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Abstract

Recently, the broad adoption of the internet coupled with connected smart devices has seen a
significant increase in the production, collection, and sharing of data. One of the biggest tech-
nical challenges in this new information age is how to effectively use machines to process and
extract useful information from this data. Interpreting video data is of particular importance for
many applications including surveillance, cataloguing, and robotics, however it is also particu-
larly difficult due to video’s natural sparseness - for lots of data there is small amounts of useful
information. This thesis examines and extends a number ofMachine Learningmodels in a num-
ber of video understanding problem domains including captioning, detection and classification.
Captioning videos with human like sentences can be considered a good indication of how well
a machine can interpret and distill the contents of a video. Captioning generally requires knowl-
edge of the scene, objects, actions, relationships and temporal dynamics. Current approaches
break this problem into three stages with most works focusing on visual feature filtering tech-
niques for supporting a caption generation module. Current approaches however still struggle
to associate ideas described in captions with their visual components in the video. We find
that captioningmodels tend to generate shorter more succinct captions, with overfitted training
models performing significantly better than human annotators on the current evaluation met-
rics. After taking a closer look at themodel and human generated captions we highlight that the
main challenge for captioning models is to correctly identify and generate specific nouns and
verbs, particularly rare concepts. With this in mind we experimentally analyse a handful of dif-
ferent concept grounding techniques, showing some to be promising in increasing captioning
performance, particularly when concepts are identified correctly by the grounding mechanism.
To strengthen visual interpretations, recent captioning approaches utilise object detections to
attain more salient and detailed visual information. Currently, these detections are generated
by an image based detector processing only a single video frame, however it’s desirable to cap-
ture the temporal dynamics of objects across an entire video. We take an efficient image object
detection framework, and carry out an extensive exploration into the effects of a number of net-
work modifications towards improving the model’s ability to perform on video data. We find a
number of promising directions which improve upon the single frame baseline. Furthermore, to
increase concept coverage for object detection in video we combine datasets from both the im-
age and video domains. We then perform an in-depth analysis on the coverage of the combined
detection dataset with the concepts found in captions from video captioning datasets.
While the bulk of this thesis centres around general video understanding - random videos from
the internet - it’s also useful to determine the performance of these Machine Learning tech-
niques on a more fine-grained problem. We therefore introduce a new Tennis dataset, which in-
cludes broadcast video for five tennis matches with detailed annotations for match events and
commentary style captions. We evaluate a number of modern Machine Learning techniques
for performing shot classification, as a stand-alone and a precursor process for commentary
generation, finding that current models are similarly effective for this fine-grained problem.
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Acronyms
AMT Amazon Mechanical Turk.
ANN Artificial Neural Network.
BCE binary cross-entropy.
BN batch normalisation.
CNN Convolutional Neural Network.
DT Dense Trajectories.
DVS Descriptive Video Services.
FPN Feature Pyramid Network.
GRU Gated Recurrent Unit.
GT ground truth.
HoF Histograms of Oriented Flow.
HoG Histograms of Oriented Gradients.
IoU intersection over union.
LSTM Long Short Term Memory.
mAP mean Average Precision.
MbH Motion Boundary Histograms.
ML machine learning.
MLP Multi-Layer Perceptron.
MSE mean squared error.
NAS Neural Architecture Search.
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NMS Non-Maximal Suppression.
NN neural network.
OF optical flow.
POS Parts-of-Speech.
RCN Recurrent Convolutional Network.
ReLU Rectified Linear Unit.
RGB red-green-blue.
RNN Recurrent Neural Network.
ROI region of interest.
RPN Region Proposal Network.
SGD stochastic gradient descent.
SIFT Scale-Invariant Feature Transform.
SSD Single-Shot Multi-box Detector.
SVM Support Vector Machine.
SVO subject-verb-object.
TN Transformer Network.
YOLO You Only Look Once.
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Symbols
A The number of anchors per grid cell.
C The number of classes or categories (in Chapter 2).
C The number of concepts (in Chapter 1).
D The number of channels of a feature tensor.
F The number of visual features.
H The number of heads in a multi-head attention mechanism.
I An image or video dataset.
K(S) The spatial dimensions of a kernelK.
K(T) The temporal dimensions of a kernelK.
L The number of layer repetitions of some neural network module.
M The number of frame region features per frame.
N The maximum permissible length of a caption.
R The number of region features per time-step.
S The spatial size (width and height) of an image or feature.
T The number of frames in a video.
W The temporal window size.
α A scalar attention weight.
d̄ The maximum displacement value for a feature correlation operation.
x̌ The input to an RNN unit.
ĉ A candidate (predicted) caption usually related to the ith sample in the dataset I.
E The word embedding matrix for all words in the captioning vocabulary.
F The unfiltered set of visual features.
K The keys matrix for a Transformer Network.
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M A binary mask matrix utilised in training Transformer Networks.
V The values matrix for a Transformer Network.
W A weight matrix of a neural network.
X A video input.
F̃ The filtered set of visual features.
ẽ A single filtered word embedding feature.
f̃ A single filtered visual feature.
s̃ A sentence feature that has been passed through a filtering technique.
b A bias vector of a neural network.
c(α) A context vector used in the calculation of the attention weight α.
e A word embedding vector for a word in the captioning vocabulary.
f A visual feature vector representing a particular frame.
h The hidden state of an RNN.
q A query vector for a Transformer Network.
r A region visual feature vector representing a particular frame region.
x A video frame.
y A one-hot encoding of a word in a caption.
C The set of ground truth captions usually related to the ith sample in the dataset I.
D The word vocabulary dictionary for the captions.
e̊ A concept word embedding.
D̊ The word vocabulary dictionary for the concepts.
ρ̊ The confidence probability score across the set of words in the concept vocabulary.
ẙ A binary label for the existence of a particular concept in a particular caption.
ρ(a) The confidence probability score across a set of attributes.
ρ The confidence probability score across the set of words in the captioning vocabulary.
W A tensor representing a temporal window of tensors.
Z ′ A DarkNet-53 output feature.
Z A YOLO output feature.
N The n-gram length (used in caption evaluation metrics).
c A ground truth (reference) caption usually related to the ith sample in the dataset I.

Symbols 16



d(α) The attention size for an additive attention mechanism.
d(̊e) The dimension of the concept word embeddings.
d(F) The embedded dimension of the unfiltered features.
d(b) The dimension of the unfiltered box coordinates.
d(c) The dimension of the unfiltered category feature (one-hot).
d(e) The dimension of the embedding space matrix and vectors.
d(f) The dimension of the unfiltered frame feature.
d(h) The dimension of the hidden state h (for RNN) or hidden layers of some other network

architecture.
d(i) The dimension of the inner fully connected layer of a Transformer Network.
d(m) The dimension of the unfiltered motion feature.
d(r) The dimension of the unfiltered region features.
d(̃f) The dimension of an encoded visual feature.
k(b) The beam size for the beam search algorithm.
p Precision.
r Recall.
s The temporal stride between sampled frames.
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This is one for the future generation. You can ignore this if you want.

Who am I to tell you what to do and what not to do?
But don’t do what I did. Do what I didn’t do. Make the choices I didn’t make.

Support your community. Start with your neighbor and walk outward.
Introduce yourself by name. Why not go for that coffee you always end the conversation on?

Spend time with your friends and family.
Call them, text them. Write them a letter if you’re feeling nostalgic.

It might be hard, but tell them you love them. They won’t be around forever.

Respect the ground you walk on.
Your kids are gonna walk on it someday too. And their kids after that.

And you don’t want your grandchildren only seeing elephants in picture books.

Get up every day. Make the bed all nice and fling open the curtains. Feel the sun on your face.

Love your body. Look into the mirror and think “Wow, I’m amazing”.

Don’t dwell on Instagram. There far better things to do than that.

But if I have to tell you one thing to change.
Smile more.

Just smile more.

Put down your phone. See the world through your own eyes. Create memories, not JPEGs.

Be creative. Draw, learn a language. Dance even if it feels really awkward.

Why worry about something now, that you won’t worry about a year from now?
Remember, no matter how difficult things get, the sun will always rise again tomorrow.

Pay someone a compliment. The checkout assistant, the postman.
You’ll probably make their day. I know it would make mine.

Challenge yourself. Challenge others. Ask more questions.
Bring something out of someone that even they didn’t know was in there.

Look, no one knows where they’re going. You don’t have to follow a path.
You don’t have to follow anything. Just do what feels right.

But if I had to tell you just one thing to change.
Just smile more.

HONNE
James Hatcher & Andrew Clutterbuck





Preface
What is Video Understanding?
The main focus of this work is to improve video understanding methods, but what do we mean
by understanding? In general the goal is to enable a computer to be able to extract any neces-
sary information from a video for a particular application or scenario. Imagine asking a com-
puter the fundamental "what?", "where?", "when?", "who?", "why?" questions about a video. How
can we enable a computer to be able to answer such questions?

Why should Computers Understand Video?
There is an increased need for computer based automated understanding of all forms of data,
video being one of the more important data representations. With most people having a phone
camera in their pockets, coupled with the rise of online video streaming and sharing platforms
such as YouTube, the amount of video data in existence is growing exponentially. In 2019, over
500 hours of videowere uploaded to YouTube everyminute1, and it is expected by 2022 that on-
line videos will account for more than 82% of all consumer internet traffic2. Furthermore, there
is an increasing amount of surveillance footage from governments, businesses, and home own-
ers. The amount of data has become too excessive for people to process, catalogue, annotate
and summarise, so computer automation becomes necessary.

An Introduction to Computer Vision & Machine Learning
Computer Vision is a field of computer science that focuses on understanding, or extracting
information from imagery, or processing image-like data from one form to another. The field
has existed for many decades, but has recently grown in notoriety due to rapid advancements in
what computer vision technologies are able to accomplish. Such rapid advancement stemmed

1https://www.tubefilter.com/2019/05/07/number-hours-video-uploaded-to-youtube-per-minute/
2https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-

paper-c11-741490.html
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from the advancements in machine learning techniques that are increasingly being adopted for
computer vision problems.
Machine learning is a sub-field of artificial intelligence, that is based on enabling machines
to learn from data or experience to solve problems, rather than being explicit programmed to
do so. Generally machine learning models are very large and computationally expensive to run,
and also require vast amounts of data to learn from. Although we have vast amounts of data
for many problems, the data needs to be arranged and annotated specifically for each problem,
which can often be very difficult and time consuming.
General video understanding is a long-term goal, with the field as a whole many years away
from any form of general understanding abilities. Instead of tackling understanding in general,
there are a group of specific sub-problems that are addressed individually, and for themost part
separately from one another. These problems are roughly categorised as follows:

• Image/Video Classification: Given an image/video, classify its contents into a single cat-
egory or label;

• Object Localisation in Images/Videos: Given an image/video, specify a single location
(bounding box or pixel-level segmentation) and a label for the object;

• Object Detection in Images/Videos: Given an image/video, detect all objects of interest
by specifying a location (bounding box) and label per object;

• Object Segmentation in Images/Videos: Given an image/video, detect all objects of inter-
est by specifying a location (pixel-level segmentation) and label per object;

• Temporal Event Localisation in Videos: Given a video, specify the temporal location (via
start and end times) and label for an event;

• Temporal Event Detection in Videos: Given a video, detect all temporal events of interest
by specifying temporal locations (start and end times) and labels per event;

• Spatio-Temporal Event Detection in Videos: Given a video, detect all events of interest
both spatially and temporally by specifying spatial locations (bounding box) and temporal
locations (start and end times) and labels per event;

• Object Tracking in Videos: Given a video, detect, track and associate all objects of interest
by specifying a location, a label and an ID to associate the same object instance across
time. This differs from object detection in videos as we want to associate specific object
instances across time;

• Image/Video Captioning: Given an image/video, describe its contents with a natural lan-
guage caption (can be a single sentence or an entire paragraph);

• Dense Image/Video Captioning: Regions of an image/video have individual captions;
• Image/Video Visual Question Answering (VQA): Given an image/video and a question,
answer the question with natural language (a word, sentence, or paragraph).
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Introduction
The broad scope of this thesis is in relation to the task of automated video understanding with
the utilisation of machine learning techniques. The concept of understanding can be difficult
to define and evaluate, particularly in the context of computers. One way of determining un-
derstanding is with description. If you are able describe something, then at least in some form
and to some extent, you have some understanding of it. In the case of video understanding, the
problem is posed as - given a video can the computer describe what happens in the video in
the same way that a human would?
The problem of describing videos is one of the main areas of research in machine learning,
called video captioning. Algorithms that address the video captioning problem need to be able
to perform three key procedures. Firstly, they need to be able to interpret the video in some
logical way, extracting all of the necessary information. Secondly, they need to be able to reason
about the relevance of all of the pieces of visual information. Lastly, they need to be able to
express their interpretation and reasoning in an accurate and compelling human-like way.
Video captioning research has followed many trends from its preceding problem, image cap-
tioning, where the goal is to describe a single still image. However, it is important to point out
that working with video data in comparison to image data is much more difficult for the follow-
ing reasons:

• Video data is much larger - videos take up more storage space, take longer to transfer,
take longer to process with algorithms, and require significantly more resources. Many
researchers are unlikely to have the resources available to perform large-scale video based
analysis and experimentation;

• Video data is more sparsely informative - despite their size, videos contain a lot of redun-
dant information, especially between directly adjacent frames, so the majority of the extra
data is uninformative. It is especially challenging to extract the important information
from the much larger data space occurring in videos;

• Video imagery is naturally more complex - the temporal nature allows for object move-
ment resulting in more object occlusions and rarer object poses. Furthermore, object and
camera motion leads to artifacts such as blur and rolling shutter, resulting in noisier im-
agery.
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This thesis is split into three chapters, which are discussed in greater detail throughout this
introduction:

• Chapter 1 : Captioning with Concepts
We investigate the video captioning process, performing a thorough analysis of both com-
puter and human generated captions. We focus on captioning with the aid of concept
prediction to act as an intermediate step between the visual information and caption gen-
eration. We experiment with several captioning, concept prediction, and integration tech-
niques to determine means of improved performance.

• Chapter 2 : Concept Detection & Localisation
We perform an extensive experimental analysis of numerous techniques for extending
an efficient image object detection pipeline to be suitable for video object detection, as
well as constructing a new dataset combining a number of image datasets with a video
dataset.

• Chapter 3 : Fine-Grained Understanding
We develop a fine-grained dataset centred around the sport of tennis, and investigate
some standard machine learning models’ abilities to perform temporal event detection
and to generate commentary style captions based on the detected events.

Furthermore, we also include a thorough Appendix which covers:
• Background - general theoretical background knowledge to aid in the understanding of
concepts, models, and processes.

• Code - the implementation details about the software utilised within and written for this
thesis.

• Datasets - information about the datasets mentioned and used within this thesis.
• Extended Tables - extended tables that are summarised in the main thesis text.

Introduction 28



Chapter 1 : Captioning with Concepts
One of the key problems in the field of Computer Vision is video captioning, as it provides a rela-
tively useful measure of video understanding. In recent years, the problem has been addressed
with the utilisation of machine learning approaches trained on human annotated datasets. See
[Chen et al., 2019] for a comprehensive review of approaches up to 2019.
Past approaches address the video captioning problem in a three-stage approach:

• Stage one involves the extraction of a set of visual features that represent the video in a
more condensed and focused representation. These features are generated by process-
ing the video through a single, or set of, models which are pre-trained on different prob-
lem domains such as image [He et al., 2016, Szegedy et al., 2017] and video classification
[Karpathy et al., 2014, Xie et al., 2017], or object detection [Ren et al., 2015, Redmon and
Farhadi, 2017];

• Stage two, which is the main focus of most research in video captioning, involves filtering
or transforming the visual features as to best extract key information useful for caption-
ing. Past approaches focus on converging different features over time with mean pooling
[Venugopalan et al., 2015b], temporal attention [Yao et al., 2015], or temporal encoders
[Venugopalan et al., 2015a, Pan et al., 2016a, Ballas et al., 2016, Zhou et al., 2018]. More
recently, approaches focus on spatial region attention [Ma et al., 2018] or the utilisation
of memory modules [Wang et al., 2018b, Pei et al., 2019] for better concept recollection.
Also, focusing on strengthening the language and visual connection some works utilised
semantic embeddings [Pan et al., 2016b, Pan et al., 2017] or Parts-of-Speech (POS) tagging
[Wang et al., 2019, Zheng et al., 2020].

• Stage three, is the captioning module, which uses the filtered or transformed visual fea-
tures to generate human like captions word-by-word. Almost all works utilise a Long Short
TermMemory (LSTM) Recurrent Neural Network (RNN) model architecture [Venugopalan
et al., 2015b] for performing caption generation, with a few also utilising Transformer Net-
works (TNs) [Zhou et al., 2018, Yu et al., 2019].

Overview
In Section 1.1 we describe the video captioning process in greater detail, taking a comprehen-
sive look at the recent neural network based approaches in relation to the three stages. Using
a simple example we look to present the effects of each of the previous works in an easy to un-
derstand and accessible manner. We also discuss and analyse the datasets utilised for training
and testing these models, and give thorough explanations of the standard evaluation metrics
used for evaluating captioning datasets.
In Section 1.2 we implement a set of captioning models which utilise attention over the input
features, investigating the proficiency of various network architectures. We also carry out an
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in-depth analysis of both the model generated and human annotated captions, identifying the
importance of accurate concept detection and identification.
In Section 1.3 we implement and experimentally analyse a number of different concept predic-
tion modules to act as a grounder for the captioning module. We find that with an effective
concept detector the captioning performance can be greatly improved, however learning an ef-
fective concept detector is challenging, with many attempts distracting the captioning module
leading to mixed captioning performance.

Contributions
In Chapter 1 the following contributions are made:

• The design, implementation and investigation of various network architectures for video
captioning;

• An in-depth analysis of bothmodel and humangenerated captionswith regards tomultiple
video captioning datasets;

• The design, implementation and investigation of various novel concept prediction mod-
ules for grounding the captioning model.

Chapter 2 : Concept Detection & Localisation
Following on from investigations carried out in Chapter 1, where it is clear that a key to suc-
cessful captioning and understanding is the correct identification of specific objects, Chapter 2
investigates the problem of object detection in videos. Object detection is a well established
problem in both the image and video domains, with video focusedmodels relying on their image
based counterparts.
Video based object detector works either focus on performing post-detection box linking or
on feature refinement for more accurate box prediction. Focusing on the latter of these, video
based detectors utilise image based object detectors such as Faster R-CNN [Ren et al., 2015],
R-FCN [Dai et al., 2016], SSD [Liu et al., 2016] and YOLO [Redmon and Farhadi, 2018] at their
core. Despite input frames being relatively similar, outputs and representative features in these
networks differ greatly across the span of a video, resulting in inconsistent and inaccurate de-
tections. Utilising means such as optical flow [Zhu et al., 2017a, Zhu et al., 2017c, Zhu et al.,
2018, Wang et al., 2018c], correlation filters [Feichtenhofer et al., 2017], RNNs [Li et al., 2018, Ning
et al., 2017], spatio-temporal hierarchies [Chen et al., 2018a], deconvolutional operations [Berta-
sius et al., 2018] or relation networks [Deng et al., 2019b], works look to combine features across
time to address the problem of inconsistent and deteriorated features. More recently works
have utilised memory networks [Deng et al., 2019a, Chen et al., 2020] for greater temporal span
while maintaining processing efficiency.
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Overview
In Section 2.1 we describe the key methodologies and datasets, as well as give an overview of
the evaluation protocols, used for the object detection problem for the still image domain. After
performing an experimental analysis of the performance and efficiency of three main model
architectures, we chose one and investigate its ability to detect objects in video compared to
images.
In Section 2.2we provide an overview of a number of video domain detection approaches before
implementing and analysing a number of modifications to an image based detector towards
making it more suited for video processing. We find mostly positive results depending on the
particular methodology implemented, with some attaining relatively significant performance
gains.
In Section 2.3wehighlight the lacking concept diversity of current video object detection datasets
and hence design a new hierarchical class dataset which combines both video and image de-
tection datasets. We train an initial framewise model on this dataset, as well as investigate its
concept coverage with video captioning datasets.

Contributions
In Chapter 2 the following contributions are made:

• The design, implementation and investigation of various custom designed network mod-
ules for the extension of an image based object detection framework to be utilised video
object detection;

• The formation of a large object detection dataset consisting of the combination and or-
ganisation of three image based and one video based object detection datasets.

Chapter 3 : Fine-Grained Understanding
While generalised video understanding and captioning is a popular and interesting area of re-
search, it can sometimes be difficult to comprehend its real world application. With the growing
interest in machine learning technologies from outside of the computer science and research
communities, it is interesting and important to understand the applicability and usability ofmod-
ern techniques on real world challenges.
Automated sports analytics is an area that has been steadily gaining commercial interest over
the past decade, and video understanding techniques applied to the sports domain are partic-
ularly interesting. While being human centric and existing in the real world, sports are generally
very restricted environments with restricted practices and constrained outcomes. The sport of
tennis is a good example of this - two players stand on a marked out court, either side of a net,
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and hit a ball with racquets competing to win points. The specialised domain focus is termed
fine-grained in the research community, and permits more directed research and applicable in-
sights.
There has been a range of more fine-grained video understanding works with relation to cook-
ing [Rohrbach et al., 2012a, Rohrbach et al., 2012b, Rohrbach et al., 2016, Regneri et al., 2013,
Rohrbach et al., 2014], shopping [Singh et al., 2016], and other sports such as basketball [Ra-
manathan et al., 2016]. Our focus is on a new domain - the sport of tennis.

Overview
In Section 3.1 we briefly describe some pre-existing fine-grained datasets related to temporal
event detection and captioning. We also briefly discuss some of the approaches implemented
to address each of the fine-grained problems.
In Section 3.2 we introduce our new tennis dataset, which is the first dataset to contain both
temporal event annotations and coinciding captions. We implement a temporal annotation tool
which is released publicly for free and is generalised enough to be used for other problem do-
mains.
In Section 3.3 we implement and investigate the performance of a number of modern tem-
poral event detection and classification architectures, as well as a video captioning pipeline.
Although the models are general and not specifically tailored to the tennis domain, other than
being trained on the tennis dataset, they are able to provide relatively reliable baselines for future
works.

Contributions
In Chapter 3 the following contributions are made:

• The development and public release of a fine-grained video event detection and captioning
dataset based on the sport of tennis, as well as a GUI based annotation tool;

• The design, implementation and investigation of a number of network architectures for
performance evaluation on the tennis dataset for the problems of hit recognition, and
point-level commentary generation.
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1 Captioning with Concepts
This chapter investigates several techniques for performing video captioning. Specifically, when
provided with a video clip the goal is to generate a descriptive caption for that clip which de-
scribes the contents of the video. Figure 1.1 presents an example of the video captioning prob-
lem.

“A man walking beside a road opens his umbrella as it starts to rain”

TIME

Figure 1.1: An example of the video captioning problem. Provided a video portraying a scene, the goal is to generate
a caption that describes the scene.

Generating such a caption is not trivial. If you consider your own thought process in your attempt
to caption the video depicted above, you start to realise how much you need to interpret and
infer. You firstly need to identify the scene, with the road, the man and the umbrella. You might
only be able to discern it’s a road due to the cars. You also need to determine that the man is
moving, and most likely walking, beside the road. You also take into consideration your prior
knowledge, that people normally walk beside roads. You also identify the accumulation of the
clouds, the rainfall, and then the formation of the puddles to determine that it’s raining. Your
prior knowledge, along with the rain, gives further supportive context to your identification of
the umbrella which may not have been clearly identifiable earlier in the video.
Captioning was initially presented as a templatematching task, or based around retrieval of the
best caption from a pre-defined set. In recent years the problem has shifted more into a gen-
eration task where individual words are generated one-by-one conditioned on both the imagery
and previously generated words. Captioning was initially focused on still images, however it is
also becoming prevalent in video. Furthermore, dense captioning is a related problem where
localised regions of space, and or time, are captioned individually. [Aafaq et al., 2019b] presents
a good survey of video captioning methods, including those that existed prior to the wide adop-
tion of neural networks.
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1.1 The Video Captioning Process
There are three main stages in all modern video captioning methodologies (Figure 1.2):

1. Visual Interpretation - involves transforming the raw video information into a more com-
pact representation, which still maintains all of the important information that may be
necessary for generating a caption;

2. Interpretation Filtering - involves further filtering and transformation of the representation
towards containing information useful for generating a caption; and

3. Caption Generation - involves generating a human-like caption based on the filtered rep-
resentation, and can also provide feedback to the filtering process.

“A caption that 
describes the video”

Visual 
Interpretation

Interpretation 
Filtering

Caption 
Generation

Figure 1.2: The three stages of the video captioning process. The video, consisting of a set of frames, is first
passed through a visual interpretation processwhich encodes the frames into features, which are then further filtered
and encoded by a filtering process, before being utilised by the caption generation module, which can also provide
feedback information useful for the filtering process.

Given a video input X = [x1, . . . ,xT ], where each frame xt (t = 1 . . .T ) is denoted by a column
vector, the visual interpretation stage uses a set of feature extraction methods to encode each
frame into a visual feature vector. In general, the visual feature vector corresponding to the tth
frame has the structure f t =

[
φ(f)(xt), φ

(m)(xt), φ
(r)(xt)

]> where φ(f)(·), φ(m)(·) and φ(r)(·) are
vector-valued functions responsible for extracting frame, motion and region features. Concep-
tually, the region feature vector can be partitioned into features corresponding to M different
regions so that φ(r)(xt) = [r1, . . . , rM ]>.
The collection of visual features are then filtered and encoded by the interpretation filtering
process which we represent by a function ϕ(·). The exact details of this function are algorithm
dependent—most recent intellectual effort has been devoted to architecting ϕ(·) so that the
resulting filtered features yield more pertinent information for caption generation. The caption
generationmoduleψ uses the filtered features to generate a sequence of words. In practice, the
caption generation module produces a sequence of probability distributions (y1, . . . ,yN ) of up
to lengthN , where each element yn of the sequence is linked with a word in a dictionaryD via a
decoding function. The dictionary is a set of words, and the size of the dictionary (the number of
elements) is indicative of the vocabulary (the range of concepts the caption generation module
can express). At each word generation step, a basic caption generation module relies on the
filtered visual features ϕ([f1, ..., fT ]) and the past word yn−1.
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An elementary video captioning process can thus be summarised by the relation
yn = ψ(ϕ([f1, ..., fT ]),yn−1). (1.1)

As the following subsections will demonstrate, this basic video captioning model has been ex-
tended in various ways. For example, many methods incorporate information about previously
generated caption words into the interpretation filtering process. Similarly, the caption genera-
tion process sometimes takes additional parameters which aim to give the caption generation
process more contextual information than just its previous word.

1.1.1 Visual Interpretation
Visual interpretation is the process of transforming the raw video into a more compact repre-
sentation without the loss of important information. We term this compact representation a
feature, taking the form of a vector in continuous vector space. Features are extracted using
one, or multiple Convolutional Neural Network (CNN) based model architectures designed for
other tasks such as image classification, video classification and object detection. The spe-
cific models for these tasks don’t output features, but rather classification labels or detection
location coordinates. To extract features, we utilise the output of an intermediate layer of the
model, which is contextually rich with information but also compact. Depending on the partic-
ular model architecture used, different types of features can be extracted. Such features are
frame features, motion features or region features. We discuss each of these feature types in
the following subsections. Note that the various feature models are all pre-trained on different
datasets depending on their problem domain —wemention the datasets when they are utilised,
however don’t discuss them in detail as they are out the of scope of this chapter. The datasets
which are of interest ie. in the captioning problem domain, are described in Section 1.1.4. Infor-
mation about all of the datasets can be found in Appendix D.

Frame Features
The frame features extractionmodel generally takes the form of a 2D image classification CNN,
with features extracted from some intermediate layer output near the end of the model prior to
it’s classification layers. These features contain richly encoded information about the contents
of each frame (Figure 1.3).
Table 1.1 summarises the particular frame feature models utilised for each of the captioning
works. Over time, video captioning works look to utilise the latest, most accurate, classification
models as they generally lead to improved captioning performance via richer features. All of the
image classification models are pre-trained on the extensive ImageNet classification dataset
[Russakovsky et al., 2015], with some being even further fine-tuned on the image based Visual
Genome dataset [Krishna et al., 2017b], or the video based ActivityNet dataset [Caba Heilbron
et al., 2015].
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Model Trained On Fine-tuned On Captioning Works

AlexNet[Krizhevsky et al., 2017] ImageNet [Venugopalan et al., 2015b][Pan et al., 2016b]
VGG-16[Simonyan and Zisserman, 2014] ImageNet [Venugopalan et al., 2015a]

VGG-19[Simonyan and Zisserman, 2014] ImageNet
[Pan et al., 2016b][Pan et al., 2017][Wang et al., 2018b]

GoogLeNet[Szegedy et al., 2015] ImageNet
[Yao et al., 2015][Pan et al., 2017][Wang et al., 2018b]

Inception-V3[Szegedy et al., 2016] ImageNet [Wang et al., 2018b]

Inception-V4[Szegedy et al., 2017] ImageNet [Wang et al., 2018a]

ResNet-50[He et al., 2016] ImageNet [Baraldi et al., 2017][Wang et al., 2018b]
ResNet-101[He et al., 2016] ImageNet [Pei et al., 2019][Pan et al., 2020]
ResNet-152[He et al., 2016] ImageNet [Gan et al., 2017][Chen et al., 2018b]
ResNet-101[He et al., 2016] ImageNet ActivityNet [Zhou et al., 2019]

ResNet-200[He et al., 2016] ImageNet ActivityNet [Zhou et al., 2018][Zhang and Peng, 2019]
ResNeXt-101[Xie et al., 2017] ImageNet Visual Genome [Zhou et al., 2019]

InceptionResNet-V2[Szegedy et al., 2017] ImageNet
[Aafaq et al., 2019a][Wang et al., 2019][Zheng et al., 2020]

Table 1.1: Summary of usages of frame feature model architectures. All of the models are 2D CNN based im-
age classifiers, which are fundamental for methodologies designed for more complex visual interpretation problem
domains, including captioning.
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REPRESENTATION OF FRAME FEATURES

man

sunny

car
outside

sky

woman

person

road

street
day

man

sunny

outside

sky
cloudy

person

road

street
day

man

cloudy

car
outside

woman

person

road

street

dark

man

cloudy

woman

person

road

wet

dark

raining

VISUAL FEATURE REPRESENTATION

φf (·) φf (·) φf (·)φf (·)

Figure 1.3: The extraction of frame features and their visual representation. Each frame is passed through the
feature extraction model φ(f)(·) to generate a rich feature containing encoded information about the visual contents
of that frame (shown in the blue outlined boxes). Note that the feature representations are in a continuous vector
space and are not a set of explicit words — the words listed are just for explanatory purposes.

Motion Features
While image classification models can provide insight about the overall scene and how it might
change over time, finer motion such as object motion or individual actions aren’t captured by
such models. With motion and action being particularly important for the video domain, video
captioning works have also utilised motion based models, originally designed for video clas-
sification and action recognition problems. Compared to the frame feature models which run
on each RGB frame individually, motion feature models extract information from multiple input
frames to generate their features (Figure 1.4).

REPRESENTATION OF MOTION FEATURES

walking
standing

driving

VISUAL FEATURE REPRESENTATION

walkingrunning

driving

walking
driving

walking
driving

talking jogging

φm(·) φm(·) φm(·)φm(·)

Figure 1.4: The extraction of motion features and their visual representation. Each frame is passed through the
feature extractionmodel φ(m)(·) to generate a rich feature containing encoded information about the visual contents
of the subset of temporally adjacent frames (shown in the blue outlined boxes). Unlike the frame features which con-
tain information about static visual concepts, motion features hold information about the actions and movements
across time.

Table 1.2 provides a summary of the different motion feature models utilised by various cap-
tioning works. A couple of works consider a two-stream approach where they utilise an optical
flow (OF) model alongside a standard RGB frame model, combining features extracted from
each stream. The OFmodels are trained on video classification datasetsUCF101 [Soomro et al.,
2012] orActivityNet [Caba Heilbron et al., 2015]. Another work uses hand-crafted video features
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— Histograms of Oriented Gradients (HoG), Histograms of Oriented Flow (HoF), and Motion
Boundary Histograms (MbH) [Dalal et al., 2006, Wang et al., 2009], encoding them further with
a custom 3D CNN which is trained from scratch with the captioning module. Other works apply
different 3D CNN architectures on multiple RGB frames at once. Such 3D CNN models are pre-
trained on video classification datasets such as Sports-1M [Karpathy et al., 2014] and Kinetics
[Kay et al., 2017].

Model Inputs Trained On Captioning Works

motion-CNN[Gkioxari and Malik, 2015] optical flow frames UCF101 [Venugopalan et al., 2015a]

BN-Inception[Ioffe and Szegedy, 2015] optical flow frames ActivityNet [Zhou et al., 2018]

3D CNN[Yao et al., 2015]
HoGHoFMbH

jointly with
captioning module [Yao et al., 2015]

C3D[Tran et al., 2015] RGB frames Sports-1M

[Pan et al., 2016b][Pan et al., 2017][Gan et al., 2017][Baraldi et al., 2017][Wang et al., 2018b][Aafaq et al., 2019a][Wang et al., 2019][Zheng et al., 2020]
I3D[Carreira and Zisserman, 2017] RGB frames Kinetics [Wang et al., 2019][Pan et al., 2020]

3D ResNeXt-101[Hara et al., 2018] RGB frames Kinetics [Pei et al., 2019]

Table 1.2: Summary of usages of motion feature model architectures. Older architectures capture low-level motion
information by processing optical flow input frames with a 2D CNN model stream running alongside a RGB stream.
More recent approaches consider multiple RGB frames directly, utilising a type of 3D CNN model to capture the
temporal changes of adjacent frames.

Region Features
Extracting frame features and motion features from models which consider the entire frame
provide information about the global scene dynamics, however captions generally require in-
formation about individual objects and their relationships. While features related to particular
scene elements can be captured in the frame features, they are not explicit and likely more
noisy or conditioned on various scene elements. Therefore recent image and video captioning
works also utilise spatial region features from Regions of Interest (ROIs) obtained from an ob-
ject detection models. These models are specifically trained to localise objects, allowing for
the extraction of features from explicitly determined salient spatial regions (Figure 1.5).
Table 1.3 provides a summary of the various region feature models utilised by each of the cap-
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REPRESENTATION OF REGION FEATURES
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Figure 1.5: The extraction of region features and their visual representation. Each frame is passed through the
feature extraction model φ(r)(·) to generate a set of rich features containing encoded information about specific
salient spatial ares of the frame (shown with the sets of the blue outlined boxes). Unlike the frame and motion
features which contain information about the global scene, region features contain only information extracted from
the salient spatial sub-regions of the entire frame.

tioning works. These ROI generation models are trained using image based object detection
datasets such as MS-COCO [Lin et al., 2014] and Visual Genome [Krishna et al., 2017b], which
contain spatial coordinate and class label annotations for a range of different objects. Object
detection also rely on image classificationmodels like those seen for generating frame features,
using them as backbones for informing their region detectionmodel. The backbonemodels are
all pre-trained on the ImageNet classification dataset [Russakovsky et al., 2015]. A couple of
the region feature models also utilise a secondary, more powerful feature model, to further en-
rich their extracted ROI image regions. These feature models are also trained on the ImageNet
dataset [Russakovsky et al., 2015], however themodels themselves are larger and provide richer
features than the backbone models. Generally, the ROIs with the highest confidence scores are
utilised as region features for the captioning model.

1.1.2 Interpretation Filtering
Instead of using the raw visual features, it has been found beneficial to perform further filtering
and encoding prior to caption generation. Most of the works in video and image captioning are
focused on this task, with the visual interpretation and caption generationmodels being adopted
from other problem domains such as classification and machine translation respectively.
In this section wewill refer back to the example video depicted in Figure 1.1 and relate what each
of the interpretation filtering techniques do in relation to their effects on the visual features and
resultant caption generation in relation to the desired caption.
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Model & Backbone Trained On Feature Model Captioning Works

Deformable R-FCN[Dai et al., 2016]with a ResNet-101 backbone[He et al., 2016]
MS-COCO ResNeXt-101[Xie et al., 2017] [Ma et al., 2018]

Faster R-CNN[Ren et al., 2015]with a ResNeXt-101 backbone[Xie et al., 2017]
Visual Genome

[Zhou et al., 2019][Pan et al., 2020][Zheng et al., 2020]

Mask R-CNN[He et al., 2017]with a ResNet-101 backbone[He et al., 2016]
MS-COCO ResNet-200[He et al., 2016] [Zhang and Peng, 2019]

YOLO[Redmon and Farhadi, 2017]with a DarkNet-19 backbone[Redmon and Farhadi, 2017]
MS-COCO [Aafaq et al., 2019a]

Table 1.3: Summary of usages of region feature model architectures. Region detection models are designed for
the problems of object detection or segmentation and are designed to identify and spatially localise a set of salient
objects. These models are reliant on the same 2D CNN models used to generate the frame features, using them as
backbone networks for generating a rich visual features.

Mean Pooling
Themost simplified filtering technique, utilised by [Venugopalan et al., 2015b] on frame features
is mean pooling over time:

f̃ =
1

T

T∑

t=1

φ(f)(xt) (1.2)
generating a single feature f̃ ∈ Rd(̃f) where d(̃f) is the dimension of f̃ which is utilised by the
caption generation module.
Let us consider what this means for our example video introduced at the start of the chapter.
Figure 1.6 visually presents the effect of mean pooling — although features are encoded in con-
tinuous vector space, we represent the information they are likely to contain using words below
each frame. The effect of mean pooling to the features across time is that the feature vec-
tor f̃ contains a combination of all individual temporal features. Furthermore, features that are
expressed in more frames will have a stronger representation in the pooled feature, as can be
seen with the concept of man being stronger than raining . This results in the captioningmod-
ule focusing on the most common features concepts, generating a caption which includes ’ a
cloudy day ’. Furthermore despite enabling the model to capture ideas such raining , which
only appears in the final frame’s feature, mean pooling also captures concepts such as sunny

which, in this case, are likely to be counter-productive towards generating the desired caption.
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MEAN POOLED FEATURE 
REPRESENTATION

“A man walking beside a road opens his 
umbrella as it starts to rain”
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a cloudy day”
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Figure 1.6: Visualisation of mean pooling effects on the visual features and caption. For each frame, there is a
corresponding visual feature that contains contextual information about the visual scene (blue boxes). As afore-
mentioned, these features don’t explicitly contain the terms man or street , but rather these are likely what the
continuous space vectors φ(f)(·) likely represent. The effect of temporal mean pooling on the combined feature is
that although all concepts are likely represented to some extent, the most frequent concepts are represented the
strongest (shown by the shading of the concepts). Therefore, the resulting caption generation is likely to be focused
on the most frequent concepts.

Temporal Attention
Instead of trying to capture all of the information across the entire video, as is done in mean
pooling, [Yao et al., 2015] introduce a temporal attention mechanism which focuses on individ-
ual frames when generating each word of the caption. Specifically, they concatenate frame and
motion features for each time-step, ft , [φ(f)(xt), φ

(m)(xt)
]>, and calculate a weighted sum of

all of these visual features based on the hidden state hn−1 of the caption generation module:
f̃n =

T∑

t=1

αt,nft, (1.3)
where the weights αt,n are calculated using a normalising softmax function

αt,n = softmax(c
(α)
t,n ) =

exp(c
(α)
t,n )

∑T
t=1 exp(c

(α)
t,n )

(1.4)
and each c(α) is a context vector generated using a small Multi-Layer Perceptron (MLP)1:

c
(α)
t,n = W(α)>tanh

(
W(h)hn−1 + W(f)ft + b(α)

) (1.5)
where W(α) ∈ Rd(α) , W(h) ∈ Rd(α)×d(h) , W(f) ∈ Rd(α)×d(f) , b(α) ∈ Rd(α) and d(α) is the attention
size (usually d(α) = d(h)).
Once again, considering our example video shown in Figure 1.7, we can visualise the effect that
using temporal attention has on our visual feature utilisation. The temporal attention enables
the model to focus on the first frame when generating the word man (where he may be more
clearly visible), while focusing on the final frame when generating the word rain (once the
puddles have formed). Furthermore, as the inclusion of the motion features allows represen-
tation for walking in the final three time-steps, these time-steps are likely to be most strongly
weighted for the generation of the caption word walking .

1Read more about Multi-Layer Perceptrons in Appendix B.2
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Figure 1.7: Visualisation of temporal attention effects on the visual features and caption. The visual features now
contain both information obtained from the frame feature encoding as well as the motion feature encoding. We
distinguish these two kinds of features by a horizontal line in each blue box. The temporal attention, conditioned
on the state of the caption generator allows it to weight features from different time-steps differently for each word
(shown by the different shading and weights of the arrows linking the visual features to the words). Not that we only
show the weights for two interesting words, however in practice they are calculated for all words in the caption.

Recurrent Neural Network Encoder
While temporal attention allows the caption generation module to focus on particular temporal
positions, it is unable to capture the temporal ordering of the visual features. [Venugopalan
et al., 2015a] introduce a Recurrent Neural Network (RNN)model as a temporal feature encoder.
RNNs are designed to handle sequences of data, encoding and utilising past time-steps when
considering the current time-step. This is what makes them the model of choice for the caption
generation module—as will be seen in Section 1.1.3. Here the authors use an RNN with Long
Short Term Memory (LSTM) units, as they increase the RNN’s recollection abilities over longer
sequences2. Their method works by first passing the sequence of visual features through a
LSTM RNN:

h′t = LSTM(ft,h
′
t−1) (1.6)

where ft = φ(f)(xt) (or ft = φ(m)(xt)), h′t ∈ Rd(h’) . After processing all time-steps, the final
hidden state of the encoder h′T is used as the initial hidden state h0 for the caption generation
module:

h0 = f̃ = h′T (1.7)
Evenwith the use of LSTMunits, RNNs can still struggle to recover information fromsignificantly
earlier iterations. For video it has been found that less than 80 frames is the most optimal for
retaining information [Venugopalan et al., 2015a, Yue-Hei Ng et al., 2015], meaning that the final
encoding f̃ may not include earlier important information in longer videos. To somewhat allevi-
ate this issue [Pan et al., 2016a] use a temporally hierarchical LSTMRNN to capture information
over short and long temporal periods. They stack two RNNs, so the hidden state h′t from layer-1
is passed as input into layer-2 after a certain temporal stride s. This significantly reduces the
number of LSTM operations between the final hidden state of layer-2 h′T and the input features

2More information about RNNs, LSTMs and their recollection abilities are discussed in Section 1.2.2
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ft particularly for small t values, strengthening the recollection of earlier time-steps. [Baraldi
et al., 2017] extend this hierarchical encoder to split on learnt boundary detections rather than
equally spaced strides. Also utilising an RNN encoder is [Ballas et al., 2016] who incorporate
convolutional operations into a Gated Recurrent Unit (GRU)3 RNN unit, producing a stacked Re-
current Convolutional Network (RCN).
Considering the RNNencodermethodologies abovewith our example video, shown in Figure 1.8,
the ability of the RNN model to consider temporal ordering allows the captions to include infor-
mation about ordered processes seen in the video. Most obviously for our case, unlike themean
pooling or temporal attention, an RNN encoder can determine that the scene went from sunny
to rainy, and not the other way around.
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Figure 1.8: Visualisation of the RNN encoder effects on the visual features and caption. Given the visual features
for each time-step the RNN encoder encodes each with information from past time-steps. This means that more
frequent concepts are likely to have a more significant impact on the caption generator, however now temporal
ordering can provide important insights into how the scene changes over time, in this case from sunny to cloudy

to raining .

Transformer Network Encoder
Similar to the RNN encoder just described, [Zhou et al., 2018] utilise a Transformer Network
(TN) [Vaswani et al., 2017] encoder for encoding visual features across time (Figure 1.9). Unlike
the RNN encoder which iteratively evolves its hidden state over time to encode the temporal
changes, the TN instead performs several self-attention and encoding iterations with global
consideration of all of time-steps at once:

f̃t = TransformerEncoder(φ(f)(xt),
[
φ(f)(x1), . . . , φ(f)(xT )

]
) (1.8)

Compared to the RNN encoder, the TN can provide richer features, as they are able to consider
all features from past time-steps equally, while still allowing for focus on particular time-steps.
Furthermore, the diverse information across time isn’t continuously re-encoded into a limited
sized hidden state, resulting in greater ability to focus on concepts in earlier time-steps.

3Gated Recurrent Units are just another RNN unit type, like the LSTM (more in Section 1.2.2)
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Figure 1.9: Visualisation of the TN decoder and its effects on the caption. Given the visual features for each time-
step the TN decoder enriches the visual features by applying self-attention and further encoding. Compared to
an RNN which iteratively encodes the time-steps in its hidden state, the TN can take a more global interpreta-
tion and combination, considering all time-steps. This allows for the TN to be able to focus on concepts from
earlier time-steps while also capturing temporal ordering of events. For example, the concepts car and road

which are strongest in the first feature, are now more strongly linked to the caption generator helping promote the
generation of the word road in the caption. Furthermore, it allows for the encoding of later concepts in earlier
features, permitting for the existence of all concepts available across all time-steps. For example, the transition
sunny>cloudy>raining now appears across all time-steps, with stronger focus on the concepts which appear
at those specific time-steps (shown with shading).

POS Tagging & Detection
To provide more textual context support for each word generation [Wang et al., 2019] introduce
a Parts-of-Speech (POS) tag generator to guide the caption generation module (Figure 1.10).
Their POS tags are processed by theStanford Log-linear Part-Of-Speech Tagger [Toutanova et al.,
2003] into 14 categories — verb(VERB), noun(NOUN), adjective(ADJ), adverb(ADV), conjunc-
tion(CONJ), pronoun(PRON), preposition(PREP), article(ART), auxiliary(AUX), participle(PRT), num-
ber qualifier(NUM), symbol(SYM), unknown(UNK) and the end-of-sentence (EOS) token. They
utilise temporal attention and an LSTM RNN to generate the POS tags prior to each word gen-
eration.

Attributes Detection
Following on from work addressing image based captioning [You et al., 2016], [Gan et al., 2017,
Pan et al., 2017, Zheng et al., 2020] look to jointly learn attribute detectors with their caption-
ing modules. Attributes themselves are just a set of the most common words in a captioning
dataset. The attribute detectors are implemented as small multi-label classification models
which produce a set of confidence scores ρ(a) for the existence of each of the attributes being
present in the video:

ρ(a) = σ(f(ft)) (1.9)
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Figure 1.10: Visualisation of the POS detection and its effects on the caption. Extending the idea of temporal
attention for not just word generation, here the same temporal attention process is utilised to generate POS tags.
The POS are used to guide the caption generationmodule towards generating a particular type of word at a particular
generation step. The caption generator also uses temporal attention directly on the features, but that is omitted for
clarity.

where σ(·) is the logistic sigmoid function and f(·) is a MLP. Each of the works incorporate the
scores into their captioning modules in slightly different ways. Broadly speaking though, they
use them to weight and attend to the corresponding word embeddings, forming a new feature
which persuades the captioning model to generate captions featuring the highest scoring at-
tributes. Word embeddings are specific features for particular words, learnt from textual data,
and can be jointly fine-tuned with the captioning model.
Figure 1.11 presents a visual representation of this filtering approaches effect on the caption
generation. Classifying attributes allows for stronger linking between the visual features and
caption word generations due to the explicit nature of the attribute category scoring. However,
this can also hinder, more than help, if the attribute detections are noisy and erroneous. Further-
more, with a broad range of attributes, it may force the caption generation model to use more
diverse language, which is a challenge for data-driven captioning models.

Region Feature Attention
Similarly to how attention can be applied to visual features across time it can also be used
to attend over the region features φ(r)(xt). [Ma et al., 2018, Zhou et al., 2019] both utilise two
attention schemes to perform self-attention and caption conditioned attention over region fea-
tures (Figure 1.12). For the self-attention mechanism they employ scaled dot-product atten-
tion (SelfAtt(·)), while for captioned conditioned attention they use alpha-attention— the same
attention used for the temporal attention filtering technique. The self-attention allows the re-
gions to be weighted based on the other regions for each frame, strengthening the relationship
representations between regions, allowing regions to support other regions. The caption con-
ditioned attention strengthens the link between visually salient image regions and generated
caption words, promoting better visual support for particular words.
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Figure 1.11: Visualisation of attribute detection and its effects on the caption. Given the visual features for each
time-step a classifier is learnt to determine the probabilities in which a particular attribute exists in the video. In
the case that frame and motion features are used, attribute classifiers are learnt for each type of feature. Here the
attributes are explicitly categorised so are presented as quoted non-italicisedwords. The attribute scores are used to
weight word embeddings to encourage the caption generator to produce themost common attributes in the caption.
In this case the combination of high scores for car and driving being scored slightly higher than walking

results in the caption suggesting the man is driving .

f̃t,n =
M∑

m=1

αt,m,nSelfAtt(rm, φ(r)(xt), φ
(r)(xt)) (1.10)
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Figure 1.12: Visualisation of region attention and its effects on the caption. Given the region features for each time-
step, a dot-product self-attention is applied to weight each of the regions in relation to themselves for the particular
frame. The culmination of these attended regions are then attended to again conditioned on the current caption
generation state. The self-attention strengthens the relationships between specific regions, with regions support-
ing one another (there are stronger weights between man and umbrella ). The caption conditioned attention
strengthens the support for particular caption words with specific salient image regions (there are stronger weights
between words and the regions which contain what the word describes).
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Semantic Embedding Alignment
Somewhat disjointed from the aforementioned filtering approaches, [Pan et al., 2016b] use a
visual-semantic embedding to further encode the visual features into a vector spacewhere they
are more closely aligned with an embedding of the desired caption (Figure 1.13). Specifically,
they generate a visual embedding f̃ and a sentence embedding s̃ with transformation matrices
T(f) and T(s) that are jointly learnt with the caption generation module:

f̃ = T(f)f (f)(
[
φ(f)(x1), . . . , φ(f)(xT )

]
) and s̃ = T(s)f (s)([y1, . . . ,yN ]) (1.11)

where f (f)(·) is some function to compact the temporal features to a vector eg. mean pooling,
and f (s)(·) is some function which encodes the ground truth caption [y1, . . . ,yN ] into a con-
tinuous vector. During training of the embedding matrices they look to minimise the squared
Euclidean distance ∥∥∥f̃ − s̃

∥∥∥
2

2
between the visual and sentence embeddings.
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Figure 1.13: Visualisation of region attention and its effects on the caption. During training of this captioningmodel
the visual features for the entire video are embedding into a shared space with an embedding of the desired caption.
Themodel then learns how to embed the visual features such that theymore closely alignedwith the caption features
in the shared space ie. are closer together in feature space. When generating new captions the new visual feature
encoding process is more able to distinguish between visual features allowing for more precise caption generation.
In the case here, raining in the original features wasn’t very dominant, however after being encoded it is much
stronger and is hence utilised in the caption.

