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Robotic perception plays a crucial role in endowing a robot with human-like per-
ception. This entails the ability to perceive and understand about the unstructured
world from the sensor modalities, which would allow it to navigate autonomously
through the environment to accomplish a task. Recent years have witnessed an
unprecedented enthusiasm in robotic perception research as it promises a vast vari-
ety of compelling applications such as self-driving cars, drone technology, domestic
robots, virtual and augmented reality.

An essential task in robotic perception is state estimation. Generally, the task is
concerned with inferring the state, such as the pose of an entity from observations in
the form of inertial and/or visual measurements. Such an inverse problem can usu-
ally be formulated as an optimization problem, that seeks to select the best model
from the imperfect sensor data. This thesis falls under the paradigm of state esti-
mation, which aims to address the pose estimation and Simultaneous Localisation
and Mapping (SLAM) problems.

Solving pose estimation and SLAM problems typically involve estimating rotations.
However, they naturally reside in the manifold space, i.e., the special orthogonal
group SO(3), where Euclidean geometry with which we are familiar is no longer
applicable. To reliably and accurately deploy state estimation algorithms for real-
world applications, the underlying optimization problems must be able to properly
address the inherent non-convexity of the manifold constraints, which is the main
contribution of this thesis.
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Despite previous developments in state estimation, there remain unsatisfactorily
solved problems, specifically, problems associated with outliers and large-scale input
observations. This thesis is devoted to developing novel techniques to address these
problems, in a manner that respects the manifold structure.

The first part of the thesis is concerned with the sensor fusion problem in the context
of INS/GPS fusion. While a ‘de-facto’ standard for the sensor fusion problem is
the filtering technique, it is highly susceptible to outlier measurements. This thesis
proposes a method to address the outlier-prone sensor fusion problem with a robust
nonlinear optimization framework, underpinned by a novel pre-integration theory.

An influential optimisation strategy in SLAM is rotation averaging, which aims to
estimate the absolute orientation, given a set of relative orientations that are in
general incompatible. It stems from the fact that if the rotations containing non-
convex constraints were solved first, then the remaining problem involving structure
and translation would be easier to deal with. Inspired by Lagrangian duality, this
thesis contributes a globally-optimal rotation averaging algorithm which is capable
of handling large-scale input measurements much more efficiently.

Finally, a specialised rotation averaging algorithm underpinned by a novel lifting
technique, is proposed to resolve the fundamental ambiguity problem in marker-
based SLAM. We demonstrate how to resolve the ambiguity problem by exploiting
the special problem structure, which is then able to achieve a more accurate and/or
complete marker-based SLAM.
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Chapter 1

Introduction

Robotics is an interdisciplinary discipline, which integrates computer science and
engineering, aiming to develop machines that are capable of performing a complex
series of actions, similar to humans. For instance, a machine can be a self-driving
car, a spacecraft, a warehouse robot, a submarine and so on. Such intelligent
systems have huge potential to dramatically enhance every aspect of human life, in-
cluding increasing work productivity, being an excellent substitute for an unhealthy
or hazardous environment and so on. A key example is that using robots instead
of human to clear up the radioactive debris in the Chernobyl disaster could have
significantly reduced the number of casualties.

Three decades ago, the idea of having robots performing purposeful tasks in any
given specific environment was an absurd thought; whilst we remain far from achiev-
ing widespread advanced artificial intelligence (AI), sensing and computing advances
have enabled deployment of robotic technology in a wide range of areas, such as self-
driving cars, agriculture, space, domestic applications and so on. Today, Amazon
has more than 200,000 mobile robots working inside its warehouses.

Robotic perception plays a central role in the realization of robots that can achieve
human-like perception. Similar to the way we rely on our senses to relate to the
world around us, robots has to be able to perceive and infer the unstructured world
where they operate based on the noisy sensor data and make informed decisions
about their tasks.

1
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1.1 State Estimation

State estimation is a fundamental problem in robotic perception, which is concerned
with inferring the mathematical quantities from measurements collected through
sensors. Such an inverse problem can be formulated as an optimization problem,
which seeks to select the estimates that best correlate with the observed measure-
ments.

A typical state estimation pipeline can be divided into the front-end and the back-
end. Raw sensor data e.g., visual images, inertial measurements or lidar point clouds
are fed into the front-end, where measurements are extracted and processed. The
back-end then uses nonlinear estimation techniques to determine the quantities of
interest, e.g., the pose of the robot or the sensor bias.

State estimation plays a crucial role in enabling many computer vision and robotic
applications. An example is a pose estimation problem where one wishes to esti-
mate the position and orientation of a robot or object relative to some coordinate
system [30]. Another example is object tracking which involves estimating the ve-
locity and acceleration of a moving object in addition to the object pose. Often, the
robot’s perception capabilities can benefit from acquiring a geometric representation
of the environment through which it is navigating. The concurrent estimation of
pose and the 3D structure of the scene is referred as Simultaneous Localisation and
Mapping (SLAM) [10, 22] or Structure from Motion (SfM) [63]. Other examples
of applications that entail state estimation include shape reconstruction [12], 3D
reconstruction [31], virtual reality and augmented reality [35, 36].

State estimation is a challenging task. As the perception front-end is generally
imperfect, measurements derived from the sensors are often noisy and potentially
corrupted with bias and/or outliers, which sets up the requirement that the un-
derlying state estimation methods must be robust. Take, for example, the task of
estimating pose from bias-contaminated inertial measurements. Due to the inherent
errors of IMU, practitioners often rely on filtering-based sensor fusion techniques to
improve the reliability of the estimations.

Another key challenge is that the computational efficiency of state estimation prob-
lems is often exacerbated by the huge amount of sensory data available. Take, for
example, the task of conducting long-term SLAM in a large-scale environment for
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surveillance using a robot. For such a task, the size of the state can grow enor-
mously. Due to the constrained resources of the robot in practice, it is essential
to design efficient SLAM algorithms. In this thesis, we aim to address these chal-
lenges of state estimation problems, with a particular focus on cases that can be
formulated as having a Lie group structure of rotations (manifold), specifically pose
estimation and SLAM.

1.2 Front-End for Robotic Perception

The solutions to pose estimation and SLAM problems rely on the sensors employed
in the front-end to perceive the world. The sensors can be divided into two cat-
egories: exteroceptive and proprioceptive sensors. Proprioceptive sensors, such as
inertial measurement units (IMU), measure the internal values arising from the
robot platform. Exteroceptive sensors extract quantities related to the robot’s en-
vironment, such as global positioning systems (GPS), cameras and lidars. This
section briefly introduces some of the sensors we used to tackle the pose estimation
and SLAM problems.

1.2.1 IMU

An IMU typically consists of a 3-axis gyroscope and a 3-axis accelerometer [1]. A
gyroscope gives the angular velocity measurement ω̃B whereas an accelerometer
measures the acceleration ãB, whose reference is denoted as B, at regular intervals
∆t. As IMUs have low cost, weight and power consumption, they are commonly used
in an exceptionally broad range of applications, such as unmanned aerial vehicles
(UAVs), spacecraft, and self-driving cars.

In practice, both measurements suffer from the slowly varying biases bg and ba of
the gyroscope and accelerometer, respectively, in addition to sensor noise. As in
[37], using Euler integration, the pose (RB,W,WpB) and velocity WvB, in the world



Introduction 4

reference W can be computed as

R
(t+1)
B,W = R

(t)
B,W exp

((
ω̃

(t)
B − b(t)

g

)
×∆t

)
(1.1)

Wv
(t+1)
B = Wv

(t)
B + gW∆t+ R

(t)
B,W

(
ã

(t)
B − b(t)

a

)
∆t

Wp
(t+1)
B = Wp

(t)
B + Wv

(t)
B ∆t+

1

2
gW∆t2 +

1

2
R

(t)
B,W

(
ã

(t)
B − b(t)

a

)
∆t2,

where gW is the gravity and exp(.) denotes the exponential mapping from so(3) to
SO(3); see Section 2.1.

Ideally, if IMUs were to give perfect measurements, the estimated pose would be
perfect. However, in practice, IMUs suffer from slowly varying biases, as described
previously. Observe that in (1.1), the orientation RB,W and position WpB are re-
cursively estimated through onefold and twofold integration of the inertial measure-
ments, respectively. In addition, the estimated position WpB is inherently linked
to the estimated orientation RB,W. As a result, dead reckoning, which recursively
computes the current pose using a previously determined pose, is susceptible to
drift over time.

1.2.2 GPS

A GPS unit provides absolute position and velocity data, which is especially useful
for outdoor localization. Generally, it performs well in most of the cases where there
are unobstructed lines of sight to four or more GPS satellites. However, the signals
are extremely vulnerable to blockage from tall buildings and terrain. Therefore, in
the obstructed scenarios when multipath blocking occurs, the accuracy of the GPS
receiver dramatically degrades and tends to provide inaccurate measurements [21].
Moreover, GPS has a low update frequency, which happens at typically 1-10Hz.
As a result, the low sampling rate poses a significant limitation for high-dynamic
applications, especially UAVs where onboard navigation algorithms usually run as
fast as 100Hz.

1.2.3 Magnetometer

A 3-axis magnetometer is generally useful for aircraft attitude (orientation) estima-
tion. It measures the magnetic field of the earth in a body-fixed frame. The ideal
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magnetometer output mB gives partial information of the orientation RB,W as:

mB = RT
B,WmW, (1.2)

where mW is the (approximately constant) magnetic field of the earth at the position
of the rigid body expressed in the world frame W.

A major drawback of magnetometers is being vulnerable to outliers as magnetome-
ters are susceptible to magnetic interference. Example of sources of unanticipated
magnetic disturbances include smartphones or motors, which are commonly avail-
able [48].

1.2.4 Monocular Camera

As cameras are small, inexpensive, and ubiquitous, the last two decades have wit-
nessed an unprecedented deployment of cameras in robotic applications. A camera
model plays an important role when encapsulating the geometry between the 3D
world and the 2D image mathematically. A commonly used camera model is the
pinhole camera model. As seen in Figure 1.1, this model assumes that a point
X = [X1, X2, X3]T in 3D space is back-projected to the point u = [u1, u2]T on the
image plane I, where a line joining the point u to the camera centre C coincides
with the image plane. Such a perspective projection function g(.) : R3 7→ R2 can
be described as:

u =

[
u1

u2

]
=

[
fX1

X3

fX2

X3

]
, (1.3)

where f is the focal length of the camera.

Let X̃ and ũ be denoted as the homogeneous coordinates of X and u respec-
tively [46], (1.3) can be rewritten as

ũ =



fX1

fX2

X3


 =



f 0 0 0

0 f 0 0

0 0 1 0







X1

X2

X3

1




=



f 0 0 0

0 f 0 0

0 0 1 0


 X̃. (1.4)
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Figure 1.1: Pinhole camera model where X is a 3D scene point with its
corresponding projection u on the image I. The world coordinate system
[XW , YW , ZW ] coincides with the camera coordinate system [XC , YC , ZC ]. Ob-
serve that the camera centre C lies at the origin O of the world coordinate system

and both the camera axes and world axes are aligned with each other.

We further recast (1.4) as

ũ = P X̃, (1.5)

where the camera projection matrix P ∈ R3×4 can be further decomposed as

P =



f 0 0 0

0 f 0 0

0 0 1 0


 =



f 0 0

0 f 0

0 0 1



[
I3 | 0

]
= K

[
R | t

]
, (1.6)

where K is the camera calibration matrix, the camera pose consisting R and t define
the orientation and translation from the world coordinate system to the camera
coordinate system, respectively.

Since we assume the world coordinate system coincides with the camera coordinate
system for ease of exposition in this example (see Figure 1.1), observe that R is an
identity matrix and t is a zero vector. Often, the points in space are available in a
different Euclidean coordinate frame. Therefore, R can be any valid 3× 3 rotation
matrix and t can be computed as

t = −RC̃, (1.7)

where C̃ represents the 3D coordinates of the camera centre C in the world coordi-
nate system [46].
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Figure 1.2: A typical INS/GPS fusion pipeline.

Generally, the principle point p does not lie at the origin of the camera coordinate
system on the image plane I. Therefore, we define a more general camera calibration
matrix K as

K =



f 0 px

0 f py

0 0 1


 , (1.8)

where p =

[
px

py

]
∈ R2 is the 2D coordinates of p on I.

1.3 Inertial Navigation System (INS)/GPS for Pose

Estimation

Recent advances in micro-electromechanical systems have led to a considerable
amount of interest in developing low cost pose estimation solutions based on IMU,
especially for unmanned aerial vehicle (UAV) navigation, which plays an important
role in aviation [2, 49, 50, 60]. Inertial odometry operates by incrementally estimat-
ing the pose of the robot relative to the initial pose. Such an approach functions
by integrating the angular velocity and acceleration obtained from the IMU; see
Section 1.2.1.

A major drawback of inertial odometry is that the pose estimates derived from the
highly sampled IMU measurements are susceptible to inevitable drift over time due
to the inherent bias in the measurements, as described in Section 1.2.1. Therefore,
using IMU individually cannot provide reliable pose estimates.
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Figure 1.3: Feature-extraction-and-matching on two images, where each “red
dot” denotes the extracted feature point; the left image is matched with the

corresponding ones on the right image indicted by the “green line”.

Multi-sensor fusion is a well-known technique for combining multiple disparate
and/or identical sensory data, such that the resulting information can be more accu-
rate, reliable or complete compared to when they are used individually [52, 53, 50].
To mitigate IMU drift, a popular fusion strategy is to fuse the IMU with a low-
sampling rate GPS, which provides drift-free absolute position measurements due
to their complementary natures [21]. Another commonly used method is to fuse
the IMU with a magnetometer, which provides partial pose information to realise
the Inertial Navigation System (INS) [42]. This thesis focuses on integrating the
IMU with both GPS and a magnetometer as the front-end for pose estimation,
in a setting where the IMU, magnetometer and GPS are functioning at different
frequencies. For brevity, INS will be used to denote IMU/Magnetometer.

Figure 1.2 demonstrates a typical INS/GPS fusion pipeline. The mechanization
procedure processes raw measurements from the IMU to obtain the pose estimates.
Once GPS data is available, the absolute position and velocity estimates from the
GPS receiver are merged with the INS solution through a sensor-fusion algorithm
in the back-end module. The error states containing the IMU biases, which have
been estimated by the back-end, are then fed back to the mechanization procedure
to compensate for the inherent IMU bias.

1.4 Visual SLAM/SfM

SLAM aims at building a globally consistent geometric representation of the envi-
ronment by returning to a previously visited location (loop closure). In contrast to
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Figure 1.4: A demonstration of SfM, where each “red prism” denotes the position
of the camera centre, and each “dot” denotes the reconstructed 3D points.

odometry, which only estimates the poses (motion), SLAM provides the 3D geome-
try (structure) of the unknown scene in addition to the poses. Therefore, the main
factor that distinguishes odometry and SLAM is mapping.

The advantage of having a map of the environment is twofold. First, the map can
benefit other applications such as path planning, augmented reality and virtual
reality. Second, the map can alleviate the drift problem in localization by loop
closure.

Many different types of sensors have been applied to SLAM, such as Lidars, inertial
sensors, GPS, and cameras; we refer the reader to [10, 69] for an excellent survey
of such algorithms. This thesis tackles SLAM using a monocular camera, more
specifically a feature-based visual SLAM. Visual SLAM is a special case of SfM,
which considers measurements received in a sequential manner.

The input to the front-end module is a stream of images with overlapping views.
Distinctive points in the image are extracted and matched across the images to gen-
erate a set of feature correspondences; see Figure 1.3. The feature correspondences
are then used to compute the camera poses and the 3D structure of the scene, which
are refined by the back-end optimisation; see Figure 1.4 for an output of SfM.

Mathematically, visual SLAM/SfM is an optimization problem. Formally, let ui,k

be the 2D measured image coordinates of the ith scene point, as observed by the
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(a) ArUco [39] (b) ARToolKit[3] (c) AprilTag [68] (d) ARTag [35]

Figure 1.5: Examples of binary-squared fiducial markers

kth camera Ck; SLAM estimates the 3D coordinates {Xi}Ni=1 of the scene points and
the 6DOF poses {(Rk, tk)}Mk=1, which are consistent with the image observations,
as

min
{Xi}Ni=1,{(Rk,tk)}Mk=1

N∑

i=1

M∑

k=1

Ii,k
(∥∥∥∥ui,k − g(Xi|Rk , tk)

∥∥∥∥
2

2

)
, (1.9)

where g(Xi|Rk , tk) is the projection of Xi onto Ck (assuming calibrated cameras).
Ii,k is an indicator function, which returns 1 if the 3D point i is visible in image k
and 0 otherwise.

As (1.9) concurrently estimates the 3D structure of the scene and the camera poses,
solving (1.9) is generally difficult. Being a non-linear least squares problem, (1.9)
is commonly solved using Levenberg-Marquardt, which necessitates a good initiali-
sation for Xi and (Rk , tk) to avoid convergence to bad local optima.

1.4.1 Marker-based SLAM

Marker-based SLAM is a special case of visual SLAM, which commonly employs
binary square fiducial markers to simplify the front-end module, as it can be easily
detected and associated across images. The fiducial marker is comprised of an
external black border, which facilitates its fast detection in the image, and an inner
binary code that defines the size of the marker, as well as uniquely distinguishes one
from another [39, 68]; see Figure 1.5 for an example of different fiducial markers. In
addition, the marker is a convenient way of providing real-scale information about
the scene. Although marker-based SLAM entails affixing fiducial markers to the
scene, the effort is negligible and finds practical use in a constrained environment
such as factories, warehouses, mines, and so on [57, 58].
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The front-end module of the marker-based SLAM receives a set of images containing
markers. Let mc

i,k be the 2D measured coordinates of each corner c of the ith marker
extracted from a standard marker detection and identification algorithm [20], as
observed by the kth camera; marker-based SLAM aims to estimate the camera
pose Pk and the marker pose Pi that agree with the detected marker corners. The
optimization problem of marker-based SLAM can be established as:

min
{Pi}Ni=1,{Pk}Mk=1

M∑

k=1

N∑

i=1

4∑

c=1

∥∥∥∥mc
i,k − g(Pk,Pi,X

c)

∥∥∥∥
2

2

, (1.10)

where g(Pk,Pi,X
c) is the projection of Xc of the ith marker onto the kth camera

(assuming calibrated cameras). Since the size s of the fiducial marker is known
beforehand, its four corners {Xc}4

c=1 ∈ R3 can be expressed relative to the marker
centre as

X1 = [0, 0, 0], X2 = [0, s, 0], X3 = [s, s, 0], X4 = [s, 0, 0], (1.11)

where c = {1, ..., 4} indexes the 4 corners of the marker.

Observe that there is a resemblance between (1.10) and (1.9); however, a key dif-
ference is that, in contrast to (1.9) which assumes the points to be independent
from each other, (1.10) encapsulates the 3D points of the marker in its pose Pi to
well-constrain the size of the marker to be s.

1.5 Manifold

Before embarking on a discussion of different algorithms to address the state es-
timation problem in the back-end, we first introduce the concept of the manifold.
Solving pose estimation and SLAM problems typically involves estimating the ro-
tations, which lie on the manifold.

Generally, a manifold is a space where each point has a neighbourhood, which locally
resembles Euclidean space [4]. An intuitive example to understand the concept is a
globe’s surface, which can be described by an atlas.

A Lie group is a group that has a differentiable manifold, whose product and inverse
operations are smoothly differentiable [5]. A 3D rotation group, often denoted as a
Special Orthogonal Group SO(3), is a Lie group.
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Formally, SO(3) is defined as

SO(3) = {R ∈ R3×3 | RTR = I3, det(R) = 1}, (1.12)

where RT denotes the transpose of R and I3 is the 3× 3 identity matrix.

By definition, SO(3) in (1.12) must fulfill two constraints, i.e.,

Orthogonality constraint : RTR = I3 (1.13)

Determinant constraint : det(R) = 1 (1.14)

Both the orthogonality condition (1.13) and positive determinant constraint (1.14)
play important roles in preserving the angle, length, and orientation. Such prop-
erties are crucial in state estimation problems, as rotations are often employed to
represent orientation (rigid motion) of the rigid body in R3.

A compelling benefit of the manifold theory is that instead of working directly on
SO(3), it enables many operations to be performed on its associated vector space,
which is geometrically intuitive and simpler than SO(3); see Section 2.1.1 for further
details.

1.6 Back-End

This section introduces the back-end optimization employed in this thesis to address
the pose estimation and Visual SLAM/SfM described in Sections 1.3 and 1.4.

1.6.1 Filtering for INS/GPS Fusion

Stochastic filtering techniques, especially the Kalman filter (KF), which was first
introduced in 1960 by Rudolf E. Kalman., is the de-facto standard for multi-sensor
fusion problems. KF operates on a series of Gaussian distributed sequential mea-
surements to recursively estimate the underlying states that tend to be more ac-
curate than those based on a single measurement alone. The main assumption of
KF is that the probability distribution of the dynamic system can be sufficiently
modeled by the mean and covariance of a Gaussian distribution. The optimality of
KF assumes the errors are Gaussian.
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KF operates in two main stages, which are predict and update. During the prediction
step, KF estimates the current states along with the covariances. Whenever a new
measurement is observed, the posterior estimates are then computed using a Kalman
gain, which specifies the relative weight given to the measurement and the current
state estimates. If the gain is low, KF places a higher emphasis on the predicted
states. On the other hand, if the gain is high, KF permits a higher weight on the
measurements.

Due to its simplicity and well-understood mathematical theory, KF has been de-
veloped and deployed in a broad range of applications [56, 21, 48]. The popularity
of KF has inspired numerous extensions. Among the KF variants, the extended
Kalman filter (EKF) is a notable extension of KF, which can be applied on nonlin-
ear systems by linearizing the current estimates.

