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A search for the flavor-changing neutral-current decay Bþ → Kþνν̄ is performed at the Belle II
experiment at the SuperKEKB asymmetric energy electron-positron collider. The data sample corresponds
to an integrated luminosity of 63 fb−1 collected at the ϒð4SÞ resonance and a sample of 9 fb−1 collected at
an energy 60 MeV below the resonance. Because the measurable decay signature involves only a single
charged kaon, a novel measurement approach is used that exploits not only the properties of the Bþ →
Kþνν̄ decay, but also the inclusive properties of the other B meson in the ϒð4SÞ → BB̄ event, to suppress
the background from other B meson decays and light-quark pair production. This inclusive tagging
approach offers a higher signal efficiency compared to previous searches. No significant signal is observed.
An upper limit on the branching fraction of Bþ → Kþνν̄ of 4.1 × 10−5 is set at the 90% confidence level.

DOI: 10.1103/PhysRevLett.127.181802

Flavor-changing neutral-current transitions, such as
b → sνν̄, are suppressed in the standard model (SM) by
the extended Glashow-Iliopoulos-Maiani mechanism [1].
These transitions can only occur at higher orders in SM
perturbation theory via weak amplitudes involving the
exchange of at least two gauge bosons, as illustrated in
Fig. 1. The absence of charged leptons in the final state
reduces the theoretical uncertainty compared to similar b →
sll transitions, which are affected by the breakdown of
factorization due to photon exchange [2]. The branching
fraction of the Bþ → Kþνν̄ decay [3], which involves a
b → sνν̄ transition, is predicted to be ð4.6� 0.5Þ × 10−6,
where the main contribution to the uncertainty arises from
the Bþ → Kþ transition form factor [4].
Studies of this rare decay are currently of particular

interest, as this process offers a complementary probe of
potential non-SM physics scenarios that are proposed to
explain the tensions with the SM predictions in b → slþl−

transitions [5] observed in Refs. [6–11]. More generally,
measurements of the Bþ → Kþνν̄ decay help constrain
models that predict new particles, such as leptoquarks [12],
axions [13], or dark matter particles [14].
The study of the Bþ → Kþνν̄ decay is experimentally

challenging as the final state contains two neutrinos, which
leave no signature in the detector and cannot be used to
derive information about the signal B meson. Previous
searches used tagged approaches, where the second B
meson produced in the eþe− → ϒð4SÞ → BB̄ event is
explicitly reconstructed in a hadronic decay [15–17] or

in a semileptonic decay [18,19]. This tagging suppresses
background events but results in a low signal reconstruction
efficiency, typically well below 1%. In all analyses reported
to date, no evidence for a signal is found, and the current
experimental upper limit on the branching fraction is
estimated to be 1.6 × 10−5 at 90% confidence level [20].
In this search, a novel and independent inclusive tagging

approach is used, inspired by Ref. [21]. This approach has
the benefit of a larger signal efficiency of about 4%, at the
cost of higher background levels. The method exploits the
distinctive topological and kinematic features of the Bþ →
Kþνν̄ decay that distinguish this process from the seven
dominant background categories. These are other decays of
charged Bmesons, decays of neutral Bmesons, and the five
continuum categories eþe− → qq̄ with q ¼ u, d, s, c
quarks and eþe− → τþτ−. The signal candidates are
reconstructed as a single charged-particle trajectory (track)
generated by the kaon, typically carrying higher momen-
tum than background particles. The remaining tracks and
energy deposits, referred to as the “rest of the event”
(ROE), can thus be associated with the decay of the
accompanying B meson. Furthermore, the neutrinos pro-
duced in the signal B meson decay typically carry a
significant fraction of its energy. The resulting “missing
momentum” is defined as the momentum needed to cancel

