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Abstract 

 

Currently, facial recognition systems are used widely within various government agencies 

as a means of identity verification, and these systems involve a human operator in the final decision 

making process.  Previous studies have shown that both face recognition systems and humans are 

vulnerable to variables that may impede the face matching process, including the use of morphed 

images, which are created by digitally combining multiple constituent faces into a new face.  

Therefore, the current study aims to further investigate how the usage of different types of morphed 

faces can affect human face matching performance.  Participants (N = 51) from the University of 

Adelaide and the general public completed 112 computer-based one-to-many face matching trials 

in a repeated measures design.  The type of morphed face used as the target image varied for each 

trial, and was either made from 2, 8 or 16 constituent faces, or was a control non-morphed face.  

Results indicated that the usage of 8-Image morphs resulted in significantly higher accuracy and 

confidence, as well as faster response latency.  Future research could be conducted using morphs 

made from similar faces, and employ multidimensional scaling methods to map the morphs and 

their constituent faces in face space.   
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CHAPTER 1 

  

Introduction 

 

1.1 Rationale 

In many government agencies worldwide, facial recognition systems are used in the process 

of identification, including for detecting duplicate applications for identity documents by the same 

person (White, Dunn, Schmid, & Kemp, 2015).  However, these systems are not fool-proof.  

Unlike under laboratory conditions, identification accuracy in the real-world can be poor, 

especially in situations where the image capture conditions were not ideal (Phillips & O'Toole, 

2014).  Therefore, to overcome this shortcoming, many applications require a human component 

in the face matching process, providing a candidate list of the highest matching images for human 

review.  The human operator is then required to make a decision on whether the face they are 

interested in (i.e. the ‘target image’) corresponds to any of the faces in that candidate list (Graves 

et al., 2011).  In Australia, facial recognition systems are used mainly for identity verification.  It 

is estimated that nearly five percent of Australians will experience identity theft each year, which 

makes it more common that assaults or other forms of thefts (Attorney-General's Department, n.d.).  

There is also worry that fraudulent identities can be used to facilitate acts of domestic terrorism 

and other crimes, making the verification of one’s identity a key issue for national security. 

One potential way of creating fraudulent identifications is to use manipulated facial images, 

in this case the usage of facial morphs.  In this scenario, graphical morphing programs can be used 

to generate a sequence of images, containing the blending of multiple faces along a continuum 

(Robertson, Kramer, & Burton, 2017).  At the central point of the continuum, the morphed face 

would contain equal amounts of each face.  As this is a new area of interest, not much is known 

regarding how the introduction of a morphed face in a face matching task will impact on 

performance. 

 

1.2 Unfamiliar Face Matching 

Familiar faces can be defined as faces that are famous or personally familiar to a person, 

or faces in a study after an extensive learning phase (Johnston & Edmonds, 2009).  Unfamiliar 

faces, on the other hand, are faces that a person has never seen before, or have been seen for an 
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insufficient period of time for the brain to construct a stable memory representation (Hancock, 

Bruce, & Burton, 2000).  Both types of faces are parsed by different underlying mechanisms 

(Megreya & Burton, 2006).  However, this study is only interested in unfamiliar face matching. 

 

1.2.1 Processing of unfamiliar faces.  In the literature, the dual-code view is the 

predominant theory for unfamiliar face processing, where it states that both configural and featural 

processing play an important role (Cabeza & Kato, 2000). Featural processing uses the information 

encoded within the facial features themselves (Schwaninger, Lobmaier, & Collishaw, 2002).  On 

the other hand, configural processing is used to analyse the spatial relationship between facial 

features, and combining the individual features together into a gestalt (Carbon, 2011; Maurer, 

Grand, & Mondloch, 2002).  However, the contribution of both forms of processing is not equal.  

There is growing evidence that unfamiliar faces are processed in a more object-like fashion, 

lending support to the idea that featural processing is more commonly used when looking at 

unfamiliar faces (Johnston & Edmonds, 2009).   

Towler, White, and Kemp (2017) have shown that a feature-to-feature image comparison 

strategy, which has its roots in research involving featural processing, can improve face matching 

performance.  When participants were asked to rate the target images on their similarities, their 

accuracy in the subsequent face matching task were improved, compared to rating the faces on 

image quality and perceived personality traits.  Although the effect was limited to match trials only, 

signal detection methods showed that the results reflected an improvement in identity 

discrimination.  This is the reason why featural processing is the recommended method of facial 

comparison for most government agencies (FISWG, 2012).   

 

1.2.2 Matching unfamiliar faces.  In general, people are often quite poor at performing 

tasks involving unfamiliar faces.  In the landmark study by Bruce et al. (1999), performance ranged 

from 50% to 96% accuracy, and this has been replicated by multiple studies (Megreya & Burton, 

2008; White, Kemp, Jenkins, Matheson, & Burton, 2014) and even persists with different 

presentation modalities.  For example, performance is still less than optimal when participants 

were asked to match a live person and a photograph (Megreya & Burton, 2008).  However, it is 

vital to note that face matching tasks have large performance variance due to individual differences 

(Kemp, Towell, & Pike, 1997).  This could be due to individual variations in perception and 
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memory capabilities, as well as total cerebral volume and rational-experiential thinking styles 

(Calic, 2013; Megreya & Burton, 2006; Schretlen, Pearlson, Anthony, & Yates, 2001).   

 

1.2.3 Challenges to face matching performance.  People are much more sensitive to 

external influences when matching unfamiliar faces, including age, differences in viewpoint, 

expression and lightning, and occlusion.  Ageing is one of the most widespread issues faced by 

users of facial recognition systems, and this includes changes to the facial texture (like the 

appearance of wrinkles), shape and facial hair (Ling, Soatto, Ramanathan, & Jacobs, 2007).  

Studies have found that commercial facial recognition algorithms fail to match the subjects in the 

images as the age gap between images increases, and this effect is expected to be present as well 

in human operators (Albert, Sethuram, & Ricanek, 2011; Ling et al., 2007).   

Additionally, changes in viewpoint, lighting and facial expression can affect face matching 

performance.  Regarding viewpoint changes, as the face is rotated towards the profile, there is a 

trade-off in available facial information.  Less information is available regarding the spatial 

relationship between features, and the viewer is able to determine the angle of the forehead and 

nose (Van der Linde & Watson, 2010).  Therefore, the featural information one can obtain from a 

forward-facing face and a profile face is significantly different.  This is further influenced by 

changes in lighting, where different performance was found when comparing top-lit or bottom-lit 

faces (Hill & Bruce, 1996).  Different facial expressions can also pose a threat, as expressions, like 

disgust or anger, can reduce accuracy and increase reaction time in a face matching task (W. Chen, 

Lander, & Liu, 2011).   