Memory Modules
Utilising region attention, semantic attributes or semantic embeddings do provide improve-
ments towards the semantic connection between the visual and textual modalities, however
due to the diversity of language and visual concepts, captioning methods still struggle to iden-
tify, represent and generate many various concepts. To further improve the recollection of the
captioning generator someworks have utilisedmemorymodels [Weston et al., 2014, Sukhbaatar
et al., 2015] which are able to store more explicit information relating to a broader range of con-
cepts [Wang et al., 2018b, Pei et al., 2019] (Figure 1.14). Using attentionmechanisms and feature
transformations the memory can be read from, and written to, by with visual feature informa-
tion and caption information. Furthermore with the explicit storing of concepts across different
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video samples, it is able to encode richer features and promote the generation of rarer concepts
which would get ignored in other feature encoding representations, such as the hidden state of
an RNN encoder.
[Wang et al., 2018b] utilise a bi-modal (shared visual and textual) memory which gets written
to, and read from, by both a temporal attention mechanism over the visual features, and the
caption generation module. The order of processes are first the caption generation writes to
the memory, then the temporal attention reads from the memory, then the temporal attention
writes to the memory, before lastly the caption generation module reads from the memory. [Pei
et al., 2019] also utilise amemorymodule for better retention of rarer words across training data,
strengthening the captionmodels ability to generate more diverse captions. Thememory struc-
ture in this case is more structured, with a memory entry for each word in the vocabulary with a
corresponding descriptive feature composed of visual context information, word embeddings
and optional auxiliary features.
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Figure 1.14: Visualisation of memory modules and their effects on the caption. The individual memory modules
are represented side by side, with that of [Wang et al., 2018b] on the left, and that of [Pei et al., 2019] on the right.
The memory module allows for improved direct access to features related to explicit concepts. The concepts rep-
resented with the visual features are now shaded to represent their presence and clarity within the features ie. the
concept man is likely the most impactful part of the visual features. In this case, umbrella would be a relative
rare concept within the dataset, resulting in it being more difficult to identify and represent in the visual features —
it’s shaded lightly in the final feature suggesting it’s there but its presence is weak. With the explicit encoding of
umbrella in the memory however, the concept is able to be better determined in the visual feature inputs, and
hence generated in the caption.

1.1.3 Caption Generation
Based on the filtered features, the caption generation stage utilises another neural network to
generate captions one word at a time. Just as videos are sequences of frames, captions are
similarly sequences of words. For this sequence task two architectures are adopted by caption-
ing works — Recurrent Neural Networks (RNNs) and Transformer Networks (TNs). We briefly
describe how they each work, how they incorporate the filtered features, and how they can pro-
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vide feedback to the feature filtering process.
The collection of textual words (made up of letters) in the dictionary D need to be transformed
into a continuous vector space. This is achieved in two steps: (1) one-hot encoding and (2)word
embedding. One-hot encoding involves turning each word in the vocabulary into a binary vector
via a mapping ω : D → {0, 1}|D|, which yields a length-|D| vector (one dimension for each word
in the dictionary) consisting of zeros in all dimensions with the exception of a single 1 at the
kth dimension, corresponding to the kth word. To lower the dimensionality of the one-hot vector,
and to map it from a discrete to continuous representation, one transforms the vector into a
word embedding space:

ek = Eω(yk) (1.12)
where ek is the embedding vector for the kth vocabulary word, E ∈ Rd(e)×|D| is an embedding
matrix, d(e) is the dimension of the embedding space and yk ∈ D is the kth dictionary word.
Word embeddings are generally trained using textual datasets that place contextually similar
words near to one another in the embedding space. Two popular pre-trained word embeddings
are GloVe [Pennington et al., 2014] and Word2Vec [Mikolov et al., 2013], but they can be learnt
or fine-tuned with the captioning model training process.
Included in the vocabulary are three special tokens useful for the generation task. The beginning
of sentence token <BOS> is used for the input for the first word generation ie. for e0. Similarly,
the end of sentence token <EOS> is used to identify where the caption ends and where the
captioning model should halt generation. Finally, the unknown token <UNK> is used in ground
truth captions when the particular word or symbol is not found to be present in the vocabulary,
which may be limited to words that are present in some threshold number of captions.
Furthermore as all captions are not the same length, the maximum sequence lengthN is spec-
ified for each model. Captions which are longer than thisN will get their ends cut off, while any
that are shorter will be padded up until N , where padding is using all zeros for the embedding
vector.

Recurrent Neural Network Decoder
We start with the more common of the two, the Recurrent Neural Network (RNN) architecture
(Figure 1.15). As their name suggests, RNNs are recurrent by nature, as they iteratively generate
words yn (n = 1, . . . , N ). They use the embedding for the previously generated word en−1, their
own hidden state hn−1 and the filtered visual features f̃n via the relation

[
ρn

hn

]
= RNN(hn−1, en−1, f̃n), (1.13)

where ρn is a probability distribution over the vocabulary, from which the most probable word
is chosen as yn.

Captioning with Concepts • The Video Captioning Process 50



RNN DECODER RNN DECODER

Generation of the          word         n+ 1ththGeneration of th ne      word

ρn ρn+1
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Figure 1.15: Simplified visualisation of a Recurrent Neural Network. For the generation of the nth word the filtered
visual features f̃ are input along with the embedding of the previous word en−1. Furthermore, the hidden state from
the previous word generation hn−1 is recurrently passed through the RNN, providing the contextual history of past
words.

Following trends in image captioning [Donahue et al., 2015, Vinyals et al., 2015], and originally
machine translation tasks [Cho et al., 2014, Bahdanau et al., 2015, Sutskever et al., 2014], almost
all video captioning methods adopt an RNN as a decoder. However the standard RNN just
described has difficulty retaining temporally distant information in its hidden state over longer
sequences. To alleviate this issue to some degree it’s common practice to use gating-based
Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] or Gated Recurrent Unit
(GRU) [Cho et al., 2014] units. [Venugopalan et al., 2015b, Venugopalan et al., 2015a, Rohrbach
et al., 2015a, Yao et al., 2015, Pan et al., 2016a, Zanfir et al., 2016, Pan et al., 2016b, Pan et al.,
2017, Gan et al., 2017, Ma et al., 2018, Zhou et al., 2019, Wang et al., 2019, Zheng et al., 2020] all
utilise LSTM units, while [Zhang and Peng, 2019, Aafaq et al., 2019a] utilise GRU units. The inner
workings of the RNN captioning pipeline will be described in more detail in Section 1.2.2

Transformer Network Decoder
Amore recently introducedmethod for dealingwith sequences is the Transformer Network (TN)
architecture (Figure 1.16) [Vaswani et al., 2017]. TNs have been utilised for captioning in both
image [Herdade et al., 2019] and video based works [Zhou et al., 2018, Yu et al., 2019]. The TN
is an attention based method utilising numerous dot-product attention mechanisms and MLP
encoding operations. Unlike the RNN that only sees the previously generated word yn−1 and
is dependent on its hidden state to hold past information, the TN performs attention over all
previously generated words at once when generating new words. Furthermore, with the use of
masking during training, TNs can be trained in parallel across N words, unlike RNNs that rely
on each different hn−1, resulting in TNs being more efficient. Similar to the RNN models the TN
outputs a probability distribution over the vocabulary:

ρn = TransformerDecoder([e0, . . . , en−1], f̃n) (1.14)
The inner workings of the TN decoder pipeline, as well as the training and inference process,
will be described thoroughly in Section 1.2.2.
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Figure 1.16: Simplified visualisation of an Transformer Network. For the generation of the nth word the filtered
visual features f̃ are input along with the embeddings of all of the previous words [e1, . . . , en−1]. Note how e0 is
passed in as initialisation (the same is done for the RNN), recall that this is an embedding of the <BOS> token. By
inputting all of the previous word generations we don’t reacquire holding the history in a hidden state. Also note that
at every nth word generation, word probabilities ρ are calculated for every step, with all but ρn being disregarded.

Beam Search
Beam Search is a search strategy for improving caption generation quality by comparing the
cumulative probabilities of various sequences of word generations. At each word generation
RNNs and TNs base their prediction on past words. If only themost probable word at each itera-
tion is considered (a greedy approach), the captionersmay push themselves into an suboptimal
position due to errornous earlier word generations. Beam Search looks to alleviate this to some
extent by taking the top k(b) scoring word sets at each iteration, where k(b) is considered the
beam size. Note that this isn’t taking the top k(b) words at each iteration, but top combination of
words. For example, for a beam size of k(b) = 3, say the top words at n = 1 are [’I’, ’Me’, ’They’],
then at n = 2 the top combinations might be [’I have’, ’I hold’, ’They have’], so the word ’Me’ from
the first iteration is discarded.

1.1.4 Datasets
All of the model architectures mentioned above require data for training and evaluation. Over
the years there have been several datasets released that are designed specifically for the task
of video captioning (see Table 1.4 for a summary).
MSVD [Chen and Dolan, 2011] is a generalised video captioning dataset containing YouTube
clips annotated with Amazon Mechanical Turk (AMT)4, with multiple people hired to write cap-
tions for each clip. MSR-VTT [Xu et al., 2016] is similar to MSVD, containing relatively short
clips which are quite object centric, however it contains over eight times the video data seen in
MSVD.
ActivityNet Captions is an extension of the ActivityNet action detection dataset [Caba Heilbron
et al., 2015] and was introduced to be more action centric, with longer clips suitable for tem-
porally dense captioning. Recently the ActivityNet and it’s associated Captions extension have
been extended again with ActivityNet Entities [Zhou et al., 2019]. Similar to Flickr 30k Entities

4https://www.mturk.com/
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Dataset Year Context Cap Src # Clips # Hours # Caps # Words Vocab # Obj. Inst.

MSVD 2011 General AMT 1970 5.3 70028 607339 13010 0
MPII-MD 2015 Movie DVS, Script 68337 73.6 68375 653467 24549 0
M-VAD 2015 Movie DVS 48986 84.6 55905 519933 18269 0

MSR-VTT 2016 General AMT 10000 41.2 200000 1856523 29316 0
ActivityNet 2017 Action AMT 20000 849 37421 504234 11006 158000

Table 1.4: Summary of video captioning datasets. We show the year of release, the conext of the videos, the cap-
tioning source, and the numbers of clips, hours, captions, words, unique words and object instance annotations.
Amazon Mechanical Turk (AMT) is an online labelling service and Descriptive Video Services (DVS) are used to de-
scribemovies to visually impaired viewers. As the years have progressed the datasets have become larger andmore
comprehensive. Links to each of the datasets are listed in Appendix D.

[Plummer et al., 2015], this grounds caption nouns in the video with bounding boxes and labels
from 432 categories.
MPII-MD [Rohrbach et al., 2015b] and M-VAD [Torabi et al., 2015] use clips from Hollywood
films, with captions sourced from Descriptive Video Services (DVS) and scripts. The captions
in these sets are less visually descriptive, and are more story and character centric.
The focus of this work is on generalised video understanding and therefore will not consider
using the film datasets, MPII-MD andMVAD. Furthermore, due to the length of the clips in Activ-
ityNet being approximately 150 seconds long on average we leave this for future work. MSVD
andMSR-VTT are themost commonly used datasets with clip lengths of around 10-15 seconds,
and therefore are the two datasets we utilise for training and evaluation of our models.

Noun & Verb Analysis
To attain a deeper understanding of the makeup of these two datasets, we perform an analysis
on the noun and verb occurrences according to the Python Natural Language Toolkit (PNLTK)5.
We investigate two main properties, firstly how many nouns and verbs are used per caption,
and secondly the variation of nouns and verbs across captions of the same video.
Let us consider the count statistics for the total word occurrences (Table 1.5) and the unique
word occurrences (Table 1.6). On a per caption basis, it can be seen there is basically no change,
with on average two or three nouns and none or one verb per caption for MSVD and MSR-VTT
respectively. This suggests the captions are relatively brief and focused on only a couple of
concepts. If we instead compare the total occurrences with the unique occurrences on a per
video basis it can be seen that there are significant differenceswith approximately less than half
of thewords being unique. This is a result of captionswhich describe the same video, containing
similar language. If we compare the unique per video counts with the unique per caption counts
however, we can also identify that there is also variation in how, or what, is described in relation

5https://www.nltk.org/
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to the concepts. This natural human variation in how to interpret and caption a video is one of
the challenges that computers also face.

Dataset Nouns Verbs Nouns/Video Verbs/Video Nouns/Caption Verbs/Caption

# (%) # (%) min | µ | max min | µ | max min | µ | max min | µ | max

MSVD 116724 (34%) 48218 (14%) 37 | 97 | 194 3 | 40 | 105 0 | 2 | 12 0 | 0 | 6
MSR-VTT 409525 (33%) 158164 (13%) 29 | 62 | 122 3 | 24 | 65 0 | 3 | 17 0 | 1 | 9

Table 1.5: Noun and verb statistics for the MSVD and MSR-VTT datasets. We present the total occurrences for
nouns and verbs, as well as the minimum, maximum and mean (µ) counts of the nouns and verbs per video and per
caption. For both MSVD and MSR-VTT nouns are about twice as common as verbs, with approximately 30% and
15% of words for both sets, being classified as nouns and verbs respectively. The mean occurrences of 2-3 nouns
and 0-1 verbs per caption suggest relatively brief and focused captions.

Dataset Nouns Verbs Nouns/Video Verbs/Video Nouns/Caption Verbs/Caption

# (%) # (%) min | µ | max min | µ | max min | µ | max min | µ | max

MSVD 6111 (64%) 3413 (36%) 4 | 23 | 54 2 | 13 | 37 0 | 2 | 12 0 | 0 | 6
MSR-VTT 15091 (63%) 8568 (36%) 6 | 27 | 66 0 | 13 | 36 0 | 3 | 16 0 | 1 | 9

Table 1.6: Unique word (vocabulary) statistics for the MSVD and MSR-VTT datasets. We present the occurrences
for the unique nouns and verbs, again showing the minimum, maximum and mean numbers per video and per cap-
tion. If we compare the per video and per caption counts, where there are approximately 10× the unique concepts
per video than per caption, we can determine that there is natural variation of the human annotations in the same
video.

Taking a closer look at the most common nouns and verbs in each dataset (Figure 1.17) we can
get a clearer idea of what kinds of videos can be found in each set, and what concepts should
be best understood for good captioning outcomes.

1.1.5 Evaluation Protocol
Letting D be a dictionary of words, a length-N caption is a sequence of words (ωn)Nn=1, where
ω ∈ D. For each video there can be several corresponding ground truth (GT) captions, where the
number of captions per video may vary. Hence, for the ith video we associate a set of reference
(GT) captions Ci =

{
{(ωn)

Nj
n=1}Jij=1

}. Similarly for each video we have the predicted candidate

caption ĉi =
{

(ω̂n)N̂in=1

}.

BLEU
BLEU [Papineni et al., 2002] utilises a modified form of precision for n-gram matches between
reference and candidate captions. An n-gram is a continuous sequence of N words. For ex-
ample ’a dog walks’ has three 1-grams (’a’, ’dog’, ’walks’), two 2-grams (’a dog’, ’dog walks’), and
one 3-gram (’a dog walks’). A BLEU score is calculated per n-gram length, with lengths normally
ranging from 1 to 4.
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Figure 1.17: The 20 most common nouns and verbs for the MSVD and MSR-VTT datasets. Top left is the MSVD
nouns, top right theMSVD verbs, bottom left theMSR-VTT nouns and bottom right theMSR-VTT verbs. For both sets
it can be seen that people related nouns such as man , woman , person , girl , boy , someone are the most
common, with most videos consisting of a person interacting with one or two other objects. Furthermore, you can
see how most words are infrequent, resulting in a long-tail distribution. For MSVD cooking related verbs cutting ,
slicing , eating , cooking , chopping , peeling , pouring occur relatively often as there are a signif-
icant number of cooking videos. For MSR-VTT talking , showing occur relatively frequently reflecting many
tutorial style videos in the dataset, along with playing and the highly occurring nouns game and video , relat-
ing to the many videos of computer gameplay recordings.
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We represent the set of n-grams with length N in ĉi as N̂ (N). We also define the function f(·)
to count the number of times each n-gram ν̂ ∈ N̂ (N) exists in either a candidate caption ĉi or
reference caption c(i)

j ∈ Ci (j = 1 . . . Ji). Then for the n-gram length of N and ith sample, a
precision score p(N)

i is calculated:

p
(N)
i =

∑
ν̂∈N̂ (N) min

(
f(ν̂, ĉi),max{f(ν̂, c

(i)
1 ), . . . , f(ν̂, c

(i)
Ji

)}
)

∑
ν̂∈N̂ (N) f(ν̂, ĉi)

(1.15)
In other words, precision is the sum of the counts for all candidate n-grams clipped with their
maximum counts in the reference captions, divided by the sum of their counts in the candidate
caption. For example, the precision for the candidate caption ’through a park a dog walks in a
park’ and reference caption ‘a dog wanders into a park‘ for 2-grams is 0.286 (see Figure 1.18).
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1
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1
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1
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1
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p(2) =
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7
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Figure 1.18: An example of the BLEU precision procedure. Assuming we are working with an n-gram length of 2, we
pair up adjacent words in both the candidate and the reference captions. We then count howmany times the unique
pairs from the candidate appear in the candidate and clip it (take the min) with the occurrence count of the same
pair in the reference caption. These clipped counts are then divided by the total number of pairs to determine the
precision p(2).

With T (pred) denoting the total number of predicted words across all captions, and T (ref) denot-
ing the total number of words in all the GT captions, the BLEU score for the entire dataset for a
particular n-gram length N is:

BLEU(N) = exp

(
1− T (ref)

T (pred)

)
exp



|I|∑

i=1

1

N
log(p

(N)
i )


 (1.16)

METEOR
METEOR [Banerjee and Lavie, 2005] is based on a weighted harmonic mean of 1-gram precision
and recall. A mapping (called an alignment) is first generated between the same words in the
candidate and reference captions, such that every word in the candidate ĉi maps to exactly one
or none of the words in a reference caption c(i)

j ∈ Ci. The alignment with the most mappings,
or least crossover in mapping connections, is chosen for the basis of METEOR calculation.
Precision p(i)

j and recall r(i)
j are then used to calculate the harmonic mean h(i)

j which has recall
weighted nine times more than precision:

p
(i)
j =

a
(i)
j

|ĉi|
r

(i)
j =

a
(i)
j

|c(i)
j |

hi,j =
10p

(i)
j r

(i)
j

r
(i)
j + 9p

(i)
j

(1.17)
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where a(i)
j is the number of alignments (ie. the number ofwords that have beenmapped together

in the alignment), |ĉi| is the number of words in the candidate caption, and |c(i)
j | is the number of

words in the jth reference caption of the ith video. In order to take into account n-grams larger
than one, a penalty p̄ is computed:

p̄
(i)
j = 0.5

(
c̄

(i)
j

a
(i)
j

)3

(1.18)

where c̄(i)
j is the number of chunks, which are sets of sequential words that are adjacent in the

candidate and reference captions. The penalty and harmonic mean are then used to calculate
the METEOR score for a reference-candidate pair (c

(i)
j , ĉi):

METEOR
(i)
j (c

(i)
j , ĉi) = h

(i)
j (1− p̄(i)

j ) (1.19)
Using the previous example sentences, Figure 1.19 presents an example of alignments and cal-
culations for the METEOR metric:

through a park a dog walks in a park

a dog wanders into a park

Candidate

Reference

chunk 1 chunk 2

p =
4

9
r =

4

6
h =

10(4
9)(4

6)
4
6 + 9(4

9)

p̄ = 0.5

(
2

4

)3

METEOR =
40

63
(1− 1

16
)

Figure 1.19: An example of the METEOR alignments and chunking. On the left we show an example of the chunking
process where two chunks, consisting of two alignments each (with no alignment crossovers — the arrows don’t
cross one another), have been matched between the candidate and reference captions. On the right we show an
example of the calculations carried out to get the METEOR score for this candidate-reference pair.

To calculate the METEOR score for a set of reference captions Ci the reference caption that
achieves the highest score is taken:

METEOR(i)(Ci, ĉi) = max
j

(METEOR
(i)
j (c

(i)
j , ĉi)) (1.20)

To calculate the final METEOR score for an entire dataset I , aggregate precision p(I), recall r(I)

and penalty p̄(I) are combined, using the particular reference captions as defined in the step
above:

METEOR =
10p(I)r(I)

r(I) + 9p(I)
(1− p̄(I)) (1.21)

ROUGE
ROUGE [Lin, 2004] are a set of metrics based around n-gram co-occurences in candidate and
reference captions. The set includes five metrics:

• ROUGE-N: Overlap of n-grams across the candidate and reference
• ROUGE-L: Longest common sequence between the candidate and reference
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• ROUGE-W: Weighted ROUGE-L favouring consecutive sequences
• ROUGE-S: Skip-bigram6 (2-gram) co-occurences
• ROUGE-SU: Skip-bigram and unigram (1-gram) co-occurences

In this work, when ROUGE is mentioned it refers to ROUGE-L, which is the F-measure of the
longest common sequence (LCS) of words between a candidate ĉi and reference caption c(i)

j .
Word sequences need to be sequential but not necessarily strictly successive (see example in
Figure 1.20). Once the LCS is calculated (with LCS(·)) it is used to calculate the precision p(i)

j ,
recall r(i)

j and F-measure f (i)
j (which is the ROUGE-L score):

p
(i)
j =

LCS(c
(i)
j , ĉi)

|ĉi|
r

(i)
j =

LCS(c
(i)
j , ĉi)

|c(i)
j |

ROUGEL
(i)
j = f

(i)
j =

(1 + β2)p
(i)
j r

(i)
j

r
(i)
j + β2p

(i)
j

(1.22)

where β = p
(i)
j /r

(i)
j , and |ĉi| and |c(i)

j | are the number of words in the candidate and reference
captions respectively. Using the example captions from above the ROUGE-L score can be cal-
culated:

through a park a dog walks in a park

a dog wanders into a park

Candidate

Reference

a dog, a a, a park, dog a, dog parkLength 2
a dog a, a dog park, dog a parkLength 3

a dog a parkLength 4

p =
4

9
r =

4

6

ROUGEL = f =
(1− 2

3

2
)(4

9)(4
6)

4
6 + (2

3)2(4
9)

=
4

21
= 0.19

Figure 1.20: An example of the LCS lengths and ROUGE-L calculation. On the left we show an example of the
various LCSs for lengths 2, 3 and 4, none exist for more than 4 in this case. On the right we show an example of the
calculations carried out to get the ROUGE-L score for this candidate-reference pair.

To calculate the final ROUGE-L score for an entire dataset I , the ROUGE-L (f ) scores are aver-
aged across the dataset:

ROUGEL =
1

|I|

|I|∑

i

1

|Ci|

|Ci|∑

j

ROUGEL
(i)
j (c

(i)
j , ĉi) (1.23)

where |I| is the number of samples in the dataset, and |Ci| are the number of reference captions
for sample i.

CIDEr
CIDEr [Vedantam et al., 2015] uses Term Frequency-Inverse Document Frequency (TF-IDF) for
weighting n-grams. Given a jth reference caption c(i)

j for the ith sample, we represent the set of
n-grams with length N in c(i)

j as N (N). Similarly as for BLEU, we also define the function f(·) to
count the number of times each n-gram ν ∈ N (N) exists in the reference caption c(i)

j ∈ Ci. The
6Skip-bigrams are any pair of words in their caption ordering (even if they aren’t strictly successive)
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TF-IDF weighting w(ν)
i,j for each n-gram ν in a reference caption c(i)

j is:
w

(i,ν)
j =

f(ν, c
(i)
j )

∑
ν′∈V (N) f(ν ′, c(i)

j )
log

(
|I|

∑|I|
p=1 min(1,

∑|Ci|
q f(ν, c

(p)
q ))

)
(1.24)

where ν ′ ∈ V (N) is the vocabulary of all n-grams of length N for all reference captions in I. The
first term of the above measures the term frequency (TF) of each n-gram ν , while the second
term measures the rarity of ν in the dataset using its inverse dataset frequency (IDF).
The CIDEr score for the n-grams of length N is computed with the average cosine similarity
between the candidate caption ĉi and the reference captions c(i)

j ∈ Ci:
CIDEr(i,N)(Ci, ĉi) =

1

|Ci|
∑

j

g(N)(ĉi) · g(N)(c
(i)
j )

∥∥g(N)(ĉi)
∥∥
∥∥∥g(N)(c

(i)
j )
∥∥∥

(1.25)

where g(N)(ĉi) is a vector formed by concatenating the weights w(i,ν)
j corresponding to all n-

grams of length N within the candidate caption ĉi. g(N)(c
(i)
j ) is the same but for n-grams of

length N with the jth reference caption in Ci. This score is calculated across n-gram lengths
(N = 1, 2, 3, 4) to determine score for a sample i ∈ I :

CIDEr(i)(Ci, ĉi) =
N∑

n=1

1

N
CIDEr

(i,n)
i (ĉi, Ci) (1.26)

To calculate the final CIDEr score for an entire dataset I , the scores are averaged across the
dataset:

CIDEr =
1

|I|

|I|∑

i

CIDEr(i)(Ci, ĉi) (1.27)

SPICE
SPICE [Anderson et al., 2016] (visualised in Figure 1.21) performs comparisons using based se-
mantic propositional content by breaking captions up into scene graphs using a parser. The
scene graph for a candidate caption ĉi is denoted as G(ĉi) while the scene graph for the refer-
ence captions Ci, denotedG(Ci) is formed by the union of scene graphsG(c

(i)
j ) for each c(i)

j ∈ Ci.The graphs are built as tuples:
G(ĉi) = 〈O(ĉi), E(ĉi),K(ĉi)〉 (1.28)

whereO(ĉi) is a set of object mentions in ĉi, E(ĉi) is a set of hyper-edges representing relation-
ships between objects in ĉi, andK(ĉi) is a set of attributes associated with objects in ĉi. Based
on the graph tuple representation, a logical tuple representation is formed:

T (G(ĉi)) = O(ĉi) ∪ E(ĉi) ∪K(ĉi) (1.29)
This logical tuple is also generated for the reference caption before both being used to calculate
the precision pi, recall ri and F-measure fi (which is the SPICE score):

pi =
|T (ĉi)⊗ T (Ci)|
|T (ĉi)|

ri =
|T (ĉi)⊗ T (Ci)|
|T (Ci)|

SPICE(i) = fi =
2piri
pi + ri

(1.30)
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where⊗ is a binarymatching operator. Using the example captions from above the SPICE score
can be calculated:

dog
in

park
walks

through a park a dog walks in a parkCandidate

T (G(ĉ)) = {(park), (dog), (dog,walks), (dog, in,park)} SPICE = f =
22

4
2
3

2
4 + 2

3

=
9

7

Figure 1.21: An example of the scene graph, logical tuple and SPICE calculation. We first show what a scene graph
might look like for our candidate caption, with relations dog → in → park and dog → walks . Below this
on the left we show what such a graph representation looks like in logical tuple form. While bottom right shows an
example of the SPICE calculation.

To calculate the final SPICE score for an entire dataset I , the scores are averaged across the
dataset:

SPICE =
1

|I|

|I|∑

i

SPICEi(Ci, ĉi) (1.31)

Precision & Recall
The precision and recall calculations described thusfar have been unique to the individual cap-
tioningmetrics, whereas here we present the standard forms utilised in classification problems.
Despite not normally being utilised for captioning evaluations, we will utilise them later in the
chapter to determine the accuracy for specific word generations.
The standard precision p and recall r values are calculated as:

p =
TP

TP + FP r =
TP

TP + FN (1.32)
where TP, FP, and FN are true positives, false positives and false negatives respectively:

• True Positives (TP) are when a model correctly predicts a word that exists in a ground
truth caption;

• False Positives (FP) are when a model incorrectly predicts a word, that doesn’t actually
exist in the ground truth caption;

• False Negatives (FN) are when a model doesn’t predict a word that exists in the ground
truth caption.

Precision and recall values listed in this chapter are obtained on a per word/class basis — av-
eraged across all of the samples. The final results are then obtained from averaging over all of
the words that appear in the union of the predicted and ground truth captions.
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1.2 Transformers for Video Captioning
After consideration of the various components of the three-stage video captioning frameworks
discussed in Section 1.1, we develop our own framework, and investigate various configura-
tions and additions. Keeping in line with the three-stage modulisation of past video captioning
works ours also follows this structure. Presented in Figure 1.22, our initial model consists of
two or three parts — the visual feature extraction and encoder pipeline, an optional secondary
feature encoder, and a captioning network in the form of an RNN or TN. Details and experimen-
tal analysis of each of these parts can be found in Section 1.2.1, Section 1.2.3, and Section 1.2.2
respectively. In Section 1.2.4 we also investigate the effects of reducing the model size for the
Transformer Network based model. Finally, in Section 1.2.5, we perform a thorough analysis of
both model and human captioning performance, including an analysis of particular visual con-
cepts. In Section 1.3 we will expand on this model further to promote grounding of important
visual and textual concepts.

......
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Figure 1.22: A visual representation our captioning pipeline. Our pipeline is structured into three main parts — the
visual feature extraction and encoder pipeline, an optional secondary feature encoder, and a captioning module in
the form of an RNN or TN. We perform attention over the visual feature encodings within each captioning module.

1.2.1 Input Features
Similar to past works we just take pre-defined models to extract our feature sets. Following on
from two of the most recent works [Pan et al., 2020, Zheng et al., 2020], we look to utilise four
types of input feature inputs:

1. Frame Feature: For each clip we constructed a set X of 28 uniformly spaced frames
and passed them through a frame-based feature extractor φ(f) : X → Rd(f) (d(f) = 1536),
such as a CNN model pre-trained on the ImageNet [Russakovsky et al., 2015] dataset. For
MSVD we use ResNet-101 [He et al., 2016], while for MSR-VTT we use InceptionResnetV2
[Szegedy et al., 2017], taking the outputs from the last avg-pooling layer for both mod-
els7. The 28 features are thenmean pooled as to form a single frame feature representing

7The use of different CNN models for different datasets is consistent with previous works.
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the entire video:
f (f) =

1

|X |
∑

xt∈X
φ(f)(xt). (1.33)

2. Motion Feature: To gather the necessary data for motion feature extraction, we follow the
procedure of [Aafaq et al., 2019a] and form the setX ′ = {[xt−8, . . . ,xt, . . . ,xt+7] | xt ∈ X}.
That is, we construct groups of 16 frames each centred on the 28 frames in X . The se-
quence of frames in X ′ are passed through a motion-based feature extractor φ(m) : X ′ →
Rd(m) (d(m) = 4096). In particular, we use the C3D model [Tran et al., 2015] pre-trained on
Sports-1M [Karpathy et al., 2014], with the output of the fc6 layer taken as the feature.
The 28 features are mean pooled to form a single motion feature representing the entire
video:

f (m) =
1

|X ′|
∑

xt∈X ′
φ(m)(xt). (1.34)

3. Region Features: We construct a set X ′′ by sampling the 15th frame of each video and
passing it through region-based feature extractors φ(b) : X ′′ → Rd(b)×R (d(b) = 4) and
φ(r) : X ′′ → Rd(r)×R (d(f) = 1024), where R denotes the total number of regions. Specif-
ically, we use Faster R-CNN [Ren et al., 2015] pre-trained on MS-COCO [Lin et al., 2014]
with a ResNet-101 [He et al., 2016] backbone. We extract box coordinates8 (φ(b)) and the
standard ROI-pooled feature outputs (φ(r)) from the Faster R-CNN for the topR = 10 most
confident object detections resulting in our region features F(r):

F(r) ,

[
φ(b)(xt)

φ(r)(xt)

]
. (1.35)

4. Category Feature: For experiments with the MSR-VTT dataset we also use video cate-
gory labels, which categorise videos into one of 20 categories. The set of categories C
consists of {music, people, gaming, sports, news, education, tv shows, movie, animation,
vehicles, how-to, travel, science, animals, kids, doc, food, cooking, beauty, ads}. We repre-
sent the category that a video belongs to by a one-hot vector f (c) ∈ {0, 1}d(c) (d(c) = 20)
consisting of zeros in all dimensions with the exception of a single 1 at the kth dimension,
corresponding to the kth category.

Despite the fact that we introducedmean pooling as themost basic temporal encoding scheme
in Section 1.1.2, it has recently been adopted by many top-performing approaches as the encod-
ing of choice. This choice is for two main reasons:

1. Compacting the temporal aspect, by any means, is useful for simplifying the implementa-
tion and results in significant processing efficiency benefits, as models do not scale well
with many time-steps of high dimensional feature operations.

2. Although capturing temporal information is important, the videos in the MSVD and MSR-
VTT datasets are relatively short and relatively static in terms of the global scene across

8Box coordinates are of form [x, y, w, h] as ratios of the image size ie. 0 < x, y, w, h < 1

Captioning with Concepts • Transformers for Video Captioning 62



the video. This means that not a significant amount of information is actually lost if we
simply mean pool over time. What’s important to identify in these videos, is the low-level
motions andmovements to help determine actions and verbs, which is the purpose of the
inclusion of the motion feature.

To summarise, while performing a more complex temporal encoding process will likely see
some minor performance gains, the negative effects on simplicity and efficiency are too sig-
nificant, with focus and computational resources being devoted to other parts of the caption-
ing framework. Furthermore, due to resource limitations, and as is common practice, we pre-
compute all of the above features. This results in the inability to fine-tune the visual networks
for the captioning problem. However, it allows for much more efficient training of much smaller
non-visual models.
As an initial experiment, we look to ascertain the impact of each type of feature on the caption-
ing performance for each of the datasetsMSVD andMSR-VTT. We train and evaluate our model
using different combinations of features, with results shown in Table 1.7 utilising the caption
metrics discussed in Section 1.1.5. We find that region features are of most significance, high-
lighting the necessity to focus on spatial regions for effective caption generation. This makes
sense as captions tend to refer to specific spatial regions, so more focused features are more
informative than the global and mean pooled singular frame and motion features. Interestingly,
while motion features perform better on their own compared to frame features for MSR-VTT,
the opposite is true for MSVD. This suggests a core difference in the types of videos in the
datasets, with MSR-VTT having more captions reliant on understanding the motions within the
videos compared to MSVD. Finally, and somewhat unsurprisingly, we show that utilising all fea-
tures attains the best performance.
From this point onward we will utilise the full set of visual features for all experiments. As the
features are of variable dimensions we embed them to have the same dimension so they can
be stacked into a feature matrix F ∈ Rd(F)×F ,

F =
[
W(f)f (f),W(m)f (m),W(r)F(r),W(c)f (c)

] (1.36)
where W(f) ∈ Rd(F)×d(f) , W(m) ∈ Rd(F)×d(m) , W(r) ∈ Rd(F)×(d(r)+d(b)) and W(c) ∈ Rd(F)×d(c)

are embedding matrices that will be learned during the optimisation process. This process of
feature extraction and embedding is shown in Figure 1.23.

1.2.2 Captioning Module
As discussed in Section 1.1.3, the majority of video captioning works have utilised a Recurrent
Neural Network as the captioning module, however there has been some promise in utilising
Transformer Networks, particularly in regards to training efficiency. We implement both strate-
gies looking to investigate the performance and efficiency differences between them. Before
we discuss our findings we provide a more thorough technical description of both processes,
as well as highlighting the training strategy used for training our models.
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f (f) f (m) F(r) f (c) B1 B2 B3 B4 MT RG Cr SP

MSVD

3 .698 .536 .415 .287 .252 .609 .238 .029
3 .664 .466 .345 .215 .233 .597 .161 .026

3 3 .696 .535 .410 .288 .252 .607 .285 .031
3 .726 .574 .470 .364 .273 .632 .471 .034

3 3 .759 .625 .526 .424 .309 .667 .640 .043
3 3 .738 .587 .479 .371 .283 .644 .509 .038

3 3 3 .768 .642 .542 .436 .313 .674 .665 .045
MSR-VTT

3 .632 .431 .299 .189 .194 .493 .141 .034
3 .717 .541 .395 .285 .233 .530 .224 .045

3 3 .666 .516 .402 .305 .222 .529 .221 .043
3 .700 .515 .378 .276 .227 .523 .262 .045

3 3 .750 .592 .458 .348 .261 .570 .381 .058
3 3 .770 .620 .487 .376 .274 .585 .438 .063

3 3 3 .784 .643 .513 .398 .280 .600 .468 .065
3 3 3 3 .787 .643 .511 .396 .280 .600 .474 .066

Table 1.7: The impact of the different input features on captioning performance. Here we show results for caption-
ing models trained with different subsets of the input features f (f), f (m),F(r) and f (c). Metric shorthands are B1-4:
BLEU1-4, MT: METEOR, RG: ROUGE-L, Cr: CIDEr, SP: SPICE, with best performing scores per dataset underlined.
For simplicity, let’s focus our attention to the CIDEr scores from now on, as it tends to be the most insightful met-
ric currently available. Comparing the models which only use one feature (bolded results), we can see that region
features are the most insightful with scores of .471 versus .238 and .161 for MSVD, and .262 versus .141 and .224
for MSR-VTT. In a similar vain, it looks as if motion features are more important than frame features for MSR-VTT
(.224 vs .141) but not for MSVD (.161 vs .238), suggesting that the MSVD involves less discriminatory motion. Lastly,
it is clear that including all features achieves the best performance, achieving the highest scores across almost all
metrics.
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Figure 1.23: A visual representation of the visual feature extraction and embedding process. Our set of visual
features F include frame features extracted from a ResNet-101 or IRV2 CNN, motion features extracted from a C3D
CNN, region features extracted from a Faster R-CNN, and for MSR-VTT, category features related to the video.

Recurrent Neural Network Decoder
As outlined in Section 1.1.3, an RNN iteratively generates words using the embedding for the
previously generated word en−1, their own hidden state hn−1 and the filtered visual features f̃n:

[
ρn

hn

]
= RNN(hn−1, en−1, f̃n) (1.37)

where ρn is a probability distribution over the vocabulary, from which the most probable word is
chosen as yn. This RNN(·) function is actually performing embeddings and additions over the
inputs and is equivalent to:

hn = tanh(U(h)hn−1 + W(x)x̌n + b(h)) (1.38)
where the input x̌:

x̌n =

[
en−1

f̃n

]
(1.39)

and U(h) ∈ Rd(h)×d(h) , W(x) ∈ Rd(h)×d(x) , bh ∈ Rd(h) , x̌n ∈ Rd(x) where d(x) = d(e) + d(F). Using
the hidden state hn, the probability distribution across the vocabulary of the n word generation
can be determined with:

ρn = softmax(W(k)hn + b(k)) (1.40)
where W(k) ∈ R|D|×d(h) , b(k) ∈ R|D|, with |D| being the vocabulary size. Figure 1.24 presents a
visualisation of the RNN decoding process as described above.
The above formulation is the default RNN, however in practice one normally uses either Long
Short Term Memory (LSTM) or Gated Recurrent Unit (GRU) units. This is because after a few
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Figure 1.24: A visual representation of the Recurrent Neural Network decoder. This figure presents the additive
attention module on the left and an RNN unrolled n = 3 steps. For each step the previous hidden state hn−1 is used
to attend over the filtered visual features F̃with the output being concatenatedwith the embedding for the previously
generated word en−1 and used as input x̌n to the LSTM or GRU unit. These units output a new hidden state vector
hn which is passed for context to next stage as well as being used to generate the word probability distribution ρn.For n = 1, the embedding vector e0 representing the <BOS> is passed in. The RNN will continue to generate word
probabilities until it either reachesN iterations (themaximum number permissible), or if the probability distributions
suggests the <EOS> token.

iterations data within the hidden state gets overwritten and forgotten in favour of more recent
information. When training these recurrent models, gradients that are passed to earlier time-
steps get smaller and smaller leading to what is called the vanishing gradient problem, which
prevents the networks from learning longer sequences. LSTM and GRU units address these
issues by adding gates to determine when to remember and when to forget information.
Despite whether the standard, LSTM or GRU unit type is used, the hidden states h still hold
the record of the previously generated words through the generation process. Furthermore, no
matter the unit type, only vector inputs are permitted for x̌n, meaning the visual features f̃n also
need to be a vector. We however, have a matrix of visual features F̃ = ϕ(F), recalling that
F =

[
W(f)f (f),W(m)f (m),W(r)F(r),W(c)f (c)

]. To compress this set into a single vector f̃n per
word generation step we utilise additive attention [Bahdanau et al., 2015]:

f̃n =

F∑

f=1

αf F̃[:, f ] (1.41)
where

αf = softmax(W(α)>tanh(W(h)hn−1 + W(f)F̃[:, f ])) (1.42)
and W(α) ∈ Rd(α) , W(h) ∈ Rd(α)×d(h) and W(f) ∈ Rd(α)×d(F) .
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Transformer Network Decoder
As outlined in Section 1.1.3, a TN performs attention over all previously generated words at once
([e0, . . . , en−1]) when generating each nth word probability distribution ρn:

ρn = TransformerDecoder([e0, . . . , en−1], F̃n) (1.43)
while also considering the set of filtered visual features F̃n. ThisTransformerDecoder(·) function
is actually quite complex and generally consists of multiple repetitions of a DecoderBlockl(·) for
a certain number of layers L:

zn,1 = DecoderBlock1(en, [e0, . . . , en−1], [e0, . . . , en−1], F̃)

zn,2 = DecoderBlock2(zn,1, [z1,1, . . . , zn,1], [z1,1, . . . , zn,1], F̃)

...
zn,L = DecoderBlockL(zn,L, [z1,L−1, . . . , zn,L−1], [z1,L−1, . . . , zn,L−1], F̃)

(1.44)

where zn,l ∈ Rd(h) . The final zn,L is used to calculate the word probability distribution for the nth
word generation:

ρn = softmax(W(k)zn,L + b(k)) (1.45)
where W(k) ∈ Rd(h)×|D|, b(k) ∈ R|D|, with |D| being the vocabulary size.
This DecoderBlockl(qn,K,V, F̃) is made up of a number of sequential operations:

u′′′n = MultiHeadAttention(qn,K,V)

u′′n = LayerNorm(qn + u′′′n )

u′n = MultiHeadAttention(u′′n, F̃, F̃)

un = LayerNorm(u′′n + u′n)

z′n = FullyConnected(un)

zn = LayerNorm(un + z′n)

(1.46)

where qn is the query for word generation step n, K is a set of keys, and V is a set of values,
which are dependent on the layer l. For the first layer l = 1 we use the word embeddings for the
queries, keys, and values (qn = en, K = [e0, . . . , en−1] and V = [e0, . . . , en−1]), while for later
layers l > 1 they take the output from the previous layer (qn = zn,l−1, K = [z1,l−1, . . . , zn,l−1]

and V = [z1,l−1, . . . , zn,l−1]).
The FullyConnected(·) is defined as a small fully connected neural network:

z′n = FC(un) = W(2)ReLU(W(1)un) (1.47)
where W(1) ∈ Rd(h)×d(i) and W(2) ∈ Rd(i)×d(h) .
The MultiHeadAttention(·) is the most important part of the TN and is based on repeating in-
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dependent scaled dot-product attentions (DotProdAttention(·)) carried outH times in parallel:

MultiHeadAttention(qn,K,V) = W(O)




DotProdAttention(W
(q)
1 qn,W

(K)
1 K,W

(V)
1 V)...

DotProdAttention(W
(q)
H qn,W

(K)
H K,W

(V)
H V)




(1.48)
whereW(q),W(K),W(V) ∈ R

d(h)

H
×d(h) are independent projectionmatrices for each head 1, ...,H ,

while W(O) ∈ Rd(h)×d(h) .
Each DotProdAttention(·) attention performs a dot-product attention on the values via the dot-
product of the query with the keys:

DotProdAttention(qn,K,V) = Vsoftmax
(

Kqn√
d(h)

)
= V

exp
(

Kqn√
d(h)

)

∑T
p=1 exp

(
kpqn√
d(h)

) (1.49)

The intuition behind this query, key, and value approach is that the DotProdAttention(·) is look-
ing to apply attention to the set of values V, which are represented by a set key signatures K

for each value, based on howwell a particular query qn aligns with the representative key signa-
tures. So in the DecoderBlock1(·) for L = 1, the first MultiHeadAttention(en, [e0, . . . , en−1], [e0,

. . . , en−1]) is performing a self-attention where each query word is compared to all of the other
words (and itself) in the sequence [e0, . . . , en−1], while the secondMultiHeadAttention(u′′n, F̃, F̃)

poses how well does each of the attended words u′′n relate to each visual features in F̃, then
weighting the visual features appropriately. In other words, the first attention is generating an
encoded sequence of all of the past and current words where some are more prominent than
others, while the second uses this to determine what features are the most important to these
highly weighted words.
Above we have described the process for the TN at inference time, where all of the word em-
beddings for the past generated words ([e0, . . . , en−1]) are passed in as input. This results in an
output sequence of probability distributions (ρ1, . . . , ρn), however at each nth iteration we only
consider the latest probability distribution ρn, ignoring the others. This is different to an RNN
which only considers input of the en−1 embedding and generates output of the ρn probability
distribution. Similar to an RNN however, is that we iteratively loop through the n steps until we
either reach the maximum permissible length N or generate the <EOS> token.
The training scheme of the TN is what sets it apart from the RNN, allowing parallel processing
across the N steps without the need for the iteration as is needed in RNNs. Recall that during
training, for both RNNs and TNs that GT captions are either clipped or padded to ensure they
are always of length N . For training TNs we simply input the entire sequence and do one pass
(rather than N passes like for the RNN). We can do this because we are generating the full
sequence of probabilities at once, and are not dependent on the calculation of a hidden state
which is calculated iteratively. For the TN, to prevent the model considering and attending to
futurewords, eg. looking at word embedding en+4 from the nth position, a binarymaskingmatrix
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M is applied within the DotProdAttention(·):

DotProdAttention(qn,K,V) = Vsoftmax
(

Kqn√
d(h)

M

)
= V

exp
(

Kqn√
d(h)

)

∑T
p=1 exp

(
kpqn√
d(h)

M
) (1.50)

where M ∈ RN×N takes the form: 


1 0 · · · 0

1 1 · · · 0... ... . . . 0

1 1 1 1




(1.51)

This sets the attention weights of future values (in our case word embeddings) to 0.
The Transformer Network decoder architecture as described above, for inference at step n,
is visually presented in Figure 1.25, showing the DotProdAttention(·), MultiHeadAttention(·)
functions as well as the full stack of them together.
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Figure 1.25: A visual representation of the Transformer Network decoder during inference. From left to right we
have the DotProdAttention(·), the MultiHeadAttention(·), and the full DecoderBlock(·) processes. The full se-
quence of past words [e0, . . . , en−1] is processed on the nth word generation, producing an output of n word prob-
ability distributions (ρ0, ρ1, . . . , ρn) over the vocabulary, where all but the nth distribution is discarded. The initial
input embedding e0 is the embedding for the <BOS> token. The model will continue generating word probability
distributions until it reaches the limit N or generates the <EOS> token. During training we pass in the full ground
truth caption embedding sequence, cut or padded to length N ([e0, . . . , eN ]). We then do a single pass through the
network rather than the iterative process as done in inference and is done for RNN training. Masking is used to
prevent the attention mechanisms from attending to future word representations ([en, . . . , eN ]).

Training Setup
We train and evaluate all of our models in similar conditions, keeping most hyper-parameters
unchanged between experiments. Firstly, the loss function employed is the standard cross-
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entropy loss used in all other captioning works, and is defined per data sample as:
L(caption) = −

N∑

n=1

log(Pr(ŷn = yn)) = −
N∑

n=1

log(ρ>nω(yn)) (1.52)
where ω(yn) is the one-hot vector for our desired ground truth word yn.
In terms of parameters, the RNNs are trained with hidden size d(h) = 1024, while the TNs use
a hidden size of d(h) = 512 (and d(i) = 2048), aligning with the visual input features encoding
size of d(F) = 512. For the TN models we experiment with varying numbers of headsH = 1|4|8
and layers L = 1|2. Furthermore, its important to point out that in the following initial captioner
comparison experiments we are yet to incorporate a filtering function ϕ(·), therefore we are
utilising the unfiltered features F in-place of their filtered counterparts F̃.
Due to hardware limitationswe use a relatively small batch size of 8 for our experiments. For the
MSVD experiments we train for 100 epochs, while for theMSR-VTT experiments we train for 200
epochs, both include early stopping with a patience of 50 epochs. We use the Adam optimiser
with an initial learning rate of 10−4. The maximum sequence length for MSVD experiments
is N = 20, and N = 17 for MSR-VTT — we cut ground truth captions to N , and only allow
the caption generators to process N iterations. Any ground truth captions shorter than N get
padded with 0s after their <EOS> token. For more details on the training parameters used for
each experiment hereon, see Appendix C.

Captioner Comparison
We perform an evaluation of the RNN and TN captioning strategies in relation to performance
and efficiency, with results shown in Table 1.8. We show that LSTMunits aremore effective than
GRU units for our RNNmodel, and that both outperform the TNs. Addingmore heads and layers
to the TNmodels improve their scores, however their training and inference times also increase
similar or worse than the RNN models. It’s unclear why there is a decrease in performance for
the TNs relative to the RNNs. Potentially it’s due to the MSVD and MSR-VTT datasets being too
small, as TNs are known for requiring more data than other architectures, including RNNs [Liu
et al., 2019, Raffel et al., 2020]. If we compare the relative drops in performance in the CIDEr
scores between the best TN model (2,8) and the LSTM model across the two datasets, we find
that there is a 10% drop for MSVDwhile only a 7% drop for MSR-VTT, indication the TN performs
relatively better on the larger dataset.
Looking beyond the testingmetric evaluations, we also consider the training and validationmet-
rics, in the form of CIDEr scores, across the training periods. Figure 1.26 and Figure 1.27 provide
the metric scores for the LSTM, GRU, and 1- and 2-layer 8-head TNs, for MSVD and MSR-VTT
respectively. By considering these graphs we can get a sense of how the models learn in com-
parison to one another, and also their behaviour towards over-fitting9.

9Over-fitting refers to when a model over-fits to a training set, indicated by continued increase in training perfor-
mance, but not in validation performance
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Model Layers Heads B1 B2 B3 B4 MT RG Cr SP TSpS ISpS

MSVD

LSTM 1 - .768 .642 .542 .436 .313 .674 .665 .045 92 10.8
GRU 1 - .773 .647 .547 .439 .309 .668 .631 .043 92 9.2

1 .741 .613 .512 .404 .294 .652 .557 .040 110 5
1

8 .751 .629 .531 .424 .300 .656 .591 .043 120 9.4
1 .741 .613 .515 .409 .296 .654 .546 .039 80 6.7TN

2
8 .749 .626 .527 .419 .299 .654 .602 .042 80 10

MSR-VTT

LSTM 1 - .787 .643 .511 .396 .280 .600 .474 .066 54 10.4
GRU 1 - .776 .637 .502 .384 .266 .595 .435 .058 57 11.1

1 .761 .615 .482 .365 .261 .581 .390 .057 77 8.3
1

8 .771 .635 .506 .390 .270 .591 .439 .060 79 8.6
1 .766 .626 .496 .383 .269 .588 .432 .060 60 6.7TN

2
8 .776 .630 .492 .374 .271 .585 .439 .062 59 4.3

Table 1.8: Caption decoder strategy comparisons for performance and efficiency. Here we compare the various
caption generation models in relation to their performance (with the metric scores) and efficiency (with training
samples per second and inference samples per second). It can be seen that the RNN models outperform the TN
models across all metrics, with LSTM units being most effective. Such a performance drop may be a result of a lack
of data as suggested by the proportion decrease of the CIDEr scores shown in bold between the datasets, with less
of a drop for the MSR-VTT models. Efficiency, at least on our hardware, is similar no matter the type of model, with
TNs only being more effective when they contain less parameters.

Firstly, considering the MSVD training results in Figure 1.26, it is clear that over-fitting starts
occurring after about 20 epochs, with minor and rare validation improvements after this stage.
Furthermore the validation results reflect the testing evaluations with the LSTM RNN outper-
forming the other models to a similar degree.
Considering the MSR-VTT training statistics in Figure 1.27 we can see similar over-fitting as
was observed in the MSVD training. However, interestingly after reaching peak validation per-
formance the RNNs start to become more inaccurate as they over-fit.
The over-fitting for both datasets is quite significant as both graphs taper off, with large per-
formance gaps between the training versus validation data evaluations. The significant size of
this gap is likely due to poor generalisation of specific concepts. As most concepts are rare (as
shown in Section 1.1.4), the over-fitting models have learnt how to determine the specific visual
features that relate to specific rare words, however such features are not good general repre-
sentations for that word. This could potentially be remedied by more data, particularly of the
rarest concepts, however it is a significant challenge for the captioning problem as the terms
used for expressing the same thing can be vastly different.
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Training CIDEr

Validation CIDEr

Validation CIDEr

Figure 1.26: The training statistics for RNN vs TN on MSVD. Here we show the CIDEr scores of our models as
evaluated with the training and validation data splits of MSVD throughout the full training procedure. The bottom
graph is an inset of the top graph, zoomed in on the validation curves, as indicated by the blue shading. Also, the
thick lines are the running average considering the 10 surrounding scores, as show by the smoothed thin line. We can
see fairly early on in the training (within 20 epochs), that the training metrics start to pull away from the validation
metrics showing over-fitting to the training data. Looking at the zoomed in bottom section of the graph it can be seen
there is some slight improvements in validation performance after epoch 20 however it isminor in comparison to the
training accuracy. Furthermore, the differences in model performance seen in the testing scores is reflected in these
graphs, with the LSTM RNN consistently performing better than the other models, while for validation performance
the GRU and 2-layer TN model’s scores are similar.

