
Bio-Inspired Computing for
Chance-Constrained Combinatorial

Optimisation Problems

Author : Supervisor :
Yue Xie Prof. Frank Neumann

Co-Supervisor :
Dr. Aneta Neumann

Dr. Andrew M. Sutton

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

The University of Adelaide

in the

Optimisation and Logistics
School of Computer Science

December 9, 2021

iii

Contents

Contents iii

List of Figures v

List of Tables vii

Abstract ix

Declaration of Authorship xi

Acknowledgements xiii

1 Introduction 1
1.1 Contributions and Background . 2
1.2 Outline of the Thesis . 4

2 Combinatorial Optimisation Problems and Chance-Constrained Op-
timisation 7
2.1 Introduction . 7
2.2 Combinatorial Optimisation Problems 7
2.3 Chance-Constrained Optimisation . 10
2.4 Conclusion . 13

3 Bio-Inspired Computing and Analytical Methods 15
3.1 Introduction . 15
3.2 Randomised Local Search . 15
3.3 Evolutionary Algorithms . 17
3.4 Analytical Methods . 25
3.5 Conclusion . 29

4 Evolutionary Algorithms for the Chance-Constrained Knapsack Prob-
lem 31
4.1 Introduction . 31
4.2 Surrogate Functions for the Chance Constraint 32
4.3 Deterministic Approaches . 37
4.4 Evolutionary Algorithms . 42
4.5 Experiments . 45
4.6 Conclusion . 54

5 Runtime Analysis for the Chance-Constrained Knapsack Problem
with Correlated Uniform Weight 67
5.1 Introduction . 67
5.2 Preliminaries . 68

iv

5.3 Theoretical Analysis . 71
5.4 Experiments . 80
5.5 Conclusions . 83

6 The Large-Scale Stockpile Blending Problem 85
6.1 Introduction . 85
6.2 Mathematical Model of Stockpile Blending Problem 86
6.3 Heuristic Search Approach . 90
6.4 Experimental Investigation . 94
6.5 Conclusions . 95

7 The Stockpile Blending Problem with Chance Constraints 97
7.1 Introduction . 97
7.2 Deterministic Model . 98
7.3 Model with Chance Constraints . 100
7.4 Approaches for the Stockpile Blending Problem with Chance Constraints101
7.5 Experimental Investigation . 103
7.6 Conclusion . 106

8 Conclusion 109

Bibliography 111

v

List of Figures

3.1 Examples of crossover operators . 19

4.1 The relationship between expected weight and variance of weight of a
solution based on different values of ε. 37

4.2 Comparison for different values of α with fixed δ = 25. 48
4.3 Comparison for different values of δ with fixed α = 0.01. 49

5.1 Expected time of the algorithms to achieve a feasible solution 81
5.2 Running time of the algorithms with uniform profit. 81
5.3 Running time of the algorithms with arbitrary profit. 82
5.4 Comparison between the running time of the (1+1) EA according to

the number of groups on uniform cases. 82
5.5 Comparison between the running time of the (1+1) EA according to

the number of groups on arbitrary cases. 83

7.1 Results obtained by the DE with using single chance constraint. 108

vii

List of Tables

4.1 Statistical results for instances with 100 items based on additive uni-
form distribution and using Chebyshev’s inequality 47

4.2 Statistical results for instances with 100 items based on additive uni-
form distribution and using Chernoff bound 48

4.3 Statistical results for instances with 500 items based on additive uni-
form distribution . 56

4.4 Statistical results for the instance eil101 with 100 items based on mul-
tiplicative uniform distribution and Chebyshev’s inequality 57

4.5 Statistical results for the instance eil101 with 500 items based on mul-
tiplicative uniform distribution and Chebyshev’s inequality 58

4.6 Statistical results for the instance eil101 with 100 items based on Nor-
mal distribution and Chebyshev’s inequality 59

4.7 Statistical results for the instance eil101 with 500 items based on Nor-
mal distribution and Chebyshev’s inequality 60

4.8 Statistical results of (1+1) EA with Chernoff bound for instance eil101
with 500 items . 61

4.9 Statistical results of (1+1) EA with Chebyshev’s inequality for instance
eil101 with 500 items . 62

4.10 Statistical results of (µ+1) EA with Chernoff bound for instance eil101
with 500 items . 62

4.11 Statistical results of (µ+1) EA with Chebyshev’s inequality for instance
eil101 with 500 items . 63

4.12 Statistical results of GSEMO with Chernoff bound for the instance
eil101 with 500 items . 63

4.13 Statistical results of GSEMO with Chebyshev’s inequality for the in-
stance eil101 with 500 items . 64

4.14 Statistical results of NSGA-II with Chernoff bound for instance eil101
with 500 items . 65

4.15 Statistical results of NSGA-II with Chebyshev’s inequality for the in-
stance eil101 with 500 items . 66

6.1 Notation of large-scale stockpile blending problem 87
6.2 Results for one-month problem . 94
6.3 Results for long-term problem . 95

7.1 Notation of simplified version of the stockpile blending problem 98
7.2 General information about the ore and processing parameters 103
7.3 Global parameters of instances . 104
7.4 Ore shipping parameters of instances 104
7.5 Customer requirements of instances . 104
7.6 Fitness values obtained with single chance constraint 105
7.7 Fitness values obtained with two chance constraints 107

ix

University of Adelaide

Abstract

Bio-Inspired Computing for Chance-Constrained Combinatorial
Optimisation Problems

by Yue Xie

Bio-inspired methods have been widely used to solve stochastic optimisation problems,
and they can find high-quality solutions. Motivated by real-world applications such as
mining engineering problems where constraint violations have distributive effects, we
discuss using chance-constrained optimisation to solve optimisation problems under
various uncertainties. This thesis contributes to the theoretical analysis and appli-
cation of evolutionary algorithms on chance-constrained combinatorial optimisation
problems. We address complex problems under stochastic settings and are subject
to chance constraints. We start our investigations in two significant areas: chance-
constrained knapsack problem (CCKP) and a real-world application problem. The
CCKP is a stochastic version of the classical knapsack problem, which aims to max-
imise the profit of selected items under a constraint that the knapsack capacity bound
is violated with a small probability. We first show how to use well-known deviation
inequalities as surrogate functions when tacking the chance constraint. Then, we in-
vestigate the performance of some classical approaches for solving knapsack problems
and the simplest single- and multi-objective evolutionary algorithms on solving the
CCKP instances. Our experimental results show that evolutionary algorithms perform
better than those classical approaches in computation time and quality of solutions.
Afterwards, to improve the performance of the evolutionary algorithms on solving the
chance-constrained knapsack problems, we examine the use of two problem-specific
operators and present a new multi-objective model of the problem. Our experimental
results show that this leads to significant performance improvements when using the
proposed operators in multi-objective evolutionary algorithms. Then, we perform a
runtime analysis of a randomised search algorithm and a basic evolutionary algorithm
for the chance-constrained knapsack problem with correlated uniform weights.

Furthermore, we investigate a real-world problem in this thesis, the stockpile blending
problem, which aims to blend material from stockpiles to construct concentrate parcels
containing optimal metal grades. For this problem, we first present the model of the
problem without chance constraints and name it the "deterministic model" and then
show that the results obtained by a differential evolution approach are better than the
actual results for all instances. We then consider the problem with uncertain source
supply, named the stockpile blending problem with chance constraints. We introduce
chance-constrained optimisation to guarantee the constraints are violated with a small
probability to tackle the stochastic material grades and evaluate the performance of
the differential evolution algorithm.

http://www.adelaide.edu.au

xi

Declaration of Authorship
I certify that this work contains no material which has been accepted for the award of
any other degree or diploma in my name, in any university or other tertiary institution
and, to the best of my knowledge and belief, contains no material previously published
or written by another person, except where due reference has been made in the text.
In addition, I certify that no part of this work will, in the future, be used in a
submission in my name, for any other degree or diploma in any university or other
tertiary institution without the prior approval of the University of Adelaide and where
applicable, any partner institution responsible for the joint-award of this degree.

I give permission for the digital version of my thesis to be made available on the web,
via the University’s digital research repository, the Library Search and also through
web search engines, unless permission has been granted by the University to restrict
access for a period of time.

I acknowledge the support I have received for my research through the provision of
an Australian Government Research Training Program Scholarship.

Yue Xie

August 2021

xiii

Acknowledgements
To take this opportunity, I am grateful to those who have offered encouragement and
support during the three years of my PhD study.

First of all, my deepest gratitude to my supervisor, Professor Frank Neumann, for
his constant encouragement and guidance. I am most grateful to him for inviting
me into his team and supporting the scholarships that enabled me to focus on my
study. He has walked me through all the stages of my PhD. Without his consistent
and illuminating instruction, I could not have had such an inspiring journey.

I would also thank my two co-supervisors, Dr Aneta Neumann and Dr Andrew M. Sut-
ton. They generously shared their advice, experience and feedback, which have been
crucial for forming my understanding of research. They provided support whenever
I needed aid and encourage me in both researching and teaching. I have immensely
appreciated if working with both of them.

I want to express my thanks to the group members in the Optimisation and Logistics
team at the School of Computer Science, the University of Adelaide, Bradley Alexan-
der, Markus Wagner, María-Yaneli Ameca-Alducin, Wanru Gao, Mojgan Pourhassan,
Junhua Wu, Vahid Roostapour, Maryam Hasani Shoreh, Hirad Assimi and other HDR
students in our team. I had a great time working with them.

I want to thank the Research Consortia Program (RCP) "Unlocking Complex Re-
sources through Lean Processing" to offer me the opportunity to collaborate with
industry companies in mining engineering. I appreciate Professor Nigel Cook, Dr
Tatiana Khmeleva, Professor Peter Dowd, Mrs Natalie Craven and other fellow re-
searchers in the program. I learned a lot in sharing ideas with people from different
backgrounds and collaborations with others.

Moreover, I would like to thank the School of Computer Science of the University of
Adelaide and Research Consortium for funding the scholarships that have covered my
tuition fees, living expenses, and conference travels; researchers who have contributed
to the foundation of this domain in which I can study; the anonymous reviewers of
my papers as well as this thesis; Joe Miller for his language editing and proofreading
of this thesis.

Finally, I offer my wholehearted gratitude to my parents Hong Yu and Dongsheng
Xie, and my dear families and friends. Without your understanding and support, I
would not have been able to go this far. I also want to thank my mother city Wuhan,
without her survival from the terrible Covid-19, I would not have been able to release
the stress and focus on my research.

1

Chapter 1

Introduction

Bio-inspired computing methods such as evolutionary algorithms are well-known gen-
eral problem-solvers that are applied to various problems. These algorithms are in-
spired by processes that occur in nature. For example, evolutionary algorithms (EAs)
are inspired by processes that make creatures suited to their environment during gen-
erations. The main idea of bio-inspired methods is to randomly generate a number
of solutions as the initial population, evolve them by using random operators and
replace the worst solutions of the population with new solutions that are better in
terms of fitness. The variation operators that generate new solutions from old solu-
tions are crossover and mutation. Although bio-inspired methods such as evolutionary
algorithms (EAs) and genetic algorithms (GAs) are not able to guarantee optimal solu-
tions, they usually achieve high-quality solutions in a reasonable computational time.
During last decades, bio-inspired algorithms have been used very successfully for a
wide range of problems, such as combinatorial optimisation problems (Neumann and
Witt, 2010; Chiong, Weise, and Michalewicz, 2012; Sim and Kaufmann, 2018).

Combinatorial optimisation problems are a kind of problem that have a finite number
of feasible solutions. A combinatorial optimisation problem can be expressed as a
minimisation problem or a maximisation problem, which depends on a given objec-
tive function and is subject to a set of constraints. These problems include a variety
of theoretical and real-world applications with different levels of computational com-
plexity. Many combinatorial optimisation problems are NP-hard problems and need
superpolynomial time to be solved by a deterministic algorithm unless P = NP . Bio-
inspired algorithms can explore the search space of complex problems and, therefore,
achieve with a better solution tat employs random sampling of the solution space with
no guarantee of ever proving optimality of any solution.

The complexity of many combinatorial problems comes from their objective functions.
However, in real-world applications, another challenge is to deal with the uncertainty
of input parameters. If we ignore the uncertainty, for example, by using the expec-
tations of input parameters, the optimal solution obtained is likely to be infeasible.
To consider the uncertainty, we apply chance-constrained optimisation in this the-
sis. Chance-constrained optimisation was first introduced by Charnes and Cooper
(1959) and Miller and Wagner (1965), whose resulting decision ensures the probabil-
ity of respecting to the constraints or the confidence level of being feasible to have
received significant attention in the literature. For a general chance-constrained prob-
lem, Prékopa (1990) and Prékopa (1995) proposed a dual-type algorithm, and they
investigated the performance of their approaches and compared them with a primal
simplex algorithm. Hillier (1967) used linear constraints to generate a procedure for
tacking approximate chance constraints. Chance-constrained optimisation has been

2 Chapter 1. Introduction

widely applied in different disciplines for optimisation under uncertainty (Uryasev,
2013). For example, chance-constrained optimisation has been used in analogue in-
tegrated circuit design (McConaghy et al., 2009), mechanical engineering (Mercado
et al., 2005), and other disciplines (Liu, 2007; Poojari and Varghese, 2008). Some
details of the chance-constrained optimisation are given in Chapter 2.

1.1 Contributions and Background

Motivated by real-world problems where constraint violations have disruptive effects,
we conduct research in this thesis on chance-constrained optimisation and its real-
world applications. Moreover, a wide range of studies has investigated the performance
of evolutionary algorithms in practice for their ability that can easily be applied to
solve various problems. However, so far, chance-constrained optimisation has received
little attention in the evolutionary computation literature (Liu et al., 2013).

In this thesis, we investigate the chance-constrained knapsack problem (CCKP), a
variant of the binary knapsack problem. In general, the weights of items are not
known precisely in a CCKP, but all weights are chosen from a given distribution.
Each item has a stochastic weight and a deterministic profit. The goal of the CCKP
is to find a set of items of maximal profit subject to the condition that the probability
with which the total weight exceeds the given capacity bound is less than or equal to a
given threshold. Several research papers that study the stochastic knapsack problem
by using chance-constrained optimisation have been published in the literature (Goel
and Indyk, 1999; Kleinberg, Rabani, and Tardos, 1997; Klopfenstein and Nace, 2008;
Goyal and Ravi, 2010). Goel and Indyk (1999) proposed an algorithm that relaxes
the chance constraints by a factor of (1 + ε) to solved instances where weights have
a Poisson distribution or an exponential distribution. Goyal and Ravi (2010) investi-
gated the problem where the weights of items have the Normal distribution, and the
proposed linear optimisation approach can satisfy the chance constraint strictly.

Evolutionary algorithms are suitable for solving various combinatorial optimisation
problems (Chiong, Weise, and Michalewicz, 2012; Azzouz, Bechikh, and Said, 2017).
Han and Kim (2002) presented a quantum-inspired evolutionary algorithm and showed
it performs well for knapsack problems. Segura et al. (2015) proposed a novel memetic
scheme incorporating a new diversity-based replacement strategy and applied the algo-
rithm to a large instance of travelling salesmen problem. Riff et al. (2008) introduced
an evolutionary algorithm for solving copper mine planning problems and demon-
strated that this algorithm could find better feasible solutions than the approach that
has been used before. Therefore, we investigate the performance of EAs in solving the
CCKP. To evaluate a solution concerning the chance constraint, we use well-known
probability tools to calculate an upper bound on the probability of violating the ca-
pacity bound and as surrogate functions for the chance constraint. The probabilistic
tools we employ allow us to estimate the probability of a constraint violation math-
ematically without the need for sampling. Moreover, we develop a single-objective
approach and a multi-objective approach in terms of solving CCKP instances, and
we compare the performance of several EAs to presented deterministic methods. The
comparison provides a reasonable justification for using EAs when dealing with the
CCKP. Therefore, we introduce a problem-specific crossover operator and a heavy-tail
mutation operator applied in EAs to improve their performances.

The critical feature of EAs is their use of random operators to explore the search space,
and theoretical analyses of random processes are challenging. The theoretical analysis

1.1. Contributions and Background 3

is important to understand the characteristics and behaviours of EAs (Papadimitriou
and Steiglitz, 1982). In the past few decades, many researchers have worked to im-
prove the theoretical understanding of algorithms. Many studies first focus on simple
example functions (He and Yao, 2001; Droste, Jansen, and Wegener, 2002), lead-
ing to analyses about combinatorial optimisation problems (Neumann and Wegener,
2007; Oliveto, He, and Yao, 2007). Useful tools for algorithm complexity analysis
include fitness-based partitioning (Wegener, 2002), deviation inequalities (Raghavan
and Motwani, 1995) and drift analyses (He and Yao, 2001; Doerr, Johannsen, and
Winzen, 2012). Recently, Neumann and Sutton (2019) investigated the runtime of
the (1+1) EA for the CCKP and proved that it is possible to have local optimal in
the search space even in the simplest case. However, the problem still has not gained
much attention in the theoretical analysis of evolutionary algorithms literature.

In Chapter 5, we analyse the expected optimisation time of a proposed randomised
local search (RLS) and the (1+1) EA in the chance-constrained knapsack problem with
correlated weights. This variant partitions the set of items into groups, and pairs of
items within the same group have correlated weights. We prove bounds on both the
time to find a feasible solution and the time to obtain the optimal solution, which has
both maximal profit and minimal probability of violating the chance constraint. In
particular, we first prove that RLS can find a feasible solution in time bounded by
O(n log n), and by O(n2 log n) in terms of the (1+1) EA. Then, we investigate the
optimisation time for these algorithms when the profit values are uniform, which is
similar to the study in the deterministic constrained optimisation problems (Friedrich
et al., 2020). However, the items in our case are divided into different groups, and it
becomes necessary to take the number of chosen items from each group into account.
Therefore, the optimisation time bound for RLS becomes O(n3) and O(n3 log n) for
the (1+1) EA. After that, we consider the more general and complicated case in which
profits may be arbitrary as long as each group has the same set of profit values. We
show that an upper bound of O(n3) holds for RLS and O(n3(log n+ log pmax)) holds
for the (1+1) EA where pmax denotes the maximal profit among all items.

Due to their ability to provide high quality solutions for complexity and dynamic prob-
lems within acceptable time, EAs have attracted interest from many researchers and
practitioners. Chiong, Weise, and Michalewicz (2012) presented how to incorporate
evolutionary algorithms in solving optimisation problems in the fields of planning and
scheduling, engineering and data science. To empirically investigate the applicability
of EAs to complex real-world problems, we investigate in Chapter 6 the stockpile
blending problem, which is a crucial component of open-pit mine production schedul-
ing (OPMPS) problem in mining engineering (Lamghari and Dimitrakopoulos, 2012;
Moreno et al., 2017; Sotoudeh et al., 2020). In this problem, stockpiles are used to
store and blend raw material transported from mines. The stockpile blending problem
aims to construct parcels of concentrate by combining material from stockpiles and
contain optimal metal grades based on the material available in stockpiles. The volume
of material each stockpile provides to each parcel depends on a set of mine schedule
conditions, mill-feed limitation, and customer demands. Due to the complexity of
the problem, we formulate the problem as a non-linear optimisation problem with
continuous decision variables. We first investigate the large-scale stockpile blending
problem. As can be inferred from its name, the problem is characterised by challenges
relating to scale. To the best of our knowledge, the large-scale stockpile blending
problem has never been studied independently, although it is vital in real-world min-
ing engineering. A realistic model of the stockpile blending problem is introduced in

4 Chapter 1. Introduction

this thesis and follows by describing related input parameters of the production pro-
cess in a real-world situation. To tackle the complexity constraints in the model, we
present two repair operators and apply them in the solver algorithm later. We intro-
duce an approach based on a differential evolution (DE) algorithm for the large-scale
stockpile blending problem and investigate the method’s performance by examining
real-data instances. The DE algorithm is an evolutionary algorithm that facilities a
population-based search in continuous multi-dimensional space. DE algorithms were
first proposed by Price (1996) and Storn and Price (1997), after then, DE and its vari-
ants have been successfully applied to solve many practical problems from different
scientific and engineering fields (Das and Suganthan, 2010; Neri and Tirronen, 2010).
We show that this DE-based approach improves the results of real-world cases.

Motivated by the uncertainty in geologic input data which affects optimisation, we
investigate the stockpile blending problem by taking uncertainty into account. It
is recognized in the relevant technical literature that this uncertainty is the main
reason for not meeting the production expectations (Baker and Giacomo, 1998; Asad
and Dimitrakopoulos, 2012). Given its significant impact on the financial results of
mining operations, we focus on the uncertainty of metal content within a mineral
deposit being mined. For the stochastic variables of the stockpile blending problem,
we apply the chance-constrained optimisation to tackle the uncertainty of material
grades by reformulating inequality constraints to chance constraints. The objective of
the stockpile blending problem with chance constraints is the same as the large-scale
stockpile blending problem, and it is subject to the condition that the probability of
violating a given bound is less than a given threshold. Moreover, we investigate how
to solve the problem using DE algorithms and evaluate the effectiveness of different
chance constraints.

1.2 Outline of the Thesis

This thesis is composed of the following three main parts: introduction and back-
ground of the thesis, evolutionary algorithm implementation and real-world appli-
cations of chance-constrained optimisation. The rest of this paper is organised as
follows.

Chapters 2 and 3 briefly introduce the background of the research in this thesis. In
Chapter 2, OneMax problem and knapsack problem as two well-known combinatorial
optimisation problems will be introduced in detail. Including background knowledge
about chance-constrained optimisation, which laid the foundation for the thesis. The
last presented problem of Chapter 2 is the chance-constrained knapsack problem that
will be discussed in detail in the second part of the thesis. Chapter 3 consists of an
introduction about the bio-inspired algorithms and the analytical methods that are
used in this thesis.

Chapter 4 and 5 focus on evolutionary algorithms for solving the chance-constrained
knapsack problem. We introduce how to incorporate well-known probability tail in-
equalities into the search process of an evolutionary algorithm in Chapter 4. We intro-
duce single-objective and multi-objective evolutionary algorithms for the CCKP and
develop operators to improve the performance of evolutionary algorithms. We examine
the different performances of different evolutionary algorithms combined with differ-
ent operators for the CCKP. The comparison between the deterministic approaches
and the evolutionary algorithms shows that using evolutionary algorithms for solv-
ing CCKP instances leads to higher quality results in many test cases regarding the

1.2. Outline of the Thesis 5

running time. This chapter is based on two conference papers (Xie et al., 2019; Xie,
Neumann, and Neumann, 2020). In Chapter 5, we present our investigation on the
behaviour of evolutionary algorithms and randomised local search optimising CCKP.
The main contribution of this chapter is that it provides some insights into the theoret-
ical understanding of CCKP with relevant weights through rigorous runtime analysis.
This chapter is expanded from work published in Xie et al. (2021). After theoretical
analysis, our research has turned to real-world application areas.

Chapter 6 present a real-world problem named the stockpile blending problem. As
an important component in the mining engineering problem, we define the problem
as a non-linear optimisation problem in a continuous search space. We introduce two
repair operators used in bio-inspired algorithms to tackle the complex constraints by
guiding the searching process. Then, we propose an approach for solving large-scale
stockpile blending problems based on a differential evolution algorithm. The DE-based
approach can solve real-data instances of the large-scale stockpile blending problem,
and we show that it outperforms the realistic method. The contents are based on the
published paper (Xie, Neumann, and Neumann, 2021a).

Motivated by the uncertainty in geology data, the stockpile blending problem with
chance constraints is extended from the deterministic setting of the problem and is
detailed in Chapter 7. We consider the stockpile blending problem with uncertainty in
material grades and denote them as stochastic variables. We apply chance-constrained
optimisation to handle the inequality constraints of the problem, and investigate the
performance of differential evolution algorithms. This chapter is based on the result
published by Xie, Neumann, and Neumann (2021b). In the end, Chapter 8 concludes
the thesis.

7

Chapter 2

Combinatorial Optimisation
Problems and Chance-Constrained
Optimisation

2.1 Introduction

Combinatorial optimisation is one of the most active fields in Applied Mathematics
and is widely used in industry and commerce, which combining technology from com-
binatorics, linear programming and algorithm theory (Du and Pardalos, 1998). A
combinatorial optimisation problem consists of finding the best feasible solution ac-
cording to the objective function when the problem’s solution space is discrete, and the
feasibility is determined by satisfying given constraints. Due to the successful appli-
cation of combinatorial optimisation in solving complex problems in many real-world
application areas, this field has gained more attention and interest (Chiong, Weise,
and Michalewicz, 2012; Shambour, 2019). This chapter provides a general overview
of combinatorial optimisation and introduces two classical problems in Section 2.2.

Motivated by real-world problems where constraint violations have disruptive effects,
we present the chance-constrained optimisation, which has been widely applied in
different disciplines for optimisation under uncertainty. In the second part of this
chapter, we introduce a general overview of chance-constrained optimisation and define
the chance-constrained knapsack problem in Section 2.3. The chance-constrained
knapsack problem is the core problem discussed in this thesis presented in Chapter 4
and 5.

2.2 Combinatorial Optimisation Problems

Many applications can be abstracted as combinatorial optimisation problems. For any
instance of a problem, a specified parameter setting is given. Formally, the definition
of a combinatorial optimisation problem is given a triple (S, f,Ω), where S is the
search space, f is the objective function, and Ω is the set of constraints, the goal is
to find a globally optimal solution in S with respect to f that fulfils all constraints
given by Ω (Neumann and Witt, 2010).

The optimisation time of the algorithm is analysed according to the size of the in-
put. The input of combinatorial optimisation problem is usually a graph or a set of
integers and can be expressed as a series of symbols. The size entered is equal to the
length of this sequence. The search space of a combinatorial optimisation problem is

8 Chapter 2. Combinatorial Optimisation Problems and Chance-Constrained
Optimisation

exponential with respect to the size of the input, and for most combinatorial optimi-
sation problems, a polynomial-time algorithm that finds the optimal solution can not
be found unless P = NP .

In the following subsection, we introduce two well-known combinatorial optimisation
problems, Knapsack problem (KP) and OneMax problem.

2.2.1 Knapsack Problem

The knapsack problem (KP) is a well-known combinatorial optimisation problem that
has been studied extensively in the past decades. Toth and Martello (1990) formulated
the knapsack problem as a set of n items and a knapsack. Each item has a weight
wi and a profit pi. The knapsack problem aims to find a subset of the n items that
maximises the total profit, and the total weight of this subset must not exceed the
knapsack capacity. The definition of a KP is as follows:

max P (x) =

n∑
i=1

pixi (2.1)

s.t.
n∑
i=1

wixi ≤ C, (2.2)

xi ∈ {0, 1}, i = 1, . . . , n. (2.3)

Here x = (x1, . . . , xn) represents the packing plan of the item set, and the item i is
chosen when xi = 1, and vice versa. As xi is binary, this problem is so called the
binary knapsack problem.

The binary knapsack problem has been thoroughly studied by Toth (1980), Vance
(1993), Martello and Toth (1997), Martello and Toth (2003), and Kellerer, Pferschy,
and Pisinger (2004). This work mainly concentrates on presenting exact algorithms
to tackle the binary knapsack problem. The exact approaches for solving binary
knapsack problems can be divided into two classes: dynamic programming (Ahrens
and Finke, 1975; Martello, Pisinger, and Toth, 1999) and branch and bound methods
(Kolesar, 1967; Greenberg and Hegerich, 1970). We give the detail of using dynamic
programming to solve the binary knapsack problem in the next section.

Dynamic Programming

Dynamic programming was first introduced by Bellman (1966), and the first dynamic
programming is based on the following idea. If xn = 0, that is we do not choose the
last item, then the best profit possible is obtained by whatever is attained from the
remaining n − 1 objects with knapsack capacity C. If xn = 1, then the best profit
possible obtained is the profit pn plus the best profit obtained by the remaining n− 1
items with knapsack capacity C − wn, where wn ≤ C. Therefore, the optimal profit
will be the maximum of these two profits.

This idea leads to the following recurrence relation,

P (i,m) =

{
P (i− 1,m) wi > m
max{P (i− 1,m), P (i− 1,m− wi) + pi} wi ≤ m

(2.4)

2.2. Combinatorial Optimisation Problems 9

Algorithm 1: Dynamic Programming for Binary Knapsack Problem
1: for w = 0 to C do
2: P (0,m) = 0
3: end for
4: for i = 1 to n do
5: for m = 0 to C do
6: if wi ≤ w then
7: P (i,m) = max{P (i− 1,m), P (i− 1,m− wi) + pi}
8: else
9: P (i,m) = P (i− 1,m)

10: end if
11: end for
12: end for
13: return P (n,C)

where P (i,m); i = {1, . . . , n},m = {0, . . . , C}, is the best profit obtainable form the
items 1, . . . i with capacity m. The initial conditions are

P (1,m) =

{
0 w1 > m
p1 w1 ≤ m.

(2.5)

So, the optimal profit is expressed as P (n,C).

In general, a dynamic programming has to construct an n × C table and calculate
the entries P (i,m), in a bottom-up fashion. When the optimal profit P (n,C) has
been calculated, the optimal solution can be found by backtracking through the table
and assigning the decision variables to the solution according to the selections of the
max function. The algorithm has a time complexity of O(nC). However, it is not
polynomial, since W can be exponentially large, such a complexity is called pseudo-
polynomial. The dynamic programming for binary knapsack problem is presented in
Algorithm 1.

2.2.2 OneMax Problem

If the capacity constraint is removed, all subsets of items are feasible and the profit
of a solution x can be expressed as

f(x) = w0 +
n∑
i=1

wixi, (2.6)

which is a linear pseudo-Boolean function. Here, x = {x1, x2, . . . , xn} be a search
point in search space {0, 1}n, and wi; i = {1, . . . , n} positive real weight. If we set
w0 = 0 and optimisation of a linear objective function under a linear constraint, the
problem is equivalent to the binary knapsack problem (Koza, 1993).

The OneMax problem, as a specific case of a linear pseudo-boolean function with
weights equal to one, unlike the general knapsack problem, the OneMax problem is
trival and is only of interest for theoretical analysis of evolutionary algorithms, which
we introduce in Chapter 3. The OneMax problem consists of n binary variables, and it
aims to maximise the number of 1’s among those variables. A solution is represented

10 Chapter 2. Combinatorial Optimisation Problems and Chance-Constrained
Optimisation

by a bit-string with length n, e.g. x = {x1, . . . , xn} . The problem is defined as

OneMax(x) =
n∑
i=1

xi.

2.3 Chance-Constrained Optimisation

In real-world applications, uncertainty is a natural attribute of a complex system, and
it will have a significant impact on the system’s performance. The goal of optimisation
under uncertainty is to provide economical and reliable decisions for problems with
such uncertainties. To tackle the formulation of optimisation problems under uncer-
tainty, we introduce the chance-constrained method. Its resulting decision ensures
the probability of complying with the constraints and the confidence level of being
feasible to have received significant attention in the literature.

Consider the following optimisation problem:

min g(x) (2.7)
s.t. c(x, ξ) ≤ 0, (2.8)

x ∈ X, (2.9)

where X ⊆ Rm is a deterministic set, x is a decision vector, ξ is a multi-dimensional
parameter vector, g(x) is a objective function and c(x, ξ) is a constraint. Moreover,
we assume that g(x) and c(x, ξ) are convex in x, and X is a compact and convex set.
This kind of problem has broad application in many real-world problems.

However, in practical problems, the parameter ξ can be uncertain. If we solve the
problem using the expected value of ξ without considering the uncertainty, the optimal
solution obtained under this assumption might be infeasible with high probability.
Therefore, to consider the uncertainty, the problem can be formulated as a chance-
constrained optimisation problem as follows:

min g(x) (2.10)
s.t. Pr (c(x, ξ) ≤ 0) ≥ ε, (2.11)

x ∈ X, (2.12)

where ξ is a random vector and ε ∈ (0, 1) is the tolerance probability. Then, the
solution of this chance-constrained optimisation problem is guaranteed to be a feasible
solution to the original problem with a probability of at least ε, say 0.9 or 0.99. The
chance constraint (2.11) can also be expressed as

Pr(c(x, ξ) > 0) ≤ α,

where α ∈ (0, 1) is a small acceptable probability, say 0.01 or 0.001. As shown in
inequality (2.11), there is only one chance constraint in this model. We call this
problem an individual chance-constrained problem.

2.3. Chance-Constrained Optimisation 11

If there is more than one chance constraint in the problem, the problem is called a
joint chance constraint problem, we show the it as follows:

min g(x) (2.13)
s.t. Pr (c1(x, ξ) ≤ 0, . . . , cd(x, ξ)) ≥ ε, (2.14)

x ∈ X. (2.15)

However, the joint chance-constrained problem is obviously more difficult to solve,
mainly because it considers the multivariate distribution.

Due to two main reasons, chance-constrained optimisation problems are usually dif-
ficult to solve. First of all, calculating Pr(c(x, ξ) ≤ 0) is usually difficult, especially
for joint chance-constrained problems. Secondly, the feasible region defined by the
chance constraint is usually not convex (Ahmed and Shapiro, 2008; Luedtke, Ahmed,
and Nemhauser, 2010). Therefore, the solution method depends on the characteristics
of the chance-constrained problem. Some problems will not arise in any of these diffi-
culties. For example, when ξ is a multivariate normal vector, Prékopa (2003) gives the
deterministic equivalent of the right hand side of the chance constraint (2.11). Then,
the deterministic equivalent of the chance constraint problem is given in the paper.

If the solution space is not convex, ξ has a finite distribution (Dentcheva, Prékopa,
and Ruszczynski, 2000). Prékopa (1971) has taken an important step by proving
the convexity of the feasible solution set of the linear chance-constrained problem
and the related random uncertainty in the chance constraint. To extend their results
on convexity, Prékopa, Yoda, and Subasi (2011) make a statement about their pro-
posed structural description applying more widely. He proposes that if the rows are
independent normal distributions and the covariance matrices of the rows are con-
stant multiples of each other. Henrion (2007) proposes a structural description of the
feasible solution set defined by a single linear chance constraint.

For problems in which the difficulty of computing the probability occurs, the probabil-
ity of chance constraints is difficult to compute due to the requitement of solving mul-
tiple integrals. Many equivalent reformulations for chance constraints have been pro-
posed to handle this issue. Lagoa (1999) and Calafiore and El Ghaoui (2006) consid-
ered individual chance-constrained linear programs and gave deterministic quadratic
reformulations. For the case in which chance constraints have continuous distribu-
tions, sampling approximations are used in solving chance-constrained problems, such
as the case in which joint chance constraint with a feasible convex region (Ahmed
and Shapiro, 2008), and the case in which uncertainty is represented with discrete
distributions (Ruszczyński, 2002). However, sampling approximations can be compu-
tationally very demanding.

An alternative to the approximated approaches mentioned above includes an approx-
imation based on chance constraints to provide a deterministic boundary analysis,
which we also use in this thesis. For the case of an individual chance constraint,
the boundary is mainly based on the expansion of Chebyshev’s inequality (Pinter,
1989; Hoeffding, 1994; Birge and Louveaux, 2011). For joint chance constraints, the
deterministic equivalent approximation has been extensively studied by Cheng and
Lisser (2012), Cheng and Lisser (2013), and Cheng, Houda, and Lisser (2015). We
will introduce the details in Section 2.3.2.

12 Chapter 2. Combinatorial Optimisation Problems and Chance-Constrained
Optimisation

2.3.1 Chance-Constrained Knapsack Problem

The binary knapsack problem introduced in Section 2.2.1, and different variants of
the knapsack problem have been examined in the stochastic setting. The chance-
constrained knapsack problem (CCKP) is one kind of stochastic version of the tradi-
tional knapsack problem.

In this thesis, we consider the case of CCKP, where the weight of each item is not
known exactly, but all weights are chosen from a given distribution. Given n items,
and each item has weight wi and profit pi, and a knapsack capacity C. We encode
a solution x as a bit string of {0, 1}n, and xi = 1 denotes selecting i-th item. The
problem aims to find a subset of items with maximised profit, and the probability of
violating the capacity bound is less than or equal to a given threshold denoted as α.
The chance-constrained knapsack problem can be formulated as follows:

max P (x) =

n∑
i=1

pixi (2.16)

s.t. Pr

(
n∑
i=1

wixi ≥ C

)
≤ α (2.17)

xi ∈ {0, 1}. (2.18)

The chance-constrained knapsack problem has been studied in several published pa-
pers. Kleinberg, Rabani, and Tardos (1997) studied the problem with the weights of
items that are only chosen from two possible options. Goel and Indyk (1999) pro-
posed an algorithm that relaxes the chance constraints by a factor of (1 + ε) to solved
instances where items have a Poisson distribution, or an experimental distribution.

2.3.2 Related Work

In general, it is difficult to calculate the probability of chance constraints. Therefore,
many equivalent reconstructions of the chance constraint or its approximation have
been proposed. Jagannathan (1974) and Calafiore and El Ghaoui (2006) introduced
to reformulated a single linear chance-constrained problem as a second-order conic
programming (SOCP) constraint, where the random vector ξ in the problem is cho-
sen according to the Normal distribution, elliptic distribution or radial distribution.
Cheng and Lisser (2012) studied the problem where chance constraints have normal
distribution coefficients and independent matrix rows. A SOCP approximation us-
ing piecewise linear and piecewise tangent approximation is proposed by Luedtke,
Ahmed, and Nemhauser (2010). When the random vector support is limited, con-
struct a mixed-integer linear programming reconstruction for the joint linear chance
constraint problem. Hillier (1967) uses linear constraints to generate programs that
handle approximate chance constraints.

Furthermore, chance-constrained optimisation has been widely applied in different
disciplines for optimisation under uncertainty (Uryasev, 2013). For example, a chance-
constrained method has been applied in analogue integrated circuit design (McConaghy
et al., 2009), mechanical engineering (Mercado et al., 2005). Bhattacharya (2009) pre-
sented a chance-constrained optimisation model, which has been designed to decide
the number of advertisements in different advertising media and the optimal allocation
of the budget assigned to the various media. They assumed that the parameter corre-
sponding to connect for different media as random variables could be considered values

2.4. Conclusion 13

with known mean and standard deviations. Wang, Tang, and Fung (2014) designed a
chance-constrained stochastic programming model for daily operating room planning.
The model combines opportunity constraints to enforce the upper limit of the risk
of canceling surgery due to exceeding the ability to work overtime. Ravichandran
et al. (2018) reformulated the optimisation problem that an online optimal control
strategy for power flow management in microgrids as a stochastic chance constraints
optimisation problem. They highlighted the significant improvement of this model in
the system robustness over conventional rolling horizon controller while dealing with
uncertainties in the predictions of generation. Ordoudis et al. (2021) developed a
two-stage stochastic plan for the energy and reserve scheduling of the joint power and
natural gas system, and adopted opportunity constrained optimisation to ensure that
there is no high probability of load shedding and renewable resource spillover.

Until now, chance-constrained optimisation has not gained much attention in the re-
search field of evolutionary computation. The content in Chapter 4 first considers
the chance-constrained optimisation to tackle the stochastic variables in a combina-
torial optimisation problem that we introduce in the next section. Neumann and
Sutton (2019) first analysed the runtime of the most straightforward evolutionary
algorithm for the chance-constrained knapsack problem. Neumann and Neumann
(2020) presented a first runtime analysis of evolutionary multi-objective algorithms
for chance-constrained submodular functions. Assimi et al. (2020) considered the
chance-constrained knapsack problem under a dynamic environment and introduced
an additional objective used in multi-objective evolutionary algorithms. Doerr et al.
(2020) provided a first analysis on the approximation behaviour of popular greedy
algorithms for submodular problems with chance constraints.

For an overview of the theory, solution and applications of chance-constrained opti-
misation problems, one can refer to the monographs (Kall, Wallace, and Kall, 1994;
Calafiore and Dabbene, 2006; Liu, 2007; Shapiro, Dentcheva, and Ruszczyński, 2014).

2.4 Conclusion

In this chapter, we briefly introduce combinatorial optimisation problems and chance-
constrained optimisation problems. Since many complex real-world problems can be
expressed as combinatorial optimisation problems, this leads to greater attention of
researchers in this research field. We presented the formal definitions of two of the
most well-known problems: the OneMax problem and the knapsack problem. Next, we
introduced chance-constrained optimisation, one of the major approaches to solving
optimisation problems under various uncertainties. Finally, we presented the chance-
constrained knapsack problem, which will be deeply studied in Chapter 4.

15

Chapter 3

Bio-Inspired Computing and
Analytical Methods

3.1 Introduction

Methods inspired by biology such as local search, evolutionary algorithms and genetic
algorithms have been proved suitable for solving various combinatorial optimisation
problems (Hoos and Stützle, 2004; Johannsen, 2011). They are also part of a broader
class of stochastic search algorithms. Generally, bio-inspired algorithms iteratively
search for better solutions and employ heuristics that involve randomness, and they
are widely used for solving NP-hard problems due to their ability to provide high-
quality solutions for problems in reasonable computation times. Bio-inspired methods
usually start with an initialised solution x that is randomly generated or pre-designed.
Then, a fitness function f : D → R is defined, where D is the search space, and the
algorithms explore the D to find another solution y with a better fitness value than
x. These algorithms repeat the search procedure iteratively to find a solution x∗ with
optimal fitness value.

While stochastic search algorithms are developed, the theoretical analysis of their
behaviour is still far behind their practical implementation. The area of runtime
analysis for bio-inspired computing techniques starts with the first runtime analysis
of an evolutionary algorithm, given by Mühlenbein (1992). After then, this area
of research has provided many insights into the working behaviour and process of
bio-inspired computing methods when solving combinatorial optimisation problems
(Neumann and Witt, 2006; Neumann and Witt, 2010; Auger and Doerr, 2011; Oliveto
and Yao, 2011). The computational analysis of these algorithms considers the number
of evaluations that is required to find an optimal solution concerning the size of input
parameters and plays a significant role in their theoretical understanding.

This chapter is organised as follows. In Section 3.2 and Section 3.3, we introduce
Randomised Local Search and the main concepts of evolutionary algorithms, respec-
tively. In Section 3.4, we present the analytical methods which are commonly used to
analyse the performance of bio-inspired algorithms.

3.2 Randomised Local Search

Local search is a widely used heuristic method for solving optimisation problems.
It is an iterative algorithm and starts with an initial solution (randomly selected
or initialised by other algorithms). As the name suggests, the algorithm considers
the local neighbourhood N(x) of the current solution x, and searches for a better

16 Chapter 3. Bio-Inspired Computing and Analytical Methods

Algorithm 2: Local Search
1: The initial solution x and neighbourhood function N(x) are given;
2: while stopping criterion not met do
3: Replace x with the better solution y ∈ N(x).
4: end while

Algorithm 3: RLS1
1: The initial solution x is given;
2: while stopping criterion not met do
3: y ← flip one bit of x chosen uniformly at random;
4: if f(y) ≥ f(x) then
5: x← y
6: end if
7: end while

quality solution x′ for the fitness function (see Algorithm 2). Note that an appropriate
neighbourhood function is required to define the neighbourhood. When the x′ is
found, the algorithm replaces x by x′, then the search continues, and x′ is the next
solution. The process of searching the neighbourhood of x for a better neighbour
starts over. The local neighbourhood of a search point needs to be predefined and
should not be too large. The algorithm stops when it fails to find improvements in
the neighbourhood of the current solution. At this point, either the optimal solution
is found, or the algorithm is stuck at a local optimum.

Randomised local search (RLS) is one of the simplest stochastic search algorithms.
Considering the current solution x, RLS chooses one solution y at each iteration in
the neighbourhood of x at random. The current solution x is replaced by y if the
fitness value of y is at least as fit as x. The process continues until RLS can not
find a better solution within a pre-set number of iterations. Note that the size of the
neighbourhood plays a vital role in this algorithm.

