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Abstract  

 
By depletion of minerals at shallow depths, there is a notable growing trend towards mining 

operations in deeper grounds whole the world. However, as the depth of mining and 

underground constructions increases, the occurrence of stress-induced failure processes, such 

as rockburst, both inside the rock masses, away from the mined-out areas, and near excavations 

is inevitable. Rockburst is defined as the sudden and violent failure of a large volume of 

overstressed rock, which can damage structures and workers, and considerably affect the 

economic viability of the projects. The propensity of rocks to bursting behaviour can be 

aggravated by the seismic disturbances induced by different sources in deep underground 

openings. Therefore, the in-depth understanding of the rockburst mechanism and its prediction 

and treatment is of paramount significance. Due to the high-complex and non-linear nature of 

this hazard and the vague relationship between its influential parameters, the common 

conventional criteria available in the literature, cannot predict rockburst occurrence and its risk 

level with sufficient accuracy. However, the machine learning (ML) algorithms, which benefit 

from an inherent intelligence procedure, can be utilised to overcome this problem.           

During the last decade, significant progress has been made in implementing ML techniques to 

predict the propensity of rocks to bursting behaviour; however, the proposed models have 

complex internal structure and are difficult to use in practice. On the other hand, the 

experimental studies in this field are limited to measuring the bursting intensity of rocks under 

true-triaxial loading/unloading conditions. However, the complete stress-strain relation of 

rocks (i.e. the pre-peak and the post-peak regimes) subjected to different cyclic loading 

histories can open new insights into the rockburst/brittle failure mechanism and the long-term 

stability of the underground structures. The common load control techniques (i.e. the axial 

load-controlled and displacement-controlled techniques) cannot be employed directly to 

conduct the systematic cyclic loading tests and capture the failure behaviour of rocks, 

specifically for rocks showing class II/self-sustaining behaviour in the post-peak regime. 

Therefore, most current rock fatigue studies have focused on characterising the evolution of 

mechanical rock properties and damage parameters in the pre-peak regime.  

Given the above, the main focus of this thesis was on developing practical and accurate models 

to predict rockburst-related parameters as well as better understanding the effect of seismic 

disturbances on the failure mechanism of rocks using data-driven and experimental approaches. 
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The robust ML algorithms, such as gene expression programming (GEP), GEP-based logistic 

regression (GEP-LR), classification and regression tree (CART) etc., were programmed and 

employed for the following tasks: (a) Providing a mathematical binary model to estimate the 

occurrence/non-occurrence of rockburst hazard; (b) developing a model to cluster the rockburst 

events based on their risk levels; (c) proposing a novel and practical multi-class classifier to 

distinguish three most common failure mechanisms of squeezing, slabbing and rockburst in 

underground mines based on intact rock properties; (d) quantifying the rockburst maximum 

stress (i.e. the stress level that bursting occurs) and bursting risk level based on the 

comprehensive database compiled from the true-triaxial unloading tests for different rock types 

and (e) predicting the peak strength variation of rocks subjected to cyclic loading histories. The 

obtained results from the above studies proved the high performance and capability of the used 

ML techniques in dealing with high-complex problems in mining projects, such as rockburst 

hazards. The newly proposed models in this research project outperformed the conventional 

rockburst criteria in terms of prediction accuracy and can be used efficiently in underground 

mining projects.          

A new testing methodology namely “Double-Criteria Damage-Controlled Test Method” was 

developed in this research project to measure the complete stress-strain relation of rocks under 

different cyclic loading histories. This methodology, unlike the common testing methods, 

benefits from two controlling criteria, including the maximum stress level that can be achieved 

and the maximum lateral strain amplitude that the specimen is allowed to experience in a cycle 

during loading. The conducted uniaxial multi-level systematic cyclic loading tests on Tuffeau 

limestone proved the capability of this testing method in capturing the post-failure behaviour 

of rocks. The preliminary results also showed that rocks tend to behave more brittle by 

experiencing more cycles. Furthermore, a quasi-elastic behaviour dominated over the pre-peak 

regime during cyclic loading, which finally, resulted in strength hardening. In another 

comprehensive experimental study, 23 uniaxial single-level systematic cyclic loading tests 

were undertaken on Gosford sandstone specimens at different stress levels to unveil the failure 

mechanism of rocks subjected to seismic events. It was found that there exists a fatigue 

threshold (FTS) that lies between 86-87.5% so that below this threshold, no macroscopic 

damage is created in the specimen; rather, strength hardening induced by rock compaction 

occurs. Moreover, according to the evolution of damage parameters and brittleness index, the 

pre-peak and post-peak behaviour of rocks below the FTS was found to be independent of the 

cycle number. However, for the cyclic tests beyond the FTS, the instability of rocks increased 
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with the applied stress level, representing the propensity of rocks to brittle failures like 

rockburst. 

To better replicate the rock stress conditions in deep underground mines and understand more 

about the evolution of some specific rock fatigue characteristics, such as strength hardening, 

FTS and post-peak instability with confining pressure, a comprehensive cyclic loading study 

was carried out on Gosford sandstone in triaxial loading conditions under seven confinement 

levels (𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔). It was found that by an increase in 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 from 10% to 100%, FTS 

decreases from 97% to 80%. An unconventional trend was observed for the stress-strain 

relations of rocks by varying 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔. A transition brittle to the ductile point was identified 

at 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 65%. Therefore, it can be inferred that with an increase in depth in rock 

engineering projects, the propensity of rock structures to brittle failures such as rock bursting 

at stress levels lower than the determined average peak strength can be aggravated. Also, it was 

observed that below the transition point, cyclic loading has a negligible effect on rock 

brittleness; while for 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 80% and 100%, the weakening effect of cyclic loading 

history was visible. According to the results of acoustic emission (AE), tangent Young’s 

modulus (𝐸𝑡𝑎𝑛), cumulative irreversible axial strain (𝜔𝑎
𝑖𝑟𝑟) and axial strain at failure point (𝜀𝑎𝑓), 

it was found that for the hardening cyclic loading tests (with positive peak strength variation), 

the quasi-elastic behaviour was dominant during the pre-peak rock deformation. However, for 

the weakening cyclic loading tests (with negative peak strength variation), more plastic strains 

were accumulated within the rock specimens, which resulted in gradual damage evolution and 

stiffness degradation during cyclic loading before applying final monotonic loading. The peak 

deviator stress of Gosford sandstone under different confining pressures varied between -

13.18% and 7.82%. An empirical model was developed using the CART algorithm as a 

function of confining pressure and the applied stress level. This model is helpful in predict peak 

strength variations of Gosford sandstone.   

Keywords: Rockburst; Machine learning algorithm; Gene expression programming (GEP); 

Classification and regression tree (CART); Multi-class classification; True-triaxial unloading 

test; Failure mechanism; Systematic cyclic loading; Fatigue; Uniaxial cyclic loading test; 

Triaxial cyclic loading test; Acoustic emission; Brittleness; Strain energy; Pre-peak and post-

peak behaviour; Brittleness; Damage; Irreversible Strain         
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Chapter 1 

 
Thesis Overview 

 

1.1. Introductory Background    

With an increase in depth of mining and underground constructions, due to the complex stress 

state induced by different loading conditions (i.e. static, quasi-static and dynamic loadings), 

the occurrence of some destructive phenomena such as rockburst in the confined rock mass 

and/or near excavation is inevitable. Although there is no international consensus on the 

definition of a rockburst, it can be defined as a sudden and violent expulsion of overstressed 

rocks from the surrounding rock mass, resulting in the instantaneous release of accumulated 

strain energy. This phenomenon may cause injury to workers, damage to mine infrastructure 

and equipment, and possibly endanger the economic viability of the project (Cai and Kaiser 

2018). From the viewpoint of the triggering mechanisms and physical modelling approaches, 

rockburst can be categorised into two main groups of strainburst and impact-induced rockburst 

(He et al. 2012). Strainburst, as a self-initiated rockburst, frequently occurs by local stress 

concentration at the edge of underground openings (brittle rocks) in the form of the sudden 

release of stored energy and is usually associated with the development of drifts, shafts, stope 

faces, and mining pillars. However, rockburst occurrence is not only associated with the strain 

energy accumulation in rocks during excavation but also with the human- (e.g. drilling and 

blasting operation, haulage system vibration, mechanical excavation, backfilling etc.) and/or 

environmental-induced (e.g. earthquake, volcanic activities, fault slip etc.) seismic 

disturbances (He et al. 2018). This type of rockburst is known as impact-induced rockburst. 

The deformation and failure characteristics of rocks subjected to seismic disturbances are 

completely different from those under conventional loading conditions (Taheri et al. 2016). 

Many factors affect the rockburst triggering, including the mechanical rock properties, 

excavation geometry, discontinuities, in-situ and mining-induced stresses and construction 

method, which have complicated rockburst mechanism (He et al. 2015). A considerable 

number of studies have been carried out by different researchers on rockburst hazard using 

theoretical and experimental approaches. However, due to the complex nature of rockburst and 



2 

 

many influential parameters, its mechanism is still unclear. Therefore, there exists a remarkable 

theoretical significance and engineering value to deeply understand the rockburst mechanism 

and find solutions for its prediction and treatment.  

1.2. Literature Review and Research Gaps 

1.2.1. Rockburst Occurrence and its Risk Level 

The main focus of researchers during the last decade was on the prediction and control methods. 

From the viewpoint of prediction, rockburst can be assessed in the short term and long term. 

Short-term prediction of rockburst refers to the in-situ measurement techniques, including 

micro-seismic monitoring, microgravity, acoustic emission (AE), geological radar and so forth, 

which can be employed to determine the time and location of bursting. These techniques, 

however, are very costly and time-consuming. On the other hand, long-term prediction of 

rockburst is based on empirical criteria, numerical analyses, rockburst charts and data-driven 

techniques (soft-computing algorithms), which are usually used at the design stage of the 

projects to evaluate the propensity of different areas to bursting. These techniques are relatively 

quick, easy to use, and accurate, which can be implemented straightforwardly by engineers in 

practice. According to the state-of-the-art literature review conducted by (Zhou et al. 2018), 

approximately 100 rockburst empirical criteria have been proposed by different researchers 

from 1996 to the present, mostly based on strength/stress, strain and strain energy parameters. 

These criteria classify rockburst risk level (intensity) into four main classes of “None”, “Light”, 

“Moderate,” and “Strong,” based on the compiled information from the bursting location such 

as failure pattern, the scale of damage, and the sound of rockburst. The simplicity and 

operability are the most prominent advantages of empirical criteria.  

However, the empirical criteria suffer from some critical drawbacks. Firstly, as mentioned 

above, rockburst is affected by many geological, rock mechanical and operational factors, 

whilst the empirical criteria only consider single or few parameters and cannot reflect the 

mutual effects of the influential factors for rockburst assessment. Secondly, the thresholds 

defined by the researchers for the empirical criteria are not unique, even for those having 

similar expressions. This is mainly due to the case study-based nature of these criteria and also 

the limited number of datasets used for their development by scholars. Thirdly, in several 

studies (Jian et al. 2012; Liu et al. 2013; Li et al. 2017), these criteria have shown low prediction 

accuracy, which raises doubts concerning their efficiency. Fourthly, some engineering 

assumptions have been applied to the empirical criteria which may affect their reliability. Given 
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such essential limitations and the complex non-linear nature of rockburst hazard, recently, the 

application of data-driven approaches such as machine learning (ML) algorithms have been 

increased in this field. The ML techniques (supervised and unsupervised algorithms) are 

capable of including more input parameters/predictors, dealing with noisy data, finding the 

latent non-linear relationships between inputs and the corresponding output and selecting the 

most influential parameters on rockburst occurrence using a smart feature selection procedure. 

As such, the ML algorithms do not need any prior knowledge concerning the mechanism of 

the problem and interrelationship of parameters, which is a significant benefit over the common 

criteria and statistical methods.  

A considerable number of ML techniques, including artificial neural network (ANN), Bayesian 

network (BN), support vector machine (SVM), and logistic regression (LR), has been used 

extensively during the last decade by researchers to predict either rockburst occurrence/non-

occurrence (a binary problem) or rockburst risk level (a multi-class problem) (Pu et al. 2019). 

In most of these studies, the uniaxial compressive strength (𝜎𝑐), uniaxial tensile strength (𝜎𝑡), 

maximum tangential stress (𝜎𝜃), elastic strain energy index (𝑊𝑒𝑡) and their combinations have 

been used as input parameters. The results prove the high performance of such algorithms in 

rockburst assessment. However, the ML techniques still have the following limitations: a) most 

of these algorithms are known as black-box techniques and have a complex internal 

computational procedure which is very difficult to understand by human, b) some of these 

techniques are prone to the over-fitting problem and may get stuck in local minima (solutions), 

and c) more importantly, most of the used techniques in the literature are not very practical 

since they cannot offer any mathematical or visual output to let the engineers and researchers 

apply them without using a code. Therefore, to overcome the above problems and provide 

practical and user-friendly models for the prediction of rockburst occurrence and its risk level 

(intensity), it is required to perform a comprehensive statistical analysis on the compiled 

database and utilise robust white-box techniques for modelling. Furthermore, by developing 

practical models that have an apparent internal structure, it will be possible to perform different 

statistical analyses, evaluate the rockburst vulnerability in associations with different input 

parameters, and finally propose an appropriate controlling technique. 

From the viewpoint of rockburst control, several techniques have been proposed as potential 

solutions to mitigate this hazard (Saharan and Mitri 2011; Feng 2017; He et al. 2018): (1) 

Application of energy-absorbing bolts/cables which have a constant resistance under static and 

dynamic loadings and benefit from a large elongation capacity. These bolts/cables compared 



4 

 

with the ordinary ones, have higher resistance against dynamic loads and are capable of 

absorbing energy from multiple impacts, and finally, can maintain the large deformation of 

rock masses; (2) Application of ground preconditioning techniques such as destressing and 

water infusion (hydrofracturing). Destressing can be conducted using destress blasting and 

destress drilling (i.e. boreholes without explosives or pilot tunnels in civil tunnels excavated 

by TBMs) methods. The argument for destressing using blasting operation is that if destressing 

is carried out ahead of an advancing underground opening, the high-stress concentration zone 

would be transferred farther away from the working face into the solid rock mass. Therefore, a 

protective barrier (buffer zone) is created between the working face and the highly-stressed 

zone for the next mining operation. Hydrofracturing, as another rockburst control technique, 

changes the rock properties and decreases the ability of the rock masses in absorbing the strain 

energy (source of bursting). This method is mostly used for coal seams. (3) Application of 

alternative mining methods such as pillarless mining and mining with protective seams/veins 

or sacrifice galleries. This technique can be used in longwall mining of coal seams and can 

reduce the risk of spontaneous failures.  

1.2.2. Rockburst and other Failure Mechanisms  

In deep underground conditions, the rockburst is not the only failure mechanism. Different 

types of failure, such as high-stress slabbing and squeezing, may be observed based on the 

stress distribution around the excavation and the influential uncertain factors. However, to the 

author’s knowledge, there has been no attempt to develop a practical model to distinguish 

different failure mechanisms for over-stressed rock masses in the deep underground. This is 

while the proper measurement of this issue at the initial stages of the projects can help engineers 

to optimise mining layout, apply the adequate supporting system and reduce high costs. 

According to the robustness and the approved capabilities of the ML techniques in dealing with 

high complex non-linear problems, this gap can be addressed properly by incorporating the 

most influential parameters on different failure modes and designing novel hybrid models 

(multi-class classifiers). 

1.2.3. Experimental Studies and Rockburst Maximum Stress  

As mentioned earlier, rockburst can also be investigated using experimental methods. In other 

words, the stress state around the excavations can be simulated using laboratory tests, and 

subsequently, study the failure mechanism/characteristics of rocks under different loading 

histories and loading conditions. Furthermore, the obtained results from these tests can be used 
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to calibrate the numerical models as well as to identify the critical stress conditions leading to 

dynamic failures. These experimental tests include uniaxial compression/tensile tests (Gong et 

al. 2019), conventional triaxial unloading tests (Huang et al. 2001), combined uniaxial and 

biaxial static-dynamic (cyclic) tests and true-triaxial loading/unloading tests (Bagde and Petroš 

2005; He et al. 2010; Su et al. 2018). The conventional uniaxial compression and tensile tests 

usually have been used by the researchers to measure the mechanical rock properties (e.g. 𝜎𝑐, 

𝜎𝑡, elastic modulus and so on), perform the energy analysis based on the obtained stress-strain 

curves and finally, to develop the strength- and strain/energy-based rockburst empirical criteria 

(e.g. rock brittleness index, 𝐵𝐼 = 𝜎𝑐/𝜎𝑡). The combined static-dynamic (cyclic) tests in 

uniaxial, bi-axial and true-triaxial conditions are also significant to reproduce the stress state 

affecting on underground structures (e.g. mining pillars) which are exposed to in-situ stress and 

cyclic loading induced by different seismic sources (e.g. blasting waves). However, among the 

foregoing experimental methods, the true-triaxial unloading test can better simulate physically 

the rockburst process in deep underground conditions.  

The true-triaxial unloading apparatus is capable of applying the in-situ stresses to the specimen 

simultaneously and independently, and by unloading the pressure on one or more surfaces of 

the specimen, can simulate the strain bursting at different locations of underground 

excavations. In studies undertaken using the true-triaxial testing system, the bursting 

propensity of rocks has been investigated based on the evolution of acoustic emission (AE) 

parameters (e.g. AE energy, hits, frequency, b-value), the kinetic energy of ejected rock 

fragments from the free face of the tested rock specimens, ejection velocity parameter, size of 

the rock fragments, the evolution of strain energy components and failure mode. Also, in some 

of these studies, the influence of different parameters such as temperature, moisture content, 

aspect ratio, loading and unloading rate, deviator stress, tunnel axial stress and radial stress 

gradient on rockbursting have been evaluated. Although considerable studies have been 

conducted using the true-triaxial test method for rockburst assessment by different researchers, 

most of them are limited to some specific rock types and loading histories, and there is no 

holistic and convenient approach to quantify the bursting potential of rocks. Rock specimens 

subjected to true-triaxial unloading conditions usually experience an explosion-like failure at a 

specific stress level, known as rockburst maximum stress (𝜎𝑅𝐵). The proper estimation of this 

stress level for different rock types can help engineers to identify rockburst hazards in different 

in-situ stress conditions, to increase the long-term stability of the underground openings as well 

as for numerical studies. This task can be accomplished by compiling a comprehensive 
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database from rockburst tests and the application of robust ML techniques. By doing so, the 

developed model can be used conveniently in practice to predict bursting stress when the 

testing apparatus is not available.  

1.2.4. Seismic Events and Rock Failure Behaviour  

As stated earlier, rockburst can also be triggered by seismic disturbances induced by different 

sources in deep underground mines (i.e. impact-induced rockbursts). These seismic events can 

be replicated as time-dependent loads, i.e. cyclic and dynamic loadings, on a laboratory scale. 

Almost sixteen types of stress waves (waveforms) including ramp wave, sinusoidal wave, 

square wave, sawtooth wave and so forth can be generated in the laboratory to simulate 

rockburst with different magnitudes (He et al. 2018). The literature review (Bagde and Petroš 

2005; Cerfontaine and Collin 2018) shows that different researchers have made tremendous 

efforts during the last decades to unveil the rock fatigue mechanism under different loading 

histories and loading conditions (i.e. uniaxial tests, triaxial tests, flexion tests, freeze-thaw tests 

and wetting and drying tests). Generally, prior studies can be classified into two main groups 

of systematic cyclic loading tests with a constant loading amplitude and damage-controlled 

cyclic loading tests with an incremental loading amplitude. However, systematic cyclic 

loadings having the ramp or sinusoidal waveforms can better represent the seismic events that 

are common during the mining operation. In rock fatigue studies, the results are usually 

analysed based on the information withdrawn from the measured stress-strain relations. Indeed, 

the complete stress-strain relation (i.e. the pre-peak and the post-peak regimes) is an efficient 

tool to manifest the evolution of strain energy (source of rockbursting) during the loading 

process as well as determining rock failure behaviour.  

However, the majority of prior studies have focused on the effect of cyclic loading effect on 

the pre-peak characteristics of rocks (i.e. damage evolution, variation of peak strength and 

deformability parameters and determination of fatigue life and fatigue threshold stress), and, 

no significant progress has been made regarding the post-failure behaviour of rocks under 

cyclic loading. This is while in practical engineering, due to the release of in-situ rock stresses 

in the field, the surrounding rocks experience damage and instabilities in the post-peak state. 

In this regard, the rock brittleness showing the release mode of stored strain energy during 

loading is a very significant parameter in the process of rockburst assessment.  However, the 

common method of brittleness measurement, i.e. 𝐵𝐼 = 𝜎𝑐/𝜎𝑡 , cannot represent the brittleness 

of rocks properly as the physical meaning of this index does not reflect the rock fracturing 
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process as well as 𝜎𝑐 and 𝜎𝑡 can be obtained from each other. Moreover, previous studies show 

that rocks with different 𝜎𝑐 and 𝜎𝑡 may have similar 𝐵𝐼 values representing the narrow range 

of variation of this index (Munoz et al. 2016; Meng et al. 2020). Hence, the rock brittleness 

can be measured in a more reliable manner based on the energy evolution in both the pre-peak 

and the post-peak regimes of rocks. On the other hand, rockburst usually occurs in rocks 

showing Class II behaviour during the failure stage  accompanied by the release of excess 

energy and rock ejection (Li 2021).  

Therefore, the proper measurement of post-peak behaviour of rocks under cyclic loading is of 

paramount significance to quantify the post-peak fracture energy, determine the rock 

brittleness, and consequently, understand more about the mechanism of severe geotechnical 

hazards like rockburst. However, as mentioned above, the current testing methods are not 

capable of capturing the post-peak stress-strain curve of rocks under cyclic loading adequately, 

specifically for brittle rocks which show a snap-back/self-sustaining failure behaviour in the 

post-peak regime. This is relevant to difficulties in controlling the axial load and damage 

extension in the post-peak regime for such rocks. The post-peak behaviour of rocks usually is 

characterised by either Class II (positive post-peak modulus representing an unstable fracture 

propagation) or a combination of Class I (negative post-peak modulus representing stable 

fracture propagation) and Class II behaviour. As it is discussed in detail in Chapters 6 and 7, 

the current axial load-controlled, axial displacement-controlled and lateral displacement-

controlled loading techniques have significant limitations in controlling the axial load in the 

post-peak regime of rocks subjected to systematic cyclic loading. Thus, applying the current 

loading techniques results in a sudden failure without capturing the post-peak response 

properly. Therefore, a new testing methodology having the capability of performing different 

cyclic loading histories and measuring the complete stress-strain relations of rocks in both 

uniaxial and triaxial loading conditions is required. 

1.2.5. Evolution of Rock Fatigue Characteristics  

 In prior rock fatigue studies, little attention has been made to some specific 

phenomena/parameters, including cyclic loading-induced strength hardening, fatigue threshold 

stress and post-peak instability of rocks and their variations at different confining pressures 

(𝜎3) and stress levels. This is while in rock engineering projects, depending on the depth and 

geometry of excavations, surrounding rocks usually experience systematic cyclic loading at 

different confinement levels. Therefore, having an in-depth knowledge regarding the evolution 
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of the foregoing parameters with confinement level can open new insights into the failure 

mechanism of rocks, long-term stability of openings and reinforcement design. This task, 

however, requires applying a triaxial testing method, capable of recording the large lateral 

deformations created in the post-failure stage. 

1.3. Research Objectives and Thesis Layout 

Figure 1.1 represents the objectives, methodology and outcomes of this research schematically. 

According to the introductory background and the research gaps discussed in Sections 1.1 and 

1.2, the present thesis addressed the following objectives: 

1) To develop practical models to predict the occurrence or non-occurrence of rockburst 

hazard in deep underground mines through a binary expression and evaluate the effect 

of different parameters on rockbursting. 

2) To assess rockburst risk levels (intensities) using robust ML techniques and evaluate 

the performance of the empirical criteria. 

3) To measure the propensity of the over-stressed rock masses to different failure 

mechanisms in deep underground conditions. 

4) To develop practical models for predicting both rockburst maximum stress (𝜎𝑅𝐵) and 

rockburst risk index (𝐼𝑅𝐵) based on the results obtained from the true-triaxial unloading 

tests. 

5) To develop a new experimental methodology to capture the post-failure behaviour of 

rocks subjected to systematic cyclic loading in uniaxial loading conditions. 

6) To investigate the effect of pre-peak systematic cyclic loading at different stress levels 

on damage evolution and failure characteristics of rocks in uniaxial conditions. 

7) To investigate the effect of confining pressure on some specific rock fatigue 

characteristics, including fatigue threshold stress, post-peak instability, and strength 

hardening induced by cyclic loading.    

In this thesis, the data-driven approaches and rock mechanics laboratory tests were utilised as 

two main research tools to achieve the above objectives. According to the defined research 

objectives above, this thesis has been structured into eight chapters as follows:  
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The current chapter, Chapter 1, provides an introductory background regarding this research 

and contains topics including problem statement, literature review and research gaps, research 

objectives and thesis layout and conclusions and recommendations.  

In Chapter 2, to address objective 1, a comprehensive study is carried out on the prediction of 

rockburst occurrence/non-occurrence based on a database containing 134 rockburst events, 

compiled from different underground mines. Several significant parameters, including uniaxial 

compressive strength (𝜎𝑐), uniaxial tensile strength (𝜎𝑡), maximum tangential stress (𝜎𝜃) and 

elastic energy index (𝑊𝑒𝑡) are chosen as input parameters, while a binary condition (i.e. “1” 

for occurrence and “0” for non-occurrence) is defined for rockburst as the output parameter. 

The homogeneity of the database is initially evaluated using different statistical tests. New 

models are then developed using three robust supervised ML techniques, including genetic 

algorithm-based emotional neural network (GA-ENN), decision tree-based C4.5 algorithm and 

gene expression programming (GEP) algorithm. Finally, the performance of the proposed new 

models, along with five empirical criteria, are evaluated, and the sensitivity analysis is 

performed on the best model to identify the most influential parameters on rockbursting. The 

results showed the high performance of the ML techniques in solving complex nonlinear 

geotechnical hazards like rockburst and their capability to improve practical models that can 

be used in the pre-design stages of an underground opening. The results of this study were 

published as a journal paper entitled “Long-term prediction of rockburst hazard in deep 

underground openings using three robust data mining techniques”. The details of this paper are 

as follows: 

Shirani Faradonbeh R, Taheri A (2019) Long-term prediction of rockburst hazard in deep 

underground openings using three robust data mining techniques. Engineering with 

Computers 35(2):659–675 (IF= 7.963, Q1) 

In Chapter 3, two robust unsupervised algorithms, self-organizing map (SOP) and Fuzzy C-

Mean (FCM) are used to cluster and identify rockburst risk level (intensity) as a multi-class 

problem based on the collected database (i.e. objective 2). The input parameters in this study 

are the same used in Chapter 2. The output, however, is a qualitative parameter showing 

different degrees of bursting, i.e. “None”, “Light”, “Moderate” and “Strong”, which have been 

defined based on an empirical classification/visual inspection of rockburst location. These two 

applied unsupervised algorithms are capable of finding the latent relationships between the 

https://link.springer.com/article/10.1007/s00366-018-0624-4
https://link.springer.com/article/10.1007/s00366-018-0624-4
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input parameters and the corresponding output during a smart procedure, and finally, link each 

observation (rockburst event) to an appropriate cluster (risk level). In addition to SOM and 

FCM techniques, five empirical criteria are also employed to assess their capability in 

clustering rockburst events. Five common performance measures comprising accuracy (%), 

precision (%), Recall (%), F1 score (%) and Kappa (%) are calculated for all models and results 

are compared. This study revealed the superiority of the unsupervised ML techniques in terms 

of accuracy over the conventional criteria in assessing rockburst intensity. The results of this 

study were published as a journal paper entitled “Application of self-organizing map and fuzzy 

c-mean techniques for rockburst clustering in deep underground projects”. The details of this 

paper are as follows: 

Shirani Faradonbeh R, Shaffiee Haghshenas S, Taheri A, Mikaeil R (2020) Application of 

self-organizing map and fuzzy c-mean techniques for rockburst clustering in deep 

underground projects. Neural Computing and Applications 32(12):8545–8559 (IF= 5.606, 

Q1) 

Chapter 4 aims to address objective 3, i.e. developing a practical and easy-to-use model for 

distinguishing different failure mechanisms of the over-stressed rock masses in deep 

underground conditions. For this aim, a database containing 35 failure events recorded from 

different underground projects is compiled. This database contains a wide range of rock types 

with compressive strength varying from 41 MPa to 335 MPa and includes three common types 

of failure, i.e. squeezing, strainbursting and slabbing. The intact rock properties, including 

uniaxial compressive strength (𝜎𝑐), Brazilian tensile strength (𝜎𝑡), elastic modulus (𝐸) and 

Poisson’s ratio (𝜐), which can be measured straightforwardly in the laboratory and have a 

significant effect on failure mechanisms are chosen as the predictors, while the failure mode is 

selected as the output parameter. In this chapter, a novel hybrid data-driven approach, namely 

gene expression programming based-logistic regression (GEP-LR), is proposed and 

implemented as a multi-class classifier to estimate the failure mechanism based on the given 

intact properties. Three separate binary mathematical models are initially developed using the 

GEP algorithm to reveal the relationship between failure mode and input parameters. Then, a 

probabilistic approach (i.e. LR) is linked to the GEP models to determine the probability of 

occurrence of each failure mechanism with high accuracy. Finally, the failure type having the 

highest probability index is selected as the output. The developed model in this study is 

provided as MatLab codes which researchers and engineers can use in practice to identify the 

https://link.springer.com/article/10.1007/s00521-019-04353-z
https://link.springer.com/article/10.1007/s00521-019-04353-z
https://link.springer.com/article/10.1007/s00521-019-04353-z
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most probable failure type in different locations and consequently apply an appropriate 

controlling technique. The results of this study were prepared as a journal paper entitled 

“Rockburst assessment in deep geotechnical conditions using true-triaxial tests and data-driven 

approaches”. The details of this paper are as follows:  

Shirani Faradonbeh R, Taheri A, Karakus M (2020) The propensity of the over-stressed 

rock masses to different failure mechanisms based on a hybrid probabilistic approach. 

Tunnelling and Underground Space Technology x(x): x-x. The revised format submitted on 

15/06/2021 (Under review) (IF= 5.915, Q1) 

In Chapter 5, a comprehensive study is carried out by combining the results obtained from the 

true-triaxial unloading tests (rockburst tests) and two white-box machine learning (ML) 

algorithms to provide new models for estimating rockburst maximum stress (𝜎𝑅𝐵) and its risk 

index (𝐼𝑅𝐵) (objective 4). The information of rockburst laboratory tests conducted from 2004 

to 2012 are compiled in this study, and a series of statistical analyses are performed to provide 

a homogeneous database (i.e. removing missing values, identifying the outliers and natural 

groups in the original database). The prepared database contains different parameters including 

rock mass properties (i.e. 𝑈𝐶𝑆, 𝐸 and 𝜈), in-situ stresses, depth, rock density and horizontal 

pressure coefficient, which can be considered as input variables, and  𝜎𝑅𝐵 and 𝐼𝑅𝐵, which are 

defined as outputs. However, a systematic strategy, i.e. the stepwise selection and elimination 

(SSE) procedure, is followed to choose the most influential input parameters and subsequently 

decrease the complexity of the final models. The GEP algorithm that whose high performance 

in modelling complex problems was proved in previous chapters, is utilised along with the 

classification and regression tree (CART) algorithm to develop some explicit models (i.e. 

mathematical and graphical models) for estimating rockburst parameters. Validation of the 

developed models is completely verified using seven statistical indices and their corresponding 

thresholds. Parametric analysis is also performed in this study on the best models to evaluate 

the evolution of rockburst parameters by changing each input parameter within its range of 

values. The results point to the applicability of the proposed models for rockburst assessment 

with high reliability. These models can help researchers and engineers to estimate the stress 

level that rocks are prone to bursting and evaluate the rockburst risk level. The results of this 

study were published as a journal paper entitled “Rockburst assessment in deep geotechnical 

conditions using true-triaxial tests and data-driven approaches”. The details of this paper are as 

follows: 
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Shirani Faradonbeh R, Taheri A, Ribeiro e Sousa L, Karakus M (2020) Rockburst 

assessment in deep geotechnical conditions using true-triaxial tests and data-driven 

approaches. International Journal of Rock Mechanics and Mining Sciences 128:104279 (IF= 

7.135, Q1) 

In Chapter 6, by reviewing the prior rock fatigue studies, a holistic classification is proposed 

for cyclic loading tests based on the loading history and load control technique. Also, a new 

experimental methodology, namely “Double-criteria damage-controlled cyclic loading test” is 

introduced in this chapter to capture the complete stress-strain relation of rocks (i.e. the pre-

peak and the post-peak regimes) subjected to systematic cyclic loading (objective 5). In this 

new testing method, two criteria including the maximum axial stress level that cyclic loading 

is applied and the maximum lateral strain amplitude, 𝐴𝑚𝑝. (𝜀𝑙), that a rock specimen is allowed 

to experience in a cycle during loading are adopted to control the axial load and damage 

extension before and after failure point. Tuffeau limestone is used in this study as a soft porous 

rock to evaluate the applicability of the proposed testing method in capturing the post-failure 

behaviour of rocks. A series of multi-level systematic cyclic loading tests are undertaken in 

this study by applying the axial load at approximately 81% of the determined average 𝑈𝐶𝑆, 

and the post-peak behaviour is captured in a controlled manner. Based on the obtained complete 

stress-strain relations, a preliminary evaluation is performed on post-peak behaviour as well as 

the evolution of fatigue damage parameters. Generally, the results represent the success of the 

proposed technique in measuring the full response of rocks under cyclic loading, which can 

open new insights regarding the rock failure mechanism. Also, a strength hardening induced 

by cyclic loading is observed for this rock type which needs to be further investigated.  The 

results of this study were published as a journal paper entitled “Post-peak behaviour of rocks 

under cyclic loading using a double-criteria damage-controlled test method”. The details of this 

paper are as follows: 

Shirani Faradonbeh R, Taheri A, Karakus M (2021) Post-peak behaviour of rocks under 

cyclic loading using a double-criteria damage-controlled test method. Bulletin of 

Engineering Geology and the Environment 80(2):1713–1727 (IF= 4.298, Q1) 

In Chapter 7, a more comprehensive experimental study is undertaken using the developed test 

method in Chapter 6 to investigate the effect of pre-peak systematic cyclic loading applied at 

different stress levels on both pre-peak and post-peak characteristics of Gosford sandstone in 

https://www.sciencedirect.com/science/article/pii/S1365160919306392?casa_token=e4_dtD4FXcgAAAAA:ag0hZ2EhzJJOmqzKkhfnyes4Up_k0aat7CkWyIrcOHeq9kTgP_lkd5EufD-9LQ6DZ2e0BzM4CtA
https://www.sciencedirect.com/science/article/pii/S1365160919306392?casa_token=e4_dtD4FXcgAAAAA:ag0hZ2EhzJJOmqzKkhfnyes4Up_k0aat7CkWyIrcOHeq9kTgP_lkd5EufD-9LQ6DZ2e0BzM4CtA
https://www.sciencedirect.com/science/article/pii/S1365160919306392?casa_token=e4_dtD4FXcgAAAAA:ag0hZ2EhzJJOmqzKkhfnyes4Up_k0aat7CkWyIrcOHeq9kTgP_lkd5EufD-9LQ6DZ2e0BzM4CtA
https://link.springer.com/article/10.1007/s10064-020-02035-y
https://link.springer.com/article/10.1007/s10064-020-02035-y
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uniaxial loading conditions (objective 6). This chapter also intends to examine some specific 

behaviours observed in the previous chapter (e.g. cyclic loading-induced strength hardening) 

in more depth. In this chapter, the uniformity of the testing material is initially evaluated based 

on the performed six 𝑈𝐶𝑆 tests and the measured mechanical rock properties. Seventeen (17) 

single-level systematic cyclic loading tests are then designed at different stress levels ranging 

from 80% to 96% of the average monotonic strength (i.e. in the unstable crack propagation 

stage). This study defines two types of cyclic loading tests: hardening cyclic loading tests (the 

specimens that do not fail during 1500 cycles) and fatigue cyclic loading tests (the specimens 

that fail in the cycle). For both types of tests, the double-criteria damage-controlled cyclic 

loading test method is adjusted in such a way that the post-peak behaviour of rocks is captured 

in a controlled manner, and based on the measured complete stress-strain relations, the damage 

evolution, post-peak instability of rocks (rock brittleness) and strength hardening phenomenon 

is investigated comprehensively. The results of this study were published as a journal paper 

entitled “Failure behaviour of a sandstone subjected to the systematic cyclic loading: Insights 

from the double-criteria damage-controlled test method”. The details of this paper are as 

follows:      

Shirani Faradonbeh R, Taheri A, Karakus M (2021) Failure behaviour of a sandstone 

subjected to the systematic cyclic Loading: Insights from the double-criteria damage-

controlled test method. Rock Mechanics Rock Engineering x(x): x-x (IF= 6.730, Q1) 

In Chapter 8, for the first time, a comprehensive study is carried out in triaxial conditions to 

better replicate the stress state in deep underground openings and consequently understand 

more about the failure mechanism of rocks subjected to cyclic loading under different confining 

pressures. A modified triaxial testing system (by mounting four strain gauges on the Hoek cell 

membrane and connecting them to a half-bridge circuit) is utilised to provide a single lateral 

strain-based feedback signal. With this arrangement, failure behaviour was accurately 

investigated. Seven confinement levels (i.e. 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 10-100%) are defined to evaluate the 

effect of both confining pressure and systematic cyclic loading history on the evolution of some 

specific rock fatigue characteristics, including post-peak brittleness, fatigue threshold stress 

and strength hardening. At each confinement level, the specimens experience 1000 loading and 

unloading cycles at different stress levels. Should the specimen did not fail in cycles, a final 

monotonic loading is applied under lateral strain-controlled loading conditions to capture the 

failure behaviour. The non-destructive AE technique also is employed to analyse damage 

https://link.springer.com/article/10.1007/s00603-021-02553-5
https://link.springer.com/article/10.1007/s00603-021-02553-5
https://link.springer.com/article/10.1007/s00603-021-02553-5
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evolution and support discussions. The results point to the significant effect of confining 

pressure on the failure mechanism (brittle/ductile) of rocks and the long-term stability of the 

underground structures. The obtained results from this study were prepared as a journal paper 

entitled “Fatigue failure characteristics of sandstone under different confining pressures” and 

submitted to the journal of “Rock Mechanics and Rock Engineering”, which is currently under 

review. The details of this paper are as follows: 

Shirani Faradonbeh R, Taheri A, Karakus M (2021) Fatigue failure characteristics of 

sandstone under different confining pressures. Rock Mechanics and Rock Engineering x(x): 

x-x. Submitted on 22/05/2021 (Under Review) (IF= 6.730, Q1) 

Finally, in Chapter 9, conclusions drawn from this research project are summarised and some 

promising recommendations/directions are provided for future rockburst studies.  
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Chapter 2 

Long-term Prediction of Rockburst Hazard in Deep 

Underground Openings using Three Robust Data 

Mining Techniques   

Abstract  

Rockburst phenomenon is the extreme release of strain energy stored in surrounding rock mass 

which could lead to casualties, damage to underground structures and equipment and finally 

endanger the economic viability of the project. Considering the complex mechanism of 

rockburst and a large number of factors affecting it, the conventional criteria cannot be used 

generally and with high reliability. Hence, there is a need to develop new models with high 

accuracy and easy to use in practice. This study focuses on the applicability of three novel data 

mining techniques including emotional neural network (ENN), gene expression programming 

(GEP), and decision tree-based C4.5 algorithm along with five conventional criteria to predict 

the occurrence of rockburst in a binary condition. To do so, a total of 134 rockburst events were 

compiled from various case studies and the models were established based on training datasets 

and input parameters of maximum tangential stress, uniaxial tensile strength, uniaxial 

compressive strength, and elastic energy index. The prediction strength of the constructed 

models was evaluated by feeding the testing datasets to the models and measuring the indices 

of root mean squared error (RMSE) and percentage of the successful prediction (PSP). The 

results showed the high accuracy and applicability of all three new models, however, the GA-

ENN and the GEP methods outperformed the C4.5 method. Besides, it was found that the 

criterion of elastic energy index (EEI) is more accurate among other conventional criteria and 

with the results similar to the C4.5 model, can be used easily in practical applications. Finally, 

a sensitivity analysis was carried out and the maximum tangential stress was identified as the 

most influential parameter, which could be a guide for rockburst prediction.  

Keywords: Rockburst occurrence, Data mining techniques, Emotional neural network, Gene 

expression programming, C4.5 algorithm, Conventional criteria  
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2.1. Introduction 

One of the most important concerns in deep underground activities such as mining and civil 

projects is the occurrence of rockburst phenomenon. Rockburst is an unexpected and severe 

failure of a large volume of over-stressed rock caused by the instantaneous release of 

accumulated strain energy. This phenomenon usually is accompanied by other events such as 

spalling, slabbing, and throwing of rock fragments which could be led to injuries, deformation 

of supporting system, damage to equipment or even collapse of a large area of the underground 

excavation and finally cease the operation (Dong et al. 2013; Adoko et al. 2013; Li et al. 2017; 

Weng et al. 2018) . In deep underground activities, the induced seismicity has a great role in 

rockburst occurrence, therefore, the identification and localization of seismic events are 

essential in rockburst assessment (Dong et al. 2016a, b, 2017a, b). Great number of theoretical 

and experimental studies have been performed since 1930 by many researchers on the 

mechanism, prediction, and control of rockburst (Weng et al. 2017; Akdag et al. 2018). 

However, rockburst still remains an unsolved problem in deep mining (He et al. 2015). 

Rockbursts can be classified using various criteria comprising potential damage, failure pattern, 

scale, and severity. From the viewpoint of damage, it classifies into four classes of none, light, 

moderate, and strong. Based on the failure pattern, there are four types of failures including 

slabby spalling, dome failure, in-cave collapse, and bending failure. In terms of scale, 

rockbursts can be introduced as sparse with the rockburst length lower than 10 m, large-area 

with the rockburst length between 10-20 m and continuous rockburst with the length higher 

than 20 m. The severity of rockbursts can be assessed as a function of failure depth (He et al. 

2012; Wang et al. 2012). According to the influence diagram developed by Sousa and Einstein 

(2007), many factors affect the occurrence of rockburst such as mechanical properties of rock, 

geological circumstances, construction method, and in-situ stress state. Considering the great 

number of effective parameters and the vague mechanism of rockburst, prediction, and control 

of this hazardous phenomenon is a very difficult task. Rockburst can be predicted in short-term 

and long-term. In-situ measurement techniques such as microseismic monitoring system and 

acoustic emission can be used to acquire the exact location and the specific time of rockburst 

occurrence at each stage of the project (i.e. in short-term). However, these techniques are time-

consuming, costly, and require precise surveying strategies. On the other hand, rockburst 

prediction in long-term is mainly based on conventional criteria, numerical models, and data 

mining techniques. Compared to the short-term prediction technique, the long-term one can be 

served as a quick guide for engineers during the initial stages of the project and consequently, 



21 

 

enable them to decide about the excavating and controlling methods (Adoko et al. 2013; Li et 

al. 2017). During the last three decades, various rockburst proneness indices have been 

developed based on strength parameters and rock strain energy (see Table 2.1) [15].  

Table 2.1 A summary of conventional criteria for rockburst prediction 

Criterion Equation Input parameters Rockburst 

discrimination 

Russenes criterion (Russenes 1974) 𝜎𝜃
𝜎𝑐

 𝜎𝜃 , 𝜎𝑐 ≥ 0.25 

Hoek criterion (Hoek and Brown 1980)  𝜎𝑐
𝜎𝜃

 𝜎𝜃 , 𝜎𝑐 ≤ 3.5 

Stress coefficient (Wang et al. 1998) 𝜎𝜃
𝜎𝑐

 𝜎𝜃 , 𝜎𝑐 ≥ 0.3 

Rock brittleness coefficient (Wang et al. 1998) 𝜎𝑐
𝜎𝑡

 𝜎𝑡 , 𝜎𝑐 ≤ 40 

Elastic energy index (Wang et al. 1998) 𝐸𝑅
𝐸𝐷

 
𝐸𝑅 , 𝐸𝐷  ≥ 2.0 

𝜎𝜃 is the maximum tangential stress, 𝜎𝑐 is the uniaxial compressive stress, 𝜎𝑡 is the uniaxial tensile 

stress, 𝐸𝑅 is the retained energy, 𝐸𝐷 is the dissipated energy    

                               

According to Table 2.1, the conventional criteria only consider very few input parameters, 

therefore, cannot take into account a wide range of parameters that may influence rock-

bursting. Data mining is a relatively new computational method with the aim of discovering 

latent patterns and relationships between raw datasets which combines different areas such as 

statistics, machine learning, and so on. Data mining techniques have the capability to deal with 

the datasets containing multiple input and output variables (Berthold and Hand 2003; Jian et 

al. 2012). Hence, they have been used extensively in geosciences (Khandelwal et al. 2017a, b; 

Aryafar et al. 2018; Mikaeil et al. 2018a). As a first attempt, Feng and Wang (1994) developed 

two artificial neural networks (ANNs) to predict and control the probable rockbursts.  Their 

successful experience encouraged other scholars to investigate the applicability of novel data 

mining techniques in rockburst assessment (Zhao 2005; Gong and Li 2007; Shi et al. 2010; 

Zhou et al. 2010). Although the methods used by the scholars could consider more input 

parameters, most of them are black-box, i.e. they cannot provide a clear and comprehensible 

relationship between the input and output parameters. Consequently, the developed models 

using such opaque techniques cannot easily be used in practice. On the other hand, the 

conventional criteria as reported in many studies, could not predict rockburst with high 

accuracy. Therefore, there is still a need to develop transparent and easy to use rockburst 
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models. In the current study, the applicability of three robust data mining techniques including 

genetic algorithm-based emotional neural network (GA-ENN), C4.5, and gene expression 

programming (GEP) in rockburst prediction was evaluated. Although the GA-ENN is a subset 

of black-box techniques, it is a new version of the ANN with enhanced capacities. In this study, 

for the first time, this method is used for a mining and geoscience problem. C4.5 and GEP 

techniques, in spite of the ones used in the previous studies, can provide simple models to 

predict rockburst occurrence. For this purpose, after preparing a database and assessing it 

statistically, three new predictive models were developed based on the training dataset. In 

continuing, a group of unused data (testing data) was fed to the trained models to testify their 

forecasting accuracy using two performance indices. Then, to have a comprehensive 

comparison, the results of the developed models were compared with the results of five 

conventional criteria. In the end, a sensitivity analysis was carried out to evaluate the influence 

of input parameters on the corresponding output.    

2.2. Database Preparation 

A database containing 134 rockburst events was prepared from literature (see the “Appendix 

A”). These rockburst events have been measured in diverse underground projects associated 

with coal and non-coal mines, powerhouse stations, hydropower stations, and so on (Jian et al. 

2012; Dong et al. 2013; Adoko et al. 2013; He et al. 2015). Each record of the database contains 

four parameters which are the maximum tangential stress of surrounding rock (𝜎𝜃), the uniaxial 

tensile strength of rock (𝜎𝑡), the uniaxial compressive strength of rock (𝜎𝑐), and the elastic 

energy index (𝑊𝑒𝑡). Maximum tangential stress (𝜎𝜃) around the excavation is a key factor that 

is affected by the rock stress, groundwater, shape, and diameter of excavation. Since it would 

not be possible to measure these four parameters in association with rockburst occurrence, 

maximum tangential stress can be regarded as a representative parameter of those parameters. 

Rock compressive strength 𝜎𝑐 and tensile strength 𝜎𝑡 are the parameters that represent the 

capability of rocks to store elastic strain energy as well as its tensile and shear failure 

characteristics. Many theories have been proposed to describe the rockburst mechanism, 

however, the most accepted one is “energy theory”. Hence, several energy-based indices have 

been proposed by the researchers and most of them are correlated with each other and similarly 

related to rockburst occurrence. Among them, 𝑊𝑒𝑡 (the ratio of stored strain energy to that 

dissipated energy during a cycle of loading-unloading under uniaxial compression) is the most 

common energy criterion which has a direct influence on rockburst in such a way that with the 



23 

 

increase of 𝑊𝑒𝑡, the probability of rockburst occurrence and its intensity will increase 

(Palmstrom 1995; Jian et al. 2012; Liu et al. 2013; Li et al. 2017). Therefore, in the current 

study, four parameters of 𝜎𝜃, 𝜎𝑡, 𝜎𝑐, and 𝑊𝑒𝑡 were adopted as the input parameters. Table 2.2 

shows the descriptive statistics of the relevant input parameters that are used to develop 

rockburst models. For convenience, the abbreviations of input parameters were considered for 

modelling instead of their symbols; they are characterized by MTS, UTS, UCS, and EEI for 

𝜎𝜃, 𝜎𝑡, 𝜎𝑐, and 𝑊𝑒𝑡, respectively. To understand more about the relationship between the input 

parameters, Pearson correlation coefficients were computed which the results are listed in 

Table 2.3. According to this table, there are moderate correlations for the UTS-UCS and EEI-

UCS if the categorizations proposed by Dancy and Reidy (2004) are followed. 

Table 2.2 Descriptive statistics of the input parameters within the database 

Parameter Abbreviation Unit Minimum Maximum Mean Std. deviation Variance 

𝜎𝜃 MTS MPa 2.6 108.4 51.354 28.567 816.055 

𝜎𝑡 UTS MPa 1.3 22.6 7.519 4.926 24.268 

𝜎𝑐 UCS MPa 20.0 306.6 127.957 59.417 3530.415 

𝑊𝑒𝑡 EEI Dimensionless 0.85 10.6 4.726 2.196 4.824 

Table 2.3 Correlation coefficients between the input parameters 

Variables T UTS UCS EEI 

T 1 0.569 0.589 0.508 

UTS 0.569 1 0.650 0.443 

UCS 0.589 0.650 1 0.636 

EEI 0.508 0.443 0.636 1 

Prior to any modelling, the statistical analysis of original database has high importance. The 

presence of outliers in the database negatively affects the ability of algorithms to find a precise 

relationship between input and output parameters and consequently, decreases the reliability of 

the developed model. Additionally, outliers may create some natural groups with different 

behaviours in a single dataset and if this is the case, it is necessary to identify them and develop 

separate models (Middleton 2000; Tiryaki 2008). The box-plot is a common and standardized 

method to display the distribution of data based on minimum, first quartile (𝑄1), median (𝑄2), 

third quartile (𝑄3), and maximum values. The measurements outside the range of (𝑄1 −
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3(𝑄3 − 𝑄1), 𝑄3 + 3(𝑄3 − 𝑄1)) are defined as extreme outliers and should to be omitted from 

the database, while those which are in the range of (𝑄1 − 1.5(𝑄3 − 𝑄1), 𝑄3 + 1.5(𝑄3 − 𝑄1)) 

are known as suspected outliers which are common in a big database and could be considered 

in modelling (Middleton 2000). Fig. 2.1 shows the box-plots of input parameters. According 

to this figure, the median line is not in the centre of boxes which indicates that the input 

parameters do not have a symmetric distribution. Besides, with the exception of MTS, other 

input parameters have few suspected outliers. 

      

Figure 2.1 Box plots of input parameters 

As a second effort, a principal component analysis (PCA) was conducted to check the existence 

or non-existence of natural groups in the database. PCA is a dimension reduction technique 

that enables the user to transform the initial correlated variables from an 𝑚-dimensional space 

to an 𝑛-dimensional one where 𝑛 < 𝑚. The new uncorrelated variables are nominated as 

principal components (PCs) which are the linear combination of initial variables (Sayadi et al. 

2012; Faradonbeh and Monjezi 2017). To perform this analysis, firstly, the datasets were 

normalized between 0 and 1 using the Min-Max method to eliminate the effect of range. In the 

second step, the correlation matrix was created for input parameters. Then, the eigenvalues and 

eigenvectors corresponding to the previous correlation matrix were calculated for each PC as 

follows: 

  𝑋𝑉 = 𝜆𝑉 → (𝑋 − 𝜆𝐼)𝑉 = 0 → 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝑋 − 𝜆𝐼) = 0 → {
𝜆1, 𝜆2, … , 𝜆𝑛
𝑉1, 𝑉2, … , 𝑉𝑛

           (2.1) 

where 𝑋, 𝜆, and 𝑉 are the matrix of datasets, eigenvalue, and eigenvectors, respectively. 

0

20

40

60

80

100

120

MTS (MPa)

0

5

10

15

20

25

UTS (MPa)

0

50

100

150

200

250

300

350

UCS (MPa)

0

2

4

6

8

10

12

EEI



25 

 

Eventually, the PCs were obtained by multiplying the input parameters in related eigenvectors. 

Fig. 2.2 shows the scree plot of eigenvalues against the number of components. According to 

this figure, 92.872 % of the database variations can be explained just with three first PCs by 

projecting the observations on these axes (i.e. PC1, PC2, and PC3). The scatter plots of PC1-

PC2 and PC1-PC3 are shown in Fig. 2.3. As can be seen, there is not any natural group, i.e. the 

concentration of observations in specific areas in the database. Besides, few suspected outliers 

mentioned in the previous analysis can be seen in this figure as well. As a result, it can be said 

that the prepared database is suitable for further analysis. The output parameter is the rockburst 

occurrence, if any, was nominated as “Yes” otherwise, was nominated as “No”. Since the 

output is a qualitative parameter, we transferred it to a binary parameter, i.e. 0 (No) and 1(Yes). 

