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Abstract 
 
Prostate cancer (PCa) is the most commonly diagnosed malignancy in men and the 

second leading cause of cancer-related mortality in the developed world. Prostate 

cancers are androgen-dependent and rely on androgen receptor signalling for 

growth and survival. Hence, the mainstay treatment for patients with advanced 

metastatic PCa is androgen deprivation therapy. Although initially effective, most 

patients eventually relapse with castrate-resistant prostate cancer (CRPC), and this 

stage of the disease is ultimately fatal. Despite the clinical development of more 

potent anti-androgens, these agents are not curative. Alternative treatment 

strategies are urgently sought to overcome treatment resistance and progression to 

CRPC. Targeting cancer metabolism has emerged as a promising therapeutic 

avenue for cancer treatment, especially by targeting upregulated metabolic 

pathways that promote cancer cell survival. Dysregulation of lipid metabolism is a 

prominent feature of prostate cancer, and overexpression of key enzymes involved 

in lipid metabolism is characteristic of both primary and advanced stages of the 

disease. Moreover, androgens have been shown to regulate lipid metabolism 

pathways, either directly or indirectly by coordinating with other oncogenic signalling 

or metabolic networks. Hence, lipid metabolism represents a promising therapeutic 

vulnerability for the treatment of PCa and could potentially circumvent treatment 

resistance. While most studies have focused on targeting de novo lipogenesis and, 

more recently, lipid uptake pathways in cancer, fatty acid oxidation (FAO) remains 

an underexplored aspect of lipid metabolism. FAO is the dominant bioenergetic 

pathway in prostate cancer, which has led to interest in exploiting FAO inhibitors as 

a potential therapeutic strategy to suppress cancer tumorigenesis and overcome 

treatment resistance. Despite promising preclinical data, FAO inhibitors (ie. 

etomoxir and perhexiline) used for metabolic diseases have seen rapid decline in 

their use due to their severe toxicity and side effects. This is attributed to their broad 

specificity and subsequent off-target effects by targeting the rate limiting enzyme of 

mitochondrial FAO, carnitine palmitoyltransferase 1 (CPT1). Therefore, it is 

important that we identify new and more selective targets of FAO. In this dissertation, 

we characterise two novel and potential targetable FAO enzymes, 2,4-Dienoyl CoA 

Reductase 1 and 2 (DECR1 and DECR2) respectively.  
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In Chapter 3, we identified DECR1 as a robustly overexpressed gene in prostate 

cancer compared to normal or benign tissues and associated with shorter relapse-

free survival rates. DECR1 is an auxiliary enzyme involved in polyunsaturated fatty 

acid (PUFA) oxidation in the mitochondria. Intriguingly, DECR1 is an androgen-

repressed gene and besides its fundamental function to produce energy from 

mitochondrial FAO, DECR1 plays an important role to protect prostate cancer cells 

from oxidative stress and lipid peroxidation-induced cell death, ferroptosis (caused 

by the accumulation of peroxidation-prone PUFAs). In Chapter 4, we investigated 

its peroxisomal counterpart, DECR2, an auxiliary enzyme involved in peroxisomal 

FAO. To date, there is very limited knowledge on the roles of peroxisomal FAO in 

PCa and its potential as a therapeutic target. We found that DECR2 is significantly 

upregulated in prostate cancer and markedly suppressed prostate tumour 

oncogenesis. Moreover, we uncovered an association between peroxisomal FAO 

and treatment resistance, as well as a novel link with mitochondrial FAO whereby 

mitochondrial respiration was maintained in DECR2 knockdown cells likely to 

support tumour survival. We also provide evidence of cell cycle arrest, a mechanism 

by which DECR2 or peroxisomal FAO inhibition attenuates prostate cancer cell 

growth. We utilised thioridazine, a peroxisomal FAO inhibitor as a proof-of-concept 

that targeting peroxisomal FAO is efficacious and a promising avenue for 

therapeutic targeting. In Chapter 5, we were also interested whether FAO could play 

a role as an adaptive survival response in the context of treatment resistance. We 

analysed a proteomics dataset of AUY922 (heat shock protein 90 inhibitor) treated 

prostate tumours and found that FAO was a significantly enriched pathway in 

response to treatment. We then proceeded to evaluate the efficacy of the 

combination treatment with AUY922 and a clinical FAO inhibitor, perhexiline, and 

demonstrated enhanced suppressive effects on prostate tumour proliferation 

compared with individual treatments alone. Taken together, the findings of this 

thesis support the notion that FAO is a critical survival pathway in PCa progression 

and treatment resistance. Moreover, targeting FAO represents an exciting and novel 

therapeutic avenue for PCa treatment and provides a strong rationale for further 

investigation and clinical development of specific DECR1/2 inhibitors. This thesis 

also provided novel insights into previously unexplored areas and links of cancer 

metabolism and opens up new opportunities or questions for future exploration. 
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 General Introduction 
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1.1 Prostate cancer 
 
Prostate Cancer (PCa) is the most commonly diagnosed malignancy and the 

second leading cause of cancer-related mortality in Western men (Siegel et al. 

2019). Globally, it is estimated that nearly 1.3 million men were diagnosed with PCa 

and approximately 350,000 deaths (accounts for 3.8 % of cancer-related deaths in 

men) in 2018 (Bray et al. 2018). By 2040, it is estimated that there will be up to 2.3 

million new PCa cases accompanied by 700,000 PCa-related deaths (McNevin et 

al. 2021). In Australia, it is estimated that approximately 16,000 men were 

diagnosed with PCa in 2020 and 3,100 PCa-specific deaths (Cancer Australia 2019).  

 

1.1.1 Androgens and the androgen receptor 
 
PCa is dependent on male sex hormones known as androgens which act through 

the androgen receptor (AR) transcription factor for malignant cell growth and 

survival. In the absence of androgens, the AR is located in the cytoplasm and is 

associated with heat shock proteins HSP90 and HSP70, and several other 

chaperones that maintain the AR in an inactive conformation to protect from 

proteolytic degradation (Albany and Hahn 2014). Upon androgen binding, the AR 

undergoes a conformational change and dissociates from HSP90, and 

subsequently translocates into the nucleus (Tan et al. 2015). AR binds to AR-

response elements (ARE) in the DNA and recruits coregulators to drive the 

transcription of AR target genes that are involved in promoting growth and survival 

of prostate epithelial cells (Richter et al. 2007) (Figure 1.1).  

 

1.1.2 Current methods for the treatment of prostate cancer 
 
Therapeutic options for PCa vary depending on the stage of the disease upon 

diagnosis. For the majority of men with early stage or low-risk localised PCa, 

surgical removal of the tumour and/or radiotherapy is potentially curative (Pullar and 

Shah 2016). For men with locally recurrent and/or metastatic disease, hormonal 

manipulation, or androgen-deprivation therapy (ADT), has remained the frontline 

strategy since the 1940s due to the dependence of prostate cells on androgens for 

growth and survival (Huggins 1941). Therefore, the goal of ADT is to abolish AR 

signalling by (i) reducing circulating levels of androgens in the body (i.e. 
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orchidectomy or LHRH agonists); (ii) inhibiting the binding of androgens to the AR 

(i.e. bicalutamide); (iii) inhibiting translocation of AR into the nucleus (i.e. 

enzalutamide); or (iv) degradation of AR (i.e. UT-34 and ARD-61) (Ponnusamy et 

al. 2019; Kregel et al. 2020; Crawford et al. 2019) (Figure 1.1). Although ADT is 

initially effective, the majority of patients eventually proceed to become resistant 

(within 2-3 years) to ADT and relapse with castration-resistant PCa (CRPC) 

(Karantanos et al. 2013; Attard et al. 2016).  

 

 

Figure 1.1 Simplified overview of androgen receptor signalling.  
(Left) androgens (testosterone) are converted to DHT where it binds the AR and is 

translocated into the nucleus to stimulate growth promoting and survival genes. 

(Right) Mechanism of action of androgen deprivation therapy (ADT) to inhibit AR 

signalling. 

To date, CRPC still remains incurable and has a median survival time of less than 

2 years (Cookson et al. 2015). Failure of ADT is attributed to adaptive survival 
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pathways within PCa cells that result in persistent AR signalling despite the absence 

of androgens (Watson et al. 2015). Consequently, this led to the development of 

more potent 2nd generation AR-targeted therapies (i.e. abiraterone, enzalutamide 

and apalutamide) to overcome treatment resistance (Smith et al. 2018; Scher et al. 

2012; de Bono et al. 2011). Despite the success in prolonging survival of men with 

CRPC (Hussain et al. 2018; Davis et al. 2019), these agents are still not curative. 

Therefore, alternative therapeutic strategies to subvert treatment resistance and 

prevent progression to CRPC are urgently sought 

 

1.2 Role of lipid metabolism in cancer 
 
Lipids have diverse biological roles and are key players in tumour biology. For 

instance, lipids can function as building blocks for biological membranes to support 

the high proliferative rate of cancer cells (Zadra et al. 2013). The bulk of cell 

membrane lipids are phospholipids (PLs) such as phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine 

(PS). Other lipids include sterols (i.e. cholesterol), sphingolipid and lyso-PLs (Currie 

et al. 2013). Membranes function as barriers to separate and compartmentalise the 

cell’s content and play crucial roles in numerous cellular processes (including cell 

proliferation and death, signalling, nutrient transport) (Butler et al. 2016). Moreover, 

these structural lipids facilitate the formation of detergent-resistant membrane 

microdomains (or lipid rafts) for oncogenic signal transduction, migration and 

intracellular trafficking required for cancer cells (Zadra et al. 2013; Swinnen et al. 

2003). Lipids such as diacylglycerol (DAG), sphingosine-1-phosphate (S1P) and 

arachidonic acid (AA) can also serve as second messengers or lipid mediators to 

regulate numerous signalling or metabolic pathways that are crucial to support 

tumour growth, proliferation, migration and survival (Snaebjornsson et al. 2020). 

Moreover, lipids can also participate in post-translational modification of proteins, 

hence regulating its function, expression and localisation (Resh 2006). Finally, lipids 

synthesised endogenously or taken up exogenously can be catabolised via β-

oxidation for energy production or stored in lipid droplets to protect against 

peroxidation or lipotoxicity (Liu et al. 2015; Bailey et al. 2015; Farese and Walther 

2009).  
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In light of the above, it is not surprising that cancer cells actively exploit lipid 

metabolic pathways to support tumorigenesis. Altered lipid metabolism has been 

increasingly recognised as a hallmark of cancer, particularly in prostate cancer. The 

following section describes how androgenic regulation of lipid metabolic pathways 

are dysregulated during prostate cancer development and tumorigenesis, and why 

lipid metabolism represents an exciting and targetable avenue for therapeutic 

intervention. 

 

1.3 Androgens and lipid metabolism in prostate cancer 
 
This section of general introduction was published as a review article. 

  



Chapter 1 

 6 
 

  



  Chapter 1 

 7 

  



Chapter 1 

 8 
 

  



  Chapter 1 

 9 

  



Chapter 1 

 10 
 

  



  Chapter 1 

 11 

  



Chapter 1 

 12 
 

  



  Chapter 1 

 13 

  



Chapter 1 

 14 
 

  



  Chapter 1 

 15 

  



Chapter 1 

 16 
 

  



  Chapter 1 

 17 

  



Chapter 1 

 18 
 

  



  Chapter 1 

 19 

  



Chapter 1 

 20 
 

1.4 Fatty Acid Oxidation 
 
Fatty acids are the main building blocks of several lipid species such as 

phospholipids, sphingolipids, and triglycerides. They are composed of a carboxylic 

group and a hydrocarbon chain of varying carbon lengths and degrees of 

unsaturation (number of double bonds) (Figure 1.2). Moreover, desaturation can 

occur at different positions of the fatty acid chain. To add to their complexity, fatty 

acids can also be channelled into other metabolic pathways to synthesise more 

complex lipid species including diacylglycerides, triacylglycerides, or converted into 

phosphoglycerides such as PE and PS (Koundouros and Poulogiannis 2020). As a 

result, fatty acids contribute to the vast structural diversity of the cellular lipid pool in 

order to regulate a plethora of biochemical processes including membrane 

biosynthesis and modulation of their fluidity, serving as signalling molecules, and as 

a source of fuel for energy production or storage (Beloribi-Djefaflia et al. 2016).  

 

Figure 1.2 Structural diversity of fatty acids. 

Simplified schematic of how fatty acids can vary in structure and their respective 

examples. SFAs = no double bond; MUFAs = one double bond; PUFAs = multiple 

double bonds. 

 

Fatty acids can be acquired exogenously from circulation, through mobilisation of 

stored lipids or accumulating lipid droplets, or from de novo lipogenesis (Currie et 

al. 2013). Fatty acids are an extremely important source of energy. While the 

complete oxidation of a glucose molecule can generate up to 32 molecules of ATP, 
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complete degradation of a fatty acid molecule can yield up to 130 molecules of ATP 

(Röhrig and Schulze 2016). Generally, fatty acid oxidation maintains lipid 

homeostasis and supports mitochondrial tricarboxylic acid (TCA) cycle by 

generating acetyl-CoA for anabolic reactions and replenishing NADH and FADH 

pools (Barfeld et al. 2014). Moreover, fatty acid oxidation occurs in two distinct 

cellular compartments: the mitochondria and peroxisome (Table 1.1). Briefly, the 

mitochondria primarily functions to oxidise short, medium and long chain fatty acids 

(C13 – 21) whereas the peroxisome oxidises very long chain fatty acids ( C22) 

(Nagarajan et al. 2021). However, only the mitochondria are able to completely 

degrade fatty acids to generate energy/ATP due to the presence of the tricarboxylic 

acid (TCA) cycle and electron transport chain (ETC). Therefore, the main role of the 

peroxisome in regard to fatty acid -oxidation is to shorten fatty acyl-CoAs before 

they are transported into the mitochondria for complete degradation and energy 

production (Wanders et al. 2015).  

 

Figure 1.3 Simplified overview of mitochondrial and peroxisomal -oxidation. 
Short and medium chain fatty acyl-CoAs diffuse freely into the mitochondria, 

whereas LCFAs are transported into the mitochondria via the CPT shuttle system. 

SFAs can directly enter -oxidation (dotted line). MUFAs/PUFAs require auxiliary 

enzymes (i.e., DECR1/2) to process the double bonds before entering -oxidation. 

ACADs represent the first step of mitochondrial -oxidation. The end products of 
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mitochondrial -oxidation are shortened fatty acyl-CoAs and acetyl-CoA, of which 

the latter is a substrate for mitochondrial TCA cycle to produce ATP. VLCFAs are 

transported into the mitochondria via ABCD transporters and undergo -oxidation 

to produce shortened fatty acyl-CoAs, which are then converted to acyl-carnitines 

by COT and transported into the mitochondria for complete degradation. 

Peroxisomal acetyl-CoA can be converted to acetyl-carnitine by CAT. COT = 

carnitine octanoyltransferase; CAT = carnitine acetyltransferase; LCFAs = long 

chain fatty acids; VLCFAs = very long chain fatty acids, SFA = saturated fatty acid; 

MUFA = monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; ETC = 

electron transport chain; TCA = tricarboxylic acid cycle; CPT = carnitine 

palmitoyltransferase; DECR1/2 = 2,4-dienoyl-CoA reductase 1/2; ECI1/2 = enoyl-

CoA delta isomerase 1/2; ACAD = acyl-CoA dehydrogenase. 

 
Despite their differences, the mitochondria and peroxisome share common and 

fundamental concepts of fatty acid oxidation such as (1) transportation of fatty acyl-

CoAs into the organelle; (2) auxiliary enzymes for polyunsaturated fatty acid 

oxidation; and (3) production of acetyl-CoA (Demarquoy and Le Borgne 2015). 

Short and medium-chain fatty acids can freely diffuse through the mitochondrial 

membranes. In contrast, long and very long-chain fatty acids require a shuttle 

system for transport into the mitochondrial or peroxisomal matrix. The overall -

oxidation processes are similar in both the mitochondria and peroxisomes; this 

involves four consecutive reactions: (i) desaturation/oxidation; (ii) hydration; (iii) 

dehydrogenation; and (iv) thiolysis (Nagarajan et al. 2021). Ultimately, these 

reactions shorten fatty acyl-CoAs by two carbons to generate a shorten acyl-COA 

(which can re-enter the -oxidation pathway) and acetyl-CoA. Of particular interest 

is polyunsaturated fatty acid (PUFA) oxidation. Unlike saturated and 

monounsaturated fatty acids (SFAs and MUFAs respectively), the presence of 

multiple double bonds in naturally occurring PUFAs poses a problem for both 

mitochondrial and peroxisomal beta oxidation. To resolve this, PUFA oxidation 

requires the participation of several auxiliary enzymes for example mitochondrial 

and peroxisomal enoyl-CoA delta isomerase 1 and 2 (ECI1 and 2), and 2,4-dienoyl-

CoA reductase 1 and 2 (DECR1 and DECR2) respectively (Hiltunen and Qin 2000). 

These auxiliary enzymes allow the efficient break down of PUFAs by generating the 
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essential trans-2-enoyl-CoA intermediate which undergoes further and complete -

oxidation in the mitochondria to produce ATP (Hiltunen and Qin 2000). 

 

Table 1.1 Comparison between mitochondrial and peroxisomal -oxidation 

 Mitochondria Peroxisome 

Substrates 
Short, medium and long 

chain fatty acids (LCFA) 

Very long chain fatty 

acids (VLCFA) 

Shuttle system 

Carnitine 

palmitoyltransferase 1 

and 2 (CPT1/2) 

ATP-binding cassette 

(ABC) transporters  

End products 

Acetyl-CoA, ATP (via 

electron transport chain), 

co-factors 

(NADH/FADH) 

Shortened fatty acyl-

CoA, Acetyl-CoA, co-

factors, H2O2 

 

While de novo lipogenesis has been the primary focus of most research studies, the 

relevance of fatty acid oxidation for cancer cell function has not been carefully 

examined. Owing to the rapid proliferation of malignant tumours, a net increase in 

fatty acid oxidation (and hence, increased ATP production) may offer prostate 

cancer cells a survival advantage, for instance, in nutrient-deprived conditions 

(Carracedo et al. 2013). To this end, fatty acid oxidation has been reported to be 

upregulated in several cancers including lung, breast, liver and prostate (Ma et al. 

2018; Balaban et al. 2019). Notably, fatty acid oxidation is the dominant bioenergetic 

pathway in prostate cancer (Liu 2006). Emerging evidence suggests a role for fatty 

acid oxidation in cancers apart from ATP production. Besides promoting tumour 

growth and survival, fatty acid oxidation has been shown to drive resistance to 

radiation and chemotherapeutic agents and protection from oxidative stress (also 

discussed in section 1.2). Taken together, fatty acid oxidation represents a novel 

avenue to investigate new therapeutic approaches to prostate cancer treatment. 
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1.5 Aims and Objectives of Thesis 
 
The overall goal of this work was to gain insights into the roles of lipid metabolism 

in driving prostate cancer oncogenesis, tumour progression and treatment 

resistance, and identify targetable pathways that could be exploited for therapeutic 

intervention. Currently, it is known that the tumour lipidome is dynamic and markedly 

altered during prostate cancer development and disease progression, and these 

cancer-related changes in lipid profiles provide a source of novel molecular 

therapeutic targets. Several aspects of targeting lipid metabolism have been well-

studied over the recent years including de novo lipogenesis and fatty acid uptake, 

however fatty acid oxidation and its therapeutic potential remains an underexplored 

facet of lipid metabolism. More importantly, fatty acid oxidation is a way of targeting 

fatty acid metabolism that is irrespective of fatty acid source (i.e., synthesis or 

uptake). Here, we propose that fatty acid beta-oxidation is a metabolic and 

therapeutic vulnerability in prostate cancer tumorigenesis and treatment resistance. 

Notably, this work would further enhance our understanding on the role of fatty acid 

oxidation in driving prostate cancer development and disease progression, and 

facilitate the identification of new fatty acid oxidation targets that are more selective 

and safer to be translated into the clinic. 

 

The work presented in this thesis is divided into two specific research aims: 

 

Aim 1: To identify novel molecular targets of fatty acid beta-oxidation for the 

treatment of prostate cancer (Chapter 3 and 4). 

 
Aim 2: To investigate a potential role for fatty acid beta-oxidation in driving 

treatment-resistance (Chapter 5). 

 



  Chapter 2 

 25 

 Materials and Methods 
 
This Chapter contains the general materials and methods used throughout the 

thesis. More specific methods are described in Chapters 3, 4 and 5 respectively. 
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2.1 Materials and consumables 
 
Reagents and materials that have been obtained commercially are listed below 

(Table 2.1). 

 

Table 2.1 List of materials and reagents used in this thesis 

Product Supplier Catalogue 
number 

7-aminoactinomycin D (7-AAD) Sigma-Aldrich 7240-37-1 
Agarose, analytical grade Sigma-Aldrich 9012-36-6 
Acetonitrile (20%) Sigma-Aldrich 75-05-8 
Bradford assay reagent BioRad 500-0006 
BSA (bovine serum albumin) Sigma-Aldrich 9048-46-8 
Criterion precast gel (4-15%)  BioRad 5671084 
Chloroform Sigma-Aldrich 67-66-3 
Citric acid monohydrate Sigma-Aldrich 5949-29-1 
Crystal violet Sigma-Aldrich 548-62-9 
Clarity Max western ECL substrate BioRad 1705062  
D-(+)-Glucose solution Sigma-Aldrich 50-99-7   

DAPI prolong gold mount media  Molecular Probes 
(Life Tech) P26935  

DHT (5α-dihydrotestosterone)  Sigma-Aldrich 521-18-6   
DTT (dithiothreitol 0.1 M)  Invitrogen  27565-41-9 
Dulbecco's Modified Eagle's Medium 
(DMEM)  Sigma-Aldrich D5796 

Dulbecco's Phosphate Buffered Saline 
(PBS) Sigma-Aldrich D8537  

DMSO (dimethyl sulphoxide)  Sigma-Aldrich 67-68-5 
Doxorubicin hydrochloride Sigma-Aldrich 25316-40-9 
Doxycycline hyclate Sigma-Aldrich 10592-13-9 
ECLTM western detection reagent  BioRad 170-5061  
EtOH (ethanol), general use  Chem Supply EA061  
EtOH (ethanol), molecular grade  Sigma-Aldrich 64-17-5 
Enzalutamide Cayman Chemical 915087-33-1 
Ethylenediamine-tetra acetic acid (EDTA) Sigma-Aldrich 60-00-4 
Etomoxir salt hydrate E1905 Sigma-Aldrich 828934-41-4 
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FBS (fetal bovine serum)  Sigma-Aldrich  

Formaldehyde  Chem Supply 50-00-0 
Formalin 10% Sigma-Aldrich 50-00-0 
Haematoxylin Lillie/Mayer Sigma-Aldrich 517-28-2 
Hank’s Balance Salt Solution  Sigma-Aldrich H9394  
HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulphonic acid)  Sigma-Aldrich 7365-45-9 

Hydrogen peroxide Chem Supply 7722-84-1 
iQ SYBR Green Supermix  BioRad 1708885 
iScript cDNA synthesis kit  BioRad 170-8891  
Luminespib (AUY922) Novartis 747412-49-3 
Lipofectamine RNAiMAX Invitrogen  13778150 
L-glutamine Sigma-Aldrich 56-85-9 
L-Carnitine hydrochloride Sigma-Aldrich 6645-46-1 
Linoleic acid Sigma-Aldrich 60-33-3 
MetOH (Methanol)  Chem Supply 67-56-1 
MgCl2 (magnesium chloride)  Univar  296 

MitoTracker Red CMXRos ThermoFisher 
Scientific M7512 

MitoTracker Green FM ThermoFisher 
Scientific M7514 

Nitrocelulose membrane (0.45 μm)  BioRad 162-0115  
Nuclease-free water Ambion Inc. AM9937  
Oleic acid Sigma-Aldrich 112-80-1 
Palmitic acid Sigma-Aldrich 57-10-3 
Perhexiline maleate 10 mM Sigma-Aldrich 6724-53-4 

PF 05175157 ACCi Tocris 1301214-47-
0 

Ponceau S  Sigma-Aldrich 6226-79-5 
Propidium Iodide  Sigma-Aldrich 25535-16-4 

Protease Inhibitor Cocktail Tablet  Roche Applied 
Sciences 5892970001 

Puromycin Sigma-Aldrich 53-79-2 
Potassium chloride Sigma-Aldrich 7447-40-7 
ProLong Gold Antifade Mountant with 
DAPI 

ThermoFisher 
Scientific P36941  

Ribociclib Cdk4/6i Cayman Chemical 1211441-98-
3 
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RNeasy mini kit Qiagen 74106 
RPMI 1640 phenol red free  Sigma-Aldrich R7509  
SDS (sodium dodecyl sulphate)  Sigma-Aldrich 75746 
Skim milk powder  Coles brand N/A 
Sodium hydroxide 5 M Sigma-Aldrich 1310-73-2 
Sodium chloride Sigma-Aldrich 7647-14-5 
Sodium pyruvate solution Sigma-Aldrich 113-24-6 
Tetracycline hydrochloride Sigma-Aldrich 9002-93-1 
Triton-X 100 Sigma-Aldrich T8787 
Trypsin EDTA solution  Sigma-Aldrich T4049  
Tween® 20  Sigma-Aldrich 9005-64-5 

TRI reagent Sigma-Aldrich 108-95-2, 
593-84-0 

Trolox Tocris Bioscience 53188-07-1 
Trypan blue 0.4 % liquid  Sigma-Aldrich 72-57-1 
Xylene  Chem Supply 1330-20-7 
Z-VAD-FMK Sigma-Aldrich 161401-82-7 
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2.2 Buffers and solutions 
 
Table 2.2 lists the compositions of buffers and solutions that have been made for 

experimentation in this thesis. 

 

Table 2.2 List of buffers and solutions with compositions 

Buffers and solutions Composition 

Citrate Buffer 

0.525g Citric acid monohydrate 

Volume to 250mL with RO water 

pH 6.5 

Dextran Coated Charcoal (DCC) 

5g Charcoal 

0.5g Dextran 

20mL Glycerol 

Volume to 1L with TE buffer 

Loading dye (6x) 

for western blot 

7mL 4x Tris-Cl/SDS 

3mL Glycerol 

1g SDS 

0.93g DTT 

1.2mg Bromophenol blue 

Volume to 10mL with RO water 

Store at -20°C 

Ponceau S stain 

2g Ponceau S 

30g Trichloracetic acid 

30g Sulphosalycylic acid 

Volume to 100mL with RO water 

RIPA buffer 

10mM Tris 

150mM NaCl 

1mM EDTA 

1% Triton X-100 

Running buffer (10x) 

77.5g Tris base 

360g Glycine 

25g SDS 

2.5L RO water 
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Running buffer (1x) 
1L 10x Running buffer 

9L RO water 

Seahorse substrate-limited media 

Dulbecco's Modified Eagle's Medium 

(DMEM) 

0.5mM Glucose 

1.0mM Glutamine 

0.5mM Carnitine 

1% FBS 

Seahorse fatty acid oxidation medium 

111mM NaCl 

4.7mM KCl 

2.0mM MgSO4 

1.2mM Na2HPO4 

2.5mM Glucose 

0.5mM Carnitine 

5mM HEPES 

SDS 20% 
20g SDS 

Volume to 100mL with RO water 

TBS (10x) 

151.5g Tris 

219g NaCl 

Volume to 2.5L with RO water 

pH 7.4 

TBST (1x) 

2.5mL Tween20 

250mL 10x TBS 

2.25L RO water 

Transfer buffer (10x) 

77.5g Tris 

360g Glycine 

Volume to 2.5L with RO water 

Transfer buffer (1x) 

1% 10x Transfer buffer 

20% Methanol 

Volume to 2.5L with RO water 

Store at 4°C 
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Tris 1M, pH 7.4 

60.57g Tris 

Volume to 500mL with RO water 

pH 7.4 

Tris-Cl/SDS (4x) 

3.025g Tris-Cl 

Volume to 20mL with RO water 

pH 6.8 

0.2g SDS 

Volume to 50mL with RO water 
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2.3 Cell Culture 
 
Human normal prostate epithelial cell lines PNT1 and PNT2, and human prostate 

carcinoma cell lines, LNCaP, VCaP, 22Rv1 and C42B were obtained from the 

American Type Culture Collection (ATCC). Castrate resistant and enzalutamide 

resistant cell lines, V16D and MR49F, were derived from serial xenograft passages 

of LNCaP cells and were a kind gift from Professor Amina Zoubeidi’s laboratory 

(Toren et al. 2016). Cell Bank Australia performed verification of all cell lines in 2018 

via short-tandem repeat profiling. PNT1, PNT2, LNCaP, 22Rv1, C42B and V16D 

cell lines were maintained in RPMI-1640 media supplemented with 10 % Fetal 

Bovine Serum (FBS). VCaP cell line was maintained in Dulbecco’s Modified Eagle’s 

Medium (DMEM) supplemented with 10 % FBS and 1 nM dihydrotestosterone 

(DHT). MR49F cell line was maintained in RPMI-1640 media supplemented with 10 % 

FBS and 10 µM of enzalutamide. 

 

To prepare cells for storage in liquid nitrogen, fully confluent T75 flasks were 

collected using trypsin, followed by centrifugation at 1,500 x g for 5 min. Pellets were 

resuspended in 4 mL of freezing mix (90 % FBS and 10 % DMSO). 1 mL of cell 

suspension was then aliquoted into each cryovial, labelled appropriately and placed 

in an isopropanol filled Mr. Frosty freezing container at -80 °C. Cells were then 

transferred to liquid nitrogen for long term storage. Human prostate cancer cell lines 

obtained from liquid nitrogen stored were thawed quickly by gentle agitation in a 

37 °C water bath. Once thawed, the cell suspension was then mixed with 9 mL of 

cell line specific culture medium and centrifuge at 1,500 x g for 5 min. Pellets were 

resuspended in 10 mL of cell line specific culture medium, transferred directly into 

a T25 flask and incubated overnight in a 5 % CO2 and 37 °C incubator. Cells were 

then passaged into a T75 flask after 48 h prior to use in experiments. 

 

2.4 Short-interfering RNA (siRNA) transfection 
 
To transfect siRNA, siRNA-Lipofectamine RNAiMAX complexes were prepared 

according to the manufacturer’s instructions (Invitrogen). siRNA (5 nM) and 

Lipofectamine RNAiMAX were diluted in serum-free RPMI (phenol red-free) media 

and incubated for 5 min at RT. An equal volume of Lipofectamine RNAiMAX was 

added to the diluted siRNA, vortexed and incubated for 10 min at RT. The siRNA-
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Lipofectamine RNAiMAX complexes were added to each well of a 6-well (250 µL), 

24-well (50 µL), or 96-well plate (10 µL). 1 mL (6-well and 24-well plates) or 100 µL 

(96-well plate) of prostate cancer cell suspensions diluted in RPMI media 

supplemented with 10 % FBS were added to each well containing the siRNA-

Lipofectamine RNAiMAX complexes and mixed gently by rocking the plate back and 

forth. Cells were incubated for 24 h to 96 h as indicated in a 5 % CO2 and 37 °C 

incubator. 

 

2.5 Immunohistochemistry 
 
Prostate cancer explant tissues were cultured, processed and embedded in paraffin. 

2 µm sections were cut onto superfrost ultra-plus slides using a microtome and 

placed on a heating block at 60 °C for at least 2 h. Tissue sections were then de-

waxed in xylene, re-hydrated in ethanol, and washed in PBS before proceeding to 

block endogenous peroxidase activity with 1 % hydrogen peroxide for 5 min. Antigen 

retrieval was performed using citrate buffer (0.525 g in 250 mL RO-water, pH 6.5), 

with a Biocare Medical Decloaking Chamber V3.7.2.2 (110 °C for 15 min). Sections 

were blocked for 30 min at room temperature (RT) with 10 % goat serum (DAKO) 

in a humidifier box. Sections were incubated with primary antibodies diluted in 

blocking solution overnight at 4 °C. Cells were then washed and incubated with 

secondary antibody for 1 h at RT, followed by a 1 h incubation at RT with streptavidin. 