Training CIDEr

Validation CIDEr

Validation CIDEr

Figure 1.27: The training statistics for RNN vs TN on MSR-VTT. Here we show the CIDEr scores of our models as
evaluated with the training and validation data splits of MSR-VTT throughout the full training procedure. The bottom
graph is again an inset of the top graph, zoomed in on the validation curves, as indicated by the blue shading. Also,
the thick lines are the running average considering the 10 surrounding scores, as show by the smoothed thin line. In
this case we see that the RNN models quickly reach their peak validation performance at around epoch 25, before
decreasing as the model over-fits. The TNs are slower to learn, with peak validation performance around epoch 70.
All models are stopped by the early stopping process, hence why they don’t reach the right side of the graph or 200
epochs.
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1.2.3 Input Feature Encoder
Thus far, unfiltered features F have been utilised as input to our two captioning schemes — the
RNNand TN.While these features are somewhat encoded by the RNN’s inner encodingwithWx,
or the TN’s MLP, both of these encodings occur after each captioners corresponding attention
mechanism, resulting in the encoding of a single attended vector. Indeed each of the individ-
ual features are encoded when forming F (recall F =

[
W(f)f (f),W(m)f (m),W(r)F(r),W(c)f (c)

]),
however this is an encoding for ensuring all features are of the same dimensionality, with the
encodings being independent of one another.
Following practices seen in machine translation tasks, where the TN architecture originated, we
look to utilise a TN encoder to act as an initial filtering process of our set of features— F̃ = ϕ(F).
This filtering process can be utilised as a pre-cursor to the concept based filtering processes
to be described in Section 1.3. We define the EncoderBlockl(·) which performs self-attention
and encoding across the features, resulting in a set of filtered visual features that are encoded
contextually conditioned on each other. The EncoderBlockl(·) is similar to the DecoderBlockl(·)
as described in Section 1.2.2, but only performs a single multi-head attention:

u′′n = MultiHeadAttention(qn,K,V)

u′n = LayerNorm(qn + u′n)

z′n = FullyConnected(un)

zn = LayerNorm(un + z′n)

(1.53)

We utilise it to encode each of our visual features F 7→ F̃:
zf,1 = EncoderBlock1(ff ,F,F)

zf,2 = EncoderBlock2(zf,1, [z1,1, . . . , zF,1], [z1,1, . . . , zF,1])

...
zf,L = EncoderBlockL(zf,L, [z1,L−1, . . . , zF,L−1], [z1,L−1, . . . , zF,L−1])

(1.54)

F̃ = [z1,L, . . . , zF,L] (1.55)
Table 1.9 presents a performance comparison between the models with and without the TN
feature encoder. Results are mixed, with the encoder leading to a reduction in performance of
the LSTM RNN for both MSVD and MSR-VTT. In the case of the TN decoders, including a TN
encoder does improve results in terms of some metrics, will better or equal results for CIDEr
and SPICE, with most improvement coming from the larger MSR-VTT dataset. This once again
might be an indication that the transformer requires more data to generalise in comparison to
the RNN, with the encoder degrading the features for the RNN case.

1.2.4 Network Reduction
As seen in Section 1.2.2, over-fitting and generalisation for these captioning models is a signifi-
cant challenge. One of the procedures for addressing over-fitting is reducing model size, so as
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Decoder Layers Heads Encoder B1 B2 B3 B4 MT RG Cr SP

MSVD

7 .768 .642 .542 .436 .313 .674 .665 .045
LSTM 1 -

3 .760 .625 .519 .411 .305 .664 .637 .043
7 .751 .629 .531 .424 .300 .656 .591 .043

TN 1 8
3 .742 .608 .509 .407 .296 .646 .599 .043

MSR-VTT

7 .787 .643 .511 .396 .280 .600 .474 .066
LSTM 1 -

3 .783 .640 .499 .374 .273 .591 .470 .064
7 .776 .630 .492 .374 .271 .585 .439 .062

TN 2 8
3 .778 .635 .494 .374 .271 .589 .458 .062

Table 1.9: Input feature encoder performance comparisons. Here we present the performance for both LSTM RNN
and TN captioning models with and without the addition of a TN based visual feature encoder. With the inclusion
of the encoder, performance for the RNN model on both MSVD and MSR-VTT is decreased across all metrics. Con-
versely, for the TN model, the encoder does see improvements in the CIDEr metric for both datasets.

to force the model to try and generalise more. Furthermore, TNs can have varying numbers of
layers L and headsH , where different combinations may perform better than others. We there-
fore investigate the use of more layers and heads but smaller dimensionality, in our TN based
encoder-decoder using several different combinations. Table 1.10 presents the results showing
that while scores for the MSVD dataset are mixed, our 512-dimensional 2-layer 8-head model is
clearly the better choice for MSR-VTT.

Dim Layers Heads B1 B2 B3 B4 MT RG Cr SP

MSVD

1 .742 .608 .509 .407 .296 .646 .599 .043
512

2 .750 .623 .522 .415 .303 .653 .617 .042
4 .758 .625 .519 .409 .299 .660 .598 .041
8

8

.764 .638 .542 .435 .293 .657 .561 .038
4 .761 .628 .527 .421 .301 .665 .593 .040256

8
16 .753 .624 .519 .410 .297 .648 .574 .041

MSR-VTT

1 .749 .605 .473 .358 .261 .580 .423 .060
512

2 .778 .635 .494 .374 .271 .589 .458 .062
4 .761 .618 .484 .368 .265 .586 .432 .057
8

8

.774 .621 .480 .360 .265 .575 .406 .061
4 .771 .628 .490 .370 .267 .586 .427 .060256

8
16 .757 .614 .477 .359 .261 .571 .415 .061

Table 1.10: Transformer Network parameter variation performance comparisons. This table shows the metric
evaluations of our model using the TN caption generator with TN feature encoder, using either d(F) = 256|512

dimensional features, L = 1|2|4|8 layers, and H = 8|16. The MSR-VTT results show that the 512, 2, 8 combination,
which contains the most parameters is the most suitable. Results on the MSVD dataset are more mixed, however
the more reliable CIDEr metric score is again the highest for the 512, 2, 8 combination model.
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1.2.5 Caption Generation Analysis
Although the metrics give some indication of captioning performance, they don’t tell the whole
story. We therefore take a closer look at the predicted versus the ground truth (GT) captions to
uncover more information how the models are actually performing.

Human Performance Analysis
When describing things, such as captioning videos, humans naturally vary in how they describe
the same occurrence. This was shown to some extent with the general versus unique noun
and verb occurrences for the datasets in Section 1.1.4 and is a difficult factor to evaluate. We
therefore utilise the multiple GT captions for each of the videos, and compare them against one
another to get a measure of human performance. Specifically, we randomly select one caption
per video to be the prediction and evaluate it against the rest which are kept as GT. This is
repeated 100 and 20 times for the MSVD and MSR-VTT datasets test splits respectively, with
the results averaged to get the scores presented in Table 1.11.

BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE-L CIDEr SPICE

MSVD

.874 ±.008 .765 ±.010 .660 ±.012 .562 ±.013 .423 ±.005 .758 ±.007 1.194 ±.030 .097 ±.002
MSR-VTT

.761 ±.003 .578 ±.005 .441 ±.005 .345 ±.006 .296 ±.003 .565 ±.004 .500 ±.005 .092 ±.001
Table 1.11: Human performance anaylsis for video captioning. This table shows the metric evaluations of the GT
captions for the MSVD and MSR-VTT datasets. These results are for the test splits, however as to be expected we
find equivalent results for the training and validation sets. Listed are the mean and standard deviations across 100
and 20 runs of randomly sampling a caption from the set of GT captions from each sample in MSVD and MSR-VTT
respectively.

Intuition would suggest that these human evaluations would act as a soft upper-bound on our
model performances, considering we are comparing a human caption to a set of other human
captions, however this isn’t the case. If we directly compare these human scores with scores
from our testing, validation, and training procedures we find that the models do better, particu-
larly on the training data.
Let’s consider the LSTM RNN captioning model which doesn’t include a feature encoder. Ta-
ble 1.12 presents the testing and validation results from the best validation epoch, as well as
the training results from the final epoch which is heavily over-fitted. It can be seen that for
MSVD the human evaluations are better for the validation and test splits, however for the rel-
atively well-fitted training data, the model outperforms the human annotations. This result is
found for MSR-VTT also, with the model even performing better than humans on the validation
and test data with the BLEU and ROUGE-L metrics. These results may seem counter-intuitive at
first, but if we take a closer look at the predicted versus the ground truth captions it becomes
clearer why this might be the case.
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Split Type B1 B2 B3 B4 MT RG Cr SP

MSVD

Human .874 .765 .660 .562 .423 .758 1.194 .097
test

LSTM .768 .642 .542 .436 .313 .674 .665 .045
Human .883 .783 .682 .588 .435 .777 1.344 .098

val
LSTM .770 .650 .552 .458 .314 .689 .787 .042
Human .874 .767 .663 .566 .422 .759 1.190 .099

train
LSTM .950 .919 .889 .851 .554 .904 2.207 .104

MSR-VTT

Human .761 .578 .441 .345 .296 .565 .500 .092
test

LSTM .787 .643 .511 .396 .280 .600 .474 .066
Human .762 .582 .446 .351 .299 .571 .511 .093

val
LSTM .800 .659 .523 .405 .289 .609 .496 .068
Human .762 .582 .446 .353 .302 .576 .514 .094

train
LSTM .939 .868 .780 .695 .425 .800 1.168 .107

Table 1.12: Human versus LSTMRNNperformance for video captioning. This table compares the human annotation
evaluations and the LSTM RNNmodel generation evaluations on the test, validation and training splits of MSVD and
MSR-VTT. Humans outperform themodel formostmetricswhen considering the testing or validation data*, however
on the training data the highly over-fitted model performs significantly better. This result is consistent across both
datasets with CIDEr increases from 1.190 to 2.207 and .514 to 1.168 for MSVD and MSR-VTT respectively. *With the
exception of the BLEU and ROUGE-Lmetrics, which score higher than human evaluations for theMSR-VTT validation
split, which the model isn’t over-fitting to.
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Let us consider the word, noun and verb count percentages for each of the datasets, as shown
with histograms in Figure 1.28. By considering these graphs we can see that the word, noun and
verb distributions in the GT captions are higher and more long-tailed relative to the predicted
captions. This highlights that the predicted captions are shorter and more concise than the
human annotated captions. One might initially assume that this reduction in predicted caption
length, as well as in noun and verb usage, would be the cause for poorer metric accuracy on
the testing data — since the shorter captions could miss important details found in the GT cap-
tions. Considering the training split distributions however, which are similar to the testing split
distributions, and considering that the over-fitting model significantly outperforms the human
captions, we can confirm that the more concise captions don’t have significant negative effects
on metric scoring. These results suggest that the model has a tendency to prefer generating
shortermore concise captions, which have no adverse affect on themetric scoring. In fact, if we
assume that the humans know what they are talking about, and use relatively correct language
to refer to concepts, and that the model, even when over-fitted is likely to be more incorrect
overall, then it suggests the metrics are suited to the brevity of the model generated captions.
Considering this idea further, we believe that potentially the random sampling of human cap-
tionsmay unfairly prevent them from achieving the kind of performance as seen with the model
results on the over-fitted data. If we once again consider the variation of language in human
annotations (as shown back in Section 1.1.4), and that we randomly sample singular captions
and compare to all others per video, then there is a relatively high chance (0 - 50%) that we sam-
ple a caption that is relatively poor compared to the majority of the other GT captions for that
video. For example, say that for each video, 75% of the GT captions say the same thing, while
the other 25% say something else, then with our random sampling we’d expect to get captions
that disagree with the majority 25% of the time. When we sample and evaluate one of these mi-
nority captions the resulting metric scores are relatively low, compared to an over-fitting model.
As our model learns it would be trying to best fit all GT captions per video, so it tends towards
generating an ’average’ caption that tries to match the majority of the GT captions. In terms of
our example, this results in our model generating captions that are more like the 75% majority,
resulting in potentially higher likelihood of good metric performance in comparison to random
sampling where 25% of the time we get a poorer score. To what extent this actually plays a
role is hard to determine, after all we are averaging over the dataset, so there should be more
majority based scores rather than minority. Also, considering the MSR-VTT validation results
in Table 1.12, this suggests that for some metrics (BLEU, ROUGE-L), the shorter ’average-like’
captions score higher regardless of over-fitting. Other sampling methods could potentially be
utilised, such as taking the best human scoring caption per sample, however ’cherry-picking’
like this may give too high of a score to the human captions, not appropriately reflecting aver-
age human performance. We conclude that it’s non-trivial and ambiguous to determine what
approach should be used for evaluating the human performance. Further thought and study is
needed on this analysis.
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Figure 1.28: Caption percentage histograms for human and model generated captions in regards to word, noun
and verb counts. From left to right this figure shows the % of captions that contain a certain number of word, noun,
and verbs for the GT (grey) and RNN model generations (blue). From top to bottom these counts are on the MSVD
training, MSVD testing, MSR-VTT training and MSR-VTT data splits. It shows that, no matter the dataset or split, the
model tends to generate shorter more concise captions.
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Concept Analysis
We have just seen how the metrics prefer more succinct, concise captions, however the perfor-
mance disparity between the training split generations and the testing split generations despite
similar word, noun and verb distributions suggest that the specific words, nouns and verbs play
a significant role in model performance. We therefore take a closer look at the comparisons
between the generated captions and the ground truth captions for both the training and testing
splits, looking to determine how wrong individual nouns or verbs are.
For this comparison, for each videowe extract the nouns and verbs from the generated captions
and compare them to the top three nouns and top verb from the collection of GT captions. We
calculate the precision, recall and F1-score for exact matches, as well as the euclidean Glove10
embedding distance. Similarly to the human evaluations above, we include pseudo-human re-
sults by using the same random sample hold-one-out method.
Table 1.13 presents the results averaged across the datasets, showing the comparison between
the testing and training splits and the human andmodel performance. We find that for theMSVD
training, and MSR-VTT training and testing splits, that the LSTM RNN model performs signifi-
cantly better at determining concepts. The MSR-VTT test split result is particularly interesting
as it suggests that despite the model captions being shorter they still cover the important con-
cepts. In fact, the conciseness of the model captions may be beneficial in this evaluation as the
longer GT captions might introduce more than three nouns and one verb, resulting in a drop in
precision. This wouldn’t effect the recall however, and indeed the noun recall is higher for the
human captions for MSR-VTT.
Lastly, to get an indication of what concepts are and aren’t being learnt, we take a look at the
error rates of the nouns and verbs that are predicted on the test splits of each dataset. As the
model is bound by what concepts appear in the training sets, we first determine individual noun
and verb vocabularies for both the MSVD and MSR-VTT datasets based on the GT captions.
We parse the training sets extracting the unique nouns and verbs that occur in the GT captions,
resulting in 6111 nouns and 3413 verbs for MSVD, and 15091 nouns and 8568 verbs MSR-VTT11.
From these we take only those that occur in at least 20 GT captions, resulting in 697 nouns
and 324 verbs for MSVD, and 1921 nouns and 797 verbs for MSR-VTT. As the NLTK tokenizer
is imperfect, 78 and 300 words appear as both nouns and verbs for MSVD and MSR-VTT re-
spectively. We manually examine these intersecting words and assign them to either the noun
or verb vocabularies. Our final sets of unique nouns and verbs consist of 647 nouns and 296
verbs for MSVD, and 1750 nouns and 668 verbs for MSR-VTT.
Similarly for this comparison we are comparing generated concepts to the top three nouns and
top verb from the collection of GT captions for each video. The noun and verb true positive
(TP), false positive (FP) and false negative (FN) counts for our LSTM RNN model on MSVD and
MSR-VTT are shown in Figure 1.29 and Figure 1.30 respectively.

10We use the 300-dimensional Glove-6B
11these statistics match up with those in Table 1.6 in Section 1.1.4
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Figure 1.29: Noun TP, FP and FN counts on generated captions for the test splits of MSVD and MSR-VTT. These
bar charts show the generated caption nouns true positive (TP), false positive (FP) and false negative (FN) counts in
order of highest F1-score for MSVD (left) andMSR-VTT (right). For brevity, we only list predicted nouns that appear in
the training vocabularies for their corresponding dataset, and that either have k predictions or GT video occurrences,
where k = 5 for MSVD and k = 20 for MSR-VTT. Note that the bars are stacked, so by considering the dark blue and
the dark grey bars together we can see the proportion of positive GT samples that are actually detected compared
to those that are missed ie. for the noun man in MSVD, about 70% of the man occurrences are predicted correctly.
Similarly, by considering the dark blue and the light blue bars together we can see the proportion of predictions that
are actually attributed correctly to a GT ie. again for man in MSVD, about 60% of the predicted "man" nouns are
correct.
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Precision Recall F1 Score Distance
Split Type

Nouns Verbs Nouns Verbs Nouns Verbs Nouns Verbs

MSVD

Human .581 .349 .433 .375 .480 .358 2.903 4.114
test

LSTM .416 .248 .249 .248 .303 .248 4.008 5.088
Human .582 .336 .439 .362 .485 .344 2.896 4.260

train
LSTM .818 .613 .559 .619 .647 .615 1.228 2.220

MSR-VTT

Human .377 .186 .355 .234 .351 .201 4.488 5.422
test

LSTM .431 .330 .315 .336 .357 .332 3.901 4.323
Human .373 .190 .352 .237 .347 .204 4.522 5.375

train
LSTM .648 .463 .488 .484 .541 .469 2.430 3.253

Table 1.13: Comparison of human and RNN performance for caption concept generation. In this table we present
the concept generation performance of human captioners and our LSTM RNN. Performance is measured for nouns
and verbs individually using classification metrics precision, recall, F1 Score and Euclidean distance in GloVe em-
bedding space. It can be seen that other than the MSVD test set, the RNN model achieves better performance, with
the exception of the nouns recall (bolded). This is likely because our choice of three nouns suit the short model
generated captions, causing drops in precision but not recall when the longer GT captions include four or more
nouns.
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Figure 1.30: Verb TP, FP and FN counts on generated captions for the test splits of MSVD and MSR-VTT. These
bar charts show the generated caption verbs true positive (TP), false positive (FP) and false negative (FN) counts in
order of highest F1-score for MSVD (left) and MSR-VTT (right). For brevity, we only list predicted verbs that appear in
the training vocabularies for their corresponding dataset, and that either have k predictions or GT video occurrences,
where k = 5 for MSVD and k = 20 for MSR-VTT. Once again, note that the bars are stacked, ie. the number of FN
for the verb "playing" in MSVD is 78− 45 = 33.
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From these graphswe can note a number of interesting things. Firstly, it is clear that themajority
of nouns and verbs are rare, which is to be expected with the diversity of the language and the
content of the two datasets. Secondly, the more common nouns and verbs look to be predicted
the most accurately, further suggesting that the diversity of the datasets is an issue for model
generalisation and performance. For the nouns baby, men, girl and person are often missed
when generating a caption suggesting cues for these different kinds of humans are lacking.
Furthermore, for nouns man, woman, person (in MSR-VTT), and people, there are many false
positives suggesting a tendency to just use these relatively common words when unsure, likely
when specifically unsure of the kind of human. In comparison to the nouns, the verbs particularly
for MSVD, are more evenly spread, however are more difficult to determine with greater false
positive and false negative proportions. Visually, verbs are naturally more difficult to identify in
comparison to nouns due to them often relating on contextual andmotion cues, rather than just
visual appearance cues. This remains a challenge for the visual feature extraction process to
provide insightful features that can more easily allow for verb and action determination.
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1.3 Video Captioning with Concepts
As seen in the previous section, correctly identifying individual nouns and verbs when generat-
ing a caption is critically important. We have also seen how all models are prone to over-fitting,
with the testing and validation scores quickly hitting their peak during the training while the
training scores continue to improve significantly thereafter. A potential means of addressing
both of these issues is with the addition of individual noun and verb groundings prior to caption
generation. Adding a classification loss on individual nouns and verbs acts as regularisation on
themodel, giving it another objective to solve. This idea is similar to what past works have done
with attributes [Gan et al., 2017, Lu et al., 2018, Anderson et al., 2018, Gan et al., 2017] and Parts-
of-Speech (POS) [Wang et al., 2019, Zheng et al., 2020], however we introduce a multi-stage and
a Transformer Network (TN) to generate concepts conditioned on past concepts. Furthermore,
we investigate two different strategies for incorporating our concept predictions with the cap-
tioning modules — as a concatenation with the input features (as described in Section 1.3.1)
and a decoupled combination (as described in Section 1.3.2). For each of these approaches we
compare three different module architectures for concept prediction, a single-stage attribute
classifier (like that seen in [Gan et al., 2017, Pan et al., 2017]), a multi-stage subject-verb-object
(SVO) classifier (which is a more general version of [Zheng et al., 2020]) and an iterative SVO
classifier which utilises a TN and is akin to a mini-caption generator. The number of concepts
we produce and utilise varies depending on the approach.
We utilise the noun and verb vocabularies introduced in Section 1.2.5, which consists of 647
nouns and 296 verbs for MSVD, and 1750 nouns and 668 verbs for MSR-VTT. In practice we
combine the noun and verb vocabularies together for each dataset, allowing generation of both
nouns or verbs at the same time. This results in vocabulary sizes of |D̊| = 943 for MSVD and
|D̊| = 2418 for MSR-VTT.

1.3.1 Input Feature Stacking
Incorporating the concepts into the caption generation modules as to best exploit the concept
information is an important problem to consider. We embedour conceptswith the same embed-
ding as our caption words, resulting in our set concept embeddings [̊e1, . . . , e̊C ] being ∈ Rd(̊e) .
As our visual features are of the same dimension where d(̊e) = d(F) = 512, we first investigate
stacking the concept word embeddings as extra input features:

F̃ = [F, e̊1, . . . , e̊C ] (1.56)
We investigate three concept generation strategies which are described in the following sub-
sections, before comparing their performance in the final subsection.
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Single-Stage Attributes Classification
We begin with performing attributes classification, where an attribute is simply a noun or a verb.
We consider the attribute classification task as a multi-label classification problem, where we
look to classify a set of attributes for each video in a single classification stage. For each video
we take the top five (C = 5) occurring words from the GT captions which also exist in our
vocabularies as GT concepts. We choose five as we believe this should adequately cover the
three nouns and two verbs which is the maximum the model tends to generate as was shown
in Figure 1.28 in Section 1.2.5. For each video with predicted concept probabilities ρ̊̊k and GT
labels ẙk̊ ∈ {0, 1} for each of the k̊ concepts in D̊, equalling 0 when the concept isn’t present
and 1 when it is. The concept loss is a binary cross-entropy loss:

L(concept) = − 1

|D̊|

|D̊|∑

k̊

wk̊ · ẙ̊k · log(ρ̊̊k) + (1− ẙ̊k) · log(1− ρ̊̊k) (1.57)
where wk̊ is a weighting for each word in the concept vocabulary and is calculated as each
words inverse occurrence proportion:

wk̊ =
|I(s)| − o̊k

o̊k
(1.58)

where |I(s)| is the total number of captions in the dataset and o̊k is the total number of word
occurrences for word k̊ across the dataset.
The final loss is calculated by adding the concept loss with the caption loss which was intro-
duced in Equation (1.52) in Section 1.2.2:

L = L(caption) + αL(concept) (1.59)
where α is a balancing term, which is set to α = 2 for our experiments.
The framework is shown in Figure 1.31 where at first a dot-product attention over all of the input
features is applied, with the image feature used as the query to the attention:

u = DotProdAttention(W(f)f (f),F,F) (1.60)
The attended input feature is then encoded with a small MLPwhich can have one ormore layers
of MLP(·) = Dropout(ReLu(Linear(·))), we however just use one layer:

u′ = MLP(u)

= Dropout(ReLu(Linear(u)))

= Dropout(ReLu(W(u)u + b(u))))

(1.61)

where the linear weight W(u) ∈ Rd(F)×d(F) and bias b(u) ∈ Rd(F) .
We then transform the u′ into the concept vocabulary space, before applying a sigmoid(·) to
determine the concept probabilities across D̊:

ρ̊ = sigmoid(W(ρ̊)u′ + b(ρ̊)) (1.62)
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where W(ρ̊) ∈ Rd(F)×|D̊| and b(ρ̊) ∈ R|D̊|.
The top 5 concepts, based on their confidence scores, are embedded and stacked onto the end
of the visual input features, as shown further above. The F̃ is then passed into to captioning
modules as before.
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Figure 1.31: Visual representation of the single-state multi-label attributes classifier module. Given the visual
featuresFwegenerate a set of conceptswhich are stackedwith the initial features to form F̃. The visual features are
first passed through a self-attentionmechanismbefore being passed through a smallMLP, before being transformed
and classified with a sigmoid(·) to generate concept probabilities ρ̊. The top C = 5 concepts are then taken and
embedded before being stacked with the initial features.

Multi-Stage Ordered POS Classification
While unordered attributes classification is useful, we also investigate whether asserting order
for the attribute classification improves captioning results. When working with ordered con-
cepts, we condition each generated concept based on the previously generated concepts. As
the ordering of our ground truth concepts are simply in order of popularity they don’t contain
any contextual structure to them. To improve the contextual structure, instead of using the
top five concepts, for these experiments we use contextually ordered Parts-of-Speech (POS)
tags, namely subject-verb-object (SVO) triplets, where the C = 3 concepts used are ordered in
a meaningful and constructive way. Other works [Wang et al., 2019, Zheng et al., 2020] have
found improvements with utilisation of SVO triplets. Furthermore considering the findings from
Section 1.2.5 that show the captioningmodels look to generally predict two nouns and one verb,
despite human captioners using more descriptive language, suggests that SVO triplets are suf-
ficient for these two datasets.
To generate the SVO triplets we again utilise the Python Natural Language Toolkit, which uses
a trained12 tri-gram subject tagger for generating the subjects. Then for each subject the cor-
responding caption is checked for a verb and noun to complete the SVO triplets. This results
in the potential to have multiple SVO triplets per caption, and per clip. For our experiments we
utilise the same SVO data as [Zheng et al., 2020].
This ordered classification of concepts, namely SVOs, can be considered like a mini-captioning

12Trained on Brown, conll2000, and TreeBank corpuses — see https://www.nltk.org/book/ch02.html
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problem. With concept words being generated one at a time conditioned on the past words. For
these ordered experiments we use the same cross-entropy loss as used for the captioning:

L(concept) = −
C∑

c=1

log(Pr(ˆ̊yc = ẙc))

= −
C∑

c=1

log(ρ̊>c ω̊(ẙc))

(1.63)

where ω̊(̊oc) is the one-hot vector for our desired ground truth concept ẙc. This is combined with
the caption loss in the same way as previously discussed.
A simplified way of doing this is to use individual attention and MLP networks for each of the
C concepts based on the visual features F. So for each concept c we begin by again utilising
a dot-product attention mechanism which uses either the previous word embedding e̊c−1 for
the previously generated concept ẙc−1, or the image featureW(f)f (f) as the query and the visual
features F as the keys and values:

uc =





DotProdAttention(W(f)f (f),F,F) if c = 1

DotProdAttention(̊ec−1,F,F) if c > 1
. (1.64)

The attended input feature is then encoded with a small MLPwhich can have one ormore layers
of MLP(·) = Dropout(ReLu(Linear(·))), we however just use one layer:

u′c = MLP(uc)

= Dropout(ReLu(Linearc(uc)))

= Dropout(ReLu(W(u)
c u + b(u)

c ))),

(1.65)

where the linear weights W
(u)
c ∈ Rd(F)×d(F) and biases b

(u)
c ∈ Rd(F) .

We then transform the u′c into the concept vocabulary space, before applying a softmax(·) to
determine the concept probabilities across D̊:

ρ̊c = softmax(W(̊k)
c u′c + b(̊k)

c ) (1.66)
where W

(̊k)
c ∈ Rd(F)×|D̊| and b

(̊k)
c ∈ R|D̊|.

Each concept as determined by the highest probability, is then embeddedand individually stacked
onto the set of features as done for the previous method. Figure 1.32 presents the approach
with our SVO triplets, so there are three attentionmechanisms followed by threeMLP networks.

Ordered POS Classification with Transformers
The multi-stage POS classification module discussed in the previous subsection is able to con-
dition concept probability predictions based on both the visual features and the previously gen-
erated concept, however it doesn’t consider all previously generated concepts, eg. the object
doesn’t know about the subject. Furthermore, increasing the number of concepts in such a
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Figure 1.32: Visual representation of the multi-staged POS classifier module. Given the visual features F we gen-
erate a set of concepts (subject-verb-object triplets) which are stacked with the initial features to form F̃. Here
we generate concept probabilities and embeddings one at a time in subject-verb-object order, conditioning each
generation on the previous generation ie. the object is conditioned on the verb and the verb is conditioned on the
subject. Such conditioning is achieved via using word embeddings from the previous concept as dot-product atten-
tion queries over the set of features F. The attended features are then passed through a single layer MLP with each
being trained to encode either a subject, verb, or object.

model is difficult with new pathways needing to be implemented and learnt. To alleviate these
problems, and considering concept and SVO prediction is like mini-caption generation, we also
experiment with utilising a TN decoder module for generating SVO triplets. The concept proba-
bilities per concept generation step is given by:

ρ̊ = TransformerDecoder([̊e0, . . . , e̊c−1], F̃) (1.67)
where e̊c is the word embedding for the cth concept. We utilise the same loss that is used for
the multi-stage classification model discussed previously.
Figure 1.33 provides an overview of the framework with the TN decoder module, which works in
the same way as the TN captioningmodules, but for SVO triplets rather than length-N captions.

Model Comparisons
Table 1.14 and Table 1.15 present the results for the three model architectures described above,
with attributes, SVOs and GT concepts, for MSVD and MSR-VTT respectively. The standard
caption metrics are presented as well as the average Precisions (p) and Recalls (r) of concepts
averaged across the vocabulary. The trends in results are similar for both MSVD and MSR-VTT.
Firstly, all three of the concept detection methods tested have difficulty learning correct con-
cepts, with almost all precision and recall values being below 5%. Such inaccurate concept de-
tection translates into the captioning performance, with all models performing worse except for
SVO TN on the MSVD dataset. In the case of our single stage approach, the effects were detri-
mental, despite achieving the highest concept precision and recalls for the MSR-VTT dataset
with the TN captioner. These reductions in performance suggest that having inaccurate concept
features distracts the caption modules in negative ways.
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Figure 1.33: Visual representation of theTNdecoder POSclassifiermodule. Given the visual featuresFwegenerate
a set of concepts (subject-verb-object triplets) which are stackedwith the initial features to form F̃. Herewe generate
concept probabilities and embeddings one at a time in subject-verb-object order, conditioning each generation on
all previous generations. Such conditioning is achieved via using word embeddings from the previous concept as
dot-product attention queries over all previous concept embeddings. These attended concept embeddings are then
used as queries to attend to the set of features F. The attended features are then passed through an MLP (which
shares parameters across all steps, unlike the multi-stage approach).

Secondly, if we consider the performanceswhenwe pass our captioners theGT concepts, rather
than inaccurate predictions from our detection models, we find significant increases in caption-
ing performance — particularly on MSVD when using the five attributes. This suggests that
despite the structure of the SVO triplets, having more concepts is the more beneficial option.
As themajority of captioningmetrics are based off of wordmatching, and themajority of words
are rare and hence difficult to identify and generate, providing five concepts likely enables the
generation of more of the rarer concepts in the caption leading to the significant captioning per-
formance increases. The consistent improvements with both types of concepts highlights how
they can be of great use to generating more accurate and particularly more diverse captions.
Lastly, and most notably, we note that while the LSTM RNN captioning model consistently out-
performs the TN captioning model for the inaccurate concept detection modules, the opposite
is true when using GT concepts. This suggests that the two models have different reliance on
past word embeddings and the visual input features. The RNN captioner is likelymore impacted
by word history compared to visual features as the previous word embedding en−1 makes up
half of the input feature vector x̌. While the other half does contain the attended encoding of all
visual features f̃ , so much more information has to be squeezed into the same vector size for
the visual feature case. Compare this with TNs where the visual features are more evenly used,
with the attended word features u′′ being added to the attended visual features u′. Together
this explains why when concepts (and in general any features in F̃) are poorer, the RNN can
recover, whereas the transformer is more susceptible. This is however a benefit for TN moving
forward, for as input features get more reliable and representative, the TN can make better use
of the richer information compared to an RNNwhich may get stuck generating poorly grounded
captions.

Captioning with Concepts • Video Captioning with Concepts 88



Captioner Concepts Method B1 B2 B3 B4 MT RG Cr SP Pr Re

- - .722 .576 .473 .380 .300 .646 .604 .045
Att Single .677 .494 .375 .281 .246 .589 .290 .030 .016 .031

Att GT .911 .845 .782 .715 .454 .818 1.395 .077 1.0 1.0
Multi .733 .594 .487 .373 .287 .647 .524 .039 .017 .028

SVO
TN .747 .609 .508 .411 .304 .658 .641 .042 .034 .043

LSTM

SVO GT .748 .613 .513 .415 .307 .668 .660 .043 1.0 1.0
- - .742 .618 .521 .415 .302 .654 .573 .042

Att Single .640 .471 .358 .248 .234 .574 .236 .028 .021 .034
Att GT .930 .878 .815 .743 .481 .859 1.582 .085 1.0 1.0

Multi .718 .583 .475 .367 .287 .630 .514 .039 .033 .040
SVO

TN .746 .618 .516 .411 .299 .645 .566 .042 .034 .046
TN

SVO GT .768 .646 .543 .432 .319 .673 .684 .045 1.0 1.0
Table 1.14: Grounded captioning and concept detection results onMSVD. This table presents the captioning perfor-
mances (with the usual metrics) and the concept detection performances (using precision and recall) for the various
concept detection methods (single, multi, and TN). We show captioning performance for both the LSTM RNN and
the TN captioners. We also show captioning performance when the captioners are given the GT attributes or con-
cepts. Regarding the LSTM captioner results it can be seen that we see a performance gain across all but the SPICE
metric for the TN SVO generation model. For all other concept prediction models we see decreases in performance.
Interestingly despite the detrimental captioning performance using the single concept prediction method, using the
five attributes performs significantly better than using the SVO triplets when providing either of the captioners with
the GT. Considering the precision and recall values we find all are very low (less than 5%), likely due to the large
vocabulary and caption language variation.

Captioner Concepts Method B1 B2 B3 B4 MT RG Cr SP Pr Re

- - .761 .628 .507 .397 .273 .597 .465 .061
Att Single .709 .535 .394 .279 .226 .521 .253 .049 .027 .033

Att GT .875 .775 .652 .532 .330 .681 .710 .082 1.0 1.0
Multi .717 .588 .470 .367 .256 .577 .410 .054 .018 .016

SVO
TN .763 .618 .487 .378 .269 .588 .447 .061 .018 .022

LSTM

SVO GT .792 .655 .523 .410 .285 .609 .497 .066 1.0 1.0
- - .772 .631 .497 .379 .268 .589 .441 .059

Att Single .673 .506 .373 .265 .215 .507 .264 .046 .041 .061
Att GT .886 .790 .667 .542 .336 .683 .781 .086 1.0 1.0

Multi .730 .593 .470 .361 .256 .570 .398 .054 .019 .018
SVO

TN .737 .600 .477 .368 .259 .577 .416 .055 .017 .020
TN

SVO GT .794 .676 .553 .439 .287 .619 .512 .063 1.0 1.0
Table 1.15: Grounded captioning and concept detection results on MSR-VTT. This table is the same as the pro-
ceeding table but the results are for the MSR-VTT dataset. Unlike the MSVD results no caption prediction models
aid in the captioning performance, suggesting that when they are inaccurate they distract the captioning models
with misleading and incorrect information. Considering the captioning performances when GT concepts are utilised
two things are noticeable. First, as was the case for the MSVD results also, having more attributes compared to the
structured SVO triplets is more beneficial. Second, while the LSTM RNN consistently outperforms the TN captioner
when concepts are inaccurate, the opposite is true when the GT concepts are utilised (this was also true for the
MSVD results).
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1.3.2 Decoupling the Concepts from the Input Features
Thus far we have incorporated concepts by stacking them to the input feature encoding, allow-
ing the caption generation models to attend across both the concept and visual features at the
same time. This combination may result in a counter-productive competition between visual
and concept features in the caption generation module. This is because, despite the visual fea-
tures and concept features being of the same dimension, they are contextually very different
and likely disjointed in their shared encoding space. Therefore we also propose decoupling the
visual and concept features, combining and attending between the concept features and the
previous word embeddings, while keeping the visual features separate from the language fea-
tures. As the incorporation of the concept features is now quite specific to each of the RNN and
TN captioning modules we describe their integration over two subsections, and then discuss
the results in a third.

Recurrent Neural Network Captioner
Our original Recurrent Neural Network captioning model utilised additive attention per word
generation step to attend to the visual features F̃, generating a compressed attended visual
feature:

f̃n =

F∑

f=1

αf F̃[:, f ] (1.68)
where

αf = softmax(W(α)>tanh(W(h)hn−1 + W(F)F̃[:, f ])) (1.69)
and W(α) ∈ Rd(α) , W(h) ∈ Rd(α)×d(h) and W(F) ∈ Rd(α)×d(F) .
As presented in Figure 1.34, with the addition of concepts, we also utilise a second additive
attention mechanism to attend across the set of our concepts stacked with the previous word:

ẽn =
C+1∑

c=1

αe[en−1, e̊1, . . . , e̊C ] (1.70)
where

αe = softmax(W(α)>tanh(W(h)hn−1 + W(e)[en−1, e̊1, . . . , e̊C ])) (1.71)
and W(α) ∈ Rd(α) , W(h) ∈ Rd(α)×d(h) and Wd(e) ∈ Rd(α)×(C+1).
The hidden state for the nth iteration is then determined as:

hn = tanh(U(h)hn−1 + W(x)x̌n + b(h)) (1.72)
where the input x̌:

x̌n =

[
ẽn

f̃n

]
(1.73)
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Figure 1.34: Visual representation of our decoupled RNN captioner. We now utilise two additive attention mech-
anisms, one for the set of visual features F̃ as was done before, and now a second for the previous word stacked
(ST) with the set of concepts [en−1, e̊1, . . . , e̊C ]. These generate attended features f̃n and ẽn respectively, which are
each concatenated (CC) and passed into an LSTM unit as our new x̌n.

Transformer Network Captioner
For the decoupling of the features for the Transformer Network captioner is relatively straight-
foward, we simply add an extra decoder module (DecoderBlock(·)) prior to the visual feature
decoder module, which attends across the set of concepts [̊e1, . . . , e̊C ] in relation to all of the
previously generated words [e1, . . . , en−1] (see Figure 1.35):

z̊n,1 = ˚DecoderBlock1(en, [e0, . . . , en−1], [e0, . . . , en−1], [̊e1, . . . , e̊C ])

zn,1 = DecoderBlock1(̊zn,1, [̊z1,1, . . . , z̊n,1], [̊z1,1, . . . , z̊n,1], F̃)

...
z̊n,L = ˚DecoderBlockL(zn,L, [z1,L−1, . . . , zn,L−1], [z1,L−1, . . . , zn,L−1], [̊e1, . . . , e̊C ])

zn,L = DecoderBlockL(̊zn,L, [̊z1,L−1, . . . , z̊n,L−1], [̊z1,L−1, . . . , z̊n,L−1], F̃)

(1.74)

for a certain number of layers L (we use L = 1), where zn,L ∈ Rd(h) and z̊n,L ∈ Rd(h) . As was
done with the standard TN captioner, the final zn,L is used to calculate the word probability
distribution for the nth word generation:

ρn = softmax(W(k)zn,L + b(k)) (1.75)
where W(k) ∈ Rd(h)×|D|, b(k) ∈ R|D|, with |D| being the vocabulary size.

Model Comparisons
We perform experiments for the same three concept grounding architectures as introduced in
Section 1.3.1, with results shown in Table 1.16 and Table 1.17 for MSVD and MSR-VTT respec-
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Figure 1.35: Visual representation of our decoupled TN captioner. We now add a secondary ˚DecoderBlock(·) which
performs attention between the set of caption word embeddings [e0, . . . , en−1] and the set of concept word embed-
dings [̊e1, . . . , e̊C ] prior to the visual feature attention DecoderBlock(·).

tively. Comparing the decoupled cases to the coupled cases from Section 1.3.1 we find a mix of
performance decreases and increases.
Firstly, considering the attributes detection model, the detection model fails to learn concepts,
resulting in detrimental effects to the caption generator, where its once reliable previous word
embedding en−1 is contaminatedwith five errornous and disruptive concept vectors. When test-
ing this model with the GT concept embeddings we can see significant drops in performance
compared to the stacked feature models due to the captioning model struggling to learn from
the problematic attribute detector. These results occur for both MSVD and MSR-VTT evalua-
tions, however the performance drops are somewhat lessened for MSR-VTT.
Secondly, when considering the SVO models, decoupling seems more favourable, particularly
for the MSVD dataset, and particularly when the GT concept embeddings are used. It isn’t com-
pletely clear why the decoupling aids the SVOmodels onMSVD but not MSR-VTT. Nonetheless,
to summarise, these results suggest that both techniques of considering concepts are useful,
particularly when the concepts are accurately detected.
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Capt. Conc. Method B1 B2 B3 B4 MT RG Cr CrDf SP Pr Re

- - .722 .576 .473 .380 .300 .646 .604 .045
Att Single .471 .183 .096 .048 .135 .448 .075 -.215 .007 0.0 0.0

Att GT .754 .622 .523 .411 .293 .665 .430 -.965 .033 1.0 1.0
Multi .738 .602 .493 .382 .291 .643 .536 +.012 .039 .030 .033

SVO
TN .751 .621 .522 .421 .306 .662 .661 +.020 .042 .033 .044

LSTM

SVO GT .810 .708 .616 .515 .363 .726 .925 +.265 .055 1.0 1.0
- - .742 .618 .521 .415 .302 .654 .573 .042

Att Single .648 .426 .313 .218 .202 .564 .240 -.333 .024 0.0 0.0
Att GT .652 .548 .436 .294 .295 .640 .535 -1.047 .041 1.0 1.0

Multi .742 .611 .510 .404 .292 .651 .544 +.030 .040 .031 .035
SVO

TN .748 .615 .517 .417 .302 .649 .598 +.032 .041 .032 .041
TN

SVO GT .822 .730 .642 .541 .362 .736 .877 +.193 .053 1.0 1.0
Table 1.16: Grounded captioning and concept detection with decoupling results onMSVD. This table is the same as
the proceeding tables but the results are for the decoupling feature injection method for the MSVD dataset. We add
an additional column (CrDf) for the CIDEr score differences between the scores here and the corresponding scores
for the feature stacking models from Table 1.14 on page 89. If we first consider these scores we can see that the
decoupled injection has positive effects on the SVOmodels but significantly negative effects on the attributes mod-
els. Furthermore, for the staked feature approach, the coupling makes the TN captioner with TN concept detector
competitive with the model that doesn’t consider concepts.

Capt. Conc. Method B1 B2 B3 B4 MT RG Cr CrDf SP Pr Re

- - .761 .628 .507 .397 .273 .597 .465 .061
Att Single .693 .529 .389 .271 .228 .530 .286 +.033 .051 .034 .040

Att GT .858 .743 .614 .490 .317 .658 .628 -.082 .076 1.0 1.0
Multi .746 .614 .491 .379 .260 .586 .422 +.012 .056 .020 .019

SVO
TN .759 .618 .491 .380 .260 .587 .431 -.016 .058 .019 .022

LSTM

SVO GT .804 .669 .534 .416 .285 .615 .495 -.002 .065 1.0 1.0
- - .772 .631 .497 .379 .268 .589 .441 .059

Att Single .685 .506 .365 .256 .215 .505 .272 +.013 .048 .046 .069
Att GT .820 .687 .542 .411 .294 .619 .593 -.188 .072 1.0 1.0

Multi .741 .598 .473 .362 .257 .573 .405 +.007 .054 .019 .017
SVO

TN .757 .617 .490 .380 .262 .585 .433 +.017 .056 .016 .020
TN

SVO GT .785 .659 .534 .421 .283 .613 .486 -.026 .061 1.0 1.0
Table 1.17: Grounded captioning and concept detectionwith decoupling results onMSR-VTT.This table is the same
as the proceeding table but the results are for the decoupling feature injectionmethod for theMSR-VTT dataset. The
CIDEr score differences (CrDf) are between the scores here and the corresponding scores for the feature stacking
models from Table 1.15 on page 89. If we first consider these scores we can see that the decoupled injection has
less of an effect here than it does on the MSVD results, with mixed minor increases and decreases. The effects on
the GT attributes models are still relatively negative though, as was the case for the MSVD results. Furthermore,
compared to the MSVD results which see significant performance variations for the use of GT concepts between
the stacking and decoupled methods (-1.0s and +.2s), here the performance differences are much smaller (-.15s and
-.01s).
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1.4 Summary
In this chapter we have investigated the problem of video captioning as a form of generalised
video understanding. We provided a comprehensive overview of the three stage video cap-
tioning process — visual interpretation (Section 1.1.1), interpretation filtering (Section 1.1.2), and
caption generation (Section 1.1.3). We discussed all of the major works related to these three
stages, with an emphasis on the interpretation filtering stage as the heart of the captioning
process, where most works focus their attention (literally). We also gave an overview of the
datasets (Section 1.1.4) that are crucial to the learning of these video captioning frameworks,
as well as the standard evaluation protocols (Section 1.1.5) used to determine the accuracy of
generate captions.
We performed a number of experiments investigating the effects of different model input fea-
tures Section 1.2.1, model architectures (Section 1.2.2 and Section 1.2.3), and model sizes (Sec-
tion 1.2.4). We found that spatial region features are crucial for accurate captioning (about twice
as good as standalone image features as shown in Table 1.7), highlighting the importance of
having specific visual representations for objects which relate to words in the captions. We
also found that an LSTM RNNwith additive attention over the input features is more effective at
caption generation than a multi-layered TN, with relatively similar training and inference speeds
(CIDEr scores of .665 and .602 respectively shown in Table 1.8 in Section 1.2.2). Furthermore we
discovered that both models quickly over-fit to the training data (Figure 1.26 and Figure 1.27),
with the over-fitted training models performing significantly better on the over-fitted training
data in comparison to human annotators (approximately two times better shown in Table 1.12).
A more in-depth analysis of the computer generated versus the human captions revealed that
the model captions are much shorter, more succinct, and less descriptive. Furthermore, they
tended to form as if they were an average of the majority of ground truth captions, leading them
to attain relatively high scores with the current metrics in comparison to randomly sampling
human captions. Following on from these insights, we discussed how it’s non-trivial and am-
biguous to determine human performance for the captioning problem due to the interprebility of
the captioning process (see Section 1.2.5 for the discussion). Lastly, we took a more thorough
look at the specific noun and verb accuracies for our captioning model, considering that most
concepts appear rarely in the dataset (Section 1.1.4 and Figure 1.17), we found the identification
and usage of the rarer concepts is more inaccurate (Figure 1.29 and Figure 1.30).
With our findings of the importance of image region features for object identification, the met-
ric benefits of shorter more concise captions, and the challenges of noun and verb diversity,
it’s suggestive that the key to effective captioning is correct identification and usage of a broad
range of visual diverse nouns and verbs. With this in mind we investigated several grounding
processes to strengthen the connection between the diverse nouns and verbs with the visual in-
put features. We extracted the top concepts and structured SVO concept triplets, using them to
teach three different filtering processes to determine the key concepts in a video (Section 1.3.1).
Captioning using the GT concepts showed that using the top five concepts is more beneficial
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than using SVO triplets (1.395 and .660 respectively as shown in Table 1.14), as well as that
there is always improvement in captioning performance when concepts are correctly identified
(see GT results in Table 1.14 and Table 1.15). We discussed the abilities of the RNN captioner
to better recover from poor concept features, but for the TN to be more flexible and accurate
when the input concepts and visual features are less noisy and richer (Section 1.3.1). Lastly,
we investigated two ways of injecting the concept features with the captioning module, finding
mixed performance (Table 1.16 and Table 1.17 in Section 1.3.2).
We believe that improvements for video captioning models should come from focusing on reli-
ably generating the diverse noun and verb sets found in the datasets. Recalling rare concepts
at caption generation time is also at the crux of the challenge, suggesting more work related to
models which can utilise a feature library to extract discriminative information related to rare
concepts is likely a promising research direction. Furthermore, improving the input features
could also lead to performance gains, particularly for the Transformer Network models which
are more reliant on them, and reliant on larger volumes of data in general. Such improvements
could come frommore information with region features, including classification labels, or using
features from spatio-temporal action detection models. Lastly, although longer-term temporal
information doesn’t seem to be overly influential for the short clips in the MSVD and MSR-VTT
datasets (relative to spatial region and short-term low-level motion features), for future prob-
lems with longer videos more focus would need to be put on the temporal sampling of visual
features with longer-term temporal modeling.
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2 Concept Detection & Localisation
This chapter explores approaches for performing concept detection and spatio-temporal local-
isation in videos. Specifically, when provided with a video clip the goal is to detect and identify
a set of concepts, localising them with a bounding box and classifying them with a label (Fig-
ure 2.1).

“Person”

TIME

“Cloud”
“Car” “Person”

“Person”
“Car” “Umbrella” “Umbrella” “Person”

“Cloud”

Figure 2.1: An example of the video object detection problem. Provided a video portraying a scene, the goal is to
generate a set of bounding box coordinates and a classification label for each visible object.

Currently, the research community handles the detection and classification of objects and ac-
tions separately, each being considered in two disjoint problem domains. Object detection
[Liu et al., 2020] is a problem that has been well studied in the still image domain, and has
recently been extended into the video domain. In images, detection involved finding objects
spatially, however in videos objects also need to be found temporally. In video object detection
works [Jiao et al., 2021], such temporal localisation happens automatically as every frame is pro-
cessed, however temporal association of detections isn’t addressed. Temporal association, is
the process of associating detections across time for individual object instances. Association
is considered in another disjoint problem domain called tracking [Marvasti-Zadeh et al., 2021],
which has been one of the fundamental research areas related to videos for many decades. Ac-
tion recognition [Pareek and Thakkar, 2021] has also been one of the fundamental video domain
problems for a long time, and has for themost part been considered a classification problem. In
comparison to detection, classification involves labelling a single clip with no spatial or tempo-
ral localisation. More recent studies have evolved to focus on temporal action localisation and
event detection, which localise actions in the temporal domain, however still not in the spatial
domain.
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2.1 Framewise Object Detection
Videos are naturally just a set of sequential still images or ’frames’, meaning that still image
object detection models can be applied to videos on a per-frame basis. We begin by investi-
gating the main model architectures that are utilised for image-based object detection, as well
as providing an overview of image-based object datasets and explanations of the evaluation
protocols used for benchmarking detection models. We then perform a number of initial exper-
iments with image-based object detectors on both the image and video datasets, investigating
their performance in terms of both speed and accuracy.

2.1.1 Object Detection in Images
There are two categories of modern neural network based object detection architectures:

• Two-stage detectors, which firstly propose image regions that are likely to contain ob-
jects based on exhaustively positioned anchor boxes, before classifying and refining the
locations of these region proposals;

• One-stage detectors, which skip the proposal step, performing classification and box re-
finement directly on the anchor boxes.