FIG. 1. The lowest-order quark-level diagrams for the b → sνν̄
transition in the SM are either of the penguin (a) or the box (b) type.
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the sum of the three-momenta of all reconstructed tracks
and energy deposits in the center-of-mass system of the
incoming beams. The specific properties of signal events
are captured in a variety of discriminating variables used
as inputs for event classifiers to separate signal from
background.
This search uses data from eþe− collisions produced in

2019 and 2020 by the SuperKEKB collider [22]. The data,
corresponding to an integrated luminosity of 63 fb−1 [23],
were recorded by the Belle II detector at a center-of-mass
energy of

ffiffiffi
s

p ¼ 10.58 GeV, which corresponds to the
ϒð4SÞ resonance, and contain 68 million BB̄ pairs [24].
An additional off-resonance sample of 9 fb−1 integrated
luminosity, collected at an energy 60 MeV lower than the
ϒð4SÞ resonance, is used to constrain the yields of
continuum events.
The signal and background samples are generated

using a variety of event generators, summarized in the
Supplemental Material [25], with the detector response
simulated by the Belle II Analysis Software Framework
(BASF2) [31], interfaced with GEANT4 [32]. The simulated
Bþ → Kþνν̄ events are weighted according to the SM
form-factor calculations from Ref. [2].
A full description of the Belle II detector is given in

Ref. [33]. The detector consists of several subdetectors
arranged in a cylindrical structure around the beam pipe.
Compared to its predecessor Belle [34], a pixel detector
(PXD) has been added at a minimum radius of 1.4 cm. This
improves the resolution of the impact parameter to about
12 μm in the transverse direction for high-momentum
tracks [35], which helps to reject background events for
this analysis. The PXD is surrounded by a four-layer
double-sided silicon strip detector, referred to as the silicon
vertex detector, and a central drift chamber (CDC). A time-
of-propagation counter and an aerogel ring-imaging
Cherenkov counter cover the barrel and forward end cap
regions of the detector, respectively, and are essential for
charged-particle identification (PID). The electromagnetic
calorimeter (ECL) makes up the remaining volume inside
a superconducting solenoid, which operates at 1.5 T.
A dedicated detector to identify K0

L mesons and muons
is installed in the outermost part of the detector. The z axis
of the laboratory frame is defined as the symmetry axis of
the solenoid, and the positive direction is approximately
given by the incoming electron beam. The polar angle θ, as
well as the longitudinal and the transverse direction are
defined with respect to the z axis. The relevant online event-
selection systems (triggers) for this analysis are based either
on the number of tracks in the CDC or on the energy
deposits in the calorimeter.
The events are reconstructed using BASF2. The trajecto-

ries of charged particles are determined using the
algorithms described in Ref. [36]. Charged particles are
required to have a transverse momentum pT > 0.1 GeV=c,
to be within the CDC acceptance (17° < θ < 150°), and to

have longitudinal and transverse impact parameters with
respect to the average interaction point of jdzj < 3 and
dr < 0.5 cm, respectively. Photons are identified as energy
deposits in the ECL exceeding 0.1 GeV that are within the
CDC acceptance and are not matched to tracks. Each of the
charged particles and photons is required to have an energy
of less than 5.5 GeV to reject misreconstructed objects and
cosmic muons.
Events are required to contain no more than ten recon-

structed tracks to suppress background events with only a
small loss of signal efficiency. Low track-multiplicity
background events are suppressed by demanding at least
four tracks in the event. To further suppress such back-
ground with a negligible loss of signal events, the total
energy from all reconstructed objects in the event must
exceed 4 GeV and the polar angle θ of the missing
momentum must be between 17° and 160°.
The charged particle with the highest transverse momen-

tum in each event, reconstructed with at least one hit in the
PXD, is chosen to be the signal kaon candidate. Studies on
simulated signal events show that the chosen candidate is
the signal kaon in 78% of the cases. Furthermore, the signal
candidate is required to satisfy PID requirements that
suppress pion background. The PID requirements retain
62% of kaons while removing 97% of pions for events from
the signal region, which is defined below. Simulated events
are weighted to correct the dependence of the efficiency of
this selection on the transverse momentum and the polar
angle of the signal candidate, according to the efficiency
observed in data. The remaining charged particles are fit to
a common vertex and are attributed, together with the
photons, to the ROE.
Simulated signal and background events are used to train

