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Chapter 1

Introduction

1.0.1 DNA

Deoxyribonucleic acid (DNA) is a biological molecule carrying the genetic instructions

for the development, growth, maintenance and reproduction of all living things. DNA is

a macromolecule (a large molecule) composed of smaller units known as nucleotides. Nu-

cleotides comes in four different forms known as adenine, cytosine, guanine and thymine.

We can think of DNA as a biological code consisting of four letters; A,C,T and G. All

organisms store their biological information within this 4-letter code. An individual’s

entire genetic sequence is known as their genomes.

Biologists study the DNA of all kinds of organisms because DNA is such a fundamental

molecule for life. Although DNA sequencing used to be slow and expensive, innovations

in the 21st century have enabled researchers to sequence entire genomes quickly and

economically. As more genetic data is being generated, there is a growing demand

for analytical tools to help researchers process and interpret the underlying genetic

information. By understanding an organism’s genome, researchers can acquire a deeper

understanding the function of genomes.

1.0.2 Project Aim

For this project we will design a machine learning approach to scan through a sample

of genomes from a given population and identify genetic regions which confer some

biological advantage. In genetic parlance, such regions are said to be “under selection”

because nature tends to “select” beneficial traits to be transmitted to future generations.

(We will cover this in more detail when we discuss evolution in Chapter 2). Whilst

selection can take on many forms, we will focus on positive selection which produces

1
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selective sweeps. We will particularly focus on the “hard sweep” pattern because it is the

most studied pattern in genetics thus far. Our method will enable researchers to identify

regions of interest which they can study further using biochemical and bioinformatic

analyses.

This project consists of two main parts.

1. We will apply a suite of machine learning classifiers to the problem of detecting hard

sweeps using modern DNA samples which have been extracted from living individuals.

After reviewing the performance of each method, we will suggest a standard protocol for

using machine learning to detect hard sweeps. This will assist researchers in selecting

an appropriate machine learning method and interpreting the results of their models.

2. We will extend our methods to detect hard sweeps in ancient DNA. Ancient DNA

refers to genetic samples extracted from archaeological and natural history samples such

as fossilised bones and mummified tissues. Ancient DNA is useful because it enables

researchers to directly study the genomes of past populations. However, ancient DNA

introduces a new set of technical challenges which we will explore and tackle in Chapter 6.

1.0.3 Thesis Road Map

Chapter 2 will introduce the biological background for this project. We will first describe

DNA in more detail and then explain the theory of evolution via natural selection. This

will lead into a discussion about patterns of selection found in DNA molecules. The

chapter will conclude with a discussion about several summary statistics which have

been designed to detect selective sweeps.

Chapter 3 will explain the mathematical theory behind machine learning. We will first

cover the fundamental concepts of supervised and unsupervised learning, classification

and regression problems, the bias variance trade-off and methods of assessing model

performance (e.g. ROC/AUC). We will then discuss several commonly used methods

in machine learning such as principal component analysis, random forests, discriminant

analysis and MARS. We will also discuss the emerging area of “interpretable machine

learning” which focuses on identifying important variables and unravelling how models

make their predictions. We will cover useful tools such as partial dependence plots, in-

dependent conditional expectation (ICE) plots and feature importance ranking measure

(FIRM) which can enable researchers to understand how their specific trained models

are working.
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Chapter 4 is a literature review on the current methods that have been developed for de-

tecting hard sweeps. We will discuss the limitations of current approaches and articulate

the knowledge gap which this project seeks to address.

In Chapter 5, we will review a suite of machine learning classifiers for detecting hard

sweeps. We will compare models based on their accuracy and computational time. We

will also investigate variables of importance to see which summary statistics are being

used by each model. We will suggest a standard machine learning based workflow for

researchers to use for detecting hard sweeps in their population of interest.

Chapter 6 will extend our methods to work with ancient DNA. We will first explain

what is ancient DNA, how it is retrieved and why it is useful. We will cover the tech-

nical challenges of ancient DNA and suggest several strategies for tackling them. The

study will be limited to a simple demographic model. After fitting our models, we will

investigate whether we can still retrieve a clear sweep signal after DNA ageing. Tools

from “interpretable machine learing” will be used to identify important variables that

are useful for detecting hard sweeps in ancient DNA.

Chapter 7 which will review the key findings of this project and explain how our work fits

into the broader field of evolutionary biology and population genetics. We will identify

future directions for research which have the potential for extending our methods to

work in more complicated demographic scenarios.

1.0.4 Accessing The Project

We wrote an R package called “popgen.tools” to process genome data and compute

summary statistics. This has been published as an open source package on Github.

https://github.com/deponent-verb/popgen.tools

The pipeline for all our analysis is also available on Github.

https://github.com/deponent-verb/popgen.analysis.pipeline

https://github.com/deponent-verb/popgen.tools
https://github.com/deponent-verb/popgen.analysis.pipeline


Chapter 2

Biological Background

2.1 Genetics

2.1.1 DNA: The Molecular Basis for Inheritance

It is a common observation that offspring often resemble their parents but the biological

mechanism for storing genetic information remained largely a mystery until the mid

20th century. In the early 20th century, many biologists considered protein to be a

likely candidate for storing genetic information since it is a complex molecule found in

all organisms. Although deoxyribonucleic acid (DNA) had already been discovered, it

was thought to be too simple to store genetic information. Proteins are long molecules

consisting of 20 naturally occurring amino acids, whilst DNA is composed of only 4

nucleotide bases. In 1952 Hershey and Chase conducted a series of experiments with

bacteriophages (viruses) to finally confirm DNA to be the molecular basis for inheritance

[2].

DNA is a long macro-molecule found in all organisms. DNA is composed of four nu-

cleotide bases (adenine, cytosine, guanine, thymine) and the entire sequence of these

bases make up a an individual’s genome. Each individual organism has its own unique

genome which can be passed down to its offspring. DNA is vital to life, being the chem-

ical blueprint for all the biological processes necessary for the development, survival and

reproduction of the organism. The most basic, functional units of DNA are called genes.

Genes contain the recipes for making important biological molecules required for the life

of the organism. Many genes encode proteins which carry out a vast array of func-

tions such as providing structure for cells, breaking down larger molecules (catabolism),

transporting molecules and speeding up biochemical reactions (enzymes). Genes can

also encode RNA which can take a number of functions in the cell.

4
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An organism’s genome is typically arranged in larger structures known as chromo-

somes.Each chromosome has its distinct combination of sequences (e.g. genes). A unique

combination of sequences on a chromosome is known as a haplotype. Different species

vary in the number of chromosomes they possess. In prokaryotes (unicellular organisms

without membrane bound organelles), the genome typically exists as a naked, circular

chromosome stored in the nucleoid region [3]. The prokaryote class is further divided

into bacteria and archae which inhabit a wide range of environments such hot springs,

soils and animal intestines.

Eukaryotic organisms possess membrane bound organelles such as the mitochondria

(responsible for cellular respiration) and chloroplasts (site for photosynthesis) [4, 5].

Multi-cellular organisms including mammals, fish, plants and fungi are all examples of

eukaryotes. Rather than having a single, naked, circular chromosome, the genomic DNA

of eukaryotes are wrapped around packaging proteins called histones [6]. This complex

of proteins and DNA is called chromatin. Chromatin ensures that DNA strands do not

become an unmanageable tangle and controls access to the genome. Organisms may also

have multiple versions of the same chromosome in their cells and the number of versions

is known as the ploidy. For example, human somatic cells (i.e. non-reproductive, body

cells such as skin cells) are diploid because they have 2 versions of each chromosome,

one paternal and one maternal. Human germ cells (sperm and egg cells) only have one

version of each chromosome and thus are haploid.

2.1.2 The Origin of Genetic Variation

Section 2.1.1 introduced DNA, the important biological molecule that contains the her-

itable information for all organisms. We will now explore how DNA is changed across

successive generations. The reproduction of any organism requires the replication of its

own genetic material. The replication process must produce high fidelity copies in order

to transmit important biological information for the next generation. Although organ-

isms have various molecular mechanisms to ensure accurate DNA replication, errors are

still possible. These errors alter the DNA sequence and are known as mutations. For

example, human germ cells have an estimated average mutation rate of ∼ 1.2 × 10−8

mutations/base pair/generation (bp−1 generation−1) [7]. Considering that the human

genome consists of over 3 billion base pairs, the expected number of mutations generated

during one round of the production of germ cells (meiosis) is ∼ 70 [8].

Humans are a case of a sexually reproducing organisms. This means that their offspring

are produced by the fusion of two gametes (germ cells); namely a sperm cell from the

father and an egg cell from the mother, each carrying its own DNA. Half of the offspring
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Figure 2.1: Diagram of three simple mutation processes.

genome comes from the paternal gamete and the other half from the maternal gamete.

In the case of sexual organisms, since the offspring’s genome is determined by the two

gamete genomes, mutations are only inherited if they occur in the gametes. Mutations

which occur in somatic cells (e.g. skin cells) may have consequences for the individual

but cannot be passed onto offspring. Asexual organisms such as bacteria reproduce via

cloning, whereby the offspring is largely a copy of the parent. For asexual organisms,

any mutation that occurs during the DNA replication process will be transmitted to the

offspring.

Fig. 2.1 is an illustration of three common mutational processes that are found across

all organisms. A point mutation occurs when a single nucleotide is substituted by one of

the other three. This variable site is known as a single nucleotide polymorphism (SNP).

An insertion occurs when a nucleotide is added to the genome, whilst the removal of a

nucleotide is called a deletion. Biologists often group insertions and deletions together,

denoting them as ”indel” mutations. There are more drastic mutations such as translo-

cations, where two different chromosomes exchange genetic material with each other.

Another example are inversions where an entire section of a chromosome is swapped

back to front. Other types of mutations are known but it would suffice to understand

that mutation is an ongoing source for new genetic diversity.

The effect of a mutation depends on its location and how it changed the original sequence.

For example, mutations in key genes are likely to be consequential because they alter

important gene products. Large scale changes such an inversion are also more likely to
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Figure 2.2: Illustration showing how chromosomes can recombine during meiosis. The
blocks represent a pair of homologous chromosomes. Blue is the paternal chromosome

and red is the maternal chromosome.

be consequential than smaller changes such as a single nucleotide substitution. Since

mutation is a random, undirected process, mutations typically have either have a neutral

or deleterious effect on the individual. The reasoning is that any functioning gene would

be reasonable optimized and adapted for its biological task. Whilst there are a virtually

infinite number of ways to alter this gene, only a small number of such changes would

actually improve its function. Thus any random change to the gene would likely either

reduce its function or keep it at the same level of effectiveness.

Nevertheless, the bulk of the genome appears to be non-functional for most species. For

example, it is estimated for humans that only ∼ 8 − 15% encode for important gene

products (e.g. proteins) [9] [10]. Consequently, the genome generally robust to change

and most mutations we observe are likely to be neutral and only a small proportion is

either deleterious or beneficial.

2.1.3 Recombination

A pair of diploid organisms reproduce sexually by fusing their gametes (sperm + egg).

Diploid individuals possess two copies of each chromosome, one paternal and one ma-

ternal. Each pair of somatic chromosomes are similar to each other and are said to be

homologous. In order to reproduce, an individual must generate its own gametes via

meiosis [11]. Figure 2.2 is an illustration of a key stage in meiosis. During meiosis,

each chromosome duplicates. The copies of the paternal and maternal chromosomes

are called sister chromatids. When homologous chromosomes align, a paternal and a

maternal chromatid can make contact and exchange their sequences in a process called

recombination. The site of recombination is random and can occur multiple times during
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meiosis. Recombination creates novel recombinant chromatids which have a combina-

tion of paternal and maternal sequences. The four chromatids later separate into four

haploid gametes. A pair of gametes merge during sex to produce a new diploid individ-

ual. Although recombination does not produce new sequences, it does shuffle sequences

around to produce more genetically diverse offspring.

2.2 Genome sequencing

Recall that DNA is stored in discrete packets known as chromosomes (Section 2.1.1).

When analysing modern samples, researchers use restriction enzymes to cut the chro-

mosomes into smaller DNA fragments. The reason is that chromosomes are usually too

large to be sequenced as single, intact units. A set of DNA fragments is known as a

sequencing library [12]. A sequencing machine sequences the library to form a set of

reads [13]. The reads refer to the DNA sequences that have been inferred from each of

DNA fragments. Read lengths vary across different sequencing platform used. Popular

platforms produced by Illumina and Life Technologies produce ∼ 200 − 300 bp reads

[14]. The Pacific Biosciences platform is well known for producing 10, 000 − 15, 000 bp

reads, although it tends to be more expensive [15].The technical workings of some pop-

ular DNA sequencing platforms can be found here [16]. Once all the reads have been

sequenced, they must be merged together to reassemble the original genome [17].

One method is to use assemble the reads using a reference genome as a scaffold [18]. A

reference genome is a DNA sequence assembled by scientists as a representative genome

for an idealised individual within a species. Since the read lengths are much shorter

than the reference genome (e.g. human reference genome is 3 billion bp [8]), it is a

technical challenge to map millions of these tiny reads onto the much larger reference

genome. Mapping algorithms have been developed which attempt to place the reads

onto the reference in order to maximise sequence similarity whilst also allowing for

small variations such as SNPs, insertions and deletions. Provided there are sufficient

high quality reads1 which span the whole genome, the entire genome of the sample can

be deduced with good confidence. The end product is an inferred genome of the sample

which is similar but not necessarily identical to the reference genome. Technical details

about various DNA mapping algorithms can be found here [17, 19, 20, 21].

1A high quality read would be one where the sequence has been inferred with high confidence. Long
reads are also beneficial because are generally easier to map to a unique location on the reference genome.
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2.3 Evolution

2.3.1 Darwin’s Theory of Natural Selection

Evolution is the change of heritable traits in biological populations over time. One of

the key breakthroughs in understanding evolution is Darwin’s theory of evolution via

natural selection. Darwin’s theory states that in any given population, there is some

variation in traits. These traits include differences in morphology (e.g. beak shape),

physiology (e.g. how a sugar molecule is broken down) and behavior (e.g. the migration

path of a bird). Traits differ in their impact on an individual’s ability to survive and

produce viable offspring. Individuals that are well adapted to the environment are more

likely to reproduce and transmit their heritable characteristics to the next generation.

This selection of adaptive, heritable characteristics is known as natural selection.

2.3.2 Case Study: Peppered Moth Evolution

A classic example for teaching natural selection is the case study of peppered moth

evolution in Great Britain [22]. The peppered moth (Biston betularia) is an insect

found in the forests of Britain. It was originally observed to be whitish grey in color

with dark speckles on its wings. During the 19th century industrial revolution, Britain

drastically increased coal burning in order to fuel its booming industry. This produced

air pollution with the surrounding regions being covered in black soot. Around this time,

a new black variant of the peppered moth emerged which were particularly common in

areas with high pollution.

Biologists theorized that the moth population was evolving in response to industrial

pollution and moth color was the trait under selection. In forests with clean air, the

trees were usually covered in lichen and were light in color. Consequently, the whitish

grey moths could camouflage whilst resting on the bark, thereby avoiding predators such

as birds. In this environment, any black moths would be easily identified and hence they

were rare. However, forests adjacent to large industrial centers were smokey and covered

in soot. This killed off much of the lichen and darkened the trees. In polluted areas, the

black moths were able to camouflage and hence had an evolutionary advantage. Hence,

evolution via natural selection could explain why moth populations became black in

response to air pollution.

Kettlewell confirmed this theory through a series of mark-release-recapture experiments

in the 1950s [23]. To establish that moth color could camouflage against predators,

Kettlewell released a combination of black and light moths into an aviary in Cambridge.
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Figure 2.3: Illustration of a selective sweep. Each line is a DNA sequence from
one sampled chromosome. Black lines are consensus sequences. Blue boxes represent

neutral mutations and the red box is a novel beneficial mutations

He observed that the birds would preferentially hunt moths which were poorly camou-

flaged against the background color. In order to demonstrate the effect of moth color in

the wild, Kettlewell captured and marked a group of light and black peppered moths.

The experiment involved releasing a batch of moths in an area and recapturing them

after several days. By comparing the proportion of light and black moths in the tagged

recaptured groups, the survival rate of each moth color could be estimated. Kettlewell

found that light moths had a higher survival rate in clean regions, whilst black moths

had a higher survival rate in polluted areas. Peppered moth populations have remained

a subject of interest in evolutionary biology and the darkening of a species in response

to pollution is called “industrial melanism.”

2.3.3 Selective Sweeps: Selection on a Molecular Level

Section 2.3.2 provided an example of how evolution via natural selection, could be ob-

served on a phenotype level. Phenotype refers to the observable characteristics of organ-

isms (e.g. color in the moth example). This section considers how selection happens on

a molecular level. Fig. 2.3 is an illustration of how selection may act on a specific, fixed

position on a chromosome. Fixed positions on a chromosome are also called genetic

loci. In this figure, each line is a genetic locus on one chromosome which belongs to

one individual organism. Since there are six lines, we are examining six chromosomes

at a particular region of interest. The black parts refer to consensus sequences where

all sampled individuals from the population have identical sequences. The blue boxes

represent areas with neutral mutations; mutations which offer neither a selective advan-

tage nor disadvantage. The red box is a novel mutation that confers a beneficial trait.

Relating back to 2.3.2, we could consider these to be moth chromosomes from industrial

England and the new mutation confers the black color. Each unique version of a genetic
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locus is called a haplotype. All six lines in the diagram have some unique mutations so

this example has six haplotypes in total.

Since the new beneficial mutation confers an evolutionary advantage, it will increase in

frequency over successive generations. In this figure, the red mutation increased from
1
6 (left panel) to 4

6 (right panel). Notice that the two neutral mutations on either side

of the selected mutation have likewise increased in frequency, despite being neutral.

The reason is that these neutral mutations were in close proximity of the beneficial red

mutation. As the selected mutation became more prevalent in the population, it also

brought along its surrounding neighborhood. This process whereby neutral mutations

increase in frequency by being nearby a selected mutation is known as “genetic hitch-

hiking” [24].

The closer a locus is to a selected mutation, the more likely genetic hitch-hiking would

occur. Section 2.1.3 explained that recombination generates new haplotypes by swapping

sequences between different homologous chromosomes. Thus in order to separate two

loci on one haplotype, there must be at least one recombination event between the

two loci. Assuming that the recombination rate is approximately constant across a

chromosome, the closer two loci are, the less likely a recombination event would occur

between them and the more likely hitch-hiking would occur. This is shown on the right

panel of Figure 2.3 where the two neutral mutations further away from the selected

mutation did not increase in frequency.

The curly brackets on the right panel indicate a region of reduced genetic variation. Prior

to selection, genetic variation was high with every haplotype looking quite different.

This is because the neutral theory provides the expectation of standing levels of neutral

genetic variation [25, Chapter 9]. Due to selection, the neutral haplotypes were replaced

by the haplotype with the selected mutation. The reduction of genetic variation near a

selected mutation is known as a “selective sweep” [26]. Selective sweeps are biologically

relevant because they reflect how a population has adapted to its environment over time.

Investigating these regions can enable researchers to unravel the underlying mechanisms

of evolution and genetics. Consequently, this project focuses on finding selective sweeps

by detecting the patterns of genetic variation caused by selection.

2.3.4 Types of Selective Sweeps

Section 2.3.3 established that beneficial mutations tend to spread across populations

and this process leaves behind patterns of genetic variation. We will now focus on two

key patterns produced by selective sweeps, namely hard sweeps and soft sweeps. Other
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Figure 2.4: Illustration of a hard sweep. Each line is a DNA sequence from one sam-
pled chromosome. Black lines are consensus sequences. Colored boxes are mutations.
Blue are neutral and red is under selection. The green cross indicates a recombination

event.

sweep patterns such as partial sweeps are known but they are beyond the scope of this

research. Our focus is to develop methods for detecting hard and soft selective sweeps.

2.3.4.1 Hard Sweeps

Figure 2.4 is an illustration of the pattern produced in a hard selective sweep. This

process is expected to occur when beneficial mutations (i.e. selected mutations) are

rare. When beneficial mutations do occur by chance, they quickly increase in frequency

and “sweep” across the population [24]. Figure 2.4 (a) depicts a population of six

individuals, each with their own haplotype. A new beneficial mutation (red box) is

formed on one haplotype and hence this haplotype is under selection. Figure 2.4 (b)

shows that the selected haplotype has increased in frequency over successive generations.

Notice that the blue neutral mutation adjacent to the red selected mutation, has likewise

increased in frequency due to genetic hitch-hiking (Section 2.3.3). Eventually every

individual =possesses the selected mutation and the linked neutral variant and thus

both mutations are considered to be “fixed.” However, recombination can result in the

fixation of linked neutral variants to be incomplete (Section 2.1.3). The green cross in

(b) indicates a recombination event which brings another, more distant neutral mutation

onto a sequence with the selected mutation. Note that the closer a mutation is to the

selected variant, the less likely this will happen. This generates an additional haplotype

under selection. Figure 2.4 (c) shows that the population is eventually replaced by

individuals who have either one of the two selected haplotypes. Since both selected

haplotypes have the same selected mutation, neither haplotype completely dominates

the population.
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Figure 2.5: Illustration of a soft sweep caused by standing variation. Each line is a
DNA sequence from one sampled chromosome. Black lines are consensus sequences.
Blue boxes are neutral mutations. The red box was previously neutral but late came

under selection.

A comparison between Figure 2.4 (a) and (c) shows the reduction of diversity caused

by a hard sweep. Recall that the population started with six haplotypes with each pair

having multiple differences between them. By the end of the sweep, only two haplotypes

remain and there is only one difference between them, namely a neutral mutation on the

right end of the genetic sequence. The process of the hard sweep has purged much of

the pre-existing variation within the neighborhood of the selected mutation. Methods

of detecting hard sweeps involve identifying regions along the genome with this drastic

drop in genetic variation.

2.3.4.2 Soft Sweeps

A more subtle pattern of selection is the soft sweep which can be produced in two

slightly different scenarios; namely via standing variation and recurrent mutation [27].

Standing variation refers to existing neutral mutations in a genetic locus. Since these

mutations are not newly generated, they had the opportunity to recombine with different

backgrounds to form multiple haplotypes. Figure 2.5 is an illustration of a soft sweep.

A soft sweep can occur when a previously neutral or mildly deleterious variant (i.e.

segregating site), comes under selection. This is typically due to environmental changes

which confer selective advantage to previously neutral traits. The selected mutation

increases in frequency and may eventually become fixed. Potentially no single haplotype

dominates the locus in a soft sweep because there are multiple haplotypes which possess

the selected mutation. However, if the frequencies of the selected variant are low prior
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Figure 2.6: Illustration of a soft sweep caused by recurrent mutation. Each line is
a DNA sequence from one sampled chromosome. Black lines are consensus sequences.
Blue boxes are neutral mutations. The red and orange boxes are mutations that come

under selection.

to selection, then only a single haplotype may be fixed due to chance alone. This would

produce a pattern similar to hard sweeps [28, 29].

Recurrent mutation occurs when multiple, different mutations happen within a single

site. Figure 2.6 is an illustration of a soft sweep caused by recurrent mutation. Recurrent

mutations produce a soft sweep when they are equally under selection. These mutations

increase in frequency simultaneously until their combined frequency in the population

reaches one. None of these mutations can fix individually because they have to compete

with the other recurrent mutations. In conclusion, both hard and soft sweeps involve

selected variants becoming more prominent in the population. The key difference is that

soft sweeps leave behind more genetic variation within the locus and thus are generally

more difficult to detect [30].

2.4 Representing Population Genetic Data

We have described how evolution can influence the genetic sequence on the molecular

level Section 2.3.3. We will now explore ways of representing genome data into suitable

forms for data analysis. Recall from Section 2.1.1 that DNA across all organisms is

composed of 4 nucleotide bases; namely adenine, thymine, cytosine and guanine. Thus

an individual chromosome may be represented as a long character string of 4 letters; A,

T, C and G. Since natural selection is a process that occurs within a population, we also

need to sample multiple chromosomes from a population for the purposes of detecting

selective sweeps. Genome data sequenced from multiple individuals in a population is

known as population genetic data. Generally speaking, the more individuals that are

present in our population genetic data set, the greater power we have for sweep detection.
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Once we have sampled our population of interest, we can align the sequences based

on their similarities. This can be represented as a string matrix where each column

is a nucleotide base and each row is a sampled chromosome. Recall Section 2.1.1 that

genomes are long thereby making the matrix very wide. For example, chromosome Y

one of the smaller chromosomes, has approximately 58 million base pairs and represents

around 2% of the human genome [31]. High dimensional data is challenging to analyse

because it requires immense computational resources. Thus we need a way of simplifying

population genetic data without losing the underlying patterns of selection which we seek

to detect.

2.4.1 SNP Data

As suggested by Figures 2.3 to 2.6, the majority of population genetic data consists

of consensus sequences (i.e. sites are non-polymorphic). Thus when comparing the

sampled genomes from a population, there are long stretches of DNA have the same

base sequence. For example, the 1000 genomes project found that a typical human’s

genome only differs from the human reference genome at ∼ 4.1 − 5 million sites [32].

This upper figure roughly corresponds to only ∼ 0.6% of the total number of base pairs.

One may reason that since consensus sequences are regions of low diversity, they must

indicate selective sweeps. However, this would be naive as there are genetic structures

that are common across individuals in a population. For example, retrotransposons are

repetitive DNA sequences commonly found across the genome [33]. Retrotransposons

are common because they can “copy and paste” themselves into new genomic locations.

This mechanism is not related to selection.

The expected number of segregating sites can be computed using the Watterson es-

timator [34]. Over a given sampled region in a population with biological mutation

rates, most sites are expected to be non-polymorphic. In short, consensus sequences

are generally uninformative in regards to detecting selection. This leaves us to focus on

the differences (i.e. mutations) between individual samples within a population. The

different variants found at any particular base pair are known as alleles.

Recall from 2.1.2 that a common form of genetic variation are single base pair differences

known as SNPs. SNP data condenses population genetic data sets by only including the

SNPs identified within a sampled population. SNP data has a number of advantages

[35]. SNPs are abundant and distributed widely across the genome. Hence, SNP data

can capture interesting selection patterns all over the genome. Due to the technicalities

of DNA sequencing methods, SNP data is easy to collect and cheap to produce. The

more samples that can be obtained from a population of interest, the more SNPs can
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Figure 2.7: Illustration of how genome data can be converted into lower dimension
SNP data. Here are 6 sampled chromosomes of length 20 bases. There are 3 SNPs in
the population. By keeping only the SNP information, we can reduce the dimensions

of the dataset by 85%.

be identified, thereby increasing the power for sweep detection. Most importantly, SNP

data reduces the dimensions of population genetic data by filtering out uninformative

consensus sequences which make up the majority of the genome. Figure 2.7 provides an

illustration of this process.

SNP data can be presented as a character matrix G and a numeric vector p. Matrix

G contains the genomes, where the columns are the SNPs and each row is a sampled

individual. The entry Gij ∈ (A, T,C,G) would be a character indicating the nucleotide

base of the ith sample at the jth SNP position. The vector p would contain the positions

of each SNP position along the genome, where pi represents the base position of the ith

column in G. Suppose the third SNP was located on the 500th base on the genome. p3

will be 500.

2.4.2 Infinite Sites Model

Section 2.4.1 explained how population genetic data can be condensed by only looking

at the SNPs identified within the population of interest. Each sample can be represented

as a string containing its nucleotide base at every SNP position. We now consider the

infinite sites model; a mutational model that is used to represent SNP data. The model

devised by Kimura in 1969 [36] makes two key assumptions. (1) For any given popu-

lation of individuals, there are an infinite number of sites (i.e.) where a new mutation

could occur. (2) Every new mutation forms at a new site, with no previous segregating
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mutations. This means that there are a maximum of two alleles for any given site along

the genome. Using this model, Kimura derived a set of useful mathematical results such

as average number of heterozygous sites per individual over some k generations and the

frequency distribution of mutants in a finite population. These results were later utilized

for building population genetic programs to simulate genome data [37].