Anchor boxes are multi-scale and multi-ratio boxes which are exhaustively positioned across
the input image, such that for each pixel (i, j) there areA anchors. The particular anchor scales
and ratios are determined by measuring the sizes and ratios of the ground truth objects in the
training split of the dataset, so as to best accommodate the majority of objects. Anchors are
used as an initial step to place boxes across an input image, and are refined by the detectors in
different ways.

Two-Stage Detectors
Region Convolutional Neural Networks & Region Proposal Networks

The first modern object detection model was a two-stage architecture called Region Convo-
lutional Neural Network (R-CNN) [Girshick et al., 2014]. In the R-CNN model, selective search
[Uijlings et al., 2013] is used to generate 2000 region of interest (ROI) proposals that are consid-
ered likely to contain objects. These region proposals are warped into 227× 227 image regions
that are passed into a pre-trained classification Convolutional Neural Network (CNN). This CNN
is used as a feature extractor with the last dense layer output of dimension 4096 used for classi-
fication by individual Support Vector Machine (SVM) binary classificationmodels. Furthermore,
a small regression network is trained to learn four offset values for box adjustments. There are
two key problems with the R-CNN model — firstly, selective search is a fixed algorithm that
doesn’t permit any learning, and secondly, training and inference is relatively slow since each of
the 2000 proposals need to be individually passed through the CNN.
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The latter aforementioned issue was resolved in Fast R-CNN [Girshick, 2015] which instead
passes the entire image through the feature extraction CNN. The proposal boxes, as generated
by the selective search method, are then projected onto the feature output of the CNN, being
cropped and warped by a ROI pooling layer. Each ROI feature is then classified and regressed
with a small neural network, doing away with the individual class SVMs. These modifications
not only improved accuracy but also resulted in approximately a 10× speed-up.
Speeding up the process even a further 10×, while also improving accuracy was Faster R-CNN
[Ren et al., 2015]. The selective search method is replaced with a Region Proposal Network
(RPN) which takes the spatial feature map from the CNN to regress adjustments and provide
an objectness score to a set of multi-scale anchor boxes. These anchor boxes are exhaustively
placed across the image, with multiple scales and aspect ratios used in an attempt to handle
variously sized and shaped objects. The ROIs generated by the RPN are then used to extract
regions from the CNNs spatial feature to be warped, classified and adjusted in the same way
as Fast R-CNN. Figure 2.2 presents an overview of the Faster R-CNN architecture.

CNN

feature

RPNmulti-scale 
anchor boxes ROI POOLING

class

box

classify

regress

regions of 
interest

Figure 2.2: An overview of the Faster R-CNN object detection pipeline. Initially an image is passed through a
Convolutional Neural Network (CNN) to generate a spatially reduced feature encoding. Using this feature encoding
as input, as well as the coordinates for exhaustively placed anchor boxes, a Region Proposal Network (RPN) is used
to adjust the anchor boxes and apply an objectness score to each box. The highest scoring refined boxes are then
projected onto the feature encoding, with the various sub-regions relating to the boxes being extracted from the
encoding, resulting in a set of region of interest (ROI) boxes. As these ROIs can be of various sizes and shapes
they are passed through an ROI pooling layer which squashes them into the same spatial dimension. They are then
flattened into vectors and passed through individual classification and box regression networks to get final class
labels and box coordinates.
Region Fully Convolutional Neural Networks

While Fast R-CNN removed the per region CNN feature extraction of R-CNN, Faster R-CNN still
relied on per ROI classification and regression with a small densely connected network after
the ROI pooling layer, which was slow to train and predict with. Addressing this problem, [Dai
et al., 2016] introduced the Region Fully Convolutional Network (R-FCN) [Dai et al., 2016] which
utilises a fully convolutional architecture, sharing computation across all ROIs. This is achieved
by performing a convolutional operation to produce position-sensitive score maps ofA2(C+ 1)

channels where C is the number of classes and A = 3 representing different spatial region
anchors. A vote is taken across the A2 regions to determine the class for an ROI.
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[Singh et al., 2018] extend the R-FCN architecture by separating the detection and classification
pathways, learning shared filters for agnostic class localisation, and then classifiers for 3000
object classes. The position-sensitive filters are re-purposed to produce super-class scores —
a super-class being visually similar classes.
Feature Pyramid Networks

Despite utilising multiple scaled anchor boxes, the aforementioned detectors still struggle to
handle objects of varying sizes, especially smaller objects. This issue is a result of only taking,
and ROI pooling over, a single sized feature from late in the CNN. As datamoves further through
CNN networks the features get spatially smaller, for example the final feature of Faster R-CNN
is only 7 × 7 pixels spatially. Considering this, the feature that is extracted and used is of such
low resolution relative to the input image that is has lost much of the finer detailed information
necessary to represent spatially small image regions. To help alleviate this issue, and inspired
by pyramids of multi-scaled input images, [Lin et al., 2017] introduced the Feature Pyramid Net-
work (FPN). FPNs generate features of varying scales by combining upscaled smaller, more
processed, feature maps with larger, more spatially detailed, feature maps. [Zeiler and Fergus,
2014] showed that as you go deeper into a CNN model, the layers capture not only a greater
spatial area of the input image, but also more complex patterns and concepts. Considering
this, having both the forward then backward generation of feature maps allows the more de-
tailed larger maps to gain more complex contextual insights from the more processed feature
maps. The FPN has no effect on the Faster R-CNN framework design, it just replaces the feature
extraction CNN, with ROIs extracted from their corresponding sized feature.
Looking to improve both the capability and efficiency of the FPN architecture, [Ghiasi et al.,
2019] use Neural Architecture Search (NAS) to find a new FPN (NAS-FPN) architecture structure
which includes both top-down and bottom-up connections. Extending NAS-FPN, with a focus
on efficiency, [Tan et al., 2020] introduce EfficientDet which uses a Bi-directional FPN (BiFPN)
formore efficient cross-scale feature fusion. They also scale the resolutions, depths andwidths
for the backbone, feature network and prediction heads jointly using a compound coefficient.

One-Stage Detectors
SSD

With a focus on speed and efficiency [Liu et al., 2016] introduced the Single-Shot Multi-box
Detector (SSD), which is 3× faster than Faster R-CNN. The efficiency benefits are achieved by
removing the RPN and performing direct classification and regression of anchor boxes. Given
a feature output of spatial size S × S, there are A = 4 anchors for each pixel in the feature.
Each anchor at each pixel gets predicted with four box coordinate adjustments and C class
probabilities, resulting in S2A(4 + C) outputs per feature map. Similar to how FPNs are used
in the two stage models, for SSD outputs are calculated at different scaled feature maps from
different depths of the feature extraction CNN.
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YOLO, YOLO9k & YOLOv3

In a very similar vein to SSD, You Only Look Once (YOLO), introduced by [Redmon et al., 2016],
also directly regresses and classifies anchor boxes, removing the need for the RPN. Differently
to SSD, YOLO only takes a feature map from a single scale, and only calculates class proba-
bilities per feature pixel rather than per anchor box A = 2, resulting in S2(4A + C) outputs.
Furthermore, YOLO uses a dense layer for this calculation rather than fully-convolutional layers,
and also a specific fast feature extraction CNN called DarkNet, while SSD uses a standard CNN
architecture.
Extending upon YOLO, YOLO9k [Redmon and Farhadi, 2017] aligns closer with SSD, calculating
output boxes based per anchor rather than feature pixel, as well as calculating an objectness
score, resulting in S2A(5 + C) outputs. Furthermore, positional offsets and size ratios are cal-
culated rather than direct box positions and sizes as learning is found to be more stable. To
better handle multi-sized objects YOLO9k uses a FPN to add a larger feature map, while also
performing multi-resolution training — changing the input image size every ten batches. For
efficiency improvements, the DarkNet is reduced from 26 layers to 19, maintaining a similar
structure. The most important difference with YOLO9k however is its ability (or attempt) to
classify 9000 classes, adopting a specific training strategy to jointly learn from both detection
and classification data. When training, if a detection sample is seen, backpropogation is normal,
whereas if a classification sample is seen, loss is only backpropogated through the classifica-
tion parts of the network. This training scheme allows their model to learn from the ImageNet
image classification dataset [Russakovsky et al., 2015]. To handle the cross-over between the
very fine-grained ImageNet dataset and the more generalised detection datasets, a hierarchical
classification tree is formulated based on the WordNet database. When calculating the proba-
bility of a class all of the probabilities from that class to the root of the classification tree are
multiplied together.
The most current1 version of YOLO, YOLOv3 [Redmon and Farhadi, 2018] (Figure 2.3) makes
further improvements to YOLO and YOLO9k, however focuses on only object detection data.
The two key improvements come from the use of a new 53 layer DarkNet feature CNN, which
has a more modern design of repeating residual blocks of 1× 1 and 3× 3 convolutions, as well
as the use of features from three scales, rather than one or two.

Alternatives to Using Anchors
One of the biggest downsides of modern detectors, both one- and two-stage alike, is their re-
liance on anchors. Anchors require pre-computation on the training dataset to determine what
scales and aspect ratios should be used to best suit the particular types of objects in the
dataset. Furthermore, as our classifications and box refinements are all in respect to the an-
chors, it’s necessary to perform these operationsA times,A being the number of anchor boxes.

1was current at time of writing. Post-review the latest version is YOLOv5 – github.com/ultralytics/yolov5
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Figure 2.3: An overview of the YOLOv3 object detection pipeline. Initially an image is passed through the DarkNet-
53 Convolutional Neural Network (CNN) to generate three spatially reduced feature maps of varying scales. Starting
from the smallest scale feature map, the network splits on two paths. Following on horizontally is the upsampling
and concatenation operations, which work like the FPN, passing through the contextually rich upsampled features
and concatenating them with the spatially detailed features. Following on vertically are the three detection streams
which perform the box refinement, object scoring, and class category classification for each of the three scales. For
clarification on the final features, they don’t actually look like the initial image but they do retain spatial information
representing the particular objects in the original image. Furthermore the pixeling shows how they are of different
scales, with larger objects such as the car being detected in the small feature map, and smaller objects like the
umbrella in the large feature map.
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Looking to not be reliant on anchor boxes, [Law and Deng, 2018] pose the object detection prob-
lem as one of determining two keypoints, the top-left and bottom-right of a box surrounding an
object. Their CornerNet model produces a heatmap for each corner for each class, and an em-
bedding layer to associate corner pairs. CornerNet is extended intoCenterNet [Duan et al., 2019]
which addresses CornerNet’s inability to consider global information when generating keypoint
predictions. They add another central keypoint which reinforces the corner points. Another al-
ternative to pre-computing anchor boxes is to regress them directly, which is done by [Tian et al.,
2019] in their fully convolutional one-stage detector (FCOS). To recover ambiguities related to
pixels being part of two boxes, as well as issues related to large strides, they use a deeper FPN
with shared classification and regression heads across the different scales. Lastly they include
a centerness head to prevent low quality boxes being predicted far from the centre of an object.

Non-Maximal Suppression
Due to the high number and density of anchor boxes, objects are generally covered by many
anchors, resulting in the object detection model producing many overlapping boxes for a single
object instance. To handle the repetition of boxes for a single object instance, a method called
Non-Maximal Suppression (NMS) is used. NMSworks by taking the highest confidence box for
a class and removing any boxes of the same class that overlap with a certain area threshold,
normally by at least 50%. Similar to how selective search was an explicit algorithm and un-
trainable, the NMS process is the same. Addressing this issue is [Hu et al., 2018] who introduce
Relation Networks, which utilise multi-head attention with appearance and geometry features
of proposals to perform instance recognition and duplicate removal. This resulted in Relation
Networks being the first object detection framework to be fully end-to-end trainable.

2.1.2 Datasets
All of themodel architecturesmentioned above require data for training and evaluation. Over the
years there have been a number of datasets released that are designed specifically for the object
detection problem. Table 2.1 presents a summary of the image and video object detection
datasets.
One of the first large-scale object detection datasets to arise was the Pascal VOC [Everingham
et al., 2010] dataset. Pascal VOC consists of over 20k images with over 50k labelled object
instances covering 20 object categories.
Currently, the most widely used object detection dataset is MS-COCO [Lin et al., 2014] which
extended the number of categories to 80, ranging from animals to vehicles to household items.
The set also consists of over six times the number of images (120k), and over sixteen times the
number labelled object instances (800k) in comparison to Pascal VOC.
Part of the ImageNet group of datasets, ImageNet-DET [Russakovsky et al., 2015] consists of
greater class diversity, with 200 object categories. ImageNet-DET also consists of close to
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Dataset # Classes # Images (Clips) # Boxes (Object Instances) B per I (I per C)

Image Datasets

Pascal VOC 20 21503 62199 2.89
MS-COCO 80 122266 886729 7.25

ImageNet-DET 200 476688 534308 1.12
Flickr 30k Entities - 31783 193020 6.07

Open Images 600 1910098 15851536 8.30
Visual Genome - 108077 5403850 50

Video Datasets

ImageNet-VID 30 1693473 (5314) 2655058 (11575) 1.57 (2.18)
Table 2.1: A summary of image and video object detection datasets. We present the number of classes, images,
and boxes for each dataset. We also present ratio of boxes per image (B per I), which along with the number of
classes, gives an indication of each datasets diversity and complexity. For the video datasets we also show the
number of clips, the number of individual object instances, and the instances per clip (I per C). Links to each of the
datasets are listed in Appendix D.

four times the number of images of that in MS-COCO (470k), however it only has approximately
two-thirds of the number of object instances (530k). This means there are many less objects
in a single image, with most samples in ImageNet-DET consisting of one object that is large,
centralised and unoccluded in the image. This results in ImageNet-DET being useful for learning
greater class diversity, but less useful for learning spatial localisations, especially in crowded
scenes. This has led to it not being utilised as much as the aforementioned sets for object
detection benchmarks.
Flickr 30k was introduced as an image captioning dataset, however since its introduction and
widespread use for captioning benchmarks, interest arose to extend it for other problem do-
mains. Flickr 30k Entities [Plummer et al., 2015] extends Flickr 30k by introducing 190k an-
notated bounding boxes for the 30k images in Flickr 30k. Unlike the aforementioned object
detection sets where specific objects are localised, in Flickr 30k Entities boxes are labelled with
snippets of the captions from the original Flickr 30k set. Hence, such a dataset lends itself
more towards the problem of visually grounding captions, however nouns could be extracted
from these textual snippets to create object-related box annotations.
Currently available in its sixth version, the Open Images [Kuznetsova et al., 2020] dataset is
currently the largest image based dataset with object localisations. It consists of close to 2
million images with over 15 million box annotations for 600 categories. Similarly to MS-COCO,
the images are very diverse, and regularly contain complex scenes with multiple objects. The
dataset also has 2.8 million instance segmentations for 350 classes, 59.9 million image-level
labels for 20k classes and 3.3million relationship annotation triplets covering relations (woman
playing guitar), object properties (table is wooden) and human actions (woman is jumping). Rela-
tionship annotations are becoming more useful for modern machine learning problems, where
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contextual and inter-object interactions can give insights towards more accurate predictions.
Centered around the idea of object relationships, Visual Genome [Krishna et al., 2017b] is de-
signed as a structured graph-style knowledge base. It consists of over 100k images with 3.8
million object instances, 2.8million object properties or attributes, and 2.3million relationships.
All of the object instance and attribute labels are mapped to their WordNet [Miller, 1995] synset.
WordNet is a lexical database of semantic relations between words, with a synset being a group
of synonyms that have the same meaning. Furthermore, Visual Genome consists of 5.4 million
region descriptions and 1.7 million visually based question answers, making it useful in a num-
ber of vision and language problem domains.
For video, the ImageNet-VID dataset [Russakovsky et al., 2015] is currently the only large-scale
generalised video object detection dataset. The dataset consists of over 5k clips made up of
over 1.5million frames, withmore than 2.5million boxes for over 10k individual object instances
across 30 categories. On average only one or two objects appear in each frame at a time, and
2-3 instances across an entire clip.

2.1.3 Evaluation Protocol
For object detection problems the metric used for measuring a model’s accuracy is mean Av-
erage Precision (mAP). The mAP is the mean of the individual class average precisions:

mAP =
1

C

∑

c

APc (2.1)

where average precision (AP) for each class is calculated by taking the average of the interpo-
lated precision (IP) values across a range of equidistant recall levels r̄ ∈ {0, 0.1, ..., 1}:

APc =
1

11

∑

r̄∈{0,0.1,...,1}
IPc(r̄) (2.2)

To calculate the IPs for each r̄, boxes are ordered based on their confidence level and then pre-
cision and recall values are calculated per box (pc, rc). The precision and recall values are based
on the boxes with higher confidences — for example, the third most confident box calculates
its precision and recall values based on the top three most confident boxes. The interpolated
precision at the recall value r̄ is the maximum precision pc for all of the precisions associated
with all of the boxes with recalls rc ≥ r̄:

IPc(r̄) = max
rc≥r̄

p(rc)
c (2.3)

pc =
TP

TP + FP (2.4)
rc =

TP
TP + FN (2.5)

where TP, FP, and FN are true positives, false positives and false negatives respectively. To
calculate these values for detection it’s necessary to consider the localisations of boxes. For
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this purpose an intersection over union (IoU) score is calculated between each pair of predicted
and ground truth (GT) boxes:

IoU =
Area of Intersection

Area of Union (2.6)
The TP, FP and FN values are then based on a IoU threshold (usually set to 0.5) resulting in:

• True Positives (TP) are when a model correctly predicts a box with an IoU greater than
the threshold, with the correct class label;

• False Positives (FP) are when a model predicts a box with the correct label, but its IoU is
less than the threshold, or it is a duplicate prediction where another predicted box has a
higher IoU with the underlying GT box;

• True Negatives (TN) are not considered as we expect every image being tested to contain
an instance of the class;

• False Negatives (FN) are when a model correctly predicts a box with an IoU greater than
the threshold, but with the incorrect class label. These are considered FP for the incor-
rectly labelled prediction class.

Along with the MS-COCO dataset, a set of six new mAP metrics were introduced. Furthermore,
instead of measuring over 11 recall levels they instead use a much finer 101 ranges:

• AP2/AP50-95 takes the average APs over a range of IoUs from 0.5 to 0.95 with 0.05 incre-
ments;

• AP50 is the mAP with IoU of 0.5;
• AP75 is the mAP with IoU of 0.75;
• APS is the mAP for small objects (area < 322 pixels);
• APM is the mAP for medium objects (322 ≤ area ≤ 962 pixels);
• APL is the mAP for large objects (962 pixels < area).

Considering a key challenge in video based object detection is handling motion blur and other
artifacts associated with fast moving objects, [Zhu et al., 2017b] introduced a video based mAP
metric which aggregates results based on an object’s motion. They also use different scales
for the small, medium and large evaluations to suit the larger size of the objects found in the
ImageNet-VID video object detection dataset:

• APSL is the mAP for slow objects (0.9 <motion IoU);
• APMO is the mAP for moderate objects (0.7 ≤motion IoU ≤ 0.9);
• APFA is the mAP for fast objects (motion IoU < 7.0).
• APS is the mAP for small objects (area < 502 pixels);
• APM is the mAP for medium objects (502 ≤ area ≤ 1502 pixels);
2following standard practice, AP is used as shorthand for mAP in table headers
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• APL is the mAP for large objects (1502 pixels < area).
The motion IoU value is related to each GT instance, and is calculated as the average IoU of an
instance with itself across ±10 frames (excluding the current frame where IoU would be 1).

2.1.4 Performance Considerations
In comparison to image data, one of the key challenges with video data is its sheer size. Gen-
erally videos consist of between 24 and 30 frames per second, leading to challenges with its
transmission, storage and processing. In fact, processing an entire full length video with even
the latest modern neural network models is still significantly restricted by hardware limitations.
As a result, frameworks either slice videos into shorter clips, processing each individually, or
take only a small number of frames spaced evenly apart across the entire video. Furthermore,
different models require different hardware resources, so it is particularly important when work-
ing with video data to consider a models processing speed and memory requirements. We
therefore carry out a performance and efficiency evaluation with three of the key object detec-
tion pipelines — Faster R-CNN, SSD and YOLO. There are numerous different implementations
of these pipelines using various deep learning libraries, however we utilise the MXNet and Glu-
onCV implementations [Zhang et al., 2019b] for all three models as they promoted the most
consistency between the implementations.
Table 2.2 presents details about the threemodels and their individual performance and efficien-
cies. We run evaluations using batch sizes of 1 and 4 as we are limited by memory resources.
We note that such batch sizes are relatively small, potentially having negative impacts on per-
formance (normally bigger is better), however as best we can we keep them similar across all
experiments. We find that while the SSD network utilises the least memory with its smaller
model size, it is not nearly as accurate as Faster R-CNN or YOLOv3. The YOLOv3 network, being
single shot, is much quicker than the Faster R-CNN network while only having aminor loss in ac-
curacy. For these reasons we utilise the YOLOv3model as our basis for video object detection,
referring to it simply as YOLO from hereon.

2.1.5 A Closer Look at YOLO
Structure
The YOLOmodel, specifically version 3, as described in [Redmon and Farhadi, 2018] and shown
in detail in Figure 2.4, consists of two CNNs. The first is a feature extraction network called
Darknet-53, which is an improved extension of the Darknet-19 network used in YOLO9k [Red-
mon and Farhadi, 2017]. The second is a detection network which takes feature maps of three
different scales from the DarkNet-53 and processes them through individual branches to gen-
erate mutli-scaled box predictions.
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Figure 2.4: A more detailed look at the YOLO architecture. Starting from the top-left, an image is passed through
the DarkNet-53 CNN generating three varying scaled features (Z ′(1): 52 × 52, Z ′(2): 26 × 26, and Z ′(3): 13 × 13).
The features are then used in a secondary detection CNN. Continuing horizontally, the detection CNN consists of
more convolutions followed by upsampling and concatenation operations, where Z ′(3) gets upsampled and con-
catenated channel-wise with Z ′(2), and Z ′(2) with Z ′(1). Performing these operations allows the spatially larger
feature maps to gain rich contextual information from the smaller and deeper spatial features. Each of the con-
catenated features then pass through their respective detection streams (the vertical branches) which consist of
more convolutional operations to generate three output feature volumes Z (1), Z (2), and Z (3). Each of the output
volumes has the same widths and heights of Z ′(1), Z ′(2), and Z ′(3) but have A × (4 + 1 + C) channels, where A
is the number of anchors and C is the number of classes. Considering the grey inset in the bottom left we will
describe the components of these feature volumes. For each spatial pixel (i, j), there are A anchors (here A = 3),
each consisting of four anchor refinements (p̂(x)

i,j,k, p̂
(y)
i,j,k, p̂

(w)
i,j,k, p̂

(h)
i,j,k), an objectness score ô and a score for each

category class (ĉ1, . . . , ĉC). The box coordinates (b̂(x)
i,j,k, b̂

(y)
i,j,k, b̂

(w)
i,j,k, b̂

(h)
i,j,k) are calculated (described in text) using

the kth anchors centroid feature pixel grid position (a(x)
k , a

(y)
k ), the anchors width and height (a(w)

k , a
(h)
k ), and the pre-

dicted refinements (p̂(x)
i,j,k, p̂

(y)
i,j,k, p̂

(w)
i,j,k, p̂

(h)
i,j,k). These refinements values are also used for loss calculation (described

in text) rather than the box coordinates. Layer numbers provided correspond to the layer numbers in Table 2.3 and
Table 2.4 which outline the structures of the DarkNet and detection CNNs in more detail respectively.
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Model Input Size Parameters Batch Size Memory Samples / Second mAP

Learnable Static Train Inference

1 9GB 5.31 9.10
Faster R-CNN 600×1000 32954544 1311680 4 10GB 4.13 9.07 37.0

1 7GB 13.65 52.80
YOLOv3 416×416 61626049 150930 4 10GB 21.15 92.38 36.0

1 2GB 15.81 40.42
SSD 512×512 27594183 405507 4 4GB 18.79 48.80 29.0

Table 2.2: Performance and efficiency baselines for image based object detection model implementations. For
each model we show the input image size, the number of learnable and static parameters, the mAP score (on MS-
COCO). We test using batch sizes of 1 and 4, reporting the maximum GPU memory consumption and processing
speeds (in samples per second) for training and inference. These evaluations were carried out on a single desktop
machine — CPU: i7-4790 @ 3.60GHz × 8; RAM: 15.6GB; GPU: GTX 1080 Ti 11.7GB.

The DarkNet-53 CNN, shown in detail in Table 2.3, follows a fairly common modern classifi-
cation CNN design. It is designed for fast classification and is pre-trained on ImageNet [Rus-
sakovsky et al., 2015] before being utilised as a feature extractor for YOLO. Experiments in the
original paper [Redmon and Farhadi, 2018] showed that DarkNet-53 achieves similar accuracy
as ResNet-152 for image classification despite having over 35% less operations and being two
times faster. The feature outputs used by the YOLO detector network are extracted on the last
repetitions of the last three block steps. The DarkNet-53 CNN can be conceptualised as a set of
three closely-related mappings, xt 7→ Z ′(g) (g = 1 . . . 3), each of which take a video frame and
produce a multi-dimensional array. Specifically,

Z ′(g) ∈ RS
(g)×S(g)×D(g)

, (2.7)
where S(g) is the spatial dimension, and D(g) is the channels depth. By default, using the stan-
dard 416 × 416 input image size (xt ∈ R416×416×3) we get,

Z ′(1) ∈ R52×52×256,

Z ′(2) ∈ R26×26×512,

Z ′(3) ∈ R13×13×1024,

(2.8)

equating to spatial downsampling ratios of 8 × 8, 16 × 16, and 32 × 32 respectively.
The detection CNN part of the YOLO architecture, shown in detail in Table 2.4, utilises principles
from FPNs to enrich spatially large images. It utilises two pathways, one that enriches spatially
larger features with the rich contextual information from spatially smaller features, and one to
generate output tensors for each spatial feature scale. We can consider it as a mapping of our
three tensors Z ′(g) 7→ Z (g) (g = 1 . . . 3), where

RS
(g)×S(g)×A×(5+C) 3 Z (g) = [zi,j,k,l] , (2.9)
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Repeats Layer Type # Filters Size / Stride Output Size (w,h) Layer # Detector

Convolutional 32 3 × 3 / 1 1 1
Convolutional 64 3 × 3 / 2 1 / 2 2
Convolutional 32 1 × 1 / 1 3

1× Convolutional 64 3 × 3 / 1 4
Residual 1 / 2

Convolutional 128 3 × 3 / 2 1 / 4 5
Convolutional 64 1 × 1 / 1 6, 8

2× Convolutional 128 3 × 3 / 1 7, 9
Residual 1 / 4

Convolutional 256 3 × 3 / 2 1 / 8 10
Convolutional 128 1 × 1 / 1 11, ..., 25

8× Convolutional 256 3 × 3 / 1 12, ..., 26
Residual 1 / 8 → Z ′(1)

Convolutional 512 3 × 3 / 2 1 / 16 27
Convolutional 256 1 × 1 / 1 28, ..., 42

8× Convolutional 512 3 × 3 / 1 29, ..., 43
Residual 1 / 16 → Z ′(2)

Convolutional 1024 3 × 3 / 2 1 / 32 44
Convolutional 512 1 × 1 / 1 45, ..., 51

4× Convolutional 1024 3 × 3 / 1 46, ..., 52
Residual 1 / 32 → Z ′(3)

Table 2.3: The structure of the Darknet-53 network architecture. Each row represents a layer, with an input flowing
from top to bottom. The columns show the number of repeats for a particular group of layers, the layer type, the
number of filters in the layer, the spatial size and stride of the filter kernels, the spatial output size relative to the
input image, the layer number ID, and the outputs to the detector. DarkNet-53 ismostly made up of blocks (shown in
grey), which are repeated various times throughout the network. Each block consists of a dense (1× 1) convolution,
a 3 × 3 convolution, and a residual connection with the blocks input. Prior to each set of block repetitions there are
3 × 3 convolutions with strides of 2, which each halve the spatial resolution of the feature maps. As the network
gets deeper, and the spatial resolution decreases, the number of filters is increased. Every convolutional layer is
made up of the convolution operation followed by a BN and a Leaky ReLU (L-ReLU) activation triplet. BN and L-ReLU
are omitted from the table for brevity. Also omitted from the table are an average pooling layer, dense convolution
layer (layer 53) and Softmax activation which are used for classification but not for detection. The outputs of the
DarkNet-53, and the inputs to the detection CNN are shown in the last column as Z ′(1), Z ′(2) and Z ′(3).
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where S(g) is the spatial dimension and remains the same as for each Z ′(g), A is the number of
anchors, and C is the number of classes. The 5 is attributed to four anchor box refinements

p̂
(x)
i,j,k , zi,j,k,1, p̂

(y)
i,j,k , zi,j,k,2, p̂

(w)
i,j,k , zi,j,k,3 p̂

(h)
i,j,k , zi,j,k,4 (2.10)

and one ‘objectness’ score ôi,j,k , zi,j,k,5. The remaining dimensions are associated with class
predictions Ĉ = [ĉi,j,k,u] , [zi,j,k,u+5] (for u = 1 . . . C), which follow a one-hot class representa-
tion convention.
The anchor box adjustments are used with the anchor’s pre-determined width and height (a(w)

k ,

a
(h)
k ) and the feature region offset (anchor’s centre coordinates) (a(x)

k , a
(y)
k ) to generate box pre-

dictions that lie in the unit interval
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where σ is the sigmoid function.

Training
To train the YOLO CNN mappings on ground-truth bounding-box annotations one needs to con-
vert the ground truth bounding box coordinates, to ground truth anchor refinements via the
relations
p
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When training the YOLO object detection architecture the loss Lyolo used is a weighted sum of
five terms

L(yolo) = λ1L1︸ ︷︷ ︸
centroid loss

+ λ2L2︸ ︷︷ ︸
dimension loss

+ λ3L3︸ ︷︷ ︸
objectness loss

+ λ4L4︸ ︷︷ ︸
objectness penalty

+ λ5L5︸ ︷︷ ︸
class loss

. (2.13)

To break down these individual losses one by one we will make use of two kinds of indicator
functions
χ

(I)
i,j,k(·) =





1, if the kth anchor at position (i, j) has an associated ground truth box
0, otherwise

χ
(II)
i,j,k(·) =





0, if the kth anchor at position (i, j) overlaps with a ground truth box by >70%
1, otherwise. .
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In Repeats Layer Type # Filters Size / Stride Output Size (w,h) Layer # Out

Z ′(3)→ Convolutional 512 1 × 1 / 1 1, 3, 5
×3 Convolutional 1024 3 × 3 / 1 1 / 32 2, 4, 6o

Convolutional* A× (5 + C) 1 × 1 / 1 7o →

5→ Convolutional 256 1 × 1 / 1 1 / 32 6
Upsample ×2 1 / 16 7

Z ′(2)→ Ch. Concatenation (7 | Z ′(2)) 1 / 16 8
Convolutional 256 1 × 1 / 1 9, 11, 13

×3 Convolutional 512 3 × 3 / 1 1 / 16 10, 12, 14o
Convolutional* A× (5 + C) 1 × 1 / 1 15o →

13→ Convolutional 128 1 × 1 / 1 1 / 16 14
Upsample ×2 1 / 8 15

Z ′(1)→ Ch. Concatenation (15 | Z ′(1)) 1 / 8 16
Convolutional 128 1 × 1 / 1 17, 19, 21

×3 Convolutional 256 3 × 3 / 1 1 / 8 18, 20, 22o
Convolutional* A× (5 + C) 1 × 1 / 1 23o →

Table 2.4: The structure of the YOLO detection network architecture. Once again, each row represents a layer, with
an input flowing from top to bottom (however now there are some skips as themodel branches). The columns show
the inputs to each layer — if blank it means inputs are from the row above, the number of repeats for a particular
group of layers, the layer type, the number of filters in the layer, the spatial size and stride of the filter kernels, the
spatial output size relative to the input image, the layer number ID, and the outputs. The detection CNN consists
of three branches that generate output volumes at the three different input feature scales. Starting from the Z ′(3)

feature input, the detection network performs three sets of 1× 1 then 3× 3 convolutions, splitting into two pathways
before the final 3× 3 convolution. One pathway performs another 3× 3 convolution, followed by a dense 1× 1 output
convolution, while the other performs upsampling and concatenation with the Z ′(2) feature input. This process is
repeated again for Z ′(1) to generate three output volumes, one from each branch, with A × (5 + C) channels per
pixel. Similarly to DarkNet-53, all convolutional layers have BN and L-ReLU activations, with the exception of the
output convolutional layers (*) which don’t utilise BN.
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The centroid loss is the loss calculated in relation to the differences between the ground truth
box offsets (p(x), p(y)) with the anchor centroid (a(x), a(y)) and the predicted offsets (p̂(x), p̂(y))
with the anchor centroid. For this the mean squared error (MSE) is calculated:

L1 =
∑

i

∑

j

∑

k

χIi,j,k




(
p̂

(x)
i,j,k − p

(x)
i,j,k

)2

2
+

(
p̂

(y)
i,j,k − p

(y)
i,j,k

)2

2


 . (2.14)

The dimensions loss is very similar to the centroid loss however it is calculated in relation to the
differences between the GT dimensions (p(v), p(h)) in relation to the anchor dimensions (a(w),
a(h)) and the predicted offsets (p̂(w), p̂(h)) in relation to the anchor. For this the MSE is again
calculated:

L2 =
∑

i

∑

j

∑

k

χIi,j,k




(
p̂

(w)
i,j,k − p

(w)
i,j,k

)2

2
+

(
p̂

(h)
i,j,k − p

(h)
i,j,k

)2

2


 . (2.15)

The objectness loss is calculated using the predicted objective scores ôi,j,k and is compared
to oi,j,k which is a binary label (0, 1) of whether this particular anchor relates to a GT image. For
this the binary cross-entropy (BCE) is calculated:

L3 =
∑

i

∑

j

∑

k

χIi,j,k (oi,j,klog(ôi,j,k) + (1− oi,j,k)log(1− ôi,j,k))

=
∑

i

∑

j

∑

k

χIi,j,klog(ôi,j,k).
. (2.16)

The no-objectness loss is used to prevent themodel from just proposing objects everywhere. It
is calculated similarly to the objectness loss however we use the secondary indicator function
χ

(II)
i,j,k(·) which prevents this loss from penalising the model for being close but not exact with

its predictions. Once again the BCE is calculated:
L4 =

∑

i

∑

j

∑

k

χIIi,j,k (oi,j,klog(ôi,j,k) + (1− oi,j,k)log(1− ôi,j,k)) . (2.17)

The class loss is calculated across the set of individual class prediction scores Ĉ and the indi-
vidual binary class labels C . Again the BCE loss is used:

L5 =
∑

i

∑

j

∑

k

∑

u

χIi,j,k (ci,j,k,ulog(ĉi,j,k,u) + (1− ci,j,k,u)log(1− ĉi,j,k,u)) . (2.18)

The loss weightings for the centroid and dimension losses are λ1 = λ2 = 5 to givemore weight-
ing to the box localisations over the classifications. For the non-objectness loss, λ4 = 0.5 to
prevent the network from focusing too much on feature pixels that don’t have objects. While
the other two losses are not weighted (λ3 = 1 and λ5 = 1).

2.1.6 Framewise Baseline Establishment
To get an idea of the initial baseline accuracy of the YOLOmodel, we train and evaluate with the
three main image object detection datasets — Pascal VOC, MS-COCO, ImageNet-DET and the
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main video object detection dataset — ImageNet-VID. For the training and testing of ImageNet-
VID all frames are extracted and then used as individual image samples, mimicking the structure
of the image datasets. Table 2.5 presents the results with the image based mAP evaluation
metrics as well as the video based mAP metric for the ImageNet-VID dataset evaluation.
Our training setup for the results in Table 2.5 are as follows. Firstly, for all training and evalu-
ations we sample the ImageNet-VID dataset taking only every 25th frame, making the dataset
moremanageable to work with. We train using standard stochastic gradient descent (SGD) with
a learning rate of 0.001, momentum of 0.9 and weight decay of 0.0005. We utilise four GPUs,
enabling the use of a higher batch size of 64, training all models from scratch except for the Im-
ageNet pre-training in the DarkNet-53 backbone which gets fine-tuned during training. For the
Pascal VOCmodel we train for 200 epochs, with a warm-up of 4 epochs, and a learning decay of
0.1 on epochs 160 and 180. For the MS-COCO model we train for 280 epochs, warming-up with
2 epochs and decaying at epochs 220 and 250. For the ImageNet-DET model we train for 140
epochs with a warm-up of 3 epochs and decaying at epochs 100 and 120. While finally, for the
ImageNet-VID model we train for 80 epochs, with 2 warm-up epochs and learning rate decay
occurring at epochs 50 and 70. More details about our training setup for this experiment and
all others are available in Appendix C.

Dataset Image Based Metrics

VOC12 AP50-95 AP50 AP75 APS APM APL

Pascal VOC 83.6 46.2 73.5 50.0 11.3 30.4 56.4
MS-COCO 57.9 36.0 57.1 38.7 17.3 38.7 52.2

ImageNet-DET 54.3 34.1 50.4 37.6 4.8 18.6 45.2
ImageNet-VID 50.4 29.9 47.9 33.3 3.7 14.5 35.5

Dataset Video Based Metrics

AP APSL APMO APFA APS APM APL

ImageNet-VID 46.1 52.9 47.7 29.5 14.8 36.2 57.7
Table 2.5: Framewise YOLO mAP baselines on the Pascal VOC, MS-COCO, ImageNet-DET and ImageNet-VID
datasets. Concerning the image based metrics, the ImageNet-VID scores are the lowest, suggesting it is a more
difficult dataset than the still image datasets.

Table 2.5 is able to provide some insight into what datasets might be harder to learn from and
or predict on than others, with ImageNet-VID having the lowest mAP scores suggesting it is
more difficult than the image datasets. To help gauge whether it is more difficult to learn from,
or more difficult to predict on, or both, we experiment with using the models trained on the im-
age datasets to predict on the ImageNet-VID dataset. Table 2.6 presents the per-class video
AP for each class in the ImageNet-VID dataset. It’s important to note that many of the classes
in ImageNet-VID don’t exist in Pascal VOC or MS-COCO, so for these classes an AP score is
unobtainable and is ignored in the calculation of the mAPs.
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Class Training Set

Wordnet Synset ID ImageNet-VID Label Pascal VOC MS-COCO ImageNet-DET ImageNet-VID

n02691156 airplane 68.1 73.0 40.9 79.7

n02419796 antelope - - 78.0 58.5
n02131653 bear - 45.8 63.5 46.1
n02834778 bicycle 56.4 61.3 28.9 58.9
n01503061 bird 44.3 47.2 53.5 47.9
n02924116 bus 68.7 74.6 41.3 66.7
n02958343 car 54.5 57.6 25.2 49.5
n02402425 cattle - - 49.9 45.2
n02084071 dog 31.7 37.9 52.3 41.5
n02121808 domestic cat 38.7 40.6 43.9 31.1
n02503517 elephant - 58.1 61.7 51.6
n02118333 fox - - 52.8 48.3
n02510455 giant panda - - 50.7 61.5

n02342885 hamster - - 58.9 57.4
n02374451 horse 49.5 63.1 55.1 59.0
n02129165 lion - - 21.0 22.5

n01674464 lizard - - 67.8 39.9
n02484322 monkey - - 43.9 28.2
n03790512 motorcycle 41.2 47.3 22.2 43.9
n02324045 rabbit - - 59.3 45.1
n02509815 red panda - - 15.5 16.3

n02411705 sheep 22.0 27.3 14.8 30.4

n01726692 snake - - 52.9 18.8
n02355227 squirrel - - 29.0 34.8

n02129604 tiger - - 59.5 60.2

n04468005 train 64.4 69.9 56.1 74.9

n01662784 turtle - - 43.4 48.9

n04530566 watercraft - - 39.6 43.5

n02062744 whale - - 41.7 44.9

n02391049 zebra - 25.8 27.1 28.4

Mean (Best) 49.0 (0/11) 52.2 (5/14) 45.2 (13/30) 46.1 (12/30)

Pascal VOC Subset 49.0 (0/11) 54.5 (5/11) 39.5 (3/11) 53.0 (3/11)

MS-COCO Subset 52.2 (5/14) 41.9 (5/14) 50.7 (4/14)

Table 2.6: Image vs video trained models on ImageNet-VID with per class AP. This table presents the mAP evalu-
ation results on the ImageNet-VID dataset using models trained on the image datases Pascal VOC, MS-COCO and
ImageNet-DET, versus the model trained on the ImageNet-VID dataset. Best scores per class are underlined, with
the means and best counts per dataset listed at the bottom. Also at the bottom are average scores over the Pascal
VOC and MS-COCO class subsets. Considering the averages, even though not trained on the ImageNet-VID data,
the models trained on the image datasets Pascal VOC and MS-COCO outperform the specifically trained ImageNet-
VID models, with the ImageNet-DET model also competitive. Performance on the ImageNet-DET and ImageNet-VID
datasets which both contain all 30 classes are relatively equivalent.
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Table 2.6 shows that, with higher or competitive mAPs, the still image trainedmodels are highly
effective on the ImageNet-VID data despite not being trained on it. This can likely be attributed
to two factors:

1. The missing classes are more difficult
The mAPs for the Pascal VOC and MS-COCO trained models are relatively much higher
than those of ImageNet-DET and ImageNet-VID, suggesting that the classes which are
unavailable may be more difficult to detect. If we only consider the mAP scores from
the ImageNet-VID model on the Pascal VOC and MS-COCO class subsets, we find the
ImageNet-VID model scores in 53.0 (versus the Pascal VOC model’s 49.0) and 50.7 (ver-
sus the MS-COCO model’s 52.2) respectively. We observe that, with equivalent classes,
the ImageNet-VID model is more accurate than the Pascal VOC model, and only slightly
less accurate than the MS-COCO model. The remaining minor accuracy differences be-
tween the MS-COCO and ImageNet-DET datasets, as well as the increased performance
on Pascal VOC, can likely be attributed to the second factor;

2. There is better model generalisation from greater training diversity
When broken down into individual frames, ImageNet-VID contains over 2.6 million boxes
for 30 classes (approximately 85000 per class), however since it is video, there is signif-
icant repetition across the boxes. A better indication of diversity for ImageNet-VID is the
number of individual object instances, which is only 11.5k for 30 classes (approximately
380 per class). When this is compared to the image sets, with Pascal VOC having 62k
boxes for 20 classes (approximately 3100 per class), MS-COCO having 900k boxes for
80 classes (approximately 11250 per class), and ImageNet-DET having 530k boxes for
200 classes (approximately 2650 per class), ImageNet-VID has relatively poor intra-class
diversity. Intra-class diversity is the diversity of samples for the same class. Furthermore
with MS-COCO and ImageNet-DET having 80 and 200 classes each, compared to the 30
of ImageNet-VID, the MS-COCO and ImageNet-DET models are likely to also have better
inter-class diversity. Inter-class diversity is the diversity of samples across varying classes.

We look to verify the second factor as discussed above by looking to see if there is any correla-
tion between the inter- and intra-class diversity and the class APs from all four of the datasets.
Classes that are not in all four datasets are omitted from this experiment. By considering the
number of boxes per class per dataset we can get a good idea of the extent of intra-class diver-
sity, however this gives no indication of inter-class diversity. For inter-class diversity we need
to factor in the number of classes in each dataset. We therefore measure intra- and inter-class
diversity as: the number of boxes for a class in a dataset

the number of classes for that dataset (2.19)
We present results in Figure 2.5 where we compare the diversity scores for the classes across
the four datasets and compare it to their AP scores. We find that despite some scaling of the
measure, and some noisy per class results, on average the diversity scores are proportionate
to the AP scores. This result supports the argument that greater intra- and inter-class diversity
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leads to better generalisation and AP performance at test time.

20 80 200 30
VOC COCO DET VID VOC COCO DET VID
# Samples AP # Samples AP # Samples AP # Samples AP # Samples AP # Samples AP # Samples AP # Samples AP

airplane 64.25 68.1 64.1125 73 8.935 40.8 123.3 80 airplane 1285 68.1 5129 73 1787 40.8 3699 80
bicycle 60.4 56.4 88.2 61.3 9.395 42.2 59.1 58.4 bicycle 1208 56.4 7056 61.3 1879 42.2 1773 58.4
bird 91 44.3 131.7125 47.2 191.03 51.8 205.7333333 44.8 bird 1820 44.3 10537 47.2 38206 51.8 6172 44.8
bus 45.45 68.7 75.7625 74.6 15.15 47.3 44.96666667 60.5 bus 909 68.7 6061 74.6 3030 47.3 1349 60.5
car 200.4 54.5 544.15 57.6 54.055 34.3 194.9333333 44.2 car 4008 54.5 43532 57.6 10811 34.3 5848 44.2
dog 103.95 31.7 6.875 37.9 372.585 39.3 196.4666667 37.8 dog 2079 31.7 550 37.9 74517 39.3 5894 37.8
domestic cat 80.8 38.7 59.575 40.6 17.57 35.1 85.03333333 30.8 domestic cat 1616 38.7 4766 40.6 3514 35.1 2551 30.8
horse 57.8 49.5 82.0875 63.1 11.275 56.5 84.13333333 54.5 horse 1156 49.5 6567 63.1 2255 56.5 2524 54.5
motorcycle 57.05 41.2 108.175 47.3 13.12 30.7 52.43333333 41.4 motorcycle 1141 41.2 8654 47.3 2624 30.7 1573 41.4
sheep 67.35 22 115.2875 27.3 9.415 11.3 58.26666667 19.3 sheep 1347 22 9223 27.3 1883 11.3 1748 19.3
train 49.2 64.4 57.125 69.9 6.82 58.8 154.9333333 73 train 984 64.4 4570 69.9 1364 58.8 4648 73
average 79.78636364 49.04545455 121.1875 54.52727273 64.48636364 40.73636364 114.4818182 49.51818182 average 1595.727273 49.04545455 9695 54.52727273 12897.27273 40.73636364 3434.454545 49.51818182

Figure 2.5: Class diversity compared with individual class APs for object localisation datasets on ImageNet-VID.
Herewe look to compare individual class diversities for the object datasets and its the relation of diversity to AP. Each
class is listed along the bottom as well as an average of the 11 classes on the far right. The grey bars correspond
to the class diversity, the higher the bar the more diverse, as determined by our heuristic. The blue bars present the
AP scores for each of the classes. The bars are meant to be considered in pairs, from left to right for each class
we have the diversity and AP for Pascal VOC, then MS-COCO, ImageNet-DET, and ImageNet-VID. Results should
be considered on a class-by-class basis with the comparisons coming between each dataset or bar pairs. Despite
some variation for the individual classes, if we consider the average we observe that the APs are proportionate to
the diversity scores.

2.1.7 Transfer Learning from Image Data
It has been found that training a model or part of a model on a separate, generally more diverse,
dataset before training on the problem dataset can lead to improved accuracy. This idea is
called transfer learning and is utilised in the standard YOLO architecture, with the DarkNet-53
backbone CNNbeing pre-trained on the ImageNet classification dataset before being fine-tuned
in the detection model on the detection datasets. Since the DarkNet-53 is used for feature
extraction, exploiting the highly diverse and expansive ImageNet dataset enables the DarkNet-
53 to learn very generalised image filters that are also highly useful for object detection. This
idea of transfer learning can be taken a step further with pre-training on one or multiple of the
image datasets, before training again (fine-tuning) on the ImageNet-VID dataset.
We perform fine-tuning experiments for each of the image datasets, pre-training with an image
set and then fine-tuning with the ImageNet-VID dataset. For these experiments we fine-tune for
another 40 epochs with 2 warm-up epochs, a learning rate of 0.001 decaying by a factor of 0.1
at epochs 20 and 30. Table 2.7 shows that pre-training on any of the image datasets prior to
training on ImageNet-VID is beneficial to model accuracy, with higher mAPs in all cases (48.2,
49.9, and 51.4 compared to 45.0 on average).
Pre-training with the ImageNet-DET dataset is especially successful (with mAP 51.4), likely due
to it including all of the classes in ImageNet-VID. If we consider per class APs as are shown in
Table 2.8 we can see that for the Pascal VOC and MS-COCO classes, if we simply consider the
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Trained On mAP

AP APSL APMO APFA APS APM APL

Pascal VOC 48.2 55.3 50.3 30.4 16.0 38.2 59.7
MS-COCO 49.9 58.5 50.8 31.6 18.5 39.4 61.1

ImageNet-DET 51.4 60.8 52.4 32.0 16.3 39.2 64.1
ImageNet-VID 46.1 52.9 47.7 29.5 14.8 36.2 57.7

Table 2.7: Image dataset fine-tuning of YOLO results on ImageNet-VID. This table presents the results of fine-
tuning each of the individual image dataset models on the ImageNet-VID data. All fine-tunedmodels outperform the
ImageNet-VID only trained model, with the ImageNet-DET model performing particularly well.

averageswe see that fine-tuning has decreased performance from49.0 to 48.2 and from52.2 to
49.9 for Pascal VOC andMS-COCO respectively. However, as thesemeans consider the classes
that exist only in the ImageNet-VID dataset, this fine-tuning comparison isn’t particular fair. So
instead we consider the class subsets separately and find the ImageNet-VID only classes attain
significantly lower mAPs (43.9 vs 48.2 and 45.0 vs 49.9) than the actual fine-tuned classes,
which see performance boosts (48.2 to 55.6 and 49.9 to 55.6) for Pascal VOC and MS-COCO
respectively.
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Class Training Set

Wordnet Syn. ImageNet-VID Lab. Pascal VOC MS-COCO ImageNet-DET ImageNet-VID

n02691156 airplane 68.1 83.4 73.0 84.8 40.9 83.8 79.7
n02419796 antelope - 61.8 - 67.4 78.0 63.2 58.5
n02131653 bear - 52.0 45.8 51.4 63.5 50.4 46.1
n02834778 bicycle 56.4 66.1 61.3 67.4 28.9 66.0 58.9
n01503061 bird 44.3 51.4 47.2 55.6 53.5 54.0 47.9
n02924116 bus 68.7 68.2 74.6 74.3 41.3 72.4 66.7
n02958343 car 54.5 50.5 57.6 52.5 25.2 51.1 49.5
n02402425 cattle - 42.3 - 54.4 49.9 50.4 45.2
n02084071 dog 31.7 45.4 37.9 45.0 52.3 52.4 41.5
n02121808 domestic cat 38.7 39.0 40.6 36.8 43.9 43.8 31.1
n02503517 elephant - 52.0 58.1 53.3 61.7 56.2 51.6
n02118333 fox - 46.2 - 55.0 52.8 54.0 48.3
n02510455 giant panda - 65.8 - 68.4 50.7 69.2 61.5
n02342885 hamster - 57.7 - 60.0 58.9 65.2 57.4
n02374451 horse 49.5 62.5 63.1 67.2 55.1 61.4 59.0
n02129165 lion - 22.6 - 23.9 21.0 28.1 22.5
n01674464 lizard - 37.8 - 36.9 67.8 48.6 39.9
n02484322 monkey - 30.9 - 27.7 43.9 34.4 28.2
n03790512 motorcycle 41.2 44.9 47.3 46.0 22.2 48.5 43.9
n02324045 rabbit - 48.7 - 45.5 59.3 51.5 45.1
n02509815 red panda - 22.4 - 9.3 15.5 16.5 16.3
n02411705 sheep 22.0 25.0 27.3 38.0 14.8 30.8 30.4
n01726692 snake - 22.8 - 22.1 52.9 27.1 18.8
n02355227 squirrel - 38.0 - 37.4 29.0 43.7 34.8
n02129604 tiger - 65.0 - 59.8 59.5 66.3 60.2
n04468005 train 64.4 74.9 69.9 76.4 56.1 76.1 74.9
n01662784 turtle - 52.0 - 49.7 43.4 52.3 48.9
n04530566 watercraft - 46.0 - 53.4 39.6 46.2 43.5
n02062744 whale - 41.3 - 48.7 41.7 49.5 44.9
n02391049 zebra - 28.8 25.8 29.3 27.1 29.6 28.4

Mean 49.0 48.2 52.2 49.9 46.1 51.4 45.0

ImageNet-VID Only Classes 43.9 45.0

Fine-Tuned Only Classes 49.0 55.6 52.2 55.6 46.1 51.4

Table 2.8: Image dataset fine-tuning of YOLO individual class AP results on ImageNet-VID. This table presents the
results of fine-tuning each of the individual image dataset models on the ImageNet-VID data with respect to individ-
ual class APs. We also show themeans overall and for the ImageNet-VID only class subset, and fine-tuned only class
subset. We also show the results without fine-tuning (from Table 2.7) in light grey. We see performance improve-
ments on average for the classes that exist in both the pre-training image dataset and the fine-tuning ImageNet-VID
video dataset. This leads to pre-training on the ImageNet-DET dataset being most beneficial.
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2.2 Temporal Object Detection
Thus far, despite training and testing on the video ImageNet-VID dataset, each frame is con-
sidered as a separate input sample. Although this allows for the trivial extension of image
based architectures into the video domain, performance is limited due to challenges relating
specifically to video. Firstly, the dynamic nature of video generally leads to deteriorated object
appearance because of motion blur and video defocusing. Secondly, there tends to bemore oc-
clusions due to objects of interest often moving behind other scene elements. Lastly, dynamic
objects such as people or animals can appear in rarer poses because a video captures their
full motion patterns, whereas still imagery tends to caption certain poses most often eg. sit-
ting, standing, walking. These differences can make it more difficult to detect some objects in
certain frames, leading to many missed detections. While individual frames may be degraded
and difficult to perform detection on, the benefit of video is that surrounding frames may be
clearer. Therefore if frames are considered and processed together, there is more opportunity
to recover detections that otherwise would have been missed in the framewise case. Further-
more, even if clear or insightful frames are selected and processed, low levelmotion information
is still lost if frames aren’t considered in dense temporal blocks. While losing such information
may not be detrimental to the captioning task, we argue that it is still insightful for general video
understanding, and hence worthwhile to explore.

