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ABSTRACT

Light-curve inversion is an established technique in determining the shape and spin states of an asteroid. However, the front part
of the processing pipeline, which recovers the spin pole and area of each facet, is a non-convex optimization problem. Hence, any
local iterative optimization scheme can only promise a locally optimal solution. Apart from the obvious downsides of getting a
non-optimal solution and the need for an initialization scheme, another major implication is that it creates an ambiguous scenario
— which is to be blamed for the remaining residual? The inaccuracy of the modelling, the integrity of the data, or the non-global
algorithm? We address the last uncertainty in this paper by embedding the spin pole and area vector determination module in
a deterministic global optimization framework. To the best of our knowledge, this is the first attempt to solve these parameters
globally. Specifically, given calibrated light-curve data, a scattering model for the object, and spin period, our method outputs
the globally optimal spin pole and area vector solutions. One theoretical contribution of this paper is the introduction of a lower
bound error function that is derived based on (1) the geometric relationship between the incident and scattered light on a surface
and (2) the uncertainty of the gap between the observed and estimated brightness at a particular epoch in a light curve. We
validated our method’s ability in achieving global minimum with both simulated and real light-curve data. We also tested our

method on the real light curves of four asteroids.
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1 INTRODUCTION

Light curve is a set of time-series brightness data. Such measurement
is usually collected from a consistent source to study its properties.
The variation in the light curve is mainly caused by the shape and
spinning motion of the object. If a light scattering law is assumed,
one can also deduce the scattering property of the surface.

The intensity measurement at each epoch of the light curve is
essentially the disc-integrated brightness of the observed surface.
Russell (1906) laid down the mathematical foundation of such
integration; and concluded that it is not possible to determine the
shape of the asteroid with only light curves observed at opposition
geometry.l A century later, Kaasalainen et al. (1992a), Kaasalainen,
Lamberg & Lumme (1992b) show that by including light curves
at non-zero phase angle geometries and a light scattering law in
the modelling, there are methods in obtaining a shape solution. A
decade after that, a robust light-curve inversion tool was presented
by Kaasalainen & Torppa (2001), Kaasalainen, Torppa & Muinonen
(2001), which is one of the standard tools in today’s asteroid studies.
Even though the tool is commonly associated with asteroids, it can
also be applied to other atmosphere-less bodies (see Kaasalainen
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et al. 1992a). As such, we use the term ‘object’ instead of ‘asteroid’
in our paper for the sake of generality.

Apart from the robustness of the tool, another crucial factor that
motivates its popularity is the accessibility of light curve. In principle,
it is available for all Resident Space Object (RSO) with a ground-
based sensor. Recently, several works (see Friedman & Frueh 2018;
Fan, Friedman & Frueh 2019; Fan & Frueh 2020) started to explore
its potential outside of the asteroid realm, building on top of the
mentioned light-curve inversion tool to reconstruct the shape of
artificial space objects.

The method put forward by Kaasalainen & Torppa (2001) [the
KTM (Authors’ initial) method hereafter] has seen wide applications
in the asteroid research community, see for instance burech, Hanus &
Ali-Lagoa (2018), Durech et al. (2011), Hanu§, Marchis & Durech
(2013), Hanus$ et al. (2011), Vokrouhlicky et al. (2017a), Pravec
et al. (2019), Vokrouhlicky et al. (2017b), Rozek et al. (2019),
Monteiro et al. (2020), Tanga et al. (2015). As of 2021 July, there
are 5715 models, each with unique convex shapes and spin states
recovered with KTM’s method from 3303 asteroids’ light curves.
These models are currently available in the Database of Asteroid
Models from Inversion Techniques (DAMIT) Durech, Sidorin &
Kaasalainen (2010). It is also sometimes referred to as the convex
light-curve inversion tool since the convex shape assumption variant
is the most popular one due to its stability.

Several attempts were made to extend KTM’s method. Vi-
ikinkoski, Kaasalainen & Durech (2015) introduced ADAM, which
combines the disc-resolved data (adaptive optics or other images,
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interferometry, and range-Doppler radar data) and the disc-integrated
data (light curves) to reconstruct asteroid shape models. The
additional disc-resolved data helps in further constraining the shape
of the model. Meanwhile, Durech et al. (2011) incorporated oc-
cultation silhouettes to the convex models reconstructed by KTM’s
method to determine the absolute size of the asteroids.

The inversion quality of KTM’s method relies heavily on the
quality of the light curves — it should be fairly dense, covering the
entire spin period, and observed at diverse Sun-asteroid-observer
geometries. In an attempt to exploit the sparse light-curve data (e.g.
the data collected during the Gaia mission), Carbognani et al. (2012)
investigated a simpler shape representation for the asteroid (which
has fewer parameters) in the inversion process. Their investigation
on several asteroids reveals that the spin poles and periods recovered
with a tri-axial ellipsoid generally agree with KTM’s solutions
with a complex shape. Muinonen & Lumme (2015) further pushed
the ellipsoidal asteroid model by integrating the Lommel-Seeliger
surface reflection model. Along the same line of work, Muinonen
et al. (2015) incorporated the Markov-chain Monte Carlo (MCMC)
analysis to describe the probability density function in the neigh-
bourhood regions of the best-fitting parameters.

The aforementioned ellipsoidal model methods trade speed with
accuracy. Wang et al. (2015) pointed out that the spin pole de-
termination from these methods is unreliable when the asteroid
diverges from the ellipsoidal shape. Hence, Wang et al. (2015)
implemented a similar MCMC analysis on KTM’s method to obtain
an uncertainty assessment for the spin pole and period estimation.
Recently, Muinonen et al. (2020) introduced a novel proposal prob-
ability density function for their MCMC sampler. Their experiments
show that the proposed statistical inversion method provides realistic
uncertainty estimations.

Bartczak & Dudzinski (2018) introduced an algorithm that relaxes
the usual convex-shaped assumption in the light-curve inversion
process. The proposed method, named SAGE, is developed based
on the genetic algorithm. In essence, SAGE generates and evaluates
random shapes and spin-axis mutations in each iteration until a stable
solution is found. Bartczak & Dudziniski (2019) later proposed a
novel assessment method for asteroid models based on sensitivity
analysis. The proposed scheme first generates a large number of
clones given an asteroid model reconstructed by any light-curve
inversion method. Then, the clones that produce similar light curves
(within an error threshold) are retained. Lastly, the largest and
smallest asteroids in the family of clones are used to assign a volume
uncertainty to the assessed model.

Lumme, Karttunen & Bowell (1990)’s work is one of the earliest
methods to estimate the spin pole orientation from zero-phase-
angle light curves. Underpinning Lumme et al. (1990)’s work is the
expression of light curves with the spherical harmonics expansion.
By assuming a tri-axial ellipsoid model, the algorithm searches for
the spin pole parameters expressed in the truncated series with a
non-linear least-squares optimization scheme. The pioneering work
shows that despite the truncation and light-curve extrapolation (to get
zero-phase-angle light curves), its spin pole estimate is only about 5°
off from the real spin pole in their synthetic light-curve experiments.

Recently there has been a growing trend in casting the shape
estimation task as a classification problem and solving it with deep
learning approaches. Linares, Furfaro & Reddy (2020) trained a
Convolutional Neural Network (CNN) to determine the type of space
objects based on the light-curve data alone. Allworth et al. (2021)
shown that transferring the knowledge learnt on simulated light-
curve data helps us to improve the deep network’s performance on
the shape classification task with real light-curve data.
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Figure 1. Left to right: Ground-truths, global solutions from our method,
local solutions from KTM’s method, pink arrows represent the spin poles.
These sub-optimal solutions illustrate the local minima that KTM’s method
converged to when it is poorly initialized.

Assuming all other parameters of the object (e.g. spin period and
scattering parameters) are known, the light-curve inversion problem
with Kaasalainen & Torppa (2001)’s model is a bilinear (non-convex)
problem in the domain of the spin pole and surface area of the object.
Consequently, solving such a problem with any local optimization
method is prone to suboptimal solutions. KTM’s method is one of the
examples. Fig. 1 illustrates some of the suboptimal solutions obtained
with KTM’s method given bad initialization. A systematic initializa-
tion scheme is a common remedy for a local method to increase the
likelihood of obtaining a globally optimal solution. The procedural
steps of running KTM’s method as presented in Kaasalainen et al.
(2001) is summarized in Algorithm 1. Two different steepest de-
scent solvers (with different problem formulations) underpin KTM’s
method. The first one uses a straightforward representation where
the area of each facet is expressed explicitly in the formulation, also
known as the extended Gaussian image (EGI) representation (Horn
1984). It is solved using the conjugate gradient method (CG solver
hereafter). The second one represents the surface’s curvature function
as a spherical harmonics series where the coefficients of the function
series are the variables of interest. It has fewer parameters to be
solved, and uses a Levenberg—Marquardt optimization strategy (LM
solver hereafter). Both the mentioned optimization algorithms can
be referred to in Press et al. (1996)’s work. In essence, the inversion
tool is run multiple times with a set of spin pole initial estimates
{wo}X |, and the model with the lowest fitting error is chosen as the
solution. However, we highlight that an initialization scheme offers
no guarantee in finding a globally optimal solution.

In this work, we introduce a guaranteed globally optimal algorithm
for the spin pole and shape estimation. Specifically, our method
jointly searches for the optimal combination of a spin pole and
surface areas (of a densely sampled EGI) associated with the global
minimum error of the light-curve model proposed by Kaasalainen
& Torppa (2001) (see Section 2 for more details). The proposed
algorithm is built upon the Branch-and-Bound framework (see Horst
& Tuy 2013, chap. 4), one of the well-known deterministic global
optimization methods. To the best of our knowledge, this is the first
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Algorithm 1 Lightcurve inversion algorithm by Kaasalainen et al.
(2001)
Require: I € R, {wo} |, N e R>/, P
1: fork=1,..., Kdo
w}, fi¥ < spherical harmonics LM solver (woy, I, N, P)
: end for
Ck* = argmin({ f715)
: g" < polyhedra conjugate gradients solver (@}, I, N, P)
h < Minkwoski minimization(g*, N)
V, G < convex hull determination(g*, i, N)
: return ., V, G;

i o

attempt to incorporate a global optimization scheme into the light-
curve inversion problem.

