
Understanding thermal comfort and 
wellbeing of older South Australians 
using occupant-centric models
A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Larissa Arakawa Martins
School of Architecture and Built Environment
Faculty of Engineering, Computer and Mathematical Sciences
The University of Adelaide





Understanding thermal comfort and 
wellbeing of older South Australians 
using occupant-centric models
A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Larissa Arakawa Martins
School of Architecture and Built Environment
Faculty of Engineering, Computer and Mathematical Sciences
The University of Adelaide

March, 2022



iv 

 

Table of contents 

 

List of abbreviations and nomenclature ............................................................................................ vii 

List of figures ...................................................................................................................................... viii 

List of tables ....................................................................................................................................... xiii 

Included publications, associated publications, presentations and awards ................................. xv 

HDR Thesis Declaration ..................................................................................................................... xix 

Acknowledgements ............................................................................................................................. xx 

Abstract .............................................................................................................................................. xxii 

Chapter 1. Introduction .................................................................................................................... 1 

1.1. Overview of the research background ............................................................................. 1 

1.2. Problem statement ........................................................................................................... 6 

1.3. Research questions ......................................................................................................... 7 

1.4. Aim and objectives ........................................................................................................... 7 

1.5. Research methodology .................................................................................................... 8 

1.6. Thesis structure ............................................................................................................. 12 

Chapter 2. Background on thermal comfort for older people and generalised thermal 

comfort modelling ............................................................................................................................... 16 

2.1. Thermal comfort and older people ................................................................................. 16 

2.2. Generalised thermal comfort models ............................................................................. 23 

Chapter 3. Systematic literature review of personal thermal comfort models .......................... 39 

3.1. Introduction .................................................................................................................... 43 

3.2. Research Methodology .................................................................................................. 46 

3.3. Results ........................................................................................................................... 49 

3.4. Discussion and future research directions ..................................................................... 70 

3.5. Conclusion ..................................................................................................................... 74 



v 

 

Chapter 4. Research Methodology ............................................................................................... 76 

4.1. Methods to achieve Objective (1) .................................................................................. 76 

4.2. Methods to achieve Objective (2) .................................................................................. 81 

4.3. Methods to achieve Objective (3) .................................................................................. 84 

4.4. Summary ....................................................................................................................... 86 

Chapter 5. Field study and initial analysis of factors associated with older people’s 

thermal comfort ................................................................................................................................... 87 

5.1. Introduction .................................................................................................................... 87 

5.2. Methods ......................................................................................................................... 88 

5.3. Results ........................................................................................................................... 95 

5.4. Discussion ................................................................................................................... 117 

5.5. Limitations ................................................................................................................... 121 

5.6. Summary ..................................................................................................................... 122 

Chapter 6. Personal thermal comfort models for older people using environmental, 

behavioural and health variables ..................................................................................................... 124 

6.1. Introduction .................................................................................................................. 127 

6.2. Data collection ............................................................................................................. 129 

6.3. Modelling methodology ................................................................................................ 131 

6.4. Results and discussion ................................................................................................ 141 

6.5. Recommended applications......................................................................................... 149 

6.6. Limitations ................................................................................................................... 150 

6.7. Conclusion ................................................................................................................... 151 

Chapter 7. Personal thermal comfort models for older people using skin temperature 

and environmental, behavioural and health variables ................................................................... 153 

7.1. Introduction .................................................................................................................. 157 

7.2. Study design and methodology .................................................................................... 162 

7.3. Results ......................................................................................................................... 174 



vi 

 

7.4. Discussion ................................................................................................................... 183 

7.5. Limitations and future studies ...................................................................................... 186 

7.6. Conclusion ................................................................................................................... 187 

Chapter 8. Applications of personal thermal comfort models for older people ..................... 190 

8.1. Introduction .................................................................................................................. 190 

8.2. Building Simulation application .................................................................................... 191 

8.3. Smart device application .............................................................................................. 210 

8.4. Summary ..................................................................................................................... 225 

Chapter 9. Main findings and conclusions ................................................................................ 226 

9.1. Main research findings ................................................................................................. 226 

9.2. Implications of findings ................................................................................................ 230 

9.3. Novelty and contributions ............................................................................................ 231 

9.4. Limitations ................................................................................................................... 231 

9.5. Recommendations and next steps ............................................................................... 232 

9.6. Closing remarks ........................................................................................................... 233 

References ......................................................................................................................................... 234 

Appendices ........................................................................................................................................ 251 

A. Included journal publications........................................................................................ 251 

B. Ethics approval ............................................................................................................ 318 

C. Participant consent form .............................................................................................. 325 

D. Participant info sheet ................................................................................................... 327 

E. Questionnaire .............................................................................................................. 335 

F. Additional questionnaire .............................................................................................. 345 

G. House construction check-list ...................................................................................... 353 

H. Thermal comfort survey tablet screens ........................................................................ 362 

I. Thermal comfort survey tablet booklet ......................................................................... 368 

  



vii 

 

List of abbreviations and nomenclature 

(except for those only present in published chapters) 

Acc - Accuracy 

ANN – Artificial Neural Network 

AUC – Area Under the Receiver Operating Characteristic Curve 

AVA – Arteriovenous Anastomoses 

BMI – Body Mass Index 

BMR – Basal Metabolic Rate 

CO2 – Carbon Dioxide  

COP – Coefficient of Performance 

EER – Energy Efficiency Ratio 

EMS – Energy Management System 

FOV – Field of View 

HVAC – Heating, Ventilation and Air Conditioning 

IoT – Internet of Things 

max – maximum  

min – minimum 

MRES - Modified Reported Edmonton Scale  

PCM – Personal Comfort Model 

PCS – Personal Comfort System 

PMVc – Converted Predicted Mean Vote 

PMV – Predicted Mean Vote 

PPD – Predicted Percentage of Dissatisfied 

ReLU - Rectified Linear Unit activation function 

ROC – Receiver Operating Characteristic 

TPV – Thermal preference vote 

TSV – Thermal sensation vote 

VIF – Variance Inflation Factor 

VOC – Volatile Organic Compound 

WLS – Weighted Least Squares 

  



viii 

 

List of figures 

 

Figure 1-1 - Estimated and projected global population by broad age group, 1950-2100, according 

to the medium-variant projection. Source: United Nations Department of Economic and Social 

Affairs Population Division (2019a). ......................................................................................................... 1 

Figure 1-2 - Number of people older than 65 years per 100 people of working age (20-64), 1980-

2060, based on data from OECD (2019) and United Nations Department of Economic and Social 

Affairs Population Division (2019b) .......................................................................................................... 2 

Figure 1-3 - Thesis structure ................................................................................................................. 15 

Figure 2-1 - Physical functioning across the life course, stratified by ability to manage on current 

income. Source: World Health Organization (2015b) ............................................................................. 21 

Figure 2-2 - Elements that define healthy ageing. Source: World Health Organization (2015b) ........... 22 

Figure 2-3 - Predicted Percentage of Dissatisfied (PPD) versus Predicted Mean Vote (PMV) ............. 27 

Figure 2-4 - Dependence of indoor thermal neutrality on mean temperature recorded outdoors 

during each building survey. Source: de Dear and Brager (1998) ......................................................... 32 

Figure 2-5 - Acceptable operative temperature ranges for naturally conditioned spaces, according 

to the adaptive model. Source: ANSI/ASHRAE (2020) .......................................................................... 33 

Figure 3-1 - Review’s scope delimiting steps ........................................................................................ 47 

Figure 3-2 - Research procedure of this study ...................................................................................... 49 

Figure 3-3 - Histogram of total number of participants in the studies selected ...................................... 57 

Figure 3-4 - Number of studies per data collection country. .................................................................. 60 

Figure 3-5 - Euler diagram of the number of studies that used personal and/or environmental 

inputs. .................................................................................................................................................... 62 

Figure 4-1 - Climate Zones of South Australia, where the monitored houses were located. ................. 77 

Figure 4-2 - Sample of the 57 houses involved in the study. Source: Photographed by the author. ..... 78 

Figure 4-3 - Indoor environment data logger and thermal comfort survey tablet ................................... 79 

Figure 4-4 - Thermal comfort survey tablet with infra-red skin temperature sensor and indoor 

environment data logger (left), and back of hand skin temperature measurement being taken 

(right). .................................................................................................................................................... 81 

Figure 4-5 - Overall modelling process steps. *Model deployment and continuous learning, 

although present in the referenced frameworks, were beyond the scope of this study. ......................... 82 



ix 

 

Figure 4-6 - Building simualtion application steps ................................................................................. 85 

Figure 4-7 - Personal thermal comfort smart device tool development steps........................................ 86 

Figure 5-1 - All dwellings' locations in South Australia .......................................................................... 96 

Figure 5-2 - Dwellings' locations in the Iron Triangle (BSk climate zone) .............................................. 96 

Figure 5-3 - Dwellings' locations in the Adelaide Metropolitan area (Csa climate zone) and the 

Adelaide Hills (Csb climate zone) .......................................................................................................... 97 

Figure 5-4 - Dwellings' locations in the Fleurieu Peninsula (Csb climate zone) .................................... 97 

Figure 5-5 - First thing participants do to keep cool on a hot day and warm in a cold day .................. 103 

Figure 5-6 - Number of survey answers per hour of the day ............................................................... 104 

Figure 5-7 - Total number of votes cast for each TSV category and TPV category ............................ 104 

Figure 5-8 - Percentage of survey answers in each thermal sensation category for each thermal 

preference category ............................................................................................................................. 105 

Figure 5-9 - Maximum hourly indoor operative temperatures, per day, for houses located in 

Climate 5 (Csa), Climate 6 (Csb) and Climate Zone 4 (BSk), thoughought the 9-month monitoring 

period................................................................................................................................................... 107 

Figure 5-10 - Minimum hourly indoor operative temperatures, per day, for houses located in in 

Climate 5 (Csa), Climate 6 (Csb) and Climate Zone 4 (BSk), thoughought the 9-month monitoring 

period................................................................................................................................................... 108 

Figure 5-11 - Box plot of the hourly recorded indoor operative temperatures in each house 

throughout the monitoring period ......................................................................................................... 109 

Figure 5-12 - Raw and binned correlations of operative temperatures for thermal sensantion votes 

(left) and thermal preference votes (right) ............................................................................................ 110 

Figure 5-13 - Raw and binned correlations of relative humidity with thermal sensation votes (left) 

and thermal preference votes (right) .................................................................................................... 111 

Figure 5-14 - Raw and binned correlation of air speeds with thermal sensation votes (left) and 

thermal preference votes (right) ........................................................................................................... 112 

Figure 5-15 - Correlation of clothing levels with thermal sensation votes (left) and thermal 

preference votes (right) ........................................................................................................................ 113 

Figure 5-16 - Percentages of survey answers for each clothing level for each thermal sensation 

category (left) and for each thermal preference category (right) .......................................................... 113 

Figure 5-17 - Raw and binned correlation of corrected metabolic rates with thermal sensation 

votes (left) and thermal preference votes (right) .................................................................................. 114 



x 

 

Figure 5-18 - Correlation of health/wellbeing perception with thermal sensation votes (left) and 

thermal preference votes (right) ........................................................................................................... 115 

Figure 5-19 - Percentages of survey answers in each health/wellbeing perception for each 

thermal sensation category (left) and for each thermal preference category (right) ............................. 116 

Figure 5-20 - Raw and binned correlation of skin temperatures with thermal sensation votes (left) 

and thermal preference votes (right). Note that the skin temperature is measured at the back of 

participants’ non-dominant hand. ......................................................................................................... 117 

Figure 6-1 - Indoor environmental data logger and thermal comfort survey tablet .............................. 131 

Figure 6-2 - Percentage of votes in each thermal preference class of each participant's original 

dataset ................................................................................................................................................. 135 

Figure 6-3 - Simplified diagram of the neural network used ................................................................ 138 

Figure 6-4 - Model tuning, selection, and evaluation process ............................................................. 139 

Figure 6-5 - Confusion matrix for PCMs with health perception, where 0 = preferring to be cooler, 

1 = preferring no change, and 2 = preferring to be warmer ................................................................. 144 

Figure 6-6 - Area Under the Receiver Operating Characteristic Curves of model for ID 46 (with 

health perception), for each thermal preference class, plotted using ‘one versus the rest’ method ..... 145 

Figure 6-7 - Training learning curves for ID 5 and for ID 35 ................................................................ 146 

Figure 6-8 - AUC of PMVC and PCM with and without health perception as one of the input 

variables .............................................................................................................................................. 147 

Figure 6-9 - Box plot of the health perception variable (normalised from 0 to 1, where 0 = ‘very 

good’ and 1 = ‘very poor’) according to the thermal preference classes, for ID 19 .............................. 147 

Figure 6-10 - Density plot of distributions of thermal preference votes against the seven input 

variables (normalised from 0 to 1) for ID 19 ......................................................................................... 148 

Figure 7-1 - Thermal comfort survey tablet with infra-red skin temperature sensor and indoor 

environment data logger (left), and back of hand skin temperature measurement being taken 

(right). .................................................................................................................................................. 165 

Figure 7-2 - Percentage of total number of votes of each thermal preference category, for each 

participant’s original dataset ................................................................................................................ 170 

Figure 7-3 - Histogram of skin temperature measurements with indication of outliers identified ......... 174 

Figure 7-4. Regression analysis between skin temperature and dry bulb temperature, radiant 

temperature, air speed, relative humidity, clothing level, corrected metabolic rate and health 

perception ............................................................................................................................................ 176 



xi 

 

Figure 7-5 - Weighted Least Squares Regression model for thermal preference prediction using 

skin temperature .................................................................................................................................. 177 

Figure 7-6 - Box plot of skin temperature for each thermal preference category, for all participants 

(n=470) ................................................................................................................................................ 177 

Figure 7-7 - Box plots of skin temperatures for each thermal preference category, for each 

individual participant. Selected participants for personal thermal comfort modelling are highlighted 

in grey .................................................................................................................................................. 178 

Figure 7-8 - Comparison between AUC for different models............................................................... 180 

Figure 7-9 - Density plots for input variables used, for each thermal preference category, for each 

participant. Variables are normalized from 0 to 1, according to maximums and minimums 

presented in Table 7-2. ....................................................................................................................... 182 

Figure 7-10 - Models' predictive performance for each thermal preference category, for each 

participant ............................................................................................................................................ 183 

Figure 8-1 - House 08’s photo, axonometric representation and Design Builder building model ........ 197 

Figure 8-2 - Calibration Results for House 08 – ID27 ......................................................................... 198 

Figure 8-3 - House 08’s HVAC system and controls. Source: Photographed by the author. .............. 200 

Figure 8-4 - House 53’s photo, axonometric representation and Design Builder building model ........ 202 

Figure 8-5 - Calibration Results for House 53 – ID32 ......................................................................... 203 

Figure 8-6 - House 53’s Split Reverse Cycle system. Source: Photographed by the author ............... 205 

Figure 8-7 - House 53’s LPG heater and LPG tank. Source: Photographed by the author ................. 205 

Figure 8-8 - The CBE Thermal Comfort Tool. Source: https://comfort.cbe.berkeley.edu/ ................... 211 

Figure 8-9 - Arup Advanced Comfort Tool. Source: https://comfort.arup.com/.................................... 212 

Figure 8-10 - Dementia Caregiver Solutions app. Source: Personalized Dementia Solutions Inc. 

(2021) .................................................................................................................................................. 212 

Figure 8-11 - Alzheimer's Daily Companion. Source: Home Instead Senior Care (2021) ................... 213 

Figure 8-12 - palliMEDS app. Source: NPS MedicineWise and caring@home (2021). ...................... 213 

Figure 8-13 - UpToDate app. Source: UpToDate Inc. (2021).............................................................. 214 

Figure 8-14 - MEDCalc app. Source: MDCalc (2021). ........................................................................ 214 

Figure 8-15 - PainScale app. Source: Boston Scientific Corporation (2021). ...................................... 215 

Figure 8-16 - Smart device app’s user interface and user types ......................................................... 217 

Figure 8-17 - Personal Thermal Comfort app calculator screen .......................................................... 218 

Figure 8-18 - Personal Thermal Comfort app prediction output and guidelines screen ...................... 219 

Figure 8-19 - Personal Thermal Comfort app “Help” and “Upload” buttons, and “Help” screen .......... 220 



xii 

 

Figure 8-20 - QR Code to acess the app for Participant ID32 ............................................................. 220 

Figure 8-21 - Probability density distributions for the personal models' inputs, according to each 

thermal preference category, for ID32. Inputs are normalised from 0 to 1. .......................................... 224 

Figure 9-1 - Summary of the three potential application pathways drawn from the research .............. 230 

  



xiii 

 

List of tables 

 

Table 2-1 - Summary of the weighted linear regression of mean thermal sensation on indoor 

operative temperature, reproduced from de Dear and Brager (1998) .................................................... 31 

Table 2-2 - Range of Acceptable Operative Temperatures, reproduced from de Dear and Brager 

(1998) .................................................................................................................................................... 32 

Table 2-3 - Bedford, ASHRAE and McIntyre scales .............................................................................. 34 

Table 3-1 - Logic grid of keywords ........................................................................................................ 47 

Table 3-2 - Studies on personal comfort models and their characteristics ............................................ 50 

Table 3-3 - Participants details in each study analyzed ......................................................................... 58 

Table 3-4 - Thermal scales used in the studies selected ....................................................................... 63 

Table 3-5 - Modeling technique of papers selected ............................................................................... 66 

Table 5-1 - Thermal sensation vote (TSV) and thermal preference vote (TPV) scales used in the 

study ...................................................................................................................................................... 91 

Table 5-2 - Data acquisition tools used in the 1st and 2nd data collection periods ............................... 92 

Table 5-3 - Summary of participants’ house characteristics .................................................................. 98 

Table 5-4 - Participants’ characteristics ............................................................................................... 100 

Table 5-5 - Cross-tabulation of thermal preference and thermal sensation vote count ....................... 105 

Table 6-1 - Input features and units or scales ..................................................................................... 133 

Table 6-2 - Selected participants’ personal characteristics, organised by ID number ......................... 134 

Table 6-3 - Performance of personal comfort models (PCM) and Converted Predicted Mean Vote 

(PMVC) ................................................................................................................................................. 142 

Table 7-1 - Participants’ characteristics. Participants whose personal thermal comfort models 

were developed are highlighted in bold. .............................................................................................. 166 

Table 7-2 - Input variables used .......................................................................................................... 168 

Table 7-3 - Predictive performance of Weighted Least Squares Regression (WLS), Converted 

Predicted Mean Vote (PMVC) and Personal Comfort Models (PCM) with different input variables. 

The best AUCs (Area Under the Receiver Operating Characteristic Curve) for each participant 

across model types are highlighted in bold. ......................................................................................... 179 

Table 8-1 - House 08's characteristics ................................................................................................ 198 

Table 8-2 - Other building simulation inputs for House 08 ................................................................... 199 



xiv 

 

Table 8-3 - House 08’s disaggregated annual energy use (electricity) ................................................ 199 

Table 8-4 - House 08’s heating and cooling energy use and load (electricity)..................................... 200 

Table 8-5 - Personal comfort model inputs used to determine the heating and cooling set points 

for Participant ID27 .............................................................................................................................. 201 

Table 8-6 - Energy loads’ comparison for House 08 - ID27, using new personal set points ................ 201 

Table 8-7 - Energy loads’ comparison for House 08 - ID27, using 21-24°C set points........................ 201 

Table 8-8 - House 53's characteristics ................................................................................................ 203 

Table 8-9 - Other building simulation inputs for House 53 ................................................................... 204 

Table 8-10 - House 53’s disaggregated annual energy (electricity) use .............................................. 204 

Table 8-11 - House 53’s heating and cooling energy use and energy load (electricity and LPG) ........ 205 

Table 8-12 - Personal comfort model inputs used to determine the heating and cooling set points 

for Participant ID32 .............................................................................................................................. 206 

Table 8-13 - Energy loads’ comparison for House 53 - ID32, using new personal set points .............. 206 

Table 8-14 - Energy loads’ comparison for House 53 – ID32, using 21-24°C set points ..................... 207 

  



xv 

 

Included publications, associated publications, 
presentations and awards 

 

Journal publications included in this thesis 

Arakawa Martins, L., Soebarto, V., Williamson, T. (2022) “A systematic review of personal thermal 

comfort models”, Building and Environment, Vol. 207, Part A, 

https://doi.org/10.1016/j.buildenv.2021.108502 

Arakawa Martins, L., Soebarto, V., Williamson, T., Pisaniello, D. (2022) “Personal thermal comfort 

models: a deep learning approach for predicting older people’s thermal preference”, Smart and 

Sustainable Built Environment, Vol. ahead-of-print, No. ahead-of-print, https://doi.org/10.1108/SASBE-

08-2021-0144 

Arakawa Martins, L., Soebarto, V., Williamson, T. (2022) “Performance evaluation of personal thermal 

comfort models for older people based on skin temperature, health perception, behavioural and 

environmental variables”, Journal of Building Engineering, Vol. 51, 

https://doi.org/10.1016/j.jobe.2022.104357 

 

Associated publications 

Williamson, T., Soebarto, V., Bennetts, H., Arakawa Martins, L., Pisaniello, D., Hansen, A., Visvanathan, 

R., Carre, A., van Hoof, J. (2022) “Chapter 7: Assessing human resilience: A study of thermal comfort, 

wellbeing and health of older people”, in Nicol, F., Rijal, H.B., & Roaf, S. (Eds.). Routledge Handbook of 

Resilient Thermal Comfort (1st ed.), Routledge. https://doi.org/10.4324/9781003244929 

Arakawa Martins, L., Williamson, T., Bennetts, H., Soebarto, V. (2022) “The use of building performance 

simulation and personas for the development of thermal comfort guidelines for older people in South 

Australia”, Journal of Building Performance Simulation, Vol. 15, Issue 2, 149-173, 

http://dx.doi.org/10.1080/19401493.2021.2018498 

https://doi.org/10.1016/j.buildenv.2021.108502
https://doi.org/10.1108/SASBE-08-2021-0144
https://doi.org/10.1108/SASBE-08-2021-0144
https://doi.org/10.1016/j.jobe.2022.104357
https://doi.org/10.4324/9781003244929
http://dx.doi.org/10.1080/19401493.2021.2018498


xvi 

 

Hansen, A., Williamson, T., Pisaniello, D., Bennetts, H., van Hoof, J., Arakawa Martins, L., Visvanathan, 

R., Zuo, J., Soebarto, V. (2022) “The Thermal Environment of Housing and Its Implications for the Health 

of Older People in South Australia: A Mixed-Methods Study”, Atmosphere, Vol. 13, Issue 96, 1-22, 

https://doi.org/10.3390/atmos13010096 

Soebarto, V., Bennetts, H., Arakawa Martins, L., van Hoof, J., Visvanathan, R., Hansen, A., Pisaniello, 

D., Williamson, T. and Zuo, J. (2021) Thermal Comfort at Home: A guide for older South Australians, The 

University of Adelaide, Adelaide, Australia. https://doi.org/10.25909/17073578 

Bennetts, H., Arakawa Martins, L., van Hoof, J., Soebarto, V. (2020) "Thermal Personalities of Older 

People in South Australia: A Personas-Based Approach to Develop Thermal Comfort Guidelines", 

International Journal of Environmental Research and Public Health, Vol. 17 No. 22. 

https://doi.org/10.3390/ijerph17228402 

Arakawa Martins, L., Williamson, T. J., Pisaniello, D., Soebarto, V. (2020) "A deep learning approach to 

personal thermal comfort models for an ageing population", in Ghaffarianhoseini, A., Nasmith, N. (Eds.), 

Imaginable Futures: Design Thinking, and the Scientific Method: 54th International Conference of the 

Architectural Science Association (ANZAScA) 2020, Auckland, New Zealand, pp.71-80. 

