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Abstract

Nanoelectrospray ionisation (nESI) is a useful technology for assessing the chemical com-

position of various liquid samples using mass spectrometry (MS). Significant efforts have

been made in the design of nESI emitters, as their shape and geometry are critical to

the electrospray performance and subsequent MS detection. In the actual manufacturing

of these emitters through the heat and draw process, the desired geometry cannot, at

present, be achieved. In particular, the inner channel reduces in size, which is not desir-

able. To improve the sensitivity of biological and chemical mass spectrometry and avoid

clogging of the tip, a small near-uniform bore of 10 - 20µm is desirable with the external

wall tapering over a length of around 5mm from 75 - 150µm in radius to a sharp end with

a radius around 8 - 15µm.

Through mathematical modelling, we demonstrate, for the first time, the feasibility

of producing such emitters using the heat and draw process with the addition of pressure

in the channel to prevent any reduction in size. In this thesis, we consider the unsteady

problem of heating and pulling of an axisymmetric cylindrical glass tube, using asymptotic

methods to exploit the slenderness of the tube and over-pressure applied within the inner

channel, to form tapers with a near uniform bore and small wall thickness at the tip. This

is an unsteady extensional flow problem. As the glass temperature increases, the viscosity

reduces until the central heated region extends and thins rapidly to yield an hour-glass

xix
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shape. During stretching, the cross-sectional geometry will also deform under the effects

of surface tension and applied pressure, with the pressure counteracting the closure of

the channel by surface tension and, perhaps, further expanding it. When cooled and cut

transversely at the centre, two identical tapered capillaries are obtained.

In this thesis, we assume molten glass is a Newtonian fluid, and develop coupled flow

and energy models to examine in detail the influence of the process parameters on the

geometry, namely the pulling force, pressure, temperature, and surface tension. The use

of an over-pressure in the channel, to counteract the reduction in its size as the cross-

sectional area decreases due to pulling and the channel closes due to surface tension, is

of particular interest. The model and solution method described in this thesis enable

determination of a pulling force, channel over-pressure, and draw time to achieve tapers

with the desired internal diameter and wall thickness at the very tip from a given tubular

fibre for a temperature dependent viscosity.



Chapter 1

Introduction

In the current field of medical research, tapered glass tubes have a broad variety of applica-

tions — tapered optical microscopes, glass microelectrodes, nanopipettes, microneedles,

nanoelectospray emitters, and optical fibres (Gallacchi et al. 2001, Huang et al. 2007, Mor-

ris et al. 2010, Yadav et al. 2020, Gibson et al. 2009, Fitt et al. 2001) to name but a few.

The detection and recognition of macromolecules is one of the most demanding activities

in different fields of science. Due to its high resolution and speed, mass spectrometry

(MS) is often used to determine chemical composition, bio-molecular structures, and for

identification of unknown chemicals within samples. Electrospray ionisation (ESI), is a

technique that generates a small spray of charged droplets (in the form of an aerosol) from

the tip of a tapered capillary having a small diameter channel, known as an emitter, by the

application of a high voltage electric field (Figure 1.1). This technique has revolutionised

the use of ionisation in the investigation of bio-molecules such as peptides and proteins

since its introduction for MS by Malcolm Dole in 1968 (Dole et al. 1968). As opposed to

other analytical approaches, electrospray ionisation mass spectrometry (ESI-MS) is fast,

sensitive and accurate. ESI generates single or multiple charged ions that can be collected

1
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Mass
spectrometer

chemical
solution

+kV

emitter tip

charged droplets

Figure 1.1: Schematic of ESI-MS technique

and analysed by a mass spectrometer. A detailed description of ESI-MS is given by Wu

(2012). A mini-review of the process and some clinical applications are summarised in

Ho et al. (2003).

One key factor affecting the ionisation efficiency of the ESI is the emitter tip, from

which the fluid escapes, which usually tapers to a sharp tip. One way to improve ionisation

efficiency is to reduce the size of the emitter tip (Sander & Elisabeth 2007). When

the whole tip diameter is lowered to a few micrometres, significantly smaller charged

droplets are produced by lowering the total flow rate to the nanoelectrospray regime

(1,000 nL/min), which reduces sample consumption and increases sensitivity (Gibson

et al. 2009, Wilm & Mann 1996). The first nanoelectrospray ionisation emitter (nESI)

created by Wilm & Mann (1994) was a gold-coated glass capillary with a tip of around 1

- 3µm. It has been established that at these flow rates, the geometry of the nESI emitter

tip is critical to creating small droplets for sensitive MS detection (Sander & Elisabeth

2007) . However, emitters frequently experience problems with clogging (Gibson et al.

2009, Wu 2012).

Various tapering methods have been employed for the development of emitters from
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glass tubes of 150 − 300µm initial outer diameter, including grinding of one end of the

tube to the desired dimension at the tip (Kriger et al. 1995, Kusỳ et al. 2007, Tycova

et al. 2016), and chemical etching (Kelly et al. 2006). The focus of this thesis is the heat

and pull method (Valaskovic et al. 1995, Yuill et al. 2013), whereby a short segment of

the glass tube is heated in the middle while it is pulled from either end so that it thins

over the heated region to an hour-glass shape which can be cut to yield tapered emitters.

The heating can be effected using a flame (Hannis & Muddiman 1998), a laser Wilm &

Mann (1996), or an electric discharge between two electrodes Ek & Roeraade (2011). The

tapering process results in a reduction in the diameter of the inner channel which can

lead to clogging of the emitter tip when in use (Kelly et al. 2006). Moreover the internal

channel can entirely close during the heat and pull process, which might be rectified by

cutting off a portion of the tip (Hannis & Muddiman 1998). This process often requires

a series of experiments to set the pull parameters in order to obtain emitter tips with a

suitable geometry and the usual process always yields emitters in which the inner channel

decreases in size towards the tip, which is not ideal to preserve the continuous flow of

the fluid. Recently, there has been considerable interest in the application of pressure to

prevent a decrease in size of the channel and produce a taper with uniform inner channel.

Such emitters are required for nano-electrospray ionisation (nESI) mass spectrometry to

improve the sensitivity in analysis of liquid samples.

The focus of this thesis is using mathematical modelling to evaluate the possibility

of the manufacture of tapered capillaries with (near) uniform bore, using the heat and

pull method with pressurisation of the channel. To improve the sensitivity of biological

and chemical MS and avoid clogging of the tip, a small near-uniform bore of 10 - 20µm

(radius 5− 10µm) is considered desirable with the external wall tapering over a length of

around 5mm from 75 - 150µm in radius to a sharp end with a radius around 8 - 15µm.
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The desired geometry with a near-uniform bore and a sharp tip cannot be achieved using

the existing fabrication process of heat and draw as the inner channel diameter decreases

in size, along with the outer diameter. As a result mathematical modelling is needed

to determine whether or not these emitters can be fabricated using the heat and draw

process, where pressure is used to stop closure of the internal channel. This is an unsteady

extensional flow problem. As the glass temperature increases, the viscosity reduces until

the central heated region extends and thins rapidly to yield an hour-glass shape. During

stretching the cross-sectional geometry will also deform under the effects of surface tension

and applied pressure, with pressure counteracting the closure of the channel by surface

tension and, indeed, further expanding it to reverse the reduction in the channel size

brought about by stretching. When the capillary breaks at the centre under the pulling

force (or otherwise if it is cut there), two identical tapered capillaries are obtained.

1.1 Literature review

A closely related process to the unsteady capillary stretching we consider in this study

is manufacture of glass micro-electrodes from axi-symmetric tubing by the heat and pull

process, essentially identical to that described, excepting that no over pressure is applied

in the inner channel. This was studied by Huang et al. (2003, 2007) for both fixed

and variable pulling forces using a coupled flow and temperature model which neglected

surface tension and, as already mentioned, did not include channel pressure in the inner

channel. It is just one application of a class of extensional flow problems that have received

significant attention, particularly in the last 30 years, which concern the stretching of a

slender cylinder to form a long thin fibre/thread. Other applications include the spinning

of textile threads, rheological measurement, and the manufacture of optical fibres using
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fibre drawing. The process of fibre drawing is used in the fabrication of optical, polymer

and textile fibres. The fluid mechanics of both fibre drawing and capillary stretching has

been studied mathematically over the past 50 years.

Matovich & Pearson (1969) were the first to derive and use a one dimensional model to

investigate the quasi-steady spinning of axisymmetric textile threads having no internal

structure. More recent similar models include Wylie & Huang (2007) and Wylie et al.

(2007). The quasi-steady drawing of tubes, with an over-pressure inside the tube but

neglecting surface tension, was first investigated by Pearson & Petrie (1970), again using

a one dimensional model, in studying the blowing of tubular films. Motivated by the

steady-state drawing of microstructured optical fibres in a draw tower, Fitt et al. (2001,

2002) exploiting the slenderness of the (axisymmetric) capillary, developed an asymptotic

model of capillary drawing and undertook a preliminary examination of the competition

between surface tension and over-pressure in the tube. Asymptotic studies of unsteady

stretching of axisymmetric viscous threads by pulling of the ends or under gravity include

Dewynne et al. (1989), Stokes et al. (2000, 2011a), Stokes & Tuck (2004), Bradshaw-

Hajek et al. (2007), Wylie & Huang (2007), Wylie et al. (2007, 2011, 2016), Howell et al.

(2007) and Wylie et al. (2015). All of this work assumed negligible surface tension and a

viscosity that is constant or varies axially in a prescribed manner.

A formal derivation of the asymptotic fluid-flow equations for unsteady drawing of

nonaxisymmetric fibres was first given by Dewynne et al. (1992) assuming negligible inertia

and surface tension and a viscosity that is at most a function of time or axial position.

This work showed the simplification of the solution process brought by moving from

the laboratory Eulerian reference frame to a Lagrangian reference frame, and formally

demonstrated that, in the absence of surface tension, the shape of the cross-section will

be preserved though it may change in scale and rotate. This model was later modified to
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include inertia, with inclusion of surface tension and its role in changing the cross-sectional

shape briefly discussed (Dewynne et al. 1994).

Cummings & Howell (1999) developed a model built on that of Dewynne et al.

(1994) and including surface tension and constant viscosity to develop a leading order

model of steady fibre drawing (for solid non-axisymmetric geometries) comprising a one-

dimensional ODE problem for axial stretching along with a two-dimensional Stokes flow

problem for the flow in the cross-section. They identified the significant concept of ‘re-

duced time’ to modify the kinematic condition (condition on free boundaries) in the cross

plane problem to make it a classical two dimensional Stokes flow problem driven by unit

surface tension which can be readily solved. Griffiths & Howell (2007, 2008) applied this

model to steady drawing of non-axisymmetric thin-walled tubes subject to surface tension

but with no pressurisation of the internal channel. They also added temperature to the

model, assuming temperature to be uniform in the cross-section. Stokes et al. (2014)

extended the model to fibres of arbitrary geometry; a key finding of this last work is the

ability to express the axial stretching problem in terms of the reduced time variable of

the cross-plane problem so that both axial and cross-plane problems can be solved inde-

pendently to describe the final fibre geometry. They also showed that, for steady fibre

drawing where only the geometry of the initial preform and final fibre are important, not

the geometry through the entire neck-down region from preform to fibre, measurement of

pulling tension obviates the need to model temperature.

During glass stretching the surface tension acts to close the internal structures whereas

internal channel pressurisation can be useful to counteract surface tension and to keep the

holes open. A number of authors have studied the effects of pressure in controlling the

final fibre geometry numerically and experimentally. Fitt et al. (2001, 2002) considered

axisymmetric tubes with pressurisation of the internal channel in the absence of surface
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tension, and both surface tension and pressure for channels of small diameter. Luzi et al.

(2010) performed full three-dimensional simulations and validated these using experimen-

tal data. Griffiths & Howell (2007) proposed that holes of small diameter can be preserved

through the balance between surface tension and pressure but did not demonstrate this.

Voyce et al. (2009) showed that sealing the ends of the tube can be used to pressurise the

air channels. This is called ‘self-pressurisation’. Chen et al. (2015) considered the active

pressurisation of the channels without sealing the ends of the fibre, extending the model of

Stokes et al. (2014) to develop a model for fibres of arbitrary geometry in which the axial

stretching and cross-plane problems are fully coupled. They have shown mathematically

and experimentally that channel pressurisation can be used to modify internal geometry

of the fibres that would otherwise close due to surface tension. While the competition

between surface tension and over-pressure has been considered in some detail for steady

fibre drawing (Chen et al. 2015), this remains to be done for unsteady fibre drawing and

it is this problem that is addressed in this thesis in order to determine whether emitters

for mass spectrometry with (near) uniform bore can be manufactured by the heat and

pull method.

Temperature and thus the viscosity plays an important role in the deformation process.

Since viscosity decreases greatly with increasing temperature, glass can be softened so

that manipulation is easy. For a complete model of steady or unsteady fibre drawing

either the viscosity must be known or a temperature model must be coupled to the flow

model and a temperature-viscosity relation known. Fitt et al. (2002) and Griffiths &

Howell (2008) derived temperature models assuming the leading order temperature to be

uniform in a cross-section. Yarin (1986) studied the effect of heat exchange with external

environment. A complete formal derivation of the temperature model, demonstrating

leading-order uniformity in the cross-section, is given by He et al. (2016) for unsteady



8 Chapter 1. Introduction

stretching of axisymmetric threads and by Stokes et al. (2019) for steady drawing of

fibres with arbitrary geometry with non-negligible surface tension.

Considerable research has been undertaken into unsteady stretching of axi-symmetric

viscous threads by pulling of the ends or under gravity including Dewynne et al. (1989),

Stokes et al. (2000, 2011a), Stokes & Tuck (2004), Bradshaw-Hajek et al. (2007), Wylie

& Huang (2007), Wylie et al. (2007, 2011, 2016), Howell et al. (2007) and Wylie et al.

(2015). All of this work assumed negligible surface tension and a viscosity that is constant

or varies axially in a prescribed manner. Mathematical modelling of unsteady stretching in

gravitational extrusion is discussed with experimental results in Tronnolone et al. (2017)

for a slender fluid cylinder of arbitrary shape. This study has similarities to the present

study but, in our study, we set the gravitational force to zero, pull with a horizontal force,

and use pressure to control the inner channel.

While some of the work on steady fibre drawing is applicable to unsteady fibre stretch-

ing, new work is required to handle the mathematical details of the unsteady stretching

process as it is necessary to consider the changes of different physical variables over time.

In steady fibre drawing, the primary focus is on the initial (preform) and final fibre geom-

etry that is pulled with a given draw ratio (the ratio between the draw speed to the feed

speed) over a fixed length called the “neck-down” region. The temperature distribution

along the length of the neck-down region is unimportant, and the analysis can be per-

formed using a mean temperature/harmonic mean of the viscosity along the length of the

neck-down region (Stokes et al. 2014, Chen et al. 2015). In contrast, the geometry along

the neck-down/heated region is of importance in our study to obtain a desired emitter

geometry, and therefore the problem is more complex with the interdependence of the

viscosity (or temperature) and the fibre geometry of great interest. Thus determining the

final geometry of the emitter necessitates solving of coupled flow and energy balance mod-
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els. Further while Chen et al. (2015) used internal channel pressurisation to prevent hole

collapse because of surface tension, in this study, internal channel pressurisation is used

with the aim of preserving the internal channel diameter at the initial value throughout

the entire length of the emitter, which in fact cannot be guaranteed by the application of

pressure alone but rather by the balance of other parameters.

Thus, in this project, we will study the fabrication of glass tubes with uniform bore

radius (without hole collapse) when subjected to heating and pulling with the use of over

pressure in the channel to counteract reduction in size as the cross-sectional area decreases

during the fabrication process. From the above literature review, it is clear that although

both fluid flow and temperature models have been considered, surface tension is generally

neglected in the unsteady setting. Moreover, the temperature gradient through the fibre,

the balance between pressure and surface tension and use of pressure to control the cross-

sectional geometry in the context of maintaining the bore radius in an unsteady setting

have not been explored and this is our interest. Past work done on asymptotic modelling

of steady and unsteady fibre drawing is expanded for application to the fabrication of

hollow-core tapers (where the core diameter is, typically, less than 100 micrometres).

The proposed project aims to fill the above-identified gaps in the literature and to un-

derstand the impact of various operational parameters of the unsteady stretching process

on achieving the desired final geometry of the taper. Literature relevant to the explo-

rations of this thesis that are not here mentioned will be discussed throughout this thesis

where applicable.
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1.2 Research questions and objectives

Because of the small-scale nature of our problem, both modelling and experimentation

are complex to perform. In addition, the problem requires a variety of scales. The

characteristic axial scale, for example, is on the order of 1 mm, while radial variations occur

over a shorter range of 1 µm to 10 µm or even smaller. Because of the high temperatures

in the heater zone and the small fibre sizes involved, even experimental measurements

are complicated and time-consuming. Given the problem’s complexity, a mathematical

model is needed that incorporates the physics, to provide a deeper understanding of the

fabrication process and better setting of the control parameters to obtain the required

shape of the final fibre. This is expected to inform the development of a commercial

manufacturing process to produce emitters in the future and indicate the unique nature

of the research along with its positive, practical outcome.

Our research describes the process of tapering from the initial phase (solid glass tube)

to the final phase (emitter), ultimately predicting the final shape of the emitter, while

being able to mathematically explain the entire heating and drawing process with internal

channel pressurisation and temperature control to help advance the development of an

important new technology. The production of tapers with a uniform internal channel

diameter in particular requires an understanding of the interplay of the underlying physical

effects due to different parameters such as surface tension, pressure, pulling force and

temperature control.

In summary, the objectives of this thesis are:

1. to extend the current understanding related to the unsteady stretching of glass

tubes,
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2. to provide a mathematical model that describes the unsteady drawing of an axi-

symmetric glass tube with pressurisation in the internal channel for the heat and

draw process,

3. to develop a model which is useful to predict the practical aspects of the drawing

procedure, such as the fibre breaking point, parameters that lead to bursting, total

extension length, and final geometries with various parameters,

4. to predict control parameters to achieve the required shape.

More specifically, we are interested in finding answers to the following questions:

1. Is it possible to fabricate tapers with a uniform internal bore to an acceptable

tolerance by the heat and pull technique?

2. What are the key parameters that control geometry in the process of heat and draw?

3. Can a constant pressure and a controlled temperature variation be used to achieve

a desired taper?

4. Is the effect of surface tension important?

The mathematical analysis developed in this thesis enables examination of these ques-

tions and investigation of the interplay between temperature, pulling force, surface tension

and over-pressure in the inner channel on the geometry of the final emitter.

1.3 Methodology

To achieve the above objectives, we have employed a systemic approach that includes

theoretical, and numerical approaches followed by some experimental validation. In par-

ticular, we aim to solve coupled flow and temperature models under constant surface

tension with pressurisation of an internal air channel to alter the fibre geometry.
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The theoretical approach involves the development of a mathematical model of heating

and stretching of an axi-symmetric glass tube in the context of manufacturing emitters for

mass spectrometry. As previously mentioned, the existence of a sharp tip with a uniformly

preserved internal channel is desired in order to improve analysis of fluid samples by mass

spectrometry. According to the literature, the major parameters that characterise the

deformations of the geometry when drawing a capillary are surface tension, pulling force,

viscosity which depends on temperature, and pressure. Therefore, we have developed a

model to investigate the importance of these parameters and their effects on the final

geometry.

As the glass softens due to heating, it is referred to as “molten glass”, which can be

thought of as a very viscous fluid and is assumed to be Newtonian, as in the majority

of past work on modelling fibre drawing (Cummings & Howell 1999, Griffiths & Howell

2007, Stokes et al. 2014, Tronnolone 2016). The assumption that molten glass is an in-

compressible fluid is also widely held; it is thought to be accurate enough for practical

purposes. Thus, we assume that molten glass is an incompressible Newtonian fluid with

a temperature-dependent viscosity. Newtonian fluids have stress that is directly propor-

tional to the rate of strain. In this connection, the constant of proportionality is precisely

the viscosity. Newtonian fluids instantaneously relax upon application of a stress, regard-

less of its magnitude. For very viscous fluids such as molten glass, inertia can be neglected

as the flow is very slow. As a result, we use the Stokes flow model. In setting up the

problem we follow Dewynne et al. (1994) and develop asymptotic sub-models for fluid and

energy flow using the slenderness of the capillary. By this means we reduce the complexity

of the Navier Stokes equations by dropping the less significant terms, and obtain a model

which can be solved very efficiently. This approach has been used widely throughout the

literature for steady and unsteady drawing problems (Dewynne et al. 1994, Cummings
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& Howell 1999, Fitt et al. 2002, Griffiths & Howell 2008, Wylie & Huang 2007, Stokes

et al. 2014, Chen et al. 2015). We start by considering the drawing of glass tapers under

a fixed force, including pressure and constant surface tension similar to the steady fibre

draw model of Chen et al. (2015), but we adapt the work for unsteady drawing.

The complexity of our complete PDE model is such that it must be solved numerically

and for this we use the commercial software, MATLAB. Our model includes several input

parameters. Material properties are among the most important and unpredictable inputs.

While some of these properties were extracted directly from the literature, the others were

determined/estimated by matching to experimental data, provided by Dr A. Radionova,

an experimentalist at the Institute of Photonics and Advance Sensing (IPAS) at the

University of Adelaide, where the experiments were conducted. Since measurement is

difficult due to large temperature changes, the micro/nano scale nature of the problem and

limitations and inaccuracies in the equipment used, the experimental results contain error

and uncertainties. Nonetheless, the experiments provide valuable additional validation for

the model.

1.4 Summary

In summary, this thesis aims to improve the robustness and clogging resistance associated

with the traditional heat and draw method in fabricating tapered emitters by showing

that pressure in the internal channel might be used to reduce the tapering of internal walls

compared with the outer walls. Our principal objective is to derive and use a mathematical

model to investigate the interplay between temperature, pulling force, surface tension and

over-pressure on the geometry of the final emitter. It is important to note that the theory

developed here can be generalised and applied to a broader class of problems related to

extensional flow problems.
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1.5 Thesis structure

In Chapter 2, we develop a mathematical model for the unsteady heat and draw process

used for tapering of tubular glass fibres pulled with a constant force. An over-pressure

above atmospheric pressure may be applied within the internal channel. Considering the

slenderness of the tube, we use asymptotic methods to simplify the model equations that

will be applied throughout this thesis. We also discuss the method of generating numerical

solutions using a specified viscosity profile.

In Chapter 3 we show and discuss the numerical results from the model developed in

Chapter 2 using a viscosity that varies axially in a prescribed manner when the effects of

surface tension are significant in the flow. The model and solution method here described

enable determination of a pulling force, channel over-pressure, and draw time to achieve

tapers with a desired internal diameter and wall thickness at the very tip. Additionally,

we discuss the rationale behind the selection of various draw parameters, and the possible

limitations that may be encountered during the draw process, such as capillary bursting

or breaking, in parameter regimes relevant to emitter fabrication.

In Chapter 4, we discuss the scenario of having strong pressure effects compared with

surface tension in the transverse flow with numerical simulations for a prescribed viscosity.

This chapter also discusses a simplified flow model that can be solved analytically when

the effects of surface tension are negligible and shows when the effect of surface tension

might be neglected.

To complete our model development for an unsteady heat and draw process, a temper-

ature model must be coupled to the flow model and, in Chapter 5, we develop an energy

model assuming the glass is heated by a laser. We also give numerical solutions to the full

model including coupled flow and temperature, using a temperature-dependent viscosity.
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Following this, in Chapter 6, a comparison of numerical and experimental observations

is made first to determine unknown parameters after which further experiments were used

to validate the model. The puller used was not capable of applying pressure in the inner

channel so that the validation was performed for zero pressure.

The conclusions arrived at throughout the course of this study are summarised in

Chapter 7. This chapter also includes suggestions for future research.

We here note that a substantial amount of the work presented in Chapters 2 and 3 is

to be reported in an upcoming publication; see Ranathunga et al. (2022).



16 Chapter 1. Introduction



Chapter 2

Mathematical formulation of the

flow model

2.1 Introduction

The development of a mathematical model that describes the heat and draw process is

the first step towards obtaining a quantitative understanding of emitter fabrication. In

Section 2.2 of this chapter, we model the unsteady stretching of an axisymmetric glass tube

pulled by a fixed force under the assumption that the molten glass is an incompressible

Newtonian fluid. The glass tube typically has an internal diameter of about 10µm and

external diameter around 120µm. After stretching, this tapers down to a tip diameter

of around 20 - 25µm over a length of about 10mm, so that the wall thickness is very

small. Due to stretching and the effect of surface tension the outer and inner walls will

tend to narrow down to form a sharp tip during this process. We aim to maintain a

uniform inner channel by including internal channel pressure in our model similar to the

study by Chen et al. (2015). We introduce a small parameter for the slender geometry

17
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and apply asymptotic techniques to develop a leading order model which captures the

essential features of this process. In view of the extensive explanations already given in

the literature on modelling of similar processes we present only the principal derivation

steps here.

Section 2.2 consists of a mathematical description of the problem followed by the key

steps in the derivation of the governing equations. As the glass is heated, it softens and

can be considered to be a Newtonian fluid. We will neglect inertia since molten glass is

highly viscous and flows very slowly. As a result, we will use the Stokes flow model. An

asymptotic extensional flow model is used here due to the slenderness of the tube (the

length scale in the direction of stretching is much larger compared to the width). Similar

models have been used widely throughout the literature for steady and unsteady drawing

problems (Cummings & Howell 1999, Fitt et al. 2002, Griffiths & Howell 2008, Stokes

et al. 2014, Chen et al. 2015, Dewynne et al. 1994, Wylie & Huang 2007, Tronnolone

et al. 2016). The full Navier-Stokes equations are reduced by neglecting less significant

terms to obtain a model which can be solved very efficiently. Thus, a three-dimensional

fibre stretching process is reduced to a one-dimensional axial stretching problem and a

two dimensional free-boundary Stokes flow problem in the direction perpendicular to axial

stretching, commonly called the ‘cross plane’ or ‘transverse flow’ model. A Lagrangian

coordinate system similar to Dewynne et al. (1994), Cummings & Howell (1999), Griffiths

& Howell (2007, 2008), Stokes et al. (2014), Chen et al. (2015) is adopted. In this system

the deformation of a cross-section is an unsteady problem.

In Section 2.3 we introduce a numerical method to solve the axial and cross-plane

model. This new numerical method is a key point of difference between the work in this

thesis and previous similar studies in the literature. Following discussion of the numerical

method, we examine the evolution of the geometry for a simple piecewise constant heater
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x̃ = 1
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x̃ = 1

x = L(t)
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x = x̃ = 0

2L0

Figure 2.1: The tapering process

profile, which illustrates some of the key aspects of our problem.