 

Figure 2.2 Scree plot of PCA analysis 

PC1 PC2 PC3 PC4

Eigenvalue 2.702 0.567 0.446 0.285

Cumulative 67.559 81.734 92.872 100.000
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Figure 2.3 Scatter plots of PC1-PC2 and PC1-PC3 

2.3. Data Mining Techniques 

2.3.1. Genetic Algorithm-Based Emotional Neural Network (GA-ENN) 

Artificial neural network (ANN), a brain-inspired approach, is a popular branch of soft 

computing techniques firstly invented by McCulloch and Pitts (1943)  and has been used 

extensively in different areas (Jahed Armaghani et al. 2015; Mohamad et al. 2016; 

Saghatforoush et al. 2016; Mikaeil et al. 2018b). ANNs, however, suffer from a fundamental 

problem which is known generally as the curse of dimensionality, i.e. the number of learning 

parameters increases exponentially with increase in the number of neurons in input, hidden, 

-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3 4 5 6

P
C

2
 (

1
4

.1
7

 %
)

PC1 (67.56 %)

-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3 4 5 6

P
C

3
 (

1
1

.1
4

 %
)

PC1 (67.56 %)



27 

 

and output layers that finally lead to high computational complexity (CC). Recently, a limbic-

based emotional neural network (ENN) is developed by Lotfi and Akbarzadeh-T (2014) based 

on the emotional process of the brain with a single layer structure. Unlike ANNs that is formed 

based on a biological neuron, ENNs are based on the interaction of four neural areas of the 

emotional brain comprising thalamus, sensory cortex, orbitofrontal cortex (OFC), and 

amygdala. These four areas using the features of expanding, comparing, inhibiting, and 

exciting, overcome the shortages related to the common ANNs and provide more precise 

solutions. Initial ENNs have a low CC during the learning process, but the number of patterns 

which can be stored is limited that makes a low information capacity (IC) for this method. Lotfi 

and Akbarzadeh-T (2016), thanks to a winner-take-all approach (WTA), introduced a new 

version of ENN with the name of WTAENN which is able to increase the IC of the algorithm. 

The structure of WTAENN with 𝑛 input, one output, and 𝑚 = 1 competitive part is shown in 

Fig. 2.4. According to this figure, original input data (i.e. 𝑝⃗ = [𝑝1, 𝑝2, … , 𝑝𝑛]) first enter to 

thalamus part. In the thalamus, input data will expand by the following equation: 

[𝑝𝑛+1, … , 𝑝𝑛+𝑘] = 𝐹𝐸𝑗=1,…,𝑛(𝑝𝑗)                            (2.2) 

where 𝐹𝐸 is an expander function which can be a Gaussian or Sinusoidal function or in general 

can be defined as: 

𝐹𝐸𝑗=1,…,𝑛(𝑝𝑗) = max
𝑗=1,…,𝑛
(𝑝𝑗)                  (2.3) 

Then, the expanded signals are sent to winner sensory cortex 𝑖∗which is selected if only and 

only if:   

 ∀𝑖  ‖[𝑝1, 𝑝2, … , 𝑝𝑛] − [𝑐1,𝑖∗ , 𝑐2,𝑖∗ , … , 𝑐𝑛,𝑖∗]‖ ≤ ‖[𝑝1, 𝑝2, … , 𝑝𝑛] − [𝑐1,𝑖, 𝑐2,𝑖, … , 𝑐𝑛,𝑖]‖,   1 ≤ 𝑖 ≤

𝑚                     (2.4) 

where 𝑐1, 𝑐2, … , 𝑐𝑛 are the learning weights.  

Afterwards, the signals propagate to the related OFC and amygdala and the weights of 

𝑤1,𝑖, 𝑤2,𝑖, … , 𝑤𝑛,𝑖 from the 𝑖th OFC and the weights of 𝑣1,𝑖, 𝑣2,𝑖, … , 𝑣𝑛,𝑖  from 𝑖th amygdala are 

used during the learning process to determine the final output. During the learning process, 

amygdala receives the imprecise input of 𝑝𝑛+1 from the thalamus to determine the output signal 

of 𝐸𝑎. After that, amygdala receives an inhibiting signal from OFC (𝐸𝑜) which with applying 

the activation function (e.g. 𝑝𝑢𝑟𝑒𝑙𝑖𝑛, 𝑡𝑎𝑛𝑠𝑖𝑔, ℎ𝑎𝑟𝑑𝑙𝑖𝑚 and 𝑙𝑜𝑔𝑠𝑖𝑔 functions), the final 

emotional signal (predicted value) will be achieved. The final output can be calculated by the 

following equation: 

𝐸𝑖(𝑝⃗) = 𝑓(𝐸𝑎𝑖 − 𝐸𝑜𝑖) = 𝑓(∑ (𝑣𝑗,𝑖𝑝𝑗) − ∑ (𝑤𝑗,𝑖𝑝𝑗) − 𝑏𝑖)
𝑛
𝑗=1

𝑛+1
𝑗=1              (2.5) 
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where 𝑣𝑗,𝑖 is the weight of 𝑖th amygdala, 𝑝𝑗 is the input pattern, 𝑤𝑗,𝑖 is the weight belongs to 

𝑖th OFC and 𝑏𝑖 is the related bias.  

Generally, in the process of WTAENN learning, the learning weights (i.e. competitive weights 

(𝑐-weights), amygdala weights (𝑣-weights) and OFC weights (𝑤-weights)) should be adjusted 

(Lotfi and Akbarzadeh-T 2016). 

 

 

Figure 2.4 The structure of proposed WTAENN with the single competitive unit (Lotfi and 

Akbarzadeh-T 2016) 

The genetic algorithm is the most popular optimization algorithm which can minimize a cost 

function to achieve the best solution. The solutions in GA are known as chromosomes and each 

chromosome consists of one or more genes. In relation to WTAENN, a chromosome can be 

expressed as follows: 

𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑘 = [𝑔𝑒𝑛𝑒1, 𝑔𝑒𝑛𝑒2, … , 𝑔𝑒𝑛𝑒𝑚]𝑘               (2.6) 

where, 

𝑔𝑒𝑛𝑒1 = [𝑐1,1, 𝑐2,1, … , 𝑐𝑛,1, 𝑣1,1, 𝑣2,1, … , 𝑣𝑛,1, 𝑤1,1, 𝑤2,1, … , 𝑤𝑛,1, 𝑏1]             (2.7) 

𝑔𝑒𝑛𝑒2 = [𝑐1,2, 𝑐2,2, … , 𝑐𝑛,2, 𝑣1,2, 𝑣2,2, … , 𝑣𝑛,2, 𝑤1,2, 𝑤2,2, … , 𝑤𝑛,2, 𝑏2]             (2.8) 

𝑔𝑒𝑛𝑒𝑚 = [𝑐1,𝑚, 𝑐2,𝑚, … , 𝑐𝑛,𝑚, 𝑣1,𝑚, 𝑣2,𝑚, … , 𝑣𝑛,𝑚, 𝑤1,𝑚, 𝑤2,𝑚, … , 𝑤𝑛,𝑚, 𝑏𝑚]            (2.9) 

After generating the first population, the fitness of chromosomes will be evaluated by the 

following equation: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐶ℎ𝑟𝑜𝑚𝑖) =
1

𝑚
(∑ (𝑌𝑘 − 𝑇𝑘)2)𝑛
𝑘=1

0.5
                    (2.10) 
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where 𝑌𝑘 is the output of the winner part for 𝑘th input pattern, 𝑇𝑘 is the related target and 𝑚 

is the number of training pattern targets. By minimizing the cost function, the best learning 

weights for WTAENN can be obtained (Lotfi et al. 2014; Lotfi and Akbarzadeh-T 2014, 2016).  

2.3.1.1. Rockburst Prediction Using GA-ENN 

In this study, for the first time, the applicability of ENNs was examined to predict rockburst 

occurrence as a geotechnical engineering problem. In GA-based ENN algorithm, it is necessary 

to determine the optimum values of its parameters, i.e. the number of competitive parts (𝑚), 

number of generations, and the population size. The MatLab code was used to develop this 

model. Since the input parameters have different units and range of values, in soft computing 

techniques, it is better to normalize datasets on account of speeding up the modelling process, 

reducing errors, and more importantly preventing the over-fitting phenomenon. So, the input 

parameters were normalized between 0 and 1 using the following equation: 

𝑋𝑛𝑜𝑟𝑚 = 1 −
𝑋𝑚𝑎𝑥−𝑋𝑖

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                (2.11)  

where 𝑋𝑖, 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥, and 𝑋𝑛𝑜𝑟𝑚  are 𝑖th actual value, minimum value, maximum value and 

the normalized value of an input parameter, respectively.    

In the following, the initial database was divided into three parts of training (70% of the 

database), validation (10% of the database), and testing (20% of the database) to conduct a 

series of sensitivity analysis and subsequently to find the best combination of parameters. In 

the first analysis, the parameters of 𝑚 and activation function were fixed on 1 and “𝐻𝑎𝑟𝑑 −

𝑙𝑖𝑚𝑖𝑡”, and the values of population size and the number of generations increased from 20 to 

300. Fig. 2.5 shows the variation of mean square error (MSE) as the fitness function in each 

run. According to this figure, after generation no. 100, the MSE value remained constant and 

no change was observed up to generation no. 300. So, the value of 100 was selected as the 

optimum value for the parameters of population size and generation number. An increase in 

MSE can be seen between generations 60 to 100, which may refer to the stochastic mechanism 

of ENN algorithm for searching and finding the best combination of training coefficients (i.e. 

𝑐, 𝑣, and 𝑤 weights) among all the possible solutions. Similarly, the second analysis with the 

aim of finding the optimum value of 𝑚 was executed by varying its value from 1 to 40 and 

recording the corresponding MSE values. The 𝑚 = 1 provided the minimum value of MSE. 

Eventually, the algorithm was executed for several times based on the obtained optimum values 

for parameters and the best model was identified. Table 2.4 indicates the characteristics of the 

best GA-ENN model.  
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Figure 2.5 Variation of fitness function for different values of generation number and 

population size 

Table 2.4 Characteristics of developed GA-ENN model 

Parameter Value 

Input variables MTS, UTS, UCS, EEI 

Output variable Rockburst occurrence 

Yes: 1 

No: 0 

Generation number 100 

Population size 100 

Number of competitive units (m) 1 

Activation function Hard-limit 

2.3.2. C4.5 Algorithm 

One of the best-renowned data mining techniques is decision tree (DT). The decision tree is a 

nonparametric technique which benefits from simple and interpretable structure, low 

computational cost and the ability to represent graphically. DTs have proven their efficiency 

for various purposes such as classification, decision making and as a tool to make a relationship 

between independent variables and the dependent one (Breiman et al. 1984; Salimi et al. 2016; 

Hasanipanah et al. 2017b; Khandelwal et al. 2017a). The most important characteristic of a DT 

as a “white box” technique is its simple graphical structure which enables the user to clarify 

the relations between variables easier, while other machine learning techniques such as ANNs 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300

M
S

E

Generation number and population size



31 

 

have a vague internal computational procedure, which means the results are difficult to 

interpret. In the case of having a problem with many variables which act in reciprocally and 

non-linear ways, finding a comprehensive model may be very difficult. In these circumstances, 

DT can be a suitable alternative which is able to break down (sub-divide) the initial space into 

smaller parts so that the interactions are easier to manage. A decision tree is a collection of 

nodes (root node, internal nodes, and terminal or leaf nodes), arranged as a binary tree. The 

root node and internal nodes belong to decision stage and represent specific input variables 

which are connected together based on a smaller range of values. The terminal nodes, show the 

final classes (Coimbra et al. 2014; Jahed Armaghani et al. 2016; Liang et al. 2016; Hasanipanah 

et al. 2017a). There are various types of decision trees, including classification and regression 

tree (CART), Chi-squared automatic interaction detection (CHAID), C4.5, ID3, quick, 

unbiased, efficient statistical tree (QUEST). C4.5 proposed by Quinlan (1993), is a powerful 

classification algorithm which is derived from the development of ID3 algorithm and is able to 

handle numeric attributes, missing values, and noisy data (Ghasemi et al. 2017). C4.5 identifies 

decision tree classifiers and using a divide-and-conquer method grows the decision tree. The 

C4.5 algorithm acts in two main stages: tree constructing and pruning. Tree constructing starts 

by calling the training dataset. All of the datasets firstly are concentrated in the root node and 

then divided into homogeneous sub-nodes based on a modified splitting criterion, called gain 

ratio. The attribute with the highest normalized information gain is chosen to make the decision 

(Quinlan 1993). This splitting will continue till the stopping condition is met, i.e. all instances 

in a node belong to the same class and this node is identified as a leaf node. The generated DT 

by training dataset often is prone to the over-fitting problem because of having a great number 

of branches and such DTs fail to classify the new unused data. To overcome this problem, there 

is a need to prune the tree. Pruning is the process of reducing decision tree size by eliminating 

parts of the tree which have little power for classifying and this process finally led to increasing 

the accuracy of the classifier and its reliability (Quinlan 1993; Ture et al. 2009; Hssina et al. 

2014). 

2.3.2.1. Rockburst Prediction Using C4.5  

In this study, the C4.5 algorithm was applied to the training dataset using WEKA (Waikato 

Environment for Knowledge Analysis) software. There are two main parameters which should 

be adjusted to develop a high-performance C4.5 classifier including confidence factor (CF) and 

the minimum number of instances (MNI) (data samples) per leaf. The CF is used to compute a 
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pessimistic upper bound on the error rate at a leaf/node. The smaller this value, the more 

pessimistic the estimated error is and generally the heavier the pruning. If a CF greater than 0.5 

is chosen, then the pruning will be done on the basis of unchanged classification error on the 

training dataset and this is equivalent to turning off the pruning.  The MNI affect the volume 

(i.e. the complexity) of the developed tree (Bui et al. 2012). Hence, according to Bui et al. 

(2012) and Ghasemi et al. (2017), the CF and MNI varied from 0.1 to 0.5 and 1 to 20 

respectively, and the corresponding accuracy values were recorded. Finally, the optimum 

values of 0.25 and 2 were determined for CF and MNI, respectively. After adjusting the C4.5 

parameters in WEKA software, the model was executed and the corresponding tree was 

obtained. Fig. 2.6 displays the results obtained by this algorithm which contains a root node, 5 

internal nodes, and 7 leaves. There are two numbers in the parentheses of leaf nodes, which the 

first number belongs to the number of instances in that node and the second number shows the 

number of misclassified instances. The process of rockburst prediction using the developed 

tree model is very simple. For example, taking into account the values of 4.6, 3, 20, and 1.39 

for MTS, UTS, UCS, and EEI respectively, and passing through the path of 𝑀𝑇𝑆 ≤

25.7, 𝑈𝑇𝑆 ≤ 4.55, 𝐸𝐸𝐼 ≤ 2.04 and 𝑈𝐶𝑆 ≤ 30, the leaf node Yes (2,0) can be achieved which 

shows the occurrence of rockburst. 

  

Figure 2.6 Developed C4.5 tree model based on training dataset 

2.3.3. Gene Expression Programming (GEP)     

During the progress of evolutionary algorithms (EAs) since 1975, Ferreira (2002) introduced a 

new powerful population-based algorithm called gene expression programming (GEP) that 
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takes advantage of basic GA and genetic programming (GP) methods. The main goal of the 

GEP is to find a rational mathematical relationship between the independent variables and the 

corresponding dependent in such a way that the defined fitness function reaches its minimal 

value. In GEP, possible solutions are in the form of fixed-length coded chromosomes consist 

of two groups of entities: terminals and functions. Terminals can be both of input variables and 

user-defined constant values. Functions are algebraic symbols e.g. +, −, ×, /, 𝐿𝑛, 𝐿𝑜𝑔 and so 

on. The chromosomes can consist of one or more genes, and each gene comprises two parts of 

the head and tail so that the genetic operators create effective changes in these areas to produce 

better solutions. In contrast to multiple non-linear regression techniques, there is no need to 

consider a pre-defined mathematical framework (e.g. exponential, power, logarithmic, etc.) for 

GEP to develop a model. As a matter of fact, the GEP algorithm during its intelligent search is 

capable to find the optimum combination of terminals and functions to provide a predictive 

equation with enough accuracy. As shown in Fig. 2.7, the process of GEP modelling starts with 

the random generation of chromosomes in Karva language (a symbolic expression of GEP 

chromosomes) which are then expressed and executed as the tree and mathematical structures, 

respectively. Then, the generated chromosomes are evaluated according to the pre-defined 

fitness function. Bests of the first population are copied into the next generation, and the others 

are influenced by genetic operators, including selection and reproduction (i.e. mutation, 

inversion, transposition, and recombination). Finally, the modified chromosomes are 

transferred to the next generation and this process will continue until the stopping criteria 

(maximum generation number or reach to pre-defined fitness) are met (Ferreira 2002; Güllü 

2012; Armaghani et al. 2016; Faradonbeh et al. 2016, 2018). The detailed information 

concerning genetic operators and their mechanisms can be found in (Ferreira 2002). 
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Figure 2.7 GEP flowchart 

2.3.3.1. Rockburst Prediction using GEP 

The GeneXproTools 5.0, an exceedingly flexible modelling tool designed for function finding, 

classification, time series prediction, and logic synthesis, was implemented to classify and 

predict rockburst events. This software classifies the value returned by the evolved model as 

“1” or “0” via the 0/1 rounding threshold. If the returned value by the evolved model is equal 

to or greater than the rounding threshold, then the record is classified as "1", "0" otherwise. 

Similar to the GA-ENN and C4.5 modelling, 80% of the database was applied to the software 

as the training dataset to develop the model. In the first step, a fitness function for the algorithm 

should be defined. The sensitivity/specificity with the rounding threshold of 0.5 was used for 

this aim. The sensitivity/specificity (𝑆𝑆𝑖) of a chromosome as a solution can be calculated by 

the following equation:  

𝑆𝑆𝑖 = 𝑆𝐸𝑖 . 𝑆𝑃𝑖                  (2.12) 
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2) Inversion (a fragment is inverted in the head)

3) Transition (IS type: a fragment is copied to the head)

4) Recombination (one-point type: Two chromosomes exchnage a fragment)
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where 𝑆𝐸𝑖 is the sensitivity and 𝑆𝑃𝑖 is the specificity of the chromosome 𝑖, and are given by 

the following formulas: 

𝑆𝐸𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
                  (2.13) 

𝑆𝑃𝑖 =
𝑇𝑁𝑖

𝑇𝑁𝑖+𝐹𝑃𝑖
                  (2.14) 

where 𝑇𝑃𝑖, 𝑇𝑁𝑖, 𝐹𝑃𝑖, and 𝐹𝑁𝑖 represent, respectively, the number of true positives, true 

negatives, false positives, and false negatives. 𝑇𝑃𝑖, 𝑇𝑁𝑖, 𝐹𝑃𝑖, and 𝐹𝑁𝑖 are the four different 

possible outcomes of a single prediction for a two-class case with classes “1” (Yes) and “0” 

(No). A false positive is when the outcome is incorrectly classified as “Yes” (or positive) when 

it is in fact “No” (or negative). A false negative is when the outcome is incorrectly classified 

as “No” when it is in fact “Yes”. True positives and true negatives are obviously correct 

classifications. Keeping track of all these possible outcomes is such an error-prone activity, 

that they are usually shown in what is called a confusion matrix. Thus, the fitness value of 

chromosome 𝑖 is evaluated by the following equation: 

𝑓𝑖 = 1000. 𝑆𝑆𝑖                             (2.15)  

which obviously ranges from 0 to 1000, with 1000 corresponding to the maximum prediction 

accuracy. In the second step, terminals and functions which are kernels of generated 

chromosomes should be assigned. Terminals are input parameters (i.e. MTS, UTS, UCS, and 

EEI). The most common arithmetic functions were selected as follows: 

𝐹 = {+,−,×,/, 𝑆𝑞𝑟𝑡, 𝐸𝑥𝑝, 𝐿𝑛, ^2, ^3, 3𝑅𝑡}              (2.16) 

The goal of GEP modelling is to develop a rockburst index in the form of 𝑅𝐵𝐼 =

𝑓(𝑀𝑇𝑆, 𝑈𝑇𝑆, 𝑈𝐶𝑆, 𝐸𝐸𝐼). The third step is to determine the structural parameters, i.e. the 

number of genes and head size. These two parameters affect the length of the generated 

chromosomes and subsequently the complexity of the proposed formula. By trial and error, the 

best values of 4 and 9 were obtained for the number of genes and head size, respectively. In 

the fourth step, the ratios of genetic operators (i.e. mutation, inversion, transposition, and 

recombination) as chromosomes modifiers should be determined. A set of values has been 

recommended by the researchers for genetic operators that their validity has been confirmed in 

many engineering problems (Ferreira 2006; Kayadelen 2011; Güllü 2012; Khandelwal et al. 

2016). So, these values were set for the operators in the current study as well (see Table 2.5). 

As the final step, since we face multi-genic chromosomes, we need to define a linking function 
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to link genes to each other. Addition (+) is a most common linking function which was used 

for this aim. After adjusting the GEP parameters (Table 2.5), the model was executed in training 

mode for 2000 generations and the results were recorded. Eq. 2.17 shows the developed 

rockburst index based on GEP algorithm. By feeding the input parameters to the Eq. 2.17 and 

comparing the calculated value with the Eq. 2.18, the rockburst occurrence can be determined.   

𝑅𝐵𝐼 =  𝐸𝑥𝑝(𝑀𝑇𝑆) −
𝑈𝐶𝑆3

𝐸𝐸𝐼
+ 2𝑇 +

𝐸𝑥𝑝(
𝑀𝑇𝑆

𝐸𝐸𝐼
)

(𝑈𝑇𝑆−𝐸𝑥𝑝(𝑈𝑇𝑆))×√
𝐸𝐸𝐼

𝑈𝑇𝑆

+ 𝐸𝐸𝐼 − 𝐸𝐸𝐼9          (2.17) 

 𝑅𝐵𝐼∗ = {
1 (𝑌𝑒𝑠) 𝑅𝐵𝐼 ≥ 0.5
0 (𝑁𝑜) 𝑅𝐵𝐼 < 0.5

               (2.18) 

Table 2.5 Characteristics of developed GEP models 

Type of setting Parameter 

General setting 

Terminal set MTS, UTS, UCS, EEI 

Function set +,−,×,/, 𝑆𝑞𝑟𝑡, 𝐸𝑥𝑝, 𝐿𝑛, ^2, ^3, 3𝑅𝑡 

Fitness function Sensitivity/Specificity 

Population size  90 

Number of generations 2000 

Head size 9 

Number of genes 4 

Linking function Addition (+) 

Genetic operators 

Mutation rate 0.044 

Inversion rate 0.1 

Transposition rate 0.1 

One-point recombination rate 0.3 

Two-point recombination rate 0.3 

Gene recombination rate 0.1 

 

2.4. Performance Evaluation of the Proposed Models 

In this section, the remaining testing datasets (27 cases) were applied to the developed models 

of GA-ENN, C4.5, and GEP to evaluate their prediction performance. For further evaluation, 

five conventional criteria mentioned in Table 2.1 were considered as well. Table 2.6 shows the 

obtained results from eight different models in testing stage. A confusion matrix is a useful tool 

to describe the performance of a classifier on a set of test data. Each row of the matrix 
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represents the instances in an actual class while each column represents the instances in a 

predicted class (or vice versa). Table 2.7 shows the confusion matrices of the developed 

models. According to Tables 2.6 and 2.7, GA-ENN and GEP models have the equal number of 

misclassified cases (i.e. 4 cases), while this number is equal to 9 for stress coefficient and 

brittleness coefficient criteria. In the following, two indices of root mean squared error (RMSE) 

(an index to measure the deviation between the actual and predicted data) and the percentage 

of the successful prediction (PSP) (the percentile quotient of the number of correct predictions 

to the total number of testing data) were used to investigate the accuracy and capability of the 

models. Ideally, RMSE and PSP are equal to 0 and 100%, respectively. The results of 

performance indices are shown in Table 2.8. As can be seen in this table, all three new 

constructed models (i.e. GA-ENN, GEP, and C4.5) have higher accuracy and lower estimation 

error compared with five conventional criteria. Table 2.8 also shows that, two models of GA-

ENN and GEP with the similar results outperformed the C4.5. On the other hand, EEI criterion 

acted just like the C4.5 model which shows that this criterion with its simple formula can be 

used effectively to predict rockburst occurrence in engineering projects. Fig. 2.8 compares the 

prediction performance of the developed models.  

Table 2.6 Results of validation of developed models with testing dataset 

Developed models 
Actual 

Output 

Input parameters No. 

EEI BC SC 
Hoek 

criterion 

Russenes 

criterion 
GEP C4.5 

GA-

ENN 
EEI UCS UTS MTS 

1 1 1 1 1 1 1 1 1 4.1 69.1 3.2 45.7 1 

1 1 0 0 1 1 1 1 1 9 235 9.5 62.4 2 

1 1 0 0 0 1 1 1 1 9.1 256.5 18.9 55.6 3 

1 1 1 1 1 1 1 1 1 3.7 67.6 2.7 41.6 4 

1 1 1 1 1 1 1 1 1 3 88 3.1 30.3 5 

1 1 0 0 0 1 1 1 1 2.5 122 12 28.6 6 

0 1 0 0 0 0 1 0 0 1.39 20 3 4.6 7 

0 1 0 0 0 0 1 0 0 1.39 20 3 2.6 8 

1 1 0 0 0 1 1 1 1 5.2 156 10.8 33.6 9 

0 1 0 1 1 0 0 1 1 0.85 80 3 23 10 

1 1 1 1 1 1 1 1 0 5.5 180 6.7 80 11 

1 1 0 0 0 0 1 0 1 2.11 153 4.48 19 12 

0 1 1 1 1 0 0 1 0 1.6 53 3.9 38.2 13 

1 1 1 1 1 1 1 1 1 5.1 120 5 73.2 14 

0 1 0 0 0 0 1 0 0 1.39 20 3 3.8 15 

1 1 1 1 1 1 1 1 1 3.97 190.3 17.13 89.56 16 
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1 1 0 0 0 0 0 0 0 7 171.5 6.3 18.8 17 

1 1 1 1 1 1 1 1 1 5.76 170 12.1 105.5 18 

1 1 1 1 1 1 1 1 1 4.8 70.1 2.4 39 19 

0 0 1 1 1 0 0 1 0 1.8 90 2.1 27.8 20 

1 1 1 1 1 0 1 1 1 6.6 88.7 3.7 30 21 

1 1 1 1 1 1 1 1 1 3.7 66.6 2.6 40.6 22 

1 1 0 0 0 0 0 0 0 5.7 115 5 11 23 

1 1 1 1 1 1 1 1 1 2.78 85.8 7.31 59.82 24 

0 1 0 0 0 0 0 0 0 1.3 52 3.7 7.5 25 

1 1 0 0 0 0 0 0 0 4.7 105 4.9 11 26 

1 1 1 1 1 1 1 1 1 5.1 120 5 57.6 27 

BC brittleness coefficient criterion, SC stress coefficient criterion, EEI elastic energy index criterion 

Table 2.7 Confusion matrices of developed models in testing stage 

Number of 

misclassified cases 

Confusion matrix Model 

4 

Predicted  GA-ENN 

Yes No   

3 7 No Actual 

16 1 Yes  

4 

Predicted  GEP 

Yes No   

1 9 No Actual 

14 3 Yes  

5 

Predicted  C4.5 

Yes No   

4 6 No Actual 

16 1 Yes  

7 

Predicted  Russenes criterion 

Yes No   

3 7 No Actual 

13 4 Yes  

8 

Predicted  Hoek criterion 

Yes No   

3 7 No Actual 

12 5 Yes  

9 

Predicted  Stress coefficient criterion 

Yes No   

3 7 No Actual 

11 6 Yes  

9 

Predicted  Brittleness coefficient criterion 

Yes No   

9 1 No Actual 
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17 0 Yes  

5 

Predicted  Elastic energy index criterion 

Yes No   

4 6 No Actual 

16 1 Yes  

 

Table 2.8 Summary of the results based on test datasets 

Model 

Performance index 

RMSE  PSP (%) 

GA-ENN 0.385  85.185 

GEP 0.385  85.185 

C4.5  0.431  81.481 

Elastic energy index criterion 0.430  81.481 

Russenes criterion 0.509  74.074 

Hoek criterion 0.544  70.370 

Stress coefficient criterion 0.577  66.667 

Brittleness coefficient criterion 0.577  66.667 

 

 

Figure 2.8 Comparison of performance indices for different models in testing stage (SC: 

stress coefficient criterion, BC: brittleness coefficient criterion) 
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2.5. Sensitivity Analysis 

In this section a sensitivity analysis is performed to evaluate the effects of input parameters on 

rockburst prediction models. To this end, the relevancy factor (Kamari et al. 2015) was used 

which is calculated by Eq. 2.19. 

𝑟 =
∑ (𝐼𝑖,𝑘−𝐼𝑘̅)(𝑃𝑖−𝑃̅)
𝑛
𝑖=1

√∑ (𝐼𝑖,𝑘−𝐼𝑘̅)
2∑ (𝑃𝑖−𝑃̅)

2𝑛
𝑖=1

𝑛
𝑖=1

                (2.19) 

where 𝐼𝑖,𝑘 and 𝐼𝑘̅ are the 𝑖th and average values of the 𝑘th input parameter, respectively, 𝑃𝑖, and 

𝑃̅ are the 𝑖th and average values of the predicted rockburst., respectively, and 𝑛 is the number 

of rockburst events. The higher 𝑟 value the more influence the input has in predicting the output 

value. Fig. 2.9 shows the 𝑟 values. As can be seen in this figure, the maximum tangential stress 

(MTS) is the most influential parameter in rockburst prediction, and uniaxial compressive 

strength (UCS) has the lowest impact. These results are in agreement with those obtained by 

others in a recent study (Li et al. 2017).  

 

Figure 2.9 Relevancy factor of each input parameter 

2.6. Discussion 

A supplementary explanation regarding the proposed three models is contained in this section. 

As previously mentioned, this is the first attempt in the application of ENNs in earth sciences, 

and its results were promising. Accordingly, it is highly recommended to check the 

applicability of ENNs in combination with other meta-heuristic algorithms, as hybrid models, 

for different aims (e.g. classification, prediction, and minimization) for mining and 
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geotechnical engineering applications. However, as a black-box method like ANN, GA-ENN 

neither can provide any equation nor a visual pattern for users. This may be considered as a 

disadvantage for this algorithm, but it is possible to overcome this issue by using this technique 

to find some optimum coefficients of the multiple non-linear regressions in future studies. In 

contrast to GA-ENN, C4.5 has a very simple modelling mechanism. Its tree structure easily 

can be adopted as a guide by engineers in the projects to predict the rockburst occurrence just 

by tracking the values of inputs within the branches of the tree. In some cases, this algorithm 

may provide large and complex trees according to the defined controlling parameters, which 

finally decrease the applicability of the developed trees. Besides, C4.5 algorithm on account of 

its innate PCA characteristic may remove some input parameters during the training stage to 

increase the accuracy of the final output. Hence, the process of C4.5 modelling requires 

extensive modelling experiences. The common multiple non-linear regressions need a pre-

defined mathematical structure, while the GEP algorithm is able to find the latent relationship 

between the input and output parameters without any presupposition. This can be introduced 

as the most important characteristic of GEP algorithm compared with the GA-ENN and C4.5 

algorithms. In addition, GEP does not have the limitations of previous methods and is more 

practical. In the end, it is worth mentioning that the developed models are valid just in the 

defined ranges of values of inputs and for the new datasets out of these ranges, the models 

should be adjusted again.  

2.7. Summary and Conclusions 

This study was intended to assess rockburst hazard in deep underground openings using three 

renowned data mining techniques including GA-ENN, C4.5, and GEP. A database including 

the maximum tangential stress of the surrounding rock, the uniaxial tensile strength of rock, 

the uniaxial compressive strength of rock and the elastic energy index of 134 rockburst 

experiences in various underground projects was compiled. After a statistical analysis, the GA-

ENN, C4.5, and GEP models were developed based on training datasets. In the following, the 

prediction performance of the models was evaluated by applying unused testing datasets. The 

results of the new models were compared with five conventional rockburst prediction criteria 

via performance indices of root mean squared error (RMSE) and percentage of the successful 

prediction (PSP). Finally, a sensitivity analysis was conducted to know about the influence of 

input parameters on rockburst using relevancy factor. The following conclusions has been 

drawn: 
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1) According to the results of statistical analysis, the original database neither has extreme 

outliers nor natural groups. So, it is suitable for further analysis.  

2) According to the performance indices values, the models of GA-ENN, GEP, and C4.5 

have high accuracy in predicting rockburst occurrence, respectively, while the criteria 

of stress coefficient and brittleness coefficient with the same performance indices 

values have the lowest capability for predicting.  

3) Strain energy index (EEI) with the RMSE of 0.430 and PCP of 81.481% like C4.5 

model, can be a beneficial tool to predict rockburst occurrence in practice.  

4) The maximum tangential stress (MTS) is the most influential parameter to predict 

rockburst occurrence. This parameter should be controlled during the design of 

underground excavations by optimizing their geometry.  

Appendix A  

Table A.1 Database used in this article for rockburst analysis 

No. MTS (MPa) UCS (MPa) UTS (MPa) EEI Rockburst Reference 

1 89.56 190.3 17.13 3.97 Yes (Dong et al. 2013) 

2 89.56 170.28 12.07 5.76 Yes  

3 89.56 187.17 19.17 7.27 Yes  

4 56.1 131.99 9.44 7.44 Yes  

5 54.2 133.99 9.09 7.08 Yes  

6 70.3 128.52 8.73 6.43 Yes  

7 48.75 180 8.3 5 Yes  

8 62.5 175 7.25 5 Yes  

9 75 180 8.3 5 Yes  

10 57 180 8.3 5 Yes  

11 89 236 8.3 5 Yes  

12 50 130 6 5 Yes  

13 108 140 8 5.5 Yes  

14 18.8 178 5.7 7.4 No  

15 11 115 5 5.7 No  

16 55.4 176 7.3 9.3 Yes  

17 30.9 82.56 6.5 3.2 Yes  

18 89 128.6 13.2 4.9 Yes  

19 12.3 237.1 17.66 6.9 No  

20 55.6 256.5 18.9 9.1 Yes  

21 91.3 225.6 17.2 7.3 Yes  

22 61 171.5 22.6 7.5 Yes  

23 34.15 54.2 12.1 3.17 Yes  

24 108.4 138.4 7.7 1.9 Yes  

25 69.8 198 22.4 4.68 Yes  

26 105 171.3 22.6 7.27 Yes  

27 105 237.16 17.66 6.38 Yes  

28 105 304.21 20.9 10.57 Yes  

29 25.49 54.2 2.49 3.17 Yes  
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30 72.07 147.09 10.98 6.53 Yes  

31 21.8 160 5.2 2.22 No  

32 20.9 160 5.2 2.22 No  

33 12.1 160 5.2 2.22 No  

34 75 170 11.3 9 Yes  

35 43.4 123 6 5 Yes  

36 62.6 165 9.4 9 Yes  

37 30 88.7 3.7 6.6 Yes  

38 105 128.61 13 5.76 Yes  

39 105 304 9.12 5.76 Yes  

40 105 306.58 13.9 6.38 Yes  

41 7.5 52 3.7 1.3 No  

42 24.93 99.7 4.8 3.8 No  

43 14.96 99.7 4.8 3.8 No  

44 34 150 5.4 7.8 No (Adoko et al. 2013) 

45 60.7 111.5 7.86 6.16 Yes  

46 54.2 134 9.09 7.08 Yes  

47 70.3 129 8.73 6.43 Yes  

48 35 133.4 9.3 2.9 Yes  

49 38.2 53 3.9 1.6 No  

50 11.3 90 4.8 3.6 No  

51 92 263 10.7 8 Yes  

52 62.4 235 9.5 9 Yes  

53 43.4 136.5 7.2 5.6 Yes  

54 11 105 4.9 4.7 No  

55 90 170 11.3 9 Yes  

56 90 220 7.4 7.3 Yes  

57 80 180 6.7 5.5 No  

58 98.6 120 6.5 3.8 Yes  

59 108.4 140 8 5 Yes  

60 56.8 112 2.2 5.2 Yes (Zhang 2007) 

61 58.2 83.6 2.6 5.9 Yes  

62 40.1 72.1 2.3 4.6 Yes  

63 41.6 67.6 2.7 3.7 Yes  

64 55.6 114 2.3 4.7 Yes  

65 30.3 88 3.1 3 Yes  

66 27.8 90 2.1 1.8 No  

67 29.1 94 2.6 3.2 Yes  

68 29.7 116 2.7 3.7 Yes  

69 62.1 132 2.4 5 Yes  

70 56.9 123 2.7 5.2 Yes  

71 55.6 114 2.3 4.7 Yes  

72 57.2 80.6 2.5 5.5 Yes  

73 39 70.1 2.4 4.8 Yes  

74 40.6 66.6 2.6 3.7 Yes  

75 39.4 69.2 2.7 3.8 Yes  

76 35.8 67.8 3.8 4.3 Yes  

77 45.7 69.1 3.2 4.1 Yes  

78 38.2 71.4 3.4 3.6 Yes  

79 39.4 65.2 2.3 3.4 Yes  

80 40.4 72.1 2.1 1.9 Yes  

81 26.9 62.8 2.1 2.4 Yes  
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82 25.7 59.7 1.3 1.7 No  

83 43.62 78.1 3.2 6 Yes (Jian et al. 2012) 

84 47.56 58.5 3.5 5 Yes  

85 105.5 170 12.1 5.76 Yes  

86 105.5 190 17.1 3.97 Yes  

87 105.5 187 19.2 7.27 Yes  

88 68 107 6.1 7.2 Yes  

89 59.9 96.6 11.7 1.8 Yes  

90 55.9 128 6.29 8.1 Yes  

91 26.9 92.8 9.47 3.7 Yes  

92 33.6 156 10.8 5.2 Yes  

93 29.8 132 11.5 4.6 Yes  

94 28.6 122 12 2.5 Yes  

95 18.7 82 10.9 1.5 No  

96 19.7 142 4.55 2.26 Yes  

97 19 153 4.48 2.11 Yes  

98 17.4 161 3.98 2.19 Yes  

99 13.9 124 4.22 2.04 No  

100 46.2 105 5.3 2.3 Yes  

101 23 80 3 0.85 Yes  

102 46.4 100 4.9 2 Yes  

103 11 105 4.9 4.7 No (Feng and Wang 1994) 

104 18.8 171.5 6.3 7 No  

105 34 149 5.9 7.6 Yes  

106 38.2 53 3.9 1.6 No  

107 11.3 90 4.8 3.6 No  

108 92 263 10.7 8 Yes  

109 62.4 235 9.5 9 Yes  

110 43.4 136.5 7.2 5.6 Yes  

111 44.4 120 5 5.1 Yes (Yang et al. 2010) 

112 13.5 30 2.67 2.03 Yes  

113 70.4 110 4.5 6.31 Yes  

114 3.8 20 3 1.39 No  

115 57.6 120 5 5.1 Yes  

116 19.5 30 2.67 2.03 Yes  

117 81.4 110 4.5 6.31 Yes  

118 4.6 20 3 1.39 No  

119 73.2 120 5 5.1 Yes  

120 30 30 2.67 2.03 Yes  

121 15.2 53.8 5.56 1.92 No (Zhang and Li 2009) 

122 88.9 142 13.2 3.62 Yes  

123 59.82 85.8 7.31 2.78 Yes  

124 32.3 67.4 6.7 1.1 No  

125 30.1 88.7 3.7 6.6 Yes  

126 60 135 15.04 4.86 Yes (Yi et al. 2010) 

127 60 66.49 9.72 2.15 Yes  

128 60 106.38 11.2 6.11 Yes  

129 60 86.03 7.14 2.85 Yes  

130 60 149.19 9.3 3.5 Yes  

131 60 136.79 10.42 2.12 Yes  

132 63.8 110 4.5 6.31 Yes  

133 2.6 20 3 1.39 No  
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134 35 133.4 9.3 2.9 Yes  
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Chapter 3 
 

Application of Self-Organizing Map and Fuzzy c-

mean Techniques for Rockburst Clustering in Deep 

Underground Projects 

Abstract  

One of the main concerns associated with deep underground constructions is the violent 

expulsion of rock induced by unexpected release of strain energy from surrounding rock masses 

that is known as rockburst. Rockburst hazard causes substantial damages to the foundation of 

the structure, equipment and can be a menace to the safety of workers. This study was intended 

to find the latent relationship between the rockburst-related parameters based on the compiled 

data samples from deep underground projects using two robust clustering techniques of self-

organizing map (SOM) and fuzzy c-mean (FCM). The parameters of maximum tangential 

stress, uniaxial compressive strength, uniaxial tensile strength, and elastic energy index were 

considered as input parameters. SOM model could classify data samples into four distinct 

classes (clusters) and the rockburst intensities were identified precisely. FCM also proved its 

performance in clustering task with high convergence speed and acceptable accuracy. Having 

a comparison, the results of SOM and FCM models were compared with ones calculated from 

five empirical criteria of Russenes, Hoek, tangential stress, elastic energy index, and rock 

brittleness coefficient. At best, the empirical criteria of Hoek and tangential stress coefficient 

could predict rockburst intensity with the accuracy of 56.90 %. By analyzing the SOM results 

as the best model, it was turned out that the maximum tangential stress around the openings 

has a crucial role in rockburst clustering and has the most influence on the occurrence of strong 

and moderate rockburst types. Hence, it was recommended as a possible solution to control 

these types of rockbursts by optimizing the diameter and shape of the underground openings. 

Keywords: Rockburst, Self-organizing map, Fuzzy c-mean, Empirical criteria 
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3.1. Introduction 

Nowadays, there are many important mining and civil projects such as hard rock mines, 

hydropower stations, nuclear power plants, and water conveyance and transportation tunnels 

under construction in the deep ground condition all over the world. It is proved that by 

increasing of the depth, in-situ stresses would show a linear or non-linear increment 

accompanied by the increase of groundwater, osmotic pressure, ground temperature, and the 

strength of rock (Sun and Wang 2000; Jian et al. 2012). For instance, by reaching the mining 

depth to about 1000 m, the in-situ stresses induced by overburden, geological condition, and 

mining operation may lead to stress concentration and subsequently bursting and failure (Weng 

et al. 2017; Akdag et al. 2018). Therefore, engineering activities in the deep underground 

environment is challenging and difficult due to rockburst and seismic events, the inrush of 

water, gas, and large-scale collapses (Feng et al. 2016). Among them, rockburst accidents are 

known as the most critical geotechnical disaster in many countries which leads to injuries and 

loss of life, damage to property, delays in project activities as well as enormous economic 

losses (Blake and Hedley 2003; Li et al. 2007; He et al. 2017). Hence, it is important to predict 

and control rockburst hazards underground. The instantaneous release of large amounts of 

strain energy stored in overstressed rock mass cause an unexpected and violent failure which 

is known as rockburst phenomenon (Blake and Hedley 2003). With respect to this definition, 

either the presence of high-levels of in-situ stresses exceeding the rock strength or the external 

triggering factors, e.g. mine extraction could provide the necessary circumstances for rockburst 

occurrence (Yan et al. 2015). From the perspective of mining, the rockbursts can be classified 

into three groups (see Fig. 3.1) (Blake and Hedley 2003; Castro et al. 2012; He et al. 2015): 

• Strain bursts caused by the local concentration of high-stress at the edge of mining 

openings frequently occur during drilling for blasting or reinforcement. The 

consequences of strain bursts range from the ejection of small pieces of rock to the 

large-scale collapse of an opening as it tries to achieve a more stable shape. In civil 

engineering activities, the strain bursts are a common type of rockburst. 

• Pillar bursts caused by exceeding the stress exerted on a support pillar from its strength 

are frequent in the sizeable mined-out area.  

• Fault-slip bursts caused by the slippage along a geological plane have the mechanism 

like an earthquake and different magnitude and damage range.  
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Figure 3.1 Schematic representation of rockburst types and the effect of confinement (Zhou 

et al. 2018) 

Many researches have been carried out during the last decades by scholars not only on the 

understanding of the rockburst mechanism but also on developing reliable techniques to predict 

and mitigate its hazards. In terms of rockburst mechanism, many theories have been proposed 

to assess the stability and deformation localization of rock masses but most of them are 

assumptive and empirical (Shi et al. 2010; Tang et al. 2010; Jian et al. 2012; Cai 2016a). From 

the standpoint of prediction, the rockburst studies can be categorized into two following 

groups:     

• Strength-based criteria: These criteria such as Turchaninov criterion (Turchaninov et 

al. 1972), Russenes criterion (Russenes 1974), Hoek criterion (Hoek and Brown 1980), 

Barton criterion (Barton et al. 1974), rock brittleness coefficient criterion (Wang et al. 

1998), tangential stress criterion (Wang et al. 1998) and so on are rates composed of 

uniaxial compressive strength, uniaxial tensile strength, maximum tangential strength, 

axial stress around the opening, and in-situ stresses. The defined rates show specific 

types of rockbursts (see Table 3.1). 

• Energy-based criteria: As the strain energy has a vital role in the occurrence of 

rockburst events, some scholars attempted to develop other criteria experimentally 

based on energy theory and consider both the strain energy accumulated in the rock 

specimen during the loading process and dissipated energy after deformation and 

failure. A summary of the most common energy-based criteria is listed in Table 3.1.  
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Table 3.1 Most common strength- and energy-based criteria for the prediction of rockburst 

intensity 

Type Criterion Equation None Light Moderate Strong 

Strength 

based 

Russenes criterion  

(Russenes 1974) 

𝜎𝜃
𝜎𝑐

 < 0.25 0.25

− 0.33 

0.33 − 0.55 > 0.55 

Barton et al.  

(Barton et al. 1974) 

𝜎𝑐
𝜎1

 > 5 (2.5 − 5] − ≤ 2.5 

Hoek criterion  

(Hoek and Brown 1980) 

𝜎𝑐
𝜎𝜃

 > 3.5 2.0 − 3.5 1.7 − 2.0 < 1.7 

Tangential stress coefficient 

(Wang et al. 1998) 

𝜎𝜃
𝜎𝑐

 ≤ 0.3 0.3 − 0.5 0.5 − 0.7 > 0.7 

Rock brittleness coefficient 

(Wang et al. 1998) 

𝜎𝑐
𝜎𝑡

 > 40 26.7 − 40 14.5 − 26.7 < 14.5 

Energy 

based 
Brittleness index modified 

(BIM) (Aubertin et al. 1994) 

𝐴2
𝐴1

 
− > 1.5 1.2 − 1.5 1.0 − 1.20 

Burst energy coefficient (Li 

et al. 1996) 

𝑊𝑒
𝑊𝑝

 
≤ 1 − − − 

Elastic energy index (Wang 

et al. 1998) 

𝐸𝑅
𝐸𝐷

 
< 2.0 2.0 − 3.5 3.5 − 5.0 > 5.0 

Mo criterion (Mo et al. 2014) 2(𝐸𝑃 − 𝐸𝑇)

3𝐸𝑋
 

≤ 1 − − − 

𝜎𝜃: maximum tangential stress, 𝜎𝑐: uniaxial compressive strength, 𝜎1: major principal stress, 𝜎𝑡: tensile strength, 𝐴1: elastic 

energy stored in the rock, 𝐴2: energy given by the total area below the stress-strain curve, 𝑊𝑒: the stored energy in the rock 

during loading before peak strength, 𝑊𝑝: the pre-peak dissipated energy during the failure process, 𝐸𝑃: the elastic energy 

accumulated, 𝐸𝑇: the dissipated energy, 𝐸𝑋: the post-peak dissipative strain energy 

The next imperative issue concerning the rockburst study is providing solutions for its 

prevention and control. From this perspective, most of the studies focus on the use of 

microseismic monitoring systems, energy-absorbing bolts as well as some strategies to 

optimize the mining layout, blasting operation, and supporting system (Jha and Chouhan 1994; 

Frid 1997; Dou et al. 2009; Liu et al. 2013; He et al. 2014; Li et al. 2017; Zhao et al. 2017). 

According to the complex mechanism of rockburst and a large number of effective parameters 

on it, empirical criteria (especially the strength-based ones) could not show satisfactory results 

(Liu et al. 2013; Li et al. 2017; Zhao et al. 2017). On the other hand, developing energy-based 

criteria need to do an extreme experimental study which is a time-consuming and expensive 

process. Hereupon, the application of machine learning (ML) techniques thanks to their ability 

to deal with the complex non-linear problems and applying several input variables have been 

used widely to predict rockburst hazard in recent years. Feng and Wang (1994) for the first 

time used the artificial neural networks (ANNs) successfully to predict the intensity and 

location of rockburst. Following their success, further studies were carried out by other scholars 
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using novel ML techniques (Xie and Pan 2007; Gao 2010; Shi et al. 2010; Zhou et al. 2010; 

Zhang et al. 2011; Li and Liu 2015). It should be mentioned that most of the used ML 

techniques to assess rockburst phenomenon such as ANNs have a complicated internal 

structure and their results are not easy to use in practice. As such, they have just focused on the 

prediction task. Although these studies have been considered as potential solutions to the 

rockburst problem, they could not solve it completely. In fact, due to the high level of 

uncertainty and ambiguity in relation to the rockburst phenomenon, the supervised techniques 

such as ANNs are not able to properly assess such problems. Unsupervised learning algorithms 

are other branches of machine learning algorithms which can detect the hidden patterns in the 

database by checking the commonalities between the unlabelled datasets. The most common 

types of these algorithms are clustering techniques. Due to the complicated environment of 

rockburst hazard, unsupervised learning algorithms can be used to categorize the datasets into 

several distinct clusters for better analyzing. In this regard, Xie and Pan (2007) clustered the 

rockburst events successfully based on grey whitenization weight function according to the 

grey incidence matrix. In addition, an ant colony clustering optimization model was proposed 

by Gao (2010) to predict rockburst classes. In another study, Chen et al. (2013) proposed a new 

quantitative classification method for rockburst using hierarchical clustering analysis. 

The results of the above studies were in good agreement (i.e. accuracy above 80%) with the 

practical records which show the capability of such techniques for rockburst assessment. 

However, there are few studies in the application of unsupervised learning algorithms for 

rockburst assessment, and models with the higher level of accuracy are needed. The current 

study focuses on the applicability of self-organizing map (SOM) and fuzzy c-mean (FCM) 

algorithms as two unsupervised clustering techniques in order to cluster and identify rockburst 

intensity simultaneously based on compiled datasets from deep underground openings. The 

SOM algorithm is a robust data mining tool with the ability to discover the non-linear 

relationships among high-dimensional data and picturing and clustering them on a low-

dimensional space. Fuzzy c-mean (FCM) is also a renowned clustering technique that is similar 

to the k-means algorithm and using a generalized least-squares objective function creates fuzzy 

partitions for a set of the numerical dataset. Application of SOM and fuzzy c-mean algorithms 

in mining and geotechnics fields are limited to few studies (Das and Basudhar 2009; Rad et al. 

2012; Mikaeil et al. 2018). In this study, the most influential parameters on the occurrence of 

rockburst, i.e. the maximum tangential stress, the uniaxial compressive strength, the uniaxial 

tensile strength, and the elastic energy index were considered as input parameters. The process 
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of clustering of rockburst datasets using SOM and FCM algorithms was conducted based on 

the 58 data samples. Afterwards, for the sake of checking the applicability of empirical criteria, 

five strength-based of them were selected and finally, their accuracy in clustering the rockburst 

data samples was evaluated. 

3.2. Methodology 

3.2.1. Self-Organizing Map Approach 

In recent years, computational intelligence has been used as a powerful tool to deal with 

complex industrial and scientific problems (Armaghani et al. 2016; Faradonbeh et al. 2016; 

Khandelwal et al. 2016, 2017; Mikaeil et al. 2018). Undoubtedly, artificial neural networks 

(ANNs) are one of the most essential components of computational intelligence (Salemi et al. 

2018; Aryafar et al. 2018). ANNs with a wide range of applications such as image processing, 

pattern recognition, time series prediction, control and robotic systems have a crucial role in 

scientific and practical areas. ANNs are efficient tools in dealing with complex systems, among 

which classic inferential and argumentative methods have not this ability. In recent years, 

ANNs have been used extensively in linear and non-linear problems in different sciences 

especially in earth sciences (Mohamad et al. 2016; Mahdevari et al. 2017). The self-organizing 

map (SOM), as an unsupervised algorithm, was proposed by Kohonen (1990) and is a specific 

type of ANNs which can be used efficiently in statistical and visual data analyses, especially 

for high-volume and non-uniform data. This method is based on some characteristics of the 

human brain that follows a specific classifying and mapping procedure (i.e. topographic 

mapping) to link the input signals to the corresponding processing area (Kohonen 1990; Yu et 

al. 2015). In the Kohonen model, the tasks of SOM are implemented by a number of neurons, 

which are placed together in a one-dimensional or two-dimensional (flat) topology and have a 

reciprocal behavior. Contrary to other artificial neural networks, SOM is composed of two 

layers, including an input layer and Kohonen layer (competitive layer) which are schematically 

shown in Fig. 3.2. The process of SOM training has three main phases of competition, 

cooperation, and adaptation. In the first phase, there is a competition among the neurons, and 

a neuron with the closest weight vector to the input signal vector will be selected as the winner, 

known as the best matching unit (BMU). Considering the input signal vector 𝑋 =

[𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛]
𝑇 and the weight vector 𝑊 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛]

𝑇, the distance between 

these two vectors is defined mathematically as Euclidean distance and can be computed by the 

following equation: 
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𝐷 = ‖𝑋 −𝑊‖ =  ∑ (𝑋𝑖 −𝑊𝑖)2
𝑛
𝑖=1                  (3.1)  

The so-called winner neuron (BMU) has the smallest D. In cooperation phase, the neurons 

which are located in the immediate vicinity of the BMU are recognized and then in the 

adaptation phase, these neurons are adjusted using Eq. 3.2 to shape a particular pattern on a 

plane (this pattern belongs to a particular feature of input signal vector).    

𝑊(𝑡+1) = 𝑊𝑡 + 𝜂[𝑋(𝑡) −𝑊(𝑡)]                            (3.2) 

Where 𝜂 is learning rate function that ranges between 0 and 1.  