Assumption 1 is valid as long as the number of sites L is large relative to the mutation

rate µ events per base per generation. This means the majority of sites will not be

segregating sites (i.e. there are no variants. Recall our discussion of the Watterson

estimator in Section 2.4.1.). Given that any mutant in a finite population will either fix

or go extinct in finite time, segregating sites will also be removed from the population in

finite time as well. When L � µ, the probability of a multiple mutations occurring at

the exact same site approaches 0. These assumptions are reasonable for many problems

in population genetics.

Applying the ISM to SNP data can condense population genetic data even further.

Recall from 2.4.1 that SNP data can be represented as a character matrix G and a

numeric vector of positions p. Using assumption 2, we can modify G into a numeric

matrix of 0’s and 1’s which represent the two alleles available for any segregating site.

The convention in population genetics is for 0 to indicate the older allele (ancestral) and

1 to indicate the novel allele (derived). There are a number of ways for determining

which allele should be considered ancestral. A naive method would be to assume that

the more common allele is the older one. Although this disregards the possibility that

the more common allele may be a novel mutation approaching fixation, this assumption

may be reasonable for certain population genetic problems. Neutral theory suggests that

allele age and frequency are proportional, conditioned on the presence of the allele.

A more sophisticated approach would be to use an outgroup, a population of distantly

related organisms to the population of interest [25, Chapter 3]. For example, suppose

we are studying a particular locus in a human gene that has alleles C and T. This is

known as a genetic polymorphism because there are multiple alleles at this position.

To determine the derived allele we can look at the same genetic locus of closely related

species such as gorillas, chimpanzees and orangutans. If all 3 species have the C variant,

then it is highly likely that the ancestral allele is C. This is because it is more likely for

a single T mutation to have occurred in the human lineage than it is for three lineages

to develop the same mutation independently. A full exploration of how to assign the

ancestral allele is not needed in this section. The key point for this section is that for a

sampled population of n individuals with k SNPs, the corresponding genome data can

be represented by a numeric matrix G and a numeric vector p where,
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Gn×k : Gij ∈ {0, 1} ∀ i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , k} (2.1)

pk×1 : pi ∈ {0, 1} ∀ i ∈ {1, 2, . . . , k} (2.2)

We call G as the genome matrix where Gij gives the allele of sample i at SNP j. Vector

p is vector of SNP positions where pi is the base position of the ith SNP in G. As in

Section 2.4.1, if the third column in G corresponded to the 500th base on the genome

then p3 will be 500.

2.5 Summary Statistics

Section 2.4 explained how sampled genomes from a population could be condensed into

a binary genome matrix using the infinite sites model. The rows represent the sampled

chromosomes and the columns represent the SNPs found in the sampled population.

Given that even a 1Mb region could have thousands of SNPs, genome matrices are still

too highly dimensional to be used as the raw input for most analytical tools. To ad-

dress this technical problem, population geneticists have designed a variety of summary

statistics for detecting selective sweeps. A summary statistic is defined as a scalar, real-

valued function of the data. In this context, suppose there is a sample of n individuals

with k SNPs, represented by a binary genome matrix Gn×k. A summary statistic f is

a function f : Gn×k −→ X, X ⊆ R. A useful summary statistic is one which captures

important and relevant patterns in the data. The summary statistics designed for sweep

detection come from three main classes; namely statistics based on the site frequency

spectrum (SFS), haplotype frequencies and linkage disequilibrium. We will now explore

these three classes, providing examples of commonly used statistics of each class.

2.5.1 SFS Based Statistics

2.5.1.1 Effective Population Size

Before we explore the site frequency spectrum, we must first discuss the concept of

an effective population size. The effective population size, typically denoted as Ne in

population genetics literature, is defined as the number of individuals in an idealised

population that would produce the same population genetic quantities as the actual

population of interest [25, Chapter 3]. An idealised population is a theoretical model of

a population where a number of simplifications are made for the sake of mathematical
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convenience. This would typically be understood to be a Wright-Fisher model (??)

or another similar model which assumes a constant population size, random mating,

a single mating type, neutral evolution and no overlapping generations. For example,

suppose we are studying a population of F frogs in a pond and we are interested in

the average number of pairwise differences. Suppose Ne individuals in Wright-Fisher

population will produce the same average number of pairwise differences as the F frogs.

We would then be able to say that the effective population of the frogs is Ne with

respect to the average number of pairwise differences. The effective population size Ne

can often vary substantially from the census population size F (e.g. the actual number

of frogs ). This is because real populations usually behave differently to the idealised

populations used in theoretical population genetics. Factors that affect the effective

population size include the census population size, the male:female ratio for sexually

reproducing organisms and the variance in offspring produced by each individual. A full

theoretical discussion on the factors that impact the effective population size is beyond

the scope of this chapter. It would suffice to understand that the effective population

size is an important parameter in population genetics which affects the values of various

summary statistics.

2.5.1.2 Site Frequency Spectrum

Section 2.4.1 introduced the idea of alleles which are the different genetic variants found

at any given locus. The site frequency spectrum (SFS), a.k.a allele frequency spectrum

in some literature, is defined as the distribution of allele frequencies in a given set of

genetic loci. In the context of SNP data, the genetic loci consists of all the SNPs

identified in the sampled population and the alleles can either be ancestral or derived.

For a sampled population of n individuals, the SFS can be represented by a vector

x = (x1, x2, . . . , xn) where xi is the number of derived alleles which appear exactly i

times in the sampled population. In this way, the SFS may be considered as a histogram

of derived allele frequencies. It can be shown that under a neutral model (i.e. no

selection) with constant population size, the expected SFS is given by

E[xi] =
θ

i
, 1 ≤ i ≤ n− 1, θ = 2Ne× µ (2.3)

where Ne is the population size and µ is the expected number of mutations per base

per generation [38, Chapter 4] . This results means that the bulk of the distribution

lies in the low frequency alleles. Mutations are rare and neutral mutations are unlikely

to spread across a large population by chance. An intuitive interpretation of (2.3) is

that as the mutation rate increases, the more novel variants are being produced thereby
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increasing the number of derived alleles. Similarly, the larger the effective population

size, the more diversity there is in the population which results in a greater abundance

of derived alleles.

Equation (2.3) shows that under a neutral model, the expected site frequency spectrum

is a right-skewed. Since selection acts by changing allele frequencies, it also distorts

the SFS from the expected neutral distribution [25, Chapter 9]. For example, suppose

some novel beneficial mutations are generated within a particular genetic locus. These

mutations will be under positive selection and tend to appear at higher frequencies than

neutral variants. This will skew the SFS in favor of high frequency variants compared

to the expected distribution for neutral alleles. Similarly, a set of deleterious mutations

under negative selection will appear at lower frequencies compared to neutral alleles,

thereby shifting the SFS in favor of low frequency variants. However, as we discussed

in 2.3.3, when selection changes the frequency of one allele, the surrounding alleles will

also be affected. This effect is particularly pronounced for alleles that are very close to

the selected allele in base pairs. In a selective sweep, the selected allele and those linked

to it will increase in frequency, thereby forming an excess of high frequency alleles. The

alleles not linked to the selected mutation will decrease in frequency, leading to a excess

in low frequency alleles. Thus selective sweeps produce an SFS which has an excess

of high and low frequency alleles but far fewer alleles of intermediate frequency. By

comparing the shape of observed SFS with that of the expected neutral SFS in (2.3),

one could infer whether a selective sweep has occurred in a particular genetic region. SFS

based summary statistics are designed to capture the shape of the SFS in a quantitative

manner for the purposes of inferring selection. The general idea is that a strong deviation

from the expected neutral distribution shown in (2.3), may be considered a evidence of

a selective sweep. We will now discuss two of the main SFS based summary statistics

for inferring selection; namely Tajima’s D and Fay and Wu’s H.

2.5.1.3 Tajima’s D

Section 2.5.1.2 explained how selection affects the SFS and introduced the idea of de-

tecting selection by comparing the observed site frequency spectrum with the expected

distribution under the neutral model. Tajima’s D is a test statistic designed to detect

deviations in allele frequencies from the neutral model and hence infer selection [25,

Chapter 9]. Since Tajima’s D is composed of two key components, namely θT and θw

so we will explain how to compute them first. Section 2.4.2 explained how to repre-

sent population genetic data with a binary genome matrix and a corresponding position

vector Section 2.4.2.
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Suppose we are investigating whether a particular genetic locus of B bases in length, has

been the site of a recent selective sweep. (A typical length used by researches in 1Mb

or 106 bases). We sampled n individuals and find k SNPs, giving us a genome matrix

Gn×k.

θT (also called π or Tajima’s estimator in some population genetics literature) is defined

as,

θT :=

j−1∑
i=1

dij

n(n− 1)/2
(2.4)

where dij is the number of pairwise differences between samples i and j, and n is the

number of chromosomes sampled from the population. θT is essentially the total number

of pairwise differences within the sampled population, divided by the total number of

pairs.

θw (also called the Waterson’s estimator) is defined as,

θw :=
k

n−1∑
i=1

1
i

(2.5)

where k is the number of segregating sites and n is the number of samples. Under the

infinite sites model, it can be shown that for a neutral model with constant effective

population size (standard neutral model),

E[θT ] = E[θw] = 4Ne× µ

where Ne is the effective population size and µ is the mutation rate per base per gen-

eration [25, Chapter 3]. This result means that if there is no selection in the region and

the assumptions of the infinite sites model are valid, then the computed values of θT

and θw are expected to be the same. Of course, even if the neutral model is true for

some data, the observed values of θT and θw could differ by chance alone. However, if

the two estimates are substantially different from each other, then this is evidence that

the standard neutral is not correct. One of the key potential causes for the deviation is

selection which brings us to the Tajima’s D test statistic.

Tajima’s D :=
θT − θw√

var(θT − θw)
(2.6)
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The denominator is the positive square root of the variance in θT − θw. The analytical

expression for the variance term, along with the full derivation, can be found in [39].

If the region of interest has been evolving under the standard neutral model, its com-

puted value of Tajima’s D should be approximately 0. A high negative value of Tajima’s

D indicates the region has a low number of observed segregating sites relative to the

expected number under the standard neutral model. This could be caused by a selec-

tive sweep which reduces diversity around a selected mutation. A quick reduction in

the population size (population bottleneck) can produce a similar effect by removing

individuals from the population and thereby eliminating their variants from the gene

pool. A high positive value of Tajima’s D indicate an excess of observed segregating

sites relative to the expected number. This could be caused by a declining effective

population size or balancing selection. In short, balancing selection is a special selective

process which promotes multiple alleles being maintained in a population. P-values for

Tajima’s D are typically hard to compute directly as its underlying distribution is tricky

to derive analytically. A standard approach involves simulating population genetic data

to give an approximation of the p-value. A general rule is that under no recombination,

the standard neutral model can be rejected at 5% significance if |Tajima’s D| ≥ 1.8 [25,

Chapter 9].

2.5.1.4 Fay and Wu’s H

Section 2.5.1.2 explained that under the standard neutral model, we expect very few

high frequency derived alleles and selective sweeps tend to make them more common.

By comparing the observed SFS with the expected neutral distribution, we can infer

whether a region is evolving under the standard neutral model. Fay and Wu’s H is

another SFS-based statistic which measures the excess of high frequency variants in

comparison to intermediate frequency variants [40]. It is particularly useful for regions

with low recombination rates and little genetic variation. The definition of Fay and Wu’s

H is as follows.

Let xi be the number of segregating sites where the derived allele occurs i times in the

sampled population. Let,

θH :=

n−1∑
i=1

i2xi(
n
2

)
θH is also an estimate of θ.
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Fay and Wu’s H := θH − θT

where θT is as defined in Equation (2.4) and n is the number of samples. There is

also a standardised version of H which divides by the theoretical standard deviation

under the neutral model. An H value that is approximately 0, indicates no evidence of

deviation from the standard neutral model. A statistically significant negative value of

H indicates an excess of high frequency derived alleles which may be a sign of a selective

sweep. Statistically significant positive H values suggest negative selection, whereby new

variants are being purged from the population. The i2 term within the sum means that

the largest contributors to the size θH come from high frequency derived alleles. This is

in contrast to θT which gives more weight to derived alleles of intermediate frequency.

This makes Fay and Wu’s H more sensitive to Tajima’s D in regards to detecting the

excess of high frequency derived alleles which are often caused by selective sweeps. Using

both statistics together can enhance our ability to detect selective sweeps

2.5.2 Haplotype statistics

Section 2.3.3 introduced the concept of a haplotype, unique sequences of DNA found at

a particular locus of interest. When a region of DNA is evolving neutrally, we would

expect high levels of diversity where multiple haplotypes would be present. No single

haplotype dominates the population as each haplotype is equally likely to be transmitted

to successive generations. Under a selective sweep, a selected haplotype would rapidly

increase in frequency whilst all other haplotypes are purged from the population. Haplo-

type statistics are designed capture this effect by using the haplotype proportions found

in the sampled population. Note that what mathematicians call “proportions” are often

called “frequencies” by population geneticists.

For some genetic locus of interest, suppose we sampled n individuals and identified k

SNPs. This gives us a genome matrix Gn×k. To compute the haplotype statistics from G,

we must first identify all the unique rows of G. Recall from Section 2.4.2 that the rows

of a genome matrix represent individual genomes, so the unique rows of G correspond

to the unique haplotypes found in the sampled population. Let pi be the proportion of

the ith most common row in G. The haplotype statistics h1 is defined as

h1 :=

c∑
i=1

p2
i (2.7)
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Figure 2.8: A visual representation of how the haplotype statistic h1 can be used
to distinguish hard sweeps from neutral simulations. The edges of the black squares
represent the haplotype proportions between 0 and 1. The blue shaded area represent

the value of the h1 statistic.

where c is the number of haplotypes in the sampled population [41]. The h1 statistic is

essentially the sum of the squared proportions of all the haplotypes. The h2 statistic is

similar to h1 but removes the most common haplotype.

h2 :=
c∑
i=2

p2
i = h1− p2

1 (2.8)

The h12 statistic combines the proportion of the two most common haplotypes into one.

h12 := (p1 + p2)2 +
c∑
i=3

p2
i = h1 + 2p1p2 (2.9)

The h123 statistic combines the proportion of the three most common haplotypes into

one.

h12 := (p1 + p2 + p3)2 +
c∑
i=4

p2
i = h12 + 2p1p3 + 2p2p3 (2.10)

Figure 2.8 shows how h1 can be used to detect hard sweeps from neutrally evolving

regions. Recall from Figure 2.4 that during a hard sweep, a single haplotype with the

selected mutation rapidly increases in frequency within the population. Since a single

haplotype is highly common in the population, p2
1 is large, thereby inflating the value

of the h1 statistic. However, in a neutral locus, we expect there to be many haplotypes

of low frequency, since none are more likely to be inherited than the others.This keeps

the proportions for each haplotype low, thereby giving relatively smaller values of h1
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Figure 2.9: A visual representation of how the haplotype statistics can distinguish
hard and soft sweeps. The edges of the black squares represent the haplotype propor-

tions between 0 and 1. The blue shaded area represent the value of each statistic.

compared to hard sweeps. In this way, large values of h1 in a genetic locus is a sign that

it may contain a hard sweep.

Figure 2.9 shows how haplotype statistics are expected to vary between hard and soft

selective sweeps. Recall from Figure 2.5 and Figure 2.6 that soft sweeps involve a few

selected haplotypes dominating the population. This means that the proportions of

the top few haplotypes would collectively be quite high whilst the neutral haplotypes

would have relatively low proportions. This is different to a hard sweep where the top

haplotype has the highest proportion by far. Generally speaking, neutral simulations

should have low values across all four haplotype statistics, whilst sweeps would produce

higher values in some of these statistics, depending on whether it is a hard or soft sweep.

Both hard and soft sweeps should have higher values of h1 relative to neutral loci due to

the increase proportions of selected haplotypes. This effect is more pronounced in hard

sweeps, due to the dominance of the single selected haplotype. Since the h2 statistic

excludes the proportion of the most common haplotype, hard sweeps and neutral loci

would both have low values of h2. However, soft sweeps would have relatively higher

values of h2 since there are several haplotypes which are common in the population.

The ratio h2
h1 should increase monotonically as the sweep becomes softer. This ratio is

useful for distinguishing hard and soft sweeps. The h12 and h123 statistics combine

the proportions of the two and three most common haplotypes into a single proportion.

Both statistics should have similar power for detecting both hard and soft sweeps.

To conclude, haplotype statistics have been designed to identify selective sweeps using

the proportions of haplotypes found in the sampled population. The h1 statistic is

particularly useful for detecting hard sweeps where there is a single haplotype which

dominates the population. The h2 statistic is useful for detecting soft sweeps since it
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excludes the proportion of the most frequent haplotype. The ratio h2
h1 is particularly

useful for distinguishing hard and soft sweeps. The h12 and h123 statistics are useful

for detecting hard and soft sweeps. Using the combination of these statistics enables

population geneticists to not only detect selection but to also differentiate between hard

and soft sweeps.

2.5.3 Linkage Disequilibrium Statistics

Linkage disequilibrium is a measure of the association between two different loci within

a particular population of interest. Since selective sweeps involve a small number of

selected haplotypes dominating the population, an excess of linkage disequilibrium is

known to be a signature of a selective sweep. Population geneticists have used theoretical

proofs and population genetic simulations to show that selective sweeps generate high

LD between pairs of loci that are either on the adjacent left or right regions around

the selected mutation [42]. However, the LD between one loci on opposite sides of the

selected mutation tends to remain low. This pattern on the genome motivates the use

of LD based summary statistics for detecting selective sweeps. In order to understand

the logic behind the LD statistics, we must first cover the formal definition of linkage

disequilibrium.

2.5.3.1 The Linkage Disequilibrium Coefficient

Consider a genome matrix Gn×k where n is the number of samples and k is the number

of SNPs. There are c unique rows found in G which correspond to the c haplotypes.

Let pi be the proportion of haplotypes with state 1 (i.e. derived state) in column

i : i ∈ {1, 2, . . . , k}. Let pij the proportion of haplotypes that have state 1 in both

columns i, j : i, j ∈ {1, 2, . . . , k}, i 6= j.

Select two columns A and B from G.Let fA be the proportion of rows in G which have

state 1 in column A and fa be the proportion with state 0. Similarly, let fB be the

proportion of rows with state 1 in column B and fb be the proportion with state 0.

Denote fAB as the proportion of rows with state 1 in both columns A and B. The LD

coefficient between columns A and B, DAB is defined as,

DAB := fAB − fAfB (2.11)

If columns A and B are independent of each other then fAB = pA × pB. In this case

DAB = 0 and columns i and j are considered to be in linkage equilibrium [25, Chapter
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6]. Should DAB 6= 0, then the two columns are said to be in some degree of linkage

disequilibrium. We can use this definition to compute the LD coefficient for all
(
k
2

)
column pairs in G.

This brings us to the question of how to consider whether any given LD coefficient

sufficiently deviates from 0 which would a substantial amount of LD between a given

pair of loci. We can determine the range of possible values of D by writing out D in

terms of haplotype proportions [25, Chapter 6]. Using some simple algebra and the law

of total probability, the following equations can be derived.

fAB = fAfB +D (2.12)

fAb = fAfb −D (2.13)

faB = fafb −D (2.14)

fab = fafb +D (2.15)

where fk is the proportion of rows in G with allele state k. Note that capital letter

represents a derived allele at that particular position whilst a lower case letter represents

an ancestral allele. For example fAb is the proportion of rows with state 1 at SNP A

and state 0 at SNP B. fb is the proportion of rows with state 0 at SNP B.

Consider 2.13 and 2.14. Since proportions are bounded between 0 and 1, we can deduce

that in cases where D > 0,

D ≤ min(fAfb, fafB)

By a similar logic, we can use 2.12 and 2.15 to deduce that when D > 0,

D ≥ max(fAfB, fafb) ≡ −D ≤ min(fAfB, fafb)

We can incorporate these results to modify our LD coefficient D in order to account for

the range of possible values D may take.

Definition 2.1 (Standardised Linkage Disequilibrium Coefficient).

D′ =
D

min(fAfb, fafB)
if D > 0 (2.16)

=
−D

min(fAfB, fafb)
if D < 0 (2.17)
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Since D′ is a ratio between D and its maximum value, D′ takes values between 0 and 1.

For any two columns i, j ∈ {1, 2, . . . k}, i 6= j within a genome matrix Gn×k, we define

the LD correlation coefficient,

Definition 2.2 (Linkage Disequilibrium Correlation Coefficient: r2).

r2
ij :=

D2

pi(1− pi)pj(1− pj)
(2.18)

where ps is the proportion of rows in G with state 1 in column s, s ∈ {i, j}.

Researchers have used LD measurements to infer whether a particular mutation is under

selection [43]. We will now discuss a couple of summary statistics who uses the LD

coefficient for detecting selective sweeps.

2.5.3.2 Kelly’s ZnS

Kelly’s ZnS is an LD-based summary statistic which uses the correlation between pairs

of polymorphic sites (columns in the genome matrix) within a sampled population [44].

For a genome matrix Gn×k we define,

Definition 2.3 (Kelly’s Zns).

Zns :=
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

rij (2.19)

where rij is the LD correlation coefficient defined in Theorem 2.2.

Kelly’s ZnS is the average of the r2 values across all possible column pairs in G. The

expected value of ZnS under the neutral model can be determined via simulations.

Suppose a selected mutation is present at SNP position i. The selected mutation will

carry along neighboring SNPs via genetic hitch-hiking. This increases the dij ’s where

j represents SNP columns in the neighborhood of i. Thus a selective sweep can inflate

ZnS relative to the neutral expectation.

ZnS can be confounded by high recombination rates. When recombination occurs fre-

quently, the selected mutation can quickly move onto new haplotypes. This reduces the

effect of genetic hitch-hiking, thereby reducing linkage disequilibrium across the region

and deflates ZnS . Hence, tests for selection using ZnS is confounded by recombination.
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Figure 2.10: Illustration of how the w statistic is computed on a genome matrix Gn×k.
We break the genome matrix into 2 non- overlapping blocks. The left block L consists

of the first l columns. The right block R consists of the remaining k − l columns.

2.5.3.3 ωmax

Section 2.5.3 said that hard sweeps can produce high LD between pairs of loci within

each side of the selected mutation but low LD across sides. Since Kelly’s ZnS averages

the LD correlation for all loci pairs across a region, it doe not account for this spatial

pattern. This motivates the next statistic, ωmax which was designed specifically to detect

the spatial pattern of LD generated by selective sweeps [42].

Figure 2.10 provides an illustration of how to compute the ω statistic. For a genome

matrix Gn×k, we select a column l. We partition G into left and right halves (L and R),

where L contains the first l SNPs and K contains the remaining k − l SNPs. We define

ωl,

Definition 2.4 (ωl).

ωl :=

[
(
l
2

)
+
(
k−l

2

)
]−1(

∑
i,j∈L

r2
ij +

∑
i,j∈R

r2
ij)

[l(k − l)]−1
∑
i,j∈R

r2
ij

(2.20)

Theorem 2.4 compares the LD correlation coefficient within the blocks L and R verses

the correlation between L and R. This is normalised by the number of loci pairs. Since
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a selected mutation can be anywhere within the genome, we can compute ω for every

column. ωmax is defined

Definition 2.5 (ωmax).

wmax := max
l
wl (2.21)

The logic is that the LD spatial pattern is strongest when ω is computed close to selected

mutation. For neutral regions, ωmax should be small because the LD within L and R

should be similar to that between L and R. A hard sweep produces higher LD within

L and R, thereby inflating ωmax [45].

Simulation studies have shown that ωmax is more robust to recombination compared to

statistics which average the level of LD across an entire region [42]. This is because

ωmax was designed to detect the LD spatial pattern produce by hard sweeps.

2.6 Conclusion

This chapter covered the biological background of this project. DNA is a biological

code consisting of four letters which contains the genetic information of all organisms.

Darwin’s theory of natural selection which describes how populations acquire adaptive

traits in response to environmental challenges. These ideas were brought together in our

discussion of population genetics which studies how evolution acts on the genome on a

population level. Whilst evolution can produce a range molecular patterns, we focused

on selective sweeps (particular hard sweeps) because they are the most well studied.

We then covered three classes of summary statistics (SFS, haplotype, LD) designed by

population geneticists for sweep detection. Having presented the biological problem, the

next chapter will cover the statistical background of machine learning.
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Statistical Background

3.1 Machine Learning

Machine learning refers to a broad set of statistical tools for understanding data. Data

that is put into a machine learning tool is typically called the training data set. Data

can be thought of as a set of observations where n predictor measurement(s) could be

made. Thus any data point i can be represented by a n dimensional vector xi [46,

Chapter 2]. In a labelled data set, there is an additional response measurement yi which

is associated with each observation. In statistical learning theory, the measurements xi

are known as the predictors and the yi’s are called response variables. Some machine

learning literature also call xi, feature vectors [47, Chapter 2].

Machine learning tasks can be generally divided into supervised and unsupervised learn-

ing. In unsupervised learning, the training data set consists entirely of predictor variables

(i.e. unlabelled). The goal of unsupervised learning is to find the underlying relation-

ships between the predictors and the data points. An example of unsupervised learning

is when we analyse the purchasing behaviors at a department store where each item

has been assigned to single class of which there are fifty in total. Each observation is a

vector x ∈ {0, N}50, where the ith element is the number of items purchased belonging

to class i. Based on the training data τ = {x1,x2, . . .xn}, an unsupervised method may

find distinct groups of customers who purchase certain classes of items together (e.g.

customers who buy children’s clothes also buy toys). It is generally difficult to assess

the performance of unsupervised learning because what constitutes “good” result is not

clearly specified. Consequently, unsupervised learning is typically used for exploratory

data analysis where the researcher is trying to visualize interesting trends in the data.

Commonly used methods in unsupervised learning include principal component analysis

(PCA) and hierarchical clustering.

31
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In supervised learning, the training data consists of a set of predictors x and a response

variable y. The object of supervised learning is to fit a mathematical model that relates

the predictors to the response. Models are useful for predicting the response for future

observations (prediction) and to understand the underlying relationship between the

predictors and the response (inference) [46, Chapter 2]. Supervised learning can be

divided into regression and classification problems. In regression, the response is a

continuous numeric variable whilst in classification, the response is a categorical variable.

An example of a regression problem would be to use a patient’s physical measurements

(e.g. height, weight) to predict their lung capacity. An example of a classification

problem would be to use a person’s financial information (e.g. income, savings, requested

loan amount) to predict whether they will default on a particular loan. Some common

regression methods include linear models, lasso regression and ridge regression. Common

machine learning classifiers include regularised discriminant analysis and naive Bayes.

Note that some methods such as random forests, multivariate adaptive regression splines

(MARS) and neural networks can be used for both classification and regression. The aim

of this project is to use machine learning classifiers to differentiate selective sweeps from

neutrally evolving genetic sequences. This chapter will explain the general, mathematical

theory behind machine learning, with a particular focus on classification. This will be

followed by a discussion of several machine learning methods, including both supervised

and unsupervised techniques, that are commonly used in modern data analysis. Finally,

we will explore novel techniques to investigate variable importance which is useful for

understanding how our models make their predictions.

3.2 Supervised Classification Paradigm

This section will discuss the mathematical framework behind supervised learning for

classification. For any classification task, we have a training data set T with n observa-

tions

T = {τ 1, τ 2, . . . , τn} (3.1)

= {(y1,x1), (y2,x2), . . . , (yn,xn)} (3.2)

with predictors xi = (xi1, xi2, . . . , xip), i ∈ {1, 2, . . . , n} and response variable yi =

Ck, k ∈ {1, 2, . . . ,K}. We assume there is some true, underlying relationship f : x −→
y ∈ {C1, C2, . . . , CK}. Although f is not directly observable, we can use the training data

as a guide to create a predicting function f̂ which is a functional approximation of f [48,
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Chapter 2]. The approximating function f̂ is also known as the learner in some technical

literature. The key purpose of f̂ is to take future observations x and assign them to one

of the K classes. We can measure how accurately the predictions of f̂ is matching the

training data using a loss function, Loss
(
yi, f̂(xi)

)
. Loss functions essentially compare

the learner’s prediction with the true response and different loss functions have been

developed for classification and regression problems. A simple loss function for classi-

fication is to count the number of misclasses, i.e. Loss
(
yi, f̂(xi)

)
= I

(
yi 6= f̂(xi)

)
,

where I is the indicator function.