2.2 Mathematical modelling

We consider the stretching of a slender axi-symmetric glass capillary of initial length 2L0,

which is heated over a fixed distance 2H in the centre and pulled from both ends with

a fixed force F . To describe this motion, we adopt a cylindrical polar coordinate system

in which the x axis is directed along the axis of the tube with x = 0 (origin) at the

centre of mass of the tube, and r is the radial coordinate (shown in Figure 2.1). All

field variables are only dependent on r and x, the radial and axial positions, under the

axi-symmetric assumption. Symmetry enables our consideration of just half of the tube,

0 ≤ x ≤ L(t), equivalent to an axi-symmetric tube held fixed at x = 0, heated over

0 ≤ x ≤ H. As the softened glass is pulled, its length increases over time t starting from

an initial length of L(0) = L0. The cross-sectional area of the capillary tube is denoted



20 Chapter 2. Mathematical formulation of the flow model

by S(x, t) = πR2(1 − φ2), where R(x, t) is the external radius and φ(x, t) is the ratio

between inner to outer radii, known as the aspect ratio. Initially, the tube has uniform

cross-sectional area, external radius and aspect ratio along its length, so that S(x, 0) = S0,

R(x, 0) = R0 and φ(x, 0) = φ0. The total of the internal and external boundary lengths

at position x and time t is denoted Γ(x, t). A constant pressure P may be applied within

the inner channel to prevent its closure, as the overall geometry narrows and forms a neck

around x = 0.

The softened glass is assumed to be an incompressible Newtonian fluid with constant

density ρ and surface tension γ; however, the viscosity µ of glass depends strongly on

temperature and so is, in general, a function of position and time µ(x, t). To study the

flow of the glass, we denote the fluid velocity as u = (u, v), where u(x, t) and v(x, t) are

the axial and radial components of the velocity at position x = (x, r) and time t ≥ 0,

while p(x, t) denotes the pressure in the fluid. The axi-symmetric fluid flow is governed by

the continuity equation and Navier-Stokes equations for the axial and radial conservation

of momentum. These are

∂u

∂x
+
∂v

∂r
+
v

r
= 0, (2.1a)

ρ

(
∂u

∂t
+ v

∂u

∂r
+ u

∂u

∂x

)
= −∂p

∂x
+

∂

∂x

[
2µ

(
∂u

∂x

)]
+

1

r

∂

∂r

[
µr

(
∂v

∂x
+
∂u

∂r

)]
, (2.1b)

ρ

(
∂v

∂t
+ v

∂v

∂r
+ u

∂v

∂x

)
= −∂p

∂r
+

∂

∂x

[
µ

(
∂v

∂x
+
∂u

∂r

)]
+

∂

∂r

[
2µ

(
∂v

∂r
+
v

r

)]
.

(2.1c)

We denote the shape of the external and internal boundaries of the capillary asG(0)(x, r, t) =

0, and G(1)(x, r, t) = 0, respectively. In order to fully specify the problem, the govern-



2.2. Mathematical modelling 21

ing equations, (2.1a) - (2.1c) must be supplemented with the boundary conditions. On

both the internal and external boundaries we apply a dynamic boundary condition that

incorporates both surface tension and pressure, namely

−pn(i) + µ
(
∇u + (∇u)T

)
· n(i) = −(γκ(i) + P (i))n(i), i = 0, 1, (2.2)

where n(i) is the outward normal to the boundary, denoted by n(i) = ∇G(i)/|∇G(i)|, and

κ(i) is the curvature of the boundary. Note that P (i) is the applied pressure, which only

appears in the stress condition for the inner boundary and thus P (0) = 0 in all cases (Chen

et al. 2015), and here P (1) = P . We also apply a kinematic boundary condition on both

boundaries namely,

∂G(i)

∂t
+ u · ∇G(i) = 0, i = 0, 1. (2.3)

The governing equation (2.1) and boundary conditions (2.2) and (2.3) will be solved to

describe how the flow in the glass and shape of the taper develops over time.

2.2.1 Scaling

We now non-dimensionalise the governing equations and boundary conditions. This

technique has many advantages: it decreases the number of parameters involved by pri-

oritising the dominant parameters; it allows for the estimation of the relative value of

each of the terms; and it allows for direct comparison of various scenarios using the non-

dimensional parameters. Ultimately, we will reduce the complexity of the flow equations

and develop a model that can be solved efficiently.

We use the following scales to non-dimensionalise the quantities in our math model,
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where hats denote the dimensionless quantities:

(x, r) = H(x̂, εr̂), (u, v) = U(û, εv̂), t =
H

U
t̂, p =

µhotU

H
p̂, µ = µhotµ̂,

γ =
µhotUχ0

H
γ̂, F =

6µhotUχ
2
0

H
F̂ , P =

µhotU

H
P̂ ,

S = χ2
0Ŝ, Γ = εHΓ̂, R = χ0R̂.

(2.4)

Here χ0 =
√
S0 is the square root of the cross-sectional area of the initial capillary, defined

for convenience, and µhot is a representative value of the viscosity of glass when it is at

or near its hottest. We assume that the capillary is slender, defined as ε =
√
S0

H
� 1

as has been used previously in the modelling of fibre drawing by (Dewynne et al. 1994,

Cummings & Howell 1999, Fitt et al. 2002, Griffiths & Howell 2008, Stokes et al. 2014,

Chen et al. 2015, Tronnolone et al. 2016, Stokes et al. 2019). Prior to any movement,

the glass tube is symmetrical about x = 0, which is the centre of the tube, and its initial

velocity is zero. The flow velocity scale U is a characteristic velocity which will be defined

differently in Chapters 3 and 4 in accordance with the parameters which are important

in a given scenario.

We now apply the above scaling to the three-dimensional fibre stretching problem (2.1)

- (2.3). The resulting scaled equations have only even powers of ε, thus we expand the

dependent variables û, v̂, p̂ and Ŝ as perturbation series in ε2, that is,

û = u0 + ε2u1 + ε4u2 + . . . , (2.5a)

v̂ = v0 + ε2v1 + ε4v2 + . . . , (2.5b)

p̂ = p0 + ε2p1 + ε4p2 + . . . , (2.5c)

Ŝ = S0 + ε2S1 + ε4S2 + · · · . (2.5d)
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We substitute the above expressions into the scaled governing equations, to separate each

equation at different orders of ε2, and retain only the dominant terms in the equations.

This reduces the full problem to a one-dimensional axial stretching problem describing the

motion in the direction of fibre stretching and a two dimensional transverse flow model

(Cummings & Howell 1999).

2.2.2 Axial stretching model

We assume ε � 1 and, following Dewynne et al. (1989), we find that at leading order

(2.1b) and (2.1c) yield

1

r

∂

∂r

(
µr

∂u0
∂r

)
= 0 =⇒ u0 = u0(x, t), (2.6a)

∂p0
∂r

= 0 =⇒ p0 = p0(x, t). (2.6b)

Thus, the axial velocity and pressure are independent of the cross-plane position. More-

over, as shown in Huang et al. (2007), He et al. (2016) and Stokes et al. (2019), a similar

process can be used to show that the temperature within a cross-section in a slender ge-

ometry is constant at leading order, and so independent of the radial coordinate r and a

function of only x and t. Accordingly, in the ongoing analysis of this chapter, we assume

that the viscosity µ(x, t) is a function of x and t, since the viscosity is strongly dependent

on the temperature. It follows that at leading-order we solve (2.1a) to obtain the radial

velocity v0 as

v0 = −r
2

∂u0
∂x

. (2.7)

Continuing, we expand û, v̂, and p̂ on the boundaries also using the expansions (2.5)

to find (2.2) to leading order, and follow Dewynne et al. (1989) to obtain leading order
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equations for mass and momentum. After dropping hats on the dimensionless variables

and subscripts on the leading order dependent variables the full axial stretching problem

reduces to

∂χ2

∂t
+

∂

∂x
(uχ2) = 0, (2.8)

Reχ2

(
∂u

∂t
+ u

∂u

∂x

)
− ∂

∂x

(
3µ̂χ2∂u

∂x

)
− γ̂

2

∂Γ

∂x
= 0, (2.9)

where χ2 = S, subject to the initial conditions χ2(x, 0) = 1 and u(x, 0) = 0.

In (2.9), the Reynolds number Re = ρL2γ/µ2
hotχ0 is a dimensionless quantity that

signifies the ratio between inertial to viscous forces associated within a flow. In general,

viscous forces dominate at low Reynolds numbers; at high Reynolds numbers, inertial

forces become stronger, ultimately resulting in a turbulent flow. Due to the high viscosity

of molten glass, the flows considered here have a very low Reynolds number, and thus the

inertial forces are negligible. Furthermore, for typical parameters used in the manufacture

of emitters, Re ∼ (10−8); hence terms multiplied by Re will be neglected.

In an unsteady setting, it is useful to rewrite (2.8) in terms of a material derivative,

that is

Dχ2

Dt
+ χ2 ∂u

∂x
= 0, (2.10)

where D/Dt = ∂/∂t + u ∂/∂x. These model equations (2.7) - (2.9) for the axial flow have

been used previously by Stokes et al. (2014) neglecting the time dependence, for steady

fibre drawing. However, we retain the time dependence as our problem is unsteady.

We now adopt a Lagrangian reference frame tracking the motion of a material cross-

section. To this end we label each cross-section of the fibre with its initial position x̃, that
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is

x̃ = x(x̃, 0), (2.11)

where x(x̃, t) is the axial position of material cross-section x̃ at time t such that x̃ ∈ [0, 1],

as x(0, t) = 0, and x(1, t) = L(t), see Figure 2.1. Following Stokes & Tuck (2004) we

use the conservation of mass to transform between Lagrangian and Eulerian coordinates.

Thus, the relationship between x and x̃, and is given by

∂x

∂x̃
=
χ2(x̃, 0)

χ2(x̃, t)
, x(0, t) = 0, (2.12)

or simply,

x(x̃, t) =

∫ x̃

0

1

χ2(x̃′, t)
dx̃′. (2.13)

Evaluating (2.13) for x̃ = 1 gives the physical axial length of the tapered geometry

resulting from the flow field that develops with time t. This allows for an arbitrary initial

geometry for the fluid cylinder, but because our initial geometry is a tube with a uniform

cross-sectional area, we set χ2(x̃, 0) = 1. Substituting from (2.10) into (2.9) yields

∂

∂x

(
3µ̂
Dχ2

Dt
− γ̂Γ

2

)
= 0. (2.14)

Integrating with respect to x, and transforming (2.14) into Lagrangian coordinates yields

a single first order differential equation for the cross-sectional area χ2 as

3µ̂
Dχ2(x̃, t)

Dt
− γ̂Γ(x̃, t)

2
= −6F (t), (2.15)

where 6F is the pulling force. We further assume this force is constant in time and the

factor 6 has been introduced for later convenience as per Stokes et al. (2014).
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To be able to solve the axial model (2.15) we first need to find Γ, the total cross-

sectional boundary length. As shown by Dewynne et al. (1994), without surface tension

(γ̂ = 0) a cross-section only deforms in scale and the term in (2.15) that involves Γ is

removed, enabling a straightforward solution to the axial stretching problem. However,

for non-negligible surface tension, the boundary length has to be determined. In general,

it is determined by solving a 2D cross plane model for flow in the cross-section, where the

transverse geometry changes in scale due to the axial motion and deforms in shape due

to surface tension and any pressure applied within the channel acting on the boundaries.

2.2.3 Surface tension driven transverse flow model

In an unsteady setting, the cross-plane flow is best explained in terms of Lagrangian

coordinates where we move from x̃ = 0 to x̃ = 1 in the frame of reference. We also rescale

the transverse flow variables, r the cross-plane (radial) length, Γ the total boundary length

of a cross-section and κ(i) the curvatures of the boundaries, as follows:

r = χ0r̃, Γ = χ0Γ̃, κ(i) =
κ̃(i)

χ0

. (2.16a)

Note that r̃ is not a Lagrangian co-ordinate in the cross-section x̃, as the cross-section

changes in shape due to surface tension and applied pressure, but x̃, the initial axial

position x at time t = 0, remains a Lagrangian variable for each cross-section. Following

Cummings & Howell (1999) and Stokes et al. (2014) we rescale the dependent variables

pressure and radial velocity for non-zero surface tension, assuming no rigid rotation in

the cross-plane flow, as

p = pz +
γ̂

χ
p̃, v = vz +

γ̂ṽ

µ̂(x, t)
, (2.17)
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where pz and vz are the leading order cross-plane flow solutions for zero surface tension

and p̃, and ṽ are the new dimensionless variables in the cross plane flow.

Furthermore, we introduce a reduced time variable τ (Cummings & Howell 1999) to

modify the kinematic condition in the cross-plane problem to render it a classical two

dimensional Stokes flow problem driven by unit surface tension which can be readily

solved. In this thesis we use a modified definition of reduced time accounting for axially

varying viscosity µ(x, t) as in Stokes et al. (2014), which transforms deformations in τ

within a cross-section to the time variable t, given as:

dτ

dt
=

γ̂

µ̂(x̃, t)χ(x̃, τ)
, τ(x̃, 0) = 0. (2.18)

The reduced time defines the amount of deformation within a cross-section, such that

the larger the value of τ the greater the deformation within a particular cross-section.

However, from (2.18), it is apparent that this can be regulated through the ratio between

γ̂/µ̂. With the introduction of the reduced time transformation, the resulting cross-plane

problem is a classical two-dimensional moving boundary Stokes flow problem driven by

unit surface tension and defined in a domain of unit area. For an axi-symmetric tube the

flow through a cross-section can be obtained by solving

1

r̃

∂

∂r̃
(r̃ṽ) = 0, (2.19a)

∂p̃

∂r̃
+

1

r̃

∂

∂r̃

(
r
∂ṽ

∂r̃

)
= 0, (2.19b)

subject to free-surface boundary conditions, which include pressure P̂ in the internal
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channel following Chen et al. (2015). These are

−p̃ + 2
∂ṽ

∂r̃
= −κ̃(0), on G(0) = 0, (2.19c)

−p̃ + 2
∂ṽ

∂r̃
= −(κ̃(1) +

P̂

γ̂
χ), on G(1) = 0, (2.19d)

∂G(i)

∂τ
+ ṽ = 0, on G(i) = 0, where i = 0, 1. (2.19e)

Now r̃ = R̃ = 1/
√
π(1− φ2) is the external radius on the external circular boundary

G(0) and r̃ = φ(τ)R̃ is the radius of the inner circular boundary G(1) at reduced time τ ,

from which G(0) = r̃ − R̃ and G(1) = ρR̃ − r̃, and the curvatures are κ̃(0) = 1/(R̃) and

κ̃(1) = −1/(φR̃) respectively. After solving for velocity and pressure and substituting in

the kinematic conditions, the corresponding equation for φ in terms of τ is

dφ

dτ
= −
√
π

2
(1 + φ)3/2(1− φ)1/2 +

1

2

P̂

γ̂
φχ, (2.20)

and the total boundary length is

Γ̃ = 2

√
π (1 + φ)

(1− φ)
. (2.21)

Returning to the previous non-dimensional problem, the outer radius R(τ) of the tube

can be determined in terms of φ as

R(τ) =
χ(τ)√

π(1− φ(τ)2)
, (2.22)
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where πR2(τ)(1− φ2(τ)) = χ2(τ), along with the inner channel radius of the tube as

φ(τ)R(τ) =
φ(τ)χ(τ)√
π(1− φ(τ)2)

. (2.23)

Accordingly, the solution of the cross-plane problem (2.19) yields the evolution of the

traverse flow geometry of the rescaled cross-plane problem, having a unit cross-sectional

area, with respect to τ . A key observation to be made along with the introduction of

pressure, as highlighted in Chen et al. (2015) is that the presence of the axial variable

χ multiplying the pressure P̂ in (2.20) couples the cross-plane and axial flow models,

meaning they must be solved simultaneously to obtain the final geometry. Additionally,

the evolution of the cross-plane geometry with respect to τ does not explicitly involve

viscosity µ(x, t) and so any associated deformations are only evident when results are

transformed to physical time t.

2.2.4 Full model

The full model comprises the 1D axial flow and 2D transverse flow models defined in

equations (2.15), and (2.20). In order to solve the equations simultaneously and utilise

the solution for a cross-section x̃ in Lagrangian coordinates, we first transform (2.15) to

reduced time τ using (2.18). Thus, the axial model obtained with respect to reduced time

τ is

Dχ

Dτ
− χ

12
Γ̃(x̃, τ) = − F̂

γ̂
. (2.24)

Substituting for boundary length in (2.21), the axial equation (2.24) can be rewritten

using the aspect ratio as

Dχ

Dτ
=

√
π

6
χ

√
1 + φ

1− φ
− F̂

γ̂
, (2.25)
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for an annular capillary of unit cross-sectional area (Chen et al. 2015).

Overall, equation (2.25) fundamentally describes the change in the cross-sectional area

of the initial capillary tube with τ due to stretching, while (2.20) governs the shape of

each cross-section with respect to τ due the effect of surface tension and applied pressure.

To obtain the evolution of the geometry of the fluid cylinder with respect to time t,

we use (2.18) to relate t and τ for each cross-section x̃. Additionally, we use (2.13)

to transform between Lagrangian and Eulerian coordinates in order to determine the

displacements of the cross-sections x̃. Observe that, because initially the fibre has uniform

cross-sectional area and aspect ratio and because the force F is constant, the cross-plane

flow equations have no explicit x̃ dependence and may be solved independent of x̃ to

obtain the evolution of the geometry with τ at every x̃, unlike the gravity stretching

problem of Tronnolone et al. (2016), where gravitational force varies with x̃. Equations

(2.25) and (2.20) may be solved first, independently of (2.18) and (2.12), for χ(x̃, τ) and

φ(x̃, τ). Accordingly, the system of differential equations (2.25), (2.20), (2.18), and (2.13)

comprise the full model that describes the evolution of the geometry with respect to

physical coordinates x and t throughout the heat and draw process. These equations are

non-linear and are fully coupled so we need to seek numerical solutions.

There are numerous approaches for solving extensional flow problems numerically with

their suitability varying according to the nature of the flow and the desired solution.

Thus, when selecting a solution approach it is important to take into consideration the

key properties of the flow that must be solved for and the desired outcome. For the

unsteady problem that we consider in this thesis, we aim to determine how the cylindrical

fluid region evolves over time as a result of the motion of the individual material cross-

sections.

As discussed in Section 2.2, through the use of a Lagrangian coordinate system and
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reduced time, the axial and the cross-plane model equations (2.25) and (2.20) that describe

the evolution of the geometry with respect to τ and are fully coupled when the internal

channels are pressurised (P̂ > 0) and so need to be solved simultaneously. In the next

section we discuss the procedure for generating these numerical solutions.

2.3 Numerical method

To determine the physical geometry of the tube at physical position x and physical time

t we must solve (2.12) and (2.18) for t(x̃, τ) and x(x̃, τ). This is not at all straightforward

because the viscosity µ is assumed to be a known function of physical position x and

time t, that is the dependent variables for which we wish to solve, rather than of the

independent variables of our model, x̃ and τ . Writing (2.18) and (2.12) in the form

∫ t

0

1

µ̂(x, η)
dη =

∫ τ

0

χ(x̃, τ)dτ, (2.26)

x(x̃, t) =

∫ x̃

0

1

χ2(ξ, t)
dξ, (2.27)

it is apparent that, although we can evaluate the right-hand-side of (2.26), we need

x(x̃, η), 0 ≤ η ≤ t to determine t(x̃, τ) for each cross-section x̃ using (2.26), while (2.27)

shows that we need χ(ξ, t), 0 ≤ ξ ≤ x̃ at fixed time t to find x(x̃, t). Thus, these equations

are fully coupled in a complex manner, requiring a solution method different from those

considered previously for steady and unsteady fibre drawing problems. The viscosity

µ̂(x, t) of each material cross-section is a function of position and time, and so changes

as the cross-section moves within the heater as the capillary is stretched. As a result, the

position of each cross-section must be monitored continuously over time in order to solve

for the flow.



32 Chapter 2. Mathematical formulation of the flow model

( j, k)

j j + 1j − 1

k

k + 1

k − 1
∆t

∆x̃

Figure 2.2: Both time and space discretisation in a mesh grid.

2.3.1 Discretisation

The basic method of solving a system of differential equations numerically is to divide

continuous variables into discrete intervals, and to estimate the state of the system at

the start of each interval. This procedure is known as discretisation. We consider the

flow domain and discretise it into a uniform grid in order to evaluate the flow variables.

As seen in the previous section, we have two coordinate systems with which to deal, the

original (dimensionless) physical coordinates (x, t) in 0 ≤ x ≤ L(t) and the transformed

coordinates (x̃, τ) defined in a domain x̃ ∈ [0, 1]. Because the physical spatial domain

increases over time it is more convenient to use the Lagrangian coordinate x̃, rather than

x.

Recalling that (2.25) and (2.20) are independent of x̃ and functions of τ only, we

discretise the τ domain by defining

τi = i∆τ, where i = 0, 1, . . . , I, (2.28)

and ∆τ = τi+1−τi is the reduced-time step. However, a consequence of (2.18), is that the

physical time t for a given cross-section (with fixed x̃ value) to attain a particular value of

reduced time τ > 0 depends on the history of viscosity experienced by that cross-section.
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As a result, it is more convenient to find our solution in terms of the t coordinate rather

than τ . Thus we solve in terms of the (x̃, t) coordinates. The discrete points for x̃ and

time t are defined as (see Figure 2.2)

x̃j = j∆x̃, j = 0, 1, . . . , J, (2.29a)

tk = k∆t, k = 0, 1, . . . , K, (2.29b)

where x̃J = L0/H and tK is the final time to which we wish to compute. The spatial

grid points are uniformly distributed over the domain [0, 1] in x̃ with spatial increments

∆x̃ = x̃j+1 − x̃j at the discrete times tk with time step ∆t = tk+1 − tk. A forward

difference approximation of (2.18) yields τ(t) for each t given by

τj,k+1 = τj,k +
γ̂∆t

µ̂j,k χj,k
, j = 0, 1, . . . , J, (2.30)

where τj,k = τ(xj, tk). This allows a numerical approximation of the value of τk+1 at the

next time point tk+1 by updating the value from the previous time tk for each k, where

k = 0, 1, . . . , K − 1. Thus, we iteratively approximate τj,k at each time step; starting

with τ(x̃j, 0) = 0 ∀ x̃j where j = 0, 1, . . . , J . Similarly, we use the trapezoidal rule or an

equivalent discretisation of (2.13), to evaluate the integral and numerically approximate

x as:

xj+1,k+1 = xj,k+1 +
∆x̃

2

(
1

χ2
j+1,k+1

+
1

χ2
j+1,k+1

)
, j = 0, 1, . . . , J − 1, (2.31)

where x0,k+1 = 0.

These discretisations enable a simple Euler time-stepping solution procedure for solving

our problem, which can be programmed easily and provides sufficient accuracy for suffi-
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ciently small ∆t. As the number of mesh points and time steps are increased, we should

observe convergence to the real solution. Although an analytic solution does not exist for

P̂ > 0 (positive pressure) a semi-analytical solution found in Section 3.3 for P̂ = 0 will

be used to verify the numerical procedure. In the next section we demonstrate use of this

procedure to generate an accurate numerical solution to the stretching problem.

2.3.2 Method of Solution

As noted earlier, the initial geometry of our fibre stretching problem is uniform and

the cross-plane problem for χ and φ as functions of τ is, therefore, the same for any

cross-section. Thus we solve (2.25) and (2.20) independently of x̃ as functions of τ alone.

In the case of positive pressures, the two equations are coupled and must be solved

simultaneously. We solve (2.25) and (2.20) using the MATLAB ODE solver ode45 to

obtain

χ(x̃, τi) = χ∗i , φ(x̃, τi) = φ∗i , (2.32)

which (via interpolation) means we can obtain these values for any τ . In solving this

initial value problem we stop the solver when the internal channel closes (φ → 0), the

tube explodes (φ→ 1) or the tube breaks (χ→ 0).

In constructing a numerical solution, we here assume a physically reasonable viscosity

profile µ(x, t) such that the tube deforms over the heated region 0 ≤ x ≤ 1 and is

effectively solid for x > 1. In so doing we neglect the time over which the glass tube heats

up from room temperature until it is able to stretch due to the pulling force. We will

consider coupling of the flow model to a temperature model, with viscosity dependent on

temperature, later in Chapter 5.
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We determine the evolution of the flow geometry with time as follows. Assuming the

solution is known for 0 ≤ t ≤ tk, we obtain the solution at tk+1 by first computing

τk+1(t) at each x̃j node from (2.30) for a given ∆t using the solution history until tk.

Subsequently, using the already computed solutions for χ∗i and φ∗i , we interpolate to

obtain the χ∗(x̃j, tk+1) and φ∗(x̃j, tk+1) values for each x̃j. To determine the x(x̃j, tk+1),

where j = 0, 1, . . . , J nodal positions, we use numerical quadrature or the trapezoidal

method given in (2.31). Finally, we update the viscosity µ̂(x̃j, tk+1) based on the new

locations of each cross-section after each time step. We then repeat this time-stepping

procedure until the final draw time tK .

Our time-stepping procedure can be summarised as follows: we aim to obtain the

solution χj,k = χ(x̃j, tk), φj,k = φ(x̃j, tk), τj,k = τ(x̃j, tk), xj,k = x(x̃j, tk), and µ̂j,k =

µ̂(x̃j, tk) for k = 1, 2, . . . , K, where χj,0 = 1, φj,0 = φ0, τj,0 = 0, xj,0 = x̃j, and µ̂j,0 =

µ̂(x̃j, 0). Assuming the solution to be known at time tk, our algorithm for obtaining the

solution at time tk+1 is

1. compute τj,k+1 using finite differencing as in (2.30), for all the cross-sections x̃j,

where j = 0, 1, . . . , J ;

2. determine χj,k+1 and φj,k+1 for j = 0, 1, . . . , J by interpolation of the previously

obtained solution (τi, χ
∗
i , φ
∗
i ) to (2.25) and (2.20); MATLAB’s ‘deval’ function was

used for this;

3. compute xj+1,k+1 using (2.31) for j = 0, 1, . . . , , J − 1;

4. update the viscosity i.e. µ̂j,k+1 = µ̂(xj,k+1, tk+1).