Furthermore, in real-life scenarios, there could also be interference from the facial features 

themselves.  This could include changes in hairstyle, moles, scars and other paraphernalia.  Studies 

have found that the manipulation of facial features increases the false acceptance rate, especially 

in mismatch trials where both images contain identical spectacles, hairstyle or location of moles 

(Wirth & Carbon, 2017).  In another scenario, certain facial features can also be occluded by 

accessories, like sunglasses or scarves (Mi, Li, Li, Liu, & Liu, 2016).  This obstructs the facial 

features necessary for identification, which can reduce performance.  The decrease in performance 

is most noticeable in ‘mixed’ scenarios, where the presence of the paraphernalia is difference 

between the target image and the trial image (Kramer & Ritchie, 2016).   
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This means that, in theory, matching faces in real-life scenarios is made even more 

complicated by interference from the above factors.  Individuals who have to perform this task as 

part of their occupational duties, like border protection officials, are also under high cognitive load 

and experience time pressures, which will further affect performance (McCaffery & Burton, 2016; 

Wirth & Carbon, 2017).  Furthermore, this effect cannot be mitigated by experience.  Studies have 

shown that expert observers, who are those that have received training in facial image comparison 

as part of their job, are not better than untrained participants in a face matching task (Burton, 

Wilson, Cowan, & Bruce, 1999; White, Kemp, Jenkins, Matheson, et al., 2014).  However, more 

recent studies have indicated that face matching experts perform better than untrained students, 

suggesting that the training received has been improved (White, Phillips, Hahn, Hill, & O'Toole, 

2015; Wirth & Carbon, 2017).   Even so, the expert group still had a surprisingly high false 

acceptance rate (Wirth & Carbon, 2017).  This has alarming implications for national security, as 

it suggests that it may be possible to enter a country with falsified identity documents. 

 

1.3. Morphed Faces 

1.3.1 Background: Face Space.  The psychological face space is a theoretical construct 

that aims to explain the mechanisms of both familiar and unfamiliar face matching.  It can be 

defined as an internal, multidimensional space, where individual faces are stored as single points 

that vary according to specific dimensions (Nestor, Plaut, & Behrmann, 2013).  These dimensions 

can be parameters like the size of the face, the distance between features, age, or even masculinity 

(Valentine, Lewis, & Hills, 2016).  According to Valentine (1991), there are two different models 

that explain how faces are encoded within the face-space framework.  The norm-based model 

suggests that faces are encoded based on their deviation from a specific prototype (i.e. a norm).  

Therefore, distinctive faces are located further away from the norm, while typical faces are located 

closer to the norm.  On the other hand, the exemplar-based model argues that faces are encoded in 

the face space without referencing any central prototypes.  In this scenario, distinctive faces are 

located in areas of low face representation density.  Conversely, typical faces are located near the 

centre of the distribution, where there is a high face representation density.   

An example of how face space literature affects face matching performance is through the 

use of caricatures, which are images where identifiable facial features have been exaggerated.  

Studies have shown that systemic caricaturing can increase the distinctiveness of a face (McIntyre, 
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Hancock, Kittler, & Langton, 2013).  This makes it easier to discriminate the faces in mismatch 

trials, as shown by a reduction in false positives.  Therefore, morphed faces would likely have the 

opposite effect, as the distinctiveness of facial features are averaged in the process of morphing 

two separate images.  Hence, morphed images would logically result in a reduction in performance, 

especially in mismatch trials.   

 

1.3.2 Facial Recognition Algorithm Performance.  Currently, there is a limited number 

of papers that have examined the effect of morphed faces on facial recognition algorithms.  A study 

by Ferrara, Franco, and Maltoni (2014) examined the impact of morphs in an automated facial 

recognition system.  When the system was tested with 10 morphed images (5 males, 5 females), 

the system accepted the morphed images as similar to both test images, which were alternate 

images of the people used to create the morph.  This attack was even found successful when 

morphs of images of different genders, or even images from more than 2 different people were 

used.  Therefore, they concluded that automated systems, and in extension human operators as 

well, are sensitive to these kinds of image alterations.   

 

1.3.3 Human Face Matching Performance.  So far, only one study has examined human 

face matching performance with the inclusion of morphed faces.  Robertson et al. (2017) looked 

at the impact of morphs in a one-to-one face matching task.  They found that when a 50% morph 

was used (made with only two constituent faces) and the participants were blinded towards the 

true purpose of the study, there was a significantly high false acceptance rate, compared to using 

the original images. It is important to note that the morphed images used in the Robertson et al. 

(2017) experiments were compared in 2 different sizes, with the comparison image presented as 

the face only – with no body visible.  The results of the experiments indicate that, similar to 

automated systems, people are also vulnerable to being deceived by morphs.  However, as some 

human operators are required to compare an image with a candidate list of potential matches (i.e. 

a one-to-many face matching task), there is still a need to further investigate how performance is 

affected in this context.  Furthermore, the current study presented the faces on a body – which may 

be a more realistic depiction of the type of imagery that may be encountered in real environments. 
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1.4 The Present Study 

The present study aims to understand how the use of morphed faces will impact on human 

face matching performance in a one-to-many face matching task.  This study is an extension of the 

Robertson et al. (2017) study, where the current study is interested in replicating the results found 

in the 50% morph condition within a one-to-many face matching task.  However, unlike that study, 

the morphs in the current study will have undergone image processing after the morphing 

procedure to remove any image artefacts (placing them onto donor heads and using Adobe® 

Photoshop® to finalise).  Target imagery will include a variety of different morphing procedures, 

including ones where only 2 images, 8 images and 16 images (or constituent faces) were used to 

create the morphed image, and will also use non-morphed target images as controls. 

Based on the face space literature (McIntyre et al., 2013), as well as previous research in 

this area (Robertson et al., 2017), the following hypotheses are presented: 

 

H1 Participants will be most likely to declare a constituent face a match to its morph 

(commit a false alarm) when two images are used to create the morph, compared with 

other groups. 

H2 As the number of faces used to create a morph increases, it will be harder to match a 

constituent face to its morph. 

H3 If the same morphed face is placed on alternate images of the same donor it will pass 

as a match (predicting a null effect from the manipulation). 
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CHAPTER 2 

 

Method 

 

2.1 Ethics Statement 

This study was approved by the Defence Science and Technology (DST) Group Human 

Research Ethics Committee (NSID 07/029) and the University of Adelaide Human Research 

Ethics Subcommittee (17/45).  Participants were provided with a Participant Information Sheet 

(Appendix A) and provided their consent (Appendix B) before commencing the study. 

 

2.2 Participants 

This study recruited 51 participants aged 18-67 years (25 females, mean age = 27.8, SD = 

13.0).  The majority of participants identified themselves as Caucasian (74.5 %), followed by Asian 

(23.5%) and mixed race (2.0%).  Participants were recruited from the University of Adelaide first 

year psychology students (N = 7) and the general public (N = 44).  The psychology students were 

recruited through the Research Participation System at the University of Adelaide and received 

course credit for participation.  Participants from the general public, on the other hand, were 

recruited through posters placed around the University of Adelaide North Terrace campus (details 

of poster in Appendix C), and received no incentive for participation. 

Participants were excluded from participation if they were younger than 18 years, were not 

proficient in English, and/or required vision correction (contact lenses or spectacles) but did not 

bring it to the study session. 

 

2.3 Design 

 This one-to-many face matching study used a repeated measures design, with the number 

of images used to create the morphed image as the single manipulated variable.  Each trial 

contained a candidate list with the exemplar image and 8 potential target images.  A total of 4 

conditions were formed based on the number of faces used to create the morphed image: Control 

(original faces that had no manipulation), 2-Image Morphs (used 2 images to create the morph), 

8-Image Morphs (used 8 images) and 16-Image Morphs (used 16 images).  Each candidate list was 

only seen once by each participant, and the order of the images in the candidate list, and the order 
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in which the candidate lists were presented to participants, were randomised and counterbalanced 

for each participant. 