Definition 3.1 (Indicator Function).

I
(
yi 6= f̂(xi)

)
=

0, if yi = f̂(xi)

1, otherwise
(3.3)

Since the loss function quantifies the amount of predictive error in the learner, the

optimal learner is the one which minimizes the overall training loss [47, Chapter 2]. The

task of finding the optimal learner given some training data set can be formally written

as the following optimization problem.

Definition 3.2 (Optimal Prediction Function). Let F be a function space consisting of

a family of approximating functions f : x −→ y. The optimal prediction function from

F given training data T, fFT is defined as

fFT := min
f∈F

(
1

n

n∑
i=1

Loss
(
yi, f̂(xi)

))
(3.4)

The learning component of machine learning is essentially the optimization process

whereby we explore F in order to find a function f ∈ F which minimizes the training

loss. For example in general linear models, F is the set of linear functions f : x −→ βTx

for all real vectors β of the correct dimensions. The optimal learner fFT is a linear func-

tion with the unique β which minimizes the training loss. For some simple machine

learning methods (e.g. linear regression), the optimal learner can be computed using

an analytical result. More complex machine learning methods require the application of

an optimization algorithm to find the best learner. For example, random forests have

a built in algorithm for generating an ensemble of classification and regression trees

for prediction. In overparameterized models where the number of model parameters

far exceed the number of observations in the training data set (e.g. neural networks),

the loss function is usually highly complex and multimodal. In these cases, finding the

optimal solution is computationally intractable, provided a unique solution even exists.
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Figure 3.1: An illustration of supervised learning with 2 classes. The feature vectors
x are represented by the rows of squares. The 2 classes are denoted by the colours.
The objective of machine learning is to find a suitable function f which can accurately

assign classes to new observation.

Instead researchers opt for using algorithms such as stochastic gradient descent and

backpropagation which can find a local minimum in the loss function. Recall that the

key application of machine learning is to make an accurate predictive model [49]. Thus

depending on the machine learning method chosen, it is sometimes acceptable to not

have the theoretically best model, provided the final model is sufficiently accurate when

predicting future observations. In some statistical learning literature, the optimization

procedure whereby we find the optimal learner given some training data, is also known

as “model fitting” and “model training.” After model fitting, the final learner is tested

on a new, unseen test data set. Once again, a loss function is used to compare the

learner’s predictions with the true response. It is the learner’s performance on the test

data, rather than the training data, that is used as a final evaluation of model’s predic-

tive accuracy. The reason for this is the potential of overfitting which will be discussed

in the next section.

3.2.1 Bias Variance Trade Off

At the conclusion of Section 3.2, we noted that the final learner is evaluated by using

its predictive accuracy on new, unseen testing data. One may wonder why it is not

appropriate to use the learner’s training accuracy instead. The reason is overfitting, a

phenomenon whereby a model fits surprisingly well on the training data but performs

poorly when it is used to predict novel data.

Figure 3.2 is a visual representation of how overfitting occurs. Here we have some toy

data and the task is to separate the red and blue points based on the predictor variable

x. Since there is a linear relationship between colour and x, a linear decision boundary

seems sensible. Points above a certain threshold of x will be classed as red, otherwise

they will be classed as blue. In order to maximize the training accuracy, we could place
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Figure 3.2: An illustration of overfitting. Each data point consists of a continuous
variable x and a class which is denoted by its colour (red or blue). The darker circles
represent the training data and the lighter circles represent the testing data. The green
classifier performances perfectly on the training data but performs poorly on the testing

data, relative to the orange classifier. The green classifier is overfitted.

the threshold between the closest pair of red and blue points. To prevent any bias

towards either side, the threshold may be placed equidistant between the two points.

This is known as the maximum margin classifier and is marked by the green line in

the figure. Although the green threshold has a perfect training accuracy, it has two

misclasses on the testing data. The orange line is closer towards the center of the data

points. The logic is that the blue point furthest on the right is an outlier and does

not justify moving the threshold that far away. Although the orange threshold has one

misclassification in the training data, it has a perfect accuracy on the testing data. The

green model is considered to be overfitted because it has become too reliant on following

the training data at the expense of having a higher error rate when predicting unseen

testing data. This toy example has illustrated two key points. 1. High accuracy in the

training data does not necessarily entail a high accuracy on the testing data. A high

training accuracy could simply be due to an overfitted model. 2. A model which is less

sensitive to small fluctuations in the training data can actually perform better on unseen

data, compared to overfitted models which fit the training data perfectly.

This example above is a simple illustration of bias-variance tradeoff in supervised ma-

chine learning. When training a predictive model, there are two main sources of error

which we seek to minimize. The first is the bias which refers to the error introduced

by approximating a complex real-life problem with a much simpler model [46, Chapter

2]. Models which poorly capture the relationship between the response and the pre-

dictors are said to be “underfitted.” The second source of error is the model variance

which refers to how much the model will change if we fitted it with a different set of

training data. Models for which small changes in the training data can produce large

changes in its predictions, have high variance and are said to be “overfitted.” Ideally,
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Figure 3.3: An illustration of bias-variance tradeoff. Each data point consists of 2
continuous variables (predictors) and a class (response) which is denoted by its colour
(red or blue). The purple classifier has high bias but low variance. The red classifier
has low bias but high variance. The blue classifier has moderate variance and bias, thus

is probably the best model of the three.

we would like a sufficiently flexible model which can adequately capture the underlying

relationships between the predictors and the response (low bias). The model should

also provide consistent predictions that are robust to small fluctuations in the training

data (low variance). In the context of 3.2, we want to ensure F is sufficiently rich in

functions that can model the underlying relationship. However, F must not contain

excessively complex functions as there will typically be some contrived function which

fits the training data perfectly, thereby producing an overfitted model.

Consider the classifiers in Figure 3.3. The training data indicates that there is a non-

linear relationship between the predictors (represented by the location of the points)

and the response (colour). The purple classifier tries to separate the data using a linear

decision boundary. This fails the capture the more complex curvature in the data so the

model has high bias. However, small changes in the training data will cause little change

in the overall model. Thus the model is said to be low variance. This is an example of

an underfitted model. We can also think of model variance as its flexibility, i.e. how well

the model fits the training data. The red classifier is “wiggly” and fits the training data

perfectly, making it low bias. However, its “wigglyness” means that small changes in the
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data will drastically change the model. Hence the model has high variance. This is an

example of an overfitted model. The blue classifier adequately captures the non-linear

trend among the data points without being wiggly, thereby having a good balance of

bias and variance. This model may be expected to perform better than the others as it

fits reasonably well to the training data without overfitting.

Machine learning methods differ in their degree of bias and variance. As a general rule,

flexible methods (e.g. splines, regression/classification trees) are great at fitting to the

training data, even when the underlying relationships between the predictors and the

response are complicated [46, Chapter 2]. This is achieved at the cost of producing

a higher variance model with a greater risk of overfitting. Simpler and less flexible

methods (e.g. linear models, logistic regression) have lower risk of overfitting but tend

to fit worse to training data, especially when the underlying trends in the data are

complex. Mathematically, flexible methods consider a function space F which is rich

in complex approximating functions whilst less flexible methods constrain F to more

simple functions. Overall, there is no single machine learning method that is guaranteed

to outperform all others methods across all data sets. The effectiveness of a method will

depend on the kind of data available and the underlying relationships we are trying to

model. Thus one of the challenges of supervised machine learning is to select a method

that is sufficiently flexible so as to capture all the interesting relationships in the training

data (low bias), without being too flexible so as to overfit (low variance).

3.2.2 Regularisation and Hyperparameter Tuning

3.2.2.1 Regularisation

Section 3.2.1 introduced the concept of overfitting, a phenomenon whereby a predictive

model’s high performance on the training data does not generalise to new, unseen data

sets. Flexible methods are particularly prone to this problem as there will typically exist

some contrived, complicated function which predicts the training data almost exactly.

Thus for the purposes of finding a good predictive model, the function which minimizes

the training loss may not always be appropriate. Regularisation is a mathematical

technique which addresses overfitting by adding a penalty term which punishes model

complexity [47, Chapter 2]. This technique is used improve the predictive accuracy of

the learner by reducing model variance [46, Chapter 6].

Definition 3.3 (General Form of Regularised Optimization Problem). The optimal

regularised learner for function space F , given training data T and some choice of some
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λ > 0 is defined as

fFT,λ := min
f∈F

(
1

n

n∑
i=1

Loss
(
yi, f̂(xi)

)
+ λJ(f)

)
(3.5)

where J(f) is a penalty functional and F is the function space on which J(f) is defined.

The functional J is used to penalise learners for being complex and flexible. This helps

to ensure that a balance is struck between keeping the training loss small whilst also

maintaining a simple predictive model. Ideally, we would like the model to be just

complex enough to explain the trends in the data and no more. This is known as the

principle of parsimony. λ is an example a tuning parameter (a.k.a hyperparameter), a

parameter chosen prior to model fitting which can control the learning process. As λ −→
0, the regularised learner approaches the optimal prediction function in Theorem 3.2,

which minimizes the training loss. As λ −→ ∞, the regularised learner approaches

the simplest function f ∈ F which has the smallest penalty of J(f). Different machine

learning methods each have their own set of tuning parameters to assist researchers in

finding a good predictive model.

3.2.2.2 Example: Ridge Regression

A simple example of regularisation is ridge regression which builds upon traditional linear

regression [47, Chapter 6]. Consider a training data set T = {(x1, y1), (x2, y2), . . . , (xn, yn)},x ∈
Rp. In tradition linear models, the problem is to solve

min
f∈F

{
1

n

n∑
i=1

(
yi − f(xi)

)2
}

(3.6)

where F is the space of linear functions f : x −→ βTx + β0, ∀β ∈ Rp, β0 ∈ R. In other

words, the objective is to find the unique straight linear function which minimizes the

mean squared error in the training data. Ridge regression modifies the model fitting

process by adding a penalty term

min
f∈F

{
1

n

n∑
i=1

(
yi − f(xi)

)2
+ λ ‖β‖2

}
(3.7)

where ‖.‖ is the L2 norm applied to the slope coefficients of f (i.e. the intercept term

β0 is not penalised). As λ −→ 0, the ridge solution approaches the traditional linear

model (lower bias, higher variance). As λ −→ ∞, the ridge solution approaches a flat
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Figure 3.4: An illustration of K-fold cross validation with K = 4. The numbers
represent arbitrary indices attached to each observation in the training data.

line (higher bias, lower variance). Thus the tuning parameter λ is like a dial enabling

us to tune our model in order to strike a good balance between bias and variance. The

process of selecting an appropriate set of tuning parameters is known as “model tuning”

and “hyperparameter tuning.”

3.2.2.3 Cross Validation

Section 3.2.2.1 introduced the concept of tuning parameters, a set of parameters chosen

prior to model fitting which can influence the optimization process of finding the best

learner. An important part of supervised learning is to identify an appropriate set

of tuning parameters in order to produce an accurate predictive model. A standard

method for model tuning is k-fold cross validation. Figure 3.4 is an illustration of cross

validation. K-fold cross validation involves randomly partitioning a training data set

T = {(yi,xi), i = 1, 2, . . . , n} into K approximately equal sized parts C1, C2, . . . CK ,

where Ci denotes set of observations in part i. For each partition, we fit the model on

the other K − 1 partitions and use the fitted model to predict for the part removed.

Hence, for each partition k we compute the associated loss,
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Lossk =
1

nk

∑
i∈Ck

Loss
(
yi, f̂(xi)

)
(3.8)

where f̂ is the fitted model using data with partition k removed and nk is the number

of observations in partition k. We can apply a weighted average over all K partitions to

compute an overall K-fold cross validation accuracy.

CV(K) =
K∑
k=1

nk
n
Lossk (3.9)

The cross validation loss provides an overall estimate of a model’s predictive accuracy

across the whole training set. As a general rule, this estimate is reasonably good at 10

folds [50].

Each machine learning method has its own set of hyperparameters which constrain the

complexity of the final model. Some methods such as random forests and MARS, have

multiple hyperparameters. For the purposes of hyperparameter tuning, we can construct

a regular grid of hyperparameters and compute the cross validation loss over each set

[46, Chapter 5]. We then select the set of hyperparameters which give the smallest cross

validation loss. Finally, we refit the model on the whole training data set, using our

selected set of hyperparameters. This gives us the final predictive model which can be

evaluated on the testing data set.

3.2.2.4 Conclusion: Supervised Learning

This section has provided a concise overview of machine learning. Machine learning can

be broadly divided into two categories; namely unsupervised and supervised learning.

In unsupervised learning, the training data consists entirely of predictors. The objective

of unsupervised methods is to find interesting clusters in the training data. Supervised

learning uses training data with predictors and a response variable. The objective is to

construct a predictive model to predict future observations. This is achieved by selecting

a machine learning method and fitting a model onto the training data. Most machine

learning methods have hyperparameters which control the learning process and these can

be selected via cross validation. Once the final model has been fitted, it is used to predict

new, unseen testing data in order to evaluate its predictive accuracy. Having presented
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the general framework of machine learning, we will now explore several machine learning

methods that are commonly used in modern data analysis.

3.3 Machine Learning Methods

3.3.1 Principal Component Analysis

Principal component analysis (PCA) is an unsupervised learning method used primarily

for exploratory data analysis. Suppose we have some training data T = {x1,x2, . . . ,xn},x ∈
Rp. To observe the relationships between the predictors, we may look at their pairwise

plots. For any p dimensional data, there are
(p2)
2 possible pairwise plots to consider [46,

Chapter 10]. Typically, many plots will be uninformative or will only contain a fraction

of the total information in the data set. Thus as p gets large, inspecting all the pairwise

plots becomes exhaustive and inefficient. PCA addresses this problem by finding a low

dimensional representation of the data which captures most of the underlying informa-

tion. PCA is an example of a dimension reduction method and is particularly useful for

visualizing complex data.

Principal components are normalised, orthogonal linear combinations of the predictors.

The first principal component (PC1) is the linear combination

Z1 = φ11x1 + φ21x2 + · · ·+ φp1xp ,

p∑
i=1

φ2
i1 = 1 (3.10)

which has the largest variance. The elements φ11, φ21, . . . , φp1 are called the principal

component loadings and φ1 = (φ11, φ21, . . . , φp1)T is known as the principal component

loading vector. The constraint
∑p

i=1 φ
2
i1 = 1 ensures that the φ’s do not arbitrarily large

which could result in arbitrarily large variance. φ1 is computed by solving

argmax
φ1

(
φT1 Σφ1

)
, φT1 φ1 = 1 (3.11)

where Σ is the covariance matrix of the predictors. Using the method of Lagrange

multipliers, it can be shown that φ1 is given by the eigenvector corresponding to the

largest eigenvalue of the variance-covariance matrix Σ. The second principal component

loading vector φ2 is computed by solving
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argmax
φ2

(
φT2 Σφ2

)
, φT2 φ2 = 1, φT1 φ2 = 0 (3.12)

The last constraint φT1 φ2 = 0, ensures that the principal components are orthogonal.

Subsequent principal components can be constructed by repeating this process, ensuring

that the principal components are pairwise orthogonal. For p dimensional data, up to p

principal components can be computed.

We can plot the data points using the first few principal components (e.g. PC1 and PC2)

to visualize the spread and clustering within the data. Since the principal components

are orthogonal and have been constructed to account for as much variance in the data as

possible, many interesting trends in the data would be captured by the first few principal

components. Researchers can typically decide on the number of principal components

required for visualising the data using a scree plot. The scree plot shows the proportion

of variance that is explained by each principal component. Typically the proportion of

variance explained falls off after the first few principal components. By observing the

scree plot, we can select the smallest number of principal components which explain

a sizable amount of variation in the data. In the context of supervised classification,

PCA can still be used to visualise the spread between data points of different classes.

Although the response variable cannot be used directly in the PCA algorithm, we can

colour the data points by class when we plot them by their principal components. This

provides a visual indication of how well the predictors may be separating the different

classes. Trends in the PCA plot may also inform what machine learning methods to use

for classifying the data. For example, if the classes can be separated via a linear decision

boundary then a simple method such as logistic regression may be useful. If the classes

have complex non-linear relationships with the top few principal components, then a

flexible non-linear method such as quadratic discriminant analysis may be useful. We

will now explore several classification methods commonly used in supervised machine

learning.

3.3.2 K-means Clustering

K-means clustering is an unsupervised technique which partitions N data points into K

distinct, non-overlapping clusters [46, Chapter 10]. K must be specified by the user to

start the algorithm.

Let C1, C2, . . . , CK denote the sets containing the indices of the observations in each

cluster.
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C1 ∪ C2 ∪ · · · ∪ CK = {1, 2, . . . , n} (3.13)

This means each observation is assigned to a cluster.

Ci ∩ Cj = φ∀i 6= j (3.14)

This ensures observations are assigned to exactly one cluster. A good clustering is one

which minimises the within-cluster variation. Hence, we solve

min
C1,C2,...,CK

{
K∑
k=1

W (Ck)

}
(3.15)

where W (.) is a distance function. A common choice is the squared Euclidean distance

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)2 (3.16)

where |Ck| is the number of observations in the kth cluster, p is the number of predictors

and xij is the value of the jth predictor in observation i.

The k-means algorithm starts by randomly assigning each observation to a cluster. The

following steps are iterated until there is no change in cluster assignment [48, Chapter

10].

1. Compute the centroid for each cluster. The jth cluster centroid is the vector of p

predictor means for all the observations in Cj .

2. Assign each observation to the cluster with the closest centroid. “Closeness” is

defined by a predetermined distance function, usually Euclidean square distance.

These steps reduce Equation (3.16) so convergence is assured [48, Chapter 14]. However,

the final result may represent a suboptimal local minimum and would vary depending

on the starting cluster assignment.
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Selecting a suitable K is tricky because this is an unsupervised problem. One method

is to use the silhouette value which measures how similar an observation is to its own

cluster (cohesion) compared to other clusters (separation) [51].

For data point i ∈ Ci, let

a(i) :=
1

|Ci| − 1

∑
j∈Ci,i 6=j

d(i, j) (3.17)

where d(i, j) is the distance between points i and j. The Euclidean square distance can

be used here again. a(i) measures how similar point i is compared to all other points in

its assigned cluster (cohesion). For the same point i ∈ Ci, define

b(i) := min
k 6=i

{ 1

|Ck|
∑
j∈Ck

d(i, j)
}

(3.18)

b(i) smallest mean distance between i and all the points in any other cluster except Ci.

b(i) measures the distance between i and its next closest cluster (separation).

Define the silhouette value of point i

s(i) :=


b(i)−a(i)

max{a(i),b(i)} , if |Ci| > 1

0, if |Ci| = 1
(3.19)

s(i) ∈ [−1, 1]. The score for clusters with size 1 is 0 to ensure the number of clusters is

not inflated. When s(i) ≈ 1, a(i)� b(i) meaning point i is well matched to its assigned

cluster and dissimilar from neighboring clusters (high cohesion, high separation). When

s(i) ≈ −1, a(i) � b(i) meaning i is dissimilar its assigned cluster and similar to its

neighboring cluster (low cohesion, low separation).

Let K = {2, 3, . . . , n}. To determine the k ∈ K which produces the best clustering,

solve

argmax
k∈K

{ 1

n

n∑
i=1

s(i)
}

(3.20)
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I.e. The best clustering is one where most/all the data points are well matched to its own

cluster (high cohesion) and poorly matched to its neighboring clusters (high separation).

3.3.3 Regularised Logistic Regression

Logistic regression is a supervised classification method and a specific case of a general

linear model. A general linear model consists of three parts; namely 1: a random compo-

nent with an underlying distribution, 2: a systematic component specifying a linear com-

bination of the predictors, 3: a link function which captures the relationship between 1

and 2. Consider some training data T = {(yi,xi)}, i ∈ {1, 2, . . . , N}, y ∈ {0, 1},x ∈ Rp.
In the simple case of classification with two classes, the random component would be

the response variable y indicating either a success or failure (i.e. binomial distribution).

The systematic component would be a linear model of the p predictors, β0+βTx. Ideally,

we would like a regression model p which can provide the probability of a success given

some feature vector x. Consider the standard linear model

p(x) = β0 + βTx (3.21)

The problem with this approach is that the range of p extends beyond [0, 1] and thus the

model potentially outputs invalid probabilities [46, Chapter 4]. To avoid this problem,

we need to use a link function l : x −→ [0, 1] , ∀x ∈ Rp. In logistic regression, we use the

logistic function

p(x) =
eβ0+βTx

1− eβ0+βTx
(3.22)

where p has range [0, 1]. Algebraic manipulation gives

log
( p(x)

1− p(x)

)
= β0 + βTx (3.23)

The quantity p(x)
1−p(x) is known as the odds and always takes values within [0,∞]. Small

odds values (i.e. close to 0) indicate high probability of failure whilst large odds indicate

a high probability of success. The standard method for fitting a logistic regression model
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is to solve for the set of β coefficients which maximize the log-likelihood function [48,

Chapter 4].

max
β∈Rp,β0∈R

{
N∑
i=1

(
yi(β0 + βTxi)− log(1 + e(β0+βTxi))

)}
(3.24)

The log-likelihood function is assumed to be binomially distributed with parameter p(x).

max(f) ≡ min(−f) for any function f. Thus if we were to express this using the form in

Theorem 3.2, then we would be minimising the negative of the log-likelihood function.

The β coefficients can be computed using the Newton-Raphson algorithm for finding

roots.

Regularised versions of logistic regression add a penalty term

max
β∈Rp,β0∈R

{
N∑
i=1

(
yi(β0 + βTxi)− log(1 + e(β0+βTxi))

)
+ λJ(β)

}
(3.25)

where λ ≥ 0 is a tuning parameter and J is a penalty function applied to the slope

coefficients β. For example, in lasso regression, J is the L1 norm and in ridge regression

J is the L2 norm. Mixed penalties combine lasso and ridge regression together and have

an addition tuning parameter p ∈ [0, 1]. p controls the proportion of the penalty placed

on the L1 norm as opposed to the L2 norm [52, 53]. Coordinate descent methods can

efficiently solve for these coefficients for a grid of λ values.

The logistic model can be generalised to classify > 2 classes although that technique

is no longer in common use [46, Chapter 4]. The main reason is simply because there

are other methods such as linear discriminant analysis (LDA) which perform better in

multi-class scenarios. (Having said this, some authors comment that LDA and logistic

regression typically give similar results, even in multi-class scenarios [48, Chapter 4])

We will explore LDA and other discriminant techniques later in this chapter.

Overall logistic regression is a simple and computationally quick method for supervised

classification. Although it can be generalised to classify > 2 classes, researchers typically

use it for the supervised learning with 2 classes. In addition to being a good predictive

model, it can also be used to make inferential statements about the predictor terms

[48, Chapter 4]. This is done by inspecting the p-values of the slope coefficients and

checking for statistical significance. The logistic model is also mathematically simple,
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enabling researchers to discern the relationship between the predictors and the response

variables.

3.3.4 Random Forests

Random Forests is a tree-based supervised learning technique that can be used for both

regression and classification. Due to the nature of this project, we will focus on how

random forests work in a classification context. Nevertheless, the same theory applies

to the regression context with some minor adjustments. Before we explain the random

forest algorithm, we must first discuss how classification trees are built.

3.3.4.1 Classification Trees

The general intuition of classification trees is to successively split the predictor space

into rectangular regions where each region largely consists of observations belonging to

the same class. Consider some training data T = {(yi,xi)}, i ∈ {1, 2, . . . , N}, y ∈
{C1, C2, . . . , Ck}, x ∈ Rp.. Building a classification tree roughly involves two steps [46,

Chapter 6].

1. Divide the predictor space x ∈ Rp into J distinct, non-overlapping, rectangular

regions {R1, R2, . . . , RJ}.

2. Every observation in Rm, m ∈ {1, 2, . . . , J}, will have predicted class probabilities

based on consensus votes of the Nm training data points in Rm. Specifically, let p̂mk be

the predicted probability that an observation in Rm is of class k. This will be given by

the expression

p̂mk =
1

Nm

∑
xi∈Rm

I
(
yi = k

)
(3.26)

where I(.) is the indicator function found in Theorem 3.1. The final class prediction for

any observation x ∈ Rm, k(m) is given by

k(m) = argmax
k
{p̂mk} (3.27)

The objective is to find the regions R1, R2, . . . , RJ which minimize
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J∑
j=1

∑
i∈Rj

Loss(yi, k(j)) (3.28)

Although the misclassification rate can be used here, it is not sensitive enough to con-

struct good classification trees [46, Chapter 8]. A common loss function to use for

constructing trees is the Gini index.

G =

K∑
k=1

p̂mk(1− p̂mk) (3.29)

where we measure the total variance across each class k. A useful property of the Gini

index is that it only takes on small values when all the pmk’s are close to 0 or 1. In the

case of classification trees, this would require each region {R1, R2, . . . , RJ} to mostly

contain observations of the same class. Since a classification tree can have an arbitrary

number of splits, one class may be the majority class across multiple regions.

This brings us to the question of how to best split the predictor space into J so as to

minimize the training loss. Unfortunately, for most real supervised learning problems,

the predictor space is large and there are many training data points. Thus it is often

not computationally feasible to consider all the possible ways to split the data into J

rectangular regions. A standard method for building a tree is to use the recursive binary

split algorithm. All observations in the training data start off at the top of the tree. We

make the split along a predictor j at cutoff s

R1(j, s) = {x|xj < s} (3.30)

R2(j, s) = {x|xj ≥ s} (3.31)

minimising

∑
i:xi∈R1(j,s)

Loss(yi − ŷR1) +
∑

i:xi∈R2(j,s)

Loss(yi − ŷR2) (3.32)

where ŷRj is the most common class in region j. The algorithm recursively splits these

regions using the same rule, until a stopping condition is met (e.g. sufficient splits have
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been made). Although the recursive binary split algorithm is fast, it only ever finds the

best split at each step. It does not look ahead into subsequent steps to see if forgoing

the best split at one step could enable more accurate splits later on. This is a practical

example to show that it is not always feasible to find the optimal learner (Theorem 3.2)

due to computational constraints.

A major advantage of classification trees is that they are simple to explain and fol-

low. A picture of a decision tree is easier for non-mathematicians to understand and

interpret, compared to many other models in machine learning (e.g. regularised logistic

regression). Some even argue that decision trees resemble human decision processes and

hence are more intuitive [46, Chapter 8]. Unfortunately, classification trees are prone

to overfitting and produce highly variable results. Hence, they are inaccurate predictive

models compared to other machine learning techniques. This motivates the random

forest algorithm which aims to overcome this major limitation in classification trees.

3.3.4.2 Random Forests

As discussed in Section 3.3.4.1, a major limitation of classification trees is they tend to

overfit and suffer from high variance. This means that small perturbations in the training

data can result in radically different trees, thereby producing inconsistent predictions.

Consider a set of n independent random variables {X1, X2, . . . , Xn} with variance σ. It

can be shown that the average of the values, X̄ has variance σ
n [46, Chapter 8]. Hence,

one way to reduce the variance of a statistical learning method is to take many training

data sets, fit a separate model on each set and predict based on a majority vote among

all the fitted models.

Due to practical considerations, we typically do not have multiple training data sets.

Partitioning the data into smaller sets is also not desirable, as we need to have suffi-

cient data to train a good predictive model. Instead, in a training data set T with n

observations, we construct a “new” training set T∗ by taking random samples from T

with replacement. This technique is known as bootstrapping and the “new” training

data produced are called bootstrap data. We can construct B bootstrap data sets and

fit a separate tree on each one. The prediction from the final model will be the most

common classification among the trees.

f̂bag(x) = argmax
x

|{c ∈ P |x ∈ c}| (3.33)
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where P = {f̂1∗(x), f̂2∗(x), . . . , f̂B∗(x)}, f̂ i∗ is the tree fitted on the ith bootstrap data

set. This technique is known as bagging and offers a substantial improvement in accuracy

by using hundreds/thousands of trees in the final model.

