
1.  Introduction
The Antarctic lithosphere was built over billions of years (e.g., Boger, 2011; Harley et al., 2013), and it is in-
creasingly clear that this long and complex lithospheric evolution both records and influences interactions with 
the oceans and cryosphere (e.g., Burton-Johnson et al., 2020; Hochmuth et al., 2020; Paxman et al., 2020; White-
house et al., 2019). Understanding these interrelated processes critically depends on the ability to integrate large 
heterogeneous data sets from regional to continental scale (Stål et al., 2020). Antarctic data sets are typically 
poorly represented in global databases. In the Antarctic geosciences, data set hosting and dissemination are main-
ly supported through the Scientific Committee on Antarctic Research (SCAR; https://www.scar.org/resources/
data/) and NASA's Earth Science Data Systems Program (https://search.earthdata.nasa.gov/search). However, ge-
ological data sets are poorly resolved compared with the burgeoning geophysical data streams. Where available, 
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geological data are typically hosted within national databases (e.g., OZCHEM; Champion et al., 2007; Petlab; 
Strong et al., 2016) or individual publications and are therefore difficult to utilize.

Here, we present PetroChron Antarctica, a new geological database that includes geochemical, geochronological 
and petrological data sets from Antarctic rock samples, compiled from existing databases and individual publi-
cations. We also generate compositionally based classifications, geochemical indices and physical properties de-
rived from the geochemical data where possible. This database builds upon the global whole-rock geochemistry 
compilation developed by Gard et al. (2019). A newly generated schema implemented to account for the newly 
incorporated data types and associated meta-information is described, including the data integration procedure. 
Finally, we relate some applications to highlight potential future uses of the database.

2.  Existing Initiatives and Motivation for Data Augmentation and Integration
The PetroChron Antarctica database incorporates various geochemical and geochronological data sets, together 
with related petrological information, from both global and national initiatives (Table 1). Whereas these collec-
tions are a valuable asset for the geoscience community and are incorporated in numerous regional and global 
studies, they are mostly organized around data types of interest (Figure 1a) or localized in specific geographic 
areas where national campaigns have focused mapping and sampling efforts on accessible outcrop (Figures 1b 
and 1c). This lack of integration between geochemical and geochronological data (and other rock-based data), 
along with a strong asymmetry in data density from these existing databases, demonstrates the need to augment 
and integrate additional Antarctic geological data streams. PetroChron Antarctica, therefore, incorporates stand-
ardized peer-reviewed academic publications and some unpublished data (Figure 1d). Currently, the PetroChron 
Antarctica database contains 10,056 rock samples representing 11,559 data entries, of which around 40% are 
compiled from existing data repositories spanning over 80 years of research (Table 1). Whereas the existing 
databases are mostly located in West Antarctica, the distribution of geological data incorporated from individual 
publications is more widespread, and mostly located in East Antarctica (Figure 1d; 72%). These data can be inte-
grated with geological map information (e.g., GeoMAP https://www.scar.org/science/geomap/geomap/ and On-
eGeology http://www.onegeology.org/) to extract further geological information from the Antarctic lithosphere. 
Ideally, it could be linked to Antarctic sample collection information in the spirit of the Polar Rock Repository 
(https://prr.osu.edu/), enabling further data discovery and sample sharing for future research.

3.  Database Foundational Framework
3.1.  Data Model

The database architecture follows the key concept described in Figure  2. 
We decided to use a simplified relational database structure including only 
five sub-tables (metadata, petrology, geochemistry, geochronology, and rock 
properties) representing the core elements of sample-related information (Ta-
ble 2). In an effort to meet the FAIR (findable, accessible, interoperable, and 
reusable) data standard for inter- and intra-disciplinary studies, we organize 
the different sub-tables around subdomains of knowledge used across the 
research community.

The minimalist relational model simplifies maintenance and minimizes file 
size. Indeed, complex relational models are usually not sustainable in the 
long term to support the expansion of data sets or fields to track provenance 
and modification. Our approach facilitates the extraction of the data from the 
database, the incorporation of the data into other databases with different 
schemas, and enables its use in various scientific workflows.