A too-small neighbourhood results in fast convergence to a locally optimal solution,
while a large neighbourhood makes it possible to choose a new solution that is very
different from the current solution. Therefore, the algorithm can not guide the search
properly. A standard RLS algorithm (RLS1) is presented in Algorithm 3. Starting
with an initial solution x, RLS1 creates a new solution y by flipping exactly one bit of
x uniformly at random and replacing x with if the new solution is superior or equal
in terms of fitness. The algorithm repeats these steps until the desired condition is
satisfied. The most useful desired condition is exceeding the maximum number of
fitness evaluations that the algorithm is allowed to perform. The RLS1 considers a
neighbourhood comprised of solutions with unit Hamming distance, and it only flips
a single bit in each iteration.

Here we introduce another kind of RLS, named RLS2 (see Algorithm 4). This al-
gorithm starts with a randomly initialised solution and iteratively improves it by
applying a series of mutations. In each mutation step, it applies either one- or two-bit
mutation with equal probability. Specifically, with probability 1/2, it selects a sin-
gle index uniformly at random from {1, . . . , n} and flips the corresponding bit in the
current solution. Otherwise, it selects two distinct indexes uniformly at random to
flip.

3.3. Evolutionary Algorithms 17

Algorithm 4: RLS2
1: Choose x ∈ {0, 1}n to be a decision vector.
2: while stopping criterion not met do
3: Choose b ∈ {0, 1} uniformly at random.
4: if b = 0 then
5: choose i ∈ {1, . . . , n} uniformly at random and define y by flipping the ith

bit of x.
6: else
7: choose (i, j) ∈ {(k, l) | 1 ≤ k < l ≤ n} uniformly at random and define y by

flipping the ith and the jth bit of x.
8: end if
9: if f(y) ≥ f(x) then

10: x← y ;
11: end if
12: end while

3.3 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a random search algorithms, which use the mech-
anism of biological evolution, such as reproduction, mutation, recombination and
selection. The candidate solution of the optimisation problem is the individual in the
population. EAs prioritises individuals with high fitness values as potential parents of
the next generation according to the fitness function. Then, after repeated application
of the above operators, the population evolves.

Evolutionary Algorithms (EAs) have shown to be very successful when applied to
combinatorial optimisation problems, in particular, in tackling combinatorial NP-
hard optimisation problems (Deb, 2001; Chiong, Weise, and Michalewicz, 2012). EAs
often perform well approximating solutions because they ideally do not make any
assumptions about the underlying fitness landscape. Evolutionary algorithm provides
a framework, which makes it easier to combine prior knowledge about the problem.
Combining this information, we will focus on evolutionary search, so as to explore
the state space of possible solutions more effectively. In the following sections, we
describe the main components of evolutionary algorithms and the terminology used
for referring to essential concepts of these methods.

3.3.1 Components of Evolutionary Algorithms

Now we describe the main issues to be addressed properly before performing an evo-
lutionary algorithm on a given problem.

Representation

The first step of using EAs to solve problems is to select a solution representation. A
single real number, a binary value, a string, or a combination of different values can
represent a solution. For example, in the OneMax problem, the representation is a
bit-string of size n, such as x = (x1, . . . , xn), where xi denotes the value of the i-th
variable in the problem. Each solution needs to be evaluated so that the algorithm
can compare different solutions according to the fitness function f . In practice, a
fitness evaluation is usually costly. Therefore, an optimization algorithm should find

18 Chapter 3. Bio-Inspired Computing and Analytical Methods

a good or near-optimal solution while minimizing the number of fitness evaluations
needed.

In EA, the population refers to a set of candidate solutions. The formation of the
population changes with iterations. Generally, a group is defined as a group of indi-
viduals of a fixed size. EA needs to introduce new solutions for the current population.
The role of the reproduction operator is to create offspring from the parents of the
current population, and they should fit the selected representation to work correctly.
Generally, two operators (crossover and mutation) are used to perform this step.

Mutation Operator

Because of the dominance of candidate solutions and their high chance of being se-
lected for reproduction, most individuals converge on the best-found solution. Mu-
tation operators ensure that the population is not trapped in a local area, and the
outputs of this step depend on the outcomes of a series of random choices. A mu-
tation operator acts on a single individual and produces a modified offspring from
it. When executing the mutation individual, the mutation probability is set in the
evolution algorithm. The following introduces a typical example of a binary string
mutation operator. In a bit string of length n, mutator can be defined as flipping
each bit independently with a certain probability p. A common choice for p is 1/n,
which prevents operators from getting offspring as if they were generating random bit
strings from scratch.

We introduce another mutation operator that is investigated in Chapter 4, named
heavy-tail mutation operator. Doerr et al. (2017) pointed out that when a multi-
bit flip is necessary to leave a local optimum, it may take a longer time for the
algorithm to find the right bits to flip if using standard bit mutations. The heavy-
tail mutation operator overcomes the mentioned negative effect when using standard
bit mutations and is at the same time structurally close to the traditional way of
performing mutations. A general belief that a dynamic choice of the mutation rate
as done in heavy-tail mutation can be profitable. Theoretical studies show that the
performance of the (1+1) EA using a heavy-tail mutation operator is better than the
standard (1 + 1) EA in solving jump functions (Doerr et al., 2017).

In the heavy-tail mutation operator, Doerr et al. (2017) introduced that the mutation
rate is chosen randomly in each iteration according to a power-law distribution with
(negative) exponent β > 1. The heavy-tailed choice of the mutation rate ensures that
with probability �(k−β), exactly k bits are flipped. The power law distribution is
given as follows.

Theorem 3.3.1 (Discrete power-law distribution: Dβ
n/2). Let β > 1 be a constant. If

a random variable X follows the distribution Dβ
n/2, then

Pr(X = θ) =
(
Cβn/2

)−1
θ−β (3.1)

for all θ ∈ [1, .., n/2], where the normalization constant is Cβn/2 :=
∑n/2

i=1 i
−β.

In this thesis, we use the definition of the heavy-tail mutation operator proposed
by Doerr et al. (2017) as follows: when the parent individual is a bit string x ∈ {0, 1}n,
the mutation operator first chooses a random mutation rate θ/n with θ ∈ [1, .., n/2]

chosen according to the power-law distribution Dβ
n/2 and then creates an offspring by

3.3. Evolutionary Algorithms 19

Algorithm 5: The heavy-tail mutation operator
1: x = {x1, .., xn} ∈ {0, 1}n;
2: Choose θ ∈ [1, .., n/2] randomly according to Dβ

n/2;
3: for j = 1 to n do
4: if rand([0, 1]) ≤ θ/n then
5: yi ← 1− xi
6: else
7: yi ← xi
8: end if
9: end for

10: return y = {y1, .., yn}

Figure 3.1. Examples of crossover operators

flipping each bit of string independently with probability θ/n. The working principle
of this operator is given in Algorithm 5.

Crossover Operator

The crossover is responsible for recombination of the parents, and it results in in-
heritance. Different to mutation which performs on one parent and produces one
child, crossover is done on two selected parents and produces one or more offspring.
For bit-string representations, the single-point crossover and uniform crossover are
commonly used operators. For example, consider two solution x = (x1, . . . , xn)
and y = (y1, . . . , yn), the single-point crossover operator chooses a random num-
ber 1 ≤ i ≤ n − 1, cuts both individuals from the i-th bit, and swaps the sub-parts.
The outcome individuals of this operation will be z = (x1, . . . , xi, yi+1, . . . , yn) and
w = (y1, . . . , yi, xi+1, . . . , xn). Uniform crossover selects the i-th bits from {xi, yi},
uniformly at random and assigns to the outcome individuals. This operator randomly
chooses a bit for the first offspring and sets the other bit for the second offspring.
Figure 3.1 gives examples of how these crossover operators produce offspring.

Selection Mechanism

In EAs, there are two possible types of selection mechanisms, parental selection and
survival selection. Selection in EAs is used to select individuals according to their

20 Chapter 3. Bio-Inspired Computing and Analytical Methods

quality (i.e. the value of the fitness function of the problem). For a maximisation
problem, an individual with higher fitness value is better.

Parental selection is to distinguish individuals according to their quality in fitness
function, especially to allow better individuals to become the parents in the following
operations. In this way, the algorithm can ensure that future generations inherit the
beneficial characteristics of better solutions. Together with the survival choice mech-
anism, parental choice is responsible for promoting quality improvement. However, it
can not overcome the randomness of evolutionary algorithm. Therefore, high-quality
individuals have more opportunities to become parents than low-quality individuals.
However, low-quality individuals often have a slight but positive opportunity to be-
come parents.

Roulette wheel selection is a commonly used selection operator which calculates the
probability of selecting each individual based on its fitness value. The other selection
operator in many standard evolutionary algorithms is tournament selection. Tour-
nament selection chooses pre-given number of individuals uniformly at random and
selects the better one as the parent. Here, the number of chosen parents depends
on the reproduction operators, which determine how to combine parents to create
offspring.

After finalising the offspring reproduction, evolutionary algorithms distinguish the
individuals based on their quality by using survival selection. Then EAs create a new
population by replacing individuals from the current population with offspring. It
is similar to parent selection but used in a different stage of the evolutionary cycle.
Depending on the number of generated offspring and the size of the population, there
are different strategies to perform the survival selection. In this step, the algorithms
either compare offspring with the parents, select the ones with better fitness value,
or select the next generation from the offspring solutions. Moreover, elitism survival
selection transfers the best of the previous population directly to the next population.
The selection mechanism could also include moving some random solutions to the
next population in order to ensure random inheritance.

Termination Condition

The evolutionary cycle continues until a certain threshold is reached. Because the evo-
lutionary algorithms are random and do not guarantee to reach the optimal solution,
this condition may never be satisfied and the algorithms may never stop. Therefore,
the following options are usually used for thresholds: either the algorithms reach a
preset number of generations, or the algorithms perform a determined number of fit-
ness evaluations, or there is no significant additional improvement in the quality of
the results.

3.3.2 (1+1) EA

(1+1) EA (see Algorithm 6) is a fundamental single-objective evolutionary algorithm
in which the population contains only one solution, and only one offspring is gen-
erated for each iteration. If the new solution is better than or at least as good as
the current solution in terms of the fitness function, the new solution will replace the
current solution. This algorithm is quite similar to RLS but different in construct-
ing the new solution. In RLS, a solution in the defined neighbourhood is selected,
while in (1+1) EA, each part of the representation (e.g. each bit of the bit-string
in the knapsack problem example) is mutated with a small probability, which named

3.3. Evolutionary Algorithms 21

Algorithm 6: (1+1) EA
1: Choose x ∈ {0, 1}n uniformly at random.
2: while stopping criterion not met do
3: y ← flip each bit of x independently with probability of 1

n ;
4: if f(y) ≥ f(x) then
5: x← y ;
6: end if
7: end while

mutation rate.. Usually, this probability is equal to 1/n, where n is the size of the
solution. Therefore, (1+1) EA might flip more than one bit, significantly improving
its performance compared to RLS.

3.3.3 Multi-Objective Evolutionary Algorithms

In many disciplines, optimisation problems have two or more objectives, which usually
conflict with each other. We want to optimise those objectives at the same time.
These problems are called "multi-objective", and their solutions involve designing
different algorithms when dealing with single objective optimisation problems. Let k
denote the number of objectives, then each solution x will be a k-dimensional point
f(x) = (f1(x), . . . , fk(x)) in the objective space. As the name implies, multi-objective
optimisation handles multiple objectives which may conflict each other potentially.
Usually, the optimal solution for one objective is not guarantee to be the optimal
solution for any other objectives. In a maximisation problem, we say that a solution
x (weakly) dominates another solution y and denote it by f(x) � f(y), if f(x) 6= f(y)
and fi(x) ≥ fi(y), ∀i ∈ {1, . . . , n}. In such a scenario, not only one optimal solution
can be obtained, but a number of solutions are all optimal and we call these solutions
Pareto-optimal solutions.

Evolutionary algorithms have been widely used in solving multi-objective optimisation
problems, mainly because their are easy to use and have a wide range of applications
(Deb, 2001; Coello, Veldhuizen, and Lamont, 2002). Multi-objective Evolutionary
Algorithms (MOEAs) are stochastic population-based meta-heuristics that employ
the principles of natural selection to drive a set of solutions toward the Pareto op-
timal front. In the recently research on evolutionary multi-objective optimisation,
researchers concentrate on finding a set of well distributed Pareto optimal solutions,
and then select a specific solution according to the compromise information of the
solution.

Several multi-objective evolutionary algorithms have been introduced in the litera-
ture, starting with Vector Evaluation Genetic Algorithm (VEGA) (Schaffer, 1985).
The basic idea of the algorithm is to divide the population into M subpopulations of
equal size. Then, in each of those subpopulations, the selection is made by consider-
ing the unique corresponding target. Once the selection mechanism is implemented,
the remaining evolutionary operators apply to the outcome population. All these
processes are repeated in each generation. Later, a weight-based genetic algorithm
(WBGA) was introduced in Hajela and Lin, 1992 to assign a weighting coefficient
to the objective function used in the algorithm. Compared with the classic weighted
summation method, each individual in the group has its weighting coefficient vector.

22 Chapter 3. Bio-Inspired Computing and Analytical Methods

Algorithm 7: GSEMO
1: Choose x ∈ {0, 1}n uniformly at random ;
2: S ← {x};
3: while stopping criterion not met do
4: choose x ∈ S uniformly at random;
5: y ← flip each bit of x independently with probability of 1

n ;
6: if (6 ∃w ∈ S : w � y) then
7: S ← (S ∪ {y})\{z ∈ S | y �GSEMO z} ;
8: end if
9: end while

In other words, WBGA can find multiple non-dominated solutions in one run. How-
ever, WBGA is a weight-based method; therefore, it cannot find the Pareto optimal
solution in the non-convex part of the front edge.

Later, other multi-objective evolutionary algorithms were introduced to guide the
search to find non-dominated solutions unambiguously. Multi-objective genetic algo-
rithm (MOGA) (Murata and Ishibuchi, 1995) definitive uses Pareto-based ranking to
guide the search for the actual Pareto front while maintaining population diversity.
Each individual is assigned a function, which calculates the number of individuals
dominating it, and this function is shown as a rank. In the next two sections, we
theoretically and empirically describe the multi-objective methods we consider in this
paper (GSEMO and NSGA-II).

GSEMO

Now, we introduce a simple multi-objective evolutionary algorithm called Global
SEMO (GSEMO), which is present in Algorithm 7 for a multi-objective optimiza-
tion problem. GSEMO is proposed by Giel (2003) and is a simple extension of the
(1+1) EA. The GSEMO starts with an initial population generated with one ran-
domly selected solution. GSEMO randomly selects one solution from the current
population in its main loop, then the mutation operator is performed on it, and the
survival selection procedure is done afterwards. In the survival selection procedure,
the new solution is checked whether it is dominated by at least one other solution in
the population. If the new solution is not dominated by any other solutions in the
current population, then it is added to the population, and all other solutions that
are dominated by the new solution are removed from the population. In other words,
GSEMO only keeps non-dominated solutions; this is how it controls its population
size.

NSGA-II

Non-dominated sorting genetic algorithm (NSGA) (Srinivas and Deb, 1994) and its
improved version, NSGA-II (Deb et al., 2002) are well-known multi-objective evolu-
tionary algorithms that focus on diversity as well as finding near-optimal solutions.
The non-dominated sorting strategy divides the individuals in the population into
several fronts. NSGA first identifies non-dominated individuals from all members of
the population. The front row of these individuals is 1, and they are assigned an
important virtual fitness value. After that, the algorithm deletes the members in the
first front from the current population. The non-dominated individuals were iden-
tified from the truncated population and ranked at 2. This process continues until

3.3. Evolutionary Algorithms 23

Algorithm 8: NSGA-II
1: Generate initial population set P0 and offspring set Q0 ;
2: set t← 0 ;
3: while stopping criterion not met do
4: Rt ← Pt

⋃
Qt; combine parent and offspring population

5: F ← fast-non-dominated-sort (Rt); F = (F1, F2, . . .), all non-dominated front
of Rt

6: Pt+1 ← ∅ and i← 1;
7: while |Pt+1|+ |Fi| ≤ N do
8: crowding-distance-assignment (Fi);
9: Pt+1 ← Pt+1

⋃
Fi;

10: i← i+ 1;
11: end while
12: Sort Fi based on the crowding distance in descending order;
13: Pt+1 ← Pt+1

⋃
Fi[1 : (N − |Pt+1|)];

14: Qt+1 ← make-new-population (Pt+1);
15: t← t+ 1;
16: end while

all members of the population are classified. Furthermore, using a parameter σshare
that indicates the neighbourhood size, a fitness sharing strategy is applied to change
the fitness of solutions based on how close they are positioned in the objective space.
Diversity maintenance is achieved in NSGA by using this strategy.

However, NSGA can lose good solutions in the survival selection procedure. In order
to fix this, NSGA-II is proposed (Deb et al., 2000; Deb et al., 2002). In the initial
state, NSGA-II randomly generates a population P0, and assigns fitness (or rank)
to each solution according to its non-dominated rank. Then, the commonly used
selection, recombination and mutation operators are used to generate the offspring
population Q0. Algorithm 8 describes the implementation of NSGA-II in the initial
steps and after each dynamic change.

The basic iteration of NSGA-II is different from the first generation. Deb et al. (2002)
described the working process of each iteration. First, merge the two populations Pt
and Qt into a population Rt with a size of N . Second, perform a non-dominated
sorting to classify the entire group Rt and subdivide Rt into several categories F =
(F1, F2, . . .). Then, the individuals in the best non-dominated front are insert to the
new population Pt+1. Starting with the first front, it adds the solution to Pt+1 until
the parent population is filled. NSGA-II calculates the crowding distance in Fi. The
crowding distance estimates the perimeter of the box around the solution, which is
formed using the nearest neighbour of the solution as the vertex. Therefore, a large
crowding distance means that the solution is located in a sparse area. It assigns an
infinite value to the solutions which are boundary solutions with largest or smallest
value of each fitness function. Finally, the algorithm uses evolutionary operator to
generate Qt+1 from Pt+1 for ranking and crowding distance.

3.3.4 Differential Evolution

Differential Evolution (DE) is a simple and effective evolutionary algorithm used to
solve global optimisation problems in a continuous domain (Storn and Price, 1997;
Neri and Tirronen, 2010; Pham, Malinowski, and Bartczak, 2011). The first written

24 Chapter 3. Bio-Inspired Computing and Analytical Methods

article on DE appeared as a technical report by Storn and Kenneth (1995) and then
coming with a series of papers (Price, 1996; Storn and Price, 1997). Comprehensive
survey papers (Das and Suganthan, 2010; Das, Mullick, and Suganthan, 2016) provide
an up-to-date view of this algorithm and discuss its various modifications, improve-
ments and uses. Moreover, DE and its variants have been successfully applied to solve
numerous real-world problems from diverse domains of science and engineering (Das
and Suganthan, 2010; Neri and Tirronen, 2010).

The DE algorithm processes the population X = {x1, x2, . . . , xNp} consisting of Np

individuals encoded as n-dimensional vectors of real numbers. DE is a simple real
parameter optimisation algorithm. After random initialisation, it works through a
simple cycle of stages, mutation, crossover and selection mechanism. We explain each
stage separately in the following section.

Mutation

The mutation operator has a few basic variants, the details of which can be found in
(Storn and Price, 1997; Price, Storn, and Lampinen, 2006). Storn and Price (1997)
introduced notations DE/X/Y/Z of the mutation operator, where X denotes the
reproduction method, Y the number of difference vectors, Z stands for the type of
crossover being used. In each literature, DE algorithm selects a vector from the current
population and this vector named target vector. A mutation operator is applied on the
target vector and then obtains a donor vector. Finally, a trial vector is generated by
recombining the donor with the target vector. The most common one is DE/rand/1
which consists of randomly choosing three individuals from the population to create
the donor vector for each i-th target vector, and adding to the first of them xr1 a
scaled difference between two others xr2 and xr3

ui ← xr1 + F · (xr2 − xr3). (3.2)

Parameter F is called a scaling factor, as it shrinks the length of the difference vector
(xr2 − xr3). Storn and Price (1997) also defined the DE/rand/k variant which uses
a larger number of difference vectors:

ui ← xr1 + F1 · (xr2 − xr3) + . . .+ Fk · (xr2k − xr3k), (3.3)

where the scaling factors are usually assumed to be equal. In practice, the most
frequently encountered mutation operators have one or two difference vectors.

The other most frequently referred mutation operators are listed below:

DE/best/1 : ui ← xbest + F · (xr1 − xr2) (3.4)
DE/current - to - best/1 : ui ← xi + F · (xbest − xi) + F · (xr1 − xr2) (3.5)
DE/best/2 : ui ← xbest + F · (xr1 − xr2) + F · (xr3 − xr4) (3.6)
DE/rand/2 : ui ← xr1 + F · (xr2 − xr3) + F · (xr4 − xr5) (3.7)

Crossover

In DE, the crossover operator is based on exchanging elements between vectors en-
coding the parent and the mutant. The crossover follows the mutation operator. For
each mutated vector ui, a trial vector vi is generated using the following equation,

3.4. Analytical Methods 25

Algorithm 9: Differential Evolution Algorithm
Read values of the control parameters of DE: scale factor F , crossover rate CR,
and the population size NP from user.
Set the generation number G = 0 and randomly initialize a population of NP
individuals, and each individual uniformly distributed in the given range of
decision variables.
while stopping criterion not met do

for each individual i in the population do
Mutation Step
Generate a donor vector ui corresponding to the i-th target vector via the
differential mutation scheme of DE;
Crossover Step
Generate a trail vector vi for the target vector through crossover operator;
Selection Step
Evaluate the trail vector, keep the better one between the target vector
and the trail vector to the next generation.

G = G+ 1
return the best solution in the final population according to the fitness function.

so-called binomial crossover.

vit =

{
uit if rand(0, 1) ≤ CR or t = k
xit otherwise (3.8)

where rand(0, 1) randomly generates a number between 0 and 1, t is the gene under
consideration. k is a random integer selected from {1, . . . , n} to ensure that at least
one parameter is considered when constructing the trail vector. The parameter CR
is the crossover probability, which assumes a value between 0 and 1. Generally, the
crossover probability CR is more sensitive to the nature and complexity of the problem
(such as multi-modality), and the mutation constants regulate the convergence rate.
We found that CR = 0.5 is a good choice (an example is given by Kaelo and Ali
(2006)).

Selection

The selection operator employs a straightforward one-to-one competition scheme be-
tween vi and xi, regarding the fitness function, only the better of them is chosen for
the next generation. The pseudo-code for the DE algorithm can be seen in Algorithm
9.

3.4 Analytical Methods

The history of runtime analysis of bio-inspired computing begins with Mühlenbein
(1992). Since then, this area has provided many rigorous new insights into the work-
ing behaviour of bio-inspired computation methods for combinatorial optimisation
problems (Auger and Doerr, 2011; Neumann and Witt, 2010). The computational
analysis of bio-inspired methods considers the number of evaluations required to find
an optimal solution concerning the input size and plays a significant role in their theo-
retical understanding. In this section, we introduce some of the techniques in runtime
analysis for combinatorial optimisation problems. Some of the techniques can be ap-
plied to analyse the behaviour of evolutionary algorithms and randomised local search

26 Chapter 3. Bio-Inspired Computing and Analytical Methods

(He and Yao, 2001; Doerr, 2020). The following sections introduce techniques and
analytical tools that we used in this thesis.

3.4.1 Probabilistic Tools

This section introduces the well-known mathematical tools that are mainly used to
bound the probability of a random variable deviating from its expected value by
considering its variance. Two of the most used probabilistic tools, namely Chebyshev’s
inequality and Chernoff bounds, are presented in the following section. In this thesis,
we briefly introduce these bound without proof, while the in-detail proof can be found
in the textbooks by (Motwani and Raghavan, 1995; Doerr, 2020).

Chebyshev’s inequality, also called Bienayme-Chebyshev inequality as it was first
stated by (Bienaymé, 1853) and later proven by (Chebyshev, 1867).

Theorem 3.4.1 (Chebyshev’s inequality). Let x be a random variable with expectation
E(x) and variance V ar(x). Then for any λ ∈ R+, the following inequalities hold.

Pr

[
|x− E(x)| ≥ λ

√
V ar(x)

]
≤ 1

λ2
,

Pr [|x− E(x)| ≥ λ] ≤ V ar(x)

λ2
.

Note that the Chebyshev’s inequality automatically generates bilateral tail bound-
aries. Chebyshev’s inequality has a one-sided version. It is called Cantelli-Chebyshev
ineqaulity (Marshall, Olkin, and Arnold, 1979).

Theorem 3.4.2 (Cantelli-Chebyshev inequality). Let x be a random variable with
V ar(x) > 0, then for all λ > 0, the following inequalities hold.

Pr

[
x ≥ E(x) + λ

√
V ar(x)

]
≤ 1

λ2 + 1
, (3.9)

Pr

[
x ≤ E(x)− λ

√
V ar(x)

]
≤ 1

λ2 + 1
. (3.10)

The bounds presented below are typically called Chernoff bounds or Chernoff-Hoeffding
bounds, referring to the seminal papers by (Chernoff et al., 1952; Hoeffding, 1994).
Chernoff bounds give exponentially decreasing bounds on the probability that the sum
of some independent random variables deviate from their expected values and provide
sharper tails with exponential decay behavior. Those bounds are sharper than other
known tail bounds such as Markov inequality and Chebyshev’s inequality.

Theorem 3.4.3 (Chernoff bounds). Let x1, . . . , xn be indenpendent random variables
taking values in [0, 1]. Let x =

∑n
i=1 xi. Then, the following inequalities hold:

Pr[x ≥ (1 + ε)E(x)] ≤
(

eε

(1 + ε)(1+ε)

)E(x)

ε > 0 (3.11)

Pr[x ≥ (1 + ε)E(x)] ≤ e

(
−E(x)ε2

3

)
0 < ε ≤ 1 (3.12)

3.4. Analytical Methods 27

3.4.2 Fitness Based Partitions

For this simple method introduced by Wegener (2002), we assume that the considered
algorithm is a stochastic search algorithm working with one solution that produces
one offspring in each iteration. RLS and (1+1) EA are examples of these kind of
algorithms. Let S be the search space and f : S → R be the objective function
that should be maximised. Dividing S into m partitions, denoted by A1, A2, . . . , Am,
assume that for any i < j, x ∈ Ai, y ∈ Aj , we have f(x) < f(y). This assumption
indicates that the fitness value of solutions increases when increasing the index of
partitions. Moreover, let Am only include optimal solutions. For a search point x ∈ Ai,
the probability is denoted by p(x) that in the next step a solution y ∈ Ai+1∪ . . .∪Am
is produced. Let pi = minx∈Ai p(x) denote the smallest probability of producing
a solution with higher partition number. With Lemma 4.1 of Neumann and Witt
(2010) (presented here as Lemma 3.4.4), that the expected optimization time is upper
bounded by

∑m
i=1(1/pi).

Lemma 3.4.4. The expected optimization time of a stochastic search algorithm that
works at each time step with a population of size 1 and produces at each time step a
new solution from the current solution is upper bounded by

∑m
i=1(1/pi).

3.4.3 Drift Analysis

Runtime analysis is a relatively recent and increasingly popular approach in the theory
of randomised search heuristics. Drift analysis considers the drift of a stochastic
process, which is the expected progress of the underlying process from one-time step
to another. Generally speaking, this method counts the number of steps required for
the algorithm to fill a gap defined by a potential auxiliary function. Drift analysis is
first introduced by Sasaki and Hajek (1988), and He and Yao (2001) were the first
to apply drift analysis to evolutionary algorithms. In this section, we first give the
definition of the drift and then introduce variants of drift theorems.

The expected one-step change δt := E[Xt − Xt+1|Ft] for t ≥ 0 is called drift. Here,
we consider the Xt as a non-negative random variable and a natural filtration Ft =
(X0, . . . , Xt), i.e. the information available up to time t. Since the outcomes of
X0, . . . , Xt are random, the δt is a random variable. Suppose we try to bound δt
to some δ∗ > 0 from below to get all possible results of δt, where t < T . Then,
we know that the process will reduce its expected value by at least δ∗, and additive
drift analysis will provide a bound on T that depends only on X0 and δ∗. While
the additive drift analysis is very powerful and have gained success, a variation of it
is introduce in Doerr, Johannsen, and Winzen (2012). Multiplicative drift analysis
considers the improvements that are proportional to the current value of the auxiliary
function.

The first formal drift theorem was given by He and Yao (2001). We present a version
due to Lehre and Witt (2013) which removed the discrete search space and the Markov
property and only demand a bounded state space.

Theorem 3.4.5. (Additive Drift) Let (Xt)t≥0, be a stochastic process over some
bounded state space S ∈ R+

0 . Assume that E(T |X0) <∞. Then:

1. If E(Xt −Xt+1|Ft;Xt > 0) > δu then E(T |X0) ≤ X0
δu

.

2. If E(Xt −Xt+1|Ft) ≤ δ` then E(T |X0) ≥ X0
δ`
.

28 Chapter 3. Bio-Inspired Computing and Analytical Methods

By applying the law of total expectation, the statement (1) implies E(T) ≤ E(X0)
δu

and
analogously for statement (2). This theorem links the expected change in potential
to the first time the potential research zero.

In the multiplicative drift theorem, the value of random variable Xt is improved by a
proportion of its current value at each step. Concerning this theorem, runtime bounds
of evolutionary algorithms on several combinatorial optimisation problems have been
found, and the definition of the multiplicative drift introduced here is the version
presented by Doerr, Johannsen, and Winzen, 2012.

Theorem 3.4.6. (Multiplicative Drift) Let S ⊆ R be a finite set of positive numbers
with minimum smin. Let {Xt}t∈N be a sequence of random variables over S ∪ {0}.
Let T be the random variable that denotes the first point in time t ∈ N from which
Xt = 0. Suppose that there exists a real number δ > 0 that

E[Xt −Xt+1|Xt = s] ≥ δs

holds for all s ∈ S with Pr[Xt = s] > 0. Then for all s0 ∈ S with Pr[X0 = s0] > 0,
we have

E[T |X0 = s0] ≤
1 + ln (s0/smin)

δ
. (3.13)

Runtime analysis of OneMax

The function OneMax is easy to analyse, and the upper limit of the expected runtime
is determined by Mühlenbein (1992). When using (1+1) EA to solve the OneMax
problems, the mutation steps which increase the number of one-bits will be treated as
successful steps. Since the probability of flipping each bits is equal to 1/n where n is
the length of decision variables, there are at most n successful mutation steps for each
OneMax problem. If the number of zero-bits in the current bit string is equal to i,
the probability of successful steps is bounded by i

n

(
1− 1

n

)n−1, so if T is the waiting
time until the optimum is produced, we have

E[T] ≤
n∑
i=1

(
i

n

(
1− 1

n

)n−1)−1
, (3.14)

we have limn→∞
(
1− 1

n

)n
= 1

e and
∑n

i=1
1
i = O(lnn), then,

n∑
i=1

(
i

n

(
1− 1

n

)n−1)−1
≤ en

n∑
i=1

1

i
= O(n lnn). (3.15)

This is an upper bound for the expected running time of the (1+1) EA. Doerr, Jo-
hannsen, and Winzen (2012) studied in the time the (1+1) EA needs to find the
minimum of OneMax function. Therefore, in the selection step of each iteration, the
(1+1) EA only accept the candidate solution with the number of one bits that does
not increase. Then, consider the progress ∆t := OneMax (Xt) − OneMax (Xt+1) of
the (1+1) EA in the t-th iteration. By the working principle of the (1+1) EA, ∆t

cannot be negative, and by definition of OneMax, Xt = OneMax(Xt). For exactly
flip each of these one-bits, the probability of increasing the value of OneMax(Xt) by

3.5. Conclusion 29

one is 1
n

(
1− 1

n

)n−1 ≥ 1
en . Hence,

E[∆t|Xt] ≥
OneMax (Xt)

en
. (3.16)

Thus, multiplicative drift analysis gives the result as follows:

E[T] ≤ en (1 + lnE[OneMax(X0)]) = en
(

1 + ln
(n

2

))
= O(n log n), (3.17)

which is the same to the result in (3.14).

3.5 Conclusion

In this chapter, we went into detail with the randomised local search and the main
concepts of evolutionary computation. After describing the simplest evolutionary al-
gorithm (1+1) EA, we turned our attention to multi-objective evolutionary algorithms
and presented an algorithm as an extension of (1+1) EA for multi-objective optimisa-
tion called GSEMO. Then, we introduced NSGA-II, which is a well-known advanced
multi-objective algorithm.

Moreover, we presented some techniques for the runtime analysis of evolutionary algo-
rithms. We introduced probabilistic tools for finding the maximum probability that a
random variable deviates from its expected value. Then, we introduced the method of
fitness-based partitions, which tracks the quality of solutions moving through defined
levels. Finally, we included important theorems from the field of drift analysis, which
provide a strong tool for finding upper and lower bounds on the expected optimisation
times of bio-inspired algorithms.

31

Chapter 4

Evolutionary Algorithms for the
Chance-Constrained Knapsack
Problem

4.1 Introduction

Evolutionary algorithms have been used for various stochastic optimisation problems
(Till et al., 2007; Horng, Lin, and Yang, 2012; Nguyen and Yao, 2012; Rakshit, Konar,
and Das, 2017). Evolutionary algorithms can obtain good-quality solutions in most
cases within a reasonable amount of time, and can easily apply them to the solution
of stochastic problems. However, the mathematical model of the chance-constrained
optimisation problem is more difficult so it has received comparatively little attention
in the evolutionary computation literature.

In this chapter, we consider the chance-constrained knapsack problem (CCKP; de-
scribed in Section 2.3.1). Given a set of items with stochastic weights and deter-
ministic profits, the goal of the CCKP is to find a set of items of maximal profit,
subject to the condition that the probability with which the total weight will exceed
the capacity bound is less than or equal to a given threshold. Here, the threshold is
a small value limiting the probability of the constraint violation. To evaluate a solu-
tion concerning the chance constraint, we make use of two inequalities a Chebyshev’s
inequality and a Chernoff bound to calculate an upper bound on the probability of
violating the capacity bound and as surrogate functions for the chance constraint.
The probabilistic tools we employ allow us to estimate the probability of a constraint
violation mathematically without the need for sampling.

We develop a single-objective approach and a multi-objective approach for evolution-
ary algorithms to examine the performance of evolutionary algorithms in terms of
solving CCKP instances. First, we consider the simplest single-objective evolutionary
algorithm (1+1) EA (see Algorithm 6) and its multi-objective version, GSEMO (see
Algorithm 7), then we compare the performance of these algorithms with determinis-
tic approaches. Since the results of this comparison provide a reasonable justification
for using evolutionary optimisation when dealing with the chance-constrained knap-
sack problem, we then introduce two reproduction operators: the problem-specific
crossover operator and the heavy-tail mutation operator. These operators are used
to improve the solutions produced by EAs. We then investigate the performance of
some single-objective and multi-objective evolutionary algorithms in terms of solving
the CCKP.

32 Chapter 4. EAs for CCKP

This chapter extends the work published at the GECCO conference (Xie et al., 2019;
Xie, Neumann, and Neumann, 2020).

This chapter is organized as follows. In Section 4.2, we introduce the surrogate of
the chance constraint. In Section 4.3 and Section 4.4, we present the deterministic
approaches and evolutionary algorithms that can be employed to solve the CCKP, re-
spectively. Computational experiments and an investigate of the results are described
in Section 4.5, followed by a conclusion in Section 4.6.

4.2 Surrogate Functions for the Chance Constraint

Recall the definition of the chance-constrained knapsack problem in Section 2.3.1.
We assume the weights of items are independent of each other, with each weight wi
corresponding to the expected value ai = E[wi] and variance σ2i = V ar[wi]. Let
W (x) =

∑n
i=1wixi be the total weight of a given solution x = {x1, ..., xn}, with

E[W (x)] =
∑n

i=1 aixi denoting the expected weight of the solution derived by lin-
earity of expectation. Furthermore, V ar(x) =

∑n
i=1 σ

2
i xi denotes the variance of the

weight under the assumption that the variables of items are independent. This sec-
tion introduces how address the chance constraint by estimating the probability of
violating the capacity bound.

For cases where the weights of items are chosen according to the Normal distribution,
the violation probability of a given solution can be computed using the cumulative
distribution function. For other distributions, such as the uniform, exponential, and
Poisson distributions, Monte Carlo simulation can compute the probability of a given
solution to an arbitrary level of accuracy. Monte Carlo method is a general term for a
class of algorithms that rely on repeated random sampling to produces distributions
of possible outcome values. Raychaudhuri (2008) gives an introductory tutorial on
Monte Carlo simulation and briefly describes the nature and relevance of Monte Carlo
simulation. Kroese et al. (2014) introduce some typical uses of Monte Carlo methods
and offer the reasons why Monte Carlo methods are so popular. For cases where the
weights of items follow the uniform distribution, Monte Carlo simulation samples from
the uniform distribution of each chosen item of a given solution. Each set of samples
is called an iteration, and the resulting outcome (feasible or infeasible) from that set
of samples is recorded. Monte Carlo simulation does this enough times to numerically
guarantee the probability distribution of possible outcomes to an acceptable level of
accuracy. However, the computation efficiency of Monte Carlo simulation is low be-
cause it repeats sampling even more than a thousand times. Watson and Gordon
(1986) provide an approximation particularly suited to cases where the variables fol-
low a uniform distribution but with a small α. Luo and Shevchenko (2009) propose
an efficient direct numerical integration algorithm for computing the probability of
compound distributions by using a characteristic function.

We discuss two distributions of the weights in CCKP, which are the Normal and uni-
form distribution. However, as mentioned above, it is hard to evaluate the violation
probability for both distributions by using the same method effectively in an accept-
able amount of time. Therefore, we estimate the violation probability by applying
Chebyshev’s inequality and Chernoff bounds, introduced in Section 3.4.1. We present
the surrogate functions of the chance constraint (2.17) in the rest of this section by
applying these two bounds on the tails of probabilities.

4.2. Surrogate Functions for the Chance Constraint 33

4.2.1 Chebyshev’s Inequality

Since this chapter only considers the violation of the capacity bound C, we use the
one-sided Chebyshev’s inequality (3.9) to reformulate the chance constraint. The
inequality can be applied to any probability distribution with known expectation
and variance. To match the expression of Chebyshev’s inequality, we set E[W (x)] +

λ
√
V ar(x) = C and we have λ = C−E[W (x)]√

V ar(x)
, then we have a general formula to

calculate the upper bound of the chance constraint as follows:

Pr (W (x) ≥ C) ≤ V ar(x)

V ar(x) + (C − E[W (x)])2
. (4.1)

Hence, the constraint (2.17) can be reformulated as follows

V ar(x)

V ar(x) + (C − E[W (x)])2
≤ α. (4.2)

Definition 4.2.1. Given a solution x with stochastic weightW (x), we call E[W (x)]+√
V ar(x)1−αα the surrogate weight of x, denoted by S(x).

Theorem 4.2.1. If x is a solution vector with surrogate weight S(x) = E[W (x)] +√
V ar(x)1−αα , then, according to Chebyshev’s inequality, the chance constraint is sat-

isfied when S(x) ≤ C for all α ∈ (0, 1).

To be notice here, the converse of Theorem 4.2.1 is not true so that the optimal solution
may not satisfy the constraint. Furthermore, we consider two special cases where each
item in the first case has a uniform distribution and takes value in [ai−δ, ai+δ], which
is named the additive uniform distribution. In the second case, each item takes value
in [(1−β)ai, (1+β)ai], having a uniform distribution called the multiplicative uniform
distribution. Here, δ and β define the uncertainty of the weights of items. For the
variable which has a uniform distribution on the interval [g, h], the expectation of this
variable is µ = g+h

2 and the variance is σ2 = (h−g)2
12 . Applying Chebyshev’s inequality

to the chance constraint, we require

Pr (W (x) ≥ C) ≤
δ2
∑n

i=1 xi
δ2
∑n

i=1 xi + 3(C −
∑n

i=1 aixi)
2
≤ α (4.3)

for the additive uniform distribution and

Pr (W (x) ≥ C) ≤
β2
∑n

i=1 ai
2xi

β2
∑n

i=1 ai
2xi + 3(C −

∑n
i=1 aixi)

2
≤ α (4.4)

for the multiplicative uniform distribution. When each weight wi is chosen accord-
ing to the Normal distribution N(ai, σi) (with all weights being independent of each
other), we get

Pr (W (x) ≥ C) ≤
∑n

i=1 σ
2
i xi∑n

i=1 σ
2
i xi + (C −

∑n
i=1 aixi)

2 ≤ α (4.5)

34 Chapter 4. EAs for CCKP

4.2.2 Chernoff bounds

Chernoff bounds provide sharper tails with exponential decay behaviour. Those
bounds are sharper than other known tail bounds, such as the Markov inequality
and Chebyshev’s inequality. Chernoff bounds assume that variables are independent
and take on values in [0, 1]. There are several types of Chernoff bounds, but this
thesis is only concerned with the Chernoff bound (3.11). The Chernoff bound is used
to calculate the probability of violating the constraint incorporated into a surrogate
function.

Theorem 4.2.2. Let the stochastic weights w1, . . . , wn be independent variables with
expected values ai, . . . , an, respectively. Let C > 0 be the capacity of the knapsack,∑n

i=1wixi denotes the total weight of a solution x = (x1, ..., xn), and E[W (x)] =∑n
i=1 aixi be the expected weight of the solution, Furthermore, let δ ≥ 0 be the uncer-

tainty of the stochastic weights, and we have

Pr

(
n∑
i=1

wixi ≥ C

)
≤

 e
C−E[W (x)]
δ
∑n
i=1

xi(
δ
∑n
i=1 xi+C−E[W (x)]

δ
∑n
i=1 xi

) δ∑n
i=1

xi+C−E[W (x)]

δ
∑n
i=1

xi

1
2

∑n
i=1 xi

. (4.6)

Proof. In the chance-constrained knapsack problem, the Chernoff bound can be ap-
plied in a unique case that weights of items are taken value according a uniform
distribution in range [ai − δ, ai + δ]. All random variables have the same uncertainty
δ but different initial and final boundaries. We than normalize the stochastic weights
to make them chosen values in [0, 1]. Therefore, we set

yi =
wi − (ai − δ)

2δ
∈ [0, 1], Y (x) =

n∑
i=1

yixi.

We then have,

E(yi) =
ai − (ai − δ)

2δ
=

1

2

and

E[Y (x)] =
E[W (x)]− (

∑n
i=1 aixi −

∑n
i=1 δxi)

2δ
=

1

2

n∑
i=1

xi.

We introduce Y (x) in the Chernoff bound, such that,(
eε

(1 + ε)(1+ε)

)E[Y (x)]

≥ Pr [Y (x) ≥ (1 + ε)E[Y (x)]]

= Pr

[
n∑
i=1

wi − (ai − δ)
2δ

xi ≥ (1 + ε)

∑n
i=1 xi
2

]

= Pr

[
n∑
i=1

wixi −
n∑
i=1

(ai − δ)xi ≥ (1 + ε)δ

n∑
i=1

xi

]

= Pr

[
n∑
i=1

wixi ≥ εδ
n∑
i=1

xi +
n∑
i=1

aixi

]
.

Now, let C = εδ
∑n

i=1 xi +
∑n

i=1 aixi. We have ε = C−E[W (x)]
δ
∑n
i=1 xi

. We substitute C and
ε into the last expression, which completes the proof.

