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Abstract

Fatigue analysis is one of the most important and challenging aspects in the design
and evaluation of engineering structures working under fluctuating mechanical or
thermal loading. Although extensive research has been undertaken over the past two
centuries to improve fatigue life prediction methods, there are still many issues and
problems remaining, which warrant further study. One such issue is adequate
modelling of the evolution of the shape of structural defects (cracks) in structural
components subjected to fatigue loading.

Procedures and methods that are currently employed for fracture and fatigue failure
forecasting are largely based on two-dimensional (2D) stress or strain field
assumptions, which simplify the actual geometry of the structural components and
defect shapes. As documented in many previous studies, these simplifications can
lead to significant errors and to non-conservative predictions. There is also much
experimental evidence indicating the significant influence of three-dimensional (3D)
effects on fatigue crack growth, as well as on brittle fracture initiation. The 3D effects
include, but are not limited to, the variation of stresses and stress intensity factors
along the crack front, the presence of the 3D corner (vertex) singularities and the
existence of coupled fracture modes, in addition to the classic fracture modes (modes
I, 11 and I11). In addition, there is the strong effect of the out-of-plane constraints on
fatigue crack closure and crack growth rates in plate and shell components.
Therefore, an account of more realistic (3D) shapes of structural defects and the 3D
effects associated with these geometries is of a great importance in order to gain
more confidence in fatigue life predictions, decrease the cost of inspections and
maintenance, and allow structures to operate beyond design service life predictions.
In addition, the implementation of 3D fatigue models can help to reduce various
uncertainties and assumptions associated with the current 2D modelling.



Direct numerical simulations of 3D fracture and fatigue problems remain difficult.
Therefore, this thesis aims to develop new, simplified, semi-analytical methods for
the evaluation of front shapes of fatigue cracks and fatigue life in typical structural
components, such as plates and round bars, which utilise more realistic geometries
of structural defects. The thesis further elucidates the role of plasticity-induced crack

closure and the 3D corner singularity on the crack front shape and its evolution.

It is expected that the new methods, which are developed in this thesis, may provide
more accurate predictions of crack growth and fatigue life expectancy for typical
structural components. This hypothesis is supported by extensive validation studies
and comparisons against previous theoretical results and experimental data.

The main body of the thesis (Chapters 4 - 7) is presented in the form of a collection
of published journal and conference articles authored by the candidate, who made a
significant contribution to the conceptualisation, data analysis, calculations and
drafting involved. A compilation of the candidate’s publications relating to the main
topic of the thesis but with less significant involvement is also provided in the
Appendix. In addition, several Chapters (Chapters 1 - 3 and 8) are included to
communicate the context, significance of this work and cohesive presentation, as

well as to summarise the main outcomes of this thesis.
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Chapter 1

Introduction






1.1 Introduction

The integrity, safety, and efficiency of operation of machines are largely affected by
the presence of structural defects, which can lead to premature fatigue failures. In
accordance with various estimates, from 60 to 90% of all structural failures are
attributed to fatigue-related mechanisms. The direct cost of these structural failures
can reach up to 4% of the Gross domestic product (GDP) or billions of dollars
(Teixeira 2017). The dollars are important, but the cost of the many failures in human

life and injury is infinitely more so.

A distinct feature of fatigue failures is that the peak design loads themselves are
insufficient to cause immediate failure of a structural component weakening due to
defects. However, these defects can grow under fluctuating loading, which is very
common in many engineering applications. The growing defects can eventually
reach critical shapes and sizes, causing premature failures, even under design loading
conditions, during the design life span of the structural component. Therefore, it is
very important to predict the rates of the propagation of defects accurately, as well
as their critical shapes and sizes, notably those that cannot be sustained by the
components under specified loading conditions. Fracture Mechanics addresses these
challenges by developing methods and procedures for fracture and fatigue life
assessments in the presence of crack-like defects.

Many of these methods and procedures are currently incorporated into industrial
standards, codes, and guidelines. A brief overview of the main developments in the
area of fatigue modelling is provided below. This overview will give an outline of
the current state of the art in fatigue modelling, its challenges, the motivation behind
this PhD project and the specific research gaps to be addressed in this thesis. A more
comprehensive review of the research area will be presented in the next Section,

which is devoted to a systematic literature review.



Fatigue was initially recognised as an important engineering problem in the
beginning of the 19th century when railway and bridge engineers in Europe
discovered that bridges and railroads were cracking when subjected to fluctuating
(or cyclic) loading conditions. As the century progressed and the use of metallic
materials significantly expanded with the increasing use of machines, more and more
fatigue failures of structural components subjected to fluctuating loading conditions

were encountered.

Today, fatigue has assumed an even greater importance for human society as a result
of the ever-increasing use of advanced materials and the desire for higher strength,
durability and performance from these materials, the increasing scale and complexity
of machine and structures, and a greater reliance on these machine and structures in

both the global economy and everyday life.

The stress and strain-based approaches were the earliest, but these are still the most
common approaches for fatigue life assessments across many industries and
engineering applications for High-Cycle Fatigue (HCF) and Low-Cycle Fatigue
(LCF) regimes, respectively. Both approaches have a strong curve-fit ability and rely
on several material constants, which must be determined from extensive, quite
expensive and time-consuming fatigue tests. Therefore, a huge effort has been
directed to link these constants to common material properties (e.g., yield tress,
ductility, hardness, etc.), which can be obtained from simple, inexpensive and short
uni-axial or indentation tests. However, this effort has had only partial success as
many other factors can affect the fatigue life of structural components, e.g., the

environment, surface finish and presence of stress concentrators.

An alternative approach to failure prediction is based on Continuum Damage
Mechanics (CDM), which is a relatively new development in the mechanics of
materials. The general concepts and fundamental aspects of this approach were
described by Kachanov (1986). Chaboche and Lesne (1988) were the first to apply
CDM to fatigue life predictions.



For the one-dimensional case, they postulated that the fatigue damage evolution per
cycle is a function of the load and damage parameter, d, 0 <d <1, where d = 0
corresponds to the damage-free state and d = 1 to failure. Several linear and non-
linear damage summation rules or principles were introduced to evaluate the failure
conditions due to variable amplitudes of loading or in the presence of several damage
mechanisms, e.g., fatigue and creep. The latter is considered to be the main
advantage of CDMs.

All the above approaches have one common significant deficiency: there is no
consistent definition of what the failure state is. It may be defined as, for example,
when the first small detectable crack is found, or after a certain percentage decrease
in stiffness, or as the actual complete fracture of the component. The differences in
fatigue life predictions according to these fuzzy definitions of failure conditions may
be small or appreciable. As mentioned above, failures are significantly affected by
many controllable and uncontrollable factors, e.g., the quality of and procedure for
material processing and manufacturing, geometry, stress states and the environment.
The combined effect from all these factors can, and normally does, lead to a large
scatter in fatigue life. This in turn dictates the utilisation of large safety factors in the
design and evaluation of the safe life of structural components. Larger safety factors
in design mean heavier, more expensive, and less efficient operation; meanwhile,
larger safety factors in the safe life evaluation led to more frequent safety inspections
and higher maintenance costs.

Many the above deficiencies of early approaches to fatigue life assessment have been
eliminated using the fatigue crack propagation (FCP) approach. The first attempts at
predicting the fatigue crack propagation length were based on Linear Elastic Fracture
Mechanics (LEFM). The LEFM approach was first introduced by Paris et al. (1961),
who equated the fatigue crack growth rate to the stress intensity factor range, which

was considered the driving force of a propagating crack.



Later, researchers found that the crack growth rate curve as a function of the stress
intensity factor range is not linear but normally has a sigmoidal shape for many
structural metals and alloys, and is significantly influenced by the R-ratio, or the ratio
of the minimum to maximum stress intensity factors during cyclic loading. To reduce
the amount of fatigue testing, several empirical equations were suggested in the
1970s to extrapolate experimental fatigue data over different R-ratios. At the same
time, the damage tolerance approach, as an alternative to the safe life approach, was
developed and first applied in design procedures for aircraft structures, which require
a high strength to weigh ratio and reliability. The application of the damage tolerance
approach, together with ultrasonic defect detection methods, enabled a significant
decrease in safety factors, a reduction in manufacturing and maintenance costs, and

made it possible to realise some advanced designs and engineering solutions.

However, the main challenge was (and remains) how to predict the fatigue life of a
structure or component subject to a diverse (e.g., variable amplitude) loading history
from limited materials data, which is very often available for the case of uniaxial
cyclic loading at constant amplitude. Elber’s discovery (1970) of fatigue (or
plasticity-induced) crack closure, some 50 years ago, held out the prospect of
addressing this challenge and delivering significant advances in this area.

A large amount of theoretical, computational, and experimental work has been
carried since this discovery. Unfortunately, the initial expectations remain largely
unsettled (de Matos & Nowell 2009). There are a number of reasons for this apparent
lack of progress over the past five decades. These include: (1) the complexity of
crack closure phenomena, which incorporate plasticity, roughness, and oxidation
closure mechanisms; (2) difficulties with experimental measurements and significant
inconsistencies in these measurements across different methods; (3) theoretical crack
closure models are extremely computationally demanding and normally limited to
two-dimensional (2D) geometries. The latter limitation represents another significant
challenge in Fracture Mechanics and fatigue life assessments (Pook 2013) and it is

the focus of the current thesis.

10



The three-dimensional (3D) effects are currently largely ignored despite the
enormous amount of theoretical and experimental information that has been
published over the past five decades. Contemporary stress analyses of cracks and
fatigue life evaluations are based on the fundamental fracture mechanics concept of
the stress intensity factor or effective stress intensity factor, as proposed by Wolf
Elber in his thesis at UNSW Sydney in 1968.

In general, a stress intensity factor describes the linear elastic stress field in the
vicinity of a crack tip, which has the inverse square root singular behaviour (r=/2).
In actual 3D geometries, this is not the case in the vicinity of a corner point where a
crack front intersects with a free surface. The singular behaviour at this corner point
is different, and sometimes is called a vertex or 3D corner singularity, and is an
important source of 3D effects. For example, it was demonstrated in a number of
experimental and computational studies that the 3D corner singularity can influence
the crack growth rates and shape of the crack front near free surface and fatigue life

estimates.

Another important 3D effect is the out-of-plane stress distribution, which in the case
of plate components with through-the-thickness cracks can be causally related to the
plate thickness (Kotousov 2007). Contemporary Fracture Mechanics utilises two
assumptions with respect to the out-of-plane or transverse conditions: plane stress or
plane strain. The application of the plane strain assumption to fracture problems has
a physical justification. When the plastic zone size is small in comparison with the
specimen thickness, experiments indicate that it must be less than 2 percent of the
plate thickness, then the fracture is dominated by plane strain conditions. There have
been several 3D computational studies that have demonstrated that the plane stress
conditions (or zero transverse stress) are never achieved near the crack tip, regardless
of the plate thickness.

11



The effect of the out-of-plane stress on fatigue can be more profound, leading to
significantly different crack growth rates in specimens of different thickness under
the same applied stress cycle. The latter is often attributed to the change in the
plasticity-induced crack closure with the change of the specimen thickness, which is
larger for thin plates due to the reduction in the out-of-plane constraints.

The 3D corner singularity and out-of-plane constraint effects can lead to a very
complex crack front evolution even for plane/plate problems with through-the-
thickness cracks. The current fatigue evaluation procedures are largely based on
simplified or idealised crack front shapes, e.g., a straight front for through-the-
thickness cracks or part-elliptical for surface cracks, which may be not accurate
enough to model the fatigue failure of actual structural components. Therefore, it is
important to understand the situations when these idealised crack front shapes are
appropriate and when these simplifications can lead to noticeable errors in
evaluations of fatigue life expectancy. These two research questions motivated the
current PhD project.

The overall aim of this thesis is to investigate theoretically, numerically, and
experimentally the influence of the crack front shapes on the evaluation of the fatigue
life of structural components. The ultimate goal of this research is to improve, or at
least provide the limitations of, current fatigue life procedures by considering more
realistic shapes of structural defects, which reflect the complex fatigue crack growth

mechanisms.

12
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2.1 Introduction

Given that Fracture Mechanics covers a wide range of theoretical, experimental,
numerical, and practical developments, the focus of the current literature review is
those specific aspects that are important for the current research. The present
literature review consists of two parts: the first part is an introduction to three-
dimensional (3D) Fracture Mechanics and the second part provides a general
overview of fatigue phenomena, focusing on 3D effects associated with the evolution

of crack front shapes during cyclic loading.
The first part was submitted and published as an invited review paper in the

International Journal of Fracture. It offers an overview of three-dimensional linear-

elastic fracture mechanics. A copy of the paper is provided below.
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2.2 Part 1: Introduction to 3D Fracture Mechanics
An extensive investigation was conducted to provide a brief review of 3D Fracture

Mechanics and the outcomes of the latest research in this area. The following

research article is largely focused on linear-elastic materials.
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Abbreviations

a Radius of cylindrical hole

A Function of z-coordinate

b Small number

Ci...Cy Constants

E Young’s modulus

h Half plate thickness

Fi Applied forces

Fs, Fa Functions of angular position (9, @)
f1, fir, fir Functions

G Energy release rate

Gp Energy release rate in mode |
K Stress concentration factor
Kc Apparent fracture toughness
Kic Fracture toughness in mode I

K, Ki1, Kip - Stress intensity factors in mode I, II and
III, respectively

s Ky Remote stress intensity factors in mode

I and II, respectively

Ks, Ka Stress intensity factors of symmetric
and antisymmetric vertex singularities,
respectively

Ko Stress intensity factor of the out-of-plane
mode

Kyvertex Stress intensity factor of vertex singular-

ity, Kyertex = (Ks, Ka)
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J J-integral

M Maximum modulus of the prescribed
edge tractions

n Power exponent

R Distance from the edge of hole or vertex
point

r, ¢ Polar coordinates

uj Displacement components, i = (X, y, Z)

X,V,Z Coordinates

104 Positive constant

Be Critical angle

As, AA Strengths of symmetric and antisymmet-

ric vertex singularities, respectively
Avertex> Mline  Strengths of vertex and line singularities,

respectively

0 or 0j Stress components, i = (X,y, z) and j =
(x,y,2)

€ O &jj Strain components

& Minimum distance to the observation
point from the edge of plate or free sur-
face

1 Coordinate associated with crack front

A1 Lame’s constants

v Poisson’s ratio

R, 3, ¢ Angular coordinates of a point

3,90 Angles which identify the local geome-

try of the vertex point

1 Introduction

Plane problems of linear elasticity are often treated
with simplified 2D theories, which utilise plane stress
or plane strain simplifications. However, stress anal-
ysis based on the classic plane theories of elasticity
may occasionally lead to peculiar results due, in part,
to the fact that these theories are approximate three-
dimensional theories even when the plane stress or
plane strain equations are solved exactly (Yang and
Freund 1985). Subsequently, the aim of this paper is to
provide a brief review of common situations and prob-
lems, which require 3D analysis (Maurizi and Berto
2020) .

In the beginning, consider a classical example
described in a textbook by (Broek 1974), which is
related to the fatigue failure initiation due to a stress
concentrator, i.e. a circular hole in a large plate sub-
jected to uni-axial loading, as illustrated in Fig. la.
Experimental evidence shows that for relatively thin

@ Springer

plates the crack originates either at the centre of the
plate (Fig. 1b) or at the corner, where the hole meets the
free surface of the plate (Fig. 1¢). However, in relatively
thick sections, cracks at holes are usually corner cracks
instead of through cracks. Of course, cracks in general
originate from small imperfections or discontinuities
that may be present in the material. Such discontinu-
ities may either be man-made or may be introduced in
the material during the process of fabrication (Folias
and Wang 1990). Thus, one possible explanation for
this phenomenon is that such discontinuities are most
likely to be present in the region where the hole meets
the free surface of the plate. Another explanation could
be that the stress levels may actually be higher near
the surface on contrary to what is predicted by the 2D
elasticity theories (Kotousov et al. 2019).

Figure 2 shows the stress concentration factor dis-
tribution across the thickness, K (z / h), as derived by
Folias and Wang (1990), based on a general 3D solu-
tion to Navier’s equations, which was obtained using
a double Fourier integral transform and the theory of
integral equations. These results are also in an agree-
ment with 3D FE studies conducted over the past two
decades (e.g. Yang et al. 2008). Several conclusions
can be drawn from these results. At relatively large
hole diameter to thickness ratios (or a / h ratios) the
3D solution indeed converges to the classical plane
stress result, K¢ = 3, as first obtained by Kirsch more
than two hundred years ago. When the radius of the
hole, a, is larger than the plate thickness, 2h, there
is a certain difference between approximate 2D and
exact 3D solutions. At high a / h values the maximum
stress location is shifted closer to the free surface, or
toz / h= 1 referring to Fig. 1. Therefore, the exact 3D
solution alone is also able to explain the experimen-
tal observation regarding the crack initiation location.
Howeyver, the difference with the 2D solution is small
and within 5-7% for the in-plane stress components.
It is interesting to note that 3D numerical studies indi-
cate that the above estimates are also true for many
other plane problems of linear elasticity, which have
no stress singularities (Kotousov et al. 2010; Kotousov
2007). Therefore, 2D analytical solutions represent a
good compromise for stress calculations in many prac-
tical situations. As a result, these solutions are widely
utilised for design and stress analysis. Finally, it is
of some academic and practical interest to examine
the behaviour of 3D stress field near a circular edge,
i.e. the points where the hole meets the free surface
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of the plate. Without going into mathematical details,
an asymptotic approach, which satisfies all boundary
conditions and 3D equilibrium equations, leads to a
characteristic equation with infinite number of com-
plex roots. The first root of which is the same as that
obtained by Williams solution for a 90° angular cor-
ner with free-free tractions, i.e. w = 2.739641.1191
(Folias and Wang 1990). Therefore, the displacements
near the edge are ui~R% and stresses are limiting to
zero at R — 0, where R is the distance from the edge of
the hole. This result is also in an agreement with care-
ful 3D FE simulations, see for example, She and Guo
(2007) and Yang et al. (2008), and it can be generalized
for other plane geometries.

Y 3D stress

A different situation occurs for the out of plane (z)
stress components. The plane assumptions of the 2D
linear theory of elasticity provide a wide range for the
normal stress: 0,; = 0 (in the case of plane stress or
for thin plates) and 0,, = v (O'XX + ny) (in the case
of plane strain or for thick plates). However, there is
no generally accepted criterion for selecting the appro-
priate (plane stress or plane strain) assumption for a
particular plate problem with prescribed boundary and
loading conditions (Kotousov and Wang 2002). More-
over, the plate thickness may be irrelevant to the domi-
nant stress state in a plate component. For example, the
3D stress state in an infinite plate with cylindrical hole
(as well as without hole) subjected to remote hydro-
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static pressure is identical to the plane stress solution,
regardless of the plate thickness.

To address this uncertainty, Gregory and Wan (1988)
formulated a general hypothesis regarding the decom-
position of 3D and 2D stress states in plane problems
of linear elasticity. In accordance with this hypothe-
sis, the exact solution can be represented as a sum of
an interior plane stress solution of the corresponding
plane stress problem and decaying 3D layer solution,
see Fig. 3. The decaying behaviour of 3D solution is
assumed to have a form :

o ~ Mexp (—a%) , (D)

where £ is the minimum distance of the observation
point from the edge of the plate, M is the maximum
modulus of the prescribed edge tractions, and « is a
positive constant independent of the half-plate thick-
ness h.

While the interior two-dimensional solution is sig-
nificant throughout the plate, the layer solution has only
a localised effect in regions near the plate edges or
applied loading. This resolution has not been proven
rigorously yet, except for several special cases, how-
ever “(...) the asymptotic results of the sixties leave
little doubt that such a resolution does exist” (Gregory
and Wan 1988). In addition, numerical, analytical, and
experimental studies largely confirm this hypothesis
and indicate that the region of the 3D stress state is con-
fined to approximately one-half of the plate thickness,
or & 11in Eq. (1). Many references to the present arti-
cle can be listed here to support the above statements.

For many structural components, the plate thickness
is normally much smaller than any in-plane character-
istic dimension meaning that the region affected by the
3D stress state is usually very small in comparison with
the overall volume of the structural component. How-
ever, failures, in particular fatigue failures, normally
initiate from this region, which is associated with free
boundaries, see Figs. 1 and 2. Thus, 3D stress states
can potentially influence the failure conditions as well
as the fatigue life of structural components (She et al.
2008; Kotousov et al. 2010, 2013), which motivates the
reassessment of the validity of plane stress solutions to
real 3D problems. This is particularly important for
problems with singularities, e.g. problems with cracks,
which are the focus of the current paper.
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2 Singular stress states near crack front

Stress singularities obviously are not of the real world.
Nonetheless, they are of a real fact of a stress analy-
sis (Sinclair 2004a). Stress singularities can be associ-
ated with a sudden change of boundary conditions or
applied loading (e.g. concentrated forces and moments)
over vanishingly small areas or volumes, which is often
termed as singular loads. This class of stress singular-
ities is well investigated and the nature of their origin
and asymptotic behaviour is presently well understood.
For example, 2D and 3D analytical solutions for con-
centrated loads or edge dislocations are often utilised
as Green’s functions in stress analysis or in integral
equation approaches, which have wide applications in
elasticity as well as in numerical methods.

Another class of singularities, which is the focus
of the current paper, is generally not related to singular
loads. Stress singularities from this class may occur due
to abrupt changes of the geometry; singularities arising
in fracture problems belong to this class. There were
many papers and books in the past focusing on the 2D
linear-elastic analysis of the singular stress states near
the tip of a crack. Sinclair (2004a, b) presented the most
comprehensive review of 2D singularities.

The classical 2D linear-elastic theories provide a
power tool for analysis of various singular problems,
and, in particular, crack problems. This tool is based
on three main simplifications: (1) strains and displace-
ments are small, (2) the stress-strain response is linear,
i.e. implicitly adopting that the strains never exceed the
limits of elasticity; and (3) the stress state near a crack
tip follows to plane stress or plane strain assumptions.
Nonetheless, the singular stress state near the crack tip
is in violation of all three of these simplifications.

There were many attempts in the past to relax the
above simplifications. It was demonstrated, for exam-
ple, that the large strain analysis still demonstrates the
persistence of singular behaviour, so the r~! behaviour
as r — 0 of the crack-tip stress-strain product contin-
ues to be present. Several researchers have found that
the stress singularities are not removed within the con-
text of deformation theory of plasticity. For example,
in accordance with Ramberg—Osgood model, the stress
field near the crack tip behaves as o ~r~!®+D and
o -& ~r~!, where n is the strain hardening exponent
and r is the distance from the crack tip.

The classical Linear-Elastic Fracture Mechanics
(LEFM) naturally avoids two out of three simplifica-
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tions in the treatment of singular problems by introduc-
ing an assumption regarding the smallness of the high
stress/strain region associated with all sorts of nonlin-
earities. This theory propounds that the stress intensity
factor dominates the stress state near the crack tip, and
when the process zone is fully encapsulated by the K-
dominance region, fracture initiates. The predictions of
LEFM are expected to be valid as far as the underlining
assumption is met (He et al. 2016b).

However, the contemporary Fracture Mechanics still
largely relies on the third simplification regarding the
state of stress near the crack front. This simplification,
in particular, avoids the complexity of 3D stress anal-
ysis by reducing the problem dimensionality, which
in turn, allows the application of the well-developed
analytical methods of plane theory of linear elasticity.
Many exact solutions were derived using these meth-
ods. These fundamental solutions and results form the
foundation of the contemporary LEFM and are incor-
porated into many current life expectancy and integrity
evaluation procedures. However, it is often acknowl-
edged that these solutions may not be accurate or ade-
quate for analysis of actual problems, which always
have three dimensions (Pook 2010, 2013). In the fol-
lowing we will make an attempt to describe these situa-
tions as well as the main differences between exact 3D
solutions and the corresponding 2D analytical results,
and discuss what implications on fracture and fatigue
these differences have.

Hartranft and Sih (1969) were the first who pro-
vided an approximate 3D solution near the straight
front of a semi-infinite crack assuming plane strain
conditions near the crack front. However, this solution
has not been popular due to its complexity and lack
of explicit representation. Leblond and Torlai (1992)
attempted to derive 3D displacement and stress fields
near straight and curved crack fronts adopting the plane
strain assumption. Costabel et al. (2004) and Omer et al.
(2004) obtained an explicit asymptotic solution near
the front of a 3D crack. However, this solution disre-
gards 3D stress states associated with vertex points,
where there is a change of singular behaviour. There
were many other attempts to obtain exact or approxi-
mate analytical 3D solutions for crack problems, e.g.
Kotousov (2007), Omer and Yosibash (2005), Yosi-
bash and Mittelman (2016), Kotousov et al. (2017),
and Khanna et al. (2019) to name a few.

So far, numerous analytical attempts have had a lim-
ited success in deriving exact 3D or at least providing

3D asymptotic expansions of the stress and displace-
ment fields. Therefore, the main results in 3D LEFM
are largely based on generalisations of outcomes of
numerical studies, which, however, have been con-
ducted for specific geometries, material properties and
boundary conditions, e.g. Hutaf et al. (2009 and 2010),
Branco et al. (2012), Maia et al. (2016) and Lopez-
Crespo et al. (2018). Based on these numerical stud-
ies, as well as fundamental theoretical results for 2D
geometries, the stress field near point, 11, at the 3D crack
front, see Fig. 4, is often represented as a sum of the
stress states generated by the so-called line singulari-
ties, Kijine = (K, Ki1, Ki11), and vertex (or 3D corner)
singularities, Kyerex = (Kg, Ka):

K K
o— I(H)fH_ II(TI)fH

Vr Vr
Km ()
Jr

where K1 (1), K1 () and Kypp (1) are local stress inten-
sity factors in mode I, T and III, respectively; fi, fi1
and fyy; are associated functions of ¢, see Shivakumar
and Raju (1990), Heyder et al. (2005) and Kotousov
etal. (2019). It is often hypothesised that the behaviour
of line singularities on the planes perpendicular to the
crack front can be described by the corresponding clas-
sical 2D asymptotic expansions. This assumption is
often utilised to extract the local stress intensity fac-
tors from 3D numerical results and will be discussed
later in this paper. Kg and Ka are stress intensities of
symmetric and antisymmetric corner (vertex) singular-
ities, respectively, Fs and Fp are functions of angular
position (I, ¢), which are omitted in Fig. 4b for the sake
of clarity; R is the distance from the corner point; Ag
and Ap are strengths of symmetric and antisymmetric
vertex singularities.

If the crack front has several vertex points, then Eq.
(2) can be modified accordingly to include the con-
tributions from singular states associated with these
points. In particular, for surface cracks in plates, bars
and shells, there are typically two vertex points asso-
ciated with the intersection of two free surfaces by the
crack front.

Figure 5 presents outcomes of numerical simula-
tions for a linear elastic plate with a semi-infinite
through-the-thickness crack loaded in mode I and II by
a remote stress intensity factor, K{® and K}, respec-
tively. The crack front is assumed to be straight forming
the right angles at the intersections with the free plate

+ fir + KsFSR™S + KAFAR™  (2)
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Fig. 4 Representation of
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Fig. 6 Visualisation of the generation of the coupled fracture
mode (mode O) due to Poisson’s effect for a crack subjected to
shear (mode II) loading

surfaces. Details of the finite element model as well as
the applied boundary conditions can be found in many
papers published over the past 20 years. It seems the
first numerical study reporting results for this problem
was conducted by Nakamura and Parks (Nakamura and
Parks, Nakamura and Parks 1998 and Shivakumar and
Raju (1990)).
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From Fig. 5a, the variation of the local stress inten-
sity factor, Ky (z), increases with an increase of Pois-
son’s ratio for mode I, and the variation of Kyj (z) with
the change of Poisson’s ratio is rather small and omitted
in Fig. 5b. Atv = 0, the stress intensity factor distribu-
tions for mode I converges to the 2D plane stress solu-
tion, where the stress intensity factor is constant along
the crack front. The difference between the plane solu-
tion, Ky (z) = K{*, and the numerical 3D solution
is small except near the free surfaces, or when z / h=1.
This behaviour needs a special consideration and will
be discussed later in this paper.

Figures 5b and 6 alsoreveal a new fracture mode, the
out-of-plane mode O, which is coupled with the applied
fracture mode II (Kotousov et al. 2013). The existence
and features of the coupled out-of-plane mode (mode
O) in problems with cracks, and sharp and rounded
notches have been discussed exhaustively in the lit-
erature (Camas et al. 2017; Maurizi and Berto 2020;
Kotousov et al. 2013, 2019). A simple explanation of
the mechanism behind the generation of this fracture
mode can be as follow: mode II loading creates tensile
and compressive stress states on two sides along the
bi-sector line aligned with the crack, which leads to a
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scissoring motion of the opposite sides due to the Pois-
son’s effect, as illustrated in Fig. 6. This mechanism
generates the new fracture mode, which has similar
characteristics as the global fracture mode III. How-
ever, this is a different fracture mode, because it is the
local mode decaying very rapidly from the distance
from the crack front. It is confined to approximately
half of the plate thickness in the radial direction, similar
to other 3D stress states in plane problems of elastic-
ity. In addition, Ko (z) changes significantly along the
crack front, zero at the mid-plane (z / h = 0) and free
surfaces (z / h = 1) due to symmetry and free bound-
ary conditions, respectively (Kotousov et al. 2010). Itis
also strongly dependent on Poisson’s ratio, v. Similar
tomode I, at v = 0, the local stress intensity factor dis-
tribution, Ky (z), converges to the corresponding 2D
plane stress solution, Ky (z) = K{°, and mode O is
vanishing, see Fig. 5b (Berto et al. 2012).

3 Effects of vertex singularity

The large difference between the 2D plane solution and
3D results near the free surfaces is generally attributed
to the effect of vertex (3D corner) singularities, first
described in the late 70th early 80th by Benthem and a
numbFer of other researchers (Benthem 1977, 1980).
It was demonstrated that at the intersection (or vertex)
of the crack front and a free surface, the square root sin-
gularity disappears, and at such a point, one has to deal
with a different singular behaviour. The symmetric and
anti-symmetric stress states associated with the corner
singularities depend on the stress intensity value, Kg
and Ky, respectively, the distance to the corner point,
R, and the angular position (9, ¢), which are omitted
in Fig. 4b for the sake of clarity. The strength of the
corner singularity, As or A, is a complex function of
the local geometry (3, ) and Poisson’s ratio, v. The
values of the stress intensities as well as the strength of
singularities for different geometries and loading con-
ditions can be obtained using various semi-analytical
methods and direct numerical approaches, e.g. FEM or
BFEM (Mittelstedt and Becker 2005; Luangarpa and
Koguchi 2016; Doitrand et al. 2020).

The dependences of Ag and As from Poisson’s ratio
are given in Fig. 7a for the most commonly considered
case of a plane through-the-thickness crack in linear-
elastic plate 3 = 0 = 7r/ 2. These dependences have
been obtained from fitting numerical results presented

in various papers (He et al. 2015). It can be noted that
the strengths of the corner singularities at v = 0 are
the same as the one for the line singularities (or 0.5).
Another interesting observation is that Poisson’s ratio
affects the strength of the corner singularity for sym-
metric and antisymmetric loading in an opposite way.
In the case of symmetric mode, a higher Poisson’s ratio
leads to lower values of Ag, and the tendency is opposite
for As characterising the antisymmetric mode.

The influence of corner singularities on brittle
fracture and fatigue behaviour is currently not well
understood (Pook 2013; Branco et al. 2013). Several
researchers suggested in the past that the presence of
the corner singularity may lead to a deviation of the
fatigue crack front from the orthogonal direction near
the free surface, or 3 > or < than 71/ 2, as illustrated
in Fig. 7b. This phenomenon is normally observed in
fatigue tests for various materials. However, the devi-
ation from a straight shape can also be associated with
fatigue crack closure mechanisms and loss of the out-
of-plane constraints near the free surfaces (de Matos
and Nowell 2008).

Based on energy considerations, several researchers
suggested the stress singularity matching concept. In
accordance with this concept, the front edge of a fatigue
crack under fatigue intersects the free surface at a cer-
tain critical angle, (3¢, to ensure the same singular
behaviour along the whole length of the crack front.
This critical angle, 3¢, depending on Poisson’s ratio,
was obtained numerically, and verified in several lat-
est studies, as shown in Fig. 7b (Pook 2013; He et al.
2014). The numerical results are rather accurate, and
can be described by the following equations:

-2
B =tan"! (V—) : 3)
v
for symmetric mode (S), and
1—
Be =tan"! (—V) , )
v

for antisymmetric mode (A).

Past experimental examinations of this hypothe-
sis often led to opposite conclusions. This is likely
due to the existence of at least two different mecha-
nisms affecting the fatigue crack front shape: plasticity-
induced crack closure and dominance of the vertex sin-
gularity stress state near the free surface. For example,
for fatigue crack growth in brittle specimens of rect-
angular and trapezoidal shapes made of PMMA with a
measured Poison’s ratio of 0.365, the results were found
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to be consistent with the stress singularity-matching
concept, see Fig. 8 (Heyder and Kuhn 2006). In all
cases the angle at which the crack intersects the free
surface was around 104°, which is close to the theoret-
ical prediction, see Fig. 7b. Moreover, the crack front
shape changed with the change of the global geometry
(Fig. 8b, c) during fatigue cycling and the shape evolved
to keep the intersection angle roughly the same.
Another set of experimental data (Fig. 9) reported by
the same research group, for surface-breaking cracks
performed on round bars with a diameter of 20 mm
made of 34CrNiMo6 high strength steel, does not gen-
erally support the stress singularity matching concept

@ Springer

0.4 0.6 0.8 a/d

(Lebahn et al. 2013). The reason, in this case, could be
the relatively large size of plasticity region compared
to the region controlled by the 3D corner singularity,
which negates its influence on the evolution of the crack
front shapes during cycling loading. In this case, the
shape of fatigue crack is governed by the effective stress
intensity factor, Kefr, which is influenced by the loss of
the out-of-plane constraints near the free surfaces.

To meet LEFM requirements in these tests, as well as
in many similar experimental studies, the plastic zone
size must be small compared to the ligament. In partic-
ular, these requirements demanded that the plastic zone
size, rp, should be less than 0.5 mm (Lebahn etal. 2013).
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However, this plastic zone size is certainly too large to
avoid the influence of plasticity on the stress field asso-
ciated with the 3D vertex singularity (often referred
to as boundary layer), which is normally dominated
within five—ten present of the ligament length, or in
this case ~ d / 10, or approximately 1-2 mm. This size
has been estimated based on several numerical studies
(Branco et al. 2012; Hutaf et al. 2009; He et al. 2016a;
Camas et al. 2017). Thus, both regions have approxi-
mately the same characteristic length, and the intersec-
tion angle is the result of a complex interaction between
competing mechanisms associated with 3D vertex sin-
gularity effect, plasticity and elasto-plastic constraints
(Lopez-Crespo et al. 2018; Yu and Guo 2013; de Matos
and Nowell 2008).

Attracting the similar arguments of the classical
LEFM, the 3D vertex singularity dominates the stress
state near the free surfaces: r, < r3p~ 0.05+0.1 x L,
where L is the length of the ligament, e.g. 2h for
through-the-thickness cracks with straight front. It can
be hypothesised that when this condition is met, then
the crack front will tend to intersect the free surface at
the critical angle, as in the previous set of fatigue test
results for PMMA. However, this hypothesis is yet to be
validated with carefully planned experimental studies.

4 Displacements and stresses near vertex point

The displacement field near the crack front is a quite
controversial topic in LEFM. The plane stress assump-
tion leads to infinite normal out-of-plane strain com-
ponent, and subsequently, to infinite out-of-plane sur-
face displacements near the crack front, which have no
physical meaning. Therefore, in many textbooks and
research articles, the plane strain conditions are nor-
mally assumed near the crack front. These conditions
imply zero out-of-plane strains and zero out-of-plane
displacements at the crack tip. The same result (zero
out-of-plane displacements and strains) follows from a
3D (approximate) solution, which utilises the shadow
functions approach (Costabel et al. 2004; Omer et al.
2004; Omer and Yosibash 2005). In this solution, the
displacement components near the straight front of a
semi-infinite crack straight allow the following asymp-
totic expansion:

Ux 1 —sin%—FC]sin%
u | =A@)r2 —Clcos%—i-Clcos%
Uz 0

0
A 3
-|-8 a(z)r% 0
Cy sin %
2A (2) s C3sin%+C4Sin%
o2 r2 %cos% — %cos% %)
0
where constants C;...Cy:
3N+ 20+ 3+
LT A 5 YT A+se T T 6(A+sw)]
(A +7w)?
A = ©)

T6A+5W (AT 11

are functions of Lame’s constants, A and u. However,
as it can be seen from the expansion, this approach
ignores the presence and effect of vertex singularities.
On contrary, the first-order plate (or Kane and
Mindlin) theory, which takes into account the out-of-
plane shear stress components and also disregards the
effect of vertex singularities, predicts some finite dis-
placements near the crack front (Kotousov 2007). The
latest numerical studies (He et al. 2016a) supported by
experimental investigations (He and Kotousov 2016)
on thick brittle plates made of PMMA indicate that the
transverse displacements at the crack tip for mode I
are finite (as expected). At the free surface (z = +£h),
the out-of-plane displacement for a semi-infinite crack
loaded in mode I by stress intensity factor, K™, can be
approximated by the following equation, the form of
which follows from dimensionless considerations:

1.34-v-K®vh
— 5 @

meaning that neither plane stress nor plane strain
assumptions is valid near the crack front, even for a
very thin plate. Figure 10 summarises the outcomes of
predictions of the out-of-plane surface displacements
from plane stress solution, first-order plate (Kane and
Mindlin) theory, 3D FE simulations, and experimental
studies.

Behaviour of stress intensity factors near the ver-
tex points is another controversial topic, which has no
generally accepted understanding among researchers
(Leblond and Torlai 1992). For example, Hutaf et al.
(2009) and (2010) concluded from a FE analysis of
middle tension specimens that the strength of the line
singularity is different from 0.5 (or square root singu-
larity) and decreases near the free surfaces. Many other
numerical simulations for surface cracks show

Uz (rv (ba :l:h) N =
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Fig. 10 A comparison between the theoretical predictions, FE
simulations and experimental results (He and Kotousov 2016;
He et al. 2016a, b; Khanna et al. 2019)

some finite values of the local stress intensity factors
at the surface points arguing that the evaluation of the
stress intensity factors at these points is inaccurate and
affected by vertex singularities. The behaviour of the
local stress intensity factor, K (z), may also be affected
by the different techniques, which are used to process
numerical results (Camas et al. 2012).

The most common computational techniques are
based on the stress field ahead of the crack front,
displacements behind the crack front and J-integral,
which implicitly assume the validity of the classical
2D asymptotic solutions in 3D problems. The corre-
sponding formulae for the evaluation of stress intensity
factors in mode I are summarised in Egs. (8, 9, 10).

Ki = v2mroy (¢ = 0) (8)
__n |2m _
KI—(K+1) : uy (¢ =m) ©)
K = E J 10
1=\ 132 (10)

The outcomes of the evaluation of the local stress
intesity factor behaviour for a through-the-thickness
crack in accordance to Eqgs. (8)—(10) are summarised
in Fig. 11 for a Poisson’s ratio equal to 0.3. All
approaches provide essentially the same dependences
of K (z) in the interior part of the crack front, but very
diferent dependences near the free surfaces or vertex
points. These results, in particular, indicate that despite
many numerical studies in the past for homogeneous,
anisotropic and composite materials, the evaluation of
the line stress intensity factor behaviour near the ver-
tex points still represents a significant challenge. For
practical purposes of fatigue life evaluation of struc-
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Fig. 11 Local stress intensity factor variations (de Matos and
Nowell 2008)

tures with surface defects, some authors recommend
ignoring values near the vertex points and rather utilise
extrapolation techniques to evaluate the values of stress
intensity factor values near free surfaces (Heyder et al.
2005; Shin and Cai 2004).