This gives the solution at time tk+1. We then increment the time step, and repeat this

process through to final time tK .
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It is clear from the algorithm that we must obtain the solution to (2.32) over a suffi-

ciently large τ -range, i.e. for a sufficiently large value I to enable the interpolations of

Step 2 of the above time-stepping procedure for all τj,k. However, should some τj,k exceed

the maximum possible value such that the internal channel closes, the tube bursts, or the

fibre breaks, we simply stop our solution procedure and adjust the final time tK . Thus,

τI ≤ τmax, the maximum possible value of τ at which φ = 0 or φ = 1, or χ = 1. These

constraints can be identified by using the ‘events’ option of MATLAB ODE solvers, which

stop the solver if any of these events occur.

In this way, for a given force F̂ , pressure P̂ and viscosity µ̂(x, t), we can determine

the geometry of an emitter at the final time tK . For accuracy, the time step must be

chosen carefully to ensure that nodal displacements in a time step are not too large. If

need be the time step can be adjusted during the solution process. The semi-analytical

solution, when P̂ = 0, discussed in Section 3.3 is useful in this situation to provide a good

approximation for the size of the time step.

We now illustrate the numerical method discussed above for solving the system of

equations outlined in (2.25), (2.20), (2.12) and (2.18), for a simple piecewise constant

viscosity profile given by:

µ̂(x) =

 1, 0 ≤ x < 1

100, x ≥ 1.
(2.33)

This viscosity is constant in the heated region, with a step change at x = 1 from µ̂ = 1

in the heated region to µ̂ = 100 (cold) in the cold region beyond. We consider the case of

positive pressure in the inner channel and use the complete numerical scheme of Section

2.3.2 to obtain solutions to the system of differential equations discussed in Section 2.2.4.
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Figure 2.3: The evolution of the cross-sectional area χ2(x, t) is shown against axial position
x at times t = 0, 0.05, 0.1, 0.15, 0.2 for an axisymmetric fibre with initial geometry given
by L(0) = 1.5, χ(x, 0) = 1 and φ(x, 0) = 0.06. The filled dots denote 15 individual cross-
sections, equispaced at t = 0 and labelled by x̃. Pulling with force F̂ = 2 and pressure
P̂ = 32 results in a decrease in χ for all cross-sections that spend time in the heated
region 0 ≤ x < 1, the extent of which is indicated by the black dashed line. Beyond x = 1
cross-sections are solid (the viscosity is large) so that no further deformation can occur.
The arrow shows the direction of increasing t.

Figure 2.3 shows the change in the cross-sectional area χ(x, t) with axial position x at

different times. The filled dots in these graphs correspond to individual cross-sections

x̃ and are used to visualise their motion and aid understanding of the evolution of the

geometry. All these cross-sections initially have a unit area of χ2(x, 0) = 1 and are spaced

uniformly along the length of the tube. We have chosen F̂ = 2 (i.e. of a similar magnitude

to surface tension) while P̂ is an order of magnitude larger. It is evident that inside the

heater where the viscosity is sufficiently small (µ̂ = 1) the cross-sections reduce in area

and are shifted in the direction of pulling as the length of the capillary increases. Because

the viscosity in the heated zone is constant in space, all cross-sections that remain in this

region throughout the draw experience the same deformation, resulting a tubular tip. As
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Figure 2.4: The aspect ratio φ(x, t) (top), internal channel radius φ(x, t)R(x, t) (middle),
and external radius R(x, t) (bottom) are shown against axial position x at times t =
0, 0.05, 0.1, 0.15, 0.2, with time increasing from top to bottom for pulling force F̂ = 2 and
pressure P̂ = 32. The initial geometry of the axisymmetric fibre is L(0) = 1.5, χ(x, 0) = 1,
and φ(x, 0) = 0.06. Pulling results in a reduction in φ, φR,R for all cross-sections that
spend time in the heated region, 0 ≤ x < 1, the extent of which is indicated by the black
dashed line. Once a cross-section leaves the heated region solidification of the glass means
that no further change can occur.

a cross-section leaves the heater its viscosity becomes large (µ̂ = 100) and deformation

ceases so that its geometry remains constant from this point in time. However, due to

stretching in the heated region, each cross-section moves in the direction of pulling. All

cross-sections initially outside the heated region will not be deformed and retain their

unit area but will be shifted in the direction of pulling. The cross-sections that are heated

for only some part of the draw time result in a taper from the undeformed part of the

tube to the tubular tip. The aspect ratio φ(x, t) at the tip also reduces rapidly as time

increases due to the heating and pulling process and the progressive exit of cross-sections

from the heated region.

Figure 2.4 shows the change in the cross plane variables aspect ratio φ(x, t), the internal
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Figure 2.5: Emitter obtained from an axisymmetric tube with initial length L(0) = 1.5,
cross-sectional area χ2(x, 0) = 1 and aspect ratio φ(x, 0) = 0.06, by pulling with force
F̂ = 2, and pressure P̂ = 32 for a time tK = 0.15. The geometry is obtained with the
viscosity profile (2.33). The outer boundary r = R(x, tK) is shown in blue and the inner
channel r = φ(x, tK)R(x, tK) is shown in red.

radius φ(x, t)R(x, t) and external radius R(x, t) with x at the given times t in the figure

caption. All these dimensions decrease over time due to heating and pulling and the

progressive exit of cross-sections from the heated region, resulting in a taper with a length

that increases and a tip radius that decreases over time. At t = 0.15, it is apparent from

the graph that the inner channel is nearly closed, with the aspect ratio approaching very

close to zero. As a result, the curves associated with t = 2 are omitted from the φ and

φR plots (hence only 4 curves) as they correspond to a closed inner channel.

With zero surface tension and pressure, the aspect ratio will not change over time

(Dewynne et al. 1994, Cummings & Howell 1999) thus the decrease in the aspect ratio in

Figure 2.4 shows that the pressure P̂ in this case is not sufficient to overcome the effect

of surface tension, let alone increase the aspect ratio to maintain the original bore size as
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desired for emitters. Figure 2.5 shows the final geometry when P̂ = 32, F̂ = 2, t = 0.15,

(channel nearly closing) using the numerical method described above and the viscosity

profile in (2.33), which is time independent and piecewise constant in space.

2.3.3 Model solutions for a solid rod

For a geometry with no internal structure, the complicated solution procedure men-

tioned above is unnecessary. The simplicity in the case of a solid rod stems from the fact

that the boundary length can be expressed directly without solving for the traverse flow

problem. In this case, the boundary length, Γ is:

πR2 = χ =⇒ Γ = 2
√
πχ, (2.34)

using Γ = 2πR. Substituting in (2.15) and assuming the pulling force is a constant, after

some simplification gives an implicit equation for χ(x̃, t) as:

χ(x̃, t)− χ(x̃, 0) +
6F̂

γ̂
√
π

log

(
γ̂
√
πχ(x̃, t)− 6F̂

γ̂
√
πχ(x̃, 0)− 6F̂

)
=

γ̂
√
πt

6m(x̃, t)
, (2.35)

where m(x̃, t) is the harmonic mean of viscosity µ̂(x̃, t) at position x̃ over time t defined

(Tronnolone 2016) as:

m(x̃, t) =
t∫ t

0
1

µ̂(x̃,t)
dt
. (2.36)

The implicit equation in (2.35) can be solved using a suitable numerical method for a

known m(x̃, t). The solution for constant µ̂ = 1, when m = 1, is given in Stokes et al.

(2011b). The method for obtaining these equations using the harmonic mean of viscosity

m(x̃, t) is discussed in greater detail in Tronnolone (2016), and only the essential equations

are described in this thesis for completeness. However, when the viscosity µ̂(x, t) changes
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with each cross-section, the harmonic mean cannot be computed a priori for a given x̃

and a numerical method must be used to generate the solutions. The numerical method

developed in Section 2.3.2 is adopted by using the reduced time variable to incorporate

the viscosity µ̂(x, t) into the problem.

The transverse flow problem is scaled with χ and therefore remains a unit circle and

thus Γ̃ = 2
√
π. Substituting for Γ̃ in (2.24) and with a little rearrangement gives the

exact solution for χ(x̃, τ) as:

χ(x̃, τ) = exp

(√
πτ

6

)(
χ(x̃, 0)− 6F̂

γ̂
√
π

)
+

6F̂

γ̂
√
π
. (2.37)

which yields the cross-sectional area of the fluid geometry. To relate τ and t and generate

the solution to a given draw time tK , we use the relationship between t and τ in (2.18).

The following algorithm describes the procedure for generating the numerical solution:

1. set the initial conditions for τ(x̃, 0), µ̂(x̃, 0), x(x̃, 0) and χ(x̃, 0);

2. compute τj,k+1 using finite differencing as in (2.30), for all the cross-sections x̃j,

where j = 0, 1, . . . , J ;

3. solve for χ(x̃j, tk+1) using (2.37) for the calculated τ(x̃j, tk+1) for all the cross-

sections x̃j, where j = 0, 1, . . . , J ;

4. compute xj+1,k+1 using (2.31) for j = 0, 1, . . . , , J − 1;

5. update the viscosity i.e. µ̂j,k+1 = µ̂(xj,k+1, tk+1),

The time step is then incremented and this procedure repeated through to the final draw

time tK . This completes the solution and gives the geometry with respect to time.
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The numerical solution for a solid rod is less complicated since no system of differen-

tial equations needs to be solved due to the existence of an analytical expression for χ.

The evolution of the outer walls of the emitter can be determined using the expression

R(x, t) = χ(x, t)/
√
π, where χ2 is the cross-sectional area of the glass rod. Notably, this

demonstrates the use of reduced time τ to generate a full solution to this problem, with-

out having to consider the other transverse flow variables. Additionally, if the form of

each solution is considered, it is apparent that the solution with respect to τ produces an

explicit solution for the evolution of the cross-section, while the solution with respect to

time t produces only an implicit solution that cannot be solved completely for a viscosity

that varies in space or time. Additionally, it is useful to highlight, as is also mentioned in

Tronnolone (2016), that with the solution for χ in (2.37), the relationship between τ and

t and the harmonic mean of viscosity is

6√
π

(χ(x̃, τ)− χ(x̃, 0)) +
6F̂ τ

γ̂
√
π

=
γ̂t

m(x̃, t)
. (2.38)

For a given χ(x̃, τ), (2.38) can be used to find t using the harmonic mean of viscosity.

2.4 Summary

This chapter describes the development of an extensional flow model suitable for the

unsteady drawing of glass capillaries with annular cross-section. The model is composed

of a 2D free boundary Stokes flow problem that describes the evolution of the flow and

geometry in the cross-section and a 1D axial stretching problem. Throughout the heating

and pulling process, we have investigated the geometry deformations due to non-zero

surface tension, active channel pressurisation, and piecewise constant viscosity in space.

The key ideas of this chapter include:
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• Development of a three-dimensional asymptotic model for the unsteady stretching of

an axi-symmetrical glass tube pulled with a constant force, considering the effects of

surface tension, pressure and spatially-varying viscosity. Along with the slenderness

approximation, the full three dimensional model decomposes into two models:

1. A one dimensional axial model that describes the thinning of the cross-sectional

area χ2(x̃, t) of the capillary (labelled by its initial axial position) due to un-

steady pulling with a constant force and spatially varying viscosity effects.

2. A two-dimensional cross-plane model that governs the shape of each cross-

section, considering the deformations due to the surface tension (constant),

pressure and viscosity effects.

• As explained in Chen et al. (2015) for steady fibre drawing, for unsteady fibre

drawing including channel pressure couples the axial and cross-plane flow models

which are required to be solved simultaneously.

• The model enables investigation of the effects of:

1. Surface tension - resulting in closure of the inner channel.

2. Time and spatially varying viscosity

3. Constant channel pressurisation - keeping the inner channel held open during

the heating and pulling process. We aim to find a balance of the parameters

to stop hole closure as the cross-sectional area reduces due to stretching.

Additionally, the second half of this chapter explains the numerical approach used to

solve the mathematical model developed in Section 2.2.4 for determining the evolution of

the geometry accounting for the previous history of the flow.
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For the sake of simplicity, the solutions derived from the numerical approach in this

chapter are for a piece-wise constant viscosity in space. In the following chapter, we

consider more complicated viscosity profiles by choosing a viscosity function that varies

within the heated region. This allows us to focus on the fact that cross-sections cool away

from the centre where they are heated.

In conclusion, the analysis of the present chapter has demonstrated that using the

mathematical model and the numerical solutions developed using the time stepping pro-

cedure provides a significant insight into unsteady stretching of heated glass tubes. The

numerical method developed in this chapter is further used in the subsequent chapters of

this thesis to examine the various aspects of the model on the heat and draw process.



Chapter 3

Flow with significant surface tension

3.1 Introduction

A significant aspect of this study is the investigation of the impact of various material

and operational parameters on the heating and pulling of a glass tube. In particular,

quantifying the role of surface tension and pressure in the deformation of geometry is a

key focus of this work. In Chapter 2, our preliminary analysis of the heating and pulling

method with pressure in the inner channel, identified force (F̂ ), pressure (P̂ ), and surface

tension (γ̂) as the three major parameters that explain the evolution of the geometry.

In terms of the application covered in this thesis, we always have a strong, constant

force pulling the glass tube, which is always assumed to be significant and non-negligible.

Thus, we focus our analysis on the remaining two elements. In this Chapter we assume

a significant/non-negligible surface tension effect in comparison with the pressure; and

then in Chapter 4 we assume significant/non-negligible pressure effect in comparison with

the surface tension ( γ̂
P̂
� 1). Both problems can be described with very similar models,

which scale slightly differently when the cross-plane model is formulated. For both cases,

45
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analytical solutions are not possible due to the non-linearity of the equations, and so

numerical solutions will be generated with slight variations in the method of Chapter 2.

The term ‘surface tension’ refers to a property of a fluid that quantifies its resistance to

an external force due to molecular cohesion. The chemical composition of the surrounding

atmosphere is thought to influence the interactions of the liquid molecules, resulting in

changes in surface tension. It has the effect of reshaping a free surface to reduce its

surface area. This is equivalent to minimising the surface’s curvature or total energy. The

normal force acting on the boundary is proportional to its curvature due to the surface

tension, which means that a more curved boundary results in a stronger force acting

upon it. In the problems considered in this thesis, in addition to stretching, surface

tension determines the extent to which the external and internal radii of a tube collapses.

Using this knowledge, pressure may be required to prevent closure of the internal channel

(Wadsworth et al. 2005, Chen et al. 2015). Additionally, surface tension may vary with

temperature, i.e., it decreases with increasing temperature (Stokes et al. 2019). However,

for glass, surface tension is only weakly dependent on temperature and for the purpose of

this thesis, we assume it is constant.

In the literature, surface tension is often treated as negligible in the analysis of the fibre

glass drawing process. Wylie et al. (2011) investigated the problem of the pulling of an

axisymmetric viscous thread by its ends with a fixed force for small inertia and surface

tension forces. They suggested that the effect of surface tension is negligible and becomes

unimportant as the thread is stretched. However, Tronnolone (2016) demonstrated that

experimentally observed deformations in stretched fibre geometries could be explained by

the effects of surface tension and, more importantly that the effects of surface tension

depend on the choice of dimensionless parameters and the geometry under consideration.

Luzi et al. (2010) focused on the effect of both surface tension and internal hole pressure in
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Description Symbol Value SI unit
Initial length L0 ∼ 5× 10−3 m
Surface tension γ 0.3 N/m
Minimum viscosity µhot 104 Pa s
Density ρ 2200 kg/m3

Initial external radius R0 6× 10−5 m
Initial aspect ratio φ0 0.06 -
Initial cross sectional area S0 1× 10−8 m2

Heated length H ∼ 3× 10−3 m
Pressure P To be determined Pa
Force F To be determined N
Final draw time tK To be determined s

Table 3.1: Physical parameters relevant to manufacture of emitters.

steady fibre drawing with comparison to experiments. They showed during the stretching

process the internal and external diameters of the fibre decrease in value due to the effects

of surface tension and the use of internal hole pressurisation to counteract its effects.

3.2 Numerical solutions for non-zero pressure

We perform numerical simulations in the first half of this chapter using the flow model

defined in Chapter 2 under the assumption that the impact of surface tension is significant

during fibre stretching and thus acts to close the internal channel, possibly requiring the

use of pressure to overcome surface tension and to keep the hole open.

The glass tube in our axisymmetric stretching problem is presumed to be stationary

at t = 0 and we choose the velocity scale U as a characteristic velocity that balances the

surface tension and viscous stress by choosing the dimensionless surface tension parameter

γ̂ = 1, which yields U = γH/µhot
√
S. Substituting for U in (2.4), the scaled variables
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(denoted by hats) are

(u, v) =
γH

µhot
√
S0

(û, εv̂), t =
µhot
√
S0

γ
t̂, p =

γ√
S0

p̂,

F = 6
√
S0γ F̂ , P =

γ√
S0

P̂ .

(3.1)

Typical values of the physical parameters are given in Table 3.1, from which, the axial

velocity scale γH/µhot
√
S0 ≈ 0.1−1mm/s which is reasonable for emitter fabrication. We

solve for this flow numerically using the system of equations (2.25), (2.20), (2.18), and

(2.13) along with (2.22) and (2.23) that solve for the external and internal radii of the

tube. The assumption of setting γ̂ = 1 enables us to explore the effects of F̂ , P̂ on the

geometry relative to non-negligible surface tension and determine the tK required to get

the final geometry with the required dimensions.

In the numerical solutions in Chapter 2, we assumed that the viscosity is piecewise

constant. However, the viscosity of glass is highly temperature sensitive and so we now

assume a more physically realistic viscosity profile. The viscosity is expected to vary

axially over the heated region, attaining its minimum dimensionless value µ̂ = 1 at the

centre of the heated region, x = 0, where the temperature is hottest, and increasing with

distance from the centre. At the end of the heated region, x = 1, the glass will have cooled

sufficiently such that it is, effectively, solid with a dimensionless viscosity µ̂cold � 1 and

we may take this as the viscosity for x ≥ 1. We also assume the viscosity is independent of

time for the pull time 0 ≤ t ≤ tK . Hence, to illustrate the inclusion of a spatially varying

temperature in this chapter, we propose a spatially varying viscosity function defined by

µ̂(x) =

 1 + (µcold − 1)|x|n, 0 ≤ x < 1,

µcold, x ≥ 1,
(3.2)
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Figure 3.1: Emitters obtained from an axisymmetric tube with initial length L(0) = 1.5,
cross-sectional area χ2(x, 0) = 1 and aspect ratio φ(x, 0) = 0.06, by pulling with force
F̂ = 2 and pressure P̂ = 32 for time tK = 0.15. On top is the geometry obtained with
the viscosity profile (3.2) with n = 6 and below is obtained with the viscosity profile that
for n = 12. The outer boundary r = R(x, tK) is shown in blue and the inner channel
r = φ(x, tK)R(x, tK) is shown in red for both figures.

where n is a positive integer that permits modification of the rate of increase of the

viscosity with x. The larger the value of n, the more uniform the viscosity in the vicinity

of x = 0 and the more rapid the viscosity rise near x = 1 which in turn, should lead to

an extended taper compared to a profile with lower n. As in (2.33), we take µ̂cold = 100.

Figure 3.1 compares the shape of an emitter of initial aspect ratio φ0 = 0.06, initial

(dimensionless) length L0 = 1.5 pulled with F̂ = 2, and P̂ = 32, until tK = 0.15 using the

viscosity profile in (3.2) when n = 6 and n = 12 respectively. These solutions illustrate

how the geometry changes with the choice of n, and that the viscosity profile affects the

final geometry. For example, we may choose n = 12 if we require an extended taper

length. Note that changing n has no effect on the radial dimensions of the geometry and
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Figure 3.2: The geometry of the emitter obtained by pulling an axisymmetric tube with
initial length of L(0) = 1.5, cross-sectional area χ2(x, 0) = 1, and aspect ratio φ(x, 0) =
0.06 with a force F̂ = 1.32 for a time tK = 0.44 at two different pressure values. On top
is the geometry for pressure P̂ = 34.217 and below is for P̂ = 34. The outer boundary
r = R(x, tK) is shown in blue and the inner channel r = φ(x, tK)R(x, tK) is shown in red
for both figures.

will only lead to a different taper length. In the rest of this thesis, unless appropriate

temperature modelling is used to determine viscosity as a function of temperature in

Chapter 5, we take (3.2) with n = 6 as the viscosity profile. Comparing the taper of

Figure 2.5 obtained using the piecewise constant viscosity function (2.33) with that of

Figure 3.1, obtained with the more realistic viscosity function (all other parameters being

the same), the result with piecewise constant viscosity results in a longer taper with a

uniform tubular geometry over the heated length 0 ≤ x ≤ 1. The shape of the resulting

geometry for the continuous function is an hourglass shape, showing the effect of the

axially varying viscosity profile on the deformation process.

Figure 3.2 compares the geometry obtained with a relatively high pressure P̂ = 34.217,
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resulting in aspect ratio of φ ≈ 0.8605 at x = 0, with a slightly lower pressure P̂ = 34. For

both pressures the viscosity is given by (3.2). For P̂ = 34.217, the internal channel radius

increases as x→ 0 and for a pressure only a little larger, the tube will burst at x = 0, i.e.

the inner channel radius equals the outer radius (φ = 1), and the wall thickness (radius

of outer wall - radius of inner wall) goes to zero. As discussed earlier, it is desirable to

produce emitters for mass spectrometry with a (nearly) constant bore and with a sharp

tip such that the wall thickness at x = 0 is small. It is apparent that the outcome is

highly sensitive to the choice of channel pressure P̂ , with the capillary nearly bursting

at P̂ = 34.217 but not at P̂ = 34 when F̂ = 1.32. Recall that this indicates that we

are looking for parameters close to the limiting case of bursting, where the solution is

extremely sensitive to small changes in the parameter values, which makes this a rather

difficult task.

3.2.1 Achieving a uniform bore

The model we have developed can be used to predict the final geometry of an emitter

when it is pulled from a known glass tube using a set of known draw parameters and, con-

versely, to predict the draw parameters required to achieve a desired final geometry when

pulling from a known glass tube. This section considers and explores how to determine

suitable draw parameters so that an emitter with a uniform bore can be achieved.

To begin with, our goal is to reduce the external radius of the tube to a sharp tip during

the heating and pulling process while retaining a uniform internal channel and achieving a

small wall thickness, namely WT (non-dimensional) at the tip. We first define some of the

terms we need in our dimensionless model. They are: φT = φ(0, tK) and χ2
T = χ2(0, tK)

as the aspect ratio and cross-sectional area at position x = x̃ = 0 (at the tip) at the final

draw time tK , from which the external radius RT = R(0, tK) can be readily determined.
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The initial external radius of the tube at the tip is defined as R0 = R(0, 0), which is the

initial radius of the entire tube. The requirement of the outer radius of the tube at the

tip in terms of the required wall thickness is

RT = WT + φ0R0, (3.3)

and the requirement of the inner radius at the tip is φTRT = φ0R0 (same as initial)

or more precisely φ(0, tK)R(0, tK) = φ(0, 0)R(0, 0). The aspect ratio at the tip can be

determined in terms of the wall thickness as:

φT =
φ0R0

RT

=

{
1 +

WT

φ0R0

}−1
=

{
1 +WT

√
π

(
1

φ2
0

− 1

)}−1
, (3.4)

along with

χ2
T = π(R2

T − φ2
0R

2
0) = πWT (WT + 2φ0R0), (3.5)

which determines the cross-sectional area at the tip. Thus, a desired WT can be achieved

by specifying the χT and φT corresponding to the desired geometry. In the ongoing

analysis, for our illustrative problem, we select χ0RT = 12µm and φTχ0RT ≈ 3.6µm

resulting in a wall thickness at the tip of χ0WT = 4.2µm which correspond to χT = 0.1911

and φT = 0.3 in our dimensionless problem. The dimensions of the initial tube are

R0 = 60µm and φ0 = 0.06 as given in Table 3.1.

We must now determine the required F̂ , pressure P̂ and a pulling time tK that results

in the desired φT , that satisfies the requirement of WT . Since we are seeking a geometry

near to the limiting cases such as of bursting (φ→ 1), breaking (χ→ 0) and inner channel

closure (φ→ 0), the numerical analysis must be done with care.

To aid understanding, we show a number of phase plane plots in figure 3.3 for a tube
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Figure 3.3: φ(τ) versus χ(τ) for a capillary with initial aspect ratio φ0 = 0.06. Pulling
with pressure P̂ = 34 (top left), 35 (top right), 36 (bottom left), 37 (bottom right) for a
force F̂ ranging from 0.5 to 2 in increments of 0.1 increasing from top right to bottom.
The black dot is at (χT , φT = 0.1911, 0.3) corresponding to the final emitter geometry at
x = 0.

with initial aspect ratio φ0 = 0.06, hence (dimensionless) external radiusR0 = 0.5652 (unit

cross-sectional area). Each plot is for a different value of pressure P̂ . Each of the curves

in a plot corresponds to a different pulling force F̂ and shows how the geometry (χ, φ) of

the cross-section at x = x̃ = 0 changes as τ (and hence t) increases, where (χ, φ) = (1, φ0)

at t = τ = 0. Each curve stops at one of the boundaries within the physically meaningful

region 0 < χ < 1 and 0 < φ < 1. Note that, strictly χ > 1 is physically possible with

suitable parameters but it is not of interest in emitter manufacture and so is excluded.

These plots show that there are multiple choices of P̂ , F̂ and τK that will yield a desired

final geometry (χT , φT ), shown using a black dot. The wall thickness of the emitter can
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be determined from (χT , φT ) = (0.1911, 0.3), and this corresponds to RT = 0.1130 and

φTRT = φ0R0 = 0.0339, i.e. the internal radius at x = 0 equals that of the initial tube.

Proceeding further, we now aim to develop a procedure that helps us to determine the

value of F̂ that generates the desired χT and φT for a given P̂ . For this we develop a root

finding procedure that determines the appropriate force F̂ for a pressure P̂ that yields

the prescribed (χT , φT ) at the tip. The algorithm is as follows,

1. set a pressure P̂ value;

2. set an initial range for F̂ as a guess;

3. solve (2.20) and (2.25) in MATLAB with ode45 for a large τ span;

4. use the function fzero in MATLAB to calculate the F̂ that generates the desired

φT at the tip;

5. define events in MATLAB ODE solver to stop computations beyond the χT value

corresponding to the final geometry at the tip.

Additionally, we define events in the MATLAB ODE solver to stop the solution should

φ = 0, φ = 1, or χ = 0. We can also include φTRT − φ0R0 = 0 as an event in place of

specifying χT as a stopping criterion to ensure that the inner channel at the tip has the

same dimension as the original tube.

