen these hybrid classes display 13 

similar classification potential as the real spectra, achieving accuracies of 85.98 % 14 

compared to 85.43 % for real spectra. Though some of these hybrid classes such as 15 

those from GAN model 19 show reduced intra-class variance and clear inter-class 16 

differentiation producing a maximum accuracy of 97.38 % with a neural network 17 

classifier. However, it is not necessary to select for the best performing GAN model 18 
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replicates, rather simply classifying all and ensembling the results. Not only does this 1 

remove the requirement of selecting a single generative model, in this case it resulted 2 

in an increase of classification accuracy over any individual classification. Both the 3 

support vector machine and neural network classifiers produced an ensembled 4 

accuracy of 98.62 %, an improvement of 13.19 % over the real spectral samples. Future 5 

work with this technique is required to demonstrate generalizability to other datasets, 6 

both hyperspectral and non-hyperspectral as well as vegetation and non-vegetation. 7 

However, this work represents an initial large step towards a methodology that can 8 

overcome intra and inter-class issues associated with supervised classification of 9 

vegetation HS data.  10 
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5.1. Overview 1 

This thesis has focused upon intra and inter-class variability of vegetation hyperspectral 2 

reflectance spectra and its detrimental effects on hyperspectral classification accuracy 3 

and generalisability. Increased intra-class variance can decrease the chance that 4 

labelled training spectra are representative of the entire class and often requires the 5 

collection of more labelled spectra to ensure the full spectral distribution of classes is 6 

represented. At the same time, increased intra-class variance also decreases inter-class 7 

distance, dramatically increasing the chance of class overlap and therefore classification 8 

error. The overarching aim of this thesis was to develop methods of improving the ratio 9 

between intra and inter-class variability in hyperspectral vegetation spectra, and 10 

ultimately increasing classification accuracy, reliability and generalisability. This was 11 

addressed in three ways: (1) reviewing the hyperspectral classification literature of the 12 

past two decades, while also performing pre-processing and classification trials on a 13 

hyperspectral dataset, (2) increasing the number and distribution of classifier training 14 

samples through data augmentation, and (3) improving the intra/inter-class 15 

relationship with deep generative sample transformation.    16 

5.2. Key Outcomes 17 

Chapter two examined feature/waveband selection in the hyperspectral vegetation 18 

classification literature.  Such a comprehensive review of spectral feature selection 19 

methods and resultant waveband selections had not yet been performed. Additionally, 20 

the findings of the literature review were supported by feature selection trials with 21 

varying parameters to further investigate the impact of study design on waveband 22 

selection and classification accuracy. The use of feature selection was found to have 23 

three main drivers; the need to reduce data size and ease computational requirements; 24 

to aid in class differentiation by selecting wavebands that minimised intra-class 25 

variance whilst maximising inter-class variance; though it is primarily used to reduce 26 

the number of discriminatory features relative to sample size to meet the requirements 27 

of most statistical classifiers.  Having more discriminatory variables than sample size 28 

violates many of the statistical requirements of such classifiers, hence reducing the 29 

number of features used could improve classification accuracy. This chapter identified 30 

that there were many parameters of plant spectral discrimination studies that 31 



124 

 

influenced which spectral features were selected, the primary of which being simply 1 

the feature selection method that was implemented. Whilst all other differences 2 

between studies such as taxonomic, structural and functional groups of the target 3 

samples, and the methods and scale at which hyperspectral measurements were 4 

recorded all influenced feature selection, their influence on which wavebands were 5 

selected for discrimination and classification was overshadowed by the feature 6 

selection method. Despite the strong influence of the feature selection methods, some 7 

important and consistent patterns of feature selection were observed throughout the 8 

literature. Notwithstanding their ubiquitous and conserved nature visible wavelengths 9 

associated with photosynthetic pigments have been known to play an important role in 10 

discriminating vegetation classes: this was clear by the increased selection rate of the 11 

visible region. Similarly, red edge wavelengths were consistently selected. In contrast, 12 

the wavebands from the NIR have been reported as significant for classification, though 13 

the findings of this chapter challenge that. While NIR wavebands were selected their 14 

selection was almost entirely driven by the use of the SDA feature selection method. 15 

