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A B S T R A C T 

Light-curv e inv ersion is an established technique in determining the shape and spin states of an asteroid. Ho we ver, the front part 
of the processing pipeline, which reco v ers the spin pole and area of each facet, is a non-conv e x optimization problem. Hence, an y 

local iterative optimization scheme can only promise a locally optimal solution. Apart from the obvious downsides of getting a 
non-optimal solution and the need for an initialization scheme, another major implication is that it creates an ambiguous scenario 

– which is to be blamed for the remaining residual? The inaccuracy of the modelling, the integrity of the data, or the non-global 
algorithm? We address the last uncertainty in this paper by embedding the spin pole and area vector determination module in 

a deterministic global optimization framework. To the best of our knowledge, this is the first attempt to solve these parameters 
globally . Specifically , giv en calibrated light-curv e data, a scattering model for the object, and spin period, our method outputs 
the globally optimal spin pole and area vector solutions. One theoretical contribution of this paper is the introduction of a lower 
bound error function that is derived based on (1) the geometric relationship between the incident and scattered light on a surface 
and (2) the uncertainty of the gap between the observed and estimated brightness at a particular epoch in a light curve. We 
validated our method’s ability in achieving global minimum with both simulated and real light-curve data. We also tested our 
method on the real light curves of four asteroids. 

Key words: methods: numerical – minor planets, asteroids: general. 
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 I N T RO D U C T I O N  

ight curve is a set of time-series brightness data. Such measurement 
s usually collected from a consistent source to study its properties. 
he variation in the light curve is mainly caused by the shape and
pinning motion of the object. If a light scattering law is assumed,
ne can also deduce the scattering property of the surface. 
The intensity measurement at each epoch of the light curve is

ssentially the disc-integrated brightness of the observed surface. 
ussell ( 1906 ) laid down the mathematical foundation of such 

ntegration; and concluded that it is not possible to determine the 
hape of the asteroid with only light curves observed at opposition 
eometry. 1 A century later, Kaasalainen et al. ( 1992a ), Kaasalainen, 
amberg & Lumme ( 1992b ) show that by including light curves
t non-zero phase angle geometries and a light scattering law in 
he modelling, there are methods in obtaining a shape solution. A 

ecade after that, a robust light-curv e inv ersion tool was presented
y Kaasalainen & Torppa ( 2001 ), Kaasalainen, Torppa & Muinonen 
 2001 ), which is one of the standard tools in today’s asteroid studies.
ven though the tool is commonly associated with asteroids, it can 
lso be applied to other atmosphere-less bodies (see Kaasalainen 
 E-mail: cheekheng.chng@adelaide.edu.au 
 Also known as the zero phase angle geometry, where the observing and 
llumination directions are parallel to each other. 
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ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), whic
rovided the original work is properly cited. 
t al. 1992a ). As such, we use the term ‘object’ instead of ‘asteroid’
n our paper for the sake of generality. 

Apart from the robustness of the tool, another crucial factor that
oti v ates its popularity is the accessibility of light curve. In principle,

t is available for all Resident Space Object (RSO) with a ground-
ased sensor. Recently, several works (see Friedman & Frueh 2018 ;
an, Friedman & Frueh 2019 ; Fan & Frueh 2020 ) started to explore

ts potential outside of the asteroid realm, building on top of the
entioned light-curv e inv ersion tool to reconstruct the shape of

rtificial space objects. 
The method put forward by Kaasalainen & Torppa ( 2001 ) [the

TM (Authors’ initial) method hereafter] has seen wide applications 
n the asteroid research community, see for instance Ďurech, Hanu ̌s & 

li-Lagoa ( 2018 ), Ďurech et al. ( 2011 ), Hanu ̌s, Marchis & Ďurech
 2013 ), Hanu ̌s et al. ( 2011 ), Vokrouhlick ̀y et al. ( 2017a ), Pravec
t al. ( 2019 ), Vokrouhlick ̀y et al. ( 2017b ), Ro ̇zek et al. ( 2019 ),
onteiro et al. ( 2020 ), Tanga et al. ( 2015 ). As of 2021 July, there

re 5715 models, each with unique conv e x shapes and spin states
eco v ered with KTM’s method from 3303 asteroids’ light curves.
hese models are currently available in the Database of Asteroid 
odels from Inversion Techniques (DAMIT) Ďurech, Sidorin & 

aasalainen ( 2010 ). It is also sometimes referred to as the conv e x
ight-curv e inv ersion tool since the conv e x shape assumption variant
s the most popular one due to its stability. 

Several attempts were made to extend KTM’s method. Vi- 
kinkoski, Kaasalainen & Ďurech ( 2015 ) introduced ADAM, which 
ombines the disc-resolved data (adaptive optics or other images, 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. Left to right: Ground-truths, global solutions from our method, 
local solutions from KTM’s method, pink arrows represent the spin poles. 
These sub-optimal solutions illustrate the local minima that KTM’s method 
converged to when it is poorly initialized. 
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nterferometry, and range-Doppler radar data) and the disc-integrated
ata (light curves) to reconstruct asteroid shape models. The
dditional disc-resolved data helps in further constraining the shape
f the model. Meanwhile, Ďurech et al. ( 2011 ) incorporated oc-
ultation silhouettes to the conv e x models reconstructed by KTM’s
ethod to determine the absolute size of the asteroids. 
The inversion quality of KTM’s method relies heavily on the

uality of the light curves – it should be fairly dense, co v ering the
ntire spin period, and observed at div erse Sun-asteroid-observ er
eometries. In an attempt to exploit the sparse light-curve data (e.g.
he data collected during the Gaia mission), Carbognani et al. ( 2012 )
nvestigated a simpler shape representation for the asteroid (which
as fewer parameters) in the inversion process. Their investigation
n several asteroids reveals that the spin poles and periods recovered
ith a tri-axial ellipsoid generally agree with KTM’s solutions
ith a complex shape. Muinonen & Lumme ( 2015 ) further pushed

he ellipsoidal asteroid model by integrating the Lommel-Seeliger
urface reflection model. Along the same line of work, Muinonen
t al. ( 2015 ) incorporated the Markov-chain Monte Carlo (MCMC)
nalysis to describe the probability density function in the neigh-
ourhood regions of the best-fitting parameters. 
The aforementioned ellipsoidal model methods trade speed with

ccuracy. Wang et al. ( 2015 ) pointed out that the spin pole de-
ermination from these methods is unreliable when the asteroid
iverges from the ellipsoidal shape. Hence, Wang et al. ( 2015 )
mplemented a similar MCMC analysis on KTM’s method to obtain
n uncertainty assessment for the spin pole and period estimation.
ecently, Muinonen et al. ( 2020 ) introduced a no v el proposal prob-
bility density function for their MCMC sampler. Their experiments
how that the proposed statistical inversion method provides realistic
ncertainty estimations. 
Bartczak & Dudzi ́nski ( 2018 ) introduced an algorithm that relaxes

he usual conv e x-shaped assumption in the light-curve inversion
rocess. The proposed method, named SAGE, is developed based
n the genetic algorithm. In essence, SAGE generates and e v aluates
andom shapes and spin-axis mutations in each iteration until a stable
olution is found. Bartczak & Dudzi ́nski ( 2019 ) later proposed a
o v el assessment method for asteroid models based on sensitivity
nalysis. The proposed scheme first generates a large number of
lones given an asteroid model reconstructed by any light-curve
nversion method. Then, the clones that produce similar light curves
within an error threshold) are retained. Lastly, the largest and
mallest asteroids in the family of clones are used to assign a volume
ncertainty to the assessed model. 
Lumme, Karttunen & Bowell ( 1990 )’s work is one of the earliest
ethods to estimate the spin pole orientation from zero-phase-

ngle light curves. Underpinning Lumme et al. ( 1990 )’s work is the
xpression of light curves with the spherical harmonics expansion.
y assuming a tri-axial ellipsoid model, the algorithm searches for

he spin pole parameters expressed in the truncated series with a
on-linear least-squares optimization scheme. The pioneering work
hows that despite the truncation and light-curve extrapolation (to get
ero-phase-angle light curves), its spin pole estimate is only about 5 ◦

ff from the real spin pole in their synthetic light-curv e e xperiments.
Recently there has been a growing trend in casting the shape

stimation task as a classification problem and solving it with deep
earning approaches. Linares, Furfaro & Reddy ( 2020 ) trained a
onvolutional Neural Network (CNN) to determine the type of space
bjects based on the light-curve data alone. All w orth et al. ( 2021 )
hown that transferring the knowledge learnt on simulated light-
urve data helps us to impro v e the deep network’s performance on
he shape classification task with real light-curve data. 
NRAS 513, 311–332 (2022) 
Assuming all other parameters of the object (e.g. spin period and
cattering parameters) are known, the light-curv e inv ersion problem
ith Kaasalainen & Torppa ( 2001 )’s model is a bilinear (non-conv e x)
roblem in the domain of the spin pole and surface area of the object.
onsequently, solving such a problem with any local optimization
ethod is prone to suboptimal solutions. KTM’s method is one of the

xamples. Fig. 1 illustrates some of the suboptimal solutions obtained
ith KTM’s method given bad initialization. A systematic initializa-

ion scheme is a common remedy for a local method to increase the
ikelihood of obtaining a globally optimal solution. The procedural
teps of running KTM’s method as presented in Kaasalainen et al.
 2001 ) is summarized in Algorithm 1. Two different steepest de-
cent solvers (with different problem formulations) underpin KTM’s
ethod. The first one uses a straightforward representation where

he area of each facet is e xpressed e xplicitly in the formulation, also
nown as the extended Gaussian image (EGI) representation (Horn
984 ). It is solved using the conjugate gradient method (CG solver
ereafter). The second one represents the surface’s curvature function
s a spherical harmonics series where the coefficients of the function
eries are the variables of interest. It has fewer parameters to be
olved, and uses a Levenberg–Marquardt optimization strategy (LM
olver hereafter). Both the mentioned optimization algorithms can
e referred to in Press et al. ( 1996 )’s work. In essence, the inversion
ool is run multiple times with a set of spin pole initial estimates
 ω 0 } K 

k= 1 , and the model with the lowest fitting error is chosen as the
olution. Ho we ver, we highlight that an initialization scheme offers
o guarantee in finding a globally optimal solution. 
In this work, we introduce a guaranteed globally optimal algorithm

or the spin pole and shape estimation. Specifically, our method
ointly searches for the optimal combination of a spin pole and
urface areas (of a densely sampled EGI) associated with the global
inimum error of the light-curve model proposed by Kaasalainen
 Torppa ( 2001 ) (see Section 2 for more details). The proposed

lgorithm is built upon the Branch-and-Bound framework (see Horst
 Tuy 2013 , chap. 4), one of the well-known deterministic global

ptimization methods. To the best of our knowledge, this is the first

art/stac198_f1.eps
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Algorithm 1 Lightcurve inversion algorithm by Kaasalainen et al. 
(2001) 

Require: l ∈ R 

I , { ω 0 } K 

k= 1 , N ∈ R 

3 ×J , P 

1: for k = 1,..., K do 
2: ω 

∗
k , f 

∗
k ← spherical harmonics LM solver ( ω 0 k , l , N , P ) 

3: end for 
4: k ∗ = argmin ( { f ∗k } K 

k= 1 ) 
5: g ∗ ← polyhedra conjugate gradients solver ( ω 

∗
k ∗ , l , N , P ) 

6: h ← Minkwoski minimization( g ∗, N ) 
7: V , G ← conv e x hull determination( g ∗, h , N ) 
8: return ω 

∗
k ∗ , V , G ; 
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ttempt to incorporate a global optimization scheme into the light- 
urv e inv ersion problem. 