From the phase plane plots it is apparent there is not necessarily a unique choice of F̂

and P̂ that yields a required geometry at the tip (x = 0). The evolution of the geometry is

unique from one solution to another which affects the final geometry of the cross-sections

for x > 0 and, so the shape of the emitter. We seek an emitter with a constant bore,

so after determining values of P̂ and F̂ that give the desired χT and φT , we look for
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Figure 3.4: Plot of the inner boundary r = φ(τ)R(τ) (top) and the aspect ratio φ(τ)
(bottom) as a function of χ ∈ [χ, 1] for different pressure values within the range P̂ =
32 − 40 in increments of 1. The value of the force F̂ is determined from the algorithm
above, to reach the desired (χT , φT ). The red arrow shows the direction of increasing
pressure (and force). The black dashed line in φR versus χ plot shows the initial inner
radius (when χ = 1 ) which is also the radius when χ = χT = 0.1911. The black dot in
the φ versus χ plot corresponds to (χT , φT ) = (0.1911, 0.3).

the best choice of these parameters corresponding to the most uniform bore. To do this,

the algorithm above is used to compute over a range of pressure values and the optimal

solution is then selected as the parameter combination (F̂ , P̂ ) that gives the least variation

along the length of the inner channel from its original dimension, that is the smallest value

E = maximum (φ(τ)R(τ))− φ0R0. (3.6)

Figure 3.4, shows the internal radius φR (top) and aspect ratio φ (bottom) against

χ ∈ [χT , 1] for a number of different parameter combinations P̂ , and F̂ . These graphs

show the change of the internal radius and the aspect ratio as the cross-sectional area

reduces from χ2 = 1. Every cross-section will follow the curve corresponding to the
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Figure 3.5: Curves (χT (τ), φT (τ)) for P̂ = 32 and (solid curves) 0.64102 < F̂ < 0.64103
in increments of 10−6, with F̂ increasing from the top curve to the bottom curve. Initially
(χ(0), φ(0)) = (1, 0.06) and τ increases from right to left. The red dot shows the desired
geometry (χT , φT ) ≈ (0.1911, 0.3) at the tip x = 0. The black dashed-curve passing
through the red dot corresponds to a force of F̂ = 0.64102262.

chosen parameters P̂ , F̂ , though only that at x = 0 will reach the end point χ = χT ,

specified by the stopping criterion. Of the curves shown, the curve with least variation of

the inner channel is given by (P̂ , F̂ ) = (32, 0.64102262). With the final value of τI known

as an output from the ODE solver, we can use (2.18) to determine the corresponding tK ,

the physical time taken for the emitter to be pulled given a known µ̂(x, t).

Although Figure 3.4 (top) suggests that the variation in the inner channel radius de-

creases with decreasing pressure (and pulling force), there is a lower limit for a practically

feasible outcome. Consider Figure 3.5 showing curves (χ, φ) for pressure P̂ = 32 and

different values of force F̂ to which φ is highly sensitive. To achieve the desired geom-

etry (χT , φT ) at the tip (red dot through which the black dashed line passes) a force

F̂ = 0.64102262 is required. For the same χT , a small change in the force results in a
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Figure 3.6: Pulling force F̂ versus pressure P̂ that enable the manufacture of emitters
with χT = 0.1911, and φT = 0 (black), φT = 0.3 (red) and φT = 1 (blue), from a tube
with initial geometry (χ0, φ0 = 1, 0.06).

significant change in φT . The tube bursts (φ = 1) for a slightly smaller force in the range

0.641020 < F̂ < 0.641021, and the channel closes (φ = 0) for slightly larger force in the

range 0.641023 < F̂ < 0.641024. Seven figure accuracy in the force cannot be practically

achieved, so this suggests that a parameter regime with less sensitivity to small changes

should be used so that the desired geometry at the tip can be assured within reasonable

tolerances.

Figure 3.6 shows, the curves (P̂ , F̂ ) corresponding to (χT , φT ) = (0.1911, 0.3) from a

tube with initial geometry (χ, φ) = (1, 0.06). Above this is shown, in black, the curve

on which (χT , φT ) = (0.1911, 0) and the channel closes at x = 0, while below is shown,

in blue, the curve on which (χT , φT ) = (0.1911, 1) and the tube bursts at x = 0. To

obtain a valid emitter tip, even if not the desired geometry, values of P̂ and F̂ must be
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Figure 3.7: Plot of the final emitter geometry for a tube with initial length L(0) = 1.5,
cross-sectional area χ2(x, 0) = 1, and aspect ratio φ(x, 0) = 0.06, after pulling for a
time tK = 0.4436 with force F̂ = 1.3166 while applying an internal channel pressure
P̂ = 34. The external boundary r = R(x, tK) is shown in blue and the internal boundary
r = R(x, tK)φ(x, tK) is shown in red. The aspect ratio and cross-sectional area at the tip
are φT = 0.3, χT = 0.1914.

chosen from the region between upper and lower curves. This figure clearly shows the

sensitivity of φT to the force F̂ for smaller pressure P̂ , and the decrease in sensitivity as

P̂ increases. However, while choosing a larger pressure and force means less sensitivity

of the tip geometry to inaccuracies in the parameters, it must be remembered that as P̂

increases the variation of the inner channel radius increases, and a larger bulge is seen; see

Figure 3.4 (top). We conclude that the optimal choice of the parameters P̂ , F̂ corresponds

to the point on the red curve with smallest P̂ such that variations within the tolerance

range of the pulling device lead to acceptable variation in the geometry at x = 0. This will

yield the emitter with the most uniform internal channel radius (smallest bulge) possible.

Figures 3.3 - 3.6 show the required solution of χ and φ as functions of independent

variable τ . The analysis did not require knowledge of viscosity µ̂(x, t) and the calculation
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of axial position x as the use of reduced time alone is sufficient to determine a feasible

parameter regime for the outcome. To determine the evolution of the physical geometry

over physical time t for a prescribed viscosity function µ̂(x, t), the movement of each

cross-section must be tracked relative to the location of the heater. This determines

the viscosity at each cross-section, which is not considered in the root finding algorithm

described above. For this we run the full numerical procedure of Section 2.3.2 starting

with an approximation (guess) for the final time tK . We use a constrained τ span with

τ ∈ [0, τI ], where τI corresponds to the value of τ from the above root finding technique

that gives the desired (χT , φT ) for the cross-section at x = 0. The final draw time tK may

then be adjusted to meet the τI requirement, i.e. that τ(x = 0, t = tK) = τi. Figure 3.7

shows the shape of the glass emitter for a parameter choice which gives relatively little

variation in the inner channel, namely P̂ = 34 and F̂ = 1.3166. Note here that the

dimension of the inner channel at the tip is equal to that at the pulled end at the final

time tK = 0.4436. The solutions are plotted in dimensionless form, and can be converted

back to dimensional form using the scales in (3.1). For example, in dimensional form, recall

that the axial length scale is ∼ 3 mm while the radial length scale is 0.1 mm implying that

the variations in the radius are relatively small in comparison to the variation in the axial

length.

3.3 Zero channel pressure: a semi-analytical solution

The case of zero channel pressure in a surface tension-driven flow with constant pulling

force is discussed in detail in both Stokes et al. (2014) and Tronnolone (2016). We will

highlight the main findings relevant to our unsteady analysis for completeness. In this
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case, the deformations within a cross-section are entirely due to the effect of surface

tension, which is determined by the curvature (κ) of the channel. The significance of this

analysis is that it provides a semi-analytical solution to the flow model in terms of τ that

can be used to validate the numerical solution.

The system of differential equations in (2.20) and (2.24) for non-zero pressure, does

not have an analytical solution. However, in the absence of pressure (P̂ = 0) (2.24)

decouples from (2.20) and we can solve (2.20) for φ(τ) analytically. This solution can

then be used to determine χ(τ) in (2.24). Further simplifications can be applied to obtain

a semi-analytical form of the solutions to the zero-pressure case, which are helpful for

verifying the accuracy of the numerical solutions here. This also provides a useful basis

for understanding the underlying mechanisms of when and why channel pressurisation

is important. To generate solutions for the case where P̂ = 0, we begin by defining an

additional parameter α, which was introduced in Stokes et al. (2014), Chen et al. (2015)

and Tronnolone (2016) to describe the geometry of the fibre cross-section, namely

α =

√
1− φ

π(1 + φ)
, (3.7)

where α(x̃, τ) is the wall thickness (or the difference between the outer and inner radii)

of cross-section x̃ at reduced time τ in our cross-plane model. In practice, we are more

interested in φ, therefore, the above equation can be rearranged for φ to obtain

φ =
1− πα2

1 + πα2
. (3.8)
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Thus, the equations (2.24) and (2.20) (with P̂ = 0) in terms of α are

dχ

dτ
=

1

6
χ− F̂

γ̂
, (3.9)

dα

dτ
=

1

2
. (3.10)

As in Stokes et al. (2014) and Tronnolone et al. (2016) the solution is readily found to be

α(x̃, τ) = α0

(
1 +

τ

2α0

)
, where α0 = α(0), (3.11)

χ(x̃, τ) =

(
α

α0

)1/3{
1− 3

F̂

γ̂
α0

[(
α

α0

)2/3

− 1

]}
, (3.12)

φ(x̃, τ) =
1− πα2

1 + πα2
, (3.13)

which replace the numerical solution of χ and φ in the algorithm of Chapter 2 (page 34).

The expression for the outer radius R(x̃, τ) can be computed using (3.11) as

R =
χα0

(1− φ)

(
1 +

τ

2α0

)
. (3.14)

Hence the inner radius φ(x̃, τ)R(x̃, τ) at any τ is

φR = χα0

(
1 +

τ

2α0

)(
1− πα2

1 + πα2

)
. (3.15)

As discussed earlier, a number of events are possible during the pulling process, de-

pending on the problem parameters. In the case of zero pressure, for which φ necessarily

decreases with τ , bursting cannot occur and exact expressions may be found for the re-

duced times at which hole closure and fibre breaking occur. The reduced time at which
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Figure 3.8: The outer boundary r = R(x, tK) (blue) and inner boundary r =
φ(x, tK)R(x, tK) (red) over the position x after pulling from an axisymmetric fibre of
initial length L(0) = 1.5, cross-sectional area χ2(x, 0) = 1 and aspect ratio φ(x, 0) = 0.06
for a channel pressure P̂ = 0 , force F̂ = 1.32, and a draw time tK = 0.0635. The heated
region 0 ≤ x < 1 is indicated by the black dashed line.

the internal channel closes is

τC = 2

(
1√
π
− α0

)
, (3.16)

at which time φ(τC) = 0 ( or α(τC) = 1/
√
π), (Stokes et al. 2014). For τ > τC the

cross-plane model is invalid as the aspect ratio becomes negative. Therefore, beyond this

point there is no longer a hole and the annular geometry must be replaced with a unit

circle with no interior hole (Stokes et al. 2014), i.e. a solid rod (as discussed in Section

2.3.3). If the aim is to preserve the hole, then we will require τ ≤ τC for every x̃.

As the glass tube continues to stretch, assuming there is no hole closure, it will continue

to deform as τ increases, and will eventually break at the cross-section which first reaches
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the reduced time:

τB = 2α0

{(
1 +

γ̂

3F̂α0

)3/2

− 1

}
, (3.17)

when the cross-sectional area goes to zero (χ2 → 0).

For P̂ = 0, as the tube is heated, the viscosity of the fluid decreases rapidly and the

tube lengthens and thins more rapidly, thus enhancing the effect of surface tension. When

the stretching force is low, the surface tension has more time to act compared with when

it is high, which results in more closure of the inner channel. More importantly, for the

case of zero pressure, if we are to preserve the interior channel and avoid breakage of

the tube, we will require τ(x̃, t) < min(τC , τB). Once the final geometry of the tube is

determined in terms of τ , for a prescribed viscosity, we can use (2.18) to find the results in

terms of scaled physical time t along with the length of the tube computed using (2.12).

Figure 3.8 shows an example solution for a fibre of initial aspect ratio φ0 = 0.06 pulled

with a force F̂ = 1.32, channel pressure P̂ = 0, for a time t̂K = 0.0635 at which time the

aspect ratio at x̃ = 0 becomes zero (φ = 0, τ = τC = 0.0658). The viscosity profile used

was that given in (3.2) with n = 6. Note that the events in the ODE solver can be used

to determine τC and to stop computing the solutions beyond φ = 0.

3.4 Numerical convergence

For numerical convergence and the validity of the solution, both spatial and time dis-

cretisation must be sufficiently small. Most importantly the numerical solution should

converge to a single solution at a given time as ∆x̃ and ∆t. Figure 3.9 shows the evo-

lution of χ at tK = 0.4 where ∆x̃ = 0.1, 0.01, and 0.001 and with ∆t = 0.1, and shows

convergence as ∆x̃ decreases. The solutions for ∆x̃ = 0.01 and 0.001 compare closely to

each other even under magnification, Figure 3.9 (b).
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(a) χ plotted against x for ∆x̃ = 0.1 (blue), 0.01 (black dotted), 0.001 (orange). The initial di-
mensionless length of the tube is L(0) = 1.5, the cross-sectional area χ2(x, 0) = 1 and aspect
ratio φ(x, 0) = 0.06. The tube is pulled with P̂ = 34, F̂ = 1.3166, and tK = 0.4, where ∆t = 0.1.
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(b) A magnified image of the neck-down region from x = 0.5 to x = 0.8 of Figure 3.9 (a).

Figure 3.9: Evolution of square root of the cross-sectional area (χ) for different values of
∆x̃ at time tK = 0.4.
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Figure 3.10: Plot of (a) inner radius r = φTRT (b) χ, plotted against − log(∆t), where ∆t
is the size of the time step, and ∆x̃ = 10−3. The initial dimensionless length of the tube
is L(0) = 1.5, the cross-sectional area χ2(x, 0) = 1 and the aspect ratio φ(x, 0) = 0.06.
The tube is pulled with P̂ = 34, F̂ = 1.3166, and tK = 0.4436 to achieve φTRT = 0.0339
and χT = 0.1911 at the tip.

To illustrate the convergence of the numerical method with respect to the choice of ∆t,

Figure 3.10 shows the final inner radius φTRT in (a) and χT in (b) versus the negative

log of the time step ∆t with ∆x̃ = 0.001. These plots show that as time step decreases,

the numerical solution converges to φTRT = 0.0339 and χT = 0.1911. To generate these

results, we have repeated the calculation used to generate Figure 3.7 with ∆x̃ = 10−3 and

for a variety of time steps ∆t.

The semi-analytical solution for zero pressure is useful to validate the interpolation

step in the complete numerical solution method for non zero pressure. To test this, let us

consider the result for φ = 0, or α = 1/
√
π, which occurs at τC = 0.0658 and corresponds

to the geometry at the tip x̃ = 0 in Figure 3.8. Using for example, F̂ = 1.32, we can

calculate analytically the resulting value of χT = 0.9325 from (3.12). The numerical
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∆t χT τC
0.01 0.9369 0.0616
0.001 0.9332 0.0651
0.0001 0.9326 0.0657

Table 3.2: χT and τC values at tK = 0.4436 for different ∆t values for zero pressure.

solutions obtained when computing the values of χT and τC (to 5 figures) for ∆x̃ = 0.001

with different ∆t values are listed in Table 3.2 for reference. For ∆τ = ∆x̃ = 10−3 and

∆t = 10−4 the two solutions agree to three decimal places. Thus for better accuracy

(at least 5 figure accuracy) we need small time steps and space steps, which increase the

computational time considerably.

3.5 Summary

In summary, the primary outcome of this chapter has been to analyse the final geom-

etry formed due to the unsteady drawing of a slender viscous fluid fibre with an annular

cross-section. We have considered the effects on the final geometry of pulling force, sur-

face tension, active channel pressurisation, and axially varying viscosity along the heated

region, with the temperature assumed to be uniform within a cross-section. Numerical

solutions discussed in this chapter suggest that inner channel pressurisation may be used

to obtain an emitter with a near-uniform bore and a small wall thickness at the very tip,

with pressure counteracting the effect of surface tension. The model and solution method

here described, enable determination of a pulling force F̂ , channel over-pressure P̂ , and

draw time tK , to achieve tapers with a desired internal diameter and wall thickness at

the very tip, from a given tubular fibre, for a prescribed viscosity profile that may vary in

time and space. There is not a unique solution to this problem; multiple parameter sets

(F̂ , P̂ , tK) will yield the same geometry at the tip with a larger pulling force requiring
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a larger over-pressure. However, the geometry along the length of the taper, which is

also found, will vary between parameter sets and this may be used to determine the best

choice of the parameters.

The geometry of the taper is quite sensitive to the pulling force and pressure parameters.

A taper for use in mass spectrometry, having a tip with channel diameter near to that of

the original fibre and small wall thickness, implies a geometry at the tip with significantly

larger aspect ratio φ and smaller cross-sectional area χ2 than the original fibre which, in

turn, implies an over-pressure and pulling force that are nearing the regime where the fibre

may burst or break. As the pulling force and over-pressure reduce, the sensitivity increases

such that a very small variation in the force or pressure will result in the fibre bursting

(φ → 1) or the channel closing (φ → 0). Note that such a failure will occur first at the

tip which is subjected to the greatest amount of heat and consequently undergoes more

deformation than any other cross-section. Practical limitations on maintaining the force

and pressure at given values will, then, require that these parameters be sufficiently large

so that small variations do not result in unacceptable changes in φ at the tip. However,

larger force and over-pressure result in greater non-uniformity of the internal channel, i.e.

a larger bulge in the inner channel, so that increasing these parameters too much is also

not desirable. Clearly there is a trade-off between the two and an optimisation problem to

be solved based on physical limitations of the puller and fitness for purpose of the taper.

Following that, we discussed the key results for the case of zero pressure, such as the

maximum possible draw times to avoid events such as inner channel closure and breaking

of the tube. This semi-analytical solution provides a more intuitive understanding of these

scenarios as well as validates the numerical procedure. When P̂ = 0, the deformations

in the cross-section are solely due to the effect of surface tension. Since this depends on

the curvature κ of the geometry, the narrower the channel, the faster it closes. When the
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pressure is not zero, there is a competition between the stretching and the effect of surface

tension and pressurisation on the geometry. The optimal draw parameters are the ones

that allows the least variation in the inner channel in a parameter regime where there is

less sensitivity of geometry to small changes in the parameters and can be assured within

reasonable tolerances.



Chapter 4

Pressure dominant flow

4.1 Introduction

In Chapters 2 and 3 it was assumed that the dimensionless surface tension was γ̂ =

O(1) and hence we derived model equations assuming the effect of surface tension to be

important in the cross-plane problem. The importance of surface tension depends on

the choice of the other dimensionless parameters and the geometry under consideration

(Tronnolone et al. 2016). Dewynne et al. (1994) demonstrated that when the surface

tension is neglected, the cross-section only rescales as its absolute size changes, and the

problem can be reduced to a one-dimensional boundary value problem that can be solved

efficiently for the cross-sectional area as a function of the axial coordinate. In the context

of manufacturing emitters, maintaining a uniform inner channel using the heating and

pulling method requires a considerable amount of pressure in addition to the pulling force.

When the force applied is high enough, the surface tension is negligible in comparison,

essentially allowing us to eliminate it. However, for γ̂ → 0 the scalings of Section 3.2 are

not appropriate, with dτ
dt
→ 0 in (2.18) and P̂ /γ̂ →∞ in (2.20), so that the scaling must

69
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be changed.

In this chapter we develop a new method for defining reduced time that governs the

cross-plane flow problem assuming the effect of surface tension is small compared to the

applied pressure. In simple terms, pressure dominates the motion in the transverse flow

compared with the effects of surface tension, and hence deformations within the cross-

plane are primarily generated by the effect of pressure. This leads us to a different set

of governing equations which allows us to explore the deformations in the cross-plane

for scenarios in which force and pressure have been identified as essential for achieving

the desired geometry. We will refer to this flow as a pressure-driven transverse flow.

Furthermore, by rescaling the definition of the reduced time variable, we can consider more

model simplifications such as zero surface tension which results in complete analytical

solutions, and weak surface tension which results in semi-analytical solutions, as discussed

in the subsequent sections of this chapter.

4.2 Pressure-driven transverse flow

We start with an alternative rescaling of pressure and velocity to that given in (2.17),

using P̂ in place of γ̂. Thus we now define

p = pz +
P̂

χ
p̃, v = vz +

P̂

µ̂(x̃, t)
ṽ, (4.1)

where the transverse variables are denoted by tildes. Along with this scaling, the re-

duced time variable τ̂ for the transverse problem in a flow with significant pressure effects

compared with the surface tension is modified to be

dτ̂

dt
=

P̂

µ̂(x̃, t)χ
. (4.2)
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The new scalings for both pressure and velocity in (4.1) also modify the dynamic boundary

conditions (for both external and internal boundaries of the tube) we had previously in

(2.19c) and (2.19d) in Chapter 2 as

−p̃ + 2
∂ṽ

∂r̃
= − γ̂κ̃

(0)

P̂
, on G(0) = 0, (4.3a)

−p̃ + 2
∂ṽ

∂r̃
= −

(
γ̂κ̃(1)

P̂
− χ

)
, on G(1) = 0, (4.3b)

which apply on r̃ = R̃ and r̃ = φR̃ respectively. The kinematic boundary condition

remains unchanged as

∂G(i)

∂τ
+ ṽ = 0, on G(i) = 0, i = 0, 1. (4.4)

Recall that the flow in a cross-section is determined by the solution of the classical Stokes

flow free boundary problem, given in (2.19a) and (2.19b). Integrating (2.19a) and (2.19b)

yields

ṽ =
A

r̃
, p̃ = B, (4.5)

where A and B are constants of integration. We may now solve for the velocity and

pressure by substituting for ṽ, p̃ and κ̃ into (4.3a) and (4.3b) resulting in the following

expressions for radial velocity and pressure

ṽ =
φ2R̃2

2r̃(φ2 − 1)

[
γ̂(φ+ 1)

P̂ φR̃
− χ

]
, (4.6)

p̃ =
1

(φ− 1)

[
χφ2

(φ+ 1)
− γ̂

P̂ R̃

]
.
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Then substituting for ṽ in the two kinematic conditions given in (4.4) for i = 0, 1 we find

that

dR̃

dτ̂
= − φγ̂

2P̂ (1− φ)
+

φ2R̃χ

2(1− φ2)
, (4.7)

d(φR̃)

dτ̂
= − γ̂

2P̂ (1− φ)
+

φR̃χ

2(1− φ2)
. (4.8)

Using the fact that the transverse flow problem is scaled to have a unit area i.e., πR̃2(1−

φ2) = 1, we obtain a differential equation for φ as

dφ

dτ̂
= − γ̂

√
π(1 + φ)

3
2 (1− φ)

1
2

2P̂
+
φχ

2
, (4.9)

using the revised scaling for τ̂ introduced in (4.2). We obtain the equation governing the

axial flow for a flow with significant pressure effects using the new τ̂ variable as

Dχ

Dτ̂
=

γ̂

12 P̂
χ Γ̃− F̂

P̂
. (4.10)

Finally, substituting for Γ̃ using (2.21) in (4.10) the axial model in terms of φ(τ̂) is

Dχ

Dτ̂
=

√
π γ̂

6 P̂
χ

√
1 + φ

1− φ
− F̂

P̂
. (4.11)

As with the complete model in Chapter 2 for a transverse flow where the reduced time was

defined with surface tension, the equations governing the axial and transverse flow models

in this alternative scaling are fully-coupled due to the presence of the axial variable χ in

the cross-plane model. As a result, an analytical solution is unattainable and so we seek

numerical solutions to the system of equations comprising (2.13), (4.2), (4.9) and (4.11).
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4.2.1 Numerical solutions for pulling with a strong (constant)

force

Recall that in Chapter 3, in the absence of a natural velocity scale, we set a characteristic

velocity U by setting γ̂ = 1. However, in this chapter, since we aim eventually to neglect

the effect of surface tension in the subsequent sections, we here define a characteristic

velocity U by setting F̂ = 1 , corresponding to a case of a known pulling force and so

substantial stretching. Thus, gives a velocity scale U = FH/6µhotS0. In terms of the new

velocity scale, the scaled variables (denoted by hats that comply with the same convention

as in Chapter 2) are as follows

(x, r) = H(x̂, εr̂), (u, v) =
FH

6µhotS0

(û, εv̂), t =
6µhotS0

F
t̂,

p =
F

6S0

p̂, γ =
F

6
√
S0

γ̂, P =
F

6S0

P̂ .

(4.12)

Also, we set F̂ = 1 in (4.10) and (4.11). In our numerical procedure, (4.9) and (4.11)

can be solved first for χ(x̃, τ̂) independently of (4.2) and (2.13). Equation (4.11) describes

the change in the cross-sectional area with τ̂ due to stretching; whereas (4.9) describes

the evolution of the cross-sectional shape (i.e. aspect ratio) with τ̂ due to the effect of

pressure and surface tension. For γ̂ 6= 0, these two equations are fully coupled and thus

need to be solved simultaneously.

To complete the mathematical formulation of the problem and determine the physical

geometry of the tube at physical time t, we must solve (4.2) for t(x̃, τ̂), scaled in terms

of scaled applied pressure P̂ , at physical position x(x̃, τ̂), as given by (2.13). As with

the full model discussed in Section 2.2.4, the above system of differential equations are
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fully coupled in a rather complex manner as viscosity is a function of physical position

x and time t similar to the model equations in Chapters 2 and 3, requiring a numerical

solution. The procedure for generating this numerical solution is similar to that described

previously in Section 2.3.2, since the underlying system of differential equations is the

same as those from Chapter 2, rescaled with P̂ instead of γ̂. The importance of this

modification to the definition of reduced time is that it permits the limiting cases of

γ̂ = 0 and γ̂/P̂ � 1, which will be explored in Sections 4.2.3 and 4.2.5, respectively. In

these later sections we will see that (4.9) decouples from (4.11) and the solution to the

transverse problem can be found analytically in terms of τ̂ for P̂ 6= 0, which could not be

done when the reduced time was scaled with γ̂.

The time stepping procedure for the numerical solution for the full model, including

both surface tension and pressure, can be summarised below. We first introduce the time-

discretisation of (4.2) that scales the reduced time using P̂ for each t using a forward Euler

method as

τ̂j,k+1 = τ̂j,k +
P̂∆t

µj,k χj,k
, j = 0, 1, . . . , J. (4.13)

The rest of the algorithm for obtaining the solution for the system of equations for tk+1

is as in Chapter 2 but is repeated below for ease of reading:

1. compute τ̂j,k+1 using (4.13), for all the cross-sections x̃j, where j = 0, 1, . . . , J ;

2. determine χj,k+1 and φj,k+1 for j = 0, 1, . . . , J by interpolation of the previously-

obtained solution (τ̂i, χ
∗
i , φ
∗
i ) to (4.11) and (4.9) using MATLAB’s ‘deval’ function;

3. compute xj+1,k+1 using (2.31) for j = 0, 1, . . . , , J − 1;

4. update the viscosity i.e., µj,k+1 = µ(xj,k+1, tk+1).