However, since the optimality of standard EKF and its variants assume the errors
are Gaussian, they are highly susceptible to outliers [67]. Data acquisition systems
are not error-proof, hence they are prone to giving erroneous measurements in prac-
tice; see Section 1.2. As a result, EKF’s accuracy will degrade dramatically in the
presence of anomalies. Moreover, the standard EKF does not intrinsically exploit
the geometry of the Lie group structure of the INS/GPS fusion problem. Dealing
with such a constrained INS/GPS fusion problem naively via Euclidean geometry
tools may lead to ill-posed problems and affect the stability of the filter. This thesis
makes progress towards addressing these two issues; see Chapter 3.

1.6.2 Bundle Adjustment for Visual SLAM

There are mainly two prevalent techniques for the back-end of Visual SLAM: a
filtering-based approach and bundle adjustment (BA). This thesis focuses on the
BA-based approach, as BA has proven to be more efficient and accurate than the
filtering approach, given the equivalent computing resources [64]; we refer the reader
to [10, 69, 65] for details.

BA is the task of jointly adjusting the 3D structure and the camera poses to-
gether, according to a criterion entailing the corresponding image projections of the
points [46]. Assume that N 3D points are observed in M views, as depicted in
Figure 1.6. More formally, given ui,k which denotes the projection of the ith 3D
point observed on image k, BA minimizes the total reprojection error with respect
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Figure 1.6: A bundle adjustment instance, where 3D point Xi and its corre-
sponding projection ui,k which are observed by camera Ck.

to all 3D points {Xi}Ni=1 and the 6DOF poses {(Rk, tk)}Mk=1 as

min
{Xi}Ni=1,{(Rk,tk)}Mk=1

N∑

i=1

M∑

k=1

Ii,k
(
ρ

( ∥∥∥∥ui,k − g(Xi|Rk , tk)

∥∥∥∥
2

2

))
. (1.15)

Observe that there is a resemblance between (1.9) and (1.15), except for the fact
that (1.15) is a more robust cost function due to ρ(.), whose role is to downweight
the influence of outlier measurements; in fact visual SLAM is essentially solving a
bundle adjustment problem. The minimization problem (1.9) is commonly solved
using a nonlinear least-squares algorithm e.g., Levenberg-Marguardt, which enables
convergence up to local optimality.

Solving such a non-convex problem is notoriously challenging [28]. First, BA re-
duces to minimizing the sum of the squares of an enormous number of complicated
nonlinear functions. Second, incorrect and/or spurious measurements tend to ex-
ist in visual data due to the imperfect front-end. Therefore, like other iterative
algorithms that iteratively search the neighbourhood of the current estimate for a
lower cost solution from an initial solution, it is vital to well-initialise the estimated
variables in (1.15) to avoid convergence to poor solutions.
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1.6.2.1 Pose Averaging

Another popular variation of this paradigm is pose averaging, which significantly
reduces the number of variables in the optimization problem (1.15) by factoring
out the structure, leading to a cost function that involves only camera poses [25].
Having the camera poses fixed, a structure-only BA is then solved to refine the 3D
points.

Formally, we compactly rewrite pose (R, t) as M ∈ SE(3) as

M =

[
R t

01×3 1

]
. (1.16)

Consider a viewgraph GM = (VM , EM), where each vertex denotes the unknown pose
Mi and each edge (i, j) ∈ EM corresponds to a relative pose Mi,j between vertices
i and j. Under the ideal condition, this entails finding N = |VM | poses, which obey
the relationship in (1.17).

Mi,j = MjM
−1
i ,∀(i, j) ∈ EM (1.17)

The obvious gauge freedom can be easily eliminated by fixing any of the poses Mi

to the I4 [45]. Specifically, if the pose corresponding to the first node is fixed, i.e.,
M1 = I4, (1.17) admits unique solutions for {Mi}Ni=2.

However, in practice, when noise is inevitable, a solution to (1.17) is not guaranteed
to exist. Thus, the pose averaging problem is often tackled as an optimisation
problem, which minimizes the discrepancies with respect to the measurements M̃i,j,
i.e.,

min
{Mi}Ni=1∈SE(3)

∑

(i,j)∈EM

ρ(dSE(3)(M̃i,j,MjM
T
i )) , (1.18)

where dSE(3) is the distance function between two poses in SE(3) [25] and ρ(.) is a
loss function defined over the distance.
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1.6.2.2 Rotation Averaging

A main hurdle in pose averaging (1.18) is due to the rotation that resides in the
nonlinear manifold SO(3). Therefore, an alternative is to first solve a rotation
averaging problem to obtain a good rotation estimation [40, 22, 45, 25], which will
then be used to bootstrap the pose averaging (1.18).

The strength of this approach is two-fold: first, if the rotations were known and kept
constant in the pose averaging problem, the resulting optimization problem would be
a linear problem, whose translation can be computed efficiently; second, in certain
cases, multiple rotation averaging can be solved up to global optimality [33, 34].

The input to rotation averaging is a set of noisy relative rotations {R̃ij}, where
each {R̃ij} is a measurement of the relative orientation between cameras i and j.
Given the relative rotations, rotation averaging is concerned with estimating the
absolute rotations {Ri}Ni=1. In an ideal case where the noise is absent in the relative
rotations {Rij}, the compatibility constraint (1.19) holds.

Rij = RjR
T
i . (1.19)

The input relative rotation {R̃ij} defines a camera graph G = (V , E) which encapsu-
lates the geometric relationship between the cameras in the scene. V = {1, ..., n} is
the set of cameras and (i, j) ∈ E is an edge in G if the relative rotation R̃ij between
cameras i and j can be measured using epipolar geometry [46].

As the input relative rotations {R̃ij} are noisy in practice, there exist multiple paths
between two vertices i, j with the aggregated relative rotations being inconsistent
along different paths. Therefore, rotation averaging is usually posed as a nonlinear
optimisation problem, whose goal is to find the average solution based on the inputs,
i.e.

min
{Ri}Ni=1∈SO(3)

∑

(i,j)∈E
ρ(d(R̃ij,RjR

T
i )) , (1.20)

where d : SO(3)×SO(3) 7→ R is a distance function between two rotations in SO(3)
(see Section 2.2) and ρ(.) is a loss function defined over the chosen distance measure.

Solving (1.20) can be challenging [45]. As there is no closed-form solution for (1.20),
the minimization problem is usually solved iteratively [28, 27, 44].



Introduction 17

1.7 Summary of Contributions

In Chapter 3, an efficient and robust algorithm for a outlier-prone INS/GPS fusion
problem is proposed. Aiming to offer a fresh insight into the long-standing INS/GPS
fusion problem, which has been traditionally addressed with a EKF, we propose a
novel non-linear optimization approach that fuses IMU and magnetometer measure-
ments with GPS, that function at different frequencies, in a manner that respect
the manifold structure of state space; and supports the usage of an M-estimator to
mitigate the effects of outliers effectively.

Recent advancements in globally optimal rotation averaging have demonstrated
some optimistic results by exploiting Lagrangian duality theory. Under mild condi-
tions on the noise level of the measurements, rotation averaging satisfies the strong
duality, which permits global solutions to be obtained by solving the semidefinite
programming (SDP) relaxation. Unfortunately, generic solvers for the relaxed prob-
lem do not scale well to large input instances. Chapter 4 proposes a new algorithm
that can efficiently find globally optimal rotations for large input instances.

While existing algorithms are developed for the general rotation averaging problem,
we characterise and exploit the special problem structure to customise an efficient
rotation averaging algorithm. Chapter 5 proposes such a ’bespoke’ algorithm to
resolve the fundamental pose ambiguity problem in marker-based SLAM.

1.8 Thesis Outline

The upcoming chapters are organized as follows:

• Chapter 2 provides a discussion of some of the elementary concepts of a ro-
tation manifold, along with the distance metrics to provide foundations for
some of the methods described in this thesis. The rest of the chapter is
then devoted to existing algorithms for INS/GPS fusion and multiple rota-
tion averaging problems, all of which involve rotational variables in the state
estimation.

• Chapter 3 introduces a method to address the outlier-prone sensor fusion prob-
lem in the context of INS/GPS fusion. By extending pre-integration theory,
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the algorithm efficiently and robustly fuses disparate sensors to function at
different frequencies. This reveals the huge potential of nonlinear optimization
techniques for long-term autonomous INS/GPS navigation.

• Chapter 4 contributes to the improvement of efficient and globally optimal
rotation averaging algorithms. It proposes a new technique which can signif-
icantly accelerate the Lagrangian dual optimisation routine of the multiple
rotation averaging problem.

• Chapter 5 presents a specialised rotation averaging algorithm to resolve a
fundamental rotational ambiguity problem efficiently in marker-based SLAM.
Unlike the existing approach, which relies on a heuristic criterion for disam-
biguation, we formalise the problem into a clique-constrained rotation aver-
aging problem and develop a lifted algorithm for effective marker disambigua-
tion.

• Chapter 6 concludes and discusses future work.



Chapter 2

Literature Review

This chapter surveys existing algorithms for INS/GPS fusion and multiple rotation
averaging problems. As giving an exhaustive coverage of all existing works would be
immensely challenging, this chapter aims to discuss the representative algorithms
that are closely related to this thesis.

This chapter is organized as follows:

• Section 2.1 provides some elementary discussions of different rotation repre-
sentations and their mutual relationships.

• Section 2.2 introduces the distance measures that are commonly employed in
existing algorithms for rotation averaging described in Section 2.4.

• Section 2.3 reviews existing filtering methods for INS/GPS fusion problem.
These include the popular standard Kalman filter and its variants, as well as
more recent extensions that aim to make the filter more robust or system-
atically address the underlying geometric structure of the state estimation
problem for better stability.

• Section 2.4 describes existing algorithms for multiple rotation averaging. These
include the standard, robust, as well as more recent duality-based algorithms
which aim to obtain globally optimal rotations by exploiting Lagrangian du-
ality theory.

19



Literature Review 20

Figure 2.1: An intuitive way to understand the relationship between the linear
tangent space so(3) and the non-linear Lie group SO(3)

2.1 Rotation Representation

This section briefly introduces different representations of rotations, including the
matrix Lie group, angle-axis and quaternion.

2.1.1 The Matrix Lie Group

Rotation space SO(3) (1.12) naturally forms a matrix Lie group, which has a mani-
fold structure. Being a manifold, SO(3) inherits the properties for which the matrix
multiplication and inverse operations are smoothly differentiable [5].

An appealing advantage of the manifold theory is that the local neighbourhood of a
point on the Lie group can be sufficiently described by its associated tangent space,
i.e., Lie algebra, so(3). In contrast to the corresponding Lie group, dealing with
the linear Lie algebra is often easier. In addition, the mappings between the Lie
algebra and the Lie group can be described conveniently using the exponential and
logarithm functions, respectively; see Figure 2.1.

Every rotation can be defined using the angle-axis representation to obtain ω =

θω̂ ∈ R3, where θ is the angle of rotation about a unit norm axis ω̂. We can map
a vector in R3 to the space of a 3 × 3 skew symmetric matrix that coincides with
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so(3) using

[ω]× =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (2.1)

The correspondence between the Lie algebra so(3) and the associated Lie Group
SO(3) is related by the exponential mapping as

R = exp ([ω]×) : so(3) 7→ SO(3). (2.2)

Similarly, the inverse mapping so(3) 7→ SO(3) exists and is related by logarithm
function, i.e.,

[ω]× = log (R) : SO(3) 7→ so(3) (2.3)

The exponential and logarithm functions in (2.2) and (2.3) can be computed using
Rodrigues’ formula [45]

exp (θω̂) = I + sin (θ)[ω̂]× + (1− cos (θ))([ω̂]×)2. (2.4)

log (R) =
θ( R−RT )

2 sin(θ)
, (2.5)

where θ = cos−1
( tr(R)−1

2

)
.

Note that the exponential map (2.2) and logarithmic map (2.3) are often conveyed
with some abuse of notation. Specifically, ω ∈ R3 is confounded with [ω]× ∈ so(3).
For clarity, we define R3 7→ SO(3) with a capitalised Exp such that

R = Exp(ω) : R3 7→ SO(3), (2.6)

where Exp(ω) , exp([ω]×); we use similar notation for the logarithmic mapping.

The Lie bracket The Lie algebra so(3), which is the tangent space at the identity
element of a Lie-group, is equipped with a Lie bracket. Where X, Y ∈ so(3) and
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λ ∈ R, the Lie bracket is defined as

[X, Y ] = XY − Y X (2.7)

which satisfies

• Anti-commutativity, [X, Y ] = −[Y,X].

• Bilinearity, [λX, Y ] = [X,λY ] = λ[X, Y ]

• Jacobi identity, [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0.

Baker-Campbell-Hausdorff The Lie bracket is particularly useful for concate-
nating non-infinitesimal elements of Lie algebra. Given X, Y ∈ so(3), the usual
exponential relationship where expX expY = expX+Y does not hold. Instead, the
mapping is defined by BCH [43] as

expX expY = expBCH(X,Y ), (2.8)

where BCH(., .) is defined by the Baker-Campbell-Hausdorff series

BCH(X, Y ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]] + [[X, Y ], Y ]) + ..., (2.9)

and "..." implies higher order terms.

2.1.2 Quaternion

A rotation R can be parameterized in terms of a unit quaternion q, which has the
form

q = a+ bi + cj + dk, (2.10)

where a, b, c, d ∈ R and i, j,k are the fundamental quaternion units [6].

Let ω̂ = [ω̂x, ω̂y, ω̂z]
T be the unit vector axis of R and the angle θ, the unit quater-

nion q is expressed formally as

q = cos (θ/2) +
(
ω̂xi + ω̂yj + ω̂zk

)
sin (θ/2), (2.11)
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whose norm must satisfy the unit length, i.e. ‖q‖2 = 1. Note that both q and −q

constitute the same rotation R.

2.2 Distance Metrics on SO(3)

Here, we show some common choices of bi-invariant distance metrics d(., .) for the
cost function, such that they satisfy

d(R1,R2) = d(TR1,TR2), (2.12)

for all rotations T, Ri ∈ SO(3).

2.2.1 Angular Distance / Geodesic Distance

Any rotation in SO(3) can be defined using the angle-axis representation, i.e., a
rotation through an angle θ about an axis. Naturally, given two rotations R1 and
R2 ∈ SO(3), we can establish their distance as the angular distance, i.e., the angle
of the relative rotation between them. Therefore, the angular distance d∠(R1,R2)

is defined as

d∠(R1,R2) = ‖ log(R1R
T
2 )‖2, (2.13)

where ‖.‖2 is the Euclidean norm of the vector. By definition, the rotation angle
between R1 and R2 lies in the range [0, π].

2.2.2 Chordal Distance

Another commonly used distance metric is the chordal distance dchord(., .), which
is derived as the Euclidean distance between two rotations in the embedding space
R9. The chordal distance between two rotations R1,R2 ∈ SO(3) is equal to

dchord(R1,R2) = ‖R1 −R2‖F , (2.14)

where ‖.‖F is the Frobenius norm of the matrix. Let the geodesic distance between
R1,R2 be noted as θ, the chordal distance is related to the geodesic distance defined
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in Section 2.2.1 by

‖R1 −R2‖F = 2
√

2 sin
θ

2
. (2.15)

2.2.3 Quaternion Distance

The quaternion metric dquat between R1 and R2 is defined as

dquat(R1,R2) = min{‖q1 − q2‖2, ‖q1 + q2‖2}, (2.16)

where q1 and q2 are the quaternion representation of R1 and R2, respectively, and
the norm ‖.‖ is the Euclidean norm ∈ R4. Let the geodesic distance between R1,R2

be noted as θ, the quaternion distance can be related to the geodesic distance defined
in Section 2.2.1 by

dquat(R1,R2) = 2 sin(
θ

4
). (2.17)

2.3 Algorithms for the INS/GPS fusion

In this section, we describe filtering methods for the INS/GPS fusion problem. We
begin with the classic KF, which is the main driver that led to the widespread
deployment of hybrid inertial navigation systems in the control literature. The rest
of this section discusses the different variants or extensions of KF.

2.3.1 Standard filter

2.3.1.1 KF

A KF operates by combining a state-transition model, which describes the dynamic
behavior of the state and a measurement model, which relates the states to the
observed measurement to find the state estimates. The idea of KF is to consider
both uncertainties of the models due to the inaccurate model assumption and noisy
observations for the best state estimates.



Literature Review 25

Algorithm 1 Kalman filter.
Require: x̂t−1, Σ̂t−1, ut and zt.
1: Predict
2: x̄t = Atx̂t−1 + Btut
3: Σ̄t = AtΣ̂t−1A

T
t + Wt

4: Update
5: ỹt = zt −Ctx̄t
6: St = CtΣ̄tCt

T + Qt

7: Kt = Σ̄tCt
TSt

−1

8: x̂t = x̄t + Ktỹt
9: Σ̂t = (I −KtCt)Σ̄t

10: return x̂t, Σ̂t.

Let the underlying dynamic system model be

xt = Atxt−1 + Btut + εt (2.18)

where At ∈ Rn×n is the state-transition matrix, Bt ∈ Rn×m is the control-input
matrix, εt is the process noise, which assumes a zero mean and covariance Wt; and
the measurement model be

zt = Ctxt + δt (2.19)

where Ct ∈ Rk×n is the observation matrix, δt is the observation noise, which
assumes a zero mean and covariance Qt.

Here, we will briefly describe the KF algorithm, summarised in Algorithm 1. To
compute the mean x̂t and covariance Σ̂t, KF uses a two-step procedure: predict
and update. During the prediction step, Lines 2 and 3 estimate the current states
along with the covariance without incorporating measurement zt. A Kalman gain
Kt, which indicates the relative weight given to the current state estimates and the
measurement, is then computed in Line 7. Lines 8 and 9 then update the posterior
states and covariance (x̂t, Σ̂t) based on the Kalman gain Kt and the deviation
between the actual measurements zt and the predicted measurement (2.19).

However, the basic KF is restricted to a linear assumption, which is unsuitable for
nonlinear INS/GPS fusion problem.
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Algorithm 2 Extended Kalman filter.
Require: x̂t−1, Σ̂t−1, ut and zt.
1: Predict
2: x̄t = f(x̂t−1,ut)
3: Σ̄t = FtΣ̂t−1Ft + Wt

4: Update
5: ỹt = zt − h(x̄t)
6: St = HtΣ̄tHt

T + Qt

7: Kt = Σ̄tHt
TSt

−1

8: x̂t = x̄t + Ktỹt
9: Σ̂t = (I −KtHt)Σ̄t

10: return x̂t, Σ̂t.

2.3.1.2 EKF

The EKF extends the KF defined for a linear state-transition model (2.18) and an
observation model (2.19) to the case of nonlinear functions as

xt = f(xt−1,ut) + εt (2.20)

zt = h(xt) + δt ,

where f(.) and h(.) can cater for differentiable functions. Consequently, f and h can
no longer be applied directly to the covariance. Therefore, the key idea of EKF is to
linearize about the current state estimates through the first-order Taylor expansion
of the nonlinear functions f and h.

Algorithm 2 summarizes the EKF algorithm. Observe that Lines 2 and 5 are sub-
stituted by their nonlinear generalizations. To define the state-transition and ob-
servation matrices, the EKF computes the Jacobians Ft and Ht as

Ft =
δf(x̂t−1,ut)

δxt−1

(2.21)

Ht =
δh(x̄t)

δxt
. (2.22)

EKF has two main drawbacks. First, unlike classic KF, EKF does not guarantee
optimality and risks to divergence, especially when the initial state estimates are
incorrect due to its linearization [11, 29]. We refer readers to [51] for a detailed dis-
cussion of EKF’s convergence. Second, since EKF operates on the assumption that
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the noise follows a gaussian distribution, the accuracy of EKF’s state estimations
can be severely hampered by outliers.

2.3.2 Robust Filtering

As mentioned in the previous section, a major weakness of the standard EKF ap-
proach is being vulnerable to outliers. A robust mechanism is usually applied to the
standard KF/EKF to mitigate the effect of outliers. Commonly used techniques in-
clude ad-hoc practices [62, 2], alternative noise models [55], weighted-based filtering
[67], to name a few.

2.3.2.1 Ad-hoc methods

The ad-hoc method is one of the most widely used techniques for making EKF ro-
bust. The method is simple: discard any observations that differ from the predicted
value by a predefined threshold. For instance, the posteriori state estimate x̂t would
not be updated using observations zt (skip Lines 7-9 in Algorithm 2) if the ratio
of the innovation term ỹt that describes the deviation between the predicted value
and observation (Algorithm 2 Line 5) and the innovation covariance St (Algorithm
2 Line 6)

yTt S−1
t yt > β, (2.23)

exceeds a positive threshold β.

This simple heuristic works reasonably well and does not add any additional com-
putational cost. Without the need to substantially modify the standard EKF, many
practitioners often employ the ad-hoc strategy to robustify EKF for INS/GPS fu-
sion applications in practice [2]. Although appealing, this ad-hoc practice has two
main drawbacks. First, there is no theoretical justification for the choice of the
thresholds β in (2.23) (typically two standard deviations are used). Second, such a
heuristic is prone to false negatives, which can lead to a false build-up of estimation
variances and eventually poor state estimates; see Chapter 3.
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Algorithm 3 Weighted-based Extended Kalman filter.
Require: x̂t−1, Σ̂t−1, ut and zt.
1: Predict
2: x̄t = f(x̂t−1,ut)
3: Σ̄t = Wt

4: Update
5: ỹt = zt − h(x̄t)

6: St = (HtΣ̄tHt
T + 1

ωt
Qt)

−1

7: Kt = Σ̄tHt
TSt

8: x̂t = x̄t + Ktỹt
9: Σ̂t = (I −KtHt)Σ̄t

10: return x̂t, Σ̂t.