binary event classifiers, which are based on the FastBDT
algorithm [37], a multivariate method that uses boosted
decision trees (BDTs). Several inputs are considered for
this process, including general event-shape variables
described in Ref. [38], as well as variables characterizing
the kaon-candidate and the kinematic properties of the
ROE. Moreover, vertices of two and three charged par-
ticles, including the kaon candidate, are reconstructed to
identify potential kaons from D0 and Dþ meson decays,
and variables describing the fit quality and kinematic
properties of the vertices are derived. Variables that are
not well described by the simulation and those that do not
contribute to the separation power of the classification are
removed. This results in a set of 51 training variables,
summarized in the Supplemental Material [25].
A first binary classifier BDT1 is trained on approxi-

mately 106 simulated events of each of the seven consid-
ered background categories and on the same number of
signal events. The most discriminating variables are found
to be event-shape variables, specifically the reduced Fox-
Wolfram moment R1, which measures the momentum
imbalance in the event where the signal tends to be
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imbalanced due to signal neutrinos [39], and the modified
Fox-Wolfram variables that are functions of the missing
momentum and of the momentum of the signal kaon
candidate [40].
To improve the training performance at high BDT1

values, a second classifier BDT2 is trained with the same
set of input variables as BDT1 on events with BDT1 > 0.9,
which corresponds to a signal efficiency of 28% and
a purity of 0.02%. The training is performed using
a simulated background sample of 100 fb−1 equivalent
luminosity (corresponding to a total of 5 × 106 events with
BDT1 > 0.9) and a sample of 1.5 × 106 signal events with
BDT1 > 0.9. An increase of 35% in signal purity is
achieved by the additional application of BDT2 on top
of BDT1, when comparing the performance at a signal
efficiency of 4%. BDT1 and BDT2 use the same set of
FastBDT parameters [37], which are optimized based on a
grid search in the parameter space and are specified in the
Supplemental Material [25].
An additional binary classifier is used to correct for

mismodeling of continuum simulation, following a data-
driven method presented in Ref. [41]. More information
about the implementation is included in the Supplemental
Material [25]. A comparison of simulated continuum
events with off-resonance data shows that the application
of the derived event weight improves the modeling of all
input variables.
A signal region (SR) is defined to be BDT1 > 0.9 and

BDT2 > 0.95 and is further divided into 3 × 3 bins in the
BDT2 × pTðKþÞ space, where pTðKþÞ is the transverse
momentum of the kaon candidate. The bin boundaries,
decided by minimizing the expected upper limit on the
signal branching fraction, are [0.95, 0.97, 0.99, 1.0]
in BDT2 and ½0.5; 2.0; 2.4; 3.5� GeV=c in pTðKþÞ.
Furthermore, three control regions are used to help con-
strain the background yields. The control region CR1
consists of 1 × 3 bins in the BDT2 × pTðKþÞ space,
defined at lower values of BDT2 ∈ ½0.93; 0.95� and using
the same pTðKþÞ bins as the SR. The two other control
regions, CR2 and CR3, consist of off-resonance data with
identical BDT2 and pTðKþÞ ranges and bins as in the SR
and CR1, respectively.
The expected yields of the SM signal and the back-

grounds in the SR are 14 and 844 events, respectively,
corresponding to a signal efficiency of 4.3%. In most of
these background events, a Kþ produced in a D meson
decay is selected as the signal kaon candidate.
To enable the study of other, non-SM signal models, the

fraction of signal events in the SR is studied as a function of
the generated dineutrino invariant mass squared q2. The
efficiency is 13% for q2 ¼ 0 and drops to zero for
q2 > 16 GeV2=c4. The full distribution can be found in
the Supplemental Material [25].
The performance of the classifiers BDT1 and BDT2 on