Instead of numerical simulations, analytical asymp-
totic approaches can shed some light on the above-
formulated problem and clarify the behaviour of stress
intensity factors near vertex points. As first shown by
Benthem (1977, 1980), the behaviour of the stress
intensity factor, K, in the area affected by the 3D corner
singularity can be described as follows:

K (s) Ns—ks+0.5 (11)

where s is the curvilinear abscissa of the crack
front with its origin at the end point on the free
surface. A similar result was obtained by Leguillon
and Sanchez-Palencia (1999) attracting the matched
asymptotic expansion method. In particular, the follow-
ing expression of the energy release rate was derived for
points on the crack front located near the free surface:

Gy (s) ~s ™24, (12)
which agrees with Eq. (11).
Further, attracting dimensionless considerations, the

variation of the stress intensity factor near the corner
points can be written as:

for mode I

Ki(s) ~Koxg 4103 (13)
for mode II

Kii(s) ~KfP xg a0 (14)
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where & is just the distance from the vertex point, or
E=1-z / h. These dependencies were verified with
careful FE studies (He et al. 2016a).

The differences between the strengths of the 3D cor-
ner and line singularities are positive for mode I and
negative for mode II, see Fig. 5Sa. Therefore, the dimen-
sionless considerations predict opposite tendencies of
the stress intensity factor variations at corner point for
these two fracture modes as it can also be observed
from many FE simulations in the past. Thus, for a crack
with a straight front subjected to mode II, the stress
intensity factor, Ky, is unbounded near the free sur-
face, or z — h, which essentially means an immediate
local (near free surfaces) failure. These conclusions are
in general agreement with general tendencies of many
published numerical results, see Fig. 5a, b.

In addition, FE simulations of composite joints
reveal similar dependences near the vertex points at the
bi-material interfaces. For example, from extensive 3D
FE simulations, Luangarpa and Koguchi (2016) found
that near the vertex point the line singularity has the
following behaviour

K ~ S_)\venex+)\line +b (15)

where b is a small number from 0.007 to 0.05. If one
assumes that this small constant, b, is primary associ-
ated with numerical errors (indeed the numerical results
have scatter of the same order) then Eq. (11) is consis-
tent with the asymptotic results of Egs. (8) and (9) for
homogeneous materials.

Based on dimensionless considerations, the follow-
ing dependences for the intensities of corner singular-
ities can be derived in the case of a semi-infinite (or
large) through-the-thickness crack loaded in mode I
and II, respectively:

KSNK?oh—?\S—i—O.S (16)
and
KANKﬁOh—AA"rO.S (17)

Indeed, the plate thickness and remote stress inten-
sity factors are the only parameters of the problem
(at fixed Poisson’s ratio). These dependencies are also
valid for arbitrary but similar crack front shapes, which
are scaled in the same way as the plate thickness. Eqs
(16) and (17) represent a new scaling law in Frac-
ture Mechanics. Other 3D scaling laws have also been
suggested based on dimensionless considerations and
investigated numerically for sharp notches (Carpinteri
et al. 2008; Kotousov et al. 2010; Berto et al. 2013).

5 2D and 3D brittle fracture criteria

LEFM is considered to be one of the most developed
engineering disciplines with well-defined limitations
and well justified criterion of fracture initiation. The
classical brittle fracture criterion states that crack is
unstable when

Ki= K, (18)

It is generally accepted that this criterion is valid when
the stress intensity factor dominates the stress state
near the crack tip, and when the K-dominance region
is much larger than the process zone. K, is the criti-
cal stress intensity factor and, in general case, it may
depend on the plate thickness.

3D analysis indicates that along with K-dominance
and process zones near the crack tip, which e.g. can
be associated with plastic deformations, there are two
other characteristic zones: the zones controlled by
the 3D vertex singularity and the 3D stress state, see
Fig. 12. The first zone is confined within R < 0.1h half-
spherical region with the centre in the vertex point and
is fully encapsulated by the second zone (see Fig. 12),
which is confined within r < h cylindrical region
with the axis aligned with the crack front (Rosakis
and Ravi-Chandar 1986). The above estimates of the
spread of both zones are based on numerical simula-
tions conducted, however, for specific geometries only.
The characteristic dimensions of these zones for other
crack geometries, e.g. surface cracks in round bars, are
currently unknown, and may be different to the above
estimates.

The classical brittle fracture criterion can be readily
adopted to incorporate the effect of these 3D zones
as follows. The classical brittle fracture criterion is
applicable to describe brittle fracture initiation if the
K-dominance zone is much larger than both the pro-
cess and 3D stress state zones. How much larger? It is
difficult to answer this question. Past numerical stud-
ies indicate that the 3D stress state is confined to a half
plate thickness in the plane directions, see Fig. 12. From
past numerical simulations, the 3D stress states near the
crack front are not affected by the boundaries if the size
of the K-dominance zone is larger than 3-4h (or if the
boundary conditions are applied at distances more than
two plate thicknesses in plane directions). This condi-
tion, in general, aligns with the Saint-Venant’s princi-
ple, which is common in stress analysis. Many standard
fracture specimens, however, do not comply with this
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Fig. 12 3D LEFM fracture
criterion

K-dominance zone

Crack faces

3D stress state zone < ~h

condition; therefore, the distribution of the local stress
intensity factors may be different for different test sam-
ples. This difference in turn can cause local and global
fracture initiation under different values of the applied
stress intensity factors, specifically for thick specimens
made of a very brittle material.

What about experimental evidences? To assess the
validity of the classical fracture criterion, Eq. (15), Sin-
clair and Chambers (1987) reviewed the open literature;
drawing on data furnished in papers, technical publi-
cations, proceedings of conferences related to fracture
mechanics, and technical reports. A number of strict
restrictions were implemented to select the relevant
and meaningful results. These restrictions and inclu-
sion procedure can be found in the original paper of Sin-
clair and Chambers (1987). A few thousand of various
fracture test results were reviewed and analysed within
the LEFM two-dimensional framework. The main con-
clusion which can be made from this study is that the
brittle fracture results generally follow tendencies pre-
dicted by LEFM, but these predictions are unsatisfac-
tory. These authors concluded that “Therefore, there is
reason to be concerned about basic fracture mechanics”
and classical 2D LEFM criterion. Many recent exper-
imental studies agree with this conclusion, which was
formulated more than 30 years ago, see also Fig. 13
ahead.

If the K-dominance zone is much larger than both
the process and 3D stress state zones, the 3D com-
putational results for the local stress intensity factor,
see Fig. 5a, generally support the classical LEFM cri-
terion for mode I, i.e. K = Kjc, as the variation of
K (z) is relatively small; and fracture is expected to
initiate in the interior section of the crack front. How-
ever, the same is not obvious for fracture mode II. The

@ Springer
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| Crack front

global Ky (z) and the coupled Kg (z) stress intensity
factors change significantly along the crack front (or
plate thickness) and exceed considerably the applied
stress intensity factor, Kf°, specifically near the free
surfaces. The latter can cause initiation of a local frac-
ture near the free surfaces, which can lead to either
global fracture, or remain local and change the crack
front shape near free surfaces.

Fracture initiation under mixed mode conditions
(e.g. I4+1I or I411I) is beyond the scope of the current
review. It remains one of the most intriguing puzzles
in LEFM despite it has been widely studied over the
past decades (Pham 2016). The crack growth under
such loading combinations is not planar anymore. For
example, under combined mode I + III, the crack tends
to rotate around the direction of propagation in order
to reduce mode III and reach a pure mode I situation.
This leads to a fragmentation of the initial crack into
multiple daughter cracks (also called facets) and forms
a very distinct fracture surface appearance. The latest
developments in this area include careful experimental
studies, investigations of T-stress and high-order terms
on brittle failure initiation (e.g. Aliha and Ayatollahi
2011; Gardeazabal et al. 2014; Yosibash and Mittel-
man 2016; Aliha et al. 2017; Qian et al. 2018) as well
as numerical studies attempting to predict crack initia-
tion and growth under such loading combinations.

6 Asymptotic expansion

Based on the energy balance equation (or J-integral or
energy release rate) and an assumption that the classical
(2D) asymptotic expansion is valid near and far from
the crack front (in the case of 3D problem formulation)
alink between the remotely applied stress intensity fac-
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Fig. 13 Correspondence of
2D and 3D problems in
linear elasticity

Plane problem

K-dominance zone

tors, K and K, and the local stress intensity factors,
K1 (z), K1 (z) and K (z), can be derived:

1

h 2
1— 2
K = ( 2}:’ /K% (z)dz) (19)

—h

h h 2
1—v2 14+
Ky = (2}://1(121 (2) dZ+TV/K(2) (2) dz) (20)

—h —h

These relationships are sometimes utilised to ver-
ify the quality and accuracy of 3D numerical simu-
lations (Nakamura and Parks 1998, 1989). However,
these equations may be incorrect because, generally
speaking, the classical (2D) asymptotic expansion is
not valid for the corresponding 3D problem far from
the crack front but still in K-dominance zone. The 2D
asymptotic expansion, in particular, is not valid in the
zone adjacent to the crack faces, as illustrated in Fig. 13
and explained earlier. This difference in 2D and 3D
stress distributions far from the crack tip can lead to
the inequality of the left and right parts of Eqgs. (19)
and (20).

One can even make an imaginary experiment: con-
sider a 2D crack problem for which K{® = Ki° = 0,
or when the leading terms of the asymptotic expansion
are zero and some higher order terms of the asymptotic
expansion are not zero. If the corresponding boundary
conditions far from the crack front apply to the cor-
responding 3D problem, this may lead to a surprising
result: non-zero local stress intensity factors or non-
zero energy release rates. This is because it would be
impossible in the case of the 3D geometry to ensure that
both the tractions and displacements in the 3D stress
state zone are identical to the corresponding 2D plane
stress solution, see Fig. 13 for illustration. This imag-
inary experiment was simulated in a careful 3D FE

3D stress state zone <~ h

Plane stress

Gzp # G3p

Boundary conditions: f; or u; J

study, which focused on the effect of the higher-order
terms of asymptotic expansion on the 3D stress states
near crack front (Berto et al. 2011). As expected, the
application of the boundary conditions corresponding
to non-singular terms of the classical asymptotic expan-
sion produces non-zero values for the local stress inten-
sity factors, specifically for even terms of the asymp-
totic expansion. The impact of these considerations on
practical problems is unclear and needs further investi-
gation. Therefore, one should be careful with the appli-
cation of 2D results to real 3D problems even in the
integral form like Eqs. (19) and (20), specifically when
the values of the 2D stress intensity factors are near
Zero.

7 Conclusion

This article attempted to provide a brief overview of
3D LEFM. The main objective of this paper was to dis-
cuss the situations when the classical 2D stress anal-
ysis, which is usually based on plane stress and plane
strain simplifications, leads to incorrect results or gen-
eral conclusions. Another objective was to highlight
some directions for future research in 3D LEFM, which
can contribute into the understanding of brittle fracture
and fatigue phenomena.

The 3D problems are much more difficult to anal-
yse than their 2D counterparts, therefore in many cases
stress analysis is limited to 2D. There are currently
no exact solutions available for 3D crack geometries.
Therefore, many fundamental results and general con-
clusions in 3D LEFM are largely based on dimension-
less and energy considerations as well as on the applica-
tion of complex asymptotic techniques and generalisa-
tions of outcomes of 3D numerical studies. However,
the generalisation of numerical results, which seems
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to be the most common and simple approach, with-
out proper validation procedures and understanding can
lead to misleading and incorrect results. This partially
explains the existence of so many controversial views
on the fundamental issues of 3D LEFM in the current
literature.

In this article it was demonstrated, in particular, that
the fundamentals of the contemporary LEFM, such as
the linear elastic fracture criterion and the near crack
tip asymptotic expansions for stress and displacement
fields, may be not valid in the 3D formulation and may
lead to peculiar results. Many other issues, such as the
effects of vertex singularities and the plate thickness
are still to be addressed in future analytical, numerical
and experimental studies. Finally, it is believed that the
3D considerations alone cannot explain all brittle frac-
ture or fatigue phenomena, but these considerations can
contribute into the understanding of these phenomena.
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2.3 Part 2: Introduction to Fatigue of Structures and Materials

23.1 Fatigue Phenomenon

Fatigue crack propagation is a complex phenomenon, which can be affected by
several interacting factors. Fatigue crack propagation can be associated with cyclic
plasticity, sliding or physical contact (fretting and rolling contact), environmental
damage (corrosion fatigue), or elevated temperatures (creep fatigue) in mechanical
components and structures (Milne et al. 2011). Therefore, there are many theoretical
and experimental approaches, as well as predictive models, to analyse the fatigue
phenomena. The scope of the current work is restricted to the crack growth
associated with fatigue loading.

The current view on fatigue failure, shared by many researchers, is that it is a
cumulative process consisting of three main stages: crack initiation, propagation, and
final fracture of a component. During cyclic loading, localised, irreversible, plastic
deformations may occur at sites with a high stress concentration, e.g., those
associated with grain apexes or surface grains. These irreversible plastic
deformations induce permanent damage to the material, leading to the development
of micro-cracks. As the material experiences an increasing number of loading cycles,
the length of the micro-cracks increases, and cracks can coalesce, progress or arrest.
After a certain number of cycles, the dominant crack is formed, and when the
dominant crack length reaches its critical size, the component fails by rupture (Lee
et al. 2005).

2.3.2 Historical Overview

Fatigue phenomena have been studied for more than 170 years. The first studies were
undertaken in the 19" century during the industrial revolution in Europe when some
heavy-duty locomotives and boilers failed under cyclic loading conditions. It was
William Albert who in 1837 first published an article on fatigue that established a
correlation between the magnitude of the cyclic load and the durability of the

structural component.
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Two years later, in 1839, Jean Victor Poncelet, the designer of cast iron axles for
mill wheels, officially used the term “fatigue’ for the first time in his works published
at that time (Bhat 2011). Fatigue was recognised well over a hundred and fifty years
ago; however, systematic research in this area started around the 1850s when August
Wohler conducted his classic cyclic load tests, which led to the development of the
so-called S-N curves or S-N diagrams for various materials and conditions (Etube
2001). He is often named as the founder of design procedures against fatigue failures.
In the period between 1858 and 1870, Waéhler published several papers on the fatigue
strength of railway axles, as well as the outcomes of fatigue tests of small-scale
specimens made of steel, iron and copper. From these tests he obtained the basic
fatigue properties, which were further utilised to predict fatigue failures and guide

the design of structures subject to cyclic loading (Zenner & Hinkelmann 2019).

A fundamental step in the understanding of fatigue phenomena at the micro-level
was made at the beginning of the 20" century by Ewing and Humfrey (1903) who
carried out the first microscopic investigation of fatigue failure in specimens made
of iron, which failed due to cyclic bending. In particular, they observed the localised
cyclic slips in surface grains and the formations of pronounced surface marks on
failure surfaces. These microscopic observations demonstrated that crack initiation
can be associated with the localised slip generating extrusions and intrusions on free
surfaces; and that fatigue crack propagation is a process of a crack advance during
each fatigue cycle.

In the middle of the 20" century, Peterson (1950) and Timoshenko (1954) provided
comprehensive reviews of early studies in the area of fatigue and design against
fatigue. Peterson considered fatigue as a material phenomenon from an historic
perspective, highlighting the significance of the concept of the endurance limit
introduced by Wohler. He regarded this endurance limit as a material property, which
can be used in the design of engineering structures and machines. Timoshenko
emphasised the significance of stress concentrations around notches and recognised
the necessity for theoretical analysis of stress distributions near the stress risers or
stress concentrators (Schijve 2003).
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The next key development in fatigue was associated with a revolutionary idea
proposed by Paris and Erdogan in the early 1960s. They suggested that the range of
the stress intensity factor is the driving force, and it fully describes the rate at which
fatigue cracks grow during cyclic loading (Paris & Erdogan 1963). This idea was
very fruitful and led to the development of many methods for assessing the
acceptability of manufacturing or in-service defects, as well as fatigue life
expectancy in the presence of crack-like defects. However, it was quickly realised
that many other factors in addition to the stress intensify factor range influence the
rate of propagation of fatigue cracks. These factors (e.g., the R-ratio or
overload/underload ratio) were introduced as parameters into several empirical

models aiming to improve fatigue life predictions.

Significant research effort has been directed to the study of the fatigue crack closure
phenomenon, first introduced by Elber, to explain the experimentally observed
features of fatigue crack growth in aluminum alloys (Elber 1970). He argued that a
load cycle is only effective in driving the fatigue growth of a crack if the crack is
fully open. Since his pioneering study in the 1970s, the number of scientific studies
on this topic has grown progressively. In particular, it was later found that there are
many different sources for crack closure, not just the plasticity-induced crack closure
observed by Elber (Suresh & Ritchie 1984). The roughness of crack surfaces
(roughness-induced crack closure) and oxides due to corrosion processes (oxide-
induced crack closure) can also produce crack closure and influence the rates of
fatigue crack growth (Rodrigues & Antunes 2009).

Plasticity-induced fatigue crack closure is a complex extrinsic mechanism, which
has a shielding effect due to the change in deformation behaviour near the crack tip.
Elber’s discovery of fatigue crack closure, nearly 50 years ago, was a promising
development with the prospect of significant advances in fatigue life predictions of
structural components (Khanna & Kotousov 2020). A large amount of experimental,
analytical, and computational work has been conducted since this discovery (de
Matos & Nowell 2009). Unfortunately, the initial expectations have largely faded in
the face of unprecedented difficulties in theoretical modelling.
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The early two-dimensional crack closure models, which were based on the classic
Dugdale or yield-strip model, were incorporated into several fatigue life-prediction
codes, such as FASTRAN and NASGRO. These codes demonstrated encouraging
results, specifically in predicting the R-ratio effect in the case of constant amplitude
loading. The safety factors and conservative assumptions were used to address the
inherent uncertainties associated with service loads. However, blind predictions of
fatigue crack growth under variable loading conditions are usually disappointing
(Khanna & Kotousov 2020). This is because real cracks are inherently three-
dimensional (Kotousov et al. 2013) and the three-dimensional aspects of the
problem, e.g., the plate thickness, have a significant effect on the crack closure
mechanism (Roychowdhury & Bodds 2003). Further details about the plasticity-
induced fatigue crack closure mechanism and the developed methods can be found
in the following sections.

2.3.3 Fatigue Regimes

Three distinct regimes of fatigue behaviour are normally identified in the S-N
diagrams for structural materials: Low Cycle Fatigue (LCF), High Cycle Fatigue
(HCF) and Ultra High Cycle Fatigue (UHCF). The total fatigue life, N, can be
decomposed into the following stages (McDowell & Dunne 2010):

Nt = Ng + Nys + Nps + N, (2.1)

where Ng is the number of cycles required to form a crack, and Ny, Nps and Ny,
represent the number of cycles to propagate a crack through the microstructurally
small, physically small and long crack growth regions, respectively. The fraction of

Ng in the total fatigue life is normally very small in an LCF regime, but it may

comprise a significant fraction of N in HCF (up to 107 cycles) and fully dominates

the total fatigue life in UHCF (up to 10° cycles and beyond). Various studies indicate
that Ng can range generally from 10% to 50% of the total fatigue life in HCF,

depending on the material, its microstructure, and the presence of pre-existing
defects (Mughrabi 2013).
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The discrepancies between various studies may be partially attributed to the
differences in the definition of Ng which, according to some researchers, should
incorporate crack growth through several strong microstructural barriers (e.g., grain
boundaries) in metals and alloys. There are also other decompositions of the total
fatigue life to be found in the literature, e.g., Schijve (1967) and Miller (1987).

With the progress in technological development, the required fatigue life for many
components may well exceed 108 load cycles. Nowadays, Very High Cycle Fatigue
(VHCEF) constitutes one of the main design challenges for several applications in
aircraft, automobile, railway, and other industries. Some examples of such
components are gas turbine disks, car engine cylinder heads and blocks, ball
bearings, high frequency drilling machines, diesel engines of ships and high-speed
trains (Kazymyrovych 2009). Nonetheless, the VHCF regime is beyond the scope of
the current PhD project, which is limited to the HCF regime.

HCEF is a type of fatigue caused by small elastic strains under a high number of load
cycles (typically > 10* cycles) before failure occurs. The fatigue damage comes from
a combination of mean and alternating stresses. The mean stress is usually due to the
residual stress, the assembly load, or non-uniform temperature distribution. The
alternating stress can be a mechanical or thermal stress at any frequency.

2.3.4 Fatigue Analysis

Contemporary fatigue analysis usually utilises one of three main methodologies,
which are based on 1) the stress-life, 2) the strain-life, and 3) Fracture Mechanics
approaches. In addition, Continuum Damage Mechanics (CDM) is the fourth main
methodology, which applies to problems involving multiple damage mechanisms of
different natures, e.g., creep, fatigue, and corrosion. However, CDM is not very
popular in fatigue analysis, as the predictive capabilities of CDM-based models are
generally lower than for their competitors. The current Section will briefly overview
two first approaches and will specifically focus on the Fracture Mechanics approach
as the most advanced and most accurate for fatigue life predictions.
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2.3.5  Stress-Life Methodology

Fatigue failures can occur at stresses well below the monotonic loading levels that
cause static failure. Since the pioneering systematic studies of August Wohler in
1890, it has become customary to represent fatigue data using the so-called S-N
diagrams, where the stress amplitude is plotted versus the number of cycles to failure.
The stress-based approach was the earliest, but it is still the most common approach
for fatigue life evolutions across several industries. In this approach, the number of
cycles to failure, N, in an HCF regime is related to the applied stress range or stress

amplitude, S, as a power function, called Basquin’s law (Basquin 1910):
S=CxNm™ (2.2)

where C and m are material constants, found from fitting this equation to the
experimental data. However, the life predictions with this approach have a large
scatter. As discussed above, this scatter is due to many factors affecting fatigue life,
which are not explicitly included in Basquin’s law, e.g., the stress concentration and
surface roughness. Many similar simple equations have been suggested over the past
hundred years for different materials and loading conditions (Kim & Zhang 2001).
These equations may be more accurate for any given specified conditions or
materials and may partially reduce the large scatter (Kim et al. 2001) that is common
for this methodology.

2.3.6  Strain-Life Methodology

Special attention should be paid to fatigue assessment of geometrical discontinuities
in the fatigue design, as most engineering components experience variable amplitude
loadings during operation. Examples of structural discontinuities are joints, welds,
and junctions between components of different diameters or thicknesses. In these
cases, any strong stress concentrations present in the component may result in crack
initiation and local cyclic plastic deformation. The strain-life approach is commonly
used in situations where local plasticity may occur.
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The strain-life methodology assumes that the material at the notch root behaves in
the same way as a smooth laboratory (un-notched) sample, for which fatigue
resistance can be tested at various loadings. At the relatively high stresses where
plastic deformation can occur, the Coffin-Manson fatigue design approach has been
widely applied in the past to undertake fatigue assessments in Low Cycle Fatigue
regimes (LCF); the correlation between the plastic strain amplitude and the fatigue
life is expressed by:

Ae
7" =g % (2Nf)© (2.3)

where Ag,, is the plastic strain range, ¢ is the fatigue ductility coefficient and c is the
fatigue ductility exponent (Dewa et al. 2017). Similar to S-N diagrams (equations),

the Coffin—Manson equation currently has many modifications, which may provide
better accuracy of the theoretical predictions (\Wang et al. 2016).

2.3.7 Hybrid Approaches

Numerous hybrid approaches have been suggested, largely based on experimental
data and concepts of merging equations for LCF and HCF regimes. For example, a
hybrid method was proposed by Szala and Ligaj (2016) for calculations of fatigue
life for C45 steel under multi-stage loads. The proposed hybrid method consists of
an assumption that the overall fatigue properties of steel in the range of low cycle
fatigue are defined by the Manson-Coffin equation, whereas in the HCF regime, the
cyclic properties of this steel are described by the standard S-N diagram. In general,
hybrid approaches can provide an adequate evaluation of fatigue life in the case of
combined (LCH + HCF) loading; however, the accuracy and applicability of such
predictions may be quite limited (Goedel et al. 2018).
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2.3.8 Fracture Mechanics Approach

As an alternative to the Stress-life, Strain-life and Hybrid methods, the Fracture
Mechanics approach was developed in the 1970s and is now widely applied to
evaluate the remaining strength of structural components with defects in many
industries and advanced applications. This approach tracks the propagation of
structural defects, mainly cracks, and can predict the remaining life of structural
components more accurately, avoiding both scatter and excessive conservatism.
Below, a brief introduction to the Mechanics of Cracks is presented. It is not intended

to cover all aspects of this approach.

Fatigue cracks usually start from the surface of a component, where fatigue damage
begins on crystallographic slip planes. Free surfaces after cyclic loading normally
exhibit some additional roughness, which is formed by intrusions and extrusions
along the slip planes, as illustrated in Figure 1. Stage | is characterised by a rapid
decrease in the crack growth rate, which is accompanied by a decrease in the cyclic

plastic zone size. Behaviour in this stage is dependent on the microstructural features.

Stage | Stage Il Stage 111
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Figure 1. A schematic representation of crack formation and growth in

polycrystalline metals, adopted from Cui (2002).
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Previous studies have demonstrated that at least five major factors should be
considered when attempting to establish the relationship between microstructure and
fatigue crack propagation. These include the strain distribution, slip length and
plastic zone size, crack path and crack extension forces, morphology, and properties
of constituents in multiphase alloys and the environment (Cui 2002). After a transient
region (Stage I1), crack growth continues in a direction normal to the applied stress,
or predominantly in mode |. The rate of crack propagation in Stage Il increases
rapidly until final fracture. This region corresponds to the onset of unstable and rapid
crack growth and is characterized by either the material’s fracture toughness or, in
the case of ductile materials, by plastic instability. The environment has little effect
in this region and deformation mechanisms are similar to those characteristics of

monotonic loading (Etube 2000).

Microstructurally short and long cracks should be distinguished for fatigue analysis.
Experimental studies of crack propagation for various materials and loading
conditions (10 um to 1 mm) have shown that small cracks grow much faster than
would be predicted from the large crack data. (Newman et al. 1999). Typical fatigue
growth behaviours for small and large cracks are shown in Figure 2.
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Figure 2: (a) Typical fatigue-crack-growth behaviour for small and large cracks,
reproduced from Zerbst et al. (2016); (b) Schematic fatigue crack growth curve for
large cracks.
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Small cracks can also propagate below the long crack threshold stress intensity range
(Chowdhury & Sehitoglu 2016). Short-crack growth behaviour might be explained
by the concept of nonlinear or elastic—plastic Fracture Mechanics. However, the
abnormal behaviour of small cracks is beyond the scope of the current thesis, which
is focused on prediction of long cracks or cracks larger than 0.5 mm. It has been
found that the fatigue crack growth models can be broadly classified into three main
categories: (a) linear elastic, (b) geometrical, and (c) plastic accumulation models
(Chowdhury & Sehitoglu 2016).

Linear Elastic Models

Linear elastic-based models have been widely used for analysis of the
microstructure-insensitive stable propagation of a stage Il crack in brittle and
moderately ductile materials, provided the region of plastic deformation is small in
comparison with all other geometry sizes (showing negligible or non-existent
plasticity). This condition is called the Small-Scale Yielding (SSY) condition and
the stress intensity factor governs the local plastic stresses. In this case, the plastic
zone is in the order of a few percent compared with the characteristic dimensions of
the crack, such as the component’s thickness. Under these conditions, the growth
rate depends only on the continuum parameters, such as the stress range far away

from the crack, the crack length, and load ratio.

The first and most important empirical relationship of Stage Il crack extension was
proposed by Paris and his colleagues in the early 1960s (Paris and Erdogan 1963). It
was observed experimentally that the linear region accounts for a significant portion
of the overall lifetime, especially for specimens or structures with pre-existing cracks
or sharp notches. They demonstrated that crack growth can be described as a function
of the stress intensity factor caused by a remote load or residual stresses.

da
- —C x Km (2.4)

Parameters a and N are the crack length and the number of load cycles. The constant

values of C and m are experimentally determined values for the different materials.
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Later, the stress intensity factor K was replaced with the stress intensity factor range,
AK. ASTM international standard (E647-13 2013) provides the method for the
determination of fatigue crack growth rates from near-threshold to maximum stress

intensity factor (K,,ax) controlled instability.

Paris’ law limitations have been well documented in the literature. For example, it is
demonstrated that the proposed empirical crack growth rate law only models stable
fatigue crack propagation behaviour (propagation regime Il) and is also unable to
account for the effects of the stress ratio in the crack growth rate. Many alternative
fatigue crack propagation relationships have been proposed to overcome the
limitations of Paris’ law and also to deal with variable amplitude loading (Correia et
al 2014). Nevertheless, Paris’ law continues to be used frequently to model fatigue
crack growth under constant amplitude loading due to its attractive simplicity.
Numerous improvements have also been suggested by the industrial standards, with
the intention of being able to model the full spectrum of fatigue crack growth. As an
example, a two-stage power law relationship is recommended by BS7910 Guide on
methods for assessing the acceptability of flaws in metallic structures to reduce the
conservatism associated with crack growth near the fatigue threshold.

The fatigue design curves are normally given by simplified equations and are plotted
in the design and safety standards for the welded and un-welded structures. There
are a number of design and safety standards available in different industries and
applications. In the most industrial standards, the front of the existing or postulated
crack for different structural components is modelled by an idealised geometry such
as straight, semi-elliptical or circular crack. The crack growth idealisation means that
a flaw or crack with a complex shape is modelled with the conservative dimensions,
so that the idealised crack geometry is severe, and the estimated design life is less
than the actual design life. In addition, the variations of stress intensity factors across
the crack front, coupled modes, and 3D corner (vertex) singularity effect are all

currently ignored in industrial standards.
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Geometrical Models

The geometrical models were developed based on the AK-dependent Paris law. One
specific objective of these models is to consider the component’s geometry,
including thickness, crack shape, and stress concentrators. The geometrical model-
based approaches were motivated by consideration of crack tip plasticity effects
ahead of, behind and along ‘wings’ extending either side of the crack front, i.e.,
planes of shear. For example, Suresh and Ritchie (1982) presented a geometric model
for the simulation of plasticity-induced fatigue crack closure by fracture surface
roughness. This model specifically addressed the contribution from both Mode I and
Mode Il crack tip displacements in addition to considering the nature of the fracture
surface morphology.

Plastic Accumulation Models

The third group of fracture mechanics-based fatigue crack growth models are
dedicated to the investigation and simulation of the plastic zone and plastic wake for
both small and large-scale yielding conditions. The purpose of the plastic
accumulation-based predictions is to consider the plasticity in expressing the growth
rate, da/dN. In these models, most attempts to model crack closure usually involve
greatly simplifying crack tip plasticity phenomena: for example, the use of the
plasticity-induced crack closure concept for consideration of the part of the load
cycle when the crack tip is fully open. The main assumption of this concept is that,
when the crack is closed, the external load produces negligible fatigue damage ahead
of the crack tip.

The crack closure concept is often attractive to explain many aspects of fatigue
behaviour in cracked components. It is now commonly accepted that the contribution
of the plasticity-induced crack closure (PICC) is the most important mechanism on
the crack closure under small-scale yielding conditions (Pippan & Hohenwarter
2017). Therefore, understanding and development of plasticity-induced crack
closure models is essential for accurate evaluation of fatigue crack propagation
behaviour as a function of the loading condition.
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Therefore, the Paris crack growth rate equation can be re-defined by the following
relationship:
da_
dN
where R is the load ratio (oin/0max)-

C(AKet, R)™ (2.5)

The crack closure phenomenon is a direct consequence of the permanent tensile
plastic deformations left in the wake of the propagating crack. Plasticity-induced
crack closure is based on the idea that any residual plastically deformed material
ahead of the crack tip will remain on the crack faces. This approach employs a
modified linear elastic stress intensity factor range (an effective stress intensity

range) as shown below:
AKefr = Kmax — Kop (26)

where K.« and K,, are the maximum and opening stress intensity factors.

Many models have been developed for calculation of the opening load stress
intensity factor in the past, but very little work has been undertaken for modelling of
crack closure in three-dimensional bodies. A relatively small number of efforts have
considered three-dimensional centre-cracked plates, and even fewer have focused on
the more complex surface flaws (Skinner & Daniewicz 2002). Since crack closure
dominates in the wake of the crack tip, and for short cracks this wake is limited, it is
expected that short cracks will be subjected to a smaller degree of crack closure than
long cracks. Differences in the local crack tip environment, plasticity-grain boundary
interaction and crack deflection for short and long cracks may also be major factors.

For long cracks, the cyclic stress range is small, and a threshold will occur, while for
short cracks the cyclic stress range can be large enough to overcome the obstacles
and thus the short crack stress intensity factor range will be lower than that of long

cracks, or possibly even disappear (Bu & Stephe 1986).
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The numerical simulation of plasticity-induced crack closure using, for example, the
Finite Element (FE) method is very attractive; however, it has some inherent
difficulties related to the mesh refinement and the crack growth scheme, which
usually consists of releasing nodes ahead of the initial crack tip and the region at
which crack is allowed to grow in the component. Therefore, most of the numerical
simulations have been developed based on simplified models of plasticity-induced

crack closure.

As an alternative to numerical simulations, application of an analytical model for
calculation of the effective stress intensity factor, based on classic plasticity-induced
crack closure, allows for a significant reduction in the complexity of the evaluation
procedure (He etal. 2014). For example, Codrington and Kotousov (2009) developed
a simplified 3D analytical model of the analysis of plasticity-induced closure cracks
in plates of finite thickness.

2.3.9  Crack Front Shape Evolution Modelling

The experimental studies largely confirm that the classic crack tip solutions cannot
accurately describe the stress states in the close vicinity of the crack tip for three-
dimensional (3D) problems. Despite great progress being made over the past two
decades, obtaining 3D solutions for fatigue crack propagation still represents a
technical and research challenge in linear and non-linear formulations. The
derivation of the exact analytical 3D solutions is difficult, and these are usually
limited to very simple problems. Numerical techniques can be utilised in practical

situations as an alternative to the analytical solutions.

2.3.10 Numerical Procedures

Several numerical methods have been developed to predict the fatigue crack front
shape’s evolution and its effect on the crack growth rates. Different formulations of
Finite Element Analysis (FEA) have been successfully employed to characterise the
3D stress and displacement fields near the crack tips over the past decade.
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These include direct numerical techniques as well as simplified procedures. The
direct numerical procedures for fatigue phenomena can be broadly divided into five
main steps: (1) develop a numerical model of the cracked body, including all relevant
geometry characteristics. The model needs to represent the component geometry,
materials, boundary conditions, applied loads and initial crack shape accurately; (2)
calculation of the effective stress intensity factors along the crack front; (3)
application of the crack growth model and calculation of the crack front advance,
normally by using a Paris-type law (4) comparison of the results along the crack front
(5) determination of a new crack front. The different successive simulations need to
be carried out until a stabilised crack front shape (or final fracture) is attained. The
new crack front shape can normally be determined using two developed approaches:
namely, the two-degree of freedom and multiple-degree of freedom models.

The two-degree of freedom models are based on the fitting equations, tables, and
diagrams, and are available in the literature for node propagation in particular crack
front shapes (i.e., elliptical shapes). In these methods, only the displacement of the
deepest interior point, or both the deepest interior and the surface intersection points,
or a limited number of key crack front points need to be considered. On the other
hand, the displacement of crack front nodes should be analysed separately in the
multiple degree of freedom models. These models take into account the more
realistic fatigue crack front shapes (i.e., irregular crack shapes) as well as the effects
of plasticity-induced crack closure and 3D corner singularity on the front shape
evolution during fatigue growth. Some representative examples for the two-degree
of freedom and the multiple-degree of freedom models are given in the following

section.

2.3.11 Simplified Shape Modelling Approaches

Past experimental studies have demonstrated that for many structures subjected to
cyclic loading surfaces, cracks normally maintain an almond shape up to the final
region (fracture) of propagation (Carpinteri & Vantadori 2008).
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It has also been found that the front of almond-shaped fatigue cracks can be
approximated quite accurately by an elliptical curve (Brighenti & Carpinteri 2013).
This finding greatly simplifies the crack growth modelling by reducing the number
of variables describing the crack front. This simplification also allows for advanced
design optimisation through parametric and sensitivity studies of various structures
with surface defects (Couroneau & Royer 1998).

Fatigue crack front shape evolution and fatigue life can be simplified by reasonably
assuming the crack geometry using classic linear elastic Fracture Mechanics, or with
more advanced two-dimensional (2D) or three-dimensional (3D) fatigue models
incorporating the crack tip plasticity effects, out-of-plane constraint, plasticity, or
roughness-induced closure phenomena, etc. Kassir and Sih (1966) were among the
first researchers who examined the general characteristics of the three-dimensional
stress field near a crack tip. Hartranft and Sih (1970) developed an approximate
theory for the stress distribution in an infinite plate containing a through-the-
thickness crack by application of quite sophisticated integral equations. This work
has demonstrated that the 2D elastic solutions are not valid near the free surface.
Further improvements in the predictions were obtained by using an asymptotic
solution near the fatigue crack front (Yosibash and Shannon, 2014). In this approach,
the presence of a 3D corner (vertex) singularity at the points where the crack front
intersects the plate’s free surfaces is ignored.

The displacement stress fields and the power of singularities near the intersection of
the crack front and the free surfaces (the boundary layer region) were investigated
by Shivakumar and Raju (1990). Their log-log regression analysis along the crack
front showed that finite sized cracked bodies have two singular stress fields
(cylindrical and vertex) near the free surface and the strain energy release rate is an
appropriate parameter to measure the severity of the crack. De Matos and Nowell
(2008) employed a comprehensive 3D finite element analysis to finite thickness
plates with a central through-thickness crack to understand the effect of the 3D corner
point singularity and elastic constant (i.e., Poisson’s ratio) on the stress intensity
factors and elastic stress fields near the crack front.
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The elliptical surface cracks in round bars under cyclic axial and pure bending loads
have previously been studied by means of the Paris law as a function of bar diameter
(Shin & Cai 2004). The crack aspect ratios of the initial flaw are normally utilised to
vary from 0 (a straight crack front) to 1 (a circular-arc crack front) under stable
conditions. Carpinteri and his colleagues have conducted extensive numerical studies
to establish a link between the applied cyclic tension or bending loading and crack
shape evolution in a round bar using the simplified models (Carpinteri et al. 1992,
1993, 1995, 2013). It was found that the propagation path is independent of the stress
range of the cyclic axial loading, and the aspect ratio of the surface crack, defined by
the ratio of its semi-axes, can be changed during fatigue growth. It has also been
argued that the intersection angle between the crack front and the external surface of
the bar (the critical angle) is barely affected by the normalised loading eccentricity
parameter, which is the loading distance to the centre of the bar, divided by the bar
radius (Carpinteri & Vantadori 2009). Similar conclusions have been derived by
Couroneau and Royer (1998) using a two-parameter numerical model. It was
demonstrated that a few parameters, namely the initial crack aspect ratio, the
exponent in Paris law and the type of loading, have an influence on the crack front

evolution.

Toribio et al. (2011) employed an elastic 3D finite element analysis to cylindrical
geometries with transverse surface cracks subjected to axial tensile loading to
understand the effect of fatigue crack growth parameters on the stress intensity
factors. In this work it was proved that materials with higher values of the Paris
parameter, m, produce slightly greater dimensionless compliance and a better
convergence between the results for straight or circular initial cracks. He et al. (2014)
proposed an efficient numerical technique for the evaluation of fatigue crack front
shapes and their effect on the steady-state fatigue crack growth rates in plate
components. The proposed simplified procedure is based on several implicit and
explicit assumptions and utilises the earlier-developed analytical model (Codrington

& Kotousov 2009) for plasticity-induced crack closure in plates of finite thickness.
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So far, the available simplified solutions to 3D crack problems are usually limited to
very simple problems, such as through-the-thickness cracks in an infinite elastic plate
or semi-elliptical surface cracks in round bars. In addition, the simulation of
plasticity-induced crack closure using FEA has some inherent difficulties related to
the mesh refinement or the crack growth scheme, which usually consists of releasing
nodes ahead of the initial crack tip and the region in which the crack is allowed to
grow. The numerical study can be performed at minimum load, maximum load or
during the loading/unloading cycle. Therefore, the outcomes of such numerical
simulations should be treated with caution.

2.3.12 Direct Shape Modelling Approaches

Many numerical investigations in the past have focused on the development and
optimisation of the multiple degree of freedom models. These methods can be
generalised for many geometries and boundary conditions, specifically, for which
the other approaches may not work or be costly (e.g., experimental validations). The
most popular methods for investigating fatigue crack growth using direct shape
modelling approaches is the use of finite element simulations with empirical
correction factors. The use of finite element analysis allows for engineering problems
to be examined in greater detail than was previously possible.