2.3.2.2 Weighted-based filtering methods

Inspired by weighted least squares, researchers have devised weighted-based algo-
rithms for filtering. The underlying principle of such algorithms is to associate
each observation with a weight that determines its contribution to the state esti-
mates [26]. Different strategies have been proposed to model the underlying weight
functions, such as the Huber function [47] or some heuristic functions.

A representative method under this paradigm is [67], which employs a Bayesian
approach to learn the weighting function. The aim of this technique is to track the
outliers in the observed data: for each observation zt, its variance is associated with
a scalar weight wt, which can be computed as

wt =
αwt + 1

2

βwt + ỹt
TQ−1ỹt

, (2.24)

whose distribution is defined as gamma-distributed such that wt ∼ Γ(αwt , βwt).
Algorithm 3 outlines the method.

Close examination shows that there are two subtle differences between this modified
EKF and the standard EKF. First, the covariance Σt is intrinsically dependent on
the previous states covariance Σt−1 through Kt and Ht. Second, Qt is weighted; see
Algorithm 3 Line 6. It should be noted that if the innovation term ỹt in (2.24) is
huge, the resulting term will tend to be very small. This evokes a cascading effect,
which will result in a small innovation covariance St, leading to a small Kalman gain
Kt: a low Kalman gain implies that the filter is more certain about the predicted
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state, with less weight being given to the observation zt for computation of the
posteriori state estimates.

2.3.3 Filtering on Manifolds

As mentioned in Section 1.1, state estimation problems often involve estimating
states which naturally evolve on the manifold. Recently, growing attention has
been paid to systematically designing KF that function intrinsically on Lie groups.
The goal is to treat the underlying geometry of the manifold in a principled manner
to enhance the convergence and stability of the filter [19].

Exploiting the Lie group theories, a special class of symmetry-preserving EKF has
been proposed. [18, 17, 13, 14] formalise the state dynamics and measurement
model built upon the concentrated Gaussian on Lie groups. Such a formulation not
only properly addresses the natural symmetries of the considered model, but also
provides a geometrically-meaningful covariance representation.

Although these filters have stronger stability properties and appealing theories,
they still assume the state and measurement density are Gaussian distributed and
therefore are highly susceptible to outliers.

2.4 Algorithms for Multiple Rotation Averaging

In this section, we describe optimization algorithms for multiple rotation averaging,
considering different rotation representations and distance metrics; see Section 2.1
and 2.2.

2.4.1 Extrinsic-averaging-based algorithms

Most early works on rotation averaging are extrinsic-averaging-based algorithms [40,
54, 45]. As its name (extrinsic) suggests, these algorithms do not perform averaging
directly on the rotation space. This section introduces two least squares algorithms
for quaternion relaxation and chordal relaxation.
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2.4.1.1 Quaternion Relaxation

Representing the rotations as quaternions qi, qj and qi,j, we can rewrite the compat-
ibility constraint (1.19) in the quaternion form as

qi,jqi − qj = 0. (2.25)

Generally, quaternions are represented as q = [qw, qx, qy, qz], where qw is the real part
of the quaternion, and qx, qy, qz are purely imaginary components; see Section 2.1.2.
Applying quaternion multiplication, (2.25) gives rise to




qi,jw −qi,jx −qi,jy −qi,jz
qi,jx qi,jw −qi,jz qi,jy

qi,jy qi,jz qi,jw −qi,jx
qi,jz −qi,jy qi,jx qi,jw







qiw

qix

qiy

qiz



−




qjw

qjx

qjy

qjz




=




0

0

0

0



. (2.26)

Such a quaternion parameterisation can allow a linear least squares formulation and
was claimed to be optimal under the assumption of Gaussian noise [40] . However,
a drawback of formulation (2.25) is that it ignores the orthogonality constraint of
a rotation matrix, i.e., the solution does not have a unit norm, thus they are not
valid rotations.

2.4.1.2 Chordal Relaxation

We first define the rotation averaging problem in the chordal distance as

min
{Ri}Ni=1∈SO(3)

∑

(i,j)∈E
‖Ri,j −RjR

T
i ‖2

F . (2.27)

An alternative way is to first solve an unconstrained version of (2.27) (ignoring the
SO(3) constraint), and then approximate the solution to the nearest orthonormal
matrix using Singular Value Decomposition (SVD) [54]. The idea behind Chordal
Relaxation is similar to [40] in Section 2.4.1.1, except that the rotations are param-
eterised as rotation matrices

min
{rki }Ni=1

∑

(i,j)∈E

3∑

k=1

‖Ri,jr
k
i − rkj‖

2
, (2.28)
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where rki ∈ R3 is the k-th column of Ri. While it is demonstrated in [54] that
searching in the (approximate) rotation space is easier than in quaternion space,
the estimated solution from (2.28) is not necessarily a valid rotation before manifold
projection.

2.4.2 Intrinsic-averaging-based algorithm

Although the algorithms in Section 2.4.1 demonstrate reasonably good results in
practice, they do not properly address the manifold structure, which can lead to
non-optimal solutions. To establish a well-defined cost function, several descent
type algorithms [28, 27, 44] that exploit the Lie Group theory to optimise directly
on the rotation manifold are proposed. Their underlying principles are essentially:
transverse from the nonlinear rotation manifold to the tangent space centred at
the current estimate – find the next estimates and update at the tangent space –
transition back to the rotation manifold.

Formally, let us define the rotation averaging problem in the geodesic metric as

RV = min
{Ri}Ni=1∈SO(3)

∑

(i,j)∈E
ρ (d∠(Ri,j,RjR

T
i ))) (2.29)

= min
{Ri}Ni=1∈SO(3)

∑

(i,j)∈E
ρ(‖Log(RT

j Ri,jRi)‖) (2.30)

= min
{Ri}Ni=1∈SO(3)

∑

(i,j)∈E
ρ(‖Log(∆Ri,j)‖), (2.31)

where ρ(.) is a robust loss function.

The aim of a descent type algorithm is to compute a descent direction ∆RV to
update the absolute rotations RV , which will decrease the objective value of (2.29)
in each iteration t. Without loss of generality, let this update be {∆R

(t)
i }Ni=1, i.e.,

the updated estimation R
(t+1)
V = {R(t)

1 ∆R
(t)
1 , ...,R

(t)
N ∆R

(t)
N }, hence each iteration

aims to minimize

∑

(i,j)∈E
ρ(‖Log(∆RT

j ∆Ri,j∆Ri)‖), (2.32)
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Algorithm 4 Intrinsic-averaging-based algorithm.
Require: {R̃i,j} ∈ E , ε, maximum iterations kmax
1: while ‖∆ΩV‖ > ε OR k < kmax do
2: ∆Ri,j ← RT

j R̃i,jRi

3: ∆ωi,j ← Log(∆Ri,j)
4: Concatenate ∆ωi,j into ΩE for all (i, j) ∈ E
5: Solve A∆ΩV = ΩE
6: Ri = RiExp(ωi) ,∀i = 1, ..., N
7: k ← k + 1

return RV

Using the axis-angle representation as described in Section 2.1.1, we define

Exp(∆ωi,j) = ∆Ri,j, Exp(∆ωj) = ∆Rj, Exp(∆ωi) = ∆Ri, (2.33)

which yields

Exp(∆ωi,j) = Exp(∆ωj)Exp(−∆ωi) (2.34)

Assuming Exp(∆ωi) and Exp(∆ωj) are close to the identity, we apply the first
order approximation of Baker-Campbell-Hausdorff (BCH) to obtain

∆ωi,j = ∆ωj −∆ωi. (2.35)

Consequently, we can aggregate the relative rotation observations into

A∆ΩV = ∆ΩE , (2.36)

where ∆ΩV = [∆ωT1 , ...,∆ω
T
N ]T ∈ R3N×1, ∆ΩE ∈ R3M×1 for all (i, j) ∈ E and A is

formed by placing I and −I at each row for each camera edge.

A general intrinsic-based rotation averaging algorithm is outlined in Algorithm 4.
In each iteration of Algorithm 4, the discrepancies between the measurements R̃i,j

and the estimated rotations Ri (obtained in SO(3)) are computed and mapped to
R3 (Line 2 - Line 3). After solving the linear equations in vector space (Line 5),
each rotation is then updated by projecting the estimates back to the rotation group
through the exponential mapping (Line 6).

The algorithms explained in the rest of this section share a similar spirit to Algo-
rithm 4. What makes them essentially distinct from one another is the technique
employed to solve the linear equation in Step 5 in Algorithm 4.
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2.4.2.1 Least Squares

The strategy used in [41] to solve Step 5 in Algorithm 4 is Least Squares, which
estimates the rotations by minimizing the sum of the squared residuals, i.e.

min
∆ΩV

F = min
∆ΩV
‖A∆ΩV −∆ΩE‖2, (2.37)

whose gradient is

∆F (∆ΩV) = AT (A∆ΩV −∆ΩE) (2.38)

As (2.37) is convex [59], any point ∆ΩV for which ∆F (∆ΩV) = 0 is the global
minimizer, which is equivalent to

AT (A∆ΩV −∆ΩE) = 0 (2.39)

Due to (2.39), ∆ΩV can be computed in closed form as

∆ΩV = (ATA)−1AT∆ΩE (2.40)

Minimizing (2.37) is essentially performing the maximum likelihood principle [7],
which assumes Gaussian noise. However, the least squares solutions to (2.37) are not
robust, meaning that a single outlier can arbitrarily bias the estimated rotations [7].

2.4.2.2 M-estimators

To estimate the rotations in a manner that is tolerant towards outliers, [28, 27]
devised algorithms which employ a more robust loss function compared to the sum
of the squared errors. We rewrite the optimization problem as

min
{Ri}Ni=1∈SO(3)

∑

(i,j)∈E
ρ (d∠(Ri,j,RjR

T
i )) (2.41)

It is easy to see that the least squares method in Section 2.4.2.1 operates on a loss
function of ρ(x) = x2. Statistically, the quadratic loss function ρ(x) = x2 is not
robust as ρ increases quadratically and is unbounded. Intuitively, ρ(.) determines
the influence of each measurement to the rotation estimation.
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To be outlier-robust, the ρ should possess certain properties to discount the effect
of outlying data; see [27] for a list of robust loss functions. An example is Huber’s
Loss [47]

ρ(x) =





x2

2
if |x| ≤ ε

ε(|x| − ε
2
) if |x| > ε.

(2.42)

Observe that the function exhibits quadratic growth until |x| > ε, after which it
increases linearly. Although more robust than l2, the influence of outlying data does
not diminish completely.

Redescending M-estimators [8], which are a sub-class of M-estimators, possess a
high degree of robustness; they can handle a large number (up to 50%) of outliers.
For instance, Tukey’s Biweight Loss

ρ(x) =





ε2

6

(
1−

(
1− (x

ε
)2)3

)
if |x| ≤ ε

0 if |x| > ε.

(2.43)

In contrast to Huber’s Loss (2.42), Tukey’s Biweight function (2.43) remains con-
stant for large residuals.

Inspired by this line of work, Chapter 3 demonstrates an M-estimator optimisation
framework to mitigate the practically important outliers in the INS/GPS sensor
fusion problem.

2.4.2.3 Weighted Least Squares

To minimise the robust cost function (2.41), [28, 27] devised an Iteratively Reweighted
Least Squares (IRLS) rotation averaging algorithm. We rewrite (2.32) in Section
2.4.2 as

min
∆ΩV∈R3N×1

∑

(i,j)∈E
ρ
(
‖Log(∆RT

j ∆Ri,j∆Ri)‖
)
. (2.44)

[28, 27] reformulated the optimization problem in (2.44) to an IRLS problem as

min
∆ΩV∈R3N×1

∑

(i,j)∈E
φi,j‖xi,j(∆ΩV)‖2, (2.45)
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where xi,j(∆ΩV) = Log
(
Exp(−∆ωj)Exp(∆ωi,j)Exp(∆ωi)

)
and φi,j(.) denotes the

weight function.

Given an initial estimate ∆Ω
(0)
V at t = 0, the IRLS alternates between assigning

weights φi,j to each edge (i, j) ∈ E based on the current estimated rotations ∆Ω
(t)
V ,

and updating the estimates for the next iteration t+ 1 by solving a weighted least
squares problem

∆ΩV = −(ATΦA)−1ATΦ∆ΩE , (2.46)

where A is the incidence-matrix and Φ is a diagonal matrix with the elements of
φi,j.

2.4.2.4 L1 Weiszfeld algorithm

The L1 Weiszfeld algorithm proposed by Hartley et al. [44] is a special case of (2.41)
where ρ(x) = |x|.

To develop the intuition, let us consider a simple L1 averaging problem, where
D = {ai}ni=1 are n points on Rn, and our interest is to find another point b ∈ R,
where the sum of all Euclidean distances to the ai’s are the minimum

min
b∈R

n∑

i=1

‖b− ai‖. (2.47)

Given a current estimate b(t), the Weiszfeld algorithm computes the next estimate
b(t+1) by solving

b(t+1) = b(t) + λ

n∑

i=1

ai − b(t)

‖ai − b(t)‖ , (2.48)

where the closed-form step size λ =
∑n

i=1 ‖ai − bt‖−1. Weizsfeld guarantees that a
median will be achieved for b(t) 6= ai.

We now attempt to establish the L1 rotation averaging using the Weiszfeld algorithm
for the manifold [44] for multiple rotation averaging; see Algorithm 5. Basically,
Algorithm 5 estimates each geodesic median of the rotations Rj in turn using a
successive Weiszfeld method, which involves only the neighbouring vertices (Line
3 - 4), while the rest of the rotations remain constant. Specifically, the Weiszfeld
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Algorithm 5 L1 Weiszfeld Multiple Rotation Averaging in SO(3).

Require: Initial {M(0)
j }Nj=1, t = 0

1: repeat
2: for j = 1, ..., N do
3: ω

(i)
j ← log

(
R

(i)
j (M

(t)
j )
−1)

, ∀i ∈ N (j), where N (j) is the set of
vertices connected to j.

4: δ
(i)
j ←

(∑
i

ω
(i)
j

‖ω(i)
j ‖

)/(∑
i

1

‖ω(i)
j ‖

)
, ∀i ∈ N (j)

5: M
(t+1)
j ←M

(t)
j Exp(δ

(i)
j )

6: t← t+ 1
7: until Convergence

median Mj is updated by averaging R
(i)
j derived from its neighbouring vertices i,

i.e., {R(i)
j = Ri,jRi | ∀i ∈ Nj}.

In contrast to L2 [41], Weizsfeld [44] has been demonstrated to be more robust in
averaging the rotations. However, Algorithm 5 does not scale well to large problems
as the rotations are updated individually.

2.4.3 Preprocessing

In contrast to previous robust algorithms, which implicitly address the issue of
robust estimation in the presence of outliers, this class of preprocessing algorithms
identifies/removes outliers before performing L2 averaging.

2.4.3.1 Random Sampling Method

A random sampling scheme to prune the outliers for a rotation averaging algorithm
is outlined in Algorithm 6. At each iteration t, a (N − 1)−minimum spanning tree
M is sampled from the viewgraph G = (V , E) where N = |V|. Each vertex in
V represents an absolute rotation and each edge (i, j) ∈ E is the relative rotation
between i and j. Then, the rotations RMST = {R1, ...,RN} are estimated from the
selected minimum spanning treeM. For each model hypothesis M, d(Ri,j,RjRi

T )

is evaluated on the viewgraph G with RMST and; the hypothesis with the highest
number of edges that lies within a predefined distance threshold ε is then returned
for L2 averaging after a given number of trials tmax.
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Algorithm 6 A random sampling scheme for rotation averaging.
Require: Viewgraph G = (V , E), distance threshold ε, and maximum iteration tmax
1: I∗ ← 0,M∗ ← NULL
2: for t = 1, ..., tmax do
3: M← Sample a minimum spanning tree from G
4: RMST ← Minimal estimate fromM
5: I ← Count the number of edges that are within distance ε with RMST

6: if Ĩ > |I∗| then
7: I∗ ← Ĩ,M∗ ←M

returnM∗

Since the optimization machinery in Algorithm 6 is random sampling, this method
naturally inherits the disadvantages of RANSAC; that is, it may provide different
results in different runs.

2.4.3.2 Bayesian Method

The core idea of [70] in identifying/pruning incorrect relative rotations hinges on
concatenating the edges, which should yield a result close to the identity loop.
[70] proposed an involved Bayesian framework to classify inliers/outliers, given the
statistics collected on many loops of the viewgraph G. However, this approach is
computationally expensive for a large viewgraph.

2.4.4 Duality-based algorithms

While the algorithms discussed in the previous sections are efficient and/or robust,
those restrictions to local search come at the expense of reliability, such that they do
not guarantee local correctness. Owing to its non-convexity, the multiple rotation
averaging cost function can have multiple local minima with costs close to the
global minimum [45]; hence the descent type algorithms are susceptible to bad
minima [23, 24].

Exploiting Lagrangian duality, it has been established in [38, 24] that the associated
dual problem of multiple rotation averaging parameterised as either quaternions or
rotation matrices, is essentially a semidefinite programming problem (SDP).
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Formally, we define the rotation averaging problem (2.29) with the chordal distance
as

min
{Ri}Ni=1∈SO(3)

∑

(i,j)∈E
‖Ri,jRi −Rj‖2

F . (2.49)

Using trace notation, (2.49) can be rewritten as

min
{Ri}Ni=1∈SO(3)

−
∑

(i,j)∈E
tr(RT

j Ri,jRi), (2.50)

which can be further transformed into

min
R
− tr(RT R̃R) (2.51)

s.t. R ∈ SO(3)N . (2.52)

where R = [RT
1 , ...,R

T
N ]T and R̃ ∈ R3N×3N symmetric matrix with upper-triangle

elements (i, j) equal to Ri,j whenever (i, j) ∈ E and 03 otherwise. Naturally, the
diagonal elements are 03’s. (2.51) constitutes the primal problem.

Observe that the rotation group SO(3)N is comprised of two types of constraints

Orthogonality constraint : RT
i Ri = I3 (2.53)

Determinant constraint : det(Ri) = 1 (2.54)

To derive the dual problem, [25, 23, 33, 34] relaxes the determinant constraint (2.54)
which yields

min
R
− tr(RT R̃R) (2.55)

s.t. R ∈ O(3)N .

As derived in [25, 23, 33, 34], the associated Lagrangian dual of (2.55) is the SDP
relaxation

min
Z∈R3N×3N

− tr(R̃Z) (2.56)

s.t. Zi,i = I3, ∀ i = 1, ..., n (2.57)

Z � 0, (2.58)
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where Z is a positive-semidefinite matrix (PSD). Observe that (2.57) merely enforces
the orthogonality constraint (2.53) in every diagonal block of Z.

It has been proven in [23, 33, 34] that rotation averaging satisfies strong duality
under mild noise conditions, i.e., solving the semidefinite relaxed problem (2.56) is
equivalent to solving the original problem (2.55). Hence, the optimiser Z∗ of (2.56)
is generally rank-d, which admits the factorisation

Z∗ = R∗
T

R∗, (2.59)

where R∗ ∈ SO(d)N . However, the generic solvers for SDP generally do not scale
well with the problem size (N ≤ 300). A typical rotation averaging instance arising
in SfM and SLAM applications, which usually deal with N ≥ 400, are beyond
the reach of these off-the-shelf solvers. Therefore, several algorithms that design
specialised optimization procedures for solving relaxed SDP efficiently are proposed.
Here, the Riemannian Staircase Method, Shonan and Block Coordinate Descent
(BCD) are surveyed.

2.4.4.1 Riemannian Staircase Method

The major computational cost incurred in solving (2.56) using SDP solvers is due to
the need to store and manipulate the large and dense PSD variable Z. To circum-
vent the scalability issue, [61] proposes searching through the low-rank solutions.

As established in [61], in general (even when strong duality does not hold), Z∗ of
(2.56) has a rank r not much greater than d, hence enabling a symmetrical rank
decomposition

Z∗ = X∗
T

X∗ (2.60)

for X∗ ∈ Rr×dN with r � dN .

Replacing PSD variable Z in (2.56) with its low-rank factorization XTX, they first
formulate a rank-restricted version of (2.56) as

min
X∈Rr×dN

− tr(R̃XTX) (2.61)

s.t. XT
i Xi = Id, ∀ i = 1, ..., n. (2.62)
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Observe that (2.61) has two outcomes.

• Since now we are solving for X which has a much lower dimensional space
than Z for r � dn, the search space is reduced dramatically.

• By construction, XTX � 0 for all X; thus the PSD constraint is redundant.

Exploiting the fact that XT
i Xi = Id, where Xi ∈ Rr×d is essentially the Stiefel

manifold [15]; see (2.64) for its definition, [61] reformulated (2.61) as a Riemannian
rank-restricted problem

min
X∈St(d,r)n

− tr(R̃XTX), (2.63)

where

St(d, r) , {X ∈ Rr×d |XTX = Id}. (2.64)

However, unlike the convex function in (2.56), (2.61) is a standard nonlinear pro-
gramming problem due to the reintroduction of the non-convex orthogonality con-
straint. Nevertheless, owing to Corollary 2.1 [16], (2.63) can be solved via any
(fast) local algorithm. Therefore, [61] proposes a Riemannian truncated-Newton
trust-region method to solve the reduction efficiently.

Corollary 2.1 (A sufficient condition for global optimality in (2.63)). If X∗ ∈
St(d, r) is a (row) rank-deficient 2nd order critical point of (2.63), then X∗ is a
global minimizer of (2.63), and Z∗ = X∗

T
X∗ is a global minimizer of (2.56).

