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The elementary construction of formal
anafunctors

David Michael Roberts

Abstract. This article gives an elementary and formal 2-categorical con-
struction of a bicategory of right fractions analogous to anafunctors, starting
from a 2-category equipped with a family of covering maps that are fully
faithful and co-fully faithful.

1 Introduction

Anafunctors were introduced by Makkai [7] as new 1-arrows in the 2-category
Cat to talk about category theory in the absence of the axiom of choice.
The aim was to make functorial those constructions that are only defined
by some universal property, rather than by some specified operation. One
also recovers the characterisation of equivalences of categories as essentially
surjective, fully faithful 1-arrows. The construction by Bartels [1] of the
analogous bicategoryCatana(S, J), whose 1-arrows are anafunctors, starting
from the 2-category Cat(S) of internal categories was extended in [10] to
variable full sub-2-categories Cat′(S) ↪→ Cat(S). The canonical inclusion
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2-functor Cat′(S) ↪→ Cat′ana(S, J) was there shown to be a 2-categorical
localisation in the sense of Pronk [8] at the fully faithful functors which are
locally weakly split in the given pretopology J on S.

In these notes I show that given a 2-category K equipped with a (strict)
singleton pretopology J whose elements are fully faithful and co-fully faithful
arrows, one can construct an analogue KJ of the bicategory Cat′ana(S, J).
The 1-arrows of KJ are formal 2-categorical versions of anafunctors, here
dubbed J-fractions. The construction ofKJ is elementary in the sense of only
needing the first-order theory of 2-categories, and the construction is Choice-
free. The original 2-categoryK is a wide and locally full sub-bicategory ofKJ

and the inclusion 2-functor AJ : K ↪→ KJ is a bicategorical localisation; this
result uses Pronk’s comparison theorem from [8], but it should be possible
to prove directly using the construction given here.

The following quote from [13] should be kept in mind when reading the
elementary calculations in these notes, as no such details have fully appeared
in the literature, let alone at the level of generality here:

Nonetheless, it is interesting to note the prevalence of formula-
tions leaving “to the reader” parts of the proofs of details of the
localization constructions. . . . Another interesting reference is
Pronk’s paper on localization of 2-categories [21]1, pointed out
to me by I. Moerdijk. This paper constructs the localization of a
2-category by a subset of 1-morphisms satisfying a generalization
of the right fraction condition. . . . the full set of details for the
coherence relations on the level of 2-cells is still too much, so the
paper ends with:

[21 , p. 302:] “It is left to the reader to verify that the above de-
fined isomorphisms a, l and r are natural in their arguments
and satisfy the identity coherence axioms.”

One pleasant feature of the current approach, at least for the author, is
that one could take the opposite 2-category everywhere in the current notes
and everything will still work fine, only exchanging pullbacks for pushouts
everywhere. In this way, one could also localise suitable 2-categories using
cospans, rather than spans, for instance 2-categories whose objects are more

1 [8] in the References below.
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algebraic in nature, rather than geometric, like Hopf algebroids. It is not
clear that for alternative presentations of the localisation, say one using of
left-principal bibundles, such an approach would still work, or what should
play the rôle of the 1-arrows when one is working with a general 2-category
and not a 2-category of structured or internal groupoids.

Remark 1.1. This article has had a long and tortuous history. It started
out as the second half of what was published as [12], in an attempt to give an
elementary and completely self-contained proof ommitting no details of the
results of [8] dealing with 2-categories of stacks as bicategorical localisations.
In this the author was partially influenced by the late Vladimir Voevodsky’s
insistence on details and constructions in what might otherwise seem merely
bureaucratic proofs. The appearance of [9] gave a much more satisfactory
(and conceptual) proof of these results, after which the author lost hope
that there was any merit in the current naive approach. However, work in
preparation using cospans to localise 2-categories of topological groupoids
required the machinery of the present paper, in its dual incarnation, so it is
hoped there is some merit in the elementary approach in it.

2 Preliminaries

We refer to [3, Chapter 2] for background on bicategories.

Definition 2.1. If P is a property of functors, then we say that a 1-arrow
f : x → y in a 2-category K is representably P (or just P) if for all objects
z of K we have that f∗ : K(z, x)→ K(z, y) has property P.

The most important case for the present paper is the property ‘fully
faithful’, and we will abbreviate ‘representably fully faithful’ to ff, and will
denote by ff the class of ff 1-arrows in a 2-category. Note however that
Definition 2.1 can be rewritten as a first-order property of a 1-arrow in a
2-category (and even in a bicategory).

Definition 2.2. A 1-arrow f : x→ y in a bicategory is ff if for all g, h : w →
x and ã : f ◦ g ⇒ f ◦ h there is a unique a : g ⇒ h such that ã = 1f ◦ a.

Example 2.3. Any equivalence in a 2-category is ff; it is a neat exercise to
directly construct the required 2-arrow a. It is less easy to do the analogous
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construction for an equivalence in a bicategory, showing that such a 1-arrow
is ff in an elementary fashion, but still possible.2

Lemma 2.4. If f : y → z ∈ ff and g : x→ y is any other arrow then g ∈ ff
if and only if f ◦ g ∈ ff. If h : y → z is another arrow that is isomorphic to
f in K(y, z) then h ∈ ff. Moreover, if f is isomorphic to f ′ : y′ → z′ (in the
arrow 2-category) then f ′ ∈ ff.

The following lemma will be a major workhorse in the construction be-
low.

Lemma 2.5. Let p : u → a be an ff 1-arrow in a 2-category K. Then for
any 1-arrow f : b → a and any two lifts k, l : b → u of f through p, there is
a unique 2-arrow k ⇒ l lifting the identity 2-arrow on f through p.

The proof of this lemma follows almost immediately from the definition
of ff arrows.

Example 2.6. Given an ff 1-arrow p : u → x in K such that the strict
pullback u×xu exists, then there is a unique 2-arrow `p : pr1 ⇒ pr2 : u×xu→
u lifting id : p⇒ p.

In this paper, all pullbacks are likewise strict.

Example 2.7. Consider a commutative triangle

u
φ

//

p
  

v

q
~~

x

with q : v → x ff. Then assuming the relevant strict pullbacks exist, there is
an equality

u×x u
pr1

##

pr2

;; u
φ
// v`p�� = u×x u

φ×φ
// v ×x v

pr1

##

pr2

;; v`q��

between the pasted 2-cells, as the source and target 1-arrows all lift u×xu→
x through q.

2In fact the computation shows that a 1-arrow with a representably faithful pseudo-
retract is ff, but we don’t need this level of generality.
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Example 2.8. A more complicated example is the equality of pasted 2-cells
in

u×x u

pr2
..

pr1

��
u×x u ∆×idu// u×x u×x u

pr12
11

pr23 --

u

u×x x

pr1

00

pr2

JJ

`p�


`p��

= u×x u
pr1

##

pr2

;; u`p��

The structure of a site on a 2-category is not a common notion so we need
to specify what we mean. There are at least two different ways to describe
this in the 1-categorical case, namely using sieves and using pretopologies,
and it is not clear a priori that they generalise to the same thing for 2-
categories. Our definition will be as follows, as this paper only deals with
unary sites.

Definition 2.9. A singleton strict pretopology on a 2-category K is a class
J of 1-arrows which contains all identity arrows, is closed under composition
and the strict pullback an element of J exists and is again in J. We will as-
sume that specified strict pullbacks are given—rather than merely assuming
they exist—and that the pullback of an identity 1-arrow is again an identity
1-arrow.

Since this is the same thing as a singleton pretopology on the 1-category
underlying the 2-category, we refrain from placing the prefix ‘2-’ in the name.
If one merely asks for existence of pullbacks, then one may use a global axiom
of choice to make the pullback of a cover an operation.

Example 2.10. Let K be a 2-category which admits specified strict pull-
backs. Then ff is a singleton strict pretopology.

This is in some sense a degenerate example. The following is more of
interest.

Example 2.11. Let S be a finitely complete category with specified limits
and J0 a singleton pretopology on S. Then we have the 2-categories Cat(S)
and Gpd(S) of internal categories and groupoids. Let J denote the class of
internal functors in either of those 2-categories whose object component is
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an arrow in J0. Then J is a singleton strict pretopology on both Cat(S) and
Gpd(S).

In addition, we need to consider a 2-categorical version somewhat anal-
ogous to subcanonicity, and here we cannot avoid involving the 2-arrows.
This makes the notion essentially 2-categorical, and not just a structure on
the underlying 1-category as is the case for Definition 2.9.3

Definition 2.12. Given a singleton strict pretopology J, we will call it bi-ff
if every j : u→ x in J is ff and also co-fully faithful (co-ff): for all g, h : x→ y
and ã : g ◦ j ⇒ h ◦ j there is a unique a : g ⇒ h such that ã = 1j ◦ a.

