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Abstract

The modern particle phenomenologist must be knowledgeable not only in
both experimental and theoretical physics, but also in advanced machine
learning techniques that have proven successful in recent years. This thesis
provides a pedagogical overview of particle physics analyses at the Large Hadron
Collider, including both tried-and-true supervised machine learning methods
and also cutting edge novel unsupervised machine learning methods that are
in development. It also contains three published studies, and another study
that is in progress, in which these techniques are applied to improve current
understanding of particle physics theory and experimental approaches.

In the first study the classic methodology of a manual cutflow is used to
assess the discovery/exclusion potential of a charged Higgs boson in the Two
Higgs Doublet Model using the process pp→ tH± followed by the H± → W±A

and A→ tt̄. This provides the signal ttt̄W± and we study the final states with
three leptons and with two leptons of the same charge. It is found that with
minimal data in the early runs of the 14 TeV LHC the charged Higgs can be
excluded at 95% confidence for masses up to 1 TeV if the mass splitting of the
charged Higgs and pseudo-scalar Higgs is within 100 to 300 GeV.

In the second study the possibility of a beyond the Standard Model CP
violating top-Higgs coupling is explored using the process pp → thj. The
angular variables of the decay products of the top quark are non-trivially
effected by the level of CP violation of the top-Higgs coupling and can be used
as a powerful probe into this coupling. A boosted decision tree analysis is
performed to fully optimize the extraction of the thj signal. It is found that
the combined effect of introducing the angular variable to the analysis as well
as the usage of the boosted decision tree algorithm leads to a large increase
in exclusion potential of CP violation in the top-Higgs coupling compared to
previous literature.

In the third study the level of quantum scattering interference between
signal and background of the process pp → tb̄H− followed by H− → bt̄ (and
conjugate process) and the irreducible backgrounds with final state pp→ tt̄bb̄

is investigated. It is found that in some areas of the parameter space - when



xii

charged Higgs width to mass ratio is large - that this interference, which is
traditionally assumed to be negligible in many analyses, is extremely large. In
some instances it can be as large as the signal cross section itself.

Finally, in the fourth study we show that a cutting edge technique known
as a variational autoencoder, can be used to effectively parametrize composite
images of events detected at the planned XENONnT dark matter detector.
The variational autoencoder model is trained exclusively on electron recoil
background images and builds a profile of the properties of these images. When
the model is then exposed to a new dataset which includes a mixture of both
electron recoil and simulated dark matter nuclear recoil events the two signals
differ at 95% confidence. This acts as a proof of concept that the anomaly
detection methodologies rapidly growing in popularity in many areas can find
powerful applications in dark matter direct detection.
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Chapter 1

Introduction

The discovery of the Higgs boson in 2012 at the Large Hadron Collider
(LHC) [1][2] marked the end of the search for the fundamental particles of the
Standard Model and brought to a close a decades-long effort to understand
and verify the building blocks and forces of the subatomic world as predicted
by the theory. However, it is known that this theory is incomplete as many
phenomena remain outside the realm of understanding.

As we have seen an enormous amount of success using the Standard Model it
is likely that whatever theory emerges as its successor contains the symmetries
and physics of the Standard Model within it, at least in the low-energy limit.
As a result, modern theoretical physics largely boils down to the addition of
fields and symmetries to the Standard Model Lagrangian in an attempt to
describe experimental data. While modern experimental physics attempts
to test the theories put forward by the community, it also revolves around
the minimization of experimental error and development of new analytical
techniques. This thesis will cover aspects of both these areas of study.

An excellent example of the theoretical perspective, and a major component
of this thesis, are “supersymmetric models”. These are models birthed from
the Standard Model by extending the Poincaré algebra to a super-Poincaré
algebra which in turn generates a symmetry between bosons and fermions.
Supersymmetric models include an extended Higgs sector, dubbed the Two
Higgs Doublet Model (2HDM) which lends itself very well to phenemonological
study. The 2HDM comes in many forms which will be explored in this thesis.
As a whole, supersymmetric models would naturally solve many open problems
and lead to a rich phenemonology, which in many cases lies within the reach of
current and near-future detectors, including the LHC and its planned upgrades.

On the experimental side of this thesis lies the development and application
of machine learning (ML) techniques to study experimental data. ML algorithms
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are algorithms which seek to perform tasks without an explicit set of instructions
and rely on the learning of patterns in data. These algorithms mostly fall into
two broad categories called “supervised” and “unsupervised” learning. Generally,
supervised learning involves modelling of data in which the algorithm is trained
by minimizing the difference between a true value and a prediction given by
the algorithm. In contrast, unsupervised learning does not utilize a true value
and is used for clustering and anomaly detection.

Since the explosion of computational power in recent years ML techniques
are applied to almost every particle physics analysis in one way or another and
development of improved or novel techniques are an enormous area of research.
This thesis both employs ML algorithms for signal significance optimization
and presents the development of novel techniques for anomaly detection.

This thesis is structured as follows: Chapter 2 will present an overview
of the Standard Model and the gauge theories therein, whilst chapter 3 will
present three extensions of the Standard Model of increasing complexity -
a charge-parity violating top-Higgs coupling, the 2HDM and the minimal
supersymmetric model (MSSM). Following this, chapter 4 will present an
overview of collider technologies and terminologies and chapter 5 will present
an example of an end-to-end pipeline of a collider physics study. Chapters 6, 7
and 8 then present three published studies which explore the three Standard
Model extensions presented previously in chapter 3. Chapter 9 gives an overview
of modern machine learning techniques for signal agnostic anomaly detection.
These techniques are then applied to MSSM benchmarks in chapter 10 which
consists of an exploration of an in peer review study. Chapter 11 presents
an in-progress study in which anomaly detection techniques are applied to
composite detector images of the XENON1T dark matter detector. Finally we
conclude in chapter 12.



Chapter 2

The Standard Model

The “Standard Model” (SM) of particle physics is arguably one of humankind’s
greatest scientific achievements. It explains three of the four fundamental forces
of nature - electromagnetism, the weak force and the strong force - and has
led to extreme experimental success. It represents a century of development of
quantum physics marked by the first developments of a quantum field theory
(QFT) of electromagnetism by various physicists such as Werner Heisenberg,
Max Born, Pascual Jordan and Paul Dirac in the 1920’s. The Abelian electro-
magnetic quantum field theory was successfully extended to non-Abelian gauge
groups by Chen Ning Yang and Robert Mills in the 1950’s allowing for the
development of a QFT for the strong force and shortly after the unification of
the electromagnetic and weak forces by Sheldon Glashow in 1961. The model
culminated in 1967 with addition of the Higgs mechanism to the electro-weak
model by Steven Weinberg and Abdus Salam.

Fig 2.1 presents the fermionic and bosonic particle content of the SM. The
fermions are the fundamental matter of the theory, while the bosons are the
force carriers of the fundamental forces of the theory. The electromagnetic
force couples all particles which carry non-zero electromagnetic charge and
is mediated by the photon. The weak force couples all particles which carry
non-zero weak isospin and is mediated by the W+, W− and Z bosons. The
strong force couples all particles that carry colour charge and is mediated by
the gluon. Finally, mass is generated in the SM by the Higgs mechanism and
all particles with mass couple to the Higgs boson.

The model contains a total of twelve fermions which comprise all the observed
matter in the universe. This is comprised of six quarks which have mass, spin-1

2
,

electromagnetic charge of magnitude 1
3

or 2
3
, and colour charge, meaning they

interact with all three fundamental forces. The model also contains three
leptons which all have mass, spin-1

2
, carry electromagnetic charge of magnitude



4 The Standard Model

Fig. 2.1 A table of the particle content of the Standard Model [3].

1 and no colour charge and thus only interact electromagnetically and with
the weak force. Along with each of these three leptons comes an associated
neutrino which has mass, though very little, spin-1

2
and no electromagnetic

charge or colour charge and so interact only with the weak force.
To date all particles in the current form of the SM have been observed at

satisfactory statistical significance.
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2.1 Mathematical Formulation

The Standard Model is a gauge quantum field theory with underlying internal
symmetry under transformations which belong to the Lie group product SU(3)×
SU(2)× U(1). Its Lagrangian takes the form:

L =− 1

4
Tr {GµνG

µν} − 1

4
Tr {WµνW

µν} − 1

4
FµνF

µν (2.1)

+ iψ̄γµDµψ + {hermitian conjugate} (2.2)

+ ψ̄Ŷ ψφ+ {hermitian conjugate} (2.3)

+DµφD
µφ− V (φ) (2.4)

This presentation of the Lagrangian is written with brevity in mind and
does not clearly display the immense detail that is contained within many of
these terms. In the coming sections we will take a closer look at these terms
and how they connect with each of the parts of the SM but for now let us look
at it as a broad overview.

Line 2.1 of the above Lagrangian displays the self-coupling of all the gauge
bosons of the SM. Each of the terms contains field strength tensors of their
respective symmetry group.

Line 2.2 displays the kinetic terms of all the fermions of the model. ψ is a
matrix of the fermion fields and Dµ is the gauge covariant derivative of each
Lie group. These terms include all the interactions of the fermions with the
force carriers.

Line 2.3 includes all of the Yukawa terms of the SM; the coupling of the
fermions to the Higgs field. φ is the Higgs field and Ŷ is a matrix of coupling
strengths of the fermions to the Higgs field.

Line 2.4 contains all of the kinetic terms for the Higgs and the Higgs
self-couplings. Finally, V (φ) is the Higgs potential, which takes the form
V (φ) = µ2φ†φ− 1

2
λ(φ†φ)2, often called the “Mexican Hat potential”.

Let us now take a closer look at each of the theories that make up the SM.

2.1.1 Electroweak Theory

Electroweak theory governs the interaction of particles which carry electromag-
netic charge and weak isospin. It is a gauge field theory of the group product
SU(2)L × U(1)Y Lie group. Here the subscript L indicates this symmetry is
held for the left handed chirality particles of the model and the subscript Y
indicates the symmetry is held for particles carrying non-zero hyper-charge. At
an energy scale of approximately 220 GeV, known as the electroweak symmetry
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breaking scale, the theory separates into two separate forces via the Higgs
mechanism - the electromagnetic force and the weak force - and has symmetry
group U(1)Q. Here the subscript Q indicates the symmetry is held for particles
carrying non-zero electric charge.

The electromagnetic force and the weak force are best understood via a
full review of the electroweak model and the Higgs mechanism which will be
covered in the coming sections.

Higgs Mechanism

The Higgs mechanism is the result of the spontaneously broken symmetry of
the electroweak sector and the imposition of local gauge invariance.

As we wish to utilize perturbation theory when doing quantum field theoretic
calculations of the electroweak sector we require a unique vacuum to perturb
around. However a general potential such as the Higgs potential does not
necessarily have to have a unique vacuum, in fact as we will soon see the famous
quartic Higgs potential has infinite vacuum states. As a result we are free to
choose one of these vacuum states and there is no inherent reason that the
SU(2)L × U(1)Y symmetry of the electroweak sector must be preserved at this
point of the potential. When the symmetry is broken by this choice of vacuum
it leads to the appearance of Goldstone boson terms in the Lagrangian [4, 5].

However, remarkably by imposition of local gauge invariance these Goldstone
boson terms of the Lagrangian are removed and terms which generate non-zero
mass for other particles appear. This is the essence of the Higgs mechanism,
however an illustrative model with a more basic Lagrangian is helpful and we
will review this before moving onto the SM implementation.

An illustrative model

As a non-physical but informative exercise we will follow the lead of Ref. [6] and
explore a toy model. Imagine the Higgs mechanism occurring within a spinless,
charged field. We use two complex scalar fields φ and φ* with Lagrangian:

L =
1

2
|Dµφ|2 − V (φ*φ)− 1

4
FµνF

µν (2.5)

where we define the potential as such:

V (φ*φ) = −1

2
µ2φ*φ+

1

4
λ2(φ*φ)2 (2.6)

and,
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• µ and λ are real parameters,

• φ = φ1 + iφ2,

• Dµ = ∂µ + iqAµ with q a real scalar,

• Fµν = ∂µAν − ∂νAµ

and the Lagrangian is invariant under local phase transformations such as
φ→ e−iqα(x)φ. Now clearly, if the first coefficient of the potential is less than
zero then the potential would have a unique minimum (vacuum) at φ = 0, and
this minimum has the same symmetry as the Lagrangian. However, if this
coefficient is greater than zero the potential has an infinite number of minima
lying on a circle of radius µ

λ
, but none of them have the same symmetry as

the Lagrangian (the local phase rotation breaks down). Thus, regardless of
our choice of minimum our symmetry is spontaneously broken. Our choice of
minimum is mathematically arbitrary, but sensible choices do exist for the sake
of simplicity, one such is the purely real vacuum with:

⟨φ1⟩ =
µ

λ
≡ ν (2.7)

⟨φ2⟩ = 0 (2.8)

We say the field φ (and hence φ* as we chose a real value) acquires the vacuum
expectation value (VEV): ⟨φ⟩ = ⟨φ1⟩2 + ⟨φ2⟩2 = ν2.

As is often done, it is useful to redefine our field in terms of the deviation
from the vacuum:

η ≡ φ1 − ν (2.9)

ζ ≡ φ2 (2.10)
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We can now expand our Lagrangian in terms of these fields:

L =
1

2
|(∂µ + iqA)(η + ν + iζ)|2

− 1

2
µ2(η + ν − iζ)(η + ν + iζ) +

1

4
λ2 [(η + ν − iζ)(η + ν + iζ)]2

− 1

4
FµνF

µν

=
1

2

[
(∂µη)

2 − µ2η2
]
+

1

2
(∂µζ)

2 +
1

2

[
q2ν2A2 − FµνF

µν
]

(2.11)

− 2iqν(∂µζ)A
µ +

{
q [η(∂µζ)− ζ(∂µη)]A

µ + νq2(ηA2) (2.12)

+
q2

2
(ζ2 + η2)A2 − λµ(η3 + ηζ2)− λ2

4
(η4 + 2η2ζ2 + ζ4)

}
+
µ2ν2

4

(2.13)

Now we can clearly see from the first term in line 2.11 we have a massive particle
η of mass

√
2µ. We also interpret the second term as a massless particle ζ

(the Goldstone boson) and the third term as a massive gauge field, with mass
qν > 0, Aµ (a massive photon). The remainder of the terms in lines 2.12 and
2.13, aside from the term involving (∂µζ)A

µ, are various currents and couplings
between fields. (∂µζ)A

µ in particular is troublesome as it does not have a
physical interpretation in the Feynman formalism. We can remove this term,
and the massless Goldstone boson, by exploiting the local gauge invariance.
That is:

φ→ φ′ = e−iqα(x)φ

=
[
φ1 cos(−qα(x))− φ2 sin(−qα(x))

]
+ i[φ1 sin(−qα(x)) + φ2 cos(−qα(x))

]
(2.14)

and the gauge field transforms as usual Aµ → A′
µ = Aµ + ∂µα(x).

Now importantly, note that we can choose α(x) to be any arbitrary function

of spacetime to fix the gauge, so we may choose α(x) = 1
q
arctan

(
φ2(x)
φ1(x)

)
and

this will enforce our new field φ′ to be real. In performing this transformation
we of course have not changed our physics, and we get the Lagrangian [6]:

L =

[
1

2
(∂µη)

2 − µ2η2
]
+

[
q2ν2

2
A2 − 1

4
FµνF

µν

]
+

{
q2ν(ηA2) +

q2η2

2
A2 − λµη3 − λ2η4

4

}
+
µ2ν2

4

(2.15)
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Through this imposition of local gauge invariance, our massless Goldstone
boson field, ζ, has disappeared. We are left with a scalar field η of mass

√
2µ

and a massive gauge field Aµ.

Higgs Mechanism of the Standard Model

The Standard Model expands the above ideas with a more complex symmetry.
The local gauge symmetry is now SU(2)L × U(1)Y , the direct product of the
group of 2×2 unitary matrices with determinant equal to one, and the group
of local phase rotations. The symmetry now breaks to U(1)Q. The subscript L
indicates the transformation is only acting on left handed doublets of iso-spin
and the subscript Y is hypercharge (Y = 2Q − 2I3 where I3 is weak isospin
and Q is electric charge) which acts as the generator of U(1). The subscript
Q denotes the fact that after spontaneous symmetry breaking the generator
corresponding to electric charge does not break. A summary of this process is
presented in Fig 2.2.

Fig. 2.2 The Standard Model before (above) and after (below) electroweak
symmetry breaking [7].
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We start with a scalar doublet,

Φ =

(
φ+

φ0

)
=

(
φ1 + iφ2

φ3 + iφ4

)
(2.16)

which transforms through elements of SU(2)L. As described above the subscript
L means the transformation is only acting on left-handed, negative chirality,
fermions which implies the weak hypercharge Y = 1.

So as with our illustrative model, the doublet must acquire a VEV that is
not zero, and we choose:

⟨Φ⟩ =
(

0
ν√
2

)
(2.17)

The generators of SU(2)L are the Pauli matrices σi/2, and the generator of
U(1)Y is Y . Thus these generators all inherit the Lie algebra of the Pauli
matrices with an extension:

[σi, σj] = iϵijkσk (2.18)

[σi, Y ] = 0 (2.19)

Now through elementary calculation we can see that every one of these genera-
tors has non-zero eigenvalues:

1

2
σ1⟨Φ⟩ =

1

2

(
ν√
2

0

)
1

2
σ3⟨Φ⟩ =

1

2

(
0

− ν√
2

)
1

2
σ2⟨Φ⟩ =

1

2

(
−iν√

2

0

)
Y ⟨Φ⟩ =

(
0
ν√
2

) (2.20)

We can relate the electric charge to weak isospin and weak hypercharge through
the Gellman-Nishijima formula:

Q = I3 +
1

2
Y (2.21)
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where we note the third component of isospin is generated by σ3/2 and then
see that Q as a generator has a zero eigenvalue - it is unbroken:

Q⟨Φ⟩ = I3⟨Φ⟩+
1

2
Y ⟨Φ⟩ (2.22)

=
1

2
φ1⟨Φ⟩+

1

2
Y ⟨Φ⟩ (2.23)

=
1

2

(
0

− ν√
2

)
+

1

2

(
0
ν√
2

)
(2.24)

= 0 (2.25)

This is the mechanism by which the local symmetry SU(2)L × U(1)Y breaks
to U(1)Q. Goldstone’s theorem [4, 5] tells us that the number of Goldstone
bosons generated is equal to the number of broken generators, which then in
turn equals the number of massive gauge bosons - thus we have 3 unbroken
generators corresponding after mixing to massive gauge bosons W+, W− and
Z, and one unbroken generator corresponding to the massless photon.

Kinetic Term

The Kinetic term of the Higgs Lagrangian takes the form:

Lkin = (DµΨ)†(DµΨ) (2.26)

with:

Dµ ≡ ∂µ −
ig′

2
Y Bµ − ig

σi
2
W i
µ (2.27)

where W i
µ (i=1,2,3) are the four-vector fields (gauge eigenstates), associated

to the three generators σi described earlier. The other term Bµ is the four-
vector field associated with the generator Y. The coefficients g and g′ are the
coupling constants of W i

µ and Bµ respectively. We can re-write this in a more
illuminating form as:

Dµ = ∂µ − i
g√
2

(
W+
µ T

+ +W−
µ T

−)− i
g

cos θw
Zµ
(
T 3 − sin2 θwQ

)
− ieQAµ

(2.28)
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where, T 1,2,3 are the weak isospin components, T± = 1
2
(T 1 ± iT 2) and most

importantly:

W±
µ =

1√
2

[(
W 1
µ

)
∓ i
(
W 2
µ

)]
Zµ =

1√
g2 + g′2

[
gW 3

µ − g′Bµ

]
(2.29)

Aµ =
1√

g2 + g′2

[
g′W 3

µ + gBµ

]
(2.30)

These three terms, W±
µ , Zµ and Aµ, correspond to the W and Z bosons and

the photon.
The masses of the electroweak bosons are given by:

MW =
gν√
2

(2.31)

MZ =
gν√

2 cos θW
=

MW

cos θW
(2.32)

MA = 0 (2.33)

Potential Term

The Higgs potential of the standard model is given by:

V (Φ†Φ) = −µ2(Φ†Φ) + λ(Φ†Φ)2 (2.34)

where µ2 and λ are free parameters of the theory. Now we can constrain
these parameters by ensuring the potential is bounded below, giving λ >

0, and then ensuring a non-unique minimum (for the sake of spontaneous
symmetry breaking) µ2 > 0. We impose the same VEV’s and symmetry
breaking prescription seen above. This term of the Lagrangian gives the
self-interaction of the Higgs.

Yukawa Lagrangian

To complete our Higgs sector we must introduce the part of the Lagrangian
that gives interactions between the Higgs fields and fermions:

LY = ηUijΨ̄LΦ̃UR + ηDij Ψ̄LΦDR + h.c. (2.35)

where Φ̃ = iσ2Φ, UR and DR are the right-handed fermion singlets from the up
and down sectors (respectively) and Ψ̄L are the left-handed fermion doublets.
ηU,Dij are the free parameters that define the interaction vertices, where i, j are
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the family indices. The Yukawa Lagrangian is the source of fermion masses
when the Higgs doublet acquires its VEV.

2.1.2 Quantum Chromodynamics

Quantum Chromodynamics is the theory that describes the interaction of
particles that carry ‘colour’ charge - quarks and gluons. In analogy to electro-
magnetic charge, which carries binary value of plus or minus, colour charge
takes three values - denoted red, blue, green. As such mathematically it is a
gauge theory of the SU(3) Lie group of 3× 3 unitary matrices of determinant
one.

The quark fields, [ψ(x)]i, are written as four-component spinor fields in the
fundamental representation of SU(3). The gluon fields, [Gµ(x)]

a, are associated
with the eight generators of the adjoint representation of SU(3).

The QCD Lagrangian takes the form:

LQCD =
∑
q

ψ̄iq
(
iγµDij

µ − δijmq

)
ψjq −

1

4
F a
µνF

aµν (2.36)

where:

• i, j = 1, 2, 3 are the colour indices of the fundamental representation,

• a = 1, 2, . . . , 8 are the colour indices of the adjoint representation,

• q are the flavour indices - up, down, charm, strange, bottom, top,

• The gauge covariant derivative takes the form Dij
µ = δij∂µ − igija G

a
µ,

• The gluon field strength tensor takes the form F a
µν = ∂µG

a
ν − ∂νG

a
µ +

gfabcG
b
µG

c
ν with fabc the structure constants of the SU(3) Lie group,

• g is the QCD coupling constant.

Included in the above Lagrangian are the explicit mass terms for the fermions
and pure gauge interactions. It is however missing a mass term for the gluon
as it is in fact impossible to include one that is gauge invariant - thus the
gluon is a massless boson. The Lagrangian is also invariant under the usual
transformations - charge conjugation, parity, and time reversal. However it is
not invariant under the combined charge-parity transformation.

There are two particularly unique properties of QCD that are worth dis-
cussing - asymptotic freedom and colour confinement.
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Asymptotic Freedom

In analogy with electromagnetism, where isolated electric charges cause the
generation of electron-positron pairs in their vicinity which leads to the apparent
reduction of the effective electromagnetic coupling, isolated colour charges also
leads to the generation of virtual coloured quark-anti quark pairs. However, in
QCD the gluon carries colour charge (unlike the photon and electromagnetic
charge) which allows an isolated coloured charge to generate gluons in its
vicinity which leads to an apparent increase in effective strong coupling.

The QCD coupling constant is said to be a “running coupling” as it’s
apparent magnitude changes as a function of the energy scale being probed.
The QCD β function encodes the details of how the QCD coupling strength
runs and is defined as

β(g) = −β0
g3

16π2
(2.37)

at leading order, where β0 = 11− 2
3
Nf and Nf is the number of quark flavours.

As long as β(g) < 0, i.e. Nf < 17 which is true in the SM, the effect of this is
that the strong coupling asymptotes to zero at short distances or high energies.

Colour Confinement

The phenomenon of colour confinement is an open problem of mathematical
physics. It states that in nature bare colour states can never be observed, only
colour neutral states such as mesons and baryons can be. To date no individual
quark or gluon has ever been detected, and yet no mathematical proof of colour
confinement has ever been successfully developed.

Intuitively the concept of colour confinement can be understood that as the
distance between a quark anti-quark pair increases, it becomes energetically
more favourable for a quark anti-quark pair to be produced out of the vacuum
between the original pair. Once this happens the result is two colour neutral
objects.

Colour confinement leads to an extremely important experimental difficulty
as it is the reason that coloured particles form objects known as “jets” in particle
detectors. This will be discussed at length in chapter 4.



2.2 Short-comings and Failings of the Standard Model 15

2.2 Short-comings and Failings of the Standard
Model

The Standard Model has demonstrated absolutely stunning experimental suc-
cess. Every predicted particle has been discovered and almost all measured
model parameters do not break internal consistency of the model. However,
there are still outstanding issues with the SM that broadly fall into two cate-
gories.

Short-comings

The first category contains those which can be considered short-comings, so to
speak, where the model provides no explanation or an inadequate explanation
of phenomena. Examples of this may be that the model does not explain dark
matter, the mysterious gravitational source that permeates the universe, or that
the model does not incorporate the fourth fundamental force gravity in any
way. These problems are only really problems if one wishes the Standard Model
to be an all encompassing theory of everything, but are not really problems in
the sense that the model is wrong.