2.2.1 Object Detection in Videos
Object detection in videos is an extension of object detection in images, where objects must
be found temporally in addition to spatially. Object detection in video doesn’t have the require-
ment of instance identification and tracking across time, which are currently seen as an extra
processing technique called object tracking. For this reason evaluation andmAP scoring is still
carried out on a per-frame basis, however now the per-frame detections will be based on infor-
mation from multiple frames rather than a singular frame. The frame we are evaluating on and
trying to detect on is called the reference frame.
When it comes to exploiting the temporal information to improve the detection performance on
the reference frame researchers have focused their efforts on two complimentary approaches
(Figure 2.6):

1. Box-level refinement — involves trying to link and align detection boxes or tubelets of the
same object instance across time. Tubelets are boxes through time ie. imagine aligning
bounding boxes next to each other through time they would generate tubes in space-time.
Such methods are encroaching on solutions to the tracking problem and can generally be
added as a post-processing technique to the second set of approaches;

2. Feature-level refinement— involves utilising temporally adjacent or nearby frames to aug-
ment and enrich the features of the reference frame. This enriching looks to provide in-
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formation from surrounding frames which might be deteriorated in the reference frame,
promoting better detection in the latter detection part of the model, which is reliant on the
features per frame.

Box-level Refinement Feature-level Refinement
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Figure 2.6: The comparison between box-refinement and feature-refinement approaches for object detection in
video. Given a video, frames individually get processed by some CNN to attain features. In our example, while
the man is well represented by the these features in frames 1,2, and 4, in frame 3 it’s difficult to determine his
presence. For the box-refinement approach, this leads to the man being missed in the box predictions. To overcome
this, the box-refinement techniques consider the box predictions from the surrounding frames. In comparison, the
feature-refinementmethods alter the features themselves, augmenting themwith features from nearby frames. This
augmented feature is then sufficient for the detection of the man in the detection stage.

Box-level Refinement
Seq-NMS

Introduced by [Han et al., 2016], Seq-NMS is an extension of the image based NMS into the
temporal dimension. It has three stages, selection of high scoring boxes, box re-scoring, and
box suppression. Box re-scoring is based on linking the high scoring boxes across frames,
which is achieved by linking boxes with IoU scores over 50%. The scores for the linked boxes
are then averaged over time to generate tubelet scores.
TCN, T-CNN & TPN

Leaning heavily on the principles of the R-CNN network, [Kang et al., 2016] generate 2000 ob-
ject proposals per frame using selective search [Uijlings et al., 2013], removing most using an
AlexNet extracted from a ImageNet-DET pre-trained R-CNN. Remaining proposals are scored
using a set of SVMs, like as is done for the R-CNN, using a GoogLeNet [Szegedy et al., 2013] pre-
trained on ImageNet and fine-tuned on ImageNet-DET as a feature extractor. The highest con-
fidence box proposals are then bi-directionally tracked through time with a tracking algorithm
[Wang et al., 2015], creating tubelet proposals. The tubelet proposals are refined by replacing
proposal boxeswith original object detection boxes that have a high IoU score. Due to object de-
tectors being sensitive to pose variation, large confidence differences are often present across
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time for a tubelet, making it necesarry for them to be re-scored. Here the authors use a set of
1D temporal convolutional networks (TCNs) for each class, each individually trained to predict
the probability that a tubelet contains that class.
Extending the method above is [Kang et al., 2018], who introduce Tubelets with CNN (T-CNN),
addingmulti-context suppression (MCS) andmotion-guided propagation (MGP) stages. The pur-
pose ofMCS is to remove false positive spatial region proposals, by subtracting a set value from
low confidence proposals, while keeping high confidence proposals the same. They decide the
thresholds and subtraction amount by greedily searching on the validation set. Their intuition
behind this is based on the fact that the ImageNet-DET dataset almost always has only 1-2 ob-
ject instances. The purpose of MGP is to recover false negatives, by adding spatial proposals
from adjacent frames, since often objects don’t move far spatially in adjacent frames. These
proposals are then tracked and further processed in the same way as [Kang et al., 2016].
[Kang et al., 2017] extend upon the previousmethods by introducing aTubelet Proposal Network
(TPN) which replaces the computationally expensive and time consuming tracker of [Wang
et al., 2015] with a neural network. Using object proposals on the initial frame as spatial an-
chors, features are temporally pooled across temporal windows from the static object propos-
als. This idea exploits the receptive field of CNNs, where deep features cover information from
large spatial regions — so over small enough temporal windows the static regions at the feature
level spatially cover the movements of the object. They train their TPN to regress the relative
movements of the anchor boxes across time, resulting in tubelets. To generate long tubelets,
the final adjusted box of the previouswindow is used as the static anchor for the next window, it-
eratively growing the tubelets through time. To classify tubelets they utilise an encoder-decoder
LSTM RNN, taking the ROI features across time as the input sequence.

Feature-level Refinement
Optical Flow based Bilinear Feature Warping

[Zhu et al., 2017b] propose flow-guided feature aggregation (FGFA), which utilises optical flow
(OF) frames to warp and aggregate feature maps between a set of subsequent frames. Using
FlowNet [Dosovitskiy et al., 2015], they generate flow fields between a reference frame and a
neighbouring frame, and then use bilinear warping to warp the neighbouring frame to the refer-
ence frame. For each reference frame, multiple neighbouring frames are warped and then ag-
gregated using a spatially weighted sum. The weights are estimated using the cosine similarity
between the warped feature and an embedded version of the reference feature. The resulting
aggregated feature is then passed into the detection network, in their case an R-FCN [Dai et al.,
2016].
One of the key problems with the above FGFA [Zhu et al., 2017b] is that reference features are
generated for every frame, which is computationally expensive. [Zhu et al., 2017c] improve the
FGFA process with their deep feature flow (DFF)model, which only performs the expensive fea-
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ture extraction on sparse key frames. To generate features for non-key frames, they similarly
use a OF-guided bilinear warping, which is a much faster process than the CNN feature compu-
tation. To further speed-up the OF calculation process they design two smaller FlowNet models
that are one-quarter and one-eighth the complexity of the standard FlowNet [Dosovitskiy et al.,
2015]. Furthermore, to improve the FlowNet’s ability to produce useful OF fields, they jointly
learn it with the rest of their framework.
[Zhu et al., 2018] combine the FGFA and DFF approaches, and further look to improve the speed
and accuracy trade-off with the addition of three new ideas. Firstly, they perform recursive fea-
ture warping and aggregation like that in FGFA but only on sparse key frames. Secondly, they
only update particular spatial regions of non-key frame features, which are considered to be low
quality, with quality being learnt by the network. Thirdly, they perform temporally-adaptive key
frame selection based on the predicted feature quality.
[Wang et al., 2018c] also utilise OF fields to perform feautre warping, however their focus is
on not only using pixel-level information, but also using instance-level information. They intro-
duce theirmotion-aware network (MANet) to jointly consider both pixel-level and instance-level
features across time.
Correlation Filter Encoding

Acknowledging the complexity of the OFwarping approaches, [Feichtenhofer et al., 2017] look to
simplify the video object detection process by focusing on generating short temporally localised
tracklets in an end-to-end learnable framework. Rather than utilising flow towarp and aggregate
features across time, they instead use correlation features, which are calculated between pairs
of adjacent frames. These correlation features are particularly good at representing object co-
occurences through time, and are utilised in a novel ROI-tracking layer which regresses box
transformations between frames. This results in tracklets between correlated frames, which
are joined into tubelets via a linking process like that from [Gkioxari and Malik, 2015].
Recurrent Neural Network Encoding

With a focus on fast inference speeds [Liu and Zhu, 2018] perform feature refinement with a
Convolutional-LSTM RNN mixed in with the latter layers of a SSD object detection model [Liu
et al., 2016]. Similarly, [Ning et al., 2017] directly use a LSTM RNN on the output features of a
YOLO detection network [Redmon and Farhadi, 2017].
Spatio-Temporal Hierarchical Refinement

Using a Faster R-CNNas a base detector, [Chen et al., 2018a] introduce a scale-time latticewhich
introduces Propagation and Refinement Units (PRUs) that combine and refine two features
into a new feature. The PRUs are used in a hierarchical binary-tree structure, going from lower
detailed at small scales and higher detailed and higher scales, allowing for the expensive base
detector to only be run on sparse frames.
De-convolutional Operations Refinement
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[Bertasius et al., 2018] introduce spatio-temporal sampling networks (STSN) which works by
concatenating the features of two frames, obtained from the backbone of a Deformable CNN
[Dai et al., 2017] detection network. A set of deconvolutional layers are then used to determine
offsets which are used to combine the features.
Relation Networks Refinement

Extending upon Relation Networks [Hu et al., 2018], which contextually consider all ROIs in a still
image, [Deng et al., 2019b] introduce the Relation Distillation Network (RDN)which contextually
considers ROIs in individual frames and across multiple frames. This is done in two stages, a
basic stage which considers all ROIs from the reference frame to surrounding frames, and then
an advanced stage which considers the top ROIs from all frames with those in the reference
frame.
Memory Networks Refinement

[Deng et al., 2019a] utilise an external memory module to guide the feature aggregations based
on features and ROI features from past frames. A pixel memory is read to augment the frame
features prior to a RPN, and then an object instancememory is read to augment the ROI features,
before standard regression, classification and NMS. The memory is then updated with the new
object detection and global frame features.
[Chen et al., 2020] introduce the memory enhanced global-local aggregation (MEGA) network
which combines Relation Network modules with a long-range memory module. While other ap-
proaches only take either a global or local approach for comparing and aggregating features
across time, here both are jointly carried out. Furthermore, thanks to the simplified memory
module, features can be aggregated across the entire video clip, rather than just the 20-30
frames as was done in past approaches.

2.2.2 Turning YOLO Temporal
The detection works discussed in Section 2.2 take two complimentary approaches to object
detection in video. With the utilisation of some of the still image object detection pipelines pre-
sented in Section 2.1, they look to either refine the box outputs from these detectors over time, or
look to refine the feature outputs before continuing on with the detection process. In this thesis
we consider the second of these approaches as we believe errors should be resolved as early
as possible in the detection process, with making the job easier for down-stream processes.
Compared to the previously discussed approaches we take a step back and look to determine
the effects of various standardised temporal information encoding methodologies from other
video problem domains including video classification and event detection. Furthermore, unlike
the past works which utilise the image detection models practically as-is, only extracting fea-
tures for refinement, we look to modify the architecture of YOLO itself in an attempt to make
it more suitable for videos. The down-side to this approach is that we break it’s ability to be
fine-tuned from the image object detection datasets. There may be solutions to this such as
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specific network design, weight initialisations and training techniques, however we leave these
studies for future work.
In this section we only modify the detection CNN section of the YOLO architecture, allowing us
to still attain the benefits of the DarkNet-53 pre-training on the ImageNet image classification
dataset. Specifically, we investigate four standardised procedures for combining the DarkNet
features across time — pooling, channel concatenation, feature correlations, and 3D convolu-
tions.
For the temporal case it is still necessary to generate detections for every frame, however unlike
as was done in Section 2.1, where only the one framewas utilised, now awindow ofW frames is
used. This window is centered around the reference frame at time-step t, with frames included
either side with some stride s. We remind the reader that we sample the ImageNet-VID dataset
at every 25th frame, but only for the reference frames. So in this case, for example, a stride of
s = 1 is the directly adjacent frame, not the next 25th frame.

Freezing DarkNet
Passing a window ofW > 1 frames into the DarkNet and YOLO detection model results in more
computational overhead. Therefore a common tactic to improve model efficiency is to freeze
parts of themodel architecture. Freezingmeans that the weights are unchanged during training
and gradients don’t need to be stored and backpropogated for the frozen model parts. While
this improves model efficiency there is a trade-off in that the frozen layers are unable to learn
and fine-tuned themselves, generally resulting in a decrease in accuracy.
We explore the effect of freezing the DarkNet feature network onmodel efficiency and accuracy.
Table 2.9 shows by freezing the DarkNet we can almost double our processing speedwith about
three-quarters of the RAM usage. Freezing doesn’t effect inference speeds, as the freezing has
no affect on the data flow during the inference process.

Frozen DarkNet Parameters Batch Size Memory (GB) Samples / Second

Trainable Non-trainable RAM GPU Train Inference

1 7 7 14 144
8 61626049 150930 4 8 10 23 250

1 6 5 25 144
3 21041121 40735858 4 6 10 41 250

Table 2.9: YOLO model efficiency with and without freezing the DarkNet. Here we show the effects on the YOLO
network and its training time and resources usage. By freezing the DarkNet we reduce the number of parameters by
two-thirds resulting in about three-quarters of the RAM usage, and an almost two times speed-up in training.
Table 2.10 shows the decrease in model accuracy when freezing the DarkNet, with single frame
mAP dropping from 46.1 to 42.0. As we are looking to perform many experiments with limited
resources, we freeze the DarkNet for all of the following experiments. We expect all results
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would see further performance increases with the fine-tuning of the DarkNet with the YOLO
training.

Frozen DarkNet mAP

APSL APMO APFA APS APM APL AP

8 52.9 47.7 29.5 14.8 36.2 57.7 46.1

3 51.5 42.0 23.3 12.0 31.4 53.8 42.0

Table 2.10: YOLO model accuracy with and without freezing the DarkNet. Here we show the effects of freezing
the DarkNet on the YOLO network’s mAP scores on the ImageNet-VID dataset. We see a decrease across all of the
scores, and a 4.1 (10%) decrease in the main mAP when the DarkNet is frozen.

A second option to increase model efficiency is by pre-computing the DarkNet output features
(Z ′(1), Z ′(2), Z ′(3)) for every frame xt and just passing them in to the YOLO detection layers,
completely removing the DarkNet data flow from the training process. While this would speed
up processing significantly, it requires more storage as both the features and frames need to
be stored. Furthermore, it practically prohibits the ability to perform data-augmentation on the
input frames. Due to limited storage and the desire for data-augmentation we don’t explore this
pathway, however still consider it a viable method for other works.

Pooling
The simplest way to merge data across time is to perform temporal pooling. Temporal pooling
has been used inworks for video classification [Yue-Hei Ng et al., 2015, Donahue et al., 2015] and
video captioning [Venugopalan et al., 2015b, Zanfir et al., 2016, Zhou et al., 2019, Zheng et al.,
2020]. We experiment with both mean and max pooling, at both an early and a late pooling
stage. We start by outlining the steps associated with early pooling.
Let (Z ′(g)

t

)T
t=1

be a sequence of feature tensors (one for each video frame) produced by the
DarkNet feature outputs. At each time-step t we sample a collection of frames from the time
interval t± sbW2 c and form a sequence of tensors (W (g)

t

)T
t=1

, where for t′ = 1 . . .W ,
RW×S

(g)×S(g)×D(g) 3W (g)
t =

[
w

(g)
t′,i,j,d

]

=
[
z′
t−sbW

2
c+st′,i,j,d

]
,

(2.20)

and s is the stride or gap between consecutive frames. This sequence is, in turn, transformed by
pooling operations into another sequence (U(g)

t

)T
t=1

. In particular, U(g)
t ∈ RS(g)×S(g)×D(g) where

each element is:
[u

(g)
i,j,d] =





1
W

∑
t′ [w

(g)
t′,i,j,d] if we apply mean pooling to W t

[w
(g)
t∗,i,j,d] if we apply max pooling to W t,

(2.21)

where t∗ = argmax
t′

[w
(g)
t′,i,j,d].
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We dub the aforementioned steps as early pooling because we operate on the DarkNet features
before they are passed into the YOLO detection layers. The steps for late pooling are analogous,
the only difference being that instead of using DarkNet features, we use the YOLO features
directly prior to the final output convolutional layers of the YOLO network. Figure 2.7 presents
the two pooling positions with blue circles, which will be the same positions for concatenation
and correlation experiments in the next subsections.

24o

15o

7o

LateEarly

operations (pooling / concatenation / correlation)

U(1)
t

U(2)
t

U(3)
t

U(1)
t

U(2)
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Figure 2.7: Early vs late positioning for temporal merging operations in YOLO. Here we present the position differ-
ences between the early and late pooling, concatenation and correlation operations as indicated by the blue outlined
circles. Early pooling merges the DarkNet feature outputs (Z ′(1), Z ′(2), Z ′(3)), while late pooling merges features in
the detection CNN right before the last convolutional operation. The operations generate features U(1), U(2), U(3)

where theW dimension is condensed to 1.

Table 2.11 presents the pooling results using a window size of W = 3 and strides of s = 1

and s = 25. Comparing the results between the two stride sizes it can be seen that performing
pooling on a small stride of s = 1 improves results over the single frame baseline, while the
larger stride of s = 25 worsens them. This highlights that simple pooling can be effective for
only very short localised temporal regions. The relative variation of temporally sparse frames
is likely too high, resulting in blurred or noisy features upon pooling, decreasing the mAP. Con-
sidering the individual APSL, APMO and APFA scores, it’s clear that the faster an object moves
the more effect that the larger window stride deteriorates the feature. Otherwise, variation in
performance between early and late, or mean and max is relatively minor, with slightly better
performance for max over mean, and late over early.

Channel Concatenation
Temporal channel concatenationwas utilised for FlowNet-S [Dosovitskiy et al., 2015] to capture
temporal information between two subsequent frames for optical flow generation. Despite its
simplicity, its effectiveness for generating relatively accurate optical flow was quite impressive.
We experiment with performing concatenation along the filters (D(g)) channel, generating a new
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Pooling Window mAP # Paramaters

Pos. Type Size Str. APSL APMO APFA APS APM APL AP Learnable Static

3 1 50.0 43.9 26.7 13.0 31.9 54.7 42.8
mean

3 25 53.2 35.7 10.0 6.1 22.7 51.2 36.9
3 1 52.4 45.0 27.6 13.1 33.6 56.3 44.1early

max
3 25 51.3 34.1 8.7 6.2 21.9 48.5 35.6
3 1 53.1 44.6 26.8 13.1 33.7 56.5 44.2

mean
3 25 51.8 35.0 8.4 7.6 23.5 49.4 36.0
3 1 53.5 45.2 25.9 13.2 33.7 56.6 44.7

late

max
3 25 52.3 35.0 9.9 7.3 23.7 48.8 36.3

21094971 40735858

baseline 1 1 51.5 42.0 23.3 12.0 31.4 53.8 42.0 21094971 40735858
Table 2.11: YOLO mAP evaluations using different pooling strategies. On the left we have the position and type of
the pooling, and the window size and stride. On the right we show the number of learnable and static parameters.
Results are fairly similar between the various types of pooling, the main factor playing a role here is the window
stride. Using the higher stride of 25 is about 6 mAP points lower than the baseline, while using a stride of 1 gives
up to a 3 point improvement. This effect is exacerbated for the fast moving objects (APFA) which on average see
differences between the two stride values of 17 mAP points, compared to 1-2 points for the slow moving objects
(APSL).

feature U(g)
t ∈ RS(g)×S(g)×WD(g) per scale g, where each element is:

[u
(g)
i,j,d] =





[w
(g)
1,i,j,d] if d ∈ [1, 2, . . . , D(g)]

[w
(g)
2,i,j,d] if d ∈ [D(g) + 1, D(g) + 2, . . . , 2D(g)]...

[w
(g)
W,i,j,d] if d ∈ [(W − 1)D(g) + 1, (W − 1)D(g) + 2, . . . ,WD(g)]

(2.22)

The concatenation along the filters channel keeps the spatial structure intact, while allowing
specific weighting towards the different timesteps. Without modification of the YOLO convolu-
tional layers, and their respective number of channels, most of the processing is required from
the first convolutional layers after temporal channel concatenation. We perform concatenation
in the same positions as pooling, either on the DarkNet output features (early) or before the final
output convolutional layers (late).
Table 2.12 presents the results for the early and late concatenation for different window strides
s ∈ {1, 5, 10, 25}. Results are similar for all experiments, with an improvement of about 2-3
mAP points over the baseline. The late pooling position seems slightly favourable compared
to the early pooling, as well as a larger window stride. This shows that larger strides can be
beneficial provided the encoding is dynamically suited for larger strides, as is the case here
with the convolutional operations directly proceeding the concatenations.
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Concatenation Window mAP # Parameters

Position Size Str. APSL APMO APFA APS APM APL AP Learnable Static

3 1 52.0 44.6 25.7 12.5 33.3 55.4 43.6
3 5 53.4 44.7 24.9 12.5 33.3 56.6 44.2
3 10 51.1 44.7 25.0 12.2 32.8 55.3 43.2early

3 25 52.2 45.7 27.2 14.0 33.9 55.9 44.8

22471227

3 1 52.8 44.9 26.6 12.2 33.3 56.6 44.2
3 5 54.9 45.9 25.0 14.2 34.6 56.9 45.3
3 10 54.0 45.9 24.1 13.4 34.1 56.5 44.7late

3 25 55.5 45.9 25.9 13.1 34.1 58.0 45.4

21471291

40735858

baseline 1 1 51.5 42.0 23.3 12.0 31.4 53.8 42.0 21094971 40735858
Table 2.12: YOLOmAP evaluations using different concatenation strategies. On the left we have the position of the
concatenation and the window size and stride. On the right we show the number of learnable and static parameters.
Results are all relatively similar with slight (1-4 points) mAP improvements.

Feature Correlation
Utilised in FlowNet-C for optical flow generation [Dosovitskiy et al., 2015] and for video object
detection [Feichtenhofer et al., 2017] with good effect, feature correlation allows for the mod-
eling of small spatial translations in feature activations over time, by comparing local spatial
neighbourhoods of two temporally spaced feature maps.
Depicted in Figure 2.8, feature correlation involves performing a convolution between two fea-
ture maps, rather than a feature map and a filter (as is done in standard convolutional oper-
ations). In this case, filters are extracted from one feature map at every spatial pixel location
(i, j). Each filter is then applied to the second feature map, performing the standard 2D convo-
lutional operation. Rather than allowing the filters to be applied to every spatial location in the
second feature map, the filters are bounded to a spatial area specified by a maximum displace-
ment limit d̄. Specifically the (i, j)th filter from the first feature map is only applied to the 2D
pixel space (i − d̄, j − d̄), . . . , (i + d̄, j + d̄) in the second feature map. This results in (2d̄ + 1)2

2D convolutional operations, and hence (2d̄ + 1)2 output feature channels. Since there are no
learnt filters, performing correlation adds no extra parameters to the model, which is one of the
benefits of its usage.
As we are working with a window size of length W = 3, we need to perform two feature cor-
relations, one between the first frame feature (at time-step t − s) and the reference frame
feature (at time-step t), and one between the last frame feature (at time-step t + s) and the
reference frame feature. These each result in one output tensor each — denoted by U ′(g) ∈
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Figure 2.8: A visual representation of the feature correlation process. Feature correlation involves performing a
convolution between two feature maps (1 and 2), rather than a feature map and a filter. In this case, filters are
extracted from one feature map (1) at every spatial pixel location (i, j), resulting in S(g)×S(g) separate filters (these
are the A and B, each of size 3×3). Each filter is then applied to the second feature map (2), performing the standard
2D convolutional operation. To limit the filters to only focusing within spatial neighbourhoods of the pixel locations
they were extracted from (i, j), they are limited to being applied to the pixels (i− d̄, j− d̄), . . . , (i+ d̄, j+ d̄) in feature
2 with d̄ being a maximum displacement limit. In the figure this 2D limit is shown on feature 2 with the dashed blue
box, while the filter is shown with the solid blue box. This results in (2d̄+ 1)2 convolutional operations per (i, j) and
also (2d̄+ 1)2 output feature channels. For simplicity this figure omits padding additions.

RS(g)×S(g)×(2d̄+1)(2d̄+1) and U ′′(g) ∈ RS(g)×S(g)×(2d̄+1)(2d̄+1). Each are calculated as:
U ′(g) =

[
u
′(g)
i,j,k

]
=
∑

ǐ,ǰ,d

w
(g)

1,i+ǐ−
⌊
K(S)

2

⌋
−1,j+ǰ−

⌊
K(S)

2

⌋
−1,d

w
(g)

2,π1(k)+ǐ−
⌊
K(S)

2

⌋
−1,π2(k)+ǰ−

⌊
K(S)

2

⌋
−1,d

(2.23)
and

U ′′(g) =
[
u
′′(g)
i,j,k

]
=
∑

ǐ,ǰ,d

w
(g)

3,i+ǐ−
⌊
K(S)

2

⌋
−1,j+ǰ−

⌊
K(S)

2

⌋
−1,d

w
(g)

2,π1(k)+ǐ−
⌊
K(S)

2

⌋
−1,π2(k)+ǰ−

⌊
K(S)

2

⌋
−1,d

(2.24)
where

π1(k) = k − (i− 1)(2d̄+ 1)− (j − 1)(2d̄+ 1) + i− d̄− 1

π2(k) = k − (i− 1)(2d̄+ 1)− (j − 1)(2d̄+ 1)− i(2d̄+ 1) + j − d̄− 1
(2.25)

with ǐ = 1, ...,K(S) and ǰ = 1, ...,K(S), where K(S) is the filter kernel spatial dimensions, in our
caseK(S) = 3. While the definitions of π1(·) and π2(·) may look complex, they merely represent
the necessary index manipulations for determining the particular pixel position in the second
feature based on the output index k. Furthermore, to permit the convolution of aK(S)×K(S) filter
offset by d̄ on the boundary pixel positions (ie. (1, 1)) the input features are padded by ⌊K(S)

2

⌋
+d̄.

For simplicity in the correlation equations above, we keep the spatial indices constant despite
the padding (ie. the top-left position in the padded feature would be i = 1 − (

⌊
K(S)

2

⌋
+ d̄) and

j = 1− (
⌊
K(S)

2

⌋
+ d̄)).

The results U ′(g) and U ′′(g) are concatenated together along the filters (D(g)) channel to form
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our correlated feature U(g)
t ∈ RS(g)×S(g)×2(2d̄+1)(2d̄+1):

U(g)
t = [ui,j,d] =





[u′i,j,d] if d ∈ [1, 2, . . . , (2d̄+ 1)2]

[u′′i,j,d] if d ∈ [(2d̄+ 1)2 + 1, (2d̄+ 1)2 + 2, . . . , 2(2d̄+ 1)2]
(2.26)

Once again we experiment with utilising correlation in the same early and late positions as
pooling and concatenation. We investigate two different displacement limits d̄ ∈ {4, 8}. and
two temporal strides s ∈ {1, 25}. Table 2.13 presents the mAP scores for different correlation
strategies. Using correlation results in a minor improvement over the baseline across all model
versions. Most benefit is found from using the larger displacement d̄ = 8, and the later po-
sitioning. These suggest that determining spatial relationships over time works better for the
more contextually rich features late in the detection network. Furthermore, considering that we
are working with spatial feature sizes of 52 × 52, 26 × 26, and 13 × 13, the better performing
d̄ = 8 suggests relationships over larger spatial regions are more important for this dataset, ie.
spatially global motions are more insightful than spatially local ones.

Correlation Window mAP # Parameters

d̄ Pos. Size Stride APSL APMO APFA APS APM APL AP Learnable Static

3 1 49.8 43.4 25.6 12.1 32.4 53.8 42.4
early

3 25 50.8 43.3 24.1 12.3 32.0 53.8 42.5 22616379

3 1 52.1 44.1 25.9 11.8 32.7 55.8 43.74

late
3 25 51.2 45.1 26.8 12.5 34.5 55.1 43.7 21522321

3 1 51.2 44.4 26.6 13.1 33.1 55.6 43.6
early

3 25 53.1 46.1 25.5 12.5 33.6 56.5 44.6 22989115

3 1 52.9 45.5 26.6 13.1 34.7 56.5 44.68

late
3 25 52.4 44.8 26.9 12.3 33.7 55.5 44.1 21653361

40735858

baseline 1 1 51.5 42.0 23.3 12.0 31.4 53.8 42.0 21094971 40735858
Table 2.13: YOLO mAP scores using different correlation strategies. On the left we have the maximum displace-
ment value d and the position of the correlation, and the window size and stride. On the right we show the number of
learnable and static parameters. Results show that the larger maximum displacement of 8 is more beneficial than
4. Furthermore performing correlation late is slightly more beneficial than early.

3D Convolutions
While two-dimensional convolutions are common for image processing, allowing for spatial
modelling, they can be extended into three dimensions (3D) to allow for spatio-temporal mod-
elling. Three dimensional convolutions, initially utilised in [Ji et al., 2013, Tran et al., 2015]
have shown great promise in processing video representations in many applications [Ji et al.,
2013, Karpathy et al., 2014, Tran et al., 2015].
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One of the problems with adding a third dimension to 2D convolutional layers is that it expo-
nentially increases the number of weights in the kernels and the number of operations. This
makes 3D convolutions much more computationally expensive compared to 2D. To combat
this issue, inspired by depthwise separable convolutions which are used to speed up 2D con-
volutions [Chollet, 2017, Howard et al., 2017], [Qiu et al., 2017] and [Tran et al., 2018] decom-
pose the 3D convolutional operation into its spatial and temporal components, creating P3D
and (2+1)D convolutional operations respectively. P3D and (2+1)D operations involve splitting
the K(T) ×K(S) ×K(S) convolution into a spatial 1 ×K(S) ×K(S) convolution and a temporal
K(T) × 1 × 1 convolution. Separating these operations results in significantly less parameters
per 3D convolution allowing for faster processing or a deeper network.
We investigate the performance of the 3D, and less computationally demanding (2+1)D convo-
lutional operations for associating temporal information. We do this by replacing the 2D convo-
lutions in the detection network with 3D / (2+1)D convolutions. We keep the properties of the 2D
convolutions and extend them into the time dimension. Using a temporal stride and padding of
1, the temporal output size is equal to the temporal input size. This design allows for the mixing
of temporal information, but still requires pooling to merge data over time. Following results
from our pooling experiments, we utilise late temporal max pooling.
Table 2.14 presents the mAP results for the two convolutional strategies, with improvements
over the baselines in almost all cases. Despite the significantly lower number of learnable pa-
rameters, the (2+1)D convolutions perform better than standard 3D, particularly for the larger
stride s = 25. Interestingly, the larger stride results in inferior results compared to the smaller
stride s = 1 for the standard 3D case, whereas the opposite result occurs for the R(2+1)D case.

Convolution Window mAP # Parameters

Type Size Stride APSL APMO APFA APS APM APL AP Learnable Static

3 1 52.8 45.6 27.9 13.3 33.9 56.7 44.8
(2+1)D

3 25 57.5 40.0 27.0 13.3 34.5 57.6 45.6 33868347 40746610

3 1 52.1 45.3 26.9 12.8 33.5 56.2 44.3
3D

3 25 51.9 44.9 24.9 11.7 33.1 56.3 43.7 58630203 40735858

baseline 1 1 51.5 42.0 23.3 12.0 31.4 53.8 42.0 21094971 40735858
Table 2.14: YOLO mAP scores using different convolutional strategies. On the left we have the type of convolution,
and the window size and stride. On the right we show the number of learnable and static parameters. Results show
minor performance improvements with either strategy, with the (2+1)D convolutions performing slightly better than
the standard 3D convolutions despite having significantly less parameters.
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2.2.3 Turning DarkNet Temporal
The modifications to the detection layers of the YOLO network have improved accuracy for ob-
ject detection in videos against the single frame baseline, however many activity detection and
classification works have found benefits to capturing temporal information at very early stages
of their networks. While earlier temporal modelling may be more beneficial for identifying ac-
tions, which are composed of much finer detailed motion, we are focused on determining any
benefits for identifying objects. In this section we investigate methods of permitting earlier
temporal information processing prior to the YOLO detection layers. Specifically, we investigate
motion dedicated streams, hierarchical 2D convolutions, and hierarchical 3D convolutionswith
residual connections.
All image and video object detection methods rely on an ImageNet pre-trained feature network,
such as the DarkNet used in this case. Using a pre-trained network has significant benefits
for both faster and more accurate learning, however any blatant change in network structure
could break the information flow and invalidate the ImageNet pre-training. Some works includ-
ing [Mansimov et al., 2015, Carreira and Zisserman, 2017] have explored techniques ofmodifying
pre-trained network structures without being overly destructive to their representative abilities.
We look to minimise any direct modifications to the DarkNet information flow to keep its repre-
sentative power gained from the pre-training intact.

Motion Dedicated Streams
One way to incorporate lower level motion information, without any modification to the DarkNet
is to add a completely separate network or stream. We then extract the usual features from
DarkNetZ ′(g)

t and a corresponding three features from the second streamZ ′′(g)
t , concatenating

them together along their channels dimension prior to input into YOLO’s detection layers:

RS
(g)×S(g)×(D(g)+D′′(g)) 3 U(g)

t = [u
(g)
i,j,d] =





[z
′(g)
i,j,d] if d ∈ [1, 2, . . . , D(g)]

[z
′′(g)
i,j,d ] if d ∈ [D(g) + 1, D(g) + 2, . . . , D(g) +D′′(g)]

(2.27)
We investigate using a FlowNet network [Dosovitskiy et al., 2015] and a R(2+1)D network [Tran
et al., 2018].
FlowNet

The FlowNet model, shown in detail in Table 2.15, consists of two stages — an embedding with
reduction phase and a decoding with expansion phase. The first phase is a fairly standard
CNN pipeline, while the second phase uses de-convolutional layers to expand the feature maps
into flowmaps. De-convolutions or transposed convolutions are convolutions that increase the
output size by using padding and or striding on the input.
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In Layer Type # Filters Size / Stride Output Size (w,h) Layer # Out

Phase 1

Convolutional 64 7 × 7 / 2 1 / 2 1
Convolutional 128 5 × 5 / 2 1 / 4 2 → 26
Convolutional 256 5 × 5 / 2 1 / 8 3
Convolutional 256 3 × 3 / 1 4 → 22
Convolutional 512 3 × 3 / 2 1 / 16 5
Convolutional 512 3 × 3 / 1 6 → 18
Convolutional 512 3 × 3 / 2 1 / 32 7
Convolutional 512 3 × 3 / 1 8 → 14
Convolutional 1024 3 × 3 / 2 1 / 64 9
Convolutional 1024 3 × 3 / 1 10

Phase 2

Convolutional 2 3 × 3 / 1 11
De-convolutional 2 4 × 4 / 2 1 / 32 12 → 14

10→ De-convolutional 512 4 × 4 / 2 13
8, 12, 13→ Concatenation 14 → Z ′′(3)

t

Convolutional 2 3 × 3 / 1 15
De-convolutional 2 4 × 4 / 2 1 / 16 16 → 18

14→ De-convolutional 256 4 × 4 / 2 17
6, 16, 17→ Concatenation 18 → Z ′′(2)

t

Convolutional 2 3 × 3 / 1 19
De-convolutional 2 4 × 4 / 2 1 / 8 20 → 22

18→ De-convolutional 128 4 × 4 / 2 21
4, 20, 21→ Concatenation 22 → Z ′′(1)

t

Convolutional 2 3 × 3 / 1 23
De-convolutional 2 4 × 4 / 2 1 / 4 24 → 26

21→ De-convolutional 64 4 × 4 / 2 25
2, 24, 25→ Concatenation 26

Convolutional 2 3 × 3 / 1 27
Table 2.15: The details of the FlowNet architecture. Each row represents a layer, with an input flowing from top to
bottom (however now there are some skips as the model branches). The columns show the inputs to each layer —
if blank it means inputs are from the row above, the layer type, the number of filters in the layer, the spatial size and
stride of the filter kernels, the spatial output size relative to the input image, the layer number ID, and the outputs
— to either later layers or to the detection network. FlowNet consists of two stages — an embedding with reduction
phase and a decoding with expansion phase. Phase 1, at the top, resembles a relatively standard 2D CNN pipeline.
Phase 2, on the other hand, includes de-convolutional layers which spatially expand the feature size. We take outputs
from the first three concatenation layers.
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We extract feature tensors Z ′′(1)
t , Z ′′(2)

t and Z ′′(3)
t from after FlowNet’s concatenation layers,

which contain both the phase 1 and the phase 2 flow features, capturing as much information
at each scale as possible. We only extract features from the first three concatenations as they
match the spatial resolutions of the corresponding DarkNet features. This approach of using
FlowNet’s inner features is different than past two-stream approaches [Simonyan and Zisser-
man, 2014, Donahue et al., 2015, Yue-Hei Ng et al., 2015], which take the final FlowNet output
feature and pass it into another network for classification. By foregoing the use of another
flow classification network we reduce the parameters and the need to train another stream. For
DarkNet with FlowNet we sample three frames passing the reference frame xt through the Dark-
Net, and two adjacent frames on either side (again with some stride s), xt−s and xt+s, through
the FlowNet. Figure 2.9 presents a visual representation of each of the stream structures and
how each of the feature tensors are extracted and concatenated together prior to the detection
network.

DarkNet

FlowNet

concatenations

detection network

Z ′′(3) Z ′′(2) Z ′′(1)

Z ′(3)

Z ′(2)

Z ′(1)

t

t

t

t t t

Figure 2.9: A visual representation of the DarkNet and FlowNet multi-stream approach. Given a window of frames
W = 3, the reference frame (middle) is passed into the standard DarkNet model shown at the top, while the adjacent
frames on either side are passed through the FlowNet model shown along the bottom. Spatially equivalent features
are taken at three points along each of the streams and concatenated together along the channels dimension. The
resultant features of the three varying scales are then passed into the standard YOLO detection network.

R(2+1)D

The R(2+1)Dmodel, shown in detail in Table 2.16, modifies the ResNet network architecture [He
et al., 2016], replacing the 2D convolutions with R(2+1)D convolutions. We extract feature ten-
sors shown as Z ′′(1)

t , Z ′′(2)
t and Z ′′(3)

t from the end of stages 2, 3 and 4 respectively. Each of
these features are two-times too large spatially so we spatially max pool with a spatial size and
stride of 2 to down-sample the feature maps to the size matching the DarkNet features. Fur-
thermore, we use a temporal input ofW = 9 frames, but the standard input length for R(2+1)D is
8, therefore we utilise global max pooling along the time dimension before concatenating with
the DarkNet features. Specifically, features Z ′′(1)

t , Z ′′(2)
t , and Z ′′(3)

t have temporal dimensions
of 5, 3 and 1 respectively, so features Z ′′(1)

t and Z ′′(2)
t are max pooled across time also. The 9

sampled frames are centred on the framewe are performing detection on, passing the 5th frame
into the DarkNet stream and all 9 into the R(2+1)D stream. Figure 2.10 presents a visual repre-
Concept Detection & Localisation • Temporal Object Detection 136



sentation of each of the stream structures and how each of the feature tensors are extracted
and concatenated together prior to the detection network.

DarkNet

R(2+1)D

concatenations

detection network
+

+

+

+

+

+

+

mp

+ residual

mp
mp

mp max pooling

3D

3D
3D

2x

3x

5x 3x

Z ′′(3)

Z ′′(2)

Z ′′(1)

Z ′(3)

Z ′(2)

Z ′(1)

t

t

t

t

t

t

Figure 2.10: A visual representation of the DarkNet and R(2+1)D multi-stream approach. Given a window of frames
W = 9, the reference frame (middle) is passed into the standard DarkNet model shown at the top, while all frames
(including the reference) are passed through the R(2+1)D model shown along the bottom. All blue layers in the
R(2+1)D network are R(2+1)D convolutional operations each consisting of a 1 × 3 × 3 followed by a 3 × 1 × 1 3D
convolution pair, with the exception of the three standard 3D layers with dashed outlines. As the R(2+1)D network
generates features that are two-times the size of corresponding DarkNet features, we spatially max pool them to
down-sample them to the correct sizes. Similarly, the earlier two features (Z ′′(1)

t and Z ′′(2)
t ) have temporal sizes of 5

and 3 respectively, sowe alsomax pool temporally to squash them into one time-step. Thesemax pooling operations
are shown withmp, while the residual connections of the R(2+1)D stream are show with (+). The pooled features are
then concatenated with their corresponding DarkNet features (along the channels dimension), and passed into the
standard YOLO detection network.
Table 2.17 presents the results for the addition of the pre-trained motion streams alongside the
DarkNet stream, presenting for both frozen and unfrozen models. For the frozen models we
find there is minor improvement in mAP for faster moving objects, however scores worsen for
the slower moving objects. This might suggest our stride choice of s = 1 is too small, resulting
in only tiny movements between frames within the windows. As these motion streams work
best with low level motion, the slow objects were likely too slow to be detected. Interestingly,
when allowing fine-tuning of the streamswith the detection network we find the opposite is true,
with the slower objects attaining the improvement in mAP (albeit very small). The fine-tuning
of the R(2+1) model resulted in significant drops in performance, suggestive that the detection
network destructively altered the pre-trained weights of the R(2+1)D model.

Hierarchical 2D
Rather than 3D convolutional layers, temporal information can be captured by performing 2D
convolutions over multiple frames with feature outputs either pooled or 1D convoluted into a
single 2D feature. This idea of temporal fusion has been done by [Karpathy et al., 2014] for
the problem of video classification where different arrangements (early, late, slow fusion) were
investigated. We introduce this idea in a hierarchical layer setup - akin to slow fusion, where 2D
convolutions are repeated across temporal windows.
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Stg. Rep. In Layer Type # Filters (Mid) Size / Stride Out Size Layer # Out

(2+1)D Conv 64 (45) 3×7×7 / 1,2 1, 1/2 1
(2+1)D Conv 64 (144) 3×3×3 / 1,1 2
(2+1)D Conv 64 (144) 3×3×3 / 1,1 3
Residual r1

(2+1)D Conv 64 (144) 3×3×3 / 1,1 4, 6
2× (2+1)D Conv 64 (144) 3×3×3 / 1,1 5, 7

1

Residual r2, r3
(2+1)D Conv 128 (230) 3×3×3 / 2,2 1/2, 1/4 8
(2+1)D Conv 128 (288) 3×3×3 / 1,1 9 → r4

r3→ 3D Conv 128 1×1×1 / 2,2 1/2, 1/4 d1
9 + d1→ Residual r4

(2+1)D Conv 128 (288) 3×3×3 / 1,1 10, 12, 14
3× (2+1)D Conv 128 (288) 3×3×3 / 1,1 11, 13, 15

2

Residual r5, r6, r7 → Z ′′(1)
t

(2+1)D Conv 256 (460) 3×3×3 / 2,2 1/4, 1/8 15
(2+1)D Conv 256 (576) 3×3×3 / 1,1 16 → r8

r7→ 3D Conv 256 1×1×1 / 2,2 1/4, 1/8 d2
16 + d2→ Residual r8

(2+1)D Conv 256 (576) 3×3×3 / 1,1 17, ..., 25
5× (2+1)D Conv 256 (576) 3×3×3 / 1,1 18, ..., 26

3

Residual r9, ..., r13 → Z ′′(2)
t

(2+1)D Conv 512 (912) 3×3×3 / 2,2 1/8, 1/16 27
(2+1)D Conv 512 (1152) 3×3×3 / 1,1 28 → r14

r13→ 3D Conv 512 1×1×1 / 2,2 1/8, 1/16 d3
28 + d3→ Residual r14

(2+1)D Conv 512 (1152) 3×3×3 / 1,1 29, 31
3× (2+1)D Conv 512 (1152) 3×3×3 / 1,1 30, 32

4

Residual r15, r16 → Z ′′(3)
t

Avg. Pool Global
Table 2.16: The details of the R(2+1)D 34-layer architecture. Each row represents a layer, with an input flowing from
top to bottom (however now there are some skips as the model branches). The columns show the stage number,
the number of repeats for a particular group of layers, inputs to each layer — if blank it means inputs are from the
row above, the layer type, the number of filters in the layer (and the inner filter dimension for R(2+1)D), the temporal
and spatial sizes and strides of the filter kernels, the temporal and spatial output size relative to the input window,
the layer number ID, and the outputs — to either later layers or to the detection network. R(2+1)D is made up of four
stages, each with similar structures — some convolutions followed by a residual connection. We take the outputs
from stages 2, 3 and 4.
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Frz. Window Motion mAP # Parameters

Size Str. APSL APMO APFA APS APM APL AP Learnable Static

3 1 FlowNet 50.6 42.7 25.6 11.7 31.7 54.2 42.0 21866811 79412364
9 1 R(2+1)D 49.7 43.6 24.5 13.7 31.2 53.9 42.1 21439035 1042781213

1 1 baseline 51.5 42.0 23.3 12.0 31.4 53.8 42.0 21094971 40735858
3 1 FlowNet 53.2 49.0 27.9 13.7 36.1 57.9 46.3 101128245 150930
9 1 R(2+1)D 26.7 25.6 13.8 7.3 19.6 31.1 23.1 125515938 2012188

1 1 baseline 52.9 47.7 29.5 14.8 36.2 57.7 46.1 61679899 150930
Table 2.17: mAP evaluations of including pre-trained motion streams alongside the DarkNet stream. On the left
we have the whether the streams were frozen or not during training, the window size and stride and type of motion
stream. On the right we show the number of learnable and static parameters. We show that performance with the
addition of the two motion streams is mixed, and not beneficial in comparison to the baseline. While there does
seem some promise on the faster moving objects (APFA) for the frozen models, the opposite is the case for the
unfrozen models. Fine-tuning the R(2+1)D model with the detection network results in the breaking of the R(2+1)D
pre-training leading to significantly deteriorated mAP performance.

We break the DarkNet into stages and experiment with applyingmax pooling or 1D convolutions
with temporal width ofK(T) = 3 after each stage. Figure 2.11 presents the hierarchical 2Dmodel
with the hierarchical structure 2 levels deep to layer number 5.

44-5227-43
10-26

5-9

detection network

pool or conv

1

2-4

pool or conv
pool or conv

pool or conv

Figure 2.11: A visual representation of the proposed hierarchical DarkNet. This shows the hierarchical DarkNet up
to layer 5, utilising a window ofW = 9. After each stage of the DarkNet network we perform temporal max pooling
or a 1D temporal convolution to reduce the temporal dimension by a factor of three.
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Table 2.18 presents the results for window sizes of W = 3 and W = 9. One of the downsides
of this approach is that as we deepen the hierarchical structure into the DarkNet, we require a
larger initial temporal window size. Although theoretically window sizes ofW = 27 andW = 81

are possible, they resulted in the models being too large to fit in memory3 and are omitted. This
highlights one of the challenges of working with video with such networks — current hardware
limitations prevent many frames being able to be learnt from at once, resulting in small and or
strided windows for low-level frame processing. One of the benefits of this approach however,
is the small number of extra parameters that are added to the model via utilising a hierarchical
structure. The results show that these modifications cause worsened mAP scores, particularly
for the models with two merging operations (W = 9) compared to the models with one (W =

3). This result suggests that the pooling and convolution operations are too disruptive to the
information flow in the pre-trained DarkNet model.

Type H. upto Window mAP # Parameters

Layer # Size Str. APSL APMO APFA APS APM APL AP Learnable Static

2 3 1 53.3 47.2 26.4 14.1 34.8 56.5 44.8 61679899 150930
max

5 9 1 48.7 41.9 19.9 12.2 31.8 50.7 40.1 61679899 150930
2 3 1 52.8 48.2 26.0 14.2 35.5 57.3 45.8 61680059 150994

conv
5 9 1 44.5 39.8 22.4 14.0 30.1 47.1 38.0 61680379 151122

baseline 1 1 52.9 47.7 29.5 14.8 36.2 57.7 46.1 61679899 150930
Table 2.18: mAP evaluation for the hierarchical DarkNet architecture. On the left we show the type of temporal
merging operation, the particular DarkNet layer that the temporal merging follows, as well as the window size and
stride. On the right we again show the number of learnable and static parameters. As the DarkNet is unfrozen for
the addition of the temporal merging operations, we utilise the unfrozen DarkNet single frame baseline. We find no
benefits to this approach with the majority of mAP scores dropping in comparison to the baseline.

Hierarchical 3D with Residuals
As seen in the last subsection, altering the input features that pass through the different stages
of the ImageNet pre-trained DarkNet can be too disruptive to the information flowduring training
and testing. To try to alleviate this, we also investigate a similar hierarchical style model, but
one that uses residual connections to allow for slow and less disruptive modification to the
underlyingDarkNet parameters. Furthermore, we utilise 3D convolutions in place of the 2Dones,
and only use them to enrich themain three feature outputsZ ′′(1),Z ′′(2),Z ′′(3). More specifically,
as shown in Figure 2.12, the Z ′′(1) is taken as is, however Z ′′(2) incorporates information from
the two adjacent frames in the window, while Z ′′(3) incorporates information from the entire
window ofW = 5 frames.
Table 2.19 presents the mAP results for varying temporal strides of input frames, for both the
learnable and frozen DarkNet layers. It can be seen that there are relatively good improvements

3Two Nvidia K80s with combined memory of 48GB
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Figure 2.12: Visual representation of the 3D with residuals hierarchical DarkNet architecture. Utilising a win-
dow size of W = 5, all frames are passed through the first stage of the DarkNet model resulting in five features
Z ′′(1)

t−2s, . . . ,Z
′′(1)
t+2s. The central feature (the reference frame feature) is utilised as input to the detection network

for the first scale, while the others are utilised in 3D convolutions to enrich features Z ′′(2)
t−s,Z

′′(2)
t ,Z ′′(2)

t+s and X (3)
t .

We use residual connections (+) to incorporate the temporally adjusted intermediate DarkNet features into the un-
touched DarkNet features.

for all strides when the DarkNet layers are frozen. This result is particularly interesting since
the single 3D convolutional layers with additive connections are improving the input features to
each stage of the frozen DarkNet. This shows that the 3D convolutions are able to learn how
to develop temporally enriched features for direct use in the un-tuned DarkNet. In fact, consid-
ering the unfrozen DarkNet experiments, we find results are more variable and poor relative to
the unfrozen baseline. This is suggestive that the fine-tuning that the DarkNet receives during
training may be pushing them towards handling poorer-augmented features during the training
process, affecting the DarkNet layers in a negative way by the end of training.