4.2. Surrogate Functions for the Chance Constraint 35

The proof can be distinguished by the following two characteristics. On the one
hand, we study the random variable yi rather than wi, on the other hand, the interval
lengths we discussed are the same for all stochastic weights. We reformulate the chance
constraint by using the Chernoff bound to estimate the upper bound of the probability
of violating the capacity. It should be noted that the interval of all weights should be
the equivalent and equal to 2δ. The surrogate function of the chance constraint is as
follows:

Pr (W (x) ≥ C) ≤

 e
C−

∑n
i=1 aixi

δ
∑n
i=1

xi(
δ
∑n
i=1 xi+C−

∑n
i=1 aixi

δ
∑n
i=1 xi

) δ∑n
i=1

xi+C−
∑n
i=1

aixi
δ
∑n
i=1

xi

1
2

∑n
i=1 xi

≤ α (4.7)

Theorem 4.2.3. If a solution x is satisfied for the surrogate function by applying
Chernoff bound, then it has the surrogate weight

S′(x) = E[W (x)] + δ

√
− 2∑n

i=n xi
lnα

√√√√ n∑
i=n

xi,

and S′(x) ≤ C.Let wi ∈ [ai − δ, ai + δ] for all α ∈ (0, 1).

Proof. Let ε = C−E[W (x)]
δ
∑n
i=1 xi

≥ 0, by the surrogate function (4.6) obtained by the Cher-
noff bound, this is bounded above by

(
eε

(1 + ε)(1+ε)

)∑n
i=1 xi
2

≤ α

⇐⇒ eε

(1 + ε)(1+ε)
≤ (α)

2∑n
i=1

xi

⇐⇒ eε ≤ (1 + ε)(1+ε)(α)
2∑n

i=1
xi

⇐⇒ ε ≤ 2∑n
i=1 xi

lnα+ (1 + ε) ln (1 + ε)

⇐⇒ ε− (1 + ε) ln (1 + ε) ≤ 2∑n
i=1 xi

lnα

=⇒ ε− (1 + ε)ε ≤ 2∑n
i=1 xi

lnα

⇐⇒ − ε2 ≤ 2∑n
i=1 xi

lnα

⇐⇒ ε2 ≥ − 2∑n
i=1 xi

lnα

⇐⇒ ε ≥

√
− 2∑n

i=1 xi
lnα.

Hence, we have C−E[W (x)]
δ
∑n
i=1 xi

≥
√
− 2∑n

i=1 xi
lnα, and C ≥ E[W (x)]+δ

√
− 2∑n

i=1 xi
lnα

√∑n
i=1 xi

where we have used the claimed surrogate weight.

36 Chapter 4. EAs for CCKP

4.2.3 Comparison of tail inequalities

Next, we theoretically investigate the effectiveness of Chebyshev’s inequality and the
Chernoff bound for tackling the chance constraint. The goal of this analysis is to ex-
amine which estimation method outperforms the other under various conditions. Let
pCher(x) denotes the probability bound obtained by the Chernoff bound and pCheb(x)
be the probability bound calculated by the Chebyshev’s inequality for a solution x.
The following theorem states a condition under which one inequality should be pre-
ferred over the other.

Theorem 4.2.4. Let x be a solution with expected weight E[W (x)] and variance of
weight V ar(x). Let ε = C−E[W (x)]

δ
∑n
i=1 xi

. We have pCher(x) ≤ pCheb(x) if and only if

(
eε

(1+ε)1+ε

)E[W (x)]
(εE[W (x)])2

1−
(

eε

(1+ε)1+ε

)E[W (x)]
≤ V ar(x). (4.8)

Proof. Using the variable ε from the Chernoff bound, we set k = εE[W (x)] in the
Chebyshev’s inequality. Then, we have(

eε

(1 + ε)1+ε

)E[W (x)]

≤ V ar(x)

V ar(x) + (εE[W (x)])2

⇐⇒
(

eε

(1 + ε)1+ε

)E[W (x)]

(V ar(x) + (εE[W (x)])2) ≤ V ar(x)

⇐⇒
(

eε

(1 + ε)1+ε

)E[W (x)]

(εE[W (x)])2) ≤ V ar(x)

(
1−

(
eε

(1 + ε)1+ε

)E[W (x)]
)

⇐⇒

(
eε

(1+ε)1+ε

)E[W (x)]
(εE[W (x)])2

1−
(

eε

(1+ε)1+ε

)E[W (x)]
≤ V ar(x)

which demonstrates our claim.

We now further investigate the relationship between Chebyshev’s inequality and the
Chernoff bound. In Theorem 4.2.4, the three parameters: ε, E[W (x)] and V ar(x)
establish the relationship between Chebyshev’s inequality and the Chernoff bound.
Among the parameters, ε indicates the deviation from the expected value. After fixing
the value of ε, for any instance, the relationship between E[W (x)] and V ar(x) can
determine which inequality is more suitable for the purpose of solving the instance. As
shown in Figure 4.1, the values of ε set independently at {0.01, 0.05, 0.1, 0.2, 0.3}. The
figure is based on a test instance with 100 items, and the weights of items are chosen
uniformly at random in the interval [0, 1]. Every curve in Figure 4.1 corresponds to
a fixed value of ε. When the tuple of (E[W (x)], V ar(x)) is located on the curve, the
probability of the constraint violation calculated by Chebyshev’s inequality and the
Chernoff bound are the same. For the situation where a tuple of (E[W (x)], V ar(x))
is located above the curve, the Chernoff bound gives a better estimate, and if it is
located below the curve, Chebyshev’s inequality provides a better upper bound on the
probability of the constraint violation. As can be seen from the figure, the greater the
value of ε, the more suitable the Chernoff bound is for obtaining a superior bound.

4.3. Deterministic Approaches 37

Figure 4.1. The relationship between expected weight and variance
of weight of a solution based on different values of ε.

4.3 Deterministic Approaches

In this section, we consider several deterministic approaches for the chance-constrained
knapsack problem. We present Integer Linear Programming (ILP), a Nemhauser-
Ullmann-based (NU-base) heuristic approach and dynamic programming (DP) in the
following subsections.

4.3.1 Integer Linear Programming

Firstly, we linearise the surrogate functions which replace the chance constraint in
the CCKP, then we apply Integer Linear Programming (ILP) to solve the problem.
We consider Chebyshev’s inequality and provide the linear approximation that char-
acterises the ILP approach. The surrogate functions in Section 4.2.1 can be replaced
by the following equations:

δ2
∑n

i=1 xi
δ2
∑n

i=1 xi + 3(C −
∑n

i=1 aixi)
2
≤ α

⇐⇒δ2
n∑
i=1

xi ≤ αδ2
n∑
i=1

xi + 3α

(
C −

n∑
i=1

aixi

)2

⇐⇒1− α
3α

δ2
n∑
i=1

xi ≤

(
C −

n∑
i=1

aixi

)2

⇐⇒1− α
3α

δ2
n∑
i=1

xi ≤ C2 − 2C
n∑
i=1

aixi +

(
n∑
i=1

aixi

)2

⇐⇒1− α
3α

δ2
n∑
i=1

xi ≤ C2 − 2C
n∑
i=1

aixi +
n∑
i=1

a2ixi + 2
∑

i<j:i,j={1,...,n}

aiajxixj (4.9)

for cases in which the weights of items follow the additive uniform distribution (4.3).
Then, we replace the term xixj in the right-hand side of equation 4.9 with a new

38 Chapter 4. EAs for CCKP

added variable yij with domain {0, 1}. We define linear constraints for yij as follows:

2yij ≤ xi + xj ≤ 1 + yij ; ∀i < j. (4.10)

The chance constraint can be reformulated as follows:

1− α
3α

δ2
n∑
i=1

xi ≤ C2 − 2C

n∑
i=1

aixi +

n∑
i=1

a2ixi + 2
∑

i<j:i,j={1,...,n}

aiajyij

⇐⇒1− α
3α

δ2
n∑
i=1

xi + 2C

n∑
i=1

aixi −
n∑
i=1

a2ixi − 2
∑

i<j:i,j={1,...,n}

aiajyij ≤ C2. (4.11)

For the chance-constrained knapsack problem, any feasible solution should submit
to equation (4.11) which indicates that regardless of whether the value of xixj is
equal to 0 or 1, setting yij will not make the feasible solution infeasible. For exam-
ple, if a solution X is a feasible solution, it should satisfy equation (4.10), assuming
there exists some xixj = 0 and we set the corresponding yij = 1. So, we have∑

i<j:i,j∈N aiajxixj ≤
∑

i<j:i,j∈N aiajyij of the solution x which does not make the
solution infeasible. Therefore, we can remove the right-hand side of equation (4.10).
We then formulate the ILP model of the chance-constrained knapsack problem with
weights having the additive uniform distribution as follows:

max
n∑
i=1

pixi (4.12)

s.t.
1− α

3α
δ2

n∑
i=1

xi + 2C

n∑
i=1

aixi −
n∑
i=1

a2ixi − 2
∑

i<j:i,j={1,...,n}

aiajyij ≤ C2 (4.13)

2yij ≤ xi + xj (4.14)
xi, yij ∈ {0, 1}n (4.15)

Similarly, for multiplicative uniform distribution (4.4), we have

β2
∑n

i=1 ai
2xi

β2
∑n

i=1 ai
2xi + 3(C −

∑n
i=1 aixi)

2
≤ α

⇐⇒β2
n∑
i=1

a2ixi ≤ αβ2
n∑
i=1

xi + 3α

(
C −

n∑
i=1

aixi

)2

⇐⇒(1− α)

3α
β2

n∑
i=1

a2ixi ≤

(
C −

n∑
i=1

aixi

)2

⇐⇒(1− α)

3α
β2

n∑
i=1

a2ixi ≤ C2 − 2C

n∑
i=1

aixi +

n∑
i=1

a2ixi + 2
∑

i<j:i,j∈N
aiajxixj (4.16)

4.3. Deterministic Approaches 39

Algorithm 10: NU-base Heuristic approach
1: Input: n items with expected weights {a1, ..., an}, variances of weights
{v1, ..., vn} and profits of items {p1, ..., pn}. Knapsack capacity C.

2: let lists L1, .., Ln.
3: Initialize L0 = {(0, 0)}.
4: for i = 1 to n do
5: L′i−1 = Li−1;
6: for each solution K ∈ L′i−1 do
7: add item i to K to generate a new solution K ′ = K ∪ {i},
8: if solution K ′ is feasible then
9: replace K with K ′.

10: else
11: delete K from L′i−1.
12: end if
13: end for
14: let Pmax = −1, E = {}
15: while true do
16: Let k ∈ Li−1 be the first one with pk > Pmax,
17: let k′ ∈ L′i−1 be the first one with pk′ > Pmax,
18: if cannot find k then
19: insert remaining points from L′i−1 into E,
20: break.
21: end if
22: if cannot find k′ then
23: insert remaining points from Li−1 into E,
24: break.
25: end if
26: if S(k) < S(k′) or (S(k) = S(k′) and pk > pk′) then
27: insert k into E, and set Pmax = pk,
28: else
29: insert k′ into E, and set Pmax = pk′ ,
30: end if
31: end while
32: end for
33: return Ln.

and for the case that the weight of each item is chosen according to the Normal
distribution N(ai, σ

2
i) (4.5), we have∑n
i=1 σ

2
i xi∑n

i=1 σ
2
i xi + (C −

∑n
i=1 aixi)

2 ≤ α

⇐⇒
n∑
i=1

σ2i xi ≤ α
n∑
i=1

σ21xi + α

(
C −

n∑
i=1

aixi

)2

⇐⇒(1− α)

α

n∑
i=1

σ2i xi ≤

(
C −

n∑
i=1

aixi

)2

⇐⇒(1− α)

α

n∑
i=1

σ2i xi ≤ C2 − 2C
n∑
i=1

aixi +
n∑
i=1

a2ixi + 2
∑

i<j:i,j∈N
aiajxixj . (4.17)

Replacing the terms xixj in equations (4.16) and (4.17) with the added variables yij ,
we can obtain the ILP models which take into account different surrogate constraints.

4.3.2 Heuristic Approach

40 Chapter 4. EAs for CCKP

Now, we introduce a heuristic approach (see Algorithm 10) adapted from the Nemhauser-
Ullmann algorithm (NU algorithm) proposed by Nemhauser and Ullmann (1969). The
NU algorithm can be viewed as a sparse dynamic programming approach introduced
by Beier and Vöcking (2004), and it computes a list of all dominating sets in an iter-
ative manner, adding one item after the other. For i ∈ {1, . . . , n}, let Li denote the
list of Pareto-optimal points considering item 1 to i. The solutions in Li are assumed
to be listed in increasing order of weight (profit).

In the heuristic approach, we use surrogate weights obtained using Chebyshev’s in-
equality and the Chernoff bound introduced in Definition 4.2.1 and Theorem 4.2.3
to replace the exact weights of the solution used to find the Pareto front in the NU
algorithm. The heuristic approach starts with the empty set and then adds items one
by one until it finally obtains the Pareto-optimal packing for all n items. Li can be
computed using Li−1 and the item i as follows: first generate L′i−1 by adding item i
to each element in Li−1 if the new solution is feasible and inserting it to L′i−1. Then,
we merge the two lists Li−1 and L′i−1 according to the surrogate weight and the profit
of the solutions. Finally, we obtain an order sequence Li of dominating solutions over
the items 1, . . . , i. The resulting list Ln contains all Pareto-optimal points for n items.
For this list, we choose the point with maximal profit, and the packing belonging to
this result is the approximate optimal solution.

In the merging step, both lists are sorted according to the surrogate weights. Thus,
this task can be completely by scanning only once through both of these lists. However,
this heuristic approach is effective in solving the knapsack problem where the weights
of items are deterministic in value. In the chance-constrained knapsack problem, the
weights of items are stochastic variables. Using the surrogate weights and the profits
of solutions to find the Pareto front does not guarantee that the optimal solution to
the problem will be found. Therefore, we introduce dynamic programming for the
chance-constrained knapsack problem in the next subsection.

4.3.3 Dynamic programming

We now introduce a dynamic programming approach for the purpose of solving the
chance-constrained knapsack problem. Dynamic programming is one of the tradi-
tional approaches to the classical binary knapsack problems (Toth, 1980). In the DP
approach, items are processed in order according to their index, from 1 to n.

The key idea behind the DP approach for CCKP is to assume the weights of items are
random variables with corresponding expected weights and variances. The approach
is applied in a similar manner to the process which is undertaken for the classical
binary knapsack problem. The program table of the chance-constrained knapsack
problem consists of n + 1 rows and C + 1 columns which are used to compute the
optimal solution. Each cell Mij consists of a set of feasible solutions which selected
items from the items set {1, . . . , i} and knapsack capacity j, and those solutions are not
dominated by each other. Here we choose to use the surrogate functions to replace the
chance constraint. To initialise the program table, we set the first cell as M00 = {∅}
which only contains an empty set of items.

It can be observed of the surrogate functions obtained by Chebyshev’s inequality (4.1)
and the Chernoff bound (4.7) that for a solution, not only its expected weight but
also its variance affects the probability with which it will violate the knapsack bound.
With a fixed expected weight, when the value of the variance decreases, the probability
of the chance constraint will decrease. Similarly, with a fixed variance, a decrease in

4.3. Deterministic Approaches 41

Algorithm 11: Dynamic programming
1: Input: n items with expected weights {a1, ..., an}, variances of weights
{v1, ..., vn} and profits of items {p1, ..., pn}. Knapsack capacity C.

2: let M [0, . . . , n][0, . . . , C] be a new table, each cell Mij stores a set of solutions.
3: Initialize M00 = {∅}.
4: for i = 1 to n do
5: for j = 0 to C do
6: Mij = M(i−1)j ;
7: if ai ≤ j then
8: for each solution S ∈M(i−1)(j−ai) do
9: add item i to S to generate a new solution S′ = S ∪ {i},

10: if solution S′ is feasible and not dominated by any solution in Mij

then
11: remove solutions in Mij which are dominated by S′.
12: add S′ to Mij .
13: end if
14: end for
15: end if
16: end for
17: Mij stores all feasible and no-dominate to each other solutions.
18: end for

the expected weight leads to a decrease of probability that chance constraint will be
violated. The smaller the value of this probability, the higher the capability to insert
items into the knapsack. Therefore, we say that solution S dominates solution S′,
denoted by S � S′, iff w(S) < w(S′), v(S) < v(S′) and p(S) > p(S′), where w(S)
denotes the expected weight of solution S, v(S) denotes the variance of solution S
and p(S) denotes the profit of solution S.

Let item (i− 1) be the predecessor of item i and ai ≤ j. Based on the set of feasible
solutions inM(i−1)(j−ai) we computeMij where ai denotes the expected weight of item
i, and giving us ai ≤ j. We calculate Mij by adding item i using the following steps.
Firstly, all elements from M(i−1)(j) are copied to Mij . Secondly, for every solution S
in M(i−1)(j−ai), item i is added to the set of items. If the new set of items S ∪ {i}
is feasible and not dominated by any solution in Mij , we remove solutions from Mij

which are dominated by S ∪ {i} and add S ∪ {i} to Mij . For the resulting algorithm
(Algorithm 11), we can state the following theorem:

Theorem 4.3.1. For each set of item {1, .., i}, Mij stores a set of feasible solutions
none of which are dominated by each other with respect to all subsets of {1, ..., i} and
knapsack capacity j, and the optimal solution is among them. In particular, MnC

contains the optimal solution with considering all items, which can be obtained using
the DP approach.

Proof. The statement is true for the first item as there are only two options: choosing
or not choosing the first item. So M00 stores the solution: (∅). Now we assume
that M(i−1)j stores all feasible solutions which are not dominated by each other with
respect to all subsets of {1, .., i− 1} with capacity j.

Now, we construct Mij by first adding all subsets in M(i−1)j . Then, if ai > j, item i
cannot be added to any solution inM(i−1)(j−ai) andMij = M(i−1)j . Otherwise, adding

42 Chapter 4. EAs for CCKP

item i to a subset S′ ∈ M(i−1)(j−ai), if the new set of items is still feasible according
to capacity j, then the expected weight of this solution is w(S′ ∪ {i}) = w(S′) + ai,
the variance of this solution is v(S′ ∪ {i}) = v(S′) + σ2i and the profit is p(S′ ∪ {i}) =
p(S′) + pi. Then, if the new solution is not dominated by any solution in Mij , we
insert this solution into Mij , removing all solutions in Mij which are dominated by
this solution.

Therefore, Mij stores all feasible solutions which are not dominated by each other,
and we can pick the optimal solution in MnC . This concludes the proof.

We now investigate the runtime for this dynamic program. The feasible solutions in
the cellMij have been calculated by considering all possible combinations of variances
and expected weights from the set {1, ..., i}, in which 2i denotes the number of different
expected weights and variances in the worst case. We then give the upper bound of the
computation time that DP takes to calculate all possible combinations of the variances
and expected weights of Mij as O(22i). Therefore, the time until the DP approach
calculates the optimal solution to the chance-constrained knapsack problem instance is
the summary of O(nC22n). However, in the case that the weights of items are chosen
according to a uniform distribution and take values in [ai−δ, ai+δ], then the variance of
items are the same. So for the set {1, . . . , i}, the possible combinations of the variance
is O(i), and the runtime of the instances, in this case, is bounded by O(Cn22n). In
the case that the weights of items are chosen according to the uniform distribution
[(1− β)ai, (1 + β)ai] or the Normal distribution N(ai, aiβ), the variance of an item is
equal to the expected weight of this item times the uncertainty β. Therefore, when
tackling those cases, the DP does not need to incorporate the variance of solutions into
the domination comparison, and the runtime of the approach is bounded by O(Cn2n).

4.4 Evolutionary Algorithms

In this section, we discuss the use of evolutionary algorithms to solve the CCKP.
We begin by designing fitness functions for a single-objective approach and a multi-
objective approach. Next, we investigate the effectiveness of the simplest single-
objective evolutionary algorithm (the (1+1) EA) and its multi-objective version (GSE
MO) to solve the problem using an experimental study.

Experimental results are presented in Section 4.5.2, which show that the GSEMO
outperforms the (1+1) EA for all instances and performs better than determinis-
tic approaches in terms of computation time. A new multi-objective model is then
presented and compared with the standard model. Moreover, we develop specific
operators that can be used in single- and multi-objective evolutionary algorithms to
improve their performance of EAs.

4.4.1 Single-Objectives Approach

In this section, we present the single-objective approach and design a fitness function
that can be used in single-objective evolutionary algorithms. The fitness function
f for the approach needs to take into account the profit of the selected items and
the requirement that the probability of overloading the capacity must to meet the
threshold of chance constraint.

We define the fitness of a solution x ∈ {0, 1}n as

f(x) = (u(x), v(x), P (x)) (4.18)

4.4. Evolutionary Algorithms 43

where u(x) = max{
∑n

i=1 aixi−C, 0}, v(x) = max{Pr{
∑n

i=1wixi > C}−α, 0} where
the probability is calculated by surrogate functions, and P (x) =

∑n
i=1 pixi. For

this fitness function, u(x) and v(x) need to be minimised while P (x) needs to be
maximised, and we optimise f in lexicographic order. The fitness function takes into
account two types of infeasible solutions: (1) solutions the expected weight of which
exceeds the bounds of the capacity, (2) solutions for which the probability that the
total weight of the solution will violate the capacity is greater than α. Note that
α is usually a small value, and that throughout this paper, we work with α ≤ 0.1.
The reason we account for the first type of infeasible solution is that we cannot
use the inequalities to guide the search if the expected weight is above the given
capacity bound. Furthermore, the first type of infeasible solution violates the chance
constraint with a probability of at least 1/2 for all probability distributions studied in
the experimental part of this paper. Among solutions that meet the chance constraint,
we maximise the profit P (x).

Formally, we have the following relation between two search points x and y

f(x) � f(y)

⇐⇒ (u(x) < u(y)) or (u(x) = u(y) ∧ v(x) < v(y)) (4.19)
or (u(x) = u(y) ∧ v(x) = v(y) ∧ P (x) > P (y))

When comparing solutions, a feasible solution is preferred to any infeasible. When
comparing two feasible solutions, the one with the better profit is preferred. When
comparing two infeasible solutions, the one with a lower degree of constraint violation
is better than the other.

The fitness function can be used in any single-objective evolutionary algorithm. In
this chapter, we investigate the performance of the classical (1+1) EA (see Algo-
rithm 6). We generate the initial solution with items chosen uniformly at random for
the algorithm, and then the (1+1) EA flips each bit of the current solution with a
probability of 1/n in the mutation step. In the selection step, the algorithm accepts
the offspring if it is at least as good as the parent according to the fitness function f.

Problem-Specific Crossover Operator

The proposed crossover operator is a combination of the uniform crossover and factors
specific to CCKP and the standard KP. The uniform crossover operator can easily
preserve all parent similarities when generating new offspring. Indeed, for many com-
binatorial optimisation problems, good solutions which are close in the objective space
are expected to be rather similar in the decision space (Jaszkiewicz, 2001; Ishibuchi
et al., 2008). Therefore, the uniform crossover can maintain so-called good gene com-
binations which are constructed during the search process.

The problem-specific crossover operator, which we shall call the PS crossover operator,
adopts the benefits of the uniform crossover operator. We evaluate the quality of all
genes that are different in the two parents, specifically in relation to KP. We use the
profit/weight ratio to determine the quality of genes (i.e., items). Then, the genes are
sorted in descending order according to the quality, and we apply a greedy insertion
heuristic to iteratively insert the candidate item that has the highest profit/weight
ratio. At this stage, we insert the first k items according to the ordering of the non-
common genes. k is an integer number that round the value which randomly chosen
according to the Normal distribution with expectation and variance both equal to m

2 ,
where m denotes the number of genes on which the two parents differ.

44 Chapter 4. EAs for CCKP

Algorithm 12: (µ+ 1) EA
1: Randomly generate µ initial solutions as the initially population;
2: while stopping criterion not meet do
3: Choose x1 ∈ {0, 1}n and x2 ∈ {0, 1}n uniformly at random from the

population X; x1 6= x2.
4: apply the PS crossover operator in x1 and x2, generate an offspring y;
5: apply the heavy-tail mutation operator to y;
6: if y is better than the worse solution in X then
7: replace the worst solution with y;
8: end if
9: end while

In this chapter, to investigate the effectiveness of the presented operators, we introduce
a population-based single-objective evolutionary algorithm. This kind of algorithm
maintains a population of binary solutions presented as a bit string. We examine the
performance of this (µ+1) EA (see Algorithm 12) using the heavy-tail mutation oper-
ator and the problem-specific crossover operator separately, as well as a combination
of the two operators.

4.4.2 Standard Multi-Objective Model

To compare the performance between single-objective evolutionary algorithms and
multi-objective evolutionary algorithms, we set the search point x as a two-dimensional
point in the objective space. Then, we have the following standard fitness functions
which aim to obtain a solution with maximal profit and minimal probability of vio-
lating the capacity bound.

g1(x) =

{
Pr(W (x) ≥ C) E[W (x)] < C
1 + (E[W (x)]− C) E[W (x)] ≥ C (4.20)

g2(x) =

{
P (x) g1(x) ≤ α
−1 g1(x) > α

(4.21)

where W (x) denotes the weight of the solution x and E[W (x)] denotes the expected
weight of the solution. We say that solution y weakly-dominates solution x (denoted
by y < x), iff g1(y) ≤ g1(x)∧g2(y) ≥ g2(x). When comparing two solutions, the objec-
tive function g1 guarantees that a feasible solution dominates all infeasible solutions.
The objective function g2 ensures that the search process is guided towards feasible
solutions and that trade-offs in terms of confidence level and profit are computed
for feasible solutions. The multi-objective algorithm we consider with the standard
fitness functions is the GSEMO (see Algorithm 7) which is a simple multi-objective
evolutionary algorithm (SEMO) that searches globally.

4.4.3 Improved Multi-Objective Model

We introduce a new multi-objective model for the chance-constrained knapsack prob-
lem. The model accounts for both feasible solutions and the second type of infeasible
solutions mentioned in Section 4.4.2. To keep more diversity in the solution space,
the new model makes other solutions dominate the infeasible solutions such that the
expected weight of selection items is overloading the capacity. The difference between

4.5. Experiments 45

the improved multi-objective model and the standard multi-objective model is that
the standard model made all feasible solutions dominate all infeasible solutions. The
fitness functions of this new model are proposed as follows:

g′1(x) =

{
Pr(W (x) ≥ C) E[W (x)] < C

1 + (E[W (x)]− C) E[W (x)] ≥ C (4.22)

g′2(x) =

{ ∑n
i=1 pixi g1(x) ≤ 1

−1 g1(x) > 1
(4.23)

The first function calculates the probability of a solution by overloading the capacity
of the knapsack, and it forces the probability of an infeasible solution whose expected
weight exceeds the capacity of 1. The second fitness function is the objective of the
chance-constrained knapsack problem. It calculates the profit of feasible solutions
with a probability less than α and infeasible solutions with a probability greater than
α but less than 1. We say solution y dominates solution x w.r.t.g, denoted by y < x,
iff g′1(y) ≤ g′1(x) ∧ g′2(y) ≥ g′2(x).

The objective function g2 guarantees that the search process is guided towards all
available solutions, meaning that trade-offs in terms of confidence level and profit are
computed for the solutions in the Pareto front. However, even though the algorithm
can store feasible solutions and a collection of infeasible solutions, it outputs the best
feasible solution in every iteration.

In the experiment section, we apply the improved model to GSEMO. GSEMO can
generate a Pareto front with both feasible solutions and infeasible solutions. For
further investigation of our multi-objective optimisation, we also apply the nondomi-
nated sorting genetic algorithm II (NSGA-II; see Algorithm 8), which was introduced
in Section 3.3.3.

4.5 Experiments

In this section, we first compare the results obtained by using deterministic ap-
proaches, (1+1) EA and GSEMO, and investigate the performance of these approaches
with different surrogate functions of the chance constraint. Secondly, to show the dif-
ferences between the ways in which the EAs use different operators, we carry out a
test into combining algorithms with operators for the purpose of solving the CCKP
instances.

4.5.1 Experimental Setup

Firstly, we describe the experimental design and the chance-constrained knapsack
problem instances. In this chapter, all experiments implemented evolutionary algo-
rithms, the heuristic approach and DP were performed using Java (version 11.0.1).
Investigations implementing ILP were conducted in Gurobi (version 9) solver on a
MacBook with a 2.3 GHz Intel Core i5 CPU. The benchmark we used is from the
literature (Roostapour, Neumann, and Neumann, 2018), which was created following
the approach in Vance (1993). We choose two types of instances from the benchmark:
uncorrelated and bounded strongly correlated. The weights and profits of items in
the uncorrelated instances are integers that are chosen uniformly at random within

46 Chapter 4. EAs for CCKP

[1, 1000]. The bounded strongly correlated instances have the tightest bound of knap-
sack among all type of instances where the weights of items are chosen uniformly at
random within [1, 1000], and the values of profits are set by the weights.

We adapt the above instances to the chance-constrained knapsack problem by ran-
domising the weights. Since the weights of items must be positive, we add a value γ
to every deterministic weight from the benchmark and take it as the expected weight
of this item to ensure we can factor in more uncertainty in all instances. Since we
change the weights of items, we need to adjust the considered constraint bound. How-
ever, shifting the knapsack bound is challenging, as it is necessary to ensure that a
solution remains feasible after bound has been changed. Moreover, increasing the
knapsack’s capacity expands the feasible search space and may introduce additional
feasible solutions. Hence, when shifting the capacity of the knapsack, one should con-
sider keeping the feasibility of original solutions and the size of the new feasible search
space adaptive.

We adjust the original knapsack problem instances from the benchmark set as follows.
First, we sort the weights of items in ascending order. Then, the first k items with
smaller weights are chosen to be added to the knapsack until the original capacity is
exceeded. Hence, this number of items k represents the largest number of items that
any feasible solution may include. We adapt the capacity bound according to this and
set:

C ′ ← C + kγ. (4.24)

We set γ = 100 and apply it to the initial benchmark. In this section, we consider
three instance categories: (1) instances in which every item weight is chosen according
to the additive uniform distribution and takes the value in [ai−δ, ai+δ]; (2) instances
in which every item weight follows the multiplicative uniform distribution and takes
the value in [(1 − β)ai, (1 + β)ai]; (3) instances in which every item weight follows
the Normal distribution N ∼ (ai, aiβ). The tuples (α, δ, β) are the combinations of
the elements from the sets α = [0.001, 0.01, 0.1], δ = [25, 50] and β = [0.01, 0.05, 0.1].
Based on this arrangement, we compare the performance of all the algorithms on
the chance-constrained knapsack problem. Since (1+1) EA and GSEMO are bio-
inspired algorithms, they cannot produce exact optimal solutions, and the solutions
are different in independent runs. Statistical comparisons (comparing each pair of
algorithms with surrogate functions) are carried out using the Kruskal-Wallis test
(with a 95% confidence interval) integrated with the Wilcoxon sum rank test (with
a 95% confidence level). For more detail of these statistical tests, we refer to Dunn
and Dunn (1961), Driscoll (1996), Ghasemi and Zahediasl (2012), and Corder and
Foreman (2014).

In the next subsection, we compare the performance of all proposed algorithms for
instances of different types and sizes. Then, we highlight the differences between the
algorithms using Chebyshev’s inequality and the Chernoff bound as the surrogate
functions of the chance constraint.

4.5.2 Experimental Results of Deterministic Approaches and Base-
line Evolutionary Algorithms

We benchmark our approach with the combinations from the experimental setting
described above. Table 4.1 and Table 4.2 list the results obtained from the two

4.5. Experiments 47

Table 4.1. Statistical results for instances with 100 items based on
additive uniform distribution and using Chebyshev’s inequality

Capacity δ α ILP Heuristic approach DP (1+1)EA GSEMO
2mins 6mins 10mins profit time(ms) profit time(ms) profit time(ms) profits time(ms)

bou-s-c 1 11775 25 0.001 13701 13701 13701 13707 261 − − 13614.8 1200.521 13707 21090.318
0.01 15252 15252 15252 15252 303 − − 15150.47 1207.292 15252 19888.28
0.1 15768 15775 15775 15782 492 − − 15680.87 1206.771 15782 26239.498

50 0.001 11757 11793 11795 11900 517 − − 11756.27 1195.313 11888.1 11637.863
0.01 14503 14505 14505 14505 691 − − 14416.8 1203.125 14505 16181.898
0.1 15585 15585 15585 15585 304 − − 15431.37 1208.854 15585 18520.158

bou-s-c 2 31027 25 0.001 35045 35045 35045 35069 2015 − − 34874.8 1226.042 35068.933 51648.881
0.01 37005 37005 37005 37027 2287 − − 36850.73 1232.813 37019.133 61361.251
0.1 37647 37647 37657 37673 5056 − − 37467.43 1233.854 37670.367 64439.556

50 0.001 32096 32270 32357 32547 2092 − − 32332.97 1220.833 32552.733 42825.912
0.01 36019 36033 36061 36131 2172 − − 35937.9 1228.125 36121.667 58301.656
0.1 37391 37391 37391 37406 2857 − − 37202.63 1235.938 37370.9 62496.325

bou-s-c 3 58455 25 0.001 64190 64175 64265 64389 8042 − − 64185.73 1250 64387.067 203302.72
0.01 66630 66630 66630 66641 10749 − − 66404.37 1253.125 66639.9 154383.75
0.1 67339 67339 67339 67357 31192 − − 67164.5 1256.771 67356.733 162281.6

50 0.001 61111 61111 61111 61155 8374 − − 61007.6 1242.709 61220.2 168099.53
0.01 65478 65496 65491 65603 8420 − − 65372.4 1250.521 65601.8 200503.73
0.1 66953 67001 66953 67059 17751 − − 66859.37 1254.688 67057.3 213127.4

uncorr 1 7715 25 0.001 14354 14354 14354 14354 128 14354 12605162 14273.6 1205.729 14354 11479.932
0.01 16481 16481 16481 16481 120 16481 23461453 16433.1 1213.021 16481 13291.141
0.1 17247 17247 17247 17247 153 17247 49890459 17176.57 1213.021 17247 13480.268

50 0.001 11599 11599 11599 11599 53 11599 33147184 11478.83 1196.875 11599 11852.237
0.01 15504 15504 15504 15504 188 15504 205023878 15424.1 1207.292 15504 16188.438
0.1 16890 16890 16890 16890 134 16890 36045784 16814.53 1214.583 16890 14843.431

uncorr 2 19545 25 0.001 27027 27027 27027 27029 601 − − 26932.67 1232.292 27029 38636.347
0.01 28786 28825 28825 28825 879 − − 28724.13 1238.021 28825 54770.144
0.1 29415 29415 29415 29415 853 − − 29315.6 1241.667 29415 56148.136

50 0.001 24561 24561 24561 24565 625 − − 24449.3 1228.125 24565 32166.648
0.01 27962 27962 27962 27985 504 − − 27918.43 1237.5 27985 40521.42
0.1 29165 29165 29165 29165 648 − − 29091.97 1238.542 29165 43018.24

uncorr 3 36091 25 0.001 39181 39182 39182 39245 1150 − − 39192.53 1258.333 39245 32204.292
0.01 40581 40581 40581 40581 998 − − 40530.27 1261.458 40581 46855.019
0.1 40991 40991 40991 40991 1300 − − 40890.8 1262.5 40990.8 44955.924

50 0.001 36531 37068 37098 37180 1299 − − 37120.03 1256.25 37180 45597.177
0.01 39739 39917 39917 39960 1186 − − 39906.7 1260.938 39960 34677.722
0.1 40754 40811 40811 40811 1315 − − 40751.47 1263.542 40811 38348.789

types of instances which contain 100 items. The weights of items have an additive
uniform distribution, and the best solutions among all approaches are emphasised
in bold. For each instance, we investigate different settings together with different
levels of uncertainty determined by δ and the requirement on the chance constraint
determined by α. We apply Chebyshev’s inequality to ILP by fixing running time
{2mins, 6mins, 10mins} for all instances; the results are listed in Table 4.1. We use
both chance-constrained estimation methods to tackle the chance constraint when
using the heuristic approach and the DP approaches. Under the heuristic approach
and the DP headings, the profit denotes the object value of each approach, and the
time(ms) denotes the computation time associated with each approach. The compu-
tation time associate with DP is one or orders of magnitude longer than for other
approaches, for all instances. Where units are presented in −, this means that the
run time for DP to solve these instances is longer than ten hours. For (1+1) EA and
GSEMO, we provide the results from 30 independent runs with 106 generations for
all instances. In these cases, profit denotes the average profit associated with the 30
runs, and time(ms) denotes the average running time in milliseconds associated with
the 30 runs.

The first insight from Table 4.1 and Table 4.2 is according to the deterministic ap-
proaches, the objective values obtained by the DP are at least as good as the results
obtained by heuristic approach and ILP. When using Chebyshev’s inequality to esti-
mate the probability of violating the capacity, the heuristic approach performs at least

48 Chapter 4. EAs for CCKP

Table 4.2. Statistical results for instances with 100 items based on
additive uniform distribution and using Chernoff bound

Capacity δ α Heuristic approach DP (1+1)EA GSEMO
profit time(ms) profit time(ms) profit time(ms) profits time(ms)

bou-s-c 1 11775 25 0.001 15208 293 − − 15104.57 1236.979 15208 20055.67
0.01 15348 613 − − 15232.07 1236.458 15348 25803.75
0.1 15599 1116 − − 15454.03 1231.25 15599 20023.96

50 0.001 14367 715 − − 14298.13 1243.75 14406 23056.49
0.01 14742 556 − − 14613.8 1240.104 14742 16970.46
0.1 15144 317 − − 15011.27 1235.417 15144 17916.35

bou-s-c 2 31027 25 0.001 36893 2545 − − 36824.33 1264.063 37027 42719.51
0.01 37219 9410 − − 36980.27 1232.012 37219 44305.01
0.1 37437 4156 − − 37241.03 1258.854 37437 48447.63

50 0.001 36071 1910 − − 35870.83 1268.229 36060.73 55605.18
0.01 36423 2334 − − 36250.57 1226.667 36416.27 60741.89
0.1 36893 3088 − − 36712.6 1346.067 36888.93 57344.08

bou-s-c 3 58455 25 0.001 65983 14478 − − 66404.37 1289.063 66635 174822.8
0.01 66175 13885 − − 66612.5 1286.458 66840.87 119783.3
0.1 66407 6809 − − 66853.47 1286.979 67095 123643.2

50 0.001 64972 20041 − − 65304.87 1292.708 65552.8 162435.2
0.01 65355 10396 − − 65755.47 1292.188 65952.93 165467.6
0.1 65879 11290 − − 66270.53 1291.667 66451 174008.9

uncorr 1 7715 25 0.001 16432 129 16432 169791803 16342.87 1255.729 16432 12182.77
0.01 16638 136 16638 194176080 16575.9 1240.625 16638 11075.88
0.1 16945 144 16945 216867406 16833.13 1235.938 16945 10966.21

50 0.001 15299 98 15299 150530586 15243.03 1254.688 15299 15636.04
0.01 15812 161 15812 161619933 15711.03 1253.125 15812 16543.41
0.1 16362 142 16362 174426689 16287.27 1245.313 16362 18197.93

uncorr 2 19545 25 0.001 28786 634 − − 28690.93 1275 28786 29056.24
0.01 28982 839 − − 28864.17 1271.354 28982 37327.55
0.1 29165 496 − − 29090.6 1267.708 29165 38588.23

50 0.001 27962 469 − − 27824.13 1279.688 27962 37555.58
0.01 28276 793 − − 28165.67 1279.167 28276 38640.84
0.1 28732 823 − − 28618.13 1276.042 28732 39601.95

uncorr 3 36091 25 0.001 40581 935 − − 40539.3 1305.729 40581 17069.47
0.01 40663 983 − − 40639.67 1303.646 40663 24246.41
0.1 40830 1439 − − 40741.6 1300.521 40830 40830

50 0.001 39960 1330 − − 39894.23 1307.292 39960 51009.26
0.01 40150 1505 − − 40123.97 1306.25 40149.4 40985.79
0.1 40482 1246 − − 40422.3 1306.771 40481.67 39895.53

A B C D E F G
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

P
ro
fit

α = 0.001
α = 0.01
α = 0.1

Figure 4.2. Comparison for different values of α with fixed δ = 25.

4.5. Experiments 49

A B C D E F G
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

P
ro
fit

δ = 25
δ = 50

Figure 4.3. Comparison for different values of δ with fixed α = 0.01.

as well as ILP. In observing the values listed in the Heuristic approach and GSEMO
columns in Table 4.1, we find that, in most of the instances, the results obtained using
the heuristic approach are better than those obtained using GSEMO. Furthermore,
the computation time associated with the heuristic approach is shorter than that as-
sociated with GSEMO. However, when applying the Chernoff bound to the problems,
the results obtained using GSEMO are better than those obtained using the heuristic
approach in most instances. Moreover, it can be observed from the tables that the
GSEMO outperforms (1+1) EA in combination with different estimate methods.

Furthermore, it can be seen from the values in the profit columns that the profit
decreases as the value of α decreases with a fixed value of δ, and that the profit de-
creases when the value of δ increases, while the value of α stays constant. We take
the first instances from Table 4.1 and Table 4.2 as examples, presenting the effects of
δ and α in Figures 4.2 and 4.3. Figure 4.2 shows how the chance-constrained bound
(denoted as α) affects the quality of the solution when the uncertainty of weights
is fixed. In both figures, the x labels are the algorithms combined with probabil-
ity tools, where A denotes ILP(2mins)-Chebyshev’s inequality, B denotes heuristic
approach-Chebyshev’s inequality, C denotes heuristic approach-Chernoff bound, D
denotes (1+1) EA-Chebyshev’s inequality, E denotes (1+1) EA-Chernoff bound, F
denotes GSEMO-Chebyshev’s inequality and G denotes GSEMO-Chernoff bound.

Figure 4.2 shows how the chance-constrained bound denoted as α affects the solution
quality when the uncertainty of weights is fixed. Correspondingly, Figure 4.3 shows
how the uncertainty of weights affects the solution quality when α is fixed. Both bar
charts show the average values of (1+1) EA and GSEMO with respect to probability
inequality. In Figure 4.2, the three bars of each group correspond to the value of α
equal to {0.001, 0.01, 0.1}. In Figure 4.3, the two bars of each group correspond to the
value of δ = {25, 50}. We can see from the figures that profits increase as the chance-
constrained bound α increases or the uncertainty of weights δ decreases. Intuitively,
this makes sense, as the relaxing of α or the tightening of δ allows the algorithms to
compute solutions that are closer to the capacity and thereby increase their profit.

Next, we investigate the difference between the estimated methods. It can be observed

50 Chapter 4. EAs for CCKP

from Table 4.3, for all approaches, that when the value of α is small (i.e.,α = 0.001
or 0.01), the profits obtained using the Chernoff bound are significantly better than
those obtained using Chebyshev’s inequality. In contrast, if α = 0.1, the results
obtained using Chebyshev’s inequality are significantly better than those obtained
using the Chernoff bound. The experimental results match the theoretical implications
of Theorem 4.2.4 and our related discussion.

In Table 4.3, the profit under (1+1) EA and GSEMO denotes the average profit of the
30 runs, and stat denotes the statistical comparison of the algorithms combined with
the estimation methods. The numbers in the stat column denote the significance of
the results for an algorithm and constraint violation estimation method. For example,
in Table 4.3, the numbers (2(+), 3(−), 4(+)) listed in the stat column in the first row
under (1+1) EA - Chernoff bound (1) means that the current algorithm is significantly
better than Chebyshev’s inequality (2) and Chebyshev’s inequality (4), and significantly
worse than Chernoff bound (3).

We now compare the performances of (1+1) EA with GSEMO. Looking at the values
listed in the stat columns of Table 4.3, it can be seen that the results listed under
(1+1) EA-Chernoff (1) are significantly worse than those underGSEMO-Chernoff (3).
A similar relationship exists between the values under (1+1) EA-Chebyshev (2) and
GSEMO-Chebysehv(4), indicating that the performance of GSEMO is significantly
better than that of (1+1) EA under all probability tails.