A key problem of bagging is that the ensemble of trees are highly correlated due to

the common tree building procedure and the same data points appearing across the

bootstrap data sets. Recall that the standard recursive binary split algorithm considers

the entire predictor space and makes the split which leads to the greatest reduction in

training loss (Section 3.3.4.1). When a strong predictor is present, it will typically be

used in the top splits despite minor differences in the bootstrap data set. This causes the

trees to look similar and make their predictions are highly correlated. When a strong

predictor is present in the training data, bagged trees do not substantial improvement

from standard classification trees as the reduction in variance would be small. The

random forest algorithm improves on bagging by decorrelating the ensemble of trees.

This is achieved by altering the tree building process. Instead of considering the entire

predictor space, only a randomly sampled subset of the p predictors may be considered

when making each split. On average, p−mp if the splits would not even be able to consider

the strong predictor, thereby making the trees more diverse [46, Chapter 8]. Overall, the

random forest method improves on classification trees by reducing the model variance,

even when a few strong predictors are present in the training data.

3.3.5 MARS: Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) is a supervised technique that was

initially designed for regression. MARS is a non-parametric technique because unlike

logistic regression, its predictors do not take a predetermined form in the model. MARS

has been shown to be well-suited for high dimensional problems where the number of

predictors is large [48, Chapter 9]. Consider some training data T = {(yi,xi)}, i ∈
{1, 2, . . . , N}, y ∈ {C1, C2, . . . , Ck}, x ∈ Rp. The MARS model has the form

f̂(x) =

k∑
i=1

ciBi(x) (3.34)

for some constants ci ∈ R , ∀i ∈ {1, 2, . . . , k} and some basis functions B. Each basis

function Bi(x) is either a constant, a hinge function or a product of multiple hinge

functions. A hinge function has the general form
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max(0, xi − t) or max(0, t− xi) (3.35)

where xi is a predictor in training data, t ∈ R. t is known as the knot in a hinge function.

We then form a collection of basis function pairs for each predictor xj , using their N

observed values xij as knots

C = {max(0, xi − t) , max(0, t− xi)} (3.36)

where i ∈ {1, 2, . . . , p} and t ∈ {x1j , x2j , . . . , xNj}.

Assuming that observed values at each predictor are unique, there would be Np pairs

of basis functions. A common algorithm for constructing a MARS model is the forward

pass algorithm. Forward pass starts with a null model containing only an intercept term,

hx = 1. The pairs of basis functions in C are candidate functions which could be added

to the model M. At each step, we add to the model M a term of the form

βM+1hl(x)×max(xj − t) + βM+2hl(x)×max(t− xj), hl ∈M (3.37)

which produces the greatest reduction in training loss. The constant coefficients βM+1, βM+2

are estimated via ordinary least squares. This step is repeated until the reduction in

training loss is below a designated threshold or the maximum number of model terms

has been reached.

Although MARS was originally designed to be a regression technique, it can be gener-

alised for classification problems. One technique is to fit an initial MARS model and

extract the basis functions [54]. We can then fit a generalised linear model relating the

response to the basis functions. For example, in a classification problem with 2 classes,

we can fit a logistic function which constrains the output probability to be within [0, 1].

This is similar to the technique explained in Section 3.3.3. There is also a variant

of MARS called PolyMARS which uses the multinomial logistic model framework to

conduct classification with > 2 classes [46, Chapter 9].
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3.3.6 Discriminant Analysis

Discriminant analysis are a class of supervised learning techniques based on the Baye’s

Classifier [46, Chapter 4]. Under a geometric interpretation, discriminant analysis sep-

arates data using decision boundaries. A decision boundary partitions the predictor

space into non-overlapping sets, one for each class. Predictions are made according to

which partition the input predictor vector is locate within. First we will cover the Bayes’

Classifier.

3.3.6.1 Bayes’ Classifier

The Bayes’s classifier attempts to minimize the probability of misclassification by using

Bayes’ theorem [46, Chapter 4]. Consider a general classification problem with K classes.

Let fk(x) be the probability that the input feature vector x is of class k. According to

Bayes’ theorem,

P (Y = k|X = x) =
πkfk(x)
K∑
i=1

πifi(x)

(3.38)

where Y is the response, X is the feature space and πi i ∈ 1, 2, . . . ,K is the prior prob-

ability that a randomly chosen observation of class K. (In Bayesian statistics, the prior

probability refers to the researcher’s prior belief about the distribution of an uncertain

quantity.) The Bayes’ classifier assigns a class to the predictor vector x by finding the

class k which maximizes fk(x). For most real world problems, fk(x) is unknown and

assigning prior probabilities πk for each class can be tricky. Discriminant analysis meth-

ods use estimates of these quantities and plug them back into Bayes’ theorem in order

to make predictions.

3.3.6.2 Linear Discriminant Analysis

Consider the general case of classification with K classes and a p-dimension predictor

space. Denote the response variable as y and the predictors as x. Linear discriminant

analysis (LDA) assumes

xk = (x|y = k) ∼ N(µk,Σ) (3.39)
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where N is the multivariate normal distribution. This means each class is assumed to

have the same covariance matrix of the predictors Σ. Let fk(x) := P (Y = k|X = x),

then

fk(x) =
1

(2π)p/2
√
|Σ|

exp
(
− 1

2
(x− µk)TΣ−1(x− µk)

)
(3.40)

We can substitute this result back into Baye’s classifier (Equation (3.38)), rearrange

terms and take the log to get obtain the discriminant function

δk(x) = xTΣ−1µk −
1

2
µk

TΣ−1µk
T + log(πk) (3.41)

The discriminant function is a linear combination of predictors which can classify data

into different groups. In LDA, we use the estimates

µ̂k =
1

nk

∑
i:yi=k

xi (3.42)

Σ̂ =
1

n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)(xi − µ̂k)T (3.43)

π̂k =
nk
n

(3.44)

where nk is the number of observations in class k and n is the total number of ob-

servations in the training data set. Notice that a key assumption in LDA is that the

covariance matrix Σ is constant across all the groups. LDA makes predictions by finding

the class k which maximizes the value of the discriminant function, i.e.

argmax
k
{δk(x)} (3.45)

where x is the input predictor vector.

Geometrically, the discriminant function corresponds to a decision boundary in the pre-

dictor space [55, Chapter 12]. New data is classified using its location relative to the
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decision boundaries. As the discriminant function is a linear function of x, the corre-

sponding decision boundaries are also linear. Hence, the name of this technique is linear

discriminant analysis.

3.3.6.3 Quadratic Discriminant Analysis

Recall that LDA assumes that all groups share the same covariance matrix for the

predictors. Quadratic discriminant analysis (QDA) relaxes this assumption so that each

group can have its own covariance matrix.

xk = (x|y = k) ∼ N(µk,Σk) (3.46)

Using a similar derivation as LDA, we get the QDA discriminant function

δk(x) = xTΣ−1
k µk −

1

2
µk

TΣ−1
k µk

T − 1

2
xTΣ−1

k x− 1

2
log|Σk|+ log(πk) (3.47)

Σk is estimated using the observed covariance matrix for the observations of class k.As

before, predictions are made by finding the class which maximises δ for the input vector.

The discriminant function is a quadratic function of x, hence the name quadratic dis-

criminant analysis. Geometrically, the discriminant function produces a quadratically

curvilinear decision boundary in the predictor space [55, Chapter 13].

Comparing LDA and QDA, QDA is more flexible at the expense of having higher vari-

ance. For k class problem with a p-dimension predictor space, LDA estimates p(p+1)
2

parameters for Σ whilst QDA estimates kp(p+1)
2 parameters for all the Σ’s. Having more

parameters enables QDA to fit the training data more effectively, whilst having a greater

risk of overfitting. Overall, QDA tends to outperform LDA when the different classes of

data points cannot be sufficiently separated by a set of linear decision boundaries.

3.3.6.4 Regularised Discriminant Analysis

Recall that discriminant analysis refer to class of techniques which attempt to minimise

the misclassification rate using decision boundaries. LDA separates data using linear

boundaries (i.e. hyperplanes) and the more flexible QDA uses quadratic boundaries. For
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some classification problems, a better classifier could be achieved using decision bound-

aries that are somewhere in between a hyperplane and a quadratic surface. Regularised

discriminant analysis (RDA) was designed to be a bridge between LDA and QDA. RDA

uses the following covariance matrix

Σl(λ) = λΣl + (1− λ)Σ (3.48)

where λ ∈ [0, 1] is a tuning parameter,Σl is the covariance matrix for class l and Σ is

the pooled covariance matrix across all classes. Σ is then allowed to morph between the

observed covariance matrix across all classes and another matrix which assumes that all

the predictors are pairwise independent.

Σ(γ) = γΣ + (1− γ)σ2I (3.49)

where σ2 is the common variance across all predictors and γ ∈ [0, 1] is a tuning parame-

ter. When λ = 0, γ = 1 the model is equivalent to LDA and when λ = 1, γ = 1 the model

is equivalent to QDA. When working with high dimension data, it is difficult to visualise

what kind of decision boundary would be suitable. Since RDA is computationally fast,

the standard practice is to tune over different values of λ and γ, and select the best set

of hyperparameters using cross validation.

3.4 Model Assessment

Most machine learning classifiers can produce a soft classification, i.e. it assigns a

probability that an observation is of any particular class. New data are predicted to be

of a particular class based on a chosen cutoff point. Consider a classification problem

with 2 classes (success or fail) and some learner g. Since g can provide a soft classification,

we can arbitrarily set the cutoff to be 0.5. Thus a new observation x is predicted to be a

success if g(x) ≥ 0.5 and a failure otherwise. There are two possible outcomes for each

prediction; either the prediction is correct or incorrect. We can lay out the predictive

performance of our model using a confusion matrix (see Figure 3.5). A confusion matrix

enables researchers to visualise how well a model’s predictions matches the true response.

Ideally, we want to maximize the diagonal elements (TN,TP) whilst minimizing the off-

diagonal elements (FN,FP).
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Figure 3.5: A general confusion matrix.

A variety of summary statistics exist for capturing the information within confusion

matrices. Two common statistics are the false positive rate (FPR) and the true positive

rate (TPR):

FPR :=
FP

FP + TN
, (3.50)

TPR :=
TP

TP + FN
. (3.51)

In statistics, the TPR is also called statistical power. The 0.5 cutoff is arbitrary and we

could theoretically use any cutoff ∈ [0, 1]. Each cutoff could produce a different confusion

matrix and hence different FPRs and TPRs. Generally a good predictive model will have

a low FPR and a high TPR. A receiver operator characteristic curve (ROC) is created

by plotting the TPR against the FPR at various cutoff points. The specific algorithms

used for this can be found in [56]. The ROC curve is a useful visual tool for evaluating

the predictive performance of machine learning classifiers.

Figure 3.6 is an illustration of a general ROC curve. The point (0,0) represents the clas-

sifier never making a positive prediction (i.e. cutoff is 1). When no positive predictions

are made, the FPR is 0 at the expense of having a TPR of 0. When the classifier always

returns a positive result (i.e. cutoff is 0), all positive responses will be detected (TPR

= 1). This comes at the cost of misclassifying all negative cases, thereby producing a

FPR of 1. This strategy of classifying all cases as positive corresponds to point (1,1)

on the ROC curve. The diagonal line represents a classifier that is making entirely ran-

dom predictions. Accurate models have ROC curve that is close to the top left hand

corner because this indicates that the model has a high TPR and a low FPR. We can

measure how accurately a model discriminates between two classes using the area under

the curve (AUC). A purely random model has an AUC of 0.5 and the maximum AUC

for any model is 1. AUC is a useful metric for comparing the predictive accuracy of

different machine learning classifiers.
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Figure 3.6: An ROC curve produced using the two class example in the yardstick
R package.

3.5 Interpretable Machine Learning

Supervised learning uses labelled training data to create a predictive model that can

map a feature vector x to some response variable y. Different machine learning methods

have their own way of fitting a model to the training data. The predictive accuracy

of the final model can then be assessed using ROC and AUC (Section 3.4). However,

a model’s ability to accurately predict future observations is not the only concern of

statistical modelling. Another important consideration is understanding the cause of a

model’s decision. This involves understanding why a specific model was fitted and how

the predictions are made. This is known as model interpretability. In general, model

interpretability is important for the following reasons.

1. Without model interpretability, our models are essentially “black boxes” where there

is no clear connection between the input data and the predicted response. Blindly fol-

lowing these models can be dangerous because the model may have learnt inappropriate

patterns from the training data which do not generalise to real world scenarios. For ex-

ample, suppose we were designing computer vision software to classify different breeds

of cattle using photographs. We would want to ensure that the classifier is making pre-

dictions based on the appearance of the individual beasts rather than unrelated objects

in the background (e.g. a tractor, the colour of the grass).
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2. Model interpretability can enhance our understanding of the research problem and

our data. This can help us know when a model may fail [57, Chapter 2].

3. Sometimes the predictions of a model are used for impactful decisions where an

explanation is desirable or even required. For example, a bank may use supervised

machine learning to predict whether a client will default on a loan. When a loan is

declined, the client may wish to know why so that they can improve and be successful

in future applications.

Recall that supervised learning tries to estimate a model f which captures the underlying

functional relationship between the predictors x and the response y. Hence, another way

of framing model interpretability is understanding the effect that individual predictors

have on the predicted response. The more a model relies on a particular predictor to

output a response, the more important that predictor is for the model. This concept is

known as variable importance. Some machine learning models have their own model-

specific metric for variable importance. For example, in general linear models, we can

measure a predictor’s importance using the absolute value of its t-statistic [58]. In

classification trees, we can look at all the internal nodes where a predictor of interest x

was chosen for a split. The importance of x is the total reduction of misclassification

rate produced by these internal nodes. Although model-specific metrics are useful for

interpreting their respective models, there are two key limitations with this approach.

1. Model-specific metrics are not comparable across different machine learning methods.

2. Many machine learning methods lack standard ways of measuring variable importance

(e.g. k-nearest neighbors) [57, Chapter 4].

This makes it difficult to compare models produced by a range of different machine

learning methods. Thus there is a need for a standard method of measuring variable

importance which is model agnostic. Variable importance metrics is an emerging area of

research in data science and machine learning. It is part of an ongoing effort in developing

interpretable machine learning tools. We will now cover several model agnostic methods

for determining variable importance which can help us understand our predictive models.

3.5.1 Partial Dependence Plots

A partial dependence plot shows the marginal effect of one or two chosen predictors

on the predicted response of a machine learning model [58]. Consider a model f̂ :

x −→ y, ∀x ∈ X, where X is a p dimensional feature space and y is some response

variable. Let P be the full set of predictors of X. We select some predictors of interest

S ⊆ P which corresponds to a feature vector xs. In practice, researchers typically pick
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Figure 3.7: Partial dependence plots for a numeric and categorical predictor in a
logistic regression model using the Palmer penguins data set [1]. The predicted response

“yhat” is the predicted log odds of a penguin belonging to the Adelie species.

two predictors at most although choosing only one predictor is not uncommon. The

set of remaining predictors is C ⊆ P \ S with a corresponding feature vector xc. The

feature vectors xs and xc are orthogonal and together make up the feature space X (i.e.

xs + xc = x ∈ X, ∀xs,xc).

We define the partial dependence of the response on xs

fxs(xs) := Exc [f̂(xs,xc)] =

∫
xc

f̂(xs,xc)dP (xc) (3.52)

where f̂(xs, xc) is the prediction for feature vector x = xs+xc and P (xc) is the marginal

probability of xc. We estimate fxs(xs) using

f̂xs(xs) =
1

n

n∑
i=1

f̂(xs,x
i
c) (3.53)

where n is the number of training data points and xic are the values of the non-selected

predictors on the ith data point. This estimates the effect of xs on the predicted response

by averaging out the effects of xc. This technique is known as Monte Carlo integration

[59]. Pseudo code for generating the partial dependence function can be found in [58].

So how do we use partial dependence plots? Figure 3.7 are examples of partial depen-

dence plots for numeric and categorical predictors respectively. The underlying model
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is a logistic regression model predicting the log odds that a penguin is of the Adelie

species. Recall that the purpose of a partial dependence plot is to show the marginal

effect that a predictor has upon the predicted response. The negative relationship be-

tween “yhat” and body mass means that when we average out the effects of all other

predictors, the heavier the penguin the less likely that it belongs to the Adelie species.

The partial dependence plot for the island variable shows that Adelie penguins are most

common on Dream and Biscoe islands and are far less common on Torgensen island.

A flat partial dependence plot would indicate that a predictor has little effect on the

predicted outcome. This would suggest that the predictor has low importance.

A key advantage of partial dependence plots is that they are an intuitive tool for under-

standing machine learning models. The partial dependence plot of a predictor xp shows

the average prediction when we force all the training data to take a particular value of

xp [57, Chapter 5].

A key assumption of partial dependence plots is that there is no correlation between the

predictor of interest xs and the rest of the predictors xc. Should xs and xc be highly

correlated then the pdp algorithm will consider unrealistic data points when computing

the partial dependence function. For example, suppose we have a model to predict the

lung capacity of patients using their height and weight. The training data has ranges

130-185cm for height and 40-85kg for weight. To compute the value of the partial

dependence function of height at 180cm, the algorithm has to average over the marginal

distribution of weight which includes 40kg. However, a 180kg individual that weighs

only 40kg is unrealistic so the algorithm is extrapolating at this point. Heterogeneous

effects may also be obscured by partial dependence plots. Suppose for half the data, xs

has a positive relationship with the predicted outcome but has a negative relationship

for the remaining half. The output partial dependence plot will be relatively flat because

pdp algorithm looks at the average effect that a predictor has on the predicted response.

It would be naive to conclude that xs is unimportant for the model. Rather xs can

have a different effect on the prediction depending on the values in xc. In the next

section, we will now explore a technique that builds on the partial dependence plot

and is more sensitive to heterogeneous effects. However, the limitation of correlated

predictors remain.

3.5.2 Independent Conditional Expectation

Partial dependence plots show the average relationship between selected predictors xs

and the predicted outcome ŷ. We will focus on the case where |S| = 1 (i.e. only one

selected predictor at a time) because that is the standard practice. For any given training
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data, the pdp for some feature xs is a single line showing the average predicted response

as a function of xs. Independent conditional expectation (ICE) plots show a single line

for each observation in the training data [57, Chapter 5]. Each line depicts the predicted

response as a function of xs conditioned on an observed xc [60]. For any fixed value of

xs, there are up to N different values of xc across the N observations in the training

data. The lines of the ICE plot show the different conditional relationships between xs

and ŷ at different values of xc. Hence, ICE plots can provide more insight than partial

dependence plots when heterogeneous relationships are present. The partial dependence

plot of a predictor xs is the average of all N lines in the corresponding ICE plot.

The ICE curve for observation i is defined as

ˆICE
(i)

f̂ ,s
(xs) := f̂(xs,x

(i)
c ) (3.54)

where xs is a predictor of interest and x
(i)
c are the values of the remaining predictors for

observation i [59]. The key difference between Equation (3.54) and Equation (3.52) is

that the ice curve is conditioned on a fixed xc whilst the pdp averages over all values of

xc. The pseudo code for computing ICE curves can be found in [60]. In summary, the

process involves permuting xs with a grid of values g = (g1, g2, . . . , gn). This generates

a new set of n feature vectors gj = (gj ,x
i
c) , j ∈ {1, 2, . . . , n}. For each gj , we use our

machine learning model to output a predicted value yj . The ICE curve for observation

i consists of the set of points {yj , gj} , j ∈ {1, 2, . . . , n}. The ICE plot is produced by

computing the ICE curve for every observation in the training data.

Let’s return to our illustrative example of using a logistic regression model to predict

whether a penguin is of the Adelie species in the Palmer penguins data set [1]. The left

panel of Figure 3.8 is an ICE plot for bill length. All the ICE curves show that past a

certain point, increases in bill length are associated with a higher predicted log odds for

a penguin being an Adelie penguin. The precise point at which bill length starts to affect

the prediction varies across the different observations in the training data. The red line

corresponds to the partial dependence plot (average of all the ICE curves), which shows

that on average, longer beak lengths are associated with higher log odds for an Adelie

classification. This shows that there is no heterogeneous effect between beak length and

the predicted outcome of the logistic model. The right panel of Figure 3.8 is an ICE

plot for sex. The faint lines shows that sex does decrease the predicted log odds for

some observations in the training data. The two solid black horizontal lines show that

for the vast majority of the observations, sex does not change the prediction. Hence, the

red line (partial dependence plot) for sex is flat. This makes sense because we wouldn’t
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Figure 3.8: ICE plots for bill length (mm) and sex for a logistic regression model fitted
on the Palmer penguins data set [1]. The predicted response “yhat” is the predicted
log odds of a penguin belonging to the Adelie species. Each faint line is the ICE curve
for an individual observation. The black lines are produced by multiple overlapping
faint lines. The red line is the average of all the ICE curves (i.e. the partial dependence

plot).

expect to be able to predict whether a penguin is of the Adelie species based on its

gender unless there was a substantial sex bias in the training data.

The main advantage of ICE is that it can unravel heterogeneous relationships between

predictors and the predicted outcome. It is arguably more intuitive than partial depen-

dence plots because each ICE curve depicts how the prediction would change we as vary

a selected predictor [57, Chapter 5]. However, ICE curves can become overcrowded if

the training data has many observations. In those instances, researchers could down-

sample the data for the purposes of computing ICE plots. Similar to partial dependence

plots, the ICE method still assumes that the predictor of interest is independent of the

remaining predictors. If there is a strong correlation, some points in the ICE curves may

be invalid because the ICE algorithm considered invalid data points.

3.5.3 FIRM Method

We have now explored two visual tools (ICE and pdp) for understanding how predictors

affect the predicted outcome for any supervised machine learning model (Section 3.5.1,

Section 3.5.2). We will now discuss a model agnostic method for quantifying variable

importance which can improve model interpretability and assist model comparison. Re-

call from Section 3.5.1 that a partial dependence function shows the marginal effect

of a selected predictor on a model’s predicted response. The feature importance rank-

ing measure (FIRM) quantifies the variable importance using the flatness of the partial
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Figure 3.9: A bar chart of variable importance (FIRM method) for a logistic regression
model fitted on the Palmer penguins data set [1]. The model predicts the log odds of

a penguin being of the Adelie species.

dependence function. The logic is that a predictor is important in a model if small per-

turbations in the predictor produce large changes in the predicted response. Hence, an

important predictor is expected to have a variable pdp whilst an unimportant predictor

would have a flat pdp.

For continuous variables, the FIRM for a predictor xs is defined as

i(xs) :=

√√√√ 1

k− 1

k∑
i=1

(
fxs(xsi)−

1

k

k∑
i=1

fxs(xsi)
)2

(3.55)

where fxs is the partial dependence function of xs and xsi is the value of xs in the ith

observation in the training data. Inspecting Equation (3.55), we see that the FIRM

importance of xs is the standard deviation of the values in its partial dependence plot.

For categorical variables, the FIRM for a predictor xs is defined as

i(xs) :=
1

4

(
maxi

(
fxs(xsi)

)
−mini

(
fxs(xsi)

))
(3.56)

This corresponds to a standard deviation measurement when sample sizes are small.

Continuing with our Palmer penguin example, we compute the FIRM for all the pre-

dictors in our logistic regression model. Figure 3.9 is a bar chart of the FIRM scores.

Recall from Figure 3.8 that bill length (mm) has a steep partial dependence plot which
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has values ranging from -18 to 18. Hence, bill length has a high FIRM score. The partial

dependence plot for body mass (Figure 3.7) was less variable (range 0 to 3.5) so it had

a lower FIRM score. The partial dependence plot for sex (Figure 3.8) was fairly flat so

its FIRM score was approximately 0.

3.6 Conclusion

This chapter explained how to use machine learning to explore data, create predictive

models and interpret models. Machine learning can be broken into supervised and un-

supervised techniques. Unsupervised learning clusters the training data and is used

for exploratory data analysis. Supervised learning uses the training data to fit a pre-

dictive model that maps new feature vectors to the response. Since our project is on

detecting selective sweeps, we have focused on several supervised techniques for classi-

fication. Classification models can be assessed on their predictive accuracy using ROC

and AUC. Besides using models for prediction, researchers may also wish to understand

why a specific model was fitted and how the predictions are generated. We explored

partial dependence plots and ICE plots which provide visualisations of how predictors

affect the predicted response. The FIRM score quantifies variable importance thereby

revealing which predictors are most impactful for a particular predictive model. Having

covered the biological and statistical backgrounds, the next chapter will present current

applications of machine learning to sweep detection.



Chapter 4

Current Machine Learning

Approaches to Sweep Detection

4.1 Introduction

In this project, we are interested in using machine learning techniques to detect re-

gions of selection using genetic data. Chapter 2 was a biological introduction which

covered the nature of DNA, evolution via natural selection and some basic concepts in

population genetics. Of particular interest is the concept of selective sweeps which are

molecular signatures produced by selected genetic variants. Chapter 3 introduced ma-

chine learning, a broad suite of powerful statistical tools used for understanding data.

Machine learning has a range of successful applications from sorting out spam emails to

computer vision [49, Chapter 5]. We will now apply various machine learning methods

to the problem of detecting selective sweeps and assess their effectiveness.

4.2 Why Detect Sweeps?

Recall from Section 2.3 that evolution is the change in the heritable characteristics of a

population over time. Heritable characteristics are encoded in the DNA of individuals.

Selective sweeps are a particular kind of selection where a new beneficial mutation in-

creases its frequency and spreads throughout the population. We will now outline some

reasons why population geneticists want tools for detecting selective sweeps.

1. Genomes are typically very long and it is not clear which regions researchers should

focus on (Section 2.1.1). Accurate detection of selective sweeps will enable researchers to

65
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precisely identify adaptive regions in the genome. Further bioinformatic and biochem-

ical analyses could be done on these regions of interest in order to unravel the precise

molecular mechanisms which confer selective advantage. For example, a researcher may

examine the gene products of a particular locus and investigate how these may impact an

organism’s phenotype. This can enhance our understanding of how different populations

have adapted to past environmental challenges. This information can be used to build

evolutionary models to make predictions regarding how populations may respond to fu-

ture, environmental stress. This has applications in microbiology whereby researchers

may study how bacteria colonies evolve under various environmental conditions. This

can provide insights for managing antibiotic resistance and using bacteria to produce

biofuels and medicines [61]. There are also applications in conservation biology for pre-

dicting the effects of introducing new individuals to save inbred populations (genetic

rescue) [62].

2. Researchers may want to investigate the location of selective sweeps across the

genome. It would be interesting to see if particular areas of the genome tend to generate

more sweeps and consider why this may be the case. The patterns we identify can inform

our understanding of how evolution acts upon the genome across successive generations.

4.3 Current Machine Learning Approaches

Given the popularity of machine learning in recent years, it should be no surprise that

researchers have already applied various machine learning tools to the problem of sweep

detection. We now consider several current applications of machine learning for detecting

selective sweeps.

4.3.1 Boosting Classifiers

Boosting is an ensemble based machine learning algorithm that has been applied to de-

tecting selective sweeps [63]. The model is trained using 1000 simulated genome regions

of 40kb where half were neutral and half were hard sweeps (Section 2.3.4.1). Simula-

tions were produced using coalescent simulation software. Each simulation contained 10

sequences, represented by a binary genome matrix. Each matrix was subdivided into

20 adjacent, non-overlapping segments of 2kb. For predictors, they computed summary

statistics on each segment. Hence, for a model with j summary statistics and k sub-

divided segments, there would be j × k predictors. Lin et.al., they used a variety of
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statistics including Tajima’s D, Fay and Wu’s H and the Waterson estimator. Multi-

ple statistics were used in order to capture as much of the information in the genome

matrices as possible.