3,3’-diaminobenzidine was used as the substrate for streptavidin-biotin peroxidase 

detection (DAKO). Counterstaining (90 sec haematoxylin, 2 min tap water) was then 

performed, followed by dehydration and clearing in ethanol, and de-waxing in xylene. 

Coverslipping was done using DPX mounting media. Slides were imaged with a 

Nanozoomer digital slide scanner (Hamamatsu) and viewed with NDPview software. 

Staining quantification was performed using video image analysis. Manual counting 

was performed by two separate researchers for quantification of Ki67 staining. 

 

2.6 Western blot analysis 
 
Cells were washed with 1x PBS and lysed in 150 µL of ice-cold RIPA buffer 

containing protease inhibitors and phosphatase inhibitors. After the addition of RIPA 

buffer, cells were collected by scrapping and homogenised using an ultra-fine insulin 

syringe. Samples were then centrifuged (10,000 x g, 10 min at 4 °C) and total protein 
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concentration was quantified using Bradford assay on a FLUOstar Omega 

microplate reader (BMG LABTECH). Aliquots of each sample (20 µg protein) were 

mixed with 6x loading dye and milliQ water, and heated at 95 °C for 5 min. Proteins 

were then separated by SDS-PAGE using a 4 – 15 % gradient gel (BioRad) in 1x 

SDS running buffer, and transferred to nitrocellulose membranes (BioRad) by wet-

transfer (BioRad Criterion Blotter) in transfer buffer. Membranes were blocked with 

milk (3 % skim milk powder in 1x TBST) before being probed overnight with primary 

antibodies at 4 °C. The following day, membranes with washed with TBST and 

probed with HRP-conjugated secondary antibodies for 1.5 h at RT. For detection, 

membranes were incubated with ECL (BioRad) for 1 min and imaged on a BioRad 

Chemidoc MP imaging system and processed using Image Lab Software. 

 

2.7 RNA extraction and quantitative reverse-transcription PCR  
 
RNA was isolated from cells using the RNeasy Mini kit (Qiagen) together with an 

on-column DNAse treatment (Qiagen), according to the manufacturer’s protocol. 

cDNA was synthesised with the iScriptTM Reverse Transcription kit (BioRad) using 

a thermal cycler (5 min at 42 °C, 30 min at 42 °C, 5 min at 85 °C), and diluted with 

milliQ water (1:10). Quantitative reverse-transcription (RT)-PCR was performed in 

triplicate with BioRad C1000 TouchTM Thermal Cycler and CFX384TM Real-Time 

System using SYBR Green PCR Master Mix (BioRad) together with sequence-

specific primers. Expression analysis was performed using CFX Manager Software 

Version 3.0 (BioRad). RNA expression of target genes was expressed as relative to 

reference genes (GUSB and L19). 
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 DECR1 is a key survival 
factor that protects prostate cancer 
cells from ferroptosis 
 
This Chapter includes a publication, followed by a supplementary chapter that 

complements the work in this Chapter as part of this PhD. Additional figures included 

at the end of this chapter display data produced during preparation of this 

manuscript that has not been included in the final publication. 
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3.1 Supplementary figures 
 

 
Figure 1-figure supplement 1 Fatty acid metabolism is consistently altered in 
clinical prostate tumors. (A) Cell viability of LNCaP cells treated with indicated 

concentrations of etomoxir for 72 hr. Cell viability was determined using CyQUANT 

Cell Assay. (B) A meta-analysis of 735 lipid metabolism genes using four clinical 

datasets with malignant and matched normal RNA-sequencing data (n = 122). 

Genes were rank-ordered on the basis of their meta effect size scores in PCa 

malignant tissues versus matched normal. (C) Fold change of DECR1 mRNA 

expression in malignant tissues compared to benign/normal tissues. Data were 

obtained from Oncomine.  
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Figure 3-figure supplement 1 Androgenic regulation of DECR1 expression. (A) 
Bar graphs of DECR1 mRNA expression in two publically available datasets shows 

DECR1 mRNA expression decreased after LNCaP treatment with DHT (GSE7868) 

or R1881 (GSE22606). (B) DECR1 expression increased in LNCaP and VCaP upon 

treatment with Enzalutamide (GSE69249). (C) DECR1 mRNA expression increased 

in mouse prostate gland after castration but decreased after testosterone 

administration. (D) ARN-509 (Apalutamide) treatment of LNCaP/AR xenograft 

increased DECR1 mRNA expression (GSE52169). (E) AR ChIP-sequencing data 

from normal human prostate and primary human prostate tumor specimens (normal, 

n = 7; tumor, n = 13). Data from GSE56288. Statistical analysis was performed using 

two-tailed Student’s t-test: *p<0.05, **p<0.01 and ****p<0.0001. 
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Figure 4-figure supplement 1 Effects of DECR1 on prostate cancer cellular 
metabolism. (A) Oxygen consumption rate (OCR) was assessed in LNCaP cells 

supplemented with the PUFA linoleic acid (LA). Each data point represents an OCR 

measurement. ATP production, maximal mitochondrial respiration and 

mitochondrial spare capacity were assessed. (B) Extracellular acidification rate 

(ECAR) was assessed in LNCaP cells. Each data point represents an ECAR 

measurement. (C) OCR of LNCaP cells supplemented with PUFA LA (top) or 

palmitic acid (PA, bottom) treated with etomoxir (ETX, 100 µM). Each data point 

represents an OCR measurement. (D) DECR1 protein expression after 48 hr 

treatment with varying concentrations of etomoxir. Statistical analysis was 

performed using two-tailed Student’s t-test: *p<0.05, **p<0.01 and ****p<0.0001. 
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Figure 5-figure supplement 1 Depletion of extracellular lipids prevents 
antiproliferative effects of DECR1 in prostate cancer cells. (A) Cell viability and 

cell death after DECR1 knockdown in LNCaP and 22RV1 cultured in full serum 

media. Cell viability and cell death were measured using trypan blue exclusion 

following 96 hr DECR1 knockdown. Percentages are represented relative to the 

control siRNA; n = 3 independent experiments per cell line. 
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Figure 5-figure supplement 2 DECR1 suppresses growth of prostate tumor 
xenografts in mice. (A) Individual tumor growth of shControl and shDECR1 cells 

in LNCaP-xenograft tumors. (B) Representative DECR1 and KI67 IHC staining of 

consecutive sections of LNCaP-xenograft tumors. (C) Individual tumor growth and 

(D) tumour weight of shControl and shDECR1 cells in LNCaP-xenograft tumors from 

the second cohort of mice. (E) Tumor growth was monitored based on luciferase 

activity over time as indicated by IVIS imaging (n = 10 mice, shControl; n = 9 mice, 

shDECR1). 
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Figure 5-figure supplement 3 Sequence of the DECR1 shRNA and hDECR1 
vectors. 
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Figure 6-figure supplement 1 Depletion of DECR1 sensitizes prostate cancer 
cells to ferroptosis inducing agents. (A) Abundance of total SFA and (B) MUFA 

species in phospholipids from control and DECR1 knockdown cells supplemented 

with linoleic acid (LA). (C) Abundance of total SFAs (left) and MUFAs (right) in 

Control and DECR1 knockdown cells supplemented with LA. (D) IC50 values of 

ferroptosis inducers were determined in Control and DECR1 knockdown cells. 

Statistical analysis was performed using two-tailed Student’s t-test: *p<0.05, 

**p<0.01 and ***p<0.001. 
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Figure 6-figure supplement 2 Targeting DECR1 does not induce apoptosis of 
prostate cancer cells. (A) LNCaP cells were stained with AnnexinV-Phycoerythrin 

(PE)/7-Aminoactinomycin D (7-AAD) followed by flow cytometry analysis after 96 hr 

DECR1 knockdown to detect apoptotic cells. (B) Cell death after DECR1 knockdown 

in LNCaP cells treated with or without the caspase inhibitor (ZVAD) measured using 

trypan blue exclusion. 

  

  

  



  Chapter 3 

 81 

3.2 Supplementary material for Chapter 3 
 
This section contains supplementary materials for Chapter 3 that was not included 

in the publication. 

 

3.2.1 Transcriptomic analysis of DECR1 knockdown LNCaP cells 
 
Transcriptomic analysis was performed to characterise the changes in gene 

expression in response to DECR1 knockdown in LNCaP prostate cancer cells and 

delineate the molecular pathways that may be perturbed due to DECR1 inhibition. 

We aim to expand our current understanding of how polyunsaturated fatty acid 

oxidation enzymes, specifically DECR1, promotes prostate cancer progression and 

provide novel evidence of molecular mechanisms underlying the effects of DECR1 

knockdown on prostate cancer oncogenesis. 

 

3.2.2 Preparation of LNCaP cells for RNA sequencing 
 
LNCaP cells were subjected to siRNA-mediated DECR1 knockdown (siDECR1-1 

and siDECR1-2) in RPMI-1640 medium supplemented with 10 % FBS and 

incubated at 37 °C for 72 or 96 hrs (Supplementary figure 3.1A). The time points 

were selected based on optimal downregulation of DECR1 protein expression. Total 

RNA was isolated from each sample (n = 5 replicates) and DNase treated, then 

quality assessed. RNA was poly-A enriched, reverse transcribed, barcoded and 

sequenced on the Illumina NextSeq 500, and up to 40 million single-end reads (75 

bp) obtained per sample (David Gunn Genomics Facility, SAHMRI).  

 

3.2.3 Data processing 
 
Raw single-end reads were assessed for quality using FastQC and summarised 

with MultiQC. Reads were filtered to remove low-quality sequences and trimmed to 

remove Illumina universal adapter sequences using Trimmomatic (minimum 

PHRED score 20, sliding window size 4 with average quality of 15). Reads were 

aligned or mapped to the human reference genome (GRCh38; at least 75 % 

alignment rates) using the STAR aligner, exported as bam files and quality assessed 

using FastQC. Raw counts were generated using featureCounts and imported into 

R for differential expression analysis. Prior to multi-dimensional scaling and 
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differential gene expression analysis, gene-annotated counts were filtered to 

remove low abundance genes (hence, reduce background noise) by removing 

genes that are < 1 count per million (cpm) in more than four samples and normalised 

using the trimmed mean of M-values (TMM) method in edgeR (Supplementary 

figure 3.1B).  

  

Supplementary Figure 3.1 RNA-seq analysis pipeline.  
(A) Schematic showing RNA-seq experimental design. (B) RNA-seq 

analysis pipeline. 
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3.2.4 Results: Exploratory data analysis 
 
Unsupervised clustering was performed using principal component analysis (PCA) 

to determine the amount of variation between samples and groups (Supplementary 

figure 3.2). Biological replicates for each experimental condition (Control, DECR1-

1, DECR1-2) were clustered together, indicating high levels of similarity within these 

samples. Interestingly, the control samples for each time point were clustered further 

away from each other compared to DECR1 knockdown samples (DECR1-1 and 

DECR1-2). Notably, the control samples were clustered away from the DECR1 

knockdown samples within each time point, suggesting altered transcriptomic 

profiles after DECR1 inhibition. We confirmed this by performing hierarchical 

clustering analysis, as represented by the heatmap in Supplementary figure 3.3. 

Similarly, the DECR1-1 and DECR1-2 knockdown samples clustered closely 

together at both the 72 and 96 hr time point, suggesting that the two siRNA 

expression vectors produced similar gene expression patterns. As expected, the 

control and DECR1 knockdown samples at both time points belong in separate 

clusters, indicating differences in their gene expression patterns after DECR1 

inhibition. All aspects of the RNA-seq analysis (including data processing, 

differential gene expression analysis, and pathway analysis) as described in 

Supplementary figure 3.1B were performed by the candidate under guidance from 

supervisor, Professor David Lynn. 
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Supplementary Figure 3.2  
Principal component analysis (PCA) plot of normalised data for all RNA-seq 

samples (n = 24). PCA plot was generated using FactoMineR and factoextra 

packages. The axis labels represent the amount of variation (%) retained by each 

principal component (PC). 
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Heatmap of top 500 most variable genes
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Supplementary Figure 3.3 Hierarchical clustering analysis.  
Heatmap of the top 500 most variable genes. Data plotted as log2-cpm. Each row 

represents one gene, and samples with similar expression patterns are clustered 

together as represented by the dendogram on the y-axis. 
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3.2.5 Results: Differential gene expression analysis 
 
Differential gene expression (DGE) analysis was performed between control and 

DECR1 knockdown cells to determine differentially expressed genes (DEGs; p-

value < 0.05, log2-fold change ≥ 1) in response to DECR1 inhibition at both 72 and 

96 hrs. A total of 378 DEGs (upregulated: 245 DEGs; downregulated: 133 DEGs) 

were identified in control versus DECR1 knockdown cells at 72 hrs (Supplementary 

figure 3.4A). Furthermore, a total of 729 DEGs (upregulated: 489 DEGs; 

downregulated: 240 DEGs) were identified in control versus DECR1 knockdown 

cells at 96 hrs (Supplementary figure 3.4B). To further confirm that DECR1 mRNA 

was indeed knockdown in the samples, the volcano plot showed that DECR1 was 

one of the most significantly downregulated genes in DECR1 knockdown samples 

at both time points (Supplementary figure 3.4). 

 

 

Supplementary Figure 3.4  
Volcano plot of all 15286 genes in Control versus DECR1 knockdown samples. 

Orange dot: DEGs (defined as p-value < 0.05 and Log2 fold change ≥ 1); NS (blue 

dot) = non-significant; Log2 fold change ≥ 1 (purple dot); p-value > 0.05 (pink dot). 
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A list of the top 50 most differentially expressed genes (up- and down-regulated) in 

control versus DECR1 knockdown cells at 72 or 96 hrs are presented in Table 3.1 

to Table 3.4. To our surprise, AR regulated genes such as NKX3-1, KLK3, KLK2 

and ELOVL7 were upregulated in DECR1 knockdown cells compared to control 

cells at both 72 and 96 hr time points (Table 3.1 and 3.3). 

 

3.2.6 Results: Pathway enrichment analysis 
 
We then proceed to perform Gene Set Enrichment Analysis (GSEA) in order to 

identify molecular pathways or processes that may be enriched or perturbed in 

DECR1 knockdown cells (Supplementary figure 3.5 and 3.6). Surprisingly, this 

analysis identified several growth or cell proliferation promoting pathways such as 

‘DNA replication’ and ‘Cell cycle’ (particularly at 96 hrs) that were upregulated in 

response to DECR1 inhibition. Moreover, pathways such as ‘Glycosaminoglycan 

biosynthesis chondroitin sulfate’ and ‘One carbon pool by folate’ were positively 

enriched in DECR1 knockdown cells compared to control cells at both time points, 

suggesting potential functional mitochondrial activity or biosynthetic processes. 

Unlike the positively enriched pathways, the negatively enriched pathways identified 

by GSEA in DECR1 knockdown cells were more consistent between the 72 and 96 

hr time points and are composed of more metabolically related pathways. Of 

particular interest, drug metabolism pathways, ‘Starch and sucrose metabolism’, 

‘Steroid hormone biosynthesis’, ‘PPAR signalling’ and ‘Fatty acid metabolism’ 

pathways were downregulated at both time points. 
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Table 3.1 Top 50 upregulated DEGs in DECR1 knockdown cells at 72 hrs 

Ensembl ID Symbol Gene Name Log2FC 

ENSG00000137076 TLN1 talin 1 1.602519205 

ENSG00000167034 NKX3-1 NK3 homeobox 1 1.097707118 

ENSG00000136159 NUDT15 nudix hydrolase 15 2.100235273 

ENSG00000170017 ALCAM activated leukocyte cell adhesion molecule 1.652380991 

ENSG00000186063 AIDA axin interactor, dorsalization associated 1.673940012 

ENSG00000142515 KLK3 kallikrein related peptidase 3 1.122405834 

ENSG00000123989 CHPF chondroitin polymerizing factor 2.681861081 

ENSG00000116237 ICMT isoprenylcysteine carboxyl methyltransferase 1.033825663 

ENSG00000135414 GDF11 growth differentiation factor 11 1.946199312 

ENSG00000128245 YWHAH tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta 1.868499582 

ENSG00000137815 RTF1 RTF1 homolog, Paf1/RNA polymerase II complex component 1.129966526 

ENSG00000167751 KLK2 kallikrein related peptidase 2 1.314895584 

ENSG00000164181 ELOVL7 ELOVL fatty acid elongase 7 1.482358996 

ENSG00000168268 NT5DC2 5'-nucleotidase domain containing 2 1.517399023 

ENSG00000184428 TOP1MT DNA topoisomerase I mitochondrial 1.489765877 

ENSG00000085365 SCAMP1 secretory carrier membrane protein 1 1.39778656 

ENSG00000130816 DNMT1 DNA methyltransferase 1 1.282671357 

ENSG00000132872 SYT4 synaptotagmin 4 2.046201995 

ENSG00000108406 DHX40 DEAH-box helicase 40 1.079371454 

ENSG00000007202 KIAA0100 KIAA0100 1.067925216 

ENSG00000213853 EMP2 epithelial membrane protein 2 1.961803415 

ENSG00000198901 PRC1 protein regulator of cytokinesis 1 1.190779012 

ENSG00000099250 NRP1 neuropilin 1 1.357741526 

ENSG00000110422 HIPK3 homeodomain interacting protein kinase 3 1.484399213 

ENSG00000180776 ZDHHC20 zinc finger DHHC-type containing 20 1.150558035 

ENSG00000133065 SLC41A1 solute carrier family 41 member 1 1.163799992 

ENSG00000181104 F2R coagulation factor II thrombin receptor 2.089783357 

ENSG00000158813 EDA ectodysplasin A 1.156292343 

ENSG00000115107 STEAP3 STEAP3 metalloreductase 2.235008126 

ENSG00000133816 MICAL2 microtubule associated monooxygenase, calponin and LIM domain containing 2 1.251170226 

ENSG00000003989 SLC7A2 solute carrier family 7 member 2 1.533838394 

ENSG00000174749 FAM241A family with sequence similarity 241 member A 1.315848515 

ENSG00000096433 ITPR3 inositol 1,4,5-trisphosphate receptor type 3 1.468911883 

ENSG00000082556 OPRK1 opioid receptor kappa 1 1.777043052 

ENSG00000119314 PTBP3 polypyrimidine tract binding protein 3 1.225739664 

ENSG00000067798 NAV3 neuron navigator 3 1.530506878 

ENSG00000144711 IQSEC1 IQ motif and Sec7 domain 1 1.044181081 

ENSG00000075223 SEMA3C semaphorin 3C 1.256865308 

ENSG00000142188 TMEM50B transmembrane protein 50B 1.015398209 

ENSG00000188257 PLA2G2A phospholipase A2 group IIA 1.108565397 

ENSG00000204070 SYS1 SYS1, golgi trafficking protein 1.071728948 

ENSG00000113615 SEC24A SEC24 homolog A, COPII coat complex component 1.170105701 

ENSG00000113272 THG1L tRNA-histidine guanylyltransferase 1 like 1.770067173 

ENSG00000080493 SLC4A4 solute carrier family 4 member 4 1.017581068 

ENSG00000154358 OBSCN obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF 1.095560583 

ENSG00000198300 PEG3 paternally expressed 3 1.051904671 

ENSG00000090857 PDPR pyruvate dehydrogenase phosphatase regulatory subunit 1.141069876 

ENSG00000171189 GRIK1 glutamate ionotropic receptor kainate type subunit 1 1.586495575 

ENSG00000180785 OR51E1 olfactory receptor family 51 subfamily E member 1 1.18163088 

 



  Chapter 3 

 89 

 Table 3.2 Top 50 downregulated DEGs in DECR1 knockdown cells at 72 hrs 

Ensembl ID Symbol Gene Name Log2FC 

ENSG00000104325 DECR1 2,4-dienoyl-CoA reductase 1 -3.4425996 

ENSG00000121039 RDH10 retinol dehydrogenase 10 -1.6940079 

ENSG00000196620 UGT2B15 UDP glucuronosyltransferase family 2 member B15 -1.8023073 

ENSG00000134240 HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 -1.168322 

ENSG00000116977 LGALS8 galectin 8 -1.1398827 

ENSG00000197406 DIO3 iodothyronine deiodinase 3 -2.3799737 

ENSG00000215262 KCNU1 potassium calcium-activated channel subfamily U member 1 -2.2602932 

ENSG00000181634 TNFSF15 TNF superfamily member 15 -1.1994212 

ENSG00000124762 CDKN1A cyclin dependent kinase inhibitor 1A -1.0349582 

ENSG00000132746 ALDH3B2 aldehyde dehydrogenase 3 family member B2 -1.1176633 

ENSG00000124145 SDC4 syndecan 4 -1.0111562 

ENSG00000077585 GPR137B G protein-coupled receptor 137B -1.077481 

ENSG00000164867 NOS3 nitric oxide synthase 3 -1.7567578 

ENSG00000213759 UGT2B11 UDP glucuronosyltransferase family 2 member B11 -2.224669 

ENSG00000213949 ITGA1 integrin subunit alpha 1 -2.3066659 

ENSG00000196781 TLE1 TLE family member 1, transcriptional corepressor -1.1042998 

ENSG00000153721 CNKSR3 CNKSR family member 3 -1.0368661 

ENSG00000109452 INPP4B inositol polyphosphate-4-phosphatase type II B -1.3446099 

ENSG00000120885 CLU clusterin -1.2488196 

ENSG00000167799 NUDT8 nudix hydrolase 8 -1.2313558 

ENSG00000186470 BTN3A2 butyrophilin subfamily 3 member A2 -1.0619053 

ENSG00000188107 EYS eyes shut homolog -1.9724059 

ENSG00000049130 KITLG KIT ligand -1.1000074 

ENSG00000041353 RAB27B RAB27B, member RAS oncogene family -1.2383906 

ENSG00000144452 ABCA12 ATP binding cassette subfamily A member 12 -1.1073707 

ENSG00000122012 SV2C synaptic vesicle glycoprotein 2C -1.0556795 

ENSG00000087128 TMPRSS11E transmembrane serine protease 11E -2.4539699 

ENSG00000246375 PPM1K-DT PPM1K divergent transcript -1.9666942 

ENSG00000236699 ARHGEF38 Rho guanine nucleotide exchange factor 38 -1.1180016 

ENSG00000230882 AC005077.4 hypothetical protein LOC285908 (LOC285908) pseudogene -1.0529327 

ENSG00000134769 DTNA dystrobrevin alpha -1.3619816 

ENSG00000163898 LIPH lipase H -1.0836143 

ENSG00000255346 NOX5 NADPH oxidase 5 -1.2776612 

ENSG00000176563 CNTD1 cyclin N-terminal domain containing 1 -1.3235373 

ENSG00000114248 LRRC31 leucine rich repeat containing 31 -1.714312 

ENSG00000175471 MCTP1 multiple C2 and transmembrane domain containing 1 -1.2730386 

ENSG00000142871 CYR61 cellular communication network factor 1 -1.1411755 

ENSG00000111885 MAN1A1 mannosidase alpha class 1A member 1 -1.087277 

ENSG00000152766 ANKRD22 ankyrin repeat domain 22 -1.8456981 

ENSG00000178750 STX19 syntaxin 19 -1.0232765 

ENSG00000198092 TMPRSS11F transmembrane serine protease 11F -4.3424759 

ENSG00000236345 SCAT8 S-phase cancer associated transcript 8 -2.356726 

ENSG00000183508 FAM46C terminal nucleotidyltransferase 5C -1.1126606 

ENSG00000147041 SYTL5 synaptotagmin like 5 -2.1428273 

ENSG00000106571 GLI3 GLI family zinc finger 3 -1.0466785 

ENSG00000127324 TSPAN8 tetraspanin 8 -1.4238095 

ENSG00000267259 ERVE-1 endogenous retrovirus group E member 1 -1.2619221 

ENSG00000249392 AC096588.1 novel transcript -1.0528548 

ENSG00000146592 CREB5 cAMP responsive element binding protein 5 -1.5738332 

  



Chapter 3 

 90 
 

Table 3.3 Top 50 upregulated DEGs in DECR1 knockdown cells at 96 hrs 

Ensembl ID Symbol Gene Name Log2FC 

ENSG00000167034 NKX3-1 NK3 homeobox 1 1.61425643 

ENSG00000142515 KLK3 kallikrein related peptidase 3 1.39406692 

ENSG00000167751 KLK2 kallikrein related peptidase 2 1.60724367 

ENSG00000136159 NUDT15 nudix hydrolase 15 2.14145938 

ENSG00000137076 TLN1 talin 1 1.38851842 

ENSG00000167749 KLK4 kallikrein related peptidase 4 1.28670615 

ENSG00000184428 TOP1MT DNA topoisomerase I mitochondrial 1.51087336 

ENSG00000123989 CHPF chondroitin polymerizing factor 2.54581335 

ENSG00000085365 SCAMP1 secretory carrier membrane protein 1 1.45745608 

ENSG00000170017 ALCAM activated leukocyte cell adhesion molecule 1.46823413 

ENSG00000137815 RTF1 RTF1 homolog, Paf1/RNA polymerase II complex component 1.17652187 

ENSG00000133639 BTG1 BTG anti-proliferation factor 1 1.35186163 

ENSG00000128245 YWHAH tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta 1.89208141 

ENSG00000132872 SYT4 synaptotagmin 4 2.57632405 

ENSG00000186063 AIDA axin interactor, dorsalization associated 1.60931593 

ENSG00000130816 DNMT1 DNA methyltransferase 1 1.28661575 

ENSG00000099250 NRP1 neuropilin 1 1.53847202 

ENSG00000124225 PMEPA1 prostate transmembrane protein, androgen induced 1 1.0458745 

ENSG00000135414 GDF11 growth differentiation factor 11 1.78003775 

ENSG00000080709 KCNN2 potassium calcium-activated channel subfamily N member 2 1.18996169 

ENSG00000101057 MYBL2 MYB proto-oncogene like 2 1.60174485 

ENSG00000248527 MTATP6P1 MT-ATP6 pseudogene 1 1.23124318 

ENSG00000176890 TYMS thymidylate synthetase 1.29753962 

ENSG00000168268 NT5DC2 5'-nucleotidase domain containing 2 1.44535354 

ENSG00000164181 ELOVL7 ELOVL fatty acid elongase 7 1.36996258 

ENSG00000110422 HIPK3 homeodomain interacting protein kinase 3 1.44873702 

ENSG00000198901 PRC1 protein regulator of cytokinesis 1 1.47586985 

ENSG00000166851 PLK1 polo like kinase 1 1.44637152 

ENSG00000198840 MT-ND3 mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 3 1.29896801 

ENSG00000111206 FOXM1 forkhead box M1 1.36778218 

ENSG00000174749 FAM241A family with sequence similarity 241 member A 1.41906783 

ENSG00000180776 ZDHHC20 zinc finger DHHC-type containing 20 1.20527704 

ENSG00000165244 ZNF367 zinc finger protein 367 2.11191952 

ENSG00000213853 EMP2 epithelial membrane protein 2 2.15624506 

ENSG00000109576 AADAT aminoadipate aminotransferase 1.0002351 

ENSG00000183248 PRR36 proline rich 36 1.07869539 

ENSG00000105290 APLP1 amyloid beta precursor like protein 1 1.13261075 

ENSG00000188257 PLA2G2A phospholipase A2 group IIA 1.67113779 

ENSG00000088325 TPX2 TPX2, microtubule nucleation factor 1.12693464 

ENSG00000058804 NDC1 NDC1 transmembrane nucleoporin 1.03435685 

ENSG00000137804 NUSAP1 nucleolar and spindle associated protein 1 1.36529136 

ENSG00000151025 GPR158 G protein-coupled receptor 158 1.19570643 

ENSG00000164442 CITED2 Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 2 1.0208728 

ENSG00000133065 SLC41A1 solute carrier family 41 member 1 1.0429964 

ENSG00000142945 KIF2C kinesin family member 2C 1.25713273 

ENSG00000171189 GRIK1 glutamate ionotropic receptor kainate type subunit 1 1.96309612 

ENSG00000080493 SLC4A4 solute carrier family 4 member 4 1.26566371 

ENSG00000110492 MDK midkine 1.89669514 

ENSG00000181104 F2R coagulation factor II thrombin receptor 2.00650261 

  



  Chapter 3 

 91 

Table 3.4 Top 50 downregulated DEGs in DECR1 knockdown cells at 96 hrs 

Ensembl ID Symbol Gene Name Log2FC 

ENSG00000121039 RDH10 retinol dehydrogenase 10 -2.1021534 

ENSG00000196620 UGT2B15 UDP glucuronosyltransferase family 2 member B15 -2.2711346 

ENSG00000104325 DECR1 2,4-dienoyl-CoA reductase 1 -3.3898713 

ENSG00000197406 DIO3 iodothyronine deiodinase 3 -2.929963 

ENSG00000002834 LASP1 LIM and SH3 protein 1 -1.0560672 

ENSG00000134240 HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 -1.7021952 

ENSG00000197888 UGT2B17 UDP glucuronosyltransferase family 2 member B17 -1.428103 

ENSG00000116977 LGALS8 galectin 8 -1.1915697 

ENSG00000164867 NOS3 nitric oxide synthase 3 -2.7184213 

ENSG00000215262 KCNU1 potassium calcium-activated channel subfamily U member 1 -2.5199938 

ENSG00000181634 TNFSF15 TNF superfamily member 15 -1.2852226 

ENSG00000077585 GPR137B G protein-coupled receptor 137B -1.2752783 

ENSG00000116260 QSOX1 quiescin sulfhydryl oxidase 1 -1.0459653 

ENSG00000132746 ALDH3B2 aldehyde dehydrogenase 3 family member B2 -1.1668991 

ENSG00000136235 GPNMB glycoprotein nmb -1.4358519 

ENSG00000111885 MAN1A1 mannosidase alpha class 1A member 1 -1.7359486 

ENSG00000196781 TLE1 TLE family member 1, transcriptional corepressor -1.1134899 

ENSG00000153721 CNKSR3 CNKSR family member 3 -1.2315297 

ENSG00000120885 CLU clusterin -1.5890402 

ENSG00000090402 SI sucrase-isomaltase -1.4026116 

ENSG00000213759 UGT2B11 UDP glucuronosyltransferase family 2 member B11 -2.720716 

ENSG00000134769 DTNA dystrobrevin alpha -1.7753309 

ENSG00000188107 EYS eyes shut homolog -1.9925448 

ENSG00000119899 SLC17A5 solute carrier family 17 member 5 -1.1108493 

ENSG00000236699 ARHGEF38 Rho guanine nucleotide exchange factor 38 -1.269694 

ENSG00000150764 DIXDC1 DIX domain containing 1 -1.082307 

ENSG00000041353 RAB27B RAB27B, member RAS oncogene family -1.5696739 

ENSG00000146592 CREB5 cAMP responsive element binding protein 5 -2.3992892 

ENSG00000119686 FLVCR2 feline leukemia virus subgroup C cellular receptor family member 2 -1.2912049 

ENSG00000213949 ITGA1 integrin subunit alpha 1 -2.1011359 

ENSG00000167799 NUDT8 nudix hydrolase 8 -1.3508669 

ENSG00000149972 CNTN5 contactin 5 -1.1201984 

ENSG00000177125 ZBTB34 zinc finger and BTB domain containing 34 -1.1151665 

ENSG00000109452 INPP4B inositol polyphosphate-4-phosphatase type II B -1.1552416 

ENSG00000230882 AC005077.4 hypothetical protein LOC285908 (LOC285908) pseudogene -1.1632894 

ENSG00000175471 MCTP1 multiple C2 and transmembrane domain containing 1 -1.5629547 

ENSG00000144452 ABCA12 ATP binding cassette subfamily A member 12 -1.5094201 

ENSG00000130589 HELZ2 helicase with zinc finger 2 -1.0698645 

ENSG00000133019 CHRM3 cholinergic receptor muscarinic 3 -2.0497878 

ENSG00000137501 SYTL2 synaptotagmin like 2 -1.0590467 

ENSG00000114248 LRRC31 leucine rich repeat containing 31 -1.8361822 

ENSG00000186470 BTN3A2 butyrophilin subfamily 3 member A2 -1.1346759 

ENSG00000167552 TUBA1A tubulin alpha 1a -1.0662577 

ENSG00000143036 SLC44A3 solute carrier family 44 member 3 -1.289425 

ENSG00000049130 KITLG KIT ligand -1.0035483 

ENSG00000258498 DIO3OS DIO3 opposite strand upstream RNA -2.5425968 

ENSG00000180178 FAR2P1 fatty acyl-CoA reductase 2 pseudogene 1 -1.3051881 

ENSG00000267259 ERVE-1 endogenous retrovirus group E member 1 -1.1073075 

ENSG00000163898 LIPH lipase H -1.293288 
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Supplementary Figure 3.5 Gene set enrichment analysis (GSEA) of DECR1 
knockdown cells at 72 hrs.  
(A) Top positively enriched (upregulated) and (B) top negatively enriched 

(downregulated) KEGG pathways in DECR1 knockdown cells at 72 hrs. Gene sets 

returning an FDR adjusted p-value < 25 % were selected as statistically enriched. 
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Supplementary Figure 3.6 Gene set enrichment analysis (GSEA) of DECR1 
knockdown cells at 96 hrs.  
(A) Top positively enriched (upregulated) and (B) top negatively enriched 

(downregulated) KEGG pathways in DECR1 knockdown cells at 96 hrs. Gene sets 

returning an FDR adjusted p-value < 25 % were selected as statistically enriched. 
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3.2.7 Discussion 
 
In Chapter 3, we identified DECR1 (an auxiliary enzyme involved in polyunsaturated 

fatty acid oxidation) and characterised its role and function in prostate cancer 

tumorigenesis and disease progression. We showed that DECR1 is an androgen-

repressed gene, and that DECR1 knockdown significantly suppressed prostate 

cancer oncogenesis in vitro and in vivo. Herein, we discuss the transcriptomic study 

that was initially performed in order to further understand the mechanism of action 

of DECR1 and its role in prostate cancer. 