Here χ(x̃, τ̂i) = χ∗i , and φ(x̃, τ̂i) = φ∗i are the solutions for (4.11) and (4.9) using the
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Figure 4.1: The inner and outer radii of an emitter obtained from an axisymmetric tube
with initial length L(0) = 1.5, cross-sectional area χ2(x, 0) = 1 and aspect ratio φ(x, 0) =
0.06, by pulling with force F̂ = 1, surface tension γ̂ = 0.1 and pressure P̂ = 4 for time
tK = 0.5. In blue(outer radius) and red(inner radius) are the radii obtained using model
equations in Chapter 2 and in dashed black (outer and inner) are obtained using model
equations developed in Chapter 4.

MATLAB ODE solver (ode45) for a sufficiently large τ̂ range. The above algorithm is

repeated through to the final time tK by incrementing the time step.

Recall that, depending on the problem parameters, a number of events are possible:

namely, bursting of the tube when φ→ 1, and breaking of the fibre defined as χ→ 1, and

closure of the channel when φ→ 0. In the case of γ̂ � P̂ , for which φ necessarily increases

with τ̂ , inner channel closure cannot occur as the transverse flow is dominated by pressure

and the surface tension is too weak to counteract. More generally, these events must be

identified as a part of the solution process. As we have discussed in Chapter 3, none of

these events are permissible in pulling emitters and, computation beyond these events is

stopped by flagging them as events in the MATLAB ODE solver.

The obtained final geometry of the emitter is comparable with that generated from the
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set of differential equations outlined in earlier chapters, where the reduced time is scaled

with the surface tension using the same dimensionless parameters, providing a form of

mutual validation for both scalings (see Figure 4.1).

4.2.2 Achieving a uniform bore

As we have identified in Chapter 3, not all choices of pressure and force can pro-

duce emitters tips with desired dimensions. The tolerance of the instrument used in the

manufacturing process necessitates significant attention when choosing the operational

parameters. If the force F is known and we set F̂ = 1, we have a choice between the pres-

sure and the surface tension parameters. However, since the surface tension γ of molten

glass is highly dependent on its composition, we are essentially limited to choosing an

acceptable pressure P to achieve the desired geometry.

To aid our understanding of the effect of surface tension γ̂ and pressure P̂ on the

evolution of the geometry with a close to uniform bore, we refer to Figure 4.2, showing a

number of phase plane plots for a tube with an initial aspect ratio φ0 = 0.06. Each plot

is for a different value of surface tension γ̂ of size O(10−2). Each curve corresponds to a

different pressure P̂ and shows how the geometry (χ, φ) evolves by solving the governing

equations (4.11) and (4.9) numerically (using MATLAB) as τ̂ increases. The solutions of

the phase plane are only allowed within the physically feasible region of 0 ≤ χ ≤ 1 and

0 < φ < 1. We have chosen to vary P̂ starting from P̂ = 1, as the scaling requires P̂ > 0.

These plots illustrate the competition between the surface tension and the pressure to

reach the desired final geometry (χT , φT ) = (0.1911, 0.3) represented by a black dot in

each of these plots and corresponding to φTRT = φ0R0 = 0.0339.

Figure 4.3 compares the phase plane plots for a surface tension of size O(10−1), indi-

cating the impact of a surface tension for an order of magnitude larger than the plots in
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Figure 4.2: φ(τ̂) versus χ(τ̂) for a capillary with initial aspect ratio φ0 = 0.06, where
surface tension γ̂ = 0.02 (top left), 0.04 (top right), 0.06 (bottom left) and 0.08 (bottom
right) for a P̂ ranging from 1 to 15 in increments of 1 increasing from bottom to top. The
black dot is (χT , φT ) = (0.1911, 0.3) corresponding to the final geometry at x = 0.

Figure 4.2 for the same range of pressure values. These plots show that as γ̂ increases, the

differences become more visible and the outcome becomes more sensitive to the surface

tension, estimating that to reach (χT , φT ) when γ̂ = 0.1 requires P̂ ≈ 9 and the required

pressure P̂ increases as γ̂ increases.

As γ̂ increases larger pressure is needed to achieve the desired tip geometry (χT , φT ).

Also notice that compared with γ̂ = O(10−2) for γ̂ = 0.1 and 0.2, fibre explosion, i.e.,

φ → 1, occurs at higher pressures, while for γ̂ = 0.3, and 0.4, the majority/all of the

curves go to φT = 0 (hole closure). Once again we are seeking parameters near to the

limiting cases of bursting and breaking and, therefore, the solution can be very sensitive

to changes in the parameter values. At γ̂ = 0.4, all the curves have hit φ = 0 resulting in

inner channel closure as the pressure is insufficient to counteract the effect of the surface

tension. These plots suggest that when γ̂ = O(10−1), the impact of surface tension cannot
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Figure 4.3: φ(τ̂) versus χ(τ̂) for a capillary with initial aspect ratio φ0 = 0.06, where
F̂ = 1, surface tension γ̂ = 0.1 (top left), 0.2 (top right), 0.3 (bottom left) and 0.4
(bottom right) for a P̂ ranging from 1 to 15 in increments of 1 increasing from bottom to
top. The black dot is at χT ∼ 0.1911 and φT = 0.3 corresponding to the dimensions of
final emitter geometry at the tip.

be ignored, and if φT > φ0 is desired, then the pressure P̂ must be above a large threshold

value to overcome the surface tension. As can be seen across all four values of order

γ̂ = O(10−2) in Figure 4.2 the solutions are not very sensitive to changes in pressure,

suggesting that surface tension has a less significant impact on the solution.

We further improve our search for the required P̂ that generates the (χT , φT ) for a fixed

value of γ̂ by developing a root finding algorithm as follows

1. set the γ̂ value;

2. set an initial range for P̂ as an initial approximation;

3. solve (4.11) and (4.9) in MATLAB with ode45 for a large τ̂ span;

4. use the function fzero in MATLAB to calculate the P̂ that produces the desired
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Figure 4.4: Inner channel pressure P̂ versus surface tension γ̂ for the manufacture of the
emitters with χT = 0.1911, and φT = 0 (black), φT = 0.3 (red), and φT = 1 (blue), from
a tube with initial geometry φ0 = 0.06.

φT at the tip;

5. define events in MATLAB ODE solver to stop computations beyond the desired

χT .

We can also avoid other undesirable events such as φ = 0, χ = 0, and φ = 1 by using the

events option in the ODE solver to stop the computations if any of these occur. As an

alternative to the final step in the above algorithm, φTRT − φ0R0 = 0 can also be used

as the event in place of specifying the condition in terms of χT .

The resulting P̂ from the above algorithm can then be used effectively in the full model

to generate the geometry of the final fibre, using the spatially varying viscosity profile in

3.2, and for a suitable final draw time tK , which corresponds to the resulting τ̂I , obtained

as an output from the above algorithm. Alternatively, the above algorithm can be modified

to improve our search for an optimal pressure, P̂ , over a given array of γ̂ values.
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Figure 4.4 shows in red the combination of the parameters (γ̂, P̂ ) required to obtain

(χT , φT ) = (0.1911, 0.3) from a tube with an initial geometry of (χ, φ) = (1, 0.06). Shown

in blue is the curve on and above which (χT , φT ) = (0.1911, 1), and the tube bursts at

x = 0, while the curve on and below which (χT , φT ) = (0.1911, 0), and the channel at

the tip x = 0 closes, is shown in black. To obtain a valid emitter tip, the values of P̂ ,

and γ̂, must be chosen from the region between the upper and lower curves. The figure

shows clearly the sensitivity of φT to the surface tension γ̂. The sensitivity increases as

γ̂ increases. This shows that surface tension has a clear impact on the geometry when

γ̂ = O(10−1) or more. For smaller surface tension, the tip geometry will be less sensitive

to the choice of pressure.

Recall that the optimal choice of the parameters corresponds to the smallest P̂ leading

to an emitter with the most uniform internal channel radius (smallest bulge) possible.

Given that surface tension (γ) is determined by the composition of the material, and

that the above algorithm determines the pair (γ̂, P̂ ) that yields the desired final geometry

(χT , φT ), then the scaling in (4.12) gives a dimensional pressure of P = γP̂√
S0γ̂

. The solution

for γ̂ = 0.1 is shown in Figure 4.5 at the (final) time when φTRT = φ0R0 = 0.0339, i.e.

the inner radius at x = 0 equals that of the initial tube.

Figure 4.6 compares the inner radius φ(x)R(x) at a fixed final time of tK = 0.1, for

two different pressure values, with the left being P̂ = 1 and the right being P̂ = 10

and using the axially varying viscosity as in (3.2) with n = 6. Each of the curves in a

plot corresponds to a different surface tension of size γ̂ = O(10−1) and shows how the

φTRT changes due to the competition between the surface tension and the pressure. For

high pressure and low surface tension, i.e., γ̂ = 0.1 and P̂ = 10, the pressure opens the

channels compared with the initial dimensions (φTRT > φ0R0), thereby opposing the

effect of surface tension, which tends to shrink these small-scale structures as the fibre
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Figure 4.5: Plot of the final emitter geometry for a tube with initial length L(0) = 1.5,
cross-sectional area χ2 = 1, and aspect ratio φ(x, 0) = 0.06, after pulling for a time
tK = 0.4932 with surface tension γ̂ = 0.1 while applying an internal channel pressure
P̂ = 8.8919. The external boundary r = R(x) is shown in blue and the internal boundary
r = R(x)φ(x) is shown in red. The aspect ratio and cross-sectional area at the tip are
φT = 0.3, χT = 0.1911.

is drawn. For sufficiently large pressures, they can burst. At low pressures, the surface

tension prevents a fibre explosion but can result in inner channel closure. These plots

show clearly that pressure can make a significant impact on the dimension of the inner

channel by counteracting the effects of surface tension, especially on geometries with small

boundaries. It needs to be remembered that as the pressure increases, the variation in

the inner channel radius increases, resulting in a larger bulge; conversely, as the pressure

decreases, the size of the bulge reduces, albeit with the risk of channel closure.

Fundamentally, our analysis so far indicates that if the surface tension is of O(10−1) or

more, it has a significant effect on the flow and cannot be neglected. Pressurising the inner

channel during the stretching process can avoid the inner channel’s closure but when too

large can result in bursting of the tube. To achieve a nearly uniform channel, an increased
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Figure 4.6: φ(x, tK)R(x, tK) over the position x after pulling from an initial length of
L(0) = 1.5, and inner radius φ0R0 = 0.0339. Pulling with pressure P̂ = 1 (left) and
P̂ = 10 (right) for a surface tension γ̂ ranging from γ̂ = 0.1−0.6 in increments of 0.1 (top
to bottom), and a draw time of tK = 0.1. The arrow shows the direction of increasing
surface tension. The results are obtained using the viscosity profile in (3.2) with n = 6.

aspect ratio is required at the tip, which requires a significant amount of pressure. In the

following analysis, we shall refer to these model solutions in the presence of non-negligible

surface tension as the “full solution”. We next re-frame our model in such a way that we

can investigate the effect of surface tension under the assumption that it has negligible or

only a weak effect relative to the other parameters affecting the flow.

4.2.3 Solution for zero surface tension (ZST)

The axisymmetric model described in the previous section has the advantage of being

sufficiently general to include the effects of both surface tension and pressure on the

evolution of the geometry. As a consequence of introducing a reduced time variable



4.2. Pressure-driven transverse flow 83

defined with pressure we may now use this model to investigate the case in which the

surface tension is disregarded (γ̂ = 0). Interestingly, when γ̂ = 0 in a transverse pressure-

driven flow, τ̂ 6= 0 in (4.2) and thus the deformations within the transverse problem can

still be addressed, which was not the case in the earlier flow model where surface tension is

assumed to be important. Furthermore, in (4.10), in contrast with the solution of the full

problem, the cross-sectional area χ2 does not depend on the total boundary length Γ(x̃, τ̂)

and (4.9) decouples from (4.10) such that the solution to the axial stretching problem can

be found completely analytically in terms of τ̂ . Thus the solution for χ is (with F̂ = 1)

χ(x̃, τ̂) = χ(x̃, 0)− τ̂

P̂
, (4.14)

where χ(x̃, 0) = 1. Substituting the above solution into (4.9), with a little rearrangement,

we obtain a separable equation for φ

dφ

dτ̂
=
φχ

2
, (4.15)

which can be solved to obtain φ as

φ(x̃, τ̂) = φ0 exp

[
τ̂

2

(
1− τ̂

2P̂

)]
, (4.16)

where φ0 = φ(x̃, 0). For a known viscosity, using (4.2) the relationship between time and

the reduced time τ̂ is given by

P̂ t

m(x̃, t)
= τ̂

(
1− τ̂

2P̂

)
, (4.17)
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where m(x̃, t) is the harmonic mean of the viscosity µ̂(x̃, t) at position x̃ over time t

(Tronnolone 2016) which is defined as

m(x̃, t) =
t∫ t

0
1

µ̂(x̃,t)
dt
. (4.18)

Using the quadratic polynomial given in (4.17) and solving for τ̂ in terms of m(x̃, t) gives

τ̂ = P̂

[
1−

(
1− 2t

m(x̃, t)

) 1
2
]
, (4.19)

where we must use the negative square root so that τ̂(x̃, 0) = 0. Thus, the ZST solution

for a known m(x̃, t) provides a straightforward relationship for τ̂ for a final draw time

tK of interest. However, this is not particularly useful for the current problem for which

m(x̃, t) changes with x̃ and depends on the stretching of the fibre. As a result, we use the

exact solutions of (4.10), (4.9) and (4.2) with a known viscosity profile µ(x, t) and obtain

a solution to the problem numerically using the numerical procedure described in Section

4.2.1 with γ̂ = 0.

Fundamentally, unlike in the case of transverse flow scaled with surface tension, we

can address the γ̂ = 0 transverse problem using τ̂ scaled with P̂ to generate an analytic

solution for χ(x̃, τ̂), φ(x̃, τ̂) where deformations in the cross-section are solely due to

pressure effects and then use a numerical procedure to determine x(x̃, τ̂), t(x̃, τ̂) and so

find the physical geometry over time. This model is more useful for a flow domain with

negligible effects of surface tension i.e., where there is a large pulling force that requires

a significant amount of pressure to retain the uniformity of the internal channel.
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4.2.4 Criterion for bursting and breaking

Having identified an analytical solution for the ZST case, we now use these solutions

to extract additional useful and interesting details about the heat and draw process. One

of the most important contributions of the modelling work to the laboratory fabrication

process of these emitters is identifying the points of fibre explosion, which occurs at φ→ 1,

and breakage, when χ→ 0. To find a condition for fibre explosion, we first rearrange the

analytical expression for the aspect ratio in (4.16) to obtain a quadratic polynomial in τ̂ ,

namely

τ̂ 2

2P̂
− τ̂ + 2 ln

(
φ

φ0

)
= 0. (4.20)

This can be solved to obtain τ̂ as

τ̂ = P̂

1±

√√√√
1−

4 ln
(
φ
φ0

)
P̂

 , (4.21)

where we must use the negative square root so that φ = φ0 at τ̂ = 0. Thus, the resulting

expression for the reduced time takes the form

τ̂ = P̂

1−

√√√√
1−

4 ln
(
φ
φ0

)
P̂

 . (4.22)
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Using (4.22) we can obtain the corresponding maximum possible reduced time τ̂B beyond

which explosion occurs by setting φ = 1, as

τ̂B = P̂

1−

√√√√
1−

4 ln
(

1
φ0

)
P̂

 . (4.23)

So τ̂B = P̂ if P̂ = 4 ln
(

1
φ0

)
else τ̂B < P̂ for P̂ > 4 ln

(
1
φ0

)
. Additionally, for real τ̂B we

must have 1 ≥ 4

P̂
ln
(

1
φ0

)
, which gives a criterion for explosion. This can be rewritten in

terms of the pressurisation and the initial aspect ratio of the fibre as

P̂ ≥ 4 ln

(
1

φ0

)
. (4.24)

Considering the criterion for fibre breakage, when χ2 → 0, we can also establish a

condition for the fibre breakage with respect to reduced time using (4.14) and setting

χ(x̃, 0) = 1, as

τ̂B = P̂ . (4.25)

Thus, it can be concluded that in a pressure-driven transverse flow with ZST, as τ̂ increases

from τ̂(x̃, 0) = 0 ( at t = 0), the aspect ratio increases due to pressure (as there is no

surface tension to counteract the pressure), and the tube breaks when χ2 = 0, or in

particular when τ̂ = P̂ at some x̃. Since the criterion for bursting alone implies τ̂B ≤ P̂ ,

it is apparent that the tube will burst first or at the same time as breaking. In practice,

τ̂ > P̂ has no meaning in the ZST case because the tube will have burst or broken for

τ̂ ≤ P̂ . Furthermore, writing (4.11) in terms of t using (4.2) gives

χdχ =
−1

µ̂(x̃, t)
dt, (4.26)
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which can be integrated analytically to obtain an expression for the maximum possible

draw time tB using the harmonic mean of the viscosity, m(x̃, t), as

t =
m(x̃, t)

2

(
1− χ2

)
=⇒ tB =

m̄(x̃, t)

2
, (4.27)

where χ = 0 and m̄ is the minimum of m(x̃, t) over all 0 ≤ x ≤ 1, i.e. the fibre breaks

at the position x̃, where m(x̃, t) is a minimum. For the current problem where µ(x, t)

depends on stretching, a numerical solution is required.

4.2.5 The case of weak surface tension (WST)

Without the application of pressure, Tronnolone et al. (2016) showed and verified

through experiments that if surface tension γ̂ is O(10−1), its effects are important in

both the axial and cross-plane problem. However, if γ̂ is O(10−2), the influence of surface

tension in the axial problem can be ignored, but it remains effective in the transverse

flow problem in regions of large curvature, and this is referred to as weak surface tension

(WST). In a surface tension driven transverse flow, τ̂ is scaled with γ̂, and if the term

γ̂/χ in (2.18) is O(1), deformations within a cross-section may be large as τ̂ increases,

allowing for a significant shape change in the cross-plane.

Previously, we observed that when γ̂ is O(10−1) its effects are important and cannot

be ignored. In a flow driven by pressure and surface tension, both the axial and the

transverse flows given in (4.11) and (4.9) are influenced by the dimensionless ratio γ̂/P̂ .

We here consider the characteristics of a flow that is dominated by pressure relative to

surface tension, with a strong pulling force i.e. γ̂ � 1 with P̂ ∼ 1 which we term the

weak surface tension case. For this case we may disregard the effect of surface tension in
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Figure 4.7: Plot of K =
√
π (1 + φ)γ̂ χ/6

√
(1− φ) against τ̂ (left) and φ̂ against τ̂ (right)

over a range of γ̂ = 0.001− 0.01 in increments of 0.001 for a capillary with initial aspect
ratio φ0 = 0.06 and χ0 = 1. The tube is pulled with a force F̂ = 1 and pressure P̂ = 1
corresponding to 10−3 ≤ γ̂/P̂ ≤ 10−2.

the axial problem. However, we retain it in the transverse flow problem because it cannot

be neglected when χ becomes small.

Consider equation (4.11) governing the axial model. Our argument here is, in order

to disregard the term involving γ̂/P̂ in (4.11), it should be very small compared to 1/P̂ ,

which leads to

K =

√
πγ̂

6
χ

√
1 + φ

1− φ
� 1. (4.28)

Figure 4.7 shows at left a plot of K against τ̂ for O(10−3) ≤ γ̂ ≤ O(10−2). As can be

observed, for this range of γ̂/P̂ the term K � 1 implying that the term involving γ̂/P̂

is negligible in comparison to the term 1/P̂ . Thus, the surface tension can be neglected

from the axial problem. However, as shown in Figure 4.7 (right), the aspect ratio φ

increases, then decreases showing the effect of surface tension in action opposing the

effect of pressure. Figure 4.8 shows how solutions of (χ, φ) in the WST case compare
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Figure 4.8: Plot of φ versus χ over a range of γ̂ = 0.001 − 0.009 in increments of 0.001
for a capillary with initial aspect ratio φ0 = 0.06 and χ0 = 1. The coloured straight lines
represent the solutions for the WST case and the black dashed lines represent the solution
to the full model. The tube is pulled with a pressure P̂ = 1 representing the range of
γ̂/P̂ = O(10−3). The red arrow points in the direction of increasing surface tension.

with the full model (including the effect of surface tension in both axial and cross-plane

models) for γ̂/P̂ = O(10−3) as τ̂ increases. Each curve stops at the boundary χ = 0,

when the fibre breaks. These plots show that for γ̂/P̂ = O(10−3) when P̂ = 1, the two

solutions compare well to each other and thus WST is a good approximation to the full

solution.

We note that the details of the WST with no pressurisation in the inner channel has

been investigated extensively in Tronnolone (2016) regarding gravitational extension of a

viscous thread and we refer interested readers to that work.
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4.3 The case of zero surface tension (ZST) and zero

pressure (ZP)

We briefly have discussed the case of zero surface tension and pressure, γ̂ = P̂ = 0.

Neither of our reduced time variables are appropriate for this and we must revert to time

t. As mentioned earlier the complete solution of the ZST and ZP case requires only an

understanding of the axial flow model, which describes the change in cross-sectional area

with respect to time. This is simply dχ2/dt = −F/µ. As indicated earlier, there is no

change to the aspect ratio φ and (4.9) becomes dφ/dt = 0.

Thus, we obtain the equation that governs the cross-sectional area

χ2(x̃, t) = 1− 2F̂ t

m(x̃, t)
, (4.29)

where m(x̃, t) is the harmonic mean of viscosity, as introduced in the previous section and

χ2
0 = 1. A similar expression is obtained in the ZST case by Tronnolone (2016); however,

for Tronnolone (2016) the force changes at each cross-section as that work models a mass

falling under the influence of gravity making χ dependent on x̃, whereas we have a constant

value for force and χ0 is independent of x̃. Note that χ2 → 0 as t → m(x̃, t)/2F̂ so the

tube will break at the position x̃ where this first happens. Substituting the expression for

χ2(x̃, t) in (2.12), we obtain the solution for x in terms of x̃, which is

x(x̃, t) =

[
1− 2F̂ t

m(x̃, t)

]−1
x̃. (4.30)

This is useful for evaluating the extension of the tube after the draw process. Differenti-

ating the above expression for x with respect to time we obtain an explicit expression for

the velocity of the tube being pulled, namely

u(x̃, t) =

(
1− 2Ft

3m(x̃, t)

)−2(
2Fx̃

µ̂(x̃, t)

)
. (4.31)
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Although the velocity is not a parameter in our model, the above expression may be

useful to calculate an instantaneous pulling speed of a cross-section, if required. Note

that x→∞ and u→∞ as t→ m/2F̂ , so the length and viscosity become infinite when

the tube breaks.

4.4 Summary

In this chapter we have developed model equations for the unsteady stretching of a

highly viscous fluid cylinder with a pressure-driven transverse flow. This was performed

by introducing a new scaling of the cross-plane problem, using scaled pressure in place

of surface tension with a view to examining, situations where γ̂/P̂ � 1. As seen in this

and previous chapters, in order to maintain an approximately uniform inner channel we

must carefully balance the effects of stretching, surface tension, and pressurisation. As a

result, considerable pressure is required to increase the aspect ratio (and thus maintain the

physical channel size) at the tip and a decrease in force demands a decrease in pressure.

In addition to generating solutions to the full model, including the effects of both surface

tension and pressure in both the axial and the transverse problems, we have considered

the simplified models with surface tension featuring only in the transverse problem (the

WST case) or neglected altogether (the ZST case). WST can be useful for typical values of

O(10−2) ≤ γ̂, where the impact on the axial problem from surface tension is insignificant

and can be neglected, while still retaining its effect on the transverse flow to capture

the small changes undergone within the cross-plane geometry. When O(10−2) ≤ γ̂/P̂ ≤

O(10−1), the effect of surface tension is important for both axial flow and transverse flow

to capture the geometry deformations, and in that case the full model, which includes

the effects of both surface tension and pressure, must be considered. This model is



92 Chapter 4. Pressure dominant flow

useful for investigating flow properties and geometry evolution in a flow field where the

effect of surface tension is completely negligible (γ̂ = 0), which was not possible in the

previous model equations discussed in Chapters 2 and 3 as the transverse flow parameter

τ was scaled with the surface tension. In this case we generated a completely analytical

solution and used this to develop critical criteria for events such as fibre explosion and fibre

breaking. For these simplified models, the solution to the axial problem is independent of

the total boundary length, Γ(x̃, τ̂) and hence independent of the transverse flow problem.



Chapter 5

The temperature model

5.1 Introduction

To date, the most important aspects of the process of unsteady stretching of heated

glass tubes have been explained by defining spatially varying viscosity functions, begin-

ning with a constant piecewise viscosity function and progressing to a spatially varying

viscosity function that evaluated the effects of a non-uniform temperature distribution.

The importance of spatial viscosity variation, as discussed in Chapter 3, is its effect on

tube shape. Note that glass viscosity is highly sensitive to temperature. Temperature

variations are significant in the glass deforming process because glass must be sufficiently

heated to be deformed. Therefore, it will be beneficial to identify how temperature varies

during the draw process to determine viscosity so that numerical simulations can be used

effectively in industrial manufacturing of emitters.

Unfortunately, experimentally determining the actual temperature changes that occur

during a draw is rather difficult. As the temperature changes, glass undergoes rapid vis-

cosity changes. Stretching begins slowly as the glass is heated from room temperature but

the stretching rate increases rapidly as the temperature nears the softening point. As the

tube exits the heater, it cools causing the glass to undergo another rapid viscosity change

93
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over the time. Stretching continues during the cooling stages until the glass solidifies. It

is possible for the tube to break during or at the end of the pulling process. Considering

these aspects will be of real benefit to the industry in respect to both obtaining the desired

shape, and the final time taken for the fabrication. This reinforces the requirement for

a comprehensive thermal model capable of capturing changes in temperature and thus

viscosity across a broad temperature range, including at high temperatures, where the

majority of deformation occurs rapidly, and direct measurements cannot be made.

The present chapter focuses on increasing the complexity of our model by developing

a thermal model that integrates heat transfer with the fluid flow. This integrated model

will then be solved numerically for the time-advancing flow during the heat and pull

process. In the subsequent analysis of our problem, we aim to investigate the effect

of spatial temperature variations, and the corresponding viscosity changes, that occur

throughout the heat and pull process. The results of this study are considered for glass

tubes manufactured from fused silica (F300) glass, which is by far the most frequently

used material in the manufacture of emitters.