In the second category of instances, the weights of items have multiplicative uniform
distributions and take values in the real interval [(1− β)ai, (1 + β)ai]. Here, the un-
certainty gap corresponding to each item is expressed as a percentage of the expected
weight. In this setting, the distance of the random intervals between each item vary for
each item pair. We apply Chebyshev’s inequality to deal with the chance constraint
in this category of instances. The results are listed in Table 4.4 and Table 4.5, and
we mark the best result across all approaches in each row in bold. The grey cubes in
the table highlight the instances in which ILP can be completed in the computation
time listed in the second columns under the title ILP. It can be observed that all
algorithms produce inferior solutions when the uncertainty added to the weights of
items (measured by β) increases, or the upper bound of the probability of overloading
the capacity in the form of α decreases.

Furthermore, it can be observed from Table 4.4, we found that the results obtained
using the heuristic approach are better than those obtained using EAs, and that results
obtained through the heuristic approach are more significant in the case of uncorrelated
instances. However, the results for instances which have 500 items cannot be list in
Table 4.5, since it takes more than two hours for the heuristic approach to obtain
a result in such cases. Moreover, the results listed in the ILP columns are better
than those in the (1+1) EA columns, but it is difficult to make a clear comparison of
these results with the results of GSEMO. The computation time associated with ILP
is longer than that associated with EAs for most of the instances. Besides, as shown
in Table 4.5 the performance of GSEMO is significantly better than that of (1+1) EA
for all instances.

In the last category of instance, we consider instances for which the weights of items are
chosen according to the Normal distributions with known expectations and variances
of weights. In all instances, the variances of weights are expressed as a percentage of
the expected weights: σ2i = ai · β. In this arrangement, according to the theorem of
the Chernoff bound, the upper bound of the chance constraint cannot be calculated

4.5. Experiments 51

using the Chernoff bound, and we only apply Chebyshev’s inequality. The results are
listed in Table 4.6 and Table 4.7, and we mark the best results across all approaches
in each row in bold.

The profit column lists the mean value for 30 runs, and the stat column provides
statistical test results based on the comparison of the performances of (1+1) EA and
GSEMO. It can be observed from the tables that algorithms produce inferior solutions
when the value of β increases or the value of α increases. The results show that the
heuristic approach outperforms the other algorithms for instances with 100 items,
but takes more than two hours for instances with 500 items. Moreover, under the
condition in which algorithms are run at similar computation times, the results solved
by GSEMO are better than those solved using ILP. Furthermore, the performance of
GSEMO is significantly better than that of (1+1) EA.

By investigating the results list in all tables, we found that when limited the com-
putation time into seconds, the GSEMO can provide high-quality solutions overall.
Moreover, in an acceptable running time (minutes), the heuristic approach performs
better than other approaches in small instances, though it cannot obtain a solution
within two hours for large size instances. However, as mentioned in Section 4.4 that
(1+1) EA and GSEMO are the simple evolutionary algorithms, and the performance
of them can be improved by applying operators that is the problem-specific operators
that we developed. In the following subsections, we investigate the performance of
different evolutionary algorithms in terms of solving the chance-constrained knapsack
problem with different operators.

4.5.3 Experimental Results of Improvements to Single-objective EAs
Using Specific Operators

Now, we examine the impact of the heavy-tail mutation operator and the problem-
specific crossover operator in (1+1) EA (see Algorithm 6) and (µ+1) EA (see Algo-
rithm 12). The benchmarks used here are the same as those employed in Section 4.5.1.
We report the mean profit and the standard deviation of 30 independent runs for all
algorithms. Each run used 5× 106 fitness evaluations. A Kruskal-Wallis test (Corder
and Foreman, 2014) with a 95% confidence interval integrated with the posterior
Bonferroni test is used to compare multiple solutions.

In the following subsection, we consider all combinations of algorithms and operators.
We set the β in power-law distribution equal to 1.5, which is the recommended value
of β given by Doerr et al. (2017). For each instance, we investigate different settings as
well as the difference between the uncertainty of weights and the chance-constrained
probability. We report the results obtained using all algorithms with Chebyshev’s
inequality and the Chernoff bound separately.

Results for (1+1) EA

To show the differences between the evolutionary algorithms using the standard mu-
tation operator and the heavy-tail mutation operator, we investigate the performance
of (1 + 1) EA using the heavy-tail mutation operator in order to solve the CCKP
instances. Table 4.8 and Table 4.9 list the means and standard deviations of profit for
30 independent runs with regard to the probability estimate methods. For clarity, we
use Standard (1 + 1) EA to refer to the (1 + 1) EA using standard mutation operator,
and show the (1 + 1) EA using heavy-tail mutation operator as (1 + 1) EA with HT
in the tables.

52 Chapter 4. EAs for CCKP

In Table 4.8 and 4.9, the stat column shows the rank of each algorithm for all instances.
If it is possible to conduct a statistically significant comparison of two algorithms,
X(+) denotes that the current algorithm outperforms algorithm X. Furthermore, X(-)
signifies that the current algorithm is significantly worse than the algorithm X. For
example, the numbers 2(-) listed in the first row under the Standard (1 + 1) EA(1)
mean that the current solution is significantly worse than the solutions obtained using
(1 + 1) EA with HT mutation (2).

The results in Tables 4.8 and 4.9 indicate that there is a significant difference between
the two mutation operators when they are used in the single-objective evolutionary
algorithm. The (1 + 1) EA with the heavy-tail mutation operator outperforms the
standard (1 + 1) EA in all cases. Moreover, in most of uncorrelated instances, the
(1+1) EA with heavy-tail mutations obtains solutions with a lower standard deviation
than those obtained with the other algorithm. In summary, the results show that
the heavy-tail mutation operator leads to better performance when solving CCKP
instances, which we have emphasised in bold in the stat columns.

Results for (µ+ 1) EA

The purpose of this subsection is to investigate the effectiveness of the problem-specific
crossover operator associated with single-objective evolutionary algorithms. Here, we
run the (µ+ 1) EA with a population size of 10. To simplify the names of algorithms,
we use the following notations: Standard (µ+ 1) EA is the (µ+ 1) EA using standard
mutation operator, (µ+1) EA with HT is the (µ+1) EA using the heavy-tail mutation
operator and (µ + 1) EA with HT and PS is the (µ + 1) EA using the heavy-tail
mutation operator and the problem-specific crossover operator.

Tables 4.10 and 4.11 list the results of using the Chernoff bound and Chebyshev’s
inequality to estimate the constraint violation probability of a CCKP solution sepa-
rately. As can be seen from the tables, the performance these algorithms when using
the heavy-tail mutation operator is significantly better than the performance when
using the standard mutation for all instances. Therefore the conclusion is the same as
in the case of the (1+1) EA. Another insight which can be observed from these tables
related to the values of the columns (µ+ 1) EA with HT (4) and (µ+ 1) EA with HT
and PS (5). We can see that the results obtained by the (µ + 1) EA with HT and
PS (5) are significantly better than those obtained by the (µ + 1) EA with HT (4).
This demonstrates the effectiveness of the PS crossover operator in terms of solving
the CCKP instances in single-objective evolutionary algorithms, when compared to
mutation only.

Moreover, by comparing the values of the corresponding columns in Tables 4.8 and
4.10, and Tables 4.9 and 4.11 respectively according to the probability tails, the results
for the (µ+1) EA with HT and PS (5) are better than those for the other combinations
of algorithms and operators, for both estimated methods. In all tables we emphasise
in bold the statistical results. In summary, the results in this section indicate that the
heavy-tail mutation operator and the problem-specific crossover operator are active
in single-objective evolutionary algorithms when dealing with instances of the CCKP.
The next section, therefore, moves on to discuss the performance of these operators
in multi-objective approaches.

4.5. Experiments 53

4.5.4 Experimental Results of Improvements to Multi-objective EAs
using Specific Operators

Next, we examine the impact of problem-specific operators and the improved multi-
objective model in GSEMO (see Algorithm 7) and NSGA-II (see Algorithm 8). In
the following part of this subsection, we first investigate the GSEMO using improved
model. We then run NSGA-II with a population size of 20 using different surrogate
functions, comparing the performance of GSEMO and NSGA-II at the end of this
section.

Experimental Results for GSEMO

To compare the performance of the old model with the new model, we first apply
the GSEMO solving the same instances as those proposed in Section 4.5.1, but with
different fitness functions. Next, to test the effectiveness of the PS crossover operator
in the multi-objective algorithm, we combined the PS crossover operators in GSEMO
to solve the new model. Tables 4.12 and 4.13 show the results obtained using different
probability tails separately. To simplify the algorithm names in the tables, we use old
to denote the old multi-objective model and new to denote the new multi-objective
model. Uniform, HT and PS denote the uniform crossover operator, heavy-tail mu-
tation operator and problem-specific crossover operator separately.

Table 4.12 shows that, for example, for the first instance in the bounded strongly
correlated type, GSEMO using the new model outperforms GSEMO using the old
model. For the other instances, both algorithms perform as well as each other. It
can be observed more clearly in Table 4.13 that, the new model performs significantly
better than the old model when dealing with instances which are bounded strongly
correlated type. Furthermore, as can be seen from the column GSEMO with the new
model and PS, this algorithm displayed significantly better results than the other two
algorithms. These results indicate that the new multi-objective model is effective
in solving instances of the CCKP and performs better than the old model in most
cases. The PS crossover operator can improve the performance of the multi-objective
evolutionary algorithm when dealing with the CCKP.

Experimental Results for NSGA-II

In this section, we investigate the performance of NSGA-II with the combination of
two crossover operators, the uniform crossover and the PS crossover, and the two
multi-objective models. We modify NSGA-II to keep the best feasible solution for
CCKP in each iteration. Since NSGA-II generates 10 offsprings in each iteration with
a population size of 20 while GSEMO only generates 1 offspring, we set the iteration
of NSGA-II to 5 × 105 (instead of 5 × 106 for GSEMO), which results in the same
number of fitness evaluations for both algorithms.

Table 4.14 and 4.15 show the results obtained when using the Chernoff bound and
Chebyshev’s inequality, respectively. A significant improvement can be observed in
the results obtained for the PS crossover when compared to those obtained for the
uniform crossover.

We now compare the performance of the old model with the new model of the same
algorithm. Considering the values in the stat columns of Table 4.14, it can be seen
that with the uniform crossover operator, the solutions for the new model (NSGA-II
with new and uniform (11)) are mostly better than those for the old model (NSGA-II

54 Chapter 4. EAs for CCKP

with old and uniform (9)). However, in some instances where δ = 50, the old model
outperforms the new model. The solutions presented in NSGA-II with old and PS
(10) and NSGA-II with new and PS (12) indicate that, in most instances, the new
model performs better than the old model when using the PS crossover operator.

However, the opposite conclusion can be drawn from Table 4.15. The solutions listed
in the NSGA-II with new and uniform (11) and NSGA-II with old and uniform (9)
show that NSGA-II with uniform crossover performs better when dealing with the old
model than the new model. However, the correlation between the old model and the
new model is interesting when using NSGA-II with a PS crossover operator to solve
the problem, the correlation between the old model and the new model is interest-
ing. The relationship between the results obtained when solving the two models is
related to the type of instances under consideration. In other words, for the bounded
strongly correlated instances, the old model outperforms the new model, while for the
uncorrelated instances, the new model is better than the old model in most cases.

The next insight can be drawn from Table 4.15 is that, observing the values in the
GSEMO with new and PS (8) and NSGA-II with new and PS (12) columns, the results
obtained uisng GSEMO are significantly better than those obtained using NGSA-II
for all instances. This comparison points to a direction for possible further research
into the use of state-of-art multi-objective evolutionary algorithms such as NSGA-II
and SPEA2 to solve CCKP. Moreover, we compare the performance of the best single-
objective algorithm (µ+1) EA with HT and PS and the best multi-objective algorithm
GSEMO with new and PS according to the estimated methods. It is observed that
the performance of the multi-objective algorithm is significantly better than that of
the single-objective algorithm for all instances.

4.6 Conclusion

Chance-constrained optimisation problems play a crucial role in various real-world
applications, as they limit the probability of violating a given constraint when dealing
with stochastic problems. In this chapter, we considered the chance-constrained knap-
sack problem and showed how to incorporate well-known probability tail inequalities
into the search process of an evolutionary algorithm. Furthermore, we introduced de-
terministic approaches and compared them to the designed evolutionary algorithms.
The disadvantage of deterministic approaches in dealing with the chance-constrained
knapsack problem is their computation time. Our experimental results show that DP
cannot solve large instances in 10 hours and NU cannot solve them in two hours; how-
ever, EAs can obtain a good quality solution in minutes. Even for small instances,
GSEMO can arrive at solutions of similar quality to those arrived at by ILP and
NU, while taking less computation time in most instances. Our investigations demon-
strate the circumstances under which Chebyshev’s inequality or the Chernoff bound
are favoured as part of the fitness evaluation. The Chernoff bound is preferable in
cases where the probability of violating the capacity of the knapsack is small. We
have also shown that using a multi-objective approach when dealing with the chance-
constrained knapsack problem provides a clear benefit in comparison to the use of its
single-objective formulation for all kinds of instance classes.

Moreover, to improve the performance of evolutionary algorithms, this chapter pro-
posed a problem-specific crossover operator and the heavy-tail mutation operator,
which can be applied in EAs to deal with the CCKP. Our experimental results
show that the proposed operators improve the performance of single-objective EAs

4.6. Conclusion 55

when solving CCKP instances. We also introduced a new multi-objective model for
the CCKP. The experimental results show that combining this new model with the
problem-specific crossover operator in GSEMO and NSGA-II leads to significant per-
formance improvements in terms of solving the CCKP.

56 Chapter 4. EAs for CCKP

T
a
ble

4.3.
Statisticalresults

for
instances

w
ith

500
item

s
based

on
additive

uniform
distribution

C
apacity

δ
α

ILP
(C

hebyshev)
(1+

1)E
A

G
SE

M
O

C
hernoff(1)

C
hebyshev(2)

C
hernoff(3)

C
hebyshev(4)

2m
ins

6m
ins

10m
ins

profit
tim

e(m
s)

stat
profit

tim
e(m

s)
stat

profit
tim

e(m
s)

stat
profit

tim
e(m

s)
stat

bou-s-c
1

61447
25

0.001
74403

74385
74385

76464.3
5887.5

2(+
),3(-),4(+

)
73213.8

5866.67
1(-),3(-),4(-)

7
7
7
5
0
.4

25626.04
1(+

),2(+
),4(+

)
74207.1

27694.79
1(-),2(+

),3(-)
0.01

77951
77951

77951
76890.33

5887.50
2(+

),3(-),4(-)
76569.53

5879.17
1(-),3(-),4(-)

7
8
0
6
4
.4
7

25572.4
1(+

),2(+
),4(+

)
77552.07

28609.9
1(+

),2(+
),3(-)

0.1
78649

7
8
9
1
2

7
8
9
1
2

77194.97
5889.06

2(-),3(-),4(-)
77642.27

5883.33
1(+

),3(-),4(-)
78429.77

25743.23
1(+

),2(+
),4(-)

78672.67
29402.6

1(+
),2(+

),3(+
)

50
0.001

66465
69443

69443
74964.07

5894.79
2(+

),3(-),4(+
)
68709.77

5851.04
1(-),3(-),4(-)

7
6
0
0
8
.8

28145.31
1(+

),2(+
),4(+

)
69627.7

25955.73
1(-),2(+

),3(-)
0.01

76121
76222

76222
75627.37

5903.13
2(+

),3(-),4(-)
75038.43

5869.27
1(-),3(-),4(-)

7
6
6
2
9
.7
3

28291.67
1(+

),2(+
),4(+

)
75965.73

27930.73
1(+

),2(+
),3(-)

0.1
46027

7
8
2
2
7

7
8
2
2
7

76319.97
5892.71

2(-),3(-),4(-)
77231.63

5878.65
1(+

),3(-),4(-)
77385.53

28717.19
1(+

),2(+
),4(-)

78187.27
28957.81

1(+
),2(+

),3(+
)

bou-s-c
2

162943
25

0.001
177096

186590
186590

188967.4
6010.94

2(+
),3(-),4(+

)
184846.9

5990.10
1(-),3(-),4(-)

1
9
0
5
7
5
.8

31282.81
1(+

),2(+
),4(+

)
186081.5

34696.35
1(-),2(+

),3(-)
0.01

190681
190681

190757
189348.5

6015.10
2(+

),3(-),4(-)
189003.4

6017.71
1(-),3(-),4(-)

1
9
0
9
4
0
.3

31718.23
1(+

),2(+
),4(+

)
190297.6

36672.92
1(+

),2(+
),3(-)

0.1
1
9
2
1
1
6

1
9
2
1
1
6

1
9
2
1
1
6

189852.2
6002.08

2(-),3(-),4(-)
190439.4

6009.38
1(+

),3(-),4(-)
191380.6

31677.6
1(+

),2(+
),4(-)

191632
37396.88

1(+
),2(+

),3(+
)

50
0.001

180281
180348

180348
187149.1

6005.21
2(+

),3(-),4(+
)
178807.7

5981.77
1(-),3(-),4(-)

1
8
8
3
2
6
.5

36233.33
1(+

),2(+
),4(+

)
180210

32353.13
1(-),2(+

),3(-)
0.01

187042
187079

187079
187931.4

6008.85
2(+

),3(-),4(-)
187005.2

5997.40
1(-),3(-),4(-)

1
8
9
0
6
4
.4

36852.6
1(+

),2(+
),4(+

)
188299.7

35451.56
1(+

),2(+
),3(-)

0.1
189477

190630
190630

188798.8
6011.46

2(-),3(-),4(-)
189713

6005.21
1(+

),3(-),4(-)
189986

37560.42
1(+

),2(+
),4(-)

1
9
0
9
9
3
.3

37417.19
1(+

),2(+
),3(+

)
bou-s-c

3
307286

25
0.001

341305
341305

341453
344059.7

6132.81
2(+

),3(-),4(+
)
339020.5

6126.56
1(-),3(-),4(-)

3
4
6
1
1
5
.3

38438.54
1(+

),2(+
),4(+

)
340895.1

40478.65
1(-),2(+

),3(-)
0.01

346271
346271

346271
344460

6126.56
2(+

),3(-),4(-)
343891

6135.94
1(-),3(-),4(-)

3
4
6
5
2
3
.6

39475
1(+

),2(+
),4(+

)
345815.1

43563.54
1(+

),2(+
),3(-)

0.1
347725

347729
3
4
7
9
0
5

344976.1
6166.56

2(-),3(-),4(-)
345622.4

6134.38
1(+

),3(-),4(-)
347048.1

39237.5
1(+

),2(+
),4(-)

347418.7
44185.42

1(+
),2(+

),3(+
)

50
0.001

169122
169122

210932
341860.8

6127.08
2(+

),3(-),4(+
)
332022.1

6108.85
1(-),3(-),4(-)

3
4
3
4
1
8
.6

47959.9
1(+

),2(+
),4(+

)
333882.8

38178.13
1(-),2(+

),3(-)
0.01

341530
343866

344052
342619.9

6132.29
2(+

),3(-),4(-)
341661.9

6108.85
1(-),3(-),4(-)

3
4
4
2
4
2

48193.75
1(+

),2(+
),4(+

)
343537.7

41935.42
1(+

),2(+
),3(-)

0.1
346321

347064
3
4
7
0
6
4

343776
6128.65

2(-),3(-),4(-)
344848.8

6131.77
1(+

),3(-),4(-)
345325.3

49109.38
1(+

),2(+
),4(-)

346723.6
44240.1

1(+
),2(+

),3(+
)

uncorr
1

37686
25

0.001
16998

58826
66238

85264.77
5956.25

2(+
),3(-),4(+

)
80509.37

5919.79
1(-),3(-),4(-)

8
6
1
1
7
.7

20050.52
1(+

),2(+
),4(+

)
81319.77

20571.88
1(-),2(+

),3(-)
0.01

86128
86128

86128
85685.3

5955.73
2(+

),3(-),4(-)
85187.5

5930.73
1(-),3(-),4(-)

8
6
5
4
0
.3
7

20035.94
1(+

),2(+
),4(+

)
86002.63

21854.17
1(+

),2(+
),3(-)

0.1
87252

87675
8
7
6
7
5

86218.6
5950.00

2(-),3(-),4(-)
86899.67

5939.06
1(+

),3(-),4(-)
87066.83

20544.27
1(+

),2(+
),4(-)

87518.63
22421.88

1(+
),2(+

),3(+
)

50
0.001

15712
59369

70672
83116.43

5955.73
2(+

),3(-),4(+
)

73929.1
5895.31

1(-),3(-),4(-)
8
3
8
2
9
.9

23189.06
1(+

),2(+
),4(+

)
74731.03

20529.69
1(-),2(+

),3(-)
0.01

58826
83985

83985
84020.67

5955.21
2(+

),3(-),4(+
)
83065.43

5917.19
1(-),3(-),4(-)

8
4
6
6
8
.5

22652.6
1(+

),2(+
),4(+

)
83820.63

21008.33
1(-),2(+

),3(-)
0.1

8
7
0
6
8

8
7
0
6
8

8
7
0
6
8

85065.93
5953.13

2(-),3(-),4(-)
86128.03

5931.25
1(+

),3(+
),4(-)

85719.73
23177.6

1(+
),2(-),4(-)

86849.87
21986.46

1(+
),2(+

),3(+
)

uncorr
2

93559
25

0.001
143444

143448
143455

147143.5
6072.40

2(+
),3(-),4(+

)
142829.3

6061.98
1(-),3(-),4(-)

1
4
7
7
5
4
.5

24839.58
1(+

),2(+
),4(+

)
143393.7

24064.58
1(-),2(+

),3(-)
0.01

101606
147780

147780
147539.5

6072.40
2(+

),3(-),4(-)
147115.2

6061.98
1(-),3(-),4(-)

1
4
8
1
2
5
.7

25049.48
1(+

),2(+
),4(+

)
147605.7

24511.98
1(+

),2(+
),3(-)

0.1
1
4
9
2
1
7

1
4
9
2
1
7

1
4
9
2
1
7

147936.9
6068.75

2(-),3(-),4(-)
148518

6079.69
1(+

),3(-),4(-)
148594.9

24431.25
1(+

),2(+
),4(-)

148960.7
25139.06

1(+
),2(+

),3(+
)

50
0.001

100660
120860

137219
145291.4

6063.54
2(+

),3(-),4(+
)

136767
6048.44

1(-),3(-),4(-)
1
4
5
5
9
4
.4

26981.25
1(+

),2(+
),4(+

)
137400

22478.13
1(-),2(+

),3(-)
0.01

101554
145726

145726
146067.2

6066.67
2(+

),3(-),4(+
)
145189.8

6048.44
1(-),3(-),4(-)

1
4
6
3
2
6

27126.04
1(+

),2(+
),4(+

)
145655.9

24484.9
1(-),2(+

),3(-)
0.1

101648
1
4
8
5
3
1

1
4
8
5
3
1

146945.4
6070.83

2(-),3(-),4(-)
147955.5

6075.52
1(+

),3(+
),4(-)

147254
26751.56

1(+
),2(-),4(-)

148368.5
24806.77

1(+
),2(+

),3(+
)

uncorr
3

171819
25

0.001
138416

200244
204498

207630.3
6189.06

2(+
),3(-),4(+

)
204214.7

6166.67
1(-),3(-),4(-)

2
0
8
2
4
9
.2

22107.29
1(+

),2(+
),4(+

)
204790.2

20989.58
1(-),2(+

),3(-)
0.01

208260
208260

208260
207978.8

6205.73
2(+

),3(-),4(-)
207537.9

6172.92
1(-),3(-),4(-)

2
0
8
5
3
2

22053.13
1(+

),2(+
),4(+

)
208161.3

21864.06
1(+

),2(+
),3(-)

0.1
2
0
9
3
4
4

2
0
9
3
4
4

2
0
9
3
4
4

208266.9
6196.35

2(-),3(-),4(-)
208671.4

6169.79
1(+

),3(-),4(-)
208889.4

22261.46
1(+

),2(+
),4(-)

209180.5
21320.31

1(+
),2(+

),3(+
)

50
0.001

114287
144843

144843
206180.1

6193.75
2(+

),3(-),4(+
)
199212.3

6169.79
1(-),3(-),4(-)

2
0
6
3
7
4
.7

25970.83
1(+

),2(+
),4(+

)
199810.8

19647.4
1(-),2(+

),3(-)
0.01

154981
156922

172798
206719.9

6193.23
2(+

),3(-),4(+
)

206014
6175.00

1(-),3(-),4(-)
2
0
6
9
1
5
.9

26699.48
1(+

),2(+
),4(+

)
206622.3

22066.67
1(-),2(+

),3(-)
0.1

208391
2
0
8
8
9
9

2
0
8
8
9
9

207471.5
6190.10

2(-),3(-),4(-)
208135.4

6184.38
1(+

),3(+
),4(-)

207649
26861.46

1(+
),2(-),4(-)

208754
21738.54

1(+
),2(+

),3(+
)

4.6. Conclusion 57

Table 4.4. Statistical results for the instance eil101 with 100 items
based on multiplicative uniform distribution and Chebyshev’s inequal-

ity

Capacity β α ILP Heuristic approach DP (1+1)EA GSEMO
2mins 6mins 10mins profit time(ms) profit time(ms) profit time(ms) profits time(ms)

bou-s-c 1 11775 0.01 0.001 15309 15309 15318 15350 690 15350 4810778 15230.67 1221.88 15349.6 62382.7675
0.01 15801 15801 15801 15801 1072 15801 12734208 15684.93 1234.9 15801 66815.46
0.1 15946 15946 15946 15946 1122 15946 26128269 15825.47 1218.75 15940.4 71332.5442

0.05 0.001 13100 13199 13199 13245 1369 13245 6293917 13123.27 1222.92 13245 55164.344
0.01 14905 14905 14905 15027 1073 15027 16956887 14926.2 1226.56 14992.4333 56806.4804
0.1 15702 15702 15702 15710 1181 15710 31257870 15581.1 1221.88 15710 59787.857

0.1 0.001 11128 11128 11128 11247 646 11270 6724128 11193.8 1222.4 11269.0667 53176.8783
0.01 13983 14002 14043 14143 1174 14143 19649101 14037.23 1222.4 14141.4667 59414.7318
0.1 15312 15346 15346 15384 1267 15384 35553950 15257.7 1220.31 15384 65737.6751

bou-s-c 2 31027 0.01 0.001 36524 36634 36634 36728 5427 − − 36554.43 1264.58 36694.4667 116506.762
0.01 37475 37515 37515 37557 8078 − − 37375.73 1261.46 37488.7 119125.093
0.1 37796 37796 37796 37819 14631 − − 37679.77 1257.29 37816.6667 154614.705

0.05 0.001 32069 32170 32239 32685 4349 − − 32607.13 1277.08 32701.1 210753.913
0.01 35855 36002 36002 36069 5834 − − 35903.27 1267.19 36044.3 200180.797
0.1 37284 37284 37284 37367 6016 − − 37170.57 1259.38 37301.1667 172459.537

0.1 0.001 28246 28354 28354 28787 2575 − − 28724.27 1286.46 28821 91837.3079
0.01 34135 34135 34135 34419 5018 − − 34278.83 1280.21 34418.5333 99988.7866
0.1 36576 36701 36701 36784 5886 − − 36619.67 1263.02 36758.13 78642.88

bou-s-c 3 58455 0.01 0.001 65667 65667 65667 65737 63940 − − 65510.7 1316.15 65690.53 97893.23
0.01 66958 67011 67011 67077 80608 − − 66831.33 1311.46 66995.6 101069.27
0.1 67461 67461 67461 67480 151215 − − 67290.13 1313.02 67439.1 100545.31

0.05 0.001 58770 58770 58770 59319 18667 − − 59223.87 1344.79 59304.3 84612.5
0.01 64472 64500 64500 64713 65809 − − 64492.3 1320.83 64652.57 96270.83
0.1 66671 66671 66671 66742 69379 − − 66507.07 1310.94 66691.73 100061.46

0.1 0.001 48564 51059 50689 53359 8798 − − 53265.03 1358.33 53359.13 74005.21
0.01 61574 61657 61657 61974 58018 − − 61924.97 1325 62063.7 90768.75
0.1 65674 65738 65738 65837 47670 − − 65633.57 1319.27 65774.27 97894.79

uncorr 1 7715 0.01 0.001 17064 4s 17064 204 17064 31106720 16989.4 1218.23 17064 8394.56443
0.01 17366 3.08s 17366 191 17366 49253218 17346.17 1229.69 17366 8361.6105
0.1 17499 1.39s 17499 199 17499 56877261 17444 1263.54 17499 6842.4115

0.05 0.001 15322 15322 15322 15385 151 15385 13416371 15293.33 1210.94 15385 7834.6693
0.01 16875 16875 16875 16875 185 16875 19806209 16808.23 1219.27 16875 7505.27357
0.1 17325 4.64s 17325 176 17325 39985165 17290.97 1218.23 17325 6745.7595

0.1 0.001 13589 13589 13589 13589 70 13589 463375 13507.6 1209.38 13589 4679.62223
0.01 16143 60s 16143 117 16143 9685826 16047.6 1216.15 16143 6412.02927
0.1 17064 60s 17064 158 17064 28925543 16994.47 1218.75 17064 9153.54877

uncorr 2 19545 0.01 0.001 29075 29085 29085 29106 940 − − 29106 1265.63 29106 15434.3676
0.01 29466 16.52s 29466 1195 − − 29390.6 1165.63 29466 15147.9511
0.1 29585 3.01s 29585 1001 − − 29521.43 1265.1 29585 21475.098

0.05 0.001 27087 27087 27087 27096 814 − − 26974.73 1256.25 27096 18433.7486
0.01 28740 28815 28742 28815 728 − − 28687.23 1267.71 28815 15621.9082
0.1 29415 118.91s 29415 656 − − 29327.2 1266.67 29415 22129.7554

0.1 0.001 25006 25033 25006 25043 540 − − 24941.5 1248.44 25043 15159.6398
0.01 27985 27985 27985 27985 958 − − 27899.77 1261.98 27985 14720.0369
0.1 29155 29155 29155 29155 740 − − 29072.53 1265.63 29155 15869.881

uncorr 3 36091 0.01 0.001 40651 40672 40672 40672 1351 − − 40633.83 1342.19 40671.7 55625.4561
0.01 40994 57.04s 40994 1268 − − 40938.17 1342.71 40994 53580.4838
0.1 41091 1.82s 41091 1264 − − 41054.23 1342.19 41090.9333 62323.5451

0.05 0.001 38742 38742 38742 38743 1414 − − 38712.4 1328.13 38743 53287.6329
0.01 40463 40463 40463 40463 1587 − − 40348.77 1339.58 40463 55654.3928
0.1 40985 82.48s 40985 2100 − − 40869.57 1345.31 40985 51387.5036

0.1 0.001 35650 35978 36305 36390 572 − − 36317.6 1314.06 36390 42624.4348
0.01 39628 39628 39628 39628 771 − − 39587.9 1333.85 39628 48509.0626
0.1 40668 40668 40668 40672 1047 − − 40649.03 1342.19 40671.8 50373.7936

58 Chapter 4. EAs for CCKP

Table 4.5. Statistical results for the instance eil101 with 500 items
based on multiplicative uniform distribution and Chebyshev’s inequal-

ity

Capacity β α ILP (1+1)EA(1) GSEMO(2)
2mins 6mins 10mins profit time(ms) stat profits time(ms) stat

bou-s-c 1 61447 0.01 0.001 77951 77951 77951 76680.71 5941.67 2(-) 77364.63 38885.42 1(+)
0.01 78649 78666 78749 77757.42 5928.65 2(-) 78423.77 39448.44 1(+)
0.1 79411 79411 79411 77937.93 5945.83 2(-) 78774.67 39529.69 1(+)

0.05 0.001 71001 71825 71825 71273.63 5932.81 2(-) 71866.73 38789.06 1(+)
0.01 76766 76766 76766 75786.83 5937.5 2(-) 76556.33 39010.94 1(+)
0.1 78751 78751 78751 77472.63 5928.13 2(-) 78160.3 39192.19 1(+)

0.1 0.001 44200 49668 49672 65449.73 5949.48 2(-) 66057.46 37460.94 1(+)
0.01 45378 74709 74709 73659.27 5943.23 2(-) 74308.9 38843.75 1(+)
0.1 77951 77951 78011 76666.37 5928.13 2(-) 77456.63 39206.25 1(+)

bou-s-c 2 162943 0.01 0.001 188693 189540 189540 187857.09 6138.54 2(-) 187986.63 62129.69 1(+)
0.01 191716 191716 191716 190031.37 6133.33 2(-) 190110.66 62969.79 1(+)
0.1 192263 192329 192437 190653.74 6133.33 2(-) 190824.75 63540.1 1(+)

0.05 0.001 175165 175870 175870 176974.32 6151.04 2(-) 177249.9 61518.04 1(+)
0.01 187042 187614 187614 186179.49 6133.85 2(-) 186342.34 62348.44 1(+)
0.1 191045 191098 191098 189401.84 6130.73 2(-) 189591.47 62891.67 1(+)

0.1 0.001 120607 147427 155490 165606.16 6167.19 2(-) 165991.14 57807.81 1(+)
0.01 181967 182660 182660 181746.03 6143.23 2(-) 181972.58 61254.69 1(+)
0.1 189477 189477 189477 188041.25 6126.56 2(-) 188168.17 62590.63 1(+)

bou-s-c 3 307286 0.01 0.001 343297 343820 343820 341568.23 6425 2(-) 342432.33 85480.73 1(+)
0.01 346271 347015 347145 344745.61 6421.83 2(-) 344843.61 85917.19 1(+)
0.1 347820 348151 348151 345852.22 6406.79 2(-) 345952.21 86294.27 1(+)

0.05 0.001 168902 168902 203124 324236.08 6435.94 2(-) 324561.56 81405.73 1(+)
0.01 199323 248792 311808 338751.13 6425.52 2(-) 338830.56 85056.25 1(+)
0.1 346271 346271 346271 343994.57 6425 2(-) 344849.08 86061.98 1(+)

0.1 0.001 167882 231201 231201 305712.67 6461.98 2(-) 306298.87 76398.96 1(+)
0.01 169122 254642 254642 331962.13 6431.77 2(-) 331991.33 82465.1 1(+)
0.1 200994 341453 343392 341835.52 6425 2(-) 341914.53 84382.29 1(+)

uncorr 1 37686 0.01 0.001 87252 87333 87465 86527.83 5964.58 2(-) 87259.37 22572.92 1(+)
0.01 88093 88104 88104 87167.43 5961.46 2(-) 87897.4 22578.13 1(+)
0.1 88311 88311 88311 87314.5 5963.54 2(-) 88099.57 22747.4 1(+)

0.05 0.001 82872 82872 82872 82862.63 5951.56 2(-) 83631.43 22251.56 1(+)
0.01 86847 86847 86847 85984.17 5953.65 2(-) 86720.27 22438.54 1(+)
0.1 16687 87904 87926 87003.1 5959.38 2(-) 87759.4 22661.98 1(+)

0.1 0.001 16590 58953 75707 78590.73 5934.38 2(-) 79491.4 21914.06 1(+)
0.01 84948 85449 85449 84462.23 5947.92 2(-) 85287.3 22295.83 1(+)
0.1 16687 87253 87489 86561.52 5955.21 2(-) 87314.33 22748.96 1(+)

uncorr 2 93559 0.01 0.001 101601 148534 148534 147858.42 6346.31 2(-) 147978.3 30017.71 1(+)
0.01 37741 149398 149403 148717.23 6253.65 2(-) 148800.6 30072.4 1(+)
0.1 37741 149695 149696 149021.6 6248.44 2(-) 149097 29593.75 1(+)

0.05 0.001 101527 143671 143671 143106.43 6220.31 2(-) 143671 98357.81 1(+)
0.01 101593 142271 147820 147109.2 6248.44 2(-) 147676.7 99925.52 1(+)
0.1 148834 148834 149218 148500.83 6247.4 2(-) 149050.2 101393.23 1(+)

0.1 0.001 37939 114416 114416 137665.33 6257.29 2(-) 137942.4 28286.98 1(+)
0.01 101587 143082 145893 145231.46 6267.71 2(-) 145816 99587.5 1(+)
0.1 148605 148613 148613 147931.4 6655.73 2(-) 148450 100575.52 1(+)

uncorr 3 171819 0.01 0.001 69026 208530 208530 207914.33 6685.42 2(-) 207955.3 114927.6 1(+)
0.01 69076 209489 209489 208724.56 6684.8 2(-) 208737 114892.71 1(+)
0.1 69076 209734 209734 208963.6 6617.71 2(-) 208980.9 114864.58 1(+)

0.05 0.001 68118 141171 156856 203217.33 6648.96 2(-) 203416 113179.69 1(+)
0.01 129569 207365 207985 207275.63 6617.71 2(-) 207315.8 114427.6 1(+)
0.1 129871 209229 209255 208519.46 6657.29 2(-) 208567 114638.02 1(+)

0.1 0.001 66564 142764 154311 197404.69 6572.4 2(-) 197631.8 111736.46 1(+)
0.01 68197 204818 206030 205424.63 6635.42 2(-) 205511.3 113712.5 1(+)
0.1 115721 208706 208706 208053.79 6643.23 2(-) 208019.7 114743.23 1(+)

4.6. Conclusion 59

Table 4.6. Statistical results for the instance eil101 with 100 items
based on Normal distribution and Chebyshev’s inequality

Capacity β α ILP Heuristic approach DP (1+1)EA GSEMO
2mins 6mins 10mins profit time(ms) profit time(ms) profit time(ms) profits time(ms)

bou-s-c 1 11775 0.01 0.001 15635 15635 15635 15635 1074 − − 15481.8 1227.083 15635 122546.3
0.01 15946 59.92s 15946 1836 − − 15759.4 1232.813 15946 119314.8
0.1 15946 59.51s 15946 1211 − − 15862.53 1223.958 15946 114167.2

0.05 0.001 15114 15114 15114 15128 1316 − − 14971.97 1224.479 15128 95547.55
0.01 15732 15732 15732 15736 1360 − − 15631.53 1222.917 15736 98784.17
0.1 15946 16.88s 15946 1546 − − 15789.63 1225 15946 113056.9

0.1 0.001 14719 14719 14719 14739 971 − − 14631.63 1224.479 14739 100566.2
0.01 15630 15630 15630 15635 2152 − − 15480.13 1226.042 15635 110594.3
0.1 15946 13.94s 15946 1634 − − 15758.67 1221.354 15946 112109.6

bou-s-c 2 31027 0.01 0.001 37359 37359 37359 37359 22126 − − 37159.3 1271.35 37374.47 326773.7
0.01 37272 37272 37751 37752 28381 − − 37586.77 1265.625 37751.9 265563.1
0.1 37874 36.48s 37874 27277 − − 37703.33 1268.75 37874 399498.2

0.05 0.001 36539 36539 36539 36606 20569 − − 36425.97 1269.271 36605.83 446766.4
0.01 37509 37515 37515 37537 22290 − − 37345.97 1274.479 37536.07 541687.4
0.1 37776 37791 37791 37809 27942 − − 37622.23 1266.667 37808.97 523256

0.1 0.001 35982 36000 36000 36103 35383 − − 35857.93 1281.771 36100.5 336191.5
0.01 37272 37303 37303 37375 32159 − − 37163.57 1286.979 37374.5 292882
0.1 37752 37752 37752 37760 34877 − − 37587.67 1266.667 37760 166735.9

bou-s-c 3 58455 0.01 0.001 66883 66883 66889 66895 263962 − − 66633 1310.93 66856.3 253407.8
0.01 67402 67402 67402 67414 307935 − − 67214.13 1410.93 67412.17 252614.6
0.1 67581 67581 67581 67582 217621 − − 67395.43 1314.583 67580.73 250042.7

0.05 0.001 65863 65865 65865 65871 178900 − − 65674.87 1324.479 65868.4 244173.4
0.01 67067 67085 67085 67119 226313 − − 66903.47 1328.125 67104.73 250305.2
0.1 67492 67492 67492 67493 226818 − − 67284.2 1314.583 67491.37 250183.9

0.1 0.001 65181 65187 65187 65187 193779 − − 64911.7 1317.188 65102.6 241117.2
0.01 66883 66883 66883 66899 230572 − − 66675.67 1311.458 66851.1 249634.4
0.1 67425 67425 67425 67426 215087 − − 67230.03 1327.083 67423.43 246294.3

uncorr 1 7715 0.01 0.001 17151 155.74s 17151 170 17151 62462460 17099.73 1230.208 17151 7984.781
0.01 17366 5.22s 17366 153 17366 74021365 17333.5 1243.75 17366 7432.983
0.1 17499 1.92s 17499 342 17499 81548280 17445.2 1322.396 17499 6449.72

0.05 0.001 16638 16638 16638 16638 127 16638 46226151 16571.3 1227.604 16638 8861.319
0.01 17247 15.46s 17247 109 17247 66880112 17167.67 1229.167 17247 6220.258
0.1 17408 3.77s 17408 164 17408 71001731 17373.7 1199.688 17408 7471.837

0.1 0.001 16266 1.23s 16266 80 16266 44301629 16177.27 1229.167 16266 6806.991
0.01 17151 58.59s 17151 672 17151 50929605 17090.43 1247.604 17151 6305.284
0.1 17366 3.86s 17366 688 17366 66415177 17338.23 1242.083 17366 8335.682

uncorr 2 19545 0.01 0.001 29248 29248 29248 29250 610 − − 29159.13 1276.042 29250 20153.41
0.01 29508 9.98s 29508 658 − − 29401.57 1166.042 29508 19399.76
0.1 29595 2.87s 29595 586 − − 29512.8 1277.083 29595 20561.9

0.05 0.001 28766 2.45s 28766 691 − − 28312.4 1276.563 28766 19775.83
0.01 29415 5.78s 29415 584 − − 29159.7 1278.125 29415 21976.75
0.1 29585 4.6s 29585 1048 − − 29446.37 1273.438 29585 20835.11

0.1 0.001 28472 5.18s 28472 1050 − − 28379.33 1273.958 28472 23583.94
0.01 29248 29248 29248 29250 516 − − 29117.5 1276.563 29250 23508.19
0.1 29508 8.01s 29508 581 − − 29505.1 1276.042 29508 18264.97

uncorr 3 36091 0.01 0.001 40858 105.48s 40858 1190 − − 40785.7 1448.958 40858 59528.52
0.01 41084 2.75s 41084 881 − − 41022.8 1348.958 41084 70468.21
0.1 41121 4.3s 41121 1721 − − 41069.2 1346.875 41120.53 64887.42

0.05 0.001 40482 40482 40482 40482 2445 − − 40124.27 1342.188 40482 67218.26
0.01 40985 58.57s 40985 1562 − − 40778.7 1346.354 40985 68263.79
0.1 41090 4.91s 41090 1121 − − 40995.8 1348.958 41090 60929.71

0.1 0.001 40150 40150 40150 40150 1597 − − 40096.6 1341.667 40148.83 57693.78
0.01 40858 40858 40858 40858 1422 − − 40845.53 1346.875 40858 58638.7
0.1 41084 5.77s 41084 1305 − − 41059.5 1347.917 41084 58810.93

60 Chapter 4. EAs for CCKP

Table 4.7. Statistical results for the instance eil101 with 500 items
based on Normal distribution and Chebyshev’s inequality

Capacity β α ILP (1+1)EA (1) GSEMO (2)
2mins 6mins 10mins profit time(ms) stat profits time(ms) stat

bou-s-c 1 61447 0.01 0.001 78649 78649 78649 75578.23 10723.1 2(-) 77967.43 64191.74 1(+)
0.01 78649 78991 78991 77276.7 11453.57 2(-) 78614.93 65536.54 1(+)
0.1 79471 79471 79471 77930.87 12345.55 2(-) 78775.83 65576.01 1(+)

0.05 0.001 77515 77515 77515 66902.87 11525.26 2(-) 76868.6 64167.35 1(+)
0.01 78649 78823 78897 74202.93 11487.28 2(-) 78222.2 64482.46 1(+)
0.1 79095 79275 79280 76840.73 8534.408 2(-) 78664.87 65810.88 1(+)