The different formulations of finite element analysis have been applied successfully
over the last decades for simulation of the front shape evolution at stable fatigue
crack propagation. Smith and Cooper were the first to apply multiple degree
of freedom models with no shape constraints for the analysis of fatigue crack growth
problems. In these models, the crack front needs to be divided into several segments
and the nodes are connected to each other using straight lines or curves. Since their
pioneering study, the number of scientific publications has grown progressively. For
example, Lin et al. have demonstrated that numerical
simulations developed using multiple degree of freedom models predict about thirty
percent more accurate fatigue life estimations for engineering components in

comparison with the results of two degree of freedom methods.
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Lin and his colleagues examined the fatigue crack growth and characteristics of a
range of different surface defects in finite thickness plates under tension and bending
loads.

Branco and his colleagues developed the three-dimensional
automatic fatigue crack growth technique to predict crack shape evolution and the
number of fatigue cycles in various practical geometries such as plates and round
bars. The automatic fatigue crack growth technique has since been extended in many
of the following works, with incorporation of the plasticity-induced crack closure
effect during fatigue growth up to failure . In these
studies, it was demonstrated that the crack closure has a significant effect on the
independent tunnelling parameter (crack depth over thickness). The developed
modified three-dimensional automatic fatigue crack growth techniques were

validated successfully via a separate experimental study.

The automatic fatigue crack growth techniques utilised in numerical simulation are
shown in Figure 3. The procedure comprises five main steps: (1) the initial step is
setting up a three-dimensional finite element model. This step includes the definition
of the geometry, boundary conditions, loadings, initial crack shape, and material
properties; (2) calculation of the displacement field in the crack front nodes; (3)
calculation of the stress intensity factors along the crack front using point matching
techniques (the stress extrapolation method, displacement extrapolation method,
hybrid extrapolation method, etc.) or energy-based methods (J-integral method,
domain integral approach, etc.); (4) determination of a new crack front with the
application of crack advance schemes; (5) move the location of the corner and mid
side nodes using a parametric curve depending on the crack front shape and corner
node position (i.e., cubic spline function). This process continues until a specified

crack advance or final fracture is achieved.
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Figure 3: Schematic presentation of the 3D finite element automatic crack growth

technique (a) crack front definition; (b) calculation of the displacement field of crack
front nodes; (c) calculation of stress intensity factors at front nodes; (d) calculation
of the advances of crack front nodes; (e) relocation of the corner and intermediate
nodes of crack front (Branco et al. 2014)

Gardin and his collaborators have used two independent numerical models with
increasing levels of complexity (parabolic and elliptical) for 3D numerical
simulations of the plasticity-induced crack closure of through-thickness plane cracks

. Figure 4 illustrates the adopted scheme of the 3D adaptive re-
meshing technique adopted by Gardin for prediction of crack front shapes. Sevcik et
al. also developed an iterative technique for the estimation of a fatigue crack front
shape based on linear elastic Fracture Mechanics using values of the stress
singularity exponent. It is found from the careful numerical studies that the more
significant influence of free surfaces on the stress singular behaviour is apparent in

the case of thin-wall structures
In general, traditional 3D FEMsare rather difficult to adopt for 3D crack propagation

modelling, see Fig. 4. Moreover, these methods can be either mesh-dependent and

require the incorporation of sophisticated re-mapping and re-meshing techniques.
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Figure 4: Prediction process for crack front shape estimation with re-meshing
techniques (Gardin et al. 2016)

In order to eliminate the need to conduct frequent remeshings and reprojecting the
solution on the updated mesh, Belytschko and Black (1999) presented a new mesh-
independent method, which significantly reduced number of remeshing procedures
during crack growth simulations. This method was further advanced (Moés et al.
1999) into a fully mesh-independent method without any need for re-meshing. The
method has later become known as the eXtended Finite Element Method (X-FEM),
and it has become widely popular for solving continuum mechanics problems

containing discontinuities like cracks and material interfaces (Rege and Lemu 2017).
The X-FEM is now considered as a powerful numerical technique for obtaining

approximate solutions of problems which involve singularities, discontinuities,

localized deformations, and complex geometries.
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In XFEM, the treatment of a discontinuous displacement field along the crack surface
is accomplished by simply introducing additional discontinuous functions into the
FE formulation. Furthermore, when XFEM is combined with level sets, the entire
representation of the feature, such as the geometry and the displacement field of a
crack, can be constructed in terms of nodal values at the nodes of the original mesh.
An appealing feature of the XFEMs is that it can be applied to fracture problems with
curved crack fronts in a straightforward manner without concern for element
meshing details along the crack front (Ayhan 2011). However, control of the
accuracy of numerical calculations remains the main drawback of XFEMs as well as

other similar numerical methods, e.g., mesh-free methods.

2.4 Conclusion

An important advance in modern engineering analysis has been the introduction of
techniques to evaluate the remaining life (fatigue assessment) of structures that have
been in operation. These techniques are mostly based on Fracture Mechanics, and it
is therefore important to acquire an understanding of Fracture Mechanics and its

application in detail.

The overall conclusion is that the direct numerical approaches are able to describe
the shape evaluation of fatigue cracks; however, the application of direct numerical
approaches to particular problems is very difficult and may not work for specific
conditions. The validation and convergence of the models are also major issues with
direct numerical simulations. In addition, direct methods suffer from the many
inconsistences associated with the effects of the 3D corner (vertex) singularity,
contact conditions as well as various material and geometry related non-linearities.
Hence, it is more promising to investigate 3D fracture and fatigue problems using
simplified analytical or semi-analytical approaches. The latter is the focus of the

current thesis.
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3.1 Research Gaps

Considerable amounts of research on the fatigue crack growth phenomenon have
been conducted over the years. Despite the significant effort, there are still many
issues that need to be investigated and addressed in order to improve theoretical
predictions. In particular, it is not possible to accurately predict fatigue crack front
shapes and their evolutions during cycling loading with the current methods for
various structural components of practical interest. The influence of the idealised (or
simplified) shapes utilised in the current standards and assessment procedures in
terms of the accuracy of the existing fatigue life evaluation procedures is also unclear

and has not been well investigated to date.

It was also found from the review of the relevant literature that application of the
current numerical techniques for fatigue crack growth evaluation is highly complex
and normally very demanding in terms of time and computational effort. Moreover,
the numerical techniques suffer from many uncertainties and still frequently require

calibration or validation against experimental results.

The current project aimed to address the issue of 3D modelling of fracture and fatigue
problems through the development of new simplified methods, which incorporate
more realistic 3D crack front shapes into fatigue and fracture analysis. The outcomes
of the current 3D analysis of fatigue and fracture problems are compared with
previous experimental studies for several materials and a range of load conditions
and geometries. The developed methods have been found to be in good agreement
with past experimental studies and agree well with the outcomes of numerical

simulations.
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3.2 Objectives

The overall objective of the present PhD research project is to understand and
elucidate the role of 3D stress states in fracture and fatigue phenomena and consider
the influence of more realistic 3D crack front shapes on fatigue lifetime evaluations.
The specific aims of this project are as follows:
> Investigate the effect of 3D corner singularity on stress and displacement
fields, as well as on the fatigue crack front shape evolution near free surfaces.
> Develop and verify new simplified modelling methods for the front shape
evaluation in typical structural components, e.g., plates and circular bars.
> Investigate and incorporate the plasticity induced crack closure effects into the
simplified models and validate these models against past experimental studies.

3.3 Organisation of the Thesis

This thesis is presented in the form of a compendium of publications in high impact
international journals. It is comprised of published articles, which represent the main
outcomes of the research undertaken by the author, united by the same research
objectives, as specified above. The articles, which form the main body of the thesis,

are also united within a common framework, which is 3D Fracture Mechanics.

This thesis is organised into eight chapters. In the Introductory chapter, the overall
significance of the research undertaken in the areas of fatigue and fracture is
described. The historical development of the field and the main motivation of the
current research are also provided. The second chapter is devoted to the literature
review. The literature review was divided into two main parts: (1) Introduction to 3D
Fracture Mechanics and (2) General overview of fatigue phenomena, focusing on 3D
effects associated with the evolution of crack front shapes during cyclic loading. The
provided literature review identified research gaps in the current knowledge and
methods in relation to the role of the 3D stress states in deformation and failure
phenomena. Chapter 3 covers the research gaps and objectives and provides the
organisation of the thesis.
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The specific investigations and developments undertaken in this study can be found
in each of the research articles published or submitted for publication by the
candidate in collaboration with his colleagues.

The outcomes of the thesis are described in separate articles representing four
chapters of this thesis. One additional paper, which is relevant to the topic of the
thesis and a limited contribution of the candidate, is also provided in the Appendix.
The purpose of the following sections is to provide a brief description of Chapters 4
to 7.

Chapter 4: Understanding the influence of 3D corner singularity on crack front
shapes near a free surface

The chapter is devoted to the investigation of the 3D corner (vertex) singularity’s
effects on the crack front shapes and the conditions that can affect the shape of the
crack front near free surfaces. Contrary to the in-plane singularities, for which the
strength is described by the inverse square root behaviour, the strength of the corner
singularity also depends on Poisson’s ratio, alongside the intersection angle between
the crack front and the free surface.

Many experimental studies and test results have demonstrated that fatigue crack front
shapes are not straight. There are at least two main phenomena responsible for this
experimentally-observed phenomenon: plasticity and 3D corner singularity effects.
The concept of the critical angle, which has been widely investigated experimentally
in recent years, is tested against past experimental results for different geometries
and loading conditions. It is demonstrated in this chapter that the critical angle is a
valid hypothesis if the plastic (or process) zone is much smaller than the size of the
region controlled by the 3D vertex singularity.
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Chapter 5: Development of simplified methods to describe the front shapes of
through-the-thickness fatigue cracks

Four different semi-analytical models for the evaluation of front shapes of fatigue
cracks under quasi-steady state conditions are developed in this chapter. These
simplified models are based on the Stress Singularity Matching concept, the use of
first-order shear deformation theory, modelling effects of the out-of-plane and

in-plane constraints on crack closure levels, and the iso-K criterion.

Chapter 6: Development of simplified methods to describe the front shape evaluation
of surface-breaking fatigue cracks

The major outcome of this chapter is the development of a new analytical approach
for the evaluation of fatigue growth of surface flaws to a wide range of practical
situations. One of the desired outcomes of this part of the research was to develop a
simplified approach capable of incorporating plasticity-induced crack closure into
the developed tools. In this study, analytical equations were developed based on two
characteristic points for distribution of the stress intensity factor along the front of
elliptical or part-elliptical cracks. A very good agreement is observed between the
present results and the experimental data. This agreement could be further improved
by introducing the crack closure effects.

The second objective of this chapter was to develop an effective new method based
on the compliance function (the ratio of displacement to applied force) for the
evaluation of elliptical, semi-elliptical and part-elliptical cracks. A theoretical
relationship is derived for the distribution of stress intensity factors along the fatigue
crack fronts from energy considerations in the linear-elastic materials. The technique
presented in this thesis is applicable to a wide range of practical geometries and
loading conditions.
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Chapter 7: Development of simplified analytical models to investigate the effects of
plasticity-induced crack closure on the front shape evolution of fatigue cracks

A new, combined, semi-analytical method was developed to simulate the fatigue
growth of surface cracks in round bars subjected to cyclic tension and/or bending. It
is assumed that the crack has elliptical or part-elliptical shapes. The developed
method is capable of incorporating plasticity-induced crack closure models. This
procedure is based on the concept of equivalent thickness using the out-of-plane and
in-plane constraints for evaluation of the plasticity-induced crack closure effect. It
is demonstrated that fatigue crack growth is very sensitive to the initial crack length,
the initial crack shape, the exponent of Paris law, the loading scenario, and plasticity-
induced crack closure effects. Comparison with the experimental results

demonstrated a good agreement.
The overall conclusions and suggestions for further work are provided in the last

chapter. An Appendix is also included, which represents a compilation of the

candidate’s publications related to the main topic of the thesis.
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Chapter 4

Investigation of the Effect of 3D Corner Singularity
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More than forty years ago, several researchers suggested a hypothesis that the front of a fatigue crack must
intersect the free surfaces at a certain (critical) angle to ensure the finite energy flux at the terminal (vertex) point
(s). Since its formulation, this hypothesis was under scrutiny in many studies, which utilised various materials,
cyclic loading conditions and different specimen geometries. The outcomes of these studies were very divisive:
from overwhelming confirmation of this hypothesis to total abjuration. In this paper, we first discuss the con-
ditions, which can affect the shape of the crack front near free surfaces. Further, we demonstrate that the critical
angle hypothesis seems to be valid when the plastic (or process) zone is much smaller than the size of the region
controlled by 3D vertex singularity. As demonstrated in a number of past numerical studies, this size is related to
the crack and specimen geometry, e.g., to the crack front length. Past experimental studies also indicate that
fatigue crack fronts tend to intersect the free surface at the critical angle at the steady-state growth rather than
when the crack propagation leads to the changes or evolution of the crack front, e.g., during propagation of
fatigue cracks in round bars.

1. Introduction vertex singularities at v = 0, is the same as the one for the line singu-

larities (or Ay = 1/2) meaning that there is no mismatch in singular

In the case of a linear elastic material, at the intersection (or vertex
point) of the crack front and a free surface, the square root singularity
disappears, and at such a point, one has to deal with a different singular
behaviour. Using a semi-analytical method, this singular behaviour was
first described by Benthem as well as a number of other researchers in
the late 70th [1]. Afterwards, several techniques were developed to
determine the stress states associated with vertex points, which can be
classified into two categories: global and local approaches. The global
approach consists in directly determining the stress singularity exponent
from the resolution of a linear elastic problem containing vertex sin-
gularity, such as: semi-analytical, finite different, singular integral
equation and finite element methods [2-4].

In contrast, the local approach is based on the logarithmic regression
of stress or displacement fields near the crack tip or of stress intensity
factors in the boundary layer close to the free surface. Later several
studies have been focused on the improvement of the numerical schemes
in terms of convergence speed and accuracy. However, there are still
some, typically small, discrepancies between different theoretical
studies, which largely motivate further research and the development of
new and more accurate computational methods. In this paper we
consider fatigue cracks propagating in mode I (or symmetric fracture
mode) when only one parameter characterises the local crack front
shape geometry near the free surfaces. This parameter is angle f3, or the
angle at which the crack front intersects the free surface, as illustrated in
Figs. 1 and 2.

The dependence of the strength of the vertex singularity, iy, from
Poisson’s ratio is given in Fig. 1a for the case when a through-the-
thickness crack in a linear-elastic plate intersects the free surfaces at
right angle, or # = x/2. This dependence represents an average result of
several numerical studies [5]. It can be noted that the strengths of the

https://doi.org/10.1016/j.tafmec.2021.102985

behavior in this special case.

It is also often postulated that the stress field near a vertex point can
be represented as a superposition of line and vertex singularities, see
Fig. 2. For example, under pure mode I (or symmetric) loading the stress
state near surface can be described as:

_Kl(ﬂ)
T

f(¢) + KyR™*g(9,0) @

where K;(#) is the local stress intensity factors in mode I; Ky is the stress
intensity factor of the symmetric vertex singularity, which, however, has
no commonly accepted definition in the literature.R, 9 and 6 are the
spherical coordinates with the origin in the vertex point (the spherical
coordinates are not shown in Fig. 2a for clarity reasons); r and ¢ are the
local polar coordinates, see Fig. 2a; and 7 is the distance along the crack
front with # = 0 corresponding to the terminal (vertex) point.

The dependence of K| near the free surface, or at n = 0, is still the
subject of some controversy in the literature. Most of the 3D finite
element studies published in the past normally provide a final value of
K| at the vertex point, 7 = 0 or just ignore this region. As first shown by
Benthem [1,6], the behaviour of the stress intensity factor, Kj, in the
area affected by the 3D corner singularity can be described as follows:

Ki(n) ~ 2, @

A similar result was obtained by Leguillon and Sanchez-Palencia [7]
attracting the matched asymptotic expansion method. In particular, the
following asymptotic expression of the energy release rate, G;(), was
derived for points on the crack front located near the free surface:

Gi(n) ~ 2! 3)

Received 3 March 2021; Received in revised form 29 March 2021; Accepted 30 March 2021

Available online 5 April 2021
0167-8442/© 2021 Elsevier Ltd. All rights reserved.



B. Zakavi et al.

Nomenclature

E Young’s modulus

Gi(n) energy release rate in mode I

Kapp remote applied stress intensity factor

Kinax maximum stress intensity factor

K stress intensity factor in Mode I

Ki(n) local stress intensity factor in Mode I

Ky stress intensity factor characterising the stress intensity
of vertex singularity

2L crack front length

R radial distance in spherical coordinates

r local radial distance

Ip plastic zone size

(x,¥) rectangular coordinates

B critical intersection angle

Pesp experimental intersection angle

6 polar angle in spherical coordinates

9 azimuthal angle in spherical coordinates

c stress

oy yield strength of material

Ay strength of corner singularity

v Poisson’s ratio

which agrees with Eq. (2). These dependencies were also verified with
careful FE studies (see, for instance, the paper by He et al. [8]). It means,
in particular, that lin% Ki(n) =0atv>0

r’—)

Currently, many researchers agree that the presence of vertex sin-
gularity may lead to a deviation of the fatigue crack front from the
orthogonal direction near the free surface, as illustrated in Fig. 1b. This
phenomenon is often observed in fatigue tests. Based on an energy flux
argument, Bazant and Estenssoro [9] and Pook [10] suggested that the
front of a fatigue crack must intersect the free surface at a certain angle,
p.. This condition ensures the finite energy flux along the whole crack
front including the vertex (terminal) point. The critical angle can be
found from careful 3D numerical simulations, and its value can be rather
accurately approximated by the following formula:

oy fv=2
p. = tan ( Y ) (€3]

where v is the Poisson’s ratio. The dependence of the critical angle upon
the Poisson’s ratio is also shown in Fig. 1b indicating that for common

Av A
o~R™W Vertex point
0.6 1
—_—
A f
0.5 4 ! ﬁ
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Il

0.4 1
Mode I

0.3 T T T T
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materials with Poisson’s ratio 0.3 the intersection angle has to be around
102°

The concept of critical angle (3,) was widely investigated experi-
mentally in the past using various materials, geometries and cyclic
loading conditions [10-23]. The outcomes of these studies were diverse
and controversial (see, for example, Fig. 6 ahead). This controversy can
be explained by the presence of another mechanism (or mechanisms),
which can influence the shape of the fatigue crack near the free surfaces.
The deviation from a straight shape can also be associated with fatigue
crack closure phenomenon and loss of the out-of-plane constraints near
the free surfaces or transition from a 3D stress state to plane stress [24].
Therefore, it is quite logical to postulate a necessary condition of validity
of the critical angle hypothesis: it is valid when the stress state associ-
ated with the vertex singularity near the surface fully encapsulates the
region associated with plasticity or process zone effects. In the first
approximation, the characteristic dimension of the plasticity effects can
be taken or calculated as the plane stress radius of the plastic (process)
zone. Thus, we can expect that the intersection angle will follow the
critical angle when the radius of the plastic zone is much smaller than
the size of the region controlled by the 3D vertex singularity. Before
proceeding with the experimental validation of this condition in Section
3, we will discuss the characteristic size of the region, which is domi-
nated by the singular stress state associated with vertex points.

2. The region dominated by the vertex singularity

The only way to evaluate the region dominated by the vertex sin-
gularity for a particular geometry and loading conditions is to use nu-
merical methods. Below we present some typical outcomes of a 3D Finite
Element (FE) study for a through-the-thickness crack in a linear elastic
infinite plate (as shown in Fig. 1a and 1b) loaded remotely by Ky, see
Fig. 3. The meshes near the crack front for straight and curved crack
fronts are shown Fig. 4. Due to symmetry, only one eight of the models is
simulated. The mesh typically has a non-uniform layer distribution
through the thickness to better capture the stress gradients near the free
surface. The similar mesh was utilised in many previous computational
studies.

In particular, the results for the local stress intensity factor distri-
bution, K;(¢), generally confirm the theoretical tendency given by Eq.
(2). These results also indicate that the region, which is controlled by the
vertex singularity, is approximately five percent of the plate thickness or
crack front length. This conclusion was also confirmed in many previous
3D FE studies for cracked plates and round bars including the first 3D
study for a semi-infinite by Nakamura and Parks [25]. In the case of the
curved crack front with the intersection angle = g, the variation of K;

Be 1
1

110 A ==
=5

100

90 4 Crack front

80

70 A Mode T

60 T T T T !
0.0 0.1 0.2 0.3 0.4 v

b)

Fig. 1. (a) Strength of corner singularity dependence from Poisson’s ratio for f = z/2; (b) The critical angle, ., as a function of Poisson’s ratio.
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is significantly lesser, indicating a much smaller influence of the vertex
singularity on the variation of the line singularity (square root singu-
larity) near the free surface, which is again consistent with Eq. (2).
However, it is important to note that both results for straight and curved
crack front shapes are influenced by numerical errors and have to be
treated with caution, specifically near the free surface, i.e. at 1 — & =
n— 0.

To the best knowledge of the authors, there were no dedicated nu-
merical studies investigating the regions affected by vertex singularities
for other geometries and types of cracks, e.g. as shown in Fig. 4a and b.
However, there were many 3D finite element studies in the past devoted
to the evaluation of the stress intensity factors for different geometries.
Several authors recommended disregarding the variations of the stress
intensity factor along the crack front near the surface, again, typically
within five percent of the crack front length from the vertex point, as
these variations are attributed to the effect of the stress state associated
with the vertex singularity. Summarising the past numerical studies for
different geometries and crack shapes, it can be concluded that the re-
gion affected by vertex singularity is roughly five percent of the crack
front length for a wide range of geometries [8,14,20,25-27].

3. Evaluation of the critical angle hypothesis

Fig. 5 shows the intersection angle, f, for common geometries: a
through-thickness crack in a plate (a), a surface crack in a plate (b), and
a surface crack in a solid circular bar (c). It is important to note that the
steady state (or self-similar) crack growth occurs only for the though-
the-thickness crack. Fatigue crack growth for other geometries is asso-
ciated with a continuous crack front evolution and transient effects.

The summary of experimental studies, which have been utilised for
the present evaluation of the critical angle concept, is presented in
Table 1. Further details can be found in the original references. The
outcomes of the evaluation are shown in Fig. 6, where the ratios of the
experimental intersection angle, f,,,, to the critical angle, ., are plotted
against the ratios of the half crack front length, L, to plastic zone size, ry,,
for various materials, loading conditions and specimen geometries.
Squares in Fig. 6 correspond to the geometry shown in Fig. 5a (through-
the-thickness cracks in plates), triangles correspond to Fig. 5b (surface
cracks in plates) and circles correspond to Fig. 5¢ (surface cracks in
round bars). The size of the plastic zone, which is adopted as a first
approximation to characterise the plasticity effects near the free surface,
is evaluated using the standard equation of Linear Elastic Fracture Me-
chanics (LEFM):

1 Ko\ 2
E— 5
e 27r< oy > )

Vertex point, = 0

a)
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K]/Kapp ] . . : i
Plastic region (~5% of thickness) 3
Extrapolated point ;
g, P
4 A A :
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Fig. 3. Normalised stress intensity factor. In these figures, Ky, is the remotely
applied stress intensity factor in mode I, ¢ = 1 - n, and L is the half plate
thickness or the half crack front length.

where oy is the yield strength, K;.x is the maximum stress intensity
factor in cyclic loading, and plane stress conditions are assumed near the
free surface.

Results presented in Fig. 6, in particular, indicate that the through-
the-thickness cracks, which propagate under steady-state conditions,
better comply with the critical angle hypothesis. There is a clear trend
that the discrepancies between the f,,, and §, decrease with the increase
of L/r,. However, a similar trend is not clear for surface cracks propa-
gating in round bars and plates. The propagation of surface cracks is
generally not steady state but, instead, it is essentially a transient process
as mentioned above. In other words, the shape of the crack as well as its
size constantly changes (evolves) during fatigue growth. Thus, another
factor, which influences the validity/applicability of the critical angle
hypothesis, is the evolution of the crack geometry with crack propaga-
tion. Obviously, when the crack front evolution is relatively slow, then
we can expect that the experimental results would comply with this
hypothesis. However, there are currently not sufficient data to derive a
quantitative condition for the rate of the crack front evolution, which
could be qualified as slow or fast in order to verify this expected
behaviour.

Vertex point

Free surface

Crack surface

b)

Fig. 2. Representation of the stress field near the front of crack.
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Crack front
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Fig. 4. Finite element mesh around a: (a) straight crack front, (b) curved crack front.

Crack surface

Crack front

v ;

/s

9

Fig. 5. Definition of crack front intersection angle, f: (a) through-the-thickness crack, (b) surface crack in a plate, (c) surface crack in a round bar.

Table 1

Summary of the experimental studies.
Reference research article [12] [12] [15] [16] [17] [18] [19] [20] [21] [22] [23]
Theoretical intersecting angle (4.) 103.6° 100.0° 101.2° 101.2° 102.6° 100.0° 102.0° 98.9° 101.2° 100.0° 100.8°
Experimental intersecting angle (f,) 104.4° 100.3° 100.4° 112.0° 107.0° 96~120° 130.8° 121.0° 87~143° 64~105° 115.0°
Yield stress of material (MPa) 455 531 307 334 74 825 287 220 509 206 896
Poisson’s ratio (v) 0.39 0.30 0.33 0.33 0.37 0.30 0.35 0.27 0.33 0.30 0.32
Thickness or radius of specimen (mm) 20.0 20.0 3.0 6.35 40.0 10 6 10.0 9.6 12 6.35
Theoretical plastic zone size (mm) 0.40 0.29 0.14 0.37 0.01 0.1~0.2 0.20 0.50 0.1~0.15 0.1~0.3 1.02
Stress ratio (R) 0.1 0.1 0.25 0.05 - 0.1 0.1 0.1 0.1 0.1 0.05
Maximum applied load (kN* / MPay/m?) 25! 25! 7.5! 16> 16> 3.7! 2.0 122 12~152 25! 4.9!

4. Conclusion

In this work, we suggested a new condition, which has to be satisfied,
for the intersection angle of a fatigue crack front to comply with the
critical angle hypothesis, which was suggested more than forty years
ago. From the analysis of the experimental results sourced from various
studies published in the past, L/r, (the ratio of the half crack front length
to the plane plastic zone stress radius) has to be larger than 102-103, as it
can be seen from Fig. 6. Indeed, this condition complies with the LEFM,
which is valid when the plastic zone size is much less than the charac-
teristic size of the structure or the specimen. The ratio of this charac-
teristic size to the radius of the plastic zone (as evaluated under plane
stress conditions) has to be above 50. This ratio is typically utilised in
many standards to justify the application of methods of LEFM; and it has
been confirmed by a large number of fracture test results. The region

dominated by the vertex singularity, as discussed in Section 2, is
approximately 20 times smaller than the half crack front length (which
is roughly equal to the half plate thickness for through-the-thickness
cracks). Therefore, the obtained threshold value of 10° can also be
related to the same condition: r, (size of the plastic zone) has to be
approximately 50 times less than the region dominated by the vertex
singularity (~ L/20).

Another important finding of this experimental evaluation is a strong
effect of the geometry and fatigue crack propagation conditions. It seems
that the evolution of the crack front shape with the fatigue crack growth
tend to deviate the intersection angle from the theoretical critical angle,
see Fig. 6. As mentioned before, it is expected that the critical angle
hypothesis is more appropriate for slow crack front changes or evolu-
tion. However, there are currently not many experimental and theo-
retical results to assess and confirm this expectancy. The further
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Fig. 6. The ratio of theoretical critical intersection angle, f3,, to the experimental intersection angle, f.,,, as a function of the ratio of the plastic zone size, r;, to half

crack front length, L.

research could address this issue by conducting systematic experimental
and numerical studies, which may be directed on the measurement of
the intersection angle, g, for relatively brittle materials and the evalu-
ation of the vertex singularity and plasticity dominated regions,
respectively. This would help to understand the role of the vertex sin-
gularity in fracture phenomena. Another interesting aspect is the effect
of the vertex singularity on brittle fracture, which is expected to be much
stronger for fracture modes II and III than for mode I. This singular effect
can be significant for sharp notches, which was only theoretically
demonstrated and described in [28,29].

Declaration of Competing Interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:
Andrei Kotousov reports was provided by The University of Adelaide.
Andrei Kotousov reports a relationship with The University of Adelaide.

Acknowlegment

This research is sponsored by FEDER funds through the program
COMPETE - Programa Operacional Factores de Competitividade — and
by national funds through FCT - Fundagao para a Ciéncia e a Tecnologia
—, under the project UIDB/00285,/2020.

References

[1] J.P. Benthem, State of stress at the vertex of a quarter-infinite crack in a half-space,
Int. J. Solids Struct. 13 (5) (1977) 479-492, https://doi.org/10.1016,/0020-7683
(77)90042-7.

[2] C. Mittelstedt, W. Becker, Semi-analytical computation of 3D stress singularities in
linear elasticity, Commun. Numer. Methods Eng. 21 (5) (2005) 247-257, https://
doi.org/10.1002/cnm.742.

[3]

[4]

(51

[6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

C. Luangarpa, H. Koguchi, Analysis of singular stresses at a vertex and along a
singular line in three-dimensional bonded joints using a conservative integral, Eur.
J. Mech. A/Solids. 60 (2016) 208-216, https://doi.org/10.1016/j.
euromechsol.2016.08.002.

D. Doitrand, E. Leguillon, Martin, Computation of generalized stress intensity
factors of 3D singularities, Int. J. Solids Struct. 190 (2020) 271-280, https://doi.
org/10.1016/j.ijsolstr.2019.11.019.

Z. He, A. Kotousov, F. Berto, Effect of vertex singularities on stress intensities near
plate free surfaces, Fatigue Fract. Eng. Mater. Struct. 38 (7) (2015) 860-869,
https://doi.org/10.1111/ffe.12294.

J.P. Benthem, The quarter-infinite crack in a half space; Alternative and additional
solutions, Int. J. Solids Struct. 16 (2) (1980) 119-130, https://doi.org/10.1016/
0020-7683(80)90029-3.

D. Leguillon, E. Sanchez-Palencia, On 3D cracks intersecting a free surface in
laminated composites, Int. J. Fract. 99 (1) (1999) 25-40, https://doi.org/10.1023/
a:1018366720722.

Z. He, A. Kotousov, A. Fanciulli, F. Berto, G. Nguyen, On the evaluation of stress
intensity factor from displacement field affected by 3D corner singularity, Int. J.
Solids Struct. 78-79 (2016) 131-137, https://doi.org/10.1016/j.
ijsolstr.2015.09.007.

Z.P. Bazant, L.F. Estenssoro, Surface singularity and crack propagation, Int. J.
Solids Struct. 15 (1979) 405-426, https://doi.org/10.1016/0020-7683(79)90062-
3.

L.P. Pook, Some implications of corner point singularities, Eng. Fract. Mech. 48
(1994) 367-378, https://doi.org/10.1016,/0013-7944(94)90127-9.

M. Heyder, K. Kolk, G. Kuhn, Numerical and experimental investigations of the
influence of corner singularities on 3D fatigue crack propagation, Eng. Fract. Mech.
72 (13) (2005) 2095-2105, https://doi.org/10.1016/j.engfracmech.2005.01.006.
T. Oplt, P. Hutar, P. Pokorny, L. Nahlik, Z. Chlup, F. Berto, Effect of the free surface
on the fatigue crack front curvature at high stress asymmetry, Int. J. Fatigue 118
(2019) 249-261, https://doi.org/10.1016/j.ijfatigue.2018.08.026.

L.P. Pook, A 50-year retrospective review of three-dimensional effects at cracks and
sharp notches, Fatigue Fract. Eng. Mater. Struct. 36 (8) (2013) 699-723, https://
doi.org/10.1111/ffe.12074.

P. Hutat, L. Nahlik, Z. Knésl, Quantification of the influence of vertex singularities
on fatigue crack behavior, Comput. Mater. Sci. 45 (3) (2009) 653-657, https://doi.
org/10.1016/j.commatsci.2008.08.009.

R. Branco, F.V. Antunes, Finite element modelling and analysis of crack shape
evolution in mode-I fatigue Middle Cracked Tension specimens, Eng. Fract. Mech.
75 (10) (2008) 3020-3037, https://doi.org/10.1016/j.engfracmech.2007.12.012.
H. Hosseini-Toudeshky, G. Sadeghi, H.R. Daghyani, Experimental fatigue crack
growth and crack-front shape analysis of asymmetric repaired aluminium panels



B. Zakavi et al.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

with glass/epoxy composite patches, Compos. Struct. 71 (3) (2005) 401-406,
https://doi.org/10.1016/j.compstruct.2005.09.032.

M. Heyder, G. Kuhn, 3D fatigue crack propagation: Experimental studies, Int. J.
Fatigue 28 (5) (2006) 627-634, https://doi.org/10.1016/j.ijfatigue.2005.06.052.
J. Lebahn, H. Heyer, M. Sander, Numerical stress intensity factor calculation in
flawed round bars validated by crack propagation tests, Eng. Fract. Mech. 108
(2013) 37-49, https://doi.org/10.1016/j.engfracmech.2013.04.013.

S. Ishihara, Y. Sugai, A.J. McEvily, On the distinction between plasticity-and
roughness-induced fatigue crack closure, Metall. Mater. Trans. A Phys. Metall.
Mater. Sci. 43 (9) (2012) 3086-3096, https://doi.org/10.1007/s11661-012-1121-
9.

C. Gardin, S. Fiordalisi, C. Sarrazin-Baudoux, M. Gueguen, J. Petit, Numerical
prediction of crack front shape during fatigue propagation considering plasticity-
induced crack closure, Int. J. Fatigue 88 (2016) 68-77, https://doi.org/10.1016/j.
ijfatigue.2016.03.018.

1.S. Putra, J. Schijve, Crack opening stress measurements of surface cracks in
7075-T6 Al alloy plate specimens through electron fractography, Fatigue Fract.
Eng. Mater. Struct. 15 (4) (1992) 323-338, https://doi.org/10.1111/j.1460-
2695.1992.tb01274.x.

R. Branco, F.V. Antunes, J.D. Costa, F.P. Yang, Z.B. Kuang, Determination of the
Paris law constants in round bars from beach marks on fracture surfaces, Eng.
Fract. Mech. 96 (2012) 96-106, https://doi.org/10.1016/j.
engfracmech.2012.07.009.

Z.P. Bazant, L.F. Estenssoro, Surface singularity and crack propagation, Int. J.
Solids Struct. 15 (5) (1979) 405-426, https://doi.org/10.1016/0020-7683(79)
90062-3.

P.F.P. de Matos, D. Nowell, The influence of the Poisson’s ratio and corner point
singularities in three-dimensional plasticity-induced fatigue crack closure: a nu-
merical study, Int. J. Fatigue 30 (10) (2008) 1930-1943, https://doi.org/10.1016/
j.ijfatigue.2008.01.009.

[25]

[26]

[27]

[28]

[29]

28

Theoretical and Applied Fracture Mechanics 114 (2021) 102985

T. Nakamura, D.M. Parks, Antisymmetrical 3-D stress field near the crack front of a
thin elastic plate, Int. J. Solids Struct. 25 (12) (1989) 1411-1426, https://doi.org/
10.1016/0020-7683(89)90109-1.

D. Camas, J. Garcia-Manrique, A. Gonzalez-Herrera, Numerical study of the
thickness transition in bi-dimensional specimen cracks, Int. J. Fatigue 33 (7)
(2011) 921-928, https://doi.org/10.1016/j.ijfatigue.2011.02.006.

R. Branco, F.V. Antunes, L.C.H. Ricardo, J.D. Costa, Extent of surface regions near
corner points of notched cracked bodies subjected to mode-I loading, Finite Elem.
Anal. Des. 50 (2012) 147-160, https://doi.org/10.1016/j.finel.2011.09.006.

A. Kotousov, P. Lazzarin, F. Berto, L.P. Pook, Three-dimensional stress states at
crack tip induced by shear and anti-plane loading, Eng. Fract. Mech. 108 (2013)
65-74, https://doi.org/10.1016/j.engfracmech.2013.04.010.

A. Kotousov, Effect of plate thickness on stress state at sharp notches and the
strength paradox of thick plates, Int. J. Solids Struct. 47 (14-15) (2010)
1916-1923, https://doi.org/10.1016/j.ijsolstr.2010.03.029.

b

sa,*

Behnam Zakavi®', Andrei Kotousov®', Ricardo Branco

chool of Mechanical Engineering, The University of Adelaide, Adelaide,
SA 5005, Australia

b Department of Mechanical Engineering, CEMMPRE, University of
Coimbra, Rua Luis Reis Santos, Polo II, 3030-788 Coimbra, Portugal

* Corresponding authors at: School of Mechanical Engineering, The
University of Adelaide, Adelaide, SA 5005, Australia.

E-mail addresses: behnam.zakavi@adelaide.edu.au (B. Zakavi), andrei.

kotousov@adelaide.edu.au (A. Kotousov).



80

Chapter 5
Development of Simplified Methods to Describe the Front Shapes

of Through-the-thickness Fatigue Cracks



81



Statement of Authorship

Title of Paper

On evaluation of fatigue crack front shapes

Publication Status

X1 | Published [] | Accepted for Publication
Unpublished and Unsubmitted work
[] | Submitted for Publication ] oo .
written in manuscript style

Publication Details

Zakavi, B., Kotousov, A., Khanna, A., & Branco, R. (2017). On evaluation of fatigue crack
front shapes. 9th Australasian Congress on Applied Mechanics (ACAM9), 828-835.

Principal Author

Name of Principal Author

Behnam Zakavi

Contribution to the Paper

Created models, performed all analyses, interpreted data, and co-wrote manuscript

Overall percentage (%)

50

Certification:

Signature

This paper reports on original research | conducted during the period of my Higher Degree
by Research candidature and is not subject to any obligations or contractual agreements
with a third party that would constrain its inclusion in this thesis. | am the primary author

of this paper.

Date 22/08/2021

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);
ii. permission is granted for the candidate in include the publication in the thesis; and
iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

Name of Co-Author

Prof. Andrei Kotousov

Contribution to the Paper

Signature

Performed analysis, interpreted data, reviewing the literature, and co-wrote manuscript

Date 23/08 /2021

Name of Co-Author

Dr. Aditya Khanna

Contribution to the Paper

Assisted in data interpretation, and manuscript evaluation

Signature

Date 24/08/2021

Name of Co-Author

Prof. Ricardo Branco

Contribution to the Paper

Signature

82

Participated in manuscript review and evaluation, checked the derivation solutions

Date 24/08/2021




9™ Australasian Congress on Applied Mechanics (ACAM9)
27 - 29 November 2017

ISBN 978-1-925627-02-2

On Evaluation of Fatigue Crack Front Shapes

B. Zakavi?!, A. Kotousov?!, A. Khanna' and R. Branco?
!School of Mechanical Engineering
The University of Adelaide
Adelaide, SA 5005
AUSTRALIA
’Department of Mechanical Engineering
The University of Coimbra
3030-788 Coimbra
PORTUGAL
E-mail: behnam.zakavi@adelaide.edu.au

Abstract: The front of through-the-thickness fatigue cracks in plates made of the various materials is
often notably curved, specifically near the plate surfaces. However, for the sake of simplicity, the crack
shape front and its evolution during crack propagation are normally disregarded in the current
procedures of the fatigue crack growth evaluation. Our long term objective is to understand this
phenomenon, develop modelling tools and incorporate more realistic crack front shapes into fatigue
failure analysis. These modelling tools are expected to better predict failure and life-time of plate and
shell components subjected to the cycling loading.

In this study, the steady-state front shapes of the through-the-thickness cracks are investigated. When
the size of the plastic zone is very small, the angle at which the crack front intersects the free surface is
governed by the three-dimensional (3D) corner singularity or by a critical angle, which is a function of
Poisson’s ratio. The steady state conditions of fatigue crack propagation also require the uniform
distribution of the local effective stress intensity factor range along the crack front. This parameter is
evaluated numerically for different crack front shapes using 3D Finite Element Analysis (FEA). This
paper presents the methodology, selected results of the numerical simulations, and a comparison
between the obtained results and the outcomes of the experimental studies.