Our data showed several AR regulated genes such as NKX3-1, KLK3, KLK2 and 

ELOVL7 were significantly upregulated in DECR1 knockdown cells compared to 

control cells. Although we have shown that DECR1 expression is upregulated in 

response to AR inhibition (via castration or enzalutamide) and that DHT is able to 

decrease expression of DECR1, it is unclear whether DECR1 inhibition would cause 

the reverse effect whereby AR signalling is activated to promote cancer cell survival 

pathways. In line with this observation, GSEA analysis identified several growth or 

cell proliferation promoting pathways that were upregulated in response to DECR1 

inhibition. Moreover, pathways such as ‘Glycosaminoglycan biosynthesis 

chondroitin sulfate (CS)’ whereby elevated levels of CS was previously reported to 

be predictive of poor prognosis in prostate cancer patients was upregulated in 

DECR1 knockdown cells (Ricciardelli et al. 1999; Ricciardelli et al. 1997). We would 

also like to highlight that mitochondrial-related pathways such as ‘One carbon pool 

by folate’ and ‘Oxidative phosphorylation’ were positively enriched in DECR1 

knockdown cells compared to control cells. One carbon (1C) metabolism mediated 

by the cofactor, folate, plays a role in biosynthetic processes, amino acid 

homeostasis, epigenetic maintenance and redox defense (reviewed in (Ducker and 

Rabinowitz 2017)). It is plausible that mitochondrial activity or TCA cycle is 

maintained by other nutrient sources such as glucose due to the inability of the cells 

to oxidise PUFAs after DECR1 inhibition. This could, in part, explain why we 

observed an increase in glycolysis in DECR1 knockdown cells compared to control 

cells (Figure 3.4H). Given that we observed significant attenuation in cell viability 

and tumour growth after DECR1 inhibition, it is unclear why DNA replication and cell 

cycle pathway genes were upregulated in DECR1 knockdown cells. Arguably, we 

did not study the effect of DECR1 knockdown on cell cycle progression and whether 
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mRNA expression of cell cycle genes reflect biological outcomes phenotypically 

remains to be elucidated (Zopf et al. 2013). 

Intriguingly, DECR1 knockdown cells showed a significant negative enrichment in 

‘drug metabolism pathways by cytochrome P450’, ‘starch and sucrose metabolism’ 

and ‘steroid hormone biosynthesis’. Further interrogation of these gene sets 

revealed downregulation of several UDP-glucuronosyltransferase (UGT) genes (ie. 

UGT2B10, 11, 15 and 17), cytochrome P450 family 1 subfamily A member 1 

(CYP1A1) and glutathione S-transferase (GST) genes (ie. GSTA4 and GSTK1). 

UGTs catalyse the covalent addition of sugars from nucleotide UDP-sugar donors 

to hydroxyl, carboxyl or amino groups of various endogenous metabolites and toxic 

exogenous chemicals (Guillemette et al. 2014). Besides an important mechanism 

of drug resistance in cancer, UGTs also play a key role in modulating steroid levels 

as well as levels of pro and anti-oncogenic metabolites (retinoic acid, linoleic acid 

or arachidonic acid) by mediating their inactivation and elimination (Allain et al. 2020; 

Turgeon et al. 2003). GSTs are detoxifying enzymes that play important roles in 

cellular defense by conjugating toxic or carcinogenic compounds to glutathione, and 

is upregulated in prostate cancer (Liu et al. 2017). Interestingly, these groups of 

enzymes (CYPs, UGTs and GSTs) form the ‘xenobiotic detoxification program 

(XDP)’, and downregulation of these genes in DECR1 knockdown cells suggests 

that these cells are unable to cope with oxidative stress after DECR1 inhibition. This 

supports our findings that DECR1 knockdown increases mitochondrial oxidative 

stress (Figure 3.6D), further resulting in lipid peroxidation and cell death. 

GSEA analysis also showed downregulation of fatty acid metabolism and PPAR 

signalling pathways, and further analysis showed a decrease in fatty acid oxidation 

pathway genes (ie. CPT1A, ACOX1, SCD, ACSL1) in DECR1 knockdown cells 

compared to control cells. Notably, peroxisomal metabolism genes were 

significantly and negatively enriched in DECR1 knockdown cells. Unlike the 

mitochondria, peroxisomes function to oxidise very long chain fatty acids (VLCFAs). 

Given that the cells already accumulate PUFAs due to DECR1 knockdown, the cells 

may cease production of VLCFAs thereby making peroxisomes redundant or limit 

peroxisomal activity to conserve energy and other TCA metabolic requirements for 

survival. It would be interesting to investigate the connection between mitochondrial 

and peroxisomal metabolism.  
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Taken together, these findings provide a foundation for which future research can 

be built upon. More importantly, these results will need to be confirmed in 

independent knockdown experiments with quantitative PCR (qPCR) to further 

validate our findings. While transcriptomic studies are beneficial to infer changes in 

biological processes, it cannot fully encapsulate the various biological or molecular 

networks that are going on in the cell (i.e., protein function and post-translational 

modifications). Further studies are still needed to elucidate these and other aspects 

of DECR1 inhibition in order to facilitate the development of DECR1 targeted 

therapies to prevent disease recurrence and treatment resistance. 
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4.1 Abstract 
 
Herein, we highlight a role for peroxisomal beta oxidation and a previously 

unexplored peroxisomal beta oxidation enzyme, 2,4-dienoyl CoA reductase 2 

(DECR2) in CRPC. DECR2 is robustly overexpressed in prostate cancer tissues 

and is associated with poor overall survival. Previous proteomic analysis revealed 

an association between peroxisome metabolism and resistance to AR inhibitors. 

Inhibition of peroxisomal beta oxidation, either by molecular targeting of DECR2 or 

pharmacological inhibition using thioridazine (TDZ) significantly suppressed 

proliferation and migration of castrate-resistant and treatment-resistant prostate 

cancer cells in vitro. DECR2 knockdown or TDZ treatment induced lipid 

accumulation and cell cycle arrest. Moreover, DECR2 depleted cells maintained 

functional mitochondrial oxidative phosphorylation, suggesting an intimate link 

between mitochondrial and peroxisomal beta oxidation to promote prostate cancer 

cell survival. Notably, DECR2 knockdown and TDZ sensitises CRPC and 

enzalutamide-resistant cells to the androgen receptor antagonist, enzalutamide and 

cyclin-dependent kinase (Cdk) 4/6 inhibitor, ribociclib. Taken together, our data 

supports peroxisomal beta oxidation and more specifically, DECR2 as a promising 

novel therapeutic target for CRPC. 
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4.2 Introduction 
 
Prostate cancer is the most commonly diagnosed malignancy in men, and a leading 

cause of cancer-related deaths in men globally (Siegel et al., 2019). Prostate cancer 

is mainly dependent on androgens which act through the androgen receptor (AR; 

transcription factor) for growth and survival. Consequently, androgen deprivation 

therapy (ADT) has remained the frontline strategy for clinical management of 

patients with advanced or metastatic prostate cancer since the 1940s (Huggins and 

Hodges, 1972). Although initially effective, the majority of patients eventually 

develop resistance to currently available therapies and relapse with castrate 

resistant prostate cancer (CRPC) which is ultimately fatal. Despite the development 

of more potent anti-androgens, including enzalutamide (ENZ) (Scher et al., 2012; 

Tran et al., 2009), these agents are still not curative and alternative therapeutic 

strategies to combat treatment resistance are urgently sought. 

 

Targeting cancer metabolism has gained increasing attention. In conjunction with 

the fact that the AR plays key roles in modulating cancer metabolism (Mah et al., 

2020; Massie et al., 2011), it has emerged as an attractive strategy to overcome 

resistance to AR-targeted therapies (Blomme et al., 2020; Li et al., 2016; Nambiar 

et al., 2014; Schulte et al., 2018; Zacharias et al., 2017; Zadra et al., 2019). 

Moreover, prostate cancer presents a unique metabolic phenotype that is mainly 

dependent on lipids and mitochondrial metabolism for energy production at early 

stages of the disease (Liu, 2006). Prostate cancer is also characterised by the 

dysregulation of genes and proteins involved in lipid metabolism during disease 

initiation and progression (Ettinger et al., 2004; Iglesias-Gato et al., 2018; Swinnen 

et al., 2004; Wu et al., 2014; Zadra and Loda, 2018), suggesting that this lipid 

rewiring may represent a promising therapeutic vulnerability for the treatment of 

CRPC (Butler et al., 2020). 

 

While most studies have focused on therapeutic targeting of de novo lipogenesis 

and lipid uptake in prostate cancer (Watt et al., 2019; Zadra et al., 2019), recent 

work from our group and others have shown that fatty acid beta-oxidation (FAO) is 

upregulated in prostate cancer and is critical for cell survival and may contribute to 

emergence of CRPC and treatment resistance (Balaban et al., 2019; Nassar et al., 



Chapter 4 

 102 
 

2020b, 2020a; Schlaepfer et al., 2014). FAO occurs mainly in the mitochondria, and 

hence a lot of effort has been made into developing mitochondrial FAO inhibitors, 

particularly against carnitine palmitoyltransferase 1 (CPT1; an enzyme that 

facilitates transport of long chain fatty acids into the mitochondria) such as 

perhexiline and etomoxir (Dheeraj et al., 2018; Flaig et al., 2017; Schlaepfer et al., 

2014; Zaugg et al., 2011). Despite promising pre-clinical data, mitochondrial FAO 

inhibitors have seen rapid decline in their approved clinical use due to severe toxicity 

and side effects. Having said that, FAO also occurs in the peroxisomes and both 

processes cooperate to produce energy (Islinger et al., 2018). In view of our recent 

discovery of mitochondrial DECR1, an auxiliary enzyme involved in polyunsaturated 

fatty acid oxidation (Blomme et al., 2020; Nassar et al., 2020b), we sought to 

investigate and characterise its peroxisomal counterpart, DECR2, and its role in 

prostate cancer. 

 

Peroxisomal beta oxidation is a comparatively underexplored area of lipid 

metabolism particularly in the context of prostate cancer. Unlike mitochondrial beta 

oxidation, peroxisomal beta oxidation does not directly contribute to energy 

production. Instead, very long chain fatty acids (VLCFAs) or branched chain fatty 

acids are initially oxidised to shorter fatty acyl chains in the peroxisomes and 

transported into the mitochondria for complete degradation and subsequent energy 

production (Islinger et al., 2018; Wu et al., 2014). Herein, we showed that DECR2 

is robustly overexpressed in advanced and metastatic prostate cancer tissues and 

provided evidence that peroxisomal beta oxidation or DECR2 may contribute to 

treatment resistance in prostate cancer. We also identified a potential clinical 

candidate agent and peroxisomal beta oxidation inhibitor, thioridazine (TDZ; anti-

psychotic agent previously used to treat schizophrenia) (Van den Branden and 

Roels, 1985). The aim of this study was to evaluate the efficacy of targeting 

peroxisomal beta oxidation via DECR2 or the clinically available inhibitor TDZ, and 

to examine its role in CRPC and treatment resistance. 
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4.3 Materials and methods 
 

4.3.1 Cell lines and tissue culture 
 
Human normal prostate epithelial cell lines PNT1 and PNT2 were obtained from the 

European Collection of Authenticated Cell Cultures (ECACC). Prostate carcinoma 

cells LNCaP and 22RV1 were obtained from the American Type Culture Collection 

(ATCC; Rockville, MD, USA). Castrate-resistant V16D and enzalutamide-resistant 

MR49F cell lines were derived through serial xenograft passage of LNCaP cells 

(Toren et al., 2016) and were a kind gift from Professor Amina Zoubeidi’s laboratory. 

Cell lines were verified in 2019 via short tandem repeat profiling (Cell Bank 

Australia). Cells were cultured in RPMI-1640 medium containing 10 % fetal bovine 

serum (FBS; Sigma-Aldrich, NSW, Australia) in a 5 % CO2 humidified atmosphere 

at 37 °C. For thioridazine (TDZ) treatment, cells were cultured in growth medium 

supplemented with 2.5 µM, 5 µM, 7.5 µM, 10 µM or 15 µM TDZ (dissolved in 

dimethyl sulfoxide, DMSO; Sigma-Aldrich). For ribociclib (Rib) treatment, cells were 

cultured in growth medium supplemented with 0.1 µM or 0.25 µM ribociclib 

(dissolved in DMSO). The sources and experimental conditions for primary 

antibodies used in this study are listed in Supplementary Table 4.2. 

 

4.3.2 Ex vivo culture of human prostate tumours 
 
Patient derived-explant (PDE) culture was carried out according to techniques 

established in our laboratory, as described previously (Centenera et al., 2018). 

Briefly, 6 mm/8 mm biopsy cores were collected from men undergoing robotic 

radical prostatectomy at St. Andrew’s Hospital (Adelaide, South Australia) with 

written informed consent through the Australia Prostate Cancer BioResource. 

Tissues were dissected into smaller 1 mm3 pieces and cultured on Gelfoam sponges 

(80 x 125 mm Pfizer 1205147) in 24-well plates pre-soaked in 500 µL RPMI-1640 

medium supplemented with 10 % FBS and antibiotic/antimycotic solution. TDZ (10 

µM or 20 µM) was added into each well and the tissues were cultured in 5 % CO2 

in humidified atmosphere at 37 °C for 48 hrs, then snap frozen in liquid nitrogen and 

stored at -80 °C, or formalin-fixed and paraffin-embedded. 
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4.3.3 Bioinformatics analysis 
 
Gene expression data were downloaded from The Cancer Genome Atlas (TCGA) 

data portal, cBioPortal (SU2C and MSKCC), and the GEO website; GSE6099 

(Tomlin et al); GSE35988 (Grasso et al); GSE21034 (Taylor et al). Proteomics data 

(raw MaxQuant files) was downloaded from the ProteomeXchange Consortium via 

the PRIDE partner repository using the dataset identifier PXD016836 and analysed 

independently using the R software. For lipidomic analysis, heatmaps and volcano 

plots were generated in R version 3.6.3 using the pheatmap and ggplot2 package 

respectively. GSEA correlation analysis was performed using TCGA dataset and 

our laboratory’s RNA-sequencing data. 

 

4.3.4 Western blotting 
 
Protein lysates were collected in RIPA lysis buffer (10 mM Tris, 150 mM NaCl, 1 

mM EDTA, 1 % Triton X-100, 10 % protease inhibitor). Western blotting on whole 

cell protein lysates were performed as previously described (Armstrong et al., 2016).  

 

4.3.5 siRNA transfection 
 
Human DECR2 ON-TARGET plus SMART pool (L-009627-00-0005) small 

interfering RNAs (siRNAs) and control siRNA (D-001810-01-20 ON-TARGET plus 

non-targeting siRNA #1) were purchased from Millennium Science (VIC, Australia). 

siRNAs (5 nM) were reverse transfected using Lipofectamine RNAiMAX transfection 

reagent (Invitrogen, VIC, Australia) according to manufacturer’s instructions. 

 

4.3.6 Generation of stable shDECR2 and hDECR2 LNCaP cells 
 
LNCaP cells were transduced with the universal negative control shRNA lentiviral 

particles (shControl) or hControl (GFP-Puro), DECR2 shRNA inducible lentiviral 

particles (shDECR2, RFP-Puro) designed by Horizon Discovery (Cambridge, UK), 

or hDECR2 (GFP-Puro) designed by GenTarget Inc (San Diego, CA, USA) 

according to manufacturer’s instructions.  
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Functional assays 
 

4.3.7 Cell viability 
 
Cells were seeded in triplicate in 24-well plates at a density of 2.5 x 104 – 6.0 x 104 

cells/well and reverse transfected with siRNA overnight or treated with drug-

supplemented medium. Cells were manually counted using a hemocytometer 96 

hrs post-siRNA knockdown or treatment and cell viability was assessed by Trypan 

Blue exclusion as described previously (Armstrong et al., 2016). 

 

4.3.8 Cell migration 
 
Transwell migration assays were performed using 24-well polycarbonate Transwell 

inserts (3422, Sigma-Aldrich). C42B and 22RV1 cells transfected overnight with 

siRNA were seeded into the upper chamber of the Transwell at a density of 9.0 x 

104 – 1.5 x 105 cells/well in serum-free medium. 650 µL of medium containing 10 % 

FBS was added to the bottom chamber. Cells were incubated at 37 °C for 48 hrs. 

For TDZ treatment, medium in both the upper and lower chambers were 

supplemented with TDZ (2.5 µM). Inserts were washed with PBS and non-migrated 

cells were gently removed using a cotton-tipped swab. The inserts were then fixed 

in 4 % paraformaldehyde for 20 min and stained with 1 % crystal violet for 30 min. 

Images of migrated cells were captured using the Axio Scope A1 Fluorescent 

Microscope (Zeiss) at 40 X magnification. The number of migrated cells were 

counted manually and presented as percentages relative to control cells ± SEM. 

 

4.3.9 Colony formation assay 
 
DECR2 stable knockdown (shDECR2) cells or DECR2 overexpression (hDECR2) 

cells were prepared in a single-cell suspension before seeding in 6-well plates at a 

density of 500 cells/well. For TDZ treatment, C42B, V16D and MR49F cells were 

seeded overnight and gently treated with drug-supplemented medium. Cells were 

incubated for 2 weeks at 37 °C with medium being replenished every 3-7 days. After 

2 weeks, cells were washed with PBS and fixed with 4 % paraformaldehyde, then 

stained with 1 % crystal violet for 30 min. Colonies were counted manually and 

results were reported as number of colonies ± SEM. 
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Flow cytometry 
 
4.3.10 Cell cycle analysis 
 
Cells were seeded in triplicate in 6-well plates at a density of 3 x 105 – 6 x 105 

cells/well and reverse transfected with siRNA overnight or treated with drug-

supplemented medium. Cells were collected into fluorescence-activated cell sorting 

(FACS) tubes and centrifuged at 1,500 rpm for 5 min, then fixed in cold 70 % ethanol 

for 2 hrs. Samples were stained with 50 µg/mL of propidium iodide (PI, Sigma-

Aldrich) and 100 µg/mL Ribonuclease A from bovine pancreas (Sigma-Aldrich) for 

30 min at room temperature. Cells were analysed using a BD LSRFortessa X-20 

Flow Cytometer (BD Biosciences). Data were evaluated using FlowJo version 10. 

 

4.3.11 Apoptosis assay 
 
Cells were seeded in triplicate in 6-well plates at a density of 3 x 105 – 6 x 105 

cells/well and reverse transfected with siRNA overnight or treated with drug-

supplemented medium. Cells were collected into FACS tubes and centrifuged at 

1,500 rpm for 5 min, then resuspended in FACS Binding Buffer (94 % Hank’s 

Balanced Salt Solution, 1 % HEPES, 5 % CaCl2), 7-AAD (Thermo Fisher Scientific) 

and Annexin-V PE (BD) for 30 min in the dark. Cells were analysed using a BD 

LSRFortessa X-20 Flow Cytometer (BD Biosciences). Data were evaluated using 

FlowJo version 10. 

 

4.3.12 Neutral lipid content quantification 
 
Cells were seeded in triplicate in 24-well plates at a density of 3 x 105 – 6 x 105 

cells/well and reverse transfected with siRNA overnight or treated with drug-

supplemented medium. Cells were collected into FACS tubes and centrifuged at 

1,500 rpm for 5 min, then resuspended in 2 µM of fluorescent neutral lipid dye 

BODIPY 493/503 (Thermo Fisher Scientific) for 15 min at 37 °C. Cells were 

resuspended in 300 µL FACS Binding Buffer and analysed using a BD LSRFortessa 

X-20 Flow Cytometer (BD Biosciences). Data were evaluated using FlowJo version 

10. 
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Lipidomics 
 
4.3.13 Lipid extraction 
 
700 µL of sample (4 µL of plasma diluted in water, or 700 µL of homogenized cells) 

was mixed with 800 µL 1 N HCl:CH3OH 1:8 (v/v), 900 µL CHCl3 and 200 µg/mL of 

the antioxidant 2,6-di-tert-butyl-4-methylphenol (BHT; Sigma Aldrich). 3 µL of 

SPLASH LIPIDOMIX Mass Spec Standard (#330707, Avanti Polar Lipids) was 

spiked into the extract mix. The organic fraction was evaporated using a Savant 

Speedvac spd111v (Thermo Fisher Scientific) at room temperature and the 

remaining lipid pellet was stored at -20 °C under argon. 

 

4.3.14 Mass Spectrometry 
 
Lipid pellets were reconstituted in 100 % ethanol. Lipid species were analyzed by 

liquid chromatography electrospray ionization tandem mass spectrometry (LC-

ESI/MS/MS) on a Nexera X2 UHPLC system (Shimadzu) coupled with hybrid triple 

quadrupole/linear ion trap mass spectrometer (6500+ QTRAP system; AB SCIEX). 

Chromatographic separation was performed on a XBridge amide column (150 mm 

x 4.6 mm, 3.5 µm; Waters) maintained at 35 °C using mobile phase A [1 mM 

ammonium acetate in water-acetonitrile 5:95 (v/v)] and mobile phase B [1 mM 

ammonium acetate in water-acetonitrile 50:50 (v/v)] in the following gradient: (0–6 

min: 0 % B → 6 % B; 6–10 min: 6 % B → 25 % B; 10–11 min: 25 % B → 98 % B; 

11–13 min: 98 % B → 100 % B; 13–19 min: 100 % B; 19–24 min: 0 % B) at a flow 

rate of 0.7 mL/min which was increased to 1.5 mL/min from 13 min onwards. SM, 

CE, CER, DCER, HCER, LCER were measured in positive ion mode with a 

precursor scan of 184.1, 369.4, 264.4, 266.4, 264.4 and 264.4 respectively. TAG, 

DAG and MAG were measured in positive ion mode with a neutral loss scan for one 

of the fatty acyl moieties. PC, LPC, PE, LPE, PG, LPG, PI, LPI, PS and LPS were 

measured in negative ion mode by fatty acyl fragment ions. Lipid quantification was 

performed by scheduled multiple reactions monitoring (MRM), the transitions being 

based on the neutral losses or the typical product ions as described above. The 

instrument parameters were as follows: Curtain Gas = 35 psi; Collision Gas = 8 a.u. 

(medium); IonSpray Voltage = 5500 V and -4,500 V; Temperature = 550 °C; Ion 

Source Gas 1 = 50 psi; Ion Source Gas 2 = 60 psi; Declustering Potential = 60 V 
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and -80 V; Entrance Potential = 10 V and -10 V; Collision Cell Exit Potential = 15 V 

and -15 V. The following fatty acyl moieties were taken into account for the lipidomic 

analysis: 14:0, 14:1, 16:0, 16:1, 16:2, 18:0, 18:1, 18:2, 18:3, 20:0, 20:1, 20:2, 20:3, 

20:4, 20:5, 22:0, 22:1, 22:2, 22:4, 22:5 and 22:6 except for TGs which considered: 

16:0, 16:1, 18:0, 18:1, 18:2, 18:3, 20:3, 20:4, 20:5, 22:2, 22:3, 22:4, 22:5, 22:6. 

 

4.3.15 Data analysis 
 
Peak integration was performed with the MultiQuant software version 3.0.3. Lipid 

species signals were corrected for isotopic contributions (calculated with Python 

Molmass 2019.1.1) and were normalized to internal standard signals. Unpaired T-

test p-values and FDR corrected p-values (using the Benjamini/Hochberg procedure) 

were calculated in Python StatsModels version 0.10.1. 

 

4.3.16 Seahorse extracellular flux assay 
 
Cells were plated on a XF96 well cell culture microplate (Agilent, Victoria, Australia) 

at equal densities in substrate-limited medium and incubated overnight. Prior to 

oxygen consumption rate (OCR) measurements, cells were washed and incubated 

in FAO assay medium supplemented with or without 200 µM of linoleic acid (LA). 

Extracellular flux analysis was performed using the Seahorse XF Mito Stress Test 

kit (Seahorse Bioscience) according to the manufacturer’s protocol. Measurements 

were taken on the Seahorse XF96 Analyzer and results were analysed using the 

Seahorse Wave software. OCR values were normalized to cell numbers per well.  

 

4.3.17 Membrane fluidity 
 
Cells transfected with siRNA for 48 hours were reseeded onto a Nunc Glass Bottom 

dish (Thermo Fisher Scientific) and incubated overnight. Cells were then washed 

with PBS prior to incubation for 1 hr with 2.5 µM Laurdan dye diluted in phenol-red 

free RPMI-1640 media at 37 °C. Laurdan dye was excited under a 405 nm laser, 

and two Laurdan intensity images were recorded simultaneously with emissions 

read at 430 – 470 nm and 485 – 515 nm. The measure of membrane fluidity was 

obtained using the Generalized Polarization (GP) value, calculated using both 

Laurdan intensity images according to the equation GP = I(450-500) / I(450+500), where I 
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represents the intensity of the pixels captured in the 430 – 470 nm and 485 – 515 

nm spectral channels respectively, as measured using the ImageJ software. 

 

In vivo studies 
 
4.3.18 Orthotopic tumour growth 
 
10 µL containing 1 x 106 DECR2 overexpression cells (hDECR2) or negative control 

cells (hControl) were injected intraprostatically in 8 week old NOD/SCID male mice. 

Whole-body imaging to monitor luciferase-expressing LNCaP cells was performed 

at day 3 of the injection and once weekly after that using the In Vivo Imaging System 

(IVIS, PerkinElmer). D-luciferin (potassium salt, PerkinElmer) was dissolved in 

sterile deionized water (0.03 g/mL) and injected subcutaneously (3 mg/20 g of 

mouse body weight) before imaging. Bioluminescence is reported as the sum of 

detected photons per second from a constant region of interest. After the animals 

were sacrificed, lungs and livers were excised for ex vivo imaging using the IVIS 

system. 

 

After each study, tumours that were excised were snap frozen for RNA extraction 

and formalin fixed and paraffin embedded. All animal procedures were carried out 

in accordance with the guidelines of the National Health and Medical Research 

Council of Australia. The orthotopic xenograft studies were approved by the 

University of Adelaide Animal Ethics Committee (approval number M-2019-037). 

 

4.3.19 Statistical analysis 
 
Results are reported as mean ± SEM. Statistical analysis was performed using 

GraphPad Prism (V9.0 for Mac). The differences between treatment groups were 

compared by T-test or one-way ANOVA followed by Tukey or Dunnett post hoc test. 

Significance is expressed as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.4 Results 
 

4.4.1 DECR2 is upregulated in clinical prostate tumours and treatment 
resistance 
 
DECR2 mRNA expression was significantly higher in malignant prostate cancer 

tissues (primary and metastatic) compared to normal or benign prostate tissues in 

four independent gene expression datasets comprising of non-malignant and 

prostate cancer tissues (Figure 1A,B). Furthermore, DECR2 mRNA expression was 

higher in CRPC / neuroendocrine prostate cancer (NEPC) compared to benign or 

primary tumours (Figure 1B). In line with this observation, DECR2 gene copy 

number gain was evident in several clinical prostate cancer datasets (acquired from 

cBioportal) (Supplementary figure 1A). DECR2 mRNA expression was associated 

with shorter relapse-free survival and overall survival rates (Figure 1C). At the 

protein level, DECR2 expression was markedly increased in castrate-resistant and 

treatment-resistant prostate cancer cell lines compared with non-malignant PNT1 

and PNT2 prostate cell lines (Figure 1D). Consistent with its known function, DECR2 

localises to the peroxisome as confirmed using immunocytochemistry 

(Supplementary figure 1B). A recent proteomics study by Blomme et al 

characterised the changes associated with acquired resistance to AR inhibition (ARI) 

(Blomme et al., 2020). Here, we independently analysed the proteomics dataset and 

found that peroxisomal hallmark and KEGG pathway genes were strongly 

associated with acquired apalutamide and enzalutamide resistance (Figure 1E; 

Supplementary figure 1C). Notably, DECR2 protein was robustly and most 

consistently upregulated in ARI-resistant cells and organoids (Figure 1E; 

Supplementary figure 1C). Taken together, these findings suggest that DECR2 

expression is closely linked to prostate cancer progression and may be associated 

with treatment-resistance. 
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Figure 4.1 Peroxisomal beta-oxidation enzyme, DECR2, is upregulated in 
advanced and treatment-resistant prostate cancer. (A) DECR2 mRNA 

expression in normal or benign prostate tissue compared to primary or metastatic 

prostate cancer in three independent datasets; and (B) relative to primary or 

castrate-resistant and neuroendocrine prostate cancer. (C) DECR2 mRNA is 

associated with shorter disease-free survival (MSKCC) and shorter overall 

survival rates (SU2C). (D) DECR2 protein expression in non-malignant prostate 

cell lines (PNT1 and PNT2) and prostate cancer cell lines (LNCaP, VCaP, C42B, 

22Rv1, V16D, PC3), including enzalutamide-resistant prostate cancer cell line 

(MR49F). (E) Peroxisomal genes are positively correlated with acquired 

resistance to enzalutamide as assessed by GSEA. DECR2 protein expression is 

significantly increased in LNCaP acquired apalutamide and enzalutamide 

resistance organoids compared to wildtype LNCaP organoids. Data are 

represented as violin plots in GraphPad prism. Statistical analysis was performed 

using ordinary one-way ANOVA. Data in (C) were statistically analysed using a 

two-sided log-rank test. *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001. 
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4.4.2 Targeting DECR2 inhibits prostate cancer cell proliferation 
 
The overexpression of DECR2 in metastatic prostate cancer tissues and its 

association with shorter relapse time and overall survival rates suggests that 

DECR2 may contribute to prostate cancer cell proliferation and invasiveness. 