In this study, the target was present in the trials with the manipulated faces when the 

morphed face in the exemplar image was also present in the candidate list, albeit presented on a 

different head (see Figure 1).  The target was absent when the morphed face was not present in the 

candidate list, while the constituent faces (those used to make the morph) were included.  In this 

scenario, the constituent faces acted as distractors, as the correct answer for these tasks required 

the participants to decide that the target was not present in the candidate list.  On the other hand, 

for the control trials, the target was present when an alternate image of the target was also in the 

candidate list, while the target was absent when the candidate list did not include the target.   

 

 

Figure 1.  Example of a trial where the target was present. The morphed face in the target image 

had also been superimposed onto one of the faces in the candidate list (specifically the second 

head from the left, on the bottom row). 

 

The primary dependent variables were accuracy, confidence and response latency. For the 

purposes of calculating signal detection measures; a ‘hit’ was defined as correctly identifying the 
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target image/morphed face in the candidate list when it was present, a ‘miss’ was defined as falsely 

identifying the target image/morphed face as not present in the candidate list when it was actually 

present, a ‘correct rejection’ was defined as not selecting an image in the candidate list, when the 

target image/morphed face was not present, and a ‘false alarm’ was defined as incorrectly selecting 

an image in the candidate list, if the target image/morphed face was not present. 

 

2.4 Materials/Apparatus 

2.4.1 Image source.  Images used in this study were sourced from a range of facial 

databases collected for the purposes of research (Beveridge et al., 2014; X. Chen, Flynn, & Bowyer, 

2003; Flynn, Bowyer, & Phillips, 2003; Phillips et al., 2011; Phillips, Moon, Rizvi, & Rauss, 2000; 

Phillips, Wechsler, Huang, & Rauss, 1998; Ricanek & Tesafaye, 2006).   

2.4.1.1 Faces with manipulation: 2-Image morphs (Condition A).  Twenty-eight pairs of 

faces were randomly selected from the facial databases.  Gender was balanced, and these faces 

were not use elsewhere in the study.  Each pair was matched for gender and ethnicity.  Twenty-

eight morphs were then created using the Fantamorph (http://www.fantamorph.com/index.html) 

program, by morphing the 28 pairs of images together one pair at a time.  Post processing in 

Adobe® Photoshop® was used to place the morphed faces onto donor heads, and remove artefacts 

common in the morphing process (Robertson et al., 2017).  Fourteen of the morphs were placed 

on two alternate donor heads, which were images of the same person taken at different times.  A 

facial recognition algorithm supplied by DST Group was used to select the top eight matching 

images to each of the 28 morphs, resulting in 28 candidate lists.  The target present candidate lists 

included the morph on the alternate donor head and the next seven top matching images, that did 

not include images used to make the morph (n = 14; see Figure 2).  The target absent candidate list 

included the two images used to make the morph and the next six top matching images (n = 14; 

see Figure 3).   
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were not use elsewhere in the study.  Each set of faces comprised of 16 faces, which were matched 

for gender and ethnicity.  Twenty-eight morphs were then created using a DST Group developed 

software tool, by morphing the 28 sets of 16 images together one set at a time.  Post processing in 

Adobe® Photoshop® was used to place the morphed faces onto donor heads, and remove artefacts 

common in the morphing process (Robertson et al., 2017).  Fourteen of the morphs were placed 

on two alternate donor heads, which were images of the same person taken at different times.  A 

facial recognition algorithm supplied by DST Group was used to select the top eight matching 

images to each of the 28 morphs, resulting in 28 candidate lists. The target present candidate lists 

included the morph on the alternate donor head, and the next seven top matching images, that had 

not been used to make the morph (n = 14; see Figure 2).  The target absent candidate list included 

the top eight matching images that had been used to make the morph (n = 14, see Figure 4).    

2.4.1.4 Faces with no manipulation: real faces (Condition D).  Twenty-eight faces were 

randomly selected from the facial databases, and randomly allocated to two groups.  Gender was 

balanced, and these faces were not used elsewhere in the study. A facial recognition algorithm 

supplied by DST Group was used to select the top eight matching images to each of the 28 faces 

from a database of 7890 images, resulting in 28 candidate lists.  An alternate image of the target 

appeared in all 28 candidate lists, however it was removed from 14 of them and replaced with the 

next highest matching image to create the target absent candidate lists.  

 

2.4.2 Duplicates.  Once the imagery for the all the trials were selected, it was inspected for 

duplicates.  If a duplicate was present, one of the images was removed and replaced with the next 

closest match. 

 

2.4.3 Ordering of test sets.  The number of trials was limited to 112 in order to reduce 

dropout rates.  This study utilised a balanced design, with a 50:50 ratio of target present to target 

absent trials.  Participants were randomly assigned to an order of presentation.  All images present 

in the candidate list were randomised, and so were not presented in match score order – as may be 

expected if a face matching algorithm were used to select the faces in an operational setting.   
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2.5 Experimental Application 

The experimental application was developed by a programmer employed by the DST 

Group.  A screen shot of the application as shown to participants can be seen in Figure 5. 

 

 

Figure 5.  Screenshot of a trial in the face matching application 

 

2.6 Procedure 

This study was conducted in the Applied Cognitive Experimental Psychology computer 

laboratory at the University of Adelaide (room 219 in the Hughes building).  At the start of each 

session, each participant was given a verbal briefing of the study, along with a copy of the 

participant information sheet (Appendix A).  Following this, participants gave their consent by 

clicking on the designated button on the first screen of the experimental interface (Appendix B).  

At this point, each participant was allocated a unique identification number by the experimental 

interface to facilitate data management.  The following screen then collected information about 
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the participants’ demographics, including age, gender and ethnicity, as well as information about 

their vision.  

The next screen contained specific instructions about the face matching task, which were 

also read by the researcher (Appendix D).  After that, participants were required to perform two 

practice tasks (Appendix E).  Performance feedback was given for those trials.  Participants were 

also reminded that they were not looking for identical images, and advised that there will be some 

form of differences between images of the same person.  More importantly, participants were not 

informed of the exact aims of the experiment.  This was to avoid priming the participants, as it 

may have distracted them with a need to be on the lookout for manipulated faces, potentially 

impacting on response time and confidence in particular (Duncan, 2006).   

The next succession of screens were the self-paced experimental trials, with an identical 

interface to the practice trials.  During each trial, participants were presented with a target image 

and a candidate list of eight images – displayed side-by-side, and were required to decide if the 

target was present in the candidate list.  If the target was present, participants had to click on the 

image, if not, they were required to click the ‘not present’ button.  After that, participants were 

asked to rate their confidence in their decision, on a 0% to 100% scale with 10% increments.  At 

the same time, the application recorded the accuracy, confidence and response latency (recorded 

as the time elapsed between the display of the images and when the participant finalised their 

decision) of each face matching decision.  Finally, at the end of the experiment, participants had 

the option of providing their email address to receive overall feedback on their performance. 
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CHAPTER 3 

 

Results 

 

3.1 Data Screening, Assumptions and Test Selection 

Data were screened prior to analysis to check for missing data and to assess normality.  No 

missing data were found.  Half of the variables had a Shapiro-Wilk statistic result of p < .001, and 

some of them were heavily skewed (skewness ranged from -3.21 to 3.08; see Appendix F), so the 

dataset did not meet assumptions of normality.  However, data transformation was not undertaken, 

as the skewness of some of the variables, like confidence, accuracy and response latency, are valid 

representations of the population distribution (Burton, White, & McNeill, 2010).  Hence, non-

parametric tests, which were appropriate for within-subject designs, were used instead.  The 

Wilcoxon sign-rank test was used to assess differences between two groups, while the Friedman 

ANOVA by ranks rest was used to assess differences between more than two groups.  Alpha was 

set as α = .05 with two-tailed significance values for the Friedman ANOVA by ranks tests, while a 

Bonferroni correction was also applied for all post-hoc Wilcoxon signed-rank tests.  Effect size for 

the Wilcoxon sign-rank test was calculated using the formula 𝑟 = 𝑍/√𝑁 , and all effect size 

interpretations were made with reference to Cohen (1988). 