3.2.  Data Compilation Workflow

To ensure data consistency and enhance database reliability over PetroChron 
Antarctica's lifetime, we implemented several procedures written in a com-
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Data source No. entries

Others (publications, unpublished …) 5,266

OZCHEM (Champion et al., 2007) 1,792

Petlab (Strong et al., 2016) 1,819

GEOROC (http://georoc.mpch-mainz.gwdg.de) 1,464

Burton-Johnson BAS compilation (Gard et al., 2019) 1,074

DateView (Eglington, 2004) 144

Total 11,559

Note. The Geochemistry of Rocks of the Oceans and Continents (GEOROC) 
data compilation contains chemical, isotope and limited age data for igneous 
rocks. National government collections include the Australian national whole-
rock geochemical database (OZCHEM; Champion et  al.,  2007), the New 
Zealand national rock, mineral and geoanalytical database (Petlab; Strong 
et al., 2016) and the whole-rock geochemical data compilation from Burton-
Johnson, British Antarctic Survey (BAS; included in Gard et  al.,  2019). 
Part of the geochronological database DateView (Eglington,  2004) is also 
included, but are not cited as such when the data have been modified or 
independently entered from individual publications.

Table 1 
Number of Sample Entries Per Data Source
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bination of programming languages (i.e., Python and PostgreSQL) for data standardization to create a common 
data schema (Figure 2, Table 2).

Collecting a useful Antarctic geological data set starts with accurate sample location information. Historically 
(i.e., prior to GPS), this information was not readily recorded in a useful format, or it may have been lost in the 
process of transcribing notes or maps. In the case, where accurate absolute spatial information is not provided in 
the original paper or data set, geographic locations along with latitude and longitude from the SCAR Gazetteer 
is used (Secretariat SCAR, 1992 updated 2014). For each entry, an attribute identifies the source of the geo-
graphic coordinate (i.e., Geographic Coordinate Information). This approach allows us to retain 45% of the ge-

Figure 1.  Spatial distribution of PetroChron Antarctica samples categorized by (a) data type, and data source including (b) national databases, (c) international 
compilations, and (d) international peer-reviewed publications.
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ological samples in PetroChron Antarctica that would previously have been excluded due to the lack of location 
information.

Lithology has a dominant control over the physical and chemical properties of rocks. We therefore categorize 
the database according to rock group (i.e., igneous, sedimentary, metamorphic) and rock type (e.g., plutonic, 
clastic, and metavolcanic) where known or inferred. However, there are a variety of lithology names based on 
different criteria (mineralogical, textural, chemical). Thus, to achieve consistency and reproducibility and avoid 
any subjectivity in assigning rock names to samples, we include a computed lithology based on whole-rock ge-
ochemical data as described by Hasterok et al. (2018) and Gard et al. (2019). Note that these classifications are 
purely chemical, and do not reflect the mineralogy, grain size, texture, and/or metamorphic grade of the sample.

The database structure is then focused on the integration of geochronological data sets with geochemical data. 
In the global whole-rock geochemical database of Gard et al. (2019), petrological information and geochemical 
analyses were linked to “estimated” crystallization ages of the sample as presented in the original paper. A key dif-
ference in PetroChron Antarctica is that geochronological information is stored as a set of parameters including the 
age type (i.e., isotopic system), the mineral isotope (i.e., analyzed mineral and/or whole rock), the age significance 
(e.g., crystallization age), the age approach (e.g., concordia age), and the analytical technique (e.g., SHRIMP; 
Figure 2). This configuration significantly increases the flexibility to support geochronological data from multiple 
isotopic systems and minerals for a given sample, which potentially have different geological significances. The 
inclusion of age-related statistical information if applicable (e.g., mean squared weighted deviation—MSWD, 
and probability of fit) enables data to be manipulated through more complex statistical analyses and could also be 
useful for data quality assessment. Geochronological parameters generally follow the schema of the established 
geochronological database DateView (Eglington, 2004) for consistency and easy transfer between databases.