Keywords: Numerical study, Crack front shape, Small scale yielding, Through-the-thickness cracks,
Fatigue life estimation

1. INTRODUCTION

Fatigue growth of cracks in plate components is often simplified with the plane geometry i.e. assuming
that the crack front is straight and all points along the crack front are subjected to the same loading
conditions. This assumption allows the evaluation of fatigue crack propagation with the classical linear
elastic fracture mechanics or with more advanced two-dimensional (2D) fatigue models incorporating,
the crack tip plasticity effects, out-of-plane constraint, plasticity or roughness induced closure
phenomena, etc. The plane models (2D) are capable to accurately evaluate the fatigue life of structural
components in many cases. However, recent studies provided numerous evidences that these fatigue
models may lead to the inaccurate predictions when applied to the certain practical situations. For
example, Bellett et al. [1] demonstrated that commonly used methods for notch fatigue assessment are
not able to predict the behaviour of 3D stress concentration features in both welded joints and features
machined from solid steel. Therefore, the further progress is necessary towards the development of
more adequate fatigue life evaluation procedures. The three-dimensional modelling of the crack
geometry can improve upon the prediction of plane models as the real fatigue cracks are inherently
three-dimensional [2].

Many experimental studies and test results demonstrated that fatigue crack front shapes are not straight
but curved [3,4]. There are at least two main phenomena responsible for the experimentally observed
curvature of the front of fatigue cracks: the thickness effect and 3D corner singularity effect. In plate
components of finite thickness, the stress state near the plate surfaces approaches plane stress,
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whereas in regions away from the plate’s free surfaces, the stress state is tri-axial. The variation of the
out-of-plane (transverse) stresses leads to a variation in the constraint factor and the plasticity-induced
crack closure values across the initially straight crack front. Therefore, the crack front shape normally
evolves during fatigue crack propagation until it can (or cannot) reach a steady-state conditions. This
condition corresponds to the uniform distribution of the fatigue crack driving force along the crack front.
The local stress intensity factor is often considered regarded as the fatigue crack driving force in high
cycle fatigue propagation.

The other phenomenon leading to the crack front curvature is the presence of the 3D corner (or vertex)
singularity at the points where the crack front intersects the plate free surfaces. In 3D crack problems,
the order of the singularity at the free surface depends on the Poisson’s ratio and the intersection angle
of the crack front with the free surface. Bazant and Estenssoro [5] argued from energy and other
considerations that the front edge of a propagating crack must terminate at the free surface at an oblique,
critical angle B., see Fig.1. The critical angle is a function of the Poisson’s ratio ensuring inverse square
root singularity (r~'/2) at the corner points, same as the other points on the crack front. An analytical
solution for the critical intersection angle is not available, although several numerical results can be
found in the literature. The concept of critical angle was widely investigated experimentally in the recent
years. It was demonstrated in several studies that when the plastic zone at the fatigue crack front is very
small, the front edge intersects the free surface at the critical angle as predicted theoretically. For
example, Heyder et. al. [6, 7] reported experimental measurements of the angle, at which the crack
fronts break the free surface for the transparent specimens (PMMA) under four-point bending conditions.
These measurements have shown that the crack front is shaped so as to ensure the same singular
behaviour at the intersection of the crack front with the free surface and in the rest of the crack front for
fatigue crack growth under pure fracture mode |I.
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Figure 1. Elliptical-arc crack front shape for geometrical parameters crack propagation

Despite many experimental evidences supporting 3D considerations, only a limited number of 3D
studies have been conducted on fatigue crack growth propagation. This is primarily because 3D
simulations are far more complex, more time consuming and demand more powerful computing
resources. The simulation of plasticity-induced crack closure using the FEA has some inherent
difficulties related to the mesh refinement, crack growth scheme, which usually consists of releasing
nodes ahead of the initial crack tip, and the stage at which crack is allowed to grow. The numerical study
can be performed at minimum load, maximum load or during the loading/unloading cycle. Therefore, the
outcomes of such numerical simulations should be treated with caution.

In this paper, we present a simplified procedure for the evaluation of the fatigue crack front shapes under
steady-state growth when the plastic effects at the crack front are very small in comparison with the
other dimensions, and in particular with the size of the region controlled by the 3D corner singularity. In
this case, the angle at which the crack front intersects the free surface is very close to the critical angle
in accordance with the previous experimental studies. The smallness of the plastic zone allows utilising
the local elastic stress intensity factor range as the fatigue crack driving force. By considering a simple
parametric family of the shapes of the crack front we select the one, which provides a more uniform
driving force along the crack front. This is accomplished with the help of a series of careful 3D finite
element simulations. In this paper, we present the selected outcomes of the FE simulations and provide
a comparison between the obtained numerical results and the outcomes of experimental studies.



2. METHODOLGY

In this section, we briefly outline the adopted methodology for the evaluation of the steady-state front in
the through-the-thickness cracks. First, we approximate the shape of the crack front by a two-parameter
elliptical curve, which can be described as:

x=b |[1-= —h<z<h 1)

where a and b are the major and minor axis of ellipse as shown in Fig. 1. As discussed in the Introduction,
when the plasticity effects are small, the crack front tends to intersect the free plate surface at the critical
angle, B.. The critical angle is a function of Poisson’s ratios and type of loadings. It is found that the
critical intersection angle can be approximated by the following formula [8]:

tan @3, =V;2 (2)

The above empirical equation suggested by Pook is only valid for the brittle materials. When the size of
the plastic zone is greater than 1% of the plate thickness (typically), the stress state near the vertex
location is not controlled by the elastic singularity. In these cases, the plasticity effects become more
important and together with the vertex singularity effect leads to the greater critical angles for elastic-
plastic materials. To find b, we need to make sure that

ox bh v

yrn AT V=2 3)
From the previous equation:
av a?
= ,_ — (4)
b (2—-v) |h? 1

Substituting Eq. (4) into Eq. (1):

X(Z)=L i—1>< a% —z? —h<z<h )
(2—-v) . h? -0

This equation meets the condition that the crack front intersects with the free surface at the critical angle
given by Eq. (2), and represents a parametric curve with one single parameter, a. Further, the Paris law
is utilised to identify the steady state shapes. In accordance with the Paris law the speed of the crack
growth, V, is given as:

V = C(AK)™ (6)

where AK is the stress intensity factor range of fatigue driving force, C and m are the material constants.
The steady-state condition of the crack propagation requires that the projection of the crack growth
speed along the crack propagation direction (which is X-direction, see Fig.1) to be constant for all points
along the crack front, or

V,(z) = V (z)cos a = Constant (7

This condition cannot be satisfied exactly with any multi-parametric equation describing the possible
crack front shapes. However, the shape, which minimises the difference of the crack growth speed (7)
along the crack front, can be considered as a first approximation of the actual fatigue crack front shape.
The standard deviation approach can also be used to quantify this difference at different values of the
parameter a in Eq. (5):

h
(%) = o0 [ (W% - %) a ®
“h

where V;"® is the average speed of the crack front.

In other words, we determine the value of parameter a, which minimises the standard deviation of the
crack growth rate along the crack front (—h < z < h), or SD(V,) — min to identify the realistic crack front
shape. The local stress intensity factor range, AK, in Eq. (6) is evaluated numerically using the 3D finite
element method. The modelling approach is briefly described in the next section.



3. 3D FINITE ELEMENT MODELLING APPROACH

The finite element geometry of a through-the-thickness crack in an elastic plate is shown in Fig. 2. By
taking advantage of the symmetry conditions, only a one quarter of the crack problems is modelled. The
crack front is normal to the free surface. The radial dimension of the FE model is taken approximately
seven times larger than the plate thickness. In accordance with the previous studies, this is sufficient to
accurately describe the 3D effects near the crack front [9].

The FE models corresponding to different values of the parameter, a, are meshed with 20 node
hexahedral elements. The global and local meshes are shown in Fig. 2. A more dense mesh is applied
near the crack front where the stress gradient is expected to be maximum. Further details of the
modelling approach can be found in papers published by the present authors [10,11,12]. The numerical
simulations were carried out using APDL scripts and ANSYS finite element software package, version
17.2.
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Figure 2. Finite element mesh around crack front

The opening mode is a major mode of the crack propagation and failure in components with the cracks.
As such, Mode | fracture is the focus of our discussion and crack front estimation in the elastic materials.
The displacement boundary conditions are applied on the plate edges corresponding to pure mode I.
The plane-stress displacements far from the crack tip were calculated in accordance with the William’s

solution [13]:

w0 = () ke ©
uy (1, 0) = (%)1/2 a ;’ ) [K2£1(0)] (10)
where
fi(0) = cosg (k — 1+ 2sin? g) (11)
f(8) = sing (k + 1+ 2 cos? g) (12)

Here r is the distance from the crack tip, 6 is the angle measured from the symmetry line, and K} is the
remotely applied mode | stress intensity factor. k is Kolosov’s constant for plane stress and plane strain
conditions. The plane stress k value has been considered in the boundary conditions:
3—-v
T 1+4v
Bakker [14] showed that a cracked plate under plane stress undergoes a change to plane strain
behaviour near the crack tip. He adds that the radial position where the plane stress to plane strain
transition takes place strongly depends on the position in the thickness direction. The degree of plane
strain is essentially zero at distances from the tip greater than five times of thickness, even in the middle
plane of the plate [15].

(13)




4. SELECTED RESULTS

In this section, we show the influence of Poisson’s ratio, v, and Paris law exponent, m, on the crack front
shapes at the condition of the steady-state propagation. It is clear that the constant C in the Paris law
does not affect the calculations and the minimisation of the standard deviation (Eg. 8).

X
h
-0.02
v=0.1;0.2;0.3;0.4and 0.5
-0.04
Poisson’s ratio increased
-0.06
Thickness (2h): 3mm
0.08 Initial crack length (2a): 8mm
' Paris law exponent (m): 3.978
Stress ratio (R): 0.25
Fracture toughness (Kya): 20MPa.m%5
-0.10
0.0 0.2 04 0.6 0.8 Z
h

Figure 3. Effect of the Poisson’s ratio on the crack front shapes

Fig. 3 shows the effect of Poisson’s ratio on the crack front shapes. The shapes become more curved
and deeper with the increase of Poisson’s ratio as the critical angle, ., becomes larger at the greater
Poisson’s ratios, see Eq. (2). It is interesting to note that the 3D corner singularity effect is normally
confined to a close vicinity of the vertex region, typically to the distance of several percent of the plate
thickness, however, its effect on the crack front shapes is quite significant. This can be explained by the
intersection angle governed by the 3D corner singularity, which significantly affects the shape. This is
because the shape cannot be changed in an abrupt manner, so it follows this initial direction given by
the critical angle.
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Figure 4. Crack front shapes corresponding to various values of fatigue constant m



Contrary to the strong effect of Poisson’s ratio on the crack front shapes, it seems, the effect of the
fatigue crack growth material constants, C and m is quite small. The whole range of possible fatigue
exponent corresponding to structural materials was investigated with the proposed method for the
particular geometry and loading conditions. However, these material constants are expected to have a
large effect on the evolution of the front shape in the case of changing in the loading or boundary
conditions.

5. COMPARISON AGAINST EXPERIMENTAL RESULTS

The proposed method for the evaluation of the steady-state crack front shapes was compared against
an experimental study of Borrego, 2001 [16]. In this study, the centre-cracked panels with a thickness
of 3mm were subjected to the constant fatigue loading. The panels were made of 6082-T6 aluminium
alloy. The fatigue properties and parameters of fatigue loading are given in Table 1. The fatigue cracks
were grown over a sufficiently large distance from the initial notch to ensure the quasi-steady state
conditions of propagation (Fig 5).

Table 1. Material properties and cyclic loading conditions for an aluminium plate with a through-
thickness crack under fracture opening mode [Borrego, 2001]

Poisson’s Young’'s Load ratio Crack length Exponent in Material yield
ratio (v) Modulus (E) (R) (2a) Paris' law (m) stress (By)
0.33 74GPa 0.25 8mm 3.456 307MPa

Crack f'rogb‘shépg;._- :
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.;...- wr ey ,‘J N o L

-

Figure 5. The experimental crack front shape with a through-the-thickness crack [16]

Fig. 6 shows a comparison of the experimental crack front shape and the one, which was obtained with
the proposed method. It can be stated that the experimental results and theoretical predictions are in a
good agreement.
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Figure 6. Comparison between the predicated and experimental crack front shape



Table 2 presents some intermediate results of numerical simulations, from which the realistic shape is
selected. Parameter a is changed from 1 (this value corresponds to straight crack front) to 1.5, which
results into the aspect ratio of the principle axis of the elliptical curve 0.34. A finite element model was
developed for each parameter a, and the standard deviation of the crack growth rate along the crack
front, S(V,), was evaluated in accordance with the procedure presented in Sections 2 and 3.

Table 2. Comparison between the maximum stress intensity factor and standard deviation of the
average crack speed under Mode | loading (m = 4.224, 2h = 3mm, v = 0.33, R = 0.25)

a/h 1.00 1.05 1.10 1.2 1.50

b/a 0.00 0.06 0.09 0.15 0.22
Tunnelling effect, Pt 0 0.023 0.029 0.035 0.042

S(Vy) 2.38E-05 2.87E-06 2.06E-07 1.06E-06 8.07E-06

From Table 2, it follows that a/h = 1.10 provides the minimum error, which corresponds to the steady
state condition. In addition, the tunnelling effect, P,, which is the ratio of the crack depth to the plate
thickness, is also determined from the numerical simulations. This tunneling effect for the steady state
shape is 0.03. The obtained tunnelling effect is in an agreement with the previous numerical studies,
which were focused on the evaluation of this parameter [17,18].

The corresponding estimated life cycles without consideration of the crack closure effect for the different
crack front shapes are summarised in Table 3. The plate thickness and crack length were set at 3mm

and 23.52mm. The values of the maximum stress intensity factor analysed were 20MPay/m with zero
minimum stress intensity factor (Kmin = 0), which corresponds to R = 0.

Table 3. Comparison between the maximum estimated design life (m = 3.456, C = 2.5054E-11)

Straight crack front Present study
Max. Stress Intensity Factor at the Crack Front 21.282 21.002

Estimated Life Cycles 2.42E+07 2.53E+07

6. CONCLUSION

In this paper, a new method and the outcomes of the numerical simulations of the steady-state crack
front shape are presented. The main conclusions, which can be drawn from these simulations, are:

e Poisson’s ratio has a strong effect on the fatigue crack front shapes;

e The depth of crack front curvature increases with an increase in the Paris exponent. The effect
of fatigue constants on the steady state shape of fatigue through-the-thickness crack was found
to be small. However, these constants are expected to play a significant role in the evolution of
the crack front shape until it reaches the steady-state (or quasi-steady-state) shape.

The comparison with experimental results is quite encouraging and demonstrates the validity of the
underlying assumptions, which were utilised in the present study: (1) the crack front shape intersects
the free plate surface at the critical angle, (2) the local stress intensity factor can be considered as the
fatigue crack driving force, which leads to the formation of the crack front shape under high cycling
loading. The above assumptions might not be correct in the case of sufficiently large plastic effects near
the crack tip. In this case, the plasticity induced closure, which is significantly different along the crack
front, will be the one of the most influential factors affecting the crack front shape. The future work can
be directed on the incorporation the plasticity induced crack closure effects into the calculation of the
fatigue driving force, and the more complex geometries and crack shapes.
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Abstract. A direct three-dimensional (3D) finite element modelling of fatigue crack growth in
structural components still represents a formidable task due to a complex singular behaviour of the
stress field along the crack front as well as strong non-linearities associated with material plasticity
and the change of contact conditions between crack faces during the loading cycle. The complexity
of the 3D numerical modelling of fatigue crack growth largely motivates the development of
simplified approaches. This paper describes several possible approaches for the evaluation of front
shapes of fatigue cracks. These approaches are based on (1) the elimination of the corner singularity
effect, (2) predictions based on the first-order plate theory, (3) the equivalent thickness concept, and
(4) the Iso-K criterion. This paper briefly outlines these simplified approaches and presents some
theoretical predictions for the case of through-the-thickness cracks propagating in plates under quasi-
steady-state conditions. The theoretical predictions are also compared with experimental
observations.

Introduction

The evaluation of fatigue failure of structural components is of permanent and primary interest for
engineers. Hence, significant research effort has been directed towards the development of fatigue
crack growth models over the past four decades. In particular, numerous early publications were
dedicated to the study of the fatigue crack closure concept, which was first introduced by Elber [1] to
explain the experimentally-observed features of fatigue crack growth in aluminum alloys. The number
of publications grew rapidly since his pioneering study, reaching a maximum around 1970. It is now
commonly accepted that the contributions of various mechanisms of crack closure, specifically the
plasticity-induced closure, are significant, particularly at the near threshold fatigue crack growth, in
retardation effects associated with overloads and acceleration of crack growth rates of physically short
cracks [2]. In accordance with this approach, the crack growth and the shape evolution are governed
by the effective stress intensity factor, AK ¢ , which is defined as:

AKeff = Kmax - Kop =UAK = U(Kmax - Kmin) (l)

where K. and K.;, are the maximum and minimum values respectively and U is the normalised load
ratio parameter (or the normalised effective stress intensity factors) which is often used to describe
the effects of loading and plate geometry on crack closure.

Prior to 1970, the plasticity and crack closure mechanisms were intensively investigated for two-
dimensional (2D) geometries utilising both plane strain and plane stress simplifications. With
advances in numerical modelling and the increase in computational power, it became possible to study
more realistic three-dimensional (3D) geometries as well as investigate the various near crack front
3D effects. A number of finite element (FE) models have been developed in the past to evaluate the
effective stress intensity factor, AK.¢, and normalised load ratio parameter, U, for various geometries
and loading conditions. However, these methods are difficult to implement in fatigue analysis due to
convergence and repeatability issues. One of the reasons behind the difficulties in modelling plasticity
and contact nonlinearities is the complex 3D singular stress fields, specifically near the vertex (corner)
points.

11th International Conference on Structural Integrity and Failure (SIF-2018)



In 3D problems the order of the singularity at the intersection of the crack front with the free surface
depends on the Poisson’s ratio and intersection angle. From energy considerations, it follows that
shape of the fatigue crack front must evolve to preserve the inverse square root singular behaviour
along the entire crack front. Therefore the fatigue crack has to intersect the free surface at a critical

angle, B., which is a function of Poison’s rat

brittle materials, have confirmed this pred

i0, v. Several experimental studies, specifically for quasi-
iction for mode | fatigue cracks. Other studies have

indicated that the effect of 3D corner singularity might not be very significant in the presence of a
sufficiently large crack front process zone. This is because the 3D corner singularity effect is a point
effect and is quite localised. The experimental results for surface fatigue cracks in round bars show

that the fatigue front preserves a semi-ellipt

ical shape rather than the critical angle [3].

In this paper, we briefly outline four simplified approaches for the prediction of front shapes of
fatigue cracks. We also describe the application of these approaches to through-the-thickness cracks
as well as a comparison with experimental data.

Methods for Evaluating the Front Shapes of Fatigue Cracks

In this Section we briefly describe four
fatigue cracks propagating in plates under g

simplified approaches for evaluating the front shapes of
uasi-steady state conditions. These approaches are based

on (1) the elimination of the corner singularity effect; (2) predictions based on the first-order plate
theory; (3) incorporation of plasticity-induced fatigue crack closure effect using the equivalent
thickness concept; and (4) the Iso-K concept.

1. Approach Based on the Elimination o

f Corner Singularity Effect

This approach is based on the so-called stress singularity matching. In accordance with this
assumption, the evolution of the crack front occurs in a manner that all points over the crack front
(including the corner points) have the same inverse square root singularity of the stress field. This

assumption implies that the angle, B, is the

same during the crack front evaluation and equal to the

critical angle, B = B, (see Fig. 1) at the condition of the steady-state propagation [4]. The critical

angle is a function of Poisson’s ratio only;

for example, for v = 0.3, B, =~ 100.40. It is interesting to

note that in accordance to the experimental study by Heyder et al. [5], in structures with flat free
surfaces, such as beams of rectangular or trapezoidal cross-sections, the fatigue crack front appears

to follow the stress singularity matching

assumption; however, it is generally not supported by

experimental observations for structures with curved surfaces such as round bars [6].

X A

Material

A

2—v
B. =180 +atan<
v

)

Crack front (Approximation by Pook [4])

\\
Be N,

[
»
z

h a

Fig. 1. Critical angle, ., in the case of a through-the-thickness crack propagating in a plate

An application of this approach to a steady state fatigue crack propagation requires the fulfilment
of two conditions: (1) stress singularity matching (or B = B. at the intersection with the free boundary)

and (2) the same value of the stress inten

sity factor along the crack front (Iso-K approach). The

practical realisation of this approach can be based on a minimisation of the stress intensity factor
variation along different front shapes, which can be described by a multi-parametric equation.

2. First-Order Plate Theory Predictions

Another approach for the front shape evaluation is based on first-order theory predictions. This
simplified theory is a natural extension of the classical plane stress/plane strain theories. The first-
order plate theory explicitly incorporates the plate thickness and the transverse stress components into

the governing equations, which retain the si

mplicity of 2D models.
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Based on this theory, and utilising Budiansky-Hutchinson crack closure model [7], Codrington and
Kotousov [8] provided the following solution for the normalised load ratio, U, in the case of the small-
scale plasticity:

U(Rm) = a(n) +b(m)R +c(n)R? )
where R is the load ratio; a, b and c are fitting functions given by the following equations:

a(n) = 0.446 + 0.266- e79411: (1)) = 0.373 + 0.354 - e~0-2350: (1)) = 0.2 — 0.667 - e~ %51F  (3)

where n = Kpax/(hy/or) is a dimensionless parameter, K .« IS the maximum stress intensity factor, h
is the half-plate thickness, and oy is the flow stress.

These equations correctly recover the limiting cases of very thin and very thick plates, i.e. when
n — o or n— 0, respectively. The details of the derivation of these equations can be found in the
original paper [8]. The application of this solution to the evaluation of the front shape of through-the-
thickness cracks can be found in He et al. [9], and will not be repeated here due to page restrictions.

3. Equivalent Thickness Concept

Several researches suggested a concept which simplifies the evaluation of the plastic constraint
effect on the plasticity-induced crack closure [10,11]. For example, based on an extensive 3D elasto-
plastic FE analysis for through-the-thickness cracks, She et al. [12] proposed to define the equivalent
thickness for arbitrary point, P, located on the crack front, see Fig. 2, as follows:

heq = h—22/h (4)
where z is the distance from the mid-plane and h is still the half-thickness of the plate.

24 Crack front
A / ,
Mid-plane oh i( 4 Crack front
P'::ff:f:\)[:ﬂ?heq ) 2]
" v
(@) (b)

Fig. 2. Schematic illustration of the equivalent thickness method in the through-the-thickness cracks

The normalized load ratio is defined as:
Yk
1-R
where x (see Eq. (6)) is a function of R and a global constraint factor, o.
(1 — R%)2(1 + 10.34R?)
1" (6)
0.15m?%a,
The global constraint factor is a thickness (t) and Poisson’s ratio (v) dependence parameter:
1+t

= 7

1-2v+t (")
The normalized load ratio increases with an increase in the constraint factor at the constant applied
stress ratio. In the last equation, t can be calculated from the following equation:

U= )

[1 + 1.67R161 +

Ug

lo lo
t= 02088 |—+ 1.5046 —- 8)
heq Peq
with the plastic zone size, r,, as a function of flow stress, oy, defined as:
T Kmax>2
= (—max 9
o 16< Of ( )

The practical realisation of this approach is normally accomplished by a simple crack advance
scheme, in which each point along the crack front moves in accordance with the effective stress
intensity factor range, AK ¢, See EqQ. (1), with U provided by relationships (5) — (9).
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4. 1s0-K approach

In accordance with the Iso-K approach, the steady state fatigue crack propagation requires the
uniform distribution of the local stress intensity factor range along the crack front. The stress intensity
factor range can be evaluated numerically using 3D linear-elastic FEA.

The practical realisation of this approach for a steady-state propagation of through-the-thickness
cracks in plates can involve the evaluation of the stress intensity factor for two characteristic points:
at the middle, z = 0 and at the surface, z = h for a two-parametric set of equations representing the
front shapes, e.g. elliptical shapes. Further, the higher value of the crack closure at the free surface
may be incorporated into the theoretical predictions using various empirical equations for crack
closure proposed in the past, e.g. the one suggested by Newman and Raju [13]. The steady-state crack
growth requires the same fatigue crack growth rate, or

da db

aN - Cs(AKg)" = aN C(AKM)" (10)
where AKg and AKy; are the stress intensity factor ranges at the surface and the mid-thickness points
of the crack front; C and n are Paris constants, which can be obtained experimentally for different
materials. Newman and Raju proposed the following relationship between the Paris coefficients at the
surface and deepest points for the plate components with a semi-circular crack under pure tension
cyclic loading condition [13]:

Cs =0.9"C (11)
In this study we also utilized a coefficient of 0.8 for both selected materials to get a better agreement
with experimental data.

Comparison of Different Approaches

The proposed approaches for the evaluation of the steady-state crack front shapes were compared
against experimental studies [5,14]. In these studies, the centre-cracked panels were made of 2024-
T3 aluminum alloy and Polymethylmethacrylate (PMMA) with a thickness of 6.35mm and 40mm,
respectively. The advantage of PMMA material is its transparency which enabled an in-situ evaluation
of the crack front shape.

For the aluminum alloy specimens such an evaluation was done using benchmarking technique
and post-mortem analysis of fracture surfaces. Both specimens were subjected to constant amplitude
fatigue loading. The fatigue cracks were grown over a sufficiently large distance from the initial notch
to ensure the quasi-steady state conditions of propagation.

x/h x/h
Method 1 Method 1 ™~
0.08 Method 2 0.06 Method 2
' Method 3 ' Method 3
Method 4 Method 4
......... i --------- Experimental Data [5
0.16 Experimental Data [14] 012 p [5]
Material: Aluminium alloy 2024-T3 8 Ma}terial: PMMA
024 | Thickness (2h): 6.35mm 018 Thickness (2h): 40mm
Poisson’s ratio (v): 0.33 Poisson’s ratio (v): 0.365
Paris law exponent(n): 4.224 Paris law exponent (n): 0.91
Stress ratio (R): 0.05 Stress ratio (R): 0.0
-0.32 -0.24
0.0 0.2 0.4 0.6 08  z/h 0.0 0.2 0.4 0.6 08 z/h
(@) (b)

Fig. 3. Comparison between the predicated crack shapes and experimental data for the specimens made of
a) 2024-T3 aluminium alloy, and b) Polymethyl methacrylate (PMMA)
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As it follows from the analysis of Fig.3, the simplified approaches work a bit better for the quasi-
brittle material (PMMA); and the Iso-K approach provides the best correlation with the experimental
results. Unfortunately, none of the approaches is capable to accurately describe the front shape of
fatigue cracks. This can be explained by the complexity of the crack closure phenomenon, which
currently represents one of the major challenges in 3D Fracture Mechanics.

Conclusion

The capability of several simplified approaches for the evaluation of the shape of fatigue crack
fronts has been studied using experimental results for a steady-state propagation of fatigue through-
the-thickness cracks in different materials. It is demonstrated that none of the approaches is capable
to accurately describe the shape of the fatigue cracks. An empirically introduced crack closure
equation allows for a better matching of the theoretical and experimental predictions. The outcomes
of this work and the comparison justify a need of further research in this area.
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This paper presents a new analytical method for the analysis of fatigue growth of surface cracks in various
structural components. The method is based on a governing equation describing the front evolution of surface
cracks of elliptical and part-elliptical shapes. This method avoids the need for various numerical schemes for the
calculation of the incremental crack front advance, which were used in all previous studies. Plasticity-induced
crack closure models can also be incorporated into the method or these models can be deducted from a corre-
lation of experimental data and the method predictions. When the plastic constraint conditions change sig-

nificantly along the crack front, the implementation of the plasticity induced crack closure models can sig-
nificantly improve the accuracy of fatigue life predictions. The method is validated against previous theoretical

and experimental studies.

1. Introduction

A great deal of attention over the past several decades was devoted
to the analysis of surface crack growth in structural components sub-
jected to cyclic loading. This attention is not surprising because fatigue
failure in low and high cycle fatigue regimes is often initiated from a
surface flaw induced by fabrication or developed during cyclic loading
from a virtually free from defects surface [1]. For metals and metallic
alloys there are several crack formation mechanisms, which may
compete, and thereby often causing a significant scatter in fatigue life.
These mechanisms have been comprehensively discussed in several
recent review papers. It is generally agreed that in the absence of sur-
face defects, the crack formation stage is largely associated with the
accumulation of fatigue damage in the form of irreversible micro-plastic
deformations within slip bands which normally form intrusions/extru-
sions at the surface grains or impinge on grain boundaries for non-
surface grains [2].

One of the most important issues related to the analysis of surface
cracks propagating under fatigue loading is the evolution of the crack
front shape [3-5]. Past experimental studies have demonstrated that for
many structures subjected to cyclic loading surface, cracks normally
maintain a so-called “almond” shape up to the final stage of propaga-
tion (fracture) [4,5]. It was also found that the front of the “almond”
shaped fatigue cracks can be quite accurately approximated by an

* Corresponding author.
E-mail address: behnam.zakavi@adelaide.edu.au (B. Zakavi).

https://doi.org/10.1016/j.tafmec.2019.102258

elliptical curve [5-7]. This finding greatly simplifies the crack growth
modelling by reducing the number of variables describing the crack
front. This simplification also allows for advanced design optimization,
parametric and sensitivity studies of various structures with surface
defects [8].

The aspect ratio of the part-elliptical geometry does not necessarily
remain constant, and this ratio normally varies during fatigue crack
propagation [4-7]. The evaluation of the crack shape changes is ne-
cessary for fatigue life calculations, and the theoretical prediction of
these changes is a main focus of the current paper. It was also well
documented in several experimental studies that the geometry of fa-
tigue crack front can be affected by load cycles creating a large plastic
zone or overloads, so the rate of crack propagation near the free surface
is significantly smaller than for the rest of the crack front (or even
ceases for some time in the case of the overload) [9]. These phenomena
can lead to significant deviations from the elliptical shape, see Fig. 2b
ahead, and these are beyond of the scope of the present work.

The quantitative analyses of the crack front shape evolution and
fatigue crack growth of surface cracks require a relationship between of
the stress intensity factor (SIF) along the crack front and the problem
geometry and loading conditions [3-9]. The SIF solutions for 3D geo-
metries are most commonly obtained by using the finite element (FE)
method. However other general methods e.g. boundary integral equa-
tion and weight function, or experimental approaches including photo-
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Nomenclature

A deepest point of part-elliptical crack
a length of semi-minor axis

b length of semi-major axis

C Paris law constant

c half focal distance

D outer diameter

d inner diameter

da increment of semi-minor axis, a

db increment of semi-major axis, b

ds distance between two elliptical curves at some point

E Young’s modulus

F crack growth rate (per one cycle)

F geometry correction factor (stress intensity magnification
factor)

Kinax maximum stress intensity factor

Kmin maximum stress intensity factor

Kop opening stress intensity factor

AK g effective stress intensity factor range

m Paris law exponent

N number of cycles

IRy Pyl segment length

R stress ratio

S surface point

t plate thickness

U normalised load ratio

\% crack growth rate

V() relative crack growth speed at point n

(x,y) rectangular coordinates

& n elliptical coordinates

(&5 m,) initial shape of fatigue crack front in elliptical coordinates
B ratio of ato b

S ratio of a to D for circular bars or a to t for plates
g elliptical coordinate of the surface (corner) point
v Poisson’s ratio

elasticity, compliance measurements and fatigue tests have also been
utilised for deriving or validation of SIF solutions [10].

The early SIF solutions often demonstrated significant discrepancies
between different computational studies [11,12]. This could be attrib-
uted to the insufficient computer power available for the analysis of 3D
crack problems in the early modelling attempts [10]. With the advances
in computer power and development of new numerical approaches, the
scatter in various computational solutions has been decreased to just
few percent [9,13,14]. However, the large discrepancies (of order
10-50 percent or even more) can be still found for crack front regions
near the free surface, or in a so-called “boundary layer” [15]. This is
because the square root stress singularity, which exists for the interior
points, is replaced by the 3D corner singularity at the corner point
where the crack front intersects the free surface. The influence of the 3D
corner singular stress state causes many difficulties in extracting SIF
near the corner points, specifically when the corner singularity is
stronger than the inverse square root singularity for the rest of the crack
front [16-18]. Previous researchers have adopted a pragmatic approach
to deal with the effects of the 3D singular stress state at corner points on
the SIF calculations. This approach is to exclude the boundary layer
from calculations and extrapolate SIF results obtained for the interior
regions over the crack front segments located in the boundary layer
[9,13,14].

Another important issue related to fatigue life analysis is related to
crack closure mechanisms (i.e. roughness, oxide and plasticity-induced
crack closure) [19,20]. It was found that the effect of the oxide- and
roughness-induced crack closure on the fatigue crack propagation may
be significant near threshold fatigue regime, and normally insignificant
in the mid-Paris fatigue regime. An appropriate theoretical description
of oxide- and roughness-induced closure would require information on
the growth of oxide layer or asperities, friction and surface properties,
etc. However, most of these details required for the prediction are un-
known. Therefore, the existing oxide- or roughness-induced crack clo-
sure models are largely empirical or oversimplified and are all based on
many radical assumptions.

The roughness induced crack closure can be significant for the life
evaluation for which the initial defects of order few micrometers. In
particular, it is often argued that the roughness-induced crack closure
mechanisms contributes to various small crack propagation phe-
nomena: (i) an increased crack growth rate in comparison with long
cracks at the same AK; (ii) crack propagation below stress intensity
factor threshold, which was established for long cracks; (iii) transition
behavior from physically-small crack to long-crack propagation regime,
which can be associated with a decrease of the crack growth rate; (iv)
significant effect of the material microstructure on the crack growth
rates. There are currently no predictive models for the oxide- and

roughness-induced crack closures as a function of AK, the stress ratio,
R, the surface roughness or environment parameters) [20].

In contrast to the oxide and roughness-induced closure mechanisms,
plasticity-induced crack closure doesn’t (many) questionable assumptions
and can be modelled using different approaches [21-32]. The factors af-
fecting the plasticity-induced crack closure, and consequently the rate of
crack propagation, include the elastic and plastic material properties, his-
tory of loading, crack and structure geometry. This closure mechanism is
more profound for the mid-Paris fatigue regime, however, it can also effect
on the propagation of physically small cracks due to (i) the change of
constraint conditions; and (ii) different characteristics of the plasticity wake
for short and large cracks at the same AK history. However, it is arguable
that the plasticity-induced crack closure alone can explain the small crack
propagation behavior.

Two-dimensional (2D) modelling of the plasticity-induced crack closure
with the direct finite element simulations [28,29] and semi-analytical
methods [20-22,32] has progressed significantly over the last twenty years.
These simulations can replicate many experimentally observed metal fa-
tigue effects such as mean stress effect, crack growth retardation due to
overloads, etc. However, 3D crack closure analysis still represents a for-
midable task even for modern numerical approaches. Several 3D results
from the direct numerical simulations of plastic deformations and crack
closure have been recently reported for plane geometries, however, the
convergence and accuracy of the numerical computations have not been
independently verified or reproduced elsewhere [24-27]. A summary of
state of the art of 3D fatigue crack simulations accounting for plasticity-
induced crack closure is provided in [30,31].

The difficulties associated with 3D elasto-plastic FE analysis of fa-
tigue cracks have motivated the development of simplified analytical
methods, including the method presented in the current work, for the
analyses of the crack shape evolution and fatigue life. The method
presented herein is based on the commonly accepted assumption re-
garding the surface front crack geometry, which was introduced above,
i.e. the fatigue crack front maintains a part-elliptical shape during its
growth. It also utilises solutions for SIFs, which have been previously
obtained and validated for a wide range of geometries, loading and
boundary conditions. The developed analytical method has several
advantages against the previous approaches, e.g. it does not require a
discretisation of the fatigue crack path or the application of crack ad-
vance schemes, which make the results easily reproducible. In addition,
it allows the analysis of the crack front shape evolution based on two
arbitrary points along the crack front, thereby avoiding the potential
errors associated with corner points and boundary layer.
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Fig. 1. Elliptical coordinates and crack front change.

2. Derivation of the governing equation

The goal of the derivations briefly described in this section is to link
a small change of an elliptical shape, which is represented by incre-
mental changes of the semi-axes, da and db, to the normal displace-
ment, ds, at an arbitrary location, n, along the elliptical curve, see
Fig. 1. This dependence will be used to obtain an inverse relationship
between the increments at different points on the crack front and the
incremental variation of the aspect ratio (a/b) of the elliptical curve
representing the front of a surface fatigue crack [4-8,10]. Finally, these
derivations will result into an ordinary differential equation governing
the crack front shape evolution.

2.1. Governing equation

It is natural to introduce orthogonal elliptical coordinates (&, #), for
the present problem, and these coordinates are related to the rectan-
gular coordinates by the well-known equations:

x = csinhfsiny (1a)
y = ccoshécosy (1b)

In particular, the half-lengths of the semi-axes (a and b) of the initial
elliptical curve is found by setting, £ = £ and » = 7/2 and 0, respec-
tively, leading to

a = csinh; (2a)
b = ccosh, (2b)

where the half-focal length is

c=b?—a?, (3a)

and

a
&, = atanh (3) (3b)

Here and below, it is assumed that b > a or f = a/b < 1, in the opposite
case the coordinates x and y can be swapped and renamed.

Any point P on the initial elliptical curve can be identified in terms
of its rectangular coordinates (x,y) or elliptical coordinates (&, 1),
where — 7 < 1 < 7. Consider now the change of the elliptical shape due
to small increments of dc and d¢; leaving the x and y coordinate axes
unchanged, then, from Egs. (2):

da = desinhg, + d§;ccosh, (4a)
db = dccosh, + d,csinhg, (4b)

The equation describing the new elliptical curve can be written
using the same Egs. (1a) and (1b) by replacing ¢ and &, with ¢ + dc and
&, + d&,, respectively. From the last equations, the increments dc and
d¢, can be written in terms ofda and db as follows
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dc = dbcosh, — dasinhé, (5a)

_ dacoshé, — dbsinh&,
c (5b)

Consider point P, with coordinates (§,, ,) on the initial elliptical
curve, which represents the initial crack front shape. The distance be-
tween point Py and point P;, which is located on the new elliptical curve,
can be obtained from the intersection of the segment orthogonal to the
original elliptic curve given by the parametric equation (&, + d£, »,)
and the new elliptical curve due to increments of da anddb. Using Egs.
(1), the rectangular coordinates of point P; (xp, and yp,) can be written
in both elliptical coordinate systems associated with the initial and new
elliptical curves as

dg,

xp, = esinh(§, + d€)sinn, = (¢ + dc)sinh(§, + d&y)sin(y, + dn) (6a)
¥p, = ccosh(§, + d§)cosy, = (¢ + dc)cosh(§, + d§y)cos(n, +dn)  (6b)

Using Taylor expansion of hyperbolic and trigonometric functions
and excluding variable d, the increment d¢ can be obtained as

_ 1 cosh§sin’nyda + sinh§cos®7,db

" ¢ cosh?§sin?y, + sinh?£,cos?n, 7)

From Eq. (1), the length of the segment IPPyl, ds, see Fig. 1, is:

ds = c\/cosh2 £,sin?n, + sinh?& cos? 7, dE. (8)
Substituting d¢ from Egs. (7) into (8) yields

_ coshsin*#,da + sinh§,cos?7),db

Jeosh?£sin’n, + sinh?£,cos?n, ' ©)

By introducing the aspect ratio of the ellipse 8 = a/b into Eq. (9),

and after some algebraic manipulations, Eq. (9) can be represented in
the following form:

1 a dg
tan’7, + ( P i )tanhé‘0

ds =

—— cosn,da.
Jtan’n, + tanh*§; (10)

Therefore, the ratio of the normal distances between the initial and
new curves at the deepest () = 7/2) and arbitrary(s = 7,) points is
simply
tan?n, + (l - i%)tanhgo

ds B pda
— = COST)q.

da Jtan?n, + tanh?g, an

Taking into account Eq. (3b) or that tanh§, = 8 = a/b, finally, Eq.
(11) can be re-written in a simple form as:

2 adg
ds tan’n + (1 — 35) cosy
da ytan?y + 32 12)

in which we omitted the lower index for variable 7, so this equation
applies for an arbitrary point on the elliptical curve. This relationship
can be considered as an ordinary differential equation with respect to
ds/da, which represents the relative speed of propagation of two points
on the crack front, or dB/da, in this case this differential equation de-
scribes the evolution of a part-elliptical shape.