Other examples of short-comings may be areas where the SM appears to
have unnatural or finely-tuned parameter values. The concept of naturalness
and fine-tuning in the SM is a popular issue, with many physicists believing
that the dimensionless parameters of the SM (or any model) should be of the
same order. But in some places in the SM, such as the hierarchy problem, the
parameters take wildly different values. Some physicists disagree that a lack of
naturalness is an inherent problem such as in Ref [8]. The hierarchy problem
will be discussed in detail in section 3.3.1.

Failings

The second category is far more concerning, but fortunately sparsely populated.
These issues are those that are actually not self-consistent with the principles
of the model itself - let us call them failings.

An example here is that the SM assumes that neutrinos should be massless
- i.e. there is no mass term for them in the SM Lagrangian - and yet neutrino
masses are a required property of the experimentally measured phenomenon
of neutrino oscillations. It is possible that this issue can be fixed by simple
addition of right handed neutrino fields to the SM Lagrangian, but until we
pin down the mass ordering of the three flavours of neutrino we cannot say for
sure and the way forward is uncertain [9].
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Another major failing of the SM is the overall lack of charge-parity violation
allowable in the theory. Charge-parity violation is one of the required conditions
for the measured matter anti-matter asymmetry in the universe [10] and yet
sources in the SM fall short of explaining this level by an enormous factor [11].
We will explore beyond the standard model theories that attempt to explain
this missing charge-parity violation in the next chapter.

Conclusion

This chapter provided a review of the Standard Model, the current best theory
of modern high energy particle physics. In the next chapter we will review a
number of examples of extensions of the SM of varying levels of complexity, all
of which attempt to provide solutions or at least improvements to the issues of
the model that exist today.



Chapter 3

Beyond the Standard Model

The successes of the Standard Model have mostly pushed attempts to com-
pletely replace the theory to the fringe, meaning that beyond the Standard
Model theories are extensions of the SM Lagrangian or symmetries of varying
complexities. In this chapter we will cover three increasingly complex extensions
of the SM that are all relevant to the published material in this thesis. The
intention of this chapter is to help motivate and improve the digestibility of
this thesis, especially chapters 6, 7 and 8.

3.1 Anomalous top-Higgs Coupling

As described in section 2.2 the lack of charge-parity violation present in the
SM is vastly inadequate to explain the level of matter anti-matter asymmetry
in the universe [10, 11]. Thus adding sources of charge-parity violation to the
SM is an attempt to fix this inadequacy. One method of doing this is to look
for certain couplings that are currently not pinned down to extremely high
precision experimentally and add a charge-parity violating term to them in the
SM Lagrangian. While generally this only allows for small (and insufficient)
amounts of charge-parity violation it is still important to try and bridge this
gap.

An example of a coupling that satisfies this criterion is the SM top-Higgs
coupling. We can write the relevant Lagrangian term as follows:

Ltth = − yt√
2
t̄ (cos ξt + iγ5 sin ξt) th (3.1)

where, the mixing angle ξt ∈ (−π, π] and the SM limit corresponds to when the
mixing angle ξt = 0 and the Yukawa coupling adopts its SM value yt → ySMt =



18 Beyond the Standard Model

√
2mt/v, where mt is the mass of the top and v ≃ 246 GeV is the Standard

Model Higgs vacuum expectation value.
This is an extremely simple extension of the SM but yields interesting top

quark phenomenology which is explored in depth in chapter 7.

3.2 Two Higgs Doublet Model

A particularly simple extension of the SM Higgs Sector is to add a second
Higgs doublet, called the Two Higgs Doublet Model (2HDM), which leads to a
number of interesting phenemonological consequences.

Let us introduce a second doublet:

Φ1 =

(
φ+
1

φ0
1

)
Φ2 =

(
φ+
2

φ0
2

)
(3.2)

Now, both doublets acquire a VEV which can be defined generally as:

⟨Φ1⟩ =
(

0
ν1√
2

)
⟨Φ2⟩ =

(
0

ν2√
2
eiθ

)
(3.3)

So we can write:

Φ1 =

(
φ+
1

h1+ν1+ig1√
2

)
Φ2 =

(
φ+
2

h2+ν2eiθ+ig2√
2

)
(3.4)

Where hi and gi are real scalar fields. The θ term is a CP-odd phase, and is a
new source of charge-parity violation in the 2HDM.

3.2.1 Potential Term

As a result of the introduction of this second Higgs doublet we see many extra
terms in the potential we did not see in the SM case. To ensure renormalisability
we search for a potential of quartic order which we can write in a basis of gauge
invariant Hermitian operators constructed from Φ1 and Φ2 [6], namely:

Â ≡ Φ†
1Φ1 (3.5)

B̂ ≡ Φ†
2Φ2 (3.6)

Ĉ ≡ 1

2

[
Φ†

1Φ2 + Φ1Φ
†
2

]
= Re

[
Φ†

1Φ2

]
(3.7)

D̂ ≡ −i
2

[
Φ†

1Φ2 − Φ1Φ
†
2

]
= Im

[
Φ†

1Φ2

]
(3.8)
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Using these operators we can construct the potential by compiling all quadratic
combinations of the above variables that still preserve gauge invariance. Doing
this creates a potential of quartic order in Φ1 and Φ2 as intended:

V (Φ1,Φ2,Φ
†
1,Φ

†
2) =− µ2

1Â− µ2
2B̂ − µ2

3Ĉ − µ2
4D̂ + λ1Â

2 + λ2B̂
2 + λ3Ĉ

2 + λ4D̂
2

+ λ5ÂB̂ + λ6ÂĈ + λ7ÂD̂ + λ8B̂Ĉ + λ9B̂D̂ + λ10ĈD̂

(3.9)

There are 14 free parameters here, compared to two in the SM Lagrangian.
However, we can reduce this to 10 by enforcing charge symmetry, noting that
the D̂ is not invariant under this C-Symmetry:

D → D′ =
−i
2

[
(eiα1Φ⋆

1)
†(eiα2Φ⋆

2)− (eiα1Φ⋆
1)(e

iα2Φ⋆
2)

†
]

=
−i
2

[
ei(α2−α1)Φ†

2Φ1 − ei(α1−α2)Φ1Φ
†
2

] (3.10)

Now in general, the relative phase of α1 and α2 is arbitrary but fixed.
Choices of these phases lead to different conditions on the coefficients, one
common one is α1 − α2 = 0 and in this case we see that D̂ reverses sign. As a
result, to ensure invariance of the Lagrangian µ4, λ9 and λ10 must all be zero.
We may also have chosen α1 − α2 = ±π and we would of reversed the sign of
Ĉ in which case the corresponding parameters would be set to zero. It is also
important to note here that as we are dealing with a scalar theory we also have
parity conserving terms, and thus C-symmetry is equivalent to CP-symmetry.

Now, this Lagrangian is CP-symmetric but it is possible for this symmetry
to be broken when we choose our VEV. There are two ways to preserve the
symmetry, the first is to demand Z2 symmetry: Φ1 → Φ1 and Φ2 → −Φ2. Now
under this condition clearly:

Â→ Â (3.11)

B̂ → B̂ (3.12)

Ĉ → −Ĉ (3.13)

D̂ → −D̂ (3.14)

So obviously the coefficient of any term where this negative does not cancel
must be zero, giving the Lagrangian:

VZ2 = −µ2
1Â− µ2

2B̂ + λ1Â
2 + λ2B̂

2 + λ3Ĉ
2 + λ4D̂

2 + λ5ÂB̂ + λ10ĈD̂ (3.15)
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We could also impose global phase symmetry, Φ2 → eiψΦ2, which would induce
the following shifts in our basis:

Â→ Â (3.16)

B̂ → B̂ (3.17)

Ĉ → Ĉ ′ =
1

2

[
eiψΦ†

1Φ2 + e−iψΦ1Φ
†
2

]
(3.18)

D̂ → D̂′ =
−i
2

[
eiψΦ†

1Φ2 − e−iψΦ1Φ
†
2

]
(3.19)

Which effectively means that any term containing Ĉ or D̂ must have a zero
coefficient with one caveat:

Ĉ ′2 =
1

4

[
e2iψ

(
Φ†

1Φ2

)2
+ e−2iψ

(
Φ1Φ

†
2

)
− 2
]
= −D̂′2 (3.20)

So under this transformation, if the Ĉ2 and D̂2 terms have the same coefficent
they will cancel themselves. This leads to an extremely common form of the
2HDM Lagrangian that has (not spontaneously broken) CP-invariance:

Vψ = −µ2
1Â− µ2

2B̂ + λ1Â
2 + λ2B̂

2 + λ3

(
Ĉ2 + D̂2

)
+ λ5ÂB̂ (3.21)

Our gauge eigenstates and mass eigenstates are related by [6]:(
G±

H±

)
=

(
cos β sin β

− sin β cos β

)(
φ+
1

φ+
2

)
(3.22)(

H0

h0

)
=

(
cosα sinα

− sinα cosα

)(
h1

h2

)
(3.23)(

G0

A0

)
=

(
cos β sin β

− sin β cos β

)(
g1

g2

)
(3.24)

Where,

tan β ≡ ν2
ν1

(3.25)

sin β =
ν2√
ν21 + ν22

(3.26)

cos β =
ν1√
ν21 + ν22

(3.27)

and α is the CP-even Higgs mixing angle which is potential dependent.
In the above we see a particle spectrum consisting of two CP-even Higgs,

h0 and H0, where the former denotes the lighter of the two (either could be the
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Standard Model Higgs), a CP-odd pseudo-scalar Higgs, A0, and two charged
Higgs, H±, which are the main focus of chapter 6 and chapter 8. We also have
Goldstone bosons, G0 and G±, corresponding to the Z and W± vector bosons
via the mechanism described in the previous chapter.

3.2.2 Kinetic Term

The kinetic sector extends simply by:

Lkin = (DµΦ1)
†(DµΦ1) + (DµΦ2)

†(DµΦ2) (3.28)

Where our covariant derivative is defined the same as for the Standard Model,
as seen in section 2.1.1. By definition this Lagrangian is gauge invariant, but it
is easily shown that it is also invariant under charge conjugation, Z2 and global
phase shift, meaning that it is unique (unlike the potential and the Yukawa
term which will be seen in the next section). Now we can find the vector boson
masses in the same way as for the Standard Model and this gives:

M2
W =

1

2
g2
(
ν21 + ν22

)
(3.29)

M2
Z =

1

2

(
ν21 + ν22

) (
g2 + g′2

)
(3.30)

M2
γ = 0 (3.31)

3.2.3 Yukawa Lagrangian

As with the Standard Model Higgs sector the Yukawa Lagrangian provides the
coupling of the Higgs doublets (and thus the Higgs bosons) to the fermions. It
is this term in the Lagrangian in which a distinction is drawn between various
types of Two Higgs Doublet Model, the most important of which are the Type-I
and Type-II. Below is the most general gauge invariant Lagrangian that couples
the Higgs fields to the fermions [6]:

LY = ηUijQ̄iLΦ̃1UjR + ηDij Q̄iLΦ1DjR + ζUij Q̄iLΦ̃2UjR

+ ζDij Q̄iLΦ2DjR + ηEij ℓ̄iLΦ1EjR + ζEij ℓ̄iLΦ2EjR
(3.32)

Where,

• Φ̃ = iσ2Φ,

• ηij and ζij denote 3× 3 matrices and i, j indicate generations,

• UR ≡ (uR, cR, tR)
T ,
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• DR ≡ (dR, sR, bR)
T ,

• QL are weak isospin quark doublets,

• EjR ≡ (eR, µR, τR)
T ,

• ℓL are weak isospin lepton doublets,

• All fields are gauge eigenstates (not mass eigenstates).

Type-I 2HDM

In this version of the model only one Higgs doublet couples to all of the fermions
which is obtained by demanding the following Z2 symmetries:

Φ1 → Φ1 (3.33)

Φ2 → −Φ2 (3.34)

UjR → −UjR (3.35)

DjR → −DjR (3.36)

EjR → −EjR (3.37)

In doing this we see that to preserve the Lagrangian the matrices ηU , ηD and
ηE must all be zero. As a result the first Higgs doublet, Φ1, no longer couples
to fermionic matter and thus only Φ2 contributes to the mass of the fermions.

LIY = ζUij Q̄iLΦ̃2UjR + ζDij Q̄iLΦ2DjR + ζEij ℓ̄iLΦ2EjR (3.38)

Type-II 2HDM

The type-II 2HDM requires an extremely similar symmetry:

Φ1 → Φ1 (3.39)

Φ2 → −Φ2 (3.40)

UjR → −UjR (3.41)

DjR → DjR (3.42)

EjR → EjR (3.43)

In this scenario to preserve the Lagrangian the matrices ηU , ζU and ζE must
be zero and thus the down type quarks and charged leptons couple to Φ1, while
only the up type quarks couple to Φ2, each generating mass for their respective
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fermions.

LIIY = ηDij Q̄iLΦ1DjR + ζUij Q̄iLΦ̃2UjR + ηEij ℓ̄iLΦ1EjR (3.44)

This is the type of 2HDM which is usually chosen as the Higgs sector in the
MSSM and is used to tune the Yukawa couplings to provide a more natural
quark mass hierarchy.

The most important points of this section are that the addition of a second
Higgs doublet leads to a number of very well motivated phenomenological
consequences and that the scalar particle spectrum of the 2HDM consists of 5
different Higgs bosons, including 4 that are not present in the Standard Model.
We will see an investigation of the type-II 2HDM in chapter 6 where we explore
the production of three top quarks at the LHC and the subsequent boost in
cross section of this process that the existence of a charged Higgs boson would
produce.

3.3 Supersymmetry

Supersymmetry is considered to be one of the most elegant solutions to many of
the problems of the SM. Supersymmetric models are the result of extending the
Poincaré algebra of the SM to include the commutation and anti-commutation
relations:

[Mµν , Qα] =
1

2
(σµν)βαQβ (3.45)

[Qα, P
µ] = 0 (3.46){

Qα, Q̄β

}
= 2σµαβPµ (3.47)

where Qα and Q̄β are Dirac spinors with α and β = 1, 2, Mµν are the generators
of the Lorentz transformations, Pµ = −i∂µ are the generators of translation in
the Poincaré algebra and σµ are the Pauli matrices.

There are many ways to handle the details of the supersymmetric extension
which lead to vastly different phenomenology. In any case the consequences of
this symmetry extension would lead to the existence of a relationship between
fermions and bosons in the SM. That is to say that for every spin-1

2
fermion in

the SM there would exist a spin-0 boson, and for every spin-1 boson (or spin-0
in the case of the SM Higgs) there would exist a spin-1

2
fermion.
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3.3.1 Minimal Supersymmetric Standard Model

An extremely common supersymmetric model that we will discuss in detail
here is the Minimal Supersymmetric Standard Model (MSSM), which is called
this as it is the extension that introduces the minimum number of new particles
and interactions that is still consistent with phenomenology [12]. This model
arises from increasing the number of particles in the SM by replacing every SM
fermion field by a “chiral superfield” and every SM vector field by a “vector
superfield”. A chiral superfield contains a Weyl spinor field (a fermion), a scalar
field and an auxiliary field. A vector superfield contains a spin-1 boson, a
spin-1

2
fermion and an auxillary field [13].

We can represent superfields of the quarks and leptons as follows:

Qi ≡
(
uLi

ũLi

dLi
d̃Li

)
(3.48)

Li ≡
(
νLi

ν̃Li

eLi
ẽLi

)
(3.49)

Ui ≡
(
ucRi

ũcRi

)
(3.50)

Di ≡
(
dcRi

d̃cRi

)
(3.51)

Ei ≡
(
ecRi

ẽcRi

)
(3.52)

where the tilde indicates that the field is the superpartner to the SM field and
i runs over the generations and the right-handed superfields are made up of
the conjugate of the right-handed SM fields. The superpartner fields of the SM
fermions are named by placing an ‘s’ in front of the name of their SM relative,
examples include the top and stop, electron and selectron or more generally
quark and squark and lepton and slepton.

The superfields of the Higgs are slightly different. In supersymmetric models
we are forced to introduce at minimum one extra Higgs doublet and couple
different doublets to the up-type quarks and down-type quarks. In the MSSM
we introduce exactly one extra doublet, exactly as seen in section 3.2 regarding
the Type-II 2HDM. This means that the Higgs superfields are written as:

H1 =

(
H0

1 H̃0
1

H−
1 H̃−

1

)
(3.53)

H2 =

(
H0

2 H̃0
2

H+
2 H̃+

2

)
(3.54)
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where the Higgs superpartner fields are called Higgsinos.
To complete the particle spectrum of the MSSM we must elevate our vector

fields to vector superfields. These vector superfields, like their SM relatives,
must transform under the adjoint of the gauge group. The superfields are
written as:

V A
S =

(
GµA G̃A

)
(3.55)

V I
W =

(
W µI W̃ I

)
(3.56)

VY =
(
Bµ B̃

)
(3.57)

where G and G̃ represent the gluon fields and their superpartner gluino fields,
with A = 1, 2, . . . , 8. W and W̃ are the electroweak fields (related to weak
isospin) and their superpartner wino fields with I = 1, 2, 3 and finally B and B̃
are the remaining electroweak field (related to hypercharge) and its superpartner
bino field.

R-Parity

In the SM there exists baryon and lepton number conservation. However in the
MSSM, because the distinction between fermions and bosons disappears, many
couplings arise that allow for baryon and lepton number to be violated. An
important example of this can be seen in Fig 3.1 for the proton. This process
shows a theoretically permissible process in the MSSM in which a proton turns
into a lepton and meson. As the proton is extremely precisely experimentally
measured to be stable for an extraordinarily long time we can make very strong
statements about processes like these that violate baryon and lepton number
in the MSSM.

As a result the following conservation law known as R-parity was put forth
by Farrar and Weinberg [14]:

Rp = (−1)3(B−L)+2s (3.58)

where, B and L are the baryon and lepton number respectively and s is spin.
Demanding that Rp be conserved in any interaction removes the above issue by
ensuring that every interaction vertex has at least two supersymmetric partners.
Remarkably, this also provides a fantastic candidate for dark matter as the
lightest supersymmetric particle (LSP) cannot decay into any sparticles (as it
is kinematically inaccessible) and cannot decay into SM particles as it would
violate R-parity. Thus, the LSP provides a stable dark matter candidate.
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Fig. 3.1 An example of a proton spontaneously decaying to a lepton and a
meson.

The Hierarchy Problem

In the SM the largest corrections to the Higgs mass come from higher order
diagrams of the Higgs coupling to the most massive particles, predominantly
the top quark. The Higgs mass correction can be written:

∆m2
H = −|λf |2

8π2

[
Λ2

UV + . . .
]

(3.59)

where, ΛUV is the assumed ultra-violet cut off of the SM. If we take ΛUV to
the Planck scale then the Higgs mass correction explodes. This is not proven
to be an impossibility, but is considered by many physicists to be extremely
unnatural and thus any high energy completion of the SM must solve this.

If we consider a supersymmetric extension of the SM, this will in any case
contain scalar superpartners of the fermions. The coupling of the Higgs to the
new sparticle spectrum can cancel off the huge Higgs mass corrections - an
example of this for the top and the stop can be seen in Fig 3.2.

Mathematically, if we have Yukawa couplings of the Higgs to scalars in the
new sparticle spectrum that are approximately equal to λf , say λs ≈ |λf |2,
then the new Higgs mass correction will be:

∆m2
H = −|λf |2

8π2

[
Λ2

UV + . . .
]
+

λs
8π2

[
Λ2

UV + . . .
]

(3.60)

≈ 0 (3.61)
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Fig. 3.2 Quantum corrections to the Higgs mass for the top quark and stop
squark [15].

We can see that the extremely high mass correction has been cancelled off by
the existence of the new sparticles. In the MSSM this problem is to a large
extent fixed, however the loop corrections are reduced to about one order of
magnitude higher than the Higgs mass - a huge improvement, but still not
totally natural. Thus the MSSM still has its own little hierarchy problem [16].

In chapter 8 we see the MSSM used as a template to explore the often
neglected experimental impact of quantum scattering interference between
signals and backgrounds at the LHC. We explore how large the interference
is in the production of a charged Higgs in association with a top quark and a
bottom quark assuming two different benchmarks of the MSSM. As well as this
in chapter 10 we see the MSSM used as a template for a study into the power
of novel machine learning techniques at detecting anomalies in experimental
data.

Conclusion

Now that we have explored a number of relevant beyond the Standard Model
theories we will move onto an overview of the particle collider environment. In
the next chapter the experimental hardware and terminology will be presented
to aid in understanding of the manuscripts presented in this thesis.





Chapter 4

The Collider Environment

Studying modern particle physics theories experimentally requires the creation
of high energy environments in which the high energy behaviour of physics
models can manifest. To create these environments, particle colliders are used
in which particles, usually electrons or protons (and their anti-particles), are
accelerated to high energies typically on the order of GeV or TeV and then
smashed together to stimulate interactions. The purpose of this chapter is to
review the basic architecture of relevant particle colliders and detectors and the
terminology and coordinate parametrisation used in particle physics studies.

4.1 The Large Hadron Collider

Residing on the border of Switzerland and France the Large Hadron Collider
(LHC) is a 13 TeV centre of mass (CoM) energy proton-proton and heavy ion
collider designed and built by the “European Organization for Nuclear Research”
(CERN). Primary construction of the LHC began in 1998 and was completed
in 2008 with first beam collisions occurring in 2010 at 7 and 8 TeV CoM energy
and later upgrades to 14 TeV CoM energy occurring between 2013 and 2015
(although a decision was made to limit the machine to 13 TeV for normal
operation).

The apparatus lies between 50 to 175 metres below ground in a 27 kilometre
tunnel and has a main experimental ring approximately 8km in diameter. This
is comprised of two parallel beam pipes which carry particle beams in opposite
directions and cross over at four points where particle collisions occur. The
beams are accelerated by 1,232 dipole magnets and focused by 392 quadrupole
magnets with a number of higher multipole magnetic fields used to further
improve the beam focus. The beams are comprised of “bunches” of protons
allowing for collisions to occur in consistent discrete intervals.
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Fig. 4.1 A schematic of the Large Hadron Collider facility. [17]

At the four collision points of the main ring are four detectors - the ATLAS
(“A Toroidal LHC ApparatuS”) detector, CMS (“Compact Muon Solenoid”),
ALICE (“A Large Ion Collider Experiment”) and “LHCb”. The first of these is
important to the content of this thesis and will be expanded upon in section 4.2.

4.2 The ATLAS Detector

The ATLAS detector is a cylindrical barrel particle detector located 100 metres
underground near the main CERN site in the town of Meyrin in Geneva,
Switzerland. It is a general purpose detector designed and built to investigate
the existence of the Higgs boson and many other BSM phenomena using the
LHC proton-proton collisions.

The detector is comprised of a number of layers of various types of particle
detector that are fit for different purposes such as the detection of different
types of particles or particles of different orders of energy and angular positions.
A cut away of the ATLAS detector can be found in Fig 4.2.

The innermost detector is comprised of an inner layer of high-resolution
semiconductor pixel and strip detectors surrounded by a number of straw-
tube tracking detectors to detect transition radiation. These two layers are
immersed in a 2T magnetic field and together allow for momentum and vertex
measurements and electron identification [18].
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The next layer of the detector is a set of high granularity liquid-argon (LAr)
electromagnetic sampling calorimeters with high energy and position resolution
which cover the pseudorapidity range |η| < 3.2 (see section 4.3 for a description
of pseudorapidity). In this layer is also a scintillator-tile calorimeter used for
hadronic calorimetry covering the region |η| < 1.7. On either side (|η| > 1.5)
are end-caps which contain LAr calorimeters used for the hadronic calorimetry
extending the reach of the hadronic detection to |η| ≤ 4.9 [18].

Finally the calorimeter is surrounded by a muon spectrometer. This is a
large toroidal magnet with a long barrel and two end-cap magnets generating
a strong magnetic field in a large volume in which the muon paths can curve
through three layers of high precision tracking chambers to achieve high muon
momentum resolution [18].

A technical overview of the ATLAS detector can be found in Ref [18] and
in depth descriptions of each component can be found in Refs [19–32].

Fig. 4.2 A schematic of the ATLAS detector. [33]

4.3 Physics Objects

A description of subatomic particles and their behaviour has been provided
in chapters 2 and 3 however this is not sufficient for a true understanding
of particle phenomenology. The data taken by a detector such as ATLAS is
extremely fine grained and complex (see Fig 4.3), with many levels of grooming
undertaken to provide it in a useable form (not to mention the behemoth
task of saving and storing the data which will not be covered in this work).
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This resultant dataset does not necessarily contain the raw information about
particles generated but rather signatures of them from the hardware in the
detector.

Fig. 4.3 An example of an event at ATLAS [34].

4.3.1 pT -η-φ Description

The pT -η-φ description is the coordinate system used in collider physics to
describe the position of physics objects in space. Firstly, the beam-axis is
defined as the z-axis. From this we then define pT =

√
(px)2 + (py)2 as

the transverse momentum of the physics object. The reason we employ the
transverse momentum and not full momentum is that at hadron colliders such
as the LHC, we only know the overall energy of each proton and not the specific
energy of the constituents of protons (dubbed “partons”) contained within them
that have interacted. However, as both protons are moving along the beam
axis we know that the total initial transverse momentum of the system is zero
and thus the total transverse momentum of all produced particles in the event
will sum to zero. As a note, when all detected particle transverse momenta are
summed and the result is non-zero, this non-zero value is defined as “missing
momentum” and its magnitude is called “missing energy” or /ET . It is generally
identified as the presence of particles that have escaped the detector undetected
- i.e. neutrinos, potential dark matter, etc.
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φ is defined as the azimuthal angle around the beam axis. Finally η, also
known as “pseudorapidity”, is defined as:

η = − ln

[
tan

(
θ

2

)]
(4.1)

where θ is the angle with the beam-axis. This value is useful as differences in
pseudorapidity are Lorentz invariant under boosts along the beam axis - that
is they transform additively like non-relativistic quantities. Fig 4.4 presents
the behaviour of η for various values of θ between 0 and π/2. Using these three
quantities we parametrise the collider environment.