DECR2 knockdown significantly attenuated prostate cancer cell viability and 

induced cell death in androgen-dependent (LNCaP), castrate-resistant (C42B) and 

acquired enzalutamide-resistant (MR49F) cells; while no effect was observed in 

non-malignant PNT1 prostate cells (Figure 2A; Supplementary figure 2A). Similarly, 

stable knockdown of DECR2 significantly attenuated LNCaP prostate cancer cell 

viability (Figure 2B). In contrast, constitutive DECR2 overexpression (hDECR2) in 

LNCaP cells significantly enhanced cell viability compared to control (hControl; 

Figure 2C). Stable knockdown of DECR2 markedly decreased colony formation 

ability while stable overexpression of DECR2 increased colony formation (Figure 

2D,E; Supplementary figure 1B). Likewise, DECR2 knockdown significantly reduced 

cell migration of C42B and 22Rv1 prostate cancer cells; whereas stable DECR2 

overexpression increased LNCaP cell migration (Figure F-H). Consistently, stable 

overexpression of DECR2 increased tumour growth compared to hControl cells in 

an orthotopic tumour model (Figure I). In addition, analysis of detectable tumours 

from hDECR2 (n=6) and hControl (n=10) mice revealed a significant increase in 

tumour weight and lung metastasis of stable DECR2 overexpression cells 

(Supplementary figure 2D). Given that DECR2 may be associated with acquired ARI 

resistance, we wanted to test whether DECR2 knockdown could sensitize 

enzalutamide-resistant cells to enzalutamide. Indeed, DECR2 knockdown in 

combination with enzalutamide further decreased cell viability of enzalutamide-

resistant MR49F cells compared to DECR2 knockdown or enzalutamide alone 

(Figure 2J). In contrast, stable DECR2 overexpression LNCaP cells were 

significantly more resistant to ENZ treatment (Figure 2K). 
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Figure 4.2 DECR2 knockdown inhibits prostate cancer cell growth. (A) Cell 

viability of normal prostate PNT1 cell line, androgen-dependent LNCaP, castrate-

resistant V16D and enzalutamide-resistant MR49F prostate cancer cell lines 

subjected to siRNA-mediated DECR2 knockdown. (B) Cell viability of LNCaP 

cells with stable/inducible shRNA DECR2 knockdown (shDECR2). (C) Cell 

viability of LNCaP cells with stable overexpression of DECR2 (hDECR2). (D-E) 
LNCaP colony formation was evaluated in cells with stable/inducible shRNA 

DECR2 knockdown (shDECR2) or stable DECR2 overexpression (hDECR2). (F-
H) C42B and 22Rv1 prostate cancer cell lines subjected to siRNA-mediated 

DECR2 knockdown, and LNCaP stable DECR2 overexpression (hDECR2) cell 

lines were assessed for cell migration using a transwell migration assay. (I) 
LNCaP cells with stable overexpression of DECR2 (hDECR2, n = 6) or control 

(hControl, n = 10) were analysed for orthotopic LNCaP tumour growth in mice, 

and representative bioluminescent tumour images (right). (J) Cell viability of 

enzalutamide-resistant MR49F cells subjected to siRNA-mediated DECR2 

knockdown, with or without enzalutamide (1 µM) treatment. (K) Cell viability of 

stable DECR2 overexpression LNCaP cells with or without enzalutamide 

treatment (1 µM). All data is representative of at least 2 independent experiments 

and presented as mean ± s.e.m of triplicate wells. Statistical analysis was 

performed using ordinary one-way ANOVA or two-tailed student’s t-test: *p<0.05, 

**p<0.01, ***p<0.001 and ****p<0.0001. 
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4.4.3 Inhibition of peroxisomal beta-oxidation by thioridazine suppresses 
prostate cancer oncogenesis 
 
Our results support that targeting peroxisomal beta-oxidation via DECR2 is 

efficacious in vitro. However, no DECR2 inhibitors exist and little is known about 

targeting this pathway and its clinical exploitability. Accordingly, we identified a 

potential clinical candidate agent and selective peroxisomal beta-oxidation inhibitor, 

thioridazine (TDZ), and proceeded to evaluate its efficacy in castrate and treatment-

resistant prostate cancer cells. TDZ induced a dose-dependent reduction in cell 

viability of castrate-resistant C42B and V16D cells and acquired enzalutamide-

resistant MR49F cells (Figure 3A). Furthermore, TDZ significantly and dose-

dependently decreased the colony formation ability of C42B, V16D and MR49F cells 

compared to vehicle-treated cells (Figure 3B). Next, TDZ significantly reduced cell 

migration of C42B and 22Rv1 prostate cancer cells at a low dose of 2.5 µM (Figure 

3C). TDZ dose-dependently induced apoptosis and cell death in C42B, V16D and 

MR49F cells, more notably at 10 µM doses compared to vehicle-treated cells 

(Figure 3D). Our recent report demonstrated the efficacy of targeting mitochondrial 

FAO using the chemical inhibitor, etomoxir, using our well-defined patient derived 

explant (PDE) model that recapitulates the complexity of the clinical tissue 

microenvironment. Here, we evaluated the efficacy of targeting peroxisomal beta-

oxidation using TDZ in PDE tissues (n = 11) and observed an overall significant 

decrease in the expression of the proliferative marker Ki67 (Figure 3E), with only 2 

patients showing no response. It is worth noting that while basal proliferation rates 

of prostate tumours are relatively low (<10%), this increases substantially during ex 

vivo culture. Similar to what we demonstrated above for DECR2; we also examined 

the effects of peroxisomal beta oxidation inhibition using TDZ in combination with 

ENZ on prostate cancer cell viability. Consistently, we showed that TDZ in 

combination with ENZ further attenuated cell viability in C42B, V16D and most 

notably, enzalutamide-resistant MR49F cells compared to TDZ or enzalutamide 

alone (Figure 3F). 
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Figure 4.3 Thioridazine suppresses oncogenic phenotypes of prostate cancer 
cells. Cell viability of (A) castrate-resistant C42B and V16D, and enzalutamide-

resistant MR49F prostate cancer cell lines across a range of TDZ doses. (B) C42B, 

V16D and MR49F colony formation was evaluated at the indicated TDZ doses. (C) 
C42B and 22Rv1 prostate cancer cell lines treated with TDZ (2.5 µM) were 

assessed for cell migration using transwell migration assay. (D) C42B, V16D and 

MR49F prostate cancer cells were treated with TDZ for 48 hrs and assessed for 

apoptotic and dead cells via flow cytometry. Data presented as percentage of cells 

in each live, apoptotic, or dead state per sample. (E) Immunostaining for proliferative 

marker Ki67 in untreated (VEH) or TDZ-treated (20 µM) patient-derived explants 

(PDEs). A decrease in proliferative marker Ki67 expression can be seen when PDE 

tissues are treated with TDZ (n = 10). (F) Cell viability of C42B, V16D and MR49F 

cells with or without enzalutamide treatment (10 µM). All data is representative of at 
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least 2 independent experiments and presented as mean ± s.e.m of triplicate wells. 

Statistical analysis was performed using ordinary one-way ANOVA or two-tailed 

student’s t-test: ns = non-significant, *p<0.05, **p<0.01, ***p<0.001 and 

****p<0.0001. 
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4.4.4 Peroxisomal beta-oxidation inhibition dysregulates lipid metabolism 
 
Inspection of the lipid profiles of LNCaP, V16D and MR49F prostate cancer cells 

after DECR2 knockdown revealed a profound remodelling of the cellular lipidome 

(Figure 4A). All three cell lines displayed a strong and consistent accumulation of 

multiple lipid classes, in particular cholesteryl ester (CE), triacylglycerol (TAG), 

diacylglycerol (DAG), and several classes of phospholipids such as 

phosphotidylethanolamine (PE) and phosphatidylinositol (PI; Figure 4A, 

Supplementary figure 3A). Of note, DECR2 knockdown resulted in a significant 

accumulation of monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid 

(PUFA) species, but not saturated lipid species (Figure 4B). Multiple sphingolipid 

species, and to a lesser extent some phospholipid species, were also significantly 

enriched in DECR2 knockdown cells compared to control (Figure 4C). Consistently, 

DECR2 knockdown significantly induced neutral lipid accumulation in V16D and 

MR49F cells, suggesting storage of lipids in lipid droplets (Figure 4D). Likewise, 

TDZ dose-dependently increased neutral lipid accumulation in C42B, V16D and 

MR49F cells (Figure 4E). Changes in lipid composition have been implicated to alter 

membrane properties, and certain lipids such as cholesterol and SM have been 

reported to profoundly influence membrane fluidity. Indeed, we found that DECR2 

knockdown significantly decreased V16D and MR49F cell membrane fluidity, as 

measured using the generalized polarisation (GP) property of the fluorescent probe 

Laurdan (Figure 4F).  
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Figure 4.4 DECR2 knockdown and peroxisomal beta-oxidation inhibition by 
Thioridazine induces lipid accumulation. (A) Heatmap represents average log2 

fold change of abundance of selected lipid classes in LNCaP, V16D and MR49F 

prostate cancer cells subjected to siRNA-mediated DECR2 knockdown (n = 6 per 

sample, per cell line). TAG: triacylglycerol; SM: sphingomyelin; PS: 

phosphotidylserine; PI: phosphatidylinositol; PE: phosphotidylethanolamine; PC: 

phosphotidylcholine; DAG: diacylglycerol; CER: ceramide; CE: cholesteryl ester. (B) 
Quantitative abundance per saturation group in LNCaP, V16D and MR49F cells. (C) 
Volcano plots of all lipid species in LNCaP, V16D and MR49F cells after DECR2 

knockdown. Top 20-30 enriched lipid species (p < 0.05) were annotated. (D) V16D 
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and MR49F prostate cancer cells subjected to siRNA-mediated DECR2 knockdown 

were assessed for neutral lipid content via flow cytometry. (E) C42B, V16D and 

MR49F prostate cancer cells were treated with TDZ for 48 hrs and assessed for 

neutral lipid content via flow cytometry. (F) Membrane fluidity in DECR2-knockdown 

V16D and MR49F prostate cancer cells as measured by fluorescent Laurdan assay. 

For this assay, GP value is inversely correlated to membrane fluidity. All data is 

representative of at least 2 independent experiments and presented as mean ± 

s.e.m of triplicate wells. Statistical analysis was performed using ordinary one-way 

or two-way ANOVA, or two-tailed student’s t-test: *p<0.05, **p<0.01, ***p<0.001 and 

****p<0.0001. 
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4.4.5 Interplay between peroxisomal and mitochondrial beta oxidation 
 
Little is known about the relationship that exists between the peroxisome and 

mitochondria despite their well-recognised fundamental roles in fatty acid oxidation. 

Gene-set enrichment analysis (GSEA) revealed that DECR2 expression was 

positively correlated with genes involved in oxidative phosphorylation in two 

independent clinical datasets (TCGA and local RNAseq patient cohort; Figure 5A). 

Accordingly, we sought to evaluate the effect of DECR2 knockdown on 

mitochondrial activity. DECR2 knockdown in castrate-resistant V16D and 

enzalutamide-resistant MR49F prostate cancer cells increased cellular ATP levels 

(Figure 5B). To determine if this was due, in part, to functional mitochondrial 

respiration, we employed the Seahorse Extracellular Flux assay to determine the 

rate and capacity of prostate cancer cells to oxidise fatty acids in conditions where 

nutrients are limiting. Our results revealed that DECR2 knockdown had similar to no 

effect in their oxygen consumption rates (OCR) when compared to control cells 

(Figure 5C). Having said that, exogenous supplementation of linoleic acid further 

stimulated the OCR of DECR2 knockdown cells suggesting that mitochondrial 

activity remains functional despite the impairment of peroxisomal beta oxidation via 

DECR2 knockdown (Figure 5C). Although there were slight variations in the results 

between the two cell lines, overall DECR2 knockdown increased the basal 

respiration rate, ATP production, maximal respiration and mitochondrial spare 

capacity compared to control cells (Figure 5C). In support of this, etomoxir treatment 

further potentiated the effect of DECR2 knockdown in V16D and MR49F cells 

compared to etomoxir treatment or DECR2 knockdown alone, indicating that 

mitochondrial oxidative phosphorylation may be essential to promote prostate 

cancer cell survival in response to DECR2 inhibition (Figure 5D). 
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Figure 4.5 Mitochondrial oxidative phosphorylation remains functional in 
DECR2 knockdown cells. (A) DECR2 expression is positively correlated with 

genes involved in oxidative phosphorylation in prostate cancer tissues as assessed 

by GSEA; TCGA dataset (left) and personal RNAseq dataset (right). (B) 
Quantification of ATP levels in castrate-resistant V16D (top) and enzalutamide-

resistant MR49F (bottom) prostate cancer cells subjected to siRNA-mediated 

DECR2 knockdown. (C) Oxygen consumption rate (OCR) of V16D and MR49F cells 

supplemented with linoleic acid (LA) were assessed using Seahorse Extracellular 

Flux assay. Each data point represents an OCR measurement. Basal respiration, 

ATP production, maximal respiration and spare capacity were evaluated (right). (D) 
Cell viability of V16D and MR49F cells treated with or without Etomoxir (ETX; 50 
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µM). All data is representative of at least 2 independent experiments and presented 

as mean ± s.e.m of triplicate wells. Statistical analysis was performed using two-

tailed student’s t-test (B) or two-way ANOVA (C-D): *p<0.05, **p<0.01, ***p<0.001 

and ****p<0.0001. 
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4.4.6 Targeting peroxisomal beta oxidation inhibits prostate cancer cell 
proliferation by inducing cell cycle arrest 
 
To investigate the mechanism by which prostate cancer cell growth and proliferation 

was attenuated by DECR2 knockdown or thioridazine, we examined the effect of 

DECR2 knockdown on cell cycle profile by flow cytometry. DECR2 knockdown 

induced cell cycle arrest at the G1/S phase in C42B, V16D and MR49F cells (Figure 

6A; Supplementary figure 4A). In contrast, stable DECR2 overexpression in LNCaP 

cells showed the opposite effect where there was less inhibition of cell cycle 

progression, consistent with its increase in cell viability (Figure 6B; Figure 1C). 

Likewise, TDZ induced G1/S phase cell cycle arrest dose-dependently in C42B, 

V16D and MR49F cells, particularly at the 10 µM dose (Figure 6C). In light of these 

findings, we assessed the effect of DECR2 knockdown on several cell cycle-related 

proteins/regulators in V16D and MR49F cells. We observed an increase in cyclin-

dependent kinase inhibitors p21 and p27, and a decrease in cyclin-dependent 

kinase CDK4. In addition, we observed a decrease in phosphorylated 

retinoblastoma (pRb) tumour suppressor protein in DECR2 knockdown cells 

compared to control (Figure 6D). We also examined the effects of TDZ treatment on 

cell cycle proteins and observed some similar effects, particularly for p21, p27 and 

cyclin D1 (Supplementary figure 4D). Interestingly, we observed some changes in 

histone H3 acetylation and proceeded to test the effect of HDAC inhibition using 

vorinostat (SAHA) in DECR2 knockdown V16D and MR49F cells. Overall, no 

significant effect was observed (Supplementary figure 4F). We then tested whether 

the cyclin-dependent kinase (CDK) 4/6 inhibitor, ribociclib (Rib) could further 

enhance the effect of DECR2 knockdown in the cells. Indeed, Rib further abrogated 

V16D and MR49F cell viability in DECR2 knockdown cells (Figure 6E; 

Supplementary figure 4B). In contrast, stable DECR2 overexpression in LNCaP 

cells experienced less cell growth inhibition when treated with Rib compared to 

hControl cells (Figure 6F; Supplementary figure 4C). Finally, we examined the effect 

of peroxisomal beta-oxidation inhibition via TDZ in combination with Rib on cell 

viability. We found that TDZ further abrogated C42B, V16D and MR49F cell viability 

when treated in combination with Rib compared to vehicle-treated cells or Rib alone 

(Figure 6G; Supplementary 4E). 



  Chapter 4 

 125 

 
Figure 4.6 DECR2 knockdown and thioridazine induce cell cycle arrest and 
further abrogates prostate cancer cell growth in combination with ribociclib. 
(A) V16D and MR49F cell cycle distribution 96 hrs after siRNA-mediated DECR2 

knockdown; (B) LNCaP cells with stable overexpression of DECR2 cell cycle 

distribution; and (C) C42B, V16D and MR49F cell cycle distribution 48 hrs after TDZ 

treatment was evaluated by flow cytometric analysis. Data presented as percentage 

of cells in each G1, S or G2 phase per sample. (D) Western blot analysis of a panel 

cell cycle-related protein markers in V16D and MR49F cells 72 and 96 hrs after 

DECR2 knockdown. GAPDH was used as loading control. Cell viability of (E) V16D 

and MR49F prostate cancer cells after DECR2 knockdown, and (F) LNCaP cells 

with stable overexpression of DECR2, treated with ribociclib (Rib; 0.1 µM and 0.25 

µM). (G) Cell viability of C42B, V16D and MR49F prostate cancer cells treated with 

TDZ (5 µM and 7.5 µM) and/or in combination with Rib (0.1 µM). All data is 

representative of at least 2 independent experiments and presented as mean ± 
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s.e.m of triplicate wells. Statistical analysis was performed using ordinary one-way 

or two-way ANOVA: ns = non-significant, *p<0.05, **p<0.01, ***p<0.001 and 

****p<0.0001. 
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4.5 Supplementary figures and tables 
 

 
Supplementary Figure 4.1 (A) Histogram displaying DECR2 mutation and copy-

number alteration frequency across 9 prostate cancer genomic datasets (left), and 

across 3 prostate cancer subtypes (right). (B) Immunocytochemistry staining of 

LNCaP and 22Rv1 cells to determine subcellular localization of DECR2. DAPI: 

nuclei; Alexa Fluor 488 secondary antibody: DECR2; Peroxisome: Alexa Fluor 594 

secondary antibody (PMP70), scale bar = 10 µm. (C) Peroxisomal genes are 

positively correlated with acquired resistance to apalutamide as assessed by GSEA. 

DECR2 protein expression is significantly increased in LNCaP acquired 

apalutamide and enzalutamide resistance cells compared to wildtype LNCaP cells 
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Supplementary Figure 4.2 (A) Cell death of normal prostate PNT1 cell line, 

androgen-dependent LNCaP, castrate-resistant V16D and enzalutamide-resistant 

MR49F prostate cancer cell lines subjected to siRNA-mediated DECR2 knockdown. 

(B) LNCaP colony formation was evaluated in cells with stable/inducible shRNA 

(vectors 2 and 3) DECR2 knockdown (shDECR2-2 and shDECR2-3). (C) Cell 

viability of LNCaP cells with stable DECR2 overexpression or control (hControl) 

subjected to siRNA-mediated DECR2 knockdown or control (siControl). DECR2 

protein expression after 96 hrs siRNA transfection (right). GAPDH was used as 

loading control. (D) Tumour weight (left) and lung luminescence of tumour 

metastasis to the lungs (right) of detectable tumour after dissection (hControl, n = 

10; hDECR2, n = 6). Bioluminescent images of metastatic spread to the lungs of all 

hControl (n = 10) and hDECR2 (n = 10) mice. NT = non-detectable tumour excluded 

from analysis. 
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Supplementary Figure 4.3 (A) Quantitative abundance per 

lipid class of LNCaP, V16D and MR49F cells after DECR2 

knockdown, representative bar graphs from Figure 4A. 

Statistical analysis was performed using two-tailed student’s t-

test: *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.  
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Supplementary Figure 4.4 (A) C42B cell cycle distribution 96 hrs after siRNA-

mediated DECR2 knockdown was evaluated by flow cytometric analysis. (B) Cell 

viability of C42B prostate cancer cells after DECR2 knockdown, treated with 

ribociclib (Rib; 0.1 µM and 0.25 µM). (C) Cell cycle distribution of LNCaP cells with 

stable DECR2 overexpression treated with or without Rib (0.1 µM and 0.25 µM) was 

evaluated by flow cytometric analysis. (D) Western blot analysis of a panel of cell 

cycle-related protein markers (as in Figure 5D) in C42B, V16D and MR49F cells 24 

hrs after TDZ treatment (0 µM, 5 µM or 10 µM). (E) Western blot analysis of a panel 

cell cycle-related protein markers (as in Figure 5D) in V16D and MR49F cells 96 hrs 

after DECR2 knockdown with or without Rib (0.1 µM and 0.25 µM) treatment. 

GAPDH was used as loading control. (F) Cell viability of V16D and MR49F prostate 
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cancer cells after DECR2 knockdown treated with or without HDAC inhibitor, SAHA 

(0.5 µM and 1.0 µM). 

 
Table 4.1 Sequence of shDECR2 and hDECR2 expression vector 

Expression 
target Sequence 

Human DECR2 
shRNA  

shDECR2-1 mature antisense: CAGCAATTCTCTTTAATCC 
shDECR2-2 mature antisense: ACAAGTCTCGGGATCCATG 
shDECR2-3 mature antisense: AAACGCACTAGCAAGATTG 

Human DECR2: 
subcloned human 
target coding 
sequence 
(GenTarget Inc) 

atggcccagccgccgcccgacgtggagggggacgactgtctccccgcgtaccgcc
acctcttctgcccggacctgctgcgggacaaagtggccttcatcacaggaggcggct
ctgggattgggttccggattgctgagattttcatgcggcacggctgccatacggtgattg
ccagtaggagcctgccgcgagtgctgacggccgccaggaagctggctggggccac
cggccggcgctgcctccctctctctatggacgtccgagcgcccccagctgtcatggcc
gccgtggaccaggctctgaaggagtttggcagaatcgacattctcattaactgtgcgg
ccgggaacttcctgtgccccgctggcgccttgtccttcaacgccttcaagaccgtgatg
gacatcgataccagcggcaccttcaatgtgtctcgtgtgctctatgagaagttcttccgg
gaccacggaggggtgatcgtgaacatcactgccaccctggggaaccgggggcag
gcgctccaggtgcatgcaggctccgccaaggccgctgtggacgcgatgacgcggc
acttggctgtggagtggggtccccaaaacatccgcgtcaacagcctcgcccctggcc
ccatcagtggcacagaggggctccggcgactgggtggccctcaggccagcctgag
caccaaggtcactgccagcccgctgcagaggctggggaacaagaccgagatcgc
ccacagcgtgctctacctggccagccctctggcttcctacgtgacgggggccgtgctg
gtggccgatggcggggcatggttgacgttcccaaacggtgtcaaagggctgccggat
ttcgcatccttctctgctaagctc 
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Table 4.2 List of antibodies 

Antibody Conjugate Species Identifier Supplier 
β-actin None Mouse A5441 Sigma-Aldrich 
HSP90 None Rabbit 4874S Cell Signalling Technology 
DECR2 None Rabbit ab153849 Abcam 
AR None Rabbit sc-816 Santa Cruz 
PMP70 None Mouse SAB4200181 Sigma-Aldrich 
Rb None Mouse 9309 Cell Signalling Technology 
pRb None Rabbit ab184796 Abcam 
p21 None Rabbit SC-317 Santa Cruz 
p27 None Rabbit SC-528 Santa Cruz 
cyclin D1 None Rabbit M3642 DAKO 
CDK4 None Rabbit SC-260 Santa Cruz 
H3ac None Rabbit 06-599 Upstate 
HDAC1 None Rabbit SC-7872 Santa Cruz 
GAPDH Rhodamine Rabbit 12004167 BioRad 
Ki67  Mouse M7240 DAKO 
Rabbit HRP Rabbit  DAKO 
Mouse HRP Mouse  DAKO 
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Table 4.3 The clinicopathologic features of PCa patients included in this study 

Patient ID Age at 
RP 

Pre-OP 
PSA 

Gleason 
Score 
(Pre-OP) 

1° 
GG 

2° 
GG 

3° 
GG 

Pathological 
Staging 

33975R 65.3 5.00 7 4 3  PT3A 
33976LA 82.5 7.60 7 4 3  PT2 
33985L 61.2 5.30 7 3 4  PT3A 
33986L 73.6 7.90 7 4 3  PT3A 
33987L 70.5 9.14 6 3 3  PT3A 
33988RB 70.1 5.17 7 3 4  PT2 
33989RA 69.1 6.60 7 4 3  PT2 
33992L 74.0 6.16 7 3 4  PT2 
33993L 70.5 10.50 6 3 3  PT2 
33994R 58.2 8.75 8 4 4 3 PT2 
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4.6 Discussion 
 
In this study, we provide novel evidence for a role of peroxisomal beta oxidation in 

prostate cancer progression. We report that the peroxisomal beta oxidation auxiliary 

enzyme, DECR2 (related to mitochondrial DECR1), is a robustly overexpressed 

gene in advanced prostate cancer tissues and is closely linked to clinical resistance 

to AR inhibition. Our data demonstrate that targeting of peroxisomal beta oxidation 

significantly suppressed prostate cancer cell growth and metastatic potential in vitro 

and in vivo. Moreover, we demonstrate that molecular targeting of DECR2 led to 

profound changes in lipid content and composition, and modulation of critical cell 

cycle regulatory pathways. Our findings provide new insights into the role of DECR2 

in prostate cancer, extending our knowledge beyond the previous focus on 

mitochondrial beta oxidation and identify peroxisomal beta oxidation as a potential 

therapeutic target for advanced metastatic prostate cancer. 

 

Altered lipid metabolism is a well-characterised hallmark of prostate cancer and, 

accordingly, significant research efforts have been made to target de novo 

lipogenesis and lipid uptake pathways. However, there is a growing body of 

evidence that supports fatty acid oxidation as a critical aspect of lipid metabolism 

that drives prostate cancer progression and contributes to treatment resistance 

(Flaig et al., 2017; Nassar et al., 2020b, 2020a; Schlaepfer et al., 2014; Zaugg et 

al., 2011). Despite the complexity of the fatty acid oxidation pathway, most drug 

development approaches have focused entirely on targeting mitochondrial CPT1, 

the rate-limiting enzyme of beta oxidation. Our previous study demonstrated 

therapeutic efficacy in targeting mitochondrial beta oxidation using a 

pharmacological agent, etomoxir (CPT1 inhibitor) in our established patient-derived 

explant (PDE) model (Nassar et al., 2020b). Although CPT1 inhibitors showed 

remarkable efficacy in attenuating cancer cellular proliferation in vitro and in vivo, its 

clinical use remains challenging due to the off-target effects that may underlie the 

severe toxicity (Holubarsch et al., 2007; Ma et al., 2020). For this reason, we sought 

to identify alternative targets involving beta oxidation and discovered DECR1, the 

rate-limiting auxiliary enzyme of mitochondrial polyunsaturated fatty acid 

metabolism (Nassar et al., 2020b). Interestingly, we also discovered peroxisomal 

2,4-dienoyl CoA reductase 2 (DECR2), a peroxisomal beta oxidation enzyme 
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analogous to mitochondrial DECR1. Besides residing in different cellular 

compartments, DECR1 and 2 are both critical NADPH-dependent auxiliary enzymes 

that play key roles in polyunsaturated fatty acid (PUFA) oxidation (Alphey et al., 

2005). Unlike mitochondrial DECR1, which functions primarily to oxidise PUFAs for 

energy, peroxisomal DECR2 is more selective for very long chain fatty acids 

(VLCFAs) and functions to chain-shorten VLCFA substrates before being 

transported into the mitochondria for complete degradation. Intriguingly, another 

study reported that DECR2 may also be involved in the degradation of short and 

medium chain substrates as well as docosahexaenoic acid (DHA) (De Nys et al., 

2001), which warrants further investigation into the specific function and reactivity 

of peroxisomal DECR2.  

 

Peroxisomal beta oxidation is an understudied aspect of fatty acid metabolism in 

prostate cancer. Unlike mitochondrial beta oxidation, where short to long chain fatty 

acid oxidation takes place, peroxisomal beta oxidation involves the breakdown of 

very long chain and branched chain fatty acids (VLCFAs and BCFAs). VLCFAs 

undergo peroxisomal beta oxidation to produce shorter fatty acyl-CoAs before they 

are transported into the mitochondria for complete degradation and energy 

production (Islinger et al., 2018; Lodhi and Semenkovich, 2014). The changes in 

peroxisomal gene and protein expression and metabolic flux in cancer cells relative 

to normal cells, and whether these changes are reflected in their lipid profiles, 

remains an area ripe for further investigation. To date, the most studied peroxisomal 

beta oxidation enzyme in prostate cancer is α-methylacyl-CoA racemase (AMACR; 

catalyses BCFA oxidation). AMACR is consistently overexpressed in prostate 

cancer and is associated with increased prostate cancer risk (Ananthanarayanan et 

al., 2005). More importantly, AMACR is highly specific for prostate cancer, and 

hence has been exploited as a specific prostate cancer biomarker 

(Ananthanarayanan et al., 2005; Jiang et al., 2004). In another study, it was reported 

that a peroxisomal beta oxidation enzyme, ECI2, was significantly overexpressed in 

human prostate cancers and is associated with poor overall patient survival. The 

authors showed that ECI2 knockdown attenuated prostate cancer cell growth and 

tumorigenicity, accompanied by an accumulation of fatty acids and cell cycle-related 

genes, analogous to the current study findings (Itkonen et al., 2017). A more recent 

study reported increased expression of several peroxisomal proteins (including but 
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not limited to ACOX1/3, ABCD1, CAT and PECI) in castrate-resistant 22Rv1 

prostate cancer cells relative to non-malignant cells, accompanied by a significant 

increase in C26:0 oxidation (Valença et al., 2020). Interrogation of clinical datasets 

showed that DECR2 was significantly increased in malignant prostate cancer 

tissues, particularly metastatic samples, compared to normal or benign tissues and 

was associated with poorer overall survival. When comparing DECR2 protein 

expression across a range of prostate cancer cell lines, DECR2 expression was 

highest in castrate-resistant V16D and enzalutamide-resistant MR49F prostate 

cancer cells. This prompted us to investigate whether peroxisomal beta oxidation or 

DECR2 could pose a metabolic vulnerability in the context of treatment resistance. 

We independently analysed a proteomics dataset by Blomme et al where they 

characterised the changes associated with acquired resistance to AR inhibition (ARI) 

(Blomme et al., 2020). This analysis showed that peroxisomal pathway genes were 

strongly associated with acquired apalutamide and enzalutamide resistance and 

DECR2 was consistently upregulated in ARI-resistant cells and organoids. 

Consistently, we showed that DECR2 knockdown was able to sensitise 

enzalutamide-resistant MR49F cells to enzalutamide and that DECR2 

overexpression cells showed no effect towards enzalutamide treatment. Collectively, 

these data are consistent with peroxisomal beta oxidation and DECR2 specifically 

playing a key role in treatment resistance. Intriguingly, it was found that the 

expression levels of several peroxisomal proteins (PMP70, PEX5/19, CAT) were 

decreased in androgen-independent PC3 cells; while those involved in peroxisomal 

beta oxidation (ACOX1 and PECI) were increased in PC3 cells when compared to 

22Rv1 cells (Valença et al., 2020). In contrast, our data showed that DECR2 protein 

expression was lower in PC3 cells. This suggests that certain aspects of 

peroxisomal metabolism may play distinct roles at different stages of the disease, 

and that its metabolism may be rewired to meet specific needs or demands at 

various tumour stages. However, this warrants further investigation and needs to be 

confirmed in human clinical samples. It was reported in a recent study that BRAF 

mutant melanoma ‘persister’ cells resistant to BRAF/MEK inhibition switch their 

metabolism from glycolysis to oxidative phosphorylation that is predominantly 

dependent on peroxisomal beta oxidation compared to mitochondrial beta oxidation 

(Shen et al., 2020). Unlike DECR2, mitochondrial DECR1 was notably more 

abundant in AR-negative PC3 cells suggesting that PC3 cells may be more reliant 
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on mitochondrial beta oxidation relative to peroxisomal. Future studies will still be 

needed to understand the diversity of mechanisms involved in the regulation of 

peroxisomal metabolism or DECR2 during CRPC development.  