2.4.4.2 Shonan Method

Following a similar spirit to Riemannian’s method, Shonan method [32] adapted a
low-rank optimization scheme over the rotation manifold SO(r) rather than dealing
with the unusual Stiefel manifold. The core idea of Shonan method is to leverage
existing high-performance iterative algorithms [9] tailored for rotation manifolds to
solve the increasingly higher-dimensional problem (2.65)

min
Q∈SO(r)n

∑

(i,j)∈E
− tr(QT

j P R̃i,jP
TQi), (2.65)
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for r ≥ 3. Specifically, the optimization procedure begins by solving (2.65) for r = 3

via local optimisation; if the solution fails the global certification mechanism, the
optimisation will be lifted to the successively higher dimension r and resolve; the
process will be terminated when the solution passes the verification test. Observe
that the existence of the r× d projection matrix P , P , [Id; 0] in (2.65), whose role
is to project the problem to increasingly higher-dimensional domains SO(r).

2.4.4.3 Block Coordinate Descent Method (BCD)

[33, 34] tailor a block coordinate descent (BCD) method to solve (2.56). For ease of
exposition, we rewrite (2.56) as

min
Z∈R3N×3N

− tr(R̃Z) (2.66)

s.t.




I3 Z1,2 Z1,3 , ..., Z1,N

Z2,1 I3 Z2,3 , ..., Z2,N

Z3,1 Z3,2 I3 , ..., Z3,N

. .

. .

. .

ZN,1 ZN,2 ZN,3 , ..., I3




� 0 (2.67)

At each iteration t, the BCD approach determines the kth rows and columns of blocks
in (2.67), then minimizes the corresponding block while fixing all other coordinates.
It turns out that the resulting subproblem admits a simple closed form solution,
which leads to a more efficient algorithm for (2.56) compared to the general-purpose
SDP solver (SeDumi) [66] on small to moderately sized instances (N ≤ 300).

Unfortunately, the efficiency of this approach deteriorates dramatically when the
input size increases as the BCD approach needs to store and manipulate a 3N×3N

dense PSD matrix. Chapter 4 proposes a novel technique that can significantly
accelerate the coordinate descent method.



Chapter 3

Outlier-Robust Manifold

Pre-Integration for INS/GPS Fusion

The work contained in this chapter has been published as the following paper

Shin-Fang Chng, Alireza Khosravian, Anh-Dzung Doan and Tat-Jun Chin: Outlier-
Robust Manifold Pre-Integration for INS/GPS Fusion. IEEE/RSJ International-
Conference on Intelligent Robots and Systems (IROS) 2019.
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Outlier-Robust Manifold Pre-Integration for INS/GPS Fusion

Shin-Fang Ch’ng, Alireza Khosravian, Anh-Dzung Doan and Tat-Jun Chin

Abstract— We tackle the INS/GPS sensor fusion problem for
pose estimation, particularly in the common setting where the
INS components (IMU and magnetometer) function at much
higher frequencies than GPS, and where the magnetometer and
GPS are prone to giving erroneous measurements (outliers) due
to magnetic disturbances and glitches. Our main contribution is
a novel non-linear optimization framework that (1) fuses pre-
integrated IMU and magnetometer measurements with GPS,
in a manner that respects the manifold structure of the state
space; and (2) supports the usage of robust norms and efficient
large scale optimization to effectively mitigate the effects of
outliers. Through extensive experiments, we demonstrate the
superior accuracy and robustness of our approach over filtering
methods (which are customarily applied in the target setting)
with minimal impact to computational efficiency. Our work
further illustrates the strength of optimization approaches in
state estimation problems and paves the way for their adoption
in the control and navigation communities.

I. INTRODUCTION

Pose estimation is integral to robotic navigation and con-
trol systems. Recent works and surveys suggest that this
problem is a subject of active research [1]–[4]. Generally,
micro-electromechanical Inertial Measurement Units (IMU)
are favourable for pose estimation on robotics systems due to
the IMU’s low weight, power consumption, and cost. IMUs
(that give angular velocity and acceleration measurements)
are typically combined with 3-axis magnetometers (that give
partial pose information) to realise Inertial Navigation Sys-
tems (INS) that are able to give a richer set of measurements
for pose estimation. However, low cost INS suffer from high
noise levels and time-varying biases. Estimating robot pose
based on INS dead reckoning is thus subject to drift [5].

To mitigate INS drift, a common solution is to fuse
it with a GPS navigation unit that provides velocity and
position measurements [6]. However, low cost GPS units are
vulnerable to glitches and measurement errors, especially in
areas with poor line-of-sight to the GPS satellites [7]. In
fact, magnetometer measurements can also be affected by
magnetic interference arising from the robot motors or the
environment, leading to erroneous measurements [8]. Hence,
a significant challenge in INS/GPS fusion is to exploit the
relative strengths of the sensors to mitigate drift, without
being biased by measurement errors or outliers.

Many sensor fusion methods have been developed and
successfully deployed in navigation systems [6], [9]–[16].
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Stochastic filtering techniques, especially Extended Kalman
Filtering (EKF), are arguably the most common approaches
for INS/GPS fusion due to their well-understood princi-
ples [17]. However, outliers will invariably lead to poor
outcomes in standard EKF, which assumes that all measure-
ments are trustworthy [7], [18], [19]. Generally speaking,
designing an EKF variant that is outlier-robust and asymp-
totically stable for a problem with nonlinear dynamics and a
state space with a Lie group structure—characteristics of our
INS/GPS fusion problem—has proven to be challenging [5].

A. Handling outliers in stochastic filtering

There have been efforts to improve the robustness of clas-
sical Kalman Filtering (KF) towards outliers. The simple and
common technique of discarding any observation that differs
from the predicted value by a predefined threshold [19] is
prone to false negatives, which can lead to the (false) build up
of estimation variance and eventually poor estimates. More
principled approaches developed for outlier handling in KF,
such as the usage of alternative noise models [20] and Huber
technique to KF residuals [21], may negatively affect the
stability of the system if directly applied to INS/GPS fusion,
due to the Lie group structure of the state space [2], [11].

B. Stochastic filtering on Lie groups

Recently, there has been an attention on systematically
designing KFs that function intrinsically on Lie groups [3],
[11]. The aim is to properly observe the underlying symmetry
of the problem to enhance the convergence and stability
of the filter. These efforts have led to the development of
invariant KFs [11] that exhibit stronger stability properties
than ad-hoc adaptations of classical KFs, especially when
applied to INS/GPS fusion. However, these invariant filters
do not consider measurement outliers in their design. Also,
robustifying the invariant filters via the ad-hoc or heuristic
approaches alluded to above seems challenging, due to the
complex design and structure of these filters.

C. Nonlinear optimization in state estimation

In a parallel development, impressive results from Visual
SLAM have shown that state estimation approaches based on
nonlinear optimization (specifically nonlinear least squares)
consistently outperform stochastic filtering methods, given
the equivalent amount of computing resources [22]–[25]. In
fact, nonlinear optimization can readily be brought to bear
on Lie groups, and can more conveniently attain robustness
against outliers by using robust norms. Yet another advantage
is the availability of “generic" open source optimization
packages [26]–[28] that simplify implementation.
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Unsurprisingly, enthusiasm for optimization-based ap-
proaches have begun to grow in the control community, who
have traditionally used stochastic filtering approaches. The
recent works [29]–[32] have in fact targeted inertial naviga-
tion applications. However, these works have not considered
scenarios with outliers or have systematically handled asyn-
chronous sensor modalities (the latter is a fundamental weak-
ness of optimization-based state estimation approaches [25]).
Techniques including downsampling/interpolation [30] and
averaging [31], [32] have been adopted by previous works
to tackle the latter problem. However, these relatively sim-
ple strategies to handle sensor asynchrony are problematic,
e.g, downsampling discards useful information, whereas the
interpolation approach is dependent on the choice of the
interpolation function (e.g. piecewise constant, polynomial,
linear) and characteristics of the data points. If there are
outliers in the data (which often occur in practice), the inter-
polated data creates even more problematic data. Moreover,
generating interpolated data for the slower sensor will lead
to a more expensive optimization problem as more variables
are required to be optimized. Also, crude averaging method
ignores the manifold structure of the state space.

D. Our contributions

We develop a novel non-linear optimization technique to
address the state estimation problem in the INS/GPS fusion.
The primary contribution of our work is the proposal of a
sliding-window optimization technique which; 1) computes
an accurate 6DoF robot trajectory, 2) concurrently com-
pensate for the inherent IMU bias, 3) correctly fuse mea-
surements from the three complementary but asynchronous
sensors (IMU, magnetometer and GPS), by adapting the pre-
integration approach [25] to derive the error terms associated
with IMU and magnetometer that enable them to be pre-
integrated across time and in a manner than respects the Lie
group structure. Also, leveraging the ability of pre-integration
theory to perform recursive optimization can significantly
reduce the computational complexity. Our work can be seen
as an extension of the pre-integration theory for visual-
inertial (camera and IMU) SLAM [25] to INS/GPS fusion.

Moreover, we also explore the usage of robust norms in
nonlinear least squares to effectively handle outliers from the
measurements (particularly the GPS outliers), which can be
easily affected by environmental factors. Our experimental
results demonstrate the superior accuracy and robustness of
our method over existing filtering techniques that solve the
equivalent problem, i.e., INS/GPS fusion in the absence and
presence of the outliers.

Note that the works closest in spirit to ours [29]–[32]
have not considered outliers or have systematically handled
asynchrony in the measurements, as described in Sec. I-C.

II. PROBLEM FORMULATION

Consider a rigid body is equipped with an IMU, a GPS,
and a magnetometer. The body-fixed frame coincides with
the IMU frame, which is denoted by b. We denote the
North-East-Down (NED) reference frame as w (the world

frame). Neglecting the effects due to the rotation of the
Earth, we assume that w is an inertial frame. The following
measurements are available:

• The IMU consists of a 3-axis gyro which measures the
angular velocity bω, and a 3-axis accelerometer that
measures the specific acceleration ba. The sampling rate
of IMU is denoted by fIMU.

• The GPS unit measures the linear velocity wv and
position wp, sampled at rate fGPS.

• The 3-axis magnetometer measures the magnetic field
of the earth in the body-fixed frame. The magnetometer
output, bm provides partial information of the attitude
matrix, Rw

b as:

bm = (Rw
b )Tw

◦
m, (1)

where w
◦
m is the (approximately constant) magnetic

field of the earth at the position of the rigid body
expressed in the NED frame. We represent fMag as the
sampling rate of magnetometer measurements.

Here we allow the sensor measurements to be asynchronous,
i.e., fIMU, fGPS, fMag can be different. By default, we assume
that fIMU > fMag > fGPS, which is sensible since in most
practical settings the sampling rate of IMU exceeds those of
the magnetometer and GPS [30].

A. The State

Our goal is to estimate the state at time t when each GPS
measurement is received up to time T . We define the state
of our system as:

χ̂t =
(
Rt, vt, pt, bt

)
, (2)

where (Rt, pt) ∈ SE(3) is the pose of the rigid body,
vt ∈ R3 is its linear velocity, and bt ∈ R3 is the
(unknown) gyroscope bias. Here, we propose a non-linear
least square formulation to minimize the sum of squared of
all measurement residuals, as:

min
χ̂t

1

2

T∑

t=1

(
‖rIMU(zIMUt→t+1, χ̂t)‖2Σi

+‖rGPS(zGPS, χ̂t)‖2Σb

+ ‖rB(zB, χ̂t)‖2Σc
+ ‖rMag(zMag, χ̂t)‖2Σd

)
, (3)

where rIMU(zIMUt→t+1, χ̂t), rGPS(zGPS, χ̂t), rB(zB, χ̂t) and
rMag(zMag, χ̂t) correspond to residuals for IMU, GPS, IMU
bias and magnetometer measurements, respectively. Detailed
definition of each residual term will be presented in Sec. III-
A, III-B, III-C, III-E.

B. IMU model

The IMU measures angular velocity and linear accelera-
tion of b frame relative to w frame. We assume that raw
gyroscope measurements, bω̃ is affected by a slowly varying
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sensor bias bg [25]: 1

bω̃n = bωn + bg
n (4)

bãn = RwT

bn (wan − wg), (5)

where bω ∈ R3 is the instantaneous angular velocity of b
relative to w expressed in coordinate frame b, wa ∈ R3 is the
instantaneous linear acceleration of b relative to w expressed
in w, and wg is the constant gravitational acceleration vector
in w frame.

We employ the following continuous-time model [25]:
wṗ = wv, wv̇ = wa, Ṙw

b = Rw
b bωX , (6)

where the operator (.)X maps a vector in R3 to its associated
skew symmetric matrix in so(3).

Assuming that bω and wa are constant between two time
instants n = i and n = i + 1, Euler integration is applied
to (6) to propagate the rigid body’s pose and velocity using
IMU measurements, yielding:

wpi+1 = wpi + wvi∆t+
1

2
(Rw

bibãi + wg)∆t2 (7a)

wvi+1 = wvi + (Rw
bibãi + wg)∆t (7b)

Rw
bi+1

= Rw
bi exp

(
(bω̃i − bg

i )X∆t

)
, (7c)

where exp : so(3) → SO(3). Although more sophisticated
numerical integrated methods can be employed [35]–[38],
our experiments suggest that the above Euler approximation
performs very well for our specific application where IMU
sampling rate is high [39].

C. Pre-integration of IMU on manifold

In this section, to simplify the presentation and without
loss of generality, we assume fGPS = fMag and fGPS, fMag<
fIMU. We further generalize this in Sec. III-E.

We initialize a state variable (i.e. a node in the opti-
mization) of the form (2) each time we receive a GPS
measurement. Our goal in this section is to combine all of
the IMU measurements received between successive GPS
measurements and generate a single pre-integrated IMU
measurement. This pre-integration significantly reduces the
computational complexity of the least squares problem (3)
since it prevents re-incorporating all of the IMU measure-
ments at each iteration of the least-squares problem.

Assume that two consecutive GPS measurements are re-
ceived at times t = i and t = j. We, hence, initialize two
state variables (i.e. two nodes of the optimization) according
to (2) at times t = i and j. Inspired by [25], we summarize
all the IMU measurements between the two required states
χ̂i and χ̂j (to be estimated).

We denote the pre-integrate position, velocity, and orienta-
tion from t = i to t = j by ∆pbi

i→j ,∆vbi
i→j ,∆Rbi

bi→j
, respec-

tively, to represent the relative motion increments between

1We opt not to incorporate the accelerometer bias compensation as
adding an unknown accelerometer bias to (5) (on top of the unknown gyro
bias) our problem setup would introduce unobservable modes, that in turn
might lead to instability/divergence of the optimization solution [33], [34].
This is of particular importance in our scenario where we consider mea-
surement outliers in addition to the bias.

two consecutive poses and velocities. The pre-integrated
delta components are initialized as ∆pbi

i→i = 0,∆vbi
i→i =

0,∆Rbi
bi→i

= I. By taking bi as the reference frame, successive
application of (7) between t = i and t = j yields

∆pbi
i→j =

j−1∑

t=i

[
∆vbi

t ∆t+
1

2
∆Rbi

t (ãt)∆t
2

]
(8a)

∆vbi
i→j =

j−1∑

t=i

∆Rbi
t (ãt)∆t (8b)

∆Rbi
bi→j

=

j−1∏

t=i

(
exp (ω̃t − bg

t )X∆t
)
, (8c)

where i is the discrete sample of one IMU measurement
within t = [i, j], and ∆t is the time interval between two
IMU measurements i and i+ 1.

Note that (8) is now independent of the estimated states
which prevents re-calculation whenever pose and velocity
estimates change, except for the bias. To avoid repeating
the same equations in our paper, please find the 1st order
Taylor expansion presented in [25] for the recursive im-
plementations when the bias estimate changes. We remark
that adapting the pre-integration strategy [25] in tackling
asynchrony sensor modalities is conceptually superior over
[30]–[32].

III. MEASUREMENT RESIDUAL TERMS

In this section, we introduce our residual error terms of
IMU, GPS, bias and magnetometer measurements.
A. Preintegrated IMU Factor

Given the pre-integrated measurement model in (8), we
can further rewrite (7), which yields:

∆pbi
i→j

.
= (Rw

bi)
T (wpj − wpi − wvi∆tij −

1

2
g ∆tij

2)

(9a)

∆vbi
i→j

.
= (Rw

bi)
T (wvj − wvi − g ∆tij) (9b)

∆Rbi
bi→j

.
= (Rw

bi)
TRw

bj , (9c)

where ∆tij =
∑j

t=i ∆t.
We express the residual error rIMU(zIMUi→j , χ̂i)

.
=

[e∆pi→j , e∆vi→j , e∆Ri→j ]T ∈ R9 as:

e∆pi→j
= (Rw

bi)
T (wpj−wpi−wvi∆tij−

1

2
g ∆t2ij) (10a)

−∆pbi
i→j

e∆vi→j
= (Rw

bi)
T (wvj − wvi − g ∆tij)−∆vbi

i→j (10b)

e∆Ri→j
= qv

(
Rw

bi(R
w
bj )T ∆Rbi

bi→j

)
, (10c)

where the notation qv(R) ∈ R3 denotes the vector part of
the quaternion representation of R ∈ SO(3) [5], [40].

B. GPS measurement residual
GPS measurements, namely wṽt and wp̃t received at time

t = i have direct relationship with the estimated states. Hence,
we can construct the algebraic equation for the residual error
rGPS(zGPS, χ̂t)

.
= [evi , epi ]

T ∈ R6 at t = i as:

evi = wvi − wṽi , epi = wpi − wp̃i . (11)
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C. Bias model

Since we assume the gyro measurement in the IMU is
corrupted with a slow time-varying bias, this unknown bias
must be estimated and compensated to achieve asymptoti-
cally accurate estimation [2], [5]. Here, we model the bias
as a "random walk", resulting from the integration of the
white noise.

˙bg
t = ηbg. (12)

By integrating (12) over successive discrete time samples t =
[i, j], we can form the bias residual error term, rB(zB, χ̂t)

.
=

eBi ∈ R3 as:
eBi = bg

j − bg
i . (13)

D. Magnetometer measurement residual

Given the magnetometer model presented in (1), we can
naturally form the residual error of magnetometer measure-
ment at time t = i as:

rMag(zMag, χ̂t)
.
= eMi

= bm̃i − (Rw
bi)

T
w
◦
mi, (14)

where eMi ∈ R3.

E. Incorporating intermediate magnetometer measurements

In Sec. II-C, we assume that the sampling rate of mag-
netometer is the same as the sampling rate of GPS, such
that fMag = fGPS. Nevertheless, in most practical scenarios,
we have fMag > fGPS. In this section, we generalize our
proposed optimization framework to allow fMag > fGPS.
Inspired by the recursive predictor theory proposed by [2,
Chapter 4] that compensates delays and sampling effects in
pose estimation, we propose an approach that allows the
incorporation of sensory data with various sampling rates
into the least-squares optimization.

Assume that two consecutive GPS measurements are
received at time t = i and t = j, and a magnetometer
measurement bm̃k is received at the time t = k where
i ≤ k ≤ j. The nodes χ̂i and χ̂j exist in the optimization,
but the node χ̂k does not exist because no GPS measurement
is received at time k. Hence, it is not possible to use the
magnetometer residual as proposed by (14). Instead, we,
use (9c) to obtain Rw

bk
= Rw

bi
∆Rbi

bi→k
where ∆Rbi

bi→k
is

the pre-integrated orientation which can be computed using
gyro measurements from t = i to t = k according to (8c).
Replacing for bmk = RwT

bk w
◦

mk and using (14), we obtain

eMk
= ˜bmk −

(
Rw

bk

)T
w
◦

mk

= bm̃k −
(

∆Rbi
bi→k

)T (
Rw

bi

)T
w
◦

mk. (15)

It is now possible to implement the residual term (15) in the
least-squares to incorporate the intermittent magnetometer
measurements bm̃k. Note that the residual error (15) relies
on the available state χ̂i rather than the unavailable state
χ̂k. A similar methodology to the approach presented above
has been proposed in [41] to mitigate asynchrony between
IMU and LIDAR measurements, albeit in a different problem
setup to the present paper. We remark that this concept can
be employed to tackle GPS measurement delay problem. For

slower GPS measurement rate, one can also consider to apply
associated concept to perform the state estimation at a higher
sampling rate to achieve real-time compliant applications.

IV. HANDLING OUTLIERS

In practice, sensor measurements are often corrupted by
outliers. From statistical point of view, an outlier is a mea-
surement which significantly deviates from other candidates
of the distribution in which it is sampled. Realistically,
outliers are often derived from unmodeled factors or bizarre
causes, such as temporary sensor failure, erroneous measure-
ments or transient environment disturbance.

Generally, least square function is highly vulnerable to
these outliers as a single outlier can drastically pull the
estimation arbitrarily far away from the true solution [42].
This is of particular crucial importance for the INS/GPS
fusion since high amplitude GPS glitches can often occur in
practice, e.g. due to blockage of signals or multi-path. Also,
sudden magnetic disturbance may occur in aerial vehicles,
e.g. while passing from the proximity of power lines, causing
temporary outliers in the magnetometer readings.

Since we are targeting a setting where we have a sequence
of time-dependent variables (pose, velocity, bias) to estimate,
the interaction and evolution of the variables across time
are vital aspects of the problem. Therefore, our approach
determine the outliers by exploring the M-estimator to im-
plicitly alleviate the influence of a sequence of potentially
erroneous GPS and magnetometer measurements. Instead of
minimizing the sum of squared residual, we, hence, propose
the use of robust norm function ρ(.) in our non-linear
optimization problem. Examples of such robust ρ(.) are l1,
Huber and Cauchy norm [42]. Note that we robustify our
non-linear optimization problem using Cauchy norm (16)
which leads to (17).