During the process of training, the data samples of input layer obtain a certain weight equal to 

𝑊 and the weight vectors of the BMU and relevant neighbours progressively will be more 

similar to the input data. Finally, the input data samples are attracted to the corresponding 

neurons on the competitive layer and the algorithm will be ceased by meeting the stopping 

condition (i.e. the maximum number of iteration) (Das and Basudhar 2009; Yu et al. 2015; 

Mikaeil et al. 2018a). More details concerning the SOM algorithm and its mathematical 

foundation can be found in the studies of Hagan et al. (1996) and Demuth et al. (2014). 

 
Figure 3.2 A schematic model of self-organizing map network (Malondkar et al. 2018) 

3.2.2. Fuzzy C-Mean Approach  

Zadeh first proposed the fuzzy science as a multi-valued logic versus the classic logic under 

the title “Fuzzy sets theory” (Zadeh 1996). The fuzzy logic can deal with problems in which 

due to the lack of knowledge and understanding of humans, it is complicated to identify and 

understand the system. Fuzzy clustering is one of the most important applications of the fuzzy 
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logic in various sciences. Fuzzy c-mean (FCM) is one of the clustering techniques which was 

first proposed by Bezdek (1981) based on the iterative optimization. In fact, FCM is the 

advanced version of hard c-means clustering in which unlike the classic clustering, the 

membership degree of data in a cluster can have a value in the range of [0, 1]. The process of 

FCM clustering can be summarized in four steps below: 

Step 1: The number of classes (𝑐) is determined. This is worth mentioning that the numerical 

value of 𝑐 is larger than or equal to 2 and smaller than or equal to 𝑛 (the number of data 

samples). Then, the value of the weight parameter (𝑚′) which defines the amount of fuzziness 

of the clustering process must be determined. This parameter has a significant role in the 

optimization process. The optimization process in the FCM algorithm can continue for 𝑟 

iterations, where 𝑟 = 0,1,2, … , 𝑛.  

Step 2: The centers of clusters in each iteration are calculated. 

Step 3: After determining the centers of clusters, the partitioned matrix for the 𝑟𝑡ℎ iteration is 

updated in the form of 𝑈̃(𝑟) using Eqs. 3.3-3.8.  

𝜇𝑖𝑘
(𝑟+1)
= [∑ (

𝑑𝑖𝑘
(𝑟)

𝑑𝑗𝑘
(𝑟))

2

(𝑚′−1)]𝑐
𝑗=1

−1

        for    𝐼𝑘 = 𝜑                      (3.3) 

𝜇𝑖𝑘
(𝑟+1) = 0          for all classes  𝑖  where 𝑖 ∈ 𝐼𝑘                 (3.4) 

𝐼𝑘 = {𝑖|2 ≤ 𝐶 < 𝑛 ;  𝑑𝑖𝑘
(𝑟) = 0}                  (3.5) 

𝐼𝑘 = {1,2, … , 𝑐} − 𝐼𝑘                   (3.6) 

∑ 𝜇𝑖𝑘
(𝑟+1)

𝑖∈𝐼𝑘 = 1                   (3.7) 

where 𝑑𝑖𝑘 is the Euclidean distance between the centre of 𝑖𝑡ℎ cluster and 𝑘𝑡ℎ data and 𝜇𝑖𝑘
(𝑟+1)

is 

the membership degree of 𝑘𝑡ℎ data in the 𝑖𝑡ℎ cluster for 𝑟 + 1 iteration. 

Step 4: In the final step, the accuracy of clustering must be evaluated. In this regard, the 

minimum acceptance precision (𝜀𝐿) is defined and only after satisfying the Eq. 3.8, the 

algorithm will be ceased; otherwise, the algorithm is returned to the second step and the 

optimization process is iterated until an appropriate level of accuracy is achieved (Bezdek 

1981; Caldas et al. 2017).  

‖𝑈̃(𝑟+1)  −  𝑈̃(𝑟) = 𝜀𝐿‖                  (3.8) 
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3.3. Results and Discussion  

3.3.1. Rockburst Data  

In this study, a total of 58 rockburst events were compiled from the literature belong to various 

underground openings all around the world (Jian et al. 2012; Dong et al. 2013; Adoko et al. 

2013). Due to difficulties in recording the rockburst-related parameters and the incompleteness 

of the data, it was tried to consider the most important parameters for further analyses. 

Recently, Zhou et al. (2018) have provided a state-of-the-art literature review about the 

application of different uncertainty theory, unsupervised learning and supervised learning 

algorithms in rockburst studies. In their study, maximum tangential stress (MTS) around the 

underground openings, uniaxial compressive strength (UCS) of rock, uniaxial tensile strength 

(UTS) of rock, and elastic energy index (EEI) were identified as the most common parameters 

for rockburst assessment. Maximum tangential stress around the excavation is a key factor that 

is affected by the rock stress, groundwater, shape, and diameter of excavation (Palmstrom 

1995). Since it would not be possible to measure these four factors in association with rockburst 

occurrence, maximum tangential stress can be considered as a good representative of those 

factors. This parameter usually is calculated based on numerical analysis or the information 

obtained from in-situ stress tests (e.g. hollow inclusion strain gauge method) and the following 

equation (Zhao et al. 2017): 

𝜎𝜃 =
1

2
(𝜎𝐻 + 𝜎𝑉) (1 +

𝑎2

𝑟2
) −
1

2
(𝜎𝐻 − 𝜎𝑉) (1 +

3𝑎4

𝑟4
) 𝑐𝑜𝑠2𝜃               (3.9) 

where 𝜎𝜃, 𝜎𝐻, and 𝜎𝑣 denote the tangential stress, the major horizontal principal stress, and 

vertical stress, respectively. The parameters of 𝑟 and 𝑎 denote the tunnel’s radius and the 

distance between the point of rockburst occurrence to the center of the tunnel, and 𝜃 represents 

the angle between the virtual line connecting the point of rockburst occurrence and the center 

of the tunnel and horizontal axis. The strength parameters i.e. the uniaxial compressive strength 

and the uniaxial tensile strength also are indicators which show the capability of rocks to store 

elastic strain energy before failure as well as their brittleness and indirectly, could describe the 

effect of joints and block size of rock mass (Liu et al. 2013). These two parameters can be 

easily measured using the related laboratory tests based on the collected rock samples from the 

case studies. As mentioned before, several energy-based indices have been proposed and most 

of them are correlated with each other and similarly related to rockburst occurrence. Among 

them, elastic energy index (EEI) is the most common energy criterion to assess rockburst. EEI 

is the ratio of stored energy to that dissipated during a single loading-unloading cycle under 
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uniaxial compression (Kidybiński 1981). This parameter also can be measured directly using 

the double-hole method or indirectly using the rebound method. Therefore, in the current study, 

four parameters of maximum tangential stress, uniaxial compressive strength, tensile strength, 

and the elastic energy index were adopted as input parameters for modelling. The goal 

parameter is the rockburst intensity. Rockburst is a qualitative parameter that in such studies 

rarely is introduced as a binary problem (i.e. “1” for rockburst occurrence, “0” otherwise) (Li 

et al. 2017; Shirani Faradonbeh and Taheri 2019) and mostly is measured and assessed based 

on four classes of intensities which their description are given in Table 3.2. Table 3.2 provides 

an empirical classification of characteristic behaviour of underground openings subjected to 

various rockburst intensities that can be used as a standard for rockburst measuring and further 

predictions. The statistical features of all collected rockburst datasets and abbreviation of 

parameters are listed in Table 3.3. Fig. 3.3 shows the rockburst classes in regard to each input 

parameter. In an ideal manner, each input parameter value should belong to only one class in 

order to have an easy clustering process. According to Fig. 3.3, it is apparent that some 

parameters values belong to more than one class which shows that these values do not have 

distinct boundaries between four classes of rockburst. So, it is not practicable to cluster the 

rockburst events precisely just by considering one input parameter. It may be possible to cluster 

the datasets by a combination of several parameters. In the following section, it is tried to 

cluster the datasets into several distinct groups using SOM and fuzzy c-mean techniques. 

Table 3.2 Empirical classification of rockburst based on its intensity (Jian et al. 2012; Liu et 

al. 2013) 

Rockburst 

intensity 
Descriptive characteristic behaviours of the tunnels 

None  No sound of rock burst and absence of rock burst activities 

Light  
May cause loosening of a few fragments. The surrounding rock will be deformed, cracked or 

rib-spalled. There would be a weak sound, but no ejection phenomenon 

Moderate  

Spalling and falls of thin rock fragments. The surrounding rock will be deformed and fractured; 

there may be a considerable number of rock chip ejections and loose and sudden destructions, 

accompanied by crisp crackling and often presented in the local cavern of surrounding rock 

Strong  

Loosening and falls, often as a violent detachment of fragments and platy blocks. The 

surrounding rock will be bursting severely and suddenly thrown out or ejected into the tunnel, 

accompanied by strong bursts and roaring sound, and will expand rapidly to the deep 

surrounding rock 
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Table 3.3 Descriptive statistics of collected rockburst dataset 

Statistical feature 
Input parameter 

𝜎𝜃 𝜎𝑐 𝜎𝑡 𝑊𝑒𝑡 

Abbreviation T UCS UTS EEI 

Unit MPa MPa MPa Dimensionless 

Minimum 2.6 20 1.3 1.1 

Maximum 167.2 263 22.6 9 

Mean 49.752 114.592 6.039 4.553 

Variance (n) 1184.511 2673.039 18.545 4.332 

Standard deviation (n) 34.417 51.701 4.306 2.081 

 

 
Output parameter (rockburst intensity) 

None  Light  Moderate Strong  

Abbreviation  N L M S 

Number of samples 22 4 19 13 

 

 

Figure 3.3 Rockburst class regarding each input parameter (1: None, 2: Light, 3: Moderate, 

4: Strong) 
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3.3.2. Implementation of SOM Technique 

For SOM modeling, 58 datasets with the main parameters of T, UCS, UTS, EEI, and the 

corresponding rockburst intensities were used, and the process of modeling was conducted in 

MATLAB software environment. First, all the 58 datasets related to the four mentioned 

parameters were normalized between 0 and 1 and considered as input data. Then, the 

controlling parameters were determined. These parameters have a significant role in the 

acceleration and improvement of convergence of algorithm in reaching the optimum response. 

In this study, in accordance with trial and error procedure and other scholars’ suggestions (Chen 

and Kuo 2017; Mikaeil et al. 2018a, b), the optimum values of 100, 4, and 90 were obtained 

for controlling parameters of maximum iteration (epochs), Initneighbor (initial neighborhood 

size), and cover steps (the number of training steps for initial covering of the input space), 

respectively. Afterwards, the number of neurons (classes) in the competitive layer was defined 

as 4 (i.e. none, light, moderate, and strong). Eventually, by adjusting the required parameters, 

the algorithm was implemented for 100 iterations, and the results were obtained. By stopping 

the algorithm, 58 datasets were absorbed by 4 neurons (classes) on a two-dimensional lattice 

structure, and the classification process was completed. Fig. 3.4, as the hits plot, shows the 

number of data samples absorbed by each neuron. In Fig. 3.4, the axes show the Euclidean 

distance between classes. According to this figure, the four obtained classes have distinct 

boundaries. Besides, it can be seen obviously that the third neuron (class) is the most successful 

neuron in absorbing input data (by absorbing 22 data samples). In addition, the fourth, second 

and first neurons absorbed 19, 13, and 4 data samples, respectively. After assessing the contents 

of each class, it was found that all rockburst events in the first class (4 cases) belong to the light 

type and similarly, rockburst events in the second class (13 cases) belong to the strong type, 

rockburst events in the third class (22 cases) belong to the none type, and rockburst events in 

the fourth class (19 cases) belong to the moderate type. These four classes were labelled and 

shown in Fig. 3.4. This figure shows that SOM algorithm could classify the data samples into 

four classes in such a way that its results have the absolute consistency with the measured 

rockburst intensities by the operators in the field.  
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Figure 3.4 Hits plot for SOM model 

In pursuance of more transparency, weighted distances between neighboring neurons were 

measured and displayed in Fig. 3.5. The axes in Fig. 3.5 show the weighted distances between 

neurons. The darker colors show that neurons (classes) are closer to each other and vice versa. 

For example, the distance between the first class (light) and the second one (strong) is less than 

the distance between the second class (strong) and the third one (none). As such, the distance 

between first class (light) and the third one (none) is less than the distance between the third 

class (none) and the fourth one (moderate). From another point of view, the distances between 

classes are in agreement with the definitions given in Table 3.2 for rockburst intensities. 

According to Fig. 3.5, the second and third classes have the maximum distance which can be 

referred to the rockburst characteristics explained in Table 3.2 for None and Strong types. To 

evaluate the relative importance of the input parameters for rockburst clustering using SOM, 

the weights of parameters corresponding to each class are shown graphically in Fig. 3.6. The 

darkness of the colors shows the high influence of the parameter on that class. By this figure, 

maximum tangential stress (T) has a high influence on the strong (the second class) and 

moderate (the fourth class) rockburst events, respectively. On the other hand, the parameters 

of UCS, UTS, and EEI similarly have a high influence on the moderate rockburst events (the 

fourth class).  



66 

 

 

Figure 3.5 SOM neighbour weighted distances 

 

Figure 3.6 Weights of input parameters for each class 

3.3.3. Implementation of Fuzzy C-mean Technique 

Like SOM modeling, fuzzy c-mean (FCM) has some control parameters such as the maximum 

number of iterations, minimum acceptance precision (𝜀𝐿), and weighting parameter (𝑚′) which 

should be determined to achieve optimal results. Forasmuch as there is no definite way to 

precisely calculate these parameters, the common solution is to use a trial and error procedure 

and some differential equations that are suggested by other scholars (Rad et al. 2012, 2014; 

Mikaeil et al. 2018a). After calling the normalized data to the provided MATLAB code for 
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FCM and examining different combinations of control parameters, the values of 100, 0.00001, 

and 2 were obtained for the maximum iteration, 𝜀𝐿, and 𝑚′, respectively. Then, the algorithm 

was implemented based on the determined values and the variations of cost function was 

recorded that is shown in Fig. 3.7. According to this figure, up to iteration No. 30, the cost 

value gradually reduces and then becomes constant till iteration No. 33. In this iteration, the 

cost value and the precision level are equal to 1.8014 and 0.0001, respectively in which the 

precision level is larger than defined 𝜀𝐿 = 0.00001. So, because the Eq. 3.8 is not satisfied yet, 

FCM algorithm continues and in iteration No. 36 by reaching to the cost value of 1.8013 

and 𝜀𝐿 = 0, the algorithm is stopped. It means that FCM was able to classify 58 data samples 

into four classes (clusters).   

 

Figure 3.7 Variations of cost value during FCM modelling 

Table 3.4 presents the membership degrees of each data sample for each class created by FCM. 

FCM is based on the minimization of the objective function and in its algorithm, the 

membership degree has an inverse relationship with the Euclidean distance. So, the sample 

with higher membership degree (or lower Euclidean distance) value in a class will belong to 

that class. By comparing the values listed in the rows in Table 3.4, it was turned out that the 

first class, the second class, the third class, and the fourth class have 5, 9, 26, and 18 data 

samples, respectively. For instance, membership degrees of sample No. 31 is 0.033, 0.087, 

0.648, and 0.231 for the first, second, third and fourth classes, respectively, which based on the 

above explanation, this sample belongs to the third class. In other words, Table 3.4 gives 

information like the hits plot of SOM model. Then, by counting the majority of rockburst types 

in each class, the classes were nominated as Table 3.5, i.e. the first class is known as “light”, 
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the second class is known as “strong”, the third class is known as “moderate”, and the fourth 

class is known as “none”. To assess the importance of each input parameter on the developed 

clusters by FCM, the membership degree of the input parameters in each class were determined 

(see Table 3.5). The more the membership degree of the parameter, the high the influence of 

the parameter on that cluster. For instance, uniaxial compressive strength (UCS) has more 

influence on the creation of the first class (light rockburst types).  

Table 3.4 Membership degrees of samples in four classes (clusters) created by FCM 

Sample  

no. 

Optimum partition 

The first  

class 

The second 

 class 

The third 

 class 

The fourth  

class 

1 0.028 0.094 0.829 0.049 

2 0.047 0.850 0.078 0.025 

3 0.070 0.114 0.642 0.175 

4 0.033 0.066 0.843 0.058 

5 0.039 0.099 0.796 0.066 

6 0.027 0.060 0.855 0.057 

7 0.060 0.815 0.085 0.040 

8 0.401 0.309 0.177 0.112 

9 0.325 0.358 0.183 0.134 

10 0.080 0.155 0.321 0.444 

11 0.080 0.154 0.320 0.447 

12 0.081 0.144 0.306 0.469 

13 0.023 0.068 0.860 0.049 

14 0.061 0.112 0.711 0.117 

15 0.076 0.812 0.078 0.034 

16 0.011 0.024 0.049 0.917 

17 0.034 0.086 0.468 0.412 

18 0.038 0.084 0.390 0.487 

19 0.076 0.324 0.529 0.071 

20 0.109 0.396 0.315 0.180 

21 0.202 0.498 0.199 0.101 

22 0.013 0.035 0.069 0.884 

23 0.032 0.071 0.282 0.615 

24 0.907 0.049 0.031 0.014 

25 0.907 0.043 0.036 0.015 

26 0.070 0.175 0.678 0.077 

27 0.052 0.100 0.565 0.283 

28 0.059 0.622 0.227 0.093 

29 0.039 0.864 0.072 0.025 

30 0.017 0.047 0.897 0.039 

31 0.033 0.087 0.648 0.231 

32 0.019 0.055 0.869 0.057 

33 0.015 0.036 0.090 0.859 
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34 0.016 0.044 0.909 0.031 

35 0.019 0.055 0.869 0.057 

36 0.034 0.088 0.664 0.214 

37 0.033 0.101 0.556 0.311 

38 0.014 0.033 0.077 0.876 

39 0.117 0.299 0.505 0.079 

40 0.223 0.259 0.429 0.089 

41 0.056 0.139 0.186 0.618 

42 0.037 0.077 0.190 0.696 

43 0.052 0.100 0.565 0.283 

44 0.013 0.035 0.069 0.884 

45 0.032 0.071 0.282 0.615 

46 0.907 0.049 0.031 0.014 

47 0.907 0.043 0.036 0.015 

48 0.070 0.175 0.678 0.077 

49 0.060 0.204 0.675 0.062 

50 0.026 0.055 0.108 0.811 

51 0.012 0.047 0.917 0.023 

52 0.026 0.054 0.107 0.813 

53 0.042 0.234 0.663 0.061 

54 0.006 0.014 0.030 0.950 

55 0.090 0.689 0.138 0.083 

56 0.020 0.054 0.086 0.840 

57 0.048 0.147 0.752 0.054 

58 0.027 0.056 0.109 0.808 

 

Table 3.5 Membership degrees of input parameters in each class 

The fourth class 

 (none) 

The third class 

 (moderate) 

The second class  

(strong) 

The first class 

 (light) 

Input parameter 

0.5750 0.2922 0.1207 0.4563 T 

0.4950 0.4281 0.2586 0.8997 UCS 

0.4387 0.1805 0.1876 0.4766 UTS 

0.5689 0.5806 0.2226 0.9107 EEI 

3.4. Comparison of Results and Discussion 

This section aims to evaluate the performance of the proposed models. For this, the 58 

recorded/measured rockburst events by engineers from deep underground projects were 

compared with the classified data samples by SOM and FCM techniques. Considering the 

available input parameters, four most common strength-based criteria (i.e. Russenes criterion, 

Hoek criterion, tangential stress criterion, and the rock brittleness coefficient criterion) as well 

as an energy-based criterion (i.e. EEI criterion) were selected from Table 3.1 to assess their 

performance in identifying the rockburst class as well. The results of the comparison between 
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the SOM and FCM techniques along with the ones obtained from empirical criteria are given 

in Table 3.6. To have a quantitative insight regarding the performance of the developed models, 

five performance metrics i.e. accuracy rate (Grinand et al. 2008), Cohen’s Kappa coefficient 

(Kappa) (Cohen 1960), precision, recall, and F1 score (Zhou et al. 2016) were calculated for 

different models based on the confusion matrices obtained from Table 3.6 (see Table 3.7) for 

each model.  Accuracy rate is a primary criterion for evaluating the model, which is defined as 

the ratio of truly classified samples to the total number of samples. Ideally, this value equals 

100%. The Kappa coefficient is a more robust index than accuracy rate that measures the 

proportion of precisely classified cases after removing the probability of chance agreement. 

Hence, Kappa is always somewhat lower than the accuracy rate, and according to the scale 

proposed by Landish and Koch (Landis and Koch 1977), a Kappa higher than 0.4 shows a good 

agreement. Precision is another metric that measures the accuracy of the model when it predicts 

a specific class. The ratio of correctly classified cases of a class by the model is defined as the 

recall.  The F1 score is the harmonic mean of precision and recall metrics that its best value is 

1. For all five metrics, a higher value shows the better performance.  

Fig. 3.8 compares the models in terms of different performance indices. As can be seen from 

this figure, the SOM model could classify the rockburst events exactly with 100% value for all 

performance indices that show the high potential of this algorithm for dealing with such a 

complex geotechnical problem. In other words, SOM succeeded to find the latent relationship 

between the input parameters and the corresponding output and placed all data samples in their 

proper clusters. In this study, FCM classified the data samples during 36 iterations with a 

satisfactory precision level and proved its capability in dealing with geotechnical problems. 

However, in some cases, FCM was not able to place some data samples in proper clusters and 

finally showed a lower accuracy than the SOM model. For example, FCM placed the samples  

No. 3 and 4 in the third class (moderate), while in the field they have been measured as none 

(N) and moderate (M) rockburst types, respectively. In another case, both samples of 25 and 

26 have been measured as the strong rockbursts in the field, while FCM put them in different 

classes of light and moderate, respectively. On the other hand, among the five conventional 

rockburst criteria, Hoek criterion showed slightly better performance than others, while rock 

brittleness coefficient identified as the worst model for clustering. Besides, the obtained Kappa 

values for EEI (33.3%) and rock brittleness coefficient (1.8%) are lower than 0.4 (40%), and 

according to Landish and Koch (Landis and Koch 1977), these models show a poor agreement 

and arbitrary classification, respectively. Hence, these models could not be used reliably to 
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classify and predict rockburst intensity. It should be noted that the empirical methods have been 

developed based on specific case studies and some engineering judgments and consider few 

input parameters, while the datasets compiled in this study have a broad range of rock 

properties and locations.  

As mentioned in the introduction section, few studies have been done in relation to the 

application of unsupervised learning algorithms for assessing rockburst hazard. Among them, 

Xie and Pan (2007) and Gao (2010) could classify the rockburst events with grey whitenization 

weigh function cluster approach and ant colony clustering algorithm with the accuracy values 

of 80% and 83.3%, respectively. They used the maximum tangential stress, uniaxial 

compressive strength, uniaxial tensile strength, and elastic energy index as input parameters in 

their studies like the current study. Therefore, it can be concluded that the results obtained from 

SOM algorithm are more reliable and this method could be considered as a high-performance 

clustering system in geoscience, especially in assessing rockburst hazard. It is worth 

mentioning that the results of this study can provide feasible measures to prevent rockburst 

hazards. Since each of input parameters plays different roles, some indications can be extracted. 

As mentioned in section 3.3.2, the maximum tangential stress (T) has a significant impact on 

the occurrence of strong and moderate rockbursts, respectively, whereas other input parameters 

mostly affect moderate rockbursts. Large values of 𝑇 could led to more intense rockbursts in 

underground openings. As discussed by Palmstrom (1995) and Shirani Faradonbeh and Taheri 

(2019), the tangential stress around the openings is the representative of four components of 

rock stress, groundwater, the shape of the structure, and diameter. Therefore, it is very 

important to control these four parameters. With respect to difficulties in controlling the rock 

stress and groundwater pressure, it is easier to control maximum tangential stress indirectly by 

optimizing the shape and diameter of underground openings in practical projects. It can be a 

primary measure to control rockburst.  

Table 3.6 Results of clustered data samples using different models 

SOM FCM EEI Brittleness Tangential Hoek Russenes Measured No. 

M M M M L L M M 1 

S S S M S S S S 2 

N M S M N N N N 3 

M M S N L L M M 4 

M M S N M M M M 5 

M M S N L L M M 6 

S S M S M S S S 7 

L L S S L L M L 8 

L S M S L L M L 9 

N N L L N N N N 10 
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N N L L N N N N 11 

N N L L N N N N 12 

M M M M L L M M 13 

M M S M L L M M 14 

S S S S S S S S 15 

N N N S N N N N 16 

N M M M N N L N 17 

N N M M N N N N 18 

S M S S M M M S 19 

M S M M S S S M 20 

S S S S S S S S 21 

N N N S S S S N 22 

N N M M N N N N 23 

L L S M L L M L 24 

S L S M N N L S 25 

S M S M L L L S 26 

N M M M N N N N 27 

M S M M S S S M 28 

S S M M S S S S 29 

M M S N M M M M 30 

M M M L M M S M 31 

M M M N L L M M 32 

N N N N L L L N 33 

M M S N L L M M 34 

M M M N L L M M 35 

M M M L M M S M 36 

M M M M M S S M 37 

N N N N L L M N 38 

S M S M M S S S 39 

S M S M L L M S 40 

N N N S N N N N 41 

N N L L N N N N 42 

N M M M N N N N 43 

N N N S S S S N 44 

N N M M N N N N 45 

L L S M L L M L 46 

S L S M N N L S 47 

S M S M L L L S 48 

M M S M M S S M 49 

N N N S N N N N 50 

M M S M L L M M 51 

N N N S N N N N 52 

M M S M M S S M 53 

N N N S N N L N 54 

S S M S M S S S 55 

N N N S L L M N 56 

M M S M M M S M 57 

N N N S N N N N 58 
      N none, L light, M moderate, S strong 
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Table 3.7 Confusion matrix for different models 

No. Model Confusion matrix  No. Model Confusion matrix 

1 Russenes Predicted  5 EEI Predicted 

     N L M S       N L M S 

 Actual N 15 3 2 2   Actual N 11 4 6 1 

    L 0 0 4 0      L 0 0 1 3 

    M 0 0 11 8      M 0 0 9 10 

    S 0 4 2 7      S 0 0 3 10 

2 Hoek Predicted  6 FCM Predicted 

     N L M S       N L M S 

 Actual N 17 3 0 2   Actual N 18 0 4 0 

    L 0 4 0 0      L 0 3 0 1 

    M 0 9 5 5      M 0 0 17 2 

    S 2 3 1 7      S 0 2 5 6 

3 Tangential Predicted  7 SOM Predicted 

     N L M S       N L M S 

 Actual N 17 3 0 2   Actual N 22 0 0 0 

    L 0 4 0 0      L 0 4 0 0 

    M 0 9 8 2      M 0 0 19 0 

    S 2 3 4 4      S 0 0 0 13 

4 Brittleness Predicted           

     N L M S           

 Actual N 2 4 7 9           

    L 0 0 2 2           

    M 7 2 10 0           

    S 0 0 8 5           

 

 

Figure 3.8 Comparison of the proposed models’ performance for rockburst clustering based 

on five indices 
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Tangenti

al stress

Brittlene

ss
EEI FCM SOM

Accuracy (%) 56.9 56.9 56.9 29.3 51.7 75.8 100
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3.5. Summary and Conclusions 

Many empirical equations have been proposed by researchers to predict rockburst intensities 

in recent years. However, according to the literature, they are not sufficient and reliable. The 

maximum tangential stress, uniaxial compressive strength, uniaxial tensile strength, and elastic 

energy index are the most common input parameters which are used to predict rockburst 

intensity. In this study by considering these four parameters, it was attempted to apply two 

novel clustering techniques namely self-organizing map (SOM) and fuzzy c-mean (FCM) to 

58 rockburst data samples that are collected from several underground projects to classify and 

determine rockburst intensity. In addition, the capability of five common empirical criteria was 

assessed. Five performance metrics including accuracy rate, precision, recall, F1 score, and 

Kappa were used to assess the performance of the proposed models. The SOM algorithm with 

its especial mechanism classified all data into 4 distinct clusters and predicted rockburst 

intensity with the accuracy rate, precision, recall, f1 score, and Kappa values equal to 100 %. 

In addition, SOM indicated that the distances between classes are consistent with the intensities 

that are described by engineers. The evaluation of the weights of input parameters in each 

created class by SOM showed the high influence of maximum tangential stress (T) of 

surrounding rock mass on the clustering process, especially on the occurrence of strong and 

moderate rockburst events. Therefore, to tackle the rockburst problem, it is recommendable to 

optimize the shape and diameter of the underground openings. Despite the high and acceptable 

accuracy rate of FCM model (75.86 %), this method was not able to classify some data samples 

in appropriate clusters. Nevertheless, FCM outperformed the five empirical criteria that were 

studied in this research. Among the empirical criteria, Hoek criterion and tangential stress 

coefficient showed better performance in clustering the rockburst datasets, while rock 

brittleness coefficient criterion showed the lowest performance. Finally, it can be concluded 

that the SOM and FCM algorithms are strong enough to discover the latent relationships 

between the independent parameters and the corresponding dependent one. Specifically, in 

geoscience, we deal with high-complex and non-linear problems which there is no definite 

solution for them, and these kinds of algorithms can help engineers to have an insight into the 

hazards.  
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Chapter 4 
 

The Propensity of the Over-Stressed Rock Masses to 

Different Failure Mechanisms Based on a Hybrid 

Probabilistic Approach 

Abstract  

The simultaneous impact of excavation-induced stress concentration and mining disturbances 

on deep underground mines/tunnels can result in severe and catastrophic failure like strain 

bursting. In this regard, the proper measurement of proneness to different rock failure 

mechanisms has great importance in terms of safety and economics. This study proposes a 

practical hybrid gene expression programming-based logistic regression (GEP-LR) model, as 

a multi-class classifier, to detect the failure mechanism (i.e. squeezing, slabbing and strain 

burst) in hard rock based on four intact rock properties. Three non-linear binary models are 

developed to predict the occurrence/non-occurrence of each failure mechanism. The logistic 

regression technique is linked to the developed GEP models to measure the occurrence 

probability of each failure mechanism. Finally, the failure mechanism that has the maximum 

probability of occurrence is selected as the predicted output. The performance analysis of the 

developed model shows that it is efficiently capable of detecting failure mechanisms with high 

accuracy. The failure mechanism detection models are presented in MATLAB codes to be 

easily used in practice by engineers/researchers as an initial guide for failure/stability analysis 

of underground openings. Finally, the validity of the proposed model is further evaluated by 

new datasets compiled from different studies.   

Keywords: Failure mechanism; Strain burst; Slabbing; Squeezing; Gene expression 

programming; Logistic regression  
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4.1. Introduction  

The mechanical rock properties and their corresponding deformation failure mechanisms are 

dramatically different in deep underground than those in shallow conditions. This is due to the 

high geo-stress, ground-water pressure and high-temperature environment, which affect the 

rock mass for a long time. In this regard, many studies have been undertaken to investigate the 

parameters that influence the stability of underground structures using theoretical analyses, 

experimental and numerical simulations (Hoek and Brown 1980; Barla et al. 2011; Saadat and 

Taheri 2020; Li et al. 2020; Shirani Faradonbeh et al. 2021). Rock fracturing around deep 

excavations is mostly governed by the rock type, rock mass jointing degree and its orientation 

relative to the excavation free faces, the geometry of the excavation, in-situ stress magnitude 

and its orientation relative to the excavation direction (Wagner 2019). In deep mining and 

geotechnical projects, the highly uncertain governing factors are coupled to the stress 

distribution around the excavations, making the failure mechanism prediction one of the most 

challenging issues in terms of safety, the economic viability of the projects etc. The dominant 

failure mechanism in deep mining/tunnelling projects is strain burst or slabbing rather than 

shearing or squeezing (Fairhurst and Cook 1966). Palmstrom and Stille (2007) give a summary 

of different failure mechanisms and their characteristics in the underground. Also, a brief 

description of the common failure mechanisms in underground projects is presented below. 

 One of the common failure mechanisms is squeezing, a non-violent rock behaviour/failure 

mechanism, which is characterised as a large time-dependent deformation associated with 

creep induced by over-stressing of massive rocks (Kabwe and Karakus 2020; Kabwe et al. 

2020). These massive rocks usually have a high percentage of micaceous or clay minerals. 

Squeezing creates a plastic zone around the underground openings, which will result in cross-

sectional area reduction during an aseismic process. The potential of rocks to squeezing is 

influenced by different parameters such as the geological conditions, rock mass mechanical 

properties, in-situ stresses, groundwater pressure, the geometry of the opening and the 

supporting system (Aydan et al. 1993; Barla 1995). Fig. 4.1a shows an example of a highly 

deformed cross-section of the Saint Martin access adit (Lyon–Turin base tunnel) induced by 

squeezing. According to Ortlepp (1997), slabbing refers to the formation of the densely spaced 

stress-induced slabs (onion-skin-like fractures) on the boundary of an underground opening 

(i.e. roof and sidewalls). The spacing of these slabs depends on the rock heterogeneity, rock 

strength, as well as in-situ stresses (Li et al. 2011). This failure mechanism is more common in 

moderate to hard over-stressed massive rocks and initiates in excavated regions having high 
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maximum tangential stresses by creating a local V-shaped notch on the opening boundary 

(Ortlepp 2001). Fig. 4.1b displays the slabbing failure in the roof of a mine drift excavated in 

quartzite at 1000 m depth. 

Strain burst is a term for the much more violent fracturing of rocks than slabbing accompanied 

by the high seismicity, rock chips ejection and sudden release of strain energy that can pose a 

serious threat to workers, equipment and project life (Fig. 4.1c). The coupled static-dynamic 

loading conditions induced by stress redistribution after excavations and the dynamic 

disturbances generated by drilling and blasting, roof collapse, fault-slip, etc. provide a high-

stress zone around the openings, which in turn triggers the strain bursting proneness effectively 

(Akdag et al. 2018; Shirani Faradonbeh et al. 2019; Shirani Faradonbeh et al. 2020; Wang et 

al. 2020). Many factors affect the bursting proneness of rocks, and owing to its vague 

mechanism, strain burst is known as a high-complex non-linear problem and difficult to predict 

(He et al. 2015; Shirani Faradonbeh and Taheri 2019). Among these influential factors, the 

intact rock properties have a critical role in the occurrence of this phenomenon in the deep 

underground. The uniaxial compressive strength (𝜎𝑐) and tensile strength (𝜎𝑡) are among the 

most prominent intact rock properties which can be used for assessing the rock capacity to store 

elastic strain energy (Munoz et al. 2016; Munoz and Taheri 2017; Shirani Faradonbeh et al. 

2020). These parameters also represent the tensile and shear failure characteristics of rocks 

(Liu et al. 2013; Shirani Faradonbeh and Taheri 2019). The 𝜎𝑐 and 𝜎𝑡 have been used frequently 

in many strain burst studies as the rock brittleness index (i.e. 𝐵 = 𝜎𝑐/𝜎𝑡) (Cai 2016) or potential 

energy of elastic strain (i.e. 𝑃𝐸𝑆 = 𝜎𝑐
2/2𝐸𝑢, where 𝐸𝑢 is the unloading modulus) (Wsang and 

Park 2001) to evaluate the probability of strain burst occurrence and its intensity. Lee et al. 

(2004) investigated the interrelationship of rock strength parameters (i.e. 𝜎𝑐 and 𝜎𝑡) and strain 

burst index (PES) mathematically by conducting the experimental tests on the obtained 

specimens from a waterway tunnel in Korea, and they proposed a strain burst chart as shown 

in Fig. 4.2a. In this chart, the bursting intensity is predicted based on the defined four classes 

of very low (VL), low (L), medium (M), and very high (VH). These classes follow the standard 

classification assigned for strain burst intensity which is based on visual inspection of the 

failure, rock ejection, sound and seismicity (Liu et al. 2013; Shirani Faradonbeh et al. 2019). 

In another study, by plotting the 𝜎𝑐 values against the brittleness index (𝐵 = 𝜎𝑐/𝜎𝑡) values, 

Diederichs (2007) proposed a chart (see Fig. 4.2b) to predict the strain burst risk level. In that 

study, the low value of 𝐵 shows the dominance of extension cracking (spalling potential) in the 

damage process, while the rocks with high 𝜎𝑐 can accumulate more strain energy and 
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consequently have a higher potential to bursting. In addition, the strength parameters have been 

used extensively to assess this hazard by different researchers using supervised and 

unsupervised data-mining algorithms (Pu et al. 2019). On the other hand, the modulus of 

rigidity is an important parameter to study the stress distribution in the rock mass. Under 

mining-induced disturbances, some rocks tend to react elastically, while others may show 

plastic deformation. However, in hard rocks, the elastic characteristics are more dominant.  

Therefore, they can store a great amount of elastic strain energy. This energy can be released 

as an excess energy with seismicity in a violent manner (Singh 1987; Shirani Faradonbeh and 

Taheri 2019; Shirani Faradonbeh et al. 2019; Akdag et al. 2019). Singh (1987) evaluated the 

relationship between the burst proneness index (𝜂 = 𝐸𝑅/𝐸𝐷, where 𝐸𝑅 and 𝐸𝐷 are the retained 

energy and the dissipated energy during a loading-unloading cycle) and elastic modulus 

experimentally, and reported that the 𝜂 increases with the increase of elastic modulus. Hence, 

the elastic deformation parameters such as elastic modulus and Poisson’s ratio can be 

considered as prominent indicators for strain burst proneness measurement.  

As mentioned earlier, the failure mechanisms are highly dependent on intrinsic rock properties, 

because in deep underground conditions, the rock masses have less discontinuities, and the 

existing ones cannot freely slide on each other to create structurally controlled failures (i.e. the 

failure is stress-driven). This is while in the shallow ground (low in-situ stress conditions), the 

failure process is controlled by the persistence and distribution of natural fractures 

(discontinuities), i.e. the failure is structure-driven (Kaiser et al. 2000). Therefore, 

discontinuities do not have a dominant role in the stability of structures. Besides, it is quite 

easy and convenient to determine intact rock properties such as uniaxial compressive strength 

(𝜎𝑐), tensile strength (𝜎𝑡), elastic modulus (𝐸) and Poisson’s ratio (𝜈) compared with other 

parameters such as in-situ stresses, maximum tangential stress around the openings, etc. The 

proper measurement of failure mechanisms at the initial stages of the project can aid engineers 

to optimise the project layout and provide an adequate supporting system to prevent the 

occurrence of irreparable damages like fatalities, destruction of supporting systems and 

equipment, as well as the negative impact of such failure types on the economic viability of the 

project. However, to the best of our knowledge, there is no practical and easy-to-use model to 

distinguish the failure mechanisms, especially the strain burst and slabbing, and measure the 

propensity of competent over-stressed rock masses to different failure mechanisms. Due to the 

non-linearity nature of the failure mechanisms and the complex relationship between the failure 

mechanisms and their corresponding influential factors, the common linear and non-linear 
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mathematical models cannot be implemented to unveil the latent relationships between 

parameters. Hence, soft computing techniques can be assumed as alternative approaches to 

tackle this difficulty. These techniques learn from the experiences and recognise the patterns 

in the database automatically (Mitchell 1997). From this perspective, soft computing 

techniques have been used extensively in mining and geotechnical engineering (Shirani 

Faradonbeh et al. 2017; Zhou et al. 2018; Haghshenas et al. 2019). In this study, the gene 

expression programming-based logistic regression (GEP-LR) technique is proposed as a new 

and practical probabilistic model to measure the propensity of the competent over-stressed rock 

masses to different failure mechanisms including squeezing, slabbing and strain burst. The 

intact rock properties (i.e. 𝜎𝑐, 𝜎𝑡, 𝐸 and 𝜈) which can be measured easily by the common 

laboratory tests are used as indicators for modelling. The methodology and the obtained results 

are discussed in detail.  

 

Figure 4.1 Different failure mechanisms in underground excavations: (a) squeezing 

(modified from Barla et al. 2010), (b) high-stress slabbing (modified from Li et al. 2011) and 

(c) strain burst (modified from Yan et al. 2012) 
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Figure 4.2 Strain burst assessment using intact rock properties: (a) potential of spalling and 

bursting based on 𝜎𝑐  and 𝜎𝑡 (modified from Lee et al. 2004), and (b) strain burst intensity 

prediction based on 𝜎𝑐, B and PES (modified from Diederichs 2007) 
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The database (see Table 4.1) used in this study comprises the intact rock properties, i.e. uniaxial 

compressive strength (𝜎𝑐), Brazilian tensile strength (𝜎𝑡), elastic modulus (𝐸) and Poisson’s 

ratio (𝜈) measured experimentally for the rock specimens that are collected from different 
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underground hard rock mines (mostly in Australia) with the known failure mechanism (Lee et 

al. 2018). Each dataset corresponds to a specific failure mechanism (i.e. strain burst, slabbing 

and squeezing) defined based on the in-situ observations of the fracturing process. The 

definition of these failure mechanisms is as those explained in the previous section. It should 

be mentioned that this database only covers the intact rock properties for the competent and 

over-stressed rock masses and does not consider the blocky over-stressed rock masses or the 

competent rock masses which have not yet been over-stressed (Lee et al. 2018). According to 

the rock mass classification system developed by Barton et al. (1974) (i.e. the Q-system), the 

competent rock masses are characterised by 𝑄 > 60. The results of a minimum of five reliable 

tests are used for each case study to measure the intact rock properties (Sainsbury and Kurucuk 

2019). The 𝜎𝑐 values in Table 4.1 have been normalised using Eq. 4.1 owing to the size-scale 

dependency of rocks (Lee et al. 2018). 

𝜎𝑐 =
𝜎𝑑

(50/𝑑)0.18
                    (4.1) 

where 𝜎𝑐 is the normalised uniaxial compressive strength and 𝜎𝑑 and 𝑑 are the measured 

uniaxial compressive strength and the diameter of the tested specimen, respectively.  

The 𝜎𝑡, on the other hand, has been measured using the common Brazilian test method on the 

specimens having 50 mm diameter. The elastic deformation parameters of 𝐸 and 𝜈 also have 

been standardised in this database to the mid-third values by considering a minimum of five 

reliable test results. The box-plot is a common technique to evaluate the distribution of datasets 

in their range of values using some statistical indices such as minimum value, first quartile 

(𝑄1), second quartile/median (𝑄2), third quartile (𝑄3) and the maximum value. Fig. 4.3 

demonstrates the box-plots for the intact rock properties. As can be seen in this figure, the 

parameters have a wide range of values, and the datasets for all parameters follow an almost 

normal distribution. This makes mathematical modelling more feasible and easier.  
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Figure 4.2 Box plots of the intact rock properties and the scatter of datasets around normal 

distribution curve, Min.= minimum value, Max.= maximum value, Q1= 1st quartile, Q2= 2nd 

quartile (median), Q3= 3rd quartile and Mean= average value 
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Table 4.1 Database used in this study for failure mechanism detection and results of 

modelling (after Lee et al. 2018) 

No. Rock type 𝜎𝑐  

(MPa) 

𝜎𝑡 

(MPa) 

𝐸 

(GPa) 

𝜈 Failure mechanism Probability value (𝑝) Predicted 

class 
Class1 Class2 Class3 

1 Massive sulphide 263 16.1 117.6 0.2 Strain burst (3) 0.000 0.054 1.000 3 

2 Massive sulphide 181 12 83.3 0.3 Strain burst (3) 0.000 0.475 0.923 3 

3 Massive sulphide 198 16.6 153.3 0.3 Strain burst (3) 0.000 0.006 0.968 3 

4 Massive sulphide 150 6 74.7 0.3 Strain burst (3) 0.001 0.001 0.999 3 

5 Gabbro 152 12.6 75.7 0.3 Strain burst (3) 0.001 0.007 0.922 3 

6 Dolerite 335 18.4 91.7 0.3 Strain burst (3) 0.000 0.067 1.000 3 

7 Dolerite 217 12.1 71.7 0.3 Strain burst (3) 0.000 0.407 0.984 3 

8 Buck quartz 135 8.5 74 0.1 Strain burst (3) 0.001 0.024 1.000 3 

9 Dolerite 214 13.7 82 0.2 Strain burst (3) 0.000 0.006 0.938 3 

10 Dolerite 179 11.4 78.4 0.2 Strain burst (3) 0.000 0.002 0.972 3 

11 Porphyry 216 15.2 56.8 0.2 Strain burst (3) 0.001 0.293 1.000 3 

12 Porphyry 284 27.6 63.7 0.2 Strain burst (3) 0.000 0.000 0.506 3 

13 Porphyry 258 12.2 65.7 0.3 Strain burst (3) 0.000 0.202 0.969 3 

14 Monzodiorite 137 8.2 55.7 0.3 Strain burst (3) 0.357 0.325 0.992 3 

15 Pegmatite 205 7.5 63.6 0.2 Strain burst (3) 0.000 0.215 0.904 3 

16 Volcanoclastics 136 17.2 60.1 0.3 Strain burst (3) 0.089 0.493 0.658 3 

17 Grit 181 16.2 68.4 0.3 Strain burst (3) 0.001 0.487 0.999 3 

18 Basalt 113 9.8 70.1 0.3 Slabbing (2) 0.078 1.000 0.007 2 

19 Basalt 169 20.5 62.4 0.4 Slabbing (2) 0.005 1.000 0.029 2 

20 Gabbro 139 15.5 77.4 0.3 Slabbing (2) 0.001 0.736 0.020 2 

21 Dolerite 176 14.2 65.9 0.3 Slabbing (2) 0.001 0.692 0.048 2 

22 Basalt 180 16.4 70.2 0.2 Slabbing (2) 0.000 0.982 0.359 2 

23 Basalt 169 15.6 82.2 0.2 Slabbing (2) 0.000 0.570 0.016 2 

24 Basalt 196 19.7 75.7 0.2 Slabbing (2) 0.000 1.000 0.013 2 

25 Basalt 218 19 89.2 0.3 Slabbing (2) 0.000 0.999 0.014 2 

26 Dolerite 245 13.2 75.4 0.3 Slabbing (2) 0.000 0.904 0.211 2 

27 Gabbro 216 11.7 72.5 0.3 Slabbing (2) 0.000 0.777 0.486 2 

28 Volcanoclastics 118 12.5 64.5 0.2 Slabbing (2) 0.086 1.000 0.000 2 

29 Andesite 129 11.3 70.8 0.3 Slabbing (2) 0.010 0.519 0.263 2 

30 Meta-sediments 234 18 53 0.3 Slabbing (2) 0.001 0.864 0.173 2 

31 Conglomerate 134 14.5 72.8 0.3 Slabbing (2) 0.003 1.000 0.994 2 

32 Granite breccia 140 13.3 59.1 0.3 Slabbing (2) 0.081 0.529 0.001 2 

33 Ultramafics 80 6.8 26.8 0.4 Squeezing (1) 1.000 0.335 0.001 1 

34 Ultramafics 53 6.7 34.9 0.3 Squeezing (1) 1.000 0.290 0.042 1 

35 Ultramafics 41 4.7 44.5 0.4 Squeezing (1) 1.000 0.300 0.009 1 

Total accuracy of GEP-LR multi-class classifier:     100% 
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4.3. Methodology and Results 

As mentioned earlier, soft computing algorithms, e.g. artificial neural network (ANN) and 

support vector machine (SVM), have shown promising results in dealing with non-linear 

problems in different mining and geotechnical projects. However, these techniques suffer from 

several limitations, such as the necessity for defining the structure of models in advance, getting 

trapped in the local minimum and the inability to generate the practical prediction equations 

(Alavi et al. 2016). Therefore, the common soft computing techniques cannot provide practical 

models for assessing different failure mechanisms in deep underground openings. In this 

regard, a new hybrid gene expression programming-based logistic regression (GEP-LR) model 

is proposed in this section to measure the probability of occurrence of the different failure 

mechanisms in underground hard rock mines as a function of intact rock properties. According 

to Table 4.1, the parameters of 𝜎𝑐, 𝜎𝑡, 𝐸 and 𝜈 are defined as quantitative input/independent 

parameters, while the failure mechanism as the output/dependent parameter is qualitative, 

having three types of failure. The dependent parameter does not need to have a normal 

distribution regarding the independent parameters. For simplicity, the dependent parameter is 

labelled as “1” in the case of squeezing failure, “2” in the case of slabbing failure, and “3” in 

the case of strain burst failure (see Table 4.1). The failure mechanisms concerning each 

independent parameter can be seen in Fig. 4.4. Ideally, to have a simple classification process, 

every datapoint should belong to a specific failure mechanism. As can be observed in Fig. 4.4, 

the parameters have some values belonging to more than one class, which means that it is 

impossible to predict the failure mechanism merely using one of the independent parameters. 

However, a combination of independent parameters along with a robust multi-class 

classification technique can be useful for the correct classification of failure mechanisms. The 

following sections present a description of the GEP algorithm as a robust classifier and the 

hybridisation process of GEP with logistic regression (LR) to predict the occurrence probability 

of each failure mechanism.  
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Figure 4.4 Failure mechanism with respect to each independent parameter 

4.3.1. GEP-Based Binary Models 

 As a population-based algorithm, the gene expression programming (GEP) proposed by 

Ferreira (2002) is a modified and improved version of the basic genetic algorithm (GA) and 

genetic programming (GP). GEP algorithm opens the black-box nature of the prior soft 

computing algorithms (e.g. ANN) by providing mathematical equations representing the latent 

non-linear relationship between the parameters. Due to this significant capability of the GEP 

algorithm, it has been used recently by different researchers to appraise various mining and 

geotechnical problems (Armaghani et al. 2016; Jahed Armaghani et al. 2017; Khandelwal et 

al. 2017; Salimi et al. 2016). In the GEP algorithm, as shown in Fig. 4.5a, the solutions are in 

the form of linear fixed-length coded strings/chromosomes (single-gene or multiple-gene 

chromosomes) consisting of two main parts of head and tail in which the genetic operators are 

applied on these areas to improve the quality of solutions. The head of a chromosome contains 

symbols representing both terminals (input parameters and constant values) and mathematical 

functions (e.g. +, -, × and /) and always starts with a function, whereas the tail is composed of 

only terminals. The head length/size (h) that affects the complexity of the solutions usually is 
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determined by the user through a trial-and-error procedure. However, the length of the tail (t) 

is a function of head size and the maximum argument number (𝑛𝑚𝑎𝑥) and can be determined 

using the following equation: 

𝑡 = ℎ(𝑛𝑚𝑎𝑥 − 1) + 1                   (4.2) 

Fig. 4.5 schematically displays the foundation of the GEP algorithm. However, the detailed 

mechanism of GEP can be found in Ferreira (2002). According to Fig. 4.5, the main steps of 

the GEP modelling procedure can be summarised as follows: 

• A population of potential solutions/models initially are generated in the form of linear 

chromosomes using a random combination of terminals and mathematical functions 

following the Karva language (a language invented for reading and expressing the 

information encoded in the chromosomes) (Fig. 4.5a).  

• These coded solutions then are automatically parsed into visual tree structures known 

as expression trees (ETs) (Fig. 4.5b). To do so, for each gene, the first function of the 

head is selected as the root node, and according to its argument number, some empty 

sub-nodes are generated. The terminals and functions in the chromosome are then 

placed in the sub-nodes from top to down and left to right in each line. This process 

continues until a line containing terminals is formed. As the terminals have no 

argument, no further sub-nodes are generated. Then, the created sub-ETs for different 

genes are linked together using a linking function (e.g. “/” in Fig. 4.5b) to form a single 

large ET. The ETs ease and speed up the process of function finding and mathematical 

interpretation of coded chromosomes. Thereafter, the mathematical formulation of 

solutions is extracted for further assessment (Fig. 4.5c).   

• The fitness of solutions is evaluated using a fitness function defined by the user (Fig 

4.5d), and if the termination criterion (i.e. the maximum number of iteration or a 

prescribed fitness value) did not meet, the best solutions are selected using the fitness 

proportionate selection technique (Ferreira 2002) to reproduce with modification (Fig. 

4.5e) based on the defined ratios for genetic operators (i.e. mutation, inversion, 

transposition, and reproduction). As seen in Fig. 4.5f, these operators try to improve 

the fitness of solutions by changing an element through a gene length (i.e. mutation), 

inverting a fragment in the head of a gene (i.e. inversion), copying a fragment to the 

head of a gene (transposition), and exchanging a fragment between two chromosomes 
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(i.e. recombination). Afterwards, improved solutions are transferred to the next 

generation (Fig. 4.5g). 

•   The above process continues until the termination criterion is met.  

In this study, firstly, three separate GEP-based binary models are developed to predict the 

occurrence (i.e. “1”) or non-occurrence (i.e. “0”) of each class of failure mechanism based on 

the procedure explained above. GeneXproTools 5.0 computer program is used to develop the 

GEP models. The intact rock properties of 𝜎𝑐, 𝜎𝑡, 𝐸 and 𝜈 are defined as the terminals/input 

parameters. Furthermore, the computer program is allowed to select up to ten constant values 

randomly in the range of [-10,10], should the performance of the solutions is improved. Finally, 

the following comprehensive range of mathematical functions is selected to provide a broader 

search space for the algorithm, and consequently, generate solutions with higher fitness values: 

Function set =  {+,−,×,/, 𝐸𝑥𝑝, 𝐿𝑛, ^2, ^3, 𝑆𝑞𝑟𝑡, 3𝑅𝑡, 𝑆𝑖𝑛, 𝐶𝑜𝑠, 𝑇𝑎𝑛, 𝐴𝑡𝑎𝑛}                            (4.3) 

where 𝑆𝑞𝑟𝑡, 3𝑅𝑡 and 𝐴𝑡𝑎𝑛 respectively represent square root, cube root and arctangent. 

As shown in Fig. 4.5d, the correlation coefficient (𝑟) is defined as the fitness function to 

evaluate the performance of the generated solutions. For the classification task, the learning 

algorithm of the GEP converts the returned value by the evolved model into “1” or “0” using 

a rounding threshold. If the evolved model's returned value is equal to or greater than the 

rounding threshold, then the record is classified as “1”, “0” otherwise. The correlation 

coefficient 𝑟𝑖 of the solution/model 𝑖 is calculated as follows: 

𝑟𝑖 =
𝐶𝑜𝑣(𝑇,𝑃)

𝜎𝑡.𝜎𝑝
                    (4.4) 

where 𝐶𝑜𝑣(𝑇, 𝑃) is the covariance of the target and model outputs; and 𝜎𝑡 and 𝜎𝑝 are the 

corresponding standard deviations. 