Fig. 4.4 A plot of pseudorapidity values for 0 ≤ θ ≤ π
2

[35].

4.3.2 Jets

In particle colliders colour charged objects such as quarks and gluons are
extremely commonly produced. However, due to colour confinement, these
bare colour objects cannot be observed. To avoid the bare colour these quarks
and gluons will produce colour charged objects out of the vacuum to form
colour neutral mesons and hadrons. These mesons and hadrons are not always
stable and as such decay once again to bare colour charged objects. This
process repeats, leading to a cascade of QCD particles in a conic shape onto
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the detector. This process is known as “fragmentation” and “hadronisation”
and the cluster of particles that hits the detector is called a “jet”.

Jets are extremely important as they correlate with the quarks and gluons
originally produced in a process and so are necessary for all physics analyses.
The study of accurately and efficiently clustering fragmentation/hadronisation
products into jets is a large field of study and many algorithms exist to do
this. These algorithms broadly fall into two classes, “cone” algorithms [36]
and “sequential recombination” algorithms. The former of these aim to define
stable cones as circles of fixed radius in the η − φ plane in which the sum of all
momenta of particles in that circle are in the same direction as the center of
that circle. This seeks to define cones of energy flow of groups of particles and
as such the conical shape of a jet. However, they are not commonly used in
modern analyses and won’t be discussed at length here.

The two most common sequential recombination algorithms are the “Anti-
kt” [37] and Cambridge-Aachen [38]. These work as follows:

1. For each particle construct the following quantities:

(a) dij = min(knT,i, k
n
T,j)

∆R2
i,j

R2

(b) diB = knT,i
where, n is an integer, knT,i is the transverse momentum of the ith

particle, ∆Ri,j is the distance between the ith and jth particle in the
(η, φ) plane and R is a scaling parameter of order unity.

2. Then find dmin = min(di,j, di,B) for all i, j.

3. If dmin is a di,j then merge particles i and j into one by 4-vector summation,
else if dmin is a di,B then delete particle i from the list.

4. Repeat above iteratively until the list contains one particle.

The end result of this algorithm is one 4-vector that is a sum of all the
particles which satisfied the above criterion. This 4-vector gives the momentum
and energy of the jet the algorithm has found. The difference between the
sequential recombination algorithms is in the scale of the energy contribution
to the metric, n. For Anti-kt n = −2 is chosen and for Cambridge-Aachen
n = 0 is chosen and also the variable di,B is set to 1 for all i.

Typically one cannot tell which specific quark or gluon generated a jet,
however there are exceptions to this. “Light jets” are dubbed as such because
they were generated by a “light quark”, that is an up, down or strange quark,
or a gluon. It is possible, by assessing whether the vertex of the jet (the tip
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of the cone shape) is displaced away from the interaction point of the overall
process and by measuring how large this displacement is, to tag the jet as
being generated by a charm quark or a bottom quark. This is known as “charm
tagging” and “b-tagging” respectively. See Fig 4.5 for an example of this.

Fig. 4.5 An example of two non-displaced vertices indicative of light jets and
a displaced vertex indicative of a b-jet [39].

Finally, a top quark decays via t → bW+ before it ever has a chance to
go through the fragmentation/hadronization process because of its extremely
high mass. As a result the top produces a b-jet and then either a lepton and a
neutrino or a pair of jets depending on the W boson decay path. That being
said, a highly boosted top quark may potentially generate such collimated
decay products that the b-jet and the W boson decay products form a single
conical shape which is clustered as what is called a “fat jet”, an example of
which is given in Fig 4.6.

The identification of fat jets is another large field of research and techniques
range from the common “mass-drop tagger” approach [41] to using machine
learning for image recognition [42]. It is important to note that the term fat jet
is often also applied to any time that multiple distinct jet objects are boosted
enough to be misidentified as a single jet object, but the principles of identifying
them remain the same.
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Fig. 4.6 An example of a boosted particle leading to the formation of a single
fat jet. [40]

Conclusion

With a general overview of the nature of particle colliders, in particular the
LHC and the ATLAS detector, and the collider environment complete, let us
now move onto a discussion of analysis methods and tools which underpin the
data science that is required to discover new physics.



Chapter 5

Analysis Methods and Tools

The purpose of this chapter is to provide an overview of the techniques and
methodologies that are employed in particle physics analyses. Its structure
is presented such that the reader will hopefully gain an understanding of the
pipeline from theory to experimental analysis. To aid in understanding the
workflow we will use a study of the production of a Higgs boson as an example.

5.1 Lagrangian and Feynman Rules

The first step in the workflow is the implementation of a Lagrangian. This
Lagrangian includes the theoretical new physics in the form of new terms or
symmetries in the SM Lagrangian that we wish to study.

In our Higgs example we will use an implementation of an effective Langra-
gian to facilitate generation of higher order processes at tree level. Often Monte
Carlo generators are limited to tree level generation, and yet some interesting
processes have leading orders above tree level. The Higgs decaying to two
photons is a good example of this - it occurs predominantly through a top loop,
which can be parametrised as an effective vertex by integrating around the loop
and sending the top mass to infinity. This is a very good approximation for a
Higgs with mass less than 150 GeV. The effective Lagrangian takes the form of:

Lhγγ = −1

4
gFµνF

µνH (5.1)

There are a number of tools which facilitate the construction of Lagrangians
computationally and the derivation of Feynman rules from the Lagrangian such
as FeynRules [43], FeynCalc [44], SARAH [45] and LanHEP [46]. There are many
overlapping functionalities of these packages with the most common usages
being the calculation of cross sections, generation of Feynman diagrams and
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Fig. 5.1 Feynman diagram for Higgs decaying to two photons parametrised by
an effective vertex.

the generation of “model files” for implementation in Monte Carlo generators.
A model file is the Lagrangian implemented in an agreed upon way that is
understood by Monte Carlo generators to allow efficient and user friendly
generation of particle physics events which can then be analysed and compared
to real data.

So for this example we would choose a Feynman rules generator and add
on the above effective Lagrangian term. The software will generate the new
Feynman diagrams and Feynman rules leading to a replacement of diagrams
seen in Fig 5.1. This new diagram on the right is digestible by tree level Monte
Carlo generators and the Feynman rules would include the new coupling which
is a simple scalar equal to:

g = − α

πv
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(5.2)

where, τt = m2
h/(4m

2
t ) and τw = m2

h/(4m
2
W ).

5.2 Signal and Background Definition

The definition of the signal is primarily motivated by what is phenomenologically
interesting, i.e. new and different to the SM, and what is experimentally
achievable, i.e. cross section is high enough and is non-degenerate with SM
backgrounds.

This is done by selection of a particular process and subsequent decay chain
that will include effects of the BSM parts of the Lagrangian introduced earlier.
Using the Higgs example, the choice of decay of the Higgs provides different
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benefits and detriments. The Higgs decaying to two b-jets has the highest
branching ratio, however b-jets are experimentally messy and introduce larger
systematics and irreducible backgrounds. The Higgs decaying to two photons
provides an incredibly clean, low systematic signature at the expense of a
branching ratio that is roughly 1000 times lower.

Further, as can be seen in Fig 5.2, many of the leading production mecha-
nisms generate associated particles. Analyses can be constructed which target
these associated particles and their kinematics. For example, if one chooses to
investigate a top decaying to light jets (via a W -boson) the branching ratio is
roughly 3 times higher than if one chooses a top decaying to a lepton and neu-
trino. However, the lepton and neutrino scenario has much lower systematics
due to the very precise measurement of the lepton’s momentum.

g
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q
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g

q

q̄q

q

W,Z
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t

g
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Fig. 5.2 Examples of Higgs production Feynman diagrams.

All of this is to say that the choice of signal is a delicate balance. Once
a signal, or set of signals, is chosen the backgrounds can be defined as those
with the same final state. It is important to note that this does not only mean
events with the exact same particles. It is possible that things like mis-tagging
of b-jets and light jets, or particles lost from the detector in its blind spots can
lead to experimental signatures that directly mimic the final state of the signal.
This must all be accounted for in the analysis.

Using the Higgs production, specifically the top left diagram of Fig 5.2,
followed by a decay to two photons as an example then we would define the
major background as any event with more than two energetic photons. Another
background could be any event that produces a photon and a light jet which is
then mis-tagged as a second photon. Of course we could go further and require
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two or more mis-tagged light jets as a photons but with each mis-tag we are
probing more and more unlikely occurrences which quickly suppresses the cross
section to levels considered negligible.

5.3 Monte Carlo Generators

Monte Carlo generators such as MadGraph [47], Pythia [48], SHERPA [49], POWHEG
BOX [50] and HERWIG [51] are absolutely indispensible to particle physics studies.
They allow the intake of the aforementioned model files produced by the
Feynman rule calculators and output a variety of information, most usefully,
physically consistent particle collision events.

After utilizing one of these packages, and perhaps multiple if one would like
to be extremely rigorous in cross checking the consistency of the results, the
output is likely at production level - that is to say that the event will contain
only the particles directly produced by the particle collision and not the decay
products. However this is not what the detector sees and thus not what the
data recorded will look like, so there are more steps to the process to simulate
physically realistic events.

The produced particles must be realistically decayed and this will include
subsequent hadronisation/fragmentation. Chapter 4 defined hadronisation and
fragmentation - the generation of jets due to the production of bare colour
particles in a collider - but this process is not well understood at all at a
fundamental level. This is because this process is non-perturbative and the
specific nature of quantum chromodynamic confinement itself is very poorly
understood. Fortunately there exists an empirically tested phenomenological
model that can simulate the hadronisation and fragmentation process - the
“Lund String Model” [52]. This model is implemented in many of the afore-
mentioned packages such as Pythia, SHERPA and HERWIG and those that do not
such as MadGraph provide easy connectivity to other packages which do.

Finally, the events at this point contain only the values directly sampled
during the Monte Carlo - it does not contain any effects that a realistic detector
would create. As a result the final step in our simulation process is to introduce
realistic detector effects which is often done by smearing the values of the MC
data using functions of η, φ and transverse momentum that are empirically
derived from real data. Many experiments have their own in house packages for
very accurate effects of their specific experiment but general purpose packages
such as Delphes [53] are also extremely commonly used.
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Fig. 5.3 Examples of variables for a Higgs produced then decaying to two
photons.

To reiterate, the work flow of particle physics simulation is as follows: First
generate a model file that includes Feynman rules from the new physics La-
grangian, define a signal and its corresponding backgrounds, then use this
model file in MC generators that produce particle collision events. Next,
decay the events and ensure that the relevant particles undergo hadronisa-
tion/fragmentation. Finally, smear the events to include the effects that a
real detector would introduce. After the full dataset is produced, it is time to
analyse this data. Fig 5.3 displays some examples of variables for the process
pp→ h→ γγ and the relevant backgrounds of di-photon continuum events and
light jet continuum events that have been mis-tagged as photons. In this figure
γ0 and γ1 indicate the first and second most energetic photons in the event
respectively, while PTH and MH are the transverse momentum and invariant
mass, respectively, of the sum of 4-vectors of γ0 and γ1.

5.4 Analysis

The general purpose of an analysis is to quantify a statistical significance of the
BSM effect when compared to the SM background. This is done by searching
the data for an excess of events in the data over what would be expected from
the SM background. Before we can get into specific methods of data analysis let
us first take a look at a few common methods of quantifying signal significance
in particle physics experiments.
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5.4.1 Significance Tests

Poisson Signal to Noise Ratio

In any counting experiment the data is expected to be Poisson distributed. As
a result the standard deviation in counting N events is expected to be

√
N . To

quantify the significance of a count of S excess events over the expected count
of B events, we count the number of standard deviations from the mean that
our total count of S +B events is. We do this in the typical fashion; measured
value minus the mean divided by the standard deviation. That is:

σ =
(S +B)−B√

S +B
=

S√
S +B

(5.3)

There are also many systematic errors present in any particle physics
experiment and they are not incorporated into the above measure of significance.
If all of these systematic errors are formed into a single value of expected absolute
uncertainty called ∆B or some relative uncertainty of the background called β,
then these can be included in the above test statistic as such:

σ =
S√

S +B + (∆B)2
=

S√
S +B + (βB)2

(5.4)

This simple test is one of the most common tests of significance for simple
searches for excess counts of events, especially in phenomenological papers.
However, more robust statistical tests will often be used such as those seen
below.

Chi-Squared Test

The Chi-Squared Goodness-of-Fit test [54] tests whether a sample of data was
sampled from a population with a specific distribution. The null hypothesis H0

is that the data was sampled from the chosen distribution and the alternate
hypothesis Ha is that the data was not sampled from the chosen distribution.
The test statistic is defined as:

χ2 =
k∑
i=1

(Oi − Ei)
2

Ei
(5.5)

where k is the number of bins of the histogrammed data, Oi is the number of
events in the ith bin and Ei is the expected number of events in the ith bin. Ei
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is calculated by:

Ei = N(F (Y u
i )− F (Y l

i )) (5.6)

where F is the cumulative distribution function for the chosen distribution
being tested, Y u

i and Y l
i are the upper and lower limits for the ith bin and N is

the sample size.
The null hypothesis is rejected if the test statistic χ2 satisfies:

χ2 > χ2
1−α,k−c (5.7)

where the right hand side of the equation is a scalar corresponding to the chosen
distribution with α the chosen significance level, k the number of bins and c the
number of parameters of the chosen distributions plus one, i.e. for a binomial
distribution c = 1, a Poisson distribution c = 2 and a normal distribution c = 3.

For obvious reasons the Chi-Squared test is affected by the choice of binning
of the data. There is no optimal binning, however a general rule of thumb
is that for the test to work each bin should contain more than five events.
Obviously, for any finite dataset and fine enough binning there will always
either be a bin with less than five events in the tail of the distribution or some
data will have to be excluded to remove this inevitability. To handle this,
sometimes an “overflow” bin is used, where all of the bins to the right of a bin
and with an unsatisfactory number of events are summed into a single bin.

CLs Technique

The CLs Technique [55] is a statistical test to set exclusion limits on model
parameters that take non-zero values. Consider an experiment designed to
measure N events resulting from a signal and a background process with
expected events S and B respectively; thus N ∼ P (S + B). Now, if the
experiment results in a count of N∗ events we can construct the following
quantity for all values of the parameter(s) of the signal model (and thus values
of S) that satisfy:

P (n ≤ n∗|s+ b)

P (n ≤ n∗|b) ≤ α (5.8)

where α is chosen such that 1 − α is our chosen confidence level. We would
now have generated a limit on the parameter(s) at the confidence level of our
choice.
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Intuitively what is happening here is that we are finding all the values of
the parameter(s) of the signal model that generate too many signal events such
that the recorded data is more likely the result of statistical fluctuation in the
background given no signal than the result of any real signal contribution.

The CLs Technique is used commonly in rigorous experimental studies,
including famously in setting upper limits for the mass of the Higgs boson at
LEP, ATLAS and CMS [56].

5.4.2 Cut Flows

Historically signal significance was optimised manually using “cuts” to generate
a “cutflow”; this means that we discard events that do not meet certain criteria
until the remaining events belong to a section of the phase space that, hopefully,
represents a higher proportion of signal events relative to background events.

Looking at our Higgs example in Fig 5.3, it can be seen that the two photons
produced by the decaying Higgs have a much higher transverse momentum than
that of the background. So a reasonable cut may be that the leading photon in
each event must have PT ≥ 40 GeV and the sub-leading photon PT ≥ 30 GeV.
Another could be that one first reconstructs the Higgs by 4-vector summing
the two photons and then demanding the invariant mass of the two photons
be within 125 GeV plus or minus 20 GeV (note that this cut assumes a mass
of the Higgs which is not known a priori). Either of these cuts would lead
to the phase space being restricted specifically to an area where the signal is
over-represented. An example of a cutflow on the Higgs boson can be seen
in Tab 5.1, where S, B1 and B2 are the expected event counts for the signal,
the di-photon continuum background and the photon and light jet background
respectively. Note how the signal significance increases throughout the cutflow
table as the cuts disproportionately remove the background relative to the
signal.

Cut S B1 B2 σ0 σ0.01

No cuts: 4500 18853617 1888487 0.99 0.02
Nγ ≥ 2: 2102 7146840 717036 0.75 0.03
PTγ0 ≥ 40 (GeV): 2025 624089 61292 2.44 0.29
PTγ1 ≥ 30 (GeV): 1830 546843 54201 2.36 0.30
|Mγγ − 125| ≤ 15 (GeV): 1828 126909 12186 4.87 1.27

Table 5.1 A simple cutflow table for a Higgs boson signal for 150 fb−1 of lumi-
nosity. Note: B = B1 + B2 and σα = S/

√
S +B + (αB)2 is the significance

with relative systematic uncertainty α.
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It is much more common today to use the more advanced approach of
supervised machine learning. These frameworks classify signal and background
on an event by event basis leading to a far more surgical refinement of the
phase space than the cutflow described above. The following subsections will
describe some of these algorithms in detail.

5.4.3 Supervised Machine Learning

Supervised machine learning is the process of learning arbitrary functions
that map inputs onto outputs via labelled training data. This is done by
the minimisation of an error function defined by the difference between the
network’s output and the label of the input data; the error function is minimised
by iteratively updating the parameters of the model.

The most common method of updating the parameters of the model to
minimise error is called “gradient descent”. Let us take a closer look at it before
we move onto specific machine learning algorithms.

5.4.4 Gradient Descent

The idea behind “gradient descent” optimisation is that given some value of an
arbitrary function the fastest path towards a minima of that function is in the
opposite direction of the gradient of the function at that point. Intuitively one
can picture this as standing on the side of a hill; the shortest path towards the
bottom of the hill will be in the direction of the steepest slope.

Mathematically, if F (x) is an arbitrary multi-variate function and an is a
value of this function, then gradient descent can be written:

an+1 = an − γ∇F(x) (5.9)

Where, an+1 is a new point that should be closer to a maximum or minimum
of F (x) and γ is a scalar which acts to scale the step size of each step of the
update process. This step size is not necessarily static and many algorithms
exist to dynamically choose γ.

Two important examples of supervised algorithms that use gradient descent
are Boosted Decision Trees and Artificial Neural Nets, let us take a closer look
at these.
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5.4.5 Boosted Decision Tree

To begin the overview of the Boosted Decision Tree algorithm we will first
take a look at the concept of “decision trees”. A decision tree is a set of cuts,
similar to described earlier however in this case called decisions, but with the
variables used and cut values optimised computationally [57, 58]. There are
many methods used to choose the cut value of each decision in the tree, however
the most common is to maximise “information gain” at each split [59]. An
example of a decision tree for the Higgs signal can be found in Fig 5.4, note
that it is honing in on the PTγ0 > 40 GeV and PTγ1 > 30 GeV region described
earlier. The coloured rectangles are referred to as nodes, while the terminal
nodes are referred to as “leaves”. These leaves represent a purity of the given
class after the cut, in this case S/(S +B).

S/(S+B)=0.955

S/(S+B)=0.711 S/(S+B)=0.439

S/(S+B)=0.600

PTGAM0< 43.8
S/(S+B)=0.026

S/(S+B)=0.118

PTGAM0< 36.8

S/(S+B)=0.499

PTGAM0< 53.2

Decision Tree no.: 0Pure Signal Nodes

Pure Backgr. Nodes

Fig. 5.4 An example of a decision tree.

However this individual tree suffers from very high bias and variability in its
outputs, i.e. it is not able to catch a wide range of properties of the input sample.
To improve this we replace the single tree with an ensemble of N trees, and
the output is now a function, often a weighted mean, of the entire ensemble’s
outputs. Importantly, each tree is trained on a subset of the data sampled with
replacement, this is called “bagging” or “bootstrap aggregation”. Furthermore,
the bagging methodology can be extended to allow for the random selection
of input variables of the model, rather than cutting on all of the variables
sequentially, this is known as “random forest”.

Finally, to turn a decision tree into a boosted decision tree ensemble we
implement “boosting”. After the first tree in the series is trained, the second
tree in the series is trained on a dataset with an increased weighting given
to the events that the previous tree had the highest errors in classifying.
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This is repeated along the series of trees leading to each subsequent tree being
optimised to classify the most difficult to classify events of the previous sequence
of trees. There are many methods of combining the classifiers outputs into
one, some of the most common are “gradient boosting” [60–62] which includes
gradient descent applied to a chosen error function and “AdaBoost” or “adaptive
boosting” [63].

An example of the output of a boosted decision tree implemented in ROOT [64]
using the Toolkit for MultiVariate Analysis (TMVA) [65] can be found in Fig 5.5.
The top plot shows information regarding the classification output of the
BDT for the training and testing sets. For a given event the BDT outputs a
single value that represents whether that event belongs to the signal class or
the background class called the “BDT response”. This BDT response when
histogrammed presents a very nice visualisation of the separation of the signal
and background in one dimension. Further, the plot gives a sense of overtraining
- when the model performs extremely well on the training set but does not
perform well when presented with new data - by comparing the shape of the
testing distribution, the hatched area, and the training distribution, the points
crossed with error bars. In an overtrained model the two distributions will look
very different for either the signal or background or both.

The bottom plot presents the statistical significance as a function of placing
a cut on the BDT response distributions. If one were to throw away all
events that have a BDT response less than 0.2438, the remaining set of events
would have a much higher proportion of signal events surviving the cut than
background events. In fact when signal significance is defined as S/

√
S +B

where S and B are the number of signal and background events remaining in
the dataset respectively, the signal significance would be approximately 5.15σ.
It is at this point that we should recall that this Higgs example is very much a
toy model and is not taking into account all of the backgrounds and systematics
that a full analysis would. It is also using a much higher luminosity than the
original Higgs discovery. That being said, what is important is to note that the
BDT analysis of the same data and same variables has led to a much higher
signal significance than the manual cutflow.

5.4.6 Artificial Neural Nets

Artificial neural nets (ANN’s) are arguably the most influential machine learning
methodologies both in physics and in many facets of modern society. These
techniques use a network of “nodes” connected by “weights” to approximate
arbitrary non-linear functions [57].
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Fig. 5.5 Top: The BDT output for a sample of Higgs decaying to two photons
signal and corresponding background events. Bottom: Signal significance as a
function of where the cut is placed on the BDT output plot.

Fig. 5.6 An example of an artificial neural network.
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Fig 5.6 presents a schematic of an ANN. This network takes two input
values, has two layers in the middle called the “hidden layers” with four nodes
(sometimes called neurons) and will generate one output value. The lines
connecting each of the nodes represent weightings, values between zero and
one, that will multiply the value stored in the node on the left and pass it to
the node on the right. The value received by a hidden layer node is a sum
of all nodes connected to it from the previous layer weighted by the weight
of their connection plus a bias value (without a bias all zeros would always
map to zeros). Once the node has received its input value from the preceding
nodes it applies an “activation function” to it and passes it on to the nodes it is
connected to in the next layer. Some examples of common activation functions
are:

Hyperbolic Tan: σ(x) = tanh(x)

Leaky Rectified Linear Unit (Leaky ReLu): σ(x) =

x x > 0

αx x ≤ 0

Exponential Linear Unit (ELU): σ(x) =

x x > 0

α(ex − 1) x ≤ 0

Logistic: σ(x) =
1

1 + e−x

where, in the leaky rectified linear unit and exponential linear unit activation
functions α is a parameter in (0, 1). When α = 0 we retrieve the standard
rectified linear unit activation function which itself is a very common choice.

The above can be treated more generally, and rigorously, by writing the
output of the jth node in the ith layer as follows:

aij = σ

(∑
k

(wijka
i−1
k ) + bij

)
(5.10)

where,

• aij is the output (also known as activation value) of the jth node in the
ith layer,

• σ is the chosen activation function for that layer,

• wijk is the weight connecting the kth node in the (i− 1)th layer to the jth

node in the ith layer,

• ai−1
k is the output of the kth node in the (i− 1)th layer,
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• bij is the bias value of the jth node in the ith layer.

The output of the network is just the repeated application of Eqn 5.10 from
the input layer to the output layer.

Now, when the network returns its output it can be compared against the
class label corresponding to the given input and from this the error, also called
the cost or loss, can be calculated. There are many functions used to calculate
error, each with their own benefits and implicit assumptions regarding the
nature of the training data. A common example is Mean Absolute Error (MAE)
defined as:

C(yi, ŷi) =
1

N

N∑
i

|yi − ŷi| (5.11)

where C denotes the error, yi is the true label of the ith input, ŷi is the predicted
label of the ith input and N is the number of samples used in the calculation
(generally the batch size). This very simple function attempts to simply bring
the absolute value of the predicted labels as close to their true values as possible.
Note that it punishes “wrongness” linearly, i.e. being twice as wrong is twice
as bad. Another common error function is Mean Squared Error (MSE) which
takes the form:

C(yi, ŷi) =
1

2N

N∑
i

(yi − ŷi)
2 (5.12)

This error function is useful when one would like to punish wrongness non-
linearly, for example when being twice as wrong is much worse than being twice
as bad. It assumes a Gaussian distribution of the underlying training data, an
assumption that leads to decent results in a lot of cases.