 

3.2 Overall performance 

Tables 1-3 shows the descriptive statistics for accuracy, confidence and response latency 

across all experimental groups.  The responses for both the ‘target present’ and ‘target absent’ 

conditions were combined to form an ‘overall’ score.  The following analyses were conducted 

across the difference between those experimental groups, in respect to the overall scores.  A 

Bonferroni correction was applied such that all post hoc Wilcoxon signed-rank tests were reported 

at a .008 level of significance (two-tailed). 
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Table 1  

Descriptive Statistics for Accuracy (%) by Experimental Groups 

Statistic 2-Image Morphs 8-Image Morphs 16-Image Morphs Control 

M 88.25 95.96 92.86 87.90 

Median 93.00 96.00 93.00 89.00 

SD 10.68 5.57 7.24 10.12 

Variance 114.15 31.00 52.48 102.49 

Minimum 61.00 71.00 61.00 64.00 

Maximum 100.00 100.00 100.00 100.00 

Note. N = 51 for all groups. 

 

3.2.1 Accuracy.  Descriptive statistics suggested accuracy was highest in the 8-Image 

Morphs group, followed by the 16-Image group, 2-Image group and Control group (see Table 1).  

A Friedman ANOVA by ranks test indicated that accuracy was significantly different across all 

four groups (χ2(3) = 46.96, p < .001, W = .31).  Wilcoxon signed-rank tests revealed a large and 

significant difference between the 2-Image Morphs and 8-Image Morphs groups (Z = −4.93, p 

< .001, r = −.69), the 2-Image Morphs and 16-Image Morphs groups (Z = −3.48, p < .001, r = 

−.49), the 8-Image Morphs and 16-Images Morphs groups (Z = −3.54, p < .001, r = −.50), the 8 

images and control groups (Z = −5.31, p < .001, r = −.74), and the 16-Image Morphs and Control 

groups (Z = −3.67, p < .001, r = −.51).  However, no significant difference was found between the 

2-Image Morphs and Control groups (Z = −0.32, p = .75, r = −.045).   

Therefore, overall accuracy was the highest when 8 constituent faces were used to create 

the morph, followed by 16 faces and 2 faces, and the lowest when the control faces (no morphs) 

were used. 
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Table 2 

Descriptive Statistics for Confidence (%) by Experimental Group 

Statistic 2-Image Morphs 8-Image Morphs 16-Image Morphs Control 

M 79.45 83.13 80.14 79.75 

Median 80.71 83.57 78.21 80.00 

SD 11.00 11.53 10.91 11.51 

Variance 121.05 133.05 118.94 132.57 

Minimum 45.00 45.71 47.86 38.93 

Maximum 100.00 100.00 98.93 98.21 

Note. N = 51 for all groups. 

 

3.2.2 Confidence.  Descriptive statistics suggested confidence was the greatest when 

participants were exposed to the 8-Image Morphs group, followed by the 16-Images group, 2-

Images group, and Control group (see Table 2).  A Friedman ANOVA by ranks tests indicated that 

confidence was significantly different across the four groups (χ2(3) = 46.52, p < .001, W = .30).  

Wilcoxon signed-rank tests revealed a large and significant difference in confidence levels between 

the 2-Image Morphs and 8-Image Morphs groups (Z = −5.47, p < .001, r = −.77), the 8-Image 

Morphs and 16-Image Morphs groups (Z = −5.17, p < .001, r = −.72), and the 8-Image Morphs 

and Control groups (Z = −4.66, p < .001, r = −.65).  No significant differences were found between 

the 2-Image Morphs and 16-Image Morphs groups (Z = −1.89, p = .058, r = −.27), and the 8-Image 

Morphs and Control groups (Z = −1.08, p = .28, r = .15), however, they had a medium and small 

effect size respectively.  Additionally, the 2-Image Morphs and Control groups had no significant 

differences and a negligible effect size (Z = −0.52, p = .60, r = −.073).  

 Therefore, overall confidence was the highest when 8 faces were used to create the 

morphed face, followed by 16 faces and control faces (no morphs), and the lowest when only 2 

faces were used to create the morph. 
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Table 3 

Descriptive Statistics for Response Latency (s) by Experimental Group 

Statistic 2-Image Morphs 8-Image Morphs 16-Image Morphs Control 

M 13.26 10.16 11.63 14.35 

Median 12.27 9.83 11.33 13.73 

SD 6.00 3.89 4.85 5.81 

Variance 35.96 15.12 23.54 33.76 

Minimum 4.78 3.89 4.26 4.55 

Maximum 34.60 19.07 25.29 28.33 

Note. N = 51 for all groups. 

 

3.2.3 Response latency.  Descriptive statistics suggested response latency was fastest in 

the 8-Image Morphs group, followed by the 16-Images, 2-Images and Control groups (see Table 

3). A Friedman ANOVA by ranks test indicated that response latency was significantly different 

across all four groups (χ2(3) = 86.53, p < .001, W = .57).  Wilcoxon signed-rank tests revealed a 

large and significant difference in response latency between the 2-Image Morphs and 8-Image 

Morphs groups (Z = −5.62, p < .001, r = −.70), the 2-Image Morphs and 16-Image Morphs groups 

(Z = −4.50, p < .001, r = −.63), the 8-Image Morphs and 16-Image Morphs groups (Z = −4.30, p 

< .001, r = −.84), the 8-Image Morphs and Control groups (Z = −5.98, p < .001, r = −.84), and the 

16-Image Morphs and Control groups (Z = −5.61, p < .001, r = −.79).  There was also a moderate 

difference in response latency between the 2-Image Morphs and Control groups, but the difference 

was not significant (Z = −2.58, p = .01, r = −.36).   

Therefore, response latency was the fastest when 8 constituent faces were used to create 

the morphed face, followed by 16 faces and 2 faces, and the slowest in the control group (no 

morphs). 
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3.3 Hypothesis 1: Participants will be most likely to declare a constituent face a match to its 

morph (commit a false alarm) when two images are used to create the morph, compared 

with other groups 

To investigate this hypothesis, it was necessary to determine if false alarms were highest 

when a simple morphed face (using 2 images) was presented. To achieve this, false alarm rate for 

the 2-Image Morphs group and the three other experimental groups was compared.  Table 4 shows 

the descriptive statistics for false alarm across the groups.  A Bonferroni correction was applied 

such that all post hoc Wilcoxon signed-rank tests were reported at a .017 level of significance (two-

tailed). 

 

Table 4 

Descriptive Statistics for False Alarm by Experimental Groups 

Statistic 2-Image Morphs 8-Image Morphs 16-Image Morphs Control 

M .20 .05 .07 .16 

Median .14 .00 .00 .14 

SD .20 .09 .13 .17 

Variance .04 .008 .02 .03 

Minimum .00 .00 .00 .00 

Maximum .71 .50 .71 .57 

Note. N = 51 for all groups. 