As it stands, 𝑟𝑖 cannot be used directly as a fitness function since, for the fitness proportionate 

selection technique, the value of fitness must increase with efficiency. Therefore, the following 

equation is employed to determine the fitness 𝑓𝑖 of a solution 𝑖: 

𝑓𝑖 = 1000 × 𝑟𝑖 × 𝑟𝑖                   (4.5) 

where 𝑓𝑖 ranges from 0 to 1000, with 1000 corresponding to the ideal.   

Taking into account the previously suggested values (Alavi et al. 2016; Ferreira 2002; 

Hoseinian et al. 2017) for other GEP parameters, including the population size, the number of 
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genes for each chromosome, head size, linking function and the genetic operators, several 

preliminary runs are also performed to find the optimum solution with highest fitness value for 

each failure mechanism class. The obtained optimum values for the GEP parameters are listed 

in Table 4.2. By applying these settings to the software, and running the algorithm for 3000 

generations/iterations (i.e. the termination criterion), the following optimum GEP-based binary 

models are achieved: 

Squeezing = 𝑌1 = 𝐿𝑛(𝐸) × (
1

𝜎𝑐
2) × (

𝑒√𝜐

𝐸3+𝜎𝑡
) ;    

Failure status = {
1    𝑌1 ≥ 2.2029 × 10

−9

0    𝑌1 < 2.2029 × 10
−9                         (4.6)  

Slabbing =  𝑌2 = [𝑡𝑎𝑛(𝐸) + 𝜎𝑡 − ((
𝜎𝑡−4.1812

2
) × (𝜐 − 3.1256))] ×

√tan (𝜎𝑐

1

6 −  𝜐 − 𝜎𝑐 − 𝐸
3 )

3

× [tan(𝜎𝑡 − 0.6500𝐸 + 𝜐
3) − 𝜐]; 

Failure status = {
1    𝑌1 ≥ 8.1788
0    𝑌1 < 8.1788

                 (4.7) 

Strain burst = 𝑌3 =  𝐸 + tan (−7.4736𝜐(𝜎𝑐 + 𝜎𝑡))
3 +

9.572

𝜎𝑡
+sin(𝜐−𝐸)+sin(0.2490𝜎𝑐)

2
+ 𝜎𝑐
1/9

; 

Failure status = {
1    𝑌1 ≥ 6.2353
0    𝑌1 < 6.2353

                 (4.8) 

By calculating the 𝑌-values using input parameters and feeding them to the developed binary 

classifiers, i.e. Eqs. 4.6 to 4.8, the occurrence/non-occurrence of each failure mechanism can 

be predicted. However, a multi-class classifier is still needed to determine the most probable 

failure mechanism based on the given intact rock properties. Indeed, the GEP algorithm has 

been basically designed for binary classification and cannot be implemented directly for the 

multi-class classification tasks like failure mechanism detection, which has three classes of 

squeezing, slabbing and strain burst. This can be defined as a limitation of this algorithm. 

However, in the next section, an efficient strategy is employed to adapt the GEP algorithm for 

the multi-class classification task. 
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Figure 4.5 The multi-class classification procedure used in this study 

 

Table 4.1 The settings for GEP-based models 

Parameter Setting 
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Recombination rate 0.00277 0.00277 0.00277 
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4.3.2. Hybrid GEP-LR Models 

In this section, for combining the developed binary models and achieve the final output for 

three different classes, a probabilistic approach based on logistic regression (LR) is linked to 

the GEP models. The logistic regression is used to assign probabilities to model scores and 

generate a reliable multi-class classification system (Fig. 4.5h). By calculation of probabilities, 

the categorical predictions of different failure mechanisms become possible. Logistic 

regression predicts a 𝑙𝑜𝑔𝑖𝑡 transformation for the probability of the presence of the 

dichotomous output parameter based on a linear relationship with a set of input parameters 

(Youn and Gu 2010). Consider the following failure state for a dataset collected from an 

underground mine: 

𝑌 = {
0,   Non − occurrence
1,   Occurrence             

                  (4.9) 

where 𝑌 is the binary output of a specific failure mechanism.  

If a set of 𝑛 independent parameters is denoted by the vector 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), the 𝑝(𝑌 =

1|𝑋) is defined as the probability of 𝑌 to be 1. The logistic regression of 𝑌 on 𝑋 is defined as 

follows: 

logit(𝑝(𝑌 = 1|𝑋)) = log (
𝑝(𝑌=1|𝑋)

1−𝑝(𝑌=1|𝑋)
) = ln (

𝑝(𝑌=1|𝑋)

𝑃(𝑌=0|𝑋)
) = 𝛼 + 𝛽𝑋           (4.10) 

where 
𝑝(𝑌=1|𝑋)

1−𝑝(𝑌=1|𝑋)
 is the ratio of the probability of a failure mechanism occurrence over the 

probability of its non-occurrence. The coefficients of 𝛼 and 𝛽 are the intercept and slope of the 

regression line, respectively.  

A rounding threshold (cut-off probability) of 0.5 is usually used to identify the classes of “0” 

and “1” for each binary model in such a way that if the 𝑝 values are less than 0.5, they are 

categorised into “0”, while for the 𝑝 values equal or greater than 0.5, they are categorised into 

“1”. By solving the logistic regression for 𝑝, Eq. 4.11 can be obtained for the calculation of the 

probabilities.  

𝑝 =
1

1+𝑒−(𝛼+𝛽𝑋)
                  (4.11) 

As the general logistic regression method explained above is used for the binary classification, 

and a linear relationship is usually considered for 𝛼 + 𝛽𝑋 (i.e. 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛), 

the Eq. 4.11 cannot be solely used in this study for the existing problem. Hence, the developed 
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GEP model for each failure class is substituted for 𝑋 in Eq. 4.11. By doing so, the 𝑋 will be a 

non-linear combination of the input parameters. In Eq. 4.10, log odds (ln (
𝑝

1−𝑝
)) is the main 

component of the logistic regression which can be used to derive the coefficients of 𝛼 and 𝛽. 

For this purpose, by defining several quartiles or bins for the model outputs, the distribution of 

“1s” and “0s” classes is calculated for each bin. The probability of “1s” (𝑝) and “0s” (1 − 𝑝) 

for each bin is defined, respectively, as the ratio of the number of “1s” to the total number of 

cases and the ratio of the number of “0s” to the total number of cases. This process is repeated 

for all bins. Based on the calculated probabilities, the odds ratio and log odds values for all the 

bins are obtained. Finally, by plotting the log odds values on the 𝑦-axis against the model output 

in the 𝑥-axis and performing a weighted linear regression, the intercept (𝛼) and slope (𝛽) of 

the regression line for each of the models can be easily derived.     

In this study, the computer program is adjusted so that the developed GEP-based models in the 

previous section (i.e. 𝑌1, 𝑌2 and 𝑌3)  are linked to the logistic regression algorithm automatically 

to provide hybrid models. Indeed, each GEP-based model is fed as the independent parameter 

(i.e. “𝑋”) to Eq. 4.11, and finally, the probabilities (𝑝s) are determined for different failure 

mechanisms. The failure class having a higher probability value is selected as the dominant 

state (Fig. 4.5h). To make the developed hybrid models easy to use by other researchers, in this 

study, they are presented as MatLab codes in Table 4.3. In this table, d1, d2, d3 and d4 represent 

𝜎𝑐, 𝜎𝑡, 𝜈 and 𝐸, respectively. The component GiCj in this table represents the 𝑗th randomly 

generated constant value by the algorithm in the range of [-10, 10] for the 𝑖th gene. The logistic 

regression parameters of intercept (𝛼) and slope (𝛽) are also determined by the algorithm based 

on the procedure explained above. Fig. 6 shows the binary classifications carried out by each 

GEP-based model and the variation of measured probability (𝑝) concerning the real class of 

each observation (dataset). According to Fig. 4.6, it can be seen that during the binary 

classification of all three failure mechanisms, the observations having similar classes are 

ordered in separate clusters of “0” and “1” based on the threshold defined for the probability 

parameter (𝑝) (here is 𝑝 = 0.5). Also, no misclassification of datasets can be seen for squeezing 

and slabbing failure mechanisms, but only one dataset misclassified as strain burst while it is 

not strain burst in reality. To have more insights regarding the implementation of the proposed 

strategy for failure mechanism detection in underground mines, a design example is presented 

in the following. Considering the values of 135 MPa, 8.5 MPa, 74 GPa, and 0.13, respectively, 

for 𝜎𝑐, 𝜎𝑡, 𝐸, and 𝜈 (i.e. the dataset No. 8 in Table 4.1), the occurrence probability of each 
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failure mechanism can be measured using the MatLab codes provided in Table 4.3. The 

probability of each failure mechanism for this dataset is obtained as follows: 

• Probability of class 1 (squeezing failure) = 𝑝1 = 0.117% 

• Probability of class 2 (slabbing failure) = 𝑝2 = 2.395% 

• Probability of class 3 (strain burst failure) = 𝑝3 = 99.99% 

Based on the above 𝑝 values, in this case, the failure mechanism of strain burst has the highest 

probability (99.99%), and therefore, class 3 is the predicted class for the given intact rock 

properties.  

Table 4.2 The MatLab codes developed by GEP-LR technique for the failure mechanism 

detection of competent over-stressed rock masses 

Failure mechanism MATLAB code 

Class 1 (Squeezing) function result = gepModel(d) 

y = 0.0; 

y = reallog(d4); 

y = y * (d1/(d1^3)); 

y = y * (exp(realsqrt(d3))/((d4^3)+d2)); 

SLOPE = 4934947336.96859; 

INTERCEPT = -10.8714129911233; 

p = 1.0 / (1.0 + exp(-(SLOPE * y + INTERCEPT))); 

result = p; 

Class 2 (Slabbing) function result = gepModel(d) 

G1C5 = 8.05608417004914; 

G1C7 = -4.18124546037172; 

G1C4 = -4.93040132044435; 

G3C1 = -1.53843806268502; 

y = 0.0; 

y = ((tan(d4)+d2)-(((d3-G1C4)-G1C5)*((G1C7+d2)/2.0))); 

y = y * gep3Rt(tan((gep3Rt(realsqrt(d1))-gep3Rt(((d3-d1)-d4))))); 

y = y * (tan((d2+((d4/G3C1)+(d3^3))))-d3); 

SLOPE = 8.31234734032252E-02; 

INTERCEPT = -0.679851333349592; 

p = 1.0 / (1.0 + exp(-(SLOPE * y + INTERCEPT))); 

result = p; 

function result = gep3Rt(x) 

if (x < 0.0), 

    result = -((-x)^(1.0/3.0)); 

else 

    result = x^(1.0/3.0); 
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end 

Class 3 (Strain burst) function result = gepModel(d) 

G1C2 = -7.47367778557695; 

G2C3 = 9.57225880465376; 

G2C9 = 4.01837214270455; 

y = 0.0; 

y = (gep3Rt(realsqrt((d4+tan(((d2+d1)*(d3*G1C2))))))^2); 

y = y + ((((G2C3/d2)+sin((d3-d4)))+sin((d1/G2C9)))/2.0); 

y = y + gep3Rt(gep3Rt(d1)); 

SLOPE = 8.76302130910031; 

INTERCEPT = -54.6402851913329; 

p = 1.0 / (1.0 + exp(-(SLOPE * y + INTERCEPT))); 

result = p; 

function result = gep3Rt(x)  

if (x < 0.0), 

    result = -((-x)^(1.0/3.0)); 

else 

    result = x^(1.0/3.0); 

end 
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Figure 4.6 Binary classification of (a) squeezing, (b) slabbing and (c) strain burst by GEP-LR 

technique 

4.3.3. Performance of the Developed GEP-LR Model 

It is required to evaluate the performance of the developed multi-class classifier. For this, the 

confusion matrices initially are calculated for binary GEP-based models of each failure 

mechanism. The confusion matrix is a useful tool that contains information concerning the real 

and predicted classifications (Fawcett 2006). In a confusion matrix, if the actual output is 

positive (e.g. strain burst) and it is classified as positive by the classifier, it is named as true 

positive (TP). In contrast, if it is classified as negative (i.e. non-strain burst), it is named as 

false negative (FN). On the other hand, if the real output is negative and the classifier detects 

it as a negative, it is named true negative (TN), while if it is classified as positive, it is named 

false positive (FP). Another measure for assessing a classifier is the receiver operating 
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characteristic (ROC) curve. The ROC curve is an illustrative method that shows the diagnostic 

ability of a binary classifier model as its threshold (cut-off) value is changed (Metz 1978). This 

curve can be obtained by plotting the true positive rate (i.e. 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
) against the false 

positive rate (i.e. 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
). The classifier having no discrimination ability or with the 

area under the curve (𝐴𝑈𝐶) equal to 0.5 produces a ROC curve that follows the diagonal line 

of 45° (random classification), whereas for a perfect classification, the ROC curve follows the 

left hand and top axes of the unit square with 𝑇𝑃𝑅 = 1, 𝐹𝑃𝑅 = 0, and 𝐴𝑈𝐶 = 1 (Fawcett 

2006). The results of confusion matrices and ROC curves for all three GEP-LR models are 

shown in Table 4.4 and Fig. 4.7, respectively. Clearly can be seen from Table 4.4 that the whole 

datasets relating to the squeezing failure (i.e. TP = 3) and slabbing failure (i.e. TP = 15) are 

correctly classified/predicted (i.e. 100% accuracy) by the GEP-LR models without having any 

misclassified dataset (i.e. FP = FN = 0). On the other hand, out of a total of 35 datasets, 17 

cases of strain burst failure mechanism are correctly classified (i.e. 97.14% accuracy), and only 

one case is incorrectly classified as strain burst while it is not, as shown in Fig. 4.6c. In Figure 

4.7, all ROC curves are in the upper triangle area showing no random classification. Figure 4.7 

also proves the perfect classification of the GEP-LR technique for categorising the class 1 (i.e. 

squeezing) and class 2 (i.e. slabbing) failure mechanisms datasets as their ROC curves pass 

through (0,1) coordinate with 𝐴𝑈𝐶 = 1. However, the 𝐴𝑈𝐶 = 0.964 is obtained for the third 

GEP-LR model which represents an outstanding discrimination ability according to Hosmer Jr 

et al. (2013). To check the total performance of the proposed GEP-LR multi-class classifier, 

the probabilities (𝑝s) are calculated for all 35 datasets based on the MatLab codes given in 

Table 4.3 for each failure mechanism. The results can be seen in Table 4.1. By applying the 

𝑎𝑟𝑔𝑚𝑎𝑥 function to the obtained probabilities, the class having a higher probability is chosen 

as the predicted output (class). The comparison of the real failure mechanisms and the predicted 

ones shows that although a single misclassification happened in the binary classification of the 

strain burst failure mechanism, the proposed multi-class classifier can predict the final output 

with 100% accuracy, as shown schematically in Fig. 4.8.  
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Table 4.4 Confusion matrices of the GEP-LR models for each failure mechanism 

Squeezing 

mode (class1) 

Predicted class 

Yes No 
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Yes 3 (TP) 0 (FN) 

No 0 (FP) 32 (TN) 

Slabbing 

mode (class 2) 

Predicted class 

Yes No 
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ct
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cl
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s 
Yes 15 (TP) 0 (FN) 

No 0 (FP) 20 (TN) 

Strain burst 

mode (class 3) 

Predicted class 

Yes No 

A
ct
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cl
as

s 

Yes 17 (TP) 0 (FN) 

No 1 (FP) 17 (TN) 

 

Figure 4.7 The ROC curves for three GEP-LR models 

 

Figure 4.8 The comparison of the real and predicted failure mechanisms 
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4.3.4. Model Validation 

To further assess the validity of the proposed hybrid model in distinguishing different failure 

mechanisms, nine unseen/new sets of intact rock properties are extracted from different studies 

with known failure states (see Table 4.5). Table 4.5 illustrates the rock types, the intact rock 

properties and the corresponding failure mechanisms for these datasets. The GEP scores are 

initially calculated using Eqs. 4.6 to 4.8, and then, the occurrence probability (𝑝) of each failure 

mechanism/class is determined based on the hybrid models/ probabilistic approaches presented 

in Table 4.3. The obtained 𝑝 values are listed in Table 4.5. As discussed earlier, the class having 

the highest probability is selected as the predicted class by this multi-class classifier. As seen 

in Table 4.5, the failure mechanism of all nine new datasets is correctly predicted by the 

developed hybrid model (i.e. the prediction accuracy is 100%), which is consistent with the 

results obtained in the previous section. These results along with those obtained in section 

4.3.3, prove the high performance and robustness of the proposed technique in this study for 

assessing such a complex non-linear geotechnical problem (i.e. failure mechanism detection). 

Table 4.5 The results of the hybrid model validation 

Reference Rock type 𝜎𝑐  

(MPa) 

𝜎𝑡 

(MPa) 

𝐸 

(GPa) 

𝜈 Failure 

mechanism 

Probability value (𝑝) Predicted 

class 
Class1 Class2 Class3 

Wang et al. 

(2020) 

Granite 126.2 7.6 69.6 0.2 Strain burst 

(3) 

0.009 0.404 0.750 3 

Wang et al. 

(2020) 

Marble 129.2 6.2 72.8 0.2 Strain burst 

(3) 

0.003 0.494 0.999 3 

Li et al. 

(2011) 

Granite 203.3 8.3 51.7 0.2 Slabbing 

 (2) 

0.004 0.478 0.035 2 

Li et al. 

(2011) 

Granite 184.2 8.3 57.6 0.2 Slabbing  

(2) 

0.002 0.759 0.455 2 

Kang et al. 

(2021) 

Sandstone 91 6.9 21.2 0.2 Squeezing 

(1) 

1 0.212 0.000 1 

Kang et al. 

(2021) 

Mudstone 37.7 3.7 14.7 0.2 Squeezing 

(1) 

1 0.331 0.000 1 

Yassaghi and 

Salari-Rad 

(2005) 

Tuff 95 11.1 11.4 0.3 Squeezing 

(1) 

1 0.447 0.000 1 

Yassaghi and 

Salari-Rad 

(2005) 

Andesitic-

Basaltic 

110 13.5 19.7 0.2 Squeezing 

(1) 

1 0.721 0.018 1 

Bilgin and 

Algan (2012) 

Metadetritic 

rocks 

48.5 3.2 20.5 0.3 Squeezing 

(1) 

1 0.239 0.000 1 
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4.4. Discussion 

The strategy of hybridising the gene expression programming (GEP) and the logistic regression 

(LR) is used for the first time in mining and geotechnical engineering as a multi-class classifier 

for the prediction of failure mechanism in underground mines. As discussed in the previous 

sections, the proposed GEP-LR model shows high performance in distinguishing the three 

types of failure; however, several issues should be addressed in future studies. Firstly, in this 

study, the GEP-LR multi-class classifier developed based on a database limited to 35 case 

studies related to the over-stressed competent rock masses. At the same time, the functionality 

of the machine learning algorithms relies on the data size. Therefore, due to the flexibility and 

applicability of the proposed model in this study, it is highly recommended to update the model 

with a bigger database that can be obtained in the future. Secondly, the database provided in 

this study is not balanced in terms of the number of classes for each failure mechanism. As 

shown in Table 4.1, the current database, respectively, has 17, 15, and 3 datasets for strain 

burst, slabbing, and squeezing failure mechanisms. The reliability and generality of the model 

can be improved by providing an equal number of datasets for all failure mechanisms/classes, 

especially for squeezing, which has only 3 cases in this study. Considering the foregoing issues 

into account, the proposed model in this study should be used as a tool for preliminary 

assessment of failure mechanism in underground projects. Consequently, the required 

arrangements can be considered for the long-term stability of the underground projects based 

on the predicted output.   

4.5. Conclusions 

In this study, a novel hybrid system combining the gene expression programming (GEP) and 

the logistic regression (LR) techniques is presented for measuring the occurrence probability 

of three failure mechanisms (i.e. squeezing, slabbing and strain burst) based on intact rock 

properties for competent over-stressed rock masses. This database includes the parameters of 

𝜎𝑐, 𝜎𝑡, 𝐸, and 𝜈 as the independent (input) parameters for modelling, while the dependent 

(output) parameter is the failure mechanism. The GEP algorithm is a robust technique for 

function finding, especially for high-complex non-linear tasks like failure mechanism detection 

in underground mining and geotechnical projects. The initial assessment of the original 

database (Fig. 4.4) shows that the failure mechanisms cannot be predicted solely by a single 

indicator because some of their values belong to more than one class, which shows the necessity 

of the application of robust non-linear techniques to deal with such complex multi-class 
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classification problems. To do so, three separate models are developed using the GEP algorithm 

to predict the occurrence or non-occurrence of each failure mechanism. Since the original GEP 

algorithm can implement the classification aim just in binary condition, it is not possible to 

predict the final failure mechanism. A probabilistic approach is linked to the developed GEP 

models for measuring the probability (𝑝) of occurrence of each failure mechanism, which can 

solve this problem. Therefore, the obtained GEP scores are fed to the general logistic regression 

equation (Eq. 4.11) to calculate the probabilities. The class which has the highest 𝑝-value is 

selected as the final prediction. The failure mechanism prediction models are presented as 

MatLab codes for future applications as well as for optimization purposes. The performance 

analysis of the GEP-based binary models for each failure mechanism using the confusion 

matrices (Table 4.4) and ROC curves (Fig. 4.7) shows that the GEP models can predict the 

occurrence or non-occurrence of each failure mechanism, respectively, with 100% (AUC=1), 

100% (AUC=1), and 97.14% (AUC=0.964) accuracy for squeezing, slabbing and strain 

bursting failure. Also, total accuracy of 100% is obtained for the multi-class classifier (GEP-

LR model) by comparing the predicted failure mechanisms with those measured by the 

engineers in underground mines (Table 4.1). The obtained values for the performance indices 

show the high capability and robustness of the proposed model as a practical tool for 

preliminary assessment of the failure mechanism for over-stressed rock masses. The results 

obtained from the model validation using the nine unseen/new datasets compiled from different 

studies also proved the robustness of the proposed model. However, the model’s reliability and 

generality can be improved by updating the GEP-LR model using a more comprehensive 

database in futures studies.  
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Chapter 5 
 

Rockburst Assessment in Deep Geotechnical 

Conditions using True-Triaxial Tests and Data-

Driven Approaches  

Abstract  

Deep underground excavations in mining and civil engineering are subjected to high in-situ 

stresses which can cause rockburst. Rockburst is an instantaneous release of a large amount of 

strain energy stored in rockmass that can lead to injuries, deaths, and damage to infrastructures. 

Many studies have been done regarding rockburst, however, there is no practical model to 

predict the stress level that rockburst occurs (i.e. maximum rockburst stress) and its related risk 

(i.e. rockburst risk index) based on real rockburst tests, and the main rock mechanical 

properties. In this study, a comprehensive database of true-triaxial unloading tests on rocks 

having a wide range of properties was compiled. The agglomerative hierarchical clustering 

(AHC) analysis was carried out on the original database to evaluate the presence of natural 

groups and outliers. Then, the stepwise selection and elimination (SSE) procedure were 

employed for dimension reduction of the problem and identifying the most influential attributes 

on rockburst parameters. Afterward, two robust non-linear algorithms, including gene 

expression programming (GEP) and classification and regression tree (CART) were used to 

develop the predictive models for rockburst maximum stress and its risk index. The validation 

verification of the proposed models using several indices proved the high prediction 

performance of the developed non-linear models. Finally, a parametric analysis was carried out 

to evaluate the influence of each input parameter on the corresponding output. The proposed 

models in this study are practical and do not require any presupposition about rockburst 

mechanism, which makes them be used easily in practice by engineers at the design and 

progress stages of the underground projects. 

Keywords: Rockburst maximum stress, Rockburst risk index, True-triaxial test, Gene 

expression programming, Classification and regression tree 
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5.1. Introduction 

Deep underground conditions can be characterised by the high level of in-situ stresses, high 

groundwater pressure, high temperature, and high brittleness of rocks (Jian et al. 2012; Ranjith 

et al. 2017). Consequently, the deep underground activities such as mining and tunnelling are 

usually subjected to different nature-induced hazards during and after their closure. One of 

them is related to seismic events (Feng 2017). When the deviatoric stress either in the confined 

rock mass or near an excavation reaches to the confined or unconfined rock mass strength, the 

seismic events are occurred and may lead to unstable failure by a shear slip or shear rupture. 

The radiated energy may then damage the excavation and cause rockburst damage (Cai and 

Kaiser 2018). Rockburst is the most severe disaster that threatens the safety of mining operation 

and the stability of the excavation surface. Rockburst can be defined as a dynamic instability 

phenomenon of the surrounding rock mass of an underground opening in the highly-stressed 

zone that is accompanied by a violent release of strain energy stored in the rock mass (Zhou et 

al. 2018). Rockbursts can occur either during the excavation (are known as strainbursts) or after 

excavation (are known as impact-induced or delayed rockbursts) based on the triggering factors 

in the form of a strip of rock slices, rock fall, ejection of rock fragments, with roaring sound 

(Feng 2017; He et al. 2018). Due to the violent and unexpected nature of this phenomenon, it 

may lead to worker injury, damage to mine infrastructure and equipment, and possibly 

economic loss of underground excavation (see Fig. 5.1) (Li et al. 2007; He et al. 2017; Weng 

et al. 2017). Many factors including the rock mechanical properties, excavation geometry, 

discontinuities, in-situ and mining-induced stresses, and construction method, may affect the 

rockburst triggering (Sousa 2010). Hence, rockburst prediction and mitigation are one of the 

most challenging problems in rock engineering. In last decades, a considerable investigation 

has been carried out on rockburst to understand more about its mechanism, prediction, and 

controlling methods theoretically and experimentally (Jian et al. 2012; He et al. 2018). In terms 

of rockburst mechanism, many theories such as the energy theory, the strength theory, the burst 

liability theory, the bifurcation theory, and the chaos theory have been proposed by researchers 

to study the strain localisation and the stability of the rock mass (Shi et al. 2010; Tang et al. 

2010; Jian et al. 2012). 

From the viewpoint of rockburst prediction, more than 100 empirical criteria have been 

proposed by scholars mostly based on strength, strain, and strain energy parameters. Moreover, 

novel and robust data-mining techniques including the supervised and unsupervised algorithms 

have been used recently by researchers to predict both the rockburst occurrence (as a binary 
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problem) and its intensity (as a four-class problem) (Zhou et al. 2018; Shirani Faradonbeh and 

Taheri 2019). In terms of rockburst control, several techniques such as the application of 

energy-absorbing bolts (He et al. 2014), ground preconditioning (e.g. destress drilling, destress 

blasting, water injection), and alternative mining methods (e.g. pillarless mining and mining 

with sacrifice galleries) have been suggested as the potential solutions for rockburst mitigation 

(Saharan and Mitri 2011). Rockburst also has been investigated by laboratory tests since these 

tests can provide useful information about rockburst mechanism, the influence of different 

parameters on bursting behaviour, calibrating the numerical models, and identifying the stress 

state prone to severe failure (He et al. 2015, 2018). Many attempts have been made by different 

researchers to simplify the process of failure using conventional testing methods including 

uniaxial and biaxial compression tests (Cook 1963; Singh 1987; Barquins and Petit 1992; 

Linkov 1996; Wang and Park 2001), dynamic uniaxial compression tests (Wang and Park 

2001; Bagde and Petroš 2005), triaxial compression unloading tests (Wang and Huang 1998; 

Xu 2003; Chen and Su 2010) as well as the true-compression triaxial tests (Cheon et al. 2006; 

Chen and Su 2010; Su et al. 2017a; Wang et al. 2019).  

Despite the many excellent efforts made so far, the common testing methods cannot properly 

simulate the stress state of the rock mass where rockburst occurs. As a matter of fact, rockburst 

usually occurs near the excavated boundary while the stress state after the excavation is 

transformed from a triaxial equilibrium state (𝜎1 > 𝜎2 > 𝜎3) to a newly redistributed state 

(𝜎3 ≈ 0, 𝜎1 ≠ 0, 𝜎2 ≠ 0). In this new state, the tangential stress (𝜎𝜃) increases progressively 

and may reach the ultimate strength of the rock element and rockburst may occur (see Fig. 5.2). 

More recently, a modified true-triaxial testing system was introduced by He et al. (2010) which 

can unload the pressure on one surface of the rock sample and replicate the stress concentration 

in the surrounding rock mass of the free face and measure the released kinetic energy during 

bursting. This apparatus consists of several main components including the main hydraulic 

loading and unloading system, a data acquisition system that continuously records the changes 

in forces and displacements, the high-speed cameras for measuring the kinetic energy of the 

ejected rock fragments during bursting, an acoustic emission (AE) system to track the process 

of damage accumulation during the test, and an infrared monitoring system to measure surface 

temperature of the sample and inspect the internal damage (He et al. 2012, 2015). In true-

triaxial testing apparatus as can be seen from Fig. 5.3, the loads are applied simultaneously to 

the prismatic specimen in all three principal stress directions to reach a pre-defined in-situ 

stress state, and the loads are kept constant on the specimen for a while to achieve a uniform 
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stress distribution in the specimen. Finally, the platen is removed abruptly from one surface of 

the sample that is subjected to radial stress (𝜎3) while the axial stress (𝜎2) is held constant and 

𝜎1 is increased gradually until the specimen fails.  Due to the superiority of the modified true-

triaxial testing system over the conventional testing methods, many researchers recently have 

used this machine to study the influence of different parameters such as moisture content (Sun 

et al. 2016; Liu et al. 2018; Chen et al. 2019), temperature (Su et al. 2017a; Akdag et al. 2018), 

tunnel axis stress (Su et al. 2017b), aspect ratio of the rock sample (Zhao and Cai 2015) and 

unloading rate (Zhao et al. 2014; Li et al. 2014) on rockburst hazard. During the rockburst tests, 

the rocks experience a severe failure at a specific stress level which is known as rockburst 

maximum stress (𝜎𝑅𝐵) (see Fig. 5.3). The correct prediction of this stress level for different 

rock types by considering the most important rock mechanical characteristics can help 

engineers to recognise rockburst hazards in different in-situ stress conditions, to increase the 

stability of the underground structures as well as for numerical studies. Furthermore, the 

predictor model can be used to estimate bursting stress when rockburst testing facilities are not 

available. In this regard, He et al. (2015) proposed three models using multiple linear regression 

(MLR), artificial neural network (ANN), and support vector machine (SVM) techniques to 

predict 𝜎𝑅𝐵 and rockburst risk index (𝐼𝑅𝐵) based on the database compiled from true-triaxial 

tests.    

In their study, ANN and SVM as two subsets of soft computing algorithms outperformed the 

common multiple regression model and were identified as possible solutions for studying such 

a complex problem. Although these techniques can provide models with suitable accuracy, 

they are known as “black-box” methods i.e. their internal structure and calculations are not 

clear and easy to understand by a human. In addition, such algorithms may stick in local 

minimum during the training process, and their outputs may not be very reliable. Above all, 

these techniques are not very practical since they cannot offer any mathematical or visual 

output to let the users apply them without using a code (Cortez and Embrechts 2011). It is also 

worth mentioning that many factors affect rockburst hazard and its related parameters, and 

selecting the most influential ones during the modelling, can affect the complexity, accuracy, 

and more importantly the reliability of the developed models. To triumph over such 

complexities and open the black-box methods, the extraction of rules from the model, and the 

use of visualization techniques are recommended (Cortez and Embrechts 2011). Contrary to 

ANN and SVM techniques, there are other powerful algorithms such as genetic programming 

(GP), gene expression programming (GEP), and classification and regression tree (CART) that 
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can provide more practical outputs. The successful application of these algorithms has been 

reported by other researchers in mining and geotechnical engineering fields (Armaghani et al. 

2016; Salimi et al. 2016; Hasanipanah et al. 2017b; Khandelwal et al. 2017). Hence, it is 

necessary to use state-of-the-art modelling techniques to address the mentioned difficulties and 

develop new models for predicting rockburst maximum stress and its risk index based on field 

conditions. As it has been summarized in Fig. 5.4, this study focuses on the following steps: 1) 

compiling a database based on the true-triaxial unloading tests on different rock types and 

performing a broad statistical analysis on it to create a homogeneous database and to select the 

most influential parameters based on an appropriate strategy; 2) Developing genetic-based and 

decision tree-based models for the prediction of maximum rockburst stress (𝜎𝑅𝐵) and rockburst 

risk index (𝐼𝑅𝐵) based on the selected input parameters; 3) validation verification of the 

developed models; and 4) conducting a parametric analysis to assess the effect of input 

parameters on the corresponding outputs.  

 

Figure 5.1 Rock ejection and deformation of the supporting system due to strainbursting 

(Feng et al. 2017) 
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Figure 5.2 The schematic representation of the rock element stress state before and after 

tunnelling, modified from Su et al.(2017a) 

 

Figure 5.3 Loading path for rockburst true-triaxial tests 
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Figure 5.4 Process of rockburst assessment in this study (𝑈𝐶𝑆: uniaxial compressive 

strength; 𝐸: Young’s modulus; 𝜈: Poisson’s ratio; 𝜎ℎ1: horizontal in-situ stress; 𝜎ℎ2: 
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horizontal in-situ stress in the face to be unloaded; 𝜎𝑣: vertical in-situ stress; 𝜎𝑅𝐵: rockburst 

maximum stress; 𝐼𝑅𝐵: rockburst risk index; 𝐷: depth, 𝜌: density, 𝐾: horizontal pressure 

coefficient (ratio of average horizontal stresses to the vertical stress due to overburden), 

𝑀𝐿𝑅: multiple linear regression; 𝑉𝐼𝐹: variance inflation factor; 𝑅2: coefficient of 

determination) 

5.2. Data Collection and Statistical Analysis 

In this study, a database containing information about the 139 rockburst laboratory tests 

conducted on different rock types from 2004 to 2012 at the State Key Laboratory for 

Geomechanics and Deep Underground Engineering (SKLGDUE), China was compiled. The 

tested rock samples were gathered from the depth of 200 m to 3375 m. This database consists 

of many parameters such as rock mechanical properties, in-situ stresses, rock sample depth, 

rockburst critical depth, rock density, rock specific weight, mineral contents of rocks, loading 

and unloading rates of the true-triaxial tests, rockburst maximum stress, rockburst risk index, 

test duration and bursting mechanism. Considering a circular shape for the tunnel crown, the 

stress concentration factor equal to 2, and the specific weight of 27 kN/m3 for the overburden 

rock mass, the rockburst critical depth (𝐻𝑒) was calculated by the following equation: 

He = 18.52𝜎𝑅𝐵                   (5.1) 

The rockburst risk index (IRB) also was calculated for all the samples through the following 

equation (He 2009):  

IRB =
H

He
= 0.054

H

σRB
                   (5.2) 

He (2009) defined a new classification for 𝐼𝑅𝐵 as shown in Table 5.1. Based on this 

classification, a 56% of the tested samples have low 𝐼𝑅𝐵, 13% of the samples have very high 

𝐼𝑅𝐵, and the remained 31% of samples have moderate to high 𝐼𝑅𝐵. Since all the foregoing 

parameters have not been collected during the rockburst tests, there are some missing values in 

the database. To have a homogeneous database, the missing values (30 records) were 

eliminated from the primary database, and finally, the results of 109 tests were considered for 

further analyses. Before developing any model, the presence of natural groups and outliers in 

the raw database was evaluated using agglomerative hierarchical clustering (AHC) analysis. In 

fact, the presence of outliers and natural groups can decrease the generality and liability of the 

developed models (Hudaverdi 2012; Faradonbeh and Monjezi 2017; Shirani Faradonbeh and 
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Taheri 2019) The AHC is the most common type of clustering techniques which is used in 

earth sciences (Hudaverdi 2012). The AHC follows a bottom-up procedure that iteratively 

creates the single object clusters and then these clusters are merged into the larger clusters 

based on the similarity or dissimilarity criteria. The common criterion for clustering is 

“distance”, and this means that objects in the same cluster have the least distance from each 

other, while objects in different clusters are at a great distance from one another. The process 

of cluster generating and merging is continued until all the objects (datasets) are placed in a 

single cluster or the pre-defined termination condition is satisfied. For measuring the distance 

between the objects, the average-linkage function that measures the average distance of any 

object of one cluster from an object of the other cluster was used to form the clusters (Kaufman 

and Rousseeuw 2009; Saxena et al. 2017): 

1

|𝐴||𝐵|
∑ ∑ 𝑑(𝑎, 𝑏)𝑏∈𝐵𝑎∈𝐴                   (5.3) 

where 𝐴 and 𝐵 are two clusters with the sizes of |𝐴| and |𝐵|, respectively. 𝑎 and 𝑏 are objects 

from the mentioned clusters and 𝑑 is the squared Euclidean distance between two objects.  

Table 5.1 Rockburst risk index classification, He et al. (2015) 

Rockburst risk index (𝐼𝑅𝐵) Class 

𝐼𝑅𝐵 < 0.6 Low 

0.6 < 𝐼𝑅𝐵 ≤ 1.2 Moderate 

1.2 < 𝐼𝑅𝐵 ≤ 2.0 High 

𝐼𝑅𝐵 ≥ 2.0 Very high 

Fig. 5.5 shows the dendrogram derived from the conducted clustering analysis by AHC. A 

dendrogram is a tool that represents the relative size of the calculated distances at which the 

objects and clusters are combined. The objects with the low squared Euclidean distance (high 

similarity) are close together and vice versa. The X-axis shows the dataset number and the Y-

axis shows the rescaled value of the distance. To prevent Fig. 5.5 to be crowded and large, the 

numbers of the datasets have been summarised on the X-axis.  Clearly can be seen from Fig. 

5.5 that the whole 109 collected datasets were clustered into one distinct group between the 

rescaled distances of 0 and 5 except for two cases of 75 and 76 which were placed in the second 

group. By checking the database, it was found out that the main parameter that caused to 

grouping is depth, and the members of group 2 belong to the depth of 3375 m which are known 

as outliers for the current database. Therefore, these two cases were removed from the database 

to avoid the influence of their distinctive behaviour on the modelling process, and the 
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subsequent analysis was carried out on the 107 data samples. Fig. 5.6 shows the histogram and 

the descriptive statistics of all the 11 measured parameters. This figure illustrates that there are 

specific ranges of values for the parameters in which the predictions are meaningful. 

Accordingly, future predictions with a new database should be conducted only in these ranges. 

Although the current database covers a great range of values for the parameters and includes 

different rock types, it is possible to extend these ranges in the future by new information 

obtained from true-triaxial tests to increase the generality of the developed models.  

 

Figure 5.5 Dendrogram resulting from agglomerative hierarchical clustering (AHC) analysis 

Group A

Group B

X
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Figure 5.6 Histogram of the collected parameters along with the descriptive statistics 
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Figure 5.6 (Continued) 
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5.3. Methods and Results 

5.3.1. Stepwise Selection and Elimination Process 

This section aims to do a systematic stepwise selection and elimination (SSE) analysis to 

identify the most important parameters on the outputs and reduce the complexity of the 

developed models. The process of parameter reduction also is carried out using the variable 

pressure tools of the robust data-mining techniques i.e. GEP and CART. There are several 

critical statistical terms which have been used in this study for the primary assessment of the 

database and are defined in the following. Multicollinearity, a high correlation between the 

independent (predictor) variables, can be considered as one of the most prominent challenges 

for multiple regressions. The existence of this phenomenon may lead to developing an unstable 

regression model having high values for variance and covariance coefficients (Sayadi et al. 

2012). Variance inflation factor (VIF) is a statistical index to quantify the extent of the 

multicollinearity between the independent (input) parameters. This index is the ratio of model 

variance considering several inputs to the variance of the model with a single input parameter. 

The VIF lower than 10 shows the non-existence of multicollinearity (James et al. 2013). 

Another important index is Sig. (2-tailed) or p-value of the correlations. The Sig (2-tailed) 

represents the significance of the correlation at a prescribed alpha level (5%). The Sig. (2-

tailed) should be less than or equal to 0.05 to reject the influence of chance factor. The 

coefficient of determination (denoted by 𝑅2) is another statistical measure for evaluation of the 

model performance. This index interprets the proportion of the output (dependent) variable’s 

variance that is predictable from the input (independent) variables. An 𝑅2 of 1 indicates that 

the regression predictions perfectly fit the data (Montgomery et al. 2012; James et al. 2013; 

Kumar Sharma and Rai 2017). 

In the current study, uniaxial compressive strength (𝑈𝐶𝑆), Young’s modulus (𝐸), Poisson’s 

ratio (𝜈), horizontal in-situ stress (𝜎ℎ1), horizontal in-situ stress in the face to be unloaded (𝜎ℎ2), 

vertical in-situ stress (𝜎𝑣), depth (𝐷), density (𝜌), and horizontal pressure coefficient (𝐾) are 

known as the input parameters for the maximum rockburst stress (𝜎𝑅𝐵), while all the mentioned 

parameters are considered as inputs for the rockburst risk index (𝐼𝑅𝐵). The SPSS software 

package 25.0 was used for performing the statistical evaluations. Initially, the database was fed 

to the software, and the Person’s correlation coefficient (𝑟) between the input parameters as 

well as between the inputs and the corresponding outputs was calculated. Table 5.2 lists the 

calculated correlation values. As can be seen from this table, all the inputs significantly 
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correlating with 𝜎𝑅𝐵 (i.e. 𝑆𝑖𝑔. (2 − 𝑡𝑎𝑖𝑙𝑒𝑑)  ≤ 0.05), while 𝐷 (depth) with the 𝑆𝑖𝑔.>  0.05 

and low correlation coefficient (𝑟 = −0.128) was removed from the input parameters for 

further modelling of  𝐼𝑅𝐵. The elimination of parameters does not show that they have not any 

influence on the output, but simply it means that the effect of those parameters will be minimum 

in predicting the output. As an initial multicollinearity assessment between input parameters, 

no one of the correlations exceeds from the condition of 𝑟 > 0.90 (Hemmateenejad and 

Yazdani 2009). However, these input parameters may show multicollinearity when a 

combination of them are used as regressors in MLR. Based on the above analysis, all the inputs 

(except parameter 𝐷 for 𝐼𝑅𝐵) were retained for multiple linear regression (MLR). The MLR 

models with the possible multicollinearity were developed separately using the selected 

parameters for both 𝜎𝑅𝐵 and 𝐼𝑅𝐵.  

Table 5.3 shows the model summary, calculated coefficients, and the statistical indices for 

evaluating the developed MLR models. In this stage, according to Fig. 5.4, several conditions 

including 𝑉𝐼𝐹 < 10, 𝑆𝑡𝑑. 𝑒𝑟𝑟𝑜𝑟 ≤  𝐶𝑜𝑒𝑓𝑓. (𝐵), and 𝐶𝑜𝑒𝑓𝑓. (𝐵)  ≠ 0 were checked for 

different inputs to retain them for further evaluations. Considering Table 5.3, for rockburst 

maximum stress (𝜎𝑅𝐵), the parameters of 𝐾 and 𝜌 have 𝑉𝐼𝐹 > 10 and t-significance higher 

than 0.05, respectively, which shows that the effect of these parameters on the 𝜎𝑅𝐵 is 

insignificant. Therefore, these parameters were removed for further modelling of 𝜎𝑅𝐵. About 

the rockburst risk index (𝐼𝑅𝐵), all the VIF values for inputs are less than 10, but the t-

significance values of the 𝑈𝐶𝑆, 𝜎𝑣, 𝜎ℎ1, and 𝜎ℎ2 are higher than 0.05. Thus, these parameters 

also were removed from the input set of 𝐼𝑅𝐵. In the next step, two stepwise selection and 

elimination procedures were performed using the selected inputs for each dependent parameter. 

In this procedure, a parameter which is entered in the model at the initial stage of selection may 

be removed at the later stages. In fact, the calculations in this process are like the forward 

selection and backward procedure (Sarkhosh et al. 2012).  

Table 5.4 summarises the results of the stepwise selection and elimination procedure carried 

out using the algorithm provided in the SPSS 25. In this algorithm, the parameters enter the 

model if the probability (significance level) of its 𝐹 value is less than the Entry value (i.e. 0.05) 

and are eliminated if the probability is greater than the Removal value (i.e. 0.100). Entry must 

be less than Removal, and both values must be positive. As given in Table 5.4, during the 

process of selection and elimination, the correlation coefficient (𝑅) between the measured 

output and the predicted one was increased from 0.884 (model 1) to 0.910 (model 3) for 𝜎𝑅𝐵 
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and from 0.754 (model 1) to 0.821 (model 5) for 𝐼𝑅𝐵, respectively. In other words, the 

parameters of 𝑈𝐶𝑆, 𝐸, and 𝜎𝑣 can explain 82.8% (𝑅2 = 0.828) variations in 𝜎𝑅𝐵. As such, the 

parameters of 𝜎𝑅𝐵, 𝐾, 𝐸, 𝜈, and 𝜌 can explain 67.4% (𝑅2 = 0.674) variations in 𝐼𝑅𝐵. Thus, 

these parameters were known as the most influential ones among the initial inputs to describe 

the rockburst parameters. The regression coefficients and the collinearity statistics of the best 

SSE-based models are shown in Table 5.5. In both models, the VIF factor that shows the 

multicollinearity is lower than 10, the t-significance is lower than 0.05, and the Std. error values 

are lower than the regression coefficients which show the reliability of the SSE process in 

identifying the most influential parameters. 

Considering the above analyses, the agglomerative hierarchical clustering (AHC) accompanied 

by the stepwise selection and elimination (SSE) method could provide a homogeneous 

rockburst database by removing the outliers and decreasing the dimensionality of the problem. 

This process also can be useful for the complexity reduction of the next predictive models by 

applying a few input parameters. Due to the high non-linear and complex nature of rockburst 

hazard (He et al. 2015; Pu et al. 2019; Shirani Faradonbeh and Taheri 2019) there is a need to 

use the non-linear data-mining algorithms to provide more accurate predictive models for 

rockburst parameters. To do so, two robust data-driven approaches including the gene 

expression programming (GEP) as a meta-heuristic algorithm and the classification and 

regression tree (CART) as a subset of decision tree algorithms were selected for discovering 

the non-linear latent relationships with more accuracy and lower estimation error. These 

algorithms despite the various datamining and soft computing techniques such as ANNs, SVM, 

etc. can provide practical and easy to use outputs for the engineers and the researchers when 

the true-triaxial testing machine is not available. A summary of the modelling procedure by 

these techniques is presented in the following sections. 
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Table 5.2 Pearson’s correlation (r) coefficient between different parameters 

 UCS ρ E ν σv σh1 σh2 D K σRB IRB 

UCS r 1           

Sig.             

ρ r 0.827 1          

Sig. 0.000           

E r 0.796 0.829 1         

Sig. 0.000 0.000          

ν r -0.555 -0.438 -0.594 1        

Sig.  0.000 0.000 0.000         

σv r 0.660 0.491 0.458 -0.367 1       

Sig. 0.000 0.000 0.000 0.000        

σh1 r 0.737 0.523 0.515 -0.420 0.846 1      

Sig. 0.000 0.000 0.000 0.000 0.000       

σh2 r 0.713 0.549 0.648 -0.460 0.685 0.803 1     

Sig. 0.000 0.000 0.000 0.000 0.000 0.000      

D r 0.450 0.065 0.247 -0.563 0.450 0.554 0.430 1    

Sig. 0.000 0.509 0.010 0.000 0.000 0.000 0.000     

K r 0.667 0.717 0.655 -0.362 0.629 0.712 0.791 -0.005 1   

Sig. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.961    

σRB r 0.820 0.664 0.668 -0.484 0.884 0.838 0.762 0.413 0.707 1  

Sig. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000   

IRB r -0.617 -0.539 -0.624 0.255 -0.619 -0.645 -0.618 -0.128 -0.656 -0.754 1 

Sig. 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.188 0.000 0.000  

             * Correlation is significant at the 0.05 level (2-tailed)  
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Table 5.3 Summary of the MLR models for 𝜎𝑅𝐵 and 𝐼𝑅𝐵 with the selected parameters (with 

multicollinearity) 

Model summary 

Dependent parameter r  r-square  Adjusted r-square Std. error of the estimate 

σRB 0.952 0.906 0.897 19.385 

IRB 0.832 0.692 0.664 0.470 

Rockburst maximum stress (σRB) 

Parameters Unstandardized  

coefficients 

standardized  

coefficients 

t Sig. Collinearity statistics 

B Std. Error Beta Tolerance VIF 

(Constant) 71.247 20.947  3.401 0.001   

UCS 0.380 .093 0.354 4.097 0.000 0.130 7.719 

ρ -1.844 1.794 -0.086 -1.028 0.307 0.138 7.271 

E .400 0.193 0.144 2.072 0.041 0.200 5.005 

ν -125.188 50.304 -0.132 -2.489 0.015 0.344 2.908 

σv 0.594 0.061 0.572 9.688 0.000 0.278 3.592 

σh1 0.650 0.246 0.259 2.639 0.010 0.101 9.926 

σh2 0.664 0.284 0.186 2.342 0.021 0.154 6.490 

D -0.060 0.016 -0.333 -3.750 0.000 0.123 8.146 

K -15.291 5.571 -0.303 -2.745 0.007 0.080 12.556 

Rockburst risk index (IRB) 

Parameters Unstandardized 

coefficients 

standardized  

coefficients 

t Sig. Collinearity statistics 

B Std. Error Beta Tolerance VIF 

(Constant) 2.766 0.282   9.816 0.000     

UCS 0.001 0.002 0.065 0.415 0.679 0.129 7.733 

ρ 0.107 0.042 0.375 2.528 0.013 0.144 6.926 

E -0.020 0.005 -0.550 -4.286 0.000 0.193 5.194 

ν -3.406 0.932 -0.268 -3.653 0.000 0.589 1.698 

σv 0.003 0.002 0.223 1.535 0.128 0.151 6.629 

σh1 -0.006 0.005 -0.185 -1.305 0.195 0.158 6.335 

σh2 0.011 0.006 0.231 1.807 0.074 0.194 5.167 

K -0.221 0.083 -0.327 -2.662 0.009 0.210 4.751 

σRB -0.011 0.002 -0.805 -4.689 0.000 0.108 9.284 
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Table 5.4 MLR models developed based on SSE method (without multicollinearity) for 𝜎𝑅𝐵 

and 𝐼𝑅𝐵 

Rockburst maximum stress (𝜎𝑅𝐵) 

Stepwise selection and elimination  Model summary 

Model Variables entered Variables removed  r r-square Std. error 

1 𝜎𝑣 𝑈𝐶𝑆, 𝐸, 𝜈, 𝜎ℎ1, 
𝜎ℎ2, 𝐷 

 0.884 0.781 28.412 

2 𝑈𝐶𝑆 E, 𝜈, 𝜎ℎ1, 𝜎ℎ2, 𝐷 

 

 0.938 0.880 21.102 

3 𝐸 𝜈, 𝜎ℎ1, 𝜎ℎ2, 𝐷  0.910 0.828 20.399 

Rockburst risk index (𝐼𝑅𝐵) 

Stepwise selection and elimination  Model summary 

Model Variables entered Variables removed r r-square Std. error 

1 𝜎𝑅𝐵 𝜌, 𝐸, 𝜈, 𝐾  0.754 0.568 0.564 

2 𝐾 𝜌, 𝐸, 𝜈  0.773 0.598 0.591 

3 𝜈 𝜌, 𝐸  0.784 0.615 0.604 

4 𝐸 𝜌  0.805 0.649 0.635 

5 𝜌   0.821 0.674 0.658 

Table 5.5 The statistical parameters of the best SSE-based MLR models 

Rockburst maximum stress (𝜎𝑅𝐵) 

Model Unstandardized  

coefficients 

 Standardized coefficients t Sig.  Collinearity statistics 

B Std. error  Beta    Tolerance VIF 

(Constant) 6.019 3.080   1.954 0.053    

𝜎𝑣 0.650 0.046  0.626 14.196 0.000  0.552 1.811 

𝑈𝐶𝑆 0.301 0.069  0.281 4.336 0.000  0.256 3.912 

𝐸 0.437 0.152  0.158 2.881 0.005  0.358 2.794 

Rockburst risk index (𝐼𝑅𝐵) 

Model Unstandardized  

coefficients    

 

 

Standardized coefficients t Sig.  Collinearity statistics 

B Std. error  Beta    Tolerance VIF 

(Constant) 2.780 0.278   10.006 0.000    

𝜎𝑅𝐵 -0.008 0.001  -0.601 -6.749 0.012  0.406 2.463 

𝐾 -0.158 0.062  -0.233 -2.556 0.000  0.388 2.578 

𝜈 -3.501 0.922  -0.276 -3.797 0.000  0.612 1.634 

𝐸 -0.018 0.004  -0.497 -4.280 0.000  0.239 4.189 

𝜌 0.091 0.032  0.319 2.830 0.006  0.254 3.933 



131 

 

5.3.2. Non-linear Regression Analysis 

Non-linear regression (NLR) attempts to find a function which is a non-linear combination of 

the input parameters using a method of successive approximation (Archontoulis and Miguez 

2015; Bethea 2018). In geoscience, most of the dependent parameters show a non-linear 

relationship with the related influential parameters. So, the non-linear regression analysis has 

been widely used by researchers in the last decades (Armaghani et al. 2016; Jahed Armaghani 

et al. 2017; Ghasemi 2017). The NLR technique is capable of accommodating a broad range 

of functions including exponential, power, logarithmic, sigmoid, logistic, trigonometric, 

Gaussian, etc. that boosts the process of function finding. Another advantage of the NLR is the 

efficient use of data, i.e. it can provide reasonable estimates of the unknown parameters for a 

comparatively small data. However, the common NLR technique suffers from several 

significant drawbacks. In NLR, there is no a closed-form and holistic mathematical structure 

between the dependent and the independent parameters as there is in multiple linear regression 

(MLR), while the choice of the model structure is a crucial task to obtain the best solution. In 

addition, the selection and utilizing the suitable mathematical functions from the large library 

of functions need an iterative optimization procedure that is not possible in common NLR 

modellings. Accordingly, the researchers may have to use numerical optimization algorithms 

to find the best-fitting parameters but still, there is a need to define the starting values for the 

unknown parameters in these methods. Inappropriate assigning the starting values may cause 

to getting caught in the local minima rather than finding the global minimum that introduces 

the least squares estimates (Motulsky and Ransnas 1987; Archontoulis and Miguez 2015; 

Bethea 2018). For these difficulties, the researchers prefer to use a non-linear regression form 

that has been used successfully in similar applications. Hereupon, the application of intelligent 

algorithms is needed to cope with these issues. In the following sections, the process of 

rockburst assessment using two robust non-linear techniques comprising the gene expression 

programming (GEP) and classification and regression tree (CART) are explained.  