Figure 2.  The PetroChron Antarctica data model using a simple five-table structure representing metadata information and sub-domains of knowledge (petrology, 
geochemistry, geochronology, and rock properties). Text in blue represents computed data based on chemical analyses. For readability purposes, chemical and isotopic 
elements are grouped by element types (i.e., major elements, trace elements, and isotopes) as shown by the asterisks.
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Table name Table content description Field attribute Field description

Metadata Contains metadata information related to the recorded data 
including the approximative location and spatial reference 
(name, geographic coordinates, datum …) of the sample, 
the source of the data (existing database, original paper 
reference), the type of sample and the technique used 
to collect it, the sample name and other geological 
information related to the terrane and/or stratigraphic unit 
the sample may belong to

geolocation Information on the sample location (geographic area, 
place name). Additional information may be 
included, such as sites number, distance. Note that 
SCAR Gazetteer place names were used in most 
cases to consistently populate location 
 names

coordinfo Indicates the technique used to flag how geographic 
coordinates were recorded in the database

data_source Source of the data if the record was extracted from an 
existing database or data compilation

sample_type Type of the sample collected—for example, veins, dyke, 
xenolith …

sampling Sampling technique used to collect sample—for example, 
outcrop, dredge, core …

sample_name Sample name as recorded by the author in the publication 
or existing database. Duplicate number may occur

Petrology Comprises rock group, type, name, description, facies, 
mineralogy of the sample. Additional information are in 
chemical based classification (TAS, SIA granite type, 
frost classification). For further explanation, the reader is 
referred to Hasterok et al. (2018)

rock_group High-level rock group of the sample (igneous, 
metamorphic and sedimentary rocks) assigned by 
original author/database

rock_type Standardized rock type—for example, plutonic, volcanic, 
metavolcanic, metaplutonic, metasedimentary, 
clastic, assigned, or inferred by the original author/
database

rock_name Non-standardized rock name designated by the original 
author/database

rock_description Non-standardized detailed description of the rock sample 
from the original author/database

rock_facies Metamorphic facies information

mineralogy_major List of major minerals present in the rock sample

mineralogy_minor List of minor minerals present in the rock sample

lithology Chemical based rock type following methods described 
in Hasterok et al. (2018)

qap_name Computed rock names based on the TAS igneous 
classification (Middlemost, 1994), including high-
Mg volcanics (Le Bas & Streckeisen, 1991)

sia_scheme S-, I-, and A-type granite classification

frost_class1 Magnesian or Ferroan (Frost et al., 2001)

frost_class2 Calcic, calc–alkalic, alkali–calcic, and alkalic (Frost 
et al., 2001)

frost_class3 Metaluminous, peraluminous, and peralkaline (Frost 
et al., 2001)

Geochemistry Sets of major, trace and isotope analyses. It also includes a set 
of chemical based indices computed from major element 
normalised (LOI-free) geochemical composition

geochem_mineral Mineral/fraction analyzed—for example, whole rock, 
zircon …

geochem_tech_analysis Analytical technique used for geochemical measurements

geochem_major Major element analyses—includes major element oxides 
as well as volatile, carbonate and LOI content where 
available

geochem_trace Trace element analyses

geochem_isotopes Isotopic ratio analyses, including initial ratio

Table 2 
Description of Table Contents and Detailed Information of Key Field Attributes
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Table 2 
Continued

Table name Table content description Field attribute Field description

mg_number Magnesium number. Fe2+ estimated using 0.85 × FeOT

fe_number Iron number (Frost et al., 2001)

mali Modified alkali–lime index (Frost et al., 2001)

asi Alumina Saturation Index (ASI; Frost et al., 2001)

maficity nFe + nMg + nTi

cia Chemical index of alteration (Nesbitt & Young, 1989)

wip Weathering index of Parker (1970)

spar Modified from Debon and Le Fort (1983) to remove 
apatite

qtzindex Quartz Index (Debon & Le Fort, 1983)

r1 R1R2 chemical variation diagram (De la Roche 
et al., 1980)

r2 R1R2 chemical variation diagram (De la Roche 
et al., 1980)

