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Abstract

In this thesis we describe the theory of simplicial covering spaces and present
Segal’s construction of the Algebraic K-theory spectrum of a permutative
category. Using this theory and construction, we then identify the stable
homotopy type of the Algebraic K-theory spectrum of the core of the cate-
gory of finite sheeted simplicial covering spaces. This result generalises the
Barratt-Priddy-Quillen Theorem.
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Chapter 0

Introduction

To every category C there is a functorially associated topological space BC
called the classifying space of C. The classifying space construction is a very
useful concept in pure mathematics. For example, in the case that C is a
group G the space BG classifies principal G-bundles. Categories can some-
times come equipped with extra structure that is reflected in their classifying
spaces. For example, a category C may come equipped with a tensor prod-
uct ⊗ : C × C → C that satisfies associativity, identity and commutativity
laws up to natural isomorphism. The category C is then called a symmetric
monoidal category. The simplest example of a symmetric monoidal cate-
gory is the category of finite sets FinSet equipped with the tensor product
t : FinSet × FinSet → FinSet induced by disjoint union. When C is
a symmetric monoidal category its classifying space BC inherits the struc-
ture of a commutative monoid (up to homotopy) and is the 0-th space of a
spectrum BKC associated to C called the Algebraic K-theory spectrum of C.

A spectrum X is a sequence of a sequence of spaces {Xn}n∈N such that for
each n ≥ 0 the space Xn is a closed subspace of the loop space ΩXn+1 of
Xn+1. A simple example of a spectrum is the sphere spectrum S whose n-
space is the n-sphere Sn. Spectra are the main objects of interest in stable
homotopy theory and are usually studied up to stable homotopy type. It
turns out that there is a close relationship between FinSet and S, as made
precise by the Barratt-Priddy-Quillen Theorem. That is, the Barratt-Priddy-
Quillen Theorem states that if FinSet' is the subcategory of FinSet which
contains only the maps that are isomorphisms, then the Algebraic K-theory
spectrum of FinSet' has the stable homotopy type of the sphere spectrum S
([27]). The goal of this thesis will be to generalise the Barratt-Priddy-Quillen
Theorem.

1



2 Chapter 0. Introduction

To see how we will generalise Barratt-Priddy-Quillen Theorem in this thesis,
recall that finite sheeted covering spaces (covering spaces whose fibres are
finite sets) over a connected space X can be viewed as collections of finite
sets parametrised by the points in X, and let FinCov(X)' be the category
whose objects are finite sheeted covering spaces and maps are isomorphisms
between them. Also observe that equipping FinCov(X)' can be equipped
with the structure of symmetric monoidal structure by equipping it with
the tensor product induced by disjoint union. The Barratt-Priddy-Quillen
Theorem will hence be generalised by identifying the stable homotopy type
of the Algebraic K-theory spectrum of FinCov(X)' when X is connected.
To do this we will first need to accomplish the following 3 tasks:

1. Develop some theory for covering spaces which will aid us in achieving
our thesis goal.

2. Define the Algebraic K-theory spectrum of a symmetric monoidal cat-
egory precisely.

3. Identify the symmetric monoidal category FinCov(X)' with an equiv-
alent symmetric monoidal category whose Algebraic K-theory spec-
trum’s stable homotopy type is easy to identify.

Task 1 will be completed in Chapters 1 and 2. In Chapter 1 we will review
the theory of simplicial sets required to understand Chapters 2–5. Namely,
we will review the theory of simplicial sets, simplicial objects, and simplicial
homotopy theory, as many of the objects and constructions we will consider
in Chapters 2–5 will have underlying or associated simplicial structures. In
Chapter 2 we will discuss simplicial analogues of covering spaces called sim-
plicial covering spaces. We will show that they enjoy properties analogous
to those enjoyed by covering spaces and, most importantly, show that there
is an equivalence of categories

Cov(X) ' [Π1(X),Set].

Here Cov(X) is the category of simplicial coverings over the simplicial set X
and Π1(X) is the fundamental groupoid of X. A corollary of this equivalence
of categories will aid us when completing task 3 in in Chapter 5.

Task 2 will be completed in Chapters 3–4. In Chapter 3, we will review the
theory of H-spaces, spectra, and Γ-spaces. The key result proven in Chapter
3 will be that to every Γ-space X there is an associated spectra BX whose 0-
th space is an H-space. Then, in Chapter 4, after reviewing the basic theory
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of symmetrical monoidal categories, we will show that to every symmetric
monoidal category C there exists an associated Γ-space KC, and hence an
associated spectrum BKC. The spectrum BKC will then be defined to be
the Algebraic K-theory spectrum of C.

Task 3 will be completed in Chapter 5. By appealing to the aforementioned
equivalence of categories, and some group theory, we will be able to identify
FinCov(X)' with the free symmetric monoidal category S(CCπ1(X)) on the
groupoid CCπ1(X) when X is connected. The groupoid CCπ1(X) will be con-
structed by considering choosing representatives from the conjugacy classes
of π1(X). The stable homotopy type of the Algebraic K-theory spectrum
BKS(C) of S(C), when C is small, will be able to be easily identified by
appealing to some theory developed by Quillen (discussed in Chapter 4) and
Barratt and Eccles. In fact, we will show that BKS(C) has the same stable
homotopy type as the spectrum

Σ∞|NC+|.

In Section 5.5, after the previously discussed tasks have been accomplished,
we will prove:

Theorem 5.5.14. If X is a connected simplicial set then the Algebraic K-
theory spectrum of FinCov(X)' has the same stable homotopy type as the
spectrum

Σ∞

 ∐
[H]∈CCπ1(X)

B(Nπ1(X)(H)/H)


+

.

This thesis’s goal will hence have been achieved. Theorem 5.5.14 will also
successfully act as a generalisation of the Barratt-Priddy-Quillen Theorem,
as we will be able to recover the Barratt-Priddy-Quillen Theorem by taking
X to be a point.

The author of this thesis will assume the reader has a high degree of fa-
miliarity with basic category theory and algebraic topology. Knowledge
of group completions of monoids, free groups and monoids, G-sets, CW-
complexes, and compactly generated weak Hausdorff spaces, covering spaces,
and Hurewicz fibrations and cofibrations will also be assumed. Readers un-
familiar with these topics are referred to [9, 12, 13, 21, 28, 30] for suitable
introductions to them.
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Chapter 1

Simplicial Sets and Homotopy
Theory

A simplicial set, put simply, is a set of gluing instructions for constructing a
topological space out of certain building blocks called simplicies. Simplicial
sets provide a well-behaved combinatorial model for topological spaces with
their own native homotopy theory. Further, the category of simplicial sets
has nicer properties than the category of topological spaces, and its corre-
sponding homotopy category (a notion we will make precise in this chapter)
is equivalent to the homotopy category of topological spaces. So, questions
about the homotopy theory of spaces can be studied via simplicial sets. In
this chapter we will introduce the basic theory of simplicial sets and discuss
how they model topological spaces. The majority of the theory discussed in
this chapter can be found in [8] where the reader can find omitted technical
details and discussions.

To begin our discussion on simplicial sets we will introduce the basic def-
initions, and state some of their basic properties, in Section 1.1. We will
also discuss some examples of simplicial sets that will play a key role in this
thesis. Then, in Section 1.2, we will explain how to construct a topological
space from a simplicial set via geometric realisation, and state some of the
useful properties of the geometric realisation functor. The homotopy theory
of simplicial sets will then be explored in Section 1.3. In Sections 1.4 and
1.5, we will define the notion of simplicial object in an arbitrary category C,
paying particular attention to the case where C is the category of pointed
sets. Finally, in Section 1.6, we will introduce model categories, discuss the
model categories that will play a key role in this thesis, and make precise the
notion that simplicial sets model topological spaces.

5



6 Chapter 1. Simplicial Sets and Homotopy Theory

The primary goal of this chapter is to provide much of the background theory
on simplicial sets required for the remainder of this thesis. Additionally,
the author hopes this chapter will serve as an approachable and motivated
introduction to simplicial sets for the reader.

1.1 The Simplex Category and Simplicial Sets

In this section we will begin to develop the theory of simplicial sets by stating
some of its basic definitions. Using some elementary properties of the cate-
gories involved in these definitions, we will be able to give both a categorical
and a combinatorial definition of a simplicial set, as well as state some of
their elementary properties. We will then give a few important examples of
simplicial sets, and discuss how they can be constructed from categories, and
in particular groups.

To begin, let us define a simplicial set. To do this we must first define the
simplex category.

Definition 1.1.1. Let ∆ be the category whose objects are the finite, non-
empty, totally ordered sets

[n] = {0 < 1 < ... < n}

and maps are non-decreasing functions. The category ∆ is called the simplex
category.

Definition 1.1.2. A simplicial set X is a functor X : ∆op → Set. A
simplicial map X → Y is a natural transformation of the functors X and
Y .

Definition 1.1.3. Let sSet be the category whose objects are simplicial sets
and maps are simplicial maps.

So, a simplicial set is simply a presheaf on the simplex category, and a sim-
plicial map is a map of presheaves. It is not initially clear how such functors
and maps act as combinatorial models for topological spaces, but this will
become clear as we develop more theory.

When one constructs a new category, a reasonable first question to ask oneself
is ‘how well-behaved is this category? ’. In the case of sSet, the answer to this
question is ‘very well-behaved ’. For example, sSet has all limits and colimits.

Proposition 1.1.4. The category sSet has all limits and all colimits.
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Proof. As Set has all (co)limits, and (co)limits in functor categories are
computed pointwise, sSet has all (co)limits.

Proposition 1.1.4 actually tells us more than just that sSet has all (co)limits.
It also tells us how to compute them. That is, Proposition 1.1.4 tells us that
(co)limits in sSet are computed pointwise in Set. For example, the product
of two simplicial sets X and Y can be explicitly defined to be the simplicial
set X × Y where for all n ≥ 0

(X × Y )([n]) := X([n])× Y ([n]),

and for all f : [n]→ [m] in ∆

(X × Y )(f) := X(f)× Y (f).

Simplicial sets can be defined both categorically and combinatorially. Defi-
nition 1.1.2 is clearly the categorical definition of simplicial set, so let us now
derive an equivalent combinatorial definition. To derive the combinatorial
definition of simplicial set, we will need to appeal to a property enjoyed by ∆
that says every map in ∆ can factored as special types of maps called coface
and codegeneracy maps.

Definition 1.1.5. For all n ≥ 0, and integers i, j such that 0 ≤ i ≤ n + 1
and 0 ≤ j ≤ n, let di and sj be the maps

di : [n]→ [n+ 1], di(x) :=

{
x, x < i

x+ 1, x ≥ i

and

sj : [n+ 1]→ [n], sj(x) :=

{
x, x ≤ j

x− 1, x > j.

The maps di are called the coface maps in ∆, and the maps sj are called the
codegeneracy maps.

Remark 1.1.6. Observe that the coface and codegeneracy maps satisfy the
following relations:

djdi = didj−1, i < j (1.1)

sjsi = sisj+1, i ≤ j (1.2)

sjdi =


1, i = j, j + 1

disj−1, i < j

di−1sj, i > j + 1.

(1.3)

Equations (1.1)–(1.3) are called the cosimplicial identities.
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Conventions 1.1.7. Note that we will adopt the following conventions when
discussing simplicial sets in the remainder of this thesis:

1. Given a simplicial set X, the set X([n]) will be denoted by Xn and will
be called the set of n-simplices of X. The set of 0-simplices of X will
be called the set of vertices of X.

2. The image of the coface maps di and the codegeneracy maps sj under
X will be denoted di and sj, respectively, and will be called the face
and degeneracy maps of X.

3. If x is a simplex of X such that there exists a simplex y where sj(y) = x
for some j, then x is called a degeneracy of y. If there exists a simplex
z such that di(z) = x for some i, then x is said to be the i-th face of z.

Lemma 1.1.8. Any map f : [n]→ [m] in ∆ has a unique factorisation

f = di1 ◦ di2 ◦ ... ◦ dik ◦ sj1 ◦ sj2 ◦ ... ◦ sjh ,

where n− h+ k = m and

0 ≤ ik < ik−1 < ... < i1 < m

and
0 ≤ j1 < j2 < ... < jh < n− 1.

Proof. See the lemma on page 177 in [17].

Construction 1.1.9. By appealing to Lemma 1.1.8 we can give the previ-
ously alluded to combinatorial definition of simplicial set and simplicial map,
as follows: A simplicial set X is a presheaf on ∆. So, for each n ≥ 0, there is
a set Xn, and for each map [n]→ [m] in ∆, there is a function Xm → Xn. As
each map [n]→ [m] in ∆ can be uniquely factored as a composition of coface
and codegeneracy maps by Lemma 1.1.8, and as functors respect composi-
tion, the map Xm → Xn is given by a composition of face and degeneracy
maps. This implies that a mapping from ∆op to Set is functorial if and only
if it satisfies the following relations (called the simplicial identities):

didj = dj−1di, i < j (1.4)

sisj = sj+1si, i ≤ j (1.5)

disj =


1, i = j, j + 1

sj−1di, i < j

sjdi−1, i > j + 1.

(1.6)
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Thus, to specify a simplicial set X we only need specify a family of sets
{Xn}n∈N and, for each n ≥ 0, functions di : Xn+1 → Xn for each integer i
such 0 ≤ i ≤ n + 1, and functions sj : Xn → Xn+1 for each integer j such
that 0 ≤ j ≤ n. The functions di : Xn+1 → Xn and si : Xn → Xn+1 must
also satisfy the simplicial identities.

A simplicial map f : X → Y is a natural transformation of the functors X
and Y . That is, f consists of a family of functions {fn : Xn → Yn}n∈N such
that for each map [n]→ [m] in ∆ the diagram

Xm Xn

Ym Yn

fm fn (1.7)

commutes. But, as maps in ∆ can be factored as a composition of coface
and codegeneracy maps, the commutativity of diagram (1.7) for all maps
[n]→ [m] in ∆ is equivalent to the commutativity of the diagrams

Xn+1 Xn

Yn+1 Yn

di

fn+1 fn

di

(1.8)

and

Xn Xn+1

Yn Yn+1,

sj

fn fn+1

sj

(1.9)

for all n ≥ 0 and i and j where 0 ≤ i ≤ n+ 1 and 0 ≤ j ≤ n. Thus, to define
a simplicial map it is sufficient to define a family of functions {fn : Xn →
Yn}n∈N that commute with the face and degeneracy maps of X and Y .

Thus, we have both a categorical and combinatorial definition of simplicial
set. These two definitions are clearly equivalent.

Throughout this thesis we will extensively use a few different examples of
simplicial sets. We define these examples of simplicial sets in Subsections
1.1.1–1.1.4 below, and make some observations about their properties.
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1.1.1 The Standard n-Simplex

The first example of a simplicial set we will extensively use in this thesis is
called the standard n-simplex ∆n.

Definition 1.1.10. If n ≥ 0 the standard n-simplex ∆n is the simplicial set
∆n : ∆op → Set defined as the representable functor ∆(−, [n]).

The simplicial set ∆n is particularly interesting in the theory of simplicial
sets as each n-simplex of a simplicial set X can be understood as a simplicial
map ∆n → X. This observation is made precise in Lemma 1.1.11 below.

Lemma 1.1.11. There is a bijection

[∆op,Set](∆n, X) ∼= Xn

that is natural in [n] and X.

Proof. The given statement is simply a special case of the Yoneda lemma.
However, it remains helpful to review how the bijection is explicitly con-
structed in the case of simplicial sets. First, we define a map which sends
a given simplicial map σ : ∆n → X to the n-simplex σ̃ := σn(Id[n]). Then,
we define a map which sends n-simplices x of X to the simplicial map
x̂ : ∆n → X with [k]-component

x̂k : hom∆([k], [n])→ Xk, x̂k(f) = X(f)(x).

The maps ( ̂ ) and ( ˜ ) are mutually inverse and natural.

1.1.2 The Boundary and Horns of ∆n

Our next important example of a simplicial set is called the boundary of ∆n,
and is denoted ∂∆n. To construct ∂∆n we need to define what it means to
generate a simplicial set XS from a set S, where S ⊆ Xn for some simplicial
set X. Of course, there will be some sort of inclusion of the form ∂∆n ⊆ ∆n,
so we will also define what it means for a simplicial set Z to be a simplicial
subset of X.

Definition 1.1.12. A simplicial subset of a simplicial set X is a simplicial
set Z such that Zn ⊆ Xn for each n and X(f)|Zm = Z(f) for all f : [n]→ [m]
in ∆.

Definition 1.1.13. Let X be a simplicial set and S a set such that S ⊆ Xn

for some n. The simplicial subset of X generated by S is the simplicial
set whose m-simplices are the m-simplices of X that are in the image of
X(f) : S → Xm for some f : [m]→ [n] in ∆.
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Remark 1.1.14. In the literature on the theory of simplicial sets the sim-
plicial subset of X generated by S ⊆ Xn is typically defined as the smallest
simplicial subset of X which contains S (see [26], for example). This defini-
tion and the definition given in Definition 1.1.13 are equivalent. Why? Let
Y be the simplicial subset of X generated by S ⊆ Xn as defined in Definition
1.1.13, and let Y ′ be the simplicial subset of X generated by S as defined in
the literature. Clearly Y ′ ⊆ Y . Now if x ∈ Ym for some m, then there exists
an s ∈ S and an f : [m] → [n] such that X(f)(s) = x. Then, as s ∈ Y ′n,
and Y ′ is a simplicial subset of X, the simplex x must also be in Y ′m. Hence,
Y ′ = Y .

Definition 1.1.15. Let ∂∆n be the simplicial subset of ∆n generated by the
set {d0, d1, ..., dn} ⊆ ∆n

n−1. The simplicial set ∂∆n is called the boundary of
∆n.

Another important example of a simplicial set we can construct using the
concepts introduced in Definitions 1.1.12 and 1.1.13 is called the k-th horn
of ∆n.

Definition 1.1.16. For each n ≥ 1 and 0 ≤ k ≤ n let Λn
k be the simplicial

subset of ∆n generated by the set {d0, d1, ..., dk−1, dk+1, ..., dn} ⊆ ∆n
n−1. The

simplicial set Λn
k is called the k-th horn of ∆n.

The horn Λn
k will be useful when describing the basics of simplicial homotopy

theory in Section 1.3.

1.1.3 The Nerve of a Category

The next simplicial set we will introduce is called the nerve NC of the small
category C. The nerve NC of the category C is constructed using only the
data of C, and is functorial. We are interested in nerves as many of the
interesting simplicial sets we will consider in this thesis will be the nerve of
some small category.

Definition 1.1.17. Let C be a small category. The nerve NC of C is the
simplicial set defined as follows:

NC0 = ob(C)

NC1 = mor(C)

NC2 = {(f0, f1) ∈ mor(C)×mor(C) : t(f0) = s(f1)}
...

NCn = {(f0, f1, ..., fn−1) ∈ mor(C)n : t(fk−1) = s(fk)},
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where k = 0, ..., n−1 and s and t are the source and target maps of the maps
in C. The face maps di and degeneracy maps sj are the maps defined by

di : NCn+1 → NCn,

di ((f0, ..., fn)) :=


(f1, ..., fn), i = 0

(f0, ..., fi+1 ◦ fi, ..., fn), 0 < i < n+ 1

(f0, ..., fn−1), i = n+ 1

and

sj : NCn → NCn+1,

sj ((f0, ..., fn−1)) := (f0, ..., Ids(fj), fj, ..., fn−1).

Construction 1.1.18. Let Cat denote the category of small categories.
Definition 1.1.17 can be extended to define a functor

N : Cat→ sSet,

where if F : C → D is a functor of small categories the simplicial map
NF : NC → ND has n-component

NF : NCn → NDn, NF (f0, ..., fn−1) := (F (f0), ..., F (fn−1)).

The nerve of a category can also be described slightly more geometrically
than the description given in Definition 1.1.17.

Remark 1.1.19. The simplex category ∆ can be embedded inside Cat via
the inclusion functor ∆ ↪→ Cat which maps [n] to the category

[n] = 0→ 1→ ...→ n.

Then the nerve NC of the category C can then be described as the functor

NC := Cat(−, C).

Example 1.1.20. Observe that the nerve N [n] of the category [n] is equal
to the standard n-simplex ∆n.

It turns out that the nerve functor commutes with limits and coproducts.

Proposition 1.1.21. The nerve functor N : Cat → sSet commutes with
limits and coproducts.
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Proof. As the nerve functor N has a left adjoint it commutes with limits (see
Example 4.6 in [26] — we will discuss this adjoint in Chapter 2). The nerve
functor N commutes with coproducts as, if F : [n] →

∐
i∈I Ci is a functor,

then the image of F is connected. Hence, F factors through some Cj where
j ∈ I, and so

N

(∐
i∈I

Ci

)
n

= Cat([n],
∐
i∈I

Ci) =
∐
i∈I

Cat([n], Ci) =
∐
i∈I

N(Ci)n.

1.1.4 The Classifying Simplicial Set

The final simplicial sets EG and BG we will introduce are the nerves of the
groupoids EG and BG. The groupoids EG and BG are constructed using
only the data of a group G, and the simplicial sets EG and BG are related
to the theory of principal G-bundles, as we shall mention in Section 1.2.

Construction 1.1.22. Let G be a group. There are two ways we can con-
struct a groupoid from G. The first way is to consider G as a one object
groupoid denoted BG. The second way is to construct a groupoid EG whose
objects are the elements of G. The maps (x, y) : x → y in EG are pairs of
elements of G. That is, for every pair of elements x and y in G, there is a
unique map x→ y in EG.

Definition 1.1.23. Let G be a group. Define BG to be the simplicial set
NBG. More explicitly, let BG be the simplicial set whose set of n-simplices
is the set Gn. The face maps di and degeneracy maps sj of BG are the maps

di : Gn+1 → Gn, di((g0, ..., gn)) :=


(g1, ..., gn), i = 0

(g0, ..., gi+1gi, ..., gn), 0 < i < n+ 1

(g0, ..., gn−1), i = n+ 1

and
sj : Gn → Gn+1, sj((g0, ...gn−1)) := (g0, ..., e, gj, ..., gn−1).

The simplicial set BG is called the classifying simplicial set of the group G.

Definition 1.1.24. Let G be a group. Define EG to be the simplicial set
NEG. More explicitly, let EG be the simplicial set whose set of n-simplices
is the set Gn+1. The face maps di and degeneracy maps sj of EG are the
maps

di : Gn+2 → Gn+1, di((g0, ..., gn+1)) = (g0, ..., ĝi, ..., gn+1)
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and
sj : Gn+1 → Gn+2, sj((g0, ..., gn)) = (g0, ..., gj, gj, ..., gn).

There is a functor EG → BG that induces an interesting simplicial map
EG→ BG which we will construct now. Why the induced map EG→ BG
is interesting will become clear in Sections 1.2 and 1.3.

Construction 1.1.25. There is a functor EG → BG which maps pairs of
elements (x, y) of G in EG to the group element y−1x in BG. The induced
simplicial map EG→ BG then has n-component

EGn → BGn, (g0, ..., gn) 7→ (g−1
1 g0, ..., g

−1
n gn−1).
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1.2 The Realisation of a Simplicial Set

As simplicial sets act as combinatorial models for topological spaces one can
construct a topological space out of the data of a simplicial set. The process
of constructing a topological space is known as geometric realisation. In this
section we will explain how to construct the geometric realisation of a sim-
plicial set, discuss some of the properties that are enjoyed by the realisation
functor, and introduce the classifying space of a category.

Before beginning our discussion of the geometric realisation we note that in
this thesis all the topological spaces we will work with will be compactly
generated weakly hausdorff (CGWH) spaces. The category of CGWH spaces
and continuous maps will be denoted CGWH. In general, the inclusion
of CGWH in Top does not preserve limits and colimits; however, many of
the limits and colimits of diagrams in CGWH considered in this thesis are
preserved by the inclusion. In particular, a number of the operations we will
perform on simplicial sets (and later, spaces) will involve limits or colimits of
diagrams of spaces in CGWH; these limits and colimits will be performed
in Top, but will land in CGWH. It is important to keep this fact in mind
as, while both Top and CGWH are (co)complete, how limits and colimits
are computed in CGWH is slightly different to how they are computed in
Top. Readers unfamiliar with CGWH and its properties are referred to [28].

Before giving the explicit formula for the geometric realisation of a simplicial
set, we will first explain the intuition behind how a space is constructed from
the data of a simplicial set. To understand this intuition we need to first
define the standard topological n-simplex.

Definition 1.2.1. The standard topological n-simplex |∆n| is the set

{(t0, ..., tn) ∈ Rn+1 : t0 + · · ·+ tn = 1, ti ≥ 0} ⊆ Rn+1.

equipped with the subspace topology. Let |di| and |sj| be the maps∣∣di∣∣ : |∆n| →
∣∣∆n+1

∣∣, ∣∣di∣∣(t0, ..., tn) = (t0, ..., ti−1, 0, ti, ..., tn)

and ∣∣sj∣∣ :
∣∣∆n+1

∣∣→ |∆n|,
∣∣sj∣∣(t0, ..., tn+1) := (t0, ..., ti + ti+1, ..., tn).

Now suppose we have been given a simplicial set X. To build a space out
of the data of X, identify each n-simplex of X with a topological n-simplex.
Next, whenever a simplex x is the i-th face of some other simplex y, glue the
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topological simplex associated to x to the i-th face of the topological simplex
associated to y. Finally, if an n-simplex z of X is degenerate, suppress it by
collapsing its associated standard topological n-simplex into the topological
n − 1-simplex associated to the simplex it is a degeneracy of. The result-
ing space |X| is called the geometric realisation of X. This construction is
formalised in Definition 1.2.2.