0.1 0.001 45784 73809 76045 58576.47 9455.142 2(-) 76069.83 64195.89 1(+)
0.01 78649 78649 78649 70790.93 11302.55 2(-) 77959.23 64669.14 1(+)
0.1 79024 79024 79108 75677.07 14396.65 2(-) 78590.93 65864.06 1(+)

bou-s-c 2 162943 0.01 0.001 190595 190630 190992 185699.2 14038.99 2(-) 189585.9 106708.7 1(+)
0.01 192267 192267 192267 189245.8 13191.94 2(-) 190586.1 107000.5 1(+)
0.1 192091 192445 192587 190476.9 12174.11 2(-) 190861.6 109597.3 1(+)

0.05 0.001 189477 189477 189477 168475.9 12581.75 2(-) 187893.3 106447.4 1(+)
0.01 191739 191739 191739 182869 12546.28 2(-) 190051.8 107138.7 1(+)
0.1 192200 192340 192385 188430.7 12950.24 2(-) 190718.1 109228.8 1(+)

0.1 0.001 187042 187826 187826 151777.8 12721.25 2(-) 186650.7 198824.9 1(+)
0.01 190595 190595 190606 175823.3 12746.82 2(-) 189036.6 153722.1 1(+)
0.1 192252 192252 192252 185978 12273.07 2(-) 190568.9 109722.5 1(+)

bou-s-c 3 307286 0.01 0.001 346237 346560 346560 338244.3 12581.56 2(-) 343847.3 258392 1(+)
0.01 347893 348099 348099 343735.8 12276.5 2(-) 345168.6 177581.7 1(+)
0.1 348242 348411 348417 345411 12445.5 2(-) 345577.9 176647.7 1(+)

0.05 0.001 200259 343015 344569 310428.7 12381.02 2(-) 341663.5 161079.6 1(+)
0.01 346222 346473 346473 333825.5 12646.84 2(-) 344489.5 156963.6 1(+)
0.1 347997 348128 348212 342423.9 8960.956 2(-) 345352.1 152797.6 1(+)

0.1 0.001 202187 341627 341627 283131.2 12028.49 2(-) 339939.8 301736 1(+)
0.01 346271 346767 346767 322537.6 12357.88 2(-) 343863.1 156330.3 1(+)
0.1 348020 348020 348020 338710.1 12106.73 2(-) 345162 156225.4 1(+)

uncorr 1 37686 0.01 0.001 87489 87515 87515 85923.03 10130.34 2(-) 87311.57 49110.62 1(+)
0.01 88169 88169 88169 86916.9 11220.51 2(-) 87887.03 55903.9 1(+)
0.1 88331 88331 88331 87354.8 11674.73 2(-) 88078.5 23058.93 1(+)

0.05 0.001 86431 86431 86431 79797.07 11502.3 2(-) 86271.57 53259.75 1(+)
0.01 87252 87729 87765 84955.23 11715.79 2(-) 87578.73 51830.28 1(+)
0.1 88169 88236 88236 86697.47 12063.41 2(-) 87977.4 23219.8 1(+)

0.1 0.001 84636 85738 85738 73279.37 13354.03 2(-) 85481.67 30391.65 1(+)
0.01 16687 87513 87513 82380.23 12894.84 2(-) 87314.6 30685.76 1(+)
0.1 88169 88169 88169 85934.5 11955.7 2(-) 87913.5 26798.67 1(+)

uncorr 2 93559 0.01 0.001 148834 148834 148834 146900.1 12483.14 2(-) 148232.8 42380.86 1(+)
0.01 149445 149516 149516 148429.4 12386.6 2(-) 148769.8 42206.33 1(+)
0.1 149726 149730 149730 148869 12523.58 2(-) 148951.5 38688.04 1(+)

0.05 0.001 37741 147694 147780 139095.4 12240.31 2(-) 147102.9 41993.5 1(+)
0.01 148834 148934 148934 145768.8 11206.09 2(-) 148419.6 42218.72 1(+)
0.1 148834 149625 149625 148125.6 14307.55 2(-) 148839.1 39514.93 1(+)

0.1 0.001 101587 146281 146888 130418.7 13508.59 2(-) 146250.9 41917.14 1(+)
0.01 37741 148834 148834 142598.9 11929.05 2(-) 148163.2 41993.42 1(+)
0.1 149398 149543 149543 147111.4 12399.31 2(-) 148791 39720.63 1(+)

uncorr 3 171819 0.01 0.001 208811 209074 209074 207151.1 12162.4 2(-) 206872.6 49345.98 1(+)
0.01 209630 209630 209630 208489.4 13234.64 2(-) 207338.3 49400.53 1(+)
0.1 209790 209790 209790 208946.9 14540.8 2(-) 207487.1 49227.39 1(+)

0.05 0.001 141224 208033 208095 199039.4 12712.34 2(-) 205892.9 49377.69 1(+)
0.01 209229 209289 209289 205913.6 12785.77 2(-) 206973 49178.8 1(+)
0.1 209663 209694 209694 208144.3 12656.35 2(-) 207608.4 49367.14 1(+)

0.1 0.001 141356 144160 207294 188980.9 12458.81 2(-) 205302.1 48909.96 1(+)
0.01 141561 209047 209047 202708.7 13160.75 2(-) 206906.2 49180.67 1(+)
0.1 209630 209630 209630 207203.3 12552.59 2(-) 207316.4 49094.54 1(+)

4.6. Conclusion 61

Table 4.8. Statistical results of (1 + 1) EA with Chernoff bound for
instance eil101 with 500 items

capacity delta alpha Standard (1 + 1) EA (1) (1 + 1) EA with HT (2)
Mean Std stat Mean Std stat

bou-s-c 1 61447 25 0.001 77188.75 131.32 2(-) 77354.80 137.75 1(+)
0.01 77431.35 217.91 2(-) 77682.50 142.07 1(+)
0.1 77846.90 149.80 2(-) 78046.45 101.43 1(+)

50 0.001 75625.30 114.08 2(-) 75796.10 124.82 1(+)
0.01 76189.05 168.81 2(-) 76429.60 164.43 1(+)
0.1 76990.85 130.88 2(-) 77190.65 147.35 1(+)

bou-s-c 2 162943 25 0.001 189768.50 176.14 2(-) 190192.30 109.27 1(+)
0.01 190136.65 146.38 2(-) 190435.60 152.04 1(+)
0.1 190668.95 164.61 2(-) 190889.80 138.44 1(+)

50 0.001 187930.55 200.91 2(-) 188244.65 87.04 1(+)
0.01 188636.25 185.64 2(-) 189002.70 157.02 1(+)
0.1 189560.60 185.47 2(-) 189882.45 134.64 1(+)

uncorr 1 37686 25 0.001 85793.80 141.97 2(-) 85905.00 125.82 1(+)
0.01 86163.70 152.75 2(-) 86323.45 103.78 1(+)
0.1 86735.10 107.89 2(-) 86887.80 87.51 1(+)

50 0.001 83617.85 175.42 2(-) 83746.00 72.36 1(+)
0.01 84400.05 131.08 2(-) 84556.10 117.32 1(+)
0.1 85514.45 170.14 2(-) 85668.30 88.90 1(+)

uncorr 2 93559 25 0.001 147538.15 105.60 2(-) 147693.65 45.21 1(+)
0.01 147931.80 164.88 2(-) 148048.80 64.67 1(+)
0.1 148371.20 101.71 2(-) 148515.65 76.13 1(+)

50 0.001 145675.90 73.28 2(-) 145767.40 88.57 1(+)
0.01 146381.05 123.87 2(-) 146478.65 65.55 1(+)
0.1 147311.05 98.65 2(-) 147450.10 78.27 1(+)

62 Chapter 4. EAs for CCKP

Table 4.9. Statistical results of (1+1) EA with Chebyshev’s inequal-
ity for instance eil101 with 500 items

capacity delta alpha Standard (1 + 1) EA (1) (1 + 1) EA with HT (2)
Mean Std stat Mean Std stat

bou-s-c 1 61447 25 0.001 73845.45 154.22 2(-) 74030.20 106.77 1(+)
0.01 77118.95 177.20 2(-) 77288.75 112.60 1(+)
0.1 78184.80 166.21 2(-) 78353.85 143.99 1(+)

50 0.001 69136.30 210.29 2(-) 69394.60 121.15 1(+)
0.01 75619.85 159.61 2(-) 75829.30 129.03 1(+)
0.1 77712.80 201.23 2(-) 77987.45 124.92 1(+)

bou-s-c 2 162943 25 0.001 185706.25 151.89 2(-) 185969.05 136.42 1(+)
0.01 189753.70 166.73 2(-) 190109.25 133.08 1(+)
0.1 191092.25 182.75 2(-) 191410.15 122.83 1(+)

50 0.001 179824.75 167.43 2(-) 180107.35 126.69 1(+)
0.01 187914.05 134.66 2(-) 188176.30 162.26 1(+)
0.1 190566.85 159.93 2(-) 190784.95 119.70 1(+)

uncorr 1 37686 25 0.001 80931.05 206.08 2(-) 81114.65 108.74 1(+)
0.01 85710.55 181.84 2(-) 85857.05 130.49 1(+)
0.1 87306.40 174.52 2(-) 87405.90 134.22 1(+)

50 0.001 74345.30 232.35 2(-) 74483.10 152.61 1(+)
0.01 83497.20 132.89 2(-) 83685.30 117.64 1(+)
0.1 86617.35 146.49 2(-) 86761.15 83.79 1(+)

uncorr 2 93559 25 0.001 143213.25 87.61 2(-) 143359.95 62.21 1(+)
0.01 147487.20 110.01 2(-) 147597.30 65.75 1(+)
0.1 148827.55 142.91 2(-) 148962.75 67.57 1(+)

50 0.001 137111.55 102.85 2(-) 137262.15 75.68 1(+)
0.01 145514.50 142.63 2(-) 145636.50 55.13 1(+)
0.1 148259.75 116.00 2(-) 148367.25 64.25 1(+)

Table 4.10. Statistical results of (µ+1) EA with Chernoff bound for
instance eil101 with 500 items

capacity delta alpha Standard (µ+ 1) EA (3) (µ+ 1) EA with HT (4) (µ+ 1) EA with HT and PS (5)
Mean Std stat Mean Std stat Mean Std stat

bou-s-c 1 61447 25 0.001 77112.27 182.05 4(-),5(-) 77350.17 108.33 3(+),5(-) 77518.20 104.44 3(+),4(+)
0.01 77413.97 188.46 4(-),5(-) 77646.67 119.40 3(+),5(-) 77811.80 107.17 3(+),4(+)
0.1 77787.77 138.06 4(-),5(-) 78000.57 133.04 3(+),5(-) 78197.40 142.42 3(+),4(+)

50 0.001 75562.23 201.47 4(-),5(-) 75816.83 141.98 3(+),5(-) 75934.03 102.39 3(+),4(+)
0.01 76178.43 156.15 4(-),5(-) 76455.20 113.76 3(+),5(-) 76559.90 138.41 3(+),4(+)
0.1 76948.67 177.82 4(-),5(-) 77193.60 136.70 3(+),5(-) 77296.53 148.22 3(+),4(+)

bou-s-c 2 162943 25 0.001 189795.90 164.86 4(-),5(-) 190130.60 142.84 3(+),5(-) 190418.70 155.28 3(+),4(+)
0.01 190179.80 150.85 4(-),5(-) 190523.13 118.16 3(+),5(-) 190814.40 130.31 3(+),4(+)
0.1 190569.93 194.37 4(-),5(-) 190917.27 122.95 3(+),5(-) 191286.05 127.97 3(+),4(+)

50 0.001 188027.17 138.12 4(-),5(-) 188308.87 129.41 3(+),5(-) 188575.15 146.49 3(+),4(+)
0.01 188690.86 139.27 4(-),5(-) 189016.46 112.01 3(+),5(-) 189287.95 108.62 3(+),4(+)
0.1 189574.83 184.21 4(-),5(-) 189862.87 118.61 3(+),5(-) 190207.65 130.52 3(+),4(+)

uncorr 1 37686 25 0.001 85788.63 108.84 4(-),5(-) 85938.83 113.10 3(+),5(-) 85968.47 82.01 3(+),4(+)
0.01 86198.93 147.91 4(-),5(-) 86331.03 109.54 3(+),5(-) 86395.43 87.11 3(+),4(+)
0.1 86784.87 133.35 4(-),5(-) 86887.37 104.28 3(+),5(-) 86925.50 88.78 3(+),4(+)

50 0.001 83586.80 204.58 4(-),5(-) 83745.63 101.20 3(+),5(-) 83819.10 91.67 3(+),4(+)
0.01 84476.20 143.76 4(-),5(-) 84572.10 104.82 3(+),5(-) 84641.60 126.83 3(+),4(+)
0.1 85521.30 166.74 4(-),5(-) 85654.07 105.95 3(+),5(-) 85717.10 97.85 3(+),4(+)

uncorr 2 93559 25 0.001 147537.37 128.76 4(-),5(-) 147683.03 70.76 3(+),5(-) 147745.95 76.22 3(+),4(+)
0.01 147923.97 98.21 4(-),5(-) 148032.67 65.28 3(+),5(-) 148126.05 61.35 3(+),4(+)
0.1 148388.83 106.95 4(-),5(-) 148513.17 74.87 3(+),5(-) 148604.60 53.52 3(+),4(+)

50 0.001 145648.43 90.76 4(-),5(-) 145770.03 65.78 3(+),5(-) 145838.10 59.74 3(+),4(+)
0.01 146379.80 86.76 4(-),5(-) 146513.47 57.61 3(+),5(-) 146572.60 47.19 3(+),4(+)
0.1 147316.30 91.46 4(-),5(-) 147414.76 85.65 3(+),5(-) 147497.10 60.68 3(+),4(+)

4.6. Conclusion 63

Table 4.11. Statistical results of (µ + 1) EA with Chebyshev’s in-
equality for instance eil101 with 500 items

capacity delta alpha Standard (µ+ 1) EA (3) (µ+ 1) EA with HT (4) (µ+ 1) EA with HT and PS (5)
Mean Std stat Mean Std stat Mean Std stat

bou-s-c 1 61447 25 0.001 73881.73 175.53 4(-),5(-) 74005.90 137.56 3(+),5(-) 74076.60 153.03 3(+),4(+)
0.01 77141.50 161.02 4(-),5(-) 77376.87 105.29 3(+),5(-) 77515.70 106.62 3(+),4(+)
0.1 78171.23 212.15 4(-),5(-) 78000.57 166.67 3(+),5(-) 78620.00 135.42 3(+),4(+)

50 0.001 69178.33 151.69 4(-),5(-) 69393.30 103.48 3(+),5(-) 69439.10 110.33 3(+),4(+)
0.01 75661.87 138.77 4(-),5(-) 76455.20 121.03 3(+),5(-) 75968.90 100.49 3(+),4(+)
0.1 77735.60 201.61 4(-),5(-) 77982.27 136.70 3(+),5(-) 78157.37 98.79 3(+),4(+)

bou-s-c 2 162943 25 0.001 185726.67 121.77 4(-),5(-) 186003.77 117.99 3(+),5(-) 186232.25 111.68 3(+),4(+)
0.01 189717.60 163.28 4(-),5(-) 190063.07 152.09 3(+),5(-) 190416.70 117.58 3(+),4(+)
0.1 191088.17 145.18 4(-),5(-) 191362.76 117.11 3(+),5(-) 191808.15 109.23 3(+),4(+)

50 0.001 179826.70 163.99 4(-),5(-) 180083.90 118.26 3(+),5(-) 180218.70 106.71 3(+),4(+)
0.01 187871.70 153.35 4(-),5(-) 188232.13 120.62 3(+),5(-) 188546.80 139.90 3(+),4(+)
0.1 190485.00 166.26 4(-),5(-) 190831.97 131.35 3(+),5(-) 191183.70 160.72 3(+),4(+)

uncorr 1 37686 25 0.001 81049.37 140.15 4(-),5(-) 81109.53 131.12 3(+),5(-) 81184.30 109.41 3(+),4(+)
0.01 85798.93 121.88 4(-),5(-) 85898.80 97.51 3(+),5(-) 85959.10 84.36 3(+),4(+)
0.1 87322.67 142.69 4(-),5(-) 87449.93 97.28 3(+),5(-) 87486.60 82.56 3(+),4(+)

50 0.001 74378.33 174.08 4(-),5(-) 74498.87 119.64 3(+),5(-) 74597.45 120.22 3(+),4(+)
0.01 83554.13 153.41 4(-),5(-) 83665.77 104.76 3(+),5(-) 83723.30 97.05 3(+),4(+)
0.1 86634.27 150.50 4(-),5(-) 86801.60 78.42 3(+),5(-) 86872.40 88.62 3(+),4(+)

uncorr 2 93559 25 0.001 143256.20 97.24 4(-),5(-) 143350.47 72.07 3(+),5(-) 143420.45 58.82 3(+),4(+)
0.01 147521.47 81.86 4(-),5(-) 148032.67 75.09 3(+),5(-) 147703.15 53.83 3(+),4(+)
0.1 148900.87 88.43 4(-),5(-) 149009.90 81.65 3(+),5(-) 149083.10 51.14 3(+),4(+)

50 0.001 137174.83 102.32 4(-),5(-) 137303.53 64.42 3(+),5(-) 137317.90 53.63 3(+),4(+)
0.01 145525.53 111.41 4(-),5(-) 145645.90 81.14 3(+),5(-) 145719.65 37.79 3(+),4(+)
0.1 148298.47 119.97 4(-),5(-) 148409.80 62.97 3(+),5(-) 148491.60 40.45 3(+),4(+)

Table 4.12. Statistical results of GSEMO with Chernoff bound for
the instance eil101 with 500 items

capacity delta alpha GSEMO with old model (6) GSEMO with new model (7) GSEMO with new model and PS (8)
Mean Std stat Mean Std stat Mean Std stat

bou-s-c 1 61447 25 0.001 77907.23 28.13 7(-),8(-) 77921.57 30.63 6(+),8(-) 77955.00 0.00 6(+),7(+)
0.01 78242.20 1.86 78242.47 0.81 78243.00 0.00
0.1 78592.00 15.55 8(-) 78596.80 20.83 8(-) 78649.00 0.00 6(+),7(+)

50 0.001 76341.33 6.83 76344.73 0.69 76345.00 0.00
0.01 76955.33 9.48 7(-),8(-) 76960.47 1.17 6(+) 76961.00 0.00 6(+)
0.1 77721.87 2.45 77722.80 0.81 77723.00 0.00

bou-s-c 2 162943 25 0.001 190899.33 16.90 8(-) 190901.23 8.68 8(-) 190909.00 0.79 6(+),7(+)
0.01 191244.80 3.25 191246.00 2.00 191245.60 0.55
0.1 191682.97 24.79 8(-) 191674.40 1.14 8(-) 191759.00 0.00 6(+),7(+)

50 0.001 188977.60 25.98 7(-),8(-) 188985.40 9.24 6(+),8(-) 188996.29 2.45 6(+),7(+)
0.01 189687.60 25.64 8(-) 189687.80 24.96 8(-) 189748.27 7.43 6(+),7(+)
0.1 190604.00 3.39 7(-),8(-) 190609.80 8.64 6(+),8(-) 190686.27 5.35 6(+),7(+)

uncorr 1 37686 25 0.001 86246.17 6.98 86247.00 5.00 86248.00 0.00
0.01 86653.47 1.66 86654.00 0.00 86654.00 0.00
0.1 87213.89 2.36 87214.00 0.00 87214.00 0.00

50 0.001 84065.07 8.17 84069.70 0.47 84070.00 0.00
0.01 84909.97 10.33 8(-) 84914.07 7.65 84917.00 0.00 6(+)
0.1 85965.83 6.30 85966.47 2.37 85967.00 0.00

uncorr 2 93559 25 0.001 147885.00 3.36 147888.60 0.89 147889.00 0.00
0.01 148252.40 4.75 148256.20 0.84 148257.00 0.00
0.1 148720.55 3.83 8(-) 148724.60 2.51 148726.60 0.89 6(+)

50 0.001 145964.00 5.00 8(-) 145965.60 1.34 8(-) 145973.58 6.89 6(+),7(+)
0.01 146696.00 8.80 8(-) 146694.00 10.12 8(-) 146710.00 0.00 6(+),7(+)
0.1 147623.80 10.06 7(-),8(-) 147632.20 7.60 6(+),8(-) 147642.00 0.00 6(+),7(+)

64 Chapter 4. EAs for CCKP

Table 4.13. Statistical results of GSEMO with Chebyshev’s inequal-
ity for the instance eil101 with 500 items

capacity delta alpha GSEMO with old model (6) GSEMO with new model (7) GSEMO with new model and PS (8)
Mean Std stat Mean Std stat Mean Std stat

bou-s-c 1 61447 25 0.001 74505.00 11.76 7(-),8(-) 74514.80 0.81 6(+) 74515.00 0.00 6(+)
0.01 77882.23 5.67 8(-) 77885.23 5.41 8(-) 77953.00 0.00 6(+),7(+)
0.1 79026.23 3.73 79028.10 1.06 79029.00 0.00

50 0.001 69852.37 29.36 7(-),8(-) 69900.60 8.69 6(+),8(-) 69925.00 0.00 6(+),7(+)
0.01 76327.47 13.59 7(-),8(-) 76336.13 2.01 6(+) 76337.00 0.00 6(+)
0.1 78517.57 3.83 8(-) 78519.60 4.61 8(-) 78525.00 0.00 6(+),7(+)

bou-s-c 2 162943 25 0.001 186609.20 21.00 7(-),8(-) 186651.20 18.32 6(+),8(-) 186666.00 5.10 6(+),7(+)
0.01 190795.60 27.49 7(-),8(-) 190800.80 32.41 6(+),8(-) 190866.00 8.78 6(+),7(+)
0.1 192177.97 35.88 7(-),8(-) 192202.00 3.74 6(+),8(-) 192207.20 0.45 6(+),7(+)

50 0.001 180661.00 36.85 7(-),8(-) 180696.80 10.55 6(+),8(-) 180765.80 8.23 6(+),7(+)
0.01 188857.40 39.80 7(-),8(-) 188888.40 27.14 6(+),8(-) 188902.00 8.17 6(+),7(+)
0.1 191575.00 4.58 8(-) 191576.00 1.87 8(-) 191581.33 1.65 6(+),7(+)

uncorr 1 37686 25 0.001 81479.37 3.39 81480.73 1.38 81480.20 1.79
0.01 86206.30 1.66 86208.77 4.48 86210.00 0.00
0.1 87728.77 4.36 87730.17 2.09 87732.00 0.00

50 0.001 74869.00 3.81 74868.80 4.63 74870.00 0.00
0.01 84013.50 6.40 7(-),8(-) 84019.90 4.30 6(+) 84022.00 0.00 6(+)
0.1 87066.73 5.30 87068.70 0.47 87069.00 0.00

uncorr 2 93559 25 0.001 143559.20 7.91 8(-) 143557.60 6.58 8(-) 143568.00 13.11 6(+),7(+)
0.01 147816.35 7.26 8(-) 147821.20 2.77 147825.40 1.34 6(+)
0.1 149211.15 5.85 8(-) 149211.80 5.85 8(-) 149218.00 0.00 6(+),7(+)

50 0.001 137517.60 0.89 137515.60 2.19 137517.78 8.05
0.01 145843.40 2.97 7(-),8(-) 145849.60 3.78 6(+),8(-) 145855.14 22.98 6(+),7(+)
0.1 148603.60 3.29 7(-),8(-) 148612.80 3.42 6(+) 148614.90 2.78 6(+)

4.6. Conclusion 65

T
a
bl

e
4.

14
.
St
at
is
ti
ca
lr

es
ul
ts

of
N
SG

A
-I
I
w
it
h
C
he
rn
off

bo
un

d
fo
r
in
st
an

ce
ei
l1
01

w
it
h
50
0
it
em

s

ca
pa

ci
ty

de
lt
a
al
ph

a
N
SG

A
-I
I
w
it
h
ol
d
an

d
un

ifo
rm

(9
)

N
SG

A
-I
I
w
it
h
ol
d
an

d
P
S
(1
0)

N
SG

A
-I
I
w
it
h
ne

w
an

d
un

ifo
rm

(1
1)

N
SG

A
-I
I
w
it
h
ne

w
an

d
P
S
(1
2)

M
ea
n

St
d

st
at

M
ea
n

St
d

st
at

M
ea
n

St
d

st
at

M
ea
n

St
d

st
at

bo
u-
s-
c
1

61
44

7
25

0.
00

1
77

50
4.
93

14
8.
92

10
(-
),
11

(-
),
12

(-
)

77
83

6.
33

59
.8
3
9(
+
),
11
(+

),
12

(-
)

77
72

4.
13

97
.3
6

9(
+
),
10

(-
),
12
(-
)

77
91

4.
33

40
.9
0
9(
+
),
10

(+
),
11

(+
)

0.
01

77
87

8.
60

14
5.
69

10
(-
),
11

(-
),
12

(-
)

78
15
4.
63

60
.9
9
9(
+
),
11

(+
),
12

(-
)

78
07

8.
10

61
.7
9

9(
+
),
10

(-
),
12

(-
)

78
22

0.
37

30
.0
1
9(
+
),
10

(+
),
11

(+
)

0.
1

78
26

7.
03

12
0.
50

10
(-
),
11

(-
),
12

(-
)

78
55
8.
20

49
.0
6
9(
+
),
11

(+
),
12

(-
)

78
46

4.
67

85
.5
6

9(
+
),
10

(-
),
12

(-
)

78
59

5.
33

30
.2
8
9(
+
),
10

(+
),
11

(+
)

50
0.
00

1
75

91
1.
17

14
5.
99

10
(-
),
11

(-
),
12

(-
)

76
25

2.
93

67
.8
0

9(
+
),
11

(-
),
12

(-
)

76
69

8.
10

89
.4
0

9(
+
),
10

(+
),
12

(-
)

76
93

2.
93

23
.6
3
9(
+
),
10
(+

),
11

(+
)

0.
01

76
58

1.
50

12
6.
37

10
(-
),
11

(-
),
12

(-
)

76
88
3.
90

61
.5
0
9(
+
),
11

(+
),
12

(-
)

76
69

8.
10

89
.4
0

9(
+
),
10

(-
),
12

(-
)

76
93

2.
93

23
.6
3
9(
+
),
10

(+
),
11

(+
)

0.
1

77
43

9.
80

10
1.
89

10
(-
),
11

(-
),
12

(-
)

77
69
9.
27

29
.8
2
9(
+
),
11

(+
),
12

(-
)

77
53

4.
43

72
.5
3

9(
+
),
10

(-
),
12

(-
)

77
71

2.
27

8.
31

9(
+
),
10

(+
),
11

(+
)

bo
u-
s-
c
2

16
29

43
25

0.
00

1
19

02
85

.9
3
19

0.
97

10
(-
),
11

(-
),
12

(-
)
19

08
41

.8
3
54

.1
2
9(
+
),
11

(+
),
12

(-
)
19

05
32

.7
0
11

9.
81

9(
+
),
10

(-
),
12
(-
)
19

08
88

.7
3
12

.4
6
9(
+
),
10

(+
),
11

(+
)

0.
01

19
06
86

.4
3
18

2.
27

10
(-
),
11

(-
),
12

(-
)
19

12
09

.5
7
42

.3
3
9(
+
),
11

(+
),
12

(-
)
19
09

37
.1
3

88
.8
0

9(
+
),
10

(-
),
12

(-
)
19

12
27

.2
0
19

.3
7
9(
+
),
10

(+
),
11

(+
)

0.
1

19
11
49

.5
0
13

8.
73

10
(-
),
11

(-
),
12

(-
)
19

15
49

.5
0
18

.7
1
9(
+
),
11

(+
),
12

(-
)
19
13

98
.7
0

81
.2
6

9(
+
),
10

(-
),
12

(-
)
19

16
93

.5
3
42

.3
8
9(
+
),
10

(+
),
11

(+
)

50
0.
00

1
18

83
28

.3
7
19

3.
81

10
(-
),
11
(+

),
12

(-
)
18

89
52

.8
7
41

.3
5

9(
+
),
11
(+

)
18

82
60

.0
7
14

6.
80

9(
-)
,1
0(
-)
,1
2(
-)

18
89

53
.4
7
12

.5
8

9(
+
),
10

(+
)

0.
01

18
91
11

.8
0
17

5.
58

10
(-
),
11

(+
),
12

(-
)
18

96
86
.8
0
49

.9
7
9(
+
),
11

(+
),
12

(-
)
18

90
76

.4
0
14

0.
02

9(
-)
,1
0(
-)
,1
2(
-)

18
97

10
.0
7
26

.3
5
9(
+
),
10

(+
),
11

(+
)

0.
1

19
00
71

.5
3
14

7.
13

10
(-
),
11

(+
),
12

(-
)
19

06
23
.4
0
41

.5
2
9(
+
),
11

(+
),
12

(-
)
19

00
23

.7
3
13

0.
68

9(
-)
,1
0(
-)
,1
2(
-)

19
07

18
.3
3
42

.5
9
9(
+
),
10

(+
),
11

(+
)

un
co
rr

1
37

68
6

25
0.
00

1
86

13
2.
83

65
.9
6

10
(-
),
11

(-
),
12

(-
)

86
21

4.
63

22
.2
7

9(
+
),
11

(+
)

86
15

8.
40

41
.9
0

9(
+
),
10

(-
),
12

(-
)

86
21
5.
40

15
.0
0

9(
+
),
10

(+
)

0.
01

86
57

3.
93

73
.7
5

10
(-
),
11

(-
),
12

(-
)

86
64

5.
23

14
.7
5
9(
+
),
11

(+
),
12

(-
)

86
61

4.
20

27
.5
7

9(
+
),
10

(-
),
12

(-
)

86
65

1.
50

9.
52

9(
+
),
10

(+
),
11
(+

)
0.
1

87
12

8.
00

53
.9
0

10
(-
),
11

(-
),
12

(-
)

87
21

2.
10

10
.4
1

9(
+
),
11

(+
)

87
16

2.
83

29
.0
0

9(
+
),
10

(-
),
12

(-
)

87
21

4.
00

0.
00

9(
+
),
10

(+
)

50
0.
00

1
84

03
9.
10

31
.6
4

10
(-
),
11
(-
),
12

(-
)

84
05

9.
03

13
.0
1

9(
+
),
11

(-
),
12

(-
)

84
62

7.
23

15
0.
14

9(
+
),
10

(+
),
12

(-
)

84
73

7.
87

8.
97

9(
+
),
10

(+
),
11
(+

)
0.
01

84
86

3.
40

27
.7
1

10
(-
),
11

(+
),
12
(-
)

84
89

2.
63

7.
00

9(
+
),
11

(+
)

84
69

2.
00

86
.5
2

9(
-)
,1
0(
-)
,1
2(
-)

84
89

5.
63

3.
30

9(
+
),
10

(+
)

0.
1

85
92

9.
30

29
.2
1

10
(-
),
11

(+
),
12
(-
)

85
95

8.
03

15
.2
1
9(
+
),
11

(+
),
12

(-
)

85
85

9.
10

56
.6
1

9(
-)
,1
0(
-)
,1
2(
-)

85
96

4.
77

6.
08

9(
+
),
10

(+
),
11
(+

)
un

co
rr

2
93

55
9

25
0.
00

1
14

77
95
.9
7

41
.2
9

10
(-
),
11

(-
),
12

(-
)
14
78

78
.1
7

8.
42

9(
+
),
11

(+
)
14

78
10

.6
7

29
.5
2

9(
+
),
10

(-
),
12
(-
)
14

78
75

.3
7

9.
02

9(
+
),
10

(+
)

0.
01

14
81
68

.0
7

41
.8
8

10
(-
),
11

(-
),
12

(-
)
14

82
43

.5
7

9.
34

9(
+
),
11

(+
),
12

(-
)
14

81
83

.7
3

31
.2
1

9(
+
),
10

(-
),
12

(-
)
14

82
47

.0
7

8.
31

9(
+
),
10

(+
),
11

(+
)

0.
1

14
86
40

.4
0

39
.2
9

10
(-
),
11

(-
),
12

(-
)
14

87
14

.3
0

9.
19

9(
+
),
11

(+
)
14

86
74

.1
3

21
.4
9

9(
+
),
10

(-
),
12

(-
)
14

87
13

.3
3

7.
75

9(
+
),
10
(+

)
50

0.
00

1
14

58
79

.2
7

37
.3
7

10
(-
),
11

(+
),
12

(-
)
14

59
59

.8
3

9.
18

9(
+
),
11

(+
),
12

(-
)
14

56
60

.6
7

77
.8
2

9(
-)
,1
0(
-)
,1
2(
-)

14
59

75
.6
7
13

.9
7
9(
+
),
10

(+
),
11

(+
)

0.
01

14
66
09

.6
3

51
.4
5

10
(-
),
11
(+

),
12

(-
)
14

66
95

.1
0
10

.2
0

9(
+
),
11

(+
)
14

65
08

.3
3

43
.1
9

9(
-)
,1
0(
-)
,1
2(
-)

14
66

94
.4
7
13

.7
5

9(
+
),
10

(+
)

0.
1

14
75
63

.6
3

34
.4
5

10
(-
),
11
(+

),
12

(-
)
14

76
23

.6
7

9.
87

9(
+
),
11

(+
),
12

(-
)
14

75
29

.5
0

39
.2
6

9(
-)
,1
0(
-)
,1
2(
-)

14
76

28
.0
7

5.
29

9(
+
),
10

(+
),
11

(+
)

66 Chapter 4. EAs for CCKP

T
a
ble

4.15.
Statisticalresults

of
N
SG

A
-II

w
ith

C
hebyshev’s

inequality
for

the
instance

eil101
w
ith

500
item

s

capacity
delta

alpha
N
SG

A
-II

w
ith

old
and

uniform
(9)

N
SG

A
-II

w
ith

old
and

P
S
(10)

N
SG

A
-II

w
ith

new
and

uniform
(11)

N
SG

A
-II

w
ith

new
and

P
S
(12)

M
ean

Std
stat

M
ean

Std
stat

M
ean

Std
stat

M
ean

Std
stat

bou-s-c
1

61447
25

0.001
73833.80

142.46
10(-),11(+

),12(-)
74461.90

22.06
9(+

),11(+
),12(+

)
73566.07

214.57
9(-),10(-),12(-)

74440.57
45.01

9(+
),10(-),11(+

)
0.01

77611.13
85.06

10(-),11(+
),12(-)

77909.53
44.31

9(+
),11(+

),12(+
)

77293.37
159.75

9(-),10(-),12(-)
77875.37

47.50
9(+

),10(-),11(+
)

0.1
78663.90

145.51
10(-),11(+

),12(-)
79019.50

19.01
9(+

),11(+
),12(+

)
78390.00

173.59
9(-),10(-),12(-)

78998.17
40.33

9(+
),10(-),11(+

)
50

0.001
69066.73

163.28
10(-),11(+

),12(-)
69671.93

61.49
9(+

),11(+
)

68813.60
167.88

9(-),10(-),12(-)
69673.10

32.07
9(+

),11(+
)

0.01
75892.57

96.68
10(-),12(-)

76304.20
29.36

9(+
),11(+

),12(+
)

75883.23
129.05

10(-),12(-)
76275.37

19.69
9(+

),10(-),11(+
)

0.1
78247.07

97.79
10(-),11(+

),12(-)
78507.90

4.27
9(+

),11(+
)

78178.97
174.67

9(-),10(-),12(-)
78506.53

5.20
9(+

),11(+
)

bou-s-c
2

162943
25

0.001
185031.00

256.80
10(-),11(+

),12(-)
186597.97

40.87
9(+

),11(+
),12(+

)
184857.03

229.71
9(-),10(-),12(-)

186464.03
91.39

9(+
),10(-),11(+

)
0.01

189960.17
161.64

10(-),11(+
),12(-)

190779.23
41.14

9(+
),11(+

),12(+
)
189654.13

182.06
9(-),10(-),12(-)

190732.63
58.43

9(+
),10(-),11(+

)
0.1

191284.70
173.66

10(-),11(+
),12(-)

192124.63
73.61

9(+
),11(+

),12(+
)
190988.60

243.98
9(-),10(-),12(-)

192108.20
66.57

9(+
),10(-),11(+

)
50

0.001
178525.63

357.61
10(-),11(-),12(-)

180523.90
45.63

9(+
),11(+

)
178875.80

248.68
9(+

),10(-),12(-)
180519.93

46.64
9(+

),11(+
)

0.01
187701.30

165.20
10(-),11(-),12(-)

188848.53
51.18

9(+
),11(+

)
187879.77

169.79
9(+

),10(-),12(-)
188852.90

41.61
9(+

),11(+
)

0.1
190806.63

160.38
10(-),11(+

),12(-)
191553.40

30.92
9(+

),11(+
)
190794.07

155.19
9(-),10(-),12(-)

191554.83
22.00

9(+
),11(+

)
uncorr

1
37686

25
0.001

81097.67
120.79

10(-),11(+
),12(-)

81438.43
29.77

9(+
),11(+

),12(-)
79826.57

314.75
9(-),10(-),12(-)

81457.00
0.00

9(+
),10(-),11(+

)
0.01

86056.53
59.24

10(-),11(+
),12(-)

86172.97
18.39

9(+
),11(+

),12(-)
85932.27

120.74
9(-),10(-),12(-)

86178.23
26.97

9(+
),10(-),11(+

)
0.1

87692.13
32.70

10(-),11(+
),12(-)

87718.70
11.17

9(+
),11(+

),12(-)
87666.30

59.59
9(-),10(-),12(-)

87725.37
8.55

9(+
),10(-),11(+

)
50

0.001
74116.47

201.70
10(-),11(+

),12(-)
74763.10

45.28
9(+

),11(+
),12(+

)
71446.10

514.91
9(-),10(-),12(-)

74759.37
10.02

9(+
),10(+

),11(+
)

0.01
83765.50

102.91
10(-),11(+

),12(-)
83983.30

23.59
9(+

),11(+
)

83404.57
514.91

9(-),10(-),12(-)
83987.43

22.76
9(+

),11(+
)

0.1
86993.97

43.19
10(-),11(-),12(-)

87057.27
17.19

9(+
),11(+

),12(-)
87024.87

35.61
9(+

),10(-),12(-)
87062.53

5.07
9(+

),10(+
),11(+

)
uncorr

2
93559

25
0.001

142887.10
161.18

10(-),11(+
),12(-)

143493.53
33.13

9(+
),11(+

),12(-)
141780.10

281.11
9(-),10(-),12(-)

143521.00
17.66

9(+
),10(+

),11(+
)

0.01
147612.27

78.26
10(-),11(-),12(-)

147799.43
16.74

9(+
),11(+

)
147602.77

89.57
9(+

),10(-),12(-)
147802.23

13.51
9(+

),11(+
)

0.1
149125.07

33.53
10(-),11(+

),12(-)
149197.40

16.73
9(+

),11(+
)
149102.27

45.91
9(-),10(-),12(-)

149200.67
14.26

9(+
),11(+

)
50

0.001
136249.50

232.14
10(-),11(+

),12(-)
137380.00

53.81
9(+

),11(+
),12(-)

133715.83
452.04

9(-),10(-),12(-)
137442.47

26.81
9(+

),10(+
),11(+

)
0.01

144655.87
33.53

10(-),11(-),12(-)
145808.87

18.50
9(+

),11(+
),12(-)

145025.17
193.57

9(+
),10(-),12(-)

145822.27
19.88

9(+
),10(+

),11(+
)

0.1
148484.37

45.83
10(-),11(-),12(-)

148588.10
18.61

9(+
),11(+

),12(-)
148517.47

38.88
9(+

),10(-),12(-)
148609.63

8.25
9(+

),10(+
),11(+

)

67

Chapter 5

Runtime Analysis for the
Chance-Constrained Knapsack
Problem with Correlated Uniform
Weight

5.1 Introduction

In chapter 4, we have seen that evolutionary algorithms show efficiency when solving
the chance-constrained knapsack problem (CCKP). In this chapter, we present the
theoretical understanding of two bio-inspired algorithms: RLS2 and (1+1) EA, for
chance-constrained knapsack problem with correlated uniform weight, which can be
expressed as a specific version of the formal CCKP.

While evolutionary algorithms for solving dynamic and stochastic combinatorial opti-
misation problems have been theoretically analysed in many articles (He, Mitavskiy,
and Zhou, 2014; Lissovoi and Witt, 2017; Neumann, Pourhassan, and Roostapour,
2020; Roostapour et al., 2019), the literature on bio-indpired algorithms for chance-
constraint optimisation problems is not that large. During recent years, chance-
constrained optimisation problems have gained much attention due to their crucial
role in situations where critical stochastic components are involved.

The first runtime analysis of evolutionary algorithms for CCKP is introduced by
Neumann and Sutton (2019). They analysed different settings for the CCKP and
argued that an optimal solution with a minimum probability of violating the chance
constraint is more robust than other optimal solutions with the same fitness value.
Firstly, they studied the cases in which all the profits are equal, but weights are chosen
according to different distributions. They proved that, for instance, with uniform
profit and iid weight, (1+1) EA found the optimal solution within the expected time
O(n log n). Then they proved that (1+1) EA found the optimal solution for the
instance with uniform profit and two variance class weights within the expected time
O(n3). Secondly, they theoretically analyse the (1+1) EA on cases where profits and
weight distribution differ between items. For the instances in which items are divided
into two groups, items in the first group have a profit of 1, and weights are chosen
uniformly at random from interval [1/2, 3/2], items in the second group have a profit of
2, and weights are chosen uniformly at random from interval [3/2, 5/2]. They proved
that the expected time of the (1+1) EA to find the optimal solution of this type of
instance is O(n4). Moreover, they also pointed that a tiny change to the value of

68 Chapter 5. Runtime Analysis for CCKP

profit can result in local optimal that cannot be escaped in expected polynomial time
for the (1+1) EA.

This chapter considers the CCKP with correlated uniform weight, this variant par-
titions the set of items into groups, and pairs of items within the same group have
correlated weights. We prove bounds on both the time to find a feasible solution and
the time to obtain the optimal solution. In this chapter, we argue that the optimal
solution has both maximal profit and minimal probability of violating the chance
constraint. In particular, we first prove that RLS2 can find a feasible solution in
time bounded by O(n log n) and by the (1+1) EA in time bounded by O(n2 log n).
Then, we investigate the optimisation time for these algorithms when the profit values
are uniform, which has been studying in the deterministic constrained optimisation
problems (Friedrich et al., 2020). However, the items in our case are divided into
different groups, and it becomes necessary to take the number of chosen items from
each group into account. Therefore, the optimisation time bound for RLS2 becomes
O(n3) and O(n3 log n) for the (1+1) EA. After that, we consider the more general
and complicated case in which profits may be arbitrary as long as each group has the
same set of profit values. We show that an upper bound of O(n3) holds for RLS2
and O(n3(log n+ log pmax)) holds for the (1+1) EA where pmax denotes the maximal
profit among all items.

The work of this chapter is based on a conference paper presented in GECCO 2021
(Xie et al., 2021).

The rest of the chapter is organized as follows. Section 5.2 presents the detailed def-
inition of the considered CCKP with correlated uniform weights. In Section 5.3, we
present the expected time of different algorithms needed to produce a feasible solu-
tion in Section 5.3.1. Moreover, we investigate the problem theoretically for uniform
profits and arbitrary profits in Section 5.3.2 and 5.3.3, respectively. Our experimental
analyses are presented in Section 5.4, followed by a conclusion in Section 5.5.

5.2 Preliminaries

In this section, we present the version of CCKP that is considered in this chapter and
the details of the algorithms that we analyse.