In this paper we do not need to descend 1-arrows down a cover in the pre-
topology (which is a consequence of representable presheaves being sheaves),
but only 2-arrows, so the weaker notion of ff + co-ff is sufficient. We will not
here dwell on how this relates to 2-dimensional sheaf theory à la Street [14].

Example 2.13. Continuing Example 2.11, if we additionally assume the
pretopology J0 consists of regular epimorphisms (hence is a subcanonical
pretopology on S), then J is a bi-ff singleton strict pretopology on Cat(S)
and on Gpd(S). Indeed, the arrows in this pretopology are also regular
epimorphisms, though we do not need this here.

This example partly recovers the examples that were used in [10, Sec-
tion.8]; variants on this definition will give all examples from loc. cit.

The main object of study of this paper are 2-categories K with a choice
of bi-ff singleton strict pretopology J. We shall just refer to these as 2-sites
for brevity, though properly speaking it is a very special case of this notion.

As a consequence of our definition of 2-site, we don’t just get descent of
2-arrows along covers, but along maps between covers.

Lemma 2.14. Given a 2-site (K, J), and a diagram

v

k
  

r // w

j
~~

x

where k, j ∈ J, then r is also co-ff.
3For the sense in which this deserves to be considered a type of subcanonicity, cf [2,

Lemma 52], which states that an ff regular epimorphism is also co-ff.
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The following proof, simplifying the author’s, is due to the anonymous
referee.

Proof. Recall that r being co-ff means that given a 2-arrow a : f ◦ r ⇒ g ◦ r,
there is a unique 2-arrow a : f ⇒ g such that a◦ idr = a. From our definition
of 2-site, j and k are both ff and co-ff. This also implies that the two
projection maps pr1, pr2 in the next diagram are in J, hence are both co-ff.
Since j ◦ pr2 = j ◦ r ◦ pr2 and j is ff, there is a unique lift of idj◦pr2 to an
invertible 2-arrow r ◦ pr1

∼⇒ pr2:

v
r

��
v ×x w

pr1

;;

pr2
//

j◦pr2 //

w

j

��
x

'
��

But pr2 is co-ff, implying r ◦ pr1 is co-ff, and since pr1 is co-ff, then so is r
(applying two of the cases of Lemma 2.4 in Kop).

3 The bicategory of J-fractions

We are aiming to localise a 2-category, and in time-honoured tradition we
shall call the arrows in the localised 2-category fractions. Fractions are
defined relative to a strict pretopology.

Definition 3.1. Let (K, J) be a 2-site. A J-fraction is a span x j←− u
f−→ y

in K where j ∈ J, to be denoted (j, f).

For example, given any 1-arrow f : x → y in K, we have the fraction
(idx, f). In particular, we have for any object a the identity fraction, which
is (idx, idx)

Definition 3.2. Let x j←− u
f−→ y and x k←− v

g−→ y be a pair of J-fractions in
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K. A map of J-fractions (j, f)⇒ (k, g) consists of a 2-arrow

u
f

��
u×x v

pr1

;;

pr2
##

y

v

g

??
a

��

Sometimes we will also write the 1-arrow x← u×x v in such a diagram for
emphasis, so that the 0-source object is clear.4

There are certain maps of fractions which are easier to describe and to
compose, and the coherence maps of the bicategory we are going to define
all turn out to be examples, so we shall spend some time detailing these.

Definition 3.3. A renaming map5 r from the fraction (j, f) to the fraction
(k, g) is a map of spans in a 2-category of the form:

u
j

��

f

��
r

��

x y

v
k

__

g

??
ar
��

We can compose renaming maps and so get a categoryKR
J (x, y) with objects

the fractions from x to y and arrows the renaming maps.

As we shall see, we will also have a category KJ(x, y) with objects the J-
fractions and arrows the maps of fractions, and a functor including KR

J (x, y)
into this latter category. For now we will be content with giving the defini-
tion of the arrow component of this functor, without proving functoriality;

4Note that, as presented, this 2-arrow alone does not allow us to reconstruct its
(1-)source and (1-)target; we take the source and target as implicitly part of the data
(cf the definition of arrow in the category of ZFC-sets).

5The ‘renaming transformations’ of [7, Section.1] in the case when K = Cat are a
special case of the notion here. Makkai requires that r is invertible and ar is the identity
2-arrow.



Formal anafunctors 191

namely, a renaming map r from (j, f) to (k, g) as above is sent to the map
ι(r) of fractions specified by the 2-arrow

u

r

��

f

��
u×x v

pr1

;;

pr2
##

y

v

g

??
ar

����
, (3.1)

where the 2-arrow on the left is the canonical lift of the identity 2-arrow
k ◦ r ◦ pr1 = k ◦ pr2 through the ff arrow k, using Lemma 2.5.

Definition 3.4. The identity map 1: (j, f) ⇒ (j, f) on a J-fraction x
j←−

u
f−→ y is given by ι(idu).

The (vertical) composition of maps of J-fractions proceeds as follows.
Given

t1 : (j1, f1)⇒ (j2, f2)

t2 : (j2, f2)⇒ (j3, f3)

where x ji←− ui fi−→ b, consider the 2-arrow t1 ⊕ t2 filling the diagram6

u1 ×x u2
//

  

u1

f1

��
u1 ×x u2 ×x u3

??

��

u2 f2 // y

u2 ×x u3

??

// u3

f3

??

t1
��

t2

�

, (3.2)

which we shall call the precomposition of t1 and t2. We need to show that
this 2-arrow descends along the arrow u1 ×x u2 ×x u3

pr13−−→ u1 ×x u3 ∈ J.
6One might be concerned with the bracketing of the triple pullback here; for concrete-

ness we can take (u1×x u2)×x u3, it would not change the final result if we used the other
option.
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But pr13 is co-ff, and the source and target of t1 ⊕ t2 factor as u1 ×x u2 ×x
u3

pr13−−→ u1 ×x u3 → ui
fi−→ y for i = 1 and i = 3 respectively. Thus

t1 ⊕ t2 descends uniquely, and we call this descended 2-arrow t1 + t2 (note
that + is not a commutative operation!), and it gives a map of J-fractions
(u1, f1)⇒ (u3, f3).

Remark 3.5. If u1 ×x u2 ×x u3 → u1 ×x u3 has a section, then the vertical
composition t1 + t2 is the whiskering of t1 ⊕ t2 on the left with this section.

An example of such a section arises when composing two maps of J-
fractions, where one of the maps arises from an invertible renaming map.
Here we say a renaming map with data (r, ar) as in Definition 3.3 is invertible
if r is an invertible 1-arrow and ar is an invertible 2-arrow. We record a
special case of this as a lemma for future reference.

Lemma 3.6. Let x j←− u
f−→ y and x k←− v

g−→ y be J-fractions, t : (j, f) ⇒
(k, g) be a map of fractions, and let r : u′ → u be a renaming map from

x
j′←− u′ f

′
−→ y to (j, f), with j′ = jr and ar : f ′ ⇒ fr. Then ι(r) + t is given

by the 2-arrow

u′ ×x u
pr1 //

pr2
))

u′

r

��

f ′

��
u′ ×x v // u′ ×x u×x v

pr12
77

pr23
''

u f // y

u×x v

pr1

;;

pr2
// v

g

@@

t
��

`j pr2��
ar ��

=

u′

r
""

f ′

��
u′ ×x v

pr12

99

pr23
%%

u f // y

u×x v

pr1

<<

pr2
// v

g

@@

t
��

ar ��

Hence if ar = id, ι(r) + t is given by the 2-arrow

u′ ×x u
pr1 //

pr2
))

u′

r

��

f ′

��
u′ ×x v // u′ ×x u×x v

pr12
77

pr23
''

u f // y

u×x v

pr1

;;

pr2
// v

g

@@

t

�

`j pr2��

=

u
f

��
u′ ×x v

r×id
// u×x v

pr1

;;

pr2
##

y

v

g

@@
t

��

Further, given an invertible renaming map q from (k, g) to x k′←− v′ g
′
−→ y,

with k = k′q and g = g′q (hence aq = id), the composite t+ ι(q) is given by
the 2-arrow
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u×x v
pr1 //

pr2
##

u
f

��
u×x v′ // u×x v ×x v′

pr12
77

pr23 &&

v

q

��

g
// y

v ×x v′

pr1

55

pr2
// v′

g′

@@

t
��

`k pr1��

=

u
f

��
u×x v′

id×q−1
// u×x v

pr1

;;

pr2
##

y

v

g

@@
t

��

Corollary 3.7. The assignment ι is a functor KR
J (x, y)→ KJ(x, y).

Proof. Apply the first case in Lemma 3.6 to when t = ι(r′) for an arbitrary
renaming transformation q and use Lemma 2.5.

