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Abstract

The Seiberg-Witten invariant has been an indispensable tool in understand-
ing the topology and smooth structure of 4-manifolds, especially Kähler sur-
faces, where the mutually interacting symplectic and complex structures of-
ten allows for an explicit computation of the invariant. We concern ourselves
with a natural generalisation of this setup to smooth families of 4-manifolds
with fibres diffeomorphic to a single 4-manifold X, where one may define a
generalisation of the Seiberg-Witten invariant known as the families Seiberg-
Witten invariants. After introducing the necessary background into Seiberg-
Witten theory, we provide an exposition on its generalisation to families of
4-manifolds and proceed to obtain a general formula for the invariants for
smooth Kähler families with b1(X) = 0. Following this is a further explicit
computation for three classes of example families, these being simple con-
structions of families of with fibres diffeomorphic to CP2, CP1 × CP1 and
finally a family with fibres being the blowup of a Kähler surface at a point.
We then conclude by looking at the consequences of the computations made,
in particular investigating constraints on the cohomology of holomorphic line
bundles over smooth Kähler families required for a non-vanishing diffeomor-
phism invariant, with a particular focus on when the base space of the family
is S2, and further apply these considerations to the example families discussed
prior.
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Introduction

The classification of smooth manifolds of dimensions between 1 and 3 is well-
understood, exhibiting a classification by their geometry and their smooth
structure completely determined by their homeomorphism class [Whi61].
Smooth manifolds of dimension 5 and above also lend themselves to a clas-
sification via the techniques of surgery theory. However, smooth manifolds
of dimension 4 act as a boundary case between these two regimes. Although
topological 4-manifolds can also be classified via surgery theory, these tech-
niques fail in the smooth category, allowing 4-manifolds to exhibit exotic
behaviour.

One striking example of this is a result of Taubes, where it was shown
that there exist uncountably smooth manifolds homeomorphic to but not
diffeomorphic to R4 [Tau96]. The existence of these exotic R4’s is quite
peculiar, in stark contrast to the case of n ̸= 4 where there are no such
exotic Rn’s. The key idea of Taubes’ proof is a comparison of Freedman’s
results on topological 4-manifolds in [Fre82] and Donaldson’s diagonalisation
theorem [Don83], the latter being a key ingredient in many results involving
smooth 4-manifolds.

Donaldson’s result is of much importance to the study of smooth 4-
manifolds by introducing the techniques of gauge theory. Donaldson’s theo-
rem was proven via analysis of the moduli space of anti-self dual Yang-Mills
instantons. Although this technique has proven very fruitful the moduli
space has some undesirable properties, for instance, it is not generally com-
pact, leaving a fairly difficult problem of how one compactifies this moduli
space.

In 1994, Edward Witten introduced the Seiberg-Witten equations to the
mathematical community [Wit94], based off work on supersymmetrmetric
N = 2 gauge theory [SW94]. Just as in Donaldson theory, one can analyse the
moduli space of solutions to these equations, but in contrast, the moduli space
is compact and much easier to work with. This lends to the simplification
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2 Abstract

of proofs of results proven via Donaldson theory, as well as new results, such
as a proof of the Thom conjecture [KM94]. The key construction from the
Seiberg-Witten moduli space in many results is the Seiberg-Witten invariant.
For 4-manifolds with b+ > 1 this is a diffeomorphism invariant, but it also
useful in the case b+ = 1. The Seiberg-Witten invariant has been most
fruitful in the study of symplectic 4-manifolds, especially on Kähler surfaces
where a general computation of the invariant can be made when b1 = 0.

It was suggested by Donaldson in [Don96], many of the techniques of
Seiberg-Witten theory, such as the Seiberg-Witten invariant could be gen-
eralised to families of 4-manifolds, that is a smoothly parametrised family
Xb with b ∈ B where B is some compact parameter space and the Xb are
diffeomorphic to some fixed 4-manifold X via an oriented diffeomorphism.
These techniques were used in papers such as [Nis02], [Rub98] and [Rub02],
involving special cases with low-dimensional family parameter spaces, with
a more general account of the families Seiberg-Witten invariant given by
[LL01]. One expects that analogous to the unparametrised case, the fam-
ilies Seiberg-Witten invariant should be useful in studying smooth families
of Kähler surfaces, consequently, the central focus and primary result of this
thesis is a general computation of the families Seiberg-Witten invariant for
smooth Kähler families with b1(X) = 0.

This thesis is comprised of 3 parts. The first involves basic introductory
notions required to discuss Seiberg-Witten theory, the first chapter consists
of a discussion on smooth Fredholm maps in preparation for rigorously es-
tablishing key results, such as the fact that the Seiberg-Witten moduli space
is a smooth manifold, or is compact. The second chapter establishes basic re-
sults on complex manifolds with an eventual focus towards Kähler manifolds
and related notions which appear in the computation of the Seiberg-Witten
invariant on Kähler surfaces. The third chapter provides an overview of spinc

structures which are integral to Seiberg-Witten theory and its presence in the
theory is one key feature that distinguishes it from the theory of Yang-Mills
instantons.

The second part acts as an introduction to Seiberg-Witten theory, with
Chapter 4 covering the general theory on 4-manifolds, in particular the
transversality, orientability and compactness of the Seiberg-Witten moduli
space. Chapter 5 focuses on Seiberg-Witten theory on Kähler surfaces in
particular, where the analysis of the Seiberg-Witten moduli space simplifies,
leading to techniques that allow a general computation of the Seiberg-Witten
invariant

The concluding part is concerned with families Seiberg-Witten theory
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and contains the main results of the thesis. Chapter 6 outlines the basics
of smooth families of 4-manifolds and Seiberg-Witten theory in this context,
this proceeds similarly to the unparametrsed case as in Chapter 4 when estab-
lishing the transversality and compactness of the moduli space, although the
subtleties of a richer ’chamber structure’ are also discussed which causes the
parametrised theory to often be more complicated. In this chapter we also
define the families Seiberg-Witten invariants which generalise the Seiberg-
Witten invariant of the unparametrised theory. Chapter 7 contains a com-
putation of the families invariants for families of Kähler surfaces with b1 = 0,
which generalises the known computation of the ordinary Seiberg-Witten in-
variant for Kähler surfaces with b1 = 0. With this computation in hand,
we apply it further to three specific families of Kähler surfaces for which
more explicit computations can be made, these are a family of CP2’s ob-
tained from the projectivisation of a rank 3 complex vector bundle, a family
of CP1 × CP1’s obtained from the projectivisations of two rank 2 complex
vector bundles, and finally a blowup family with fibres being the blowup of
a Kähler surface X at a point x.

The final chapter of this thesis deals with the consequences of the com-
putations made in Chapter 7. We first obtain constraints on the cohomology
of line bundles on the family required for a non-vanishing invariant, with a
particular focus on the case when the parameter space for the family is S2.
We then further analyse constraints required to ensure the families invariants
are diffeomorphism invariants of the family when the parameter space is S2

and also apply these considerations to the three example families as discussed
in Chapter 7.
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Introductory Geometry
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Chapter 1

Smooth Maps Between
Manifolds

1.1 Properties of Smooth Fredholm Maps

In this section we quickly review selected properties of smooth Fredholm
maps between Banach spaces and more generally Banach manifolds. Maps of
these type exhibit many similar properties to their finite dimensional counter-
parts but allow us to work with many of the infinite dimensional spaces that
come up in analysing the Seiberg-Witten equations. These results are stan-
dard and also used for Yang-Mills moduli spaces. A more detailed exposition
of Fredholm maps can be found in [Sal99][Appendix A,B] or [DK07][Chapter
4 and Appendix I] and transversality in the more general setting of Banach
manifolds is also discussed in [Lan02].

Banach manifolds generalise the concept of smooth manifolds and are de-
fined almost identically, with the relevant concepts defined on Banach spaces
and maps between them instead of Rn. That is, a Banach manifold is a
paracompact Hausdorff topological space, equipped with coordinate charts
into an open subset of some Banach space with transition functions required
to be infinitely differentiable with continuous derivatives with respect to the
Fréchet derivative. We say that a map f : X → Y between Banach manifolds
is smooth if and only if it is smooth with respect to coordinate charts, and
that that y ∈ Y is a regular value if df(x) is surjective and has right inverse
for all x ∈ f−1(y).

Definition 1.1.1. Let f : X → Y be a bounded linear map between Banach
spaces, we say it is Fredholm if it has finite dimensional kernel and cokernel,

7



8 Chapter 1. Smooth Maps Between Manifolds

and its range is closed.

Given a Fredholm map f we define its index to be

ind(f) = dim(ker(f))− dim(coker(f)).

If f is a map between complex Banach spaces, we refer to the complex index
as indC(f) and the real index as ind(f).

Given a smooth map between Banach manifolds f : X → Y we also say
it is Fredholm if the induced map on tangent spaces dfx : TxX → Tf(x)Y is
Fredholm as a map between Banach spaces.

It is a standard well known fact in functional analysis that the Fredholm
property of operators and the value of their index are invariant under compact
perturbations. We now state a lemma that will be useful later in analysing
the Seiberg-Witten equations.

Lemma 1.1.2. Let X, Y, Z be Banach spaces and suppose that D : X −→ Y
is a bounded linear operator and that K : X −→ Z is compact. Further,
assume that there is a constant c > 0 such that

∥x∥X ≤ c(∥Dx∥Y + ∥Kx∥Z)

for all x ∈ X. Then D has closed range and finite dimensional kernel.

Suppose that X is a smooth Banach manifold and W ⊂ X and suppose
that for each x ∈ W there exists a chart (U, ψ) centred around x such that
U ∼= U1 ×U2 where U1 and U2 are open subsets of Banach spaces E1 and E2

respectively and we also have

ψ(U ∩W ) = U1 × {0}

then we say that W is a submanifold of X.

Now suppose that f : X → Y is a smooth map between Banach manifolds,
we say that the submanifold W is transverse to f if for all x ∈ X such that
f(x) ∈ W , given a submanifold chart (U, ψ) centred at f(x), i.e. we have
ψ : U → U1 × U2 as above with

ψ(f(x)) = (0, 0), ψ(W ∩ U) = U1 × {0}

then there exists an open neighbourhood V of x such that the composition
of maps

V
f−→ U

ψ−→ U1 × U2
π2−→ U2
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is a submersion.

The key results we will use throughout the thesis are the implicit function
theorem and the Sard-Smale theorem.

Theorem 1.1.3 (Implicit function theorem). Suppose that f : X → Y is a
smooth Fredholm map between Banach manifolds, Y is connected and y ∈ Y
is a regular value of f . Then f−1(y) is a finite dimensional smooth Banach
manifold with

dim(f−1(y)) = ind(f).

Theorem 1.1.4 (Sard-Smale theorem). Suppose that X, Y are separable
paracompact Banach manifolds, U ⊂ X is open and f : U → Y is a smooth
Fredholm map, then the set of regular values of f are of second category, that
is, a countable intersection of open and dense sets.

Staying in the context of a Fredholm map between Banach manifolds
f : X → Y , these theorems easily generalise if ’regular value’ is replaced
with ’transverse to f ’ since submanifolds transverse to f are locally given
by the inverse image of zero via the composite maps defined in terms of
submanifold coordinate charts and the map f as defined previously in the
chapter. As corollaries, we have the following two results.

Theorem 1.1.5. Suppose that f : X → Y is a smooth Fredholm map between
Banach manifolds, Y is connected and W ⊂ Y is a finite dimensional sub-
manifold of Y transverse to f . Then f−1(W ) is a finite dimensional smooth
Banach manifold with

dim(f−1(y)) = ind(f) + dim(W ).

Theorem 1.1.6. Suppose that X, Y are separable paracompact Banach man-
ifolds, U ⊂ X is open and f : U → Y is a smooth Fredholm map, then the set
of finite dimensional submanifolds W transverse to f are of second category
in the space of finite dimensional submanifolds of Y

Remark 1.1.7. One can more generally talk about the transversality of
maps h : B → Y to the map f , discussing the case of a submanifold W ⊂ Y
as above is simply restricting to the case when the maps h are inclusion maps
ι : W ↪→ Y . By endowing the space of such maps with the C∞ topology the
previous theorem implies that one can always approximate a submanifold by
a transversal one to arbitrary accuracy in the C∞ topology, since Banach
manifolds are Baire spaces.
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1.2 Sobolev Spaces

If one were to work entirely with smooth maps, many of the spaces involved
between mappings when studying the Seiberg-Witten equations would not
be complete and the machinery of the previous section would not apply. It
is for this reason that we briefly introduce Sobolev completions and some
key lemmas and theorems which are integral to rigorously establishing the
transversality and compactness results on the Seiberg-Witten moduli spaces.
Much of this discussion can be found in [Wel80], [Sal99] and [Nic00].

First assume that X = Rn, for an integer k ≥ 0 and real number p ≥ 1
there is a norm on the space of (compactly supported) smooth functions
C∞(X) given by

∥f∥p,k (X) :=

 ∑
0≤|α|≤k

∫
Rn

|Dαf |p
 1

p

where α = (α1, . . . α|α|) is a multi-index and Dα = Dα1
1 . . . D

α|α|
|α| with Dj =

∂/∂xj. The Sobolev spaces Lpk are then defined to be the completion of
C∞(X) equipped with the above norm.

Now suppose that E → X is a smooth vector bundle of rank m over a
compact manifold X of dimension n, {Ui, φi} is a finite trivialising cover of
E which induces a trivialising map on sections φ∗

i : C∞(Ui, E) → C∞(Ui)
m

and ρi is a partition of unity subordinate to {Ui}. For a smooth section s ∈
C∞(X,E) we may define the Sobolev norm by ∥s∥p,k =

∑
i ∥∥φ∗

i ρis∥∥p,k,Rn ,
i.e. one passes to a local trivialisation where sections may be represented
locally by vectors of smooth functions, takes the Sobolev norm and glues
them together with the partition of unity, that is

∥s∥p,k :=
∑
i

 ∑
0≤|α|≤k

∫
Ui

|Dα ∥φ∗
i ρis∥ |p

 1
p

.

The Sobolev space of sections of E, denoted Lpk(X,E) is then the completion
of C∞(X,E) with respect to this norm. The norm itself depends on the choice
of trivialisation and partition of unity, although any such choice results in
equivalent norms and the topology induced on Lpk(X,E) is the same. The
spaces Lpk(X,E) are Banach spaces and for p = 2 in particular they are
Hilbert spaces, furthermore Lp0(X,E) is the familiar space of Lp sections.
There are a variety of inclusions of Sobolev spaces in each other, we state
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the most important embedding theorems for the purpose of studying the
Seiberg-Witten moduli space.

Theorem 1.2.1 (Rellich’s Theorem). Let E → X be a vector bundle over a
compact manifold X of dimension n, then if k > ℓ and 1

p
− k

n
< 1

q
− ℓ

n
then

Lpk(X,E) ⊂ Lqℓ(X,E) and the inclusion is compact operator.

Theorem 1.2.2. Let X be a vector bundle over a compact manifold X of
dimension n, then for kp > ℓp+ n there is a continuous embedding

Lpk(X,E) ⊂ Cℓ(X,E)

where Cℓ(X,E) is the ℓ-times continuously differentiable sections of E.



12 Chapter 1. Smooth Maps Between Manifolds



Chapter 2

Complex Geometry

This chapter shall provide an overview on basic notions in complex geometry
with an eventual focus towards Kähler geometry. We begin by recalling the
standard theory of complex manifolds, complex structures, Dolbeault coho-
mology and a brief overview of Hodge theory on compact oriented complex
manifolds. Following this we cover Kähler manifolds and two topics that are
of key importance to the study of Seiberg-Witten theory on Kähler surfaces,
namely holomorphic vector bundles and divisors, the latter being intimately
related to gauge equivalence classes of solutions to the Seiberg-Witten equa-
tions on Kähler surfaces. The chapter then concludes with an overview of
blowups of complex manifolds which serve as a means to construct a family
of Kähler surfaces investigated later in Chapter 7. Standard references for
the topics covered in this chapter are [GH94] and [Huy05], although many of
the details relevant to Seiberg-Witten theory on Kähler surfaces can also be
found in [Sal99] and [Nic00].

2.1 Basic Constructions on Complex Mani-

folds

The definition of a complex manifold X of complex dimension n is analogous
to that of a smooth manifold but in the complex category, that is, a Hausdorff
paracompact topological space equipped with an atlas of complex charts
({Uα}, φα), φα : Uα → Cn such that the transition functions φβ ◦ φ−1

α are
biholomorphisms. Any complex manifold of dimension n is also a smooth
manifold of real dimension 2n. If x1, y1, ..., xn, yn are real local coordinates

13



14 Chapter 2. Complex Geometry

for X, define

∂

∂zi
: =

1

2

(
∂

∂xi
− i

∂

∂yi

)
∂

∂zi
:=

1

2

(
∂

∂xi
+ i

∂

∂yi

)
these form a local basis for TX ⊗ C, the complexification of TX and give
rise to a splitting

TX = T 1,0X ⊕ T 0,1X

where locally elements of T 0,1X are in the span of the ∂/∂zi and elements of
T 0,1X are locally in the span of ∂/∂zi. The space T 1,0X is called the holo-
morphic tangent bundle and similarly T 0,1X is the anti-holomorphic tangent
bundle.

There is a natural endomorphism J ∈ End(TX ⊗ C) satisfying J2 = −1
given by

J

(
∂

∂zj

)
= i

∂

∂zj

J

(
∂

∂zi

)
= −i ∂

∂zj

which induces a real endomorphism on TX by

J

(
∂

∂xi

)
=

∂

∂yi

J

(
∂

∂yi

)
= − ∂

∂xi
.

The endomorphism J is called the canonical complex structure on a com-
plex manifold. As a map on the complexified tangent bundle, J is simply
obtained as the complexified version of the map on the real tangent bundle
TX. Considering this concept in generality leads to the following definition.

Definition 2.1.1. Let X be a smooth manifold of even dimension, an almost
complex structure is an endomorphism J ∈ End(TX) such that J2 = −1TX .

Any almost complex structure extends to the complexification TX ⊗ C
and gives rise to a decomposition TX⊗C = T 1,0X⊕T 0,1X where T 1,0X and
T 0,1 are the +i and −i eigenspaces of TX ⊗ C respectively.

As seen above, any complex manifold induces an almost complex structure
via complex coordinates. It is natural to ask the converse question, whether
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a smooth, even dimensional manifold X can be equipped with the structure
of a complex manifold that induces a chosen almost complex structure J ∈
End(TX). This is the content of the Newlander-Nirenberg theorem which
states that this occurs whenever the Nijenhuis tensor NJ vanishes, any such
almost complex structure J is called integrable and the associated complex
structure is in fact unique.

The splitting induced by an almost complex structure J also induces a
splitting on the complex differential forms on X. Define

Λp,qT ∗X := Λp(T 1,0X)∗ ⊗C Λq(T 0,1X)∗

then there is a splitting

ΛkT ∗X ⊗ C =
⊕
p+q=k

Λp,qT ∗X.

Suppose X is equipped with both a Riemannian metric g and an inte-
grable complex structure J , we say they are compatible if g(Jv, Jw) = g(v, w)
for all v, w ∈ TX. When such occurs X is called a Hermitian manifold.
This compatibility condition implies the existence of a non-degenerate 2-
form given by ω(v, w) := g(Jv, w), the extension of this form to TX ⊗C via
complex-linearity is a (1, 1)-form.

Denote the smooth sections of ΛkT ∗X⊗C overX by Ωk(X,C) and smooth
sections of Λp,qT ∗X by Ωp,q(X). The differential extends via C-linearity to
a map d : Ωk(X,C) → Ωk+1(X,C), we define the following composition of
maps

∂ : = πp+1,q ◦ d|Ωp,q(X) : Ω
p,q(X) → Ωp+1,q

∂ : = πp,q+1 ◦ d|Ωp,q(X) : Ω
p,q(X) → Ωp,q+1

one equivalent condition to an almost complex structure being integrable is

that d = ∂ + ∂, or equivalently ∂2 = ∂
2
= 0. It follows that on a complex

manifold for each p there is a Dolbeault complex

Ωp,0(X)
∂−→ Ωp,1(X) → · · · → Ωp,n(X)

and we define the Dolbeault cohomology groups by

Hp,q(X) :=
ker(∂ : Ωp,q(X) → Ωp,q+1)

im(∂ : Ωp,q−1(X) → Ωp,q(X))

the following isomorphism between these groups and sheaf cohomology of
holomorphic p-forms is a consequence of the Dolbeault lemma and we have

Hq(X,Ωp,0(X)) ∼= Hp,q(X).
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2.2 Hodge Theory

Let (X, g) be a compact oriented Hermitian manifold of complex dimension
n, thenX is equipped with a real metric g on the tangent space which extends
to a Hermitian inner product on the complexified space, denoted ⟨·, ·⟩. We
shall take the convention that a Hermitian form is to be complex antilinear
in the first argument and linear in the second. Note that the decomposition
of complex k-forms into (p, q)-forms is orthogonal with respect to ⟨·, ·⟩.

Definition 2.2.1. The Hodge star operator can be extended C-linearly to
the set of complex valued differential forms, then it satisfies a complex version
of its real definition, namely, the complex Hodge star operator is defined by

α ∧ ⋆β = ⟨α, β⟩ vol.

The Hodge star restricts to a map Ωp,q → Ωn−q,n−p and allows us to define
an inner product on Ω∗(X,C) by

Definition 2.2.2. Let (X, g) be a compact Hermitian manifold, then there
is a Hermitian product on Ω∗(X,C) defined by

⟨α, β⟩L2 :=

∫
X

⟨α, β⟩ vol

Remark 2.2.3. For the above definition we may equivalently write

⟨α, β⟩L2 =

∫
X

⟨α, β⟩ ⋆ 1

=

∫
X

α ∧ ⋆β

It is easily shown via the product rule that the operators d, ∂ and ∂ have
adjoints with respect to this inner product given by d∗ = − ⋆ d⋆, ∂∗ = − ⋆ ∂⋆
and ∂

∗
= − ⋆ ∂⋆ respectively. We define the Laplacian by

∆ := d∗d+ dd∗

and ∆∂ and ∆∂ similarly by replacing d with ∂ or ∂ respectively. A differential
form is then harmonic if it lies in the kernel of ∆, when X is compact this is
equivalent to lying in both the kernels of d and d∗. The space of real harmonic
forms is denoted H∗(X, g) with the metric dependence dropped when a fixed
metric is understood, we may similarly define the complex harmonic forms
H∗(X,C) and ∂ or ∂ harmonic forms H∗

∂(X) and H∗
∂
(X) respectively.
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The linearity of ∆ and the bidegree composition of differential forms gives
rise to the following decomposition

Proposition 2.2.4. Let (X, g) be a Hermitian manifold then

Hk
∂(X) =

⊕
p+q=k

Hp,q
∂ (X)

and
Hk
∂
(X) =

⊕
p+q=k

Hp,q

∂
(X)

importantly we obtain a decomposition of differential forms, namely the
Hodge decomposition.

Theorem 2.2.5 (Hodge decomposition theorem). Let X be a compact Her-
mitian manifold, then there are the following orthogonal decompositions

Ωp,q(X,C) = ∂Ωp−1,q(X)⊕Hp,q
∂ (X)⊕ ∂∗Ωp+1,q(X)

and
Ωp,q(X,C) = ∂Ωp,q−1(X)⊕Hp,q

∂
(X)⊕ ∂

∗
Ωp,q+1(X)

and the spaces Hp,q
∂ (X) and Hp,q

∂
(X) are finite dimensional.

Since an element of Hp,q

∂
(X) is necessarily ∂ closed there is a canonical

map to the Dolbeault cohomology groups Hp,q

∂
(X) → Hp,q(X). The Hodge

decomposition of Theorem 2.2.5 gives that this is an isomorphism as a corol-
lary.

Corollary 2.2.6. Let X be a compact Hermitian manifold, the map Hp,q

∂
(X) →

Hp,q(X) given by α 7→ [α] is an isomorphism.

Remark 2.2.7. There is an analogous decomposition and isomorphism re-
sult to the above for the d-operator involving deRham cohomology as opposed
to Dolbeault cohomology on a compact Riemannian manifold.

2.3 Holomorphic Vector Bundles

Suppose that (X, J) is an almost complex manifold and E −→ X a complex
vector bundle, then then the bidegree decomposition extends to E-valued
forms on X as follows.

Ωk(X,E) =
⊕
p+q=k

Ωp,q(X,E)
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Definition 2.3.1. A Cauchy-Riemann operator on E is a linear map D′′ :
C∞(X,E) −→ Ω1,0(X,E) which satisfies

D′′(fs) = ∂f ⊗ s+ fD′′s

s ∈ C∞(X,E) and f ∈ C∞(X,C).

This extends to an operator D′′ : Ωp,q(X,E) −→ Ωp,q+1(X,E) by the
Leibniz rule

D′′(τ ⊗ s) = ∂τ ⊗ s+ (−1)deg(τ)τ ∧D′′s

where s ∈ C∞(X,E) and τ ∈ Ωp,q(X,E).

A Cauchy-Riemann operator is closely tied to the notion of a Hermitian
connection when E has a Hermitian structure. Suppose that E −→ X is a
Hermitian vector bundle and that dB is a Hermitian connection, denote the
complex linear and complex anti-linear parts, that is the projections onto the
corresponding spaces in the bidegree decomposition by

∂B : C∞(X,E) −→ Ω1,0(X,E)

∂B : C∞(X,E) −→ Ω0,1(X,E)

There are explicit formulae given by

∂Bs : =
1

2
(dBs+ idBs ◦ J)

∂Bs : =
1

2
(dBs− idBs ◦ J)

and these extend to operators on Ωp,q(X,E) by the usual extension onto
Ωk(X,E), restricting to Ωp,q(X,E) and then composing with the correspond-
ing projections onto (p+ 1, q) and (p, q+ 1) forms respectively and obey the
Leibniz rule since dB does.

Proposition 2.3.2. For every Cauchy-Riemann operator on E, there exists
a unique Hermitian connection B ∈ A(P ) such that D′′ = ∂B

Proposition 2.3.3. For every Hermitian connection B ∈ A(P ), the associ-
ated Cauchy-Riemann operator satisfies

∂B∂Bs = F 0,2
B s− 1

4
(∂Bs) ◦NJ

when X is a complex manifold, NJ = 0 implies that ∂B ◦ ∂B = F 0,2
B
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Definition 2.3.4. Let X be a complex manifold. A holomorphic vector bun-
dle on X is a complex vector bundle on X such that there exists a trivialising
cover for which the transition functions are holomorphic.

If E → X is a holomorphic vector bundle on a complex manifold X
equipped with a Hermitian structure, then there is a canonical Cauchy-
Riemann operator. This is given by passing to a local trivialisation and
taking the connection locally to be ∂. Since the transition functions are
holomorphic, they satisfy ∂gαβ = 0 so indeed it behaves appropriately on
overlaps and gives a well-defined Cauchy-Riemann operator that satisfies

∂
2
= 0. Comparing Proposition 2.3.3 and Proposition 2.3.2, there is a unique

Hermitian connection B which induces this canonical operator ∂ that must
satisfy F 0,2

B = 0, it is called the Chern connection. It follows that curvature
of B is a (1, 1)-form which we call the Chern curvature.

In fact the condition that F 0,2
B = 0 is the precise condition required for E

to be a holomorphic vector bundle, as per the following theorem of Newlander
and Nirenberg.

Theorem 2.3.5 (Newlander-Nirenberg). Let (X, J) be a complex manifold
and E −→ X a Hermitian vector bundle with connection B. Then the
Cauchy-Riemann operator ∂B : Ω0(X,E) −→ Ω1,0(X,E) determines a Holo-
morphic structure on E if and only if F 0,2

B = 0.

Observe that if X is a complex manifold and E −→ X is a holomorphic
line bundle then ∂ induces the twisted Dolbeault complex

Ω0,0(X,E)
∂−→ Ω0,1(X,E) → · · · → Ω0,n(X,E).

the cohomology groups of the complex are in fact complex vector spaces
and denoted by Hp,q

∂
(X,E). These cohomology groups coincide with the

sheaf cohomology of holomorphic p-forms valued in E, i.e. the following
isomorphism

Hq(X,Ωp,0(X,E)) ∼= Hp,q

∂
(X,E).

Fixing metrics on X and E we may obtain an L2 inner product, obtain a
Hodge star operator and define a Laplacian valued in E. Analogous to Sec-
tion 2.2, the space of E-valued harmonic forms is defined to be the kernel
of ∆∂, the space of E-valued harmonic (p, q)-forms is denoted Hp,q(E), it
is finite dimensional and the Dolbeault lemma implies the following isomor-
phism

Hp,q(E) ∼= Hp,q

∂
(X,E)

The Hodge star operator also gives the following isomorphism.
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Theorem 2.3.6. Let E → X be a holomorphic vector bundle over an n-
dimensional complex manifold X, then there is an isomorphism

Hq(X,Ωp,0(X,E)) ∼= Hn−q(X,Ωn−p,0(E∗))∗

in particular for p = 0 we have Serre duality

Hq(X,E) ∼= Hn−q(X,KX ⊗ E∗)∗

where KX = ΛnT ∗X is the canonical bundle of X.

Denote dimC(H
0,i(X,E)) = dimC(H

i,0(X,E)) by hi(E) and define the
holomorphic Euler characteristic to be the alternating sum

χ(X,E) :=
n∑
i=0

(−1)ihi(E)

which is an invariant of the holomorphic vector bundle E. In particular
define ρg := dimC(H

2,0(X)) to be the geometric genus of X, we then have
the following lemma on cohomological restrictions of line bundles on compact
complex surfaces.

Lemma 2.3.7. Let L be a holomorphic line bundle on a compact complex
surface X

� if h0(L) > 0, then h2(L) ≤ ρg,

� if h2(L) > 0, then h0(L) ≤ ρg.

Proof. Suppose that h0(L) > 0, then there must exist a holomorphic section
s of L which is not identically zero, then it must be non-zero on a dense open
subset of X. We claim that multiplication by s defines an injective map
H0(X,K ⊗L∗) → H0(X,K), this holds since if t is a section H0(X,K ⊗L∗)
and st = 0 then t = 0 on the dense subset of X for which s is non-zero. By
continuity t ≡ 0 is zero everywhere and the map is injective. By Serre duality,
H2(X,L)∗ ∼= H0(X,K ⊗ L∗) so h2(L) is the dimension of H0(X,K ⊗ L∗).
Hence, by injectivity of the above map h2(L) ≤ dim(H0(X,K)) = ρg.

The second result then follows from the first by replacing L with K ⊗L∗

and applying Serre duality.

Remark 2.3.8. The holomorphic Euler characteristic can be recovered when
X has an almost complex structure even though there is no canonical ∂ op-
erator. Given a connection B on E, we can consider the operators ∂B :
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Ω0,k(X,E) −→ ω0,k+1(X,E), even though the composition ∂B ◦ ∂B will gen-
erally be non-zero, one can wrap this up into a two-term sequence

∂B + ∂
∗
B : Ω0,ev(X,E) −→ Ω0,odd(X,E)

in the integrable case, the index of this operator recovers the holomorphic
euler characteristic, leading to the following definition.

Definition 2.3.9. Let (X, J) be an almost complex manifold and L −→ X
a holomorphic line bundle with connection B, the holomorphic Euler Char-
acteristic is then defined to be the Fredholm index of the operator ∂B + ∂

∗
B,

that is

χ(X,L) := indC(∂B + ∂
∗
B)

Remark 2.3.10. ∂B+∂
∗
B is in fact an example of a Dirac operator, and the

Hirzebruch-Riemann-Roch theorem stated later in this section is a special
case of the Atiyah-Singer Index Theorem which computes the index of Dirac
operators in terms of topological invariants.

Definition 2.3.11. Let E −→ X be a complex vector bundle,

Todd class of E: to be the integral cohomology class defined by

td(E) :=
m∏
j=1

xj
1− e−xj

Chern character of E: to be the integral cohomology class defined by

ch(E) :=
m∑
j=1

exj

where we have employed the splitting principle and the xj are the Chern
roots of E.

In particular for 4-manifolds we have the following formulae

td(E) = 1 +
1

2
c1(E) +

1

12
(c1(E)

2 + c2(E))

and

ch(E) = m+ c1(E) +
1

2
(c1(E)

2 − 2c2(E))

where m is the rank of the vector bundle E.
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Theorem 2.3.12 (Hirzebruch-Riemann-Roch). Let E −→ X be a complex
vector bundle over an almost complex manifold (X, J), then the holomorphic
Euler characteristic is given by

χ(X,E) =

∫
X

ch(E) ∧ td(TX)

where TX is viewed as a complex vector bundle via the almost complex struc-
ture J .

