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Abstract

The fundamental problem of finding the effective linear and nonlinear elastic

properties of a particulate composite subjected to finite elastic deformations

is solved when the matrix and particulate phases are assumed to be weakly

nonlinear. Weak nonlinearity is adequate to describe common engineering

materials and composites loaded in the elastic regime. A nonlinear ana-

logue of the Eshelby solution for the axisymmetric deformation of spherical

particles is derived. Based on this solution, explicit asymptotic expressions

for the effective linear and third-order (nonlinear) elastic moduli are derived

in the case of a dilute distribution of spherical particles based on a gen-

eral homogenisation methodology proposed by Hill. It is demonstrated that

the current solutions correctly recover well-known relationships for the linear

material properties of particulate composites as well as previously derived

expressions for the effective nonlinear properties for certain special cases

considered previously (e.g. hydrostatic loading, and a neo-Hookean matrix
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containing voids). The obtained theoretical results also agree with limited

experimental data available in the literature.

Keywords: finite deformation theory, nonlinear elasticity, particulate

composite, spherical particles, effective properties

1. Introduction

In multiphase composites, the presence of secondary phases may influence

the mechanical behaviour of the material on the structural scale; therefore,

the development of simple and accurate estimates of the effective material

properties has been of enduring interest for many decades or even centuries.5

Beginning with the pioneering studies of Voigt and Reuss [1, 2] on poly-

crystalline aggregates, many estimates have been proposed for the effective

behaviour of multiphase composites. Variational principles have been widely

applied to develop strict bounds for linear elasticity, (e.g. the well-known

Hashin-Shtrikman [3] bounds); and, in the spirit of the Eshelby solution [4, 5],10

many averaging methodologies have been developed (e.g. the Mori-Tanaka

method [6], the self-consistent [7] and the generalised self-consistent schemes

[8] to name a few). However, corresponding results for nonlinear materials

subjected to finite deformations are sparse, which is attributable to the inher-

ent mathematical difficulties associated with solving nonlinear problems [9].15

When attempting to derive upper and lower bounds, a critical impediment

is that the theory of finite deformations features stationary principles, rather

than the strict extremum principles of linear elasticity [10]. Meanwhile, for

convex and polyconvex incompressible materials, strict bounds have been

obtained [11], though these bounds are still not available for compressible20
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materials. For common structural materials, which are typically modelled

as weakly nonlinear, there are as yet no available bounds on the effective

material properties.

One approach which has been used to estimate the effective properties

of nonlinear composites is based on the concept of the Representative Vol-25

ume Element (RVE). Subject to an appropriate set of boundary conditions,

the effective properties may be derived based on certain averaged properties

of the deformation and stress fields in the RVE. As discussed by [12, 13],

a widely applied criterion for selecting appropriate boundary conditions is

the Hill-Mandel condition, which establishes incremental energy equivalence30

between the structural scale and the microscopic scale (or the scale of the

inhomogeneity) [14]. This approach is suitable for composites with distinct

microstructural length scales, and is also well-suited to numerical evaluations

of effective material properties using computational procedures and methods

e.g. the Finite Element (FE) method. These procedures and methods allow35

the analysis of complex phase geometries subjected to finite deformations

as well as modelling of the interaction between constituents, e.g. the effect

of the arrangement, debonding along interfaces, damage caused by fracture

of the constituent phases, or cavitation [15]. A number of recent studies

have modelled inhomogeneous nonlinear materials using the multi-level FE40

method [16], the FE method based on asymptotic homogenisation [17], and

the weighted essentially non-oscillatory finite difference method [18]. It must

be noted that the computational studies cited above did not consider weakly

nonlinear materials, which, as mentioned above, best describe the mechani-

cal behaviour of common engineering materials (e.g. metals and alloys) and45
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composite constituencies subjected to elastic deformation.

Though no systematic studies have been published, it appears that the nu-

merical homogenisation of weakly nonlinear composites presents a significant

challenge for current computational procedures and methods, as the nonlin-

ear response in such materials is expected to be several orders of magnitude50

smaller than the dominant linear response, and may be indistinguishable

from errors associated with the selection of the RVE, and its morphology;

as well as errors arising from discretisation and numerical precision. As an

example, the maximum strain which can be tolerated by common materials

without yielding (e.g. steel and aluminium alloys in the elastic regime) is55

typically 10−3, for which the magnitude of the nonlinear effects would be

expected to be of the order 10−6. Therefore, numerical simulations require

extensive convergence and mesh sensitivity studies, which can only indirectly

indicate the quality and accuracy of the numerical results. In addition, direct

numerical simulations often apply periodic boundary conditions [19, 20] im-60

plicitly introducing material anisotropy, which requires special treatment or

some sort of compensation, which again can be comparable with the effects

associated with material nonlinearities. Compliance with all these require-

ments might be unfeasible, specifically in the case of parametric studies.

Overall, it appears that the problem under consideration is more amenable65

to an analytical rather than numerical treatment.

Several previous studies have investigated nonlinear properties of com-

posite materials using simple constitutive models for incompressible isotropic

materials [21]. The number of material constants and, therefore, the com-

plexity of the analysis is greatly reduced in these cases, allowing for closed-70
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form analytical solutions [22]. For example, Hashin [23] investigated radially

symmetric motions of incompressible media containing voids, with particu-

lar focus on cavitation and other instabilities. An exact solution for two-

dimensional neo-Hookean solids featuring a random microstructure has also

been developed [24]. However, as mentioned above, the limited number of75

exact solutions which are known for physically reasonable constitutive mod-

els, and the inherent mathematical difficulties involved in deriving them,

represent substantial impediments for analytical treatments. More recently,

an effective strain energy function for neo-Hookean and non-Gaussian elas-

tomers weakened by a distribution of spherical voids [20] was derived based80

on an approximate analytical solution, which was shown to agree well with

FE simulations. Based on this study, it was also concluded that the effective

properties were relatively insensitive to the distribution and arrangement of

voids in the composite material. Subsequent research has revealed that syn-

tactic foams [25], nonlinear viscoelastic materials [26, 27] and thin, perforated85

plates [28] display a similar property, and provided experimental verification

of this phenomenon. However, there is no general theory which would help

to identify the situations where the arrangement and distribution of com-

posite constituencies have a small influence on the overall behaviour of the

composite.90

Most authors have turned to approximate solutions or perturbation meth-

ods in order to estimate the effective nonlinear properties. Ogden [9] derived

the effective nonlinear compressive modulus for a particulate composite fea-

turing a dilute distribution of spherical particles using volume averaging in

combination with a perturbation expansion; the analytical manipulations in95
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this case are reduced, as the problem is one dimensional. For particulate com-

posites in which the matrix phase may be approximated by a linear material,

the Eshelby solution has been generalised to encompass a nonlinear inclusion

[29]. Using this approximation, it was possible to present closed-form ex-

pressions for the effective nonlinear elastic constants, though the results can100

only be expected to be valid when the degree of nonlinearity of the matrix

is negligible compared to that of the particulate phase. Another interesting

method based on a perturbation of the elastic energy density function and

Eshelby’s solution has recently been presented by Semenov and Beltukov [19]

to evaluate the effective nonlinear elastic properties i.e. the third-order elas-105

tic constants (TOECs) of a weakly nonlinear particulate composite. These

authors derived explicit expressions for the effective properties of particulate

composites using the Eshelby equivalence principle [4, 5]. The analytical

computations were reduced in this case, as the referential volume average of

the elastic strain energy was used in the homogenisation scheme, and the au-110

thors were able to use integral transformations to derive effective properties

which only depend on the linear elastic solution. The method substantially

reduces the complexity of the analytical computations, and the derived ef-

fective elastic constants were compared against their own FE simulations

demonstrating a very good agreement for dilute distributions of particles,115

across a wide range of material properties of composite constituencies. How-

ever, the obtained analytical expressions do not recover classical results, e.g.

the nonlinear compressive effective modulus of neo-Hookean composites con-

taining voids, which had previously been obtained by Hashin [23, 20]; this

discrepancy warrants further study.120
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This paper begins with a brief background on the relevant equations in

the finite deformation theory of elasticity. In Section 3 a second-order so-

lution for a RVE of a weakly nonlinear particulate composite is presented

and validated by comparison with previous studies. In conjunction with the

averaging methodology proposed by Hill, the perturbation solution is used125

in Section 4 to derive closed-form expressions of the linear and nonlinear

elastic properties of particulate composites with random microstructure. It

is demonstrated that the present solution recovers previously published re-

sults, including the special case of a material containing cavities in Section

5 and the classical result for a neo-Hookean matrix due to Hashin [23]. Ad-130

ditionally, numerical results for composites with properties which have been

reported in the literature are presented to reveal characteristic features of the

variation of the nonlinear elastic properties with volume fraction of particles.