5.3.2.1. Rockburst Assessment Using GEP-based Models 

Soft computing is the relatively new branch of data-mining methods and can be considered as 

an alternative to the prevalent hard computing methods for solving the real-world problems 

(Mitchell 1997; Alavi et al. 2016). Soft computing techniques have been successfully employed 

in mining, rock mechanics, and geotechnical problems but despite their good performance, they 

cannot generate practical equations, and their structure needs to be assigned in advance by the 
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user (Alavi and Gandomi 2011). By inspiring from the Darwinian principle of “Survival of the 

Fittest” (Nazari and Pacheco Torgal 2013) and the natural evolution, a new subset of soft 

computing was introduced as the evolutionary algorithm (EA). Generally speaking, EAs work 

with a randomly generated population of individuals which are then improved using a group 

of genetic operators (e.g. mutation, crossover and reproduction) and finally, the solutions are 

encoded into the specific forms such as binary strings in genetic algorithm. The main 

differences between EAs are related to the method of presenting the solutions, genetic 

operators, selection mechanism, and the performance measurement method (Ferreira 2002a; 

Alavi et al. 2016). Gene expression programming (GEP) (Ferreira 2002b) is a well-known 

evolutionary algorithm that inherits two essential features from its siblings i.e. the use of 

simple, fixed-length, and linear chromosomes with different shapes and sizes from genetic 

algorithm (GA) and the expression tree (ET) structure from genetic programming (GP) that 

improves the robustness of GEP for solving the non-linear problems (Power et al. 2019). The 

main entities of GEP algorithm are terminal set (input parameters and constant values), 

function set (e.g. +,−, ×, ÷), fitness function (for evaluating the generated solutions), and 

genetic operators (mutation, inversion, transposition, and recombination).  

A flowchart detailing the GEP modelling procedure is shown in Fig. 5.7. In summary, GEP 

generates a population of chromosomes (solution/individual) by combining the user-defined 

terminals and functions. These chromosomes follow a bilingual and unequivocal expression 

system that is called Karva language (Ferreira 2006). The chromosomes have a specified 

number of genes (sub -ETs) which are linked together using a linking function (e.g. “/” in Fig. 

5.7 that links two genes of a chromosome). Each gene contains two parts of head and tail that 

the terminals (inputs) and functions (mathematical functions) are placed in them and the genetic 

operators are applied to these areas to modify the solutions. To have a quick understanding 

regarding the built-in mathematical equations of chromosomes, the Karva coded programs are 

then parsed into ETs. Then, the mathematical form of the programs is extracted from ETs and 

their fitness is evaluated by a fitness function. If the stopping condition(s) such as reaching to 

a specific number of iterations or the desired fitness value is not met, the selected chromosomes 

are replicated into a new generation, and the remained ones undergo a modification process 

using the genetic operators. The above process is repeated and finally, the best solution 

(predictive model) describing the relationship between the input and output parameters is 

found. More details about the mechanism of genetic operators and GEP algorithm can be found 
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in Ferreira.(Ferreira 2006) In the current study, the selected inputs from the SSE analysis were 

considered as terminal sets to formulate the rockburst parameters nonlinearly as follows: 

𝜎𝑅𝐵 = 𝑓(𝑈𝐶𝑆, 𝐸, 𝜎𝑣)                   (5.4) 

𝐼𝑅𝐵 = 𝑓(𝜎𝑅𝐵, 𝐾, 𝜐, 𝐸, 𝜌)                  (5.5) 

The rockburst database was divided randomly into training and testing subsets. The training 

set (80 % of the database) was used to train the model and discover the relationship between 

inputs and outputs, and the remaining datasets were used to validate the performance of the 

proposed models. It should be noted that the influence of using different groups of training and 

testing datasets were also evaluated on the accuracy of the models. However, no noticeable 

change in the results was observed. For evaluating the generated solutions during the GEP 

modelling, it is necessary to use a fitness function. As mentioned in section 5.3.1, to propose 

models with lower complexity, it is possible to apply variable pressure tools to compress the 

developed models as much as possible by eliminating the parameters which have lower 

importance in a non-linear structure. To this end, the root mean squared error (RMSE) with 

parsimony pressure was applied to the GEP models of 𝜎𝑅𝐵 and 𝐼𝑅𝐵 (Roy et al. 2002). The 

𝑅𝑀𝑆𝐸𝑖 of a chromosome (solution) 𝑖 is calculated by the following equation: 

𝑅𝑀𝑆𝐸𝑖 = √
1

𝑛
∑ (𝑃𝑖𝑗 − 𝑇𝑗)2
𝑛
𝑗=1                  (5.6) 

where 𝑃𝑖𝑗 is the predicted value by the chromosome 𝑖 for the dataset 𝑗, and 𝑇𝑗 is the measured 

value for dataset 𝑗.  

The 𝑅𝑀𝑆𝐸𝑖 varies between 0 and infinity, with 0 corresponding to the ideal. Since the process 

of selection in GEP algorithm is based on the increase of fitness, Equation (6) cannot be used 

directly. Thus, the following expression was used for fitness function which obviously ranges 

between 0 to 1000, with 1000 corresponding to the ideal: 

𝑅𝑀𝑆𝐸𝑖
′ = 1000 ×

1

1+𝑅𝑀𝑆𝐸𝑖
                  (5.7) 

On the other hand, to apply the parsimony pressure on future models, overall fitness was 

defined as: 
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𝑅𝑀𝑆𝐸𝑖
′′ = 𝑅𝑀𝑆𝐸𝑖

′ × (1 +
1

5000
×
𝑆𝑚𝑎𝑥−𝑆𝑖

𝑆𝑚𝑎𝑥−𝑆𝑚𝑖𝑛
)                (5.8) 

where 𝑆𝑖 is the size of the GEP program, 𝑆𝑚𝑎𝑥 and 𝑆𝑚𝑖𝑛 are the maximum and minimum 

program sizes which are calculated by the following equations: 

𝑆𝑚𝑎𝑥 = 𝐺(ℎ + 𝑡)                   (5.9) 

𝑆𝑚𝑖𝑛 = 𝐺                  (5.10) 

where 𝐺 is the number of genes, and ℎ and 𝑡 are the head size and tail size, respectively.   

A group of trigonometric and straightforward mathematical functions i.e. {+,−,∗

,/, √, 𝐿𝑛, ^2, ^3, ^1/3, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑡𝑎𝑛} were selected as the function set based on the previous 

non-linear studies using GEP algorithm (Kayadelen 2011; Faradonbeh and Monjezi 2017; 

Hoseinian et al. 2017). The other GEP parameters including the number of chromosomes, head 

size, the number of genes, and the values of genetic operators were changed for different runs 

to obtain the best solution in such a way that provides not only high accuracy but also less 

complexity. Table 5.6 presents the architecture of the obtained GEP models for both rockburst 

maximum stress (𝜎𝑅𝐵) and rockburst risk index (𝐼𝑅𝐵). By applying the parsimony pressure to 

the models, the density parameter (𝜌) was identified intelligently as the low-impact parameter 

in the non-linear form of 𝐼𝑅𝐵. Therefore, this parameter was removed by GEP automatically 

during modelling and the number of inputs for 𝐼𝑅𝐵 decreased from 5 to 4. About 𝜎𝑅𝐵, the GEP 

algorithm identified the three inputs of 𝑈𝐶𝑆, 𝐸, and 𝜎𝑣 as the influential parameters for 

modelling as formerly proved by SSE analysis. The ability of GEP in identifying the low-

influence parameters and excluding them during modelling can be considered as an internal 

sensitivity analysis that distinguishes GEP from other soft computing techniques. Fig. 5.8 

displays the variations of the coefficient of determination (𝑅2) during 5000 generations 

(iterations) in both training and testing stages of GEP modelling for rockburst parameters. 

According to this figure, after a few numbers of generations (less than 1000), a rapid increase 

of 𝑅2 for the generated solutions can be seen which shows the high speed and high capability 

of GEP algorithm in function finding. From the generation 1000 to 3500, a gentle enhancement 

in the quality of solutions are visible, and finally, the algorithm converges into an optimum 

value and its value almost remains constant to reach the stopping condition (i.e. the pre-defined 

number of generations: 5000). The obtained 𝑅2 values for training and testing stages of 𝜎𝑅𝐵 

are 0.9266 and 0.9398, respectively, while the foregoing values are 0.8824 and 0.9459, 

respectively for 𝐼𝑅𝐵. Figs. 5.9 shows the correlation of the experimentally measured values of 
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𝜎𝑅𝐵 and 𝐼𝑅𝐵 versus the predicted ones by the constructed GEP models for training and testing 

data groups. As seen, the data points have almost a uniform distribution around the fitted lines 

in both GEP-based models which show the goodness-of-fit of the models. The developed 

models and their performance are discussed in more details in sections 5.4 and 5.5. Eventually, 

the mathematical forms of the proposed GEP models for 𝜎𝑅𝐵 and 𝐼𝑅𝐵 were extracted from their 

K-expression and ETs as Eqs. 5.11 and 5.12. To avoid the prolongation of the paper, the ETs 

and their K-expressions have not presented here.    

𝜎𝑅𝐵 = ( 𝜎𝑣 + 𝐸𝑠𝑖𝑛(𝐸 − 𝜎𝑣) + 𝐸
3 )( 𝐸 + 𝜎𝑣 + 𝐸𝑠𝑖𝑛(𝐸)

3 ) 𝐿𝑛(𝐿𝑛(𝜎𝑣) + 𝑈𝐶𝑆)         (5.11) 

𝐼𝑅𝐵 =
𝑒 √𝐾
6
(𝐸+ √𝜈
4
)

(𝜈+𝐾)(𝐸−𝜈) 𝐿𝑛(𝜎𝑅𝐵)
                (5.12) 

 

Figure 5.7 Process of function finding using GEP algorithm 
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Figure 5.8 Improvement of R2 during GEP modelling for (a) 𝜎𝑅𝐵 and (b) 𝐼𝑅𝐵 
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Figure 5.9 Measured vs. predicted values using the GEP models in training and testing stages 

for: (a) 𝜎𝑅𝐵 and (b) 𝐼𝑅𝐵 

Table 5.6 The architecture of the GEP and CART models 

GEP parameter Setting 

σRB IRB 

Terminal set UCS, E, σv σRB, K, υ, E, ρ 

Excluded parameter - ρ 

Function set +,−,∗,/, √, Ln, ^2, ^3, ∛, sin, cos, tan 

Population size 90 100 

Generation number 5000 5000 

Head size 9 9 

Number of genes 3 2 

Linking function Multiplication (×) Multiplication (×) 
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Fitness function RMSEi
′′ RMSEi

′′ 

Parsimony pressure Yes Yes 

Mutation rate 0.01 0.04 

Inversion rate 0.1 0.1 

Transposition 0.1 0.1 

One-point recombination 0.3 0.3 

Two-point recombination 0.3 0.3 

Gene recombination 0.1 0.1 

CART parameter Setting 

σRB IRB 

Initial inputs UCS, E, σv σRB, K, υ, E, ρ 

Excluded parameter  - ρ 

Minimum number of cases  

for parent node 

3 3 

Minimum number of cases  

for child node 

1 1 

Minimum change of 

 impurity level  

0.0005 0.0003 

Maximum tree depth 6 5 

Number of intervals  10 10 

Impurity measure LSD LSD 

Total number of nodes 27 33 

5.3.2.2. Rockburst Assessment Using Classification and Regression Tree (CART) 

Decision tree as a powerful subset of data-mining techniques has been used in different real-

world applications for different aims such as decision making, classification, prediction, pattern 

recognition, etc. (Kantardzic 2003; Hasanipanah et al. 2017a) A decision tree is a tree 

comprising a root node (i.e. a parameter that can provide maximum degree of discrimination), 

some internal nodes representing input parameters, branches which link the nodes together and 

contain the binary questions regarding the internal nodes, and some leaf nodes representing the 

solutions (predicted value or a specific class of the dependent parameter). Each path from the 

root node to a leaf node can be summarised as a rule that this feature makes the decision tree 

to be known as a rule-based algorithm (Mahjoobi and Etemad-Shahidi 2008). Based on the 

type of dependent parameter, i.e. being continuous or categorical, the established tree structure 

is nominated as regression tree (RT) or classification tree (CT), respectively. The decision tree 

has several subgroups such as ID3 (Quinlan 1986), C4.5, C5.0, CART, CHAID, Exhaustive 

CHAID, and QUEST (Mahjoobi and Etemad-Shahidi 2008) which have been used for different 

aims by scholars (Khandelwal et al. 2017; Ghasemi et al. 2017). Among these techniques, the 

CART algorithm introduced by Breiman et al. (1984) has several advantages that distinguish 

it among other decision tree algorithms. This algorithm, despite the parametric statistical 

techniques (e.g. regression analyses), is inherently non-parametric (rule-based), i.e. no 



139 

 

assumption is made with the distribution of values of the independent parameters. On the other 

hand, CART can handle the highly skewed (multimodal) quantitative data as well as the 

qualitative parameters with ordinal or non-ordinal structures (Breiman et al. 1984; Salimi et al. 

2016).  

In this algorithm, it is not necessary to eliminate the multicollinearity between the independent 

parameters. Moreover, CART algorithm can be applied on a database with no homogeneity. 

CART also can handle the existence of outliers in the raw database by isolating them into a 

separate node. Because of the mentioned advantages, flexibility, and practical output (tree 

structure) of this algorithm, it was used in this study for the prediction of rockburst parameters 

obtained from true-triaxial tests. As a matter of fact, since the output parameters in this study 

(i.e. 𝜎𝑅𝐵 and 𝐼𝑅𝐵) are continuous, the aim is to develop two regression trees (RTs) for each 

parameter. The process of RT building in CART algorithm focuses mainly on the three 

following components: (1) a group of questions in the form of 𝑋 ≤ 𝑎? where 𝑋 is an input 

parameter and 𝑎 is a constant value in a range that the parameter 𝑋 varies. In CART, the 

response to this type of question is “yes” or “no”; (2) the best split on a parameter is determined 

using a split criterion; (3) calculation of summary statistics for internal nodes. The goal in 

CART modelling is to create sub-nodes (children) which are more homogeneous and purer 

than parent nodes based upon the reduction in impurity or improvement score. The term “pure” 

is related to the values of given parameter i.e. in the complete pure node, all cases have a similar 

value of the splitting parameter and consequently, the node’s variance equal to zero. This issue 

is compared for all the input parameters and the best improvement is chosen for splitting. This 

procedure continues until one of the stopping conditions is triggered (Breiman et al. 1984). In 

CART, the least squared deviation (LSD) is used as an impurity measure. The LSD function 

for splitting a parent node 𝑡 into two newly generated sub-nodes 𝑡𝐿(𝑒𝑓𝑡) and 𝑡𝑅(𝑖𝑔ℎ𝑡) can be 

calculated using the following equation (Breiman et al. 1984; Bevilacqua et al. 2003):  

Φ(𝑡) = 𝑅
2(𝑡) − 𝑝𝐿𝑅

2(𝑡𝐿) − 𝑝𝑅𝑅
2(𝑡𝑅) =

1

𝑁(𝑡)
∑ [𝑦𝑖 − 𝑦̅(𝑡)]

2 − 𝑝𝐿
1

𝑁(𝑡𝐿)
∑ [𝑦𝑖 −𝑖𝜖𝑡𝐿𝑖𝜖𝑡

𝑦̅(𝑡𝐿)]
2 − 𝑝𝑅

1

𝑁(𝑡𝑅)
∑ [𝑦𝑖 − 𝑦̅(𝑡𝑅)]

2
𝑖𝜖𝑡𝑅               (5.13) 

where 𝑅2(𝑡𝑥) is the weighted variance related to the sub-node (child) 𝑡𝑥, 𝑝𝐿 is the proportion 

of cases in parent node 𝑡 which are classified in the left node (𝑡𝐿), 𝑝𝑅 is the proportion of cases 

in parent node 𝑡 which are classified in the right node (𝑡𝑅), 𝑁(𝑡𝑥) is the number of cases 
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classified in sub-node 𝑡𝑥 (𝑥𝜖{𝑅, 𝐿}), 𝑦𝑖 is the value of the objective parameter for the case 𝑖, 

𝑦̅(𝑡) is the mean value of parent node, and 𝑦̅(𝑡𝑥) is the mean value of the sub-node 𝑡𝑥.  

The best split is obtained by maximizing the Φ(𝑡) showing the reduction of impurity of an RT 

model. This splitting process leads to creating a tree structure based on several “if-then” rules 

that make it easy to represent. The splitting process proceeds until each leaf node meets at least 

one of the stopping criteria. The stopping criteria include: (1) reaching the maximum tree depth; 

(2) the number of cases (datasets) in the terminal node is less than the predefined minimum 

parent size; (3) the number of cases in the sub-nodes resulting from the best splits is less than 

pre-defined minimum child size. The stopping criteria used in this study for CART models are 

tabulated in Table 6. These criteria and their corresponding values were obtained in such a way 

that the results provide a good trade-off between the prediction accuracy of regression trees 

and their complexity (dimension). All these settings also prevent the models from getting stuck 

in over-fitting problems. The use of a high number of maximum tree depth can lead to 

producing a large tree structure with high complexity that makes it complicated to use in 

practice. Additionally, a maximum number of intervals equal to 10 was considered for both 

models to let the model break down the initial min-max range of each input parameter to 

different ranges during the splitting process. In this study, the CART models for rockburst 

parameters (𝜎𝑅𝐵 and 𝐼𝑅𝐵) were developed using a code written in MatLab R2019a software 

environment. To have the same modelling conditions for further assessments, the training and 

testing datasets used for GEP were fed again to the CART algorithm.  

According to Table 5.6, for rockburst risk index (𝐼𝑅𝐵) model, like the GEP-based one, the 

density (𝜌) parameter has been excluded from the model since the CART benefits from an 

internal principal component analysis (PCA) that enables it to consider most influential 

parameters. Figs. 5.10 and 5.11 demonstrate the constructed RTs for 𝜎𝑅𝐵 and 𝐼𝑅𝐵 using CART 

algorithm, respectively. The tree model of 𝜎𝑅𝐵 contains 27 nodes and starts with 𝑈𝐶𝑆 as a root 

node, while the 𝐼𝑅𝐵 model has 33 nodes that starts with 𝜎𝑅𝐵 as the root node. The extraction of 

final predicted values of 𝜎𝑅𝐵 and 𝐼𝑅𝐵 from these regression trees is an easy task. For instance, 

in Fig. 5.10, consider the experimentally measured values of 82.7 MPa, 24.3 GPa, 114.6 MPa, 

and 108.6 MPa for 𝑈𝐶𝑆, 𝐸, 𝜎𝑣, and 𝜎𝑅𝐵, respectively; by tracking the associated tree structure 

from the root node (i.e. node1: 𝑈𝐶𝑆) and the path 𝑈𝐶𝑆 ≥ 40.45, 𝜎𝑣 < 169.455, 𝜎𝑣 ≥ 63.3, 

𝑈𝐶𝑆 < 151.3, 𝜎𝑣 < 143.5, and 𝜎𝑣 < 118.4, the tree reaches to the leaf node 22 that predicts 

the value of 116.1 for 𝜎𝑅𝐵. The same process can be done for 𝐼𝑅𝐵 as well. As stated at the 
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beginning of the current section, CART is a rule-based technique i.e. its internal calculations 

can be expressed clearly for user/reader by means of “if-then” rules, and this prominent feature 

makes the CART as a white-box technique unlike the soft computing techniques such as ANNs, 

SVMs that suffer from the lack of this characteristic. Tables A.1 and A.2 in Appendix A show 

the generated rules for each node in the developed CART models for 𝜎𝑅𝐵 and 𝐼𝑅𝐵. To have a 

primary insight regarding the prediction power of the CART models, the scatter plots of 

measured values of rockburst parameters versus the predicted ones using this technique were 

depicted in Fig. 5.12. As it is clear from this figure, the CART algorithm could predict 𝜎𝑅𝐵 and 

𝐼𝑅𝐵 with high accuracy like GEP models both in training and testing stages, and the data 

samples have an appropriate scatter around the fitted line. The developed models and their 

performance are discussed in more details in sections 5.4 and 5.5. 
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Figure 5.10 Regression tree model generated by the CART algorithm for 𝜎𝑅𝐵 
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Figure 5.11 Regression tree model generated by the CART algorithm for 𝐼𝑅𝐵 
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Figure 5.12 Measured vs. predicted values using the CART models in training and testing 

stages for: (a) 𝜎𝑅𝐵 and (b) 𝐼𝑅𝐵 

5.4. Validation Verification 

Based on a logical hypothesis (Smith 1986; Alavi and Gandomi 2011) there is a good 

correlation between the measured and predicted values of a dependent parameter when the 

absolute correlation coefficient (|𝑅|) is greater than 0.8, and the error indices such as root mean 

squared error (𝑅𝑀𝑆𝐸) and mean absolute error (𝑀𝐴𝐸) are at low values. There are no definite 

values for 𝑅2, 𝑅𝑀𝑆𝐸, and 𝑀𝐴𝐸 indices for all applications, and their appropriate values usually 

in different sciences depend on the range of variations of the response parameter as well as the 
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sensitivity of the problem. Furthermore, to assess the performance of the developed models in 

depth, new validation indices have been proposed by other researchers. Golbraikh and Tropsha 

(2002) defined two indices of 𝑘 and 𝑘′ to validate the models on testing datasets. In addition, 

Roy and Roy (2008) proposed an indicator called 𝑅𝑚 along with another related parameter of 

𝑅𝑂
2  to check the predictability of the proposed models. The corresponding values of the 𝑘, 𝑘′, 

𝑅𝑚, and 𝑅𝑂
2  can be calculated based on the measured (ℎ𝑖) and predicted (𝑡𝑖) values of the output 

parameters (here are 𝜎𝑅𝐵 and 𝐼𝑅𝐵). The mathematical expressions of the above indices and their 

threshold values are listed in Table 5.7. Taking into account the recommendations, at least a 

slope of the regression lines (i.e. 𝑘 or 𝑘′) through the origin should be close to 1, while 𝑘 is the 

slope of the regression line when ℎ𝑖 is plotted versus 𝑡𝑖, and 𝑘′ is the regression line when 𝑡𝑖 is 

plotted versus ℎ𝑖 (Golbraikh and Tropsha 2002). The squared correlation coefficient between 

the predicted and measured values (𝑅𝑂
2) should be close to 1. The 𝑅𝑚, then, can be calculated 

by 𝑅 and 𝑅𝑂
2  values, and a threshold of > 0.5 is recommended for this index to introduce a 

model as valid. The foregoing indices were calculated for the developed GEP-based and 

CART-based models, and their values are listed in Table 5.7. Indeed, the indices of 𝑅, 𝑘, 𝑘′, 

𝑅𝑚, and 𝑅𝑂
2  were used to verify the validity of the models in testing stage as recommended by 

other researchers (Mohammadzadeh et al. 2016; Soleimani et al. 2018). Then, the statistical 

indices of 𝑅2, 𝑅𝑀𝑆𝐸, and 𝑀𝐴𝐸 were calculated to compare the prediction performance of the 

GEP and CART models for 𝜎𝑅𝐵 and 𝐼𝑅𝐵 based on testing datasets to select the best models. It 

can be observed from Table 5.7 that the both proposed models in this study satisfy all the 

required conditions, and this guarantees that the derived models are strongly credible i.e. the 

results are not based on chance factor. In addition, comparing the 𝑅2, 𝑅𝑀𝑆𝐸, and 𝑀𝐴𝐸 values 

of GEP and CART models show that both proposed models have a high degree of accuracy 

and low estimation error, and subsequently have this capability to be used in practical 

applications. However, the GEP models of 𝜎𝑅𝐵 and 𝐼𝑅𝐵 outperformed the CART models and 

have slightly better performance. The next section aims to do a parametric analysis on the 

selected models (i.e. GEP models) to appraise the effect of the variation of input parameters on 

the predicted values.       
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Table 5.7 Statistical indices for the external validation of the developed models 

Item Formula Threshold 𝜎𝑅𝐵  𝐼𝑅𝐵 

GEP  CART  GEP  CART 

1 
𝑅 =

∑ (ℎ𝑖 − ℎ𝑖̅)(𝑡𝑖 − 𝑡𝑖̅)
𝑛
𝑖=1

√∑ (ℎ𝑖 − ℎ𝑖̅
𝑛
𝑖=1 )2∑ (𝑡𝑖 − 𝑡𝑖̅)

2𝑛
𝑖=1

 
𝑅 > 0.8 0.969  0.957  0.972  0.943 

2 
𝑘 =
∑ (ℎ𝑖𝑡𝑖)
𝑛
𝑖=1

∑ ℎ𝑖
2𝑛

𝑖=1

 
0.85 < 𝑘 < 1.15 0.934  0.931  0.962  0.981 

3 
𝑘′ =
∑ (ℎ𝑖𝑡𝑖)
𝑛
𝑖=1

∑ 𝑡𝑖
2𝑛

𝑖=1

 
0.85 < 𝑘′ < 1.15 1.046  1.040  1.014  0.971 

4 

 
𝑅𝑚 = 𝑅

2(1 − √|𝑅2 − 𝑅𝑂
2 |) 

𝑅𝑂
2 = 1 −

∑ (𝑡𝑖 − ℎ𝑖
𝑂)
2𝑛

𝑖=1

∑ (𝑛𝑖=1 𝑡𝑖 − 𝑡𝑖̅)
2 , 

ℎ𝑖
𝑂 = 𝑘 𝑡𝑖 

𝑅𝑚 > 0.5 

 

Should be close to 1 

0.763 

 

0.987 

 0.698 

 

0.986 

 0.739 

 

0.997 

 0.596 

 

0.999 

5 𝑅2 Should be close to 1 0.939  0.916  0.946  0.889 

6 

𝑅𝑀𝑆𝐸 =  
1

𝑛
 (ℎ𝑖 − 𝑡𝑖)

2

𝑛

𝑖=1

 

Should be minimum 

(based on output range) 

14.249  16.426  0.195  0.273 

7 
𝑀𝐴𝐸 =

1

𝑛
 |ℎ𝑖 − 𝑡𝑖|

𝑛

𝑖=1

 
Should be minimum 

(based on output range) 

9.803  8.041  0.136  0.187 

ℎ𝑖: measured output;  𝑡𝑖: predicted output 

5.5. Parametric Analysis 

To investigate the influence of each input parameter on the predicted values of the 

corresponding output, a parametric analysis was carried out based on the selected GEP models 

for 𝜎𝑅𝐵 and 𝐼𝑅𝐵. This analysis also can be another validation for the GEP models by evaluating 

how well the results (predicted values) agree with the physical behaviour of the rockburst 

parameters. To do so, the desired independent parameter should be varied within its range of 

values, while other independent parameters are constant in their averages. Figs. 5.13 and 5.14 

plot the variation of input parameters against the predicted values for rockburst parameters. As 

it is seen in Fig. 5.13, the 𝜎𝑅𝐵 increases monotonically in a non-linear fashion with 𝑈𝐶𝑆 and 

𝜎𝑣. This result is expected since with the increase of 𝑈𝐶𝑆, the capacity of the rock to accumulate 

the strain energy increases, and finally, bursting occurs at a higher stress level violently (Singh 

1987). On the other hand, the in-situ stresses, especially the vertical in-situ stress (𝜎𝑣) are 

increased in a linear or non-linear relationship with depth (Wagner 2019) and subsequently, 

due to a high geo-stress state in deep conditions, the 𝜎𝑅𝐵 is enhanced. However, there are many 

fluctuations in 𝜎𝑅𝐵 values with the increase of Young’s modulus (𝐸) of rocks, but in general, 

an increment trend can be seen. It should be mentioned that a parameter may do not show a 

meaningful relationship solely with the output parameter, while it can be an influential 
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component in a combination of other parameters in a non-linear form. As mentioned in the 

GEP modelling section, during the modelling procedure, by applying the variable pressure 

coefficient, excluding any of the selected three parameters (i.e. 𝑈𝐶𝑆, 𝐸, and 𝜎𝑣) from the 

modelling procedure did not improve the accuracy and complexity of the model.        

Regarding 𝐼𝑅𝐵, a non-linear decreasing trend can be observed for its values with all input 

parameters of Young’s modulus (𝐸), Poisson’s ratio (𝜈), horizontal pressure coefficient (𝐾), 

and rockburst maximum stress (𝜎𝑅𝐵). As can be seen from Fig. 5.14, with the increase of 𝐸 

until 20 MPa, the rockburst risk index is decreased suddenly but it remains almost constant 

with a further increment of 𝐸. Moreover, with the increase of Poisson’s ratio (𝜈) in its range of 

values, the risk value decreases from 0.473 to 0.40 that according to Table 1, the risk of 

rockburst occurrence is low. Hence, it seems that the variation of 𝜈 has no significant influence 

on rockburst risk. However, it is still necessary to do more tests on rocks with a greater range 

of 𝜈 to check its influence on risk parameter. Generally, the risk of rockburst occurrence for 

rocks with low strength (or lower 𝜎𝑅𝐵) which are in low depth (or higher 𝐾) is higher than 

high-strength rocks in deep conditions. From the results displayed in Figs. 5.13 and 5.14, 

several non-linear equations between rockburst parameters (𝜎𝑅𝐵, and 𝐼𝑅𝐵) and their related 

input parameters (except for 𝜎𝑅𝐵 − 𝐸 and 𝐼𝑅𝐵 − 𝐸) are extracted as follows: 

𝜎𝑅𝐵 = 19.911𝐿𝑛(𝑈𝐶𝑆) + 10.636,       𝑅
2 = 0.9974             (5.14) 

𝜎𝑅𝐵 = −0.0007𝜎𝑣
2 + 0.7162𝜎𝑣 + 41.092,       𝑅

2 = 0.9877           (5.15) 

𝐼𝑅𝐵 = 0.49𝑒
−0.535𝜐,       𝑅2 = 0.9997               (5.16) 

𝐼𝑅𝐵 = −0.0186𝐾
3 + 0.2124𝐾2 − 0.7981𝐾 + 1.1997,       𝑅2 = 0.9521          (5.17) 

𝐼𝑅𝐵 = 1.2524𝜎𝑅𝐵
−0.244,        𝑅2 = 0.9859                         (5.18) 

According to the above results, clearly can be seen that there is a good correlation between the 

rockburst parameters and the inputs. These equations provide a series of simple equations for 

calculating 𝜎𝑅𝐵 and 𝐼𝑅𝐵 based on the single rock mechanical parameter as a primary 

assessment. These equations may be relevant to investigate rockburst potential. In the end, it is 

necessary to mention that the developed models in this study are based on the collected datasets 

and a specific range of values for different parameters. So, for future applications, if the input 

parameters are out of these ranges, the proposed models should be adjusted again.  
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Figure 5.13 Parametric analysis of 𝜎𝑅𝐵 on GEP model 

 

Figure 5.14 Parametric analysis of 𝐼𝑅𝐵 on GEP model 
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Figure 5.14 (Continued) 

5.6. Summary and Conclusions 

As a catastrophic geohazard, rockburst threatens the safety of workers and infrastructures in 

deep geotechnical conditions. In this study, considering the importance of the stress level that 

rockburst occurs for different rock types in real stress circumstances, two important rockburst 

parameters including the maximum rockburst stress (𝜎𝑅𝐵) and rockburst risk index (𝐼𝑅𝐵) were 

formulated using the information obtained from true-triaxial unloading tests and two robust 

data-driven approaches. A comprehensive strategy was applied to the compiled database using 

the correlation analysis, the agglomerative hierarchical clustering (AHC) technique, and the 

stepwise selection and elimination (SSE) procedure to provide a homogeneous database free 

from any outliers, natural groups, and especially, to identify the most influential parameters on 

𝜎𝑅𝐵 and 𝐼𝑅𝐵. Then, new non-linear models were developed using robust algorithms of gene 

expression programming (GEP) and classification and regression tree (CART). Finally, a 

parametric analysis was conducted to study the variation of 𝜎𝑅𝐵 and 𝐼𝑅𝐵 with the change of 

input parameters. The conclusions obtained from this study are presented in the following.  

The correlation analysis, AHC, SSE, and multiple regression analysis techniques, as 

recommended and implemented in the current study, have presented promising results by 

dimension reduction (i.e. eliminating the redundant input parameters) and choosing the 

statistically significant parameters that affect the rockburst parameters (i.e. 𝜎𝑅𝐵 and 𝐼𝑅𝐵). This 

procedure simplifies the rockburst assessment at the field scale. The obtained dendrogram by 

AHC analysis (Fig. 5.5) showed that there is no natural group in the compiled database except 

for two data samples that were identified as outliers and subsequently were eliminated from 

the original database. Therefore, the database was identified as a homogeneous database for 
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further analysis. The statistically ascertained and selected dominant parameters affecting 𝜎𝑅𝐵 

and 𝐼𝑅𝐵 in deep geotechnical conditions have been found as 𝑈𝐶𝑆, 𝐸, and 𝜎𝑣 for the maximum 

rockburst stress (𝜎𝑅𝐵), and 𝜌, 𝐾, 𝐸, 𝜐 and 𝜎𝑅𝐵 for the rockburst risk index (𝐼𝑅𝐵) by SSE and 

multicollinearity analyses.  

The proposed non-linear GEP-based and CART-based models by providing the mathematical 

functions and visual patterns could unravel the latent relationships between the rockburst 

parameters (i.e. 𝜎𝑅𝐵 and 𝐼𝑅𝐵) and their corresponding influential parameters, and the validity 

of these models was proved based on several statistical indices (Table 5.7). However, the GEP-

based models with the values of 0.9398, 14.2493, and 9.8025 for the performance indices of 

𝑅2, 𝑅𝑀𝑆𝐸, and 𝑀𝐴𝐸 for 𝜎𝑅𝐵 and the values of 0.9459, 0.1947, and 0.1365 for the foregoing 

performance indices for 𝐼𝑅𝐵 outperformed the CART models. The results show that the used 

robust techniques can be useful tools for solving the high-complex non-linear problems which 

are common in mining and geotechnical projects. The results obtained from the parametric 

analysis on the proposed GEP models for 𝜎𝑅𝐵 and 𝐼𝑅𝐵 showed that the stress level that rockburst 

occurs increases monotonically with the increase of 𝑈𝐶𝑆 and 𝜎𝑣. As such, the risk of rockburst 

occurrence showed a downward non-linear trend with 𝐾, 𝐸, 𝜐 and 𝜎𝑅𝐵 parameters. On the other 

hand, the parametric analysis revealed that there are strong correlations between the rockburst 

parameters and their input parameters which show that the selected inputs are potential 

indicators for assessing and predicting rockburst phenomenon in deep underground openings.  

Appendix A 

Table A.1 If-then rules of the constructed regression tree for 𝜎𝑅𝐵 

Node Rule 

1  - 

2 If UCS in [6.2, 40.45) then 𝜎𝑅𝐵= 19.178 in 47.7% of cases 

3 If UCS in [40.45, 234.1) then 𝜎𝑅𝐵= 124.173 in 52.3% of cases 

4 If 𝜎𝑣 in [7.2, 37) and UCS in [6.2, 40.45) then 𝜎𝑅𝐵= 18.658 in 46.5% of cases 

5 If 𝜎𝑣 in [37, 40) and UCS in [6.2, 40.45) then 𝜎𝑅𝐵= 40 in 1.2% of cases 

6 If 𝜎𝑣 in [22.3, 169.455) and UCS in [40.45, 234.1) then 𝜎𝑅𝐵= 115.993 in 47.7% of cases 

7 If 𝜎𝑣 in [169.455, 282) and UCS in [40.45, 234.1) then 𝜎𝑅𝐵= 208.025 in 4.7% of cases 

8 If 𝜎𝑣 in [22.3, 63.3) and UCS in [40.45, 234.1) then 𝜎𝑅𝐵= 89.331 in 15.1% of cases 

9 If 𝜎𝑣 in [63.3, 169.455) and UCS in [40.45, 234.1) then 𝜎𝑅𝐵= 128.371 in 32.6% of cases 

10 If UCS in [40.45, 91) and 𝜎𝑣 in [22.3, 63.3) then 𝜎𝑅𝐵= 63.863 in 9.3% of cases 

11 If UCS in [91, 234.1) and 𝜎𝑣 in [22.3, 63.3) then 𝜎𝑅𝐵= 130.080 in 5.8% of cases 

12 If UCS in [40.45, 77.75) and 𝜎𝑣 in [22.3, 63.3) then 𝜎𝑅𝐵= 70.700 in 5.8% of cases 

13 If UCS in [77.75, 91) and 𝜎𝑣 in [22.3, 63.3) then 𝜎𝑅𝐵= 52.467 in 3.5% of cases 



151 

 

14 If 𝜎𝑣 in [22.3, 44.05) and UCS in [40.45, 77.75) then 𝜎𝑅𝐵= 61.075 in 4.7% of cases 

15 If 𝜎𝑣 in [44.05, 63.3) and UCS in [40.45, 77.75) then 𝜎𝑅𝐵= 109.200 in 1.2% of cases 

16 If 𝜎𝑣 in [22.3, 34) and UCS in [91, 234.1) then 𝜎𝑅𝐵= 145.533 in 3.5% of cases 

17 If 𝜎𝑣 in [34, 63.3) and UCS in [91, 234.1) then 𝜎𝑅𝐵= 106.900 in 2.3% of cases 

18 If UCS in [40.45, 151.3) and 𝜎𝑣 in [63.3, 169.455) then 𝜎𝑅𝐵= 123.561 in 26.7% of cases 

19 If UCS in [151.3, 234.1) and 𝜎𝑣 in [63.3, 169.455) then 𝜎𝑅𝐵= 150.500 in 5.8% of cases 

20 If 𝜎𝑣 in [63.3, 143.5) and UCS in [40.45, 151.3) then 𝜎𝑅𝐵= 120.990 in 24.4% of cases 

21 If 𝜎𝑣 in [143.5, 169.455) and UCS in [40.45, 151.3) then 𝜎𝑅𝐵= 150.550 in 2.3% of cases 

22 If 𝜎𝑣 in [63.3, 118.4) and UCS in [40.45, 151.3) then 𝜎𝑅𝐵= 116.100 in 14.0% of cases 

23 If 𝜎𝑣 in [118.4, 143.5) and UCS in [40.45, 151.3) then 𝜎𝑅𝐵= 127.511 in 10.5% of cases 

24 If 𝜎𝑣 in [63.3, 125.75) and UCS in [151.3, 234.1) then 𝜎𝑅𝐵= 150.467 in 3.5% of cases 

25 If 𝜎𝑣 in [125.75, 169.455) and UCS in [151.3, 234.1) then 𝜎𝑅𝐵= 150.550 in 2.3% of cases 

26 If E in [14.1, 20.7) and 𝜎𝑣 in [169.455, 282) and UCS in [40.45, 234.1) then 𝜎𝑅𝐵= 177 in 1.2% of cases 

27 If E in [20.7, 66.7) and 𝜎𝑣 in [169.455, 282) and UCS in [40.45, 234.1) then 𝜎𝑅𝐵= 218.367 in 3.5% of cases 

 

Table A.2 If-then rules of the constructed regression tree for 𝐼𝑅𝐵 

Node Rule 

1  - 

2 If 𝜎𝑅𝐵in [10.6, 34.45) then 𝐼𝑅𝐵= 1.729 in 44.2% of cases 

3 If 𝜎𝑅𝐵 in [34.45, 255.5) then 𝐼𝑅𝐵= 0.435 in 55.8% of cases 

4 If K in [0.222, 0.62) and 𝜎𝑅𝐵 in [10.6, 34.45) then 𝐼𝑅𝐵= 1.982 in 27.9% of cases 

5 If K in [0.62, 2.245) and 𝜎𝑅𝐵 in [10.6, 34.45) then 𝐼𝑅𝐵= 1.295 in 16.3% of cases 

6 If 𝜈 in [0.07, 0.28) and K in [0.222, 0.62) and 𝜎𝑅𝐵 in [10.6, 34.45) then 𝐼𝑅𝐵= 2.651 in 8.1% of cases 

7 If 𝜈 in [0.28, 0.37) and K in [0.222, 0.62) and 𝜎𝑅𝐵 in [10.6, 34.45) then 𝐼𝑅𝐵= 1.706 in 19.8% of cases 

8 If 𝜈 in [0.07, 0.165) and K in [0.222, 0.62) and 𝜎𝑅𝐵 in [10.6, 34.45) then 𝐼𝑅𝐵= 3.009 in 1.2% of cases 

9 If 𝜈 in [0.165, 0.28) and K in [0.222, 0.62) and 𝜎𝑅𝐵 in [10.6, 34.45) then 𝐼𝑅𝐵= 2.591 in 7.0% of cases 

10 If 𝜈 in [0.28, 0.335) and K in [0.222, 0.62) and 𝜎𝑅𝐵 in [10.6, 34.45) then 𝐼𝑅𝐵= 1.937 in 8.1% of cases 

11 If 𝜈 in [0.335, 0.37) and K in [0.222, 0.62) and 𝜎𝑅𝐵 in [10.6, 34.45) then 𝐼𝑅𝐵= 1.545 in 11.6% of cases 

12 If K in [0.62, 1.56) and 𝜎𝑅𝐵 in [10.6, 34.45) then 𝐼𝑅𝐵= 1.351 in 15.1% of cases 

13 If K in [1.56, 2.245) and 𝜎𝑅𝐵 in [10.6, 34.45) then 𝐼𝑅𝐵= 0.556 in 1.2% of cases 

14 If 𝜈 in [0.27, 0.28) and K in [0.62, 1.56) and 𝜎𝑅𝐵 in [10.6, 34.45) then 𝐼𝑅𝐵= 1.194 in 5.8% of cases 

15 If 𝜈 in [0.28, 0.33) and K in [0.62, 1.56) and 𝜎𝑅𝐵 in [10.6, 34.45) then 𝐼𝑅𝐵= 1.450 in 9.3% of cases 

16 If 𝜎𝑅𝐵 in [34.45, 56.8) then 𝐼𝑅𝐵= 0.892 in 8.1% of cases 

17 If  𝜎𝑅𝐵 in [56.8, 255.5) then 𝐼𝑅𝐵= 0.357 in 47.7% of cases 

18 If E in [3.5, 13.9) and 𝜎𝑅𝐵 in [34.45, 56.8) then 𝐼𝑅𝐵= 0.445 in 2.3% of cases 

19 If E in [13.9, 43.1) and 𝜎𝑅𝐵 in [34.45, 56.8) then 𝐼𝑅𝐵= 1.071 in 5.8% of cases 

20 If E in [13.9, 33.7) and 𝜎𝑅𝐵 in [34.45, 56.8) then 𝐼𝑅𝐵= 1.204 in 4.7% of cases 

21 If E in [33.7, 43.1) and 𝜎𝑅𝐵 in [34.45, 56.8) then 𝐼𝑅𝐵= 0.540 in 1.2% of cases 

22 If K in [0, 1.721) and 𝜎𝑅𝐵 in [56.8, 255.5) then 𝐼𝑅𝐵= 0.488 in 19.8% of cases 

23 If K in [1.721, 5.866) and 𝜎𝑅𝐵 in [56.8, 255.5) then 𝐼𝑅𝐵= 0.265 in 27.9% of cases 

24 If 𝜎𝑅𝐵 in [56.8, 130.6) and K in [0, 1.721) then 𝐼𝑅𝐵= 0.533 in 14.0% of cases 

25 If 𝜎𝑅𝐵 in [130.6, 255.5) and K in [0, 1.721) then 𝐼𝑅𝐵= 0.380 in 5.8% of cases 

26 If E in [14.1, 58.6) and 𝜎𝑅𝐵 in [56.8, 130.6) and K in [0, 1.721) then 𝐼𝑅𝐵= 0.512 in 12.8% of cases 

27 If E in [58.6, 74.1) and 𝜎𝑅𝐵 in [56.8, 130.6) and K in [0, 1.721) then 𝐼𝑅𝐵= 0.759 in 1.2% of cases 

28 If E in [14.1, 36.05) and K in [1.721, 5.866) and 𝜎𝑅𝐵 in [56.8, 255.5) then 𝐼𝑅𝐵= 0.331 in 15.1% of cases 
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29 If E in [36.05, 71) and K in [1.721, 5.866) and 𝜎𝑅𝐵  in [56.8, 255.5) then 𝐼𝑅𝐵= 0.185 in 12.8% of cases 

30 If E in [14.1, 29.7) and K in [1.721, 5.866) and 𝜎𝑅𝐵 in [56.8, 255.5) then 𝐼𝑅𝐵= 0.292 in 12.8% of cases 

31 If E in [29.7, 36.05) and K in [1.721, 5.866) and 𝜎𝑅𝐵  in [56.8, 255.5) then 𝐼𝑅𝐵= 0.547 in 2.3% of cases 

32 If 𝜎𝑅𝐵 in [56.8, 143.6) and E in [36.05, 71) and K in [1.721, 5.866) then 𝐼𝑅𝐵= 0.205 in 9.3% of cases 

33 If 𝜎𝑅𝐵 in [143.6, 255.5) and E in [36.05, 71) and K in [1.721, 5.866) then 𝐼𝑅𝐵= 0.133 in 3.5% of cases 
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Post-Peak Behaviour of Rocks Under Cyclic 

Loading Using a Double-Criteria Damage-

Controlled Test Method 

Abstract  

Cyclic loading-induced hazards are severe instability problems concerning surface and 

underground geotechnical projects. Therefore, it is crucial to understand the rock failure 

mechanism under cyclic loading. An innovative double-criteria damage-controlled testing 

method was proposed in this study to capture the complete stress-strain response of porous 

limestone, especially the post-peak behaviour, under systematic cyclic loading. The proposed 

test method was successful in applying the pre-peak cyclic loading and then in controlling the 

self-sustaining failure of rock during the post-peak cyclic loading. The results showed that the 

strength of the rock specimens slightly increased with an increase in the fatigue life in the pre-

peak region due to cyclic loading-induced hardening. Additionally, a combination of class I 

and class II behaviours was observed in the post-peak region during the cyclic loading tests; 

the class II behaviour was more dominant by the increase in fatigue life in the pre-peak region. 

Damage evolution was assessed based on several parameters, such as the elastic modulus, 

energy dissipation ratio, damage variable and crack damage threshold stress, both in the pre-

peak and post-peak regions. It was found that when the cyclic loading stress is not close to the 

peak strength, due to a coupled mechanism of dilatant microcracking and grain crushing and 

pore filling, quasi-elastic behaviour dominates the cyclic loading history, causing more elastic 

strain energy to accumulate in the specimens. 

Keywords Cyclic loading, Pre-peak and post-peak behaviour, Damage, Crack damage 

threshold stress, Strength hardening 

 

 

6.1. Introduction 

Surface and underground structures are usually exposed to environmental and human-induced 

cyclic loadings such as earthquakes, wind, volcanism, drilling and blasting, mechanical 
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excavation and mining seismicity, which threaten their long-term stability (Taheri et al. 2016; 

Munoz et al. 2016a). Therefore, it is necessary to evaluate the time-dependent behaviour of 

rocks under cyclic loading. In rock engineering, understanding the fatigue response of rocks is 

of particular interest since rock stability conditions vary significantly under cyclic loading. A 

great majority of rock fatigue studies have reported on the reduction in rock strength due to 

cyclic loading (Bagde and Petroš 2005). However, there are very few studies that have 

illustrated strength hardening when the cyclic stress level is low enough to prevent failure 

during cyclic loading (Burdine 1963; Singh 1989; Ma et al. 2013; Taheri et al. 2017). Unlike 

the static and quasi-static loadings, which the applied load/deformation increases/decreases 

continuously, cyclic loading is described by a time-dependent displacement/load signal with a 

repetitive pattern. The loading rate in cyclic experiments is relatively high and propagates 

waves, and their superposition causes a stress distribution different from that induced by quasi-

static loading (Cho et al. 2003). In recent decades, many studies have investigated the 

mechanical behaviour of rocks under different cyclic loading histories and loading conditions. 

Most of these studies have reported the results of tests performed under uniaxial compression 

(Attewell and Sandford 1974; Eberhardt et al. 1999), which can replicate the stress state in 

mining pillars and around galleries. Other studies have focused on triaxial compression 

conditions with different confining pressures (Munoz et al. 2016a; Zhou et al. 2019) and 

indirect tensile tests (Ghamgosar and Erarslan 2016), which are useful to calibrate the advanced 

constitutive laws and to estimate the tensile strength of a material, respectively. In addition, 

few cyclic studies of flexural tests (three-point and four-point) (Cardani and Meda 2004) and 

freeze-thaw tests (Zhang et al. 2019a) can be found in the literature. In prior studies, the fatigue 

properties of rocks were found to be dependent on the loading stress level, amplitude, 

frequency, waveform and loading and unloading rate. 

Rock behaviour in the post-peak region under uniaxial compression is characterised by either 

class I or class II behaviour (Fig. 6.1). The former is defined by a negative post-peak modulus 

describing a stable fracture propagation and the need to do more work on the specimen to 

degrade its load-bearing capacity, while the latter represents a positive post-peak modulus (i.e., 

snap-back behaviour) describing a self-sustaining (brittle) failure (Wawersik and Fairhurst 

1970; Munoz et al. 2016b). The proper measurement of the post-peak behaviour of rocks can 

be a useful tool for quantifying the post-peak fracture energy and rock brittleness that can be 

employed to optimise the designation of surface and underground structures and to mitigate 

possible hazards (Akinbinu 2016). For instance, to evaluate the proneness and intensity of the 
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rockburst phenomenon near underground excavation in deep underground conditions, post-

peak analysis of the rocks in terms of strain energy evolution is required. In other words, the 

rockburst hazard in deep underground openings is associated with not only internal strain 

energy accumulation but also seismic disturbances induced by external sources (Xuefeng et al. 

2010). Therefore, the post-peak response of rocks subjected to cyclic loading can unveil the 

mechanism of geotechnical hazards such as rockburst and provide practical tools for their 

assessment. As shown in Fig. 6.2, the cyclic loading of rock can be undertaken following two 

main loading methods: 

1. Systematic cyclic loading: These tests have a constant loading amplitude, 𝐴𝑚𝑝. (𝜎𝑎), 

and can be conducted as single-level (Fig. 6.3a) or multi-level (Fig. 6.3b) testes under 

load-controlled or displacement-controlled (i.e., axial and lateral displacement-

controlled) loading conditions. In both load-controlled and displacement-controlled 

conditions, the post-peak behaviour cannot be obtained, as the axial load level is the 

only criterion to define the amount of the load that a specimen should be subjected to 

during cyclic loading, until failure or even after failure. As a result, the specimen fails 

during cyclic loading in an uncontrolled manner, and the post-peak response cannot be 

obtained. Figs. 6.4a-d demonstrate the single-level and multi-level systematic cyclic 

tests conducted by different researchers under load-controlled and displacement-

controlled conditions. As shown in these figures, in all the tests, failure occurred in an 

uncontrolled manner, and post-peak behaviour was not obtained. Prior systematic 

cyclic loading studies found that failure occurs at a stress level lower than the 

determined monotonic strength owing to the strength weakening process. As such, the 

accumulation of irreversible deformation (plastic strains) is not constant during the 

experiment, while the hysteresis loops follow a loose-dense-loose law (Xiao et al. 

2009). 

2. Damage-controlled cyclic loading: These tests involving incremental loading amplitude 

can be conducted in a load-based mode (Fig. 6.3c) or displacement-based mode (Fig. 

6.3d). The former can be conducted either in load-controlled or displacement-controlled 

loading conditions (i.e., axial and lateral displacement-controlled). However, the post-

peak response cannot be obtained, as the specimen might experience an uncontrolled 

failure when it is forced to reach a pre-defined stress level. Figs. 6.4e and f show 

representative results. A displacement-based test can be undertaken in either axial or 

lateral displacement-controlled conditions. In this type of damage-controlled test, axial 
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stress is reversed when a certain amount of axial or lateral displacement is achieved in 

a loading cycle. Munoz et al. (2016b) showed that under uniaxial loading conditions, 

soft, medium-strong and strong rocks demonstrate either class II or a combination of 

class I and class II post-peak behaviours. As a result, the post-peak response cannot be 

adequately measured when the test is controlled by axial displacement (Fig. 6.4g). 

However, by using lateral strain to control the amount of damage in a damage-

controlled test, the post-peak behaviour of a brittle rock can be achieved successfully 

(Fig. 6.4h). From prior damage-controlled cyclic loading studies, it is reported that 

failure occurs at a stress level close to or lower than the determined monotonic strength. 

Moreover, the rate of strain accumulation under this type of loading is lower than that 

during systematic cyclic tests (Cerfontaine and Collin 2018). 

It should be noted that previous studies have mostly focused on the influence of cyclic loadings 

on the mechanical rock properties and damage evolution in the pre-peak region. There are, 

however, a few studies investigating failure behaviour and deformation localisation during 

post-peak cyclic loading (e.g., Munoz and Taheri 2017a, 2019). Given the above, to the best of 

our knowledge, no study has investigated the post-peak response of rocks subjected to pre-peak 

systematic cyclic loading. This is because failure cannot be controlled when a constant axial 

load is achieved in every cycle in a systematic cyclic loading. In addition, in a damage-

controlled test in which the lateral displacement is used to control the damage, an axial load is 

reversed when a certain amount of lateral strain occurs. Therefore, systematic cyclic loading 

cannot be applied in such a way that the load is always reversed at a constant stress level in the 

pre-peak region. However, rock material in engineering applications (e.g., mining pillars in 

deep underground conditions) may be subjected to systematic pre-peak cyclic loading and then 

post-failure cyclic loading. Thus, it is significant to investigate the behaviour of rock subjected 

to this loading condition. In this study, for the first time, a new cyclic test method considering 

two cyclic loading control criteria is proposed to capture the complete response of rocks, 

especially the post-peak behaviour, under cyclic loading. The proposed test method is a 

combination of multi-level systematic cyclic loading and lateral displacement-based damage-

controlled cyclic loading to control both the damage and the rate of cyclic loading (see Fig. 

