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Summary
Background: From consumption of fermented foods and probiotics to emerging ap-
plications of faecal microbiota transplantation, the health benefit of manipulating 
the human microbiota has been exploited for millennia. Despite this history, recent 
technological advances are unlocking the capacity for targeted microbial manipula-
tion as a novel therapeutic.
Aim: This review summarises the current developments in microbiome- based medi-
cines and provides insight into the next steps required for therapeutic development.
Methods: Here we review current and emerging approaches and assess the capabili-
ties and weaknesses of these technologies to provide safe and effective clinical inter-
ventions. Key literature was identified through Pubmed searches with the following 
key words, ‘microbiome’, ‘microbiome biomarkers’, ‘probiotics’, ‘prebiotics’, ‘synbiot-
ics’, ‘faecal microbiota transplant’, ‘live biotherapeutics’, ‘microbiome mimetics’ and 
‘postbiotics’.
Results: Improved understanding of the human microbiome and recent technological 
advances provide an opportunity to develop a new generation of therapies. These 
therapies will range from dietary interventions, prebiotic supplementations, single 
probiotic bacterial strains, human donor- derived faecal microbiota transplants, ra-
tionally selected combinations of bacterial strains as live biotherapeutics, and the 
beneficial products or effects produced by bacterial strains, termed microbiome 
mimetics.
Conclusions: Although methods to identify and refine these therapeutics are con-
tinually advancing, the rapid emergence of these new approaches necessitates ac-
cepted technological and ethical frameworks for measurement, testing, laboratory 
practices and clinical translation.
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1  | INTRODUC TION

The gastrointestinal (GI) microbiome is known to play an integral 
role in overall homeostasis; however, alterations can lead to the de-
velopment and progression of disease. These complex communities 
contain between 100 and 1000 bacterial species all of which have 
the ability to interact with the host in different ways. The concept of 
altering the GI microbiome to improve health outcomes is now well 
established in modern medicine. Microbiome- based medicines can 
fall into two categories, microbiome- based biomarkers, and thera-
peutics (Figure 1). Although some dietary interventions, prebiotics, 
probiotics, antibiotics and faecal microbiota transplant (FMT) are 
well- established therapeutics, recent work has raised the possibil-
ity of live biotherapeutics, and phage therapies for managing and 
treating a large array of diseases1– 6 (Figure 1). With the expansion 
of diverse microbially targeted therapies, coupled with an increasing 
availability of cost- effective gut metagenomic profiling, it is timely 
to critically evaluate current capabilities and determine fundamental 
areas on which to focus future research.

2  | BIOMARKERS FOR DIAGNOSIS AND 
TRE ATMENT

The microbiome, particularly the gut microbiome, shares an expan-
sive interface with the host immune system, rendering it an excel-
lent candidate for biomarker development (Figure 2). Advances in 
metagenomic sequencing technologies have improved characteri-
sation of microbial communities and provided associations with 
disease phenotypes.1,7,8 This has facilitated the identification of po-
tential microbial disease biomarkers in type 2 diabetes,1 colorectal 
cancer,2 liver cirrhosis9 and hepatocellular carcinoma.3 For example, 
a decrease in the abundance of butyrate producing bacteria is in-
dicative of type 2 diabetes,1 and an increase in Fusobacterium and 
Porphyromonas is a biomarker for colorectal cancer.2 In addition to 
the identification of biomarkers for diagnosis of disease, microbial 

biomarkers are being developed to stratify patient cohorts prior to 
treatment to ensure patients receive the best treatment for them. 
Furthermore, biomarkers can be used to monitor patients follow-
ing treatment to ensure treatment efficacy (Figure 2). Currently, 
the causal relationship between the microbiome and these disease 
states is unknown and microbial strain level granularity is largely 
lacking. Given the complexity of these microbiome– disease interac-
tions future biomarkers may require microbial signatures comprised 
of multiple bacteria or bacterial functions as disease biomarkers. 
Furthermore, identifying and validating key species or functions may 
complement or reduce the need for expensive scans and invasive 
biopsies for patients.

Understanding interactions between the microbiome and thera-
peutic response provides the opportunity for tailored interventions 
to achieve optimal outcomes or avoid adverse reactions.10,11 In this 
context, microbiome- based patient stratification to appropriately 
target existing therapies to specific patients12– 16 and to define re-
sponses to vaccines and other therapies,17– 20 represent two emerg-
ing areas for the application of microbiome- based technologies.

The importance of microbiome diversity on vaccine response is 
exemplified by studies in paediatric cohorts. These studies suggest 
greater bacterial diversity in the GI tract correlates with an increased 
immune response to a variety of vaccines, including the oral rota-
virus and polio vaccines, the intramuscular hepatitis B vaccine and 
the intradermal BCG vaccines.10,18,19 Differences in the microbi-
ome have been associated with lower efficacy of these vaccines in 
lower- income nations.17– 20 Specifically, studies have demonstrated 
that an increase in the abundance of bacteria from the Firmicutes 
or Actinobacteria phyla is associated with a greater production of 
antibodies in response to vaccines.18 Furthermore, patients with a 
higher relative abundance of Proteobacteria and Bacteroidetes had 
a lower antibody titre following immunisation.17– 20 This is consis-
tent with previous studies that link the GI microbiome with immune 
development, tolerance and priming.21 In this context, the microbi-
ome has been linked to a decrease in the development of allergies, 
through anti- inflammatory effects of microbial metabolites such as 

F I G U R E  1   Overview of the different 
uses of the microbiome for medicine. 
Microbiota uses include biomarkers 
(orange box), where patients are screened 
monitored and stratified, and therapeutics 
(purple box), where there are currently 
nine forms of therapeutics: Dietary 
interventions, prebiotics, probiotics, 
synbiotics, antibiotics, faecal microbiota 
transplantation, phage therapy, live 
biotherapeutics and microbiome mimetics.
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long and short- chain fatty acids (SCFAs).22– 24 Although understand-
ing the proportions of certain bacterial phyla within the microbiome 
may be the first step in predicting a patient's response to a vac-
cine, a higher- resolution taxonomic classification may be important 
given species and strain- level functional differences.25 Determining 
species and strain- level variation could allow for determination of 
causation, leading to personalised microbial therapeutic options 
with increased efficacy.