The final example here is different in that it is useful for the very common
classification task of binary classification, for example predicting whether an
event is signal or background. While the above error functions can be used on
binary classification tasks the performance will likely be poor for two reasons.
Firstly, the underlying data is Bernoulli distributed (or in multi-class discrete
classification at least discretely distributed) and not Gaussian distributed and
secondly, MAE and MSE are non-convex for a binary classification problem
as the range of the classification labels is (0, 1). This means that there may
not exist a minimum in the range (0, 1) and using MAE or MSE may cause
convergence to a false minimum or no convergence at all. In binary classification
the common choice of error function is Binary Cross Entropy, also known as
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Log Loss and it takes the form:

C(yi, ŷi) = − 1

N

N∑
i

yi log(1− ŷi) + ŷi log(1− yi) (5.13)

In binary classification problems yi will either be 0 or 1 depending on its class,
while ŷi belongs to (0, 1) and can be thought of as a probability of belonging
to each class.

Once an error function is chosen and the network is applied to inputs the
error can then be used to modify the weights of the network systematically.
This is done via “backpropagation” of the errors, where the gradient of the
error function is calculated with respect to each of the weights of the network
one layer at a time backwards from the last layer to the first. This gradient
can then be used in the gradient descent methodology to optimally update the
weights of the network to ensure the error is smaller on the next iteration of
training.

All of the above leads to a model that can create arbitrarily complex sets
of combinations of the input values which can model any non-linear function
that maps the input to the output.

To relate this to our Higgs example we could have the two input nodes take
the transverse momentum of the two leading photons and the single output
node return a value between zero and one where zero indicates a signal event
and one indicates a background event. The exact architecture of the hidden
layers is not entirely important as long as it is sufficiently complex (which
in this example is not very complex at all). We would then be able to plot
distributions of this output variable for the signal and background and choose a
threshold in the range (0, 1) at which we define events with output above that
threshold as signal and events below that threshold as background, exactly like
seen in the BDT example earlier.

Conclusion

The analysis methods and tools described in this chapter are absolutely indis-
pensable to a particle physics phenomenologist undertaking studies of BSM
physics. In chapters 6, 7 and 8 we will see many of the techniques described
here applied in published works. Armed with the knowledge of this chapter
hopefully these papers will be much more digestible and their results convincing.





Chapter 6

Publication 1: Triple top signal as
a probe of charged Higgs in a
2HDM

Abstract

Within the framework of the type-II Two Higgs Doublet Model (2HDM-II) we
study the production of three top quarks at the Large Hadron Collider (LHC).
In the Standard Model the production cross section of three tops is low (≈ 3fb),
while it is expected to be significant in the 2HDM-II for reasonable choices of
the parameters. We study the production of a charged Higgs in association with
a top quark, followed by the decays H± → W±A and A→ tt̄. We undertake a
full detector simulation of the signal, and use simple conservative cuts, focussing
on the final states that contain three or more leptons, and exactly one same
sign di-lepton pair. Finally, we present the exclusion bounds dependent on
charged Higgs and pseudoscalar Higgs masses expected in the near future at
the 14TeV LHC.

6.1 Introduction

The last missing piece in the standard model (SM) puzzle, the Higgs boson, has
been discovered at the Large Hadron Collider (LHC) in its first run. Thereafter
various production and decay channels have been studied extensively in order to
determine the couplings of the newly discovered boson to various SM particles
and the measurements have been found to be close to the SM predictions.
Despite this, there is a enough motivation to extend the Higgs sector of the
SM in order to understand the underlying mechanism of electroweak symmetry
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breaking (EWSB). Among several Beyond the SM (BSM) models which include
an extended Higgs sector, the two Higgs doublet model (2HDM) is one of the
simplest and extensively explored. The particle content of the model is enriched
by additional scalars, i.e., two CP even Higgs (h, H), a CP odd Higgs (A) and
a pair of singly charged Higgs (H±). Reviews of the phenomenology of the
2HDM and charged Higgs can be found in ref. [66] and [67].

The dominant production of a heavy charged Higgs (MH± > Mtop) at the
LHC is in association with a single top quark occurring via bg → tH− + c.c.
fusion process [68]. Charged Higgs decay via bosonic mode i.e., H± → W±X

(where X ≡ h,H,A) has received significant attention recently in refs. [69–74].
When a heavy neutral Higgs (H or A) decays to a top pair, the final state
of the process contains a triple top signal and thus would be a unique and
interesting probe of charged Higgs at the LHC.

In the SM, the dominant mode of top quark production at the LHC is
pair-production, with cross section ∼ 1000 pb at next-to-leading order (NLO),
followed by the single-top quark production with total cross section of 250 pb
with the t-channel mode having the largest cross section of 150 pb at the NLO.

In addition to single and pair production of top quarks at the LHC, there
can also be multi-top quark production in the SM as well, such as three (3t)
and four top quarks (4t). In the SM, the production of an even number of
top quarks always occurs via the gg initial state with strong coupling. On the
other hand, production of an odd number of top quarks always involves an
EW W±tb coupling and often a b quark in the initial state. Thus the cross
section for single and three top production is always suppressed with respect
to the production of even number of top quarks in the SM. At the LHC with√
s = 14 TeV, the leading order (LO) total cross section for 3t production

is approximately 1.9 fb while for 4t [75] it is 11 fb, which is almost 6 times
the former. In the SM, the 3t production occurs via three distinct channels
at LO: (a) pp → 3t +W± at O(α4

S); (b) pp → 3t + b at O(α2
Sα

2
EW); and (c)

pp→ 3t+ jets at O(α4
EW). Thus 3t+W± has the largest cross section of all 3t

production modes.
New physics effects may notably enhance the cross section for 3t production

over the SM. Thus it could be a sensitive probe of BSM physics. There have
been some attempts to investigate new physics in 3t and 4t production [75–79].
In ref. [75], the authors have studied two BSM models, namely the minimal
supersymmetric standard model (MSSM) and the leptophobic Z ′ model. In the
former, the pair production of gluinos and subsequent decays to stops lead to
3t production after stop decays via t̃→ tχ̃0. In the latter a t-channel exchange
of a Z ′ boson leads to 3t production. At a 14 TeV LHC, the production cross
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section in MSSM is found to be 41 fb, while for the leptophobic Z ′ model, it
is 28 fb. These numbers are significantly larger than the SM cross section of
∼ 2 fb. In the context of the 2HDM, multi-top production including both 3t

and 4t production has been studied at the LHC and for the international linear
collider (ILC) in ref. [77]. This study utilizes the subdominant charged Higgs
production processes which are associated H±H and H±A production followed
by H± → tb and A/H → tt̄ decays.

The current limits on charged Higgs production can be found in Ref [80][81][82].
In Ref [80] charged Higgs production followed by the decay H± → τ+jets is
studied at the 13 TeV LHC, with 14.7fb−1 of luminosity. No signal is found in
the mass range of 200-2000 GeV and upper limits between 2.0 to 0.008 pb is
set. In Ref [81] the production of a charged Higgs in association with a top and
bottom quark, followed by the decay H± → tb is studied at the 13 TeV LHC
with 13.2 fb−1 of luminosity. The mass range of 300 to 1000 GeV with multi-jet
final states accompanied by one lepton (not tau). No significant excess is found
and upper limits on the cross section times branching ratio is set between 1.09
(1.45) pb for MH± = 300 GeV to 0.18 (0.17) pb at MH± = 1000 GeV. Finally
in Ref [82] the production of a charged Higgs in association with a single top
quark and decaying via H± → τν is studied at the 13 TeV LHC with 3.2 fb−1

of luminosity. No significant excess was found and upper limits on the cross
section times branching ratio is set between 1.9 pb and 15 fb for charged Higgs
masses between 200 and 2000 GeV.

In this letter, we will focus primarily on the triple top production pp →
3t+X, facilitated by a charged Higgs and a pseudoscalar in a two Higgs doublet
model (2HDM). We will demonstrate that 3t production can be an alternative
probe of the charged Higgs at the LHC, especially for the scenario where both
the charged Higgs and pseudoscalar are much heavier than top quarks. In our
analysis, we make use of the dominant production mode of a heavy charged
Higgs at the LHC, pp→ tH− followed by the decay of charged Higgs via the
bosonic mode, H± → W±A and pseudoscalar Higgs via the A→ tt̄ mode. Thus
it leads to three top quarks in the final state. We perform a realistic simulation
of the triple top signal, including detector effects, and apply a set of kinematical
cuts to suppress the backgrounds. We present exclusion/discovery bounds after
including the effects of all the irreducible and reducible backgrounds in the
plane of charged Higgs mass and pseudoscalar mass for a 14 TeV LHC with 30
fb−1 of integrated luminosity.

The plan of the paper is following. The next section discusses the production
cross section and decay branching ratio of the charged Higgs and triple top signal.
Section 3 discusses the different signals and their corresponding backgrounds.
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In section 4, we present our results after a full simulation and analysis of the
events. Finally, we conclude and summarize in section 5.

6.2 Production and Decay

The process considered in this analysis is a charged Higgs production in associ-
ation with a single top quark, the leading order Feynman diagrams can be seen
in Fig. 6.1. Following the production we consider the decay H± → W±A and

Fig. 6.1 The leading order production mechanisms for pp→ tH±

A→ tt̄ and thus leading to three top quarks in the final state. In Fig. 6.2 we
present the production cross section of the triple top signal in type-II 2HDM
obtained by multiplying the cross section of the process pp → tH− with the
branching ratios of the decays described above i.e., H± → W±A and A→ tt̄

in the plane of the charged Higgs mass and pseudoscalar mass. We use the
Two Higgs Doublet Model Calculator (2HDMC [83]) to obtain the corresponding
branching ratios for each point in the parameter space. In order to evaluate the
cross section and BRs, we consider tan β = 1 and sin(β − α) = 1 throughout
the analysis.

Of all 2HDM Yukawa types (see [66] for a review), we concentrate here
on the type II 2HDM (2HDM-II). In the 2HDM Type II, constraints from
b → sγ decays put a lower limit on the H± mass at about 580 GeV, rather
independently of tan β [84, 85]. The additional neutral and charged scalars
contribute to the gauge boson vacuum polarisation through their coupling to
gauge bosons. As a result, the updated EW precision data provide important
constraints on new physic models. In particular, the universal parameters S, T
and U provides constraint on the mass splitting between the heavy states mH ,
mH± and mA in the scenario in which h is identified with the SM-like Higgs
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Fig. 6.2 Cross section for triple top signal (ttt̄W±) obtained by evaluating
σ(pp → tH±)×Br(H± → WA)×Br(A → tt̄) in the plane of charged Higgs
mass and pseudo scalar mass.

state. However, as pointed in ref. [86], it is clear that if either of neutral
Higgs (CP even or CP odd Higgs) is degenerate with a charged Higgs in a
2HDM model, then the constraints on the mass splitting between the charged
Higgs and other heavy neutral Higgs become quite relaxed. So far as the mass
splitting between the H± and A is concerned for triple top production, it should
be greater than 80 GeV so as to achieve a large BR to the W±A mode. Thus,
the charged Higgs mass MH± and pseudoscalar mass MA are varied in the
ranges (500 GeV - 1 TeV) and (400 GeV - 1 TeV) respectively. Also, in order to
open the A→ tt̄ decay channel, the pseudoscalar mass should be larger than
2Mtop ∼ 350 GeV. For such a pseudoscalar the dominant decay mode would
be to a top pair as the coupling is proportional to mass of the top quark. The
other decay A→ Zh is suppressed by sin(β−α) since the current LHC scenario
prefers alignment scenario with sin(β−α) = 1. Therefore in the scenario where
both MH± and MA are heavier than 2Mtop, the triple-top production is the
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Fig. 6.3 The branching ratio associated with each possible final state for ttt̄+W−

and tt̄t̄+W+ decays.

only possible signal to probe a charged Higgs at the LHC. Similar benchmark
scenarios have been studied in refs. [87, 88].

We see from Fig. 6.2 that large cross section for triple top production in a
2HDM is obtained when MH± is in the range (550 GeV - 750 GeV) and MA

in the range (400 GeV - 500 GeV), where the cross section is found to be in
the range (50 fb - 80 fb). This is significantly larger than the SM cross section
of 2 fb for triple top quarks at the 14 TeV LHC. Thus it is expected that the
search for the triple top signal in the current and future runs at the LHC would
significantly enhance the search prospects for a charged Higgs. If no such signal
is found, it would enable a stringent bound to be set in the MH± −MA plane
in 2HDM.
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6.3 Signal and SM Backgrounds

6.3.1 Signal

The triple-top event ttt̄W± decays into a large number of final state particles,
∼ O(10). Various decay modes and their corresponding branching ratios have
been presented in Fig.6.3. Fully hadronic decays of the triple top event which
has 20 % of BR leads to a very high number of jets in final state, i.e., 8 light
jets and 3 b jets. The monolepton signal includes one lepton (either e± or µ±,
τ± is not included here) associated with 9 jets and has fairly large BR of 26.3%.
The dilepton signal can be classified into opposite sign dilepton (OSDL), which
has 14.2% BR, and same-sign dilepton (SSDL), which has quite small 4.4% of
BR. Finally the trilepton signal has only a 2.9% of BR.

In this analysis we focus on the multileptonic signals, namely SSDL and
trilepton, which despite having low branching ratios are cleaner at the LHC
and have backgrounds which are more efficiently manageable. The SSDL signal
is accompanied by 7 additional jets while the trilepton signal arises along with
5 jets. In both cases, three of the jets are b jets.

6.3.2 Backgrounds

The irreducible background to the final state being considered is the SM
production of three tops in association with a W± boson, which has a total
production cross section of 1.37 fb. However, it is reasonable to expect any three
top signal to behave as a background to the signal under the right circumstances
(IS/FS radiation, jet mis-tagging etc.). However, the combined cross section of
all three top production as the LHC is only 1.9 fb.

As well as this in the circumstance that a b-jet from the final state is lost
from the detector, a four top process will successfully mimic our signal. This is
concerning given the cross section of four top production at the LHC is much
higher at 11 fb, though cuts on pseudo-rapidity and jet multiplicity should
almost certainly remove most of these processes.

Other backgrounds come from various top pair production associated with
one heavy SM particle and light jets of which at least one must be b jets, for
instance, tt̄W±, tt̄h and tt̄Z processes. Processes such as tt̄ b nj may contribute
to both trilepton and SSDL signals when one of the light jets are faked as a
lepton. Q−flip backgrounds occur when a real OSDL signal arising from some
underlying process is misidentified as SSDL pair at the detector.
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6.4 Signal and Background Efficiency

The accumulative efficiency associated with detector effects, jet finding/tagging
and kinematic cuts is important to get a full understanding of signal significance.
To achieve this we generate a million events using Madgraph [47], which are
passed to Pythia [48] for parton showers and hadronization and finally to
Delphes [53] for realistic detector effects. For detector acceptance, we apply
the following cuts: (i) all leptons must have transverse momentum pT larger
than 20 GeV and be within pseudorapidity |η| < 2.5; (ii) all the jets must
have pT > 25 GeV and |η| < 2.5; (iii) all the objects must be well separated
from with each other with ∆Rij > 0.4 where ∆R =

√
(∆φ)2 + (∆η)2. All

the jets are clustered using an anti-kT jet clustering algorithm with jet radius
∆R = 0.4.

We then choose two final states to study, the trilepton and SSDL final
states. In ref.[76], authors have studied four-top production and analysed the
event in SSDL and trilepton signals at the 14 TeV LHC. The corresponding
backgrounds to these signals are also modelled in great detail. We adopt the
search strategy for selection of signal and background events presented in their
analysis. In the tri-lepton case we demand that the event contains more than
5 light jets (njet > 5) and three or more b-tagged jets (nbjet ≥ 3). We also
require that all same flavour opposite sign leptons invariant mass does not fall
within 25 GeV of the Z-boson mass which serves to significantly cut into the
SM background. In the SSDL case we use njet > 6 and nbjet ≥ 3.

The final accumulative signal efficiency for the trilepton and SSDL final
states after the above selection requirements, and applying a 75% b-tagging
efficiency and a 1% mis-tagging efficiency where necessary, are 49.9% and 77.2%

respectively. The difference in these efficiencies can be attributed to the extra
Z-boson mass window cut placed on the trilepton state.

As mentioned above, we adopt the same set of cuts employed in ref. [76]
on the signal events. Thus in this analysis, we use the same efficiencies for
the backgrounds presented in their study. The total background cross section
for the trilepton signal is 60.67 fb, while for the SSDL signal it is 122.73 fb.
As well as this the efficiencies associated with each background can be seen in
Table 6.1 and Table 6.2.

Using the efficiencies for signals and background obtained above we now
estimate the signal significance which is defined by the ratio S/

√
S +B where

S and B are the number of signal and background events respectively. We
present in the Fig. 6.4 the signal significance using trilepton (top) and SSDL
(bottom) signals in the plane of mass of the charged Higgs and mass of the
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Backgrounds Cross Section (fb) Efficiency
ttW 31.34 6.46× 10−3

ttZ 48.47 2.21× 10−3

tth 7.25 2.53× 10−3

Fakes 16.57 3.48× 10−3

Q-flip 11.37 1.01× 10−2

Other 7.73 1.90× 10−3

Table 6.1 The background cross sections and corresponding efficiencies for the
SSDL signal at the 14 TeV LHC.

Backgrounds Cross Section (fb) Efficiency
ttW 1.65 9.90× 10−3

ttZ 48.47 5.50× 10−4

tth 2.4 2.50× 10−3

Fakes 1.13 5.01× 10−3

Other 7.02 4.70× 10−4

Table 6.2 The background cross sections and corresponding efficiencies for the
trilepton signal at the 14 TeV LHC.

pseudoscalar for the 14 TeV LHC with 30 fb−1 of integrated luminosity. As
expected, we find the SSDL signals to be more constraining than the trilepton
signal due to the larger cross section and smaller backgrounds as compared
to the latter. We conclude that with the early data to be collected in the
14 TeV LHC, the SSDL and trilepton signal in the triple-top production can
exclude the charged Higgs upto 1 TeV if the mass splitting between H± and
the pseudoscalar is within the range (100 GeV - 300 GeV).
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Fig. 6.4 Signal significance for charged Higgs in the trilepton (top) and SSDL
signal (bottom) with 30 fb−1 of integrated luminosity at the 14 TeV LHC.
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6.5 Conclusion

In this letter we have assessed the discovery/exclusion potential of a heavy
charged Higgs boson in the type-II Two Higgs Doublet Model (2HDM) at the
large hadron collider (LHC). We explored the case when a charged Higgs with
mass ≥ 450 GeV is produced in association with a top quark, followed by the
decay H± → AW± where A is the pseudo-scalar Higgs. This pseudoscalar
Higgs was chosen to be ≥ 350 GeV so as to allow its decay to two top quarks,
resulting in the state tt̄t̄W+ or ttt̄W−. This is an exotic state that is extremely
rare in the standard model (SM) (triple-top production in the SM has a cross
section of less than 3 fb) and as such provides an interesting window into the
search for charged Higgs in the 2HDM.

We further focused on the final state that included trilepton and also the
final state with a same sign dilepton (SSDL) pair. The discovery/exclusion
potential for these signals has been presented in Fig 6.4. It can be seen that
with current LHC data, with approximately 30 fb of luminosity, we should
be able to make strong statements regarding the existence of these states in
almost all parts of the charged Higgs/pseudo-scalar mass plane for our chosen
parameters.

Further directions for this work revolve predominantly around cut optimiza-
tion. The above analysis used extremely conservative cuts and achieved great
exclusion potential but the use of more advanced techniques such as Boosted
Decision Tree or Artificial Neural Nets as seen in Refs. [71] [72] should signif-
icantly improve the exclusion potential but would require the full modelling
of the SM backgrounds at the detector level. This was not undertaken in this
study.

In addition, the remainder of the final states - opposite sign dilepton pair,
monolepton and fully hadronic - could provide some level of exclusion potential
but these are expected to be lower than the channels presented in this study.
This is because while the branching ratios of these final states are higher, the
SM backgrounds are much higher and may drown out the signal.

Finally, a study of the interference effects between the signal and irreducible
SM backgrounds would be of great interest. It is expected that the interference
terms of the full scattering amplitude would produce a peak dip structure in the
distributions of the variables of the events. This may be exploited to further
improve the discovery/exclusion potential or it may obscure the signal.
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Chapter 7

Publication 2: Top polarisation as
a probe of CP-mixing top-Higgs
coupling in tjh signals

Abstract

In this letter we explore beyond the Standard Model top-Higgs Yukawa couplings
as a function of a CP-mixing parameter ξt at the 14 TeV HL-LHC in the process
pp→ thj. We observe that angular variables of the decay products of the top
are non-trivially sensitive to ξt. This fact is exploited in a full detector level
analysis that employs machine learning techniques to optimize signal sensitivity
on a suite of variables, including lepton azimuthal angle. The key result of this
study is an improved projected exclusion limit on ξt even when including the
realistic effects of detector smearing and a conservative estimate of systematic
error.

7.1 Introduction

Since the discovery of a scalar particle at 125 GeV as predicted by the Standard
Model (SM) at the Large Hadron Collider (LHC) in 2012 [2, 1] attention has
turned to narrowing down it’s properties. It is of great interest as to whether
this particle behaves exactly as the SM predicts or if it is perhaps a beyond
the SM (BSM) scalar that exists within an expanded Higgs sector.

The measurement of the Higgs couplings to fermions is an on-going area of
research as many of these couplings can be small and require large luminosities
to probe, which motivates the application of intelligent analysis techniques to
probe the signal as optimally as possible. The Higgs coupling to the top is of
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particular interest as it is the largest, and so far the tt̄h coupling is probed via
the loop-induced processes hgg and hγγ which rely on decay rate measurements
of the Higgs. It is well known that the production cross section of both hgg and
hγγ will be sensitive to a phase ξt of the top Yukawa coupling [89]. This phase
mixes the CP-properties of the top-Higgs coupling and thus is CP violating.
Assuming only the CP phase and keeping SM value for magnitude, strong
constraints could be placed on the phase. However, those processes can only
occur at one-loop level and beyond. Noting that new physics dynamics can
contribute in the loop and thus may affect the accurate determination of top-
Yukawa phase, the Higgs production in association with a top pair (dominant)
and Higgs produced with a single top (sub-dominant) are the only means to
directly probe this coupling. These processes have been established at above
5σ in Refs [90, 91]. It is found that increasing |ξt| leads to a suppression of the
tt̄h cross section and an enhancement of the tjh cross section [92, 93].

A study of this process has also been undertaken utilizing the Matrix-
Element-Method (MEM) which shows that, with signal detection efficiencies
on the order of a few percent, discovery could be made in the high luminosity
phase of the LHC [94]. Also it has been shown in Ref [95] using matrix element
techniques that 3σ seperation of the psuedo-scalar vs scalar tth coupling can
be realized with 300fb−1 of data.

Further phenomenological studies of the top-Higgs coupling can be found
in Refs [96–101].

The top quarks lifetime is so short that it decays before hadronization,
meaning that its polarization information is preserved in the distribution of its
decay products which can be measured directly by the detector, especially in
its lepton angular distributions. In many new physics scenarios, it has been
shown extensively in literature, Refs. [102–111], that charged-lepton azimuthal
distribution is a powerful probe of top quark polarisation in the lab frame.
There are two advantages of studying the charged lepton azimuthal distribution:
first it does not require reconstruction of top-rest frame which would need full
information of top-quark momentum and second, it is unaffected by any new
physics in the top-quark decay and thus making it an uncontaminated probe
of top quark polarization. This variable is constructed by taking the azimuthal
angle of the lepton decaying from the top with respect to the x-z plane, where
the top quarks x-component is positive. For other methodologies of studying
top polarisation see Refs [112, 113, 99].

Top quark polarisation can be written in terms of ξt [114, 115] and thus the
decay products differential distributions will be effected by ξt allowing for the
improvement of analysis of this process. This has been exploited in a range of
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studies [114–116], however these have not been undertaken at detector level to
provide more accurate reflections of achievable sensitivity. Furthermore, these
studies have employed traditional cutflow methods rather than more modern
and advanced machine learning (ML) techniques to optimize signal sensitivity.
In this letter we employ a full detector level analysis to calculate the angular
variables of the decay products of the process pp→ thj with the optimization
of signal sensitivity through ML algorithms.

This paper is structured as follows: section 7.2 will cover the parametrization
of the top-Higgs coupling and it’s implementation, section 7.3 will outline signal
and backgrounds, section 7.4 will outline event simulation and reconstruction,
section 11.6 will present the results of this analysis and finally we will conclude
in section 11.7.

7.2 CP-mixed Top-Higgs Coupling

In this study, a CP-mixing parameter ξt is introduced in the mass basis of the
top-Higgs sector via the Lagrangian

Ltth = − yt√
2
t̄ (cos ξt + iγ5 sin ξt) th . (7.1)

The SM limit corresponds to when the mixing angle ξt = 0 and the Yukawa
coupling adopts its SM value yt → ySMt =

√
2mt/v, where mt is the mass of

the top and v ≃ 246 GeV is the standard model Higgs vacuum expectation.
We adopt a model independent approach in where the interaction Lagrangian
in Eqn. 7.1 arises from an effective field theory (EFT) such as the dimention-6
opperators discussed in Refs. [117–121]. We assume that the new physics scale
Λ of such an EFT is & 1 TeV with couplings of O(1), such that the mixing
angle ξt ∈ (−π, π] [122].