The general intuition of boosting is to use an ensemble of weaker learners together to

create a single strong learner. Boosting is a general technique that can be applied to

a range of machine learning classifiers (e.g. classification trees) but in the case of Lin

et.al., they used boosting to enhance logistic regression models. Consider a training set

with n observations and response y. The boosted model starts with a null model f̂ [0]

f̂ [0] = argmax
c

{ n∑
i=1

Loss(Yi, c)
}

(4.1)

The null model predicts the most common class in the training set. A logistic regression

model ĝ[1] is fitted using a randomly selected predictor from the feature vector x. This

new model is

f̂ [1] = f̂ [0] + vĝ[1] (4.2)

for some learning rate v ∈ [0, 1] [64]. The hyperparameter v controls how much the model

can change between each iteration. The training data points that are misclassified by

f̂ [1] are given greater weight in the next iteration of fitting another logistic model. The

logic is that with each iteration our model learns to correctly classify more and more of

the training data. This process is repeated until m steps are made.

f̂ [m] = f̂ [m−1] + vĝ[m] (4.3)

For use with empirical data, the genomes must be broken down into regions of 40kb.

The sequences are converted into genome matrices and subdivided into 20 segments of

2kb. The same summary statistics can be computed to obtain a feature vector which

can be given to the final model f̂ [m] for prediction.

The final model was evaluated using test data of different selection strengths and fixation

times. Accuracy declined for lower selection strengths and more distant fixation times

since these produce weaker selection patterns. This is a problem inherent in the data and
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should affect all methods despite the high accuracy observed in this setting. This model

achieved an accuracy of > 98% in most scenarios. Even in the most difficult test of an

old and weak sweep (α = 2Ns = 200, τ = 2N = 0.2) 1, the accuracy was 87.6%. The

researchers compared their method with other approaches using the testing accuracy.

This showed boosting to be more accurate than support vector machines (svm) and

traditional population genetic tests.

Population bottlenecks are scenarios where the population size rapidly shrinks for a

time and then quickly grows back. The researchers tested their method on population

bottlenecks which are known to cause false positives. The final classifier consisted of

two boosting models, M1 and M2. M1 was trained using neutral and hard sweeps, M2

trained with bottlenecks and hard sweeps. New data is classed as a sweep if both M1

and M2 classify it as a sweep; otherwise it is neutral. They found the misclassification

of bottlenecks to be rare. However, this came at the cost of decreased power in sweep

detection.

The researchers used the absolute value of the standardised coefficients in the final

model to investigate variables of importance. The statistics were most effective when

the segment is close to the selected mutation. They found θπ
2 to be consistently useful

throughout the test sets. θw
3 distinguished recent sweeps from bottlenecks. Since SVM’s

do not have coefficients, they could not compare variable importance between methods.

4.3.2 S/HIC: Soft/Hard Inference through Classification

The S/HIC method designed by Kern and Schrider is a supervised machine learning

method for inferring the location of soft and hard selective sweeps within genomes [65].

Similar to random forests (Section 3.3.4.2, this method uses an ensemble of classification

trees (Section 3.3.4.1)to mitigate overfitting. S/HIC uses the “Extremely Randomized

Trees”(ERT) algorithm which has 3 tuning parameters K,M,N [66]. ERT generates a

predictive model with M trees. Each tree starts at a single trunk which consists of all

the training data. To generate a split, ERT algorithm randomly selects K non constant

predictors without replacement. For each of the K predictors, a randomly split point is

generated using a uniform distribution between the maximum and minimum values for

that predictor. The algorithm then selects the split which gives the highest value of the

score function (a measure of the training accuracy). This is equivalent to minimising

a loss function. By splitting the data at random cutoff points for the predictors, the

ERT algorithm decorrelates the trees. The algorithm recursively splits the data until

1N is effective population size, s is the selection coefficient
2A component of Tajima’s D. See Section 2.5.1.3
3Another component of Tajima’s D
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either the minimum sample size N for making a split is reached, all the predictors are

constant or further iterations will no longer alter the tree. Classification is done using a

majority vote on the ensemble of K trees. Similar to random forests, the ERT algorithm

reduces the variability of standard classification trees, leading to more accurate predictive

models.

Similar to Section 4.3.1, the researchers used a coalescent simulation program to generate

genomes under a suite of demographies and selection coefficients. In general, each simu-

lation is a binary genome matrix G which is subdivided into k adjacent, non-overlapping

blocks.

Denote the ith subwindow as the matrix Wi. Recall that a summary statistic is a function

which maps some data to a real number.

f : Wi → A ⊆ R , ∀i ∈ {1, 2, . . . ,K}

We can apply the same summary statistic to each subwindow. Thus for any summary

statistic f we get the vector,

f = {f(w1), f(w2), . . . , f(wK)}

The S/HIC method is interested in picking up how various summary statistics change

across the genome. This is more informative than computing each summary statistic

once across the whole simulated region. Hence, the values of each summary statistic are

normalised by the following

f =
1∑K

i=1 f(wK)
{f(w1), f(w2), . . . , f(wK)}

S/HIC used a range of summary statistics designed for detecting selection, including

Tajima’s D, Fay and Wu’s H, ωmax and Kelly’s ZnS . For a model with p summary

statistics, we can construct a feature vector x of p×K dimensions. The response variable

y is a categorical variable with three classes, namely neutral, hard and soft sweeps. The

S/HIC model is then fitted onto this training data with the ERT algorithm. To tune the

model, different combinations of predictors can be removed from the model to observe

the change in the overall training loss. If the loss increase is below some designated

threshold, the predictor is kept in the final model. Once the final model is fitted, it

can be used to scan real genome data by breaking it into K blocks and computing the

relevant summary statistics.
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The training data consisted of 2.2Mb4 regions which were subdivided into eleven 200kb5

blocks. Using AUC, they showed S/HIC to be more accurate at sweep detection than

other methods such as SweepFinder [67] and boosting [63]. By using testing data from

various demographies not found in the training data, they showed S/HIC to be more

robust to demography compared to other methods. All methods they considered had

lower power when considering population bottlenecks, even when bottlenecks were in-

cluded in the training data. The reason is that population bottlenecks reduce diversity

and obscure the impact of selective sweeps.

4.3.3 Neural Networks Method

One of the major challenges of analysing population genomic data is the high dimensional

nature of the data. In its original form, each observation is a binary matrix Gn×k where

n is the number of samples and k is the number of segregating sites/SNPs. Most machine

learning classifiers cannot be trained on entire matrices as the dimensions of the input is

too large. The approach used in Section 4.3.1 and Section 4.3.2 is to condense the data

into a handful of summary statistics, designed to capture useful patterns in the data.

There are two weaknesses with this approach.

1. Summary statistics can be confounded by unrelated demographic factors which

produce similar effects on the sampled population. This is especially true when

we are dealing with complex demographic models which do not follow convenient

population genetic assumptions (e.g. constant population size, constant mutation

rate, no interbreeding with external populations). For example, Tajima’s D is con-

founded by population size changes which can distort the site frequency spectrum

in a manner which is similar to a selective sweep.

2. Summary statistics do not capture all the information in the population genetic

data. Researchers try to mitigate this problem by using a broad suite of summary

statistics which are not highly correlated. A major challenge of using supervised

machine learning is to construct a method that uses as much information in the

input data as possible in order to maximize the predictive accuracy of the final

model.

A potential technique for circumventing summary statistics is to use deep learning/neu-

ral networks, a supervised machine learning method which can handle high dimensional

input [68]. Neural networks can be trained directly on the genome matrices which

42.2 × 106bases
52 × 105bases
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should contain more information than a set of summary statistics. Hence, the neural

network has the potential to learn genetic patterns associated with selection which are

too complex to be captured by summary statistics. Neural networks consists of mul-

tiple connected layers of perceptrons (“neurons”) which take some input values and

transforms them into an output value. A perceptron is a mathematical function with

output

f(w · x + b) (4.4)

where x is a vector of input values, w is a vector of weights and b is a constant [69]. f

is known as an activation function and common choices include logistic and hyperbolic

tangent functions.

For a binary genome matrix GN×K , an exchangeable neural network learns the function

f : {0, 1}N×K → PΘ (4.5)

where Θ is the space of all parameters θ and PΘ is the space of all probability distribu-

tions on Θ. For the purposes of detecting selection, PΘ would be the pdf of having a

selective sweep in a given genome matrix. Function f is a composite function of Φ, h, g,

f := (h ◦ g)(Φ(x1), .....,Φ(xn)) (4.6)

where Φ : {0, 1}d → Rd1 is a convolutional neural network. i.e. Φ takes a row of the

genome matrix and turns it into a vector of dimension d1 for some choice of d1. A

convolutional neural network is a special class of neural network that is commonly used

for image analysis.

g : Rn×d1 → Rd1 is a symmetric function. Symmetry ensures that the ordering of the

individuals in the genome matrix do not matter. This makes f an exchangeable neural

network.

h : Rd2 → PΘ is a fully connected neural network, for some choice of d2. A fully

connected neural network means that each perceptron receives some input from every

perceptron in the previous layer.
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The optimal parameters of f cannot be calculated analytically due to its mathemati-

cal complexity. Instead f is fitted using an optimization algorithm such as stochastic

gradient descent [49, Chapter 2].

Although Chan et.al. originally used exchangeable neural networks to identify recom-

bination hotspots6, their method can be adapted for sweep detection by changing the

response variable [68]. After training their models with data simulated from a human

demographic model, they showed exchangeable neural networks to be faster and more

accurate than LDhot [70]. Their method had an overall accuracy of 95%, making it supe-

rior to traditional neural network architectures. Although exchangeable neural networks

have potential to be an effective method for sweep detection, it remains to be tested

whether they are more accurate than summary statistic based methods. Nevertheless,

neural networks have two main drawbacks.

1. Neural networks are computationally intensive to train, requiring many CPU’s or

preferably GPU’s working in parallel to fit models in a timely manner [49, Chapter

1].

2. Neural networks are hard to interpret (i.e. “black box”). It is difficult to discern

what patterns the model is using to make its predictions.

4.4 Gap in the Literature

Section 4.3 reviewed several machine learning approaches that have been developed for

sweep detection. Although researchers have applied various machine learning methods

to this problem, they often use a one classifier in isolation 7. Researchers often justify

their approach using their model’s testing accuracy. However, this does not show why

their specific technique should be chosen over the available range of classifiers. Besides

accuracy, there are other considerations for model selection such as computational speed

and model interpretability. Thus there is a knowledge gap regarding which classifier(s)

should be chosen for any particular data set. There is a risk that researchers may select

a method based on novelty and familiarity.

The first part of this project (Chapter 5) is a systematic comparison of a suite of machine

learning classifiers for sweep detection. The goal is to provide a simple protocol for

researchers to follow if they are interested in using machine learning for detecting sweeps

in population genetic data. Factors that we will consider when comparing different

6Areas with high recombination
7Except Section 4.3.1 used two, boosting and support vector machines
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classifiers include the model’s predictive accuracy, how interpretable the model is and

the computational time required for model fitting. To enhance model interpretability,

we will use tools from Section 3.5 to investigate variable importance. This workflow will

assist researchers in comparing different methods in order to find one that is suitable for

their research problem and data set. It will also help researchers understand how their

models make their predictions which can provide insights into the underlying process of

evolution.

Current approaches leverage modern DNA samples from existing individuals in the

present. We would like to extend sweep detection methods to incorporate data from

ancient DNA. Ancient DNA refers to DNA that has been retrieved from fossils and

other archaeological samples. Studies into ancient DNA has emerged in recent years

due to innovations in DNA sequencing technologies and analytical techniques. Overall,

ancient DNA is useful for evolutionary biology because it enables researchers to directly

study the DNA of past populations. Patterns produced by selective sweeps also decay

over time due to the emergence of new mutations and recombination. Thus techniques

which rely only on modern data are limited to finding recent sweeps. Incorporating

ancient DNA into our analysis can enable our methods to detect older sweeps where

the beneficial mutation has fixed many generations ago. Identifying these ancient adap-

tive regions can enhance our understanding of how populations have adapted to past

environmental challenges. Chapter 6 will explore how to generalise our method from

Chapter 5 to detect sweeps in ancient DNA.
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Classifiers for Sweep Detection

Although various researchers have applied different machine learning methods for sweep

detection, there is little understanding regarding which specific methods should be used

for any particular research problem (Section 4.4). There is a danger for researchers to

deploy particular methods simply because they are new and hyped. In this chapter, we will

apply a suite of machine learning classifiers for the purposes of sweep detection. We will

compare the different methods based on their predictive accuracy, model interpretability

and computational time. The objective is to provide a simple workflow for researchers to

follow, should they be interested in using machine learning for sweep detection in modern

genomes.

5.1 Methods

5.1.1 Population Genetic Simulations

In supervised learning, we need labelled training data where the true response is known

(Section 3.2). For this study, we will use simulated genomes produced by the program

discoal [71]. As input, discoal takes in some demographic parameters which describe

how a population is evolving (e.g mutation rate, effective population size). Discoal’s

output consists of two parts; namely a binary genome matrix G and a numeric vector of

positions p. The columns of G represent SNPs/segregating sites and the rows represent

the individual genomes sampled from the population. Gij = 1, if the ith individual has

a novel mutation at the kth SNP position and 0 otherwise. In this context, the novel

mutation is also called a derived allele. pj ∈ [0, 1] is the position of the jth SNP in G.

74
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For example, suppose we simulated a region, 1000 bases in length (i.e. 1kb). A SNP

with position 0.2 is on the 200th nucleotide base along the aligned genomes.

Table 5.1: Table of demographic parameters used for the discoal simulations. Note
that the mutation and recombination rates are in event per base per generation. The

values were based on [72, 73, 74]

Parameter Value

mutation rate 1.5× 10−8

recombination rate 1× 10−8

effective pop size 10000
genome length 106

selection coefficient {0, 0.005, 0.0125, 0.025, 0.0375, 0.05, 0.1}

Table 5.1 provides the basic demographic parameters used throughout our simulations.

The selection coefficient is a relative measure of the strength of selection. Suppose we

were comparing an ancestral and a derived allele with frequencies wa and wd respectively.

The selection coefficient of the derived allele, relative to the ancestral is defined as [25,

Chapter 7]

s := 1− wa
wd

, s ∈ [0, 1]. (5.1)

When s = 0, the derived and ancestral alleles are equally likely to be transmitted to

the next generation (neutral simulation). Selection occurs when s > 0, and for this

study we will be simulating these as hard selective sweeps. The reasoning is that hard

sweeps are the most well known and many current methods focus on detecting hard

sweeps. For every hard sweep simulation, the selected mutation occurs in the middle

of the genome (i.e. position = 0.5). Our simulations were based on estimates done for

modern non-African human populations. The mutation rate, recombination rate and

effective population size were based on [72, 73, 74]. Although these estimates typically

come with a range, we used fixed values for simplicity. All the sweeps were fixed at the

time of sampling. One hundred sequences were generated in each simulation.

Using the parameters in Table 5.1, we simulated genomes under a constant population

size scenario and various population bottleneck scenarios. Population bottlenecks were

included because they are known to produce false positives in sweep detection. [75].

Many populations (including humans) are known to have a demographic history with

bottlenecks [74]. When the population size rapidly shrinks during a bottleneck, this

drastically reduces diversity thereby producing genetic patterns which are similar to

selective sweeps. Figure 5.1 is a visual representation of a population bottleneck. The
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Figure 5.1: Diagram of a population bottleneck model

vertical axis represents time in generations which is measure backwards from the present.

The present is at the bottom of the diagram and designated as time 0. This is when

the samples were taken from the simulated population. Past demographic events are

given times according to how many generations ago they happened. The width of the

box represents the effective population size of the simulated population. Thus in a

bottleneck, the population size shrinks by some factor p ∈ [0, 1], t1 generations ago and

returns to the original size at t2. t1 − t2 is known as the duration of the bottleneck. t2

is known as the onset or recovery time. The severity of a bottleneck is (t1 − t2)× p.

Table 5.2: Table of parameters for the bottleneck simulations

Parameter Value

duration 1600, 8000
recovery 80, 800, 8000
bottleneck proportion (p) 0.05, 0.1, 0.5

Table 5.2 is a table of the parameters we used to construct eighteen different bottlenecks

taken from [75]. This provides a wide range of severity, duration and age to the bot-

tleneck simulations. Including the constant population size model, we have 19 different

demographic scenarios to simulate using the parameters in Table 5.1. For each unique

combination of demographic parameters, we conducted 1000 simulations, giving a grand

total of 133,000 simulations. The simulations with a selection coefficient of zero are the

neutral simulations. The simulations with non-zero selection coefficients are the hard

sweeps. 80% of the simulations were randomly allocated into the training data set and

the rest went into the testing set.



Chapter 5: A Systematic Comparison of ML Classifiers for Sweep Detection 77

5.1.2 Discoal Simulations

All our data was simulated using discoal, a coalescent simulation program which gen-

erates population samples in a flexible manner [71]. Discoal simulates genetic samples

using the coalescent process, a stochastic model which describes the genealogy of a set

of alleles from a give population [76]. Samples “coalesce” backwards in time when they

share a common ancestor. Coalescent simulations only simulate the requested number

of samples, making it much more fast and efficient than “forward-in-time” simulators

which simulate an entire population from which samples are drawn [71]. For neutral

simulations, discoal simulates realisations of an ancestral recombination graph which

models the genealogies of a set of recombining genetic sequences [38, Chapter 7.2]. De-

tails about the algorithm can be found here [37]. Selective sweeps are generated the

structured coalescent approach [77]. During the “sweep phase” of the simulation, sam-

ples will coalesce at a rate which depends on the frequency of the selected mutation as it

spreads throughout the population [71, 78]. A full discussion of these coalescent theory

models are beyond the scope of this project. Nevertheless, we have provided some useful

papers in this section for interested readers.

5.1.3 Constructing Dataframe

In Section 5.1.1, we simulated population genetic data under various demographic sce-

narios using discoal. Each simulation consists of a binary genome matrix G and a

numeric vector of SNP positions p. As we explained in Section 4.3, this dimensions of

this data is too high to be directly used as input for most machine learning classifiers.

Drawing on the methods in Section 4.3.1 and Section 4.3.2, we will reduce the dimen-

sions of the data by breaking the genome matrices into smaller blocks and applying

a suite of population genetic summary statistics. The reasoning is that hard sweeps

and neutral evolution produce different patterns in the summary statistics across a 1Mb

genome window.

Table 5.3: Table of summary statistics used for the training data

Statistic Class Statistic

Site Frequency Spectrum Tajima’s D, Fay and Wu’s H
Haplotype h1,h2,h12,h123
Linkage Disequilibrium Kelly’s ZnS , wmax

Figure 5.2 is an illustration of how we split the genome matrices into smaller non-

overlapping blocks of approximately equal size. The whole genome matrix represents

a section of the genome and this is subdivided into smaller blocks are called windows.
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Figure 5.2: Illustration of how to split a genome matrix into n smaller blocks to
compute summary statistics. Note the asterisk represents the selected mutation at the

middle of the genome window, for the hard sweep simulations.

Suppose we have a matrix with K columns which were to be split into N windows. If

K is divisible by N , then all the windows will have K
N columns. If K is not divisible

by N , all the windows will have K
N columns except for the last window on the right

which will contain an additional K%N columns (% is the modulo operator). The same

summary statistic f is then applied across all N windows. We simulated 1Mb regions

and subdivided them into 11 windows of 90kb. An odd number of windows ensures there

is a central window with the hard sweep. S/HIC (4.3.2) also used 11 windows and we

wanted our method to be comparable.

In total, we used eight statistics which cover the three main classes of summary statistics

used for sweep detection (Table 5.3). The training data now consists of 88 predictors (11

for each statistic) and a single response variable indicating either a hard sweep or a neu-

tral simulation. It was computationally expensive to compute the LD statistics. Hence,

we downsampled 25% of the columns in each window for the purposes of computing ZnS

and ωmax.

5.1.4 Preprocessing

Before fitting our models, we will apply a set of transformations to the data in order to

make it suitable for training. This is known as data preprocessing [79, Chapter 2]. We

used the following preprocessing steps.

1. Highly correlated predictors can confound parameter estimation in many methods

e.g. logistic regression [80]. We applied a correlation filter of 0.8. This removes

predictors to ensure that the absolute correlation between any pair of predictors
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must be ≤ 0.8. Our cutoff is within the recommended range found in [80]. A

potential downside of applying a correlation filter is that some sweep scenarios

may produce naturally correlated predictors. For example, θw and θπ should both

be low in strong sweeps. Thus in some cases biologically meaningful correlations

could be filtered out, thereby reducing predictive power of our methods. We did not

investigate different correlation filter cutoffs due to computational time constraints.

2. All predictors (except haplotype statistics1) were normalised2 to ensure that no

predictor will have a disproportionate effect on the model due to the range of values

it could take. The haplotype statistics were exempt because they are proportions

and hence must take values within [0, 1].

After preprocessing the data, we have the final version of the training data which will

be used for training our models.

5.1.5 Classifiers For Consideration

Section 5.1.3 explained how we converted high dimensional population genetic simula-

tions into a training data frame with 88 predictors and a single response variable called

“sweep” which can be hard or neutral. By condensing the simulations into a relatively

small set of predictors, it is now feasible to fit conventional machine learning classi-

fiers onto the training data. In this study, we focus on four machine learning methods;

namely regularised logistic regression, random forests, MARS and regularised discrim-

inant analysis (RDA). Regularised logistic regression was chosen because it is a simple

classifier which is quick, simple to interpret and models linear patterns. Random forests

was chosen because it is a quick and commonly used ensemble3, tree-based technique.

S/HIC successfully used another ensemble tree-based technique so this was worth trying

(Section 4.3.2). MARS was chosen because it is a non-parametric technique that can

model non-linear relationships. RDA was chosen to include a simple and quick technique

based on decision boundaries.

Support Vector Machines (SVM) is another decision boundary method used in super-

vised classification [48, Chapter 12]. It is effective for modelling complex, non-linear

relationships especially when flexible kernels (e.g. radial, polynomial) are used. How-

ever, given the size of the training data (106,400 observations with 88 predictors), an

SVM with a flexible kernel would take excessive computational time to train. A SVM

1h1,h2,h12,h123
2Subtract the mean, divide by standard deviation
3An ensemble technique uses multiple smaller models together. A random forest is an ensemble of

classification trees
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with a linear kernel is faster but still quite slow compared to the four methods we have

selected. Furthermore, a linear kernel SVM would separate data using a linear decision

boundary which would be similar to LDA 4. Hence, instead of SVM’s, we opted to use

RDA which is a much faster decision boundary method.

Due to the high dimensional nature of genome matrices, it is difficult to capture all their

information using summary statistics. Section 4.3.3 explained that we could bypass

this problem by using neural networks which can be trained directly on the matrices

themselves. However, this approach introduces its own set of problems.

1. Neural networks are highly flexible models with many parameters [49, Chapter 1].

Thus a lot of data is required to train a good predictive model.

2. Training neural networks is computationally intensive and slow [49, Chapter 1].

3. We are interested in interpretable models that allow us to systematically compare

how they make their predictions. For summary statistic based methods, we can use

tools from Section 3.5 to investigate what kinds of patterns the models are picking

up (e.g. Negative Tajima’s D may increase the probability of a sweep). This

cannot be done for neural networks where the predictors are the individual matrix

elements of the genome matrix. There are too many low information predictors

for any meaningful pattern to be ascertained.

Whilst neural networks could make good predictive models, we did not include them for

the reasons above. Overall, we selected a set of models which cover the main classes of

machine learning classifiers. If these relatively quick classifiers can function well, then

more sophisticated and computationally intensive methods such as neural networks are

unnecessary.

5.1.6 Hyperparameter Tuning

A simple grid search was performed to tune each machine learning classifier. This

involves constructing a regular grid of hyperparameters and fitting a model on each hy-

perparameter set. For each classifier, we selected the hyperparameter set which gave the

highest 10-fold cross validation(CV) accuracy. The final model is produced by refitting

the model on the whole training data set, using the selected hyperparameter set. The

aim of the grid search is to explore a broad range of hyperparameters in order to identify

a suitable set to use for the final model.

4LDA is a special case of RDA when λ = 0, γ = 1
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For regularised logistic regression, we used the lasso penalty with 10 regularly spaced

λ ∈ [0, 0.1]. The lasso penalty was chosen because it shrinks small β coefficients to 0,

helping to achieve a parsimonious model. This should be helpful for our data set where

the set of predictors is large and some may only have a small effect on the response. For

example, Tajima’s D on the outer windows should have a minor effect on the response

since it is far away from the selected mutation.

The random forests algorithm as implemented by the ranger package in R, has two

main hyperparameters; namely “mtry” and “min n.” “mtry” is the number of randomly

sampled predictors to consider for each split. “min n” is the minimum number of training

data points required to make a new split. After preprocessing, 52 predictors remained out

of the original 88. We fitted models using a 4-level regular grid with values mtry∈ [10, 52]

and min n∈ [100, 1000]. The number of trees was not tuned because this has been shown

that once there are enough trees, tuning just models noise [81]. Figure 5.9 suggests our

choice of 100 trees was sufficient to produce a good RF model.

The MARS model was fit using the forward pass algorithm (Section 3.3.5). The two

hyperparameters to consider is the degree of interaction terms (“prod degree”) and the

maximum number of MARS terms (“num terms”) to retain in the final model. We

constructed a 5-level regular grid with “num terms”∈ [1, 52]. and allowed for interaction

terms of up to degree 2.

RDA has two tuning parameters λ and γ. We constructed a 5 - level regular grid with

λ, γ ∈ [0, 1]. This covers the range of possible values for both λ and γ. The grid ensures

we fit LDA and QDA models as well as several intermediate models between the two

(Section 3.3.6.4).

We considered the viability of applying more sophisticated optimization procedures for

hyperparameter tuning (e.g. Bayesian optimization). This would be more computa-

tionally efficient than a grid search and could potentially yield a more suitable set of

hyperparameters. This was deemed not worthwhile because there is already an internal

optimization built into the model fitting process. Thus hyperparameter tuning does not

need to be precise in order to produce a good predictive model. Rigorous optimization

procedures are more suited for problems where there is a fixed objective function (e.g.

engineering).
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Figure 5.3: PCA plot of the whole simulated data using the top 2 principal compo-
nents. The data points have been colored by sweep. Note that most of the variability

in the data points are in PC1.

5.2 Results

5.2.1 Exploratory Data Analysis

We now use some unsupervised learning techniques to investigate patterns between

variables in the simulated data.

5.2.1.1 PCA

Figure 5.3 is a PCA plot of the entire simulated data set. The hard sweeps show high

variability on PC1 relative to the neutral simulations. There is moderate overlap between

hard and neutral simulations for higher values of PC1. We can account for this pattern

by considering that as the selection coefficient increases, there is a greater deviation from

neutrality. Thus the high variance of hard sweeps along PC1 can be explained by the

7 different selection coefficients used. This can be confirmed by inspecting Figure 5.4

where higher selection coefficients are associated with more negative values on PC1.

The linear differences in spread between neutral and hard sweep simulations along PC1,

suggests that linear methods would be effective in distinguishing the two, especially

when the selection coefficient is large.

5.2.1.2 Parallel Coordinates Plots

Parallel coordinates is a common technique for visualising high dimensional data. In

this context, they can be used to visualise how the values of each summary statistic

changes across the simulated genomes. Figure 5.5 is a parallel coordinates plot illustrat-

ing how Tajima’s D varies across the 11 windows. Relative to the neutral simulations,
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Figure 5.4: PCA plot of the whole simulated data using the top 2 principal compo-
nents. The data points have been colored by the selection coefficient.

Figure 5.5: Parallel coordinates plot for Tajima’s D. Each faded line is a simulation.
The solid lines represent the mean values for hard and neutral simulations.

the hard sweeps show greater variability in Tajima’s D due to the different selection

coefficients used. Higher selection coefficients causes more right skew in the site fre-

quency spectrum, thereby producing more negative values of Tajima’s D. The mean line

for neutral simulations is constant across the windows because each window is under

the same evolutionary process. The expected value of Tajima’s D for neutral, constant

population models is 0. Here the neutral mean line lies around -1 due to the bottleneck

simulations. The mean line for hard sweeps decreases as we approach window 6 from

either side. The reason is that the selected mutation is situated at the middle of the

hard sweep simulations (i.e. Window 6). Selection reduces Tajima’s D and this effect is

more pronounced for windows that are closer to the selected mutation. The differences

in Tajima’s D between neutral and hard sweeps suggests that the Tajima’D values in the

central windows (particularly 5 - 7) may be useful for distinguishing hard sweeps from

neutral simulations. Fay and Wu’s H showed a similar pattern to Tajima’s D, suggesting

that they could likewise be useful for sweep detection Figure A.1.