Proposition 3.8. We have a category KJ(x, y) with objects the J-fractions
from x to y and arrows the maps of J-fractions.

Proof. That 1(j,f) is the identity arrow for x j←− u
f−→ y follows from the

second and third cases of Lemma 3.6, taking r = idu and q = idv respectively.
We thus need only to show composition is associative. Consider the

diagram
u12u12u12

//

!!

u1u1u1

f1

��

u123u123u123

##

;;

u2u2u2 f2

!!
u1234

::

$$

u23u23u23

==

!!

yyy

u234

;;

##

u3u3u3
f3

==

u34
//

==

u4

f4

OO

t1
��

t2

��

t3

��

(3.3)

where ui...k := ui×x . . .×x uk. The bold objects form a sub-diagram we will
refer to below. We will show that the composites

u1234
// u14

f1

��

f4

__
ya

��
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are equal to (3.3) for a = (t1 + t2) + t3 and a = t1 + (t2 + t3). First consider
(t1 + t2) + t3:

u1234
// u14

��

>>
y(t1+t2)+t3

��
= u1234

// u134
// u14

��

>>
y(t1+t2)+t3

��

=

u1

��

u13

<<

!!
u1234

// u134

;;

##

u3
// y

u34

==

""
u4

GG

t1+t2

��

t3

��

=

u1u1u1

��

u123u123u123
// u13u13u13

==

!!
u1234

//

::

u134

##

;;

u3u3u3
// yyy

u34

==

""
u4

GG

t1+t2

��

t3

��

Omitting some of the labels on the 1-arrows for clarity. Now the whiskered
2-arrow in the subdiagram on the bold symbols above is equal to the com-
posite 2-arrow in the subdiagram of (3.3) on the bold symbols, hence the
whole diagram equals (3.3). A symmetric argument shows that t1 + (t2 +
t3) ◦ 1u1234→u14 is also equal to (3.3). By uniqueness of descent, composition
of maps of J-fractions is associative, and KJ(x, y) is a category.

3.1 Defining the bicategory KJ Now we want to show that KJ(x, y)
is the hom-category of a bicategory, so we need a composition functor. Com-
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posing 1-arrows is easy:

Definition 3.9. The composition of J-fractions is the composite span

u×y w

{{ ##
u

�� ##

w

zz ��
x y z

where recall we are assuming we have specified pullbacks of 1-arrows in J,
so this is well-defined.

We shall define the composition in the bicategory KJ by defining left
and right whiskering functors and proving the interchange law as outlined
in [7, pp 126-127]7 for the case where K = Cat and J is the class of fully
faithful, surjective-on-objects functors.

Definition 3.10. Let t be a map of fractions from x← u
f−→ y to x← v

g−→ y.
The right whiskering of t by the J-fraction y l←− w h−→ z is given by

w ×y,f u
f◦pr2

��
x u×x voo w ×y,f (u×x v)×g,y woo

>>

��

w
h // z

v ×g,y w
g◦pr1

@@
ρ(w,h)t

��

where the 2-arrow ρ(w,h)t : pr1 ⇒ pr4 is the unique lift through l : w → y of

u
f

��
w ×y,f (u×x v)×g,y w // u×x v

@@

��

y .

v

g

??
t

��

7Makkai says, helpfully, “Next, we need to verify that thus we have defined functors
. . . we leave the task to the reader.” [ibid. page 127]
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Proposition 3.11. Right whiskering with y l←− w h−→ z is a functorKJ(x, y)→
KJ(x, z).

Proof. First, let us show right whiskering preserves identity 2-arrows. That
is, the horizontal composition of a pair of identity 2-arrows is the identity
2-arrow of the composition of the 1-arrows. Let x j←− u

f−→ y be a fraction
and consider the right whiskering of the map id(j,f) by (l, h). This is the
map of fractions given by

x w ×y u[2] ×y woo

pr1

��

pr4

CC w
h // z�� (3.4)

where the 2-arrow is the unique lift of

w ×y u[2] ×y w // u[2]

pr1

��

pr2

?? u
f
// y ,��

the unlabeled maps being the obvious projections. But we have the equality

w ×y u[2] ×y w

pr1

��

pr4

CC w�� = w ×y u[2] ×y w

pr12

��

pr34

@@
u×x y

f◦pr1 // w
��

hence (3.4) is

x w ×y u[2] ×y woo

pr12

��

pr34

??��
u×y w

h◦f◦pr1// z = id(l,h)◦(j,f) .

Thus whiskering is unital.
Now to prove that right whiskering preserves composition we will again

use uniqueness of descent, and prove equal a pair of 2-arrows with 0-source
a cover of the 0-source of the 2-arrows we are interested in. Without loss
of generality, we can right whisker by the fraction (l, id) = y

l←− w
id−→ w,
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as the component of the fraction pointing in the forward direction plays no
substantial rôle in what is to follow.

Consider the composable pair of maps of fractions given by the data

u1 ×x u2

f1◦pr1
��

f2◦pr2

>>
a1�� y and u2 ×x u3

f2◦pr1
��

f3◦pr2

>>
a2�� y .

Let u123 := u1 ×x u2 ×x u3 and similarly for u12, u23, and consider the
diagram

u12

!!

// u1

f1

��
u123

<<

""

u2
f2
// y w ×y woo

pr1

$$

pr2

::�� w

u23

==

// u3

f3

??

a1
��

a2
��

.

We need to prove equal the pair of 2-arrows (ρ(l,id)a1) + (ρ(l,id)a2) and
ρ(l,id)(a1 + a2) between the two 1-arrows (w ×y u1) ×x (u3 ×y w) ' w ×y
u13 ×y w

pri−→ w, for i = 1, 3.
In Figure 1 the sub-diagram consisting of just the solid arrows together

with the 2-arrows between them 2-commutes, so the precomposition (ρ(l,id)a1)⊕
(ρ(l,id)a2) is given by the top layer of the diagram, namely

w ×y u12 ×y w

''

pr1

,,
w ×y u123 ×y w

<<

��

w ×y u2 ×y w // w

w ×y u23 ×y w

77

pr3

33

ρ(l,id)a1��

ρ(l,id)a2��

and (ρ(l,id)a1)+(ρ(l,id)a2) is given by the unique descent of this 2-arrow along
p. The 2-arrow marked (∗) is the whiskering ρ(l,id)(a1 + a2), and forms a
2-commuting diagram with a1 + a2 and the 1-arrows w ×y u13 ×y w → u13
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w ×y u12 ×y w

''

pr1

,,

��

w ×y u123 ×y w

��

p

��

<<

��

w ×y u2 ×y w // w

��

w ×y u23 ×y w

77

pr3

22

��

u12
//

''

u1

f1
!!

u123

55

))

##

u2 f2 // y

w ×y u13 ×y w

,,

pr3

BB

pr1

44

u23

88

// u3

f3

>>

u13
))
55 ya1+a2��

ρ(l,id)a1
��

ρ(l,id)a2

�

a1��

a2
�
(∗) �'

Figure 1: Right whiskering is functorial

and w → y. The 2-cell

w ×y u123 ×y w // w ×y u13 ×y w

pr1

��

pr3

AAw(∗)
��

in Figure 1 is, by uniqueness of lifts through p and w → y (both in J) equal
to (ρ(l,id)a1)⊕ (ρ(l,id)a2). Thus the descent of (ρ(l,id)a1)⊕ (ρ(l,id)a2) along p
is just ρ(l,id)(a1 + a2), which is what we needed to prove.

The definition of the left whiskering is slightly more complicated, as
it is such that it doesn’t permit us to nearly ignore half of the span as
we can for right whiskering. What we shall do is define left whiskering
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by a general J-fraction x
j←− u

f−→ y in two cases, using the factorisation
(j, f) = (idu, f) ◦ (j, idu).

3.1.1 Case I: left whiskering by (idu, f)

Let a be a map of fractions from y ← v1
g−→ z to y ← v2

h−→ z, and f : u→ y
an arrow in K. The whiskered 2-arrow will be a map of fractions from
u

pr1←−− u×y v1
g◦pr2−−−→ z to u

pr1←−− u×y v2
h◦pr2−−−→ z, and so the desired 2-arrow

in K will be of the form

u×y v12

g◦pr1
��

h◦pr2

CC�� z

where v12 := v1 ×y v2.

Definition 3.12. The left whiskering of the map a of J-fractions by the
fraction u idu←−− u f−→ y is given by the 2-arrow λI(idu,f)a, defined as

u×y v12
// v12

&&
88 za �� .