Improved patient responses to chemotherapies, radiation and 
immunotherapies have been associated with a more diverse GI mi-
crobiome and key bacterial species.

Reducing microbiome diversity through an antibiotic cocktail, 
prior to chemotherapy with oxaliplatin or cisplatin for subcutaneous 
lymphoma in a T- cell lymphoma– induced mouse model, reduced the 
efficacy of both treatments.26 Furthermore, the depletion of micro-
biome diversity through antibiotic treatment has been observed to 
decrease patient response to immune checkpoint inhibitors, such as 
anti- programmed cell death protein 1 (PD- 1) immune checkpoint in-
hibitor (anti- PD- 1) and cytotoxic T- lymphocyte- associated protein 4 
(CTLA- 4).27,28 Although the relationship between general loss of di-
versity and adverse outcomes is clear, identification of key microbes 
as biomarkers requires a more detailed analysis.

Emerging evidence has identified key relationships between 
Ruminococcaceae/Faecalibacterium strains and Akkermansia mu-
ciniphila with some immunotherapies,23 Clostridium butyricum with 
chemotherapies15 and Lactobacillus rhamnosus GG with radiation ther-
apy.15,16,29 The association of Ruminococcaceae/Faecalibacterium 
strains with improved metastatic melanoma patient outcomes was 
identified following treatment with anti- PD- 1.14 Furthermore, when 
A. muciniphila, is administered to mice through five oral gavages, 
treatment efficacy of anti- PD- 1 increased, and was associated with 
increased microbiota diversity with a specific increase in A. muciniph-
ila.28 Similarly, administration of C. butyricum, to patients undergoing 

chemotherapy for lung cancer,15 and L. rhamnosus GG to patients 
undergoing radiation therapy,16 have been shown to decrease diar-
rhoeal incidents and intestinal mucosal disruption. This correlates 
with a reduction in adverse event related cessation of treatment.15,16 
These results are consistent with murine studies showing admin-
istration of L. rhamnosus GG is radioprotective through Toll- like 
Receptor 2 and cyclooxygenase- 2 mediated secretion of radiopro-
tective prostaglandin E2, which mitigates intestinal cell damage.30

As most of the evidence for the use of microbiota as biomarkers 
has been identified in murine studies, it important to note, that these 
biomarkers may not be applicable to humans.31 Indeed, recent stud-
ies suggest that only 2.58% of bacterial species are found in both 
human and mouse GI microbiomes.31 Therefore, more research is 
required to ensure functionally equivalent biomarkers are identified 
in humans. Despite these challenges, in the near future microbiome- 
based screening prior to the initiation of some cancer therapies may 
provide the opportunity to supplement the microbial communities 
in patients to improve potential responses and outcomes. Similarly, 
many therapeutic interventions can alter the patient's microbiome 
composition. This provides the opportunity to develop biomarkers 
to monitor treatment progression and success. Following treatments 
for diseases such as irritable bowel syndrome (IBS) and inflamma-
tory bowel diseases (IBDs), the microbiome could be monitored for 
changes, including increases in diversity or abundance of key spe-
cies. Thus, biomarkers could be used preceding treatment to deter-
mine potential efficacy and post treatment to monitor outcomes.

3  | THER APEUTIC S

Unlike prognostic biomarkers, that may be or show a causal rela-
tionship, therapeutic intervention requires a causal relationship be-
tween the microbes and disease states. There is increasing evidence 

F I G U R E  2   Categorisation of microbiome- based biomarkers for disease. Microbiome- based biomarkers can be classed as tools for 
screening for diagnosis (pink box), stratification prior to treatment (blue box) and monitoring for response to treatment (green box).
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that changes to microbiome composition, specifically diversity loss 
and a decrease in bacterial load within the GI system, may be as-
sociated with a deleterious effect on the host.32 This phenomenon 
is commonly referred to as dysbiosis and is correlated with many 
GI and metabolic diseases, including diarrhoea, Clostridioides diffi-
cile infection (CDI), IBD and type 2 diabetes.33– 37 Microbiome- based 
therapies include dietary interventions, prebiotics, probiotics, anti-
biotics, phage therapy, FMT, live biotherapeutics and microbiome 
mimetics (Figure 3; Table 1), each aiming to modify the microbiome 
to treat diseases.

3.1 | Dietary interventions

Diet plays an essential role in health and disease, with intake of di-
etary fibres from foods, such as whole grains, resistant starch and 
fruits, being clearly beneficial for the development of a diverse 
microbiome.38– 40 Alteration of diet has shown to be important for 
patients with IBS, where it is recommended for some patients to 
reduce consumption of fermentable oligo- , di- , monosaccharides 
and polyols (FODMAPs).41 FODMAPs are poorly digested but read-
ily fermented by the microbiome,42 thus a low FODMAP diet (LFD) 
provides the opportunity to leverage nutrient availability to shift the 
microbiome community. This is achieved by decreasing the amount 
of gas produced by fermentation, therefore decreasing the associ-
ated bloating symptoms.43– 45 LFDs have also been linked to a reduc-
tion in the amount of Bifidobacteria present in patients with IBS.43,46 
As such, a long- term LFD is not recommended in patients with IBS, 
given the potential for long- term health consequences of generating 
and perpetuating dysbiosis.