6.2). A critical analysis is carried out to investigate damage evolution in both the pre-peak and 

post-peak regions, and the influences of pre-peak cyclic loading on the peak strength, crack 

damage threshold stress and rock stiffness are evaluated in more detail. 
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Figure 6.1 Classification of post-peak behaviour of rock in uniaxial compression (modified 

from Hudson et al. 1971) 

 

Figure 6.2 Classification of cyclic loading tests, * can be conducted in either axial or lateral 

displacement-controlled mode 
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Figure 6.3 Different cyclic loading paths, a single-level systematic cyclic loading, b multi-

level systematic cyclic loading, c load-based damage controlled cyclic loading (modified 

from Li et al. 2019) and d displacement-based damage controlled cyclic loading, 𝐴𝑚𝑝(𝜎𝑎) 

refers to loading amplitude, 𝐴𝑚𝑝(𝜀𝑎) refers to axial strain amplitude and 𝑆𝐿 refers to the 

stress level 
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Figure 6.4 Stress-strain relation during cyclic loading in different studies, a single-level 

systematic cyclic loading load-controlled test (Ma et al. 2013), b single-level systematic 

cyclic loading axial displacement-controlled test (Taheri et al. 2016), c multi-level systematic 
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cyclic loading load-controlled test (Li et al. 2019), d multi-level systematic cyclic loading 

axial displacement-controlled test (Liu et al. 2014), e load-based damage controlled cyclic 

loading load-controlled test (Guo et al. 2018), f load-based damage controlled cyclic loading 

axial displacement-controlled test (Heap et al. 2010), g displacement-based damage 

controlled cyclic loading axial displacement-controlled test and (Wang et al. 2019) h 

displacement-based damage controlled cyclic loading lateral displacement-controlled test 

(Munoz and Taheri 2019) 

6.2. Experimental Methodology 

6.2.1. Tuffeau Limestone Specimens 

Tuffeau limestone is used in this study to undertake double-criteria damage-controlled cyclic 

loading tests (Fig. 6.5a). The name of this rock comes from the Latin word tofus, meaning 

spongy rock. This yellowish-white sedimentary rock is a local limestone of the Loire Valley in 

France and was deposited in the middle Turonian of the Upper Cretaceous, approximately 90 

million years ago. This rock type is usually extracted from surface and underground quarries 

and is used mostly in the building industry (Beck and Al-Mukhtar 2014). X-ray diffraction 

(XRD) (Fig. 6.5b) and scanning electronic microscopy (SEM) analyses (Fig. 6.5c) were carried 

out on collected limestone specimens to identify their mineralogical components and 

microstructural characteristics. Two main crystalline phases, calcite (CaCO3) (≅50%) and 

silica (SiO2) (≅30%), which has the two forms of quartz and opal cristobalite-tridymite (opal-

CT), were identified. Other phases, such as mica and clayey minerals (e.g., muscovite, biotite, 

smectite, and glauconite) (≅20%), are disseminated in this limestone. Tuffeau limestone has 

an average density of 1.43 g/cm3 and is a lightweight and fine-grained limestone with a 

complex porous network (total porosity of 45±5%). The arrangement of grains with different 

sizes contributes to the creation of micropores and macropores within the rock texture (Al-

Mukhtar and Beck 2006). The rock specimen in Fig. 6.5c has a heterogeneous porous structure, 

and the microcracks, microcavities, and quartz are the main components controlling the 

macrofailure of the specimen under loading conditions. The cylindrical rock specimens with 

diameters and lengths of 42 mm and 100 mm, respectively (i.e., an aspect ratio of 2.4), were 

cored from a single rock block and prepared to be smooth and straight according to the ISRM 

standards (Fairhurst and Hudson 1999) to minimise the end friction effects and to ensure a 

uniform stress state within the specimen during loading. Additionally, the diameter of the 
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specimens is more than 20 times larger than the grain size, satisfying the ISRM 

recommendations (Fairhurst and Hudson 1999). 

 

 

 

Figure 6.5 Tuffeau limestone specimens, b XRD analysis conducted for two specimens and c 

SEM photograph showing the diversity of porosities in a Tuffeau limestone specimen 

6.2.2. Test Set-Up and Uniaxial Compression Tests 

In this study, a closed-loop servo-controlled MTS hydraulic compressive machine (Fig. 6.6a) 

with a maximum loading capacity of 300 kN was employed to conduct compressive monotonic 

and cyclic tests. This fully digital servo-controlled system is capable of operating under load- 

or displacement-control feedback signals using a built-in computer system. In this study, the 

lateral strain (𝜀𝑙) feedback signal measured by a chain extensometer circumferentially mounted 

at the mid-length of the specimen was used as the control variable for monotonic and cyclic 
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tests to capture the rock behaviour before and after peak stress. The axial load (acquired by a 

load cell), axial strain (acquired by a pair of LVDTs), and lateral strain (acquired by a chain 

extensometer) were recorded simultaneously during the tests by a data acquisition system at a 

rate of 10 data points per second (see Fig. 6.6a). Five uniaxial monotonic tests were conducted 

under the lateral strain rate of 0.02×10-4/s to satisfy the static to quasi-static loading conditions 

(Munoz and Taheri 2017b). These monotonic tests provide a reference for defining the stress 

levels of cyclic uniaxial compression tests. The time history of the loading (𝜎𝑎), axial strain 

(𝜀𝑎), and lateral strain (𝜀𝑙) for a typical monotonic loading test is shown in Fig. 6.6b. As seen 

in this figure, in the pre-peak and the post-peak regions, the lateral strain (𝜀𝑙) increases 

monotonically with time, maintaining a constant lateral strain rate throughout the test, and the 

complete post-peak response is obtained in a straightforward manner using the lateral strain-

controlled technique. Fig. 6.6c shows the normalised stress-strain curves obtained from the five 

uniaxial monotonic tests. The specimens have an average monotonic compressive strength and 

Young’s modulus of 7.39 MPa and 1.67 GPa. As seen from Fig. 6.6c, in the post-peak region, 

the axial stress and axial strain fluctuate successively due to the coupled mechanism of strength 

degradation induced by the coalescence of the macrocracks and strength recovery induced by 

interlocking the sides of the macrocracks. However, the total behaviour of all the conducted 

monotonic tests in the post-peak region is a combination of class I and class II behaviours, 

which is consistent with the results reported by Munoz et al. (2016a). Additionally, the 

conducted monotonic tests exhibit similar behaviour both in the pre-peak and the post-peak 

regions, which shows the low discrepancy among the tested specimens. 
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Figure 6.6 a Testing set-up for the uniaxial compression and cyclic loading tests. b Typical 

time history of the loading and strains in lateral strain–controlled uniaxial compression tests. 

c Normalised stress–strain curves of monotonic loading tests. TL tuffeau limestone 

6.2.3. Double-criteria damage-controlled cyclic loading test 

In this section, an innovative damage-controlled testing method is proposed to capture the post-

peak behaviour of Tuffeau limestone in a multi-level systematic cyclic loading test. Fig. 6.7 

schematically represents the proposed testing methodology during a closed-loop procedure. 

However, the test procedure can be summarised as follows: 

a) The specimen is subjected to a monotonic loading under a constant lateral strain rate of 

0.02×10-4/s, satisfying quasi-static loading conditions, until a prescribed stress level 
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(here, 6 MPa) is reached. In this stage, the axial stress and lateral strain feedback signals 

received from the load cell and the chain extensometer, respectively, are continuously 

compared with the program signals (i.e., the user-defined values) and the errors, if any, 

are adjusted by the servo-controller. By doing so, it is guaranteed that the axial load is 

always applied under a constant lateral strain rate and that the axial load does not exceed 

the initial stress level defined for cyclic loading. Thereafter, the specimen is unloaded 

until the axial stress is equal to 0.07 MPa, ensuring that the specimen is always in 

complete contact with the loading platens. 

b) Afterwards, cyclic loading is applied under a constant lateral strain rate for a specific 

number of cycles (i.e., 400 cycles). Two criteria are adopted to control the failure: a 

maximum axial stress level that can be achieved and a maximum lateral strain 

amplitude that a Tuffeau limestone specimen is allowed to experience in a cycle during 

loading, 𝐴𝑚𝑝. (𝜀𝑙). In this study, the initial maximum stress level (i.e., the first 

criterion) is adopted to be equal to 6.0 MPa. The optimum values for 𝐴𝑚𝑝. (𝜀𝑙) and the 

loading rate (𝑑𝜀𝑙/𝑑𝑡) were determined based on a previous study conducted by Munoz 

and Taheri (2017a) on Tuffeau limestone and the results obtained from the trial tests to 

avoid the sudden failure of a specimen in an uncontrolled manner. Therefore, different 

loading rates and 𝐴𝑚𝑝. (𝜀𝑙) values were evaluated by performing four trial cyclic 

loading tests, and finally, 𝐴𝑚𝑝. (𝜀𝑙) = 17 × 10
−4 and 𝑑𝜀𝑙/𝑑𝑡 = 2 × 10

−4/𝑠 were 

obtained by balancing the capability of the methodology in capturing the post-peak 

behaviour of the rock and completing the test in the shortest possible time. The axial 

load is reversed when at least one criterion is met. By following the closed-loop 

procedure shown in Fig. 6.7, the test is continued until the specimen fails or until 400 

cycles are completed. 

c) If the specimen does not fail after 400 cycles, the specimen is monotonically loaded 

under a constant lateral strain rate of 0.02×10-4/s until the specimen is under an axial 

load of 6.5 MPa (i.e., a 0.5 MPa increase in the stress level compared to the previous 

stress level in this multi-level cycling loading scheme). If the specimen fails during 

monotonic loading, the complete post-peak behaviour is measured during lateral strain-

controlled loading. 

d) The procedure explained in b and c is repeated until the specimen fails. 

Fig. 6.8 shows typical results for a Tuffeau limestone specimen. As shown in this figure, after 

initial monotonic loading under the constant loading rate of 0.02×10-4/s, the prescribed axial 
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stress level (i.e., 6 MPa) is reached. Afterwards, the specimen is unloaded monotonically, and 

then cyclic loading is applied under a constant lateral strain rate of 2×10-4/s. At the first step of 

cyclic loading, the amplitude of lateral strain, 𝐴𝑚𝑝. (𝜀𝑙), is relatively low (6×10-4/s after 200 

cycles), and the first criterion is always met during cyclic loading (i.e., the stress level 

remaining below 6 MPa). As the specimen does not fail after 400 cycles, the axial load is 

increased monotonically to the second stress level (i.e., 6.5 MPa), and the cyclic loading 

procedure is repeated. As shown in Fig. 8, in the second series of cyclic loading at the onset of 

the failure, the lateral strain amplitude, 𝐴𝑚𝑝. (𝜀𝑙), is equal to 17×10-4. After this cycle, the 

second criterion controls the cyclic loading, and the strength degradation during post-peak 

cyclic loading is observed until complete failure. By doing so, the complete post-peak 

behaviour of the Tuffeau limestone under systematic cyclic loading can be successfully 

observed. 
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Figure 6.7 Flowchart of the double-criteria damage-controlled test method for the multi-level 

systematic cyclic loading 



175 

 

 
Figure 6.8 Typical time-history of axial stress and lateral strain during a double-criteria 

cyclic 

6.3. Experimental Results 

6.3.1. Complete Stress-Strain Response 

In this study, three multi-level systematic cyclic loading tests were conducted using the 

methodology explained above to evaluate the applicability of the proposed testing method in 

capturing the failure behaviour of the soft and porous Tuffeau limestone. Fig. 6.9 displays the 

axial stress-strain relations obtained for these tests, in which 6 MPa was defined as the initial 

stress level, and the specimens were subjected to systematic cyclic loading at different stress 

levels, taking 0.5 MPa as the stress increment between consecutive cyclic loading steps. The 

envelope curves showing the overall behaviour of the specimens in the post-peak region were 

drawn by connecting the loci of the indicator stresses (𝑞𝑖, the maximum stress of each cycle). 

As seen from Fig. 6.9, the overall post-peak behaviour of the specimens is characterised by the 

combination of class I and class II; however, the class I behaviour is more dominant in 

specimen TL6 (Fig. 6.9a) than in specimens TL7 and TL8 (Figs. 6.9b and c). Table 6.1 

summarises the results of the cyclic loading tests. As listed in Table 6.1 and shown in Fig. 6.9, 

the different cycle numbers and stress levels are recorded for the three specimens before failure; 

for example, specimen TL8 experienced 2906 cycles before failure, and its failure occurred at 
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a stress level of 9.5 MPa. On the other hand, specimen TL6 exhibited the lowest fatigue strength 

(i.e., 6.5 MPa) and underwent the fewest number of cycles (i.e., 564) before the failure point. 

Similar loading conditions were applied to all the specimens, and the results suggest that with 

the increase in cycle number and thus the loading level before failure, the fatigue strength of 

the specimens increased and strength hardening occurred. Strength hardening due to cyclic 

loading has been reported for porous Hawkesbury sandstone (Taheri et al. 2016), hard 

greywacke sandstone (Singh 1989), Berea sandstone (Burdine 1963), and rock salt (Ma et al. 

2013). This phenomenon is discussed in more detail in section 6.4. 

 

 

Figure 6.9 Complete axial stress–strain relations for tuffeau limestone specimens obtained 

from cyclic loading tests. a TL6. b TL7. d TL8 
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Figure 6.9 (Continued) 

Table 6.1 Test scheme for the three Tuffeau limestone specimens under multi-level 

systematic cyclic loading 

Specimen ID Stress level Maximum stress 

(MPa) 

𝑁𝑏𝑒𝑓𝑜𝑟𝑒  Remark 

TL6 1 6 400 Not failed 

2 6.5 164 Failed 

TL7 1 6 400 Not failed 

2 6.5 400 Not failed 

3 7 400 Not failed 

4 7.5 115 Failed 

TL8 1 6 400 Not failed 

2 6.5 400 Not failed 

3 7 400 Not failed 

4 7.5 400 Not failed 

5 8 400 Not failed 

6 8.5 400 Not failed 

7 9 400 Not failed 

8 9.5 106 Failed 

TL Tuffeau limestone specimen, 𝑁𝑏𝑒𝑓𝑜𝑟𝑒  number of cycles before failure 

point 
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6.3.2. Fatigue Damage Evolution 

Damage can be characterised by the process of generation, propagation and coalescence of 

mesoscopic defects and voids through solid materials. Damage can be described by the 

degradation of some material properties, such as stiffness, residual strength, and P-wave 

velocity. Additionally, damage during cyclic loading can be investigated by the corresponding 

irreversible strain, dissipative energy, electrical resistance, and acoustic emission counts (Xiao 

et al. 2010; Taheri and Tatsuoka 2012). The incremental accumulation of plastic deformation 

during cyclic loading contributes to the degradation of the cohesive strength and stiffness of 

the rocks. Therefore, the irreversible strain can be regarded as a suitable indicator for fatigue 

damage assessment. Hence, a damage variable (𝐷) was defined based on the accumulation of 

irreversible axial strain (𝜀𝑎
𝑖𝑟𝑟) (see Fig. 6.10) after each loading and unloading cycle as follows: 

𝐷 =
∑ (𝜀𝑎

𝑖𝑟𝑟)𝑚
𝑖=1 𝑖

∑ (𝜀𝑎
𝑖𝑟𝑟)𝑛

𝑖=1 𝑖

                    (6.1) 

where 𝑖 is the cycle number, ∑ (𝜀𝑎
𝑖𝑟𝑟)𝑀

𝑖=1 𝑖
 is the accumulation of irreversible strain after 𝑚 

cycles, and ∑ (𝜀𝑎
𝑖𝑟𝑟)𝑛

𝑖=1 𝑖
 is the total cumulative irreversible strain during the entire multi-level 

systematic cyclic loading test. 

Rock deformability and its failure mechanism are closely related to energy dissipation. 

Therefore, the energy trends during the rock deformation process can reflect the rock damage 

mechanism (Zhang et al. 2019b). As shown in Fig. 6.10, a part of the total work done on the 

unit volume of a specimen (𝑈𝑡) by the external force during a loading-unloading cycle is stored 

in the specimen as elastic energy (𝑈𝑒); the remaining is released as dissipated energy (𝑈𝑑) due 

to plastic deformation and rock damage. Because of the complexity in energy conversion 

during rock deformation and failure, subtle energies (thermal energy, acoustic emission energy, 

kinetic energy, etc.) are usually ignored to simplify the energy equation as follows (Zhou et al. 

2019): 

𝑈𝑡 = 𝑈𝑒 + 𝑈𝑑                    (6.2) 

{
 

 𝑈𝑡 = ∫ 𝜎𝑎 𝑑𝜀𝑎
𝜀"

0

𝑈𝑒 = ∫ 𝜎𝑎  𝑑𝜀𝑎
𝜀"

𝜀′

𝑈𝑑 = 𝑈𝑡 − 𝑈𝑒   

                   (6.3) 
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Fig. 6.11 summarises the evolution of the damage variable (𝐷), elastic modulus (𝐸), and energy 

dissipation ratio (𝐾 = 𝑈𝑑/𝑈𝑡) as damage parameters for specimen TL6. A similar trend was 

observed for the other tested specimens. As demonstrated in Fig. 6.11, the total behaviour of 

damage parameters under multi-level systematic cyclic loading conditions can be divided into 

four stages. In stage I, the damage variable (𝐷) increases slightly and is accompanied by the 

rapid increase in stiffness (𝐸) from 1.46 GPa to 2.23 GPa, corresponding to the closure of 

existing defects and expansion of the yield surface (Taheri and Tatsuoka 2015). Furthermore, 

the energy dissipation ratio (𝐾) decreases suddenly in this stage, which indicates that the elastic 

energy (𝑈𝑒) accumulates more rapidly than the dissipated energy (𝑈𝑑). Stage II, which is the 

majority of the damage evolution process, shows a nearly unchanging behaviour for all three 

damage parameters 𝐷, 𝐸, and 𝐾. In this stage, although the specimen has experienced 400 

cycles, no notable damage is incurred in the specimen. This stage can be interpreted as a 

balance between the two mechanisms of dilatant microcracking, which reduces the rock 

stiffness, and grain crushing and pore collapse, which improves the rock stiffness. This 

balanced state between two competing inelastic procedures results in a quasi-elastic behaviour 

of the damage parameters in such a way that the deformation seems elastic, and no more energy 

is dissipated in this stage. In stage III, during the transition to the second stress level via a 

monotonic loading, the elastic modulus first increases for several cycles. This increase may be 

related to the change in the strain rate from 2×10-4/s to 0.02×10-4/s for monotonic loading, 

which allows the existing microcracks and pores to be more compacted and ultimately results 

in a small stiffening (Peng et al. 2019). Then, the elastic modulus decreases gradually due to 

the dilatant cracking that degrades the axial stiffness and simultaneously allows more energy 

to be dissipated (see the trend of 𝐾 in Fig. 6.11). In stage IV, the specimen enters the post-peak 

region due to the coalescence of the microcracks and the generation of macrocracks through 

the specimen, and the degradation process of the specimen increases dramatically. According 

to Fig. 6.11, the energy dissipation ratio (𝐾) and damage variable (𝐷) increase rapidly in this 

stage, while the stiffness of the specimen decreases until the residual state is reached. 



180 

 

 

Figure 6.10 Distribution of elastic energy (𝑈𝑒) and dissipated energy (𝑈𝑑) 

 

Figure 6.11 Typical evolution of damage and stiffness parameters during 

multi-level systematic cyclic loading of specimen TL6 

6.3.3. Crack Damage Threshold Stress Evolution 

The crack damage threshold stress (𝜎𝑐𝑑), the stress corresponding to the reversal point of 

volumetric strain at the onset of dilation (Taheri et al. 2020), is an important parameter 

concerning the unstable damage evolution because it describes the transition of specimen 

deformation from the compaction-dominated state to the dilatancy-dominated state. As shown 

in Fig. 6.9, during cyclic loading at each stress level in the pre-peak stage, 𝜎𝑐𝑑 is almost 
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constant and very close to the maximum stress in each cycle. When transitioning to the higher 

stress levels using a monotonic loading, 𝜎𝑐𝑑 increases to reach a stationary state at each stress 

level. The results presented in Fig. 6.9 show that by applying 400 cycles at each stress level, 

the closed microvoids and micropores are not re-opened during pre-peak cyclic loading until 

the cyclic loading damages the rock at the last stress level. Thus, when the cyclic loading stress 

level is not high enough to cause the specimen to fail, the specimen does not switch from a 

compaction-dominated state to a dilatancy-dominated state but instead acts as an elastic 

material. According to Fig. 6.9a, specimen TL6 shows dilatant behaviour in the pre-peak 

region, in the second cyclic loading stage, by a sudden drop in 𝜎𝑐𝑑 due to the re-opening of 

closed cracks and the generation of new cracks. Degradation of 𝜎𝑐𝑑 continues in the post-peak 

region, followed by strength degradation until the specimen starts to show a residual strength 

state where 𝜎𝑐𝑑 increases to reach a stable condition. For specimens TL7 (Fig. 6.9b) and TL8 

(Fig. 6.9c), the drop in 𝜎𝑐𝑑 occurs very close to and at the failure point, respectively. This, in 

turn, causes a sudden release of stored elastic strain energy in a self-sustaining manner. 

6.4. Strength Hardening Behaviour 

As mentioned earlier, in the cyclic loading tests, an increase in the peak strength of specimens 

TL7 and TL8 was observed with the increase in fatigue life in the pre-peak region. The 

discrepancy among specimens may partially contribute to this trend in the results. Considering 

the previous findings (Burdine 1963; Singh 1989; Ma et al. 2013; Taheri et al. 2017) and the 

results of cyclic loading tests in this study, the authors believe that the increase in the peak 

strength of specimens TL7 and TL8 is due to not only this discrepancy but also the cyclic 

loading. This phenomenon should be investigated in future studies by undertaking more 

specific cyclic loading tests. The hardening behaviour, however, is discussed briefly below. 

As discussed in section 6.3.2 and shown in Fig. 6.11, during pre-peak systematic cyclic loading, 

when the stress level is not high enough to cause the specimen to fail due to fatigue, a quasi-

elastic behaviour dominates the damage evolution process. In this stage, some mesoscopic 

elements with lower strength and stiffness may reach their maximum load-bearing capacity, 

and the weak bonding between the grains breaks, producing fine materials. However, as the 

stress level is not close to the failure point, due to the slippage and dislocation of the produced 

fine materials, the existing microfissures and pores are filled during cyclic loading. This may 

result in more compaction of the specimen and, consequently, strength hardening. This 

behaviour can also be confirmed by the variation in crack damage threshold stress (𝜎𝑐𝑑) during 



182 

 

cyclic loading (see Fig. 6.9). As explained in section 3.3, specimen TL8, which experienced 

more loading and unloading cycles in the pre-peak region than the other specimens did, is 

mostly in the compaction-dominated stage; dilation occurs at the failure point, followed by the 

sudden decrease in 𝜎𝑐𝑑. This, in turn, resulted in the strength improvement of specimen TL8. 

However, for specimen TL6 with a shorter fatigue life, dilation occurred earlier in the pre-peak 

region. The process of rock compaction and porosity reduction in highly porous rock material 

may be similar to the mechanism explained by Baud et al. (2017). Fig. 6.12 shows the 

backscattered SEM images of a highly porous limestone in intact and deformed conditions 

under the same confining pressure of 9 MPa at different axial strain levels. As shown in this 

figure, when the intact specimen (Fig. 6.12a) deforms to 14% strain, microcracks are created 

in the calcite grains, and most of the fossil shells are broken and pulverised, while the quartz 

grains largely remain intact (Fig. 6.12b). With the further deformation of the specimen to 27% 

strain (Fig. 6.12c), the majority of the calcite grains are broken, and all of the fossil shells are 

pulverized, resulting in the existing pores being filled and the creation of compacted zones 

through the specimen. This grain packing is more evident in Fig. 6.12d, at a larger scale. The 

stress may concentrate more around the compacted areas, which behave elastically during 

loading and may contribute to the specimens exhibiting more brittle failure. 

 

Figure 6.12 Backscattered SEM images of a porous limestone in a intact and triaxial 

compression conditions for b 14% and c, d 27% axial strain (modified from Baud et al. 

(2017)) 
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6.5. Conclusions 

An innovative testing methodology considering two criteria was proposed in this study to 

describe the post-peak behaviour of rocks subjected to systematic cyclic loading. Regarding 

this, the Tuffeau limestone was selected to evaluate the capability of the proposed testing 

method in capturing the full stress-strain response of soft rocks. After obtaining the optimum 

values for the loading rate (𝑑𝜀𝑙/𝑑𝑡) and 𝐴𝑚𝑝. (𝜀𝑙) during a trial procedure, three main multi-

level systematic cyclic loading tests were conducted on Tuffeau limestone specimens using the 

proposed damage-controlled test method. The evolution of different parameters, including the 

peak strength, damage variable, elastic modulus and crack damage threshold stress, was 

evaluated comprehensively with the results of the conducted cyclic loading tests. The following 

conclusions were drawn from this study: 

1. The proposed double-criteria damage-controlled testing method was successful in 

capturing the class II post-peak behaviour of Tuffeau limestone subjected to multi-

level systematic cyclic loading. This testing method can provide new insights 

regarding the damage evolution of rocks in the post-peak region under systematic 

cyclic loading conditions, which was not previously achievable. The test method was 

successfully performed on Tuffeau limestone, which is a soft rock. The application of 

the method still needs to be examined on stronger rock types. 

2. The whole process of cyclic loading tests conducted in this study can be summarised 

into several stages: a) The rock specimen initially stiffens and shows elastic behaviour 

due to the initial compaction, which is accompanied by the reduction in the energy 

dissipation. b) Due to a balance between the grain-crushing and pore collapse 

processes during compaction, a quasi-elastic behaviour dominates the whole test. c) 

The stiffness of the specimen decreases gradually due to dilatant microcracking, which 

dissipates more energy. d) With the generation and coalescence of microcracks, the 

rocks transition from a dilatant state, characterised by the rapid increase in damage 

and energy dissipation, and stiffness reduction. 

3. The evolution of the crack damage threshold stress (𝜎𝑐𝑑) during cyclic loading showed 

that the specimens do not switch from a compaction-dominated to a dilatancy-

dominated state when the cyclic loading stress level is not high enough to cause the 

specimen to fail. This results in a constant 𝜎𝑐𝑑 that is very close to the unloading stress 

in each cycle. 
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4. An increase in strength with an increase in fatigue life was observed for the highly 

porous Tuffeau limestone. According to the variation in the damage parameters, 

stiffness and crack damage threshold stress during the systematic cyclic loading tests, 

this hardening behaviour can be due to the further compaction of a rock specimen with 

increasing number of cycles in the pre-peak region. Indeed, the weak bonding between 

the grains may break down during cycling loading, and the fine materials produced in 

this process may fill the existing micropores and microfissures, which can result in a 

porosity reduction and hardening behaviour. 
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Chapter 7 
 

Failure Behaviour of a Sandstone Subjected to the 

Systematic Cyclic Loading: Insights from the 

Double-Criteria Damage-Controlled Test Method 

Abstract  

The post-peak behaviour of rocks subjected to cyclic loading is very significant to appraise the 

long-term stability of underground excavations. However, an appropriate testing methodology 

is required to control the damage induced by the cyclic loading during the failure process. In 

this study, the post-failure behaviour of Gosford sandstone subjected to the systematic cyclic 

loading at different stress levels was investigated using the double-criteria damage-controlled 

testing methodology, and the complete stress-strain relations were captured successfully. The 

results showed that there exists a fatigue threshold stress in the range of 86-87.5% of the 

average monotonic strength in which when the cyclic loading stress is below this threshold, no 

failure occurred for a large number of cycles and in turn, the peak strength improved up to 8%. 

Also, the variation of the energy dissipation ratio, rock stiffness and acoustic emission hits for 

hardening tests showed that cyclic loading in the pre-peak regime creates no critical damage in 

the specimen, and a quasi-elastic behaviour dominates the damage evolution. The post-failure 

instability of such tests was similar to those obtained for monotonic tests. On the other hand, 

by exceeding the fatigue threshold stress, the brittleness of the specimens increased with an 

increase in the applied stress level, and class II behaviour prevailed over total post-peak 

behaviour. A loose-dense-loose behaviour with different extents was also observed in the post-

peak regime of all fatigue cyclic loading tests. This was manifested then as a secondary inverted 

S-shaped damage behaviour by the variation of the cumulative irreversible axial and 

cumulative irreversible lateral strains with the post-peak cycle number. Furthermore, it was 

confirmed that the damage per cycle in the post-peak regime decreases exponentially with an 

increase in the applied stress level.  

Keywords: Pre-peak and post-peak behaviour, Systematic cyclic loading, Brittleness, 

Hardening, Fatigue, Damage evolution  
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List of Symbols 

𝐸𝑡𝑎𝑛 Tangent Young’s modulus 𝜀𝑎
𝑖𝑟𝑟

 Irreversible axial strain 

𝜈 Poisson’s ratio 𝜀𝑙
𝑖𝑟𝑟  Irreversible lateral strain 

𝜎1 Major principal stress Σ𝜀𝑎
𝑖𝑟𝑟

 Cumulative irreversible axial strain 

𝜎𝑎 Axial stress Σ𝜀𝑙
𝑖𝑟𝑟 Cumulative irreversible lateral strain 

𝜎𝑖  Indicator stress 𝑈𝑒  Elastic energy at peak stress  

𝜎𝑎−𝑝𝑒𝑎𝑘  Axial peak stress 𝑈𝑒
𝑖  Elastic energy of cycle 𝑖  

𝜎𝑚 Average monotonic strength 𝑈𝑑
𝑖

 Dissipated energy of cycle 𝑖 

𝜎𝑎/𝜎𝑚 Applied stress level 𝑈𝑝𝑟𝑒 Pre-peak dissipated energy 

𝜎ℎ/𝜎𝑚 Strength hardening ratio 𝑈𝑝𝑜𝑠𝑡 Post-peak dissipated energy  

𝜎𝑐𝑖/𝜎𝑎−𝑝𝑒𝑎𝑘  Crack initiation stress ratio 𝑈𝑡 Total fracture energy 

𝜎𝑐𝑑/𝜎𝑎−𝑝𝑒𝑎𝑘  Crack damage stress ratio 𝐴𝑚𝑝. (𝜎𝑎) Loading amplitude 

𝜀𝑎 Axial strain 𝐴𝑚𝑝. (𝜀𝑙) Lateral strain amplitude 

𝜀𝑙  Lateral strain 𝑛 Cycle number 

𝑑𝜀𝑙/𝑑𝑡 Lateral strain rate 𝑁𝑡𝑜𝑡𝑎𝑙  Total number of cycles 

𝜀𝑎−𝑝𝑒𝑎𝑘 Axial strain at peak stress 𝑁𝑎𝑓𝑡𝑒𝑟 Number of cycles after failure point 

𝜀𝑙−𝑝𝑒𝑎𝑘 Lateral strain at peak stress 𝐵𝐼 Brittleness index 

𝜀𝑣−𝑝𝑒𝑎𝑘 Volumetric strain at peak stress 𝐷 Damage variable 

𝜀𝑎−𝑓 Axial strain at the final cycle 𝑀 Post-peak modulus 

 

7.1. Introduction 

A high-complex stress state usually is created around deep-buried tunnels and caverns due to 

disturbances induced by different sources as displayed in Fig. 7.1. This stress state may affect 

mechanical rock properties and in turn, cause some specific failure phenomena such as 

slabbing/spalling, strainburst and zonal disintegration significantly different from those in 

shallow conditions (Gong et al. 2012; Shirani Faradonbeh and Taheri 2019). According to 

Martin and Chandler (1994) and Martin (1997), the surrounding rocks in underground 

excavations may experience load-and-deformation response to a different extent during 

operation, and rock may be exposed to cyclic loading. In particular, they argued that in remote 

to nearby excavation regions, rock may experience failure (i.e. the applied stress level exceeds 

the peak strength), damage (i.e. the applied stress is below the peak strength) or disturbance 

(i.e. different stress is applied due to the redistribution of the in-situ stresses) or the rock may 

remain undisturbed. From this viewpoint, the rock cyclic load-deformation response may take 
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place in the pre-peak or post-peak regime (Munoz and Taheri 2019). For instance, as depicted 

in Fig. 7.1, a pillar may experience cyclic loading due to blasting operation or other seismic 

activities beyond the limit in uniaxial conditions. Under such loading conditions, rock materials 

may still keep some loadings even in the post-failure regime. Therefore, the investigation of 

the pre-peak and post-peak behaviour of rocks is of paramount significance to understand more 

about the fracturing mechanism, resilient design and long-term stability assessment of the 

various rock engineering structures subjected to seismic disturbances. Experimental research 

on the influence of cyclic loading parameters on the damage evolution and rock strength and 

deformation parameters has a long tradition. These studies have been conducted under different 

loading histories and loading conditions such as uniaxial and triaxial compression tests (Heap 

and Faulkner 2008; Heap et al. 2009; Liu et al. 2018), indirect tensile tests (Erarslan et al. 2014; 

Wang et al. 2016), flexural tests (Cattaneo and Labuz 2001; Cardani and Meda 2004) and 

freeze-thaw tests (Liu et al. 2015; Zhang et al. 2019). A comprehensive review of the rock 

fatigue studies can be found in Cerfontaine and Collin (2018). The majority of prior rock 

fatigue studies have emphasised strength weakening of rocks due to incurring permanent 

deformations during cyclic loading (Haimson 1978; Fuenkajorn and Phueakphum 2010). 

However, very few studies have reported the strength improvement when the stress level that 

cyclic loading is applied is low enough to prevent failure (Singh 1989; Ma et al. 2013; Taheri 

et al. 2017). In prior studies, the process of damage evolution and the failure mechanism of 

rocks subjected to different cyclic loading histories have been investigated based on the 

measured stress-strain relations (Cerfontaine and Collin 2018). Indeed, the complete stress-

strain relation of rocks (i.e. the pre-peak and the post-peak regimes) is considered as a 

prominent tool in rock engineering to describe strain energy evolution as well as for rock 

brittleness determination (Munoz et al. 2016a; Shirani Faradonbeh et al. 2020). According to 

Wawersik and Fairhurst (1970), the post-peak behaviour of rocks under quasi-static 

compression can be distinguished into two classes: a) class I which is characterised by the 

negative post-peak modulus (i.e. 𝑀 = 𝑑𝜎/𝑑𝜀 < 0) representing the gradual strength 

degradation of rock specimen and the need for extra energy and b) class II having a positive 

post-peak modulus represents the self-sustaining failure with strain recovery and release of 

excess elastic strain energy. The proper measurement of the complete stress-strain response of 

rocks significantly depends on the stiffness of the loading system, the applied load controlling 

technique throughout the test as well as rock brittleness (Wawersik and Fairhurst 1970; Munoz 

and Taheri 2019).  
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Shirani Faradonbeh et al. (2020) categorised the cyclic loading methods based on the loading 

histories and load control variables into two main groups of systematic cyclic loading (single-

level or multi-level) (Figs. 7.2a and b) and damage-controlled cyclic loading (load-based or 

displacement-based) (Figs. 7.2c and d). Systematic cyclic loading can be conducted under load-

controlled or displacement-controlled loading conditions. In both loading conditions, a sudden 

failure occurs during cyclic loading as a constant axial load amplitude, 𝐴𝑚𝑝. (𝜎𝑎), should be 

achieved during each loading cycle (e.g. Ma et al. 2013; Li et al. 2019). Similarly, in the load-

based damage-controlled cyclic loading tests, as the specimen is forced to reach a prescribed 

stress level, it may experience an unexpected failure, and the post-peak behaviour cannot be 

captured (e.g. Heap et al. 2010; Guo et al. 2018). Regarding the displacement-based damage-

controlled cyclic loading tests, as the post-peak behaviour of rocks in uniaxial compression is 

either class II or a combination of class I and class II (Munoz et al. 2016a), the post-peak 

response cannot be adequately captured by the axial displacement feedback signal (e.g. Wang 

et al. 2019). The lateral displacement, on the other hand, has been identified as an appropriate 

variable to control the amount of damage in the post-peak regime (Munoz and Taheri 2019).  

To our knowledge, no prior studies have examined the influence of systematic cyclic loading 

at different stress levels on the post-peak behaviour of rocks. This is due to the difficulties in 

controlling the axial load when a constant load amplitude should be achieved in every cycle in 

a systematic cyclic loading test. Also, if a prescribed lateral strain is considered to control the 

damage in a damage-controlled test, the axial load is reversed when a certain amount of lateral 

strain occurs, and therefore, the systematic cyclic loading cannot be conducted anymore in the 

pre-peak regime. However, as mentioned earlier, some mining and civil structures (e.g. mining 

pillars and bridge columns) may experience systematic cyclic loading at different fractions of 

their average peak strength. Under such loading conditions, the rocks may exhibit different 

behaviours in the post-peak regime. An appropriate experimental methodology is, therefore, 

required for measuring the post-peak behaviour of rocks subjected to systematic cyclic loading 

histories properly. As demonstrated in Fig. 7.2, a novel cyclic test method by combining the 

single-level systematic cyclic loading and lateral displacement-based damage-controlled cyclic 

loading is proposed in this study to control both the damage and the cyclic loading rate. Then, 

several systematic cyclic tests were conducted in uniaxial compression at different stress levels 

using the proposed test method. Based on the obtained complete stress-strain relations, the 

influence of systematic cyclic loading on both the pre-peak and the post-peak behaviours was 

evaluated comprehensively, and the results were discussed in detail. 
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Figure 7.1 Different sources of seismic disturbances imposing on an underground mining 

pillar, 𝜎1 corresponds to the major in-situ stress and ∆𝜎𝑖 refers to the cyclic loadings 

originated from different sources 
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Figure 7.2 Classification of cyclic loading tests, a single-level systematic cyclic loading path, 

b multilevel systematic cyclic loading path, c load-based damage controlled cyclic loading 

path and d displacement-based damage controlled cyclic loading path, Amp. (𝜎𝑎) refers to 

loading amplitude, Amp. (𝜀𝐿) refers to lateral strain amplitude, and * can be conducted either 

in axial or lateral displacement-controlled mode, modified from Shirani Faradonbeh et al. 

(2020) 

7.2. Specimen Preparation and Experimental Set-Up 

The Gosford sandstone as a medium-grained (0.2-0.3 mm), poorly cemented, immature quartz 

sandstone containing 20-30% feldspar and clay minerals with the serrate connection between 

quartz grains (Sufian and Russell 2013) was used in this study for conducting the experimental 

tests. According to the X-ray computed tomography scans conducted by Sufian and Russell 

(2013), the total porosity of this sandstone is about 18%. A total of 23 cylindrical specimens 

having a constant aspect ratio of 2.4 (i.e. 42 mm diameter and 100 mm length) were all cored 

from the same rectangular block and in the same direction and prepared according to the ISRM 

suggested method (Fairhurst and Hudson 1999). In this study, all the experiments were 

performed in dry condition. To do so, the rock specimens were dried in the room temperature 

before conducting the tests. The average dry density of the specimens was approximately 

2204.26 kg/m3. Rock monotonic strength should be determined before undertaking systematic 

cyclic loading tests at different stress levels (𝜎𝑎/𝜎𝑚). To do so, six uniaxial compression tests 

were performed following the lateral strain-controlled loading method. An MTS close-looped 

servo-controlled hydraulic compressive system having the maximum loading capacity of 300 

kN (see Fig. 7.3) was used to undertake the monotonic and cyclic loading tests. As stated 

earlier, the axial load-controlled and axial strain-controlled loading techniques cannot capture 

the post-peak behaviour of rocks, as rocks usually show a combination of class I and class II 

behaviour in the post-peak regime (Munoz et al. 2016b). Therefore, as depicted in Fig. 7.4a, a 

constant lateral strain rate (𝑑𝜀𝑙/𝑑𝑡) of 0.02×10-4/s was utilised during the uniaxial compression 

tests to control the axial load both in the pre-peak and the post-peak regimes. This strain rate 

provides a static to quasi-static loading conditions (Wawersik and Fairhurst 1970; Munoz et al. 

2016b).  

Axial load and axial and lateral displacements were recorded in real-time, respectively using 

the load cell, a pair of LVDTs externally mounted between the loading platens and a direct-

contact chain extensometer wrapped around the specimens (see Fig. 7.3). Due to the large-
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strain behaviour of rocks in the post-peak regime, the local strain measurement tools such as 

strain gauges are not effective. To characterise the post-peak instability of rocks in terms of 

brittleness, the complete stress-strain curves of rocks are required, and therefore, external 

LVDTs were used to measure the large-strain properties. LVDTs measure the deformation 

between loading platens; therefore, the deformation of the loading system is not included in 

the measurement. Still, the strain data may not be precise due to well-known bedding error 

(Taheri and Tani 2008). The bedding error refers to the additional deformations measured by 

LVDTs due to crushing the irregularities/asperities at the end faces of the specimens before the 

specimen deforms as well as the poor fitting of the specimen to the loading platens. This error 

is minimised in this study by carefully and smoothly grinding the ends of the specimen 

following the ISRM standard (Fairhurst and Hudson 1999). Besides, since the focus of this 

study is complete stress-strain behaviour, this error is deemed negligible in large strain stress-

strain properties. 

The acoustic emission (AE) technique, as a passive non-destructive monitoring technology, 

was also employed in this study to measure the real-time formation and growth of local micro-

cracks throughout the specimen (internal damage) during cyclic loading (Lockner 1993; 

Bruning et al. 2018). For this aim, as depicted in Fig. 7.3, two miniature PICO sensors were 

attached to the specimens, and the recorded acoustic signals by these sensors were amplified 

using a pre-amplifier (type 2/4/6) set to 60 dB of gain. The AE recordings were carried out 

using the Express-8 data acquisition card with the sampling rate of 2 MSPS (million samples 

per second). To ensure that mechanical noises induced by the loading system are not recorded 

during the tests, the AE threshold amplitude was changed from 20 dB to 60 dB, and it was 

found that after 45 dB amplitude, no additional noises are recorded. Therefore, this value was 

set as the AE threshold.   

The stress-strain curves obtained from the conducted uniaxial compressive tests and their 

relevant mechanical properties can be found in Fig. 4b, and Table 7.1, respectively. In Table 

7.1, the tangent Young’s modulus (𝐸𝑡𝑎𝑛) and Poisson’s ratio (𝜈) values were determined at 

50% of the axial peak stress (𝜎𝑎−𝑝𝑒𝑎𝑘) for each monotonic test. The crack initiation stress (𝜎𝑐𝑖) 

and crack damage stress (𝜎𝑐𝑑) thresholds were also determined using the methods explained in 

Taheri et al. (2020). According to Fig. 7.4b, the stress-strain curves for all compression tests 

show almost a similar behavioural trend both in the pre-peak and the post-peak regimes. In the 

pre-peak regime, as listed in Table 7.1, the deformation parameters of axial (𝜀𝑎−𝑝𝑒𝑎𝑘), lateral 

(𝜀𝑙−𝑝𝑒𝑎𝑘) and volumetric strains (𝜀𝑣−𝑝𝑒𝑎𝑘) at peak stress points, 𝐸𝑡𝑎𝑛, 𝜈, crack initiation stress 
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ratio (𝜎𝑐𝑖/𝜎𝑎−𝑝𝑒𝑎𝑘) and crack damage stress ratio (𝜎𝑐𝑑/𝜎𝑎−𝑝𝑒𝑎𝑘) are approximately similar, 

which indicates a small discreteness of the tested specimens. As such, in the post-failure 

regime, the sudden drops and recoveries of the load-bearing capacity can be observed for all 

specimens which can be associated with the shear strain localisation, grain interlocking in 

between the sides of the generated macrocracks (Jansen and Shah 1997; Vasconcelos et al. 

2009) as well as the automatic adjustment of applied load by the testing machine upon damage 

extension. The post-peak regime of rocks under uniaxial compressive loading demonstrates a 

combined class I-II behaviour, which is consistent with the prior study conducted by Munoz et 

al. (2016b). As listed in Table 7.1, the monotonic compressive strength (𝜎𝑎−𝑝𝑒𝑎𝑘) of the tested 

Gosford sandstone specimens varied between 45.76 MPa and 49.89 MPa with an average value 

of 48.15 MPa. This average monotonic strength was utilised in the following to define the stress 

levels where the systematic cyclic loading tests should be commenced.   

 

Table 7.1 The results of uniaxial compressive tests for Gosford sandstone specimens 

Test No. 𝜎𝑎−𝑝𝑒𝑎𝑘  

(MPa) 

𝐸𝑡𝑎𝑛 

 (GPa) 

𝜈  Strains at the peak stress point  𝜎𝑐𝑖/𝜎𝑎−𝑝𝑒𝑎𝑘  

(%) 

𝜎𝑐𝑑/𝜎𝑎−𝑝𝑒𝑎𝑘   

(%) 𝜀𝑎−𝑝𝑒𝑎𝑘 

(×10-4) 

𝜀𝑙−𝑝𝑒𝑎𝑘   

(×10-4) 

𝜀𝑣−𝑝𝑒𝑎𝑘   

(×10-4) 

 

GS-1 48.05 13.30 0.15  54.17 -38.35 -22.54  29.65 58.27 

GS-2 49.54 13.43 0.12 52.18 -36.84 -21.51  30.60 58.67 

GS-3 47.35 13.42 0.13 52.66 -39.10 -25.55  27.00 55.57 

GS-4 45.76 12.97 0.15 51.39 -38.56 -25.73  25.80 55.96 

GS-5 49.89 13.15 0.14 53.00 -36.97 -20.95  27.71 57.92 

GS-6 48.29 14.14 0.15 50.17 -34.11 -18.05  26.94 52.70 

Average 48.15 13.40 0.14  52.26 -37.32 -22.39  27.95 56.51 

SD 1.51 0.40 0.01  1.38 1.81 2.93  1.82 2.25 

SD standard deviation 
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Figure 7.3 Testing set-up for the uniaxial compression and cyclic loading tests 

 

Figure 7.4 a Typical time-history of the loading and strains during compressive tests and b 

axial stress-strain relations obtained from the monotonic loading tests 
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Figure 7.4 (Continued) 

7.3. Systematic Cyclic Loading Tests  

As discussed earlier, the single-criterion load-based and displacement-based loading methods 

are not sufficient to control the axial load in the post-failure stage during the systematic cyclic 

loading tests, especially when rocks demonstrate self-sustained failure behaviour. In this study, 

to address this issue, a new testing method called “double-criteria damage-controlled test 

method” (Shirani Faradonbeh et al. 2020) was employed. As demonstrated in Fig. 7.2, this test 

method is a combination of single-level systematic cyclic loading and damage-controlled cyclic 

loading lateral displacement-controlled loading method. In this regard, the MTS servo-

controlled testing machine was programmed so that the hydraulic system was allowed to be 

adjusted continuously, automatically and rapidly according to the received feedback signals 

from both chain extensometer and load cell during a closed-loop procedure. The testing 

procedure can be summarised into the following four stages:  

1. Load the specimen monotonically (𝑑𝜀𝑙/𝑑𝑡 = 0.02×10-4) until the pre-defined stress 

level (𝜎𝑎/𝜎𝑚), and then, unload it at the same loading rate until 𝜎𝑎= 0.07 MPa, ensuring 

the specimen is always in complete contact with the loading platens.  

2. Reload the specimen under a constant lateral strain rate of 3×10-4/s until one of the two 

following criteria is met during loading: 
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a) the pre-defined maximum axial stress level (𝜎𝑎/𝜎𝑚) is reached; 

b) the pre-defined maximum lateral strain amplitude, 𝐴𝑚𝑝. (𝜀𝑙)= 32×10-4 is 

reached; 

3. Reverse the axial load to 𝜎𝑎= 0.07 MPa, and repeat steps 1 and 2 until 1500 loading 

and unloading cycles are completed.  

4. If the specimen did no fail during 1500 cycles, apply a monotonic loading (𝑑𝜀𝑙/𝑑𝑡 = 

0.02×10-4) until complete failure occurs.  

In this study, 𝐴𝑚𝑝. (𝜀𝑙)= 32×10-4 was determined based on the conducted monotonic tests and 

the measured lateral strain of the rocks at the failure point, 𝜀𝑙−𝑝𝑒𝑎𝑘 (see Table 7.1). As seen in 

Table 7.1, the average value of 𝜀𝑙−𝑝𝑒𝑎𝑘 for the tested specimens is -37.32×10-4. Based on the 

conducted several trial tests, it was found that 32×10-4 is an appropriate value for Gosford 

sandstone. By adopting this value, it was possible to avoid failing the sample in a single cycle 

while allowing the axial stress level to reach the pre-defined value to apply a systematic cyclic 

loading. Figs. 7.5a and b show two representative time histories of axial stress and lateral strain 

for Gosford sandstone specimens experiencing failure during cyclic loading and final 

monotonic loading. In Fig. 7.5a, the specimen was loaded monotonically (𝑑𝜀𝑙/𝑑𝑡= 0.02×10-

4/s) up to 85% of the average monotonic strength (𝜎𝑎/𝜎𝑚= 85%). Afterwards, the specimen 

was unloaded with the same rate, and then the systematic cyclic loading was initiated under the 

lateral strain rate of 3×10-4/s. As shown in the inset figure, the cycles always met the first 

criterion (i.e. the maximum stress applied during a cycle remained constant) during the 

systematic cyclic loading and the 𝐴𝑚𝑝. (𝜀𝑙) was considerably lower than the pre-defined 

maximum amplitude for lateral strain (i.e. 32×10-4) in each cycle.  

As during 1500 loading/unloading cycles, the 𝐴𝑚𝑝. (𝜀𝑙) did not exceed 32×10-4, a monotonic 

loading was applied automatically to the specimen under the lateral strain rate of 0.02×10-4/s 

until the specimen is completely failed. By doing so, the post-peak behaviour was captured 

successfully for further analyses. In Fig. 7.5b, the same cyclic loading procedure was applied 

to another specimen at a higher axial stress level (i.e. 𝜎𝑎/𝜎𝑚= 87.25%). In the pre-peak stage, 

the 𝐴𝑚𝑝. (𝜀𝑙) increased gradually by increasing the cycle number, while the stress level was 

kept constant, satisfying the first criterion. However, at the onset of the failure (where the axial 

stress begins to reduce), the 𝐴𝑚𝑝. (𝜀𝑙) reached the pre-defined value of 32×10-4 (see the inset 

figure), and the second criterion was activated to control the cyclic loading. By transferring to 

the post-peak stage, and strength degradation, the subsequent cycles were carried out so that 
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the 𝐴𝑚𝑝. (𝜀𝑙) was always constant until the complete failure of the specimen occurred. 

Following this test method, the rock specimen failed in a controlled way, and the post-peak 

behaviour was captured successfully. 

 

 

Figure 7.5 Representative axial stress and lateral strain time-histories for the proposed 

damage-controlled tests for the specimens failed during a final monotonic loading and b 

systematic cyclic loading 
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7.4. Stress-Strain Relations  

In total, 17 single-level systematic cyclic loading tests (see Table 7.2) were carried out at 

different stress levels (𝜎𝑎/𝜎𝑚) ranging from 80% to 96% of the average monotonic strength 

following the proposed double-criteria damage-controlled testing method. As listed in Table 

7.1, the stable and unstable crack growths of rocks on average initiate at 𝜎𝑐𝑖/𝜎𝑎−𝑝𝑒𝑎𝑘= 27.95% 

and 𝜎𝑐𝑑/𝜎𝑎−𝑝𝑒𝑎𝑘= 56.51%, respectively. This, in other words, shows that the cyclic loading 

tests have been conducted in the unstable crack propagation stage, beyond the elastic stress-

strain behaviour. To evaluate the influence of cycle number on mechanical properties and post-

peak behaviour, the specimens GS-8 and GS-9 were subjected to 5000 and 10000 cycles at 

𝜎𝑎/𝜎𝑚=80% and GS-11 experienced 5000 cycles at the stress level of 𝜎𝑎/𝜎𝑚=85% before a 

monotonic loading. Otherwise, the samples experienced a maximum of 1500 cycles and then a 

post-monotonic loading should they did not fail during the cyclic loading. According to 

Beniawski (1967), to ensure fatigue failure of a rock specimen in a timely manner, the cyclic 

loading test should be conducted just before the onset of the unstable crack propagation stage 

within the range of 70-85% of the peak strength. A recent review conducted by Cerfontaine 

and Collin (2018) on rock fatigue studies reported that the rock fatigue threshold ranges from 

0.75 to 0.9 of the average monotonic strength for one million loading and unloading cycles 

depending on rock type and loading conditions. However, in this study, due to test limitations, 

further cycles did not apply, and the results are valid in the range of 1500-10000 cycles. Based 

on the results presented in Table 7.2, it is hypothesised that there exists a threshold of 𝜎𝑎/𝜎𝑚 

which lies between 86% and 87.5 % that indicates the critical boundary of rock strength 

hardening and fatigue under cyclic loading. In this study, the cyclic loading tests which 

experienced the monotonic loading at the failure stage were named as hardening cyclic loading 

tests, while those which failed during cyclic loading at higher stress levels were named as 

fatigue cyclic loading tests.  

Figs. 7.6 and 7.7 show the typical stress-strain results for hardening and fatigue cyclic loading 

tests, respectively. In these figures, the total post-peak behaviour was highlighted by 

connecting the indicator stresses (𝜎𝑖, the maximum stress of each cycle). The 𝜀𝑎
𝑖𝑟𝑟 and 𝜀𝑙

𝑖𝑟𝑟 

respectively, represent the irreversible axial strain and the irreversible lateral strain. The areas 

of interest (AOIs) shown in Figs. 7.6c and 7.7c illustrate the specific parts of the volumetric 

strain (𝜀𝑣𝑜𝑙) evolution which were enlarged in Figs. 7.6d and 7.7d, respectively. Figs. 7.6a and 

7.7a show that the testing methodology was successful in capturing the complete stress-strain 
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curves of Gosford sandstone specimens subjected to the systematic cyclic loading. 