 

The hypothesis predicted that the rate of false alarms would be higher in the 2-Image 

Morphs group.  Descriptive statistics suggested that the false alarm rate was the highest in the 2-

Image Morphs group, compared to the Control, 16-Images and 8ontrol groups (see Table 3).  

Wilcoxon signed-rank tests revealed a large and significant difference in false alarm rates between 

the 2-Image Morphs and 8-Image Morphs groups (Z = −4.82, p < .001, r = −.68), and the 2-Image 

Morphs and 16-Image Morphs groups (Z = −4.49, p < .001, r = −.63).  There was also a moderate 

but non-significant difference between the 2-Image Morphs and Control groups (Z = −1.88, p = .06, 

r = −.26).   
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Therefore, these results did not support the hypothesis.  While the false alarm rate was 

significantly higher when the participant was presented with morphed images made from 2 faces, 

compared to the morphed images made from 8 or 16 images, there was no significant difference 

compared to when the participant was presented with the control faces (no morph). 

 

3.4 Hypothesis 2: As the number of faces used to create a morph increases, it will be harder 

to match a constituent face to its morph  

To investigate this hypothesis, it was necessary to determine if face matching performance 

improves (false alarm and response latency decreases, and confidence increases) when the number 

of faces used to create the morph increases. Measures of false alarm, confidence and response 

latency, within the target absent condition, were compared across the 2-Image Morphs, the 8-Image 

Morphs, and the 16-Image Morphs groups.  A Bonferroni correction was applied, so that all post-

hoc Wilcoxon signed-rank tests were reported at a .017 level of significance (two-tailed).  Table 5 

shows the descriptive statistics for false alarm, confidence and response latency across the three 

groups. 

 

Table 5 

Descriptive Statistics for False Alarm, Confidence and Response Latency by Experimental 

Group, Within the ‘Target Absent’ Condition 

Statistics 

2-Image Morphs  8-Image Morphs  16-Image Morphs 

FA 

(0-1) 

C 

(%) 

RL 

(s) 

 FA 

(0-1) 

C 

(%) 

RL 

(s) 

 FA 

(0-1) 

C 

(%) 

RL 

(s) 

M .20 75.73 18.67  .05 77.48 14.04  .07 76.20 14.66 

Median .14 75.71 16.80  .00 76.43 13.65  .00 75.71 14.48 

SD .20 17.59 9.28  .09 14.09 5.69  .13 13.62 6.62 

Variance .04 309.55 86.21  .008 198.60 32.37  .02 185.38 43.86 

Min. .00 0.93 5.34  .00 34.29 4.22  .00 40.71 4.94 

Max. .71 100.00 57.41  .50 100.00 28.04  .71 99.29 33.60 

Note. N = 51 for all groups. FA = false alarm, C = confidence, RL = response latency. 
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3.4.1 False alarm.  The hypothesis predicted that the false alarm rate will be the lowest in 

the 16-Image Morphs group, followed by the 8-Image and the 2-Image group.  However, 

descriptive statistics suggested false alarm rates were the lowest when participants were exposed 

to images from the 8-Image Morphs group, followed by the 16-Images group and the 2-Images 

group (see Table 5).  A Friedman ANOVA by ranks test indicated that the false alarm rates were 

significantly different across the three groups (χ2(2) = 40.98, p < .001, W = .40).  Wilcoxon signed-

rank tests revealed a large and significant difference in the false alarm rates between the 2-Image 

Morphs and 8-Images groups (Z = −4.82, p < .001, r = −.68), and the 2-Images and 16-Images 

groups (Z = −4.49, p < .001, r = −.63).  There was also a small but non-significant difference 

between the 8-Images and 16-Images groups (Z = −1.26, p = .21, r = .18).  

Therefore, these results did not support the hypothesis. The false alarm rate was not 

significantly different when the participant was presented with morphed images made from 8 faces 

or 16 faces, although the higher false alarm rate with the morphed images made using 2 faces was 

anticipated.   

 

3.4.2 Confidence.  The hypothesis predicted that confidence will be the highest in the 16-

Images group, followed by the 8-Images group and the 2-Images group.  However, descriptive 

statistics suggested that confidence was the highest when participants were exposed to images 

from the 8-Images group, followed by the 16-Images group and the 2-Images group (see Table 5).  

A Friedman ANOVA by ranks test indicated that there was no significant difference in confidence 

across the three groups (χ2(2) = 5.65, p = .06, W = .06).  Wilcoxon signed-rank tests revealed a 

moderate but non-significant difference in confidence between the 8-Images and 16-Images groups 

(Z = −2.05, p = .04, r = .29).  A negligible and non-significant difference also existed between the 

2-Images and 8-Images groups (Z = −0.19, p = .85, r = −.03), and the 2-Images and 16-Images 

groups (Z = −0.19, p = .85, r = −.03).   

Therefore, the results did not support the hypothesis, as there was no significant difference 

in accuracy when participants were presented with morphed faces made from either 2 faces, 8 

faces or 16 faces.   

 

3.4.3 Response Latency.  The hypothesis predicted that response latency will be the fastest 

in the 16-Images group, followed by the 8-Images group and the 2-Images group.  However, 
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descriptive statistics suggested response latency was the fastest when participants were exposed to 

images from the 8-Images group, followed by the 16-Images group and the 2-Images group (see 

Table 5).  A Friedman ANOVA by ranks test indicated that response latency was significantly 

different across the three groups (χ2(2) = 34.16, p < .001, W = .34).  Wilcoxon signed-rank tests 

revealed a large and significant difference in response latency between the 2-Images and the 8-

Images groups (Z = −5.40, p < .001, r = −.76), and the 2-Images and 16-Images groups (Z = −5.31, 

p < .001, r = −.74).  There was also a small but non-significant difference between the 8-Images 

and 16-Images group (Z = −1.11, p = .27, r = −.16).   

Therefore, the results did not support the hypothesis, as response latency was not 

significantly different when the participants were presented with morphed images made from 8 

faces or 16 faces, although the slower response latency with the morphed images made using 2 

faces was anticipated.   

 

3.5 Hypothesis 3: If the same morphed face is placed on alternate images of the same donor 

it will pass as a match (predicting a null effect from the manipulation) 

In order to investigate this hypothesis, it was necessary to determine if face matching 

performance remains the same in the target present condition, regardless of the number of faces 

used to create the morph or whether control faces were used.  In other words, the manipulation 

here was hypothesised to have a null effect.  Measures of hit rate, confidence and response latency 

(target present condition) were compared across the experimental groups.  A Bonferroni correction 

was applied, so that all post-hoc Wilcoxon signed-rank tests were reported at a .008 level of 

significance (two-tailed).  Tables 6-8 shows the descriptive statistics for hit rate, confidence and 

response latency across the groups. 
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Table 6 

Descriptive Statistics for Hit Rate by Experimental Groups, Within the ‘Target Present’ Condition 

Statistic 2-Image Morphs 8-Image Morphs 16-Image Morphs Control 

M .96 .98 .93 .92 

Median 1.00 1.00 .93 .93 

SD .07 .05 .06 .08 

Variance .005 .003 .004 .007 

Minimum .64 .71 .79 .64 

Maximum 1.00 1.00 1.00 1.00 

Note. N = 51 for all groups. 