Dietary interventions have been extensively explored for the 
treatment of IBD, with a large variety diets being investigated 
for uses in either Crohn's disease (CD) or ulcerative colitis (UC).47 
These diets include, exclusive enteral nutrition (EEN),48,49 Crohn's 
disease exclusion diet (CDED),50– 52 specific carbohydrate diet,53 
LFD,54 Mediterranean diet (MD),55 Crohn's Disease TReatment with 
EATing diet (CD- TREAT)56 and partial enteral nutrition.47 Only two 
of these diets have proven clinical efficacy in CD treatment and 

evidence to show their impact on the GI microbiome, EEN48,49,57and 
CDED.50– 52

Exclusive enteral nutrition involves the replace of all food and 
beverages with a liquid meal replacement, which can induce remis-
sion in 80%– 85% of patients with CD.48 The proposed mechanism 
of action suggests that inflammatory dietary factors are interacting 
with the microbiome, host immune system and GI environment.58 
Therefore, removal of these products will decrease inflammation 
and the associated symptoms of CD.59 Following the success of EEN, 
CDED was developed to allow patients to eat whole foods, while 
restricting the intake of inflammatory dietary factors such as pro-
cessed foods, gluten, dairy and food additives. Patients on CDED 
have shown a 70%– 75% remission rate,48,50,51,60 and changes to their 
microbiome composition have been identified, similar to those seen 
with EEN.50,51 Both EEN and CDED broadly identified increases in the 
abundance of bacteria from the Firmicutes phylum, and a decrease 
in those from the Proteobacteria and Actinobacteria phyla.48,50,51,60 
More specifically, EEN treatment led to an increase in the abun-
dance of bacteria from the Veillonellaceae family51 and a decrease 
the amount of Faecalibacterium prausnitzii.53 Changes at the family 
or species level have yet to be identified following CDED; however, 
abundance of bacteria from the Clostridiales class were increased, 
while those from the Gammaproteobacteria were decreased.50,51 
Currently, the causal relationship between these interventions and 
microbiota changes are unclear; however, it is clear that EEN and 
CDED are effective diets for the treatment of CD. Furthermore, 
CDED exemplifies the ability to produce more targeted therapeu-
tics, which may alter microbiome structure and functions.

3.2 | Prebiotics

Many dietary fibres act as prebiotics, components in food that are 
used by the microbiome, confer a health benefit, are easily admin-
istered, and support numbers of beneficial bacteria.42,61 Currently, 
there are five main classes of prebiotics: (1) readily fermentable die-
tary fibre,62 (2) phenolics and phytochemicals,63 (3) human milk oligo-
saccharides,64 (4) other oligosaccharides (i.e. fructooligosaccharides 

F I G U R E  3   Categorisation of 
microbiome- based therapeutics. 
Microbiome- based therapeutics can 
be categorised as nutrients (blue box), 
bacterial (green box), or microbiome 
mimetics (pink box). Many therapeutics 
can be found within the diet (purple box) 
but are composed of components that are 
nutrient, bacterial and mimetics.
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[FOS],65 galactooligosaccharides [GOS]66 and inulin67) and (5) 
Conjugated linoleic acid and polyunsaturated fatty acid.68– 70 
Although all the aforementioned prebiotics have been used in dis-
ease management, the most well studied are FOS and GOS, which 
have been associated with an increase in Bifidobacteria within the 
gut.42 FOS and GOS have shown efficacy in the management of 
metabolic diseases, such as prediabetes and obesity66,71; and GI dis-
eases, including IBS.72 However, it has been noted that even small 
doses of prebiotics can cause side effects such as diarrhoea, bloat-
ing and flatulence, which may exacerbate some of the conditions 
being treated. These side- effects have been attributed to prebiotic- 
induced osmotic changes in the GI tract or gasses produced from 

rapid prebiotic fermentation in the small bowel.73 Thus, highlighting 
the patient and disease- specific efficacy of prebiotics.

Currently, the prebiotics GOS and fructans, are being routinely 
administered to newborns through infant formula.74,75 These prebi-
otics increase the abundance of bifidobacteria and lactobacilli within 
the GI microbiome,74 and this is correlated with a decreased chance 
of respiratory infections75,76 and allergic responses.77 Therefore, 
GOS and fructans can be used to improve infant outcomes through 
increasing microbiota diversity; however, many other prebiotics are 
not as successful.