Definition 1.2.2. Let X be a simplicial set. The geometric realisation |X|
of X is the topological space(

∞∐
n=0

Xn × |∆n|

)
/ ∼,

where each Xn is equipped with the discrete topology, and ∼ is the equiva-
lence relation generated by the relations:

(x,
∣∣di∣∣(t)) ∼ (di(x), t) for x ∈ Xn+1, t ∈ |∆n| (1.10)

(x,
∣∣sj∣∣(t)) ∼ (sj(x), t) for x ∈ Xn, t ∈

∣∣∆n+1
∣∣ (1.11)

Construction 1.2.3. Definition 1.2.2 can be extended to define a functor

|−| : sSet→ Top,

where if f : X → Y is a simplicial map the continuous map |f | : |X| → |Y |
is the unique map making the diagram

∐∞
n=0Xn × |∆n|

∐∞
n=0 Yn × |∆n|

|X| |Y |

fn×Id

(1.12)

commute.

Remark 1.2.4. Note that the choice of notation for the standard topological
n-simplex |∆n| does not contradict the notation used to denote the realisation
of the standard n-simplex ∆n, as the two spaces are homeomorphic.

When reading about the theory of simplicial sets or its applications (in
sources such as [8]), the reader may encounter a more abstract definition
of the geometric realisation. We pause to comment on this definition now.
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Definition 1.2.5. Let X be a simplicial set. Let ∆/X be the category
whose objects are simplicial maps σ : ∆n → X and maps are simplicial maps
θ : ∆n → ∆m that make the diagram

∆n ∆m

X

θ

σ

τ ′
(1.13)

commute.

Construction 1.2.6. All presheaves can be expressed as a colimit of repre-
sentable functors, as we now recall. That is, every simplicial set X can be
expressed as the colimit

X = lim−→
∆/X

∆n.

The geometric realisation |X| of X can then be defined as the colimit

|X| := lim−→
∆/X

|∆n|

in Top. This definition of geometric realisation agrees with the one presented
in Definition 1.2.2 up to homeomorphism.

We will now state three useful properties of the realisation functor.

Proposition 1.2.7. If X is a simplicial set, |X| is a CW-complex.

Proof. See Proposition 2.3 on page 8 of [8].

Thus, the realisation functor lands inside the category of CW-complexes, and
hence CGWH (CW-complexes are compactly generated and Hausdorff).
This fact is used in the next useful property of the realisation functor we will
state.

Proposition 1.2.8. The geometric realisation functor

|−| : sSet→ CGWH

preserves finite products. That is, if X and Y are simplicial sets then

|X × Y | ∼= |X| × |Y |,

where the × on the right hand side is the product in CGWH.

Proof. See Section 3.3 in [7].
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The final useful property of the realisation functor we will discuss is that
it has a right adjoint. We will show that the realisation functor has a right
adjoint S(−) by explicitly constructing it, and then constructing a unit Id→
S(−) ◦ |−| and counit |−| ◦ S(−)→ Id.

Definition 1.2.9. Let T be a topological space. The total singular complex
S(T ) of T is the simplicial set whose set of n-simplices is homTop(|∆n|, T ).
The face maps di and degeneracy maps sj of S(T ) are the maps

di : homTop(
∣∣∆n+1

∣∣, T )→ homTop(|∆n|, T ), di(f) := f ◦
∣∣di∣∣

and

sj : homTop(|∆n|, T )→ homTop(
∣∣∆n+1

∣∣, T ), sj(f) := f ◦
∣∣sj∣∣.

Construction 1.2.10. Definition 1.2.9 can be extended to define a functor

S(−) : Top→ sSet,

where if f : T → Z is a continuous map of topological spaces the simplicial
map S(f) : S(T )→ S(Z) has n-component

S(f) : homTop(|∆n|, T )→ homTop(|∆n|, Z), S(f)(g) := f ◦ g.

Proposition 1.2.11. The geometric realisation functor |−| : sSet → Top
is left adjoint to the total singular complex functor S(−) : Top→ sSet.

Proof. We sketch a proof by writing down the unit and counit of the adjunc-
tion. The X-component of the unit map of the adjunction has n-component

Xn → S(|X|)n, x 7→ φx,

where
φx : |∆n| → |X|, φx(t) := [(t, x)].

The counit map of the adjunction has Y -component

|S(Y )| → Y, [(t, f)] 7→ f(t).

We will discuss the |−| a S(−) adjunction further in Section 1.6.

We will conclude this section by briefly introducing the classifying space of
a category.
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Definition 1.2.12. Let C be a small category. The classifying space BC of
C is the topological space

BC := |NC|,

i.e. the geometric realisation of the nerve NC of C.

A natural question one might ask after reading Definition 1.2.12 is: ‘Why is
the classifying space of a category called its classifying space? ’. The name
simply comes from the fact if G is a group, then the classifying space BG of
the category G (i.e. the realisation of the classifying simplicial set BG) is a
model for the classifying space of the group G in the theory of G-bundles.
Furthermore, the induced map EG→ BG of spaces (see Construction 1.1.25)
is the universal principal G-bundle (see Sections 5.2 and 5.3 in [8]).
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1.3 Simplicial Homotopy Theory

In Section 1.6 the notion that simplicial sets model topological spaces will
be made precise by appealing to some abstract homotopy theory. To apply
abstract homotopy theory to simplicial sets we obviously first need to under-
stand some of the basic homotopy theory of simplicial sets. We will present
this basic theory in this section. Note that we will only outline key definitions
and results, as the details involved in the homotopy theory of simplicial sets
are very technical. The enthusiastic reader is referred to [8] for these details.

We will begin presenting the homotopy theory of simplicial sets by defining
the homotopy groups of a simplicial set, and defining what it means for
simplicial sets to be weakly homotopy equivalent.

Definition 1.3.1. Let X be a simplicial set and x0 a vertex of X. Write x0

for the corresponding point of |X|. Define π0(X) to be the set π0(|X|), and
for each k ≥ 1 define πk(X, x0) to be the homotopy group πk(|X|, x0). The
set π0(X) is called the path-components of X, and πk(X, x0) is called the k-th
homotopy group of X.

Definition 1.3.2. A simplicial map X → Y is called a weak homotopy
equivalence if the induced map |X| → |Y | is a weak homotopy equivalence
of topological spaces.

Remark 1.3.3. Recall that Whitehead’s theorem says that a map of CW-
complexes is a homotopy equivalence if and only if it is a weak homotopy
equivalence. So, a simplicial map X → Y is a weak homotopy equivalence if
and only if the map |X| → |Y | is a homotopy equivalence.

Unfortunately, as seen in Definition 1.3.2, to define what it mean for a map
X → Y of simplicial sets to be a weak homotopy equivalence we must appeal
to geometric realisation. One would reasonably hope that we could determine
whether the map X → Y was a weak homotopy equivalence using only the
combinatorial data of X and Y , else what would be the point of modelling
spaces as simplicial sets? Fortunately, there is a subclass of simplicial sets,
called Kan complexes, for which this is possible. To define Kan complexes,
we need to first define Kan fibrations.

Definition 1.3.4. A simplicial map X → Y is called a Kan fibration if for
all n ≥ 1 and 0 ≤ k ≤ n and every commutative diagram

Λn
k X

∆n Y

(1.14)
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in sSet there is a map ∆n → X such that the diagram

Λn
k X

∆n Y

p (1.15)

commutes.

Definition 1.3.5. A simplicial set X is called a Kan complex if the canonical
map X → ∆0 is a Kan fibration. That is, X is a Kan complex if for all n ≥ 1
and 0 ≤ k ≤ n and every map Λn

k → X there exists a map ∆n → X such
that the diagram

Λn
k X

∆n

(1.16)

commutes.

Example 1.3.6. For all topological spaces X, the simplicial set S(X) is a
Kan complex. See Lemma 3.3 on page 11 of [8] for a proof of this.

To define what it means for Kan complexes to be weakly homotopy equivalent
without appealing to geometric realisation, we need to give a definition of the
homotopy groups of a Kan complex that also does not appeal to geometric
realisation. Recall that the n-th homotopy group πn(X, x) of a space X can
be defined to be the set of homotopy classes of maps |∆n| → X (relative to
|∂∆n|) that map |∂∆n| to the point x. Replacing spaces with simplicial sets,
we will define the n-th homotopy group πn(X, x) of a Kan complex X to be
the set of homotopy classes of the n-simplices of X (relative to ∂∆n) that
map ∂∆n to x. Thus, we need to define what it means for simplicial maps
to be homotopic.

Definition 1.3.7. Let g, f : X → Y be simplicial maps and Z be a simplicial
subset of X. The map f is homotopic to g if there exists a simplicial map
H : X ×∆1 → Y making the diagram

X

X ×∆1 Y

X

f
Id×d1

H

g
Id×d0

(1.17)
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commute. If f |Z = g|Z we say f is homotopic to g relative to Z if the diagram

Z ×∆1 X ×∆1

Z Y

pr1 H (1.18)

commutes.

As we will define the homotopy groups of Kan complexes to be the homotopy
classes of their simplices, we need to check that the relation of simplicial maps
being homotopic is an equivalence relation.

Proposition 1.3.8. Let Y be a Kan complex and Z a simplicial subset of
X. Then

1. the relation of simplicial maps X → Y being homotopic is an equiva-
lence relation; and

2. the relation of simplicial maps X → Y being homotopic (relative Z) is
an equivalence relation.

Proof. See Corollary 6.2 on page 24 in [8].

Definition 1.3.9. Let X be a Kan complex and x0 a vertex of X. Define
π0(X) to be the set of homotopy classes of maps ∆0 → X. For all n ≥ 1
define πn(X, x0) to be the set of homotopy classes of maps ∆n → X (relative
∂∆n) making the diagram

∂∆n ∆n

∆0 X
x0

(1.19)

commute.

Now we need to know that there is some natural group structure on πn(X, x)
for all n ≥ 1, and that this group structure is abelian when n ≥ 2. This is
the content of the next proposition.

Proposition 1.3.10. Let X be a Kan complex and x0 a vertex of X. For
all n ≥ 1 the set πn(X, x0) can be equipped with the structure of a group.
Furthermore, πn(X, x0) will be abelian if n ≥ 2.

Proof. See Theorem 7.2 on page 26 in [8].
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Construction 1.3.11. Note that if f : X → Y is a map of Kan complexes,
and x0 is a vertex of X, there is an induced group homomorphism

πn(f) : πn(X, x0)→ π0(Y, f(x0)), πn(f)([x]) := [f(x)],

for all n ≥ 1. Similarly, there is an induced map of sets

π0(f) : π0(X)→ π0(Y ).

With the homotopy groups of Kan complexes defined, we can finally define
what it means for Kan complexes to be weakly homotopy equivalent.

Definition 1.3.12. A simplicial map f : X → Y of Kan complexes is called
a weak homotopy equivalence if for all vertices x0 of X, and for all n ≥ 1, the
induced map πn(f) : πn(X, x0) → π0(Y, f(x0)) is a group isomorphism, and
the induced map π0(f) : π0(X)→ π0(Y ) is a bijection.

We now need to check that Definitions 1.3.1 and 1.3.9 and Definitions 1.3.2
and 1.3.12 are equivalent.

Proposition 1.3.13. Let X be a Kan complex. Then for all vertices x0 of
X and for all n ≥ 1 there is an isomorphism of groups

πn(X, x0) ∼= πn(|X|, x0),

and a bijection
π0(X) ∼= π0(|X|).

Furthermore, a simplicial map X → Y of Kan complexes is a weak homotopy
equivalence if and only if the induced map |X| → |Y | is a weak homotopy
equivalence.

Proof. See Section 1.11 in [8].

Let us suppose we want to study the homotopy type of a simplicial set X
without appealing to its realisation, but it is not a Kan complex, what can
we do? It turns out that there is a functor Ex∞(−) : sSet → sSet which
maps simplicial sets X to Kan complexes Ex∞(X), such that there is a weak
homotopy equivalence X → Ex∞(X). We will not provide any details on
how this functor is constructed (for this the reader is referred to Section 3.4
in [8]), but we state some of its useful properties in Theorem 1.3.14 below.

Theorem 1.3.14. There is a functor

Ex∞(−) : sSet→ sSet,

which has the following properties:
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1. For every simplicial set X, the simplicial set Ex∞(X) is a Kan complex.

2. Ex∞(−) maps Kan fibrations to Kan fibrations.

3. There is a canonical map X → Ex∞(X), natural in X, that is a weak
homotopy equivalence.

4. Ex∞(−) commutes with finite limits.

5. Ex∞(X)0 = X0 for every simplicial set X.

Proof. Statements 1-3 are Theorem 4.8 on page 188 in [8]. Statement 4 is
Lemma 17.5.4 in [22]. Statement 5 follows easily from the definition of the
functor Ex∞(−).

In Chapter 5 the homotopy 1-type of a simplicial set (a notion made precise
in Definition 1.3.15) will play an important role. As is the case for CW-
complexes, the homotopy 1-type of a simplicial set depends only on its 2-
skeleton.

Definition 1.3.15. A simplicial map f : X → Y is a homotopy 1-equivalence
if for all vertices x0 of X the induced maps π0(X)→ π0(Y ) and π1(X, x0)→
π1(Y, f(x0)) are isomorphisms. Two simplicial sets X and Y have the same
homotopy 1-type if they are connected by a chain of homotopy 1-equivalences.

Briefly recall the definition of a simplicial subset generated by a set (Defini-
tion 1.1.13).

Definition 1.3.16. Let X be a simplicial set. The 2-skeleton sk2X of X
is the simplicial subset of X generated by the simplices of X of degree less
than or equal to 2.

Lemma 1.3.17. If C is a CW-complex the inclusion map sk2C ↪→ C is a
homotopy 1-equivalence, where sk2C denotes the 2-skeleton of C.

Proof. This follows from Corollary 4.12 in [9].

Proposition 1.3.18. If X is a simplicial set then its homotopy 1-type de-
pends only on its 2-skeleton. That is, the inclusion map sk2X ↪→ X is a
homotopy 1-equivalence.

Proof. From the structure of |X| as a CW-complex, one can show that there
is a homeomorphism

|sk2X| ∼= sk2|X|
(see Proposition 2.3 on page 8 of [8]). The result then follows from Lemma
1.3.17.
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We will now conclude our discussion of the basic homotopy theory of sim-
plicial sets and Kan complexes by stating some results concerning how the
theory interacts with categories and functors via the nerve functor.

Proposition 1.3.19. The nerve NC of a category C is a Kan complex if
and only if C is a groupoid.

Proof. This follows from the argument made to prove Proposition 1.1.2.2 in
[16].

Lemma 1.3.20. Let F,G : C → D be functors and α : F → G be a natural
transformation. Then NF is homotopic to NG, and BF is homotopic to
BG.

Proof. Note that the natural transformation α : F → G induces a commu-
tative diagram

C

C × [1] D

C

Id×0 F

G
Id×1

(1.20)

As the nerve N and realisation functors |−| preserve products, and |∆1| ∼= I
where I denotes the unit interval, there are hence commutative diagrams

NC

NC ×∆1 ND

NC

Id×d1 NF

NG
Id×d0

(1.21)

and
BC

BC × I BD.

BC

Id×d1 BF

BG
Id×d0

(1.22)

Hence, NF is homotopic to NG, and BF is homotopic to BG.
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Corollary 1.3.21. If F : C � D : G is an adjunction (or an equivalence of
categories) then NC and ND are homotopy equivalent simplicial sets, and
BC and BD are homotopy equivalent spaces.

Before we continue our discussions in Section 1.6 on how simplicial sets act
as models for topological spaces we will discuss simplicial objects, which are
the natural generalisation of simplicial sets.
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1.4 Simplicial Objects

Observe that the basic definitions in the theory of simplicial sets do not ex-
ploit the properties of Set very often. Rather, the properties of the simplex
category ∆ are used more frequently. This observation motivates the defini-
tion of simplicial objects in a category C, which are contravariant functors
mapping ∆ into C. In this section, we will introduce 5 different types of
simplicial object. These simplicial objects will play an important role later
in this thesis.

Let us begin by defining simplicial objects categorically and commenting on
how, like simplicial sets, a simplicial object can also be described combina-
torially.

Definition 1.4.1. Let C be a category. A simplicial object in the category
C is a functor X : ∆op → C. A map of simplicial objects in C is a natural
transformation X → Y . Let sC denote the category of simplicial objects in
C and maps of simplicial objects in C.

Remark 1.4.2. Using identical arguments to those made in Construction
1.1.9, simplicial objects and maps can be described combinatorially as fol-
lows: a simplicial object X in a category C is a family of objects {Xn}n∈N
in C and maps in di : Xn+1 → Xn and sj : Xn → Xn+1 in C for each n ≥ 0
and i and j such that 0 ≤ i ≤ n + 1 and 0 ≤ j ≤ n. The maps di and sj
must also satisfy the simplicial identifies (equations (1.4)–(1.6)). The maps
di and sj are called the face and degeneracy maps of X, respectively. A map
of simplicial objects in C is a family of maps {fn : Xn → Yn}n∈N in C that
commute with the face and degeneracy maps of X and Y .

In this thesis, aside from simplicial sets, we will use five different types of
simplicial objects corresponding to the categories Set∗ of pointed sets, Mon
of monoids, Grp of groups, Top of spaces, and sSet of simplicial sets. We
define these simplicial objects precisely, and explain how to take their reali-
sations, below.

Definition 1.4.3. A simplicial object X : ∆op → Set∗ in Set∗ is called a
pointed simplicial set.

Definition 1.4.4. A simplicial object X : ∆op → Mon in Mon is called a
simplicial monoid.

Definition 1.4.5. A simplicial object X : ∆op → Grp in Grp is called a
simplicial group.
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Remark 1.4.6. To take the geometric realisation |X| of a pointed simpli-
cial set, simplicial monoid or simplicial group X, take the realisation of the
underlying simplicial set of X. Observe that the realisation of a pointed
simplicial set is canonically a pointed space, the realisation of a simplicial
monoid is a topological monoid (understood as a monoid object in CGWH),
and the realisation of a simplicial group is a topological group (understood
as a group object in CGWH).

Definition 1.4.7. A simplicial object X : ∆op → Top in Top is called a
simplicial space.

Remark 1.4.8. The simplicial spaces we will work with in this thesis will
be valued in CGWH.

Definition 1.4.9. Let X be a simplicial space. The geometric realisation
|X| of X is the topological space(

∞∐
n=0

Xn × |∆n|

)
/ ∼,

where ∼ is the equivalence relation generated by the relations:

(x,
∣∣di∣∣(t)) ∼ (di(x), t) for x ∈ Xn+1, t ∈ |∆n| (1.23)

(x,
∣∣sj∣∣(t)) ∼ (sj(x), t) for x ∈ Xn, t ∈

∣∣∆n+1
∣∣ (1.24)

It turns out that the realisation of a simplicial space can also be constructed
sequentially. This sequential construction is outlined in Construction 1.4.10
below.

Construction 1.4.10. Let X be a simplicial space. Let |X|0 = X0, and for
each n ≥ 1 let |X|n be the pushout of the diagram

∂|∆n| ×Xn ∪ |∆n| × s(Xn−1) |X|n−1

|∆n| ×Xn |X|n
p

(1.25)

in Top, where s(Xn−1) = ∪n−1
i=0 si(Xn−1). The geometric realisation |X| of X

can then be defined as the sequential colimit of the diagram

|X|0 |X|1 |X|2 ... |X| (1.26)

in Top.
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Remark 1.4.11. Note that the definitions of realisation of a simplicial space
given in Definitions 1.4.9 and Construction 1.4.10 agree up to homeomor-
phism.

Remark 1.4.12. Note that the colimits in Construction 1.4.10 are computed
in Top. However, if the simplicial space X is valued in CGWH, then each
colimit computed in Construction 1.4.10 will land inside CGWH. This fact
will play a role in the proof of Proposition 1.4.13 below.

Using the sequential construction of the realisation of a simplicial space we
can prove that if a simplicial space is valued in CGWH then its realisation
is valued in CGWH.

Proposition 1.4.13. If X be a simplicial space valued in CGWH, then the
space |X| is compactly generated weakly Hausdorff.

Proof. By Lemma 3.3 in [28] to show |X| is compactly generated weak Haus-
dorff it is sufficient to show that for each n ≥ 0 the space |X|n is compactly
generated weak Hausdorff, and the map |X|n → |X|n+1 is a closed inclusion.
Note that |X|0 is compactly generated weak Hausdorff. Hence, proceeding
by induction, by Proposition 2.35 in [28], it is sufficient to show that for each
n the spaces ∂∆n×Xn ∪∆n× s(Xn−1) and |∆n| ×Xn in diagram (1.25) are
compactly generated weak hausdorff, and the inclusion map

∂|∆n| ×Xn ∪ |∆n| × s(Xn−1)→ |∆n| ×Xn

is a closed inclusion. By Proposition 2.6 in [28] the space Xn × |∆n| is
compactly generated weakly Hausdorff. Now, as the map disi : Xn−1 → Xn−1

is the identity, by Corollary 2.29 in [28], the space si(Xn−1) is closed in Xn.
Thus, as the spaces |∆n| × s(Xn−1) and ∂|∆n| ×Xn are closed in |∆n| ×Xn,
so is the space |∆n| × s(Xn−1) ∪ ∂|∆n| ×Xn. Thus, by Lemma 2.26 in [28],
the space |∆n|×s(Xn−1)∪∂|∆n|×Xn is compactly generated weak hausdorff
and the inclusion map

∂|∆n| ×Xn ∪ |∆n| × s(Xn−1)→ |∆n| ×Xn

is a closed inclusion.

The simplicial spaces we will consider in this thesis will often arise from
bisimplicial sets via geometric realisation. Let us introduce bisimplicial sets
and their realisations now.

Definition 1.4.14. A simplicial object X : ∆op → sSet in sSet is called a
bisimplicial set.
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Conventions 1.4.15. Note that we will adopt the following conventions
when discussing bisimplicial sets in the remainder of this thesis:

1. Given a bisimplicial set X, the set Xn,m will be called the set of (n,m)-
bisimplices of X.

2. The maps di : Xm,n → Xm−1,n and sj : Xm,n → Xm+1,n will be called
the horizontal face and degeneracy maps of X.

3. The maps di : Xm,n → Xm,n−1 and sj : Xm,n → Xm,n+1 will be called
the vertical face and degeneracy maps of X.

Construction 1.4.16. There is a functor

d : ssSet→ sSet

which sends bisimplicial sets X to the simplicial set dX whose set of n-
simplices is the set Xn,n. The functor d is called the diagonal functor.

Construction 1.4.17. There are 3 different ways to define the geometric
realisation of a bisimplicial set, and they are all equivalent up to natural
homeomorphism (see Section 1 in [24] for details). We will briefly outline
these three approaches now. To define the realisation |X| of the bisimplicial
set X note that if we fix an [n] we have that Xn,• is a simplicial set, and thus
has a realisation. Thus, there is a simplicial space [n] 7→ |Xn,•|. Similarly,
there is a simplicial space [n] 7→ |X•,n|. So, the realisation of the bisimplicial
set X could be defined to be the realisation of one of these two simplicial
spaces. Alternatively, we could first form the diagonal dX of X, take its
realisation, and define |dX| to be the realisation of X. It does not matter
which of these three definitions of realisation one chooses to use as it turns
out there are homeomorphisms

|dX| ∼= |[n] 7→ |Xn,•|| ∼= |[n] 7→ |X•,n||

natural in X.

Bisimplicial sets will make a few appearances in this thesis, and we will
only need to know how to take their realisation. Further discussion will be
provided on simplicial spaces in Chapter 3, simplicial monoids in Chapter 4,
and pointed simplicial sets in the next section. The only fact we will need
about simplicial groups is stated in Proposition 1.4.18 below.

Proposition 1.4.18. The underlying simplicial set of a simplicial group is
a Kan complex.

Proof. See Lemma 3.4 in [8].
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1.5 Pointed Simplicial Sets

As defined in the previous section, a pointed simplicial set is a functor
X : ∆op → Set∗. There are notions of suspension and loop space for pointed
simplicial sets. They are constructed by replacing all the pointed spaces in
the definitions of the suspension and loop space of a space with their pointed
simplicial analogues. In this section we will define the suspension and loop
space of a pointed simplicial set, and provide some intuition behind their
definitions.

Let us begin by giving a less abstract definition of pointed simplicial set.

Definition 1.5.1. A simplicial set X is pointed if there exists a distinguished
vertex x0. The point x0 is called the basepoint of (X, x0). We will write
(X, x0) for a pointed simplicial set or just X if x0 is understood. A pointed
simplicial map f : (X, x0)→ (Y, y0) is a simplicial map such that f(x0) = y0.
The category of pointed simplicial sets and maps is denoted sSet∗.

Remark 1.5.2. If (X, x0) is pointed then for each n the set of n-simplices
Xn has a canonical basepoint given by sn0 (x0).

To every simplicial set X there is a functorially associated pointed simplicial
set X+.

Definition 1.5.3. If X is a simplicial set let (X+, ∗) be the simplicial set X
equipped with a disjoint basepoint.

Construction 1.5.4. Definition 1.5.3 can be extended to define a functor

(−)+ : sSet→ sSet∗.

It is easy to show that the functor (−)+ is left adjoint to the forgetful functor

U(−) : sSet∗ → sSet.

Recall that the suspension of a pointed space is its smash product with the
1-sphere S1. Thus, to define the suspension of a pointed simplicial set by
replacing each space in the definition of the suspension of a space with their
simplicial analogue, we need to first construct simplicial analogues of the
smash product and the 1-sphere.