To validate the derived equation, consider a limiting case of self-
similar elliptical shape evolution, or when a/b = is constant or
df/da = 0. In this case Eq. (12) can be rewritten as

ds tan’n + 1
=—2 " " cosy.

da Jtan’n + g (13)
Through a simple analysis of Eq. (13), it can be demonstrated that,
as expected, along x-direction (or » = 7/2): ds/da = da/da = 1; and

along y-direction (or 7 = 0): ds/da = db/da = B~'. Other simple cases of
shape evolutions, e.g. when the length of one of the semi-axes, a or b,
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does not change can be considered in a similar manner. In the next
section, the derived equations are applied to analyse the shape evolu-
tion of fatigue cracks.

2.2. Shape evolution of fatigue cracks

The analysis of the fatigue crack growth is normally based on var-
ious Paris-type equations, which can be written in the following general
form [1,5]:
ds
N V = F(AK, R) a4
where V or F(AK, R) is the crack growth rate or speed of the crack
propagation due to a single cycle. The function F may incorporate
several constants, which are usually obtained from fatigue tests. The
relative speed at arbitrary point 7, normalised by the speed, for ex-
ample, at the deepest point of the crack front 7 = 7/2 (point A, see
Fig. 1), is given by:

adp
vy~ FOE@.R) _ T E (1-352)
F(AK(A), R)

cosy)

Jtan?yn + g2 (15)

After a rearrangement, Eq. (15) can be written as an ordinary dif-
ferential equation describing the shape evaluation equation of the front
of a crack maintaining its semi-elliptical shape during fatigue growth:

d
#_E 1 + tan?n —
da a

F(AK (1), R) ytan?n + 82
F(AK(A), R) cosy

(16)

In order to apply this governing equation, an appropriate SIF solu-
tion for two arbitrary points along the crack front is required. Most of
the SIF solutions in the past have been typically obtained for the dee-
pest and surface points i.e. where the crack front intersects the free
surface. However, as mentioned in the Introduction, the evaluation of
SIF near the free surface needs some care, and in some cases the SIF
values near the free surface might be inaccurate. In the following sec-
tion we will apply the governing equation, Eq. (16), to a number of
geometries and derive the shape evolution equations specifically for
these geometries.

2.3. Physical restrictions on the crack shape evolution

As the fatigue crack growth is an irreversible process, meaning that
ds > 0 and ds/da > 0 from Eq. (12), it follows that

dg
any + [1- 252> 0
e ( ﬁda) a7

After simplifications, the irreversibility of fatigue crack growth
leads to the following equation:
& _ 1
da = bcos?y (18)

For all points on the crack front 5 € (y — 7/2), where # = 7/2
corresponds to the deepest point on the crack front (point A) and 7 = 7
corresponds to the surface point (point S). It is clear that if Eq. (18) is
satisfied at the surface point (or 7 = 7)), then it will automatically be
also satisfied for the rest of the crack front.

Experimental data may violate Eq. (18) as the approximation of the
actual crack front shape by an elliptical curve inevitably leads to errors
associated with the adopted fitting approach, which may be based e.g.
on different points along the crack front, best fit or on the equivalent
fractured area. Fig. 2 demonstrates the approximation of the actual
crack fronts with semi-elliptical and part-elliptical curves. Fig. 2b also
shows the significant deviations from the elliptical shape as a result of
large plasticity-induced crack closure near the surface.
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Fig. 2. Beach marks (solid lines) and semi- or part-elliptical fitting curves
(dotted lines) for surface crack propagation in a plate and solid circular bar
[33]. Deviation from the elliptical shape in b) is associated with the develop-
ment of a large plastic zone and crack closure effects near the free surface [9].

3. Application of the governing equation to various structural
components

3.1. Semi-elliptical and quarter-elliptical surface cracks

In the cases of semi-elliptical or quarter elliptical cracks propagating
in wide plate components or in a long thick-walled cylinder, see Fig. 3,
the independent variables in the governing equation can be normalised
by the plate/wall thickness ¢, as

B _B8 1+ tan2y — F(AK(n), R) Jtan’n + p?
s 8 F(AK(A), R) cosy 19)

where § = a/t. For the shape evolution and fatigue crack growth ana-
lysis, this equation has to be supplemented by the initial conditions, i.e.
the initial crack front shape 6 = §, and 8 = §, has to be specified. The
direct integration of Eq. (19) is difficult and the integral has to be
evaluated numerically.

The governing equation can also be rewritten in a finite difference
form as

Fig 3. Semi-elliptical crack in (a) flat plate, and (b) thick-walled cylinder,
quarter-elliptical crack in (c) square bar, and (d) plate with hole.
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Fig 4. Comparison of analytical predictions based on different SIF solutions
[12,14] with experimental results [33].

F(AK (7, B, S,), R) tan?n + B2
ﬁn+1:&1+tan2n7 (AK @ By, On). R) L a8
S F(AK (A, B, 6,), B) cosn
Ops1=0p + AD (20)

so, the solution can be easily obtained from the recurrent relationships
(20) and the step Ad can be selected to achieve the desired accuracy of
calculations. These relationships can be programmed accordingly using
various computer-based programs.

In the case of quarter- and semi-elliptical cracks, the physical re-
striction on the shape evolution, Eq. (18) at # = 0 (surface point) leads
to the following conditions:

g 1 g _B
da=b % w5 @
which have a simple meaning that the slope of 8(5) curve must be
always less than the slope of the line passing through the origin
(0, 0)and the point with coordinates (6, 8). As mentioned above, the
experimental data may not comply with Eq. (21) due to inevitable er-
rors associated with the approximation of the actual crack front with
elliptical shapes.

If the analysis of fatigue crack growth is based on two characteristic
points: the deepest point A, and the surface point, then, the crack front
shape evolution equation can be simplified as:

B _ B(l_ﬁF(AK(S), R))

6 5 F(AK(A), R) (22)

It can be shown that in this case the last equation, Eq. (22) can be
reduced to the following well-known relationships:
db =F(AK(S), R)xdn and da=F(AK(A),R) X dn (23)

which are often applied to simulate the semi-elliptical fatigue crack
growth (dn is an increment of fatigue cycles).
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Fig. 5. Propagation of part elliptical crack in round bar.

Fig. 4 shows the theoretical predictions of fatigue crack shape
evolution for semi-elliptical cracks in plates, see Fig. 2a (solid lines).
The present results utilise SIF solutions of Neuman and Raju [12] and a
recent extensive FE study of the corresponding crack geometries pub-
lished by Strobl et al. [14]. It is seen that overall the latest SIF solution
[14] provides a better correlation with experimental results of Putra
and Schijve [33].

3.2. Part-elliptical surface crack in round solid and tubular bars

Similar to the previous cases, the analysis of fatigue crack growth of
a part elliptical crack in round bars is also based on two characteristic
points: the deepest point, A, with the coordinate » = 7/2 and surface
point, S identified byzn = 7,. In contrast to the previous cases, the co-
ordinate of point S, see Fig. 6, changes with the crack propagation. Our
objective is to identify this point as a function of the crack and bar
geometries. It is convenient to introduce a new dimensionless variable
d = a/D, then the elliptical coordinates of the surface point (S;) can be
found as an intersection of the circle describing the bar shape and the
elliptical curve describing the crack, which both can be written in the
elliptical coordinates, or

B sinhésinzg

gy1—p* (24)

from which the following relationship for two surface points, which are
symmetric with respect to the x-axis, see Fig. 6, can be found:

sinh?£sin?n, + cosh?écos?yg =

cosng =+ |1 —

B~ (B = 4 (=D }2
28 (B*-1) (25)

The governing shape evolution equation can also be rewritten in
dimensionless form similar to Eq. (19), in which & = a/D. The same
finite difference scheme, Eq. (20) can be utilised for this case as well.

Similar to the considered case of semi-elliptical cracks, for fatigue
life and shape evolution calculations, Egs. (22) and (23) have to be
supplemented with the initial conditions, i.e. § = §, and § = §, and a
suitable SIF solution reflecting the actual loading conditions, e.g. pure
tension, bending or mixed loading.

In general, two arbitrary points on the crack front can be utilised for
the analysis of the crack front shape evolution if an appropriate SIF is
available. One of such solutions represents SIF as a function of 8, § and
x, see Fig. 5. In the case of round bars, the SIF solutions can be
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Fig. 6. Comparison between prediction of the present method and previous
published data.

represented in the following form:

K =F(@,d, x)ovaa (26)
where o is a characteristic or nominal stress, a is the crack depth, and
cos
=y, /h = _77
cosng 27)

where 7 is given by Eq. (25).

A comparison of the previous numerical studies and the current
analytical results utilising Eqs. (19), (25) and (26) and the classical
(Paris) crack growth law:

da

= = C(aK)"

dN (k) (28)
is given in Fig. 6 together with the previous studies [34,35], which

utilised different crack advance schemes. A very good correlation can

be observed between all studies.

4. Conclusion

In this work, a new method was developed for the evaluation of
fatigue growth of surface flaws in various structural components. The
analytical method avoids computational schemes to analyse the crack
advance. It can be also easily modified to incorporate the plasticity-
induced crack closure effects. The method was validated against the
previous numerical results and experimental data. The comparison
demonstrates an excellent agreement with the numerical simulations
and reasonable agreement with experimental data. This agreement can
be improved by introducing crack closure models, which might in-
corporate the geometry, material properties and loading conditions. For
example, the plasticity-induced crack closure concept can be relatively
easy incorporated into the developed method. In accordance with this
concept, the stress intensity factor range, AK, is be replaced by the
effective stress intensity, AK.s, to reflect the damage accumulation
when crack tip is closed. The effective stress intensity factor range AK
is defined as [20]:

AKeff = UAK = U (Kpax — Kmin) = Kmax — Kop 29)

where K.« and Ky, are the maximum and minimum values of SIF
during fatigue cycle, respectively, and U is the normalised load ratio
parameter, which is often used to describe the effects of the loading and
geometry on crack closure. With account of the crack closure phe-
nomena, the governing shape evolution equation, Eq. (16) can be
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rewritten as

U, AK, \" |/tan®y) + B2
%=El+tan277—(ﬁ ")‘/ann i
da a Uy AK, cosy) (30)

This equation can be utilised not to just incorporate the plasticity
induced closure models into fatigue life calculations but also used to
develop empirical models of the crack closure based on experimental
results, or 5(5) dependences. By rearranging Eq. (30) the experimental
ratio of U,/Uy can be obtained, which then can be utilised for fatigue
crack shape and life evaluations.
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Stress intensity factors for cracks of elliptical or part-elliptical shapes in structural components, e.g. plates, bars
and pressure vessels, are normally obtained using numerical methods. Due to the lack of exact benchmark
solutions, the evaluation of the accuracy and quality of the numerical results and the corresponding fitting
equations are largely based on the comparison against the outcomes of the previous numerical studies. In this
work, a new relationship for the exact distribution of the stress intensity factor along the crack front is derived
based on the divergence theorem for the compliance function. The application of the developed theoretical

relationship is demonstrated towards the evaluation of the quality of previously obtained empirical equations for
elliptical, semi-elliptical and part-elliptical cracks.

1. Introduction

Fatigue growth of surface or embedded cracks of elliptical or part-
elliptical shapes in plates, bars, pipes and shells have received a great
deal of attention over the past fifty years [1,2], due to at least two rea-
sons: (1) these structural components have wide applications in many
industries, and (2) surface cracks often maintain elliptical geometry
during propagation. The latter is normally attested by post-mortem
failure investigations as well as fatigue crack propagation tests [3].

Many investigators thought that a part-ellipse is a very good ap-
proximation to the surface crack profiles observed experimentally in
many structures, e.g. bolts, wires, flanges of steel beams, turbine blades,
stiffeners, pipes and shells. This important approximation, in particular,
leads to a significant simplification of the fatigue crack growth analysis
and residual life calculations as only two parameters describing this
shape need to be identified [1].

It is well-known that the knowledge of the stress intensity factor
(SIF) or K-solutions represents a basic requirement for fatigue crack
growth calculations, which are prerequisites for efficient and safe op-
eration of many structural components [1-23]. The SIF results can be
obtained analytically, e.g. boundary integral equations, using either
numerical methods, such as Finite Element (FE) [4] or meshless
methods, weight function methods [5] or experimental techniques in-
cluding photoelasticity, alternative current field measurement tech-
nique, compliance measurements and fatigue tests [6-9]. However, in

* Corresponding author.
E-mail address: Andrei.kotousov@adelaide.edu.au (A. Kotousov).

https://doi.org/10.1016/j.tafmec.2018.09.013

the case of elliptical or part-elliptical cracks, SIF (K-) solutions are
commonly obtained by use of the FE method. Many such numerical
solutions, represented in a form of fitting equations, tables and dia-
grams, are currently available in the literature for the deepest interior
point or the both deepest interior and surface intersection points or for
the whole crack front [3].

Some of the early SIF solutions have been summarised and com-
pared by James and Mills [10]. This comparison demonstrated a sig-
nificant difference between K-solutions developed for part-circular
cracks in round bars as a result of a limited computer power and ne-
cessity to use a course mesh. With the continuous advance in the
computer power and numerical approaches, the scatter in various
computational results, at least, for interior crack front points has been
decreased dramatically to a few percent [11]. However, there are still
large discrepancies (of order 10-50 percent or even more) between
various simulations of SIF for crack front regions near the free surface of
the structure. This is because the square root singular behaviour for the
stress field, which exists for the interior points, is replaced by the 3D
corner singularity at the vertex point. This singular behaviour creates
uncertainty leading to an ambiguity in the evaluation of SIF near the
free surface [12,15].

The strength of the 3D corner singularity depends on the material
Poisson’ ratio, v, and the angle, y at which the crack front intersects the
free surface. Therefore, K-solutions have to be also dependent upon the
Poisson’s ratio of the material. This effect is often disregarded in the
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Nomenclature

a ellipse semi-axis along the x-axis

b ellipse semi-axis along the y-axis

compliance

increment of compliance function in (a, b) coordinates
d bar diameter

E(k) complete elliptic integral of the second kind

E Young’s modulus

E effective Young’s modulus

G strain energy release rate

g energy release rate per unit length of the crack front
K stress intensity factor

K@) local stress intensity factor

l length coordinate along the crack front
length of the crack front

My coefficient used to calculate the stress intensity factor

My, Ny projections of the unit vector along the path
P applied force

R deviation from the theoretical value

S crack surface area

t plate thickness

v displacement

[Py Pl segment length

y crack surface intersection angle

Yor critical angle

A aspect ratio (a/b)

v Poisson’s ratio

¢ angular elliptical coordinate

& n elliptical coordinates

(§» my)  initial crack front at elliptical coordinates

o uniform axial or bending stress

d function describing the angular variation of stress in-

tensity factor

reference solutions, which are normally provided for v = 0.3 (mid-
range). However, this dependence seems to not be very large and can be
disregarded for many practical purposes [21].

One common assumption in fatigue crack growth modelling, which
is partially supported by energy considerations, is based on the so-
called stress singularity matching [24-26]. In accordance to this as-
sumption, the evolution of the crack front occurs in a manner that all
points over the crack front (including the corner points) have the same
square root stress singularity. This assumption implies that the angle, y,
is the same during the crack front evaluation and equal to the critical
angle, y=y,, the latter is a function of Poisson’s ratio only. For example,
for v= 0.3 the critical angle y,~ 100.4°. It is interesting to note that in
accordance to the experimental study by Heyder et al. [12], in struc-
tures with flat free surfaces, such as beams of rectangular or trapezoidal
cross-sections, the fatigue crack front appears to follow the stress sin-
gularity matching assumption. However, it is generally not supported
by experimental observations for structures with curved surfaces such
as round bars [2].

As a result of the complex singular behaviour, there is currently no
generally accepted technique to extract the value of the SIF near the
surface where the stress and displacement fields are affected by the 3D
corner (vertex) singularity. Some investigators utilise a polynomial re-
gression function to fit the SIFs in the regression domain of the crack
front, which excludes approximately 1/5th of the crack front segments
adjacent to the free surfaces [2]. In other works, the investigators
suggest using “a pragmatic stress intensity factor” for the surface points,
which can be obtained by an extrapolation of a quadratic or higher
order curve fitting to the values of SIF in the interior points [11].

Despite that the 3D corner singularity effect is quite localised, in-
fluencing the stress and displacement fields over, say, ten-twenty per-
cent of the crack front [14], the discrepancies in the evaluation of SIF
near the surface can also influence the accuracy of the SIF evaluations
for the whole crack front. This is because the fitting equations, which
are developed to facilitate the use of discrete numerical (FE) results, are
usually derived using procedures which minimise the overall error, e.g.
the least square regression procedure. The minimisation typically in-
cludes the near surface domains as well, where the FE results are not
reliable. This can lead to discrepancies in the values of SIF for interior
and near the free surface points across different computational results
or fitting equations [11].

The dominance of the numerical methods in the analysis of elliptical
and part-elliptical cracks in structures is largely attributed to many
difficulties associated with the application of other methods, such as
experimental or analytical, to the problem under consideration. For
example, experimental fatigue crack growth data can be affected by the
plasticity induced crack closure [13,27], which is largely unknown for
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the elliptical and part-elliptical crack geometries. For instance, con-
flicting values for plasticity induced crack closure are often reported in
different studies for part-elliptical cracks in round bars [11,13].
Therefore, the unknown effect of the crack closure does not allow to
link directly the rate of the fatigue crack propagation, which can be
found from fractography, to the SIF distribution along the crack front.

From the theoretical point of view, the only analytical solution was
obtained for an elliptical crack fully embedded in an infinite elastic
body [28]. This theoretical solution has been extensively utilised to
develop empirical and fitting equations in the past, specifically to
model the distribution of SIF along the crack front. However, crack
problems in finite geometries of practical structures cannot be solved
analytically. As a result, a common way to evaluate the accuracy and
quality, as well as to validate numerical calculations is to compare new
FE simulations with the previously obtained numerical results. How-
ever, the comparison between approximate solutions or fitting equa-
tions cannot provide a conclusive answer whether the new data or
proposed fitting equation are more or less accurate than those which
were published previously. This uncertainty motivates investigators for
new numerical studies or, as in the current paper, a search for alter-
natives in the evaluation of the accuracy of the numerical or empirical
SIF solutions.

In the current paper, a new theoretical relationship is derived for the
exact distribution of the stress intensity factor along the front of ellip-
tical or part-elliptical cracks. It is based on the divergence theorem for
the compliance function, and, as such, utilises the most fundamental
energy conservation principle. It was not a purpose of this work to
apply this new relationship to analyse the near surface SIF distribution
or propose new fitting equations, which would comply with the energy
and compliance considerations. This will be a focus of further devel-
opments. Instead, the paper illustrates the application of this theoretical
development to the derivation and assessment of the accuracy of em-
pirical equations for semi-elliptical and part-elliptical cracks, which
were suggested in the past [11,16-19,21]. It is also demonstrated that
the exact analytical SIF solution for an elliptical crack in an infinite
medium complies with the derived relationship, thus, providing a
confidence in the presented analytical results.

2. The theoretical relationship for SIF distribution

The compliance, i.e. the inverse of stiffness, is defined for a linear-
elastic body as the ratio of displacement, v, to applied force, P, i.e.

C=—

P (€))]

The strain energy release rate, G, can then be determined by
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differentiating the compliance function versus the area of the crack
surface, S,

_pdc
T 24ds 2
An increment in the compliance associated with a crack advance, dS,
can be found from the last equation as

2

dc Gds

p2 3)

If L is the crack front and [ is the length coordinate along the crack

front, see Fig. 1, then the energy release rate for the cracked body can
be expressed as follows:

K1)
S g

G= [gmd =
{ L @

where g(l) is the strain energy density release rate (the energy release
rate per unit length of the crack front), K (I) is the local stress intensity
factor (SIF) along the crack front, and E is the effective Young’s mod-
ulus, E = E/(1—v?). Eq. (4) implies the plane strain conditions near the
crack tip, which have been demonstrated to be true in many compu-
tational results [2].

In the case of mode I loading, for elliptical or part-elliptical cracks
the strain energy density and the local SIF are also function of the crack
shape, which can be specified by the lengths of the semi-axes, a and b,
in other words, g = g(a, b, ) and K; = K(a, b, 1); n is the angular el-
liptical coordinate, as is shown in Fig. Al provided in the Appendix A.

The crack surface increment due to the change of the length of semi-
axes, da and db, as a function of coordinate, 7, is, see Appendix A,

ds(n) = acos’ ()db + bsin? (n)da (5)
Then, the compliance Eq. (3) can be rewritten as follows:

g >
dC(a, b) = % f wbsm2 (n)dy |da

o

2| ™ K(a, b, p)?
+ i f ’Tacos2 (m)dn |db
Mo (6)

where 7, corresponds to the start point on the crack front (I = 0) and 7,
is the end point along the crack front (I = L), see Fig. 1.

Consider the compliance function in (a, b) coordinates or
C = C(a, b). At fixed geometry, loading and material properties, the
increment of this function, AC (a, b), depends only on the initial (a,, by)
and final (@, b;) points:

(a1,b1)
J dC(a, b) = C(a, by)—C(aq, bo)
(ao,bo) 7)

Eq. (7) can also be written using the compliance equation as

X

Crack front

Fig. 1. Part-elliptical crack front.
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(a1,b1)
S dC(a, b)=
(ap.bo)

(a1,b1)

)

(ag,bo)

2
Ep2

[ [?’K(a, b, n)*bsin? (n)dr)]da

My

+ [njl'K(a, b, n)*acos’ (n)dn]db}

"o ®
The last equation can be also represented in the vector form
(ar,br) (a1,b1) (ay,by)
f dC(a, b) = f Fda = f (Fn, + Fyny)du
(a0,bo) (a0.bo) (a0,bo) 9)

where n, and n, are projections of the unit vector along the path, see
Fig. 2, and

mn
2 :
L= m J K(a, b, n)*bsin? (n)dn
4 (10)
2 n
Fy = — [ K(a, b, 7)%acos® (dy
Ep?
" an

For any (simple) closed curve with the same start and end points,
(ap, bo) = (ay, by), Eq. (9) can be written using the divergence theorem
as follows:

(a1,b1)
S s R = f (G520 )04 = Cu, b-Cao, ) =0
(ag,bo) A b da

a2

which requires that the distribution of the stress intensity factor along
the elliptical or part-elliptical crack front has to satisfy the following
relationship:

af 2 ™
2hain?
% ﬁfK(a, b, 1)*bsin? (n)dn
Mo
al 2 ™
= sl 2 fK(a, b, n)*acos? (n)dy
Mo (13)

Because it is assumed that the material properties (E) and loading (P)
do not change during the crack propagation, then Eq. (13) can be re-
written in a simplified form as

n mn
% f K (a, b, 7)?bsin? (p)dn = % f K (a, b, n)*acos? (ndn

N 14

o

Thus, the exact distribution of the SIF along the crack front must satisfy
Eg. (14). A simple method for the evaluation of the quality of an ap-
proximate solution for K (a, b, ) can be based on the assessment of the
discrepancies between the right and left part of Eq. (14). The method
largely generalises an approach suggested by Fett [16] for quality

a A C1

aq AC=0
P0:P1

Qo

br

Fig. 2. Path-independence of compliance function in (a, b) coordinates.
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evaluation of stress intensity factor solutions. This approach was sug-
gested for a particular case of pure tensile loading. It is based on energy
considerations that “the total energy must be independent of the special
shape of crack increments” and, essentially, is equivalent to Eq. (8).
This approach was successfully applied to evaluate alternative solutions
for semi-elliptical cracks in finite plates using specifically selected in-
tegration paths characterised by (1) a/b = const., (2) a = const. and (3)
b = const. The proposed Egs. (13) and (14) are more general, in par-
ticular, do not require selection of specific paths and can be applied to
evaluate the quality of SIF solutions corresponding to specific combi-
nations of parameters characterising the problem geometry, or for any
combination of a and b. It can be easily generalised for many other
geometries as well as boundary conditions, e.g. bending or torsion. In
the following, a few examples illustrating the possible applications of
Eq. (14) for analysis of approximate solutions are considered.

3. Examples
3.1. Elliptical crack subjected to tensile loading

In this case the exact solution for SIF is well-known and can be
written in the following form [28]
oJma
E(k)

withE (k) is a complete elliptic integral of the second kind, which can be
found as

Ki=K(a, b, n) = (A%cos? () + sin? (77))%

(15)

T

2
E(k) = [ {1-k%in? €)d¢
0 (16)
where k = V1-22 and 1 = a/b.

The proof that Eq. (14) is satisfied exactly is quite cumbersome and
involves tedious manipulations with elliptic functions. Instead, in the
next section, Eq. (14) is verified with numerical calculations for
0 < A < 1, which will demonstrate that Eq. (14) is true for the exact
distribution of SIF over the front of an elliptical crack, given by Eq.
(15).

However, one case can be easily analysed analytically, specifically
when a/b=21-—0 (straight crack). In this case 0dK?/01 — 0,
E(k) = E(1-2%) = 1, and the SIF can be simplified as

Ki=K(a, b, n) = K(a, n) = oJ7a /Isin(n)| a7
The compliance Eq. (14) can now be rewritten as

a 21 a 21

— [ ab Isin(m)| sin?(n)dy = — [ a2 Isin(n)| cos? ()dy

db ‘{‘ da ‘{ (18)

which is reduced to the following equality, which can be verified easily:

27 2
f Isin(n)! sin® (p)dy = 2 f Isin(n)! cos? (n)dn
0 0 (19)

as both left and right parts of Eq. (19) are equal to 8/3.

3.2. Elliptical crack in finite plate

In this case, the following approximate solution has been suggested

[171:
ovma () o 0.05 (g)2+ 0.29 (3)4
E (k) 0.11 4+ 232\ ¢ 023 + 22\1) J#8
(20)

Utilising the similar angular distribution of SIFs along the crack front as
in the exact solution (15):

£ = (PPeos? (i) + sin’ )i

K, A, n=

(21
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~ a/t=1,0.75,0.5 and 0
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0.2

0 0.2 0.4 0.6 0.8 A

Fig. 3. Elliptical crack in a finite plate: Evaluation of the quality of approximate
solution [17]

and

0

As before, E(k) is a complete elliptic integral of the second kind,
andk = V1-2? and 1 = a/b.

Consider the theoretical relationship (14) and represent it as a ratio
of the derivatives:

cosn

1+ 44 (22)

_ OF,/db
" 8F,/da (23)
where
2
E = [ K(a, 2, n)*bsin’ (1)dy
o (24a)
and
2
F, = [ K(a, 4 n)acos’ (n)dy
0 (24b)

It can be demonstrated that R = R(4, a/t), so the dependence of Rfrom
the actual geometry sizes in Eq. (23) disappears. If this relationship is
applied to an approximate solution, then the ratio R # 1, and the de-
viation from the theoretical value (unity) can serve as an indicator of
the quality of this approximate solution. It is clear that at small values
of the ratio a/t the approximation Eq. (20) converges to the analytical
solution of Eq. (15), for which R = 1 (see Fig. 3) as is discussed in the
previous Section 3.1. With an increase of the value of a/t, as expected,
the deviation of R from the theoretical value given for the exact solu-
tion increases or the solution becomes less accurate.

3.3. Comparison of approximations for semi-elliptical surface crack in
tension

Relationships (13) and (14) are not able to provide a quantitative
assessment of how significant the error is. However, these relationships
are capable to provide a comparison between different approximate
solutions. Consider, for example, four approximate solutions developed
over the past thirty years for the evaluation of SIF along the semi-el-
liptical crack [16-21]. Let us focus on the simplest case of a semi-in-
finite plate and when the crack is subjected to tensile stresses, o. The
approximate K- solutions will not be presented in this article as these
solutions have been widely published and discussed in many articles,
e.g. Fett [16] or Toribio et al. [3]. As is mentioned in the Introduction,
the continuous advance in the computer power and numerical ap-
proaches normally leads to more accurate K-solutions, which can be
observed from Fig. 4, i.e. the subsequent approximations deviate less
from the theoretical value, R = 1.

The first numerical solution for the problem under consideration
was obtained by Newman and Raju and summarised in [17]. The ac-
curacy of the FE results was claimed to be within +3% and the fitting
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Applicability of solution from [21]

0.9

0.8

0 0.2 0.4 0.6 0.8 1

Fig. 4. Semi-elliptical crack in a semi-infinite finite plate: Evaluation of the
quality of approximations.

function has maximum error of + 5%. The motivation behind the de-
velopment of a new solution for the same problem in [18], was a quite
large deviation of Newman and Raju’s empirical equation from some FE
studies, specifically for a semi-infinite plate geometry. Fett [16] utilised
the results of Isida et al. [19], obtained by means of a modified body-
force method, and suggested a more complicated equation (K-solution).
One of the reasons for the revision of the previous results and devel-
opment of a more sophisticated solution [21] was the dependence of K-
solution upon the Poisson’s ratio as is discussed in the Introduction.

The latest solution [21] was specifically derived, in 2012, for aspect
ratios above 0.4 (1 > 0.4). It can be seen from Fig. 4 that R ratios for this
solution are the closest to the theoretical value (1) among all other
approximate solutions. One can also observe that the first approximate
solution to the problem [17] has the largest deviation of R from 1.
Therefore, it is demonstrated that the suggested method largely re-
plicates the conclusions of the previous studies regarding the FE pro-
gress and the accuracy of fitting equations, and it is capable to evaluate
the quality of approximate solutions.

3.4. Part-elliptical crack in round bar

The theoretically derived Egs. (13) or (14) can be also useful to
identify deficiencies of suggested approximate solutions. Consider, for
example, the case of part-elliptical cracks in round bars. The derivation
of SIF solutions for this case was a subject of many papers [20]. It seems
that the most comprehensive results have been provided by Shin and
Cai [11]. The K-solution can be represented as

K(a, b, d,n) = oJmaF, (25)
with
wen (35 i)- 22 2w (3) ()G
b= — = = ikl )5 ) |+
P\b d h i=0 j=0 k=0 b/\dJ \h (26)

The coefficients My are presented in several papers and will not be
repeated here, see e.g. [3,11]. The R ratios (Eq. (23)) for different va-
lues of 1 = a/b can be obtained by substituting Eqgs. (25) and (26) into
Eq. (23). These ratios have been plotted in Fig. 5.

It can be observed from Fig. 5 that the deviation of fitting Egs. (25)
and (26) from the theoretical value for the exact solution (R = 1) is
consistent and reasonable up to a/d= 0.9, except at very small values of
A = a/b. This exception can be explained by the effect of the corner
singularity, the strength of which is larger than the square root singu-
larity, which prevails for the rest of the crack front.

This is because, at this combination of geometry parameters, (see
Fig. 5) the angle, y, at which the crack front intersects the free surface,
is above the critical value, y,~ 100.40°. As a result, a large portion of
the crack front can be affected by 3D corner singularity leading to less
accurate results. A similar effect was reported in Heyder et al. [12], who
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Fig. 5. Part-elliptical crack in round bar: Analysis of approximate solution [11].

concluded that the most accurate numerical results normally corre-
spond to the case when ¥ is close to the critical value of 100.4°. This can
also be observed from Fig. 5.

At small values of a/d the SIF solution has to be reduced to the
solution for semi-infinite crack with the corresponding a/b ratio.
Specifically, for a/b 0, the angular distribution is described by a third
order polynomial function:

a

2 k

X X

F=F 0, —|= M, —
P P(b h) Z; "‘”‘(h)

It is clear that Eq. (27) is not capable to describe a quite complicated
behaviour of SIF along the crack front, see e.g. [21], which utilises a
dozen of fitting constants to describe the angular dependence of SIF.
This is also reflected by large deviations of R from its theoretical value
for the exact solution at a/d < 0.1, see Fig. 5.

=02
d (27)

4. Development of approximate solutions

In this Section, it is demonstrated that the obtained theoretical
equations can help to derive approximate K-solutions for different
geometries and structures. The SIF approximate solutions for elliptical,
semi-elliptical, quarter-elliptical (corner) cracks for various structures
(such as plates, pressure vessels, rods, etc.) are often presented in the
following form [16-21]

JﬁF
E(k)

where E (k) is a complete elliptic integral of the second kind, ®(4, 7, g,)
is an empirical function of 4 = a/b, n and some other dimensionless
geometry parameters g, g,...8,.

Function ®(4, 7, g,) approximates the distribution of SIF along the
crack front.F (4, g,) is another empirical (fitting) function, which takes
into account the effect of the final geometry of the problem described
by the parameters g, and a/b ratio on the values of SIF. In a limiting
case this function could be just a number.

Substituting Eq. (28) into Eq. (14) gives

K(a, 4,71,8)=0 A, g,)24, 1, &)

(28)

n 2
2/ b( POl L) gn)sinm)) dn
Mo

m 2
_9 af( va F(4,g,)®@, n,gn)cos(r))) dp|=0
da " E(k) 29)
Let
1 N
AR 8) = Jpcp { (@@, 1, g,)sin())>dn on)
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1

B (/‘]"gn) = m

n
J @G, 7, g,)cos(m))*dn
) (30b)

Then the following partial differential equation can be written for
function F(4, g,)

S (@F 0L 8, PAG g (@ (A, g, B 8,)) = 0 an)
This equation can be solved numerically or analytically, using, for ex-
ample, the method of characteristics. In other words, if the function
describing the angular variation of SIF is selected, then the geometry
correction function, F(4, g,), can be obtained analytically rather than
through the use of numerical calculations. Moreover, this function will
agree with energy and compliance equations, and, potentially, mini-
mize the error associated with FE simulations and fitting procedures.
Consider an example when there is the only one geometry para-
meter for the problem: A=a/b or F(4,g)=F(@) and
f, m,g) =f(4, n). This is a typical case for infinite or semi-infinite
geometries, which have no other characteristic dimensions. Taking into
account that the derivatives can be rewritten as 8/6a = b='8/64 and
8/3b = —1b~18/d2, the partial differential Eq. (31) can be rewritten as

zi 2 2 i 2 =
A a (F(A)’A(A)) + 2F(A)*B(A) + /13/1 (F(A)’B(A)) =0

(32)
leading to an ordinary differential equation for F(1):
M(/12,»4(/1) + AB(1)) + M(ZB(/I) + AZM + /lw) =0
a 2 A oA
(33)

This equation can be easily integrated by using standard techniques.

Consider, for example, a semi-elliptical crack in a semi-infinite plate
as in Section 3.2. Newman and Raju approximate K-solution [17] can be
written as

Jma :
K(a, 1, n) = 1.13—0.094)(1 + 0.1(1— 2
(a, 4, m) UE(k)( )A + 0.1(1—=sin(7))*)fy () 34)
Then the function describing the angular variation of SIF is
O, 7) = (1 + 0.1(1=sin())>)f; () 35)

where f; (1) is given by Eq. (21), and the corrective function is given by
F() = 1.13-0.094 (36)

However, this function can be also found from Eq. (33). The solution
of differential Eq. (33) is presented in Fig. 6 along with the suggested
empirical function (36).

It can be noted a good correlation between the empirical fitting Eq.
(36) and the dependence, which was derived from differential Eq. (33)
almost for all values of A. For small values of A the difference is quite
significant, which was also noted in [18]. This can indicate that the
selected function ®(4, n), Eq. (35), is not appropriate for “flat semi-
elliptical cracks”, when 1 is close to 0. This conclusion is also confirmed

Appendix A. Elliptical Coordinates and Crack Advance Equation
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F(A)
F(1)

Eq. (33
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Fig. 6. Comparison of empirical equation and dependence developed theore-
tically.

in other papers, some of which suggested alternative and more com-
plicated forms of function ®(4, #) [16,18,19 and 21].

5. Conclusion

In this paper, a theoretical relationship for the distribution of SIF
along the front of elliptical or part-elliptical cracks was derived based
on divergence theorem for compliance function. The exact solutions,
which are largely unobtainable for the problems under consideration,
have to comply with this relationship. The deviation from this theore-
tical relationship in the case of various approximate solutions can serve
as a quality criterion of these approximations. It was demonstrated that
the quality criterion adequately reflects the accuracy of various em-
pirical solutions suggested in the past. It also can help to identify the
deficiencies of various empirical equations, whose accuracy otherwise
can only be evaluated from the comparison with the similar approx-
imate or fitting equations derived using different analytical methods or
different numerical approaches.

The theoretical relationship has also been rewritten in the form of a
partial differential equation, see Eq. (31). The solution of this differ-
ential equation can provide an alternative form of the approximate
solutions, which also complies with energy principles. From this per-
spective, this theoretical development will allow to significantly reduce
the number of numerical simulations without compromising the accu-
racy of the final results.

The derived theoretical Eq. (14) can be easily generalised for other
geometries and boundary conditions. Therefore, this development can
provide an independent way of the assessment of the quality of ap-
proximate solutions in many situations, specifically, for which other
approaches might not work or might be expensive (e.g. experimental
validations).

The aim of the derivations provided in this Appendix A is to link the change of the shape of ellipse, which can be represented by the change of the
length of semi-axes, da and db, to an increment of the area, ds, at different points, see Fig. Al. This equation is necessary to evaluate the change of the

compliance.

It is natural to introduce elliptical coordinates, (£, 7), which are orthogonal and related to the rectangular coordinates by the well-known

equations:

x = csinh(€)sin(n)

y = ccosh(£)cos(n)

(Ala)

(Alb)

In particular, the length of semi-axes, a and b, can be found by setting, £ = £ and 7 = 7/2 and 0, respectively, leading to

a = csinh(§,)

(A2a)
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Fig. Al. Elliptical Coordinates.
b = ccosh(§,) (A2b)
with
c= \/bz—az (A3a)

a

= atanh| —
& (%)
Any point P on the ellipse can be written in terms of its coordinate (xo, y,) or in elliptical coordinates as (&, 7), where 0 < 7 < 27. Consider now a

very small crack advance due to small increments in the length of semi-axes, da and db, then

da = desinh (&) + d§;ccosh(§)) (Ada)

db = dccosh(&,) + d&,csinh(é,) (A4b)

The new crack front (ellipse) can be described by replacing ¢ and §; in (A1) with ¢ + dc and &, + d§, respectively. The increments dc and d§; can be
found from Eq. (A4):

dc = dbcosh(§,)—dasinh(§;) (A5a)

(A3b)

_ dacosh(&,)—dbsinh(&,)

d¢, : (A5b)

Consider point P, with coordinates (§,, 7,) on the initial crack front, our next step is to find the coordinate of point P;, which belongs to the
orthogonal segment given by (&, + d&, 7,) and the new ellipse (crack front), or this point can be written as (§, + d&,, 7, + dn). The coordinates for
point P, are:

X = csinh(§, + d&)sin(y,) = (¢ + de)sinh(§, + d&)sin(y, + dn) (A6a)
» = ccosh(§, + dé)cos(y,) = (c + dc)cosh(§, + d€y)cos(n, + dn) (A6b)
Using Taylor expansion of hyperbolic and trigonometric functions and removing variable dz, it can be found that that

1 cosh(&)sin? (n)da + sinh(&;)cos? () db

&= ¢ cosh? (&,)sin? (1) + sinh? (§,)cos? (1) (A7)

The length of the segment IR Pyl is

IPyPil = ¢y /cosh? (§))sin® (1) + esinh? (§))cos? (3,) d€ (A8)

The length of the segment IR, P, is

|PyP,| = c\/sinh2 (&,)cos? (n,) + cosh? (§)sin? (1,) d7, (A9)

Because these segments are along the coordinate axes and have to be orthogonal (at small values of da, db, etc.) and utilising Eq. (A2) the increment
of the surface area is

ds(n,) = IRPl X IRPs| = acos? (,)db + bsin® (7,)da (A10)
To validate the obtained equation let us consider the well-known equation for the area of an ellipse with the length of semi-axes a and b:

S = 7ab (A11)

The increment of this area due to changes of semi-axes is

S = n(adb + bda) (A12)

The same result can be obtained from (A10) by integrating with respect to variable 7
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ds =

21 2
J dsdn = [ (acos? G)db + bsin® (9)da)dy = 7 (adb + bda)
0 0

Theoretical and Applied Fracture Mechanics 98 (2018) 149-156

(A13)

The main Eq. (A10) can also be validated using other well-known solutions and properties of the elliptic shapes.
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Abstract This paper presents an analytical-based
approach to simulate fatigue growth of surface cracks
in round bars subjected to cyclic tension and/or
bending. The proposed approach assumes a part-
elliptical crack front shape, and it is capable to
incorporate plasticity-induced crack closure models.
In addition, it is mesh-insensitive, easy to implement,
and much faster than the numerical methods which are
currently utilised for the same purpose. In the begin-
ning, it is developed, in orthogonal elliptical coordi-
nates, a governing equation describing the crack shape
evolution. Then, the governing equation is extended to
incorporate plasticity-induced crack closure effects.
Further, it is investigated the main parameters affect-
ing fatigue crack growth in round bars, in particular,
the initial crack length, the loading conditions and, the
material properties. Finally, the outcomes of fatigue
crack growth simulations based on the proposed
approach are compared with published experimental
and theoretical studies. Overall, an excellent agree-
ment can be observed.
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1 Introduction

Accurate evaluation of fatigue crack growth in cylin-
drical metallic components is an important part of safe
design of many typical structural components sub-
jected to cyclic loading (Zakavi et al. 2019; Hobbs
et al. 2000). In general, fatigue failure of such
components is associated with the initiation and
propagation of surface defects, which can be intro-
duced by the manufacturing process or originated
from irreversible shear slip bands during fatigue
loading (Yang et al. 2006; Caspers et al., 1990). The
introduction of notches, which is inevitable in engi-
neering design, originates complex stress—strain states
nearby the surface and strong tri-dimensional effects,
increasing the importance of the fatigue crack prop-
agation stage (Berto et al. 2004; Pook 2013; Zakavi
et al. 2021a, b).