Constraints on yt and ξt from the hgg and hγγ loop processes can be found
in Refs [114, 93, 123–127]. Further constraints including unitary violation
in W and Z scattering with the top have been defined in Refs [128, 129].
The strongest constraints come from precision electron dipole-moment (EDM)
measurements [130–132], however these are done under assumptions which
when relaxed allow for much looser constraints. Assuming a standard model
value for yt, collider constraints have rendered ξt ∈ [0, 2π/3] at 2σ [133]. For
this study we also assume that yt and WWh coupling adopt standard model
values. Furthermore, for the sake of completeness, we perform the study on
the entire region ξt ∈ [0, π].
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7.3 Signal and Background

The process studied is Higgs production with an associated top quark and
jet, pp → tjh, at the 14 TeV LHC. Fig 7.1 displays the dominant Feynman
diagrams contributing to signal production.

q
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t

q
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Fig. 7.1 Feynman diagrams for the dominant production process bq → thj.

Due to the extremely clean signature it provides, the decay mode of h→ γγ

has comparable signal sensitivity to the h→ bb̄ decay despite a much smaller
branching ratio. We hence choose this decay mode of the Higgs for our analysis.
In Fig 7.2 one can see the effect of the CP-mixing parameter ξt on the production
cross section of tjh. This effect is in agreement with previous results seen in
Ref [116] and contains a maximum enhancement at ξt = π of approximately
1200%.

We demand a final state containing 1 b-jet, exactly 1 lepton (but not τ)
and at least 2 photons. The irreducible background for this process is tjγγ
continuum. The sub-leading background is tt̄γγ where a b-jet is lost, i.e.
mistagged as a light jet or produced outside acceptance. The background
Wjjγγ where a light jet is mistagged as a b-jet exists, however it is found to be
at least an order of magnitude lower than the previous two backgrounds [134, 92]
and is ignored in this study. Finally the backgrounds tt̄γj and tγjj backgrounds
are neglected in this study as they would require the mis-identification of a
light jet as a photon which suppresses the already small cross section.
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Fig. 7.2 The production cross section (red) and production cross section times
h → γγ branching ratio (blue) normalized with respect to standard model
values for ξt ∈ [0, π].

7.4 Event Simulation and Reconstruction

The parton level events are produced in MG5_aMC_v2_6_0 [135] then passed
to PYTHIA8 [48] for hadronization/fragmentation and finally Delphes [53] for
detector effects. Each sample consists of 100, 000 events, achieving an MC
uncertainty on inclusive cross section values that is on the order of 0.1%.

We employ anti-kt jet clustering and take a b-tag efficiency of 77%, a
mistagging efficiency of 1% and a lepton selection efficiency of 100%. We also
employ the following detector acceptance cuts:

pb,ℓT > 20GeV, |ηb,ℓ| < 2.5, pjT > 25GeV, |ηj| > 2.5 (7.2)

The cut on |ηj| is employed to take advantage of the forwardness of the light
jet which is characteristic of the tjh signal.

As we are selecting exactly 1 lepton we are able to calculate the longitudinal
momentum of the neutrino decaying from the top. We do this using the
following quadratic equation:

pzν =
1

2p2ℓT

(
AWp

z
ℓ ± Eℓ

√
A2
W ± 4p2ℓTE

2
νT

)
, (7.3)

where, AW =M2
W± + 2pℓT ·EνT . We choose the solution for pzν that is real and

that when combined with the remainder of the neutrino and lepton 4-vector
components produces an invariant mass closest to the W boson mass. After
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this is done the top quark is reconstructed from the neutrino, the lepton and
the b-jet which best reproduces the top quark invariant mass.

In Fig 7.3 we present the variables selected for the numerical analysis to
come. In the ℓφ0 plot (upper right of each subfigure) the lepton azimuthal
distribution generated from the prescription above can be seen for the hardest
lepton in each event. It is clear that the value of ξt is impacting this distribution
significantly as the SM value of ξt = 0 presents a distribution identical to the
background while the fully CP-odd value of ξt = π

2
presents a far more skewed

distribution. In addition, the variables show that the reconstruction is faithfully
producing invariant mass distributions for the top quark and Higgs.
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Fig. 7.3 Examples of variables employed in the analysis for the ξ = 0 (a) and
ξ = π

2
(b) benchmarks.
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7.5 Results

As seen in Ref [116], we can construct the lab frame left-right asymmetry of
the charged lepton using:

Aℓφ =
σ (cosφ > 0)− σ (cosφ < 0)

σ (cosφ > 0) + σ (cosφ < 0)
(7.4)

Fig 7.4 displays this asymmetry as a function of ξt which takes a maximimum
at ξt = π

2
. However when compared to the parton level calculation of this

asymmetry found in Ref [116] it can be seen that the detector effects lead to a
flattening of this curve.
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Fig. 7.4 The Aℓφ asymmetry as a function of ξt for the signal and background.

Standard cut flows for this signal have been performed in the past such as
in Refs [115][116] and thus we do not perform one in this work. Instead we
employ a boosted decision tree analysis on the variables found in Fig 7.3 using
the Toolkit for Multivariate Data Analysis (TMVA) [122].

Tab 7.1 presents the BDT results for each value of ξ. The column labels
are as follows: N b

s is the number of signal events before cuts while Na
s and Na

b

are the number of signal and background events after cuts respectively. The
number of background events before cuts was N b

b = 1076. The column labelled
“Cut” is the position of the optimal cut on the BDT classifier distribution. σ is
the signal sensitivity considering no systematic error, while σ0.2 is the signal
sensitivity with a flat 20% systematic error. The systematic error of 20% was
taken as an estimate of the overall level of systematic error in typical 1-lepton
plus jets final state experiments [136]. The results presented in this table show,
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ξt N b
s Cut Na

s Na
b Z Z0.2

0 8 0.1146 7 21 1.28 1.04
π
4

23 0.0910 20 24 3.05 2.44
π
2

89 0.0819 83 27 7.92 7.04
3π
4

198 0.0317 191 35 12.70 11.52
π 255 0.0503 244 34 14.64 13.55

Table 7.1
Table of signal sensitivity defined as: Z = S/

√
S +B + (∆B)2 after applying

the optimized cut generated by BDT analysis. A luminosity of 3000fb−1 is
chosen and the number of background events before cuts is N b

b = 1076.

as expected, high values of ξt ≥ π
2

are strongly inconsistent with background
only. The 95% C.L. exclusion of approximately ξt = 0.54 without systematic
and ξt = 0.68 with systematic is expected for 3ab−1 of data at the HL-LHC,
a significant improvement on the ξt = 0.79 exclusion placed in Ref [116]. We
also see an improvement over the HL-LHC results found in Ref [99]. The
parametrization in this work allows for complete freedom of the CP-even and
CP-odd contributions to the top-Higgs coupling, called κ and κ̃ respectively.
A detector level analysis using optimized angular variables is performed in
the semi-leptonic final state and only the top pair background is considered.
A significance value of S/

√
B ≈ 0.8 for (it is assumed) the SM value of κ̃

utilizing a semi-leptonic final state is found and no meaningful bound on κ̃ can
be extracted. The improvements are likely due to a combination of the BDT
analysis and the additional top polarisation variable included. It is likely that
had this analysis been undertaken at parton level like previous analyses of this
process then improvements on the constraints would be even larger, that is to
say that detector effects have likely reduced the overall positive impact of the
BDT analysis and top polarisation variable.

7.6 Conclusion

The direct detection of top-Higgs coupling has now been achieved via the
process pp→ tt̄h, however the properties of this coupling still require further
study. The process pp → tjh provides a good window into the charge-parity
properties of the coupling as increasing values of the top-Higgs coupling phase
ξt lead to increased cross sections, while the tt̄h process experiences decreases.

In this work we have introduced a CP-mixing parameter ξt to the SM
top-Higgs coupling via an effective operator. We have explored the well studied
effects of this variable on top and jet associated Higgs production. Previous
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studies were then expanded on by performing a full detector level analysis of
this process including the variable defined from the azimuthal distribution of
the lepton decaying from the top which provides a powerful insight into top
polarisation. Results were then further improved via the application of a ML
algorithm, namely boosted decision tree analysis, to optimize signal sensitivity.

The key result of this study is a projected 95% median exclusion of ξt ≤ 0.54

when not considering systematic errors and ξt ≤ 0.68 when considering a
conservative level of systematic error with 3ab−1 of luminosity, a significant
improvement over previous analyses of this process. It is reasonable that the
HL-LHC can provide very strong limits on ξt even in pessimistic scenarios.
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Chapter 8

Publication 3: Signal versus
Background Interference in
H+ → tb̄ Signal for MSSM
Benchmark Scenarios

Abstract

In this paper, we investigate sizeable interference effects between a heavy
charged Higgs boson signal produced dominantly via gg → tb̄H− (+ c.c.)
followed by the decay H− → bt̄ (+ c.c.) and the irreducible background given
by pp→ tt̄bb̄ topologies at the Large Hadron Collider (LHC). We show that it
may be possible that such effects could spoil current H± searches where signal
and background are normally treated separately. The reason for this is that
a heavy charged Higgs boson can have a large total width, in turn enabling
such interferences, altogether leading to potentially very significant alterations,
both at the inclusive and exclusive level, of the yield induced by the signal
alone. This therefore implies that currently established LHC searches for such
wide charged Higgs bosons might require modifications. We show such effects
quantitatively using two different benchmark configurations of the minimal
realisation of Supersymmetry, wherein such H± states naturally exist. However,
on the basis of the limited computing resources available, we are unable to
always bring the statistical error down to a level where all such interference
effects are unequivocal, so that we advocate dedicated experimental analyses
to confirm this with higher statistics data samples.
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8.1 Introduction

After the discovery of a Higgs-like particle at Large Hadron Colliders (LHC) a
few years ago [137, 138], a significant amount of both theoretical and experi-
mental activities have taken place trying to identify the nature of this object.
The mass of such a particle and its couplings to some Standard Model (SM)
particles are now measured with a good precision [139, 140]. Their values
indicate that such a Higgs-like particle is light and its properties (spin, CP
quantum numbers and interactions) are consistent with those of the SM Higgs
boson.

However, there are many theoretical and experimental indications that show
that the SM can only be an effective theory of a more fundamental one that still
needs to be discovered. Many Beyond the SM (BSM) scenarios have been put
forward over the years and it is fair to say that one stems as the most appealing
one - Supersymmetry (SUSY). This is because it solves the well-known hierarchy
problem of the SM by protecting the Higgs mass from unstable higher order
corrections thanks to the new symmetry between fermions and bosons that it
predicts [141]. Furthermore, SUSY also has the capability to address the Dark
Matter (DM) and gauge unification problems of the SM, indeed, without any
proliferation of fundamental parameters if one assumes that SUSY can in turn
be viewed as an effective realisation of some Grand Unified Theory (GUT),
like Supergravity [142, 143]. The Minimal Supersymmetric Standard Model
(MSSM) is the simplest realisation of SUSY that predicts a light Higgs boson
h0 that can be identified as the observed 125 GeV Higgs-like particle and can
be as successful as the SM when confronted with experimental data, yet it can
surpass it in all the above respects.

The Superpotential of the MSSM has to be holomorphic, thus one needs to
introduce at least two Higgs doublets fields, one more than in the SM. One of
these generates masses for up quarks and the other one generate masses for
down quarks and charged leptons. From the 8 degrees of freedom present in
such a 2-Higgs Doublet Model (2HDM), 3 are acquired by the longitudinal
components of the gauge bosons W± and Z0, so that the latter get a mass
too, and the remaining 5 appears as new Higgs particles: 2 CP-even h and H
(with Mh0 < MH0), one CP-odd A and a pair of charged ones H±. Discovery
of any such new states would be unmistakable evidence of BSM physics, yet,
only charged Higgs states would be a clear hint towards a 2HDM structure, as
required by the MSSM, as additional neutral Higgs states could be attributed
to singlet structures entering an extended Higgs sector.
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At a hadron collider, production of charged Higgs bosons proceeds through
many channels. If the charged Higgs boson is light (i.e., MH± < mt +mb), it
can be produced from top or anti-top decay: i.e., gg, qq̄ → tt̄ followed by, e.g.,
t̄ → b̄H− (+ c.c.). Given the fact that the tt̄ cross section is very large, this
mechanism would give an important source of light charged Higgs states. After
the top-bottom threshold (i.e., MH± > mt +mb), a charged Higgs boson can
be produced in association with top-bottom pairs, i.e., bg → tH− [144]. In fact,
these two channels are captured at once by the gg → tb̄H− (+ c.c.) ‘complete’
process, as explained in [145, 146]. There exist other production mechanisms
too, such as pp→ H+H−, pp→ A0H±, pp→ H±W∓, etc. which are however
subleading compared to the previous ones1.

At the LHC, a light charged Higgs boson, with MH± < mt +mb, can be
detected from tt̄ production followed by top or anti-top quark decay t→ bH+

if the H− state decays dominantly to τν. ATLAS and CMS have already set
a limit on BR(t→ bH+)× BR(H+ → τν) [147–150], which can be translated
into a limit on the (MH± , tan β) plane, where tan β is the ratio of the two Higgs
doublet vaccuum expectation values (VEVs). In the MSSM, for some specific
benchmark scenarios, charged Higgs bosons with mass less than about 160 GeV
are ruled out for almost any value of tan β [149, 150]. However, heavy charged
Higgs states, with MH± > mt +mb, are generally allowed as they would decay
dominantly into tb̄, which is a rather difficult final state to extract due to
large reducible and irreducible backgrounds associated with jets emerging from
H− → t̄b decays. Even then, one could still get a moderate signal from such a
channel for small tan β ≤ 1.5 or large tan β ≥ 40 [151, 152]. Another possibility
for detecting heavy charged Higgs states would be the search for H+ → τ̄ ντ

(i.e., like the preferred one for a light state), which enjoys a smaller background
in comparison. At the LHC Run 2, both channels have been searched for and
no excess over the background only hypothesis have been reported. Therefore,
limits are set on σ(pp→ tH−)× BR(H− → t̄b/τ ν̄τ ) (+ c.c.) [82, 153–155]. In
the MSSM, one can have additional SUSY channels that can contribute to
H± production and/or decay, e.g., production from squark/gluino cascades
[156, 157] and/or decays into chargino-neutralino states [158, 159], though these
require special MSSM configuration assumptions, hence they are not currently
pursued by ATLAS and CMS.

The current highest priority, in relation to charged Higgs boson searches at
the LHC, is to further establish the H+ → tb̄ decay channel in the heavy mass
region. With this in mind, using the framework of a generic 2HDM [160], we

1For a recent review, see[67].
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have investigated the possibility of having large interference effects between
signals from a heavy charged Higgs boson via bg → tH− → tW−A→ tW−bb̄

(and similarly for h and H) and the irreducible background from bg → tW−bb̄

processes. Therein, it was shown that such interference effects can modify
any dedicated charged Higgs boson searches where signal and background
are treated separately, which is the case for all aforementioned experimental
analyses.

The purpose of this paper is to address similar issues for the MSSM, i.e.,
to quantify the impact of interference effects between the ‘complete’ signal
pp→ tb̄H− and the irreducible background in the H− → bt̄ decay channel. We
will show that such effects are indeed large for heavy H± masses for two MSSM
benchmark scenarios, both for inclusive cross section calculations and after a
full detector analysis. The plan of the paper is as follows. In the forthcoming
section we describe the MSSM configurations used. Sect. 3 dwells on the
MSSM spectra conducive to generate such large interference phenomena. Sect.
4 presents our numerical results. Finally, we conclude in Sect. 5.

8.2 Definition of the benchmark scenarios

At tree level, the MSSM Higgs sector is completely fixed by 2 parameters:
tan β and a Higgs boson mass, e.g., the CP-odd one (MA0). One of the major
predictions of SUSY is the presence of a light CP-even Higgs (lighter than Z
boson at the lowest order) in the spectrum. However, high order corrections
can shift such a mass in order to fit the observed Higgs-like particle mass
[161–163]. It has been shown in [164] that high order corrections could raise
the tree-level MSSM prediction for such a mass up to 135 GeV for large soft
trilinear breaking terms and also that the theoretical uncertainties due to the
unknown high order effects should be of the order of 3 GeV.

In the MSSM, the most important parameters relevant for the prediction
of the masses, couplings and, hence, production cross sections and decay
probabilities of the Higgs bosons are: tan β, MA0 , the soft SUSY-breaking
masses for the stop and sbottom squarks (which, for simplicity, we assume all
equal to a common mass parameter MS), the soft SUSY-breaking gluino mass
mg̃, the Superpotential Higgs-mass parameter µ and the left-right mixing terms
in the stop and sbottom mass matrices, i.e.,

Xt = At − µ cot β, Xb = Ab − µ tan β, (8.1)

respectively.



8.2 Definition of the benchmark scenarios 81

We use the PROSPINO public code [165] to compute the charged Higgs
boson production cross section σ(pp→ t(b̄)H− + c.c.), which includes Next-to-
Leading Order (NLO) corrections to the bg → tH− + c.c. (2-to-2) process. We
use the inclusive cross section computed this way to test the viability of our
proposed MSSM scenarios against data.

However, we adopt the tree-level pp → tb̄H− + c.c. (2-to-3) process for
Monte Carlo (MC) event generation, because it produces a better description of
the signal at the differential level in the detector region than the former channel
(i.e., the additional b-(anti)quark is explicit in the phase space rather than
integrated into the proton content) and because the corresponding irreducible
background is only known at LO. This clearly implies that the normalisation
used for the MC analysis is different from that used in the inclusive parameter
scans, however, we note that we are primarily concerned here with the relative
behaviour of signal, irreducible background and relative interference, rather
than the overall normalisation. (Note that, hereafter, we always sum over
both H+ and H−.) Both PROSPINO and FeynHiggs [166, 167] use the same
(on-shell) renormalisation scheme, therefore, the input values of the MSSM
parameters can be passed seamlessly from the Higgs spectrum generator to
the cross section calculator. The MSSM parameter space is already highly
constrained by asking that one of the CP-even neutral scalar states should
mimic the properties of the SM-like Higgs boson observed at LHC while the
additional Higgs bosons should satisfy the existing constraints obtained from
ATLAS and CMS from different channels. For this purpose, the FeynHiggs code
is linked to HiggsBounds-5.2.0beta [168–171] and HiggsSignals-2.2.0beta [172]
allowing us to check the consistency of our parameter space against various LHC
as well as Tevatron and LEP constraints. We list in Tab. 8.1 the specific charged
Higgs boson searches that have been included in HiggsBounds. Additionally,
a variety of lower energy constraints have been enforced, such as B → τν,
Bd,s → µ+µ−, B → Xsγ and ∆ms,d (see details in [180]).

All of the MSSM benchmark scenarios adopted in our analysis are charac-
terised by relatively large values of the ratio Xt/MS. This ensures that the
mass of the SM-like Higgs state falls within the required range without the
need for an extremely heavy stop. In addition, the gaugino mass parameters,
M2 and M1, are usually assumed to be related via the GUT relation

M1 =
5

3

sin2 θW
cos2 θW

M2. (8.2)

We set the Higgs-sfermion interaction terms Af to zero for the first and second
generation fermions: f = u, d, c, s, e, µ. Moreover, the masses of the gluino
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Experiment Luminosity [fb−1] Label Channel
LEP – [173] e+e− → H+H− → qq′qq′

LEP – [174] (DELPHI) e+e− → H+H− → qq′qq′

LEP – [174] (DELPHI) e+e− → H+H− → τντν
D0 1.000 [175] (D0) t→ bH+ → bqq′

CDF 2.200 [176] (CDF) t→ H+b
CDF 0.192 [177] (CDF) t→ bH+ → bτν
CDF 0.335 [178] (CDF) t→ bH+ → bτν
D0 1.000 [175] (D0) t→ bH+ → bτν

ATLAS, 7 TeV 0.035 ATLAS-CONF-2011-094 t→ H+b→ cs̄b
ATLAS, 7 TeV 4.600 [179] t→ H+b
ATLAS, 8 TeV 19.500 ATLAS-CONF-2014-050 t→ bH+ → bτν
ATLAS, 13 TeV 36.100 [150] pp→ tbH+ → tbτν
ATLAS, 13 TeV 36.100 [150] t→ bH+ → bτν
CMS , 8 TeV 19.700 CMS-PAS-HIG-14-020 t→ bH+ → bτν
CMS, 8 TeV 19.700 CMS-PAS-HIG-13-035 t→ H+b→ cs̄b
CMS, 8 TeV 19.700 CMS-PAS-HIG-16-030 t→ H+b→ cb̄b
CMS, 13 TeV 12.900 [153] t→ bH+ → bτν
CMS, 13 TeV 35.900 CMS-PAS-HIG-18-014 t→ H+b→ cb̄b

ATLAS, 13 TeV 14.700 ATLAS-CONF-2016-088 pp→ tbH+ → tbτν
ATLAS, 13 TeV 36.100 [155] pp→ tbH+ → ttbb

Table 8.1 Constraints on charged Higgs boson processes implemented in Higgs-
Bounds and used in our analyses.

MSSM Scenarios hMSSM mmod+
h

tan β 1–15 1–25
MA0 (GeV) 150–1000 90–1000

MQ1,2 =MU1,2 =MD1,2 (TeV) - 1.5
MQ3 =MU3 =MD3 (TeV) - 1
ML1,2 =ME1,2 (TeV) - 0.5
ML3 =ME3 (TeV) - 1

µ (TeV) - 0.2
Xt (TeV) - 1.5
At (TeV) - Xt + µ/ tan β
Ab (TeV) - At
Aτ (TeV) - At
M1 (TeV) - GUT relation
M2 (TeV) - 0.2
M3 (TeV) - 1.5

Table 8.2 MSSM input parameters for our two MSSM benchmark scenarios.

and first two generation squarks are set to 1.5 TeV, large enough to evade the
current ATLAS and CMS limits from SUSY searches. In Tab. 8.2 we list the
MSSM parameters needed for the evaluation of the spectrum. We now move
on to a detailed description of the MSSM benchmark scenarios to be used here,
known as mmod+

h [181] and hMSSM [182].
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8.2.1 The mmod+
h scenario

The mmod+
h scenario is a modification of the so-called maximal mixing scenario

mmax
h [183] which was introduced to maximize Mh0 value by incorporating

large high order effects and also to give conservative limit on tan β during
Higgs boson searches at LEP. This scenario predicts a CP-even Higgs Mh0

slightly larger than the observed Higgs mass and that is why mmax
h scenario has

been modified in order to accommodate the observed Higgs of 125 GeV. The
modification is performed by reducing the amount of scalar top mixing such
that the mass of the lightest Higgs state, Mh0 , is compatible with the mass of
the observed Higgs boson within ±3 GeV as a theoretical uncertainty. When
confronting mmod+

h with the LHC data [181], there is a substantial region in
(MA0 , tan β) plan with tan β > 7 for which the light CP-even Higgs is in a good
agreement with the measured Higgs mass at the LHC. The SUSY inputs for
this scenario are given in the second column of Tab. 8.2 and the spectrum is
computed by the use of FeynHiggs code.

8.2.2 The hMSSM scenario

In mmod+
h , one needs to input MA0 , tan β and other SUSY parameters in order

to make a prediction for Mh0 within the allowed range, [122, 128] GeV. However,
plenty of points on the (MA0 , tan β) plane would correspond to one value of Mh0 ,
the SM-like Higgs boson mass. In order to avoid such a situation, the hMSSM
was introduced [182] in which Mh0 was enforced to be approximately 125 GeV
as well as the SUSY breaking scale MSUSY ≈MS fixed to be rather high, ≫ 1

TeV, in order to explain the non-observation of any SUSY particle at colliders.
A key assumption of the hMSSM is to assume that radiative corrections to
the diagonal mass of the heavy CP-even Higgs, ∆M22, are much larger than
the ones to the light CP-even Higgs, ∆M11, and the mixing term between h

and H, ∆M12 [182], that is: ∆M22 ≫ ∆M11,∆M12. Therefore, ∆M22, which
parameterises the SUSY effects, is traded for the experimental value of Mh0 ,
tan β and MZ . Therefore, the hMSSM setup describes the MSSM Higgs sector
in terms of just MA0 and tan β, exactly like the tree-level predictions, given the
experimental knowledge of MZ and Mh0 . The SUSY input parameters in this
scenario are given in the first column of Tab. 8.2 and the spectrum is computed
by the HDECAY code [184].
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8.3 Higgs boson masses and Branching Ratios
(BR)

In our analysis, we include the measured signal rates from the ATLAS and
CMS Run 2 results via HiggsSignals-2.2.0beta [172] which returns a χ2 value for
the consistency between the model predicted signal rates and the corresponding
measurements. We then determine the minimal χ2 value over the scanned
parameter space, χ2

min, and keep as allowed the portion of it that features a
χ2 value within ∆χ2 ≡ χ2 − χ2

min. For every benchmark scenario, we show the
∆χ2 behavior, the best fit point, the charged Higgs total width, the typical
BRs for charged Higgs decays into various final states and the charged Higgs
production cross section.

8.3.1 The hMSSM case

In Fig. 8.1, we present ∆χ2 (top-left) and the charged Higgs total width (top-
right) in the (MA0 , tan β) plane. The best fit point is located at MA0 ≈ 1 TeV
and tan β ≈ 2. The green lines show the exclusion limits from HiggSignals at
1σ (solid) and 2σ (dashed) while the gray area is ruled out by the various LHC
searches implemented in HiggsBounds. As one can see, the charged Higgs in
the hMSSM scenario is rather heavy ≥ 550 GeV and the total width is large
for small tan β and gets reduced for high tan β values. In the bottom panel
we show the ratio ΓH±/MH± as a function of the charged Higgs mass (left) as
well as a function of the charged Higgs production cross section (right). The
latter can be slightly above 1 pb. It is also visible from the lower panel that
the charged Higgs total width can be about 4% of the charged Higgs mass at
low tan β.