 

Phenotypically, targeting DECR2 had profound effects on prostate cancer cell 

viability, colony formation and migration in vitro. In contrast, DECR2 overexpression 

showed evidence of increased tumour growth and metastasis in vivo. In future 

studies, we will assess the effects of DECR2 knockdown on tumour growth and 

metastasis in vivo. So far, our findings suggest that targeting peroxisomal beta 

oxidation may be an exploitable therapeutic target. To provide proof of principle, and 

circumvent the time and resources required to develop and test new drug treatments, 

we reappropriated an existing clinically available pharmacological agent to explore 

the efficacy and clinical exploitability of inhibiting peroxisomal beta oxidation, using 

thioridazine (TDZ) (Van den Branden and Roels, 1985). TDZ is a first-generation 

antipsychotic drug. Despite global market withdrawal in 2005 due to a well-defined 

risk of cardiac arrythmias, TDZ continues to be used off-label for patients with 

severe or chronic schizophrenia who are refractory to other treatment options 

(Purhonen et al., 2012). Recently, TDZ has been demonstrated to inhibit 

proliferation and induce apoptosis in several cancer cell types including brain 

(Johannessen et al., 2019), lung (Yue et al., 2016), colon (Zhang et al., 2017), 

ovarian (Yong et al., 2017) and breast cancers (Tegowski et al., 2018). However, 

less is known about its anti-tumorigenic effects in prostate cancer. We demonstrated 

that, much like targeting DECR2, inhibition of peroxisomal beta oxidation by TDZ 

significantly attenuated prostate cancer cell growth, colony formation and migration, 

and induced cell death by apoptosis. Moreover, we demonstrated that TDZ 

significantly attenuated cellular proliferation in PDEs, suggesting that peroxisomal 

beta oxidation inhibition may be a promising treatment strategy. Interestingly, PDEs 

from certain patients responded more strongly to TDZ than others; an important 

future avenue will be to identify biomarkers to aid in the selection of optimal patients 

for treatment with TDZ. Of note, the enhanced effect of TDZ on prostate cancer cell 

viability when treated in combination with enzalutamide suggests that targeting 

peroxisomal beta oxidation may circumvent the development of resistance. While 

TDZ has been claimed to suppress peroxisomal beta oxidation (Van den Branden 

and Roels 1985; Shi et al. 2012), it is important to note that there is currently no 
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evidence demonstrating the specificity of TDZ for peroxisomal beta oxidation, or 

whether TDZ directly targets DECR2. TDZ was primarily used to treat patients with 

severe schizophrenia by blocking the dopamine receptor 2 (DRD2) (Feinberg et al. 

2021). Alternatively, TDZ is also a substrate of the cytochrome P450 enzymes and 

inhibits CYP2D6 in vitro, and CYP1A2 and CYP3A4 in rats (Gervasini et al. 2013; 

Daniel et al. 2001). Cytochrome P450 enzymes have been implicated to play a role 

in polyunsaturated fatty acid metabolism (Sarparast et al. 2020; Konkel and 

Schunck 2011), suggesting that TDZ may inhibit fatty acid oxidation via its inhibitory 

effects on cytochrome P450 enzymes (Shen et al. 2020). While more work is 

needed to investigate the specificities of TDZ for peroxisomal beta oxidation, our 

findings corroborate the concept of targeting peroxisomal beta oxidation and the 

development of more selective targets of FAO such as DECR2 for prostate cancer 

therapy. 

 

To date, very little is known about the role of DECR2 in cancer. In light of this, we 

wanted to investigate the role of DECR2 in lipid metabolism in more detail. We 

showed that DECR2 knockdown had profound effects on the cellular lipidome of 

LNCaP, V16D and MR49F prostate cancer cells, most evidently an overall 

accumulation of multiple lipid classes particularly CE, TAG, DAG and several 

phospholipid classes such as PE and PI. Similar to what was observed in another 

study, in which the authors also reported lipid accumulation in response to ECI2 (a 

peroxisomal beta oxidation enzyme) knockdown prostate cancer cells. Surprisingly, 

DECR2 knockdown cells accumulated high levels of both monounsaturated and 

polyunsaturated lipids and low levels of saturated lipids compared to control cells. 

Of note, we observed a consistent increase of C16:0/C16:1 and C18:0/C18:1 long 

chain fatty acid in several lipid classes (data not shown). Our lipidomic analysis 

suggest the accumulation of lipid droplets in DECR2-deficient cells and we 

confirmed this by BODIPY 493/503 neutral lipid staining with flow cytometry. 

Furthermore, we also evaluated lipid droplet content in prostate cancer cells treated 

with TDZ and observed a similar phenotype. It is unclear why DECR2 or 

peroxisomal beta oxidation inhibition would lead to increased lipid (droplet) 

accumulation. Evidence suggests that peroxisomes are intimately associated with 

lipid droplets (Lodhi and Semenkovich, 2014). One possibility is that excess 

VLCFAs are channelled and stored in lipid droplets to prevent lipid peroxidation or 
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lipotoxicity. Alterations in lipid composition have been also implicated to alter 

membrane properties such as membrane fluidity, in a way that promotes survival 

and treatment resistance in cancer cells (Rysman et al., 2010). It is also worth noting 

that the majority of significantly enriched lipid species in DECR2 knockdown cells 

were sphingomyelin (SM) species and to a lesser extent, phosphatidylcholine (PC) 

and phosphatidylethanolamine (PE) species. Impediment of drug uptake via passive 

diffusion and/or endocytosis has been linked to reduced membrane fluidity and 

represents a hallmark of chemo-resistant cancer cells. This can be attributed to 

changes in the desaturation ratio of membrane lipids, increased sphingomyelin 

and/or cholesterol content, and the formation of detergent-resistant membrane 

domains that can activate multi-drug efflux transporters (Kopecka et al., 2020; 

Mannechez et al., 2005; Swinnen et al., 2003; Veldman et al., 2002; Zhuang et al., 

2005). Accordingly, we showed that DECR2 knockdown significantly decreased 

membrane fluidity in V16D and MR49F prostate cancer cells. Membrane fluidity has 

previously been shown to play important roles in modulating critical membrane 

features such as signalling domains (lipid rafts), protein channels and membrane 

receptors, and metastatic capacity (Edmond et al., 2015; Zhao et al., 2016; Zhuang 

et al., 2005). Taken together, these results suggest that DECR2 may be required 

for lipid homeostasis in prostate cancer cells. Future studies are still needed to 

elucidate the precise role of peroxisomal beta oxidation in cancer-related changes 

to lipid metabolism and how this may be exploited by prostate cancer cells to drive 

disease progression and treatment resistance. A particularly novel and interesting 

aspect of this study was the relationship observed between peroxisomal and 

mitochondrial metabolic activities. It is clear that the peroxisome and mitochondria 

are closely intertwined as both organelles play a central role in regulating both 

energy and lipid metabolism and cellular redox signalling (reviewed in (Fransen et 

al., 2017). It was previously reported in C. elegans that cooperation between 

peroxisomes and mitochondria is required to maintain mitochondrial network 

homeostasis and oxidative phosphorylation (Weir et al., 2017). Moreover, 

melanoma resistant cells (as mentioned above) utilise both mitochondrial and 

peroxisomal beta oxidation to promote cell survival and treatment resistance (Shen 

et al., 2020). Hence, it is reasonable to speculate that cancer-related alterations in 

peroxisomal beta oxidation, and its therapeutic targeting, may have an impact on 

mitochondrial metabolism (Tanaka et al., 2019). Intriguingly, oxidative 
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phosphorylation or mitochondrial respiration was maintained in DECR2 knockdown 

cells as demonstrated using the seahorse metabolic assay. It is possible that excess 

intracellular fatty acids are being oxidised in the mitochondria to compensate for the 

loss of beta oxidation capacity in the peroxisomes and prevent toxic lipid 

accumulation in the cells. In line with this concept, a study reported that peroxisomal 

beta oxidation inhibition by TDZ selectively kills melanoma cells via steatosis 

(excess lipid accumulation)-induced cell death (Shen et al., 2020). Alternatively, 

mitochondrial oxidative phosphorylation or the TCA cycle could also be supported 

by input from other nutrient sources such as glucose or amino acids. Our findings 

suggest that mitochondrial fatty acid oxidation may be essential for metabolic 

adaptation in DECR2 knockdown cells for survival. However, the underlying 

mechanism remains to be elucidated. With that being said, it would be worth 

investigating the connection between DECR1 and DECR2. Considering that DECR2 

is the peroxisomal counterpart of DECR1, it is plausible that there may be a 

compensatory increase in DECR1 expression to protect cells from the 

consequences of DECR2 knockdown/inhibition, and dual targeting may elicit a more 

effective response. Having said that, one important limitation of this study is the lack 

of evidence validating peroxisomal beta oxidation inhibition after DECR2 

knockdown or by TDZ. To do this, one of the methods we would be employing is the 

measurement of acyl carnitines, as we had previously demonstrated in DECR1 

knockdown cells accumulation of certain acyl carnitine species, indicative of beta 

oxidation inhibition (Nassar et al., 2020b). 

 

One of the cellular processes most markedly affected by DECR2 or peroxisomal 

beta oxidation inhibition was cell cycle progression. Consistent with a previous study 

on the related enzyme ECI2 (Itkonen et al., 2017), we report that DECR2 knockdown 

or peroxisomal beta oxidation inhibition by TDZ markedly arrested cell cycle 

progression in particular at the G1 phase, while overexpression of DECR2 showed 

an accelerated rate of cell cycle progression. To further investigate this, we analysed 

protein expression of key cell cycle-related proteins and regulators involved in the 

G1-to-S phase transition. Notably, we observed an increase in cyclin-dependent 

kinase inhibitors p21 and p27 and cyclin D1, and a decrease in cyclin-dependent 

kinase CDK4 and phosphorylated retinoblastoma (pRb) tumour suppressor protein 

in DECR2 knockdown cells compared to control cells. It is not known whether these 
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effects are caused directly by DECR2 or are downstream effects arising from 

peroxisomal beta oxidation inhibition. Nonetheless, we demonstrated that Ribociclib 

(a CDK4/6 inhibitor) could further suppress prostate cancer cell viability after 

DECR2 knockdown or in combination with TDZ, which suggests a novel 

combinatorial strategy. It was surprising that DECR2-induced lipid accumulation did 

not promote prostate cancer cell proliferation, as rapidly proliferating cells have an 

increased need for lipids (Cruz et al., 2019). There is emerging evidence that there 

exists an interplay between cellular metabolism and the cell cycle machinery (Huber 

et al., 2020; Kaplon et al., 2015). Of particular interest is the connection between 

lipid metabolism and cell cycle progression (Huber et al., 2020; Kaplon et al., 2015). 

Certain lipid species such as DAG, SM or Cer that can act as second messengers, 

as well as changes in acyl chain composition of membrane lipids such as PCs are 

known to impact the regulation of oncogenic signalling pathways (Francis et al., 

2020). Some studies have linked Rb/pRb to the control of lipid metabolism, including 

but not limited to modulation of mitochondrial oxidative phosphorylation (Sanidas et 

al., 2019) and lipid remodelling (ie. elongation and desaturation) (Muranaka et al., 

2017). In addition, Rb/pRb is able to cooperate with various metabolic pathways (ie. 

mTORC1, SREBP, PI3K/AKT) to facilitate homeostatic control of cellular 

metabolism (Takahashi et al., 2012). More extensive work will be needed to 

determine the relationship between DECR2 or peroxisomal beta oxidation inhibition 

induced lipid dysregulation and cell cycle progression most likely mediated by 

upstream oncogenic signalling pathways. While it is important to investigate the 

expression levels of cell cycle-related genes and proteins, the activation or 

inactivation of cell cycle-related proteins are mainly influenced by their 

phosphorylation state. Future studies should include analysis of protein 

phosphorylation and potentially other post-translational modifications to further 

confirm these observations. To this end, an interesting observation from our cell 

cycle study is the fluctuation in protein levels of histone H3 acetylation in DECR2 

knockdown and TDZ-treated cells suggesting a link between peroxisomal beta 

oxidation inhibition and epigenetic modifications, potentially driven by acetyl-CoA 

availability. Hence, we examined the effect of DECR2 knockdown in cells treated 

with the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid 

(SAHA). A previous study demonstrated that peroxisomes are able to protect 

lymphoma cells from HDAC inhibitor-mediated apoptosis by upregulating 
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peroxisome abundance (Dahabieh et al., 2017). Although our data remains 

inconclusive, we should not overlook the relevance of our current observations to 

epigenetics.  

 

Limited studies have examined the role of peroxisomal beta oxidation in prostate 

cancer progression and ARI resistance. Herein we explored the effects of 

peroxisomal beta oxidation inhibition (either by molecular targeting of DECR2 or 

pharmacological inhibition by thioridazine) on lipid metabolism and shed light on 

potential mechanisms or functional roles that may facilitate our understanding of 

peroxisomal beta oxidation in cancer progression and treatment resistance. In 

addition, we provide evidence that targeting peroxisomal beta oxidation is a 

promising new therapeutic avenue for the treatment of prostate cancer and that 

DECR2 represents an exciting novel candidate that may afford greater selectivity in 

targeting this critical cellular process. 
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This Chapter contains a publication that makes up a portion of the work completed 

as part of this PhD.  
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5.1 Introduction 
 
Fatty acid oxidation represents a metabolic vulnerability that is exploitable for 

prostate cancer therapy. As demonstrated in Chapters 3 and 4, (mitochondrial and 

peroxisomal) fatty acid oxidation pathways are significantly upregulated in prostate 

cancer compared to normal prostate cells. Previous studies have shown that fatty 

acid oxidation inhibition sensitises prostate cancer cells to AR-targeted therapies. 

Furthermore, we showed in Chapter 3 that DECR1 is an androgen-repressed gene 

that is elevated in response to castration and enzalutamide treatment suggesting 

that DECR1 may contribute to treatment resistance. Similarly in Chapter 4, we 

reported a close association between peroxisomal pathway genes (or DECR2) and 

acquired resistance to AR inhibition. Therefore, it is plausible that fatty acid oxidation 

pathways are upregulated in response to AR inhibition as an adaptive survival 

pathway to promote prostate cancer cell survival and potentially drive treatment 

resistance. In Chapter 5, the aim was to investigate the potential of fatty acid 

oxidation to drive treatment resistance in prostate cancer. 
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 Phospholipid profiling of 
clinical prostate tumours 
 
This Chapter includes a manuscript that is submitted and currently under revision. 

A portion of this work was completed as part of this PhD. In addition to lab work and 

data analysis, all figures included in the manuscript were prepared by the candidate. 

 

August 2021: Manuscript was accepted and in press at Cancer Research. 
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6.1 Introduction 
 
This is a stand-alone chapter of this dissertation.  
 
Chapter 6 aims to provide a comprehensive overview of the lipidomic changes that 

occur in clinical prostate tumours accompanying prostate cancer development or in 

response to treatment. To address this, we employed mass spectrometry-based 

quantitation of phospholipids in prostate tumours and benign tissues, as well as 

primary prostate explants treated with an AR antagonist. We also asked whether 

these cancer-related lipid alterations identified in this study are targetable using 

pharmacological agents. Overall, this Chapter corroborates the rationale of 

exploiting lipid metabolism pathways for therapeutic intervention. 
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6.2 Abstract 
 
Dysregulated lipid metabolism is a prominent feature of prostate cancer that is 

driven by androgen receptor (AR) signalling. Herein, we used quantitative mass 

spectrometry to define the “lipidome” in prostate tumors with matched benign tissues 

(n=21), independent tissues (n=47), and primary prostate explants cultured with a 

clinical AR antagonist, enzalutamide (n=43). Significant differences in lipid 

composition were detected and spatially visualized in tumors compared to matched 

benign samples. Notably, tumors featured higher proportions of monounsaturated 

lipids overall and elongated fatty acid chains in phosphatidylinositol and 

phosphatidylserine lipids. Significant associations between lipid profile and 

malignancy were validated in unmatched samples, and PL composition was 

characteristically altered in patient tissues that responded to AR inhibition. 

Importantly, targeting of altered tumor-related lipid features, via inhibition of acetyl 

CoA carboxylase 1, significantly reduced cellular proliferation in tissue explants 

(n=13). This first characterization of the prostate cancer lipidome in clinical tissues 

revealed enhanced fatty acid synthesis, elongation and desaturation as tumor-

defining features, with potential for therapeutic targeting.   
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6.3 Introduction 
 
With more than 1 million deaths annually, prostate cancer remains a major cause of 

mortality and morbidity for men worldwide (1). The clinical implementation of 

systemic androgen receptor (AR) targeting agents such as enzalutamide and 

apalutamide has increased the available therapeutic options beyond androgen 

deprivation, but development of resistance to these strategies remains inevitable. 

To more effectively combat this disease, there is a need for alternative targets for 

intervention and a thorough understanding of the molecular changes that 

accompany cancer development, progression and therapy. The advent of parallel 

‘omic’ approaches has led to the identification of previously unsuspected cancer 

subtypes and therapeutic targets. However, in contrast to the genome, 

transcriptome, and proteome, the cancer “lipidome” remains inadequately 

characterized (2). As building blocks of cellular membranes, lipids affect numerous 

cellular processes including signal transduction, ion transport, cell proliferation, 

energy metabolism and cell death mechanisms, which are all involved in the 

development and progression of cancer (3,4). For prostate cancer, the lipidomic 

changes that accompany malignancy are of particular interest due to the unique 

metabolic profile of this cancer, whereby the normal cellular production of citrate is 

instead utilized in the TCA cycle for oxidative phosphorylation and biosynthetic 

processes such as lipogenesis (5,6). Moreover, lipid metabolism is a highly 

androgen-sensitive process in prostate cancer cells (7) and lipid composition may 

therefore be a unique cellular readout of both androgen targeting and tumorigenesis. 

While panels of circulating plasma lipids have previously been associated with 

prostate cancer risk (8), diagnosis (9) and patient outcome (10), analysis of the 

prostate tumor lipidome has largely been confined to cell line-based studies (11-13), 

which lack clinical relevance. The recent evidence of malignancy-related changes 

in lipid composition of prostate tumors provided by mass spectrometry-based 

imaging studies (14-17) supports undertaking a more detailed and quantitative study 

of the clinical prostate cancer lipidome. Moreover, treatment-related changes in the 

lipidome, which may reveal new resistance-related vulnerabilities, remain 

completely unexplored. 
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To gain insight into the potentially targetable changes in the lipid composition of 

prostate cancer, we employed a quantitative mass spectrometry-based lipidomics 

approach coupled with mass spectrometry imaging to robustly analyze and visualize 

a wide range of intact phospholipid (PL) species in malignant and matched non-

malignant tissues. Our results provide the first comprehensive picture of the 

lipidomic landscape in a clinical cancer context and reveal robust associations with 

malignancy. We further demonstrate treatment-related changes in the lipidome 

accompanying response to enzalutamide, an AR antagonist widely used in the 

management of prostate cancer, in patient-derived explants (PDEs) of clinical 

prostate tissues. Finally, we report that an inhibitor of acetyl CoA carboxylase was 

effective in pharmacologically targeting the most recurrent lipidomic alterations 

observed.  
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6.4 Results 
 
6.4.1 Tumor-specific lipid profiles are evident in clinical prostate tumors 
 
Spatial variation in PL composition was initially assessed in a set of clinical prostate 

tumors that contained discrete benign and malignant areas of epithelium within the 

same tissue section, using MALDI-mass spectrometry imaging (MALDI-MSI). 

Shown in Figure 1A is a representative tumor in which comparison of spectral data 

from these regions revealed a tumor-specific PL composition that was distinct from 

that detected in pathologically benign epithelium or a region of high-grade prostatic 

intraepithelial neoplasia (PIN) from the same patient (Figure 1B; Supplementary 

Figure 1A). Distinct PL mass spectra and specific masses (eg m/z 756.53, Figure 

1A) were consistently detected in multiple independent tumor regions assessed 

across 3 individual PCa patients (Supplementary Figure 1B,C), consistent with 

recent reports (16,17) that characteristic changes in lipid composition accompany 

prostate tumorigenesis. 

 

In light of these findings, we undertook a more detailed examination and 

quantification of tumor-related changes in PL composition using shotgun lipidomics 

incorporating electrospray tandem mass spectrometry in pathologist-

microdissected regions of prostate tumor and matched benign tissues from 21 

prostate cancer patients (Figure 1C). Clinicopathological data for the patients are 

summarized in Supplementary Table S1. Using this methodology, a total of 108 PL 

species of the four most abundant subclasses (PC, PE, PS and PI) could be 

detected and quantified. PL profiles of both cancer and normal tissues were 

dominated by PC species, and the total proportion of PC lipids was greater in tumor 

than in benign tissues for this cohort (Supplementary Figure 2A; p<0.05). There was 

a significant tumor-specific increase in the collective abundance of PL species with 

1 or 2 double bonds, most evident in the PC lipids (Figure 1D). As these mainly 

represent species with one or two monounsaturated fatty acyl (MUFA) chains, this 

shift altered PL composition towards a greater overall proportion of MUFAs in the 

tumors, consistent with a lipogenic tumor phenotype (11). 

 

Shown in Figure 1E is a circle plot summarizing the individual tumor-related 

lipidomic changes for this cohort of patients. PL are annotated by “lipid subclass” 
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followed by the “total fatty acyl chain length:total number of unsaturated bonds” (eg 

PC34:1). The species in each PL class are ordered from fully saturated to highly 

polyunsaturated and, within each subgroup, from shortest to longest (combined) 

acyl chain length. When considering the relative abundance of individual PL species, 

consistent patterns of change in PL saturation groups were more evident within 

certain lipid classes (Figure 1E, outer circle). Most notably, PC species had tumor-

related increases in fatty acyl chains containing 1 or 2 double bonds, indicative of 

MUFAs, accompanied by relative decreases in polyunsaturated (PUFA; ≥3 double 

bonds) and fully saturated (0 double bonds) species. In PS species, however, 

marked increases in long PUFA species were evident across multiple saturation 

groups in tumor compared to benign tissue. 

 

Consistent changes across patients were also detected in the fatty acyl chain 

lengths of tumor PLs. To most optimally visualize altered acyl chain length, we 

expressed the abundance of each PL species in tumors and matching benign tissue 

relative to the shortest PL species of each saturation subclass (Figure 1E, inner 

circle; denoted “elongation index”). Whereas substantial heterogeneity in fatty acyl 

chain length existed between individual patients for PC and PE lipids 

(Supplementary Figure 2B), almost every tumor exhibited increased combined acyl 

chain length over multiple saturation groups of the PI and PS classes compared to 

normal tissue, particularly for polyunsaturated species (Figure 1D; Supplementary 

Figure 2B). This was validated within the cohort as a significant increase in average 

chain length for polyunsaturated PI and PS lipids (Supplementary Figure 2C). 
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Figure 6.1 Evidence for a tumor-associated phospholipidome in clinical 
prostate cancer. A. MALDI-mass spectrometry imaging of pathologically 

heterogeneous prostate tissue, including ion maps of two representative examples 

of histology-restricted lipid masses. B. principal component analysis of the top 25 

mass features distinguishing benign from malignant regions of tissue. C. Workflow 

for shotgun lipidomics analysis of matched normal and tumor tissues from 21 

prostate cancer patients. D. Relative proportions of phospholipids containing 0 

(SFA), 1 or 2 (MUFA), or 3 or greater (PUFA) unsaturations in benign versus tumor 

specimens. E. Circle plot of tumor-related lipidomic changes in relative abundance 

and fatty acyl chain elongation across the patient cohort. The outer circle represents 

the ratio of median-adjusted normalized abundance of individual lipid species in 

tumor versus benign tissues. * reflects significant association with tumor tissues. 

The inner circle represents fatty acid elongation index in tumor versus benign 

tissues. PL are annotated using “lipid subclass” followed by the “total fatty acyl chain 

length:total number of unsaturated bonds”.
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6.4.2 Associations between Lipid Profiles and Malignancy 
 
Based on the above observations, we investigated whether there were associations 

between any lipid measures and sample malignancy status. Linear mixed effects 

models regressed PL measures from malignant samples onto the equivalent values 

from benign samples, adjusting for age and batch. We specifically considered i) 

abundance of individual PL species, ii) saturation group abundance and iii) fatty acyl 

chain length per saturation group. The permutation analysis indicated that there 

were associations between lipid profile and malignancy beyond what would be 

expected by chance (Supplementary Figure 3A; permutation p<0.001). Of the 51 

lipid features most strongly associated with malignant versus benign prostate tissue, 

34 were individual lipid species (Figure 2A & Supplementary Table S2), five were 

mean chain lengths within saturation groups and 12 were overall saturation group 

abundance (Supplementary Figure 3B & Table S2). As expected, certain individual 

species cross-correlated within and across head group classes (Figure 2B). 

 

We subsequently assessed whether similar malignancy-associated lipidomic 

profiles would also be evident in an independent collection of 47 non-patient 

matched tissue specimens comprising 26 tumors and 21 benign samples (Figure 

2C). A greater range of lipids were measured in this cohort (n=248), and included 

sphingomyelins (SM), ceramides (Cer) and lysoPLs (containing only 1 fatty acyl 

chain) in addition to the main four PL classes analyzed above. Using the same 

criteria as for the paired cohort, a substantial signal was again detected in terms of 

FDR for significant associations between lipid features and sample malignancy 

(Supplementary Figure 3A). Associations were detected for 64 lipid features, 

including 44 individual lipid species (FDR=0.03; permutation p<0.001; 

Supplementary Figures 3C,D,E and Supplementary Table S3). 

 

There was considerable overlap in the lipid features identified in both cohorts, and 

by combining data from both cohorts, we identified a series of lipids that robustly 

associated with prostate tumor malignancy (Table 1). Shown in Figure 2D are 

representative examples of these lipids demonstrating concordant associations with 

malignancy across the individual cohorts and batches, which included the 

abundance of monounsaturated PC lipids (PC1 SA), individual lipids PE42:6 and 
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PI36:4, and chain length in monounsaturated PI lipids (PI1 CL). Consistent with 

these data, MALDI-MSI on two patient tissues imaged in negative ion mode 

revealed the expected changes in relative abundance of masses corresponding to 

PE42:6 (m/z 818.5) and PI36:4 (m/z 857.5) in malignant versus non-malignant 

regions of the tissues (Figure 2E; box plots of normalized mass intensity shown 

adjacent to ion map images; Supplementary Figure 4). 

 

While the tumour cohort size limited our ability to detect associations with clinical 

parameters such as serum PSA (Supplementary Figure 5B; permutation p=0.79) 

and Gleason Score (Supplementary Figure 5B,C; permutation p=0.24), there was 

evidence for weak associations between lipid profile and TMPRSS2-ERG subtype 

(Supplementary Figure 5B,D,E and Table S4; permutation p=0.05) and proliferation 

(Ki67 positivity index) in malignant samples (Supplementary Figure 5A,F and Table 

S5; permutation p=0.10). 
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Figure 6.2 Associations of phospholipid profile with malignancy. A. 
Phospholipid variables significantly associated with tumor versus matched benign 

tissues in Cohort A. B. Correlation plot of individual phospholipid species 

significantly associated with sample malignancy in Cohort A. C. Workflow for 

lipidomics analysis of unmatched patient tissue cohort B (n=47). D. Box plots of 

representative examples of different phospholipid variables significantly associated 

with sample malignancy across both patient cohorts A and B. E. MALDI-mass 

spectrometry imaging of ion masses corresponding to PE42:6 (m/z 818.5) and 

PI36:4 (m/z 857.5) in 2 independent prostate cancer tissues, with box plots of 

normalized ion intensity between non-malignant and malignant tissues regions 

adjacent to the images. 
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6.4.3 Lipid profile is altered by AR inhibition in patient-derived tumor 
explants 
 
From the cohort of 47 unmatched samples analyzed above, 43 of the samples were 

also cultured ex vivo as patient-derived explants (PDEs) in the absence and 

presence of the clinical antiandrogen, enzalutamide (ENZ; n=24 cultured with 10μM 

ENZ, n=19 cultured with 10μM and 50μM ENZ; Figure 3A). This provided the 

unique opportunity to examine dynamic, treatment-related changes in lipid 

composition using patient-matched samples. Ex vivo culture alone had a minimal 

effect on lipid profile; 80% of lipid species had a correlation >0.5 between uncultured 

and cultured tissues (Supplementary Figure 6A). Transcript profiling and gene set 

enrichment analysis performed on a subset of these samples (n=12) confirmed 

significant downregulation by ENZ (10μM) of androgen signalling and multiple 

pathways associated with metabolism (Figure 3B). Independent qPCR validation 

confirmed the decrease in expression of canonical AR target genes kallikrein 3 

(encoding prostate specific antigen) and kallikrein 2 gene across the majority of 

samples (Supplementary Figure 6B). As expected based on clinical trial outcomes 

(18,19), the PDEs showed substantial heterogeneity in proliferative response to 

ENZ, measured as change in Ki67 proliferative index from matched vehicle-treated 

tissue (Figure 3C). The above features of the ENZ-treated PDEs were conducive 

to analysis of treatment-related dynamic changes in PL profile, and associations 

with decreased Ki67 index in individual samples. ENZ-related changes in 18 PL 

variables (including 15 individual species, featuring long-chain PC and PE lipids) 

were associated with Ki67 proliferation index (Supplementary Figure 6C and 

Supplementary Table S6; Figure 3D). MALDI-MSI analysis of a subset of PDE 

tissues indicated that the majority of individual response-related lipids identified 

reflected the epithelial regions of the tumors, and treatment-related changes in 

abundance were evident (example of PC34:1 shown in Figure 3E, boxplots in 

Supplementary Figure 6D). Dynamic changes in PL profile were therefore 

associated with response to AR inhibition across this cohort of PDEs. 
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Figure 6.3 Associations between phospholipid profile and tumor response to 
the clinical antiandrogen enzalutamide (ENZ). A. Variation in proliferative 

response of prostate tissues to ENZ across cohort B. Upper panel: Patient-derived 

explant culture setup for prostate tissue from Cohort B and Ki67 

immunohistochemistry in a representative set of patient samples. Lower panel: 

Waterfall plot of individual patient response to ENZ, measured as log2fold change 

in Ki67 proliferative index. B. Gene set enrichment analysis for transcriptomic data 

from enzalutamide treated versus vehicle control tissues (n=12 patients). C. 
Correlation plots of phospholipid species whose change in abundance is 

significantly associated with response (change in Ki67 index) to ENZ (p<0.01). D. 
MALDI-mass spectrometry imaging of ion mass corresponding to PC34:1-H+ in 2 

independent prostate cancer tissue cores from a single patient, showing epithelial 

localization and ENZ-related change in abundance.
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6.4.4 Targeting lipidomic changes in clinical tumors suppresses cellular 
proliferation 
 
To determine whether the cancer-associated alterations in PL composition directly 

influence cellular proliferation, or merely accompany tumorigenesis, we 

pharmacologically targeted two of the key lipidomic changes we detected (i.e. 

enhanced lipogenesis and elongation of fatty acyl chains in the PLs) in patient-

derived explants (PDEs) of clinical prostate tissues. Inhibition of acetyl CoA 

carboxylase (ACC1/2), which depletes the cellular content of malonyl CoA, was 

selected as a strategy to simultaneously inhibit both synthesis and elongation of 

fatty acids (Figure 4A). We utilized PF-05175157, an ACC1/2 inhibitor (20), as a 

proof of principle tool. Culture of PDEs with PF-05175157 (50μM) for 48 or 72 hours 

(Figure 4B) markedly suppressed epithelial cell proliferation in the tumors (n=13) 

compared to matched, vehicle-treated control tissues (Figure 4C). Enhanced 

epithelial staining of pACC1, a marker of ACC inhibition by PF-05175157 in prostate 

cancer cells (Supplementary Figure 7B), confirmed that the agent was effectively 

targeting ACC activity in the tumors (p<0.01; Figure 4D). Moreover, PL profiling by 

mass spectrometry revealed a pronounced shortening of PL fatty acyl chains in the 

majority of PF-05175157-treated tumors (Figure 4E; Supplementary Figure 7). 