Furthermore, like the monotonic tests, a combined class I-II behaviour at different extents can 

be seen in the post-peak regime for both hardening and fatigue cyclic loading tests. Generally, 

the variation of hysteretic loops along with the axial strain (Figs. 7.6a and 7.7a), lateral strain 

(Figs. 7.6b and 7.7b) and volumetric strain (Figs. 7.6c and d and Figs. 7.7c and d) show that 

the rock specimens which fail during the cyclic loading significantly experience more 

irreversible strains in the pre-peak regime compared with hardening cyclic loading tests. Also, 

as shown in Fig. 7.7d, after a few cycles, the hysteretic loops for the fatigue cyclic loading tests 

switch rapidly from the compaction to dilation, and dilation continues until complete failure.   

Table 7.2 The results of the conducted systematic cyclic tests 

Test No. 𝜎𝑎/𝜎𝑚(%) 𝑁𝑡𝑜𝑡𝑎𝑙  𝑁𝑎𝑓𝑡𝑒𝑟  Hardening (H) or 

fatigue (F) test? 

𝜀𝑎−𝑓  

 (×10-4) 

𝜀𝑎−𝑝𝑒𝑎𝑘  

(×10-4) 

Peak strength 

 increase (%) 

GS-7 80 1500 - H 45.80 53.56 0.53 

GS-8 80 5000 - H 43.03 52.36 7.31 

GS-9 80 10000 - H 48.94 55.98 0.05 

GS-10 85 1500 - H 46.38 53.70 6.22 

GS-11 85 5000 - H 48.93 54.29 2.17 

GS-12 86 1500 - H 45.52 50.92 1.93 

GS-13 87.50 1500 - H 47.72 55.04 7.82 

GS-14 86.81 636 49 F - 56.15 - 

GS-15 87.23 49 26 F - 56.06 - 

GS-16 87.25 240 42 F - 54.78 - 

GS-17 89.65 40 28 F - 54.75 - 

GS-18 89.82 103 45 F - 53.12 - 

GS-19 91.76 145 97 F - 52.75 - 

GS-20 93 49 36 F - 54.37 - 

GS-21 93.65 280 260 F - 54.98 - 

GS-22 95 752 730 F - 54.46 - 

GS-23 96 474 318 F - 37.84 - 

𝑁𝑡𝑜𝑡𝑎𝑙 total number of cycles, 𝑁𝑎𝑓𝑡𝑒𝑟  number of cycles after failure point, 𝜀𝑎−𝑓 axial strain at the peak of the 

final cycle, 𝜀𝑎−𝑝𝑒𝑎𝑘  axial strain at the failure point 
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Figure 7.1 Typical stress-strain results for the hardening cyclic loading tests (test GS-10) 

 

Figure 7.7 Typical stress-strain results for the fatigue cyclic loading tests (test GS-22) 
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Figure 7.7 (Continued) 

7.5. Rock Behaviour During Hardening Cyclic Loading Tests 

7.5.1. Damage Evolution in the Pre-Peak Regime  

In rock engineering applications, the rock deformation and failure processes are associated with 

the strain energy evolution (Li et al. 2019). The total inputted mechanical energy during a 

loading and unloading cycle is transformed into the stored elastic energy (𝑈𝑒
𝑖 ) and the dissipated 

energy (𝑈𝑑
𝑖 ) as shown schematically in Fig. 7.8a. The dissipated energy due to the irreversible 

deformations causes stiffness degradation and rock damage. In this study, the energy 

dissipation ratio (i.e. 𝐾 = 𝑈𝑑/𝑈𝑒) and tangent Young’s modulus (𝐸𝑡𝑎𝑛) were utilised to 

investigate progressive damage evolution in the pre-peak regime for hardening cyclic loading 

tests. Fig. 7.8b shows the representative results for specimen GS-10 at 𝜎𝑎/𝜎𝑚=85%. The other 

hardening cyclic loading tests conducted at different stress levels and with a different number 

of cycles also showed a similar trend. According to Fig. 7.8b, a two-stage damage evolution 

procedure can be identified for the hardening cyclic loading tests. In stage A, the 𝐸𝑡𝑎𝑛 increased 

dramatically during initial cycles (approximately 21.94% compared with the average 𝐸𝑡𝑎𝑛 for 

monotonic tests in Table 7.1), which can cause to specimen become stiffer. This behaviour can 

be relevant to the closure of existing defects . An increase of stiffness during initial loading 

cycle also has been reported by other researchers (Trippetta et al. 2013; Momeni et al. 2015; 

Taheri and Tatsuoka 2015; Taheri et al. 2016b). On the other hand, the energy dissipation ratio 

(𝐾) decreased suddenly in stage A, which contributes to the accumulation of elastic strain 

energy in rock specimen. In stage B, while it was expected to see stiffness degradation due to 
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incurring irreversible deformations in the specimen by doing more cycles, 𝐸𝑡𝑎𝑛 and 𝐾 remained 

fairly constant, and no considerable energy was dissipated until 1500 cycles were completed 

(i.e. a quasi-elastic behaviour).  

This quasi-elastic behaviour can be further investigated using AE results. Fig. 7.8c shows the 

typical time-history of AE hits recorded for the specimen GS-10. As shown in this figure, few 

AE hits are observed at the initial monotonic loading stage, which corresponds to seating, 

loading adjustment by the testing apparatus and the crack closure stage. However, in the second 

stage, almost no macrocrack (macro-damage) is generated throughout the specimen as a 

constant trend was observed for the cumulative AE hits during the 1500 cycles. In other words, 

at this stage, only small amounts of low amplitude AE hits (micro-damages) are generated (see 

Fig. 7.8c). During the final monotonic loading stage, new microcracks are generated and 

propagated throughout the specimen, and the cumulative AE hits increase gradually until the 

peak strength point. This is followed by the rapid rise of cumulative AE hits in the post-peak 

regime, where the microcracks coalesce, and the cohesive strength of the rock specimen 

degrades. On the other hand, according to Fig. 7.6, during hardening cyclic loading tests, the 

specimens do not experience large axial, lateral and volumetric irreversible deformations after 

1500 cycles and the hysteretic loops for such tests are very dense. This clearly can be seen from 

the variation of volumetric strains in the area of interest (AOI) (see Fig. 7.6d). In Fig. 7.6d, it 

is observed that the slope of the hysteretic loops between the lowest points and the peak points 

is positive, implying that the current volume of the specimen is mostly at the compaction stage 

with slight dilation at the end of pre-peak cyclic loading. According to the evolution of damage 

parameters (i.e. 𝐸𝑡𝑎𝑛 and 𝐾), AE hits and the irreversible strains discussed above, the following 

potential mechanism can be inferred for the observed quasi-elastic behaviour in this study:  

During cyclic loading below the fatigue threshold stress, but in the unstable crack propagation 

stage, some microcracks might be created within the specimens, which may result in grain size 

reduction and the creation of some pore spaces. The grain size reduction induced by cyclic 

loading also has been reported by Trippetta et al. (2013) based on the conducted microscopic 

analysis, although they used different loading history (i.e. damage-controlled cyclic loading 

tests). On the other hand, by performing additional loading and unloading cycles, the existing 

or newly generated defects which have been oriented horizontally are closed, and the rock 

specimen is compacted progressively. This is while the defects which have been oriented 

vertically are opened progressively. Therefore, it can be hypothesised that the observed quasi-

elastic behaviour in this study can be due to the competition between two mechanisms of 
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dilatant microcracking, which degrades rock stiffness, and rock compaction, which increases 

stiffness. The damage evolution seems to be independent of the applied stress level as the same 

trends of 𝐾 and 𝐸𝑡𝑎𝑛 and AE hits were observed for all hardening cyclic loading tests at 

different stress levels. This also can be proved by investigating the variation of axial strains at 

the final loading cycle (𝜀𝑎−𝑓) and failure point (𝜀𝑎−𝑝𝑒𝑎𝑘) for hardening cyclic loading tests (see 

Table 7.2). As depicted in Fig. 8d, the variation of 𝜀𝑎−𝑓 and 𝜀𝑎−𝑝𝑒𝑎𝑘 with stress level is almost 

similar and constant for all hardening tests, which demonstrates the analogous damage 

evolution process. 
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Figure 7.8 a Energy components for a loading and unloading cycle, b typical evolution of the 

energy dissipation ratio and stiffness parameters for the specimen GS-10, c typical time-

history of AE hits for the specimen GS-10, d the variation of axial strain at the final loading 

cycle and the failure point with stress level for hardening cyclic loading tests 

7.5.2. Effect of Pre-Peak Cyclic Loading on the Post-Peak Monotonic Behaviour  

In Fig. 7.9, the results of hardening cyclic loading tests are compared with monotonic test 

results, as normalised axial stress-strain curves. As it may be seen in this figure, the overall 

post-peak behaviour of monotonic and hardening cyclic loading tests are almost similar. Also, 

the increase in cycle number at stress levels 𝜎𝑎/𝜎𝑚=80% (from 1500 to 10000 cycles) and 
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behaviour. In other words, when the stress level that cyclic loading is applied is not high enough 

to fail the specimen during cyclic loading, the cyclic loading has a negligible effect on the post-

failure behaviour. This can be further investigated based on the variation of rock brittleness. 

Although there is no consensus regarding the rock brittleness definition and its criterion, it is 

well-known that brittle rocks show small irreversible deformation before peak strength which 

is followed by a self-sustaining failure in the post-peak regime (Tarasov and Potvin 2013). 

From 1956 to date, many rock brittleness indices have been developed by different researchers; 

however, the strain energy-based indices perform relatively better than others (Zhang et al. 

2016). The brittle vs. ductile behaviour of rock materials can be revealed in stress-strain curves 

during loading and failure. Thus, the rock brittleness indices, which consider the complete 

stress-strain behaviour of rocks may be more reliable. Munoz et al. (2016a) proposed three 

fracture energy-based brittleness indices considering both pre-peak and post-peak regimes of 

stress-strain curves for different rocks under uniaxial compressive tests. They reported that the 

proposed indices properly describe an unambiguous and monotonic scale of brittleness with 

increasing pre-peak strength parameters (i.e. 𝜎𝑐𝑑, 𝐸𝑡𝑎𝑛 and 𝜎𝑎−𝑝𝑒𝑎𝑘). Therefore, in this study, 

the following equations were used to measure the overall brittleness (𝐵𝐼) of the tested 

specimens under systematic cyclic loading.  

𝐵𝐼 =
𝑈𝑒

𝑈𝑡
=

𝑈𝑒

𝑈𝑝𝑟𝑒+𝑈𝑝𝑜𝑠𝑡
                   (7.1) 

𝑈𝑒 =
𝜎𝑎−𝑝𝑒𝑎𝑘
2

2𝐸𝑡𝑎𝑛
                    (7.2) 

where 𝑈𝑡, 𝑈𝑒, 𝑈𝑝𝑟𝑒 and 𝑈𝑝𝑜𝑠𝑡 are total fracture energy in the pre-peak and post-peak stages, 

elastic energy at peak stress, the pre-peak dissipated energy and the post-peak dissipated 

energy, respectively.   

Figure 7.10a shows the different strain energy components defined above for rock brittleness 

determination under monotonic loading. For hardening cyclic loading tests (i.e. GS-7 to GS-

13), the final monotonic loading stress-strain curves were extracted from the stress-strain 

relations shown in Fig. 7.9. The strain energy components were calculated for all monotonic 

and hardening cyclic loading tests, and the corresponding 𝐵𝐼 values were determined. The 

results are listed in Table 7.3. Fig. 7.10b shows the variation of BI values for these tests. As 

may be seen in this figure, the 𝐵𝐼 values of the specimens tested under hardening cyclic loading 

are almost similar to those obtained under the monotonic loading conditions. Therefore, it can 
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be stated that the pre-peak systematic cyclic loading, doesn’t have a notable influence on the 

post-peak instability of rocks if it does not lead to failure.  

 

 

Figure 7.9 Normalised axial stress-strain relations of hardening cyclic loading and monotonic 

tests 
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Figure 7.9 (Continued) 

 

 

Figure 7.10 a Strain energy components for monotonic loading and b brittleness index (𝐵𝐼) 

variation for monotonic loading and hardening cyclic loading tests 

0.0 0.5 1.0 1.5
0.0

0.5

1.0

A
x

ia
l 

st
re

ss
 r

at
io

, 
s

a
 /

s
a

-p
ea

k 

Axial strain ratio, ea /ea-peak 

GS-13

sa /sm=87.5%

0 30 60
0

30

60

Total fracture energy (Ut)

Elastic enregy at peak stress (Ue)

Post-peak dissipated energy (Upost)

A
x

ia
l 

st
re

ss
, 

s
a
 (

M
P

a)

Axial strain, ea (´10-4)

1/3sa-peak

sa-peak

E

E

(a)

Pre-peak dissipated energy (Upre)

+

G
S

-1

G
S

-2

G
S

-3

G
S

-4

G
S

-5

G
S

-6

G
S

-7

G
S

-8

G
S

-9

G
S

-1
0

G
S

-1
1

G
S

-1
2

G
S

-1
3

0.0

0.2

0.4

0.6

0.8

1.0
(b)

B
ri

tt
le

n
es

s 
in

d
ex

, 
B

I

Test number

Monotonic loading tests

Hardening cyclic loading tests



212 

 

Table 7.3 The values of strain energy components and 𝐵𝐼 for different tests 

Test type Test No. 𝑈𝑝𝑟𝑒 (MPa) 𝑈𝑒 (MPa) 𝑈𝑝𝑜𝑠𝑡 (MPa) 𝑈𝑡𝑜𝑡𝑎𝑙  (MPa) 𝐵𝐼 

Monotonic 

 

GS-1 0.021 0.087 0.096 0.117 0.74 

GS-2 0.023 0.091 0.086 0.109 0.84 

GS-3 0.020 0.084 0.088 0.108 0.77 

GS-4 0.021 0.081 0.082 0.103 0.78 

GS-5 0.021 0.095 0.086 0.107 0.88 

GS-6 0.019 0.082 0.086 0.105 0.78 

Hardening 

 

GS-7 0.015 0.067 0.078 0.092 0.73 

GS-8 0.017 0.074 0.078 0.094 0.79 

GS-9 0.010 0.073 0.064 0.074 0.98 

GS-10 0.013 0.075 0.079 0.091 0.82 

GS-11 0.008 0.069 0.078 0.085 0.80 

GS-12 0.008 0.071 0.071 0.079 0.90 

GS-13 0.013 0.077 0.082 0.096 0.81 

Fatigue  

 

GS-14 0.042 0.064 0.058 0.100 0.64 

GS-15 0.025 0.066 0.067 0.091 0.73 

GS-16 0.029 0.065 0.064 0.094 0.70 

GS-17 0.023 0.068 0.067 0.090 0.76 

GS-18 0.026 0.067 0.081 0.107 0.62 

GS-19 0.042 0.068 0.058 0.099 0.69 

GS-20 0.038 0.076 0.049 0.087 0.87 

GS-21 0.041 0.073 0.055 0.096 0.76 

GS-22 0.040 0.076 0.049 0.089 0.85 

GS-23 0.021 0.061 0.051 0.072 0.85 

7.5.3. Rock Strength Improvement  

In this study, as listed in Table 7.2, the strength hardening percentage varied between 0.05% to 

7.82% for the tested Gosford sandstone specimens. Figure 7.11a shows the variation of axial 

peak stress (𝜎𝑎−𝑝𝑒𝑎𝑘) for all monotonic and hardening cyclic loading tests. As demonstrated in 

this figure, in general, higher 𝜎𝑎−𝑝𝑒𝑎𝑘 values are recorded for the specimens which experienced 

a cyclic loading history (i.e. hardening tests), and about half of the hardening cyclic loading 

tests have 𝜎𝑎−𝑝𝑒𝑎𝑘 values greater than the upper limit of the monotonic tests. Fig. 7.11b shows 

the variation of the strength hardening ratio (𝜎ℎ/𝜎𝑚) against the applied stress level. According 

to this figure, the strength hardening seems to be independent of the applied stress level 

(𝜎𝑎/𝜎𝑚). As discussed in section 5.1, after an initial stiffness improvement of the specimens 
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for several cycles, a quasi-elastic behaviour dominated the damage evolution during the pre-

peak cyclic loading. This behaviour was accompanied by the progressive rock compaction (see 

Fig. 7.6) and strength improvement up to 8%.  It should be noted that rock strength 

improvement induced by cyclic loading also has been reported in several studies for porous 

Hawkesbury sandstone (up to 11%) (Taheri et al. 2016a, 2017), hard graywacke sandstone (up 

to 29%) (Singh 1989) and rock salt (up to 171%) (Ma et al. 2013). This shows that rocks 

depending on their intrinsic characteristics and the applied loading history and loading 

conditions, may show strength hardening behaviour at different extents. Taheri et al. (2017) 

argue that when the rock specimen is subjected to cyclic loading at a stress level lower than a 

threshold value, the weak bonding between the mesoscopic elements may be broken down, and 

the created fine materials, may fill up the internal voids, causing rock compaction and strength 

improvement. It should be mentioned that other potential mechanisms such as microcrack tip 

blunting and the interlocking of grains/asperities may involve in strength hardening. For 

instance, by considering the initial porosity of Gosford sandstone (i.e. 18%), due to the grain 

size reduction induced by cyclic loading during the quasi-elastic stage, some additional pore 

spaces might be generated within the specimens. When the cyclic loading-induced microcracks 

meet these pores, their tips may become blunt, resulting in a decrease in stress concentration at 

the crack tips and an increase in fracture toughness. This, on the other hand, may cause to 

stopping the microcrack propagation. This behaviour can also be accompanied by grain 

interlocking, closure of cracks, and finally, compaction of the specimens during cyclic loading. 

Further microscopic investigations will shed more light on cyclic loading induced hardening 

mechanism. 

 

G
S

-1

G
S

-2

G
S

-3

G
S

-4

G
S

-5

G
S

-6

G
S

-7

G
S

-8

G
S

-9

G
S

-1
0

G
S

-1
1

G
S

-1
2

G
S

-1
3

44

46

48

50

52

(a)

Average  
Hardening cyclic loading tests

Lower limit

Lower limit

Upper limit

A
x

ia
l 

p
ea

k
 s

tr
es

s,
 s

a
-p

ea
k 

(M
P

a)

Test number

Upper limit

Monotonic loading tests



214 

 

 

Figure 7.11 a The variation of axial peak stress for all monotonic and hardening cyclic 

loading tests and b strength hardening ratio vs. applied stress level for hardening cyclic 

loading tests 

7.6. Rock Behaviour During Fatigue Cyclic Loading Tests 

6.1. Evaluation of Post-Peak Behaviour  

As discussed in section 7.5.2, the systematic cyclic loading has no notable effect on the post-

peak behaviour of Gosford sandstone specimens if the cyclic stress level is below fatigue 

threshold stress. In this section, the influence of systematic cyclic loading beyond the fatigue 

threshold stress on the post-peak behaviour of Gosford sandstone specimens was evaluated. 

Figure 7.12 shows the normalised axial stress-strain curves for both monotonic tests and fatigue 

cyclic loading tests. The effect of cyclic loading history on the post-failure behaviour can be 

evaluated using the variation of rock brittleness index (𝐵𝐼) with the applied stress level. To do 

so, the envelope curve connecting the loci of the indicator stresses (𝜎𝑖) both in the pre-peak and 

the post-peak regimes were drawn, and the same procedure explained in section 7.5.2 was 

utilised to measure the overall brittleness index. Fig. 7.13a shows the extracted envelope curve 

for the typical test of GS-16. The strain energy components along with the 𝐵𝐼 values were 

determined for all fatigue cyclic loading tests, and the obtained values were tabulated in Table 

7.3. Figure 7.13b displays the variation of 𝐵𝐼 values with the applied stress level. From this 

figure, it can be observed that the overall rock brittleness increases with an increase in the 

applied stress level. This means that rock may fail in a more brittle manner when it experiences 

cyclic loading at the stress levels close to its monotonic strength. In other words, in deep 
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underground excavations, a cyclic loading history induced by seismic events that exceed the 

fatigue threshold stress may result in more violent failure causing casualties and financial loss. 

On the other hand, the weak seismic events which are applied at stress levels much lower than 

the rock monotonic strength do not seem critical to damage the structures. These seismic events 

may even, slightly improve long-term stability.  

 

 

 

Figure 7.12 Normalised axial stress-strain relations of fatigue cyclic loading and monotonic 

tests 
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Figure 7.12 (Continued) 

 
Figure 7.13 a Strain energy components for the fatigue cyclic loading tests and b variation of 

brittleness index with the applied stress level for the fatigue cyclic loading tests 
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Figure 7.13 (Continued) 

7.6.2. Damage Evolution in the Post-Peak Regime  
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during the pre-peak cyclic loading but follow an inverted S-shaped behaviour comprising three 
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2000; Xiao et al. 2009; Fuenkajorn and Phueakphum 2010). These three phases are manifested 

as loose-dense-loose behaviour in the stress-strain curves of systematic cyclic loading based 

on the variation of hysteretic loops (Fig. 7.14b). According to Zoback and Byerlee (1975), the 
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mechanism explained above. The loose behaviour at the end of the pre-peak systematic cyclic 

loading extends to the post-peak regime and then accelerates. In Fig. 7.14e and f the cumulative 

irreversible axial (∑𝜀𝑎
𝑖𝑟𝑟) and cumulative irreversible lateral strains (∑𝜀𝑙

𝑖𝑟𝑟) measured after full 

unloading of each loading cycle in the post-peak regime of specimen GS-23 are plotted against 

the axial stress ratio (𝜎𝑎/𝜎𝑎−𝑝𝑒𝑎𝑘). According to these figures, when the specimen loses its 

load-bearing capacity until 𝜎𝑎/𝜎𝑎−𝑝𝑒𝑎𝑘= 0.69, due to quick dissipation of strain energy, the 

cumulative irreversible strains increases rapidly, which provided the loose hysteretic loops. 

Then, interestingly, the hysteretic loops are closed and experience a dense behaviour for a large 

number of cycles in the post-peak regime until 𝜎𝑎/𝜎𝑎−𝑝𝑒𝑎𝑘= 0.38. Finally, by the creation of 

large axial and lateral deformations within the specimen, the cumulative irreversible strains 

increased dramatically until complete failure occurred. This, in turn, provided the final loose 

hysteretic loops. The observed loose-dense-loose behaviour in the post-peak regime for this 

specimen can be summarised as a secondary inverted S-shaped damage behaviour, as shown 

in Fig. 7.14g. Depending on the number of cycles that the specimens have experienced after 

failure point, similar damage evolution trends with different extents also were observed for 

other fatigue cyclic loading tests. According to Table 7.2 and as shown in Fig. 7.14h, it can be 

observed that with the increase of applied stress level (𝜎𝑎/𝜎𝑚), the number of cycles after 

failure point increases exponentially, which is consistent with the formation of the secondary 

three-stage inverted S-shaped behaviour in the post-peak regime. In other words, it can be 

found out that the damage per loading/unloading cycle in the post-peak regime of the fatigue 

cyclic loading tests decreases with the increase of the applied stress level.    

 

Figure 7.14 a, b Typical inverted S-shaped damage behaviours in the pre-peak regime 

(Modified from Guo et al. 2012), c, d the loose-dense-loose behaviour in the post-peak 
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regime of specimen GS-23, e, f the evolution of cumulative irreversible strains in the post-

peak regime for specimen GS-23, g the secondary inverted S-shaped damage behaviour in the 

post-peak regime for specimen GS-23 and h the number of cycles after failure point versus 

the applied stress level for the fatigue cyclic loading tests 

 

 

 

Figure 7.14 (Continued) 
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7.7. Conclusions  

In this study, a series of systematic cyclic loading tests were conducted on Gosford sandstone 

specimens using an innovative double-criteria damage-controlled testing method. A 

comprehensive evaluation was carried out on the experimental results in terms of damage 

evolution, post-peak instability and strength hardening behaviour. The following conclusions 

can be drawn: 

1. It was found that there exists a threshold of 𝜎𝑎/𝜎𝑚, which lies between 86-87.5%. For 

𝜎𝑎/𝜎𝑚 lower than this range, the specimens did not fail after experiencing a large 

number of cycles. The evaluation of the energy dissipation ratio, tangent Young’s 

modulus and AE hits for hardening cyclic loading tests showed that the rock specimens 

follow a two-stage damage evolution law dominated by a quasi-elastic behaviour in the 

pre-peak regime. This quasi-elastic behaviour can be attributed to a balance between 

two mechanisms of dilatant microcracking and rock compaction during cyclic loading 

below the fatigue threshold stress. Moreover, the damage evolution in the pre-peak 

regime of the hardening cyclic loading tests was found to be independent of the number 

of cycles, as no significant influence on damage and/or hardening behaviour was 

observed by increasing the cycle number from 1500 to 10000 cycles.  

2. A similar pre-peak and post-peak behaviour was observed for monotonic tests and 

hardening cyclic loading tests when they were compared as the normalised axial stress-

strain relations. Also, according to the variation of an energy-based brittleness index 

(𝐵𝐼), it was found that the pre-peak systematic cyclic loading has negligible influence 

on the post-failure instability, when the applied stress level is not high enough to fail 

the specimen during cyclic loading.  

3. For the specimens subjected to the systematic cyclic loading below the fatigue threshold 

stress, the peak strength increased up to 8% after applying the monotonic loading. This 

strength enhancement might be due to rock compaction and porosity reduction 

mechanism induced by cyclic loading. On the other hand, the fatigue failure was 

observed for the specimens cyclically loaded beyond the fatigue threshold stress. For 

such tests, a rapid accumulation of lateral and volumetric strains was observed in the 

pre-peak regime.  

4. For the systematic cyclic loading tests conducted beyond the fatigue threshold stress, it 

was observed that with the increase of the applied stress level, the rock specimens tend 

to behave as self-sustained in the post-failure stage. This was confirmed by the increase 
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of brittleness index (𝐵𝐼) with 𝜎𝑎/𝜎𝑚 for the fatigue cyclic loading tests. Therefore, 

rocks may behave in a more brittle/violent manner when the cyclic loading is applied 

at stress levels close to their monotonic strength.   

5. The evolution of hysteretic loops for fatigue cyclic loading tests showed that the rock 

specimens follow a loose-dense-loose behaviour in the pre-peak regime. However, the 

loose behaviour before the failure point is extended to the post-peak stage for several 

cycles. These loose hysteretic loops are followed by a dense behaviour for a large 

number of cycles until the complete failure of the specimen occurs, demonstrating 

another loose behaviour. This generally can be manifested as a secondary inverted non-

linear S-shaped damage behaviour when the cumulative axial and cumulative lateral 

irreversible strains are plotted against the post-peak cycle number. It was observed that 

damage per cycle decreases exponentially with the increase of the applied stress level, 

and the three phases of the inverted S-shaped damage behaviour become more visible 

in the post-peak regime.  
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Chapter 8 
 

Fatigue Failure Characteristics of Sandstone Under 

Different Confining Pressures 

Abstract  

Rock fatigue behaviour including the fatigue threshold stress (FTS), post-peak instability and 

strength weakening/hardening during cyclic loading, is of paramount significance in terms of 

safety and stability assessment of underground openings. In this study, the evolution of the 

foregoing parameters for Gosford sandstone subjected to systematic cyclic loading, in the pre-

peak and the post-peak regimes at different stress levels and under seven confinement levels 

(𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔) was evaluated comprehensively. The results showed that the FTS of rocks 

decreases exponentially from 97% to 80%, when 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 increases from 10% to 100%. 

The brittleness of rocks under monotonic and cyclic loading conditions increases with an 

increase in 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 when  𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔  ranging between 10-65% (known as the transition 

point). For higher confinements, however, the brittleness of rock transits from self-sustaining 

behaviour into ductile behaviour. The evolution of fatigue damage parameters for hardening 

tests showed that no critical damage happens within the specimens during cyclic loading; 

rather, they experience more compaction. This is while for weakening cyclic loading tests, 

continuous damage along with stiffness degradation was dominant. Furthermore, the variation 

of axial strain at failure point (𝜀𝑎𝑓) shows that for lower confinement levels, the applied stress 

level does not affect the pre-peak irreversible deformation; its effect, however, becomes 

significant when confining pressure is high. For the specimens that did not fail in cycles, cyclic 

loading resulted in peak strength weakening or hardening depending on the applied stress level. 

Weakening effect was observed in higher confining pressures, which was mainly due to a 

higher amount of irreversible deformation accumulation in rocks in the pre-peak cyclic loading. 

An empirical model was proposed using classification and regression tree (CART) algorithm 

to estimate the peak strength variation of Gosford sandstone based on 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 and the 

applied stress level.  

Keywords: Triaxial loading, Systematic cyclic loading, Confinement level, Brittleness, 

Fatigue threshold stress, Strength hardening/weakening  
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List of Symbols 

𝑀 Post-peak modulus 𝑞𝑚 Peak deviator stress 

𝐸 Pre-peak modulus 𝑞𝑟𝑒𝑠 Residual deviator stress 

𝑁 Number of cycles before failure  𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔 Deviator stress level 

𝑅 Strain gauge resistance 𝑞𝑓/𝑞𝑚−𝑎𝑣𝑔 Fatigue threshold stress 

𝑞 Deviator stress 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 Confinement level 

𝐵𝐼 Brittleness index 𝜀𝑎𝑓 Axial strain at failure  

𝐺𝐹 Strain gauge factor  𝜀𝑙𝑓 Lateral strain at failure  

∆𝑅 Change in resistance  𝜀𝑎
𝑖𝑟𝑟  Irreversible axial strain 

𝐴𝐸 Acoustic emission  𝑑𝜀𝑙/𝑑𝑡 Lateral strain rate 

𝐹𝑇𝑆 Fatigue threshold stress 𝑑𝜀𝑎/𝑑𝑡 Axial strain rate 

𝐶𝐴𝑅𝑇 Classification and regression tree 𝑑𝑈𝑟  Shear rupture energy 

𝑉𝑜 Output voltage 𝑑𝑈𝑒 Withdrawn elastic energy 

𝑉𝑒𝑥 Excitation voltage 𝑑𝑈𝑒𝑟 Residual elastic energy 

𝜀 Mechanical strain 𝑑𝑈𝑎 Additional energy 

𝐸𝑡𝑎𝑛 Tangent Young’s modulus 𝜔𝑎
𝑖𝑟𝑟 Cumulative irreversible axial strain 

𝑈𝐶𝑆 Uniaxial compressive strength ∆𝜀𝑎
𝑖𝑟𝑟 Differential irreversible axial strain 

𝑈𝑒 Total elastic energy 𝜎1 Major principal stress 

𝐴𝑚𝑝. (𝜀𝑙) Lateral strain amplitude 𝜎3 Confining pressure  

8.1. Introduction  

Depending on the depth, the geometry of the structures and the human- and/or environmental-

induced seismic activities, rock masses in underground mining and geotechnical projects are 

usually subjected to a complex stress state, which may result in continuous damage and failure 

at different extents (Yang et al. 2017; Wang et al. 2021). Systematic cyclic loading induced by 

the rock breakage operation, mechanical excavation, and truck haulage vibrations is a common 

dynamic disturbance in underground openings that complicate the deformation and failure 

characteristics of rocks. Rock materials under such loading conditions are more prone to severe 

failure phenomena such as strain bursting and large-scale collapses (Bagde and Petroš 2005; 

Munoz and Taheri 2019, Shirani Faradonbeh et al. 2021a; Meng et al. 2021). Therefore, there 

is a remarkable theoretical significance and engineering value to deeply understand the cyclic 

loading effect on the damage mechanism and, more importantly, the post-failure behaviour of 

rocks in terms of safety and long-term stability of the excavations. During the last decades, 
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different researchers have made many attempts to unveil the rock fatigue mechanism under 

different loading conditions using laboratory experiments (Cerfontaine and Collin 2018). In 

other words, the damage evolution mechanism in rocks can be characterised more efficiently 

using cyclic loading tests as it is straightforward to distinguish the elastic and plastic strains 

during each loading and unloading cycle (Zhou et al. 2019; Tian et al. 2021). According to the 

holistic classification proposed by Shirani Faradonbeh et al. (2021a), rock fatigue studies can 

be classified into two main groups of systematic cyclic loading tests and damage-controlled 

cyclic loading tests. Each of these groups can be performed either under load-controlled or 

displacement-controlled loading conditions. These loading techniques and their limitations 

have been discussed in more detail by Shirani Faradonbeh et al. (2021a).  

Generally, the rock fatigue studies can be discussed from two viewpoints: the pre-peak and 

post-peak domain analysis. From the viewpoint of the pre-peak-domain analysis, the literature 

review shows that cyclic loading depending on loading methods, loading conditions and 

intrinsic rock properties (e.g. porosity and mineral compositions) can either degrade (Wang et 

al. 2013; Erarslan et al. 2014; Yang et al. 2015; Taheri et al. 2016a) or improve (Burdine 1963; 

Singh 1989; Ma et al. 2013; Shirani Faradonbeh et al. 2021b) the peak strength of rocks. For 

instance, Ma et al. (2013) reported a 171.1% increase in triaxial compressive strength of rock 

salt subjected to systematic cyclic loading. Similarly, Taheri et al. (2016b) observed an 11% 

peak strength improvement for the porous Hawkesbury sandstone, and they also pointed out 

that rock strength increases respectively with applied stress level and the number of cycles 

before failure following linear and exponential functions. On the other hand, most of the fatigue 

cyclic loading studies have reported peak strength and stiffness degradation due to the 

accumulation of permanent deformations within the rock specimens following a non-linear S-

shaped damage model (e.g. Xiao et al. 2009). Fatigue threshold stress (FTS = 𝑞𝑓/𝑞𝑚−𝑎𝑣𝑔), the 

maximum stress level at which rock specimen does not fail during cyclic loading under a 

constant amplitude, is a significant parameter for long-term stability assessment of 

underground openings subjected to seismic disturbances. In other words, rock materials never 

fail (after a few thousand cycles) if the cyclic loading is applied equal or below this threshold. 

According to Cerfontaine and Collin (2018), different values of FTS can be obtained depending 

on the tested material. However, FTS is also dependent on other factors, such as loading 

conditions and confining pressure (Burdine 1963). Therefore, more investigations are needed 

to unveil the effect of confining pressure on fatigue threshold stress. 



230 

 

From the viewpoint of the post-peak domain, due to difficulties in capturing the complete 

stress-strain relations of rocks under cyclic loading, especially for brittle rocks which show a 

class II post-peak behaviour (Wawersik and Fairhurst 1970), very few studies have investigated 

the influence of the pre-peak cyclic loading on post-failure behaviour. In most prior studies, 

the damage-controlled cyclic loading tests (with the incremental loading amplitude) have been 

used under axial displacement-controlled loading conditions to evaluate the post-peak 

behaviour (e.g. Yang et al. 2015, 2017; Zhou et al. 2019; Meng et al. 2021). These studies, 

however, were not sufficient to adequately measure the post-peak response of rocks. This is 

because, during each loading cycle, the axial load is reversed when a certain amount of 

displacement is achieved, and after the failure point, since most of the rocks show class II or a 

combination of class I and class II behaviours, rock failure occurs in an uncontrolled manner.  

However, Munoz and Taheri (2017) showed that lateral displacement control throughout the 

test is a promising technique in studying the failure behaviour of rocks subjected to the post-

peak cyclic loading. Recently, Shirani Faradonbeh et al. (2021a and b) developed a novel 

testing methodology based on the lateral strain feedback signal to measure the complete pre-

peak and post-peak behaviour of rocks under uniaxial systematic cyclic loading.  

Although many studies have been undertaken by different researchers on the evolution of rock 

fatigue damage and deformability parameters under different loading histories and loading 

conditions, no significant progress has been made regarding the effect of systematic cyclic 

loading on the cyclic loading-induced strength hardening, fatigue threshold stress and the post-

peak instability of rocks under different confining pressures. This is while in underground rock 

engineering projects, rock materials are usually subjected to triaxial loading conditions with 

different levels of confinement accompanied by the systematic cyclic loading induced by 

different dynamic sources. Therefore, having in-depth knowledge concerning the foregoing 

parameters plays a critical role in stability assessment and reinforcement design. This study, 

for the first time, investigates the effect of systematic cyclic loading history on pre-peak and 

post-peak characteristics of rocks under different confinement levels. Some empirical 

equations are then proposed to manifest the evolution of peak strength, fatigue threshold stress 

and rock brittleness parameters. The obtained results are expected to provide a better 

understanding of the mechanical response of rocks to systematic cyclic loading under various 

confining pressures. 
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8.2. Experimental Profile  

8.2.1. Gosford Sandstone  

In this study, Gosford sandstone (Fig. 8.1a) extracted from the massive Triassic Hawkesbury 

sandstone of the Sydney Basin, New South Wales, Australia, was chosen as the testing material 

(Ord et al. 1991; Masoumi et al. 2017). X-ray powder diffraction (XRD) analysis of this 

medium-grained (0.2-0.3 mm) sandstone revealed that quartz (86%) is the dominant mineral 

and illite (7%), kaolinite (6%) and anatase (1%) are other forming mineral composition. Fig. 

8.1b displays the SEM analysis result of this sandstone. Sufian and Russell (2013) reported that 

Gosford sandstone has a total porosity of about 18%, and the density distribution of the pre-

existing micro-cracks within its matrix is homogenous. This type of sandstone is usually known 

as a uniform or very uniform sandstone (Hoskins 1969; Vaneghi et al. 2018). Cylindrical 

specimens (Fig. 8.1a) having 42 mm diameter and 100 mm length were extracted from a single 

rock block and prepared following the ISRM recommended standards (Fairhurst and Hudson 

1999). The specimens were air-dried before conducting the static and cyclic loading tests, and 

the average dry density of this rock type was approximately about 2.215 g/cm3. 
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0
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Figure 8.1 Gosford sandstone used in this study: a prepared specimens and b SEM 

photograph 

8.2.2. Testing Equipment 

A fully digital closed-loop servo-controlled hydraulic compressive machine, i.e. Instron-1282 

with the maximum loading capacity of 1000 kN, was employed to conduct the triaxial 

monotonic and cyclic loading tests. The testing machine can be programmed and equipped to 

perform different loading schemes using either the load-controlled or displacement-controlled 

loading techniques. As shown in Fig. 8.2a, a Hoek cell with a maximum capacity of 65 MPa 

was used to apply confining pressure. Also, a pair of LVDTs were installed between the loading 

platens to measure the axial displacement of the specimens during loading. Strain gauges are 

commonly used to measure the axial and/or lateral deformations of rocks in triaxial conditions. 

However, the strain gauges are only effective for local small-strain measurement, and they 

usually break after the peak stress when the specimen experiences large deformations (Munoz 

et al. 2016a; Bruning et al. 2018). A modified test arrangement is made to overcome this 

problem; four strain gauges were attached immediately alongside one another around the centre 

line of the Hoek cell membrane, as displayed in Fig. 8.2b. Then, the strain gauges were 

connected to form a Wheatstone bridge (half-bridge circuit). Any deformation in specimen 

changes the resistance and, therefore, facilitates a unique output voltage (𝑉𝑜) as a lateral strain 

feedback signal. In the Wheatstone bridge shown in Fig. 8.2b, 𝑅1 and 𝑅3 represent the total 

resistance values provided by the pairs of strain gauges (each gauge has 120Ω resistance) which 

are connected in series. To balance the bridge and achieve zero voltage when the specimen is 

unstrained, two 240 Ω precision resistors (i.e. 𝑅2 and 𝑅4) were used in this circuit. The feedback 

signal, indeed, is the average of the lateral strain (𝜀𝑙) values measured by the strain gauges, 

which is calculated as follows: 

𝑉𝑜 =
𝑉𝑒𝑥

4
(
∆𝑅1

𝑅1
+
∆𝑅3

𝑅3
) =
𝑉𝑒𝑥

4
. 𝐺𝐹. (𝜀1 + 𝜀3)                (8.1) 

GF = 
∆𝑅/𝑅 

𝜀
                    (8.2) 

where 𝑅 is the resistance of the undeformed strain gauge, ∆𝑅 is the change in resistance caused 

by strain, 𝜀 is the mechanical strain, 𝐺𝐹 is the strain gauge factor and 𝑉𝑒𝑥 is the bridge excitation 

voltage.         
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Through a high-pressure wire and a feed-through connector fitted to the Hoek cell, the feedback 

signal is sent to the control unit of the testing machine to adjust the loading rate. By doing so, 

the membrane gauges are protected from damage during loading, and finally, the complete 

lateral deformation of rocks can be recorded in both pre-peak and post-peak regimes. 

Moreover, two miniature AE sensors (type PICO, from the American Physical Acoustics 

Corp.) were attached to the spherical seats, which have a direct connection to the specimen in 

the Hoek cell, to record the microcracking process during loading. The pre-amplifier was set 

to 60 dB of gain (Type 2/4/6) to amplify the acoustic emission (AE) signals during loading. To 

ensure that mechanical noises induced by the loading system are not recorded during the tests, 

the AE threshold amplitude was changed from 20 dB to 60 dB, and it was found that after 40 

dB amplitude, no additional noises are recorded. Therefore, this value was set as the AE 

threshold. The axial load, axial and lateral displacements, and the AE outputs were recorded 

simultaneously by running the tests.    

 

Figure 8.2 Experimental set-up, a overview of the experiment and b strain gauged membrane 
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Figure 8.2 (Continued) 

8.3. Test Scheme and Conditions 

8.3.1. Uniaxial and Triaxial Monotonic Loading Tests  

Before conducting the triaxial monotonic and cyclic loading tests at different confining 

pressures, the uniaxial compressive strength (𝑈𝐶𝑆) of Gosford sandstone should be 

determined. Shirani Faradonbeh et al. (2021b) performed a series of uniaxial monotonic tests 

on this rock type under a constant lateral strain rate (𝑑𝜀𝑙/𝑑𝑡) of 2×10-6/s. In their study, the 

axial strain was measured using a pair of external LVDTs, and the lateral strain feedback signal 

was measured using a direct-contact chain extensometer. Fig. 8.3a shows the normalised stress-

strain relations of the performed uniaxial monotonic tests. As it is shown in this figure, the rock 

specimens are quite uniform and demonstrate almost similar pre-peak and post-peak stress-

strain relations. Gosford sandstone has an average uniaxial peak strength (𝑈𝐶𝑆𝑎𝑣𝑔) and tangent 

Young’s modulus (𝐸𝑡𝑎𝑛−𝑎𝑣𝑔) values of 48.15 MPa and 13.4 GPa, respectively.  

Based on the determined 𝑈𝐶𝑆𝑎𝑣𝑔, seven different confinement levels, i.e. 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 10%, 

20%, 35%, 50%, 65%, 80% and 100%, were adopted for triaxial monotonic and cyclic 

compression tests. For each confinement level, three triaxial monotonic tests were carried out. 
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The tests were conducted in a way that the axial load and confining pressure were applied 

simultaneously to the rock specimen under a constant axial strain rate of 𝑑𝜀𝑎/𝑑𝑡= 0.03 mm/min 

until the desired confining pressure level is achieved. Thereafter, the confining pressure and 

axial load were kept constant for five minutes to ensure the stress was distributed uniformly 

(pre-consolidation stage). Then, while the confining pressure was maintained constant, the 

deviator stress (i.e. 𝑞 = 𝜎1 − 𝜎3) was applied under a constant lateral strain rate (𝑑𝜀𝑙/𝑑𝑡) of 

2×10-6/s until the complete failure occurs. The lateral strain rate was adjusted during the test 

based on the feedback signal received from the four strain gauges mounted on the Hoek cell 

membrane. Fig. 8.3b shows a typical time history of stress and strains during a triaxial 

compression test at 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔=10%. Table 8.1 presents a summary of results for all conducted 

triaxial monotonic tests. Fig 3c, shows the representative stress-strain relations for the triaxial 

monotonic tests. According to Table 8.1 and Fig. 8.3c, the increase in 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔, affected 

both the pre-peak and the post-peak characteristics of rocks. Generally, with an increase in 

confining pressure, the axial strain at the failure point (𝜀𝑎𝑓) increases. Also, as shown in Fig. 

8.3d, the average peak deviator stress (𝑞𝑚−𝑎𝑣𝑔) of Gosford sandstone increased by confining 

pressure following a quadratic trend. Section 5 discusses the triaxial compression test results 

in more detail.   

 

Figure 8.3 a Normalised stress-strain relations for uniaxial monotonic tests, modified from 

Shirani Faradonbeh et al. (2021b), b typical time-history of stress and strains for a triaxial 

monotonic test at 10% confinement level, c representative stress-strain relations for triaxial 

monotonic tests at different confinement levels and d the variation of peak deviator stress 

with confinement level 
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Figure 8.3 (Continued) 
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Table 8.1 Summary results of triaxial monotonic loading tests 

Test ID 𝜎3  

(MPa) 

𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 

(%) 

𝑞𝑚  

(MPa) 

𝑞𝑟𝑒𝑠  

(MPa) 

Strains at the failure point 𝐸𝑡𝑎𝑛  

(GPa) 𝜀𝑎𝑓 

(×10-4) 

𝜀𝑙𝑓 

(×10-4) 

GS-M-1 4.82 10 74.36 27.17 82.04 -18.39 13.00 

GS-M-2 4.82 10 74.60 24.53 84.32 -18.03 12.50 

GS-M-3 4.82 10 72.21 24.25 82.17 -14.59 12.50 

Average 4.82 10 73.72 25.32 82.84 -17.00 12.67 

GS-M-4 9.63 20 110.32 38.85 86.35 -12.05 16.31 

GS-M-5 9.63 20 109.94 40.20 89.80 -17.27 16.04 

GS-M-6 9.63 20 108.80 42.46 86.62 -22.63 16.50 

Average 9.63 20 109.69 40.50 87.59 -17.32 16.28 

GS-M-7 16.85 35 137.83 57.70 99.09 -21.47 17.64 

GS-M-8 16.85 35 129.91 60.42 91.77 -14.81 17.33 

GS-M-9 16.85 35 130.35 60.45 90.30 -14.65 17.32 

Average 16.85 35 132.69 59.52 93.72 -16.97 17.43 

GS-M-10 24.08 50 159.89 79.74 110.94 -21.55 18.17 

GS-M-11 24.08 50 161.47 87.64 112.21 -23.95 18.38 

GS-M-12 24.08 50 158.19 89.62 111.71 -23.74 18.12 

Average 24.08 50 159.85 85.66 111.62 -23.08 18.22 

GS-M-13 31.30 65 175.34 103.49 119.97 -21.90 18.54 

GS-M-14 31.30 65 175.89 103.66 1119.92 -19.95 18.68 

GS-M-15 31.30 65 176.48 97.20 120.45 -21.59 18.68 

Average 31.30 65 175.90 101.45 120.11 -21.15 18.64 

GS-M-16 38.52 80 194.86 154.25 151.33 -29.06 16.66 

GS-M-17 38.52 80 195.18 156.92 152.66 -28.52 16.41 

GS-M-18 38.52 80 191.43 154.25 145.43 -27.13 16.37 

Average 38.52 80 193.82 155.14 149.81 -28.24 16.48 

GS-M-19 48.15 100 210.95 173.48 159.04 -24.36 16.69 

GS-M-20 48.15 100 210.63 170.77 161.17 -26.19 16.83 

GS-M-21 48.15 100 209.99 164.18 158.52 -23.82 16.76 

Average 48.15 100 210.52 169.48 159.58 -24.79 16.76 

𝑞𝑚: peak deviator stress, 𝑞𝑟𝑒𝑠: residual deviator stress, 𝜀𝑎𝑓: axial strain at failure, 

𝜀𝑙𝑓: lateral strain at failure and 𝐸𝑡𝑎𝑛: tangent Young’s modulus.  

8.3.2. Triaxial Cyclic Loading Tests 

To evaluate the influence of confining pressure and systematic cyclic loading history on the 

mechanical rock behaviour, including the fatigue threshold stress, post-peak behaviour, and 

peak strength, a series of systematic cyclic loading tests were performed at different deviator 

stress levels (𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔). For this aim, the testing machine was programmed to perform the 

cyclic tests automatically and continuously. Fig. 8.4, schematically, shows the testing 

procedure for a triaxial cyclic loading test with a final monotonic loading. Similar to monotonic 

loading tests, the axial load and confining pressure were initially applied to the specimen under 
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a constant axial strain rate of 0.03 mm/min until the pre-defined confinement level was reached. 

Then, the axial load and confining pressure were kept constant for five minutes to pre-

consolidate the specimen. Afterwards, the deviator stress was increased under a constant lateral 

strain rate of 2×10-6/s to reach a specific deviator stress level while 𝜎3 remained constant. The 

deviator stress was then reversed completely, and systematic cyclic loading was commenced 

under a higher lateral strain rate of 𝑑𝜀𝑙/𝑑𝑡= 150×10-6/s. During the cyclic loading, the axial 

load did not exceed the prescribed stress level, and confining pressure was always constant. 

The rock specimens were let to experience a maximum of 1000 loading and unloading cycles. 

Should the specimen did not fail during 1000 cycles, it was then subjected to a final monotonic 

loading at a constant rate of 𝑑𝜀𝑙/𝑑𝑡= 2×10-6/s until complete failure occurred. By doing so, the 

post-peak stress-strain behaviour of rocks was obtained in a controlled manner. Table 8.2 

summarises all the loading scenarios and the obtained results for the performed triaxial cyclic 

loading tests in this study. Figs. 8.5 and 8.6 show the representative stress-strain results of the 

specimens that experienced final monotonic loading and failure during cyclic loading, 

respectively. The stress-strain relations of other cyclic loading tests can be found in “Appendix 

A”.  

 
Figure 8.4 Schematic time-history of deviator stress and lateral strain for triaxial cyclic 

loading tests 
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Figure 8.5 Typical stress-strain results for the tests which did not fail during cyclic loading 

(test GS-C-13) 
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Figure 8.6 Typical stress-strain results for the tests which failed during cyclic loading (test 

GS-C-19) 
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Table 8.2 Summary results of triaxial cyclic loading tests 

Test ID 𝜎3 
(MPa) 

𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 

(%) 

𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔 

(%) 

𝑁 Failed in 

cycle?  

(Yes/No) 

𝜀𝑎𝑓 

(×10-4) 

𝑞𝑟𝑒𝑠/𝑞𝑚−𝑎𝑣𝑔 

(%) 

Peak strength 

variation 

(%) 

GS-C-1 4.82 10 80 1000 N 80.60 37 1.47 

GS-C-2 4.82 10 85 1000 N 78.86 40 3.66 

GS-C-3 4.82 10 87.50 1000 N 82.52 36 3.61 

GS-C-4 4.82 10 90 1000 N 84.74 36 3.89 

GS-C-5 4.82 10 92.50 1000 N 86.95 44 2.21 

GS-C-6 4.82 10 95 1000 N 84.60 52 5.38 

GS-C-7 4.82 10 97 1000 N 87.29 47 3.62 

GS-C-8 4.82 10 97.5 48 Y 88.77 38 - 

Average 4.82 10 - - - 84.29 41 3.40 

GS-C-9 9.63 20 80 1000 N 82.18 41 2.33 

GS-C-10 9.63 20 85 1000 N 85.51 36 3.94 

GS-C-11 9.63 20 87.50 1000 N 85.92 39 1.66 

GS-C-12 9.63 20 90 1000 N 86.50 35 3.03 

GS-C-13 9.63 20 92.5 1000 N 86.67 36 4.06 

GS-C-14 9.63 20 95 671 Y 90.30 40 - 

Average 9.63 20 - - - 86.19 38 3.00 

GS-C-15 16.85 35 80 1000 N 99.71 54 4.38 

GS-C-16 16.85 35 85 1000 N 103.30 55 7.19 

GS-C-17 16.85 35 87.50 1000 N 104.21 51 3.65 

GS-C-18 16.85 35 90 1000 N 100.83 47 6.66 

GS-C-19 16.85 35 92.50 428 Y 105.29 48 - 

Average 16.85 35 - - - 102.67 51 5.47 

GS-C-20 24.08 50 80 1000 N 110.55 53 0.00 

GS-C-21 24.08 50 85 1000 N 114.20 51 0.75 

GS-C-22 24.08 50 86.25 262 Y 127.86 63 - 

GS-C-23 24.08 50 87.5 346 Y 130.10 53 - 

Average 24.08 50 - - - 120.68 55 0.38 

GS-C-24 31.30 65 80 1000 N 119.99 63 1.86 

GS-C-25 31.30 65 82.5 1000 N 120.59 60 1.11 

GS-C-26 31.30 65 83.75 1000 N 123.57 63 1.64 

GS-C-27 31.30 65 85 526 Y 141.05 59 - 

Average 31.30 65 - - - 126.30 61 1.54 

GS-C-28 38.52 80 80 1000 N 158.48 79 1.21 

GS-C-29 38.52 80 82.50 1000 N 379.83 79 -13.18 

GS-C-30 38.52 80 85 405 Y 217.693 78 - 

Average 38.52 80 - - - 252.00 79 -5.99 

GS-C-31 48.15 100 77.5 1000 N 187.97 84 -6.67 

GS-C-32 48.15 100 80 1000 N 168.59 81 -3.96 

GS-C-33 48.15 100 82.5 103 Y 580.75 82 - 

GS-C-34 48.15 100 85 196 Y 431.43 82 - 

Average 48.15 100 - - - 342.19 82 -5.32 

𝑁: number of cycles before failure. 
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8.4. Confining Pressure Effect on Fatigue Threshold Stress 

As mentioned earlier, fatigue threshold stress (FTS) is a critical parameter, that can be used as 

an effective compressive strength of the intact rock subjected to static, dynamic and cyclic 

loads. Depending on the rock type, testing method and loading history, various range of values 

for FTS were reported by different researchers. Table 8.3 reviews these studies and lists the 

used materials and testing methods along with the determined FTSs. Table 8.3 shows that most 

of the existing studies have been conducted in uniaxial loading condition. Taheri et al. (2016b) 

performed the systematic cyclic loading tests on Hawkesbury sandstone under a single 

confining pressure of 𝜎3= 4 MPa. In an earlier study, Burdine (1963) performed a series of 

triaxial dynamic loading tests under three confining pressures (i.e. 𝜎3= 0.21 MPa, 1.38 MPa 

and 5.17 MPa) on Berea sandstone. The study showed that with an increase in confining 

pressure from 0 to 5.17 MPa, the fatigue threshold stress increases from 74% to 93% of the 

monotonic strength.  