In the hMSSM scenario, the charged Higgs decays mainly into top-bottom
with more than 90% BR for tan β ≤ 8, see Fig. 8.2 (left), which decreases for
larger tan β values. For small tan β, the BR(H+ → tb̄) is very close to 100%.
In this scenario, the τν channel has a rather small BR, less than 10%, in most
of the cases as depicted in Fig. 8.2 (right) and becomes negligible for low tan β.

8.3.2 The mmod+
h case

In the mmod+
h scenario, the allowed parameter region is shown in Fig. 8.3 (top-

left). The best fit point is located at MH± ≈ 1 TeV and tan β = 20. In order
to have a low ∆χ2 and simultaneously a light CP-even Higgs, close to 125 GeV,
a value of tan β > 10 is required. The latter requirement leads to a suppression
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Fig. 8.1 ∆χ2 (top-left) and the charged Higgs total width (top-right) in the
(mA ≡ MA0 , tan β) plane. The best fit point is located at MA0 ≈ 1 TeV and
tan β ≈ 2. The green lines show the exclusion limits from HiggSignals at 1σ
(solid) and 2σ (dashed) while the gray area is ruled out by the various LHC
searches implemented in HiggsBounds. The ratio ΓH±/MH± as a function of the
charged Higgs mass is shown in the bottom-left panel while in the bottom-right
one it is presented as a function of the charged Higgs production cross section.
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Fig. 8.2 Allowed regions from Fig. 8.1 in the (MA0 , tan β) plane for
hMSSM scenario, with the color representing the BRs BR(H+ → tb) (left) and
BR(H+ → τν) (right).

of the total width of the charged Higgs because the BR to top-bottom is
proportional to mt/ tan β. The same argument holds for the charged Higgs
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production cross section which becomes smaller than in the previous scenario.
The total charged Higgs width is shown in the allowed parameter region in the
top-right panel of Fig. 8.3. Again, we need a heavy charged Higgs boson to
obtain sizeable total widths but, contrary to the previous scenario, we now need
quite large values of tan β. In the two bottom panels of Fig. 8.3, we present
tan β as a function of ΓH±/MH± with the colour showing the charged Higgs
mass (left) and the charged Higgs production cross section (right). Clearly, a
compromise has to be reached between the values chosen for the charged Higgs
mass while having non-negligible values for the production cross section.

In Fig. 8.4, we again show the allowed region and the colour illustrates
the charged Higgs BRs. In the top panels, we show BR(H+ → tb̄) and
BR(H+ → τ̄ ν) where it can be seen that the tb BR is larger than the τν
one. In the bottom panels, we only illustrate the dominant chargino-neutralino
channels, namely: BR(H+ → χ0

1χ
+
1 ) and BR(H+ → χ0

2χ
+
2 ).

8.3.3 Benchmark Points (BPs)

This section briefly outlines the BPs found via the methodology outlined in
the previous section.

In Tab. 8.3 we present four BPs for the hMSSM scenario with a value of
tan β = 1.01 and 5 and with a range of charged Higgs masses between 275 and
633.91 GeV. BP4 in this table was chosen for the numerical analysis in the
following section as it has a high charged Higgs width-to-mass ratio and thus
is expected to have a high interference entering the signal cross section.

In Tab. 8.4 we present four BPs for the mmod+
h scenario for a number of

values of tan β between 3.42 and 20 and charged Higgs masses between 303.08
and 900 GeV. BP4 was chosen for the numerical analysis of the next section
because it has a high cross section even though the charged Higgs width-to-mass
ratio is very low. This BP provides insight into the behaviour of interference
throughout the cutflow in the scenario where interference is small relative to
the signal.

In both scenarios, BPs 1 to 3 are presented to motivate further research
of interference in the future as they should provide interesting and, as yet
un-excluded, points of the MSSM.

8.4 Results

As intimated, the process studied at MC level is pp → tb̄H− → tbt̄b̄ (+ c.c.),
thus the signal is defined as all processes in the MSSM mediated by the charged



8.4 Results 87

200 400 600 800 1000
MA 0 [GeV]

5

10

15

20

25

tan

mmod +
h

Best Fit
HS 68% C.L.
HS 95% C.L.
HB 95% C.L.

2
4
6
8
10
12
14
16

(H
+) [GeV]

0.00 0.01 0.02 0.03 0.04
(H + )/MH +

5

10

15

20

25

tan

mmod +
h

300

400

500

600

700

800

900

1000

M
H

+ [GeV]

0.00 0.01 0.02 0.03 0.04
(H + )/MH +

5

10

15

20

25

tan

mmod +
h

0.00

0.02

0.04

0.06

0.08

0.10

(pp
tH

+) [pb]

Fig. 8.3 Allowed parameter region in the mmod+
h scenario over the (mA ≡MA0 ,

tan β) plane with colour showing ∆χ2 (top-left) and the charged Higgs boson
mass (top-right). The LHC Higgs searches constraints are included. The light
green contours are HiggsSignals exclusion limits at 1σ (solid) and 2σ (dashed).
The light gray area is excluded by HiggsBounds at 2σ. The solid brown lines are
contours for the lighter CP-even scalar h0 mass. The best fit point is located at
MH± ≈ 1 TeV and tan β = 20. In the two bottom panels of Fig. 8.3 we present
tan β as a function of ΓH±/MH± with the colour code showing the charged
Higgs mass (left) and the charged Higgs production cross section (right).

Higgs with a tt̄bb̄ final state while the background is defined as all processes
in the MSSM with the same final state which are not mediated by a charged
Higgs state. Figs. 8.5 and 8.6 present some examples of signal and background
diagrams.

Let us then define the scattering interference as I = T − S − B where
‘T = Total’ is the full scattering amplitude including all signal and background
Feynman diagrams and the interference of these diagrams. ‘S’ is the signal scat-
tering amplitude including only the signal diagrams and ‘B’ is the background
scattering amplitude including only the background diagrams. As the same
phase space is shared by all of these terms, we can perform the calculation
of these terms independently and evaluate the interference via the equation
presented above.
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Fig. 8.4 Allowed regions, as shown in Fig. 8.3, in the (MA0 , tan β) plane.
We present the BR H+ → tb̄ (top-left), H+ → τ̄ ν (top-right), H+ → χ0

1χ
+
1

(bottom-left) and H+ → χ0
2χ

+
2 (bottom-right).

Parameters BP1 BP2 BP3 BP4
MSSM inputs

tan β 5 5 1.01 1.01
Masses in GeV

Mh0 125 125 125 125
MH0 266.77 495.19 615.32 648.3
MA0 263 493.5 594.6 628.79
MH+ 275.01 500 600.01 633.91

Total decay width in GeV
Γ(H+) 0.3499 1.0423 26.177 27.777

BR(H+ → XY ) in %
BR(H+ → bt) 91.665 96.105 99.375 99.418

Ratios
Γ(H+)/MH+ 0.0012723 0.0020846 0.043628 0.043819

Cross sections in pb
σ(pp→ t̄H+) 0.0932 0.0177 0.2090 0.1431

σ(pp→ t̄H+, H+ → bt) 0.0854 0.0170 0.2077 0.1423

Table 8.3 BPs for the hMSSM scenario.
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Parameters BP1 BP2 BP3 BP4
MSSM inputs

tan β 6 10 20 3.42
Masses in GeV

Mh0 120.18 122.46 123.47 113.55
MH0 595.33 695.4 896.01 298.69
MA0 594.38 695.12 895.96 292.22
MH+ 600 700 900 303.08
Mχ̃+

1
139.97 144.16 147.54 133.2

Mχ̃+
2

270.8 268.59 266.75 274.19
Mχ̃0

1
84.345 86.404 87.934 80.637

Mχ̃0
2

147.2 149.46 151.39 143.88
Mχ̃0

3
209.7 209.8 210.14 205.33

Mχ̃0
4

271.76 268.81 266.41 276.42
Mb̃1

1000 999.82 996.08 998.97
Mb̃2

1002 1002.2 1006 1002.8
Mt̃1 876.49 876.45 876.43 876.61
Mt̃2 1134.8 1134.8 1134.8 1134.9

Total decay width in GeV
Γ(H+) 5.8582 7.7229 14.311 0.9253

BR(H+ → XY ) in %
BR(H+ → χ̃0

1χ̃
+
1 ) 10.789 10.379 7.7896 20.73

BR(H+ → χ̃0
2χ̃

+
2 ) 27.858 29.296 24.307 −

BR(H+ → χ̃+
1 χ̃

0
3) 13.003 12.161 9.1983 −

BR(H+ → χ̃+
1 χ̃

0
4) 18.454 18.648 15.061 −

BR(H+ → χ̃0
3χ̃

+
2 ) 9.7934 11.002 9.5996 −

BR(H+ → τ+ντ ) 0.73738 1.8127 5.031 0.7682
BR(H+ → bt) 15.728 13.718 26.989 72.036

Ratios
Γ(H+)/MH+ 0.0097637 0.011033 0.015901 0.0031

Cross sections in pb
σ(pp→ t̄H+) 0.007120 0.003170 0.002850 0.130750

σ(pp→ t̄H+, H+ → χ̃0
1χ̃

+
1 ) 0.000768 0.000329 0.000222 0.027100

σ(pp→ t̄H+, H+ → χ̃0
2χ̃

+
2 ) 0.001984 0.000929 0.000693 −

σ(pp→ t̄H+, H+ → χ̃+
1 χ̃

0
3) 0.000926 0.000386 0.000262 −

σ(pp→ t̄H+, H+ → χ̃+
1 χ̃

0
4) 0.001314 0.000591 0.000429 −

σ(pp→ t̄H+, H+ → χ̃0
3χ̃

+
2 ) 0.000697 0.000349 0.000274 −

σ(pp→ t̄H+, H+ → τ+ντ ) 0.000053 0.000057 0.000143 −
σ(pp→ t̄H+, H+ → bt) 0.001120 0.000435 0.000769 0.094200

Table 8.4 BPs for mmod+
h scenario.

In order to explore the effects of interference on the search for a charged
Higgs, we utilise BP4 found in Tab. 8.3 for the hMSSM case and BP4 found
in Tab. 8.4 for the mmod+

h case. These two points provide two kinematically
distinct scenarios, one of which - the hMSSM one - has a high width-to-mass
ratio for the charged Higgs boson, of 4.4%, while the other has a much lower
ratio, of 0.31%.
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Fig. 8.5 A selection of signal Feynman diagrams.

Fig. 8.6 A selection of background Feynman diagrams.

Signal cross sections are significantly smaller than background cross sections
before cuts. Hence the simulation of the T and B terms outlined above must
have low uncertainty, which requires very large MC samples. This mandates
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a prudent use of computing resources and thus an extremely large sample
of events was generated for T, B and S at parton level to obtain a value
for the cross section of these processes with very low MC error. After this
was done, smaller detector level samples were generated for the purpose of
applying cuts and obtaining efficiencies. The parton level cross sections and
the detector level efficiencies are then used together to form the cutflow that
will be presented in this section. The parton level results for both BPs can be
found in Tab. 8.5. The error presented here is the MC error and is displayed
to show that a large enough parton level sample was generated to produce a
sufficiently low uncertainty on the interference cross section. There are of course
other sources of errors against which to tension the size of our interference
effects, such as systematic theoretical errors due to the finite order perturbative
modelling of the signal and background cross sections, which can be large,
especially for the latter (e.g., Ref. [155] finds that for the tt̄bb̄ background such
an error is of order 10%). Further, one ought to consider the systematic errors
coming with the choice of Parton Distribution Functions (PDFs) and of their
factorisation/renormalisation scale, which are expected to be similar in size.
Hence, one will truly need to worry about the systematic error due to the
presence of the interference effects studied here when they are beyond the 10%
or so level.

Model S (pb) B (pb) T (pb) I (pb)
hMSSM σ 0.03240 13.078 13.139 0.028

∆σ 1.4× 10−5 0.002 0.001 0.003

mmod+
h σ 0.08854 13.095 13.197 0.014

∆σ 3.3× 10−5 0.001 0.001 0.002

Table 8.5 Parton level results for the hMSSM and mmod+
h benchmarks.

The parton level sample for both scenarios contained 20,000,000 events
generated in MadGraph5 [47] at leading order with a Centre-of-Mass (CoM)
energy of 13 TeV, while the detector level samples for the hMSSM sample
contained 5,000,000 events comprised of 100 independent samples of 50,000
events and the mmod+

h sample contained 10,000,000 events comprised of 200
independent samples of 50,000 events. Both were generated in MadGraph5 at
leading order and at 13 TeV CoM energy. The detector level samples were then
sent to Pythia8 [185] for hadronisation/fragmentation and finally passed to
Delphes [53] for detector smearing utilising the standard ATLAS card. Previous
sections of this work calculated cross sections at NLO, however, as previously
explained, this is not feasible for the background samples, so the MC analysis
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was undertaken at LO only. All samples included the decay of the charged
Higgs, H+ → tb̄, to maximize statistics.

Typical detector acceptances were utilised, namely electrons and muons
must have transverse momentum pT > 7 GeV and pseudo-rapidity |η| < 2.5

with 100% lepton selection efficiency assumed. Jets must have pT > 20 GeV
and |η| < 2.5. Anti-kT jet clustering[37] was used and a b-tagging efficiency
of 77% and mis-tagging efficiency of 1% employed. We demand exactly one
lepton in the final state, so that the longitudinal momentum of the missing
energy can be solved for via

pzν =
1

2p2ℓT

(
AWp

z
ℓ ± Eℓ

√
A2
W ± 4p2ℓTE

2
νT

)
, (8.3)

where, AW =M2
W± + 2pℓT · EνT .

Reconstruction was then undertaken via the simultaneous minimisation of
the following equations by permuting through all combinations of jets in the
process,

χ2
had =

(Mℓν −MW )2

Γ2
W

+
(Mjj −MW )2

Γ2
W

+
(Mℓνj −MT )

2

Γ2
T

+
(Mjjj −MT )

2

Γ2
T

+
(Mjjjj −MH±)2

Γ2
H±

(8.4)

and

χ2
lep =

(Mℓν −MW )2

Γ2
W

+
(Mjj −MW )2

Γ2
W

+
(Mℓνj −MT )

2

Γ2
T

+
(Mjjj −MT )

2

Γ2
T

+
(Mℓνjj −MH±)2

Γ2
H±

(8.5)

The results of this reconstruction can be found in Figs. 8.7 and 8.9, nor-
malised to unit area. This reconstruction requires one to use the width of the
particles, which introduces a model dependence. Thus, in the aforementioned
figures, we also present the same reconstruction methodology but without the
use of particle widths to highlight how this affects the reconstruction. We
refer to these methodologies as the model dependent and model independent
reconstructions, respectively.

We apply a simple set of acceptance cuts to illustrate the sensitivity to the
interference term, these cuts include a final state definition of 1 lepton, 5 or more
jets, more than 2 or 3 b-jets, greater than 20 GeV missing transverse energy and,
finally, the transverse mass of missing energy and the lepton must be higher
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than 60 GeV. Specifically, mW
T =

√
( /Ex + ℓx)2 + ( /Ey + ℓy)2 > 60 GeV. It is an

interesting question to experimentalists as to how interference contributions
change with respect to varying b-tagging. This motivates the usage of 2 and
3 b-tags regions even if the increased b-tagging does not necessarily lead to
increased signal significance. This cutflow, applied to each of the BPs, can be
found in Tabs. 8.6 and 8.7.

8.4.1 The hMSSM analysis

It can be seen in Fig. 8.7 that all particles appear to be reconstructed very well.
The model-dependent reconstruction and the model-independent case perform
equally well for the signal. However, for the background and total samples the
reconstruction is quite different. The model-dependent assumption provides a
much better separation from the signal, this is especially apparent in both the
leptonic and hadronic charged Higgs invariant mass distributions.

The ratio of signal cross section to interference cross section before cuts
is 86.7%. This is an alarmingly high level of interference that a traditional
experimental study would not account for correctly. The ratio after cuts in both
the ≥ 2 b-tag scenario and ≥ 3 b-tag scenarios is 103.3% and 85.5% respectively,
both extremely large interferences showing that the cutflow has done little to
mitigate the magnitude of the interference relative to the signal. It should be
noted that the uncertainty on the values in the ≥ 3 b-tag region are approaching
the same magnitude as the interference itself, thus strong conclusions in this
region cannot be made.

It is important to note that the true effect of the interference is predicated
on the overall shape of the interference distribution relative to the signal
distribution. In general there are three cases [186–188]:

1. The interference takes the same shape as the signal and is positive, here
we can expect a boosting of our new physics effects.

2. The interference takes the same shape as the signal and is negative, here
we expect a cancellation of our new physics effects.

3. The interference takes a different shape and is either positive or negative,
here we can expect a boosting and cancellation of new physics effects in
different regions of phase space, manifesting as a “peak-dip” structure in
the expected distributions.

In Fig. 8.8, an exploration of this shape at parton level before cuts can be
seen in the tt̄bb̄ reconstructed invariant mass plane. This step was undertaken
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at parton level to achieve the required per-bin statistics to discern the shape of
the interference distribution. There appears to be a large interference impact
in across the whole mass range, interestingly though the largest contributions
are below the charged Higgs mass peak. The result of this would likely be a
smearing of the charged Higgs mass bump towards lower values in actual data.
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Fig. 8.7 Invariant mass distributions for reconstructed particles in the hMSSM
benchmark. Top: Model independent. Bottom: Model dependent.

8.4.2 The mmod+
h analysis

The reconstruction in this scenario presents far less distinct signal distributions,
which can be seen in the charged Higgs invariant mass plots of Fig. 8.9. As the
mass difference between the charged Higgs and the sum of the t and b-quark



8.4 Results 95

Cut S B T I ∆I
No cuts: 9720 3923550 3941700 8429 2487
Nℓ = 1: 2160 904247 907925 1518 1193
NJ ≥ 5: 1938 624001 627534 1594 992
NBJ ≥ 2: 1511 404919 408054 1623 799
/E > 20 GeV: 1435 373648 376517 1433 768
/E +mW

T > 60 GeV: 1412 364026 366898 1458 758
Cut S B T I ∆I
NBJ ≥ 3: 826 171918 173430 684 521
/E > 20 GeV: 785 158921 160376 669 501
/E +mW

T > 60 GeV: 772 154880 156314 660 494
Table 8.6 Cut flow results presented in expected event yield with 300 fb−1 of
luminosity for the hMSSM benchmark with 5,000,000 events for each sample.
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Fig. 8.8 The charged Higgs invariant mass distribution of the signal, background
and total samples (left) and interference and signal (right) at parton level and
without cuts in the hMSSM scenario.

masses is far smaller in this scenario, it appears that the reconstruction is
performed very similarly for the signal and background. This can be further seen
in the lack of difference between the model-dependent and model-independent
reconstructions. Thus, extraction of the signal would be far more difficult in
this case.

As the ratio of the charged Higgs mass to charged Higgs width is smaller in
this benchmark than in the hMSSM one, we expect the interference effects to
be smaller. However, the interference may become much larger relative to the
signal after a cutflow. Tab. 8.7 displays the cutflow results for this BP and one
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can see that the pre-cut ratio of interference cross section to signal cross section
is 15.2%, while the ratio after cuts in the ≥ 2 b-tag region is 26.0%. In this
scenario the more strict use of b-tagging decreased the ratio of the interference
cross section to the signal cross section to 17.4%, though it should be noted
the uncertainty on the values in the ≥ 3 b-tag region has grown beyond the
magnitude of interference and conclusions in this region are tenuous.
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Fig. 8.9 Invariant mass distributions for reconstructed particles in the mmod+
h

benchmark. Top: Model independent. Bottom: Model dependent.

The interference shape of the reconstructed invariant mass of tt̄bb̄ at parton
level and before cuts in this scenario can be found in Fig 8.10. In this scenario
the signal invariant mass distribution peaks narrowly over the 300 GeV bin,
however, interestingly the interference distribution appears to be a widely spread
spectrum across the range 100 − 350 GeV. These small, but non-negligible,
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Cut S B T I ∆I
No cuts: 26561 3928500 3959100 4038 1764
Nℓ = 1: 6017 903764 911292 1510 846
NJ ≥ 5: 4964 623989 629532 578 703
NBJ ≥ 2: 3704 404776 409342 862 566
/E > 20 GeV: 3432 373464 377885 989 544
/E +mW

T > 60 GeV: 3342 363876 368087 868 537
Cut S B T I ∆I
NBJ ≥ 3: 1894 171654 173822 273 369
/E > 20 GeV: 1757 158581 160686 347 354
/E +mW

T > 60 GeV: 1712 154576 156587 298 350
Table 8.7 Cut flow results presented in expected event yield with 300 fb−1 of
luminosity for the mmod+

h benchmark with 10,000,000 events for each sample.
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Fig. 8.10 The charged Higgs invariant mass distribution of the signal, back-
ground and total samples (left) and interference and signal (right) at parton
level and without cuts in the mmod+

h scenario.

interference contributions would likely lead to a widening of an otherwise sharp
signal bump in data, which further motivates the necessity of the signal shape
analysis at detector level to discover whether this effect would be dominated
by the smearing effect of the detector on the signal peak.

8.5 Conclusions

By borrowing the MSSM as a theoretical template that contains charged Higgs
bosons, we have shown how experimental searches for these states cannot be
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made immune from large interference effects between signal and background
whenever they have a large mass and a width on the order of one percent of
the mass and upwards. We have illustrated this for the case of the H+ → tb̄

decay channel, which is onset dominantly by gg → bt̄H+ production. In this
case, the (irreducible) background intervening in such interference effects is
pp → tt̄bb̄, which can see both QCD and EW interactions. This study’s goal
was to show that signal and background are wrongly treated as separate in
current LHC approaches.

In order to realistically assess the above phenomenon, we have decayed the
tt̄ pair semi-leptonically and carried out a full parton shower, hadronisation
and detector analysis. In doing so, we have first prepared the MSSM parameter
space regions amenable to phenomenological investigation by enforcing both
theoretical (i.e., unitarity, perturbativity, vacuum stability, triviality) and
experimental (i.e., from flavour physics, void and successful Higgs boson searches
at the Tevatron and LHC, EW precisions observables from LEP and SLC)
constraints, assuming two benchmark configurations of the MSSM, the so-called
hMSSM and mmod+

h scenarios.
After performing a sophisticated MC simulation, allowing for both model-

independent and model-dependent selections, we have seen that such interfer-
ence effects can be very large, even of O(100%), both before and after H±

detection cuts are enforced. This appears to be the case for the masses tested,
approximately 300 and 630 GeV, in the MSSM scenarios adopted, though
interference effects will manifest themselves at different LHC stages, depending
on the overall cross sections, which vary significantly from one benchmark to
another. Furthermore, the shapes of the signal and its interference (with the
aforementioned irreducible background) appear to be different which would
mean that it is not actually possible to proceed to a rescaling of the event yields
due solely to the signal. In turn, in experimental analyses, one should account
for such interference effects at the event generation level. We have proven this
to be the case for a standard cut flow, while deferring the study of similar
effects in the case of a machine learning framework to a future publication.
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Chapter 9

Advanced Analysis Methods

The methodologies to be described in this chapter are very new to physics
research, and in some cases very new altogether. The traditional techniques
for extracting or excluding a possible physics signal have been explained and
applied in detail in earlier chapters of this thesis - that is, a signal of interest
and its relevant backgrounds are defined and then the phase space is cut away
methodically to retain only areas where the signal is over-represented relative
to its background. This is the way particle physics has been done throughout
most of the collider era, and modern computers have only refined the process
to be orders of magnitude more efficient. The issue is that unless that specific
signal model exists in nature then we learn nothing about any signal model
that may be present in the data. This chapter covers an entirely new paradigm
which is surging in popularity.

The methodology is unsupervised machine learning for “signal agnostic
searches”. The key to these types of searches is in the name - they are performed
without any (or at least minimal) signal defined. Rather than looking for
something that looks like signal, we are instead looking for things which do not
look like the Standard Model.

The concept of signal agnostic searches has existed for a long time, for
example the model-independent and pseudo model-independent approaches
outlined over a decade ago in Refs [189–195]. These studies employed general
hunts for excesses in a variety of final states, but most did not employ modern
machine learning techniques. Similarly there have been some more recent
studies of this type such as Refs [196–200] at ATLAS and CMS.

As mentioned, unsupervised machine learning techniques have generated
interest in recent years such as the use of autoencoders for fat jet and jet sub-
structure analyses in Refs [201, 202] and more relevantly for anomaly detection
in Ref [203]. Further anomaly detection methods using variational autoen-
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coders and generative adversarial networks have been outlined in Refs [204–206].
Importantly we will see an exploration of Ref [206] in the coming chapter.

In this chapter we will give an overview of the general principles of signal
agnostic searches and a few of the most powerful algorithms utilised to undertake
them.

9.1 Signal Agnostic Searches

If a supremely powerful computer with sufficient storage capabilities existed
one could undertake an enormous MC simulation of every single SM process
with as many events as are expected for a given luminosity at the LHC. This
dataset could then effectively be cross-referenced with the LHC dataset and
any statistically significant differences may point in the direction of new physics
(or at least a systematic error). Alas, this is not even close to being possible.

What we can do however is define a very simple set of acceptance cuts.
Going back to our Higgs example in chapter 5, if we simply demanded that
every ATLAS event contained two photons with transverse momentum over, for
example, 50 GeV we would have narrowed down our potential backgrounds to
all SM processes which produce a pair of high energy photons - a much smaller
set of backgrounds. In the following, let us pretend that we live in world where
the Higgs has not been discovered, or perhaps even theorised, we are simply
looking for any physics particle that can decay to two high energy photons.