The present theoretical results are also compared with the experimental data

found in the literature demonstrating a good agreement. Some implications135

and possible applications of the derived expressions are presented in Section

6, including the potential to accurately evaluate the concentration of impu-

rities in a material, as well as the amplification or suppression of nonlinear

wave phenomena in composite materials.

2. Governing equations140

The governing equations of nonlinear elasticity relevant to the problem

under consideration are briefly reviewed; a detailed development of the theory

may be found in [22, 30]. Consider a body occupying a fixed reference configu-

ration Br which experiences a deformation given by the mapping φ : Br → B,
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where B is the final configuration. Let the reference and final points of a

body be given by X and x, respectively. The local properties of the defor-

mation are described by the deformation gradient F, with the component

representation

F a
A =

∂φa

∂XA
,

and the right Cauchy-Green deformation tensor is defined C = FTF. If the

body is isotropic and hyperelastic, a strain energy density function W exists,

and the second Piola-Kirchhoff stress tensor S may be expressed in terms of

C, its principal invariants I1, I2, I3, and the metric tensor of the reference

coordinate system G,

S = 2

(
∂W

∂I1
+ I1

∂W

∂I2

)
G− 2

∂W

∂I2
C+ 2I3

∂W

∂I3
C−1 (1)

where the invariants are

I1 = tr(C) , I2 = detC tr(C−1) , I3 = detC.

The first Piola-Kirchhoff stress tensor P is related to S via P = FS. In

the absence of body forces, the equations of equilibrium in terms of the first

Piola-Kirchhoff stress tensor are

DivP = 0 (2)

where the divergence is taken with respect to the coordinate system of the

material points. The third-order expansion of the strain energy density func-

tion [31] for a compressible, isotropic material is

W (I1, I2, I3) =
1
8
(λ+ 2µ)(I1 − 3)2 − 1

2
µ(I2 − 2I1 + 3) + 1

24
(l + 2m)(I1 − 3)3

− 1
4
m(I1 − 3)(I2 − 2I1 + 3) + 1

8
n(I1 − I2 + I3 − 1)

(3)
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where the linear elastic constants are the Lamé parameters λ and µ, and the

TOECs are l, m and n, expressed in Murnaghan’s form. It is also common

to express the TOECs using the equivalent Landau-Lifshitz constants A, B,

C, where

A = n , B = m− 1
2
n , C = l −m+ 1

2
n. (4)

2.1. Problem statement

In the particulate composite medium under consideration, the radii of the

embedded particles are assumed to be much smaller than the macroscopic

dimensions of the composite medium, and dilutely distributed; this condition

establishes a strict separation of length scales, and therefore analysis of the145

macroscopic material may be achieved using a RVE. For a dilute particulate

composite medium, under the assumption of a strict separation of length

scales, the interaction between particles may be ignored, and the RVE has

the form of a spherical shell [32, 13].

In accordance with the Hill-Mandel condition, if the external boundary150

of the macroscopic medium is subjected to linear displacement conditions,

then identical conditions must be applied to the external boundary of the

RVE to establish incremental energy equivalence [14]. The averaging scheme

proposed by Hill [12, 13] asserts that the referential volume average of both

the deformation gradient F and the first Piola-Kirchhoff stress P are consis-155

tent between the macroscopic material and the RVE. A detailed explanation

of the methodology was given by Ogden [9].

Therefore, the effective elastic properties of the composite medium un-

der consideration may be estimated based on the solution to the following

problem: given the composite sphere shown in Fig. 1 with initial particle160
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volume fraction f0 = R3
i /R

3
e subjected to a given surface deformation, de-

termine the accompanying displacement and stress distributions within the

volume. Each constituent phase is described by the Murnaghan strain en-

ergy function (3). The elastic constants of the inhomogeneity are denoted

λp, µp, lp, mp, np; the elastic constants of the matrix are denoted λm, µm,165

lm, mm, nm. The derived distributions may be used in conjunction with

a homogenisation methodology to estimate the effective third-order elastic

constants of a weakly nonlinear particulate composite. The magnitude of the

deformations applied to the composite are assumed to be limited such that

each constituent may be modelled as a weakly nonlinear elastic material,170

with strain energy density functions of the form (3).

Figure 1: Representative volume element for the composite medium. The external bound-

ary R = Re is subjected to linear displacement conditions which are axisymmetric with

respect to the Z axis.

Due to the isotropic properties of both phases, and the random distribu-

tion of the inhomogeneities, the macroscopic material may be assumed to be
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isotropic. Hence the strain energy function of the composite medium may

be taken in the form (3) with the effective elastic constants of the composite175

medium as λeff , µeff , leff , meff and neff , and the comparison material takes the

form shown in Fig. 2.

Figure 2: Effective macroscopic body, subjected to linear displacement boundary condi-

tions which are equivalent to the RVE boundary conditions.

In the macroscopic material, the referential volume averages of the defor-

mation gradient, F, and the first Piola-Kirchhoff stress, P, may be calculated

using volume integrals, and the methodology states that

1

V

∫
V

F dV = F (5a)

1

V

∫
V

P dV = P. (5b)

where the volume integrals on the left side of the above equations are the

referential volume averages, expressed in a Cartesian basis, of the deformation

gradient and the first Piola-Kirchhoff stress in the RVE. Finally, the effective180

elastic constants are determined by solving eqs. (5a) and (5b).
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2.2. Problem formulation

For general anisotropic materials, the nature of the boundary deformation

necessary to extract all the independent effective elastic constants must be

highly general; however, due to the macroscopic isotropy of the particulate

composite medium under consideration in this study, it suffices to consider

displacement conditions on the external boundary R = Re which are axisym-

metric with respect to the polar axis Z. This assumption also substantially

simplifies the analysis. The appropriate axisymmetric boundary condition is

z(Re)− Z(Re) = U(αXdX + αY dY + ZdZ) (6)

where z and Z denote the position vectors of referential and spatial points,

respectively; U and α are parameters characterising the deformation; and

dX , dY , dZ form an orthonormal Cartesian basis, with the Z coordinate

aligned with the axis of symmetry. The parameter α controls the degree

of lateral contraction, varying between a radially symmetric motion when

α = 1, a simple extension without lateral contraction when α = 0. It is

also necessary to impose continuity conditions on the displacement and first

Piola-Kirchhoff traction across phase interfaces,

z(m)(Ri)− z(p)(Ri) = 0 (7a)

(P(m) −P(p))dR = 0 , R = Ri (7b)

where dR is the radial basis vector in the material configuration.

To identify the effective elastic constants of the composite medium using

eqs. (5a) and (5b) it is necessary to identify the volume average over the ref-

erential body of both the deformation gradient and the first Piola-Kirchhoff
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stress. The Stokes theorem may be used in conjunction with eq. (6) to show

that, irrespective of the details of the internal stress and strain fields,

1

V

∫
V

F dV =
1

V

∮
∂V

z⊗ n dS (8)

providing F = diag(1+Uα, 1+Uα, 1+U) with respect to a Cartesian basis.

The calculation of the referential volume average of the first Piola-Kirchhoff185

stress however, requires the solution of the elasticity problem, which is dis-

cussed in the following Section.