3.1.2 Case II: left whiskering by (j, idu)

We have vi → y = u J-covers for i = 1, 2, and now here v12 := v1 ×u v2. We
also let V12 := v1 ×x v2, and there is a canonical map v12 → V12 fitting into
a commutative diagram

v12
//

��

V12

��
u

j
// x

where the left, bottom and right arrows are all in J. Thus from Lemma 2.14
we have that the top arrow is co-ff. Notice also that there is a trivial fac-
torisation of pri : v12 → vi as v12 → V12

pri−−→ vi.

Definition 3.13. The left whiskering of the map a by x j←− u id−→ u is given
by the 2-arrow λII(j,id)a in K defined via unique descent along the co-ff arrow
v12 ×x V12 → V12 by the equation



200 D.M. Roberts

v12 ×x V12
pr2 // V12

g◦pr1

!!

h◦pr2

== zλII
(j,id)

a
��

=

V12

g◦pr1

  
v12 ×x V12

pr2
22

pr2
,,

// v12

==

!!

z

V12

h◦pr2

>>


�
a

��
��

.

Left whiskering by an arbitrary fraction x
j←− u

f−→ y will then be the
composite of the two (putative) functors given by cases I and II.

Proposition 3.14. Left whiskering with x j←− u f−→ y is a functor KJ(y, z)→
KJ(x, z).

The proof that left whiskering preserves (vertical) composition will be
deferred to appendix A, as it is a sizable calculation.

Proof. (Left whiskering is unital) We want to do the whiskering

x u
j

oo
f
// y v ×y voo

��

CC v
g
// za�� .

Note that without loss of generality we can assume g = idv, the general
case follows exactly the same argument merely with g right whiskered onto
all the 2-cells involved. We treat case I and case II of the definition of left
whiskering separately.

Case I. Note that v12 in this case is v×y v. The left whiskering of the identity
map on y ← v

id−→ v has 2-cell component

u×y (v ×y v) // v ×y v
��

CC va��

but u ×y (v ×y v) ' (u ×y v) ×u (u ×y v), and by Lemma 2.5 this is
equal to

(u×y v)×u (u×y v)
��

??
u×y v // va

��

and this is the identity map on the composite u ← u ×y v → v, as
required.
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Case II. Again, in this case, v12 = v ×u v, which for now will be denoted v[2]

and V12 = v ×x v. Recall that the 2-cell component of the whiskered
identity map will be the unique 2-cell λ := λII(j,id)a in the diagram

v[2] ×x (v ×x v) // v ×x v

pr1

��

pr2

BBvλ
��

=

v ×x v
pr1

""
v[2] ×x (v ×x v)

22

,,

// v[2]

;;

##

v

v ×x v
pr2

<<

��

��
��

,

which exists by descent along the J-cover v[2] ×x (v ×x v) → v ×x v.
However, by Lemma 2.5 the canonical 2-arrow pr1 ⇒ pr2 : v ×x v → v
fits into such an equation of 2-arrows, and this is none other than
the 2-cell component of the identity 2-arrow on the composite fraction
x

j←− v id−→ v.

Putting case I and case II together, we have that left whiskering

λ(j,f) : KJ(y, z)→ KJ(x, z)

preserves identity maps.

With Propositions 3.14 and 3.11 we can define a composition functor.

Lemma 3.15. Left and right whiskering fit together to give a functor

KJ(x, y)×KJ(y, z)→ KJ(x, z).

Proof. The only thing that remains to check is that middle-four interchange
holds, as per the hypothesis of [6, Proposition II.3.1]. This proof is deferred
to Appendix C.

In order for this to be the composition functor for a bicategory we just
need to now show that it is coherently associative and unital. In fact, by
virtue of Definition 2.9, this composition is strictly unital, since the com-
position of any fraction with the identity fraction of its source or target
is unchanged. We define the left and right unitors to be the appropriate
identity 2-arrows.
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Lemma 3.16. The unitors are natural.

Proof. Recall that the unitors are meant to be natural transformations as
in the diagram (of categories)

KJ(x, y) �
�

//

=
((

KJ(x, y)×KJ(y, y)

��

KJ(x, y)

ly
ow

KJ(x, y) �
�

//

=
((

KJ(x, x)×KJ(x, y)

��

KJ(x, y)

rxow

Our unitors consist of identity arrows, so we need to prove that these di-
agrams commute on the nose. This is true at the level of objects, so we
just need to check that the appropriate wiskerings of an arbitrary map of J-
fractions (i.e. an arrow in KJ(x, y) by identity fractions result in the original
map of fractions.

In the case of rx, we can apply Definition 3.12, whiskering by the fraction
(idx, idx). But then we just get the original map of J-spans. Thus the left
triangle above commutes and rx is natural.

In the case of ly, we use Definition 3.10, with y l←− w h−→ z being (idy, idy).
But then w ×y,f (u ×x v) ×g,y w = u ×x v, and we are lifting through an
identity arrow, and then whiskering (in K) with idy. The result is then the
original map of J-spans, making the right triangle above commute and so ly
is natural.

Definition 3.17. The associator for the 3-tuple of composable fractions

u
j

~~

f

  

v
k

~~

g

  

w
l

}}

h

!!
x1 x2 x3 x4

is the invertible map ι(auvw) :
[
(l, h) ◦ (k, g)

]
◦ (j, f)⇒ (l, h) ◦

[
(k, g) ◦ (j, f)

]

of J-fractions associated to the renaming map arising from the canonical
isomorphism

auvw : u×x2 (v ×x3 w)
'−→ (u×x2 v)×x3 w

over x1, together the appropriate identity 2-arrow.
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Lemma 3.18. The associator 2-arrow in Definition 3.17 is natural.

Proof. This is proved in Appendix B.

We can check that the associator satisfies the necessary coherence dia-
grams in the bicategory of fractions and renaming maps, since it will then
hold in the bicategory of fractions and maps of fractions. In fact, since
the renaming map in question is the associator for products in the strict
slice K/x1 (i.e. strict pullbacks in K), it satisfies coherence by the universal
property of pullbacks.

Remark 3.19. If we do not assume that pullbacks of identity arrows are
again identity arrows, then we do get nontrivial unitors, but they are, like
the associator, renaming maps, and one can check they are coherent.

We have thus proved:8

Proposition 3.20. There is a bicategory KJ with the same objects as K,
fractions as 1-arrows and maps of fractions as 2-arrows.

We now define an identity-on-objects strict 2-functor AJ : K → KJ as
follows. For a 1-arrow f : x→ y ofK, let AJ(f) be the fraction x idx←−− x f−→ y.
Given a 2-arrow a : f ⇒ g : x → y in K, let AJ(a) be the map of fractions
(idx, f)⇒ (idx, g) determined by

x×x x = x

f

��

g

>>
ya�� ,

To check that AJ is a strict 2-functor, we need to check first that it is
functorial for vertical composition of 2-arrows. In the definition of vertical
composition of 2-cells, the diagram (3.2) in the case of maps of fractions in
the image of AJ collapses as all objects ui and their fibre products reduce
to x, with all arrows between them identity arrows. The descended 2-arrow
is then just the vertical composite in K, and so AJ preserves vertical com-
position. It is also simple to show that AJ preserves identity 2-arrows.

8cf Bartels, who says “The various coherence conditions in a (weak) 2-category are now
tedious but straightforward to check.” [1]
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Secondly, we need to show that AJ is functorial for horizontal composi-
tion. Identity 1-arrows are preserved strictly, as is composition of 1-arrows,
so it is just a matter of checking that horizontal composition of 2-cells is pre-
served. Since horizontal composition is defined via left and right whiskering,
we need to check that whiskering a map of fractions in the image of AJ by
a fraction in the image of AJ is of the same form. The right whiskering
of AJ(a : f1 ⇒ f2) where f1, f2 : x → y by y

idy←−− y
g−→ z involves a 2-cell

ρ(id,g)a (see Definition 3.10). Since our fractions are in the image of AJ, the
diagram again collapses so that all appearances of u×x v are equal to x, and
w = y, so that ρ(id,g)a = a, and the final result has the 2-cell component
the right whiskering of a by g. The left whiskering we need is case I, so
we consider Definition 3.12. Consider the map of fractions AJ(a : g1 ⇒ g2)

where g1, g2 : y → z and whisker it by x idx←−− x
f−→ y. Now in the definition

of the 2-cell λI(id,f)a, we have v12 = v1 = v2 = y, the maps between them
are identity maps, u = x, and u×y v12 → v12 is just f . Thus the whiskered
map of fractions is again in the image of AJ, and we have proved that AJ is
a strict 2-functor.

Lemma 3.21. The 2-functor AJ is locally fully faithful, that is, K(x, y)→
KJ(x, y) is fully faithful for all objects x and y of K.

Proof. A map of J-fractions (idx, f)⇒ (idx, g) is precisely the same data as
a 2-arrow f ⇒ g in K.