As observed with other treatments, a subgroup of patients 
treated with prebiotics will be ‘non- responders’. One driver of 

TA B L E  1   The advantages, disadvantages and future direction/ implementations for microbiome- based therapeutics

Therapeutic Advantages Disadvantages Future directions/implications

Dietary interventions • Safe
• Easily manipulated

• Variable components in each food item
• Insufficient dose for therapeutic benefit
• Temporary therapeutic response

Further work required to identify key 
components of diet that can be altered 
to allow for a therapeutic response

Prebiotics • Safe
• Components of food
• Easily administered

• Dependent on specific microbe 
colonisation

• Dependent on gut microenvironment
• Therapeutic response temporary
• Potential adverse responses (e.g. 

bloating)

Potential in prevention of paediatric 
immune diseases (e.g. respiratory 
disease and allergy). Prebiotics should 
be examined for their treatment of 
other conditions

Probiotics • Relatively safe
• Readily available as 

standardised mix

• Not targeted to a disease or patient
• Dependent on specific microbe 

colonisation
• Dependent on gut microenvironment
• Therapeutic response temporary
• Viability not requirement of regulator

Efficacious following antibiotics and in the 
prevention of NEC. Potential as non- 
specific treatments to increase bacterial 
diversity

Synbiotics • Relatively safe
• Includes all 

components for 
efficacy

• Therapeutic response temporary
• Require a specific gut microenvironment
• Potential adverse responses (e.g. post 

antibiotics)

Efficacious in the treatment of metabolic 
diseases. Further combinations should 
be explored for the treatment of other 
diseases

Antibiotics • Safe
• Cheap
• Approved medication
• Existing regulatory 

framework

• Potential off- target effects (antibiotic 
resistance, disruption of colonisation 
resistance)

• Limited to disruption of the microbiota

Examination for use in targeted 
microbiome manipulation; however, 
caution is required to avoid off- target, 
adverse effects

Phage therapy • Highly specific • Limited to disruption of the microbiota
• Targets require specific development
• Emerging therapy

Examination for use in altering microbiome 
structure due to their highly specific 
nature

FMT • Contains all microbes 
and nutrients

• Proven efficacious for 
Clostridioides difficile 
treatment

• Donor variability
• Requires rigorous pre- screening
• Efficacy only seen for some conditions
• Some administration costly
• Inability to standardise composition

Further work is required to determine 
causality in FMT treatment. This will 
allow for FMT to be considered for the 
treatment of other diseases

Live biotherapeutics • Approved for specific 
indications

• Requires maintenance of bacterial 
viability

• Potential adverse long- term health 
effects

• Difficulty determining causal relationship

Determination of causality required to 
allow for development

Microbiome mimetics • Not reliant on current 
microbiome state

• Limited research to develop mimetics More research required to identify 
candidates as mimetics and mechanisms 
of delivery, including diet should be 
explored

Abbreviations: FMT, faecal microbiota transplant; NEC, necrotising enterocolitis.
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patients being ‘non- responders’ could be the reliance on the pa-
tient being colonised with bacteria that are able to metabolise the 
treatment.78,79 This observed with the prebiotic fructan, where it 
is able to increase the amount of bifidobacteria in the GI tract, but 
this increase is proportional to the amount of bifidobacteria present 
before treatment.79 Thus, if a patient only had a small amount of 
bifidobacteria present before treatment, the increase in abundance 
would be smaller or non- existent compared with that of a patient 
who started with a larger amount. Additionally, other factors such as 
differences in the host and gut microenvironments can also lead to 
similar variability in treatment response. In this context, the state of 
the patients' microbiome and gut before treatment has the capacity 
to impact the efficacy of prebiotics. Therefore, complementing pro-
vision of prebiotics to feed the current microbiota population, with 
therapies that directly provide beneficial bacteria to the gut may im-
prove patient outcomes.

3.3 | Probiotics and synbiotics

The Food and Agriculture Organisation of the United Nations and 
the World Health Organisation defines probiotics as ‘live microor-
ganisms which when administered in adequate amounts confer a 
health benefit on the host’.80 Probiotics have been consumed for at 
least 10,000 years,81 where historically they have been components 
of foods such as yogurt and fermented milk.82 It was identified that 
these fermented foods usually contained a mix of lactobacilli, bifi-
dobacteria or other lactic acid producing bacterial strains, which in 
specific circumstances, can be beneficial.83,84 This discovery has led 
to the development of modern probiotics that can be administered 
in controlled doses of purified, live bacteria.83,85 Probiotics function 
by either colonising or being transiently present at a given body site, 
where they confer a health benefit. These benefits include increas-
ing colonisation resistance by inhibiting the growth and colonisation 
of pathogens through competition for nutrients86 and direct killing 
by antimicrobials such as bacteriocins.87– 89 Bacteria within the lumen 
are more likely to interact with probiotics than mucosa- associated 
bacteria; therefore, their use as a treatment in diseases associated 
with mucosal bacteria such as IBD may be limited.90 Probiotics can 
also regulate host innate and adaptive immune functions through in-
teractions with epithelial91or dendritic cells.92,93 These interactions 
lead to anti- inflammatory immune responses from macrophages and 
T and B lymphocytes.91– 93 Additionally, they can increase mucin pro-
duction, thereby improving the integrity of the mucosal barrier in the 
gut, through the production of SCFAs.94

Generally, most probiotics do not colonise the gut.95 Therefore, 
where efficacy is dependent on bacterial presence, sustained or re-
peated dosing may be required for the benefit to be maintained.96 
This has been observed in elderly, human, subjects where those that 
consumed probiotics for 13.5 years showed greater changes in their 
abundance of the beneficial bacterial genera Bifidobacterium than 
those limited to 3 years of treatment.96 However, although a probi-
otic may not colonise the GI system directly, their transient presence 