To justify several major model assumptions that help to determine the values of the

parameters, we begin with a detailed examination of glass properties for silica glass and

their dependence on temperature (Section 5.2). This section is followed by a derivation

of a one dimensional temperature model for both heating and cooling phases, following

the derivation given by Stokes et al. (2019) for steady fibre drawing. Here we assume the

glass is heated using a laser rather than a gas flame. There are many advantages of CO2

laser heating over gas flame heating, as stated in Grellier (2000) (Chapters 3 and 4) and

Chryssou (1999). As Grellier (2000) and Chryssou (1999) highlight, the final diameter

can be predicted when CO2 laser heating is used as the heating is self-regulating. This is

because as the fibre becomes narrower due to heating and pulling, the energy absorbed by
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the glass becomes insufficient to maintain it at the softening point (Chryssou 1999). In

Section 5.4, we discuss the procedure for generating numerical solutions for the evolution

of the emitter geometry using the developed temperature model, coupled with the flow

model.

5.2 Temperature dependence of material properties

As the first step towards simulating the heat and draw processes of glass under non-

isothermal conditions, we discuss the temperature dependence of the key properties of

glass and offer useful assumptions regarding these properties to be adopted in our model.

The non-isothermal model equations require understanding of the properties of the molten

glass, such as the viscosity, the density, surface tension, the specific heat, the thermal

conductivity, and the emissivity. From the early stages of this thesis, we have considered

that softened glass (molten glass) is an incompressible Newtonian fluid; an assumption

which has been adopted generally in most of the literature outlined in Chapter 1 and can

be considered precise enough for practical use.

5.2.1 Viscosity

The viscosity can be identified as the most important property in the process of glass

forming. The viscosity (µ) of a fluid is a measure of the internal friction caused by the

relative motion of its layers, as measured by the force per unit area resisting uniform flow.

Viscosity is defined more precisely as the ratio of the shear stress to the shear rate. This

ratio is independent of the shear rate for Newtonian fluids, implying that the shear stress

and shear rate are linearly proportional. For glass, viscosity varies by orders of magnitude
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with temperature. As the temperature decreases the viscosity increases rapidly until the

glass is effectively solid. This solid glass is said to be a supercooled fluid. According to

(Axinte 2011), the most commonly-used reference viscosity fixed points of glass that are

useful in the different stages of the industrial glass production process are as listed below:

• Working point (103 Pa s) the temperature at which the glass can be deformed

through pressing, blowing, and forming.

• Softening point (106.6 Pa s) the temperature at which the glass deforms under its

own weight.

• Annealing point (1013.4 Pa s) the temperature at which the glass can remove any

internal stresses caused by the forming process in several minutes.

• Strain point (1013.6 Pa s) the temperature at which a glass can be used without

creeping for glass forming applications and any stresses can be relieved in hours.

For temperatures above the strain point, glass resists flow, maintaining its shape.

There exist different mathematical relationships to express the temperature dependence

of the viscosity. For many decades, the generally-accepted relationship between temper-

ature (θ) and viscosity in glass has been the Vogel-Fulcher-Tammann (VFT) equation

given in Scherer (1992) as

log10 µ = −A+
B

θ − θ0
, (5.1)

where A, B and θ0 are constants that can be fitted empirically using data for a specific

glass composition. Base 10 logarithms are used due to the large numbers involved. This

relationship has been the most frequently used model in the literature and is considered

suitable for predicting the variations of the viscosity across different temperature ranges.
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The viscosity of silica, which is used in the manufacture of emitters, is considered to

have two distinct temperature regimes. According to Doremus (2002), the viscosity of

silica glass can follow the two parameter Arrhenius equation for high temperature regions

from θ = 1400◦C to θ = 2500◦C,

µ = 0.58× 10−7 exp

(
515400

Gcst(θ + 273.15)

)
, (5.2a)

and for low temperature regions from θ = 1000◦C to θ = 1400◦C,

µ = 0.38× 10−13 exp

(
712000

Gcst(θ + 273.15)

)
, (5.2b)

where µ is in Pa s, θ is the temperature in Celsius and Gcst is the universal gas constant

in JK−1mol−1. Recent experimental work by Boyd et al. (2012) and Jasion et al. (2015)

confirm the use of this relationship in glass stretching experiments. The temperature range

of interest in manufacturing emitters using fused silica is sufficiently high, that (5.2a) is

the appropriate viscosity-temperature relation. According to Chryssou (1999), silica has

a softening point of around 1660◦C. With reference to the viscosity-temperature curve

shown in Figure 5.1, the viscosity decreases strongly and continuously as the temperature

increases. Although the rate of decrease reduces as temperature increases there is still

a clear potential at high temperatures for even small temperature changes to have a

substantial effect on the viscosity and, hence, the glass flow.

5.2.2 Density and surface tension

The density of a material (ρ) is defined as its mass per unit volume. In contrast with

viscosity, the density of silica glass does not vary significantly with temperature but does

vary according to its composition. Additionally, because we consider molten glass to be
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Figure 5.1: Viscosity as a function of the temperature.

an incompressible Newtonian fluid, we assume that density is not temperature-dependent.

The density of silica is assumed to be ρ = 2200kg/m3 (Grellier 2000, Jasion et al. 2015).

Surface tension, in studies of fibre glass drawing processes, is typically assumed to be

strongly dependent on glass composition but not on temperature, and thus, is frequently

treated as a constant or even ignored (Chouffart 2018). For silica glass Boyd et al. (2012)

have calculated a value of γ = 0.3N/m when the temperature is in the range 2400◦C

to 2600◦C. The variation in the surface tension around the softening point of silica is

approximately 0.02N/m per 100◦C based on measurements between 1200◦C and 1600◦C

with a measurement error of approximately 2% (Von der Ohe & Yue 2003). Accordingly,

we disregard temperature variations in surface tension and use γ = 0.3N/m, as used

by Jasion et al. (2015) for θ = 2000◦C. Although the coefficient of surface tension is

assumed to be constant, note that the effect of surface tension becomes more significant,

as curvature increases, as happens when cross-sectional area decreases due to stretching.
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5.2.3 Specific heat

The specific heat (cp) is defined as the amount of energy necessary to raise the tem-

perature of a unit mass of material by one unit of temperature. It is determined by the

composition of the glass and the temperature. As mentioned in Chouffart (2018), the

value of cp is expected to be constant above working point, and tends to drop gradually

with the temperature in the solid state. For simplicity, we assume cp = 1140J/(kgK) is a

constant for silica glass (Heraeus F300) during the draw process (Jasion et al. 2015).

5.2.4 Emissivity

For the glass industry, the emission of radiation, determined by emissivity (β) from

transparent materials is of fundamental importance. As specified in Grellier (2000), emis-

sivity is determined using the notion that the total power emitted via radiation equals the

total power absorbed at equilibrium. As stated in Chouffart (2018), emissivity of glass is

dependent on temperature and thickness due to its semi-transparent nature. Emissivity,

like many other characteristics, is temperature dependent. According to Chryssou (1999),

the value for fused silica glass, starts at approximately β = 1, at room temperature, and

rapidly decreases to about β = 0.06 at the softening point, which is θ = 1660◦C. We

assume emissivity to be a constant at value β = 0.8 rounded from Jasion et al. (2015), to

generate numerical outcomes using our model.

This concludes our discussion of glass properties relevant to the modelling that follows,

and the values we have assumed.
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5.3 Temperature modelling

We now return to the subject of developing a temperature model. As already briefly

mentioned in Section 5.1, the temperature model requires two stages: heating and cooling.

The Lagrangian formulation of the problem in an unsteady setting enables us to analyse

the movement of fluid cross-sections with respect to the heated length. This enables the

position of the cross-sections to be identified as being within or outside the heated length.

The heating stage includes heating the glass from room temperature to the softening point,

following which the temperature is maintained for a period until the heater is switched

off externally. The cooling stage begins for cross-sections as they exit the heated length

due to pulling and after the heater is turned off, at which point all the cross-sections cool.

Thus, the objective of the temperature model is twofold: (1) to determine the increase

in temperature caused by heating; and (2) to determine the systematic reductions in

temperature of the cross-sections due to cooling.

As the first step, we recall the problem of heating and pulling a glass tube already

described in Chapter 2, and illustrated in Figure 2.1. We assume that a laser heats a

tube of length 2L over a length of 2H and that the tube is pulled from both sides by a

constant force F , while pressurising the inner channel with a pressure P . Assuming that

the heating and pulling are symmetrical about the centre, which is at x = 0, and hence

that the velocity at x = 0 is zero, the initial point on the centreline, x̃ = 0, will always

correspond to the position x = 0. As a result, we define the problem to be symmetric

about x = 0 and consider that half of the tube in the region 0 ≤ x ≤ L, heated over

0 ≤ x < H and pulled with force F at the end x = L(t) while held fixed at x = 0.

As introduced previously, we consider molten glass to be an incompressible Newtonian

fluid, with density denoted by ρ, the specific heat capacity denoted by cp and surface
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tension denoted γ, all of which are assumed to be constants except for the viscosity µ(θ),

which is dependent on temperature (θ). The fluid is assumed to have constant thermal

conductivity k, and emissivity β. The dimensions of the fibre denoted by S, φ,R, and, φR

are as defined in Chapter 2.

The inability to record the temperature changes of glass during the heating and pulling

process is one of the most significant drawbacks of laser heating. Due to the safety char-

acteristics when the laser is activated, the whole device must be enclosed. This requires

modelling the heat transfer in order to predict the temperature change in each cross-

section during the tapering process. Several authors describe tapering optical fibres using

a CO2 laser as the heating source and give a Gaussian profile for the power distribution

of the laser (Yokota et al. 1997, Chryssou 1999, Grellier 2000).

In the published literature, thermal models of glass forming processes frequently use

complicated energy source terms designed for specific experimental set-ups that are not

generally applicable. Rather than adopt such a model, in this thesis, we develop a rela-

tively simple thermal model based on energy conservation to determine the spatial tem-

perature variations in the glass caused by laser heating as used in the Sutter P-2000 puller

used for experimental validation of our model. This model enables investigation of the

sensitivity of emitter geometry to model quantities, and (approximate) determination of

parameters by fitting to experimental data.

To begin, we define our assumptions. First, we consider the “thermal thinness” condi-

tion described in Grellier (2000) and Chryssou (1999), which enables us to model thermal

energy transfer to glass in one dimension rather than three dimensions, assuming the

laser heats the glass perpendicular to its axis. In other words, the radial distribution of

temperature in glass is assumed to be uniform due to the very small cross-sectional area

in comparison with the length of the tube. This is demonstrated asymptotically in Stokes
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et al. (2019).

The governing equation for temperature θ takes the form,

ρcp

(
∂θ

∂t
+ v

∂θ

∂r
+ u

∂θ

∂x

)
= k

(
1

r

∂

∂r

(
r
∂θ

∂r

)
+
∂2θ

∂x2

)
+Q(x), (5.3)

where cp and k are specific heat capacity and heat conductivity of the fluid. Although

the total power of the laser is assumed to be constant, the laser oscillates over a small

longitudinal section of the glass tube and the energy is not expected to be uniformly

distributed. Hence, we define Q(x) as the energy absorbed by the glass tube per unit

volume per unit time at position x. We further assume that thermal energy supplied by

the laser to the glass is given by the power density or the linear distribution of power,

denoted by q(x), over the heated length H, where q(x) has units of energy per unit length

and per unit time. Thus, Q(x) can be defined as

Q(x) =
q(x)

S(x)
. (5.4)

Assuming symmetry about x = 0, the total power delivered by the laser over the heated

length 0 ≤ x ≤ H can be approximated as

Ptot
2

=

∫ H

0

q(x) dx, (5.5)

where Ptot is the total power delivered by the laser. However, the complete (100%)

absorption of laser energy by the glass tube is not realistic, therefore, we introduce an

important parameter named the fibre absorption efficiency factor (Pabs), which is defined

in Chryssou (1999) to indicate the fraction of the energy absorbed by the glass tube.

Considering this assumption in our model, (5.5) modifies to

PtotPabs
2

=

∫ H

0

q(x) dx. (5.6)
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We now need to define the function q(x) describing the power distribution of the laser.

This distribution should reflect the effect of the laser power beam intensity. Following the

literature involving CO2 laser-based heating, i.e. Helebrant et al. (1993), Grellier et al.

(1998) and Chryssou (1999), the power density is assumed to be a Gaussian distribution

defined using an exponential function. Thus, we define q(x) as,

q(x) = C exp

(
−αx
H

)
, (5.7)

for some constants C and α. Using (5.7) in (5.6) and simplifying further the constant C

can be obtained as follows

C =
PtotPabsα

2H(1− exp(−α))
. (5.8)

Considering the fact that heating happens only in 0 ≤ x ≤ H until t = toff , where toff is

the time the laser turns off, the expression for Q becomes

Q(x) =

 Q̃(x) (1−H(t− toff )) , 0 ≤ x ≤ H,

0, x > H,
(5.9)

where

Q̃(x) =
PabsPtotα

2H (1− exp(−α))

exp(−αx/H)

S(x)
, (5.10)

and H is the Heaviside function defined by

H =

 0, t < toff ,

1, t ≥ toff .
(5.11)

We next define the effect of cooling in the domain of x. Generally, cooling of a fibre

involves three modes of heat transfer, i.e., conduction, convection and radiation. The

heat transfer by conduction is the flow of heat per unit time and per unit area, within the

glass, which depends upon the temperature gradient ∂θ/∂x. When the temperature gra-
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dient is large, conduction is important. Heat loss to the surroundings due to convection

is commonly known as Newton cooling, and Newton’s law of cooling is used to model this

process. This form of cooling refers to the amount of heat transferred from a solid surface

to the surrounding fluid or gases per unit time and area. The mode of heat transfer by

radiation is due to electromagnetic waves, or photons. One noticeable difference between

conduction and convection over radiation is the dependence of heat transfer on tempera-

ture. While the heat transfer rate is typically assumed to be linearly proportional to the

temperature gradient or difference in the case of conduction and convection, respectively,

in the case of radiative transfer, it is proportional to the difference in temperature to the

fourth power, i.e.,

Q ∝ (θ4 − θ40). (5.12)

As a result, radiative heat transmission becomes increasingly essential as the temperature

rises, and may even completely dominate conduction and convection at extremely high

temperatures (Modest 2013). Additionally, the internal molecules of the glass tube may

contribute to the radiation phenomenon by producing and absorbing photons in a certain

range of wavelengths. As a result, energy transmission depends on the glass composition

and the size of the medium. While this mechanism seems likely for laser heating, it is less

certain in the glass tapering process because of the small dimensions involved in the glass

tube. Although Chouffart (2018), and the references therein, demonstrate the use of this

mechanism, they also mention that, in the case of the fibre drawing process, all studies

have omitted the effects of internal radiation on cooling due to the small dimensions of

the fibres and the complexity of generating the numerical simulations. Here we assume

the glass tube is cooled radiatively and is optically thick for wavelengths that dominate

heat transfer only at the external boundary of the thread (Modest 2013).
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Thus, on the external boundary, we assume the boundary condition

−k∇θ · n(0) = F(θ(x, t)), (5.13)

where F(θ(x, t)) is the radiative heat transfer rate, assumed as

F(θ(x, t)) =

 kbβ(θ4 − θ4a)H(t− toff ), 0 ≤ x ≤ H,

kbβ(θ4 − θ4a), x > H,
(5.14)

in which kb is the Stefan-Boltzman constant, β is the emissivity of the surface, and θa is

the ambient temperature beyond heater, which are assumed to be constants. Considering

the slenderness of the tube and rapid heating of the cross-section induced by the laser on

the external wall of the tube, we assume no heat flux through the internal boundary,

−k∇θ · n(1) = 0, G(1)(x, t) = 0. (5.15)

5.3.1 Asymptotic temperature modelling

Assuming the slenderness of the glass tube and defining ε =
√
S0/H � 1, where

√
S0

is the square root of the cross-sectional area at t = 0 and H is the heated length, we

introduce the scaled variables, considering F̂ = 1 as in Chapter 4, denoted by hats as

follows

µ = µhotµ̂(θ̂), θ = θa + Θθ̂, Q =
kΘ

H2
Q̂, (5.16)

where Θ = (θhot− θa), θa is the ambient temperature, θhot is a characteristic temperature

(close to the softening point) and µhot is a characteristic viscosity scale corresponding

to temperature θhot. Following Stokes et al. (2019), writing (5.3) in terms of the scaled

variables of (5.16) and those previously defined in (4.12) we obtain the scaled temperature
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equation as follows by dropping the hats for convenience,

ε2Pe

(
∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂r

)
= ε2

∂2θ

∂x2
+

1

r

∂

∂r

(
r
∂θ

∂r

)
+ ε2Q, (5.17)

where

Pe =
ρcpFH

2

6µhotS0k
, (5.18)

is the Peclet number. We now non-dimensionalise (5.10) using the scaled variables and

obtain

Q̃(x) =
PabsPtotαH

2kΘ(1− exp(−α))S0

exp(−αx)

χ2(x)
. (5.19)

Proceeding further we next scale (5.13), to obtain the dimensionless boundary condition

on the external surface of the glass tube

−
(
ε2
∂θ

∂x
n(0)
x +

1

r

∂(rθ)

∂r
n(0)
r

)
= ε2PeHRFs(θ), (5.20)

where

Fs(θ) =


[
(θ + ϑa(1− θ))4 − ϑ4

a

]
H(t− toff ), 0 ≤ x ≤ 1,[

(θ + ϑa(1− θ))4 − ϑ4
a

]
, x > 1,

(5.21)

and

HR =
6µhot

√
S0βkbθ

4
hot

FΘρcp
, (5.22)

is the dimensionless parameter that represent the importance of radiative cooling and

ϑa =
θa
θhot

, (5.23)

is the scaled ambient air with respect to θhot. On the internal boundaries, the scaled

boundary condition takes the form

−
(
ε2
∂θ

∂x
n(1)
x +

1

r

∂(rθ)

∂r
n(1)
r

)
= 0. (5.24)
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Expanding all the dependent variables in powers of ε2 gives

θ = θ0 + ε2θ1 + ε4θ2 + . . . , (5.25a)

u = u0 + ε2u1 + ε4u2 + . . . , (5.25b)

v = v0 + ε2v1 + ε4v2 + . . . . (5.25c)

As is typical in the modelling of fibre drawing problems, and as discussed in Chapter 2,

exploiting the fact that ε� 1 is simpler to deal with than the full equations. Substituting

(5.25) into the temperature equation (5.17) and boundary conditions (5.13), to obtain the

leading order terms gives

1

r

(
∂(rθ0)

∂r

)
= 0, (5.26a)

1

r

(
∂(rθ0)

∂r

)
n(i)
r = 0, i = 0, 1. (5.26b)

which implies that the leading order temperature is independent of the cross-plane po-

sition, and thus depends on the axial position x and time t. This is also applicable to

the viscosity µ(θ0), as it is a function of temperature. As shown previously in Section

2.2.2, u = u0(x, t), i.e., the leading order axial velocity is independent of the cross-plane

position and thus are functions of axial position and time.

Returning to the leading order equations for temperature (5.17) and considering O(ε2)

terms, recalling that temperature and velocity are independent of the axial position, we

obtain the equation that governs temperature at the leading order as

Pe

(
∂θ0
∂t

+ u0
∂θ0
∂x

)
=
∂2θ0
∂x2

+
1

r

(
∂

∂r

(
r
∂θ1
∂r

))
+Q, (5.27)
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along with the boundary conditions (5.20)

−
(
∂θ0
∂x

n(0)
x +

1

r

∂

∂r

(
rθ1
∂r

)
n(0)
r

)
= PeHRFs(θ0), (5.28)

and (5.24) for the inner channel as

−
(
∂θ0
∂x

n(1)
x +

1

r

∂

∂r

(
rθ1
∂r

)
n(1)
r

)
= 0. (5.29)

The leading order temperature equation (5.27) can be simplified by integrating over the

cross-sectional area at the axial position and using the divergence theorem and the bound-

ary conditions in (5.28) and (5.29) resulting in(
∂θ0
∂t

+ u0
∂θ0
∂x

)
=

1

Peχ2
0

∂

∂x

(
χ2
0

∂θ0
∂x

)
− HRΓ

(0)
0

χ2
0

Fs(θ0) +Q, (5.30)

where Q is given by

Q(x(x̃, t), t) =
Q

Pe
=

 C exp(−αx)/χ2 (1−H(t− toff )) , 0 ≤ x ≤ 1,

0, x > 1,
(5.31)

with

C =
3µhotPtotαPabs

ΘρcpFH(1− exp(−α))
, (5.32)

and Γ
(0)
0 is the length of the external boundary of the cross-section at the leading order,

which can be obtained by solving for the cross-plane flow.

Using the parameters for pulling emitters discussed in this thesis, Pe ∼ O(10); therefore,

we may neglect the second order term relating to heat conduction from the temperature

equation (5.30). Accordingly, incorporating the aforementioned notations (after dropping

the zero subscript) we obtain the temperature equation for the whole domain as

Dθ

Dt
= Q(x, t)− HRΓ̃(0)

χ
Fs(θ), (5.33)
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where Γ̃(0) = 2πR̃ = 2
√
π/
√

1− φ2, as R̃ = 1/
√
π(1− φ) in a domain of unit cross-

sectional area, and D/Dt = ∂/∂t+ u0 ∂/∂x, giving the time rate of change of θ following

a moving cross-section x̃.

While the model we develop is applicable for arbitrary viscosity and temperature re-

lationship, for the sake of precision, we will use the expression in (5.2a) that has been

extensively used in the literature to determine the viscosity of silica glass. Thus the scaled

viscosity becomes

µ̂ = exp

(
515400

Gcst

(
1

θa −Θθ
− 1

θhot

))
, (5.34)

where θa, θhot are in Kelvin and Gcst = 8.314JK−1mol−1.

5.4 Numerical solutions using temperature-dependent

viscosity

In light of the foregoing explanation of the temperature model, we note that the fluid

flow model presented in Section (2.2.4) must be coupled with the thermal model discussed

in Section (5.3) and the two solved simultaneously. Generally, a numerical solution ap-

proach is required, including a discretisation in the time and spatial domains to obtain

the evolution of the geometry with respect to physical time t. We will here discuss the

solution approach including temperature. With our use of the reduced time variable τ ,

the temperature model enters the flow model through the viscosity which features only

in the equation relating physical time t and τ .

Apart from computations relating to temperature dependent viscosity, the numerical

approach described in Section 2.3 for computing the time advancing flow model with an

axially variable viscosity remains mostly unchanged. The Lagrangian method of time

advancement is still valid and is effective for tracking the position of each cross-section
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relative to the heated length. Now we must use the position of each cross-section to

determine temperature which then determines the viscosity.

Accordingly, in addition to the numerical procedure explained in detail in Section 2.3,

the following modifications have been adopted to improve the mathematical simulations

using a temperature-dependent viscosity. First, note that at t = 0 glass can be considered

a solid that will not flow, and the temperature of the glass can be defined as θa. Then,

we proceed with a time discretisation of (5.33) to numerically approximate θ(x̃, t) inside

and outside the heated length for each t using a forward Euler method, given as

θj,k+1 − θj,k
∆t

= Qj,k −
HR Γ̃

(0)
j,k

χj,k
Fs(θj,k), (5.35)

where

Qj,k =
C exp(−αxj,k)

χ2
j,k

, (5.36)

and the cooling term as

HR Γ̃
(0)
j,k

χj,k
Fs(θj,k) = −2

√
π

(1− φ2
j,k)

1

χj,k
HR

[
(θj,k + ϑ(1− θj,k))4 − ϑ4

a

]
. (5.37)

The temperature at the next time point is determined using the results of the previous dis-

crete time point tk for each k, until k = K, where k = 0, 1, . . . , K. This way we can acquire

an approximate solution for θj,k at each time step inside and outside the heater, starting

with θ(x̃j, 0) = θa ∀ x̃j where j = 0, 1, . . . , J. The temperature-dependent viscosity value

at each cross-sectional node in the glass can be computed using the temperature-viscosity

relationship in (5.34) as

µ̂j,k+1 = exp

(
515400

Gcst

(
1

θa −Θθj,k+1

− 1

θhot

))
. (5.38)

Recalling that the solution of the transverse flow problem is defined using the τ variable
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and (2.25) and (2.20) are independent of x̃ (see Chapter 2), the algorithm for solving the

coupled temperature and flow model numerically for time tk+1 is as follows

1. compute τj,k+1 using finite differencing as in (2.30) for all the cross-sections x̃j, where

j = 0, 1, . . . , J ;

2. use τj,k+1 to interpolate the values for χ̂(x̃, tk+1) and φ̂(x̃, tk+1) for each x̃j,k+1 using

the deval option in MATLAB ode45 solver;

3. compute xj+1,k+1 using (2.31) for j = 0, 1, . . . , , J − 1;

4. compute θj,k+1 using (5.35) for j = 0, 1, . . . , J ;

5. update the viscosity µ̂j,k+1 = µ̂(θj,k+1) at each x̃j node by substituting the calculated

nodal temperatures into equation (5.38);

6. stop if max(θj,k+1) ≤ θa (or use another suitable stopping criterion) for j = 0, 1, . . . , J.

The above steps from 1-5 should be repeated until the maximum temperature at each

node (x̃j) is less than or equal to the initial temperature (θa), or the viscosity is high

enough to prevent any further deformation, thereby reducing the computational time.

The reason for selecting this stopping criterion is discussed in more detail in Section

5.4.1. The numerical method we discuss here is a time stepping process in which we store

and use the previously-computed numerical solutions for χj,k = χ(x̃j, tk), φj,k = φ(x̃j, tk),

τj,k = τ(x̃j, tk), xj,k = x(x̃j, tk), θj,k = θ(x̃j, tk), and µ̂j,k = µ̂(θj,k) for k = 1, 2, . . .

at each mesh node x̃j for j = 0, 1, . . . , J , in order to evaluate the numerical solution

at the next discrete time point for each mesh node. The forward Euler expansion is

extremely convenient for computing numerical solutions when used in conjunction with

a Lagrangian setting of tracking each cross-section, requiring only a small amount of
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additional computer memory to store the computed variables at each mesh node for the

subsequent computations.

We must set the final time tK sufficiently large to enable complete cooling of the tube

and must obtain the solution to (2.32) over a sufficiently large τ range, i.e. for a sufficiently

large value I, to enable the interpolations of Step 2 of the above time-stepping procedure

for all τj,k computed in Step 1. If, however, for some τj,k the value exceeds the maximum

possible such that the internal channel closes, the tube bursts, or the fibre breaks, we

simply stop our solution procedure and adjust the final time.