Arakawa Martins, L., Williamson, T., Bennetts, H., Zuo, J., Visvanathan, R., Hansen, A., Pisaniello, D., 

Hoof, J. v. and Soebarto, V. (2020) "Individualising thermal comfort models for older people: the effects 

of personal characteristics on comfort and wellbeing", in Roaf, S., Nicol, F. and Finlayson, W. (Eds.), 11th 

Windsor Conference: Resilient Comfort, Windsor, UK, pp.187-199. 

Soebarto, V., Williamson, T., Bennetts, H., Arakawa Martins, L., Pisaniello, D., Hansen, A., Visvanathan, 

R. and Carre, A. (2020) "Development of an integrated data acquisition system for thermal comfort 

studies of older people", in Roaf, S., Nicol, F. and Finlayson, W. (Eds.), 11th Windsor Conference: 

Resilient comfort, Windsor, UK, pp.155-170. 

Williamson, T., Soebarto, V., Bennetts, H., Arakawa Martins, L., Pisaniello, D. (2020) "Thermal Comfort, 

well-being and health of older residents in South Australia", in Roaf, S., Nicol, F. and Finlayson, W. (Eds.), 

11th Windsor Conference: Resilient comfort, Windsor, UK, pp.171-186. 

Soebarto, V., Bennetts, H., Williamson, T., Arakawa Martins, L. (2019) “Climate Resilient Housing for 

Older People”, in Proceedings of Heat & Habitat in Cities Symposium, Adelaide, Australia, pp.74-79. 

https://doi.org/10.3390/atmos13010096
https://doi.org/10.25909/17073578
https://doi.org/10.3390/ijerph17228402


xvii 

 

Arakawa Martins, L., Soebarto, V., Williamson, T., Pisaniello, D. (2019) "Developing occupant centric 

models to better understand the thermal comfort and wellbeing of older Australians", in Agrawal, A. (Ed.) 

Revisiting the Role of Architecture for 'Surviving’ Development: 53rd International Conference of the 

Architectural Science Association (ANZAScA) 2019, Roorkee, India, pp. 1-10. 

Arakawa Martins, L., Williamson, T., Soebarto, V. (2019) "Towards an understanding of comfort and 

wellbeing of older people using occupant centric models.", in Proceedings of XV Encontro Nacional de 

Conforto no Ambiente Construído ENCAC, João Pessoa, Brazil, pp.3175-3180. 

Soebarto, V., Williamson, T., Carre, A., Arakawa Martins, L. (2019) "Understanding indoor 

environmental conditions and occupant’s responses in houses of older people", IOP Conference Series: 

Materials Science and Engineering, Vol. 609. https://doi.org/10.1088/1757-899x/609/4/042096 

 

Conference presentations 

Arakawa Martins, L., Williamson, T. J., Pisaniello, D., Soebarto, V. (2020) "A deep learning approach to 

personal thermal comfort models for an ageing population", Imaginable Futures: Design Thinking, and 

the Scientific Method: 54th International Conference of the Architectural Science Association (ANZAScA) 

2020, 27 November 2020, online. 

Arakawa Martins, L., Bennetts, H., Williamson, T., Hansen, A., Pisaniello, D., van Hoof, J., Zuo, J., 

Visvanathan, R., Soebarto, V. (2020) ”Understanding the Thermal Quality of the Living Environment of 

Older South Australians”, 53rd Australian Association of Gerontology Conference, 19 November 2020, 

online. 

Arakawa Martins, L., Williamson, T., Soebarto, V., Pisaniello, D. (2020) "Machine learning approach for 

predicting personal thermal comfort in the living environment of older Australians", 53rd Australian 

Association of Gerontology Conference, 18 November 2020, online. 

Arakawa Martins, L., Soebarto, V., Williamson, T., Pisaniello, D. (2019) "Developing occupant centric 

models to better understand the thermal comfort and wellbeing of older Australians", Revisiting the Role 

of Architecture for 'Surviving’ Development: 53rd International Conference of the Architectural Science 

Association (ANZAScA) 2019, 29 November 2019, Roorkee, India. 

https://doi.org/10.1088/1757-899x/609/4/042096


xviii 

 

Arakawa Martins, L., Williamson, T., Soebarto, V. (2019) "Towards an understanding of comfort and 

wellbeing of older people using occupant centric models.", XV Encontro Nacional de Conforto no 

Ambiente Construído ENCAC, 18 September 2019, João Pessoa, Brazil. 

Arakawa Martins, L., Bennetts, H., Williamson, T., Hansen, A., Pisaniello, D., van Hoof, J., Zuo, J., 

Visvanathan, R., Soebarto, V. (2019) ”Understanding the Thermal Quality of the Living Environment of 

Older South Australians”, SA Gerontology Conference 2019, 21 June 2019, Adelaide, Australia. 

 

Awards 

Best presentation (1st Runner-up) at the Imaginable Futures: Design Thinking, and the Scientific Method: 

54th International Conference of the Architectural Science Association (ANZAScA) 2020, 27 November 

2020, online. 

Adelaide Graduate Award 2021 for extracurricular activities, from The University of Adelaide, Australia. 

 

Grants and Scholarships 

Faculty of the Professions Divisional Scholarship and Full Fee Waiver, The University of Adelaide 2018-

2022 ($27,082/year) 

Australian Housing and Urban Research Institute (AHURI) Top-up Supplementary Scholarship 2020 – 

2021 ($7,000/year) 

School of Architecture and Built Environment HDR Support 2019 for attendance of the 53rd ANZAScA 

Conference in India and the XV ENCAC Conference in Brazil ($1,500) 

  



xix 

 

HDR Thesis Declaration 

 

I certify that this work contains no material which has been accepted for the award of any other 

degree or diploma in my name, in any university or other tertiary institution and, to the best of my 

knowledge and belief, contains no material previously published or written by another person, except 

where due reference has been made in the text.  

In addition, I certify that no part of this work will, in the future, be used in a submission in my name, 

for any other degree or diploma in any university or other tertiary institution without the prior approval of 

the University of Adelaide and where applicable, any partner institution responsible for the joint-award of 

this degree.  

I acknowledge that copyright of published works contained within this thesis resides with the 

copyright holder(s) of those works. 

I also give permission for the digital version of my thesis to be made available on the web, via the 

University’s digital research repository, the Library Search and also through web search engines, unless 

permission has been granted by the University to restrict access for a period of time. 

 

Larissa Arakawa Martins 

March, 2022 

  



xx 

 

Acknowledgements 

 

This thesis would not have been possible without the help, input, and support of many. 

I am deeply grateful to my principal supervisor Professor Veronica Soebarto, whose support 24/7 

helped me overcome challenges, acquire knowledge without boundaries and understand the topics 

researched throughout this thesis with depth, open-mindedness and sensibility. Your selflessness and 

kindness will be forever remembered. I thank you for trusting me with multiple opportunities, and for 

making me feel seen and as a part of your family (I loved gaining two younger sisters, Kat and Ange!).  

My deepest appreciation also goes to my co-supervisor Professor Terence Williamson. Your 

expertise, input, and shared excitement about the project (and sensors, spreadsheets and scripts!) have 

given me the confidence to pursue my objectives without hesitation. I feel extremely lucky to be able to 

work beside you and also to share great times (and delicious food) with your lovely family. 

I also thank my co-supervisor Professor Dino Pisaniello for the enthusiasm in the field of public 

health, and the guidance throughout the thesis uncharted waters. Thank you for being part of this 

extraordinary supervision panel. 

I would also like to thank Dr Helen Bennetts for her guidance and kindness. I am extremely lucky 

to have had you as a colleague and I am so thankful to be able to share the sweetest moments I had in 

Australia with your family and friends. 

I extend my gratitude to researchers Professor Renuka Visvanathan, Professor Joost van Hoof, 

Dr Alana Hansen, Andrew Carre and Professor Jian Zuo, who contributed to the development of this 

research in general and gave advice on our co-authored manuscripts. 

I thank all participants involved in this study, who invited me into their homes and contributed so 

much for this research. Your time and effort were invaluable.  

I thank The University of Adelaide, who supported this thesis through a Faculty of Professions 

Divisional Scholarship. This research was also supported by the Australian Housing and Urban Research 

Institute, through the Top-up Supplementary Scholarship program. I would also like to acknowledge the 

support provided by the staff from the Faculty of Engineering, Computer and Mathematical Sciences and 



xxi 

 

the School of Architecture and Built Environment. My special thanks go to Ian Florence, whose tech 

support and positive outlook on life have been indispensable. 

I acknowledge the editorial assistance of Dr Alison-Jane Hunter, who has professionally edited this 

thesis. 

Finally, this thesis would not have been possible without the support of my family and friends. I 

dedicate this work to Ro, Haru, Bia, Leo, baby Dan and Mau, whose love, patience and understanding 

kept me sane even from 14 time zones away. 

  



xxii 

 

Abstract 

 

The proportion of older people (i.e., those aged 65 or over) in the world’s population is increasing 

due to historically low fertility rates combined with increased life expectancy. In order to respond to these 

demographic trends, a growing body of policy and research over the last decades has accepted that 

ageing-in-place is most beneficial in the interests of older people’s independence, health and wellbeing, 

as well as to reduce the economic burden on governments and society for the provision of aged care 

facilities. While there are several guidelines that provide information about designing dwellings to suit 

ageing-in-place, information to aid older people’s thermal comfort and related wellbeing is not always 

considered. This thesis addresses the current knowledge on thermal comfort of older people in order to 

provide environments that meet their individual requirements and help improve their overall wellbeing. 

Traditionally, thermal comfort standards adopt aggregate modelling approaches as the bases on 

which to establish the requirements for human occupancy in the built environment. Aggregate models 

explain thermal comfort at a population level, which can result in limitations in real scenarios as individual 

thermal perceptions can vary significantly. In recent years, a growing number of studies have been 

conducted to address these limitations by developing ‘personal comfort models’. Instead of an average 

response from a large population, personalised models predict individuals’ thermal comfort by using a 

single person’s direct feedback. Nonetheless, up until the research presented in this thesis, studies on 

personal comfort models have focused on younger adults, generally in office environments. This presents 

a critical research gap because intergroup heterogeneity in personal capabilities and needs tends to be 

greater among older people, causing the use of aggregate models for older adults to result in even more 

frequent exposure to unacceptable thermal environments. These, in turn, can interact with multiple 

comorbidities, leading to adverse health outcomes and possibly premature institutional care. Thus, 

personalising models hold the promise of a more accurate way to predict older people’s thermal comfort 

and to manage their thermal environments better. 

Considering the issues and opportunity presented above, the goal of this research is to advance 

the current knowledge on the use of personal thermal comfort models by focusing on older people in their 

home environments. The research aims to achieve this goal by: (1) reviewing the present understandings 

of personal comfort models, (2) investigating older people’s’ thermal environment, behaviours and 

preferences; (3) developing personal comfort models for older people and comparing the results with the 
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predictions by established aggregate models; and (4) investigating the application of personal comfort 

models in managing the thermal environment of older people. 

Two indoor environmental monitoring field studies and related point-in-time thermal comfort 

surveys were conducted to collect datasets for the analyses. The first dataset was collected from 71 older 

adults in 57 households located in South Australia across 9 months. This was followed by the application 

of deep learning (i.e., a class of machine learning) to develop personal comfort models for 28 out of these 

71 participants using different combinations of the collected series of indoor environmental 

measurements, along with behavioural and health/wellbeing survey answers. The second dataset was 

collected during shorter 2-week periods involving 11 of the original 71 participants, during which, in 

addition to measuring the indoor environmental parameters and collecting behavioural and 

health/wellbeing survey answers, the participants’ hand skin temperatures were measured. The 

development of personal models for 4 of these participants was then conducted, including skin 

temperatures as an additional modelling input. Several performance indicators, including average 

accuracy, Cohen’s Kappa Coefficient and Area Under the Receiver Operating Characteristic Curve (AUC) 

were employed to assess the skill of the developed individual models. All models’ performance indicators 

were then compared with a ‘version’ of the Predicted Mean Vote (PMV) model, termed, in this thesis, the 

PMVc. 

The results showed that the 28 personal thermal comfort models for older adults that used 

environmental, behavioural and health/wellbeing perception as input variables presented an average 

accuracy of 74%, an average Cohen’s Kappa Coefficient of 61% and an average (AUC) of 0.83. This 

represented a significant improvement in predictive performance when compared with the generalised 

PMVc model, which presented an average accuracy of 50%, an average Cohen’s Kappa Coefficient of 

24%, and an average AUC of 0.62. Similarly, the exploration with the 4 personal comfort models adding 

skin temperature measurements to the abovementioned input variables, and excluding health/wellbeing 

perception − which yielded slightly lower performance when included −, resulted in an average accuracy 

of 67%, an average Cohen’s Kappa Coefficient of 50% and an average AUC of 0.77. This also 

represented a superior predictive performance of the individualised models when compared with the 

PMVc model. 

In order to investigate the applications of the personal comfort models in operation, two participants 

were selected as case studies and their respective personal models were tested for their ability to 

estimate personal heating and cooling temperature set points, using calibrated building performance 
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simulation models. The simulated energy loads derived from the use of personal set points were 

compared with simulated energy loads using 21°C as the heating set point and 24°C as the cooling set 

point, which represented the common averaged set points used in building simulation studies. The results 

show that, using the personal set points, good agreement between the actual and simulated heating and 

cooling energy loads was achieved. When comparing the error ratios with the ones resulting from 

simulations assuming a 21°C set point for heating and a 24°C for cooling, the study also showed that the 

personal set points significantly outperformed these traditional assumptions. 

Finally, as a secondary application exploration, one selected participant’s personal model was 

converted to a smart phone Application (App) format to examine the opportunity to use the model as a 

web-based smart phone tool to aid designers and caregivers to manage the thermal environments of 

older people by considering individual requirements. This conversion also proved to be successful, 

allowing the automatic calculation of thermal preference for the selected participant, thereby 

demonstrating its potential to aid designers and caregivers. 

The novelty and therefore the contributions of this research lay in different areas. Whilst the 

literature on personal comfort models has focussed solely on younger adults in office environments, this 

research has explored a methodology for predicting thermal comfort of older people in their dwellings. 

Additionally, it has introduced health/wellbeing perception as a predictor of thermal preference – a 

variable often overlooked in architectural sciences and building engineering. Finally, the research 

indicates that, compared with aggregated models, personal models provide superior utility in predicting 

an individual’s preferred thermal environment, which therefore offers the potential for more accurate tools 

to design and improve older people’s living environments so that wellbeing is optimised, healthy ageing 

is fostered and autonomy while ageing is prolonged. 

The research recommends a range of topics for future investigation, such as the models’ 

misclassification costs and the integration among wearable sensors, predictors and actuators in the 

context of older people. In addition, the development of standard protocols necessary for the 

models’ deployment in real scenarios is prescribed. 

In conclusion, the research demonstrates that, as a concept, personal comfort models have the 

ability to absorb people’s diversity in the context of their environmental conditions, and may therefore 

represent an important step towards providing knowledge aimed at enhancing wellbeing and improving 

the overall resilience of the built environment. 
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Chapter 1. Introduction 

1.1. Overview of the research background 

As stated by the United Nations Department of Economic and Social Affairs, Population Division, 

the number of older people1 is increasing as a proportion of the world’s population due to historically low 

levels of fertility combined with increased life expectancy. As seen in Figure 1-1 and described by the 

United Nations’ report, “In 2018, for the first time in history, persons aged 65 years or over worldwide 

outnumbered children under age five. Projections indicate that by 2050 there will be more than twice as 

many persons above 65 as children under five. By 2050, the number of persons aged 65 years or over 

globally will also surpass the number of adolescents and youth aged 15 to 24 years” (United Nations 

Department of Economic and Social Affairs Population Division, 2019a). 

 

Figure 1-1 - Estimated and projected global population by broad age group, 1950-2100, according to 

the medium-variant projection. Source: United Nations Department of Economic and Social Affairs 

Population Division (2019a). 

Furthermore, the OECD (Organisation for Economic Co-operation and Development) highlighted 

that the average old-age (65 years or over) to working-age (24 to 64 years) ratio will almost double in the 

 
1 Throughout this thesis, older people are defined as aged 65 years old or over, following Australian standard practice. 
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next 40 years among the OECD countries, as depicted in Figure 1-2. By 2060, South Korea, Spain and 

Japan will be the countries with the highest proportion of older people compared with younger adults’ 

populations. In fact, South Korea will go from having 2.4 older people to every 10 working age people in 

2020, to having 9 older people to every 10 working age people in 2060, configuring the fastest 

demographic change among the OECD members. 

 

Figure 1-2 - Number of people older than 65 years per 100 people of working age (20-64), 1980-2060, 

based on data from OECD (2019) and United Nations Department of Economic and Social Affairs 

Population Division (2019b) 

Like the rest of the world, Australia is going through the same demographic changes. According to 

the latest National, State and Territory Population Statistics, in December 2020, 16.4% of Australians 

were aged 65 and over (Australian Bureau of Statistics, 2021a). By 2066, it is projected that 20.7%2 of 

Australia’s population will be aged 65 or over (Australian Bureau of Statistics, 2018). Consequently, this 

ageing phenomenon has been acknowledged by the Australian Department of Treasury since the early 

 
2 Under high fertility, mortality and net overseas migration assumptions, using 2017 as the base year. 
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2000s as having important effects on public policies, especially in areas such as health and housing 

(Australian Government Department of Treasury, 2010). 

In order to respond to these demographic trends, a growing body of policy, research and program 

developments over the last decades have accepted that ageing-in-place3 is beneficial in the interests of 

older people’s independence, health4 and wellbeing5, as well as reducing the economic burden on 

governments for the provision of aged care facilities. Judd et al. (2010) confirmed that not only do older 

Australian homeowners want to remain in their own homes and neighbourhoods for as long as possible, 

but they also greatly recognise the importance of the design of the dwelling in order to remain independent 

and able to participate in the community throughout their ageing course. 

While there are several design guidelines that provide information about modifying, building or 

managing dwellings to suit ageing-in-place (Carnemolla and Bridge, 2018), modifications to aid thermal 

comfort and related wellbeing are not always considered. Therefore, this thesis addresses the current 

knowledge on thermal comfort of older people in order to provide environments that meet their individual 

thermal comfort requirements and help improve their overall wellbeing.  

Overall, physical ageing is commonly associated with changes on the body’s thermoregulation 

processes that can compromise the efficiency of thermal defence mechanisms and the ability to respond 

effectively to temperature fluctuations, upsetting the homeostatic balance of health in some. As people 

age, unavoidable physiological changes such as structural skin modification and metabolic alterations 

affect their thermal perception, sensitivity and regulation (Blatteis, 2012; Dufour and Candas, 2007). As 

thermoregulation plays a vital part in human survival (Shibasaki et al., 2013), older people can become 

more vulnerable at temperature extremes in their environment, therefore demanding special attention be 

paid to their thermal requirements.  

This is particularly important because it is hypothesised that extreme weather events may increase 

not only in number, but also in intensity and overall duration (Intergovernmental Panel on Climate 

Change, 2014; World Health Organization, 2015a). Based on comprehensive research that analysed a 

wide body of observations and modelling studies of the world climate systems, as well as the plausibility 

of future projections across all commonly used scenarios, the detailed report from the Intergovernmental 

 
3 Ageing-in-place: the ability to live in one’s own home for as long as confidently and comfortably possible (Judd et al., 2010). 

4 Health: commonly defined by practitioners, policy makers, and scholars as a resource for everyday life (Williamson and Carr, 2009). 

5 Wellbeing: a multidimensional concept involving physical, emotional, psychological, social, spiritual, intellectual, and economic wellness 

(White, 2008; Wellbeing People, 2018) 
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Panel on Climate Change (2014) points to the increase in the number of warm days and nights on the 

global scale and to the increase in the frequency of heatwaves in large parts of Europe, Asia and Oceania. 

Likewise, Australia is reported as one of the world’s regions that is particularly susceptible to heat 

waves and drought conditions, according to the 2011-2015 report from the World Meteorological 

Organization (2016). In the summers of 2012/2013 and 2013/2014, for instance, the country experienced 

records for persistent heat in many cities, including four consecutive days above 41 °C in Melbourne, 

Victoria. The 2020 report from the same organisation also reported extreme temperatures such as 2020 

Penrith’s (western Sydney, New South Wales) 48.9°C − the highest temperature observed in an 

Australian metropolitan area −, and Canberra’s (Australian Capital Territory) 44.0°C on the same day 

(World Meteorological Organization, 2021). Adelaide, South Australia, also records regular heatwaves 

and extreme heat events, during which total ambulance call-outs and total mortality tend to escalate 

(Faunt et al., 1995; Nitschke et al., 2011). Therefore, as lowered heat tolerance can make older people 

more vulnerable to heatwaves as well as to cold spells (Hansen et al., 2011; Stafoggia et al., 2006), 

understanding older people’s thermal needs and preferences to improve the thermal conditions of their 

environment becomes an important consideration. 

Many international studies have addressed thermal comfort and adaptation for the ageing 

population (Jiao et al., 2017; Taylor et al., 1995; van Hoof and Hensen, 2006; Yang et al., 2016; Wang 

et al., 2020). While consistent progress has been made from diverse perspectives, other topics still benefit 

from further investigation, such as the geographical differences in older people’s thermal perception, the 

effects of thermal disturbances on older adults’ health and smart home technologies for enhancing 

thermal comfort (van Hoof et al., 2017b). 