The remaining of this paper is structured as follows: Section 2
lays down the formulations of the light-curve inversion problem,
Section 3 details the design of our algorithm and the derivation of
the bounding function; Section 4 presents the conducted experiments,
and we conclude in Section 5.

2 PRELIMINARIES

As stated in Kaasalainen & Torppa (2001)’s work, the observed
brightness /; at each epoch #;, can be expressed as a function of the
areas of the illuminated and visible surfaces,

L =alg, 1

where T represents the transpose operation, g € R” is the area vector,
and the vector a; € R’ embeds the light scattering law and the orien-
tation of the object atepoch #; (see equation 14 for the full expression).
The surface that is not visible and illuminated is nullified with a; =
0 since it does not contribute to the total observed brightness.

Hence, if g is the only unknown, the optimization problem can be
written as follows,

1
1 7
in. L —alg|)”
min (;u a,g|>>
st. geq, 2

where p indicates the choice of norm. Note that the search of g is
constrained within €2,

Q={gecR'|Ng=0.g;,>0,j=1,...J}, (3)

where the matrix N € R**/ packs in J surface normals of the object.
These constraints are sufficient and necessary to ensure that the
object is convex-shaped (see Kaasalainen et al. 1992a). It is clear
from the linearity of the error function within the norm operation and
the constraint functions that (2) is a convex optimization problem.
Hence, the globally optimal g* is guaranteed to be found with any
local numerical solver (e.g. steepest descent method) since any local
optimum is a global optimum in the problem of such nature (see
Boyd, Boyd & Vandenberghe 2004).

Upon solving (2), we obtain the object’s EGI, which is a set
of surface normal vectors N and its corresponding area vector g.
Each convex polyhedron is defined uniquely by an EGI. Given an
EGI, the final shape determination with Minkowski minimization
is another convex optimization problem (see Little 1983). In other
words, the (convex hull) shape reconstruction problem contains two
sequential convex optimization problems, where the global optimal
shape solution is guaranteed to be found.
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However, if the spin pole of the object is unknown, the optimization
problem degrades into a bilinear (non-convex) problem with the
compact form below,

néig. I1—-Awg I,
st. geq, 4

where @ = {A, B} is the spin pole (A and S represent the Euler
angles of the spin pole). The reflectance of the surface is a function
of its spin states [hence the notation A(w), see equations 14 to 17],
alongside other parameters in the light scattering law. There are
two different formulations to the convex shape inversion problem:
(1) solving the facet areas of a triangulated polyhedral shape (4),
and (2) the Gaussian surface density estimation via the spherical har-
monics representation (see Al in the supplementary material). Both
formulations share the same bilinear property — the multiplication
of the spin pole variables and the area vector or the coefficients of
spherical harmonics.

In principle, there is no guaranteed way of obtaining a global
optimal solution when solving a non-convex problem with a local
optimization method. As such, we solve problem (4) with a global
optimization method — Branch-and-Bound (BnB). As an overview,
our proposed algorithm detaches the search for the spin pole and the
area vector of EGI, which is formulated as follows:

min min. ||l —A(w)g |l,,
weS g
st. geq, )

where S represents the domain of @ (detailed in Section 3.3.2). The
outer optimal w is searched with a BnB framework, while the inner
problem is cast as a linear programming (LP) problem (see Nocedal
& Wright 2006, chap. 13).

3 PROPOSED METHOD

Our proposed algorithm is summarized in Algorithm 2. We start
by breaking down the formulation in (5). Then, the bedrock of
our algorithm — the novel lower bound function, is presented.
This section then proceeds with the reformulation to LP problems,
implementation details, and ends with the observational uncertainty
treatment.

3.1 Problem formulation
First, given the following objective function,
fglo)y=I1—-Awg I, (6)

the inner constrained optimization problem (denoted as Py) solves
for the globally optimal g given a particular e,

f(glw),
st. geQ @)

Py : min.
g

Formally, the global solution, denoted as g*, yields the lowest
objective value,

f(g" o) = f(g|w),

On the other hand, the outer optimization problem searches
through the domain of w, denoted as S, in a BnB fashion. Let
f(g* | ) denotes the lowest objective value in (7) for a given w, the
search of the optimal  can be expressed as

min  f(g" | @), )

Vg € Q. (®)
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and similarly,

fg" o) = f(g"lw) YweS. (10)

The solutions ®* and g* are guaranteed to be globally optimal
if and only if both problems (7) and (9) are solved globally. As
mentioned, (7) is a convex problem in which the result is always
globally optimal. The outer problem (9) is solved globally with BnB,
which the details are elaborated in the following section.

3.2 Branch-and-bound (BnB)

Branch-and-Bound is used to search through the S space in a divide
and conquer manner. In short, our algorithm branches the search
space into smaller sub-spaces and prune them using two efficient
bounding functions. Specifically, when w is given as an uncertainty
region, B (details in Section 3.3.2), an upper bound and a lower bound
of the objective value are required to determine if the region should
be searched further. The searching stops when the gap between the
bounds, 7, diminished, which indicates that the global solution (up
to t, which is set to a small value for numerical reasons) is found.

3.3 Bounding functions

We first state the requirements and functions of the bounds. The
upper bound must fulfil the following condition:

7> fg o), (11

which is achieved with any sub-optimal solution. We set it to the
current lowest objective value, f(g* | ®) (Algorithm 2, line 26),
which will decrease progressively each time a better solution is found.

The lower bound, on the other hand, must fulfil the following
condition:

f(&71B) < min f(g" | ), (12)

which the derivation is much more involved. Besides, it has to
converge to f(g | w) as B collapses to a single point,

f(g"1B)— f(g" | ®) when B — o. (13)

See Horst & Tuy (2013)’s work (chap. 4) for a detailed explanation
behind these conditions. In a nutshell, if the lower bound error of a
local region B is higher than the current upper bound error, it implies
the absence of the optimal ®* in this local region, which can be
pruned away safely (see Fig. 2).

There are two prerequisites bounds in the path to deriving
f(g* | B). We first draw attention to the fact that the coefficient
matrix A in equation (6) is a function of @. More specifically,
each entry of A is a composition of two functions, expressing the
(1) scattering law and (2) the relationship of the triplets: surface
normal, illuminating, and observing directions. The ripple effects of
having @ as an uncertainty region B throughout the chain of functions
will be detailed in the following subsections.

3.3.1 Bounding the coefficient matrix, A

Let a;; represents each element of A, expressing the relationship be-
tween the scattering law S;, phase angle «;, and albedo @ ;. Following
Kaasalainen & Torppa (2001), we adopt the linear combination of
Lommel-Seeliger (LS) and Lambert (L) models as the scattering law
of the object, formulated as

aiy = S, gy, (14)

MNRAS 513, 311-332 (2022)

Algorithm 2 Proposed method
Require: I € R/, Ne R*>*/, P, 1, ¢.
1: Uniformly subdivide S into K sub-patches By, ..., By.
2: fork=1,..,K do
3: @ < Centre of By.
4:  Obtain fi(g* | @*) by solving P, in (42)
5 Obtain fi(g* | By) by solving P; in (43)
6: end for
-
8

L k" = argmin({ fi} ).
Lo o fE o)
9: g < Initialise priority queue.
10: Insert {By}X_, into g with priority fi(g* | By).
11: Sort the g entries that share the same f;(g* | By) with fi(g* | @f).
12: while g is not empty do o
13: B <« De-queue top item from q.
14:  Insert B into 7.
15:  while 7 is not empty do

16: B < De-queue top item from z.
17: Uniformly subdivide B into 4 sub-patches By, ..., Bs.
18: fork=1,..,4do
19: ! <« Centre of By.
20: Obtain fi(g* | ®@*) by solving P, in (42)
21: Obtain fi.(g* | Bx) by solving Ps in (43)
22: if f(g*|®) — f(g*|By) <t then
23: Terminate.
24: end if -
25: if fi(g" | ©f) < f then
26: O <o f<— flglo
27: end if -
28: if fug* |B) < f
and §) > ¢ and 88 > ¢ then
29: Insert By into ¢ with f(g* | By)
30: end if -
31: end for

32:  end while

33: end while

34: Obtain g* by solving P; in (42) with ®.

35: h < Minkwoski minimization(g*, N).

36: V, G < convex hull determination(g*, h, N).
37: return @ as w*, V, G;

where the combination of LS and L models is

Si (Ma'j), ui, Oli) = f(a) [SLS (Ma'j), ng)) oS (M””, Mg”)]

1
_ 15
4 + c) )

= fle) n pg” <
where the f{a;) is the phase function,” ¢ is a weight parameter, ;¥ and
Mg’ ) are the cosine similarities between surface j (n;) of the object,
and the directions of the Earth and Sun (at epoch i), respectively.
They are formally expressed as

(@)
obj

e = sl nj. (16)

w = eg - nj,

2 fla) = Ap exp(%) + ka + 1, Ag and D are the amplitude and scale length
of the opposition effect, and & is the overall slope of the phase curve.
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Figure 2. The domain of @ visualized with the contour of the objective function f(g* | @). The light curves are simulated with a rhombicuboctahedron spinning
with the axis sitting at the coordinate A = 25°, # = 15° (where the global minimum is), highlighted by magenta ‘+’. Both the red and blue squares illustrate

two sub-patches B. Assume that the current upper bound f is determined with the @, in the red sub-patch, the blue patch then will not be branched further since

the lowest error within that region, f (g | Bpue), is higher than the current £.