Recall that the smash product of two pointed spaces is given by their product
quotient their wedge. Hence, to define the smash product of two pointed
simplicial sets we need to first define their wedge.
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Definition 1.5.5. Let (X, x0) and (Y, y0) be pointed simplicial sets. Let
X ∨ Y be the pushout in the diagram

∆0 Y

X X ∨ Y

y0

x0

p
(1.27)

in sSet. The pointed simplicial set (X∨Y, [x0]) is called the wedge of (X, x0)
and (Y, y0).

Definition 1.5.6. Let (X, x0) and (Y, y0) be pointed simplicial sets. Define
the simplicial set

X ∧ Y := X × Y/X ∨ Y.

The pointed simplicial set (X ∧ Y, [x0, y0]) is called the smash product of
(X, x0) and (Y, y0).

Recall that the 1-sphere can be thought of as the unit interval with the
endpoints identified. Taking the simplicial unit interval to be ∆1, and its
endpoints to be ∂∆1, we can define the 1-sphere as a simplicial set.

Definition 1.5.7. Let S1 be the pushout in the diagram

∂∆1 ∆1

∆0 S1p
(1.28)

in sSet.

Remark 1.5.8. Note that the simplicial set S1 has a unique vertex, and so
has a canonical basepoint, denoted 0.

Definition 1.5.9. Let (X, x0) be a pointed simplicial set. Let ΣX be the
simplicial set

ΣX = X ∧ S1.

The pointed simplicial set (ΣX, [x0, 0]) is called the suspension of X.

Let’s now define the loop space of a pointed simplicial set. The loop space
ΩX of a pointed space X is simply the set of pointed maps from S1 into
X equipped with some topology. So, to define the loop space of a pointed
simplicial set X, we need to first construct a simplicial analogue for the space
of pointed maps from S1 into X.
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Definition 1.5.10. If X and Y are pointed simplicial sets let Hom∗(X, Y )
be the simplicial set whose set of n-simplices is the set

sSet∗(X ∧∆n
+, Y ).

The simplicial set Hom∗(X, Y ) is called the pointed function complex of X
and Y .

Remark 1.5.11. Note that Hom∗(X, Y ) has a canonical basepoint ωy0 given
by the pointed constant map X → Y .

The loop space of a pointed simplicial set X is hence defined as the pointed
function complex of S1 and X equipped with its canonical basepoint.

Definition 1.5.12. If (X, x0) is a pointed simplicial set, let ΩX be the
simplicial set Hom∗(S1, X). The pointed simplicial set (ΩX,ωx0) is called
the loop space of X.

Construction 1.5.13. There are functors

Ω : sSet∗ → sSet∗

and
Σ : sSet∗ → sSet∗,

which will both act on pointed simplicial maps in the obvious way.

Thus, we have defined the loop space and the suspension of a pointed sim-
plicial set. In the case of spaces the loop space and suspension functors are
adjoint. This is also true in the case of pointed simplicial sets, as one would
hope.

Proposition 1.5.14. The suspension functor Σ is left adjoint to the loop
space functor Ω.

Proof. There is a bijection

homsSet∗(X ∧ Y, Z) ∼= homsSet∗(X,Hom∗(Y, Z)).

natural in X, Y and Z (see Section 4.4 in [7]). Taking Y = S1 gives the
result.
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1.6 Model Categories and Model Structures

We will now conclude our discussion on the theory of simplicial sets by mak-
ing precise the notion that simplicial sets model topological spaces. This
notion is made precise through the use of model categories and homotopy
categories. In this section we discuss the basics of the theory of model cate-
gories and their homotopy categories, give some examples of model categories
that will be important in this thesis, and discuss the relationship between
the homotopy category of spaces and the homotopy category of simplicial
sets. The theory involved in formal discussions of these topics is technical, so
we will not go into much detail and will only outline the key results of interest.

Let us begin by defining closed model categories.

Definition 1.6.1. A closed model category is a category C, together with
three classes of maps called cofibrations, fibrations, and weak equivalences,
which satisfy the following axioms:

CM1: C has all limits and all colimits.

CM2: If the diagram

A B

C

f

g

h
(1.29)

commutes in C, and any of the two maps in diagram (1.29) are weak
equivalences, then the third map is also a weak equivalence.

CM3: If f is a retract of g and g is a weak equivalence/fibration/cofibration,
then f is a weak equivalence/fibration/cofibration.

CM4: If a diagram

A B

C D

i p (1.30)

commutes in C where i is a cofibration and p is a fibration, and if either
i or p is also a weak equivalence, then there exists a diagonal filler
C → B in diagram (1.30).

CM5: For all maps f : A→ B in C
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(i.) there exists a fibration p and a cofibration i that is also a weak
equivalence such that f = p ◦ i; and

(ii.) there exists a fibration q that is also a weak equivalence and a
cofibration j such that f = q ◦ j.

Remark 1.6.2. For ease of exposition we will now adopt the following con-
ventions: Fibrations (respectively, cofibrations) that are also weak equiva-
lences will be referred to as trivial fibrations (respectively, trivial cofibrations).
In diagrams weak equivalences will be denoted with

'−→,

fibrations will be denoted with
�,

and cofibrations will be denoted with

� .

The following property is enjoyed by all closed model categories:

Proposition 1.6.3. Let C be a closed model category. If X → Y is a cofi-
bration in C then the map Z → X ∪Y Z in the pushout diagram

X Z

Y X ∪Y Z
p

(1.31)

is also a cofibration.

Proof. See Corollary 1.3 on page 68 in [8].

In this thesis we will primarily encounter three different model category struc-
tures. These model category structures will exist on sSet, CGWH, and
ssSet. Let’s discuss these model category structures and their properties
now.

Theorem 1.6.4. There is a closed model category structure on sSet where
a simplicial map p : X → Y is:

(i) a fibration if it is a Kan fibration;

(ii) a cofibration if it is a monomorphism; and
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(iii) a weak equivalence if it is a weak homotopy equivalence.

Proof. See Section 1.11 in [8]

Definition 1.6.5. Let f : X → Y be a map in CGWH. The map f is
called a Hurewicz fibration if for every commutative diagram

A× {0} X

A× I Y

f (1.32)

in CGWH there is a map A× I → X filling diagram (1.32). The map f is
called a Hurewicz cofibration if for every homotopy H : X × I → Z and each
commutative diagram

X × {0} Z

Y × {0}

H

f (1.33)

in CGWH there is a homotopy H̃ : Y × I → Z such that the diagram

Y × {0} ∪X×{0} X × [0, 1] Z

Y × I
H̃

(1.34)

commutes.

Theorem 1.6.6. There is a closed model category structure on CGWH
where a continuous map f : X → Y is:

(i) a fibration if it is a Hurewicz fibration;

(ii) a cofibration if it is a closed map and a Hurewicz cofibration (a closed
Hurewicz cofibration for short); and

(iii) a weak equivalence if it is a homotopy equivalence.

Proof. See Theorem 4.4.4 in [23].

Some useful properties enjoyed by the model structure on CGWH are stated
in Proposition 1.6.7 below.

Proposition 1.6.7. Consider the closed model category structure on CGWH.
The following statements are true:
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1. If a map X → Y in CGWH is a Hurewicz cofibration then it is a
closed inclusion. In particular, X → Y is a cofibration.

2. Let A ⊆ X and B ⊆ Y be cofibrations. If A is closed in X, then
X ×B ∪ A× Y ⊆ X × Y is a cofibration.

Proof. Statement 1 is Problem 1 on page 48 in [21] and statement 3 is Corol-
lary 1 in [14].

Recall that |−| a S(−) adjunction. It turns out that the functors |−| and
S(−) respect the respective model structures on CGWH and sSet. This is
an instance of the more general fact that simplicial sets model spaces.

Proposition 1.6.8. Consider the |−| a S(−) adjunction. The following
statements are true:

1. For all spaces X the counit map |S(X)| → X is a weak homotopy
equivalence, and for all simplicial sets K the unit map K → S(|K|) is
a weak homotopy equivalence.

2. The functor |−| maps fibrations, cofibrations and weak equivalences
in sSet to fibrations, cofibrations and weak equivalences in CGWH,
respectively. That is, |−| respects the model structures on sSet and
CGWH.

3. The functor S(−) respects the model structures on CGWH and sSet.

Proof. Statement 1 is proven in Section 1.11 in [8]. Let’s now prove state-
ment 2 and 3 simultaneously. First, recall that the functor |−| preserves
weak equivalences (Remark 1.3.3). Now, |−| sends Kan fibrations to Serre
fibrations, as stated in Theorem 10.10 on page 57 in [8], and Serre fibrations
of CW-complexes are Hurewicz fibrations, so |−| maps fibrations to fibra-
tions. As S(−) clearly maps inclusions to cofibrations, and cofibrations in
CGWH are closed inclusions, S(−) maps cofibrations to cofibrations. To
see that S(−) preserves fibrations note if f : X → Y is a fibration then the
commutative diagram

Λn
k S(X)

∆n S(Y )

S(f) (1.35)
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induces a commutative diagram

|Λn
k | X

|∆n| Y.

f (1.36)

Thus, as there is a map |∆n| → X filling diagram (1.36) (f is a fibration),
the adjoint map ∆n → S(X) fills diagram (1.35). Hence, S(f) is a fibration,
and so S(−) preserves fibrations. If X → Y is a weak homotopy equivalence
of spaces there is a commutative diagram

|S(X)| X

|S(Y )| Y,

∼

∼

∼

(1.37)

where ∼ denotes a weak homotopy equivalence. Thus, as weak homotopy
equivalences satisfy the 2-out-of-3 property, |S(X)| → |S(Y )| is also a weak
homotopy equivalence, and hence a homotopy equivalence. Thus, S(−) pre-
serves weak equivalences, and hence also trivial fibrations. Thus, by adjoint-
ness, as S(−) preserves fibrations and trivial fibrations, we also have that
|−| preserves cofibrations. Hence, statements 2 and 3 are true.

Let us now discuss the model structure on ssSet.

Theorem 1.6.9. There is a closed model category structure on ssSet where
a map p : X → Y of bisimplicial sets is:

(i) a cofibration if it is a pointwise cofibration; that is, p is a cofibration if
for each n ≥ 0 the map pn : Xn → Yn is a cofibration of simplicial sets;

(ii) a weak equivalence if it is a pointwise weak equivalence; that is, p is a
weak if for each n ≥ 0 the map pn : Xn → Yn is a weak equivalence of
simplicial sets; and

(iii) a fibration if it is has the right lifting property (c.f. Definition 2.1.1)
with respect to all trivial cofibrations.

Proof. See Section 4.3.2 in [8].

Remark 1.6.10. Note that a map p : X → Y in ssSet is a cofibration if
and only p : Xn,m → Yn,m is an injective map for all n,m ≥ 0.
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The diagonal functor d : ssSet → sSet turns out to map cofibrations/weak
equivalences in ssSet to cofibrations/weak equivalences in sSet. These facts
will be very useful in Chapters 3 and 4.

Proposition 1.6.11. Consider the closed model category structures on sSet
and ssSet. The functor d : ssSet → sSet maps cofibrations to cofibrations
and weak equivalences to weak equivalences.

Proof. That the functor d maps cofibrations to cofibrations is clear. That d
maps weak equivalences to weak equivalences is Proposition 1.7 on page 199
in [8].

We are interested in the above model categories structures on sSet, CGWH,
and ssSet as much of the work we will do in Chapters 2–5 will take place
inside these categories. Their model structures and their properties will be
helpful as they will allow us to abstract away technical details.

Previously I claimed that model and homotopy categories make precise the
notion that simplicial sets model spaces. Let us begin understanding this
claim by first defining the homotopy category of a closed model category C.
Essentially, the homotopy category Ho(C) of a model category C is a category
in which the weak equivalences of C are isomorphisms. To construct such a
category, we need to define the localisation of a category.

Definition 1.6.12. Let CAT denote the category of categories. Let C be
a category and Σ a collection of maps in C. Considering Σ as a discrete
category, define the category L(C,Σ) to be the pushout in the diagram

Σ× [1] C

Σ×G([1]) L(C,Σ)
p

(1.38)

in CAT, where G([1]) is the category with 2 objects and a unique isomor-
phism between them. The category L(C,Σ) is called the localisation of C
with respect to Σ.

Proposition 1.6.13. All the maps in Σ are invertible in L(C,Σ). Further-
more, if C → D is a functor that makes all morphisms of C in Σ invertible,
then there exists a unique functor L(C,Σ)→ D such that the diagram

C

L(C,Σ) D

(1.39)



40 Chapter 1. Simplicial Sets and Homotopy Theory

commutes.

Proof. To prove the first statement of Proposition 1.6.13 let f be a map in
Σ. Then f also corresponds to a functor [1] → C. By construction, the
composite functor [1] → C → L(C,Σ) factors through G([1]). That is, the
image of f in Σ is invertible.

To prove the second part of Proposition 1.6.13 let F : C → D be a functor
that makes the morphisms of Σ invertible. Then let F ′ : L(C,Σ) → D be a
functor that maps objects c in C to F (c). The functor F ′ maps the maps
f in C to F (f), and maps their f−1 inverses in L(C,Σ)) (if they exist) to
(F (f))−1. The functor F ′ then makes diagram (1.39) then commute. The
functor F ′ is indeed then unique functor with this property. Why? If a
functor F ′′ : L(C,Σ) → D makes diagram (1.39) commute then F ′ and F ′′

must agree with F on objects, and must agree on maps as functors respect
isomorphisms.

Definition 1.6.14. Let C be a closed model category. The homotopy cate-
gory Ho(C) associated to C is the localisation of C with respect to the class
of weak equivalences of C.

Remark 1.6.15. Note that [8] provides a description in Section 2.1 of Ho(C)
that is more explicit than the one we have given. We shall not discuss this
construction here, as we have little utility for it.

Now, there are two different closed model category structures on CGWH.
The closed model category structure described in Theorem 1.6.6 is called
the Strøm model structure. The model category structure that we have not
described is called the Quillen model structure (see Section 2.4 in [10] for a
discussion on the Quillen model structure). In the Quillen model structure
weak homotopy equivalences are the weak equivalences. The Quillen model
structure is interesting as the S(−) a |−| adjunction induces an equivalence
between its homotopy category and the homotopy categories of sSet. So,
when people say (or mathematicians, rather) say that simplicial sets model
spaces what they mean precisely is that their homotopy categories are equiv-
alent, as stated in Theorem 1.6.16 below.

Theorem 1.6.16. The functors |−| and S(−) induce an equivalence of ho-
motopy categories

Ho(sSet) ' Ho(CGWH)

when CGWH is equipped with the Quillen model structure.
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Proof. This follows from Theorems 2.4.25 and 3.6.7 in [10]. Note that [10]
appeals to the notions of ‘Quillen adjunction’ and ‘Quillen equivalence’ ,
which we have not discussed here.

Intuitively Theorem 1.6.16 says that to understand the homotopy theory of
spaces, it is sufficient to understand the homotopy theory of simplicial sets.
That is, simplicial sets model spaces!
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Chapter 2

Simplicial Covering Theory

Topological covering spaces are interesting objects studied in algebraic topol-
ogy. Loosely, a topological covering over a base space X is a family of sets
parametrised by the points in X. The study of covering spaces with base
space X is closely connected with the study of the fundamental group of
X. The connection is a consequence of the fact that there is an equiva-
lence of categories Cov(X) ' [Π1(X),Set], where Cov(X) is the category
of topological covering spaces over a locally path connected space X, and
Π1(X) is the fundamental groupoid of X. In particular, topological covering
spaces depend only on the homotopy 1-type of their base space. Thus, as
the homotopy theory of simplicial sets models the homotopy theory of topo-
logical spaces, it is reasonable to assume that there exists simplicial models
for topological covering spaces, called simplicial coverings. In this chapter
we will define simplicial coverings and describe some of their theory.

We will begin this chapter by defining simplicial coverings, and discussing
some of their basic properties, in Section 2.1. In Section 2.2 we will show
that all simplicial coverings are Kan fibrations. In Section 2.3, we will discuss
the definition of simplicial covering given by Gabriel and Zisman in [7], and
show that their definition is equivalent to our own. Sections 2.4 and 2.5 will
then be dedicated to proving that the category of simplicial coverings over
a simplicial set X, denoted Cov(X), is equivalent to the functor category
[Π1(X),Set], where Π1(X) is the fundamental groupoid of X. This equiva-
lence will be the simplicial analogue of the equivalence of categories discussed
in the paragraph above. This chapter will then be concluded in Section 2.6
where we will show that restricting the equivalence Cov(X) ' [Π1(X),Set]
to the core FinCov(X)' of the category of simplicial coverings with finite
fibres yields an equivalence of categories FinCov(X)' ' [Π1(X),FinSet'].

43
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The key takeaway from this chapter will be the equivalence of categories
FinCov(X)' ' [Π1(X),FinSet']. This result will be useful in Chapter
5 when we identify the stable homotopy type of the Algebraic K-theory
spectrum of FinCov(X)'.

2.1 Simplicial Coverings

In this section we will define what it means for a simplicial map p : Y → X
to be a simplicial covering over X, and discuss three properties that are
enjoyed by simplicial coverings. Comparisons between these properties and
analogous properties enjoyed by topological coverings will also be made.

We begin this section with a standard definition.

Definition 2.1.1. Let p : Y → X and i : T → S be simplicial maps. The
map p has the (unique) right lifting property with respect to i if for each
commutative diagram

T Y

S X

i p (2.1)

in sSet there exists a (unique) simplicial map S → Y such that the diagram

T Y

S X

i p (2.2)

commutes.

Definition 2.1.2. Let n ≥ 0. The simplicial map 0n : ∆0 → ∆n induced by
the map

0n : [0]→ [n], 0n(0) := 0

in ∆ is called the inital vertex map of ∆n. The simplicial map nn : ∆0 → ∆n

induced by the map
nn : [0]→ [n], nn(0) := n

in ∆ is called the final vertex map of ∆n.

Definition 2.1.3. A simplicial map p : Y → X is called a simplicial covering
over X if it has the unique right lifting property with respect to all initial
and final vertex maps 0n : ∆0 → ∆n and nn : ∆0 → ∆n.
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Remark 2.1.4. In this chapter we will often consider the vertex Y (k)(y),
where k : [0] → [n] is a map in ∆ mapping 0 to k, n ≥ 0, 0 ≤ k ≤ n,
and y is an n-simplex of the simplicial set Y . For ease of exposition, for the
remainder of this thesis we shall denote such vertices Y (k)(y) with y(k).

Recall that if p : Y → X is a topological covering space then the fibre Y |x of
p : Y → X over a point x in X is defined as the pullback in the diagram

Y |x Y

• X.

y p

x

(2.3)

By replacing all the spaces in the definition of a fibre of a topological covering
with their simplicial analogues, we can define the fibre of a simplicial covering.
We can then show that the fibres of simplicial coverings enjoy two properties
analogous to those enjoyed by the fibres of covering spaces.

Definition 2.1.5. Let p : Y → X be a simplicial covering and let x ∈ X be
a vertex. The fibre of p : Y → X over the vertex x is the simplicial set Y |x
defined by the pullback diagram

Y |x Y

∆0 X.

y
p

x

(2.4)

in sSet.

The fibres of a topological covering are by definition discrete. As constant
simplicial sets realise to discrete spaces, defining a simplicial set to be discrete
if it is isomorphic to a constant simplicial set will allow us to show that fibres
of simplicial coverings are also discrete.

Definition 2.1.6. Let S be a simplicial set. The simplicial set S is discrete
if it isomorphic to a constant simplicial set.

Proposition 2.1.7. If p : Y → X is a simplicial covering then the fibres of
p are discrete simplicial sets.

Proof. To prove Proposition 2.1.7 it is sufficient to show:

1. simplicial coverings are stable under pullback; and

2. simplicial coverings over ∆0 are discrete.
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Statement 1 follows immediately from a well known lemma (Lemma 2.1.8),
and we will prove statement 2 in Lemma 2.1.9.

Lemma 2.1.8. Let p : Y → X be a simplicial map with the (unique) right
lifting property with respect to the simplicial map T → S. Then for all
simplicial maps Z → X the simplicial map Y ×X Z → Z in the pullback
diagram

Y ×X Z Y

Z X

y
p (2.5)

in sSet has the (unique) right lifting property with respect to T → S.

Lemma 2.1.9. If Y → ∆0 is a simplicial covering then Y is discrete.

Proof. We will exhibit an isomorphism between Y and the constant simplicial
set Y0. Given a vertex y of Y note that the diagram

∆0 Y

∆n ∆0

y

0n (2.6)

commutes. Hence, as Y → ∆0 is a simplicial covering, there exists a unique
n-simplex φ(y) such that the diagram

∆0 Y

∆n

y

0n
φ(y)

(2.7)

commutes. Thus, we can define the function

Y0 → Yn, y 7→ φ(y).

We can also define the function

Yn → Y0, x 7→ x(0).

For each n ≥ 0 the maps Y0 → Yn and Yn → Y0 are mutually inverse. Why?
If y is a vertex of Y then, by the commutativity of diagram (2.7), we have
that φ(y)(0) = y. Similarly, if x is an n-simplex of Y , φ(x(0)) is equal to
x, by uniqueness. Hence, the maps Y0 → Yn and Yn → Y0 are mutually
inverse. Thus, as the family of maps Yn → Y0 clearly commute with face and
degeneracy maps of Y and Y0, the simplicial set Y is discrete.
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Remark 2.1.10. By Proposition 2.1.7, as limits in functor categories are
computed pointwise, we can explicitly describe the fibre Y |x of the simplicial
covering p : Y → X over the vertex x as the constant simplicial set associated
to the set

{y ∈ Y0 : p0(y) = x}. (2.8)

Recall that topological coverings satisfy the following: if p : Y → X is a
topological covering, and if γ : x → y is a path in X, then the fibres Y |x
and Y |y are isomorphic. Taking p to be a simplicial covering, an analogous
result would be: if there exists a 1-simplex of v of X such that d0(v) = y and
d1(v) = x, then Y |x and Y |y are isomorphic. We will prove this result now.

Proposition 2.1.11. Let p : Y → X be a simplicial covering. If x and y
are vertices of X such that there exists a 1-simplex v with d0(v) = y and
d1(v) = x, then Y |x and Y |y are isomorphic.

Proof. Note that if z′ is an element of Y |x then there exists a unique diagonal
filler v′ in the diagram

∆0 Y

∆1 X.

z′

d1 pv′

v

(2.9)

Hence, we can define the function

Y |x → Y |y, z′ 7→ d0(v′).

Similarly, if z′′ is an element of Y |y then there exists a unique diagonal filler
v′′ in diagram

∆0 Y

∆1 X.

z′′

d0 pv′′

v

(2.10)

Hence, we can define the function

Y |y → Y |x, z′′ 7→ d1(v′′)

The functions Y |y → Y |x and Y |x → Y |y are mutually inverse. Why? If z′

is an element of Y |x, then note that the diagram

∆0 Y

∆1 X.

d0(v′)

d0 pv′

v

(2.11)
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commutes. Hence, the image of z′ under Y |x → Y |y → Y |x is d1(v′), which
is equal to z′ by the commutativity of diagram (2.9). Similarly, if z′′ is an
element of Y |y, the image of z′′ under Y |y → Y |x → Y |y is d0(v′′), which
is equal to z′′. Thus, Y |x → Y |y and Y |y → Y |x are mutually inverse, and
hence Y |x and Y |y are isomorphic sets.

Recall that all topological coverings of the unit interval are trivial. That is,
all coverings Y → I of I are isomorphic to the covering pr2 : Y |0×I → I over
I. Taking ∆1 to be the simplicial unit interval, we can state an analogous
result for simplicial coverings.

Proposition 2.1.12. Let Y → ∆1 be a simplicial covering. There is an
isomorphism S×∆1 '−→ Y , where S is some discrete simplicial set, such that
the diagram

S ×∆1 Y

∆1

'

(2.12)

commutes.

Proposition 2.1.12 will be easier to prove once we have developed some more
theory on simplicial coverings. We hence delay the proof until the end of
Section 2.5.
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2.2 Simplicial Coverings are Kan Fibrations

In this section we will show that all simplicial coverings are Kan fibrations.
While we shall seldom use this fact, it implies that the simplicial homotopy
theory covered in Section 1.3 can be applied to the study of simplicial cover-
ings. To prove that all simplicial coverings are Kan fibrations we will appeal
to some facts about anodyne maps and saturated classes. We will not use
anodyne maps and saturated classes elsewhere in this thesis, and have not
discussed them previously, so the reader is referred to Section 1.4 in [8] for a
comprehensive discussion of them.

To show that simplicial coverings are Kan fibrations we will need to find a
sufficient condition on saturated classes to ensure they contain the anodyne
maps in sSet.

Definition 2.2.1. Let M be a class of monomorphisms in a category C.
The class M is said to satisfy the right cancellation property if for all maps
u : a → b and v : b → c maps in C, u and v ◦ u belonging to M always
implies that v is in M.

Lemma 2.2.2 [Lemma 3.7, Joyal-Tierney [11]]. Let M be a saturated
class of monomorphisms in sSet satisfying the right cancellation property.
If M contains every coface map di : ∆n → ∆n+1 then M contains the anodyne
maps.

Proof. See Lemma 3.7 in [11].

Lemma 2.2.3. If M is a saturated class of monomorphisms in sSet which
satisfies the right cancellation property, and contains all the initial and final
vertex maps, then M contains all the anodyne maps.