Together, these data link the efficacy of PF-05175157 to ACC1 inhibition in the 

tissues. 
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Figure 6.4 Efficacy of acetyl CoA carboxylase inhibition in patient-derived 
prostate explants. A. The ACC1/2 inhibitor PF-05175157 targets fatty acid synthesis 

and chain elongation. B. Patient-derived explant culture setup and workflow. C. 
Antiproliferative activity, measured by Ki67 proliferative index, of PF-05175157 (50μM) 

compared to vehicle-treated matched control tissue in patient-derived explants (PDEs; 

n=13 patients). D. Immunohistochemical detection and quantification of pACC1 

intensity in PDEs cultured in the absence and presence of PF-05175157. E. 
Treatment-induced alterations (expressed as log2-fold change in the heatmap) in PC 

phospholipid abundance for PDEs cultured with PF-05175157. Altered relative fatty 

acyl chain length for the upper cluster of PDEs are further visualized graphically. 
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6.5 Discussion 
 
Using mass spectrometry-based lipidomics to sensitively quantify and visualize PL 

species in clinical tissues, we have provided new insight into the changes in lipid 

composition that accompany prostate cancer development. Moreover, this is the 

first report of dynamic, treatment-related changes in lipidomic profiles and the 

efficacy of targeting lipid metabolic enzymes in a clinical tissue context. This study 

therefore moves beyond previous cell-line based approaches to demonstrate that, 

despite the observed heterogeneity at the level of individual lipid species, recurrent 

and clinically-actionable changes in PL metabolism can be detected in tumors; 

some of which may represent common vulnerabilities. Lipidomic profiling of prostate 

tumor biopsies, possibly guided by imaging approaches as highlighted in several 

recent reports (16,17), has the potential to provide new information about disease 

features and, potentially, patient responsiveness to therapeutics such as 

enzalutamide.  

 

While robustly associated with sample malignancy, PL profile was only weakly 

linked to the most common clinicopathological characteristics of prostate cancer; 

PSA levels and Gleason score. While this may reflect limitations in the sample size 

of our cohorts, it also raises the possibility that lipidomic profiling may provide 

independent information regarding tumor biology and prognosis. Moreover, the 

associations we detected between lipid profiles and the TMPRSS2-ERG molecular 

subtype and Ki67 proliferative index are interesting observations that warrant further 

investigation in larger independent tissue cohorts, particularly in light of our recent 

report of Ki67 status in localized prostate cancer being a significant predictive 

biomarker of subsequent metastatic relapse (21). 

 

Despite differences in the breadth and scope of lipid classes measured, certain key 

cancer-related changes in PL profile reported here support the findings of previous 

imaging-based studies, notably for altered abundance and/or elongation of PC and 

PI-based lipids and ceramides (reviewed in (2,22)). While the functional 

consequences of individual lipid changes remain to be elucidated, PI lipids are of 

fundamental importance in cancer cells as they form the membrane scaffold for 

kinase and phosphatase activity that supports oncogenic signalling. Moreover, 
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altered acyl chain length of PI-based lipids has been linked to p53 mutational status 

(23), a common genomic alteration in clinical prostate cancer. The results are also 

largely consistent with our earlier observed overexpression of lipid synthetic 

enzymes, such as FASN, in cancer cells, which correlates with a shift towards 

MUFA-containing species, at the expense of PUFA-containing species (11). 

Similarly, the tumor-related shift from saturated to monounsaturated PC species that 

we found to be significantly associated with sample malignancy is concordant with 

the earlier observed overexpression of SCD in certain cancer tissues (24-27). The 

novel changes in acyl chain length and head group switches that we detected may 

be related to reported alterations in enzymes involved in acyl chain elongation 

including ELOVL enzymes, modulators of malonyl-CoA levels including ACC, FASN 

and malonyl-CoA decarboxylase and head group-modifying enzymes including PS 

decarboxylase (28-32). Tumor-specific activation/inactivation patterns of these 

individual enzymes, most likely driven by tumor-specific oncogenic signalling (33-

38), may lead to the unique phospholipid profile that is characteristic for every 

individual tumor. In view of the evidence that the lipid composition of cellular 

membranes affects numerous aspects of cell biology (reviewed in (39)), including 

membrane fluidity and curvature, vesicle formation, signal transduction (40), ion 

channel activity (41,42), susceptibility to lipid peroxidation (11), resistance to 

oxidative stress (11), energy metabolism (43), and uptake and response to 

chemotherapeutics (11), even subtle changes within the lipidome may be critical to 

support the cancer phenotype and treatment resistance. Given the lipidome is an 

integration of oncogenic events and an effector of numerous cancer-related 

processes, it is expected that the tumor lipidome holds significant potential for 

biomarker discovery and identification of novel targets that may be used in a 

theranostic setting (44). 

 

While inter-patient heterogeneity was evident in PL profiles from clinical prostate 

tissues in the current study, particularly at the individual lipid species level, more 

consistent changes in broader lipid metabolic processes were evident. Notable 

among these were proportionally higher fatty acid monounsaturation, and 

elongation of the PL fatty acyl chains. Considering these phenotypes, inhibition of 

acetyl CoA carboxylase (ACC) presented an appealing approach to simultaneously 

target de novo biosynthesis and elongation of intracellular fatty acids by restricting 
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production of the substrate for long chain fatty acid biosynthesis, malonyl CoA 

(45,46). To date, the focus for development of ACC inhibitors has been their ability 

to inhibit de novo lipogenesis and increase fatty acid oxidation, thereby reducing 

lipid accumulation and improving insulin sensitivity in patients with diabetes or non-

alcoholic liver steatosis. There has, however, been considerable interest in 

repurposing these agents for oncology, particularly for lipogenic tumors such as 

prostate and breast, in which potential side-effects would be less of a concern. Here, 

as proof of principle, we utilized a spiroketone derivative ACC1/2 inhibitor, PF-

05175157, developed by Pfizer as a clinical agent for treatment of Type 2 diabetes 

and non-alcoholic hepatic steatosis (20). Our results show marked efficacy for this 

agent in reversing the chain elongation phenotype and reducing epithelial cell 

proliferation in clinical PDEs, raising the promise that this class of agents may be 

efficacious in clinical prostate cancer. While the possibility of off-target effects of this 

compound contributing to its antiproliferative effects cannot be discounted, we have 

used two lines of evidence to associate efficacy with ACC inhibition in the tissues. 

First, we assessed the tissue levels of Ser79-phosphorylated ACC1, which is the 

inactive form of ACC1, the predominant isoform in prostate cells. This 

phosphorylation was induced by PF-05175157 treatment of prostate cancer cells 

and in PDEs. Second, our PL profiling of the treated tissues revealed consistent 

shortening of the fatty acyl chains, indicative of decreased elongation reactions. 

Taken together, our findings provide the first evidence that ACC inhibition can be 

achieved in the context of a complex tumor microenvironment and provide impetus 

for further investigation of ACC inhibition in prostate cancer. In light of the marked 

tumor-associated changes in fatty acyl chain saturation, and particularly 

monounsaturation, future studies targeting desaturases such as SCD1, shown 

recently to be a promising therapeutic target in prostate cancer (47), would also 

distinguish causality from association for this alteration. 

 

In summary, the cancer-related changes in PL profiles we have detected in clinical 

tissues strengthen the case for lipidomics as a source of novel molecular cancer 

biomarkers and therapeutic targets, as well as an indicator of the underlying biology 

from which PL profiles are derived. Defining subtypes of lipid profile in tumors, rather 

than immortalized cell lines, and the underlying mechanisms in this and other 

association-based studies are all critical future endeavors if key components of lipid 
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metabolism are to be effectively targeted in clinical disease. The heterogeneity of 

PCa evident from our work reinforces the concept that such approaches must also 

be personalized to the individual patient’s biology. Our findings warrant further 

functional investigation of lipidomes in other cancer types, to unravel the molecular 

mechanisms underlying these changes and to explore the impact on membrane 

functioning and, ultimately, on cancer development and progression.   
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6.6 Materials and Methods 
 
6.6.1 Tissue collection 
 
A. Matched normal/tumor cohort. Prostate tumor tissues with matching normal 

samples were obtained from patients who had undergone radical prostatectomy 

(Centre Hospitalier Universitaire de Liège, Belgium). Samples were snap-frozen and 

stored at -80°C for lipid and protein extractions. Normal and tumor tissues were 

identified by histological analysis of adjacent tissue, Gleason scores were 

determined, and the percentage of cancer was estimated (48). All tumor samples 

used for lipidomics were verified to contain at least 75% prostate adenocarcinoma 

by histological examination. The Local Commission for Medical Ethics and Clinical 

Studies at the University of Liège approved the use of clinical samples. Approval to 

perform lipidomics analysis on clinical samples was obtained from the local Ethical 

Committee of KU Leuven. 

 
B. Unmatched patient tissue cohort. Prostate tissues were collected with written 

informed consent from patients undergoing radical prostatectomy at St Andrew’s 

Hospital, Adelaide, Australia. A longitudinal section of each tissue was removed 

prior to ex vivo culture (described below). Half was snap frozen and the remainder 

fixed in formalin and paraffin embedded for assessment by a pathologist. Ethical 

approval for tissue collection and experimentation was obtained from St Andrew’s 

and the University of Adelaide Human Research Ethics committees. Histopathologic 

features of all tumors used in this study are detailed in Supplementary Table 1; an 

additional 5 patients with only benign prostatic hyperplasia and no evidence of 

cancer were also analyzed with this cohort. 

 

6.6.2 Ex vivo culture of primary prostate tissues 
 
Prostate specimens were dissected and cultured as patient-derived explants for 48 

hours in the presence and absence of enzalutamide (ENZ; Selleckchem; 10 or 

50μM) or the ACC1/2 inhibitor PF-05175157 (Pfizer; 50μM), as previously described 

(49). In each case, following culture, tissue was either formalin-fixed and paraffin 

embedded for histology or snap frozen for lipidomics and/or RNA extraction. 
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6.6.3 MALDI mass spectrometry imaging 
 
Frozen sections of prostate tissue (10μm) were thaw-mounted on super-frost 

ultraplus microscope slides and matrix (10mg/ml α-CHCA in methanol) applied to 

tissue sections by sublimation. The sections were analyzed on a MALDI SYNAPT 

HDMS Mass Spectrometer (Waters Corporation, Manchester, UK). The laser raster-

size was set at 60μm (x,y) and off-tissue areas provided QC spots for data filtering. 

MALDI raw spectrum files were converted to MSI data files by high definition 

imaging (HDI) software (Waters Corporation, Manchester, UK). The data processing 

settings were resolution 8,000 full-width half-height (FWHM) at mass window of 0.02 

Da at a (restricted) mass range of m/z 400-990 Da. The top 1000 mass features 

were selected for processing and statistical analysis was carried out using the web-

based MetaboAnalyst R package (48). The MSI ion map were overlaid or aligned to 

adjacent pathologically annotated histopathology images to identify morphological 

regions of interest (ROIs). Equivalent number of data points (3 pixels/mass spectra) 

from multifocal adenocarcinoma areas and off-tissue regions were selected. The 

data points were then exported as a single .csv file in the form of ROI’s vs mass 

features with relative intensity (abundance) as the variable. Before import into 

MetaboAnalyst, the data was filtered in R studio 3.4.4 using baseline packages. The 

pre-filtered .csv files were uploaded into MetaboAnalyst R in the format of spectral 

bins, data filtering was done by inter-quantile range and data was normalized by log 

transformation and pareto scaling. Heatmaps were generated by hierarchical 

clustering and top 25 mass features (identified by ANOVA) were visualized. 

Principal component analysis (PCA) score plots indicated the relative variation of 

multifocal ROI’s based on distribution of lipid species. For negative ion mode 

imaging, the methodology was adapted as follows: Norharmane matrix (7 mg/mL) 

(Sigma-Aldrich) in CHCl3:MeOH (7:3 v/v) was applied to the tissue sections with a 

SunCollect sprayer (SunChrom, Friedrichsdorf, Germany). Data processing settings 

were resolution 8,000 FWHM at mass window of 0.02 Da at a (restricted) mass 

range of m/z 50-990 Da. Full-scan MSI data was imported into Python and a custom 

script used for ROI selection. All images, mass spectra and boxplots were generated 

after total ion current normalization of the acquired data. 
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For validation of ESI-MS/MS data in patient-derived explants, we conducted MALDI 

imaging using a timsTOF FleX mass spectrometer (Bruker Daltonik, Bremen, 

Germany). Briefly 10μm thick frozen tissue sections were thaw mounted onto ITO 

slides, spray coated with ca 500 μL of 7 mg/mL αCHCA matrix using a SunCollect 

MALDI sprayer (Sunchrom GmbH, Friedrichsdorf, Germany). Data were acquired 

with a 20 μm pixel size and a 20 μm laser step-size over m/z 50-1250. Imaging data 

was imported into SCiLS Lab 2020a (Bruker Daltonik, Bremen, Germany). Spectra 

were normalised to total ion count, with weak denoising, and segmentation analysis 

was preformed using bisecting k-means algorithm with correlation distance metric 

in SCiLS Lab. Segments which aligned with the epithelia in matched H&E stained 

sections were selected for each tissue. Box plots of the relative intensity of m/z of 

interest were generated from these segments. 

 

6.6.4 ESI-MS/MS-based lipidomics 
 
Lipid extracts were generated by homogenizing approximately 40mg of tissue in 

800μl PBS with a Dounce or a Precellys (Bertin Technologies) homogenizer. An 

aliquot of 100μl was set aside for DNA quantification. The remaining 700μl was 

transferred to a glass tube with Teflon liner and 900μl 1N HCl:CH3OH 1:8 (v/v), 

800μl CHCl3 and 500μg of the antioxidant 2,6-di-tert-butyl-4-methylphenol (BHT) 

(Sigma, St. Louis, MO) were added. DNA concentration was measured using 

Hoechst 33258 reagent (Calbiochem, La Jolla, CA). The appropriate lipid standards 

(Avanti Polar Lipids Inc., Alabaster, AL) were added based on the amount of DNA 

of the original sample (per mg DNA: 150nmol PC26:0; 50nmol PC28:0; 150nmol 

PC40:0; 75nmol PE28:0; 8.61nmol PI25:0 and 3nmol PS28:0). After mixing for 5 

min in a rotary shaker and phase separation (by centrifugation at 17300xg, for 5 min 

at 4°C), the lower organic fraction was collected using a glass Pasteur pipette and 

evaporated using a Savant Speedvac spd111v (Thermo Fisher Scientific, Waltham, 

MA). The remaining lipid pellet was covered with argon gas and stored at -20 °C. 

Before ESI-MS/MS measurement, lipid pellets were reconstituted in diluent 

(CH3OH:CHCl3:NH4OH; 90:10:1.25, v/v/v) according to the amount of DNA in the 

original cell sample (1μl diluent / 1μg DNA). Phospholipid species were analyzed by 

ESI-MS/MS on a hybrid quadrupole linear ion trap mass spectrometer (4000 

QTRAP system; Applied Biosystems, Foster City, CA) equipped with an Advion 
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TriVersa robotic nanosource for automated sample injection (Advion Biosciences). 

For quantification of individual phospholipid species, the system was operated in 

multiple reaction monitoring (MRM) mode. MRM transitions were built based on the 

release of the phospholipid head group as ion or as neutral species during tandem 

MS experiments. Analysis was performed using Rapid Lipid Profiling v2.2. Data 

were corrected for carbon isotope effects. Blank samples consisting of only diluent 

were measured to determine background signals. Only phospholipid species with 

an intensity > 5-fold the intensity of the blank were considered true signals. PL were 

annotated using “lipid subclass” and the “C followed by the total fatty acyl chain 

length:total number of unsaturated bonds”. The circle plot of lipidomic alterations 

was generated using the circlize R package (50). 

 

6.6.5 RNA extraction and sequencing 
 
RNA was extracted from cultured PDE tissues as previously described (51). Total 

RNA samples were treated with Ribo-Zero to deplete rRNA prior to library 

construction with the Illumina TruSeq RNA kit. Sequencing was performed on an 

Illumina NextSeq 500 to generate 1×100bp single-end reads. Library preparation 

and sequencing were performed at the Genomics Facility of the South Australian 

Health and Medical Research Institute (Adelaide, Australia). The quality and number 

of reads for each sample were assessed with FastQC v0.11.3. Adaptors were 

trimmed from reads, and low-quality bases, with Phred scores < 28, were trimmed 

from ends of reads, using Trimgalore v0.4.4. Trimmed reads of < 20 nucleotides 

were discarded. Reads passing all quality control steps were aligned to the hg38 

assembly of the human genome using TopHat v2.1.1 (52) allowing for up to two 

mismatches. Reads not uniquely aligned to the genome were discarded. HTSeq-

count v0.6.1 (53) was used with the union model to assign uniquely aligned reads 

to Ensembl Hg38.86-annotated genes. Data were normalized across libraries by the 

trimmed mean of M-values (TMM) normalization method, implemented in the R 

v3.5.0, using Bioconductor v3.6 EdgeR v3.20.9 package (54). Only genes 

expressed at a count-per-million above 0.5 for at least 18 out of 36 samples were 

analysed for evidence of differential gene expression. Differentially expressed 

genes were identified using the quasi-likelihood negative binomial generalized log-

linear model implemented in EdgeR and were defined as having an FDR adjusted 
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P value of < 0.05. Gene Set Enrichment Analysis (GSEA) was undertaken using 

camera() function in the R limma v3.34.9 package. 

 

6.6.6 Immunohistochemical staining 
 
Sections (3 μm) of paraffin-embedded cultured patient-derived explants were 

immunostained essentially as described previously (49). Briefly, antigen retrieval 

was performed using Tris-EDTA buffer, pH 6.5 using a Biocare Medical Nexgen 

decloaker at 115°C for 15 min. Tissue slides were then incubated at room 

temperature with 10% goat serum block. Primary antibody against Ki67 (DAKO, 

M7240; 1:200), ERG (Abcam, ab92513; 1:400) or pACC1 (Cell Signaling, 3661S; 

1:400) was applied and slides incubated overnight at 4°C. Secondary antibody anti-

rabbit (DAKO E0432, Lot #20027287) was applied for one hour, followed by HRP-

conjugated streptavidin (DAKO, P0397, Lot #20040879) at 1:500 for one hour and 

visualization by DAB. 

 

6.6.7 Statistical analysis  
 
Matched patient tissues: Cohort A. In the n=21 sample with matched tumour and 

disease free tissue a mixed effects regression of the within individual difference in 

lipid variable adjusting for lipid variable in normal tissue sample and individuals age. 

A random intercept was included per batch, error variance was allowed to differ with 

batch, and a compound symmetry correlation structure for errors within batches (R 

package nlme). Restricted maximum likelihoods of this full model is compared with 

a reduced model without the error variance and correlation structure and the full 

model chosen only when 2 times the difference in log likelihoods exceeded the 95th 

percentile of χ2(df=1)=3.84. The lipid variables consisted of log2 transformed 

species abundance, saturation group abundance and saturation group mean chain 

length. Prior to these calculations lipid species abundances in each sample were 

standardized to the median abundance across all samples (ref Dieterle et al 2006). 

 

Unmatched patient tissues: Cohort B. In the cohort of n=47 with single tissue 

samples per individual, for associations with sample malignancy similar mixed 

effects regression to those described above (same random effects structure) were 

constructed for each lipid variable as outcome, however the only fixed effect 
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covariate was age. In the subset of 28 individuals with malignant samples 

associations between lipid variables and serum PSA employed the same mixed 

effects regression models with sample malignancy replaced by log transformed PSA 

as a fixed effect and sample Gleason score included as an additional covariate. 

 

Proliferation associations. For associations with Ki67 both in Day 0 samples and 

in vehicle vs ENZ treated samples we analyze repeated count data across fields of 

view within a sample using a beta-binomial mixed effects regression (R package 

glmmTMB). In the Day 0 analyses, the lipid variables are the primary predictors of 

interest with batch and age being included as fixed effect covariates. In the treated 

samples, the primary predictor of interest is the batch-adjusted difference between 

ENZ and vehicle, with batch, age and lipid variable vehicle as fixed effects. In all 

models, a random intercept is included per individual, with a logit link for the mean 

Ki67 cell positivity prevalence.  

 

For each set of outcomes the distribution of p-values for the species abundance 

associations is assessed to determine the presence of a signal (deviation from the 

uniform distribution) (55) and the FDR reported for the number of significant 

associations defined as p<0.01. To address concerns that an apparent signal may 

be due to a combination of insufficient comparisons and clustering between lipid 

species, we perform a permutation test with 1000 permutations of the clinical 

outcome, and define the fraction of significant associations are beyond that 

observed in the original cohort as the permutation p-value. These permutation 

analyses are performed within batches and where appropriate within malignancy 

groups, and by design retain the between lipid correlation structure. 

 

Other statistical analyses. Statistical analysis for lipid or immunostaining 

quantification and PDE ex vivo culture experiments, was carried out using 

GraphPad Prism software v7.02 (2016, GraphPad Software). Significance was 

measured by two-tailed unpaired t-test or One-way ANOVA with Dunnett’s multiple 

comparison test as indicated. Significance is expressed as *P < 0.05, **P < 0.01 

and ***P < 0.001. 
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Table 6.1 Conserved lipid associations with malignancy in clinical prostate 
samples. 

Variable Lipid ID Est [95% CI] p-value 
Lipid Abundance PI 38:6 -0.35 [-0.36, -0.33] 6.52E-19 

 PI 40:6 0.19 [0.18, 0.21] 1.78E-14 
 PS 40:8 1.10 [1.00, 1.20] 6.40E-14 
 PC 36:4 -0.56 [-0.64, -0.49] 3.51E-11 
 PC 34:1 0.17 [0.14, 0.20] 5.81E-10 
 PC 40:4 -0.45 [-0.57, -0.33] 1.18E-06 
 PI 38:5 -0.68 [-0.89, -0.48] 4.51E-06 
 PS 42:8 0.70 [0.50, 0.90] 2.20E-05 
 PS 42:2 -0.26 [-0.35, -0.16] 4.08E-05 
 PS 42:4 -0.23 [-0.32, -0.14] 8.25E-05 
 PE 42:6 0.75 [0.44, 1.06] 0.000149 
 PI 36:4 -0.68 [-0.96, -0.39] 0.000203 
 PE 42:5 0.51 [0.29, 0.74] 0.000255 
 PS 38:4 -0.66 [-0.96, -0.36] 0.000399 
 PC 38:4 -0.52 [-0.77, -0.27] 0.000693 
 PS 36:2 -0.32 [-0.48, -0.16] 0.000753 
 PS 36:1 -0.46 [-0.68, -0.23] 0.000789 
 PC 32:0 -0.66 [-0.98, -0.33] 0.000832 
 PS 38:3 -0.72 [-1.08, -0.36] 0.000942 
 PC 40:6 -0.36 [-0.55, -0.18] 0.001045 
 PS 38:6 -0.82 [-1.24, -0.40] 0.001116 
 PE 40:4 0.042 [0.02, 0.065] 0.001414 
 PC 38:5 -0.38 [-0.59, -0.18] 0.001489 
 PE 38:7 0.36 [0.17, 0.56] 0.001681 
 PI 38:4 -0.50 [-0.80, -0.20] 0.001944 
 PC 36:5 -0.40 [-0.60, -0.20] 0.002105 
 PS 44:6 0.52 [0.23, 0.81] 0.002306 
 PI 36:1 0.51 [0.22, 0.80] 0.00274 
 PS 42:9 0.47 [0.19, 0.75] 0.003707 
 PS 40:4 -0.48 [-0.77, -0.20] 0.003719 
 PE 42:9 0.45 [0.16, 0.73] 0.005855 
 PE 40:6 0.36 [0.13, 0.60] 0.006456 
 PE 40:8 0.28 [0.10, 0.46] 0.006487 
 PC 40:5 -0.30 [-0.50, -0.10] 0.008872 

Mean Chain Length PE 3 -0.13 [-0.14, -0.12] 7.43E-14 
 PS 1 0.13 [0.07, 0.18] 0.000187 
 PE 6 0.11 [0.06, 0.15] 0.000209 
 PI 1 0.19 [0.11, 0.27] 0.000231 
 PS 3 0.096 [0.048, 0.144] 0.000948 

Saturation Abundance PC 6 -0.0021 [-0.0024, -0.0017] 6.10E-10 
 PI 2 0.013 [0.01, 0.015] 2.16E-08 
 PE 3 0.0029 [0.0022, 0.0037] 9.74E-07 
 PS 8 0.0036 [0.0026, 0.0046] 1.82E-06 
 PS 9 0.00078 [0.00048, 0.00108] 6.25E-05 
 PC 4 -0.038 [-0.056, -0.021] 0.00046 
 PC 1 0.066 [0.033, 0.098] 0.000959 
 PC 5 -0.0071 [-0.0107, -0.0034] 0.001172 
 PI 5 -0.0016 [-0.0025, -7e-04] 0.002608 
 PS 3 -0.0088 [-0.0139, -0.0036] 0.003266 
 PC 0 -0.013 [-0.021, -0.005] 0.004081 
 PS 4 -0.0079 [-0.0133, -0.0025] 0.009611 
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Supplementary Figure 6.1 MALDI-mass spectrometry imaging of regions of 

interest in pathologically heterogeneous prostate tissue from 3 individual prostate 

cancer patients, including ion maps of two representative examples of histology-

restricted lipid masses, principal component and heatmap analysis of the top 25 

mass features distinguishing benign from malignant regions of tissue for each 

patient. 
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Supplementary Figure 6.2 Cancer-related changes in phospholipid 
composition in matched non-malignant and malignant tissues from prostate 
cancer patients (n=21). A. Relative proportions of PC, PE, PS and PI phospholipid 

classes across the patient cohort. B. Heatmap clustering of changes in PI, PS, PE 

and PC fatty acid chain length and saturation in prostate tumours versus matched 

non-malignant tissue. Each row represents a patient, and each column represents 

a different phospholipid species. The elongation can be observed as vertical 

striation patterns of increased chain lengths for each saturation group and is 

represented graphically for the PS and PI species in the inset box. C. Tumor-related 

changes in average chain length for each main phospholipid class.
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Supplementary Figure 6.3 Phospholipid species associations with 
malignancy. A. FDR for PL associations with malignancy in Cohorts A and B. B. 
Saturation group chain length and abundance associations with malignancy in 

Cohort A. C, D, E. PL abundance associations with malignancy in Cohort B. F. 
Correlation plot of individual phospholipid species significantly associated with 

sample malignancy in Cohort B. 
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Supplementary Figure 6.4 MALDI-mass spectrometry imaging-derived spectra of 

discrete histological foci (non-malignant versus malignant as indicated) in 2 

independent prostate cancer patients. 
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F 

Supplementary Figure 6.5 Associations of lipid measures with tumor 

clinicopathological features. p-value distribution for associations of lipid species 

with A. Ki67 proliferative index, and B. serum prostate specific antigen levels, 

tumor Gleason score, and ERG positivity. C. PL abundance associations with 

original tumor pathology. D, E. PL associations with ERG positivity status. F. PL 

associations with Ki67 positivity. 
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Supplementary Figure 6.6 Associations of lipid measures with response to 
the AR antagonist enzalutamide in patient-derived explants of clinical 
prostate tissues. A. Effect of ex vivo culture on PL profiles in prostate tissues, 

demonstrated by correlations in lipids between uncultured and vehicle-cultured 

samples. B. Treatment-related changes in mRNA expression of the AR-target 

genes, KLK3 (prostate specific antigen) and KLK2. C. P-value distribution for PL 

associations with proliferative response to enzalutamide. D. Box plots of normalized 

ion intensity for PC34:1-H+ in epithelial regions of enzalutamide-treated versus 

vehicle-treated explants from two separate tissue cores. 

  

Supplementary Figure 6 

Expression of AR-regulated genes in 
PDEs cultured with ENZ (10μM) 

Effect of PDE culture on major lipid 
classes: Day 0 versus VEH 

A B 

C 

Intensity of PC(34:1)-H in PDE epithelial regions  D 
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Supplementary Figure 6.7 A. Altered fatty acyl chain length for PE, PS and PI 

lipids in patient-derived explants cultured in the ACC inhibitor PF-05175157 

compared to vehicle control. B. Dose-dependent increase in pACC1/ACC1 levels in 

LNCaP prostate cancer cells cultured with PF-05175157 (50μM) for 24 or 48 hours. 
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Supplementary Table 6.1 Histopathologic features of all tumors used in this 
study. 

 
  

Patient

ID

Age at

RP

Pre-RP

PSA

1°

Gleason

2°

Gleason

Total

Gleason

1°

Gleason

2°

Gleason

Total

Gleason
ERG +

Pathological 

Staging

32326 73.7 35.2 3 4 7 3 4 7 YES PT3A

32337 70.7 7.1 4 5 9 4 4 8 YES PT3B

32344 65.3 9.3 3 4 7 3 4 7 YES PT3A

32370 64.2 6.3 3 4 7 benign N/A PT2C

32375 77.1 8 4 3 7 benign N/A PT3A

32377 64.4 14.2 3 4 7 4 3 7 YES PT3A

32379 64.8 4.9 4 4 8 4 4 8 YES PT3B

32383 59.9 4.4 3 4 7 benign N/A PT3A

32386 67.2 6.2 4 3 7 4 4 8 N/A PT3B

32389 59.5 9.3 4 3 7 3 3 6 NO PT3A

32401 58 4.5 3 4 7 3 4 7 YES PT3A

32405 63.6 4.4 3 4 7 benign N/A PT2A

32418 72.4 3.9 5 4 9 3 4 7 YES PT2C

32419 63.5 7.6 4 4 8 3 3 6 NO PT3A

32421 69.2 13 3 4 7 3 4 7 NO PT3B

32429 66 5.2 3 4 7 3 3 6 NO PT2C

32436 74.5 17.8 4 3 7 3 5 8 YES PT3A

32438 71.4 10 5 5 10 5 4 9 YES PT3B

32445 78.7 31 4 3 7 benign N/A PT3B

32447 64.2 8.6 3 4 7 3 3 6 NO PT3A

32450 71.6 6.2 4 4 8 4 5 9 NO PT3A

32452 71.4 6 4 3 7 4 3 7 NO PT3A

32459 66.6 5.8 3 4 7 benign N/A PT3A

32473 63.2 5.4 3 4 7 4 3 7 YES PT3A

32499 61.3 6.6 3 4 7 4 3 7 YES PT2C

32509 66.2 6.9 3 4 7 3 4 7 YES PT3A

32717 70.7 16 3 4 7 benign N/A PT2C

32729 66.8 18 4 4 8 4 4 8 NO PT3B

32732 66.7 7 3 4 7 benign N/A PT3A

32742 69 8.3 4 3 7 benign N/A PT3A

32743 67.3 18.6 4 4 8 benign N/A PT3A

32747 57.6 6.9 3 4 7 benign N/A PT2C

32749 61.6 7.9 3 3 6 4 3 7 YES PT3A

32755 64.2 5.6 3 3 6 benign N/A PT3A

32760 70.6 6.5 3 4 7 3 4 7 YES PT2C

32764 67.1 8.1 3 4 7 4 3 7 NO PT3A

32771 66.5 5.7 3 4 7 3 3 6 N/A PT2C

32776 55.8 17.6 5 4 9 4 5 9 NO PT3B

32781 60.8 4.1 3 4 7 benign N/A PT3A

32784 55.5 4.4 4 3 7 3 3 6 NO PT2C

32794 58.8 13.5 4 3 7 4 3 7 YES PT2C

32800 59.2 1.8 3 4 7 benign N/A PT2C

32802 69.1 7 4 3 7 benign N/A PT3A

32804 70.3 7.9 4 3 7 benign N/A PT3A

32840 50.6 8.6 3 4 7 4 4 8 N/A PT2C

SURGICAL SPECIMEN LIPIDOMICS SAMPLE
BA

T
C

H
 1

B
A

T
CH

 2
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Supplementary Table 6.2 Phospholipid measures from the paired cohort 
(Cohort A) that were associated with sample malignancy (p<0.01). 