ρ(x) = log (1 + x). (16)

We propose the following robust non-linear least squares
function that fuse IMU, GPS and magnetometer which arrive
at different rates:

min
χ̂t

1

2

T∑

t=T−N

(
‖rIMU(zIMUt→t+1, χ̂t)‖2Σi

+ρ
(
‖rGPS(zGPS, χ̂t)‖2Σb

)
+ ‖rB(zB, χ̂t)‖2Σc

+
∑

bm̃k∈Λ

ρ
(
‖rMag(zMag, χ̂t)‖2Σd

))
,

(17)

where N indexes all nodes in the window and Λ denotes the
set of magnetometer measurement received.

To achieve real time processing time, the proposed method
optimizes over a bounded N size sliding window of recent
states. Note that each term of (17) is weighed by the sensor’s
noise covariances matrices Σ. 2

Also, note that the optimization problem (17) can be
solved via generic least square solvers [26]–[28]. In Section

2In the case of IMU, readers can find the derivation of the pre-integrated
covariance in [25].
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V, we demonstrate that the above mentioned robustification
successfully removes GPS outliers in real scenarios.

V. EXPERIMENTAL RESULTS

This section presents a number of experimental results
to compare our proposed robust state estimation approach
against a popular EKF implementation for Unmanned Aerial
Vehicles (UAV), namely Autopilot [43], as the baseline. Ow-
ing to the fact that Autopilot has a large community of users
including researchers, ordinary and commercial consumers,
we regard this baseline as the current industrial state-of-the-
art. The Autopilot EKF is designed with a threshold based
outlier rejection. The strategy in the EKF is to use the ratio
of the norm of the EKF innovation term to the observation
variance to determine if the candidate observation is within
a predefined confidence interval.

Besides that, we also regard [30]–[32] as the baseline
methods. Since none of these works have considered sce-
narios involving measurement anomalies, we examine the
sensitivity of their approaches (i.e., standard non-linear least
squares) towards outliers. Also, as explained in Section I,
their strategies in handling sensor asynchrony have fun-
damental weaknesses (vulnerable to wrong interpolation, a
much larger set of variables to optimize), therefore, this
aspect of their work is not tested in our experiments.

Since there is no openly available dataset that contains
both an accurate (independently measured) ground truth
information and all the sensory data that we require, i.e.
IMU, magnetometer, and GPS, we provide two sets of
experiments each aiming at illustrating different aspects of
the comparison.

The first set of experiment is performed on the EuRoC
Dataset [44]. The dataset is recorded indoor with a Micro
Aerial Vehicle equipped with a low cost MEMS IMU. Cor-
responding 6D ground truth poses are provided by a Vicon
system. Large IMU biases are observed in these datasets. The
purpose of this experiment is to compare the performance of
our proposed approach with the existing filtering method in
a controlled environment where ground truth is available.
The disadvantage of this dataset is that it does not con-
tain real magnetometer (presumably, due to high magnetic
disturbances indoor) and GPS measurements. To address
this problem, we synthetically generate magnetometer and
GPS measurements corresponding to the datasets, using the
available data.

The second set of experiment is performed on real flight
data using onboard sensory data log of actual autonomous
flights performed outdoor. This dataset contains all of the
required sensory data, including the magnetometer, but does
not include an independently measured ground truth infor-
mation (as it is outdoor). Despite the lack of ground truth to
evaluate absolute accuracy, this dataset permits a qualitative
comparison. Levenberg-Marquadt algorithm is applied to
solve the nonlinear optimization problem (17). In all of our
experiments, we use Ceres Solver [28].

A. Initialisation
For our proposed method, we assume no prior information

is available about the states and we initialise every new state
to the origin, i.e. Rw

b0
= I, wv0 = [0, 0, 0]T , wp0 = [0, 0, 0]T

and bg
0 = [0, 0, 0]T . A more sophisticated initialisation could

be employed, but, we try to consider the worst case scenario
for our method. For the EKF, however, we initialise the
pose and velocity to the ground truth, but we initialise the
unknown bias to zero. Even though such setting gives an
advantage to the EKF, this has been chosen intentionally
to prevent EKF from divergence. Also, this highlights that
our least squares approach is far more robust and does not
necessarily require accurate initialization.

B. Size of window
We employ N = 40 in all of our experiments. It has been

tuned carefully to achieve an optimum trade-off between the
accuracy and the test time.

C. EuRoC Dataset Simulation
IMU measurements, bω̃ and bã, are sampled at 200Hz

and perturbed by an additive noise of 0.0024rad/s and
0.0283m/s2 respectively in each axis. Raw GPS/barometer
and magnetometer measurements log are not available in this
dataset. To generate barometer and GPS data, we corrupt
the ground truth velocity and position measurements with
Gaussian noise. We consider zero mean Gaussian noise with
a standard deviation of 0.01m, and a sampling rate of 5Hz
for barometer altitude. The noise signal with a standard
deviation of 0.1m/s is selected for GPS velocity and 0.1m
for position NE, and they are sampled at 5Hz. To simulate
magnetometer measurements, we consider the normalized
reference direction

◦
y(t) = [1, 0, 0]T . We use (1) to generate

ideal vector measurements, which are sampled at 100Hz.
Zero mean Gaussian noise with a standard deviation of 0.01
is added to each axis of the resulting vector measurement. We
evaluate the results on three sequences of the EuRoC dataset;
V2_01_Easy, V2_02_Med, MH_03_Med. Two experiments
are conducted, i.e., one without while another with outliers.

1) Scenario without outliers: Fig. 1 depicts the pose, ve-
locity and bias estimates as well as their corresponding errors
of our proposed algorithm compared with EKF in sequence
MH_03_Med. The translation, velocity and bias estimation
errors are simply the Euclidean norm of the error between
the ground truth and the corresponding estimate. The attitude
estimation error corresponds to the angle of rotation of the
error R̂(t)R(t)T , where R̂ is the estimated orientation and

TABLE I: RMS Error of the proposed approach and the
EKF [43] on three different EuRoC Sequences

Sequence RMSE of Attitude Translation Velocity Bias
(deg) (m) (m/s) (rad/s)

V2_01_Easy EKF 1.0729 0.3438 0.1577 0.0435
Proposed 0.5770 0.0859 0.1249 0.0024

V2_02_Med EKF 0.9594 0.1753 0.1267 0.0476
Proposed 0.6976 0.0891 0.1155 0.0028

MH_03_Med EKF 1.3631 0.1639 0.1339 0.0406
Proposed 0.4579 0.0567 0.0707 0.0017
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(c) Bias Estimation Error.
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Fig. 1: MH_03_Med - Comparison between our proposed
approach and the EKF.
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Fig. 2: Seq MH_03_Med - Ground truth position XYZ
vs their estimates via the EKF, the proposed method with
ρ (rho) function disabled and the proposed method when
measurement outliers occur from t = 70s to 76s.

R is its corresponding ground truth orientation. 3 The error
plots show that our approach produces significantly lower
errors than EKF. This is also confirmed by the rms error
of the proposed approach versus EKF presented in Table I,
which shows that the non-linear optimization function may
offer better advantages in providing more accurate solution
as computing the estimates at every iteration has the benefit
of gaining insight from a sequence of "raw" data quality that
is not possible in filtering approach.

2) Scenario with outliers: Fig. 2 compares the proposed
approach (denoted by the blue line) with EKF when GPS
position measurements are corrupted with outliers (denoted
by the black line) from t = 70s to t = 76s. Throughout
the flight of a total trajectory of 130.9m, it is observed
that during the period when measurement outliers occur, our
method tracks the true trajectory more accurately than EKF.
In fact, the outlier identification method of EKF fails to
isolate some of the outliers and the EKF incorrectly fuses
them, as is evident by the fact that EKF position estimate
(denoted by the red line) follows the black line as seen in Fig.
2a. This explains the slowly varying translation error of EKF.
Also, this causes an adverse effect on EKF estimates even
after t=76s when there is no more outlier. The EKF wrongly
rejects healthy GPS measurements after (t=76s onwards) and
relies mostly on dead reckoning, which leads to a significant
deviation from the ground truth. In this experiment, we
also assess the sensitivity of approach in [30]–[32] towards
outliers by implementing (3) (denoted by the magenta line).
Fig. 2 also presents a notable evidence that the resulting
position estimates are distinctly biased to the measurement
outliers without incorporating the robust norm function in
the nonlinear least squares. Nevertheless, they still track
the true pose closely once the GPS measurements become
trustworthy again.

We also perform a Monte Carlo analysis with 50 simula-
tion runs, each with randomised outlier insertion to the GPS
position measurement. Fig. 3 presents a substantial evidence
on the robustness of our approach as the r.m.s error averaged
over 50 runs is lower compared to the EKF.

3) Timing: The experiment is implemented on a standard
laptop (Macbook Pro, Intel i5, 2.3GHz) and is running on
single core. As shown in Fig. 4, the average CPU time per
window for the proposed approach over 50 Monte Carlo
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Fig. 3: Root-mean-squared error of the position estimation
averaged over 50 Monte Carlo experiments with randomised
outlier insertion.

3This angle is related to the Frobenius norm ‖I3−R̂RT ‖2F = tr((I−
R̂RT )T (I − R̂RT )) and is given by θ̃(t) = 180

π
∗ acos(1 − 0.25‖I −

R̂(t)R(t)T ‖2F ).

Outlier-Robust Manifold Pre-Integration for INS/GPS Fusion 50



0.062 0.063 0.064 0.065 0.066 0.067

Proposed method Time(s)

0

5

10

15

20

Fig. 4: Histogram plot of average CPU time per window for
the proposed approach over 50 Monte Carlo runs.

0 50 100 150 200 250 300 350
0

100

200

N
o

rt
h

(m
)

0 50 100 150 200 250 300 350
-100

0

100

E
a

s
t(

m
)

0 50 100 150 200 250 300 350

time(s)

-80

-60

-40

D
o

w
n

(m
)

EKF Proposed

(a) Position Estimates

0 50 100 150 200 250 300 350
-20

0

20

N
o

rt
h

(m
/s

)

0 50 100 150 200 250 300 350
-20

0

20
E

a
s
t(

m
/s

)

0 50 100 150 200 250 300 350

time(s)

-10

0

10

D
o

w
n

(m
/s

)

EKF Proposed

(b) Velocity Estimates

0 50 100 150 200 250 300 350
-0.1

0

0.1

X
(d

e
g

/s
)

0 50 100 150 200 250 300 350
-0.1

0

0.1

Y
(d

e
g

/s
)

0 50 100 150 200 250 300 350

time(s)

-0.1

0

0.1

Z
(d

e
g

/s
)

EKF Proposed

(c) Bias Estimates

0 50 100 150 200 250 300 350
-100

0

100

R
o

ll(
d

e
g

)

0 50 100 150 200 250 300 350
-100

0

100

P
it
c
h

(d
e

g
)

0 50 100 150 200 250 300 350

time(s)

-200

0

200

Y
a

w
(d

e
g

)

EKF Proposed

(d) Attitude Estimates
Fig. 5: Real flight dataset-The estimation results via the
proposed method and EKF.

runs is approximately 60ms, which matches the real-time
constraints in our problem setup.

D. PX4 flight data

The second experiment is performed on the real flight
data. The dataset is recorded with a F450-Pixhawk4 that
is equipped with an IMU, a magnetometer, a GPS unit
and a barometer.4 The IMU is sampled at 250Hz while
the magnetometer and GPS/barometer measurements are
sampled at 50Hz and 5Hz, respectively. Again, we consider
two scenarios for the real flight data as discussed in Sec.
V-D.1 and V-D.2.

1) Scenario without outliers: As depicted in Fig. 5, the
resulting state estimates of our proposed approach match
very well with those of EKF. Note that there is no ground
truth available in this dataset. As there is no outlier, we
believe that the EKF estimates are reliable in Fig. 5.

2) Scenario with outliers: Fig. 6a illustrates the estimates
of the proposed approach compared with EKF and (outlier-
free) GPS measurements when GPS sensor fault occurs from
t = 213s to 220s. Incorrect fusion of the measurement outliers
(denoted by the black line) even for only a very short period
of time has led to a very severe long term effect on EKF’s
performance. Contrarily, the resulting UAV’s trajectory of
our proposed approach still matches the trajectory path of
(outlier-free) GPS measurements in the inset figure. There-
fore, we highlight that our method demonstrate excellent

4The dataset is available at: https://logs.px4.io/plot_app?log=114d429c-
d4f6-43e6-b3b4-740bab900d2a.

robustness and performance in mitigating outliers compared
with EKF. Fig. 6b compares the resulting position estimates
under scenario with and without robust ρ(.). We emphasise
that incorporating robust norm in the nonlinear least squares
for the state estimation is practically important to ensure long
term autonomous navigation in a large scale environment.

VI. CONCLUSION

Aiming to offer a fresh insight to address the long standing
pose estimation problem in INS/GPS fusion, we present
a novel non-linear optimization framework to solve the
equivalent problem. We extend the pre-integration technique
to fuse different sensory inputs that arrive at different rates in
a non-linear least squares optimisation framework. We also
present a robust estimation framework to effectively mitigate
the effects of practically important outlier measurements.
Our experimental results demonstrate the superior accuracy
and robustness of our approach over filtering methods. This
further illustrate the huge potential of non-linear optimization
approach in long term autonomous INS/GPS navigation.
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Abstract

Under mild conditions on the noise level of the measure-
ments, rotation averaging satisfies strong duality, which en-
ables global solutions to be obtained via semidefinite pro-
gramming (SDP) relaxation. However, generic solvers for
SDP are rather slow in practice, even on rotation averag-
ing instances of moderate size, thus developing specialised
algorithms is vital. In this paper, we present a fast algo-
rithm that achieves global optimality called rotation co-
ordinate descent (RCD). Unlike block coordinate descent
(BCD) which solves SDP by updating the semidefinite ma-
trix in a row-by-row fashion, RCD directly maintains and
updates all valid rotations throughout the iterations. This
obviates the need to store a large dense semidefinite ma-
trix. We mathematically prove the convergence of our al-
gorithm and empirically show its superior efficiency over
state-of-the-art global methods on a variety of problem con-
figurations. Maintaining valid rotations also facilitates in-
corporating local optimisation routines for further speed-
ups. Moreover, our algorithm is simple to implement; see
supplementary material for a demonstration program.

1. Introduction
Rotation averaging, a.k.a. multiple rotation averag-

ing [16] or SO(3) synchronisation [3], is the problem of
estimating absolute rotations (orientations w.r.t. a common
coordinate system) from a set of relative rotation measure-
ments. In vision and robotics, rotation averaging plays a
crucial role in SfM [19, 22, 21, 7, 6, 18, 37, 32] and visual
SLAM [4, 26, 29, 23, 17], in particular for initialising bun-
dle adjustment. Fig. 1 illustrates the result of rotation aver-
aging. With the increase in the size of SfM problems and
continued emphasis on real-time visual SLAM, developing
efficient rotation averaging algorithms is an active research
area. In particular, real-world applications often give rise to

(a) Camera graph (b) Result

Figure 1. (a) Input camera graph from Orebro Castle [22] with
n = 761 views and 116, 589 connections (relative rotations; grey
lines). The initial absolute rotations (represented as black arrows)
were randomly chosen. For visualisation, the ground truth posi-
tions were used to locate the cameras (red points). (b) Globally
optimal absolute rotations computed from our RCD algorithm in
1.96 s (Shonan averaging [8] required 54.62 s on the same input).
Note the alignment of the arrows along the path of the camera (the
reconstructed point cloud is also plotted for visualisation).

problem instances with thousands of cameras.
The input to rotation averaging is a set of noisy relative

rotations {R̃ij}, where each R̃ij is a measurement of the
orientation difference between cameras i and j which over-
lap in view. From the relative rotations, rotation averaging
aims to recover the absolute rotations {Ri}ni=1 which repre-
sent the orientations of the cameras. In the ideal case where
there is no noise in the relative rotations {Rij},

Rij = RjR
T
i . (1)

The input relative rotations {R̃ij} define a camera graph
G = (V, E), where V = {1, . . . , n} is the set of cameras,
and (i, j) ∈ E is an edge in G if the relative rotation R̃ij be-
tween cameras i and j is measured. We assume a connected
undirected graph G, hence only R̃ij with i < j needs to be
considered. See Fig. 1(a) for an example camera graph.

Rotation averaging is usually posed as a nonlinear opti-
misation problem with nonconvex domain

min
R1,...,Rn∈SO(3)

∑

(i,j)∈E
d(RjR

T
i , R̃ij)

p, (2)

1
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where d : SO(3) × SO(3) 7→ R is a distance function
that measures the deviation from the identity (1) based on
measured and estimated quantities. For example,

dchordal(R,S) = ‖R− S‖F , (3)

which is known as the chordal distance, and

d∠(R,S) = ‖ log(RST )‖2 (4)

which is called the angular distance (log : SO(3) 7→ R3 is
the logarithmic map in SO(3) [16]). Also, usually p = 1, 2.

The general form of (2) can be challenging to solve [16,
33]. Earlier efforts devised locally convergent methods [13,
20, 14, 15, 31, 5, 16], e.g., IRLS [5] and the Weiszfeld
algorithm [15], though most are not able to guarantee lo-
cal correctness [33]. Different from local methods, spec-
tral decomposition methods [2] solve a relaxed problem
optimally, though the deviation between the relaxed solu-
tion and the global solution is unknown. Tron et al. [32]
surveyed and benchmarked approximate rotation averaging
methods in the context of SfM. Recently, learning-based ap-
proaches [24] that can exploit the statistics of camera graphs
from an environment have been developed.

1.1. Strong duality

Building upon empirical observations (e.g., [12]), Eriks-
son et al. [10] proved that the specific version

min
R1,...,Rn∈SO(3)

∑

(i,j)∈E
dchordal(RjR

T
i , R̃ij)

2, (5)

which is a standard formulation in the literature [15, 16, 10,
5], satisfies strong duality [27] under mild conditions on the
noise of the input relative rotations (see [10, Eq. (22)] or the
supp. material for details). This means that the global solu-
tion to (5) can be obtained by solving its Langrangian dual,
which is a semidefinite program (SDP) (details in Sec. 2).

Our work focusses on solving the SDP relaxation
of (5), especially for large-scale problems. Although SDPs
are tractable, generic SDP solvers (e.g., conic optimisa-
tion [28]) can be slow on instances derived from rotation
averaging. Thus, exploiting the problem structure to con-
struct faster algorithms is an active research endeavour.

Eriksson et al. [10] presented a block coordinate descent
(BCD) algorithm to solve the SDP relaxation, which con-
sumed one order of magnitude less time than SeDuMi [28]
on small to moderately sized instances (n ≤ 300). The
BCD algorithm maintains and iteratively improves a dense
3n × 3n positive semidefinite (PSD) matrix by updating
3×3n submatrices (called “block rows”) until convergence.
At convergence, each block row contains rotation matrices
(up to correcting for reflection) which are the solution to (5)
(the solution of different block rows differ by a gauge free-
dom; see Sec. 2.3). However, recent results [30, 8] suggest
that BCD is still not practical for large-scale problems en-
countered in SfM and SLAM, where n ≥ 1000.

1.2. Riemannian staircase methods

The Riemannian staircase framework [1] has been ap-
plied successfully to pose graph optimisation (PGO) or
SE(3) synchronisation, which aim to recover absolute cam-
era poses (6 DOF) from measurements of relative rigid mo-
tion. Under this framework, Rosen et al. [25] presented
SE-Sync for PGO which guarantees global optimality for
moderate noise levels. Tian et al. [30] builds upon SE-Sync
to solve PGO in a distributed optimisation setting targetting
collaborative SLAM for multi-robot missions.

Recently, Dellaert et al. [8] adapted SE-Sync for rotation
averaging. Their algorithm, called Shonan rotation averag-
ing (henceforth, “Shonan”) can globally solve the SDP re-
laxation of (5) through a chain of sub-problems on increas-
ingly higher-dimensional domains SO(d), with d ≥ 3. A
certification mechanism checks if the solution of each sub-
problem has reached global optimality by computing the
minimum eigenvalue of a large 3n × 3n matrix. While
optimality is ensured for d ≤ 3n + 1, in practice the al-
gorithm only needs to expand d once or twice to reach op-
timality. Results show that Shonan was an order of magni-
tude faster than BCD on moderate size instances (n ≤ 200)
and was able to solve large-scale instances (n ≥ 1000)
not achievable by BCD with impressive runtimes (instances
with n = 5750 could be solved in 115 seconds).

1.3. Our contributions

We propose a novel algorithm called rotation coordinate
descent (RCD) to solve rotation averaging (5) globally opti-
mally. Unlike BCD, RCD neither maintains a 3n×3n dense
PSD matrix nor updates the matrix block row-by-block row.
Instead, the operation of RCD is equivalent to directly up-
dating the n rotation matrices R1, . . . , Rn, with provable
convergence to global optimality. Moreover, since RCD
maintains valid rotations at all times, local methods [5, 15]
can be employed for further speed-ups.

See the supplementary material for an implementation of
RCD and a demonstration program.

We will present results which show that RCD can be up
to two orders of magnitude faster than Shonan, depending
on the structure of the camera graph G. More specifically,
RCD is comparable to Shonan for sparse G (e.g., SLAM
camera graphs). However, RCD considerably outperforms
Shonan on denser graphs (e.g., SfM camera graphs). This
makes RCD a much more scalable algorithm.

On outliers An outlier in rotation averaging (2) is a mea-
sured relative rotation R̃ij that significantly deviates from
the true value. Note that formulation (5), i.e., least sum of
squared chordal distances, is non-robust. Thus, if there are
outliers in the input, BCD, Shonan and RCD will fail, in the
sense that they do not return results that closely resemble
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the “desired” solutions. In practice, such negative outcomes
can be prevented by removing outliers with a preprocessing
step [35, 9, 22]. We also emphasise that the theoretical va-
lidity of our work is not invalidated by the lack of robustness
in the standard formulation (5) [15, 16, 5, 10].

Yang and Carlone [34] proposed a robust SDP relaxation
for single rotation averaging, a special case where n = 1
(see [16]). The method has been demonstrated on relatively
small scale problems (less than 100 measurements).