Furthermore, thermal comfort studies investigating the differences and similarities between older 

and younger adults regarding thermal comfort are still inconclusive. Wang et al. (2018) conducted a 

literature review on both climate chamber studies and field studies, concluding no significant differences 

between the comfort temperatures of young and older people once clothing, metabolic, and 

anthropometric differences were taken into account. Other studies, however, reported contradicting 

differences between cohorts, such as that older people preferred higher (Schellen et al., 2010) or lower 

(Tartarini et al., 2017) temperatures than younger cohorts, and that their comfort range was narrower 

(Hwang and Chen, 2010) or wider (Yang et al., 2016). In these cases, the distinction between how older 

adults and younger populations seem to perceive their thermal environments could be explained by a 

combination of both physical ageing and relevant behavioural differences. 
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Apart from intergroup variability between younger and older adults, the differences relating not only 

to thermal comfort and perception (Shipworth et al., 2016; Wang et al., 2018), but also to health and 

physical functioning (World Health Organization, 2015b), can occur among individuals inside both groups. 

In fact, explaining diversity in perceived thermal comfort has been an interest of many studies for decades 

(Wang et al., 2018). The fact that subjects might perceive and respond completely differently when 

exposed to the exact same thermal environment indicates that other factors and stressors than the 

environmental parameters should also be considered when designing or managing the built environment. 

These factors can range from psychological, physiological and personal characteristics to the social and 

environmental contexts of each individual (Bluyssen, 2019). 

Nevertheless, although intragroup diversity is present in both younger and older cohorts, this 

heterogeneity tends to be greater in older age than in younger ages. This is because older adults have 

been submitted to a greater range of cumulative social, economic and environmental factors and 

trajectories across their individual life courses, which affect their needs and perceptions in significantly 

different ways (World Health Organization, 2015b). For this reason, understanding diversity in older age 

also becomes crucial to predict older people’s needs and requirements accurately. 

According to the WHO - World Health Organization (2015b), diversity is a hallmark of older age 

and in order to develop relevant policy that fosters healthy ageing for all older people, studying their 

needs at the individual level is essential. Among the different ways to achieve this, person-centred 

approaches are strategies highlighted by the WHO for health and long-term care settings (World Health 

Organization, 2020). This new approach could result in a real paradigm shift in the way global health 

services are managed and provided, delivering health services that respond directly to people’s needs 

and preferences, in a flexible and consequently effective way. 

Looking from the same perspective, the field of thermal comfort is also experiencing the same 

paradigm shift. Most studies on thermal comfort that focus on the population level, on averaged 

responses from a group of people and on one-size-fits-all centralised thermal management, are being 

called into question by much more individualised and occupant-centric alternatives (Kim et al., 2018a). 

This indicates that diversity in preferences and perceptions are beginning to be considered in these 

studies, and that occupants whose comfort perception generally deviates from averaged population 

means are finally being regarded as relevant.  

In this context, since older people’s individual differences are wide, much profit can be derived 

from investigating their environmental comfort from the same person-centred approach. 
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1.2. Problem statement 

Traditionally, international thermal comfort standards (ANSI/ASHRAE, 2020; CEN, 2007; ISO, 

2005)  adopt aggregate modelling approaches, such as the Predicted Mean Vote (PMV) model (Fanger, 

1970) and the adaptive model (de Dear and Brager, 1998; Nicol and Humphreys, 1973) as the bases for 

the thermal requirements for human occupancy in the built environment. Aggregate models explain 

human thermal comfort on a population level, mainly based on environmental parameters and/or 

behavioural factors. This implies that assessing building design options is based on complying with 

averaged thermal comfort conditions, disregarding occupants whose comfort perceptions deviate from 

the population mean. 

However, predicting thermal comfort at the population level might result in limitations for these two 

methods when used to predict occupants’ comfort in real case scenarios. These limitations include the 

models’ poor predictive performance when applied to different individuals and the inability of the models 

to be calibrated with diverse feedback or to incorporate addition personal input variables that may be 

significant (e.g., age, health status, body composition) (Kim et al., 2018a). In addition, the standards’ 

models have been developed based on data mainly from office buildings, with fewer studies focused on 

behaviours in dwellings. This can also be limiting when considering the diversity of thermal conditions 

that residential settings generally provide in comparison with controlled office environments. 

To address these limitations, recent studies have shown an increasing number of strategies to 

develop ‘personal thermal comfort models’ as an alternative to the conventional approaches. Instead of 

relying on an average response from a large population, personalised models are designed to predict 

individuals’ thermal comfort responses using a single person’s direct feedback and/or personal 

characteristics as calibration inputs. In addition, with the rapid development of the IoT (Internet of Things) 

and smart sensors, investigating individuals’ thermal comfort requirements, predicting their needs directly 

from data collected in their everyday environment, and acting upon these predictions has become 

substantially easier. 

Nevertheless, although increasingly researched, personal comfort models’ studies have 

maintained the trend to focus on office environments and younger adults. Studies on personal comfort 

models that focus on older people and dwellings are still insufficiently researched in the current literature. 

This thesis aims, therefore, to address this methodological research need. 
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1.3. Research questions 

Considering the issues presented above, the main question to be addressed by this research is: 

Can personal thermal comfort models be developed and used to predict older people’s 

thermal preferences in a more accurate way than traditional thermal comfort models used 

in the field today? 

To answer this main question, this research proposes to answer the following sub-questions: 

A. What thermal conditions exist in the houses occupied by the older people participating in the 

study, and what are their thermal preferences and sensations? 

B. What variables are significant in explaining the thermal preferences and sensations of the 

older people participating in the study? 

C. How will the accuracy of personal thermal comfort models be affected by individuals’ particular 

variables? 

D. How can the use of personal thermal comfort models lead to a more accurate prediction of 

older people’s thermal preferences, in comparison with the prediction by a generalised model 

such as PMV? 

E. Can personal comfort models for older people be used to determine heating and cooling set 

points more accurately? 

F. How can personal comfort models for older people be used to aid the control and adaptation 

of older people’s environments to increase comfort and health and wellbeing? 

1.4. Aim and objectives 

The main aim of this research project is to advance the current knowledge of the use of personal 

thermal comfort models for older people’s living environments. Considering this and the research 

questions highlighted above, this research has the following objectives: 
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(1) Investigate older South Australians’ thermal environment, thermal preferences, behaviours, 

and physiological responses during hot and cold weather (related to research questions A 

and B). 

(2) Develop personal thermal comfort models for older people from the data collected, 

considering their personal and behavioural characteristics, as well as the conditions of their 

thermal environments, and compare the results with the predictions by established models 

such as the PMV model (related to research questions C and D). 

(3) Investigate the application of personal thermal comfort models in managing the thermal 

environment of older people’s dwellings and the health and wellbeing of older people in 

general (related to research questions E and F). 

1.5. Research methodology 

This study was conducted within a quantitative research framework and methodology. In order to 

answer the research questions, the following phases/methods were conducted, corresponding to each of 

the 3 research objectives highlighted above. A brief description of each method is presented below; 

however, overall details of these methods will be presented in Chapters 4 to 8. 

1.5.1. Methods to achieve Objective (1) 

Objective (1) To investigate older South Australians’ thermal environment, thermal 

preferences, behaviours, and physiological responses during hot and cold weather. 

Two environmental monitoring studies were conducted to collect datasets for statistical analysis. 

The first dataset used in this study was collected in the Australian Research Council Discovery Project 

(ARCDP180102019) entitled “Improving thermal conditions in housing for older Australians”, in which the 

candidate acted as a research assistant. The project collected data from 71 participants from 57 

households located in 3 climate zones in South Australia, across a period of 9 months (from January 

2019 to September 2019), providing a range of variations in the environmental conditions necessary for 

a comprehensive analysis. 

This data collection process involved: 
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(a) A questionnaire about individual socio-economic information, as well behaviours and 

responses during hot and cold weather, collected by the project team. 

(b) An open-ended interview about the house details (directed by a checklist), including the 

collection of energy bills, plans, elevations, and photos, collected and processed by the 

candidate. 

(c) Environmental monitoring of each house’s main living room and bedroom, every 30 minutes 

for 9 months, collected by the project team and processed by the candidate. Weather data at 

30-minute intervals was also collected from the Australian Bureau of Meteorology station 

closest to each house. 

(d) Thermal comfort surveys about participants’ preferences and sensations, answered by 

participants 3 to 4 times a week for 9 months, collected by the project team and processed 

by the candidate. 

(e)  A body composition assessment, collected and processed by the candidate. 

(f) An additional questionnaire to assess participants’ frailty status, as well as their use of outdoor 

spaces, conducted and processed by the candidate. 

All data collection tools were designed to collect a wide range of variables and factors that were 

relevant in the context of architectural science, gerontology and public health fields of study to influence 

and affect thermal comfort, sensation and preference. Details of this specific methodology are described 

in Chapters 4, 5 and 6. 

Note that, while the ARC project analysed the dataset collected at the climate zone level and 

cluster level, this thesis extended the research by looking at the individual level through personal thermal 

comfort modelling, which yielded a more granular and occupant-centric analysis. 

The second dataset used in this study was collected by the author from a subset of the original 

cohort of participants. In order to collect additional data on skin temperature, consecutive 2-week data 

collection periods were conducted with 11 of the original 71 participants. Apart from monitoring the 

environmental conditions inside the dwelling and conducting daily indoor environment surveys, this data 

collection process also involved the measurement of the hand skin temperature of the participants 

involved. Details of this specific methodology are described in Chapters 4, 5 and 7. Statistical analysis 
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was then used to investigate the most significant factors influencing the cohort’s thermal sensations and 

preferences. 

1.5.2. Methods to achieve Objective (2) 

Objective (2) To develop personal thermal comfort models for older people from the data 

collected, considering their personal and behavioural characteristics as well as the 

conditions of their thermal environments, and compare the results with the predictions by 

established models such as the PMV model. 

The framework that guided the modelling process of this study is based on the work of Kim et al. 

(2018a) on personal comfort models and the work of Raschka (2018) on machine learning modelling. By 

correlating daily environmental measurements and a series of thermal preference, behavioural and 

wellbeing related survey answers, the study applied machine learning algorithms – more specifically deep 

learning (Goodfellow et al., 2016) − to develop personalised comfort models for a subset of the 

participants involved in the monitoring study.  

The models were developed to perform a multiclass classification task of occupants’ thermal 

preference (TPV) on a 3-point-scale (“preferring to be cooler”, “preferring no change” or “preferring to be 

warmer”), and according to up to 8 environmental and personal input features collected and chosen 

according to the outcomes of Objective (1). 

The survey’s TPV was used as the ground truth to train the models and later verify the predicted 

values. Instead of the thermal sensation vote (TSV) scale ― which is commonly used in thermal comfort 

studies ―, the thermal preference scale (TPV) was used because not only does it represent a measure 

of what ideal conditions would be for each person, but it also suggests in which direction the change is 

desired (Kim, 2018a). This is particularly relevant when considering the use of these models for the 

control of Heating, Ventilation, and Air Conditioning (HVAC) systems. In addition, using TPV rather than 

TSV avoids the assumption of associating comfort with neutral thermal sensation, which may not always 

be true (Humphreys and Hancock, 2007). 

The modelling process involved the following stages:  

(1) Participant dataset and input selection. 

(2) Dataset pre-processing. 
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(3) Model tuning and selection. 

(4) Model evaluation.  

The models’ performance indicators were later compared with PMV predictions. Details of this 

specific methodology are described in Chapters 4, 6 and 7. 

1.5.3. Methods to achieve Objective (3) 

Objective (3) To investigate the application of personal thermal comfort models in 

managing the thermal environment of older people’s dwellings and the health and 

wellbeing of older people in general. 

In order to investigate the application of the personal thermal comfort models − derived from 

Objective (2) − in managing the thermal environment of older people’s dwellings, a building performance 

simulation technique was adopted. Two case buildings were modelled based on two participants’ house 

details, house operation trends and other relevant information. The models were calibrated using 

measured data from the monitoring period derived from Objective (1). 

Following this, the personal comfort models from each participant were used to derive the indoor 

temperature limits in which they had a predominant thermal preference for ‘no change’, which were 

considered to be the best representations of heating and cooling temperature set points. The personal 

set points were then input in building performance simulation models of these participants’ real dwellings, 

and the energy loads errors were calculated between the simulated heating and cooling energy loads 

and the “actual” heating and cooling energy loads, obtained from disaggregating the participant’s energy 

use records. Weather data from three different years were used, to cover the corresponding energy use 

records available. This comparison was intended to test the accuracy of the personal comfort models and 

evaluate their use for heating and cooling set point configuration and possible automation. 

As a secondary application option, one selected participant’s personal comfort model was 

converted to a smart device application format, to examine the opportunity to use the individual models 

as a personalised web-based tools to aid care givers to manage thermal environments, considering 

individual and personalised requirements.  

Details of these specific methodologies are described in Chapters 4 and 8. 
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1.6. Thesis structure 

This thesis is structured in 9 chapters, in a combination of conventional and publication formats, in 

accordance with the “Specifications for Thesis 2022” of The University of Adelaide. Figure 1-3 and the 

following breakdown of chapters explain how the thesis is organised. 

Chapter 1. Introduction 

Includes an overview of the research background, main motivations and significance, as well as 

the research questions, aims and objectives and the summary of the methodology applied.  

Chapter 2. Background on thermal comfort for older people and generalised thermal 

comfort modelling 

Underlines the current literature divided into 2 sections: (1) thermal comfort and older people and 

(2) generalised thermal comfort modelling.

Chapter 3. Systematic literature review of personal thermal comfort models 

Presents a systematic review of the literature of personal thermal comfort models. This chapter 

presents a published work: 

Arakawa Martins, L., Soebarto, V., Williamson, T. (2022) “A systematic review of personal 

thermal comfort models”, Building and Environment, Vol. 207, Part A, 

https://doi.org/10.1016/j.buildenv.2021.108502 

Chapter 4. Research methodology 

Presents an overall description of the research methodologies chosen to address the 3 main 

research aims of this thesis, including the data collection phases, modelling phases, building performance 

simulation process and the smart device app development. 

Chapter 5. Field study and initial analysis of factors associated with older people’s thermal 

comfort 

Presents the outcomes corresponding to research Objective (1), using statistical analysis to 

investigate the older South Australians involved in the study and their thermal environments, thermal 

preferences, behaviours, and physiological responses during hot and cold weather. The chapter also 

https://doi.org/10.1016/j.buildenv.2021.108502
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determines the most significant factors to be used as inputs for the personal comfort models developed 

in the next chapters. 

Chapter 6. Personal thermal comfort models for older people using environmental, 

behavioural and health variables 

Presents the outcomes corresponding to research Objective (2), evaluating the performance of 

the personal comfort models developed for older people using environmental, behavioural and 

health variables, and comparing them with the PMV individual predictions. This chapter presents a 

published work: 

Arakawa Martins, L., Soebarto, V., Williamson, T., Pisaniello, D. (2022) “Personal thermal 

comfort models: a deep learning approach for predicting older people’s thermal 

preference”, Smart and Sustainable Built Environment, Vol. ahead-of-print, No. ahead-

of-print, https://doi.org/10.1108/SASBE-08-2021-0144 

Chapter 7. Personal thermal comfort models for older people using skin temperature and 

environmental, behavioural and health variables  

Presents the further outcomes corresponding to the research Objective (2), evaluating 

the performance of the personal comfort models developed for older people, adding skin temperature 

as one of the input variables, and comparing them with the generalised model’s predictions. This 

chapter presents a published work: 

Arakawa Martins, L., Soebarto, V., Williamson, T. (2022) “Performance evaluation of 

personal thermal comfort models for older people based on skin temperature, health 

perception, behavioural and environmental variables”, Journal of Building Engineering, 

Vol. 51, https://doi.org/10.1016/j.jobe.2022.104357 

Chapter 8. Applications of personal thermal comfort models for older people 

Draws on the results of the personal comfort models to test possible applications using building 

performance simulation and an experimental smart device application, corresponding to research 

Objective (3). 

Chapter 9. Main findings and conclusions 

https://doi.org/10.1108/SASBE-08-2021-0144
https://doi.org/10.1016/j.jobe.2022.104357
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Presents a final overview of the thesis, the key findings, the contributions and limitations, as well 

as recommendations regarding personal comfort models for older people. 

References and relevant appendices, including the original versions of the included publications, 

are presented at the end of this thesis. A complete list of abbreviations, figures and tables can be found 

on pages vii-xiv. 
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Figure 1-3 - Thesis structure 



16 

Chapter 2. Background on thermal comfort for 
older people and generalised thermal comfort 
modelling 

The following literature review aims to establish the overall background and current context for the 

research presented in this thesis. It also presents relevant issues that have been considered to become 

the basis for the methodology chosen for the research.  

The first section investigates the important relationships between ageing, the built environment 

and human diversity, making the case for the development of a much more individualised way to study, 

plan and design thermal environments targeted to older people’s needs. The second section explores 

the conventional approaches towards thermal comfort modelling, and how their inherited generalising 

methods present important barriers to addressing the heterogeneity of the thermal comfort requirements 

of older people living in their dwellings. The chapter concludes with a summary of the current thermal 

comfort modelling limitations, leveraging the personal thermal comfort modelling alternative, discussed 

in more detail in Chapter 3. 

2.1. Thermal comfort and older people 

2.1.1. Environmental influences on physical and psychological health for older people 

Investigations regarding the potential environmental effects on overall health and wellbeing have 

been increasing in the past two decades. According to the extensive work by Golembiewski (2017) on 

health promotion theories and salutogenesis, there is a considerable amount of evidence that explains 

how architecture and the built environment provide a context that affects a person’s behaviour, neural 

and endocrine systems, thus directly influencing health. Moreover, there is a substantial body of research 

that focuses on building designs that not only improve recovery from diseases but also augment and 

promote people’s physical and psychological faculties, making them feel better and perform their activities 

more effectively. In this sense, a recent study by Peters (2017) argues that architecture can do more than 

just provide basic needs or minimise harmful conditions. For the author, appropriate and sustainable 

design can offer measurable and integrated positive co-benefits for human health and wellbeing. 
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With a specific focus on older people, recent literature has also established the links between the 

built environment and overall health and wellbeing. Annear et al. (2014), for example, through an 

extensive systematic review process, have highlighted relevant correlations between physical and mental 

health among older adults and the quality of environmental features around them. These features range 

from proximity to, and density of, public open spaces, to micro-scale architectural details that promote 

visibility (such as housing oriented to provide visual oversight of public areas). Likewise, a further study 

by Yen et al. (2014) found strong correlations between the built environment and mobility levels for older 

populations by synthesising more than 120 articles on the subject. The authors concluded that aesthetics, 

land use and connectivity are the three interrelated factors that strongly influence older adults’ decisions 

about their mobility, which may consequently affect physical activity frequency and ageing-in-place. The 

study also highlights that environmental components influence decisions about mobility through one 

central mechanism: the perception of safety. This means that older adults need to perceive that their 

environment is safe for them to be more mobile and active. 

In a more practical approach, the work of the Women’s Design Service and University of the West 

of England (2009) analysed 10 case studies of existing buildings designed for older people in England. 

The studies show extensive evidence of how appropriate and comfortable built environments have 

provided homes where people feel safe, respected and part of the community. This emphasises the 

important social effects that the built environment can have. 

Considering the above-mentioned, many aspects should be acknowledged when planning, 

designing, adapting or building the living environments for older people. These range beyond accessibility 

aspects, incorporating everything that may affect the physical and/or psychological integrity of older 

people. As highlighted by van Hoof and Hensen (2006), health should always be a key design factor for 

any built environment. Therefore, thermal comfort is introduced in this context, as it plays an important 

but insufficiently researched role in guaranteeing health and wellbeing for older populations. 

2.1.2. Age-associated changes in thermoregulation 

As people age, physiological changes affect their thermal sensitivity and regulation. As detailed by 

Shibasaki et al. (2013), advancing age is undoubtedly associated with the attenuation of thermoregulatory 

responses in the skin, possibly resulting from “reduced skin sympathetic nerve activity, decreased release 

of primary neurotransmitters and cotransmitters, and impaired end-organ responsiveness” (Shibasaki et 

al., 2013). Building on this idea, Dufour and Candas (2007), confirmed a significantly reduced sweat 

output with age, associated with a local origin (i.e., skin changes) rather than central alterations (i.e., in 
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the hypothalamus). The researchers also indicated a relevant correlation between thermal sensitivity and 

local sweat rate in older and middle-aged subjects, which was not observed in young adults.  

Furthermore, a literature review by Blatteis (2012) confirmed that, as ageing progresses, in addition 

to the decrease in the number of sweat glands activated by heat, dehydration is a contributing factor to 

the risk of hyperthermia for older people in hot environments, as the production of sweat depends on an 

adequate supply of blood (i.e., the source of its liquid). Blatteis (2012) also added that age-related cardiac 

or pulmonary dysfunctions, as well as endocrine deficiencies, could impair people’s ability to produce 

sufficient extra heat in cold environments. These studies indicated, therefore, that alterations occurring 

with advancing age could compromise the efficiency of people’s thermal defence mechanisms and the 

ability to respond effectively to temperature fluctuations in their environments, upsetting the homeostatic 

balance of health in some. 

2.1.3. Age-associated differences in thermal comfort 

Many studies have addressed age-associated differences in thermal comfort, preference and 

response in the built environment. While consistent progress has been made from diverse perspectives, 

the studies’ results, however, remain inconclusive.  

Wang et al. (2018), for instance, conducted an extensive literature review and analysis of both 

climate chamber studies and field studies, concluding that there is no difference in thermal comfort 

temperatures between young and older adults, especially once clothing, metabolic and anthropometric 

differences were considered. Other studies, on the other hand, reported differences between younger 

and older cohorts. Schellen et al. (2010), for example, conducted experiments in a climate chamber with 

eight young adults, aged 22 to 25, and eight older adults, aged 67 to 73, measuring both physical and 

physiological (i.e., skin temperature) parameters continuously, in both steady temperature settings and 

transient conditions. They concluded that the thermal sensation of older people was, in general, 0.5 scale 

units lower in comparison with their younger counterparts. In addition, during a constant temperature 

level and equal clothing level, the older cohort preferred a higher temperature in comparison with younger 

adults. Tartarini et al. (2017), however, indicated that older adults with dementia preferred lower 

temperatures than those recommended by thermal comfort standards. In their study, subjective 

perception of the thermal environment was gathered from field studies in six nursing homes, involving 

157 residents, 31 family members and 64 staff. The study also indicated that the residents of nursing 

homes were more tolerant to the same thermal environments than non-residents. Likewise, Bills (2019), 
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through a field study of 18 houses and 22 older participants, reported a consistent trend toward a 

preference for cooler conditions than predicted by current thermal comfort standards. 