Proof. By Lemma 2.2.2 it is sufficient to show that M contains every coface
map di : ∆n → ∆n+1. Note that if n = 0 then d0 = 11, and d1 = 01. Hence,
M contains the coface maps d0 : ∆0 → ∆1 and d1 : ∆0 → ∆1. Inducting on
n, if j 6= 0 then 0n+1 = dj ◦0n, and hence dj : ∆n → ∆n+1 is in M. Similarly,
if j = 0 then nn+1 = d0 ◦ nn, so d0 : ∆n → ∆n+1 is also in M. Hence, M
contains every coface map.

We have thus found the previously alluded to sufficient condition on saturated
classes to ensure that they contain the anodyne maps in sSet. We will now
apply this sufficient condition to show that all simplicial coverings are Kan
fibrations.
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Proposition 2.2.4. The class of monomorphisms Mp in sSet with the
unique left lifting property with respect to a fixed simplicial covering p : Y →
X contains the anodyne maps.

Proof. First note as the map p : Y → X is a simplicial covering, Mp con-
tains all the initial and final vertex maps. Additionally, note that a class of
monomorphisms M in sSet with the unique left lifting property with respect
a fixed simplicial map is saturated (this is easy to check). Hence, by Lemma
2.2.3, it is sufficient to show that Mp satisfies the right cancellation property.
Let u : R→ T and v : T → S be maps in sSet such that u and v ◦ u are in
Mp. Suppose that the diagram

T Y

S X

v

x

p

y

(2.13)

commutes. There then exists a unique map ! : S → Y making the diagram

R Y

S X.

v◦u

x◦u

p!

y

(2.14)

commute. Then as the diagrams

R Y

T X

u

x◦u

px

y◦v

(2.15)

and
R Y

T X

u

x◦u

p!◦v

y◦v

(2.16)

commute, by uniqueness, we have x =! ◦ v. Hence, the diagram

T Y

S X

v

x

p

y

! (2.17)

commutes. Furthermore, the map ! is unique as any map filling diagram
(2.17) also fills (2.14), and so is equal to !. Thus, the map v has the unique left
lifting property with respect to p. Hence, Mp satisfies the right cancellation
property.
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Proposition 2.2.5. Every simplicial covering is a Kan fibration.

Proof. By Proposition 2.2.4 all simplicial coverings have the right lifting
property with respect to all anodyne maps. Thus, all simplicial coverings
are Kan fibrations.

Remark 2.2.6. The converse of Proposition 2.2.5 is not true in general.
To see this, simply consider a topological space with a non-discrete total
singular complex - S1, for example. Then S(S1) → ∆0 is a Kan fibration.
But if S(S1) → ∆0 was also a simplicial covering then S(S1) would be a
discrete simplicial set (Lemma 2.1.9).
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2.3 Gabriel and Zisman Simplicial Coverings

In the book ‘Calculus of Fractions and Homotopy Theory’ ([7]) Gabriel and
Zisman give a definition of simplicial covering that is apparently stronger
than Definition 2.1.3, and develop some theory using this definition. In this
section we will state Gabriel and Zisman’s definition of simplicial covering
and show that it is equivalent to our own.

Definition 2.3.1. A simplicial map p : Y → X is called a Gabriel Zisman
simplicial covering if it has the unique right lifting property with respect to
all maps ∆0 → ∆n.

Proposition 2.3.2. A simplicial map p : Y → X is a simplicial covering if
and only if it is a Gabriel Zisman simplicial covering.

Proof. It is clear that all Gabriel Zisman simplicial coverings are simplicial
coverings, so we only need to show that all simplicial coverings are Gabriel
Zisman simplicial coverings. Let p : Y → X be a simplicial covering, and
suppose the diagram

∆0 Y

∆n X

y

k p

σ

(2.18)

commutes, where 0 < k < n. Observe that the diagram

∆0 Y

∆n−k X

y

0 p

σ|
∆{k,...,n}

(2.19)

also commutes, where ∆{k,...,n} is the simplicial subset of ∆n corresponding
to the nerve of the full subcategory of [n] spanned by k, ..., n. Hence, as p
is a simplicial covering, there is a unique map v : ∆n−k → Y filling diagram
(2.19). Similarly, there is a unique diagonal filler u : ∆n → Y in the diagram

∆0 Y

∆n X.

v(n−k)

n pu

σ

(2.20)
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Now note that the diagrams

∆0 Y

∆n−k X,

v(n−k)

n−k p
u′

σ|
∆{k,...,n}

(2.21)

where u′ = u|∆{k,...,n} , and

∆0 Y

∆n−k X.

v(n−k)

n−k p
v

σ|
∆{k,...,n}

(2.22)

commute, as u(n) = v(n − k). Hence, v = u′, by uniqueness. Thus,
u(k) = v(0) = y, and so u is a diagonal filler for diagram (2.18). To see
that u is unique, suppose there exists a simplicial map z : ∆n → X filling
diagram (2.18). Then z|∆{k,...,n} fills diagram (2.19), and hence is equal to
v, by uniqueness. Thus as z(n) = z|∆{k,...,n}(n − k) = v(n − k), the map
z : ∆n → Y also fills diagram (2.20). The map z is hence equal to u, by
uniqueness. Thus, the simplicial covering p : Y → X has the unique right
lifting property with respect to all maps ∆0 → ∆n for 0 < k < n.

By Proposition 2.3.2, any of the theory developed for Gabriel Zisman simpli-
cial coverings in [7] can also be applied to the simplicial coverings discussed
in this thesis.
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2.4 The Fundamental Groupoid

When one studies the homotopy theory of topological spaces one quickly en-
counters the concept of the ‘fundamental groupoid’ of a space. There is of
course an analogous concept for simplicial sets which yields an equivalence
of groupoids when passing to realisation (c.f. Proposition 2.4.10). In this
section we will define the fundamental groupoid of a simplicial set X in two
different ways, without appealing to the realisation of X, and show that they
are equivalent as groupoids. Both such definitions will appeal to a construc-
tion known as the ‘free groupoid’ on a category.

As both of our definitions of the fundamental groupoid of a simplicial set will
appeal to the free groupoid on a category, let us begin by defining the free
groupoid on a category.

Definition 2.4.1. Let C be a category. Let G(C) be the category whose
objects are the objects of C. The maps in G(C) are the maps of C and their
formal inverses. The maps in G(C) are composed by concatenation. The
category G(C) is called the free groupoid on C.

The reader may wonder why G(C) is called the free groupoid on X. The
reason for this is as follows: Recall that if some ‘forgetful’ functor has a
left adjoint, then the left adjoint is often called a free functor. Thus, as the
induced functor G(−) : Cat → Gpd is left adjoint to the forgetful functor
i : Gpd ↪→ Cat (see Construction 2.4.2), it is a free functor.

Construction 2.4.2. The free groupoid on a category C can be charac-
terised as a left adjoint. Why? Clearly Definition 2.4.1 can be extended to
define a functor

G(−) : Cat→ Gpd.

Note that there is also functor

i : Gpd ↪→ Cat

which forgets that a category is a groupoid and includes it into the category
of categories. There is then a unit Id→ i ◦G which has C-component

C → G(C), C ↪→ G(C),

and a counit G ◦ i→ Id whose C ′-component

G(C ′)→ C ′
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acts as the identity on C ′ and sends the formal inverses of maps f in G(C ′)
to the inverse f−1 of f in C ′. That is, there is an adjunction G a i. Note
that the counit of this adjunction is a natural isomorphism which reflects the
fact that i is fully faithful. Hence, the functor G(−) can be characterised as
the left adjoint of the inclusion of groupoids into categories.

Remark 2.4.3. It is interesting to observe also that the functor i : Gpd ↪→
Cat also has a right adjoint (−)' : Cat→ Gpd. The functor (−)' maps a
category C to the category C' which contains only the objects and isomor-
phisms of C. The category C' is called the core of C.

Recall that the fundamental groupoid Π1(X) of a space X encapsulates its
homotopy 1-type. Also recall from Chapter 1 that the homotopy 1-type of
a simplicial set X depends only on its 2-skeleton. Hence, to give our first
definition of the fundamental groupoid of a simplicial set X, following Goerss
and Jardine in [8], we first define the path category P∗X, which is constructed
using only the 2-skeleton of X. The fundamental groupoid of X will then be
defined as the free groupoid on P∗X.

Definition 2.4.4. Let X be a simplicial set. Let P∗X be the category whose
objects are the vertices of X. Maps in P∗X are strings of 1-simplices of X

d1(v0) d0(v0) = d1(v1) ... d0(vn−1)
v0 v1 vn−1

subject to the relation: for each 2-simplex σ of X, the diagram

v1

v0 v2

d0σd2σ

d1σ

(2.23)

commutes in P∗X. The category P∗X is called the path category of X.

Remark 2.4.5. Recall that in Section 1.1.3 we mentioned the nerve functor
N : Cat → sSet has a left adjoint. The left adjoint turns out to be the
functor

P∗(−) : sSet→ Cat

induced by mapping simplicial sets X to P∗X.

Definition 2.4.6. Let X be a simplicial set. Let Π1(X) be the category
G(P∗X). The category Π1(X) is called the fundamental groupoid of X.
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Our second definition of the fundamental groupoid will utilise the simplex
category ∆/X of X (recall Definition 1.2.5), and hence will be constructed
using all the simplices of X, as well as the free groupoid construction.

Definition 2.4.7. Let X be a simplicial set. Let Π1(X) be the category
G(∆/X).

The following proposition shows that the two definitions of Π1(X) we have
given are interchangeable up to groupoid equivalence:

Proposition 2.4.8. Let X be a simplicial set. There is an equivalence of
groupoids

G(P∗X) ' G(∆/X).

Proof. See Theorem 1.1 on page 140 in [8].

Remark 2.4.9. Which definition of Π1(X) one should use depends on their
context. We note that G(∆/X) is best suited to the development of theory,
and G(P∗X) is best used when doing explicit calculations.

As simplicial sets act as combinatorial models for topological spaces it should
be the case that the groupoids Π1(X) and Π1(|X|) are equivalent for each
simplicial set X. This is the content of the following proposition:

Proposition 2.4.10. Let X be a simplicial set. There is an equivalence of
categories

Π1(X) ' Π1(|X|).

Proof. See Theorem 1.1 on page 140 in [8].
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2.5 An Equivalence of Categories

Recall the well known result that for all locally path connected spaces X
there is an equivalence of categories

Cov(X) ' [Π1(X),Set]. (2.24)

In this section we shall prove an analogous result for all simplicial sets X.
The meta-theorem afforded by this result is that the simplicial coverings over
X depend only on the homotopy 1-type of X, as is the case for spaces.

To prove a result for simplicial sets analogous to equation (2.24) we will find
an equivalence of categories between the category sSet/X, which contains
a category of simplicial coverings as a full subcategory, and the presheaf
category on ∆/X. Then, after restricting this equivalence to the subcategory
of sSet/X consisting of the simplicial coverings, and finding a relationship
between Π1(X) and a localisation of ∆/X, the result will follow.

Definition 2.5.1. Let X be a simplicial set. Let sSet/X denote the slice
category of sSet over X, i.e. let sSet/X be the category whose objects are
pairs (Y, σ) where Y is a simplicial set and σ : Y → X is a simplicial map.
Maps in sSet/X are simplicial maps f : Y → Y ′ such that the diagram

Y Y ′

X

f

σ

σ′
(2.25)

commutes.

Proposition 2.5.2. Let X be a simplicial set. There is an equivalence of
categories

sSet/X ' [(∆/X)op ,Set].

Proof. To prove Proposition 2.5.2 we will explicitly construct an equiva-
lence of categories. We will begin constructing an equivalence by construct-
ing a functor X(−) : [(∆/X)op,Set] → sSet/X. Given a functor F in
[(∆/X)op ,Set], let XF be the simplicial set whose set of n-simplices is the
set

(XF )n :=
∐
x∈Xn

F (x).

The face maps di and degeneracy maps sj of XF are the maps

di : (XF )n+1 → (XF )n, di((y, x)) :=
(
F (di)(y), di(x)

)
,
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and

sj : (XF )n → (XF )n+1, sj((y, x)) :=
(
F (sj)(y), sj(x)

)
,

where x ∈ Xn and y ∈ F (x). Also let σF : XF → X be the simplicial map
with n-component

σF : (XF )n → Xn, σ ((y, x)) := x.

Now, if α : F → G is a map in [(∆/X)op,Set], define the simplicial map
Xα : XF → XG with n-component

Xα : (XF )n → (XG)n, Xα(y, x) := (αx(y), x),

where αx denotes the x-component αx : F (x)→ G(x) of the map α : F → G.
The map Xα : XF → XG is a map in sSet/X as the diagram

XF XG

X

Xα

σF
σG

(2.26)

commutes. Hence, let X(−) : [(∆/X)op ,Set]→ sSet/X be the functor which
sends functors F in [(∆/X)op ,Set] to pairs (XF , σF ), and natural transfor-
mations α : F → G in [(∆/X)op ,Set] to maps Xα : XF → XG in sSet/X.

We will now construct a functor F(−,−) : sSet/X → [(∆/X)op,Set] that we
will show is a pseudo-inverse of X(−). Given an object (Y, σ) in sSet/X,
define the functor F(Y,σ) : (∆/X)op → Set which maps n-simplices x of X to
the sets

F(Y,σ)(x) := {y ∈ Yn : σ(y) = x}.

The functor F(Y,σ) sends simplicial maps θ : x→ y in ∆/X to the functions
Y (θ). If f : (Y, σ) → (Y ′, σ′) is a map in sSet/X define the natural trans-
formation Ff : F(Y,σ) → F(Y ′,σ′) whose component at x : ∆n → X in ∆/X is
defined by

Ff : F(Y,σ)(x)→ F(Y ′,σ′)(x), Ff (y) := f(y).

Hence, let F(−,−) : sSet/X → [(∆/X)op,Set] be the functor which sends
pairs (Y, σ) to the functors F(Y,σ) : (∆/X)op → Set, and sends the maps
f : (Y, σ)→ (Y ′, σ′) in sSet/X to the natural transformations Ff : F(Y,σ) →
F(Y ′,σ′).
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Let’s now show that the functors F(−,−) : sSet/X → [(∆/X)op,Set] and
X(−) : [(∆/X)op,Set] → sSet/X are pseudo-inverses. Let F : (∆/X)op →
Set be a functor. Observe that if x is an n-simplex of X then

F(XF ,σF )(x) = {y ∈ (XF )n : σF (y) = x}

= {y ∈
∐
z∈Xn

F (z) : σF ((y, z)) = x}

∼= F (x),

where the last isomorphism is natural in x. Now let (Y, σ) be a pair in
sSet/X. Then

(XF(Y,σ)
)n =

∐
x∈Xn

F(Y,σ)(x)

=
∐
x∈Xn

{y ∈ Yn : σ(y) = x}

∼= Yn,

where again the last isomorphism is natural. Thus, the functors F(−,−) and
X(−) are pseudo-inverses.

Thus, we have that the categories sSet/X and [(∆/X)op,Set] are equivalent.
Using this result, we will now relate the full subcategory of sSet/X that only
contains simplicial coverings to a full subcategory of [(∆/X)op,Set].

Definition 2.5.3. Let Cov(X) be the full subcategory of sSet/X spanned
by simplicial coverings p : Y → X.

Definition 2.5.4. Let [(∆/X)op,Set]∗ be the full subcategory of
[(∆/X)op,Set] spanned by functors which send all initial and final ver-
tex maps to isomorphisms. In other words, F : (∆/X)op → Set belongs
to the subcategory [(∆/X)op,Set]∗ if and only if for all n ≥ 0 the maps
F (0n : ∆0 → ∆n) and F (nn : ∆0 → ∆n) are isomorphisms.

Proposition 2.5.5. The category [(∆/X)op,Set]∗ is equivalent to Cov(X).

Proof. By Proposition 2.5.2 it is sufficient to show:

1. The image of the functor F(−,−) : sSet/X → [(∆/X)op,Set] restricted
to Cov(X) is contained in [(∆/X)op,Set]∗.

2. The image of the functor X(−) : [(∆/X)op,Set] → sSet/X restricted
to [(∆/X)op,Set]∗ is contained in Cov(X).
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We prove 1. Let p : Y → X be a simplicial covering and consider F(Y,p) :
(∆/X)op → Set. Suppose 0n : x→ y is an initial vertex map in ∆/X — i.e.
suppose y is an n-simplex of X such that y(0) = x. Then if z is in F(Y,p)(x)
the diagram

∆0 Y

∆n X

z

0n p

y

(2.27)

commutes. Hence, there is a unique diagonal filler z′ : ∆n → Y in diagram
(2.27). The mapping

z 7→ z′

then defines a function mutually inverse to F(Y,p)(0n), as p : Y → X is a
simplicial covering. Hence, the function F(Y,p)(0n) is an isomorphism. An
identical argument can be made to show that all final vertex maps in ∆/X
are mapped to isomorphisms.

We prove 2. Let F : (∆/X)op → Set be a functor in [(∆/X)op,Set]∗ and
consider (XF , σF ). Now suppose the diagram

∆0 XF

∆n X

0n

xF

σF

x

(2.28)

commutes, and let φ : F (x(0)) → F (x) be the mutual inverse of F (0n) :
F (x) → F (x(0)). Note that the commutativity of diagram (2.28) implies
that xF is in F (x(0)). Hence φ(xF ) : ∆n → XF is a unique diagonal filler
for the diagram (2.28). Thus, σF : XF → X is a simplicial covering.

We will now relate the fundamental groupoid Π1(X) of a simplicial set X to
∆/X by appealing to a certain localisation (recall Definition 1.6.12) of ∆/X.

Remark 2.5.6. In the following discussion we will want to refer to the
localisation of ∆/X with respect to the initial and final vertex maps 0n :
∆0 → ∆n and nn : ∆0 → ∆n (for all n ≥ 0) in ∆/X. For simplicity, this
category will be denoted L(∆/X, {0n, nn}).

Proposition 2.5.7. Let X be a simplicial set. Then

L(∆/X, {0n, nn}) = G(∆/X).
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Proof. Clearly L (∆/X, {0n, nn}) and G(∆/X) have the same objects. Then,
as all the maps in ∆/X can be factored into coface and codegeneracy maps di

and sj (Lemma 1.1.8), to prove Proposition 2.5.7 it is sufficient to show that
all the maps di and sj are invertible in L(∆/X, {0n, nn}). But this follows
from the following three equations:

nn+1 = d0 ◦ nn (2.29)

0n+1 = di ◦ 0n for i > 0 (2.30)

0n = sj ◦ 0n+1. (2.31)

Remark 2.5.8. We have hence found a new way of describing the fundamen-
tal groupoid Π1(X) of X. That is, Π1(X) can be taken to be the category
L(∆/X, {0n, nn}). For the remainder of this thesis, we will adopt this de-
scription of Π1(X).

Finding the above precise relationship between Π1(X) and ∆/X puts us in
a position to prove a simplicial analogue to equation (2.24).

Theorem 2.5.9. Let X be a simplicial set. There is an equivalence of cate-
gories

Cov(X) ' [Π1(X),Set].

Proof. By Proposition 2.5.5 we have the equivalence of categories

Cov(X) ' [(∆/X)op,Set]∗.

Using Proposition 1.6.13 is easy to see that there is an isomorphism

[(∆/X)op,Set]∗ ∼= [L(∆/X, {0n, nn})op,Set].

Hence, Cov(X) ' [L(∆/X, {0n, nn})op,Set]. Then, by Proposition 2.5.7,
we have an equivalence Cov(X) ' [G(∆/X)op,Set]. But as G(∆/X)
is a groupoid we have G(∆/X)op ∼= G(∆/X), and hence Cov(X) '
[G(∆/X),Set].

In proving Theorem 2.5.9 two functors F(−,−) : Cov(X)→ [Π1(X),Set] and
X(−) : [Π1(X),Set]→ Cov(X) were constructed. Understanding the actions
of these functors in some detail will be helpful in Section 2.6, and in proving
Proposition 2.1.12. Let’s unwind the actions of the functors F(Y,p) and X(−)

now.
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Construction 2.5.10. To prove Theorem 2.5.9 we constructed two functors
F(−,−) : Cov(X) → [Π1(X),Set] and X(−) : [Π1(X),Set] → Cov(X) and
showed that they are pseudo-inverses. The functor F(−,−) : Cov(X) →
[Π1(X),Set] maps the simplicial covering (Y, p) over X to the functor F(Y,p) :
Π1(X)→ Set. The functor F(Y,p) maps the n-simplices x of X to the set

F(Y,p)(x) = {y ∈ Yn : p(y) = x}.

How the functor F(Y,p) acts on maps in Π1(X) is difficult to describe. Thank-
fully, we shall seldom need such a concrete description in this thesis, so we
will not give one here.

The functor X(−) : [Π1(X),Set] → Cov(X) maps functors F to simplicial
coverings (XF , σF ). The simplicial set XF has the set of n-simplices

(XF )n =
⊔
x∈Xn

F (x),

and sends the maps f : [n]→ [m] in ∆ to the functions

XF (f) : Xm → Xn, XF (f)(x, z) := (F (f−1)(x), X(f)(z)),

where f−1 is a map in L(∆/X, {0n, nn}). The simplicial map σF : XF → X
has n-component

σF : (XF )n → Xn, σF (x, z) := z.

We will now conclude this section by proving Proposition 2.1.12 using The-
orem 2.5.9.

Proof. As ∆1
(−) : [Π1(∆1),Set]→ Cov(∆1) is essentially surjective, to prove

Proposition 2.1.12 it is sufficient to show that for all functors F : Π1(∆1)→
Set the simplicial covering ∆1

F is isomorphic to ∆1 × F (Id[1]) in Cov(∆1).
Note that if f : [n]→ [1] is a map in ∆ then the diagram

∆1 ∆n

∆1

Id
f

f
(2.32)
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commutes in the simplex category ∆/∆1 of ∆1, and hence in Π1(∆1). Hence,
there is an isomorphism of sets F (f) : F (f) → F (Id[1]). Thus, let ∆1

F →
∆1 × F (Id[1]) be the simplicial map with n-component

(∆1
F )n → ∆1

n × F (Id[1]), (x, f) 7→ (f, F (f)(x)).

The simplicial map ∆1
F → ∆1 × F (Id[1]) is mutually inverse to the map

∆1 × F (Id[1])→ ∆1
F with n-component

∆1
n × F (Id[1])→ (∆1

F )n, (f, x) 7→ (F (f)−1(x), f),

and hence is an isomorphism of simplicial sets. Thus, as the diagram

∆1
F ∆1 × F (Id[1])

∆1

∼=

(2.33)

commutes, we have ∆1
F
∼= ∆1 × F (Id[1]) in Cov(∆1).
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2.6 Finite Sheeted Covering Spaces

In this section we will define what it means for a simplicial covering to be
finite sheeted. We will then consider how restricting to the core of the full
subcategory of Cov(X) spanned by finite sheeted covering spaces changes
Theorem 2.5.9.

Definition 2.6.1. A simplicial covering p : Y → X is called a finite sheeted
simplicial covering if the fibres of p : Y → X are finite sets.

Definition 2.6.2. Let FinCov(X) be the full subcategory of Cov(X) spanned
by finite sheeted covering spaces.

Restricting Cov(X) to FinCov(X) changes Theorem 2.5.9 in the obvious
way (as stated in Corollary 2.6.3), as does restricting to FinCov(X)' (stated
in Corollary 2.6.4).

Corollary 2.6.3. Let X be a simplicial set. There is an equivalence of
categories

FinCov(X) ' [Π1(X),FinSet].

Proof. By Theorem 2.5.9 it is sufficient to show:

1. The image of the functor Cov(X)→ [Π1(X),Set] restricted to FinCov(X)
only contains functors which are valued in the category FinSet.

2. The image of the functor [Π1(X),Set]→ Cov(X) restricted to functors
which are valued in the category FinSet is contained in FinCov(X).

1. Let σ : Y → X be a finite sheeted simplicial covering. Let x be a 0-
simplex of X and note that F(Y,σ)(x) is equal to the finite set Y |x. Hence, if
y is an n-simplex of X, as F(Y,σ) ((d0)n) : F(Y,σ) ((d0)n(y)) → F(Y,σ) (y) is an
isomorphism, F(Y,σ)(y) is finite. Hence, F(Y,σ) is a functor in [Π1(X),FinSet].

2. Let F : Π1(X)→ FinSet be a functor, and let x be a vertex of X. Then
the set XF |x is equal to the finite set F (x). Hence, XF is a finite sheeted
simplicial covering.

Corollary 2.6.4. Let X be a simplicial set. There is an equivalence of
categories

FinCov(X)' ' [Π1(X),FinSet'].

Proof. The result follows from Corollary 2.6.3 and Lemma 2.6.5 (stated be-
low).
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Lemma 2.6.5. If C is a category and G is a groupoid then [G,C]' = [G,C'].

Proof. Observe that the objects of [G,C]' and [G,C'] are the same. Thus,
as a natural transformation α : F → G in [G,C] is an isomorphism if and
only if the map αg : F (g)→ G(g) is an isomorphism for all g in G, we have
[G,C]' = [G,C'].

Remark 2.6.6. Recall that a category is said to be essentially small if it
is equivalent to small category. Hence, an immediate corollary of Corollary
2.6.4 is that the category FinCov(X)' is essentially small. This is because
Π1(X) is small, FinSet' is equivalent to the small category

∐
n≥0 Σn, where

Σn is the group of automorphisms on n, and functor categories between small
categories are small.