With this one can obtain a general computation of the holomorphic Euler
characteristic on complex vector bundles over almost complex compact man-
ifolds of dimension 4. If X is a compact oriented connected 4-manifold, then
the cup product on cohomology and Poincaré duality gives rise to a non-
degenerate symmetric bilinear form Q : H2(X;Z) × H2(X;Z) → Z called
the intersection form of X. This may be extended to a bilinear form on
H2(X;Z) ⊗Z R and diagonalised such that the only entries along the diag-
onal are 0 and ±1. The number of +1 and −1 entries defines b+(X) and
b−(X) respectively and the difference σ(X) := b+(X) − b−(X) is called the
signature of X. All three of b±(X) and σ(X) are topological invariants of
the 4-manifold X. It is also of note that b±(X) can be computed as the
dimension of the space of self-dual and anti-self dual harmonic 2-forms on X
respectively.

Corollary 2.3.13. The holomorphic Euler characteristic of a compact con-
nected almost complex manifold (X, J) is given by

χ(X,O) =
1

4
σ(X) +

1

4
χ(X) =

1− b1 + b+

2

after twisting by a line bundle L, we have

χ(X,L) =
1

8
⟨c1(K∗ ⊗ L2)2, [X]⟩ − 1

8
σ(X)

where KX = det(T ∗X) = Λ2,0T ∗X is the canonical bundle

2.4 Kähler Manifolds

Definition 2.4.1. Let X be a Hermitian manifold, we say that X is a Kähler
manifold if the associated 2-form ω is closed, i.e.

dω = 0.
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More generally, any smooth manifold of dimension 2n equipped with
a non-degenerate closed 2-form ω is called a symplectic manifold. Thus a
Kähler manifold is a manifold with mutually compatible Riemannian, com-
plex and symplectic structures. Of particular interest are Kähler surfaces,
these being the Kähler manifolds of complex dimension 2.

Proposition 2.4.2. Let X be a symplectic 4-manifold and L −→ X be a
Hermitian line bundle. Let B ∈ A(L) be a Hermitian connection, then

∂
∗
B∂B =

1

2
d∗BdBφ0 − i(FB)ωφ0

for φ0 ∈ Ω0,0(X,E)

Proposition 2.4.3. Let X be a Kähler surface and L −→ X be a holomor-
phic line bundle with a non-zero section s : X −→ L. Then either L is the
trivial line bundle or

[ω] · c1(L) > 0

Since Kähler manifolds have a canonical 2-form ω there is the following
Lefschetz operator

L : ΛkX −→ Λk+2X

defined by
α 7→ α ∧ ω

with adjoint
L∗a : ΛkX −→ Λk−2X

defined in terms of the Lefschetz operator and the Hodge star operator by

L∗ := ⋆−1 ◦ L ◦ ⋆

with which one can prove the following Kähler identities

Proposition 2.4.4. Let X be a complex manifold with Kähler metric g.
Then the following identities hold, they are called the Kähler identities.

i.)
[∂, L] = [∂, L] = 0

[∂
∗
, L∗] = [∂∗, L∗] = 0

ii.)
[∂

∗
, L] = i∂, [∂∗L] = −i∂

and
[L∗, ∂] = −i∂∗, [L∗, ∂] = i∂

∗
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iii.) ∆∂ = ∆∂ =
1
2
∆ and ∆ commutes with ⋆, L, L∗a, ∂, ∂, ∂∗, ∂

∗

importantly this implies that when X is a compact Kähler manifold, a
(p, q)-form α is d-harmonic if and only if it is ∂-harmonic if and only if it is ∂-
harmonic. Hence one obtains the following orthogonal Hodge decomposition
of cohomology on Kähler manifolds.

Theorem 2.4.5. Let X be a compact Kähler manifold, the following decom-
position holds.

Hk(X;C) ∼=
⊕
k=p+q

Hp,q(X).

2.5 Divisors

In this section we recall the theory of divisors on a complex manifold. These
are related to holomorphic line bundles on a complex manifold and will turn
out to be of relevance when solving the Seiberg-Witten equations on a Kähler
surface.

We begin by introducing the notion of analytic and irreducible analytic
hypersurfaces which mimic the concepts of algebraic sets and algebraic vari-
eties from algebraic geometry.

Definition 2.5.1. Let X be a complex manifold and V ⊆ X a closed subset.
We say that V is a analytic hypersurface, if for every point x ∈ V , there
exists a neighbourhood U of x and a non-zero local holomorphic function
f : U −→ C such that V ∩ U = f−1(0)

The non-zero holomorphic function f , is given a decomposition of f into
irreducibles of Ox, the set of germs of holomorphic functions at x ∈ X. That
is, f = pa11 . . . pakk , since f0 = p1 . . . pk has the same zero set, f can always be
taken of this form and divides any f ∈ Ox which vanishes near x. Any such
minimal function f is called a local defining function for V at x.

This determines a non-zero principal ideal Ix defined as the set of germs
of holomorphic functions which vanish on V , any local defining function is a
generator for Ix. We may define a map mV : X −→ N given by

mV (x) := inf
f∈Ix

mx(f)

where mx(f) is simply the vanishing order of f . This quantity is simply
the vanishing order of any local defining function at x and is independent of
choice of generator.
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Definition 2.5.2. Let X be a complex manifold and V ⊆ X an analytic
hypersurface, we say that V is irreducible if whenever V1, V2 ⊆ X are analytic
hypersurfaces with V1 ∪ V2 = V , either V1 = V or V2 = V .

Irreducible analytic hypersurfaces on a complex surface can be charac-
terised by the following property.

Proposition 2.5.3. Let X be a complex surface, then V ⊆ X is an ir-
reducible analytic hypersurface if and only if there is a compact connected
Riemann surface Σ and a holomorphic map ι with ι(Σ) = V .

We may now state the definition of a Weil divisor. This is a conceptually
easy definition to work with, although it is not always suitable, leading to
the notion of a Cartier divisor. We will see that on a complex manifold, Weil
divisors can be viewed as Cartier divisors under an equivalence relation.

Definition 2.5.4. Let X be a complex surface, the group of Weil divisors,
denoted Div(X) is the free abelian group of irreducible analytic hypersurfaces
in X. Thus a Weil divisor is simply a finite formal sum

V =
∑
i

miVi

where mi ∈ Z.

If the mi ≥ 0 we say that the divisor V is effective.

Any Weil divisor defines a map m : X −→ Z called the order of the
divisor, given by

m(x) :=
∑
i

mimVi(x)

and it is a non-trivial fact that any such Weil divisor is determined by such
a map which can be written as m(x) = mx(f) − mx(g) for holomorphic
functions f, g defined in a neighbourhood U of x. Consequently, this can be
taken as an alternate definition of a Weil divisor.

We now give the definition of a Cartier divisor, this is distinct from the
notion of a Weil divisor, although closely related. It will prove to be the most
useful definition for characterising line bundles.

Definition 2.5.5. Let X be a complex manifold, a Cartier divisor consists
of an open cover {Uα}α∈I of X and a collection of non-trivial meromorphic
functions (i.e. fα/gα where fα, gα : Uα −→ C are holomorphic which do
not vanish on any Uα), such that there exist nowhere vanishing holomorphic
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functions uβα : Uα ∩ Uβ −→ C such that

fβ
gβ

=
uβαfα
gα

on Uα ∩ Uβ.

Two Cartier divisors {Uα, fα, gα} and {Vβ, f ′
β, g

′
β} are called equivalent

if their union is also a divisor. This leaves everything unchanged when Uα
and Vβ don’t intersect, but when the intersection is nonempty this means
there exists a nowhere zero holomorphic function vαβ : Uα ∩ Vβ −→ C with
f ′
β/g

′
β = vβαfα/gα. There is then a group isomorphism between Cartier

divisors modulo equivalence and Weil divisors. The notion of effective divisor
carries over under this correspondence to be gα ≡ 1 for all α.

Since we have non-zero holomorphic functions uαβ : Uα ∩ Uβ −→ C∗ and
it is easy to see they satisfy the cocycle conditions

uαα = 1

uαβ = u−1
βα

uαβuβγ = uαγ

hence any Cartier divisor E = {Uα, fα, gα} necessarily defines a holomorphic
line bundle O(E) (sometimes we simply refer to the line bundle as E for
simplicity), where equivalent divisors determine isomorphic line bundles. The
total space of this line bundle is given by equivalence classes

[x, z, α] ≡ [x, uβα(x)z, β]

where x ∈ Uαβ and z ∈ C. There is then a natural group homomorphism
Div(X) → Pic(X) into the Picard group, the group of isomorphism classes
of holomorphic line bundles on X given by E 7→ O(E). This induces a map
Div(X) → H2(X;Z) given by

E 7→ c1(O(E)).

If a divisor is written in terms of irreducible analytic hypersurfaces Vi as
E =

∑
imiVi, since the Vi can be written as the image of Riemann surfaces

under holomorphic maps, they correspond to submanifolds of X, hence have
associated fundamental cycles [Vi]. The first Chern class of E is obtained as∑

i

miPD([Vi])
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where PD refers to Poincaré duality.

A holomorphic section s : X → E constitutes a collection of holomorphic
maps vα : Uα → C satisfying vβ = uβαvα. Any such section of E determines
a meromorphic function v : X → C given by

v(x) =
vα(x)gα(x)

fα(x)

for x ∈ Uα, the right hand is well-defined on Uαβ and is only defined when
fα(x) ̸= 0. The meromorphic function has a multiplicity function which
satisfies

m(x) +mv(x) ≥ 0

for all x ∈ X. Conversely, any meromorphic function v : X → C that satisfies
the above defines a holomorphic section of E, hence there is a correspondence

H0(X,E) ∼= {v : X → C : v is meromorphic, mv +m ≥ 0}.

Observe that a divisor E is effective if and only if it admits a meromorphic
section v withmv(x) = 0, in particular this implies that v is in fact a non-zero
holomorphic section s, consequently we obtain the following equivalence

Diveff(X) ∼=
E → X is a hol. line bundle with hol. section s ̸= 0

isomorphism of line bundles

Note that the first Chern class gives a map Pic(X) → H2(X;Z), if we
assume that b1(X) = 0 then it is injective and its image is the set of classes
in H2(X;Z) whose image in H2(X;R)) lies in H1,1(X). It follows from this
fact and the above that for complex manifolds with b1(X) = 0, that the set of
effective divisors with specified first Chern class c can be described in terms
of a fixed complex line bundle E → X as follows

Diveff(X, c) ∼=
{(∂, s) : ∂ ◦ ∂ = 0, ∂s = 0, s ̸= 0}

(∂, s) ≡ u∗(∂, s) = (u−1 ◦ ∂ ◦ u, u−1s)

that is, the set of holomorphic structures on E with a non-zero holomorphic
section s modulo gauge equivalence.

2.6 Blowup of a Manifold

In this section we describe the blowup of a complex manifold, this will provide
an example of a family manifolds which is investigated later in Chapter 7.
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We shall develop the basic theory of blowups and then proceed to overview
some tools to compute the cohomology of holomorphic line bundles on the
blowup of a complex manifold, these will be used later for the computation
of the families Seiberg-Witten invariant.

Let ∆ be a disc in C2 centred at the origin and define ∆̃ ⊂ ∆× CP1 by

∆̃ := {(z1, z2)× [y1, y2] ∈ ∆× CP1 : z1y2 = z2y1}

and p : ∆̃ −→ ∆ to be the projection onto the first factor p(z, [y]) = z.
Note that z1y2 = z2y1 if and only if (z1, z2) lies in the span of (y1, y2), thus
p−1({0}) can be identified with a copy of all lines through the origin, i.e. a
copy of CP1, this is denoted E = {(0, 0)} × CP1 and called the exceptional

divisor. Away from 0 there is a unique point in ∆̃ lying over (z1, z2), namely

(z1, z2)× [z1, z2] hence p|∆̃\E : ∆̃ \ E −→ ∆ \ {0} is a bijection and in fact a
biholomorphism.

Proposition 2.6.1. The exceptional divisor E is an effective Cartier divisor.

Proof. Let Ui := {(z, [y]) ∈ ∆̃ : yi ̸= 0}, these form an open cover of ∆̃.
Define the holomorphic functions fi : Ui −→ C by

fi(z, [y]) := zi

and let gi : Ui −→ C be the constant function equal to 1 on Ui. The fi
vanish on E ∩ Ui, which is not open and the gi do not vanish anywhere,
moreover on Ui ∩Uj the condition ziyj = zjyi implies that zi and zj are non-
zero, so we have the existence of nowhere vanishing holomorphic functions
uij : Ui ∩ Uj −→ C defined by

uij :=
zi
zj

satisfying
fi = uijfj

hence E is a Cartier divisor, since the gi are all identically equal to 1, it is
an effective divisor.

Since E is a Cartier divisor, there is a corresponding line bundle on ∆̃
which is trivial away from E. However, restricted to E the open sets Ui
and transition functions uij can be identified precisely with the standard
trivialisation for the tautological line bundle O(−1) over CP1, hence

O(E)|E ∼= O(−1).
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We can now transport this construction to a complex surface X. Suppose
x ∈ X, U ⊆ X is an open neighbourhood and φ : U −→ ∆ is a biholomor-
phism sending x to 0, thus defining a holomorphic coordinate chart centred
at x. Define p′ : Ũ −→ U to be the pullback of p : ∆̃ −→ ∆ under φ, that
is, Ũ = φ∗∆̃, and define the manifold

X̃(φ) :=
X \ {x} ⊔ Ũ

∼

where X \ {x} ∋ x′ ∼ u ∈ Ũ if p′(u) = x′, to be the blowup of X at x.

There is an obvious projection map p : X̃ −→ X sending x′ 7→ x′ if
x′ ∈ X \ {x} and u 7→ p′(x′) if x′ ∈ Ũ . As with the local case, the restriction

p|p−1(X\{x}) : X̃ \E −→ X \{x} is a biholomorphism and E is a divisor which
we call the exceptional divisor. This all follows immediately from the local
results.

Proposition 2.6.2. Let φ, φ′ : U,U ′ −→ ∆ be two coordinate biholomor-
phisms centered at x, then X̃(φ, x) and X̃(φ′, x) are biholomorphic.

Proof. It suffices to show that Ũ and Ũ ′ are biholomorphic. Given φ we have
the following commutative diagram

Ũ ∆̃

U ∆
φ

h

pp′

note that Ũ , by nature of being a pullback is defined set theoretically as

Ũ = φ∗∆ = {(x0, y0) ∈ U × ∆̃ : φ(x0) = p(y0)}

and the map h simply sends (x0, y0) to y0. This is clearly holomorphic. We
claim that this is in fact a biholomorphism.

Define g : ∆̃ −→ Ũ by

g(y) := (φ−1(p(y)), y)

since p and φ are holomorphic, this is as well. This indeed actually maps
into Ũ since φ ◦ π1(g(y)) = φ ◦ φ−1 ◦ p(y) = p(y) = p ◦ π2(g(y)).
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Now observe that

g ◦ h(x0, y0) = g(y0)

= (φ−1(p(y0)), y0)

= (φ−1(φ(x0)), y0)

= (x0, y0)

= idŨ(x0, y0)

and
h ◦ g(y) = h(φ−1(p(y)), y) = y = id∆̃(y).

Hence, given φ and φ′, we have the following commutative diagram

Ũ ∆̃ Ũ ′

U ∆ U ′φ

h

pp′

h′

φ′

p′′

since h and h′ are biholomorphisms, we have Ũ ∼= Ũ ′ with p′′ ◦ h′−1 ◦ h =
φ′−1 ◦ φ ◦ p.

The blowup at x ∈ X can be understood purely topologically in terms of
connected sums

Proposition 2.6.3. Let X be a complex surface, then Blx(X) diffeomorphic

to X#CP2
via an oriented diffeomorphism.

Proof. See [Huy05][p.102]

This categorisation of the blowup then yields a simple computation of
some topological properties of the blowup

Proposition 2.6.4. Let X be a compact complex surface and X̃ = Blx(X)
with exceptional divisor E, then the following hold

(1) π1(X̃) ∼= π1(X),

(2) b1(X̃) = b1(X),

(3) b2+(X̃) = b2+(X),



2.6. Blowup of a Manifold 31

(4) b2−(X̃) = b2−(X) + 1,

(5) if X is compact so that we have Poincaré duality and [E] is the Poincaré
dual of the exceptional divisor, then [E]2 = −1.

Proof. Since X̃ ∼= X#CP2
the intersection of X and CP2 in X#CP2 is a disc

and π1(CP2) is trivial, it follows from the Seifert van-Kampen theorem that

π1(X̃) ∼= π1(X̃), this immediately implies (2).

It also follows from Proposition 2.6.3 that the intersection form of X̃
decomposes as a direct sum

QX̃ = QX ⊕QCP2 .

Since b+(CP2
) = 0 and b−(CP2

) = 1, both (3) and (4) then follow, and since

E satisfies the same property in CP2
(5) follows.

Proposition 2.6.5. Let X be a compact complex surface, then

Div(X̃) = π∗(Div(X))⊕ Z{E}

consequently we have isomorphisms

Pic(X̃) ∼= Pic(X)⊕ Z

given by

Pic(X)⊕ Z ∋ (L, k) 7→ p∗L⊗O(kE)

and

H2(X̃;Z) ∼= H2(X;Z)⊕ Z

given by

H2(X;Z)⊕ Z ∋ (n,m) 7→ p∗(n) +m[E]

where [E] is the Poincaré dual of E.

Proof. The last two assertions follow from the first. The first is easy to see
since if Σ is any irreducible analytic hypersurface on X not containing E, then
it is simply the proper transform of its image p(Σ). Hence the irreducible

analytic hypersurfaces of X̃ are just those of X as well as the exceptional
divisor. Since the group of divisors is just the free abelian group on this, our
isomorphism follows.
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From this result, we shall sometimes denote line bundles on the blowup
X̃ as L+ kE where L is a line bundle on X and k ∈ Z.

A more general construction will also later be required, namely the blowup
along a submanifold of codimension k. The construction is quite similar to
the blowup around a point. As before let be a disc in Cn and V be defined
by zk+1 = · · · = zn = 0 and define ∆̃ := {(z, [y]) ∈ ∆ × CPn−1} : ziyj =

zjyi, k + 1 ≤ i, j ≤ n and the projection map π : ∆̃ −→ ∆ by π(z, [y]) = z.
Now given a complex manifold X of complex dimension n and a submanifold
Y of codimension k, then we may choose local coordinates (Ui, φi) with
φ : Ui −→ ∆i where the ∆i are discs in Cn on X such that Ui ∩ Y is given
by the zero set (φ(x)k+1, . . . φ(x)n). Consider the pullback bundles given by

φ∗∆̃i, there are isomorphisms on overlaps, hence the union ∪iφ∗∆̃i/ ∼, with
the equivalence provided by isomorphism on overlaps, defines a manifold.
There is a natural projection ontoX which is gives a biholomorphismX\∪iUi
and we may glue together X \ Y and ∪i∆̃i to obtain the blowup of X along
Y , denoted BlY (X)

In the interest of computing the families Seiberg-Witten invariant of a
blowup family in 7 we aim to develop tools for the computation of the coho-
mology of holomorphic line bundles on the blowup of X, specifically an exact
sequence. Let Ix be the ideal sheaf of x ∈ X, that is, the sheaf of holomor-
phic functions on X vanishing at x, note that for open sets not containing x
this agrees with O(X) where O is the structure sheaf of X. Given k ≥ 0, Ikx
is then the sheaf of holomorphic functions on X vanishing at x to order at
least k, also let Õx be the skyscraper sheaf of holomorphic functions on X
at x. There is then the following lemma.

Lemma 2.6.6. Let m ≥ 0, then

π∗OX̃(−kE) ∼= Ikx

and
Rjπ∗OX̃(−kE) = 0

for j > 0

Proof. Clearly π∗OX̃ ⊂ OX and since any holomorphic function on X \ {x}
correpsonds to one on X̃ \E which extends uniquely to all of X due to Levi’s
extension theorem [Bar+04, Theorem 8.7] The exceptional divisor E then
gives an exact sequence ([GH94] p.139)

0 → OX̃(−E) → OX̃ → OE → 0.
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Note that the higher direct image sheaves satisfy Riπ∗OX̃ = 0 for i > 0
[Bar+04, Theorem 9.1], the induced long exact sequence of higher direct
image sheaves gives the following exact sequence

0 → π∗OX̃(−E) → OX
evx−−→ Õx → R1π∗OX̃(−E) → 0

and Rjp∗OX̃(−E) = 0 for j > 1. Since the evaluation map evx : OX → Õx is
surjective, R1π∗OX̃(−E) = 0, this reduces the above exact sequence. There
also a map Ix → π∗OX̃(−E), this and the structure sequence of X gives the
following commutative diagram with exact rows

0 π∗OX̃(−E) OX Õx 0

0 Ix OX Õx 0

since the rightmost two arrows are isomorphisms, it follows that π∗OX̃(−E) ∼=
Ix.

Now proceed inductively on k, again the exceptional divisor gives an exact
sequence

0 → OX̃(−kE) → OX̃(−(k − 1)E) → OE(−(k − 1)E) → 0

the long exact sequence of higher direct image sheaves and the inductive
hypothesis gives the following long exact sequence

0 → π∗OX̃(−kE) → π∗OX̃(−(k−1)E) → π∗OE(−(k−1)E) → R1π∗OX̃(−kE) → 0.

and that
Rjπ∗(−(k − 1)E) ∼= Rj+1π∗OX̃(−kE)

for j > 0. Since O(E)|E ∼= O(−1) over CP1, it follows that O(−(k − 1)E) ∼=
Õx(S

k(T ∗
xX)) and Rjπ∗OE(−(k − 1)E) = 0 for j > 0.

Consequently Rjπ∗OX̃(−kE) = 0 for j > 1 and the above exact sequence
is

0 → π∗OX̃(−kE) → π∗OX̃(−(k−1)E) → Õx(S
kT ∗

xX) → R1π∗OX̃(−kE) → 0

Since an element of p ∈ Sk(T ∗
xX) can be lifted to a degree k polynomial p̃ in

local coordinates around x, we obtain a locally defined holomoprhic function
which vanishes to order k−1 at x, defining a local section of π∗OX̃(−(k−1)E)

which evaluates to p at x. Hence the map π∗OX̃(−(k− 1)E) → Õx(S
kT ∗

xX)
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is surjective so R1π∗OX̃(−kE) = 0, hence we have proven the second claim.
This also reduces the exact sequence to

0 −→ π∗OX̃(−kE) → π∗OX̃(−(k − 1)E) → Õx(S
kT ∗

xX) → 0.

A section of Ikx can be regarded as a map which vanishes at x to order at
least k, there are natural maps Ikx −→ π∗OX̃(−kE) making the following
diagram commute

0 Ikx Ik−1
x Õx(S

kT ∗
xX) 0

0 π∗OX̃(−kE) π∗OX̃(−(k − 1)E) Õx(S
kT ∗

xX) 0

where the rows are exact. The rightmost map is the identity and the middle
is an isomorphism by the inductive hypothesis. Consequently, the leftmost
vertical map is an isomorphism and

π∗OX̃(−kE) ∼= Ikx

so we obtain the first claim by induction.

Theorem 2.6.7. Let L be a holomorphic line bundle on X. For each k ≥ 0,
the following holds.

(1) There is a long exact sequence

0 H0(X̃, L− kE) H0(X,L) Lx ⊗ (OX/I
k
x)

H1(X̃, L− kE) H1(X,L) 0

evx

(2.1)

(2) There is an isomorphism H2(X̃, L− kE) ∼= H2(X,L)

(3) For m ≥ 1, there is a long exact sequence

0 → H1(X,L) H1(X̃, L+ kE) Lx ⊗ (K∗
X)x ⊗ (OX/I

k
x)

∗

H2(X,L) H2(X̃, L+ kE) 0

(2.2)
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(4) and an isomorphism (for m ≥ 1)

H0(X̃, L+ kE) ∼= H0(X,L)

Proof. Since L is locally trivial, it corresponds to a locally free sheaf, hence
via the projection formula (see [Dim04][Theorem 2.3.29]), it follows that

Rqπ∗OX̃(−kE)⊗OX(L) ∼= Rqπ∗(OX̃(−kE)⊗OX̃(L)) = Rqπ∗OX̃(L− kE)

Consequently, from Lemma 2.6.6 we have that

Rqπ∗OX̃(L− kE) = 0

for q > 0, and
π∗OX̃(L− kE) = OX(L)⊗OX

Ikx

in the case when q = 0.

The E2 page of the Leray spectral sequence for OX̃(L − kE) under the

map π : X̃ −→ X is given by Ep,q
2 = Hp(X,Rqπ∗OX̃(L−kE)), this converges

to Hp+q(X̃,OX̃(L− kE)) ≡ Hp+q(X̃, L− kE).

However, for any p, Ep,q
2 is zero for q > 0 by the above computation,

hence the spectral sequence degenerates at the E2 level and so

Hj(X̃, L− kE) ∼= Hj(X, π∗OX̃(L− kE)) ∼= Hj(X,OX(L)⊗OX
Ikx).

Since OX(L) is a locally free sheaf, by tensoring the exact sequence defin-
ing the quotient OX/I

k
x the following sequence is exact.

0 → OX(L)⊗OX
Ikx → OX(L) → Lx ⊗ (OX/I

k
x) → 0.

Taking the induced long exact sequence in cohomology and using the fact
that OX/I

k
x is a skyscraper sheaf, thus it has no cohomology in degrees bigger

than zero, (1) and (2) immediately follow. If we then consider (1) and (2) for

line bundles over X̃ of the form L−KX−(k−1)E when k ≥ 1, then (3.) and
(4.) follow from applying Serre duality, the fact that KX̃ = π∗(KX)+[E] and
dualising the resulting exact sequence and isomorphism respectively.
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Chapter 3

Spinc Structures and Dirac
Operators

In contrast to Yang-Mills theory, the Seiberg-Witten equations have spinors
as one of their unknowns. To define these objects on a manifold it is integral
to discuss spinc structures on a manifold, this naturally leads to a discussion
on Dirac operators, these also appear in the Seiberg-Witten equations and
are differential operators that act on spinors. Hence this chapter shall the
collect necessary facts on spinc structures and some of the analytic facts on
Dirac operators for use in Seiberg-Witten theory. Although when discussing
ordinary Seiberg-Witten theory one only needs to discuss spinc structures on
the tangent bundle, we shall discuss the theory for general vector bundles
since it allows an easy transportation of results to the families case. The re-
sults here are all standard and discussions relevant to Seiberg-Witten theory
can be found in texts such as [Nic00] and [Sal99]. A detailed account of the
closely related theory of spin structures can be found in [LM89].

3.1 Spinc Structures

3.1.1 Clifford Algebras and Spinc(n)

Closely related to the notion of a spinc structure are the groups Spinc(n).
Of particular application to 4-manifolds is Spinc(4), due to an exceptional
isomorphism this is simply

Spinc(4) ∼=
SU(2)× SU(2)× U(1)

Z2

37
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where the equivalence relation is given by (A,B,C) ∼ (−A,−B,−C) for
(A,B) ∈ SU(2) × SU(2), C ∈ U(1). However, in this section we shall take
the approach of defining Spinc(n) as a subgroup of the complexified Clifford
algebra, since the development of the machinery surrounding Clifford alge-
bras is required for the definition of a spinc structure and makes many of the
relevant properties to spinc structures apparent.

Definition 3.1.1. Let V be an n-dimensional real inner product space and
e1, ..., en an orthonormal basis for V , the Clifford algebra C(V) is the asso-
ciative algebra with unit 1 over R generated by e1, ..., en satisfying

vw + wv = −2 ⟨v, w⟩

for all v, w ∈ C(V ).

This can be viewed as a real 2n dimensional vector space, a basis is given
by elements of the form

e0 = 1, eI = ei1 ...eik

where I = {i1, . . . , ik} ⊂ {1, . . . , n} with i1 < · · · < ik is any multi-index,
viewing e0 as corresponding to I = ∅ we may then write x =

∑
I xIeI for any

x ∈ C(V ). The algebra structure is then obtained from the multiplication
rules

e2i = −1, eiej = −ejei
and C(V ) becomes a graded algebra with C0(V ) = R containing elements
x0 ∈ R, and Ck(V ) containing elements of the form xIeI with |I| = k,
producing a splitting of vector spaces into even and odd degree elements,
denoted by C(V ) = Cev(V )⊕ Codd(V ).

All of this machinery can be complexified, giving rise to the following.

Definition 3.1.2. Let V be an n-dimensional real inner product space, the
complexified Clifford algebra is simply the tensor product of algebras

Cc(V ) := C(V )⊗R C.

This has elements of the form x =
∑

I xIeI , xI ∈ C, an involution and
Hermitian inner product are defined by

x̃ =
∑
I

(−1)|I|(|I|+1)/2xIeI

and
⟨x, y⟩ =

∑
I

x̃IyI



3.1. Spinc Structures 39

respectively, both satisfying

x̃y = ỹx̃, ((x̃y)0 = ⟨x, y⟩ .

where (x̃y)0 denotes the degree 0 part of x̃y. There is also the following
universal property satisfied by the complexified Clifford algebra.

Proposition 3.1.3. Let V be an n-dimensional real inner product space
and A a finite dimensional associative C-algebra with unit 1 and involution
a 7→ a∗. If f : V −→ A is an R-linear map satisfying

f(v)∗ + f(v) = 0, f(v)∗f(v) = |v|21 (3.1)

then there is a unique C-algebra homomorphism f̃ : Cc(V ) −→ A extending
f as in the following commutative diagram

V A

Cc(V )

f

f̃

where Cc(V ) → V is the projection C(V ) → C1(V ) ∼= V .

We say such a map f as above satisfying 3.1 is a Clifford map and satisfies
the Clifford properties. Furthermore, it is important to note that if n is even,
the extension f̃ : C(V ) −→ A is injective.

3.1.2 Spinc Structures on Vector Spaces

The spinc structures we consider in the following section are simply vector
bundle generalisations of spinc structures on vector spaces. Therefore, it is
useful to collect some of the facts relevant to the simpler cases vector spaces
as done in this section.

Definition 3.1.4. Let V be a real inner product space of dimension 2n,
a (vector space) spinc structure consists of a pair (W,Γ) where W is a 2n-
dimensional complex Hermitian vector space and Γ : V −→ End(W ) is a
linear map satisfying the Clifford properties

Γ(v)∗ + Γ(v) = 0, Γ(v)∗Γ(v) = |v|21W (3.2)

We denote the space of spinc isomorphisms by Homspinc(W0,W1)
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The Clifford condition implies that Γ extends uniquely to an algebra
isomorphism Γ : Cc(V ) −→ End(W ) by Proposition 3.1.3 since V is even
dimensional.

Consequently, we can embed the space of 2-forms on V in End(W ) as
follows. There is an algebra isomorphism Λ2V ∗ → C2(V ), where if e1, . . . e2n
is an orthonormal basis of V , it is given by identifying basis elements e∗i ∧ e∗j
with eiej ∈ C2(V ), composing this with the extension of Γ to the Clifford
algebra gives the map ρ : Λ2V ∗ −→ End(W )

ρ

(∑
i<j

ηije
∗
i ∧ e∗j

)
:=
∑
i<j

ηijΓ(ei)Γ(ej) (3.3)

the map ρ is independent of the choice of orthonormal basis and extends to
complex valued 2-forms, giving a map ρ : Λ2V ∗ ⊗C −→ End(W ), it satisfies
the following universal property

Λ2(V ∗)⊗ C End(W )

C2(V
∗)⊗ C

Γ

ρ

where the leftmost map is the identification between the Clifford algebra and
the exterior algebra. The inverse of the map ρ is denoted σ : Λ2V ∗ ⊗ C →
End(W ) and satisfies

σ(T )(v, w) =
1

2n
trace(Γ(v)TΓ(w)). (3.4)

An orientation of V gives rise to splitting of W as follows.

Proposition 3.1.5. Let V be a real 2n-dimensional inner product space and
fix an orientation on V . Suppose (W,Γ) is a spinc structure on V , then W
splits as

W = W+ ⊕W−

where W± are 2n−1 dimensional complex vector spaces.

Proof. Choose a positively oriented orthonormal basis e1, . . . , e2n and define
ε := e2n . . . e1, given any other orthonormal basis e′1, . . . e

′
2n, the two bases

are related by ei =
∑

j Aije
′
j for some matrix Aij ∈ SO(2n). It is easy to see

that ε would change by a factor of det(Aij) which is 1 since Aij ∈ SO(2n),
hence ε is independent of choice of orthonormal basis. It follows from the
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multiplication rules for the Clifford algebra that ε2 = (−1)n, via the algebra
isomorphism Γ : Cc(V ) −→ End(W ) there is an endomorphism Γ(ε) : W −→
W with Γ(ε)2 = (−1)n. Consequently Γ(ε) has eigenvalues ±in and W splits
into eigenspaces W = W+ ⊕W− where

W± := {ψ ∈ W : Γ(ε)ψ = ±inψ}.