 

3.5.1 Hit.  The hypothesis predicted that the rate of hits will be equal across all four groups.  

However, descriptive statistics suggested hit rate was the highest when participants were exposed 

to images from the 8-Image Morphs group, followed by the 2-Images group, the 16-Images group 

and the Control group (see Table 6).  A Friedman ANOVA by ranks test indicated that there was a 

significant difference in hit rate across the four groups (χ2(3) = 29.60, p < .001, W = .19).  Wilcoxon 

signed-rank tests revealed a large and significant difference in hit rate between the 8-Images and 

16-Images groups (Z = −3.76, p < .001, r = −.53), and the 8-Images and Control groups (Z = −4.00, 

p < .001, r = −.56), and a moderate and significant difference between the 2-Images and Control 

groups (Z = −3.12, p = .002, r = −.44).  There was also a moderate but non-significant difference 

between the 2-Images and 16-Images groups (Z = −2.63, p = .009, r = −.37), and a small but non-

significant difference between the 2-Images and 8-Images groups (Z = −1.75, p = .08, r = −.25), 

and the 16-Images and Control groups (Z = −0.90, p = .37, r = −.13).  This did not support the 

predicted null hypothesis, as there was a significant difference in hit rate across groups.   
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Table 7 

Descriptive Statistics for Confidence (%) by Experimental Groups, Within the ‘Target Present’ 

Condition 

Statistic 2-Image Morphs 8-Image Morphs 16-Image Morphs Control 

M 86.11 88.78 84.08 85.55 

Median 88.57 91.43 85.00 86.43 

SD 11.34 10.82 10.01 10.23 

Variance 128.63 117.04 100.15 104.73 

Minimum 52.14 57.14 55.00 50.71 

Maximum 100.00 100.00 99.29 100.00 

Note. N = 51 for all groups. 

 

3.5.2 Confidence.  The hypothesis predicted that confidence will be equal across all four 

groups.  Confidence was the highest when participants were exposed to images from the 8-Image 

Morphs group, followed by the 2-Images group, the Control group and the 16-Images group (see 

Table 7).  A Friedman ANOVA by ranks test indicated that there was a significant difference in 

confidence across the four groups (χ2(3) = 43.23, p < .001, W = .28).  Wilcoxon signed-rank tests 

revealed a large and significant difference in confidence between the 2-Images and 8-Images 

groups (Z = −3.54, p < .001, r = −.50), the 8-Images and 16-Images groups (Z = −5.66, p < .001, r 

= −.79), and the 8-Images and Control groups (Z = −3.94, p < .001, r = −.55).  Additionally, there 

was a moderate and significant difference between the 2-Images and 16-Images groups (Z = −2.94, 

p = .003, r = −.41).  There was also a small but non-significant difference between the 2-Images 

and Control groups (Z = −1.61, p = .11, r = −.23), and the 16-Images and Control groups (Z = 

−1.70, p = .09, r = −.24).  This did not support the predicted null hypothesis, as there was a 

significant difference in confidence across groups.   

 

  



25 

Table 8 

Descriptive Statistics for Response Latency (s) by Experimental Groups, Within the ‘Target Present’ 

Condition 

Statistic 2-Image Morphs 8-Image Morphs 16-Image Morphs Control 

M 7.85 6.28 8.60 10.19 

Median 7.01 5.90 7.24 9.50 

SD 4.10 2.84 4.03 4.26 

Variance 16.83 8.06 16.24 18.18 

Minimum 2.66 2.36 3.15 3.46 

Maximum 25.22 13.65 21.80 24.28 

Note. N = 51 for all groups. 

 

3.5.2 Response latency.  The hypothesis predicted that the response latency will be equal 

across all four groups.  Response latency was the fastest when participants were exposed to images 

from the 8-Image Morphs group, followed by the 2-Images group, the 16-Images group and the 

Control group (see Table 8).  A Friedman ANOVA by ranks test indicated that there was a 

significant difference in response latency across the four groups (χ2(3) = 71.47, p < .001, W = .47).  

Wilcoxon signed-rank tests revealed a large and significant difference in response latency between 

the 2-Images and 8-Images groups (Z = −4.77, p < .001, r = −.67), the 2-Images and Control groups 

(Z = −4.58, p < .001, r = −.64), the 8-Images and 16-Images groups (Z = −5.76, p < .001, r = −.81), 

the 8-Images and Control groups (Z = −6.14, p < .001, r = −.86), and the 16-Images and Control 

groups (Z = −3.62, p < .001, r = −.51).  There was also a small and significant difference between 

the 2-Images and 16-Images groups (Z = −2.10, p = .04, r = −.29).  This did not support the 

predicted null hypothesis, as there was a significant difference in response latency across groups.   
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CHAPTER 4 

 

Discussion 

 

This study aimed to understand how the usage of morphed images impacted human face 

matching performance in a simultaneous one-to-many face matching task.  The results were mixed 

in support of the hypotheses.  This discussion will focus on the methodological, theoretical and 

applied implications of the study. 

 

4.1 Overall Performance 

Face matching accuracy and confidence was greatest and response latency was the fastest, 

overall, with the morphed faces made from 8 images, followed by the morphed faces made from 

16 images.  Performance was the worse when 2 images were used to create the morph, and in the 

no morphs control group.  The pattern of results found here were somewhat surprising.  However, 

this can be explained by appealing to the mechanisms of face space, which will be discussed later.   

Moreover, the overall accuracy for all four groups was also very high (ranging from 87.90% 

to 95.96%), compared to the landmark study by Bruce et al. (1999).  This could be due to the 

quality of the images used, as the target images in Bruce et al. (1999) were of comparably lower 

quality, compared to the images used within the current study. Therefore, the images used here 

would contain more featural information, which makes this face matching task much easier. 

 

4.2 Hypothesis 1: Participants will be most likely to declare a constituent face a match to its 

morph (commit a false alarm) when two images are used to create the morph, compared 

with other groups 

There was no significant difference in the false alarm rate when participants were presented 

with morphed faces made from 2 images, compared to the control (no morphs) group, which did 

not support the hypothesis.  The false alarm rates within the control condition were consistent with 

previous studies that looked at unfamiliar face matching in target absent trials, indicating that this 

is not a difficult face matching task (Bruce et al., 1999; Megreya & Burton, 2006, 2007).  Therefore, 

this pattern of results suggests that, contrary to Robertson et al. (2017), the usage of 2-Image 
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morphs is not an effective form of evading detection and allowing the false acceptance of an image.  

This difference in results may be caused by two factors.  Firstly, compared to the current study, 

Robertson et al. (2017) used more difficult face pairs, as participants had to compare faces of 

different sizes and with different backgrounds.  This can increase the rate of false alarms.  Secondly, 

the current study morphed together two random images to create the 2-Image morphs.  As seen in 

Figure 6, this means that the both constituent images could be located anywhere in face space, 

from being near to each other or far apart, with the morphed image lying on the midpoint of the 

vector that joins the two constituent images (Busey, 1998).  When the morph is presented as the 

target image, it samples nearby items in participants’ face space, which allows them to make a 

judgement on similarity (Busey & Tunnicliff, 1999).  If any images in the candidate list are located 

within that nearby region in face space, the participant may falsely select that image as a match.  

However, if the constituent images were located in far apart from each other in face space, they 

may not fall under that sampling region, thus they will not be erroneously chosen as a match.  