5.2.1 Problem Definition

We consider a version of CCKP which is slightly different from the one introduced in
Section 4. In this version, we are given n items partitioned to K groups and m items
in each group. Let eij denote the j-th item in group i, with an associated stochastic
weight wij , expected weight aij and variance of weight σ2ij = d, and each item has
profit pij . We assume that the weights of items in different groups are independent to
each other, but the weights of items in a same group are correlated with each other
via a shared covariance c > 0, i.e. cov(eij , ekl) = c iff i = k, and cov(eij , ekl) = 0 iff
i 6= k.

5.2. Preliminaries 69

The chance-constrained knapsack problem with correlated uniform weights can be
formulated as follows:

max P (x) =
K∑
i=1

m∑
j=1

pijxij (5.1)

s.t. Pr(W (x) > C) ≤ α. (5.2)

The objective of this problem is to select a set of items that maximises profit subject to
the chance constraint, which requires that the solution violates the constraint bound
C only with probability at most α.

A solution is characterized as a vector of binary decision variables x = (x11, x12, . . . ,
x1m, . . . , xKm) ∈ {0, 1}n. When xij = 1, the j-th item of the i-th group is selected.
The weight of a solution x is the random variable

W (x) =
K∑
i=1

m∑
j=1

wijxij , (5.3)

with expectation

E[W (x)] =
K∑
i=1

m∑
j=1

xijaij , (5.4)

and variance

V ar(x) = d
K∑
i=1

m∑
j=1

xij + 2c
K∑
i=1

∑
1≤j1<j2≤m

(xij1xij2). (5.5)

We define two specific types of solutions for any instance among the same number
of selected items. Solutions that match the type balanced solutions shall have the
minimal covariance value, and solutions that match the type most unbalance solution
have the maximal covariance value.

Definition 5.2.1. Among all solutions with exactly ` items, we call a search point
x; |x|1 = ` a balanced solution, denoted by `b if it selects

⌊
`
K

⌋
items from K −(

`−
⌊
`
K

⌋
·K
)
groups and

⌊
`
K

⌋
+1 items from the remaining `−

⌊
`
K

⌋
·K groups. This

solution has covariance

sb` = c
{[
K −

(
`−

⌊
`
K

⌋)] ⌊
`
K

⌋ (⌊
`
K

⌋
− 1
)

+
(
`−

⌊
`
K

⌋) (⌊
`
K

⌋
+ 1
) ⌊

`
K

⌋}
.

Solutions with exactly ` bits that are not balanced solutions are called unbalanced
solutions.

Among all unbalanced solutions, we call the following one the most unbalanced so-
lution denoted by `ub, which selects exactlym items from

⌊
`
m

⌋
groups and

(
`−

⌊
`
m

⌋
·m
)

items from another group. Since m is the maximal number of items in each group,
in the most unbalanced solution, there are

⌊
`
m

⌋
full groups and one other group con-

taining the remaining items. This solution has covariance

sub` = c

[⌊
`

m

⌋
m(m− 1) +

(
`−

⌊
`

m

⌋
m

)(
i−
⌊
`

m

⌋
m− 1

)]
.

70 Chapter 5. Runtime Analysis for CCKP

We calculate the upper bound of the covariance of acceptable solutions according to
the one-side Chebyshev’s inequality (3.9) for all solutions with ` itmes. The covariance
of the solution X is denoted by

s` = 2c
K∑
i=1

∑
1≤j1<j2≤m

(xij1xij2),

and ` denotes the number of one bits in solutions. By Equation (5.5), V ar[W (X)] =
`d+ s`. Therefore, by assuming the expected weights are all equal and denoted by a,
the bound according to Chebyshev’s inequality yields

`d+ s`
`d+ s` + (C − a`)2

≤ α

⇐⇒`d+ s` ≤ α(`d+ s` + (C − a`)2)

⇐⇒s` ≤
(C − a`)2α

1− α
− `d. (5.6)

Therefore, the covariance of feasible solutions with exactly ` items is bounded above
by (C−a`)2α

1−α − `d.

In this chapter, we assume the weights of items are correlated uniformly and that
it is intractable to calculate the exact probability of violating the chance constraint.
Similar to the work in Chapter 4, we use the one-sided Chebyshev’s inequality to
construct a usable surrogate of the chance constraint (5.2).

In particular, we define a surrogate function β over decision vectors as

β(x) =
V ar(x)

V ar(x) + (C − E[W (x)])2
. (5.7)

It is clear that Pr(W (x) ≥ C) ≤ β(x), and therefore every x such that β(x) ≤ α is
also feasible.

5.2.2 Algorithms

We analyse the runtime of two algorithms. The first one, described in Algorithm 4,
named RLS2, which can flip a bit or two bits at once. Another algorithm is (1+1) EA
(Algorithm 6). This algorithm, as introduced in Section 3.3.2 flips each bit of the
current solution with the probability of 1/n in each mutation step. Both algorithms
replace the current solution with the generated offspring if it is at least as good as its
parents.

Since RLS2 and (1+1) EA are single-objective algorithms, the comparisons between
solutions in these algorithms are based on the fitness function

f(x) := (P ′(x), β′(x)), (5.8)

where P ′(x) = −1 iff β′(x) > α and P ′(x) = P (x) otherwise, β′(x) = β(x) iff
E[W (x)] < C and β′(x) = 1+E[W (x)]−C otherwise. We optimize f in lexicographic

5.3. Theoretical Analysis 71

order where the goal is to maximize P ′(x) and minimize β(x), i.e. we have

f(x) � f(y)

⇐⇒ P ′(x) > P ′(y) (5.9)
or

(
P ′(x) = P ′(y) ∧ β(x) ≤ β(y)

)
.

Since selection is monotone, once a feasible solution is located, neither algorithm will
subsequently accept an infeasible solution. Therefore, the algorithm can separate the
process of finding an optimal solution into two parts, and the algorithm may first need
to find a feasible solution in the first part. In the second part, it must find the highest
profit among all feasible solutions.

5.3 Theoretical Analysis

In this section, we theoretically investigate the performance of the RLS2 and (1+1) EA
on different versions of the CCKP with correlated uniform weights by using the run-
ning time analysis. We analyse the behaviour of algorithms when obtaining feasible
solutions and assume all items have the same expected weights. Moreover, we pay
special attention to the case in which all the profits are equal. After that, we consider
cases in where profits are arbitrary and mirrored by each group.

5.3.1 Obtaining feasible solutions

In this section, we analyze the expected time for RLS2 and (1+1) EA to find feasible
solutions.

Lemma 5.3.1. Starting with an arbitrary initial solution, the expected time until
RLS2 obtains a feasible solution is O(n log n).

Proof. Adding a new item to the selected set will increase both the total expected
weight and the probability of violating the chance constraint. Since all items have
the same expected weight a, the sum of expected weight can be represented by the
number of ones in the solution.

The fitness function is defined so that the total expected weight of a solution will
never increase as long as no feasible solution has been obtained. It implies that the
RLS2 never accepts mutations that increase the number of ones and only accept a
decrease in the number of ones. RLS2 cannot accept any single bit flips that flip a
one to zero or 2-bit flips that flip two one-bits to zeros.

Therefore, at any solution x; |x|1 = `, there are ` itmes to decrease, and the probability
of decreasing the number of ones is at least `

2n . Hence, the expected waiting time
until RLS2 constructs a feasible solution is bounded above by 2n

(
1 + · · ·+ 1

n

)
=

O(n log n).

Lemma 5.3.2. Starting with an arbitrary initial solution, the expected time until the
(1+1) EA obtains a feasible solution is O(n2 log n).

Proof. According to the definition of the fitness function (5.8), before finding a so-
lution with an expected weight less than C, the (1+1) EA never accepts a solution
that increases the number of items. Therefore, before producing such a solution, the
algorithm only takes mutations that reduce the number of items and thus behave

72 Chapter 5. Runtime Analysis for CCKP

identically to optimise the classical OneMax problem. The expected time for the
(1+1) EA to find a solution x with E[W (x)] < C is thus bounded by O(n log n), i.e.,
it’s expected running time on OneMax (Mühlenbein, 1992).

According to Chebyshev’s inequality, after finding a solution with an expected weight
less than C, the (1+1) EA always accepts a solution with a more negligible constraint-
violation probability. We construct a potential function h : {0, 1}n as the sum of the
variance and covariance of a solution,

h(x) = d`+ 2c

K∑
i=1

∑
1≤j1<j2≤m

(xijixij2), (5.10)

where ` denotes the number of items selected by solution x, |x|1 = ` and E[W (x)] < C.

For a solution x with ` one bits, the (1+1) EA can reduce the potential h(x) and
the violation probability when flipping any one of the ` one bits to zero. Let the
solution y; |y| = `− 1 be an offspring generated from x by flipping a one bit to zero.
Then, we have h(y) < h(x) and β(y) < β(x). Let x′ be the next possible acceptable
solution for the (1+1) EA with ` one bits. Then solution x′ should be better than
solution y according to the fitness function. We have β(x′) ≤ β(x) < β(x) and
h(x′) ≤ h(y) < h(x) according to the Chebyshev’s inequality.

Given solution x, we consider all steps that flipping a 1-bit the algorithm generates
solution y after finding the solution x′ which reduces the value of the potential func-
tion. Let {r1, . . . , rK}, where 0 ≤ ri ≤ m denotes the number of items in group i
selected by x. Assume x′ is generated from x by flipping a one bit from group i to
zero. Then, the reduction in potential for this mutation is the sum of the variance of
this item and the difference of the covariance between ri elements and ri−1 elements.
That is,

d+ c(ri(ri − 1)− (ri − 1)(ri − 2)) = d+ 2c(ri − 1).

In group i, there are ri single bit flips that achieve this reduction, so the total contri-
bution for group i is

dri + 2cri(ri − 1) ≥ dri + 2c
ri(ri − 1)

2
.

Summing over all groups we have

K∑
i=1

dri + 2cri(ri − 1) ≥ h(x). (5.11)

Therefore, after producing all single bit flips where each one bit of ` bits in x has been
flipped to zero once, the sum of gains concerning the potential function should be as
least as large as h(x).

For all t ∈ N, let xt be the search point of the (1+1) EA for the problem at time t
and Xt = h(xt). Then

Xt −Xt+1 = h(xt)− h(xt+1).

Let x ∈ {0, 1}n be a fixed nonempty solution, and let the points y1, . . . , y` be the `
different search points in {0, 1}n generated from x by first flipping one of the different
` one bit to zero. Thus, we have by h(yi) ≤ h(y) for all i ∈ {1, . . . , `} and inequality

5.3. Theoretical Analysis 73

(5.11) that

∑̀
i=1

(h(x)− h(yi)) ≥ h(x). (5.12)

Since each yi is generated from x by a single bit flip, we have

Pr(xt+1 = yi | xt = x) =

((
1− 1

n

)(n−1)(1

n

))
≥ 1

en
(5.13)

for all i ∈ {1, . . . , `}. Furthermore

E[Xt −Xt+1 | xt = x, xt+1 = yi] = h(x)− h(yi) (5.14)

holds for all i ∈ {1, . . . , `}.

The (1+1) EA never increases the current h-value of a search point, that is, Xt−Xt+1

is non-negative. Therefore, we have

E[Xt −Xt+1 | xt = x] ≥
∑̀
i=1

(h(x)− h(yi))
1

en
(5.15)

and therefore, we have for all X ∈ {0, 1}n that

E[Xt −Xt+1 | xt = x] ≥ h(x)

en
=
Xt

en
.

Therefore, the drift on Xt is at least
h(x)
en , and since the algorithm starts with h(x) ≤

hub` where hub` denotes the sum of variance and covariance of the most unbalanced
solution from the same level of x, and the minimum value of h before reaching h = 0
is 1, by multiplicative drift analysis (Theorem 3.4.6), we find the expected time of at
most

1 + log(hub`)
1
en

= O(n log n) (5.16)

to reach a solution with the number of one bit less than the starting search point. Let
` denote the number of one bits for the starting point, and the probability value of
this solution is better than the best probability value for any solution with ` ones.

Furthermore, there is at most n levels in the search space, and it takes O(n log n)
steps for the (1+1) EA to produce all possible solutions in each level. Altogether, the
expected time of (1+1) EA to find a feasible solution is at most O(n2 log n).

In the following sections, we assume the algorithms have produced a feasible solution
and analyse the expected time that the RLS2 and (1+1) EA require to find the optimal
solutions for two different settings of the CCKP with correlated uniform weight.

5.3.2 Uniform Profits

We consider case that the deterministic profits are uniform. Since the actual value of
profits does not affect the analysis, it is convenient to use unit profits. We calculate
the performance of algorithms for this type of problem.

74 Chapter 5. Runtime Analysis for CCKP

Instance 5.3.3. Given K groups, each group has m items. There are n = K ·m items
in total, the capacity of the knapsack is bounded by C. For 1 ≤ i ≤ K, 1 ≤ j ≤ m, let
pij = 1, aij = a, σ2ij = d, where d > 0 is a constant. The covariance of items within
any group is c, i.e., we have cov(eij , ekl) = c iff i = k and cov(eij , ekl) = 0 otherwise.

Definition 5.3.1. Let r = max{|x|1 | x ∈ {0, 1}n with β(x) ≤ α} and partition the
feasible search space by L0, L1, . . . , Lr such that

Li = {x ∈ {0, 1}n | |x|1 = i with β(x) ≤ α}. (5.17)

We further bi-partition each partition Li into two sets Siγ and Siζ such that Siγ∪Siζ =
Li and Siγ ∩ Siζ = ∅ as follows.

The set Siγ ⊆ Li contains all feasible solutions where no extra item can be added
without violating the chance constraint and Siζ ⊆ Li is the set containing all feasible
solutions where at least one extra item can be added to obtain a feasible solution with
at least i+ 1 ones.

Lemma 5.3.4. Starting with an arbitrary initial solution, the expected optimization
time of RLS2 on the chance-constrained knapsack problem with correlated uniform
weight is O(n3).

Proof. Due to Lemma 5.3.1, RLS2 finds a feasible solution in expected time O(n log n).
Also, since all feasible solutions dominate any infeasible solution, the algorithm does
not return to the infeasible region.

Let x ∈ L`. If x ∈ S`ζ , then there is at least one additional item that can be feasibly
selected in the mutation process. This selection occurs with a probability of 1/2n.
Otherwise, only a 2-bit flip changing a zero to one and a one to zero is accepted if it
reduces the covariance of the solution without changing the profit until the algorithm
produces a balanced solution on the same level.

According to Definition 5.2.1, the balanced solution in each level has the smallest
covariance and number of items selected from each group. Let li(x), 1 ≤ i ≤ K be
the number of elements chosen by x from group i. Assume, without loss of generality,
that the groups are sorted in increasing order with respect to the li(x). Furthermore,
let

s(x) =

K−(`−b `K c·K)∑
i=1

max

{
0,

⌊
`

K

⌋
− li(x)

}

+

K∑
K−(`−b `K c·K)+1

max

{
0,

⌊
`

K

⌋
+ 1− li(x)

}
(5.18)

be the number of items that belong to an arbitrary balanced solution, but not chosen
by x, and let

t(x) =

K∑
i=K−(`−b `K c·K)+1

max

{
0, li(x)−

(⌊
`

K

⌋
+ 1

)}

+

K−(`−b `K c·K)∑
i=1

max

{
0, li(x)−

⌊
`

K

⌋}
(5.19)

5.3. Theoretical Analysis 75

be the number of items chosen by x, but do not belong to a balanced solution. Note
that s(x) should be equal to t(x) for any feasible solution in L`. Let g = s(x) = t(x).

As there are exactly ` 1-bit in solution x, and s(x) is a fixed value, this implies that
there are at least g 1-bits which can be swapped with an arbitrary 0-bit of the missing
g elements to reduce the covariance of x. Hence, the probability of such swapping is at
least g2/2n2. Since g cannot increase and g ≤ `, it suffices to sum up these expected
waiting times, and the expected time until reaching g = 0 is

∑̀
g=1

(2n2/g2) = O
(
n2(1− 1/`)

)
.

There are at most n levels of L` which implies that the expected time until an optimal
solution has been achieved is

n∑
`=1

(n2 − n2/`) = O(n3 − n2 log n) = O(n3),

which completes the proof.

Lemma 5.3.5. Let x ∈ S`γ, then there exists some q ∈ {1, . . . , n−1} different accepted
2-bit flips, and each of those q 2-bit flip can reduce the covariance of the solution. The
expected one-step change of the (1+1) EA is Xt

en2 .

Proof. Let solution x ∈ S`γ , |x|1 = ` and let sx denote the covariance of x. Then
according to the inequality (5.6), sx is bounded by (C−a`)2α

1−α −d`. Let x′ ∈ Siζ , |x′|1 = `

be the balanced solution which takes
⌈
`
K

⌉
elements from the first ` −

⌊
`
K

⌋
K groups

and takes
⌊
`
K

⌋
elements from the last K − `−

⌊
`
K

⌋
K groups.

Now, we have the reduction of covariance that flip i ∈ I to zero denoted by 2c(ri−1),
where ri is the number of selected items of the group that i belong to. There are
ri −

⌈
`
K

⌉
one bits need to be flipped in this group that achieve this reduction to

attend balance, and ri >
⌈
`
K

⌉
, so the total contribution for this group is

2c(ri − 1)

(
ri −

⌈
`

K

⌉)
≥ c(ri − 1)ri − c

(⌈
`

K

⌉
− 1

)⌈
`

K

⌉
. (5.20)

Similarly, we have the increase of covariance when flip a bit j ∈ J denoted by 2crj ,
where rj is the number of selected items of x in the group that j belong to. There
are

⌊
`
K

⌋
− r′j zero bits flip in this group to attend balance and the total contribution

for group k′ is

2c(r′j)

(⌊
`

K

⌋
− r′j

)
≤ c

(⌊
`

K

⌋
− 1

)⌊
`

K

⌋
− c(r′j − 1)r′j . (5.21)

76 Chapter 5. Runtime Analysis for CCKP

Define the total reduction of covariance from x to x′ by inequalities (5.20) and (5.21)
as

q∑
i=1

2c(ri − 1)−
q∑
j=1

2cr′j

≥c(ri − 1)ri − c
(⌊

`
K

⌋
− 1
) ⌊

`
K

⌋
−
(
c
(⌊

`
K

⌋
− 1
) ⌊

`
K

⌋
− c(r′j − 1)r′j

)
=sx − sb`. (5.22)

Therefore performing all q 2-bit flips simultaneously changes x into x′ and leads to a
covariance decrease at least as large as sx− sb`, where sb` denotes the covariance of the
balanced solution with exactly i items.

For all t ∈ N, let Xt ∈ Li be a fixed, non-empty solution generated at time t by the
(1+1) EA, and let Xt = sXt − sbi . Then

Xt −Xt+1 = sXt − sXt+1 . (5.23)

Let Y = {y1, . . . , yq} with q ∈ {1, . . . , n} be the set of q different search points that
on the same level of x in the search space generated from x by one of the q acceptable
different 2-bit flips. We have syi ≤ sx for all i ∈ {1, . . . , q} and

q∑
i=1

(sx − syi) ≥ sx − sbi . (5.24)

Since each yi is generated from x by one of the q 2-bit flips,

Pr[Xt+1 ∈ Y |Xt = x] = q

(
1− 1

n

)n−2(1

n

)2

≥ q

en2
(5.25)

of the (1+1) EA. Furthermore,

E[Xt −Xt+1|Xt = x,Xt+1 ∈ Y] =
sx − sbi
q

=
Xt

q
. (5.26)

The algorithm cannot accept an offspring on the same level that increases the co-
variance. That is, Xt − Xt+1 is non-negative. Thus, we have by (5.25) and (5.26)
that

E[Xt −Xt+1|Xt = x] ≥ Xt

en2
. (5.27)

Lemma 5.3.6. The expected time for the (1+1) EA to transform a solution in Siγ to
a solution in Siζ ∪ Lj where j > i is bounded by O(n2 log n).

Proof. According to Lemma 5.3.5, the drift on Xt is at least Xt
en2 for the (1+1) EA.

Therefore, since both algorithms start with Xt ≤ si = O(n2) and the minimum value
of Xt before reaching Xt = 0 is 1, by multiplicative drift analysis, the expected time
is at most O(n2 log n) to reach a solution in Siζ . Then, if i < r, it is possible for the
(1+1) EA to generate a feasible in Li+1 with probability 1/en. The total expected

5.3. Theoretical Analysis 77

time of the (1+1) EA until an solution in Siζ ∪ Lj is generated is thus bounded by
O(n2 log n).

Theorem 5.3.7. The expected time until the (1+1) EA working on the fitness function
(5.8) constructs the optimal solution to Instance 5.3.3 is bounded by O(n3 log n).

Proof. By Lemmas 5.3.2 and 5.3.6, for all i < r, it is sufficient to investigate the search
process after having found a feasible solution x ∈ Siζ , and after that, the algorithms
can only accept an offspring with a more significant number of one bit. It is possible
for the (1+1) EA to generate a feasible solution in Li+1 by mutating exactly one zero
bit to one. This event occurs with probability at least 1

en for the (1+1) EA.

Therefore, it will take O(n2 log n + en) steps to produce a feasible solution in level
Lr+1 when started from a random feasible solution in Lr. Altogether, the expected
optimization time is bounded by

O(n2 log n) +

r−1∑
i=0

(n2 log n+ en) = O(n3 log n), (5.28)

where r < n.

5.3.3 Arbitrary profits mirrored by each group

We now turn our attention to the more complicated case where a single group has
arbitrary profits, but this set of profits is the same for each of the K groups. This
case resembles the case of general linear functions, but the chosen function is shared
by all groups.

Instance 5.3.8. Given K groups, each group has m items. There are n = K · m
items in total, the capacity of knapsack is bounded by C. For 1 ≤ i ≤ K, 1 ≤ j ≤ m,
let aij = a, σ2ij = d are constants, and let pi1 ≥ pi2 ≥ . . . ≥ pim for i ∈ {1, . . . ,K} and
pi` = pk` for each i, k ∈ {1, . . . ,K}, 1 ≤ ` ≤ m. The covariance of items in groups is
c, i.e. we have cov(eij , ekl) = c iff i = k and cov(eij , ekl) = 0 otherwise.

Theorem 5.3.9. Starting with an arbitrary initial solution, the expected optimization
time of RLS2 on the chance-constrained knapsack problem with correlated uniform
weights is O(n3) on Instance 5.3.8.

Proof. By Lemma 5.3.1, RLS2 finds a feasible solution in expected time O(n log n).
Also, since all feasible solutions dominate infeasible solutions, the algorithm does not
switch back to the infeasible region again. By the definition of Instance 5.3.8 that
items in a group have different profit and the same weight, it is possible to have
more than one balanced solution in each level of this case, but only one balanced
solution with maximum profit, where we ignore the order of groups. We order all
items regarding to their profit as p11 = p21 = . . . = pK1 ≥ p12 = p22 = . . . = pK2 ≥
. . . ≥ p1m = p2m = . . . = pKm.

For a given solution x, we call the multi-set P (x) = {pi | xi = 1} the profit profile
of x, i.e., the multi-set of profit values selected by x. We say that a profit profile P
is contained in P (x) if P ⊆ P (x). Let x be a feasible solution whose profit profile
contains Pj = {p1, . . . , pj} (but which does not contain Pj+1). We claim that RLS2
does not accept a solution whose profit profile does not contain Pj . An operation

78 Chapter 5. Runtime Analysis for CCKP

flipping a single 1-bit that flips a 1 to 0 is not accepted, as it reduces the profit and
therefore cannot lead to a solution not containing Pj . A 2-bit flip is only accepted
if it does not decrease the profit, and thus also cannot create a solution whose profit
profile does not contain Pj , as Pj includes the j-largest profits of the given input.

We analyze the time to transform a solution x containing profit profile Pj = {pi | 1 ≤
i ≤ j} into a solution x′ containing profit profile Pj+1. Consider the profit pj+1 in the
group with the smallest number of elements whose bit xi is set to 0. Flipping xi adds
the profit pj+1 to the profile Pj . Assume that bit xi belongs to group r ∈ {1, . . . ,K},
i.e., xi = xrs. If there is another item selected in group r (selected by xrs′ = 1) whose
profit is less than pj , then flipping both xrs and xrs′ leads to an accepted solution x′

with Pj+1 ⊆ P (x′). This happens with probability 1/2n2. Assume now that there is
no such item in group r. Then pj+1 is the largest non selected profit in group r.

Let S be the set of groups with the largest number of items selected and p̂ the smallest
selected profit from these groups. Assume that xi is not in one of the groups in S.
Then flipping xi to 1 and setting the bit corresponding to p̂ to 0 is accepted and leads
to a solution containing profit profile Pj+1. If xi is from one of the groups in S, then
there should has another item selected in S with a profit smaller than pj+1 or the
solution x is already optimal.

Altogether, to produce a solution x′ containing Pj+1 from a solution with Pj , RLS2
needs at most O(n2) steps, and since there are at most n items in any solution, the
expected optimization time of RLS2 is O(n3).

Let pmax = pi1, i ∈ {1, . . .K} be the maximal profit of the given input.

Theorem 5.3.10. Starting with an arbitrary initial solution, the expected optimization
time of the (1+1) EA on the chance-constrained knapsack problem with correlated
uniform weight is O(n3(log n+ log pmax)) on Instance 5.3.8.

Proof. According to Lemma 5.3.2, the expected time to reach a feasible solution is
O(n2 log n). Therefore it is sufficient to start the analysis with a feasible solution, after
which the (1+1) EA will never sample an infeasible solution during the remainder of
the optimization process.

For our analysis, we consider the set of all solutions Lj = {x | |x|1 = j;β(x) ≤ α}
containing exactly j 1-bits. For each j we show that the expected number of offspring
created from an individual in Lj is O(n2(log n+log pmax)). After this many iterations,
either the optimal solution (contained in Lj) has been created, or a feasible solution y
with p(y) > maxX∈Lj p(x) has been produced, which implies that the algorithm will
not accept any solution in Lj afterwards.

We now show that the expected number of offspring created from solutions in Lj
is O(n2(log n + log pmax)). Let x ∈ Lj be the current solution, and let xj,max =
arg maxx∈Lj p(x) be an arbitrary feasible solution in Lj with the largest possible
profit. Denote the loss by

l(x) =

n∑
i=1

piX
j,max
i (1− xi),

5.3. Theoretical Analysis 79

that is, the sum of the profits chosen by xj,max but not chosen by x. Denote the
surplus by

s(x) =

n∑
i=1

pi(1− xj,max
i)xi,

that is, the sum of the profits chosen by x but not chosen by xmax,j . Define the total
increase in profit from x to xj,max as

g(x) = p(xj,max)− p(x) = l(x)− s(x).

Let r =
∑n

i=1 x
j,max
i (1 − xi) be the number of indices set to 1 by xj,max and 0 by x.

We give a set of r accepted 2-bit flips where the sum of the increases in profit is g(x).

We consider the K groups and w.l.o.g. assume that they are sorted in increasing order
with respect to the number of elements chosen by x = (x11, x12, . . . , x1m, . . . , xKm).
Let `i(x), 1 ≤ i ≤ K be the number of elements chosen by x in group i. We have
`1(x) ≤ . . . ≤ `K(x). We consider the solution x̂j,max of maximal profit in Lj for
which `1(x̂

j,max) ≤ . . . ≤ `K(x̂j,max) and `K(x̂j,max) ≤ `1(x̂
j,max) + 1 holds. This

implies that x̂j,max is a balanced solution having the smallest variance in Lj . Note
that such a solution exists as we may reorder the groups as each group contains the
same (multi-)set of profits.

We have
k∑
i=1

`i(x) ≤
k∑
i=1

`i(x̂
j,max), 1 ≤ k ≤ K (5.29)

as both solutions contain j elements and the groups are sorted in increasing order of
the number of elements chosen by x.

This implies
k∑
i=1

`i(x− x̂j,max) ≤
k∑
i=1

`i(x̂
j,max − x), 1 ≤ k ≤ K (5.30)

as the intersection of x̂j,max and X contributes the same to each summand. Here
x − y = max{x − y, 0} denotes the set different of the elements chosen by x but not
by y.

Therefore, the number of elements chosen by x̂j,max but not by x is greater than or
equal to the number of elements chosen by x but not x̂j,max for each of the first k
groups. We then define our set of r 2-bit flips. The ith 2-bit flip flips the ith 0 bit
of X (in the order given by the bit string x = (x11, x12, . . . , x1m, . . . , xKm) set to 1 in
x̂j,max − x and the ith 1 bit in x− x̂j,max.

Consider operation i and let p′i be the profit introduced and p′′i be the profit to be
removed. As per construction we have

∑r
i=1 p

′
i = l(x) and

∑r
i=1 p

′′
i = s(x) which

implies that the total gain of the set of r 2-bit flips is g(x) = l(x)− s(x). It remains
to show that each of these r 2-bit flips is accepted by the algorithm. Consider the ith
operation. We show that β(x) does not increase. Let r′ be the group that p′i belongs
to and r′′ be the group that p′′i belongs to. We have r′ ≤ r′′ due to Equation (5.30)
and therefore `r′(x) ≤ `r′′(x). This implies that the 2-bit flip leads to a solution y
with β(Y) ≤ β(x). We also have p′i ≥ p′′i as otherwise we could improve the profit of
x̂j,max which contradicts that x̂j,max is a feasible solution of maximal profit in Lj .

80 Chapter 5. Runtime Analysis for CCKP

Given the set of r accepted 2-bit flips, the expected increase in profit is at least

r/(en2) · g(x)/r = g(x)/(en2),

as the probability of the (1+1) EA to produce such a 2-bit flip is

r · 1

n
· 1

n
·
(

1− 1

n

)n−2
=

r

n2

(
1− 1

n

)n−2
= O(

r

en2
),

and the average gain of this flip is g(x)/r.

For any non-maximal solution x ∈ Lj , we have 1 ≤ g(x) ≤ j · pmax. Using mul-
tiplicative drift analysis, the expected number of offspring created from a solution
x ∈ Lj before having obtained a feasible solution x∗ with p(x∗) ≥ p(xj,max) is there-
fore O(n2(log n + log pmax)). Moreover, x∗ is as good as the best solution in Lj ,
x∗ contains the top j elements regarding to the profits of items, this implies that
X∗ has the same construction as xj,max and is a balanced solution that has smallest
probability in Lj .

If x∗ is not optimal, then there exists a 1-bit flip adding element and strictly improving
the profit. There are at most n levels Lj which implies that the expected time until
an optimal solution has been achieved is O(n3(log n+ log pmax)).

5.4 Experiments

In this section, we study the performance of the algorithm through experiments. The
goal is to supplement the theoretical analysis to further understand the behaviour of
the algorithm during the optimisation process. In addition, by analysing the running
time of our algorithms on design examples of different scales, we can understand their
performance more clearly.

5.4.1 Benchmarking and Experimental Setting

To compare the actual performance of different algorithms in different types of CCKP
with correlated uniform weights, we used 30 different instances, each of which consists
of n items. By selecting the number of groups K, the number of items corresponding
to each group m, the variance d and the item covariance c to generate each instance
of the CCKP size n with relevant uniform weights, we set C = n/2, α = 0.001. For
the uniform profit example, we set the expected weight and profit of the project to
1. For the example of arbitrary profit, we set the expected weight of the project to 1
and assign a group of projects to p1, . . . , pm in descending order.

In the first experiment, we considered the expected time for the algorithm to achieve a
feasible solution. We run each algorithm on six sizes of instances n = {200, 500, 1000,
2000, 3000, 4000}. For each size n, we design thirty different instances. We record the
average number of evaluations for each algorithm to find the first feasible solution as
the expected time for all instances with same n. Therefore, for each algorithm, we
have six points to estimate the performance (Figure 5.1).

The second experiment shows how the algorithms converge to the optimal solution for
instances with uniform profits and arbitrary profits. We set n = {200, 500, 1000, 2000,
3000, 4000, 5000, 6000}. For each n, we design and run 30 instances of each algorithm.
We record the average number of evaluations to find the optimal solution for 30

5.4. Experiments 81

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

0.5

1

1.5

·104

Items

G
en

er
at
io
n

n log n
n

(1+1) EA
RLS2

Figure 5.1. Expected time of the algorithms to achieve a feasible
solution

0 1,000 2,000 3,000 4,000 5,000 6,000
0

1

2

·104

Items

G
en
er
at
io
n

n log n
n

(1+1) EA
RLS2

Figure 5.2. Running time of the algorithms with uniform profit.

instances as its expected time. Therefore, for each algorithm, we have eight points to
estimate the performance in both cases and show the results in Figure 5.2 and 5.3.

Moreover, in the last experiment, we show how the number of groups and the number
of items in each group affects the generation required to obtain the optimal solution for
the same total number of items. We run each algorithm on five instances of different
sizes, create with the same constants as the previous one, with six different group
numbers for each size. We record the average number of evaluations for each group
number to find the best solution for 30 runs as its optimisation time. We only do this
analysis on (1+1) EA (Figures 5.4 and 5.5).

5.4.2 Analysis

In this section, we analyse the performance of the algorithm according to the experi-
mental results. Figure 5.1 illustrates how the algorithm finds a feasible solution for all
instances on average. This data can be used to gain insight into the expected time of
each algorithm. Figure 5.1 shows the expression data of n and n log n, indicating that
(1+1) EA running time is close to O(n log n) and RLS2 close O(n) Random instance.

82 Chapter 5. Runtime Analysis for CCKP

0 1,000 2,000 3,000 4,000 5,000 6,000
0

1

2

3

·107

Items

G
en

er
at
io
n

n log n

n2

(1+1) EA
RLS2

Figure 5.3. Running time of the algorithms with arbitrary profit.

500 1,000 2,000 3,000 4,000

0

0.5

1

1.5
·104

Number of total items (n)

G
en

er
at
io
n

g = 2
g = 5
g = 10
g = 20
g = 50
g = 100

Figure 5.4. Comparison between the running time of the (1+1) EA
according to the number of groups on uniform cases.

The results of the second experiment are shown in Figure 5.2 and Figure 5.3. We run
each algorithm against eight different sizes, and for each specific size, we have thirty
different instances. Figure 5.2 shows the average require generation of both algorithms
in the case of uniform profit. The line graph shows that the expected optimal time
of the two algorithms is close to n or n log n. Figure 5.4 and 5.5 present the average
of expected running times for two cases with different number of groups but same n.
As shown in these figures, in the same n, with the increase of g, the expected running
time decrease. This data can give an insight into the expected optimisation time for
a different number of groups within the same size of instances.

The experimental results expressed in Figure 5.2 and 5.3 indicate that the bounds pre-
sented in this chapter are a gross overestimate of the actual convergence of the meth-
ods. This finding was expected and suggested that the analytical bounds are weak
and could potentially be improved significantly. Therefore, future research should in-
vestigate the run-time bounds of two algorithms on solving different types of instances
guided by these experimental results.

5.5. Conclusions 83

500 1,000 2,000 3,000

0.2

0.4

0.6

0.8

1
·106

Number of total items

G
en

er
at
io
n

g = 2
g = 5
g = 10
g = 20
g = 50
g = 100

Figure 5.5. Comparison between the running time of the (1+1) EA
according to the number of groups on arbitrary cases.

5.5 Conclusions

The chance-constrained knapsack problem with correlated uniform weights plays a
key role in situations where dependent stochastic components are involved. We have
carried out a theoretical analysis on the expected optimization time of RLS2 and
the (1+1) EA on the chance-constrained knapsack problem with correlated uniform
weights in this chapter. We are interested in minimizing the probability that our
solution will violate the constraint. We prove the bounds for both algorithms for
producing a feasible solution. Then we carried out analyses of two settings for the
problem, the one with uniform profits and the groups in the second case has the
same profits profile. Our proofs are designed to provide insight into the structure
of these problems and to reveal new challenges in deriving runtime bounds in the
chance-constrained setting with the general type of stochastic variables.

85

Chapter 6

The Large-Scale Stockpile
Blending Problem

6.1 Introduction

In this chapter, we concentrate on a real-world application problem: the stockpile
blending problem, which plays a significant role in the open-pit mine production
scheduling (OPMPS) problem in mining engineering.

The OPMPS problem has received a great deal of attention in recent years, both in
the academic literature and in the mining industry (Lamghari and Dimitrakopoulos,
2012; Moreno et al., 2017; Sotoudeh et al., 2020). The OPMPS problem is a decision
problem, and the aim of which is to maximise net present value by determining the
extraction time for each block of ore and the destination to which each block is sent.
As an important component of the OPMPS problem, the stockpile blending problem
involves determining the rate and quality of production (which are associated with
large cash flows), and it takes the constraints of mining scheduling (upstream), pro-
cess limitation and customer requirements (downstream) into account. The stockpile
blending problem can be formulated as a decision problem that entails calculating the
volume of ore that should be claimed in each period (within stockpile limitations),
and determining the parcel to which the ore should be sent. In solving this problem,
the aim is to maximise the volume of valuable materials that are recovered, subject
to several constraints.

In this chapter, we study the large-scale stockpile blending problem. As can be inferred
from its name, this problem is characterised by challenges relating to scale. There are
many parcels under a plan in this problem, and each parcel can claim material from
several stockpiles. Many research about long-term or short-term planning for mines
has been dome in the operations research and mining engineering communities Blom,
Pearce, and Stuckey (2019). However, it is the first time for the large-scale stockpile
blending problem be studied independently and published in the evolutionary com-
putation literature. We introduce a realistic model of the stockpile blending problem
and describe the related input parameters of production processes in a real-world sit-
uation. Subsequently, we introduce an approach based on the differential evolution
(DE) algorithm for the large-scale problem and investigate the performance of the
approach by examining instances involving real data.

The content of this chapter is based on a conference paper (CEC 2021) (Xie, Neumann,
and Neumann, 2021a).

86 Chapter 6. The Large-Scale Stockpile Blending Problem

6.1.1 Related Work

To solve the OPMPS problem, a plan must be generated to guide the sequence of
mining blocks of the ore body. This plan ensures the delivery of specified weights and
grades of the mineral raw material to the mill within the period under consideration.
The OPMPS problem was first described by Johnson (1968) as a mixed-integer linear
model without considering a stockpile. This paper leads to the research that formu-
lated the OPMPS as a mixed-integer program (MIP) with binary variables (Johnson,
1968; Bley et al., 2012; Topal and Ramazan, 2012). To address the challenge of the
large-scale OPMPS problem, Osanloo, Gholamnejad, and Karimi (2008) reviewed dif-
ferent models and algorithms in the context of long-term OPMPS. They discussed the
advantages and disadvantages of the deterministic and uncertainty-based approaches
to solving the long-term production planning problem. However, when the research
on OPMPS becoming more complex and more realistic, it becomes difficult for MIP
to solve the problem. Lipovetzky et al. (2014) introduced a combined MIP for a mine
planning problem, which devises a heuristic objective function in the MIP and can
improve the resulting search space for the planner. Samavati et al. (2017) proposed
a heuristic approach that combines local branching with a new adaptive branching
scheme to tackle the OPMPS problem.

In real-world applications, stockpiles play an indispensable role in OPMPS, and are
used to store the materials of different grades and increase the efficiency of the mill.
Jupp, Howard, and Everett (2013) proposed four reasons for stockpiling before pro-
cessing: buffering, blending, storing and separating material into different grades.
Robinson (2004) concluded that blending material in a stockpile can lead to a re-
duction in grade variation. Some researchers have introduced approaches which rep-
resent open-pit mine production scheduling with stockpiling (OPMPS+S) problems
as nonlinear-integer models, with the assumption that the material mixes homoge-
neously in the stockpile. Such problems are difficult to solve. Akaike and Dagdelen
(1999) proposed a model for mine planning with using a stockpile; however, within
the bounds of their model, there was no blending in the stockpile and the material
grade in the stockpile was the same as that of the block. Moreno et al. (2017) intro-
duced a linear integer model for OPMPS+S and demonstrated the superiority of their
model to other models by comparing their respective objective function values. More
recently, Rezakhah and Moreno (2019) used a linear-integer model to approximate the
OPMPS+S problem; this model required that the stockpile to have an average grade
above a specific limit.

The rest of the chapter is organised as follows. Section 6.2 presents a model of the
stockpile blending problem and introduces two repair operators for the tight con-
straints. Next, heuristic search approaches for small-scale and large-scale stockpile
blending problems are introduced in Section 6.3. Section 6.4 presents experimental
results, followed by some concluding remarks.

6.2 Mathematical Model of Stockpile Blending Problem

In the mining industry, a blending strategy is affected by the corresponding mining
plan, which determines the volume and quality of material hauled from the mine to
the stockpiles. A blending strategy also leads to changes in a stockpile’s grade level.
The created parcels have to respond to the market plan, which stipulates certain
requirements, such as tonnes concentrate in the final product and the sum of duration
of all parcels from downstream process and customers’ demands.

6.2. Mathematical Model of Stockpile Blending Problem 87

Table 6.1. Notation of large-scale stockpile blending problem

Indices and sets

Name Description

s stockpiles; s ∈ {1, . . . , S}
m month; m ∈ {1, . . . ,M}
Pm number of parcel in month m
pm the p-th parcel in month m; 1, . . . , Pm

o material; o ∈ {Cu,Ag, Fe,Au, U, F, S}
Variables

Name Description

xmps proportion of the tonnage of material that is provided by stockpile s to p-th parcel in month m
tmp production time (duration) for p-th parcel in month m; could be several days
wmp tonnage of p-th parcel in month m
θmps available material in stockpile s for providing p-th parcel in month m
Cump tonnage of Cu in the final production of p-th parcel in month m
gomp grade of material o of p-th parcel in month m
g̃omps grade of material o in stockpile s for providing p-th parcel in month m
kmp tonne concentrate of final production of p-th parcel in month m
rCu,mp Cu recovery rate of p-th parcel in month m
rF,mp F recovery rate of p-th parcel in month m
rU,mp U recovery rate of p-th parcel in month m

Parameters

Name Description

δ discount factor for time period
Dm available duration of month m; different month has different available days
Hm
s tonnage of material hauled from mine to stockpile s in month m

Goms grade of material o that shipping to the stockpile s in month m
Km
p expected tonne concentrate of parcel p in month m

BF upper bound of F recovery rate
BU upper bound of U recovery rate
BCu lower bound of Cu grade
DCu bound of the difference between Cu grades of parcels within the same month

We now present a mathematical model of the stockpile blending problem. In order to
ensure that the model of the problem matches real-world situations, we have to formu-
late the problem without losing any information, as well as describing the production
processes with their corresponding input variables and parameters.Yue: To avoid
disclosing confidential business information, f1 to f5 are used to denote a
series of non-linear complexity calculation processes specified separately.
The details of processes are provided by our industrial partner, and we
are not able to publish them here. However, we point out the inputs of
f1 to f5 and give some connection between those parameters and decision
variables.