3. Axisymmetric solution for single inclusion

As discussed in Section 1, an analysis of the macroscopic behaviour of the

particulate composite material may be undertaken based on a RVE, for which190

the geometry and formulation of the elasticity problem has been described in

Sections 2.1 and 2.2. The present state of knowledge in nonlinear elasticity

does not permit an exact analytical solution for the problem as formulated.

However, approximate solutions may be derived using perturbation methods.

Applied to the present nonlinear elasticity problem, the perturbation method195

assumes that the magnitude of the displacements are sufficiently small that

the governing equations may be expanded as series; the resulting equations

provide a hierarchy of linear elasticity problems which may be solved se-

quentially (for examples, see [30, 33]). It is important to note that while

the assumptions involved in the perturbation solution imply that the results200

will be less accurate for large deformations, the results should be sufficient to

represent the response of common engineering materials loaded in the elastic

regime.
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3.1. Perturbation solution

Applying the perturbation method to the axisymmetric problem described

in Section 2.1, the deformation φ may be represented using the spherical

coordinates (R,Θ,Φ) and (r, θ, ϕ) for the material and spatial frames respec-

tively. The boundary condition (6) may be expanded as a power series with

respect to the magnitude of the displacement U in the boundary condition

(6), providing

z− Z = Uu1 + U2u2. (9)

The condition U ≪ 1 is assumed to ensure the validity of the perturbation

expansion, and the vectors u1 and u2 represent the first-order and second-

order displacement vectors, respectively. For axisymmetric deformations,

r = r(R,Θ), θ = θ(R,Θ), ϕ = Φ and the displacement vectors are

u1 = u
(1)
R (R,Θ)dR + u

(1)
Θ (R,Θ)dΘ (10a)

u2 = u
(2)
R (R,Θ)dR + u

(2)
Θ (R,Θ)dΘ (10b)

where the basis vectors dR and dΘ are given in Appendix A. Using equations

(9) and (10), the expansions for the functions r(R,Θ) and θ(R,Θ) in terms

of the displacement components are

r(R,Θ) = R + Uu
(1)
R (R,Θ) + U2

(
u
(2)
R (R,Θ) +

[u
(1)
Θ (R,Θ)]2

2R

)

θ(R,Θ) = Θ + U
u
(1)
Θ (R,Θ)

R
+ U2

(
u
(2)
Θ (R,Θ)

R
− u

(1)
R (R,Θ)u

(1)
Θ (R,Θ)

R2

)
.

The first Piola-Kirchhoff stress tensor may be derived from eq. (3) in

terms of the Lagrangian strain tensor E = 1
2
(C−G) and its principal invari-

ants I1(E), I2(E), I3(E). Up to second order in the displacement gradient,

14



P = λI1(E)F+2µFE+ lI1(E)
2G+(n− 2m)(I2(E)G− I1(E)E)+nE2 + . . .

(11)

where G is the metric tensor of the material coordinate system [30]. To

facilitate the use of a perturbation scheme, the first Piola-Kirchhoff stress

may be rewritten in the form

P = Uσ(u1) + U2[σ(u2) +T′(u1)] + . . . (12)

where σ(u) is the stress tensor of isotropic linear elasticity,

σ(u) = λ(Divu)G+ µ
(
∇u+ (∇u)T

)
and T′(u1) represents the second-order correction to the linear stress tensor205

[34], and is provided in full in Appendix B.

Using these relations, the equilibrium condition (2) may be expanded to

provide the familiar equilibrium equations of isotropic linear elasticity, as

well as a second-order condition,

Divσ(u1) = 0 (13a)

Div [σ(u2) +T′(u1)] = 0. (13b)

Note that eq. (13b) is identical in form to eq. (13a), apart from the addition

of inhomogeneous terms which depend upon u1. Therefore, the second-order

displacement u2 has the form u2 = u
(h)
2 + u′

2 where u
(h)
2 is a homogeneous

solution to eq. (13b), and u′
2 is a particular solution constructed to satisfy

Divσ(u′
2) = −DivT′(u1). (14)
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Using the strain energy function (3), eq. (13) may be expressed in the form

µ∇2u1 + (λ+ µ)∇Divu1 = 0 (15a)

µ∇2u
(h)
2 + (λ+ µ)∇Divu

(h)
2 = 0. (15b)

Note that eqs. (15) apply to both the matrix and the particulate phases.

The equations in the perturbation expansion of the continuity condition (7a)

are

u
(m)
1 (Ri)− u

(p)
1 (Ri) = 0 (16a)

u
(m)
2 (Ri)− u

(p)
2 (Ri) = 0 (16b)

where a superposed m is used to indicate a field associated with the matrix

phase, while a superposed p indicate the particulate phase. For eq. (7b),

[σ(m)(u
(m)
1 )− σ(p)(u

(p)
1 )]dR = 0 (17a)

[σ(m)(u
(m)
2 )− σ(p)(u

(p)
2 )]dR = −

[
T′(m)(u

(m)
1 )−T′(p)(u

(p)
1 )
]
dR (17b)

where σ(m) and σ(p) denote the stress tensors of isotropic linear elasticity

for the matrix and particulate phase, respectively. Finally, the boundary

condition (6) leads to the following boundary conditions for the linear and

second-order problems:

u
(m)
1 (Re) =

1
2
Re[1 + α + (1− α) cos 2Θ]dR − 1

2
Re(1− α) sin 2ΘdΘ (18a)

u
(m)
2 (Re) = 0. (18b)

Using the perturbation expansion, the nonlinear elastic problem has been

reduced to two sequential linear elasticity problems, presented in eqs. (15-

18), which may be solved using standard techniques.
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3.2. Linear solution210

The linear solution to the axisymmetric deformation of a spherical shell

containing an isolated spherical inhomogeneity is a standard problem in elas-

ticity, which may be solved using potential functions [35]. The displacement

solution is constructed using axisymmetric potential functions for isotropic

materials,

u
(m)
1 =

1

2µm

∇(χ(m) + Zη(m))− 2(1− νm)

µm

η(m)dZ (19)

where χ(m) and η(m) are potential functions which can be represented in terms

of the axisymmetric spherical harmonic functions. The potentials χ(m) and

η(m) which are consistent with the continuity conditions (16a) and (17a), and

the boundary condition (18a) are

χ(m) = F
(m)
0 R3

iR
−1 + (A

(m)
2 R2 + F

(m)
2 R5

iR
−3)P2(cosΘ) + A

(m)
4 R−2

i R4P4(cosΘ)

(20a)

η(m) = (B
(m)
1 R +G

(m)
1 R3

iR
−2)P1(cosΘ) +B

(m)
3 R−2

i R3P3(cosΘ) (20b)

where Pn(cosΘ) is the zonal spherical harmonic of degree n and F
(m)
0 , A

(m)
2

etc. are coefficients to be determined. The linear solution for the inho-

mogeneity phase may be found similarly, though the requirement that the

displacement vanishes at the centre of the inhomogeneity imposes a further

condition on the solution, and removes terms which are singular at R = 0

from the stress and the displacement. Therefore, the linear solution for the

displacement in the particulate phase is

u
(p)
1 =

1

2µp

∇(χ(p) + Zη(p))− 2(1− νp)

µp

η(p)dZ (21)
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where the potentials are

χ(p) = A
(p)
2 R2P2(cosΘ) + A

(p)
4 R−2

i R4P4(cosΘ) (22a)

η(p) = B
(p)
1 RP1(cosΘ) +B

(p)
3 R−2

i R3P3(cosΘ). (22b)

The coefficients in eqs. (20) and (22) which satisfy the boundary conditions

(16a), (17a) and (18a) are provided in Appendix C.

3.3. Second-order solution

The second-order component of the solution consists of a linear elasticity

problem for u2 featuring a body force distribution and surface traction depen-

dent on the linear solution u1. As discussed in Section 3.1, the second-order

displacement in the matrix phase may be represented as u
(m)
2 = u

(m,h)
2 +u

′(m)
2 .