Hwang and Chen (2010) conducted a field study with eighty-seven older adults, comparing the 

results with their previous study with younger counterparts. They concluded that, compared with the 

range of temperature acceptable to 80% of the younger adults in the summer (23.0–28.6°C), the range 

of temperatures acceptable to the older participants in this study in the summer was narrower (23.2–

27.1°C). Yang et al. (2016), on the contrary, through an extensive field study in twenty-six aged care 

facilities involving hundreds of older adults in different seasons, concluded that older adults preferred a 

wider range of temperatures than expected from thermal comfort standards.  

Although no consensus can be drawn from these studies regarding the preferred conditions of 

older adults, the distinction between how they and their younger counterparts seem to perceive their 

thermal environments could be explained by a combination of both physical ageing and relevant 

behavioural differences (van Hoof and Hensen, 2006). 

Apart from intergroup variability between younger and older adults, the differences relating to 

thermal comfort and perception can occur among individuals inside both groups. In fact, explaining 

individual diversity in perceived thermal comfort has been an interest of many studies for decades. The 

fact that individuals might perceive and respond differently when exposed to the same thermal 

environment indicates that other factors and stressors than the environmental parameters should also be 

considered when designing or managing the built environment. 

Shipworth et al. (2016), for instance, developed a theoretical model to explain inter-individual 

diversity drivers. According to the authors, these drivers range from physiological factors, such as body 

composition (e.g., body size, age, sex, lean and fat mass), to people’s contextual characteristics and 

thermal experiences, including climatic, cultural and personal levels of differences. In addition, 

psychological drivers are highlighted as the model’s third pillar, of which the impacts on thermal comfort 

are, however, still under-researched. The model further distinguished between short-term ‘states’, and 

longer-term ‘properties’ of both environment and individuals that shape people’s perception of thermal 

comfort. 

Likewise, Bluyssen (2019) proposes an integrated analysis approach for assessing not only 

thermal comfort, but also indoor environmental quality (IEQ) in general, through the lens of multiple 

environmental stressors and individual differences in needs, preferences and behaviours. Apart from an 

environment model that indicates patterns of stressors that should be considered in the assessment, the 
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authors introduce a human model, which leads to preferences and needs (profiles) of the occupant for 

which the assessment is performed. The human model included the interactions among physical and 

psycho-social stressors; confounders such as genes, sex, and age; effects of diseases and disorders; 

and previous exposures. The environment model comprised of not only physical stressors such as noise, 

odour, temperature, and light, but also their changes over time, occupants’ behaviour and their psycho-

social stressors such as working time, control and expectations. By including all interactions for both the 

environment and the occupant, the approach could be used to understand occupants’ preferences and 

needs and assess if their profile matches the environment in question, and ultimately identify the negative 

and positive stressors of concern to improve this environment. 

In this context, it is undeniable that intragroup diversity is present in both younger and older 

cohorts. This heterogeneity, however, tends to be greater in older age, because older adults have been 

submitted to a greater range of cumulative social, economic and environmental factors and trajectories 

across their individual life courses, which affect their needs and perceptions in significantly different ways 

(World Health Organization, 2015b). For this reason, understanding diversity drivers, specifically in older 

age, also becomes crucial to target their needs and requirements more accurately. 

2.1.4. Diversity in older age 

As above-mentioned, the ageing process is deeply influenced by complex changes affecting not 

only the biological but also the physiological layers of the individual. However, these changes are mostly 

independent from chronological age − the total number of years a person has lived −, and, although 

largely inevitable, they cannot be considered linear, as they can happen in different stages, speeds and 

intensities throughout older age (World Health Organization, 2015b). For this reason, it is very common 

to observe older people with the same chronological age having completely different functional 

capabilities. This means that, while some older people with a certain chronological age may be frail or 

lack the capacity to meet their basic needs and undertake basic activities, other older individuals with the 

same chronological age may retain full physical and mental functioning, not requiring any external 

support. 

According to the World Report on Ageing and Health, developed by the World Health Organization 

(2015b), this diversity in older age happens firstly because the mechanisms of ageing are extremely 

random. Secondly, it is believed that environmental and behavioural elements also play a relevant part 

in the trajectories of ageing. According to the report, older people’s heterogeneity drivers go beyond 

genetic inheritance, or the deliberate choices made during their lives. For the researchers involved in the 
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report, the physical and social environments that people inhabit can affect health both directly and 

indirectly. 

As an example of the wide range of physical functioning experienced in older age, the report used 

data from the Australian Longitudinal Study on Women’s Health. Illustrating the different trajectories of 

physical capacity across life, it is possible to observe that the range of physical functioning is far greater 

in older age than in younger ages, as seen in Figure 2-1. 

 

Figure 2-1 - Physical functioning across the life course, stratified by ability to manage on current 

income. Source: World Health Organization (2015b) 

The World Health Organization report also highlighted that “Healthy Ageing” can only be reached 

when older people are able to achieve the things that they have reason to value. In order to do so, 

developing functional ability is essential. Functional ability, on the other hand, comprehends the “intrinsic 

capacity” of each individual and the multiple interactions between this person and the diverse 

“environmental characteristics” to each he/she is exposed to. 

“Intrinsic capacity” is considered to be the combination of all the physical and mental capacities of 

an individual, including personal characteristics and genetic inheritance. “Environments” (or 

“environmental characteristics”) are all the elements in the external world that shape the context of an 

individual’s life, including the built environment, health and social policies, and the systems and services 

that support them. Figure 2-2 illustrates these concepts. 
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Figure 2-2 - Elements that define healthy ageing. Source: World Health Organization (2015b) 

Therefore, whether older people can achieve the things that they have reason to value ― and 

consequently experience healthy ageing ― will be determined not only by their individual capacity but 

also by the interactions with the environments they are surrounded by at a certain point in time. This 

means that two older people with the same limitations in their physical capacity can have opposite mobility 

outcomes if, for example, they have access or not to an assistive device or accessible public 

transportation. In other words, the final combination of the individual and their environments, and the 

interaction between them, is the individual’s functional ability - the most relevant determinant of healthy 

ageing. 

In its conclusion, the World Report on Ageing and Health emphasised the need to better 

understand the diverse needs of older populations in order to develop relevant policy that fosters healthy 

ageing. Among the different ways to achieve this better understanding, the report stressed person-

centred approaches as strategies already in use that could be applied by the WHO for health and long-

term care settings. According to the report, this new approach could result in a real paradigm shift in the 

way global health services are managed and provided, delivering health services that respond directly to 

people’s needs and preferences, in a safe and effective way. 

Looking from the same perspective, the field of thermal comfort is also experiencing the same 

paradigm shift. Most studies on thermal comfort today focus at the population level, and they are now 

being called into question by much more individualised and occupant-centric alternatives (Kim et al., 

2018a; Wang et al., 2018). This indicates that diversity in preferences and perceptions is beginning to be 
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taken into account in thermal comfort modelling and management. In this context, since older people’s 

individual needs are excessively broad, much could be profited by investigating their environmental 

comfort from the same occupant-centric approach. 

2.2. Generalised thermal comfort models 

Before discussing the current state of research on individualised and occupant centric approaches 

towards thermal comfort modelling and their potential to address the diversity observed in people in 

general and in older people specifically, it becomes essential to first introduce a review on thermal comfort 

modelling from the generalised perspective to provide contextual information for this current paradigm 

shift. 

Generalised thermal comfort models are termed as such in this thesis as models designed to 

predict the average thermal comfort of large populations. Also called “aggregate models”, these models 

are explored in this section to allow a clear understanding of the current paradigm shift from generalised 

to personal thermal comfort modelling techniques, which are the basis for the later chapters. The literature 

on generalised thermal comfort approaches used today can be divided into studies based on thermal 

comfort indices (Section 2.2.1.) and research into the adaptive comfort approach (Section 2.2.2). Both 

methods and applications are detailed below. 

2.2.1. Thermal comfort indices 

Multiple thermal comfort indices have been developed over the years, ranging from single-variable 

correlations between air temperatures and comfort votes, to more complex heat-balance indices, such 

as the PMV and SET* (Epstein and Moran, 2006). One of the earliest studies to indicate the use of a 

single index to explain thermal comfort was developed in 1905 by Haldane (Haldane, 1905). Through a 

series of experiments in both field and controlled scenarios, the study pointed to the use of wet-bulb 

temperature as an important measure to express heat stress. In 1916, the kata-thermometer, which 

allowed the measurement of both dry and wet temperatures, was introduced by Hill (Hill et al., 1916) and 

marked a pivotal empirical basis to describe the body’s cooling rate and heat loss and measure the 

warmth of the environment as perceived by a human being. 

Later in the 1920s, Yaglou, Houghten and Miller (Houghten and Yaglou, 1923; Yaglou and Miller, 

1925) developed the Effective Temperature (ET), an empirical index based on the relationship between 

thermal sensation and both air temperature and humidity in conditioned environments (Olesen, 2020; 
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Blazejczyk et al., 2012), followed later by adaptations from Vernon and Warner (Vernon and Warner, 

1932) and Missenard (Missenard, 1933), which introduced the influence of air speed.  

In 1932, Dufton published his work on the Eupatheoscope, a device that measured what he called 

the Equivalent Temperature of an environment, combining the effects of the air temperature, thermal 

radiation and air movement into a single number (Dufton, 1933; Dufton, 1932). The 1930s also marked 

the classic thermal comfort field studies by Bedford. Published in 1936, his study looked into the thermal 

environment of factory workers in England (Bedford, 1936). Due to the large scale and innovative 

statistical approach of his research project at the time, Bedford is today considered a pioneer of the 

systematic thermal comfort field study. He compared the agreement of 11 different environmental 

measurements and several other indices (including Hill’s kata-thermometer, Yaglou’s ET and Dufton’ 

eupatheoscope) with thermal comfort votes from participants. Surprisingly, none of the other indices 

performed significantly better than the simple air temperature or the mean radiant temperature. Building 

on this analysis, Bedford later used multiple regression to develop a revised version of Dufton’s 

Equivalent Temperature and published a new index of subjective warmth, with air temperature, mean 

radiant temperature, water vapour pressure and air speed as predictors (Humphreys et al., 2016).  

During the 1940s and 50s, Webb identified a need for research similar to Bedford’s, but for an 

equatorial climate such as Singapore’s, where he was based at the time (Webb, 1959; Webb, 1960; 

Webb, 1964). Webb collected longitudinal data and supervised the development of a multiple regression-

based model to build a thermal comfort index for the tropics called the Singapore Index. In addition, Webb 

was able to quantify considerable differences among the participants’ comfort preferences. He later 

conducted further studies on tropical scenarios in India and Iraq, with the objective of updating Bedford’s 

Equivalent Temperature using the statistical methods developed for his Singapore Index (Humphreys et 

al., 2016). 

In 1966, Stolwijk and Hardy provided the first convincing attempt to develop a comprehensive 

‘comfort’ index based on a “rational” physical and physiological basis (Stolwijk and Hardy, 1966). From 

this proposal a new effective temperature scale (ET*) was developed based on a two-node model of 

thermophysiology (Gagge et al., 1971). This effective temperature describes the dry bulb temperature of 

a uniform sea level environment at 50% relative humidity (RH), which is thermally equivalent to the actual 

environment. By adopting a standard set of conditions, e.g., air speed, clothing, and activity, a standard 

effective temperature (SET*) is defined and explained further in this section. 
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Later in the 1960s and 70s, the work of Rohles and Nevins (Nevins et al., 1966; Rohles, 1974; 

Olesen, 2020) continued to contribute to a better understanding of population-level thermal comfort 

modelling. It was in their test facility at Kansas State University that Fanger undertook analysis that later 

resulted in the basis for his notable Predicted Mean Vote - Predicted Percentage of Dissatisfied 

(PMV/PPD) index (Olesen, 2020), described below in more detail. 

PMV/PPD and ePMV 

The PMV (Predicted Mean Vote), originally developed in the second half of the 1960s by Fanger, 

is an index that represents the mean value of the thermal sensation votes of a group of people occupying 

a specific environment, on a 7-point thermal sensation scale from -3 (cold) to 3 (hot). Based on data 

obtained through American and European climate chamber studies and involving over a thousand heathy 

adults, the model calculates thermal comfort sensations according to the heat dynamics occurring 

between the body and the environment (Fanger, 1970). The calculation of the index, presented by Fanger 

(1970) and later adapted in ISO (2005), comprises of the following equations: 

𝑃𝑀𝑉 = (0.303𝑒−0.036 ∙ 𝑀 + 0.028) ∙ [(𝑀 − 𝑊) − 𝐻𝑠𝑘𝑖𝑛 − 𝐻𝑠𝑤𝑒𝑎𝑡 −

𝐻𝑙𝑎𝑡𝑒𝑛𝑡 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐻𝑑𝑟𝑦 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐻𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 − 𝐻𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛] ( 1 ) 

where heat loss by each process is defined by: 

𝐻𝑠𝑘𝑖𝑛 = 3.05 ∙ 10−3 ∙ [5733 − 6.99 ∙ (𝑀 − 𝑊) − 𝑝𝑎]   ( 2 ) 

𝐻𝑠𝑤𝑒𝑎𝑡 = 0.42 ∙ [(𝑀 − 𝑊) − 58.15]      ( 3 ) 

𝐻𝑙𝑎𝑡𝑒𝑛𝑡 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = 1.7 ∙ 10−5 ∙ 𝑀 ∙ (5867 − 𝑝𝑎)    ( 4 ) 

𝐻𝑑𝑟𝑦 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = 0.0014 ∙ 𝑀 ∙ (34 − 𝑡𝑎)     ( 5 ) 

𝐻𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 = 3.96 ∙ 10−8 ∙ 𝑓𝑐𝑙 ∙ [(𝑡𝑐𝑙 + 273)4 − (𝑡𝑟 + 273)4]   ( 6 ) 

𝐻𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑓𝑐𝑙 ∙ ℎ𝑐 ∙ (𝑡𝑐𝑙 − 𝑡𝑎)      ( 7 ) 

and: 

𝑀 is the metabolic rate in W/m2; 

𝑊 is the external work, or effective mechanical power in W/m2; 
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 𝑝𝑎  is the water vapor partial pressure, in Pa; 

𝑡𝑎  is the air temperature, in °C; 

𝑡𝑟  is the mean radiant temperature, in °C; 

𝐼𝑐𝑙  is the clothing thermal insulation, in m2K/W; 

𝑓𝑐𝑙  is the clothing surface area factor, calculated by: 

𝑓𝑐𝑙 = {
1 + 1.29 ∙ 𝐼𝑐𝑙                 𝑓𝑜𝑟   𝐼𝑐𝑙 ≤ 0.078 
1.05 + 0.645 ∙ 𝐼𝑐𝑙       𝑓𝑜𝑟    𝐼𝑐𝑙 > 0.078

    ( 8 ) 

𝑡𝑐𝑙 is the clothing surface temperature, in °C, calculated through an iterative process, using the 

following equation: 

𝑡𝑐𝑙 =  𝑡𝑠𝑘𝑖𝑛 − 𝐼𝑐𝑙  ∙ 3.96 ∙ 10−8 ∙ 𝑓𝑐𝑙 ∙ [(𝑡𝑐𝑙 + 273)4 − (𝑡�̅� + 273)4] − 𝐼𝑐𝑙  ∙ 𝑓𝑐𝑙 ∙

ℎ𝑐 ∙ (𝑡𝑐𝑙 − 𝑡𝑎)       ( 9 ) 

𝑡𝑠𝑘𝑖𝑛 is the skin temperature, in °C, calculated by: 

𝑡𝑠𝑘𝑖𝑛 =  35.7 − 0.028 (𝑀 − 𝑊)      ( 10 ) 

ℎ𝑐  is the heat transfer coefficient, in W/m²K, calculated by: 

ℎ𝑐 = {
2.38 ∙ | 𝑡𝑐𝑙 − 𝑡𝑎|0.25   𝑓𝑜𝑟 2.38 ∙ | 𝑡𝑐𝑙 − 𝑡𝑎|0.25  >  12.1 ∙  √𝑣𝑎𝑟

12.1 ∙  √𝑣𝑎𝑟                 𝑓𝑜𝑟  2.38 ∙ | 𝑡𝑐𝑙 − 𝑡𝑎|0.25  <  12.1 ∙  √𝑣𝑎𝑟

 (11) 

𝑣𝑎𝑟  is the relative air velocity, in m/s. 

The model defines the optimum condition (or the thermal neutral condition) as the condition 

wherein a person does not feel either hot or cold in his/her environment.  

Furthermore, the PPD (Predicted Percentage of Dissatisfied) index quantifies the expected 

percentage of thermally dissatisfied people in an environment and is calculated as a function of the PMV 

index: 

𝑃𝑃𝐷 = 100 − 95 ∙ 𝑒−(0.03353∙𝑃𝑀𝑉4+0.2179∙𝑃𝑀𝑉2)    (12) 
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The standards (ANSI/ASHRAE, 2020; ISO, 2005) recommend that the optimal indoor temperature 

is defined when PPD is lower than 10%, which corresponds to a PMV index between -0.5 and 0.5, as 

seen in Figure 2-3. 

 

Figure 2-3 - Predicted Percentage of Dissatisfied (PPD) versus Predicted Mean Vote (PMV) 

The PMV and PPD indexes are considered official tools to evaluate thermal comfort in buildings, 

being adopted by several international standards worldwide (ANSI/ASHRAE, 2020; CEN, 2007; ISO, 

2005). However, as it is mainly based on data from healthy adults, it cannot be applied to children, older 

adults (people aged 65 years and over) or people with diseases or disabilities, without adequate 

modelling adaptations (van Hoof, 2008). In addition, although used worldwide for all building types, the 

model is recommended for application in environments with heating, ventilation, and air-conditioning 

(HVAC) systems, situated in cold, temperate and warm climates. The model performs poorly when 

applied to non-air-conditioned buildings in warm climates (Humphreys, 1978; Brager and de Dear, 1998; 

Humphreys et al., 2016), where occupants may sense the warmth as being less severe than the PMV 

model predicts due to occupants’ lower thermal expectations and possibly due to metabolic rate 

estimations higher than expected in warmer environments (Fanger and Toftum, 2002). 

For this reason, Fanger and Toftum (2002) later introduced the ePMV model, extending the 

suitability of the calculations for buildings without HVAC systems, in warm and humid climates, by adding 

adaptive factors to the original index. This updated model considers an expectancy factor, e, to be 
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multiplied with PMV to reach the mean thermal sensation vote of occupants of actual non-air-conditioned 

buildings in a warm climate. 

The e factor ranges between 0.5 and 1, where 1 is the factor for buildings with HVAC systems. 

According to the authors, for buildings without HVAC systems, the correction factor depends on the 

duration of the period of warm weather during the year, and if the building can be compared with many 

buildings from the region where HVAC systems are used. Therefore:  

“if the weather is warm all year or most of the year and there are no or few other air-

conditioned buildings, e may be 0.5, while it may be 0.7 if there are many other buildings 

with air conditioning. For non-air-conditioned buildings in regions where the weather is 

warm only during the summer and no or few buildings have air-conditioning, the 

expectancy factor may be 0.7±0.8, while it may be 0.8±0.9 where there are many air-

conditioned buildings. In regions with only brief periods of warm weather during the 

summer, the expectancy factor may be 0.9±1” (Fanger and Toftum, 2002). 

Validating the ePMV model with global datasets from field experiments, the authors demonstrated 

that the extended PMV model agrees well with available quality field studies in non-air-conditioned 

buildings in warm climates of three continents. 

SET* 

The Standard Effective Temperature (SET*), presented by Gagge et al. (1986) and later adapted 

for use in ANSI/ASHRAE (2020), is another well-known index used to evaluate human thermal 

environments. It was developed to account for the fact that people’s tolerance for high or low air 

temperatures can vary depending on humidity and other physical factors. It is defined by the equivalent 

dry bulb temperature of an isothermal environment at 50% relative humidity, in which an occupant, 

wearing clothing standardised for the activity concerned, would have the same heat exchange at skin 

surface and the same thermoregulatory strain (represented by skin wettedness or sweat) as in the actual 

test environment (Gagge et al., 1986). It satisfies the two-node heat balance equation involving the 

physical factors describing the environment, the standardised clothing insulation worn in relation to the 

activity, the standardised heat transfer coefficients for both clothing and effective air movement, and the 

resulting skin temperature and wettedness.  

The SET* index has the advantage of allowing direct comparisons between environments at any 

combination of physical input variables, as it represents the thermal strain experienced by a “standard” 
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person in a “standard” environment (Enescu, 2019). However, the requirement for a “standard” occupant 

might also represent the index’s main disadvantage, especially when considering diverse groups of 

building users. 

Although both PMV and SET* indices are based on essentially the same heat balance equations, 

the methods to calculate the physiological variables used in each model differ substantially. In the SET* 

calculations, a “two-node” thermoregulation model − where the human body is partitioned into an external 

region formed by the skin and a connected internal core – uses a finite difference procedure to estimate 

the physiological parameters (i.e., surface skin temperature and surface skin wettedness). The heat 

transfer between the environment, the skin and the core are simulated at one-minute intervals by the 

model, updating the physiological variables until the specified exposure time (i.e., the number of 

iterations) is reached. These variables are later used to calculate the index (Doherty and Arens, 1988; 

Fountain and Huizenga, 1996). For the PMV calculation, on the other hand, physiological parameters 

(i.e., skin temperature and heat loss due to sweating) are not estimated and rather directly calculated 

based on metabolic rate (Doherty and Arens, 1988), as presented in Equations 3 and 10. 

Other indices 

Apart from SET* (Gagge et al., 1973), the two-node model is the basis of other, currently less used, 

thermal indices such as DISC (Predicted Thermal Discomfort) and TSENS (Predicted Thermal Sensation) 

(Fountain and Huizenga, 1996; Doherty and Arens, 1988). These indices, in addition to PMV/PPD, are 

categorised as rational indices, as they are derived from heat balance equations and mathematical 

models involving the thermal physics and physiology that describe the behaviour of the human body in 

thermal environments (Parsons, 2000; Humphreys et al., 2016). 

Furthermore, other indices, also currently less used, such as the PD (Predicted Percentage of 

Dissatisfied due to Draft) by Fanger et al. (1988), PS (Percentage of Satisfied) by Fountain et al. (1994) 

and TS (Thermal Sensation) by Rohles (1973) have been developed and categorised as empirical 

indices, since they derived from experiments, relying in the direct relationship between two or more 

variables that dominate the phenomena (Parsons, 2000; Fountain and Huizenga, 1997). 

Finally, a third category of indices, named direct or derived indices, are the ones based on 

measurements taken on a simple instrument that directly responds to factors in the thermal environment, 

which also affect people (Parsons, 2000). The Wet Globe Temperature (WGT), for instance, can be 

considered a derived index as the instrument used to measure it responds to thermal radiation, air 
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temperature, relative humidity and air velocity and can be employed to provide an indication of 

environmental heat stress. 