Note that the locations of the Sun(s) and Earth(e) are given in the
(ecl)iptic coordinate (object-centred inertial frame). Hence, they have
to be rotated to the (obj)ect’s coordinate (where the z-axis is aligned
with the spin pole, alongside its corresponding X and y axes). We
adopt the same Euler angle rotation sequence (Z-Y-Z),

o

Uiy = Relo + =5~ (1 — )R, (90" — BIR-()v(), (17)

where ¢ is the initial orientation angle (with its corresponding epoch
to), t; represents the i-epoch, v € R3 represents the e and s vectors,
and Ry (0) is a rotation matrix formed with 6 with the k-axis,

cos(0) sin(@) 0

R.(0) = | —sin(@) cos(@) O], (18)
0 0 1
cos(@) O —sin(0)

R,(0) = 0 1 0 . (19)
sin() 0  cos(9)

When the Euler angles (A and ) representing the spin pole
are allowed to perturb within an uncertainty region, % and 1}’
naturally follow suit. Such uncertainty ripples to the top of the
relationship, leading to uncertain a;. A bottom-up explanation
approach will be adopted from here on, where we start from bounding
1% and ug” and eventually determining the interval of a;;.

3.3.2 Bounding | and g

The construction of the search space of A and 8 will first be explained,
followed by the range of u and 1 as a function of the size of the
uncertainty region.

The entire search space of both A and g is a 2D rectangular patch,
which we denote as S from here on. The long sides of the patch
(representing 1) range from 0° to 360°, while the short sides (repre-
senting B) ranges from —90° to 90°. Note that every point within the
boundary of S can be mapped to a unique rotation matrix under the Z-
Y-Z Euler angles rotation sequence as formulated in equation (17) if
the left-most rotation matrix (i.e. R, (¢o + %(zi — 1p))) is replaced
with an identity matrix (since it is a constant in our context). On the
A boundary of the patch, the mapping is 2-to-1 (i.e. a cyclic boundary
condition, R, (A = 0°) = R, (A = 360°)).

The search space is then branched into smaller sub-patches as the
algorithm proceeds. Each sub-patch (we denote as B) is defined by
a centre point ®. = {\., B.}, along the half side-lengths 6A and §8.
The illustration of both S and B can be seen in Fig. 2.

Given a sub-patch as described above, the goal is to determine the
uncertainty intervals of both x and 1. Note that since both & and ¢
share the same mathematical properties, we continue the following
discussion based on p only, where & denotes the upper bound, and
w denotes the lower bound. Also, the indices are removed without
the loss of generality for the sake of compactness.

The first step is to determine how much can e, be rotated within
a given patch. Thus, we first restate an important lemma in Hartley &
Kahl (2009)’s work, which was used in numerous works (see Yang
etal. 2015; Parra Bustos et al. 2016; Li et al. 2020; Liu, Parra & Chin
2020) as the cornerstone to derive rotation-dependence bounding
functions.

LEMMA 1. Foranyv € R3, let R, and Ry be two rotations in SO(3),
and / be the angular distance between them, lying within the range
of 0° < 0 < 180°, the angular distance between the two rotated v,
denoted as Ryv and Ryv, is upper bounded by the angular distance

MNRAS 513, 311-332 (2022)
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Figure 3. Contour plot of O« as a function of 81 and §8 with the centre
point (A¢, B.) aligned to origin.

between R and R,, formally as
Z(Ryv, Ryv) < Z(Ry, Ry), (20

where the angular distance between two 3D vectors is ex-
pressed as Z(Rjv, Ryv) = arccos((Ryv)TR,v) and the angular dis-
tance between two rotation matrices is expressed as Z(R;, Ry) =
arccos((trace(R;TR,) — 1)/2). The equality is achieved when the
axis of the relative rotation R;TR; is perpendicular with v.

Based on Lemma 1, our goal now is to compute the largest angular
distance between the centre of a given patch (®.) and the furthest
point on the patch, which we denote as @, from here on. We note
that the relative angular distance between two rotation matrices can
be expressed in terms of their relative Euler angles with the formula
below [see equations (B1) to (B13) in the supplementary appendices
for the derivation],

cos(Z(Ry., Ry,))

1
= 5(1 + COS(ﬁC - ﬂr))(COS((AC - )\r) + (¢c - ¢r)))

1
+ E(COS(BC — B — 1), 2D

where R, = R.(¢)R,(90° — B.)R (L), and R,, with its corre-
sponding Euler angles. Since ¢. — ¢, = 0 in our context (no
uncertainty since the spin period P is given), it is clear that
Z(Rg,, Ry,) is directly proportional to the distances between the
A and B pairs (i.e. B — Br and A, — A;) provided that the distances
are not greater than 180°. We translate this result to our problem in
equation (22).

c0S(Omaxg) = %(1 + cos(8))(cos(5A)) + %(COS(Sﬂ) —1). 22)

Given any sub-patch B from the search space S, the maximum relative
rotation angle (from . ), denoted as O, is a function §8 and A
since they are the furthest angular distances from @.. Conveniently,
the maximum half side-lengths (§8 and 6A) of the search space are
90° and 180°, respectively (with the full side-lengths being 180°
and 360°, respectively). g 1s plotted as a function of §8 and SA
in Fig. 3, which illustrates its monotonic property as both variables
depart from the origin.

Up to this point, we have shown the maximum angular distance
that ey (or R, e.q more explicitly) can cover when the spin pole
is given as a patch (w., §1, and §8). We then move on to derive the
upper and lower bounds of u in the following theorem.

THEOREM 1. (Uncertainty of the incident and scattering angles)
Given a surface normal n € R, a patch with w. in its centre, and
Omaxp as the maximum relative angular distance as derived earlier,

MNRAS 513, 311-332 (2022)

R'ur el

]
wr Cecl
wr_Sec

we Cecl

Ror eed

B wr Secl

Figure 4. The construction of the uncertainty region of p and g, and
consequently the range of A. The upper bound of both 1« and 1 is obtained by
pushing the viewing and the illuminating vectors closer (represented by the
cyan vectors) to the surface normal n. On the other hand, the lower bounds are
formed with the angles between the magenta vectors and the surface normal.
The red square patches enclose the actual uncertainty regions of both vectors,
which are circumscribed by the cones defined by the blue vectors and the
angle Omaxg -

the upper and lower bounds of |1 can be expressed as follows:

= cos(y), (23)

wherey and y are derived from the triangle inequalities between n,
Ry e, Ry, €cct, and R, e as follows:

Z(llw,-eeclv n) =< Z(ch €ecl,s n) + Z(ch €ecl,s R(ureecl)
=< Z(ch €ecl, Il) + emax[B = Y (24)

Z(l{;,‘_eecla n) > Z(ch €ccl,s ﬂ) - 4(cheecla R;,,reecl)
> A(ch €ecl, l’l) - emax[B =Y, (25)

and equality is achieved when all three mentioned vectors lie on the
same plane.

Proof. When n is not encapsulated within the uncertainty region,
R;,reecl and R, e represent the closest and furthest rotated e. from
n in terms of angular distance. The first line of both equations (24) and
(25) state the triangle inequality between them in the angular distance
metric space. Utilizing Lemma 1, we replace both the second terms
with their upper bounds, namely 6y,xp- OJ

Fig. 4 illustrates the construction of the bounds. It depicts a
minimum enclosing cone formed with 6y, that includes all possible
R, €. within B. We highlight that it also showcases the scenario
where equality of both equations (24) and (25) is achieved.

In practice, there are two exceptional cases to Theorem 1 that need
to be handled: (1) when n lies within the uncertainty region, and (2)
when the closest vector (or the furthest vector) in the uncertainty
region is more than 90° away from n. Both of them are handled in
the piece-wise functions below:

0° emax[B > Z(ch €ecl, Il)
90° Z(Ry,ects ) = Omaxp > 90° (26)
Z(Ry, €cc1, ) — Omaxp  Otherwise

— 90° Z(l:(ce)ceecla n)+ gmaxﬂa > 90°
Z N {Z(ch €ecls n) + emax[B otherwise

<l
Il

@7
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Figure 5. Contour plot of equation (14) as a function of x and .

In words, when the uncertainty region covers n (i.e. Opnaxp >
Z(Ry, €cl, 1)), the smallest angular distance is obviously 0. When
Z(Ry eecr, n) > 90°, it is clipped to 90° (surface that is not facing
the Earth). The same clipping range is applied to both the upper and
lower bounds of y too.

ai; = S, ", 0w
ay = S, w ), a)w; (28)

Ultimately, we state the bound of A in equation (28). Intuitively, the
upper bound of a;; is achieved by pushing the viewing direction (and
the illuminating direction) at epoch i towards surface j and distancing
them for the lower bound. This aligns with the geometrical property
of the Bidirectional Reflectance Distribution Function (BRDF) — the
irradiance (radiance) of a particular surface is indirectly proportional
to the angle between the incident (viewing) direction and the surface
normal. Fig. 5 illustrates the contour plot of a; with v and g as the
axes.

This sums up the first main theorem of our paper. We highlight
that this bounding function is derived based on only the scattering
geometry, where the other component of the scattering law, such
as the phase function (see equation 15), is a constant. Its generic
property opens up potential application to other scattering laws (e.g.
the Hapke model).