2. Preliminaries
2.1. Notation

We operate on block matrices composed of 3× 3 blocks
(submatrices in R3×3). A block matrix is represented with
a capital letter, e.g., A ∈ R3m×3n, and element (i, j) of a
block matrix, denotedAi,j , is the submatrix formed by rows
3(i − 1) + 1 to 3(i − 1) + 3 and columns 3(j − 1) + 1 to
3(j − 1) + 3 of A. Thus, Ai,i are diagonal blocks.

We also define the k-th “row” of A as the submatrix

Ak,: = [Ak,1Ak,2 · · ·Ak,n] ∈ R3×3n (6)

and similarly for the k-th “column” of A. If A has a single
block column, we call it a “vector”. We use the notation

A(a:b);(c:d) =



Aa,c · · · Aa,d

...
...

Ab,c · · · Ab,d


 ∈ R3m×3n (7)

for the submatrix of A from rows a to b and columns c to
d. If A is a vector we use the notation Ak = Ak,1 and
Aa:b = A(a:1);(b:1).

We denote the 3× 3 identity and zero matrices as I3 and
03, and the trace and Moore–Penrose pseudoinverse of a
matrix M as tr(M) and M†, respectively.

2.2. SDP relaxation

We first present the SDP relaxation of (5) following [10].
By rewriting the chordal distance using trace, (5) becomes

min
R1,...,Rn∈SO(3)

−
∑

(i,j)∈E
tr(RT

j R̃ijRi). (8)

This can be further written more compactly as

min
R∈SO(3)n

− tr(RT R̃R) (P)

using matrix notations, where

R =
[
RT

1 R
T
2 · · ·RT

n

]T ∈ SO(3)n (9)

contains the target variables, and R̃ is the 3n × 3n block
symmetric matrix with upper-triangle elements (i, j) equal

Algorithm 1 Block coordinate descent (BCD) for (DD).

Require: R̃ and Y (0) � 0.
1: t← 0.
2: repeat
3: Select an integer k in the interval [1, n].
4: W ←the k-th column of R̃.
5: Z ← Y (t)W .

6: S ← Z
[(
WTZ

) 1
2

]†
.

7: Y (t+1) ←



Y

(t)
(1:k−1);(1:k−1) S1:(k−1) Y

(t)
(1:k−1);(k+1:n)

ST
1:(k−1) I3 ST

(k+1):n

Y
(t)
(k+1:n);(1:k−1) S(k+1):n Y

(t)
(k+1:n);(k+1:n)




8: t← t+ 1.
9: until convergence

10: return Y ∗ = Y (t).

to R̃ij if (i, j) ∈ E and 03 otherwise (diagonal elements are
03’s). Problem (P) is called the primal problem.

As derived in Eriksson et al. [10], the dual of the La-
grangian dual of (P) is the SDP relaxation

min
Y ∈R3n×3n

− tr(R̃Y ) (DD)

s.t. Yi,i = I3, i = 1, . . . , n. (10a)
Y � 0, (10b)

where Y is a 3n×3n PSD matrix, and Yi,i is the i-th diago-
nal block of Y . The interested reader is referred to Eriksson
et al. for the detailed derivations. It is proven that, under
mild conditions (see supp. material), that

−tr(R̃Y ∗) = − tr(R∗T R̃R∗), (11)

where R∗ and Y ∗ are respectively the optimisers of (P)
and (DD), i.e., zero duality gap between (P) and (DD).

Output rotations Note that constraint (10a) in (DD)
merely enforces orthogonality in each diagonal block.
Hence, in general a feasible Y for (DD) is not factoris-
able as the product of two rotation matrices RRT . It can
be shown, however, that the optimiser Y ∗ of (DD) is rank-
3 [10], which admits the factorisation

Y ∗ = Q∗Q∗T , (12)

where Q∗ ∈ O(3)n contains n 3 × 3 orthogonal matrices.
To obtain R∗, first Q∗ is obtained via SVD on Y ∗, then for
each Q∗i whose determinant is negative, the sign of the Q∗i
is flipped to positive to yield a valid rotation.

2.3. Block coordinate descent

Algorithm 1 presents BCD [10] for (DD) using our nota-
tion, which also includes a minor improvement to the origi-
nal. Specifically, instead of working on an auxiliary square
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matrix obtained by removing the k-th row and column from
Y (t) (see [10, Step 3 of Algorithm 1]), we directly operate
over Y (t) and create a temporary block vector Z (Line 5).
Since Z is smaller than the auxiliary square matrix, the ef-
ficiency of Line 6 which requires operating over Z twice is
marginally improved. We emphasise that Algorithm 1 is in-
trinsically the same as the original (see supp. material for
details and validity of the improvement).

The PSD matrix Y can be initialised as an arbitrary PSD
matrix. A simple choice is setting Ri = I3 for all i in R
and initialising Y (0) = RRT . However, we remind again
that the subsequent Y (t) are not factorisable as the product
of rotations R(t)R(t)T in general; see Sec 2.2.

Gauge freedom Note that the factorisation (12) is up to
an arbitrary orthogonal transformation G ∈ O(3), i.e.,

Y ∗ = Q∗Q∗T = (Q∗G)(Q∗G)T . (13)

We say that G represents a “gauge freedom” in the solu-
tion. This leads to another approach to retrieve R∗ from
Y ∗, which recognises that the columns (and rows) of Y ∗

are related by orthogonal transformations as Y ∗ is rank-3
with diagonal elements equal to I3. Therefore, for any two
columns k and k′ in Y ∗, there exists an orthogonal transfor-
mation Gk,k′ ∈ O(3) such that

Y ∗:,k′ = Y ∗:,k Gk,k′ . (14)

Hence, Gk,k′ must transform the k′-th element of Y ∗:,k to I3
(i.e., Y ∗k′,kGk,k′ = I3). Therefore

Gk,k′ = (Y ∗k′,k)
T = Y ∗k,k′ (15)

as columns in Y ∗ are orthogonal and Y ∗ is symmetric.
The set of transformations relating columns (15)

G = {Gk,k′ , for all k, k′ = 1, . . . , n} ⊂ O(3) (16)

corresponds to an special case of gauge freedom. Since all
columns in Y ∗ are up to some transformation in G to an-
other column, we can take any asR∗; the choice will depend
on selecting one of the cameras as the reference frame, i.e.,
which camera takes R∗i = I3.

3. Rotation coordinate descent
In this section, we will describe our novel method called

rotation coordinate descent (RCD), summarised in Algo-
rithm 2. While seemingly a minor modification to BCD,
RCD is based on nontrivial insights (Sec. 3.1). More impor-
tantly, a major contribution is to mathematically prove the
global convergence of RCD (Sec. 3.2). Another fundamen-
tal advantage is that since RCD maintains valid rotations
throughout the iterations (in contrast to BCD; see Sec. 2.3),

Algorithm 2 Rotation coordinate descent (RCD) for (DD).

Require: R̃ and R(0).
1: t← 0.
2: repeat
3: Select an integer k in the interval [1, n].
4: W ←the k-th column of R̃.
5: Z ← R(t)(R(t)TW ).

6: S ← Z
[(
WTZ

) 1
2

]†
.

7: Q(t+1) ←
[
(S1:(k−1))T I3 (S(k+1):n)

T
]T

.
8: R(t+1) ← Flip determinants over Q(t+1) (if needed)

to ensure rotations.
9: t← t+ 1.

10: until convergence
11: return Y ∗ = R(t)R(t)T .

it can exploit local optimisation routines for (P) to speed-up
convergence (Sec. 4). As the results will show (Sec. 5), our
approach can be up to two orders of magnitude faster than
Shonan [8], which is the state of the art for (DD).

3.1. Main ideas

As summarised in Algorithm 1, BCD requires to main-
tain and operate on a large dense PSD matrix Y ∈ R3n×3n.
While the values of each update can be computed in con-
stant time (specifically, SVD of a 3 × 3 matrix; Line 6),
manipulating Y is unwieldy. Specifically, Line 5 performs

Z = Y (t)W (17)

to obtain temporary vector Z ∈ R3n×3 from a subset of the
measurements W ∈ R3n×3, which costs

27n2 multiplications ≡ O(n2). (18)

This quadratic dependence on n makes BCD slow on large-
scale SfM or SLAM problems [30], e.g., where n ≥ 1000,
as we will also demonstrate in Sec. 5.

Although the PSD matrix Y of (DD) has size 3n × 3n,
the “effective” variables are only 3n given that Y ∗ is rank-
3. Our key insight comes from the gauge freedom of Y ∗

(Sec. 2.3) implying that any row of Y ∗ provides a valid so-
lution for R∗. Choosing the k-th row implies choosing the
k-th camera as the reference frame, i.e., Rk = I3. Based
on this insight, we devised RCD to maintain only the effec-
tive variables R(t). Each iteration executes what amounts
to updating a single column of Y ; specifically, in Line 3,
a camera k is picked to be the reference frame then set the
k-th element of Q(t+1) as I3 in Line 7 (Q(t) contains or-
thogonal matrices). Then, in Line 6 the other elements of
Q(t+1) are updated via the same explicit form of BCD. To
ensure keeping rotations elements during iterations, the sign
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of the orthogonal elements in Q(t+1) is flipped if negative
in Line 9 to produce R(t+1).

Maintaining and updating only R(t) provides immediate
computational savings; in Line (5) obtaining the intermedi-
ate vector Z is now accomplished as

Z = R(t) (R(t)TW )︸ ︷︷ ︸
Compute this first

, (19)

which costs

27n+ 27n multiplications ≡ O(n) (20)

and has only linear dependence on n. The next section
proves the important result that this computational savings
does not come at the expense of global optimality.

3.2. Global convergence of RCD

As proven in [10, 11], Algorithm 1 monotonically de-
creases the objective − tr(R̃Y ) at each iteration from any
feasible initialisation. Our strategy for proving the global
convergence of RCD is to show that updating the variables
at each iteration t of Algorithm 2, i.e.,

R(t) → R(t+1), (21)

has an effect on− tr(R̃Y ) that is equivalent to one iteration
of Algorithm 1 initialised with

Y (0) = R(t)R(t)T . (22)

If this equivalence can be established, Algorithm 2 also
provably monotonically decreases − tr(R̃Y ) and will con-
verge to the optimiser Y ∗ of (DD).

To this end, we will first show that one iteration of Al-
gorithm 1 initialised with (22) produces a PSD matrix Y (1)

that is factorisable as

Y (1) = R(1)R(1)T . (23)

Note that in general this factorisation does not hold for Y (t)

for t > 1 in Algorithm 1. Without loss of generality, we
take k = 1 (the updated row and column in BCD during the
iteration) and define R(1)

BCD as the first column of Y (1), i.e.,

R
(1)
BCD = Y

(1)
:,1 . (24)

Then, we will prove that R(t+1) = R
(1)
BCD. From Line 7 in

Algorithm 1, Y (1) can be written (for k = 1) as

Y (1) =

[
I3 X∗T

X∗ B

]
, (25)

where B = Y
(0)
(2:n);(2:n) is the unchanged sub-matrix during

the iteration Y (0) → Y (1), and X∗ ∈ R3(n−1)×3 contains

the updated values. From [10, 11], X∗ is the optimiser of
the following SDP problem:

min
X∈R3(n−1)×3

− tr(CTX) (26a)

s.t.
[
I3 XT

X B

]
� 0, (26b)

where C ∈ R3(n−1)×3 is equal to W as in Line 4 in Algo-
rithm 1 but without the k-th element (which is zero).

Note that the optimal PSD matrix in Problem (26) is Y (1)

(25). The goal of Problem (26) is to find the optimal update
X∗ to produce Y (1) that keeps feasibility (constraint (26b)).

We show in the next result that problem (26) is a spe-
cial case of (DD); hence, the optimal PSD matrix of Prob-
lem (26) admits the factorisation

Y ∗(1) = R∗(1)R∗(1)
T
, (27)

which proves (23) as BCD optimally solves Problem (26)
during updates (Lines 5–7 in Algorithm 1) [10, 11].

Result 1 (Problem (26) is a special case of (DD))
Consider the instance of Problem (DD) with

R̃ =

[
03 CT

C 0

]
. (28)

We first show that a feasible PSD matrix in Problem (26)

Y =

[
I3 XT

X B

]
(29)

is a feasible solution in (DD).
From the initialisation of Y (0) in (23),

B = R
(t)
2:nR

(t)
2:n

T
; (30)

hence, all diagonal elements in Y (29) are identities which
fulfills the first constraint (10a) in (DD). From (26b), Y �
0, which is the second constraint (10b) in (DD).

We now show the objective of (DD) with R̃ from (28) is
equivalent to the objective in Problem (26). The objective
of (DD) becomes

− tr(R̃Y ) =− tr

([
CTX CTB
C CXT

])
(31a)

=− tr
(
CTX

)
− tr

(
CXT

)
(31b)

=− 2 tr
(
CTX

)
(31c)

which is twice to the objective of (26). Therefore, Prob-
lem (26) is a special case of (DD) since any feasible solu-
tion of (26) is also feasible in (DD), and both objectives are
equivalent.

Finally, we establish that R(t+1) = R
(1)
BCD.
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Result 2 (R(t+1) = R
(1)
BCD) The equality is by construction

of Algorithm 2. From the definition of R(1)
BCD in (22), R(1)

BCD
is the first column in Y (1) (25), i.e.,

R
(1)
BCD =

[
I3 X∗T

]T
, (32)

where X∗ is S (in Line 6, Algorithm 1) without the k-th
element (see sup. material for details). Lines 3–6 in Al-
gorithm 1 are the same to Lines 3–6 in Algorithm 2 except
on obtaining Z, which takes the same value since from the
initialisation (22) of Y (0) in Algorithm 1,

Z = Y (0)W = R(t)(R(t)TW ) (33)

is equal to Z as obtained in Algorithm 2. Thus also

R(t+1) =
[
I3 X∗T

]T
. (34)

4. Speeding up RCD with local optimisation

Since Algorithm 2 iterates over SO(3)n, local methods
for (P) can be directly used to speedup convergence of Al-
gorithm 2. Contrast this to BCD that updates a PSD ma-
trix from where, in general, valid rotations can be retrieved
only at convergence. Algorithm 3 integrates a local method
(Line 13) that we design from experimental observations:

1. Substantial reductions in the objective often occur after n
iterations. We call it an epoch and we ensure we sample
all k’s during each epoch (Line 4).

2. In practice, one iteration of Algorithm 2 takes ≈ 0.02%
of the runtime of solving a local optimisation instance.
Thus, Algorithm 3 invokes local optimisation and check
for convergence only after completing epochs.

3. Local optimisation produces more drastic “jumps” in the
objective at earlier iterations. Thus, Algorithm 3 delays
local optimisation when the local method fails on reduc-
ing the objective (Line 17).
To demonstrate the effect of local optimisation on the

convergence of RCD, Fig. 2 plots the objective value for
RCD and RCDL at increasing epochs on the input graph
torus [4] with n = 5000 cameras (see Table 1 in Sec. 5
for more details). During the 1st epoch, the local algo-
rithm drastically reduced the objective (from stage in green
to stage in magenta). This “jump” of the objective value re-
veals the collaborative strength of global and local methods,
which enabled RCDL to converge in much fewer epochs
(red stage) compared to RCD (blue stage).

5. Experiments
We benchmarked the following algorithms over a vari-

ety of synthetic and real world camera graph inputs: Algo-
rithm 1 (BCD), Algorithm 2 (RCD), Algorithm 3 (RCDL)

Algorithm 3 RCD with local optimisation (RCDL).

Require: R̃ and R(0).
1: t← 0, e← 0, s← 0
2: repeat
3: for i = 1, . . . , n do
4: Select an integer k in the interval [1, n] w/o rep.
5: W ←the k-th column of R̃.
6: Z ← R(t)(R(t)TW ).

7: S ← Z
[(
WTZ

) 1
2

]†
.

8: R(t+1) ←
[
(S1:(k−1))T I3 (S(k+1):n)

T
]T

.
9: t← t+ 1.

10: end for
11: if ( s = 0 or MOD(e, s) = 0) then
12: R(t) ← Flip determinants over R(t) (if needed) to

ensure rotations.
13: R̂← local method with initial estimate R(t).
14: if − tr(R̂T R̃R̂) < − tr(R(t)T R̃R(t)) then
15: R(t) ← R̂.
16: else
17: s← s+ 2
18: end if
19: end if
20: e← e+ 1.
21: until convergence

Init

Local update

RCD
RCDL 

Epoch (log-scale)

Objective (log-scale)

    RCDL Converges
RCD Converges

1st epoch

(a)

Init

  1st 	
epoch	

 Local 
update

(b)

Figure 2. Evolution of RCD and RCDL on the large-scale SLAM
instance torus [4] with n = 5000 cameras. (a) Evolution of the
objectives. (b) Camera poses from RCDL. A single local update
was able to produce a visually correct solution.

with local optimisation routine adapted from [23], and
Shonan [8] (SA). We implemented all the optimisation rou-
tines in C++ except for SA for which we used the author’s
implementation (which also has optimisation routines in
C++1). We ran our experiments on a standard machine with
an Intel Core i5 2.3 GHz CPU and 8 GB RAM.

1https://github.com/dellaert/ShonanAveraging
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Figure 3. Runtime [s] (y-axis in log-scale) at varying graph densities dG (x-axis in ×10−2) for SfM and SLAM graphs with n =
100, 200, 1000 cameras. We denser sampled the interval [0, 0.2].

Graph density Consider a connected graph G = (V, E)
with n = |V| vertices and m = |E| edges. Define

dG :=
|E| − |Emin|
|Emax| − |Emin|

, (35)

as the density of graph G, where Emax and Emin denote the
set of edges of the complete (V, Emax) and the cycle graph
(V, Emin). Excluding graphs with n − 1 edges2, dG takes
values in [0, 1]. Thus, by definition (35), dG = 0 for a cycle
graph and dG = 1 for a complete graph.

5.1. Synthetic Data

To test RCD over a variety of graph configurations, we
synthesised graphs with varying densities to simulate SfM
and SLAM problems. As SfM often solves reconstruction
from views with large baselines, we generated random cam-
era positions and random connections in the SfM setting. In
contrast, for the SLAM setting, we simulated views with a
smooth trajectory and connect only nearby views. We cre-
ated measurements of relative rotations (1) by multiplying
the ground truth relative rotations with rotations with ran-
dom axes and angles normally distributed with σ = 0.1 rad.
For a fair comparison, we initialised all methods with the
same initial random absolute rotations.

Varying graph densities Fig. 3 shows the runtimes aver-
aged over 10 runs for all methods. RCD significantly out-
performed SA for dG > 0.1. In general, camera graphs

2Rotation averaging instances are typically overdetermined, i.e., prob-
lems with |E| > n− 1 edges.

from real world SfM datasets are often dense. See for ex-
ample dG values for the real world instances in Table 2 with
average dG ≈ 0.53. For larger problems, BCD was not able
to terminate within reasonable time (≤ 1000 s); we did not
report results for BCD for n > 100. Although RCD was not
considerably faster than SA when dG < 0.04, the conver-
gence rate can be accelerated by using a local optimisation
routine as we show in Sec. 5.2.

Varying noise levels and number of cameras In Fig. 4,
we plotted the runtimes of RCD and SA on SfM camera
graphs with varying noise levels σ, number of cameras n,
but with fixed dG = 0.4. We omitted the comparison
against BCD as it did not converge within a sensible time for
large problems, as demonstrated in Fig. 3. Fig. 4(a) shows
that runtimes for RCD and SA were marginally affected by
noise. Fig. 4(b) shows that RCD outperformed SA by two
orders of magnitude (1.5s vs 312.9s at n = 1, 800)—this
further demonstrates the superior scalability of RCD.

We repeated the above experiment with dG = 0.2 which
simulates SLAM graphs. See supp. material for the results.

5.2. SLAM benchmark dataset

We compared runtimes on large-scale problems from the
SLAM dataset in [4]. Table 1 reports the input character-
istics of each benchmarking instance and the results for all
methods. Here, we initialised rotations from a random span-
ning tree. Note that initialisation does not affect the global
optimality of tested algorithms. The spanning tree initial-
isation is fast and practical. We remark that in real-world
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Dataset characteristics Error [%] Efficiency
|V| |E| # Epoch Time [s] Speedup

Name n m dG Init. RCD RCDL SA RCD RCDL RCD RCDL SA
smallgrid 125 297 0.02200 -16.13 0 -4.77E-09 -8.38E-05 46 10 0.07 0.02 0.06 2.7
garage 1661 6275 0.00340 -7.29E-05 -3.63E-06 0 -1.40E-07 29 2 3.74 0.28 4.76 17.1
sphere 2500 4949 0.00078 -1.70 -6.24E-06 0 -7.84E-07 352 2 105.70 0.66 17.07 25.7
torus 5000 9898 0.00039 -20.95 -2.55E-05 0 -1.73E-06 1620 4 1808.86 4.86 15.76 3.2
grid3D 8000 22819 0.00046 -15.41 -4.54E-06 0 -2.14E-06 409 4 1199.30 14.78 23.93 1.6
Table 1. Quantitative results for the SLAM Benchmark dataset [4]. Error of the initial solution (Init.) and each method is the % of its
objective w.r.t. the lowest obtained objective among all methods. One epoch is equivalent to n iterations as described in Sec. 4. Speedup
is presented for the best result of RCD and RCDL against SA.