2.2.2. Adaptive thermal comfort approach 

While a certain level of behavioural adaption is accounted for in the thermal comfort indices such 

as PMV and SET* (e.g., clothing), numerous research studies on thermal comfort have highlighted the 

lack of considerations to other dimensions of thermal adaptation, such as psychological, cultural, climatic 

and social contexts (Brager and de Dear, 2001). In addition, the expectation that people would be 

universally satisfied within a centrally controlled environment was called into question. According to these 

studies, non-neutral thermal preferences are experimentally common (Williamson et al., 1995), 

questioning the thermal neutrality proposed as the only optimal thermal condition for people. In addition, 

very low and very high PMV values do not always represent a state of discomfort for a relevant number 

of people (van Hoof et al., 2017b; van Hoof and Hensen, 2006; van Hoof, 2008). 

The adaptive thermal comfort approach argued that people cannot be considered as passive 

recipients of the environment, and that they constantly interact with it through several strategies to 

optimise their conditions and achieve thermal comfort. For Humphreys et al. (2016), this meant that 

thermal comfort “is not to be seen primarily as a matter of the physiology of heat regulation and the 

science of clothing, but rather as a wide-ranging and intelligent adaptive behavioural response to climate.” 

The authors pointed out, however, that both rational and adaptive models could be considered 

theoretically complementary, since heat exchange between a person and the environment is still an 

integral component of the adaptive model (Humphreys et al., 2016). The fundamental distinction between 

the rational and adaptive models lies, therefore, in what is considered the cause for the shift in comfort 

temperatures. While rational models only account for behavioural adjustments (personal/technological) 

to heat balance variables such as clothing or air velocity, the adaptive models add physiological (i.e., 

acclimatisation) and psychological (i.e., expectations/habituation) drivers (de Dear et al., 1997). Likewise, 

while rational models account for thermal comfort in terms of the microclimate immediately  affecting  the  

heat exchanges of the individual, the adaptive approach predicts comfort from broad-scale contextual   

factors (de Dear and Brager, 2002). 

In order to evaluate adaptive actions in everyday living, the main principle of the adaptive approach 

was to reintroduce field-studies, particularly in naturally ventilated buildings, such as Bedford’s pioneer 

studies in the 1930s (Bedford, 1936), to explore thermal comfort. Therefore, through extensive 

explorations with field data and a resulting empirical model that correlated both outdoor and indoor 
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temperatures and people’s temperature acceptability, researchers confirmed that the indoor temperature 

considered to be the most comfortable increases significantly in warmer climate zones and decreases in 

colder contexts. This reinforced the idea that people have an intrinsic ability to adapt to seasonal 

variations in environment conditions, thus revealing that satisfaction towards the thermal environment 

does not necessarily result in an environment restrained at an invariable indoor temperature (Humphreys 

et al., 2016; Kim et al., 2018a; van Hoof et al., 2017b; van Hoof, 2008). 

One of the foundation documents for the adaptive model was the work of Humphreys (1975), which 

applied an in-depth analysis of thermal comfort field surveys conducted between 1930 and 1975. This 

was later complemented by Auliciems (1981), who updated the model by adding new data and cleaning 

data considered to be of lower quality (Humphreys et al., 2007). Later in the 1990s, a new adaptive 

relation was formalised by de Dear and Brager (1998), derived from the extensive compilation of the 

ASHRAE RP-884 database of thermal comfort surveys in 160 buildings from 9 countries (de Dear et al., 

1997).  

According to de Dear and Brager (1998), after statistically analysing the raw data collected in each 

of the buildings, the authors conducted a meta-analysis of how human subjective thermal response 

interacted with indoor, contextual (i.e., buildings with or without HVAC) and outdoor meteorological 

factors. First, the study used weighted linear regression analysis to quantify the relationship between the 

thermal sensation vote and the indoor operative temperature in each building, retaining only those 

regressions that were significant at the 95% confidence level, as seen in Table 2-1. The resulting 

regression equations for each building were then solved for thermal sensation vote = 0, to find the 

operative temperature corresponding to indoor thermal neutrality. 

Table 2-1 - Summary of the weighted linear regression of mean thermal sensation on indoor operative 

temperature, reproduced from de Dear and Brager (1998) 

 
Centrally Heated/Air-Conditioned 
Buildings 

Naturally Ventilated Buildings 

Number of Buildings 109 (2 missing values) 44 (1 missing value) 

Number of Buildings with 
regression Models Achieving 95% 
Significance 

63 (57.8% of total) 36 (81.8% of total) 

Mean (±stdev) Model Constant (a = 
y-intercept) 

-11.96 (±5.839)  -6.65 (±3.572) 

Mean (±stdev) Model Gradient (b) 0.51 (±0.248) 0.27 (±0.134) 

To explain the tendency for indoor neutrality to increase as the outdoor climate becomes warmer, 

and the fact that this relationship is stronger in naturally ventilated buildings, the study statistically tested 
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the relationship between the mean outdoor daily effect temperature (ET*out) and the neutral indoor 

operative temperatures (i.e., indoor thermal neutrality). The resulting models are presented in Figure 2-4. 

 

Figure 2-4 - Dependence of indoor thermal neutrality on mean temperature recorded outdoors during 

each building survey. Source: de Dear and Brager (1998) 

80% and 90% thermal acceptability criteria for general thermal comfort were then estimated for 

each building as the range of operative temperatures falling between mean thermal sensations of ±0.85 

and ±0.5, respectively, as presented in Table 2-2. 

Table 2-2 - Range of Acceptable Operative Temperatures, reproduced from de Dear and Brager (1998) 

 
Centrally Heated/Air-Conditioned 
Buildings 

Naturally Ventilated Buildings 

Number of Buildings 108 (3 missing values) 41 (4 missing values) 

Number of Buildings with 
regression Models Achieving 95% 
Significance 

62 (57% of total) 33 (75% of total) 

80% Acceptability Criterion, Mean 
(±stdev) 

4.1K (±1.91)  6.9K (±2.79) 

90% Acceptability Criterion, Mean 
(±stdev) 

2.4K (±1.12) 4.9K (±3.27) 

These calculations were later updated by the same authors (de Dear and Brager, 2002) to 

incorporate the adaptive model to the ASHRAE Standard 55 (ANSI/ASHRAE, 2020), which recommends 

the following adaptive comfort equation for naturally ventilated buildings: 

𝑇𝑐𝑜𝑚𝑓 = 17.8 + 0.31 ∙ 𝑇𝑝𝑚𝑎(𝑜𝑢𝑡)     ( 13 ) 

where 𝑇𝑐𝑜𝑚𝑓 is the acceptable operative temperature and 𝑇𝑝𝑚𝑎(𝑜𝑢𝑡) is the prevailing mean outdoor air 

temperature, calculated as the arithmetic mean of all the mean daily outdoor air temperatures of the 7 to 

30 sequential days prior to the day in question. 
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Figure 2-5 - Acceptable operative temperature ranges for naturally conditioned spaces, according to 

the adaptive model. Source: ANSI/ASHRAE (2020) 

From 1997 and 2000, extensive field data from Europe was collected and analysed by Nicol and 

McCartney (2001) through the Smart Controls and Thermal Comfort project (SCATs project) in response 

to a European Union call for research regarding ‘smart controls’ for building energy use saving. One of 

the main parts of the project was the exploration of further adaptive relationships between climate and 

comfort indoors, applicable for the diverse climates of European countries. 

Through the use of the Griffiths method (Griffiths, 1990), the comfort temperatures were estimated 

from the collected data in order to extract the relationship between the climate and thermal comfort 

indoors. The values of the running mean of the outdoor temperature (𝑇𝑟𝑚) were calculated using the 

exponentially weighted running mean with a weighting-constant α of 0.8. In this approach, the comfort 

temperature (𝑇𝑐) was found constant below an outdoor temperature of 10°C, while increasing with outdoor 

temperatures above 10°C (Humphreys et al., 2016). Therefore, the study suggested the following 

adaptive model for conditioned buildings: 

𝑇𝑐 = 22.9 +  0.09 ∙ 𝑇𝑟𝑚       ( 14 ) 

and the following for free-running buildings, with outdoor running mean temperature above 10°C: 

𝑇𝑐 = 18.8 +  0.33 ∙ 𝑇𝑟𝑚       ( 15 ) 
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European Standard 15251 (CEN, 2007) uses Equation 15 as the basis of the adaptive approach 

for buildings operating in the free-running mode.  

Recently, a series of new adaptive models were developed for other specific contexts. Among 

several studies, extensive work has been undertaken by Nguyen et al. (2012) for hot humid South-East 

Asia, Manu et al. (2016) for five different Indian climate zones, Barbadilla-Martín et al. (2017) for the 

southwestern area of Spain, Rupp et al. (2018) for the southern region Brazil, Pérez-Fargallo et al. (2018) 

for the central-south region of Chile, de Dear et al. (2018) for the humid subtropical climate in Sydney, 

Australia, and Williamson and Daniel (2020) for temperate climates in Australia. 

2.2.3. Thermal comfort scales 

Regardless of the approach used to assess thermal environments, detailed above, the use of 

occupants’ subjective responses captured through thermal comfort scales is overall predominant in all 

methods. In these cases, occupants are asked to rate their thermal perception, sensation, comfort, 

preference, dis/satisfaction or acceptability on a descriptive linear scale, in which phrases or category 

labels (descriptors) are associated with specific ordinal numbers. Most scales’ categories are arranged 

symmetrically in relation to a “neutral” or “comfortable” category (Andamon, 2005; Humphreys et al., 

2016). In addition, the intervals between the categories are commonly assumed as equally spaced, hence 

the predominant use of statistical methods such as linear regression on thermal comfort studies 

(Schweiker et al., 2016). 

Three main scales are commonly used today: the 7-point Bedford scale for thermal 

sensation/comfort, the 7-point ASHRAE scale for thermal sensation and the 3-point McIntyre scale for 

thermal preference (Table 2-3). Variations of these scales, such as increasing the number of 

points/categories or minor modifications in the terms used, are also used depending on the study’s goals 

and assumptions. 

Table 2-3 - Bedford, ASHRAE and McIntyre scales 

Thermal sensation/comfort Thermal sensation Thermal preference 

Bedford ASHRAE McIntyre 

7-point scale 7-point scale 3-point scale 

1 Much too cool -3 Cold   

2 Too cool -2 Cool   

3 Comfortably cool -1 Slightly cool 1 Warmer 

4 Comfortable 0 Neutral 2 No change 

5 Comfortably warm 1 Slightly warm 3 Cooler 

6 Too warm 2 Warm   

7 Much too warm 3 Hot   
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The numbering systems used for each scale can vary. Depending on the kind of numerical and 

statistical analysis involved, it might be convenient to avoid negative numbers. Certain programming 

languages, for instance, might also require that lists of categories or labels (i.e., array numbering) begin 

with the number 0 instead of negative values or the number 1. In addition, thermal comfort researchers 

also recommend to number the scale in such way that warm extremes (e.g., Bedford’s “much too warm” 

or McIntyre’s “prefer to be cooler”) have the higher numbers, since it seems more natural to associate 

warmer sensations with higher values (Humphreys et al., 2016). 

Bedford scale 

Bedford (1936), during a thermal comfort field study with factory workers, used a structured 

interview to ask participants about their responses, which were later converted to a 7-point scale for 

analysis. Known today as the Bedford scale, this scale is a combined estimate of warmth and comfort, 

used often in field studies in countries of greater British influence. Each category does not represent a 

thermal sensation, but a combination of the sensation and its respective evaluation as comfortable or not. 

However, the relationship between the estimates of warmth and comfort is not always considered 

constant (Humphreys et al., 2016), which can compromise the use of the scale in general. 

ASHARE scale 

The ASHRAE thermal sensation scale is the most frequently used scale to record occupants’ 

responses and assess their environments. Originally used in American research, this scale is used 

worldwide today. Although it does not contain any explicit references to thermal comfort in its categories, 

the scale is commonly assumed to have the three central categories as indicators of thermal comfort. 

This assumption is clear in the adoption of a PPD lower than 10% (i.e., PMV between -0.5 and 0.5) as 

the recommended thermal performance of built environments in standards (ISO, 2005; ANSI/ASHRAE, 

2020). 

When extreme thermal conditions are being explored, it is common to extend the range of the 7-

point ASHRAE thermal sensation scale to a 9-category form, adding labels “very cold” and “very hot” 

(Humphreys et al., 2016). Nevertheless, psychology experiments such as the work by Miller (1994) 

recommend limiting questionnaire response options to 5 and 7, due to the fact that people’s ability to 

process information and make judgments significantly decreases when presented with more than 7 

alternatives simultaneously (Kim et al., 2018a).  

McIntyre scale 
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As explained in Section 2.2.2, the preference for non-neutral thermal sensations is experimentally 

common, and low and high thermal sensation values do not always represent a state of discomfort for a 

relevant number of people. Therefore, in order to estimate occupants’ desired thermal sensation with 

more precision, researchers proposed to supplement the ASHRAE thermal sensation scale with a scale 

of thermal preference. The 3-point thermal preference scale, attributed to the work of McIntyre (1980), is 

the most commonly used scale to account for the desire for thermal change and explore environments’ 

acceptability among occupants. A 5-point category variation of this preference scale, known as the Nicol 

scale, is also used, presenting the categories: “much warmer”, “a bit warmer”, “no change”, “a bit cooler” 

and “much cooler”. The thermal preference scale is especially effective when the objective of its use is 

for the control of HVAC systems, since the scale not only suggests the desire for change, but also a 

direction for the change (Kim et al., 2018a). 

The use of these scales in general, however, has several points of concern in the field. Schweiker 

et al. (2016), for instance, argued that the common assumption of equidistance between scales’ 

categories (e.g., the difference between “warm” and “hot” being equal to that between “warm” and “slightly 

warm”) is one of the main questionable aspects of the scales. This observation was built around the 

analysis by Lantz (2013) on Likert-type6 data, which had already confirmed that the way verbal anchors 

(i.e., category labels) are used in a Likert‑type scale significantly influence the perceived distance 

between the scale’s points. The author stated that: 

“Anchors only at the end points create a relatively larger perceived distance between points 

near the ends of the scale than in the middle (end‑of‑scale effect), while anchors at all points 

create a larger perceived distance between points in the middle of the scale (middle‑of‑scale 

effect). Hence, Likert‑type scales are generally not perceived as equidistant by subjects” 

(Lantz, 2013). 

Further work by Schweiker et al. (2020), using a large international collaborative questionnaire 

study conducted in 26 countries, confirmed that the assumption of equidistance was agreed by only a 

subset of the responses acquired. Likewise, Fuchs et al. (2018) indicated the existence of different 

conceptions concerning the relationships between the labels of scales. The study involved 63 participants 

who first assessed the relative distances between labels of the ASHRAE thermal sensation scale and 

their distribution along different dimensions (sensation, preference, comfort, pleasantness, acceptability, 

 
6 A type of psychometric response scale in which responders are asked to choose one out of five possible degrees of agreement, ranging 

from “strongly agree” to ”strongly disagree” (Lantz, 2013). 
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and tolerability), and later were asked to rate office rooms at cool, neutral, and warm conditions in terms 

of the same dimensions. The analysis revealed multiple subgroups (or clusters) of people with different 

conceptions of scales, whose rates of room temperatures differed considerably. 

Furthermore, Humphreys and Hancock (2007) indicated, by comparing 868 actual and desired 

thermal sensations, that categories on the ASHRAE scale have more than one meaning for respondents. 

According to the authors, thermal sensations votes could indicate both thermal satisfaction and heat-

discomfort depending on the occasion and on different people. This exploration highlighted the 

importance of using not only thermal sensation scales, but also thermal preference scales, to have a 

better understanding of the data collected. In addition, the meaning associated with sensory information 

also changes through generations and cultures, and evolves as a culture changes over time (Humphreys 

et al., 2016). 

Finally, the absence of thermal comfort votes in the end categories is also a common issue when 

applying scales, especially when studying isolated summer or winter conditions, or when analysing highly 

stable environments. When using the 3-point McIntyre preference scale, for instance, the “prefer warmer” 

option might hardly be chosen by participants located in hot climates in summer, rendering it impossible 

to model preferences and calculate a preferred condition. Likewise, studies in cold climates in winter 

might have no “prefer cooler” option recorded. A possible solution, in these cases, could be to divide the 

scale range more finely, using 5 or 7-point versions of this scale (Humphreys et al., 2016), such as the 

Nicol scale for thermal preference. 

The correct choice of scale used in thermal comfort studies, therefore, requires a deep 

understanding of not only the barriers of semantics and interpretations, but also the final application 

envisaged for the data collected (i.e., whether it will be used for predictive modelling applied for building 

assessment, or for preferred condition calculation or for HVAC system optimisation).  

2.2.4. Generalised models’ limitations and the personal thermal comfort model alternative 

Despite the PMV/PPD and the adaptive approach being successfully adopted and accepted in 

international standards, these two different methods have several limitations. According to the pivotal 

work of authors Kim et al. (2018a), these limitations include: 

(1) the difficult and costly attainment of input variables, especially considering metabolic rate and 

clothing levels, 

(2) the models’ poor predictive performance when applied to individuals, 
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(3) the inability of the models to be calibrated, adapting to feedback and re-learning, 

(4) and the inability of the models to incorporate new relevant input variables (such as age, health 

status, body mass index) beyond their pre-defined factors. 

In addition, these standard models have been developed based on data mainly from office 

buildings and considerably fewer studies have focused on residential environments. This can also be 

limiting when considering the diversity of thermal conditions houses generally provide in comparison with 

more controlled office environments. Likewise, while in offices, the activity level and clothing tend to be 

constant throughout the year but may change frequently in living spaces, which again provide more 

diverse thermal conditions (Daum et al., 2011). 

When considering older people’s heterogeneous characteristics and thermal preferences, these 

models’ disadvantages become even more critical. Hence the need to better investigate thermal comfort 

for older people on the individual level, enhancing the model’s predictive performance and incorporating 

older people’s diverse individual differences. 

Personal thermal comfort models are alternatives to overcome these limitations. Instead of an 

average response calculated from the data of a group of people, a personalised model is based solely 

on thermal data from one single person. Analysing individual datasets enables a better understanding of 

specific comfort needs, requirements and issues, aiding the decision-making process involved in 

designing and optimising thermal environments. Addressing the issue of individual differences in an 

innovative way and empowered by the rapid developments in the Internet of Things (IoT) and Artificial 

Intelligence (AI), this change of approach can provide relevant comfort and energy related benefits (Wang 

et al., 2018) and allow more dynamic and flexible possibilities to absorb individual thermal comfort 

diversity and enhance model reliability (Rupp et al., 2015). Therefore, to capture the current state of 

research on this topic, a comprehensive systematic literature review on personal thermal comfort 

modelling is presented in the following Chapter 3. 
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Chapter 3. Systematic literature review of personal 
thermal comfort models 

Personal comfort models were created to overcome most of the restrictions that generalised 

models such as the PMV and adaptive model present. Aiming for a more targeted approach and higher 

predictive performance, this alternative model uses the individual as the unit of analysis, predicting 

individuals’ thermal comfort responses, instead of an average response from a large population. Relying 

on robust probabilistic programming tools, this new approach is fully data-driven, minimizing bias and 

avoiding anecdotal evidence, and is usefully flexible when testing different modelling methods and input 

variables. 

In recent years, the development of personal thermal comfort models has been addressed using 

multiple frameworks, including different modelling architecture, diverse input variables and distinct data 

collection approaches. Although advances in the field are undeniable, there is still a lack of a thorough 

and critical review of the current state of the research in the field that maps the similarities and 

discrepancies across the research.  

Therefore, this Chapter presents a systematic review of studies on personal thermal comfort 

models based on the literature published in the last two decades. By examining the final reviewed articles, 

research on personal comfort models has been critically analysed based on: (1) the data collection 

approach and sample size, (2) number and type of participants involved, (3) climate, seasons and type 

of building involved, (4) model input and output variables, (5) modelling algorithm used, (6) performance 

indicator used, and (7) model final application.  

This systematic literature review provides key information about the development of personal 

comfort models for older people, presented in later chapters, while also contributing to demonstrate the 

significance of the findings of this thesis. 

This chapter has been produced as a journal article, published in Building and Environment as: 

Arakawa Martins, L., Soebarto, V., Williamson, T. (2022) “A systematic review of personal 

thermal comfort models”, Building and Environment, Vol. 207, Part A, 

https://doi.org/10.1016/j.buildenv.2021.108502 

https://doi.org/10.1016/j.buildenv.2021.108502
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climates zones, seasons and participants involved in developing personal comfort models. It has also 

highlighted a lack of a unified and systematic framework for modeling development and evaluation, which 

currently hinders comparisons between studies. With most of the studies using machine learning 

techniques, the review has pointed to the challenges of “black box” models in the field. Finally, the review 

has indicated that personal input features using physiological sensing technologies can be further 

explored, especially considering the rapid advances seen today in wearable sensor technologies.  

Keywords: personal comfort model; thermal comfort; thermal sensation; thermal preference; 

machine learning; probabilistic models 
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3.1. Introduction 

International standards (ANSI/ASHRAE, 2020; CEN, 2007; ISO, 2005) adopt the PMV (Predicted 

Mean Vote) model (Fanger, 1970) and the adaptive model (de Dear and Brager, 1998; Humphreys et al., 

2016)  as the basis from which to establish the thermal requirements for human occupancy in the built 

environment. The PMV model, originally developed in the second half of the 1960s by Fanger, is an index 

that represents the mean value of the thermal sensation votes of a group of people occupying a specific 

environment, on a 7-point thermal sensation scale from -3 (cold) to 3 (hot). Based on data obtained 

through climate chamber studies and a selection of heathy adults, the model calculates thermal comfort 

sensations according to the heat dynamics occurring between the body and the environment. The model 

defines the thermal neutrality as the condition wherein a group of people does not feel either hot or cold 

in an environment. Furthermore, the PPD (Predicted Percentage of Dissatisfied) index, calculated as a 

function of the PMV index, quantifies the expected percentage of thermally dissatisfied people in an 

environment. The standards recommend that the optimal indoor temperature is defined when PPD is 

lower than 10%, which corresponds to a PMV index between -0.5 and 0.5. Hence, the application of this 

model results in the maintenance of a single optimal constant indoor temperature without any variations 

throughout an entire day or season. 

Nevertheless, numerous studies on thermal comfort have considered it unreasonable to expect 

everyone to be satisfied within a centrally controlled environment. Non-neutral thermal preferences are 

common, questioning the thermal neutrality proposed as the only optimal thermal condition for people. In 

addition, very low and very high PMV values do not always represent a state of discomfort (van Hoof et 

al., 2017b; van Hoof and Hensen, 2006; van Hoof, 2008). 