The homogeneous solution has the form

u
(m,h)
2 =

1

2µm

∇(χ
(m)
2 + Zη

(m)
2 )− 2(1− νm)

µm

η
(m)
2 dZ (23)

where, as with the linear solution, the potentials χ
(m)
2 and η

(m)
2 are con-

structed using axisymmetric spherical harmonic functions

χ
(m)
2 = F

(m)
1 R3

iR
−1 + (A

(m)
3 R2 + F

(m)
3 R5

iR
−3)P2(cosΘ)

+ (A
(m)
5 R−2

i R4 + F
(m)
5 R7

iR
−5)P4(cosΘ) + A

(m)
7 R−4

i R6P6(cosΘ)

(24a)

η
(m)
2 = (B

(m)
2 R +G

(m)
2 R3

iR
−2)P1(cosΘ) + (B

(m)
4 R−2

i R3 +G
(m)
4 R5

iR
−4)P3(cosΘ)

+B
(m)
6 R−4

i R5P5(cosΘ).

(24b)

The particular solution may be constructed using a scalar function ζ and a

vector function w [36], related to the displacement via

u
′(m)
2 =

1

2µm

∇ζ(m) − 2(1− νm)

µm

∇2w(m) +
1

µm

∇Divw(m). (25)
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The forms of ζ(m) and w(m) depend on the linear elasticity solution u
(m)
1 , and

may be derived using eq. (14). Full expressions are provided in Appendix215

D.1.

Similarly, the second-order solution for the particulate phase is u
(p)
2 =

u
(p,h)
2 + u

′(p)
2 . The homogeneous solution is

u
(p,h)
2 =

1

2µp

∇(χ
(p)
2 + Zη

(p)
2 )− 2(1− νp)

µp

η
(p)
2 dZ (26)

where the second-order potentials are

χ
(p)
2 = A

(p)
3 R2P2(cosΘ) + A

(p)
5 R−2

i R4P4(cosΘ) + A
(p)
7 R−4

i R6P6(cosΘ)

(27a)

η
(p)
2 = B

(p)
2 RP1(cosΘ) +B

(p)
4 R−2

i R3P3(cosΘ) +B
(p)
6 R−4

i R5P5(cosΘ) (27b)

and the particular solution is

u
′(p)
2 =

1

2µp

∇ζ(p) − 2(1− νp)

µp

∇2w(p) +
1

µp

∇Divw(p) (28)

where the scalar function ζ(p) and the vector w(p) associated with the second-

order solution are presented in Appendix D.2.

3.4. Summary of perturbation solution

The linear elasticity problem given by eqs. (15a), (16a), and (17a) leads220

to a system of linear algebraic equations for the coefficients in eqs. (20) and

(22), provided in Appendix C.

For the second-order solution, the potentials ζ(m), ζ(p) and the vectors

w(m), w(p) are presented in Appendix D. Finally, eqs. (16b), (17b) and

(18b) may be used to calculate the coefficients in eqs. (24) and (27). Though225

the resulting expressions are extremely lengthy, the calculation is routine in

19



linear elasticity: for this reason, expressions for each coefficient in the second-

order solution are provided in the form of a Python code as supplementary

data. Example values of each coefficient are provided in Appendix E.

The analytic second-order solution derived above may be compared to230

other solutions in the literature. The second-order solution for spherically-

symmetric motions of a composite sphere presented by Ogden [9] may be

recovered by applying the condition α = 1. Similarly, the second-order solu-

tion for an infinite medium containing an isolated spherical cavity presented

in [37] may be recovered using the limiting conditions Re → ∞ and setting235

the elastic constants of the inhomogeneity to zero.

4. Effective elastic properties of composites

The second-order elasticity problem formulated in Section 2 and solved

in Section 3 may be used to estimate the effective elastic constants of a

composite consisting of a distribution of spherical particles embedded in a240

matrix. In this work, a methodology proposed by Hill [12], based on equating

the field quantities averaged over a representative volume, is used.

For a two-phase composite, eqs. (5a) and (5b) have the form

1

V

∫
V

F dV =
1

V

∫
Vm

F(m) dV +
1

V

∫
Vp

F(p) dV (29a)

1

V

∫
V

P dV =
1

V

∫
Vm

P(m) dV +
1

V

∫
Vp

P(p) dV. (29b)

where Vm is the spherical shell Ri < R < Re, and Vp is the sphere R < Ri.

Applied to the results obtained in Sections 3.2 and 3.3, the above equations

may be used to estimate the effective linear elastic constants and the TOECs245

of a composite material containing spherical inhomogeneities.
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4.1. Macroscopic material

The macroscopic body is a sphere of outer radius RM (see Fig. 2), de-

scribed by the strain energy function (3), with uniform material properties

λeff , µeff , leff , meff , neff . The macroscopic body is subjected to the linear250

displacement boundary condition (6).

As the macroscopic body is an isotropic body of uniform material prop-

erties subjected to a homogeneous strain, an analytical solution is possi-

ble [30]. Applying uniform, axisymmetric stretches λ1 = λ2, λ3 such that

F = diag(λ1, λ1, λ3), the first Piola-Kirchhoff stress tensor is calculated us-

ing eq. (1),

P = diag(P 11, P 11, P 33)

P 11 = λ1

[
1
2
λeff(2λ

2
1 + λ2

3 − 3) + µeff(λ
2
1 − 1) + 1

4
leff(2λ

2
1 + λ2

3 − 3)2

−1
2
meff(λ

2
3 − λ2

1)(λ
2
1 − 1) + 1

4
neff(λ

2
1 − 1)(λ2

3 − 1)
]

P 33 = λ3

[
1
2
λeff(2λ

2
1 + λ2

3 − 3) + µeff(λ
2
3 − 1) + 1

4
leff(2λ

2
1 + λ2

3 − 3)2

+1
2
meff(λ

2
3 − λ2

1)(λ
2
1 + λ2

3 − 2) + 1
4
neff(λ

2
1 − 1)

]
.

Rewriting the stretches in terms of the linear displacement boundary condi-

tion 6, λ1 = λ2 = 1 + Uα, λ3 = 1 + U , the components of the macroscopic

first Piola Kirchhoff stress tensor, expanded as series in U , are

P 11 = U [(1 + 2α)λeff + 2αµeff ]

+ U2
[
(1
2
+ α + 3α2)λeff + 3α2µeff + (1 + 2α)2leff + 2α(α− 1)meff + αneff

]
+ . . .

(30a)

P 33 = U [(1 + 2α)λeff + 2µeff ]

+ U2
[
(3
2
+ 2α + α2)λeff + 3µeff + (1 + 2α)2leff + 2(1− α2)meff + α2neff

]
+ . . .

(30b)
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with P 22 = P 33.

4.2. Effective elastic constants

Returning to the problem described in Section 3, the referential volume

average of the deformation gradient and the first Piola-Kirchhoff stress tensor255

may now be calculated. As discussed in Section 2.2, the boundary condition

(6) and the identity (8) imply that F = diag(1 +Uα, 1 +Uα, 1 +U) and eq.

(5a) is automatically satisfied.