data is tested by selecting events with a moderate BDT

output of 0.9 < BDT1 < 0.99 and BDT2 < 0.7 in the
ϒð4SÞ on-resonance data and corresponding simulation.
The study confirms the accurate modeling of the BDT
distributions by the simulation for a sample of events that
have similar kinematic properties as signal events, while
containing only a negligible contribution from signal.
The decay Bþ → KþJ=ψ with J=ψ → μþμ− is used as

an independent validation channel, exploiting its large
branching fraction and distinctive experimental signature.
These events are selected in data and Bþ → KþJ=ψ
simulation by requiring the presence of two muons with
an invariant mass within 50 MeV=c2 of the known J=ψ
mass [20]. To suppress background events, the variable
jΔEj ¼ jE�

B −
ffiffiffi
s

p
=2j is required to be less than 100 MeV

and the beam-energy constrained mass Mbc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=ð4c4Þ − p�2

B =c2
p

is required to exceed 5.25 GeV=c2,
where E�

B and p�
B are given by the energy and the

magnitude of the three-momentum of the signal B meson
candidate defined in the center-of-mass system of the
incoming beams. This results in 1720 events being selected
in the data sample at an expected background contamina-
tion of 5%. Each event is then reconsidered as a Bþ →
Kþνν̄ event by ignoring the muons from the J=ψ decay and
replacing the momentum of the kaon candidate with the
generator-level momentum of the kaon in a randomly
selected Bþ → Kþνν̄ event from simulation. The same
modifications are applied to the data and Bþ → KþJ=ψ
simulation. The results are summarized in Fig. 2, where the
distributions of the output values of both BDTs are shown.
Good agreement between simulation and data is observed
for the selected events before (Bþ → KþJ=ψ→μþμ−) and

FIG. 2. Distribution of the classifier output BDT1 (main figure)
and BDT2 for BDT1 > 0.9 (inset). The distributions are shown
before (J=ψ→μþμ− ) and after (J=ψ→=μþ=μ− ) the muon removal and

update of the kaon-candidate momentum of selectedBþ → KþJ=ψ
events in simulation (MC) and data. As a reference, the classifier
outputs directly obtained from simulatedBþ → Kþνν̄ signal events
are overlaid. The simulation histograms are scaled to the total
number of Bþ → KþJ=ψ events selected in data.
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after (Bþ → KþJ=ψ→=μþ=μ−) the modifications. The two-

sample Kolmogorov-Smirnov p values [42] for the BDT1

and BDT2 distributions of simulation and data, after the
modifications, are 7% and 23%, respectively. The ratio of
the selection efficiencies BDT1 > 0.9, BDT2 > 0.95 in
data and simulation is found to be 1.06� 0.10.
The statistical analysis to determine the signal yields is

performed with the PYHF package [43,44], which constructs
a binned likelihood following the HISTFACTORY [45]
formalism. The templates for the yields of the signal and
the seven background categories are derived from simu-
lation. The likelihood function is a product of Poisson
probability density functions that combine the information
from all 24 signal- and control-region bins defined on the
on- and off-resonance data. The systematic uncertainties
discussed below are included in the likelihood as nuisance
parameters that are event-count modifiers with correspond-
ing constraints modeled as normal probability density
functions. The parameter of interest, the signal strength
μ, is defined as a factor relative to the SM expectation and is
determined simultaneously with the nuisance parameters
using a simultaneous maximum-likelihood fit to the binned
distribution of data event counts.
The leading systematic uncertainty is the normalization