However, the use of SDA as a feature selection method has been heavily criticised in 16 

the statistical and data science literature. Perhaps the clearest outcome of this chapter 17 

was that no single spectral feature selection method outperformed the others, with 18 

significant variation in waveband selection between and within studies. Additionally, 19 

multiple feature selection subsets were seen in the literature and shown in my own 20 

trials to work equally as well on the same data, or in fact, no feature selection at all. 21 

Consequently, an alternative method for handling small sample sizes and attempting to 22 

improve intra and inter-class variances was investigated. Chapter three explored data 23 

augmentation as such an alternative method. The augmentation of the original 24 

hyperspectral vegetation dataset for training classifiers was performed by the 25 

generation of new synthesised spectra that visually resembled the spectra from any 26 

given class, while respecting the sampled class distribution. This synthesis was achieved 27 

by the use of a generative adversarial network, which at the time of designing and 28 

performing the experiments of the chapter was a unique and novel method to the 29 

hyperspectral literature. Whilst similar work has since been published the generative 30 

model developed for this chapter was able to overcome two key issues encountered by 31 
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other researchers. The use of the Cramer Distance as the evaluation metric meant that 1 

the spectra synthesised in this chapter more closely resembled the real spectra. This 2 

was primarily due to not encountering the issue of mode collapse where only a subset 3 

of a class’s distribution is learned. The addition of synthesised spectra to original 4 

spectra, creating an augmented dataset, increased classification accuracy across nearly 5 

all trials for two independent hyperspectral plant datasets and three different 6 

classification methods. It was also shown that synthetic spectra that came from sparse 7 

or outlying regions of class feature spaces contributed more discriminatory power to 8 

the classifiers than others. This can be seen as the augmented dataset acting in the 9 

same manner as the actual physical recording of new spectral data so that the labelled 10 

classifier training subset better captures intra-class variability and therefore potentially 11 

better represents spectra within the evaluation dataset. However, this is a double-12 

edged sword with the addition of spectra in sparse and outlying regions of class feature 13 

spaces potentially decreasing inter-class distances and therefore increasing the 14 

likelihood of class overlap.  15 

Chapter four further explored the potential of these generative models and synthesised 16 

spectra attempting to both reduce intra-class variance as well as improve class 17 

separation. The previous chapter generated new random spectra from a plausible 18 

distribution of a class, whereas the approach taken here was to generate a synthetic 19 

replicate of each sample for training and evaluation subsets. Whilst these replicates 20 

were not perfect matches for their real counterparts the replicate training spectra 21 

achieved a higher classification accuracy on replicated evaluation spectra than the real 22 

spectra achieved when classifying the real evaluation data. However, this was only 23 

possible with perfect class knowledge of the evaluation dataset so they could be 24 

synthesised from the generative model that had been trained on their class. This is 25 

something not possible when dealing with unknown samples for classification in a real-26 

world setting. This issue was overcome by synthesising a version of all samples from 27 

each generative model trained independently on each class, in this case resulting in 22 28 

versions for every real sample. It was shown that as long as the training and evaluation 29 

samples were generated from the same model they performed as well as, or 30 

significantly better than, the real samples. Rather than having an additional test subset 31 
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to help identify which generative model produces the highest classification accuracy it 1 

was found that an ensemble classification model that incorporated 22 individual 2 

classifiers, one for each class, produced the highest overall accuracy of all, whilst 3 

removing the use of the evaluation subsets labels.  4 

5.3 Significance and Implications of the Research 5 

The methods presented here have the potential to revolutionise the field of 6 

hyperspectral classification. They demonstrate a potential to not only increase 7 

classification accuracy but, most significantly, they present a possibility to improve the 8 

generalisability and transferability of classification models. This provides researchers 9 

with the opportunity to mature their research into widescale knowledge and products 10 

for environmental mapping and monitoring.  11 

Chapter two highlights the differences in wavebands selected within and between 12 

studies and raises questions about the appropriateness of replicating the use of feature 13 

selection methods or selected wavebands directly from the literature. The 14 

transferability of feature selection is questionable outside of the few broad trends 15 

identified, especially so in the case of SDA, which has been used extensively throughout 16 

the literature though is perhaps not suitable for the task of spectral feature selection. 17 