Therefore, the inclusion of the constituent faces in the candidate list may have had a varying effect 

on the false alarm rate, and this is supported by the relatively high variance in the 2-Image morphs 

group.   

 

 

Figure 6.  Illustration of how the location of parent faces (P1 to P4) within face space influences 

the location of the morphed faces (M1 and M2; Busey, 1998). 
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More interestingly, the usage of 8-Image morphs and 16-Image morphs resulted in a lower 

false alarm rate.  Again, this can be explained using psychological face space.  Morphed faces are 

usually located closer to the centre of face space (Busey, 1998).  However, Busey (1998) also 

found that morphs which are predicted to be located nearer to the centre of face space, which would 

be the case for morphs made from more than two constituent faces, tend to shift away from the 

centre, making them less typical than predicted.  Therefore, this could have enhanced their 

discriminability, leading to the much lower false alarm rates found in this study.   

 

4.3 Hypothesis 2: As the number of faces used to create a morph increases, it will be harder 

to match a constituent face to its morph 

The hit rate was the lowest, and response latency was the slowest, with morphs created 

using 2 constituent images, followed by those created using 8 or 16 images.  There was also no 

significant difference between all three groups, when comparing their confidence levels.  However, 

lack of a significant difference in confidence levels has a minimal impact on the overall results, as 

previous studies have shown that confidence and accuracy are not related in face matching trials 

where the target was absent (Stephens, Semmler, & Sauer, 2017).   

The reason why 2-Image morphs have higher false alarm rates and lower response latency 

is due to how the candidate list was populated and the location of the morphs in psychological face 

space.  For the 2-Image morphs condition, the candidate list was populated with the two constituent 

faces, and the rest was filled with the six highest matching non-constituent faces.  On the other 

hand, the 8-Image morphs and the 16-Image morphs conditions were populated with the highest 

matching constituent images only.  This created a confound, as it is unknown whether the higher 

false alarm rates could be attributed to the lower number of parent faces used, or the inclusion of 

the non-constituent faces in the candidate list.  As the non-constituent faces were the highest 

matching faces to the morphed face, they could be located closer in faces space to the morphed 

face, compared to the parent image (Busey, 1998).  Therefore, this could have erroneously 

increased the false alarm rates in the 2-Image morphs condition. 

Moreover, the 8-Image morphs and 16-Image morphs groups had no significant difference 

in false alarm rate or response latency, which did not support the hypothesis.  This is due to the 

location of the morphs in face space.  As stated above, with a morph made from two faces, the 

morph is located at the midpoint of the vector that connects both constituent faces (Busey, 1998).  
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The same would apply to morphs made from more than two constituent faces, but in this scenario, 

the morph is hypothesised to be located in a location which equalises the difference between the 

morph and the constituent faces.  As the constituent faces were chose by random, and thus can be 

quite dissimilar, they will be scattered randomly throughout face space.  Therefore, the spatial 

distance between the morph and its constituent faces, on average, will be similar for both the 8-

Image morphs and the 16-Image morphs, resulting in the similar false alarm rates and response 

latency. 

 

4.4 Hypothesis 3: If the same morphed face is placed on alternate images of the same donor 

it will pass as a match (predicting a null effect from the manipulation) 

The hit rate and confidence levels were the highest, and response latency was the fastest, 

with morphs made from 8 constituent images.  Participants also performed better when the 2-

Image morphs and 16-Image morphs were used, although this difference was not significant.  

Therefore, this did not support the hypothesis, as there was a significant difference between the 8-

Image morphs group and the other three groups within all three performance variables (2-Image 

morphs, 16-Image morphs and control groups).  This suggests that contrary to previous 

understandings, the usage of 8-Image morphs actually increased human face matching 

performance when the target image was also present in the candidate list. 

This pattern of results may be explained by the uncanny valley effect, which was not 

accounted for during the construction of the hypotheses.  This effect proposes that people find 

hyper-photorealistic computer-generated faces unsettling, due to their non-human imperfections 

and potential abnormal features (MacDorman, Green, Ho, & Koch, 2009; Seyama & Nagayama, 

2007).  Previous studies have shown that it is easier to discriminate between human-looking faces 

and fake-looking faces (Cheetham, Suter, & Jäncke, 2011).  Therefore, as the matching image for 

each morphed target image is the only non-genuine image within the candidate list, this make it 

easier to select the corresponding matching face, resulting in the higher performance.  Moreover, 

as the number of faces used to make the morph increases, the uncanny valley effect is expected to 

be amplified, as the resultant morphed faces will have a more photorealistic texture and potentially 

distorted facial proportions (MacDorman et al., 2009).  This would contribute to the higher 

performance in the 8-Images morph group, compared to the 2-Images morph group.  However, 

after a certain threshold, the additional faces used to create the morph face would eventually 
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balance out the unnatural features, making the resultant morph face seem more natural (Seyama & 

Nagayama, 2007).  This could reduce the discriminability of the morphed face, potentially 

explaining the lower performance of the 16-Images morphs, as compared to the 8-Images morphs. 

Additionally, the way in which the matching image for the morphed target images was 

created could also have contributed to the higher performance in the 2-Image morphs, 8-Image 

morphs and 16-Image morphs groups, as compared to the control group.  The matching images 

were created by placing the morphed face on alternate images of the same donor head that was 

used in the target image.  The idea behind this process is to mimic the presentation of a candidate 

list in an operational setting, which would include the external features of a face.  This is important, 

as people tend to reply more on external features when matching unfamiliar faces (Butavicius, Lee, 

& Vast, 2006).  Also, this process would have introduced slight variations in pose, expression or 

lighting for the faces themselves.  However, the morphing process could have made those 

differences insignificant.  So, compared to the matching image for the control face, whilst both the 

matching images for the control and morphed faces had differences in the external features, the 

ones used for the morphed faces were much more similar in terms of the face itself.  This would 

have resulted in better face matching performance when the participants were presented with 

morphed faces, and this was reflected in the results.   

 

4.5 Study Implications 

Overall, this study found that the usage of dissimilar morphs does not adversely impact 

human face matching performance, and in some scenarios, can even enhance performance.  

Strangely enough, the results found here contradicted a similar study conducted on facial 

recognition algorithms, which concluded that such algorithms are vulnerable to morphing image 

alterations (Ferrara et al., 2014).  This further highlights the difference in how humans and facial 

recognition algorithms process faces.  Previous studies have found that humans perform better 

when matching difficult face matching pairs, which includes morphs (Phillips & O'Toole, 2014).  

Therefore, it is dangerous to rely just on facial recognition algorithms to perform face matching 

tasks, and that it is vital to continue relying on human input for such tasks.   

While morphs were found to have a minimal impact on human face matching performance, 

this study was conducted within an experimental setting, so there may be a different impact within 

an operational setting.  Therefore, the knowledge gained here can be used to minimise any potential 
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impact from morphs.  Anyone who works in a job that relies on facial identification should be 

trained to recognise morphs, with feedback provided on their performance to maximise learning 

(White, Kemp, Jenkins, & Burton, 2014).   