Definition 3.22. Given J, a 1-arrow in q : x → y in K is J-locally split if
there is an arrow j : u→ y in J and a diagram of the form

x

q

��
u

j
//

s
??

y
��

with the 2-arrow invertible. A 1-arrow in K is a weak equivalence if it is ff
and J-locally split. Denote the class of weak equivalences by WJ.

Clearly J ⊂WJ as we are assuming all arrows in J are ff, and every arrow
in J is trivially J-locally split.

Proposition 3.23. Let f be a 1-arrow of K. Then AJ(f) an equivalence if
and only if f ∈WJ.
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Proof. First assume f : x→ y is in J; we will show (idx, f) is an equivalence,
with quasi-inverse (f, idx). This is because (idx, f) ◦ (f, idx) = (f, f), which
is isomorphic to (idy, idy) by the invertible map of fractions

x
f

��
y x

f
oo

idx
??

f
��

y

y
idy

??id
��

In the other direction, (f, idy) ◦ (idy, f) = (pr1, pr2), where pri : x×y x→ x,
i = 1, 2, are the projections (both of which are in J). There is the canonical
invertible 2-cell `f : pr1 ⇒ pr2, which gives an isomorphism of J-fractions

x×y x
pr2

""
x x×y x

pr1oo

id
99

pr1
%%

x

x
idx

;;
`f

��

In the other direction, let f : x→ y be a 1-arrow in K such that (idx, f)

is an equivalence in KJ, i.e. there is a J-fraction y j←− u g−→ x such that

1. (idx, f) ◦ (j, g)
∼−→ (idy, idy)

2. (idx, idx)
∼−→ (j, g) ◦ (idx, f)

Point 1 implies that we have an isomorphism of J-fractions

u
f◦g

��
y u

j
oo

idu
??

j
��

y

y
idy

??
'
��
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The right hand half of this diagram means that f is J-locally split. Since
(idx, f) is an equivalence it is ff in the bicategory KJ. Then as AJ is locally
fully faithful it reflects ff 1-arrows, hence f is ff inK. Thus f is both J-locally
split and ff, hence is in WJ.

For a number of diverse examples of weak equivalences in various cate-
gories of internal categories and groupoids, see [10, Section.8].

3.2 KJ as a localisation Given a 2-category (or bicategory) B with a
classW of 1-arrows, we say that a 2-functor Q : B → B̃ is a localisation of B
at W if it sends the 1-arrows inW to equivalences in B̃ and is universal with
this property. This latter means that for any bicategory A precomposition
with Q,

Q∗ : Bicat(B̃, A)→ BicatW (B,A),

is an equivalence of hom-bicategories, with BicatW meaning the full sub-
bicategory on those 2-functors sending arrows in W to equivalences.

Theorem 3.24. A 2-site (K, J) admits a bicategory of fractions for WJ,
and the inclusion 2-functor AJ : K → KJ is a localisation at the class WJ of
weak equivalences.

Proof. That (K, J) admits a bicategory of fractions forWJ is [12, Theorem 6]
(the weaker hypotheses there on 2-sites are implied by the ones here). The
proof that AJ is a localisation proceeds via Pronk’s comparison theorem
[8, Proposition 24], the conditions of which imply that the canonical 2-
functor K[W−1

J ]→ KJ is an equivalence of bicategories. Here K[W−1
J ] is the

bicategory of fractions constructed by Pronk, and we recall the conditions
of the comparison theorem for ease of reference, using the current notation:

EF1. AJ is essentially surjective,

EF2. For every 1-arrow f of KJ there are 1-arrows w ∈WJ and g of K such
that AJ(g)

∼⇒ f ◦AJ(w),

EF3. AJ is locally fully faithful.

We now show these conditions hold. To begin with, the 2-functor AJ sends
weak equivalences to equivalences by Proposition 3.23.
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EF1. AJ is the identity on objects, and hence surjective on objects.

EF2. This is equivalent to showing that for any J-fraction x j←− u f−→ y there
are 1-arrows w, g in K such that w is in WJ and

(j, f)
∼⇒ AJ(g) ◦AJ(w)

where AJ(w) is some pseudoinverse for AJ(w). We can take w = j and
g = f , since by the proof of Proposition 3.23, (j, idu) is a pseudoinverse
for (idu, j), and the composite fraction of (j, idu) and (idu, f) is just
(j, f).

EF3. This holds by Lemma 3.21.

Thus AJ is a localisation of K at WJ.

As a last remark, one would like to know if the localisation of K at the
weak equivalences is locally essentially small. This can be assured by the
following result, where we have used the condition WISC from [10], which
states that every object x of K has a set of covers that are weakly initial in
the subcategory of K/x on the J-covers.

Proposition 3.25. If the locally essentially small 2-site (K, J) satisfies
WISC, then KJ is locally essentially small, and hence so is any localisation
of K at WJ.

Notice that local essential smallness in not automatic, as there are well-
pointed toposes with a natural numbers object, otherwise very nice cate-
gories, for which the 2-category of internal categories fails the hypothesis
of Proposition 3.25. For example the toposes of material sets in models of
ZF as given by Gitik (see [15]) and Karagila [4], or the well-pointed topos
of structural sets arising from [11]. Karagila has also described an explicit
model of ZF in which the category of anafunctors from the discrete groupoid
N to the one-object groupoid B(Z/2) is not essentially small.9

Finally, note that nothing in this paper relies onK being a (2,1)-category,
namely a 2-category with only invertible 2-arrows. This is usually assumed

9See the answers to the MathOverflow question
https://mathoverflow.net/q/264585/. User ‘aws’ also gave a model of ZFA—choiceless
Zermelo–Fraenkel set theory with atoms—with the same property.
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for results subsumed by Theorem 3.24, but is unnecessary in the framework
presented here. The following example will be treated in a forthcoming
paper.

Example 3.26. Take a pretopos E with stable reflexive coequalisers, and
define K to be the wide, locally full sub-2-category of Cat(E)op taking only
those internal functors whose object component is a coproduct inclusion,
which we shall call a complemented cofibration. Let J consist of the class
W of complemented cofibrations f : X → Y that are ff and essentially sur-
jective (i.e. X0 ×f0,Y0,s Y1

t pr2−−−→ Y0 is a regular epimorphism). Then W
consists of ff and co-ff arrows, contains all identity arrows, and is closed un-
der composition and—most crucially—pushout. This makes (Cat(E)op,W )
a 2-site as defined in this paper, and the constructions here involving W -
fractions in Cat(E)op correspond to analogous dual constructions involving
left W -fractions (certain cospans) in Cat(E). The analogous result holds
for Gpd(E) in place of Cat(E), and in this case E can be an arbitrary
pretopos.

This gives a bicategorical perspective on a generalisation of the case of
small groupoids, studied in [5] using cofibration categories as a presentation
of (∞, 1)-categories.
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Appendices

A Proof that left whiskering in KJ preserves vertical com-
position

The definition of left whiskering in KJ is slightly more complicated, as it is
such that it doesn’t permit us to ignore half of the span as we can for right
whiskering. Recall that we define left whiskering by a general J-fraction
x

j←− u f−→ y in two cases, using the factorisation (j, f) = (idu, f) ◦ (j, idu).

A.1 Case I: left whiskering by (idu, f) Recall the definition of case
I of left whiskering (Definition 3.12).

Definition A.1. The left whiskering of a : (j, g)⇒ (k, h) by (idu, f) is given
by the 2-arrow λI(id,f)a, defined as

u×y v12
// v12

&&
88 za �� .

We now show left whisking by (id, f) preserves composition. In the
following, let λI(−) = λI(id,f)(−)

u×y v123

��

u×y v13
&&
88 zλI(a1+a2)

��
=

u×y v123

��

u×y v13

��
v13

&&
88 za1+a2

��
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=

u×y v123

��
v123

��
v13

&&
88 za1+a2

��

=

u×y v123

��

v12

!!

// v1

  
v123

99

%%

v2
// z

v23

==

// v3

>>

a1

�

a2
	�

=

u×y v12

��

//

&&

u×y v1

""
u×y v123

��

88

u×y v2

��

// z

v12

&&
v123

77

''

v2
// z

v23
//

88

v3

;;

λIa1

�

a2
��

=

u×y v12
//

&&

u×y v1

""
u×y v123

88

&&

u×y v2
// z

u×y v23

88

// u×y v2

<<

λIa1

�

λIa2
��

=

u×y v123

��

u×y v13
&&
88 zλIa1+λIa2

��

By uniqueness of descent, λI(a1 + a2) = λIa1 + λIa2.
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A.2 Case II: left whiskering by (j, idu) Recall the notations V12 :=
v1×xv2, Vij... := vi×xvj×x . . .. and the canonical maps vij... → Vij.... Recall
the definition of case II of left whiskering (Definition 3.13):

Definition A.2. The left whiskering of a : (j, g)⇒ (k, h) by (j, idu) is given
by the 2-arrow λII(j,id)a in K defined via unique descent by the equation

v12 ×x V12
pr2 // V12

!!