Additionally, the need for feature selection at all is now uncertain, with some studies 18 

showing no real benefit or even deficits in overall accuracy when performing feature 19 

selection. Additionally, the bottleneck of computing resources is generally no longer a 20 

factor. Furthermore, this thesis has shown that data augmentation can solve the 21 

problem of low sample numbers.  22 

Chapter three demonstrated the ability for a generative deep learning algorithm based 23 

on adversarial neural networks to successfully learn and synthesise realistic vegetation 24 

spectra. The use of these synthesised spectra to augment real spectral datasets allows 25 

for the training of classifiers that benefit from large sample numbers without a 26 

researcher needing to collect additional labelled spectra from the field. This is of 27 

increasing significance as modern machine and deep learning algorithms tend to 28 

require larger datasets.  29 
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The increases in classification accuracy of chapter three were expanded upon in 1 

chapter four, resulting in the most significant outcome of this thesis. The transformed 2 

replicates synthesised by the generative models demonstrated dramatic changes to 3 

intra-class variance, in best case scenarios acting to tightly cluster all members of a 4 

class. This clustering also improved inter-class relationships, creating clear delineations 5 

between classes and allowing for all classifiers tested to achieve remarkably increased 6 

accuracies, following ensembling of results. Notably the processing pipeline to achieve 7 

this does not require any additional spectral samples or metadata, making the method 8 

applicable to all historically gathered hyperspectral data, providing increased utility for 9 

spectral libraries and shared databases. 10 

5.4 Recommendations for Future Research 11 

In order to fully capitalise on the research presented here the following research should 12 

be performed. 13 

The methods presented in chapter four show considerable potential for improving 14 

hyperspectral classification with the logical next step being to apply these methods to 15 

other hyperspectral vegetation datasets. In particular, further evaluation of the 16 

generalisability of my methods is needed when applied to spectral data with high 17 

degrees of both spatial and temporal intra-class variability. Potential for mitigation of 18 

artefacts and uncertainties added to spectra from sources such as atmospheric 19 

correction algorithms should also be explored. Following on from this the method could 20 

be extended to non-vegetation hyperspectral data, or potentially non-hyperspectral 21 

remote sensing data. Spectra produced by the current implementation of the GAN are 22 

visually identifiable as synthetic predominantly by the spectra-wide noise, further 23 

refinement of the GAN could potentially improve this, generating spectra 24 

indistinguishable from real. Additionally, this noise should be investigated as a potential 25 

cause of new correlations increasing uncertainties within the data or potentially act as 26 

class specific signals that could influence classification results. As well, the field of deep 27 

machine learning is improving at substantial rates, providing new algorithms and 28 

techniques that could be used to improve the GAN and resultant synthesised spectra or 29 

even present non-GAN based generation methods. The estimation of latent vectors to 30 

replicate spectra also has potential for refinement so that replicated spectra generated 31 
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from their latents more closely resemble the real spectra. The ability to synthesise 1 

hyperspectral data based on a prior sample raises the potential of using these methods 2 

to transform multispectral samples into hyperspectral and should be explored. Whilst 3 

these methods were designed specifically for hyperspectral vegetation reflectance 4 

measurements they are in fact data-agnostic and could be applied to a wide variety of 5 

fields. Hence the broader generalisability of these methods to improve classification in 6 

other fields should be investigated. 7 

5.5 Conclusions 8 

New, accurate and generalisable methods are required to transform the ever-9 

increasing amount of raw hyperspectral data into actionable knowledge for 10 

applications such as environmental monitoring and precision agriculture. The research 11 

presented in this thesis provides early steps towards utilising modern deep learning 12 

techniques in novel ways to address the simple fact that not all members of the same 13 

class closely match each other, and ultimately improving overall classification accuracy 14 

of hyperspectral vegetation data. Generative deep learning models for data 15 

augmentation is a fledgling field in general and especially so in the discipline of 16 

hyperspectral remote sensing. This thesis is one of only a few studies to explore these 17 

methodologies for this purpose and I believe to be the only one to use style transfer 18 

concepts and to produce such significant increases in classification accuracy. The results 19 

presented here appear to significantly reduce the influence of intra and inter-class 20 

variability and may offer the key to fast, accurate and generalisable classifications that 21 

can handle the volume of hyperspectral data that has and will be produced.  22 
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Appendix A 1 