Failure process, and in particular, the crack front
shape evolution, in cylindrical metallic components
subjected to fatigue loading has been studied exper-
imentally or using numerical methods by many
researchers (Carpinteri 1992, 1993; Lin and Smith
1997, 1998; Couroneau and Royer 1998). From the
previous studies, it was found that the crack front
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shape evolution is governed by several parameters,
among the most significant are the loading conditions,
the stress ratio, the material properties, and the initial
crack geometry (Shin and Cai 2004; Toribio et al.
2009, 2014; Hou 2008; Branco et al. 2012). This
substantial number of parameters makes the problem
of fatigue analysis quite challenging, specifically for
parametric or sensitivity studies, which require mul-
tiple evaluations.

The past investigations have demonstrated that the
shapes of surface cracks in circular cross-section
components formed by cyclic tension, bending or
combined tension-bending can be, in most cases, well
approximated by part-elliptical curves (Carpinteri
1992; Lin and Smith 1997; Branco et al. 2012). These
findings have enabled the development of several
simplified numerical approaches, usually based on the
Finite Element Method, which assume a crack front
with a semi-elliptical shape during fatigue growth
(Carpinteri 1993; Toribio et al. 2014). Based on this
useful simplification, the simulated crack fronts and
fatigue crack growth predictions were found to be
close to the experimental observations.

The main drawbacks of numerical simulations are
the issues associated with the mesh optimisation, since
the results are mesh-sensitive, as well as the develop-
ment and implementation of the automatic crack
growth subroutines, which are not available in the
current commercial software packages, making the
process of fatigue analysis laborious and time con-
suming (Lin and Smith 1997; Branco et al. 2015).
Therefore, the development of mesh-independent and
efficient procedures, capable of simulating the crack
front shape evolution in round bars for various loading
conditions and parameters, is of great practical
interest.

In the analysis of fatigue phenomena, the effective
range of the stress intensity factor is normally
considered as a driving force of the crack propagation
process. Published results often indicate some dis-
crepancies in the evaluation of the stress intensity
factors, specifically for complex 3D geometries and
near the free surfaces (James and Mills 1998; Salah
and Lovegrove 1981). A possible explanation of these
discrepancies can be the limited computer resources
used in the early studies, particularly for the analysis
of 3D cracked geometries (Kotousov et al. 2018).
However, with the increasing of computational power,
these differences have been successively eliminated,

@ Springer

except at the so-called “surface layer”, controlled by
the 3D corner singularity (He et al. 2015, 2016), where
the differences may reach 20-50% (Kotousov et al.
2018). One approach to deal with the surface layer
effect is to simply ignore the numerical results in this
region and use extrapolation techniques to evaluate the
stress intensity factor within the surface layer (Shin
and Cai 2004; James and Mills 1998; Salah and
Lovegrove 1981).

Another critical point in the analysis of fatigue
crack growth is related to crack closure effects, such as
roughness, oxide, and plasticity-induced crack clo-
sure. The first two closure mechanisms, as it is well-
known from the previous studies, tend to be significant
near the fatigue threshold regime but, in general, are
not particularly significant in the so-called Paris
region. In contrast, the plasticity-induced crack clo-
sure is usually more profound in this region (Paris
region), which is of interest in fatigue analysis.
Different analytical and numerical approaches have
been developed over the last years to model this
phenomenon (Elber 1971; Antunes et al. 2010;
Codrington and Kotousov 2009; Yu and Guo 2012;
Shen and Guo 2005).

Numerical models to simulate plasticity-induced
crack closure, particularly those based on the Finite
Element Method, have been developed mostly for
plane and 2D geometries (Antunes et al. 2010; Camas
et al. 2020; Codrington and Kotousov 2009; Yu and
Guo 2012). However, due to the complexity associated
with the direct computations and the necessity to
introduce several assumptions regarding the crack-
opening threshold, the numerical results are not very
reliable, always need an independent validation, and
have to be used with caution (Garcia-Manrique et al.
2018). In this context, simplified analytical models
represent an alternative way to account for the effects
of the plasticity-induced crack closure on fatigue crack
growth rates and fatigue life of the component.

The application of an analytical crack closure
model has several advantages when compared to the
numerical approaches (Zakavi et al. 2021a, b). Firstly,
it does not require any discretisation of the crack front
or even the cracked body. Secondly, it does not need
the development of automatic crack growth schemes,
which makes the process faster, easier to reproduce, as
well as mesh-independent. Last, but not least, the
crack front shape evolution can be studied on the basis
of two arbitrary points located along the crack front,
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eliminating the errors associated with the effects of the
surface layer and the corner points (Berto and Lazzarin
2011; Garcia-Manrique et al. 2018; Kotousov et al.
2019; Zakavi et al. 2021a, b).

The present paper aims at developing an analytical-
based approach to study the fatigue crack propagation
in round bars weakened by surface cracks. This
approach assumes a part-elliptical crack front shape
during the entire fatigue growth, and it accounts for the
plasticity-induced crack closure by incorporating an
appropriate analytical model. It can be easily adopted
for practical fatigue analysis of engineering compo-
nents with circular cross-sections (e.g. shafts, cables,
wires, bolts, screws, etc.), as it does not require
numerical simulations or commercial software, but
also for parametric studies. Moreover, it is simpler to
implement and significantly faster that the current
design methods. Another interesting feature is its
mesh-independency, avoiding convergence issues or
optimisation tasks. The paper is organised as follows:
Sect. 2 introduces the governing equations and the
plasticity-induced crack closure model; Sect. 3 is
focused on crack shape validation using experimental
results; Sect. 4 analyses the effects of crack shape,
crack length, loading conditions, propagation rates
and stress ratio on fatigue crack growth. The paper
ends with some concluding remarks.

2 Fatigue crack propagation model
2.1 Crack shape

This section aims at deriving a governing equation,
which describes the evolution of crack front shape
during fatigue crack growth. Since the crack fronts
have a pre-defined part-elliptical shape, and in order to
simplify the analysis, the problem is addressed using
orthogonal elliptical coordinates, as shown in Fig. 1.
In the beginning, it is developed an inverse relation-
ship between the crack aspect ratio (a/b) and the
displacement at an arbitrary location along the crack
front, ds, which can be associated with the incremental
changes of the semi-axes, da and db (see Fig. 1).

The correlation between the orthogonal elliptical
coordinates (&,m) and the rectangular coordinate
system (X, y) can be established by the following
equations (Zakavi et al. 2019):

—————

N n=m/2
Crack front w
\
’ a

2N,

0

New curve due to da and db (exaggerated)

Fig. 1 Elliptical coordinates and crack front change

x = csinhsing (la)
y = ccosh cosy (1b)
where

c=Vb:—a (2)

which represents the half focal length. The length of
semi-axes, a and b, can be found by setting that & = &,
and n = ©/2 and 0, respectively, leading to:

a = csinh &, (3a)

b = ccosh ¢ (3b)

where ¢ is defined by Eq. (4). For surface cracks in
round bars, it is expected that b>a or B = a/b < 1.
Thus, any point P on the ellipse can be identified by its
rectangular coordinates (x,y) and elliptical coordinates
(&, n) where 0 <y <2m.

&y, = atanh (g) (4)

If it is considered the change of crack shape due to a
small increment dc and d&,, then it can be written:

da = dcsinh & + d&yc cosh &, (5a)
db = dccosh &y + d&yc sinh & (5b)

and the increments dc and d&, can be defined by the
following equations:

dc = dbcosh &, — da sinh &, (6a)
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dacosh &y — dbsinh &,
c

where the new elliptical curve can be obtained by
replacing ¢ and ¢, with c+dc and &y + dé&,
respectively.

The distance between a point Py with coordinates
(&o,1o) located on the initial elliptical curve repre-
senting the initial crack front shape and a point P,
located on the new elliptical curve (see Fig. 1) can be
computed as an intersection of the orthogonal segment
given by (&, +d&, n,) and the new elliptical curve
obtained with increments da and db. Thus, the
rectangular coordinates of point Py (xp;,yp,) can be
written in the form:

xp, = csinh(&y + d&) sin
(¢ +dc) sinh(&y + d&) sin(ny + dn) (7a)

Yo, = ¢ cosh(& + d&) cos 11,
= (c 4+ dc) cosh(& + d&y) cos(7y + dn) (7b)

for the elliptical coordinate system on the basis of both
the initial crack shape and the new crack shape.

If it is used a Taylor expansion of hyperbolic and
trigonometric functions and exclude the variable dy,
the increment d¢ can defined by Eq. (8)

1 cosh & sin® 5y da + sinh &, cos® 7, db

dé =

8
¢ cosh? & sin® 5, + sinh? &, cos? n, ®

The value of ds (see Fig. 1), i.e. the length of the
segment [PoP, [, is given by Eq. (9). If d of Eq. (8) is
replaced into Eq. (9), it leads to Eq. (10).

ds = c\/cosh2 &y sin® ng + sinh? & cos? nydE  (9)

~ cosh & sin® 5, da + sinh &; cos” 1, db

ds
\/ cosh? &, sin® 17, + sinh? & cos? #,

(10)

Let us define the aspect ratio of the ellipse § = a/b.
After some algebraic manipulations, Eq. (10) yields to

Eq. (11).

tan” 1, + (% - ﬂ%%) tanh &,
ds =

cos 17, da (11)

\/ tan? 7], + tanh® &

The ratio of the normal distances between the initial
and the new curves at the deepest point (y = 7/2) and
at an arbitrary point (7 = 5,), i.e. ds/da, taking into

@ Springer

account Eq. (11) and Eq. (4), can be re-written by
Eq. (12).

2 dg
oot (1-3)

da \/tan? i, + f*

2.2 Fatigue crack growth

cos 7, (12)

The fatigue crack growth rates can be accounted for
using the well-known Paris equation (Paris and
Erdogan, 1963):

da

— = C(AK)" 13

= C(AK) (13)
where C and m are material constants determined
experimentally for the tested material. Based on this
equation, the relative speed at an arbitrary point 7
normalised by the speed at the deepest point of the
crack front n = n/2 (point A) is given by Eq. (14).

v = () -

Vtan? g + f°

(14)

From the previous equation, after some algebraic
manipulations, the crack shape evolution leads to an
ordinary differential equation written in the following
form:

80 1oy (V)

a5 b AK(m/2 cos

(15)

where 0 = a/D is the ratio of the crack depth to the
diameter of the bar, and 0 <d < 1.

It is clear from Eq. (15) that a stress intensity factor
solution for any two arbitrary points can be used in the
analysis of crack shape evolution. Most of the stress
intensity factor solutions proposed in the past for
round bars with surface cracks have been typically
obtained for the deepest point, i.e. n = /2, and the
surface point, i.e. § = ng (see Fig. 1). Therefore, this
work will also be focused on the evaluation of the
fatigue crack shape evolution based on these two
characteristic points of the crack front. The elliptical
coordinates of the surface point (S) can be found as an
intersection of the circle describing the outer boundary
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of the bar cross-section and the elliptical curve, as
follows:

sinh? & sin” 1 + cosh? & cos? g
__ sinh ¢ sin g (16)

N

from which the relationship for two vertex points can
be derived, see Eq. (17).

B\ - a8 (F - 1)

20(8* —1)

cosng ==+, |1 —

(17)

For fatigue life and shape evolution calculations,
Egs. (15) and (16) have to be supplemented with the
initial conditions, ie. d =Jy and = f,, and a
suitable stress intensity factor solution reflecting the
actual loading conditions, e.g. pure tension, bending or
mixed loading. In the case of round bars, the SIF
solution is normally represented in the following form:

) ov/na (18)

where F is the geometric correction factor, o is the
nominal stress, a is the crack depth, and h is the y-
coordinate of the surface point S, i.e. the point with
n = ng (see Fig. 1). So, the ratio |y/h| changes from O
to 1. Based on Eq. (1), the k ratio, kK = h/a, can be
defined by:

h _
=-= — 1 cosh(at S 7 19
o= \/ B cosh(atan f3) cos 7 (19)

where 1, is given in Eq. (17). In the present study it
will be considered the closed-form solution provided
by Shin et al. (2004), whose geometry correction
factor can be written as follows:

F=> 3> () )

7
i=0 j=0 k=0

KI:FI< )

where the coefficients M;j for the end-free and end-
constrained axial tension, and bending can be found in
the original paper by the authors (Shin and Cai 2004).

2.3 Plasticity-induced crack closure model

This section deals with a specific analytical model of
plasticity-induced crack closure, however, other

models can be easily implemented as well. First
introduced by Elber in the early seventies of the past
century (Elber 1970, 1971), crack closure concept is
often used to explain various aspects of metal fatigue
(Antunes et al. 2010; Codrington and Kotousov 2009;
Yu and Guo 2012). In accordance with this concept,
the stress intensity factor range, AK, is replaced by the
effective stress intensity factor range, AK.gt, to reflect
the damage accumulation when the crack tip is closed.
The effective stress intensity factor range, AKess, is
defined by:

AI<eff =UAK = U(Kmax - Kmin) - Kmax - Kop

(21)

where Kinax and Ky, are the maximum and minimum
values of the stress intensity factor during the fatigue
cycle, respectively, and U is the normalised load ratio
parameter, which is often utilised to describe the
effects of the loading and geometry on crack closure.
If crack closure phenomena are considered, the
governing equation of crack shape evolution can be
rewritten as:

B B ( <US AKS>“‘ \/tan? ;7+B2>
1 4 tan® 5 —

W66 Ua AKy cos
(22)

where index A corresponds to the deepest point
(1 = 1/2), and index S is related to the surface point
(n ="ns).

When the calculated crack aspect ratios, f(9), are
compared to the experimental data, it is clear that the
Paris equation overestimates the crack growth rate at
the free surface. Based on these observations, several
researchers have assumed a fixed ratio of the crack
closure at the surface point to the deepest point,
Us/Ua. The typical values of Us/U, are within the
interval 0.8-0.9 and provide a much better correlation
with the experimental observations (Newman and
Raju 1984).

However, it is clear that the normalised load ratio
parameter, U, is not a constant and changes with the
geometry and loading conditions. In this paper, a more
advanced model based on the equivalent thickness
concept is used to account for the crack closure effect
(Yu and Guo 2012; Shen and Guo 2005). In this
model, the normalised load ratio, U, is represented by
the following equation:
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wl—

(23)

(1 -R2)*(1 + 10.34R?) )

UR, « :< 1.61 1 \46
(1 + 1.67R™™ + 0.157120()

The constraint factors for the deepest point (o4) and
the surface point (ag) are expressed as:

_1+0.638g(2)
1 —2v+0.54g(4)

oA

(24)

os = 1.181 (25)

where g(x) = x/2 + 2x2, R = Kipin/Kmnax is the stress
intensity factor ratio, and v is the Poisson’s ratio. The
ratio of the plastic zone size to the equivalent thickness
is given by:

T, n (K 2
=P = = [ 26
v () 26)

ot

where oy is flow stress of the material, and t. is the
equivalent thickness which for the deepest point is the
distance between the intersection points of the circle
boundary with the line tangential to the deepest point.
Itis parallel to the horizontal x-axis and passes through
the deepest point:

te = VDa— a? (27)

where D is the diameter of the bar (see Fig. 1). In the
case of a very small plastic zone ahead of the crack
front, or when A — 0, the ratio Ug/U, becomes:

Us _U(R,L181)

Usr U(R,25) (28)

and it can be demonstrated by direct calculations
using Egs. (23)—(27) that this ratio increases with an
increase of the R ratio, and varies between 0.8 and 0.9
for v=0.3,1i.e. itis consistent with previous studies, as
highlighted above (Newman and Raju 1984).

3 Experimental validation

The experimental validation of the crack shape
evolution has been carried out using data published
in the papers by Yang et al. (2006) and by Branco et al.
(2012). Briefly, the material utilised was a S45 carbon
steel, whose main mechanical properties and fatigue
crack growth rates are summarised in Tables 1 and 2,
respectively. The specimen geometry, as represented
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Table 1 Mechanical properties of S45 steel

Tensile Yield Young’s Poisson’s
strength, Gyrs  strength, Gys  modulus, E ratio, v
(MPa) (MPa) (GPa)

775 635 206 0.3

Table 2 Fatigue crack growth rates (da/dN [mm/cycle] and
AK [MPa /m) of $45 steel

Stress Constant of Paris Exponent of Paris
ratio, R equation, C equation, m
0.1 1.9037 x 107° 3.256

in Fig. 2, was a solid round bar with a diameter of
12 mm and an initial straight edge front crack with a
depth of 1 mm.

The tests were conducted in a conventional servo-
hydraulic machine, under uniaxial loading conditions,
with a stress ratio equal to 0.1, a frequency of 15 Hz
and, and a maximum applied force of 25 kN (Yang
et al. 2006; Branco et al. 2012). The crack shape was
evaluated using a stereomicroscope and the crack
fronts were marked on fracture surface by applying
overloads at selected instants of the test. A typical
example of the appearance of fracture surfaces
obtained in the experimental tests is exhibited in
Fig. 3a.

As can be seen in Fig. 3a, the crack front shapes
marked on the fracture surface are rather symmetrical
with regard to a vertical line passing through the centre
of the specimen, which agrees with the expected
results for round bars subjected to mode-I loading
(Carpinteri 1993; Lin and Smith, 1997; Branco et al.
2014). In the case of more complex loading scenarios,
e.g. multiaxial loading, the crack front tends to be
asymmetrical because the crack growth is governed by
mixed-mode loading, causing strong crack front shape
changes during the propagation and also higher
degrees of out-of-plane propagation (Zhu et al. 2018;
Branco et al. 2014).

The comparison between the experimental obser-
vations and the theoretical predictions is presented in
Fig. 3b for two sets of simulations, i.e. without
plasticity-induced crack closure (obtained from
Eq. (15)) and with plasticity-induced crack closure
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Fig. 2 Specimen geometry
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closure)
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included through the equivalent thickness model
(obtained from Eq. (22)). Overall, the predicted crack
fronts in the entire region studied are close to those
found in the experiments. A close analysis shows that
at the initial stages of fatigue crack growth, there is no
or little difference between the experimental data and
analytical simulations. However, at later stages, the
simulations incorporating the plasticity-induced crack
closure effects provide better agreement with the
experimental data. This can be explained by the fact
that crack closure effects are more pronounced with an
increase of the plastic zone size, which becomes larger
with the progression of the surface crack subjected to
constant amplitude fatigue loading.

4 Analysis and discussion

Figure 4 displays typical examples of the analytical
simulations obtained with the proposed approach for
different propagation conditions, namely different
initial crack lengths, initial crack shapes, exponents
of the Paris law, loading types, and crack closure
levels. Overall, it can be clearly distinguished signif-
icant changes during the propagation which is a good

4
2
x (mm)
R
4
% N -
-8
4 6 8 8 6 -4 2 0 2 4 6 8
y (mm)
(b)

indication regarding the robustness of the proposed
approach.

The sensitiveness of the proposed procedure to the
initial crack length can be clearly observed by
comparing Fig. 4a, b. In these two simulations, the
initial values of the dimensionless crack shape (ag/bg)
are similar (ag/bg = 0.5) and the initial values of the
dimensionless crack length (ag/D) are equal to 0.15
and 0.1, respectively. In fact, the crack front shapes are
relatively different, as the crack propagates; however,
after some extent, the crack shapes tend to a similar
configuration. Previous studies conducted in round
bars with surface cracks subjected to constant-ampli-
tude loading have found an identical behaviour
(Carpinteri 1992, 1993; Lin and Smith 1997, 1998;
Couroneau and Royer 1998).

Regarding the initial crack front shape, its effect on
crack front evolution can be distinguished from the
analysis of Fig. 4b, c. In both cases, the initial crack
length is similar (ag/D = 0.1) while the initial values
of the dimensionless crack shapes (ag/by) are equal to
0.5 and 0.25, respectively. It can be seen that the crack
fronts at the early stage of propagation are signifi-
cantly different, but tend to the same shape, as the
crack grows. According to the literature, the effect of
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Fig. 4 Analytical simulation of fatigue crack fronts for different
propagation conditions: a ag/bg = 0.5, ap/D = 0.15, m = 2, ten-
sion; b ay/by = 0.5, ay/D = 0.1, m =2, tension; ¢ ay/by = 0.25,

the initial crack shape has an important role at the early
stage of crack growth but tends to disappear after some
extent (Lin and Smith 1997, 1998; Branco et al. 2012).

Another important variable that affects the crack
shape evolution in round bars with surface cracks is
the exponent of Paris law (m). Figure 4a, d plot the
crack front shape evolution for two values of m,
respectively equal to 3 and 4, maintaining fixed the
other variables. Although the differences between
these two cases are not completely obvious, a close
look at the simulations shows a higher crack front
curvature for higher values of m, particularly for lower
crack lengths. Unlike the initial crack length and the
initial crack shape, the m value affects the entire
propagation and not only the early stage (Couroneau
and Royer 1998; Toribio et al. 2009; Branco et al.
2014).

The loading scenario also has a significant effect on
crack shape evolution in round bars weakened by
surface cracks. Figure 4b, e compare a simulation
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ap/D = 0.1, m = 3, tension; d ayby = 0.5, ayD = 0.15, m =4,
tension; e ag/by = 0.5, ayD = 0.1, m = 3, tension; f ag/by = 0.25,
ay/D = 0.1, m = 3, tension, crack closure

conducted for tension and a simulation conducted for
bending, respectively, maintaining fixed the other
variables. The analysis of both figures shows an
significant effect of this variable on crack front
developments. Under tension, the crack fronts tend
to be more curved, as the crack extends. On the
contrary, under bending, the crack fronts tend to be
straighter. Identical conclusions have been reported in
previous studies, either based on experimental studies
or numerical simulations (Carpinteri 1992, 1993; Lin
and Smith 1997, 1998; Couroneau and Royer 1998).

The influence of crack closure mechanisms can be
distinguished from the analysis of Fig. 4c, f. Both
simulations have been conducted for identical prop-
agation conditions, but the latter case considers the
crack closure model introduced in the present paper,
while the former discards crack closure phenomena.
Not surprisingly, the crack fronts obtained from the
model which accounts for crack closure are more
curved than those generated discharging the plasticity-
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Fig. 5 Evolution of crack paths, in a dimensionless form, for
different initial crack front shapes subjected to tension
(ag/D = 0.1, m = 3, no crack closure)

induced crack closure mechanisms. In fact, crack
closure tends to retard the propagation at the free
surface, which inevitably leads to crack shapes with
higher degree of curvature (Carpinteri et al. 2010).

Despite the previous analysis has identified the
typical behaviour of main variables affecting the
fatigue crack growth in round bars subjected to tension
and bending, a more accurate analysis requires the use
of dimensionless parameters (Branco et al. 2015).
Figure 5 plots the crack shape evolution in a dimen-
sionless form (full lines) obtained from different initial
crack shapes with values of ay/b, varying between 1
and 0. All the other variables were maintained fixed.
As it can be seen, at the early stage of growth, the crack
shape evolution is strongly governed by the initial
value of the dimensionless crack shape.

However, as the crack extends, this effect tends to
be less relevant and there is a convergence to the
so-called stable crack shape. It is clear from the
figure that the time required to reach the stable crack
shape depends on the initial crack shape; crack fronts
more distant from this equilibrium need more time to
attain it and vice-versa. It is also interesting to note that
the values obtained with the present approach are quite
close to those published in the literature by Branco
et al. (2012) and Toribio et al. (2009) for the same
propagation conditions. The two above-mentioned
studies were conducted using automatic fatigue crack
growth approaches. The former study considered no
crack shape restraints, while the latter assumed a part-
elliptical crack front.

1.0
A Carpinteri (1993)
08 o  Toribio (2009)
Present study
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®
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0.0 0.2 0.4 0.6 0.8 1.0

a/D

Fig. 6 Evolution of crack paths, in a dimensionless form,
for different initial crack front shapes subjected to bending
(ag/D = 0.1, m = 3, no crack closure)

Regarding bending loads, the comparative analysis
plotted in Fig. 6 leads to similar conclusions, i.e. a
strong effect of the initial crack shape on the crack
trajectories at the early state of propagation; there is
also a stable crack shape independent of the initial
crack geometry; and the time required to attain the
stable configuration depends on the initial distance
from the equilibrium. In addition, it can be also
concluded that the simulated crack front paths are
quite close to those found in the literature for the same
propagation conditions, particularly the ones pub-
lished by Toribio et al. (2009).

As referred to above, the effect of the Paris law
exponent acts during the entire propagation. This has a
direct effect not only at the early stage of propagation,
but also concerning the stable crack paths. Figure 7

1.0
Toribio (2014)
O m=2
2y © m=3
o m=4
06|
£
® o
0.4 §/ gy
,% Present study 9\9
I - m=2 ‘
0.2 - f ----- m=3
{ = m=4
0.0 - | | | 1
0.0 0.2 0.4 0.6 0.8 1.0
a/D

Fig. 7 Evolution of crack paths, in a dimensionless form, for
different initial crack front shapes subjected to tension assuming
different values of the exponent of Paris law (ag/D = 0.1, m = 3,
no crack closure)
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Fig. 8 Evolution of crack paths, in a dimensionless form, for
different initial crack front shapes subjected to bending
assuming different values of the exponent of Paris law
(ag/D = 0.1, m = 3, no crack closure)

shows the crack paths simulated for three values of m
(m=2, m=3, and m =4) considering two initial
crack fronts (ag/by = 1, and ag/by = 0) and tension
loads. As can be seen, there are independent trajec-
tories, represented by the dashed lines, throughout the
simulations for each value of the Paris law exponent.
However, after some propagation, and regardless of
the initial crack shape, the trajectories for the same
value of m tend to the same stable crack shape.
Overall, it can also be seen a strong similarity between
the results obtained in the present study and those
published by Toribio et al. (2014) for identical
propagation conditions.

As far as bending loading is concerned, the effect of
the Paris law exponent is exhibited in Fig. 8. The
simulations were conducted for two initial crack
configurations (apg/bg = 1, and ag/bg = 0.1) consider-
ing three values of m (m =2, m =3, and m = 4).
Similar to tension, there is an independent trajectory
for each value of the Paris law exponent. Nevertheless,
for a fixed value of m, independently of the initial
crack shape, the crack paths tend to converge to the
same crack configuration. It is also clear that this
convergence is faster for higher values of m, since the
interception of the curves occurs faster. Another
interesting outcome is that the results obtained in the
present simulations are close to those found in
literature (Toribio et al. 2014).

The dimensionless uncracked area parameter (A*),
defined as the ratio of the uncracked area to the cross-
sectional area of the round bar, is an alternative
parameter that can be used to examine the crack front
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Fig.9 Evolution of the dimensionless cracked area for different
initial crack fronts subjected to tension

shapes computed with the proposed methodology.
Figure 9 plots the variation of A* against the dimen-
sionless crack length (a/D) for two initial crack shapes
(ag/by = 1 and ay/by = 0.08) and two initial crack
lengths (ag/D = 0.1 and ag/D = 0.3) considering ten-
sion loading. As can be seen, this parameter is
sensitive to the initial crack shape. At the early stage,
the curves are relatively far from each other; however,
in a second stage, they tend to overlap. Regarding the
values of A* published in the literature for the tension
loading, there is no relevant differences (Toribio et al.
2014). Although it is not represented in the figure, an
identical behaviour has been found for bending
loading.

Another important analysis is concerned with the
accuracy of the stress intensity factor values. Fig-
ure 10 compares the value of the geometric correction
factor at the free surface of the round bar for tension
and bending loads considering different initial crack

5.0
aylby=1.0 Tension Present study

S 40 Carpinteri (1993) - ay/by=0.08
ks Caspers (1990) — ayfb,=1.0
IS 30k Shin (2004) ay/b=0.08
g ’ 0 Toribio (2014) aglb=1.0
5 Toribio (2014)
2 20
@
£
5
o 1.0+

0.0 1 | | L

0.0 0.2 0.4 0.6 0.8 1.0

a/D

Fig. 10 Evolution of stress intensity factor at the free surface
under tension and bending for round bars with surface cracks
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shapes (ag/bg = 1 and ap/by = 0.08) and different
initial crack lengths (ap/D = 0.1 and ay/D = 0.3). As
expected, the geometric correction factor increases, as
the crack propagates, regardless of the loading type. In
addition, the convergence to the same stress intensity
factor curve occurs irrespective of the initial crack
shape. It is also clear from the figure that convergence
is more rapid for bending than for tension.

This behaviour, i.e. the convergence towards sim-
ilar values, is expected since stress intensity factors are
interconnected with the crack shapes. Therefore, if the
crack fronts tend to similar shapes, as shown in Fig. 4,
the stress intensity factors should have a similar
behaviour. Moreover, it can also be inferred from the
figure that the stress intensity factor values, at a given
crack length, are higher for tension than for bending.
This difference tends to increase with the propagation,
and it suggests that the risk of failure for tension is
higher than for bending (Shin and Cai 2004; Toribio
et al. 2014). Regarding the stress intensity factors
available in the literature, the results computed here
are quite close to those published by different authors,
either for tension or bending (Carpers et al., 1990;
Carpinteri, 1993; Toribio et al. 2014; Levan and
Royer, 1993).

5 Conclusions

The present paper proposed an analytical approach to
simulate the crack shape evolution in round bars with
surface cracks subjected to tension and/or bending
loads. It is mesh-independent avoiding convergence
issues or complex implementation procedures. It is
also capable to incorporate the effects of plasticity-
induced crack closure using various crack closure
models. In the current study, the plasticity-induced
crack closure model based on the equivalent thickness
concept was incorporated. The following main con-
clusions can be drawn:

1. The fatigue crack growth in round bars subjected
to constant-amplitude tension or bending is very
sensitive to the following parameters: initial crack
length, initial crack shape, exponent of the Paris
law, loading scenario, and plasticity-induced
crack closure;

2. The comparison between the crack paths obtained
with different values of initial crack length, initial

crack shape, loading type and exponent of Paris
law were quite close to those published in the
literature for the same propagation conditions;

3. The analysis of the dimensionless uncracked area
has shown a high sensitivity to the initial crack
shape, either for tension or bending. The compar-
ison with existing results has demonstrated iden-
tical trends to those computed with the proposed
approach;

4. The stress intensity factor values for the same

dimensionless crack length were higher for ten-
sion than for bending, which suggests higher
susceptibility to fatigue failure in the former case.
This agrees with previous conclusions drawn in
the literature.

The excellent coherency between the predicted
crack shapes and the results available in literature
becomes the proposed analytical approach very
attractive for parametric studies of round bars weak-
ened by surface cracks subjected to tension and/or
bending. Since this approach does not require any
numerical simulation or any advanced commercial
software to simulate the crack shape evolution, it can
also be easily adopted for practical fatigue analysis, in
a rapid and accurate manner.
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Abstract: Fatigue failure of structural components due to cyclic loading is a major concern for
engineers. Although metal fatigue is a relatively old subject, current methods for the evaluation of
fatigue crack growth and fatigue lifetime have several limitations. In general, these methods largely
disregard the actual shape of the crack front by introducing various simplifications, namely shape
constraints. Therefore, more research is required to develop new approaches to correctly understand
the underlying mechanisms associated with the fatigue crack growth. This paper presents new
tools to evaluate the crack front shape of through-the-thickness cracks propagating in plates under
quasi-steady-state conditions. A numerical approach incorporating simplified phenomenological
models of plasticity-induced crack closure was developed and validated against experimental results.
The predicted crack front shapes and crack closure values were, in general, in agreement with those
found in the experimental observations.

Keywords: crack front shape; structural plates; through-the-thickness crack; steady-state loading
conditions; small-scale yielding

1. Introduction

The evaluation of fatigue life and failure conditions of structural components is of
permanent and primary interest for engineers. Over the past five decades, significant
progress has been made toward the development of more appropriate fatigue crack growth
models and life assessment procedures. Significant research effort has been directed to the
study of the fatigue crack closure phenomenon, which was first introduced by Elber [1] to
explain the experimentally observed features of fatigue crack growth in aluminium alloys.
The number of publications grew rapidly since this pioneering study, and continues to grow.
It is now commonly accepted that the contributions of various crack closure mechanisms,
specifically plasticity-induced crack closure, roughness-induced crack closure, and oxide-
induced closure, are significant, and these mechanisms are capable of explaining many
fatigue crack growth phenomena, e.g., the influence of thickness on crack growth rates,
retardation effects associated with overloads, or higher propagation rates of small cracks in
comparison with long cracks [2].

It is well-established that for relatively long cracks propagating in a non-aggressive
environment, the plasticity-induced crack closure dominates over the roughness-induced
crack and oxide-induced closures. The plasticity-induced crack closure models rely on far
fewer assumptions than the two other closure mechanisms. The first theoretical model was
developed by Budianski and Hutchinson [3] based on the two-dimensional Dugdale strip-
yield model [4]. The theoretical results demonstrated that opening stress intensity factor
is surprisingly high, and increases with an increase in the R ratio. All early crack closure
models for plate components utilised both plane strain and plane stress simplifications,
although real cracks are inherently three-dimensional (3D). To examine the thickness effect
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on crack propagation rates, empirical constraint factors were often used, demonstrating a
stronger correlation with experimental results. With the advance of numerical methods and
the increase in computational power, it became possible to eliminate these simplifications
and study more realistic geometries, as well as various 3D effects [5,6].

In 3D problems, the order of the singularity at the intersection of the crack front with
the free surface depends on Poisson’s ratio and the intersection angle. From energy con-
siderations, it follows that fatigue cracks have to preserve the 1/+/7 singularity. Therefore,
the fatigue crack has to intersect the free surface at a critical angle, 3., which is a function
of Poisson’s ratio. Several experimental studies have reported that, at least, the Mode I
fatigue crack front is shaped to ensure the square root singular behaviour along the entire
crack front. However, it seems that the effect of 3D corner singularity is not very significant
in the presence of a sufficiently large crack front process zone [7]. This is because the 3D
corner singularity effect is a point effect, and is very much localised. Therefore, it might
be negated by the plasticity and damage formation near the surface. For example, in an
experimental study of steel circular bars subjected to bending and torsion, the experimental
intersection angles were found to be very different from the theoretically predicted critical
angles [8].

Considerably less effort has been directed toward the study of the effects of the
3D corner singularity and elasto-plastic constraints on plasticity-induced crack closure.
Generally, the direct 3D elasto-plastic simulations of fatigue crack growth demand much
greater computational resources [9]. These simulations have many issues associated with
the validation of the numerical solution and the accuracy of the obtained results. A number
of factors affect the accuracy, which are difficult to control: the mesh refinement, the type of
finite element, the crack advance scheme (which usually consists of releasing nodes ahead
of the crack front), contact conditions, and the local criterion of crack front opening. Branco
et al. [10] recently provided an exhaustive review concerning these aspects. The overall
conclusion was that the direct numerical approaches are capable of describing the shape
evaluation of fatigue cracks. However, the application of these approaches to particular
problems can be quite cumbersome. Each problem needs a large effort to calibrate the
solution and verify the results. These efforts are usually focused on the reduction in the
number of finite elements, the number of simulations required in the analysis, or, eventually,
the computation time, which cannot be considered to be of practical relevance [11].

In the present paper, a simplified procedure for the evaluation of the fatigue crack front
shapes of through-the-thickness cracks propagating under the cyclic loading conditions
is presented. The procedure is based on simplified methods for the evaluation of the
plasticity-induced crack closure effect, namely the equivalent-thickness method introduced
by Yu and Guo [12,13], as well as the analytical model developed by Kotousov et al. [14,15].
The outcomes of the simulation are compared with available experimental results obtained
at the same propagation conditions for validation purposes. The paper is organised as
follows: Section 2 addresses the method used to evaluate the crack front shape, as well
as the models introduced to evaluate the crack closure along the crack front. Section 3
describes the finite element model developed to calculate the stress intensity factors along
the crack front. Section 4 compares the predicted crack front shapes with those obtained
experimentally for different materials and propagation conditions. The paper ends with
some concluding remarks.

2. Crack Shape Simulation and Crack Closure Models

The main idea behind the evaluation of the steady-state shape of a fatigue crack
front proposed in this paper is to select a curve from a parametric family that minimises
the deviation of the fatigue driving force along the crack front. In other words, we first
specified a possible parametric set of curves in the crack plane (e.g., parabolic, hyperbolic,
or elliptical shapes) and then evaluated the local fatigue driving force using a finite element
model, along with simplified plasticity-induced crack closure models. In this study, the
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local fatigue driving force was defined by the effective stress intensity factor range, AKg,
given by the formula:
AKegt = U-AK = U-(Kmax — Kmnin) @

where U is the normalised load ratio parameter, or normalised effective stress intensity
factor, which is often used to describe the effects of loading and geometry on crack closure,
and AK is the traditional linear-elastic stress intensity factor range [16] defined by the
maximum and minimum values of the stress intensity factor experienced for a given load
cycle. The load ratio is therefore given by R = Kyin/Kmax. In the case of 3D problems,
this normalised load ratio is not a constant, but rather a function of the position along the
crack front, U = U(z). Thus, the local crack growth rate is a function of the effective stress
intensity factor range, i.e.,

AKef(z) = Kmax(2) — Kop(2) = U(z)AK(2) @)

where Kop(2) is the local opening load stress intensity factor, which corresponds to the
minimum load at which the crack faces, at point z, which are fully separated.

A number of sophisticated finite-element (FE) models were developed to evaluate
U(z) for different geometries and loading conditions. However, as discussed above, these
models have many limitations, and are quite difficult to apply in fatigue calculations.
Below, we consider two simplified methods for the evaluation of the normalised load ratio,
the equivalent-thickness model introduced by Yu and Guo [13], and the analytical model
proposed by Kotousov et al. [14,15], which are addressed in Sections 2.1 and 2.2, respec-
tively. These methods will be further incorporated into the 3D linear elastic finite element
simulations to evaluate the shape of the through-the-thickness cracks. This evaluation
will be performed via the corner singularity method [17], which is briefly presented in
Section 2.3.

2.1. Equivalent-Thickness Model

For through-the-thickness cracked plates, She et al. [17] proposed defining the equiv-
alent thickness based on a numerical analysis of the 3D distribution of the out-of-plane
stresses and constraint factor, T,, which is defined as:

0z

T, = 3
=it ®)

where oy, 0y, and o are the normal stresses. This method is illustrated in Figure 1. The
equivalent thickness, 2feq, for point P on the crack front is identified as the plate thickness,
which leads to the same distribution of T, at the mid-plane.