Geochronology Includes age, age uncertainty and associated statistics of 
the age calculation (if provided in original reference/
database). A set of metadata information related to the 
type of radiochronometer, the mineral dated, the approach 
and analytical technique used and the significance of the 
age are populated

age_type Radiochronometer used to estimate the rock sample 
age—Ar-Ar, U-Pb …

age_mineral Mineral used for dating—for example, mica, zircon …

age_significance Significance of the calculated age—for example, 
Crystallization, Cooling …

age_approach The approach used to calculate an age—for example, 
Regression, Concordia, Discordia, Ar Plateau

age_techgeochem The technique used to measure isotopic ratio used 
for dating—for example, TIMS (single grain and 
multigrain), SHRIMP, Laser …

age_ma Radiometric age in Ma

age_2SD_ma Standard deviation—95% or 2 sigma—in Ma

age_mswd The calculated MSWD

age_probffit The calculated probability of fit

age_probchi2 The calculated probability of Chi2 test

age_analyse_n Total number of analyses used to calculate an age

Rock properties List of physical rock properties including heat production, 
seismic velocity and density estimation computed from 
geochemical analysis. For further information on the 
computation, see Hasterok et al. (2018)

p_velocity Empirically calculated seismic velocity based on 
chemical composition. The compositional 
empirical model used was Vp (km s−1) = 6.9–
0.011CSiO2 + 0.037CMgO + 0.045CCaO. For 
further discussion on the computation, the reader can 
refer to Hasterok and Webb (2017)

s_velocity Empirically calculated seismic velocity based on 
chemical composition. For further discussion on 
the computation, the reader can refer to Jennings 
et al. (2019)

density_model Rock density computed from chemical analyses 
using linear regression as described in Hasterok 
et al. (2018)

thermal_conductivity Empirically calculated thermal conductivity based on 
chemical composition. For further discussion on 
the computation, the reader can refer to Jennings 
et al. (2019)

heat_production Heat production mass multiplied by the density estimate 
(in kg m−3) (Rybach, 1988)
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Table 2 
Continued

Table name Table content description Field attribute Field description

heat_production_mass Estimated from the chemical rock 
composition using the empirical formula 
HPmass = 10−5 × (9.67CU + 2.56CTh + 2.89CK2O) 
where C are the concentrations of the heat producing 
elements in ppm except K2O in wt.% (Rybach, 1988)

Note. MSWD, mean squared weighted deviation; SCAR, Scientific Committee on Antarctic Research.

4.  PetroChron Antarctica Data and Applications
4.1.  Data Statistics

Igneous rocks included in PetroChron Antarctica correspond to 60% of the total entries, followed by 39% for 
metamorphic rocks (Figures 3a and 3b). Sedimentary rocks are poorly represented at only 1%. Igneous rocks are 
mainly represented by plutonic rocks (42%), whereas metamorphic rocks are dominated by metaplutonic varieties 
(20%). A large proportion (38%) of igneous rocks are mafic in composition, followed by those of felsic (29%) 
and intermediate (24%) compositions (Figure 3d). Metamorphic and sedimentary rocks are dominated by felsic 
compositions (42% and 39%, respectively). Overall, the compositional range across all sampled rocks recorded in 
PetroChron Antarctica compared with the global whole-rock geochemical database (Gard et al., 2019) is similar 
(Figures 3c and 3d), when excluding samples marked as oceanic from the global data set.

Computed properties in PetroChron Antarctica include lithology based on chemical classification (Figure S1 in 
Supporting Information S1). There is a clear dominance of granitoid (32%) and gabbroic rocks (22%). Dioritic 
and syenitoid compositions (including geochemically equivalent volcanic rocks) are also a significant proportion 
of the igneous rocks (19% and 16%, respectively). Other computed geochemical indices include ASI, WIP, CIA, 
or CPA that are often used in soil science as a proxy for alteration/weathering conditions of sampled rocks (see 
the full list of computed indices in Table 2). Petrophysical properties (density, p-and s-wave velocity, thermal 
conductivity, and heat production) were computed from geochemical data, following the method described in 
Hasterok et al. (2018) and Jennings et al. (2019).

4.2.  Visualizations and Applications

To illustrate the versatility and the utility of PetroChron Antarctica, we describe below some applications that 
could use interrelated data sets (i.e., geological, geochemical, and geochronological data associated with rock 
properties) to gain insights through map visualization.