The remaining of this paper is structured as follows: Section 2 
ays down the formulations of the light-curve inversion problem, 
ection 3 details the design of our algorithm and the deri v ation of

he bounding function; Section 4 presents the conducted experiments, 
nd we conclude in Section 5 . 

 PRELIMINARIES  

s stated in Kaasalainen & Torppa ( 2001 )’s work, the observed
rightness l i at each epoch t i , can be expressed as a function of the
reas of the illuminated and visible surfaces, 

 i = a T i g , (1) 

here T  represents the transpose operation, g ∈ R 

J is the area vector, 
nd the vector a i ∈ R 

J embeds the light scattering law and the orien-
ation of the object at epoch t i (see equation 14 for the full expression).
he surface that is not visible and illuminated is nullified with a ij =
 since it does not contribute to the total observed brightness. 
Hence, if g is the only unknown, the optimization problem can be

ritten as follows, 

in. 
g 

( 

I ∑ 

i= 1 

( | l i − a T  i g | ) p 
) 

1 
p 

s.t. g ∈ �, (2) 

here p indicates the choice of norm. Note that the search of g is
onstrained within �, 

= { g ∈ R 

J | N g = 0 , g j ≥ 0 , j = 1 , ..., J } , (3) 

here the matrix N ∈ R 

3 ×J packs in J surface normals of the object.
hese constraints are sufficient and necessary to ensure that the 
bject is conv e x-shaped (see Kaasalainen et al. 1992a ). It is clear
rom the linearity of the error function within the norm operation and
he constraint functions that ( 2 ) is a conv e x optimization problem.
ence, the globally optimal g ∗ is guaranteed to be found with any

ocal numerical solver (e.g. steepest descent method) since any local 
ptimum is a global optimum in the problem of such nature (see
o yd, Bo yd & Vandenberghe 2004 ). 
Upon solving ( 2 ), we obtain the object’s EGI, which is a set

f surface normal vectors N and its corresponding area vector g .
ach conv e x polyhedron is defined uniquely by an EGI. Given an
GI, the final shape determination with Minkowski minimization 

s another conv e x optimization problem (see Little 1983 ). In other
ords, the (conv e x hull) shape reconstruction problem contains two 

equential conv e x optimization problems, where the global optimal 
hape solution is guaranteed to be found. 
Ho we ver, if the spin pole of the object is unknown, the optimization
roblem degrades into a bilinear (non-conv e x) problem with the
ompact form below, 

in. 
g , ω 

‖ l − A ( ω ) g ‖ p 
s.t. g ∈ �, (4) 

here ω = { λ, β} is the spin pole ( λ and β represent the Euler
ngles of the spin pole). The reflectance of the surface is a function
f its spin states [hence the notation A ( ω ), see equations 14 to 17 ],
longside other parameters in the light scattering law. There are 
wo different formulations to the conv e x shape inv ersion problem:
1) solving the facet areas of a triangulated polyhedral shape ( 4 ),
nd (2) the Gaussian surface density estimation via the spherical har-
onics representation (see A1 in the supplementary material). Both 

ormulations share the same bilinear property – the multiplication 
f the spin pole variables and the area vector or the coefficients of
pherical harmonics. 

In principle, there is no guaranteed way of obtaining a global
ptimal solution when solving a non-conv e x problem with a local
ptimization method. As such, we solve problem ( 4 ) with a global
ptimization method – Branch-and-Bound (BnB). As an o v erview, 
ur proposed algorithm detaches the search for the spin pole and the
rea vector of EGI, which is formulated as follows: 

in 
ω ∈ S 

min. 
g 

‖ l − A ( ω ) g ‖ p , 
s.t. g ∈ �, (5) 

here S represents the domain of ω (detailed in Section 3.3.2 ). The
uter optimal ω is searched with a BnB framework, while the inner
roblem is cast as a linear programming (LP) problem (see Nocedal
 Wright 2006 , chap. 13). 

 PROPOSED  M E T H O D  

ur proposed algorithm is summarized in Algorithm 2. We start 
y breaking down the formulation in ( 5 ). Then, the bedrock of
ur algorithm – the no v el lower bound function, is presented.
his section then proceeds with the reformulation to LP problems, 

mplementation details, and ends with the observational uncertainty 
reatment. 

.1 Problem formulation 

irst, given the following objective function, 

 ( g | ω ) = ‖ l − A ( ω ) g ‖ p , (6) 

he inner constrained optimization problem (denoted as P 0 ) solves 
or the globally optimal g given a particular ω , 

 0 : min. 
g 

f ( g | ω ) , 

s.t. g ∈ � (7) 

ormally, the global solution, denoted as g ∗, yields the lowest
bjecti ve v alue, 

 ( g ∗ | ω ) ≤ f ( g | ω ) , ∀ g ∈ �. (8) 

On the other hand, the outer optimization problem searches 
hrough the domain of ω , denoted as S , in a BnB fashion. Let
 ( g ∗ | ω ) denotes the lowest objective value in ( 7 ) for a given ω , the
earch of the optimal ω can be expressed as 

in 
ω ∈ S 

f ( g ∗ | ω ) , (9) 
MNRAS 513, 311–332 (2022) 
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Algorithm 2 Proposed method 

Require: l ∈ R 

I , N ∈ R 

3 ×J , P , τ , ζ . 
1: Uniformly subdivide S into K sub-patches B 1 , ..., B k . 
2: for k = 1,..., K do 
3: ω 

k 
c ← Centre of B k . 

4: Obtain f k ( g ∗ | ω 

k 
c ) by solving P 2 in (42) 

5: Obtain f k ( g ∗ | B k ) by solving P 3 in (43) 

6: end for 
7: k ∗ = argmin ( { f k } K 

k= 1 ). 

8: ˆ ω ← ω 

k ∗
c , f ← f ( g ∗ | ˆ ω ) 

9: q ← Initialise priority queue. 
10: Insert { B k } K 

k= 1 into q with priority f k ( g ∗ | B k ). 

11: Sort the q entries that share the same f k ( g ∗ | B k ) with f k ( g ∗ | ω 

k 
c ). 

12: while q is not empty do 
13: B ← De-queue top item from q. 
14: Insert B into t . 
15: while t is not empty do 
16: B ← De-queue top item from t . 
17: Uniformly subdivide B into 4 sub-patches B 1 , ..., B 4 . 
18: for k = 1,..., 4 do 
19: ω 

k 
c ← Centre of B k . 

20: Obtain f k ( g ∗ | ω 

k 
c ) by solving P 2 in (42) 

21: Obtain f k ( g ∗ | B k ) by solving P 3 in (43) 

22: if f ( g ∗ | ˆ ω ) − f ( g ∗ | B k ) ≤ τ then 

23: Terminate. 
24: end if
25: if f k ( g ∗ | ω 

k 
c ) ≤ f then 

26: ˆ ω ← ω 

k 
c , f ← f ( g ∗ | ˆ ω ) 

27: end if
28: if f k ( g ∗ | B k ) ≤ f 

and δλ > ζ and δβ > ζ then 

29: Insert B k into t with f ( g ∗ | B k ) 

30: end if 
31: end for 
32: end while 
33: end while 
34: Obtain g ∗ by solving P 2 in (42) with ˆ ω . 
35: h ← Minkwoski minimization( g ∗, N ). 
36: V , G ← conv e x hull determination( g ∗, h , N ). 
37: return 

ˆ ω as ω 

∗, V , G ; 

w
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2 f ( α) = A 0 exp ( α
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) + kα + 1, A 0 and D are the amplitude and scale length 
of the opposition effect, and k is the o v erall slope of the phase curve. 
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nd similarly, 

 ( g ∗ | ω 

∗) ≤ f ( g ∗ | ω ) ∀ ω ∈ S . (10) 

The solutions ω 

∗ and g ∗ are guaranteed to be globally optimal
f and only if both problems ( 7 ) and ( 9 ) are solved globally. As
entioned, ( 7 ) is a conv e x problem in which the result is al w ays

lobally optimal. The outer problem ( 9 ) is solved globally with BnB,
hich the details are elaborated in the following section. 

.2 Branch-and-bound (BnB) 

ranch-and-Bound is used to search through the S space in a divide
nd conquer manner. In short, our algorithm branches the search
pace into smaller sub-spaces and prune them using two efficient
ounding functions. Specifically, when ω is given as an uncertainty
egion, B (details in Section 3.3.2 ), an upper bound and a lower bound
f the objecti ve v alue are required to determine if the region should
e searched further. The searching stops when the gap between the
ounds, τ , diminished, which indicates that the global solution (up
o τ , which is set to a small value for numerical reasons) is found. 

.3 Bounding functions 

e first state the requirements and functions of the bounds. The
pper bound must fulfil the following condition: 

 ≥ f ( g ∗ | ω 

∗) , (11) 

hich is achieved with any sub-optimal solution. We set it to the
urrent lo west objecti ve v alue, f ( g ∗ | ˆ ω ) (Algorithm 2, line 26),
hich will decrease progressively each time a better solution is found.
The lower bound, on the other hand, must fulfil the following

ondition: 

 ( g ∗ | B ) ≤ min 
ω ∈ B 

f ( g ∗ | ω ) , (12) 

hich the deri v ation is much more involved. Besides, it has to
onverge to f ( g | ω ) as B collapses to a single point, 

 ( g ∗ | B ) → f ( g ∗ | ω ) when B → ω . (13) 

ee Horst & Tuy ( 2013 )’s work (chap. 4) for a detailed explanation
ehind these conditions. In a nutshell, if the lower bound error of a
ocal region B is higher than the current upper bound error, it implies
he absence of the optimal ω 

∗ in this local region, which can be
runed away safely (see Fig. 2 ). 
There are two prerequisites bounds in the path to deriving

 ( g ∗ | B ). We first draw attention to the fact that the coefficient

atrix A in equation ( 6 ) is a function of ω . More specifically,
ach entry of A is a composition of two functions, expressing the
1) scattering law and (2) the relationship of the triplets: surface
ormal, illuminating, and observing directions. The ripple effects of
aving ω as an uncertainty region B throughout the chain of functions
ill be detailed in the following subsections. 