A 7
Crack front
Mid-plane X A Z  Crack front
''''''''''' 'Zh - \ >
__________ -3 Y ‘/
P > Izheq >_. Zheq -. P %;X
L 2 } T L

(a) (b)

Figure 1. Schematic illustration of the equivalent-thickness method in the through-the-thickness cracks: (a) original

straight through-the-thickness cracked geometry; (b) final straight-through-the-thickness cracked geometry with equivalent

thickness.
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An empirical equation was suggested to evaluate the equivalent-thickness as follows:

heq Z\ 2

=G @
where z is the distance from the mid-plane and / is the half-thickness of the plate. The
normalised load ratio parameter in this method can be calculated as follows:

ll:\3/E

1-R

@)
where « is a function of the R ratio:
(1— R2)*(1 4 10.34R?)

k= ) 16 (6)
1.61 _
(1 4 1.67RL6! 4 0'15#%)

and «g is a global constraint factor, «g, defined by the formula:

1+t
R P @)
where v is the Poisson’s ratio and ¢ is given by:
t=0.2088, /-0 1150462 ®)
heq heq
with: )
70 ( Kmax
= = 9
=7 ( n ) ©)

where 0y is the flow stress. These empirical equations were extended to the corner, and
surface cracks and were extensively validated using 3D finite element analyses.

2.2. Analytical Model for the Evaluation of Crack Closure

Another method for the evaluation of local plasticity-induced closure is based on a
simplified 3D analytical model. In accordance with this model, the parameter U for Mode
Iloading under small-scale yielding conditions can be approximated from the following
expression:

U(R,n) = a(n) +bm)R+c(n)R? (10)

where the fitting functions a, b and ¢ can be written in the form:

a(n) = 0.446 + 0.266 - e~ 04In
b(n) = 0.373 + 0.354 - e 02357 .
c(m) =02 —0.667- e—0:515n

where | = Kiax/ (h,/0%) is a dimensionless parameter.

The above equations were obtained within the first-order plate theory based on the
Budiansky—Hutchinson crack closure model [3,15]. The results, which correspond to the
classical two-dimensional theories (or plane stress state, or plane strain state), can be
obtained as limiting cases of very thin and very thick plates, i.e., whenn — co orn — 0,
respectively. The details of the derivation of these equations can be found in the original
paper by Codrington and Kotousov [14].
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2.3. Corner Singularity Method

In this study, the evaluation of the steady-state front in the through-the-thickness
cracks was carried out using the corner singularity method. First, we approximated the
shape of the crack front by a two-parameter elliptical curve, which can be described as:

22
x=b\1-— —h<z<h (12)
a

where a and b are the major and minor semi-axes of an ellipse, respectively, as shown in
Figure 2.

/\/\_J\
/ X
Material A

: Crack front

P —

|
|
et |
|
|
|

—a —h 0

Figure 2. Elliptical-arc crack front shape for geometrical parameters crack propagation.

The crack front tends to intersect the free plate surface at the critical angle, 3., when
the plasticity effects are small. The critical angle is a function of the Poisson’s ratio and the
type of loading. We found that the critical intersection angle can be approximated by the

following formula [18]:
-2
tan B, = Y S (13)

where v is the Poisson’s ratio. Typically, when the size of the plastic zone is greater than
1% of the plate thickness, the stress state near the vertex location is not controlled by the
elastic singularity. In these cases, the plasticity effects become more important, and together
with the vertex singularity effect, lead to greater critical angles for elastic-plastic materials.
To find b, we need to make sure that:

ox bh v
gk:ih—*a =7 v_2 (14)
where b is defined by:
av a2

Substituting Equation (15) into Equation (12), we obtain:

x(z):(z”l_vv)\/?~\/m—h§zgh (16)

This equation meets the condition that the crack front intersects with the free surface at
the critical angle given by Equation (13), and represents a parametric curve with one single
parameter, a. Further, the steady-state condition of the crack propagation requires that
the projection of the effective stress intensity factor along the crack propagation direction
(x-direction, Figure 1) is constant for all points along the crack front. This condition cannot
be satisfied exactly with any multi-parametric equation describing the possible crack front
shapes. However, the shape that minimises the difference of the effective stress intensity
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H12

factor along the crack front can be considered as the best approximation of the actual
fatigue crack front shape.

3. Numerical Approach

This section describes the numerical model developed in this research to determine the
stress intensity factor ranges along the crack front. The stress intensity factor ranges, along
with the crack closure models described in the previous section, enabled the computation
of the local fatigue driving force, which was used to obtain a steady-state crack front
shape. The steady-state crack front shape was selected as the one producing the minimum
deviation of AKe along the crack front. This evaluation needs to be completed for each
curve from the parametric set.

To reduce the computational overhead, we developed a simplified geometry by intro-
ducing adequate boundary conditions, capable of describing 3D effects near the crack front.
Section 3.1 describes the details of the numerical modelling, and Section 3.2 addresses the
boundary conditions considered in this paper. The last section, Section 3.3, is devoted to
the validation of the stress intensity factor values obtained with the proposed approach.

3.1. Finite Element Model Description

The typical finite element geometry, developed here to study a through-the-thickness
crack in an elastic plate, is shown in Figure 3. As can be seen, the rectangular cross-section
geometries were modelled to evaluate the stress and displacement fields near the crack tip.
The size of the finite element models is sufficient to avoid the effect of the finite boundaries
on the stress state. By taking advantage of the symmetry conditions (i.e., XY symmetry,
XZ symmetry, and YZ symmetry), only one-eighth of the crack problem was modelled.
The height of the FE models taken was approximately ten times larger than the plate
thicknesses. In accordance with the previous studies, this is sufficient to accurately describe
the 3D effects near the crack front [19,20].

Symmetric boundary conditions:
XY-plane, XZ-plane, YZ-plane

Crack front

L7
7
0..

... .
2% S
oo S SRS
ozggg@;;*aww"
L7
S

7z
A
RS

4
7124 ‘s”
ey
L

5

Y
N
™~
~ ‘&a
~ 6’ ffé@@
Q/f:(
61&‘ 4,
06:515'

Figure 3. Finite element mesh: (a) assembled model; (b) detail of the crack front; (c) detail of the spider web pattern.

The FE models corresponding to different values of a (Figure 1) were meshed with
linear 8-node hexahedral elements of type C3D8R. A reasonably uniform element grid with
a structured mesh was considered. A denser mesh, with a spider-web pattern (Figure 3c)
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was used near the crack front, where the stress gradients were expected to be maximum
(Figure 3b), consisting of 5 concentric rings centred at the crack tip with a radial discretisa-
tion of 10° (Figure 3c). Thirty nodes along the plate half-thickness (Figure 3b) were used to
define the crack front shape. The specimen was subjected to uniaxial loading applied at
the bottom surface (i.e., at the XZ-plane with a Y-coordinate equal to H/2). The assembled
mode is exhibited in Figure 3a. Further details about the modelling approach can be found
in papers published by the present authors [19,21].

The numerical simulations were carried out using Abaqus/CAE 2020 (© Dassault
Systémes, 2019), assuming a homogeneous, isotropic, and linear-elastic behaviour. The me-
chanical properties inserted into Abaqus/CAE 2020 to perform the numerical simulations
were the Young’'s modulus and the Poisson’s ratio of the tested materials (Table 1). The
displacement field far from the crack tip was calculated in accordance with the William’s
solution using MATLAB R2020b, and the obtained results were applied for the boundary
conditions. The 3D solutions of the J-integral were used to calculate the stress intensity
factor near the crack front. One layer of elements surrounding the crack front was used to
calculate the first contour integral. The additional layer of elements was used to compute
the subsequent contours. The different contour solutions were approximately coincident
after eight contours. The results from averaging contours five through eight was considered.
A similar strategy, either in terms of mesh framework or simulation analysis, was carried
out for all geometries and crack configurations studied in the present paper.

Table 1. Mechanical properties of the selected materials.

. Young’s . , . Fracture Exponent of
Material Modulus, E Poisson’s Ratio, v Toughness, K¢ Paris Law, m
6082-T6 74 GPa 0.33 20 MPa-m%? 3.456
PMMA 3.6 GPa 0.365 1.6 Pa-m%> 0.91

3.2. Boundary Conditions

The plane-stress displacements far from the crack tip were calculated in accordance
with William’s solution [22]:

1/2 8
un(r8) = () D ke o) 1)
1/2
uy(r,0) = (=) 1 el o)) 18)
Being:
eing I . N
£x(6) =cosz(k—1+251n 2> (19)
f;(a) = sini(k—i—l+2cos2 g) (20)

where r is the distance from the crack tip, 0 is the angle measured from the symmetry line,
K{° is the remotely applied Mode I stress intensity factor, and k is Kolosov’s constant for
plane stress and plane strain conditions. The plane stress k value was considered in the
boundary conditions, i.e.,

3—v

k=

1+v
where v is the Poisson’s ratio. Bakker [23] showed that a cracked plate under plane stress
undergoes a change to plane strain behaviour near the crack tip. He proved that the radial
position, where the plane stress to plane strain transition takes place, strongly depends
on the position in the thickness direction. The degree of plane strain is essentially zero at
distances from the tip greater than five times the thickness, even in the middle plane of the
plate [24].

(21)
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3.3. Validation Study

The numerical results obtained for the maximum stress intensity factor are presented
in Figure 4 as a function of the thickness for a Poisson’s ratio of 0.3. The classical results for
both the plane stress state and the plane strain state are also given in Figure 4. It is evident
from Figure 4 that the stress intensity factor changes with the thickness of the plate until
the thickness exceeds a critical value. In this particular problem, the results showed that
the critical thickness is 25 mm. Once the thickness exceeds the critical dimension, the stress
field in the vertex singularity region has a negligible impact on the behavior of the whole
structure. The stress intensity factor becomes relatively constant in the sufficiently thick
plate, and is equal to the value for plane strain conditions.

L 2
L 2
L 2
»o

—&— Curved Crack Front

= 21 —e— 2D Plane Stress
< —— 2D Plane Strain
[a¥
s Thickness (2h): 3 mm
"; 20 Poisson’s Ratio (v): 0.3
g Paris Law Exponent (m): 3.456
N Stress Ratio (R): 0.0
Fracture Toughness (Kyom): 20 MPa-m?S
19 [ee-0—o 'S
18
0 20 40 60 80 100

2h (mm)
Figure 4. The effect of the thickness on the maximum stress intensity factor.

4. Crack Front Shape Evaluation and Comparison with Experimental Studies

The proposed method for the evaluation of the steady-state crack front shapes was
compared against two independent experimental studies. The specimen geometries used
in the experimental tests are exhibited in Figure 5, and were made of 6082-T6 aluminium
alloy and polymethyl methacrylate (PMMA), separately. The main mechanical properties
of both materials are listed in Table 1. The former (Figure 5a) consisted of a standard
middle-crack tension specimen with a thickness of 3 mm [11,25]. The tests were conducted
under constant-amplitude axial loading using a stress ratio equal to 0.25. Figure 6a shows
an example of the typical fracture surfaces obtained in the tests. Fatigue cracks grew over a
sufficiently large distance from the initial notch to ensure the quasi-steady-state conditions
of propagation. The beach-marking technique was applied to mark the crack front at the
fracture surface.
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. 200 .
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(a) 50
, 220 ‘
e [ )
(b) 60
! _1

Figure 5. Specimen geometries used in the crack front shape evaluation: (a) 6082-T6 aluminium alloy
and (b) polymethyl methacrylate (PMMA). All dimensions are in mm.

EBIERS 3 T TR, T e "“?:s'\
: A AN O S Y

- — linijtial"noiclg' MR

N

(b)

40

Figure 6. The crack front shapes observed in the experiments for the: (a) 6082-T6 aluminium alloy reprinted with permission
from ref. [11], copyright 2021 Elsevier and (b) polymethyl methacrylate reprinted with permission from ref. [26], copyright
2021 Elsevier. Propagation direction is from left to right in case (a) and from bottom to top in case (b). All dimensions are in

millimetres.

Regarding the latter (Figure 5b), the specimen geometry was made of polymethyl
methacrylate. It had a rectangular cross-section (Figure 5b), with a thickness of 40 mm [26,27],
and an initial straight notch at the middle of the specimen. The tests were conducted
under four-point bending loading conditions using a stress ratio equal to 0. The crack front
shape was evaluated in situ using a high-resolution digital camera. As in the previous case,
fatigue cracks propagated over a sufficiently large distance from the initial notch to ensure
the quasi-steady state conditions of propagation. An example of the crack front shapes
observed in the experiments is exhibited in Figure 6b.

Figure 7a,b displays a comparison of the experimental crack front shapes and those
obtained with the proposed methods for the 6082-T6 aluminium alloy and PMMA, re-
spectively. Overall, the results showed that the equivalent-thickness method provides a
satisfactory approximation for the fatigue crack propagation under small yielding condi-
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=

-0.08

-0.16

-024

-0.32

tions. Moreover, the experimental results confirmed that the angle at which the crack front
intersects the free surface is greater than the proposed empirical equations in the sufficiently
plastic materials. We think that the careful combination of the hyperbolic and elliptical
functions might provide accurate crack front shape estimation in the presence of residual
stresses or large crack closure effects. The good agreement demonstrated in the previous
analysis confirmed the possibility of the accurate evaluation of stress intensity factors using
the proposed approach in materials controlled by 3D corner singularity effects.

X
h
-0.04
Thickness (2h): 3 mm Thickness (2h): 40 mm
Poisson’s ratio (v): 0.33 Poisson’s ratio (v): 0.365
Paris law exponent (m): 3.456 Paris law exponent (m): 0.91
Stressratio (R): 0.25 Stressratio (R): 0.0
Fracture toughness (K,,): 20 MPa-mo-5 -0.08 | Fracturetoughness (K,.): 1.6 Pa-mo:
-0.12
Present Study - Corner Singularity Method —— Present Study - Corner Singularity Method
Present Study - Equivalent Thickness Method —— Present Study - Equivalent Thickness Method
——— Experimental Data - Branco and Antunes, 2008 [11] —— Experimental Data - Heyder et al., 2005 [26]
-0.16
0.0 0.2 0.4 0.6 0.8 YA 0.0 0.2 0.4 0.6 0.8 YA
h h
(a) (b)

Figure 7. A comparison between the predicated crack shapes and experimental data for the specimens composed of:

(a) 6082-T6 aluminium alloy and (b) polymethyl methacrylate.

This methodology can also be applied to conduct parametric studies associated with
the main variables affecting the fatigue crack growth of through-the-thickness cracks.
A subject that can be analysed with the developed approach is the effect of the stress
ratio on crack closure values. Figure 8 plots the ratio of the opening stress intensity
factor (K,) to the maximum stress intensity factor (Kmax) along the crack front for both
materials. As shown, the plane stress curve represents the upper limit, while the plane
strain curve represents the lower limit. The values of K, /Kmnax are between two limiting
cases, and decrease with an increase in the stress ratio. In addition, at lower stress ratios,
the differences between the maximum and minimum values of K,/Kmax are higher for
PMMA and tend to be closer for the aluminium alloy.

Figure 9 plots the variation in the K, /Kmax ratio at the crack surface obtained from
the presented 3D FE simulations against previously published relationships based on
experimental tests that incorporated plasticity-induced crack closure. Notably, the results
of the presented procedure agree well with the outcomes of the experimental and theoretical
studies reported in the literature [1,16,27-29]. The variation between the presented method
and published data decreases with an increase in the R ratio, as the size of the reverse
plasticity zone (or monotonic plastic zone) becomes smaller in the fatigue crack growth
rates. These results provide further support to and validation of the numerical technique
outlined in this paper.
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Figure 8. The ratio of the opening stress intensity factor to the maximum stress intensity factor as a function of the R ratio
along the crack front: (a) 6082-T6 aluminium alloy; (b) polymethyl methacrylate.
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Figure 9. The ratio of the of the opening stress intensity factor to the maximum stress intensity factor as a function of the
R ratio along the crack front and past published functions: (a) 6082-T6 aluminium alloy; (b) polymethyl methacrylate.

5. Conclusions

In this paper, new numerical modelling tools capable of simulating the crack shape
development of through-the-thickness fatigue cracks in finite plates were presented. The
proposed approaches assume a pre-defined crack front shape, and include plasticity-
induced crack closure. The methodology was successfully tested for cracked rectangular
cross-section geometries when subjected to Mode I loading. The following conclusions can

be drawn:

1.  The maximum stress intensity factor becomes relatively constant in the sufficiently
thick plates and is equal to the value obtained for plane strain state conditions. The
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plane strain fatigue models (2D) may lead to inaccurate predictions when applied to
the analysis of fatigue crack growth of thin structural plates;

2. The proposed methodology leads to satisfactory crack front predictions, either for
ductile materials or brittle materials. Moreover, it is sensitive to the plate thickness,
enabling good results for both thin and thicker geometries. In addition, it is capable
of dealing with different stress ratios;

3. The opening stress intensity factor increases with increasing values of stress ratio,
maximum stress intensity factor, and distance from the centre of the crack. Predicted
values obtained by the proposed methodology are quite close to those found in the
literature for the same propagation conditions.

The comparison with experimental results is encouraging, and demonstrates the
validity of the underlying assumptions: (1) the crack front shape intersects the free plate
surface at the critical angle; ad (2) the local stress intensity factor can be considered as the
fatigue crack driving force, which leads to the formation of the crack front shape under
high cycling loading. The above assumptions might not be correct in the case of large
plastic effects near the crack tip. In this case, the plasticity-induced crack closure, which is
significantly different along the crack front, will be the one of the most influential factors
affecting the crack front shape.

Future work will be directed to the application of the proposed methodology to more
complex problems in terms of geometry, loading scenario, and crack shape configuration.
Lastly, the simplicity and speed of calculation of the proposed approach, compared to
the current numerical solutions used for the same purpose, make it quite attractive for
simulating the fatigue crack growth, in both practical applications and parametric studies.

Author Contributions: Conceptualization, B.Z. and A.K.; methodology, B.Z. and A.K,; software, B.Z;
validation, B.Z. and R.B.; formal analysis, B.Z. and R.B.; investigation, B.Z. and R.B.; data curation,
B.Z. and R.B.; writing—original draft preparation, B.Z.; writing—review and editing, B.Z., R.B. and
A K,; visualization, B.Z., A.K. and R.B.; supervision, A K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was sponsored by FEDER funds through the program COMPETE (Programa
Operacional Factores de Competitividade) and by national funds through FCT (Fundagao para a
Ciéncia e a Tecnologia) under the project UIDB/00285/202.

Data Availability Statement: The data presented in this study are available from the corresponding
author, upon reasonable request. The data are not publicly available due to ethical restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Elber, W. Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 1970, 2, 37-44. [CrossRef]

2. Vasudeven, A.K; Sadananda, K.; Louat, N. A review of crack closure, fatigue crack threshold and related phenomena. Mater. Sci.
Eng. A 1994, 188, 1-22. [CrossRef]

3. Budiansky, B.; Hutchinson, ].W. Analysis of closure in fatigue crack growth. ASME ]. Appl. Mech. 1978, 45, 267-276. [CrossRef]

4. Dugdale, D.S. Yielding of steel sheets containing slits. . Mech. Phys. Solids 1960, 8, 100-104. [CrossRef]

5. He, Z.; Kotousov, A.; Berto, F,; Branco, R. A brief review of three-dimensional effects near crack front. Phys. Mesomech. 2019, 19,
6-20. [CrossRef]

6. Kotousov, A.; Khanna, A.; Branco, R;; Jesus, A.; Correia, ].A. Review of current progress in 3D linear elastic fracture mechanics.
In Mechanical Fatigue of Metals, Structural Integrity; Springer: Cham, Switzerland, 2019; pp. 125-131. [CrossRef]

7. Nowell, D.; de Matos, PEP. The influence of the Poisson’s ratio and corner point singularities in three-dimensional plasticity-
induced fatigue crack closure: A numerical study. Int. |. Fatigue 2008, 30, 1930-1943. [CrossRef]

8.  Lebahn,].; Heyer, H.; Sander, M. Numerical stress intensity factor calculation in flawed round bars validated by crack propagation
tests. Eng. Fract. Mech. 2013, 108, 37. [CrossRef]

9. Camas, D.; Garcia-Manrique, J.; Antunes, F.V.; Gonzalez-Herrera, A. Three-dimensional fatigue crack closure numerical modelling:
Crack growth scheme. Theor. Appl. Fract. Mech. 2020, 108, 102623. [CrossRef]

10. Branco, R.; Antunes, F.V.; Costa, J.D. A review on 3D-FE adaptive remeshing techniques for crack growth modelling. Eng. Fract.

Mech. 2015, 141, 170-195. [CrossRef]


http://doi.org/10.1016/0013-7944(70)90028-7
http://doi.org/10.1016/0921-5093(94)90351-4
http://doi.org/10.1115/1.3424286
http://doi.org/10.1016/0022-5096(60)90013-2
http://doi.org/10.1134/S1029959916010021
http://doi.org/10.1007/978-3-030-13980-3_16
http://doi.org/10.1016/j.ijfatigue.2008.01.009
http://doi.org/10.1016/j.engfracmech.2013.04.013
http://doi.org/10.1016/j.tafmec.2020.102623
http://doi.org/10.1016/j.engfracmech.2015.05.023

Metals 2021, 11, 403 13 0f 13

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

Branco, R.; Antunes, F.V. Finite element modelling and analysis of crack shape evolution in Mode-I fatigue Middle Cracked
Tension specimens. Eng. Fract. Mech. 2008, 75, 3020-3037. [CrossRef]

Guo, W. Three-dimensional analyses of plastic constraint for through-thickness cracked bodies. Eng. Fract. Mech. 1999, 62,
383-407. [CrossRef]

Yu, P.; Guo, W. An equivalent thickness conception for evaluation of corner and surface fatigue crack closure. Eng. Fract. Mech.
2013, 99, 202. [CrossRef]

Codrington, J.; Kotousov, A. A crack closure model of fatigue crack growth in plates of finite thickness under small-scale yielding
conditions. Mech. Mater. 2009, 41, 165-173. [CrossRef]

He, Z.; Kotousov, A.; Branco, R. A simplified method for the evaluation of fatigue crack front shapes under mode I loading. Int. J.
Fract. 2014, 188, 203-211. [CrossRef]

Antunes, EV,; Chegini, A.G.; Correia, L.; Branco, R. Numerical study of contact forces for crack closure analysis. Int. ]. Solids
Struct. 2014, 51, 1330-1339. [CrossRef]

She, C.; Zhao, J.; Guo, W. Three-dimensional stress fields near notches and cracks. Int. J. Fract. 2008, 151, 151-160. [CrossRef]
Pook, L.P. Some implications of corner point singularities. Eng. Fract. Mech. 1994, 48, 367-378. [CrossRef]

Kotousov, A.; Lazzarin, P.; Berto, E; Pook, L.P. Three-dimensional stress states at crack tip induced by shear and anti-plane
loading. Eng. Fract. Mech. 2013, 108, 65-74. [CrossRef]

Nakamura, T.; Parks, D.M. Antisymmetrical 3-D stress field near the crack front of a thin elastic plate. Int. J. Solids Struct. 1989, 25,
1411-1426. [CrossRef]

Kotousov, A. Fracture in plates of finite thickness. Int. J. Solids Struct. 2007, 44, 8259-8273. [CrossRef]

Williams, M.L. On the stress distribution at the base of a stationary crack. J. Appl. Mech. 1957, 24, 109-114. [CrossRef]

Bakker, A. Three dimensional constraint effects on stress intensity distributions in plate geometries with through-thickness cracks.
Fatigue Fract. Eng. Mater. Struct. 1992, 15, 1051-1069. [CrossRef]

Levy, N.; Marcal, P.V,; Rice, ].R. Progress in three-dimensional elastic-plastic stress analysis for fracture mechanics. Nucl. Eng. Des.
1971, 17, 64-75. [CrossRef]

Borrego, L.F. Fatigue Crack Growth under Variable Amplitude Load in an AIMgSi Alloy. Ph.D. Thesis, University of Coimbra,
Coimbra, Portugal, 2001.

Heyder, M.; Kolk, K.; Kuhn, G. Numerical and experimental investigations of the influence of corner singularities on 3D fatigue
crack propagation. Eng. Fract. Mech. 2005, 72, 2095-2105. [CrossRef]

Heyder, M.; Kuhn, G. 3D fatigue crack propagation: Experimental studies. Int. ]. Fatigue 2006, 28, 627-634. [CrossRef]

Schjive, J. Some formulas for the crack opening stress level. Eng. Fract. Mech. 1981, 14, 461-465. [CrossRef]

Newman, J.C. A crack opening stress equation for fatigue crack growth. Int. J. Fatigue 1984, 24, R131-R135. [CrossRef]


http://doi.org/10.1016/j.engfracmech.2007.12.012
http://doi.org/10.1016/S0013-7944(98)00102-7
http://doi.org/10.1016/j.engfracmech.2012.12.013
http://doi.org/10.1016/j.mechmat.2008.10.002
http://doi.org/10.1007/s10704-014-9955-3
http://doi.org/10.1016/j.ijsolstr.2013.12.026
http://doi.org/10.1007/s10704-008-9247-x
http://doi.org/10.1016/0013-7944(94)90127-9
http://doi.org/10.1016/j.engfracmech.2013.04.010
http://doi.org/10.1016/0020-7683(89)90109-1
http://doi.org/10.1016/j.ijsolstr.2007.06.011
http://doi.org/10.1115/1.3640470
http://doi.org/10.1111/j.1460-2695.1992.tb00032.x
http://doi.org/10.1016/0029-5493(71)90040-9
http://doi.org/10.1016/j.engfracmech.2005.01.006
http://doi.org/10.1016/j.ijfatigue.2005.06.052
http://doi.org/10.1016/0013-7944(81)90034-5
http://doi.org/10.1007/BF00020751

Chapter 8

Conclusions and Future Work

145



146



8.1 Summary

Theoretical, numerical, and experimental studies in the fracture and fatigue fields
often highlight the significance of 3D stress states and 3D effects. However, the
current failure assessment procedures and design codes largely disregard the 3D
nature of the stress distribution near stress concentrators and cracks, and the 3D
nature of fatigue phenomena as discussed in the Introduction and Literature Review.
In addition, these procedures and codes usually utilise simplified crack front shapes
(e.g., straight or semi-circular) for evaluations of fatigue life and fracture. All these
simplifications and assumptions can have a significant effect on the accuracy of
theoretical predictions. At the same time, there is a general expectation in the
structural integrity and fracture community that consideration of and accounting for
3D effects will help to improve the accuracy of these theoretical predictions, as well

as contribute to our understanding of fracture and fatigue phenomena.

Despite the great progress made over the past two decades, obtaining exact 3D
solutions for crack problems is not possible in the near future, except for in very
simple cases, e.g., penny-shaped and elliptical cracks in infinite linear-elastic media.
Approximate analytical solutions have also been derived over the past fifty years and
have largely been focused on through-the-thickness cracks in linear elastic plates.
However, these cases represent a small portion of the practically important
situations. Numerical techniques (i.e., Finite Element method) can be useful to
analyse 3D geometries; however, there is no generally-accepted methodology that
can be applied to analyse 3D fatigue phenomena. Therefore, many 3D effects, such
as the effect of the crack front shape on fatigue crack growth and fatigue crack
closure, or the effect of the 3D vertex singularity on crack front shape evolution

remain poorly understood.

The primary objective of this research was to advance knowledge in the areas of 3D
Fracture Mechanics, which is a relatively new area in Solid Mechanics. This was
achieved by developing the new simplified semi-analytical methods for evaluation

of fatigue life in various engineering components with defects (cracks).
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The more realistic fatigue crack front shapes, as well as the effects of plasticity-
induced crack closure and the 3D corner singularity on front shape evolution were
investigated using these methods under steady-state conditions. The theoretical
results from the developed methods have been extensively validated against the

outcomes of past numerical and experimental studies.

There is no doubt that there are still a large number of significant gaps in our
knowledge in relation to the role of 3D effects in Fracture and Fatigue. Therefore,
this work can be considered as an initial step towards the development of 3D Fracture
Mechanics, which does not rely on various simplifications and assumptions. General
recommendations and suggestions for future research directions are briefly outlined

below.

8.2 Conclusions

The outcomes of the thesis can be broadly divided into four main categories. The
purpose of this section is to provide a brief summary of the major outcomes of this

thesis.

1. Understanding the influence of 3D corner singularity on fatigue crack front

shapes near a free surface

It has been shown that the critical angle concept is a valid hypothesis if the plastic
(or process) zone at the crack tip is much smaller than the size of the region controlled
by the 3D vertex singularity. The latter is related to the problem geometry. A new
parameter, i.e., the ratio of the 3D vertex singularity characteristic size to the radius
of the plastic zone, has been suggested to describe the applicability of the critical
angle concept to fatigue problems. Another important observation was the strong
effect of the problem geometry changes during fatigue crack propagation and

transient loading conditions on the validity of the critical angle concept.
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2. Development of simplified methods to describe crack front shapes of through-the-
thickness fatigue cracks

A number of analytical and semi-analytical methods based on different hypotheses
regarding fatigue crack front shape evolution have been investigated. The accuracy
of the developed methods has been evaluated against selected experimental studies.
In addition, it has been demonstrated that empirically-introduced crack closure
equations allow for a better matching of the theoretical predictions and experimental
data.

3. Development of simplified methods to describe the front shape evaluation of

surface-breaking fatigue cracks.

A new, effective, analytical method has been developed for the evaluation of fatigue
growth of surface flaws in structural components. This theoretical development
largely enables avoidance of time-consuming numerical simulations, without
compromising the accuracy of the final results. The analytical method and numerical

results collapse into a single curve describing the shape evolution of surface defects.

4. Development of simplified analytical models to investigate the effects of

plasticity-induced crack closure and 3D effects on front shapes of fatigue cracks

The effect of plasticity-induced crack closure was incorporated into the earlier
developed models. A new combined analytical-numerical methodology was
developed in order to evaluate crack front shapes for various geometries, including
through-the-thickness cracks in plates and surface cracks in round bars under quasi-
steady-state loading conditions. It was shown that the fatigue crack growth in such
components is very sensitive to the initial crack length and crack shape, the exponent
of the Paris law, the loading scenario, and is significantly affected by plasticity-

induced crack closure for the higher intensity of the applied loading.
Finally, the outcomes of the thesis are expected to help to improve the accuracy of

the theoretical predictions and, as a long-term outcome, reduce the risk of structural

failures and decrease the cost of inspections and maintenance procedures.
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8.3 Recommendations for Future Work

In the present study, the accuracy of the numerical techniques was validated against
limited experimental data, as well as the earlier, published 3D analytical solutions.
It is important to compare the crack front shape between both numerical and
experimental results for a wider range of the practical geometries in order to provide
further support for practical applications of the developed methods. Experimental
studies could include the examination of the crack front shape evolution and crack
growth rates for different materials, specimen geometry, and loading conditions.

The critical stress intensity factors (or fracture toughness) provide the most
important relationships between the critical crack size and the maximum allowable
stresses for brittle and quasi-brittle materials. These parameters are currently utilised
for assessing the acceptability of flaws in many fatigue and fracture evaluation
procedures across many industries and applications. The current industrial standards
and failure assessment codes assume that structural failure occurs when the stress
intensity factor or a combination of stress intensity factors in modes I, Il and IlI
exceed the critical value or fracture toughness. In reality, structural failure does not
happen simultaneously across the crack front. Further development of brittle fracture
criteria could introduce and incorporate a new parameter for consideration of the
most critical locations along the crack front into the assessment procedures. The
critical location could be dependent on the applied loading, crack and problem
geometries, etc. The incorporation of 3D effects into the brittle fracture initiation
criterion is expected to improve the accuracy and applicability of fracture toughness-

based criteria.
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Asymptotic Analysis of Out-of-plane Strain and Displacement

Fields at Angular Corners
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1. Introduction

The classical solutions of plane (2D) linear elasticity form the
framework of contemporary Linear Elastic Fracture Mechanics and
Notch Mechanics, and these are extensively utilised towards the
stress analysis and design of plate components (Carpinteri et al.,
2008). Analytical, numerical and experimental studies of plane
problems of elasticity over the past several decades have indicated
that the classical plane stress solutions accurately describe the
in-plane stress state in the interior domain of three-dimensional
plate-like structures (Rosakis and Ravi-Chandar, 1986; Nakamura
and Parks, 1988). However, in the vicinity of free boundaries, in-
terfaces, edges and corner (vertex) points, the stress state is es-
sentially three-dimensional, and the application of plane elasticity
solutions may lead to peculiar results. The region of dominance
of the three-dimensional (3D) stress state, sometimes referred as
the boundary layer (Yang and Freund, 1985), has a characteristic
length comparable to the plate thickness (Gregory and Wan, 1988).
Although small in comparison with the rest of the structure, the
region of 3D stress state dominance is generally the site of fail-
ure initiation. Hence, the accurate analysis of the localised three-
dimensional stress state is of great practical importance. Experi-
mental evidences collected over the past five decades demonstrate

* Corresponding author.
E-mail address: andrei.kotousov@adelaide.edu.au (A. Kotousov).

https://doi.org/10.1016/j.ijsolstr.2019.04.024
0020-7683/© 2019 Elsevier Ltd. All rights reserved.

that the three-dimensional stress states can play an important role
in fatigue and fracture phenomena (Aliha and Saghafi, 2013; Pook,
2013). As a result, three-dimensional considerations are being in-
corporated in advanced analytical and numerical models in an at-
tempt to explain the various experimental observations and ten-
dencies (Kotousov, 2010; He et al., 2016a).

The present work is concerned with the mathematical analysis
of the 3D stress state near sharp corners in plates of finite thick-
ness subjected to in-plane loading. A sharp corner geometry repre-
sents a classical example where the exact solution of the govern-
ing equations of the theory of plane elasticity, i.e. the well-known
Williams’ solution, leads to peculiar results, predicting infinite or
zero out-of-plane displacements at the tip (vertex) of the corner
for plane stress and plane strain states, respectively. However, the
experimental and numerical studies clearly indicate that the trans-
verse (out-of-plane) displacements as well as the transverse nor-
mal strain are finite and depend on the notch opening angle, elas-
tic constants as well as the applied loading (He et al., 2016b). The
investigation of the transverse field variables near a tip of a sharp
wedge represents a problem of practical interest. For example, the
direct experimental measurements of the out-of-plane surface dis-
placements near the sharp wedge can be related to the elastic con-
stants or to the stress field near the tip. This idea was recently
presented for the zero notch opening angle (or for a through-
the-thickness crack) (He and Kotousov, 2016; He et al., 2016b). In
these papers, a new experimental technique was suggested for the
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Nomenclature

(r, 9, 2) cylindrical coordinate system with origin at
the midpoint of the notch front (Fig. 1)

h half-thickness of plate (Fig. 1)

28 wedge angle (Fig. 1)

2a notch opening angle (Fig. 1)

E, v Young’s modulus and Poisson’s ratio of the
plate

K characteristic length-scale parameter, ~ h~1

Orr, 6¢¢,, fr¢, plane stress solution for in-plane stress com-
ponents

w out-of-plane displacement function

Wp plane-stress solution for the out-of-plane dis-
placement function

Wh decaying solution for the out-of-plane dis-
placement function

u; out-of-plane displacement

Tiz, Tgpz out-of-plane shear stress components

Ay Ao eigenvalues of Williams' plane problem for
symmetric and anti-symmetric loadings, re-
spectively

€1, &3 exponent values of the in-plane stress com-
ponents for in-plane symmetric and anti-
symmetric loadings, respectively

K, Ky remotely-applied Mode I and Mode II stress
intensity factors, respectively

A, Ay constants relating the in-plane stress compo-
nents to the remotely-applied stress intensity
factors

Xo eigenvalue of the out-of-plane singular mode

Ko out-of-plane mode (O-mode) stress intensity
factor

" Kontorovich-Lebedev transform variable

Wh Kontorovich-Lebedev transform of the decay-
ing solution, wy,

Ky(z) modified Bessel function of second kind

['(z) gamma function

8(z) generalised Dirac delta function

oF1(a, b; ¢; z) Gauss Hypergeometric function

evaluation of stress intensity factors based on the single measure-
ment of the out-of-plane surface displacement near the tip of a
crack.

An exact solution of the problem under consideration in not
amenable within the framework of three-dimensional linear elas-
ticity theory (Yoshibash et al., 2004). A compromise between com-
plexity and comprehension can be achieved, for example, with the
first order plate theory suggested by Kane and Mindlin (1956). This
theory was originally applied to the analysis of high-frequency ex-
tensional vibrations in moderately thick plates. It is based on the
kinematic assumption that the transverse normal strain is constant
across the plate thickness and all stress and strain components are
functions of the in-plane coordinates only. Due to this assumption
the theory retains the simplicity of a 2D formulation for the analy-
sis of plane problems of elasticity, which are still 3D in nature. The
results obtained within this theory normally demonstrate a good
agreement with both experimental and numerical results, and are
also free from peculiarities associated with the classical 2D sin-
gular solutions (Jin and Batra, 1997; Kotousov, 2004; Zappalorto,
2017).

The paper is organised as follows: in the next section, a brief
summary of the governing equation is provided. Next, the ap-
proach for solving the governing differential equation for a sharp

ZAL

Fig. 1. Plate geometry and coordinate system.

corner (or wedge) subjected to in-plane mixed mode loading is
presented. Then, the outcomes of the analytical modelling are
compared against previous analytical and numerical results. In
the conclusion, the future work and possible applications of the
present theoretical results are discussed.

2. Basic equations

Consider a system of cylindrical polar coordinates for a plate
of thickness 2 h with the z axis perpendicular to the faces of the
plate as illustrated in Fig. 1. Take the origin of the coordinate sys-
tem to be located at the mid-plane of the plate at the tip of the
sharp wedge. Then, in accordance with the kinematic assumption
of the first-order plate theory (Yang and Freund, 1985) and the
method suggested by Kotousov et al. (2017), the out-of-plane dis-
placement function, w, which also equals the average out-of-plane
normal strain, can be written as

2

V2w — k2w = %(6”-1-6@), K% = w (1)
where v is Poisson’s ratio of the material. The out-of-plane dis-
placements, u,(r, ¢, z)=w(r, ¢)z/h, in this theory vary linearly
with the distance from the mid-plane (z=0). The governing equa-
tions of the first-order plate theory as well as the derivation of
Eq. (1) are detailed in a previous publication (Kotousov et al., 2017)
and will not be repeated here.

In the last equation, the stress components & and 6¢¢ are
obtained from the solution of the corresponding 2D plane stress
problem. For an angular sector with solid angle 28=qn ¢ [,
2] (Fig. 1), Williams’ (1952) plane stress solution for the lead-
ing singular term yields the sum of in-plane normal stresses under
mixed-mode loading as

Gir + Opp = AT COS €10 + A1 sin €29, (2)

where g;=A;—1 and A; are the eigenvalues of the following char-
acteristic equations

sin (Aqm) + A1sin(qmw) =0, sin(A;qm) — Ay sin(qm) = 0.