The adaptive comfort approach, developed by Humphreys et al. (2016) and de Dear and Brager 

(1998), analyzed field-study data from naturally-ventilated buildings. Through empirical models that 

correlate the comfortable indoor temperatures and the outdoor temperatures, they discovered that indoor 

temperatures considered to be most comfortable increased significantly in warmer climates and 

decreased in colder contexts. This indicates that people have an intrinsic ability to adapt to seasonal 

variations in environmental conditions, thus revealing that satisfaction with the thermal environment does 

not necessarily result in an environment restrained to an invariable indoor temperature (Humphreys et 

al., 2016; Kim et al., 2018a; van Hoof et al., 2017b; van Hoof, 2008). 

Nonetheless, both PMV and the adaptive models are aggregate models, which means they are 

designed to predict the average thermal comfort of large populations. Other researchers have argued 
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that predicting comfort at the population level presents limitations in real case scenarios. In fact, many 

studies have already pointed out to the high levels of thermal dissatisfaction among occupants in office 

buildings where the standard prescriptions are used for heating and air conditioning set point controls 

(Aryal and Becerik-Gerber, 2018; Karmann et al., 2018; Huizenga et al., 2006; Li et al., 2017). In addition, 

according to the pivotal work of authors Kim et al. (2018a), these aggregate models are also limited by 

(1) the difficult and costly attainment of input variables, (2) their inability to be calibrated, i.e., adapting to 

feedback and re-learning, and (3) their inability to incorporate new, relevant, input variables (such as age, 

health status, body mass index and contextual features) beyond their pre-defined factors. 

“Personal comfort models” were created to overcome most of the restrictions that the PMV and 

adaptive models present. Instead of an average response calculated from the data of a group of people, 

a personalized model is based solely on thermal data from one single person. By analyzing individual 

datasets, this approach helps to unmask and quantify the differences between individuals in an 

environment, enabling a better understanding of specific comfort needs and requirements and collecting 

diagnostic information to identify problems (Kim et al., 2018a). This information, in turn, aids the decision-

making process involved in designing and optimizing thermal environments to improve comfort 

satisfaction and energy efficiency. When HVAC (Heating, Ventilation and Air Conditioning) systems are 

used in shared spaces and an individual HVAC control is not possible, personal comfort models can be 

used as the basis for (1) consensus-based solutions (Jazizadeh et al., 2014b; Jazizadeh et al., 2014a; 

Gupta and Kar, 2018), (2) personal comfort system’s control automation (Katić et al., 2020; Kim et al., 

2018b) or (3) development of thermal comfort profiles (or personas) for general use (as conceptually 

indicated by Kim et al. (2018a)). In single-occupant spaces where individual control is possible, personal 

comfort models can be used to automate, with high precision, any type of conditioning systems. Although 

different levels of control automation can benefit all individuals (Chen et al., 2019; Gupta and Kar, 2018; 

Aryal et al., 2021), personal comfort models can be especially relevant as assistive tools for people with 

lower thermal sensitivity, such as older people, or for those with more limitations to thermal management 

and adaptation, such as people with disabilities (van Hoof et al., 2017a). Furthermore, these models can 

be calibrated and adapted according to new feedback and accommodate different types of variables 

depending on each person’s specific comfort-driving characteristics. Addressing the issue of individual 

differences in an innovative way and empowered by the rapid developments in technology, this change 

of approach provides relevant comfort and energy related benefits (Wang et al., 2018) and allows more 

dynamic and flexible possibilities to absorb individual thermal comfort diversity and enhance model 

reliability (Rupp et al., 2015). 
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The development of personal comfort models has been addressed using multiple frameworks, 

including different modeling architectures, diverse input variables and distinct data collection approaches. 

Nevertheless, although advances in the field are undeniable, a thorough and critical review to map the 

similarities and discrepancies between the predictive modeling details involved is still lacking. A 

structured review and compilation of the gaps and limitations will help facilitate and guide future 

investigations in the field.  

This paper presents a systematic review on personal comfort models based on the literature 

published in the last two decades. It aims to provide a complete and unified overview of personal thermal 

comfort models, focusing specifically on the predictive modeling details. To the best of the authors’ 

knowledge, there has not been a comprehensive, systematic and critical review specifically targeted at 

the predictive modeling specifics of personal thermal comfort models that rely solely on individuals as the 

unit of model analysis. A review by Čulić et al. (2021), for instance, focused specifically on the smart 

technologies for data collection, drawing insights on sensing tools used and variables measured rather 

than modeling processes. Zhang and Tzempelikos (2021), on the other hand, focused on the final stages 

of the process, namely the application or integration of personalized models into building control system. 

Xie et al. (2020) brought forth a more comprehensive overview than the aforementioned studies but 

remained non-specific when addressing modeling details, disregarding the differences in models’ dataset 

sizes, the experimental settings used (i.e., climate chambers or field studies) and the benefits of different 

modeling performance indicators. Similarly, Lee and Karava (2020) provided a general overview of the 

topic without discussing details such as type of participants, climates, seasons and building settings 

involved, which can all affect modeling in different degrees. André et al. (2020)  targeted the details of 

personal comfort systems (PCS), i.e., the hardware effecting the comfort control, but not modeling details. 

Finally, although the pivotal work of Kim et al. (2018a) exposes 14 relevant papers on the subject, it does 

not constitute a systematic review.  

This chapter discusses research to date on personal comfort models and critically reviews: (1) the 

data collection approach and dataset size, (2) number and type of participants involved, (3) climate, 

seasons and type of building involved, (4) model input and output variables, including comfort scales 

used, (5) modeling algorithm used, (6) performance indicators used, and (7) model final application (when 

available). 

The structure of this review is organized as follows. Section 3.2 discusses the research 

methodology. Section 3.3 presents the review results, highlighting the different aspects of the current 
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efforts regarding personal comfort models’ development. Section 3.4 discusses the gaps of knowledge 

and future research directions, and Section 3.5 concludes this review. 

3.2. Research Methodology 

The selection process of academic publications in this study draws on the methodology adopted 

in manuals such as the JBI Manual for Evidence Synthesis (Lockwood et al., 2020). The commonly 

adopted literature selection processes involve several steps: (1) scope delimiting, (2) identification of 

alternative terminology and creation of a logic grid, (3) defining the literature database, search rules and 

screening criteria, (4) database search, (5) final screening. 

3.2.1. Scope delimiting  

The main purpose of the review is to investigate the current state of research into personal thermal 

comfort prediction for the establishment of thermal requirements for human occupancy in buildings. 

Therefore, this review will focus on: 

(a) buildings, excluding other built environments such as outdoor spaces or vehicles (e.g., cars 

or aircrafts); 

(b) thermal comfort in buildings, excluding other forms of comfort, such as visual, acoustic or 

ergonomic comfort;  

(c) predictive modeling of thermal comfort in buildings, excluding studies that only present 

descriptive statistical analysis, such as general distributions, dispersions, means, medians, 

variances, etc., of the data; 

(d) and personal predictive modeling of thermal comfort in buildings, excluding aggregate or 

population-based prediction approaches. 

Predictive modeling, in this paper, is termed as “the process of developing a mathematical tool or 

model that generates an accurate prediction”, as defined by Kuhn and Johnson (2013). 

Figure 3-1 illustrates the scope delimiting steps. 
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Figure 3-1 - Review’s scope delimiting steps 

3.2.2. Identification of alternative terminology and creation of a logic grid 

After delimiting the scope, a logic grid of key words was created. Table 3-1 presents the logic grid, 

highlighting the main key words, followed by the respective alternative terms. The logic grid was formatted 

considering basic search boolean operators (e.g., OR) and modifiers (e.g., asterisks for truncation, when 

different forms of the word are valid, and quotation marks, indicating when to keep phrases together). 

Table 3-1 - Logic grid of keywords 

PERSONAL THERMAL COMFORT MODEL 

personal*  OR  individual*  OR  
occupant-cent*  OR  human-cent*  
OR  customi*  OR  occupant-aware  
OR  occupant-driven 

"thermal comfort"  OR “thermal 
discomfort” OR  "thermal sensation"  
OR  "thermal preference"  OR  
"thermal behavior"  OR  "thermal 
behaviour"  OR  "thermal control"  OR  
"thermal management" OR “thermal 
acceptability” OR “thermal 
satisfaction” OR “thermal complaint” 
OR “thermal dissatisfaction” 

model*  OR  predict*  OR  data-
driven  OR  smart  OR  "machine 
learning" 

 

3.2.3. Defining the literature databases, search rules and screening criteria 

Scopus®, Web of Science® and Compendex® were the databases used in this study, as they 

cover architecture, engineering and computer science literature and allow a robust search of topics and 

fields. In terms of search rules, this study only reviewed literature published in peer-reviewed academic 

journals, as these were considered to be of higher quality than grey literature and conference papers. In 
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addition, only publications written in English from 2000 to 2021 were included to filter the most recent 

studies on personal comfort models.  

To select papers that strictly address personal comfort models, this systematic review only includes 

studies that:  

(a) focus on individual occupants as a unit of model analysis;  

(b) use real (non-synthetic) feedback from individuals;  

(c) propose models that predict either thermal preference, sensation, acceptability, discomfort 

or dis/satisfaction; and 

(d) present details on the development of the models.  

3.2.4. Database search 

The database search was conducted between January 2020 and September 2021. Using the 

keywords from the logic grid in titles, keyword lists and abstracts of publications, 1115 papers were initially 

identified in Scopus®, 1276 in Web of Science®, and 783 in Compendex®. These results, however, 

included duplicates, which were subsequently removed. Using the screening criteria mentioned in 

Section 3.2.3, all abstracts from the search results were read and selected for full-text screening if they 

met the criteria above. This process resulted in 109 papers chosen.  

3.2.5. Final screening 

Full-text screening involved a thorough analysis of the entire content of these 109 publications (i.e., 

not only title, keywords and abstract, but also the full content of the papers), filtering papers once again 

according to the screening criteria mentioned in Section 3.2.3. This process removed the papers that, 

although appearing to have the inclusion criteria in the titles, keywords and abstracts, upon a further 

analysis of the entire content, presented evidence for exclusion. This process also involved a second 

search through the selected publications’ reference lists, to identify related papers that had not appeared 

in the first database search. This resulted in 7 papers being added to the list for full-text screening.  

The final full-text screening resulted in 37 publications selected, which are described and analyzed 

in the next sections. Figure 3-2 illustrates the research procedure of this study. 
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Figure 3-2 - Research procedure of this study 

3.3. Results 

Table 3-2 summarizes the 37 studies on personal comfort models reviewed for this paper. 
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Table 3-2 - Studies on personal comfort models and their characteristics 

Authors, 
year and 
Ref. 

First author 
affiliation 
location 

Data 
collection 
location 

Dataset 
size1 (total 
in the study) 

 Dataset 
size1 (in 
individual 
models) 

No. of 
participants 

Type of 
Building 

Period of 
monitoring 

Modeling 
Algorithm2 

Train-test split 
and/or cross-
validation 

Inputs Personal3 Inputs Environmental4 Outputs Model Predictive Performance5   

Aguilera et 
al. (2019) 

Denmark Denmark 

465 
(assumed 
from graph in 
study) 

50 to 110 7 Office 
3 weeks, March - 
April 2018 

FC not mentioned 0 Ti Thermal preference 
29% of occupants’ thermal 
comfort improved with occupant-
driven HVAC control 

Aryal and 
Becerik-
Gerber 
(2020) 

USA USA 1276 85 (average) 15 Office6 
July - August 
2019 

RF, KNN, 
SVM, DT 

5-fold cross-
validation 

STemp (wrist, forehead, 
nose, left cheek, and 
right cheek) 7 

Ti, RH, ASp, mTr, 
Heater state, Fan state 5 

Thermal sensation and 
thermal satisfaction 

Average accuracy across 
participants: 
Thermal sensation: 72-90%8 
Thermal satisfaction: 69-94%  

Aryal and 
Becerik-
Gerber 
(2019) 

USA USA 543 27 (approx.) 20 Office4 
June - August 
2018 

RF, SVM, 
KNN, 
Subspace 
KNN, 
Subspace 
LDA 

5-fold cross-
validation 
 

STemp (wrist and 4 
points in face) 9 

Ti 6 

Thermal comfort, 
thermal satisfaction 
and combination of 
both 

Average accuracy across 
participants: 
Thermal sensation: 72-85%8 
Thermal satisfaction: 85%–94%  
Combination thermal sensation 
and satisfaction: 62-76% 

Aryal et al. 
(2021) 

USA USA 
not 
mentioned 

125.1 
average 
(phase 1) 
and 224.8 
average 
(phase 2) 

14 Office 
15 weeks, 
October - March 
2020 

RF, KNN 
5-fold cross-
validation 

Clo 
Ti, RH, Tr, To, Rho, 
ApT 10, Time, Heater 
state, Fan state 

Thermal sensation and 
thermal satisfaction 

Average accuracy across 
participants: 
Thermal sensation: 74-77%8 
Thermal satisfaction: 81-86%  

Auffenberg 
et al. (2018) 

UK 
Pakistan, 
Greece, 
USA, UK 

not 
mentioned 

5 to 150 576 
Office and 
residential 

from 5 to 60 days BI 

Cross-validation 
mentioned but not 
detailed, increasing 
training observations 
in steps of 1 

Seasonal adaptation To, OpT, RH 

Optimal comfort 
temperature, Thermal 
preference (desired 
change), Thermal 
sensation, Thermal 
sensitivity 

Average accuracy gains, across 
participants: 
Compared to PMV: 25.8% 
Compared to adaptive model: 
13.2%  

Daum et al. 
(2011) 

Switzerland Switzerland 6851 
not 
mentioned 

28 Office 2006 to 2009 MLR not mentioned 0 Ti Thermal sensation not mentioned 

Fay et al. 
(2017) 

UK/Ireland Ireland 477 5 to 227 78 Office 
4 to 306 days per 
user 

GPM 
5 data points for 
testing, randomly 
repeated 50 times 

0 Ti, RH, To Thermal sensation 

Average RMSE across 
participants: 0.71 
Standard deviation of RMSE 
across participants: 0.28 
Average PSE across 
participants: 34.1 

Ghahramani 
et al. 
(2015b) 

USA USA 2393 19 to 202 33 Office 

several months in 
2012, 2013 and 
2014, different 
seasons, 5 – 90 
days per person 

BI not mentioned 0 Ti Thermal sensation 

Average accuracy across 
participants: 70.14% 
Average specificity across 
participants: 76.74% 
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Guenther 
and 
Sawodny 
(2019) 

Germany/Sin
gapore 

Singapore 
not 
mentioned 

not 
mentioned 

18 Office 10 months 

GPM and 
Polynomial 
Basis 
Function 

Cross-validation 
mentioned but not 
detailed 

0 

Ti, Supply T at the 
outlet of the fan coil 
units, Fan level, To, 
GSR, Time, Day of 
week, Variation of each 
parameter (except for 
day and time) 

Thermal sensation 

Average RMSE across 
participants: 0.68 
Median RMSE across 
participants: 0.58 
Right tendency across 
participants: 74% 

Jayathissa 
et al. (2020) 

Singapore Singapore 4378 416 average 30 Office 2 weeks RF 60-40 split 
NBTemp, HR, PrefH, 
Room 

Time, Lighting, Noise, 
Ti, RH 

Thermal, visual and 
aural comfort 
preference 

Average F1-micro-score across 
participants, for thermal 
preference: 0.60-0.668 

Jazizadeh et 
al. (2014a) 

USA USA 328 61 to 114 4 Office4 3 weeks, autumn FC 

10-fold cross-
validation for 
different numbers of 
fuzzy sets between 1 
and 100, increasing 
training observations 
in steps of 10 

0 Ti Thermal sensation 

Average11 error between true 
and predicted temperatures 
associated with each thermal 
sensation, across participants: 
1.165°C  

Jazizadeh et 
al. (2014b) 

USA USA 
not 
mentioned 

not 
mentioned 

6 Office 

October - 
December 2012 
and April and 
June 2013 

FC not mentioned 0 Ti Thermal sensation 

Average thermal comfort rating 
after using personalized HVAC 
control, across participants: 8.4 
on 1-10 scale (10 being most 
comfortable) 

Jiang and 
Yao (2016) 

UK China 1199 38 to 63 20 
Climate 
chamber 

Summer, 2008 to 
2010 

SVM 
50-50 split 
5-fold cross-
validation 

MET, Clo Ti, MTr, aSp, RH Thermal sensation 
Average accuracy across 
participants: 89.82% 

Jung and 
Jazizadeh 
(2019a) 

USA 
USA and 
Switzerland 

not 
mentioned 

not 
mentioned 

6 Office 
Varies, depending 
on the dataset 

BI not mentioned 0 Ti Thermal sensation not mentioned 

Jung et al. 
(2019) 

USA USA 
not 
mentioned 

not 
mentioned 

18 
Climate 
chamber 

not mentioned RF, SVM, LR 
3 scenarios for train-
test split12 

Heat flux, STemp (wrist) Ti Thermal preference 

Median accuracy across 
participants: 
Scenario 1: 42.6-61.2%8 
Scenario 2: 44.8-72.9% 
Scenario 3: 68.7-97% 

Katić et al. 
(2020) 

The 
Netherlands/
Denmark 

The 
Netherlands 

476 238 2 
Climate 
chamber 

January - 
February and 
November - 
December 2017 

SVM, DT 
Ensembles 
(Bagged 
trees, 
Boosted 
trees and 
RUSBoosted 
trees) 

5-fold cross-
validation 

PCS Control Intensity, 
STemp (mean and 
hand) 

Time, Ti, RH, MTr Thermal sensation 

Average accuracy across 
participants11: 
Approach 113: 59.45-95.6%8 
Approach 2: 62.4-85.55% 
Average ROC AUC, across 
participants: 
Approach 1: 0.5-0.848 
Approach 2: 0.645-0.8 
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Kim et al. 
(2018b) 

USA USA 4743 
123 
(average) 

34 Office 
April - October 
2016 

DT, GPM, 
GB, SVM, 
RF, 
Regularized 
LR 

2-fold cross-
validation, repeated 
150 times 

PCS Control Intensity, 
PCS Heating/cooling 
Location, PCS 
Occupancy Status, PCS 
Occupancy Frequency, 
Ratio of PCS Control 
Duration over 
Occupancy Duration, 
PCS Control 
Frequency, Clo 

Ti, OpT, RH, Ti slope, 
HVAC control settings, 
HVAC Thermostat 
reading (TI, aSp, 
Damper position, 
Heating output, 
Discharge T), To, Sky 
Cover, Weighted Mean 
Monthly T, Precip, Day 
of week, Hour of day 

Thermal preference 
Average ROC AUC across 
participants: 0.61-0.718 

Kim (2018b) South Korea 

Not 
mentioned 
for first data 
set and USA 

2480 26 to 133 24 Office 

March - August 
2017 and July 
2012 - August 
2013  

ANN not mentioned 0 Time, Ti, To Thermal discomfort 
Average11 MSE across 
participants: 0.002975 

Konis and 
Annavaram 
(2017) 

USA USA 1490 8 to 80 45 Office 2 weeks LR not mentioned 0 Ti 
Thermal satisfaction 
separated for heating 
and for cooling 

Percentage of incorrect 
predictions <10%: met for 16 of 
16 heating models and for 19 of 
21 cooling models  

Lee and 
Ham (2020) 

USA USA 953 63 to 115 10 Office 
4 weeks, August - 
September 2019 

KNN, GB, 
LVQ, SVM, 
RF 

10-fold cross-
validation 

STemp, SCond, HR, 
MET 

Ti, RH Thermal sensation 

Average11 accuracy across 
participants: 71-77%8 
Average Cohen's Kappa across 
participants: 0.216-0.4418 

Lee et al. 
(2017) 

USA 
North 
America 

1712 - first 
phase, not 
mentioned - 
last phase 

from 10 11 Office not mentioned BI 
8 data points for 
training and 
remaining for testing 

MET, Clo Ti, MTr, ASp, RH Thermal preference 

Logistic loss of -28.5 when 
compared to -30 from another 
study (assumed from graph in 
study) 

Lee et al. 
(2019) 

USA 
not 
mentioned 

432  48  9 Office4 
8 days in October 
and November 
2017 

Variational BI  

2 to 8-fold cross-
validation, increasing 
training dataset in 
steps of 6 

MET, Clo Ti, mTr, RH, ASp Thermal preference 
ROC AUC of approx. 0.8 
(assumed from graph in paper) 

Lee et al. 
(2020) 

USA USA 
not 
mentioned 

48 (assumed 
for requested 
phase), not 
mentioned 
(for 
participatory 
phase) 

5 Office4 March - April 2019 Linear OP, BI not mentioned 0 Ti Thermal preference 
Median Expected Squared Error, 
for each participant14: approx. 
10-308 

Li et al. 
(2017) 

USA USA 

271 - first 
case study, 
362 - second 
case study 

31 to 57 3 and 7 
Office and 
residential 

June - July 2016 
and 3 weeks in 
November - 
December 2016 

RF 
10-fold cross-
validation 

Act, Clo, HR, STemp 
Ti, RH, Window State, 
To, RHo 

Thermal preference 

Average11 accuracy across 
participants: 
First case study, mechanical 
ventilation: 62.5-80.2%8 
First case study, natural 
ventilation: 53.3-78.4% 
Second case study: 54-81.8% 

Li et al. 
(2018) 

USA USA 

720 
(assumed 
according to 
vote 
frequency) 

60 (assumed 
according to 
vote 
frequency) 

12 Office4 
December 2017 - 
February 2018 

RF 
10-fold cross-
validation 

STemp max. 
measurement of face15, 
STemp gradient 
(forehead, nose, 
cheeks, ears, mouth, 
and neck) 

0 
Thermal preference, 
for cooling, heating 
and both phases 

Average accuracy across 
participants: 
Cooling phase: 91.6% 
Heating phase: 92.7% 
Both phases: 85.0% 
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Li et al. 
(2020) 

USA USA 1800 180 10 Office4 
December 2017 - 
February 2018 

LR 
10-fold cross-
validation 

STemp (cheeks) 0 Thermal comfort 
Average11 accuracy across 
participants: 67.4% 

Liu et al. 
(2019) 

USA USA 3848 
275 
(average) 

14 
Anywhere, 
indoor and 
outdoor 

2 to 4 weeks, 
March to May 
2017 and 
November to 
December 2016 

LDA, LR, 
ANN, SVM, 
KNN, NB, 
CART, J48, 
DT, RBC, 
C5.0, 
Bagged DT, 
RF, RF by 
Randomizati
on, GB 