In the current study, a more comprehensive range of confining pressure was considered to 

evaluate the variation of FTS under systematic cyclic loading for Gosford sandstone. 

According to Table 8.2, for each confinement level, a fatigue threshold stress (𝑞𝑓/𝑞𝑚−𝑎𝑣𝑔) can 

be derived. Fig. 8.7 plots the variation of the determined FTS values against the confinement 

level. As can be seen in this figure, with an increase in 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 from 10% to 100%, 

𝑞𝑓/𝑞𝑚−𝑎𝑣𝑔 decreases constantly, which shows the weakening/negative influence of confining 

pressure on the fatigue life of the rock under cyclic loading. These results, show that in 

underground projects, with the increase of depth, rock materials may fail at a stress level lower 

than the determined monotonic strength. The behavioural trend observed for FTS in this study 

is in contrast to that reported by Burdine (1963). According to Fig. 8.7, the FTS can be 

predicted using the following logarithmic function with high accuracy:   

𝐹𝑇𝑆 =
𝑞𝑓

𝑞𝑚−𝑎𝑣𝑔
= −0.074𝐿𝑛 (

𝜎3

𝑈𝐶𝑆𝑎𝑣𝑔
) + 0.806     ; 𝑅2 = 0.982             (8.3) 

Also, based on the proposed Eq. 3, a binary condition can be defined to classify the failure 

status of the rock specimens, i.e. occurrence (1) or non-occurrence (0), under a specific stress 

level and confining pressure as follows: 

Failure status= {
1      𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔 > 𝐹𝑇𝑆

0     𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔 ≤ 𝐹𝑇𝑆
                 (8.4) 



243 

 

Table 8.3 Summary of studies reporting the fatigue threshold stress values 

Reference Testing 

material 

Test type  Confining pressure, 

𝜎3 (MPa) 

Fatigue threshold 

stress, 𝑞𝑓/𝑞𝑚−𝑎𝑣𝑔 

(%) 

Grover et al. (1950) Limestone Uniaxial  - 65 

Burdine (1963) Sandstone Uniaxial 

Triaxial  

 

0.21 

1.38 

5.17 

74 

76 

87 

93 

Haimson and Kim (1971) Marble Uniaxial  - 75 

Rajaram (1981) Granite Uniaxial  - 70 

Singh (1989) Sandstone Uniaxial  - 87 

Yamashita et al. (1999) Tuff 

Sandstone 

Marble 

Granite  

Uniaxial  

 

- 60 

75 

80 

80 

Åkesson et al. (2004) Granite Uniaxial   - 60 

Guo et al. (2012) Salt Uniaxial - 75 

Erarslan and Williams (2012) Tuff Brazilian  - 70 

Erarslan et al. (2014b) Tuff Brazilian  - 68 

Nejati and Ghazvinian (2014) Marble 

Sandstone 

Limestone 

Brazilian - 60 

70 

80 

Taheri et al. (2016b) Sandstone  Triaxial  4 93.7 

Jamali Zavareh et al. (2017) Gabbro 

Onyx 

Limestone 

Bending - 53 

60 

46 

Shirani Faradonbeh et al. (2021b) Sandstone Uniaxial - 87.5 

 
Figure 8.7 Variation of fatigue threshold stress with confinement level 
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8.5. Confining Pressure Effect on Post-Peak Instability  

As mentioned earlier, the post-peak instability of rocks can be characterised as class I and class 

II, representing the stable and unstable rock fracturing process under a specific loading history, 

respectively. Brittleness is an appropriate intact rock property that can be employed to quantify 

the post-peak instability. Many rock brittleness indices can be found in the literature (Meng et 

al. 2020). However, as the evolution of strain energy accompanies the process of rock 

deformation and failure, the energy balance-based indices can better reflect the post-peak 

instability and the potential of severe failures (Li et al. 2019). Therefore, in this study, the 

following strain energy-based brittleness indices (𝐵𝐼s) proposed by Tarasov and Potvin (2013) 

were used to evaluate the post-peak instability of rocks: 

𝐵𝐼1 =
𝑑𝑈𝑟

𝑑𝑈𝑒
=
𝑀−𝐸

𝑀
                   (8.5) 

𝐵𝐼2 =
𝑑𝑈𝑎

𝑑𝑈𝑒
=
𝐸

𝑀
                   (8.6) 

{
 
 

 
 𝑑𝑈𝑒 =

𝑞𝐵
2−𝑞𝐴
2

2𝐸
        

𝑑𝑈𝑎 =
𝑞𝐵
2−𝑞𝐴
2

2𝑀
        

𝑑𝑈𝑟 = 𝑑𝑈𝑒 − 𝑑𝑈𝑎

                   (8.7) 

where 𝑑𝑈𝑒, 𝑑𝑈𝑎 and 𝑑𝑈𝑟 are, respectively, the withdrawn elastic energy, the additional/excess 

energy and the shear rupture energy in the post-peak regime (see Fig. 8.8). The 𝑞𝐴 and 𝑞𝐵 are 

the deviator stresses corresponding to points A and B, respectively, and 𝐸 and 𝑀 are, 

respectively, the pre-peak and the post-peak modulus.   

To evaluate the effect of both confining pressure and loading history on rock brittleness, 𝐵𝐼1 

and 𝐵𝐼2 were calculated for all monotonic and the cyclic loading tests (the tests that 

experienced the final monotonic loading). The evolution of the average 𝐵𝐼 values was plotted 

against 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 in Fig. 8.9.  Shirani Faradonbeh et al. (2021b) performed a series of uniaxial 

systematic cyclic loading tests on Gosford sandstone at different stress levels and found that 

below the fatigue threshold stress, the rock brittleness values are similar to those obtained in 

monotonic loading conditions. In this study, the 𝐵𝐼 values were calculated again for all uniaxial 

monotonic and cyclic loading tests using Eqs. 8.5 and 8.6. According to Fig. 8.9, similar 𝐵𝐼 

values were obtained for these two types of tests in uniaxial conditions. Also, as can be seen in 

Fig. 8.9, with an increase in 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 from 0% to 65%, the rock brittleness for both 

monotonic and cyclic loading tests changed similarly from an almost transitional state (i.e. 
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𝐵𝐼1 ≈ 1 and 𝐵𝐼2 ≈ 0) to more class II/brittle behaviour. By increasing the confining pressure 

to a certain amount (i.e. 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔=50%), the maximum rock brittleness was achieved, and 

then, the 𝐵𝐼 values showed a decremental trend. A drastic drop in 𝐵𝐼 was observed for 

𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 > 65%, specifically for cyclic loading tests, where the rock specimens transferred 

from the class II region (green area) to the class I region (yellow area). Indeed, there is more 

opposition against the self-sustaining failure at high confinement levels, and more energy 

should be added axially by the loading system to yield the specimen completely. Therefore, a 

transition point at 65% confinement level can be estimated for Gosford sandstone, as the rock 

specimens transfer from a brittle to ductile failure behaviour. The evolutionary trend observed 

in Fig. 8.9 is also consistent with the stress-strain curves of rocks shown in Fig. 8.3c.  

Similar unconventional trends for 𝐵𝐼 also have been reported in a few studies, (i.e. Tarasov 

and Potvin 2013 and Ai et al. 2016), for stronger rocks such as quartzite and black shale. 

According to these studies, the increase in brittleness of rocks with confining pressure can be 

attributed to the energy-efficient fan-head mode shear failure. Indeed, during Class II failure 

behaviour, a domino structure of blocks is created by tensile cracks along the future failure 

plane. Due to the fracture propagation, these blocks are rotated without collapse behaving as 

hinges and create a fan-shaped structure in the fracture tip. This, in turn, provides an active 

force (negative shear resistance) that is beneficial for maintaining the crack propagation and is 

responsible for the self-sustaining failure behaviour of rocks. Therefore, the increase in 

confining pressure for these rock types seems to provide a higher amount of active forces and 

consequently increases rock brittleness. By considering the decremental trend of fatigue 

threshold stress with confinement level, discussed in the previous section, as well as the 

incremental trend of rock brittleness with confinement for a specific extent, it can be inferred 

that with an increase in depth in rock engineering projects, the propensity of rock structures to 

violent/brittle failures such as strain bursting at stress levels lower than the determined average 

peak strength can be aggravated. The brittleness reduction at high confinement levels can be 

attributed to the more plastic deformation accumulation induced by the loading and unloading 

cycles within the specimens, which result in more energy dissipation in the pre-peak regime. 

This, in turn, provides less amount of elastic strain energy (the source for self-sustaining 

behaviour) at the failure point, leading to more ductile post-peak behaviour. This behaviour is 

more evident for cyclic loading tests than monotonic ones due to the more weakening effect of 

loading and unloading cycles at higher confinement levels. The damage evolution of rocks 

under different confinement levels is evaluated in more detail in section 8.6. 
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Figure 8.8 Change in brittleness degree of 𝐵𝐼1 and 𝐵𝐼2 with the stress-strain relations and 

energy evolution, modified from Tarasov and Potvin (2013) 

 

Figure 8.9 Variation of the average BI values with confining pressure for Gosford sandstone 
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8.6. Confining Pressure Effect on Fatigue Damage Evolution  

8.6.1. Hardening and Weakening Cyclic Loading Tests  

Rock specimens usually experience deformation under external forces, and a part of this 

deformation can be recovered by withdrawing the applied force, representing elastic 

characteristics. However, owing to intrinsic material properties, e.g., porosity and microcracks, 

and loading-induced damage, the complete deformation recovery after unloading is not 

possible. Therefore, a certain amount of irreversible/plastic deformation is retained in the 

specimens (Taheri and Tatsuoka, 2015; Peng et al. 2019). The irreversible strain is accumulated 

incrementally by applying more cycles, which is accompanied by rock stiffness degradation. 

Cumulative strain can be utilised to manifest the non-visible damage incurred in the specimen 

during the systematic cyclic loading tests (Taheri et al. 2016b). According to Table 8.2, for the 

specimens that did not fail during 1000 loading and unloading cycles, two types of tests can be 

distinguished based on peak strength variation: strength weakening tests (i.e., final monotonic 

loading strength is less than 𝑈𝐶𝑆𝑎𝑣𝑔) and strength hardening tests (i.e., final monotonic loading 

strength is more than 𝑈𝐶𝑆𝑎𝑣𝑔). As seen in Table 8.2, the strength weakening is evident for the 

tests undertaken under 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 ≥ 80%. To appraise the rock damage evolution in both 

conditions, the cumulative irreversible axial strain (𝜔𝑎
𝑖𝑟𝑟) and tangent Young’s modulus (𝐸𝑡𝑎𝑛) 

were determined for two representative tests. Fig. 8.10 shows the variation of 𝜔𝑎
𝑖𝑟𝑟 and 𝐸𝑡𝑎𝑛 

for specimens GS-C-15 (with 4.38% strength hardening) and GS-C-31 (with -3.96% strength 

weakening) at 35% and 100% confinement levels, respectively. The other weakening and 

hardening cyclic loading tests also showed similar behaviour.  

According to Fig. 8.10, for both specimens, the elastic modulus increased notably for initial 

cycles, making the specimens stiffer and more difficult to deform. This can be related to the 

closure of pre-existing defects and yield surface expansion during cyclic loading (Taheri and 

Tatsuoka 2015; Peng et al. 2019). However, for specimen GS-C-15 (i.e., hardening test), by 

performing further cycles, the stiffness of the specimen decreased slightly and then remained 

almost constant until 1000 cycles were completed, which is consistent with the trend observed 

by Ma et al. (2013) triaxial systematic cyclic loading tests. On the other hand, during the initial 

cycles for specimen GS-C-15, 𝜔𝑎
𝑖𝑟𝑟 evolved slightly to a certain amount due to the primary 

loose hysteretic loops, and then like 𝐸𝑡𝑎𝑛, retained almost constant, which shows that no more 

damage is cumulated within the specimen. As stated by Shirani Faradonbeh et al. (2021b), this 

quasi-elastic behaviour can be due to the competition between the mechanisms of grain-size 
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reduction and rock compaction under consecutive loading and unloading cycles. For specimen 

GS-C-31 (i.e., weakening test), although no failure was recorded during the cycles, a different 

trend for variations of 𝜔𝑎
𝑖𝑟𝑟 was observed (see Fig. 8.10). For the weakening test, 𝜔𝑎

𝑖𝑟𝑟 increased 

rapidly, first for several cycles (i.e., initial hysteretic loops), and then by experiencing the dense 

hysteretic loops, shows a linear increase. At the end of cyclic loading, the increase of 𝜔𝑎
𝑖𝑟𝑟 

becomes more pronounced which may indicate that the specimen could have failed during 

cyclic loading should the test be continued. These results are consistent with 𝐸𝑡𝑎𝑛variations for 

the weakening test, shown in Fig. 8.10. As can be seen in this figure, unlike the hardening test, 

the damage evolution for weakening test was accompanied by the progressive stiffness 

degradation of rock during the whole cyclic loading test. Therefore, it can be stated that the 

strength weakening observed in Table 8.2 for systematic cyclic loading tests can be relevant to 

the progressive damage evolution/stiffness degradation of rocks in the pre-peak regime, which 

is aggravated when confining pressure exceeds the transition point (i.e. 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 >65%). 

This is while for lower confinement levels, when cyclic stress level is low enough, cyclic 

loading has no considerable effect on damage evolution; rather, improves peak strength. The 

above observations are further investigated using AE results.  

 
 Figure 8.10 Typical evolution of 𝜔𝑎

𝑖𝑟𝑟 and 𝐸𝑡𝑎𝑛 for hardening and weakening cyclic loading 

tests 
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8.6.1.1. Acoustic Emission Characteristics  

Acoustic emission (AE) is a well-known non-destructive technique that can monitor the micro 

and macrocrack evolution in rocks during loading in real-time. Due to the local micro-scale 

deformations, small fracturing events corresponding to the immediate release of strain energy 

are created in the form of elastic waves within the specimens. Recording and analysing these 

elastic waves during the tests can directly measure internal damage (Cox and Meredith 1993; 

Lockner 1993). Therefore, the AE technique was utilised to elucidate the cracking procedure 

during the hardening and weakening cyclic loading tests better. In this regard, the evolution of 

AE hits, representing the number of generated cracks, and its cumulation throughout the 

representative hardening and weakening tests GS-C-15 and GS-C-31 were respectively 

depicted in Figs. 8.11a and b. To better unveil the damage mechanism under different confining 

pressures, the AE results of specimen GS-C-29 (𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔=80%) which showed the greatest 

peak strength decrease (i.e. -13.18% strength weakening) were also displayed in Fig. 8.11c. As 

shown in Fig. 8.11, the evolution of AE hits for the specimens can be investigated throughout 

three main loading phases: initial monotonic loading (phase A), systematic cyclic loading 

(phase B) and final monotonic loading (phase C). For all three specimens, during the seating 

of loading platens on the specimens and the closure of pre-existing defects, few AE hits were 

recorded in stage A and cumulative AE hits increased slightly. For specimen GS-C-15 

(𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔=35% and 𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔= 80%), as shown in Fig. 8.11a, the cumulative AE hits 

then remained almost constant (i.e. quasi-elastic behaviour) during loading and unloading 

cycles. The zoomed-in figure also shows only small amounts of low-amplitude AE hits during 

phase B. The cumulated AE hits at the end of stage B is almost 1.77% of the total damage 

experienced by the specimen during the test. This shows that no considerable cyclic loading 

induced damage is generated should the specimens be loaded below the fatigue threshold stress 

and at confinement levels lower than the transition point. This behaviour also is consistent with 

the variation of 𝜔𝑎
𝑖𝑟𝑟 discussed in the previous section. The majority of rock damage for 

specimen GS-C-15 occurred in phase C, where the final monotonic loading was applied to the 

specimen. In this phase, due to opening the compacted microcracks, the generation of new ones 

and their coalescence close to and after peak strength point, the cohesive strength of rock is 

gradually substituted by the frictional resistance, which was accompanied by a higher amount 

of AE hits. 

Unlike specimen GS-C-15 which showed a quasi-elastic behaviour during the systematic cyclic 

loading, a different AE evolution behaviour was observed for specimen GS-C-31 
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(𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔=100% and 𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔=80%) in phase B. According to Fig. 8.11b, after a slight 

increase in AE hits during the initial monotonic loading, the microcracking increased with a 

higher rate by increasing loading and unloading cycles in phase B, which is manifested by a 

higher number of AE hits. The cumulated AE hits at the end of phase B is almost 27.09% of 

the total damage incurred in the specimen throughout the test, which is relatively higher than 

that observed for specimen GS-C-15. As discussed earlier, this microcracking induced by 

cyclic loading results in stiffness degradation (see Fig. 8.10) and more ductile behaviour in the 

pre-peak regime. The generated damage was not enough to fail the specimen, however, it 

resulted in strength weakening of -3.96% during the final monotonic loading. For specimen 

GS-C-29 which experienced a -13.18% decrease in peak strength at 80% confinement level, as 

seen in Fig. 8.11c, by applying systematic cyclic loading, the AE hits began to grow first with 

a lower rate until about 500 cycles were completed. Then by performing further cycles, the rate 

of AE hits cumulation increased dramatically, representing the continuous generation of 

macrocracks within the specimen. According to Fig. 8.11c, about 93.90% of the total rock 

damage happened at the end of phase B, which is far greater than those observed for specimens 

GS-C-15 and GS-C-31. Based on the above observations for AE outputs, it can be stated that 

for confinement levels beyond the transition point (𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 65%), although cyclic loading 

below the fatigue threshold stress does not lead to fatigue failure during 1000 loading cycles, 

it creates significant damage, which results in a considerable strength weakening during final 

monotonic loading.   

 
Figure 8.11 Representative AE results for cyclic loading tests: a hardening test (GS-C-15), b 

weakening test (GS-C-31) and c weakening test (GS-C-29) 
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Figure 8.11 (Continued) 

8.6.2. Damage Cyclic Loading Tests  
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regime. The total accumulated plastic deformation values for specimen GS-C-30 (𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 

80%) and GS-C-33 (𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 100%) are respectively 77.25×10-4 and 381.92×10-4, which 

are considerably higher than the values obtained for those undertaken under lower confining 

pressures. The large pre-peak deformation also is evident from the stress-strain relations shown 

in the Appendix A for these specimens. Also, for lower confinement levels, the specimens 

follow a three-phase damage evolution law (Xiao et al. 2009) (i.e. transient phase, steady phase 

and acceleration phase), while it is switched into a two-phase process (i.e. the transient and 

acceleration phases) for high confinement levels, especially at 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔=100%. Thus, it can 

be deduced that confining pressure increases the damage evolution rate in rocks, and this is 

more evident for confinement levels higher than the transition point. 

Fig. 8.12b plots the variation of tangent Young’s modulus (𝐸𝑡𝑎𝑛) for damage cyclic loading 

tests at different 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔. According to this figure, for all damage cyclic loading tests, 𝐸𝑡𝑎𝑛 

initially increased in the second loading cycle due to closure of existing micro-cracks, reduction 

in rock porosity and expansion of yield surface (Taheri and Tatsuoka 2015). Then, a continuous 

degradation in 𝐸𝑡𝑎𝑛 at different extents can be observed due to accumulation of the cyclic 

loading induced damage. This damage seems to increase with an increase in confining pressure. 

Fig. 8.12c illustrates the variation of the stiffness reduction from the second loading cycle (i.e., 

the maximum value of 𝐸𝑡𝑎𝑛) until the failure point (i.e., the minimum value of 𝐸𝑡𝑎𝑛) with 

respect to the applied confinement level. As seen in this figure, generally, the increase in 

confinement level resulted in stiffness reduction following an exponential manner. According 

to Fig. 8.12c, by an increase in confinement level until 80%, the amount of stiffness degradation 

increases progressively from 2.33 GPa (17.57%) to 3.86 GPa (21.59%), after which a sharp 

increase in the amount of stiffness reduction, i.e., 5.38GPa (31.67%), can be observed for 100% 

confinement level. This dramatic degradation in 𝐸𝑡𝑎𝑛 in high confining presures might be due 

to the excessive damage (irreversible deformation) cumulated in rock in the pre-peak regime, 

resulting in more ductile failure behaviour.    
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Figure 8.12 Variation of a 𝜔𝑎
𝑖𝑟𝑟 and b, c 𝐸𝑡𝑎𝑛 for damage cyclic loading tests under different 

confinement levels 
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8.6.2.1. Acoustic Emission Characteristics  

To have an insight regarding the AE evolution of rocks that failed during loading and unloading 

cycles, the typical results of AE hits for specimen GS-C-33 (𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 100% and 

𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔= 82.5%) was shown in Fig. 8.13. As shown in this figure, only two phases of A 

and B can be distinguished for cyclic damage tests. After an initial increase in AE hits due to 

closure of pre-existing defects and loading system adjustments, the specimen experienced 

dense hysteretic loops, and AE hits were accumulated at a constant rate. However, as the 

applied stress level for this specimen is higher than the estimated fatigue threshold stress for 

100% confinement level (i.e., 𝑞𝑓/𝑞𝑚−𝑎𝑣𝑔=80%), the rock specimen entered the second loose 

hysteric loops' region, and large irreversible deformations were incurred in the specimen, which 

was accompanied by the cumulation of AE hits with a higher rate (phase B). Finally, by 

coalesce of the generated micro and macrocracks within the specimen and experiencing a large 

amount of axial strain at the failure point/plastic behaviour, i.e. 𝜀𝑎𝑓= 580.75×10-4, the specimen 

failed in the cycle, demonstrating a class I behaviour. The observed damage evolution for 

specimen GS-C-33 is also consistent with its measured stress-strain relation shown in the 

Appendix A. 

 

Figure 8.13 Typical AE results for damage cyclic loading tests (𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 100% and 

𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔= 82.5%) 
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8.6.3. Applied Stress Level Effect on Damage Evolution 

As stated earlier, systematic cyclic loading was applied to the specimens at different stress 

levels (𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔). To evaluate the effect of the applied stress level on damage evolution of 

rocks under different confining pressures, the axial strain at the failure point (𝜀𝑎𝑓) was 

determined for all monotonic and cyclic loading tests. The results were listed in Tables 8.1 and 

8.2. For uniaxial monotonic and cyclic loading conditions, 𝜀𝑎𝑓 values were adapted from 

Shirani Faradonbeh et al. (2021b). Fig. 8.14 represents the variation of 𝜀𝑎𝑓 for monotonic, 

hardening, weakening and damage cyclic loading tests with 𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔. It can be seen from 

Fig. 8.14 that under a specific confinement level (i.e. 35%), cyclic loading at various stress 

levels has no significant influence on 𝜀𝑎𝑓 and their values are almost similar to those obtained 

for monotonic loading tests. However, for higher confinements, larger values of 𝜀𝑎𝑓 is observed 

at the stress levels equal to or greater than the fatigue threshold stresses, due to the 

accumulation of irreversible strain in the sample during the pre-peak regime before the failure. 

The above behaviour is more evident in Fig. 8.15, where the variation of average axial strain 

at failure point (𝜀𝑎𝑓−𝑎𝑣𝑔) for different stress levels was depicted against 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔. As seen 

in this figure, for monotonic loading tests, 𝜀𝑎𝑓−𝑎𝑣𝑔 evolved linearly with the increase of 

𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔; this is while, for hardening/weakening and damage cyclic loading tests, this 

evolution occurred exponentially. According to Fig. 8.15, for 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 ≤35%, the 

monotonic and cyclic loading tests have almost similar 𝜀𝑎𝑓−𝑎𝑣𝑔 values, which means that 

loading and unloading cycles below and beyond the fatigue threshold stress have no striking 

influence on pre-peak behaviour, and damage evolution under cyclic loading is similar to 

monotonic loading conditions. However, for higher confinement levels, 𝜀𝑎𝑓−𝑎𝑣𝑔 increased first 

gradually until 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 65% representing more accumulation of plastic deformations 

within the specimens in the pre-peak regime compared with the monotonic loading conditions. 

The evolutionary trend of 𝜀𝑎𝑓−𝑎𝑣𝑔, then, was aggravated for confinement levels of 80 and 

100%, where a sharp increase in 𝜀𝑎𝑓−𝑎𝑣𝑔 was observed for weakening and damage cyclic 

loading tests.     
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Figure 8.14 Variation of axial strain at failure point for monotonic and cyclic loading tests 

under different confinement levels: a 0%, b 10%, c 20%, d 35%, e 50%, f 65%, g 80% and h 

100% 

 
Figure 8.15 Average axial strain at failure for monotonic and cyclic loading tests 
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rock types under various loading conditions, such as Gosford sandstone (up to 7.82% increase) 

under uniaxial systematic cyclic loading (Shirani Faradonbeh et al. 2021b), Tuffeau limestone 

under uniaxial multi-level systematic cyclic loading (up to 28.55% increase) (Shirani 

Faradonbeh et al. 2021a), hard graywacke sandstone under uniaxial systematic cyclic loading 

(up to 29% increase) (Singh 1989), Hawkesbury sandstone under triaxial systematic cyclic 

loading (up to 11% increase) (Taheri et al. 2016b) and rock salt under triaxial systematic cyclic 

loading (up to 171% increase) (Ma et al. 2013). 

 Fig. 8.16a represents variation in peak strength with confinement level (𝜎3/𝑈𝐶𝑆𝑎𝑣𝑒). The 

results of hardening tests under uniaxial condition (𝜎3=0) were extracted from Shirani 

Faradonbeh et al. (2021b). According to Fig. 8.16a and Table 8.2, the peak strength parameter 

varies between two distinct zones, i.e. hardening zone and damage zone. Also, the maximum 

increase and decrease in peak strength values of Gosford sandstone specimens are 7.82% and 

-13.18%, respectively. Generally, with an increase in 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔, the amount of strength 

hardening induced by cyclic loading decreased and when 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔> 65% (i.e. transition 

point), rock specimens demonstrate strength weakening behaviour (see Fig. 8.16a). To better 

reflect the mechanism behind the rock moving from hardening into weakening, a parameter is 

proposed as below: 

∆𝜀𝑎
𝑖𝑟𝑟 = (𝜀𝑎

𝑖𝑟𝑟)𝑓 − (𝜀𝑎
𝑖𝑟𝑟)𝑖                             (8.8) 

where ∆𝜀𝑎
𝑖𝑟𝑟 is the differential irreversible axial strain (measured between valley points), and 

(𝜀𝑎
𝑖𝑟𝑟)𝑓 and (𝜀𝑎

𝑖𝑟𝑟)𝑖 are, respectively, the irreversible axial strains measured for final and initial 

loading cycles.  

Fig. 8.16b demonstrates the variation of ∆𝜀𝑎
𝑖𝑟𝑟 for cyclic loading tests at different stress levels 

with 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔. As can be seen in this figure, the range of variation for ∆𝜀𝑎
𝑖𝑟𝑟 increased 

continuously with an increase in confining pressure, and this is more significant for 

𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔> 65%, where a high amount of irreversible deformation was experienced by the 

specimens. The incremental trend of ∆𝜀𝑎
𝑖𝑟𝑟 with confinement results in more plastic behaviour 

and, therefore, pre-peak damage even when cycles don’t result in a failure. This, finally, 

resulted in a decremental trend of the maximum peak strength variation at each confinement 

level under cyclic loading, as shown in Fig. 8.16c.  
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Figure 8.16 a Variation of a peak strength during final monotonic loading at different stress 

levels, b differential irreversible strain and c maximum peak strength with confinement level 
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8.7.2. An Empirical Model for Strength Prediction    

As discussed above, the study on strength variation of rocks under the coupled influence of 

cyclic loading and confining pressure is rare and limited to some specific confining pressures. 

Therefore, no empirical model can be found in the literature to predict strength variation after 

loading cycles. The classification and regression tree (CART) algorithm was employed in this 

study to predict the amount of strength hardening/weakening in Gosford sandstone after cyclic 

loading history. The CART algorithm, developed by Breiman et al. (1984), is a computational-

statistical algorithm that can predict the target variable in the form of a decision tree. The CART 

tree is created by the binary splitting of the datasets from the root node into two sub-nodes 

using all predictor variables. The best predictor usually is chosen based on impurity or diversity 

measures (e.g. Gini, twoing and least squared deviation). The aim is to create subsets of the 

data which are as homogeneous as possible concerning the output variable. For each split, each 

input parameter (predictor) is evaluated to find the best groupings of categories (for nominal 

and ordinal predictors) or cut point (for continuous predictors) according to the improving score 

or reduction in impurity. Thereafter, the predictors are compared, and the predictor with the 

greatest improvement is selected for the split. This process is repeated until one of the stopping 

criteria (e.g. the maximum tree depth) is met (Salimi et al. 2016; Liang et al. 2016; Khandelwal 

et al. 2017). A detailed description of the CART algorithm can be found in (Breiman et al. 

1984).  

In this study, the applied stress level (𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔) and confinement level (𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔) were 

defined as input variables to predict the percentage of strength hardening/weakening as output 

variable. Based on the results presented in Table 8.2 and the conducted cyclic loading tests in 

uniaxial conditions by Shirani Faradonbeh et al. (2021b), a database containing 28 tests that 

experienced a monotonic loading after a cyclic loading history was compiled. The test GS-C-

29, which showed -13.18% strength weakening was identified as an outlier (in terms of 

statistics) and excluded from the modelling procedure. The CART parameters, including the 

maximum tree depth, impurity index and the minimum size of parent and child nodes (i.e. the 

minimum number of objects that a node must contain to be split) were changed for different 

runs to obtain a predictive model with high accuracy and low complexity.  Finally, the best 

model was achieved according to the settings listed in Table 8.4. The modelling procedure was 

carried out in the MatLab environment. Fig. 8.17 represents the obtained regression tree for the 

best model. As shown in this figure, the developed regression tree provides a practical tool to 

estimate the percentage variation of the peak strength straightforwardly. Fig. 8.18 compares 
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the measured values of the peak strength variation with those predicted by the developed CART 

model. As seen in this figure, the CART is capable of predicting the peak strength variation of 

Gosford sandstone with high accuracy (𝑅2= 90%).  

Table 8.4 The settings for the CART model 

CART parameter Value 

Predictors (terminal & root nodes) 𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔, 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 

Maximum tree depth 6 

Minimum parent size 2 

Minimum child size 1 

Impurity measure Gini 
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Fig. 8.17 Regression tree developed for the prediction of strength hardening/weakening 
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Fig. 8.18 The comparison of the measured and predicted values of peak strength variation 

8.8. Conclusions  

Triaxial monotonic and cyclic loading tests were undertaken in this study on Gosford sandstone 

at different confinement levels to scrutinise the effect of both systematic cyclic loading history 

and confining pressure on the evolution of rock fatigue characteristics. For this aim, a modified 

triaxial testing procedure was employed to control the axial load during the tests using a 

constant lateral strain feedback signal. Based on the experimental results, the following 

conclusions were drawn: 

1. The confining pressure displayed a significant effect on fatigue threshold stress (FTS). 

It was found that with an increase in 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔 from 10% to 100%, FTS decreases 

from 97% to 80%. This indicates that rocks in great depth experience failure due to 
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2. According to the obtained stress-strain relations, the post-peak behaviour of rocks 
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while for higher 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔, the ductile behaviour was dominant. The post-peak 

instability of rocks was quantified using strain energy-based brittleness indices (𝐵𝐼𝑠), 

and a transition point at 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 65% was identified, where the rocks transited 

from the brittle failure behaviour to ductile one. The results also showed that cyclic 
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rock brittleness, while for 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 80% and 100%, the weakening effect of 

systematic cyclic loading history on rock brittleness was more significant. 

3. Fatigue damage evaluation of rocks using different parameters (i.e. 𝐸𝑡𝑎𝑛, 𝜔𝑎
𝑖𝑟𝑟and AE 

hits) showed that for hardening cyclic loading tests, no macro-damage is observed 

within the specimens, and the stiffness of the rocks remain almost constant during a 

large number of cycles, representing a quasi-elastic behaviour. However, for weakening 

cyclic loading tests, although no failure was observed during cycles, 𝐸𝑡𝑎𝑛 and 𝜔𝑎
𝑖𝑟𝑟 

increased and decreased, respectively, with cycle loading. Compared to the hardening 

cyclic loading tests, the AE activities (micro-cracking) was more evident for specimens 

that showed a higher amount of strength degradation. On the other hand, for damage 

cyclic loading tests, it was found that damage is accumulated with a higher rate and 

extent with an increase in confining pressure.  

4.  Looking at the variation of axial strain at the failure point (𝜀𝑎𝑓) for monotonic, 

hardening/weakening and damage cyclic loading tests, it was found that under 

confinement levels below the transition point, the applied stress level has no notable 

effect on the cumulation of irreversible deformations in the pre-peak regime and the 

values of 𝜀𝑎𝑓 are similar to those in monotonic loading conditions.  However, for higher 

confinements, cyclic loading resulted in larger irreversible strain values before the 

failure point. 

5. After a cyclic loading history, the peak deviator stress of Gosford sandstone varied 

between -13.18% and 7.82%. According to the evolution of damage parameters, the 

observed quasi-elastic behaviour during cyclic loading and the variation of plastic axial, 

lateral and volumetric strains for hardening cyclic loading tests, the strength hardening 

can be related to the rock compaction induced by cyclic loading. It was observed that 

the increase in confining pressure decreases the amount of strength hardening due to 

the accumulation of irreversible strains in the rock specimens. An empirical regression 

tree-based model was proposed to estimate peak strength variation of Gosford 

sandstone based on the applied stress level and confining pressure. The results showed 

the high accuracy of the model.   
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Figure A.1 Stress-Strain Results of Triaxial Cyclic Loading Tests 
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Chapter 9 
 

Conclusions and Recommendations  

9.1. Conclusions  

In this thesis, state-of-the-art methodologies comprising machine learning (ML)- and 

experimental-based approaches were employed to investigate the rockburst phenomenon in 

detail. The significant findings and major contributions of the conducted research project can 

be outlined as follows:   

• The statistical analysis techniques, including the box-plot, principal component analysis 

(PCA) and agglomerative hierarchical clustering (AHC) were identified as robust tools to 

visually represent the distribution of data points, analyse the interrelationship of the 

parameters, detect the outliers and natural groups in the datasets and finally, prepare a 

homogeneous database. [see Chapters 2, 4 and 5]       

• The three ML algorithms of gene expression programming (GEP), genetic algorithm-

based emotional neural network (GA-ENN) and the decision tree-based C4.5 algorithm 

showed the high performance in predicting the occurrence or non-occurrence of rockburst 

hazard as a binary classification problem (i.e. the prediction accuracy was higher than 

80%). [see Chapter 2]  

• The hybrid GA-ENN algorithm overcame the limitations of the prior ANNs (e.g., getting 

trapped in local minima) and provided a global solution for the problem. The C4.5, as a 

white-box ML algorithm, provided a visual simple tree structure for determining the 

rockburst status straightforwardly based on the specific range of values defined by the 

algorithm for different input parameters. The GEP algorithm, unlike the other ML 

techniques, through its inherent capability of function finding, successfully detected the 

latent complex non-linear relationship between the input parameters and the corresponding 

output. The GEP algorithm can open the black-box nature of the common ML algorithms 

and by providing the explicit models, facilitates the in-depth investigation of mining and 

geotechnical hazards. [see Chapter 2] 
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• The results of the sensitivity analysis conducted on the developed GEP-based binary model 

for rockburst status prediction revealed that the input parameters of maximum tangential 

stress (𝜎𝜃), elastic energy index (𝑊𝑒𝑡), uniaxial tensile strength (𝜎𝑡) and uniaxial 

compressive strength (𝜎𝑐) have the highest influence on rockbursting in deep underground 

mines, respectively. Due to the significant role of 𝜎𝜃 in rockburst occurrence, more 

considerations should be taken into account during the design stage of the underground 

projects to control this parameter (i.e. by optimisation of the mining layout). [see Chapter 

2]     

• The comparison of the five conventional rockburst criteria, i.e., Russeness criterion, Hoek 

criterion, stress coefficient criterion, brittleness index criterion and elastic energy index 

(EEI) criterion, with the proposed ML-based models, showed that except for EEI criterion, 

the other conventional criteria have the prediction accuracy lower than 80% and cannot 

provide reliable estimations in practice. This can be attributed to the case study-based 

nature of the conventional criteria and considering few input parameters in their equations. 

[see Chapter 2] 

• The complex relationship between different strength/stress- and energy-based parameters 

with the rockburst risk levels (i.e. the intensities of “none”, “light”, “moderate” and 

“strong”) was recognised with high accuracy using the unsupervised learning algorithm of 

self-organising map (SOM). This algorithm, through an intelligent procedure, categorised 

the rockburst events having similar conditions in distinct clusters. [see Chapter 3]  

• The determined weighted distances between the clusters by the SOM algorithm were also 

consistent with the rockburst intensities defined by the engineers. This demonstrated the 

high capability of this technique in adapting to mining-related problems, specifically for 

rockburst risk level investigation as a multi-class problem. [see Chapter 3]  

• The evaluation of the weights of input variables in each cluster revealed that the maximum 

tangential stress of the surrounding rock mass (𝜎𝜃) has the strongest influence on 

rockbursting, which is consistent with the results of the binary classification of rockburst 

status reported in Chapter 2. [see Chapter 3] 

• The SOM algorithm with the value of 100% for the five performance indices of accuracy 

rate, precision, recall, F1 score and Kappa, proved its superiority over fuzzy c-mean (FCM) 

algorithm and the rockburst conventional criteria in clustering the rockburst risk levels. [see 

Chapter 3] 

• The intact rock properties (i.e., uniaxial compressive strength, tensile strength, elastic 
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modulus, and Poisson’s ratio) represented a significant effect on the failure mechanism 

(i.e., squeezing, slabbing, and strain burst) of the competent overs-stressed rock masses. 

The initial assessment of the compiled database from different underground mining projects 

showed that the failure mechanisms cannot be predicted solely by a single indicator. [see 

Chapter 4]      

• Although the GEP algorithm can provide a mathematical equation to estimate the output 

parameter, it cannot be used solely to solve multi-class classification problems such as 

failure mechanism detection. It was found that the combination of the GEP algorithm with 

the logistic regression (LR) is an efficient methodology to overcome this difficulty. The 

GEP score calculated for each binary model of the failure mechanisms can be fed into the 

logistic regression as the independent variable to determine the occurrence probability of 

each failure mechanism. The failure mechanism having the highest probability value is 

selected as the final prediction. [see Chapter 4]      

• According to the results of the confusion matrices and the receiver operating (ROC) 

curves, the developed GEP-based binary models in this research project were able to 

predict the status (occurrence or non-occurrence) of each failure mechanism, respectively, 

with 100% (AUC=1), 100% (AUC=1), and 97.14% (AUC=0.964) accuracy for squeezing, 

slabbing and strain bursting failure. However, the developed multi-class classifier of GEP-

LR predicted the final class of failure based on the given intact rock properties with 100% 

accuracy. [see Chapter 4]  

• The further validation of the GEP-LR model with nine unseen/new datasets also proved 

the high capability of this model in predicting the failure mechanisms 

accurately. Therefore, the developed GEP-LR model can be used as a practical tool by 

engineers and researchers to measure the propensity of the competent over-stressed rock 

masses to different failure mechanisms at the preliminary stages of the projects. [see 

Chapter 4] 

• It was found that the maximum rockburst stress (𝜎𝑅𝐵), i.e., the stress level that bursting 

occurs and the rockburst risk level (𝐼𝑅𝐵) inferred from the conducted comprehensive true-

triaxial unloading tests are appropriate and reliable indices to investigate the rockburst 

phenomenon. [see Chapter 5]  

• The correlation analysis and the stepwise selection and elimination (SSE) procedure were 

identified as efficient tools for dimension reduction (i.e., recognition of the most influential 

parameters), removing the multicollinearity among the independent parameters, and 
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reducing the complexity of the problem. According to the results of the foregoing analyses, 

the parameters of the uniaxial compressive strength (𝑈𝐶𝑆), Young’s modulus (𝐸) and 

horizontal pressure coefficient (𝐾) were identified as the most influential parameters for 

modelling of 𝜎𝑅𝐵; while, the parameters of Young’s modulus (𝐸), Poisson’s ratio (𝜐), 

horizontal pressure coefficient (𝐾) and 𝜎𝑅𝐵 were recognised as the best combination of 

inputs for modelling of 𝐼𝑅𝐵. [see Chapter 5] 

• The mathematical functions and the visual patterns provided by the GEP and classification 

and regression tree (CART) techniques unravelled the latent relationship between the 

rockburst parameters (i.e. 𝜎𝑅𝐵 and 𝐼𝑅𝐵) and their corresponding influential parameters. The 

performance analysis of the developed models showed that the GEP-based models with 

the values of 0.94, 14.25 and 9.80 for the indices of 𝑅2, 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 for 𝜎𝑅𝐵 and the 

values of 0.94, 0.19 and 0.14 for the foregoing performance indices for 𝐼𝑅𝐵 outperformed 

the CART-based models. However, the CART algorithm was recognised as the efficient 

tool for solving the high-complex non-linear problems in mines.  [see Chapter 5] 

• The performed parametric analysis on the best models showed that by an increase in 𝑈𝐶𝑆 

and 𝜎𝑣, 𝜎𝑅𝐵 increases monotonically. Also, the risk of rockburst occurrence showed a 

downward non-linear trend with the independent parameters of 𝐾, 𝐸, 𝜐 and 𝜎𝑅𝐵. 

Furthermore, the parametric analysis showed strong correlations among the rockburst 

parameters and their input parameters, representing that the selected inputs are potential 

indicators for assessing and predicting the rockburst phenomenon in deep underground 

mines. [see Chapter 5] 

• The developed “Double-Criteria Damage-Controlled Test Method” in this research project 

by adapting two controlling criteria, including the maximum axial stress level that can be 

achieved and the maximum lateral stain amplitude that the rock specimen can experience 

in a cycle during loading, i.e. 𝐴𝑚𝑝. (𝜀𝐿), was successful in capturing the post-peak stress-

strain behaviour of Tuffeau limestone subjected to the uniaxial multi-level systematic 

cyclic loading history. This technique opens new insights into the rock failure mechanism 

and the long-term stability assessment of the underground structures under seismic 

disturbances. [see Chapter 6]   

• It was found that the overall post-peak behaviour of rocks under multi-level systematic 

cyclic loading is characterised by the combination of class I and class II; however, the class 

II behaviour was more dominant for the specimens that experienced more loading and 

unloading cycles. [see Chapter 6]   
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• The specimens which experienced more cycles in the pre-peak regime failed at stress levels 

higher than the determined average 𝑈𝐶𝑆 for Tuffeau limestone specimens, i.e. the strength 

hardening occurred. [see Chapter 6]   

• The following four main stages were distinguished for the evolution of damage parameters 

of Tuffeau limestone specimens subjected to the multi-level systematic cyclic loading 

history: (a) The increase in rock stiffness due to the closure of the pre-existing voids and 

rock compaction, which was accompanied by the decrease in energy dissipation ; (b) the 

domination of the quasi-elastic behaviour due to the balance between two mechanisms of 

grain-crushing and pore collapse over the pre-peak domain; (c) the gradual decrease in 

rock stiffness due to dilatant microcracking with more energy dissipation; and (d) the 

generation and coalescence of microcracks which resulted in a rapid increase in damage 

and energy dissipation and more reduction in stiffness. [see Chapter 6]      

• According to the evolution of the crack damage stress (𝜎𝑐𝑑) during the cyclic loading, the 

rock specimens did not switch from the compaction-dominated to a dilatancy-dominated 

state, should the applied stress level is not high enough to create critical damage within the 

specimens. This resulted in a constant 𝜎𝑐𝑑 that is approximately equal to the unloading 

stress in each cycle. [see Chapter 6]      

• The observed strength hardening for the Tuffeau limestone specimens can be attributed to 

the rock compaction induced by the cyclic loading history. The weak bonding between the 

grains can be broken during loading and unloading cycles and the produced fine materials 

may fill up the internal pores, which finally may result in more rock compaction and 

hardening behaviour. [see Chapter 6]      

• The proposed testing methodology was also successful in capturing the complete stress-

strain curves (i.e. the pre-peak and the post-peak regimes) of Gosford sandstone 

specimens subjected to single-level systematic cyclic loading at different stress levels (i.e. 

𝜎𝑎/𝜎𝑚=80-96%). [see Chapter 7]     

• A threshold of 𝜎𝑎/𝜎𝑚 was identified which lies between 86-87.5%. For the stress levels 

lower than this range (i.e. the hardening cyclic loading tests), failure did not occur for a 

large number of cycles, and the rock specimens followed a two-stage damage evolution 

law (dominated by the quasi-elastic behaviour). For these tests, the damage evolution also 

was found to be independent of the cycle number, as no considerable effect was observed 

on damage parameters by increasing the cycle number from 1500 to 10000 cycles. [see 

Chapter 7]            
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• Below the fatigue threshold stress, the rock behaviour under cyclic loading in the pre-peak 

and the post-peak regimes was approximately similar to those in monotonic loading 

conditions. For the specimens subjected to the cyclic loading below the fatigue threshold 

stress, no considerable damage was incurred within the specimens and the peak strength 

increased up to 8% after applying the monotonic loading (i.e. the strength hardening 

occurred). [see Chapter 7]            

• For the specimens which experienced cyclic loading beyond the fatigue threshold stress 

(i.e. the fatigue cyclic loading tests), the failure occurred during loading and unloading 

cycles. For such tests, the lateral and volumetric irreversible strain were accumulated more 

rapidly in the specimens. Moreover, beyond the fatigue threshold stress, the increase in 

𝜎𝑎/𝜎𝑚 resulted in rock failure in a more brittle/self-sustaining manner. [see Chapter 7]            

• According to the evolution of the cumulative irreversible axial strain (∑𝜀𝑎
𝑖𝑟𝑟

), a secondary 

inverted S-shaped damage behaviour was identified in the post-peak regime of the fatigue 

cyclic loading tests. In other words, the second loose behaviour before the failure point 

extends to the post-peak stage for several cycles. These loose hysteretic loops are followed 

by a dense behaviour for a large number of cycles until the complete failure of the 

specimens occurs, showing another loose behaviour. With the increase of the applied 

stress level, the damage per cycle decreased exponentially, and the three stages of the 

secondary inverted S-shaped damage behaviour was more visible in the post-peak regime. 

[see Chapter 7]            

• The modified triaxial testing procedure, i.e. mounting four lateral strain gauges at the mid-

length of the rubber membrane and connecting them to a Wheatstone bridge to provide a 

single lateral strain feedback signal, was successful in controlling the axial load and 

performing the single-level systematic cyclic loading tests at different stress levels and 

confining pressures. [see Chapter 8]           

• By increasing the confinement level (𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔) from 10% to 100%, the fatigue 

threshold stress (FTS) of Gosford sandstone decreased from 97% to 80%, which indicated 

that rocks in great depth experience the failure due to cyclic loading at stress levels much 

lower than the determined monotonic strength. [see Chapter 8]           

• An unconventional post-peak stress-strain behaviour was observed for rocks by an 

increase in confinement level (𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔) so that for lower 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔, the rock 

specimens mostly showed a class II/self-sustaining behaviour, while for higher 

confinements, the ductile behaviour was dominant. [see Chapter 8]           
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• According to the calculated energy-based brittleness index for the rock specimens which 

did not fail in cycles, a transition point at 𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔= 65% was identified, where the rock 

specimens switch from the brittle failure behaviour to ductile one. It was found that the 

cyclic loading at confinement levels lower than the determined transition point has no 

considerable effect on the post-peak instability of rocks, while for confinement levels of 

80% and 100%, the weakening effect of the systematic cyclic loading history on rock 

brittleness was significant. [see Chapter 8]              

• According to the evolution of the tangent Young’s modulus (𝐸𝑡𝑎𝑛), cumulative 

irreversible axial strain (𝜔𝑎
𝑖𝑟𝑟) and acoustic emission (AE) hits for hardening cyclic 

loading tests, it was observed that cyclic loading creates no macro-damage within the 

specimens in the pre-peak regime, and the rock stiffness remains almost constant until 

1000 loading and unloading cycles are completed. [see Chapter 8]               

• For weakening cyclic loading tests (i.e., the tests that did not fail during the cycles and 

showed negative peak strength variation), the gradual decrease and increase in 𝐸𝑡𝑎𝑛 and 

𝜔𝑎
𝑖𝑟𝑟 were observed, respectively, with cycle loading. Moreover, compared to the 

hardening cyclic loading tests, the AE activities were more evident for specimens that 

showed a higher amount of strength degradation. This is while for damage cyclic loading 

tests (i.e., the tests that failed during cycles), the damage was accumulated with a higher 

rate and extent in the specimens with an increase in confining pressure. [see Chapter 8]               

• According to the variation of the axial strain at the failure point (𝜀𝑎𝑓) for the monotonic, 

hardening/weakening and damage cyclic loading tests, it was found that under 

confinement levels below the transition point, the applied stress level (𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔) has 

no significant effect on the cumulation of the plastic deformations in the pre-peak regime 

and the values of 𝜀𝑎𝑓 are similar to those in monotonic loading conditions. However, for 

higher confinement levels, cyclic loading resulted in larger plastic deformations before 

the failure point. [see Chapter 8]              

• For the Gosford sandstone specimens that did not fail in cycles, it was found that the peak 

strength varies between -13.18% and 7.82%. The strength hardening at lower confinement 

levels, as observed for uniaxial systematic cyclic loading tests, can be related to the rock 

compaction induced by cyclic loading. However, the increase in confining pressure 

resulted in a decrease in strength hardening amount due to the accumulation of plastic 

deformations in the specimens. [see Chapter 8]              

• A CART-based model was proposed in this research project to estimate the peak strength 
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variation of Gosford sandstone as a function of the applied stress level (𝑞𝑢𝑛/𝑞𝑚−𝑎𝑣𝑔) and 

confinement level (𝜎3/𝑈𝐶𝑆𝑎𝑣𝑔). The coefficient of determination (𝑅2) for this practical 

model was 90% which proved the high prediction performance of this model. [see Chapter 

8]                 

9.2. Recommendations  

According to the methodologies used in this thesis and the corresponding obtained results, the 

following recommendations are suggested for future studies to better address the rockburst-

related issues in deep underground mining operations: 

• By considering the performance of the machine learning (ML) algorithms used in this 

thesis (i.e., GA-ENN, C4.5, GEP, CART, and GEP-LR techniques) in dealing with high-

complex non-linear problems (e.g. rockburst hazard), establishing a more comprehensive 

and precise rockburst database by including the intact rock properties, rock mass 

parameters, geostress conditions, hydrogeological conditions and the geometry of the 

excavations, holistic approaches can be developed to predict the rockburst occurrence and 

its risk level accurately.  

• Taking into account the well-known ML principle of “Garbage in, garbage out”, the 

selection of the appropriate training datasets has a crucial effect on the reliability and 

accuracy of the models. The ML-based rockburst models available in the literature have 

been mostly developed based on the limited datasets (maximum 250 datasets, while almost 

80% of them are considered for training the models). This is while the small amount of the 

training samples cannot provide sufficient information for the ML algorithms, and finally, 

the developed models may not be able to estimate the output parameter correctly by 

feeding the new compiled datasets from the real projects. On the other hand, the available 

rockburst databases in the literature are imbalanced, i.e., the number of data cases for each 

rockburst risk level (i.e. “none”, “light”, “moderate” and “strong”) are not equal. This may 

create biased models and decrease the applicability of the proposed models. Therefore, in 

future studies, bigger and balanced databases should be provided to better analyse the 

rockburst phenomenon. A promising technique to balance the database is over/under-

sampling.  

• Many studies can be found in the literature regarding the rockburst potential evaluation in 

the long term; however, no significant progress has been made in the short-term 

assessment of this hazard using machine learning (ML) techniques. Microseismic signals 
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are significant precursors of rockburst occurrence. However, the genuine rock 

microseismic signals usually interfere with the signals/noises induced by other sources, 

such as mechanical excavations, haulage systems, drilling and blasting operations, etc. The 

correct distinguishing of the genuine signals from the noise signals can provide some 

critical features to estimate the rockburst occurrence. As proved in this research project, 

the developed hybrid GEP-LR model is a powerful technique for multi-class classification 

tasks and can be utilised in future studies to provide a practical model to discriminate 

between different microseismic signals in burs-prone areas. By doing so, a proper 

relationship can be established between the burst signals and rockburst occurrence, and 

finally, the time of bursting can be predicted.   

• The “Double-Criteria Damage-Controlled Test Method” developed in this research project 

was recognised as an efficient methodology for capturing the post-peak behaviour of rocks 

subjected to seismic events/cyclic loadings. In future studies, this technique can be 

adjusted for the triaxial testing system to better analyse the failure mechanism of rocks 

under different confining pressures. 

• More in-depth numerical and experimental investigations should be undertaken 

concerning the true post-peak behaviour of stable and unstable rock failures under 

monotonic and cyclic loading conditions. In this regard, the influence of loading system 

stiffness as well as the applied load control technique should be evaluated on the failure 

behaviour of rocks. Although the lateral strain-controlled technique was identified as an 

appropriate technique in capturing the complete stress-strain behaviour of rocks, the 

capability of other load control techniques such as the linear combination of axial stress 

(𝜎) and strain (𝜀) (i.e., 𝜀 − 𝛼. 𝜎/𝐸 = 𝐶. 𝑡, where 𝛼 is a constant less than 1.0, 𝐶 is the 

loading rate which is usually set at 10-5/s and 𝐸 is Young’s modulus), which has been 

reported as the potential load control technique in very few studies in the literature, needs 

to be further investigated. It is also recommended to apply a large number of cycles (e.g., 

more than 1,000,000 cycles) in future rock fatigue studies to better replicate the seismic 

events in real mining projects and evaluate its effect on fatigue threshold stress (FTS).      

 

 

 