Figure 4 shows a set of maps illustrating some of the geochronological components of PetroChron Antarctica. For 
example, the “crystallization age” map (Figure 4a), based on zircon U-Pb isotopic data and typically interpreted 
to date high-temperature magmatic processes, highlights the dominance of Phanerozoic crust-forming events in 
the Antarctic Peninsula and Transantarctic Mountains (e.g., Allibone & Wysoczanski, 2002; Burgess et al., 2015; 
Goodge et al., 2012; Hagen-Peter & Cottle, 2016; Pankhurst et al., 1998; Riley et al., 2017; Zheng et al., 2018). 
In contrast, the majority of East Antarctic crust formed during the Proterozoic and Archean (Figure 4a; e.g., 
Adachi et al., 2013; Boger et al., 2006; Corvino et al., 2008; Elburg et al., 2015, 2016; Goodge & Fanning, 2010; 
Grew et al., 2012; Hokada et al., 2019; Liu et al., 2016; Maritati et al., 2019; Mikhalsky et al., 2017; Morrissey 
et al., 2017; Tsunogae et al., 2016; Tucker et al., 2017; Zhang et al., 2012), including some of the oldest rocks on 
Earth (c. 3.9 Ga in Enderby Land; e.g., Black et al., 1986).

A “metamorphic age” map (Figure 4b) based on U-Pb and Sm-Nd isotopic data from zircon, monazite, garnet 
and whole-rock samples, show the predominance of late Neoproterozoic‒Cambrian (∼630‒500  Ma) ages in 
the Transantarctic Mountains, Dronning Maud Land, MacRobertson Land, and Princess Elizabeth Land (e.g., 
Baba et  al.,  2015; Bisnath et  al.,  2006; Board et  al.,  2005; De Vries Van Leeuwen et  al.,  2019; Goodge & 
Fanning,  2016; Halpin et  al.,  2007; Jacobs et  al.,  2003; Kawakami et  al.,  2017; Liu et  al.,  2018; Mikhalsky 
et al., 2013; Morrissey et al., 2016; Wang et al., 2016). These tectonothermal events record prolonged ocean 
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closure, terrane accretion and collision-related processes related to Gondwana amalgamation and active margin 
tectonics (e.g., Boger, 2011; Fitzsimons, 2003; Goodge, 2020; Harley et al., 2013; Jacobs et al., 2015; Jordan 
et al., 2020; Mulder et al., 2019).

A map of “cooling ages” (Figure  4c), recorded by low-temperature thermochronology across numerous 
minerals and whole-rock samples, is dominated by ages <600 Ma (84% of ages recorded by fission track, 
Ar-Ar, He). The youngest cooling ages (∼140‒30 Ma with a larger proportion of Paleogene ages) are lo-
cated along the elevated Transantarctic Mountains (e.g., Fitzgerald & Stump,  1997; Foland et  al.,  1993; 
Gleadow & Fitzgerald, 1987; Prenzel et al., 2018; Zattin et al., 2014), whereas East Antarctica records a 
predominance of late Carboniferous‒Triassic (∼340‒200 Ma) ages and to a lesser extent Cretaceous ages 
(e.g., Rolland et al., 2019; Sirevaag et al., 2018). The variability in spatial and temporal cooling patterns 
across Antarctica, although poorly documented, has fueled debate about whether topographic relief evolved 

Figure 3.  Sample rock type and composition. (a) Sample distribution colored by rock type. (b) Bar chart representing rock type. (c) Compositional distribution colored 
by SiO2 wt.% content. (d) Comparison of SiO2 wt.% content between the global whole-rock geochemical database (Gard et al., 2019) and PetroChron Antarctica.
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Figure 4.  PetroChron Antarctica isotopic age/composition distributions. Maps of (a) zircon crystallization ages; (b) 
metamorphic ages for different minerals/whole rock; and (c) cooling ages for different minerals/whole rock. The color scale 
follows the GeoMAP (Cox et al., 2019) chronostratigraphic chart and highlights the variability in isotopic age within the 
mapped geological units. Dashed rectangles show the location of inset maps.
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Figure 5.  Computed physical property estimate distributions including (a) density; (b) P-wave velocity; and (c) heat 
production. Histograms compare distributions for the global whole-rock geochemical database (Gard et al., 2019) and 
PetroChron Antarctica.
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via continental-scale tectonic and/or climatic processes during the Phanerozoic (e.g., Maritati et al., 2020; 
Rolland et al., 2019).