This splitting satisfies Γ(v)W± ⊂ W∓ for all v ∈ V and is in fact the
unique such splitting determined by this condition up to an interchange of
signs. Note that interchanging the orientations of V interchanges the spaces
W±.

For even dimensional V , the spaces W± are invariant under the action of
ρ(η) for all η ∈ Λ2V ∗, so define the restricted maps ρ± : Λ2V ∗ → End(W±)
by ρ±(η) = ρ(η)|W± .

Of particular interest is when dim(V) = 4, there is a Hodge star operator
⋆ : Λ2V ∗ → Λ2V ∗ with eigenvalues ±1 yielding a splitting of vector spaces
Λ2V ∗ = Λ2,+V ∗⊕Λ2,−V ∗ into the self-dual and anti self-dual spaces of 2-forms

Λ2,±V ∗ := {η ∈ Λ2 : ⋆η = ±η}.

Under the map ρ this map corresponds to the splitting Γ(Spin(V)) = SU(W+)×
SU(W−) and ρ gives an isomorphism ρ± : Λ2,± → su(W±) where su(W±)
consists of the traceless skew-hermitian endomorphisms of W±. Conse-
quently via the complexified map there are isomorphisms

ρ± : Λ2,±V ∗ ⊗ C −→ End0(W
±)

where End0(W
±) are the traceless endomorphisms of W± with inverses σ± :

End0(W
±) → Λ2,± ⊗ C satisfying the same property as in Equation (3.4).

For the Seiberg-Witten equations we are particularly interested in el-
ements of End0(W

+) of the form (ΦΦ∗)0 where Φ ∈ W+ and the action
on τ ∈ W+ by ΦΦ∗ is given by ΦΦ∗τ := ⟨Φ, τ⟩Φ and (ΦΦ∗)0 = ΦΦ∗ −
1
2
trace(ΦΦ∗)1 ∈ End0(W

+
can) denotes the traceless part. The following com-

putations involving the norms of ρ, σ and (ΦΦ∗)0 are useful in later analysing
the Seiberg-Witten equations

Lemma 3.1.6. Let Γ : V −→ End(W ) be a spinc structure on a 4-dimensional
oriented real inner product space. Then if η ∈ Λ2,+V , T ∈ End0(W

+) and
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Φ ∈ W+, then the following identities hold.

|ρ+(η)|2 = 2|η+|2 (3.5)

|σ+(T )|2 = 1

2
|T |2 (3.6)

|(ΦΦ∗)0|2 =
1

4
|Φ|4 (3.7)

⟨T, (ΦΦ∗)0⟩ =
1

2
⟨TΦ,Φ⟩ (3.8)

3.1.3 Spinc Structures on Vector Bundles

Let X be a smooth manifold and V −→ X a real oriented Riemannian vector
bundle of dimension 2n, a spinc structure s consists of a pair (W,Γ), where
W −→ X is a complex Hermitian vector bundle of rank 2n and Γ : V −→
End(W ) is a vector bundle homomorphism satisfying the Clifford properties

Γ(v)∗ + Γ(v) = 0 (3.9)

Γ(v)∗Γ(v) = |v|21End(W ) (3.10)

for all v ∈ V .

We shall say that two spinc structures si = (Wi,Γi), i = 1, 2 are iso-
morphic if there is some unitary vector bundle isomorphism Φ : W1 −→ W2

satisfying ΦΓ1 = Γ2Φ, that is the following diagram commutes for all v ∈ V .

W1 W2

W1 W2

Φ

Γ1(v) Γ2(v)

Φ

The set of all isomorphism classes of spinc structures on V is denoted Sc(V ).

Remark 3.1.7. Spinc structures can also be defined through the formalism
of principal bundles, which is used widely throughout the literature. Given an
oriented Riemannian vector bundle of rank k, a spinc structure is a principal
bundle P −→ X with structure group G = Spinc(k) such that there is an
isomorphism of oriented Riemannian vector bundles P ×ad Rm ∼= V . The
second statement is equivalent to P being a lift of the SO(k) frame bundle
of V .

Given a spinc structure (W,Γ), the fibrewise splitting of W as in Propo-
sition 3.1.5 implies that the W splits into two vector bundles of rank 2n−1.
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We shall call sections of W spinors or spinor fields, if it takes values entirely
in W+ or W− then the spinor is said to have positive or negative chirality
respectively.

It is natural to ask about the existence and uniqueness of spinc structures,
an answer to this is given in the following theorem. Generally, given an
oriented Riemannian vector bundle V −→ X of rank 2n, a spinc structure
exists if and only if the second Steifel-Whitney class w2(V ) ∈ H2(X;Z2) has
an integral lift c ∈ H2(X;Z) and isomorphism classes of spinc structures are
related via tensoring W by line bundle.

Theorem 3.1.8. Let V → X be an oriented Riemannian vector bundle of
rank 2n.

i. If Γ : V → End(W ) is a spinc structure on V , then the first Chern class
of the associated line bundle c1(LΓ) ∈ H2(X;Z) is an integral lift of the
second Steifel-Whitney class w2(V ) ∈ H2(X;Z2).

ii. For every integral lift c ∈ H2(X;Z) of w2(V ) ∈ H2(X;Z2) there exists a
spinc structure with c1(LΓ) = c.

iii. If Γ : V → End(W ) is a spinc structure on V and E → X is a Hermitian
line bundle, then the line bundle of the twisted spinc structure Γ : V →
End(W ⊗ E) given by Γ = Γ⊗ 1 has associated line bundle

LΓ = LΓ ⊗ E⊗2.

iv. Suppose that Γi : V → End(Wi), i = 1, 2 are two spinc structures on
V , then there exists a Hermitian line bundle such that W2

∼= W1 ⊗ E
and Γ2

∼= Γ1 ⊗ 1, and the spinc structures are isomorphic if and only if
c1(E) = 0.

Consequently we see that a Riemannian vector bundle V admits a spinc

structure if and only if the second Stiefel-Whitney class w2(V ) has an integral
lift. Of particular interest is when V is the tangent bundle of a manifold X,
in which case we simply say that the smooth manifold X admits a spinc

structure. The vanishing of w2(V ) is of particular interest and corresponds
to the existence of a spin structure, any spinc structure is locally determined
by a spin structure.
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There are a variety of conditions under which a spinc structure can exist.
If X admits a spin structure, then via the inclusion Spin(n) ↪→ Spinc(n) there
is a canonical spinc structure and its associated line bundle LΓ is simply the
trivial line bundle. In such a case there is a canonical origin and we may
identify as groups Sc(X) ∼= H2(X;Z), it is also precisely in this case, when
X admits a spin structure, that the associated line bundle admits a square
root.

Since the second Stiefel-Whitney class w2(TX) of an oriented smooth
manifold with dimension n ≤ 3 vanishes, all such manifolds admit spin
structures, hence spinc structures as well. Orientable 4-manifolds provide
the first examples of smooth manifolds which admit spinc structures, yet not
necessarily spin structures, one being the Enriques surface X4/Z2 where X4

is the vanishing set of the homogeneous polynomial z40 + z41 + z42 + z43 in CP3

and the group action is induced by complex conjugation. This has signature
σ = −8, but by Rohlin’s theorem [Roh52], every smooth compact manifold
that admits a spin structure must have signature divisible by 16. However,
all orientable 4-manifolds admit a spinc structure. This was first proved by
Hirzebruch and Hopf for compact oriented 4-manifolds in [HH58]

3.2 Dirac Operators and Connections

Since we have defined spinors, it is natural to ask how we may differentiate
them in a way which is compatible with the spinc structure. This leads us to
the notion of spinc connections and the Dirac operator.

3.2.1 Spinc Connections

Definition 3.2.1. Let X be a Riemannian manifold, Γ : TX −→ End(W )
be a spinc structure and ∇ a Hermitian connection on W. We say that ∇ is
a spinc connection if there exists a connection on TX (also denoted by ∇)
such that

∇v(Γ(w)Φ) = Γ(w)∇vΦ + Γ(∇vw)Φ (3.11)

for all Φ ∈ C∞(X,W ) and v, w ∈ C∞(X,TX).

Proposition 3.2.2. Let X be a Riemannian manifold, Γ : TX −→ End(W )
a spinc structure and ∇ a spinc connection onW , then the induced connection
on TX is unique and Riemannian.

Proof. Suppose ∇′,∇′′ are the induced connections on TX, then it follows
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that for all v, w ∈ C∞(X,TX) and Φ ∈ C∞(X,W )

Γ(∇′
vw −∇′′

vw)Φ = 0

and thus ∇′
vw = ∇′′

vw, so ∇′ = ∇′′ and the connection is unique.

From the Clifford properties and the polarisation identity, it follows that

Γ(u)Γ(v) + Γ(v)Γ(u) = −2g(u, v)1

by using this to act on an arbitrary spinor Φ ∈ C∞(X,W ), differentiating
with the spinc connection ∇ and applying 3.11 it follows that

−2dg(u, v)Φ = (Γ(∇u)Γ(v) + Γ(v)Γ(∇u)) Φ
+ (Γ(u)Γ(∇v) + Γ(∇v)Γ(u)) Φ

or equivalently
dg(u, v) = g(∇u, v) + g(u,∇v)

which is precisely the Riemannian condition.

Although a spinc connection induces a unique Riemannian connection on
TX, the converse does not hold, given a Riemannian connection on TX,
there are many possible spinc connections on W . Given a spinc connection
the induced connection on TX is not necessarily torsion-free. However, when
it is, it must be the Levi-Civita connection, it is also precisely the case of
interest for the Seiberg-Witten equations.

Definition 3.2.3. Let ∇ be a spinc connection on W . We say that ∇ is
compatible with the Levi-Civita connection if the induced connection on TX
is the Levi-Civita connection.

Given a spinc connection ∇ that is compatible with the Levi-Civita con-
nection, it induces a virtual connection on the virtual line bundle L

1/2
Γ which

does in fact uniquely determine ∇, we write the space of all such connections
as A(Γ). Hence we denote ∇A to refer to the spinc connection on W which
is compatible with the Levi-Civita connection and induces A. Note that the
virtual connection A induces a genuine connection 2A on the characteristic
line bundle LΓ and many authors refer to a choice of this connection as op-
posed to our virtual one, at the cost of some factors of 2 in formulae involving
the Seiberg-Witten equations.

Lemma 3.2.4. Let ∇1,∇2 be two spinc connections on W . Then there exists
a 1-form α ∈ Ω1(X,C2(TX)⊕ iR) such that

∇1
vΦ−∇2

vΦ = Γ((α)(v))Φ
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for all Φ ∈ Γ(X,W ) and v ∈ Γ(X,TX).

Conversely, if ∇ is a spinc connection on W and α ∈ Ω(X,C2(TX)⊕iR),
then ∇+ Γ(α) is also a spinc connection.

Naturally a spinc connection has an endomorphism valued 2-form, F∇ ∈
Ω2(X,End(W )) which is the curvature, computed by by

F∇(v, w)Φ = ∇v∇wΦ−∇w∇vΦ +∇[v,w]Φ

where v, w ∈ C∞(X,TX) and Φ ∈ C∞(X,W ).

If ∇ is a spinc connection which is compatible with the Levi-Civita con-
nection, then it follows that the traceless part of F∇ is given by the Riemann
curvature tensor. Hence

F∇(v, w)− 1

2n
trace(F∇(v, w)) = ρ(R(v, w))

where ρ is the homomorphism ρ : so(TX) −→ End(W ) is defined by ρ◦Ad =
Γ : C2(TX) −→ End(W ) where Ad(ζ) ∈ so(TX) is defined by Ad(ζ)v =
[ζ, v] = ζv − vζ. Moreover the induced curvature on the line bundle LΓ is
1/2n−1trace(F∇(v, w))

3.2.2 Dirac Operators

Definition 3.2.5. Let A ∈ A(Γ) with corresponding spinc connection com-
patible with the Levi-Civita connection ∇A, define the corresponding Dirac
operator

DA : C∞(X,W ) −→ C∞(X,W )

by
D = Γ ◦ ∇A

where ∇A : C∞(X,W ) → C∞(X,T ∗X ⊗W ) is the spinc connection induced
by A compatible with the Levi-Civita connection and Γ : C∞(X,T ∗X ⊗
W ) → C∞(X,W ) is the Clifford multiplication map given by v∗⊗Φ 7→ Γ(v)Φ
where we identify v and v∗ via the metric.

Given an orthonormal basis eν , ν ∈ {1, ..., 2n} of TX the Dirac operator
can be written as

DAΦ =
∑
ν

Γ(eν)∇eνΦ

If X is even dimensional, then D restricts to maps D±
A : C∞(X,W±) −→

C∞(X,W∓) these two maps can be viewed as the adjoints of each other with
respect to the L2 inner product and we often write DA := D+

A .
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The Dirac operator satisfies a unique continuation theorem

Theorem 3.2.6. Let X be a connected Riemannian manifold of real dimen-
sion m equipped with a spinc structure Γ : TX → End(W ) and assume that
the metric and spinc structure are C3. Suppose that A ∈ A1,p(X) with p > m
and Φ ∈ Lp2(X,W ) satisfies

DAΦ = 0.

If Φ vanishes on some open set of X then Φ ≡ 0 is zero everywhere.

For a proof, see [Sal99][Appendix E]. This ultimately follows from a result
of [AN67] and the same techniques were used to prove a unique continuation
theorem for anti self-dual instantons (see [DK07]).

The initial motivation for Dirac to define the Dirac operator was to find a
’square-root’ for the Laplacian on flat Minkowski space. The Dirac operator
as defined in Definition 3.2.5 is simply a generalisation to curved manifolds
with a Riemannian metric instead, and satisfies an analogous property with
the presence of additional curvature terms. On flat Euclidean space, these
curvature terms become zero and the initial property desired by Dirac is
satisfied. This property is known as the Weitzenböck formula and is as
follows

Theorem 3.2.7. Let X be an oriented Riemannian manifold equipped with
a spinc structure Γ. Let A ∈ A(Γ), Φ ∈ C∞(X,W ), then

DADAΦ = ∇∗
A∇AΦ +

1

4
sΦ + ρ(FA)Φ

where ∇∗
A is the L2 adjoint of ∇A and s : X → R is the scalar curvature of

X.

Since the calculation of the Weitzenböck formula for spinc structures is
local, it can be proved using the corresponding formula for Dirac operators
on spin structures. This is done by using the fact that locally, the complex
spinor bundle W for a spinc structure can be written as W = S ⊗ L

1/2
Γ for

some local spin structure with spinor bundle S. This is the approach taken
to prove the Weitzenböck formula in [LM89], although the formula can be
proven via explicit calculation as in [Sal99][p.205].

The Weitzenböck formula immediately implies the following formula for
DA, the Dirac operator restricted to spinors of positive chirality.

Corollary 3.2.8. Let X be an oriented Riemannian manifold equipped with
a spinc structure Γ, then the following formula holds

D∗
ADAΦ = ∇∗

A∇AΦ +
1

4
sΦ + ρ+(FA)Φ
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for A ∈ A(Γ) and Φ ∈ C∞(X,W+).

3.3 The Canonical Spinc Structure on Sym-

plectic and Kähler Manifolds

Let (X,ω) be a symplectic manifold with compatible almost complex struc-
ture J . Note that J is not necessarily integrable, and hence does not inher-
ently determine a complex structure and thus X is not assumed to be Kähler.
Of course, all of the following will apply in the Kähler case. In such a case,
there is a canonical spinc structure and Dirac operator.

Definition 3.3.1. Let (X,ω) be a symplectic manifold with compatible al-
most complex structure J , then there is a canonical spinc structure on X.
The spinor bundle is given by

Wcan = Λ0,∗T ∗X

and has a Hermitian structure induced by ⟨v, w⟩ = g(v, w) + iω(v, w) where
g(v, w) = ω(v, Jw) and the spinc representation is given by

Γcanv =
1√
2
v′′ ∧ τ −

√
2ι(v)τ

there is a splitting of Wcan into the (0, p)-forms where p is of even and odd
degree as follows

W+
can = Λ0,evT ∗X, W−

can = Λ0,oddT ∗X.

and the characteristic line bundle is the anticanonical bundle

LΓcan = K∗ = Λ0,nT ∗X

Proposition 3.3.2. Let (X,ω) be a symplectic manifold with compatible
almost complex structure J , let g be the metric given by g(v, w) = ω(v, Jw)
then there is a Hermitian connection called the Chern connection on TX
which preserves the spaces Ωp,q(X) given by

∇̃vw = ∇vw − 1

2
J(∇vJ)w

which extends to ΛTX∗ ⊗ C by

∇̃vτ = ∇vτ +
1

2
ι(J∇vJ)τ

where ∇ is the Levi-Civita connection.
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Lemma 3.3.3. The connection ∇̃ is a Hermitian connection on Wcan, more-
over it is a spinc connection which is compatible with the Hermitian connec-
tion ∇̃ on TX.

Proof. [Sal99][p. 199]

Given a Hermitian line bundle L → X and a connection B on L, there
is a natural analogue of the Chern connection ∇̃B on TX ⊗ L defined by
∇̃B(τ ⊗ s) = ∇̃τ ⊗ s + τ ⊗ ∇Bs. This extends to ΛT ∗X ⊗ L and is a
connection preserving Ωp,q(X,L), the space of (p, q) forms valued in L. The
connection restricts to on Wcan⊗L which is is a spinc connection compatible
with ∇̃ on TX for the spinc structure given by Γ = Γ⊗ 1.

Definition 3.3.4. We define the map µ : so(TX) −→ End(Wcan) to be the
unique homomorphism such that the following diagram commutes

so(TX) End(Wcan)

C2(TX)

Γ

µ

ad

That is, the homomorphism is characterised by the identity

[µ(A),Γ(v)] = Γ(Av)

for all A ∈ so(TxX) and v ∈ TxX.

Proposition 3.3.5. There is a Hermitian connection ∇can defined by

∇can,vτ = ∇̃vτ +
1

2
µ(J(∇vJ))τ

which is a Hermitian connection on Wcan, moreover it is a spinc connection
which is compatible with the Levi-Civita connection on TX.

Just as the Chern connection before, given a Hermitian line bundle L
over X and Hermitian connection B on L, this extends to a connection on L-
valued (p, q) forms and is a spinc connection compatible with the Levi-Civita
connection for the spinc obtained by twisting the canonical spinc structure
by L.

Proposition 3.3.6. If X is Kähler, then ∇can = ∇̃ = ∇ is simply the stan-
dard Levi-Civita connection on forms. Moreover, the induced connection on
the characteristic line bundle LΓcan is the Levi-Civita connection on Λ0,nT ∗X
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Proof. Since X is Kähler, ∇J = 0 and so all the extra terms are zero in the
above definitions. Consequently the Chern connection and the connection in
coincide with the Levi-Civita Connection

Recall that all other spinc structures on X are obtained by tensoring
with a Hermitian line bundle. Consequently, given a Hermitian line bundle
E −→ X, we denote the twisted spinc structure by

WE := Λ0,∗T ∗X ⊗ E

this has a natural splitting

W±
E = W±

can ⊗ E

to determine a spinc connection on WE one requires a Hermitian connection
on E. We denote this by B and its associated covariant derivative operator
by dB, and the resulting spinc connection on WE by ∇A = ∇Acan+B, this
connection is defined by

∇A(τ ⊗ s) := (∇canτ)⊗ s+ τ ⊗ dBs

where τ ∈ Wcan and s ∈ C∞(X,E).

Now we turn to the Dirac operator, note that because of the canonical
spinc structure, sections of C∞(X,W±

E ) are identified with Ω0,ev(X,E) and
Ω0,odd(X,E) respectively. The Dirac operator corresponding to Acan + B is
then written as follows

Theorem 3.3.7. Let (X,ω) be a symplectic manifold with compatible almost
complex structure J and E −→ X a Hermitian line bundle and B a Hermi-
tian connection on E so that ∇A := ∇Acan+B determines a spinc connection
on WE, then the (positive chirality part) of the Dirac operator is given by the
following formula

1√
2
DAcan+B = ∂B + ∂

∗
B

It is also useful to examine the representation maps ρ±can : Λ2,±T ∗X →
End0(W

±) and their inverses for the canonical spinc structure. In particular
we look at the case of 4-dimensional manifolds where the following lemma
will inevitably lead to a simplification of the Seiberg-Witten equations in
Chapter 5. The symplectic form ω gives rise to a natural isomorphism
Λ2,+T ∗X ∼= Rω ⊕ Λ0,2T ∗X given by η 7→ (η1,1, η0,2). One can then use
this and some algebra to prove the following lemma.
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Lemma 3.3.8. Let X be a symplectic manifold with compatible almost com-
plex structure J , η ∈ Λ2,+T ∗X ⊗ iR and τ = (τ0, τ2) ∈ Wcan = C⊕Λ0,2T ∗X,
then

ρ+can(η) :

(
τ0
τ2

)
7→ 2

(
η0τ0 + ⟨η2, τ2⟩
τ0η2 − η0τ2

)
where η1,1 = iη0ω and η0,2 = η2.

For the Seiberg-Witten equations, we are particularly interested in the
case when ρ+(η) is (ΦΦ∗)0 for some positive spinor Φ. The above lemma
then gives rise to the following.

Lemma 3.3.9. Let X be a symplectic manifold with compatible almost com-
plex structure J , η ∈ iΩ2,+(X) and Φ ∈ C∞(X,W+

can), then

ρ+can(η) = (ΦΦ∗)0

if and only if

2η0,2 = φ0φ2, 2iη ∧ ω =
|φ0|2 − |φ2|2

2
ω ∧ ω.

Proof. The natural isomorphism Ω2,+(X) = Rω ⊕ Ω0,2(X) implies that η =
σ+
can((ΦΦ

∗)0) decomposes as η = η2 + iη0ω − η2 where η0 ∈ R, η0,2 = η and
η2,0 = −η2. Given τ = (τ0, τ2) ∈ W+

can and writing Φ = (φ0, φ2), we have
that

ΦΦ∗τ = (φ0τ0 + ⟨φ2, τ2⟩)φ
and

trace(ΦΦ∗) = |φ0|2 + |φ2|2.
Comparing the definition of (ΦΦ∗)0 and the expression for ρ+can(η) in Lemma 3.3.8
and the identity ⟨φ2, τ2⟩φ2 = |φ2|2τ2 gives the following two equations

2η0 + τ0 + 2 ⟨η2, τ2⟩ =
|φ0|2 − |φ2|2

2
τ0 + ⟨φ0φ2, τ2⟩

2τ0η2 − 2η0τ2 =
|φ0|2 − |φ2|2

2
τ2 + τ0φ0φ2.

which holds for all τ if and only if

2η2 = φ0φ2, 2η0 =
|φ0|2 − |φ2|2

2
.

Since ω is a (1, 1) form, η0,2 ∧ω = 0 and so combining iη ∧ω = iη0ω ∧ω and
the second equation above shows that it is equivalent to

2iη ∧ ω =
|φ0|2 − |φ2|2

2
ω ∧ ω.
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Remark 3.3.10. If L → X is a Hermitian line bundle, then Lemma 3.3.9
extends to the spinc structure given by tensoring by L.

3.4 The Index of the Dirac Operator

The Dirac operator can be naturally extended to appropriate Sobolev com-
pletions of the space of smooth sections, in particular, by viewing it as a map
of Hilbert spaces DA : W 1,p(X,W ) −→ Lp(X,W ) one can see that it is a
Fredholm operator. Its index is a topological invariant of X and such is the
content of the famed Atiyah-Singer index theorem. Although the original
result was in the context of spin structures, a corresponding result exists
for spinc Dirac operators. We state the index DA in the case when X is a
compact 4-manifold.

Theorem 3.4.1 (Atiyah-Singer). Let X be a compact smooth 4-manifold
and Γ : TX −→ End(W ) a spinc structure with associated line bundle LΓ.
The real Fredholm index of DA is given by

ind(DA) =
⟨c1(LΓ)

2, [X]⟩ − σ(X)

4

where σ(X) = b+ − b− is the signature of X.

3.5 Technical Properties of the Dirac Opera-

tor

In order to rigorously justify many results on the Seiberg-Witten equations
and the moduli space, we require the following technical results on the Dirac
operator and its extension to suitable Sobolev completions. Proofs of these
facts can be found in [Sal99].

Lemma 3.5.1. Fix integers j, k and p, q ∈ R with p, q ≥ 1 such that

0 ≤ j ≤ k, j − 4

p
≤ k − 4

q
, (k + 1)q > 4

then for any two connections A0, A1 ∈ Ak,q(Γ), the linear operator

DA1 −DA0 : W
j+1,p(X,W+) −→ W j,p(X,W−)

is a compact operator.
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Lemma 3.5.2. Let A ∈ Aj,p and Ψ ∈ W j,p(X,W−) for some constant p ≥ 1
and integer j ≥ 1 with (j + 1)p > 4. Suppose that Φ ∈ Lq(X,W+) with
1
p
+ 1

q
= 1 satisfies ∫

X

⟨D∗
Aψ,Φ⟩ vol =

∫
X

⟨ψ,Ψ⟩ vol

for all ψ ∈ C∞(X,W−). Then Φ ∈ W j+1,p(X,W+) and DAΦ = Ψ.

Lemma 3.5.3. If kq > 4, for every smooth reference connection A0 ∈ A(Γ),
there exists a constant c = c(A0, j, k, p, q) > 0 such that

∥Φ∥W j+p,1 ≤ c
(
∥DAΦ∥j,p + (1 + ∥A− A0∥k,q) ∥Φ∥j,p

)
for every A ∈ Ak,q(Γ) and every ΦW j+1,p(X,W+)

These two results alongside Theorem 3.4.1 then imply that the Dirac
operator is Fredholm with the usual index from the Atiyah-Singer index
theorem, provided we have sufficient regularity assumptions on the spaces.

Proposition 3.5.4. Let A ∈ Ak,q(Γ) for some constant q > 1 and some
integer k ≥ 0. Let j ∈ Z and p > 1 such that

0 ≤ j ≤ k, j − 4

p
≤ k − 4

q
, (k + 1)q > 4.

Then the Dirac operator DA : W j+1,p(X,W+) −→ W j,p(X,W−) is Fredholm
with index

ind(DA) =
c1(LΓ) · c1(LΓ)− σ(X)

4

3.6 The Gauge Group

As is a general theme in gauge theory, one often studies equations on principal
bundles or their associated bundles and their behaviour under certain auto-
morphism groups of said bundles. In studying the Seiberg-Witten equations
on a 4-manifold with spinc structure, automorphisms of the spinc structure
are essentially determined by automorphisms of the line bundle LΓ, hence
we shall consider the following group.

Definition 3.6.1. Let

G := Maps(X,S1) = {u : X → S1 : u is smooth}.

This shall often be referred to as the gauge group or the gauge group of
the Seiberg-Witten equations.
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Definition 3.6.2. Let u ∈ G, we say that u is harmonic if

d∗(u−1du) = 0.

Since d(u−1du) = 0, u is harmonic if and only if the 1-form u−1du ∈ Ω1(X, iR)
is harmonic in the usual sense.

The space of harmonic maps into the circle are denoted GH and forms a
subgroup of G.

We have the following short exact sequence

0 → S1 → GH → H1(X;Z) → 0

and the following theorem.

Theorem 3.6.3. Let X be a compact connected manifold

(i.) Every component of G = Map(X,S1) contains a harmonic representa-
tive which is unique up to multiplication by a constant.

(ii.) The map Map(X,S1) −→ Hom(π1(X),Z) denoted u 7→ ρu which is
given by its action on a homotopy class of loops (with representative)
γ

ρu(γ) := deg(u ◦ γ) = 1

2πi

∫
γ

u−1du

induces an isomorphism π0(Map(X,S1)) −→ Hom(π1(X),Z)

(iii.) A map u : X −→ S1 is even if and only if ρu ∈ Hom(π1(X), 2Z)
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Chapter 4

Standard Seiberg-Witten
Theory

In this chapter we shall give an overview of ordinary Seiberg-Witten theory
on 4-manifolds. This will be instructive since much of Seiberg-Witten theory
in the families setting proceeds using the same or similar techniques. First we
shall introduce the Seiberg-Witten equations and outline the construction of
the Seiberg-Witten moduli space. This moduli space depends on a choice of
perturation of the Seiberg-Witten equations, Riemannian metric and spinc

structure. We shall argue for a generic choice of perturbation and metric
the moduli space is a smooth compact oriented manifold. In the case when
the manifold has b+ > 1, given a generic choice of metric and perturbation
these moduli spaces can be joined by a smooth cobordism, while for b+ = 1
a cobordism can be obtained between two choices of generic metrics and
perturbations, provided they are both in one of two connected components
of the total parameter space called a chamber. Because of this cobordism, the
Seiberg-Witten invariant can be defined, being the integral over the moduli
space of a particular cohomology class. For a more detailed exposition, we
refer to [Nic00] and [Sal99].

4.1 The Seiberg-Witten Equations

Throughout, let X be a compact, connected, oriented, smooth 4-manifold.
Fix a metric g and spinc structure Γ : TX −→ End(W ), this gives a natural
splitting of the spinor bundle W into positive and negative chirality spinors

W ≃ W+ ⊕W−

57
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and since the manifold is 4-dimensional, the characteristic line bundle of the
spinc structure is given by

LΓ ≃ det(W+) ≃ det(W−).

Let A(Γ) be the space of virtual connections on the virtual line bundle

L
1/2
Γ , this space is in correspondence with spinc connections on W compat-

ible with the Levi-Civita connection. Given A ∈ A(Γ), denote the cor-
responding spinc connection by ∇A : C∞(X,W ) −→ Ω1(X,W ) and the
corresponding Dirac operator acting on the positive chirality spinors by
DA : C∞(X,W+) −→ C∞(X,W−). Given these choices, the Seiberg-Witten
equations are defined as follows.

Definition 4.1.1. Let X be a compact, connected and oriented smooth
Riemannian manifold of real dimension 4 and Γ : TX −→ End(W ) a spinc

structure on X, the Seiberg-Witten equations for (X,Γ, g) are the following

DAΦ = 0 (4.1)

ρ+(FA) = (ΦΦ∗)0 (4.2)

where Φ ∈ C∞(X,W ) is a smooth section of the spinor bundle, A ∈ A(Γ),
FA = 1

4
tracec(F

∇A) ∈ Ω2(X, iR) is the curvature of A and F∇A is the cur-
vature of the corresponding spinc connection and ΦΦ∗ ∈ C∞(X,End(W )) is
defined by

ΦΦ∗τ = Φ ⟨Φ, τ⟩
for τ ∈ C∞(X,W+) and (ΦΦ∗)0 is its traceless part given by

(ΦΦ∗)0τ = Φ ⟨Φ, τ⟩ − 1

2
|Φ|2τ.

Remark 4.1.2. Note that the map ρ+ can be inverted so that eq. (4.2) of
Seiberg-Witten equations is also written in the following form on a 4-manifold

F+
A = σ+((ΦΦ∗)0) (4.3)

Note that this necessitates that X is a 4-manifold, since the Hodge star
operator does not map 2-forms to 2-forms in dimensions other than four,
there is not an obvious notion of self-duality for 2-forms on such manifolds
and (4.3) would not make any sense.

These equations are the minimum of the following action

S(A,Φ) = E(A,Φ) :=

∫
X

(
|∇AΦ|2 +

s

2
|Φ|2 + 1

4
|Φ|4 + |FA|2

)
vol

which is easily seen from the Weitzenböck formula.
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Remark 4.1.3. These equations are generally definable on any even dimen-
sional manifold with the above assumptions. However, interesting conse-
quences only arise in d = 4. If n = 2k > 4 then the equations as in (4.1) and
(4.2) are overdetermined. Moreover, the notion of a spinc structure requires
dim(TX) ≥ 3, consequently the Seiberg-Witten equations as is, cannot be
defined on surfaces.

4.2 Construction of the Moduli Space

We shall now outline the construction of the moduli space and argue that
it is a smooth, compact, oriented manifold (up to a generic choice of metric
and perturbation for the Seiberg-Witten equations). The general theme is as
follows, we consider the space of solutions to the Seiberg-Witten equations
with an equivalence relation induced by the gauge group of smooth maps
into the circle G = Maps(X,S1).

The gauge group acts on pairs of solutions (A,Φ) by

u • (A,Φ) = (u∗A, u−1Φ) := (u−1du+ A, u−1Φ).