Variable Lipid ID Est [95%CI] p-value 
Lipid abundance PI 38:6 -0.35 [-0.36, -0.33] 6.52E-19 

 PI 40:6 0.19 [0.18, 0.21] 1.78E-14 
 PS 40:8 1.10 [1.00, 1.20] 6.40E-14 
 PC 36:4 -0.56 [-0.64, -0.49] 3.51E-11 
 PC 34:1 0.17 [0.14, 0.20] 5.81E-10 
 PC 40:4 -0.45 [-0.57, -0.33] 1.18E-06 
 PI 38:5 -0.68 [-0.89, -0.48] 4.51E-06 
 PS 42:8 0.70 [0.50, 0.90] 2.20E-05 
 PS 42:2 -0.26 [-0.35, -0.16] 4.08E-05 
 PS 42:4 -0.23 [-0.32, -0.14] 8.25E-05 
 PE 42:6 0.75 [0.44, 1.06] 0.000149 
 PI 36:4 -0.68 [-0.96, -0.39] 0.000203 
 PE 42:5 0.51 [0.29, 0.74] 0.000255 
 PS 38:4 -0.66 [-0.96, -0.36] 0.000399 
 PC 38:4 -0.52 [-0.77, -0.27] 0.000693 
 PS 36:2 -0.32 [-0.48, -0.16] 0.000753 
 PS 36:1 -0.46 [-0.68, -0.23] 0.000789 
 PC 32:0 -0.66 [-0.98, -0.33] 0.000832 
 PS 38:3 -0.72 [-1.08, -0.36] 0.000942 
 PC 40:6 -0.36 [-0.55, -0.18] 0.001045 
 PS 38:6 -0.82 [-1.24, -0.40] 0.001116 
 PE 40:4 0.042 [0.02, 0.065] 0.001414 
 PC 38:5 -0.38 [-0.59, -0.18] 0.001489 
 PE 38:7 0.36 [0.17, 0.56] 0.001681 
 PI 38:4 -0.50 [-0.80, -0.20] 0.001944 
 PC 36:5 -0.40 [-0.60, -0.20] 0.002105 
 PS 44:6 0.52 [0.23, 0.81] 0.002306 
 PI 36:1 0.51 [0.22, 0.80] 0.00274 
 PS 42:9 0.47 [0.19, 0.75] 0.003707 
 PS 40:4 -0.48 [-0.77, -0.20] 0.003719 
 PE 42:9 0.45 [0.16, 0.73] 0.005855 
 PE 40:6 0.36 [0.13, 0.60] 0.006456 
 PE 40:8 0.28 [0.10, 0.46] 0.006487 
 PC 40:5 -0.30 [-0.50, -0.10] 0.008872 

Mean Chain Length PE 3 -0.13 [-0.14, -0.12] 7.43E-14 
 PS 1 0.13 [0.07, 0.18] 0.000187 
 PE 6 0.11 [0.06, 0.15] 0.000209 
 PI 1 0.19 [0.11, 0.27] 0.000231 
 PS 3 0.096 [0.048, 0.144] 0.000948 

Saturation Abundance PC 6 -0.0021 [-0.0024, -0.0017] 6.10E-10 
 PI 2 0.013 [0.01, 0.015] 2.16E-08 
 PE 3 0.0029 [0.0022, 0.0037] 9.74E-07 
 PS 8 0.0036 [0.0026, 0.0046] 1.82E-06 
 PS 9 0.00078 [0.00048, 0.00108] 6.25E-05 
 PC 4 -0.038 [-0.056, -0.021] 0.00046 
 PC 1 0.066 [0.033, 0.098] 0.000959 
 PC 5 -0.0071 [-0.0107, -0.0034] 0.001172 
 PI 5 -0.0016 [-0.0025, -7e-04] 0.002608 
 PS 3 -0.0088 [-0.0139, -0.0036] 0.003266 
 PC 0 -0.013 [-0.021, -0.005] 0.004081 
 PS 4 -0.0079 [-0.0133, -0.0025] 0.009611 

 
For Mean Chain Length and Saturation Abundance, lipids are named by subclass and total number 
of unsaturations. 
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Supplementary Table 6.3 Phospholipid measures from the unpaired cohort 
(Cohort B) associated with sample malignancy (p<0.01).  

Variable Lipid ID Est [95%CI] p-value 
Lipid Abundance Cer(d18:1/26:5) -0.59 [-0.71, -0.48] 2.99E-13 

 PI 38:4 -0.77 [-0.95, -0.60] 1.52E-11 
 Cer(d18:1/26:3) -0.79 [-0.99, -0.60] 1.94E-10 
 Cer(d18:1/18:8) -0.73 [-0.94, -0.51] 2.64E-08 
 PC 42:7 0.60 [0.40, 0.80] 2.67E-08 
 PE 42:6 0.84 [0.55, 1.12] 5.49E-07 
 Cer(d18:1/24:7) 0.97 [0.61, 1.32] 2.12E-06 
 PC 42:8 0.31 [0.19, 0.42] 2.13E-06 
 Cer(d18:1/22:7) 1.10 [0.60, 1.60] 7.02E-05 
 Cer(d18:1/26:7) 0.61 [0.33, 0.90] 8.04E-05 
 PC 42:6 0.32 [0.17, 0.48] 0.000142 
 PE 42:7 0.46 [0.24, 0.69] 0.000174 
 Cer(d18:1/22:2) -0.40 [-0.60, -0.20] 0.000199 
 PC 40:1 0.36 [0.18, 0.54] 0.000212 
 SM d18:2/24:1 -0.21 [-0.31, -0.10] 0.000236 
 PC 40:5 0.21 [0.10, 0.32] 0.000296 
 PI 38:5 -0.49 [-0.74, -0.23] 0.000429 
 PC 40:7 0.30 [0.10, 0.50] 0.00044 
 PE 32:1 0.27 [0.13, 0.41] 0.000492 
 PC L 22:1 -0.37 [-0.57, -0.17] 0.000571 
 Cer(d18:1/26:2) -0.97 [-1.51, -0.44] 0.000646 
 PE 32:2 0.55 [0.24, 0.87] 0.001055 
 PC 42:3 0.34 [0.14, 0.53] 0.001414 
 PE 36:2 0.51 [0.21, 0.81] 0.001584 
 PE L 14:5 1.10 [0.40, 1.70] 0.001594 
 PC L 18:0 -0.47 [-0.76, -0.19] 0.001872 
 Cer(d18:1/16:8) -0.71 [-1.14, -0.28] 0.001924 
 Cer(d18:1/16:9) 0.46 [0.18, 0.74] 0.002174 
 PE 36:3 0.51 [0.19, 0.82] 0.002183 
 PE 38:0 -0.51 [-0.82, -0.19] 0.002252 
 PC 28:0 0.60 [0.20, 1.00] 0.003476 
 PC L 22:3 -0.35 [-0.58, -0.12] 0.003681 
 PC 42:5 0.28 [0.09, 0.46] 0.003975 
 PC 40:4 0.23 [0.08, 0.38] 0.004354 
 PC 42:4 0.33 [0.11, 0.56] 0.004794 
 PC 36:1 0.36 [0.12, 0.61] 0.005118 
 PE 36:0 -0.41 [-0.69, -0.13] 0.005191 
 PI 36:4 -0.40 [-0.70, -0.10] 0.005688 
 PI 40:3 0.98 [0.30, 1.65] 0.005736 
 PS 34:0 -0.90 [-1.50, -0.30] 0.006216 
 PS 38:6 -0.68 [-1.17, -0.19] 0.008117 
 PC 34:1 0.47 [0.13, 0.82] 0.008694 
 SM d18:1/24:1 -0.11 [-0.20, -0.03] 0.008839 
 PS 36:1 -0.46 [-0.80, -0.12] 0.009917 

Mean Chain Length PE 7 0.12 [0.07, 0.16] 2.05E-06 
 PS 4 0.12 [0.07, 0.16] 3.64E-06 
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 Cer 1-1 -0.038 [-0.06, -0.015] 0.001637 
 PS 6 0.078 [0.031, 0.125] 0.001773 
 PS 1 0.076 [0.029, 0.124] 0.002483 
 PE 6 0.088 [0.029, 0.146] 0.004439 
 Cer 1-7 0.15 [0.05, 0.25] 0.004768 
 PI 2 0.16 [0.05, 0.27] 0.005542 
 PE 1 -0.086 [-0.146, -0.025] 0.007031 
 PI 1 0.12 [0.03, 0.21] 0.00791 

Saturation Abundance Cer 1-4 -0.012 [-0.015, -0.009] 5.61E-09 
 PS 4 -0.012 [-0.018, -0.006] 0.000292 
 Cer 1-7 0.012 [0.006, 0.018] 0.000354 
 PE 0 -0.0051 [-0.0078, -0.0023] 0.000654 
 PC 9 -0.00034 [-0.00056, -0.00013] 0.002216 
 PC 1 0.06 [0.02, 0.10] 0.004828 
 PI 4 -0.036 [-0.061, -0.012] 0.005076 
 PC 12 -0.00071 [-0.0012, -0.00023] 0.005235 
 PI 1 0.019 [0.005, 0.032] 0.008837 
 PC 4 -0.037 [-0.064, -0.009] 0.009926 

 
For Mean Chain Length and Saturation Abundance, lipids are named by subclass and total number 
of unsaturations. 
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Supplementary Table 6.4 Phospholipid measures from Cohort B associated 
with sample ERG status (p<0.01). 

Variable Lipid ID Est [95%CI] p-value 
Lipid Abundance Cer(d18:1/24:4) -0.88 [-1.01, -0.75] 4.66E-07 

 Cer(d18:1/24:5) -0.61 [-0.73, -0.50] 4.84E-06 
 PC 44:8 -0.58 [-0.80, -0.37] 8.40E-06 
 PC L 18:0 0.25 [0.17, 0.33] 1.50E-05 
 PC 42:4 -0.45 [-0.59, -0.32] 2.17E-05 
 PE 36:1 0.57 [0.33, 0.80] 3.63E-05 
 Cer(d18:1/24:7) 0.75 [0.47, 1.03] 4.99E-05 
 Cer(d18:1/26:7) 0.41 [0.24, 0.58] 0.0001159 
 PE 34:1 0.94 [0.44, 1.43] 0.000403975 
 PC L 16:0 0.39 [0.21, 0.57] 0.000437926 
 PS 34:0 -1.50 [-2.40, -0.60] 0.000905376 
 PE 38:2 0.69 [0.27, 1.10] 0.00148699 
 PC 38:2 1.30 [0.50, 2.10] 0.002281809 
 PE L 20:3 -0.65 [-0.89, -0.40] 0.002457796 
 PE 36:2 0.69 [0.23, 1.16] 0.003388082 
 PC 36:5 -0.53 [-0.90, -0.17] 0.004195823 
 PI L 16:0 1.20 [0.40, 2.00] 0.004216038 
 PC L 18:1 0.57 [0.20, 0.94] 0.004737572 
 PC 42:5 -0.30 [-0.50, -0.10] 0.005471192 

Mean Chain Length PE 4 -0.092 [-0.135, -0.048] 0.000784549 
Saturation Abundance PE 1 0.056 [0.031, 0.081] 0.000124795 

 SM 2-1 -0.016 [-0.023, -0.009] 0.000142232 
 PC 5 -0.016 [-0.024, -0.008] 0.000240119 
 PE 5 -0.0084 [-0.0126, -0.0042] 0.000361836 
 PC 9 -0.00018 [-0.00027, -9e-05] 0.000404002 
 PS 0 -0.00074 [-0.00112, -0.00036] 0.000684119 
 Cer 1-5 -0.002 [-0.003, -0.001] 0.000806838 
 Cer 1-4 -0.0058 [-0.0092, -0.0024] 0.001361804 
 PE 8 -0.00071 [-0.00116, -0.00026] 0.002055687 
 PE.L 3 -0.0042 [-0.0065, -0.0018] 0.003138887 
 Cer 1-0 0.071 [0.026, 0.117] 0.005062845 
 PC 6 -0.0061 [-0.0101, -0.002] 0.005428866 

 
For Mean Chain Length and Saturation Abundance, lipids are named by subclass and total number 
of unsaturations. 
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Supplementary Table 6.5 Phospholipid measures from Cohort B associated 
with malignant samples Ki67 cell positivity (p<0.01). 

Variable Lipid ID Est [95%CI] p-value 
Lipid Abundance PC 38:2 -0.35 [-0.56, -0.13] 0.001137415 

 PC L 20:5 0.48 [0.16, 0.79] 0.002488468 
 PC 40:2 -0.81 [-1.36, -0.26] 0.00304984 
 Cer(d18:1/22:0) -0.40 [-0.70, -0.10] 0.003552997 
 Cer(d18:1/20:0) -0.34 [-0.57, -0.10] 0.004787576 
 PC 40:3 -0.84 [-1.44, -0.24] 0.004928755 
 SM d18:3/22:1 -0.68 [-1.17, -0.19] 0.005400972 
 Cer(d18:1/14:0) -0.39 [-0.69, -0.09] 0.008881727 

Mean Chain Length Cer 1-3 59.90 [22.70, 97.20] 0.001286395 
 PE 8 84.60 [31.90, 137.30] 0.001335494 
 PC 6 66.50 [23.50, 109.50] 0.001985756 
 PE 5 35.50 [12.40, 58.60] 0.002132982 
 PC 5 33.20 [11.20, 55.20] 0.002523195 
 Cer 1-4 61.90 [19.10, 104.70] 0.003803916 
 Cer 1-0 -4.70 [-8.00, -1.40] 0.004346096 
 Cer 1-2 40.70 [11.00, 70.40] 0.006064642 
 PC 7 193.64 [50.55, 336.74] 0.006798926 
 PC 9 850.99 [202.46, 1499.52] 0.008681164 

 
For Mean Chain Length and Saturation Abundance, lipids are named by subclass and total number 
of unsaturations. 
  



  Chapter 6 

 223 

Supplementary Table 6.6 Phospholipid measures from PDEs associated with 
change in Ki67 cell positivity in ENZ and vehicle treated samples (p<0.01). 

Variable Lipid ID Est [95%CI] p-value 
Lipid Abundance PE 32:0 1.0 [0.5, 1.5] 0.000101448 

 PE L 14:5 -0.22 [-0.35, -0.09] 0.000625325 
 PC 44:7 -0.8 [-1.2, -0.3] 0.000674426 
 PE L 18:1 0.59 [0.24, 0.95] 0.000794281 
 PS 38:1 0.8 [0.3, 1.4] 0.001499912 
 PC 44:3 -0.8 [-1.3, -0.3] 0.002054796 
 PC 34:1 1.0 [0.3, 1.6] 0.002532567 
 PE 36:1 1.0 [0.3, 1.7] 0.002561362 
 PC L 14:0 0.8 [0.3, 1.4] 0.003165986 
 Cer(d18:1/24:0) 0.50 [0.14, 0.87] 0.005589286 
 SM d18:1/18:1 -0.6 [-1.0, -0.2] 0.007073325 
 Cer(d18:1/22:3) -0.33 [-0.57, -0.08] 0.00756436 
 PE 38:4 0.8 [0.2, 1.5] 0.008528304 
 PE 36:2 0.7 [0.2, 1.2] 0.008596447 
 PC 44:2 -0.48 [-0.84, -0.11] 0.008750496 

Mean Chain Length PC.L 0 -2.4 [-4.1, -0.7] 0.005447759 
Saturation Abundance Cer 1-3 -90 [-139, -41] 0.00022117 

 Cer 1-4 -74 [-121, -27] 0.00154786 
 
For Mean Chain Length and Saturation Abundance, lipids are named by subclass and total number 
of unsaturations.  
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 General Discussion 
 
This Chapter summarises the main findings in this thesis and highlights new 

discussion points that were not covered in Chapters 3 to 6. This Chapter builds on 

the discussion for some of the results and suggests new areas for investigation in 

addition to providing implications for our findings. 
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7.1 Summary of findings 
 
Altered lipid metabolism is a well-established hallmark of prostate cancer (Mah et 

al. 2020; Wu et al. 2014). In support of this, Chapter 6 provides an overview of the 

lipidomic changes that accompany prostate cancer development in clinical tissues 

in addition to treatment-related changes in lipid profiles. Despite observed inter-

patient heterogeneity at the level of lipid species, our data revealed consistent 

changes in broader lipid metabolic processes such as increased lipid elongation and 

monounsaturation. Notably, these key cancer-related changes in phospholipid 

profiles support the findings of previous studies and may represent common tumour-

specific vulnerabilities. We also provide first line evidence for the efficacy of 

targeting these phenotypes using a clinically available ACC inhibitor in clinical 

prostate cancer tissues. Taken together, our findings highlight the importance of 

studying the lipidome to understand cancer development and progression and 

revealed lipid metabolism as sources of novel molecular biomarkers and therapeutic 

targets. 

 

This dissertation primarily focuses on fatty acid oxidation as an underexplored facet 

of lipid metabolism and promising therapeutic avenue to overcome prostate cancer 

progression and treatment resistance. Fatty acid oxidation (FAO) is the dominant 

bioenergetic pathway in prostate cancer (Liu 2006) and hence, represents a 

metabolic vulnerability that may be exploited for therapeutic intervention. This thesis 

critically advances existing knowledge on the role of FAO (mitochondrial and 

peroxisomal) in prostate cancer oncogenesis and identifies two key enzymes, 

DECR1 and DECR2, as novel therapeutic candidates for advanced disease. Finally, 

this thesis also explores the potential of FAO as an adaptive survival pathway to 

support CRPC development and treatment resistance.  

 

In Aim 1, we aimed to identify new therapeutic targets of FAO for the treatment of 

prostate cancer. In Chapter 3, 2,4-Dienoyl-CoA Reductase 1 (DECR1; a 

mitochondrial auxiliary enzyme involved in polyunsaturated fatty acid (PUFA) 

oxidation) was identified as a key survival factor in prostate cancer cells. 

Interrogation of clinical datasets showed that DECR1 is robustly overexpressed in 

prostate cancer tissues and associated with shorter relapse-free survival rates. 
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DECR1 targeting significantly suppressed prostate cancer cell proliferation and 

migration in vitro, and tumour growth and metastasis in vivo. DECR1 was selective 

for PUFA oxidation; DECR1 depletion resulted in PUFA accumulation and increased 

mitochondrial oxidative stress, ultimately leading to lipid peroxidation and cell death 

by ferroptosis. Moreover, DECR1 is an androgen-repressed gene which may 

promote prostate cancer cell survival by upregulating its expression in response to 

ADT or AR-targeted therapies, suggesting PUFA oxidation as an adaptive survival 

response that may contribute to development of CRPC and treatment resistance. In 

Chapter 4, 2,4-Dienoyl-CoA Reductase 2 (DECR2; a peroxisomal β-oxidation 

enzyme) was identified as a novel therapeutic target for advanced metastatic 

prostate cancer. DECR2 was significantly upregulated in prostate cancer tissues, 

particularly metastatic/CRPC samples and its overexpression was associated with 

poor overall survival rates. Phenotypically, DECR2 targeting in CRPC and 

enzalutamide-resistant cells significantly suppressed prostate cancer oncogenesis 

and migration in vitro. Furthermore, DECR2 depletion led to profound changes in 

lipid content and composition, suggestive of a potential link between mitochondrial 

and peroxisomal β-oxidation to promote prostate cancer cell survival. Finally, 

attenuation of prostate cancer cell viability after DECR2 knockdown was associated 

with inhibition of cell cycle progression, and sensitised prostate cancer cells to the 

CDK4/6 inhibitor, ribociclib. Taken together, these findings provide compelling 

evidence for targeting (mitochondrial and peroxisomal) fatty acid oxidation in 

prostate cancer by inhibiting DECR1 and DECR2. 

 

Aim 2, investigated the potential of FAO as an adaptive survival pathway in the 

context of treatment resistance. In Chapter 5, FAO was discovered as a survival 

pathway that is activated in clinical tumours in response to heat shock protein 90 

(HSP90) inhibition. Co-treatment of prostate cancer cells with AUY922 and FAO 

inhibitors (including etomoxir and perhexiline) showed sensitisation of prostate 

cancer cells to AUY922 treatment. Moreover, we demonstrated that the combination 

treatment significantly inhibited cellular proliferation and induced apoptosis in our 

preclinical patient-derived prostate tumour models more effectively than individual 

treatments alone. In Chapter 4, we also report a close link between peroxisomal 

metabolism and resistance to AR-targeted therapies. We demonstrated that 

peroxisomal β-oxidation inhibition (either via DECR2 targeting or pharmacological 
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inhibition by thioridazine) could sensitise prostate cancer cells, and particularly 

enzalutamide-resistant cells to enzalutamide treatment. Overall, this suggests that 

FAO is not only an important source of energy, but also an adaptive survival 

pathway that is enhanced in response to drug treatments to support cancer cell 

survival and resistance. 

 

In summary, this thesis identified new molecular targets of key facets of FAO and 

previously unexplored FAO enzymes that are critical for prostate cancer cell survival, 

CRPC development and treatment resistance. 
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7.2 Fatty acid oxidation and molecular heterogeneity 
 
In Chapters 3 and 4, the efficacy of mitochondrial and peroxisomal β- oxidation 

inhibition (etomoxir and thioridazine) was demonstrated using our laboratory’s 

preclinical patient-derived prostate tumour models. To our knowledge, this is the 

first clinically relevant evidence that targeting these FAO pathways is efficacious. 

Intriguingly, the data revealed patient heterogeneity in response to etomoxir or 

thioridazine treatments, whereby some patients responded more strongly to the 

treatments compared to others. This raised the question: what are the factors that 

may contribute to the variation in treatment response? 

 

Prostate cancer is a highly heterogenous and multifocal disease. This is reflected in 

the metabolic plasticity of prostate tumours, potentially driven by genomic 

aberrations such as mutations in tumour suppressor genes (ie. PTEN, RB1, TP53) 

or oncogenes (AR, ERG, MYC) (Peitzsch et al. 2020). Recently, few studies have 

revealed that prostate tumours actively rewire their metabolism to support tumour 

progression (Lin et al. 2017; Schöpf et al. 2020), including lipid metabolism (Balaban 

et al. 2019). In a broader context, one aspect that needs to be considered is the 

expression of lipid metabolism enzymes across different tumour types and 

molecular subclassifications. One such example is long-chain acyl-CoA synthetase 

3 (ACSL3) where its expression is overexpressed in androgen-dependent and 

castrate-resistant prostate cancer but is downregulated in triple-negative breast 

cancers (TNBC) (Migita et al. 2017; Wright et al. 2017). Similarly, DECR1 

expression is significantly upregulated in prostate cancer to promote cancer cell 

survival whereas another study found that DECR1 expression is markedly 

decreased in primary human breast cancers (Ursini-Siegel et al. 2007; Nassar et al. 

2020). What about the differences in FAO during cancer progression? A study in 

prostate cancer cells highlighted striking heterogeneity in the intracellular handling 

of FAs (Balaban et al. 2019). For example, castrate-resistant C4-2B cells exhibited 

higher rates of FAO compared to androgen-independent PC3 cells. In the context 

of molecular heterogeneity, using findings from studies in breast cancers as an 

example, gene expression analysis comparing receptor-positive breast cancer 

(RPBC) and TNBC has revealed marked differences with respect to lipid 

homeostasis (Monaco 2017). For instance, RPBCs are associated with a gene 
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signature comprising of elevated de novo lipogenesis, fatty acid mobilisation and 

oxidation; whereas TNBC upregulates genes involved in lipid uptake and storage. 

This is further compounded by genomic alterations or upstream regulators that 

modulate lipid metabolism. A recent study reported a metabolic dependency for 

FAO in MYC-overexpressing TNBC cells (Camarda et al. 2016). The authors 

proceeded to confirm its selectivity for MYC-driven breast tumours and 

demonstrated sensitisation of MYC-overexpressing TNBC cells to FAO inhibition 

(via etomoxir) both in vitro and in vivo, but not MYC-low TNBCs or RPBCs. A 

previous study investigated the changes in metabolic phenotypes using untargeted 

metabolomics of human prostate cancers in response to different oncogenic drivers, 

specifically the AKT and MYC oncogenes. They reported that AKT activation was 

associated with glycolysis and glucose-related pathways (including pentose 

phosphate pathways and fructose metabolism). On the other hand, MYC 

overexpression was associated with dysregulation of lipid metabolism pathways, in 

particular, an enrichment of pathways involved in the synthesis and degradation of 

membrane lipids. Of particular interest, the authors showed elevated levels of 

omega-3 and omega-6 fatty acids (FAs) in MYC-high prostate tumours compared 

to AKT-high tumours suggesting uptake of unsaturated FAs during early 

transformation (Priolo et al. 2014).  

 

We should not rule out the possibility of off-target effects of pharmacological 

modulators of FAO pathways. For instance, etomoxir (ETX), the most widely used 

carnitine palmitoyltransferase 1 (CPT1) inhibitor was reported to exhibit off-target 

effects such as inhibition of complex I of the electron transport chain and induction 

of oxidative stress via elevated reactive oxygen species (ROS) production (Yao et 

al. 2018; O’Connor et al. 2018). Similarly, trimetazidine and ranolazine, partial FAO 

inhibitors targeting the enzyme 3-ketoacyl-coA thiolase (3-KAT; a component of the 

trifunctional protein complex that catalyses the last three steps of mitochondrial β-

oxidation) was reported to interfere with other cellular processes such as ion 

channels to exert their clinical benefits (Cavar et al. 2016; Antzelevitch et al. 2004; 

Nie et al. 2019; Guarnieri et al. 1997). A recent study assessed the anti-FAO 

activities of several FAO inhibitors (including etomoxir, perhexiline, trimetazidine 

and ranolazine) and found that, with the exception of etomoxir,  these compounds  

did not significantly inhibit FAO in the cells (Ma et al. 2020). Unlike mitochondrial 
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FAO, peroxisomal FAO has attracted very little research attention. In Chapter 4, we 

introduced a peroxisomal β-oxidation inhibitor, thioridazine (TDZ) (Van den Branden 

and Roels 1985; Shi et al. 2012). TDZ was reported to block dopamine receptor 2 

(DRD2) (Feinberg et al. n.d.) and is also a substrate of the cytochrome P450 

enzymes (Gervasini et al. 2013; Daniel et al. 2001). It is plausible that TDZ may 

inhibit FAO via its inhibitory effects on cytochrome P450 enzymes (Shen et al. 2020), 

given that cytochrome P450 enzymes were suggested to play a role in 

polyunsaturated fatty acid metabolism (Konkel and Schunck 2011; Sarparast et al. 

2020). Taken together, more work is needed to investigate the specificities, 

potencies, and metabolic impact of these FAO inhibitors. Moreover, this warrants 

further investigation into developing more specific and selective targets/inhibitors of 

FAO for anti-cancer therapy as proposed throughout Chapters 3 and 4 in this 

dissertation. 

 

7.3 Crosstalk between mitochondria and peroxisomes 
 
In Chapter 4, mitochondrial respiration or oxidative phosphorylation remained active 

after inhibition of peroxisomal β-oxidation via DECR2 knockdown. Furthermore, in 

Supplementary Chapter 3, RNA-seq analysis found that peroxisome KEGG 

pathway genes were negatively enriched in DECR1 knockdown cells. This suggests 

a potential and previously unexplored link between mitochondrial and peroxisomal 

β-oxidation that may have functional relevance in prostate cancer.  

 

The interplay of peroxisomes with mitochondria is essential for subsequent 

metabolism of peroxisomal β-oxidation end products such as acetyl-CoA, NADH, 

and chain-shortened fatty acyl-CoAs (Wanders et al. 2015). For peroxisomal β- 

oxidation to proceed, it requires the conversion of NADH (reduced form; end product 

of peroxisomal FAO) to NAD+ (oxidised form) (Wanders et al. 2015). This can only 

be achieved in the mitochondria where NADH is oxidised via the electron transport 

chain to generate energy/ATP through oxidative phosphorylation. Intriguingly, a 

study reported that monocarboxylate transporter 2 (MCT2; a metabolic enzyme that 

regulates pyruvate for lactate exchange) was found to localise to the peroxisome. 

MCT2 is a redox shuttle system that exists across the peroxisomal (also found on 

mitochondria) membrane to re-oxidise NADH to fuel peroxisomal β-oxidation and 
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promote ROS production (McClelland et al. 2003). Indeed, increased peroxisomal 

localisation of MCT2 is associated with malignant transformation of prostate cancer 

cells and knockdown inhibits prostate cancer cell growth and proliferation (Valença 

et al. 2015; Valença et al. 2020; Pertega-Gomes et al. 2015). In addition to its role 

in supporting β-oxidation and energy production, NAD+ is also required for the 

maintenance of intracellular redox homeostasis, glycolysis, and several other non-

redox processes such as DNA repair, cell signalling, post-translational modifications, 

senescence and apoptosis (Navas and Carnero 2021). In non-redox reactions, 

NAD+ is consumed as a substrate by different types of enzymes including sirtuins 

and poly (ADP-ribose) polymerases (PARPs) (Anderson et al. 2017; Langelier et al. 

2018; Kim et al. 2005). On the contrary, DECR1/2 are NADH-dependent auxiliary 

enzymes that play key roles in polyunsaturated fatty acid (PUFA) oxidation. It is not 

surprising that higher NAD+/NADH ratios are found in cancer cells compared to non-

malignant cells (Moreira et al. 2016). Therefore, it can be speculated that 

mitochondrial and peroxisomal β-oxidation work together to maintain the intricate 

balance between NAD+ and NADH levels to support tumour cell proliferation and 

biomass production. However, further research is needed to elucidate the exact 

mechanism on how mitochondria are coupled to the transfer of peroxisomal redox 

equivalents. 

 

Crosstalk of mitochondrial and peroxisomal metabolism may also occur at the 

transcriptional level (Sargsyan and Thoms 2020). For instance, the peroxisome 

proliferator-activated receptor (PPAR) transcription factors are key regulators of 

peroxisomal β-oxidation and proliferation. PPARs have been implicated in 

regulating the expression of genes involved in mitochondrial β-oxidation and 

biogenesis (Fransen et al. 2017). In addition, PPAR co-activator PGC-1, a 

regulator of peroxisomal biogenesis, was reported to promote mitochondrial 

biogenesis and metabolism, oxidative phosphorylation, and antioxidant protection 

(Fransen et al. 2017). There are only a limited number of studies that have examined 

how perturbations in mitochondrial β-oxidation influence peroxisomal metabolism. 

Some studies showed that mitochondrial β-oxidation inhibition (via pharmacological 

inhibition or genetic knockouts) increased the expression of genes involved in 

peroxisomal β-oxidation pathways (Vickers 2009; Zhang et al. 2007; Lee et al. 2017). 

Notably, one study demonstrated that inhibition of mitochondrial β-oxidation in 
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muscle cells led to a compensatory increase in peroxisomal β-oxidation (Wicks et 

al. 2015). Therefore, it is also plausible that mitochondrial OXPHOS remains active 

or upregulated to compensate for peroxisomal β-oxidation inhibition or more 

specifically, DECR2 knockdown to prevent toxic lipid accumulation or maintain 

mitochondrial TCA cycle, thereby supporting tumour survival. 

 

DECR1 inhibition results in mitochondrial ROS production and elevated oxidative 

stress. One can speculate that DECR1 knockdown would result in downregulation 

of peroxisomal metabolism to reduce excessive ROS production from peroxisomal 

β-oxidation. In addition, it is possible that very long chain fatty acid synthesis in the 

endoplasmic reticulum (ER) via fatty acid elongation (Kihara 2012) may be inhibited 

due to excess PUFA accumulation after DECR1 knockdown (Barelli and Antonny 

2016). This would explain, in part, why peroxisomal metabolism was negatively 

enriched in DECR1 knockdown cells according to our RNA-seq results. 

 

Another interesting aspect to consider is that the mitochondria and peroxisomes 

share isoforms of various metabolic enzymes. For instance, AMACR (peroxisomal 

enzyme responsible for branched chain FAO) is an established biomarker of 

prostate cancer and is expressed in both the mitochondria and peroxisome (Jiang 

et al. 2013; Amery et al. 2000). Moreover, increasing evidence suggests that 

glucose metabolism enzymes such as GAPDH, 3-phosphoglycerate kinase, and 

lactate dehydrogenase are partially localised in peroxisomes (Cipolla and Lodhi 

2017). Furthermore, it is possible that the mitochondria are able to compensate for 

the decrease in peroxisomal β-oxidation and vice versa through the exchange of 

fatty acid substrates (Houten et al. 2020). From a biochemical perspective, these 

findings further challenge the conventional idea that the mitochondria and 

peroxisomes can only oxidise distinct pools of fatty acids. 