Figure 5.6 shows how h1 across the genome. Unlike the SFS statistics, selection in-

creases the h1 across all the windows. There is a mild shouldering effect where h1 has
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Figure 5.6: Parallel coordinates plot for h1. Each faded line is a simulation. The
solid lines represent the mean values for hard and neutral simulations.

Figure 5.7: Parallel coordinates plot for wmax. Each faded line is a simulation. Note
the log scale used to account for extreme values.

small peaks on Windows 5 and 7. Overall, h1 creates separation between hard sweeps

and neutral simulations and hence could also be useful for sweep detection. The h12

and h123 statistics show similar trends to h1 due to the similarities in how they are

computed (Figure A.3 Figure A.4). Kelly’s ZnS displayed a similar shouldering effect as

h1 Figure A.5. The h2 statistic showed poor separation because it is was designed for

distinguishing soft sweeps rather than identifying hard sweeps Figure A.2. Relative to

neutral simulations, hard sweeps show greater variation of ωmax as we get closer to the

central window Figure 5.7. Hard sweeps tend to generate larger values and occasionally

extreme values. Recall ωmax is a ratio of LD values across different SNPs/columns in a

genome matrix (Section 2.5.3.3). Hard sweeps reduce the number of SNPs, particularly

around the selected mutation. This leads to inaccurate estimates of the numerator and

the denominator of ω, thereby producing more extreme values of ω.

This section illustrates how population genetic summary statistics can vary across the

genome. For statistics such as h1 and Kelly’s ZnS, hard sweeps produce higher values

for these statistics across all the windows. Other statistics (e.g. Tajima’s D, Fay and

Wu’s H) are sensitive to the hard sweep when computed on a window that is nearby the
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Figure 5.8: Plot of 10-fold cross validation accuracy across different values of λ in the
regularised logistic regression model

Figure 5.9: Plot of 10-fold cross validation accuracy across different hyperparameters
in the random forests model

selected mutation. Overall, this shows how summary statistics can be used to distinguish

hard sweeps from neutral simulations.

5.2.2 Hyperparameter Tuning

Our models were tuned by performing a grid search and selecting the set of hyperpa-

rameters with the highest 10-fold cross validation accuracy. We will now inspect how

cross validation accuracy changes across the different sets of hyperparameters to ensure

that each machine learning classifier has been adequately tuned to maximize predictive

accuracy.

Figure 5.8 shows how the CV accuracy changes across different values of λ in the lasso

logistic regression model. The cross validation accuracy has a roughly linear, nega-

tive relationship with λ suggesting that the lasso penalty was not needed to mitigate

overfitting.

Figure 5.9 shows that the CV accuracy remains fairly stable across different values of

“mtry.” The more important hyperparameter appears to be “min n” which underfits the



Chapter 5: A Systematic Comparison of ML Classifiers for Sweep Detection 86

Figure 5.10: Plot of 10-fold cross validation accuracy across different hyperparameters
in the MARS model. Note that when there is one MARS term, the maximum degree

is one.

Figure 5.11: Plot of 10-fold cross validation accuracy across different hyperparameters
in the RDA model.

model when it is too large. The vertical scale shows that the changes in CV accuracy is

small overall which suggests there is no need to try more hyperparameters.

The MARS model peaks in cv accuracy when it has around 13 MARS terms. Adding

more terms or introducing interaction terms make little difference to model accuracy

(Figure 5.10). This is consistent with Figure 5.3 which suggests a linear classifier would

be sufficient.

In the RDA model, there is a non-linear relationship between the hyperparameters (λ, γ)

and the cross validation accuracy. One of the best models is when λ = 1, γ = 0 which

corresponds to the traditional LDA model. This concurs with our exploratory data

analysis which suggested that a linear classifier would be suitable. It seems that the

more flexible hyperparameters lead to overfitting thereby reducing the CV accuracy.

Notice that the highest CV accuracy across the classifiers is approximately 0.975. The

exception is the RDA model which has a smaller accuracy of 0.95. This suggests that

given the nature of our data, the highest CV accuracy achievable may be around 0.975.
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Figure 5.12: Plot of the AUC achieved by each classifier, across the bottleneck sce-
narios. The horizontal axis was offset by one to enable the log scale. Severity is the
duration times the proportion of shrinkage in the bottleneck (Section 5.1.1). Some

bottlenecks share the same severities.

5.2.3 Model Performance

We assess our suite of machine learning classifiers using the following criteria

1. Predictive accuracy. This can be quantified using the model’s AUC for the entire

testing set as well as for the different demographic scenarios. See Figure 5.12.

2. Computation time. The time required to fit a model given a set of hyperparameters.

We fitted our models in parallel using an iMAC with 2.3 GHz Dual Core CPU and 16

GB 2133 MHz DDR4 RAM. See Table 5.5.

3. Explanatory power. How well does the model explain the relationship between the

predictors and the response? This is a theoretical consideration based on how each

machine learning method is designed.

Table 5.4: Table of the AUC of each machine learning classifier using a combined test
set with all the demographic scenarios (constant population and various bottlenecks).

Machine Learning Classifier AUC

MARS 0.995
Regularised Logistic Regression 0.994
Random Forests 0.994
RDA 0.973

Table 5.5: Table of the average computational time to fit each single classifier.

Machine Learning Classifier Average Time Taken (mins)

Regularised Logistic Regression 0.386
Random Forests 12
MARS 0.847
RDA 0.635
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5.2.4 Predictive Performance and Robustness to Population Bottle-

necks

A common method for comparing predictive model performance is to use the AUC. This

involves using each model to provide a soft classification (i.e. predict a probability of a

success) for a testing data set and comparing it with the true response variable. We used

a testing data set which contains simulations from a constant population size model as

well as the 18 different population bottlenecks discussed in Section 5.1.1. Table 5.4 is a

table of the AUC for our four machine learning classifiers when predicting on the entire

testing data set. Overall, all four classifiers performed excellent with RDA performing

slightly worse than the rest. This is consistent with our observations in Section 5.2.2

which shows that RDA has a lower cross validation accuracy than the other classifiers.

We are particularly interested in how the different classifiers perform when predicting

for different population bottleneck scenarios. The reason is that population bottlenecks

are known to confound sweep detection methods and produce false positives. Recall

that the severity of a population bottleneck is the proportion of shrinkage multiplied by

the time duration (Section 5.1.1). We divided the testing data into smaller sets for each

severity. The models predicted on each set and the corresponding AUC was computed

(Figure 5.12). There is a non-linear relationship between severity and AUC, with model

performance declining for intermediate severity bottlenecks.

In severe bottlenecks, most/all of the samples will coalesce (i.e. share a common an-

cestor) within the bottleneck or afterwards. Consequently, the sequence alignments

produced will appear like that of an expanding population size model. This does not

confound summary statistics for detecting selection (e.g. Tajima’s D). However, for inter-

mediate severity bottlenecks some samples will also coalesce before the bottleneck. This

causes the sweep signal then gets diluted by the bottleneck event which also decreases

diversity [63]. Hence, model performance declines for intermediate severity bottlenecks

but is higher for high severity bottlenecks and constant population size simulations.

The RDA model performs the worst across all scenarios but particularly for intermedi-

ate severity bottlenecks. This is consistent with Section 5.2.2 where we found RDA to

have the lowest cross validation accuracy among the four classifiers. Regularised logistic

regression, MARS and random forests perform almost equally well across the different

severities. Figure 5.12 shows mild differences in AUC for the intermediate severity cases,

but these differences are too small to be practically relevant. Overall, these results sug-

gest that our chosen machine learning classifiers are robust to population bottlenecks

so long as these bottlenecks are provided in the training data. The exception would

be RDA which has difficulty predicting for intermediate bottlenecks and has the worst

performance overall.
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Figure 5.13: Barchart of FIRM scores for our four classifiers. The figure shows the top
10 important predictors in each model. The differences in the horizontal scales reflect
each model possessing a different functional relationship with the predictors. For the
purposes of model comparison, the rank order of the FIRM scores is more important

as it reflects how each model weighs up the different predictors.

5.2.5 Variables of Importance

In addition to predictive accuracy, we are also interested in understanding how our

models are making their predictions. This will provide insights into how our models

work and what patterns they are picking up to detect sweeps. This section will use

techniques from Section 3.5 to investigate variable importance.

5.2.5.1 FIRM Scores

FIRM quantifies the importance of a predictor using the variance of its partial depen-

dence function (Section 3.5.3). Chapter 5 shows the top ten FIRM scores for our four

classifiers. As explained in the figure legend, we will use the rank order of the FIRM

scores to compare our models.

The logistic regression model is unique in that it is mostly using ωmax, mostly computed

nearby the central window (Window 6). This is consistent with Figure 5.7 which shows

greater separation towards the central window. The large scale may reflect the extreme

values of ωmax shown among hard sweeps. Although they played a smaller role, the

model also used h1 and H on Window 6. This is sensible given both statistics showed

good separation (Figure 5.6,Figure A.1).



Chapter 5: A Systematic Comparison of ML Classifiers for Sweep Detection 90

The RDA, random forests and MARS models all relied heavily on the SFS statistics5

nearby the central window. This concurs with our observations in Section 5.2.1.2 and

how the sweep signal is typically stronger around the selected mutation. Random forests

and MARS also used h1 which was shown to distinguish hard sweeps (Figure 5.6, Sec-

tion 2.5.2). h2 was used in MARS but its FIRM score was much lower than those of h1,

D and H. This reflects how h2 was not designed for picking up hard sweeps and showed

relatively poorer separation (Figure A.2). Instead of using haplotype statistics, RDA

used the LD statistic, Kelly’s ZnS computed on Windows 1, 6 and 11. This corresponds

to the central window as well as the two extreme ends. This is sensible given ZnS shows

good separation across the whole simulated regions (Figure A.5).

In conclusion, section 5.2.5.1 shows that each method relies on a different set of summary

statistics to reach its classification decision. Nonetheless, all four methods have good

predictive accuracy. This challenges a prevailing view that particular summary statistics

are characteristic of particular selection scenarios. Instead, it appears that the dynamic

between the summary statistics and the methods are most important.

5.2.5.2 Partial Dependence Plots

Section 5.2.5.1 identified the key predictors that each model was using to make its

predictions. We now use partial dependence plots (Section 3.5.1) to observe how these

predictors affect the predicted response in each model. We won’t be discussing the

ICE plots because they took too long to generate. We will consider the pdp’s of three

most important predictors for each classifier according to FIRM. Although three is a

somewhat arbitrary cutoff, the top few predictors have the greatest influence over the

prediction and hence are most informative about how our models work. As we go down

to the low importance predictors, the pdp’s will essentially be modelling noise.

Logistic Regression: See Figure 5.14. Recall ωmax is an LD statistic which is expected to

be larger for hard sweeps. For Windows 3,5,7 the predicted log odds of a hard sweep has

a positive, linear relationship with ωmax. This is consistent with Figure 5.7 which show

hard sweeps to have higher ωmax than neutral simulations. Notice that prediction gets

really high as ωmax gets large. This reflects how hard sweeps occasionally had extreme

values of ωmax whilst neutral simulations had consistently smaller values. Thus when

ωmax is large (e.g. ≥ 20), the model is almost certain that a hard sweep is present. Thus

our logistic regression model detects sweeps by finding large values of ωmax, mostly near

the central window.

5Tajima’s D and Fay and Wu’s H
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Figure 5.14: The partial dependence plots for the top three predictors according to
FIRM, in the logistic regression model. “yhat” is the predicted log odds of having a

hard sweep.

Figure 5.15: The partial dependence plots for the top three predictors according to
FIRM, in the RDA model. “yhat” is the predicted log odds of having a hard sweep.
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Figure 5.16: The partial dependence plots for the top three predictors according to
FIRM, in the random forest model. “yhat” is the predicted log odds of having a hard

sweep.

Figure 5.17: The partial dependence plots for the top three predictors according to
FIRM, in the MARS model. “yhat” is the predicted log odds of having a hard sweep.
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RDA: See Figure 5.15. Recall that Tajima’s D and Fay and Wu’s H are both SFS-based

summary statistics which are meant to be smaller for hard sweeps. In the pdp’s, we

observe that the prediction decreases linearly as D and H goes up nearby the central

window. This concurs with Figure 5.5 and Figure A.1 which show hard sweeps to have

smaller values of D and H. This means the model detects hard sweeps by looking for

smaller values of D and H, particularly around the central window.

Random Forest: See Figure 5.16. Like the previous models, there is a negative rela-

tionship between D and the predicted response. The pdp’s are wiggly due to the more

complex nature of the random forest model, which is an ensemble of classification trees.

The pdp’s become flat when D ≥ 4. The reason is that virtually no hard sweeps will

have such high values of D around the selected mutation. Thus when D ≥ 4, the model

is very confident that input is a neutral simulation and further increases in D will not

change its prediction. Hence, the random forest model detects sweeps using smaller

values of D nearby the central window.

MARS: See Figure 5.17. Overall, there is an approximately linear, negative relationship

between H and the predicted outcome. There is a small kink upwards for “H 6” at

around 0.5 but this is likely due to statistical noise. Recall that h1 is the square pro-

portions of all haplotypes in the population. Hard sweeps are expected to have higher

values of h1 since hard sweeps produce a dominant haplotype. Inspecting the pdp, there

is a positive, non-linear relationship between “h1 6” and the prediction. This concurs

with our theoretical expectation as well as Figure 5.6. The small kink around 0.05 is

likely due to statistical noise. The non-linear trend reflects the capability of MARS to

model non-linear patterns. In summary, the MARS model detects sweeps by looking for

smaller values of H and higher values of h1, nearby the central window.

5.2.6 Selecting a Machine Learning Method

When selecting a predictive model, there are three key considerations; namely predictive

accuracy, computational time and the model’s inherent interpretability. In Section 5.2.4,

we found that regularised logistic regression, MARS and random forests have almost

equally high predictive accuracy and were robust to different severity bottlenecks.

To measure computational time, a benchmark test was conducted using a Macintosh

computer with a 2.3 GHz Dual-Core Intel i5 processor and 16GB of 2133 MHz DDR4

RAM. Table 5.5 shows that average time taken to fit a single model using a single

set of hyperparameters. In practice, models are fitted with different hyperparameters

simultaneously via parallel computing. Our results show that all our methods took less

than one minute, with the exception of random forests which took twelve minutes.
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Out of all classifiers available, logistic regression is the easiest to interpret. The effect

of each predictor can be quantified by their corresponding β coefficient which shows

their effect on the predicted log-odds of a success. Logistic regression is mathematically

simple so that the precise mathematical formula can be easily written out. This cannot

be said for the other classifiers (e.g. MARS) which have a more complex relationship

between the predictors and the response. Logistic regression has the added advantage

of being simple to explain to a non-technical audience.

Given these considerations, we recommend researchers to use logistic regression for de-

tecting hard selective sweeps in population genetic data where population bottlenecks

are present. This recommendation only applies when the underlying demography is rel-

atively simple (e.g. no admixture, constant population size). In these simple scenarios

the problem is essentially linear. However, in more complex settings where the problem

is non-linear, a more sophisticated predictive model may be required. Nevertheless, we

recommend researchers to still try logistic regression as a “first pass” to then compare

with more sophisticated models.

For logistic regression, a lasso penalty term should be sufficient for mitigating overfitting,

although even that may not be needed after some preprocessing. Logistic regression is

fast, easy to interpret and has high predictive accuracy. Given its large AUC score

of 0.994, it is unlikely for more complicated machine learning classifiers (e.g. neural

networks) to be much more accurate.

This is reasonable when we consider that logistic regression is a low variance, high bias

technique which is much less prone to overfitting compared to many other classifiers.

If such an inflexible technique can already have a high predictive accuracy, then more

flexible models are unlikely to perform better. Flexible models have a greater danger

of overfitting. In a practical context, researchers rely on estimates of the demographic

parameters because the true demographic model is unknown. Overfitting could lead to

worse performance when the estimated demographic models used for training is different

from the true model. Hence, more flexible models are at greater risk of having reduced

robustness to model misspecification.

Once again we caution that for the purposes of this review, we only considered simple

demographic scenarios with either a known constant population size or a population bot-

tleneck. Other demographic parameters such as the mutation rate and recombination

rate were fixed. It is possible that when dealing with more complicated demographic sce-

narios with different parameters, more flexible machine learning classifiers may be more

suitable. Nevertheless, within the small set of scenarios we have considered, regularised

logistic regression is suffice.
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This recommendation may be surprising because there are many new sophisticated ma-

chine learning methods available (e.g. neural networks) and logistic regression is a

relatively old technique. The general expectation is for new methods to be a substantial

improvement from old ones. However, the evidence suggests that this is not always the

case. For example, there was a competition in the SemEval2019 conference to classify

emotions in text messages [82]. The winner of this competition used a linear support

vector machine whilst other competitors used more sophisticated models like neural

networks. The authors showed that an accurate model can be produced using an old

technique supported by some preprocessing. Our study similarly shows that although

new methods may be exciting and fashionable, they are not always the best approach

to the problem at hand. In fact, traditional methods coupled with preprocessing may

perform surprisingly well. We recommend researchers to first try simple, quick classifiers

to set a performance baseline. If the simple models are insufficient, only then should

they move to more sophisticated classifiers which require more computational resources.

5.2.7 Suggested Workflow for Researchers

We will now use the results of our study to provide a simple workflow for researchers

who want to use machine learning to detect selective sweeps in population genetic data.

1. Determine a set of demographic histories which could adequately describe your

population of interest. There are a number of tools available which can use genetic

data to infer demographic history. Popular tools include PSMC and MSMC [83]

[84].

2. Use discoal to simulate 1Mb genomes under the set of demographic histories de-

termined in Step 1. A balance must be struck between computational time and

having a broad set of demographic histories. If the set of demographic histories is

too narrow, we risk training our classifier on non-representative data and produc-

ing an inaccurate model. If the set is too broad, then many simulations have to

be made and more computational resources have to be expended downstream.

3. Convert the simulations into a dataframe using the method explained in Sec-

tion 5.1.3. Randomly assign ∼ 80% of the data for training and the rest for

testing.

4. Fit a regularised logistic regression model using the lasso penalty. Tune the model

by trying a regular grid of λ values (including λ = 0) and selecting the one which

gives the highest 10-fold cross validation accuracy. Although the lasso penalty was
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ultimately not needed in our study, we still recommend using it because fitting

logistic models is quick and regularisation reduces the risk of overfitting.

5. Use the final model to predict on the testing data and compute the AUC. This

gives an indication of the model’s predictive accuracy.

6. Investigate variables of importance using FIRM and partial dependence plots. This

will provide insights regarding the kind of patterns the model is detecting as well

as which statistics are useful.

7. Write up a wrapper function to convert your empirical data into a data frame

using the method described in Section 5.1.3. Use for fitted model to predict each

1Mb genome block.

Although this project focused on detecting hard sweeps, our workflow can be gener-

alised for arbitrary population genetic problems where the appropriate machine learning

method is unknown. Here is a more general workflow for any new problem.

1. Consider whether your task is a classification or regression problem (Section 3.1).

2. Use steps 1-3 from Section 5.2.7. These steps may need to be adapted for your

specific problem. For example, different summary statistics may be required to

capture the response variable.

3. Use a suite of machine learning methods. Try simple and quick methods first.

Some suggested methods for classification are regularised logistic regression, RDA,

random forests and MARS. For regression, try lasso regression [48, Chapter 6],

ridge regression [48, Chapter 6], MARS and random forests. Tune your models

by performing a regular grid search and using 10-fold cross validation. Perform

benchmark tests to determine the average computational time to fit a model for

each technique.

4. Adapt steps 5-6 from Section 5.2.7. Compare your models by considering their

predictive accuracy, computational time and interpretability. Use the pdp’s to

deduce the kind of genetic patterns which are associated with the response. Select

a final model and fit that on the whole training data.

5. Step 7 (Section 5.2.7).
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5.3 Conclusion

In this chapter, we designed a machine learning workflow for detecting hard sweeps in

modern genomes. This involved applying a suite of classifiers and comparing different

models using AUC, computational time and considering inherent model interpretability.

We found that accurate models can be produced using simple, quick classifiers supported

by data preprocessing. Techniques from Section 3.5 were also used to investigate variable

importance and to unravel how our models made their predictions. The end product

is a simple machine learning workflow which researchers can use for sweep detection in

modern data. Although our project focused on detecting hard sweeps, our workflow

can also be generalised to arbitrary population genetic problems where the appropriate

machine learning method is unknown. Researchers can use our workflow to compare

different methods and understand what sort of genetic patterns their models are using

for their predictions. The next chapter will generalise our method to work with ancient

DNA.



Chapter 6

Detecting Sweeps in Ancient

DNA

Section 4.4 articulated two main knowledge gaps in regards to using machine learning to

detect selective sweeps. The first gap is that researchers have applied different machine

learning methods to sweep detection in isolation. Hence, there is no understanding of

what methods are suitable for any particular research problem or data set. The second

gap is that current methods are designed for use with modern data. This means current

methods cannot be directly applied to the growing set of ancient DNA data that is being

produced. Chapter 5 addressed the first gap by applying a suite of machine learning

methods to the problem of sweep detection in modern genetic data. We found that hard

sweeps and neutral regions can be well separated by using a suite of population genetic

summary statistics. By using some basic feature engineering and selection, we were

able to produce accurate predictive models using simple, fast and interpretable machine

learning methods (e.g. logistic regression). This chapter aims to address the second gap

by investigating how we could extend our method to work with ancient DNA.

6.1 Ancient DNA

6.1.1 What is Ancient DNA?

Ancient DNA refers to DNA that has been isolated from ancient specimens. Sources

of ancient DNA include fossilised bones, mummified tissues and teeth [85]. One of

the earliest ancient DNA studies was conducted in 1984, on a museum specimen of

the quagga; a South African plains zebra which became extinct in 1883 [86]. The

researchers extracted DNA from dried muscle tissue via a set of biochemical treatments.

98
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They cloned the DNA and sequenced pieces to produce a 229 bp mitochondrial genome

of the quagga. They sequenced the much smaller mitochondrial genome instead of the

much larger quagga genome because DNA sequencing was still in its infancy in 1984.

This meant that DNA sequencing was slow, inefficient and expensive. Nevertheless,

this study was important because it demonstrated that DNA sequences can be retrieved

from extinct species. The last couple of decades saw major technological advances in

ancient DNA and DNA sequencing methods (e.g. high throughput sequencing). This

enabled ancient DNA researchers to not only sequence mitochondrial genomes but to

also generate genome wide data sets from ancient DNA [87]. Ancient DNA is a rapidly

emerging field and many ancient genomes are now being sequenced. Consider the field

of hominid evolution. Prior to 2010 there were only a few archaic hominid genomes

available. As of 2017, over 1100 ancient genomes of archaic hominids and anatomically

modern humans have been published. Researchers today are using ancient DNA to

examine a broad range of archaeological specimens such as ancient horse bone found

preserved in the Canadian Yukon territory and whale tissue decorating an electric lamp

in the Australian National Maritime Museum [88, 89].

Ancient DNA is important for evolutionary biology because it provides genetic insights

into ancient populations. Comparing ancient genomes with modern data can enhance

our understanding of population history and how organisms adapted to past environ-

mental challenges. For example, the first Neanderthal genome was produced using DNA

extracted from Neanderthal bones (50k-65k years old) found in the Vindija cave in

Croatia [90]. Comparison of the Neanderthal genome with modern human DNA has re-

vealed non-African populations (e.g. European, Chinese) to have approximately 1− 4%

Neanderthal DNA whilst African populations (e.g. San, Yoruba) has none [90]. This

suggests that the ancestors of non-African humans interbred with Neanderthals when

the two populations met in the Middle East [91]. Further studies into the remaining

Neanderthal DNA found in non-African populations suggest that they once offered re-

sistance towards certain RNA viruses [92]. Thus researchers have used ancient DNA to

unravel the history of human evolution and to understand how the human genome has

evolved across time.

In the context of detecting selective sweeps, ancient DNA is also useful for detecting old

sweeps. Figure 6.1 is an illustration of how sweep patterns can decay over time. The left

panel represents a genetic region where a selected mutation (red box) has recently fixed.

The low genetic diversity around the selected mutation means that it can be detected

by population genetic summary statistics such as Tajima’s D and haploptype statistic

h1. As time passes, novel mutations are spontaneously generated thereby increasing the

genetic diversity within the region. This adds noise to the sweep signal, making it more

difficult to be detected by population genetic statistics. Over time, different populations
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Figure 6.1: Illustration of how hard sweep patterns decay over time. Each line
represents a chromosome. The blue boxes represent neutral mutations and the red

boxes is a selected mutation.

can interbreed, thereby diluting signals over time. Ancient DNA can bypass this problem

by enabling researchers work directly with genomes where the old sweep patterns have

not yet decayed. This helps researchers to investigate older changes to the genome which

cannot be accessed with modern data.

6.1.2 Technical Challenges

Although ancient DNA is useful for evolutionary biology, it introduces its own set of

technical challenges. We will now explore the key technical challenges of using ancient

DNA which are not found in modern genome data.

Provided the correct protocols are followed, genetic materiel sampled and sequenced

from living individuals are typically 100% endogenous [91]. This means that almost

all the DNA fragments extracted originated from the sampled individual. This enables

researchers to have an accurate genetic record of the individuals. In contrast ancient

DNA is scarce and most of the DNA extracted from fossils are exogenous (i.e. originating

from contaminants). The reason is that after death, an organism’s DNA degrades over

time. Meanwhile environmental microbes and other organisms can make contact with

the remains, leaving behind their own DNA. Inappropriate human handling of the sample

can produce additional contamination. Exogenous DNA obscures the data, making it

difficult to accurately reconstruct the individual’s original genome. Contamination must

be adequately addressed for downstream bioinformatic analysis to be valid.
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Researchers have developed several strategies for mitigating the effects of contamination

in ancient DNA [91]. Standard laboratory protocols have been developed to minimise

further contamination from human handling. This involves working within a clean iso-

lated room, using filtered air systems and bleach treatment of surfaces [93] [94]. Prior

to sequencing, the extracted DNA fragments are given molecular tags to prevent any

additional contaminant DNA from being confused with the sampled ancient DNA [95].

After the sample has been sequenced, there are a suite of bioinformatic tools available

which can either filter out contaminant DNA or estimate the overall contamination rate

[91].

DNA molecules frequently suffer from chemical insults which can potentially alter the

underlying sequences [96]. In living organisms, this process is countered by a set of robust

DNA repair mechanisms which maintain the integrity of the genome. These mechanisms

shut down upon death, exposing the individual’s genome to the set of chemical factors

which threaten its stability. For example, intracellular nucleases are special proteins

used within DNA repair mechanisms which can cut DNA molecules [97]. Upon death

intracellular nucleases are no longer sequestered in the cell, enabling it to access the

genome and degrade it. Bacteria growing on decaying tissue can also breakdown the

host’s DNA. Given sufficient time and the appropriate environmental conditions, all

retrievable endogenous DNA can be destroyed. If the sample is frozen or desiccated

shortly after death, this can slow down the degradation of its DNA. We will now discuss

several key technical problems caused by post-mortem DNA damage.

6.1.2.1 Fragmentation

Section 2.2 was a brief overview of DNA sequencing. The process involves cutting the

sampled DNA into smaller fragments, sequencing those fragments into reads and then

reassembling those reads to retrieve the original genome. In modern samples, endogenous

DNA is plentiful which enables researchers to reassemble the sampled genome with

confidence. Ancient DNA is more challenging because the sample DNA already comes in

small fragments due to post-mortem DNA damage. A review of ancient DNA extracted

from soft tissues that varying in age from 4 - 13 000 years has shown that most ancient

DNA has degraded to fragments of 40-500 bp [98]. Another issue is that the majority of

the sequenced reads come from contamination rather than the ancient individual [99].