Table 6.1 presents the relevant notation. We use the term "material" to refer to ore,
i.e., rock that contains a quality of sufficient minerals (including metals) that can be
economically extracted. The non-linear model of the stockpile blending problem is
presented as follows:

Obj.max

M∑
m=1

Pm∑
p=1

Cump =

M∑
m=1

Pm∑
p=1

f1
(
tmp , g

om
p

)
(6.1)

88 Chapter 6. The Large-Scale Stockpile Blending Problem

s.t.
∑

1≤p≤Pm
tmp ≤ Dm ∀m ∈ {1, . . . ,M} (6.2)

∑
s∈S

xmps = 1 ∀p ∈ {1, . . . , Pm}, ∀m ∈ {1, . . . ,M} (6.3)

gomp =
S∑
s=1

xmpsg̃
om
ps ∀p ∈ {1, . . . , Pm}, ∀m ∈ {1, . . . ,M} (6.4)

gCu,mp ≥ BCu ∀p ∈ {1, . . . , Pm}, ∀m ∈ {1, . . . ,M} (6.5)

|gCu,mp − gCu,m
′

p′ | ≤ DCu ∀p, p′ from any month (6.6)

wmp = f2(t
m
p , g

om
p) ∀p ∈ {1, . . . , Pm}, ∀m ∈ {1, . . . ,M} (6.7)

kmp = f3(t
m
p , g

om
p) ∀p ∈ {1, . . . , Pm}, ∀m ∈ {1, . . . ,M} (6.8)

(kmp − 1) ≤ Km
p ≤ (kmp + 1) ∀p ∈ {1, . . . , Pm}, ∀m ∈ {1, . . . ,M} (6.9)

rFl,mp = f4(g
Fl,m
p) ∀p ∈ {1, . . . , Pm}, ∀m ∈ {1, . . . ,M} (6.10)

rFl,mp ≤ BF ∀p ∈ {1, . . . , Pm}, ∀m ∈ {1, . . . ,M} (6.11)

rU,mp = f5(g
U,m
p) ∀p ∈ {1, . . . , Pm}, ∀m ∈ {1, . . . ,M} (6.12)

rU,mp ≤ BU ∀p ∈ {1, . . . , Pm}, ∀m ∈ {1, . . . ,M} (6.13)

g̃omps =

Hm
s ·Goms +g̃

o(m−1)

Pm−1s
·(θm−1

Pm−1s
−xm−1

Pm−1s
·wm−1

Pm−1)

θmps
if p = 1

g̃om(p−1)s otherwise
(6.14)

θmps =

{
θm−1
Pm−1s

+Hm
s − xm−1Pm−1s

· wm−1Pm if p = 1

θm(p−1)s − x
m
(p−1)s · w

m
p−1 otherwise.

(6.15)

As shown in the model, there are two kinds of decision variables in the problem.
The first variable is a vector, X = {x111, . . . x1P 1S , . . . , x

M
PMS
}, which consists of S ×∑M

m=1 P
m decision variables. xmps is a continuous variable which takes the values in

(0, 1), and it denotes the proportion of the tonnage of material that is provided by
stockpile s to p-th parcel in month m. The other variables are encoded as a vector
of continuous decision variables T = {t1p, . . . , tiP 1 , . . . , t

M
PM
}, where tmp denotes the

working duration of p-th parcel in month m.

The objective function (6.1) is the sum of the tonnage of Cu in the final production of
all parcels, in which the tonnage of copper is inextricably intertwined with material
grades and the duration of parcel.

Constraint (6.2) ensures that the sum of duration in each month is less than or equal
to the available working days of this month. Constraint (6.3) forces the sum of the
decision variables of a parcel to equal one. Equation (6.4) calculates the material
grades of each parcel which are related to the material grades in corresponding stock-
piles and the decision variables of the parcel. Constraint (6.5) guarantees that the Cu
grade of each parcel should be at least a given bound. f2 in function (6.7) denotes the
manner in which the tonnage of parcels is calculated. f3 in function (6.8) denotes the
calculation process of the amount of final production of each parcel, and the value of
kmp is limited by constraint (6.9), which is a tight constraint in the model. Functions
(6.10) and (6.12) denote the calculation process of the F recovery rate and the U

6.2. Mathematical Model of Stockpile Blending Problem 89

Algorithm 13: Decision variables normalised approach
Input: Decision vector Xj = {x1j , x2j .., xIj}
a =

∑
i∈I xij ;

for i = 1 to I do
xij =

xij
a ;

return the normalised decision variables.

recovery rate, respectively. Constraints (6.11) and (6.13) ensure the rFl,mp and rU,mp
of parcels are less than or equal to the given thresholds. Constraints (6.14) and (6.15)
enforce the balance of material grades and inventory for stockpiles with respect to
the provision of material to parcels and thr quantity of ore that is hauled. Since the
ore is hauled from the mine to the stockpiles at the beginning of every month, the
stockpile material grades are updated once at the beginning of each month, as well
as being updated constantly for all parcels in that month. The available material in
each stockpile denoted by θmps should be non-negative.

6.2.1 Repaired Operators

The stockpile blending problem is a non-linear optimisation problem in continuous
search space, and it is difficult to solve the problem with respect to the problem’s
constraints. Yue: Regarding the implementation process of evolutionary al-
gorithms, we found two constraints in the model that lead to the difficulty
of algorithms to reach a feasible solution. These two constraints are con-
straint (6.3) and (6.9). The first one force the sum of the decision variables
of each parcel equal to one, and the second one force the value of real
tonne concentrate of each parcel to be no more or less one than the given
bound. Here, we present two repaired operators to tackle the complexity
constraints separately.

To tackle constraint (6.3), we introduce a decision-variables normalised approach (cf.
Algorithm 13) to force the solution to match the constraint. This approach first entails
calculating the sum of the variables of each parcel separately, dividing each variable
of the same parcel by the corresponding sum.

For the tight constraint (6.9), it is hard to generate a feasible solution that forces
the real amount of tonnes concentrate of a parcel is no more or less one than the
given threshold. As shown in equation (6.8), the amount of tonnes concentrate of
each parcel is related to the duration of this parcel and the material grades of that
particular parcel. Meanwhile, the metal grades of the parcel are directly calculated by
decision variables according to equation (6.4)). Therefore, based on the determined
decision variables of a parcel, the real tonnes concentrate of the parcel are affected
by the duration of the parcel. Consider the constraint (6.9) is the tightest constraint
in the model and it is hard for evolutionary algorithms to achieve a solution that
satisfies this constraint in reasonable iterations, we present a duration repair operator
(cf. Algorithm 14) which uses a binary search process to convert an infeasible solution
into a solution without violating constraints (6.9).

The time complexity of the binary search is log n where n denotes the length of the
search space in the beginning. In the stockpile blending problem, the duration of
each parcel cannot exceed the total available duration of the month. Therefore, the
run-time of the duration repair operator for one parcel is log d in the worst case where
d denotes the total available duration of the current month.

90 Chapter 6. The Large-Scale Stockpile Blending Problem

Algorithm 14: Duration repair operator
Input: X ∈ (0, 1)I·J , i ∈ {1, .., I}, j ∈ {1, .., J}; parameter ζ; available duration

D
Output: parcel duration: d ∈ {0,D}
initialization: d = 0, d = D , d ∈ {0,D} , k = ζ · d
while d ∈ {0,D} and k /∈ {K − 1,K + 1} do

if k > K + 1 then
d := (d+ d)/2;
k := ζ · d;
if k > K + 1 then

d = d;
else

d = d;
else if k < K − 1 then

d := (d+ d)/2
k := ζ · d;
if k > K + 1 then

d := d;
else

d := d
return the duration corresponding to solution X

6.3 Heuristic Search Approach

In this section, we investigate the differential evolution (DE) algorithm on solving the
stockpile blending problem. As introduced in Section 3.3.4, the DE algorithm is a well-
known evolutionary computation approach which was developed to solve the global
optimisation problems in continuous search space where the objective function can
be nonlinear (Das and Suganthan, 2010). However, the large-scale stockpile blending
problem is difficult to solve due to its significant number of constraints. Therefore,
we introduce a strategy to address this challenge in the rest of this section.

We start by designing a fitness function that can be used in the heuristic approach.
The fitness function f takes into account all constraints. We define the fitness function
of a solution X as follows:

f(X) = (u(X), v(X), w(X), p(X), q(X), g(X), h(X), C(X)) (6.16)

6.3. Heuristic Search Approach 91

where

u(X) =
M∑
m=1

Pm∑
p=1

max{
∣∣Km

p − kmp
∣∣ , 1}

v(X) =
M∑
m=1

max{
Pm∑
p=1

tmp −Dm, 0}

w(X) =
M∑
m=1

Pm∑
p=1

S∑
s=1

min{θmps, 0}

p(X) =

M∑
m=1

Pm∑
p=1

max{rU,mp −BU , 0}

q(X) =

M∑
m=1

Pm∑
p=1

max{rFl,mp −BFl, 0}

g(X) =
M∑
m=1

Pm∑
p=1

max{BCu − gCu,mp , 0}

C(X) =
M∑
m=1

Pm∑
p=1

Cump .

In this fitness function, u(X), v(X), p(X), q(X) and g(X) need to be minimised
while w(X) and C(X) need to be maximised. We optimise f in lexicographic order
(Fishburn, 1974), and the function takes into account all constraints. According to
the fitness function, an infeasible solution can at least violate at least one of the
above constraints. Among solutions that meet all constraints, we aim to maximise
the combined tonnage of copper across all parcels’.

Formally, we have

f(X) � f(Y)

iff u(X) < u(Y) or
u(X) = u(Y) ∧ v(X) < v(Y) or
{u, v}are equal ∧ w(X) > w(Y) or
{u, v, w}are equal ∧ p(X) < p(Y) or
{u, v, w, p}are equal ∧ q(X) < q(Y) or
{u, v, w, p, q}are equal ∧ g(X) < g(Y)or
{u, v, w, p, q, g} are equal ∧ C(X) > C(Y).

When comparing an infeasible and a feasible solution, the feasible solution is preferred.
Between two infeasible solutions violating the same constraint, the solution with the
lower degree of constraint violation is preferred. The fitness function (6.16) can be
applied in any heuristic approach. In this section, we investigate the performance of
the classical DE algorithm (see Algorithm 15).

As discussed above, it is difficult to obtain a feasible solution for a large-scale stockpile
blending problem, let along to reach the optimal solution. However, for a stockpile
blending problem that only contains one month (M = 1), that is, one in which no

92 Chapter 6. The Large-Scale Stockpile Blending Problem

Algorithm 15: Differential evolution algorithm
Generate initial population of size NP ;
while stopping criterion not met do

for each individual t in the population do
Generate three random integers, r1, r2, r3 ∈ (1, NP), with
r1 6= r2 6= r3 6= t Generate a random integer mrand ∈ (1, n); for each
parameter i of the individual do

Generate mutant vector Vt and trial vector Ut;
Replace Xt with Ut, if Ut is better according to the fitness function;

return the best solution in the final population according to the fitness function.

Algorithm 16: DE approach for one-month problem
Initialization: initial population of size NP with applying Algorithm (13) to
normalize decision variables of all parcels in this month;
while stopping criterion not met do

for each individual in the population do
Generate the trial vector by applying the DE algorithm (Alg. 15);
Normalize the trial vector by using solution fixed operator (Alg. 13);
Search the duration of parcels by applying operator (Alg. 14);
Compare the new solution to the chosen individual via fitness function
(6.16) with setting M = 1;

Keep the best one for next population.
return the solution in the final population with maximum C(X).

more than four parcels are under consideration (Pm = 4), DE can solve the problem
effectively. Therefore, we define the one-month stockpile blending problem as a unit
problem of the large-scale stockpile blending problem. We propose a DE-based ap-
proach (see Algorithm 16) that combines the classical DE algorithm and the decision
variables normalised operator and the duration-repaired operator for a unit problem.

Furthermore, by observing Equations (6.14) and (6.15), we found that, the available
material grades and the tonnage of ore for the first parcel in each month are affected
by the blending strategy of the previous month and the ore hauled from mines. Here,
we propose to optimise the large-scale stockpile blending problem month by month.

To solve the problem, it is necessary to maximise the sum of Cump , and we observe
that parcels with a higher grade of Cu have a higher value of tonnage of Cu. There-
fore, the DE-based approach always obtains a feasible solution which has the highest
objective value and leads to the highest copper grade. The approach preferentially
blends material for those stockpiles with high copper grades. However, constraint (6.5)
necessitates that the maximum difference between the Cu grades of parcels be lower
than a given threshold. It becomes extremely difficult to maintain the consistency of
Cu grades among all parcels when optimising the problem month by month.

To tackle the problem of maintaining the consistency of Cu grades across parcels, we
introduce a second objective function for the one-month stockpile blending problem.
The second objective function satisfies the predefined maximum difference of copper
grades. The developed fitness function f ′(X) of a solution is given as:

f ′(X) = [u(X), v(X), w(X), p(X), q(X), g(X), h(X), (C(X), C∗(X))] (6.17)

6.3. Heuristic Search Approach 93

Algorithm 17: DE approach for long-term problem
Initialize the feasible solution set Z.
for m in {1, ..M} do

Copy all element from Z to Z ′;
Clean Z;
for element z in Z ′ do

Update Sij and Loij by considering ore hauled of this month and the
solution of z;
Apply the DE-based Algorithm 16 for this month by using fitness function
(6.17);
Add the feasible solutions in last population to Z;

return The best solution in Z.

where C∗(X) =
∑Pm

p=1 x(ps∗) and x(ps∗), and s∗ denotes the stockpile which has the
highest copper grade in each month. This specific stockpile might be different in each
month and is only chosen according to the grade of the Cu. The use of the multi-
component in the fitness function make it possible to cater to the need to maintain a
consistent Cu grade. In the bi-objective optimisation of the large-scale blending opti-
misation problem, the goal is to maximise C(X) and minimise C∗(X) while satisfying
all constraints. Here, we have

f ′(X) � f ′(Y) iff C(X) ≥ C(Y) ∧ C∗(X) ≤ C∗(Y)

for the dominance relation of bi-objective optimisation for two solutions X and Y .

Solving the large-scale stockpile blending problem is a challenge due to its significant
number of constraints and the fact that its scale can be very large. For example, if
an instance has ten parcels and can claim material from six different stockpiles, then
the search space of this instance will be a sixty-dimension space for decision vectors
combined with a ten-dimension space for the duration of parcels. Although DE has
become a popular and effective algorithm for continuous optimisation problems, most
reported studies on DE involve the solution of small-scale problems. It becomes
difficult for the DE algorithm to solve large-scale stockpile blending problems within
an acceptable amount of computation time.

Here, we propose an approach (cf. Algorithm 17) which involves optimising the prob-
lem month by month using the fitness function (6.17). The approach treats every
one-month problem as a unit-problem and obtains a set of feasible solutions for each
month using Algorithm 16. A such, the processes involved in this approach are as
follows. (1) For every month, the approach adopts a set of feasible solutions Z of the
problem for the previous month; (2) for every solution in the set Z, it updates the
parameters (g̃omps and θmps) of stockpiles for this month; (3) it applies Algorithm 16 to
obtain a set of feasible solutions for this month and adds them to a set Z ′; and (4) it
loops all feasible solutions from the previous month and selects a fixed number from
the set Z ′ randomly. The steps of this approach are repeated until the problem has
been solved for each month. In this section, we set the number of feasible solutions in
each month such that is equal to the population of the DE algorithm and randomly
select them from Z.

94 Chapter 6. The Large-Scale Stockpile Blending Problem

Table 6.2. Results for one-month problem

Index Parcels Stockpiles Org DE-based

Max Min Mean Std.

1 2 {6, 6} 5777.62 6167.46 5815.87 5989.31 99.40

2 2 {6, 7} 4180.72 4383.60 4222.38 4298.08 36.47

3 2 {7, 7} 5371.08 5611.94 5373.62 5472.12 65.12

4 3 {7, 7, 7} 5124.92 5251.86 5129.03 5164.69 26.65

5 2 {7, 7} 5484.07 5600.56 5488.43 5536.35 27.79

6 2 {7, 7} 4334.78 4438.87 4340.60 4376.00 28.86

7 2 {7, 7} 5243.46 5351.31 5250.24 5287.49 26.46

8 3 {7, 7, 7} 5257.26 5411.48 5265.74 5342.09 32.35

6.4 Experimental Investigation

This section evaluates the efficiency of the proposed DE-based heuristic search ap-
proaches to the one-month stockpile blending problem and the large scale problem.
We first compare the performance of the DE-based approach and the strategy used in
real-world situations with respect to one-month instances. Our industrial partner pro-
vided the parameters values and the solutions for those instances. Then, the results
obtained using the approach 17 were compared to the real-world results on large-scale
stockpile blending instances. All experiments were performed using Java of version
11.0.1 and carried out on a MacBook with a 2.3GHz Intel Core i5 CPU.

We first estimate the performance of the DE approach with respect to one-month in-
stances. The setup of the experiments and the results obtained through the different
approaches are summarised in Table 6.2. For example, the instance with index 2 con-
tains two parcels, and the first parcel can claim material from six different stockpiles,
while the second parcel can claim material from the six stockpiles and another stock-
pile which was available during this period. In the implementation, each approach
runs for 105 fitness evaluations, and the DE approach runs the following parameters:
NP = 10, F = 1.2 and CR = 0.5. Table 6.2 reports the average, maximum, minimum
and standard deviation of the results of the instances obtained through the approach
for 30 independent runs. The column Parcels refers to the number of parcels con-
tained in the instances, and the column ‘Stockpiles’ presents the number of available
stockpiles for each parcel. The list of results in the column ‘Org’ presents the real-
world results, as provided by our industrial partner. We set the original solution of
instances as the initial solution of the approaches.

As can be seen from Table 6.2, the results obtained through the DE approach were
significantly better than the original results across all instances. Even the minimum
results of all instances had higher values than the original results, indicating that
the DE-based approach guaranteed better results for each of the 30 runs. Solving
the stockpile blending problem is important, in that is an important component of
OPMPS, a process which determines the quality of production and involves large
cash flows. Therefore, the ability of a company to solve stockpile blending problems
can make a difference of hundreds of millions of dollars. These results show that,
for the one-month stockpile blending problem, the DE algorithm (combined with our
proposed repair operators) is able to achieve higher Cu tonnage than the real-world

6.5. Conclusions 95

Table 6.3. Results for long-term problem

Index Month Parcels Length Org DE-based

Max Min Mean Std

1 5 11 76 25938.41 26085.17 25988.38 26008.62 72.70

2 5 11 76 24495.58 24732.95 24497.95 24584.56 57.08

3 5 11 77 25558.31 25704.27 25565.20 25653.88 39.61

4 6 13 88 30273.20 30434.64 30289.02 30328.28 78.76

5 6 13 90 29739.03 29965.60 29761.57 29850.17 64.47

6 6 14 91 30815.57 31069.36 30841.72 30926.58 63.11

7 7 15 102 35516.65 35660.19 35530.73 35566.41 63.19

8 7 16 111 34996.29 35321.51 35009.17 35113.01 62.81

9 7 16 104 36025.85 36150.97 36029.17 36077.91 36.23

10 8 18 123 40773.92 41011.07 40782.25 40852.73 80.31

11 8 18 124 40206.57 40390.00 40213.26 40253.22 36.84

12 8 18 118 41297.38 41405.50 41308.73 41343.51 33.02

results, which can lead to benefits exceeding hundreds of millions of dollars in real-
world situations.

We now analyse large-scale instances and compare the results obtained through DE
and the real-world results. Table 6.3 lists average, maximum, minimum of the results
of the instances obtained through the approach for 30 independent runs. The table
also lists the results used in the real-world situation for all instances.

As shown in Table 6.3, the maximum result for each instance has higher values than
the original results, indicating that the DE-based approach is outperforming the orig-
inal results and leading to a relative profit exceeding hundreds of millions of dollars.
Moreover, even the minimum result of each instance has higher values than the origi-
nal results. This shows that, in every run, the DE-based approach can reach a better
solution in term of objective value than the original result. Therefore, the results ob-
tained by the DE approach for large-scale stockpile blending instances are significantly
better than the real-world results.

6.5 Conclusions

This chapter studied the large-scale stockpile blending problem which subjects to
a set of constraints dictated by the mine schedule and the demands of downstream
customers. It is a challenge to solve the problem concerning the problem’s constraints.
We presented two repaired operators to improve the efficiency of finding a feasible
solution in the mentioned approaches. Moreover, we divided the large-scale problem
into several one-month problems and treated a one-month problem as a unit problem.
Two different fitness functions are presented for the one-month stockpile blending
problem and large-scale stockpile blending problem separately. The fitness function
for the large-scale problem is a multi-component function, and it measures the usage of
high-quality stockpiles for the large-scale stockpile blending problem. We presented a
DE approach for a large-scale stockpile blending problem that optimises the problem
month by month. This approach guarantees the quality of each unit solution and
the balance of used material between stockpiles. In the experiment section, we first

96 Chapter 6. The Large-Scale Stockpile Blending Problem

investigated the DE algorithm associate with the two repaired operators for one-
month stockpiles blending problems. Then, we investigated the performance of the
proposed approach for the large-scale stockpiles blending problem by testing real-world
instances. The results show that the DE approach obtains significantly better results
than the results used in real-world situations for all instances. For future research
on the large-scale stockpile blending problem, it would be interesting to compare the
performance of DE and other methods. Moreover, instead of selecting a random set
of feasible solutions of each month carried forward to the next month, performing a
study on selection strategies would be another exciting research direction.

97

Chapter 7

The Stockpile Blending Problem
with Chance Constraints

7.1 Introduction

As discussed in the previous chapter, an improvement in the results of the stockpile
blending problem can lead to cash flows that can add several hundred million dollars
in magnitude. It becomes critical to solving the stockpile blending problem in mining
optimally. Moreover, in real-world situations, the blending strategies are affected by
the uncertainty of materials from the available resource in mines. This uncertainty is
acknowledged in the related technical literature to be the primary reason for not meet-
ing production expectations (Baker and Giacomo, 1998; Asad and Dimitrakopoulos,
2012). Given its substantial impact on the financial outcome of mining operations,
this chapter focuses on dealing with the uncertainty in metal content within a mineral
deposit being mined.

Motivated by the uncertainty in the geologic input data and the uncertainty that can
affect optimisation, we consider the stockpile blending problem with uncertainty in
material grades and denote them as stochastic variables. To tackle those stochastic
variables, we apply the chance-constrained programming introduced in Section 2.3.
The objective function of the stockpile blending problem with chance constraints is
the same as that of the large-scale stockpile blending problem. However, the stock-
pile blending problem with chance constraints is subject to the constraints that the
probability of inequality constraints that violated a given bound is less than a given
threshold.

Furthermore, we investigate the differential evolution (DE) algorithm for the stockpile
blending problem with chance constraints. In the experiment section, we compare
the performance of the DE algorithm with the deterministic model and three chance
constraint models by using a synthetic benchmark. We also evaluate the effectiveness
of different chance constraints.

The content of this chapter is based on a conference paper (GECCO 2021) (Xie,
Neumann, and Neumann, 2021b).

The rest of the chapter is organised as follows. Section 7.2 presents a model of the
stockpile blending problem. The model in this chapter is different to the one in the
previous chapter to contain uncertainty into the problem. Next, a chance constraints
model and surrogate functions of the chance constraints are presented in Section
7.3. Afterwards, approaches and fitness functions for the stockpile blending problem
with chance constraints are introduced in Section 7.4. We set up experiments and

98 Chapter 7. The Stockpile Blending Problem with Chance Constraints

Table 7.1. Notation of simplified version of the stockpile blending
problem

Indices and sets

Name Description

s ∈ S stockpiles; 1, . . . , S
p ∈ P parcels; 1, . . . , P
o material; material; {Cu,Ag, Fe,Au, U, F, S}

Variables

Name Description

xps fraction of the material that parcel p claimed from stockpile s
tp produce time (duration) for parcel p
wp: tonnage of parcel p
θps: tonnage stores in stockpile s when providing material to parcel p
cp: tonnage of Cu in the final production of parcel p
gop: grade of material o in parcel p
g̃ops: grade of material o in stockpile s when proving parcel p
kp: tonne concentrate in final production of parcel p
rCup : Cu recovery rate of parcel p
rFp : F recovery rate of parcel p

Parameters

Name Description

δ: discount factor for time period
φ̃: factor in chemical processing stage
φAu: factor of Au in chemical processing stage
φU : factor of U in chemical processing stage
φFe: factor of Fe in chemical processing stage
φCu: factor of Cu in chemical processing stage
(γ1, γ2) : factor of Cu percentage within the produced Cu concentrate
µF : factor of F recovery
µU : factor of U recovery
(µCu1 , µCu2) : factor of Cu recovery
D: total available duration
Hs: available material in stockpile s before providing material to the first parcel
Gos: grade of material o in stockpile s before providing material to the first parcel
Kp: expected tonne concentrate of parcel p
RFp : upper threshold of F recovery rate of parcel p
Cup : lower threshold of Cu grade of parcel p

investigate the performance of the different fitness functions in Section 7.5, followed
by some concluding remarks in Section 7.6.

7.2 Deterministic Model

We now present a nonlinear model of the stockpiles blending problem in a deterministic
setting. In reality, some processes, such as the chemical process in the concentrate pro-
duction progress, are highly complex to model because they depend on many factors,
including the mineralogy of the ore, the particle size of milled material, temperature,
and chemical reactants available in the process. Since we do not know the information
of those variables, we use f1 to f5 to represent a series of calculation processes of the
value of some variables in the previous chapter.

However, in this chapter, to investigate the uncertainty in the input data, instead
of using f1 to f5, we introduce a simplified version of the stockpile blending prob-
lem and only discuss the small-scale problem here (one-month duration). Moreover,
the recovery rate factors of all materials from the chemical processing stage and the
copper percentage within the produced copper concentrate is assumed to be constant
throughout the stockpiles blending and production schedule.

Table 7.1 presents the relevant notation. We use the term "material" to include ore,
i.e., rock that contains a sufficient quantity of minerals. Then, we introduce the
nonlinear formulations of the one-month stockpiles blending problem.

7.2. Deterministic Model 99

Obj : max
∑
p∈P

cp = max
∑
p∈P

(
wpg

Cu
p rCup

)
(7.1)

s.t.
∑
p∈P

tp ≤ Dm (7.2)

∑
s∈S

xps = 1 ∀p ∈ P (7.3)

rCup = µCu1

gCup
gSp

+ µCu2 ∀p ∈ P (7.4)

gop =
∑
s∈S

xpsg̃
o
ps ∀p ∈ P (7.5)

wp = δtp[φ̃+ (φAu log gAup) + (φU log gUp)

− (φFe log gFep) + (φCu log gCup)] (7.6)

kp =
cp

γ1
gCup
gSp

+ γ2
∀p ∈ P (7.7)

g̃ops = Gos ∀p ∈ P (7.8)

gCup ≥ Cup ∀p ∈ P (7.9)

(Kp − 1) ≤ kp ≤ (Kp + 1) ∀p ∈ P (7.10)

µF gFp ≤ RFp ∀p ∈ P (7.11)

0 ≤ θps =

{
Hs if p = 1

θ(p−1)s − x(p−1)s · wp−1 otherwise
(7.12)

The objective function (7.1) is the sum of the tonnage of Cu in the final production
of all parcels, in which the tonnage of Cu in each parcel is calculated by the tonnage
of parcel multiply the Cu grade of the parcel and multiple the Cu recovery rate of the
parcel. Constraint (7.2) ensures that the sum of duration in each month is less than
or equal to the available working days of this month.

Constraint (7.3) forces the sum of the decision variables of a parcel to equal one.
Equation (7.4) calculates the Cu recovery rate of each parcel, and Equation (7.5)
calculates the material grades of each parcel. Equation (7.6) express the simplified
calculation of parcel tonne which is a component in objection function. Equation (7.7)
shows the simplified version of how to calculate the tonne concentrate of each parcel.
Constraint (7.12) enforces inventory balance when providing material to parcels that
are not the first one, ensuring that the amount of material store in each stockpile
is equal to that of the last parcel minus anything sent to the last parcel from the
stockpile. Constraint (7.9) forces the Cu grade of each parcel to be less than or equal
to the pre-given lower threshold of Cu grade of each parcel. Constraint (7.10) forces
the value of tonne concentrate of each parcel to be not more or less than the expected
tonne concentrate by one. Constraint (7.11) ensures the F recovery rate of each parcel
is less than the given threshold.

In this chapter, to tackle the complexity and tight constraints in the model of the one-
month stockpile blending problem, we apply the two repaired operators introduced in
Section 6.2.1 to constraints (7.3) and (7.10).

100 Chapter 7. The Stockpile Blending Problem with Chance Constraints

7.3 Model with Chance Constraints

This section discusses the effeteness of stochastic material grades on the objective
value of the stockpile blending problem. Due to the complexity of the problem, we re-
formulated the constraints (7.9) and (7.11) to chance constraints respectively. Chance
constrained programming is a competitive tool for solving optimization problems un-
der uncertainty. Its main feature is that the resulting decision ensures the probability
of complying with constraints, i.e. the probability of being feasible. Thus, using
chance-constrained programming, the relationship between profitability and reliabil-
ity can be quantified.

7.3.1 The Formulation of Chance Constraints

We first define additional notations αCu and αF as confidence level of a solution satisfy
the two constraints separately. The values of αCu and αF more close to 1 indicate
the more confidence of a solution match the constraints. Then, we present the chance
constraints as follows:

Pr(g
Cu
p ≥ CuP) ≥ αCu, (7.13)

Pr(µ
F gFp ≤ RFp) ≥ αF . (7.14)

Constraints (7.13), (7.14) force the probability of guarantying the given bound are
greater than or equal to the corresponding given threshold.

Similar to chance-constrained knapsack problem introduced in Section 4, we use
Cantelli-Chebyshev inequality presented in Section 3.4.1 to construct the available
surrogate that translates to a guarantee on the feasibility of the chance constraint
imposed by the inequalities.

We assume the stochastic material grades are estimated with given expected values
and corresponding variances, and the material grades of stockpiles are independent
of each other. The material grade corresponds to expected value aos and standard
deviation σoms . Let gCup =

∑
s∈S xpsg̃

Cu
ps be the Cu grade of parcel p with a given

solution X = {xp1, .., xps, .., xpS}, and

E[gCup] =
∑
s∈S

xpsE(g̃Cups)

denotes the expected Cu grade of parcel p of the solution derived by linearity of
expectation,

V ar[gCup] =
∑
s∈S

(xps)
2V ar(g̃Cups)

denotes the variance of Cu grade of parcel p. To match the expression of the Cantelli’s
inequality (3.10), we set

Cup = E[gCup]− λ
√
V ar[gCup]

and have

λ =
E[gCup]− Cup√

V ar[gCup]

7.4. Approaches for the Stockpile Blending Problem with Chance Constraints 101

for each parcel, then we have a formulation to calculate the upper bound of the chance
constraint (7.13) as follows:

Pr(g
Cu
p ≤ Cup) ≤

V ar[gCup]

V ar[gCup] + (E[gCup]− Cup)2
≤ (1− αCu). (7.15)

Furthermore, let rFp = µF
∑

s∈S xpsg̃
F
ps be the F recovery rate of parcel p. Let

E[rFp] = µF
∑
s∈S

xpsE(g̃Fps)

denotes the expectation of F recovery rate, and

V ar[rFp] =
∑
s∈S

(µFxps)
2V ar(g̃Fps),

is the variance of F recovery rate of parcel p with solution X = {xp1, .., xps, .., xpS}.

To match the expression of the Cantelli’s inequality (3.9), we set

RFp = µFE[rFp] + λ
√
V ar[rFp],

then have

λ =
RFp − µFE[gFp]√

V ar[gFp]

for each parcel. We have a formulation to calculate the upper bound of the chance
constraint (7.14) as follows:

Pr(µ
F gFp ≥ RFp) ≤

V ar[gFp]

V ar[gFp] + (RFp − µFE[gFp])2
≤ (1− αF). (7.16)

Now, we have obtained the surrogate functions of the chance constraints in the stock-
pile blending problem and we introduce a approach for solving the problem in the
next section.

7.4 Approaches for the Stockpile Blending Problem with
Chance Constraints

In this section, we investigate the DE algorithm introduced in Section 3.3.4, and we
use DE/current− to− best/1 mutation strategy and uniform crossover operator. In
the following subsections, we present the fitness functions that respond to different
settings of the problem.

7.4.1 Fitness Function for Deterministic Setting

We start by designing a fitness function of the deterministic model. The fitness func-
tion f takes all constraints into account and is similar to the fitness function (6.16)
presented in Section 6.3. The fitness function of a solution X is defined as follows:

f(X) = (u(X), v(X), w(X), q(X), g(X), z(X)) (7.17)

102 Chapter 7. The Stockpile Blending Problem with Chance Constraints

u(X) =
∑
p∈P

max{|Kp − kp| , 1}

v(X) = max{
∑
p∈P

tp −D, 0}

w(X) = min{
∑
p∈P

∑
s∈S

θps, 0}

q(X) =
∑
p∈P

max{Cup − gCup , 0}

g(X) =
∑
p∈P

max{rFp −RFp , 0}

z(X) =
∑
p∈P

cp.

In this fitness function, the components u, v, q, g need to be minimise while w and O
need to be maximised, and we optimise f in lexicographic order. For the stockpile
blending problem, any infeasible solution can violate at least one of the above con-
straints. Then, among solutions that meet all constraints, we aim to maximise the
objective function. Formally, we have

f(X) � f(Y)

⇐⇒ iff u(X) < u(Y) or
u(X) = u(Y) ∧ v(X) < v(Y) or
{u, v} are equal ∧ w(X) > w(Y) or
{u, v, w} are equal ∧ q(X) < q(Y) or
{u, v, w, q} are equal ∧ g(X) < g(Y)or
{u, v, w, q, g} are equal ∧ z(X) > z(Y).

When comparing an infeasible solution and a feasible solution, the feasible solution is
preferred. Between two infeasible solutions violating the same constraint, the solution
with the lower degree of constraint violation is preferred.

7.4.2 Fitness Functions for Chance Constraints

Now, we design the fitness functions for the stockpile blending problem with chance
constraints. We first reformulate the components q and g from the fitness function
(7.17) by applying chance-constrained programming as follows:

q′(X) =
∑
p∈P

max
{
Pr{gCup ≤ Cup} − (1− αCu), 0

}
(7.18)

g′(X) =
∑
p∈P

max
{
Pr{µF gFp ≥ RFp } − (1− αF), 0

}
, (7.19)

in which q′ and g′ need to be minimised.

To distinguish the repercussion of each chance constraint, we design three different
fitness functions. Fitness function (7.20) only considers the chance constraint (7.13),
and fitness function (7.21) only considers chance constraint (7.14), and function (7.22)

7.5. Experimental Investigation 103

Table 7.2. General information about the ore and processing param-
eters

Description Values or Value range

Number of parcel stockpiles; {3, 4, 5}
Number of Stockpile 7
Duration of month 29, 30, 31
Discount factor for time period (δ) 0.98

Factor in chemical processing stage (φ̃) [1000, 2000]
Factor of Au in chemical processing stage (φAu) [200, 300]
Factor of U in chemical processing stage (φU) [300, 400]
Factor of Fe in chemical processing stage (φFe) [560000, 570000]
Factor of Cu in chemical processing stage (φCu) [6000000, 7000000]
Factor of copper percentage within the produced copper concentrate (γ1, γ2) ([5, 10], [30, 40])
Factor of F recovery (µF) [0.05, 0.15]
Factor of U recovery (µU) [0.5, 0.9]
Factor of copper recovery (µCu1 , µCu2) ([1.5, 3.5], [0, 10])
Tonnage of material hauled to stockpile [5000, 1000000]
Cu grade [0.05, 2.5]
Ag grade [1.0, 4.0]
Fe grade [10.0, 30.0]
Au grade [0.3, 2.0]
U grade [30.0, 400.0]
F grade [1200, 4500]
S grade [0.15, 1.0]
Expected tonne concentrate of parcel (Kp) [10000,∞]
Threshold of F recovery of parcel (RFp) [1300, 1500]
Threshold of Copper grade of parcel (Cup) [0.5, 1.5]

considers two chance constraints together.

f ′(X) =
(
u(X), v(X), w(X), q′(X), g(X), z(X)

)
(7.20)

f ′′(X) =
(
u(X), v(X), w(X), q(X), g′(X), z(X)

)
(7.21)

f ′′′(X) =
(
u(X), v(X), w(X), q′(X), g′(X), z(X)

)
(7.22)

7.5 Experimental Investigation

In this section, we examine the solution quality associated with different fitness func-
tions. As mentioned in the previous chapter, we are not able to compare the per-
formance of the DE algorithm in a real-data instance. Therefore, we first design the
instances used in this chapter. Then, we compare the results obtained by applying
different fitness functions and examine the performance of the algorithm.

7.5.1 Experimental Setup

Table 7.2 lists the possible intervals of the tonnage of ore and material grades of the
ore shipping from mine to stockpiles used for performance analysis and some of the
process parameters.

We design three different instances by randomly chose the values of parameters, and
those parameters are listed in Table 7.3, 7.4 and 7.5. In the instances, we assume that
the material grades are chosen according to the Normal distribution, the expected val-
ues of grades are randomly selected from the value range, and the deviation of material
grades are set equal to 0.01 times the expected value. Let αCu = {0.999, 0.99, 0.9} and
αF = {0.999, 0.99, 0.9}. Base on this arrangement, we compare the performance of the
DE algorithm with fitness functions (7.17), (7.20), (7.21) and (7.22) on the presented
instances. We investigate the performance of the DE algorithms with different fitness
functions and provide the results from 30 independent runs with 10000 generation
and populationm size of 10 for all instances. For a closer look, we list the average,
best and worst solutions obtained by the algorithm in corresponding columns. We

104 Chapter 7. The Stockpile Blending Problem with Chance Constraints

Table 7.3. Global parameters of instances

Instance 1 Instance 2 Instance 3

Number of parcels 3 3 4
Number of stockpiles 7 7 7
Total duration 30 28 31
δ 0.98 0.98 0.98
φ̃ 1100 1100 1100
φAu 270 270 270
φU 340 340 340
φFe 564000 564000 56400
φCu 6050000 6050000 6050000
(γ1, γ2) (7,36) (7,36) (7,36)
µF 0.11 0.11 0.11
µU 0.79 0.79 0.79
(µCu1 , µCu2) (2.5,0) (2.5,0) (2.5,0)
RFp 500 400 400
Cup 0.9 1 1

Table 7.4. Ore shipping parameters of instances

Stockpiles Tonnage of ore Cu grade Ag grade Fe grade Au grade U grade F grade S grade

In
st
an

ce
1

1 480000 1.08 1.33 14.08 1.56 32.73 1263 0.21
2 220000 1.86 3.81 25.9 0.47 70.69 2568 0.8
3 970000 1.79 3.41 28.97 0.5 127.83 4500 0.74
4 400000 0.96 2.49 25 0.49 400 7500 0.8
5 3550000 1.37 2.02 14.21 0.31 44 3000 0.5
6 1130500 0.93 2.13 23.76 1.25 26.73 1560 0.26
7 5377000 1.61 2.22 16.5 0.61 31 2780 0.15

In
st
an

ce
2

1 480000 1.78 1.33 14.08 1.56 32.73 1263 0.21
2 220000 1.86 3.81 25.9 0.47 70.69 2568 0.8
3 970000 1.79 3.41 28.97 0.5 127.83 4500 0.74
4 400000 1.16 2.49 25 0.49 400 7500 0.8
5 3550000 0.77 2.02 14.21 0.31 44 3000 0.5
6 1130500 1.23 2.13 23.76 1.25 26.73 1560 0.26
7 53770 1.81 2.22 16.5 0.61 31 2780 0.15

In
st
an

ce
3

1 5000000 1.58 1.33 14.08 1.56 32.73 1263 0.21
2 4200000 1.86 3.81 25.9 0.47 70.69 2568 0.8
3 9700000 1.79 3.41 28.97 0.5 127.83 4500 0.74
4 4000000 1.16 2.49 25 0.49 400 7500 0.8
5 3550000 1.37 2.02 14.21 0.31 44 3000 0.5
6 1130500 1.13 2.13 23.76 1.25 26.73 1560 0.26
7 5377000 1.91 2.22 16.5 0.61 31 2780 0.15

Table 7.5. Customer requirements of instances

Parcels Instances 1 Instance 2 Instance 3

1 750000 300000 137000
2 600000 460000 94000
3 420000 330000 92000
4 111000

7.5. Experimental Investigation 105

Table 7.6. Fitness values obtained with single chance constraint

Deterministic Cu Chance constraint (αCu) F Chance constraint (αF)
Instance 0.999 0.99 0.9 0.999 0.99 0.9

1

Mean 103603035.94 99319128.52 102724900.09 103206748.35 103117715.98 103340755.20 102753876.59
Best 110830487.20 100434268.90 110489368.20 111221777.51 108460913.10 110593860.12 106976825.01
Worst 100025173.10 98404158.16 99426947.62 99935646.96 99979453.63 98951340.30 99444063.80
Success rate 0.166666667 1 1 1 1 1

2

Mean 66339866.34 64280794.53 65346088.50 65440690.91 65741114.11 66128957.43 64999603.10
Best 69691652.87 66062865.43 70504938.14 69307609.02 70846603.30 69265095.80 67416065.20
Worst 63401302.85 62822049.78 61409848.38 62043167.43 62885220.60 63139531.31 62369471.32
Success rate 0.3 1 1 1 1 1

3

Mean 25706739.82 25172345.85 25484058.55 25667396.95 25414602.50 25487090.60 25737554.80
Best 26714591.61 25780112.93 27501228.19 26652385.99 26542657.00 26440088.30 27420748.21
Worst 25042412.92 24939884.30 24517912.31 24338065.15 24301347.20 24502516.90 24675079.20
Success rate 0.166666667 0.733333333 0.8 0.83333333 0.7 1

also evaluate the algorithm by success rate, which is the percentage of success for the
algorithm in getting reasonable solutions out of 30 runs.

7.5.2 Experimental Results

We benchmark our approach with the combinations from the experimental setting
described above. All experiments were performed using Java of version 11.0.1 and
carried out on a MacBook with a 2.3GHz Intel Core i5 CPU.

Table 7.6 lists the results for the three instances with using fitness function (7.17,
7.20) and (7.21) separately, where they consider one of the chance constraints. Figure
7.1 shows the how the one of the chance-constrained bound (αCu, αF) affects the
solution quality. The bars are corresponding to the solutions of instances combining
with the probability of chance constraint, respectively, and the three bars in each
group corresponding to the value of uncertainty {0.999, 0.99, 0.9}. Among others, we
observe that results obtained by applying the fitness function (7.20) are significantly
affected by the value of uncertainty denoted by αCu. The results show an increasing
trend as the value of αCu decreases. However, by observing the bars in F chance
constraint group, the value of αF does not affect the result when using the F chance
constraint in the fitness function.

As can be seen from Table 7.6, the success rate shows significantly different results
between using Cu chance constraint and F chance constraint, for instance 1 and 2.
When the probability of Cu grade chance constraint is tight, such as 0.999, the DE
algorithm can not generate a pure feasible population in the last generation. At
the same time, the probability of F recovery chance constraint does not move the
success rate of the algorithm. However, for instance, 3, which has four parcels into
consideration and is the most complex instance in our study, the DE algorithm fails to
obtain a feasible population in the last generation when the probability of F recovery
chance constraint is higher than 0.999.

Table 7.7 lists the results obtained by considering two chance constraints, the fitness
function (7.22). For each instance, we investigate different parameters setting together
with the different requirements on the chance constraints determined by αCu and αF .
The results list in the columns with the same αCu shows that there is no significant
difference between the solutions obtained by applying difference αF . Moreover, with
the same αF , the object value increase while the αCu decrease.

Now, we compare the results obtained by using different fitness functions of instances.
However, there is no significant difference between the result obtained by using Cu

106 Chapter 7. The Stockpile Blending Problem with Chance Constraints

grade chance constraint and combine chance constraints separately for the same in-
stance with the same level of αCu. By comparing the solutions list in the column
F Chance constraint in Table 7.6 against that of the combined chance constraint in
the same value of αF , we find that for the same instance, in most cases, the results
obtained by a single chance constraint are better than the multi chance constraints.

One interesting finding is that the value of αF does not show significant effects on
the results in the experiments. A possible explanation for this might be that the
parameters of the instances are not reliable or match the real-world situation, which
can indicate the malfunction of the constraint.

7.6 Conclusion

In this chapter, we studied the stockpile blending problem under uncertainty in the
geologic data. We modelled the stockpile blending problem as a nonlinear optimization
problem and introduced the chance constraints to tackle the uncertainty assuming
that the material grades are stochastic variables. We showed how to incorporate
the well-known probability tail, Chebyshev’s inequality, into presenting the surrogate
functions of the chance constraints. In addition, we designed fitness functions that
responded to different chance constraints. In our experiments, which have covered
various instances according to the parameters, we have observed that the probability
of the Cu chance constraint affects the results obtained by using the fitness function
only consider the Cu chance constraint and the fitness function with considering multi
chance constraints. However, the threshold of the F chance constraint didn’t show a
significant influence on the results. It would be interesting to develop benchmarks for
the stockpile blending problem with chance constraints as there are no available open
access data-set. The study of stockpile blending problems in a stochastic environment
is a potentially rich area for future research. A further study focusing on formulating
the problem closer to the real-world situation is therefore suggested. For example, the
distribution of material grads could be estimated by experimental and historical data,
and some processes in the stockpile blending schedule could be more detailed instead
of using fixed parameters.