Additionally, certain policy changes are recommended to reduce any potential usage of 

morphs in identity documents.  Currently, in Australia, applicants are able to hand in their own 

colour photos while applying for a passport or other identity documents (Department of Foreign 

Affairs and Trade, 2017).  Therefore, this system can be potentially abused if the applicant uses a 

morphed face as their application image.  And with the introduction of automated face recognition 

programs for immigration (i.e. SmartGate) in certain airports in Australia, which removes the 

human component in identity checks during immigration or emigration, the potential for abuse 

becomes even more worrying, as such automated systems are especially vulnerable to identity 

fraud via morphed faces (Ferrara et al., 2014).  Therefore, the individuals involved in the 

verification of the applicants’ identity should have additional training in the discrimination and 

recognition of morphed faces.  Alternatively, the authorities involved could request the photograph 

to be taken when the passport application was lodged, to reduce the chances of the authentic 

photograph being replaced by a morphed image.  

 

4.6 Strengths 

A strength of this study was the usage of both the ‘target present’ and ‘target absent’ 

conditions within the study, which was the main limitation of previous research (e.g. Robertson et 

al., 2017).  Additionally, this study also considered differences in confidence levels and response 

latency, which were not included in previous studies (e.g. Robertson et al., 2017).   

 

4.7 Limitations 

One major limitation was the ethnicity of the faces used in this study, which were sourced 

from predominantly Caucasian databases.  This makes the findings here less applicable to face 

matching procedures in ethnically diverse countries, like Australia, where both the image subjects 

and facial reviewers may be of various ethnicities.  Furthermore, while the current study had a 

significant proportion of Caucasian participants (74.5%), it did not consider the effect from the 

own-race bias, which suggests that people perform better on face matching tasks which contain 
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faces consistent with their own race (Meissner & Brigham, 2001).  This could have increased 

performance throughout the study, resulting in higher accuracy and confidence, as well as faster 

response latency. 

Additionally, as stated above, there could be a possible confound in the study design.  

Within the ‘target absent’ condition, the candidate list for the morphs made from 2 constituent 

images was populated with both the two constituent images and the top six matching unrelated 

faces.  This is different from the candidate list for the 8-Images morphs and 16-Images morphs 

groups, which only used all eight of the constituent faces or the top eight matching constituent 

faces respectively.  Therefore, with the difference in the candidate lists, it is unknown whether the 

difference in performance between the 2-Images morphs and the other two groups could be 

attributed to the inherent difference in the morphed faces, or whether it came about due to the 

inclusion of the unrelated faces.  This reduces the validity of the findings in the first and second 

hypotheses.   

 

4.8 Suggestions for Future Research 

Due to the inherent confounds present within the study design, the current study needs to 

be replicated in order to ensure the validity of the findings.  To prevent further confounds, future 

studies should have a one-to-one study design, with the two highest matching faces for each morph 

condition used as the comparison image for non-mated trials.  This should enable equal 

comparisons between groups, allowing for stronger conclusions to be drawn from the study results.  

Additionally, this study was conducted with morphs made from random faces, implying 

that the majority of morphs were made by combining dissimilar faces.  In psychological face space, 

similar faces would be located closer together, compared to dissimilar faces.  The morphs made 

from similar faces would logically be more similar to their constituent faces, compared to those 

created using dissimilar faces.  Therefore, future studies can also compare the performance of 

similar and dissimilar morphs, to see if the usage of similar morphs can pose an even greater 

security risk.   

Another possibility is to get participants to rate the similarity of the 2-Image morphs, 8-

Image morphs, 16-image morphs to their constituent faces, to produce a similarity rating.  The 

process enables the faces to be mapped onto a face space model using multidimensional scaling, 

allowing for the calculation of the relative distance between the morphs and their constituent faces.  
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If the data obtained matches the results from the current study, it will provide more support for the 

interaction of morphed faces within face space, as theorised in the current study.   

 

4.9 Conclusions  

This study aimed to understand the impact of morphed faces on human face matching 

performance within a one-to-many face matching task.  Overall, this study has shown that 

untrained humans performed surprisingly well on this task.  Compared to a control task, the usage 

of morphed faces made from 2 constituent faces did not result in any significant difference in 

performance (accuracy, confidence or response latency) when the target was absent, and actually 

increased performance in the target present condition.  Additionally, using morphed faces made 

from 8 constituent images improved performance across all levels.  However, there was a confound 

present in the study design, which limits the strength and validity of the findings.  Therefore, future 

research could take steps to prevent such confounds, in addition to comparing the performance 

against those using morphs made from similar faces, and use multidimensional scaling procedures 

to locate the morphed and constituent faces within face space.  This study provided the foundation 

for future research to explore the viability of identity fraud through the usage of morphed faces, 

with the hope of reducing the possibility of such potential incidents in operational settings.  
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Appendix D: Instruction Screen Before Practice Trial 
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Appendix E: Practice Trials 
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Appendix F: Testing Normality with Shapiro-Wilk Tests 

 

Variable W P Skewness Kurtosis 

Accuracy 

2 Images Overall 

8 Images Overall 

16 Images Overall 

Control Overall 

 

.90 

.71 

.81 

.88 

 

< .001 

< .001 

< .001 

< .001 

 

-0.88 

-2.39 

-2.00 

-1.06 

 

-0.35 

7.74 

6.79 

0.42 

Hit 

2 Images 

8 Images 

16 Images 

Control 

 

.59 

.51 

.84 

.84 

 

< .001 

< .001 

< .001 

< .001 

 

-2.74 

-3.21 

-0.57 

-1.11 

 

9.17 

13.02 

-0.55 

1.37 

False alarm 

2 Images 

8 Images 

16 Images 

Control 

 

.86 

.63 

.61 

.84 

 

< .001 

< .001 

< .001 

< .001 

 

1.02 

2.93 

3.08 

1.15 

 

0.09 

11.18 

12.19 

0.56 

Confidence 

2 Images Overall 

8 Images Overall 

16 Images Overall 

Control Overall  

2 Images Target Present 

8 Images Target Present 

16 Images Target Present 

Control Target Present 

2 Images Target Absent 

8 Images Target Absent 

16 Images Target Absent 

Control Target Absent 

 

.98 

.95 

.96 

.94 

.92 

.89 

.96 

.94 

.88 

.97 

.98 

.96 

 

.440 

.040 

.088 

.016 

.002 

< .001 

.065 

.010 

< .001 

.134 

.433 

.111 

 

-0.50 

-0.75 

-0.38 

-0.76 

-0.97 

-1.00 

-0.65 

-0.94 

-1.73 

-0.59 

-0.18 

-0.57 

 

0.66 

0.82 

0.04 

1.63 

0.73 

0.33 

0.32 

1.52 

5.84 

0.75 

-0.42 

0.99 
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Variable W p Skewness Kurtosis 

Response Latency 

2 Images Overall 

8 Images Overall 

16 Images Overall 

Control Overall  

2 Images Target Present 

8 Images Target Present 

16 Images Target Present 

Control Target Present 

2 Images Target Absent 

8 Images Target Absent 

16 Images Target Absent 

Control Target Absent 

 

.89 

.97 

.95 

.96 

.83 

.94 

.91 

.94 

.87 

.97 

.93 

.95 

 

< .001 

.129 

.040 

.099 

< .001 

.008 

.001 

.010 

< .001 

.312 

.004 

.027 

 

1.43 

0.42 

0.72 

0.52 

2.04 

0.82 

1.15 

0.96 

1.77 

0.46 

0.94 

0.75 

 

2.58 

-0.49 

0.32 

-0.25 

5.99 

0.15 

1.37 

1.14 

5.07 

-0.30 

0.84 

0.22 

Note. df = 52 for all analyses. SE = 0.33 for all skewness output, while SE = 0.65 for all kurtosis 

output 

 