Dataset characteristics Error [%] Efficiency
|V| |E| # Epoch Time [s] Speedup

Name n m dG Init. RCD RCDL SA RCD RCDL RCD RCDL SA
Alcatraz Tower 172 14706 1.00 -0.66 -8.66E-10 0 -4.64E-08 4 2 0.03 0.12 0.63 25.3
Doge Palace 241 19753 0.68 -0.89 -1.16E-08 0 -1.04E-07 8 2 0.09 0.21 1.00 11.1
King’s College 328 41995 0.78 -1.57 -5.01E-10 0 -3.81E-08 7 2 0.11 0.60 2.37 21.5
Alcatraz Garden 419 51635 0.59 -1.29 -7.70E-09 0 -5.57E-08 11 2 0.24 0.89 3.24 13.5
Linkoping 538 34462 0.24 -1.22 -3.62E-07 0 -4.03E-06 37 2 0.90 0.43 6.44 15.0
UWO 692 80301 0.33 -1.26 -1.38E-07 0 -7.88E-07 20 2 0.85 1.65 11.12 13.1
Orebro Castle 761 116589 0.40 -1.19 -9.40E-08 0 -1.04E-06 20 2 1.10 4.01 26.17 23.8
Spilled Blood 781 117814 0.39 -2.81 -3.20E-08 0 -6.61E-07 14 2 0.79 4.32 37.64 47.6
Lund Cathedral 1207 177289 0.24 -1.16 -9.62E-07 0 -1.91E-06 78 2 8.45 7.03 41.08 5.8
San Marco 1498 757037 0.67 -0.74 -6.60E-09 0 -8.97E-09 6 2 1.61 145.46 110.07 68.4

Table 2. Quantitative results for the SfM large scale real-world dataset [22]. See Table 1 for the description of each column.
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Figure 4. Runtime [s] (in log-scale) for SfM camera graphs with
dG = 0.4. (a) Varying σ in [0.1, 0.5] rad. and n = 1000. (b)
Varying n in [1000, 1800] with σ = 0.1 rad. See Fig. 3 for the
description of the legend.

applications it is unnecessary to solve camera orientations
from random rotations. Again, we initialised all algorithms
with the same initial estimates for fair comparison. We pro-
vided the errors (in %) of resulting objective value (includ-
ing the initialisation) relative to the lowest objective value
reported among all methods.

Camera graphs are very sparse for the SLAM Bench-
mark in Table 1 (dG ≤ 0.022). Although RCD was not
as fast as SA on sphere, torus and grid3D (note that dG ≤

0.0007 in those instances), the use of a local optimisation in
RCDL permitted to outperform SA; see also Fig. 2.

5.3. Real world SfM dataset

Table 2 presents runtimes over real-world SfM
datasets [22]3 where RCD outperformed SA. We remark
that RCDL took substantially fewer epochs compared to
RCD to converge. However, RCDL did not achieve a better
runtime as local optimisation consumed on average ≈ 90%
of the total runtime, especially for large graph densities.
Fig. 5 shows the reconstructed Spilled Blood Cathedral us-
ing the estimated camera orientations of RCDL after run-
ning for 1 epoch in 4.2s.

6. Conclusions
We present RCD, a fast rotation averaging algorithm that

finds the globally optimal rotations under mild conditions
on the noise level of the measurements. Our insights on
gauge freedom has circumvented the quadratic computa-
tional burden of BCD, which is an established method for
global rotation averaging. Also, since RCD maintains valid
rotations instead of a dense PSD matrix, local optimisation
routines can be beneficially integrated. Experimental results

3http://www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html
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Figure 5. Reconstruction of the Spilled Blood Cathedral by solving
the known rotation problem (KROT) [36]. Left: Initial camera
orientations. Right: Result from RCDL after 1 epoch.

demonstrated the superior efficiency of RCD, which signifi-
cantly outperformed state-of-the-art algorithms on a variety
of problem configurations.
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A. Demonstration program
To run the demonstration program, please follow the in-

structions in the README.md file in folder demo_RCD.

B. Further details
B.1. Conditions on the noise level for the strong

duality of Eq. (5)

For the following rotation averaging problem (Eq. (5) in
the main text)

min
R1,...,Rn∈SO(3)

∑

(i,j)∈E
dchordal(RjR

T
i , R̃ij)

2, (1)

we present a bound on the angular residual errors

αij = d∠(R∗jR
∗
i
T , R̃ij) (2)

such that its strong duality holds.
The main result of [Theorem 4.1, 10] is the proof of the

strong duality of Problem (1) if

|αij | ≤ αmax ∀(i, j) ∈ E , (3)

where

αmax = 2arcsin



√

1

4
+
λ2(LG)

2dmax
− 1

2


. (4)

λ2(LG) and dmax in (4) are related to the structure of the
camera graph. More precisely, αmax depends on the con-
nectivity of the camera graph represented by its Fiedler
value λ2(LG) (the second smallest eigenvalue of its Lapla-
cian LG), and its maximal vertex degree dmax (c.f. to [10]
and [11] for more details).

From the dependency of αmax on the structure of the
camera graph, it can be established that the most favourable

case (admitting the largest residuals) is the complete graph
for which αmax ≈ 42.9◦. The other extreme case is a cycle
with αmax = π/n, which induces a low angular bound for
a large number of cameras although [10] suggested that this
bound was “quite conservative”.

Although conditions were presented in terms of
the angular distance, we remark that a chordal bound
can also be established for the chordal residuals
{dchordal(R

∗
jR
∗
i
T , R̃ij)} of Problem 1 as both distances are

related [16]:

dchordal(R,S) = 2
√
2 sin

(
d∠(R,S)

2

)
. (5)

B.2. Zero duality gap between (P) and (DD)

Eriksson et al. [10] has proven that under mild condi-
tions on the noise level (See Sec. B.1), there is zero duality
gap between their primal problem (Porig) and their SDP re-
laxation (DDorig). Since we defined our primal problem (P)
and its SDP relaxation (DD) following a different conven-
tion for the relative rotation definition than [10], here we
show that our (P) and (DD) problems are equivalent to their
counterparts in [10]. Hence the zero duality gap extends to
them.

We defined our primal problem as follows. By rewriting
the chordal distance using trace, (1) becomes (Eq. (8) in the
main text)

min
R1,...,Rn∈SO(3)

−
∑

(i,j)∈E
tr(RT

j R̃ijRi). (6)

By the transpose invariance of the trace, (6) is equivalent to

min
R1,...,Rn∈SO(3)

−
∑

(i,j)∈E
tr(RT

i R̃
T
ijRj). (7)

1
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Our primal definition comes from rewriting (6) more com-
pactly as

min
R∈SO(3)n

− tr(RT R̃R) (P)

using matrix notations, where

R =
[
RT

1 R
T
2 · · ·RT

n

]T ∈ SO(3)n (8)

contains the target variables, and R̃ encodes the transposes
of the relative rotations. R̃ is then defined as

R̃ =




03 a12R
T
12 · · · a1nR

T
1n

a21R
T
21 03 · · · a2nR

T
2n

... 03
. . .

...
an1R

T
n2 an2R

T
n2 · · · 03


 , (9)

where aij are the elements of the adjacency matrix A of G.
We now show that (P) is equivalent to the primal in [10],

which is defined as (Eq. (11) in [10])

min
Q∈SO(3)n

− tr(QQ̃QT ), (Porig)

where Q is a “row” vector containing rotation matrices

Q = [Q1, . . . , Qn] , (10)

and Q̃ encodes the relative measurements as

Q̃ =




03 a12Q12 · · · a1nQ1n

a21Q21 03 · · · a2nQ2n

... 03
. . .

...
an1Qn2 an2Qn2 · · · 03


 . (11)

However, relative rotationsQij in [10] are defined such that
(Eq. (4) in [10])

Qij = QT
i Qj . (12)

Contrast to our definition from Eq. (1) in the main text
where we define relative rotations in the ideal case as

Rij = RjR
T
i . (13)

The following equivalences can then be established:

Ri = QT
i and Rij = QT

ij , (14)

which implies that Q = RT , Q̃ = R̃, and therefore (P) is
equivalent to (Porig) in the sense that their objective values
are the same and their optimisers are related by a translation.

Similarly, our SDP relaxation

min
Y ∈R3n×3n

− tr(R̃Y ) (DD)

s.t. Yi,i = I3, i = 1, . . . , n. (15a)
Y � 0, (15b)

is equivalent to its counterpart in [10]. In effect, they are the
same as matrices encoding rotations are the same for both
problems (Q̃ = R̃).

B.3. Validity of Algorithm 1 as equivalent to BCD
in Eriksson et al. [10]

Here we show that BCD as presented in Algorithm 1 in
the main text is equivalent to the original BCD algorithm for
rotation averaging proposed in [10]. To facilitate presenta-
tion, we call BCD-Ours to Algorithm 1 in the main text and
BCD-Orig to Algorithm 1 in [10].

The improvement of BCD-Ours over BCD-Orig is that
instead of creating a temporary large square matrix

B =

[
Y

(t)
(1:k−1);(1:k−1) Y

(t)
(1:k−1);(k+1:n)

Y
(t)
(k+1:n);(1:k−1) Y

(t)
(k+1:n);(k+1:n)

]
(16)

as in BCD-Orig, BCD-Ours creates a temporary vector
which allows to operates directly on Y (t) as we will show
next.

Note that B are the elements in Y (t) that are kept con-
stant during the current iteration in BCD-Orig and BCD-
Ours. On the other hand, the updated components for Y (t)

in BCD-Orig are obtained from the optimiserX∗ of an SDP
problem (Problem (26) in the main text) which has the fol-
lowing explicit solution:

X∗ = BC
[(
CTBC

) 1
2

]†
, (17)

where C ∈ R3(n−1)×3 is the k-th column of R̃ without its
k-th row, i.e.,

C =

[
R̃

(t)
(1:k−1);(k:k)

R̃
(t)
(k+1:n);(k:k)

]
. (18)

Instead of computing the updates from (17), BCD-Ours
solves

S = Z
[(
WTZ

) 1
2

]†
, (19)

where W ∈ R3n×3 is the k-th column of R̃, i.e.,

W = R̃:,k , (20)

and

Z = Y (t)W (21)

is a temporary vector.
We will show next that X∗ es equal to S without its k-

th element. Since BCD-Ours ignores the k-th element of
S during the update (Line 7 in BCD-Ours), BCD-Ours and
BCD-Orig produce the same output.

Note first that the pseudo-inverse parts of (17) and (19)
are the same since

CTBC =WTZ (22)

as the k-th element in W is zero (W is the k-th column of
R̃ which has diagonal elements equal to 03). Similarly BC
is equal to Z if removing the k-th element of Z. Hence (19)
produces X∗ after removing the k-th element of S.

2
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C. Additional Results
C.1. Varying noise levels and number of cameras in

SLAM graphs
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Figure 1. Runtime [s] (in log-scale) for SLAM camera graphs with
dG = 0.2. (a) Varying σ in [0.1, 0.5] rad. and n = 1000. (b)
Varying n in [1000, 1800] with σ = 0.1 rad. See Fig. 3 in the
main text for the description of the legend.
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Chapter 5

Resolving Marker Pose Ambiguity

by Robust Rotation Averaging

with Clique Constraints

The work contained in this chapter has been published as the following paper

Shin-Fang Chng, Naoya Sogi, Pulak Purkait, Tat-Jun Chin and Kazuhiro Fukui:
Resolving Marker Pose Ambiguity by Robust Rotation Averaging with Clique Con-
straints. IEEE International Conference on Robotics and Automation (ICRA) 2020.
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Resolving Marker Pose Ambiguity by Robust Rotation Averaging
with Clique Constraints*

Shin-Fang Ch’ng1, Naoya Sogi2, Pulak Purkait1, Tat-Jun Chin1 and Kazuhiro Fukui2

Abstract— Planar markers are useful in robotics and com-
puter vision for mapping and localisation. Given a detected
marker in an image, a frequent task is to estimate the 6DOF
pose of the marker relative to the camera, which is an
instance of planar pose estimation (PPE). Although there are
mature techniques, PPE suffers from a fundamental ambiguity
problem, in that there can be more than one plausible pose
solutions for a PPE instance. Especially when localisation of
the marker corners is noisy, it is often difficult to disambiguate
the pose solutions based on reprojection error alone. Previous
methods choose between the possible solutions using a heuristic
criterion, or simply ignore ambiguous markers.

We propose to resolve the ambiguities by examining the con-
sistencies of a set of markers across multiple views. Our specific
contributions include a novel rotation averaging formulation
that incorporates long-range dependencies between possible
marker orientation solutions that arise from PPE ambiguities.
We analyse the combinatorial complexity of the problem, and
develop a novel lifted algorithm to effectively resolve marker
pose ambiguities, without discarding any marker observations.
Results on real and synthetic data show that our method is able
to handle highly ambiguous inputs, and provides more accurate
and/or complete marker-based mapping and localisation.

I. INTRODUCTION

In many robotic vision pipelines, fiducial markers are often
employed to simplify feature extraction. In particular, planar
markers [1]–[6], which are designed to be easily detected
and associated across images, find extensive use in laboratory
and commercial settings (factories, warehouses, mines, etc.).
In applications that perform planar marker-based SfM or
SLAM [7]–[10], there is a basic need to estimate the 6DOF
pose of an observed marker relative to the camera coordinate
frame. This is often solved as a special case of planar
pose estimation (PPE), which functions by determining the
relative pose between a plane of known dimensions and its
projection onto the image [11]–[13].

While in theory 6DOF pose can be determined uniquely
from four non-colinear but co-planar points, the situation is
less clear in non-ideal conditions where perspective effects
are not apparent, e.g., when the imaged marker is small or the
marker is at a distance which is significantly larger than the
focal length. In such conditions there is a two-fold rotational
ambiguity that corresponds to an unknown reflection of the
plane about the z-axis of the camera [11]–[13]. For one
observed planar marker (specifically its four corners), state-
of-the-art PPE methods [12], [13] may return two physically

*This work was supported by the ARC Centre of Excellence on Robotic
Vision CE140100016 and the Mawson Lakes Fellowship Program.

1School of Computer Science, The University of Adelaide, Australia.
2Department of Computer Science, University of Tsukuba, Japan.

(a) (b)

Fig. 1. (a) A detected marker with bounding box from a frame in the
dataset of [9]. (b) The two poses p′ (yellow) and p′′ (blue) returned by
PPE [13] have reprojection errors 0.00011 and 0.00013 resp. Though p′

has the lower error, it is an incorrect pose, cf. the ground truth pose (green).

plausible pose solutions, with one of them being the correct
one (i.e., the one closer to the ground truth pose).

Fig. 1 shows an example from the dataset of [9]. Note that
the two solutions returned by PPE can be very different, thus
it is unwise to arbitrarily choose one of the two poses, or
take the midpoint of the two solutions as the pose estimate.

A common way to disambiguate the two returned poses
p′ and p′′ is to compute the reprojection error of each pose

r(p) =
4∑

k=1

‖f(K, ck,p)− uk‖22 , p ∈ {p′,p′′} (1)

where {ck}4k=1 and {uk}4k=1 are the reference 3D position
and 2D observation of the 4 corners of the detected marker,
K is the camera intrinsic parameter and f(K, c,p) projects
c onto the image with camera pose p. The PPE pose with
the lower reprojection error is then selected.

However, comparing reprojection errors is not fool-
proof [10], [14], for if the corner localisation is noisy, r(p′)
and r(p′′) can be very close. In fact, the correct solution can
have the higher reprojection error; see Fig. 1.

In practice, marker pose ambiguity occurs regularly [8].
Fig. 2(a) is the histogram of the reprojection error ratio

min [r(p′), r(p′′)]
max [r(p′), r(p′′)]

(2)

of the PPE-derived poses for all the markers detected in
sequence Hotel2(H2) from [15]. About 25% of the PPE
solutions are considered ambiguous (ratio value ≥ 0.6 [8]).

While current theory and algorithms for PPE [12], [13]
have characterised the ambiguity issue and are able to com-
pute all physically plausible solutions stably, using the PPE
outputs under ambiguity, particularly in marker-based SfM
or SLAM pipelines, remains a fundamental challenge. In the
following, we further survey efforts to deal with marker pose
ambiguity, before outlining the proposed solution.
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Fig. 2. Histogram of reprojection error ratio (2) and weight ratio (21) from
proposed method (Sec. IV-C) for all markers detected in Hotel2 [15].

A. Related work

Tanaka et al. [16], [17] modified the conventional planar
marker design to directly incorporate orientation information.
They attach two one-dimensional moire patterns onto the
marker to obtain appearance variation for pose disambigua-
tion, as well as lenticular lenses that introduce 3D deviations
to the marker surface. Though this largely alleviates the
ambiguity problem, the marker fabrication is non-trivial.

For planar target camera tracking, a filtering method with a
well-tuned camera motion model [14], [18] can be exploited
to disambiguate the marker poses. However, this assumes
temporal continuity in the images, which may not be valid
in SfM with wide baseline images; moreover, there are no
mature filtering methods for marker SLAM. Jin et al. [19]
showed improved marker pose estimation accuracy by fusing
depth information. However, this requires an RGBD camera.

Marker-based SfM/SLAM is an active research area [7]–
[10], [20]. Marker ambiguity is not dealt with explicitly
in [7], [9], [20], though [9] combined feature-based SfM
with marker-based SfM. Munoz-Salinas et al. applied the
ratio test of [13] in their marker-based SfM [8] and SLAM
pipeline [10]. Basically, if the ratio (2) is below a threshold
(default is 0.6 [8]), the PPE solution with the lower repro-
jection error is used in subsequent SfM/SLAM processing;
else, the marker detection is discarded. A weakness of this
approach is the sensitivity to the threshold. If it is too
low, many marker detections will be excluded, leading to
data wastage or even SfM/SLAM failure. Contrarily, a high
threshold risks using bad marker poses (recall that the pose
with the lower reprojection error may not be the correct one)
for SfM/SLAM. Sec. VI will demonstrate this shortcoming.

B. Our contributions

Unlike previous works that have used a per-marker ap-
proach to resolve marker ambiguity, we exploit multi-view
constraints for disambiguation. From the input marker de-
tections, we first construct a multigraph of relative rotation
measurements, which incorporates all PPE pose ambiguities.
Then, we formulate a novel rotation averaging problem
with clique constraints that respects consistency (details
later) between subsets of relative pose measurements. We
examine the combinatorial complexity of the new problem,
and develop a lifted optimisation method to efficiently solve
it. Then, a series of small maximal weighted clique problems
are solved to make the final pose selections. Our method

allows all valid PPE pose combinations to be examined, and
leads to more accurate and/or complete marker-based SfM.

II. PROBLEM FORMULATION

Consider T input images {It}Tt=1 that observed a set of
N markers {Mi}Ni=1 of known sizes in a static scene. We
assume calibrated cameras. A standard marker detection and
id algorithm [4], [21] is applied to each image. Denote by

At = {i ∈ {1, . . . , N} | Mi was detected in It} (3)

as the set of markers detected in It. Using a PPE tech-
nique [12], [13] on the corners of Mi detected in It,
the marker-to-camera (M2C) relative pose of Mi to It is
computed, which can potentially yield two solutions

{
p̃
(t,0)
i , p̃

(t,1)
i

}
=
{
p̃
(t,a)
i

}
a=0,1

. (4)

Without loss of generality, we assume that each marker
observation has exactly two relative pose solutions. Note that
the pose ambiguity is due to orientation ambiguity, thus the
translation component is the same, i.e.,

p̃
(t,0)
i =

(
t̃
(t)
i , R̃

(t,0)
i

)
, p̃

(t,1)
i =

(
t̃
(t)
i , R̃

(t,1)
i

)
. (5)

Given the set of all M2C relative pose measurements
T⋃

t=1

⋃

i∈At

{
p̃
(t,a)
i

}
a=0,1

, (6)

our overall aim is SfM, i.e., find the absolute poses of
the markers {pi}Ni=1 and cameras {qt}Tt=1. To do so, pose
ambiguity must be resolved, i.e., for each (i, t) such that
i ∈ At, choose either p̃

(t,0)
i or p̃

(t,1)
i for SfM computations.

Previous pipelines [8], [10] make the choice using per-
marker heuristics, or discard the marker observation. This
“preprocessing” yields the reduced measurement set

T⋃

t=1

⋃

i∈Bt

{
p̃
(t)
i

}
, (7)

where each p̃
(t)
i is either p̃

(t,0)
i or p̃

(t,1)
i , and Bt ⊆ At. The

reduced measurement set is then subjected to the rest of the
SfM/SLAM pipeline. Our new method exploits multi-view
consistency to disambiguate the PPE marker poses in a way
that avoids premature decisions; details as follows.

III. MULTIGRAPH WITH ROTATIONAL AMBIGUITY

Since the ambiguity lies in the orientations, it is natural to
model the ambiguity using only the M2C relative rotations

T⋃

t=1

⋃

i∈At

{
R̃

(t,a)
i

}
a=0,1

. (8)

To this end, we construct a multigraph G = {V, E}, where the
vertices V is the set of markers {1, . . . , N}, and the edges E
indicate covisibility between the markers. More specifically,
if Mi and Mj are detected in It, four edges

〈i, j〉(t,00), 〈i, j〉(t,01), 〈i, j〉(t,10), 〈i, j〉(t,11) (9)
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connect vertices i and j in G; assuming i < j, the edges
correspond to the marker-to-marker (M2M) relative rotations

R̃
(t,00)
i,j = (R̃

(t,0)
j )T R̃

(t,0)
i , R̃

(t,01)
i,j = (R̃

(t,1)
j )T R̃

(t,0)
i ,

R̃
(t,10)
i,j = (R̃

(t,0)
j )T R̃

(t,1)
i , R̃

(t,11)
i,j = (R̃

(t,1)
j )T R̃

(t,1)
i .