An anomaly detection algorithm, examples of which will be explained in
the coming sections, can then be trained on MC samples of the di-photon
backgrounds and each event given an “anomaly score”. The distribution of
these anomaly scores should be representative of the anomalousness of the
background samples. An experiment such as ATLAS could then input their
di-photon data into this same anomaly detection algorithm and if there is no
new physics in this dataset then the resultant anomalousness distribution will
be identical to the MC distribution up to statistics. However, if new physics
does exist then these events should return a higher anomaly score than the
MC backgrounds and will lead to an excess in the high anomaly area of the
distribution.

Anomaly detection algorithms come in many forms, and the definition of
anomaly score is based on the details of how each specific algorithm works.
The coming sections cover three powerful algorithms.
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9.2 Gaussian Mixture Models

Mixture models allow one to approximate a set of statistical distributions that a
set of data was most likely sampled from. Specifically, Gaussian mixture models
(GMMs) are an implementation of this methodology where the individual
statistical distributions being fitted are Gaussian distributions [207].

Let us define a set of data points as X = {x1, . . . ,xn, . . . ,xN}, where
each xn is a vector with d features. Let µk, Σk with k = 1, . . . , K be the
mean vectors and covariance matrices of a chosen number (K) of d-dimensional
Gaussian distributions, initialised arbitrarily. For each data point we introduce
a vector of latent variables, zn representing that it belongs to a particular
Gaussian: if the nth data point belongs to the kth Gaussian we set znk = 1,
otherwise it is zero.

We can write the probability of observing a given data point xn from its
Gaussian as

p(xn|zn) =
K∏
k=1

N (xn|µk,Σk)
znk , (9.1)

where N denotes a Gaussian distribution. Note that this product occurs over
all Gaussians but the way we have constructed the latent vector zn suppresses
all but the Gaussian xn belongs to. Now by marginalisation over all z we get

p(xn) =
K∑
k=1

p(xn|z)p(z) =
K∑
k=1

πkN (xn|µk,Σk), (9.2)

where we have defined a mixing parameter πk ≡ p(zk = 1). These represent
the probability that an arbitrary point belongs to the k-th mixture component
(the k-th Gaussian), and hence the sum of πk over all k is 1.

We aim to maximise p(X), the overall probability of obtaining the data if
it were sampled from the K Gaussians. The log-likelihood of this probability is
given by

log (p(X)) =
N∑
n=1

log (p(xn)) =
N∑
n=1

log

[
K∑
k=1

πkN (xn|µk,Σk)

]
. (9.3)

The optimisation of this function can be performed using the Expectation-
Maximisation (EM) algorithm. There are two steps to the EM algorithm: the
expectation step (E-step) and maximisation step (M-step).
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The E-step is performed by calculating the probability that each point was
sampled from a particular Gaussian. This can be expressed in terms of the
latent variables as p(zk = 1|xn), which is often referred to as the responsibility
of the distribution k for a given data point xn. Using Bayes law we can write

p(zk = 1|xn) =
p(xn|zk = 1)p(zk = 1)

ΣK
j=1p(xn|zj = 1)p(zj = 1)

=
πkN (xn|µk,Σk)

ΣK
j=1πjN (xn|µj,Σj)

≡ γ(znk).

(9.4)

Once we have calculated γ(znk) for all n and k we can undertake the M-step to
estimate the updated parameters of each Gaussian. First, one calculates the
number of points Nk for which Gaussian k is responsible

Nk =
N∑
n=1

γ(znk). (9.5)

With this value, we update the mean of Gaussian k by calculating the mean of
the data points that belongs to it, weighted by the responsibilities γ(znk)

µ′
k =

1

Nk

N∑
n=1

γ(znk)xn. (9.6)

Similarly, the updated covariances for Gaussian k are given by the covariance
of the points that belong to Gaussian k with the updated mean µ′

k, weighted
by the responsibilities

Σ′
k =

1

Nk

N∑
n=1

γ(znk)(xn − µ′
k)(xn − µ′

k)
T . (9.7)

Finally, the mixing parameter πk of Gaussian k is updated by calculating the
percentage of the total dataset that belongs to it

π′
k =

Nk

N
. (9.8)

The new log-likelihood may be computed directly using Eq. (9.3) with the
new parameters for each Gaussian. The process is repeated iteratively, until
we see convergence of the log-likelihood (within a set tolerance), or when the
maximum number of epochs is reached.

An example of this convergence can be seen in Fig 9.1. In this figure, a
two component Gaussian Mixture Model is fitting a two-dimensional dataset
of points sampled from arbitrary Gaussians. The ellipses are defined by the
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variance of each Gaussian in the x and y directions. Note the gradual improve-
ment of the closeness of fit of the two Gaussian distributions to the two clear
clusters that are found in the plot.
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Fig. 9.1 An example of a Gaussian Mixture Model with two components
undergoing parameter updates via the EM algorithm and converging to an
optimum (to be read from left to right, top to bottom).

To apply this to physics, if we fit a K-component Gaussian Mixture Model
to our background MC samples then the weighted probability of a point being
sampled from the K-Gaussians is used as the anomaly score. But how do we
select K? In the previous example shown in Fig 9.1 it is simple as the data
was two dimensional and formed two clear clusters, but in a more complex
case neither of these things will likely be true. The standard methodology for
selecting the number of components of the mixture model is to choose the value
of K that minimises the “information criterion”, namely the “Akaike Information
Criterion” (AIC) [208] or the “Bayesian Information Criterion” (BIC) [209]. If
the number of data points in the dataset is n, the number of parameters of the
mixture model is k and the maximum of the model’s likelihood function given
the data is L̂, then we have:

Akaike Information Criterion: AIC = 2k − 2 log(L̂) (9.9)

Bayesian Information Criterion: BIC = k log(n)− log(L̂) (9.10)
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As these information criteria contain both the maximum likelihood and also the
number of parameters (and in BIC the number of data points) they measure
not only the overall fit of the model, but also punish overfitting and over-
complexity. Fig 9.2 displays the information criteria as functions of the number
of components of our mixture model. It appears that approximately K = 200

minimises the BIC, though the AIC looks like it may continue to decrease. Due
to the rapidly increasing computational complexity of high K we truncate our
search here and use K = 200.
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Fig. 9.2 The Akaike information criterion and Bayesian information criterion
as a function of the number of components in the mixture model applied to
the Higgs background dataset.

Fig 9.3 displays a scatter plot of the two leading photons in the background
sample (left) and Higgs signal example (right) with a 200-component GMM
trained entirely on the background sample overlaid on top. It is evident
here that the signal events, by virtue of having a much higher density in the
high transverse momentum area of the phase space would have a much lower
likelihood of being sampled from the Gaussians present in the GMM.

Fig 9.4 shows two plots of anomaly score distributions for the Higgs example
using a 200-component GMM. The top plot is illustrative and contains the
anomaly score distribution of the background and the anomaly score distribution
of a Higgs signal - it can be seen that the Higgs signal contains far more events
of low probability and thus is much more anomalous. Note that in this case our
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Fig. 9.3 A scatter plot of the two leading photons for the background (left)
and signal (right) in the Higgs example. Overlaid on top is a 200-component
GMM trained on the background sample.

definition of anomaly score is the probability of belonging to the background
distributions and so a low anomaly score implies high anomalousness. The
bottom plot contains the anomaly distribution of the background and the
anomaly score distribution of the pseudo-data set constructed as described
above, though with the injected signal cross section boosted to ensure it is
visible for demonstration. These two distributions are almost identical, as
expected, except for a excess in the 0%-0.05% bin of the distribution where the
injected signal exists.

We will see Gaussian mixture models applied to a range of BSM models in
chapter 10.

9.3 Isolation Forest

First outlined in Ref [210], “Isolation Forest” is an unsupervised learning
algorithm that assigns each point in a dataset a value based on the ease with
which it is isolated from the other points in the dataset. It is attractive due to
its simple concept, linear time complexity and low memory requirement.

Given a set of data X = {x1,x2, . . . ,xn} from a multivariate distribution,
where each xi is a vector with d dimensions, one first randomly chooses a
feature k ∈ {1, ..., d}, and a “split value” p which lies between the maximum
and minimum value of the feature k. Then all xi of the dataset with xik < p

are placed in a set of points called Xl while if xik ≥ p, it is placed in a set
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Fig. 9.4 The anomaly score distributions generated by the Gaussian mixture
model algorithm for (top) the signal and background and (bottom) the pseudo-
data and background in a Higgs production decaying to two photons.

called Xr. This process is repeated recursively, selecting a new k each time,
until one of the following stopping conditions is met:

• every data point xi is isolated in its own set,

• all xi in a given set are equal,

• a limit imposed on the number of splits is reached.

The sequence of splits generated are called trees, and the number of splits in
them is called the path length of the tree. Each split is a node of the tree. Nodes
that do not begin or end trees are internal, and those which do are external.
By randomly selecting batches of size m from the dataset and constructing a
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tree for the batch, we construct what is called a forest. The combination of
many trees in this way improves stability and performance.

An anomaly is by definition an outlier, thus an anomaly should on average
require a smaller number of splits to become isolated. The measure of anoma-
lousness can then be defined via the average path length of the trees in the
forest. This average path length is normalized using [210]:

c(m) = 2H(m− 1)−
(
2(m− 1)

n

)
, (9.11)

where n is the full dataset size, m is the size of a randomly sampled batch, and
H(m− 1) indicates the harmonic number. The anomaly score of a point xi is
then defined as

s(x, n) = 2−
E(h(x))

c(n) , (9.12)

where h(x) is the path length and E(h(x)) is the mean path length of all trees
constructed for x. It can be seen from Eq. (9.12) that s ≈ 1 implies a high
level of anomalousness, whilst s ≈ 0 indicates no anomaly at all. If the whole
sample generates s ≈ 0.5, we find that the entire sample is likely devoid of
anomaly. An example of two trees, one for a non-anomalous point and one for
an anomalous point, in two dimensions can be found in Fig 9.5. Note that the
non-anomalous point required thirteen nodes (or splits) to isolate, while the
anomalous point required only four, showing that their path lengths are vastly
different.

Fig. 9.5 An example of two trees formed in the isolation forest algorithm for
an arbitrary 2D Gaussian distribution. Left: The isolation of a non-anomalous
data point [211]. Right: The isolation of an anomalous data point [212].

In the top plot of Fig 9.6 we see the normalized anomaly score distributions
generated by the isolation forest algorithm for the signal and background
of the Higgs production decaying to two photons. The signal is clearly of
higher anomaly score than the background. In the bottom plot we see the
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background and pseudo-data anomaly score distributions normalized to cross
section - though the injected signal model cross section was boosted to ensure
it was visible. In the high anomaly areas of the plot we see excesses in the
pseudo-data over the background corresponding to the same location as the
signal distribution in the top plot.
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Fig. 9.6 The anomaly score distributions generated by the isolation forest
algorithm for (top) the signal and background and (bottom) the pseudo-data
and background in a Higgs production decaying to two photons.

9.4 Autoencoders

Autoencoders are a type of neural network (see chapter 5 for details) that
attempt to return output that is as similar to their input as possible [213].
This is done to produce an encoding of the input data for the purposes of
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dimensional reduction, feature learning and to produce generative models. In
Fig 9.7 we see a simple example of an autoencoder.

Fig. 9.7 An example of a simple autoencoder.

There are eight input nodes which condense to two nodes in the middle layer
and which then expand back to eight output nodes - the exact architecture
is in general case specific though of course there must be the same amount
of input and output nodes and the middle layer almost always has the fewest
nodes. The middle layer is known as the “latent space”, and is the encoding of
the input information to a lower dimensional representation. The error is called
the “reconstruction loss” and is usually defined as the sum of mean squared
errors between the input vectors and the output vectors in a training batch.

For our purposes we can use the reconstruction loss as a measure of the
anomalousness of a physics event. For example, we could train our autoencoder
on the background MC sample and then apply the trained model to the data.
Any events which are very unlike the background MC sample will present with
higher reconstruction loss as the autoencoder has never seen events like them.

The major downfall is that autoencoders are not in any way penalised
for learning the identity function, or some function close to identity. This
means that while reconstruction error will be very low, the model is trivial and
unhelpful because it will be low on all inputs. There exist many methods to
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regularise autoencoders to try and penalise this, however the most important
is the promotion of autoencoders to “Variational Autoencoders” (VAEs).

9.4.1 Variational Autoencoders

Variational Autoencoders are very similar to autoencoders in the sense that they
are neural networks with encoders and decoders, however mathematically they
differ in that they can be considered to belong to a class of machine learning
algorithms called generative models. That is, they attempt to understand the
way in which data was generated or to approximate the distribution from which
the data was sampled. In learning these relationships we can learn a great deal
about representations of the data [214–216].

The major way in which VAEs differ from basic autoencoders is that before
the latent space vector in an autoencoder we insert two vectors, a vector
of means and a vector of variances of normal distributions. Rather than
attempting to encode the input vector onto a lower dimensional vector of real
numbers, we are now attempting to encode the input information onto a set
of Gaussian distributions which when sampled from provide an output vector
that is as similar to the input vector as possible. These distributions serve to
“cover” the latent space with smooth distributions which offer a more faithful
representation of smooth and continous data. They also inherently reduce the
likelihood of the model approximating the identity function, and massively
improve the performance of the architecture in general.

Theoretically, when a VAE is trained with a standard reconstruction loss it
could simply learn Gaussians with extremely small variances (delta functions)
or extremely disparate means (poor coverage of the latent space) and thus the
VAE would effectively be a standard autoencoder and all benefits would be lost.
Thus we regularise the reconstruction loss by penalising distributions that are
different from standard normal distributions. This is done through the addition
of the Kullback–Leibler divergence [217, 218] to the reconstruction loss (MSE
used as an example) as seen below:

L =
1

N

N∑
i=1

(xi − yi)
2 + β

K∑
j=1

DKL(N(µj, σj)||N(0, 1)) (9.13)

where, N is the number of input and output nodes and in general the Kullback-
Leibler divergence for two distributions P (x) and Q(x) is defined as:

DKL(P ||Q) =
∫
x

P (x) log

(
P (x)

Q(x)

)
dx (9.14)
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In our case P (x) are the distributions in the latent space and Q(x) is the
standard normal distribution. This is a special case, and we can write the total
Kullback-Leibler divergence loss, LKL, for a latent space of K standard normal
distributions as:

LKL =
K∑
i=i

σ2
i + µ2

i − log(σi)− 1 (9.15)

which is clearly minimised for σi = 1 and µi = 0. The β factor is a param-
eter of O(1) that scales the overall importance of the KL divergence to the
reconstruction loss [219]. The default β = 1 is the definition for a standard
VAE.

The Reparametrisation Trick

For a rigorous treatment of the reparametrisation trick see Refs [220] and [221];
here we will provide an intuitive explanation. When training a traditional
autoencoder (or any ANN) via backpropagation, every node in the network is
non-stochastic and there is no issue. However in the case of a VAE because
we are sampling from a set of distributions in the latent space of the network
we have introduced a set of nodes with stochasticity. We cannot compute a
gradient of these nodes and backpropagation does not work. To fix this the
reparametrisation trick was developed.

To produce the latent space vector z for the decoder to decode we calculate
the following:

z = µ+ σ · ϵ (9.16)

where µ and σ are the mean and standard deviation of the Gaussian distri-
butions in the latent space of the network and ϵ is an introduced vector of
stochastic variables sampled from standard normal distributions and indepen-
dent of the network. Now backpropagation can be performed via µ and σ while
stochasticity is maintained through ϵ which does not need to be optimised. A
schematic of this can be seen in Fig 9.8, where the yellow nodes represent input
or independent nodes and the arrows represent the flow of information through
the network. We can see that the values in the red bounding box on the left
are the parts of the network being reparametrized using the reparametrization
trick. The red bounding box on the right indicates that the Kullback-Leibler
divergence is computed analytically via the known equation from the values in
the latent space.
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Fig. 9.8 A schematic of the reparametrisation trick [221].

9.4.2 Convolutional Variational Autoencoders

For chapter 11 of this thesis we employ a VAE to undertake anomaly detection
for dark matter direct detection data. What is special about this study is that
we do not use raw data for the machine learning inputs, we actually use images
of the detector response.

An image is a set of pixels and computationally is represented in a number
of ways - in our case it is an array of (1, 3) vectors with components in the
range 0 to 255. These values represent the contribution of red, green and blue
colour to the overall colour of the pixel on the screen and together form the
image. The detector images we wish to train and test our VAE on are 64× 64,
which means in total we have 4096 vectors all of which have three components.
This is an enormous number of inputs for our network that, at least with the
computing resources available, is absolutely unfeasible to process. How do we
reduce this input size to something that is acceptable?

Furthermore, if we simply flattened our array and inputted the result into
our network we would be losing something fundamental about our image -
adjacent pixels in an image are more related to each other than non-adjacent
pixels. That is to say, if you imagine an image of a brown dog, standing on
some green grass with some blue sky, the pixels are forming clusters of different
colours and the boundaries between these clusters are incredibly important
in detecting that that is an image of a dog. How do we ensure that this
information is kept when inputting to our network?

Fortunately, both of these questions can be solved in the same way -
“convolving” our input. This effectively boils down to sliding a window of
height and width less than the size of the total image across and then down our
image combining pixels into a single value. The size of the steps our window
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takes across and then down the image is called the “stride size”. There are a
number of ways to do this, with two important ones being the use of a “kernel”
and the other being “pooling” [222, 223].

Fig. 9.9 A simple image.

Imagine a very simple 4× 4 image such as that seen in Fig 9.9 which can
be written as a matrix as:

I =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 (9.17)

Now, a kernel could be a matrix such as:

K =

 0 −1 0

−1 5 −1

0 −1 0

 (9.18)

where we call the center value of this kernel the “origin”. We can then choose a
stride length of 1 and construct the following matrix by aligning the origin of
K with each value of I and summing the result of component-wise multiplying
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the overlapping values. The resultant matrix is:

I ′ =


−2 5 −3 5

5 −4 1 −3

−3 1 −4 5

5 −3 5 −2

 (9.19)

which looks like Fig 9.10. This is obviously a very trivial example, and is merely

Fig. 9.10 The simple image seen in Fig 9.9 after applying a convolutional
kernel.

done here to display the process. Now, if we wished to dimensionally reduce
the original image we could simply choose a stride length greater than one,
in which case the kernel would skip values of the original image leading to a
smaller convolved image - for example if stride length is two this will reduce
the dimension of the image by half.

Pooling is very similar, except instead of component-wise multiplying the
kernel with values of the image we just take a simple function of the same
elements - i.e. averaging them (“average pooling”) or taking the maximum value
of them (“max pooling”). This is useful for de-noising and extracting dominant
features of an image, with max pooling being the superior choice.

In the context of convolutional neural networks we allow the values of
the convolutional kernels to be parameters trained via backpropagation. By
layering convolutional and pooling layers with different size kernels and stride
lengths we can develop neural networks that provide extremely complex feature
learning - we will see architectures like this in chapter 11.
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9.5 ROC Curves

In the next chapter we will see Receiver Operating Characteristic (ROC) curves
used to measure the performance of our anomaly detection algorithms. ROCs
are a graphical way of displaying the performance of a classification model.
The ROC curve is generated by plotting the “true-positive rate”, the percentage
of times the classifier correctly identifies a signal event as signal, vs the “false-
positive rate”, the percentage of times the classifier incorrectly identifies a
background event as signal as a function of the discrimination threshold of
the classifier [224]. The discrimination threshold is the value of the classifiers
output, in our case this would be the anomaly score of a given algorithm, that
we have chosen such that if the output is below the threshold we classify the
event as background and if it is above we classify it as signal. Thus, a classifier
that consists of purely guessing whether an event is signal or background will
have a ROC curve that is a diagonal line from the origin to (1, 1), while a
classifier that is very effective will have a steep curve pushed to the upper left
corner of the plot.
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Fig. 9.11 An example of a ROC curve for a effective classifier and for a guessing
classifier.

In Fig 9.11 one can see two simulated ROC curves, one for a effective
classifier and one for a classifier that is guessing. Note that these are simply
for illustration. In the next chapter we will see many real ROC curves for a
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range of different machine learning models, so the features of the ROC curves
for effective and ineffective machine learning models are important to recall.

Conclusion

In this chapter, we explored modern analysis techniques that attempt to detect
anomalies in data without requiring a definition of specific signal topologies.
Specifically, the isolation forest, Gaussian mixture model and variational au-
toencoder algorithms were detailed. In the coming chapters, we will see these
algorithms applied to physically realistic scenarios in two different studies.



Chapter 10

Anomaly Detection at the LHC

In this chapter we will explore a study currently in peer review, see Ref [206],
that seeks to apply the methodologies seen in chapter 9 to realistic BSM
supersymmetric models. We will first discuss the unique aspects of the VAE
that is employed then cover the benchmarks themselves and the details of
our LHC simulations. Then finally, we will explore the effectiveness of the
anomaly detection algorithms at extracting signals of varying cross sections
and degeneracies with the SM background.

10.1 VAE Architecture

The architecture used here is defined as seen in Refs [225] and [206]. It consists
of layers of 512, 256 and 128 neurons in the encoder part of the network,
followed by a latent space of 26 nodes representing 13 means and 13 standard
deviations, then 128, 256 and 512 nodes in the decoder part of the network. All
layers are fully connected and the exponential linear unit activation function is
used.

As each event does not necessarily contain the same number of particles
each input does not necessarily have the same dimensionality. To handle this,
all inputs are zero padded to match the largest input in the set. The continuous
variables are then normalised by dividing by the largest value of each feature.
The categorical input elements (particle type) are separated from the continuous
input elements (pT, η and φ) and finally the number of particles in the event
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is appended as its own input element. This creates an input as follows:

x =

N,

c0

c1
...
cn

 ,

(pT, η, φ)0
(pT, η, φ)1

...
(pT, η, φ)n


 (10.1)

where N is the number of particles in the event and ci is the categorical variable
converted via a one-hot encoding.

Now, the reconstruction loss is defined in three parts: the mean squared
error for the number of particles N and the continuous data, and the categorical
cross-entropy is used for the categorical data. The total loss function is defined
as:

L = 100β(xn − yn)
2 (10.2)

− 10β

dc

dc∑
i

(xc,i log(yc,i) + (1− xc,i) log(1− yc,i)) (10.3)

+
β

dr

dr∑
i

(xr,i − yr,i)
2 (10.4)

+ (1− β)
dz∑
i

DKL(N (µ̂i, σ̂i),N (0, 1)) (10.5)

where xn is the true number of objects and yn is the reconstructed number of
objects, dc is the dimensionality of the categorical data, xc,i is the i-th categorical
label, yc,i is the i-th predicted categorical label, dr is the dimensionality of the
continuous elements, xr,i the i-th continuous data element and yr,i the i-th
reconstructed continuous data element, dz is the dimensionality of the latent
space and µi and σi are the mean and standard deviation of the i-th latent
space Gaussian respectively. β is a scaling factor that sets the overall impact
of the Kullback-Leibler divergence as seen in chapter 9. In this case, we use
β = 10−3.

This loss function is much more advanced and far more successfully captures
the properties of physics events than the basic VAE loss described in the previous
chapter.
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10.2 Benchmark 1: Gluinos

The first set of benchmarks contain pair-produced gluinos which then decay
to a boosted top-quark pair and the LSP. The gluinos have mass in the range
1− 2.2 TeV in steps of 200 GeV and the LSP has mass 1 GeV. The branching
ratio is assumed to be 100% (BR(t̃ → tt̄χ̃0

1) = 100%). More details can be
found in Tab 10.2.

10.3 Benchmark 2: Stop Quarks

The second set of benchmarks contain pair-produced stop quarks followed by
decay to top quarks and the LSP. There are four mass schemes in use here
with masses (LSP, Stop) = (20, 220), (100, 300), (100, 400), (100, 800) GeV.
From left to right we see a dropping cross section but also an increasing level of
disparity with the background signature. That is to say, while the lightest stop
mass point has by far the highest cross section it is almost degenerate in mass
with the top quark and as such will have very similar final state kinematics.
More details can be found in Tab 10.1.

Process Process ID σ (pb) Ntot (N10fb−1)
pp→ g̃g̃ (1 TeV) Gluino 01 0.20 50000 (2013)
pp→ g̃g̃ (1.2 TeV) Gluino 02 0.05 50000 (508)
pp→ g̃g̃ (1.4 TeV) Gluino 03 0.014 50000 (144)
pp→ g̃g̃ (1.6 TeV) Gluino 04 0.004 50000 (44)
pp→ g̃g̃ (1.8 TeV) Gluino 05 0.001 50000 (14)
pp→ g̃g̃ (2 TeV) Gluino 06 4.8× 10−4 50000 (5)
pp→ g̃g̃ (2.2 TeV) Gluino 07 1.7× 10−4 50000 (2)
pp→ t̃1t̃1 (220 GeV), mχ̃0

1
= 20 GeV Stop 01 26.7 500000 (267494)

pp→ t̃1t̃1 (300 GeV), mχ̃0
1
= 100 GeV Stop 02 5.7 500000 (56977)

pp→ t̃1t̃1 (400 GeV), mχ̃0
1
= 100 GeV Stop 03 1.25 250000 (12483)

pp→ t̃1t̃1 (800 GeV), mχ̃0
1
= 100 GeV Stop 04 0.02 250000 (201)

Table 10.1 A list of our BSM benchmark points, with the cross section and
number of events in both the generated count and also scaled to 10fb−1 of
luminosity at 13 TeV CoM energy [226].