appears to allow for colonisation by other beneficial bacteria, such as 
Lachnoclostridium, Blautia and Clostridium strains.97 Similarly, in mice 
where the microbiota has been disrupted by antibiotics, and probiot-
ics were able to restore microbiome diversity to 99.8% of what was 
observed pre- treatment, compared with the 80% restoration ob-
served without probiotics.97 Importantly, the probiotic did not col-
onise these mice,97 and it is speculated that these beneficial effects 
were observed as either the probiotics interacted with the intestinal 
barrier to increase its integrity, or they interacted with the intestinal 
epithelium to exert an anti- inflammatory response.97 Currently, pro-
biotics are considered food products, in most jurisdictions. As such 
standardisation of viability or efficacy is limited. To combat this, the 
American Gastroenterological Association98 has developed guide-
lines99 for the use of probiotics in humans. These do not currently 
support the use of probiotics for the treatment or prevention of CDI, 
CD, UC or IBD.98,99 However, preliminary evidence supports the 
use of probiotics for patients following antibiotic treatment or with 
pouchitis; however, their use in pouchitis remains controversial.98,99 
Additionally, there is strong evidence for probiotic use in preterm 
babies with low- birth- weight to prevent necrotising enterocolitis 
(NEC).98,99 Conversely, there is moderate evidence against probi-
otic use for children with acute gastroenteritis.99 Given the large 
knowledge gap for the use of probiotics, it is clear that more trials 
are required to determine if probiotics should be used for each of 
the above indications.

Probiotics can also be synergistically combined with selected 
prebiotics and these treatments are called synbiotics.84 Within syn-
biotics, there are two sub- groups: synergistic synbiotics, in which the 
prebiotic acts by providing nutrients for the probiotic and comple-
mentary synbiotics, in which the prebiotic component supports the 
growth and survival of other bacteria already present within the mi-
crobiota, known as autochthonous bacteria.100 For example, within 
the synergistic synbiotic mix of FOS with Bifidobacterium longum, B. 
breve or B. bifidum,101– 103 the bifidobacteria preferentially metabolise 
FOS, thereby increasing the bacterial numbers.104 Higher amounts 
of bifidobacteria within the microbiota have been associated with 
reduced chances of developing antibiotic- associated diarrhoea 
(AAD),105 CDI,106 NEC107 and a reduction of symptoms associated 
with IBS.108 Synbiotic combinations also allow for the development 
of beneficial cross- feeding networks.109 This occurs as the synbiotic 
is metabolised by the probiotic strains and the by- products can be 
used to cross- feed beneficial bacteria.109 Cross- feeding has been ob-
served in probiotic strains of Lactobacillus where L. salivarius W57 
cannot fully use inulin- type fructans; however, when co- cultured 
with L. paracasei subsp. paracasei W20, an extracellular enzyme from 
L. paracasei allows for the breakdown of the fructan so that it can be 
used by the L. salivarius.110

Synbiotic combinations have shown efficacy in humans for the 
treatment of non- alcoholic fatty liver disease using a combination of 
Lactobacillus, Streptococcus and Bifidobacterium strains and FOS111; 
IBS using Bacillus coagulans and FOS112; diarrhoea using B. lactis B94 
and inulin113 and type 2 diabetes with L. sporogenes and inulin.114 
Type 2 diabetes is a precursor for many other diseases including 
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polycystic ovary syndrome and cardiovascular disease, therefore 
synbiotic treatments successfully targeting type 2 diabetes may also 
be delaying the progression of other metabolic diseases.

As seen with prebiotics, recipients of probiotics and synbiot-
ics include cohorts of ‘non- responders’, due to factors such as the 
timing of treatment, disease progression and composition of the mi-
crobiome before treatment.115 Although the bacterial strains found 
in probiotics and synbiotics can be effective in the management of 
some diseases, these strains are unable to treat all diseases asso-
ciated with microbiome composition and can be harmful in some 
conditions, including following antibiotic treatment.116 Finally, the 
transient nature of probiotic treatment may be insufficient in dis-
eases that require a more permanent and substantial restructuring 
of the bacterial community.

3.4 | Antibiotics

Since the discovery of penicillin in 1928117 and its approval for clini-
cal use in 1945, many antibiotics have been discovered and success-
fully used to treat bacterial infections. Antibiotics are also commonly 
administered prophylactically to decrease the risk of post- operative 
infections.118 More recently, the administration of antibiotics prior 
to delivering microbial therapies has been shown to enhance the 
efficacy of the treatment in some settings, possibly by opening 
ecological niches and enabling colonisation.119,120 Although these 
approaches offer potential, the antibiotic- associated decrease in 
bacterial number and diversity may also reduce colonisation resist-
ance121 or induce other pathologies.122 Pathogenic strains, including 
multi- drug- resistant C. difficile,123 Escherichia coli, Enterococcus fea-
cium and Klebsiella pneumoniae124 can exploit this niche and infect 
the gut causing AAD. These diseases can be exacerbated by further 
antibiotic use, which can lead to the development of resistance. In 
particular, antibiotic- resistant ‘super- bugs’ can develop, leading to 
untreatable infections in patients.125 Although largely unexplored, 
microbiota modification through selective administration of anti-
biotics represents a potential mechanism for targeted community 
change. However, such interventions will require careful design to 
minimise off- target or adverse effects but may form a critical com-
ponent of future microbiome- based therapies.

3.5 | Phage therapy

Bacteriophages (phages), viruses that exclusively infect bacterial 
cells, have been used as antibacterial monotherapy for the treatment 
of bacterial infections for over 100 years.126 Clinical trials of phage 
cocktails targeting difficult to treat E. coli, Staphylococcus aureus 
and Pseudomonas aeruginosa infections127 and multi- drug- resistant 
bacterial infections including methicillin- resistant S. aureus128 and 
Acinetobacter baumannii129 have shown substantial promise. Within 
faecal transplants, phage have been shown to colonise the host fol-
lowing treatment130 and may be responsible for a proportion of the 

beneficial effects achieved. It has been postulated that the efficacy 
of the sterile filtrate of FMT demonstrated in a small cohort of pa-
tients with CDI may have been partly attributed to phage.131 The 
narrow host range typical of phage132 provides an opportunity for 
targeted bacterial depletion and microbiota remodelling as a thera-
peutic intervention. Coupled with broad- range antibiotic treatment, 
these therapies allow for highly controlled microbiome disruption.