The equivalence of categories

FinCov(X)' ' [Π1(X),FinSet']

lays the foundation of the work to be done in Chapter 5 where the stable
homotopy type of the stable homotopy type of the Algebraic K-theory spec-
trum of FinCov(X)' will be identified, once a nice assumption is placed on
the simplicial set X.
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Chapter 3

Algebraic K-theory: H-spaces,
Spectra, and Γ-Spaces

In his seminal 1974 paper ‘Categories and Cohomology Theories’ Segal in-
troduced the notion of the Algebraic K-theory spectrum of a small per-
mutative category. Put simply, a permutative category is a category C
equipped with a composition which obeys associativity, identity, and com-
mutativity laws. The Algebraic K-theory spectrum of C is a sequence of
spaces BKC = {BKCn}n∈N that is constructed using only the data of C.
Each space is related via a closed inclusion BKCn ↪→ ΩBKCn+1 that is a
homotopy equivalence if n ≥ 1. Segal’s method of associating the Algebraic
K-theory spectrum BKC to C is of course functorial. In the next 2 chapters
we will give a presentation of Segal’s theory. In doing so we will also allow
for the Algebraic K-theory spectra of symmetric monoidal categories (a class
of categories broader than the class of permutative categories) to be defined
(following Mandell in [18]).

To understand how to construct the Algebraic K-theory spectrum of a sym-
metric monoidal category an understanding of three notions is required.
These three notions are the notions of H-spaces, spectra, and Γ-spaces. We
will study H-spaces and their group completions in Sections 3.1 and 3.2.
Spectra will be studied in Section 3.3, and in Section 3.4 we will discuss a
special class of spectra called infinite loop spaces. We will discuss Γ-spaces
in Section 3.6, but only once we have rectified some issues concerning the
realisation of simplicial spaces in Section 3.5. Finally, in Section 3.7, we will
combine much of the theory discussed in Sections 3.1–3.6 to functorially as-
sociate a spectrum with some nice properties to every Γ-space.

The key takeaways of this chapter will be an understanding of H-spaces,

67
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spectra, Γ-spaces, and the functor that sends Γ-spaces to spectra. These
takeaways will be built on in the next chapter.

3.1 H-Spaces and their Group Completions

In this section we will review some of the basic theory of H-spaces. In partic-
ular, we will discuss what it means to group complete a homotopy commuta-
tive H-space, and how it relates to the group completion of a monoid. Note
that in this section, and in Section 3.2, we shall assume all spaces, maps, and
products live inside CGWH.

We begin by defining what it means for a space to be an H-space.

Definition 3.1.1. Let X be space. If there exists a point e in X and a map

m : X ×X → X

such that the diagrams

X ×X ×X X ×X

X ×X X

Id×m

m×Id

m

m

(3.1)

and

X X ×X X

X

Id×e

Id
m

e×Id

Id
(3.2)

commute up to homotopy, then X is called an H-space. The point e is called
the identity of the H-space X, and m is called the multiplication map of X.
If the diagram

X ×X X ×X

X

µ

m m (3.3)

also commutes up to homotopy, where µ is the map

µ : X ×X → X ×X, µ(x, y) := (y, x)
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then M is called a homotopy commutative H-space. If there also exists a
map ν : M →M such that the diagram

X X ×X X

X

Id×ν

e
m

ν×Id

e
(3.4)

commutes up to homotopy, then X is said to have a homotopy inverse.

Essentially, an H-space is a topological monoid where the associativity and
identity laws hold up to homotopy. Such spaces will arise quite naturally
when studying the Algebraic K-theory spectrum of a symmetric monoidal
category, as we shall see later.

Thinking of an H-space as a topological monoid up to homotopy gives an
obvious notion of H-space map and H-space equivalence.

Definition 3.1.2. Let X and X ′ be homotopy commutative H-spaces. A
map f : X → X ′ is an H-space map if the diagrams

X ×X X

X ′ ×X ′ X ′

m

f×f f

m′

(3.5)

and
• X

X ′

e

e′
f (3.6)

commute up to homotopy. An H-space map that is also a homotopy equiv-
alence is called an H-space equivalence.

To define what it means to group complete a homotopy commutative H-
space X we will want to draw upon our understanding of what it means to
group complete an abelian monoid. This is most easily done by functorially
associating an abelian monoid to X.

Proposition 3.1.3. If X is a homotopy commutative H-space with multi-
plication map m, then π0(X) has the structure of an abelian monoid, where
π0(X) is the set of path components of X. Furthermore, if X has a homotopy
inverse then π0(X) is an abelian group.
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Proof. There is an induced multiplication map on π0(X)

m : π0(X)× π0(X)→ π0(X), [x][y] 7→ [m(x, y)].

Using the homotopies that make diagrams (3.1) − (3.3) commute, one can
show that this map is unital, associative, and commutative. For example,
to see that m has an identity in π0(X) recall that there is a homotopy H :
I ×X → X from m(e,−) to Id. Fixing an x gives us a path from m(e, x) to
x. Hence, [m(e, x)] = [x]. Similarly, the homotopy that makes diagram (3.4)
commute shows that if X has a homotopy inverse then the induced map

ν : π0(X)→ π0(X)

gives π0(X) the structure of a group.

We want to define the group completion of a homotopy commutative H-
space X to be an H-space map X → Y such that the induced map π0(X)→
π0(Y ) is a group completion. However, for technical reasons which we will
not discuss here, to ensure the group completion of an H-space has useful
properties we require it satisfies an additional axiom on homology.

Definition 3.1.4. Let X be a homotopy commutative H-space. A group
completion of X is an H-space map X → Y such that:

1. the induced map π0(X)→ π0(Y ) is a group completion of π0(X); and

2. the homology ring H∗(Y ;R) is isomorphic to the localised homology
ring H∗(X;R)[π0(X)−1], for all commutative rings R.

There is a general method for constructing group completions of homotopy
commutative topological monoids, which we will briefly outline now (see Sec-
tion 15 of [20] for details). This general construction will be useful later when
discussing the Algebraic K-theory space of a symmetric monoidal category.

Construction 3.1.5. LetX be a homotopy commutative topological monoid.
Let NX be the simplicial space whose space of n-simplicies is the space Xn.
The face and degeneracy maps of NX are the maps

di : Xn+1 → Xn, di((x0, ..., xn)) :=


(x1, ..., xn), i = 0

(x0, ..., xi+1xi, ..., xn), 0 < i < n+ 1

(x0, ..., xn−1), i = n+ 1

and

sj : Xn → Xn+1, sj((x0, ...xn−1)) := (x0, ..., e, xj, ..., xn−1).
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Now recall Construction 1.4.10. Consider the diagram (1.25) for NX when
n = 1. As NX0 is a point so is s(NX0). So, the pushout diagram defining
|NX|1 is the same as the pushout diagram defining the suspension ΣX of
X. It follows that |NX| is isomorphic to ΣX. Therefore the canonical map
|NX|1 → BX := |NX| induces a map X → ΩBX by adjointness.

Theorem 3.1.6. Let X be a homotopy commutative topological monoid. The
canonical map X → ΩBX is a group completion of X.

Proof. See Theorem 15.1 in [20].
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3.2 Numerably Contractible H-spaces

Observe that in Section 3.1 it was never asserted that if X → Y is a group
completion of an H-space X, then Y would have some group-like struc-
ture. In particular, it is not required that Y have a homotopy inverse. This
seems at odds with the analogy made with the group completions of monoids.
Hence, in the following section we will use some of the theory of numerably
contractible spaces and fibre homotopy equivalences to give a sufficient con-
dition on H-spaces to ensure that they have homotopy inverses, amplifying
a note made by Segal in [27].

Let us begin this section by reviewing the definitions of numerably con-
tractible space and fibre homotopy equivalence.

Definition 3.2.1. Let X be a space. The space X is called numerably
contractible if

1. it has an open cover {Ui}i∈I such that the inclusion maps Ui ↪→ X are
nulhomotopic; and

2. there is a partition of unity {ρi}i∈I subordinate to {Ui}i∈I .

Definition 3.2.2. Let p : E → X and q : E ′ → X be maps of spaces. A
homotopy H : E × I → E ′ is called a homotopy over X from H0 to H1 if for
each t the map Ht makes the diagram

E E ′

X

p

Ht

q
(3.7)

commute. A map f : E → E ′ making diagram (3.7) commute is called a
fibre homotopy equivalence if there exists a map g : E ′ → E making diagram
(3.7) commute and homotopies over X from f ◦ g to IdE′ and from IdE to
g ◦ f .

A homotopy equivalence f : E → E ′ making diagram (3.7) commute which is
also a homotopy equivalence when restricted to the fibres of p is not necessar-
ily a fibre homotopy equivalence. However, if X is numerably contractible,
and p and q are Hurewicz fibrations, then not only is this the case, but it is
a necessary and sufficient condition.
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Proposition 3.2.3 [Theorem 6.3, Dold [4]]. Let X be a numerably con-
tractible space and let p : E → X and q : E ′ → X be Hurewicz fibrations. A
map f : E → E ′ making the diagram

E E ′

X

p

f

q
(3.8)

commute is a fibre homotopy equivalence if and only if for all x in X the
restricted map

f |x : p−1{x} → q−1{x}
is a homotopy equivalence.

Proof. This follows immediately from Theorem 6.3 in [4] as Hurewicz fibra-
tions have the covering homotopy property, and hence the weak homotopy
covering property.

Proposition 3.2.3 then allows us to give the previously alluded to sufficient
condition on H-spaces to ensure that they have homotopy inverses.

Corollary 3.2.4. Let X be a homotopy commutative H-space with multipli-
cation map m and identity e. If X is numerably contractible and its monoid
of path components π0(X) is a group, then X has a homotopy inverse.

Proof. First define the map

ϕ : X ×X → X ×X, ϕ(x, y) := (x,m(x, y)).

We will show that the map ϕ is a fibre homotopy equivalence. Now, as the
diagram

X ×X X ×X

X

ϕ

pr1
pr1

(3.9)

commutes, and as the projection map pr1 : X × X → X is a Hurewicz
fibration, by Proposition 3.2.3, to show ϕ is a fibre homotopy equivalence it
is sufficient to show that for each x in X the map

ϕ|x : X → X, ϕ|x(y) := m(x, y)

is a homotopy equivalence. As π0(X) is a group, for all [x] in π0(X) there is
an [x∗] in π0(X) such that [x][x∗] is the identity in π0(X). That is, there is
a path γ : m(x∗, x) e in X. Hence, there is a homotopy

X × I → X, (z, t) 7→ m(γ(t), z)
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from the map m(m(x∗, x),−) to m(e,−). Thus,

ϕ|x ◦ ϕ|x∗ = m(x∗,m(x,−)) ∼ m(m(x∗, x),−) ∼ m(e,−) ∼ Id.

An identical argument will show that ϕ|x∗ ◦ ϕ|x ∼ Id. Hence, for each x in
X the map ϕ|x is a homotopy equivalence with homotopy inverse ϕ|x∗ , and
so ϕ is a fibre homotopy equivalence.

Let
φ : X ×X → X ×X, φ(x, y) := (φ1(x, y), φ2(x, y))

be a fibre homotopy inverse of ϕ, and let H : I × X × X → X × X be a
homotopy over X from ϕ ◦ φ to IdX × IdX . As Ht must make the diagram

X ×X X ×X

X

Ht

pr1
pr1

(3.10)

commute for all t, if we consider t = 1, we must have that φ1(x, y) = x.
Hence, we have that the map

pr2 ◦H|e : X × I → X,

where
H|e : X × I → X ×X, H|e(x, t) := H(x, e, t),

is a homotopy from m(−, φ2(−, e)) : X → X to the constant map e : X → X.
Thus, the diagram

X X ×X

X

Id×φ2(−,e)

e m (3.11)

commutes up to homotopy. As the multiplication map m is homotopy com-
mutative, the diagram

X ×X X

X

m
e

φ2(−,e)×Id

(3.12)

then also commutes up to homotopy. That is, X has a homotopy inverse.
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3.3 The Category of Spectra

In this section we will review the basic theory of spectra. A spectrum is
essentially a sequence of spaces {Xn}n∈N such that each space Xn is a closed
subspace of ΩXn+1. Spectra are the basic objects of study in stable homo-
topy theory. As its name suggests, the Algebraic K-theory spectrum of a
symmetric monoidal category is an example of a spectrum.

Remark 3.3.1. In this section, and in Section 3.4, all the (pointed) spaces
we will consider will be CGWH. As per usual, all (co)limits we will discuss
will be computed in Top (or Top∗) but will land in CGWH (or CGWH∗).

Definition 3.3.2. A spectrum X is a sequence of pointed topological spaces
{Xn}n∈N and pointed closed inclusions

σn : Xn → ΩXn+1.

The maps σn are called the structure maps of the spectrum X. A map of
spectra f : X→ Y is a sequence of pointed maps

fn : Xn → Yn

such that for each n ≥ 0 the diagram

Xn ΩXn+1

Yn ΩYn+1

fn Ωfn (3.13)

commutes. Let Spec denote the category of spectra and maps of spectra.

Remark 3.3.3. As the spectra we are considering are sequences of CGWH
spaces, to specify the structure maps of a spectrum, by the Σ a Ω adjunction
on spaces, it is sufficient to specify a closed inclusion

σn : ΣXn → Xn+1.

The map σn : Xn → ΩXn+1 adjoint to σn will be a closed inclusion by
Corollary 5.11 in [28].

Let’s now describe two examples of spectra that will arise in our discussions
of Algebraic K-theory spectra.
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Example 3.3.4. The suspension spectrum Σ∞X of a pointed space X is the
spectrum with (Σ∞X)n = ΣnX, and whose structure maps

ΣnX → ΩΣn+1X

are the transposes of the identity maps Σn+1X → Σn+1X.

Construction 3.3.5. Example 3.3.4 can be extended to define a functor

Σ∞ : CGWH∗ → Spec.

The functor Σ∞ has a right adjoint

(−)0 : Spec→ CGWH∗

which maps a spectrum X to its 0-th space X0. The unit and counit map of
Σ∞ a (−)0 adjunction are induced by identity map and the Σ a Ω adjunction,
respectively.

Example 3.3.6. Recall that ΣSn = Sn+1 for all n ≥ 0. The sphere spectrum
S is a special case of the suspension spectrum where X = S0. That is, the
sphere spectrum S is the spectrum with Sn = Sn, and whose structure maps
are the transposes of the identity maps

Sn+1 → Sn+1.

Let X be a pointed CW-complex. Observe that the canonical map X →
ΩΣX induces a diagram

πk(X) πk+1(ΣX) πk+2(Σ2X) ... (3.14)

The Freudenthal Suspension Theorem states that if X is n-connected, then
the induced map

πk(X)→ πk+1(ΣX)

is an isomorphism for k < 2n+1. In fact it can be shown that diagram (3.14)
stabilises in the sense that all but finitely many of its maps are isomorphisms.
These observations motivate the definition of the stable homotopy groups of
a pointed space

πSk (X) = lim−→ πk+n(ΣnX).

The notion of stable homotopy groups of pointed spaces can be generalised
to spectra.
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Definition 3.3.7. Let X be a spectrum and m an integer. If m ≥ 0 let
πm(X) be the colimit of the diagram

πm(X0) πm+1(X1) πm+2(X2) ... (3.15)

in the category AbGrp of abelian groups, where the map πm+n(Xn) →
πm+n+1(Xn+1) is induced by the structure map Xn → ΩXn+1. If m < 0 let
πm(X) be the colimit of the diagram

π0(X|m|) π1(X|m|+1) π2(X|m|+2) ... (3.16)

in AbGrp. The group πm(X) is called the m-th stable homotopy group of
the spectrum X.

Remark 3.3.8. Definition 3.3.7 carries with it a small technical issue. For
an integer m and spectrum X the diagram defining the m-th stable homo-
topy group πm(X) may contain objects that are not abelian groups. When
this occurs to compute πm(X) simply truncate the diagram defining πm(X)
such that it only contains abelian groups. Then compute the colimit of the
resulting diagram. Computing πm(X) in this way does not influence any of
the results that we will discuss in the this thesis, and so we will henceforth
ignore this issue.

Remark 3.3.9. Note that the stable homotopy groups of the suspension
spectrum Σ∞X of a pointed space X are precisely the stable homotopy
groups of X.

Definition 3.3.10. A spectrum X is called connective if for each n ≤ −1 the
group πn(X) is trivial. Let Spec≥0 be the full subcategory of Spec spanned
by connective spectra.

Example 3.3.11. The functor

Σ∞ : CGWH∗ → Spec

introduced in Construction 3.3.5 lands inside Spec≥0, as taking the suspen-
sion of a space increases its connectivity.

Definition 3.3.12. A map f : X → Y of spectra is called a stable weak
equivalence if for each m ∈ Z the induced map

πm(X)→ πm(Y)

is an isomorphism. Two spectra are said to have the same stable homotopy
type if there is a zigzag of stable weak equivalences between them.
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As the stable homotopy groups πm(X) of a spectrum X are defined as se-
quential colimits they can be computed by considering the tail behaviour of
certain diagrams. By making this observation precise we can give a suffi-
cient condition on maps of connective spectra to ensure they are stable weak
equivalences.

Lemma 3.3.13. Let f : X → Y be a map of connective spectra. If there
exists an m such that for all n ≥ m the map fn : Xn → Yn is a weak
homotopy equivalence then f : X→ Y is a stable weak equivalence.

Proof. We have that all i ≥ 0 and for all n ≥ m the map πi(Xn) → πi(Yn)
is an isomorphism. Fixing an n ≥ m, note that for all p ≥ 0 the colimit of
the diagram

πp+n(Xn) πp+1(Xn+1) πp+2(Xn+2) ... (3.17)

is πp(X). Thus, the induced map πp(X) → πp(Y) is the map making the
diagram

πp+n(Xn) πp+n+1(Xn+1) πp+n+2(Xn+2) ... πp(X)

πp+n(Yn) πp+n+1(Yn+1) πp+n+2(Yn+2) ... πp(Y).

∼= ∼= ∼=

(3.18)
commute. Thus, inverting each vertical map πp+n+j(Xn+j)→ πp+n+j(Yn+j)
in diagram (3.18) induces a map πp(Y)→ πp(X) that is mutually inverse to
the map πp(X)→ πp(Y). Thus, the groups πp(X) and πp(Y) are isomorphic.

We will now introduce the concept of Ω-spectra.

Definition 3.3.14. Let X be a spectrum. The spectrum X is called an
Ω-spectrum if for each n ≥ 0 the structure map

σn : Xn → ΩXn+1

is a homotopy equivalence. Let SpecΩ be the full subcategory of Spec
spanned by Ω-spectra.

Remark 3.3.15. If X is an Ω-spectrum and m ≥ 0, then the diagram
defining πm(X) can be rewritten as the diagram

πm(X0) πm(X0) πm(X0) ... (3.19)

Hence, πm(X) = πm(X0).
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Corollary 3.3.16. Let f : X → Y be a map of connective Ω-spectra. The
map f : X→ Y is a stable weak equivalence if and only if f0 : X0 → Y0 is a
weak homotopy equivalence.

Proof. This is an immediate corollary of Remark 3.3.15.

Example 3.3.17. The sphere spectrum S is clearly not an Ω-spectrum. For
example, consider the structure map

S0 → ΩS1.

As π0(S0) is equal to a set of two points, and π0(ΩS1) is equal to the integers,
the structure map S0 → ΩS1 can’t be a homotopy equivalence.

Example 3.3.18. Let A be a discrete abelian group. The classifying space
BA of A also has the structure of an abelian group, and so also has a clas-
sifying space B2A. Furthermore, the map A→ ΩBA adjoint to the natural
closed inclusion ΣA → BA is a homotopy equivalence. Thus, there is an
Ω-spectrum BA with BAn = BnA called the Eilenberg–MacLane spectrum
for the group A. See Sections 16.5 and 22.1 in [21] for details.

To every spectrum X there is an associated stably equivalent Ω-spectrum
QX.

Construction 3.3.19. Let X be a spectrum. For each n ≥ 0 let QXn be
the colimit of the diagram

Xn ΩXn+1 Ω2Xn+2 ... (3.20)

in Top∗. Note that, by Lemma 5.9 in [28], ΩQ(Xn) ∼= Q(ΩXn) for each
n ≥ 0. Hence, as the diagram defining ΩQ(Xn+1) can be written as

ΩXn+1 Ω2Xn+2 Ω3Xn+3 ..., (3.21)

there is a homeomorphism Q(Xn) ∼= ΩQ(Xn+1) for each n. Hence, there is a
spectrum QX whose n-th space is QXn and whose structure maps QXn →
ΩQXn+1 are homeomorphisms. This construction extends to define a functor

Q : Spec→ SpecΩ,

by the functoriality of colimits.

Proposition 3.3.20. If X is a spectrum there is a map of spectra X→ QX
that is a stable weak equivalence.

Proof. This is discussed in Section 25.7 in [21].
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3.4 Infinite Loop Spaces

In this section we will discuss some of the theory of infinite loop spaces. In
particular, we will discuss free infinite loop spaces. Such infinite loop spaces
will make an appearance when identifying the stable homotopy types of the
Algebraic K-theory spectra of some categories in Chapter 5.

Definition 3.4.1. A space X is said to be an infinite loop space if there is
sequence of pointed topological spaces {Xn}n∈N such that X0 = X and there
are homeomorphisms

Xn
∼= ΩXn+1.

An infinite loop map f : X → Y is a sequence of maps fk : Xk → Yk such
that the diagram

Xk ΩXk+1

Yk ΩYk+1

∼=

fk Ωfk

∼=

(3.22)

commutes. Let Inf Ω be the category of infinite loop spaces and infinite loop
maps.

Remark 3.4.2. Note that an infinite loop space is equivalently a spectrum
where each structure map is a homeomorphism. Consequently, we may regard
Inf Ω as a full subcategory of SpecΩ.

To each pointed space X we can functorially associate an infinite loop space
QX known as its free infinite loop space.

Definition 3.4.3. Let X be a pointed topological space. The free infinite
loop space QX on X is the 0-th space of the Ω-spectrum Q(Σ∞X).

Remark 3.4.4. Note that there has been an abuse of notation between
Construction 3.3.19 and Definition 3.4.3. There will be no risk of confusion
as from Section 3.5 onwards the author will always use Q(Σ∞X)0 to denote
the free infinite loop space on X.

Remark 3.4.5. The free infinite loop space QX is defined as the colimit of
the diagram

X ΩΣX Ω2Σ2X ... (3.23)

in Top∗. As the maps ΩnΣnX → Ωn+1Σn+1X in diagram (3.23) are closed
inclusions (see Corollary 5.12 in [28]), the free infinite loop space QX can be
described more concretely as the set

QX =
⋃
n≥0

ΩnΣnX
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equipped with the topology of the union.

Construction 3.4.6. The composite functor

CGWH∗
Σ∞−−→ Spec≥0

Q−→ SpecΩ
≥0

(−)0−−→ Inf Ω.

extends Definition 3.4.3 to a functor

Q : CGWH∗ → Inf Ω.

The infinite loop space QX is called the free infinite loop space on X as
the functor Q : CGWH∗ → Inf Ω is left adjoint to a forgetful functor
(Proposition 3.4.7).

Proposition 3.4.7. The functor Q : CGWH∗ → Inf Ω is left adjoint to
the functor (−)0 : Inf Ω → CGWH∗ induced by mapping an infinite loop
space X to it’s 0-th space.

Proof. See Proposition 1 in [19].
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3.5 Good Simplicial Spaces

Recall that in Section 1.4 we introduced simplicial spaces, and discussed
how to take their realisation. Unfortunately, unlike the realisation of sim-
plicial sets, the realisation of simplicial spaces is not always well-behaved.
Thankfully, we can replace each simplicial space X with a levelwise weakly
homotopy equivalent ‘good’ simplicial space TX whose realisation |TX| is
well-behaved. In this section we will discuss good simplicial spaces and the
good simplicial space TX.

The realisation of simplicial spaces, as defined in Definition 1.4.9, is not well-
behaved. For example, let X be a simplicial space. The following properties
need not be true in general:

1. If Xn has the homotopy type of a CW-complex for all n ≥ 0, then |X|
has the homotopy type of a CW-complex.

2. If X → Y is a map of simplicial spaces such that Xn → Yn is a
homotopy equivalence for all n ≥ 0, then the induced map |X| → |Y |
is a homotopy equivalence.

However, we can replace X with a levelwise weakly homotopy equivalent
good simplicial space TX whose realisation |TX| is well-behaved. That is,
there is a good simplicial space TX and a map TX → X such that for each
n ≥ 0 the map TXn → Xn is a weak homotopy equivalence. The realisation
|TX| of TX also satisfies the two above properties (c.f. Proposition 3.5.7).
Before we explain how to construct the good simplicial space TX, let us first
define good simplicial space.

Remark 3.5.1. In this section, all the simplicial spaces we will consider will
be valued in CGWH.

Definition 3.5.2 [Definition A.4, Segal [27]]. A simplicial space X is
called good if for each n ≥ 0 and 0 ≤ i ≤ n the inclusion map

si(Xn) ↪→ Xn+1

is a cofibration. Let sCGWH∗ be the full subcategory of sCGWH spanned
by good simplicial spaces.

Two properties of good simplicial spaces are discussed in Remark 3.5.3 and
Proposition 3.5.4 below.
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Remark 3.5.3. Recall Construction 1.4.10 and the proof of Proposition
1.4.13. If a simplicial space X is good, by statement 3 of Proposition 1.6.7,
the map

∂|∆n| ×Xn ∪ |∆n| × s(Xn−1)→ |∆n| ×Xn

is a cofibration. Thus, as cofibrations are stable under pushouts, the maps
|X|n−1 → |X|n, as constructed in Construction 1.4.10, are cofibrations.
Hence, the maps |X|n → |X| are also cofibrations.