Collectively, geochronological and isotopic data from across Antarctica reveal major episodes of tectonic and 
thermal activity, as well as denudation and deposition associated with complex crustal forming processes oper-
ating during at least three supercontinent cycles (i.e., Nuna, Rodinia, and Gondwana/Pangea). As such, this data-
base provides a valuable resource for testing possible links between plate tectonic configurations, major climatic 
and paleoenvironmental change and Antarctic landscape evolution.

Figure 5 shows a map of rock properties computed from geochemical data across Antarctica. Density esti-
mates peak at ∼2,630 and ∼2,930 kg m−3, and P-wave seismic velocity estimates peak at ∼6.2 and ∼7.0 km 
s−1, corresponding to felsic and mafic rock compositions, respectively. These values agree with the densities 
(2,690 and 2,950 kg m−3) and velocities (∼6.1 and 7.1 km s−1) recorded in the global whole-rock geochemical 
database (Gard et al., 2019), when calculated from the same bin size. Antarctic heat production has a median 
value of ∼1.3 μW m−3, with first and third quartiles at 0.6 and 2.4 μW m−3 (Figure 5c), which is higher than 
the value of 1.0 μW m−3 estimated by Gard et al. (2019), who included oceanic samples. At a regional and 
local scale, crustal heat production shows a high degree of heterogeneity (Figure 5c) due to the high variability 
of Antarctic local geology (Carson et al., 2014; Goodge, 2018) that can be integrated into geothermal heat 
flow models (Stål et al., 2021). This compositional variability clearly highlights the need to include robust 
and petrologically valid constraints from direct measurements in geophysical interpretations and numerical 
computations (Stål et al., 2020).

4.3.  Accuracy and Ownership

Although we have made every effort to ensure accuracy when collating information from databases and indi-
vidual publications, we have undoubtably inherited or introduced some errors. There are certainly omissions. 
For example, for any reference or sample, whereas geochemical information may be included in PetroChron 
Antarctica, accompanying geochronological/isotopic data may not (and vice versa). We strongly advise re-
searchers to revisit the original publications to validate the data for their own use. We encourage users to 
contact us when they find errors or omissions. Ownership of these data remains with the original authors, and 
users must cite the relevant original reference(s) and/or data sources as appropriate. In addition to the sum-
mary information in the “reference” and “data_source” fields, we provide a list of references in Supporting 
Information S1.

5.  Future Work
We hope the PetroChron Antarctica database can be applied and integrated across Antarctic Earth-cryosphere-
biosphere-ocean research. Future work will aim at expanding the database by incorporating not yet considered 
and newly published data, as well as correcting any errors and adding new data types including metamorphism, 
protolith, and data-quality parameters. We also invite researchers to collaborate on our data compilation using the 
user input XLSX template (Table S1 in Supporting Information S1), or by contacting the corresponding author 
directly.

Data Availability Statement
The PetroChron Antarctica database is available on Zenodo (https://doi.org/10.5281/zenodo.5032026) and 
through the PetroChron Antarctica web portal (an ESRI Web Feature Service; http://bit.ly/petrochron). Future 
versions of the database will be updated at both these locations. The service copies the current data model and 
helps visualize the distribution of the data. The complete database file in a CSV format can be directly down-
loaded from the PetroChron Antarctica web portal and Zenodo, or as subset data tables that can be used in any 
Relational Database Management System (RDBMS) through Zenodo. Code to reproduce figures in this paper is 
available here: https://github.com/TobbeTripitaka/PetroChron.

https://doi.org/10.5281/zenodo.5032026
http://bit.ly/petrochron
https://github.com/TobbeTripitaka/PetroChron
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