 

7.4 Ferroptosis and polyunsaturated fatty acid metabolism 
 
In Chapter 3, we uncovered a novel mechanism of DECR1 and polyunsaturated 

fatty acid (PUFA) oxidation and hypothesise that DECR1 is overexpressed in 

prostate cancer cells to prevent accumulation of PUFAs and protect the cancer cells 

from lipid peroxidation-induced cell death, called ferroptosis. 
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Ferroptosis is an iron-dependent form of cell death induced by excessive lipid 

peroxidation. This process relies on several key components, mainly PUFA-

containing membrane phospholipids, metal iron (Fe2+), and ROS. PUFAs are highly 

susceptible to lipid peroxidation due to their multiple double bonds and are the key 

drivers of ferroptosis. Previous studies have shown that PUFAs are esterified into 

membrane phospholipids, particularly phosphatidylethanolamine (PE)-containing 

phospholipids (arachidonic acid and adrenic acid) which generate lipid peroxides 

and trigger ferroptosis (Tang and Kroemer 2020). Several mechanisms of regulation 

of ferroptosis exists: (1) cysteine uptake via the System Xc- cysteine/glutamate anti-

transporter; (2) glutathione peroxidase 4 (GPX4; ROS-scavenging protein that 

inhibits the formation of lipid peroxides; (3) intra- or inter- cellular signalling 

processes and environmental stresses that impact ferroptosis by regulating cellular 

metabolism and ROS levels (ie. iron levels, lipogenesis, mitochondrial TCA cycle, 

p53 and AMPK signalling pathways) (Jiang et al. 2021). The current operational 

definition of ferroptosis is a form of cell death process suppressed by both iron 

depletion and lipophilic antioxidants such as ferrostatin-1 (Jiang et al. 2021; 

Stockwell et al. 2017). Both requirements should be taken into account as there are 

also iron-dependent cell death mechanisms distinct from ferroptosis (Jiang et al. 

2021). To this end, several ferroptosis inducers and inhibitors (including iron 

chelators) were employed to provide evidence of ferroptosis-induced cell death and 

sensitisation in DECR1 knockdown cells. Furthermore, lipid peroxidation was 

directly detected using fluorescent dyes such as BODIPY-C11. In addition to PUFA 

accumulation, few studies have linked mitochondrial oxidative metabolism to 

ferroptosis. Recent studies reported glutamine (or glutaminolysis) to be essential for 

cysteine deprivation-induced (CDI) ferroptosis via activation of the mitochondrial 

TCA cycle and ETC, thereby increasing mitochondrial respiration and ROS 

production to initiate ferroptosis (Gao et al. 2015; M. Gao et al. 2019). In a follow-

up study, the authors also demonstrated that cancer cells deficient of the tumour 

suppressor fumarate hydratase are resistant to CDI ferroptosis (M. Gao et al. 2019), 

providing the basis for potential ferroptosis-inducing therapeutic approaches like 

DECR1. More recently, glucose starvation has been shown to inhibit ferroptosis. 

This was mediated by AMP activated kinase (AMPK) activation and subsequent 

downstream inhibitory phosphorylation of ACC1, leading to inhibition of lipid 

biosynthesis, which in turn protects cells from lipid peroxide accumulation and 
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ferroptosis (Lee et al. 2020; Li et al. 2020). DECR1 depleted cells exhibited 

increased glycolysis, which is accompanied by decreases in glycolytic intermediates, 

most likely to sustain TCA cycle intermediate levels. This poses critical questions 

for future research, whether glucose which serves as a major fuel of the TCA cycle 

regulates ferroptosis in DECR1 knockdown cells (as one would predict that inhibition 

of PUFA oxidation would attenuate ROS production and delay ferroptosis)? How 

does mitochondrial metabolism contribute to ferroptosis after DECR1 inhibition? 

Nevertheless, these findings reveal a multifaceted role of mitochondrial metabolism 

in the regulation of ferroptosis: generation of lipids or lipid precursors for 

phospholipid synthesis or via production of ROS (by-products of oxidative 

metabolism). More importantly, this study highlighted a previously unknown role of 

FAO in ferroptosis. 

 

In Chapter 4, we observed a significant increase in MUFAs and PUFAs after DECR2 

knockdown, as well as increases in several phospholipid species. This prompts the 

novel question – do peroxisomes also contribute to ferroptosis? Recently, a study 

identified peroxisomes as critical contributors to ferroptosis through biosynthesis of 

ether phospholipids (or plasmalogens) for lipid peroxidation (Zou et al. 2020). The 

authors performed a genome-wide CRISPR-Cas9 screen to identify genes that 

regulate the susceptibility of human renal and ovarian cancer cell lines to GPX4 

inhibitor-induced ferroptosis (RSL3 and ML210). They found a significant 

enrichment of peroxisome-related genes, including peroxisomal enzymes involved 

in synthesis of ether lipids such as alkylglycerone phosphate synthase (AGPS), fatty 

acyl-CoA reductase 1 (FAR1), and glyceronephosphate O-acyltransferase 

(GNPAT); depletion of which increased cellular viability and resistance to ferroptosis. 

In contrast, knockout of peroxisomal enzymes, SOD1 and CAT, unrelated to ether 

lipid metabolism showed no effect. Notably, lipidomic analysis showed 

downregulation of ether phospholipids (ePLs), especially polyunsaturated ether 

phospholipids (PUFA-ePLs) in peroxisome-depleted cells. Furthermore, the 

provision of liposomal nanoparticles containing PUFA-ePLs (arachidonic acid and 

docosahexaenoic acid) was sufficient to confer sensitivity to ferroptosis by lipid 

peroxidation, but not MUFA-ePLs, highlighting the importance of PUFAs (and by 

inference MUFA:PUFA ratios) in ferroptosis sensitisation. Finally, the authors 

investigated the role of peroxisomes in promoting ferroptosis sensitivity in vivo. 
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While most GPX4 knockout cancer cells failed to survive in vivo, those that survive 

and developed tumours proliferated rapidly despite lack of GPX4 expression. 

Further analysis showed that such GPX4-/- cells downregulated synthesis of PUFA-

ePLs, thus conferring resistance to ferroptosis.  

 

Intriguingly, a study demonstrated that exogenous MUFAs induced a ferroptosis-

resistant state in cells in an ACSL3-dependent manner (Magtanong et al. 2019). 

The authors proposed that exogenous MUFAs activated by acyl-CoA synthetase 

long-chain family member 3 (ACSL3; enzymes that convert free fatty acids to fatty 

acyl-CoA and incorporated into glycerophospholipids) displace PUFAs from plasma 

membrane phospholipids to reduce lipid ROS accumulation following GPX4 

inhibition. This was supported by one other study in KRAS-driven lung tumours 

showing RAS-driven ACSL3 expression driving MUFA-containing lysophospholipid 

uptake to confer resistance to ferroptosis (Kamphorst et al. 2013). Overall, this 

suggests a close interaction between MUFA and PUFA metabolism and ferroptosis 

in influencing tumour cell survival or cell death – whether this is applicable to DECR2 

knockdown cells remains elusive. Consistent with this idea, in Chapter 6, 

phospholipid profiling of clinical prostate tumours revealed significant changes in 

lipid composition relative to matched normal tissues whereby prostate tumours 

exhibit markedly elevated levels of MUFAs compared to SFA and PUFAs. This 

further supports the notion that tumour cells are protected from ferroptosis or 

lipotoxicity (discussed below). 
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7.5 Cell cycle and lipid metabolism 
 
In Chapter 4, DECR2 knockdown or inhibition of peroxisomal β-oxidation attenuates 

prostate cancer cell viability via inhibition of cell cycle progression.  

 

7.5.1 Interplay of oncogenic signalling, cell cycle and metabolism 
 
Cell cycle regulators such as CDK4, cyclin D1 or Rb have been implicated in 

metabolic rewiring associated with proliferation (Lopez-Mejia and Fajas 2015; Huber 

et al. 2020). For instance, it was demonstrated that cyclin-dependent kinase 9 

(CDK9; key regulator of RNA-polymerase II) inhibition markedly decreased FAO in 

prostate cancer cells (Itkonen et al. 2019). So far, the effects of DECR2 knockdown 

on cell cycle arrest may be attributed, at least in part, to Rb signalling. It was shown 

that Rb loss significantly decreased mitochondrial oxidative phosphorylation 

(OXPHOS) capacity and increased sensitivity to mitochondrial OXPHOS inhibitors 

(Nicolay et al. 2015). On the other hand, this study showed that Rb reactivation by 

CDK4/6 inhibition (CDK4/6i) reversed this effect, in turn, activating mitochondrial 

function and sensitising cells to glucose withdrawal and mitochondrial stress 

(Franco et al. 2016). Similarly, in DECR2 knockdown cells a reduction in pRb 

signalling contributing to cell cycle arrest and sustained mitochondrial OXPHOS. In 

light of this, it was interesting that DECR2 knockdown sensitised prostate cancer 

cells to the CDK4/6 inhibitor, ribociclib. This suggests that the effect may be context-

dependent and further experimentation may be needed to study the effects of 

CDK4/6i on mitochondrial function in prostate cancer. Additionally, it is possible that 

DECR2 knockdown exhibits distinct endpoints with CDK4/6 inhibition by ribociclib. 

For instance, MEK inhibitors in combination with CDK4/6i enhance accumulation of 

mitochondria and OXPHOS to promote cell cycle arrest with features of senescence 

(Franco et al. 2016). In contrast, mTOR inhibitors restricted glycolytic metabolism 

and OXPHOS induced by CDK4/6i and suppressed tumour growth (Franco et al. 

2016). What about cell cycle-dependent control of lipid metabolism? Rb was 

reported to suppress tumorigenesis by altering lipid composition (Muranaka et al. 

2017), suggesting cell cycle regulation of lipid composition. One study reported that 

cell cycle stages can dictate changes in lipid composition in metazoan cells such as 

the production of key phospholipids, PC and PE (Sanchez-Alvarez et al. 2015). 

Moreover, a study in marine diatoms showed that cells arrested in G1 phase 
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accumulate TAGs and upregulate genes involved in de novo lipogenesis (Kim et al. 

2017).  

 
This prompts the question of whether cell cycle progression is influenced as a 

consequence of lipid accumulation/remodelling in DECR2 knockdown cells or vice 

versa? Certain lipid species have been implicated in cell cycle progression. For 

example, the long chain PUFA, docosahexaenoic acid (DHA) has been shown to 

influence cell cycle progression and hence, cancer cell viability and proliferation 

(Newell et al. 2017). Moreover, sphingolipids and ceramides which serves as 

bioactive molecules with key roles in cancer cell signalling and proliferation, are 

critical mediators of cell cycle arrest (Ogretmen and Hannun 2004; Ogretmen 2018).   

 

7.5.2 Possible mechanism for peroxisomal metabolism in cell cycle 
regulation 
 
mTORC1 is a protein complex that controls protein synthesis in a variety of cellular 

processes such as cell growth, proliferation, and autophagy in response to nutrient 

sensing, energy, and redox status. A study by Zhang et al in 2012 identified 

peroxisomes as a signalling organelle involved in the regulation of mammalian 

target of rapamycin complex (mTORC1). This was attributed to the localisation of 

tuberous sclerosis complex (TSC) signalling node (composed of TSC1, TSC2 and 

Rheb) to the peroxisomes where it represses mTORC1 in response to ROS (Zhang 

et al. 2013). In addition, cytoplasmic ATM (serine/threonine kinase) which responds 

to ROS to activate AMPK and TSC2 was also previously found to localise to 

peroxisomes (Alexander et al. 2010; Watters et al. 1999; Zhang et al. 2015). The 

connection between mTORC1 and cell cycle regulation have been described (Huber 

et al. 2020). For instance, a recent study found that cyclin D1-CDK4/6 activates 

mTORC1 via phosphorylation and inhibition of TSC2, thereby promoting cell 

proliferation directly via phosphorylation of Rb signalling and indirectly by enhancing 

cell growth (Romero-Pozuelo et al. 2020). Similarly, ATM is also known to play key 

roles in cell cycle control and DNA damage pathways. Consistent with this idea, 

GSEA correlation analysis showed that DECR2 is positively correlated with DNA 

repair pathways (Figure 7.1). Overall, these findings link peroxisomal metabolism to 

cell cycle control and opens up possible avenues for further investigation. 
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Figure 7.1 GSEA correlation analysis of DECR2 revealed significant positive 

correlation with hallmark DNA repair pathway. 

 

7.6 Lipid accumulation and remodelling: protects or kills? 
 
Chapter 3 identified a mechanism whereby excess PUFA accumulation in response 

to DECR1 (PUFA oxidation) inhibition leads to the induction of ferroptosis in prostate 

cancer cells. Likewise in Chapter 4, DECR2 knockdown (peroxisomal β-oxidation 

inhibition) led to overall lipid accumulation, particularly in lipid droplet content, and 

elevated MUFA/PUFA levels.  

 

A study found that fatostatin (inhibitor of de novo lipogenesis via repression of 

SREBP) induced cell cycle arrest and apoptosis in ER+ breast cancer cells and 

tumours. This involves the activation of endoplasmic reticulum (ER) stress and lipid 

accumulation. Apoptosis was attributed to elevated ceramide levels mediated by ER 

stress, while accumulation of PUFA-TAGs promoted an anti-apoptotic response. 

Previous studies have reported saturated fatty acid (SFA)-induced apoptotic 

lipotoxicity (Li et al. 2018; Bobrovnikova-Marjon et al. 2008). This can be overcome 

by channelling SFAs into neutral lipids for storage in lipid droplets (Listenberger et 

al. 2003) or by exogenous MUFA uptake (Magtanong et al. 2019). Studies from 

peroxisomal disorders have shed light on the roles of lipid metabolic intermediates 

of peroxisomal metabolism in lipotoxicity (Wanders et al. 2010). In addition to 
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serving as a fuel source, lipid droplets can also protect cells from lipotoxicity and 

sustain mitochondrial OXPHOS during starvation-induced autophagy (Nguyen et al. 

2017; Rambold et al. 2015; Benador et al. 2018). Moreover, a recent study has 

found that peroxisomes are tightly associated with lipid droplets to direct fatty acid 

trafficking (Chang et al. 2019). Consistently, DECR2 knockdown cells significantly 

induced lipid accumulation, particularly lipid droplet contents, and MUFA/PUFA 

lipids suggesting lipid partitioning, possibly as a protective mechanism against anti-

tumour effects such as ROS.  

 

Arguably, other mechanisms exist that involve lipid accumulation and suppression 

of cell growth, for instance ferroptosis (as discussed above) and cellular senescence. 

Senescent cells prompt DNA damage response signalling to the cell cycle inhibitor 

p21CIP1, leading to increased expression of CDK4/6 inhibitor p16INK4a to halt cell 

cycle in G1 phase (Lee and Schmitt 2019). Moreover, senescence is associated 

with the induction of p53 and Rb pathways (Lee and Schmitt 2019). A study showed 

that deregulation of lipid metabolism may initiate a positive feedback loop that 

serves to maintain cells in senescence, independent of DNA damage (Flor et al. 

2017). Proteomics and systems analysis identified enrichment of several lipid 

metabolism pathways marked by increased lipid uptake and accumulation, including 

upregulation of mitochondrial and peroxisomal β-oxidation enzymes. Additionally, 

the authors identified lipid peroxidation and production of reactive lipid aldehydes 

as key factors regulating cellular senescence (Flor et al. 2017). Intriguingly, 

mitochondrial CPT1C was recently identified as a critical regulator of cancer cell 

senescence by prevent lipotoxicity (Zhang et al. 2020). In light of these findings, we 

can speculate that DECR2 inhibition may lead to cellular senescence. 

 

7.7 Epigenetics and lipid metabolism 
 
In Chapter 4, fluctuations in the protein expression of histone H3 acetylation in 

DECR2 knockdown and TDZ treated cells were observed, proposing a potential link 

between FAO and epigenetic mechanisms potentially driven by acetyl-CoA 

availability.  
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While the link between glucose and histone acetylation have been well-studied, it 

was reported that de novo lipogenesis and histone acetylation use the same pool of 

acetyl-CoA. This study demonstrated that knockdown of the rate limiting enzyme of 

fatty acid synthesis, acetyl-CoA carboxylase 1 (ACC1) resulted in histone 

hyperacetylation (Galdieri and Vancura 2012). This is because ACC is the nexus 

between histone acetylation and fatty acid synthesis where these two processes 

compete for acetyl-CoA. Another study reported that lipid oxidation (mitochondrial 

and peroxisomal) -derived acetyl-CoA is the predominant contributor to the global 

acetyl-CoA pool, leading to increased histone acetylation (McDonnell et al. 2016). 

Furthermore, the authors showed that histone acetylation is accompanied by 

activation of a lipid-specific gene expression program, which differs from glucose or 

HDACi induced histone acetylation (McDonnell et al. 2016). On the other hand, a 

previous study identified FAO-induced histone deacetylation resulting in increased 

acetyl-CoA and mitochondrial protein hyperacetylation, and downregulation of 

ACC2 to promote tumour cell adaption to acidic conditions (Corbet et al. 2016). In 

contrast, a study in colorectal cancer found that butyrate (short chain FA) inhibits 

histone deacetylation to increase the expression of cell cycle arrest genes and 

induction of apoptosis (Han et al. 2018). Interestingly, a recent study demonstrated 

that CPT1A supports prostate cancer progression by supplying acetyl groups, 

thereby regulating histone acetylation and cell growth (Joshi et al. 2019). 

Peroxisomal metabolism may also influence histone acetylation through 

peroxisome-derived acetyl moieties, which can also serve as substrates for ACC 

(Hunt et al. 2014). In view of the limited knowledge on the connection between 

peroxisomal metabolism and epigenetics in cancer, we can speculate a link based 

on studies in human peroxisomal disorders. It was previously reported that phytanic 

acid, a substrate of peroxisomal alpha-oxidation, enhances HDAC activity in vitro 

and induces cell death as a result of reduced histone acetylation in neuronal cells 

(Nagai 2015). Furthermore, it was proposed that restoration of sirtuin 1 (SIRT1; 

NAD+ dependent histone deacetylase) could rescue the effects of Abcd-/- 

(peroxisomal fatty acid transporter protein) mice and peroxisomal disease X-linked 

adrenoleukodystrophy (X-ALD) (Morató et al. 2015). More recently, it was 

demonstrated that knockdown of acyl-CoA oxidase 4 (ACX4; peroxisomal β-

oxidation enzyme) in Arabidopsis suppressed histone acetylation and increased 
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DNA methylation at specific genomic loci, suggesting a link between peroxisomal β-

oxidation and nuclear epigenetic modifications (Wang et al. 2019). 

 

Besides acetyl-CoA availability, it is also important to note that histone 

(de)acetylation is markedly influenced by other factors such as energetic and redox 

state of the cell (i.e. cellular NAD+/NADH ratio) and availability of metabolic 

intermediates such as free CoA, CoA-derivatives, NADPH and butyrate (Farr et al. 

2016). All of which are influenced directly or indirectly by changes in mitochondrial 

or peroxisomal activity. Moreover, acetyl-CoA is present ubiquitously in the cell in 

distinct pools, including mitochondria, peroxisome, endoplasmic reticulum, cytosolic 

and nuclear compartments (Kinnaird et al. 2016). Although it is believed that acetyl-

CoA cannot readily cross organelle membranes, it is plausible that 

compartmentalisation of acetyl-CoA may not be as rigid as one thought. 

Interestingly, this study found that labelling of octanoate carbon into acetyl-CoA 

were consistent with labelling in histone acetylation and other key metabolites 

synthesised from acetyl-CoA, regardless of compartment (McDonnell et al. 2016). 

 

Taken together, these studies demonstrated that reprogramming of fatty acid 

metabolism, specifically FAO are associated with changes in epigenetic 

modifications. More extensive research is needed to determine how metabolic and 

epigenetic processes work together to ensure the appropriate cellular response and 

how these are perturbed in cancer. 

 

7.8 A role for DECR1/2 in neuroendocrine prostate cancer 
 
In Chapters 3 and 4, we described how DECR1/2 are potentially involved in CRPC 

development and resistance to AR targeted therapies. Notably, there was a 

discrepancy in the expression of DECR1/2 across different prostate cancer cell lines 

(androgen-dependent or independent). CRPC and NEPC (neuroendocrine prostate 

cancer) are lethal forms of prostate cancer that remains incurable. After long-term 

ADT, 25-30% of emergent CRPC will acquire an aggressive neuroendocrine (NE) 

phenotype that is AR-negative and lacks any targeted therapy (Sainio et al. 2018). 

Therefore, new treatment options to overcome resistance to ADT and treat incurable 

stages of the disease are urgently sought. 
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Tumour metabolic profiles vary between stages of the disease. For instance, few 

studies have reported an increased aerobic glycolytic phenotype in advanced 

stages of prostate cancer, taking into consideration differences between androgen-

dependent and androgen-independent prostate cancer (Vaz et al. 2012; Li et al. 

2016). However, it is known that early prostate tumorigenesis is accompanied by a 

low glycolytic rate, which is why prostate cancers are poorly detected by FDG-PET. 

A recent study using a multi-omics approach compared metabolic profiles between 

androgen-dependent LNCaP and SCNC LASCPC-01 prostate cancer cells (B. Gao 

et al. 2019). Consistent with literature, the authors found that LNCaP cells exhibit 

increased citrate levels accompanied by increased expression of ACLY and FASN 

compared to LASCPC-01 SCNC cells, suggesting de novo lipogenesis. Of particular 

interest, they found elevated levels of carnitine and short-chain acylcarnitines 

(including propionylcarnitine, C3) in LASCPC-01 SCNC cells compared to LNCaP 

cells. This suggests upregulation of FAO in the more aggressive SCNC cells to 

support rapid tumour growth and proliferation and highlights a potential for targeting 

FAO in high-grade aggressive neuroendocrine prostate cancer. In light of these 

findings, it is possible to speculate the contribution of peroxisomal β-oxidation in 

SCNC cells as propionyl-CoA is one of the major end products of peroxisomal β-

oxidation (Jakobs and Wanders 1995; Westin et al. 2008). In support of this, several 

peroxisomal β-oxidation enzymes were found to be elevated in androgen-

independent PC3 cells (ACOX1 and PECI). Consistently, DECR1/2 expression was 

significantly upregulated in neuroendocrine prostate cancer (NEPC) tissues. On the 

other hand, the fact that some isoforms of glycolytic enzymes are found to partially 

reside in peroxisomes prompts us to rethink about importance of peroxisomes in 

aggressive prostate cancer. In consideration of these observations, it would be 

worth evaluating the potential of targeting DECR1/2 and (mitochondrial or 

peroxisomal) fatty acid oxidation in the context of NEPC. However, the relevance of 

mitochondrial or peroxisomal metabolism at various tumour stages remains elusive. 
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Figure 7.2 An overview of the findings discussed in Chapter 7.  
Mitochondrial and peroxisomal fatty acid β-oxidation (FAO) pathways represent a 

metabolic vulnerability in prostate cancer. This illustration provides an overview of 

the implications in relation to mitochondrial and peroxisomal FAO as well as 

DECR1/2 inhibition. Lipids can be taken up exogenously or via de novo lipogenesis 

in both the mitochondria and peroxisomes. VLCFAs/PUFA-VLCFAs can be 

synthesised in the endoplasmic reticulum via fatty acid desaturation and elongation 

pathways. Mitochondrial DECR1 and peroxisomal DECR2 function to oxidise 

PUFA-LCFA and PUFA-VLCFAs respectively. Mitochondrial β-oxidation produces 

energy/ATP and ROS; whereas peroxisomal β-oxidation generates shortened fatty 

acyl-CoA (which is transported into the mitochondria via CPT1), acetyl-CoA and 

ROS. The exchange of metabolic substrates/intermediates (i.e., fatty acyl-CoAs) as 

well as co-factors (i.e., NAD+/NADH) illustrates the intimate relationship between 

the mitochondria and peroxisomes. Acetyl-CoA generated from the mitochondria 

and peroxisomes via FAO can be utilised in the nucleus for epigenetic modifications, 

for instance histone acetylation, thus altering gene transcription which, in turn, 

regulates numerous (oncogenic) signalling or metabolic pathways such as cell cycle 

progression. PUFAs can react with ROS to generate lipid peroxides, and its 
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accumulation (as a result of DECR1 inhibition) triggers ferroptosis (an iron-

dependent form of cell death). DECR2 inhibition led to significant accumulation of 

multiple lipid classes, particularly in lipid droplet content (for storage), possibly to 

prevent ferroptosis or lipotoxicity, or as a source of energy (by mobilising lipid 

droplets). Certain lipid intermediates may serve as secondary messengers to 

influence signalling pathways. Changes in membrane lipid composition affects 

membrane fluidity (i.e., MUFA/PUFA ratio, cholesterol, or sphingolipid content). Red 

border = upregulation; Blue border = downregulation, of pathway/process in 

prostate cancer. LCFA = long chain fatty acids; VLCFA = very long chain fatty acids; 

PUFA = polyunsaturated fatty acids; CPT1 = carnitine palmitoyltransferase 1; Ac = 

acetylation; TCA = tricarboxylic acid cycle/Kreb’s cycle; ATP = adenosine 

triphosphate; ROS = reactive oxygen species; TAG = triacylglyceride; CE = 

cholesteryl ester; SM = sphingomyelin; Cer = ceramide. 
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7.9 From bench to bedside: strategies for fatty acid oxidation inhibition 
 

 
Figure 7.3 An overview of possible stages of prostate cancer where fatty acid 
oxidation inhibition would be beneficial. AR fuels prostate cancer with energy 

and drives prostate cancer progression. ADT may induce expression of androgen-

repressed genes (i.e., DECR1) or other key FAO-related genes, and activate 

survival pathways to provide energy and promote survival. Targeting FAO in 

conjunction with ADT or AR-targeted therapies may enhance ADT efficacy and 

delay disease progression or treatment resistance to CRPC and NEPC. 

Alternatively, FAO inhibition could be beneficial in patients with CRPC and NEPC. 

AR = androgen receptor; DECR = 2,4 dienoyl-CoA reductase; ATP = adenosine 

triphosphate; ADT = androgen deprivation therapy. 

 

Throughout this dissertation, we have incorporated the use of primary prostate 

cancer and CRPC or treatment-resistant models such as in cell lines (i.e., hormone-

sensitive LNCaP cells, enzalutamide-resistant MR49F cells) and ex vivo patient-

derived explant models representing primary disease. Our data and studies by other 

groups have demonstrated efficacy in targeting FAO in both primary and advanced 

stages of prostate cancer (Blomme et al. 2020; Gao et al. 2019; Kong et al. 2018; 

Flaig et al. 2017; Toren et al. 2016), including overcoming treatment resistance 

(Chapter 5). In Chapters 3 and 4, we identified DECR1 and DECR2, two enzymes 

involved in polyunsaturated fatty acid metabolism to be induced by ADT in prostate 

cancer cells and their expressions correlated with disease progression and overall 

survival. Hence, we propose that co-targeting of adaptive pathways like FAO that 

are induced by ADT or AR-targeting strategies may be essential to delay disease 

progression and promote a more durable therapeutic response. 
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7.10 Conclusion and future directions 
 
The findings of this thesis provide new mechanistic insights into how fatty acid 

oxidation contributes to prostate cancer tumorigenesis, disease progression and 

treatment resistance. Notably, we identified and characterised two previously 

unexplored (mitochondrial and peroxisomal) FAO enzymes, DECR1 and DECR2, 

which represent novel and promising therapeutic targets for future clinical 

development. A novel role for FAO via DECR1 and PUFA oxidation in ferroptosis 

was also revealed. Moreover, we report that DECR1 is an androgen-repressed gene 

and proposed that upregulation of DECR1 may contribute to disease progression 

and CRPC. Furthermore, we explored the potential of targeting peroxisomal β- 

oxidation in advanced metastatic prostate cancer via DECR2 and pharmacological 

repurposing of clinically available peroxisomal β-oxidation inhibitors. In this study, 

the data revealed a novel link between epigenetics (acetyl-CoA availability) and lipid 

metabolism as well as the intimate association between mitochondrial and 

peroxisomal fatty acid metabolism, stimulating new mechanistic questions. 

Importantly, our work shows that FAO is a potential adaptive survival pathway to 

promote prostate cancer progression and treatment resistance. This supports the 

need for new and effective combination strategies to subvert resistance to AR 

targeted therapies as well as delay progression to CRPC. In addition, our data also 

provided a basis for biomarker discovery to facilitate patient stratification when 

metabolic therapies such as FAO inhibitors are considered as therapeutic approach. 

More importantly, these findings may be translatable to other cancers, as we have 

shown in Chapter 3 that DECR1 is also overexpressed in other tumour types apart 

from prostate cancer. 

 

In future studies, the computational integration of omics (lipidomics, transcriptomics 

and proteomics) data would be beneficial to elucidate the interactions between 

cancer metabolism and signalling pathways. For instance, the activation status of 

proteins involved in cell cycle progression is heavily dependent on protein 

phosphorylation status. Moreover, it is becoming increasing clear that metabolism 

is closely associated with post-translational modifications (particularly lipids and 

proteins) and epigenetic modifications. Another important aspect to consider is 

tumour heterogeneity (as discussed in our review). We should consider 
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incorporating the use of patient-derived explants, xenograft models and potentially 

human prostate cancer organoids to provide more robust but clinically-relevant 

mechanistic insight. 

 

Specific future directions relating to the respective Chapters are described below. 

 

7.10.1 Small molecule inhibitors of DECR1 
 
A previous study has solved the crystal structure of DECR1 and its active site 

(Alphey et al. 2005). Initial structure-based drug discovery identified 

thienodiazaborine as a potential ligand for DECR1. Subsequent induced-fit docking 

studies using a human DECR1-NADP-hexanoyl-CoA complex predicted that a D-

2b18-NADP conjugate interacts strongly with several key amino acid residues in the 

binding pocket. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) 

calculations suggests that the conjugate binds with similar affinity as endogenous 

NADP. Future studies will evaluate the efficacy of this compound for DECR1 

inhibition (via acylcarnitine measurement as described in Chapter 3) and prostate 

cancer cell viability using pre-clinical ex vivo and animal models. 

 

7.10.2 Mechanistic insights of DECR2 and peroxisomal β-oxidation  
 
More extensive work is needed to build upon the findings of Chapter 4. First and 

foremost, we will need to validate whether peroxisomal β-oxidation is indeed 

inhibited after targeting DECR2 or TDZ treatment. To elucidate the mechanism by 

which DECR2 may drive prostate cancer tumorigenesis, we aim to perform RNA-

seq using stable DECR2 overexpression LNCaP cells. Why does DECR2 inhibition 

lead to total lipid accumulation, and what are the downstream consequences? What 

is the association between DECR2 or peroxisomal β-oxidation and mitochondrial 

phosphorylation? What are the upstream regulators that converge with DECR2 or 

peroxisomal β-oxidation to drive cell cycle arrest? Is cell cycle progression linked to 

lipid dysregulation after DECR2 knockdown or TDZ treatment? The new findings 

will shed light on the role of peroxisomal β-oxidation in prostate cancer which may 

be important for understanding fundamental biology and development of 

therapeutics. 
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Other relevant research questions to address going forward include: What stage(s) 

of disease is peroxisomal β-oxidation necessary to drive prostate cancer cell 

survival and treatment resistance? Is there a correlation between DECR2 or 

peroxisomal β-oxidation with specific molecular subtypes of prostate cancer? 

Taking into account patient heterogeneity, we will investigate the hallmarks of 

patients or their tumours which will indicate their dependence on mitochondrial or 

peroxisomal β-oxidation to determine their likelihood of response to therapy. Do 

androgens also regulate DECR2, and if not, what other pathway regulators influence 

DECR2 expression? As discussed above, some potential transcriptional regulators 

include PPAR and its co-activator PGC-1, which warrants further investigation. 

Likewise, DECR1 is overexpressed in all stages of prostate cancer despite being an 

androgen-repressed gene which is suggestive of other mechanisms of regulation 

apart from AR. 

 

Altogether, this work provides ground-breaking evidence for the significance of 

targeting FAO in prostate cancer and introduced two novel therapeutic targets for 

prostate cancer patients. The new findings here will spearhead treatment strategies 

that involve targeting mitochondrial or peroxisomal FAO to improve patient 

outcomes or delay treatment resistance and spur further discoveries to understand 

the role of mitochondrial and peroxisomal FAO in cancer.
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