.3.1 Bounding the coefficient matrix, A 

et a ij represents each element of A , expressing the relationship be-
ween the scattering law S i , phase angle αi , and albedo � j . Following
aasalainen & Torppa ( 2001 ), we adopt the linear combination of
ommel-Seeliger (LS) and Lambert (L) models as the scattering law
f the object, formulated as 

 ij = S i ( μ
( ij ) , μ

( ij ) 
0 , αi ) � j , (14) 
NRAS 513, 311–332 (2022) 
here the combination of LS and L models is 

 i 

(
μ( ij ) , μ

( ij ) 
0 , αi 

)
= f ( αi ) 

[ 
S LS 

(
μ( ij ) , μ

( ij ) 
0 

)
+ c S L 

(
μ( ij ) , μ

( ij ) 
0 

)] 

= f ( αi ) μ
( ij ) μ

( ij ) 
0 

( 

1 

μ( ij ) + μ
( ij ) 
0 

+ c 

) 

, (15) 

here the f ( αi ) is the phase function, 2 c is a weight parameter, μ( ij ) and
( ij ) 
0 are the cosine similarities between surface j ( n j ) of the object,
nd the directions of the Earth and Sun (at epoch i ), respectively.
hey are formally expressed as 

( ij ) = e ( i) obj · n j , 

( ij ) 
0 = s ( i) obj · n j . (16) 
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ote that the locations of the Sun( s ) and Earth( e ) are given in the
ecl)iptic coordinate (object-centred inertial frame). Hence, they have 
o be rotated to the (obj)ect’s coordinate (where the z-axis is aligned
ith the spin pole, alongside its corresponding x and y axes). We

dopt the same Euler angle rotation sequence (Z-Y-Z), 

 

( i) 
obj = R z ( φ0 + 

360 ◦

P 

( t i − t 0 )) R y (90 ◦ − β) R z ( λ) v ( i) ecl , (17) 

here φ0 is the initial orientation angle (with its corresponding epoch 
 0 ), t i represents the i -epoch, v ∈ R 

3 represents the e and s vectors,
nd R k ( θ ) is a rotation matrix formed with θ with the k -axis, 

 z ( θ ) = 

⎛ 

⎝ 

cos ( θ ) sin ( θ ) 0 
−sin ( θ ) cos ( θ ) 0 

0 0 1 

⎞ 

⎠ , (18) 

 y ( θ ) = 

⎛ 

⎝ 

cos ( θ ) 0 −sin ( θ ) 
0 1 0 

sin ( θ ) 0 cos ( θ ) 

⎞ 

⎠ . (19) 

When the Euler angles ( λ and β) representing the spin pole 
re allowed to perturb within an uncertainty region, μ( ij ) and μ( ij ) 

0 

aturally follow suit. Such uncertainty ripples to the top of the 
elationship, leading to uncertain a ij . A bottom-up explanation 
pproach will be adopted from here on, where we start from bounding 
( ij ) and μ( ij ) 

0 and eventually determining the interval of a ij . 

.3.2 Bounding μ and μ0 

he construction of the search space of λ and β will first be explained,
ollowed by the range of μ and μ0 as a function of the size of the
ncertainty region. 
The entire search space of both λ and β is a 2D rectangular patch,
hich we denote as S from here on. The long sides of the patch

representing λ) range from 0 ◦ to 360 ◦, while the short sides (repre-
enting β) ranges from −90 ◦ to 90 ◦. Note that every point within the
oundary of S can be mapped to a unique rotation matrix under the Z-
-Z Euler angles rotation sequence as formulated in equation ( 17 ) if

he left-most rotation matrix (i.e. R z ( φ0 + 

360 ◦
P 

( t i − t 0 ))) is replaced
ith an identity matrix (since it is a constant in our context). On the
boundary of the patch, the mapping is 2-to-1 (i.e. a cyclic boundary

ondition, R z ( λ = 0 ◦) = R z ( λ = 360 ◦)). 
The search space is then branched into smaller sub-patches as the

lgorithm proceeds. Each sub-patch (we denote as B ) is defined by
 centre point ω c = { λc , βc } , along the half side-lengths δλ and δβ.
he illustration of both S and B can be seen in Fig. 2 . 
Given a sub-patch as described above, the goal is to determine the

ncertainty intervals of both μ and μ0 . Note that since both μ and μ0 

hare the same mathematical properties, we continue the following 
iscussion based on μ only, where μ denotes the upper bound, and 

denotes the lower bound. Also, the indices are remo v ed without
he loss of generality for the sake of compactness. 

The first step is to determine how much can e obj be rotated within
 given patch. Thus, we first restate an important lemma in Hartley &
ahl ( 2009 )’s work, which was used in numerous works (see Yang

t al. 2015 ; Parra Bustos et al. 2016 ; Li et al. 2020 ; Liu, Parra & Chin
020 ) as the cornerstone to derive rotation-dependence bounding 
unctions. 

EMMA 1. For any v ∈ R 

3 , let R 1 and R 2 be two rotations in SO (3),
nd ∠ be the angular distance between them, lying within the range
f 0 ◦ ≤ θ ≤ 180 ◦, the angular distance between the two rotated v ,
enoted as R 1 v and R 2 v , is upper bounded by the angular distance
MNRAS 513, 311–332 (2022) 
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etween R 1 and R 2 , formally as 

 ( R 1 v , R 2 v ) ≤ ∠ ( R 1 , R 2 ) , (20) 

here the angular distance between two 3D vectors is ex-
ressed as ∠ ( R 1 v , R 2 v ) = arccos (( R 1 v ) T R 2 v ) and the angular dis-
ance between two rotation matrices is expressed as ∠ ( R 1 , R 2 ) =
rccos ((trace( R 1 T

 R 2 ) − 1) / 2) . The equality is ac hie ved when the
xis of the relative rotation R 1 T

 R 2 is perpendicular with v . 

Based on Lemma 1, our goal now is to compute the largest angular
istance between the centre of a given patch ( ω c ) and the furthest
oint on the patch, which we denote as ω r from here on. We note
hat the relative angular distance between two rotation matrices can
e expressed in terms of their relative Euler angles with the formula
elow [see equations (B1) to (B13) in the supplementary appendices
or the deri v ation], 

os ( ∠ ( R ω c , R ω r )) 

= 

1 

2 
(1 + cos ( βc − βr ))( cos (( λc − λr ) + ( φc − φr ))) 

+ 

1 

2 
( cos ( βc − βr ) − 1)) , (21) 

here R ω c = R z ( φc ) R y (90 ◦ − βc ) R z ( λc ), and R ω r with its corre-
ponding Euler angles. Since φc − φr = 0 in our context (no
ncertainty since the spin period P is given), it is clear that
 ( R ω c , R ω r ) is directly proportional to the distances between the
and β pairs (i.e. βc − β r and λc − λr ) provided that the distances

re not greater than 180 ◦. We translate this result to our problem in
quation ( 22 ). 

os ( θmax B ) = 

1 

2 
(1 + cos ( δβ))( cos ( δλ)) + 

1 

2 
( cos ( δβ) − 1) . (22) 

iv en an y sub-patch B from the search space S , the maximum relative
otation angle (from ω c ), denoted as θmax B , is a function δβ and δλ
ince they are the furthest angular distances from ω c . Conveniently,
he maximum half side-lengths ( δβ and δλ) of the search space are
0 ◦ and 180 ◦, respectively (with the full side-lengths being 180 ◦

nd 360 ◦, respectively). θmax B is plotted as a function of δβ and δλ
n Fig. 3 , which illustrates its monotonic property as both variables
epart from the origin. 
Up to this point, we have shown the maximum angular distance

hat e obj (or R ω c e ecl more explicitly) can co v er when the spin pole
s given as a patch ( ω c , δλ, and δβ). We then mo v e on to derive the
pper and lower bounds of μ in the following theorem. 

HEOREM 1. (Uncertainty of the incident and scattering angles)
iven a surface normal n ∈ R 

3 , a patch with ω c in its centre, and
max as the maximum relative angular distance as derived earlier,
NRAS 513, 311–332 (2022) 

B 
he upper and lower bounds of μ can be expressed as follows: 

= cos ( γ ) , 

= cos ( γ ) , (23) 

here γ and γ are derived from the triangle inequalities between n ,
 ω c e ecl , R ω r e ecl , and R 

′ 
ω r 

e ecl as follows: 

 ( R ω r e ecl , n ) ≤ ∠ ( R ω c e ecl , n ) + ∠ ( R ω c e ecl , R ω r e ecl ) 

≤ ∠ ( R ω c e ecl , n ) + θmax B : = γ , (24) 

 ( R 

′ 
ω r 

e ecl , n ) ≥ ∠ ( R ω c e ecl , n ) − ∠ ( R ω c e ecl , R 

′ 
ω r 

e ecl ) 

≥ ∠ ( R ω c e ecl , n ) − θmax B : = γ , (25) 

nd equality is ac hie ved when all three mentioned vectors lie on the
ame plane. 

roof. When n is not encapsulated within the uncertainty region,
 

′ 
ω r 

e ecl and R ω r e ecl represent the closest and furthest rotated e ecl from
 in terms of angular distance. The first line of both equations ( 24 ) and
 25 ) state the triangle inequality between them in the angular distance
etric space. Utilizing Lemma 1, we replace both the second terms
ith their upper bounds, namely θmax B . �

Fig. 4 illustrates the construction of the bounds. It depicts a
inimum enclosing cone formed with θmax B that includes all possible
 ω r e ecl within B . We highlight that it also showcases the scenario
here equality of both equations ( 24 ) and ( 25 ) is achieved. 
In practice, there are two exceptional cases to Theorem 1 that need

o be handled: (1) when n lies within the uncertainty region, and (2)
hen the closest vector (or the furthest vector) in the uncertainty

egion is more than 90 ◦ away from n . Both of them are handled in
he piece-wise functions below: 

= 

⎧ ⎨ 

⎩ 

0 ◦ θmax B > ∠ ( R ω c e ecl , n ) 
90 ◦ ∠ ( R ω c e ecl , n ) − θmax B > 90 ◦

∠ ( R ω c e ecl , n ) − θmax B otherwise 
(26) 

= 

{
90 ◦ ∠ ( R ω c e ecl , n ) + θmax B > 90 ◦

∠ ( R ω c e ecl , n ) + θmax B otherwise 
(27) 
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Figure 5. Contour plot of equation ( 14 ) as a function of μ and μ0 . 
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n words, when the uncertainty region covers n (i.e. θmax B > 

 ( R ω c e ecl , n )), the smallest angular distance is obviously 0. When
 ( R ω c e ecl , n ) > 90 ◦, it is clipped to 90 ◦ (surface that is not facing

he Earth). The same clipping range is applied to both the upper and
ower bounds of γ too. 

 ij = S i ( μ
( ij ) , μ0 

( ij ) , αi ) � j 

 ij = S i ( μ
( ij ) , μ

0 
( ij ) , αi ) � j (28) 

Ultimately, we state the bound of A in equation ( 28 ). Intuitively, the
pper bound of a ij is achieved by pushing the viewing direction (and
he illuminating direction) at epoch i towards surface j and distancing 
hem for the lower bound. This aligns with the geometrical property 
f the Bidirectional Reflectance Distribution Function (BRDF) – the 
rradiance (radiance) of a particular surface is indirectly proportional 
o the angle between the incident (viewing) direction and the surface 
ormal. Fig. 5 illustrates the contour plot of a ij with μ and μ0 as the
xes. 