uncertainty on the background yields. The yields of the
seven individual background categories are allowed to float
independently in the fit. However, each of them is con-
strained assuming a normal constraint, centered at the
expected background yield obtained from simulation and
a standard deviation corresponding to 50% of the central
value. This value is motivated by a global normalization
difference of ð40� 12Þ% between the off-resonance data
and simulation in the control regions CR2 and CR3 and
also covers the uncertainty on the sample luminosity. The
remaining considered systematic uncertainties may also
influence the shape of the templates. Systematic uncertain-
ties originating from the branching fractions of the leading
B meson decays, the PID correction, and the SM form
factors are accounted for with three nuisance parameters
each to model correlations between the individual SR and
CR bins. The remaining systematic uncertainties arise from
the energy miscalibration of hadronic and beam-back-
ground calorimeter energy deposits and the tracking inef-
ficiency, and are each accounted for with one nuisance
parameter. The systematic uncertainty due to the limited
size of simulated samples is taken into account by one
nuisance parameter per bin per background category. This
results in a total of 175 nuisance parameters.
To validate the fitting software, an alternative approach

based on a simplified Gaussian likelihood function (SGHF)
is developed. Tests of both PYHF and SGHF are performed
using pseudo-experiments, in which both statistical and
systematic uncertainties are taken into account, including
background normalizations. No bias in μ and its uncertainty
is observed, and the p value for the data and fit model
compatibility is found to be above 65%.

Shifts of the nuisance parameters corresponding to the
seven background sources are investigated before μ is
revealed. The parameters corresponding to the continuum
background yields are increased by, at most, one standard
deviation, which confirms that they are not pulled sub-
stantially in the fit given the observed difference in the
normalization of the continuum simulation with respect to
the off-resonance data. The background yields in the bins of
CR2 and CR3 predicted by the fit are found in agreement
with the off-resonance data. No shift is observed for the
parameters corresponding to the background yields from
charged and neutral B meson decays, which are the
dominant contributions in the most sensitive SR bins.
A comparison of the data and fit results in the SR and

CR1 is shown in Fig. 3. The corresponding figure for CR2
and CR3 can be found in the Supplemental Material [25].
The signal purity is found to be 6% in the SR and is as high
as 22% in the three bins with BDT2 > 0.99. Continuum
events make up 59% of the background in the SR and 28%
of the events with BDT2 > 0.99.
The signal strength is determined by the fit to be

μ ¼ 4.2þ3.4
−3.2 ¼ 4.2þ2.9

−2.8ðstatÞþ1.8
−1.6ðsystÞ, where the statistical

uncertainty is estimated using pseudo-experiments based
on Poisson statistics. The total uncertainty is obtained by a
profile likelihood scan, fitting the model with fixed values
of μ around the best-fit value, while keeping the other
fit parameters free. The systematic uncertainty is calcu-
lated by subtracting the statistical uncertainty in quadrature
from the total uncertainty. An additional 10% theoretical
uncertainty arising from the knowledge of the branching

FIG. 3. Yields in on-resonance data and as predicted by the
simultaneous fit to the on- and off-resonance data, corresponding
to an integrated luminosity of 63 and 9 fb−1, respectively. The
predicted yields are shown individually for charged and neutral B
meson decays and the sum of the five continuum categories. The
leftmost three bins belong to CR1 with BDT2 ∈ ½0.93; 0.95� and
the other nine bins correspond to the SR, three for each range of
BDT2 ∈ ½0.95; 0.97; 0.99; 1.0�. Each set of three bins is defined
by pTðKþÞ ∈ ½0.5; 2.0; 2.4; 3.5� GeV=c. All yields in the right-
most three bins are scaled by a factor of 2.
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ratio in the SM is not included. The result corresponds
to a branching fraction of the Bþ → Kþνν̄ decay of
½1.9þ1.6