== zλ(j,id)a
��

=

V12

  
v12 ×x V12

pr2
22

pr2
,,

// v12

==

!!

z

V12

>>


�
a

��
��

.

We now prove left whiskering by (j, idu) preserves composition. In the
following, let λII(−) := λII(j,id)(−)

v123 ×x V123

��

v13 ×x V13

��

V13
""

<< zλII (a1+a2) ��

=

v123 ×x V123

��

V13

��
v13 ×x V13

//

22

,,

v13

@@

��

z

V13

BB
a1+a2

��


�

��

=

V123

��

v123 ×x V123

22

,,

// v123

��

@@

  

V123





V13

��
v13

>>

  

z

V13

EE
a1+a2

��

	�


�
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=

V123

��
v123 ×x V123

22

,,

// v123

AA

  

z

V123

AA
a1⊕a2

��

	�


�

=

V123
// V12

��

v12

??

��
v123 ×x V123

BB

//

��

v123

OO

��

  

??

v2
// z

v23

��

??

V123
// V23

CC

��


�

a1


�

a2

	�

=

V123
// V12

��

v12v12v12

@@

// V12V12V12

��
v123 ×x V123v123 ×x V123v123 ×x V123

CC

//

��

v123v123v123

OO

��

��

??

v2v2v2
// z

v23v23v23

��

// V23V23V23

AA

V123
// V23

BB

��


�

a1 �


a2 ��

=

V12

��

v12 ×x V12v12 ×x V12v12 ×x V12

33

//

++

v12v12v12

@@

��

V12V12V12

��
v123 ×x V123v123 ×x V123v123 ×x V123

@@

��

v2v2v2
// z

V23V23V23

AA

v23 ×x V23v23 ×x V23v23 ×x V23

33

//

++

v23v23v23

@@

��

V23

FF

	�


�

	�


�

a1

	�

a2


�
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(where the subdiagrams on the bold symbols are equal)

=

v12 ×x V12
// V12

��

// v1

��
v123 ×x V123

77

''

v2
// z

v23 ×x V23
// V23

AA

// v3

CC

λIIa1

��

λIIa2 
�

=

v123 ×x V123

��

V12
//

��

v1

��
V123

::

$$

v2
// z

V23

AA

// v3

CC

λIIa1

��

λIIa2 
�

=

v123 ×x V123

��

V123

��

V13
%%
99 zλIIa1+λIIa2

��

By uniqueness of descent, we have λII(a1 + a2) = λIIa1 + λIIa2.
Putting the two results this appendix together, arbitrary left whiskering

preserves vertical composition.

B Proof that the associator is natural

We will use [6, Proposition II.3.2], which says the naturality condition for
a transformation between functors A×B × C → D can be checked in each
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component separately. Thus we only need to show the putative associator
for KJ is natural for 2-arrows arising from double right whiskering, double
left whiskering and left+right whiskering:

��
CC

// //
��

// // ��
CC��

// ��
CC

//
��

where these 1-arrows are J-fractions, and the 2-arrows are maps of J-fractions.
The major tool here is Lemma 3.6, in particular the second and third

cases, since the associators arise from invertible renaming transformations.
For the rest of this appendix, fix composable triples of J-fractions:

x1
j1←− u1

f1−→ x2 x2
j2←− u2

f2−→ x3 x3
j3←− u3

f3−→ x4

x1
k1←− v1

g1−→ x2 x2
k2←− v2

g2−→ x3 x3
k3←− v3

g3−→ x4

and maps of fractions ai : (ji, fi) ⇒ (ki, gi) for i = 1, 2, 3. Each step will
only use one of a1, a2 or a3 at a time.

We also need some notation for pulled back arrows, else there will be
a confusing proliferation of projection maps. So, given f, g in the pullback
square below (in our given 2-category K), the projection maps will be de-
noted f̃ and ̃ as shown:

x×y z
̃
//

g̃

��

z

g

��
x

j
// y

If we need to pull an arrow g back along two different maps x1
j1−→ y and

x2
j2−→ y, the results will be denoted g̃j1 and g̃j2 respectively. To save space,

horizontal composition will be denoted by juxtaposition (in function compo-
sition order), and the identity 2-arrow in K on a 1-arrow f will be denoted
1f .

B.1 Double right whiskered See Definition 3.10 for how right whisker-
ing is defined. We need to both right whisker a1 twice in succession (by
(j2, f2) and (j3, f3)), and also whisker it by (j3, f3) ◦ (j2, f2) = (j2j̃3, f3f̃2).
The results then need to be vertically composed with associators in the
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(u1u2)u3
(f2f̃1)∼

**[(u1u2)u3]×x1 [(v1u2)u3]

44

**

q

��

u3
f3
//

j3

��

x4

(v1u2)u3

(f2g̃1)∼

44

u1u2
f̃1

''
u1u2 ×x1 v1u2

33

++

p

��

u2
f2
//

j2

��

x3

v1u2
g̃1

77

u1
f1

''
u1 ×x1 v1

33

++

x2

v1

g1

77

(1f2 ã
j2
1 )∼

��

ã
j2
1 ��

a1
��

Figure 2: Constructing the double right whiskering

appropriate order and compared. Namely, we need to show the following
2-arrows are equal:

ρ
(j2 ̃3,f3f̃2)

a1 + ι(av1,u2,u3)
?
= ι(au1,u2,u3) + ρ(j3,f3)(ρ(j2,f2)a1).

Or rather, we will show

(ι(au1,u2,u3))−1 + ρ
(j2 ̃3,f3f̃2)

a1 + ι(av1,u2,u3)
?
= ρ(j3,f3)(ρ(j2,f2)a1).

Denote the 2-arrow data of ρ
(j2 ̃3,f3f̃2)

a1 by ρf3f̃2a and the 2-arrow data of

ρ(j3,f3)(ρ(j2,f2)a1) by ρf3(ρf2a). Then ρf3(ρf2a) := 1f3(1f2 ã
j2
1 )∼, as shown

the diagram in Figure 2, where (u1u2)u3 := (u1 ×x2 u2)×x3 u3, (v1u2)u3 :=
(v1 ×x2 u2) ×x3 u3 and similarly for u1u2 and v1u2. The 2-arrows ãj21 and
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u1(u2u3)
f̃1
j2 ̃3

''
[u1(u2u3)]×x1 [v1(u2u3)]

44

**

π

��

u2u3
f̃2
//

̃3

��

u3
f3
//

j3

��

x4

v1(u2u3)
g̃1
j2 ̃3

77

u2
f2
//

j2

��

x3

u1
f1

((
u1 ×x1 v1

33

++

x2

v1

g1

66

ã
j2 ̃3
1 ��

a1
��

Figure 3: Constructing the right whiskering by the composite

(1f2 ã
j2
1 )∼ are the unique 2-arrows satisfying

1j3(1f2 ã
j2
1 )∼ = 1f2 ã

j2
1 1q (B.1)

1j2 ã
j2
1 = a11p (B.2)

respectively, using the fact j2 and j3 are ff. We also have ρf3f̃2a := 1f31f2 ã
j2 ̃3
1 ,

as shown in the diagram in Figure 3. Again, using the fact j2̃3 is ff, ãj2 ̃31 is
the unique 2-arrow satisfying

1j21̃3 ã
j2 ̃3
1 = a11π (B.3)

Finally, we note that we have

πα = pq (B.4)

where α := (au1,u2,u3 × av1,u2,u3)−1. Using Lemma 3.6, we see that
(ι(au1,u2,u3))−1 + ρ

(j2 ̃3,f3f̃2)
a1 + ι(av1,u2,u3) is given by
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[(u1u2)u3]×x1 [(v1u2)u3]
α // [u1(u2u3)]×x1 [v1(u2u3)]

""

;;
u3

f3f̃2
// x4ã

j2 ̃3
1 ��

We can thus calculate

1j21̃3 ã
j2 ̃3
1 1α = a11π1α using (B.3)

= a11p1q using (B.4)

= 1j2 ã
j2
1 1q using (B.2)

and hence, since j2 is ff, we have 1̃3 ã
j2 ̃3
1 1α = ãj21 1q. Continuing,

1j31
f̃2
ãj2 ̃31 1α = 1f21̃3 ã

j2 ̃3
1 1α by definition of f̃2 and ̃3

= 1j3 ã
j2
1 1q

= 1j3(1f2 ã
j2
1 )∼ using (B.1),

but now since j3 is ff, we have 1
f̃2
ãj2 ̃31 1α = (1f2 ã

j2
1 )˜ , and hence

(ι(au1,u2,u3))−1 + ρ
(j2 ̃3,f3f̃2)

a1 + ι(av1,u2,u3) = 1f31
f̃2
ãj2 ̃31 1α

= 1f3(1f2 ã
j2
1 )∼

= ρ(j3,f3)(ρ(j2,f2)a1),

which is what we needed to show.