This sums up the first main theorem of our paper. We highlight
hat this bounding function is derived based on only the scattering 
eometry, where the other component of the scattering law, such 
s the phase function (see equation 15 ), is a constant. Its generic
roperty opens up potential application to other scattering laws (e.g. 
he Hapke model). 

.3.3 Bounding each residual term, r i 

ow that each a ij is allowed to perturb within a bounded range
 a ij ≤ a ij ≤ a ij ), each row of A (denoted as a i ) perturbs in an area
nclosed by a hyper-disc 3 defined by the centre point a i and the radius
i , 4 where ρi : = ‖ δa i ‖ 2 , and δa ij = max( a ij − a ij , a ij − a ij ). As a

esult, there is a family of residuals given any g . To formally express
his, let r ∈ R 

I be the residual vector of the original problem P 0 ,
here r i ( g ) = | l i − a T  i g | . No w a i is gi v en as an uncertainty v ector,
 i ( g ) consequently exists in a range, formally as 

 i ( g ) ∈ {| l i − ( a i + δa i ) T g | | ‖ δa i ‖ 2 ≤ ρi } . (29) 
 Note that the hyper-disc is a looser region than the actual uncertainty region 
hat we state in equation ( 28 ). It is loosen for the deri v ation of the residual 
ower bound in equation ( 30 ). 
 Note that ρi is a function of the uncertainty region B , we denote it as ρi 

nstead of ρi ( B ) here for the sake of compactness. There is no loss of generality 
ince ρi can be any arbitrary number. 

w

f

. 
ecall that our main goal is to achieve f ( g ∗ | B ), i.e. the smallest

bjecti ve v alue in the uncertainty region B . Hence our mission here
s to derive an expression for the lower bound of ( 29 ), which leads
o the second main theorem of this paper. 

HEOREM 2. (Lower bound of the residual set) For any given g , the
ower bound of the residual when a i is allowed to perturb within the
adius ρ i is expressed as follows: 

min 
 δa i ‖ 2 ≤ρi 

| l i − ( a i + δa i )) T g | 
≥ max( | l i − a i T  g | − ρi ‖ g ‖ 2 , 0) : = r i ( g | ρi ) (30) 

roof. Here we show the step-by-step derivation of ( 30 ). 

min 
 δa i ‖ 2 ≤ρi 

| l i − ( a i + δa i ) T g | 
= min 

‖ δa i ‖ 2 ≤ρi 

| ( l i − a i T  g ) − δa i 
ᵀ g | (31) 

≥ min 
‖ δa i ‖ 2 ≤ρi 

| | l i − a i T  g | − | δa i 
ᵀ g | | (32) 

≥ min 
‖ δa i ‖ 2 ≤ρi 

| l i − a i T  g | − | δa i 
ᵀ g | . (33) 

he reverse triangle inequality is first used in equation ( 32 ) to lower
ound the original absolute operation. Then, in equation ( 33 ), the
uter absolute operation is remo v ed, enlarging the output space to the
e gativ e realm, which is a lower bound to the previous line. However,
quation ( 33 ) is unnecessarily loose since our original problem P 0 is
ero-bounded from below. Hence, we introduce a clipping operation 
 max (., 0)) to tighten the lower bound function in the deri v ation steps
elow. 

min 
 δa i ‖ 2 ≤ρi 

| l i − ( a i + δa i ) T g | 
≥ min 

‖ δa i ‖ 2 ≤ρi 

max( | l i − a i T  g | − | δa i 
ᵀ g | , 0) (34) 

≥ max( | l i − a i T  g | −
∣∣∣∣ ρi 

g 
‖ g ‖ 2 

g 

∣∣∣∣ , 0) (35) 

= max( | l i − a i T  g | − ρi ‖ g ‖ 2 , 0) (36) 

ubsequently, the upper bound of the second term in equation ( 34 )
 δa i 

ᵀ g ) is of interest to get RHS to its lower bound. Maximizing
he dot product of two vectors ( δa i and g ) hints the leverage of
he Cauchy-Schwarz inequality, which states that the upper bound 
s achieved when both the vectors share the same direction. Hence,
a i is substituted with ρi 

g 
‖ g ‖ 2 in equation ( 35 ) (with ρ i being the

argest magnitude of the said direction). Subsequently, the absolute 
peration for the second term is remo v ed since ρ i is al w ays positive,
hich then followed by some simple algebras to arrive at the last

ine. �

By minimizing the norm of the residual vector r with its element
xpressed in equation ( 30 ), we are essentially solving for g that gives
he smallest residual with an uncertain A . The formal expression of
he lower bound minimization problem is as follows, 

in. 
g 

f ( g | ρ( B )) 

s.t. g ∈ �, (37) 

here f ( g | ρ( B )) is explicitly as 

 ( g | ρ( B )) = ‖ r ( g | ρ( B )) ‖ p 

= 

( 

I ∑ 

i= 1 

( max( | l i − a i ( ω c ) T
 g | − ρi ( B ) ‖ g ‖ 2 , 0)) p 

) 

1 
p 

(38) 
MNRAS 513, 311–332 (2022) 
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ote that problem ( 37 ) is similar to the robust least-squares (RLS)
roblem (El Ghaoui & Lebret 1997 ), with the main difference being
LS aims to optimize for the upper bound of the residual instead. 

.4 Convexity of the lower bound minimization problem 

he global minimum of problem ( 37 ) is guaranteed only if the
bjective function is convex. Unfortunately, the subtraction of the
uadratic term stands in the way of conv e xity. To circumv ent this,
e introduce (1) a linear under-estimator to equation ( 30 ), (2) and
 quadratic constraint to the solution space of g . The details and
ationales of the solution are explained in the theorem below. 

HEOREM 3. (Linear underestimator of the lower bound of the
esidual set) Let r i be 

 i ( g | ρi , η) = max( | l i − a i T  g | − η ρi , 0) , (39) 

hen, r i ( g | ρi , η) ≤ r i ( g | ρi ) ∀ g ∈ { g ∈ R 

J | ‖ g ‖ 2 ≤ η, g ∈ �} .

roof. It is trivial to see that for any g with its 2-norm smaller (or,
qual to) than η, the second term of equation ( 39 ) is al w ays larger
or, equal to) than ( 30 ). �

By replacing the residual function in ( 38 ) with our new result
Theorem 3), the problem is formulated as below 

 1 : min. 
g 

f ( g | ρ( B ) , η) 

s.t. g ∈ �, (40) 

imilarly, f ( g | ρ( B ) , η) is explicitly as 

 ( g | ρ( B ) , η) = ‖ r ( g | ρ( B ) , η) ‖ p 

= 

( 

I ∑ 

i= 1 

( max( | l i − a i ( ω c ) T
 g | − ηρi ( B ) , 0)) p 

) 

1 
p 

, 

(41) 

here � = { g ∈ R 

J | ‖ g ‖ 2 ≤ η, N g = 0 , g j ≥ 0 , j = 1 , ..., J } . In
ords, the goal now is to minimize the underestimator of the lower
ound function ( 30 ). Trivially, the optimized objective value in ( 41 )
denoted as f ( g ∗ | ρ( B ) , η)) is lower than (or, equal to) ( 38 ) (denoted

s f ( g ∗ | ρ( B ))), which implies the fulfillment of the lower bound
equirement ( 12 ). We refer to Fig. 6 for the visual comparison
etween all three objective functions over g . 
NRAS 513, 311–332 (2022) 
Now the next crucial proof needed is the conv e xity of problem P 1 .
here are three main components: (1) the conv e xity of the objective

unction f ( g | ρ( B ) , η), (2) the newly added quadratic constraint does

ot yield a non-conv e x feasible region, and (3) it does not exclude
he optimal solution to the original problem P 0 . 

EMMA 2. f ( g | ρ( B ) , η) = ‖ max( | l − A g | − η ρ( B ) , 0 ) ‖ p is a
onvex function of g . 

roof. In order to prove the lemma above, it is necessary to prove that
ach of the operations preserves convexity (see Convex Optimization
y Boyd et al. 2004 , chap. 3). We note that all the following operations
reserv e conv e xity: 

(i) the underlying linear function of g , i.e. l − A g , 
(ii) the absolute norm operation of the first term, i.e. | l − A g | 
(iii) the subtraction of a conv e x function with a constant, i.e.
ρ( B ), 
(iv) the point-wise maximum between two conv e x functions, i.e.

 l − A g | − η ρ( B ) and 0 , 
(v) the outer p -norm operation. �

EMMA 3. All three constraints of problem P 1 form a convex
easible region. 

roof . First, we pro v e that all the constraints are conv e x functions
which define conv e x sets). Then, we utilize the fact that the inter-
ection of conv e x sets yields a conv e x set (see Convex Optimization
y Boyd et al. 2004 , chap. 2). 
Both g ≥ 0 and N g = 0 are linear constraints, hence, are conv e x

unctions. The newly added quadratic constraint can be rewritten
s � g � 2 − η ≤ 0. Note that all norm operations preserv e conv e xity,
hich yield the first term, � g � 2 , a conv e x function. Subtraction of a

onv e x function with a constant η yields another conv e x function. 
Since all the constraints are conv e x constraints (defining conv e x

ets), and the intersection of conv e x sets is a conv e x set, it is sufficient
o pro v e that the intersection of these regions is not empty. It is trivial
o see that all these regions contain the origin, { 0 } (i.e. g = 0 fulfill
ll three constraints), hence, the intersection set contains at least the
rigin, which is not empty. �

EMMA 4. Let g ∗ be the global solution in �. There exists a positive
calar η such that g ∗ ∈ � ∩ �. 

roof. We note that the feasible region defined by � expands as η
ncreases. Hence, as η approaches infinity, the constraint essentially
o v er the entire domain space of g , which has to co v er g ∗. �

We provide an illustration of the feasible region of g in 2D in
ig. 7 . The intersection region lies on the red line ( N g = 0 ) within

he blue circle ( � g � 2 ≤ η). 
Here we conclude that the lower bound of the objective value,

 ( g ∗ | B ), is achieved by solving P 1 in ( 41 ). The global minimum

s guaranteed owing to its conv e xity property. The abo v e sums up
he second main result of this work. Note that although both of the
resented theorems couples as one lower bound function for our BnB,
e highlight that both of them can be employed individually. On the
ne hand, Theorem 1 (Uncertainty of the incident and scattering
ngles) can be leveraged to determine the ranges of the incident and
cattering angles when the orientation of the surface is uncertain.
n the other hand, Theorem 3 (Linear under-estimator of the lower
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lastly, (iii) the inner pointing blue arrow indicating the feasible region within 
the blue semicircle defined by the quadratic constraint � g � 2 ≤ η. The o v erlap 
of three feasible regions lies on the red line within the blue semicircle. The 
three pointers (magenta ‘ ∗’, black ‘x’, and green ‘ + ’) represent three optimal 
solutions under different constraints, (1) magenta ‘ ∗’ is the optimal solution 
with just constraint (i), (2) the black ‘x’ represents the optimal solution with 
constraints (i) and (ii), and (3) the green ‘ + ’ is the optimal solution with all 
three constraints. 
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ound of the residual set) is useful in the context of minimizing the
est case residual when there is uncertainty in the coefficient matrix 
f a linear residual function. 