Let C(Γ) := A(Γ) × C∞(X,W+) be the configuration space of the Seiberg-
Witten equations amd Z(Γ) ⊂ C(Γ) be the solution set to the Seiberg-
Witten equations. The Seiberg-Witten moduli space is then the space M =
M(g,Γ) = Z(Γ)/G.

The stabiliser of the group action is trivial unless Φ = 0, in which case
it is the constant maps of the circle. Because of this it is convenient to say
that a pair of solutions to the Seiberg-Witten equations is reducible if Φ = 0,
otherwise it is irreducible.

Consequently the gauge group acts freely on the space C∗(Γ) := A(Γ) ×
C∞(X,W+)∗, but not on the reducible solutions. This leads us to define
the irreducible moduli space M∗ := Z∗/G where Z is the set of irreducible
solutions to the Seiberg-Witten equations, one can shown that for a generic
choice of metric g, this is a smooth manifold (see [Fri00][Appendix A]). How-
ever, it is more convenient to introduce a perturbation to the Seiberg-Witten
equations and study the resulting moduli space, this lends itself to simpler
proofs of the transversality of the moduli space, moreover the notion of a
perturbation will be crucial for studying the moduli space on Kähler surfaces
in Chapter 5. Given any imaginary-valued self-dual 2-form η ∈ Ω2,+(X, iR),
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the perturbed Seiberg-Witten equations are the following

DAΦ = 0 (4.4)

F+
A + η = σ+((ΦΦ∗)0) (4.5)

Note that when (A,Φ) is reducible, the Seiberg-Witten equations become

Φ = 0 (4.6)

F+
A + η = 0 (4.7)

for generic η there are no solutions to this equation, in such a case we have
M = M∗ and it can be shown that the moduli space of solutions to the per-
turbed Seiberg-Witten equations is a smooth oriented manifold, allowing us
to define the Seiberg-Witten invariant. Moreover, the invariant is indepen-
dent of a choice of metric and perturbation when b+(X) > 1, for b+(X) = 1
this is almost the case, with the space of suitable metrics and perturbations
split into two connected components and the invariant dependent on a choice
of such a component, these components are called chambers.

The following sections shall briefly outline arguments for the transversal-
ity, compactness and orientability of the moduli space. It is of note that the
arguments for the same properties in Chapter 6 when discussing the moduli
space for the families Seiberg-Witten equations are almost identical and spe-
cialise to the unparametrised case when the parameter space for the family
is a point.

The following theorem of Uhlenbeck is quite integral to formally proving
the compactness of the Seiberg-Witten moduli space and also ensures when
desired we can make a smart choice of gauge. This will allow us to eliminate
all but an S1 component of the gauge group action when studying the moduli
space. A more general version of the theorem exists for any principal G
bundle over a compact manifold [Uhl82] and involves difficult analysis in its
proof, although when specialising the case of G = S1 for the sake of Seiberg-
Witten theory it becomes a simple consequence of Hodge theory.

Fix some smooth reference connection A0 and p > 2, define the Lp1 space
of connections

A1,p(Γ) := {A0 + α : α ∈ Lp1(X,T
∗X ⊗ iR)}

and the gauge group

G2,p = Lp2(X,S
1) = {u : X → S1 : u−1du ∈ Lp1}



4.2. Construction of the Moduli Space 61

Theorem 4.2.1. Fix a connection A0 ∈ A(Γ) and a constant p > 1
2
dimX.

Then there is some constant c > 0 such that for every A ∈ A1,p(Γ), there
exists u ∈ Lp2(X,S

1) such that

d∗(u∗A− A0)

and
∥u∗A− A0∥Lp

2
≤ c(1 + ∥FA∥Lp)

Proof. Let H1(X, iR) be the space of imaginary valued harmonic 1-forms
and Λ = H1(X, 2πiZ) be the lattice of harmonic 1-forms α ∈ H1(X, iR)
whose integral over every loop is 2πi. Recall that by Theorem 3.6.3, that Λ
is equivalently the space of α = u−1du where u : X −→ S1 is smooth and
d∗(u−1du) = 0. Choose a bounded fundamental domain in H1(X, iR) with
respect to the lattice Γ

We may write A = A0 + α for some α ∈ Lp1(X,T
∗X ⊗ iR) and by Hodge

theory this decomposes as

α = α0 + dζ + ⋆dη

Where α has harmonic part α0.

Since Γ is a lattice, there exists some function u0 : X −→ S1 such that
u−1
0 du0 ∈ Γ is harmonic and α0 + u−1

0 du0 lies in the fundamental domain.
Boundedness of the domain implies that there is some constant c0 > 0 such
that ∥∥α0 + u−1

0 du0
∥∥
Lp ≤ c0.

Define
u(x) := e−ζ(x)u0(x)

then u ∈ Lp2(X,S
1) and satisfies

α + u−1du = α0 + u−1
0 du0 + ⋆dη.

Since α0 and u0 are harmonic and ⋆dη is in the image of d∗ for some 3-form
that

d∗(α + u−1du) = 0.

This proves the first part of the theorem since u∗A = A0 + α + u−1du.

Consider the operator L : α 7→ (α0, dα, d
∗α) from Lp1(X,T

∗X ⊗ iR) to
Lp(X,T ∗X ⊗ iR)⊕Lp(X,Λ2T ∗X ⊗ iR)⊕Lp(X,Λ2T ∗X ⊗ iR). This is easily
verified to be an injective linear map and satisfies the following inequality

∥α∥Lp
1
≤ c(∥Lα∥Lp + ∥α∥Lp).
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By Rellich’s theorem, the inclusion of α into Lp space is compact so by
Lemma 1.1.2 the map L has closed range.

Consequently, the image of L is a Banach space, by injectivity there is
an inverse from im(L) −→ Lp1(X,T

∗X ⊗ iR), since this is surjective, the
open mapping theorem implies that the inverse is bounded, hence there is a
constant c independent of α such that

∥α∥Lp
1
≤ c(∥α0∥Lp + ∥dα∥Lp + ∥d∗α∥Lp).

Since u−1du is closed d(α + u−1du) = dα so the above inequality implies∥∥α + u−1du
∥∥
Lp
1
≤ c(c0 + ∥dα∥Lp)

which is the desired inequality.

With Theorem 4.2.1, one can then show the following theorem that en-
sures any solution to the Seiberg-Witten equations on appropriate Sobolev
completions, is gauge equivalent to a smooth solution.

Theorem 4.2.2. Let A ∈ A1,p and Φ ∈ Lp1(X,W
+) with p > 2 and suppose

(A,Φ) is a solution to the Seiberg-Witten equations. Then there exists a
gauge transformation g ∈ G2,p such that the pair (u∗A, u−1Φ) is smooth.

Proof. Choose a smooth reference connection A0, without loss of generality
we may further assume it is Yang-Mills, i.e. it satisfies d∗FA0 = 0. By
Theorem 4.2.1 we may choose gauge transformation u ∈ G2,p such that
d∗(u∗A − A0) = 0, we wish to show that the pair (A,Φ) is smooth, and
will do so by showing α = A− A0 and Φ are smooth.

It is simple to show that for every β ∈ Ω1(X, iR), the above conditions
imply the following

⟨β, d∗dα + dd∗α⟩L2 = ⟨β, 2d∗F+
A ⟩L2 (4.8)

and since (A,Φ) satisfies the Seiberg-Witten equations, it follows from Lemma 3.5.2
that Φ ∈ Lp2(X,W

+) and the invariance of products in Sobolev spaces for
2p > 4 gives F+

A ∈ Lp2. Equation (4.8) above implies that α ∈ Lp3. Further-
more, 4.8 is a weak form of the strong equation

d∗dα + dd∗α = 2d∗F+
A

which is indeed defined since we have shown that α is of class at least Lp2.



4.2. Construction of the Moduli Space 63

We also obtain that A ∈ A3,p and Φ ∈ Lp4 and with this setup via an
elliptic bootstrapping procedure we can show that the pair (A,Φ) is smooth.
By the same argument if Φ ∈ Lpk with k ≥ 2, then this implies that F+

A ∈ Lpk,
consequently α ∈ Lpk+1, hence Φ ∈ Lpk+2, proceeding inductively shows this
holds for all k and thus α and Φ are smooth.

Corollary 4.2.3. The moduli space M(X,Γ, g, η) can be naturally identified
with the space

M(X,Γ, g, η) ∼=
{(A,Φ) ∈ A1,p(Γ)× Lp1(X,W

+) : 4.4, 4.5}
G2,p

.

Compactness of the Moduli Space

To obtain the compactness of the moduli space we require the following
key estimate for the Seiberg-Witten equations which can be shown with the
Weitzenböck formula and Lemma 3.1.6.

Lemma 4.2.4. Let X be a compact, oriented 4-manifold equipped with a
Riemannian metric and spinc structure and (A,Φ) be a smooth solution to
the Seiberg-Witten equations for a perturbation η, then either Φ ≡ 0 or

sup
X

|Φ| ≤ 1

2
sup
X

(
4
√
2|η| − s

)
where s : X → R is the scalar curvature of X.

It is interesting to contrast the situation to the study of anti-self dual
Yang-Mills instantons. It is precisely this universal bound that forces the
moduli space to be compact, and hence we avoid the difficult compactification
procedures that are required.

Theorem 4.2.5. Let X be a compact, oriented 4-manifold equipped with a
Riemannian metric and spinc structure, then the Seiberg-Witten moduli space
M is compact.

Proof. Fix a constant p > 4 and a smooth reference connection A0, by The-
orem 4.2.1, every solution (A,Φ) of the perturbed Seiberg-Witten equations
is gauge equivalent to one which satisfies

d∗α = 0, ∥α∥W 1,p ≤ c(1 + ∥dα∥Lp)

where α = A−A0 and the proof of Theorem 4.2.2 implies that this solution
is smooth.
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Since F+
A +η = σ+((ΦΦ∗)0), Lemma 3.1.6 implies the pointwise inequality

|F+
A |

2 ≤ |η|2 + 1

8

(
|Φ|2

)2
taking the supremum of both sides over X and applying Lemma 4.2.4, com-
pactness of X gives

sup
X

|F+
A | ≤ c0

for some c0 which is independent of (A,Φ).

Equation (4.8) can then be used to give the following inequality with
1/p+ 1/q = 1

∥dα∥Lp ≤ c sup
β

2 ⟨dβ, F+
A − F+

A0
⟩

∥β∥Lq
1

the Cauchy-Schwarz inequality and the uniform bound on the curvature
above implies that dα is bounded in the Lp norm, in conjunction with the
fact that ∥α∥W 1,p ≤ c(1 + ∥dα∥Lp) this gives

∥α∥Lp
1
≤ c1.

Since p > 4, Theorem 1.2.2 implies that α is continuous and uniformly
bounded in the sup-norm.

Lemma 3.5.2 implies that Φ ∈ Lp2, thus we may apply Lemma 3.5.3 and
obtain

∥Φ∥Lp
1
≤ c(1 + ∥α∥Lp

1
) ∥Φ∥L4 ≤ c′1

and so Φ is also uniformly bounded in Lp1.

Equation (4.8) and Lemma 3.5.3 as above imply that for each integer
k ≥ 1, there is a constant c > 0 such that

∥α∥Lp
k+1

≤ c(1 + ∥ΦΦ∗∥Lp
k
)

∥Φ∥Lp
k+1

≤ c(1 + ∥α∥Lp
k
) ∥Φ∥Lp

k

via inductive application of the above inequalities one obtains

∥α∥Lp
k
+ ∥Φ∥Lp

k
≤ ck.

Now suppose that (Aν ,Φν) is a sequence of Lp1 solutions to the Seiberg-
Witten equations, we may take these to satisfy d∗α = 0 and ∥α∥W 1,p ≤ c(1+
∥dα∥Lp). By the above string of inequalities, any such sequence is uniformly
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bounded in Lpk for all k > 0, since the inclusion Lpk+1 ⊂ Lpk is compact via
Rellich’s theorem, the sequence has a convergent subsequence in Lpk for all
k > 0. Theorem 1.2.2 asserts that Lpk ⊂ Cℓ for kp > ℓp + 4, consequently
this subsequence converges in the C∞ topology. When quotienting by the
remainder of the group action to obtain a smooth manifold, we obtain that
any sequence in the moduli space has a convergent subsequence, hence the
moduli space is compact.

Transversality of the Moduli Space

The content of this section is to outline an argument for the transversality
of the moduli space for sufficiently generic perturbations.

The first observation is that we may gauge fix the Seiberg-Witten equa-
tions away from reducible solutions and for a fixed smooth connection A0,
we introduce the following spaces

M̃ = {(A,Φ) ∈ Z : d∗(A− A0)}
M̃∗ = {(A,Φ) ∈ M̃ : Φ ̸= 0}

the harmonic gauge group GH acts freely and properly on M̃, hence provided
a perturbation away from the wall is chosen, if it can be shown that the
moduli space of gauge fixed solutions fixed to Coulomb gauge constitutes
a smooth manifold, it immediately follows that the moduli space obtained
from acting on with the full gauge group action is a smooth manifold.

We first aim to prove that the map between appropriate Sobolev spaces

f(A,Φ) = (DAΦ, σ(Φ)− F+
A , d

∗(A− A0))

is Fredholm and compute its index. However, by fixing a smooth reference
connection A0 and setting α = A− A0 we may rewrite this as

f(α,Φ) = (DA0+αΦ, d
+α + σ((ΦΦ∗)0)− FA0 , d

∗α).

The spaces involved in the map f : V → W are

V = VC ⊕ VR, W = WC ⊕WR

with VC,WC and VR,WR given by

VC := L2
k(X,W

+), VR := iL2
k(X,Λ

1T ∗X)

WC := L2
k−1(X,W

−), WR := iL2
k−1(Λ

2,+T ∗X)⊕ L2
k−1(X, iR)0
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where L2
q(X,R)0 is the subspace satisfying

∫
X
fvol = 0.

The map f can be further decomposed as f = l + c where

l(α,Φ) = (DA0Φ, d
+α, d∗α), c(α,Φ) = (Γ(α)Φ, σ((ΦΦ∗)0)− FA0 , 0).

Now consider the linearisation of f at (α,Φ), note that since all the spaces
involved are vector spaces, they are their own tangent spaces. Observe that

d(α,Φ)l(a, ψ) = (DA0ψ, d
+a, d∗a)

and
d(α,Φ)c(a, ψ) = (Γ(a)Ψ, σ+((Φψ∗ + ψΦ∗)0))

Since the difference of Dirac operators is compact (Lemma 3.5.1) and σ+((Φψ∗+
ψΦ∗)0) is a map involving addition and multiplication on a Sobolev space
which is continuous for our choice of p composed with the inclusion Lpk ↪→
Lpk−1 which is compact, hence d(α,Φ)c(a, ψ) is a compact operator.

It remains to show that the operator d(α,Φ)l(a, ψ) is Fredholm. The oper-
ator dl can be written as DA0⊕D+, where the operator D+ is simply d+⊕d∗.
The Dirac operator is Fredholm with index given by

⟨c(LΓ)
2, [X]⟩ − σ(X)

4

by Proposition 3.5.4, and the operator D+ is also known to be Fredholm with
index

b1(X)− 1− b+(X) = −χ(X)− σ(X)

2
− 1

(see [Sal99], the -1 term comes from the fact that we have restricted the
rightmost factor of the codomain of D+ to be to the smooth functions with
mean value zero).

Consequently, f is Fredholm with index

⟨c(LΓ)
2, [X]⟩ − 2χ(X)− 3σ(X)

4
+ 1

Hence for any regular value η, the implicit function theorem, i.e. Theo-
rem 1.1.3 implies that M̃ = f−1(0, η, 0) is a smooth manifold of dimension
ind(df), factoring by the remaining group action gives the moduli space and
has dimension

d(X,Γ) =
⟨c(LΓ)

2, [X]⟩ − 2χ(X)− 3σ(X)

4
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The fact that the space of regular perturbations Ω2,+
reg (X, g) is generic, i.e.

it forms a set which is second category in the sense of Baire in Ω2,+(X, g)
follows from the Sard-Smale theorem. Strictly speaking the above map does
not give this result since we are only interested in perturbations of the form
(0, η, 0). However, one may prove with similar methods to the above, that
the space of pairs (A,Φ)

N k,p ⊂ Ak,p(Γ)× Lpk(X,W
+)

satisfying DAΦ = 0, d∗(A−A0) = 0 and Φ ̸= 0 is a smooth paracompact Ba-

nach manifold (for k ≥ 1, p > 4). The moduli space M̃ can then equivalently
be obtained as the preimage of a point η in the codomain of the map

f ′ : N k,p → Lpk−1(X,Λ
2,+T ∗X ⊗ iR)

given by
f ′(A,Φ) = F+

A − σ+((ΦΦ∗)0)

This is a smooth Fredholm map and its index agrees with the map f above,
by the Sard-Smale theorem the space of regular perturbations is then in-
deed generic in the Lpk topology, one may approximate such perturbations by
smooth perturbations and obtain that the space of regular perturbations is
in fact generic in the C∞ topology.

Orientation of the Moduli Space

The aim of this section is to discuss the orientability of the Seiberg-Witten
moduli space, this in fact depends on a choice of orientation of the real vector
spaces H1(X, iR) and H2,+(X, iR) which we fix from now on.

Since the moduli space M̃∗ is obtained from the preimage of regular
values of the map f as in Section 4.2, its tangent space at (A,Φ) is given by
the kernel of df(A,Φ), hence an orientation can be obtained via a trivialisation

of the determinant line bundle Det → M̃∗, this is a line bundle with fibres
det(dfA,Φ) = Λmaxker(dfA,Φ) ⊗ Λmaxcoker(dfA,Φ), which for regular values is
simply Λmaxker(dfA,Φ).

We can obtain an orientation from the family of operators dfA,tΦ, t ∈ [0, 1]
since the determinant line bundle trivialises over the path and hence we
can transport an orientation of det(DA,0). Since DA,0 = DA ⊕ D+ we have
det(DA,0) = det(DA) ⊕ det(D+), moreover DA is a complex linear operator
between complex vector spaces, thus its kernel and cokernel have natural ori-
entations. We also have ker(D+) = H1(X; iR) and H0(X; iR)⊕H2,+(X; iR),
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since H0(X; iR) ∼= R it carries a natural orientation, then our fixed choice of
orientations on H1(X; iR) and H2,+(X; iR) fixes an orientation on det(DA,0,
consequently inducing an orientation on det(dfA,Φ). Any path from (A0, 0) to
(A,Φ) gives rise to an orientation and since the determinant line bundle Det
extends to locally trivial bundle Det→ A(Γ)×C∞(X,W+), and base space
is contractible, it is trivial, thus the orientation on det(dfA,Φ) is independent
of the choice of path and basepoint (A0, 0).

Furthermore we claim that the harmonic gauge group GH acts by ori-
entation preserving diffeomorphisms, inducing an orientation on M∗. Let
(A0,Φ0) be a solution to the Seiberg-Witten equations and u ∈ GH, set
(A1,Φ1) = (u∗A0, u

−1Φ0) and choose paths between these two t 7→ At and
t 7→ Φt with t ∈ [0, 1]. Trivialising the determinant line bundle over the
path t 7→ det(dfAt,Φt)) gives an isomorphism det(dfA0,Φ0) → det(dfA1,Φ1), the
linearisation of the gauge group action gives isomorphisms

ker(dfA0,Φ0) → ker(dfA1,Φ1) : (α, φ) 7→ (α, u−1φ)

coker(dfA0,Φ0) → coker(dfA1,Φ1) : (β, τ, ψ) 7→ (β, τ, u−1ψ)

thus also inducing an isomorphism det(dfA0,Φ0) → det(dfA1,Φ1), we now show
the two isomorphisms are in fact the same. Consider the family of operators
dfAt,sΦt , s ∈ [0, 1], this provides a homotopy between the family of operators
dfAt,Φt and dfAt,0, we may trivialise the determinant line bundle along this
allowing us to transport orientations, so without loss of generality we may
take Φt = 0 for all t.

Recall that det(dfAt,0) = det(DAt)⊗det(D+), this determines a line bun-
dle over [0, 1], since the orientation of D+ is independent of t it suffices to
look at the operators DAt . Observe they are complex linear and hence pro-
vides a trivialisation of this bundle by identifying the complex structures, in
particular producing an isomorphism det(DA0) → det(DA1) by identifying
the orientations induced by the complex structure. However, since Φt = 0
for all t the isomorphisms induced by the linearisation of the gauge group
acts trivially on the D+ component and the induced isomorphisms

ker(DA0) → ker(dfA1) : φ 7→ u−1φ

coker(DA0) → coker(DA1) : ψ 7→ u−1ψ

are complex linear and so induce the same map det(DA0) → det(DA1) as the
trivialisation of the determinant line bundle.
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The Chamber Structure of the Parameter Space

To analyse the chamber structure of the invariants when b+(X) = 1, define
the parameter space Π, consisting of pairs of metrics g and imaginary-valued,
g-self dual perturbations η, and define W to be the subset of Π for which
the pair (g, η) admits reducible solutions, this is called the wall. Then set
Π∗ = Π \ W to be the space of parameters for which the Seiberg-Witten
equations admit no reducible solutions.

For a fixed metric g onX, let Ω2,+
Γ (X, iR) := {η ∈ Ω2,+(X, iR) : there exists A ∈

A(Γ) such that F+
A + η = 0}. The following proposition states that this is

an affine subspace of codimension b+(X).

Proposition 4.2.6. The set Ω2,+
Γ (X, iR) is an affine subspace of codimension

b+ whose parallel vector space is the image of the operator d+ : Ω1(X, iR) −→
Ω2,+(X, iR)

Proof. First we prove that this is indeed an affine subspace with the desired
parallel vector space. Fix η0 ∈ Ω2,+(X, iR) and A0 ∈ A(Γ) such that F+

A0
+

η0 = 0. Now suppose that η ∈ Ω2,+
Γ (X, iR), hence there exists some A ∈ A(Γ)

such that F+
A + η = 0. We may write η − η0 = F+

A0
− F+

A = F+
A−A0

but recall
that the curvature is obtained locally by FA = dA. Hence η−η0 = d+(A0−A)
and so Ω2,+

Γ (X, iR) ⊆ η0 + im(d+).

To see the reverse inclusion, suppose that η = η0 + d+α, then see that
F+
A0−α + η = d+A0 + η0 = 0 hence η + im(d+) ⊆ η ∈ Ω2,+

Γ (X, iR) so indeed,

Ω2,+
Γ = η0 + im(d+).

Therefore Ω2,+
Γ (X, iR) an affine subspace whose parallel vector space is the

image of d+. It remains to show it has the desired codimension Ω2,+(X, iR).
To do so, we simply prove the following direct sum decomposition.

Ω2,+(X, iR) = H2,+(X, iR)⊕ im(d+)

where H2,+(X, iR) denotes the space of self-dual imaginary-valued harmonic
2-forms.

Suppose that τ ∈ Ω2,+(X, iR), by the Hodge decomposition

τ = τ0 + dα + d∗γ

where τ0 is harmonic, α ∈ Ω1(X, iR) and γ ∈ Ω3(X, iR). Define β := − ⋆ γ,
then

τ = τ0 + dα + ⋆dβ
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note that this decomposition is unique with respect to β, α. Since τ is self-
dual and ⋆2 = 1 on 2-forms

τ0 + dα + ⋆dβ = τ = ⋆τ = ⋆τ0 + ⋆dα + dβ.

since this decomposition is a direct sum decomposition, it follows that

τ0 = ⋆τ0, dα = dβ

therefore

τ = τ0 + dα + ⋆dα = τ0 + 2d+α

where τ0 ∈ H2,+(X, iR) and α ∈ Ω1(X, iR) and moreover every such choice
of τ0, α gives us an element τ ∈ Ω2,+(X, iR).

Since every self-dual harmonic 2-form is orthogonal to the image of d+ it
follows that we have the direct sum decomposition

Ω2,+(X, iR) = H2,+(X, iR)⊕ im(d+).

and the result on the codimension immediately follows.

It follows that Ω2,+(X, iR) \ Ω2,+
Γ (X, iR) is connected for b+(X) > 1 and

split into two connected components for b+(X) = 1. When b+(X) = 0, every
perturbation admits a reducible solution, since the moduli space will never be
a smooth manifold, we avoid attempting to define a Seiberg-Witten invariant
in this case. Consequently the space Π∗ exhibits the same properties, namely
that it is connected for b+(X) > 1 and split into two connected components
for b+(X) = 1.

Recall from Hodge theory, given a metric g on X and an orientation on
H2,+(X, iR), there exists a unique self-dual harmonic 2-form ωg ∈ H2,+(X, iR)
with ∥ωg∥L2 = 1 and represents the orientation chosen on H2,+(X, iR). De-
fine

εΓ(g, η) := −
∫
X

⟨iη, ωg⟩ vol− π[ωg] · c1(LΓ) (4.9)

since (i/π)FA is a representative for c1(LΓ) in deRham cohomology, it is easy
to show that

(g, η) ∈ W ⇐⇒ εΓ(g, η) = 0.
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4.3 The Seiberg-Witten Invariant

We now proceed to define the Seiberg-Witten invariant on a compact oriented
4-manifold X, this is dependent on the choice of spinc structure and is a
diffeomorphism invariant of the 4-manifold when b+(X) > 1.

The idea of the construction is as follows. Choose a sufficiently generic
metric and perturbation η such that the moduli spaceM is a smooth compact
oriented 4-manifold of dimension d. Being a compact oriented submanifold
of B(Γ) := C(Γ)∗/G, the moduli space has a fundamental class, thus we may
pair it with cohomology classes in B(Γ) to obtain an integer, at the level of
deRham cohomology this simply corresponds to integration over M. The
Seiberg-Witten invariant is then obtained by considering a natural cohomol-
ogy class τ ∈ H2(C(Γ)∗/G;Z), if d is even the Seiberg-Witten invariant will
be the integral of τ d/2 overM, otherwise it is defined to be zero. If b1(X) = 0,
then the the space B(Γ) has the homotopy type of CP∞, thus its cohomology
ring is Z[x] and τ corresponds to its generator.

We shall detail two methods to construct this cohomology class τ , the
first being a simple example of a more general gauge-theoretic construction
of Donaldson, namely the µ-map. This involves a choice of basepoint x0 ∈ X,
although the cohomology class obtained in this way is independent of such a
choice. However, this construction is not particularly amenable to obtaining
an invariant in families Seiberg-Witten theory, requiring the existence of a
non-canonical section of the family, hence we also outline a simpler construc-
tion of τ in the special case when b1(X) = 0 which generalises easily in the
families case as seen in Chapter 6.

For the first construction we introduce the based gauge group G(x0) =
{u ∈ G : u(x0) = 1} and consider the space

B(Γ, x0) =
A(Γ)× C∞(X,W+)∗

G(x0)
.

Note that G/Gx0 ∼= S1 so B(Γ, x0) forms a principal circle bundle over B(Γ)
with circle action given by [A,Φ] 7→ [A, eiθΦ]. If x1 is another point in X and
X is connected then by choosing a smooth path γ : [0, 1] → X, fix a smooth
reference connection A0 and define ργ : A(Γ) → S1 by

ργ(A0 + α) = exp

(∫ 1

0

αγ(t)(γ
′(t))dt

)
this gives rise to a bundle isomorphism C(Γ, x0)/G → C(Γ, x1)/G given by

[A,Φ]0 7→ [A, ργ(A)Φ].
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Consequently, the isomorphism class of B(Γ, x0) is independent of the base-
point x0, we then let τ ∈ H2(B(Γ);Z) be the Euler class of the circle bundle
B(Γ, x0) → B(Γ). Alternatively one can observe that by nature of being a
principal circle bundle, there is an associated unitary line bundle L → B(Γ)
and take τ to be the Chern class, this gives the same cohomology class but
lends itself to an easier computation of the invariant.

For the second construction, assume that b1(X) = 0 and define the reduced
gauge group

G0 :=

{
g ∈ G : g = eif for some f : X → R such that

∫
X

fvol = 0

}
.

Since b1(X) = 0, every such g can be written as eif for some smooth function
f : X → R, hence we obtain the following exact sequence.

0 → G0 → G → S1 → 0

where the map G0 → G is inclusion and the map G → S1 is given by eif 7→
e
∫
X fvol. Therefore G/G0

∼= S1 and identically to the previous construction we
may define the space

B(Γ)0 =
A(Γ)× C∞(X,W+)∗

G0

which forms a principal circle bundle over B(Γ) and we may again take the
τ to be the Chern class of the associated line bundle, this also represents the
generator of CP∞ and so indeed both methods produce the same cohomology
class.

Definition 4.3.1. Let X be a compact oriented connected 4-manifold with
b+(X) > 0, choose a metric g, a spinc structure on X and η a self-dual
imaginary valued 2-form. If d(X,Γ) is even, the Seiberg-Witten invariant is
defined as

SW(X,Γ; g, η) =

∫
M(X,Γ,g,η)

τ
d
2

and zero otherwise.

Theorem 4.3.2. Assume b+(X) > 1, then the Seiberg-Witten invariant
SW(X,Γ; g, η) is independent of the choice of g and η and only depends on
the isomorphism class of Γ.

Proof. See Theorem 6.2.2 in the following chapter, the proof in the case of
B = {pt} gives the result.
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4.4 Important Results

There is a natural involution on spinc structures Γ 7→ Γ obtained by revers-
ing the complex structure on W . There is a bijection between the moduli
spaces M(X,Γ, g, η) and M(X,Γ, g,−η) which is a diffeomorphism when η
is a regular perturbation for the moduli space corresponding to Γ (equiva-
lently −η is a regular perturbation for the moduli space corresponding to
Γ). However, this diffeomorphism is not orientation preserving in general,
changing the sign via the complex index of the Dirac operator, it also reverses
the sign of the first Chern class of the line bundle L → M used to define the
Seiberg-Witten invariant. It follows that the Seiberg-Witten invariant under
this diffeomorphism changes by a sign of

(−1)indC(DA)−dim(M)/2 = (−1)(σ(X)+χ(X))/4.

Furthermore, when b+(X) = 1 we have εΓ(g,−η) = −εΓ(g, η), since this
switches the sign of ε, the chamber of perturbation for the Seiberg-Witten
invariant is switched under the involution Γ 7→ Γ, giving the following result.

Proposition 4.4.1. Let X be a compact oriented smooth 4-manifold and
Γ : TX → End(W ) be a spinc structure. Then if b+(X) > 1

SW(X,Γ) = (−1)
σ(X)+χ(X)

4 SW(X,Γ)

and if b+(X) = 1

SW+(X,Γ) = (−1)
σ(X)+χ(X)

4 SW−(X,Γ).

From our earlier discussion when b+(X) = 1 the Seiberg-Witten invariant
depends on a choice of chamber, nonetheless there is still a relation between
the invariants on both sides of the wall, a so called wall-crossing formula.
The first instance of a wall-crossing formula for the Seiberg-Witten invariants
was given by Kronheimer and Mrowka in [KM94] when b1(X) = 0 for zero-
dimensional moduli spaces, and a general relation was later obtained by Li
and Liu in [LL95] and independently by Ohta and Ono in [OO96]. The
following theorem is a special case of the general wall crossing formula when
b1(X) = 0 and the moduli space is non-negative

Theorem 4.4.2. Let X be a compact, oriented and connected smooth 4-
manifold with b+(X) = 1 and b1(X) = 0. Let Γ be a spinc structure on X
and further suppose that the dimension of the moduli space is non-negative,
that is c1(LΓ)

2 − 2χ(X)− 3σ(X) ≥ 0. Then

SW+(X,Γ)− SW−(X,Γ) = 1.
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Chapter 5

Kähler Seiberg-Witten Theory

This chapter concerns the simplifications that occur in Seiberg-Witten the-
ory when the manifold of discussion is Kähler, which inevitably allows for a
computation of the Seiberg-Witten invariant. In particular we cover simpli-
fications to the Seiberg-Witten equations that will, given a particular choice
of perturbation, allow for an easy description of the moduli space. This
in conjunction with a particular exact sequence allows for a computation
of the Seiberg-Witten invariant for Kähler surfaces with b1(X) = 0. We
then conclude the chapter by overviewing some constraints that are obtained
from this computation on the cohomology of line bundles required for a non-
vanishing invariant. Much of the content covered in this chapter can be found
in [Nic00],as well as [Sal99], which in particular details the computation of
the invariant on Kähler surfaces.

5.1 Simplifications in the Kähler Case

Recall that a Kähler surface is a smooth 4-manifold equipped with three
mutually compatible objects, an integrable complex structure J ∈ End(TX)
making it a complex surface, a Riemannian metric g and a symplectic struc-
ture, i.e. a closed, non-degenerate 2-form ω ∈ Ω2(X). Symplectic and
almost-complex structures give rise to a canonical spinc structure as in Def-
inition 3.3.1, this causes the Seiberg-Witten equations to simplify greatly.