3.6 | Faecal microbiota transplantation

In contrast to antibiotics and phage therapies, FMT can restore 
bacterial diversity and health- associated functions such as colonisa-
tion resistance by introducing a faecal- associated microbiota from 
a healthy individual.133 FMT also provides a diversity of bioactive 
compounds, and other microbes, such as phage. Together these 
components are a functioning, synbiotic community, which allows 
for better colonisation within the GI tract.134

Traditionally, FMT had medicinal use in ancient China and 
Indigenous Australian culture,135 however, its potential as a mod-
ern medicine was only identified within the last 20– 30 years.136– 138 
For the treatment of recurrent CDI, FMT has proved highly effec-
tive136,139,140 with efficacy of 85%– 95% reported.141,142 It is thought 
that the increased diversity and abundance of bacteria that the FMT 
provides to the GI tract outcompetes C. difficile and prevents rein-
fection. As FMT has been successful in the treatment of CDI, it is 
now being examined for efficacy in other GI diseases.

Faecal microbiota transplant has shown promise in the treat-
ment of non- GI diseases, including insulin resistance, liver disease 
and autism spectrum disorders,143– 145 and has been used success-
fully to induce remission in UC.146– 148 Meta- analysis has shown that 
multiple forms of FMT administration can induce remission in UC149; 
however, this is not the case for all diseases, which has led to a call 
for standardised methods of preparation or administration.150 Until 
recently most faecal transplants were prepared in aerobic condi-
tions, leading to the loss of many obligate anaerobic bacteria.151– 153 
Studies have now shown that many of the bacteria correlated with a 
positive treatment outcome, particularly in patients with UC, are ob-
ligate anaerobes such as F. prausnitzi, which can be preserved if the 
treatment is prepared anaerobically.146,154 It is unclear whether an-
aerobic stool processing confers a clinical benefit relative to aerobic 
processing; however, there are advantages for microbial drug discov-
ery using anaerobic stool processing in FMT clinical trials. Currently, 
FMT can be administered to the lower GI tract, by colonoscopy or 
enema, or the upper GI tract, through gastroscope, or nasogastric, 
nasojejunal or gastrostomy tube, with each method using varied 
doses, and frequencies of administration.155– 157 Faecal microbiota 
transplant delivery via colonoscopy in the lower GI tract has been 
the most effective (86% success rate, compared with 74% success 
rate for upper GI tract delivery),158 particularly in the treatment of 
CDI.159 Unfortunately, colonoscopies are relatively invasive proce-
dures and cannot be performed on all patients due to risks such as 
bowel perforation in groups such as the elderly or critically ill.160 
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Administration through the upper GI tract has shown higher rates 
of adverse events with multiple reports of aspiration pneumonia.161 
To overcome these issues, substantial effort developing encapsu-
lation methods for oral delivery has been undertaken. Specialised 
acid- resistant hypromellose capsules have been used, which allow 
for colonic release of the bacteria and protection from the gastric 
environment.162,163 However, is it possible that exposure to the GI 
environment could enhance colonisation efficiency. In addition, ly-
ophilisation of donor stool allows greater stability of the FMT within 
the capsule. These capsule- based approaches have shown high rates 
of clinical success.164,165 Despite this success, a small number of se-
rious complications, including bacteraemia and transient UC flares, 
have been observed and one death due to infection with an ex-
tended spectrum beta- lactamase (ESBL)- producing E. coli has been 
noted with capsule delivered FMT.166 Therefore, further screening 
of capsule FMT preparation may be necessary prior to large scale 
adoption.

Faecal microbiota transplant is remarkably safe. Effective donor 
and sample screening to prevent transfer of detrimental bacteria 
including, multi- drug- resistant pathogens or other detrimental spe-
cies is performed. While relatively harmless within the donor, these 
species may be harmful for an immunocompromised or otherwise 
susceptible recipient. Introduction of multi- drug- resistant bacte-
ria, such as ESBL- producing E. coli, has resulted in fatal, untreatable 
sepsis.167 While screening for pathogens is routine, and should ef-
fectively eliminate the risk, identifying patient- specific detrimental 
bacteria is substantially more challenging.

Screening samples prior to delivery highlights the substan-
tial donor- specific variability, which can alter efficacy, allowing for 
higher rates of treatment success by some donors termed ‘super do-
nors’.168 This phenomenon was first postulated in a clinical trial test-
ing the efficacy of FMT in inducing UC remission, where 7/9 patients 
who entered remission received FMT from the same donor.152 It has 
been suggested that some donors may be associated with higher 
efficacy due to having higher bacterial diversity or specific bacte-
ria that are therapeutic for a given disease.168 It should be noted, 
studies of 1999 FMTs used to treat CDI have failed to identify evi-
dence of ‘super donors’,169 highlighting the disease specificity of this 
relationship. Conditions where ‘super donors’ have been identified, 
highlight the possibility of donor– patient compatibility and the op-
portunity for refining microbial therapeutic treatments to contain 
only the bacterial strains required to induce health benefits.170

3.7 | Live biotherapeutics

To provide more targeted intervention and overcome the risks as-
sociated with pathogen or pathobiont transfer, significant research 
and development effort has been focused on determining bacterial 
strains that could be used as therapeutics.171 Termed, live biothera-
peutics, these therapies have been defined by the FDA as ‘a bio-
logical product that (1) contains live organisms, such as bacteria; (2) 
is applicable to the prevention, treatment, or cure of a disease or 

condition of human beings and (3) is not a vaccine’.172 These are dis-
tinct from probiotics as they are microbes that may colonise the gut 
and have an established clinical benefit for the treatment of a spe-
cific disease.173 Live biotherapeutics may be comprised of a single 
bacterial species or selected combinations that act synergistically.