The perturbation method allows the average first Piola-Kirchhoff stress

tensor for the RVE to be expressed as a series:

P = UP(1) + U2P(2) + . . . (31)

where P(1) and P(2) are the averaged stress distributions accompanying the

linear and second-order elastic solutions, respectively. The components cor-

responding to the linear elastic solution are

P
(1)
11 = −A

(m)
2 − λm

λm + µm

B
(m)
1 − 3

5
f
−2/3
0 B

(m)
3 + 2f0F

(m)
0 +

7λm + 12µm

5(λm + µm)
f0G

(m)
1

(32a)

P
(1)
33 = 2A

(m)
2 − λm + 2µm

λm + µm

B
(m)
1 +

6

5
f
−2/3
0 B

(m)
3 + 2f0F

(m)
0 +

16λm + 26µm

5(λm + µm)
f0G

(m)
1

(32b)

and the averaged second-order components may be derived using the ex-

pansion (12) in combination with the expressions for the coefficients of the260

displacement potentials in the second-order elastic solution (see Appendix E

and the supplementary data). Due to the length of the resulting expressions,

the full forms are omitted.
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Using the linear terms in eqs. (5b), (30) and (32), the effective linear

elastic constants are

Keff =
3KmKp + 4µm[(1− f0)Km + f0Kp]

4µm + 3[f0Km + (1− f0)Kp]
(33a)

µeff = µm
6µp(Km + 2µm) + (9Km + 8µm)[(1− f0)µm + f0µp]

µm(9Km + 8µm) + 6(Km + 2µm)[f0µm + (1− f0)µp]
(33b)

in agreement with previous studies conducted within the theory of linear

elasticity [38]. To simplify the equations for the TOECs, it is convenient

to introduce the notations q = l + 1
9
n and s = m − 1

6
n. The TOEC q is

a second-order analogue of the bulk modulus K, though s and n are not,

to the best knowledge of the authors, amenable to such a simple, physical

interpretation. The effective second-order bulk modulus qeff = leff + 1
9
neff ,

derived by considering a spherically symmetric motion (i.e. α = 1), is

qeff = (1− f0)qm + f0qp +
9(1− f0)(Keff −Km)(qm − qp)

3Km + 4µm

+
9(1− f0)(Keff −Km)

2(3Km + 4sm + 6[f0qm + (1− f0)qp])

2f0(3Km + 4µm)2

+
3(1− f0)(Keff −Km)

3

2f 2
0 (3Km + 4µm)3

[
18µm + 2nm + f0(27Km + 18µm + 36sm + 2nm)

+ 18f 2
0 qm − 18(1− f0)

2qp

]
.

(34)

This result for the effective second-order bulk modulus of a compressible com-

posite medium presented agrees with the first-order expansion in f0 presented265

in [9].

For the other TOECs, expressions valid for all values of the volume frac-

tion f0 are extremely cumbersome, though a detailed analysis of the full

expressions reveals that the choice of the TOECs q, s and n provides some
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simplification in the resulting expressions. In particular, qeff is independent

of sp and np; similarly, seff is independent of np. In spite of the length of the

complete expressions, fairly compact series expansions in terms of f0 may

be derived; in terms of q, s and n, the Taylor expansions of the remaining

effective TOECs are

seff = sm + f0

[
25µ2

m(3Km + 4µm)
3

h0k2
0

sp +
120µ2

m(µp − µm)
2

k2
0

qm +
2(µp − µm)

h0k2
0

p2,0

+
(Kp −Km)(µp − µm)

2h0k2
0

p1,0nm +
1

h0k2
0

p3,1sm

−
(

1

h0k2
0

− 3(Kp −Km)

h2
0k

2
0

− 12(Km + 2µm)(µp − µm)

h0k3
0

)
p3,0sm

]

(35a)

neff = nm + f0

[
125µ3

m(3Km + 4µm)
3

k3
0

np +
7200µ3

m(µp − µm)
3

7k3
0

qm − 60µm(µp − µm)
2

7k3
0

p4,0

+
180µm(µp − µm)

2

7k3
0

p1,0sm +
1

7k3
0

p5,1nm

+

(
18(Km + 2µm)(µp − µm)

7k4
0

− 1

7k3
0

)
p5,0nm

]
(35b)

where the constants h0, k0, p1,0, p2,0, p3,0, p3,1 are presented in Appendix

F. As mentioned above, exact expressions for the effective TOECs seff and

neff are extremely lengthy. Complete expressions suitable for evaluation in

Python are provided as supplementary data.270
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5. Discussion

5.1. Incompressible matrix containing voids

The effective elastic constants of a neo-Hookean incompressible material

containing a distribution of spherical voids may be obtained from the present

results as a limiting case. First, the particle phase is reduced to a distribution

of voids using the following limits

λp → 0 , µp → 0 , lp → 0 , mp → 0 , np → 0. (36)

The compressible matrix may be converted to a third-order incompressible

matrix with the strain energy function

WI,3 = µ trE2 +
1

3
A trE3 (37)

using the incompressible limits provided by [39],

(1− 2ν)B → −µ , (1− 2ν)3C → 0 (38)

where A, B, and C are the Landau-Lifshitz constants, see eq. (4). Finally,

the case of a neo-Hookean material is recovered by setting A = −4µ. The

corresponding effective linear elastic constants are

µeff =
(1− f0)µ

1 + 2
3
f0

(39a)

Keff =
4(1− f0)µ

3f0
(39b)

and the effective second-order bulk modulus is

leff + 1
9
neff = −(1− f0)(11 + 15f0)

9f 2
0

µm. (40)
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The remaining effective TOECs are extremely lengthy, and are provided as

supplementary data in the form of a Python code.

For a neo-Hookean incompressible material containing a distribution of275

spherical voids, there is only one non-zero independent elastic constant for the

constituents, namely the shear modulus of the matrix µm; but the macro-

scopic composite features three effective moduli, and exhibits macroscopic

compressibility due to the presence of pores as found by [23]. The variations

in the effective nonlinear elastic constants for a neo-Hookean material with280

spherical voids are shown in Fig. 3.
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Figure 3: Effective properties of a neo-Hookean material containing voids at volume frac-

tion f0. The predictions based on the volume-average methodology (solid blue line) and

the predictions of [19] (broken red line) are compared.

Comparison may be made with results for neo-Hookean material con-

taining a distribution of voids presented in [23, 20]. In particular, [20]

presented an analytical expression for the effective strain energy density

function for spherically-symmetric deformations, i.e. in the case where the

volume-averaged deformation gradient can be represented in the form F =
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diag(J
1/3

, J
1/3

, J
1/3

). To express the present results in terms of the effec-

tive strain energy density function, it is straightforward to show that if the

deformation is spherically symmetric, then

W =
9

8
(J

2/3 − 1)2(λeff + 2
3
µeff) +

9

8
(J

2/3 − 1)3(leff + 1
9
neff)

and hence, in terms of the volume fraction f0,

W = µ

[
3(1− f0)

2f0
(J

2/3 − 1)2 − (1− f0)(11 + 5f0)

8f 2
0

(J
2/3 − 1)3

]
(41)

which is identical, up to third-order in J − 1, to the effective strain en-

ergy function for spherically-symmetric deformations presented in [20]. Note

that the results of the method presented in [19] differ from eq. (41), as the

methodology used in [19] is based on the referential volume average of the285

strain energy rather than the first Piola-Kirchhoff stress.

5.2. Compressible constituents

The general case of a two-phase nonlinear composite material with both

phases described by the Murnaghan constitutive model (3) requires the spec-

ification of ten linear and nonlinear elastic moduli. Additionally, though290

there are well-known restrictions on the constants of linear isotropic elastic-

ity (namely K = λ + 2
3
µ > 0, µ > 0) there are no accepted restrictions on

the TOECs. Experimental studies on metal alloys have reported that the

TOECs l, m, n are often negative, and the order of magnitude is often the

same or higher than λ and µ [40], though these observations do not hold295

true for all materials. The above-mentioned considerations suggest that a

parametric study would be prohibitively difficult and cumbersome. Instead,
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Table 1: Elastic constants for a Polystyrene-particle reinforced Polycarbonate composite

used by [19].

Elastic constant Matrix Particle

K (GPa) 3.93 4.20

µ (GPa) 0.84 1.50

l (GPa) −50.00 −18.90

m (GPa) −12.20 −13.30

n (GPa) −32.00 −10.00

some numerical results for several combinations of nonlinear constituents are

presented in this Section.

Examples of compressible nonlinear composites have been given in [29]300

and [19]; the material properties considered by these authors are listed in

Tables 1 and 2. The variation in the effective TOECs with volume fraction

f0 for these composites are shown in Figs. 4 and 5. It is necessary to highlight

again that the derivation of the analytical expressions neglected interactions

between particles, and therefore results at non-dilute distributions must be305

treated with caution. Nevertheless, it can be seen from Figs. 4 and 5 that

the effective nonlinear elastic moduli, unlike the linear elastic constants, may

vary non-monotonically, and extrema may occur at interior points of the

interval 0 < f0 < 1, rather than only at the endpoints. Moreover, even for

a material in which the nonlinear elastic properties of the matrix are set to310

zero (e.g. the material given by [29]), the effective nonlinear elastic properties

may vary rapidly, specifically at low particle volume fractions, see Fig. 5.