Proposition 3.5.4. If X is a simplicial space such that Xn is a CW-complex
for all n ≥ 0, then X is good.

Proof. For each i the map sidi : Xn+1 → si(Xn) is a retraction. Hence, by
Corollary 2.4 (a) and Lemma 3.1 (a) in [15], the inclusion map si(Xn) ↪→
Xn+1 is a cofibration.

Let us now explain how to functorially associate to every simplicial space X
the previously alluded to good simplicial space TX.

Construction 3.5.5. There is a functor

T : sCGWH→ sCGWH∗

which maps a simplicial space X to the good simplicial space TX. The space
of n-simplices of TX is the space |S(Xn)|. The simplicial space TX is hence
good by Proposition 3.5.4 as the geometric realisations of simplicial sets are
CW-complexes (Proposition 1.2.7).

Remark 3.5.6. Recall Construction 1.4.17. Observe that |TX| is the realisa-
tion of the bisimplicial set S(X) whose set of (n,m)-bisimplices is S(Xn)m.
Thus, |TX| = |dS(X)|, and if f : X → Y is a map of simplicial spaces,
then the map |Tf | : |TX| → |TY | is the realisation of the simplicial map
df : dS(X)→ dS(Y ).

As mentioned previously, the realisation of TX is well-behaved. The well-
behavedness of |TX| is explicitly spelled out in Proposition 3.5.7.

Proposition 3.5.7. The following statements are true:

1. The space |TX| is a CW-complex for every simplicial space X.

2. If the map X → Y of simplicial spaces is a level-wise weak homotopy
equivalence then |TX| → |TY | is a homotopy equivalence.

3. The functor |T (−)| preserves finite products. I.e. |T (X × Y )| = |T (X)|×
|T (Y )|.
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4. There is map TX → X of simplicial spaces that is a levelwise weak
homotopy equivalence. If X is good then the induced map |TX| → |X|
is a homotopy equivalence.

Proof. Statement 1 is true as |TX| = |dS(X)| (Remark 3.5.6), and the
realisation of a simplicial set is always a CW-complex (Proposition 1.2.7).
Statement 2 is true as for each n ≥ 0 the map S(Xn) → S(Yn) is a weak
homotopy equivalence. That is, S(X) → S(Y ) is a weak equivalence of
bisimplicial sets. Thus, as the functors d and |−| preserve weak equivalences
(Propositions 1.6.8 and 1.6.11), |TX| → |TY | is a homotopy equivalence.
Statement 3 immediately follows the fact that S(−) and |−| preserve finite
products. Finally, defining a map TX → X whose n-component is the
counit map |S(Xn)| → Xn of the |−| a S(−) adjunction proves the first part
of statement 4. The second part of statement 4 is discussed in Appendix A
of [27].

There is more we can say about the functor T . It turns out that T is an ex-
ample of a comonad in sCGWH. Let us conclude this section by discussing
this fact, and some of its implications.

Definition 3.5.8. A comonad < L, λ, δ > in a category C consists of a
functor L : C → C and two natural transformations ε : L→ Id and δ : L→
L2 which make the diagrams

L L2

L2 L3

δ

δ

Lδ

δL

(3.24)

and
L

L L2 L

Id Idδ

εL Lε

(3.25)

commute. We say L is a comonad in C if ε and δ are understood.

Proposition 3.5.9. If F : C � D : G is an adjunction with unit η : Id →
G ◦F and counit ε : F ◦G→ Id then < F ◦G, ε, FηG > is a comonad in D.

Proof. See page 139 in [17].

Corollary 3.5.10. The functor T : sCGWH→ sCGWH is a comonad in
sCWGH. In particular, there is a comultiplication natural transformation
T → T 2 whose X-component is the map

|S(X)| → |S|S(X)||
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which is the realisation of the unit of the |−| a S(−) adjunction on S(X).

An interesting fact about the comultiplication map T → T 2 is that it induces
cofibrations. This fact will help us when constructing spectra in Section 3.7.

Lemma 3.5.11. If K is a simplicial set then there is a section of the canon-
ical map T |K| → K which is a cofibration.

Proof. The canonical map T |K| → |K| is the component |S(|K|)| → |K| of
the counit map the |−| a S(−) adjunction at |K|. By the triangle identities,
the geometric realization |K| → |S(|K|)| of the unit map K → S(|K|) of
the same adjunction is a right inverse to the canonical map T |K| → |K|.
In particular, |K| → |S(|K|)| is injective. But any simplicial map whose
geometric realization is injective is itself injective (see (ii) of Proposition
4.4.3 of [6]). Therefore |K| → |S(|K|)| is the geometric realization of an
injective map and hence is a cofibration.

Lemma 3.5.12. For any simplicial space X the map |TX| → |T 2X| is a
cofibration.

Proof. First observe that, by the triangle identities for the unit and counit
of an adjunction, for each n ≥ 0 the map S(Xn)→ S|S(Xn)| is a cofibration
in sSet. That is, the map S(X) → S|S(X)| of the underlying bisimplicial
sets of |TX| and |T 2X| is a cofibration in ssSet. Thus, as the functors d and
|−| preserve cofibrations, the map |T (X)| → |T 2(X)| is a cofibration.

Corollary 3.5.13. Let X be a simplicial space such that X0 is a point. There
is a closed inclusion

ΣTX1 → T
∣∣T 2X

∣∣.
Proof. Note that as X0 is a point X1 can be equipped with a canonical
basepoint given by the image of the map X0 → X1. Now, as X0 is a point, the
space |TX|1 (as in Construction 1.4.10) is equal to ΣTX1 (see Construction
3.1.5). Thus, by Remark 3.5.3 there is a cofibration ΣTX1 → |TX|. Hence,
the composite map

ΣTX1 → |TX| →
∣∣T 2X

∣∣
is a cofibration (statement 1 in Proposition 1.6.7). In Remark 3.5.6 we ob-
served that |T 2X| is the geometric realization of a simplicial set (namely
|dS(TX)|). Therefore, by Lemma 3.5.12 there is a cofibration |T 2X| →
T |T 2X|. The composite map

ΣTX1 → |TX| →
∣∣T 2X

∣∣→ T
∣∣T 2X

∣∣
is hence a cofibration. Thus, as cofibrations in CGWH are closed inclusions,
we are done.



86 Chapter 3. Algebraic K-theory: H-spaces, Spectra, and Γ-Spaces

3.6 Γ-Spaces and Categories

In this section we will discuss Γ-spaces and Γ-categories, which are clever
gadgets first defined by Segal in [27]. We are interested in Γ-categories, as
they can be constructed from symmetric monoidal categories, and they in-
duce Γ-spaces. We are interested in Γ-spaces as they give rise to spectra.

We will begin this section by defining the category Γop. We will then define
Γ-spaces and Γ-categories.

Definition 3.6.1. Let Γop be the category of finite pointed sets and pointed
maps. If n ≥ 0 is a natural number write n for the finite pointed set n =
{0, 1, ..., n} with basepoint 0.

Remark 3.6.2. Note that Γop has finite products; in particular, if S ∈ Γop

then there is a functor

S ×− : Γop → Γop, T 7→ S × T.

Definition 3.6.3. A functor X : Γop → CGWH is called a Γ-space if:

1. X(0) is contractible; and

2. the map
X(n)→ X(1)× · · · ×X(1)︸ ︷︷ ︸

n−times

induced by the maps

pi : n→ 1, pi(j) =

{
1 if j = i

0 otherwise,

in Γop for i = 1, ..., n is a homotopy equivalence.

A Γ-space is called reduced if X(0) is a point. Let ΓCGWH denote the cate-
gory of Γ-spaces, and let ΓCGWH0 denote the full subcategory of ΓCGWH
spanned by reduced Γ-spaces.

Definition 3.6.4. A functor X : Γop → Cat is called a Γ-category if:

1. X(0) is equivalent to the terminal category; and

2. the functor
X(n)→ X(1)× · · · ×X(1)︸ ︷︷ ︸

n−times
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induced by the maps

pi : n→ 1, pi(j) =

{
1 if j = i

0 otherwise,

in Γop for i = 1, ..., n is an equivalence of categories.

Let ΓCat be the category of Γ-categories and natural transformations of
Γ-categories.

Construction 3.6.5. Note that given a Γ-category X we can always con-
struct a Γ-space |NX| by composing X with the nerve functor N and the
realisation functor |−|. The functor |NX| satisfies axioms 1 and 2 of Defi-
nition 3.6.3 as the composition of the nerve N and realisation |−| functors
sends equivalences of categories to homotopy equivalences (Corollary 1.3.21).

Every reduced Γ-space X carries the structure of a commutative H-space.
The structure of this H-space will help us identify the stable homotopy types
of the Algebraic K-theory spectra of some categories later.

Proposition 3.6.6. If X is a reduced Γ-space then X(1) has the structure
of a commutative H-space.

Proof. The multiplication map m on X(1) is given by the map

X(1)×X(1)
'−→ X(2)

X(m′)−−−→ X(1),

where m′ is the map

m′ : 2→ 1, m′(j) :=

{
0 if j = 0

1 otherwise

in Γop, and the unit e is the image of the map X(0)→ X(1). Showing that
m and e equip X(1) with the structure of a commutative H-space quickly
turns into a long diagram chase. We will not include it here as it is not at
all enlightening.

To every Γ-space X there is an associated simplicial space. Appealing to the
simplicial space associated to X will allow us to define what it means for X
to be good, and define the realisation |X| of X.

Construction 3.6.7. There is a functor

∆op → Γop



88 Chapter 3. Algebraic K-theory: H-spaces, Spectra, and Γ-Spaces

which maps objects [n] in ∆ to n and maps f : [n]→ [m] to the pointed map
f ′ : m→ n such that

(f ′)−1(j) = {i ∈m : f(j − 1) < i ≤ f(j)},

for 1 ≤ j ≤ n. Thus, to every Γ-space X there is an associated simplicial
space defined by the restriction of X along ∆op → Γop.

Definition 3.6.8. If the associated simplicial space of a Γ-space X is good,
then X is called a good Γ-space. Let ΓCGWH∗ be the category of good
Γ-spaces.

To ensure a well-behaved notion of realisation for Γ-spaces we will appeal to
the functor T constructed in Construction 3.5.5.

Proposition 3.6.9. There is a functor

T : ΓCGWH→ ΓCGWH∗

such that for each Γ-space X there is a map TX → X of Γ-spaces whose S-
component TX(S)→ X(S) is a weak homotopy equivalence for each S ∈ Γop.

Proof. Suppose X : Γop → CGWH is a Γ-space. Let TX : Γop → CGWH
be the composite functor

Γop
X−→ CGWH

S(−)−−−→ sSets
|−|−→ CGWH.

The functor TX is a Γ-space as both the functors S(−) and |−| preserve
homotopy equivalences and finite products. The mapping X 7→ TX is clearly
functorial on ΓCGWH. Furthermore, the counit map of the |−| a S(−)
adjunction induces a map TX → X whose S-component TX(S)→ X(S) is
a weak homotopy equivalence for each S ∈ Γop.

Remark 3.6.10. Note that if a Γ-space X is reduced, then so is the Γ-space
TX.

Definition 3.6.11. Let X be a Γ-space. The geometric realisation |X| of the
Γ-space X is defined to be the geometric realisation of the simplicial space
associated to the good Γ-space TX.

Remark 3.6.12. When introducing Γ-spaces in [27], Segal discussed a few
different ways the realisation of a simplicial space, and hence a Γ-space, can
be defined such that it is well-behaved. Which definition Segal employs,
and how it interacts with the theory he develops, is not always crystal clear.
The author hopes their chosen definition of the realisation of Γ-spaces yields a
clear treatment of the Algebraic K-theory spectrum of a symmetric monoidal
category.
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3.7 Spectra from Γ-Spaces

In this section we will discuss how to construct spectra from Γ-spaces. To
do this we will associate to every Γ-space X a new Γ-space BX called the
classifying space of X. We will then able to associate a sequence of spaces

TX(1), TBTX(1), TBTBTX(1), ...

to every reduced Γ-space X. We will see that the spaces in this sequence can
be related by closed inclusions (TB)nTX(1)→ Ω(TB)n+1TX(1). Hence, the
sequence will be able to be equipped with the structure of a spectrum BX.
The process of constructing spectra from Γ-spaces will of course be functorial.

To define the classifying space of a Γ-space we must first make the following
definition (following Segal):

Definition 3.7.1 [Segal [27]]. Let X be a Γ-space. Fixing an S in Γop, let
X(S ×−) : Γop → CGWH be the Γ-space defined on objects by

X(S ×−)(T ) = X(S × T ).

If f : T → Z is a map in Γop then

X(S ×−)(f) = X(IdS × f).

Remark 3.7.2. Note that if f : T → Z is a map in Γop, there is a map

X(f ×−) : X(T ×−)→ X(Z ×−)

of Γ-spaces.

Definition 3.7.3 [Segal [27]]. Let X be a Γ-space. Let BX : Γop →
CGWH be the functor such that

BX(S) = |X(S ×−)|,

where |X(S ×−)| is the realisation of the Γ-space X(S×−) as in Definition
3.6.11. If f : T → Z is a map in Γop,

BX(f) = |X(f ×−)|.

The functor BX is called the classifying space of X.

Remark 3.7.4. Note that BX(1) is the realisation of the Γ-space X; hence
BX(1) is the realisation of the simplicial space associated to the Γ-space
TX.
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Remark 3.7.5. For every Γ-space X the functor BX is a Γ-space. Why?
Observe that X(0 × −) is the constant Γ-space X(0). Thus, as X(0) is
contractible, by statement 2 in Proposition 3.5.7, we have the realisation of
the constant Γ-space X(0) is contractible. Hence, BX(0) is contractible.
Furthermore, for each n ≥ 1 there is a homotopy equivalence X(n) ' X(1)n

induced by the maps pi : n → 1 in Γop. Thus, by statements 2 and 3 in
Proposition 3.5.7, we have

BX(n) = |X(n×−)| ' |X(−)n| = |X(−)|n = BX(1)n.

That is, for each n ≥ 1 there is a homotopy equivalence BX(n) ' BX(1)n

induced by the maps pi : n→ 1 in Γop. Hence, BX is a Γ-space.

Remark 3.7.6. It is clear from the Definition 3.7.3 that if X is reduced,
then so is BX. Furthermore, as BX is a Γ-space, the classifying space B2X
of BX is defined, and so on.

The observations made in Remarks 3.7.4-3.7.6 allow us to construct a spec-
trum from a Γ-space.

Construction 3.7.7. Let X be a reduced Γ-space. Note that each space
X(n) has a canonical basepoint given by the image of the map X(0)→ X(n).
Now, to associate a spectrum to X, Segal in [27] considers the sequence of
spaces

X(1), BX(1), B2X(1), ...

and shows that this sequence forms a spectrum. However, it is a little difficult
to check that Segal’s choice of maps BnX(1)→ ΩBn+1X(1) are indeed closed
inclusions for each n ≥ 0. To address this issue we will consider the sequence
of spaces

TX(1), TBTX(1), TBTBTX(1), ...

That is, we will modify Segal’s sequence by replacing each Γ-space BnX with
the good Γ-space (TB)nTX via the functor T (−). To see that this sequence
of spaces can be equipped with the structure of a spectrum BX we need to
show that there exists a family of closed inclusions

(TB)nTX(1)→ Ω(TB)n+1TX(1).

Note that this is the claim that there is a closed inclusion

TX1 → ΩT
∣∣T 2X

∣∣
when n = 0, that there is a closed inclusion

TBTX1 → ΩT
∣∣T 2BTX

∣∣,
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when n = 1, and so on. Hence, it suffices to construct a closed inclusion
TX1 → ΩT |T 2X| when X is a reduced simplicial space. Thus, by Remark
3.3.3, it is sufficient to construct a closed inclusion

ΣTX1 → T
∣∣T 2X

∣∣.
But we have already constructed such a closed inclusion in Corollary 3.5.13.

Construction 3.7.7 can be extended to define a functor.

Proposition 3.7.8 [Segal [27]]. There is a functor

B : ΓCGWH0 → Spec

mapping reduced Γ-spaces to spectra.

Proof. We need to show that given a map X → Y of reduced Γ-spaces, then
there is an associated map BX → BY of spectra. It is hence sufficient to
check that if X → Y is a map of reduced simplicial spaces, then there is a
commutative diagram

ΣTX1 |TX| |T 2X| T |T 2X|

ΣTY1 |TY | |T 2Y | T |T 2Y |,

(3.26)

where the horizontal maps are the maps constructed in the proof of Corol-
lary 3.5.13. First note that, by Construction 1.4.10, there is a commutative
diagram

|TX|0 |TX|1 · · · |TX|

|TY |0 |TY |1 · · · |TY |

(3.27)

and hence, as ΣTX1 = |TX|1 when X is reduced, an induced commutative
diagram

ΣTX1 |TX|

ΣTY1 |TY |.

(3.28)

The map X → Y then also induces a commutative diagram

|TX| |T 2X|

|TY | |T 2Y |,

(3.29)
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as the comultiplication map T → T 2 is natural. Finally, there is a commu-
tative diagram

|T 2X| T |T 2X|

|T 2Y | T |T 2Y |

(3.30)

as the maps |T 2X| → T |T 2X| and |T 2Y | → T |T 2Y | are induced by the
unit of the |−| a S(−) adjunction, and are hence natural. Thus, pasting
diagrams (3.28), (3.29) and (3.30) together gives the required commutative
diagram.

Thus, we have accomplished what we set out to do: To every Γ-space X we
have associated a spectrum BX. The spectrum BX turns out to have some
nice properties, as stated below in Proposition 3.7.9.

Proposition 3.7.9 [Segal [27]]. The spectrum BX associated to a reduced Γ-
space X is connective and is an Ω-spectrum after the 0-th term. Furthermore,
if the H-space X(1) has a homotopy inverse, then BX is an Ω-spectrum.

Proof. This is a restatement of Propositions 1.4 and 3.4(a) in [27].

To conclude this section, let us observe that the functor B maps Γ-spaces
that are levelwise weakly homotopy equivalent to stably equivalent spectra.

Proposition 3.7.10. Let X → Y be a map of reduced Γ-spaces such that
for each n ≥ 0 the map X(n)→ Y (n) is a weak homotopy equivalence. The
induced map of spectra BX → BY is a stable weak equivalence.

Proof. Note that it is sufficient to show that if X → Y is a map of reduced
simplicial spaces that is a levelwise weak equivalence then TX1 → TY1 and
T |T 2X| → T |T 2Y | are weak homotopy equivalences. But this follows as
S(−) and |−| preserve weak equivalences and by statement 2 in Proposition
3.5.7.



Chapter 4

Algebraic K-theory: The
Algebraic K-theory Spectrum

In this chapter we will appeal to the theory discussed in Chapter 3 to define
the Algebraic K-theory spectrum BKC of a small symmetric monoidal cat-
egory C.

To define the Algebraic K-theory spectrum of a symmetric monoidal category
we first need to review symmetric monoidal categories, and discuss how to
associate a Γ-space to every small symmetric monoidal category. We will do
this in Section 4.1. We will then define the Algebraic K-theory spectrum
BKC and Algebraic K-theory space of a small symmetric monoidal category
C in Section 4.2. We will also discuss how Algebraic K-theory spaces can
help identify the stable homotopy types of the Algebraic K-theory spectra
of some symmetric monoidal categories. In Section 4.3 we will discuss how
a category can be equipped with a symmetric monoidal structure if it has
coproducts and an initial object, and how the core respects the structure of
a symmetric monoidal category. Finally, in Section 4.4, we will discuss how
good simplicial monoids and their group completions can be used to help us
identify a category’s Algebraic K-theory space.

4.1 Symmetric Monoidal Categories to Γ-Spaces

In Chapter 3 we proved that to every Γ-space X we can functorially associate
a spectrum BX. In this section we shall see that special types of categories
called symmetric monoidal categories come equipped with enough structure
such that a Γ-category, and hence a Γ-space, can be functorially associated
to them.

93
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Let us begin by reviewing the definitions of symmetric monoidal category
and symmetric monoidal functor.

Definition 4.1.1. Let C be a category. The category C is said to be
monoidal if there exists a functor ⊗ : C × C → C, an object e, and three
natural isomorphisms

α : ⊗ ◦ (IdC ×⊗)→ ⊗ ◦ (⊗× IdC),

β : e⊗− → IdC ,

and
γ : −⊗ e→ IdC

such that:

1. βe = γe; and

2. the diagrams

a⊗ (b⊗ (c⊗ d)) (a⊗ b)⊗ (c⊗ d) ((a⊗ b)⊗ c)⊗ d

a⊗ ((b⊗ c)⊗ d) (a⊗ (b⊗ c))⊗ d

α

IdC⊗α

α

α

α⊗IdC

(4.1)
and

a⊗ (e⊗ c) (a⊗ e)⊗ c

a⊗ c

α

IdC⊗β
γ⊗IdC

(4.2)

commute.

The functor ⊗ is called the tensor product of the monoidal category C, the
object e is called the identity, and the natural isomorphisms α, β, and γ
are called the associator, left unitor, and right unitor, respectively. If C is a
monoidal category we write < C,⊗, e, α, β, γ >, or just C if ⊗, e, α, β and
γ are understood.

Definition 4.1.2. Let < C,⊗, e, α, β, γ > be a monoidal category. The
category C is said to be symmetric monoidal if there exists a family of iso-
morphisms

Ba,b : a⊗ b→ b⊗ a

in C, natural in a and b, such that:
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1. For all objects a, b ∈ C,

Ba,b ◦Bb,a = 1b⊗a and βb ◦Bb,e = γb;

and

2. For all objects a, b, c ∈ C, the diagram

a⊗ (b⊗ c) (a⊗ b)⊗ c c⊗ (a⊗ b)

(b⊗ c)⊗ a b⊗ (c⊗ a) (c⊗ a)⊗ b

α

B

B

α

α−1 B

(4.3)

commutes.

The family of maps (Ba,b)(a,b)∈C×C is called a braiding on the monoidal cate-
gory C. If C is a symmetric monoidal category we write< C,⊗, e, α, β, γ, B >,
or just C if ⊗, e, α, β, γ and B are understood.

Example 4.1.3. Let FinSet be the category of finite sets. Equipping
FinSet with the tensor product

FinSet× FinSet→ FinSet, (S, T ) 7→ S t T

equips FinSet with the structure of a symmetric monoidal category, where
the unit of FinSet is the empty set ∅. The associator, braiding, left unitor
and right unitor of FinSet are induced by the canonical maps arising from
the universal property of the coproduct. This construction is an instance of
a more general method of constructing symmetric monoidal categories that
we will discuss in Section 4.3.

Example 4.1.4. Let VectF be the category of vector spaces over a fixed
field F. The functor

⊗ : VectF ×VectF, (V,W ) 7→ V ⊗W,

mapping the vector spaces V and W to their tensor product V ⊗W equips
VectF with the structure of a symmetric monoidal category. The unit of
VectF is the vector space F over F. The the associator, braiding, left unitor
and right unitor of VectF are induced by the well-known isomorphisms

V ⊗ (W ⊗ Z) ∼= (V ⊗W )⊗ Z, V ⊗W ∼= W ⊗ V, V ⊗ 0 ∼= 0⊗ V ∼= V.
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Definition 4.1.5. Let < C,⊗, e, α, β, γ, B > and < C ′,⊗′, e′, α′, β′, γ′, B′ >
be symmetric monoidal categories. A functor F : C → C ′ is called a sym-
metric monoidal functor if there exists a natural family of maps

F2(a, b) : F (a⊗ b)→ F (a)⊗′ F (b)

in C ′, a map

F0 : F (e)→ e′

in C ′, and the diagrams

F (a⊗ (b⊗ c)) F (a)⊗′ F (b⊗ c)

F ((a⊗ b)⊗ c) F (a)⊗′ (F (b)⊗′ F (c))

F (a⊗ b)⊗′ F (c) (F (a)⊗′ F (b))⊗′ F (c),

F2

F (α) Id⊗′F2

F2 α′

F2⊗′Id

(4.4)

F (b⊗ e) F (b)⊗′ F (e)

F (b) F (b)⊗′ e′,

F2

F (γ) Id⊗′F0

γ′

(4.5)

F (e⊗ b) F (e)⊗′ F (b)

F (b) e′ ⊗′ F (b),

F2

F (β) F0⊗′Id

β′

(4.6)

and

F (a⊗ b) F (b⊗ a)

F (a)⊗′ F (b) F (b)⊗′ F (a)

F (B)

F2 F2

B′

(4.7)

commute. If F2 and F0 are natural isomorphisms then F is called a strong
monoidal functor. If the map F0 is the identity map then F is called strictly
unital. If the maps F2 and F0 are identity maps then F is called strict. If
F is a strictly unital strong monoidal functor that is also an equivalence
of categories then we say F is a monoidal equivalence and C and C ′ are
monoidally equivalent.
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Definition 4.1.6. Let SymMCat be the category whose objects are small
symmetric monoidal categories and maps are strictly unital symmetric monoidal
functors.

Remark 4.1.7. For ease of exposition, we will henceforth refer to strictly
unital symmetric monoidal functors as monoidal functors.

Essentially, a symmetric monoidal category is a category with a multipli-
cation which obeys associativity, commutativity and identity laws, up to
isomorphism. A monoidal functor is then a functor between symmetric
monoidal categories which respects the respective tensor products, up to
isomorphism. That is, symmetric monoidal categories can be viewed as a
‘categorification’ of abelian monoids, and monoidal functors as a categorifi-
cation of homomorphisms of abelian monoids.