Recall from Proposition 3.3.6 that since X is Kähler, the Levi-Civita
connection induces a canonical spinc connection ∇can on Wcan. Any other
spinc structure via twisting by a Hermitian line bundle L → X, given a
Hermitian connection B ∈ A(L) there is a spinc connection compatible with

75
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the Levi-Civita connection for the twisted spinc structure ΓL = Γcan⊗L and
the induced virtual connection is denoted Acan+B ∈ A(ΓL). Because of this
we often write the Seiberg-Witten invariant of X corresponding to the spinc

structure ΓL as SW(X,L) when X is Kähler. The Seiberg-Witten equations
in the Kähler case then simplify to the following form.

Proposition 5.1.1. Let X be a Kähler surface and η ∈ iΩ2,+(X), the per-
turbed Seiberg-Witten equations then acts on pairs (Acan+B,Φ) and are given
by

∂Bφ0 + ∂
∗
Bφ2 = 0 (5.1)

2(FB + η)0,2 = φ0φ2 (5.2)

4i(FAcan + FB + η)ω = |φ2|2 − |φ0|2 (5.3)

where Φ = (φ0, φ2) ∈ Ω0,0(X,E) × Ω0,2(X,E), η is a self-dual imaginary
valued 2-form and for a 2-form τ ∈ Ω2(X,C), τω : X −→ C is defined by

ω ∧ τ := τωω ∧ ω.

Proof. The content of Theorem 3.3.7 is precisely 5.1, Lemma 3.3.9 gives
5.3 and after applying that FAcan is a (1, 1) form when X is Kähler, Equa-
tion (5.2).

Remark 5.1.2. Note that φ0 is valued in the line bundle L and there is no
naturally defined complex conjugation. Hence φ should be interpreted as a
section of the bundle L = L∗ with the reversed complex structure and the
product φ0φ2 should be interpreted as the tensor product.

Proposition 5.1.3. Suppose that X is connected, let B ∈ A(E), φ0 ∈
Ω0,0(X,E) and φ2 ∈ Ω0,2(X,E) which satisfy the Seiberg-Witten equations
for a Kähler surface 5.1, 5.2, 5.3, with η ∈ Ω1,1 ∩ Ω2,+. Then either φ0 = 0
or φ2 = 0.

Proof. Apply ∂B to both sides of 5.1, since ∂
2

B = 0 it follows that

0 = ∂B∂
∗
Bφ2 + ∂B∂Bφ0

hence
∂B∂

∗
Bφ2 = −∂B∂Bφ0 = −F 0,2

B φ0

since by assumption η is a (1, 1)-form, its (0, 2) component is zero, so the
above and 5.2 gives

∂B∂
∗
Bφ2 = −1

2
|φ0|2φ2
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taking the L2 inner product of both sides of this with φ2 gives∫
X

(
|∂∗Bφ2|2 +

1

2
|φ0|2|φ2|2

)
dvol = 0

and hence ∂
∗
φ2 = 0, ∂Bφ0 = 0 and φ0φ2 = 0.

Suppose that φ2 does not vanish everywhere, then φ0 must vanish on some
open set by the third equation above, since the pair (φ0, 0) is in the kernel
of the Dirac operator by being a solution to the Seiberg-Witten equations,
by Theorem 3.2.6 φ0 vanishes everywhere. If this does not hold, then φ2

vanishes everywhere. Consequently, one of φ0 and φ2 must vanish.

Note that similar methods to the proof above can be used to show that the
Seiberg-Witten invariant is zero if the line bundle L→ X is not holomorphic.

Given a perturbation η eq. (5.3) gives a means to determine which of φ0

or φ2 vanishes, integrating both sides gives

∥φ2∥2L2 − ∥φ0∥2L2

2
= π(2c1(L)− c1(K

∗)) · [ω] +
∫
X

iη ∧ ω = εΓL
(g, η)

where εΓL
is as defined in Section 4.2. It is clear that if εΓL

(g, η) < 0 then
φ2 vanishes.

WhenX is a Kähler surface, if L→ X is a line bundle determining a spinc

structure ΓL : TX → End(WL) and ΓL : TX → End(WL) is its dual, then
there is a natural isomorphism WL

∼= WK⊗L∗ which respects the Hermitian
structure. If k = 0, 1, 2 and φk ∈ Ω0,k(X,L) then there is a corresponding
element φ̃k ∈ Ωk,0(X,L∗), and the isomorphism is the following composition
of maps Λk,0 → Λ2,2−k → Λ0,2−k ⊗K induced by

Ωk,0(X,L∗) → Ω2,2−k(X,L∗) → Ω0,2−k(X,K ⊗ L∗)

given by

φ̃k 7→ φ̃k ∧
(iω)2−k

(2− k)!
7→ φ̃k

consequently the dual spinc structure on a Kähler surface is simply obtained
by interchanging the line bundle L with K ⊗ L∗. Via the previous duality
formula in Proposition 4.4.1, it follows that

Proposition 5.1.4. There is a natural bijection

M(X,ΓL, g, η) → M(X,ΓK⊗L∗ , g, η)
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given by (B,φ0, φ2) 7→ (−B − 2Acan, φ̃0, φ̃2) and η is regular for ΓL if and
only if −η is regular for ΓK⊗L∗ and the Seiberg-Witten invariants are related
by

SW(X,K ⊗ L∗) = (−1)
σ(X)+χ(X)

4 SW(X,L)

for b+(X) > 1 and

SW+(X,K ⊗ L∗) = (−1)
σ(X)+χ(X)

4 SW−(X,L)

for b+(X) = 1.

It is natural to look at the linearisation of the Seiberg-Witten equations,
we shall specifically consider the case when φ2 = 0, for a solution (B,φ0, 0)
the linearised equations in the Kähler case are as follows

−2i(dα)ω − Re(φ0τ0) = 0 (5.4)

∂τ0 + ∂
∗
τ2 + α0,1φ0 = 0 (5.5)

2(dα)0,2 − φ0τ2 = 0 (5.6)

acting on a triple (α, τ0, τ2) ∈ iΩ1(X,L)⊕ Ω0,0(X,L)⊕ Ω0,2(X,L).

It is convenient to introduce the gauge fixing condition

d∗α− i ⟨iφ0, τ0⟩ (5.7)

this asserts that (α, τ0, τ2) is orthogonal to the orbit of (B,φ0, 0) under the
gauge action, completely eliminating the gauge group action. Equations 5.10
and 5.7 can equivalently be stated as

2∂α1 − φ0τ0 = 0 (5.8)

where α1 = α0,1.

This leads us to define the linearised operator

D̃B,φ

τ0α1

τ2

 =

 ∂
∗
α1 − φ0τ2/2

∂Bτ0 + ∂
∗
Bτ0 + α1φ0

∂α1 − φ0τ2/2

 (5.9)

which fits into a useful long exact sequence

Lemma 5.1.5. (Mrowka) Let B ∈ A(L) and φ0 ∈ C∞(X,L) be nonzero
with F 0,2

B and ∂Bφ0 = 0. Then there is an exact sequence as follows.
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0 H0(X,O) H0(X, EB) ker(D̃B,φ)

H1(X,O) H1(X, EB) coker(D̃B,φ)

H2(X,O) H2(X, EB) 0

where O is the structure sheaf of holomorphic functions on X, EB is the sheaf
of holomorphic sections of L with holomorphic structure given by ∂B.

Proof. [Sal99][Lemma 12.6]

Theorem 5.1.6. Let X be a Kähler surface with b+ > 1, then X has Seiberg-
Witten invariants

SW(X,Γcan) = 1, SW(X,ΓK∗) = (−1)
σ+χ
4

moreover, if SW (X,ΓL) ̸= 0, then c1(L) can be represented by a harmonic
2-form of type (1, 1) and we have

0 ≤ c1(L) · [ω] ≤ c1(K
∗) · [ω]

equality can occur only if L = C or L = K∗.

Proof. By duality it suffices to prove that the Seiberg-Witten invariant for
the canonical spinc structure is 1.

Hence, take L = C to be the trivial bundle and consider the perturbation

η = −F+
Acan

+ iπλω, λ > 0

Then equation Equation (5.3) becomes

4i(FB + iπλω)ω = |φ2|2 − |φ0|2

which is equivalently

4i(dB)ω = 4πλ+ |φ2|2 − |φ0|2

since L is a line bundle.
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Since vol = 1
2
ω ∧ ω, integrating both sides gives∫
X

4λπ + |φ2|2 − |φ0|2vol = 2i

∫
X

dB ∧ ω

= − 4

π
c1(L) · [ω]

since B is a connection on the line bundle L and hence the curvature dB = FB
defines a representative for the first Chern class by c1(L) := [ i

2π
FB]. Since

L = C is the trivial line bundle in this case, c1 = 0, hence we have

∥φ2∥2 − ∥φ∥2 = −λ
∫
X

4πvol < 0.

Since this particular choice of η is a self-dual (1, 1)−form, one of φ0, φ2 must
be zero and the other non-zero. But to have the above inequality, it must be
the case that φ2 = 0 everywhere and φ0 is the non-zero component.

Consequently, the Kähler Seiberg-Witten equations for the trivial bundle
reduce to

∂Bφ0 = 0 (5.10)

(dB)0,2 = 0 (5.11)

4i(dB)ω = 4πλ− |φ0|2 (5.12)

This has an obvious solution B = 0, φ0 =
√
4πλ, this is in fact the only

up to gauge equivalence.

Observe that if (B,φ0) satisfies 5.10, then applying 2∂
∗
B and by Proposi-

tion 2.4.2

0 = 2∂
∗
B∂Bφ0

= d∗BdBφ0 − 2i(dB)ωφ0

Then, taking the inner product of both sides and rearranging, see that

∥dBφ0∥2L2 =

∫
X

2i(dB)ω|φ0|2vol

and since a trivial bundle has vanishing first Chern class, the integral of
(dB)ω over X is zero. We may then insert a term so that

∥dBφ0∥2L2 =

∫
X

2i(dB)ω
(
|φ0|2 − 4πλ

)
vol

= −1

2

∫
X

(
|φ0|2 − 4πλ

)2
vol
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where the last result comes from 5.12, hence

∥dBφ0∥2L2 +
1

2

∫
X

(
|φ0|2 − 4πλ

)2
vol = 0

since both terms are non-negative, dBφ0 = 0 and |φ0|2 ≡ 4πλ

The second result implies that there is some smooth function u′ : X −→
S1 such that φ0(x) = u′(x)

√
4πλ, note that u(x) := u′(x)−1 is also a smooth

map into the circle, so equivalently we have the existence of a smooth map
u(x) : X −→ S1 such that φ0 = u(x)−1

√
4πλ.

Now examine the first equation dBφ0 = 0, this gives

0 = dBφ0

= (d+B)(u−1
√
4πλ)

= d(u−1
√
4πλ) + u−1

√
4πλB

= −u−2du
√
4πλ+ u−1B

√
4πλ

=
(
u−1B − u−2du

)√
4πλ

since λ > 0, we must have u−1B − u−2du = 0 and so B = u−1du.

Hence there is some smooth function u : X −→ S1 such that B = u−1du
and φ0(x) = u(x)−1

√
4πλ. However, the entire gauge group is Maps(X,S1)

which acts on the obvious solution in precisely this way, hence there is always
a gauge transformation to the obvious solution. Therefore, it is the only
solution up to gauge equivalence.

Now recall the exact sequence of Lemma 5.1.5. All the mapsH i(X,O) −→
H i(X, EB) are multiplication by φ0, since L is trivial, the maps are all iso-
morphisms. Hence the kernel and cokernel of D̃B,φ is zero. Hence the per-
turbation η is regular and the moduli space is zero-dimensional. Since there
is only one solution up to gauge equivalence, it must be the case that

SW(X,Γcan) = ±1.

To determine the actual value of the invariant, the orientation of the
moduli space must be considered. The sign can be obtained by trivialising
the determinant line bundle over the following path of operators

t 7→ D̃B,tφ.

Note that for t > 0, that tφ ̸= 0 and the pair (B, tφ0) satisfy the conditions
for Lemma 5.1.5 and so by the same exact sequence, the kernels and cokernels
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are 0-dimensional for t > 0 as well, i.e. the operators are bijective. Therefore
it remains to examine t = 0 where there is a crossing along the path. Notice
that the operator for all t is given by

D̃B,tφ

τ0α1

τ2

 =

 ∂
∗
α1

∂Bτ0 + ∂
∗
τ2

∂α1

+ t
√
4πλ

−τ0/2
α1

−τ2/2


and so D̃B,0 is simply given by

D̃B,0 =

 ∂
∗
α1

∂Bτ0 + ∂
∗
Bτ2

∂α1


with

ker(D̃B,0) = H0,0(X)⊕H0,1(X)⊕H0,2(X)

coker(D̃B,0) = H0,0(X)⊕H0,1(X)⊕H0,2(X)

by making identifications between harmonic forms and cohomology groups,
we know that the kernel and cokernel are even dimensional dimensional.
Hence the contribution of the t = 0 crossing is +1. A trivialisation of the
determinant line bundle over the path gives an isomorphism det(D̃B,0) −→
det(D̃B,φ) which sends σ(Ḋ0) −→ ν({Dt})σ(Ḋ1) where σ(D) is defined by
x1 ∧ · · · ∧ xk⊗ y1 ∧ . . . yk ∈ det(D) where are bases of x1, ..., xk ∈ ker(D) and
y1, ..., yk ∈ ker(D)∗ such that ⟨yi, Ḋxj⟩ = δij and ν({Dt}) is (−1)dim(ker(D0))

and we write Ḋt0 for the operator defined by d/dt(Dtx)|t0 for a path of
operators Dt.

Note that the sign of σ(ḊB,0) is determined by whether the isomorphism
ker(DB,0) −→ coker(DB,0), given by the restriction of DB,0 to the kernel
followed by the projection onto the cokernel, is orientation preserving. If the
above mentioned map is orientation preserving then σ(Ḋ1) will induce the
standard orientation and the opposite orientation otherwise.

Now observe that ḊB,0 is complex linear, hence the mentioned isomor-
phism between the kernel and cokernel is orientation preserving. It follows
that σ(ḊB,0) is simply the standard form induced by the complex orienta-
tion, so the induced orientation from σ(ḊB,φ) is the standard orientation.
Consequently ν(B,φ0, 0) = 1 and so SW(X,Γcan) = 1.

Now to show the second part of the theorem. If SW(X,ΓL) ̸= 0, then
the moduli space M(X,Γ, g, iλω) must be nonempty for any λ ∈ R, conse-
quently there exists a solution (B,φ0, φ2) to the Seiberg-Witten equations
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for a Kähler surface, (5.1),(5.2) and (5.3) with η = iλω. Take λ > 0 to be
sufficiently large such that εΓ < 0 and so φ2 = 0.

Then 5.10,5.11 become

∂Bφ0 = 0 (5.13)

F 0,2
B = 0 (5.14)

which is equivalent to saying that L is a holomorphic line bundle with holo-
morphic structure ∂B, which admits a non-zero holomorphic section φ0. From
Proposition 2.4.3, it follows that

c1(L) · [ω] ≥ 0

with equality if and only if L is the trivial line bundle.

By duality, it is also the case that SW(X,ΓK∗⊗L∗) ̸= 0, by identical
reasoning

c1(K
∗ ⊗ L∗) · [ω] ≥ 0

with equality if and only ifK∗⊗L∗ = C is the trivial line bundle, equivalently
L∗ = K, i.e. L = K∗.

Moreover, since c1(K
∗ ⊗ L∗) = c1(K

∗) + c1(L
∗) = c1(K

∗) − c1(L), then
the above condition can equivalently be written as c1(K

∗) · [ω] ≥ c1(L) · [ω].

Combining the two inequalities, then gives

0 ≤ c1(L) · [ω] ≤ c1(K
∗) · [ω]

as required.

A very important property of Kähler surfaces is that, provided b+(X) > 1,
they are of simple type, that is, only zero dimensional moduli spaces may yield
a non-zero Seiberg-Witten invariant. This is precisely stated in the following
proposition.

Proposition 5.1.7. Let X be a compact Kähler surface and Γ a spinc struc-
ture on X such that SW (X,Γ) ̸= 0. Then the expected dimension of the
moduli space is zero, i.e

⟨c(LΓ)
2, X⟩ = 2χ(X) + 3σ(X).

In fact this result extends to the symplectic category as proven by Taubes
in [Tau96]. Hence Kähler surfaces and more generally symplectic 4-manifolds
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provide a wealth of examples of manifolds that are of simple-type. To date,
all known examples of 4-manifolds with b+(X) > 1 are either of simple-type
or it is unknown whether they are.

We now present a theorem, first proven by Bradlow in [Bra90] when
studying the moduli space of vortex pairs, which is key to obtaining a more
general computation of the Seiberg-Witten invariant for Kähler surfaces.

Theorem 5.1.8 (Bradlow). Let (X,ω, J, g) be a Kähler surface and L −→ X
a Hermitian line bundle, if

0 ≤ c1(E) · [ω] <
c1(K

∗) · [ω]
2

+ λVol(X),

then there is a natural bijection

M(X,ΓL, g, iπλω) ∼= Diveff(X, c1(L))

and if
c1(K

∗) · [ω]
2

+ λVol(X) < c1(L) · [ω] ≤ c1(K
∗) · [ω],

then there is a natural bijection

M(X,ΓL, g, iπλω) ∼= Diveff(X, c1(K
∗)− c1(L)).

Proof. Suppose that (B,φ0, φ2) is a solution to the Kähler Seiberg-Witten
equations 5.1,5.2,5.3 for the perturbation η = iλω. Since η ∈ Ω1,1(X), from
Proposition 5.1.3, one of φ0 or φ2 must vanish. If the first condition above
holds, this corresponds to φ2 = 0, the other φ0 = 0. The second assertion
of the theorem follows from the first by applying duality, so without loss of
generality assume that λ > 0 is sufficiently large so that φ2 vanishes.

The Seiberg-Witten equations then become

F 0,2
B = 0 (5.15)

∂φ0 = 0 (5.16)

4i(FAcan + FB)ω = 4πλ− |φ0|2 (5.17)

Given a pair (B,φ0) satisfying 5.15 and 5.16, up to unitary gauge equivalence
there is in fact exactly one such pair in every complex gauge equivalence class.

A real gauge transformation of the form eθ with θ : X → R acts on
(B,φ0) by

u∗B −B = ∂θ − ∂θ, u∗φ0 = e−θφ0
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and the gauge transformed pair also satisfies 5.15 and 5.16. This gauge
transformed pair satisfies 5.17 if and only if

4i(Fu∗B)ω + |u∗φ0|2 = 4πλ− 4i(FAcan)ω

which can equivalently be written as the Kazdan-Warner equation

∆g(−2θ) + e−2θ|φ0|2 = 4πλ− 4i(FB + FAcan)ω

since the integral of the term on the right hand side is positive by our as-
sumptions on λ, this has a unique solution θ : X → R.

Recall from the discussion in Section 2.3 that a connection B corresponds
to a unique Cauchy-Riemann operator ∂ = ∂B and that the condition 5.15
is equivalent to ∂ ◦ ∂ = 0 and defining a holomorphic structure on the line
bundle L. The condition of 5.16 then asserts the existence of a non-zero
holomorphic section φ0 of L. We have then shown that

M(X,ΓE, g, iπλω) ∼=
{(∂, s) : ∂ ◦ ∂ = 0, ∂s = 0, s ̸= 0}

(∂, s) ≡ u∗(∂, s) = (u−1 ◦ ∂ ◦ u, u−1s)

but from Section 2.5 this can be identified with Diveff(X, c1(L)), giving the
result.

This observation allows one to obtain a computation of the Seiberg-
Witten invariant on Kähler surfaces with b1(X) = 0. A proof can be found
in [Sal99], although the main result of Chapter 7, namely Theorem 7.1.1
being the computation of the families Seiberg-Witten invariant implies the
following result for the unparametrised case, consequently we do not provide
proof.

It follows from the above theorem and its proof that by choosing a per-
turbation η = iπλω with λ > 0 sufficiently large, the moduli space is empty
unless L is a holomorphic line bundle. If L is indeed a holomorphic line bun-
dle when b1(X) = 0 the holomorphic structure is unique, hence the points
of the moduli space can then be identified with the non-zero holomorphic
sections of L up to gauge equivalence of line bundles.

M(X,ΓL, g, iπλω) ∼=
H0(X,L)) \ {0}

C∗ = P(H0(X,L)).

One may then obtain the following computation of the Seiberg-Witten in-
variant on Kähler surfaces with b1(X) = 0.
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Theorem 5.1.9. Let X be a Kähler surface with b1(X) = 0 and L −→ X a
holomorphic line bundle, if pg > 0 and h0(L) > 0 then

SW(X,L) =

(
h1(L)− h2(L)

h1(L)− h2(L) + ρg

)

If ρg = 0, and χ(X,L) ≥ 1 then

SW+(X,L) = 1

and is zero otherwise.

Note that when ρg > 0 and χ(X,L) = ρg + 1, then the formula for the
Seiberg-Witten invariant in Theorem 5.1.9 can be rewritten as

SW(X,L) = (−1)h
0−1

(
pg − 1

h0 − 1

)
, if h1 − h2 < 0 < h0

furthermore the Seiberg-Witten invariant is only non-zero when h1 − h2 <
0 < h0.

5.2 Cohomological Restrictions from the Seiberg-

Witten Invariants

We now present a few cohomological restrictions on Kähler surfaces with
b1(X) = 0 obtained from the Seiberg-Witten invaraints.

Proposition 5.2.1. Let X be a Kähler surface with b1(X) = 0 and ρg > 0.
Let L be a holomorphic line bundle on X with h0(L) > 0 and χ(L) ̸= 1+ ρg.
Then h1(L)− h2(L) ≥ 0

Proof. Since h0(L) > 0 implies that h1(L) − h2(L) − ρg ≥ 0, it also implies
via the computation of the Seiberg-Witten invariant in Theorem 5.1.6 that
SW(X,L) =

(
h1(L)−h2(L)

h1(L)−h2(L)−ρg

)
. However, since χ(L) ̸= 1 + ρg, the dimen-

sion of the moduli space is non-zero, since X is Kähler it is of simple type
(Proposition 5.1.7) so SW(X,L) = 0. The only way for this to occur when
h1(L)− h2(L)− ρg ≥ 0 with ρg > 0 is when h1(L)− h2(L) ≥ 0.

Proposition 5.2.2. Let X be a Kähler surface with b1(X) = 0 and ρg > 0.
Let L be a holomorphic line bundle on X with χ(L) = 1+ρg and assume that
h0(L), h2(L) > 0. Then SW (X,L) ̸= 0, h1(L) is even and either h0(L) =
h2(L) or h1(L) = 0. If ρg is even then h1(L) is necessarily zero.
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Proof. Since h2(L) > 0 by Serre duality there is a non-zero holomorphic
section s of K⊗L∗, multiplication by s then defines an injection H0(X,L) →
H0(X,K), since ρg is the dimension of H0(X,K), h0(L) ≤ ρg.

Recall that from Theorem 5.1.9 the Seiberg-Witten invariant is given by

SW(X,L) = (−1)h
0(L)−1

(
ρg − 1

h0(L)− 1

)
since 0 < h0(L) ≤ ρg this is non-zero. Applying charge conjugation duality
and Serre duality gives

SW(X,L) = (−1)h
2(L)+ρg

(
ρg − 1

h2(L− 1)

)
.

Firstly, by comparing signs it is clear that h1(L) + h2(L) = 1 + ρg(mod2),
this alongside the condition χ(L) = 1 + ρg implies that h1(L) is even.

We now compare binomial coefficients, either h0(L) = h2(L) in which case
the condition that χ(L) = 1+ρg forces ρg to be odd, or h

0(L)+h2(L) = 1+ρg,
comparing this with χ(L) = 1 + ρg implies that h1(L) = 0.

Proposition 5.2.3. Let X be a Kähler surface with b1(X) = 0 and ρg > 0.
Let L be a holomorphic line bundle on X with h0(L), h2(L) > 0. Then
d(X,L) ≤ 0

Proof. Suppose that d(X,L) ̸= 0, by 5.2.1 it follows that h2(L)− h1(L) ≤ 0
and 2.3.7 gives h0(L) ≤ ρg, hence

d(X,L)

2
= χ(X)− 1− ρg

≤ h0(L)− 1− ρg

≤ −1

< 0

thus d(X,L) < 0. Consequently, d(X,L) ≤ 0.
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Families Seiberg-Witten
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Chapter 6

Families Seiberg-Witten
Theory

First we shall introduce families of 4-manifolds, these are smooth fibre bun-
dles with a base B and fibres diffeomorphic to a fixed 4-manifold X. Then we
shall define the various constructions on families which pertain to Seiberg-
Witten theory, this allows an exposition on the moduli space of solutions to
the Seiberg-Witten equations in a family. We shall provide proofs for the
key properties of the moduli space, namely transversality and compactness.
The proofs of these results are simple adaptations of standard techniques to
prove the corresponding results in the case of the ordinary Seiberg-Witten
moduli space in the unparametrised case

We then proceed to give an overview of Seiberg-Witten theory for families
of 4-manifolds. As mentioned in the introductory chapter, these techniques
were first used in results such as [Nis02], [Rub98] and [Rub02] with the first
general approach outlined in [LL01]. However, we opt for a slightly different
generalisation to the Seiberg-Witten invariant, namely a series of Seiberg-
Witten invariants for each integer n ≥ 0. This construction is discussed in
detail and more generality in [BK21], with the moduli space and resulting
Seiberg-Witten invariants being a special case of the construction of the
moduli spaces and invariants of families monopole maps. These families
Seiberg-Witten invariants are valued in the cohomology ring of the base of
the family with the n-th invariant being an element of the 2n− d-th degree
cohomology of the base where d is the expected dimension of the ordinary
Seiberg-Witten moduli space. When 2n − d = 0 this recovers the ordinary
Seiberg-Witten invariant of X.
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In particular, we define the families Seiberg-Witten invariants in the case
when b1(X) = 0, this can be done more generally for b1(X) > 0 if the family
E → B admits a section, although the resulting invariant is dependent on
such a choice. Analogous to the ordinary Seiberg-Witten invariant, these re-
quire a choice of a smooth family of metrics and perturbations of the Seiberg-
Witten equations, although the resulting invariants are independent of such
choices given some minor restrictions. However, when these conditions are
not met the chamber structure is much richer than the unparametrised case,
and we shall briefly outline some of the differences with the unparametrised
theory.

In the final section of the chapter, we shall discuss the case of Kähler
families, leading up to the computation of the invariant on Kähler families
in the following chapter.

6.1 Families of Manifolds and Seiberg-Witten

Theory

Definition 6.1.1. Let X be a compact, oriented, smooth 4-manifold with
b+ > 0 and B a compact smooth manifold. We say that a smooth family
of 4-manifolds with fibres X and base B is a smooth locally trivial fibre
bundle π : E −→ B which is fibrewise oriented and for each b there exists an
orientation preserving diffeomorphism π−1(b) ∼= X for all b ∈ B. Since the
fibres are diffeomorphic to X, the fibre over b ∈ B shall be denoted Xb.

We often call such a (smooth) family of X’s over B. It is obvious that
this definition could be generalised in many ways, for example removing
compactness of the fibre or the base or the restriction on b+. However, these
assumptions are crucial to be able to define the Seiberg-Witten invariants
and to obtain compactness and transversality of the moduli space, similar to
the unparametrised case.

We now wish to define the required constructions for the families Seiberg-
Witten invariants. Recall to define the Seiberg-Witten invariant we required
a choice of spinc structure, metric and self-dual 2-form as a perturbation of
the Seiberg-Witten equations. The idea to define the families Seiberg-Witten
invariants, is to choose a smoothly varying family of spinc structures, metrics
and perturbations which induce corresponding constructions on each fibre.
Then the Seiberg-Witten equations can be considered in a family for each b,
from which we can obtain a family of moduli spaces, yielding a total families
moduli space.
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Note that for any construction the induced object on the fibres will be
denoted by subscript and the family may sometimes be referred to by the
collection of objects on the fibres. For example, given a families metric g,
the induced metric on the fibre Xb is denoted gb and the family of metrics
may be referred to as g = {gb}b∈B.

Definition 6.1.2. Let π : E −→ B be a smooth fibre bundle, the differential
π∗ : TE → TB induces a map dπ : TE → π∗(TB). The vertical tangent
bundle is defined as T (E/B) := ker(dπ) and is a vector bundle T (E/B) −→
E.

Since the kernel of a surjective submersion can be identified with the
tangent spaces of submanifolds of the domain defined by the preimages of
points, it follows that T (E/B)|Xb

∼= TXb. As a consequence, the vertical
tangent bundle can be viewed as the smooth collection of the tangent bundles
of the fibresXb. This gives rise to the following definitions of families metrics,
perturbations and spinc structures.

Definition 6.1.3. Let π : E −→ B be a smooth fibre bundle, then a smoothly
varying family of metrics is a metric on the vertical tangent bundle. That
is, a smooth section g of S2T ∗(E/B) for which the induced map g|(Xb)p :
TpXb × TpXb −→ R is a positive definite inner product for all b ∈ B and
p ∈ Xb.

Definition 6.1.4. Let π : E −→ B be a smooth fibre bundle which is fibre-
wise oriented and g a smoothly varying family of metrics on the family, a fam-
ilies perturbation η with respect to g, is a smooth section of Λ2(T ∗(E/B))⊗iR
where the induced 2-forms ηb ∈ Ω2(X, iR) are self-dual with respect to the
induced metrics gb on Xb.

As in the unparametrised case, the families moduli space depends on a
choice of perturbation and metric. The parameter space of metrics and per-
turbations for the Seiberg-Witten equations defines a subset ΠE ⊂ Met(T (E/B))×
iΩ2(T (E/B))

ΠE := {(g, η) : ⋆bηb = ηb}.

The subset of Π for which the families Seiberg-Witten equations correspond-
ing to the pair (g, η) admit no reducibles is denoted Π∗

E and its complement
ΠE \ Π∗

E called the wall is denoted W .

Definition 6.1.5. Let π : E −→ B be a smooth family of 4-manifolds, we
say that a spinc structure for the family is a spinc structure on the vertical
tangent bundle T (E/B) −→ E. This amounts to a pair (W,Γ) where W
is a complex hermitian vector bundle of rank 4 over E and a vector bundle
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homomorphism Γ : T (E/B) −→ End(W ) satisfying

Γ(v)∗ + Γ(v) = 0, Γ(v)∗Γ(v) = |v|2idEnd(W ).

It immediately follows from the above definition that given a spinc struc-
ture for a smooth family E −→ B, any other spinc structure is given by
tensoring by a complex line bundle on E. Consequently, the spinc struc-
tures on a family is a torsor for the group H2(E;Z). It is then of interest
to understand the cohomology of the total space of the family, the following
computation can be made when the fibre X and the base space B are both
simply connected.

Proposition 6.1.6. Let X ↪→ E −→ B be a family of 4-manifolds with X
and B both simply-connected and H3(X;Z) = 0 then

H2(X;Z) ∼= H2(B;Z)⊕H2(X;Z)

Proof. Since X is simply-connected, by the Hurcewicz theorem, H1(X;Z) =
0, then by Poincaré duality H3(X;Z) = 0. Since X is compact its homology
groups are finitely generated so by the universal coefficient theorem, it follows
that H1(X;Z) ∼= Hom(H1(X;Z),Z)⊕T0 where T0 is the torsion subgroup of
H0(X;Z), but X is connected so H0(X;Z) = Z which has no torsion. Hence
H1(X;Z) = 0.

Since B is simply-connected, the action of π1(B) on the fibres is trivial
and the E2 page of the Leray-Serre spectral sequence consists of E2

p,q =
Hp(B;Hq(X;Z)) and abuts to Hp+q(E;Z), this then reads as

0 1 2 3

0

1

2

3

4

H0(B;Z)

0

H0(B;H2(X;Z))

0

H0(B;Z)

H1(B;Z)

0

H1(B;H2(X;Z))

0

H1(B;Z)

H2(B;Z)

0

H2(B;H2(X;Z))

0

H2(B;Z)

. . .

. . .

. . .

. . .

. . .

the differentials all map to or out of 0 so the entries of the E3 page are
identical to the E2 page and the differentials of the Er page for r ≥ 4 are
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clearly all zero, so in particular there is an exact sequence

H2(B;Z) → H2(E;Z) → H0(B;H2(X;Z)) → H3(B;Z)

but H0(B;H2(X;Z)) is just H2(X;Z) since B is connected and H3(B;Z) is
assumed to be zero. The exact sequence then reduces to

H2(B;Z) → H2(E;Z) → H0(B;H2(X;Z)) → 0.