Comparisons of the theoretical predictions based on the present results,
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Table 2: Elastic constants for a particulate composite proposed by [29]. The matrix phase

is assumed to be linearly elastic in [29]; in the present calculations, the TOECs are taken

to be zero.

Elastic constant Matrix Particle

K (GPa) 10.0 1.0

µ (GPa) 1.0 4.0

l (GPa) 0.0 13.0

m (GPa) 0.0 6.5

n (GPa) 0.0 −3.0
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Figure 4: Effective properties of the Polystyrene–Polycarbonate composite considered by

[19]. The predictions provided by [19] (broken red line) and the volume-average method-

ology (solid blue line) are compared.
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Figure 5: Effective properties of the composite medium considered by [29]. The predictions

provided by [19] (broken red line) and the volume-average methodology (solid blue line)

are compared.

and the strain energy perturbation method [19] are shown in Figs. 4 and 5.

A simple analysis demonstrates that the Taylor expansion of both estimates315

with respect to the volume fraction, f0, is identical for the linear term, and

differs in higher-order terms. Thus, the estimates have the same asymptotic

behaviour at f0 → 0 and this behaviour, as discussed in the Introduction,

has been validated with nonlinear 3D FE simulations for f0 < 0.2 [19].

It is also clearly seen from Figs. 4 and 5 that the general character of320

the predictions are similar: if a certain volume fraction causes an extreme

value in one of the effective properties in one methodology, then the other

methodology exhibits an extremum of approximately the same magnitude at

approximately the same value of f0. It is also noted that neither methodology

bounds the other: depending on the elastic moduli, the functions for the325

effective elastic properties can intersect at certain values of f0.
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5.3. Comparison with experimental results

The literature is saturated with experimental data for TOECs of crystals,

structural materials and rocks indicating a significant interest in this data

from very different perspectives, e.g. design of electronic components, dam-330

age evaluation of structural materials [41], geomechanics, and oil and gas

exploration methods [42]. However, there exist only limited experimental

data with respect to particulate composites, specifically at various particle

concentrations, which is suitable for comparison and validation purposes.

Numerical data for the linear and nonlinear elastic constants of the Al7064-335

SiC composite with near spherical particles (SiC) were reported by [43]. The

data has been obtained using ultrasonic measurements of uniaxially stressed

composite samples. It is likely that this data is affected by the fabrication

process and various microstructural features differently for measurements

taken at different particle concentrations. In addition, the level of micro-340

residual stresses for each sample would be expected to significantly affect the

evaluation of the nonlinear properties, which are normally measured using

the acoustoelastic effect, or wave speed changes with the applied stress.

The comparison of the current theoretical results and experimental data

[43] is presented in Fig. 6 and Table 3. The linear and nonlinear properties345

of the composite are found using the standard least squares fitting procedure

and the elastic constants of the matrix and particulate phases are compared

against the linear and nonlinear properties presented in [19]. Only a slight

difference between the two studies can be noted in the nonlinear elastic con-

stants l and m.350

Other possible sources of error in measurements of the effective elastic
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Table 3: Numerical values for the elastic constants of the matrix and particle phases of

the Al7064-SiC particulate composite reported by [43]. The presented values are obtained

using a least squares fitting procedure. Note that the numerical values for all elastic

constants are presented in GPa.

Phase λ µ l m n

Present work
Matrix 51.24 28.21 −242.13 −307.30 −381.34

Particle 76.76 189.22 −82.16 −299.18 −682.35

Ref. [19]
Matrix 51.24 28.21 −242.13 −307.30 −381.34

Particle 76.76 189.22 −82.28 −298.96 −682.01

properties of composites include agglomeration of inclusions, nonuniform par-

ticle dispersion within the matrix, and the interaction between the particles

and the ultrasonic wave depending upon the excitation frequency. A re-

cent experimental study which controlled and correct for these errors was355

performed by Belashov et al [44], investigating the effective properties of

polystyrene nanocomposites reinforced by SiO2 and Carbon Black nanofillers.

The acoustoelastic technique was used to determine the higher-order elastic

constants at a volume fraction of 0.2 for each reinforcement. As the results

were presented for only one volume fraction, only a limited comparison is360

possible, but in general it appears that theoretical predictions of both the

current work and [19] are broadly in agreement with the experimental results,

in particular for the TOECs m and n (see Table 4).

Fig. 6 and Table 4 generally indicate that the theoretical dependencies are

capable of describing experimental data, although this data is very limited as365

discussed above. In particular, a good correlation is obtained for some linear
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Figure 6: Least squares fit for the experimental data reported by [43] for the particulate

composite with matrix Al7064 and particulate phase SiC. The predictions provided by [19]

(broken red line) and the volume-average methodology (solid blue line) are compared (for

the linear elastic constants, the predictions are identical).
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Table 4: Experimentally-measured values for the elastic constants of the PS+20%SiO2

and PS+20%CB nanocomposites reported by [44], as well as theoretical predictions based

on the current work and [19]. Note that the numerical values for all elastic constants are

presented in GPa.

Material Method λ µ l m n

PS+20%SiO2

Experiment, [44] 3.28 1.55 −62.9 −15.5 −7.10

Theory, present work 3.11 1.78 −51.5 −17.1 −9.32

Theory, [19] 3.11 1.78 −51.8 −16.1 −8.13

PS+20%CB

Experiment, [44] 3.72 1.78 −85.3 −19.6 −5.60

Theory, present work 3.22 1.84 −55.9 −19.3 −11.0

Theory, [19] 3.22 1.84 −56.3 −17.6 −9.09

elastic constants (Young’s moduli and shear moduli), however much worse

correlation is observed for the bulk modulus. The latter can be associated

with much higher bulk wave speed utilised for the experimental evaluation,

which normally results in a lower resolution and larger measurement errors.370

The experimental data for nonlinear elastic constants is quite inconsistent,

and therefore, only a general agreement between experimental and theoretical

results can be stated for the conducted comparison.

6. Conclusion

In this paper, several new results have been reported which are discussed375

below. An axisymmetric second-order solution for a spherical particle em-

bedded in a matrix of finite external radius has been derived for the first

time in the case of weakly nonlinear material behaviour using a perturbation
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expansion method. This solution obtained for finite deformations is an ana-

logue of the linear Eshelby solution for the case of materials with spherical380

inclusions subjected to axisymmetric deformations [4, 5], and it converges to

the classical solution for infinitesimal deformations. The finite deformation

theory of elasticity is necessary as the effect of finite deformations and the

contribution of the nonlinear elastic constants (TOECs) into the mechanical

response is of the same order of magnitude for most structural materials and385

composites.

The second-order solution is then used to derive the central results of this

paper, which are explicit analytical expressions for the effective nonlinear

elastic moduli, based on the classical stress volume averaging methodology.

These expressions have been obtained in closed form similar to linear elas-390

tic micromechanics, and have been extensively validated against previously

obtained results including the strain energy perturbation method (which has

been found to be in good agreement with 3D FE simulations) as well as par-

ticular cases, specifically for composites with incompressible constituents.

Though both methodologies mentioned above provide quite similar results395

for a range of composite materials (see Section 5), one of the most notable

discrepancies is that the stress-based methodology is consistent with the an-

alytical solution for an incompressible neo-Hookean solid containing cavities

reported by Hashin [23, 20]. One important restriction is that all expressions

for the effective properties have been obtained for dilute distributions of the400

particle phase only, and using a perturbation solution, so the results for high

concentration of particles, and large deformations, must be interpreted with

care.
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As discussed in Section 1, it is argued that current numerical procedures

and methods need extensive convergence and mesh sensitivity studies when405

applied to the evaluation of the effective TOECs of weakly nonlinear compos-

ites, particularly in the case of the dilute distribution of the secondary phase.