5.4.1 Numerical solutions

The final model, which couples flow and temperature models, is comprised of the system

of first order ODEs given in (2.25), (2.20), (5.33), (5.34), (2.12) and (2.18). A numerical

solution is therefore necessary to solve this fully coupled system of differential equations.

To generate these numerical computations in the ongoing study of this section, we will

use the properties of silica, (obtained from Jasion et al. (2015) and the references therein),

and the dimensions summarised in Table 5.1, unless otherwise specified. In addition, it is

important to point out that the scaled starting temperature for computing the numerical

solutions is θ0 = 0.6 as the glass is effectively solid and unable to deform at dimension-

less temperatures below this. Furthermore, we stop computations should the maximum

(θ(xj, tk)) ≤ θ0, for all j = 1, 2, . . . , J , at a time tk less than the specified final time tk, to

avoid unnecessary computation. Fundamentally, when the temperature of the glass drops

beyond the softening point, deformation becomes so slow due to the high viscosity that

we may consider the glass to be solid.

The parameter α in (5.7) is assigned to reflect the distribution of power over the length
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Parameter symbol Value SI unit
Initial length L(0) 5× 10−3 m

Surface tension γ 0.3 N/m
Characteristic viscosity µhot 6× 105 Pas

Density ρ 2200 kg/m3

Initial outer radius R 120 µm
Initial aspect ratio φ0 0.06 -

Heated length H 3× 10−3 m
Specific heat cp 1140 J/kgK

Force F 0.84 N
Emissivity β 0.885 -

Absorption efficiency factor Pabs (assume) 0.68 -
Initial temperature θa 293 K

Characteristic temperature θhot 2069 K
Universal gas constant Gcst 8.3145 J/Kmol

Stefan Boltzman constant kb 5.6× 10−8 W/m2K4

Table 5.1: Summary of the glass properties and pull parameters used for generating
numerical solutions (Jasion et al. 2015).

of the glass tube and examine the effect of the power distribution in non-isothermal

conditions. From the equation it can be seen that different temperature distributions can

be specified by imposing different power distributions specified by the value of α in the

glass. Thus, a different α might be used to realise different emitter shapes. To compare

the effect on the solution from different values of α, numerical solutions for α = 0.41, 0.405

are plotted in Figure 5.2. From the figure it appears that the geometry is quite sensitive to

small changes in α. Changing the value of α changes the way in which power is distributed

along the length of the tube i.e. as α → 0 distribution is uniform over 0 ≤ x ≤ 1; larger

α focuses more energy around x = 0 and thus affects the distribution of temperature

(see Figure 5.3). Given the strong sensitivity of viscosity to temperature, even a small

variation in temperature can have a major impact on the viscosity and hence on the glass

flow.
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Figure 5.2: Emitter obtained from an axisymmetric tube by pulling with force F̂ = 1,
pressure P̂ = 0, and toff = 1.605 until the stopping criterion is met. The geometry is
obtained with the temperature dependent viscosity in (5.38), for laser power Ptot = 2W,
α = 0.41 (top) and α = 0.405 (bottom). The outer boundary is shown in blue, and the
inner channel is shown in red.

Figure 5.3: Plot of the power distribution q(x) along the length x for different values of
α ranging from α = 0.2, 0.4, . . . , 1 in increments of 0.2. The arrow points in the direction
of increasing α.
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Figure 5.4: Temperature θ(x̃, t) of cross-section x̃ over a time range 0 ≤ t ≤ toff (left)
when the laser is heating the glass, and (right) over a time range t > toff until the
stopping criterion is met when the glass is everywhere cooling. Plotted are the results
corresponding to every 100th time step. The arrow points in the direction of increasing
time. The black curve in the left graph represents the temperature at t = toff = 1.605,
the time the heater is turned off, whereas the black curve in the right graph represents
the time at t = 1.606, the temperature immediately after the heater is turned off. The
black dashed line shows the extent 0 ≤ x̃ ≤ 1 of the heater at time t = 0; cross-sections to
the right of this line receive no heating. For t > 0 the heated region extends to the value
x̃ < 1 such that x(x̃, t) = 1. The pull parameters are the same as those used to generate
Figure 5.5.

Figure 5.4 (left) shows the change in temperature of the glass θ(x̃, t) at cross-sections

x̃ at different times t, using the pull parameters that yield the emitter geometry shown

in Figure 5.5. Initially all cross-sections are assumed to be at the same temperature

θ0(x̃, 0) = 0.6. The temperature at a cross-section within the heated region increases

and viscosity decreases as time passes, until the heater is turned off at t = toff or the

cross-section x̃ exits the heated region. The temperature decreases and the viscosity

increases once a cross-section x̃ leaves the heater, due to cooling. When the temperature

is sufficiently hot, stretching begins. According to our assumed distribution of power,
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Figure 5.5: Emitter obtained from an axisymmetric tube by pulling with force F̂ = 1,
pressure P̂ = 0 and toff = 1.605 until the stopping criterion is met. The geometry is
obtained with the temperature dependent viscosity in (5.38), for α = 0.41, and laser
power Ptot = 2W. The outer boundary is shown in blue, and the inner channel is shown
in red.
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Figure 5.6: Emitter pulled with a pulling with force F̂ = 1, pressure P̂ = 8 and toff =
1.605 until the stopping criterion is met. The geometry is obtained with the temperature
dependent viscosity in (5.38), for α = 0.41, and laser power Ptot = 2W. The outer
boundary is shown in blue, and the inner channel is shown in red.
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the temperature is hottest in the centre x̃ = 0 and decreases along the heater length.

As shown in Figure 5.4 (right), when cooling begins after turning the laser off (black

curve), the tube cools rapidly and reaches a point where θ ≤ 0.6 everywhere and no

further deformation occurs. Cooling occurs rapidly in the centre x̃ = 0, where the tube is

smallest and there is less thermal mass, while cooling is slower in the region with thicker

glass. Thus, when determining the stopping condition, we cannot simply look at the

cross-section at the centre or x = x̃ = 0. This is because this cross-section cools the

fastest and becomes solid at a time when cross-sections in the region of thicker glass are

still hot and are still deforming. As a result, checking the cross-section at the centre alone

is insufficient; we must check all cross-sections to ensure that they have all returned to

the starting temperature (θ0 = 0.6), which serves as the stopping condition. Introducing

a stopping criterion reduces computational time and space considerably, as it reduces

unnecessary computations.

To demonstrate the shape of the emitter under the influence of temperature dependent

viscosity, Figure 5.5 shows the evolution of the geometry as temperature changes as in

(5.33) where α = 0.41 and with no pressurisation of the inner channel. In comparison with

the shape of the emitter in Figure 4.5 derived using the axially variable viscosity function

(3.2), the tip has a longer tapered region all the way to the very tip which is narrower;

with the axially varying viscosity function the region near the tip is much straighter. Note

that without pressure, the inner channel is nearly closed, i.e. φ is near 0, and we could

choose a positive pressure to prevent this. Figure 5.6 shows the geometry for the same

initial tube and draw parameters excepting that positive pressure is used. In comparison

with the outcome without pressure, the total area at the tip has increased and become

less narrow, and the overall tip length has decreased. This demonstrates that pressure has

an effect on heating and hence, on the overall deformation. The effect of bulging appears
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in the inner channel due to the application of pressure.

5.4.2 The effect of inner channel pressurisation on the bulge

Although the motivation of this thesis is to use pressure in the heat and pull process

to develop an emitter with a uniform inner channel that will maintain continuous flow

without becoming blocked, adding pressure to keep the channel size at the tip also causes

the inner channel to bulge along its length. By allowing for some flexibility in the required

dimension of the inner channel at the tip, the effect of inner channel bulging can be

reduced. Thus, in this section, we will analyse the pressure and the resulting inner

channel quantitatively in order to acquire a better understanding of pressure magnitude

on channel geometry and the deviation from the initial radius along its length.

Figure 5.7 compares the evolution of the inner channel radius and outer radius over

the length x corresponding to six different pressure values. Table 5.2 lists the important

information from Figure 5.7 such as the dimensional values of the inner radius at the tip,

the reduction of the inner channel radius at the tip (φTRT ) as a percentage of the initial

dimension (φ0R0), the maximum bulge radius as a percentage of the initial tube radius,

the wall thickness at the tip and the pressure in kilo pascal to obtain the inner channel

at those dimensions.

The pressure has a noticeable effect on the deformation of the inner channel, with high

pressure generating shorter tip lengths than low pressure. As pressure decreases, the

bulge moves away from x = 0 and the taper increases in length. The location of the

bulge can be explained by the localisation of the heat. In our model, heat is dispersed in

such a way that the central area receives the most heat. As a result, it is more fluid in

the centre and hence deforms more easily, necessitating a greater amount of pressure to
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φTRT (µm) φTRT (reduction at the tip) Bulge WT (µm) Pressure (KPa)
7.2027 0% 282% 6.0464 27642
5.4240 25% 251% 5.9164 25996
3.6175 50% 210% 5.7194 23325
1.8373 75% 151% 5.4945 17859
0.7846 90% 104% 5.5107 9162
0.4203 95% - 5.6330 1895

Table 5.2: Relationship between φTRT , reduction of φTRT as a percentage, size of the
bulge, and the required pressure for Figure 5.7.

keep it open. If it is important to preserve the hole’s original dimension at the tip, the

pressure requirement is quite high, resulting in a larger bulge. The best pressure depends

on the requirement at the tip and the acceptable variation in the channel radius along

the tip length. This will be determined by practical application, for example whether a

bulge leads to fluid mixing. As seen in Table 5.2, a high dimensional pressure is required

to maintain the channel’s original dimension at the tip. From (4.12) pressure is directly

related to force and thus, a reduction in force may reduce the requirement for pressure.

5.4.3 Effect of a different power distribution

From the analysis so far, it is apparent that the distribution of power plays an important

role in the deformation. In fact, it is the primary factor that determines the distribution

of temperature, which causes the deformations. All the numerical solutions we have

considered in Section 5.4.1 are derived using the power distribution defined in (5.7) using

an exponential function. It is interesting to analyse the way in which the geometry changes

as the temperature profile along the glass changes. Therefore, in the ongoing analysis, we

compare the influence of a different power distribution, and thus temperature variations,
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Figure 5.7: Plot of inner boundary φR (left) and outer boundary R
(right) as a function of x for (top to bottom in direction of arrow) P̂ =
8.90, 8.37, 7.51, 5.75, 2.95, 0.61 respectively, and toff = 1.605 with the tube pulled
until the stopping criterion is met. We have (top to bottom) (0, φTRT ) =
0.0339(100%), 0.0254(75%), 0.0169(50%), 0.0085(25%), 0.0034(10%), 0.0017(5%). The
percentages indicate the reduction in the inner channel radius relative to its initial
dimension of (φ0R0, 0) = 0.0339. The black dashed line on the left graph indicates the
dimension of the initial inner radius. The results are obtained using the temperature
dependent viscosity in (5.38), for α = 0.41, and laser power Ptot = 2W.

on the final outcome.

The exponential function seems to have worked well in determining the temperature

distribution along the heated region of the glass, yielding a small wall thickness at the

tip with a neck down as required in the final shape of an emitter. We now consider a

cosine function, which can also be integrated easily, to compare the effect of a different

power distribution on the final geometry. The approach of deriving the heat equation in

this case is similar to that which was used previously to obtain (5.33) (0 ≤ x ≤ 1) and
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Figure 5.8: A comparison of power distribution per unit length over the length of the
heater for two different functions, where α = 0.41 and Ptot = 2W. The blue line repre-
sents the expression for when q(x) is approximated using an exponential (q1(x)) and red
represents the expression for the cosine function (q2(x)).

requires only a simple modification to the (scaled) power distribution given as follows:

q(x) = C cos (2αx), (5.39)

which modifies the expression for C to

C =
Ptotα

H sin(2α)
. (5.40)

Using (5.39) and (5.40) a similar relation for Q as in (5.31) for 0 ≤ x ≤ 1 is obtained as

Q =
6PtotPabsµhotα

ΘHρcpF sin(2α)

cos(2αx)

χ2
. (5.41)

In Figure 5.8 we show the power distribution per unit length as given by the cosine

and exponential functions. For both functions, power, hence temperature, decreases from

x = 0 to x = 1. Notice that q1(x) decreases approximately linearly whereas q2(x) decreases
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Figure 5.9: Emitter obtained from an axisymmetric tube by pulling with force F̂ = 1,
pressure P̂ = 0 and toff = 1.605 until the stopping criterion is met. The geometry is
obtained with the heating function in (5.41), for a laser power Ptot = 2W, α = 0.41 (top)
and α = 0.405 (bottom).
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Figure 5.10: Emitter obtained from an axisymmetric tube by pulling with force F̂ = 1,
pressure P̂ = 0 and toff = 1.605 until the stopping criterion is met. The geometry is
obtained with the heating function in (5.41), for a laser power Ptot = 2W and α = 0.53.
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non linearly and gives a more uniform temperature over the heated length.

Figures 5.2 and 5.9 compare the shape of the emitter for the two different heating

functions pulled from the same initial tube using the same pull parameters. The results

look completely different for the two different power distributions. In the latter case the

more uniform temperature distribution results in less stretching/deformation. Recall that

in Figure 5.2 the geometry was very sensitive to the value of α and a slight change in α

resulted in a considerable difference in both the overall length and the size of the tip. In

comparison to the geometry from the exponential function, the two results in Figure 5.9

are more similar, demonstrating that there is much less sensitivity to α compared with

the case of the exponential power distribution.

In order to see how the results change for different α, Figure 5.10 shows the geometry of

the emitter for a comparatively larger value of α. As before, the length of the tip increases

with increasing α. However, notice that the tip is more straight (not sharp) over a longer

region, unlike the results delivered from the power distribution defined by the exponential

profile. This is a result of a more uniform temperature profile.
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5.5 Summary

The focus of this chapter has been to develop a coupled flow and temperature model

of the heating and pulling process and use it to investigate the effect of temperature-

dependent viscosity. After a brief review of the temperature dependence of the material

properties of silica glass required in the temperature models, we developed the temper-

ature equations that govern the temperature variations in both time and space for the

heating and cooling stages. All of the material properties of the glass are considered to

be temperature-independent, except for viscosity. The strong dependence of the glass vis-

cosity on temperature are determined using the viscosity-temperature relationship given

by Doremus (2002) for higher temperature values.

The complete temperature model was developed using fundamental energy conservation

principles. Exploiting the slenderness of the tube, we have developed an axisymmetric

one-dimensional temperature model, which is independent of the cross-plane problem as,

to leading order, the temperature is uniform in a cross-section. The numerical method for

producing solutions to determine the evolution of geometry due to temperature-dependent

viscosity provides a better understanding of key process parameters on the deformation

process. This was achieved by coupling models for axial and pressure-driven cross-plane

flows to the temperature model and solving them using MATLAB. Similar to the previous

results, with sufficiently large pressure, the aspect ratio of the tube can be increased so

as to have the radial dimension of the inner channel at the tip equal to that of the initial

tube. We have computed numerical simulations for a prescribed power distribution that

determines the distribution of temperature within the heated region. The region of our

interest in deformation includes the region between the tip and the transition point (the

end of the taper), where there is no deformation beyond this point.
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Finally, we compared the numerical solutions obtained using various power distributions

to highlight the evolution of the geometry and to demonstrate the effectiveness of the

numerical method we have developed for generating these simulations. In doing this we

found considerable sensitivity to parameter values. This is consistent with experiments

which show quite large changes in emitter geometry for relatively small changes in input

parameters. It also reflects the fact that glass viscosity is highly temperature sensitive.

We will look more at this in the next chapter.
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Chapter 6

Comparison of the model with
experiments

6.1 Introduction

The model and the numerical solutions developed in this thesis thus far are useful for

analysing the important aspects of industrial manufacturing of emitters using the heating

and pulling technique. Although this thesis is primarily concerned with mathematical

modelling of the heating and pulling process, experiments which were informed by the

modelling were carried out to validate the model. These experiments were conducted

by Dr A. Radionova, the Institute for Photonics and Advanced Sensing at the Univer-

sity of Adelaide, and in part performed at the Optofab node of the Australian National

Fabrication Facility utilising Commonwealth and SA State Government funding.

When modelling a wide variety of industrial applications, experimental inputs are

clearly beneficial to ensure that the model and solutions conform to reality, and to iden-

tify advisable and/or necessary improvements to the model. Also, experimental data is

needed for estimating unknown parameters in our temperature model. Thus, comparison

of the model with experiments enables development of a model able to provide accurate

predictions for industrial manufacturing processes.

127
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Figure 6.1: Photo of a Sutter Instrument Company P-2000 micro pipette puller provided
by and presented with the permission of Dr A. Radionova (Radionova 2019).

The present chapter starts with an introduction to the apparatus and the pull parame-

ters. We then discuss the calibration of the model with experiments to determine suitable

quantities for unknowns in the temperature model. Finally we show how the model can

be used to predict the final geometry of the emitter and yield information of real benefit

at the level of industrial fabrication, for example by identifying suitable pull parameters

for a desired outcome. The instrument used for experimental work is the Sutter P-2000

micro-pipette puller (Sutter Instrument Company Co., Novato, CA). This puller uses a

CO2 laser to melt the glass. A photograph of the puller is given in Figure 6.1. Fused

silica is the tubing material that is mostly used to fabricate fine tips when fabricating

glass emitters. We will provide some comparative results of the model predictions in the

final section of this chapter showing numerical solutions against the experimental data to

illustrate the accuracy of the developed model and solutions. However, the Sutter P-2000

puller does not enable pressurisation of the tube so the experimental validation of the

model is for no applied pressure.



6.2. Experiments and measurements 129

6.2 Experiments and measurements

6.2.1 Overall apparatus

A glass tube made of fused silica (F300) of known initial geometry is first placed hori-

zontally into the puller bars and secured with clamps at both sides. The centre part of the

tube goes through the section to be heated by the CO2 laser. Initially the tube is at room

temperature. As the puller program begins, the laser goes to a warm-up position and

is turned on, after which the beam is directed at the glass. A reflective scanning mirror

(gold coated) focuses the laser beam onto the surface of the glass providing a relatively

uniform heat across the glass circumference (Sutter Instrument 2010). The laser heats

the glass over a period of several milliseconds (ms), and then turns off, allowing the glass

to cool. Heating of the glass by the laser raises the temperature sufficiently that the glass

softens, allowing it to be stretched by the gravitational force of a weight (0.171kg/1.68N)

(Wang et al. 2016), which is located in the base of the P-2000 puller and connected to

both puller bars as shown in Figure 6.2 (Sutter Instrument 2010). After several seconds,

the glass tube forms an hour glass shape and eventually breaks into two halves forming

two glass emitters at the end of a draw (Sutter Instrument 2010); this can be seen in

Figure 6.2.

According to the puller manual (Sutter Instrument 2010), the entire glass deformation

process is controlled in the Sutter P-2000 puller by five control parameters: HEAT, FIL-

AMENT, VELOCITY, DELAY, and PULL. Controlling these factors allows for precise

control of the shape of the taper and the tip diameter. Thus, it is beneficial to discuss

the effect of each of these parameters.

The HEAT parameter (range 0 - 999) controls the heat delivered to the glass. A heat

of 100 units corresponds to a power of 0 Watts, whereas a heat of 999 corresponds to a



130 Chapter 6. Comparison of the model with experiments
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Figure 6.2: Operation of Sutter P-2000 adapted from Sutter Instrument (2010).

power of 10 Watts. In this range, the laser power increases by 1 Watt for each increment

of 90 heat units (Wang et al. 2016).

The FILAMENT parameter (range 0 - 5) determines the scanning pattern of the laser

which can also be understood as the section of the tube being heated by the laser beam

or as the heater length (2H) in our model. A FILAMENT of 0,1,2,3,4,5 corresponds to

a heated length of 1mm, 1.5mm, 1.9mm, 4.5mm, 6.5mm, and 8mm, respectively (Sutter

Instrument 2010). The VELOCITY parameter (range 0 - 255) represents the speed at

which the puller bars move as the glass softens due to the weight. As the force acts,

the velocity increases until the value reaches the programmed VELOCITY parameter on

the instrument. This is called the trip velocity. Each VELOCITY unit is approximately

equal to 1/40 mm s−1 (Wang et al. 2016). Once the trip velocity has been reached, the
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DELAY parameter (range: 0 - 255) controls the time between the deactivation of the

laser and the activation of a hard pull (force) determined by the PULL parameter (range:

0 - 255) to increase the pull and break the tube. DELAY is a time in milliseconds. The

program stops when the glass tube separates into two halves. If the glass tube does

not separate in a pull, the program typically loops until the glass tube separates. More

detailed information about the Sutter P-2000 puller and the parameters can also be found

in Wang et al. (2016), Sutter Instrument (2010), Radionova (2019).

The sequence of a normal program with the above mentioned parameters is as follows.

After fixing the tube in the puller and closing it, the pull button is pressed and the laser

goes to a warm-up position and is turned on. After 1 sec the beam is directed at the glass.

The centre of the tube is heated for a distance determined by the FILAMENT setting

by a voltage-controlled power supply predefined by the HEAT setting. The pulling starts

as the glass softens, when the fibre temperature is high enough for significant material

flow, and draws apart the two ends under the gravitational force of the weight attached.

When the speed of separation of the puller bars reaches the trip velocity as given by the

VELOCITY parameter, the program is said to ‘trip’. The exact sequence of events that

follows depends on the DELAY parameter. Figure 6.3 shows a pull cycle in a program

depending on the value of the DELAY parameter. For DELAY < 128, the hard pull

is activated at the trip velocity and the glass is heated for an additional time of 128

less DELAY milliseconds after which the laser is deactivated. For DELAY ≥ 128, the

laser is deactivated when the trip velocity is reached, and the hard pull is activated after

DELAY less 128 milliseconds (Sutter Instrument 2010). In this latter case the glass cools

somewhat before activation of the hard pull which is more likely to simply break the glass

into the two halves and not cause any further stretching. When the DELAY = 128 the

hard pull initiates at the same time as the laser is turned off and pulls until the tube breaks
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(or separates). A feature of P-2000 is the ability to run multi-line programs where each

line in a program gives the settings for the various parameters. For example, in a 2 line

program, if the glass tubes are not separated at the end of the first line of the program,

the next program line executes. If the glass tube does not separate after executing this

line, then the program repeats program line 1 and loops until the tube breaks. The glass

tube, however, may separate before executing all the lines of a multi-line programme. For

a single line program this process may repeat multiple times until the two halves of the

tube separate (Sutter Instrument 2010). When separation occurs, there is a brief message

indicating the length of time the glass was heated.

The reset button can be pressed to stop the puller and so might be used to prevent

looping if the button can be pressed at the correct time. According to Mr. Graham Brown,

Sutter Instrument’s Design Engineer (email exchange, May 13, 2020), an alternative to

pressing reset is to have a programme line with HEAT = 1 and VELOCITY > 0 (with

other parameters of any choice). This line will cause the programme to stall since the

glass cannot be melted. As a result, a time out will occur after 57 seconds, and the reset

button can be pressed to terminate the programme. In any given cycle, a programme

terminates after separation and also after a 57 second time-out.

6.2.2 Timed heat program

Looping through a program may be particularly useful in practice for fabricating ge-

ometries (e.g. patch pipettes) that require multiple HEAT cycles, but it is challenging to

model because of the limited information provided about looping, such as the loop count

and time between loops. We inquired from the Sutter Company as to whether looping

could be stopped and on the meaning of a VELOCITY=0 setting. From the discussion
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(a) DELAY < 128 (b) DELAY > 128

Figure 6.3: Pull cycle depending on the value of DELAY parameter adapted from Sutter
Instrument (2010).

with Mr. Graham Brown, Sutter Instrument’s Design Engineer (email exchange, July 16,

2020), it was determined that, when the VELOCITY parameter in the puller is set to

zero (VELOCITY = 0), the P-2000 puller operates in a special mode called “Timed heat”

mode. In this mode, the laser turns off after a time determined by the DELAY setting:

1 millisecond/unit. More precisely, the time of laser activation can be adjusted in this

program setting by adjusting the DELAY parameter. For example, if the DELAY value

is 100, the laser will remain on for 100 milliseconds and then turns off. This is a much

simpler mode of operation of the puller and gives the ability to run a single line program

and stop, whether or not the tube has broken.

In summary, for a timed-heat program parameters are set as follows.

• HEAT is set to a value to give a laser power sufficient to melt the glass. For example

if HEAT=280, this corresponds to a 2W power output, as 100 units equal 0W, and

each addition of 90 heat units increases the laser power by 1W.

• VELOCITY = 0, provides the configuration for a timed heat program with no

looping.

• FILAMENT is set to a desired total heater length, where in the model H is half the
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filament length.

• DELAY is set to give the desired heating time.

• PULL will be applied after the DELAY. According to Mr. Graham Brown, Sutter

Instrument’s Design Engineer (email exchange, December 3, 2020), PULL = 0 is

often recommended for timed-heat program. PULL = 0 means pulling with the

weight which is approximately 0.84N.

The experimental approach of using a timed heat setting was appealing because it

resembled our model, and we adopted this to compare our model to experiments. In

this program, we have a choice of changing the FILAMENT, HEAT, PULL and DELAY

parameters. However, the puller handbook recommends using FILAMENT = 0 when

pulling nanospray emitters and PULL = 0 (as given above), essentially leaving the pa-

rameter values for HEAT and DELAY to be chosen. We chose to fix the DELAY also, at

100 milliseconds of heating, and vary only the HEAT parameter.

6.2.3 Limitations in relating the model to experiments

In order to relate our model to the operation of the P-2000 puller, we considered a

number of significant aspects of our modelling. To begin with, it is important to note

that pressure is not a parameter integrated into this instrument at present, and thus,

during the validation process, we set P̂ = 0 in the model. Viscosity plays one of the

most significant roles in the deformation process and in reality the viscosity of the glass

depends upon temperature, which in general varies with both the axial position and time.

Unfortunately, one of the key downsides of the Sutter puller is the inability to record

temperature variations in the glass due to the laser safety measures and the dynamics
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of the process itself. The laser beam itself does not have a temperature, and its heat

is defined as its power output. The temperature induced in a material is a function

of its albedo (a function of the amount of radiation absorbed/reflected) and its specific

heat capacity. Experimental results in combination with a coupled flow and temperature

model must be used to determine several unknown parameters in the model such as the

absorption coefficient/emissivity and the convective cooling coefficient, and a suitable

function describing the power density of the laser. Once this calibration of the model is

complete, the model can be used to generate useful data for industrial fabrication of the

emitters.