3)

Note that the solution of the characteristic Eq. (3) yields A, >

1 for 28 < 257.4°, ie, a non-singular behaviour of the in-plane

stress field at the notch-tip under Mode II loading. The constants

A; are related to the notch stress intensity factors, which can be

introduced in several ways (Ramesh and Hills, 2016); and one of

those definitions which will be utilised in the current study is
(Lazzarin and Tovo, 1998)

A 4 Ki
YT A A+ )+ (A =A1)
4 K
Ay . (4)

TV A=)+ 20+ A)
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_osin[(A=ADB] .
Xi——m, 1—1,2. (5)

Since &;; and 6¢¢ are obtained from the corresponding two-

dimensional plane problem, i.e. V2 (G, +64¢) = 0, the solution of
the non-homogenous governing Eq. (1) can be rewritten as

vh . .
Wp = —T(Urr+0'¢¢). (6)
In (6), wp represents the particular solution corresponding to the
plane stress solution and wj, corresponds to the solution of the
homogeneous modified Helmholtz equation:

VZWh - KZWh =0. (7)

For—0.5 < ¢; < 0, the particular solution wy o r€i becomes sin-
gular at r=0. However, based on strain energy considerations, the
out-of-plane displacement function, w(r, ¢), must remain finite ev-
erywhere, including the notch tip. A corrective solution for the
out-of-plane displacement function which satisfies the homoge-
nous governing Eq. (7) and also has the same asymptotic behaviour
as wp at r— 0 can be constructed using the modified Bessel func-
tions, K¢, (k7). The sum of the particular and corrective solutions is
well defined at the notch-tip. For &; > 0, which is the case for solid
angle 28 < 257.4° under Mode II loading, the particular solution
Wp o r€i remains bounded at the notch-tip, (r=0), i.e. a corrective
solution utilizing modified Bessel functions is not required. The in-
termediate solution, w*, can be written for Mode I and Mode II
loading as follows:

W = Wp + Wy,

h, (2 . 2\“
w* = —‘%A1 <; sin (61JT)<;) I'(1+€)Ke, (k1) + fel) cos (€19),
(8a)
h 2 . 2)\€ .
w* = —%Az(; sin (62ﬂ)<;) 21—‘(1 + €2)Ke, (k1) + rfz) sin (€2¢0), €2 < 0,
(8b)
vh .
W= _fAerZ sin (€2¢), € > 0. (8¢)

The solution for the out-of-plane displacement function corre-
sponding to higher order terms in William’s series solution can
be obtained in a similar manner, but not discussed here. The
transverse (out-of-plane) shear stress must satisfy the traction-free
boundary conditions along the wedge faces. In terms of the out-of-
plane displacement function, w, these boundary conditions can be
written as (Kotousov et al., 2017):

ow
39 |sss " ©

The intermediate solution, w*(r, ¢») does not satisfy Eq. (9), ex-
cept for the special case of a Mode II semi-infinite crack, i.e. A; =0,
B=m, and £, =-0.5. Hence, a further corrective solution to the
homogenous governing Eq. (7) must be obtained and added to the
intermediate solution, w*, such that

owy | __dw
99 |4_sp 9P |4_sp

Taking the power series expansion of the Bessel functions K, («T),
the boundary condition (10) for the case of Mode I and Mode II
loadings can be expressed as

(10)

2n—¢€;
ow,| _ wh 2\ = (%)
., _EA161(<K> F(]+€‘)<nnzor”r(‘"1‘el+”
P 2n+€;
_ i L sin (€18) (11a)
S nIl(n+e +1) ’

Iwi Vh e (Z)GZF(HG) i (g)Z“’Q
e =Ml |- 2 —_— %
R0} ptp E K —nll(n-e+1)
s (ﬂ)2n+e2
2
- —_ cos (e28), € <0, 11b
;ml‘(n+ez+1))) (€B). € < (11b)
% = L;Azézréz Cos (Ezﬂ), € > 0. (11C)
¢=+B

Next, we develop the method and will derive analytical expres-
sions for wy, which satisfy the homogeneous modified Helmholtz
Eq. (7) as well as boundary conditions (11a)-(11c).

3. The method for the evaluation of out-of-plane
displacements

The symmetric and anti-symmetric boundary conditions (11)
are of the form

aa—";’)“ — Gy sin (1 B), (12a)
g=+p

% — Cyr™ cos (6,8). (12b)
? lposp

The solution to the governing Eq. (7) subject to boundary con-
ditions (12) can be readily obtained in terms of the Kontorovich-
Lebedev transform and its inverse, which are defined as follows
(Yakubovich, 2003):

iy (10.9) = [ it 4Kk (13)

W, §) = 25 [ Gu 9K (erpusinh (rapdu. (14

Applying the transform (13) to the governing Eq. (7) and boundary
conditions (12a)-(12b) yields

32W,,

W — /szh = 0, (15)
AWy _ Cisin(e8)I'(m) [ cos (ut) dt (16a)
¢ oip Km o (cosht)™

Wy, _ Cycos (628)T(m) [ cos (ut) (16b)
¢ ot Kkm o (cosht)™

The general solution to the ordinary differential Eq. (15) can be
obtained as

Wy, = ¢1(p) cosh (ug) + ¢z (1) sinh (). (17)

Along the corner faces,

IW .
Gg| = HeGnsinh (uf) +ue(u)cosh (up).  (18)
¢==p
Comparing coefficients in Eq. (18) and (16a)-(16b) yields
_ GI'(m)sin(e;8) [ cos (ut)
C1 (/'L) - Km//L sinh (//L,B) o (COSh t)m ’ (193)
() = C.I'(m) cos (628) [ cos (ut) (19b)

kmpcosh(uB) Jo (cosht)™

For the boundary conditions (11a)-(11c), the functions c;(x) and
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cp(u) can be obtained as

vh 2\ sin (€1 8)
a = -Faa(2) ra ) ah (1B
2 I'n-€)I2n—¢€;) < I'@n+e€)I2n+¢€)
X(g nIT(n— € +1)220- _gnlr‘(n-&—q +1)22n+el>
(20a)
_vh 2\ cos (€28)
C(pn) = fAzéz(E> ra +€2)m
> '2n—e)I(2n —€y) > I'2Cn+€)I(2n+€3)
X(z_; nIT(n— e, + 1)220< _g nlr(n+ez+1)22n+ez>
(20b)
() = e, D _BEP) )0 0o

k€ pcosh(up)
where the integral

% cos (ut) 22 /m ip m  iu
I(m) = dt = '=-<-\r{=+*%,
(m) /0 (coshp™ ~ T(m) \2 2 272

m > 0, (21)

and it converges for m > 0. The infinite series in Eqgs. (20a) and
(20b) can be simplified, as shown in Appendix A.

4. Asymptotic results

From the results obtained in previous sections, the solution for
the out-of-plane displacement, w(r, ¢») can be written as

W(r, @) = W*(r, @) + Wi (T, @), (22)

where the intermediate solution, w*(r, ¢), is given by Eq. (8a) for
Mode I and by Egs. (8b), (8c) for Mode II loadings, respectively.
The corresponding homogenous solutions, wy(r,¢) are obtained by
applying the inverse transform (14) to Eq. (17), with functions c;
and ¢, given by Egs. (20a)-(20c).

Utilising the equality (A4), the solution for wy(r,¢) correspond-
ing to Mode I loading can be obtained as

wy(r.¢) = —F 5H(2) sincep) [ ( “)
23)

r €1 +ip cosh(ud))smh(nu)K
x 2 sinh (uf)

Similarly, for Mode II loading, the solution for arbitrary notch
angle can be obtained as

h €
wir.¢) = £ 322 (2) “cos(ep) [ ( ‘“)

r €3 +ip \ sinh (u¢) sinh (7 )
. 2 cosh (up)

The above expression is valid for both cases of ¢ < 0 and &, > 0.

The integrals in Eqgs. (23)-(24) converge absolutely under the
condition |¢| < B, which can be verified by applying the Stir-
ling asymptotic formula for the gamma function at infinity (Erdélyi
et al,, 1953, Vol. I) and the corresponding behaviour of the modi-
fied Bessel function with respect to the index (Erdélyi et al., 1953,
Vol. II; Yakubovich and Luchko, 1994). Although these integrals can
be evaluated numerically, analytical asymptotic results can be ob-
tained near the notch tip, i.e. r— 0 and will be presented in the
next section.

I CayleI7a

(24)

Ki, (kr)dp.

4.1. Mode I loading

At the notch tip, i.e. r=0, the intermediate solution w*(r, ¢)
limits to zero, hence, the out-of-plane displacement function is
equal to the homogenous solution, i.e. w(r=0, ¢)=w,(r=0, ¢).
The asymptotic Eq. (C6) derived in Appendix C can be utilised to
obtain wy, at the wedge tip as follows:

lim wy (r. ¢) = lim w[cr (1) cosh () + ¢z (i) sinh (pegp)]
= lim p?cq (). (25)
n—0

As expected from the anti-symmetry of Mode II loading,
Eq. (25) suggests that the out-of-plane displacement at the notch
tip is entirely due to Mode I loading. Substituting Eq. (20a) into
Eq. (25) and recalling the equality (A4) yields

) e lr(3)]

Note that there is no dependence of the above asymptotic value
of the displacement function on the angular position, ¢. This out-
come is in agreement with experimental observations and previous
Finite Element modelling results obtained by He et al. (2016a) as
well as other researchers.

It is also of interest to obtain asymptotic results for the gradi-
ent of the out-of-plane displacement, i.e. dw/dr at the notch-tip.
The asymptotic Eq. (C7) derived in Appendix C for the displace-
ment gradient is only valid if the functions c;(u)usinh () and
Cy(u)usinh (7t ) are analytic along the imaginary axis. Inspection
of Eqs. (20a) and (20b) suggests that this condition is satisfied only
for the trivial case of a half-plane, i.e. 8 =m/2, and for a crack sub-
jected to Mode I loading, i.e. 8=0, A, =0. The latter case is of
practical interest to a wide range of problems in fracture mechan-
ics, hence, the asymptotic result for the out-of-plane displacement
gradient is presented below. Since w(r, ¢)=w*(r, ¢)+ wy(r,¢),

lim ow(r, ¢) —lim 8w*(r ¢) 3Wh(r~¢).
d or

r—0 r r—0 raO

= K;,/2/m in Eq. (8a) and differenti-

w(r — 0) =

(27)

Substituting £; =—0.5 and A4
ating with respect to r yields

. Owx(r,f)  vhK 5, 1 0]
121(} T K 27_[Krcos 5 ) (28)

Separating the first term, corresponding to n=0 from Eq. (20a) and
applying Eq. (C7) yields the derivative of the homogenous solu-

tion,
th(l 320 2 [~ (1 iu 1 i
EWW/()FZ_TFZ’L?
% (Kiy1 (k1) + Kipi_1 (k1)) cosh (ugp)dp

(TR ST ]
(Z n!T (n+3) 2 nil (n+3) ) d)}

n=1 n=1

i 2Wn (. )
r—0 3r

(29)
4.2. Mode II loading

Although Mode II loading results in zero out-of-plane displace-
ment at the notch tip, it is well known that in-plane shear loading
generates a singular transverse shear stress state at the notch tip
for non-zero Poisson’s ratio (Kotousov and Lew, 2006; Kotousov,
2007). The fracture mode corresponding to the singular transverse
shear stress state is referred to as the out-of-plane singular mode
or coupled local mode. In Fig. 2a, this singular mode is visu-
alised for a plate containing a through-thickness crack, which rep-
resents the limiting case of a V-shaped notch. The characteristic
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(a) Remote Mode Il loading

1.2 Non-singular stress

N

08 - Singular stress

Ao

102.6°

0 30 60 90 120 150 180

(b) 2a (degrees)

Fig. 2. (a) Exaggerated displacement corresponding to out-of-plane singular mode at a crack tip subjected to remote shear, (b) Eigenvalues of characteristic Eqs. (3) and (30),

corresponding to the in-plane and out-of-plane singular modes, respectively.

equation for this coupled mode can be obtained as (Kotousov and
Lew, 2006)

cos (LofB) =0, (30)

whose eigenvalue can be easily obtained as Aqg=m/28. As with
the in-plane modes, the out-of-plane mode will produce infinite
stresses at the notch-tip for 0.5 < Ag < 1, corresponding to 7w <
2B < 2m. In this instance, the out-of-plane shear stress compo-
nents, trz, Ty, ~ r*o~1 and the out-of-plane displacement compo-
nent, u; ~ r*o near the notch-tip (Kotousov, 2007). Fig. 2b shows
the dependence of the eigenvalues Aq and A, upon the wedge an-
gle. The most interesting observation is that for notch opening an-
gles 2o > 102.6° (solid angles 28 < 257.4°), when the in-plane
stress singularity disappears, the coupled out-of-plane singularity
still exists. It means that the presence of singular stress state de-
termines the failure conditions for re-entrant corners regardless of
the opening angle. This is contrary to many past studies, which
analysed failure at sharp corners loaded in pure mode II using
plane theory of elasticity. Although the analysis of the out-of-plane
mode has been the subject of several 3D Finite Element studies
(see for example, references within Kotousov, 2010), no analytical
solutions exist to support and validate these studies.

Under Mode II loading, the asymptotic behaviour of the func-
tion wy(r,¢p) given by Eq. (24) can be obtained by virtue of the
representation of this solution in terms of the series of Fox’s H-
functions (Prudnikov et al. 1986, Vol III). In this paper, we omit the
details and simply state the main term of this expansion, which
gives the asymptotic behaviour of the solution wy(r,¢) when r— 0.
Precisely, we obtain for 28 > 257.4°

Wi 0.9) = 822 (2)  cos (o)

F(S2M(52) iy,
X|:,3F(1+)~0)<2> o sin (Ao¢))

2TI'a 2\ .
+5F§171—Z;<E> sec (€2 8)r 2 sin (62¢)i|,

(31)
under the following conditions

|#] < B,
(2m+ 1))»0 —€) # 2n,

%5)»051, -1 <€ <0,
m, n € No. (32)

Via the same method, we obtain for 28 < 257.4°

vh Ayep (2

Wh(r— 0,¢) = T3 E) 2cos (e28)

(%)AO 0 sin (Ao@)

Jpicaiies

Br'(1+Ao)

€2

+ z(%)iéz sec (63 8)r sin (62¢):|, (33)

under the following conditions

¢l <B, €>0, (34)
or

|| =B, %5)»051, 0<€2<%, (2m+ 1)Ao — € # 2n,
m, n € Np. (35)

In Fig. 3, the asymptotic solutions given by Eqs. (31) and
(33) are compared against the exact solutions given by Eq. (24).
The figures are plotted in terms of the following dimensionless
variables

—6
Wh = Xié(%) sec(eB), T= % (36)
The exact solution is obtained by numerically evaluating
Eq. (24) and converges to the asymptotic solutions near r— 0,
for both &, < 0 (Fig. 3a) and &, > 0 (Fig. 3b). The agreement
validates the correctness of the obtained asymptotic solutions. The
difference between the exact and asymptotic solutions is less than
0.1% for r/2h < 1073,

The asymptotic behaviour of the out-of-plane displacement
function w(r, ¢), defined by Eq. (22), can be obtained by adding
Egs. (8b) and (31) for &5 < 0 and by adding Egs. (8c) and (33) for
&, > 0. In both cases, we obtain

hA 2 € r €2—Ao I €+Aho
w(r— 0,¢) = UTZTGZ(E) cos (ezﬂ)W

X (%)M’r*o sin (Aogb). (37)

For the trivial case of a semi-infinite crack subjected to Mode
Il loading, i.e. B =, it must be remembered that the intermedi-
ate solution w*(r, ¢) given by Eq. (8b) automatically satisfied the
boundary condition (9), hence, wy(r,¢)=0. Therefore, the asymp-
totic solution for the special case of a semi-infinite crack cannot
be recovered by setting 8 = in Eq. (37). The latter must be found
directly from the analysis of Eq. (8b). This will be described later
in this paper.

Utilising the kinematic assumption of the first order plate the-
ory, i.e. u;=w(z/h), together with Hooke’s law and the strain-
displacement relationship, the transverse shear stress can be
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— Eq. (29
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Fig 3. Comparison of the asymptotic and exact solutions for the dimensionless function wy, (r, ¢) for notch opening angles (a) 2o =60° (¢, < 0), and (b) 2o =120° (&, > 0).

defined as

E 10wz
Tp,(0LP) = ———— ().
92(1 ) 20+v)r dg (h)
We define the out-of-plane mode stress intensity factor corre-
sponding to the singular transverse shear stress state as follows:

(38)

T
28
For the special case of a semi-infinite crack, i.e. 8=, the above
equation yields the well-known definition of the Mode III stress
intensity factor. However, there are two main differences between
these two singular modes. The out-of-plane singular mode (re-
ferred here as O-mode) is a local mode coupled to the remotely
applied Mode II, with a symmetric distribution about the mid-
plane and a strong dependence on the Poisson’s ratio, v. In con-
trast, Mode III is an independent failure mode associated with anti-
plane loading, and it is independent of the Poisson’s ratio. Substi-
tuting Eq. (38) into Eq. (39) and utilising the asymptotic solution
given by Eq. (37) yields

Ko — Z\|,(ha=no)
Ky —F(VHB)(H)h )

where A, and Ay are the eigenvalues of the characteristic
Egs. (3) and (30), respectively. The constant F is derived as fol-

Ko= lim (20) 74 (1, $)2rr) o Ap = (39)
=0,1—

(40)

lows:

Ao—€
b = Y (VS0 e
w, )_1+v 2 2

A 1-%o F(GZEAO)F(GZEAO)
X(I(H> 05 (@R gL a0
(41)

where the constant A, is defined by Eq. (4).

Eq. (40) demonstrates a scale effect associated with the plate
thickness. As A, — Ag is always positive, see Fig. 2b, the intensity of
the out-of-plane mode, Kq grows boundlessly with an increase of
the plate thickness. It means that thicker plates weakened by sharp
corners and subjected to the same intensity of mode I or mixed
mode loading are more susceptible to fracture as the intensity of
the out-of-plane mode increases boundlessly. This leads to an in-
teresting conclusion that sufficiently thick plates with sharp angu-
lar corners have no strength in shear. The same conclusion was
derived based on dimensionless considerations in Kotousov (2010),
which was later validated with 3D FE modelling.

5. Semi-infinite crack: comparison against previous solutions

The special case of the semi-infinite through-thickness crack
represents an important idealisation relevant to many practical sit-
uations, i.e. when the crack length is significantly greater than
the plate thickness. It has been previously investigated using both
analytical and numerical methods. The purpose of this section is
to compare the analytical solution obtained in the present work
against the previously-obtained solutions for the out-of-plane dis-
placement near the tip of the semi-infinite crack. Previous analyt-
ical solutions by Codrington et al. (2008) for Mode I loading and
Kotousov (2007) for Mode II loading will be utilised for compari-
son, since these studies utilise the same modelling assumptions as
the present work, i.e. these were also obtained within the frame-
work of the first order plate theory. The Finite Element modelling
results are sourced from He et al. (2016a) for Mode I loading, and
He et al. (2016b) for Mode II loading, respectively.

5.1. Mode I loading

In Fig. 4, the obtained solution for the out-of-plane displace-
ment function under Mode I loading is plotted along the line
¢ =0 and compared against the solution obtained by Codrington
et al. (2008). The solutions obtained using both methods agree well

Mode I loading

Experimental results were
(v =0.35)

obtained for finite geometry

w(r, ¢ = 0)

------- Plane stress solution

Present Solution
— — —DDT (Codrington et al. 2008)
/! — - — FE results (He et al. 2016a)

J O Hxperimental results (He et al. 2016a)
_2 1 1 1 1
0 0.2 0.4 0.6 0.8 1

r/2h

vKl\/H
%
R

Fig. 4. Dependence of the dimensionless out-of-plane displacement function on the
normalised distance from the crack-tip along the line ¢ =0 and Mode I loading.
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across the entire range of the normalised parameter r/2h, with a
maximum discrepancy of 3% as r/2h — 0. The small discrepancy is
due to a simplification adopted in the governing Eq. (1), wherein
the in-plane stress resultants are approximated by the respective
components of the 2D plane stress solution (Kotousov et al., 2017).
It is worth pointing out that the analytical solution obtained in the
present work possesses two distinct advantages over the previous
analytical solution, namely (1) the obtained solution is more gen-
eral, i.e. applicable for both crack and notch geometries, and (2)
the obtained solution can be evaluated more readily, i.e. from a
closed-form expression. Nevertheless, the previous solution, which
was obtained using the Distributed Dislocation Technique (DDT), is
useful in situations where the crack length is comparable to the
plate thickness.

The Finite Element simulation results and experimental mea-
surement using Digital Image Correlation from He et al. (2016a) are
also superimposed on Fig. 4. The numerical and analytical solutions
converge to the plane stress (2D) solution at distances greater than
one plate thickness, i.e. r/2h > 1. Both solutions predict that the
out-of-plane displacement function tends to a constant value as
r— 0, although the predictions differ by ~30% for v =0.35. The dis-
crepancy between the analytical and numerical predictions arises
due to the underlying kinematical assumption of the first order
plate theory regarding the uniformity of the transverse stresses
and strains across the plate thickness, and more importantly, due
to the effect of the corner (3D) singularity. It is well known that
the stress singularity changes its behaviour at the vertex point,
where the notch front intersects the free surface. Instead of the
classical inverse square root singularity, at this point a new type
of singularity appears, the strength of which depends on the Pois-
son’s ratio (BaZant and Estenssoro, 1979; Benthem, 1977). This 3D
singular effect dominates at distances of approximately 0.1 h from
the vertex in the radial direction (He et al., 2016b; He et al., 2015;
Pook, 2013). The first order plate theory is not capable to capture
this 3D effect, which is expected to be largely responsible for the
difference between the results, specifically, in the near-surface re-
gion. From further analysis it will be demonstrated that beyond
this region affected by the 3D corner singularity the agreement is
good, see Fig. 9 ahead. The discrepancies between the theoretical
and the experimental results far from the crack tip are due to the
finite geometry of the test specimen and different boundary condi-
tions than those used in the FE and the present analytical studies.

5.2. Mode II loading

Fig. 5 provides a similar comparison between the present and
previous solutions for the case of Mode II loading. In this figure,
the obtained solution for the out-of-plane displacement function
under Mode II loading is plotted along the line ¢ = /2. For com-
parison, the figure also includes the numerical results and experi-
mental measurements obtained by He et al. (2016b). The analytical
and numerical solutions are qualitatively similar, i.e. both solutions
tend to zero at the crack tip (r=0) and converge to the plane stress
solution at distances greater than the plate thickness, i.e. r/2h >
1. The discrepancy between the analytical and numerical solutions
can be attributed to the same factors as discussed previously for
the case of Mode I loading.

The solution obtained in the present work can also be utilised
to evaluate the strength of the coupled (local) out-of-plane mode
for a through-thickness crack subjected to in-plane shear loading.
From previously obtained results, the out-of-plane singular mode
is described by the conventional inverse square root singularity,
same as the in-plane mode II (Kotousov and Lew, 2006). The solu-
tion for the out-of-plane displacement function w(r, ¢) for a semi-
infinite crack subjected to Mode II loading can be obtained using

2 T
i Mode Il loading
L (v=0.35)
D L5 "‘. ------- Plane stress solution
3 \
I \‘\\ Present solution
< — - — FE results (He et al. 2016b)
s 1t .
§I> \\ Experimental results (He et al. 2016b)
= .

Expcrimental results were
obtained [or (inite geometry
1 1

0.4 0.6 0.8 1
r/2h

Fig. 5. Dependence of the dimensionless out-of-plane displacement function on the
normalised distance from the crack-tip along the line ¢ = /2 and Mode II loading.

Eq. (8b) and recalling the identity Ky, (x) = e™*,/7/2x.

w(r, @) = I(nth\/Z(l — e””) sin <(§> (42)

Substituting Eq. (42) into Eq. (38) yields the transverse shear stress
distribution

VKH h 2 —kr ¢ Z
Ty (I, P) = 4(1-|—v)r\/;(1 —e™*") cos (2> (H) (43)

The out-of-plane mode stress intensity factor can be obtained by
substituting 7,4, given by Eq. (38) and Ao =0.5 into Eq. (39) as fol-
lows:

o 12 _ 3 : Z
Ko = qbzl(l],r&0 Ty, (1, ) (271) /% = U(M> K"(H) (44)

In Fig. 6a, the results obtained using Eq. (44) are compared
against the analytical results obtained by Kotousov (2007) for a
long crack (h/fa= 0.01, where h is the half-thickness of the plate
and a is the half-length of the crack). The analytical results ob-
tained using both methods show good correspondence, with a
maximum difference of ~4% for v=0.5. As discussed previously,
the slight discrepancy is due to a simplification adopted in the
governing Eq. (1), wherein the in-plane stress resultants are ap-
proximated by the respective components of the 2D plane stress
solution (Kotousov et al., 2017). In Fig. 6b, the analytical results are
compared against the numerical results obtained by Harding et al.
(2010) and Nakamura and Parks (1989). The analytical and numer-
ical results correlate well, and provide the same tendencies, i.e. the
intensity of the out-of-plane coupled mode increases monotoni-
cally with increasing Poisson’s ratio and increasing distance from
the mid-plane of the plate. Due to the underlying kinematic as-
sumption of uniform transverse normal strain, the analytical solu-
tion obtained within the first order plate theory predicts a linear
variation of the out-of-plane mode stress intensity factor along the
crack front. Close to the mid-plane of the plate, this linear trend
is also observed in the Finite Element modelling results. The eval-
uation of the stress intensity factor at the vertex point z/h=1, i.e.
at the intersection of the crack front and the free surface is quite
challenging even using FE models, as evident from the discrepancy
in the results obtained by Nakamura and Parks (1989) and Harding
et al. (2010). Close to the free surface, i.e. z/h > 0.9, the distri-
bution of the out-of-plane mode stress intensity factor is strongly
affected by the 3D corner or vertex singularity.
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Near surface region, z/h = 0.9
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Fig. 6. Dependence of the intensity of the out-of-plane coupled mode, K, on the Poisson’s ratio, v, and the normalised position along the crack front, z/h.

6. Comparison against finite element results for re-entrant
corners

In this section, the asymptotic solutions obtained in
Section 4 are compared against results obtained using the Fi-
nite Element method for both Mode I and Mode II loading for
several re-entrant corner angles. The comparative evaluation serves
two purposes, namely (1) validation of the analytical approach
and asymptotic analysis, and (2) investigation of the capabilities
and limitations of the underlying framework of the first order
plate theory. For the case of Mode I loading, new finite element
modelling results are obtained, whereas for Mode II loading,
previously reported results by Harding et al. (2010) are utilised.

6.1. Mode I loading

The Finite Element analysis was conducted using ANSYS Me-
chanical APDL and the model geometry and mesh details are pro-
vided in Fig. 7. The model comprises of a circular sector with ra-
dius ten times larger than the plate thickness, which, in accordance
with the numerous previous studies, is sufficient to guarantee

Mid-plane (symmetry
boundary condition)

Free surfaces

Fig. 7. (a) Finite Element model geometry and boundary conditions (only the region ab
the sharp corner.

that the truncated geometry does not affect the three-dimensional
stress and displacement fields near the notch tip front (He et al.,
2016a; Nakamura and Parks, 1988). The boundary displacements
on the outer radius of the circular sector, which lies outside the
region of three dimensional effects, are prescribed in accordance
with Williams’ series expansion solution for the plane stress state
in the vicinity of a sharp notch. The asymptotic solution for the
displacement field corresponding to the leading term of the ex-
pansion are

Al
Uy = %%[(K —Ar)cos (1 —A1)e — x1(1—Aq)cos (1+21q)9].
(45a)
= AU A sin (1= A 4 (1 — Anysin(1 4 el
o = 8L 7 1 1 X1 1 1)P]

(45b)

where r and ¢ are defined in Fig. 7a. The boundary displace-
ment is constant along the plate thickness and can be obtained in
Cartesian coordinates for the purposes of the FE model using the

Displacement
boundary conditions

(a)

(b)

ove the mid-plane, i.e.,, z > 0, is modelled), (b) Model mesh and detailed view near
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Table 1
Fitting parameters for empirical Eq. (47) based on FE results.
20 0° 15° 30° 45° 60° 90° 120° 150° 170°
ha 0558 0.532 0.524 0.521 0536 0570 0.639 0.771 0.920
C -0394 —0407 -0412 -0416 -0412 -0379 -0313 -0218 0145
g in the present work can be found in previous literature (He et al.,
1 0.8 0.6 0.4 0.2 0 2016¢; Harding et al., 2010; Berto et al., 2011).
0 : : : 0 The present numerical simulations as well as experimental and
\ Near surlacc region (§ < 0.1) numerical results from He et al. (2016a) demonstrate that the
\~\ transverse displacement very close to the notch tip is independent
NN of the angular position ¢, and almost constant along the radial di-
0.1 F e g 1 .01 rection in a region around one-tenth of the plate thickness (i.e. r
N S ] < 0.1 h). In this region very near the notch tip, the transverse dis-
N . D °S placement field was found to be a function of the transverse co-
R T ordinate only, i.e. uz(r < 0.1 h, ¢, z) ~ u,(z). Based on extensive
U0 02 | | ) | . l o4 o2 parametric studies, the following best-fit equation for the dimen-
nereasing notch opening angle NN A ionl ransverse displacement in the very near tip region is ob-
(26 — 0°,120°, 150°, 170°) X sio ess transverse displacement in the very near tip region is ob
" \ tained
N N
R A Uz (2)E A z
L N = —"=C(1-§&"), =1-—, 47
-0.3 S v 03 20 = K hi+e ( § ) § h (47)
I . 4
Solid lines - Present solution (Eq. 4¥) by where £ is the normalised distance from the free surface in the
Dotted lines - FE results - best it (Eq. 47) \ transverse direction and the constants C and A,; are functions of
04 1 L 4 L 0.4 the notch opening angle, see Table 1. The constant A,; represents
0 02 04 0.6 0.8 1 the strength of the 3D corner singularity.
z/h Recalling the kinematic assumption of the first-order plate the-

Fig. 8. Variation of the dimensionless notch-tip transverse displacement across the
plate thickness at various notch opening angles. The case 2« =0° corresponds to a
semi-infinite crack.

transformation

Uy = U; COS¢ — Uy Sing, Uy = u;Sing + uy cos @. (46)

The half thickness of the FE model consists of 30 layers of el-
ements, and the element thickness is gradually decreased from
the mid-plane to the free surface in order to accurately capture
the behaviour of the stresses and displacements fields near the free
surfaces (Fig. 7b). The regions far away from the notch front are
modelled with a coarse mesh to reduce the computational time in
the FE simulations. The model is meshed with 20 node hexahe-
dral elements. Further details on the numerical approach adopted

ory, i.e. u; =w(z/h), the analytical expression for the dimensionless
transverse displacement at the notch tip can be written as

z E

(H) Kjhi+e

where the asymptotic value of the displacement function is given
by Eq. (26). A comparison of the best fit Eq. (47), which is based
on the present FE results, and the analytically obtained Eq. (48) is
provided in Fig. 8 for various notch opening angles. Overall, a
good qualitative agreement is observed between the analytical so-
lution and FE results, thereby validating the approach developed
in this paper. The analytical solution agrees well with the FE re-
sults, except close to the free surface of the plate. As discussed
previously, the discrepancy is largely attributed to the effect of
the corner (or vertex) singularity, which dominates at distances of

N

Uz =w(r — 0) (48)

-0.1 -0.1 -0.1
(]
02 02 -0.2
o
o
o o
.03 f 03 [000° 03 |
(= [¢]
z = 0.5h z = 0.8h
o (€= 0.1h) (£=0.2h)
04 Fo5 0 04 | 04 f
z=h O FE Results
€=0 Analytical soln.
_0.5 1 1 1 _0-5 1 1 1 _0.5 1 1 1
0 45 90 135 180 0 45 90 135 180 0 45 90 135 180
20 (degrees) 2a (degrees) 2a (degrees)

Fig. 9. Comparison of finite element and analytical results for the normalised out-of-plane displacement at three locations along the notch front.
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0.5

0.4 I Solid lines - Present solution @

Symbols - 'E (Harding ct al. 2010) IZ['/
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(a)
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Fig. 10. Variation of the normalised out-of-plane mode stress intensity factor with
distance from the mid-plane for various Poisson’s ratios, and notch opening angles
(a) 200 =60°, (b) 2a =90°, (c) 2 = 120°.

approximately 0.1 h from the vertex in the radial direction (He and
Kotousov, 2016; He et al., 2015; Pook, 2013).

To further elaborate this point, a comparison of FE results and
analytical predictions for the dimensionless transverse displace-
ment U, at different depths from the free surface is presented
in Fig. 9. For example, consider 2« =0°, which corresponds to the
case of a semi-infinite crack. The relative difference between the
analytical solution and FE results is about thirty-one percent at
the free-surface, where the effect of the corner singularity domi-
nates. At depths of 0.1 h or more from the free surface, the effect of
the 3D corner singularity diminishes (He et al., 2016b, 2015; Pook,
2013) and consequently, the agreement between the analytical and
FE results improves greatly. It is concluded that the main factor
contributing to the discrepancy is the effect of 3D corner singular-
ity, as explained previously.

6.2. Mode II loading

Fig. 10 shows the comparison between the analytical predic-
tions for the out-of-plane mode stress intensity factor, given by
Eqs. (40)-(41) and Finite Element modelling results obtained by

Harding et al. (2010). There is a remarkably close agreement be-
tween the analytical and numerical results across the wide para-
metric range of the Poisson’s ratio and notch opening angle. This
can be explained by an almost linear variation of the out-of-plane
mode stress intensity factor across the plate thickness, which sup-
ports the basic kinematic assumption of the first order plate theory
regarding the linear dependence of the out-of-plane stress and dis-
placement components on the distance from the mid-plane. The
most interesting feature of the current analysis is that the ana-
lytical solution correctly predicts the existence of the out-of-plane
singular stress state for notch opening angles 2« > 102.6° despite
being based on the plane stress solution for in-plane stress com-
ponents, see Eqs. (1)-(2).

7. Conclusion

In this paper, the first order plate theory is utilised to analyti-
cally obtain the out-of-plane displacements near the tip of an an-
gular corner subjected to in-plane loading. It is important to high-
light that the present analysis is currently the only analytical re-
sult available to evaluate the out-of-plane displacements, strains
and stresses in plane problems of elasticity with stress singular-
ities. Comparison against FE results shows that the obtained an-
alytical solution describes the average out-of-plane displacement
across the plate thickness reasonably well at different values of re-
entrant corner angles. The analytical results have been obtained
only for the leading term of Williams’ asymptotic expansion, al-
though there is no difficulties to obtain similar asymptotic results
for the higher order terms as well. However, the contribution of
the higher order terms of the asymptotic expansion into out-of-
plane strain and displacement fields near the corner was found to
be small for many practical problems. Therefore, the obtained re-
sults can be reasonably extended to finite geometries as well as to
arbitrary boundary conditions by taking into account only the sin-
gular term in the 2D asymptotic expansion of the stress field and
the deformations corresponding to remotely applied stress.

The singular solutions obtained within the theory provide an
independent validation of numerous 3D FE studies for sharp cor-
ner geometries. In particular, the obtained solutions correctly pre-
dict the strength and intensity of the singular stress state corre-
sponding to the coupled modes in the case of shear loading. The
theoretical equations also reveal the scale effect of deterministic
nature associated with shear loading, which was previously pre-
dicted based on dimensionless considerations and demonstrated
using FE simulations. In this paper, the scale effect is derived di-
rectly from the governing equations rather than attracting various
assumptions and hypotheses. It has to be admitted that scaling is
one of the most important issues of any theory. The validity of the
analytical predictions regarding the scale effect associated with the
plate thickness may be a focus of new experimental studies. An-
other aspect, which is worth to investigate experimentally is the
existence of local singular stress states for notch opening angles
smaller than 180° in the case of shear loading. The plane theory of
linear elasticity predicts the disappearance of stress singularities at
the opening angle of 102.6°.

In terms of practical applications, the obtained solutions can
potentially provide a new effective method for the characterisa-
tion of the notch stress intensity factor from experimental mea-
surements of the out-of-plane displacements near the vertex point.
However, as mentioned before, the analytical results disregard the
effect of the 3D corner singularity, which can be significant in the
close vicinity of the vertex point, or at r < 0.1 h. This effect is
stronger for small notch opening angles, 2c, as it follows from the
comparison with the FEA simulations, see Fig. 9. Therefore, the
new method has to utilise the analytical results for the out-of-
plane displacement function, w(r, ¢), rather than the asymptotic
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results at the vertex point, or r=0. In particular, the experimental
techniques based on measurements of the surface out-of-plane dis-
placements can largely avoid the necessity of incorporating higher
order terms of the near notch tip 2D asymptotic expansion, as
demonstrated in our previous studies for through-the-thickness
crack geometries (or o =0), see He et al. (2016a, 2016b and 2016c¢).
Finally, the analytical approach developed in this paper is also ex-
pected to be useful in other problems in areas of physics and me-
chanics, which can be reduced to the modified Helmholtz equation
(Fowkes and Hood, 1998; Cheng et al., 2006). These include acous-
tics, electrostatics, and surface tension problems.

Appendix A: Simplification of the infinite series in
Egs. (20a)-(20b)

Using the result (21), the infinite series in Eqs. (20a)-(20b) can
be written in the following general form
i ke L Gl 9 B S Gl LN Ul
= n'l'n-—€e+1) = nl'n+e€+1)
€ <0. (A1)

The above series can be rewritten in terms of the Gauss hypergeo-
metric function, employing the reduction formula for the gamma-
function I'(1+z)=2zI'(z) (Erdélyi et al., 1953, Vol. I), as follows:

o F(n—ezi“)l"(n—e’zi“) o0 F(n+€’21“)r‘(n+#)

g niT(n—€e+1) _§ nll(n+e+1)

_ (e +ip)/2)I' (= (€ —ipn)/2)
- '(1-e¢)

szl(—e—le, — 6_21M; l—E;l)

_Ple —im)/2)T'((e +in)/2)

)

'd+e)
szl(e_zi'u, E—Ziu; 1+€;1>
4 DUEe i)/ (€ + lM)/Z)
'd+e) (A2)

The value of the Gauss Hypergeometric function at unity ,F;(a, b;
¢; 1) can be calculated by the formula

'elr(c—-a-b)
I'(c—a)'(c-b)’
Therefore, recalling the reduction formula for the gamma-function,
Eq. (A2) can be simplified and re-written as follows:
00 F(n_egiu)r(n_e—zip_) 0 I-(n+e—2iu)r(n+e+m)
g niC(n—e+1) _; nilC(n+e+1)
_ D= (e+im)2 (=€ —ip)/2)
I —(e+ipn)/2)I'(1 = (€ —in)/2)
T —ip) /)T ((e +ip)/2)
T+ (e —ipn)/2)T (1 + (€ +ipm)/2)
(G i)/ (e +in)/2) _ (e —in)/2)I'((€ +1M)/2)
I'l+e¢) I'l+e)

2Fi1(a, b;c; 1) = Re(c—a-b)>0. (A3)

(Ad)
Appendix B: Asymptotic analysis of K,(§) near £=0

The modified Bessel function of second kind (Macdonald func-
tion) with complex order v =7 +iu can be represented by the in-
tegral

K, (§) :/0 e foshtcoshptdt, & > 0, (B1)

or alternatively,

Re K, (&) = / e §0sht cosh nt cos ptdt,
0

Im K, (§) = / e~ Oshtsinh ntsin ptdt. (B2)
0

The improper integrals in (B1)-(B2) are undefined at & =0, how-
ever
n sinh nt* cos ut* + w cosh nt* sin ,ut*
%+ pu?
n cosh nt* sin ut* — w sinh nt* cos ,LLt*
%+ pu?

fimRe K (6) = fim,

élgg)lm Ky (§) = lim
(B3)

Recalling the identities sinh x = —isin ix and cosh x = cos ix, and
the integral representation of the generalised Dirac delta function,

8(z) = % / e iZtdt =

Eq. (B3) can be rewritten after some simplification as

. b . .
élg})Re Ku(§) = 5 [8(u +in) +8(p — i),

1 / cosztdt = + lim S"Z%  (pa)
T Jo z

t*—o00

limIm K, (§) = 28+ i) = 8 — i), (B5)

Appendix C: Asymptotic analysis of the Kontorovich-Lebedev
transform near r=0

The evaluation of the Kontorovich-Lebedev transform and its
inverse, which are defined below, is of interest near the origin
r=0.

~ R d
o) = [ 10K, 00 T

f(r) = % /OOOF(M)KW(H)M sinh7r pdp. (€1)

However, numerical evaluation of the integrals in Eq. (C1) is com-
putationally challenging due to the oscillating behaviour of K;, ()
as £ — 0. For a known solution in the transformed domain, fw),
the function f(r) and its derivative at r— 0 can instead be ex-
pressed directly based on the results presented in Appendix B. Let-
ting £ =«r,

. 2 (>« . .
ggf(r) = —2/0 f(uyp smhnu(égl(m(é))du,
. df(l‘) Shipts) (S)
¥L0 T / f(uym smhnu(lm(l) dE du.  (C2)
Using the result (B5) and recalling the derivative identity
dK 1
) K ®) + K ©)) (3)

Eq. (C2) can be re-written as

. 2 [ .
B’I& f(r) = ;/0 f(u)w sinhmw ud(p)du.
df . . . .
lim d(rr) = —g/o f(nywsinhr p[[8 (e +1) + 6 (u — D]]dp.

(C4)

If the function T (u) is even and analytic over the entire com-
plex plane, the above integrals can be evaluated using the shifting
property of the generalised Dirac delta function

/ f(u),u sinhr ué (i —zp)du = %Jim f(u),u, sinhwp. (C5)
0 —Zp



122 A. Khanna, A. Kotousov and S. Yakubovich et al./International Journal of Solids and Structures 170 (2019) 111-122

Using Eq. (C5), the asymptotic values of the function f(r) and its
gradient can be obtained as

limf(r) = L jim f(uypsinhr e = lim w2f(w). (C6)
r—0 T n—0 n—0

df(r) ko .

l:_r)r(} ar _—E}Llinif(,u)usmhﬂu. (Cc7)
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