Moreover, the large number of independent elastic constants required to de-

scribe common structural materials make parametric computational studies

unfeasible. It seems the analytical approach adopted in this work is currently410

the most appropriate treatment of the problem under consideration. The

presented theoretical results may also stimulate the development of new nu-

merical methods for averaging material properties by providing benchmarks

for challenging cases.

The focus of future work may involve an experimental validation of the415

obtained theoretical expressions. Unfortunately, the authors could find only

limited experimental data regarding the effective nonlinear properties of com-

posites with different volume fractions of spherical particles, which are not

sufficient for comprehensive validation of current theoretical results. The

experimental evaluation of the TOECs for common metals and alloys dif-420

fers from conventional testing of material properties using the stress-strain

diagram. The nonlinear elastic properties are typically evaluated using the

acoustoelastic effect (which describes the influence of the stress state on the

speed of a propagating elastic wave) or various nonlinear effects, such as

the generation of higher-order harmonics [45, 46, 47]. Both techniques are425

based on the generation and processing of ultrasonic wave signals. In turn,

it is expected that numerous experimental techniques based on nonlinear

ultrasonic bulk and guided waves are the primary research and engineering
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fields which can directly benefit from the current developments. For exam-

ple, the effective properties of a composite material may be tuned to produce430

many interesting nonlinear wave phenomena and effects. One such effect is

the negation or amplification of the ultrasonic wave nonlinearities associated

with finite deformations and nonlinear material properties. The appropriate

constituents and volume fractions can be identified for different composite

materials, and may be implemented in material design using the current435

theoretical framework.

Previous studies [9, 37] indicate that the third-order elastic constants

are generally more sensitive to the concentration of the secondary phases in

comparison to the linear elastic moduli. Therefore, the derived expressions

may lay the foundation for the development of new experimental techniques440

e.g. to evaluate the porosity of a material or the concentration of impurities

or inclusions.

Extension and generalisation of this work to distributed localised plastic

deformations may provide a foundation for theoretical modelling and ex-

perimental evaluation of microscopic dislocation-driven damage, e.g. during445

fatigue or creep. In accordance with numerous experimental studies, the lat-

ter have a significant effect on the elastic nonlinearities [48, 49]. The use of a

micromechanical model to predict damage was investigated in a recent study

on syntactic foams [25]. In this study a micromechanical model combined

with a phenomenological model based on experimental observations was used450

to predict the mechanical response of syntactic foams due to fracture of buck-

ling of the constituents. Such methods may prove to be useful in extending

the current model to describe the effect of microscopic damage accumulation
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on the overall behaviour, though it remains a formidable task to identify the

link between material nonlinearities on the structural scale and microscopic455

changes due to mechanical damage.

Another promising direction is the evaluation of effective properties of

porous materials saturated or partially saturated with a fluid instead of solid

particles. This problem has numerous applications in civil engineering, ge-

omechanics as well as in oil and gas exploration methods. However, the460

derivation of the effective properties in this case is more complex as it has to

be based on the nonlinear theory for porous elastic solids, which require more

material constants to describe the interaction between the solid and liquid

constituencies. Therefore, the current work can be considered as a starting

point for the derivation of effective properties for saturated porous media.465
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Appendix A. Material and spatial basis

The material configuration may be described by the spherical coordinates

(R,Θ,Φ), where Φ is the azimuthal angle, and Θ is the polar angle. Simi-

larly, the spatial configuration may be described by the spherical coordinates

(r, θ, ϕ). The physical basis vectors for the spherical coordinates of the ma-

terial coordinate system are

dR = sinΘ cosΦdX + sinΘ sinΦdY + cosΘdZ (A.1a)

dΘ = cosΘ cosΦdX + cosΘ sinΦdY − sinΘdZ (A.1b)

dΦ = − sinΘ sinΦdX + sinΘ cosΦdY (A.1c)

where the basis vectors (dX ,dY ,dZ) form a Cartesian basis for the material475

body.

Appendix B. Second-order stress and displacement solutions

The second-order term T′(u1) in eq. (12) has the form

T′(u1) = σ(u1)∇u1 +
[
λω · ω +

(
l −m+ 1

2
n
)
ϑ2 + 1

2
(λ+ 2m− n)

]
G

+ (2m− n)ϑε(u1) + nε(u1)
2 + µ∇u1(∇u1)

T

where

ε(u) = 1
2
∇u+ 1

2
(∇u)T

ϑ = Divu1

ω = 1
2
Curlu1.
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Appendix C. Linear elastic solution

The linear elasticity problem presented in Section 3.2 leads to the follow-

ing system of linear equations, where f0 = R3
i /R

3
e,

3(λm + 2µm)

λm + µm

B
(m)
1 − 3Kp + 4µm

λp + µp

B
(p)
1 = 0(

1

νm
− 1

)
A

(m)
4 − 4µm(7− 10νp) + µp(7 + 5νp)

35νpµp

A
(p)
4 = 0

B
(m)
3 +

7

4νm
A

(m)
4 = 0

B
(p)
3 +

7

4νp
A

(p)
4 = 0

5

3
µm

(
A

(m)
2

µm

− A
(p)
2

µp

)
+ µm

(
B

(m)
3

µm

− B
(p)
3

µp

)
+

5

3
F

(m)
0 +G

(m)
1 = 0

A
(m)
2 − A

(p)
2 − 2(B

(m)
1 −B

(p)
1 ) +

3

4
(A

(m)
4 − A

(p)
4 ) + 4F

(m)
0 + 6F

(m)
2 + 2(5− 3νm)G

(m)
1 = 0

7 + 5νm
16νm

A
(m)
4 − 7 + 5νp

16νp
A

(p)
4 +

5

2
F

(m)
2 +G

(m)
1 = 0

A
(m)
2 − (1− 2νm)B

(m)
1 − 3

2
f
−2/3
0 A

(m)
4 − 1

2
f0F

(m)
0 − 3

2
f
5/3
0 F

(m)
2 − 1

2
(5− 4νm)f0G

(m)
1 = µm

−1

2
A

(m)
2 +

3

4
f
−2/3
0 A

(m)
4 − 1

2
f0F

(m)
0 +

3

4
f
5/3
0 F

(m)
2 = αµm

3(2λm + 7µm)

4λm

f
−2/3
0 A

(m)
4 − 15

4
f
5/3
0 F

(m)
2 − 3

2
f0G

(m)
1 = 0

B
(m)
1 − (1 + 2α)(λm + µm)(3Kp + 4µm)

3f0(Kp −Km)− (3Kp + 4µm)
= 0

which may be solved using standard techniques to identify each of the coef-

ficients in the linear elastic solution.480

Appendix D. Second-order inhomogeneous solution

The second-order elastic problem specified by eqs. (16b), (17b) and (18b)

features inhomogeneous terms, which requires the development of a partic-
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ular solution to the elasticity problem. As this procedure is not a routine

calculation in linear elasticity, complete expressions for the potential function485

ζ and vector function w in each phase of the composite are provided below.