We note that our model assumes the entire pulling process is both axisymmetric about

the tube axis and symmetric about x = 0. However, although experiments were set up

to be symmetric about x = 0, with the intention to obtain two emitters with the same

geometry at the end of a pull, none of the experimental trials supported this premise and,

upon additional study, it was discovered that one side of the puller’s tightening clamps is

lighter than the other due to usage over the years, indicating that the pulling tension is

not equal on both sides of the puller. As a result, the experimental data related to the

analysis in this thesis corresponds to the dimensions of the emitter from one side (since

they were acceptable) and ignores the other.

Finally we note that experiments undertaken using fibres of 150µm nominal OD, clad

with a polyamide coating which had to be stripped from the heated region, were affected

by issues such as maintaining static tension between the glass and the holder, alignment

difficulties and varying heat distribution depending on the stripped length. Consequently,

uncoated fibres with OD of 300.07±1.06µm and ID of 19.35±0.96µm and OD of 305±4µm

and ID of 27 ± 2µm were utilised because they are more manageable, especially at the

tip, after a pull.
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In light of the preceding discussion, it is evident that the experimental data presently

available for comparison with the numerical model are not as consistent as desired, despite

the considerable effort and care with which they were collected. Certainly, more work is

required to refine the instrument and the experimental procedures. However, we will

examine in the following sections our modelling approach and how the numerical results

compare with the experimental data supplied.

6.2.4 Measurements

The inner diameter (ID) and outer diameter (OD) of the tapers obtained from experi-

ments were measured at approximately fixed lengths from the undeformed end, which is

referred to as the x = 0 (beginning) position. This method of obtaining experimental data

was found to give a good consistency across multiple pulls using the same parameters.

However, recall that in the model the tip was always assumed to be at x = 0. Thus extra

work was needed to adjust the experimental data to suit the requirements of the model.

Figure 6.4 compares the method used in experiments to obtain the measurements after a

pull (top) and how these measurements are adjusted to be used in the model (bottom).

The dimensional measurements for the experiments were determined using a digital

photo taken under a microscope. These were scaled to obtain dimensionless values to

make comparisons with the model results. Due to the small sizes of the diameters involved,

and the comparatively long lengths of the tapers, multiple photos and measurements of

the tips were taken at 5x, 10x, 20x and 50x magnification using the microscope, and

the data had to be pieced together. This resulted in more measurement uncertainty.

Experiments also revealed that there were variations in the values of OD and ID along

the initial length of the tube (before the pull), which can affect the heat distribution and
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x1 = 0 x1 = A x1 = B x1 = C x1 = D x1 = E x1 = F x1 = G x1 = H x1 = I x1 = J x1 = K

x2 = 0
x2 = K − J

x2 = K − I
x2 = K −H

. . . . . . . . . . . . . . . . . x2 = K
x2 = K −A

x2 = K −B

Figure 6.4: The top figure shows how the experimental measurements were taken and the
bottom figure shows how these measurements were adjusted to correspond to the model.
(Several x2 values in the bottom figure are removed due to space restrictions).

thus the temperature distribution during a pull. As a result, each time a new experiment

is conducted, even with the same power setting, the result may change. Considering

these imperfections and the need for experimental measurements at a microscopic level,

especially at the tip, rather than comparing the model with a single experimental result,

an average of the results over at least three experiments for each of the power setting was

used to minimise the effect of experimental variations.

Figure 6.5 shows the shape of an emitter captured using an optical microscope. The

experimental data measured from Figure 6.5 using an optical microscope is given in Table

6.1. Notice that at the very tip it is difficult to compare experiments and numerical values

due to the very small dimensions and because the tube is pulled until it breaks, which is
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Figure 6.5: Microscopic image of an emitter pulled with HEAT =240. Provided by and
presented with the permission of Dr A. Radionova.
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Figure 6.6: Non-dimensional geometry of the emitter generated using the data recorded in
Table 6.1 pulled with HEAT =240. The external radius of the emitter is given in magenta
and the internal radius is given in black.

not always a clean cut. Although not done in the experiments, we note that, if necessary,

the tip could be cut at a position with the desired dimension to remove a completely

closed hole or tip. Table 6.2 shows the data adjusted from the row data given in Table 6.1

to adapt the experimental result to the model requirements. The non-dimensional figure

plotted after scaling the data points in Table 6.2 is shown in Figure 6.6.
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x1 position Length (µm) ID(µm) OD(µm)
0 0 19.086 300.07
A 154. 276 18.025 292.648
B 322.867 18.025 277.803
C 486.686 16.435 245.994
D 655.806 12.194 197.749
E 862.568 9.013 127.238
F 1083.114 5.832 71.571
G 1326.987 3.711 42.943
H 1410.752 3.181 37.111
I 1613.273 2.588 29.159
J 2497.534 0 12.746
K 2522.495 0 0

Table 6.1: Raw data recorded from the stretching tube experiment in Figure 6.5 pulled
with HEAT =240. The column titled “x1 position ” illustrates the experimental measure-
ments of lengths in comparison with Figure 6.4. Data provided by Dr. A. Radionova.

x2 position Length (µm) ID(µm) OD(µm)
0 0 0 0

K-J 24.961 0 12.746
K-I 909.222 2.588 29.159
K-H 1111.743 3.181 37.111
K-G 1195.508 3.711 42.943
K-F 1439.381 5.832 71.571
K-E 1659.927 9.013 127.238
K-D 1866.689 12.194 197.749
K-C 2035.809 16.435 245.994
K-B 2199.628 18.025 277.803
K-A 2368.219 18.025 292.648
K 2522.495 19.086 300.07

Table 6.2: Data adjusted from that given in Table 6.1. No scaling has been applied.

Experiments have demonstrated that HEAT values less than 230 result in no stretch-

ing of the glass tube and just a slight deformation in the centre. At HEAT = 235, a

symmetrical hourglass shape is obtained and the tube does not break. It was also found
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Parameter Value
HEAT 230 - 246

VELOCITY 0
DELAY 100

FILAMENT 0
PULL 0

Table 6.3: Pull parameters from the Sutter P-2000

that increments of 2 in the HEAT values are sufficient to introduce small but noticeable

changes in the fibre geometry. Importantly, experimental results were found to be re-

producible for the same pull parameters. Most of the resulting emitters from the zero

velocity program resulted in a long taper length with a conical/hourglass shape. Table

6.3 summarises the draw parameters of the Sutter P-2000 that were used to generate

comparative experimental and computational results.

6.3 Relating experiments to the model

With the five parameters that can be managed by the user, there are many ways the

puller can be controlled. The most frequently used strategy to change the parameters is

to change a single parameter at a time while leaving the others fixed. This demands a

considerable number of experimental trials to explore the full parameter space in order to

determine the optimal parameter set. Mathematical modelling can be useful in providing

guidance in choosing the parameters and later optimising them depending on the require-

ments. This should reduce the number of trials and, so, minimise materials and labour

costs. In this section we first explain how experiments using the timed heat (VELOCITY

= 0) program were used to calibrate the model. Then we will explain how the model can

be used to make predictions for future experiments.
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Viscosity plays an important role in the total deformation process, which changes with

the axial position and time in general, such that µ(θ(x, t)). Although the power supplied

to the laser can be determined, the power density of the laser and the fraction of energy

absorbed by the glass during an experiment are unknown. Additionally, as the glass leaves

the laser, or when the laser is completely turned off, the temperature of the surrounding

atmosphere is unknown. In the absence of this information we compared model results

for some different choices with experiments and inferred improvements and unknown

parameters as described below.

Following a pull, the inner diameter (ID) and outer diameter (OD) of the glass tube

measured experimentally were plotted against the model outcomes as explained in Section

6.2.4. The discrepancy between model and experiment indicated how the model needed

to be changed for better agreement. To perform a match to the experimental outcome,

we use the solution to the full flow model of Chapter 2, with τ defined in terms of γ̂ (since

P̂ = 0) and with the temperature dependent viscosity model of Chapter 5. Since F is

known and can be fixed, we adopt the scales in (5.16) in Chapter 5 and (4.12) in Chapter

4 with F̂ = 1. With the necessary modifications to allow for experimental analysis of the

positive pressure case, it is also possible to apply the model equations of Chapter 4, where

τ is scaled with P̂ and the influence of surface tension is included or excluded depending

on its magnitude.)

A number of different power distribution functions were tried in (5.7) to identify a

function that gives reasonable agreement with experimental data. In addition to the

equations (5.7) and (5.39) already discussed in Chapter 5, we have tried

q(x) = C tanh
(
α
(
η − x

H

))
, (6.1)
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Figure 6.7: A radial slice showing geometry using (6.1) (R(x, t) in orange and φ(x, t)R(x, t)
in green) and (6.2) (R(x, t) in blue and φ(x, t)R(x, t) in red) against experiments (R(x, t)
in magenta and φ(x, t)R(x, t) in black) where the initial OD = 300.07µm and ID =
19.086µm. These results are obtained with HEAT = 240, where α = 0.5 and η = 0.5 for
(6.1) and α = 1.15 for (6.2) respectively.

where C, α and η are fitting constants and a rational function of the form

q(x) = C

(
1

α x
H

+ 1

)
, (6.2)

where C and α are fitting constants. These functions can be integrated easily and, most

importantly are decreasing functions, such that the highest power density is at x = 0

and the smallest power density is at x = 1, matching the assumption we made when

developing our temperature model in Chapter 5. From the experimental measurements

taken at multiple HEAT values, the power distribution that closely resembled various

experimental outcomes was the rational function in (6.2). Figure 6.7 shows how the

results compare for (6.1) and (6.2) against the experiment in Figure 6.6. The parameters

for the model findings are chosen in this case to ensure a good match with the experiments
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Parameter symbol Value SI unit
Initial length L(O) 1.275× 10−3 m

Surface tension γ 0.3 N/m
Minimum viscosity µhot 1.5× 105 Pas

Density ρ 2200 kg/m3

Heated length H 0.85× 10−3 m
Specific heat cp 1140 J/kgK

Force F 0.84 N
Emissivity β 0.8 -

Absorption efficiency factor Pabs (assume) 0.76 -
Initial temperature θa 293 K

Maximum temperature θhot 2169 K
Universal gas constant Gcst 8.3145 -

Stefan Boltzman constant kb 5.6× 10−8 W/m2K4

Table 6.4: Summary of the pull parameters used for generating numerical solutions (Sutter
Instrument 2010, Jasion et al. 2015).

at the tip. Notice that while the dimension of the external radii R(x, t) at the tip are

similar in all three situations, the overall deformed length of the tube closely matches the

values obtained using (6.2). Thus, in this thesis, we use (6.2) to make comparisons to the

experiments.

Using (6.2) in (5.6) we obtain

C =
PabsPtotαH

2 ln |α + 1|
, (6.3)

which can be used to obtain Q as in (5.31). Following the procedure explained in Section

5.3 of Chapter 5, for 0 ≤ x̂ ≤ 1,

Q =
PtotαPabsµhot

3HρFχ̂2cpΘ ln |α + 1|

(
1

αx̂+ 1

)
, (6.4)

where the hats denote the dimensionless quantities.

The model results rely on several material properties, which we either fix from the
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(a) A radial slice showing geometry using both model and experiment.

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

r

(b) Full image of the emitter using both model and experimental results.

Figure 6.8: Comparison of emitter geometry yielded by model and experiments with
HEAT =240. Plotted against axial position are the external radius (R(x, t)) as given by
(blue) the model, (magenta) experiments, and the internal radius φ(x, t)R(x, t) as given
by (red) the model, (black) experiments. The geometry of the emitter is obtained with
HEAT =240 and α = 1.15. The initial cross-sectional area χ2(x, 0) = 1 and aspect ratio
φ(x, 0) = 0.0635, where initial ID = 19.086µm and OD = 300.07µm.
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literature or infer through reasonable matches to experiments. We fix Pabs = 0.76, for

energy absorption (by matching to experimental results), and β = 0.8, for emissivity from

Jasion et al. (2015). Additionally, to obtain reasonable comparisons with the experimen-

tal trials, a heated length of H = 0.85mm for FILAMENT = 0 ( 1mm) is used, despite

the fact that the nominal heater length is H = 0.5mm. This is not unreasonable given

that conduction allows heat to be transmitted beyond the heated length and the size of

the laser beam means it heats beyond the filament length. The other relevant physical

quantities useful in generating the numerical solutions are summarised in Table 6.4 for

convenience, unless otherwise specified. As in Chapter 5, computations could begin when

the glass reaches softening point because deformations occur only within a narrow temper-

ature range when the glass is sufficiently soft (thus at a high temperature). The starting

temperature for computing the numerical solutions is set to θ0 = 0.7 corresponding to a

physical temperature of 1518K. It is effectively assumed that there is no flow until the

viscosity is low enough to start stretching. This is not unreasonable given the relatively

slow flow until the temperature reaches a point where the viscosity is reduced sufficiently

to allow for considerable deformation. Furthermore, to avoid unnecessary computational

time, we stop computations when the maximum temperature across all the cross-section

has reached the starting temperature (θ0), such that θmax(xj, tK)) ≤ θ0 for j = 1, 2, . . . , J .

The process of obtaining the numerical solutions is similar to that described in Section

5.4.1 of Chapter 5, with the exception of the function q(x) used to compute the distribution

of power and thus the distribution of temperature.

Figure 6.8 shows inner and outer radii of an emitter pulled with a temperature-dependent

viscosity generated from the model when HEAT = 240 and is compared with the outcome

of an experiment. Notice that the experimental result seems shorter compared with the

model result near the undeformed end, this is because all experimental measurements in
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the outer radius were initiated at a point where the difference between two measurements

observed was in the fourth decimal place (measurements were almost similar up to three

decimal places). Figure 6.8 (a) shows a radial slice through the emitter and Figure 6.8

(b) shows the full emitter using both experimental and model results.

We still have some work to do before we can use our model to make predictions. As

discussed in Section 6.2.4 one significant difficulty in relation to comparison of the model

with the experiments is the variation in the initial tube size across the experimental trials.

Although the variability in the inner and outer diameter is measured in micrometres, the

change in both the inner and outer diameters affects the initial cross-sectional area or

thermal mass that is deformed and results are sensitive to this, probably because of the

strong dependence of viscosity on temperature. We anticipate that the power distribution

in the glass will vary with the cross-sectional area, which we model by changing the

value of α as the tube size changes. Thus the value of α is considered to vary with

the initial cross-sectional area of the tube in addition to the value of HEAT used in an

experiment. Therefore, for different pairs of (HEAT, χ0), while holding other parameters

constant, we first computed the corresponding value of α (by trial and error) to give a

good visual match to the experimental outcome. The initial cross-sectional area (χ0)

of the tube can be determined using the experimental ID and OD measurements. This

process can be used to generate a data set of triples comprising (HEAT, χ0, α) for each

of the experiments conducted which can later be used effectively in the process of using

the model for prediction.
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Figure 6.9: Comparison of emitter geometry yielded by the model with α = 1.152 (both
inner and outer channels in blue), and α = 1.154 (both inner and outer channels in red).
In both cases HEAT = 240. The initial cross-sectional area χ2(x, 0) = 1 and aspect ratio
φ(x, 0) = 0.0635, where initial ID = 17.495µm and OD = 300.07µm.

6.4 Model Prediction

To ensure that the model is truly beneficial to future experiments, we must automate

the process of numerical prediction and demonstrate its performance using experiments

not used for model calibration. To do this we consider a new experiment and for each

intended HEAT value we perform a simple interpolation or extrapolation on the generated

(χ0, α) data set (discussed in Section 6.3) to find the value of α corresponding to the

cross-sectional area of the tube, χ0. This way we predict the value of α to use to make a

prediction with our model.

Recall that α determines the distribution of power across the heated length and, when

q(x) was an exponential function, α was very sensitive to the geometry, requiring a pre-

diction with at least three decimal places of precision. Similarly when q(x) is a rational

function the geometry is sensitive to the value of α. Figure 6.9 compares the sensitivity
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of the inner and outer radii of the tube versus axial position for two similar values of α,

differing only in third decimal place, when q(x) is a rational function as given in (6.2).

Note that the slope of the neck-down region of the body changes with the choice of α,

with higher α producing the deepest curve for both inner and outer channels. There is

also a difference in the overall lengths.

Figure 6.10 and 6.11 compare the model predictions with the average outer and inner

radii versus axial position from the experimental results obtained for four distinct power

values, HEAT =240, 242, 244, 246, over the course of 12 experimental trials with three

trials for each power. In all cases the tube separated (broke) into two emitters at the

end of a pull. For each power, the value of α required to generate the model result was

predicted by interpolation of the data set generated in model calibration as described

in the previous section. The overall agreement between the experimental data and the

model output is very good. For each power the average initial cross-sectional area is as

given in the caption. The length of the emitter is not considered critical and experimental

measurements can contain error because of the need to stitch two or more photographs

together to show the whole emitter. Thus, it was hard to measure the taper length

accurately. These predictions depend on the existing data and without a doubt can be

improved further with the availability of more data, maintenance of the P-2000 puller and

improved experimental techniques. Until experimental techniques are improved, there is

little points in striving for a better fit between model and experiments.

6.5 Summary

The micro-scale nature of the problem significantly complicates both the modelling and

experimental processes. There are some inconsistencies in the ID and OD measurements
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(a) Plot of final emitter geometry for a tube corresponding to HEAT =240 starting with an initial
cross-sectional area S0 = 265.5780µm2. The numerically predicted value of α is α = 1.1574).
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(b) Plot of final emitter geometry for a tube corresponding to HEAT =242 starting with an initial
cross-sectional area S0 = 264.4986µm2. The numerically predicted value of α is α = 1.0690).

Figure 6.10: The model results in blue (OD) and red (ID) are compared with the experi-
ment plotted in black (ID) and magenta (OD) in each figure.
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(a) Plot of final emitter geometry for a tube corresponding to HEAT =244 starting with an initial
cross-sectional area S0 = 264.1360µm2. The numerically predicted value of α is α = 1.0077).
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(b) Plot of final emitter geometry for a tube corresponding to HEAT =246 starting with an initial
cross-sectional area S0 = 265.8623µm2. The numerically predicted value of α is α = 1.0109).

Figure 6.11: The model results in blue (OD) and red (ID) are compared with the experi-
ment plotted in black (ID) and magenta (OD) in each figure.
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along the length of the tube before the pull, which impacts the heat distribution and the

viscosity profiles during the pull.

Along with the model, we have extensively explored the zero velocity or the timed heat

program, which might not be the best option for manufacturing emitters using the P-2000.

However, this program is less challenging from a modelling and experimental point of view

as the number of parameters can be minimised. Importantly, the ability to model a single

line programme from the beginning to the end of a pull is not possible with a non-zero

velocity programme, as the changes from one loop to the next are unknown, necessitating

the use of numerous assumptions that may not be realistic in terms of modelling.

We have used the experiments using the timed heat program in two different ways

namely model calibration and prediction using a suitable function for q(x) as described

in detail in this chapter. Model calibration comes first, where we have used different

pairs of (HEAT, χ0), holding all other parameters constant, to find by trial and error the

corresponding α that gives good agreement with the experiment. This gives us a data set

of (HEAT, χ0, α) for each experiment. This is followed by model prediction. For the pre-

diction we have taken the values of the generated data set and interpolated/extrapolated

over the calibration data to find α to obtain a model prediction of the final shape of the

emitter. We then compare the model output with experimental measurements to see how

well they agree. Despite all known and possible sources of error, there exists a satisfying

agreement between the numerical solutions derived from the coupled flow and energy mod-

els and the actual experimental data. Regardless of the experimental imperfections, the

accuracy of the numerical solutions addressed in this chapter are also strongly dependent

on the material properties, which have been difficult to quantify precisely owing to the

extensive variations in the temperature. Importantly, the methodology we have developed

in this chapter may be used to obtain an improved predictive model once experimental
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techniques are improved.

Most of the separated emitters out of the zero velocity program had a nice long taper

with a much simpler conical shape compared with non-zero velocity. For similar OD and

ID measurements of the initial fibre tubing the time taken to pull the emitters is about

the same and the taper profiles are similar.



Chapter 7

Conclusion

In this thesis we have developed a mathematical model and a numerical solution method

for the unsteady heat and draw process used for tapering of tubular glass fibres. For the

first time active pressurisation of internal channels has been included in an unsteady fibre-

drawing model, enabling investigation of the competition between the surface tension and

the pressure. The most important outcome of this work is to demonstrate the feasibility

of manufacture of emitters with a near-uniform bore by the heat and pull process with

active pressurisation of the channel. The symmetry of the process means that two identical

emitters are obtained from a single heat and pull process by cutting/breaking the tube

at the centre. The geometry at the centre then corresponds to the geometry at the very

tip of the emitter.

Asymptotic methods are used which exploit the slenderness of the tube. The use

of asymptotic methods throughout has resulted in a system of leading order equations,

reducing the governing equations and boundary conditions into two simplified models

describing the axial and transverse flow problems and a third model for temperature.

This thesis begins with the flow model assuming viscosity as a function of axial position

and time (uniform in a cross-section) which is later coupled with a temperature model.

Lagrangian coordinates and reduced time transformations were found to be useful

153
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in generating the solutions, with the latter being used for generating a classical two-

dimensional Stokes flow problem with moving boundaries driven by unit surface tension

and applied pressure. The Lagrangian reference frame has been useful to track the motion

of cross-sections and solve for each cross-section. With the internal channel being pres-

surised, the axial and transverse flow models, which comprise the full flow model, need

to be solved simultaneously, requiring a numerical solution. The numerical solution we

have developed can be used to solve for the flow in an unsteady setting, while taking into

account the changes in viscosity with time and axial position throughout the deformation

process. The computations are complicated, requiring knowledge of the previous history

of the viscosity of the cross-sections at previous time steps in order to compute solutions

for all future times.

The model and solution method described in this thesis enable determination of a

pulling force, channel over-pressure, and draw time to achieve tapers with a desired

internal diameter and wall thickness at the very tip from a given tubular fibre for a

temperature-dependent viscosity. There is no unique solution to this problem; multiple

parameter sets for the draw parameters will yield the same geometry at the tip with a

larger pulling force requiring a larger over-pressure. However, the shape of the internal

channel along the length of the taper, will change with the choice of parameters and so

we optimise this choice to target an inner channel with as close to a constant diameter as

possible.

The geometry of the emitter is quite sensitive to the pulling force and pressure parame-

ters. An emitter for use in mass spectrometry, having a tip with a channel diameter near

to that of the original fibre and small wall thickness, implies a geometry at the tip with

significantly larger aspect ratio φ and smaller cross-sectional area χ2 than the original fi-

bre which, in turn, implies an over-pressure and pulling force that are nearing the regime
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where the fibre may burst or break. As the pulling force and over-pressure reduce, the

sensitivity increases such that a very small variation in the force or pressure will result in

the fibre bursting (φ → 1) or the channel closing (φ → 0). Note that such a failure will

occur first at the tip which is subjected to the greatest amount of heat and consequently

undergoes more deformation than any other cross-section. Practical limitations on main-

taining the force and pressure at given values will, then, require that these parameters

be sufficiently large so that small variations do not result in unacceptable changes in φ

at the tip. However, larger force and over-pressure result in greater non-uniformity of

the internal channel, i.e. a larger bulge in the inner channel, so that increasing these

parameters too much is also not desirable. Clearly there is a trade-off between the two

and an optimisation problem to be solved based on the physical limitations of the puller

and the fitness for purpose of the taper.

The model has also been used to explore the importance of over-pressure relative to

surface tension in governing the transverse flow geometry in unsteady stretching of an

annular capillary tube. It has been shown that if the surface tension is small compared

with the applied pressure, then the flow in the cross-plane can be explained in terms of

the pressure, neglecting the effect of surface tension, and an analytical solution for the full

model in terms of τ can be obtained. Using these solutions practical limitations such fibre

break or fibre burst during a draw using reduced time can be identified. Furthermore, two

important approximations, namely weak and zero surface tension are identified. We found

that if O(10−2) ≤ γ̂/P̂ ≤ O(10−1) then the effect of the surface tension is important and

cannot be neglected. However, for O(10−3) ≤ γ̂/P̂ ≤ O(10−2), the surface tension has

weak effect and can be neglected in the axial flow problem but will have some impact in

the cross-plane flow problem and should be considered when predicting the deformations

in the cross-section geometry.
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To characterise the deformation process completely, either the viscosity must be known

or the viscosity must be calculated using a temperature model coupled to the flow model.

In this thesis, we concentrated on heating the glass for a specified time with a laser and

developed the temperature model with the option of selecting a suitable power distribution

to suit experiments which were done with the Sutter P-2000 puller.

The experimental results have been used first to generate a data set to determine the

model parameters which was later used in the prediction. Despite the limitations associ-

ated with obtaining accurate temperature measurements experimentally, the model shows

overall good agreement with the experiments in determining the temperature changes and

thus the deformations during the whole glass deforming process. Although the model can

be used to gain insights into the selection of operational parameters, the optimal parame-

ter combination needs to be determined with reference to physical limitations of the puller

used and permissible tolerances on the geometry. We leave for future work the comparison

of the model predictions in terms of adding pressure with the experiments which require

that the puller be modified.

The temperature model we have developed is a simple one applicable only to one mode of

operation of the P-2000 puller, namely the Timed heat at velocity zero case only. Further

work is still needed to completely validate the model, even for this case, which requires

inaccuracies in the puller to be fixed. Once this is done the model might be adapted

for other modes of operation of the puller. Our goal was to create a simple model that

gives understanding about the sensitivity of geometry to the process parameters used

in the Sutter P-2000 puller. We have seen that results are very sensitive to parameters

in the temperature model. This is consistent with experimental findings and a feature

of emitter tip fabrication, linked to the fact that glass viscosity is strongly temperature

dependent. This is not a reason to discount the value of mathematical modelling. Rather,
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the sensitivity of emitter tip fabrication to the process parameters makes mathematical

modelling of considerable value for understanding practical outcomes, estimating process

parameters, and learning how to control the fabrication process.

The flow model developed in this thesis considers the use of constant pressure in the

inner channel. While this seems to be reasonable, the use of non constant pressure may

need to be explored in the future. As seen from our modelling, once the laser is turned off,

the tube cools and solidifies fastest at the tip where there is less thermal mass while parts

with more thermal mass continue to deform. This suggests the possibility to minimise

the bulge in the tube by gradually reducing the pressure over time. Another interesting

future extension of this model would be to the unsteady stretching of tubes with complex

internal geometries (e.g. multiple internal channels).

We conclude by noting that, while we have focussed on manufacture of emitters for

mass spectrometry, our model has, with suitable modifications, wider applications, such

as to the manufacture of microbottles for whispering gallery resonator sensors. However,

this is for future investigation and is beyond the scope of the current thesis.
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