2.2.4 Class Agnostic Evaluations & Summary
While the goal of object detection is to both detect and classify an object, there may also be
some benefit for some applications to just detect whether any object is present at all. Fur-
thermore, when we consider video in comparison to images, it is often easier to determine the
existence of an object, since we have multiple frames, but harder to determine class, due to
blur and video artifacts. We investigate the performance of a class agnostic detector where
only the objectness score ô is considered, disregarding any specific class label predictions in
evaluation.
Table 2.20 presents a summary of the best methods from each of the experiments in Sec-
tion 2.2.2 and Section 2.2.3, along with their corresponding agnostic evaluations. Overall we
see general minor improvements for the standard (non-agnostic) experiments (between 0-4
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Frozen Window mAP # Parameters

Size Stride APSL APMO APFA APS APM APL AP Learnable Static

5 1 53.7 45.8 26.8 13.0 34.5 56.9 44.9
5 3 55.7 46.7 26.5 11.6 34.0 59.2 46.0

5 10 54.6 46.9 26.1 12.6 34.0 57.9 45.83

5 25 55.0 45.5 26.8 12.4 34.5 57.5 45.4

26014779 40740466

baseline (3) 1 1 51.5 42.0 23.3 12.0 31.4 53.8 42.0 21094971 40735858
5 1 55.2 49.3 31.6 15.6 37.2 59.3 47.9

5 3 48.2 46.6 28.6 13.5 34.7 53.6 43.6
5 10 50.3 47.2 27.0 14.0 35.0 55.0 44.28

5 25 52.9 49.5 29.9 15.4 36.7 57.7 46.6

66599707 155538

baseline (8) 1 1 52.9 47.7 29.5 14.8 36.2 57.7 46.1 61679899 150930
Table 2.19: mAP evaluation for the 3D with residuals hierarchical DarkNet architecture. On the left we present
whether the DarkNet model is frozen or not, as well as the window size and stride. On the right we show the
learnable and static parameters. Considering the frozenDarkNet resultswe can see improvements across practically
all measures nomatter the stride we used. With an averagemAP improvement of 4 points compared to the baseline,
in the best case of s = 3. In comparison, the un-frozen and fine-tuned DarkNet model results are more variable with
two of the four performing better than the baseline Interestingly for strides of s = 3 and s = 10, the fine-tuning of
the DarkNet results in worsened performance.

mAP point improvement), with more mixed and subdued results for the agnostic evaluations
(between 0-2.3 mAP point improvement). Our hierarchical 3D model achieves the highest mAP
scores in the non-agnostic case, attaining a 4 point (9.5%) and 1.8 point (3.9%) relative improve-
ment on the framewise baseline with frozen and unfrozen DarkNet layers respectively.
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Model Table Frz. Agn. mAP Dif.

APSL APMO APFA APS APM APL AP AP

8 51.5 42.0 23.3 12.0 31.4 53.8 42.0
Framewise Table 2.10 3

3 71.0 60.0 44.6 23.5 55.0 71.7 60.3
8 53.5 45.2 25.9 13.2 33.7 56.6 44.7 +2.7

Max Pooling Table 2.11 3

3 73.2 62.7 46.1 25.9 57.9 73.8 62.6 +2.3

8 55.5 45.9 25.9 13.1 34.1 58.0 45.4 +3.4
Ch. Concat. Table 2.12 3

3 74.2 61.7 45.1 26.1 57.5 73.8 62.6 +2.3

8 52.9 45.5 26.6 13.1 34.7 56.5 44.6 +2.6
Feat. Corr. Table 2.13 3

3 73.8 62.6 45.0 25.6 57.8 73.8 62.6 +2.3

8 57.5 40.0 27.0 13.3 34.5 57.6 45.6 +3.6
(2+1)D Conv. Table 2.14 3

3 72.8 62.4 45.2 25.4 57.3 73.5 62.3 +2.0

8 49.7 43.6 24.5 13.7 31.2 53.9 42.1 +0.1
Multi-Stream Table 2.17 3

3 72.1 61.7 45.8 26.5 56.7 72.8 61.8 +1.5

8 55.7 46.7 26.5 11.6 34.0 59.2 46.0 +4.0
Hierarchical 3D Table 2.19 3

3 71.6 60.5 42.3 21.0 54.3 72.6 60.2 -0.1

APSL APMO APFA APS APM APL AP AP

8 52.9 47.7 29.5 14.8 36.2 57.7 46.1
Framewise Table 2.10 8

3 75.8 66.4 47.6 25.7 56.0 77.4 65.5
8 53.2 49.0 27.9 13.7 36.1 57.9 46.3 +0.2

Mulit-Stream Table 2.17 8

3 75.7 67.4 49.1 26.0 59.9 78.6 66.2 +0.7

8 52.8 48.2 26.0 14.2 35.5 57.3 45.8 -0.3
Hierarchical 2D Table 2.18 8

3 75.2 65.9 47.1 25.9 58.2 77.3 64.9 -0.6

8 55.2 49.3 31.6 15.6 37.2 59.3 47.9 +1.8
Hierarchical 3D Table 2.19 8

3 75.5 66.1 48.6 26.2 60.1 77.4 65.4 -0.1

Table 2.20: Experimental mAP summaries and class agnostic evaluations. Here we take the best performingmodel
from each of our experiments, listing their mAP results for both the standard as well as additionally for the class
agnostic case where only the objectness score is considered. On the left we list the type of experimental model,
the table with the full results, and whether the backbone networks are frozen or not, and whether the evaluation is
agnosticor not. On the far rightwe list themAPpoint differencewith the single framebaseline. Overall we seemostly
minor improvements in averagemAPwith our experiments, with less improvements for the agnostic scores. Notably
the proposed hierarchical 3D model attains the most significant improvements over the single frame baseline for
the non-agnostic evaluations.
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2.3 Exploiting Image Data for Video Detection
A significant limitation of current video detection models and datasets is their class diversity,
or lack thereof. ImageNet-VID only contains 30 unique classes4, which can be insufficient for
many applications, especially captioning if we are looking to utilise detectors to identify the
broad set of concepts found in captions.
In an effort towards improving model diversity for the video object detection problem, as well
as to highlight an object detection models’ ability to handle more class variation, we look to
exploit image detection datasets and their categories. Table 2.6, back in Section 2.1.6, showed
that a framewise object detection model trained on MS-COCO performs better (52.2 mAP) than
one trained on ImageNet-VID (50.7 mAP) when testing on the intersecting classes of MS-COCO
and ImageNet-VID. Table 2.8 then showed that the mAP is even further improved (55.6) when
fine-tuning the MS-COCO trained model on ImageNet-VID, when considering the intersecting
classes. These results highlight the benefits of still image datasets in the training and initiali-
sation of video based detection models. We therefore look to combine the main three image
object detection datasets Pascal VOC, MS-COCO, and ImageNet-DET with the video object de-
tection dataset ImageNet-VID into a single dataset with a single class structure. We then train
and test a framewise model on the combined dataset, comparing it to individually trained mod-
els. Lastly, we perform a class/concept coverage analysis with the captioning datasets used in
Chapter 1.

2.3.1 Combining Detection Datasets
Image detection datasets Pascal VOC, MS-COCO and ImageNet-DET consist of annotations for
20, 80 and 200 categories respectively, however many of these classes are similar or equiva-
lent. We look to merge the datasets into a single, larger dataset, therefore we need to associate
categories appropriately. To combine the datasets, we manually inspect all categories along
with those in ImageNet-VID, assigning each its appropriate WordNet ID. The resulting com-
bined dataset contains 246 unique categories, which are presented in Table 2.21 along with
the datasets they appear in.
Some of the categories can be considered subcategories of a more generalised category, for
example dining-room_table is a type of table . Furthermore, there are a bunch of types of
objects, such as animals, food, vehicles and household items. Based on ideas presented in
[Redmon and Farhadi, 2017], where a hierarchical class tree is built for 9000 object classes, we
generate a smaller hierarchical class tree for the 246 classes attained from the merging of our
datasets.
The hierarchical tree is generated using the 9000 class tree introduced in [Redmon and Farhadi,

4YouTube-BB contains 23 classes (14 of which are in ImageNet-VID), however due to its size we leave the utili-
sation of YouTube-BB for further work.
Concept Detection & Localisation • Exploiting Image Data for Video Detection 144



Class VID VOC COC DET

airplane 3 3 3 3

bicycle 3 3 3 3

bird 3 3 3 3

bus 3 3 3 3

car 3 3 3 3

domestic_cat 3 3 3 3

dog 3 3 3 3

horse 3 3 3 3

motorcycle 3 3 3 3

sheep 3 3 3 3

train 3 3 3 3

elephant 3 3 3

bear 3 3 3

zebra 3 3 3

antelope 3 3

cattle 3 3

fox 3 3

giant_panda 3 3

hamster 3 3

lion 3 3

lizard 3 3

monkey 3 3

rabbit 3 3

lesser_panda 3 3

snake 3 3

squirrel 3 3

tiger 3 3

turtle 3 3

vessel 3 3

whale 3 3

chair 3 3 3

person 3 3 3

display 3 3 3

sofa 3 3 3

boat 3 3

bottle 3 3

cow 3 3

dining-room_table 3 3

houseplant 3 3

traffic_light 3 3

bench 3 3

backpack 3 3

ski 3 3

banana 3 3

apple 3 3

orange 3 3

hotdog 3 3

pizza 3 3

laptop 3 3

mouse 3 3

Class COC DET

remote_control 3 3

microwave 3 3

toaster 3 3

refrigerator 3 3

hand_blower 3 3

truck 3

fireplug 3

street_sign 3

parking_meter 3

giraffe 3

platter 3

bag 3

necktie 3

baggage 3

frisbee 3

snowboard 3

ball 3

sport_kite 3

baseball_bat 3

baseball_glove 3

skateboard 3

aquaplane 3

tennis_racket 3

wineglass 3

glass 3

fork 3

table_knife 3

spoon 3

bowl 3

sandwich 3

broccoli 3

carrot 3

doughnut 3

trifle 3

bed 3

toilet 3

keyboard 3

telephone 3

oven 3

washbasin 3

book 3

clock 3

vase 3

scissors 3

teddy 3

toothbrush 3

Remaining classes in DET

accordion pot ice_lolly
ant flute porcupine

armadillo french_horn power_drill
artichoke frog pretzel

ax frying_pan printer
baby_bed goldfish puck

bagel golf_ball punching_bag
balance_beam golfcart purse

band_aid guacamole racket
banjo guitar ray

baseball hair_spray rubber_eraser
basketball hamburger rugby_ball
bathing_cap hammer rule

beaker harmonica saltshaker
bee harp sax

bell_pepper cowboy_hat scorpion
binder head_cabbage screwdriver

bookcase helmet seal
bow hippopotamus skunk

bow_tie horizontal_bar snail
bowl ipod snowmobile

brassiere isopod snowplow
burrito jellyfish soap_dispenser
butterfly koala soccer_ball
camel ladle spatula

can_opener ladybug starfish
cart lamp stethoscope
cello lemon stove

centipede lipstick strainer
chain_saw lobster strawberry

chime maillot stretcher
cocktail_shaker maraca sunglasses
coffee_maker microphone swimming_trunks

computer_keyboard milk_can swine
corkscrew miniskirt syringe

cream mushroom table
croquet_ball nail tape_player

crutch neck_brace tennis_ball
cucumber oboe tick

mug otter windsor_tie
diaper pencil_box trombone

digital_clock pencil_sharpener cornet
dishwasher perfume unicycle
dragonfly piano vacuum

drum pineapple violin
dumbbell ping-pong_ball volleyball

electric_fan pitcher waffle_iron
face_powder plastic_bag washer

fig plate_rack water_bottle
file pomegranate wine_bottle

Table 2.21: Classes across different detection sets. This table shows a list of the 246 manually processed classes
used in our combined dataset as well as the individual datasets that contain samples for them.
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2017] called WordTree. WordTree is based on the language database WordNet [Miller et al.,
1990] which itself is structured as a directed graph, not a tree. To build a hierarchical tree the
shortest paths from the individual visual category nodes to the root physicalobject node are
taken. To build our hierarchical class treewe start by finding the 246 categories inWordTree and
extract the sub-trees from these nodes to the root. We find all but 2 of our 246 categorieswere in
WordTree and wemanually add these extra two nodes to the tree. Nodes of extracted sub-trees
that are either very visually similar to their child or parent node, or are overly ambiguous and non-
visual are manually modified. For example, vegetable.n.01 → solanaceous_vegetable.n.01

→ pepper.n.04 → sweet_pepper.n.02 → bell_pepper.n.02 just becomes vegetable.n.01

→ bell_pepper.n.02 . The sub-tree is further manually modified to account for odd groupings
found in the original WordTree. For example, punching_bag.n.02 is a sub-category of ball.n.01,
and there are two food categories root → food.n.01 and root → food.n.02 . After perform-
ing some manual hierarchical re-structuring, we add an extra 39 parent classes, for a total of
285 detectable object classes across 6 hierarchical levels. Figure 2.13 (best viewed digitally)
shows our hierarchical class tree, with the root in the centre branching out to all of the individual
leaf classes.

Having this hierarchical tree allows us to correctly combine samples from Pascal VOC, MS-
COCO, ImageNet-DET and ImageNet-VID to create a combined object detection dataset. Ta-
ble 2.22 presents the sample counts for each of the datasets and the combined dataset.

Dataset # Classes # Images # Boxes B per I

Pascal VOC 20 21503 62199 2.89
MS-COCO 80 122266 886729 7.25

ImageNet-DET 200 476688 534308 1.12
ImageNet-VID 30 1693473 2655058 1.57

Combined 285 2313930 4138294 1.79
Table 2.22: Individual object detection dataset counts compared to the combined dataset. Due to the high number
of individual frames in the ImageNet-VID dataset most of our combined dataset is made up of samples from the
video set, however we increase the number of classes from 30 to 285.

2.3.2 Training & Inference on the Combined Dataset
Training an object detection network for hierarchical class labels is not as straightforward as
the standard class structure as in the hierarchical case multiple class labels exist for the same
object instance. To handle this, during the training process GT samples are labelled so that all
nodes from the leaf to the root are labelled 1, while all other nodes are labelled 0. Following
YOLOv3 [Redmon and Farhadi, 2017] principles, the softmax classification used in [Redmon
and Farhadi, 2018] is replaced with a sigmoid across all possible classes individually, giving
each their individual probability. Training is carried out as usual, with the loss calculated using
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Figure 2.13: The hierarchical class tree for our combined dataset. Expanding from the central root class we have
three child classes — artifact.n.01 (shaded blue), living_thing.n.01 (shaded grey), and food.n.01

(white). Bottom is zoomed in on right side showing hierarchy of living_thing.n.01 . Best viewed digitally.
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sigmoid binary cross entropy on each class and with an average taken across all classes.
Similarly, inference with hierarchical class labels is not as trivial as the single class case. For
inference, the maximum score amongst all of the leaf nodes is taken, no matter their distance
from the root node. However, if none of the leaf nodes meet the confidence threshold of 0.5,
then the entire tree is pruned one level and tested again. This pruning is performed based on
distance of a node from the root , so a leaf node that is closer to the root may not get pruned
straight away, however if they didn’t meet the threshold originally they alsowon’t as the tree gets
pruned. This uneven pruning is used to account for varying branch lengths, so that comparisons
aren’t made between overly specific and very generalised categories.
One of the benefits of a hierarchical class structure is that it allows a predictive model to be
more insightful in the face of uncertainty. While no child nodes might meet the confidence
threshold, their less specific parent node might. When performing evaluation on the tree, mAP
is presented based on hierarchical level in order to show the impact of more lenient category
labels.
Table 2.6 at the start of this chapter shows the performance of the standard framewise YOLO
detector on the ImageNet-VID validation set after being trained on different datasets. Table 2.23
extends this to consider themodel trained on the hierarchical combination dataset, and includes
mAP results for parent categories. Notably the performance for the combined detector is rela-
tively worse than individual dataset detectors, which could be attributed to the higher number
and diversity of classes adding extra complexity that the model is unable to handle. Potentially
a larger model could attain improved accuracy with the more complex data, however we leave
exploration for further works.
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Class Training Set
Pascal VOC MS-COCO ImageNet-DET ImageNet-VID Combined

artifact 37.5
vehicle 39.0

airplane 68.1 73.0 40.9 79.7 49.9
bicycle 56.4 61.3 28.9 58.9 44.0
boat - - 39.6 43.5 35.8
bus 68.7 74.6 41.3 66.7 32.5
car 54.5 57.6 25.2 49.5 35.7
motorcycle 41.2 47.3 22.2 43.9 22.1
train 64.4 69.9 56.1 74.9 31.5

living_thing 51.2
animal 52.9

bird 44.3 47.2 53.5 47.9 45.8
mammal 53.1

antelope - - 78.0 58.5 43.4
aquatic_mammal - - - - 14.6

whale - - 41.7 44.9 15.0
bear - 45.8 63.5 46.1 49.1
canine - - - - 37.8

dog 31.7 37.9 52.3 41.5 35.4
fox - - 52.8 48.3 25.9

cattle - - 49.9 45.2 30.4
elephant - 58.1 61.7 51.6 39.5
feline - - - - 32.5

domestic_cat 38.7 40.6 43.9 31.1 42.6
lion - - 21.0 22.5 14.1
tiger - - 59.5 60.2 12.8

giant_panda - - 50.7 61.5 37.1
horse 49.5 63.1 55.1 59.0 52.7
lesser_panda - - 15.5 16.3 02.5
monkey - - 43.9 28.2 13.7
rabbit - - 59.3 45.1 34.9
rodent - - - - 12.9

hamster - - 58.9 57.4 09.6
squirrel - - 29.0 34.8 12.5

sheep 22.0 27.3 14.8 30.4 28.6
zebra - 25.8 27.1 28.4 25.9

reptile 26.0
lizard - - 67.8 39.9 19.0
snake - - 52.9 18.8 09.5
turtle - - 43.4 48.9 35.1
Mean 49.0 52.2 45.2 45.0 31.1

Table 2.23: Varying dataset trained models evaluated on hierarchical ImageNet-VID. Shown on the left is the class
hierarchical sub-tree for the 30 ImageNet-VID classes, and on the right are the individual class mAP scores for
models trained on the Pascal VOC, MS-COCO, ImageNet-DET, ImageNet-VID and combined datasets respectively.
We can see that the combined dataset trained model is unable to attain the scores seen in the individual models,
suggesting that further investigation is needed towards how to best exploit the diverse range of data that exists in
the combined dataset.
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2.3.3 Detection and Captioning Concept Crossover
With the object detection pipeline being able to determine both the 30 ImageNet-VID categories
and the 285 categories from the combination of the detection sets, with the idea of using de-
tectors to improve captioning performance, it is useful to determine the coverage of these cat-
egories within the captioning sets.

ImageNet-VID Coverage
Let’s firstly consider the ImageNet-VID coverage on MSVD and MSR-VTT, shown in Table 2.24.
The table shows for every category the number of videos in which it appears, in terms of appear-
ing in any of the GT captions. As direct word matching is used, some categories don’t exactly
appear in captions, however potentially visually similar words do, therefore for the ImageNet-
VID categories some synonyms are manually added and counted. The total is made up of the
union of the exact word matches and all of the synonym matches. The % of videos in which
each category and its synonyms appear in relation to all videos in the dataset is also shown.
Overall the ImageNet-VID categories are used in captions for 38.42% of the MSVD videos and
25.38% of the MSR-VTT videos. This results in the majority of videos in ether set not having a
groundable object when a detector is trained with solely ImageNet-VID.

Combined Set Coverage
Now let’s consider the coverage of the combined 285 categories introduced in Section 2.3 for
theMSVD andMSR-VTT captioning sets. Table 2.25 presents a summary of the coverage statis-
tics for the MSVD and MSR-VTT sets. The summary table contains classes that exist in at least
2% of the videos in the captioning sets, the full tables Table A.2 (MSVD) and Table A.3 (MSR-
VTT) consisting of all classes can be found in Appendix E. Due to the high number of categories
manual synonym specification isn’t performed, however with the hierarchical nature of the 285
categories, the coverage of all children of a particular class are considered. For example, in
MSVD the exact word food is used in 243 videos, however all of the sub-categories of the
food class are used across 126 videos, resulting in a food-related class being present in 301
videos. Since only singular word matching is performed so categories that are described with
two words will have no exact matches.
The total coverage can be seen through the root node, with 89.58% and 81.16% coverage for
MSVD and MSR-VTT respectively. This coverage is significantly higher than the 30 ImageNet-
VID categories of 38.42% and 25.38% respectively. Furthermore we find that many of the most
common concepts are shared across the datasets, with the summary tables consisting ofmany
of the same categories for both datasets. The tables also highlight themore popular categories
for each captioning set, for exampleMSVD is very animal centric, with something animal related
mentioned in 24.75%of videos, compared to just 9.77% inMSR-VTT. Lastly, it’s important to note
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MSVD

Noun Exact Synonyms (#) Total % of set

dog 147 dogs (30) 151 12.58
domestic cat 0 cat (82), cats (19) 85 7.08

bird 12 chicken (42), birds (6) 55 4.58
car 52 cars (9), van (7) 54 4.50

bicycle 21 bike (38), bikes (1) 40 3.33
monkey 37 monkeys (4) 37 3.08
horse 27 horses (8) 27 2.25

airplane 13 plane (18), jet (13), planes (1) 23 1.92
motorcycle 19 motorcycles (2) 19 1.58

bear 18 bears (3) 18 1.50
tiger 15 tigers (1) 15 1.25

watercraft 0 boat (12) 12 1.00
lion 10 lions (2) 10 0.83

rabbit 7 7 0.58
cattle 2 cow (5), cows (3) 7 0.58
bus 7 7 0.58

squirrel 5 squirrels (1) 6 0.50
snake 6 snakes (1) 6 0.50
fox 6 foxes (1) 6 0.50

elephant 6 elephants (2) 6 0.50
whale 5 5 0.42

hamster 5 5 0.42
zebra 4 zebras (3) 4 0.33
train 4 trains (2) 4 0.33
turtle 3 turtles (1) 3 0.25
sheep 1 1 0.08

antelope 1 1 0.08
red panda 0 0 0.00

lizard 0 0 0.00
giant panda 0 0 0.00
TOTALS 359 461 38.42

MSR-VTT

Noun Exact Synonyms (#) Total % of set

car 1004 cars (375), van (58) 1063 10.63
dog 259 dogs (109) 285 2.85
bird 87 chicken (96), birds (71) 216 2.16

domestic cat 0 cat (192), cats (63) 205 2.05
bicycle 52 bike (163), bikes (47) 180 1.80
airplane 123 plane (111), jet (24), planes (19) 176 1.76
horse 160 horses (81) 173 1.73

watercraft 0 boat (134), boats (29) 140 1.40
motorcycle 112 motorcycles (46) 124 1.24

bus 78 buses (8) 83 0.83
monkey 71 monkeys (17) 74 0.74
train 61 trains (13) 66 0.66
bear 48 bears (17) 58 0.58
tiger 41 tigers (14) 43 0.43
fox 35 foxes (2) 35 0.35
lion 28 lions (14) 33 0.33

hamster 30 hamsters (9) 32 0.32
cattle 2 cow (24), cows (9) 27 0.27
snake 24 snakes (11) 26 0.26
rabbit 25 rabbits (4) 26 0.26

elephant 23 elephants (7) 24 0.24
turtle 13 turtles (8) 15 0.15
whale 10 whales (9) 13 0.13
lizard 10 lizards (1) 10 0.10
sheep 9 9 0.09
zebra 6 zebras (1) 7 0.07

squirrel 6 squirrels (1) 6 0.06
antelope 6 6 0.06
red panda 0 0 0.00
giant panda 0 0 0.00
TOTALS 2054 2538 25.38

Table 2.24: Concept overlap between ImageNet-VID and the MSVD and MSR-VTT captioning datasets. On the left
we show the overlaps for the MSVD dataset, while on the right we show for the MSR-VTT dataset. A concept is
counted as overlapping if it exists in any of the captions for a video, with maximally one count per video. Each table
has the class labels on the left, with the number of exact word matches, then in the middle are manually identified
synonyms, which are unioned together to form final counts. The final counts are then used to determine the ratios
of the concepts in each of the captioning datasets. The tables are sorted by most common concepts first. Most
concepts appear in very few of the samples in either MSVD or MSR-VTT, with of 38.42% and 25.38% total coverage
respectively. If we were to use a detector trained on ImageNet-VID for caption groundings the majority of videos
would have no object groundings.
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that for both captioning sets themajority of classes appear less than 2% of the time, suggesting
even with the combined dataset, some concepts couldn’t be correctly grounded by an object
detection model. We investigate the most common nouns in the captioning datasets which
aren’t associated with a combined detection set class in the following sub-section.

Missing Concepts
As seen in the previous sub-section our combined datasets classes don’t completely cover all
videos in the captioning datasets. Knowing the coverage of the detectable categories is only
half of the picture, it’s important to also determine the concepts that are utilised frequently in the
captioning sets but are missing in the detectable categories. Table 2.26 presents a summary
of the 100 most common concepts (nouns as determined by the NLTK) in the MSVD and MSR-
VTT captioning sets, which aren’t one of the detectable categories in our combined detection
dataset. This table is extended to the top 204 nouns per captioning set in Table A.4 (MSVD)
and Table A.5 (MSR-VTT) found in Appendix E. As has been done for the previous statistics,
counting is performed per video, not per caption — if the word is in any caption for a video they
are counted once for that video.
For both MSVD and MSR-VTT a significant proportion of the mission nouns are different terms
for the concept of person , ie. man,woman, someone, boy, girl etc. For captioning a specific sex
and age classificationmay result inmore accurate captions, or conversely captioning withmore
general terminology when talking about persons. Furthermore, the words ‘video‘ and ‘clip‘ are
also used in a high proportion of samples, likely due to them being used in captions to reference
the video itself. Beyond these, many of the highly proportionedmissing concepts aren’t specific
objects that can be well defined with a bounding box detector ie. song, piece, sort, scene, front,
etc. Such concepts may be better represented by either an entire image representation or with
other textual context features.
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MSVD

Class Ext Chd Tot % set

LEVEL 0

ROOT 0 1075 1075 89.58

LEVEL 1

artifact 0 669 669 55.75
food 243 126 301 25.08

living thing 0 877 877 73.08
LEVEL 2

sports equipment 0 110 110 9.17
furniture 1 136 136 11.33
appliance 3 53 54 4.50

musical instrument 0 86 86 7.17
tableware 0 149 149 12.42
vehicle 17 118 120 10.00

kitchen utensil 0 36 36 3.00
electronic device 0 50 50 4.17

pot 69 0 69 5.75
vegetable 37 36 61 5.08

fruit 28 35 52 4.33
animal 81 282 297 24.75
person 703 0 703 58.58

LEVEL 3

ball 51 13 53 4.42
board 46 8 49 4.08
bed 37 0 37 3.08
seat 4 50 54 4.50
table 49 0 49 4.08
stove 38 0 38 3.17

stringed instrument 0 57 57 4.75
keyboard instrument 0 27 27 2.25

glass 50 0 50 4.17
bowl 108 0 108 9.00
car 52 0 52 4.33

cutlery 0 28 28 2.33
mammal 5 255 255 21.25

LEVEL 4

chair 26 0 26 2.17
guitar 53 0 53 4.42
piano 26 0 26 2.17
spoon 24 0 24 2.00
monkey 37 0 37 3.08
canine 1 150 150 12.50
horse 27 0 27 2.25

LEVEL 5

dog 147 0 147 12.25

MSR-VTT

Class Ext Chd Tot % set

LEVEL 0

ROOT 0 8116 8116 81.16

LEVEL 1

artifact 1 5522 5522 55.22
food 1102 373 1312 13.12

living thing 0 5802 5802 58.02
LEVEL 2

clothing 202 393 569 5.69
sports equipment 0 951 951 9.51

furniture 20 1367 1375 13.75
appliance 8 242 250 2.50

musical instrument 0 358 358 3.58
toiletry 0 285 285 2.85

tableware 0 718 718 7.18
vehicle 441 1518 1553 15.53

electronic device 0 614 614 6.14
pot 230 0 230 2.30
fruit 46 235 268 2.68

animal 217 905 977 9.77
person 5272 0 5272 52.72

LEVEL 3

hat 235 0 235 2.35
ball 553 341 674 6.74

board 224 12 231 2.31
bed 218 0 218 2.18
seat 97 385 474 4.74
table 741 0 741 7.41

stringed instrument 0 262 262 2.62
makeup 183 39 200 2.00
glass 282 6 284 2.84
bowl 392 0 392 3.92
car 1004 0 1004 10.04

microphone 265 0 265 2.65
mammal 3 716 717 7.17

LEVEL 4

basketball 204 0 204 2.04
chair 288 0 288 2.88
guitar 250 0 250 2.50
canine 4 290 292 2.92

LEVEL 5

dog 259 0 259 2.59

Table 2.25: Concept overlap between the combined dataset class tree with the nouns in MSVD and MSR-VTT —
(summary). Here we present the most common overlaps between the classes in our combined dataset with the
nouns in the MSVD (left) and MSR-VTT (right) datasets. For brevity we only show classes that exist in at least 2% of
the captioning videos, the full tables Table A.2 and Table A.3 consisting of all classes can be found in Appendix E. We
list the classes in hierarchical order starting at the root . For each class we show their exact wordmatch count, the
cumulative count from their children, and the union of the children and exact counts for the total and ratio %. Note
this union is not the sum since a child and parent class may be in captions for the same video, which we only want
to count once. Three things are important to notice in this table. Firstly, the total coverages are relatively high with
89.58 and 81.16 for the MSVD and MSR-VTT datasets respectively. Secondly, many of the most common concepts
are shared across the dataset. Lastly, the majority of the classes are not listed here, meaning they are either very
rare or non-existent in captioning datasets.
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MSVD

Noun Count % set Noun Count % set

man 791 65.92 top 59 4.92
someone 500 41.67 girls 59 4.92
woman 460 38.33 movie 58 4.83

something 437 36.42 ingredients 57 4.75
lady 386 32.17 field 57 4.75
girl 266 22.17 couple 56 4.67

women 260 21.67 persons 55 4.58
men 249 20.75 instrument 54 4.50
boy 245 20.42 house 54 4.50

kichen 232 19.33 stage 53 4.42
guy 218 18.17 recipe 53 4.42
video 194 16.17 rice 50 4.17
chef 194 16.17 head 49 4.08

people 173 14.42 back 49 4.08
s 171 14.25 mixture 48 4.00

pieces 154 12.83 animals 48 4.00
playing 152 12.67 way 47 3.92
knife 133 11.08 guys 47 3.92
water 131 10.92 face 47 3.92
cook 124 10.33 egg 47 3.92
piece 121 10.08 cuts 47 3.92
dish 114 9.50 liquid 46 3.83
song 111 9.25 half 46 3.83
music 110 9.17 dance 46 3.83
pan 102 8.50 i 45 3.75

vegetables 98 8.17 grass 45 3.75
ground 97 8.08 skillet 44 3.67

kid 92 7.67 play 44 3.67
group 91 7.58 kids 44 3.67
sort 90 7.50 game 44 3.67
baby 90 7.50 camera 44 3.67
hand 89 7.42 cute 43 3.58
clip 87 7.25 area 43 3.58
road 85 7.08 frying 42 3.50
cat 82 6.83 chicken 42 3.50

slices 79 6.58 air 42 3.50
room 78 6.50 scene 41 3.42

kitchen 76 6.33 onion 41 3.42
side 74 6.17 anyone 41 3.42
front 74 6.17 film 40 3.33
kind 72 6.00 singing 39 3.25

cooking 70 5.83 onions 38 3.17
floor 69 5.75 eggs 38 3.17
meat 67 5.58 bike 38 3.17
child 67 5.58 forest 37 3.08
boys 67 5.58 mouth 36 3.00
show 65 5.42 item 36 3.00
hands 62 5.17 box 36 3.00
street 61 5.08 tricks 35 2.92

somebody 61 5.08 toy 35 2.92

MSR-VTT

Noun Count % set Noun Count % set

man 6707 67.07 computer 662 6.62
video 4737 47.37 road 660 6.60
people 4043 40.43 clips 654 6.54
woman 3977 39.77 water 652 6.52

someone 3035 30.35 crowd 645 6.45
show 2520 25.20 child 632 6.32

something 2487 24.87 sports 623 6.23
guy 2370 23.70 play 622 6.22
girl 2351 23.51 children 617 6.17
men 2127 21.27 kid 610 6.10
clip 2074 20.74 street 606 6.06

screen 1971 19.71 couple 593 5.93
talks 1965 19.65 players 585 5.85
group 1949 19.49 scenes 576 5.76
women 1807 18.07 dish 570 5.70
game 1758 17.58 singing 568 5.68
music 1679 16.79 animation 561 5.61
scene 1632 16.32 bunch 539 5.39
front 1561 15.61 interview 525 5.25
lady 1514 15.14 field 525 5.25

camera 1510 15.10 voice 521 5.21
s 1399 13.99 sings 513 5.13
tv 1392 13.92 pictures 509 5.09

shirt 1318 13.18 hands 500 5.00
room 1274 12.74 suit 499 4.99
song 1269 12.69 side 499 4.99
boy 1265 12.65 top 496 4.96

movie 1227 12.27 picture 488 4.88
dress 1181 11.81 persons 476 4.76

cartoon 1083 10.83 things 474 4.74
stage 1002 10.02 program 470 4.70
kids 871 8.71 place 455 4.55

characters 861 8.61 conversation 455 4.55
character 849 8.49 recipe 454 4.54

color 808 8.08 floor 450 4.50
background 808 8.08 house 445 4.45
television 789 7.89 dance 443 4.43
playing 787 7.87 match 434 4.34
footage 758 7.58 speaking 432 4.32
plays 757 7.57 home 426 4.26

audience 754 7.54 games 425 4.25
girls 749 7.49 film 421 4.21

kitchen 741 7.41 time 416 4.16
hand 724 7.24 cooking 416 4.16
hair 721 7.21 piece 413 4.13
guys 708 7.08 male 413 4.13
news 698 6.98 images 399 3.99
talk 691 6.91 gameplay 390 3.90

player 687 6.87 blue 389 3.89
ground 672 6.72 ingredients 387 3.87

Table 2.26: The 100 most common nouns from MSVD and MSR-VTT which are not part of the combined dataset
class tree — (summary). Here we present the 100 most common nouns in the MSVD (left) and MSR-VTT (right)
captioning datasets which are not part of our combined dataset. For brevity we only show the top 100 nouns, more
comprehensive tables Table A.4 (MSVD) and Table A.5 (MSR-VTT) are found in Appendix E. We list the nouns in
frequency order, presenting their count and ratio of the number of videos they appear in across the datasets. Most
notably most of the missing nouns are related to different ways of saying person , ie. man, someone, woman,
people, etc.
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2.4 Summary
Following on from findings in Chapter 1 that concept detection is critically important for profi-
cient captioning and understanding, this chapter has investigated the problem of object detec-
tion in video. As video object detection models rely on image based detection architectures we
began by providing an in-depth look at the main image object detection methodologies (Sec-
tion 2.1). We also discussed the datasets such models are trained on (Section 2.1.2), and the
evaluation metrics used to evaluated model performance (Section 2.1.3).
We initially investigated the performance versus efficiency of three image object detectionmod-
els — Faster R-CNN, SSD and YOLO (Table 2.2), choosing YOLO for our experiments due to its
efficiency benefits. After taking a more comprehensive look at YOLO and its feature network —
DarkNet-53 (Section 2.1.5), we carried out a framewise performance evaluation on both image
detection sets as well as the video detection set — ImageNet-VID (Table 2.5). We performed
a thorough analysis of the classwise performance (Table 2.6), finding that more intra-class di-
versity in the training data tended to result in better test performance (see Section 2.1.6). Fur-
thermore, we found that pre-training on any of the image datasets before fine-tuning on the
ImageNet-VID video dataset increases mAP scores for any and all classes (Section 2.1.7).
After establishing the framewise baselineswe looked tomodify the YOLOarchitecture to be able
to consider multiple input frames when determining the detection outputs for a reference frame
(Section 2.2). We began by investigatingmodifications to the detection part of the YOLOmodel,
keeping the DarkNet feature network untouched (Section 2.2.2). We implemented and exper-
imentally analysed a broad set of approaches that have seen success in combining temporal
information in other video problem domains such as video classification and event detection.
Such considerations included mean and max pooling (Table 2.11), channel concatenation (Ta-
ble 2.12), feature correlation (Table 2.13), and 3D convolutions (Table 2.14), all of which showed
performance increases of between 0-4 mAP points over the single frame baseline. These re-
sults, considered together, confirm that augmenting temporally spaced frames, in general, im-
proves detection performance.
After experiments on the detection subnet of YOLO, we turned our attention to the DarkNet
feature network (Section 2.2.3). As low-level motion features and early-network temporal mod-
elling had been found beneficial for motion focused problems such as action recognition, we
considered if performing temporal accumulation at early stages is beneficial to the video object
detection problem. We experimentally investigated a number of approaches such as adding a
FlowNet or R(2+1)D network as a secondary separate stream (Table 2.17), finding similar per-
formance to the framewise baseline. We also considered hierarchical 2D convolutional (Ta-
ble 2.18), and hierarchical 3D convolutional with residuals structures (Table 2.19). We found
that the hierarchical 2D was too disruptive to the pre-trained DarkNet weights and information
flow, leading to decreased performance. The hierarchical 3D model however attained perfor-
mance improvements, likely aided by the addition of residual connections which limited the
degree of change to the pre-trained model weights. Most notably, keeping the DarkNet frozen
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and training convolutions to improve features for input into various stages resulted in signif-
icant improvements (10% relative improvement in Table 2.19). This finding highlights that we
can learn better input features for separate stages of a frozen pre-trained network, by utilising
temporally nearby features. We summarised our experiments and performed class agnostic
evaluations in Table 2.20, finding that agnostic performance gains weren’t as significant (0-2.5
mAP points) as the non-agnostic evaluations.
Lastly, bringing it back to the need of video object detection for the purpose of better under-
standing through captioning, we highlighted the lack of inter-class diversity in the video detec-
tion datasets. The video main dataset — ImageNet-VID, only contains 30 object classes which
is significantly less than the 647 and 1750 nouns in our filtered MSVD and MSR-VTT vocabular-
ies, as presented in Chapter 1. In fact, we found that the classes in ImageNet-VID are only used
in captions for approximately 38% and 25% of the videos in MSVD and MSR-VTT respectively
(Table 2.24). We therefore generated a hierarchical class tree and mapping for the combina-
tion of the Pascal VOC, MS-COCO, ImageNet-DET image based datasets with the ImageNet-VID
dataset (Section 2.3.1). We found that coverage increases to approximately 90% and 81% for
MSVD and MSR-VTT respectively (Table 2.25). We trained and evaluated a framewise YOLO
network on the combined dataset finding it wasn’t as effective as individually trained detectors
(Table 2.23). We believe this could be due to the intra-class diversity between the individual
datasets, however limited by resources we were only able to train a single model and think fur-
ther optimisation of the training routine could achieve improved performance.
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3 Fine-Grained Understanding
In Chapter 1 and Chapter 2 we considered video understanding in very generalised settings,
where there was a wide variety of objects and actions to understand. However in the real world
there is often need for models to handle much more specific circumstances (Figure 3.1).

“People playing tennis”

“Good serve down the T by 
Federer, short rally, Faulkner 
hits a backhand winner down 

the line”

GENERAL

FINE-GRAINED

TIME

Figure 3.1: An example of generalised and fine-grained understanding. Provided a video portraying a scene, the
goal is to understand it relative to the domain specific context of the video. In this example we have a video clip
of a tennis play, and we want to be able to understand it in regards to the sport of tennis, so if we are to generate
captions they would be more specific about the scene rather than generalistic.
One particular field of growing interest is sports analytics, where there is a desire to automate
the collection of statistics using video footage. Whenwe compare sports footage to the general
video content seen in previous chapters a number of key differences are present:

• Sports footage generally takes place in a single scene, meaning we can’t infer concepts
from the scene representation;

• Sports footage generally contains only a few very specific objects, meaning for the most
part, identifying what an object is isn’t likely to aid in the understanding, rather we are
much more reliant on actions and movement information;

• Sports (broadcast) footage can consist of multiple cuts with different camera angles and
zooms containing a single scene or event, rather than one continuous shot for an event.

These factorsmean the sports video understanding problem needs a finer tuned approach than
that seen in general video understanding. Furthermore, in general approaches it’s generally
enough to just identify the sport, however here we want to determine the particular intricacies
of the sport itself.
This chapter explores methods for performing video understanding on fine-grained data. We
introduce a small but detailed dataset focused on the sport of tennis, which is designed for
event classification, temporal detection and captioning in the formof commentary. This dataset
is utilised to examine the potential of deep learning models on such a fine-grained problem.
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3.1 Fine-Grained Datasets and Approaches
This section will cover some of the other fine-grained event detection and captioning datasets
that exist in the literature, aswell as briefly describe some of the approaches that focus on these
datasets. The datasets introduced in this section are fine-grained in that they are specific to a
particular domain — eg cooking, sport, shopping. The approaches addressing these problem
domains are all different, dependent on the particular fine-grained domain, however they gener-
ally share common techniques with more general event classification, detection and captioning
works as presented in Chapter 1 and Chapter 2.

3.1.1 Datasets
MPII-Cooking [Rohrbach et al., 2012a] is a dataset consisting of 44 videos of people cooking
or preparing food in a kitchen. The set consists of continuous clips of a person making one
of 14 dishes, ranging in length from 3 to 41 minutes. The clips are annotated with temporal
events for 65 cooking activities such as cut slices, pour, or spice. Related to this dataset is
MPII-Composites [Rohrbach et al., 2012b] which used Amazon Mechanical Turk (AMT) to build
a text-based corpus of 2124 cooking sequences containing 12958 event descriptions. It also
extendsMPII-Cooking with 212more videos for 41 composite dish creations. MPII-Cooking and
MPII-Composites are combined in MPII-Cooking 2 [Rohrbach et al., 2016], which contains a
total of 273 videos of 59 different dish options. TACoS [Regneri et al., 2013] use AMT to generate
temporally aligned captions for theMPII-Composites dataset. They only focus on 127 of the 212
videos, with 20 different descriptions each leading to 2540 captions in total. This dataset was
extended to TACoS-MultiLevel (TACoS-ML) [Rohrbach et al., 2014] which annotates the videos
with captions at three levels of granularity — a detailed description with at most 15 sentences,
a short description with 3-5 sentences, and a single sentence.
The MERL Shopping dataset [Singh et al., 2016] consists of 96 videos each 2 minutes long, of
people shopping from a set of shelves, shot from a static overhead camera. There are 5 action
classes — reach to shelf, retract from shelf, hand in shelf, inspect product, and inspect shelf.
Although the number of videos in this dataset is less than in MPII-Cooking 2, there are many
action instances per video resulting in a large number frames (approximately 30k) per class.
Most similarly to our dataset, theNCAABasketball [Ramanathan et al., 2016] dataset is focused
on the sport of basketball and consists of 257 game videos that are each an average of 90
minutes long. The videos are annotated with temporal action localisations for 11 classes such
as 3-point success, 3-point fail, steal. The set is split into 11436 training, 856 validation and 2256
test events, each of which has one of the 11 class labels. Furthermore in 850 event sub-clips
of the test set their exists spatial ball localisations, as well as individual player localisations for
9000 frames in the test set.
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Dataset Domain # Classes # Videos # Events Spatial? Temporal? Captions?

MPII-Cooking Cooking 65 44 3

MPII-Composites Cooking 41 212 3

MPII-Cooking 2 Cooking 59 273 3

TACoS Cooking 41 212 3 3

MERL Shopping Shopping 5 96 3

NCAA Basketball Basketball 11 257 14548 3 3

Table 3.1: Summary of fine-grained datasets. This table summarises some statistics and properties of the fine-
grained datasets. For each dataset we show its domain, the number of event classes, the number of videos, and the
number of events, and whether there are spatial, temporal, or caption annotations.

3.1.2 Approaches
As aforementioned, the particular approaches used for fine-grained tasks can often be relatively
tailored to their particular problem domain. In this regard we will only discuss a handfull of
approaches related to some of the datasets described above in Section 3.1.1.
[Rohrbach et al., 2016] work to recognise cooking activities in MPII-Cooking 2. They explore
methods for performing hand detection and pose estimation with the use of a number of hand
crafted features — HoG, HoF, DT, SIFT, MbH.
[Ramanathan et al., 2016] focus on recognising basketball game events from the NCAA Bas-
ketball dataset, and the relation of particular players to the events. They utilise a CNN-based
multi-box detector [Szegedy et al., 2013] to detect players, a KLT tracker [Veenman et al., 2001]
to track the player detections, and a bidirectional LSTM RNN to represent track features. They
then learn a temporal attention model to combine track features at each time-step before using
another bidirectional RNN to perform event detection.
[Singh et al., 2016] look to also recognise cooking activities in the MPII-Cooking 2 and MERL
Shopping datasets. They employ a two stream CNN approach that is applied to raw images
and pixel trajectory images. They apply this CNN to the full frames, and a box cropped around
the person in each clip. They then utilise a bidirectional LSTM RNN to predict action labels.
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3.2 A Tennis Dataset
This section provides the details of the tennis dataset. Extending upon the reasons laid out in
the chapter introduction, the particular sport of tennis was chosen for a number of reasons:

• Compared to some other sports, the actions in tennis are more discrete and easier to
temporally annotate;

• Such discreteness also lends itself to caption annotation, where it is clearly beneficial to
caption at the point level of granularity;

• Camera movement and different angles are kept to a minimum during live play, which
is one less hurdle to overcome, and also distills the models focus to the intricacies that
define events;

• Actions are short and dense in time, with event boundaries often occurring only a few
frames apart, meaning an action detection model has a very small window of time, and
hence very few frames, to make a decision;

• It is one of the bigger and more commercially viable sports in Australia, with this work
having potential commercial outcomes.

If you are unfamiliar with the sport of tennis we suggest you familiarise yourself before read-
ing further, however it is basically just two people, each hitting a ball with a racket over a net
stretched across a court between them. A match is structured into components — amatch has
a number of sets which are themselves made up of a number of games, which are each made
up of a number of points, which are what each player wins or loses. When a player wins enough
points they win the game, when they win enough games they win the set, with matches being
determined as the best of 3 sets (or best of 5 depending on tournament). Each game has a
server, which is how a point is commenced — the server serves the ball into play. Following the
serve, the players exchange hits, when a player hits the ball on the dominant side of their body
(based on their handedness) it’s called a forehand, and when on their less dominant side it’s
called a backhand.
Our dataset is composed of event annotations for five singles (two player) tennis matches and
contains fine-grained hierarchical event annotations as well as point level commentary anno-
tations. We make our dataset publicly available at hayden.faulkner.codes/tennis1.

3.2.1 Event Annotation
Event annotations are of various granularities — from the match level all the way down to the
serve and hit level. For each event typewe also label the eventswith particular related attributes.
To annotate the videos we developed a video temporal event annotation tool, which is general

1https://hayden.faulkner.codes/tennis
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enough to be used for other event detection markups and video domains. The tool is made
available for free as part of the code for this thesis — see my GitHub2.
Table 3.2 presents count and length statistics for each event type, and shows the attributes that
are annotated for each event. For the serve and hit classes we include an attribute near or
far to indicate which end of the court the particular serve or hit occurred at. As themain camera
remains static at one end of the court during play, the near and far annotations are in relation to
the main camera position. Similarly for the hit class the attributes left and right are specified
to indicate what side of the body a ball is hit. Once again this is relative to the main camera,
allowing for the visual generalisation of forehands and backhands from players with different
handedness. For example, a forehand can occur on the left-side or the right-side of a player
depending on their handedness, so to a visual identification model the concept of a forehand is
much more ambiguous than the visually distinct and consistent left-side or right-side.

Type Attributes # Events # Frames Avg. Frames per Event

match winner 5 786455 157291
set winner, score 11 765738 69613
game winner, score, server 118 588759 4989
point winner, score 746 159494 214
serve near or far, in or fault or let 1017 68385 67
hit near or far, left or right 2551 73564 29

Table 3.2: Tennis dataset annotation statistics. We annotate six event types, each having a set of particular at-
tributes also annotated and attributed to each event instance. We show the number of event instances, the number
of frames, and the average frames per instance for each event type. Keep in mind that these events are hierarchical
— ie. a match event instance is composed of many point instances.

We use the attributes for the serve and hit annotations to construct a set of 10 shot classes,
plus an other class (Figure 3.2). These are formed in a hierarchical manner, with the potential
for individual evaluation on each level, allowing a greater understanding of a model’s ability to
handle different levels of specificity.

top

middle

bottom

other serve hit

other far near far near

other in fault let in fault let left right left right

class OTH SFI SFF SFL SNI SNF SNL HFL HFR HNL HNR

Figure 3.2: The class hierarchy for the tennis dataset for shot classification. Both the hits and serves are marked
as either being carried out by the near or far player in relation to the camera. Furthermore, the hits are marked as
occurring on the left or right hand side of a players body (in relation to the camera), while the serves are marked as
either in, let or fault. With these combinations we specify 10 event classes as well as an other class. These 11
classes can also be considered as a three-level class hierarchically, with the top-level classes — other , serve
and hit

2https://github.com/HaydenFaulkner/TemporalEventAnnotator
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The dataset is split into training, validation and testing subsets — proportions are presented
visually in Figure 3.3 and further detailed in Table 3.3. The dataset is partitioned in two ways —
either by using four of the five videos as the training set, and split the remaining video across
the validation and test set (split 01); or by splitting all five videos across all three splits (split 02).
The former option is useful to determine how well a model can generalise to an unseen match,
while the latter split methodology is useful for approximating the performance of a model as
if it has access to enough data to generalise better. For both splits, there exists a significant
class imbalance, with the background other class being 25-30 times more frequent than the
next most common occurring class. Furthermore, the let classes ( SFL and SNL ) are incredibly
rare, occurring approximately 1/300th as often as the other class. Correctly identifying the rare
let classes correctly will likely be a highly challenging task for standard data driven methods to
overcome. For the experiments carried out herein (Section 3.3), split 02 is utilised as it has
let samples across each split, and represents the generalisation scenario as if more data was
available.

V006

training validation testing

V007 V008 V009 V010

01

02

Figure 3.3: Visualisation of the tennis dataset splits. For each split (01 and 02) we show the length of each of the
5 videos with grey bars, with the individual splits shown as varying shades of blue. As the videos contain footage
prior to the commencement of play, some frames at either ends of the videos aren’t utilised in any split. For split 01
four videos are assigned exclusively to the training set, while keeping one solely for validation and testing. Split 2 on
the other hand includes frames from all matches in all three splits.

3.2.2 Commentary Annotation
Beyond temporal event annotation, the dataset is also annotated with commentary style cap-
tions for each of the 746 point events. Commentary was initially scraped from the internet
(tennisearth.com3), however after manual inspection it was found that 582 (76%) of the cap-
tions were either missing or incorrect. For example, in one case the scraped commentary read
‘High kick serve, Federer returns a forehand return, short rally, Nadal cross-court backhand lands
out-side the court‘, however the point was actually just a double fault, so was revised to ‘Double
Fault‘. The structure and style of the revised language was kept as similar to the non-revised as
possible.
To generalise the commentary across games and matches player names are replaced with np

and fp for near and far player respectively. The terms forehand and backhand are also replaced
with either ls (left shot) or rs (right shot) depending on a player’s handedness and court posi-
tion. Similarly as was done for the shot annotations, the change to ls and rs is done for visual
interpretation generalisation, and ambiguity prevention with different handedness players.