Again by the universal coefficient theorem we haveH2(X;Z) ∼= Hom(H2(X;Z),Z)⊕
T1 where T1 is the torsion subgroup of H1(X;Z), but T1 = 0 since π1(X) = 0.
Since Hom(H2(X;Z),Z) is free, it follows that H2(X;Z) is free and thus the
above exact sequence splits and so

H2(X;Z) ∼= H2(B;Z)⊕H2(X;Z).

Remark 6.1.7. Note that the existence of a spinc structure on the vertical
tangent bundle is a stronger condition than necessary to define the Seiberg-
Witten moduli space for the family. In fact, only a monodromy invariant
spinc structure on X is required [Bar19]. However, this condition is insuffi-
cient for defining a families Seiberg-Witten invariant valued in cohomology
classes H2n−d(B;Z) with n > 0, consequently we shall only consider such
spinc structures which extend to the vertical tangent bundle, leading to the
preceding definition.

It is also of note that distinct spinc structures on the vertical tangent
bundle can induce the same family of spinc structures on the fibres, suppose
S is a spinc structure on the vertical tangent bundle of a family E −→ B
and that L is a line bundle over B with non-zero first Chern class. We then
obtain another spinc structure on the vertical tangent bundle by

S ′ = S ⊗ π∗(L)

distinct from S. However, this induces the same family of spinc structures
on the family by local triviality of B.

With the setup now complete, the Seiberg-Witten equations can be de-
fined for a family. Choose a smooth family of metrics {gb}, smooth family of
perturbation by self-dual 2-forms {ηb} with respect to the choice of metric
and spinc structure for the family Γ : T (E/B) −→ W . The smooth family of
metrics {gb} defines a unique canonical torsion-free, metric-compatible Levi-
Civita connection on T (E/B) constructed identically to the case on Rieman-
nian manifolds which restricts to the Levi-Civita connection on each fibre.
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Choose a spinc connection on W compatible with the families Levi-Civita
connection with associated virtual connection {Ab} ∈ A(Γ) on L = L

1/2
Γ

where LΓ = det(W ) (recall such a connection and L may only exist locally
but is notationally more convenient to work with compared to the globally
induced connection 2A on LΓ). There is then an induced Dirac operator
DA : C∞(E,W ) −→ C∞(E,W ) as in Definition 3.2.5, the splitting of W
into W± then gives the restricted Dirac operator DA : C∞(E,W+) −→
C∞(E,W−) which induces a family of Dirac operators DAb

: C∞(Xb,W
+
b ) →

C∞(Xb,W
−
b ), the families Seiberg-Witten equations are then the following.

Definition 6.1.8. Let X ↪→ E −→ B be a smooth family of 4-manifolds
equipped with a smooth family of metrics, self-dual perturbations with re-
spect to the metric and a families spinc structure. The (perturbed) families
Seiberg-Witten equations are precisely the analogue of the ordinary Seiberg-
Witten equations on the vertical tangent bundle, that is

DAΦ = 0 (6.1)

ρ+(FA + η) = (ΦΦ∗)0 (6.2)

where (Φ, A) ∈ C∞(E,W+) ×A(Γ) and ρ+, (ΦΦ∗)0 are defined as in Chap-
ter 3.

By restricting all the objects involved to fibres Xb, this determines a
family of equations for each b ∈ B

DAb
Φb = 0 (6.3)

ρ+b(FAb
+ ηb) = (ΦbΦ

∗
b)0 (6.4)

These are equations in Ab ∈ A(Γb) and Φb ∈ C∞(X,W+
b )

For each b ∈ B, the Seiberg-Witten equations on Xb are invariant under
the action of the group Gb := Maps(Xb, S

1), the disjoint union of these gauge
groups determines the total space for a bundle of groups G → B with fibres
Gb. Although G is not a group, it is a groupoid and it induces an action on
the families Seiberg-Witten equations by acting fibrewise.

The families moduli space is then defined to be the solutions to the fam-
ilies Seiberg-Witten equations equations modulo the groupoid action of G.
The total moduli space is then the disjoint union of the ordinary moduli
spaces

M(E, S, g, η) :=
⊔
b∈B

Mb.

with obvious projection map M −→ B obtained from the disjoint union.
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As in the unparametrised theory, the families Seiberg-Witten invariant
will only depend on a choice of connected component of Π \ W called a
chamber, the set of chambers denoted CH. The chamber structure for the
unparametrised theory was relatively simple, with one connected component
when b+(X) > 1 and two in the case of b+(X) = 1. However, it is significantly
more complicated in the parameterised theory. It was shown in [LL01], that
the set of chambers is identified with fibrewise homotopy classes of sections
into the bundle P → B, where P is called the period bundle P → B and
is a subbundle of H2 → B where H2 has fibres H2(Xb;R) over b ∈ B. We
denote such homotopy classes of sections by [B,P ]f . The period bundle P is
homotopic to an Sp bundle over B, and the the space of fibrewise homotopy
classes into such bundles is very complicated. When the family E is a trivial
product bundle E = X × B or if the base B is simply connected, the set
[B,P ]f can be identified with [B, Sb

+(X)−1], the b+(X) − 1-th cohomotopy
set of B. This is the set of homotopy classes of maps B → Sb

+(X)−1, given
restrictions on B and b+(X) this can simplify the chamber structure some-
what, as done in Chapter 8 when we analyse the invariant for Kähler families
over B = S2.

Definition 6.1.9. We say that a solution {(Ab,Φb)} to the families Seiberg-
Witten equations is reducible if (Ab,Φb) is reducible for some b ∈ B, that is,
Φb ≡ 0 for some b ∈ B.

Since we may represent c1(Lγ) by (i/π)FA in deRham cohomology, the
families Seiberg-Witten equations admits reducible solutions if and only if

[ηb] = iπc1(LΓb
)+gb =: wb

for some b, where ηb 7→ [ηb] is the projection ontoH2
+(Xb, gb). If this condition

does not occur then the families equations admit no reducible solutions.

Just as in the families case, we can impose restrictions on b+(X) to guar-
antee no reducibles.

Proposition 6.1.10. Let X ↪→ E → B be a smooth family of 4-manifolds
with a families spinc structure and assume that b+(X) > dim(B), then for a
generic perturbation there are no reducible solutions to the families Seiberg-
Witten equations.

Proof. Let H2,+ denote the disjoint union
⊔
b∈BH

2
+(Xb, gb), since the spaces

H2
+(Xb, gb) all have dimension b+(X), they are all of constant dimension and

so this defines a vector bundle H+ −→ B.
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Choose a generic section [ηb] we may take this to be transverse to wb. Since
both [ηb] and wb are sections of this vector bundle, their image constitutes
dim(B)-dimensional submanifolds of the total space H+, it follows that they
both have codimension b+(X) in H+. Since codimension is additive over
transverse intersection, it follows that

U := {(b, [ηb]) : [ηb] = wb}

has codimension 2b+(X). However, it follows from the definition of codimen-
sion that dim(U) = b+(X) + dim(B)− codim(U) so

dim(U) = dim(B)− b+(X)

since b+(X) > dim(B) this dimension is negative, hence U must be empty.

We note that the following proofs of transversality, compactness and ori-
entability proceed identically to the corresponding proofs for moduli spaces
of families monopole maps as in [BK21][Section 2.1] and are also quite similar
to the proofs in the unparametrised case as seen in Section 4.2.

Via a families version of the map and Theorem 1.1.6 as in Section 4.2 one
can prove that the set of regular families perturbations is generic. For such
perturbations the moduli space is a smooth manifold.

Theorem 6.1.11. Let X ↪→ E → B be a smooth family of 4-manifolds
(g, η) ∈ Π∗

reg and families spinc structure Γ, then the families Seiberg-Witten
moduli space is a smooth manifold of dimension dim(B) + d(X,Γ) where
d(X,Γ) is the expected dimension of the unparametrised moduli space

d(X,Γ) =
⟨c(LΓ)

2, [X]⟩ − 2χ(X)− 3σ(X)

4

Proof. Fix a smooth reference connection A0 ∈ A(Γ), it suffices to prove

that the moduli space M̃ obtained by adding the gauge fixing condition
d∗(A − A0) = 0 is a smooth manifold. Since b1(X) = 0, the only remaining
non-trivial part of the action of G is an S1 action which acts freely away from
reducibles, consequently the moduli space M is a smooth manifold.

It suffices to consider the map f : V → W between Hilbert bundles given
by

f(α,Φ) = (DA0+αΦ, d
+α + σ((ΦΦ∗)0)− FA0 , d

∗α)

acting fibrewise, where

V = VC ⊕ VR, W = WC ⊕WR
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and VC,WC, VR,WR have fibres

VC := L2
k(Xb,W

+), VR := iL2
k(Xb,Λ

1T ∗Xb)

WC := L2
k−1(Xb,W

−), WR := iL2
k−1(Λ

2,+T ∗Xb)⊕ L2
k−1(Xb, iR)0

where L2
q(Xb,R)0 is the subspace satisfying

∫
Xb
fvolb = 0.

The map f can be further decomposed as f = l + c where

l(α,Φ) = (DA0Φ, d
+α, d∗α), c(α,Φ) = (Γ(α)Φ, σ((ΦΦ∗)0)− FA0 , 0).

The linearisation of f at (α,Φ) in the fibre directions is computed as

d(α,Φ)l(a, ψ) = (DA0ψ, d
+a, d∗a)

and
d(α,Φ)c(a, ψ) = (Γ(a)Ψ, σ+((Φψ∗ + ψΦ∗)0)).

This is a perturbation of a Fredholm operator of index d(X,Γ) + 1 by a
compact operator as in Section 4.2, consequently the total map is Fredholm
with same index. Since the family of perturbations η is a section and can
be viewed as a dim(B) dimensional submanifold of the codomain, it follows
from Theorem 1.1.6 that M̃ = f−1(η) is a smooth submanifold of dimension

d(E,Γ) = d(X,Γ) + dim(B) =
⟨c(LΓ)

2, [X]⟩ − 2χ(X)− 3σ(X)

4
+ dim(B).

Theorem 6.1.12. Let X ↪→ E → B be a smooth family of 4-manifolds
with X and B both compact equipped with a smooth family of metrics and
a families spinc structure. Then the families Seiberg-Witten moduli space is
compact.

Proof. Assume p > 4, since B is compact, there is a finite trivalising cover
Uα of the family X ↪→ E → B such that π−1(Uα) ∼= Uα × X. Applying
the proof as in Theorem 4.2.5, we may gauge fix into Coulomb gauge and
this gives a uniform bound on families of solutions over Uα, since the cover
is finite, there is a uniform bound on solutions to the perturbed families
Seiberg-Witten equations in Lpk for all k > 0.

As before, it follows from Rellich’s theorem and Theorem 1.2.2 that given
any sequence of solutions to the families Seiberg-Witten equations which we
may take to be gauge fixed into Coulomb gauge, there is a subsequence that
converges in the C∞ topology. Hence the families moduli space is compact.
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In the families setting the moduli space is not necessarily oriented, al-
though to obtain an invariant it suffices to require a more general notion of
orientation.

Definition 6.1.13. Let π : E → B be a smooth fibre bundle, we say that it
has a relative orientation if

TE ⊕ π∗(TB)

is equipped with an orientation.

We can obtain a relative orientation similar to the unparametrised as in
the following result

Theorem 6.1.14. There is a natural isomorphism

det(TM⊕ π∗(TB)) ∼= π∗(det(ind(lR)))

where ind(lR) is the K-theory class of the family of operators lR as in Theo-
rem 6.1.11 and π : M → B is the obvious projection.

Proof. The S1 action acts via orientation preserving diffeomorphisms, so we
must show there is an S1 equivariant isomorphism

det(TM̃ ⊕ π′∗(TB)) ∼= π′∗(det(ind(lR)))

where π′ : M̃ → B is the obvious projection.

As in the unparametrised case, there is an S1-equivariant homotopy be-
tween the families of maps dfvv∈M̃ and {l}v∈M̃, consequently we obtain an
S1 equivariant isomorphism

det(TM̃) ∼= π′∗det(ind(l)⊕ det(TB))

since l decomposes as lC+lR and lC is a complex Fredholm operator, det(ind(lC))
is trivial and we have

det(ind(l)) = det(ind(lC)) + det(ind(lR)) = det(ind(lR))

giving the desired result.

Recall from the unparametrised case that over each fibre the kernel of l
is given by H1(Xb; iR) and the cokernel by H0(Xb; iR)⊕H2,+(Xb; iR), since
we assume that b1(X) = 0 and becuase H0(Xb; iR) already carries a natural
orientation. Assume that H2,+(Xb; iR) has constant dimension over B so
that it defines a vector bundle, one may then transport a relative orientation
onto the families moduli space by assuming that the vector bundle H+ with
fibres H2,+(Xb; iR) is orientable, we shall make these assumptions from now
on.
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6.2 Defining the Families Seiberg-Witten In-

variants

Recall in Section 4.3 the Seiberg-Witten invariant could defined by construct-
ing a line bundle L → B via a subgroup of based gauge transformations and
integrating its first Chern class over the moduli space M. This involved a
choice of basepoint x0 but in the families case, this leads to a non-canonical
choice of section x0. Such a section does not necessarily exist for any smooth
family and if one does exist for a given family, it is not known whether the
families Seiberg-Witten invariant is independent of such a choice. Alterna-
tively we described another method when b1(X) = 0 which is independent
of a choice of basepoint and we shall assume this throughout.

Consider the subgroup of the reduced gauge group Gb

G0,b := {g ∈ Gb : g = eif , f : Xb −→ R,
∫
Xb

fvolXb
= 0}

and recall for b1(X) = 0 there is the following exact sequence

0 → G0 → G → S1 → 0

Define M̃ to be the moduli space factoring out by G0 instead of the full
gauge group fibrewise. This then gives a principal circle bundle M̃ −→ M
since G/G0

∼= S1, denote the associated complex line bundle by L −→ M
and its first Chern class by x ∈ H2(M;Z).

Since the moduli space M has a relative orientation there is a natural
’wrong way’ map corresponding to integration over the fibres in deRham
cohomology, if we further assume that B is oriented then M is oriented and
it can be described as follows.

Since both M and B are both compact and oriented, via Poincaré duality
there is a map π! : Hk(M;Z) −→ Hk−d(B;Z) where d is the expected
dimension of the unparametrised moduli space. This map is defined via the
following commutative diagram

Hk(M;Z) Hk−d(B;Z)

Hdim(M)−k(M;Z) Hdim(M)−k(B;Z)π∗

π!

Poincaré DualityPoincaré Duality .
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This map is often denoted as

π!(x) =

∫
E/B

x

due to its correspondence with integration over fibres.

Definition 6.2.1. For any n ≥ 0 given a choice of families spinc structure
and chamber ϕ the families Seiberg-Witten invariants are

FSWn(E, s, ϕ) ∈ H2n−d(B;Z)

defined by
FSWn(E, s, ϕ) = π!(y

n)

where y is the first Chern class of the line bundle L defined previously and
π! is the wrong way map.

Just as in the unparametrised case, provided b+(X) > dim(B) + 1 these
invariants are independent of metric and a generic choice of perturbation. In
the case when 1 ≤ b+(X) ≤ dim(B) + 1 there is only a dependence of the
invariants on a choice of chamber of the perturbation space.

Theorem 6.2.2. Let X ↪→ E −→ B be a smooth family of 4-manifolds
with b+(X) > dim(B) + 1, then the Families Seiberg-Witten invariant is
independent of choice of a smooth family of metrics and perturbations

Proof. Suppose g0,b, g1,b are both smooth families of metrics on E → B and
η0,b and η1,b are choices of perturbations which are self-dual to g0,b and g1,b
respectively. Since b+(X) > dim(B) + 1, the parameter space Π∗ is path-
connected, there is a generic path between (g0,b, η0,b) and (g1,b, η1,b) such that
the perturbations intersect the map f as in Theorem 6.1.11 transversely and
defines a dim(B) + 1 dimensional submanifold of the target space.

It follows that the preimage of the path M̃ is a smooth compact manifold
of dimension d(X,Γ)+dim(B)+2 with boundary ∂M̃ = ∂M̃0−∂M̃1. The S

1

action acts freely giving the parametrised families moduli space M with the
families moduli spaces corresponding to (g0, η0) and (g1, η1) on the boundary.
There is a projection map π : M → B × [0, 1] that restricts to π1 : M1 → B

and π2 : M2 → B. The projection M̃ → M obtained from the S1 action
defines a line bundle L which restricts to the line bundles L0 → M0 and
L1 → M1, this gives

FSWn(E,Γ, g0, η0) = π0!c1(L)n = π1!c1(L)n = FSWn(E,Γ, g1, η1).



6.3. Charge Conjugation and the Families Wall-Crossing Formula 103

The argument in the proof above also shows that when 1 ≤ b+(X) ≤
dim(B)+1 the families Seiberg-Witten invariant does not depend on a choice
of perturbation within a given chamber. Therefore the families Seiberg-
Witten invariants only depend on a choice of families spinc structure and
chamber.

Remark 6.2.3. If 2n−d = dim(B), then the invariant lies in the top degree
cohomology of B and we can integrate it over B to obtain an integer that is∫

B

∫
E/B

yn =

∫
M
yn

which coincides with the traditional definition of the Seiberg-Witten invariant
in the unparametrised case.

6.3 Charge Conjugation and the Families Wall-

Crossing Formula

The families Seiberg-Witten invariant also exhibits a charge conjugation for-
mula and wall-crossing formula. The proof of the charge conjugation formula
is identical to the unparametrised case, the only distinction being the pres-
ence of a richer chamber structure since the index of the family of Dirac
operators is constant along B, only depending on topological properties of
X. For a choice of chamber c we denote the dual chamber by −c, note that
when B is simply connected, the space of chambers is identified with ho-
motopy classes of maps B → Sb

+(X)−1 and the dual chamber obtained from
charge conjugation is given by composing c with the antipodal map on the
sphere. We then have the following result.

Theorem 6.3.1. Let X ↪→ E → B be a smooth family of 4-manifolds and
Γ : T (E/B) → End(W ) be a families spinc structure. Then if b+(X) >
dim(B) + 1

FSW (E,Γ) = (−1)indC(DA)+b++1+nSW (E,Γ)

and if b+(X) ≤ dim(B) + 1

FSW (E,Γ, c) = (−1)indC(DA)+b++1+nSW (E,Γ,−c)

where indC(DA) =
c(LΓ)

2−σ(X)
2

.

The families wall-crossing formula was first proven in [LL01], although
a purely cohomological proof of the formula was obtained by Baraglia and
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Konno in [BK21]. We state their result in the special case that B is simply-
connected

Theorem 6.3.2. Let X ↪→ E → B be a smooth family of 4-manifolds with
b1(X) = 0 and b+(X) > 1 equipped with a families spinc structure Γ. Let
D be the virtual index bundle of the family of Dirac operators obtained from
the families spinc structure, set d = rankC(D) and let c1, c2 be two chambers,
viewed as homotopy classes of maps B → Sb

+(X)−1 where Sb
+(X)−1 is the

unit sphere in H+(X). Since H+ is oriented it induces and orientation on
Sb

+(X)−1 and there is an associated volume form ν ∈ Hb+(X)−1(Sb
+(X)−1)

consistent with the orientation, set deg(c) := c∗(ν). It then follows that

FSWn(E,Γ, c1)− FSWn(E,Γ, c2) = 0

if n < d− 1 and

FSWn(E,Γ, c1)−FSWn(E,Γ, c2) = (−1)n(deg(c1)−deg(c2))s(n−d+1)(ind(D))

if n ≥ d − 1 where sj(ind(D)) is the j-th Segre class of the virtual index
bundle of D.

More generally, the deg(c1)−deg(c2) term above is an instance of the pri-
mary difference class, see [Ste99][Chapter 36]. Using such one can also obtain
a wall-crossing formula when b+(X) = 1 similar to the above expression.

6.4 Kähler Families

In this section we shall discuss particular classes of smooth families called
Kähler families. These are smooth families of manifolds for which there is
a smoothly varying Kähler structure. Provided the relevant assumptions
are made, the required properties for the computation of the Seiberg-Witten
invariant of Kähler surfaces carry over in the families setting, allowing us to
compute the invariant as is done later in Chapter 7.

Definition 6.4.1. Let π : E −→ B be a smooth family, we say that the
family is Kähler or has a smoothly varying Kähler structure, if there is a
Kähler structure on the tangent bundle T (E/B). That is, there exist the
following

� a metric g on T (E/B)

� an almost-complex structure on T (E/B) whose restriction to any fibre
is integrable.
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and the induced non-degenerate (1, 1)-form ω ∈ C∞(E,Λ2T ∗(E/B)) defined
by

ω(v, w) = g(Jv, w)

restricts to a closed form on each fibre.

Remark 6.4.2. Note that a smooth family of Kähler structures restricts to
a Kähler structure on each fibre, hence a Kähler family is indeed a smooth
family of Kähler manifolds. Note that a smooth family of Kähler manifolds
in the sense of Definition 6.1.1, i.e. a smooth family for which the fibres
happen to be Kähler, does not necessarily determine a Kähler family since
the Kähler structures may not vary smoothly.

Analogously to the unparametrised case, smooth Kähler family has a
canonical families spinc structure obtained from the complex structure as
follows

Definition 6.4.3. Let E −→ B be a family of Kähler surfaces with smoothly
varying Kähler structure

The canonical families spinc structure is defined by

Wcan = Λ0,∗T ∗(E/B)

where Γcan : T (E/B) −→ End(Wcan) is given by

Γcan(v)τ :=
1√
2
v′′ ∧ τ −

√
2ι(v)τ

where v ∈ T (E/B), τ ∈ Wcan and v′′ := v∗− i(Jv)∗ = gC(·, v), where ∗ is the
real dual.

Analogously to the canonical spinc structure on a Kähler surface there is
a characteristic line bundle

LΓcan = K∗ = Λ0,2T ∗(E/B).

The families Levi-Civita connection on the vertical tangent bundle naturally
extends to differential forms and provides a canonical spinc connection on
Wcan which restricts to the canonical connection on the fibresWcanb , as in the
unparametrised case. Via the results of Chapter 5 we immediately obtain the
following form of the families Seiberg-Witten equations for Kähler families.

Proposition 6.4.4. Let X ↪→ E → B be a smooth family of Kähler surfaces
with smoothly varying Kähler structure, L −→ E a Hermitian line bundle
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and B ∈ A(L) a Hermitian connection, then the families Seiberg-Witten
equations are

∂B,bφ0,b + ∂
∗
B,bφ2,b = 0 (6.5)

2(FB,b + ηb)
0,2 = φ0,bφ2,b (6.6)

4i(FAcan + FB,b + ηb)ωb
= |φ2,b|2 − |φ0,b|2 (6.7)

where ∂B is defined via the complex structure J on the family. On each
fibre these are simply the equations 5.1,5.2 and 5.3 as in Proposition 5.1.1
with respect to the restriction of the line bundle L to Xb, denoted Lb and the
restricted connection Bb on Lb.



Chapter 7

Computation of the Families
Seiberg-Witten Invariants on
Families of Kähler Surfaces

The goal of this chapter is to demonstrate the computation of the families
Seiberg-Witten invariant on Kähler families with smooth Kähler structure
when b1(X) = 0, we shall require an addition assumption that certain co-
homology groups have constant dimension over the base of the family B.
Since we are strictly interested in Kähler families, the associated 2-form ω
allows us to choose a particular perturbation and hence a chamber. As in
the discussion preceding Theorem 5.1.9, this allows a computation of the
invariant in the families case. As will be seen, this choice of perturbation is
not necessarily generic, nonetheless a computation of the invariant can still
be made by modifying the computation with a factor of the Euler class of
the obstruction bundle of the moduli space.

After performing the computation in question and simplifying it into a
more manageable expression, we further apply it to 3 specific classes of fam-
ilies. Namely a family of CP2’s, CP1 ×CP1’s and finally a family with fibres
being the blowup of a Kähler surface X.

7.1 A Computation for a General Class of

Kähler Families

Consider a smooth family of Kähler surfaces with smooth Kähler structure
E −→ B where B is compact and the fibres Xb which are diffeomorphic to

107
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some compact Kähler surface X with b1(X) = 0. Choose a family of metrics
gb and the family of self-dual 2-forms iλωb with λ > 0 sufficiently large so that
iλωb does not lie on the wall for any b ∈ B as a family of perturbations, where
the ωb are the Kähler forms obtained from the Kähler structure, note that
the existence of such a λ follows from the compactness of B. This determines
a chamber for the families Seiberg-Witten invariant which we call the Kähler
chamber.

There is a canonical spinc structure on the vertical tangent bundle since
the family has a smooth Kähler structure, thus we may obtain any other
families spinc structure sL via tensoring by a hermitian line bundle L over E.
This restricts to a line bundle over each Xb which we denote by Lb, note that
a choice of a family of connections for the families Seiberg-Witten equations
amounts to a choice of a smooth family of connections Ab on Lb. Denote the
cohomology groups for the sheaf of holomorphic sections of Lb with respect
to the connection Ab by H

i(Xb, Lb, A), since we assume b1(X) = 0 there is
a unique holomorphic structure on each Lb, precisely the one given by Ab so
we further drop the Ab in our notation where necessary. We shall make the
following assumptions relating to the choice of line bundle L.

1. For each b ∈ B, the line bundle Lb has first Chern class c1(Lb) which
is represented by a (1, 1) form, hence the line bundles Lb are all holo-
morphic.

2. The dimensions of H i(Xb, Lb) for i = 0, 1, 2 are independent of b.

The first assumption ensures the line bundles Lb are holomorphic which is
simply a necessary condition for a non-zero Seiberg-Witten invariant, the
second ensures that the higher direct image sheaves Riπ∗O(L) are locally
free [BS76][Lemma 1.5]. These have stalks H i(Xb, Lb) and so the families of
vector spaces H i(Xb, Lb) form locally trivial vector bundles over B

V i −→ B

where the fibres are H i(Xb, Lb) and are of rank hi(L) although for simplicity
we shall often denote the rank by hi when L is understood.

The families Seiberg-Witten moduli space is then M =
⊔
b∈B Mb where

each Mb is the ordinary Seiberg-Witten moduli space obtained from solu-
tions to the Seiberg-Witten equations with the induced spinc structure on
each Xb with respect to the connection Ab and the bundle of gauge groups
Gb = Maps(Xb, S

1) acts fibrewise. This families moduli space has a natural
projection map π : M −→ B.
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Since B is compact, by taking a finite trivialising cover of the family and
applying Theorem 5.1.8, it follows that we can further choose λ sufficiently
large such that such that on each fibre Xb, solutions to the Seiberg-Witten
equations up to gauge equivalence will correspond to, up to gauge equivalence
of complex line bundles, a holomorphic structure on the line bundle Lb with
non-zero holomorphic section. It follows as in Chapter 5 the moduli space
Mb is then given by

Mb =
H0(Xb, Lb) \ {0}

C∗ = P(H0(Xb, Lb))

i.e. the projectivisation of the vector space H0(X,Lb). Therefore the families
moduli space is the vector bundle

M = P(V 0).

Let M̃ be the families moduli space obtained factoring by the family of
reduced gauge groups {G0,b}b∈B instead of the full gauge group. Since Gb ∼=
G0,b × S1, there is a principal circle bundle

M̃ −→ M

for which there is an associated line bundle over the total moduli space,
denoted OV 0(−1), this restricts to the tautological bundle O(−1) on each
fibre. Define y = c1(OV 0(−1)), and x = c1(OV 0(1)) where OV 0(1) is the dual
of OV 0(−1), then y = −x.

We now wish to compute the families Seiberg-Witten invariant. However,
the particular choice of perturbation is not necessarily generic, to compute
the invariant we must then insert a factor of the Euler class of the obstruc-
tion bundle e(Obs) where Obs = coker(f) : V −→ W , f is defined as in
Theorem 6.1.11 and f is the induced map under the remaining S1 action
(see the proof of [FM99][Theorem 3.1]).

Note that the families moduli space is given by f
−1
(η) and the obstruc-

tion bundle will be obtainable from the linearisation of the families Seiberg-
Witten equations D̃ as seen in Equation (5.9), it will also be useful to define
the linearisation of the families Seiberg-Witten equations with the Coulomb
gauge fixing condition applied instead, we denote the corresponding opera-
tor by D, unlike the operator D̃ this does not eliminate the full gauge group,
but leaves the S1 action remaining. Given some integer n ≥ 0, the families
Seiberg-Witten invariants for the family E and spinc structure induced by a
choice of line bundle L can be computed as

FSWn(E,L) =

∫
P(V 0)/B

yne(Obs).
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Note that we have the following isomorphisms

ker(df(A,Φ)) ∼= ker(DA,Φ), coker(df) ∼= coker(DA,Φ).

Consequently

ker(df [A,Φ]) ∼= ker(D̃A,Φ) ∼= ker(DA,Φ)/R(0, iΦ)
coker(df [A,Φ]) ∼= coker(D̃A,Φ) ∼= coker(DA,Φ).

7.1.1 The Obstruction Bundle in the Families Case

Since we are in the obstructed case, we must determine e(coker(D)) where
D is the linearisation of the family Seiberg-Witten equations.

Recall for each fibre Xb, Lemma 5.1.5 gives the following exact sequence
of vector spaces.

0 H0(Xb,O) H0(Xb, Lb, Ab) ker(D̃A,φ,b)

H1(Xb,O) H1(Xb, Lb, Ab) coker(D̃A,φ,b)

H2(Xb,O) H2(Xb, Lb, Ab) 0

and O is the usual structure sheaf of Xb.

Since b1(X) = 0, it follows that H1(Xb,O) = 0, hence there is a reduction
of the exact sequence to

0 → H1(Xb, Lb) → coker(DA,φ,b) → H2(Xb,O) → H2(Xb, Lb) → 0

Since the dimensions of H i(Xb, Lb) are assumed to be constant over b, define
vector bundles V i with fibres H i(Xb, Lb) over B as above. We also define
the vector bundle H2,0 to be the vector bundle with fibres H2(Xb,O). The
previous sequence then implies that the following sequence of smooth vector
bundles over B is exact.

0 → V 1 → coker(D) → H2,0 → V 2 → 0
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This induces an exact sequence of vector bundles over M̃ by taking the
relevant pullback of all the vector bundles involved. The remaining S1 action
acts fibrewise, identifying cokernels via

coker(DA,Φ) ∼= coker(DA,eiθΦ)

and induces an action on Lb via rotation of complex numbers of unit length,
further inducing an action on H i(Xb, Lb) by multiplication of the same com-
plex number, thus applying the S1 action will result in tensoring by a factor
of the hyperplane line bundle O(1) for these terms. The action on H2,0 is
trivial. All the relevant maps in the exact sequence are also S1 equivariant,
hence applying the S1 action gives rise to a well-defined exact sequence of
vector bundles over M.

0 → π∗V 1 ⊗OV 0(1) → Obs → π∗H2,0 → π∗V 2 ⊗OV 0(1) → 0

where π is the projection map π : M −→ B.

It follows that the obstruction bundle as a complex vector bundle has
rank as a complex vector bundle rank(Obs) = h1 − h2 + ρg, the total Chern
class of the obstruction bundle is also given by

c(Obs) = c(π∗H2,0)c(π∗V 1 ⊗OV 0(1))c(π∗V 2 ⊗OV 0(1))−1

and we aim to extract the top degree term from this.

If E is a vector bundle of rank r and L is a line bundle, then the ith
Chern class is obtained by

ci(E ⊗ L) =
i∑

j=0

(
r − i+ j

j

)
ci−j(E)c1(L)

j. (7.1)

Meanwhile π∗c(V 2⊗OV 0(1))−1 is the total Segre class, s(π∗V 2⊗OV 0(1))
where the i-th graded piece in cohomology of even degrees is the i-th Segre
class. There is a similar formula to the Chern classes

si(E ⊗ L) =
i∑

j=0

(−1)i−j
(
r + i− 1

r − 1 + j

)
sj(E)c1(L)

i−j (7.2)

where the si can inductively be computed by

c1(E) = −s1(E)
c1(E) = s1(E)

2 − s2(E)

...

cr(E) = −s1(E)cn−1(E)− s2(E)cn−2(E)− · · · − sn(E)
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it follows that

c(π∗V 1 ⊗OV 0(1)) =
h1∑
ℓ=0

ℓ∑
j=0

(
h1 − ℓ+ j

j

)
cℓ−j(π

∗V 1)xj

where x = c1(OV 0(1))

and similarly

c(π∗V 2 ⊗OV 0(1))−1 =
∞∑
p=0

p∑
i=0

(−1)p−i
(
h2 + p− 1

h2 + i− 1

)
si(π

∗V 2)xp−i

the top degree term, which coincides with the Euler class of the obstruc-
tion bundle, is given by the sum of all products which are cohomology classes
of degree rankR(Obs) = 2(h1 − h2 + ρg), i.e.

e(Obs) =

h1−h2+ρg∑
m=0

ch1−h2+ρg−m(π
∗H2,0)ϕm (7.3)

where ϕm is the 2m-th degree term of the product c(π∗V 1⊗OV 0(1))c(π∗V 2⊗
OV 0(1))−1, by expanding this product explicitly, one obtains that

ϕm =
m∑
p=0

p∑
j=0

m−p∑
i′=0

[
(−1)p−j

(
h2 + p− 1

h2 + j − 1

)(
h1 −m+ p+ i′

i′

)

(π∗V 2)cm−p−i′(π
∗V 1)xp+i

′−i

]
.