Hence, endogenous reads are short and scarce, making genome assembly challenging.

Depending on the quality of the sample, it may not always be possible to reconstruct

the whole genome of the individual because there is not enough data from the reads to

deduce some areas of the genome [100]. Thus when ancient samples are aligned together

for population genetic analysis, there will be missing information since the base pair of
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some individuals at some positions are unknown. Analytical tools which seek to leverage

ancient DNA must account for potentially high rates of missingness in the data [101].

6.1.2.2 Deamination

Ancient DNA is susceptible to hydrolytic deamination (a chemical reaction) which mod-

ifies the DNA so that it is misread by the sequencing machinery [97]. The primary target

of deamination is cytosine which is converted uracil. Whilst cytosine binds with guanine,

uracil binds with adenine. During DNA sequencing, uracil incorrectly incorporates ade-

nine instead of guanine, thereby creating a G −→ A substitution on the complimentary

strand (C −→ T mutation on the uracil strand). Although deamination is known to

produce other kinds of substitutions (e.g. A −→ G|T −→ C), the G −→ A|C −→ T

substitution is the most common in ancient DNA [102]. In the context of SNP data,

deamination can produce false SNPs by generating variants that did not exist in the

original organism. In contrast to modern data, the sequencing of ancient DNA is more

error prone due to deamination.

6.1.2.3 Ascertainment Bias

Before explaining ascertainment bias, we need to discuss how ancient samples are se-

quences. It is challenging to accurately sequence ancient samples because the original,

endogenous DNA is mixed with lots of contaminant DNA Section 6.1. One strategy is

to use shotgun sequencing which involves randomly cutting up the sampled DNA into

smaller fragments using restriction enzymes [103]. The fragments are sequenced into

reads and bioinformatic tools are used to filter out contamination. Then an alignment

program reassembles the genome using the overlapping ends of the reads with the help

of a reference genome. After sequencing several individuals, we can identify all the SNPs

within our sample for population genetic analysis. However, shotgun sequencing is ex-

pensive and inefficient because endogenous DNA is rare (∼ 1% or less) [104, 105]. This

means resources have to be wasted on sequencing lots of contaminant DNA before there

enough endogenous DNA has been sequenced. This method will also sequence many

endogenous consensus regions when the population genetic analysis is focused on the

SNPs.

An alternative strategy is to use SNP arrays; DNA chips with a collection of microscopic

DNA spots [106]. Each spot contains a specific DNA sequences known as oligonucleotide

probes. Fluorophore tags are attached to the sampled DNA fragments which are then



Chapter 5: Detecting Sweeps in Ancient DNA 103

added onto the chip. DNA fragments which are complementary to the chip’s oligonu-

cleotide probes will pair up with them via hydrogen bonding (hybridisation). By select-

ing the appropriate probes, researchers can ensure that endogenous DNA rather than

contaminant DNA will bind to the probes. This process said to be enriching for endoge-

nous DNA. The chip is washed, removing any DNA that is unattached to the probes.

A detection system records the fluorescence signal which is used to sequence the DNA

that has remained attached to the probes. The enrichment procedure ensures resources

are not wasted on sequencing the contaminants.

This raises the question of which oligonucleotide probes should be used on a DNA chip.

Genetic regions which are likely to be polymorphic in the population of interest are

desirable because they would be most informative for population genetic analyses. The

process of identifying these polymorphic sites is known as SNP ascertainment. Keinan’s

method identifies SNPs by using two chromosomes within an individual of known an-

cestry and comes from a closely related population to the population of interest [107].

This individual is known as an ascertainment individual. (For example, we can use

an African individual to ascertain the SNPs for some ancient human remains found

in Europe). Polymorphic sites within the ascertainment individual are potential SNP

sites.The DNA sequences around these sites can be used to make complimentary oligonu-

cleotide probes on the DNA chip. Different probes are made for each variant at each

site.

Since the ascertainment individual comes from a closely related population, it is likely

to share many SNPs with the population of interest. DNA fragments which bind the

the probes would be mostly endogenous because contaminant DNA coming from other

species are unlikely to match probes. The ancient individual can then be sequenced at the

ascertained SNP positions using high-throughput sequencing methods [108]. Multiple

ascertainment individuals can be used to increase the number of potential SNP sites.

The DNA chip method is more efficient than the shotgun sequencing approach. Whilst

shotgun sequences attempts to reconstruct the sample’s entire genome, the chip method

only sequences regions which are likely to be informative. It has been shown that the

chip method can produce similar quality results as shotgun sequencing, for a fraction

of the cost [109]. Hence, researchers commonly use DNA chips for sequencing ancient

samples for population genetic analyses.

A limitation of using DNA chips is that we sequence the sample at a subset of SNPs

based on a set of ascertainment individuals. In order for a SNP to be identified, both

alleles must be found within the chromosomes of at least one ascertainment individual.

This method is biased towards discovering SNPs with intermediate frequency alleles

and has difficulty identifying SNPs with low frequency alleles. This process is known
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as ascertainment bias. Ascertainment bias distorts the site frequency spectrum found

in the data and produces deviation of population genetic summary statistics from their

theoretical expectations. For the context of detecting selective sweeps, ascertainment

bias can potentially confound SFS-based statistics such as Tajima’s D and Fay and Wu’s

H. In summary, a common method of sequencing ancient samples is to use a DNA chip

with oligonucleotide probes based on a set of ascertainment individuals. This leads to

ascertainment bias because the downstream analysis is conducted on a subset of SNPs

which do not represent the overall SNP distribution in the population.

6.1.2.4 Pseudohaplotypes

Since DNA is plentiful in living individuals, modern DNA samples are relatively high

quality and many DNA fragments can be retrieved. The abundance of DNA fragments

ensures that there is high coverage for the whole genome, meaning that many reads can

be found for any region of the genome. This rich data enables alignment algorithms

to reconstruct the whole genome with high confidence. When working with diploid

organisms which have two copies of each somatic chromosome, bioinformatic tools are

available to estimate the haplotypes of each individual [110]. The process of estimating

the haplotypes of an individual based on DNA reads is known as phasing.

It is much more challenging to phase ancient DNA because endogenous reads are rare

and short. After reassembling the reads (Section 2.2), some regions of the genome may

only have a couple or less reads mapped to it. Although variants may be found within

two reads, it is difficult to distinguish real genetic variants from false variants produced

by deamination. Due to its low information, the underlying haplotypes of ancient DNA

cannot be discerned (unphased) [111].

How then does one come up with the sequence of a diploid individual using ancient DNA?

A simple technique is to produce a single pseudo-haplotype by randomly sampling from

one of the reads at each SNP position. Assuming that homologous chromosomes decay

at the same rate, the output pseudo-haplotype will contain approximately half of the

variants of each chromosome. However, this method breaks up haplotype patterns which

could confound some haplotype based statistics.

6.1.2.5 Conclusion: Ancient DNA

Ancient DNA is useful for evolutionary biology because it enables researchers to directly

study past genetic diversity. The utility of ancient DNA comes at the cost of having to

deal with its associated technical challenges. Due to post-mortem DNA damage, ancient
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DNA can have a high rate of missing data and the sequences we produce are more error

prone than in modern data. Since ancient DNA is commonly sequenced using DNA chips,

the data suffers from ascertainment bias which distorts the site frequency spectrum.

Unlike modern data, ancient DNA is often unphased meaning that the haplotypes of the

samples cannot be discerned. Instead researchers resort to using pseudo-haplotypes by

randomly sampling from one of the reads at each SNP position. The aim of this chapter is

to extend our method from Chapter 5 to account for these technical challenges in ancient

DNA. We will focus on using single-timepoint samples from an ancient population.

A sweep detection protocol which works with ancient DNA will enable researchers to

identify old sweep patterns not found in modern data. This will provide further insights

into how populations have adapted to past environmental challenges and how the genome

evolves across time.

6.2 Method

6.2.1 Introduction

Section 6.1 covered the utility of ancient DNA in evolutionary biology and the technical

challenges that it brings. We now extend our methods from Chapter 5 in order to

formulate a machine learning protocol for detecting sweeps in ancient DNA. First we

will age our training data by introducing missing information, deamination and pseudo-

haplodisation. To account for the wide use of DNA chips in ancient DNA, we will

also simulate the ascertainment procedure as described in Section 6.1.2.3. We will then

explore some imputation strategies for missing information and preprocessing methods

for preparing the data for model fitting. We will use our results to design a machine

learning protocol for detecting selective sweeps in ancient DNA.

6.2.2 Simulating DNA Ageing

6.2.2.1 Initial Simulation of Training Data

We used discoal to simulate a simple demographic model with a constant population

size of 10,000 with a fixed mutation rate of 1.5× 10−8 and a fixed recombination rate of

1.0 × 10−8 [71]. All sweeps were fixed at the time of sampling. Unlike Chapter 5, this

model contains an outgroup which diverged from the main population 50, 000 years ago.

We used a generation time of 25 years [112]. This demographic model coincides with a

simple model of human evolutionary history. The two populations represent African and

non-African populations of modern humans which diverged ∼ 50, 000 years ago [113].
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Each simulation is a 1Mb region. 100 samples are taken from the main population whilst

20 samples were taken from the outgroup. The outgroup sequences will be used for SNP

ascertainment to mirror ascertainment bias as described in Section 6.1.2.3. At this stage,

the simulated genomes represent the clean, modern DNA sequences that researchers

would extract from living individuals. We will now discuss how to age our training data

by introducing the technical challenges of ancient DNA described in Section 6.1.2.

6.2.2.2 Aging the Training Data

In order to train an effective model for detecting sweeps in ancient data, we must modify

our population genetic simulations to resemble ancient genetic data. We focus on four

key technical challenges of ancient DNA namely; missing information, deamination,

pseudo-haplodisation and SNP ascertainment bias.

6.2.2.3 Simulating Ascertainment Bias

The first step for converting our training data into ancient DNA is to simulate the ascer-

tainment procedure described in Section 6.1.2.3. The justification is that ascertainment

is done using a set of modern ascertainment individuals which should not have any an-

cient DNA damage [114]. For example, researchers may use modern African genomes

(ascertainment set) to ascertain SNPs for some ancient hominid genomes from Europe.

Hence we must simulate the ascertainment procedure before adding any ancient DNA

damage.

We now discuss how to simulate ascertainment in our training data. We start off with

a genome matrix G120×k, where k is the number of SNPs produced in a particular sim-

ulation. The rows correspond to the 120 samples; 100 from the main population and 20

from the outgroup. The 20 outgroup samples are the ascertainment individuals which

will be used to ascertain SNPs for the main population (i.e. sample of interest). The 20

outgroup sequences are grouped into ten pairs of rows. Two sequences from the main

population also become a pair, giving 11 pairs of rows in total. Each pair of rows rep-

resent the two sequences from a single diploid individual. For each row pair/individual,

we identify all the heterozygous sites (i.e. any pairwise differences). We then create a

new, truncated genome matrix using only the columns of G which were heterozygous

in at least one of the ascertainment individuals. The 22 rows corresponding to the as-

certainment individuals are removed as their only purpose is to ascertain SNPs. This

replicates the real-world process of genotype array construction where the ascertainment

individuals are not part of the sample of interest [114].
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The downstream analysis is done using the remaining genomes sampled from our pop-

ulation of interest. After simulating ascertainment bias, we have a truncated genome

matrix Gasc98×l, for some l ≤ k.

6.2.2.4 Simulating Missing Information

Since endogenous ancient DNA fragments are short and difficult to retrieve, ancient

genomes often have missing sequences. When aligning ancient genomes together for

population genetic analysis, each individual genome is likely to have missing sequences

at different SNP positions. We can represent this data by modifying the binary genome

matrices from Chapter 5 to contain some NA elements, representing missing informa-

tion. Assuming we are using ancient DNA extracted from samples of similar age and

condition, each sequence should have roughly the same amount of DNA damage. In

this case the sequences are considered to be missing completely at random whereby each

element of the genome matrix is equally likely to become missing. We simulated miss-

ingness in our genome matrices by using a single Bernoulli trial for each matrix element.

The probability of success is determined by a fixed missing rate. For each success the

corresponding matrix element is converted to NA, otherwise the element remains un-

changed. In order to understand the effects of missingness on predictive accuracy, we

applied a range of missing rates onto the training data.

6.2.2.5 Simulating Deamination

Deamination is a form of post-mortem DNA damage which produces G −→ A and

C −→ T substitutions at various positions across the genome known as transition sites.

It has been shown that out of the ∼ 1.2 million SNP sites that are commonly targeted in

the ancient DNA analysis of humans, ∼ 77.6% are transition sites [115]. Hence for each

genome matrix, we designate each column to be a transition site with probability 77.6%.

For each transition column, we designate either a 0-to-1 or a 1-to-0 transition with equal

probability. This reflects how either the 0 or 1 alleles could represent a G/C which can

be changed into a A/C via deamination. The relevant entries (either 0 or 1) in that

column are then changed into the alternate allele with probability 0.05 [115]. Although

it is possible for deamination to generate a third variant at a position which already has

a SNP, this was not modelled. Using the ascertainment individuals, we know that two

alleles exist per variant site. Thus when a third variant is found, we know that it has

been caused by an error and it will be removed.

This simulation of deamination made no decision about which nucleotide base each

variant represented. The reasons are
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1. Coalescent simulations uses the infinite sites model where alleles are either ancestral

or derived (i.e. 0 or 1). Each variant is equally likely to be A,C,T or G.

2. The population genetic summary statistics we use are based on the differences between

sequences rather than the actual underlying base sequences themselves.

6.2.2.6 Simulating Pseudo-haplodisation

Recall that in a genome matrix, the columns represents the SNPs whilst the rows rep-

resent individual sequences. We simulate the process described in Section 6.1.2.4 by

breaking up the rows of each genome matrix into pairs. Each pair of rows represents the

two homologous chromosomes within a single, diploid individual. For each row pair, we

randomly sample one allele for each position to generate a new row. This will only make

a difference at heterozygous sites where there are two different alleles (i.e.The elements

are 0/1 rather than 1/1 or 0/0). The new row represents a pseudo-haplotype where

each homologous chromosome has contributed to half of its variants. After pseudo-

haplodisation, we have a shorter genome matrix which has half the number of rows as

the original input matrix. The number of columns is unchanged. There may occasionally

be non-polymorphic columns where all the non-NA elements are either 1’s or 0’s. All

non-polymorphic columns are removed from the genome matrix as they are no longer

genetic variants. After ageing our simulations, the end product is a set of genome ma-

trices with fewer rows than those in Chapter 5 (49 vs 100) and generally fewer columns.

This is due to ascertainment bias and the removal of non-polymorphic positions.

6.2.3 Imputation

By taking our simulations through the ageing process described in Section 6.2.2, we

converted binary genome matrices (containing 0’s and 1’s) into smaller genome matrices

with 0’s, 1’s and NAs. In statistics, imputation is the process of substituting missing

data with reasonable values [116]. Since many traditional population genetic summary

statistics are not defined for missing data, we designed a couple of imputation strategies

for our simulated aDNA data. It is not necessary to impute every matrix element

correctly because the goal is not to retrieve the original matrix. Rather we want to

impute sensible values to the missing data so that our summary statistics will separate

hard sweeps from neutral simulations.
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6.2.3.1 Strategy 1: Zero Impute

For regions that are neutral or under weak selection, ancestral alleles (represented by

0) are much more common than derived alleles (represented by 1). A naive imputation

strategy would be to convert all NA’s to 0 since this would be the “correct” value for

most sites. Whilst this strategy is probably too simplistic, it’s worth trying as a “first

pass” and will provide a base line for comparison.

6.2.3.2 Strategy 2: Random Impute

This method imputes the NA’s of each column using the information present in each

column. Suppose some column c in the genome matrix has k NA’s and n non-NA

elements. For each NA, we randomly sample one element out of the n non-NA elements.

The NA element is then imputed to be the sampled non-NA element. This process is

repeated across all columns of the genome matrix which contain any NA’s.

6.2.4 Window Splitting and Computing Summary Statistics

We split each genome matrix into 5 roughly equal blocks using the method described in

Figure 5.2. Although 11 blocks were used in Chapter 5, this time we only used 5 blocks

because the DNA ageing process removed many columns from the genome matrices.

(have a boxplot comparing the number of SNPs between the two groups for different

missing rates) We generated a dataframe by computing population genetic summary

statistics across the 5 blocks for each simulation, similar to the process described in

Section 5.1.3. The key difference with the aDNA method is that LD based summary

statistics were not used. The reason is that computing the LD statistics takes much

longer than the other statistics, even when we downsample the columns of our genome

matrices. Given the additional time required to simulate DNA ageing, computing the

LD statistics would be excessive. Instead our method uses the SFS stats (Tajima’s D,

Fay and Wu’s H) and the haplotype statistics (h1,h2,h12,h123).

6.2.5 Modifying the Haplotype Statistics

Recall from Section 2.5.2, that the haplotype statistics distinguish selective sweeps from

neutral simulations using the proportions of the different haplotypes (unique rows) in

the data. In the aDNA context, one major problem we encountered was that the hap-

lotype statistics had near-zero variance across the blocks and failed to distinguish hard
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sweeps from neutral simulations Figure 6.5. This was because deamination, pseudo-

haplodisation and the imputation of missingness have made most/all the rows of the

genome matrix different, even when the selection coefficient (i.e. strength of selection)

is high. Currently, our haplotype statistics treat rows as being separate haplotypes as

long as there is at least one pairwise difference between them. It has no inherent measure

of how different two rows may be. The result is that the haplotype statistics are unable

to detect sweep patterns due to the noise introduced by DNA ageing.

We considered clustering techniques to mitigate this problem. The idea is that each

row of a genome matrix is considered as a p-dimensional vector, where p is the number

of SNPs for that simulation. A clustering algorithm from machine learning is used to

cluster the rows into k clusters, based on the number of pairwise differences between

them. The proportion of rows that are within each group are computed and ranked

from highest to lowest. (i.e. pk is the proportion of rows that are in the kth biggest

cluster). These proportions are then used in place of the haplotype proportions for the

purposes of computing the haplotype statistics. For example, consider a genome matrix

with 10 rows which are grouped into 3 clusters. 5 rows are in cluster 1, 3 in cluster 2, 2

in cluster 3. The modified h1 statistic for this matrix is 0.52 + 0.32 + 0.22 = 0.38.

We designed two different clustering strategies.

1. Fixed k method: As a simple first approach, we clustered every genome matrix

block into k clusters using the k-means algorithm (Section 3.3.2), where k is a fixed

value determined a priori. We noted that areas with strong selection can have multiple

duplicated rows. For any block which has d duplicated rows where d < k, the pipeline

will only form d clusters. Considering each genome matrix have 49 rows, we chose k = 10

which is 20% of the rows.

2. Silhouette based method: A limitation of method 1 is that the selection of k is some-

what arbitrary. Given the different haplotype patterns produced by different selection

coefficients, using the same k across all the simulations may also not be appropriate.

For example, a neutral region should have multiple haplotypes which would warrant a

large k. A region under strong selection will have fewer haplotypes so a small k would

be sensible. One strategy to address this problem is to try different values of k for

each block and select the k which provides the “best” clustering. This is similar to the

hyperparameter tuning process described in Section 3.2.2.1.

In method 2, we cluster each block for k = 2, 3, . . . , 10, using the k-means algorithm

(Section 3.3.2). Each clustering is assessed using the silhouette value which measures

how similar the haplotypes are to its own cluster (cohesion) compared to the other

clusters (separation). The k which corresponds to the highest silhouette value is chosen



Chapter 5: Detecting Sweeps in Ancient DNA 111

for the final clustering. The cluster-based haplotype statistics is computed using the

proportions of rows for each cluster in the final clustering (as per method 1).

Using these clustering techniques, we hope to capture the haplotype patterns produced

by hard sweeps despite the noise produced by the DNA ageing process.

6.2.6 Simulation Parameters

Table 6.1: Table of demographic parameters for discoal simulations. Note that the
recombination and mutation rates are measured in events/base/generation. Values were

based on [72, 73, 74, 112, 113]

Parameter Value

mutation rate 1.5 ×10−8bp−1gen−1

recombination rate 1 ×10−8bp−1gen−1

effective population size 10 000
genome length 106

sample size 120
selection coefficient 0, 0.005, 0.0125, 0.025, 0.0375, 0.05, 0.1
number of populations 2
population split time 50 000 years
generation time 25 years

Out of the 120 samples generated, 100 are from the population of interest and 20 from

the outgroup (Table 6.1). SNPs are ascertained using 2 samples from the former and the

20 samples from the outgroup. We made 1000 simulations for each selection coefficient.

Table 6.2: Table of aDNA damage parameters. The values were taken from [115].
The missing rate was modified so we could consider a wider range.

Parameter Value

missing rate 0,0.2,0.4,0.6,0.8,0.95
proportion of transition sites 0.776
deamination rate 0.05

6.2.7 Preprocessing

After ageing our simulations and computing summary statistics, we obtain a dataframe

with response variable “sweep” and 30 predictors. Each row corresponds to one aged dis-

coal simulation which has been processed with the imputation and clustering techniques

described in Section 6.2.3 and Section 6.2.5. 30 predictors come from the 6 population

genetic summary statistics (Tajima’s D, Fay and Wu’s H, h1, h2, h12, h123) computed

over the 5 blocks. There is a non-modelling, factor variable ”processing technique”
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Figure 6.2: PCA plots for the training data processed with 2 imputation techniques
(zero, random) and 3 clustering techniques (none, fixed clustering, silhouette cluster-

ing). The colors represent the different selection coefficients.

which indicates the imputation and clustering method used to generate each data point.

There are 6 techniques in total because we have 2 imputation methods (zero impute,

random impute) and the 3 clustering methods (no clustering, fixed clustering, silhou-

ette clustering). The simulated data was partitioned into 6 separate dataframes, one

for each processing technique. Each dataframe was split 80:20 into training and testing

sets. For preprocessing, we applied a 0.8 correlation filter and standardised 1 the SFS-

based statistics. As with Section 5.1.4, there was no need to standardise the haplotype

statistics because they are bounded by 0 and 1. This ensures that all the predictors are

roughly on the same scale.

6.2.8 Principal Component Analysis

Before deciding on which machine learning classifier to fit, we used PCA to visualise the

spread of the data. Figure 6.2 is a PCA plot of our ancient DNA data set processed

with the 6 different techniques (2 imputation strategies by 3 clustering strategies). The

general trend for all techniques is that the hard sweeps tend to move further apart from

neutral data points as the selection coefficient increases. Neutral data points also have

less variability than hard sweeps.

For zero impute, the neutral simulations form several small clusters spread out across

each plot. The complex spread of the neutral data suggests that a flexible classifier which

1subtract mean and divide by standard deviation
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can model non-linear trends would be preferable. For random impute, the neutral simu-

lations are concentrated on a single cluster. There is some overlap with weaker selection

coefficients (0.005, 0.0125) but separation is good overall, particularly for higher selection

coefficients (≥ 0.025). The spread of the data suggests a linear boundary on PC1 can

separate hard sweeps from neutral data reasonably well. The cleaner separation of the

random impute data suggests that it may be the better imputation technique. We will

now fit a machine learning classifier to separate hard sweeps from neutral simulations.

6.2.9 Model Fitting

After preprocessing we have 6 total training dataframes, one for each processing tech-

nique. For each dataframe, we fitted a MARS model using the forward pass algorithm

Section 3.3.5. Unlike Chapter 5, we have far fewer predictors since we used 6 sum-

mary statistics (8 before) computed over 5 blocks (11 before). To ensure a parsimonious

model, higher order interaction terms were not included. For hyperparameter tuning,

we considered a 5-level regular grid for “num terms” ∈ [4, 12]. We determined the upper

bound based on the number of summary statistics we used, noting the strong correlations

when the same statistic is computed on adjacent blocks. Although more sophisticated

classifiers are available, we selected MARS for this chapter because of its good perfor-

mance overall in Chapter 5. The PCA plots suggest that a non-linear classifier may

be useful, especially for zero imputation. For this context, MARS seems suitable be-

cause it can model non-linear trends whilst maintaining computational speed. As we

found in Chapter 5, simple methods combined with preprocessing can produce effective,

predictive models.

6.3 Results

6.3.1 DNA Ageing Effect On Summary Statistics

We will now examine some boxplots to see how well our summary statistics can dis-

tinguish hard sweeps from neutral simulations. We will focus on the central window

(Window 3). This is the location of the selected mutation where the sweep signature

tends to be the strongest.

6.3.1.1 Tajima’s D

Figure 6.3 shows how Tajima’s D changes with missing rate. Section 2.5.1.3 explained

that hard sweeps have lower values of Tajima’s D compared to neutral regions. For both
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imputation strategies, the separation between hard and neutral simulations is strongest

when the missing rate is low. The interquartile ranges (IQR) decrease as missing rate

rate goes up. The decline is stronger for hard sweeps due to the variation in selection

coefficients used. Zero impute has a non-linear relationship between missing rate and

Tajima’s D. The hard sweeps start off having lower values than neutral simulations

with the two IQR’s converging around missing rate 0.4. For higher missing rates, the

hard sweeps have higher D values. This means zero impute shows poor separation for

intermediate missing rates (∼ 0.4− 0.5). Random impute consistently shows the hard

sweeps to have lower D values across all missing rates. There is better separation relative

to zero impute, since there is no overlap in the IQR’s across the different missing rates.

For both imputation techniques, there are some outlier points from the hard sweeps

with values within the neutral range. This corresponds to hard sweep simulations with

low selection coefficients (e.g. 0.005). In regards to Tajima’s D, random impute seems

to be the better imputation technique because it shows good separation across all the

missing rates. The linear relationship between D and missing rate means that it can be

captured by simple, linear models like logistic regression.

6.3.1.2 Fay and Wu’s H

Hard sweeps are tend to have lower values of H relative to neutral simulations (Sec-

tion 2.5.1.4). See Figure 6.4. For random impute, H has a negative, linear relationship

with missing rate whilst the hard sweeps have a positive, non-linear relationship. For

zero impute, H has a non-linear relationship with missing rate for both neutral and hard

sweeps. Similar to Tajima’s D, the IQRs for both groups and both imputation techniques

decline as missing rate increases. The decline is stronger for hard sweeps because of the

different selection coefficients. Random impute shows greater separation as the IQRs

do not overlap until missing rate 0.9 (zero impute shows overlap for 0.8). The spread of

IQRs for the two groups suggest that a linear classifier would perform better for random

impute compared to zero impute. As random impute also shows better separation at

high missing rates (0.7-0.9), random impute may be the better imputation strategy.

6.3.1.3 Haplotype Statistics

Recall that our modified h1 statistic is the sum of the proportions of haplotypes assigned

to each cluster. Hard sweeps are supposed to have higher h1 values because there is a

dominant, selected haplotype. See Figure 6.5. When the haplotypes are not clustered,

the hard sweeps and neutral simulations have the same fixed values. The imputation

makes no difference. As explained in Section 6.2.5, this is because the ageing process
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Figure 6.3: Boxplot showing how Tajima’s D on the central window changes with
different missing rates for the two imputation methods

Figure 6.4: Boxplot showing how Fay and Wu’s H on the central window changes
with different missing rates for the two imputation methods

renders all the haplotypes different, whether there was a sweep or not. When every

haplotype is different, h1 becomes close to zero.

Zero impute with silhouette clustering increases the variability of h1 across both groups.

This is probably caused by variation in the number of clusters used for each data point.

Separation is good up to a missing rate of 0.2, past which the IQRs of the hard sweeps and

neutral simulations become overlapping. Random impute works better with silhouette

clustering, showing good separation for missing rates up to 0.8.
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Figure 6.5: Boxplot showing how h1 on the central window changes with different
missing rates for all 6 processing techniques (imputation and clustering). The imputa-
tion methods are random and zero impute. The clustering methods are fixed clustering

with k = 10 and silhouette clustering. “none” indicates no clustering was done.