3.3.3 Bounding each residual term, t;

Now that each a;; is allowed to perturb within a bounded range
(a;; < a;j < ay)), each row of A (denoted as a;) perturbs in an area
enclosed by a hyper-disc? defined by the centre point a; and the radius
pi* where p; := || 8a; |2, and 8a;; = max(@;; — a;j, a;; — a;;). Asa
result, there is a family of residuals given any g. To formally express
this, let r € R’ be the residual vector of the original problem Py,
where r;(g) = | ; — a] g |. Now a; is given as an uncertainty vector,
r;(g) consequently exists in a range, formally as

ri(g) e {lli — (a; +8a;)Tg | || da; 2= pi}. (29)

3Note that the hyper-disc is a looser region than the actual uncertainty region
that we state in equation (28). It is loosen for the derivation of the residual
lower bound in equation (30).

#Note that p; is a function of the uncertainty region B, we denote it as p;
instead of p; (B) here for the sake of compactness. There is no loss of generality
since p; can be any arbitrary number.
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Recall that our main goal is to achieve f(g* | B), i.e. the smallest

objective value in the uncertainty region B. Hence our mission here
is to derive an expression for the lower bound of (29), which leads
to the second main theorem of this paper.

THEOREM 2. (Lower bound of the residual set) For any given g, the
lower bound of the residual when a; is allowed to perturb within the
radius p; is expressed as follows:

min |l; — (a; + éa;))" g
l8aill2=pi

>max(|li—a;"g|—pi |1 g12,0):=r;(g]p) (30)

Proof. Here we show the step-by-step derivation of (30).

min |l —(a; +8a;)7g |

l8a;ill2<pi
= min | —aTg) —da;"g | G
ldaill2=pi
> min ||l —a;Tg|—|8a;" g || (32)
llda;ll2=<pi
> min |l —a7Tg|—18a;" g|. (33)
lldaill2<pi

The reverse triangle inequality is first used in equation (32) to lower
bound the original absolute operation. Then, in equation (33), the
outer absolute operation is removed, enlarging the output space to the
negative realm, which is a lower bound to the previous line. However,
equation (33) is unnecessarily loose since our original problem Py is
zero-bounded from below. Hence, we introduce a clipping operation
(max(., 0)) to tighten the lower bound function in the derivation steps
below.

min |ll — (ai +6(l,’)Tg |

l8aill2=pi
Zuamuin max(|l; —a;" g | —138a;7 g1,0) (34)
aill2=pi
T g
>max(|li —a;T g | — | pi g1,0) (35)
I gl
=max(|li —a;" gl —pi | gll2,0) (36)

Subsequently, the upper bound of the second term in equation (34)
(8a;T g) is of interest to get RHS to its lower bound. Maximizing
the dot product of two vectors (da; and g) hints the leverage of
the Cauchy-Schwarz inequality, which states that the upper bound
is achieved when both the vectors share the same direction. Hence,
da; is substituted with piﬁ in equation (35) (with p; being the
largest magnitude of the said direction). Subsequently, the absolute
operation for the second term is removed since p; is always positive,
which then followed by some simple algebras to arrive at the last
line. (Il

By minimizing the norm of the residual vector r with its element
expressed in equation (30), we are essentially solving for g that gives
the smallest residual with an uncertain A. The formal expression of
the lower bound minimization problem is as follows,

mén. f(g1p®)

st. g e, (37)
where f(g | p(B)) is explicitly as
S lp®)=1rglo®)Il,

1

i=1

(38)
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1 P
(Z(maxq L~ ai (@078 | — pi(B) | g . 0))?) .
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Figure 6. A 2D illustration of the original objective function f(g | @) and two
of its underestimators f(g | pi(B)) and f(g | pi(B), n). Note that f(g | p:(B))

is only convex in 1D.

Note that problem (37) is similar to the robust least-squares (RLS)
problem (E1 Ghaoui & Lebret 1997), with the main difference being
RLS aims to optimize for the upper bound of the residual instead.

3.4 Convexity of the lower bound minimization problem

The global minimum of problem (37) is guaranteed only if the
objective function is convex. Unfortunately, the subtraction of the
quadratic term stands in the way of convexity. To circumvent this,
we introduce (1) a linear under-estimator to equation (30), (2) and
a quadratic constraint to the solution space of g. The details and
rationales of the solution are explained in the theorem below.

THEOREM 3. (Linear underestimator of the lower bound of the
residual set) Let r; be

ri(g | pi,m) =max(|l; —a;" g | —np;,0), (39)

then, ri(g | pi.m) <ri(g | p) Vg e{geR |l gl<ngel

Proof. 1Tt is trivial to see that for any g with its 2-norm smaller (or,
equal to) than 7, the second term of equation (39) is always larger
(or, equal to) than (30).

By replacing the residual function in (38) with our new result
(Theorem 3), the problem is formulated as below

P : m;n- Sl p®),n
st. gel, (40)

similarly, f(g | p(B), n) is explicitly as

S 1p@®),n) =Ilrg|p®),n ll,

I 7
= (Z(maxq i — a;(@)7g | —npi([BxO))P) ,

i=1
(41

where' ={g e R’ | | g l.<1n,Ng =0,g;,>0,j=1,..,J}1n
words, the goal now is to minimize the underestimator of the lower
bound function (30). Trivially, the optimized objective value in (41)
(denoted as f(g* | p(B), n)) is lower than (or, equal to) (38) (denoted
as f(g* | p(B))), which implies the fulfillment of the lower bound
requirement (12). We refer to Fig. 6 for the visual comparison
between all three objective functions over g.
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Now the next crucial proof needed is the convexity of problem P;.
There are three main components: (1) the convexity of the objective
function f(g | p(B), 1), (2) the newly added quadratic constraint does
not yield a non-convex feasible region, and (3) it does not exclude
the optimal solution to the original problem Py.

LEMMA 2. f(g|p(B),n) =l max(|l —Ag|—np@),0)|,isa
convex function of g.

Proof. Inorder to prove the lemma above, it is necessary to prove that
each of the operations preserves convexity (see Convex Optimization
by Boyd et al. 2004, chap. 3). We note that all the following operations
preserve convexity:

(i) the underlying linear function of g, i.e. I — A g,

(ii) the absolute norm operation of the first term, i.e. |/ — A g|

(iii) the subtraction of a convex function with a constant, i.e.
1 p(B),

(iv) the point-wise maximum between two convex functions, i.e.
[l —Ag|—np)and0,

(v) the outer p-norm operation.

O

LEMMA 3. All three constraints of problem P; form a convex
feasible region.

Proof. First, we prove that all the constraints are convex functions
(which define convex sets). Then, we utilize the fact that the inter-
section of convex sets yields a convex set (see Convex Optimization
by Boyd et al. 2004, chap. 2).

Both g > 0 and Ng = 0 are linear constraints, hence, are convex
functions. The newly added quadratic constraint can be rewritten
as |lgll, —n <0. Note that all norm operations preserve convexity,
which yield the first term, ||g]l, a convex function. Subtraction of a
convex function with a constant 7 yields another convex function.

Since all the constraints are convex constraints (defining convex
sets), and the intersection of convex sets is a convex set, it is sufficient
to prove that the intersection of these regions is not empty. It is trivial
to see that all these regions contain the origin, {0} (i.e. g = 0 fulfill
all three constraints), hence, the intersection set contains at least the
origin, which is not empty. 0

LEMMA 4. Let g* be the global solution in Q2. There exists a positive
scalar n such that g* € QN T.

Proof. We note that the feasible region defined by I" expands as 7,
increases. Hence, as n approaches infinity, the constraint essentially
cover the entire domain space of g, which has to cover g*. U

We provide an illustration of the feasible region of g in 2D in
Fig. 7. The intersection region lies on the red line (Ng = 0) within
the blue circle (||gll, < n).

Here we conclude that the lower bound of the objective value,
f(g* | B), is achieved by solving P; in (41). The global minimum
is guaranteed owing to its convexity property. The above sums up
the second main result of this work. Note that although both of the
presented theorems couples as one lower bound function for our BnB,
we highlight that both of them can be employed individually. On the
one hand, Theorem 1 (Uncertainty of the incident and scattering
angles) can be leveraged to determine the ranges of the incident and
scattering angles when the orientation of the surface is uncertain.
On the other hand, Theorem 3 (Linear under-estimator of the lower

220z AeI Z| uo Jasn aplejapy o Asioniun Aq $869159/L LE/L/ELS/I0IME/SEIUL/WOO"dNO"OlWapede//:Sdny WOy papeojumoq


art/stac198_f6.eps

0.7 .

1.2
0.6

1
0.5 J

0.8

X

92

03 \ ]
92> 0
02t \ 0.4
01y p4 Mo.2
/ a1 =0
O L L I
0 0.2 0.4 0.6
91

Figure 7. A 2D illustration of the feasible region with the constraints in
problem P; (40). The contours lines represent the lower bound objective
function equation (41). Three constraints are represented as (i) the non-
negative constraint of g is visualized by the two black arrows, (ii) the convex
shape constraint Ng = 0 is depicted by the red line crossing the origin, and
lastly, (iii) the inner pointing blue arrow indicating the feasible region within
the blue semicircle defined by the quadratic constraint ||g||, < 5. The overlap
of three feasible regions lies on the red line within the blue semicircle. The
three pointers (magenta “x’, black ‘x’, and green ‘+) represent three optimal
solutions under different constraints, (1) magenta ‘x’ is the optimal solution
with just constraint (i), (2) the black ‘x’ represents the optimal solution with
constraints (i) and (ii), and (3) the green ‘+’ is the optimal solution with all
three constraints.

bound of the residual set) is useful in the context of minimizing the
best case residual when there is uncertainty in the coefficient matrix
of a linear residual function.