(7.4)

7.1.2 Integration Over the Fibre

The other required term is the fibre integral of yk where y = c1(OV 0(−1)) =
−x. Because of this relation, it suffices to understand the fibre integrals of
powers of x.

Since the fibres of P(V 0) −→ B are h0 − 1 complex dimensional, for
0 ≤ k < h0 − 1 we have ∫

P(V 0)/B

xk = 0
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since in representing such via a differential form and working on a local
trivialisation, the fiber part has to be of degree less than that of the dimension
of the fiber.

To obtain xh
0−1, consider the Euler sequence for the projectivisation of

a vector bundle, this gives an exact sequence of vector bundles over M =
P(V 0).

0 C OV 0(1)⊗ π∗V 0 T (P(V 0)/B) 0

due to the triviality of C as a vector bundle, we immediately have the equality
of the following two total Chern classes

c(T (P(V 0)/B)) = c(OV 0(1)⊗ π∗V 0)

from which it follows that the individual Chern classes of each degree are
equal. Consequently

ch0−1(T (P(V 0)/B)) = ch0−1(OV 0(1)⊗ π∗V 0).

Since OV 0(1) ⊗ V 0 is a rank h0 vector bundle, using the formula for the
Chern class of the tensor product of a vector bundle with a line bundle we
have

ch0−1(T (P(V 0)/B)) =
h0−1∑
j=0

(
j + 1

j

)
ch0−1−j(π

∗V 0)xj (7.5)

in integrating both sides over the fibre, since these are forms with same
degree as the dimension of the fibres, the fibre integrals are simply 0-forms.
Observe that the fibre integral of ch0−1(T (P(V 0)/B)) is simply the Euler
class of vertical tangent bundle, since it fibrewise restricts to the Euler class
of the tangent bundle of the fibres, integrating along the fibre gives the Euler
characteristic of P(V 0)b. Since it is fibrewise isomorphic to CPh0−1, the left
hand side is h0. By the projection formula it then follows that

h0 =
h0−1∑
j=0

(
j + 1

j

)
ch0−1−j(V

0)

∫
P(V 0)/B

xj

and only the j = h0 − 1 term survives from the above argument, hence

h0 =

(
h0

h0 − 1

)∫
P(V 0)/B

xh
0−1 = h0

∫
P(V 0)/B

xh
0−1
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and so ∫
P(V 0)/B

xh
0−1 = 1.

To compute higher powers of x, we shall obtain a relation which allows
us to reduce any power of x larger than h0−1 to a polynomial in x of degree
at most h0 − 1.

Since the total Chern classes of T (P(V 0)/B) and OV 0(1)⊗π∗V 0 are equal,
in particular their h0-th Chern classes are equal. Since the vertical tangent
bundle is a rank h0 − 1 vector bundle and OV (1) ⊗ V is a rank h0 vector
bundle, it follows that

ch0(OV (1)⊗ V ) = 0.

However, expanding out the Chern class of the tensor product via the formula
we have

0 = xh
0

+ c1(π
∗V 0)xh

0−1 + ...+ ch0(π
∗V 0)

which is the desired relation.

With this the fibre integral of xh
0−1+j can be computed for j > 0, we

shall show a general recursion relation. Let

τj :=

∫
P(V )/B

xj+h
0−1

with the initial conditions that τ0 = 1 and τj = 0 for j < 0.

Since xh
0
+ c1(π

∗V 0)xh
0−1 + ...+ ch0(π

∗V 0)) = 0, it follows that

0 =

∫
P(V 0)/B

xj−1(xh
0

+ c1(π
∗V )xh

0−1 + ...+ ch0(π
∗V 0))

= τj + c1(V
0)τj−1 + . . . ch0(V

0)τj−h0

thus

τj = −(c1(V
0)τj−1 + . . . ch0(V

0)τj−h0)

this is precisely the same recursion relation as the Segre classes sj(V
0) defined

to be the the 2j-th graded component of c(V 0)−1 where c(V 0) is the total
Chern class of V 0, hence ∫

P(V 0)/B

xj+h
0−1 = sj(V

0). (7.6)



7.1. A Computation for a General Class of Kähler Families 115

7.1.3 Computing and Simpifying the Invariant

For each n ≥ 0, the families Seiberg-Witten invariants can be computed as

FSWn(E,L) :=

∫
P(V 0)/B

yne(Obs)

It follows from the projection formula and Equation (7.3) that

FSWn(E,L) =

h1−h2+ρg∑
m=0

ch1−h2+ρg−m(H
2,0)Γm,n

where

Γm,n :=

∫
P(V 0)/B

ynϕm.

Since y satisfies yh
0 − c1(V 0)yh

0−1+ c2(V
0)yh

0−2+ · · · = 0 there is a recursion
relation

Γm,n+h0 − c1(V
0)Γm,n+h0−1 + c2(V

0)Γm,n+h0−2 + · · · = 0.

To further simplify the expression for the families Seiberg-Witten invariant,
we wish to simplify the expression for Γm,n, from the expressions for ϕm and
the fibre integrals of powers x (eq. (7.4) and eq. (7.6) respectively) and the
fact that y = −x, we obtain the following expression for Γm,n

Γm,n =
m∑
p=0

p∑
j=0

m−p∑
i′=0

[
(−1)n+p−j

(
h2 + p− 1

p− j

)(
h1 −m+ p+ i′

i′

)

sj(V
2)cm−p−i′(V

1)sp+i′+n−j−h0+1(V
0)

]
.

(7.7)

We introduce the quantity δ := m+ n− h0 + 1 which keeps track of the
degree of the families Seiberg-Witten invariant.

We may adjust the indices in Equation (7.7) so that i′ begins at m−p−δ
and j ends at δ. To see this, observe that 0 ≤ i′ ≤ m − p, implies that
p+i′+n−j ≤ m+n−i, butm+n = h0−1+δ and so p+i′+n−j ≤ h0−1+δ−j.
Since the fibre integral of xk is non-zero only if k ≥ h0− 1, the only non-zero
terms which survive in the sum occur when m − p − δ ≤ i′ ≤ m − p and
0 ≤ j ≤ δ. Moreover, since

(
a
b

)
= 0 for a > 0, b < 0, even if m − p − δ < 0,
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we can start the i′ index at m− p− δ. Similarly, the j index may end at δ.
Hence Γm,n can be written as

Γm,n = (−1)n
m∑
p=0

m−p∑
i′=m−p−δ

δ∑
j=0

[
(−1)p−j

(
h2 + p− 1

p− j

)(
h1 −m− p+ i′

i′

)

sj(V
2)cm−p−i′(V

1)sp+i′+n−j−h0+1(V
0)

]
set i = i′ −m + p + δ then the sum over i′ can be rewritten as a sum over
i, since the range of values for the j and i indices is independent of p, we
may freely change the position of the sum over p, this in conjunction with
the identity that

(
a
b

)
= (−1)b

(
b−a−1
b

)
applied to the first binomial coefficient

yields the following expression

Γm,n = (−1)n
δ∑
i=0

δ∑
j=0

m∑
p=0

[(
−h2 − j

p− j

)(
h1 − δ + i

m− δ + i− p

)

sj(V
2)cδ−i(V

1)si−j(V
0)

]
the terms from the sum over p are zero unless 0 ≤ p ≤ m − δ + i and also
p ≥ j and so we can rewrite the above as

Γm,n = (−1)n
δ∑
i=0

δ∑
j=0

[
sj(V

2)cδ−i(V
1)si−j(V

0)

m−δ+i∑
p=j

(
−h2 − j

p− j

)(
h1 − δ + i

m− δ + i− p

)]
reindexing the sum over p as p′ = p− j we have

Γm,n = (−1)n
δ∑
i=0

δ∑
j=0

[
sj(V

2)cδ−i(V
1)si−j(V

0)

m−δ+i−j∑
p′=0

(
−h2 − j

p′

)(
h1 − δ + i

m− δ + i− j − p′

)]
so applying the Vandermonde-Chu identity gives.

Γm,n = (−1)n
δ∑
i=0

δ∑
j=0

sj(V
2)cδ−i(V

1)si−j(V
0)

(
h1 − h2 − δ + i− j

m− δ + i− j

)
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Since si−j = 0 for i ≤ j, we finally have the following expression for Γm,n

Γm,n = (−1)n
δ∑
i=0

i∑
j=0

sj(V
2)cδ−i(V

1)si−j(V
0)

(
h1 − h2 − δ + i− j

m− δ + i− j

)
.

The above computation is summarised in the following theorem

Theorem 7.1.1. Let X ↪→ E → X is a smooth family of compact Kähler
surfaces with a smoothly varying Kähler structure and b1(X) = 0 such that
the following assumptions hold

1. For all b ∈ B, the line bundle Lb has first Chern class c1(Lb) which is
represented by a (1, 1) form.

2. The dimensions of H i(Xb, Lb) for i = 0, 1, 2 are independent of b.

then the families Seiberg-Witten invariant in the Kähler chamber is given by

FSWn(E,L) =

h1−h2+ρg∑
m=0

ch1−h2+ρg−m(H
2,0)Γm,n (7.8)

where Γm,n ∈ H2δ(B;Z) is given by

Γm,n = (−1)n
δ∑
i=0

i∑
j=0

sj(V
2)cδ−i(V

1)si−j(V
0)

(
h1 − h2 − δ + i− j

m− δ + i− j

)
(7.9)

where δ = m+n−h0−1 and the Γm,n satisfy the following recursion relation

Γm,n+h0 − c1(V
0)Γm,n+h0−1 + c2(V

0)Γm,n+h0−2 + · · · = 0

note that terms where the denominator of the binomial coefficients are nega-
tive are to be disregarded.

Remark 7.1.2. The computation of Theorem 7.1.1 indeed reduces to the
result of Theorem 5.1.9 when B is a point. In such a case the vector bundles
H2, V i are all trivial so the only possibly non-vanishing invariant occurs when
m = h1 − h2 + ρg, i = j = δ = 0 and n = ρg + 1 − χ(L), i.e. the ordinary
Seiberg-Witten invariant is given by Γh1−h2+ρg ,ρg+1−χ(L). It is clear from the
formula in Theorem 7.1.1 that this recovers the result in the unparametrised
case.

It is useful to see the computations of Γm,n when δ is small.
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δ = 0

From the above formula we have

Γm,n = (−1)n
(
h1 − h2

m

)

δ = 1

Γm,n = (−1)nc1(V
1)

(
h1 − h2 − 1

m− 1

)
+ (−1)ns1(V

0)

(
h1 − h2

m

)
+ (−1)ns1(V

2)

(
h1 − h2 − 1

m− 1

) (7.10)

δ = 2

Γm,n = (−1)nc2(V
1)

(
h1 − h2 − 2

m− 2

)
+ (−1)nc1(V

1)s1(V
0)

(
h1 − h2 − 1

m− 1

)
+ (−1)ns1(V

2)c1(V
1)

(
h1 − h2 − 2

m− 2

)
+ (−1)ns2(V

0)

(
h1 − h2

m

)
+ (−1)ns1(V

2)s1(V
0)

(
h1 − h2 − 1

m− 1

)
+ (−1)s2(V

2)

(
h1 − h2 − 2

m− 2

)

(7.11)

With a general computation for the families Seiberg-Witten invariants we
shall now apply it to example cases of Kähler families.
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7.2 The Families Seiberg-Witten Invariants

for the Projectivisation Family

The first Kähler family we shall consider will be the projectivisation of a
rank 3 complex vector bundle.

Let π̃ : V −→ B be a complex rank 3 vector bundle over some compact
base space B. We may define its projectivisation π : P(V ) −→ B by taking
the fibres to be the projectivisation of the fibres of V , that is P(V )b := P(Vb).

Proposition 7.2.1. Let V −→ B be a complex rank 3 vector bundle where
B is compact. Then the projectivisation family π : P(V ) −→ B is a smooth
Kähler family.

Proof. Since each Vb is a 3 dimensional vector space, Vb ∼= C3 and hence the
fibres of P(V ) are diffeomorphic to CP2, hence this is a family of CP2’s. This
diffeomorphism also preserves the natural orientations defined on the fibres
and CP2, consequently, this is a smooth family. The cohomology ring of CP2

is well known with b+ = 1 and b1(CP2) = 0 so it remains to show this family
has a Kähler structure.

Choose a Hermitian metric on V , there is then a naturally induced met-
ric on the tautological line bundle OV (1) −→ P(V ). Consider the Chern
curvature with respect to this metric

Since the restriction of OV (1) to the fibres of P(V ) is isomorphic to the
tautological line bundle over CP2 and the Chern curvature of any metric
on the tautological line bundle over CP2 is the closed positive (1, 1) form
induced by the Fubini-Study metric. Consequently, the Chern curvature of
the metric on OV (1) must be a closed (1, 1) form which is positive along the
vertical tangent bundle, hence the projectivisation family is a smooth Kähler
family.

It is a well known fact that b+(CP2) = 1, consequently ρg(CP2) = 0.

We have from the Leray-Hirsch theorem

H2(E;Z) ∼= H2(B;Z)⊕ Z

where the isomorphism is given by

H2(B;Z)⊕ Z ∋ (L,m) 7→ OV (m)⊗ π∗L

consequently, any line bundle over P(V ) is of the form:

OV (m)⊗ π∗L
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for some line bundle L −→ B. Hence we are interested in the higher direct
image sheaves Rjπ∗(OV (m)⊗ π∗L) and write the corresponding cohomology
bundles as

V j = Hj(P(V ),OV (k)⊗ π∗L)

where π is the projection map of the projectivisation family P(V ) → B
induced by π̃.

When k < 0 the line bundles O(k) over CP2 do not admit global sections,
it follows that

H0(CP2,O(k)) = 0

this fiberwise calculation implies that

H0(P(V ),OV (k)) = 0

and so h0 = 0 when k < 0. Since the dimension of the fiberwise moduli
spaces is h0− 1, they are empty for k < 0, hence the families Seiberg-Witten
invariant is zero. It is then sufficient to consider the cohomology groups for
k ≥ 0.

By the Leray spectral sequence, we have for k ≥ 0

Hj(P(V ),OV (k)) ∼=

{
Sk(V ∗) j = 0

0 j > 0

so it follows from the projection formula that after twisting by the pullback
of a line bundle L over B

V j = Hj(P(V ),OV (k)⊗ π∗L) ∼=

{
Sk(V ∗)⊗ L j = 0

0 j > 0
.

It immediately follows that h1 = h2 = 0. Moreover h0 is just the rank of
Sk(V ∗). Since V is a 3 dimensional complex vector bundle

rank(Sk(V ∗)) =

(
2 + k

k

)
We now proceed to obtain a more explicit expression for the families

Seiberg-Witten invariants for the projectivisation family. Recall from Theo-
rem 7.1.1 that

FSWn(E,OV (k)⊗ π∗L) =

h1−h2+ρg∑
m=0

ch1−h2+ρg−m(H
2,0)Γm,n
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where H2 is the bundle with fibres H2(Xb,O). Since h1 − h2 + ρg = 0, m is
forced to be zero, hence

FSWn(E,OV (k)⊗ π∗L) = Γ0,n

and δ = n− h0 +1. Applying the expression for Γm,n in Theorem 7.1.1 gives

FSWn(E,OV (k)⊗ π∗L) = (−1)n
n−h0+1∑
i=0

i∑
j=0

sj(V
2)cn−i(V

1)si−j(V
0).

Recall that V 1 and V 2 are zero bundles, so the only surviving terms occur
when j = 0, i = n− h0 + 1. This results in the following computation of the
families Seiberg-Witten invariants for the projectivisation family

FSWn(E,OV (k)⊗ π∗L) = (−1)nsn−h0+1(V
0) (7.12)

This can be made further explicit, by expanding sn−h0+1(V
0) = sn−h0+1(S

k(V ∗)⊗
L) via 7.2 we obtain an explicit expression as displayed in the following the-
orem

Theorem 7.2.2. Let π : V → B be a complex vector bundle of rank 3 and
P(V ) → B be the corresponding projectivisation family, then the families
Seiberg-Witten invariants in the Kähler chamber for the spinc obtained by
twisting the canonical structure by OV (k)⊗ π∗L for k ≥ 0 are given by

FSWn(E,OV (k)⊗π∗L) =
n−h0+1∑
i=0

(−1)h
0−1+i

(
n

h0 − 1 + i

)
si(S

k(V ∗))c1(L)
n−h0+1−i

(7.13)
where h0 =

(
2+k
k

)
= (k + 1)(k + 2)/2 and are zero otherwise.

In principle, the expression obtained in the above theorem can be fur-
ther simplified by computing the Segre classes of Sk(V ∗), although this be-
comes increasingly difficult and quite cumbersome for larger and and larger
k. However, when k = 0 we have Sk(V ∗) = C and h0 = 1 and so an explicit
expression can be obtained. Observe that the only surviving Segre class is
the one corresponding to i = 0. Thus

FSWn(E,OV (0)⊗ π∗L) = c1(L)
n.

7.3 The Families Seiberg-Witten Invariants

for a Family with Fibres CP1 × CP1

We now investigate another family. Suppose that π1 : V1 −→ B and π2 :
V2 −→ B are rank 2 complex vector bundles over B and consider their fibre
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product Π : P(V 1)×BP(V 2) −→ B. This also has a Kähler structure, since as
in Proposition 7.2.1 we may endow P(V 1) and P(V 2) with Kähler structures
which induces one on the product and consequently the fibre product. The
Serre spectral sequence gives

H2(E;Z) ∼= H2(B;Z)× Z× Z

where the map sends H2(B;Z)×Z×Z ∋ (L,m, n) 7→ OV1(k)⊗OV2(ℓ)⊗Π∗L.

As in Section 7.2 unless k, ℓ ≥ 0 we have h0 = 0 yielding a zero Seiberg-
Witten invariant due to a lack of sections. In the case when k, ℓ ≥ 0, one
may use the computation of the cohomology of line bundles as in the previous
section on projective bundles and a Künneth formula for sheaf cohomology
to obtain that the cohomology bundles are given by

Hj(E;OV1(k)⊗OV2(ℓ)) =

{
Sk(V ∗

1 )⊗ Sℓ(V ∗
2 ) j = 0

0 j > 0

and the general case when twisting by a line bundle involves in tensoring by
the line bundle L via the projection formula as before. and thus h1 = h2 = 0
and h0 = (1 + k)(1 + ℓ).

These conditions then imply as in Section 7.2 the following result

Theorem 7.3.1. Let π : V1, V2 → B be complex vector bundles of rank 2 and
P(V1) ×B P(V1) → B be the family obtained from the fibre product of their
projectivisations, then the families Seiberg-Witten invariants in the Kähler
chamber for the spinc structure obtained by twisting the canonical structure
by OV1(k)⊗OV2(ℓ)⊗ Π∗(L) are given by

FSWn(E,OV1(k)⊗OV2(ℓ)⊗ Π∗L = (−1)nsn−h0+1(V
0) (7.14)

where h0 = (1 + k)(1 + ℓ).

This can also be made more explicit via the formula for the Chern classes
of products of vector bundles and expressions for the Chern classes of Sk(V1)
and Sℓ(V2), but similar to Section 7.2 it becomes increasingly cumbersome
as k, ℓ become larger. One can make an explicit calculation when k = ℓ = 0,
this proceeds identically to the k = 0 case as with the projectivisation family,
hence

FSWn(E,OV1(0)⊗OV2(0)⊗ Π∗L) = c1(L)
n.
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7.4 The Families Seiberg-Witten Invariants

for Families of Blowups of Kähler Sur-

faces

As discussed in Section 2.6, given a Kähler manifold X and x ∈ X, one can
construct the blowup of X at x. There are a variety of Kähler families we
can obtain from this construction. Of primary interest shall be the universal
blowup family. Given a Kähler surface X, this is a smooth family Z −→ X
with base X and fibre at x ∈ X being Blx(X), the blowup of X at x and
is a case of a more general construction of a sequence of spaces Xℓ with
fibres diffeomorphic to the blowup of X at ℓ possibly non-distinct points as
in [Liu00].

Definition 7.4.1. Let X be a Kähler surface, let ∆ : X −→ X ×X be the
diagonal section x 7→ (x, x). The universal blowup family is then the smooth
fibre bundle π : Z −→ X where Z := Bl∆(X)(X×X) is the blowup of X×X
along the image of the diagonal section with projection Π : Z −→ X × X
and π = p2 ◦ Π where p2 : X × X −→ X is the projection onto the right
factor.

Recall for the blowup at a point X̃,

Pic(X̃) ∼= Pic(X)⊕ Z

given by (L,m) 7→ p∗L⊗O(kE) ≡ L+ kE where k ∈ Z.

Therefore if X is simply connected, it follows that H3(X;Z) = 0 so
by applying Proposition 6.1.6 one obtains for the universal blowup family
H2(Z;Z) ∼= H2(X;Z)⊕H2(X;Z)⊕Z with (L1, L2, k) 7→ π∗L1⊗p∗L2⊗O(kE)

where p : X̃ −→ X is the blowup projection for a fibre Zx = X̃ over some
fixed point x.

The restriction π∗L1⊗p∗L2⊗O(kE) to a fibre Xx is simply p∗L2⊗O(kE)
for the blowup at a point. To simplify notation we shall sometimes write
L = π∗L1 ⊗ p∗L2 and write the full line bundle π∗L1 ⊗ p∗L2 ⊗ O(kE) as
L+ kE

Given x ∈ X, a fibre of the universal blowup family is π−1(x) = Blx(X)×
{x} ∼= Blx(X), so it is indeed a family with fibres diffeomorphic to the blowup
of X at x, it also satisfies the following universal property.

Proposition 7.4.2. Suppose that Z ′ −→ B is another family whose fibres
are blowups of X where the point blown up by is specified by a smooth map
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f : B −→ X, then Z ′ is the pullback of π : Z −→ X where under f : B −→
X.

If X is a compact Kähler surface, then the universal blowup family in-
herits a smoothly varying Kähler structure. There is also a more general
construction one could consider, suppose that E −→ B is a Kähler family
with fibres diffeomorphic to X and suppose that s : B −→ E is a section
of this family. Then there is a new family Z ′ = Bls(E) −→ B, this is the
blowup of E along S, where the fibre of Z over b ∈ B is the blowup of π−1(b)
at s(b) and also a Kähler family.

We now aim to compute the families Seiberg-Witten invariants for the
universal blowup family. First recall that provided the dimensions of the
cohomology groups {H i(Zb, (π

∗L1 ⊗ p∗L2 ⊗ O(kE)))}b∈B are constant over
b ∈ B, they define vector bundles V i and families Seiberg-Witten invariants
are given by

FSWn(π
∗L1 ⊗ p∗L2 ⊗O(kE)) =

h1−h2+ρg∑
m=0

ch1−h2+ρg−m(H
2,0)Γm,n

where H2 is the bundle with fibres H2(Blx(X),OBlx(X)), the following propo-
sition shows that H2 is a trivial bundle.

Proposition 7.4.3. The bundle H2,0 with fibres H2(Blx(X),OBlx(X)) is triv-
ial for the universal blowup family.

Proof. Let π : Z −→ X be the universal blowup family and πx :
Blx(X) −→ X be the induced map from the fibre at x to X. This
map corresponds to the projection map for the blowup of X at x and
is a birational isomorphism, hence it induces an isomorphism between
H0(X,∧2,0TX) and H0(Blx(Xx),∧2,0TBlx(Xx)) [GH94, p. 494]. By Serre
duality H0(Blx(Xx),∧2,0TBlx(Xx)) ∼= H2(Blx(X),OBlx(X)), hence π com-
posed with Serre duality on the fibres induces an isomorphism between H2,0

and the trivial bundle over X with fibres H0(X,∧2,0TX), thus H2,0 is triv-
ial.

The above proposition implies that the only surviving term in the expres-
sion for families Seiberg-Witten invariants occurs when m = h1 − h2 + ρg, so
the invariants are computed as follows

FSWn(π
∗L1 ⊗ p∗L2 ⊗O(kE)) = Γh1−h2+ρg ,n (7.15)
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where Γh1−h2+ρg ,n is given by

Γh1−h2+ρg ,n = (−1)n
δ∑
i=0

i∑
j=0

sj(V
2)cδ−i(V

1)si−j(V
0)

(
h1 − h2 − δ + i− j

h1 − h2 + ρg − δ + i− j

)

where hi = rank(V i) = rank(H i(X, π∗L1 ⊗ p∗L2 ⊗ O(kE))), we also define
pi = dim(H i(X,L2)).

Recall that the vector bundles V i have fibres {H i(Zb, (π
∗L1 ⊗ p∗L2 ⊗

O(kE)))}b∈B and correspond to the higher direct image sheaves Riπ∗(π
∗L1⊗

p∗L2 ⊗O(kE)). From the projection formula, one has

Riπ∗(π
∗L1 ⊗ p∗L2 ⊗O(kE)) = L1 ⊗Riπ∗(p

∗L2 ⊗O(kE)).

Thus the vector bundles V i with fibres will be given by V i = L1 ⊗W i where
W i = Riπ∗(p

∗L2 ⊗O(kE)).

Furthermore, since X is a Kähler surface, it only has cohomology up to
degree 4, hence any terms of higher degree will not survive. These obser-
vations combined with standard formulae for the Chern class of the tensor
product of a vector bundle with a line bundle and the computations made in
Section 7.1.3 result in the following

Theorem 7.4.4. Let X be a compact Kähler surface and π : Z → X be the
universal blowup family and assume the the dimensions hi of the cohomology
groups {H i(Zb, (π

∗L1 ⊗ p∗L2 ⊗ O(kE)))}b∈B are constant over b ∈ B, the
families Seiberg-Witten invariants in the Kähler chamber for the spinc struc-
ture obtained by twisting the canonical structure by the π∗L1⊗p∗L2⊗O(kE)
are given by the following formulae

Γh1−h2+ρg ,n = (−1)n
(

h1 − h2

h1 − h2 + ρg

)
(7.16)

when δ = 0

Γh1−h2+ρg ,n = (−1)n(c1(W
1) + h1c1(L1))

(
h1 − h2 − 1

h1 − h2 + ρg − 1

)
+ (−1)n(s1(W

0)− h0c1(L1))

(
h1 − h2

h1 − h2 + ρg

)
+ (−1)n(s1(W

2)− h2c1(L1))

(
h1 − h2 − 1

h1 − h2 + ρg − 1

) (7.17)
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when δ = 1, and

Γh1−h2+ρg ,n = (−1)nc2(W
1 ⊗ L1)

(
h1 − h2 − 2

h1 − h2 + ρg − 2

)
+ (−1)nc1(W

1 ⊗ L1)s1(W
0 ⊗ L1)

(
h1 − h2 − 1

h1 − h2 + ρg − 1

)
+ (−1)ns1(W

2 ⊗ L1)c1(W
1 ⊗ L1)

(
h1 − h2 − 2

h1 − h2 + ρg − 2

)
+ (−1)ns2(W

0 ⊗ L1)

(
h1 − h2

h1 − h2 + ρg

)
+ (−1)ns1(W

2 ⊗ L1)s1(W
0 ⊗ L1)

(
h1 − h2 − 1

h1 − h2 + ρg − 1

)
+ (−1)ns2(W

2 ⊗ L1)

(
h1 − h2 − 2

h1 − h2 + ρg − 2

)

(7.18)

when δ = 2, where δ = ρg +1−χ(Z,L)+n and χ(Z,L) = h0−h1+h2. The
invariants are zero otherwise.

We shall now use the results of Theorem 2.6.7 to compute the vector
bundles W i. Recall that depending on whether k ≥ 0 or k < 0 there are
two different sets of exact sequences and isomorphisms pertaining to the
cohomology of line bundles over the blowup of X. Set k ≥ 0 and write a line
bundle on X̃ = Blx(X) of the form p∗L⊗O(±kE) as L± kE.

Line bundles of the form L− kE

From Theorem 2.6.7, we obtain a fibrewise isomorphism

H2(Zb, p
∗L2 ⊗O(−kE)) ∼= H2(X,L2)

hence it defines a trivial vector bundle W 2 = H2(Z, p∗L2 ⊗ O(−kE)) with
fibres H2(X,L2). We also have the following exact sequences of vector spaces
on each fibre

0 H0(Zb, p
∗L2 ⊗O(−kE)) H0(X,L2) L2,x ⊗ (OX

Ikx
)

H1(Zb, p
∗L2 ⊗O(−kE)) H1(X,L2) 0

evx

.

(7.19)

There is an isomorphism OX/I
k
x
∼= Õx(S

≤(k−1)(T ∗
xX)), since Sk(V ∗) can be

identified with the degree k polynomials on V and we have an isomorphism
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given by a local chart containing p, Jkp
∼= C[z1, z2]/(z1−p1, z2−p2)k+1 between

the jet bundle of X, it follows that OX/I
k
x
∼= Jk−1

x and so L2,x ⊗ OX/I
k
x =

Jk−1
x (L2).

Assume the dimensions of the cohomology groups {H i(Zb, p
∗L2⊗O(−kE))}b∈B

are constant so that they define vector bundles W i, a priori we have not es-
tablished this, although we shall only be concerned with computations in
cases where this can be established from the exact sequence of vector spaces.
Proceeding with this assumption, there is an exact sequence of vector bundles
over X

0 W 0 H0(X,L2) Jk−1(L2)

W 1 H1(X,L2) 0

.

Note that the rank of Jk−1(L2) is easily shown to be dim(S≤(k−1)(T ∗
xX)) =∑k−1

j=0(j + 1) = k(k + 1)/2 and rank of W i and V i are identical. It then
follows from the above exact sequence that

h0 − p0 + k(k + 1)/2− h1 + p1 = 0.

Since the fibrewise dimension of the families Seiberg-Witten moduli space is
h0 − 1, the families Seiberg-Witten invariants are necessarily zero unless

h0 = p0 + h1 − p1 − k(k + 1)/2 > 0.