Appendix D.1. Matrix

In the matrix phase, the particular solution, eq. (25), is formed from the

following expressions:

ζ(m) =
3λm + 9µm + 6mm

λm + 2µm

ζ1 +
1

µm(1− νm)
ζ2 (D.1a)

ζ1 = α1[F
(m)
0 ]2R−4 + α2[3A

(m)
2 − 2(1− 2νm)B

(m)
1 ]A

(m)
4 R4 + α3A

(m)
4 F

(m)
0 R cos2Θ

+ 4α4F
(m)
0 F

(m)
2 R−6P2(cosΘ) + (α5,1 + α5,2 cos 2Θ)F

(m)
0 G

(m)
1 R−4

+ (α6[3A
(m)
2 − 2(1− 2νm)B

(m)
1 ]G

(m)
1 + α7A

(m)
4 F

(m)
2 )R−1P4(cosΘ)

+ (α8,1 + α8,2 cos 2Θ + α8,3 cos 4Θ)F
(m)
2 G

(m)
1 R−6

+ α9[F
(m)
2 ]2R−8(1 + 12

15
cos 2Θ + 1

3
cos 4Θ)

(D.1b)

ζ2 = (β1,1 + β1,2 cos 2Θ + β1,3 cos 4Θ)A
(m)
4 G

(m)
1 R + (β2,1 + β2,2 cos 2Θ)[A

(m)
4 ]2R6

+ (β3,1 + β3,2 cos 2Θ + β3,3 cos 4Θ)[G
(m)
1 ]2R−4

(D.1c)

w
(m)
R =

(
a
(m)
1 R7[A

(m)
4 ]2 + a

(m)
2 R−3F

(m)
0 G

(m)
1

)
P2(cosΘ)

+
(
a
(m)
3 A

(m)
4 F

(m)
2 + a

(m)
4 A

(m)
2 G

(m)
1 + a

(m)
5 B

(m)
1 G
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1 + a

(m)
6 G

(m)
1

)
P4(cosΘ)

+ a
(m)
7 R−5F

(m)
2 G

(m)
1 [P2(cosΘ)− 9

2
P4(cosΘ)] +R−3[G

(m)
1 ]2[a

(m)
8 P2(cosΘ) + a

(m)
9 P4(cosΘ)]

+R2A
(m)
4 F

(m)
0 [a

(m)
10 + a

(m)
11 P2(cosΘ)] +R2A

(m)
4 G

(m)
1 [a

(m)
12 + a

(m)
13 P2(cosΘ) + a

(m)
14 P4(cosΘ)]

(D.1d)
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w
(m)
Θ =

(
b
(m)
1 F

(m)
0 − 1

6
R−3a

(m)
2 F

(m)
0 G

(m)
1 +R5b
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3 A
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2 +R5b
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4 F
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0
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a
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2 G
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1 P ′
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−R−3[1
6
a
(m)
8 P ′

2(cosΘ) + 1
20
a
(m)
9 P ′

4(cosΘ)][G
(m)
1 ]2 + 21

64
R−5a

(m)
7 sin 2Θ(1− 9 cos 2Θ)F

(m)
2 G

(m)
1

+ [b
(m)
19 P ′

2(cosΘ) + b
(m)
20 P ′

4(cosΘ)]A
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2 G
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1 + [b

(m)
21 P ′

2(cosΘ) + b
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22 P ′
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1 G
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(D.1e)

where P ′
n(cosΘ) = d

dΘ
[Pn(cosΘ)], and the coefficients in eqs. (D.1) may be

calculated using eq. 14.

Appendix D.2. Particle490

In the particle phase, the particular solution, eq. (28), is formed from the

following expressions:

ζ(p) = R4α
(p)
1 A

(p)
2 A

(p)
4 − 2

3
(1− 2νp)R

4α
(p)
1 A

(p)
4 B

(p)
1 +R6[α

(p)
2,1 + α

(p)
2,2P2(cosΘ)][A

(p)
4 ]2

(D.2a)

w
(p)
R = R7a

(p)
1 [A

(p)
4 ]2P2(cosΘ) (D.2b)

w
(p)
Θ = R5b

(p)
1 B

(p)
1 A

(p)
4 P ′

2(cosΘ) +R5b
(p)
2 A

(p)
2 A

(p)
4 P ′

2(cosΘ) +R7[b
(p)
3,1P

′
2(cosΘ) + b

(p)
3,2P

′
4(cosΘ)][A

(p)
4 ]2

(D.2c)

where the coefficients in eqs. (D.2) may be calculated using eq. 14.

Appendix E. Example values of the displacement coefficients

The following tables provide the values of the displacement solution coef-

ficients in eqs. (20), (22), (24) and (27) for a composite medium with elastic
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properties given in Table 1, and with α = 0 and f0 = 0.008. The coefficients495

in the linear potentials are shown in Table E.5, and Table E.6 shows the co-

efficients in the second-order potentials. For different material properties or

volume fractions, the displacement potential coefficients may be calculated

using the Python code provided as supplementary data.

Table E.5: Numerical values for the linear displacement potential coefficients, eqs. (20)

and (22), for α = 0, f0 = 0.008, and using the material properties presented in Table 1.

Coefficient Value

A
(m)
4 /µm 5.3483× 10−5

A
(m)
2 /µm 4.6270× 10−3

A
(p)
4 /µm 5.6988× 10−5

A
(p)
2 /µm −2.4165× 10−1

B
(m)
3 /µm −2.3385× 10−4

B
(m)
1 /µm −5.0139

B
(p)
3 /µm −2.9295× 10−4

B
(p)
1 /µm −5.3134

F
(m)
0 /µm −3.3550× 10−1

F
(m)
2 /µm −1.3039× 10−1

G
(m)
1 /µm 3.2598× 10−1

Appendix F. Coefficients in the effective TOECs500

The expressions for the effective TOECs derived using the volume aver-

aging methodology involve the following coefficients:

h0 = 3Kp + 4µm (F.1a)
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Table E.6: Numerical values for the normalised second-order displacement potential co-

efficients, eqs. (24) and (27), for α = 0, f0 = 0.008, and using the material properties

presented in Table 1.

Coefficient Value

A
(m)
7 /µm −7.4067× 10−6

A
(p)
7 /µm 8.5532× 10−3

A
(m)
5 /µm 6.2224× 10−4

A
(p)
5 /µm −1.8191× 10−2

B
(m)
6 /µm 2.2626× 10−5

B
(p)
6 /µm −2.7987× 10−2

F
(m)
5 /µm −1.3655

G
(m)
4 /µm 9.7105× 10−1

A
(p)
3 /µm 6.0950

B
(m)
2 /µm −3.3297× 10−1

B
(m)
4 /µm −4.2096× 10−3

B
(p)
4 /µm 1.3703× 10−1

F
(m)
3 /µm −6.5165× 10−1

G
(m)
2 /µm 3.0760

A
(m)
3 /µm −4.8620× 10−2

B
(p)
2 /µm 3.9207× 101

F
(m)
1 /µm 1.1985

k0 = 5µm(3Km + 4µm) + 6(Km + 2µm)(µp − µm) (F.1b)

p1,0 = 20µm(3Km + 4µm)(3Km + 8µm)

+ (81K2
m + 324Kmµm + 364µ2

m)(µp − µm)
(F.1c)
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p2,0 = [5(3Km + 4µm)
3 − 7µm(3Km + 4µm)

2 + 9µ2
m(24Km + 25µm)](Kp −Km)(µp − µm)

+ 5Km(3Km + 4µm)[(3Km + 4µm)
2 + 6µ2

m](µp − µm) + 60µ3
m(3Km + 4µm)(Kp −Km)

(F.1d)

p3,0 = 25µ2
m(3Km + 4µm)

3 + 36(Km + 2µm)
2(µp − µm)

2[3Km + 4µm + 3(Kp −Km)]

+ 180µm(Kp −Km)(Km + 2µm)(3Km + 4µm)(µp − µm)

+ 15µm(3Km + 4µm)
2[4(Km + 2µm)(µp − µm) + 5µm(Kp −Km)]

(F.1e)

p3,1 = 120µ2
m(3Km + 4µm)(Kp −Km)(µp − µm)

+ 6(3Km + 4µm)[(3Km + 4µm)
2 − 8Kmµm](µp − µm)

2

+ 6[3(3Km + 4µm)
2 + 2µm(3Km + 35µm)](Kp −Km)(µp − µm)

2

(F.1f)

p4,0 = −10µm(3Km + 4µm)[9K
2
m + 24Kmµm + 28µ2

m]

− [10(3Km + 4µm)
3 + µm(3Km + 4µm)

2 + 6µ2
m(42Km + 55µm)](µp − µm)

(F.1g)

p5,0 = 7[µm(9Km + 8µm) + 6µp(Km + 2µm)]
3 (F.1h)

p5,1 = 15µm(µp − µm)
2(3Km + 4µm)

(
63K2

m − 48Kmµm − 128µ2
m

)
+ (µp − µm)

3(1026K3
m + 1161K2

mµm − 3168Kmµ
2
m − 3272µ3

m).
(F.1i)
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