80-20 split, 
5-fold cross-
validation, repeated 
20 times 

STemp (wrist and 
ankle), NBTemp, HR, 
Wrist Acc 16 

To, RH, ASp, SR Thermal preference 

Average11 accuracy across 
participants: 64.7-72.9%8 
Cohen’s Kappa across 
participants: 0.16-0.278 
ROC AUC across participants: 
0.6-0.768 

Liu et al. 
(2007) 

China China 
not 
mentioned 

not 
mentioned 

113 Office4 
June to October 
2004 

ANN 
20 datapoints for 
training and 4 for 
testing 

0 Ti, RH, ASp, MTr Thermal sensation 

Veracity17 of approx. 80% after 
replacing the first 20 datapoints 
(paper only shows 1 participant’s 
results) 

Lu et al. 
(2019) 

USA China 775 362 to 413 2 Office4 
6 days, March 
2018 

RF, SVM 
80-20 split, 
5-fold cross-
validation 

Clo SurfTemp, STemp 
(cheek), STemp 
difference between 
consecutive 
measurements 

Ti, RH Thermal sensation 

Average11 precision across 
participants: 37.9-98.75%8 
Average recall across 
participants: 42.75-97.5%8 
Average F1-score across 
participants: 38.5-98.05%8 

Natarajan 
and 
Laftchiev 
(2019) 

USA USA 1017 97 to 400 5 Office4 
Average 14 days 
per user 

LinR with 
Active and 
Transfer 
Learning 

50-50 split, 
5-fold cross-
validation 

HR, STemp, CBTemp, 
PrefTemp 18 

Ti, RH, ASp 10 Thermal sensation 
Average RMSE across 
participants: 0.818 

Pazhoohesh 
and Zhang 
(2018) 

UK / China 
not 
mentioned 

not 
mentioned 

not 
mentioned 

9 Office 
November 2016 - 
January 2017 

FC not mentioned 0 Ti Thermal preference 

Average margin of error across 
participants: 12.95% 
Percentage of occupants rating 
“Just Right” when model is used 
for HVAC control: 73% 

Shan et al. 
(2020) 

China China 450 150 3 Office4 June - August ANN 
10-fold cross-
validation, repeated 
10 times 

STemp (wrist, neck, of 
the point 2 mm above 
the wrist) 

0 Thermal sensation 

Average accuracy across 
participants: 89.2% 
Average MAE across 
participants: 0.16 
Average MSE across 
participants: 0.06 

Shan et al. 
(2018) 

Singapore/A
ustralia 

Singapore 
not 
mentioned 

not 
mentioned 

22 Office4 not mentioned LDA not mentioned EEG 19 0 (Thermal) Mental state 

Average accuracy (classification 
rate) across participants: 
In Resting state: 98% 
In Task state: 99% 

Sim et al. 
(2016) 

South Korea South Korea 840 
not 
mentioned 

8 
Climate 
chamber 

not mentioned 
Stepwise 
LinR 

not mentioned 

STemp (fingertip, radial 
artery, ulnar artery, 
upper wrist 
temperature) 20 

0 Thermal sensation 
Average RMSE across 
participants: 0.95-1.248 

Xu et al. 
(2018) 

China China 
not 
mentioned 

not 
mentioned 

4 Office not mentioned MLR not mentioned 0 Ti Thermal sensation 

Consumed power of the VAV 
system with proposed approach: 
23% less than the traditional 
fixed set point control strategy. 
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Zhao et al. 
(2014b) 

China China 2679 
300 
(average) 

9 Office 
November 2009 - 
January 2010 

LLS 67-33 split 0 Ti, RH, MTr Thermal sensation 

Average11 across participants: 
Regression MSE: 0.4782 
Prediction MSE: 0.53373 
Regression Bias: -0.00188 
Prediction Bias: 0.03382 

Zhao et al. 
(2014a) 

China China 321 
not 
mentioned 

6 and 11 
Climate 
chamber 

June - August 
2011 and same 
period in 2012 

LLS 
leave-one-out 
validation method 

0 Ti, RH Thermal complaint 

Average11 FNR across 
participants: 
For Hot complaint: 0.0783 
For Cold complaint: 0.055 
Average FPR across 
participants: 
For Hot complaint: 0.5245 
For Cold complaint: 0.365 

 

 
1 “Dataset size” refers to the number of datapoints used in the studies, i.e., the total number of observations used for model training, validation and testing. 
2 FC = Fuzzy Classification, RF = Random Forest, KNN = K-Nearest Neighbors, SVM = Support Vector Machine, DT = Decision Tree, LDA = Linear Discriminant Analysis, BI = Bayesian Inference/Classification, MLR = Multinomial Logistic Regression, 

GPM = Gaussian Process Model, LR = Logistic Regression, ANN = Artificial Neural Network, GB = Gradient Boosting, LVQ = Learning vector quantization, OP = Ordered Probit, LinR = Linear Regression, NB = Naive Bayes, RBC = Rule-Based 
Classifier, CART = Classification and Regression Trees, LLS = Least-squares linear estimation, J48 = J48 Decision Tree. 

3 STemp = Skin Temperature, Clo = Clothing, NBTemp = Near Body Temperature, MET = Metabolic Rate, HR = Heart Rate, SCond = Skin conductance, Act = Activity level, SurfTemp = Surface Temperature, Acc = Accelerometry, CBTemp = Core Body 
Temperature, PrefTemp = Preferred Temperature, EEG = Electroencephalogram, PrefH = Preference History 

4 Ti = Indoor Air Temperature, RH = Relative Humidity, aSp = Air Speed, mTr = Mean Radiant Temperature, Tr = Radiant Temperature, RHo = Outdoor Relative Humidity, To = Outdoor Air Temperature, OpT = Operative Temperature, ApT = Apparent 
Temperature, T = Temperature, GSR = Global Solar Radiation, SR = Solar Radiation, HVAC = Heating, Ventilation and Air Conditioning, PCS = Personal Comfort System, Precip = Precipitation 

5 Definitions of Accuracy, Precision, Recall , Specificity, FNR, FPR, F1-score, ROC AUC can be found in (Powers, 2007); Right tendency = average percentage of votes whose signs are predicted accurately, defined in (Guenther and Sawodny, 2019); PSE 
= percentage signed error, defined in (Fay et al., 2017) ; RMSE = root mean squared error, MSE = mean squared error, MAE = mean absolute error, with further definitions found in (Botchkarev, 2019); Cohen’s Kappa = inter-rater agreement, further 
defined in (Cohen, 1960; Ben-David, 2008) ; Logistic loss = loss function for logistic regression, defined in (Lee et al., 2017). 

6 Treated as an experiment. 
7 Instant measurement at the time of vote, min., max., average, std., overall change between first and last values in the time window, and average of the derivative of the measurements. 
8 Ranges indicate max. and min. across different input set combinations, phases and/or modeling techniques compared in the studies. 
9 Min., max., average, std. and median of measurements in the 5-min. window and of first derivative of the data stream; coef. obtained by fitting first degree and second degree polynomials to the measurements in the 5-min window; most recent 

measurement, average of last 10s, and average of first derivative for the last 10s. 
10 Average and changes in the last 1, 5, 10 and 30min. prior to a vote for all features. 
11 Average calculated by this review paper using available data from papers, to allow comparison between studies. 
12 Scenario1 = training on first half of the experiment and testing on second half of the experiment; scenario 2 = training on the second half of the experiment and testing on the first half of the experiment; scenario 3 = cross validation on all the data points 

combined. 
13 Approach 1 = thermal preference in scale heating demand, neutral, cooling demand; Approach 2 = thermal preference in scale heating demand, slightly heating demand and no change 
14 Average cannot be calculated from graph supplied by the paper. 
15 Measurement and its gradient, max., min. and average. 
16 Average and gradient for 5min and 60min prior to a vote. 
17 Term “veracity” not defined in the study. 
18 Average, variance, median, min., max., simple moving average between 2 to 9 samples immediately prior to a vote. 
19 42 frequency ranges (within 3–45 Hz range) for each of the 14 channels. 
20 Average, time differential, average power of a specific frequency band, temperature gradient between positions. 
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3.3.1. Data collection approach and dataset size 

From the papers that reported a total dataset size for all models developed (i.e., the sum of all 

individual models’ dataset sizes), nearly half of them used up to 1000 data points. The smallest dataset 

reported was 321 data points presented in the study by Zhao et al. (2014a). The other half of the studies 

had total datasets ranging from 1017 (Natarajan and Laftchiev, 2019) to nearly 7000 points (Daum et al., 

2011). These total set sizes, however, were divided, in each study, into different numbers of individual 

datasets, according to the number of participants involved in each analysis. The smallest individual 

datasets ranged from 5 points per model (Auffenberg et al., 2018; Fay et al., 2017) to slightly more than 

400 points (Jayathissa et al., 2020; Lu et al., 2019; Natarajan and Laftchiev, 2019). Such a wide range 

of dataset sizes is, however, expected as these studies used different modeling methods (explained in 

Section 3.3.5). 

The data collection approach can highly influence the number of data points available for the 

individual personal comfort models. Studies that used either climate chambers or office rooms treated as 

structured experiments, and of which sessions lasted longer hours over multiple weeks, seemed to have 

higher survey response frequencies, and, consequently, higher individual datasets for each participant 

involved. Lu et al. (2019), for instance, collected data through 14 2-hour sessions, where participants 

answered a thermal comfort survey every 5-minutes. This resulted in relatively large datasets for the 

individual models (i.e., 362 to 413 points) although the study only involved two participants. Studies that 

used freely operated office rooms (i.e., not treated as structured experiments) reached similar individual 

dataset sizes by prompting thermal comfort votes from participants with frequent reminders. This was the 

case of Zhao et al. (2014b), who required participants to answer the thermal comfort surveys every hour, 

by sending online reminders to users’ computers while they were working in the office environment. 

Similarly, Jayathissa et al. (2020) reached on average 416 data points per participant through the use of 

a smartwatch, which not only served as the main data collection tool and user interface, but also prompted 

the occupants with a small vibration requesting feedback from them at different timed points in the day. 

Similar to the influence of the data collection approaches on the final dataset size, the impact of 

data pre-processing in the final data size is highlighted in some of the papers analyzed. Missing, 

anomalous or unlikely data points, as well as highly unbalanced datasets, need to either be discarded, 

decreasing the final data point count, or dealt with by oversampling in order to avoid low dataset sizes. 

K-Nearest Neighbors, for instance, was used by Liu et al. (2019) to fill in missing data and avoid 

discarding relevant data points. Kim et al. (2018b) also used oversampling as a pre-processing tool to 
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deal with unbalanced datasets (i.e., where one of the classification categories surpasses the other in 

number). Unlike undersampling, which discards data points until all classification categories match the 

minority category, oversampling avoids losing data points with the drawback of possible model overfitting. 

Predicting thermal comfort without needing a large number of survey answers per user is, 

nevertheless, still possible. Natarajan and Laftchiev (2019), for example, developed an Active Transfer 

Learning Framework to reach larger dataset sizes, at the same time avoiding disturbing participants with 

long monitoring periods. The framework uses knowledge from prior users to add to new users’ datasets, 

reducing considerably the necessary size of individual labelled datasets. 

3.3.2. Number and type of participants involved 

The selected reviewed studies involved 2 to 576 participants to develop personal comfort models. 

It is noticeable that more than half of the studies had up to 10 participants, as seen in the histogram 

presented in Figure 3-3. This can be partially explained by the common limitations of thermal comfort 

data collection processes, such as long monitoring periods or relatively intrusive data collection tools 

(e.g., repetitive survey and feedback required or continuous sensing), which might have affected subjects’ 

willingness to participate. 

The intrusiveness of thermal comfort prediction is, in fact, a recurrent topic throughout the studies 

analyzed, especially the ones involving human physiological parameters’ sensing. Aryal and Becerik-

Gerber (2019), for instance, emphasized that not only can wearing devices discourage participant 

engagement because of the intrusiveness and privacy concerns, but it can also cost considerably more 

than using environmental sensors alone. Hence, in their study, they evaluated the accuracy trade-offs 

between using a wrist-worn wearable device, a thermal camera, and an environmental sensor to predict 

the individual thermal comfort of 20 participants. Likewise, Lee et al. (2020) recognized the 

impracticability of long-term collection of occupant feedback through participatory interfaces. In their 

study, both voluntary and requested feedback data were explicitly incorporated as types of behavior into 

the thermal preference learning models, to analyze differences in the model accuracy for 5 participants. 

Similarly, Li et al. (2018), Shan et al. (2020) and Lu et al. (2019) tested different options for collecting skin 

temperature as inputs for personal comfort models using less intrusive and more accurate approaches. 

Their number of participants in each of those studies, however, was low (12, 3 and 2, respectively), and 

could have benefitted from further explorations, especially considering the diversity of subjects involved. 

Nevertheless, since the main objective of these studies was to analyze subjects at the individual level, 

having lower counts of participants is not necessarily negative. 
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From the 2 studies with more than 100 participants, Auffenberg et al. (2018) were able to reach 

the highest number of participants − 576 people – by using the ASHRAE RP-884 dataset (de Dear et al., 

1997), plus their own experimental period. The dataset was then divided into subsets for each participant 

who answered at least 5 thermal comfort votes. 

 

Figure 3-3 - Histogram of total number of participants in the studies selected 

Although not all studies reported further details about the participants, it is still clear from the 

analysis that such studies involved younger adults in their twenties considered to be healthy and 

maintained an overall balance of female and male participants (Table 3-3). This is in line with the 

traditional approach of thermal comfort studies to select younger healthy adults (Fanger, 1970), possibly 

to avoid individual influences of age, health conditions, intellectual or physical impairment or medication 

use in thermal sensation and sensitivity (van Hoof, 2008; Mora and Meteyer, 2018). Participants who 

were office workers and students were also common in the studies analyzed, as seen in Table 3-3. 

Weight, height and BMI (Body Mass Index) were reported by few of the studies selected and deemed 

more relevant when considering personal and physiological parameters, such as skin temperature or 

heart rate, as inputs for the personal comfort models (Katić et al., 2020; Liu et al., 2019; Shan et al., 

2020). 
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Table 3-3 - Participants details in each study analyzed 

Ref. 
No. of 
participant
s 

M (male) / 
F (female) 

Age group Health Body Composition Other characteristics 

Aguilera et 
al. (2019) 

7 * * * * office workers 

(Aryal and 
Becerik-
Gerber, 
2020) 

15 11 M and 4 F 20s healthy H 168.9 ± 10.1cm, W 65.4 ± 7.3kg * 

(Aryal and 
Becerik-
Gerber, 
2019) 

20 12 M and 8 F 20s – 30s healthy H 171.8 ± 10.9cm, W 73.8 ± 16.1kg * 

(Aryal et al., 
2021) 

14 4 M and 10 F 20’ – 50s * * 
office workers, 
researchers, students 

(Auffenberg 
et al., 2018) 

576 * * * * 
office workers, students 
(partially) 

(Daum et al., 
2011) 

28 * * * * office workers, researchers 

(Fay et al., 
2017) 

78 * 20s – 40s * * 

office workers, 
researchers, students, 
diverse international 
background 

(Ghahramani 
et al., 2015b) 

33 * * * * 
office workers, 
researchers, students 

(Guenther 
and 
Sawodny, 
2019) 

18 * * * * * 

(Jayathissa 
et al., 2020) 

30 15 M and 15 F * * * office workers 

(Jazizadeh 
et al., 2014a) 

4 * * * * office workers 

(Jazizadeh 
et al., 2014b) 

6 * * * * office workers 

(Jiang and 
Yao, 2016) 

20 * 20s healthy * * 

(Jung and 
Jazizadeh, 
2019a) 

6 * * * * office workers, researchers 

(Jung et al., 
2019) 

18 12 M and 6 F * healthy * * 

(Katić et al., 
2020) 

2 2 F 20s healthy 
W 57 and 62kg, BMI 26.7 and 22.9 kg/m2, 
Fat 34.9 and 27.8%, BMR 38.2 and 38.6 
W/m2 

* 

(Kim et al., 
2018b) 

34 * * * * office workers 

(Kim, 2018b) 24 * * * * office workers 

(Konis and 
Annavaram, 
2017) 

45 * * * * office workers, researchers 

(Lee and 
Ham, 2020) 

10 6 M and 4 F 20s – 30s * H 163 to 195cm, W 51 to 100kg 
office workers, white 
people and Asians 

(Lee et al., 
2017) 

11 * * * * office workers 

(Lee et al., 
2019) 

9 * 20s – 40s * * * 

(Lee et al., 
2020) 

5 4 M and 1 F 20s – 30s * * students 

(Li et al., 
2017) 

3 and 7 ** * * * * office workers 

(Li et al., 
2018) 

12 7 M and 5 F 20s healthy * students 

(Li et al., 
2020) 

10 * 20s healthy * students 

(Liu et al., 
2019) 

14 8 M and 6 F 20s – 40s healthy 
H 163 to 185cm, W 52 to 86kg, BMI 17.4 to 
28.7 kg/m2 

office workers, students 

(Liu et al., 
2007) 

113 65 M and 48 F 20s (average) healthy H 165 cm (average), W 55 kg (average) * 
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(Lu et al., 
2019) 

2 1 M and 1 F 20s healthy * * 

(Natarajan 
and 
Laftchiev, 
2019) 

5 3 M and 2 F 20s – 30s * * * 

(Pazhoohes
h and 
Zhang, 2018) 

9 * * * * researchers 

(Shan et al., 
2020) 

3 3 M 20s healthy 
H 171 to 174cm, W 62 to 78kg, BMI 21 to 
26.7 kg/m2 

* 

(Shan et al., 
2018) 

22 14 M and 8 F * healthy * students 

(Sim et al., 
2016) 

8 6 M and 2 F 20’ healthy BMI 22.45 ± 2.63kg/m2 * 

(Xu et al., 
2018) 

4 * * * * * 

(Zhao et al., 
2014b) 

9 * * * * researchers, students 

(Zhao et al., 
2014a) 

6 and 11 ** 
2 M and 4 F, 7 
M and 4 F  

20’ – 30s * * office workers, students 

* Not reported; ** Study had 2 phases. 

 

3.3.3. Climate, seasons and type of building involved 

As presented in Table 3-2, nearly all reviewed studies used office environments to collect data for 

the personal comfort models developed. When climate chambers were used or office spaces were treated 

as an experimental setting, the activities simulated were mainly sedentary (e.g., sitting down, working on 

computer, reading), which means activities undertaken in residential settings (e.g., eating, cooking, 

walking) were not explored. This can be limiting when considering the diversity of thermal conditions in 

residential environments in comparison with more controlled office environments. Likewise, while in 

offices the activity and clothing levels are normally similar throughout the year, in home environments 

they often change, providing  more diverse thermal conditions (Daum et al., 2011). 

Nevertheless, considering the application aimed for in these studies, focusing on office 

environments is an expected trend. This is because these studies mainly aimed to evaluate the 

application of personalized thermal comfort models as optimization and automation strategies for HVAC 

systems in highly controlled environments, which are more commonly found in office buildings. These 

studies will be discussed further in Section 3.3.7. 

The USA and China are the main locations reported by the selected studies, followed by Singapore 

and a small number of European countries, as seen in Figure 3-4. The climate zones analyzed span 

from warm temperate (Cfa, Cfb, Csb) (Jung and Jazizadeh, 2019a; Aryal and Becerik-Gerber, 2019; Fay 

et al., 2017; Jung et al., 2019; Jazizadeh et al., 2014a; Aryal et al., 2021; Katić et al., 2020; Jiang and 

Yao, 2016; Xu et al., 2018; Katić et al., 2018; Liu et al., 2007; Konis and Annavaram, 2017; Ghahramani 
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et al., 2015b; Kim, 2018b; Kim et al., 2018b; Liu et al., 2019; Daum et al., 2011; Lee and Ham, 2020; 

Aguilera et al., 2019; Aryal and Becerik-Gerber, 2020; Lu et al., 2019; Shan et al., 2020; Natarajan and 

Laftchiev, 2019; Jazizadeh et al., 2014b) , to equatorial (Af) (Jayathissa et al., 2020; Shan et al., 2018; 

Guenther and Sawodny, 2019), to colder climates (Dfb and Dwa) (Zhao et al., 2014b; Sim et al., 2016; Li 

et al., 2020; Li et al., 2018; Li et al., 2017; Zhao et al., 2014a), following the Köppen-Geiger Climate 

Classification. 

 

Figure 3-4 - Number of studies per data collection country. 

In general terms, the studies screened have diverse monitoring periods, shown in Table 3-2. 

Summer and winter periods are understandably more common than autumn and spring throughout all 

studies, as capturing extremes in environmental conditions can help create a more diverse dataset upon 

which to develop thermal comfort models. There is a tendency, however, to analyze a single season in 

the individual studies (i.e., either summer or winter months), which can be limiting when attempting to 

capture the entire range of thermal sensations and preferences. 

3.3.4. Model input and output variables 

The range of the number of input variables to develop personal comfort models varied widely 

across the studies analyzed. While several studies used one to fifteen variables as features to predict 

thermal comfort, some studies used more than 100 features (Aryal and Becerik-Gerber, 2019; Shan et 

al., 2018; Natarajan and Laftchiev, 2019). In the latter, apart from the raw measurements collected for 
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each input variable, the researchers extracted other properties from the measurements, such as mean, 

variance, minimum, maximum or standard deviation, to create additional input variables that could 

represent intrinsic properties of the data and increase the predictive performance of the models. This 

process is called feature engineering. Aryal and Becerik-Gerber (2019), for instance, used not only direct 

values of indoor air temperature and skin temperature measured on the wrist and 4 points on the face, 

but also the minimum, maximum, average, standard deviation and median of the measurements in the 

5-min window; the minimum, maximum, average, standard deviation and median of the first derivative of 

the data stream; coefficients obtained by fitting first degree and second degree polynomials to the 

measurements in the 5-minute window; and the most recent measurement value, average value of the 

last 10 seconds, and average of the first derivative for the last 10 seconds. By extracting 108 features as 

input variables for the personal models, the researchers expected to capture overall values, trends, and 

patterns of changes in the data streams over time.  

Likewise, Shan et al. (2018) used a high number of input features available. These, however, were 

extracted from electroencephalogram (EEG) measurements, where 42 frequency ranges for each of the 

14 channels available from the measuring equipment resulted in the total number of 588 features 

available. It is important to highlight that, while the use of multiple input parameters can enhance the 

predictive power of models, it can also result in higher complexity and computational load when it comes 

to feature selection and model scalability (Storcheus et al., 2015). In the case of EEG-based studies, it is 

also noteworthy that although this type of data can provide a wide range of input variables to explore, it 

is knowingly more susceptible to high levels of noise resulting from muscular activity (Yilmaz et al., 2014; 

Muthukumaraswamy, 2013), which can greatly impact model’s reliability especially in field studies. 