.5 Conv er gence of f ( g ∗ | B ) towards f ( g ∗ | ω ) 

he last important criteria of f ( g ∗ | B ) is that it has to converge

o f ( g ∗ | ω ) when B collapses to a singleton (condition 13 ). Since
he sub-patch B gets smaller each time we branch it, δλ and δβ
educe progressively and approach zero as a result and so does θmax B .
ollowing the chain of events, the upper and lower bounds of μ
onverges to μ, which in turn collapsing the perturbation range of A ,
nd finally ρ as a function of the range of A . When ρ converges to
 , it is obvious to see that the objective function of P 1 is equi v alent
o P 0 . 

.6 Reformulation of P 0 and P 1 

ince the choice of norm does not affect the conv e xity of both
roblems, we choose the L 1 norm and reformulate both problems 
nto linear programming problems, (i.e. P 0 into P 2 and P 1 into P 3 ). 

P 2 : min. 
g , r 

I ∑ 

i 

r i 

.t. l i − a i ( ω c ) T
 g ≤ r i , 

−l i + a i ( ω c ) T
 g ≤ −r i ∀ i, 

N g = 0 , 

g j ≥ 0 ∀ j . (42) 
P 3 : min. 
g , r 

I ∑ 

i 

r i 

.t. l i − a i ( ω c ) T
 g − ηρi ( B ) ≤ r i , 

−l i + a i ( ω c ) T
 g − ηρi ( B ) ≤ −r i , 

r i ≥ 0 ∀ i, 

N g = 0 , 

g j ≥ 0 ∀ j . (43) 

e first highlight that the conv e x shape constraints are enforced
uring the search instead of a post-hoc implementation as detailed in
aasalainen et al. ( 2001 )’s work. A couple of tricks were leveraged

n the process of reformulation. First, since the residual vector are
ounded below by zero, L 1 norm is equi v alent to a summation of
ll elements in the residual v ectors. Ne xt, we highlight that r is now
 parameter to be minimized, and introduces a set of non-linear
nequality constraint | l i − a i T  g | ≤ r i for problem P 0 . Fortunately, it
an be linearized with a split into l i − a i T  g ≤ r i and −l i + a i T  g ≤
r i . Similar steps are applied to the residual vector within the max

peration in problem P 1 . We then replace the max (, 0) operation by
onstraining each r i element to be non-ne gativ e. The major change
hat requires more explanation is the omission of the quadratic 
onstraint � g � 2 ≤ η in ( 43 ). We detail below why the mentioned
onstraint can be enforced in a post-hoc manner without affecting 
he optimality of the solution. 

EMMA 5. Let ˜ g ∗ be the minimizer of problem P 1 without the
uadr atic constr aint � g � 2 ≤ η, and let ˆ g ∗ be the minimizer with
he constraint being enforced. If ‖ ˆ g ∗ ‖ 2 = η, then f ( ̂  g ∗ | ρ( B ) , η) ≥
 ( ̃  g | ρ( B ) , η) . 

roof. The following axioms in the field of conv e x optimization can
e leveraged to show that this is indeed the case. 

(i) The minimizer of a conv e x optimization problem is al w ays the
lobal solution with the minimum objective value. 
(ii) The objective value of a conv e x optimization problem strictly

ncreases away from the global minimum. 

As such, if the minimizer ˆ g ∗ lies on the boundary of the constraint
i.e. ‖ ˆ g ∗ ‖ 2 = η), there are only two possibilities: (1) the global
inimum happens to lie on the constraint’s boundary (based on 

xiom 1), or (2) the global minimum lies outside of the constraint
based on axiom 2). If the second scenario is true, its objective value
as to be higher than the minimizer obtained without the constraint,

˜ g ∗. �

The implication of Lemma 5 is that the quadratic constraint 
 � g � 2 ≤ η) can be enforced via a constraint violation detection
echanism. In other words, if the 2-norm of the solution that we

btain from solving P 3 is less than η, the solution is optimal.
therwise, η has to be increased, and P 3 has to be solved again.
e refer to Fig. 7 to aid the understanding of Lemma 5 and its proof.

he magenta ‘ ∗’ indicates the solution for the unconstrained form of
roblem P 1 . When the N g = 0 constraint is in place, the black ‘x’
s the optimal solution. The green ‘x’ on the other hand represents
he solution when the norm constraint ( � g � 2 ≤ η) is added. This
gure depicts the scenario where the norm constraint has excluded 

he solution black ‘x’. As discussed, such a scenario can be easily
etected by checking the 2-norm of the solution, and there is a
ositive η that will enlarge the feasible region to include the black
x’ (see Lemma 4). Hence, we conclude that ensuring the 2-norm of
MNRAS 513, 311–332 (2022) 
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Table 1. Comparison of both methods on the simulated light-curve data. Best results in bold . The averaged (avg) and (best) results o v er eight 
runs with different initial spin pole estimates are reported for KTM’s method. 

L 1 abs error L 2 abs error Spin vector error ( ◦) 
SNR Shape KTM (avg) KTM (best) Ours KTM (avg) KTM (best) Ours KTM (best) Ours 

– Cube 6 .5019 0 .7351 0 .0072 0 .4472 0 .0512 0 .0006 0 .8062 0 .0087 
Cuboid 60 .0885 0 .6134 0 .035 4 .0992 0 .0427 0 .003 0 .1 0 .0087 
House 12 .4994 0 .2245 0 .012 0 .8738 0 .0152 0 .001 0 .2 0 .0087 

Rhombi . 4 .6472 2 .6091 0 .0021 0 .3266 0 .1841 0 .0002 179 .8 0 .0019 

50 Cube 8 .9137 2 .5767 2 .4151 0 .5015 0 .1731 0 .1691 0 .9 0 .7319 
Cuboid 64 .1378 9 .8968 9 .7723 4 .3414 0 .6553 0 .6695 0 .1 0 .217 
House 13 .3325 2 .9868 2 .9283 0 .9255 0 .1931 0 .1985 0 .2236 0 .3016 

Rhombi . 8 .9137 7 .8779 7 .243 0 .5991 0 .5298 0 .5621 173 .5055 1 .0621 

25 Cube 8 .7606 5 .2103 5 .1241 0 .5943 0 .3386 0 .3529 1 .2806 0 .3689 
Cuboid 68 .9347 18 .0556 17 .7927 4 .6864 1 .2031 1 .2323 0 .1 0 .1366 
House 16 .5097 5 .8274 5 .7197 1 .1658 0 .3887 0 .4081 1 .2083 0 .221 

Rhombi . 16 .6287 16 .3688 15 .1368 1 .1389 1 .122 1 .1784 122 .7271 171 .0698 
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he area vector solution obtained from solving P 3 to be lower than η
s equi v alent to solving P 1 as a whole. 

.7 Implementation details 

ere we elaborate the practical details of our method. It
as written mainly in Matlab R2019a. Both the LP problems

 P 2 and P 3 ) are solved with the simplex method (Dantzig
990 ) implemented by Gurobi. 5 All the experiments were run
n an Ubuntu 20.04 machine with 24 Intel i9 CPU cores

3.5GHz. 
We took advantage of the parallelizable trait of our algorithm

o reduce runtime. We notice that the early stage of our algorithm
eals with mainly uncertainty regions with large patch size (in
erms of δλ and δβ), which is expected to produce 0 lower bound
 ( g ∗ | B ). Hence we first divide the entire spin pole search space

nto K sub-patches with its centre points being 5 ◦ apart. Since
he solving of P 2 and P 3 for each sub-patch has no dependence
ith each others, we call the ‘parpool’ command in Matlab and
 x ecute them (see line 2 to line 6 in Algorithm 2) in parallel with
2 w ork ers. 
Then, the queue is formed and sorted with f ( g ∗ | B ) and f ( g ∗ | ω ).

nother practical observation that we made is that the optimal
olution tends to stand in the front part of the queue. As such, we
mploy the depth-first search searching strategy to go through each
ntry of the queue (line 15 to line 32). The quicker the upper bound
ecreases, the more aggressive the pruning process is, which results
n a faster completion speed. 

Another minor trick we employed is the same straightforward
arallelization to line 18 to 31. Instead of pruning at each instance
line 28), we solve P 2 and P 3 in batch and perform the pruning
fterwards. We emphasize that these are not e xhaustiv e efforts to
peed up our algorithm. Highly sophisticated techniques can be
mployed to speed up our algorithm further (see Herrera et al.
017 ). 

.8 Obser v ational uncertainty 

here are several commonly adopted methods in treating the observa-
ional uncertainty in the light-curve inversion problem. Kaasalainen
NRAS 513, 311–332 (2022) 

 https:// www.gurobi.com/ 

4

W  

o  
t al. ( 2001 ) pointed out that the spin states and shape solutions are
obust to random noise and emphasis the treatment on systematic
nd model errors. The authors suggested running the optimization
ultiple times with different initial estimates and scattering laws to

et a lower bound on the error estimates. Hanu ̌s et al. ( 2011 ) created
mock’ models based on the best-fitting model and used them to
enerate virtual light curves. The authors then performed inversions
ased on these virtual light curves to get a distribution of the spin pole.
uinonen et al. ( 2015 ) and Muinonen et al. ( 2020 ) incorporated the

bservation uncertainty as the weights to each of the measurement
oints in their optimization schemes. On the other hand, Wang
t al. ( 2015 ) estimated the uncertainties of the spin parameters
y using the virtual solutions method. Similar to the treatment
roposed by Hanu ̌s et al. ( 2011 ), the authors generated virtual light
urves by adding Gaussian noise to the original light curves. The
ode and 1-sigma of the virtual solutions’ distribution are used

s the spin pole prediction and the error estimate of the studied
odel. 
Here we present two uncertainty treatments of our proposed
ethod. First, we adopt the weighted optimization scheme of
uinonen et al. ( 2015 ) and Muinonen et al. ( 2020 ), the residual

unction in equation ( 2 ) takes the following form when each
f the measurement uncertainty in a set of light curve ( σ i ) is
onsidered, 

 i = 

1 

σi 

∣∣ l i − a T  i g 
∣∣ . (44) 

n this variant, the lower bound of the residual function (equation 39 )
s expressed as 

 

i 
= max 

(
1 

σi 

∣∣ l i − a T  i g 
∣∣ − ηρi ( B ) , 0 

)
. (45) 

he addition of a constant scaling term σ i does not affect the
onv e xity of both residual functions. 