When working with SymMCat a natural question one might ask is: ‘How
is the extra structure of a symmetric monoidal category reflected in its clas-
sifying space? ’. This question is answered in the Proposition 4.1.8.

Proposition 4.1.8. Let C be a small symmetric monoidal category. The
classifying space BC of C is a commutative H-space. Furthermore, if C → C ′

is a monoidal equivalence then the induced map BC → BC ′ is an equivalence
of H-spaces.

Proof. Recall that if F,G : C → C ′ are functors, and α : F → G is a natural
transformation, then there is a homotopy H : I × BC → BC ′ from BF to
BG. Thus, if C is a symmetric monoidal category, the diagrams

BC ×BC ×BC BC ×BC

BC ×BC BC,

B⊗×Id

Id×B⊗ B⊗

B⊗

(4.8)

BC BC ×BC BC

BC,

Id×Be

Id
B⊗

Be×Id

Id
(4.9)

and
BC ×BC BC ×BC

BC

µ

B⊗
B⊗ (4.10)
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commute up to homotopy. Thus, BC is an H-space. Now suppose that
there is a monoidal equivalence F : C → C ′. Then the induced map BF :
BC → BC ′ is a homotopy equivalence. Furthermore, BF ([e]) = [e′], and the
diagram

BC ×BC BC ′ ×BC ′

BC BC ′

BF×BF

B⊗′ B⊗

BF

(4.11)

commutes up to homotopy. Thus, BF is an equivalence of H-spaces.

Remark 4.1.9. Proposition 4.1.8 is an instance of Proposition 3.6.6, as we
will see in Proposition 4.1.14.

At the beginning of this section we claimed that to every symmetric monoidal
category C one can functorially associate a Γ-category. That is, we claimed
there is a functor

K : SymMCat→ ΓCat.

We will now construct this functor, following Mandell in [18].

Definition 4.1.10 [Construction 3.1, Mandell [18]]. Let< C,⊗, e, α, β, γ, B >
be a small symmetric monoidal category. Let KC(0) be the terminal cate-
gory. For each n, where n > 0, let KC(n) be the category whose objects are
collections (xI , fI,J), where I is a subset of n = {1, ..., n}, xI is an object of
C, and for each pair of disjoint subsets I and J of n

fI,J : xI∪J → xI ⊗ xJ

is a map in C. We also require that each collection (xI , fI,J) satisfies the
following properties:

1. x∅ = e, and f∅,J = β−1
xJ

and fJ,∅ = γ−1
xJ

.

2. fI,J = B ◦ fJ,I .

3. If I1, I2, and I3 are mutually disjoint then the diagram

xI1∪I2∪I3 xI1 ⊗ xI2∪I3

xI1∪I2 ⊗ xI3

(xI1 ⊗ xI2)⊗ xI3 xI1 ⊗ (xI2 ⊗ xI3)

fI1,I2∪I3

fI1∪I2,I3

Id⊗fI2,I3

fI1,I2⊗Id

α−1

(4.12)

commutes.
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A map (hI) : (xI , fI,J) → (x′I , f
′
I,J) in KC(n) is a collection of maps hI :

xI → x′I in C for all I such that h∅ = Id, and the diagram

xI∪J x′I∪J

xI ⊗ xJ x′I ⊗ x′J

hI∪J

fI,J f ′I,J

hI⊗hJ

(4.13)

commutes for all disjoint I and J . If φ : m→ n is a map in Γop then define
the functor

Kφ : KC(m)→ KC(n)

which maps objects (xI , fI,J) in KC(m) to (yI , gI,J) in KC(n), where

yI = xφ−1(I)

and

gI,J = fφ−1(I),φ−1(J).

The functor Kφ maps the maps (hI) in KC(m) to (h′I) in KC(n), where

h′I = hφ−1(I).

Remark 4.1.11. The assignment

KC : Γop → Cat

which maps objects n in Γop to KC(n), and maps φ : n → m to KC(φ) :
KC(n) → KC(m), is a functor. In fact KC is a Γ-category (see Section 3
in [18] for details).

Proposition 4.1.12. Definition 4.1.10 can be extended to define a functor

K : SymMCat→ ΓCat.

Proof. Given a strictly unital symmetric monoidal functor F : C → C ′, for
each n ≥ 0 define the functor

KFn : KC(n)→ KC ′(n)

which maps the objects (xI , fI,J) inKC(n) to (F (xI), F2◦F (fI,J)) inKC ′(n),
and the maps (hI) to (F (hI)). The family of functors (KFn)n≥0 is natural
in n.
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Thus, to every symmetric monoidal category C we can associate a Γ-category
KC, and hence associate a Γ-space KC (Construction 3.6.5). Further, it
turns out that the induced functor K has some nice properties.

Definition 4.1.13. Let K : SymMCat → [Γop,CGWH] be the functor
induced by the post-composing the functorK with the nerveN and geometric
realisation |−| functors.

Proposition 4.1.14 [Mandell [18]]. Let C be a small symmetric monoidal
category. The following statements are true:

1. The functor KC is a good reduced Γ-space.

2. The space KC(1) is the classifying space of the category C.

3. If C
'−→ C ′ is a monoidal equivalence then for each n ≥ 0 the induced

map KC(n)→ KC ′(n) is an homotopy equivalence.

Proof. Statement 1 follows from Proposition 3.5.4 and Construction 3.6.5.
Statement 2 and 3 follow from arguments made in Section 3 in [18].
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4.2 The Algebraic K-theory Spectrum of a

Symmetric Monoidal Category

In Sections 3.1–4.1 we proved two key results. The first key result we proved
is that to every Γ-space X there is an associated connective spectrum BX
which is an Ω-spectrum above the 0-term. The second result we proved is
that to every small symmetric monoidal category C there is an associated Γ-
space KC, where KC(1) is the classifying space of C. Combining these two
results we can functorially associate a spectrum BKC to every symmetric
monoidal category C which enjoys some nice properties. In this section, we
will define the spectrum BKC to be the Algebraic K-theory spectrum of C,
and discuss the Algebraic K-theory space of C.

Let us begin by combining Proposition 3.7.8 and Proposition 4.1.14 to con-
struct a functor which will send small symmetric monoidal categories to
spectra. This functor will then be used to define the Algebraic K-theory
spectrum of a small symmetric monoidal category C.

Construction 4.2.1. Consider the composite functor

SymMCat
K−→ ΓCGWH∗0

B−→ Spec≥0,

where ΓCGWH∗0 is the category of good reduced Γ-spaces. Observe that
for every small symmetric monoidal category C the spectrum BKC is an Ω-
spectrum after the 0-th term (Proposition 3.7.9). Also observe that BKC0 =
|S(BC)| ' BC.

Definition 4.2.2. Let C be a small symmetric monoidal category. The
Algebraic K-theory spectrum of C is the spectrum BKC.

As spectra are typically understood up to their stable homotopy type, for
the remainder of this thesis when studying the Algebraic K-theory spectrum
of a symmetric monoidal category C we will be aiming to identify its stable
homotopy type. By Proposition 4.2.3, it will be sufficient to identify the
stable homotopy type of the Algebraic K-theory spectrum of a monoidally
equivalent symmetric monoidal category.

Proposition 4.2.3. If C
'−→ C ′ is a monoidal equivalence of small symmetric

monoidal categories, then the induced map BKC → BKC ′ is a stable weak
equivalence.

Proof. This follows immediately from statement 3 in Proposition 4.1.14 and
Proposition 3.7.10.
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Remark 4.2.4. By Proposition 4.2.3 we can also define the Algebraic K-
theory spectra of essentially small symmetric monoidal categories, up to sta-
ble homotopy equivalence. That is, if C is an essentially small symmetric
monoidal category such that there is a monoidal equivalence C

'−→ C ′, where
C ′ is a small symmetric monoidal category, then let the spectrum BKC ′ be
the Algebraic K-theory spectrum of C.

When attempting to identify the stable homotopy type of a Algebraic K-
theory spectrum of a symmetric monoidal category of interest, it turns out
it is sufficient to identify the homotopy type of its Algebraic K-theory space
with an infinite loop space. Let us expand upon this now.

Definition 4.2.5. Let C be a small symmetric monoidal category. The
Algebraic K-theory space of C is the space ΩBKC1.

Lemma 4.2.6. Let BKC be the Algebraic K-theory spectrum of a symmetric
monoidal category C. There is a stably equivalent Ω-spectrum EC whose 0-th
space is ΩBKC1.

Proof. Let EC be the spectrum

ΩBKC1, BKC1, BKC2, ...

with the obvious structure maps. The structure maps ECn → ΩECn+1 are
closed inclusions for each n ≥ 0 as the maps BKCn → ΩBKCn+1 are closed
inclusions. The spectrum EC is connective as BKC is connective, and is
an Ω-spectrum as BKC is an Ω-spectrum above the 0-th term. There is an
obvious map of spectra BKC → EC which is the identity map BKCn →
BKCn for all n ≥ 1. Thus, by Lemma 3.3.13, the spectra BKC and EC are
stably equivalent.

Construction 4.2.7. Let C be a small symmetric monoidal category and
suppose there is a homotopy equivalence Q(Σ∞X)0 ' ΩBKC1, where X is
some pointed CGWH space. By Proposition 3.3.20, there is a stable weak
equivalence of spectra EC → QEC which is a weak homotopy equivalence
at the 0-th space EC0 → QEC0 (Corollary 3.3.16). Thus, there is a weak
equivalence of spaces Q(Σ∞X)0 → QEC0. Now, the map X → Q(Σ∞X)0 →
EC0 induces a map Σ∞X → EC of spectra by the Σ∞ a (−)0 adjunction
(Construction 3.3.5). Thus, there is a map Q(Σ∞X) → QEC of spectra
whose 0-th map is the weak homotopy equivalence Q(Σ∞X)0 → QEC0.
Hence, we have a map of spectra Q(Σ∞X) → QEC which is a stable weak
equivalence (Corollary 3.3.16). Thus, we have the zigzag of stable weak
equivalences

Σ∞X → Q(Σ∞X)→ QEC ← EC ← BKC,
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and so BKC has the same stable homotopy type as Σ∞X.
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4.3 The Symmetric Monoidal Structure In-

duced by Coproducts

In this section we will discuss how a category C with finite coproducts and
an initial object can be equipped with the structure of a symmetric monoidal
category. We also briefly discuss why one might restrict to a category’s core
when studying its Algebraic K-theory spectrum.

Let us begin by showing that a category C with finite coproducts and an
initial object can be equipped with the structure of a symmetric monoidal
category.

Proposition 4.3.1. Let C be a category with finite coproducts t and an
initial object e. There is a symmetric monoidal structure on C induced by t
and e.

Proof. The category C can be equipped with a symmetric monoidal structure
< C,t, e, α, β, γ, B >, where the tensor product on C is induced by the
mapping

C × C → C, (a, b) 7→ a t b.
The associator, left and right unitors, and braiding of C are then induced
by the canonical maps arising from the universal property of the coproduct.
For example, the associator of C is induced by the canonical maps

a t (b t c)→ (a t b) t c

for each a, b, c ∈ C. The universal property of the coproduct forces all needed
diagrams in Definitions 4.1.1 and 4.1.2 to commute, and forces all needed
identities to be satisfied.

Corollary 4.3.2. Let C be a category with finite coproducts t and an initial
object e. If D is a category then there is an induced symmetric monoidal
structure on the category of functors [D,C] mapping D into C.

Proof. As (co)limits are computed in functor categories pointwise, the cate-
gory [D,C] has finite coproducts and an initial object. Hence, by Proposition
4.3.1, there is a symmetric monoidal structure on [D,C].

Recall that if F : C → C ′ is an equivalence of categories, then F commutes
with all limits and colimits (this is made precise in Theorem 4.3.3). Hence,
one would reasonably expect that if C and C ′ are symmetric monoidal cate-
gories whose symmetric monoidal structures are induced by coproducts and
initial objects, then F would be a monoidal equivalence. We prove that this
is indeed the case in Corollary 4.3.4.



4.3. The Symmetric Monoidal Structure Induced by Coproducts 105

Theorem 4.3.3. Let F : C → C ′ be an equivalence of categories. The
functor F preserves all colimits. That is,

F

(
lim−→
I

D

)
∼= lim−→

I

F ◦D,

where D : I → C is a diagram in C.

Proof. The functor F : C → C ′ has a pseudo-inverse G : C ′ → C, and hence
has a right adjoint. Thus, F preserves colimits.

Corollary 4.3.4. Let C and D be categories with finite coproducts t and
∐

and initial objects e and e′, respectively. If F : C → D is an equivalence of
categories such that F (e) = e′, then it is also a monoidal equivalence with
respect to the induced symmetric monoidal structures on C and D.

Proof. There is natural family of isomorphisms

F (a)
∐

F (b)→ F (a t b)

in D as in Theorem 4.3.3. Diagrams (4.4)–(4.7) then commute by the uni-
versal property of the coproduct.

Despite coproducts and initial objects providing categories with symmetric
monoidal structures, it turns out the Algebraic K-theory spectra of such
categories are boring to study. Why? Observe that if a category C has an
initial object e then there is a natural bijection

C(e, c) ∼= T (•, •),

where T is the terminal category. That is, there is an adjunction T � C.
Thus, by Corollary 1.3.21, the classifying space of C is homotopy equivalent
to a point. Hence, so is BKC0. Thus, BKC0 has a homotopy inverse by
Corollary 3.2.4, and so the spectrum BKC is an Ω-spectrum (Proposition
3.7.9) whose 0-th space is homotopy equivalent to a point. That is, the
Algebraic K-theory spectrum BKC of C has the stable homotopy type of
the spectra consisting of single points only. So, to ensure the Algebraic K-
theory spectrum of a symmetric monoidal category C whose structure has
been induced by coproducts and an initial object is interesting to study, we
need a way to remove some of the maps from the collections C(e, c), without
losing the structure of the symmetric monoidal category on C. By Remark
4.3.5, his can be achieved by restricting to the core of the category.

Remark 4.3.5. Observe that if C is a symmetric monoidal category then
its core C' (recall Remark 2.4.3) is too. Furthermore, if F : C → C ′ is a
monoidal equivalence then so is its restriction to C'.
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4.4 Permutative Categories and Good Sim-

plicial Monoids

Permutative categories are symmetric monoidal categories where the unitors
and associator are identity natural transformations. Permutative categories
will be useful for us as their Algebraic K-theory spaces, in suitably nice cases,
have the same homotopy type as the realisations of the group completions of
their nerves. We will discuss this idea in this section.

We will begin this section by defining permutative categories, and showing
that their Algebraic K-theory spaces are homotopy equivalent to a group
completion of their classifying spaces.

Definition 4.4.1. If C is a symmetric monoidal category such that the
associator, left unitor, and right unitor are identity natural transformations,
then C is called a permutative category. Let PermCat be the category
whose objects are small permutative categories and maps are strict symmetric
monoidal functors.

Remark 4.4.2. Note that the nerve NP of a permutative category P is
a simplicial monoid, and its classifying space BP is a topological monoid
(recall Remark 1.4.6).

Lemma 4.4.3. Let X be a reduced Γ-space such that X(1) is a topological
monoid. There is a map of simplicial spaces X → NX(1) from the associ-
ated simplicial space of X into the nerve NX(1) of X(1) that is a levelwise
homotopy equivalence.

Proof. For each n ≥ 0 the map

X(p1)× · · · ×X(pn) : X(n)→ X(1)n

is a homotopy equivalence, where X(pi) : X(n) → X(1) is induced by the
map

pi : n→ 1, pi(j) =

{
1 if j = i

0 otherwise

in Γop, as X is a Γ-space. This family of maps commutes with the face and
degeneracy maps of NX(1) and the simplicial space associated to X.

Proposition 4.4.4. Let P be a permutative category. There is a homotopy
equivalence

ΩBBP ' ΩBKP1.
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Proof. Recall that BKP1 is the space T |T 2KP | (Construction 3.7.7). There
is hence a weak homotopy equivalence BKP1 → |T 2KP | between BKP1 the
realisation of the simplicial space associated to the Γ-space T 2KP (statement
1 in Proposition 1.6.8). But this weak homotopy equivalence is a homotopy
equivalence by Whitehead’s theorem and statement 1 in Proposition 3.5.7 .
Now, as KP is a reduced Γ-space and KP (1) = BP is a topological monoid,
by Lemma 4.4.3, there is a map of simplicial spaces KP → NBP that is a
levelwise homotopy equivalence. Hence, by statement 4 in Proposition 3.5.7,
there is a map

TKP → KP

of simplicial spaces that is a levelwise weak equivalence. Thus, the composite
map

TKP → KP → NBP

induces a homotopy equivalence |T 2KP | → |TNBP |, by statement 2 in
Proposition 3.5.7. But then as NBP is good (Proposition 3.5.4), by state-
ment 4 in Proposition 3.5.7, there is a homotopy equivalence |TNBP | →
|NBP | = BBP . Thus, there is a homotopy equivalence

BKP1
'−→
∣∣T 2KP

∣∣ '−→ |TNBP | '−→ BBP,

and hence BKP1 and BBP have the same homotopy type. Hence, so do
ΩBKP1 and ΩBBP .

Thus, the Algebraic K-theory space of a permutative category P has the
homotopy type of a group completion of its classifying space (recall Theorem
3.1.6). So one could identify the Algebraic K-theory space of a permutative
category P by identifying the homotopy type of ΩBBP . In the case where
NP is a ‘good’ simplicial monoid, this identification can be made by group
completing NP . Let us discuss this now.

Definition 4.4.5. Let M be a simplicial monoid. Let M be the simplicial
group such that Mn is the group completion of Mn for each n ≥ 0. The
canonical map of simplicial monoids M →M is called the group completion
of M .

Definition 4.4.6. Let M be a simplicial monoid. Let N(M) be the bisim-
plicial set whose set of (m,n)-bisimplices is (Mm)n. The horizontal face and
degeneracy maps of N(M) are given by

di : NMm+1,n → NMm,n, di(x1, ..., xn) := (di(x1), ..., di(xn))
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and

sj : NMm,n → NMm+1,n, sj(x1, ..., xn) := (sj(x1), ..., sj(xn)).

The vertical face and degeneracy maps of N(M) are given by

di : NMm,n+1 → NMm,n,

di(x1, ..., xn+1) :=


(x2, ..., xn+1) if i = 0

(x1, ..., xi+1xi, ..., xn+1) if 0 < i < n+ 1

(x1, ..., xn) if i = n+ 1

and

sj : NMm,n → NMm,n+1, sj(x1, ..., xn) := (x1, ..., e, xj, xj+1, ..., xn).

The bisimplicial set NM is called the nerve of M . The simplicial set dN(M),
denoted BM , is called the classifying space of M .

Remark 4.4.7. The motivation behind calling the simplicial set BM the
classifying space of M is clear when one recalls that

|dBM | ∼= |[n] 7→ |M |n|,

as in Construction 1.4.17. That is, the realisation of BM corresponds to the
classifying space of the topological monoid |M |.

Construction 4.4.8. Definition 4.4.6 can be extended to define a functor

B : sMon→ sSet.

Using the functoriality of the classifying space of a simplicial monoid we can
define what it means for a simplicial monoid to be good.

Definition 4.4.9 [Quillen [25]]. Let M be a simplicial monoid. The simpli-
cial monoid M is called good if the canonical map M → M induces a weak
equivalence BM → BM of simplicial sets.

As mentioned above, if the nerve NP of a permutative category P is good
NP → NP provides us with a group completion of BP .

Corollary 4.4.10 [Theorem Q.4, Quillen [25]]. Let P be a permutative
category such that NP is good. Then BP →

∣∣NP ∣∣ is a group completion.

Proof. This follows from Theorem Q.4 in [25].
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Not all group completions of an H-space are equivalent. However, it turns
out that

∣∣NP ∣∣ has the same homotopy type as the group completion ΩBBP .

Corollary 4.4.11 [Quillen [25]]. Let P be a permutative category such that
NP is good. There is a homotopy equivalence

∣∣NP ∣∣→ ΩBBP .

Proof. This follows from a remark Quillen makes on page 96 of [25].

Thus, the Algebraic K-theory space of a permutative category P is homo-
topy equivalent to

∣∣NP ∣∣ when NP is good.

We will now conclude this section by stating a sufficient condition on simpli-
cial monoids for them to be good.

Definition 4.4.12. Let M be a simplicial monoid. If Mn is a free monoid
for each n ≥ 0, then M is called free.

Proposition 4.4.13 [Quillen [25]]. If M is a free simplicial monoid then M
is good.

Proof. This follows from Propositions Q.1 and Q.2 in [25].
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Chapter 5

The Algebraic K-theory
Spectrum of FinCov(X)'

In this chapter we will identify the stable homotopy type of the Algebraic K-
theory spectrum BKFinCov(X)' of FinCov(X)', when X is a connected
simplicial set. This identification will serve as a generalisation of the Barratt-
Priddy-Quillen Theorem.

To discuss the Algebraic K-theory spectrum BKFinCov(X)' of the cate-
gory FinCov(X)', we must first equip it with the structure of a symmetric
monoidal category. We will do this using Proposition 4.3.1 in Section 5.1.
Then, to aid us in identifying the stable homotopy type of BKFinCov(X)',
we will define a permutative category S(C) called the free symmetric monoidal
category on the category C in Section 5.2. Using some work by Barratt and
Eccles (reviewed in Section 5.3), and some of the results discussed in Chapter
4, we will be able to identify the stable homotopy type of BKS(C) in Sec-
tion 5.4. Then, in Section 5.5, using Corollary 2.6.4, we will be able to relate
FinCov(X)' to the free symmetric monoidal category S(CCG) via a zigzag of
monoidal equivalences, where CCG is a groupoid is constructed using choices
of representatives from certain conjugacy classes of subgroups of π1(X). We
will then be able to identify the stable homotopy type of BKFinCov(X)'.

This chapter will be the final chapter of this thesis. The work done in Chap-
ters 1–4, and in this chapter, will culminate in Theorem 5.5.14. Theorem
5.5.14 will tell us that the Algebraic K-theory spectrum of FinCov(X)'

can be identified with the suspension spectrum on the disjoint union of the
classifying spaces of groups constructed from certain conjugacy classes of
π1(X) attached with a disjoint basepoint. We will demonstrate that Theo-
rem 5.5.14 generalises the Barratt-Priddy-Quillen Theorem by recovering the
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Barratt-Priddy-Quillen Theorem from it.

5.1 The Symmetric Monoidal Structure on

FinCov(X)'

To discuss the Algebraic K-theory spectrum of the category FinCov(X)',
we must first equip it with the structure of a symmetric monoidal cate-
gory. Recall that in Section 4.3 we showed that there are induced symmet-
ric monoidal structures on categories which have binary coproducts and an
initial object. Furthermore, we observed that passing to cores respects sym-
metric monoidal structures. In this section we will equip FinCov(X)' with
a symmetric monoidal structure by showing that FinCov(X) has binary co-
products and an initial object.

Proposition 5.1.1. The category FinCov(X) has binary coproducts.

Proof. By Proposition 1.1.4, the category sSet has all coproducts. In par-
ticular, if Y and Z are simplicial sets then their coproduct Y t Z is the
simplicial set with n-simplices

(Y t Z)n := Yn t Zn.

Hence the category sSet/X also has all coproducts, by general abstract non-
sense. Thus, to prove the given statement, we will show that the coproducts
t in sSet/X restrict to define binary coproducts in the full subcategory
FinCov(X).

We will first show that t is the coproduct in Cov(X). As Cov(X) is a full
subcategory of sSet/X, it is sufficient to check that Cov(X) is closed under
t. Let p1 : Y1 → X and p2 : Y2 → X be simplicial covers of X, and suppose
the diagram

∆0 Y1 t Y2

∆n X

0n p1tp2
(5.1)

commutes. Then the image of the map ∆0 → Y1 t Y2 is contained entirely
within either Y1 or Y2. Without loss of generality, suppose that ∆0 → Y1tY2

is contained within Y1. There is then a unique map ∆n → Y1 making the
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diagram

∆0 Y1

∆n X

0n p1
(5.2)

commute. The composite map f : ∆n → Y1 ↪→ Y1 t Y2 then makes diagram
(5.1) commute. Observe also that the map f : ∆n → Y1 t Y2 is the unique
map making diagram (5.1) commute. Why? Suppose there is another map
f ′ : ∆n → Y1 t Y2 making diagram (5.1) commute. Then the image of f ′

is also contained within Y1, as f ′(0) ∈ Y1. Hence, the map f ′ also makes
diagram (5.2) commute, and hence is equal to f : ∆n → Y1 t Y2 by unique-
ness. Thus, p1 t p2 : Y1 t Y2 → X has the unique right lifting property with
respect to all initial vertex inclusions. An identical argument shows that
p1 t p2 : Y1 t Y2 → X also has the unique right lifting property with respect
to all final vertex inclusions. Thus, p1 t p2 : Y1 t Y2 → X is a simplicial
covering of X. Hence, Cov(X) is closed under t.

To conclude that t is the coproduct in FinCov(X), it is sufficient to show
that FinCov(X) is closed under t. Observe that if Y1 and Y2 are finite
sheeted covering spaces then for all vertices x of X, by Remark 2.1.10, the
fibre Y1 t Y2|x is equal to the set

{y ∈ (Y1)0 : p1(y) = x} t {x ∈ (Y2)0 : p2(y) = x}.

This set is clearly finite. Hence, FinCov(X) is closed under t.

Using the observations made in Section 4.3, Proposition 5.1.1 allows us to
easily equip FinCov(X)' with the structure of a symmetric monoidal cate-
gory.