To date, very few studies have determined direct causation 
between bacterial species and disease,174 due to the complexity 
of microbiome interactions and limitations of existing experimen-
tal models. In the case of CDIs, through both murine and clinical 
studies in humans, researchers have identified C. scindens as being 
inversely correlated with the establishment of CDI.175 It was conse-
quently found that the administration of C. scindens can reduce C. 
difficile bacterial load in mice174,175 through dehydroxylation of bile 
acid, which produces a toxic by- product to C. difficile.174 Although C. 
scindens reduced C. difficile levels, colonisation resistance was not 
restored.174 However, two studies in mice have identified consor-
tiums of four175 and six176 bacterial strains that were able to increase 
resistance to CDI, with the consortium of six bacterial isolates able 
to prevent recurrent infection.176 These studies demonstrate the po-
tential for specifically chosen live biotherapeutics to colonise the gut 
and provide beneficial health outcomes.

Researchers began developing a more specific treatment for 
UC using Firmicutes spores derived from ethanol shocked human 
donor stool, termed SER- 287.120 This treatment can induce remis-
sion in patients and is thought to be superior to FMT as there is less 
risk of introducing harmful bacteria into patients.120 It is proposed 
that SER- 287 is effective because the ratio of metabolites within 
the gut is observed to change following treatment; however, a direct 
causation has not been identified.120 Unfortunately, SER- 287 failed 
to meet its primary endpoint in a phase 2b clinical trial, and the prod-
uct is no longer in development with Seres Therapeutics.

As most biotherapeutic development is in its early stages, very 
little is known about whether long- term persistent colonisation with 
these therapies may impact health or chronic conditions. In particu-
lar, live biotherapeutics are being developed to treat paediatric con-
ditions, such as paediatric IBD,177 so it is important to evaluate not 
only the effect of the bacteria but the dosage, treatment frequency 
and delivery mode to ensure the safest treatment that will have the 
least adverse health outcomes later in life. These concerns are one 
of the reasons that researchers are now also considering microbiome 
mimetics.

3.8 | Microbiome mimetics

Microbiome mimetics describes any intervention that replicates 
the interaction between the microbiome and the host, that yields 
a therapeutically beneficial outcome. This can include bacterial de-
rived products, small molecules, conventional therapeutics or host 
derived products. The majority of research has focused on postbi-
otics, which are molecules or components of bacteria that confer 
a health benefit.178 Within postbiotics there are two main classes: 
paraprobiotics and fermented infant formulas (FIFs). Paraprobiotics 
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are non- viable components of bacteria, including bacterial proteins 
and polysaccharides.179 Meanwhile, FIFs are the purified products 
produced after infant formula is fermented by bacteria.180 Research 
into these products is currently aimed at determining which bacte-
rial molecules provide health benefits. This can be achieved through 
mass spectrometry of bacterial supernatants and targeted purifica-
tion of these metabolites for use. The most prominent candidate 
for use as postbiotics are SCFAs.181 Short- chain fatty acids are 
compounds such as butyrate, propionate and acetate, which are 
produced by bacterial fermentation of prebiotic or dietary fibre, 
and resistant starches and are the primary energy source of colono-
cytes.182 Additionally, SCFAs have beneficial effects on the mucosal 
immune system,183,184 including anti- inflammatory effects through 
blocking inflammatory cytokine production, increasing mucus pro-
duction, promoting immune tolerance through regulatory T (Treg) 
cells, and promoting tissue repair.185– 187 While patients with UC 
have decreased SCFA levels,188 trials of butyrate enemas have been 
unsuccessful, likely due to the dysfunction of colonocytes and their 
reduced ability metabolise butyrate as an energy source in this dis-
ease.189 SCFAs also increase gut mucin production, decreasing the 
‘leaky gut’ syndrome in human patients with type 1 diabetes mel-
litus.190 Consequently, SCFAs have shown efficacy in delaying the 
onset of type 1 diabetes mellitus in mice.191 Therefore, although 
postbiotics may be used to manage and treat disease without re-
quiring patients to have particular bacterial species present in their 
microbiome, they may still require their immune system to be primed 
for an effective response. Interestingly, postbiotics such as SCFAs 
can also be found in fermented foods such as cheese and yogurt, and 
beverages such as beer and kombucha. Postbiotics occur at lower 
doses in these foods; therefore, it is hypothesised that the higher 
doses used in postbiotics would likely be required for therapeutic 
efficacy.192– 194 Therefore, future microbiome mimetic treatments 
may incorporate dietary interventions targeted to replicate the ben-
eficial effects provided by the microbiota.