Secondly, we adopted the generic method discussed
y Wang et al. ( 2015 ) in our experimental section to
stimate the uncertainty in the presence of Gaussian
oise. 

 EXPERI MENTAL  RESULTS  

e conducted several experiments to e v aluate the ef fecti veness
f our method in determining the globally optimal solution. Both

https://www.gurobi.com/
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Figure 8. Visualization of the ground truths and the results of both methods (top rows: KTM’s method, bottom rows: our method). From left to right: cube, 
cuboid, house, and rhombicuboctahedron. These polyhedrons and their respective spin poles (in pink arrow) are depicted in the ecliptic coordinate. 
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he simulated (with and without noise) and real light-curve data 
ere used in the experiments. We compare against KTM’s method 

ince it is, in principle, a baseline of our method. In the real
ight-curv e e xperiments, we also compare our solutions with the 
urrently recognized models in DAMIT. This section begins with the 
itty-gritty of both methods (i.e. hyperparameters and convergence 
riteria), followed by the metrics used in our benchmark, and lastly,
he results and findings. 
MNRAS 513, 311–332 (2022) 
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Figure 9. Continuation of Fig. 8 . 

Table 2. Comparison of KTM’s and our method. Only the calibrated light curves are used in this controlled experiment (both as input and e v aluation). 
The grid search variant (of our method) has the same solution and error values with our method. Best results in bold . 

L 1 abs error L 2 abs error λ◦ β◦ time (s) 
Asteroid KTM Ours KTM Ours KTM Ours KTM Ours KTM Ours Grid search 

(90265) 2003 CL5 2.6454 1.9753 0.1895 0.1557 199 .9 26 .4 87 .1 71 .72 1399 127 22176 
(54827) 2001 NQ8 5.0682 4.3125 0.2933 0.2718 241 .4 241 .72 − 47 .6 − 48 .59 124 543 142273 

4.9865 4.2555 0.2872 0.2677 241 .1 241 .4 − 47 .6 − 48 .91 397 541 142322 
(60744) 2000 GB93 4.9865 2.7602 0.3139 0.2139 66 .8 205 .16 − 94 .6 − 69 .84 255 245 59421 
(56232) 1999 JM31 4.3982 3.3958 0.265 0.2261 52 .1 92 .03 − 78 .1 − 65 .47 142 372 90065 

Table 3. Comparison of the DAMIT models and our models on the entire set of light curves (with a 
combination of both calibrated and non-calibrated light curves) from real asteroids. Our models were 
reconstructed based on the calibrated light curves only while the comparing models used the entire 
set of light curves. Best results in bold . 

Asteroid Model L 1 rel error L 2 rel error λ◦ β◦

(90265) 2003 CL5 1734 9 .9565 0.7439 11 70 
Ours 10 .4342 0.8809 26.4 71.72 

(54827) 2001 NQ8 1794 16 .476 0.8244 72 −49 
Ours 17 .4471 0.8471 241.72 −48.59 
1795 19 .5059 0.9244 242 −46 
Ours 17 .9249 0.8651 241.4 −48.91 

(60744) 2000 GB93 3111 7 .8543 0.4012 202 −69 
Ours 9 .7017 0.5328 205.16 −69.84 

(56232) 1999 JM31 3125 8 .1212 0.4966 190 −80 
Ours 7 .3416 0.4686 92.03 −65.47 
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.1 Hyperparameters and convergence criteria 

.1.1 KTM’s method 

he first set of hyperparameters is the degree and order of spherical
armonics for the LM solver. It is documented that setting both to 6 is
 good choice, which we followed in our real light-curve experiments
NRAS 513, 311–332 (2022) 
n Section 4.4 . In the simulated light-curve experiments (Section 4.3 ),
e empirically found that 15 produces better results. 
The second hyperparameter is the number of unit vectors we

ample for EGI, which is needed for both solvers in KTM’s method
nd our method. In the simulated light-curve experiments, we set it
o 288 (6 rows per octant as described in the documentation) + X ,
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(a)

(b)

(c)

Figure 10. Spin pole distributions of the virtual solutions. Le gends: Gre y ‘o’ 
represents the virtual solutions, magenta and green ‘x’ represent the DAMIT 

models and our optimal models, respectively. 
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Figure 11. Continuation of Fig. 10 for (54827) 2001 NQ8. Top figure depicts 
the distribution with the scattering parameters of model 1794, and the bottom 

figure corresponds to model 1795. 
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here X is the number of facets that the current estimating shape
ossesses. The surface normal of the current shape is included (in
he matrix N ) so that the globally optimal area and spin pole solution
s associated with zero residual, which is the best evidence for the
lobal minimum. In the real light-curve experiments, we again follow 

he recommendation by the algorithm’s documentation, setting it to 
00 unit vectors (10 rows per octant). 
We ran KTM’s method as we have described in Section 1 – getting
he best outcome out of eight different runs with the initialization
cheme proposed by the authors. The initial estimates of the spin
oles are λ = { 45 ◦, 135 ◦, 225 ◦, 315 ◦} , β = { 45 ◦, −45 ◦} , evenly
istributed across the entire domain. Note that all other parameters 
e.g. spin period, scattering parameters etc.) apart from the spin 
ole and the area vectors are fixed. We allowed both solvers to be
un until convergence, i.e. the discrepancy of the objective values 
etween consecutive iterations is smaller than 10 −11 in all our 
xperiments. 

.1.2 Our method 

here are three hyperparameters in our method – τ , ζ , and η. The
ermination threshold for the discrepancy between the upper bound 
nd the lower bound is denoted as τ , while ζ represents the smallest
atch size before we stop branching a particular region B . We set τ to
0 −11 , and ζ is set to 0.01 ◦ for the simulated light-curve experiments
nd 0.28 ◦ for the real light-curve experiments. On the other hand, η
s a part of the lower bound equation (equation 30 ); it was chosen
ccording to the problem at hand. We start with a small value ( η =
) and increase it if the optimal solution is excluded (as explained in
ection 3.4 ). For the simulated data experiments, the η for cube,
uboid, house, and rhombicuboctahedron are 3, 11, 5, and 3.2, 
espectiv ely. F or the real data experiments, η = 2 is found to be
ufficient to include all optimal solutions. 
MNRAS 513, 311–332 (2022) 
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Table 4. Spin pole uncertainty estimates from the virtual solutions. The 
mean spin pole ( ̃ λ and ˜ β) and 1- σ error estimate are obtained from the major 
solution clusters, see Figs 10 and 11 and text for more references. 

Asteroid Pole ˜ λ◦ ˜ β◦

(90265) 2003 CL5 1 71.9 ± 2.56 26.84 ± 4.87 
(54827) 2001 NQ8 1 ∗ 72.49 ± 0.49 − 50.73 ± 1.67 

2 ∗ 242 ± 0.92 − 49.18 ± 1.73 
1 # 72.41 ± 0.64 − 50.52 ± 1.88 
2 # 242.07 ± 0.95 − 49.14 ± 1.76 

(60744) 2000 GB93 1 181.66 ± 4.41 − 66.33 ± 2.32 
2 201.81 ± 2.65 − 69.38 ± 1.92 

(56232) 1999 JM31 1 93.27 ± 7.33 − 64.31 ± 3.68 

Notes. ∗Scattering parameters of model 1794. 
# Scattering parameters of model 1795. 

(a)

(b)

Figure 12. Conv e x shape models of asteroid (90265) 2003 CL5. 
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.2 Metrics 

hen only calibrated light curves are involved, we report the L 1 abs 

nd L 2 abs fitting errors as they are the objective functions in our and
TM’s method, respectively. L 1 abs error is expressed as 

 1 abs error = 

I ∑ 

i= 1 

∣∣∣l ( i) mea − l 
( i) 
est 

∣∣∣ , (46) 

nd the L 2 abs error, also known as the least-squares error, is expressed
s 

 2 abs error = 

√ √ √ √ 

I ∑ 

i= 1 

(
l 
( i) 
mea − l 

( i) 
est 

)2 
, (47) 

here l mea and l est are the measured and the estimated light-curve,
espectively. 

When comparing with the DAMIT models, we report the relative
rrors L 1 rel and L 2 rel since (1) the entire set of light curve is used
here there is a mix of both calibrated and relative light curves,

nd (2) the models in DAMIT are scaled to unit volume. The main
ifference between the relative and the absolute metrics is that the
ean magnitude of each light-curve set is scaled to unity. As such,

he absolute magnitude information is remo v ed, which implies that
wo same conv e x shapes with different scales will produce the same
ight curve. Formally, L 1 rel and L 2 rel are expressed below, 

 1 rel error = 

W ∑ 

w= 1 

I ∑ 

i= 1 

∣∣∣∣∣ l 
( wi) 
mea 

ˆ l ( w) 
gt 

− l 
( wi) 
est 

ˆ l ( w) 
est 

∣∣∣∣∣ , (48) 

 2 rel error = 

√ √ √ √ 

W ∑ 

w= 1 

I ∑ 

i= 1 

( 

l 
( wi) 
mea 

ˆ l ( w) 
gt 

− l 
( wi) 
est 

ˆ l ( w) 
est 

) 2 

, (49) 

here ̂  l ( w) 
mea and ̂  l 

( w) 
est represent the mean brightness in w-th set of light

urve in the measurement and estimation, respectively. 
As for the spin vector error, we compute the relative rotation

istance with 

 ( R gt , R est ) = arccos ((trace( R gt T
 R est ) − 1) / 2) , (50) 

where R gt and R est are formed with Euler rotation angle sequence
Z-Y-Z) as expressed in equation ( 17 ) with the corresponding λ and

(the left-most R z is replaced with identity matrix). The lower is
etter for all the aforementioned metrics. 

.3 Simulated light-cur v e experiments 

e used the light-curve simulator and the implementation of KTM’s
ethod from the DAMIT data base. Four different conv e x polyhe-

rons were generated – cube, cuboid, house, and rhombicuboctahe-
ron. The spinning poles were randomly generated. Since we assume
hat these bodies rotate with a fixed axis, we ensure that each spinning
ole aligns with the correct principal inertia axis. We sampled 328
imestamps and the locations of the Sun and Earth from the real light
urve of the asteroid Ariadne (from DAMIT) for all the light curves
hat we simulated. 

.3.1 Light curve without noise 

iven clean light curves, our method manages to converge to
ractically 0 objective value (see Table 1 ) with the correct spin
oles (see fig. C1 in the supplementary appendices for the spin pole
stimates of both methods) for all shapes. The numbers align with
NRAS 513, 311–332 (2022) 
he reconstructions as depicted in Figs 8 and 9 . Note that the shapes
nd their spin poles are visualized in the ecliptic coordinate system.
hese results showcase the ability of our method in converging to
lobally optimal solutions. We report both the average and the best
rror metrics of KTM’s method to show its reliance on initialization.
esides, we report that the degree and order of spherical harmonics

eries has an influence on the convergence of KTM’s method too. We
ound that when setting it lower than 15 (the maximum hard threshold
n the software), most of the runs converged to worse solutions. 