We now shall consider some special cases in further detail.

k=0

Assume that k = 0, then the exact sequence of vector spaces in 7.19 reduces
to fibrewise isomorphisms W i ∼= H i(X,L2) for i = 0, 1. It follows that the

W i are all trivial vector bundles with rank hi = pi(L2), thus V
i ∼= L⊕pi

1 and
so the invariant is zero unless p0 > 0, another immediate consequence is that
δ = ρg+1−χ(X,L2)+n. If δ = 0 then the families invariants coincides with
the ordinary Seiberg-Witten invariant of X. When δ = 1, Equation (7.17)
implies that the invariant is given by

FSW(Z, π∗L1 ⊗ p∗L2) = (−1)n(p1 − p2)c1(L1)

(
p1 − p2 − 1

p1 − p2 + ρg − 1

)
+ (−1)n+1p0c1(L1)

(
p1 − p2

p1 − p2 + ρg

) (7.20)
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For δ = 2 the invariant is

FSW(Z, π∗L1 ⊗ p∗L2) = (−1)n
p1(p1 − 1)

2
c1(L1)

2

(
p1 − p2 − 2

p1 − p2 + ρg − 2

)
+ (−1)n+1(p1 + p2)p0c1(L)

2

(
p1 − p2 − 1

p1 − p2 + ρg − 1

)
+ (−1)n+1p2p1c1(L)

2

(
p1 − p2 − 2

p1 − p2 + ρg − 2

)
+ (−1)n

p0(p0 + 1)

2
c1(L)

2

(
p1 − p2

p1 − p2 + ρg

)
+ (−1)n

p2(p2 + 1)

2
c1(L)

2

(
p1 − p2 − 2

p1 − p2 + ρg − 2

)
(7.21)

k=1

We have OX/Ix ∼= Ox(C) the exact sequence becomes

0 H0(Z, p∗L2 ⊗O(−E)) H0(X,L2) L2

H1(Z, p∗L2 ⊗O(−E)) H1(X,L2) 0

We shall make a further assumption so that an explicit computation can
be made, suppose that the line bundle L2 is basepoint-free, that is, for each
x ∈ X there exists a non-zero holomporhic section of L2 with s(x) ̸= 0,
then it necessarily follows that the map H0(X,L2) −→ L2,x is surjective for
all x and dimensions of the cohomology groups are then constant along b.
One then indeed has the above sequence of vector bundles. Furthermore, by
exactness H1(Z,L2−E) ∼= H1(X,L2) so W

1 is also trivial and the following
sequence of vector bundles over X is exact

0 → H0(Z,⊗p∗L2 ⊗O(−E)) → H0(X,L2) → L2 → 0

thus h0 = p0−1, hence the invariant is zero unless p0 > 1 and sinceH0(X,L2)
is a trivial vector bundle, it follows that c(L2)c(W

0) = 1. Hence s(W 0) =
c(L2), it follows that s1(W

0⊗L1) = c1(L2)+(1−p0)c1(L1) and s2(W
0⊗L1) =

c1(L1)
2p0(p0 − 1)/2 − p0c1(L1)c1(L2). The expression of the invariant when
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δ = 1 is then following

FSW(Z, π∗L1 ⊗ p∗L2 ⊗O(−E)) = (−1)np1c1(L1)

(
p1 − p2 − 1

p1 − p2 + ρg − 1

)
+ (−1)n(c1(L2)− (p0 − 1)c1(L1))

(
p1 − p2

p1 − p2 + ρg

)
+ (−1)n+1p2c1(L1)

(
p1 − p2 − 1

p1 − p2 + ρg − 1

)
(7.22)

and when δ = 2

FSW(Z, π∗L1 ⊗ p∗L2 ⊗O(−E)) = (−1)n
p1(p1 − 1)

2
c1(L1)

2

(
p1 − p2 − 2

p1 − p2 + ρg − 2

)
+ (−1)n+1p1(c1(L1)c1(L2) + (1− p0)c1(L1)

2)

(
p1 − p2 − 1

p1 − p2 + ρg − 1

)
+ (−1)n+1p2p1c1(L1)

2

(
p1 − p2 − 2

p1 − p2 + ρg − 2

)
+ (−1)n

(
p0(p0 − 1)

2
c1(L1)

2 − p0c1(L1)c1(L2)

)(
p1 − p2

p1 − p2 + ρg

)
+ (−1)n+1p2(c1(L1)c1(L2) + (1− p0)c1(L1)

2)

(
p1 − p2 − 1

p1 − p2 + ρg − 1

)
+ (−1)n

p2(p2 − 1)

2
c1(L1)

2

(
p1 − p2 − 2

p1 − p2 + ρg − 2

)
.

(7.23)

General case for k ≥ 0 with L− kE

Via similar assumptions to the case when k = 1, one can make computa-
tions for the families Seiberg-Witten invariants in principle. Recall the exact
sequence of vector spaces

0 H0(X̃, L− kE) H0(X,L2) L2,x ⊗ (OX

Ikx
)

H1(X̃, L− kE) H1(X,L2) 0

evx

and the isomorphism OX/I
k
x
∼= Ox(S

≤(k−1)(T ∗
xX)).

If we assume as in the k = 1 case that the map in the long exact sequence
induced by the evaluation map is surjective. Then by identical reasoning one
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obtains that W 1 is trivial and the following exact sequence of vector bundles

0 → H0(Z, p∗L2 ⊗O(−E)) → H0(X,L2) → Jk−1(L2) → 0

thus s(W 0) = c(Jk−1(L)). There is also an exact sequence

0 → Sk(T ∗X) → Jk → Jk−1 → 0

with the map on the right being the obvious projection map sending a k-jet
to its corresponding k − 1 jet and the map on the left is the inclusion of
degree k-polynomials.

Tensoring by L2 induces the following exact sequence

0 → Sq(T ∗X)⊗ L2 → Jq(L2) → Jq−1(L2) → 0

from which the total Chern class of the q-th jet bundle can be inductively
computed as

c(Jq(L2)) = c(Sq(T ∗X)⊗ L2)c(J
q−1(L2))

consequently, one may compute the Segre classes sj(W
0 ⊗ L2) and use the

formulae in Theorem 7.4.4 to obtain an expression for the invariants, although
this results in more complicated expressions as k increases.

L+ kE with k ≥ 1

There is an isomorphism W 0 ∼= H0(X,L2) and an exact sequence

0 H1(X,L2) W 1 Jk−2(L2 ⊗K∗
X)

∗

H2(X,L2) W 2 0

hence W 0 is trivial and the invariants are zero unless p0 > 0. In particu-
lar, one can also see if k = 1 then W 1 ∼= H1(X,L2) and W 2 ∼= H2(X,L2),
thus the vector bundles W i are all trivial and we obtain an identical compu-
tation for the families Seiberg-Witten invariants as in Equation (7.20) and
Equation (7.21) when δ = 1 and δ = 2 respectively.

This exact sequence is obtained by applying Serre duality to 2.2 of Theo-
rem 2.6.7 for a line bundle of the form L∗

2⊗KX⊗O(−(k−1)E). Consequently,
we may apply similar assumptions to those in the previous section to the line
bundle L2 ⊗K∗

X to obtain a reduction of the exact sequence. If L∗
2 ⊗KX is
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basepoint free it follows thatW 2 ∼= H2(X,L2) and there is an exact sequence
for k = 2

0 → L2 ⊗K∗
X → W 2 → H2(X,L2) → 0

thus ci(L2⊗K∗
X) = ci(W

2) and one obtains formulae for the families Seiberg-
Witten invariants similar to Equation (7.22) and Equation (7.23) with L2

replaced by L2⊗K∗
X and the p0, p2 factors not inside the binomial coefficients

interchanged. As seen previously, if we assume more generally that the map
H0(X,L∗

2 ⊗ KX) → Jk−2(L∗
2 ⊗ KX) is surjective then one obtains that W 1

is trivial and via the exact sequence above, it follows that the Chern classes
of W 2 are those of Jk−2(L∗

2 ⊗KX) and the invariants may be computed as
discussed previously.
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Chapter 8

Consequences of the
Computation of the Families
Seiberg-Witten Invariant

In this chapter we shall investigate relevant applications of the computations
made of the Families Seiberg-Witten invariants in Chapter 7.

First we consider cohomological constraints for non-vanishing Families
Seiberg-Witten invariants for Kähler families when B is simply-connected.
Of particular interest is the case when B = S2, also discussed are required
constraints for when the families Seiberg-Witten invariants are genuine dif-
feomorphism invariants of the family alongside the non-vanishing conditions.
We find that to obtain a non-vanishing families Seiberg-Witten invariant
which is also a genuine diffeomorphism invariant of the family when B = S2

is quite restrictive, and there are very few cases for when it is non-zero.

One application of the computing the families Seiberg-Witten invariants
when B = Sn is the detection of non-trivial homotopy classes of Diff0(X).
Via the clutching construction, any such family up to isomorphism is specified
by a homotopy class of smooth map f : Sn−1 −→ Diff0(X). By definition,
this is an element of πn−1(Diff0(X)). Consequently, if we are in a situation
where the families Seiberg-Witten invariant is a genuine diffeomorphism in-
variant of families, a non-zero Seiberg-Witten invariant of a family implies it
is non-trivial which indicates the existence of a non-trivial homotopy class of
Diff0(X). Of particular interest is the case B = S2 which can give nontrivial
elements on π1(Diff0(X)).

133
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8.1 Cohomological Constraints for Non-Vanishing

Invariants

Let E −→ B be a smooth Kähler family with compact fibres diffeomorphic to
a simply-connected 4-manifold X and compact base B. Furthermore, assume
that B is simply-connected, then the set of chambers for the family E can be
identified with homotopy classes of maps B −→ Sb

+(X)−1 for b+(X) > 1 and
the two connected components of S0 for b+(X) = 1. The Kähler chamber is
denoted by +, the other chamber by −.

Let L be a line bundle on E and assume that H i(Xb, L) has constant
dimension with respect to B so that it defines a vector bundle V i −→ B
with fibres H i(Xb, L). Note that since the families moduli space has fibres
which are h0 − 1 dimensional, a necessary condition for the non-vanishing of
the families Seiberg-Witten invariants is h0 > 0.

We then have the following general results

Proposition 8.1.1. Let X ↪→ E → B be a Kähler family, suppose that
ρg(X) = 0 and L is a holomorphic line bundle on E.

If h0(L) > 0, then

FSWn(E, sL,+) = (−1)nsn−(χ(L)−1)(ind(L)), FSWn(E, sL,−) = 0,

and if h2(L) > 0, then

FSWn(E, sL,+) = 0, FSWn(E, sL,−) = (−1)n+1sn−(χ(L)−1)(ind(L)).

Proof. Since ρg = 0, it follows that b+ = 1, it can be shown that the primary
difference class of the + and − chambers 1, hence the wall-crossing formula
gives the following identity

FSWn(E, sL,+)− FSWn(E, sL,−) = (−1)n+1sn−(χ(L)−1)(ind(L)).

First suppose that h0(L) > 0, by Lemma 2.3.7 it follows that h2(L) = 0.
By Serre duality, h2(L) = h0(K ⊗ L∗) and thus FSWn(E, sK⊗L∗ ,+) = 0.

By charge conjugation of the Seiberg-Witten equations this gives the first
half of the result for h0(L) > 0 that FSWn(E, sL,−) = 0, with the second
half following from wall-crossing formula above.

Now suppose that h2(L) > 0, again by Lemma 2.3.7 this implies that
h0(L) = 0 and so FSWn(E, sL,+) = 0, the wall-crossing formula then gives

FSWn(E, sL,−) = (−1)n+1sn−(χ(L)−1)(ind(L)).
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There is also a computation for when ρg > 0 and h2(L) = 0.

Proposition 8.1.2. Let X ↪→ E → B be a Kähler family with B simply-
connected and dim(B) = b+(X)− 1, suppose that ρg(X) > 0, h0(L) > 0 and
h2(L) = 0 and L is a holomorphic line bundle on E. Then

FSWn(E, sL, c
+) = (−1)nsn−(χ(L)−1)(ind(L))2deg(c

+)

Proof. Since h2(L) = 0, applying Serre duality gives h0(K ⊗ L∗) = 0 so
FSWn(E, sK⊗L∗ , c+) = 0, charge conjugation then gives FSWn(E, sL, c

−) =
0, this in conjunction with the wall-crossing formula then gives

FSWn(E, sL, c
+) = (−1)nsn−(χ(L)−1)(ind(L))(deg(c

+)− deg(c−)).

Since B is simply-connected, chambers are homotopy equivalence classes of
maps B −→ Sb

+(X)−1 and charge conjugation corresponds to the antipodal
map on chambers. Since b+(X) is odd the antipodal map is orientation
reversing and so deg(c+) = −deg(c−), giving the result.

8.1.1 Constraints for Non-Vanishing Invariants when
B = S2

Since FSWn(E, sL, c
+) ∈ H2n−d(B;Z) it is a necessary condition that 2n−d ∈

{0, 2} for a non-zero invariant, where d = d(X,L) is the expected dimension
of the unparametrised moduli space. However, if 2n − d = 0 then FSWn is
the ordinary Seiberg-Witten invariant of X, for which the conditions under
which it must vanish are already known. Hence, take 2n− d = 2, this forces
n = 1 + d/2 = χ(L) − ρg, for simplicity denote the families Seiberg-Witten
invariant for this n in the Kähler chamber by FSW(E,L). We shall now find
non-vanishing criteria for the families Seiberg-Witten invariant, splitting the
argument into cases depending on ρg.

Case 1: B = S2, ρg = 1

Proposition 8.1.3. Let X ↪→ E → S2 be a smooth family of Kähler surfaces
with smoothly varying Kähler structure, then FSW(E,L) = 0 except in the
following cases:

� h2(L) = 0 with

FSW(E,L) = (−1)d/2c1(H
2,0)
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� (h0, h1, h2) = (1, 0, 1) with

FSW(E,L) = c1(V
0)

� (h0, h1, h2) = (1, 1, 1) with

FSW(E,L) = −c1(V 0) + c1(V
1)

Proof. Recall that a necessary condition for the non-vanishing of the families
Seiberg-Witten invariant is h0(L) > 0, assume this holds. then it follows from
Lemma 2.3.7 that h2(L) ≤ ρg = 1. Hence h2 ∈ {0, 1} and since h1 ≥ 0 we
have h1−h2 ≥ −1. It then immediately follows from the computation of the
families Seiberg-Witten invariant in Theorem 7.1.1

FSW(E,L) =


(−1)d/2c1(H

2,0) h1 − h2 > 0

(−1)d/2(c1(H
2,0)− c1(V

1) + c1(V
2)) h1 − h2 = 0

(−1)d/2c1(V
0) h1 − h2 = −1

(8.1)

First assume that h2 = 0, then h1 − h2 = h1 ≥ 0. If h1 = 0 in this case,
then since both h1 and h2 are zero, thus V 1 and V 2 are both zero bundles,
hence their first Chern classes are zero. We then have from Equation (8.1)
that FSW(E,L) = (−1)d/2c1(H

2,0). If instead h2 > 0 then by the above
computation gives FSW(E,L) = (−1)d/2c1(H

2,0) as well.

Now assume that h2 = 1, then h0 = 1 by Lemma 2.3.7 and the assump-
tion that h0 > 0. Hence for a non-zero invariant which lives in degree 2
cohomology, n = χ(L) − ρg = 1 − h1(L), since this number is non-negative
h1(L) = 0 or 1.

If h1(L) = 0 then h1 − h2 = −1 and the conditions on hi and ρg imply
that d = 0 so FSW(E,L) = c1(V

0) by 8.1.

If h1(L) = 1, instead h1 − h2 = 0 and d/2 = 1, 8.1 gives

FSW(E,L) = −(c1(H
2,0)− c1(V

1) + c1(V
2)).

Via the isomorphismsH2,0 ∼= H0(X,K) and (V 2)∗ = (H2(X,L))∗ ∼= H0(X,K⊗
L∗) obtained via Serre duality, the natural map H0(X,L) ⊗ H0(X,K ⊗
L∗) −→ H0(X,K) induces a natural map V 0 ⊗ (V 2)∗ −→ H2,0, moreover
it is an isomorphism since if s, t are sections of L and K ⊗ L∗ respectively
which are not identically zero, then st is a section ofK which is not identically
zero, since h0 = h2 = ρg = 1 it follows that V 0 ⊗ (V 2)∗ −→ H2,0 is a map
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of line bundles with trivial kernel, hence an isomorphism. It immediately
follows that

c1(V
0)− c1(V

2) = c2(H
2,0)

and hence
FSW(E,L) = c1(V

1)− c(V 0).

Case 2: B = S2, ρg ≥ 2

In the case ρg ≥ 2, one has b+(X) ≥ 5 so there is only one chamber since all
maps S2 −→ Sb

+(X)−1 are homotopic to a constant. Since there is only one
chamber, duality gives

FSW(E,K ⊗ L∗) = (−1)ρgFSW(E,L)

hence the families Seiberg-Witten invariant is only non-zero if both h0(L)
and h2(L) are non-zero by Serre duality.

Proposition 8.1.4. If d(X,L) = 0, then

FSW(E,L) = (−1)h
0−1

[
− c1(H

2,0)

(
ρg − 2

h0(L)− 2

)
+ c1(V

0)

(
ρg − 1

h0(L)− 1

)
+ (c1(V

1)− c1(V
2))

(
ρg − 1

h0(L)− 2

)]

If d(X,L) ̸= 0 then FSW(E,L) is non-zero only if (h0, h1, h2) = (ρg, ρg, ρg),
in which case FSW(E,L) is given by

FSW(E,L) = c1(V
1)− c1(V

0)

Proof. It follows from the computation of the families invariant in Theo-
rem 7.1.1 and the fact that

(
n
k

)
= (−1)k

(
k−n−1

k

)
that

FSW(E,L) = (−1)h
0(L)+1

(
− c1(H

2,0)

(
ρg − 2

h1(L)− h2(L) + ρg − 1

)
− c1(V

0)

(
ρg − 1

h1(L)− h2(L) + ρg

)
+ (c1(V

1)− c1(V
2))

(
ρg − 1

h1(L)− h2(L) + ρg − 1

) (8.2)
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If d(X,L) = 0 then χ(L) = ρg + 1, thus h1(L) − h2(L) = h0(L) − ρg − 1,
giving the desired result.

If d(X,L) ̸= 0, it follows from Proposition 5.2.1 that h1(L)−h2(L) ≥ 0, so
by inspection of the binomial coefficients in 8.2, the only way for FSW(E,L)
to be non-zero is to have h1(L)− h2(L) = 0, in which case the invariant is

FSW(E,L) = (−1)h
0(L)+1(c1(V

1)− c1(V
2)).

For the invariant to be non-zero we also require n = χ(L)−ρg = h0(L)−ρg ≥
0 and thus h0(L) ≥ ρg. This in conjunction with the requirement that
h2(L) > 0 and Lemma 2.3.7 implies that h0(L) = ρg. An identical argument
applied to K ⊗ L∗ gives h2(L) = ρg via Serre duality, so h1(L) − h2(L) = 0
gives h1(L) = ρg as well. By replacing L with K ⊗ L∗, applying charge
conjugation and Serre duality then gives

FSW(E,L) = (−1)ρgFSW(E,K ⊗ L∗) = c1(V
1)− c1(V

0).

8.2 Further Constraints to Obtain a Diffeo-

morphism Invariant

Given a smooth Kähler family over S2, there are two obstructions to the
families Seiberg-Witten invariant being a diffeomorphism invariant of the
family. First is the issue of chambers, since a diffeomorphism may not take
a perturbation to another within the same chamber. Since there is only one
chamber for ρg ≥ 2, the chamber obstruction does not occur. In the case of
ρg = 0 there are only two chambers with the Kähler chamber being the ′+′

chamber. Hence by computing the families Seiberg-Witten invariant in the
Kähler chamber, charge conjugation gives the invariant in the ′−′ chamber,
allowing two families to be compared. It is in the case of ρg = 1 where there
is difficulty, the chambers being in correspondence with homotopy classes of
maps S2 −→ S2, since π2(S

2) ∼= Z there is a chamber for each integer and
the Kähler chamber cannot be easily identified as in the other cases.

The second obstruction comes from the families spinc structure, since the
lift of the spinc structure on X to a families spinc structure is non-canonical.
Viewing S2 as CP1, it follows from Proposition 6.1.6 that if sL is a lift of a
spinc structure on X, then any other lift is of the form sL ⊗ π∗(O(m)) for
some integerm, then if ν = volS2 is the generator of H2(S2;Z) the first Chern
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class of the new line bundle L′ is x+mπ∗(ν) where π is the map M −→ B.
The families Seiberg-Witten invariant is then

FSWn(E, π
∗O(m)⊗ L) =

∫
T (E/B)

(x+mπ∗(ν))n

applying the binomial theorem, the fact that only cohomology classes of
degree 2 or less survive since the base is S2 and the fact that the families
Seiberg-Witten invariant when valued in degree 0 cohomology is the ordinary
Seiberg-Witten invariant of X then gives the only possibly non-vanishing
terms

FSWn(E, π
∗O(m)⊗ L) = FSWn(E,L) +mnFSWn−1(E,L)ν

where 2n − d(X,L) = 0 or 2. If 2n − d(X,L) = 0 then this is simply the
ordinary Seiberg-Witten invariant of X. Consequently, we take the other
condition, that n = 1 + d(X,L)/2 and denote FSWn(E,L) by FSW and
FSWn−1(E,L) so that to make this independent of m and thus a diffeo-
morphism invariant one could either take d(X,L) = −2 or SW(X, sL) = 0,
but the first condition implies the second anyway, so it suffices to look for
generally at when SW(X,L) = 0.

If d(X,L) ̸= 0 and ρg > 0, then SW(X,L) = 0 since Kähler surfaces
are simple-type. If in particular ρg = 1, since we want a non-zero invari-
ant, we require h0(L) = 0 which implies that h1(L) ≥ h2(L) by Proposi-
tion 5.2.1, but this means the condition (h0, h1, h2) = (1, 0, 1) in Proposi-
tion 8.1.3 cannot occur, leaving the other two cases as the only possibility
for a non-zero diffeomorphism invariant when d(X,L) ̸= 0 and ρg > 0, that
is h2(L) = 0 with FSW(E,L) = (−1)d/2c1(H

2,0(X)) or h0 = h1 = h2 = 1
with FSW(E,L) = −c1(V 0) + c1(V

1).

On the other hand if d(X,L) = 0 and ρg > 0 then by Proposition 5.2.2
a necessary condition for the Seiberg-Witten invariant to vanish is that h0

or h2 is zero. These are in fact sufficient, if h0 = 0 then obviously the
Seiberg-Witten invariant is zero and if h2(L) = 0 then h0(K ⊗L∗) = 0, thus
SW(X,K ⊗ L∗) = 0 and so by charge conjugation SW(X,L) = 0. However,
if ρg ≥ 2 we know this forces the families invariant to be zero as well, leaving
the only interesting case when ρg = 1, in such a case, the requirement that
h0(L) > 0 and h2(L) = 0 forces FSW(E,L) = (−1)d/2c1(H

2,0(X)).

If ρg ≥ 2 and d(X,L) ̸= 0 then from Proposition 8.1.4 we know that
h0 = h1 = h2 = ρg and FSW(E,L) = c1(V

1)− c1(V
0).

Finally if ρg = 0 and d(X,L) ≥ 0 then SW+(X,L) = 0 requires that
h0(L) = 0, forcing the families invariant to be zero. However it is zero
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whenever d(X,L) < 0, in which case the fact that ρg = 0 gives h2(L) = 0
and H2,0 = 0 so via the computation of the families invariant in the Kähler
chamber is FSW(E,L) = −c1(V 0) + c1(V

1). Although this is in generally
independent of the lift when d(X,L) < 0, due to the chamber structure it is
not necessarily a diffeomorphism invariant of the family unless we take n = 0,
i.e. d(X,L) = −2. We summarise these results in the following theorem.

Theorem 8.2.1. Let X ↪→ E → S2 be a smooth Kähler family over S2,
L be a holomorphic line bundle on E. Suppose that the cohomology groups
of L have constant dimension over b and denote the resulting cohomology
bundles by V i. Then FSW (E,L) is a non-zero diffeomorphism invariant of
the family provided we are in one of the following cases

� ρg = 0, d(X,L) = −2, h2(L) > 0, in which case

FSW(E,L) = c1(V
1)− c1(V

0).

� ρg = 1, h0(L) > 0, h2(L) = 0, in which case

FSW(E,L) = (−1)d(X,L)/2c1(H
2,0).

� ρg = 1, h0(L) = h1(L) = h2(L) = 1, in which case

FSW(E,L) = c1(V
1)− c1(V

0).

� ρg ≥ 2, h0(L) = h1(L) = h2(L) = ρg, in which case

FSW(E,L) = c1(V
1)− c1(V

0).

If ρg > 0 and α > 1 is an integer then if we instead ask that the reduction
of FSW(E,L) mod α is independent of the lift of spinc structure, then it
is a well-defined invariant of the family valued in Z/αZ when the Z-valued
invariant may not be. In this instance, one requires that nSW(E,L) is a
multiple of α instead of being zero as done above to obtain invariance. If
d(X,L) ̸= 0, then SW(E,L) = 0 and FSW(E,L) would be a Z-valued in-
variant, so assume that d(X,L) = 0, hence we must assume SW(E,L) is a
multiple of α and further must assume h0(L), h2(L) > 0 for it to be non-zero.
Furthermore, since

SW(E,L) = (−1)h
0(L)+1

(
ρg − 1

h0(L)− 1

)
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if we take 1 < h0(L) < ρg, which also forces ρg ≥ 3, then |SW(E,L)| > 1
and we may take α = |SW(E,L)|. In such a case, the computation for the
families Seiberg-Witten invariant when reduced mod k gives

FSW(E,L) = (−1)h
0+1

(
(c1(V

1)− c2(V 2))

(
ρg − 1

h0 − 2

)
− c1(H

2,0)

(
ρg − 2

h0 − 2

))
.

(8.3)

8.3 Analysing the Example Families when B =

S2

8.3.1 Remark on the CP2 and CP1 × CP1 families

Since both CP2 and CP1 × CP1 satisfy ρg = 0 we cannot seek a mod α
invariant as done previously, moreover by Theorem 8.2.1 we obtain a non-
zero diffeomorphism invariant only if d(X,L) = −2 and h0(L) > 0. However,
d(X,L) = −2 implies that h0(L)− h1(L) + h2(L) = 0 since ρg = 0, but both
families must satisfy h1(L) = h2(L) = 0, thus h0(L) = 0, so there is no
case in which we obtain a non-zero diffeomorphism invariant for both the
projectivisation family and CP1 × CP1 family when B = S2.

8.3.2 The Blowup Family

Recall the universal blowup family π : Z −→ X over a Kähler manifold X
satisfies a universal property, namely that if Z ′ −→ B is any other smooth
family where the fibre is the blowup of X at a point where the specified
blowup up point is defined by a map f : B −→ X, then Z ′ −→ B is
the pullback of Z −→ X under f . Consequently smooth blowup families
Z ′ −→ S2 can be obtained from maps f : S2 −→ X. For instance, if X is
simply connected, there is an isomorphism between homotopy classes of such
maps and H2(X;Z), hence such maps certainly exist for a simply connected
Kähler surface can be known up to homotopy. Furthermore, this also means
we only need to consider the computation for the universal blowup family,
since the computation for any other blowup family can simply be obtained
by taking the pullback under f .

Choose a spinc structure with respect to the canonical spinc structure via
a choice of line bundle of the form L = π∗L1 ⊗ p∗L2 ⊗O(kE) where k ∈ Z.
Since we are interested in blowup families which are the pullback of the
universal family, the families Seiberg-Witten invariant for such families over
S2 can be computed via the formulae of Section 7.1 with the relevant vector
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bundles involved replaced by the pullback under f . Hence we may use the
computations of Theorem 8.2.1 to find non-zero diffeomorphism invariants
of the family.

Since the vector bundle H2,0(X) is trivial for the blowup family, we are
only interested in the cases stated in Theorem 8.2.1 when the invariant is
given by

FSW(E,L) = c1(f
∗V 1)− c1(f

∗V 0).

Recall for the universal blowup family one has V i = W i ⊗ L1, hence

FSW(E,L) = c1(f
∗W 1)− c1(f

∗W 0) + (h1(L)− h0(L))c1(f
∗L1)

First assume that h0 > 0, ρg = 0, d(X,L) = −2 and k ≤ 0, then W 2 is
trivial with fibres H2(X,L2) and there is an exact sequence

0 → W 0 → H0(X,L2) → J−1−k(L2) → W 1 → H1(X,L2) → 0

from which it follows that h0 − p0 − k(1− k)/2− h1 + p1 = 0 and c1(W
1)−

c1(W
0) = c1(J

−1−k(L2)). Furthermore, since h0 > 0 and ρg = 0, Lemma 2.3.7
implies that h2 = p2 = 0. Since d(X,L) = −2 we then have that h0−h1+p2 =
0, thus k2 − k − 2χ(X,L2) = 0 and h0 = h1. This has a unique non-
positive integer solution for k ≤ 0 if and only if ∆ = 1 + 8χ(X,L2) is
positive and an odd perfect square. Hence we may obtain non-zero proper
diffeomorphism invariants provided the above conditions are satisfied and the
families Seiberg-Witten invariant is given by

FSW(E,L) = c1(f
∗J−1−k(L2))

Now suppose instead that k > 0, then W 0 is trivial with fibres H0(X,L2)
and there is an exact sequence

0 → H1(X,L2) → W 1 → Jk−2(L2 ⊗K∗
X)

∗ → H2(X,L2) → W 2 → 0

which gives p1−h1+k(k−1)/2−p2+h2 = 0. The condition that d(X,L) = −2
implies that p0 − h1 + h2 = 0 and applied to the previous expression, gives
k2 − k − 2χ(X,L2) = 0 which has a unique positive integer solution in k.
Since we assume h0(L) = p0(L2) > 0, Lemma 2.3.7 implies that W 2 and
H2(X,L2) are both zero bundles, hence h1 = p0 = h0 and the exact sequence
reduces to

0 → H1(X,L2) → W 1 → Jk−2(L2 ⊗K∗
X)

∗ → 0
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which gives c1(W
1) = c1(J

k−2(L2 ⊗ K∗
X))

∗ and thus the families Seiberg-
Witten invariant is given by

FSW(E,L) = c1(f
∗Jk−2(L2 ⊗K∗

X)
∗)

and so a non-zero invariant of this form may be obtained provided we satisfy
the above conditions and the above expression is non-zero.

We now seek to deal with the cases when h0 = h1 = h2 = ρg, ρg > 0.

If k ≤ 0 then as before, W 2 is trivial with fibres H2(X,L2) and there is
an exact sequence

0 → W 0 → H0(X,L2) → J−1−k(L2) → W 1 → H1(X,L2) → 0.

Since the map W 0 → H0(X,L2) is injective p0 ≥ h0 = ρg and W 1 →
H1(X,L2) is surjective, p1 ≤ h1 = ρg. Furthermore, since p2 = ρg > 0,
Lemma 2.3.7 implies that p0 ≤ ρg, therefore p

0 = ρg. It then follows from
the above exact sequence that we must have p1 = k(1 − k)/2 − ρg and via
an identical computation of the Chern classes as done previously previously,
we obtain that the families Seiberg-Witten invariant is given by

FSW(E,L) = c1(f
∗J−1−k(L2))

Now assume that k > 0, then W 0 is trivial with fibres H0(X,L2) and
there is an exact sequence

0 → H1(X,L2) → W 1 → Jk−2(L2 ⊗K∗
X)

∗ → H2(X,L2) → W 2 → 0.

from which we obtain the following identity in the first Chern classes

c1(W
1)− c1(W

2) = c1(J
k−2(L2 ⊗K∗

X))
∗ = c1(J

k−2(L2 ⊗K∗
X)

∗)

and that p1 − k(1 − k)/2 − p2 = 0. Since H1(X,L2) → W 1 is injective,
p1 ≤ ρg and similarly since H2(X,L2) → W 2 is surjective it follows that
ρg ≤ p2. Applying Lemma 2.3.7 to L2 gives p2 ≤ p0 = h0 = ρg, hence
p2 = ρg. Now when ρg = 1, recall that in Proposition 8.1.3 it was proven
that c1(V

0) − c1(V
2) = c1(H

2,0), since H2,0 is trivial for the blowup family
we have c1(V

1) = c1(V
2) and it follows that the families Seiberg-Witten

invariant is given by

FSW(E,L) = c1(f
∗W 1)− c1(f

∗W 2) + (h1 − h0)c1(f
∗L1)

and so, due to the above expression in the Chern classes and since h1 = h0

FSW(E,L) = c1(J
k−2(L2 ⊗K∗

X)
∗)
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when ρg = 1. Furthermore when ρg ≥ 2, it follows from the computations in
Proposition 8.1.4 that

FSW = (−1)ρg+1(c1(V
1)− c1(V

2))

and so via the same computation used when in the case of ρg = 1, we have

FSW(E,L) = (−1)ρg+1c1(J
k−2(L2 ⊗K∗

X)
∗).

If we instead seek a mod α = |SW(E,L)| =
(
ρg−1
h0−1

)
invariant as in the end

of Section 8.2 then we must assume d(X,L) = 0 and 1 < h0 < ρg. If k ≤ 0
then W 2 is trivial and there is an exact sequence

0 → W 0 → H0(X,L2) → J−1−k(L2) → W 1 → H1(X,L2) → 0

it then follows that c1(W
1) = c1(J

−1−k(L2)) + c1(W
0) and combined with

d(X,L) = 0, one can show that k2 − k − 2(χ(X,L2) − ρg − 1) = 0. With
this data and Equation (8.3), the mod α families Seiberg-Witten invariant
for k ≤ 0 is

FSW(E,L)α =
(
c1(f

∗J−1−k(L2)) + c1(f
∗W 0) + h1c1(f

∗L1)
)(ρg − 1

h0 − 2

)
and this provides a non-zero invariant provided the above conditions hold.

If instead we have k > 0, thenW 0 is trivial and there is an exact sequence

0 → H1(X,L2) → W 1 → Jk−2(L2 ⊗K∗
X)

∗ → H2(X,L2) → W 2 → 0

from which again forces k2 − k − 2(χ(X,L2) − ρg − 1) = 0 and we obtain
c1(W

1) − c1(W
2) = c1(J

k−2(L2 ⊗ K∗
X)

∗) and so using Equation (8.3), the
mod α invariant is

FSW (E,L)α =
(
c1(f

∗Jk−2(L2 ⊗K∗
X)

∗) + (h1 − h2)c1(f
∗L1)

)(ρg − 1

h0 − 2

)
.
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