−1.5 � × 10−5 ¼ ½1.9þ1.3
−1.3ðstatÞþ0.8

−0.7ðsystÞ� × 10−5.
This value is statistically compatible with the measure-

ments performed by previous experiments. Details are
given in the Supplemental Material [25]. The uncertainty
on the branching fraction is used to define a measure to
compare the performance of the individual tagging tech-
niques. Assuming that this uncertainty scales as the inverse
square root of the integrated luminosity [46], the inclusive
approach is more than a factor of 3.5 better per integrated
luminosity than the hadronic tagging of Ref. [16], approx-
imately 20% better than the semileptonic tagging of
Ref. [19], and approximately 10% better than the combined
hadronic and semileptonic tagging of Ref. [17]. Moreover,
the events in the SR differ from the ones selected by the
hadronic and semileptonic tagging so that a statistical
combination of the measurements provides additional
sensitivity. The inclusive tagging approach can be applied
to a variety of decay modes, such as Bþ → K�þνν̄ and
Bþ → τþν, and, because of the increased signal efficiency,
this can be done on smaller data samples than required for
semileptonic or hadronic tagging.
As no significant signal is observed, the expected and

observed upper limits on the branching fraction are
determined using the CLs method [47], a modified fre-
quentist approach that is based on a profile likelihood ratio
[48]. The expected 90% confidence level (C. L.) upper limit
on the Bþ → Kþνν̄ branching fraction of 2.3 × 10−5 is
derived assuming a background-only hypothesis. The
observed upper limit is 4.1 × 10−5 at the 90% C.L. The
full distribution of the determined CLs values is shown in
the Supplemental Material [25].
In summary, a search for the rare decay Bþ → Kþνν̄ is

performed using an inclusive tagging approach, which has
not previously been used to study this process. This
analysis uses data corresponding to an integrated luminos-
ity of 63 fb−1 collected at theϒð4SÞ resonance by the Belle
II detector, as well as an off-resonance sample correspond-
ing to 9 fb−1. No statistically significant signal is observed
and an upper limit on the branching fraction of 4.1 × 10−5

at the 90% C.L. is set, assuming a SM signal. This
measurement is competitive with previous results for
similar integrated luminosities, demonstrating the capabil-
ity of the inclusive tagging approach, which is widely
applicable and expands the future physics reach of Belle II.

We thank the SuperKEKB group for the excellent
operation of the accelerator; the KEK cryogenics group
for the efficient operation of the solenoid; the KEK
computer group for on-site computing support; and the
raw-data centers at BNL, DESY, GridKa, IN2P3, and
INFN for off-site computing support. This work was sup-
ported by the following funding sources: Science Committee
of the Republic of Armenia Grant No. 20TTCG-1C010;

Australian Research Council and research Grants
No. DP180102629, No. DP170102389, No. DP170102204,
No. DP150103061, No. FT130100303, No. FT130100018,
and No. FT120100745; Austrian Federal Ministry of
Education, Science and Research, Austrian Science Fund
No. P 31361-N36, and Horizon 2020 ERC Starting Grant
No. 947006 “InterLeptons”; Natural Sciences and
Engineering Research Council of Canada, Compute
Canada, and CANARIE; Chinese Academy of Sciences
and research Grant No. QYZDJ-SSW-SLH011, National
Natural Science Foundation of China and research
Grants No. 11521505, No. 11575017, No. 11675166,
No. 11761141009, No. 11705209, and No. 11975076,
LiaoNing Revitalization Talents Program under Contract
No. XLYC1807135, Shanghai Municipal Science and
Technology Committee under Contract No. 19ZR1403000,
Shanghai Pujiang Program under Grant No. 18PJ1401000,
and the CAS Center for Excellence in Particle Physics
(CCEPP); the Ministry of Education, Youth, and Sports
of the Czech Republic under Contract No. LTT17020 and
Charles University Grants No. SVV260448 andNo. GAUK
404316; European Research Council, Seventh Framework
PIEF-GA-2013-622527, Horizon 2020 ERC-Advanced
Grants No. 267104 and No. 884719, Horizon 2020 ERC-
Consolidator Grant No. 819127, Horizon 2020 Marie
Sklodowska-Curie Grant Agreement No. 700525
“NIOBE,” and Horizon 2020 Marie Sklodowska-Curie
RISE project JENNIFER2 Grant Agreement No. 822070
(European grants); L’Institut National de Physique
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