3http://tennisearth.com/
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Class # Events - Split 01 # Frames - Split 01 # Events - Split 02 # Frames - Split 02

Train Val Test Train Val Test Train Val Test Train Val Test
OTH 2507 133 198 573394 28538 49648 2079 160 608 470963 36932 143685
SFI 342 11 29 20114 772 1925 296 22 64 17716 1402 3693
SFF 117 2 5 7962 153 333 95 7 22 6430 577 1441
SFL 25 0 1 1596 0 72 21 1 4 1380 38 250
SNI 293 24 29 17186 1762 1994 242 18 86 14876 992 5074
SNF 111 7 10 7312 578 772 88 8 32 6020 473 2169
SNL 10 2 0 656 126 0 9 1 2 543 65 174
HFL 533 22 45 16520 648 1419 432 33 135 13530 1037 4020
HFR 576 39 41 16858 1096 1150 474 37 145 13878 1037 4189
HNL 602 29 39 16196 811 1076 514 37 119 13879 1036 3168
HNR 546 31 48 15605 882 1303 448 33 144 12686 920 4184

Table 3.3: Tennis dataset class split statistics. Here we show the event and frame counts per class for each of
the two splits. Considering the most frequent class other and the most infrequent class ( SNL ) we can see no
matter the split there are significant class imbalances in our dataset.

All captions are filtered to only contain lowercase alpha characters (a-z), spaces, mid-word hy-
phens and mid-word single apostrophes. Figure 3.4 presents a word frequency graph and Ta-
ble 3.4 presents some diverse examples. Beyond the 746 point grounded captions, we also
download and process another 11 thousand tennis commentary captions, which grow the vo-
cabulary from 223 to 250. While these extra captions aren’t manually verified and have no corre-
sponding videos, they can be useful for learning textual relationships and improving captioning
performance.

Point ID Caption

P00000001 ‘high kick serve fp returns a ls return short rally fp cross-court rs lands out-side the court‘
P00000012 ‘quick serve is an ace‘
P00000036 ‘np serves down the t fp returns a ls return brief rally np fails to keep a cross-court ls in the play‘
P00000051 ‘np hits a good serve fp struggles with it returning it long‘
P00000155 ‘cannon serve down the t is an ace‘
P00000172 ‘sharp angled slice serve np returns a rs return fp whips a rs cross-court winner‘

Table 3.4: Tennis dataset GT caption examples. Presented are six examples of captions taken from our GT caption
set. You can see their terminology is very specific to tennis, with them focusing on the order of specific events, ie.
hits, serves, rallies, etc.
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Figure 3.4: Word frequencies of the tennis datasets caption training data. As is common with vocabularies our
word frequencies result in a long-tailed distribution with most words appearing infrequently. Most common to least
common words are listed from top-left to bottom-right, note the decreasing scales along the individual x-axes.

3.3 A Tennis Event Detector and Commentary Model
In this section we implement and experimentally analyse numerous neural network based archi-
tectures for performing temporal event detection (Section 3.3.1) and commentary generation
(Section 3.3.2) on our tennis dataset.

3.3.1 Temporal Event Detection
We investigate the event detection problem first, as this is the more fundamental lower level
problem, with the caption generation model utilising a pre-trained event detection model.

Frame-wise classification with a CNN
The most straightforward approach to event detection is performing frame-wise classification,
where subsequent frames of the same class can be grouped as an event. As there are a sig-
nificant number of OTH frames in comparison to the other ten classes, we reduce the number
OTH frames using random sampling to contain only as many as the next most prevalent class
( SFI ). During evaluation we also separate the results of the OTH (background) and non- OTH
classes.
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Evaluation is carried out on a per frame basis using precision, recall, F1-score and the cross-
class accuracy ( OTH GT samples ignored) for the non- OTH (non-background) classes, as well
as the accuracy for the OTH class. Recalling from Section 2.1.3, the precision and recall for a
class are calculated as:

p =
TP

TP + FP r =
TP

TP + FN (3.1)
where TP, FP, and FN are the number of true positives, false positives, and false negatives re-
spectively. The F1-score per class is calculated as:

F1 = 2
p · r
p+ r

=
TP

TP + .5(FP + FN)

(3.2)

where FN is the number of false negatives. Accuracy is calculated as:
a =

TP + TN
TP + TN + FP + FN (3.3)

In the context of frame classification, say for example if we consider the serve-far-in ( SFI )
class, a TP would be when the model correctly predicts a SFI frame, a TN would be when it
correctly predicts the frame isn’t SFI , a FP is when the model predicts the frame is SFI but it
isn’t, and FN is when the model predicts some other class when it should have predicted SFI .
We begin by training and testing a number of different Convolutional Neural Network (CNN)
architectures of different sizes to determine their out-of-the-box effectiveness on the tennis
dataset. Specifically, we experiment with various ResNet sizes [He et al., 2016], a DenseNet
[Huang et al., 2017], and two MobileNet sizes [Howard et al., 2017]. Table 3.5 presents the re-
sults using the evaluation metrics aforementioned, and also includes each architectures learn-
able and static parameter counts. We find that the ResNetmodels benefit from their larger sizes
in comparison to the smaller MobileNet architectures. The DenseNet, despite significantly less
parameters, achieves competitive performance with the larger ResNet models. For this reason
we decide to utilise the DenseNet-121 architecture as themain classification CNN for upcoming
experiments.
Figure 3.5 presents a visualisation of the DenseNet-121 model which consists of four dense
blocks and three transition blocks. The dense blocks each consist of multiple [convolution, BN,
ReLU] triplets, with outputs of earlier triplets being concatenated together to form the inputs
for succeeding triplets. The transition blocks each consist of a single [BN, ReLU, convolution,
average pool] set of operations, using the average pooling to half the spatial feature dimensions.
Table 3.6 presents the architecture in more detail.
Table 3.7 presents the class-wise results from the DenseNet-121model fromTable 3.5. Included
is the balance of test samples per class, noting that there are very low proportions of SNL and
SFL samples in the test set. It can be seen the worst performing classes are the fault and
let classes ( SFF , SFL , SNF , SNL ), which is likely a result of the visual similarity between the
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CNN Precision Recall F1-Score Accuracy # Parameters

not OTH OTH Learnable Static

ResNet-18 53.6 47.2 49.5 65.2 94.5 11180491 7948
ResNet-34 56.1 48.6 51.3 71.4 94.1 21288651 15372
ResNet-50 53.8 48.5 50.4 68.1 95.8 23523019 45580
ResNet-101 53.0 50.4 51.0 66.7 96.4 42515147 97804
ResNet-152 56.0 57.1 53.6 70.3 95.8 58158795 143884

DenseNet-121 54.0 53.2 52.4 67.2 96.2 6998923 83648
MobileNet3-Small 46.5 46.5 45.8 56.4 95.8 1678379 12112
MobileNet3-Large 50.3 45.4 47.0 59.6 94.9 4214843 24400

Table 3.5: Frame-wise evaluations comparing various CNN classification architectures. For each CNN we present
the average class precision, recall, F1-scores, as well as the accuracy of the non- OTH , and the OTH classes sepa-
rately. We also present the number of learnable and static parameters for each model. Results are mixed, however
comparing ResNet models to the MobileNet models, we can see the ResNets benefit from their extra parameters.
The DenseNet architecture achieves a relatively high F1-score (second best behind ResNet-152), despite having a
significantly smaller model size.
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Figure 3.5: Overview of the DenseNet-121 architecture. DenseNet-121 is made up of four pairs of dense blocks
followed by transition blocks. Each dense block consists of multiple sets of [convolution, BN, ReLU] triplets. The
outputs from each of these triplets are concatenated to the inputs of the succeeding triplets within the block. Such
a design allows for a more direct connection between output and input, minimising problems related to exploding or
vanishing gradients for very deep networks. As to allow for concatenation within the dense blocks the spatial feature
sizes remain constant within the blocks. The transition block, which ismade up of the [BN, ReLU, convolution, average
pool] set of operations, uses its average pooling layer to do a spatial 2× 2 average, halving the feature map size. At
the end of the network a spatially global average pooling is taken, followed by a dense layer and softmax operation
to generate class probabilities.
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Block Repeats Layer Type # Filters Size / Stride Output Size (w,h) Layer #

Convolutional 64 7 × 7 / 2 1 / 2 1
Pooling (max) 3 × 3 / 2 1 / 4
Convolutional 128 1 × 1 / 1 2, ..., 12Dense 6× Convolutional 32 3 × 3 / 1 3, ..., 13
Convolutional 128 1 × 1 / 1 1 / 4 14Transition Pooling (avg) 2 × 2 / 2 1 / 8
Convolutional 128 1 × 1 / 1 15, ..., 37Dense 12× Convolutional 32 3 × 3 / 1 16, ..., 38
Convolutional 256 1 × 1 / 1 1 / 8 39Transition Pooling (avg) 2 × 2 / 2 1 / 16
Convolutional 128 1 × 1 / 1 40, ..., 86Dense 24× Convolutional 32 3 × 3 / 1 41, ..., 87
Convolutional 512 1 × 1 / 1 1 / 16 88Transition Pooling (avg) 2 × 2 / 2 1 / 32
Convolutional 128 1 × 1 / 1 89, ..., 119Dense 16× Convolutional 32 3 × 3 / 1 90, ..., 120
Pooling (avg) Global

Dense C 121
Softmax

Table 3.6: The details of the DenseNet-121 architecture. Here we present a more detailed specification of the
DenseNet-121 architecture. We show the block types, their associated number of repetitions, and the layers within
them (excluding the ReLU and BN for brevity). For each layer we present the number of filters used, the spatial size
and stide of each filter, the output size of the layer in relation to the input image size, and the layer IDs. Note the final
dense layer has C filters corresponding to the number of classes we are looking to classify, in our case C = 11.
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serve fault , let and in classes, as well as the proportionally small unique training examples
for these classes in comparison to the in classes. This is the main factor contributing to
the 0.0 scores of the SNL class in our upcoming experiments (Table 3.7, Table 3.8, Table 3.9
and Table 3.10). By considering Figure 3.6 which presents the confusion matrix showing the
number of labels versus predictions per class, we can see that indeed most serve predictions
are classified as in .

Class Precision Recall F1-Score Accuracy % Test Samples

OTH 96.2 97.8 97.0 96.2 83.5
SFI 61.6 54.6 57.9 2.1
SFF 19.4 16.3 17.7 0.8
SFL 8.0 35.1 13.0 0.1

SNI 72.4 55.7 62.9 2.9
SNF 17.4 28.5 21.6 1.3
SNL 0.0 0.0 0.0 0.1

HFL 79.7 70.4 74.8 2.3
HFR 72.5 80.5 76.3 2.4
HNL 77.8 77.1 77.5 1.8
HNR 88.8 69.5 78.0

67.2

2.4
Table 3.7: Class-wise scores using the DenseNet-121 architecture. Here we show the precision, recall and F1-score
per class using the DenseNet-121 architecture for frame-wise classification. We also show the cross-class accuracy
for the non- OTH and OTH classes separately. Furthermore, the % of test samples that each class has in the full
test set is shown to highlight that some classes ( SFL , SNL ) are very rare.

Optical Flow Utilisation
The use of optical flow (OF) networks and two-streamapproaches have been found to be helpful
in video classification and detection problems [Simonyan and Zisserman, 2014, Feichtenhofer
et al., 2016, Peng and Schmid, 2016], due to OF being an informative representation of motion.
We utilise FlowNet-S [Dosovitskiy et al., 2015] (described back in Section 2.2.3) to extract flow
frames between every consecutive frame of our dataset. We input frames full resolution (720×
1280×3) into the FlowNet-S, resulting in output flow images of 704×1280×3. To align thesewith
our RGB frames we crop the RGB inputs to 704 × 1280 × 3. We experiment with three different
architectures:

1. Concatenating the RGB and OF frames along their channels dimension (making a 704 ×
1280 × 6 input frame) before using the DenseNet-121 architecture without ImageNet pre-
training for classification;

2. Only using the OF frames as input into the DenseNet-121 architecture, again without Ima-
geNet pre-training; and

3. Inputting the RGB and OF frames into separate streams, with the RGB frames passed
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Prediction
O SFI SFF SFL SNI SNF SNL HFL HFR HNL HNR

La
be

l

O 138259 863 424 27 1301 256 3 701 400 494 957
SFI 433 2276 891 7 0 1 0 0 0 51 34
SFF 313 796 279 3 0 0 0 0 0 22 28
SFL 14 151 51 20 0 0 0 0 0 8 6
SNI 749 1 0 0 3673 574 3 42 32 0 0
SNF 424 0 0 0 1359 378 0 0 8 0 0
SNL 69 0 0 0 74 28 0 3 0 0 0
HFL 334 6 6 0 69 27 1 3203 209 44 121
HFR 365 10 0 0 106 55 0 434 3036 25 158
HNL 162 51 38 0 1 1 0 84 39 2466 326
HNR 194 11 25 0 15 8 0 80 47 87 3717

Figure 3.6: Confusionmatrix of class-wise labels versus predictions from the DenseNet-121 architecture. For each
frame in the test set, we add it to the count in the particular cell based on what the frame’s label was and what class
it was predicted as. For best case we would have a diagonal matrix with the class label counts along the diagonal.
Cells are shaded based on the proportion of predictions per label, with darkermeaningmore predictions. To interpret
this matrix let’s consider the SFL class, specifically looking at the row corresponding to the SFL label. We can
see that SFL frames weremostly predicted as SFI frames (151) or SFF frames (51) compared to being correctly
predicted as SFL (20). The effect is similar for the other let class and also the fault classes, with themmost
predicted as the more common in class. The hit classes on the other-hand are relatively well predicted with
the majority of counts aligning between the labels and predictions.

through the DenseNet-121 architecture but pre-trained on ImageNet, while the OF frames
are passed through a separate DenseNet-121 which isn’t pre-trained, with the output fea-
tures (after the global average pooling) from each stream being concatenated before the
dense classification layer.

Table 3.8 presents the class-wise F1-scores for the three methods incorporating OF. It can be
seen that utilising a two-stream approach results in significant improvements for most classes.
This highlights the importance of low-level motion cues for this particular domain, where deter-
mining actions based on particular movements is important. If we consider either of the other
two approaches, we see decreases in performance. For the six channel input this is likely due
to the RGB part of the frame not having access to the ImageNet pre-training, whereas for the
OF only model the OF on its own is likely an inferior representation compared to RGB.

Temporal Pooling
Performing frame-wise classification independently per-frame disregards any temporal infor-
mation, resulting in temporally subsequent frames often being classified differently. It can be
beneficial to smooth the per frame classifications to make larger event chunks. The simplest
way to smooth over the temporal noise is to use pooling over a sliding window. We investigate
the performance of both mean and max pooling operations for varying window sizes. We don’t
retrain this network but instead just temporally pool on the frame-wise CNN feature outputs
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Flow Utilisation Class-wise F1-Score

OTH SFI SFF SFL SNI SNF SNL HFL HFR HNL HNR AVG

Six Channel Input 95.7 47.5 11.0 10.8 60.3 16.9 0.0 74.6 77.7 70.1 76.1 49.1
Only Flow 94.0 41.2 5.8 7.2 52.7 10.4 0.0 60.3 61.4 58.8 71.7 42.1

Two-Stream Nets 97.2 67.4 14.6 13.4 67.0 19.4 0.0 81.8 83.5 79.0 86.2 55.4

None 97.0 57.9 17.7 13.0 62.9 21.6 0.0 74.8 76.3 77.5 78.0 52.4
Table 3.8: Experimental results of utilising optical flow inputs for frame-wise classification. For each of the OF
utilisation methods we present the class-wise F1-scores, as well as an average score across the classes. We find
decreased performance for the two single-stream approaches, however increased performance for the two-stream
approach.

(post global average pooling) inputting the temporally pooled feature into the dense classifica-
tion layer.
Table 3.9 presents the results, showing some improvement for both max and mean pooling
depending on the particular window size. A window of 30 frames appears to be more beneficial
for the serve classes, while a shorter window of 9-15 frames is more suitable for hit classes.
When we consider the average length of these events, serves being an average of 67 frames
long and hits 29, it makes sense that pooling windows with similar temporal ratios with the
specific events would be optimal, as any longer would consider too much past or future event
information concealing the desired event. This is why a large pooling window of 120 frames
has negative effects, especially with max pooling where more confident class responses can
overpower the central class of interest. Mean pooling appears mildly more beneficial than max
pooling, suggesting voting on what a frames class should be, based on those around it, is more
effective than taking the highest confidence frame. Potential extensions to this could be using
a weighted window with more weight given to the central frames, or other dynamic window
selection methods, but this is left for future work.

CNN-RNN
While pooling removes much of the temporal noise, it is a static operation that is highly de-
pendent on the window size and ratio to individual event sizes. A more dynamic approach is
to utilise a Recurrent Neural Network (RNN) to consider information throughout the window
dynamically. We experiment with using a bi-directional Gated Recurrent Unit (GRU) RNN to en-
code the CNN output features with temporally contextual information, prior to a temporal max
pooling operation.
Figure 3.7 presents an overview of the CNN-RNN pipeline with a window size of three. The
DenseNet features (again taken after the global average pooling layer) from each time-step
are passed into the GRU RNN, which has a hidden dimension of 128. The RNN then generates
feature encodings for each time-step in the window, which are conditioned on the other frame
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Type Frames Class-wise F1-Score

OTH SFI SFF SFL SNI SNF SNL HFL HFR HNL HNR AVG

3 97.2 60.4 16.9 13.7 63.1 22.0 0.0 76.5 76.4 79.3 80.0 53.2
9 97.2 62.1 15.6 15.3 63.3 22.1 0.0 77.6 75.5 80.8 81.6 53.7
15 97.1 62.2 14.9 13.1 63.0 23.4 0.0 76.0 69.8 79.4 81.0 52.7
30 96.2 60.2 12.7 6.6 60.2 26.0 0.0 61.4 41.2 65.6 74.4 45.9

max

120 91.6 3.1 0.0 0.0 11.6 3.2 0.0 0.7 0.0 2.0 18.7 11.9
3 97.1 59.0 17.6 13.5 63.5 21.6 0.0 75.8 77.4 79.0 79.2 53.1
9 97.3 60.9 18.9 14.6 64.7 21.3 0.0 77.0 79.0 81.0 80.4 54.1
15 97.5 62.0 19.6 14.1 65.6 21.6 0.0 77.1 78.9 81.0 80.3 54.3
30 97.5 63.9 20.8 13.4 65.9 23.3 0.0 74.6 73.7 77.4 77.7 53.5

mean

120 94.7 51.3 10.2 0.0 42.7 5.9 0.0 21.9 7.3 10.3 36.6 25.5
baseline 1 97.0 57.9 17.7 13.0 62.9 21.6 0.0 74.8 76.3 77.5 78.0 52.4

Table 3.9: Experimental results of temporal pooling for smoothing frame-wise classifications. Here we present
the class-wise F1-scores, as well as an average score across the classes, for the pooling techniques across varying
sliding window sizes. Results are mixed, however we find that for the serve classes which are temporally longer,
a pooling window of 30 is most beneficial, while for the shorter hit classes a shorter window achieves the best
results.

features in the window. The features are then temporally max pooled across the window to get
the feature for a single time-step which is input into the dense classification layer.
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Figure 3.7: A visual representation of the CNN-RNN temporal encoding architecture. Assuming a window of size
3, each frame of the window is passed through the DenseNet-121, with the features extracted from after the global
average pooling layer. These features are then passed as input into a bi-directional GRU RNN which encodes each
feature with information from other time-steps within the window. The output features from the RNN at each time-
step are then temporally max-pooled prior to being classified with the dense layer from the DenseNet.

Table 3.10 presents the results for varying window sizes. It can be seen that no matter the
window size there is improvement using the CNN-RNN for the OTH class. Considering the serve
and hit classes, it can be seen that there are still effects of the particular event lengths, with
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window sizes of 15 and 30 being preferable for the hit and serve events respectively. Notably,
the fault events (classes SFF and SNF ) see significant F1-score increases with the high 120
window length. This ismost likely a result of it utilising information directly after the serve action
in the video, where if it’s a fault no rally takes place and another serve is generally taken. This is
an example of how in practice specific models might be most beneficial for different types of
events, with consideration of the particular fine-grained problem at hand.

Frames Class-wise F1-Score

OTH SFI SFF SFL SNI SNF SNL HFL HFR HNL HNR AVG

3 97.1 60.5 12.6 8.9 62.0 17.3 0.0 78.8 80.1 78.2 82.8 52.6
15 97.3 62.6 12.7 12.3 64.0 21.3 0.0 81.2 82.8 81.2 86.0 54.7
30 97.6 65.0 13.4 13.5 66.2 27.9 0.0 80.6 83.0 80.3 84.8 55.7
120 97.1 63.2 26.2 0.0 66.0 39.4 0.0 60.5 61.2 63.4 64.6 49.2

baseline 97.0 57.9 17.7 13.0 62.9 21.6 0.0 74.8 76.3 77.5 78.0 52.4
Table 3.10: Experimental results of the CNN-RNN temporal encoding architecture. Once again we present the
class-wise F1-scores for various window sizes. Similarly to the temporally pooling results we find the serve events
benefit from a larger window size (30 or even 120), while the shorter hit events benefit from a smaller window
size (15). The fault classes specifically benefit from a large window size of 120 frames, likely due to the fact that
play stops directly after a fault, so using the frames post the serve action is providing a better cue of whether a serve
is a fault or in.

3.3.2 Commentary Generation
The focus on a fine-grained problem revolves around the idea of applying these visual under-
standing models to real world applications. Being able to detect particular tennis events tem-
porally is a very useful tool for statistics, however it’s interesting to understand how well these
detections can be used for something more sophisticated. In this sub-section we investigate
the ability of basic video captioning models to generate accurate captions for tennis commen-
tary generation.

Data Processing
There are some key differences between how we have processed input and output data for the
event detection model and what is necessary for caption generation. For event detection we
input either a single or a window of frames, to generate a single class label for a single frame.
For captioning however, the input is a variable number of frames representing a single point,
and the output is a single sentence with variable number of words.
As neural networks are only able to take a fixed sized input and generate a fixed sized output, for
varying length sequences the use of padding is requiredwhen training and running themodel (as
also done in Section 1.1.3). As the point lengths are highly variable from less that 200 frames to
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over 900, we also utilise the practice of bucketing during training. Bucketing involves grouping
inputs of similar lengths together and passing them through the model together during training
ie. in a single batch there will only ever be samples from one group or bucket. We partition our
inputs (I) and outputs (O) into five different lengths — (I: 230, O: 10), (I: 402, O: 16), (I: 574, O: 22),
(I: 746, O: 28), (I: 918, O: 34), padding intermediate samples up to these lengths.

Word Embeddings
A standard practice when using words as input is to embed them into a shared vector space,
which when learnt, places similarly contextual words in similar areas of the embedding space.
We embed each of the 250words in our extended vocabulary into a 100-dimensional embedding
space which is learnt prior to training the captioning model. To learn the word embeddings we
utilise a Skip-gram model [Mikolov et al., 2013] which looks to capture syntactic and semantic
word relationships. Figure 3.8 presents a visualisation of the learnt space, lowered from 100 to
2 dimensions using t-SNE (t-distributed stochastic neighbor embedding), showing how even in
two dimensions many similar words are spaced nearby one another. For example, as np and
fp are used in similar contexts they are spaced next to each other, the same can be seen for
rs and ls .
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Figure 3.8: The word embeddings for the extended tennis vocabulary. This shows a visual representation of the
100-dimensional word embedding space collapsed into 2-dimensions using t-SNE. If we focus on the top left corner
we can see that np and fp are grouped together as well as rs and ls . An interactive 3-dimensional t-SNE
embedding result can be found on the project webpage — hayden.faulkner.codes/tennis.
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Captioning Model
We utilise a sequence-to-sequence RNN [Wu et al., 2016] approach for generating commentary
descriptions for each point. The model, visually represented in Figure 3.9, consists of an en-
coder bi-directional GRU RNN that takes the DenseNet CNN feature outputs, passing out an
encoded feature at each time-step. Due to computational hardware restrictions the features
from the DenseNet CNN are pre-extracted, and loaded in as inputs to the RNN encoder. A sec-
ond GRU RNN then acts as a decoder to generate words one at a time, based on the previously
generated word and the attention weighted encoder time-step features. The attention is a tem-
poral additive scheme [Bahdanau et al., 2015] as seen in Section 1.2.2.

word

CNN Encoder RNN

GRU GRU

GRU GRU GRU

attention

word

Encoder CNN

CNN CNN CNN

Caption Generation RNN

embed nn − 1

Figure 3.9: A visual representation of the CNN-RNN captioning pipeline. Given a set of frames for a single point

event, we pass each frame through an encoder CNN, in our case this is our DenseNet-121 model pre-trained on the
tennis event classification problem. The output features from the encoder CNN are then passed into a bi-directional
GRU RNN to encode each of the temporal features with context from other time-steps in the point (as like was
done in Section 3.3.1). These temporally encoded features are then individually weighted with a temporal attention
mechanism conditioned on the current caption generator state. A single-time-stepped temporally attended feature
is then concatenated with the previous generated word embedding and input through a GRU unit in the caption
generation RNN. The caption generation RNN then generates probability distributions for the nth word.

Evaluation
Weevaluate the generated captionswith the standard captioningmetrics BLEU,METEOR, ROUGE
and CIDEr (which are described in Section 1.1.5). Table 3.11 presents the metric scores across
the test set for varying hidden sizes of the RNN. The results show that using a larger hidden
size of 256 is more beneficial than smaller sizes of 128 and 64.
We also investigate the impact of using a CNN which is not pre-trained on the tennis events
data, but is rather fine-tuned from ImageNet pre-training during the caption generation model
training. This fully end-to-end training gives potential for the CNN to learn useful weights for
aiding directly in the captioning. Conversely, not having the network pre-trained on the fine-
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Hidden Size B1 B2 B3 B4 MT RG Cr

64 42.0 27.4 19.4 14.0 20.5 35.6 73.7
128 44.9 28.1 19.2 13.9 22.2 37.5 73.1
256 46.7 30.7 22.1 16.4 22.6 43.9 96.4

Table 3.11: Experimental results of the commentary caption generation with standard caption metrics. This table
presents the captioning metric scores for BLEU1-4 (B1, B2, B3, B4), METEOR (MT), ROUGE-L (RG) and CIDEr (Cr) for
varying hidden size values for the RNN. Results show that the larger size of 256 is most effective. It is likely that
sizes larger than 256 would further improve performance, however at the time of writing such network sizes were
not computationally feasible.

grained tennis event detection data may result in a lack of domain knowledge for the tennis
task. Due to computing resource constraints we only utilise a ResNet-18 CNN [He et al., 2016]
(in place of the DenseNet-121 model), and sample only every 25th frame from the point input
clip. We expect that the ResNet-18 having similar event classification accuracy as the DenseNet-
121 model (as shown in Table 3.5), that results would be fairly similar as if we were to utilise
features extracted from a pre-trained ResNet-18.
Table 3.12 presents the results for the end-to-end model and shows mixed results for the vary-
ing hidden sizes and relatively similar results to those in Table 3.11. Despite the similar metric
scores, visual inspection shows that these models completely fail, only being able to generate
a handful of different caption outputs. For example, the 128 dimensional model (best in this
case) only produces one of the three following captions across the entire test set — ‘double
fault‘, ‘good serve in the middle np returns a ls return short rally np hits a rs winner down the line‘,
‘cannon serve is an ace‘. This highlights two important points — firstly, that the captioning mod-
els are reliant on the determinative abilities of a specifically trained tennis event detector, and
secondly that the standard metrics don’t present a good representation of performance for this
particular type of data.

Hidden Size B.1 B.2 B.3 B.4 M. R. C.

64 43.2 28.8 21.0 15.8 20.8 35.7 78.1
128 42.3 33.6 25.2 19.7 21.8 33.8 84.8

256 42.0 25.7 17.5 12.6 20.3 35.2 61.6
Table 3.12: Experimental results of the commentary caption generation with an end-to-end architecture. This table
again presents the captioning metric scores for BLEU1-4 (B1, B2, B3, B4), METEOR (MT), ROUGE-L (RG) and CIDEr
(Cr) for varying hidden size values for the RNN. We find in this case the middle hidden size (128) performs best,
however it still doesn’t achieve the highest score of the tennis pre-trained DenseNet-121 model (84.8 versus 96.4).

Considering the aforementioned second point, these metrics may provide numerical baselines
for future models, however they don’t provide great insight to how correct the generated com-
mentaries actually are. Therefore, in Table 3.13, we also randomly select and compare ground
truth (GT) and predicted (PR) captions from the best performing model (DenseNet-121 with hid-
den size of 256).
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Caption Ground Truths (GT) and Predictions (PR)

GT ‘high kick serve fp returns a ls return short rally fp cross-court rs lands out-side the court‘
01

PR ‘fp serves a good one np delivers a rs return fp sends a ls out of the court‘
GT ‘good serve aimed at t np only reaches to it hitting the return long‘

02

PR ‘fp arrows a good serve at t np is unable to return it‘
GT ‘good serve in the middle np returns a quick ls return short rally np cross-court fails to clear the net in the middle‘

03

PR ‘good serve in the middle np crafts a ls return fp cross-court ls fails to land inside the court‘
GT ‘fp serves a high kick serve np returns a quick ls return brief rally np rs catches the net‘

04

PR ‘fine serve placed out wide np returns a ls return short rally fp strokes a rs cross-court winner‘
GT ‘quick serve np crafts a rs return fp goes for a ls down the line but catches the net‘

05

PR ‘fine serve np shoots a rs return winner‘
GT ‘double fault‘

06

PR ‘double fault‘
GT ‘good serve np generates a rs return fp then returns one into the net‘

07

PR ‘good serve in the middle np returns a ls return fp cross-court rs catches the net‘
GT ‘fp serves a high kick serve np delivers a high ls return fp produces a ls winner coming to net‘

08

PR ‘fp serves a good one np returns a quick rs return fp struggles to keep a cross-court rs in a rally‘
GT ‘quick serve np returns a quick rs return fp ls is unable to clear the net‘

09

PR ‘nice serve by fp np faces difficulty in returning it‘
GT ‘fp aims a high kick serve np returns a ls return fp hits a rs cross-court winner‘

10

PR ‘fp serves a good one np returns a quick rs return fp struggles to keep a cross-court rs in a rally‘
GT ‘good serve in the middle np crafts a ls return short rally np hits a rs cross-court but it fails to clear the net‘

11

PR ‘good serve in the middle np crafts a ls return fp cross-court ls fails to land inside the court‘
GT ‘fp hits a bodyline serve np has no answer to it‘

12

PR ‘fp arrows a good serve at t np is unable to return it‘
GT ‘double fault‘

13

PR ‘good serve aimed at t np only reaches to it‘
GT ‘double fault‘

14

PR ‘double fault‘
GT ‘fp aims a high kick serve np crafts a ls return good rally fp sends a rs cross-court out of the court‘

15

PR ‘good serve in the middle np crafts a ls return fp cross-court ls fails to land inside the court‘
GT ‘fp arrows a bodyline serve np struggles with it‘

16

PR ‘fp arrows a good serve at t np is unable to return it‘
Table 3.13: Tennis dataset caption prediction examples. Some randomly sampled examples of ground truth (GT)
captions and their predictions (PR). Underlined parts of the captions present the errors and misalignments.
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Examining the predicted captions, the main failure cases are the incorrect uses of ‘np‘ and ‘fp‘
or ‘ls‘ and ‘rs‘ which may be a result of these words being placed close together in the embed-
ding space. In these cases, where words are often used in similar parts of captions but mean
completely opposite ideas, relying too heavily on the word embeddings may incorrectly flip cru-
cial concepts. Other errors are related to generating text suggesting the ball lands out rather
than hitting the net ( 03 , 11 ), or a serve is an ace rather than a double fault ( 13 ). Such errors
are bound to occur as deciphering the differences between them require specifc knowledge
of ball bound position which isn’t explicitly captured in our dataset. Furthermore, in some cir-
cumstances ( 12 , 16 ), captions are repeated for relatively similar samples, despite there being
other ways of describing it, suggesting a lack of generation diversity ability.
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3.4 Summary
In this chapter we have shifted our focus from generalised video understanding to understand-
ing and interpretation within a specific domain. Focusing on a fine-grained problem allows us
to get a sense of the abilities and usefulness of modern video classification, detection and cap-
tioning models for real world problems. For numerous different reasons mentioned at the start
of the chapter, including because sports analysis is a growing area of interest in the commercial
sector, we decided to focus on the particular sport of tennis.
As data underpins all machine learning models, we introduced a novel Tennis dataset that was
manually and thoroughly annotated with temporal events (Section 3.2.1) and caption descrip-
tions (Section 3.2.2). To the best of our knowledge this was the first fine-grained dataset to
include event and caption annotations in a single dataset. The annotation tool we implemented
is versatile and general purpose, allowing it to be utilised for other temporal based event annota-
tion tasks, and is made available for free online (see Section 3.2.1). The tennis dataset consists
of over 4000 individual events, across 5 full match videos obtained from YouTube. Furthermore
for the 746 individual points, a descriptive commentary style annotation was added, as well as
a further 10817 non-grounded captions for improved language modelling. Although our dataset
is relatively small in comparison to other modern datasets, it is manually annotated by experts
and hence is much more accurate and free of noisy annotations. This property makes it useful
for evaluating models that attempt to learn from small amounts of noise-free data.
Using our dataset we examined the abilities of a number of standard modern temporal event
detection and video captioning architectures for the tasks of serve and hit detection, and point
commentary generation. After experimenting with a set of CNN based frame classifiers (Ta-
ble 3.5) we found that the DenseNet-121 architecture striked a good balance between perfor-
mance and efficiency. We uncovered thatmuch of themisclassification that occuredwas based
around visually similar event types, such as the various types of serve events — in , fault and
let (Figure 3.6). Furthermore, we also investigated the impact of utilising optical flow inputs,
finding a performance boost for many of the event classes utilising a two-stream RGB and OF
model design (Table 3.8).
In order to accommodate for, and help overcome frame-wise classification errors, a couple
of temporal modeling schemes were incorporated and tested. Firstly, max and mean pooling
across varying temporal lengths had mixed results, with small improvements over the frame-
wise baseline for temporal lengths similar to event lengths (Table 3.9). Secondly, a GRU RNN
followed by max pooling showed a similar trend — however with slightly more improvement
due to the dynamic nature of the RNN model enriching the features prior to temproral pooling
(Table 3.10).
Finally, we utilised a sequence-to-sequence RNN based caption generation model for gener-
ating commentary style captions for each point event. As a pre-processing step, the tennis
vocabulary, consisting of 250 words, was embedded into a 100 dimensional space with a Skip-
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gram embedding model (Section 3.3.2). Utilising the DenseNet CNN, which was pre-trained on
the tennis event data, as a feature extractor we were able to generate relatively reliable cap-
tions. Some errors arose from nearby word embeddings getting mixed up, such as np and fp

(Table 3.13). We point out that such errors are significant for the specific fine-grained tennis
case, as knowing which player is attributed to which actions in the captions is key to success-
ful captioning in this case. Enforcing distances between such words or other means of better
determining such binary differences is likely needed, we leave this for future study. Further-
more, we also investigated the use of a smaller ResNet model for end-to-end learning using
just the captions to jointly fine-tune the visual CNN from ImageNet pre-training. We found that
this model, despite similar scores with the standard captioning metrics, was unable to gener-
ate useful captions (Table 3.12). This highlights the necessity for a specific tennis trained event
detection model for the captioning model to rely on, especially when the amount of data is low,
which is often the case with fine-grained datasets requiring more expert annotation.
Overall we believe that our dataset and experiments are a good start for research in one example
domain of where machine learning techniques could have a direct impact on a real world ap-
plications. In comparison to other datasets, both recent fine-grained ones and more-so general
ones, ours is relatively small — limited by the necessity to perform manual annotation. Future
studies could focus on extending our dataset to be larger, or to include player and ball location
annotations. In relation to the event detection and captioning models, these architectures are
relatively standard and simplified, acting as a baseline for future works. There is plenty of scope
to design much more tailored solutions to both the shot detection and commentary generation
pipelines for the sport of tennis.
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Summary & Future Directions
This thesis has taken a broad look at generalised and domain specific video understanding with
standardised neural network based machine learning techniques. Chapter 1 focused on video
captioning as a means of determining understanding, Chapter 2 examined object detection in
video, and Chapter 3 considers event detection and captioning for a domain specific dataset.
WithChapter 1we introduced the video captioning problemanddiscussed the varying approaches
used to tackle the problem. We investigated the abilities of the more recently introduced Trans-
former Networks for caption generation in-place of the older LSTM Recurrent Neural Networks,
finding for the two main captioning datasets MSVD and MSR-VTT that the TN is not as effec-
tive for this task. We believe that with more data and more insightful input features that the
TN may become more effective as they are more reliant on the visual features compared to
the RNN which is more focused on the current captioning state. After examining the training
procedures we found that overfitting model predictions significantly outperform human anno-
tators. Following this we presented a discussion on whats an appropriate means of determin-
ing human performance in relation to the current metrics. Furthermore, with a more thorough
analysis of human versus model predicted captions, we found that the main challenge for cap-
tioning models with the current metrics is correctly identifying and generating specific nouns
and verbs in the output caption. Experiments investigating the effect of different input features
showed that the most crucial input features were salient spatial region features, which often
represent specific objects, further highlighting the importance of providing good support for
specific concept recognition. The natural diversity of language and broad range of concepts
in the current datasets results in most concepts appearing rarely, prompting very few training
examples for most concepts, something which hinders these data-hungry machine learning
models. We believe that improving the identification of specific concepts, with a focus on han-
dling concept rarity, with support from specific spatio-temporally localised visual features from
exterior broad-class detectors is likely a promising research direction.
Chapter 2 naturally follows on from conclusions drawn in the first chapter, and considered the
current methodologies for the problem of object detection in video. As current video based ob-
ject detection models are all based on, and underpinned by, image based detection frameworks
we firstly discussed the key frameworks and datasets utilised for object detection in images. We
then considered three of these architectures to base our extensions on, deciding on the YOLO
network due to its beneficial efficiency and performance combination. We investigated the use
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of the YOLO framework on the video object detection dataset ImageNet-VID in a framewise ca-
pacity. We found that pre-training on any of the image based datasets is beneficial, and that
greater intra-class diversity in the training data was favourable for a more generalised and suc-
cessful detector. Looking to overcome challenges with noisy framewise results, we sought to
modify the YOLO architecture as to allow it to handle temporal chunks of frames. We performed
experimental analysis over a broad range of standardised modifications, finding promise in a
number of the techniques for overcoming errornous framewise detections. Particularly our hi-
erarchical 3D was most beneficial with minimal addition of parameters to the unmodified YOLO
model. Most notably, we found that we could use temporal convolutions to improve features
at various stages of the pre-trained DarkNet backbone, despite it being frozen. Even with the
utilisation of the highly efficient YOLO detector the architectures were still incredibly compu-
tationally expensive and cumbersome to train and evaluate, with some taking months to train
on ImageNet-VID. We consider efficiency one of the biggest, if not the biggest, challenge fac-
ing video based algorithms — both in terms of their uptake for real-world applications, and in
terms of their research accessibility. Work focused on the efficiency of use and training of
such models is vital for growth in the video object detection problem domain. Concluding the
second chapter we also highlighted the lack of class diversity in the main video based detec-
tion datasets, and suggested that they would be unsuitable for captioning for this reason. As
a step towards improving class diversity we constructed a hierarchical class tree which links
the ImageNet-VID dataset with the three main image based detection datasets. Although this
improved the coverage of nouns seen in the video captioning datasets MSVD andMSR-VTT, we
found training on such a large dataset to be excessively lengthy, and ultimately non-beneficial to
classification accuracy. Looking forward we suggest different approaches for improving class
diversity, with focus on model improvements rather than increased data. We believe learning
more from less is the most interesting direction of further research.
In Chapter 3 we shifted our focus to interpreting video from the fine-grained domain of tennis,
looking to determine the applicability and fruition of somemodernmachine learning based tech-
niques on such a specialised domain. We focused on two problems - serve and hit detection,
which can be considered a temporal event classification and detection problem, and commen-
tary generation, which can be considered a video captioning problem. We introduced a new
tennis dataset which is manually annotated with temporally dense and contextually hierarchi-
cal events, each having specific individual attributes, and a set of commentary style captions.
Limited by time and human resources, our dataset is relatively small compared to other fine-
grained and general video datasets, which could be a performance limitation for the standard
data-hungry machine learning models. However, despite its size its manual expert annotation
means there is practically no noise or errors in the annotations, which is often the case for larger
datasets. This makes our dataset useful for problems where learning from small amounts of
error-free data is key. We made our dataset, along with the features and original videos, pub-
licly available. Utilising the dataset, we explored a number of standardised models that have
seen success for generalised event detection and video captioning, investigating performance
when trained on our fine-grained tennis data. Despite the simplicity and lack of specialisation to
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the tennis domain, we found that both the event detection pipelines and captioning models we
examined showed promise for adapting to the tennis domain. These methods were intended
as baselines for future models, which may consider the specific domain in their design and
implementation.
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A Appendices
A About the Appendices
These appendices are split into the following sections:

• About the Appendices — You are here.
• Background—Covers general theoretical background knowledge to aid in the understand-
ing of concepts, models, and processes.

• Code — Covers the implementation details about the software utilised within and written
for this thesis.

• Datasets—Covers information about the datasets mentioned and used within this thesis.
• Extended Tables — Includes some more extensive tables that were summarised in the
main thesis text.
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B Background
This section provides some further background information, aimed to help a novice understand
the methods used in the main thesis body. Herein concepts such as deep learning and neural
networks are introduced.

B.1 Deep Learning
In the past few years the term "deep learning" has not only become a buzz-word within the field
of computer science, but also in broader society, as more andmore of such technologies affect
people’s day-to-day lives. Deep learning is a categorisation of a particular type of method which
is a sub-category of machine learning (ML) methods, which also include things like decision
tree learning, reinforcement learning, clustering, bayesian networks, etc. Deep learning meth-
ods focus on learning data representations (learning) via a set of many sequential operations
(deeply). We direct readers who want to know more about deep learning to the Dive into Deep
Learning book [Zhang et al., 2019a] (d2l.ai), which covers all of the current core techniques and
principles, some of which we will touch upon in this appendix section.
When we say learning, we are referring to learning a model’s f parameters such that the model
can transform data from one form to another: y = f(x). For example, for image classification
the input x might be an image of a cat and the desired output y is the label cat . For neural
networks and deep learning we use a data-driven learning strategy, where the model learns
by processing many example samples. Generally, with each input example, we also know the
desired output in some form of label or annotation (x, y). When we teach the network with
data samples where we know the label it’s called supervised learning. We can also have some
but not all labels — semi-supervised learning, or no labels — unsupervised learning. This data
driven learning strategy works very effectively, and is the reason why problem focused datasets
are required. A dataset is a set of these example samples for a particular problem. Within the
community there are a number of standard datasets commonly used — see the ones of interest
in this work in Appendix D. Many datasets split their samples into three exclusive groups, a
training split, and validation split and a testing split.
The process of passing in all the samples to teach the model is called training, or the training
phase. We also have a testing phase to determine how good our models are. Neural networks
are quite good at learning about the data they are given in the training phase, and so it’s impor-
tant that we test with data that isn’t seen during the training. This allows us to see how well
our model actually performs on, or generalises to, new and unseen input data. With this idea
in mind, it’s also important to have a validation phase during the training phase. The valida-
tion phase is like a mini-testing phase to ensure the model isn’t over-fitting to the training data.
Over-fitting is when the model gets very proficient at transforming all of the training samples,
but poor on new unseen samples. So during training we give the model a set of data not used in
the training dataset and perform a mini-evaluation to ensure it can still perform well on unseen
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data. The validation data is separate from the normal testing data, since we chose our best per-
forming models based on their validation accuracy, which would provide a bias if the validation
data was the testing data.
The training process involves taking an example (x, y) from the training set, predicting with the
current model ŷ = f(x), and comparing it to the desired output y. We have some measure,
called the loss, of howwrong our prediction ŷ is compared to the desired output y. Then using a
method called backpropogation, the loss is used to slightly adjust the model’s parameters in a
way that lowers this loss for this example. This process is repeated many many times for every
example in the training set, making one epoch. Over time, with many epochs, if the model is
successfully learning, the loss will decrease and the model will better fit the both the training
and validation data. Figure A.1 presents a visualisation of the training, validation and evaluation
processes as well as more general extended deep learning pipeline.
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Figure A.1: The training, validation and evaluation processes with the full deep learning pipeline. Starting from the
top, the training process consists of taking a training sample x, passing it through the model to make a prediction ŷ,
using the prediction and ground truth y to calculate the loss, which is then used by the backpropagation algorithm
to update the model’s f parameters. The validation and evaluation process is similar, passing in a validation or test
sample to the model to make a prediction, which is then compared to the ground truth to determine how accurate
the model is. Considering the full pipeline (at the bottom), it’s necessary to perform some data acquisition, including
potentially labelling the data, then some data cleaning is performed before the data is split into the training, valida-
tion and testing splits. Each of these splits are then used to train and test the model using the processes previously
described. Training and validation are iteratively repeating processes where the validation is performed during train-
ing, generally at the end of an epoch. Based on the validation outcomes, at some point the training will cease, and
the model can be evaluated on the test data before being deployed for real world use.
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B.2 Artificial Neural Networks
The basis and ideas for Artificial Neural Network (ANN) models were introduced over half a
century ago in works [McCulloch and Pitts, 1943] (introduced threshold logic) and [Hebb, 1961]
(introduced Hebbian learning). ANNs are often considered as a computational model that is
inspired by, and mimics the behaviour of, the human brain, a biological neural network.
At the core of both artificial and biological networks is the neuron — also termed node or unit
for ANNs. Neurons take inputs from either other neurons or external sources, and calculate an
output based on the inputs. Figure A.2 presents the artificial neuron design alongside that of
the biological neuron.
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Figure A.2: The biological neuron, its artificial counterpart, and the mathematical representation. The biological
neuron receives input signals via its dendrites, the size of the dendrites determine the strength of each input signal.
These input signals are accumulated in the nucleus and if a threshold is reached, the neuron pulses a signal down
its axon to its axon terminals that join to dendrites of other neurons. The artificial neuron works in a similar way,
with inputs x = [x1, ..., xn] being the input signals (each is just a number). The weights w = [w1, ..., wn] act like
the dendrite size, weighting each the input signals (again each is just a number, and there is one weight per input).
The inputs are multiplied by their weights before being accumulated (by summing). A bias b is added to the result
and acts like the threshold that the sum needs to reach to generate an output signal (again, the bias is also just a
number). This result is then passed through an activation function σ, which determines the exact output value y,
introducing non-linearity to the neuron.

Activation functions, also called non-linearities, are an integral part of neural networks. Without
non-linear functions the depth of amodel wouldn’t improve its approximation power, since linear
functions sequentially applied just result in a linear function. Some of the most commonly used
activation functions are sigmoid, tanh, ReLU and Leaky-ReLU (Figure A.3).
So far we have covered the workings of a single neuron, but their real power comes when they
are joined together into a network or neurons. Figure A.4 presents a three layer fully connected
(or dense) network, orMulti-Layer Perceptron (MLP). It’s fully connected because the output of
every neuron is passed as input to every neuron in the following layer.
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Figure A.3: Activation function graphs and their formal definitions. The sigmoid function is often used for generat-
ing probability distributions for multiple class problems. The tanh function is commonly utilised in Recurrent Neural
Networks. The ReLU function is the most common activation function utilised between layers, with L-ReLU being a
more recent version.
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Figure A.4: A simple 3-layer artificial neural network— visually andmathematically. The blue boxes are the neurons
and the grey boxes are inputs and outputs for each neuron. The outputs of the layers prior to the final layer, are called
the model’s hidden states h. Each layer has multiple neurons, each with their own weight vectors, and bias scalars
— so for each layer there is a weight matrix Wl and biases vector bl. These weight matrices and bias vectors are
what are learned by the model in the training process.
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B.3 Convolutional Neural Networks
Convolutional Neural Network (CNN) models, specifically 2D CNNs, are the neural networks
widely adopted to process image data. They were introduced in the form used today in [LeCun
et al., 1989] for processing handwritten digits. Due to the nature of image data generally contain-
ing regular recurring patterns within spatially localised areas, spatially localised convolutional
operations are useful for interpreting images.
A convolutional operation compares part of an input (in our case an image) to a filter made
up of kernels. Filters were originally hand crafted by researchers and engineers, purposely de-
signed for identifying specific patterns to solve specific problems — for example filters to pick
up corners and edges. With the aid of data driven deep learning methods, in CNNs, the filters
are no longer hand crafted but rather learnt from the data. Figure A.5 presents a convolution
operation on a three channel input image of size 6× 6, as well as a more general example with
more input channels and filters, resulting in a deeper output feature volume.
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Figure A.5: A visual representation of the 2D convolutional operation. On the left we present an in-depth look at the
2Dconvolutional operation on a 6×6×3 input volume. For each of the 3 input channels there is a corresponding kernel
(in this case a 3×3 kernel). The kernels are each slid across their corresponding input channels with the overlapping
pixels beingmultiplied together and then summed to generate the output values per pixel position per output channel.
The individual output channels are then summed to produce the final output feature map of size 4 × 4 × 1. On the
right we present a more general case where aKS ×KS ×KC filter is applied to an entire IS × IS × IC input feature
volume. Although we only show one, in this case there would be many F filters that would each determine a single
channel in the OS ×OS ×OC output volume.
Mathematically, the 2D convolutional operation for a single output volume channel pixel (at
position (x, y)) can be defined as:
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where σ is the activation function, b is the bias, m indexes over the channels of the kernel KC,
wp,q,m is the value at position (p, q,m) of the kernel of sizeKS×KS×KC, and i is a value in the
input volume.
A CNN consists of multiple convolutional layers, which each perform convolution operations
using many different filters over an entire image or an intermediate feature map. A simplified
example of a common CNN architecture is shown in Figure A.6.
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Figure A.6: A visual representation of a simplified Convolutional Neural Network (CNN) architecture. Here we
present a very simplified model — modern models are much more sophisticated with many many more layers and
special interconncections between layers. In this case, themodel consists of two convolutional layers, each followed
by a pooling layer. The point the pooling layers is to lower the spatial dimensions of the volumes to reduce the
number of convolutional operations as the network gets deeper and more channels become beneficial. Pooling
layers therefore don’t change the number of channels and hold no parameters that need to be learnt. Pooling layers
generally take the maximum value (max-pooling) of the feature, although other pooling strategies exist. At the end
of the network there is a flattening operation, dense layer and softmax operation. These are normally included on
image classification CNNs as a way of going from a spatial feature map to a category label. However, more recent
networks have replaced the flatten and dense layers with a convolutional layer consisting of C filters (where C is
the number of classification classes) and kernel size of 1× 1.
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C Code & Commands
Historically, a significant problem with works related to neural networks and deep learning is
reproducibility. Many papers don’t include official code, those that do often provide broken or
poorly documented code. Even with working code it can still be difficult to reproduce results
due to different hardware and software conditions. Furthermore, many state-of-the-art results
require extensive computing resources to obtain, resources which are unavailable to many re-
searchers. The reproducibility problem is well articulated on wired.com1.
We believe in good software practices and public release to help enable reproducibility and
ensure accessibility for future works. To this end, we include this appendix section to provide
more details on our code and experiments. This section of the appendix discusses documented
code for all results as well as thoroughly explaining experimental conditions that led to the
results.
Code implementations for this thesis utilise the community standard - Python. All code is avail-
able online on my Github2 under numerous projects:

• Chapter 1 - github.com/HaydenFaulkner/Attributes_SVO_Video_Captioning3

• Chapter 2 - github.com/HaydenFaulkner/VideoYOLO4

• Chapter 3 - github.com/HaydenFaulkner/Tennis5

With the recent boom of interest in neural network, a number of deep learning libraries have
become available. Currently the three most utilised are:

• Tensorflow6 (and Keras7)
• PyTorch8

• MXNet9 (including GluonCV10 and GluonNLP11)
Throughout the course of this PhD all three of these libraries were investigated and utilised in
some form or another. The libraries have each evolved over the years, changing in popularity
and usage amongst researchers, each having various pros and cons. For Chapter 1 we utilise
PyTorch, while for Chapter 2 and Chapter 3 we utilise MXNet.