Rhombicuboctahedron is the most complex shape among the four
hapes. The best spin pole solution of KTM’s method is in the
pposite direction of the ground-truth spin pole, which is reflected
n the spin vector error column of Table 1 (179.8 ◦). As a result, it
as the highest fitting errors ( L 1 abs = 2.61 and L 2 abs = 0.18) among
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(a)

(b)

(c)

Figure 13. Conv e x shape models of asteroid (54827) 2001 NQ8. 
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ll comparing shapes. In order to verify that this is the failure of
TM’s method (specifically, the LM solver) in converging to the 
lobal minimum, we ran a controlled experiment where we ran the 
M solver under two different settings. In the first setting, we fixed

he spin pole parameters to the ground-truth and solve for only the
aussian surface density. In the second one, we initialize the LM

olv er with ev enly distributed spin poles as described earlier and
olve for both the spin pole and the Gaussian surface density. We
ound that the shape solution from the first setting is significantly 
etter than the second setting, i.e. L 1 abs : 0.9518 versus 3.3763 and
 2 abs : 0.0714 versus 0.2324, which clearly indicates that the LM
olver fails to converge to the better set of spin pole and shape
olutions when the spin pole parameters are not fixed. Interestingly, 
ne of the runs in the second setting, initialized closest to the ground-
ruth, converged to λ = 29.8 ◦, β = 15.1 ◦ (ground-truth spin pole is λ
 25 ◦, β = 15 ◦), with a slightly higher fitting errors ( L 1 abs = 3.7955

nd L 2 abs = 0.2654) than the best solution. This experiment proves 
ur point that the convergence of a local method to a global minimum
s not guaranteed despite an initialization strategy. 

.3.2 Light curve with noise, SNR = 25, 50 

iven noisy light curves, with the signal-to-noise ratio (SNR) of 50
nd 25, our method achieves the lowest L 1 abs errors in all experiments.
his result is consistent with our previous results, showcasing the 
bility of our method in achieving global minimum. Note that the
lobal minimum in the L 1 abs space does not correspond to the global
inimum in the L 2 abs space; this explains the lower L 2 abs errors of
TM’s method. 
The conv e x shapes and the spin pole orientations of both methods

losely resemble the ground-truths of the cube, cuboid, and house 
hapes. These results demonstrate the robustness of light-curve 
nversion against random noise in the measurements, which aligns 
ith Kaasalainen & Torppa ( 2001 )’s findings. 
Lastly, we highlight that there are a lot of local minima in the

esidual space of rhombicuboctahedron, as illustrated in the four big 
alleys in Fig. 2 . We associate this to the symmetrical property of the
hape, and the low inclination orbital plane (Kaasalainen & Lamberg 
006 ). When there is random noise in the light curves, one of these
ocal minima in the clean light curves turns into the global minimum,
hich explains the large discrepancies between the ground-truth spin 
oles and the solutions of our method. In such cases, the spin vector
rror is not a meaningful comparison metric. 

.4 Real light-cur v e experiments 

eal light-curv e e xperiments were conducted to e xamine the practi-
al aspects of our method. We selected four asteroids from DAMIT
ith sufficient calibrated light curves for our experiments. There are 

hree main results presented in this section. The goal of the first
xperiment is to validate the ability of our method in achieving the
est L 1 abs fit results when given the same set of hyperparameters
nd calibrated light curves to both methods. Since we use only the
alibrated light curves, we compare the solutions with the absolute 
ight-curve fitting errors (i.e. L 1 abs and L 2 abs ), see Table 2. In the
econd experiment, we present the comparisons between our models 
nd the currently recognized models in DAMIT (obtained with 
TM’s method by different authors). One major difference between 

he two is that the DAMIT models were inverted based on a larger set
f light curve (both calibrated and non-calibrated). In this experiment, 
e compare both methods on the entire set of available light curves,
hich consists of both calibrated and non-calibrated light curves. As 

uch, we use the relative fitting errors L 1 rel and L 2 rel metrics in the
omparison, see Table 3. 

In both of the experiments, we adopted the same set of hyperpa-
ameters (i.e. sidereal spin period P , initial epoch t 0 , initial angle φ0 ,
nd light scattering parameters (amplitude a , width d , and slope k of
he phase angle function for Lambert + Lommel Seeliger scattering 

odel) that are reported in the DAMIT data base (see Section 5 ). 
We highlight that all of the in-depth comparisons will be made

n the second experiment since those models were reported by third
arties and are currently recognized in the DAMIT data base. The
rst experiment can only be seen as a controlled experiment since the
hoice of the e xclusiv e hyperparameter in KTM’s method (i.e. the
egree and order of spherical harmonics for the LM solver) might be
ub-optimal. Nev ertheless, the controlled e xperiment is necessary to 
nsure our models are indeed the global minimum solutions given 
he same set of light curves and common hyperparameters. 
MNRAS 513, 311–332 (2022) 
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Figure 14. Conv e x shape models of asteroid (60744) 2000 GB93. 
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Figure 15. Conv e x shape models of asteroid (56232) 1999 JM31. 
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In order to get the uncertainty estimations of both the spin pole
 λ, β) and the area vector of EGI ( g ), we performed a Monte Carlo
imulation by running our method on 3000 virtual light curves for
ach asteroid. Following Wang et al. ( 2015 ), we added Gaussian
oise to the original light curves with the standard deviation of the
tting error of our best-fitting models. 
The summarization of all the results and visualization is as follows:

able 3 tabulates the fitting errors and spin pole solution, Figs 10
nd 11 visualized the spin pole distributions, Table 4 tabulates the
ajor clusters in these distributions, Figs 12 –15 visualized the each

econstructed asteroid, Fig. 16 depicts the distributions of each EGI,
nd finally, Figs 17 and 18 illustrates the generated light-curves of
ach comparing model. 

(90265) 2003 CL5 is one of the largest asteroids in the young
atura family. The details of its photometric observations process

an be referred to in Vokrouhlick ̀y et al. ( 2017b ). The collection
as 16 (out of 18) calibrated light curves which we fed into our
lgorithm. Our spin pole solution ( λ = 26.4 ◦, β = 71.72 ◦) in general
grees with Vokrouhlick ̀y et al. ( 2017b )’s model – model 1734 ( λ =
1 ◦, β = 70 ◦). The L 1 rel and L 2 rel errors and spin pole solutions are
abulated in Table 3 . The simulation results are visualized in the first
ow of Fig. 10 . The mean and 1- σ uncertainty of the major cluster
s λ = 26.84 ◦ ± 4.87, β = 71.9 ◦ ± 2.5, which is close to both of
he comparing models. Ho we ver, the spread-out distribution of the
irtual solutions around the north pole region illustrates the poorly
onstrained nature of the light curves. Vokrouhlick ̀y et al. ( 2017b )
lso reported similar findings. 

Fig. 12 compares the conv e x shapes of both methods. The top
anel of the figure is viewed from the positiv e ax es and the bottom
anel from the ne gativ e ax es. The shades in the conv e x model
gures in this paper illustrate the brightness of each surface when
NRAS 513, 311–332 (2022) 
hey are observed and illuminated from the same direction, modelled
ith the light scattering law in equation ( 14 ). Both conv e x models

hare the same elongated feature. The uncertainty of the EGI can
e seen in the first row of Fig. 16 . The unit vectors (of the EGI)
n northern and Southern hemisphere are projected on the left and
ight polar scatter plots, respectively. Due to its dependence on the
pin pole’s orientation, plotting the EGI of all virtual solutions is
eaningless due to the spread-out distribution of the spin pole

olutions. Hence, we plot only the sets of EGI associated with
he spin pole solutions that lie within the tabulated pole clusters
Table 4 ) to show the neighbouring solutions of our best-fitting
odel. 
The polar scatter plots in Fig. 16 conv e y two information: the

ange of area magnitudes of each unit vector and its frequency
f being ‘turned on’ (i.e. larger than zero). The grey ‘blobs’ are
he products of stacking each individual solution of different sizes.
he size of each unfilled circle is the product of its unique area
olution and the (globally) normalized frequency of the particular unit
ector. The black circles represent the EGI of our best-fitting model.
hey are scaled by the same normalized frequency factors as well.
onsistent among the (considered) virtual and best-fitting solutions
f this asteroid, the unit vectors of the second and fourth segments are
eing turned on more frequently with significant larger area values,
hich again highlights the elongated shape along its equator. 
In terms of light curves fitting, model 1734 fits the measurements

etter, with a positive gap of 0.4777 and 0.137 in terms of L 1 rel 

nd L 2 rel , respectively. We associate this to the two missing light
urves in our input subset. To better illustrate this, we plot the light
urves produced by both models at various observing geometries
n Fig. 17 . The aforementioned missing light curves are visualized
n the top row of Fig. 17 , where our model has a worse fit than
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(a)

(b)

(c)

(d)

Figure 16. EGI uncertainty plots. The EGI of the virtual solutions are 
visualized with grey circles. The size of each circle is determined by the 
area magnitude and the turned on frequency of the unit vector. See the text 
for more details. The black circles represent the best-fitting EGI. 
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odel 1734. The second row illustrates the contrary instead, where 
ur model has a better fit. The light curves generated by the virtual
olutions are used to generate the 1- σ error bar and envelope in
he plot. Consistent with previous observations, the error bars are 
ignificantly larger in the missing light curves. The same observations 
re repeated in every comparison, which we omit in the rest of this
ection. 

The results of the controlled experiment can be seen in Table 2 .
ur model has a better fit in both L 1 abs and L 2 abs metrics, with a
ositive margin of 0.6701 and 0.0338, respectively. 
(54827) 2001 NQ8 ’s details and its photometric observations 

rocess are elaborated in Vokrouhlick ̀y et al. ( 2017a )’s work. The
ollection has 13 (out of 20) calibrated light curves which we used
n the inversion process. Vokrouhlick ̀y et al. ( 2017a ) reported two
ossible solutions – model 1794 and 1795. The former’s spin pole 
olution is λ = 72 ◦, β = −49 ◦, and the latter is λ = 242 ◦, β =
46 ◦. Both solutions are associated with different light scattering 

arameters. Model 1794’s scattering parameters are a = 0.44, d 
 0.14, k = −0.71, and model 1795’s scattering parameters are
 = 0.36, d = 0.11, k = −0.78. We performed inversions with
oth sets of scattering parameters and obtained two very similar 
olutions ( λ = 241.72 ◦, β = −48.59 ◦ and λ = 241.4 ◦, β = −48.91 ◦).
mong the four models, model 1794 has the best light curves
t, with a clear margin of 0.9711( L 1 rel ) and 0.0227 ( L 2 rel ) to the
econd-best model (our model). Model 1795 has the worst fitting 
rrors among them. Since both of our solutions are essentially 
he same, we compare only one of them with the best model
model 1794) in the light curves plots (see third and fourth rows of
ig. 17 ). 
The top and bottom distribution plots in Fig. 11 were obtained with
odel 1794’s and model 1795’s scattering parameters, respectively. 
here are two distinct clusters in both distributions, co v ering the
ole solutions of both DAMIT models and our model. The uncer-
ainty is small, i.e. less than 1 ◦ for λ, and less than 2 ◦ for β. It
hows that the light curves constraint the model pretty well apart
rom the 180 ◦ ambiguity in λ. It is interesting that almost all the
irtual solutions lie on Pole 2, i.e. ˜ λ ≈ 242 ◦, ˜ β ≈ −49 ◦, which
s a strong indication that the calibrated light curves fa v our this
olution. 