3.5 Convergence of f(g* | B) towards f(g* | w)

The last important criteria of f(g* | B) is that it has to converge
to f(g* | @) when B collapses to a singleton (condition 13). Since
the sub-patch B gets smaller each time we branch it, 61 and §8
reduce progressively and approach zero as a result and so does Oyaxg-
Following the chain of events, the upper and lower bounds of u
converges to 1, which in turn collapsing the perturbation range of A,
and finally p as a function of the range of A. When p converges to
0, it is obvious to see that the objective function of P; is equivalent
to P, 0-

3.6 Reformulation of Py, and P;

Since the choice of norm does not affect the convexity of both
problems, we choose the L; norm and reformulate both problems
into linear programming problems, (i.e. Py into P, and P into P3).

I
P> mgl:z Zri
st. I —ai(w)'g
=l +ai(w)'g < —r; Vi,
Ng =0,
g; >0 Vj. (42)

IA
=

Globally optimal light-curve inversion — 319

I
P in. i
5
st. li—ai(@)'g —np;(B) <1,
—li +ai(®)"g —noi(B) < —r;,

ri ZO vl,
Ng =0,
g =0 Vj 3)

We first highlight that the convex shape constraints are enforced
during the search instead of a post-hoc implementation as detailed in
Kaasalainen et al. (2001)’s work. A couple of tricks were leveraged
in the process of reformulation. First, since the residual vector are
bounded below by zero, L; norm is equivalent to a summation of
all elements in the residual vectors. Next, we highlight that r is now
a parameter to be minimized, and introduces a set of non-linear
inequality constraint | /; — a;Tg | < r; for problem Py. Fortunately, it
can be linearized with a split into /; — a;7g < r; and —[; + a;,7g <
—r;. Similar steps are applied to the residual vector within the max
operation in problem P;. We then replace the max(, 0) operation by
constraining each r; element to be non-negative. The major change
that requires more explanation is the omission of the quadratic
constraint ||g|l, <n in (43). We detail below why the mentioned
constraint can be enforced in a post-hoc manner without affecting
the optimality of the solution.

LEMMA 5. Let g* be the minimizer of problem P; without the
quadratic constraint ||g|l; < n, and let g* be the minimizer with
the constraint being enforced. If | " 2= n, then f(&" | p(B), n) >

f@1 p(B). ).

Proof. The following axioms in the field of convex optimization can
be leveraged to show that this is indeed the case.

(1) The minimizer of a convex optimization problem is always the
global solution with the minimum objective value.

(i) The objective value of a convex optimization problem strictly
increases away from the global minimum.

As such, if the minimizer g* lies on the boundary of the constraint
(i.e. || £° llo=n), there are only two possibilities: (1) the global
minimum happens to lie on the constraint’s boundary (based on
axiom 1), or (2) the global minimum lies outside of the constraint
(based on axiom 2). If the second scenario is true, its objective value
has to be higher than the minimizer obtained without the constraint,

. O

The implication of Lemma 5 is that the quadratic constraint
(llgll2 <n) can be enforced via a constraint violation detection
mechanism. In other words, if the 2-norm of the solution that we
obtain from solving P; is less than 7, the solution is optimal.
Otherwise, n has to be increased, and P; has to be solved again.
We refer to Fig. 7 to aid the understanding of Lemma 5 and its proof.
The magenta ‘x’ indicates the solution for the unconstrained form of
problem P;. When the Ng = 0 constraint is in place, the black ‘x’
is the optimal solution. The green ‘X’ on the other hand represents
the solution when the norm constraint (||gll, < n) is added. This
figure depicts the scenario where the norm constraint has excluded
the solution black ‘x’. As discussed, such a scenario can be easily
detected by checking the 2-norm of the solution, and there is a
positive n that will enlarge the feasible region to include the black
‘X’ (see Lemma 4). Hence, we conclude that ensuring the 2-norm of
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Table 1. Comparison of both methods on the simulated light-curve data. Best results in bold. The averaged (avg) and (best) results over eight
runs with different initial spin pole estimates are reported for KITM’s method.

L 4ps error

L aps error Spin vector error (°)

SNR Shape KTM (avg) KTM (best) Ours KTM (avg) KTM (best) Ours KTM (best) Ours
- Cube 6.5019 0.7351 0.0072 0.4472 0.0512 0.0006 0.8062 0.0087
Cuboid 60.0885 0.6134 0.035 4.0992 0.0427 0.003 0.1 0.0087
House 12.4994 0.2245 0.012 0.8738 0.0152 0.001 0.2 0.0087
Rhombi. 4.6472 2.6091 0.0021 0.3266 0.1841 0.0002 179.8 0.0019
50 Cube 8.9137 2.5767 2.4151 0.5015 0.1731 0.1691 0.9 0.7319
Cuboid 64.1378 9.8968 9.7723 43414 0.6553 0.6695 0.1 0.217
House 13.3325 2.9868 2.9283 0.9255 0.1931 0.1985 0.2236 0.3016
Rhombi. 8.9137 7.8779 7.243 0.5991 0.5298 0.5621 173.5055 1.0621
25 Cube 8.7606 5.2103 5.1241 0.5943 0.3386 0.3529 1.2806 0.3689
Cuboid 68.9347 18.0556 17.7927 4.6864 1.2031 1.2323 0.1 0.1366
House 16.5097 5.8274 5.7197 1.1658 0.3887 0.4081 1.2083 0.221
Rhombi. 16.6287 16.3688 15.1368 1.1389 1.122 1.1784 122.7271 171.0698

the area vector solution obtained from solving P; to be lower than n
is equivalent to solving P; as a whole.

3.7 Implementation details

Here we elaborate the practical details of our method. It
was written mainly in Matlab R2019a. Both the LP problems
(P, and P3) are solved with the simplex method (Dantzig
1990) implemented by Gurobi.> All the experiments were run
in an Ubuntu 20.04 machine with 24 Intel i9 CPU cores
@3.5GHz.

We took advantage of the parallelizable trait of our algorithm
to reduce runtime. We notice that the early stage of our algorithm
deals with mainly uncertainty regions with large patch size (in
terms of dA and §8), which is expected to produce 0 lower bound
f(g" | B). Hence we first divide the entire spin pole search space
into K sub-patches with its centre points being 5° apart. Since
the solving of P, and P3 for each sub-patch has no dependence
with each others, we call the ‘parpool’ command in Matlab and
execute them (see line 2 to line 6 in Algorithm 2) in parallel with
12 workers.

Then, the queue is formed and sorted with f(g* | B) and f(g* | w).
Another practical observation that we made is that the optimal
solution tends to stand in the front part of the queue. As such, we
employ the depth-first search searching strategy to go through each
entry of the queue (line 15 to line 32). The quicker the upper bound
decreases, the more aggressive the pruning process is, which results
in a faster completion speed.

Another minor trick we employed is the same straightforward
parallelization to line 18 to 31. Instead of pruning at each instance
(line 28), we solve P, and P; in batch and perform the pruning
afterwards. We emphasize that these are not exhaustive efforts to
speed up our algorithm. Highly sophisticated techniques can be
employed to speed up our algorithm further (see Herrera et al.
2017).

3.8 Observational uncertainty
There are several commonly adopted methods in treating the observa-

tional uncertainty in the light-curve inversion problem. Kaasalainen

Shttps://www.gurobi.com/
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et al. (2001) pointed out that the spin states and shape solutions are
robust to random noise and emphasis the treatment on systematic
and model errors. The authors suggested running the optimization
multiple times with different initial estimates and scattering laws to
get a lower bound on the error estimates. Hanus et al. (2011) created
‘mock’ models based on the best-fitting model and used them to
generate virtual light curves. The authors then performed inversions
based on these virtual light curves to get a distribution of the spin pole.
Muinonen et al. (2015) and Muinonen et al. (2020) incorporated the
observation uncertainty as the weights to each of the measurement
points in their optimization schemes. On the other hand, Wang
et al. (2015) estimated the uncertainties of the spin parameters
by using the virtual solutions method. Similar to the treatment
proposed by Hanus et al. (2011), the authors generated virtual light
curves by adding Gaussian noise to the original light curves. The
mode and 1-sigma of the virtual solutions’ distribution are used
as the spin pole prediction and the error estimate of the studied
model.

Here we present two uncertainty treatments of our proposed
method. First, we adopt the weighted optimization scheme of
Muinonen et al. (2015) and Muinonen et al. (2020), the residual
function in equation (2) takes the following form when each
of the measurement uncertainty in a set of light curve (o;) is
considered,

1
rp = — l,'—ll;-rg . (44)
Oj
In this variant, the lower bound of the residual function (equation 39)
is expressed as

1
r, = max (—|li—a,?g \ —npl-aB),O) (45)
. p

The addition of a constant scaling term o; does not affect the
convexity of both residual functions.

Secondly, we adopted the generic method discussed
by Wang et al. (2015) in our experimental section to
estimate the wuncertainty in the presence of Gaussian
noise.

4 EXPERIMENTAL RESULTS

We conducted several experiments to evaluate the effectiveness
of our method in determining the globally optimal solution. Both
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Figure 8. Visualization of the ground truths and the results of both methods (top rows: KTM’s method, bottom rows: our method). From left to right: cube,
cuboid, house, and rhombicuboctahedron. These polyhedrons and their respective spin poles (in pink arrow) are depicted in the ecliptic coordinate.

the simulated (with and without noise) and real light-curve data
were used in the experiments. We compare against KTM’s method
since it is, in principle, a baseline of our method. In the real
light-curve experiments, we also compare our solutions with the

currently recognized models in DAMIT. This section begins with the
nitty-gritty of both methods (i.e. hyperparameters and convergence
criteria), followed by the metrics used in our benchmark, and lastly,
the results and findings.
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Figure 9. Continuation of Fig. 8.

Table 2. Comparison of KTM’s and our method. Only the calibrated light curves are used in this controlled experiment (both as input and evaluation).
The grid search variant (of our method) has the same solution and error values with our method. Best results in bold.