B.2 Double left whiskered See Definitions 3.12 and 3.13 for how left
whiskering is defined. We need to both left whisker a3 twice in succession
(by (j2, f2) and (j1, f1)), and also whisker it by (j2, f2)◦ (j1, f1). The results
then need to be vertically composed with associators in the appropriate order
and compared. Namely, we need to show the following 2-arrows are equal:

λ(j1,f1)(λ(j2,f2)a3) + ι(au1,u2,v3)
?
= ι(au1,u2,u3) + λ

(j1 ̃2,f2f̃1)
a3

What we will show is the following

λ(j1,f1)(λ(j2,f2)a3)
?
= ι(au1,u2,u3) + λ

(j1 ̃2,f2f̃1)
a3 + ι(au1,u2,v3)−1.
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We can give a direct construction of the left whiskering, combining the
two cases given in Definitions 3.12 and 3.13, as follows.10

Lemma B.1. Let y j←− v1
f−→ z and y k←− v2

g−→ z be J-fractions. The left
whiskering of the map a : (j, f) ⇒ (k, g) by x l←− u

h−→ y is given by the 2-
arrow λa that is the unique descent of a ◦ 1

h̃f×h̃g along the co-ff arrow i in
the following diagram

u×y v1

fh̃f

""

pr2

��

(u×y v1)×u (u×y v2)
i //

h̃f×h̃g

''

(u×y v1)×x (u×y v2)

pr12

77

pr34
))

z

u×y v2

gh̃g

<<

pr2

��

v1

f

##
v1 ×y v2

pr1

55

pr2
))

z

v2

g

==
a

��

λa

��

Proof. We first need to verify that i is indeed co-ff. But this follows from
the fact it fits into a commutative square

(u×y v1)×u (u×y v2)
i //

��

(u×y v1)×x (u×y v2)

��
u

l
// x

where the left and right vertical arrows are in J (and l ∈ J by assumption),
hence i is a map between J-covers, and we can apply Lemma 2.14.

10This construction was found during revision of the article, after referee comments. I
thank Fosco Loregian for the whimsical suggestion to call it the “teapot lemma”.
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[u1(u2u3)]×u1×x1u2 [u1(u2v3)]
P //

Q

��

**

(u2u3)×u2 (u2v3)

̃3

��

q
//

iq
$$

u3v3

j3

��

f3 pr1

))

g3 pr2

55 x4

u1 ×x2 u2
f̃1

//

̃2

��

u2
f2

//

j2

��

x3

[u1(u2u3)]×u1 [u1(u2v3)]

ip

��

**

p
// (u2u3)×x2 (u2v3)

tt

f3f̃2 pr12

""

g3f̃2 pr34

::
x4

u1

j1

��

// x2

[u1(u2u3)]×x1 [u1(u2v3)] // x1

a3��

λf2a3��

Figure 4: Constructing the double left whiskering

We thus need to verify that the left whiskerings (in K) of λ(l,h)a and λa
with i are equal, since then i being co-ff means λ(l,h)a = λa. But this follows
from the definition of the left whiskering of λ(idu,h)a with (l, idu).

We first construct the 2-arrow λf1(λf2a3) specifying λ(j1,f1)(λ(j2,f2)a3),
using the diagram in Figure 4.

Where λf2a3 is the unique 2-arrow satisfying

(λf2a3)1iq = a31q. (B.5)

The last step is that λf1(λf2a3) is the unique 2-arrow satisfying

(λf1(λf2a3))1ip = (λf2a3)1p. (B.6)

Note that from the diagram we also have

pQ = iqP. (B.7)

We next construct the 2-arrow λ
f2f̃1

a3 specifying λ
(j1 ̃2,f2f̃1)

a3, using the
diagram in Figure 5. Here λ

f2f̃1
a3 is the unique 2-arrow satisfying

(λ
f2f̃1

a3)1iπ = a31π, (B.8)

and we note the identities

iπα̃ = αipQ (B.9)
qP = πα̃ (B.10)
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[u1(u2u3)]×x1 [u1(u2v3)]
α // [(u1u2)u3]×x1 [(u1u2)v3]

f3(f2f̃1)∼ pr1

''

g3(f2f̃1)∼ pr2

77 x4

[u1(u2u3)]×u1 [u1(u2v3)]

ip

OO

[u1(u2u3)]×u1×x1u2 [u1(u2v3)]
α̃
//

Q

OO

[(u1u2)u3]×u1×x1u2 [(u1u2)v3] π
//

��

iπ

OO

u3v3

��

f3 pr1

((

g3 pr2

66 x4

u1u2

��

f̃2f1

// x3

x1

a3��

λ
f2f̃1

a3
��

Figure 5: Constructing the left whisking by the composite

Further, we have that the map of J-fractions

ι(au1,u2,u3)−1 + λ
(j1 ̃2,f2f̃1)

a3 + ι(au1,u2,v3)

is specified by the 2-arrow (λ
f2f̃1

a3)1α. Hence we can make the following
calculation

(λ
f2f̃1

a3)1α1ipQ = (λ
f2f̃1

a3)1iπ1α̃ using (B.9)

= a31π1α̃ using (B.8)
= a31q1P using (B.10)
= (λf2a3)1iq1P using (B.5)
= (λf2a3)1p1Q using (B.7)
= (λf1(λf2a3))1ip1Q using (B.6)

Notice that Q is co-ff as ̃2 is a J-cover, as well as the other two maps in the
square defining Q, and we can apply Lemma 2.14. Since ip is also co-ff (by
the proof of Lemma B.1), and co-ff 1-arrows are closed under composition,
we have (λf1(λf2a3)) = λ

f2f̃1
a31α, as we needed to show.

B.3 Left+right whiskered We need to both whisker a2 by (j1, f1)
and (j3, f3), in that order, and also whisker it by (j3, f3) and (j1, f1), in that
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order. The results then need to be vertically composed with associators in
the appropriate order and compared. Namely, we need to show the following
2-arrows are equal:

λ(j1,f1)(ρ(j3,f3)a2) + ι(au1,v2,u3)
?
= ι(au1,u2,u3) + ρ(j3,f3)(λ(j1,f1)a3).

What we will show, though, is the following:

ρ(j3,f3)(λ(j1,f1)a3)
?
= ι(au1,u2,u3)−1 + λ(j1,f1)(ρ(j3,f3)a2) + ι(au1,v2,u3),

where ι(au1,u2,u3)−1 + λ(j1,f1)(ρ(j3,f3)a2) + ι(au1,v2,u3) is specified by the 2-
arrow

[(u1u2)u3]×x1 [(u1v2)u3]
α // [u1(u2u3)]×x1 [v1(u2u3)]

""

::
x4λf1 (ρf3a2) ��

where λf1(ρf3a2) specifies the map λ(j1,f1)(ρ(j3,f3)a2) of J-fractions.
We first construct the 2-arrow data of λ(j1,f1)(ρ(j3,f3)a2), using the dia-

gram in Figure 6. We have ρf3a2 := 1f3 ã2 where ã2 is the unique 2-arrow
satisfying

1j3 ã2 = a21̃32 . (B.11)

Similarly λf1(ρf3a2) := 1f3λf1(ã2), where λf1(ã2) is the unique 2-arrow sat-
isfying

λf1(ã2)1ip = ã21p. (B.12)

We next construct the 2-arrow data of ρ(j3,f3)(λ(j1,f1)a3), using the dia-
gram in Figure 7. We have ρf3(λf1a2) := 1f3(λf1a2)∼, where (λf1a2)∼ is the
unique 2-arrow satisfying

1j3(λf1a2)∼ = (λf1a2)1̃312 (B.13)

Similarly, λf1a2 is the unique 2-arrow satisfying

(λf1a2)1iq = a21q. (B.14)

Finally, we note that we have commutative squares

u1u2 ×u1 u1v2

iq

��

(u1u2)u3 ×u1 (u1v2)u3
Joo α̃

'
//

π

��

u1(u2u3)×u1 u1(v2u3)

ip
��

u1u2 ×x1 u1v2 (u1u2)u3 ×x1 (u1v2)u3
̃3

12
oo

α
' // u1(u2u3)×x1 u1(v2u3)

(B.15)
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u1(u2u3)
f̃2f̃

f̃2
1

##
u1(u2u3)×x1 u1(v2u3)

22

,,

u3

u1(v2u3)
g̃2f̃

g̃2
1

;;

u2u3

f̃2

$$
u1(u2u3)×u1 u1(v2u3) p

//

ip

OO

��

u2u3 ×x2 v2u3

66

((

̃3
2

��

u3
f3
//

j3

��

x4

v2u3

g̃3

::

u2
f2

$$
u2 ×x2 v2

66

((��

x3

u1
f1

//

��

x2 v2

g2

::

x1

λf1 (ã2)

��

ã2
��

a2

��

Figure 6: Constructing the right then left whiskering
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(u1u2)u3

##
(u1u2)u3 ×x1 (u1v2)u3

33

++

̃3
12

��

u3
f3
//

j3

��

x4

(u1v2)u3

;;

u1u2
f2f̃1

$$
u1u2 ×x1 u1v2

33

++

x3

u1v2

g2f̃1

::

u2
f2

$$
u1u2 ×u1 u1v2 q

//

iq

OO

��

u2v2

99

%%��

x3

u1
f1

//

j1

��

x2 v2

g2

::

x1

(λf1a2)∼

��

λf1a2

��

a2

��

Figure 7: Constructing the left then right whiskering
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and we need to show that

λf1(ρf3a2)1α = 1f3(λf1 ã2)1α = 1f3(λf1 ã2)1α
?
= 1f3(λf1a2)∼ = ρf3(λf1a2).