Fig. 13 visualizes the conv e x shapes of three different models
model 1794 in the first row, model 1795 in the second row, and our
olution with spin pole orientation λ = 241.72 ◦, β = −48.59 ◦ in the
hird row). Since the shapes were drawn with a fixed coordinate, we
an see that model 1794 differs from model 1795 and our model by
oughly a sign flip owing to the ≈180 ◦ difference in λ. The EGIs
f the virtual solutions can be seen in the second row of Fig. 16 .
n general, the uncertainty plots indicate that the asteroid possesses
urfaces of diverse directions with significant distributions on the 60 ◦

o 150 ◦ and 210 ◦ to 330 ◦ regions. 
In the controlled experiment, KTM’s method converge to essen- 

ially the same spin pole solution (approximately λ = 241 ◦, β =
48 ◦) with both set of scattering parameters. The result aligns with

he distributions of our virtual solutions. The positive margins of 
ur models are 0.7557(0.731) and 0.0215(0.0195) in terms of L 1 abs 

nd L 2 abs , respectively (bracket for the result with the scattering
arameters of model 1795). 
(60744) 2000 GB93 is the primary asteroid in the asteroid pair

60744). Its details are co v ered in a comprehensive asteroid pairs
tudy by Pravec et al. ( 2019 ). 14 out of 19 of its available light
urves are calibrated. We compare our solution with the only 
eported model – model 3111, in which the spin pole orientation is
MNRAS 513, 311–332 (2022) 
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Figure 17. Real light-curve measurements and generated light curves with the DAMIT models, our best-fitting models, and the virtual solutions from our 
Monte Carlo simulation (see the text for details). Legends: red ‘o’ represent the real light-curve measurement, magenta and green ‘o’ represent the light curves 
generated by the DAMIT model and our best-fitting model, respectively. The light curves generated by the 3000 virtual solutions are used to generate the 1- σ
error bar and envelope (black dots). Furthermore, α is the angle between the Sun and Earth vectors, ψ is the angle between the north pole and Earth’s direction 
( ψ o for the Sun’s direction) in the object-centred ecliptic coordinate. 
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Figure 18. Continuation of Fig. 17 . 
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= 202 ◦, β = −69 ◦. Our spin pole solution ( λ = 205.16 ◦, β =
69.84 ◦) agrees greatly with the mentioned model. Both comparing 
odels again lie in the same distribution (second row in Fig. 10 ),

.e. ̃  λ = 201 . 89 ◦ ± 2 . 68, ˜ β = −69 . 42 ◦ ± 2 . 04. The other significant
istribution is nearby ( ̃ λ = 181 . 71 ◦ ± 4 . 3, ˜ β = −69 . 42 ◦ ± 2 . 04),
eparated by a notable gap. Similar to (90265) 2003 CL5, the spread
f the virtual solutions around the southern pole indicates the poor
onstraint nature of the light curves. 

The reconstructed conv e x shapes of both models look alike at the
oarse level (see Fig. 14 ), but a closer look reveals the lower level
MNRAS 513, 311–332 (2022) 
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Figure 19. Spin pole distribution of (54827) 2001 NQ8 with varying EGI 
resolutions. The zoomed-in of the distribution is drawn on top of the entire 
domain. 
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Figure 20. Conv e x shape models of (54827) 2001 NQ8 with varying EGI 
resolutions. 
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ifferences, especially in z–x(middle) and y–x(right) views. The EGI
lots in the third row of Fig. 16 reveal the major distributions near
he asteroid’s northern and southern poles. The larger equator facets
an be seen in the distributions near the 30 ◦ and 210 ◦ segments. It
hares a similar larger facets attribute with (90265) 2003 CL5. 

With the lack of five missing light curves (with dense measure-
ents) in our inversion process, our model has a clear ne gativ e
argin of 1.8474 and 0.1316 in terms of L 1 rel and L 2 rel , respectively.
uch margins are well reflected in the first row of Fig. 18 (the missing

ight curves), where our model demonstrates an observable looseness
ith the measurements. The second ro w sho ws the contrary, where
ur model fits better with the light curves in our subset. In the
ontrolled experiment, our model has clear positive margins in both
bsolute fitting errors, 2.2263 and 0.1 in terms of L 1 abs and L 2 abs ,
espectively. 

(56232) 1999 JM31 belongs to an asteroid pair as well, which is
lso co v ered in Prav ec et al. ( 2019 )’s work. 17 out of 19 of its light
urves are calibrated. Again, we benchmark our method against the
nly reported model – model 3125, in which the spin pole orientation
s λ= 190 ◦, β = −80 ◦. Our solution is λ= 92.03 ◦, β = −65.47 ◦, with
 large disagreement in λ. The major cluster of the virtual solution is
ocated at ̃  λ = 93 . 36 ◦ ± 8 . 67, ˜ β = −64 . 39 ◦ ± 3 . 72 (see third row of
ig. 10 ). Similarly, there is a spread of solutions ranging from −55 ◦

o −80 ◦ in β and 150 ◦ to −170 ◦ in λ. 
Naturally, the conv e x shapes of both models differ significantly as

epicted in Fig. 15 . The area distribution of this asteroid is crowded
n the middle to equator part of the shape (see the fourth row of
ig. 16 ). In general, the shapes are made of smaller facets distributed

n various local regions. 
Both fitting errors fa v our our model with a positive margin of

.7796 and 0.028 in terms of L 1 rel and L 2 rel , respectively. In the
ontrolled experiment, our model has a positive margin of 1.0024
nd 0.0389 in terms of L 1 abs and L 2 abs , respectively. 

We highlight that both model 3125 and our model are not spinning
ith the correct principal inertia axis. For model 3125, the angular
istance between the spin pole and the principal axis with the highest
oment of inertia is approximately 35 ◦. For our model, the offset is

pproximately 90 ◦. The closest principal axis to the spin pole of our
odel is the axis with the second-highest moment of inertia, which

s approximately 10 ◦ away. 

.4.1 Uncertainty in the resolution of EGI 

he resolution of EGI has a direct impact on the final model of the
steroid (Kaasalainen & Torppa 2001 ). The recommended number
NRAS 513, 311–332 (2022) 
f rows (in each octant) in the triangulation technique proposed
y Kaasalainen & Torppa ( 2001 ) ranged from 8 to 10 (higher row
umber for a higher resolution EGI). As such, we performed an
ncertainty assessment of our models with different resolutions.
steroid (54827) 2001 NQ8 was chosen in this experiment due to

ts well-constrained nature. We performed nine inversions with the
umber of rows in the range of 4 to 12, which corresponds to 128 to
152 facets (i.e. 8 × number of rows 2 ). 
In general, all nine models possess high similarities in all observed

spects. The spin pole distribution is shown in Fig. 19 , which has a
imilar distribution to the Monte Carlo simulation’s result in Fig. 11 .
he largest differences in β is less than 4 ◦, and less than 2 ◦ in λ.
he o v erall shape with different resolutions look similar in all nine
ariants (see Figs 20 and 21 ). Not surprisingly, the detail of the
urfaces gets finer as the resolution goes up. This observation is
ighlighted in Fig. 22 , where the model with the highest resolution
in blue) has more and smaller facets than the other extreme (in
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Figure 21. Continuation of Fig. 20 . 

Figure 22. EGI plots of different models of (54827) 2001 NQ8 models with 
varying EGI resolutions. The magenta and blue circles represent the models 
with the least (4) and most (12) triangulated rows. All other variants are 
visualized with grey markers. 
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Figure 23. Generated light curves of different models of (54827) 2001 NQ8 
with varying EGI resolutions. The red ‘o’ are the measurements, and the grey 
lines are the light curves of all nine models. The highlighted light curves, 
magenta and blue lines, represent the models with the least (4) and most (12) 
triangulated rows. 
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agenta). Last but not least, we also plotted the light curves of these
odels in Fig. 23 . The coloured light curves highlight the extreme

omparison, where the model with the highest number of facets (blue 
ines) has a better fit than the model with only 128 facets (magenta
ines). 

.4.2 Speed 

he speed of both methods is tabulated in the last column of Table 2 .
or KTM’s method, we ran all eight runs in parallel and recorded

he longest period among them. For our method, we report the time
aken to arrive at the global solution, where no further improvement
s found until the termination of our algorithm. The speed of both
ethods is similar in all five runs. Ho we ver, we highlight that KTM’s
ethod is much faster when run in the recommended settings (i.e.

erminate within a couple of hundreds of iterations) than our reported
ime. The cause of the slower speed reported here stems from the
act that we allowed the algorithm to run its full course (i.e. until
he error plateau up to the numerical precision level) to ensure that it
onverges to the minimum. 

Besides, we conducted an experiment to e v aluate the speed gain
f our algorithm compared to a naive grid search in the spin pole
omain. The spin pole domain is first sampled to the precision of
.28 ◦, which is the same as ζ that we used in our algorithm in
eal light curves experiments. Then we solve P 2 [equation ( 42 ),
olve for the area vector g given a spin pole ω ] in parallel, 6 with
ach of the sampled spin poles. In short, the grid search algorithm
s equi v alent to solving our proposed shape inversion formulation
ithout the BnB framework. As tabulated in the last column of
able 2 , the time taken is significantly higher (hours longer) in all our
onducted experiments. These results clearly indicate the efficiency 
f our algorithm o v er the naive grid search. 

 C O N C L U S I O N  

e presented a no v el algorithm for estimating an object’s spin pole
nd area vector from its light curves. Our branch-and-bound based 
lgorithm al w ays find the globally optimal solution in the L 1 abs 
MNRAS 513, 311–332 (2022) 
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pace and is ready to be integrated into the established light-curve
nversion pipeline. By replacing the two-stage spin pole and area
ector determination module in the classical light-curve inversion
ipeline (KTM’s method) with our proposed algorithm, the search for
ther unknowns of the object such as the spin period and scattering
arameters can be done in a domain scanning fashion. The best
et of parameters is guaranteed to be associated with the lowest
 1 abs fitting error. In the process of designing our algorithm, we
athematically derived a novel lower bound for the element-wise

ight-curve fitting residual when the spin pole orientation is given as
n uncertainty region. One practical advantage of our algorithm is
he elimination of the initialization process. We validated our global
ptimality claim empirically in both simulated and real light-curve
xperiments. We also e v aluated the practicality of our method by
omparing our solutions with the currently accepted models in the
AMIT data base. 
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