L aps error L aps error A° B° time (s)
Asteroid KTM Ours KTM Ours KTM Ours KTM Ours KTM Ours Grid search
(90265) 2003 CL5 2.6454 1.9753 0.1895 0.1557 199.9 26.4 87.1 71.72 1399 127 22176
(54827) 2001 NQ8 5.0682 4.3125 0.2933 0.2718 2414  241.72 —47.6 —48.59 124 543 142273
4.9865 4.2555 0.2872 0.2677 241.1 2414 —47.6 —48.91 397 541 142322
(60744) 2000 GB93  4.9865 2.7602 0.3139 0.2139 66.8  205.16 —94.6 —69.84 255 245 59421
(56232) 1999 IM31  4.3982 3.3958 0.265 0.2261 52.1 92.03 —78.1 —65.47 142 372 90065

Table 3. Comparison of the DAMIT models and our models on the entire set of light curves (with a
combination of both calibrated and non-calibrated light curves) from real asteroids. Our models were
reconstructed based on the calibrated light curves only while the comparing models used the entire
set of light curves. Best results in bold.

Asteroid Model Ljye) error Loy error A° B°
(90265) 2003 CL5 1734 9.9565 0.7439 11 70
Ours 10.4342 0.8809 26.4 71.72
(54827) 2001 NQ8 1794 16.476 0.8244 72 —49
Ours 17.4471 0.8471 241.72 —48.59
1795 19.5059 0.9244 242 —46
Ours 17.9249 0.8651 241.4 —48.91
(60744) 2000 GB93 3111 7.8543 0.4012 202 —69
Ours 9.7017 0.5328 205.16 —69.84
(56232) 1999 IM31 3125 8.1212 0.4966 190 —80
Ours 7.3416 0.4686 92.03 —65.47
4.1 Hyperparameters and convergence criteria in Section 4.4. In the simulated light-curve experiments (Section 4.3),

we empirically found that 15 produces better results.

4.1.1 KTM’s method The second hyperparameter is the number of unit vectors we

The first set of hyperparameters is the degree and order of spherical sample for EGI, which 1‘ needed f(?r both solvers in. KTM’s metho.d
harmonics for the LM solver. It is documented that setting both to 6 is and our method. In the simulated l}ght-(.:urv e experiments, we set 1t
a good choice, which we followed in our real light-curve experiments to 288 (6 rows per octant as described in the documentation) + X,
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Figure 10. Spin pole distributions of the virtual solutions. Legends: Grey ‘o’
represents the virtual solutions, magenta and green ‘X’ represent the DAMIT
models and our optimal models, respectively.

where X is the number of facets that the current estimating shape
possesses. The surface normal of the current shape is included (in
the matrix N) so that the globally optimal area and spin pole solution
is associated with zero residual, which is the best evidence for the
global minimum. In the real light-curve experiments, we again follow
the recommendation by the algorithm’s documentation, setting it to
800 unit vectors (10 rows per octant).
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Figure 11. Continuation of Fig. 10 for (54827) 2001 NQ8. Top figure depicts
the distribution with the scattering parameters of model 1794, and the bottom
figure corresponds to model 1795.

We ran KTM’s method as we have described in Section 1 — getting
the best outcome out of eight different runs with the initialization
scheme proposed by the authors. The initial estimates of the spin
poles are A = {45°, 135°, 225°, 315°}, B = {45°, —45°}, evenly
distributed across the entire domain. Note that all other parameters
(e.g. spin period, scattering parameters etc.) apart from the spin
pole and the area vectors are fixed. We allowed both solvers to be
run until convergence, i.e. the discrepancy of the objective values
between consecutive iterations is smaller than 10~'! in all our
experiments.

4.1.2 Our method

There are three hyperparameters in our method — 7, ¢, and 1. The
termination threshold for the discrepancy between the upper bound
and the lower bound is denoted as t, while ¢ represents the smallest
patch size before we stop branching a particular region B. We set 7 to
107", and ¢ is set to 0.01° for the simulated light-curve experiments
and 0.28° for the real light-curve experiments. On the other hand, n
is a part of the lower bound equation (equation 30); it was chosen
according to the problem at hand. We start with a small value (n =
2) and increase it if the optimal solution is excluded (as explained in
Section 3.4). For the simulated data experiments, the 1 for cube,
cuboid, house, and rhombicuboctahedron are 3, 11, 5, and 3.2,
respectively. For the real data experiments, n = 2 is found to be
sufficient to include all optimal solutions.
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4.2 Metrics

When only calibrated light curves are involved, we report the L ps
and L, fitting errors as they are the objective functions in our and
KTM’s method, respectively. Lj s error is expressed as

1

L e1T01r = E

i=1

l(i) _ l(i)

mea est

. (46)

and the L, error, also known as the least-squares error, is expressed
as

1

. N 2
> (Ma-12) @)

i=1

Ly, €1ror =

where I, and Iy are the measured and the estimated light-curve,
respectively.

When comparing with the DAMIT models, we report the relative
errors L and Ly, since (1) the entire set of light curve is used
where there is a mix of both calibrated and relative light curves,
and (2) the models in DAMIT are scaled to unit volume. The main
difference between the relative and the absolute metrics is that the
mean magnitude of each light-curve set is scaled to unity. As such,
the absolute magnitude information is removed, which implies that
two same convex shapes with different scales will produce the same
light curve. Formally, L, and L, are expressed below,

W
L error = E E

w=1i=1

i (wi)
el e

; (48)

(w) 7(w)
R

est

I
i=

w (wi) i) 2
mea est
L2rel €Iror = E E ZTTY) - ﬂT) 5 (49)
w=li=1 \ ‘gt est

where l:(n"gl and lﬁ? represent the mean brightness in w-th set of light
curve in the measurement and estimation, respectively.
As for the spin vector error, we compute the relative rotation

distance with
Z(Rg, Reg) = arccos((trace(Ry TReg) — 1)/2), (50)

where Ry and R. are formed with Euler rotation angle sequence
(Z-Y-Z) as expressed in equation (17) with the corresponding A and
B (the left-most R, is replaced with identity matrix). The lower is
better for all the aforementioned metrics.

4.3 Simulated light-curve experiments

We used the light-curve simulator and the implementation of KTM’s
method from the DAMIT data base. Four different convex polyhe-
drons were generated — cube, cuboid, house, and rhombicuboctahe-
dron. The spinning poles were randomly generated. Since we assume
that these bodies rotate with a fixed axis, we ensure that each spinning
pole aligns with the correct principal inertia axis. We sampled 328
timestamps and the locations of the Sun and Earth from the real light
curve of the asteroid Ariadne (from DAMIT) for all the light curves
that we simulated.

4.3.1 Light curve without noise

Given clean light curves, our method manages to converge to
practically O objective value (see Table 1) with the correct spin
poles (see fig. C1 in the supplementary appendices for the spin pole
estimates of both methods) for all shapes. The numbers align with
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Table 4. Spin pole uncertainty estimates from the virtual solutions. The
mean spin pole (X and ) and 1-o error estimate are obtained from the major
solution clusters, see Figs 10 and 11 and text for more references.

Asteroid Pole A° B°
(90265) 2003 CLS5 1 719 £ 2.56 26.84 + 4.87
(54827) 2001 NQ8 1* 7249 + 0.49 —50.73 £ 1.67
2% 242 + 0.92 —49.18 £ 1.73
1#* 7241 + 0.64 —50.52 + 1.88
2# 242.07 £+ 0.95 —49.14 £+ 1.76
(60744) 2000 GB93 1 181.66 + 4.41 —66.33 £ 2.32
2 201.81 & 2.65 —69.38 £ 1.92
(56232) 1999 IM31 1 93.27 + 7.33 —64.31 £ 3.68

Notes. *Scattering parameters of model 1794.
#Scattering parameters of model 1795.
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Figure 12. Convex shape models of asteroid (90265) 2003 CLS.

the reconstructions as depicted in Figs 8 and 9. Note that the shapes
and their spin poles are visualized in the ecliptic coordinate system.
These results showcase the ability of our method in converging to
globally optimal solutions. We report both the average and the best
error metrics of KTM’s method to show its reliance on initialization.
Besides, we report that the degree and order of spherical harmonics
series has an influence on the convergence of KTM’s method too. We
found that when setting it lower than 15 (the maximum hard threshold
in the software), most of the runs converged to worse solutions.
Rhombicuboctahedron is the most complex shape among the four
shapes. The best spin pole solution of KTM’s method is in the
opposite direction of the ground-truth spin pole, which is reflected
in the spin vector error column of Table 1 (179.8°). As a result, it
has the highest fitting errors (Ljaps = 2.61 and Ly,ps = 0.18) among
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Figure 13. Convex shape models of asteroid (54827) 2001 NQS.

all comparing shapes. In order to verify that this is the failure of
KTM’s method (specifically, the LM solver) in converging to the
global minimum, we ran a controlled experiment where we ran the
LM solver under two different settings. In the first setting, we fixed
the spin pole parameters to the ground-truth and solve for only the
Gaussian surface density. In the second one, we initialize the LM
solver with evenly distributed spin poles as described earlier and
solve for both the spin pole and the Gaussian surface density. We
found that the shape solution from the first setting is significantly
better than the second setting, i.e. Ljaps: 0.9518 versus 3.3763 and
Lyaps: 0.0714 versus 0.2324, which clearly indicates that the LM
solver fails to converge to the better set of spin pole and shape
solutions when the spin pole parameters are not fixed. Interestingly,
one of the runs in the second setting, initialized closest to the ground-
truth, converged to A = 29.8°, B = 15.1° (ground-truth spin pole is A
=25°, B = 15°), with a slightly higher fitting errors (L; .5 = 3.7955
and Ly, = 0.2654) than the best solution. This experiment proves
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our point that the convergence of a local method to a global minimum
is not guaranteed despite an initialization strategy.