(10)
Fig. 3 shows an example. Since multiple edges connect two
vertices, G is a multigraph. We summarise (9) and (10) as
{
〈i, j〉(t,ab)

}
ab=00,01,10,11

,
{
R̃

(t,ab)
i,j

}
ab=00,01,10,11

, (11)

where ab is a bit string composed of two binary indicators
a, b ∈ {0, 1}. The edges in G are undirected; if i < j, the
edge 〈j, i〉(t,ab) has the associated M2M relative rotation

R̃
(t,ab)
j,i = (R̃

(t,a)
j )T R̃

(t,b)
i . (12)

Thus, in our notation

〈i, j〉(t,ab) = 〈j, i〉(t,ba) 6= 〈j, i〉(t,ab). (13)

The set of all edges E (without repetitions) is thus

E =
T⋃

t=1

⋃

i,j∈At

i<j

{
〈i, j〉(t,ab)

}
ab=00,01,10,11

. (14)

Similarly, the set of unique M2M relative rotations is
T⋃

t=1

⋃

i,j∈At

i<j

{
R̃

(t,ab)
i,j

}
ab=00,01,10,11

. (15)

The existence of four M2M relative rotations per 〈i, j〉 pair is
a direct consequence of ambiguity in marker pose estimation,
and the bit string ab selects a particular combination of M2C
relative rotations to derive the M2M relative rotation.

Note that our multigraph construction method is a signif-
icant extension of that in [8], in that our multigraph incor-
porates all ambiguous marker poses, whereas [8] generates
G from the preprocessed data (7) with no ambiguities.

A. Consistent cliques

We assume that the multigraph G is connected, i.e., there
is a path that connects every pair of vertices (markers) in G.

Definition 1 (Consistent clique) Given multigraph G =
{V, E} as defined above, a consistent clique for image It
is a fully connected subgraph C = {V ′, E ′} such that
• V ′ = At ⊆ V;
• Every two vertices i, j ∈ V ′ are connected by exactly

one edge 〈i, j〉(t,ab), where ab is one of {00, 01, 10, 11}.
• For every two vertices j, k ∈ V ′ that are connected to

vertex i, the associated edges 〈i, j〉(t,ab) and 〈i, k〉(t,cd)
satisfy the condition a = c.

Fig. 3 provides examples. Intuitively, a consistent clique C
for image It corresponds to a set of M2M relative rotations
that are composed using a constant selection of one of the
two M2C relative poses for each marker detected in It.

Since there are multiple valid combinations of constant
M2C relative pose selections, there are multiple consistent

cliques for an image. Assuming that V markers are detected
in each image, there are O(2V ) number of consistent cliques
per image. For T images, there are thus O(2V T ) unique
combinations of consistent cliques across the images.

IV. DISAMBIGUATION WITH ROTATION AVERAGING

Based on the multigraph, our technique resolves the am-
biguities by first solving a novel rotation averaging for-
mulation, then - based on the averaging results - building
and solving a maximum weighted clique problem. The key
outcome of this step is marker pose disambiguation; Sec. V
will incorporate this step into a marker-based SfM pipeline.

A. Rotation averaging with clique constraints

While standard rotation averaging is defined over a graph
of relative rotations [22], [23], extending the formulation
to a multigraph of relative rotations is straightforward, and
existing algorithms (we used [23]) can be applied with minor
adjustments. Let {Ri}Ni=1 be the absolute rotations of the
markers. A rotation averaging problem over multigraph G is

min
{Ri}Ni=1

T∑

t=1

∑

i,j∈At

i<j

∑

a,b∈{0,1}
ρ
(∥∥∥R̃(t,ab)

i,j −RjR
T
i

∥∥∥
F

)
, (16)

where ρ is a robust norm. The motivation behind (16) is
to attempt to identify the incorrect poses from PPE as the
contributors to outlying measurements in the averaging task.

However, our tests (Sec. VI) suggest that this approach
is ineffective for disambiguation, most probably because
(16) does not enforce clique consistency (Def. 1). Thus,
error terms that are regarded as inliers could correspond to
choosing both PPE poses for the same marker detection.

To enforce clique consistency into rotation averaging, we
introduce a set of binary indicator variables

S =

T⋃

t=1

{sti ∈ {0, 1} | i ∈ At}, (17)

where the setting sti = 0 implies selecting M2C relative
rotation R̃

(t,0)
i the detection of Mi in It, while sti =

1 implies selecting R̃
(t,1)
i . We then formulate the clique-

constrained rotation averaging problem

min
{Ri}Ni=1,S

T∑

t=1

∑

i,j∈At

i<j

stis
t
j

∥∥∥R̃(t,11)

i,j −RjR
T
i

∥∥∥
F

+

sti(1− stj)
∥∥∥R̃(t,10)

i,j −RjR
T
i

∥∥∥
F

+

(1− sti)stj
∥∥∥R̃(t,01)

i,j −RjR
T
i

∥∥∥
F

+

(1− sti)(1− stj)
∥∥∥R̃(t,00)

i,j −RjR
T
i

∥∥∥
F
.

(18)

Intuitively, S selects the M2C relative rotations to compose
the M2M relative rotations in a consistent way. Searching
over S thus allows different consistent cliques in all images
to be examined. Finally, since {Ri}Ni=1 are shared across
images, multi-view consistency is exploited to choose the
best combinations of the PPE relative rotations.
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Fig. 3. Multigraph and consistent cliques. (a) The scene has 4 markers {M1,M2,M3,M4} captured in 3 images {I1, I2, I3}. All markers were
detected in I1, while only a subset was detected in I2 and I3. (b) Multigraph with the edges labelled following (9). Since M1 and M2 were covisible in
I1 and I2, there are 8 edges connecting vertices 1 and 2 (similarly, M3 and M4 in I1 and I3). (c) Two consistent cliques (red and blue) for image I1.

B. Efficient algorithm using lifting approach

A naive method to solve (18) is to enumerate S, and for
each S instantiation, collect the non-zero terms in (18) and
solve the resulting rotation averaging problem. Then, return
the S with the lowest optimised error as the disambiguation
decision. Since there are O(2V T ) possible instantiations of
S (assuming V markers seen per image), this is infeasible.

To enable an efficient algorithm for (18), we apply the
lifting approach [24]. First, we relax the indicator variables
sti ∈ [0, 1] and replace them in (18) with a sigmoid function

Φ(s) = 1/(1 + e−s), (19)

which yields the “smoothed” version of (18)

min
{Ri},S

T∑

t=1

∑

i,j∈At

i<j

Φ(sti)Φ(stj)
∥∥∥R̃(t,11)

i,j −RjR
T
i

∥∥∥
F

+

Φ(sti)(1− Φ(stj))
∥∥∥R̃(t,10)

i,j −RjR
T
i

∥∥∥
F

+

(1− Φ(sti))Φ(stj)
∥∥∥R̃(t,01)

i,j −RjR
T
i

∥∥∥
F

+

(1− Φ(sti))(1− Φ(stj))
∥∥∥R̃(t,00)

i,j −RjR
T
i

∥∥∥
F
.

(20)

Intuitively, the contribution of an error term in (20) is now
weighted according to correctness of the corresponding M2C
relative poses that define the error term.

Problem (20) can be solved using an iterative non-linear
optimiser (e.g., fmincon in MATLAB). We initialise {Ri}
via a minimum spanning tree on G, choosing the M2M
relative rotations with the lower combined reprojection errors
for chaining, and S is set to reflect these choices. As we
will show in Sec. VI, our method is not biased by such an
initialisation, since it is capable of providing more accurate
disambiguation than comparing reprojection errors alone.

C. Selecting the marker poses

Let Ŝ by the optimised relaxed indicator variables from
solving (20). For the same sequence used in Fig. 2(a), we
plot in Fig. 2(b) the histogram of the ratios

min(Φ(ŝti), 1− Φ(ŝti))

max(Φ(ŝti), 1− Φ(ŝti))
(21)

for all ŝti ∈ Ŝ. Similar to (2), the ratio (21) indicates how
“disambiguable” the PPE poses are for each marker detection
(smaller ratios are better), but now based on the value of ŝti.
Although Ŝ is not discrete, the percentage of marker poses
that are still ambiguous is now significantly reduced.

To conclusively select one PPE pose per detected marker,
a simple solution would be to threshold each ŝti ∈ Ŝ with 0.5;
however, we would like to avoid such a per-marker decision.
To this end, for each image It we construct the multigraph
Gt = {Vt, Et}, where Vt = At, and

Et =
{
〈i, j〉(t,ab) | i, j ∈ At, ab ∈ {00, 01, 10, 11}

}
. (22)

Note that Gt is a submultigraph of G, and there exist O(2V )
consistent cliques in Gt (see Sec. III-A). Further, each edge
〈i, j〉(t,ab) in Gt has the weight

ŵ
(t,ab)
i,j =





(1− Φ(ŝti))(1− Φ(ŝtj)) if ab = 00;

(1− Φ(ŝti))Φ(ŝtj) if ab = 01;

Φ(ŝti)(1− Φ(ŝtj)) if ab = 10;

Φ(ŝti)Φ(ŝtj) if ab = 11.

(23)

Given Gt, define edge indicator variables

Zt =
{
z
(t,ab)
i,j ∈ {0, 1} | i, j ∈ At, ab ∈ {00, 01, 10, 11}

}
.

and the maximum weighted clique (MWC) problem

max
Zt

∑

i,j∈At

i<j

∑

ab∈{00,01,10,11}
z
(t,ab)
i,j ŵ

(t,ab)
i,j

s.t. {〈i, j〉(t,ab) | z(t,ab)i,j = 1} is consistent.

(MWCt)

Basically, the aim of MWCt is to find a consistent clique in
It with the largest edge weights. Though MWC is intractable
in general [25], each MWCt instance is small, since the
number V of detected markers in It is small (usually V ≤ 9).

We use the efficient clique solver of [26] on each MWCt.
The optimised Ẑt provides a consistent selection of the PPE
poses for all markers detected in It. Specifically, for each
Mi detected in It, find a ẑ

(t,ab)
i,j that is nonzero, and set

p̃
(t)
i = p̃

(t,0)
i if a = 0, or p̃(t)

i = p̃
(t,1)
i otherwise.

Algorithm 1 summarises the proposed method for marker
pose disambiguation.
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Algorithm 1 Method for marker pose disambiguation
Input: M2C relative poses (6) with PPE ambiguity.

1: Construct a multigraph G from the input (Sec. III).
2: {R̂i}, {ŝti} ← Solve (20) based on G (Sec. IV-B).
3: for t = 1, . . . , T do
4: {ẑ(t,ab)i,j } ← Solve MWCt from {ŝti} (Sec. IV-C).
5: {p̃(t)

i } ← Based on {ẑ(t,ab)i,j }, select one of two M2C
poses for all markers in It (Sec. IV-C).

Output: One M2C relative pose per detected marker.

V. MARKER-BASED SFM PIPELINE

To carry out marker-based SfM using our marker pose
disambiguation method, we largely follow the pipeline of
the state-of-the-art MarkerMapper [8]. Briefly, a robust pose
graph optimisation is first invoked on the resolved M2C
relative poses (7) from Algorithm 1 to yield absolute marker
poses {pi}Ni=1 - in our case, the absolute rotation component
is initialised using the output {R̃i} from solving (20).
Then, each camera pose qt is initialised using single pose
averaging from the M2C poses, before all marker {pi}Ni=1

and camera poses {qt}Tt=1 are refined simultaneously by
bundle adjustment on the observed corners of all detected
markers. We refer to [8] for details of the SfM pipeline.

VI. RESULTS

To assess the efficacy of the proposed marker pose disam-
biguation technique, we compared the following methods:
• Reprojection error (M1): For each marker detection,

select the PPE solution with the lower reprojection error.
• Strict ratio test (M2): The threshold of 0.1 is applied on

the reprojection error ratio (2) (see Sec. I-A for details).
• Default ratio test (M3): The threshold of 0.6 is applied

on the reprojection error ratio (the default setting in [8]).
• Robust rotation averaging and post hoc clique con-

sistency enforcement (M4): Solve (16) by IRLS [23],
then use the IRLS-optimised weights for the error terms
as inputs to our M2C pose selection method in Sec. IV-C.

• Proposed method (Ours): As described in Sec. IV.
When applying the above disambiguation methods to per-
form marker-based SfM, we simply used them to preprocess
the input marker detections, then execute the rest of the
pipeline of MarkerMapper [8] (see Sec. V). All the experi-
ments were conducted on a 3.5GHz CPU and 8GB of RAM.

A. Experiments on hybrid data

1) Data generation: We used the ScanNet Dataset [15]
that contained a number of sequences with ground truth
6DOF camera poses and depth. A test sequence was created
from an original sequence by warping a number of ArUco
markers [4], [5] based on known/ground truth M2C relative
poses p̄(t)

i onto parts of the images that correspond to planar
surfaces; see supplementary video for a sample sequence.
Using the ground truth camera absolute pose q̄t, the ground
truth marker absolute pose is p̄i = q̄−1t p̄

(t)
i .

2) Marker detection: Using the steps above, we gener-
ated five testing sequences from Bedroom(B), Hotel1(H1),
Hotel2(H2), Office1(O1) and Office2(O2). We used [4] to
detect, identify and localise the corners of each marker in
each frame; see Table I for the number of frames and unique
detected markers in each sequence. Though the markers were
synthetically warped into the images, our analysis suggests
that corner localisation suffered from errors of 1–7 pixels.

3) Ground truth M2C pose selection: On the noisy corner
localisations, PPE [13] is invoked, which yields two M2C
relative poses {p̃(t,a)

i }a=0,1 for each detected marker. To
decide the ground truth selection, we compute the angular
difference {θ(t,a)i }a=0,1 between {R̃(t,a)

i }a=0,1 and R̄
(t)
i

as θ(t,a)i = 180
π acos(1 − 0.25 ‖ I − R̃

(t,a)
i (R̄

(t)
i )T ‖2F ). The

ground truth selection of the PPE poses is taken as the one
with the lower angular difference min{θ(t,a)i }a=0,1.

4) Results: For the hybrid data experiment, we evaluated
all the approaches on two main aspects; see supplementary
video for demonstration of our pose disambiguation method.

a) Precision in pose disambiguation: For each test-
ing sequence, precision in pose disambiguation is defined
as # number of correct PPE pose selections

# marker detections where a pose disambiguation decision was made . Table I
shows that Ours generally has higher precision than the
others. The fact that M4 (the control method) is much
poorer than Ours proves that enforcing the proposed clique-
consistency is crucial for disambiguating the PPE poses.
Amongst the per-marker disambiguation methods (M1–M3),
M1 has the lowest precision, validating observations in
previous works that comparing reprojection errors alone is
not foolproof. Adding a ratio test to avoid decisions on cases
that are too ambiguous helps to improve precision in M2 and
M3. In particular, the precision of M2 is on par with Ours.
However, as we show next, this gain by M2 comes at a cost.

b) Completeness and accuracy of SfM: To assess the
effects of marker pose disambiguation on SfM, we evaluate
• the number of markers mapped and cameras localised; and
• the error (in deg and cm) of the marker and camera poses
estimated by marker-based SfM from the disambiguated PPE
poses in Table I,II respectively. Although M2 is precise, it
yields a much sparser map than the others; moreover, as it has
pruned away many useful detections, there are insufficient
data to allow accurate SfM. Using our pose disambiguation
technique leads to more complete and accurate maps.

B. Real world dataset experiment

Testing was performed on sequences from [9]. We selected
3 indoor scenes with different difficulty levels: ece floor 4
wall, ece floor5 stairs and cee night cw. There are N ≥
50 unique markers placed in the scene in each sequence.
To enable comparisons, we invoked [9] (denoted as FM)
which conducts both feature- and marker-based SfM on the
sequences. Since SfM with M2 failed in all 3 sequences due
to insufficient data for optimisation, comparison is not made.

Qualitative results in Table III show that Ours is more
accurate than M1 and M3 in marker-based SfM - of course,
Ours is visibly not as complete as FM, but the latter uses
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TABLE I
PRECISION IN POSE DISAMBIGUATION ON HYBRID DATA.

Seq N T Precision(%) # markers mapped # cameras localised
M1 M2 M3 M4 Ours M1 M2 M3 M4 Ours M1 M2 M3 M4 Ours

B 3 31 94.32 100 92.31 31.82 100 3 0 3 3 3 31 0 31 31 31
H1 5 41 80.68 100 82.61 22.16 100 5 0 5 5 5 41 0 40 41 41
O1 7 51 77.08 96.97 78.8 14.58 96.52 7 7 7 7 7 51 41 51 51 51
O2 6 91 92.64 100 98.95 37.94 99.41 6 4 6 6 6 91 46 91 91 91
H2 14 151 93.42 98.94 97.89 48.16 100 14 13 14 14 14 151 101 151 151 151

TABLE II
SFM ACCURACY FOR DIFFERENT POSE DISAMBIGUATION METHODS ON HYBRID DATA.

Seq Average marker pose error (◦, cm) Average camera pose error (◦, cm)
M1 M2 M3 M4 Ours M1 M2 M3 M4 Ours

B 5.4 11.7 - - 6.3 15.0 19.0 37.5 2.3 2.2 7.0 15.9 - - 11.9 19.5 32.0 10.0 0.8 2.0
H1 11.7 13.0 - - 12.5 15.0 39.1 26.3 3.3 8.6 14.8 27.5 - - 17.6 41.6 37.9 28.8 5.0 3.2
O1 26.2 30.3 15.2 8.0 25.4 29.0 55.3 120.9 3.5 4.3 17.3 69.8 7.6 16.0 19.2 69.4 85.8 49.7 5.7 13.7
O2 8.7 6.6 4.4 4.2 4.1 2.6 28.0 63.2 4.2 2.4 6.2 10.5 0.8 2.4 17.4 4.0 41.6 40.1 1.3 3.4
H2 4.3 5.1 7.7 3.1 5.4 5.5 20.3 14.2 3.6 4.9 4.3 3.8 2.2 2.3 3.3 3.1 32.0 10.0 3.4 2.4

TABLE III
QUALITATIVE RESULT: RECONSTRUCTION RESULTS FOR MARKER-BASED SFM METHODS M1,M3, M4, AND OURS, AS WELL AS FEATURE- AND

MARKER-BASED SFM METHOD FM [9]. ROW 1: ece floor4 wall, ROW 2: ece floor5 stairs, ROW 3: cee night cw. FOR THE MARKER-BASED METHODS,
RED = RECONSTRUCTED REFERENCE MARKER, BLUE: RECONSTRUCTED MARKERS, GREEN: ESTIMATED CAMERA POSITIONS.

M1 M3 M4 Ours FM

features on top of markers, which entails heavier compu-
tations. Using the estimated camera positions by FM as
reference, we obtain the position errors (in m) computed by
the marker-based SfM methods - normalised and plotted as
a cumulative density in Fig. 4a-c. It is apparent that Ours
is much more accurate in camera localisation, especially in
the most challenging sequence cee night cw. Fig 4d lists the
mean and median position error, relative to FM.

VII. CONCLUSION

This work addresses the practically crucial marker pose
ambiguities by inspecting the consistencies of a set of
markers across multi-view, which enables the formulation of
clique-constrained rotation averaging. Future work will be
extending the current method in a sliding window fashion
for real-time compliant robotics applications. Fig. 4. Comparison of camera position error (relative to FM) of M1, M3,

M4 and Ours in terms of (a-c) Cumulative density. (d) Mean & Median.
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Chapter 6

Conclusions and Future Work

Robotic perception plays a significant role in enabling intelligent and reliable au-
tonomous machines. This thesis has made significant progress on state estimation
problems, particularly problems which involve estimating rotations that reside in
the manifold space.

On a practical level, efficient and/or outlier-robust algorithms have been proposed
to solve the pose estimation and SLAM/SfM problems, for example, the nonlinear
optimization algorithm for outlier-robust INS/GPS fusion, the global rotation av-
eraging algorithm for large-scale SLAM/SfM, and the clique-constrained rotation
averaging for marker-based SLAM.

6.1 Future Work

6.1.1 The Outlier-Robust INS/GPS Fusion

The current sensor fusion configuration setup considered in Chapter 3 is INS/GPS
fusion. As adding the accelerometer bias to proposed system would introduce un-
observable model, which in turn might lead to suboptimal solution and significantly
reduce the robustness of the estimation method, the proposed framework does not
consider the accelerometer bias. Since the rectification of the accelerometer bias is
an important practical problem, it is desirable to have a deeper analysis to investi-
gate the effect of accelerometer bias to the accuracy of the solution.
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Another exciting future direction is to extend the optimization framework in Chap-
ter 3 to ultimately fuse a vision sensor with the current sensor setup, which will
lead to a new avenue of research. Challenges such as integrating the rotation aver-
aging with the existing framework given different relative rotations, incorporating
and estimating the accelerometer bias compensation, and so on would arise.

6.1.2 The Rotation Coordinate Descent Algorithm

In Chapter 4, the rotations were updated every iteration in a sequential manner,
such that k = (1, ..., n) in Algorithm 2 Step 3. Our empirical results suggested that
there exists a shorter trajectory to the optimal solution for k = 1, ..., n. Therefore,
it is desirable to perform a deeper analysis of the effect of k on the convergence rate
of the algorithm and to characterise the optimal sequence of k.

Although an explicit noise bound for strong duality was derived, the corresponding
bound was established based on a non-robust cost function. An interesting future
work is to derive the bound of a robust cost function, and possibly contribute to a
globally optimal rotation averaging algorithm which can tolerate high noise levels.

As the translation estimation is also an important area in visual SLAM/SfM. It
is also exciting to investigate whether the proposed method can be extended to
incorporate the estimation of translation, to realise a full pose estimation.

6.1.3 The Clique-Constrained Rotation Averaging Algorithm

In contrast to previous work which applied a heuristic criterion to deal with the
fundamental ambiguity in the marker-based SLAM/SfM, Chapter 5 proposed a
principled way which necessitates an optimisation subroutine. A bottleneck is the
underlying optimisation is a batch optimisation, which may become less efficient as
the problem size (i.e., the number of markers and the number of views) increases.
Therefore, a practical strategy is to extend the current method to a sliding window
optimization.
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