For zero impute/fixed cluster, h1 is higher for extreme missing rates ([0,0.2], [0.8,0.95])

relative to intermediate missing rates. At extreme missing rates, setting all NAs to zero

produces similar looking rows thereby increasing h1. Although hard sweeps tend to have

higher h1 values than neutral simulations at low missing rates (≤ 0.2), the two groups

start to converge around missing rate 0.4. For missing rate > 0.8, the neutral simulations

have higher h1. The reason is that the genome matrices of neutral simulations have

mostly 0’s due to the lack of a selected mutation. When missing rate is high, many of

the 1’s become NAs and get imputed to be 0’s. This produces many similar rows (lots

of 0’s) which then get clustered together, resulting in a larger h1. Hard sweeps have

more derives alleles so that more 1’s will remain after adding missingness. This creates

more pairwise differences between the haplotypes, thereby giving a lower h1 than neutral

simulations. The non-linear spread of the two groups for zero impute(both clustering)

and random impute, silhouette clustering, suggest that a linear classifier would not be

adequate for this method.

The boxplots for the remaining haplotype statistics can be found in Appendix B. h2

showed poor separation and was uninformative (Figure B.1). This reflects how h2 was

designed primarily for picking up soft sweeps. The plots for h12 were similar to those of

h1, although the separation is poorer (Figure B.2). This reflects how the

Random impute/fixed clustering consistently shows neutral simulations to have lower

values with small IQR across the missing rates. The IQR of hard sweeps decreases with

increasing missing rate. There is good separation between the two groups until missing
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Figure 6.6: AUC plots for the classifiers trained on the zero impute data. The plots
show the AUC values across the different missing rates. The numbers above each plot

indicate the selection coefficient.

rate 0.9, when the two IQRs overlap. The spread of the data suggests that a linear

classifier would separate the two groups up to a missing rate of 0.8. This suggests that

random impute and fixed clustering is the best strategy out of the ones considered.

6.3.2 Model Accuracy

Table 6.3: Table of AUC values for the MARS fitted on data processed with each of
the imputation and clustering techniques

Technique AUC

random impute, fixed clustering 0.9664358
zero impute, fixed clustering 0.9504123
zero impute, silhouette clustering 0.9321226
zero impute, no clustering 0.9292167
random impute, no clustering 0.9085888
random impute, silhouette clustering 0.8956103

Table 6.3 shows the accuracy of the 6 models using a test data set containing equal

numbers of simulations from the 6 missing rates and selection coefficients (7 if we include

neutral). The fixed clustering method produced the most accurate for both imputation

techniques. When fixed clustering is used, random impute has 0.01 more AUC which

suggests that it may be the better technique overall.
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Figure 6.7: AUC plots for the classifiers trained on the random impute data. The
plots show the AUC values across the different missing rates. The numbers above each

plot indicate the selection coefficient.

6.3.2.1 Assessing Zero Imputation

Figure 6.6 shows the breakdown of the AUC for the zero impute models at the six

different missing rates and selection coefficients. At the smallest selection coefficient

(0.005), most of the AUC values fluctuate between ∼ 0.7 − 0.9. The model produced

with no clustering performs the worst with the AUC going below 0.6 at missing rate 0.4.

No trend can be discerned between missing rate and AUC. All three models are poor

at distinguishing hard sweeps and neutral simulations when the selection coefficient is

0.005, regardless the missing rate. This suggests that when selection is very weak, the

hard sweep signal is too faint to be distinguished by our summary statistics.

The AUC tends to increase and stabilise as the selection coefficient goes up. However,

there is substantial fluctuation of AUC at selection coefficients 0.0125 and 0.025, partic-

ularly when there is no clustering or silhouette clustering. Silhouette clustering appears

to be the worst technique, with the AUC dropping to ∼ 0.9 for some missing rates even

at strong selection strengths (0.05, 0.1). Both no clustering and fixed clustering have

consistently high AUC when the selection coefficient is at least 0.0375. Considering the

results across all six selection strengths, zero imputation goes best with fixed clustering

because it more accurate at weaker selection coefficients (0.0125, 0.025).
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6.3.2.2 Assessing Random Imputation

Similar to zero imputation, the random impute models were inaccurate at detecting

sweeps at the lowest selection coefficient. There is less fluctuation of AUC across the

missing rates. Most AUC values are within 0.8 - 0.9, although it does dip at missing

rate 0.95. Considering the results across all the missing rates, random impute models

are more accurate than zero impute models at selection coefficient 0.005. Compared

to the similar case in modern data, both aDNA models performed substantially worse.

Figure A.6 shows the AUC of last chapter’s MARS model when tested on data with

different selection coefficients. Observe that the previous MARS model achieved an

AUC of ∼ 0.978, even when it had to deal with population bottlenecks. This shows

that our model struggles to retrieve a strong sweep signal after DNA ageing when the

selection is weak.

All three models improve substantially for the higher selection coefficients (0.0125 -

0.1), achieving AUC values close to 1 for at least 5 of the 6 missing rates. There is

some small drops in AUC for lower missing rates at selection coefficient 0.0125 but this

is improved at higher selection strengths. Models with no clustering and silhouette

clustering showed poorer performance at high rates (0.8-0.95). Particularly, they show a

consistent, large drop in AUC for missing rate 0.95. The fixed clustering model was more

consistent, maintaining a high AUC across all the missing rates, including 0.95. This

suggests that when random imputation is used, the fixed clustering method is useful

for maintaining model accuracy at high missing rates (0.8-0.95). Note that silhouette

clustering performed worse than fixed clustering, particularly at higher missing rates

(≥ 0.6). It seems that by tuning the number of clusters for each observation, silhouette

clustering caused more variability in h1, particularly among the neutral simulations

(Figure 6.5). This produced more overlap between the two groups in h1 at the higher

missing rates, making the data more difficult to separate. In contrast, fixed clustering

increased h1 for hard sweeps, whilst keeping it small for neutral simulations. This

reduced the overlap between the two groups at h1, making separation easier.

6.3.2.3 Preferred Method

Although both imputation methods struggled to detect hard sweeps at selection coeffi-

cient 0.005, random impute performed better.

The preferred imputation method is random impute because its three models showed

consistently high AUC across the missing rates. The caveat is that the AUC dropped

substantially for silhouette clustering and no clustering at missing rate 0.95. Random
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Figure 6.8: Boxplot showing the FIRM scores for the random impute three models.
The numbers after the underscore indicate the window where the summary statistic
was computed. There were 5 windows in total. Not all predictors are included in the
final models because they can be removed via the correlation filter or excluded by the

MARS algorithm.

impute seems to go best with fixed clustering because it maintains high AUC even for

missing rate 0.95. This method is also better than zero imputation with fixed clustering

which shows drops in AUC, particularly for selection coefficients 0.0125 and 0.025. Thus

given our data set, random imputation with fixed clustering is our preferred method for

detecting hard sweeps in ancient DNA. Its high accuracy can be explained by the good

separation of Tajima’s D, Fay and Wu’s H and h1 shown by the box plots in Figures 6.3

to 6.5. The next section will use variable importance tools to investigate this model

further.

6.3.3 Variables of Importance

6.3.3.1 FIRM Scores of Random Impute Models

We now explore the variables of importance used by the random impute models. Fig-

ure 6.8 shows the FIRM scores of the most important predictors for each of the three

models. A predictor with zero importance means that it survived the correlation filter

but was not selected to be a term by the MARS algorithm. Fay and Wu’s H plays

a prominent role, with “H 3” (H computed at Window 3/central window) having the

highest FIRM score for all three models. We observed in Section 5.2.1.2 that SFS-based

statistics (e.g. Tajima’s D, Fay and Wu’s H) best separate hard sweeps at the window

with the selected mutation. Since the selected mutation is on Window 3, “H 3” was an
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important predictor for all 3 models. This is consistent with Figure 6.4 which showed

good separation at “H 3” when using random imputation.

When no clustering is used (random.none), the important predictors are the H values

across the 5 windows. None of the D’s appear in the model as they were removed by the

correlation filter. The small differences in FIRM between the outer windows (1,2,4,5)

are likely due to statistic noise. The haplotype statistics played no role because they

are zero variance predictors with poor separation (Figure 6.5). Given random.none’s

performance in Figure 6.7, the FIRM scores suggest that H alone does a good job of

distinguishing hard sweeps when the selection coefficient is ≥ 0.0125 and the missing

rate ≤ 0.8.

When silhouette clustering is introduced, only H, h2 and h123 survived the correlation

filter. The 5 values of H and h123 made it to the final model. However, the h123 FIRM

scores were much lower than that of H. Recall from Figure 6.7 that the silhouette clus-

tering model performed similarly to the no clustering model for most missing rates. At

missing rate 0.95, silhouette clustering made the model more inaccurate. This can be

explained by the silhouette model using h123 which is a statistic designed for distin-

guishing soft sweeps from hard sweeps, rather than detecting hard sweeps from neutral

simulations. By latching onto noise from an inappropriate statistic, the silhouette model

performed worse than the no clustering model.

After applying fixed clustering, some D and H values survived the correlation filter in

addition to all five values of h1 and h2. The final model selected a combination of

Tajima’s D, H and h1 as predictors. H on the central window (“H 3”) had the highest

FIRM, followed by D and H on the outer windows. Although “D 3” by itself should

be more informative than D’s on the outer windows (for the same reason as H), it was

removed by the correlation filter. This means that “D 3” was not needed when “H 3”

is already present. Four values of h1 were included in the model, although their FIRM

scores were low relative to those of D and H. If any of the four haplotype statistics were

to be included, it makes sense for h1 to be chosen because it was specifically designed

for picking up hard sweeps. Given the h1 FIRM scores are so small, the model is making

predictions mostly based on H and D. Recall from Figure 6.7 that random imputation

with fixed clustering produced the most accurate model overall. The FIRM scores

suggests the MARS model can distinguish sweeps with high accuracy, even at missing

rate 0.95 using mostly H and D. Fixed clustering appears to retrieve some signal from

h1 after the noise introduced via the DNA ageing process. However, h1 only plays a

minor role in the overall prediction.
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Figure 6.9: Partial dependence plots for the four most important predictors in the
preferred model (random impute/fixed clustering). “yhat” is the predicted log odds of
being a hard sweep. Note the values of D and H were normalised during preprocessing.

6.3.3.2 Investigating Random Impute/Fixed Clustering Model

We now investigate how our preferred model (random impute/fixed clustering) is making

its predictions. Figure 6.9 shows the partial dependence plots for the predictors with

the top 4 FIRM scores.

The pdp for the most important statistic “H 3”, has the highest range (-2,3). This

reflects how “H 3” has the highest FIRM score since FIRM measures the variability of

the pdp. The predicted log odds of a hard sweep is high when “H 3” is negative. The

prediction decreases linearly as “H 3” increases beyond 0. This fits with Figure 6.4 which

showed hard sweeps to have very negative values of “H 3” whilst neutral simulation had

values close to 0. “D 5” shows the same trend as “H 3” but except the pdp for “D 5”

has a smaller range. This is due to Window 1 being further away from the center

(Window 3) and hence its D value is less informative. The pdp for “D 1” drops more

quickly past 0. Theoretically, the spread of D values at Windows 1 and 5 should be

approximately the same since the region is symmetric (although Window 5 can have up

to 4 more columns). The difference in pdp’s may be caused by stratification in the data.

This means D splits the data so well such that multiple hinge functions can fit well to

the data (insert boxplot for D1 when I get home). Since the general trend for “D 1”

is the same as “D 5” and “H 3”, these pdp’s make sense from a population genetics

perspective.

The pdp for “H 1” is different because the predicted log odds decreases with increasing

“H 1” but is never flat. Figure 6.10 is a boxplot showing the distribution of “H 1”
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Figure 6.10: Boxplot for “H 1” in the random impute data.

across the missing rates. There is worse separation here relative to Figure 6.4, with the

IQRs starting to overlap even at missing rate 0. The overlap between hard and soft

sweeps increases with missing rate, with the IQR’s being almost identical at missing

rate 0.95. The quicker drop in the pdp of “H 1” may be caused by the poorer separation

of “H 1”. The predicted log odds declines quicker because the difference between hard

sweeps and neutral simulations is smaller for “H 1” than it is for “H 3”. The prediction

also increases slightly between (−0.8, 0.8) before dropping again. This kink is minor and

is likely caused by statistical noise. Overall, the pdp for “H 1” suggests that the chance

of a hard sweep increases as “H 1” gets negative.

6.4 Sweep Detection After DNA Ageing

In this chapter, we have simulated data under a constant population size model and aged

the DNA. The ageing process simulated the technical challenges of working with ancient

DNA such as missing information, pseudo-haplodisation, deamination and ascertainment

bias. We trialled methods for imputing missingness and clustering pseudo-haplotype

data. Based on our findings, we make the following remarks about detecting hard sweep

in ancient DNA under this simple demographic model.

1. For selection coefficient 0.005, the sweep signal is too low to be picked up reliably by

MARS.
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2. For selection coefficients ≥ 0.0125, MARS coupled with random imputation can still

retrieve a clear signal for detecting sweeps. The accuracy tends to decrease as missing

rate goes up. Sweeps are easier to detect when the selection coefficient is high.

3. The accuracy of our models tended to drop when the missing rate went past 0.8.

MARS coupled with random imputation and fixed clustering produced a classifier that

maintained high accuracy across the missing rates (including 0.95, which is not unusual

for ancient DNA [115]). This is our preferred method.

4. The most useful statistics are Tajima’s D and Fay and Wu’s H. h1 was used in our

preferred model but it only played a minor role in the predictions.

6.5 Conclusion

This chapter explained the technical challenges of using ancient DNA for population

genetic analysis, particularly in the context of detecting selective sweeps. We generated

genomes from a constant population size model and simulated missing information,

deamination, pseudo-haplodisation and ascertainment bias. We explored how to use

supervised learning together with imputation and clustering techniques, to detect hard

sweeps in ancient DNA. Our findings show that MARS used together with random

imputation and fixed clustering can retrieve a clear sweep signal after DNA ageing.

Tajima’s D and Fay and Wu’s H were the most useful statistics, although h1 may play

a small role as well. Chapter 7 will frame our work in the wider context of ancient DNA

research. Suggestions will be made for machine learning can be extended to finding

sweeps in ancient DNA under more complicated scenarios.
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Conclusion

Chapter 1 outlined our project for using machine learning to detect selective sweeps.

Here we also provided public links to our R package and pipeline which we wrote for

this project. The biological background was covered in Chapter 2 which discussed key

concepts such as the nature of DNA, evolution via natural selection, selective sweeps

and population genetics summary statistics.

Chapter 3 gave a technical introduction to machine learning, explaining fundamental

ideas such as supervised and unsupervised learning, classification and regression, the

bias variance trade off, regularisation and how to train and evaluate our models. For

unsupervised learning, we covered principal component analysis and k-means clustering

which are useful techniques for exploratory data analysis. We also covered four machine

learning classifiers:

1. Regularised logistic regression: A technique for modeling linear trends which is

also simple to interpret.

2. MARS: A non-parametric technique for modelling more complex, non-linear pat-

terns.

3. RDA: A decision boundary method based on a discriminant function.

4. Random forests: An ensemble method using classification trees.

This covered some of the main classes of classification techniques commonly used in ma-

chine learning. The concepts from the two background chapters were brought together

in Chapter 4 which discussed current machine learning approaches for sweep detection.

We identified two main knowledge gaps.

125
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1. There is no standard machine learning protocol for detecting selective sweeps. Re-

searchers tend to use methods in isolation based on hype or what they are familiar with.

There is little understanding about which machine learning method is appropriate for

any particular situation.

2. Current methods only use modern DNA which have been sampled from living in-

dividuals. We are interested in applying our methods to the emerging field of ancient

DNA. Ancient DNA is useful in biology because it enables researchers to directly study

the genomes of past populations. Using ancient DNA will enhance our understanding

of how populations have evolved across time.

Chapter 5 addressed the first knowledge gap by testing the performance of a suite of

machine learning classifiers. We focused on population bottleneck models since these

are known to produce false positives in previous sweep detection methods. We designed

a machine learning workflow which involved data preprocessing, hyperparameter tuning

and comparing our models by considering their predictive accuracy, computational time

and inherent model interpretability. We also used FIRM scores and partial dependence

plots to understand how our different models made their predictions. Most of our models

relied heavily on SFS-based statistics (D and H) although regularised logistic regression

used ωmax.

We found that an accurate sweep detection model can be produced using simple, quick

methods (e.g. regularised logistic regression) supported by data preprocessing. This

shows that researchers should not immediately deploy elaborate and computationally

intensive techniques such as neural networks. Instead we recommend researchers to first

try some simple, quick techniques and only move onto more elaborate ones if the simple

techniques prove to be insufficient.

Whilst our workflow focused on detecting hard sweeps, it can be generalised for other

population genetic problems. Researchers can use our workflow to compare different

machine learning methods and select one that is suitable for their problem. Our work-

flow ensures researchers not only build accurate and efficient predictive models but also

understand how their models work.

Chapter 6 addressed the second knowledge gap. This chapter first reviewed the addi-

tional technical challenges of using ancient DNA due to various forms of post-mortem

DNA damage. As a good starting point, we use genome data sampled from a constant

population size model. We aged this data by simulating key characteristics of aDNA

data such as missing information, deamination, pseudo-haplodisation and ascertainment

bias. We explored some imputation and clustering strategies retrieve the sweep signal

to account for deamination, missing data, pseudo-haplodisation and ascertainment bias
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found in ancient DNA. Using our random imputation technique combined with fixed

clustering, we built a MARS model which maintained a high accuracy even at missing

rate 0.95. This shows that a clear sweep signal can be retrieved despite all the noise

introduced via DNA ageing. The most important statistics were D and H, with the

model predicting hard sweeps when these values were small. Although h1 was also used,

it only played a minor role. The model distinguished hard sweeps by mostly looking for

negative values of H and D.

Detecting selective sweeps is an important and active area of research in population

genetics. Here are some reasons for why population geneticists may be interested in our

work.

1. Researchers have previously used various machine learning classifiers in isolation

for detecting sweeps in modern genomes. However, there is little understanding of

which classifiers would be appropriate for given problem. In Chapter 5, we formu-

lated a standard machine learning protocol for researchers to follow. Researchers

can use our protocol to compare different methods and to select a suitable classifier

for their specific research topic.

2. As we mentioned in Chapter 4, sometimes researchers are eager to use sophisticated

and flexible machine learning classifiers which require immense computational re-

sources (e.g. deep learning neural networks). At least for the range of demographic

models we considered (constant population size and population bottlenecks), we

showed that accurate models can be produced using simple, quick classifiers sup-

ported by summary statistics and data preprocessing. Although more sophisti-

cated classifiers may still be required for more complicated demographic scenarios,

our findings suggest that researchers should at least try some simpler methods

first. This sets a performance baseline to compare with other more sophisticated

methods if the simpler methods prove to be insufficient.

3. We incorporated novel techniques to investigate variables of importance in our

workflow. It is noteworthy that these techniques are model agnostic. This enables

researchers to not only make accurate predictive models but also to understand

how their models make predictions, not matter which machine learning algorithm

they are using. By unravelling the relationships between the predictors and the

response, researchers can study the different kinds of genetics patterns that are

produced by selective sweeps. This information allows researchers to better under-

stand the robustness of their methods towards demographic model misspecification

and to improve their classifiers with summary statistics or preprocessing regimes.
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4. Previous sweep detection methods only leverage modern DNA samples. A key

contribution is that we extended machine learning to detect sweeps in ancient

DNA. This was achieved by designing and implementing novel imputation and

clustering strategies for ancient DNA data. Given the caveat that we focused on

a simple demographic model, we showed that a clear sweep signal can still be

achieved when much of the DNA is absent due to damage (missing rate > 0.8).

Whilst more research is needed to extend this to more realistic and complicated

scenarios, our work shows the potential of using machine learning to detect sweeps

in ancient DNA.

7.0.1 Future Research Directions

Chapter 4 showed that many previous applications of machine learning on sweep detec-

tion focused on deploying a specific classifier onto a particular data set. A novel aspect

of our project is that we built machine learning models for sweep detection from the

ground up. This involved reviewing a suite of classifiers and designing a workflow to

compare, select, assess and interpret different models. This section will discuss the lim-

itations of our project and identify several future research directions which can extend

our methods to work with more complicated, real world data sets.

7.0.1.1 Simplifying Assumptions

1. We made simplifying assumptions to our simulated data such as fixed mutation

and recombination rates. In practice, these rates may vary across the genome [117].

In the future, we could simulate data from a distribution of rates and investigate

how they may affect model accuracy. To ensure our methods are robust, we could

also include additional summary statistics such as the nSL statistic which have

been shown to be robust to different recombination rates [118]. We did not use

nSL in our project because it is computationally demanding to compute and our

models performed well without it. For more complicated demographies, we could

investigate the trade-off between making the model more robust to recombination

rate variation vs. computational efficiency.

2. As a starting point, we considered simple demographic models where there is either

a constant population size or a single population bottleneck. Bottlenecks were in-

cluded because they are known to produce false positives [75]. Real populations can

have more complex demographies which may include expanding/shrinking popu-

lation sizes (rather than immediate changes as with bottlenecks) or interbreeding
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between relatively separate populations (admixture) [119, 120]. In order to ex-

tend our methods to account for realistic scenarios, we could select a population

of interest and estimate a set of feasible demographic histories using demographic

modelling tools. We can then simulate data under these scenarios and analyse the

results using our proposed workflow.

3. In our simulated data, all our hard sweeps were fixed at the time of sampling for

the sake of simplicity. This explains the high accuracy of our predictive models.

In real biological settings, the hard sweeps are likely to have been fixed at a range

of different times. Since sweep patterns decay over time, older sweeps are more

difficult to detect. We could use a range of fixation times in our simulations to train

a suite of classifiers. We can then investigate how fixation time affects prediction

and at what point is a sweep too old to be accurately distinguished.

4. To simplify the problem, we treated the missing data in ancient DNA to be missing

completely at random [116] (Chapter 1). This process was simulated by indepen-

dently converting each element in the genome matrix to NA with some specified

probability. In practice, not every sample will have the same proportion of miss-

ing data. Some regions may be more difficult to map than others, resulting in

heterogeneity in missing rates across different sites [121]. An improvement would

be to use empirical data to estimate a probabilistic model of how missingness is

distributed between individuals and across different sites. We can then simulate

missingness in our data under this probabilistic model.

5. In Chapter 6, we focused on four key aspects of ancient DNA; namely deamination,

missing information, ascertainment bias and pseudo-haplotypes. There are other

important technical challenges we have not considered such as contamination from

foreign individuals. We could estimate a probabilistic model of contamination and

use it simulate DNA ageing [122]. This would involve allowing some individuals in

the sample to come from a modern population (e.g. a modern European individual

instead of a ancient human).

Population geneticists may wish to use a combination of ancient and modern

genomes to enhance their analyses. Since ancient specimens vary in age, this

means the data will contain sequences taken from a range of time points. A poten-

tial solution is to first estimate the demographic history using population genetic

tools. We input the histories into discoal and simulate sequences according to their

estimated dates. DNA damage can be introduced into the ancient genomes using

the method described in Chapter 6. We can partition the genome matrix so that

each partition only contains sequences from the same time. Summary statistics

are computed separately for each partition. Thus for data with k different time
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points and some statistic f , we compute f1, f2, . . . , fk. We can then use models

which can account for repeated measures [123].

7.0.1.2 Expanding To Other Types Of Selection

Our project focused on hard sweeps because it is the most well-studied form for selection.

However, population geneticists are also interested in other kinds of selection such as

soft sweeps and balancing selection [124]. Supervised learning could be used to develop

a multinomial classifier for selection. This tool would scan through the genome and

output a predicted probability for each class (all types of selection + neutral). This

would involve incorporating additional summary statistics for detecting the new types

of selection. For example, we could use h2
h1 ,

h12
h1 and h123

h1 for soft sweeps and the B

statistics for balancing selection [125].

For a classification task with n classes, a classifier can output n−1 predicted probabilities

since the total probability must sum to one. This makes investigating variables of

importance more complex for multinomial models. Suppose we made a classifier to

distinguish hard sweeps, soft sweeps, balancing selection and neutral simulations. First

we set “neutral” as the reference class. For each predictor, we can output three pdp’s

(or ICE plots) corresponding to the predicted probabilities of three selection patterns.

Similarly, a FIRM score can be computed for each selection pattern.

7.0.1.3 Model Assessment

In both Chapter 5 and Chapter 6, we tuned our models by picking the highest cross

validation accuracy and assessed our final models using AUC. This approach has the

following limitations.

1. Both performance metrics take a balanced approach towards penalising the amount

of false positives (FP) and false negatives (FN) (Figure 3.5). From a population

genetics perspective, minimising FP is arguably more important than minimising

FN. Genomes are typically very large relative to the 1Mb windows we used for

sweep detection (e.g. human haploid genome is over 3 billion bases long) [8]. This

means that a mode with FPR ∼ 0.98 will incorrectly identifying ∼ 600, 000 neutral

regions as sweeps. This is inefficient and can mislead researchers into wasting

resources on studying neutral regions which they think are sweeps. False negatives

are not as harmful provided the models can correctly identify some selective sweeps.

A solution would be to modify our performance metrics into putting more weight

on the FPR rather than FNR. We could experiment on different weightings to
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see how it may affect hyperparameter tuning, variable importance and overall

predictions.

2. We made the same number of simulations for each of our seven selection coef-

ficients, one of which is 0. This produces imbalanced classes because 6
7 of the

data are hard sweeps. CV accuracy can be a misleading metric because a naive

model which classifies all observations as hard sweeps will still have an accuracy of

∼ 85%. An improvement would be to tune and evaluate our models using a metric

designed to handle imbalanced class problems such as Matthew’s correlation co-

efficient [126]. To address the previous point, we could also modify the metric to

put more weight on FP.
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Chapter 4 Appendix

Figure A.1: Parallel coordinates plot for Fay and Wu’s H. Each faded line is a sim-
ulation. Red lines are hard sweeps. Blue lines are neutral simulations. The solid lines

represent the mean values for hard and neutral simulations.

Figure A.2: Parallel coordinates plot for h2. Each faded line is a simulation. Red
lines are hard sweeps. Blue lines are neutral simulations. The solid lines represent the

mean values for each group.
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Figure A.3: Parallel coordinates plot for h12. Each faded line is a simulation. Red
lines are hard sweeps. Blue lines are neutral simulations. The solid lines represent the

mean values for hard and neutral simulations.

Figure A.4: Parallel coordinates plot for h123. Each faded line is a simulation. Red
lines are hard sweeps. Blue lines are neutral simulations. The solid lines represent the

mean values for hard and neutral simulations.

Figure A.5: Parallel coordinates plot for Kelly’s ZnS . Each faded line is a simulation.
Red lines are hard sweeps. Blue lines are neutral simulations. The solid lines represent

the mean values for hard and neutral simulations.
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Figure A.6: Plot of the AUC achieved by each classifier, across different missing rates.
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Chapter 5 Appendix

Figure B.1: Boxplot showing how h2 on the central window changes with different
missing rates for all 6 processing techniques (imputation and clustering). The imputa-
tion methods are random and zero impute. The clustering methods are fixed clustering

with k = 10 and silhouette clustering. “none” indicates no clustering was done.
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Figure B.2: Boxplot showing how h12 on the central window changes with different
missing rates for all 6 processing techniques (imputation and clustering). The imputa-
tion methods are random and zero impute. The clustering methods are fixed clustering

with k = 10 and silhouette clustering. “none” indicates no clustering was done.

Figure B.3: Boxplot showing how h123 on the central window changes with different
missing rates for all 6 processing techniques (imputation and clustering). The imputa-
tion methods are random and zero impute. The clustering methods are fixed clustering

with k = 10 and silhouette clustering. “none” indicates no clustering was done.
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tal genome and ancient dna authenticity. The EMBO journal, 28(17):2494–2502,

2009.

[94] Alan Cooper and Hendrik N Poinar. Ancient dna: do it right or not at all. Science,

289(5482):1139–1139, 2000.

[95] Adrian W Briggs, Udo Stenzel, Philip LF Johnson, Richard E Green, Janet Kelso,
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