10.4 Backgrounds

For both sets of benchmarks, we utilise the background processes and MC
described in table 2 of contribution 23 of Ref [226]. This is a huge dataset of
many common SM backgrounds which serves as a fantastic background model
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to train our unsupervised learning algorithms on. The full list of SM processes
can be found in Ref [226] but is transcribed here for ease of use in Tab 10.2.

Process Process ID σ (pb) Ntot (N10fb−1)
pp→ jj njets 19718HT>600GeV 415331302 (197179140)
pp→ W±(+2j) w_jets 10537HT>600GeV 135692164 (105366237)
pp→ γ(+2j) gam_jets 7927HT>600GeV 123709226 (79268824)
pp→ Z(+2j) z_jets 3753HT>600GeV 60076409 (37529592)
pp→ tt̄(+2j) ttbar 541 13590811 (5412187)
pp→ W±t(+2j) wtop 318 5252172 (3176886)
pp→ W±t̄(+2j) wtopbar 318 4723206 (3173834)
pp→ W+W−(+2j) ww 244 17740278 (2441354)
pp→ t+ jets(+2j) single_top 130 7223883 (1297142)
pp→ t̄+ jets(+2j) single_topbar 112 7179922 (1116396)
pp→ γγ(+2j) 2gam 47.1 17464818 (470656)
pp→ W±γ(+2j) Wgam 45.1 18633683 (450672)
pp→ ZW±(+2j) zw 31.6 13847321 (315781)
pp→ Zγ(+2j) Zgam 29.9 15909980 (299439)
pp→ ZZ(+2j) zz 9.91 7118820 (99092)
pp→ h(+2j) single_higgs 1.94 2596158 (19383)
pp→ tt̄γ(+2j) ttbarGam 1.55 95217 (15471)
pp→ tt̄Z ttbarZ 0.59 300000 (5874)
pp→ tt̄h(+1j) ttbarHiggs 0.46 200476 (4568)
pp→ γt(+2j) atop 0.39 2776166 (3947)
pp→ tt̄W± ttbarW 0.35 279365 (3495)
pp→ γt̄(+2j) atopbar 0.27 4770857 (2707)
pp→ Zt(+2j) ztop 0.26 3213475 (2554)
pp→ Zt̄(+2j) ztopbar 0.15 2741276 (1524)
pp→ tt̄tt̄ 4top 0.0097 399999 (96)
pp→ tt̄W+W− ttbarWW 0.0085 150000 (85)

Table 10.2 A list of SM processes in the background sample with cross section
and number of events in both the raw generated count and also scaled to 10fb−1

of luminosity at 13 TeV CoM energy [226].

10.5 Details of the Monte Carlo Simulation

The events were generated at leading order using Madgraph v6.3.2 with the
NNPDF PDF set [227] and the 5 flavour proton scheme at 13 TeV CoM energy.
The events were then fragmented/hadronised utilising Pythia 8.2 with MLM
matching. Detector effects were included using Delphes 3 with a modified
version of the ATLAS detector card.
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10.6 Results

The important results of this study come in two parts, the first being the
standard approach of applying various anomaly detection algorithms - isolation
forest, Gaussian mixture model, autoencoder and VAE - to the raw data of each
event. The second set of results are motivated by the fact that the latent space
of the VAE is a lower dimensional encoding of the input data; theoretically
it contains all the required information about the input data to still allow
for decoding, but no excess information. It is believed that other anomaly
detection algorithms, which often suffer from the curse of dimensionality, will
perform better when applied to the latent space of the VAE. So we do exactly
this and apply the isolation forest, Gaussian mixture model and autoencoder to
the latent space of the VAE and compare the result to the results on raw data.

10.6.1 Raw Data

Fig 10.1 displays the anomaly score distributions for the background and signal
using the four different algorithms on the 1 TeV gluino benchmark. Note that it
has a logged y-axis and the background distributions while plotted individually
are stacked and scaled correctly to cross section. This plot provides measure
of how well the signal is identified as anomalous by observing how far to the
right the signal curve is relative to the background. In this case the extreme
kinematic differences of the particles produced by their very high mass gluino
(relative to the SM) allow for easy identification of signal anomalies, and the
performance is only restricted by the low signal cross section. In Fig 10.2, we
see the same plot for the 404 GeV stop quark pair benchmark. In this case,
the model is far less kinematically different due to the lower stop mass, but
still sufficiently anomalous as the stop quark and top quark mass difference is
still high.

Figs 10.3 and 10.4 display the ROC curve for the isolation forest, Gaussian
mixture model, autoencoder and VAE applied to the gluino and stop bench-
marks respectively. The Z100 variable present in the legend is the z-score of
cutting on the anomaly score distribution at the the optimal bin that still
contains more than 100 background events. The inset plot is a magnification
at the value of the ROC for this Z100 cut on the VAE.

It is clear that the VAE is consistently the best anomaly detection algorithm
in almost all benchmarks, though in the stop benchmarks Gaussian mixture
models appear to outperform it. In the gluino benchmarks, the isolation forest
performs quite poorly though it performs much better on the stop benchmarks.
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It can be seen that the discrimination ability of every algorithm drops from
gluino 01 to gluino 06 and stop 01 to stop 04, which can be attributed to the
steeply falling cross section. However, the VAE still has no trouble correctly
identifying the anomalies in the data.

This implies that while the VAE is a powerful tool at finding anomalies it
may very well be constrained in its usefulness by low cross sections, though
this is also true of many other techniques, both classical and machine learned.

Fig. 10.1 Anomaly score histograms derived from various algorithms for the
Gluino 01 benchmark - a 1 TeV Gluino signal - with 36 fb−1 of luminosity [206].

10.6.2 Latent Space

Figs 10.5 and 10.6 display the ROC curve for the isolation forest, Gaussian
mixture model and basic autoencoder applied to the latent space of the VAE, as
well as the performance of the VAE alone for the gluino and stop benchmarks
respectively. The Z100 variable present in the legend is the z-score of cutting
on the anomaly score distribution at the the optimal bin that still contains
more than 100 events. The inset plot is a magnification at the value of the
ROC for this Z100 cut on the VAE.
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Fig. 10.2 Anomaly score histograms derived from various algorithms for the
Stop 01 benchmark - a 400 GeV stop signal - with 36 fb−1 of luminosity [206].

It is clear that our hypothesis was in fact correct, using the VAE latent
space as input to the other anomaly detection algorithms does greatly improve
their performance, almost to the extent that they become equivalent to the
VAE performance on the gluino benchmarks. In the Stop 01, Stop 02 and
Stop 03 benchmarks the autoencoder and GMM actually outperform the VAE,
though this is not true for Stop 04 perhaps because of the reduced cross section.
This is both proof that the VAE is extremely effective at encoding background
events to the latent space, and that the major stumbling block for the isolation
forest, Gaussian mixture models and static autoencoder is the dimensionality
of the input data.

Conclusion

The key result of this work is the power of the Variational Autoencoder in effec-
tively encoding the SM backgrounds. This study utilised a huge swathe of back-
ground processes which cover the vast majority of non-negligible backgrounds
and an enormous amount of events making it a very realistic representation
of the performance of anomaly detection on ATLAS data. It is a powerful
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Fig. 10.3 ROC curves for the gluino benchmarks for various anomaly detection
algorithms applied to original 4-vector data [206].

motivation for the adoption of signal agnostic searches by experimentalists
using unsupervised machine learning.

Furthermore, while the isolation forest and Gaussian mixture model algo-
rithms did not perform as well as the VAE, they are also much simpler models
with lower training time and memory consumption making them useful proto-
typing and testing tools. The static autoencoder was overall not particularly
useful as it sits in the middle ground of performance and high complexity, but
provides an interesting contrast to the more advanced VAE architecture.
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Fig. 10.4 ROC curves for the stop benchmarks for various anomaly detection
algorithms applied to original 4-vector data [206].

In the next chapter we will see another study utilising a VAE, except this
time it is a Convolutional VAE (CVAE) applied to images comprised of the
detector response of the planned XENONnT dark matter direct detection
experiment.
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Fig. 10.5 ROC curves for the gluino benchmarks for various anomaly detection
algorithms applied to the VAE latent space [206].
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Fig. 10.6 ROC curves for the stop benchmarks for various anomaly detection
algorithms applied to the VAE latent space [206].





Chapter 11

Publication 4: Convolutional
Variational Autoencoders for Dark
Matter Direct Detection

Abstract

The dark matter sector remains completely unknown. It is therefore crucial to
keep an open mind regarding its nature and possible interactions. Focusing on
the case of Weakly Interacting Massive Particles, in this work we make this
general philosophy more concrete by applying unsupervised machine learning
techniques to dark matter direct detection experiments. We do this by encoding
and decoding the signal images in the photomultipliers of the XENONnT
experiment with a convolution variational autoencoder. Any increase in the
reconstruction loss with respect to just background is interpreted as an anomaly
which deserves further investigation. We find that indeed our designed network
is able to discriminate background with and without a dark matter signal on top
at the 95% CL. Once a dataset is classified as anomalous, supervised analysis
techniques become useful, which are intended to be analysed in a subsequent
study.

11.1 Introduction

The nature of dark matter (DM) is one of the most puzzling problems of the
Standard Model of particle physics. In recent decades a lot of work has been
developed on the theory side to propose viable DM candidates. Among them,
Weakly Interacting Massive Particles (WIMPs), although they have lost some
momentum due to the absence of new physics signals at the LHC (e.g. no news
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of low-energy Supersymmetry), remain a well-motivated option. Similarly, from
the experimental side, impressive sensitivity has been reached, for example
looking for the scattering of WIMPs in underground detectors, in what is
known in the community as DM direct detection (DD). In the coming years an
unprecedented experimental effort will be able to test large regions of the DM
parameter space, especially with ton-scale noble gas experiments using xenon
(PandaX [228], XENON1T [229], LZ [230] and ultimately DARWIN [231]) and
argon (DEAP-3600 [232], DarkSide and Argo [233], ArDM [234]). In addition,
the DAMA annual modulation signal will be tested in a model-independent way
with several experiments using sodium iodine (COSINE [235], ANAIS [236],
COSINUS [237] and SABRE [238, 239] in the southern hemisphere).

Model independent searches are an area of research that attempts to
parametrise the concept of anomalous data. The key to this approach is
to train a model to successfully capture the information contained within a
background dataset such that data points that don’t conform to the properties
of the background can be identified. In this study we train a convolutional
variational autoencoder (CVAE) on a data set of composite images containing
the detector response and S1/S2 channels of simulated electron recoil events
from the XENONnT dark matter detector. We then apply the trained CVAE
to simulated WIMP events and show that the reconstruction loss for these
events is on average higher, serving as a measure of anomalousness. While
unsupervised methods such as this will likely never outperform supervised
classification methods they are still powerfully motivated by their ability to
identify events which are not background-like in a way that is agnostic to all
signal models. In a context such as dark matter where the parameter space of
possible models is extremely large the ability to find any anomalous events is
helpful in motivating future studies, as well as identifying unknown systematic
errors.

Machine learning approaches are a growing area of research in the physics
community however their applications in dark matter are to some extent lagging
behind. Supervised ML was applied in Ref [240] where a convolution neural
network was applied to XENON1T detector response images of WIMP signal
events and nuclear recoil background events achieving classification accuracy
of above 90%. In Ref [241] a two-phase CNN architecture undertaking first
classification and then regression was used to map 3D galaxy distributions to
their underlying dark matter distribution. In Ref [242] one can see gradient
boosted trees used to model dark matter halo formation. Similarly, in Ref [243]
a deep CNN architecture is used to model halo formation.
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In the collider physics context many studies have been published in recent
years that attempt to parametrise the concept of anomalousness in data using
unsupervised machine learning - see Refs [201–203, 244, 204, 205, 245–249, 225,
250, 206]. These studies employ a variety of different methods in a number of
different ways, of particular relevance to this paper are Refs [204] and [206]
which employ a variational autoencoder on simulated events of the CMS and
ATLAS detectors respectively.

This paper will be structured as such: Section 11.2 will review the method-
ology by which time projection chamber (TPC) events are reconstructed at
XENONnT and Section 11.3 will then cover the Monte Carlo methods by which
events are simulated and combined into images for analysis. Section 11.4 will
provide background on the concept of a variational autoencoder and convo-
lution, followed by Section 11.5 where we present our specific convolutional
variational autoencoder architecture. Finally in Section 11.6 we present the
results of this study and conclude in Section 11.7.

11.2 TPC Event Reconstruction in the XENON
Experiment

In this work we will simulate background and signal events for the XENONnT
experiment located in the Gran Sasso National Laboratory. XENON1T has
been running for some time and is to be superseded by XENONnT. The latter
uses a dual-phase time projection chamber with 8 tons of natural xenon, of
which around 6 tons constitute its fiducial volume. It consists of a liquid xenon
target with a gaseous phase on top, with an applied electric field throughout
the detector. The detector has two arrays of around 250 photo-multipliers in
each of the top and bottom layers. It is embedded in a water tank, with muon
and neutron vetos.

The main electronic background comes from gamma rays, being generated
in the cryostat and in the PMTs. The detection technique makes use of both the
prompt scintillation signal or S1, and the scintillation created from the drifted
electrons due to the electric field (ionisation signal, or S2). Fiducialisation of
the detector is possible thanks to a full 3D position reconstruction by using
both the time delay between S1 and S2 signals, as well as the number of photons
seen by each PMT (e.g. the hit-patterns). The key discrimination parameter to
distinguish background (electronic recoils in this context1) from signal (nuclear

1Recently the XENON1T Collaboration reported an excess in electron recoils over known
backgrounds at low energies that could be interpreted as dark matter in the form of solar
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recoils) is the S2/S1 ratio, which is larger for electron recoils than for nuclear
recoils.

For our purposes, it is important to emphasise that this constitutes the main
discriminating power between nuclear and electronic recoils, and therefore the
classification accuracy achievable by the neural network should be independent
of the DM properties (i.e. the DM mass) as long as enough signal events in the
relevant energy window are observed.

11.3 Data Generation

To generate the image event samples used for this signal/background classifi-
cation we primarily follow the methodology of Ref. [240] and point readers to
their github repository [252] for detailed information about event generation.
In a similar fashion to this reference we utilize wimprates [253] to generate
energy spectra for an ensemble of WIMP masses ranging from 10 GeV to 1 TeV
all with a spin-independent interaction cross-section of σ = 10−45cm−2. Given
that the classification analysis is done on an event-by-event basis, the coupling
strength of the WIMP-nucleon interaction is irrelevant, and so the cross-section
simply serves as an overall normalisation factor for the Monte Carlo (MC) event
sampling. The ER background spectra are contained within wimprates and are
empirically determined using the polynomial fit detailed in Ref. [254]2. These
spectra are then parsed to laidbax [255] which performs the MC generation of
events, effectively sampling from the given energy spectrum producing detector
observables for each event. The physically relevant variables taken for the
analysis are recoil type (NR or ER), and corresponding S1, S2 signals as several
auxiliary parameters. The model output from laidbax was then passed into
PaX (Processor for analysing XENON) [256], which generates images of the
largest S1 and S2 peaks as well as the hitpatterns for the top and bottom
PMTs. Ref. [240] concluded that classification accuracy was maximised when
the S1 and S2 hitpatterns and largest S1 and S2 peak graphs were displayed in
the images. Generating images in this manner meant that only information
unique to each WIMP or ER event were present, effectively increasing the
robustness of classification. We assume that irrespective of the architecture
used, the composite hitpattern + peak images yield the best classification
accuracy. Examples of an ER background event and a WIMP event are shown

axions [251]. In this work we consider the standard case of a signal produced by WIMPs
scattering on nuclei.

2It should be noted that the ER model used in laidbaxis not the official model XENON
collaboration, which includes several more systematic uncertainties.
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in Fig. 11.1. In each of the four images the top-left component represents a
view of the detector from below, the top-right component represents a view
of the detector from above and the bottom-left and bottom-right components
represent the S1 and S2 distributions respectively.

11.3.1 Image Pre-processing

For training we generate an ensemble of 10000 WIMP and 10000 ER images.
WIMP images correspond to masses uniformly distributed in the range 10 GeV
to 1 TeV. To make training manageable for the various architectures presented
in this work, the images are scaled down from their original 800×800 resolution
to 75 × 75 pixels. For the CNN analysis and validation we find that this
resolution gives optimal classification accuracy as opposed to 64× 64 which is
often adopted as an industry standard. In Fig 11.1 we can see examples of an
ER and WIMP event both before (left) and after (right) lowering the image
resolution.

11.4 Convolutional Variational Autoencoders

Autoencoders are neural networks that attempt to return output that is identical
to their input. This is done to produce an encoding of the input data for the
purposes of dimensional reduction, feature learning and to produce generative
models.

Fig 11.2 presents a simple example of an autoencoder. There are 8 input
nodes followed by three hidden layers of 4, 2 and 4 nodes and then an output
layer of 8 nodes. The middle layer is known as the latent space, and is the
encoding of the input information to a lower dimensional representation. The
error is defined as a reconstruction loss, commonly mean squared error:

L =
1

N

N∑
i

(xi − yi)
2 (11.1)

where x is the input vector and y is the output vector and N is the number of
samples (generally the batch size).

Variational Autoencoders (VAEs) are more advanced autoencoders in that
we add to the latent space two additional vectors - a vector of means and a
vector of variances of normal distributions. Rather than encoding the input
vector onto a lower dimensional vector of real numbers, we encode the input
information onto a set of Gaussian distributions which are then sampled from
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Fig. 11.1 Top: An example of an 800×800 electron recoil event image before
(left) and after (right) reducing the resolution to 75× 75. Bottom: Same but
for a WIMP (653 GeV) event.

and this sample is decoded to produce an output vector. These distributions
serve to “cover” the latent space with smooth distributions, which provides a
much better representation of the input space.

It is found that when a VAE with a standard reconstruction loss such as mean
squared error is trained it simply converges to Gaussians with extremely small
variances (delta functions) or extremely disparate means (poor coverage of the
latent space) and thus the VAE performs exactly like a standard autoencoder.
The reconstruction loss can be regularised by penalising distributions that are
different from standard normal distributions. This is done by addition of the
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Fig. 11.2 An example of a simple autoencoder.

Kullback-Leibler divergence to the reconstruction loss as seen below:

L =
1

N

N∑
i=0

(xi − yi)
2 + βLKL (11.2)

where, for a latent space of K standard normal distributions we have the special
case of:

LKL =
K∑
i=0

σ2
i + µ2

i − log(σi)− 1 (11.3)

which is clearly minimised for σi = 1 and µi = 0. The β factor is a parameter
of O(1) that scales the overall importance of the KL divergence relative to the
reconstruction loss [219]. The default β = 1 is the definition for a standard
VAE.

A Convolutional Variational Autoencoder (CVAE) is a VAE architecture
which utilises convolutional layers to optimise feature extraction from im-
ages and reduce the dimensionality of inputs. For a full discussion of image
convolution in the context of machine learning see [257].
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11.5 Architecture

Our autoencoder architecture consists of a 75 × 75 × 3 input layer, followed
by three convolutional layers each with 128 filters, 3 × 3 kernels and stride
lengths of 3. Each convolutional layer uses LeakyRelu activation with α = 0.05,
motivated by the hyper-parameter tuning undertaken in Ref [240]. The last
convolutional layer is flattened and encoded onto latent space which consists of
512 nodes, corresponding to 256 means and 256 variances, before being decoded
via a reflection of the encoder using convolution transpose with “same” padding.

11.6 Analysis and Results

We train the network for 200 epochs on 8000 electron recoil event images in
mini-batches of 100 and test on 2000. The total loss and reconstruction loss per
epoch can be seen in Fig 11.3. Both training and testing appears to converge
with similar performance and overtraining does not appear to be an issue.
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Fig. 11.3 The reconstruction loss per epoch for the training and testing sets
for the CVAE.

We then apply the now trained CVAE model to a dataset of 10, 000 WIMP
events with a mass of 500 GeV to assess the level of increased reconstruction
loss, the results scaled to unit area can be seen in Fig 11.4. It can be seen that
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the image reconstruction of the WIMP events is worse than the electron recoil
events implying that the network is learning something fundamental about the
electron recoil events that is not present in the WIMP events.
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Fig. 11.4 Normalised reconstruction loss distributions for the electron recoil
(background) sample and a 500 GeV WIMP particle (signal).

We also apply the network to a sample of “pseudo-data”, a mock dataset
created by injecting the WIMP signal events into a dataset of electron recoil
events. The ER and 500 GeV WIMP events are correctly weighted to their
realistic cross sections given an arbitrary exposure, in this case 5 years. We
expect to see a pseudo-data distribution that matches the electron recoil
distribution to a high degree in the low reconstruction loss area of the plots (the
left) but with excesses seen in the high reconstruction loss areas of the plot (the
right). This is presented in Fig 11.5 - where a binned χ2-test results in a p-value
of 0.008 implying we can reject our null hypothesis (that the distributions are
the same) at 95% confidence.

11.7 Conclusion

In this study we presented an example of a model independent search for
anomalous dark matter direct detection events using a convolutional variational
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Fig. 11.5 The reconstruction loss distributions for the electron recoil (back-
ground) sample and the pseudo-data sample normalised to realistic expected
event count for 5 years exposure.

autoencoder (CVAE). The planned XENONnT experiment was used as a test-
bed for this methodology wherein a set of composite images including the
detector response and S1/S2 channels were used as input data. The CVAE
was trained on a set of electron recoil background events, learning to encode
the input images onto a smaller dimensional latent space, then decoding from
this latent space back to the original image. The reconstruction loss is defined
as the difference between the pixel information of the original image and the
decoded image. The loss is thus a proxy for anomalousness as images that do
not conform the the general behaviour and distribution of background events
will inherently produce higher reconstruction losses as the network has not
learned the properties of these events.

We demonstrate that the network would be able to show that a dataset
containing a 500 GeV WIMP particle with a realistic cross section relative
to the electron recoil background would have an excess identified at 95%
significance. Note that this form of model independent search would provide
us no information of what model was generating the excess of anomalous high
reconstruction loss events but would indeed motivate further investigation into
this area.
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As a final note we draw attention to another well known use of generative
models such as variational autoencoders - that of latent space sampling. As
the latent space is a lower dimensional representation of the properties of the
input dataset by sampling from the latent space randomly we can generate
new events. This is an on-going and promising area of research, for example in
Ref [225], as it is far more computationally efficient to sample from a latent
space than to perform Monte Carlo. In the case of this study the input data
are images, and the pixel information of these images presents an extremely
large input space which makes latent space sampling quite difficult. However
using generative models in place of Monte Carlo when the model utilizes raw
detector data as inputs is an interesting avenue of research.
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Chapter 12

Conclusion

In this thesis we have explored many different avenues for searches for new
physics in the context of particle colliders, in particular the ATLAS detector at
the LHC.

We began with an overview of the Standard Model and the various gauge
theories that it is comprised of, as well as the particle content therein. We
then explored a number of beyond the Standard Model theories, in particular
charge-parity violating top-Higgs couplings, the two Higgs doublet model and
the minimal supersymmetric model, all of which are pertinent to the contents of
the published studies presented in this thesis. We then gained an understanding
of the detector environment including the technology and terminology in the
context of the ATLAS detector and the LHC. Next, we presented an end-to-
end pipeline of an extremely common form of particle physics study from the
calculation of Feynman rules, to full detector level Monte Carlo and finally
analysis of data with both manual cut flow methods and more advanced
supervised machine learning methods.

All of these chapters provided a firm footing to foster understanding of
the next three chapters which are comprised of three published studies. The
first was motivated by the incredibly high boosting of the cross section of
processes that contain three top quarks that can be found with very reasonable
choices of parameters in the two Higgs doublet model and as a result we set
strong constraints on parameters of this model. The next study explored
the phenomenology of a charge-parity violating coupling of the top quark to
the Standard Model Higgs boson, the consequences of which lead to large
modifications of the angular variables of the decay products of the top quark
in the process pp → tjh. In this study we also employed a boosted decision
tree analysis which could lead to a large improvement on current constraints of
the level of charge-parity violation in this coupling. The last of these studies
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explored the size of quantum scattering interference in the process pp→ tb̄H−

in the context of the minimal supersymmetric model. For two different points
in the parameter space of this model we can see large, non-negligible levels of
interference which are not captured by standard analysis methodologies.

After this we change gears to a novel set of techniques in the field of particle
physics - anomaly detection. These techniques stand in stark contrast to the
preceding content of this thesis in that they do not seek to discover events
that appear to come from a particular signal model but instead search for
events that appear to be unlike background events, that is to say events that
do not look like Standard Model. We present an overview of a number of
algorithms that seek to do exactly this. In the following chapter we explore an
in peer review study that applies these techniques at a very sophisticated level
and with a wide variety of different Standard Model backgrounds and a huge
number of events. This study is a very convincing example of the power of these
methodologies - especially that of variational autoencoders. Finally another in
progress study is presented that applies these same techniques in the vastly
different environment of the planned XENONnT dark matter detector, wherein
we use images of the detector response as inputs to a convolutional variational
autoencoder and find great success in effectively modelling the electron recoil
background of this detector.

The field of modern physics has not discovered a new particle since the
2012 discovery of the Higgs boson. This length of time without a major
discovery in particle physics is small when compared to many of the particle
droughts of physics history, however it is disappointing in that the current
scale of experimental hardware that exists today is breathtaking compared to
physics history. Supervised machine learning methods will always be powerful
windows into particle physics data but it is certain that the development of
novel anomaly detection techniques will be an integral part of the experimental
and theoretical physics tapestry going forward. Perhaps, hopefully, we may
even be able to re-visit some of the territory that we have already “ruled out”
and find something that we missed. In either case the continued development
of data science techniques will lay at the heart of the pursuit for new physics.
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