Corollary 5.1.2. There is the structure of a symmetric monoidal category
on FinCov(X)' with tensor product t.

Proof. Recall from Proposition 4.3.1 that a category with binary coproducts
and an initial object has an induced symmetric monoidal structure. Also re-
call that if C is a symmetric monoidal category then so is C' with the induced
tensor product (Remark 4.3.5). Thus, as we have shown that FinCov(X)
has binary coproducts, and as the map ∅ → X is clearly an initial object
in FinCov(X), the category FinCov(X)' has the structure of a symmetric
monoidal category.
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5.2 Free Symmetric Monoidal Categories

To identify the Algebraic K-theory spectrum of FinCov(X)' it will be help-
ful to first relate it to a certain free symmetric monoidal category via a zigzag
of monoidal equivalences. This is because, as we will see later, the Algebraic
K-theory spectra of free symmetric monoidal categories are easy to under-
stand. In this section we will define free symmetric monoidal categories and
explain in what sense they are ‘free’.

To define the free symmetric monoidal category on a category C we must
first define the k-th symmetrized power of C, following Baez in [1].

Definition 5.2.1. Let C be a category. Let

Ck

k!

be the category whose objects are k-tuples (c1, ..., ck) of objects of C. Maps

((f1, ..., fk), σ) : (c1, ..., ck)→ (d1, ..., dk)

in Ck/k! consist of k-tuples (f1, ..., fk) of maps of C equipped with a permu-
tation σ on k-elements such that fi : cσ(i) → di in C for each i = 1, ..., k.
Composition in Ck/k! sends the pair of maps

(c1, ..., ck)
((f1,...,fn),σ)−−−−−−−→ (d1, ..., dk)

((g1,...,gn),τ)−−−−−−−→ (e1, ..., ek)

to the map(
g1 ◦ fτ(1), ..., gn ◦ fτ(n), τ ◦ σ

)
: (c1, ..., ck)→ (e1, ..., ek).

The category Ck/k! is called the k-th symmetrized power of C.

Remark 5.2.2. We will take C0/0! to be the category with one object and
one map.

The free symmetric monoidal category on a category C is then defined as
follows:

Definition 5.2.3. Let C be a category. The category

S(C) :=
∐
k≥0

Ck

k!
,

where
∐

is the coproduct in CAT, is called the free symmetric monoidal
category on C.
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We obviously want to check that the category S(C) is indeed a symmetric
monoidal category, else its name would be very misleading. It turns out that
S(C) is a permutative category, as shown in Proposition 5.2.4.

Proposition 5.2.4. The free symmetric monoidal category S(C) on a cate-
gory C is a permutative category.

Proof. Let ⊗ : S(C) × S(C) → S(C) be the functor which maps pairs of
objects

((x1, ..., xn), (y1, ..., ym))

to the object
(x1, ..., xn, y1, ..., ym).

The functor ⊗ sends the pair of maps

((f1, ..., fn), σ) : (x1, ..., xn)→ (x′1, ..., x
′
n)

and
((g1, ..., gm), τ) : (y1, ..., ym)→ (y′1, ..., y

′
m)

to the map

((f1, ..., fn, g1, ..., gm), σ + τ) : (x1, ..., xn, y1, ..., ym)→ (x′1, ..., x
′
n, y

′
1, ..., y

′
m).

Equipping the category S(C) with the functor ⊗ gives it the structure
of a strict monoidal category. There is a braiding on (S(C),⊗) whose
(x1, ..., xn, y1, ..., ym)-component is an n+m tuple of identity maps equipped
with the permutation which swaps the block {1, ..., n} of n letters with the
block {n+ 1, ...n+m} of m letters.

So we have that S(C) is a symmetric monoidal category, but in what sense is
it free? As with the free infinite loop space and free groupoid constructions,
the category S(C) is free in the sense that Definition 5.2.3 can be extended
to define a functor that is left adjoint to a forgetful functor.

Remark 5.2.5. Let PermCat be the category of small permutative cate-
gories and monoidal functors. Definition 5.2.3 extends to a functor

S(−) : Cat→ PermCat.

There is also a functor

U : PermCat→ Cat

which forgets the permutative structure of a permutative category.
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Theorem 5.2.6. The functors S : Cat� PermCat : U are adjoint.

Proof. See Lemma 4.1 in [5].

To conclude our discussion of free symmetric monoidal categories observe
that equivalences of categories induce monoidal equivalences.

Proposition 5.2.7. Let C and D be categories and F : C
'−→ D be an

equivalence of categories. The induced functor S(F ) : S(C) → S(D) is a
monoidal equivalence.

Proof. If (d1, ..., dk) is a tuple of objects in S(D) then for each di there is an
object ci in C such that there is an isomorphism fi : F (ci)→ di in D. Thus,
the map

((f1, ..., fk), Id) : (F (c1), ..., F (ck))→ (d1, ..., dk)

is an isomorphism in S(D), and so S(F ) is essentially surjective. Now sup-
pose

((g1, ..., gk), σ) : (F (x1), ..., F (xk))→ (F (y1), ..., F (yk))

is a map in S(D). For each gi in D there is a unique map hi in C such that
F (hi) = gi. Thus, the map ((h1, ..., hk), σ) in S(C) is sent to ((g1, ..., gk), σ) by
S(F ). Furthermore, ((h1, ..., hk), σ) is the unique map sent to ((g1, ..., gk), σ)
by S(F ). Hence, the functor S(F ) is fully faithful. So S(F ) is an equivalence
of categories, and, in particular, is a monoidal equivalence.
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5.3 Group Completions of Certain Free Sim-

plicial Monoids

As previously mentioned, we want to identify the Algebraic K-theory spectra
of free symmetric monoidal categories. Identifying the Algebraic K-theory
spectra of free symmetric monoidal categories will be easy, as their classifying
spaces can identified with the realisations of certain free simplicial monoids
whose group completions have the homotopy type of a free infinite loop space.
In this section, we will describe these certain free simplicial monoids and their
group completions. All the theory we will discuss was first published in the
paper [2] by Barratt and Eccles.

To define the free simplicial monoids we will be interested in we first need to
define some useful maps. These maps are defined in Definitions 5.3.2, 5.3.3,
5.3.4, and 5.3.6 below.

Definition 5.3.1. Let n = {1, ..., n}. For all positive integers m and n, let
Cn
m be the set of strictly increasing maps m→ n.

Definition 5.3.2. For positive integers k and n and 1 ≤ i ≤ k define the
function

λi : n→ kn, λi(j) := (i− 1)n+ j

in Ckn
n .

Definition 5.3.3. Let α ∈ Cn
m and X be a set. Define the function

α∗ : Xn → Xm, α∗(x1, ..., xn) := (xα(1), ..., xα(n)).

If the set X has a base point, and the components of x := (x1, ..., xn) that
α∗ omits are base points only, then α is called entire for x.

Definition 5.3.4. If α is a map in Cn
m define the group monomorphism

α∗ : Σm → Σn, σ 7→ α∗(σ),

where

α∗(σ)(j) = j if j ∈ n \ α(m)

α∗(σ)(α(j)) = α(σ(j)) otherwise.

The definition of our next map will rely on the observation that there is a
canonical bijection between Cn

m and the set of subsets of n of cardinality m.
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Construction 5.3.5. Note that the set Cn
m is canonically isomorphic to the

set of subsets of n of cardinality m. The bijection is explicitly given by the
function

Cn
m → {A ∈ P(n) : |A| = m}, α 7→ {α(1), ..., α(m)}.

Now suppose σ is an element in Σn. The image of the function σ◦α is a subset
of n of cardinality m, and thus, by the identification above, corresponds to a
map in Cn

m, which will be denoted σ∗(α). There is then a unique map α∗(σ)
in Σm making the diagram

m n

m n

α

α∗(σ) σ

σ∗(α)

(5.3)

commute.

Definition 5.3.6. If α is a map in Cn
m define the map

α∗ : Σn → Σm, σ 7→ α∗(σ),

where the map α∗(σ) is the unique permutation making diagram (5.3) com-
mute.

Remark 5.3.7. Note that there has been an abuse of notation between
Definitions 5.3.3 and 5.3.6. However, there will be no risk of confusion in
this thesis, as whether α∗ acts on tuples of a set X, or whether α∗ acts on
permutations, will be clear from context.

Using the maps defined above we can now construct the previously alluded
to free simplicial monoids. To construct these free simplicial monoids Γ+(X)
we will define their underlying simplicial sets, and then state a result that
says they can be equipped with the structures of free simplicial monoids. As
we shall seldom explicitly use the multiplication rule on Γ+(X) we will not
describe it in this thesis.

Definition 5.3.8 [Definition 3.1, Barratt and Eccles [2]]. Suppose X is
a pointed simplicial set. Let U(X) be the simplicial set∐

n≥0

Xn × EΣn,

where EΣn was defined in Definition 1.1.24. Let Γ+(X) be the simplicial set
U(X) mod the equivalence relations generated by the relations:

((x1, ..., xn), σ) ∼ ((xω(1), ..., xω(n)), ω ◦ σ) (5.4)

((x1, ..., xn), σ) ∼ (α∗((x1, ..., xn)), α∗(σ)) (5.5)
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where σ ∈ EΣn, (x1, ..., xn) ∈ Xn, ω ∈ Σn, α ∈ Cn
m and is entire for

(x1, ..., xn), and n,m ≥ 0. Note that Γ+(X) can be equipped with the canon-
ical basepoint [(∗, Id)].

Remark 5.3.9. Note that in Definition 5.3.8 the notation being employed
suppresses which set of n-simplices an element ((x1, ..., xn), σ) of U(X) be-
longs to, but specifies the summand. Also note that the operations ω ◦σ and
α∗(τ) are done componentwise.

Proposition 5.3.10 [Proposition 3.11, Barratt and Eccles [2]]. If X is
a pointed simplicial set then Γ+X is a free simplicial monoid.

Proof. See Section 3 in [2].

Thanks to Barratt and Eccles, simplicial models for the group completions
of the free simplicial monoids Γ+(X) are well understood up to homotopy
equivalence. Let us construct these simplicial models now.

Definition 5.3.11. Let Γ+(X) → ΓX be the group completion of the sim-
plicial monoid Γ+X.

Construction 5.3.12. Recall from Section 1.5 that there is a natural bijec-
tion

homsSet∗(X ∧ Y, Z) ∼= homsSet∗(X,Hom∗(Y, Z)).

Let ΣX := X ∧ Ex∞(S1) and ΩX := Hom∗(Ex
∞(S1), X). For each n ≥ 0

there is a map ΣnX → ΩΣn+1X adjoint to the identity map Σn+1X →
Σn+1X. Hence, applying the induced Ω functor n-times, we have a map

ΩnΣnX → Ωn+1Σn+1X.

Thus, define Ω∞Σ∞X as the colimit of the diagram

X → ΩΣX → Ω2Σ2X → ... (5.6)

in sSet∗.

Theorem 5.3.13 [Theorem 4.10, Barratt and Eccles, [2]]. If X is a
pointed Kan complex then ΓX and Ω∞Σ∞X are homotopy equivalent as sim-
plicial sets.

Proof. This is Theorem 4.10 in [2].
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Observe that Ω∞Σ∞X is constructed analogously to the way the free infinite
loop space on a pointed space is constructed (see Remark 3.4.5). That is,
Γ(X) is homotopy equivalent to a simplicial analogue of the free infinite loop
space on a based space. It turns out that that this equivalence is respected
when passing to realisation. That is, |Γ(X)| is homotopy equivalent to the
free infinite loop space on |X|.

Proposition 5.3.14. If X is a pointed simplicial set then the spaces |Γ(X)|
and Q(Σ∞|X|)0 are homotopy equivalent.

Proof. This is Theorem 7.4.1(b) in [3].
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5.4 The Algebraic K-theory Spectrum of S(C)

In this section we will identify the stable homotopy type of the Algebraic
K-theory spectrum of the free symmetric monoidal category S(C) on C,
when C is small. To identify the Algebraic K-theory spectrum of S(C) we
will appeal to some results from Chapter 4, the work of Barratt and Eccles
reviewed in Section 5.3, and another result which we will state.

To discuss the Algebraic K-theory spectrum of free symmetric monoidal
category S(C) on C we require that S(C) be small. But observe that if C
is small, then clearly so is S(C). So let us identify the Algebraic K-theory
spectrum of S(C), when C is small.

Proposition 5.4.1. For all small categories C there is an isomorphism of
topological monoids

BS(C) ∼=
∣∣Γ+(NC+)

∣∣.
Proof. See Section 2 of [29].

Theorem 5.4.2. Let C be a small category. The Algebraic K-theory spec-
trum of S(C) has the same stable homotopy type as the spectrum Σ∞|NC+|.

Proof. As S(C) is a permutative category (Proposition 5.2.4), there is a
homotopy equivalence ΩBBS(C) ' ΩBKS(C)1 (Proposition 4.4.4). Now
as there is an isomorphism of topological monoids BS(C) ∼= |Γ+(NC+)|
(Proposition 5.4.1), and Γ+(NC+) is good (Propositions 4.4.13 and 5.3.10),
there is a homotopy equivalence |Γ(NC+)| ' ΩBBS(C) (Corollary 4.4.11).
Hence, by Proposition 5.3.14, there are homotopy equivalences

Q(Σ∞|NC+|)0 ' |Γ(NC+)| ' ΩBBS(C) ' ΩBKS(C)1.

Thus, by Construction 4.2.7, the Algebraic K-theory spectrum of S(C) has
the same stable homotopy type as the spectrum Σ∞|NC+|.
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5.5 Identifying the Algebraic K-theory Spec-

trum of FinCov(X)'

In this section we will identify the stable homotopy type of the Algebraic
K-theory spectrum of FinCov(X)', where X is a connected simplicial set.
We will do this by exhibiting a zigzag of monoidal equivalences between
FinCov(X)' and the free symmetric monoidal category S(CCG), where CCG
is a groupoid constructed using choices of representatives from certain conju-
gacy classes of subgroups of the fundamental group π1(X) of X. The stable
homotopy type of the Algebraic K-theory spectrum of FinCov(X)' will
then be identified using Propositions 4.2.3 and Theorem 5.4.2.

First, lets make precise what we mean by connected simplicial set.

Definition 5.5.1. A simplicial set X is called connected if its fundamental
groupoid Π1(X) is a connected groupoid.

Remark 5.5.2. If a simplicial set X is connected then its fundamental
groupoid Π1(X) is equivalent (as a groupoid) to a group, namely its fun-
damental group π1(X). Hence, when assuming a simplicial set is connected,
we will take its fundamental groupoid to be π1(X).

Remark 5.5.3. If a simplicial set X is connected, then so is its realisation
|X|.

Let us now relate FinCov(X)' to a free symmetric monoidal category. Re-
call from Section 2.6 we have an equivalence of categories

FinCov(X)'
'−→ [Π1(X),FinSet'], (5.7)

for each simplicial set X. This equivalence is monoidal as there is a sym-
metric monoidal structure on [Π1(X),FinSet] is induced by coproducts and
an initial object (see Corollarys 4.3.2 and 4.3.4), and restricting to cores re-
spects monoidal equivalences. Taking X to be connected, the above monoidal
equivalence becomes

FinCov(X)'
'−→ [π1(X),FinSet']. (5.8)

It then turns out that [π1(X),FinSet'] is monoidally equivalent to the core
of the category of finite left π1(X)-sets.

Proposition 5.5.4. Let G be a group, and let G−FinSet be the category of
left G-sets with finitely many elements. There is an isomorphism of categories

[G,FinSet] ∼= G− FinSet.
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Proof. If X : G → FinSet is a functor, the finite set X := X(•) has the
structure of a left G-set when equipped with the map

g · x := X(g)(x).

If α : X → Y is a natural transformation in [G,FinSet], then the diagram

X X

Y Y

X(g)

α α

X(g)

(5.9)

commutes for all g in G. Thus, the map α : X → Y is also a map of
G-sets. Hence, mapping functors X : G → FinSet to the G-sets X and
mapping the natural transformations α to the G-set maps α defines a functor
[G,FinSet]→ G− FinSet. This functor has an obvious inverse.

Corollary 5.5.5. If G − FinSet is equipped with the structure of a sym-
metric monoidal category induced by coproducts and an initial object, the
isomorphism of categories

[G,FinSet'] ∼= (G− FinSet)'

is a monoidal equivalence.

Proof. This follows immediately from Proposition 5.5.4, Corollary 4.3.4, and
Remark 4.3.5.

We thus have the monoidal equivalence

FinCov(X)'
'−→ (π1(X)− FinSet)'. (5.10)

We will now see that (π1(X)−FinSet)' is monoidally equivalent to the free
symmetric monoidal category on the core of the category of finite transitive
π1(X)-sets. To construct this monoidal equivalence it will be helpful to first
make some observations about finite π1(X)-sets.

Construction 5.5.6. Let X be a finite left G-set. Recall that any G-set
can be written as the disjoint union of its orbits. That is,

X =
∐

[x]∈X/G

G · x,
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where G · x denotes the orbit of an element x. Now, let Gx denote the
stabiliser subgroup of x in G. Recall that G · x and G/Gx are isomorphic as
transitive G-sets, where G/Gx is the set of left cosets of Gx. Thus, we have

X =
∐

[x]∈X/G

G/Gx.

Now suppose that y ∈ X such that y = g · x. Then we have that

h ∈ Gy ⇐⇒ h · y = y

⇐⇒ g−1hg · x = x

⇐⇒ g−1hg ∈ Gx

⇐⇒ h ∈ gGxg
−1.

That is, if y is in the orbit of x, then Gx and Gy are conjugate subgroups of
G. Thus, as conjugate subgroups induce isomorphisms on the sets of cosets
(i.e. if Gx and Gy are conjugate subgroups then G/Gx

∼= G/Gy as G-sets),
the G-set X is entirely determined by n conjugacy classes [Gx] of subgroups
of G, where n = |X/G|.

Proposition 5.5.7. Let G − FinSetT be the category of finite transitive
G-sets. There is a monoidal equivalence

S
(
(G− FinSetT )'

) '−→ (G− FinSet)'.

Proof. Let
S
(
(G− FinSetT )'

)
→ (G− FinSet)'. (5.11)

be the functor that maps the k-tuple (X1, ..., Xk) of finite transitive G-sets
to the G-set

k∐
n=1

Xk.

If
((f1, ..., fk) , σ) : (X1, ..., Xk)→ (Y1, ..., Yk)

is a map in S
(
(G− FinSetT )'

)
the functor (5.11) sends it to the map

f :
k∐

n=1

Xn →
k∐

n=1

Yn,

where f |Xσ(i)
= fi. As the monoidal structure on (G− FinSet)' is induced

by coproducts, the functor (5.11) is a monoidal functor. The functor (5.11) is
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also essentially surjective as all finite G-sets can be written as a finite disjoint
union of finite transitive G-sets of the form G/H, where H is a subgroup of
G. Now if f :

∐k
n=1Xn →

∐k
n=1 Yn is an isomorphism of G-sets that are in

the image of the functor (5.11), for each i there exists a j such that the map
f |Xj : Xj → Yi is an isomorphism of G-sets. Thus, let σ be the permutation
where σ(i) = j. The functor (5.11) then sends the map((

f |Xσ(1)
, ..., f |Xσ(k)

), σ
))

: (X1, ..., Xk)→ (Y1, .., Yk)

to f . Thus, the functor (5.11) is full. Furthermore, such a map f :
∐k

n=1Xn →∐k
n=1 Yn is uniquely determined by its k-restrictions f |Xj . Thus, the functor

(5.11) is also faithful.

Hence, we now have zigzag of monoidal equivalences

FinCov(X)'
'−→ (π1(X)− FinSet)'

'←− S
(
(π1(X)− FinSetT )'

)
. (5.12)

We have hence related FinCov(X)' to a free symmetric monoid cate-
gory. However, the category S

(
(π1(X)− FinSetT )'

)
and its Algebraic

K-theory spectrum are difficult to understand. Thus, we will now re-
late S

(
(π1(X)− FinSetT )'

)
to a monoidally equivalent free symmetric

monoidal category that can be more easily understood. To do this we will
show that for every group G the groupoid (G − FinSetT )' is equivalent to
a groupoid constructed using representatives from certain conjugacy classes
of subgroups of G.

Definition 5.5.8. Let G be a group, and let NG(H) denote the normaliser
subgroup of H in G. Let CCG be the discrete groupoid whose objects are
finite G-sets of the form G/H, where H is a representative from a conjugacy
class [H] of subgroups in G. The automorphism group of each object G/H
in CCG is the group NG(H)/H.

Remark 5.5.9. Let CCG denote the set of conjugacy classes of subgroups
[H] of G such that G/H is finite. Note that CCG can be thought of as the
disjoint union of groupoids ∐

[H]∈CCG

NG(H)/H.

To show that CCG and (G − FinSetT )' are equivalent it will be helpful to
first prove that the group of G-set automorphisms mapping G/H to itself
and NG(H)/H are isomorphic as groups.



126 Chapter 5. The Algebraic K-theory Spectrum of FinCov(X)'

Lemma 5.5.10. Let G be a group, H be a subgroup of G, and let
Map(G/H,G/H) be the group of G-set automorphisms mapping the G-set
G/H to itself. There is an isomorphism of groups

NG(H)/H ∼= Map(G/H,G/H).

Proof. Let f be a G-set automorphism in Map(G/H,G/H). Note that for
all g in G

f(gH) = f(g · eH) = gf(eH),

where e is the identity of G. Then, as f maps cosets of H to cosets of H, we
can write

gf(eH) = gf(e)H.

That is, f is determined entirely by its action on the identity e of G. Also
note that f(e)H is an element of NG(H)/H. Why? If h is in H then
f(hH) = hf(e)H. But f(hH) = f(H) = f(e)H. Hence, f(e)H = hf(e)H,
and so f(e)−1hf(e) is an element of H. We can hence define the maps

φ : NG(H)/H →Map(G/H,G/H), φ(xH) := fx,

where fx(gH) = gxH, and

ψ : Map(G/H,G/H)→ NG(H)/H, ψ(f) := f(e)H.

It is easy to check that φ and ψ are well-defined group homomorphisms, and
are mutually inverse. Thus, NG(H)/H and Map(G/H,G/H) are isomorphic
groups.

Proposition 5.5.11. There is an equivalence of categories

CCG
'−→ (G− FinSetT )'.

Proof. Let
CCG → (G− FinSetT )' (5.13)

be the functor that maps a finiteG-setG/H to the transitiveG setG/H. The
functor CCG → (G−FinSetT )' maps elements x of the group NG(H)/H to
the map fx, as in Lemma 5.5.10. This functor is an equivalence of categories,
as it is essentially surjective (by Construction 5.5.6) and fully faithful (by
Lemma 5.5.10).

Corollary 5.5.12. There is a monoidal equivalence

S (CCG)
'−→ S

(
(G− FinSetT )'

)
.
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Proof. The statement immediately follows from Propositions 5.2.7 and
5.5.11.

By equation (5.12) and Corollary 5.5.12 we thus have:

Corollary 5.5.13. There is a zigzag of monoidal equivalences

FinCov(X)'
'−→ (π1(X)− FinSet)'

'←− S(CCπ1(X)).

We have hence related FinCov(X)' to a free symmetric monoidal category
on a groupoid which is constructed using choices of representatives from
certain conjugacy classes of subgroups of π1(X). Using this result, we can
finally identify the stable homotopy type of the Algebraic K-theory spectrum
of FinCov(X)'.

Theorem 5.5.14. If X is a connected simplicial set then the Algebraic K-
theory spectrum of FinCov(X)' has the same stable homotopy type as the
spectrum

Σ∞

 ∐
[H]∈CCπ1(X)

B(Nπ1(X)(H)/H)


+

.

Proof. As there is a zigzag of monoidal equivalences

FinCov(X)'
'−→ (π1(X)− FinSet)'

'←− S(CCπ1(X)),

by Proposition 4.2.3, BKFinCov(X)' and BKS(CCπ1(X)) have the same
stable homotopy type. Thus, by Theorem 5.4.2, BKFinCov(X)' has the
same stable homotopy type as Σ∞

∣∣NCCπ1(X)+

∣∣. Hence, writing

CCπ1(X) =
∐

[H]∈CCπ1(X)

Nπ1(X)(H)/H

(Remark 5.5.10), and commutingN and |−| with coproducts, gives the result.

That is, the Algebraic K-theory spectrum of FinCov(X)' has the same
stable homotopy type as the suspension spectrum on the disjoint union of
the classifying spaces of groups constructed from certain conjugacy classes
of π1(X) attached with a disjoint basepoint.

In the Introduction of this thesis it was stated that the goal of this thesis was
to generalise the Barratt-Priddy-Quillen theorem by identifying the stable
homotopy type of the Algebraic K-theory spectrum of FinCov(X)'. To
demonstrate that proving Theorem 5.5.14 successfully completed this goal,
we will now use it to recover the Barratt-Priddy-Quillen theorem.
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Corollary 5.5.15 [Barratt-Priddy-Quillen]. The Algebraic K-theory
spectrum of Σ∞, where

Σ∞ =
∐
n≥0

Σn,

has the same stable homotopy type as the sphere spectrum S.

Proof. As simplicial coverings of ∆0 are discrete simplicial sets (Lemma
2.1.9), taking X = ∆0, we have FinCov(∆0)' ∼= FinSet' ' Σ∞. Hence,
by Theorem 5.5.14, as π1(∆0) is the trivial group, the Algebraic K-theory
spectrum of Σ∞ is stably equivalent to the spectrum Σ∞S0 = S.
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