1https://www.wired.com/story/artificial-intelligence-confronts-reproducibility-crisis/
2https://github.com/HaydenFaulkner
3https://github.com/HaydenFaulkner/Attributes_SVO_Video_Captioning
4https://github.com/HaydenFaulkner/VideoYOLO
5https://github.com/HaydenFaulkner/Tennis
6https://www.tensorflow.org
7https://keras.io/
8https://pytorch.org/
9http://mxnet.incubator.apache.org/

10https://gluon-cv.mxnet.io/
11http://gluon-nlp.mxnet.io/
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C.1 Grounded Captioning
Table 1.5 (page 54) and Table 1.6 (page 54) present noun and verb occurrence statistics for
MSVD and MSR-VTT. Simply running the dataset_stats.py script in the misc directory gener-
ates a print out of the statistics:

python misc/dataset_stats.py

Table 1.7 (page 64) presents the captioning performance of an LSTM RNN when using spe-
cific features for the MSVD and MSR-VTT datasets. Training and testing is carried out with the
train.py script:

python train.py --dataset msvd --captioner_type lstm --model_id lstm_1

--batch_size 8 --test_batch_size 8 --max_epochs 100 --input_features imrc

python train.py --dataset msrvtt --captioner_type lstm --model_id lstm_1

--batch_size 8 --test_batch_size 4 --max_epochs 200 --input_features imrc

with --input_features being used to specify what features to include. Options include i for
the image feature, m for the motion feature, r for the region features and c for the classifica-
tion feature ( c only used in MSR-VTT experiments).
Note the differences above when training and testing withMSVD vs withMSR-VTT. From now on
we will only use MSVD commands as examples, however MSR-VTT experiments are the same
except for changes to the --dataset , --test_batch_size and --max_epochs arguments.

Table 1.8 (page 71) presents the captioning performance of different captioner implementa-
tions. Training and testing is carried out with:

python train.py --dataset msvd --captioner_type transformer --model_id

transformer_1 --batch_size 8 --test_batch_size 8 --max_epochs 100

with --captioner_type being used to specify what captioner to use. Options are lstm , gru

or transformer .

Table 1.9 (page 74) presents the captioning performance of including and excluding a feature
encoder TN. Training and testing is carried out with:

python train.py --dataset msvd --captioner_type lstm --model_id lstm_1_enc

--batch_size 8 --test_batch_size 8 --max_epochs 100 --input_encoder_layers 1

--input_encoder_heads 1 --input_encoder_size 512

with --input_encoder_layers , --input_encoder_heads and --input_encoder_size specify-
ing the input encoder parameters.
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Table 1.10 (page 74) presents the captioning performance of various TN captioner sizes. Train-
ing and testing is carried out with:

python train.py --dataset msvd --captioner_type transformer --model_id

transformer_1_4_8_256 --batch_size 8 --test_batch_size 8 --max_epochs 100

--captioner_layers 4 --captioner_heads 8 --captioner_size 256

with --captioner_layers , --captioner_heads and --captioner_size specifying the TN cap-
tioner parameters.

Table 1.11 (page 75), Table 1.12 (page 76) andTable 1.13 (page 81) present the captioning perfor-
mance of human annotators. Human evaluations are carried outwith the human_evaluation.py

script in the misc directory:
python misc/human_evaluation.py

Figure 1.29 (page 80) and Figure 1.30 (page 81) present the TP, FP, and FN rates of particu-
lar nouns and verbs in the MSVD and MSR-VTT datasets. These stats are calculated with the
deeper_analysis.py script in the misc directory:

python misc/deeper_analysis.py

Table 1.14 (page 89) and Table 1.15 (page 89) present the captioning performance of various
grounding methodologies for MSVD and MSR-VTT respectively. Training and testing is carried
out with:

train.py --dataset msvd --grounder_type niuc --captioner_type lstm --model_id

lstm_1_niuc --batch_size 8 --test_batch_size 8 --max_epochs 100 --concepts_h5

sl_top_concepts --num_concepts 5

train.py --dataset msvd --grounder_type nioc --captioner_type lstm --model_id

lstm_1_nioc_svo --batch_size 8 --test_batch_size 8 --max_epochs 100

--concepts_h5 sequencelabel --num_concepts 3

with --grounder_type specifying the particular grounding method we want to use - niuc for
the singlemethod, nioc for themultimethod or ioc for the TNmethod. --concepts specifies
the particular input conceptswe are using as ground truth (either sl_top_concepts for the top 5
attributes or sequencelabel for the SVO triplets) and --num_concepts specifies the particular
number of concepts used.
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Table 1.16 (page 93) and Table 1.17 (page 93) present the captioning performance of various
grounding methodologies with decoupling for MSVD and MSR-VTT respectively. Training and
testing is carried out with:

train.py --dataset msvd --grounder_type niuc --captioner_type lstm --model_id

lstm_1_niuc_dec --batch_size 8 --test_batch_size 8 --max_epochs 100

--concepts_h5 sl_top_concepts --num_concepts 5 --decouple 1

with --decouple used as a flag specifying whether to use the decoupled methodology or not.

C.2 Concept Detection & Localisation
Table 2.2 (page 110) presented baseline results for different object detection implementations
including Faster R-CNN, YOLO and SSD. These experiments were carried out with the default
training scripts available on mxnet.io12 along with the mAP scores. The scripts were modified
to run a single epoch of training and validation on Pascal VOC. The number of parameters were
provided by using the net.summary() function. Memory usage was visually monitored with
nvtop (github.com/Syllo/nvtop13) and the maximum values recorded across the epoch.

Table 2.5 (page 115) presented YOLO mAP baselines on Pascal VOC, MS-COCO, ImageNet-DET
and ImageNet-VID. For the all experiments we train YOLO from scratch with an ImageNet pre-
trained DarkNet backbone that is fine-tuned during training. Training is carried out across four
GPUs with a batch size of 64 using SGD with a learning rate of 0.001, momentum of 0.9 and
weight decay of 0.0005.
The Pascal VOC model is trained over 200 epochs, with 4 warm-up epochs and a learning rate
decay of 0.1 on epochs 160 and 180. It is trained on the trainval 2007 + 2012 split and evaluated
on the test 2007 split. Training and evaluation is done with the train_yolov3.py and detect_

yolov3.py scripts:
python train_yolov3.py --dataset voc --gpus 0,1,2,3 --save_prefix 0001

--num_workers 16 --warmup_epochs 4 --syncbn

python detect_yolov3.py --batch_size 1 --model_path models/experiments/0001/

yolo3_darknet53_voc_best.params --metrics voc,coco --dataset voc

--save_prefix 0001

The MS-COCO model is trained over 280 epochs, with 2 warm-up epochs and a learning rate
decay of 0.1 on epochs 220 and 250. It is trained on the train 2017 spilt and evaluated on the
val 2017 split. Similarly, the experiments are performed with:

python train_yolov3.py --dataset coco --gpus 0,1,2,3 --save_prefix 0003

--num_workers 16 --lr_decay_epoch 220,250 --epochs 280 --warmup_epochs 2

--syncbn

12https://gluon-cv.mxnet.io/model_zoo/detection.html
13https://github.com/Syllo/nvtop
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python detect_yolov3.py --batch_size 1 --model_path models/experiments/0003/

yolo3_darknet53_coco_best.params --metrics voc,coco --dataset coco

--save_prefix 0003

The ImageNet-DET model is trained over 140 epochs, with 3 warm-up epochs and a learning
rate decay of 0.1 on epochs 100 and 120. It is trained on the train spilt and evaluated on the val
split. Performed with:

python train_yolov3.py --dataset det --gpus 0,1,2,3 --save_prefix 0002

--num_workers 16 --epochs 140 --warmup_epochs 3 --lr_decay_epoch 100,120

--syncbn

python detect_yolov3.py --batch_size 1 --model_path models/experiments/0002/

yolo3_darknet53_det_best.params --metrics voc,coco --dataset det

--save_prefix 0002

The ImageNet-VID model is trained over 80 epochs, with 2 warm-up epochs and a learning rate
decay of 0.1 on epochs 50 and 70. It is trained on the train 2017 spilt and evaluated on the val
2017 split. Performed with:

python train_yolov3.py --dataset vid --gpus 0,1,2,3 --save_prefix 0035

--num_workers 16 --lr_decay_epoch 50,70 --epochs 80 --warmup_epochs 2 --every

25 --syncbn

python detect_yolov3.py --batch_size 1 --model_path models/experiments/0035/

yolo3_darknet53_vid_best.params --metrics voc,coco,vid --dataset vid

--save_prefix 0035

To resume any of the models, in the case they stop training before reaching their final epoch
you can use the --start_epoch and --resume arguments like:

python train_yolov3.py --dataset vid --gpus 0,1,2,3 --save_prefix 0035

--num_workers 16 --lr_decay_epoch 50,70 --epochs 80 --every 25 --start_epoch

-1 --resume models/experiments/0035/ --syncbn

Table 2.6 (page 116) presented results of using the same trained models from previously but
evaluating them all on the ImageNet-VID dataset (val 2017 split). Since the categories are differ-
ent between the datasets we ignore any categories that aren’t in both datasets. For the Pascal
VOC trained model, evaluation is performed with:

python detect_yolov3.py --trained_on voc --batch_size 1 --model_path models/0001/

yolo3_darknet53_voc_best.params --metrics vid --dataset vid --save_prefix

0001

where --trained_on is set according to the particular data the model was trained on.

Appendices • Code & Commands 197



Table 2.7 (page 119) presented results for fine-tuningYOLOmodels on the ImageNet-VID dataset,
after each being pre-trained on either Pascal VOC, MS-COCO, or ImageNet-DET. For all models
we fine-tune over 40 epochs, with 2 warm-up epochs, a learning rate of 0.001 decaying by 0.1
at epochs 20 and 30. For training and evaluation we use (modifying --trained_on , --save_-

prefix and --resume for each dataset:
python train_yolov3.py --dataset vid --trained_on voc --gpus 0,1,2,3

--save_prefix 0011 --batch_size 16 --num_workers 16 --lr_decay_epoch 20,30

--epochs 40 --warmup_epochs 2 --every 25 --resume models/experiments/0001/

yolo3_darknet53_voc_best.params --syncbn

python detect_yolov3.py --batch_size 1 --model_path models/experiments/0011/

yolo3_darknet53_vid_best.params --metrics vid --dataset vid --save_prefix

0011

Table 2.10 (page 127) presented the comparison between YOLOwith and without a frozen Dark-
Net backbone. The models are trained and evaluated on ImageNet-VID, with and without the
argument --freeze_base :

python train_yolov3.py --freeze_base --batch_size 16 --dataset vid --gpus 0,1,2,3

--save_prefix 0030 --num_workers 16 --lr_decay_epoch 50,70 --epochs 80

--warmup_epochs 2 --every 25 --syncbn

python detect_yolov3.py --batch_size 1 --model_path models/experiments/0030/

yolo3_darknet53_vid_best.params --metrics vid --dataset vid --save_prefix

0030

For the following experiments we use the main settings as above unless specified differently
(with the exception of --save_prefix which changes for every model).

Table 2.11 (page 129) presented the comparison between different pooling strategies. The ar-
guments --window , --k_join_type ( mean or max ), and --k_join_pos ( early or late ) are
used to specify these experiments:

python train_yolov3.py --freeze_base --dataset vid --gpus 0,1,2,3 --save_prefix

0032 --num_workers 16 --lr_decay_epoch 50,70 --epochs 80 --warmup_epochs 2

--every 25 --syncbn --batch_size 16 --window 3,25 --k_join_type mean

--k_join_pos early

python detect_yolov3.py --batch_size 1 --model_path models/experiments/0032/

yolo3_darknet53_vid_best.params --metrics vid --dataset vid --save_prefix

0032 --window 3,25 --k_join_type mean --k_join_pos early

Table 2.12 (page 130) presented the comparison between different concatenation strategies.
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The arguments --window , --k_join_type , and --k_join_pos are used to specify these exper-
iments:

python train_yolov3.py --freeze_base --dataset vid --gpus 0,1,2,3 --save_prefix

0041 --num_workers 16 --lr_decay_epoch 50,70 --epochs 80 --warmup_epochs 2

--every 25 --syncbn --batch_size 16 --window 3,25 --k_join_type cat

--k_join_pos early

Table 2.13 (page 132) presented the comparison between feature correlation strategies. The
arguments --window , --corr_d , and --corr_pos ( early or late ) are used to specify these
experiments:

python train_yolov3.py --freeze_base --dataset vid --gpus 0,1,2,3 --save_prefix

0051 --num_workers 16 --lr_decay_epoch 50,70 --epochs 80 --warmup_epochs 2

--every 25 --syncbn --batch_size 16 --window 3,25 --corr_d 4 --corr_pos early

Table 2.14 (page 133) presented the comparison between different three dimensional convolu-
tional strategies. The arguments --window , --block_conv_type ( 3 for 3D or 21 for (2+1)D),
and --k_join_pos are used to specify these experiments:

python train_yolov3.py --freeze_base --dataset vid --gpus 0,1,2,3 --save_prefix

0061 --num_workers 16 --lr_decay_epoch 50,70 --epochs 80 --warmup_epochs 2

--every 25 --syncbn --batch_size 16 --window 3,1 --block_conv_type 3

--k_join_pos late

Table 2.17 (page 139) presented the results with the use of pre-trained motion feature streams.
The arguments --window and --motion_stream ( flownet or r21d ) are used to specify these
experiments:

python train_yolov3.py --freeze_base --dataset vid --gpus 0,1,2,3 --save_prefix

0081 --num_workers 16 --lr_decay_epoch 50,70 --epochs 80 --warmup_epochs 2

--every 25 --syncbn --batch_size 16 --window 3,1 --motion_stream flownet

Table 2.18 (page 140) presented the results with the use of a hierarchical structure to the 2D
DarkNet structure. The arguments --window , --hier , --h_join_type ( max or conv ) and -

-new_model are used to specify these experiments:
python train_yolov3.py --freeze_base --dataset vid --gpus 0,1,2,3 --save_prefix

0107 --num_workers 16 --lr_decay_epoch 50,70 --epochs 80 --warmup_epochs 2

--every 25 --syncbn --batch_size 8 --window 9,1 --hier 3,3,1,1,1

--h_join_type conv --new_model
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Table 2.19 (page 142) presented the results with the use of a hierarchical DarkNet with 3D con-
volutions. The arguments --window and --temp are used to specify these experiments:

python train_yolov3.py --freeze_base --dataset vid --gpus 0,1,2,3 --save_prefix

0139 --num_workers 16 --lr_decay_epoch 50,70 --epochs 80 --warmup_epochs 2

--every 25 --syncbn --batch_size 16 --window 5,25 --temp

Table 2.20 (page 143) presented a summary of results for most experiments as well as class
agnostic evaluations. The arguments --model_agnostic and --metric_agnostic are used to
specify these experiments:

python detect_yolov3.py --batch_size 1 --model_path models/experiments/0032/

yolo3_darknet53_vid_best.params --metrics vid --dataset vid --save_prefix

0032 --window 3,25 --k_join_type mean --k_join_pos early --model_agnostic

--metric_agnostic

C.3 Fine-Grained Understanding
Table 3.3 (page 164) presents class split statistics for our tennis dataset. Simply running the
dataset.py script generates a print out of the statistics:

python dataset.py

Table 3.5 (page 167) presents the framewise classification performance of different CNNmeth-
ods on the tennis dataset. Training and testing is carried out with the train.py script:

python train.py --backbone DenseNet121 --model_id 0006 --split_id 01 --batch_size

64 --epochs 20

with --backbone being used to specify the particular CNN architecture to use.

Table 3.8 (page 171) presents the framewise classification performance of different optical flow
methods on the tennis dataset. Training and testing is carried out with:

python train.py --backbone DenseNet121 --model_id 0010 --split_id 01 --batch_size

64 --epochs 20 --flow twos

with --flow being used to specify the particular optical flow strategy to use, options being
sixc for six channel inputs, only for no RGB and twos for two-stream.

Table 3.9 (page 172) presents the framewise classification performance of different temporal
pooling strategies. Training and testing is carried out with:
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python train.py --backbone DenseNet121 --model_id 0028 --split_id 01 --batch_size

64 --epochs 20 --window 15 --temp_pool mean

with --window specifying the number of consecutive input frames and --temp_pool specifying
the particular pooling strategy to use, options being mean , max or gru .

Table 3.10 (page 173) presents the framewise classification performance of different temporal
pooling strategies. Training and testing is carried out with:

python train.py --backbone DenseNet121 --model_id 0042 --split_id 01 --batch_size

64 --epochs 20 --window 30 --temp_pool gru

Figure 3.8 (page 174) presents the tennis dataset’s vocabulary embedding. Training is carried
out with the train_embeddings.py script:

python train_embeddings.py

Table 3.11 (page 176) presents the captioning performance of a GRU RNN on the tennis dataset.
Training and testing is carried out with the train_gnmt.py script:

python train_gnmt.py --model_id 0102 --split_id 01 --batch_size 128 --epochs 40

--num_hidden 256 --cell_type gru

with --num_hidden specifies the hidden dimension of the RNN and --cell_type specifies the
cell type (either gru or lstm ).
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D Datasets
Datasets are a vital part of modern day computer vision and machine learning techniques, with
all modern systems relying on data to learn. The community of datasets is expansive, complex
and quickly evolving, so all datasets mentioned within this thesis are summarised in Table A.1.

Image Dataset Year Cls. Det. Seg. Cap. Rel. FG Extends Citation Homepage

S T

Pascal VOC 2007 3 [Everingham et al., 2010] host.robots.ox.ac.uk
ImageNet-CLS-LOC 2009 3 [Russakovsky et al., 2015] image-net.org

UIUC-PS 2010 3 Pascal VOC [Rashtchian et al., 2010] vision.cs.uiuc.edu
Flickr 8k 2013 3 [Hodosh et al., 2013]
MS-COCO 2014 3 3 3 [Lin et al., 2014] cocodataset.org
Flickr 30k 2014 3 [Young et al., 2014] shannon.cs.illinois.edu

Flickr 30k Entities 2015 3 Flickr 30k [Plummer et al., 2015] github.com
ImageNet-DET 2015 3 [Russakovsky et al., 2015] image-net.org
Open Images 2017 3 3 3 3 [Kuznetsova et al., 2020] storage.googleapis.com
Visual Genome 2017 3 3 3 [Krishna et al., 2017b] visualgenome.org

Video Dataset Year Cls. Det. Seg. Cap. Rel. FG Extends Citation Homepage

S T

MSVD 2011 3 [Chen and Dolan, 2011] microsoft.com
HMBD-51 2011 3 [Kuehne et al., 2011] serre-lab.clps.brown.edu
UCF101 2012 3 [Soomro et al., 2012] crcv.ucf.edu

MPII-Cooking 2012 3 3 [Rohrbach et al., 2012a] mpi-inf.mpg.de
MPII-Composites 2012 3 3 MPII-Cooking [Rohrbach et al., 2012b] mpi-inf.mpg.de

J-HMDB 2013 3 [Jhuang et al., 2013] jhmdb.is.tue.mpg.de
TACoS 2013 3 3 MPII-Composites [Regneri et al., 2013]

TACoS M-L 2014 3 3 TACoS [Rohrbach et al., 2014] mpi-inf.mpg.de
Sports-1M 2014 3 [Karpathy et al., 2014] cs.stanford.edu
ActivityNet 2015 3 3 [Caba Heilbron et al., 2015] activity-net.org
MPII-MD 2015 3 [Rohrbach et al., 2015b] mpi-inf.mpg.de
M-VAD 2015 3 [Torabi et al., 2015] mila.quebec

ImageNet-VID 2015 3 [Russakovsky et al., 2015] image-net.org
MSR-VTT 2016 3 [Xu et al., 2016] microsoft.com

NCAA Basketball 2016 3 [Ramanathan et al., 2016] appspot.com
MERL Shopping 2016 3 [Singh et al., 2016] merl.com
MPII-Cooking 2 2016 3 3 MPII-Composites [Rohrbach et al., 2016] mpi-inf.mpg.de
YouTube-8M 2016 3 [Abu-El-Haija et al., 2016] research.google.com
Charades 2016 3 3 [Sigurdsson et al., 2016] allenai.org
Kinetics 2017 3 [Kay et al., 2017] deepmind.com
THUMOS 2017 3 3 [Idrees et al., 2017] thumos.info

ActivityNet Captions 2017 3 3 3 ActivityNet [Krishna et al., 2017a] cs.stanford.edu
MultiTHUMOS 2018 3 3 THUMOS [Yeung et al., 2018] ai.stanford.edu

ActivityNet Entities 2019 3 3 3 3 ActivityNet [Zhou et al., 2019] github.com
YouTube-8M Seg. 2019 3 3 YouTube-8M [Abu-El-Haija et al., 2016] research.google.com

Table A.1: Datasets summary. A summary of all of the datasets mentioned in this work, with details such as re-
lease year, applications (Cls: Classification, Det: Detection, S: Spatial, T: Temporal, Seg: Segmentation, Rel: Visual
Relationships, FG: Fine-Grained), extension of, introductory paper, and web page link.
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E Extended Tables
Combined Set Coverage
Table A.2 and Table A.3 are the full MSVD and MSR-VTT concept coverage tables which were
summarised in Table 2.25 (Section 2.3.3) on page 153.

Missing Concepts
Table A.4 and Table A.5 are the full MSVD and MSR-VTT missing concepts tables which where
summarised in Table 2.26 (Section 2.3.3) on page 154.
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Class Ext Chd Tot % set

LEVEL 0

ROOT 0 1075 1075 89.58
LEVEL 1

artifact 0 669 669 55.75
food 243 126 301 25.08

living thing 0 877 877 73.08
LEVEL 2

clothing 2 19 21 1.75
sports equipment 0 110 110 9.17

furniture 1 136 136 11.33
appliance 3 53 54 4.50

tool 5 10 14 1.17
scissors 9 0 9 0.75

street sign 0 0 0 0.00
musical instrument 0 86 86 7.17

toiletry 0 23 23 1.92
tableware 0 149 149 12.42
fireplug 0 0 0 0.00

parking meter 0 0 0 0.00
bag 20 20 20 1.67

vehicle 17 118 120 10.00
kitchen utensil 0 36 36 3.00
rubber eraser 0 0 0 0.00

medical instrument 0 1 1 0.08
teddy 1 0 1 0.08

electronic device 0 50 50 4.17
milk can 0 0 0 0.00

traffic light 0 0 0 0.00
binder 0 0 0 0.00
book 5 0 5 0.42
rule 0 0 0 0.00

stretcher 1 0 1 0.08
pencil box 0 0 0 0.00

pot 69 0 69 5.75
pencil sharpener 0 0 0 0.00

vegetable 37 36 61 5.08
guacamole 0 0 0 0.00
baked goods 0 0 0 0.00

trifle 0 0 0 0.00
ice lolly 0 0 0 0.00
hotdog 0 0 0 0.00

hamburger 8 0 8 0.67
burrito 0 0 0 0.00
pizza 18 0 18 1.50
fruit 28 35 52 4.33

animal 81 282 297 24.75
person 703 0 703 58.58
plant 14 0 14 1.17

Class E C T % set

LEVEL 3

necktie 0 0 0 0.00
helmet 4 0 4 0.33
hat 6 0 6 0.50

diaper 1 0 1 0.08
brassiere 0 0 0 0.00
miniskirt 0 0 0 0.00

sunglasses 8 0 8 0.67
swimsuit 1 0 1 0.08

bathing cap 0 0 0 0.00
ball 51 13 53 4.42

baseball equip. 0 0 0 0.00
golf equipment 0 0 0 0.00

dumbbell 1 0 1 0.08
gymnastic app. 0 0 0 0.00

puck 0 0 0 0.00
punching bag 0 0 0 0.00

bow 5 0 5 0.42
board 46 8 49 4.08
ski 2 0 2 0.17

sport kite 0 0 0 0.00
tennis racket 0 0 0 0.00

frisbee 2 0 2 0.17
bookcase 0 0 0 0.00

bed 37 0 37 3.08
toilet 7 0 7 0.58
lamp 1 0 1 0.08

baby bed 0 0 0 0.00
washbasin 3 0 3 0.25

seat 4 50 54 4.50
table 49 0 49 4.08
file 4 0 4 0.33

hand blower 0 0 0 0.00
stove 38 0 38 3.17
washer 0 0 0 0.00

waffle iron 0 0 0 0.00
toaster 2 0 2 0.17

dishwasher 0 0 0 0.00
coffee maker 0 0 0 0.00

oven 7 0 7 0.58
refrigerator 4 0 4 0.33
vacuum 3 0 3 0.25

microwave 3 0 3 0.25
nail 5 0 5 0.42

hammer 3 0 3 0.25
screwdriver 2 0 2 0.17

ax 1 0 1 0.08
power drill 0 0 0 0.00

Class E C T % set

LEVEL 3 (cont.)

chain saw 0 0 0 0.00
percussion inst. 0 6 6 0.50

wind inst. 0 11 11 0.92
stringed inst. 0 57 57 4.75
keyboard inst. 0 27 27 2.25

makeup 12 1 12 1.00
soap dispenser 0 0 0 0.00

cream 11 0 11 0.92
hair spray 0 0 0 0.00
perfume 0 0 0 0.00

toothbrush 1 0 1 0.08
glass 50 0 50 4.17
bowl 108 0 108 9.00
bowl 108 0 108 9.00
bottle 21 0 21 1.75
platter 2 0 2 0.17
mug 1 0 1 0.08
vase 1 0 1 0.08

pitcher 5 0 5 0.42
bag 20 20 20 1.67
purse 2 0 2 0.17

plastic bag 0 0 0 0.00
backpack 3 0 3 0.25
baggage 1 0 1 0.08

motorcycle 19 0 19 1.58
train 4 0 4 0.33

snowmobile 0 0 0 0.00
boat 12 0 12 1.00

unicycle 0 0 0 0.00
cart 2 0 2 0.17

bicycle 21 0 21 1.75
car 52 0 52 4.33
bus 7 0 7 0.58

airplane 13 0 13 1.08
snowplow 0 0 0 0.00

truck 10 0 10 0.83
ladle 1 0 1 0.08

cutlery 0 28 28 2.33
can opener 0 0 0 0.00
frying pan 0 0 0 0.00
plate rack 0 0 0 0.00
spatula 6 0 6 0.50

saltshaker 0 0 0 0.00
strainer 2 0 2 0.17

corkscrew 0 0 0 0.00
stethoscope 1 0 1 0.08
neck brace 0 0 0 0.00

Continues next page
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Class E C T % set

LEVEL 3 (cont.)

syringe 0 0 0 0.00
crutch 0 0 0 0.00

band aid 0 0 0 0.00
telephone 15 0 15 1.25

ipod 1 0 1 0.08
laptop 5 0 5 0.42

electric fan 0 0 0 0.00
computer keyboard 0 0 0 0.00

display 0 0 0 0.00
mouse 11 0 11 0.92

microphone 19 0 19 1.58
remote control 0 0 0 0.00

printer 0 0 0 0.00
tape player 0 0 0 0.00
digital clock 0 0 0 0.00

broccoli 6 0 6 0.50
cucumber 14 0 14 1.17
mushroom 3 0 3 0.25

head cabbage 0 0 0 0.00
artichoke 0 0 0 0.00
bell pepper 0 0 0 0.00

carrot 13 0 13 1.08
pretzel 0 0 0 0.00

doughnut 0 0 0 0.00
bagel 0 0 0 0.00

pineapple 5 0 5 0.42
lemon 4 0 4 0.33
fig 1 0 1 0.08

strawberry 3 0 3 0.25
apple 10 0 10 0.83
banana 4 0 4 0.33
orange 15 0 15 1.25

pomegranate 0 0 0 0.00
mammal 5 255 255 21.25
reptile 0 9 9 0.75
insect 4 3 5 0.42

centipede 0 0 0 0.00
amphibian 0 5 5 0.42
crustacean 0 1 1 0.08
jellyfish 0 0 0 0.00

aquatic vertebrate 0 0 0 0.00
bird 12 0 12 1.00
snail 0 0 0 0.00

starfish 0 0 0 0.00
arachnid 0 0 0 0.00

houseplant 0 0 0 0.00
LEVEL 4

windsor tie 0 0 0 0.00
bow tie 0 0 0 0.00

cowboy hat 0 0 0 0.00

Class E C T % set

LEVEL 4 (cont.)

maillot 0 0 0 0.00
swimming trunks 0 0 0 0.00

golf ball 0 0 0 0.00
volleyball 0 0 0 0.00
basketball 8 0 8 0.67
soccer ball 0 0 0 0.00
baseball 5 0 5 0.42

croquet ball 0 0 0 0.00
ping-pong ball 0 0 0 0.00

rugby ball 0 0 0 0.00
tennis ball 0 0 0 0.00

baseball glove 0 0 0 0.00
baseball bat 0 0 0 0.00

golfcart 0 0 0 0.00
balance beam 0 0 0 0.00
horizontal bar 0 0 0 0.00
snowboard 1 0 1 0.08
skateboard 7 0 7 0.58
aquaplane 0 0 0 0.00

bench 9 0 9 0.75
sofa 20 0 20 1.67
chair 26 0 26 2.17

dining-room table 0 0 0 0.00
drum 6 0 6 0.50
chime 0 0 0 0.00
maraca 0 0 0 0.00
cornet 0 0 0 0.00

harmonica 0 0 0 0.00
oboe 0 0 0 0.00
flute 10 0 10 0.83
sax 1 0 1 0.08

trombone 0 0 0 0.00
french horn 0 0 0 0.00

banjo 1 0 1 0.08
harp 1 0 1 0.08
guitar 53 0 53 4.42
violin 9 0 9 0.75
cello 1 0 1 0.08
piano 26 0 26 2.17

accordion 2 0 2 0.17
lipstick 1 0 1 0.08

face powder 0 0 0 0.00
wineglass 0 0 0 0.00
beaker 0 0 0 0.00

water bottle 0 0 0 0.00
wine bottle 0 0 0 0.00

fork 5 0 5 0.42
table knife 0 0 0 0.00

spoon 24 0 24 2.00
armadillo 0 0 0 0.00

Class E C T % set

LEVEL 4 (cont.)

giant panda 0 0 0 0.00
aquatic mammal 0 6 6 0.50

monkey 37 0 37 3.08
elephant 6 0 6 0.50
rodent 2 9 11 0.92
bear 18 0 18 1.50
sheep 1 0 1 0.08
giraffe 2 0 2 0.17
canine 1 150 150 12.50
feline 0 17 17 1.42

hippopotamus 1 0 1 0.08
horse 27 0 27 2.25
koala 0 0 0 0.00
rabbit 7 0 7 0.58
swine 0 0 0 0.00

lesser panda 0 0 0 0.00
cattle 2 0 2 0.17

antelope 1 0 1 0.08
cow 5 0 5 0.42

skunk 0 0 0 0.00
zebra 4 0 4 0.33
camel 0 0 0 0.00
otter 2 0 2 0.17
snake 6 0 6 0.50
lizard 0 0 0 0.00
turtle 3 0 3 0.25
bee 1 0 1 0.08

butterfly 1 0 1 0.08
ant 1 0 1 0.08

dragonfly 1 0 1 0.08
ladybug 0 0 0 0.00
frog 5 0 5 0.42

isopod 0 0 0 0.00
lobster 1 0 1 0.08
ray 0 0 0 0.00

goldfish 0 0 0 0.00
tick 0 0 0 0.00

scorpion 0 0 0 0.00
LEVEL 5

seal 1 0 1 0.08
whale 5 0 5 0.42

hamster 5 0 5 0.42
porcupine 1 0 1 0.08
squirrel 5 0 5 0.42

fox 6 0 6 0.50
dog 147 0 147 12.25
tiger 15 0 15 1.25

domestic cat 0 0 0 0.00
lion 10 0 10 0.83

Table A.2: Concept overlap between class tree and MSVD — (full). Full version of left side of Table 2.25 on page
153.
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Class Ext Chd Tot % set

LEVEL 0

ROOT 0 8116 8116 81.16
LEVEL 1

artifact 1 5522 5522 55.22
food 1102 373 1312 13.12

living thing 0 5802 5802 58.02
LEVEL 2

clothing 202 393 569 5.69
sports equip. 0 951 951 9.51

furniture 20 1367 1375 13.75
appliance 8 242 250 2.50

tool 57 46 99 0.99
scissors 14 0 14 0.14

street sign 0 0 0 0.00
musical inst. 0 358 358 3.58

toiletry 0 285 285 2.85
tableware 0 718 718 7.18
fireplug 0 0 0 0.00

parking meter 0 0 0 0.00
bag 143 168 168 1.68

vehicle 441 1518 1553 15.53
kitchen uten. 0 199 199 1.99
rubber eraser 0 0 0 0.00
medical inst. 0 7 7 0.07

teddy 3 0 3 0.03
electronic dev. 0 614 614 6.14

milk can 0 0 0 0.00
traffic light 0 0 0 0.00

binder 1 0 1 0.01
book 134 0 134 1.34
rule 2 0 2 0.02

stretcher 3 0 3 0.03
pencil box 0 0 0 0.00

pot 230 0 230 2.30
pencil sharp. 0 0 0 0.00
vegetable 29 46 72 0.72
guacamole 1 0 1 0.01
baked goods 0 6 6 0.06

trifle 0 0 0 0.00
ice lolly 0 0 0 0.00
hotdog 1 0 1 0.01

hamburger 10 0 10 0.10
burrito 3 0 3 0.03
pizza 19 0 19 0.19
fruit 46 235 268 2.68

animal 217 905 977 9.77
person 5272 0 5272 52.72
plant 50 0 50 0.50

Class E C T % set

LEVEL 3

necktie 3 0 3 0.03
helmet 81 0 81 0.81
hat 235 0 235 2.35

diaper 6 0 6 0.06
brassiere 0 0 0 0.00
miniskirt 1 0 1 0.01

sunglasses 69 0 69 0.69
swimsuit 15 0 15 0.15

bathing cap 0 0 0 0.00
ball 553 341 674 6.74

baseball eq. 0 0 0 0.00
golf equip. 0 0 0 0.00
dumbbell 0 0 0 0.00

gymnastic ap. 0 0 0 0.00
puck 2 0 2 0.02

punching bag 0 0 0 0.00
bow 48 0 48 0.48
board 224 12 231 2.31
ski 18 0 18 0.18

sport kite 0 0 0 0.00
tennis racket 0 0 0 0.00

frisbee 2 0 2 0.02
bookcase 6 0 6 0.06

bed 218 0 218 2.18
toilet 15 0 15 0.15
lamp 5 0 5 0.05

baby bed 0 0 0 0.00
washbasin 1 0 1 0.01

seat 97 385 474 4.74
table 741 0 741 7.41
file 23 0 23 0.23

hand blower 0 0 0 0.00
stove 181 0 181 1.81
washer 2 0 2 0.02

waffle iron 0 0 0 0.00
toaster 4 0 4 0.04

dishwasher 0 0 0 0.00
coffee maker 0 0 0 0.00

oven 51 0 51 0.51
refrigerator 11 0 11 0.11
vacuum 5 0 5 0.05

microwave 11 0 11 0.11
nail 18 0 18 0.18

hammer 22 0 22 0.22
screwdriver 4 0 4 0.04

ax 4 0 4 0.04
power drill 0 0 0 0.00

Class E C T % set

LEVEL 3 (cont.)

chain saw 0 0 0 0.00
percussion in. 0 21 21 0.21

wind inst. 0 8 8 0.08
stringed inst. 0 262 262 2.62
keyboard inst. 0 82 82 0.82

makeup 183 39 200 2.00
soap dispen. 0 0 0 0.00

cream 114 0 114 1.14
hair spray 0 0 0 0.00
perfume 4 0 4 0.04

toothbrush 1 0 1 0.01
glass 282 6 284 2.84
bowl 392 0 392 3.92
bowl 392 0 392 3.92
bottle 96 0 96 0.96
platter 10 0 10 0.10
mug 14 0 14 0.14
vase 4 0 4 0.04

pitcher 25 0 25 0.25
bag 143 168 168 1.68
purse 29 0 29 0.29

plastic bag 0 0 0 0.00
backpack 37 0 37 0.37
baggage 0 0 0 0.00

motorcycle 112 0 112 1.12
train 61 0 61 0.61

snowmobile 2 0 2 0.02
boat 134 0 134 1.34

unicycle 1 0 1 0.01
cart 37 0 37 0.37

bicycle 52 0 52 0.52
car 1004 0 1004 10.04
bus 78 0 78 0.78

airplane 123 0 123 1.23
snowplow 0 0 0 0.00

truck 168 0 168 1.68
ladle 7 0 7 0.07

cutlery 0 177 177 1.77
can opener 0 0 0 0.00
frying pan 0 0 0 0.00
plate rack 0 0 0 0.00
spatula 25 0 25 0.25

saltshaker 0 0 0 0.00
strainer 7 0 7 0.07

corkscrew 0 0 0 0.00
stethoscope 2 0 2 0.02
neck brace 0 0 0 0.00

Continues next page
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Class E C T % set

LEVEL 3 (cont.)

syringe 5 0 5 0.05
crutch 0 0 0 0.00

band aid 0 0 0 0.00
telephone 27 0 27 0.27

ipod 4 0 4 0.04
laptop 89 0 89 0.89

electric fan 0 0 0 0.00
computer key. 0 0 0 0.00

display 167 0 167 1.67
mouse 76 0 76 0.76

microphone 265 0 265 2.65
remote control 0 0 0 0.00

printer 4 0 4 0.04
tape player 0 0 0 0.00
digital clock 0 0 0 0.00

broccoli 10 0 10 0.10
cucumber 11 0 11 0.11
mushroom 11 0 11 0.11

head cabbage 0 0 0 0.00
artichoke 0 0 0 0.00
bell pepper 0 0 0 0.00

carrot 18 0 18 0.18
pretzel 1 0 1 0.01

doughnut 4 0 4 0.04
bagel 2 0 2 0.02

pineapple 3 0 3 0.03
lemon 13 0 13 0.13
fig 0 0 0 0.00

strawberry 2 0 2 0.02
apple 39 0 39 0.39
banana 9 0 9 0.09
orange 176 0 176 1.76

pomegranate 0 0 0 0.00
mammal 3 716 717 7.17
reptile 3 45 46 0.46
insect 8 20 28 0.28

centipede 0 0 0 0.00
amphibian 0 22 22 0.22
crustacean 0 7 7 0.07
jellyfish 1 0 1 0.01

aquatic vert. 0 13 13 0.13
bird 87 0 87 0.87
snail 7 0 7 0.07

starfish 4 0 4 0.04
arachnid 0 9 9 0.09

houseplant 0 0 0 0.00
LEVEL 4

windsor tie 0 0 0 0.00
bow tie 0 0 0 0.00

cowboy hat 0 0 0 0.00

Class E C T % set

LEVEL 4 (cont.)

maillot 0 0 0 0.00
swimming trunks 0 0 0 0.00

golf ball 0 0 0 0.00
volleyball 32 0 32 0.32
basketball 204 0 204 2.04
soccer ball 0 0 0 0.00
baseball 127 0 127 1.27

croquet ball 0 0 0 0.00
ping-pong ball 0 0 0 0.00

rugby ball 0 0 0 0.00
tennis ball 0 0 0 0.00

baseball glove 0 0 0 0.00
baseball bat 0 0 0 0.00

golfcart 0 0 0 0.00
balance beam 0 0 0 0.00
horizontal bar 0 0 0 0.00
snowboard 3 0 3 0.03
skateboard 10 0 10 0.10
aquaplane 0 0 0 0.00

bench 47 0 47 0.47
sofa 70 0 70 0.70
chair 288 0 288 2.88

dining-room table 0 0 0 0.00
drum 21 0 21 0.21
chime 0 0 0 0.00
maraca 0 0 0 0.00
cornet 0 0 0 0.00

harmonica 1 0 1 0.01
oboe 0 0 0 0.00
flute 6 0 6 0.06
sax 1 0 1 0.01

trombone 0 0 0 0.00
french horn 0 0 0 0.00

banjo 4 0 4 0.04
harp 1 0 1 0.01
guitar 250 0 250 2.50
violin 14 0 14 0.14
cello 1 0 1 0.01
piano 80 0 80 0.80

accordion 2 0 2 0.02
lipstick 39 0 39 0.39

face powder 0 0 0 0.00
wineglass 0 0 0 0.00
beaker 6 0 6 0.06

water bottle 0 0 0 0.00
wine bottle 0 0 0 0.00

fork 14 0 14 0.14
table knife 0 0 0 0.00

spoon 165 0 165 1.65
armadillo 1 0 1 0.01

Class E C T % set

LEVEL 4 (cont.)

giant panda 0 0 0 0.00
aquatic mammal 0 15 15 0.15

monkey 71 0 71 0.71
elephant 23 0 23 0.23
rodent 17 38 42 0.42
bear 48 0 48 0.48
sheep 9 0 9 0.09
giraffe 2 0 2 0.02
canine 4 290 292 2.92
feline 4 57 59 0.59

hippopotamus 2 0 2 0.02
horse 160 0 160 1.60
koala 1 0 1 0.01
rabbit 25 0 25 0.25
swine 0 0 0 0.00

lesser panda 0 0 0 0.00
cattle 2 0 2 0.02

antelope 6 0 6 0.06
cow 24 0 24 0.24

skunk 6 0 6 0.06
zebra 6 0 6 0.06
camel 9 0 9 0.09
otter 2 0 2 0.02
snake 24 0 24 0.24
lizard 10 0 10 0.10
turtle 13 0 13 0.13
bee 8 0 8 0.08

butterfly 10 0 10 0.10
ant 3 0 3 0.03

dragonfly 0 0 0 0.00
ladybug 0 0 0 0.00
frog 22 0 22 0.22

isopod 0 0 0 0.00
lobster 7 0 7 0.07
ray 8 0 8 0.08

goldfish 5 0 5 0.05
tick 2 0 2 0.02

scorpion 7 0 7 0.07
LEVEL 5

seal 5 0 5 0.05
whale 10 0 10 0.10

hamster 30 0 30 0.30
porcupine 2 0 2 0.02
squirrel 6 0 6 0.06

fox 35 0 35 0.35
dog 259 0 259 2.59
tiger 41 0 41 0.41

domestic cat 0 0 0 0.00
lion 28 0 28 0.28

Table A.3: Concept overlap between class tree and MSR-VTT — (full). Full version of right side of Table 2.25 on
page 153.
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Noun Count % set

man 791 65.92
someone 500 41.67
woman 460 38.33

something 437 36.42
lady 386 32.17
girl 266 22.17

women 260 21.67
men 249 20.75
boy 245 20.42

kichen 232 19.33
guy 218 18.17
video 194 16.17
chef 194 16.17

people 173 14.42
s 171 14.25

pieces 154 12.83
playing 152 12.67
knife 133 11.08
water 131 10.92
cook 124 10.33
piece 121 10.08
dish 114 9.50
song 111 9.25
music 110 9.17
pan 102 8.50

vegetables 98 8.17
ground 97 8.08

kid 92 7.67
group 91 7.58
sort 90 7.50
baby 90 7.50
hand 89 7.42
clip 87 7.25
road 85 7.08
cat 82 6.83

slices 79 6.58
room 78 6.50

kitchen 76 6.33
side 74 6.17
front 74 6.17
kind 72 6.00

cooking 70 5.83
floor 69 5.75
meat 67 5.58
child 67 5.58
boys 67 5.58
show 65 5.42
hands 62 5.17
street 61 5.08

somebody 61 5.08
top 59 4.92

Noun # %

girls 59 4.92
movie 58 4.83

ingredients 57 4.75
field 57 4.75

couple 56 4.67
persons 55 4.58

instrument 54 4.50
house 54 4.50
stage 53 4.42
recipe 53 4.42
rice 50 4.17
head 49 4.08
back 49 4.08

mixture 48 4.00
animals 48 4.00

way 47 3.92
guys 47 3.92
face 47 3.92
egg 47 3.92
cuts 47 3.92
liquid 46 3.83
half 46 3.83

dance 46 3.83
i 45 3.75

grass 45 3.75
skillet 44 3.67
play 44 3.67
kids 44 3.67
game 44 3.67
camera 44 3.67
cute 43 3.58
area 43 3.58
frying 42 3.50
chicken 42 3.50

air 42 3.50
scene 41 3.42
onion 41 3.42
anyone 41 3.42
film 40 3.33

singing 39 3.25
onions 38 3.17
eggs 38 3.17
bike 38 3.17
forest 37 3.08
mouth 36 3.00
item 36 3.00
box 36 3.00

tricks 35 2.92
toy 35 2.92
sea 35 2.92
plays 35 2.92

Noun # %

jumps 35 2.92
cut 35 2.92
skin 34 2.83

potato 34 2.83
making 34 2.83
body 34 2.83
stunts 33 2.75
ride 33 2.75

plastic 33 2.75
paper 33 2.75

potatoes 32 2.67
peoples 32 2.67

oil 32 2.67
bread 32 2.67
wall 31 2.58
ladies 31 2.58
home 31 2.58
garden 31 2.58
fish 31 2.58

container 31 2.58
walks 30 2.50
walking 30 2.50
thing 30 2.50

football 30 2.50
dogs 30 2.50
curry 30 2.50
talks 29 2.42
sauce 29 2.42
plate 29 2.42
pet 29 2.42

wood 27 2.25
strips 27 2.25
place 27 2.25

machine 27 2.25
lot 27 2.25
dirt 27 2.25

dancing 27 2.25
style 26 2.17
hill 26 2.17

finger 26 2.17
actor 26 2.17
tv 25 2.08

stunt 25 2.08
shot 25 2.08
player 25 2.08
paws 25 2.08
jump 25 2.08
sheet 24 2.00
rider 24 2.00
puppy 24 2.00
legs 24 2.00

Noun # %

keyboard 24 2.00
fun 24 2.00

children 24 2.00
spices 23 1.92
potatoe 23 1.92
kitten 23 1.92
edge 23 1.92
butter 23 1.92
sushi 22 1.83
stick 22 1.83
sings 22 1.83

seasonings 22 1.83
race 22 1.83
metal 22 1.83
mans 22 1.83
leaves 22 1.83
dances 22 1.83
cycle 22 1.83
cheese 22 1.83
band 22 1.83
vessel 21 1.75
toddler 21 1.75
round 21 1.75
pours 21 1.75
players 21 1.75
lake 21 1.75
gun 21 1.75
foot 21 1.75
flour 21 1.75
fire 21 1.75

counter 21 1.75
beef 21 1.75
beach 21 1.75

background 21 1.75
yard 20 1.67
trick 20 1.67
tree 20 1.67

things 20 1.67
slice 20 1.67
shirt 20 1.67

practice 20 1.67
picture 20 1.67
path 20 1.67
motor 20 1.67
jack 20 1.67

ingrediants 20 1.67
foods 20 1.67
fingers 20 1.67
watches 19 1.58
time 19 1.58
tamil 19 1.58

Table A.4: The most common nouns from MSVD which are not part of the combined dataset class tree — (full).
Full version of left side of Table 2.26 on page 154.
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Noun Count % set

man 6707 67.07
video 4737 47.37
people 4043 40.43
woman 3977 39.77

someone 3035 30.35
show 2520 25.20

something 2487 24.87
guy 2370 23.70
girl 2351 23.51
men 2127 21.27
clip 2074 20.74

screen 1971 19.71
talks 1965 19.65
group 1949 19.49
women 1807 18.07
game 1758 17.58
music 1679 16.79
scene 1632 16.32
front 1561 15.61
lady 1514 15.14

camera 1510 15.10
s 1399 13.99
tv 1392 13.92

shirt 1318 13.18
room 1274 12.74
song 1269 12.69
boy 1265 12.65

movie 1227 12.27
dress 1181 11.81

cartoon 1083 10.83
stage 1002 10.02
kids 871 8.71

characters 861 8.61
character 849 8.49

color 808 8.08
background 808 8.08
television 789 7.89
playing 787 7.87
footage 758 7.58
plays 757 7.57

audience 754 7.54
girls 749 7.49

kitchen 741 7.41
hand 724 7.24
hair 721 7.21
guys 708 7.08
news 698 6.98
talk 691 6.91

player 687 6.87
ground 672 6.72

computer 662 6.62

Noun # %

road 660 6.60
clips 654 6.54
water 652 6.52
crowd 645 6.45
child 632 6.32
sports 623 6.23
play 622 6.22

children 617 6.17
kid 610 6.10

street 606 6.06
couple 593 5.93
players 585 5.85
scenes 576 5.76
dish 570 5.70

singing 568 5.68
animation 561 5.61
bunch 539 5.39

interview 525 5.25
field 525 5.25
voice 521 5.21
sings 513 5.13

pictures 509 5.09
hands 500 5.00
suit 499 4.99
side 499 4.99
top 496 4.96

picture 488 4.88
persons 476 4.76
things 474 4.74

program 470 4.70
place 455 4.55

conversation 455 4.55
recipe 454 4.54
floor 450 4.50
house 445 4.45
dance 443 4.43
match 434 4.34

speaking 432 4.32
home 426 4.26
games 425 4.25
film 421 4.21
time 416 4.16

cooking 416 4.16
piece 413 4.13
male 413 4.13

images 399 3.99
gameplay 390 3.90

blue 389 3.89
ingredients 387 3.87

advertisement 385 3.85
chef 384 3.84

Noun # %

channel 376 3.76
band 376 3.76
cars 375 3.75
tshirt 374 3.74
face 372 3.72

building 372 3.72
reporter 371 3.71
boys 354 3.54
head 351 3.51
others 346 3.46
lot 341 3.41

segment 339 3.39
area 339 3.39
city 337 3.37

competition 331 3.31
team 330 3.30
review 327 3.27
animals 327 3.27
view 324 3.24

features 321 3.21
way 313 3.13

speaks 313 3.13
glasses 312 3.12
part 311 3.11
baby 311 3.11
paper 310 3.10

performance 302 3.02
blonde 302 3.02
pan 298 2.98

singer 294 2.94
demonstration 294 2.94

trailer 293 2.93
jacket 293 2.93
image 293 2.93
family 293 2.93
friends 289 2.89
wall 287 2.87

dancing 287 2.87
pink 286 2.86
world 284 2.84
sits 284 2.84

language 283 2.83
instructions 281 2.81

event 280 2.80
work 277 2.77
story 276 2.76
race 274 2.74
coat 274 2.74
toy 273 2.73
body 273 2.73
school 270 2.70

Noun # %

studio 248 2.48
narrator 246 2.46
outdoors 239 2.39
friend 239 2.39
action 238 2.38
items 236 2.36
type 234 2.34

machine 234 2.34
fun 234 2.34

court 234 2.34
track 232 2.32
videos 231 2.31
night 231 2.31

speech 229 2.29
shots 228 2.28
set 227 2.27

presentation 226 2.26
country 226 2.26
series 223 2.23

minecraft 223 2.23
cloth 220 2.20
door 218 2.18
grass 217 2.17
cook 217 2.17
box 216 2.16
trees 215 2.15

cartoons 215 2.15
female 212 2.12
demo 212 2.12

stadium 211 2.11
montage 211 2.11

commentary 211 2.11
performs 210 2.10
beach 210 2.10
judges 209 2.09
fashion 208 2.08
toys 207 2.07
rock 207 2.07
words 206 2.06
pieces 206 2.06
science 202 2.02
item 201 2.01
gun 201 2.01

shows 200 2.00
back 199 1.99
sky 198 1.98

ladies 198 1.98
beauty 198 1.98

slideshow 197 1.97
end 197 1.97
plate 195 1.95

Table A.5: The most common nouns fromMSR-VTT which are not part of the combined dataset class tree — (full).
Full version of right side of Table 2.26 on page 154.
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