4.3.2 Light curve with noise, SNR = 25, 50

Given noisy light curves, with the signal-to-noise ratio (SNR) of 50
and 25, our method achieves the lowest L, errors in all experiments.
This result is consistent with our previous results, showcasing the
ability of our method in achieving global minimum. Note that the
global minimum in the L s space does not correspond to the global
minimum in the L,,s space; this explains the lower L, s errors of
KTM’s method.

The convex shapes and the spin pole orientations of both methods
closely resemble the ground-truths of the cube, cuboid, and house
shapes. These results demonstrate the robustness of light-curve
inversion against random noise in the measurements, which aligns
with Kaasalainen & Torppa (2001)’s findings.

Lastly, we highlight that there are a lot of local minima in the
residual space of rhombicuboctahedron, as illustrated in the four big
valleys in Fig. 2. We associate this to the symmetrical property of the
shape, and the low inclination orbital plane (Kaasalainen & Lamberg
2006). When there is random noise in the light curves, one of these
local minima in the clean light curves turns into the global minimum,
which explains the large discrepancies between the ground-truth spin
poles and the solutions of our method. In such cases, the spin vector
error is not a meaningful comparison metric.

4.4 Real light-curve experiments

Real light-curve experiments were conducted to examine the practi-
cal aspects of our method. We selected four asteroids from DAMIT
with sufficient calibrated light curves for our experiments. There are
three main results presented in this section. The goal of the first
experiment is to validate the ability of our method in achieving the
best L, fit results when given the same set of hyperparameters
and calibrated light curves to both methods. Since we use only the
calibrated light curves, we compare the solutions with the absolute
light-curve fitting errors (i.e. Liups and Lo,ps), see Table 2. In the
second experiment, we present the comparisons between our models
and the currently recognized models in DAMIT (obtained with
KTM’s method by different authors). One major difference between
the two is that the DAMIT models were inverted based on a larger set
of light curve (both calibrated and non-calibrated). In this experiment,
we compare both methods on the entire set of available light curves,
which consists of both calibrated and non-calibrated light curves. As
such, we use the relative fitting errors L. and L. metrics in the
comparison, see Table 3.

In both of the experiments, we adopted the same set of hyperpa-
rameters (i.e. sidereal spin period P, initial epoch 7y, initial angle ¢,
and light scattering parameters (amplitude a, width d, and slope k of
the phase angle function for Lambert + Lommel Seeliger scattering
model) that are reported in the DAMIT data base (see Section 5).

We highlight that all of the in-depth comparisons will be made
on the second experiment since those models were reported by third
parties and are currently recognized in the DAMIT data base. The
first experiment can only be seen as a controlled experiment since the
choice of the exclusive hyperparameter in KTM’s method (i.e. the
degree and order of spherical harmonics for the LM solver) might be
sub-optimal. Nevertheless, the controlled experiment is necessary to
ensure our models are indeed the global minimum solutions given
the same set of light curves and common hyperparameters.
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Figure 14. Convex shape models of asteroid (60744) 2000 GB93.

In order to get the uncertainty estimations of both the spin pole
(A, p) and the area vector of EGI (g), we performed a Monte Carlo
simulation by running our method on 3000 virtual light curves for
each asteroid. Following Wang et al. (2015), we added Gaussian
noise to the original light curves with the standard deviation of the
fitting error of our best-fitting models.

The summarization of all the results and visualization is as follows:
Table 3 tabulates the fitting errors and spin pole solution, Figs 10
and 11 visualized the spin pole distributions, Table 4 tabulates the
major clusters in these distributions, Figs 12—15 visualized the each
reconstructed asteroid, Fig. 16 depicts the distributions of each EGI,
and finally, Figs 17 and 18 illustrates the generated light-curves of
each comparing model.

(90265) 2003 CLS5 is one of the largest asteroids in the young
Datura family. The details of its photometric observations process
can be referred to in Vokrouhlicky et al. (2017b). The collection
has 16 (out of 18) calibrated light curves which we fed into our
algorithm. Our spin pole solution (A = 26.4°, B = 71.72°) in general
agrees with Vokrouhlicky et al. (2017b)’s model — model 1734 (A =
11°, B =70°). The L and Ly errors and spin pole solutions are
tabulated in Table 3. The simulation results are visualized in the first
row of Fig. 10. The mean and 1-o uncertainty of the major cluster
is A = 26.84° £ 4.87, B = 71.9° £ 2.5, which is close to both of
the comparing models. However, the spread-out distribution of the
virtual solutions around the north pole region illustrates the poorly
constrained nature of the light curves. Vokrouhlicky et al. (2017b)
also reported similar findings.

Fig. 12 compares the convex shapes of both methods. The top
panel of the figure is viewed from the positive axes and the bottom
panel from the negative axes. The shades in the convex model
figures in this paper illustrate the brightness of each surface when
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Figure 15. Convex shape models of asteroid (56232) 1999 JM31.

they are observed and illuminated from the same direction, modelled
with the light scattering law in equation (14). Both convex models
share the same elongated feature. The uncertainty of the EGI can
be seen in the first row of Fig. 16. The unit vectors (of the EGI)
in northern and Southern hemisphere are projected on the left and
right polar scatter plots, respectively. Due to its dependence on the
spin pole’s orientation, plotting the EGI of all virtual solutions is
meaningless due to the spread-out distribution of the spin pole
solutions. Hence, we plot only the sets of EGI associated with
the spin pole solutions that lie within the tabulated pole clusters
(Table 4) to show the neighbouring solutions of our best-fitting
model.

The polar scatter plots in Fig. 16 convey two information: the
range of area magnitudes of each unit vector and its frequency
of being ‘turned on’ (i.e. larger than zero). The grey ‘blobs’ are
the products of stacking each individual solution of different sizes.
The size of each unfilled circle is the product of its unique area
solution and the (globally) normalized frequency of the particular unit
vector. The black circles represent the EGI of our best-fitting model.
They are scaled by the same normalized frequency factors as well.
Consistent among the (considered) virtual and best-fitting solutions
of this asteroid, the unit vectors of the second and fourth segments are
being turned on more frequently with significant larger area values,
which again highlights the elongated shape along its equator.

In terms of light curves fitting, model 1734 fits the measurements
better, with a positive gap of 0.4777 and 0.137 in terms of Lj
and L., respectively. We associate this to the two missing light
curves in our input subset. To better illustrate this, we plot the light
curves produced by both models at various observing geometries
in Fig. 17. The aforementioned missing light curves are visualized
in the top row of Fig. 17, where our model has a worse fit than
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Figure 16. EGI uncertainty plots. The EGI of the virtual solutions are
visualized with grey circles. The size of each circle is determined by the
area magnitude and the turned on frequency of the unit vector. See the text
for more details. The black circles represent the best-fitting EGI.
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model 1734. The second row illustrates the contrary instead, where
our model has a better fit. The light curves generated by the virtual
solutions are used to generate the 1-o error bar and envelope in
the plot. Consistent with previous observations, the error bars are
significantly larger in the missing light curves. The same observations
are repeated in every comparison, which we omit in the rest of this
section.

The results of the controlled experiment can be seen in Table 2.
Our model has a better fit in both L;., and L;,,s metrics, with a
positive margin of 0.6701 and 0.0338, respectively.

(54827) 2001 NQ8’s details and its photometric observations
process are elaborated in Vokrouhlicky et al. (2017a)’s work. The
collection has 13 (out of 20) calibrated light curves which we used
in the inversion process. Vokrouhlicky et al. (2017a) reported two
possible solutions — model 1794 and 1795. The former’s spin pole
solution is A = 72°, B = —49°, and the latter is A = 242°, =
—46°. Both solutions are associated with different light scattering
parameters. Model 1794’s scattering parameters are a = 0.44, d
= 0.14, k = —0.71, and model 1795’s scattering parameters are
a = 0.36, d = 0.11, k = —0.78. We performed inversions with
both sets of scattering parameters and obtained two very similar
solutions (A = 241.72°, § = —48.59° and A =241.4°, = —48.91°).
Among the four models, model 1794 has the best light curves
fit, with a clear margin of 0.9711(L;,) and 0.0227 (L,.) to the
second-best model (our model). Model 1795 has the worst fitting
errors among them. Since both of our solutions are essentially
the same, we compare only one of them with the best model
(model 1794) in the light curves plots (see third and fourth rows of
Fig. 17).

The top and bottom distribution plots in Fig. 11 were obtained with
model 1794’s and model 1795’s scattering parameters, respectively.
There are two distinct clusters in both distributions, covering the
pole solutions of both DAMIT models and our model. The uncer-
tainty is small, i.e. less than 1° for A, and less than 2° for g. It
shows that the light curves constraint the model pretty well apart
from the 180° ambiguity in A. It is interesting that almost all the
virtual solutions lie on Pole 2, i.e. A &~ 242°, B ~ —49°, which
is a strong indication that the calibrated light curves favour this
solution.

Fig. 13 visualizes the convex shapes of three different models
(model 1794 in the first row, model 1795 in the second row, and our
solution with spin pole orientation A = 241.72°, f = —48.59° in the
third row). Since the shapes were drawn with a fixed coordinate, we
can see that model 1794 differs from model 1795 and our model by
roughly a sign flip owing to the ~180° difference in 1. The EGIs
of the virtual solutions can be seen in the second row of Fig. 16.
In general, the uncertainty plots indicate that the asteroid possesses
surfaces of diverse directions with significant distributions on the 60°
to 150° and 210° to 330° regions.