7.6. Conclusion 107

T
a
bl

e
7.

7.
F
it
ne
ss

va
lu
es

ob
ta
in
ed

w
it
h
tw

o
ch
an

ce
co
ns
tr
ai
nt
s

In
st
an

ce
C
om

bi
ne

C
ha

nc
e
co
ns
tr
ai
nt
s

α
C
u

=
0.

99
9

α
C
u

=
0.

99
α
C
u

=
0.

9

α
F

0.
99

9
0.
99

0.
9

0.
99

9
0.
99

0.
9

0.
99

9
0.
99

0.
9

1

M
ea
n

98
78

77
01

.3
9

99
24

10
24

.0
7

99
49

26
31

.1
9

10
26

00
30

0.
50

10
22

76
57

9.
70

10
26

82
51

9.
61

10
33

88
91
8.
00

10
29

34
74

7.
10

10
24

93
17

7.
23

B
es
t

10
20

31
08

5.
80

10
37

55
48

9.
91

10
25

99
09

2.
62

10
61

67
31

9.
20

10
70

35
40
9.
13

10
99

36
13

7.
61

10
63

69
04

7.
00

10
82

85
97

6.
13

10
81

15
66

9.
08

W
or
st

96
58

50
53

.0
9

97
11
52

31
.1
6

97
59

52
58

.9
9

99
32

24
45
.2
7

98
37

05
24

.8
1

10
00

35
47

4.
00

10
01

91
35

3.
05

99
13

14
74

.7
0

99
12

44
05

.8
2

Su
cc
es
s
ra
te

0.
36

66
66

66
7

0.
36

66
66

66
7

0.
4

1
1

1
1

1
1

2

M
ea
n

65
98

32
55

.5
6

63
56

39
90

.3
6

64
90

26
32

.4
4

65
90

20
68

.3
1

65
72

98
92

.8
6

65
50

66
95

.7
3

65
67

89
75

.1
4

65
55

98
60

.5
0

65
65

17
73

.3
3

B
es
t

69
07

90
10

.4
1

65
78

23
60

.3
9

69
00

65
40

.8
6

69
99

17
91

.3
6

69
75

49
92
.2
4

70
59

67
82

.1
9

69
70

37
18

.2
1

68
25

86
15

.0
0

70
55

66
38

.8
1

W
or
st

62
87

03
62

.8
4

61
87
72

15
.0
8

61
96

39
22

.2
8

59
67

28
21
.8
9

63
03

80
71

.8
3

61
82

37
14

.5
6

61
90
05

65
.7
0

61
61

85
62

.9
0

62
95

92
70

.1
5

Su
cc
es
s
ra
te

0.
16

66
66

66
7

0.
13

33
33

33
3

0.
3

1
1

1
1

1
1

3

M
ea
n

25
96

09
17

.3
9

25
87

16
36

.0
5

25
68

64
17

.5
2

25
45

95
22

.8
7

25
68

21
80

.8
7

25
68

75
41

.0
1

25
56

92
38

.2
1

25
49

86
02

.0
0

25
61

72
80

.6
3

B
es
t

25
96

09
17

.3
9

26
27

31
34

.2
5

25
68

64
17

.5
2

26
57

50
50

.8
9

26
64

38
51
.7
4

26
32

97
33

.6
8

26
45

73
35

.1
4

26
58

93
10

.8
0

26
32

67
09

.0
5

W
or
st

25
96

09
17

.3
9

25
47
39

33
.0
1

25
68

64
17

.5
2

24
49

58
73
.7
2

24
82

62
17

.2
8

24
66

85
01

.3
0

24
69
32

15
.9
0

24
72

15
83

.7
1

24
54

98
25

.1
0

Su
cc
es
s
ra
te

0.
03

33
33

33
3

0.
13

33
33

33
3

0.
03

33
33

33
3

0.
8

0.
83

33
33

33
3

0.
86

66
66

66
7

0.
8

0.
86

66
66

67
0.
76

66
66

67

108 Chapter 7. The Stockpile Blending Problem with Chance Constraints

Cu chance constraint F chance constraint

0.98

1

1.02

1.04

·108

α = 0.999
α = 0.99
α = 0.9

(a) Instance 1

Cu chance constraint F chance constraint

6.4

6.5

6.6

6.7
·107

α = 0.999
α = 0.99
α = 0.9

(b) Instance 2

Cu chance constraint F chance constraint

2.5

2.52

2.54

2.56

2.58

2.6
·107

α = 0.999
α = 0.99
α = 0.9

(c) Instance 3

Figure 7.1. Results obtained by the DE with using single chance
constraint.

109

Chapter 8

Conclusion

Bio-inspired methods are general-purpose optimisation techniques that are inspired
by nature. The ability of those algorithms is that they can obtain high-quality so-
lutions for combinatorial optimisation problems without much knowledge about the
search space. The present research aimed to examine the theoretical and practical un-
derstanding of bio-inspired algorithms dealing with chance-constrained optimisation
problems and perform the chance-constrained optimisation in real-world applications.

The first aim of this thesis was to investigate the effects of evolutionary algorithms
solving the CCKP and theoretical analyses of their behaviour when solving the CCKP.
Chapter 4 has shown that incorporate well-known probability tail inequities into the
search process of an evolutionary algorithm can avoid the difficulty of calculating
the probability of chance constraints. The comparison between the performance of
EAs and deterministic approaches on solving CCKP has shown that EAs are better
than the proposed deterministic approaches according to the computation time for all
instances. Two problem-specific operators and a new multi-objective model are pre-
sented in this chapter and show significant improvement in the performance of EAs.
The insights gained from this chapter may assist in exploring the applications of EAs
on combinatorial optimisation problems under uncertainties. Then, Chapter 5 has
proven upper bounds for optimisation time of the RLS2 and the (1+1) EA with two
different types of chance-constrained knapsack problem with correlated weights. With
rigorous runtime analysis of the algorithms on the CCKP with correlated weights, this
chapter contributed to our understanding of bio-inspired algorithms in solving chance-
constrained optimisation problems. Understanding the behaviour of bio-inspired al-
gorithms is a long-time challenge to researchers and practitioners. A possible future
work of this research aims to extend runtime analysis to more complex cases of the
CCKP, understand basic working principles of more bio-inspired algorithms, and sup-
port them with practical results.

The second aim of this thesis was to adopt the chance-constrained optimisation on
a real-world problem, the stockpile blending problem. In Chapter 6, the large-scale
stockpile blending problem is formulated as a non-linear optimisation problem with
continuous decision variables. For the complexity constraints, two repaired operators
are presented to improve the efficiency of finding feasible solutions. Moreover, an
approach that divided the large-scale problem into several one-month problems is in-
troduced in this chapter, and a DE-based approach for a large-scale stockpile blending
problem that optimises the problem month by month is used in this chapter. This
approach guarantees the quality of each unit solution and the balance of used material
between stockpiles. The results of this investigation show that the DE-based approach
outperforms the methods used in real-world instances. This finding supports the idea

110 Chapter 8. Conclusion

that is using bio-inspired algorithms to solve complex, large-scale real-world problems.
In Chapter 7, the chance-constrained optimisation is used to tackle the uncertainty
of material from the resource in mines. Four fitness functions are presented contain-
ing different chance constraints to explore the effectiveness of each chance constraint
on the objective. The experiment results give some insight into the quality of solu-
tions based on different fitness functions. Furthermore, in terms of the complexity
of the stockpile blending problem, only fundamental approaches are applied in this
thesis on both the large-scale problem and the chance-constrained problem. It would
be interesting to develop approaches that are able to solve the stockpile blending
problems in different scenarios. As many real-world problems simultaneously have
stochastic and dynamic properties, future research would be interesting to examine
those chance-constrained optimisation problems under a dynamic environment.

111

Bibliography

Ahmed, Shabbir and Alexander Shapiro (2008). “Solving chance-constrained stochas-
tic programs via sampling and integer programming”. In: State-of-the-art decision-
making tools in the information-intensive age. Informs, pp. 261–269.

Ahrens, Joachim H and Gerd Finke (1975). “Merging and sorting applied to the zero-
one knapsack problem”. In: Operations Research 23.6, pp. 1099–1109.

Akaike, Atsushi and Kadri Dagdelen (1999). “A strategic production scheduling method
for an open pit mine”. In: proceedings of the 28th Application of Computers and Op-
eration Research in the Mineral Industry, pp. 729–738.

Asad, Mohammad Waqar Ali and Roussos Dimitrakopoulos (2012). “Optimal produc-
tion scale of open pit mining operations with uncertain metal supply and long-term
stockpiles”. In: Resources policy 37.1, pp. 81–89.

Assimi, Hirad, Oscar Harper, Yue Xie, Aneta Neumann, and Frank Neumann (2020).
“Evolutionary Bi-Objective Optimization for the Dynamic Chance-Constrained Knap-
sack Problem Based on Tail Bound Objectives”. In: ECAI. Vol. 325. Frontiers in
Artificial Intelligence and Applications. IOS Press, pp. 307–314.

Auger, Anne and Benjamin Doerr, eds. (2011). Theory of Randomized Search Heuris-
tics: Foundations and Recent Developments. Vol. 1. Series on Theoretical Computer
Science. World Scientific.

Azzouz, Radhia, Slim Bechikh, and Lamjed Ben Said (2017). “Dynamic Multi-objective
Optimization Using Evolutionary Algorithms: A Survey”. In: Recent Advances in
Evolutionary Multi-objective Optimization. Vol. 20. Adaptation, Learning, and Op-
timization. Springer, pp. 31–70.

Baker, CK and SM Giacomo (1998). “Resource and reserves: their uses and abuses
by the equity markets”. In: Ore reserves and finance: a joint seminar between Aus-
tralasian Institute of Mining and Metallurgy (AusIMM) and Australian Securities
Exchange (ASX), Sydney.

Beier, René and Berthold Vöcking (2004). “Random knapsack in expected polynomial
time”. In: J. Comput. Syst. Sci. 69.3, pp. 306–329.

Bellman, Richard (1966). “Dynamic programming”. In: Science 153.3731, pp. 34–37.
Bhattacharya, U. K. (2009). “A chance constraints goal programming model for the
advertising planning problem”. In: Eur. J. Oper. Res. 192.2, pp. 382–395. doi: 10.
1016/j.ejor.2007.09.039. url: https://doi.org/10.1016/j.ejor.2007.09.
039.

Bienaymé, Irénée-Jules (1853). Considérations à l’appui de la découverte de Laplace
sur la loi de probabilité dans la méthode des moindres carrés. Imprimerie de Mallet-
Bachelier.

Birge, John R and Francois Louveaux (2011). Introduction to stochastic programming.
Springer Science & Business Media.

Bley, Andreas, Natashia Boland, Gary Froyland, and Mark Zuckerberg (2012). “Solv-
ing mixed integer nonlinear programming problems for mine production planning
with stockpiling”. In:Optimization Online (http://www. optimization-online. org/DB
_ HTML/2012/11/3674. html) 28, p. 12.

https://doi.org/10.1016/j.ejor.2007.09.039
https://doi.org/10.1016/j.ejor.2007.09.039
https://doi.org/10.1016/j.ejor.2007.09.039
https://doi.org/10.1016/j.ejor.2007.09.039

112 Bibliography

Blom, Michelle, Adrian R. Pearce, and Peter J. Stuckey (2019). “Short-term planning
for open pit mines: a review”. In: International Journal of Mining, Reclamation and
Environment 33.5, pp. 318–339. doi: 10.1080/17480930.2018.1448248. eprint:
https://doi.org/10.1080/17480930.2018.1448248. url: https://doi.org/
10.1080/17480930.2018.1448248.

Calafiore, Giuseppe and Fabrizio Dabbene (2006). Probabilistic and randomized meth-
ods for design under uncertainty. Springer.

Calafiore, Giuseppe Carlo and Laurent El Ghaoui (2006). “On distributionally ro-
bust chance-constrained linear programs”. In: Journal of Optimization Theory and
Applications 130.1, pp. 1–22.

Charnes, Abraham and William W Cooper (1959). “Chance-constrained program-
ming”. In: Management science 6.1, pp. 73–79.

Chebyshev, Pafnutii Lvovich (1867). “Des valeurs moyennes”. In: J. Math. Pures Appl
12.2, pp. 177–184.

Cheng, Jianqiang, Michal Houda, and Abdel Lisser (2015). “Chance constrained 0–1
quadratic programs using copulas”. In: Optimization Letters 9.7, pp. 1283–1295.

Cheng, Jianqiang and Abdel Lisser (2012). “A second-order cone programming ap-
proach for linear programs with joint probabilistic constraints”. In: Operations Re-
search Letters 40.5, pp. 325–328.

Cheng, Jianqiang and Abdel Lisser (2013). “A completely positive representation of
0–1 linear programs with joint probabilistic constraints”. In: Operations Research
Letters 41.6, pp. 597–601.

Chernoff, Herman et al. (1952). “A measure of asymptotic efficiency for tests of a
hypothesis based on the sum of observations”. In: The Annals of Mathematical
Statistics 23.4, pp. 493–507.

Chiong, Raymond, Thomas Weise, and Zbigniew Michalewicz, eds. (2012). Variants
of Evolutionary Algorithms for Real-World Applications. Springer.

Coello, Carlos Artemio Coello, David A. van Veldhuizen, and Gary B. Lamont (2002).
Evolutionary algorithms for solving multi-objective problems. Vol. 5. Genetic algo-
rithms and evolutionary computation. Kluwer.

Corder, Gregory W and Dale I Foreman (2014). Nonparametric statistics: A step-by-
step approach. John Wiley & Sons.

Das, Swagatam, Sankha Subhra Mullick, and Ponnuthurai N Suganthan (2016). “Re-
cent advances in differential evolution–an updated survey”. In: Swarm and Evolu-
tionary Computation 27, pp. 1–30.

Das, Swagatam and Ponnuthurai Nagaratnam Suganthan (2010). “Differential evo-
lution: A survey of the state-of-the-art”. In: IEEE transactions on evolutionary
computation 15.1, pp. 4–31.

Deb, Kalyanmoy (2001). Multi-objective optimization using evolutionary algorithms.
Wiley-Interscience series in systems and optimization. Wiley.

Deb, Kalyanmoy, Samir Agrawal, Amrit Pratap, and T. Meyarivan (2000). “A Fast
Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisa-
tion: NSGA-II”. In: PPSN. Vol. 1917. Lecture Notes in Computer Science. Springer,
pp. 849–858.

Deb, Kalyanmoy, Samir Agrawal, Amrit Pratap, and T. Meyarivan (2002). “A fast and
elitist multiobjective genetic algorithm: NSGA-II”. In: IEEE Trans. Evol. Comput.
6.2, pp. 182–197.

Dentcheva, Darinka, András Prékopa, and Andrzej Ruszczynski (2000). “Concavity
and efficient points of discrete distributions in probabilistic programming”. In:Math-
ematical programming 89.1, pp. 55–77.

https://doi.org/10.1080/17480930.2018.1448248
https://doi.org/10.1080/17480930.2018.1448248
https://doi.org/10.1080/17480930.2018.1448248
https://doi.org/10.1080/17480930.2018.1448248

Bibliography 113

Doerr, Benjamin (2020). “Probabilistic Tools for the Analysis of Randomized Op-
timization Heuristics”. In: Theory of Evolutionary Computation: Recent Develop-
ments in Discrete Optimization. Ed. by Benjamin Doerr and Frank Neumann.
Cham: Springer International Publishing, pp. 1–87. isbn: 978-3-030-29414-4. doi:
10.1007/978-3-030-29414-4_1. url: https://doi.org/10.1007/978-3-030-
29414-4_1.

Doerr, Benjamin, Carola Doerr, Aneta Neumann, Frank Neumann, and Andrew M.
Sutton (2020). “Optimization of Chance-Constrained Submodular Functions”. In:
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020. AAAI
Press, pp. 1460–1467. isbn: 978-1-57735-823-7.

Doerr, Benjamin, Daniel Johannsen, and Carola Winzen (2012). “Multiplicative Drift
Analysis”. In: Algorithmica 64.4, pp. 673–697.

Doerr, Benjamin, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen (2017). “Fast
genetic algorithms”. In: GECCO. ACM, pp. 777–784.

Driscoll, Wade C. (1996). “Robustness of the ANOVA and Tukey-Kramer statistical
tests”. In: International Conference on Computers and Industrial Engineering, CIE
1996. Pergamon Press, Inc.

Droste, Stefan, Thomas Jansen, and Ingo Wegener (2002). “On the analysis of the
(1+1) evolutionary algorithm”. In: Theor. Comput. Sci. 276.1-2, pp. 51–81.

Du, Dingzhu and Panos M Pardalos (1998). Handbook of combinatorial optimization.
Vol. 4. Springer Science & Business Media.

Dunn, Jean and Olive Jean Dunn (1961). “Multiple comparisons among means”. In:
American Statistical Association, pp. 52–64.

Fishburn, Peter C (1974). “Exceptional paper—Lexicographic orders, utilities and
decision rules: A survey”. In: Management science 20.11, pp. 1442–1471.

Friedrich, Tobias, Timo Kötzing, J. A. Gregor Lagodzinski, Frank Neumann, and
Martin Schirneck (2020). “Analysis of the (1+1) EA on subclasses of linear functions
under uniform and linear constraints”. In: Theor. Comput. Sci. 832, pp. 3–19.

Ghasemi, Asghar and Saleh Zahediasl (2012). “Normality tests for statistical anal-
ysis: a guide for non-statisticians”. In: International journal of endocrinology and
metabolism 10.2, p. 486.

Giel, Oliver (2003). “Expected runtimes of a simple multi-objective evolutionary algo-
rithm”. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03. Vol. 3.
IEEE, pp. 1918–1925.

Goel, Ashish and Piotr Indyk (1999). “Stochastic load balancing and related prob-
lems”. In: 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039). IEEE, pp. 579–586.

Goyal, Vineet and R. Ravi (2010). “A PTAS for the chance-constrained knapsack
problem with random item sizes”. In: Oper. Res. Lett. 38.3, pp. 161–164.

Greenberg, Harold and Robert L Hegerich (1970). “A branch search algorithm for the
knapsack problem”. In: Management Science 16.5, pp. 327–332.

Hajela, Prabhat and C-Y Lin (1992). “Genetic search strategies in multicriterion op-
timal design”. In: Structural optimization 4.2, pp. 99–107.

Han, Kuk-Hyun and Jong-Hwan Kim (2002). “Quantum-inspired evolutionary algo-
rithm for a class of combinatorial optimization”. In: IEEE Trans. Evol. Comput.
6.6, pp. 580–593. doi: 10.1109/TEVC.2002.804320. url: https://doi.org/10.
1109/TEVC.2002.804320.

He, Jun, Boris Mitavskiy, and Yuren Zhou (2014). “A theoretical assessment of solu-
tion quality in evolutionary algorithms for the knapsack problem”. In: Proceedings
of the IEEE Congress on Evolutionary Computation, CEC 2014, Beijing, China,
July 6-11, 2014. IEEE, pp. 141–148.

https://doi.org/10.1007/978-3-030-29414-4_1
https://doi.org/10.1007/978-3-030-29414-4_1
https://doi.org/10.1007/978-3-030-29414-4_1
https://doi.org/10.1109/TEVC.2002.804320
https://doi.org/10.1109/TEVC.2002.804320
https://doi.org/10.1109/TEVC.2002.804320

114 Bibliography

He, Jun and Xin Yao (2001). “Drift analysis and average time complexity of evolu-
tionary algorithms”. In: Artif. Intell. 127.1, pp. 57–85.

Henrion, René (2007). “Structural properties of linear probabilistic constraints”. In:
Optimization 56.4, pp. 425–440.

Hillier, Fredrick S. (1967). “Chance-constrained programming with 0-1 or bounded
bontinuous decision variables”. In: Management Science 14.1, pp. 34–57.

Hoeffding, Wassily (1994). “Probability inequalities for sums of bounded random vari-
ables”. In: The Collected Works of Wassily Hoeffding. Springer, pp. 409–426.

Hoos, Holger H and Thomas Stützle (2004). Stochastic local search: Foundations and
applications. Elsevier.

Horng, Shih Cheng, Shieh Shing Lin, and Feng Yi Yang (2012). “Evolutionary algo-
rithm for stochastic job shop scheduling with random processing time”. In: Expert
Syst. Appl. 39.3, pp. 3603–3610.

Ishibuchi, Hisao, Kaname Narukawa, Noritaka Tsukamoto, and Yusuke Nojima (2008).
“An empirical study on similarity-based mating for evolutionary multiobjective com-
binatorial optimization”. In: Eur. J. Oper. Res. 188.1, pp. 57–75.

Jagannathan, R. (1974). “Chance-Constrained Programming with Joint Constraints”.
In: Oper. Res. 22.2, pp. 358–372. doi: 10.1287/opre.22.2.358. url: https:
//doi.org/10.1287/opre.22.2.358.

Jaszkiewicz, Andrzej (2001). Multiple objective metaheuristic algorithms for combina-
torial optimization. Wydawnictwo Politechniki Poznanskiej.

Johannsen, Daniel (2011). “Evolutionary Computation in Combinatorial Optimiza-
tion”. In: Theory of Randomized Search Heuristics. Vol. 1. Series on Theoretical
Computer Science. World Scientific, pp. 53–99.

Johnson, Thys B (1968). Optimum open pit mine production scheduling. Tech. rep.
California Univ Berkeley Operations Research Center.

Jupp, K, TJ Howard, and JE Everett (2013). “Role of pre-crusher stockpiling for grade
control in iron ore mining”. In: Applied Earth Science 122.4, pp. 242–255.

Kaelo, P. and M. M. Ali (2006). “A numerical study of some modified differential
evolution algorithms”. In: Eur. J. Oper. Res. 169.3, pp. 1176–1184.

Kall, Peter, SteinWWallace, and Peter Kall (1994). Stochastic programming. Springer.
Kellerer, Hans, Ulrich Pferschy, and David Pisinger (2004).Knapsack problems. Springer.
Kleinberg, Jon, Yuval Rabani, and Éva Tardos (1997). “Allocating bandwidth for
bursty connections”. In: Proceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC 1997. ACM.

Klopfenstein, Olivier and Dritan Nace (2008). “A robust approach to the chance-
constrained knapsack problem”. In: Operations Research Letters.

Kolesar, Peter J (1967). “A branch and bound algorithm for the knapsack problem”.
In: Management science 13.9, pp. 723–735.

Koza, John R. (1993). Genetic programming - on the programming of computers by
means of natural selection. Complex adaptive systems. MIT Press.

Kroese, Dirk P, Tim Brereton, Thomas Taimre, and Zdravko I Botev (2014). “Why the
Monte Carlo method is so important today”. In: Wiley Interdisciplinary Reviews:
Computational Statistics 6.6, pp. 386–392.

Lagoa, Constantino Manuel (1999). “On the convexity of probabilistically constrained
linear programs”. In: Proceedings of the 38th IEEE Conference on Decision and
Control (Cat. No. 99CH36304). Vol. 1. IEEE, pp. 516–521.

Lamghari, Amina and Roussos G. Dimitrakopoulos (2012). “A diversified Tabu search
approach for the open-pit mine production scheduling problem with metal uncer-
tainty”. In: Eur. J. Oper. Res. 222.3, pp. 642–652. url: https://doi.org/10.
1016/j.ejor.2012.05.029.

https://doi.org/10.1287/opre.22.2.358
https://doi.org/10.1287/opre.22.2.358
https://doi.org/10.1287/opre.22.2.358
https://doi.org/10.1016/j.ejor.2012.05.029
https://doi.org/10.1016/j.ejor.2012.05.029

Bibliography 115

Lehre, Per Kristian and Carsten Witt (2013). “General Drift Analysis with Tail
Bounds”. In: CoRR abs/1307.2559.

Lipovetzky, Nir, Christina N. Burt, Adrian R. Pearce, and Peter J. Stuckey (2014).
“Planning for Mining Operations with Time and Resource Constraints”. In: ICAPS.
AAAI.

Lissovoi, Andrei and Carsten Witt (2017). “A Runtime Analysis of Parallel Evolu-
tionary Algorithms in Dynamic Optimization”. In: Algorithmica 78.2, pp. 641–659.

Liu, Baoding (2007). “Uncertainty theory”. In: Uncertainty theory. Springer, pp. 205–
234.

Liu, Bo, Qingfu Zhang, Francisco V. Fernández, and Georges G. E. Gielen (2013).
“An efficient evolutionary algorithm for chance-constrained bi-objective stochastic
optimization”. In: IEEE Trans. Evolutionary Computation 17.6, pp. 786–796.

Luedtke, James, Shabbir Ahmed, and George L Nemhauser (2010). “An integer pro-
gramming approach for linear programs with probabilistic constraints”. In: Mathe-
matical programming 122.2, pp. 247–272.

Luo, Xiaolin and Pavel V Shevchenko (2009). “Computing tails of compound distri-
butions using direct numerical integration”. In: arXiv preprint arXiv:0904.0830.

Marshall, Albert W, Ingram Olkin, and Barry C Arnold (1979). Inequalities: theory
of majorization and its applications. Vol. 143. Springer.

Martello, Silvano, David Pisinger, and Paolo Toth (1999). “Dynamic programming
and strong bounds for the 0-1 knapsack problem”. In: Management science 45.3,
pp. 414–424.

Martello, Silvano and Paolo Toth (1997). “Upper Bounds and Algorithms for Hard
0-1 Knapsack Problems”. In: Oper. Res. 45.5, pp. 768–778.

Martello, Silvano and Paolo Toth (2003). “An Exact Algorithm for the Two-Constraint
0 - 1 Knapsack Problem”. In: Oper. Res. 51.5, pp. 826–835.

McConaghy, T., P. Palmers, M. Steyaert, and G. G. E. Gielen (2009). “Variation-aware
structural synthesis of analog circuits via hierarchical building blocks and structural
homotopy”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 28.9, pp. 1281–1294.

Mercado, Lei L, S-M Kuo, Tien-Yu Lee, and Russell Lee (2005). “Analysis of RF
MEMS switch packaging process for yield improvement”. In: IEEE transactions on
advanced packaging 28.1, pp. 134–141.

Miller, Bruce L and Harvey M Wagner (1965). “Chance constrained programming
with joint constraints”. In: Operations Research 13.6, pp. 930–945.

Moreno, Eduardo, Mojtaba Rezakhah, Alexandra M. Newman, and Felipe Ferreira
(2017). “Linear models for stockpiling in open-pit mine production scheduling prob-
lems”. In: Eur. J. Oper. Res. 260.1, pp. 212–221.

Motwani, Rajeev and Prabhakar Raghavan (1995). Randomized Algorithms. Cam-
bridge University Press.

Mühlenbein, Heinz (1992). “How Genetic Algorithms Really Work: Mutation and
Hillclimbing”. In: PPSN. Elsevier, pp. 15–26.

Murata, Tadahiko and Hisao Ishibuchi (1995). “MOGA: Multi-objective genetic al-
gorithms”. In: IEEE international conference on evolutionary computation. Vol. 1,
pp. 289–294.

Nemhauser, G. L. and Z. Ullmann (1969). “Discrete Dynamic Programming and
Capital Allocation”. In: Management Science 15.9, pp. 494–505. issn: 00251909,
15265501. url: http://www.jstor.org/stable/2628385.

Neri, Ferrante and Ville Tirronen (2010). “Recent advances in differential evolution:
a survey and experimental analysis”. In: Artif. Intell. Rev. 33.1-2, pp. 61–106.

http://www.jstor.org/stable/2628385

116 Bibliography

Neumann, Aneta and Frank Neumann (2020). “Optimising Monotone Chance-Constrained
Submodular Functions Using Evolutionary Multi-objective Algorithms”. In: Parallel
Problem Solving from Nature - PPSN XVI - 16th International Conference, PPSN
2020, Proceedings, Part I, pp. 404–417.

Neumann, Frank, Mojgan Pourhassan, and Vahid Roostapour (2020). “Analysis of
Evolutionary Algorithms in Dynamic and Stochastic Environments”. In: Theory of
Evolutionary Computation: Recent Developments in Discrete Optimization. Ed. by
Benjamin Doerr and Frank Neumann. Cham: Springer International Publishing,
pp. 323–357. isbn: 978-3-030-29414-4.

Neumann, Frank and Andrew M. Sutton (2019). “Runtime analysis of the (1 + 1)
evolutionary algorithm for the chance-constrained knapsack problem”. In: FOGA.
ACM, pp. 147–153.

Neumann, Frank and Ingo Wegener (2007). “Randomized local search, evolutionary
algorithms, and the minimum spanning tree problem”. In: Theor. Comput. Sci.
378.1, pp. 32–40.

Neumann, Frank and Carsten Witt (2006). “Runtime Analysis of a Simple Ant Colony
Optimization Algorithm”. In: Theory of Evolutionary Algorithms. Vol. 06061. Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), Schloss Dagstuhl, Germany.

Neumann, Frank and Carsten Witt (2010). Bioinspired Computation in Combinatorial
Optimization. Natural Computing Series. Springer.

Nguyen, Trung Thanh and Xin Yao (2012). “Continuous dynamic constrained opti-
mization - the challenges”. In: IEEE Transactions on Evolutionary Computation
16.6, pp. 769–786.

Oliveto, Peter S. and Xin Yao (2011). “Runtime Analysis of Evolutionary Algorithms
for Discrete Optimization”. In: Theory of Randomized Search Heuristics. Vol. 1.
Series on Theoretical Computer Science. World Scientific, pp. 21–52.

Oliveto, Pietro S., Jun He, and Xin Yao (2007). “Time complexity of evolutionary
algorithms for combinatorial optimization: A decade of results”. In: Int. J. Autom.
Comput. 4.3, pp. 281–293.

Ordoudis, Christos, Viet Anh Nguyen, Daniel Kuhn, and Pierre Pinson (2021). “En-
ergy and reserve dispatch with distributionally robust joint chance constraints”.
In: Operations Research Letters 49.3, pp. 291–299. issn: 0167-6377. doi: https:
//doi.org/10.1016/j.orl.2021.01.012. url: https://www.sciencedirect.
com/science/article/pii/S0167637721000213.

Osanloo, M., J. Gholamnejad, and B. Karimi (2008). “Long-term open pit mine pro-
duction planning: a review of models and algorithms”. In: International Journal of
Mining, Reclamation and Environment 22.1, pp. 3–35. doi: 10.1080/17480930601118947.
url: https://doi.org/10.1080/17480930601118947.

Papadimitriou, Christos H. and Kenneth Steiglitz (1982). Combinatorial Optimiza-
tion: Algorithms and Complexity. Prentice-Hall.

Pham, Nam, Aleksander Malinowski, and Tomasz Bartczak (2011). “Comparative
Study of Derivative Free Optimization Algorithms”. In: IEEE Trans. Ind. Infor-
matics 7.4, pp. 592–600. doi: 10.1109/TII.2011.2166799. url: https://doi.
org/10.1109/TII.2011.2166799.

Pinter, Janos (1989). “Deterministic approximations of probability inequalities”. In:
Zeitschrift für Operations-Research 33.4, pp. 219–239.

Poojari, Chandra A. and Boby Varghese (2008). “Genetic Algorithm based technique
for solving Chance Constrained Problems”. In: Eur. J. Oper. Res. 185.3, pp. 1128–
1154.

https://doi.org/https://doi.org/10.1016/j.orl.2021.01.012
https://doi.org/https://doi.org/10.1016/j.orl.2021.01.012
https://www.sciencedirect.com/science/article/pii/S0167637721000213
https://www.sciencedirect.com/science/article/pii/S0167637721000213
https://doi.org/10.1080/17480930601118947
https://doi.org/10.1080/17480930601118947
https://doi.org/10.1109/TII.2011.2166799
https://doi.org/10.1109/TII.2011.2166799
https://doi.org/10.1109/TII.2011.2166799

Bibliography 117

Prékopa, András (1971). “Logarithmic concave measures with application to stochastic
programming”. In: Acta Scientiarum Mathematicarum 32, pp. 301–316.

Prékopa, András (1990). “Dual method for the solution of a one-stage stochastic pro-
gramming problem with random RHS obeying a discrete probability distribution”.
In: Zeitschrift für Operations Research 34.6, pp. 441–461.

Prékopa, András (1995). “Programming under probabilistic constraint and maximizing
probabilities under constraints”. In: Stochastic Programming. Springer, pp. 319–371.

Prékopa, András (2003). “Probabilistic programming”. In: Handbooks in operations
research and management science 10, pp. 267–351.

Prékopa, András, Kunikazu Yoda, and Munevver Mine Subasi (2011). “Uniform quasi-
concavity in probabilistic constrained stochastic programming”. In: Operations Re-
search Letters 39.3, pp. 188–192.

Price, Kenneth, Rainer M Storn, and Jouni A Lampinen (2006). Differential evolution:
a practical approach to global optimization. Springer Science & Business Media.

Price, Kenneth V (1996). “Differential evolution: a fast and simple numerical opti-
mizer”. In: Proceedings of North American Fuzzy Information Processing. IEEE,
pp. 524–527.

Raghavan, Prabhakar and Rajeev Motwani (1995). Randomized algorithms. Cam-
bridge University Press Cambridge.

Rakshit, Pratyusha, Amit Konar, and Swagatam Das (2017). “Noisy evolutionary
optimization algorithms - A comprehensive survey”. In: Swarm Evol. Comput. 33,
pp. 18–45.

Ravichandran, Adhithya, Shahin Sirouspour, Pawel Malysz, and Ali Emadi (2018). “A
Chance-Constraints-Based Control Strategy for Microgrids With Energy Storage
and Integrated Electric Vehicles”. In: IEEE Trans. Smart Grid 9.1, pp. 346–359.
doi: 10.1109/TSG.2016.2552173. url: https://doi.org/10.1109/TSG.2016.
2552173.

Raychaudhuri, Samik (2008). “Introduction to monte carlo simulation”. In: 2008 Win-
ter simulation conference. IEEE, pp. 91–100.

Rezakhah, Mojtaba and Eduardo Moreno (2019). “Open Pit Mine Scheduling Model
Considering Blending and Stockpiling”. In: International Symposium on Mine Plan-
ning & Equipment Selection. Springer, pp. 75–82.

Riff, María Cristina, Teddy Alfaro, Xavier Bonnaire, and Carlos Grandón (2008).
“EA-MP: An evolutionary algorithm for a mine planning problem”. In: Proceedings
of the IEEE Congress on Evolutionary Computation, CEC 2008, June 1-6, 2008,
Hong Kong, China. IEEE, pp. 4011–4014. doi: 10.1109/CEC.2008.4631344. url:
https://doi.org/10.1109/CEC.2008.4631344.

Robinson, GK (2004). “How much would a blending stockpile reduce variation?” In:
Chemometrics and intelligent laboratory systems 74.1, pp. 121–133.

Roostapour, Vahid, Aneta Neumann, and Frank Neumann (2018). “On the perfor-
mance of baseline evolutionary algorithms on the dynamic knapsack problem”. In:
International Conference on Parallel Problem Solving from Nature - PPSN XV.
Lecture Notes in Computer Science. Springer, Cham, pp. 158–169.

Roostapour, Vahid, Aneta Neumann, Frank Neumann, and Tobias Friedrich (2019).
“Pareto Optimization for Subset Selection with Dynamic Cost Constraints”. In: The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019. AAAI Press,
pp. 2354–2361.

Ruszczyński, Andrzej (2002). “Probabilistic programming with discrete distributions
and precedence constrained knapsack polyhedra”. In: Mathematical Programming
93.2, pp. 195–215.

https://doi.org/10.1109/TSG.2016.2552173
https://doi.org/10.1109/TSG.2016.2552173
https://doi.org/10.1109/TSG.2016.2552173
https://doi.org/10.1109/CEC.2008.4631344
https://doi.org/10.1109/CEC.2008.4631344

118 Bibliography

Samavati, Mehran, Daryl Essam, Micah Nehring, and Ruhul A. Sarker (2017). “A
local branching heuristic for the open pit mine production scheduling problem”. In:
Eur. J. Oper. Res. 257.1, pp. 261–271.

Sasaki, Galen H. and Bruce E. Hajek (1988). “The time complexity of maximum
matching by simulated annealing”. In: J. ACM 35.2, pp. 387–403.

Schaffer, J. David (1985). “Multiple Objective Optimization with Vector Evaluated
Genetic Algorithms”. In: ICGA. Lawrence Erlbaum Associates, pp. 93–100.

Segura, Carlos, Salvador Botello Rionda, Arturo Hernández Aguirre, and Sergio Iv-
van Valdez Peña (2015). “A Novel Diversity-based Evolutionary Algorithm for the
Traveling Salesman Problem”. In: GECCO. ACM, pp. 489–496.

Shambour, Moh’d Khaled Yousef (2019). “Adaptive multi-crossover evolutionary al-
gorithm for real-world optimisation problems”. In: Int. J. Reason. based Intell. Syst.
11.1, pp. 1–10. doi: 10.1504/IJRIS.2019.098058. url: https://doi.org/10.
1504/IJRIS.2019.098058.

Shapiro, Alexander, Darinka Dentcheva, and Andrzej Ruszczyński (2014). Lectures on
stochastic programming: modeling and theory. SIAM.

Sim, Kevin and Paul Kaufmann, eds. (2018). Applications of Evolutionary Compu-
tation - 21st International Conference, EvoApplications 2018, Parma, Italy, April
4-6, 2018, Proceedings. Vol. 10784. Lecture Notes in Computer Science. Springer.
isbn: 978-3-319-77537-1. doi: 10.1007/978-3-319-77538-8. url: https://doi.
org/10.1007/978-3-319-77538-8.

Sotoudeh, Farzad, Micah Nehring, Mehmet Kizil, Peter Knights, and Amin Mousavi
(2020). “Production scheduling optimisation for sublevel stoping mines using math-
ematical programming: A review of literature and future directions”. In: Resources
Policy 68, p. 101809.

Srinivas, N. and Kalyanmoy Deb (1994). “Multiobjective Optimization Using Non-
dominated Sorting in Genetic Algorithms”. In: Evol. Comput. 2.3, pp. 221–248.

Storn, Rainer and V Kenneth (1995). “Price, K.: Differential Evolution–A Simple and
Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces”. In:
International Computer Science Institute, Report no. TR-95-012, Berkeley.

Storn, Rainer and Kenneth Price (1997). “Differential evolution–a simple and effi-
cient heuristic for global optimization over continuous spaces”. In: Journal of global
optimization 11.4, pp. 341–359.

Till, Jochen, Guido Sand, Maren Urselmann, and Sebastian Engell (2007). “A hybrid
evolutionary algorithm for solving two-stage stochastic integer programs in chemical
batch scheduling”. In: Computers & Chemical Engineering 31.5-6, pp. 630–647.

Topal, E. and S. Ramazan (2012). “Strategic mine planning model using network flow
model and real case application”. In: International Journal of Mining, Reclamation
and Environment 26.1, pp. 29–37. doi: 10.1080/17480930.2011.600827. url:
https://doi.org/10.1080/17480930.2011.600827.

Toth, P. (1980). “Dynamic programming algorithms for the Zero-One Knapsack Prob-
lem”. In: Computing 25.1, pp. 29–45.

Toth, Paolo and Silvano Martello (1990). Knapsack problems: Algorithms and com-
puter implementations. Wiley Chichester, UK.

Uryasev, Stanislav (2013). Probabilistic constrained optimization: methodology and ap-
plications. Vol. 49. Springer Science & Business Media.

Vance, Pamela H. (1993). “Knapsack Problems: Algorithms and Computer Implemen-
tations”. In: SIAM Review 35.4, pp. 684–685.

https://doi.org/10.1504/IJRIS.2019.098058
https://doi.org/10.1504/IJRIS.2019.098058
https://doi.org/10.1504/IJRIS.2019.098058
https://doi.org/10.1007/978-3-319-77538-8
https://doi.org/10.1007/978-3-319-77538-8
https://doi.org/10.1007/978-3-319-77538-8
https://doi.org/10.1080/17480930.2011.600827
https://doi.org/10.1080/17480930.2011.600827

Bibliography 119

Wang, Yu, Jiafu Tang, and Richard YK Fung (2014). “A column-generation-based
heuristic algorithm for solving operating theater planning problem under stochas-
tic demand and surgery cancellation risk”. In: International Journal of Production
Economics 158, pp. 28–36.

Watson, Ray and Ian Gordon (1986). “On quantiles of sums”. In: Australian Journal
of Statistics 28.2, pp. 192–199.

Wegener, Ingo (2002). “Methods for the Analysis of Evolutionary Algorithms on
Pseudo-Boolean Functions”. In: Evolutionary Optimization. Boston, MA: Springer
US, pp. 349–369. isbn: 978-0-306-48041-6. doi: 10.1007/0-306-48041-7_14. url:
https://doi.org/10.1007/0-306-48041-7_14.

Xie, Yue, Oscar Harper, Hirad Assimi, Aneta Neumann, and Frank Neumann (2019).
“Evolutionary algorithms for the chance-constrained knapsack problem”. In:GECCO.
ACM, pp. 338–346.

Xie, Yue, Aneta Neumann, and Frank Neumann (2020). “Specific single- and multi-
objective evolutionary algorithms for the chance-constrained knapsack problem”.
In: GECCO. ACM, pp. 271–279.

Xie, Yue, Aneta Neumann, and Frank Neumann (2021a). “Heuristic Strategies for
Solving Complex Interacting Large-Scale Stockpile Blending Problems”. In: CEC.
IEEE, pp. 1288–1295.

Xie, Yue, Aneta Neumann, and Frank Neumann (2021b). “Heuristic strategies for
solving complex interacting stockpile blending problem with chance constraints”.
In: GECCO. ACM, pp. 1079–1087.

Xie, Yue, Aneta Neumann, Frank Neumann, and Andrew M. Sutton (2021). “Runtime
analysis of RLS and the (1+1) EA for the chance-constrained knapsack problem
with correlated uniform weights”. In: GECCO. ACM, pp. 1187–1194.

https://doi.org/10.1007/0-306-48041-7_14
https://doi.org/10.1007/0-306-48041-7_14

	Contents
	List of Figures
	List of Tables
	Abstract
	Declaration of Authorship
	Acknowledgements
	Introduction
	Contributions and Background
	Outline of the Thesis

	Combinatorial Optimisation Problems and Chance-Constrained Optimisation
	Introduction
	Combinatorial Optimisation Problems
	Chance-Constrained Optimisation
	Conclusion

	Bio-Inspired Computing and Analytical Methods
	Introduction
	Randomised Local Search
	Evolutionary Algorithms
	Analytical Methods
	Conclusion

	Evolutionary Algorithms for the Chance-Constrained Knapsack Problem
	Introduction
	Surrogate Functions for the Chance Constraint
	Deterministic Approaches
	Evolutionary Algorithms
	Experiments
	Conclusion

	Runtime Analysis for the Chance-Constrained Knapsack Problem with Correlated Uniform Weight
	Introduction
	Preliminaries
	Theoretical Analysis
	Experiments
	Conclusions

	The Large-Scale Stockpile Blending Problem
	Introduction
	Mathematical Model of Stockpile Blending Problem
	Heuristic Search Approach
	Experimental Investigation
	Conclusions

	The Stockpile Blending Problem with Chance Constraints
	Introduction
	Deterministic Model
	Model with Chance Constraints
	Approaches for the Stockpile Blending Problem with Chance Constraints
	Experimental Investigation
	Conclusion

	Conclusion
	Bibliography