(B.16)
We can now calculate:

1j3(λf1 ã2)1ip = 1j3 ã21p using (B.12)
= a21̃321p using (B.11)

= a21q1J1α̃−1

= (λf1a2)1iq1J1α̃−1 using (B.14)
= (λf1a2)1̃3121π1α̃−1 using(B.15)

= 1j3(λf1a2)∼1π1α̃−1 using (B.13)
= 1j3(λf1a2)∼1α−11ip using(B.15) .

Since j3 is ff and ip is co-ff, we have (λf1(ã2))1α = (λf1a2)∼, from which
(B.16) follows.

This completes the proof of Lemma 3.18.

C Proof that the middle-four interchange holds

We need to show the following equality of vertical compositions in KJ:

��
CC

//
��

// ��
CC��

=

// ��
CC��

��
CC

//
��

(Here the 1-arrows are J-fractions, and the 2-arrows are maps of J-fractions.)
For the rest of this appendix, fix composable pairs of J-fractions

x1
j1←− u1

f1−→ x2 x2
j2←− u2

f2−→ x3

x1
k1←− v1

g1−→ x2 x2
k2←− v2

g2−→ x3

and maps of fractions ai : (ji, fi) ⇒ (ki, gi) for i = 1, 2. In everything that
follows, unlabeled 1-arrows are canonical projection maps.
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We first calculate ρ(j2,f2)a1 + λ(g1,k1)a2. Define the arrows p : v1u2 ×x1
v1v2 → u2v2, ip : v1u2×v1v1v2 → v1u2×x1v1v2, and ̃2 = pr13 : , and for a, b ∈
{u, v}, the notation a1b2 := a1×x2 b2. The arrow ip is, by Lemma 2.14, co-ff.
Using the definition of right whiskering (Definition 3.10), and left whiskering
as in Lemma B.1, we get that the 2-cell representing ρ(j2,f2)a1 + λ(g1,k1)a2

is the unique descent along the co-ff arrow u1u2 ×x1 (v1u2 ×x1 v1v2) →
u1u2 ×x1 v1v2 (using Lemma 2.14) of

u1u2 ×x1 v1u2

&&

// u1u2

f̃
j2
1

!!
u1u2 ×x1 (v1u2 ×x1 v1v2)

44

**

v1u2
g̃
j2
1 // u2

f2
// x3

v1u2 ×x1 v1v2
//

88

v1v2
g̃
k2
1

// v2

g2

??

ã
j2
1
~�

λg1a2

��

(C.1)
where ãj21 is the unique lift through j2 of a11̃2 (using j2 is ff), and λg1a2 is
the unique descent of a11p along the co-ff arrow ip.

We next calculate λ(j1,f1)a2 + ρ(k2,g2)a1. Define the arrows q : u1u2 ×u1
u1v2 → u2v2, iq : u1u2 ×u1 u1v2 → u1u2 ×x1 u1v2, and k̃2 = pr13 : u1v2 ×x1
v1v2 → u1v1. The arrow iq is, by Lemma 2.14, co-ff. Then the 2-arrow
representing λ(j1,f1)a2 +ρ(k2,g2)a1 is the unique descent along the co-ff arrow
u1u2 ×x1 (u1v2 ×x1 v1v2)→ u1u2 ×x1 v1v2 (using Lemma 2.14) of

u1u2 ×x1 u1v2
//

&&

u1u2
f̃
j2
1 // u2

f2

��
u1u2 ×x1 (u1v2 ×x1 v1v2)

44

**

u1v2
f̃
k2
1

// v2 g2
// x3

u1v2 ×x1 v1v2
//

88

v1v2

g̃
k1
1

==

λf1a2

��

ã
k2
1
� 

(C.2)
where ãk21 is the unique lift through k2 of a11

k̃2
(using k2 is ff), and λf1a2 is

the unique descent of a11q along the co-ff arrow iq.
From here, we will left whisker (in K) both of ρ(j2,f2)a1 + λ(g1,k1)a2 and
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λ(j1,f1)a2 + ρ(k2,g2)a1 by the co-ff 1-arrow

π : (u1u2)v2 ×x1 (v1v2)u2 → u1u2 ×x1 v1v2

(again using Lemma 2.14) and show the resulting 2-arrows are equal. Here
(u1u2)v2 = (u1×x2)×x2 v2 and similarly for (v1v2)u2. From this it will follow
that ρ(j2,f2)a1+λ(g1,k1)a2 = λ(j1,f1)a2+ρ(k2,g2)a1, and hence that middle-four
interchange holds.

Note first that using (C.1), the 2-arrow
(
ρ(j2,f2)a1 + λ(g1,k1)a2

)
1π is equal

to

u1u2 ×x1 v1u2

%%

// u1u2

f̃
j2
1

��
(u1u2)v2 ×x1 (v1v2)u2

//

��

u1u2 ×x1 (v1u2 ×x1 v1v2)

55

))

v1u2
g̃
j2
1 // u2

f2
// x3

v1u2 ×v1 v1v2 ip
// v1u2 ×x1 v1v2

//

99

v1v2
g̃
k2
1

// v2

g2

BB

ã
j2
1
�


λg1a2

��

=

u1u2 ×x1 v1u2
//

%%

u1u2

f̃
j2
1

��
(u1u2)v2 ×x1 (v1v2)u2

55

))

v1u2
g̃
j2
1

// u2
f2
// x3

v1u2 ×v1 v1v2 p
// u2v2

@@

// v2

g2

BB

ã
j2
1
�


a2

�

=

(u1u2)v2 ×x1 (v1v2)u2

""))

u2
f2
// x3

v1u2 ×x1 v1v2 p
// u2v2

@@

// v2

g2

BB

ã1
u}

a2

�

where the last equality holds as u2v2 → u2 is ff, so we can lift ãj21 to ã1.
We note that ã1 is a lift of a11Q through u2v2 → x2, for Q : (u1u2)v2 ×x1
(v1v2)u2 → u1v1.

Now using (C.2), the 2-arrow
(
λ(j1,f1)a2 + ρ(k2,g2)a1

)
1π is equal to
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u1u2 ×u1 u1v2
iq

// u1u2 ×x1 u1v2
//

%%

u1u2
f̃
j2
1 // u2

f2

��
(u1u2)v2 ×x1 (v1v2)u2

//

OO

u1u2 ×x1 (u1v2 ×x1 v1v2)

55

))

u1v2
f̃
k2
1

// v2 g2
// x3

u1v2 ×x1 v1v2
//

99

v1v2

g̃
k1
1

@@

λf1a2

��

ã
k2
1
��

=

u1u2 ×u1 u1v2
q
// u2v2

//

��

u2

f2

��
(u1u2)v2 ×x1 (v1v2)u2

55

))

u1v2
f̃
k2
1 // v2 g2

// x3

u1v2 ×x1 v1v2
//

99

v1v2

g̃
k1
1

@@

a2
��

ã
k2
1
��

=

u1u2 ×u1 u1v2
q
// u2v2

//

��

u2

f2

��
(u1u2)v2 ×x1 (v1v2)u2

55 ;;

v2 g2
// x3

a2
��ã′1

!)

where the last equality holds as u2v2 → v2 is ff, so we can lift ãk21 to ã′1.
But now ã′1 is also a lift of a11Q through u2v2 → x2, hence ã1 = ã′1. This
give us

(
ρ(j2,f2)a1 + λ(g1,k1)a2

)
1π =

(
λ(j1,f1)a2 + ρ(k2,g2)a1

)
1π, and hence

the desired result, using the fact π is co-ff.
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