In the controlled experiment, KTM’s method converge to essen-
tially the same spin pole solution (approximately A = 241°, 8 =
—48°) with both set of scattering parameters. The result aligns with
the distributions of our virtual solutions. The positive margins of
our models are 0.7557(0.731) and 0.0215(0.0195) in terms of L s
and Ly, respectively (bracket for the result with the scattering
parameters of model 1795).

(60744) 2000 GBY3 is the primary asteroid in the asteroid pair
(60744). Its details are covered in a comprehensive asteroid pairs
study by Pravec et al. (2019). 14 out of 19 of its available light
curves are calibrated. We compare our solution with the only
reported model — model 3111, in which the spin pole orientation is
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Figure 17. Real light-curve measurements and generated light curves with the DAMIT models, our best-fitting models, and the virtual solutions from our
Monte Carlo simulation (see the text for details). Legends: red ‘0’ represent the real light-curve measurement, magenta and green ‘o’ represent the light curves
generated by the DAMIT model and our best-fitting model, respectively. The light curves generated by the 3000 virtual solutions are used to generate the 1-o
error bar and envelope (black dots). Furthermore, « is the angle between the Sun and Earth vectors, ¥ is the angle between the north pole and Earth’s direction
(¥, for the Sun’s direction) in the object-centred ecliptic coordinate.
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Figure 18. Continuation of Fig. 17.

A = 202°, B = —69°. Our spin pole solution (A = 205.16°, B =
—69.84°) agrees greatly with the mentioned model. Both comparing
models again lie in the same distribution (second row in Fig. 10),
ie A =201.89°+2.68, f = —69.42° 4 2.04. The other significant
distribution is nearby (A = 181.71° +4.3, B = —69.42° 4-2.04),

separated by a notable gap. Similar to (90265) 2003 CLS5, the spread
of the virtual solutions around the southern pole indicates the poor
constraint nature of the light curves.

The reconstructed convex shapes of both models look alike at the
coarse level (see Fig. 14), but a closer look reveals the lower level
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Figure 19. Spin pole distribution of (54827) 2001 NQ8 with varying EGI
resolutions. The zoomed-in of the distribution is drawn on top of the entire
domain.

differences, especially in z—x(middle) and y—x(right) views. The EGI
plots in the third row of Fig. 16 reveal the major distributions near
the asteroid’s northern and southern poles. The larger equator facets
can be seen in the distributions near the 30° and 210° segments. It
shares a similar larger facets attribute with (90265) 2003 CLS.

With the lack of five missing light curves (with dense measure-
ments) in our inversion process, our model has a clear negative
margin of 1.8474 and 0.1316 in terms of L, and L,,|, respectively.
Such margins are well reflected in the first row of Fig. 18 (the missing
light curves), where our model demonstrates an observable looseness
with the measurements. The second row shows the contrary, where
our model fits better with the light curves in our subset. In the
controlled experiment, our model has clear positive margins in both
absolute fitting errors, 2.2263 and 0.1 in terms of Ljas and Lo,ps,
respectively.

(56232) 1999 JM31 belongs to an asteroid pair as well, which is
also covered in Pravec et al. (2019)’s work. 17 out of 19 of its light
curves are calibrated. Again, we benchmark our method against the
only reported model — model 3125, in which the spin pole orientation
isA=190°, B = —80°. Oursolutionis A =92.03°, = —65.47°, with
a large disagreement in A. The major cluster of the virtual solution is
located at A = 93.36° £ 8.67, f = —64.39° + 3.72 (see third row of
Fig. 10). Similarly, there is a spread of solutions ranging from —55°
to —80° in B and 150° to —170° in A.

Naturally, the convex shapes of both models differ significantly as
depicted in Fig. 15. The area distribution of this asteroid is crowded
on the middle to equator part of the shape (see the fourth row of
Fig. 16). In general, the shapes are made of smaller facets distributed
in various local regions.

Both fitting errors favour our model with a positive margin of
0.7796 and 0.028 in terms of L, and L;., respectively. In the
controlled experiment, our model has a positive margin of 1.0024
and 0.0389 in terms of Lj,ps and Ly, respectively.

We highlight that both model 3125 and our model are not spinning
with the correct principal inertia axis. For model 3125, the angular
distance between the spin pole and the principal axis with the highest
moment of inertia is approximately 35°. For our model, the offset is
approximately 90°. The closest principal axis to the spin pole of our
model is the axis with the second-highest moment of inertia, which
is approximately 10° away.

4.4.1 Uncertainty in the resolution of EGI

The resolution of EGI has a direct impact on the final model of the
asteroid (Kaasalainen & Torppa 2001). The recommended number
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Figure 20. Convex shape models of (54827) 2001 NQS8 with varying EGI
resolutions.

0

(e)512 facets

of rows (in each octant) in the triangulation technique proposed
by Kaasalainen & Torppa (2001) ranged from 8 to 10 (higher row
number for a higher resolution EGI). As such, we performed an
uncertainty assessment of our models with different resolutions.
Asteroid (54827) 2001 NQS8 was chosen in this experiment due to
its well-constrained nature. We performed nine inversions with the
number of rows in the range of 4 to 12, which corresponds to 128 to
1152 facets (i.e. 8 x number_of_rows?).

In general, all nine models possess high similarities in all observed
aspects. The spin pole distribution is shown in Fig. 19, which has a
similar distribution to the Monte Carlo simulation’s result in Fig. 11.
The largest differences in g is less than 4°, and less than 2° in A.
The overall shape with different resolutions look similar in all nine
variants (see Figs 20 and 21). Not surprisingly, the detail of the
surfaces gets finer as the resolution goes up. This observation is
highlighted in Fig. 22, where the model with the highest resolution
(in blue) has more and smaller facets than the other extreme (in
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Figure 21. Continuation of Fig. 20.
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Figure 22. EGI plots of different models of (54827) 2001 NQ8 models with
varying EGI resolutions. The magenta and blue circles represent the models
with the least (4) and most (12) triangulated rows. All other variants are
visualized with grey markers.

magenta). Last but not least, we also plotted the light curves of these
models in Fig. 23. The coloured light curves highlight the extreme
comparison, where the model with the highest number of facets (blue
lines) has a better fit than the model with only 128 facets (magenta
lines).

4.4.2 Speed

The speed of both methods is tabulated in the last column of Table 2.
For KTM’s method, we ran all eight runs in parallel and recorded
the longest period among them. For our method, we report the time

Globally optimal light-curve inversion — 331

1.2
1.15
1.1
2‘1'05
‘2
8 1
£
5095
=
S 0.9
®
0.85
0.8
0.75
0.7
&
1.3
o =21.27
¥ = 84.46°
12 P, = 86.96°
11
2
‘@
j=
[5}
E 1+
(]
=
k]
®ool
08 -

Figure 23. Generated light curves of different models of (54827) 2001 NQ8
with varying EGI resolutions. The red ‘o’ are the measurements, and the grey
lines are the light curves of all nine models. The highlighted light curves,
magenta and blue lines, represent the models with the least (4) and most (12)
triangulated rows.

taken to arrive at the global solution, where no further improvement
is found until the termination of our algorithm. The speed of both
methods is similar in all five runs. However, we highlight that KTM’s
method is much faster when run in the recommended settings (i.e.
terminate within a couple of hundreds of iterations) than our reported
time. The cause of the slower speed reported here stems from the
fact that we allowed the algorithm to run its full course (i.e. until
the error plateau up to the numerical precision level) to ensure that it
converges to the minimum.

Besides, we conducted an experiment to evaluate the speed gain
of our algorithm compared to a naive grid search in the spin pole
domain. The spin pole domain is first sampled to the precision of
0.28°, which is the same as ¢ that we used in our algorithm in
real light curves experiments. Then we solve P, [equation (42),
solve for the area vector g given a spin pole ®] in parallel,® with
each of the sampled spin poles. In short, the grid search algorithm
is equivalent to solving our proposed shape inversion formulation
without the BnB framework. As tabulated in the last column of
Table 2, the time taken is significantly higher (hours longer) in all our
conducted experiments. These results clearly indicate the efficiency
of our algorithm over the naive grid search.

5 CONCLUSION

We presented a novel algorithm for estimating an object’s spin pole
and area vector from its light curves. Our branch-and-bound based
algorithm always find the globally optimal solution in the Ljgps

SWith 12 workers assigned, consistent with our algorithm as explained in
Section 3.7.
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space and is ready to be integrated into the established light-curve
inversion pipeline. By replacing the two-stage spin pole and area
vector determination module in the classical light-curve inversion
pipeline (KTM’s method) with our proposed algorithm, the search for
other unknowns of the object such as the spin period and scattering
parameters can be done in a domain scanning fashion. The best
set of parameters is guaranteed to be associated with the lowest
Ly s fitting error. In the process of designing our algorithm, we
mathematically derived a novel lower bound for the element-wise
light-curve fitting residual when the spin pole orientation is given as
an uncertainty region. One practical advantage of our algorithm is
the elimination of the initialization process. We validated our global
optimality claim empirically in both simulated and real light-curve
experiments. We also evaluated the practicality of our method by
comparing our solutions with the currently accepted models in the
DAMIT data base.

ACKNOWLEDGEMENTS

We would like to express our gratitude towards our reviewers, Karri
Muinonen and Przemyslaw Bartczak, for their thorough reviews and
valuable suggestions. This work is funded by the Australian Research
Council (ARC) grant DP200101675. Tat-Jun Chin is SmartSat
Cooperative Research Centre (CRC) Professorial Chair of Sentient
Satellites.

DATA AVAILABILITY

All the light curves data and asteroid models used in our paper were
obtained from DAMIT. The exact links to the corresponding asteroids
are:

(1) (90265) 2003 CLS5 — https://astro.troja.mff.cuni.cz/projects/d
amit/asteroids/view/1013

(i1) (54827) 2001 NQS8 — https://astro.troja.mff.cuni.cz/projects/d
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