4  | FROM THE L ABOR ATORY TO THE 
CLINIC

Advances in sequencing technology have revolutionised the study of 
the microbiome; however, identifying key bacterial species involved 
in health and disease remains a challenge. Despite the prevalence 
of microbiome sampling and evidence suggesting that storage time, 
temperature and storage medium can affect the bacterial strains,195 
there remains no standardised method for sample collection, stor-
age, data analysis or dosage calculation.196– 198

For many microbiome- based medicines, preclinical safety testing 
may not be required as the therapeutic may already be approved for 
use in humans by the FDA or other stringent regulatory authorities. 
These include commonly consumed foods that may contain prebi-
otics, probiotics or postbiotics and other medicines that have been 
repurposed as microbiome mimetics. Importantly, disease- specific 
testing of therapeutic efficacy is still required. Preclinical testing 

and safety profiles of FMT are now well established, although the 
classification and regulation of the treatment varies from a strin-
gently regulated biological agent in some countries (USA, Canada, 
Australia), to a medicinal product or treatment with variable regu-
lation (UK, France, Germany, Switzerland), to no regulation (Austria, 
Denmark, Sweden, Finland).199,200

To improve selection of therapeutic candidates it is necessary 
to establish acceptable methods for candidate prioritisation and 
preclinical safety and validation testing. Although animal models 
can play an important role in preliminary safety testing, limitations 
of mouse models in replicating human microbiome interactions in-
troduce a unique difficulty in validating microbiome- based medi-
cines.201 To address these concerns, gnotobiotic mice with defined 
microbiome have been used.202– 204 The use of gnotobiotic mice, with 
a human microbiome for example, have enabled the identification of 
a T- cell response integral to the success of FMT, that is associated 
with increased bacterial abundance in the gut.205 Many groups have 
also used human immortalised cell- culture methods for safety or val-
idation testing,206 but these methods do not allow replication of the 
complex physical and mechanistic interactions between the microbi-
ome and host. As a result, cell- based models, such as organoids and 
organ- on- a- chip technologies, are emerging as an important compo-
nent for developing novel microbiome- based therapeutics.

Organoids are enclosed, three- dimensional (3D) cultures that 
mimic the multicellular structure from the corresponding tissue.207 
Methods now exist to establish and maintain patient- derived GI 
organoids, which partially recapitulate the environment that the 
microbiota normally inhabits and provide the opportunity for a 
‘personalised’ microbiome cell culture model.208,209 Microinjection 
technology allows for bacteria to be introduced into the lumen of 
gut organoids to investigate microbiome– host GI epithelial inter-
actions.210,211 Unfortunately, organoids still contain no stroma or 
vasculature, limiting the capacity to infer microbiome– host immune 
interactions beyond those in the epithelium. To overcome this, some 
studies have used induced pluripotent stem cells to generate organ-
oids containing mesenchymal stem cells,212 and others have cultured 
organoids with supporting mesenchymal and/or immune cells.213,214 
However, as organoids are enclosed 3D structures, the bacteria 
within the system are trapped, which leads to the build- up of det-
rimental metabolites and other cellular debris that may impact bac-
terial replication or modify host cell responses.215 Therefore, when 
using this technology to investigate novel intervention strategies 
such as live biotherapeutics, determining bacterial colonisation or 
transience, host physiology and immune responses following treat-
ment is not possible. These limitations have been addressed with the 
development of organ- on- a- chip technology.

Organ- on- a- chip is a method that combines microfluidics and 
cell culture to generate mini human organs on a chip. To date, re-
searchers have modelled brain,216 lung,217 heart,218 skin219 and the 
GI tract or gut- on- a- chip systems.220 Microfluidic channels in these 
systems enable optimal fluid flow and cyclic mechanical strain on 
cells to mimic peristalsis.221 These systems replicate the GI tract as 
they generate villi- like structures and exist in two compartments 
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with media perfusion and an oxygen gradient. The upper epithelial 
layer can be maintained anaerobically, whereas the endothelial layer 
containing immune cells can be cultured in an aerobic environment. 
Gut- on- a- chip can include complex cell types such as immortalised 
cell lines and primary tissues, similar to organoids.220 Through the 
use of gut- on- a- chip, microbiome researchers have demonstrated 
the interactions of bacterial cells, including pathogenic Shigella222 
and E. coli strains,220 and probiotic Lactobacillus strains,220 with not 
only the epithelium, but also immune cells.220 Other work has ex-
amined specific bacterial consortia and the whole microbiome of an 
individual in this context.220,222– 225 Although some immune cells can 
be added and the innate immune response to a therapeutic can be 
examined, gut- on- a- chip cannot replicate complex, adaptive immune 
responses, which are generated systemically and over longer time 
periods in response to a stimulus. Further work is required to re-
fine this emerging platform to comprehensively assess host- microbe 
responses and test developing medicines. With this collection of 
current technologies, preclinical testing of microbiome- based med-
icines remains dependent on a combination of animal models and 
cell- based systems to demonstrate efficacy and safety in the pre- 
clinical setting. Following this pre- clinical testing, each therapeutic 
will need to be examined under specific clinical settings, to confirm 
these findings and determine efficacy in humans.

5  | CONCLUSION

Microbiome- based medicines have advanced dramatically over the 
last decade, from prebiotics and probiotics, to live biotherapeutics 
and microbiome mimetics. The ability to culture the GI bacteria and 
new applications of metagenomic sequencing have overcome many 
of the previous technical hurdles in this area. The primary challenge 
now faced is identifying clinical diseases amenable to interven-
tion with microbiome- based medicines and developing appropriate 
methods to identify, refine and test candidate therapies. Although 
much progress has been made, further work to optimise methods to 
identify candidate microbes, develop appropriate preclinical valida-
tion models, and progress to personalised targeting of microbiome- 
based medicines are the essential next steps.
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