Table a: Architecture and hyperparameters of the neural network classifier trained for 1000 epochs with 2 

Kullback-Leibler divergence loss, Adam optimiser with a learning rate of 0.00001, and a batch size of 32 3 

Layer type / parameters Shape Activation 

Conv1D (100,100) ReLU 

Conv1D (100,50) ReLU 

Conv1D (100,10) ReLU 

Flatten   

Dense 2048 Leaky ReLU (alpha = 0.2) 

Batch Normalization (momentum = 0.4)   

Dropout (0.5)   

Dense 4096 Leaky ReLU (alpha = 0.2) 

Batch Normalization (momentum = 0.4)   

Dropout (0.5)   

Dense 2048 Leaky ReLU (alpha = 0.2) 

Batch Normalization (momentum = 0.4)   

Dropout (0.5)   

Dense 22 Softmax 

 4 

Table b. Layer architecture of the GANs discriminator. 5 

Layer type/parameters Shape Activation 

Dense 1024 Leaky ReLU (alpha = 0.2) 

Dense 1024 Leaky ReLU (alpha = 0.2) 

Dense 256 Linear 

 6 

  7 
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Table c. Epochs with Kullback–Leibler divergence loss, Adam optimiser with a learning rate of 0.00001, 1 

and a batch size of 32. 2 

Layer type/parameters Shape Activation 

Conv1D (100,100) ReLU 

Conv1D (100,50) ReLU 

Conv1D (100,10) ReLU 

Flatten   

Dense 2048 Leaky ReLU (alpha = 0.2) 

Batch Normalization (momentum = 0.4)   

Dropout (0.5)   

Dense 4096 Leaky ReLU (alpha = 0.2) 

Batch Normalization (momentum = 0.4)   

Dropout (0.5)   

Dense 2048 Leaky ReLU (alpha = 0.2) 

Batch Normalization (momentum = 0.4)   

Dropout (0.5)   

Dense 22 Softmax 

 3 

Table d: Hyperparameters used during t-SNE dimension reduction for each dataset. 4 

Dataset Perplexity Early exaggeration Learning rate 

INDI 50 5 2 

NZ 50 1 15 

 5 

Table e: Hyperparameters used during UMAP dimension reduction for each dataset. 6 

Dataset Number of neighbours Minimum distance Distance metric 

INDI 20 1 Canberra 

NZ 100 0.3 Correlation 

 7 
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1 

Figure a. Classification accuracies for classifiers trained on real, synthesised, or augmented spectral data 2 

and evaluated on evaluation dataset for both Indian Pines and New Zealand datasets ranging from 10 - 3 

490 samples per class. (A New Zealand dataset; SVM classifier, (B Indian Pines dataset; SVM classifier, (C 4 

New Zealand dataset; RF classifier, (D Indian Pines dataset; RF classifier, (E New Zealand dataset; NN 5 

classifier, (F Indian Pines dataset; NN classifier. 6 
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Appendix B 1 

Table a: Architecture and hyperparameters of the neural network classifier trained for 1000 epochs with 2 

Kullback-Leibler divergence loss, Adam optimiser with a learning rate of 0.00001, and a batch size of 32 3 

Layer type / parameters Shape Activation 

Conv1D (100,100) ReLU 

Conv1D (100,50) ReLU 

Conv1D (100,10) ReLU 

Flatten   

Dense 2048 Leaky ReLU (alpha = 0.2) 

Batch Normalization (momentum = 0.4)   

Dropout (0.5)   

Dense 4096 Leaky ReLU (alpha = 0.2) 

Batch Normalization (momentum = 0.4)   

Dropout (0.5)   

Dense 2048 Leaky ReLU (alpha = 0.2) 

Batch Normalization (momentum = 0.4)   

Dropout (0.5)   

Dense 22 Softmax 

 4 

 5 
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