The input variables used can be divided into environmental and personal variables, as shown in 

Table 3-2. Environmental variables include traditionally used parameters such as indoor air temperature 

and relative humidity, mean radiant temperature, outdoor air temperature and relative humidity and air 

speed. As presented in the Euler diagram in Figure 3-5, 32 out of the 37 studies selected used at least 

one of these variables as inputs. Less frequently used environmental variables were solar radiation, time 

of day, day of the week, and window, fan, and the HVAC system operational states. The control setting 

of personal comfort systems (PCM), such as heated or cooled chairs, was also used in two studies as 

input parameters for individual thermal comfort models (Katić et al., 2020; Kim et al., 2018b). Both studies 

highlighted the importance of occupant behavioral attitudes and interactions with thermal control devices 

as a non-intrusive and practical method to understand individuals’ thermal needs and collect continuous 

streams of data. 
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Personal variables, on the other hand, include people’s intrinsic characteristics, such as skin and 

body temperature, heart rate, clothing level, activity level and metabolic rate, or previous temperature 

preferences or preference histories. From the studies selected, more than half used at least one personal 

feature, although most of the time this was combined with environmental inputs, as presented in Figure 

3-5. Among these features, skin temperature, captured by wearable sensors or thermal cameras, 

remained the main personal variable utilized (Aryal and Becerik-Gerber, 2019; Sim et al., 2016; Li et al., 

2020; Jung et al., 2019; Katić et al., 2020; Li et al., 2018; Liu et al., 2019; Li et al., 2017; Lee and Ham, 

2020; Aryal and Becerik-Gerber, 2020; Lu et al., 2019; Shan et al., 2020; Natarajan and Laftchiev, 2019). 

 

Figure 3-5 - Euler diagram of the number of studies that used personal and/or environmental inputs. 

The models’ predictive performance appeared to increase when a combination of both 

environmental and physiological variables was used as inputs. Aryal and Becerik-Gerber (2019), for 

instance, reported that using data from environmental sensors for predicting thermal comfort resulted in 

a higher accuracy compared to using just physiological data. However, combining data from both 

environmental and physiological sensors led to a slightly higher accuracy (3% - 4%) than using 

environmental sensors only. A further study from the same authors (Aryal and Becerik-Gerber, 2020) 

confirmed similar results. Jung et al. (2019) indicated a much greater increase in performance when 

including physiological features as input parameters to personal thermal preference models. The study’s 

best performing modeling algorithm presented a median accuracy of 71% when using air temperature as 

a sole feature, 93% with the addition of skin temperature and 97% with the addition of heat flux. Likewise, 

Li et al. (2017) reported that the combination of both environment and human data (i.e., activity level, 

clothing, heart rate, skin temperature) achieved approximately 80% accuracy, improving the classification 
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accuracy by 24% and 39% when compared to using only environmental features and only physiological 

factors, respectively. Similarly, Katić et al. (2020) evaluated different combinations of occupants’ PCS 

heating behaviors, their mean and hand skin temperatures, and environmental data, producing the lowest 

accuracy when using just environmental data. 

Although the impact of the input variables on the predictive performance of the models is a 

significant criterion when selecting the best options among possible variables, the choice of model 

parameters can also be dictated by the cost of data collection (Kim et al., 2018b). As mentioned in 

Section 3.3.2, the cost and intrusiveness of the data collection process can affect not only the 

participants’ willingness to participate, but also the type of data available, their quantity and quality. 

In terms of the output variables, thermal sensation and preference were the main targets chosen 

for prediction in the studies selected. The sensation or preference scales used, however, differed greatly 

across studies, as seen in Table 3-4. They differed from binary to 100-point scales, from discrete to 

continuous scales and across different terms and categories of sensitivity used. In addition, many scales 

were converted to lower numbers of points, shown in Table 3-4, depending on the study’s approach, 

modeling technique and possible application. It should be noted that, in order to avoid incorrect 

interpretations of the studies and scales used, the outputs in Table 3-4 are presented as they were in the 

studies (e.g., “thermal comfort”, “thermal satisfaction”, “thermal preference”), although some can be 

considered interchangeable. 

Table 3-4 - Thermal scales used in the studies selected 

Ref. Output Scale 

(Shan et al., 
2018) 

Mental state Cool, Neutral, Warm 

(Auffenberg 
et al., 2018) 

Thermal preference (“desired change”) 
 
Thermal sensation 

I want it to be much colder, to be colder, be a bit colder, stay as it is, be a bit warmer, be 
warmer, be much warmer 
Cold, Cool, Slightly Cool, Neutral, Slightly Warm, Warm, Hot 

(Zhao et al., 
2014a) 

Thermal complaint Complaint or comfortable 

(Li et al., 
2020) 

Thermal comfort Uncomfortably cold, Comfortable, Uncomfortably hot 

(Aryal and 
Becerik-
Gerber, 
2019) 

Thermal comfort 
Thermal satisfaction 
Combination of both 
 

Cold, Comfortable, Hot 
Satisfied, Dissatisfied 
Cold and satisfied, Cold and dissatisfied, Comfortable and satisfied, Comfortable and 
dissatisfied, Hot and satisfied, Hot and dissatisfied 

(Kim, 2018b) Thermal discomfort Cold to hot on a -6 to 6 scale (Normalized from a -100 to 100 scale) 

(Lee et al., 
2020) 

Thermal preference 

I prefer Warmer, I am Satisfied, I prefer Cooler 

(Aguilera et 
al., 2019) 

Much Warmer, Warmer, Slightly Warmer, No Change, Slightly Colder, Colder, Much 
Colder, as a Thermal Profile (from a 18-point scale converted in a 7-point scale) 

(Jung et al., 
2019) 

Uncomfortably cool, No change, Uncomfortably warm (11-point scale converted to 3-point 
scale) 

(Lee et al., 
2017) 

Want warmer, No change, Want cooler  

(Li et al., 
2017) 

Warmer, Neutral, Cooler 
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(Pazhoohesh 
and Zhang, 
2018) 

Warmer, Neutral, Cooler (from a scale from -50 to 50, 10 in 10) 

(Kim et al., 
2018b) 

Warmer, No Change, Cooler 

(Li et al., 
2018) 

Warmer, No Change, Cooler 

(Liu et al., 
2019) 

Warmer, No Change, Cooler 

(Lee et al., 
2019) 

Warmer, No Change, Cooler, as Thermal Profile 

(Jayathissa 
et al., 2020) 

Prefer warmer, Comfy, Prefer Cooler 

(Konis and 
Annavaram, 
2017) 

Thermal satisfaction 
Satisfied/Dissatisfied or Bothersome/Non-bothersome (from a 5-point scale converted to 
binary) 

(Shan et al., 
2020) 

Thermal sensation 
 

Cold, Cool, Neutral, Warm, Hot (from a 7-point scale converted to a 5-point scale) 

(Zhao et al., 
2014b) 

Cold, Cool, Neutral, Warm, Hot (on a continuous scale from -3 to 3) 

(Jiang and 
Yao, 2016) 

Cold, Cool, Slightly Cool, Neutral, Slightly Warm, Warm, Hot 

(Fay et al., 
2017) 

Cold, Cool, Slightly Cool, Neutral, Slightly Warm, Warm, Hot (on a continuous scale) 

(Liu et al., 
2007) 

Cool, Comfort, warm (from a 7-point scale converted to a 3-point-scale) 

(Lee and 
Ham, 2020) 

Cool, Neutral, Warm (from a 7-point scale converted to a 3-point scale) 

(Katić et al., 
2020) 

Heating demand, neutral, cooling demand (from a 7-point thermal sensation scale) 

(Guenther 
and 
Sawodny, 
2019) 

Much too cool, Too Cool, Comfortably Cool, Comfortable, Comfortably Warm, Too Warm, 
Much too warm 

(Daum et al., 
2011) 

Too Cold, Comfortable, Too Hot, as a Thermal Profile (from a 7-point scale converted in 3-
point scale) 

(Xu et al., 
2018) 

Uncomfortably Cold, Comfortable, Uncomfortably Hot (from a 7-point scale converted to a 
3-point-scale) 

(Ghahramani 
et al., 2015b) 

Uncomfortably Cool, Comfortable, Uncomfortably Warm (from a 11-point scale converted 
in a 3-point scale) 

(Jung and 
Jazizadeh, 
2019a) 

Uncomfortably Cool, Comfortable, Uncomfortably Warm, as a Thermal Profile (from a 100-
point scale converted in a 3-point scale) 

(Natarajan 
and 
Laftchiev, 
2019) 

Very Cold, Cold, Chilly, Comfortable, Warm, Hot, Very Hot 

(Lu et al., 
2019) 

Very Cold, Cold, Cool, Neutral, Warm, Hot, Very Hot 

(Sim et al., 
2016) 

Very Cold, Cold, Cool, Slightly Cool, Neutral, Slightly Warm, Warm, Hot, Very Hot 

(Jazizadeh et 
al., 2014b) 

Very Cold, Cold, Neutral, Warm, Very Warm, as a Thermal Profile 

(Jazizadeh et 
al., 2014a) 

Very Cold, Cold, Neutral, Warm, Very Warm, as a Thermal Profile (from a 7-point scale 
converted into a 5-point scale) 

(Aryal and 
Becerik-
Gerber, 
2020) 

Thermal sensation 
Thermal satisfaction 

Cold, Comfortable, Hot 
Satisfied, Dissatisfied 

(Aryal et al., 
2021) 

Cold, Comfortable, Hot 
Satisfied, Dissatisfied 

 

Like the input variables, the choice of output variables and scales is subject to the cost of 

continuous survey feedback for both participants and researchers. According to studies by Katić et al. 

(2020) and Kim et al. (2018b), a practical solution to collect this sort of data would be the use of PCS 

control behavior to act as potential replacements for participants’ feedback, standing as the “ground truth” 
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of personal comfort models. According to the aforementioned authors, PCS could learn occupants' 

thermal preferences based on their control behavior and automatically activate heating or cooling 

according to the patterns recognized. Hence, user behavior could serve as a proxy for thermal comfort 

feedback so that long monitoring periods or experiments would not be necessary, data could be collected 

continuously in a practical way, and nuances in scale interpretations could potentially be avoided. 

3.3.5. Modeling algorithm used 

Overall, there seems to be a predominance of probabilistic modeling techniques among the studies 

selected. Unlike deterministic models, which give a single exact outcome for a prediction, probabilistic 

models provide a solution as a probability distribution to account for randomness and quantify uncertainty 

in the events analyzed (Ghahramani, 2015; Murphy, 2012). Probabilistic methods are especially relevant 

when analyzing systems that are inherently stochastic and/or highly uncertain due to insufficient data 

(Goodfellow et al., 2016). This, therefore, is in line with the nature of thermal comfort modeling in general, 

as thermal comfort perception and variables (e.g., people’s behavior) are naturally uncertain, and data, 

especially when developing comfort models at the individual level, can be relatively scarce. 

As seen in Table 3-5, it is possible to identify a frequent use of (1) Bayesian classification and 

inference (Ghahramani et al., 2015b; Jung and Jazizadeh, 2019a; Auffenberg et al., 2018; Lee et al., 

2017; Lee et al., 2019), (2) Fuzzy Classification (using the Wang-Wendel model to create Thermal 

Profiles) (Jazizadeh et al., 2014a; Pazhoohesh and Zhang, 2018; Aguilera et al., 2019; Jazizadeh et al., 

2014b), and (3) common Machine Learning techniques, including Classification Trees (Katić et al., 2020; 

Kim et al., 2018b; Liu et al., 2019; Aryal and Becerik-Gerber, 2020), Gaussian Process Classification 

(Guenther and Sawodny, 2019; Fay et al., 2017; Katić et al., 2020; Kim et al., 2018b), Gradient Boosting 

Method (Kim et al., 2018b; Liu et al., 2019; Lee and Ham, 2020), Support Vector Machine (Aryal and 

Becerik-Gerber, 2019; Jung et al., 2019; Katić et al., 2020; Jiang and Yao, 2016; Kim et al., 2018b; Liu 

et al., 2019; Lee and Ham, 2020; Aryal and Becerik-Gerber, 2020; Lu et al., 2019), Random Forest (Aryal 

and Becerik-Gerber, 2019; Jung et al., 2019; Jayathissa et al., 2020; Aryal et al., 2021; Li et al., 2018; 

Kim et al., 2018b; Liu et al., 2019; Li et al., 2017; Lee and Ham, 2020; Aryal and Becerik-Gerber, 2020; 

Lu et al., 2019), K-Nearest Neighbors (Aryal and Becerik-Gerber, 2019; Aryal et al., 2021; Kim et al., 

2018b; Lee and Ham, 2020; Aryal and Becerik-Gerber, 2020) and Artificial Neural Networks (Liu et al., 

2007; Kim, 2018b; Liu et al., 2019; Shan et al., 2020). In fact, many of the studies tested and compared 

combinations of these techniques. Liu et al. (2019), for instance, applied 14 commonly used machine 

learning classification algorithms, divided into 4 groups: linear methods, non-linear methods, trees and 
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rules, and ensembles of trees. According to the authors, the selections of these algorithms balanced the 

prediction biases and avoided the over or underestimations that could result from specific prediction 

systems. From the four algorithm categories used, the ensembles of Trees (e.g., Gradient Boosting, C5.0 

and Random Forest) presented the best performance for the personal comfort models developed. 

Table 3-5 - Modeling technique of papers selected 

Ref. FC RF KNN SVM DT LDA BI MLR GPM LR ANN GB LVQ OP LinR NB RBC CART LLS J48 C5.0 

(Aguilera et 
al., 2019) 

X                     

(Aryal and 
Becerik-
Gerber, 2020) 

 X X X X                 

(Aryal and 
Becerik-
Gerber, 2019) 

 X X X  X                

(Aryal et al., 
2021) 

 X X                   

(Auffenberg 
et al., 2018) 

      X               

(Daum et al., 
2011) 

       X              

(Fay et al., 
2017) 

        X             

(Ghahramani 
et al., 2015b) 

      X               

(Guenther 
and 
Sawodny, 
2019) 

        X             

(Jayathissa 
et al., 2020) 

 X                    

(Jazizadeh et 
al., 2014a) 

X                     

(Jazizadeh et 
al., 2014b) 

X                     

 (Jiang and 
Yao, 2016) 

   X                  

 (Jung and 
Jazizadeh, 
2019a) 

      X               

 (Jung et al., 
2019) 

 X  X      X            

 (Katić et al., 
2020) 

   X X    X             

 (Kim et al., 
2018b) 

 X  X     X X  X      X    

 (Kim, 2018b)           X           

 (Konis and 
Annavaram, 
2017) 

         X            

 (Lee and 
Ham, 2020) 

 X X X        X X         

 (Lee et al., 
2017) 

      X               

 (Lee et al., 
2019) 

      X               

 (Lee et al., 
2020) 

      X       X        

 (Li et al., 
2017) 

 X                    

 (Li et al., 
2018) 

 X                    

 (Li et al., 
2020) 

         X            

 (Liu et al., 
2019) 

 X X X X X    X X X    X X X  X X 
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 (Liu et al., 
2007) 

          X           

 (Lu et al., 
2019) 

 X  X                  

(Natarajan 
and 
Laftchiev, 
2019) 

              X       

(Pazhoohesh 
and Zhang, 
2018) 

X                     

 (Shan et al., 
2020) 

          X           

 (Shan et al., 
2018) 

     X                

 (Sim et al., 
2016) 

              X       

 (Xu et al., 
2018) 

       X              

 (Zhao et al., 
2014b) 

                  X   

 (Zhao et al., 
2014a) 

                  X   

* FC = Fuzzy Classification, RF = Random Forest, KNN = K-Nearest Neighbors, SVM = Support Vector Machine, DT = Decision Tree, LDA = Linear 

Discriminant Analysis, BI = Bayesian Inference/Classification, MLR = Multinomial Logistic Regression, GPM = Gaussian Process Model, LR = Logistic 

Regression, ANN = Artificial Neural Network, GB = Gradient Boosting, LVQ = Learning vector quantization, OP = Ordered Probit, LinR = Linear Regression, 

NB = Naive Bayes, RBC = Rule-Based Classifier, CART = Classification and Regression Trees, LLS = Least-squares linear estimation, J48 = J48 Decision 

Tree. 

3.3.6. Performance indicators used 

The performance of the personal comfort models analyzed is measured by a variety of indicators. 

When reported, the choice of metrics in these studies depended, for instance, on the model technique 

applied, the nature of the datasets used (e.g., unbalanced or balanced) or the need for easy comparison 

between or across studies or models. Table 3-2 presents the studies’ performance indicators and 

respective predictive performances. 

Accuracy was one of the main performance meters used (Aryal and Becerik-Gerber, 2019; Li et 

al., 2020; Jung et al., 2019; Shan et al., 2018; Aryal et al., 2021; Katić et al., 2020; Jiang and Yao, 2016; 

Li et al., 2018; Ghahramani et al., 2015b; Liu et al., 2019; Li et al., 2017; Lee and Ham, 2020; Aryal and 

Becerik-Gerber, 2020; Shan et al., 2020). It represents the number of correct predictions (i.e., when the 

computed result is equal to the ground-truth from participants’ feedback) divided by the total number of 

predictions and is normally presented in percentage form. It was used in nearly half of the studies and 

sometimes accompanied by other less common metrics such as Cohen’s Kappa Coefficient and/ or 

RMSE (Root Mean Square Error). Accuracy, as described by Ben-David (2008), is a simple and 

straightforward indicator; however, it does not take into account the proportion of the correct predictions 

that result from random chance. When considering datasets in which thermal comfort categories are not 

evenly distributed, accuracy can be extremely misleading. Cohen’s Kappa Coefficient complements the 

measurement of accuracy as its scalar meter compensated for the agreements that can be attributed to 
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chance. It is normally represented on a 0 to 1 scale, with 1 being perfect agreement. The selected studies 

by Lee and Ham (2020) and Liu et al. (2019) acknowledge this metric. 

Measuring error − the difference between the computed and the correct value − was also common 

among the studies, using diverse approaches (Auffenberg et al., 2018; Zhao et al., 2014b; Sim et al., 

2016; Guenther and Sawodny, 2019; Fay et al., 2017; Jazizadeh et al., 2014a; Konis and Annavaram, 

2017; Kim, 2018b; Lee et al., 2020; Shan et al., 2020; Natarajan and Laftchiev, 2019). The Root Mean 

Square Error, or the standard deviation of the prediction errors, was reported in many of the studies 

selected. Although it contains certain limitations, it is a common error measurement in many fields and 

recommended when the model errors follow a normal distribution (Chai and Draxler, 2014). Nevertheless, 

as stated by Chai and Draxler (2014), as with accuracy, caution is always required when interpreting error 

measurements, as “any single metric provides only one projection of the model errors, and therefore only 

emphasizes a certain aspect of the error characteristics”. 

Although less used among the studies analyzed, the Area Under the Receiver Operating 

Characteristic Curve, or the Area Under the Curve (AUC), is frequently used in machine learning studies 

(Ben-David, 2008) and can be an interesting performance indicator for the personal comfort models. It 

was used by Katić et al. (2020), Kim et al. (2018b), Lee et al. (2019) and Liu et al. (2019). The Receiver 

Operating Characteristic Curve provides a way of describing the predictive behavior of a binary classifier, 

by plotting the probability of true positive rate (i.e., “successes”, also called sensitivity or recall) over false 

positive rate (i.e., “false alarms”, also called fall-out) across all possible discrimination thresholds. By 

computing the area under this curve, it is possible to compare different models using a single performance 

indicator. The AUC can vary between 0 and 1, where 0.5 denotes random guessing and 1 indicates 

perfect agreement. The measure is, however, conceptually not intuitive, especially when analyzing non-

binary classification problems (Ben-David, 2008).  

Regardless of the indicator used, k-fold cross-validation was reported in most studies as the 

resampling technique used to estimate models’ performance on unseen data, either during 

hyperparameter tuning (also known as model selection stage) or at the final model evaluation stage 

(Raschka, 2018). The most used values of k were 5 and 10, as seen in Table 3-2. Training, validation 

and testing dataset splits were normally chosen according to overall dataset size and modeling technique 

used. 
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3.3.7. Model final application 

Automation and optimization of HVAC systems can be considered the main application for the 

personal comfort models in the papers selected. As already indicated by Jung and Jazizadeh (2019b), 

the research effort to explore the potential of personalization techniques in the control of HVAC systems 

has significantly increased, shifting the field towards Human-In-The-Loop (HITL) control strategies. By 

incorporating individual thermal comfort models in the system optimization, these studies investigate 

comfort-aware operation schedules and settings to enable higher energy efficiency in buildings. 

Nevertheless, from the studies analyzed, most did not test the personal comfort models’ application 

in HVAC systems, focusing more on the modeling aspect of the process. From the studies that evaluated 

the models’ application, only a few evaluated tests in real environments − treated as experiments or 

during normal daily activities. 

Zhao et al. (2014a) performed a validation experiment with 11 participants in two test-beds, where 

the model learning procedure was incorporated into the control of an air conditioning system. In their test, 

the system sequentially updated the user’s complaint region after every feedback, using the method 

proposed, and updated the set point of the control target. They applied a post-experiment questionnaire 

for each participant to capture their subjective evaluation of the thermal environment of the test-bed. After 

8 days of continuous experiments, the participants’ evaluation scores tended to achieve a higher and 

steadier level and their number of complaints per day decreased from 3 to less than 1, on average. 

Aguilera et al. (2019) incorporated the personalized models of seven participants into a user-driven 

HVAC control system and tested it in a real open-plan office scenario. Thermal preferences were used 

to create individual thermal discomfort profiles, which were later aggregated to calculate a single set point 

for the entire office. The results showed that only 29% of the occupants’ thermal comfort improved. The 

performance of the control strategy was found to be influenced by insufficient and imbalanced data and 

the effect of thermal expectations on occupants’ thermal responses across different times of day and 

after repeated thermal stimuli. 

Li et al. (2017) used two real-life scenarios to demonstrate their framework to improve thermal 

comfort in single and multi-occupancy spaces. Their HVAC control loop included two algorithms: the 

Mode Selection Algorithm that chose the optimum conditioning mode and the Collective Decision 

Algorithm that evaluated the highest group comfort score that can be achieved in the mechanical 

conditioning mode. Participants’ thermal preferences were continuously predicted to determine the 
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optimum HVAC set point temperatures, adjusted by a programmable Wi-Fi enabled thermostat. They 

then compared a scheduled scenario where the thermostat followed a predefined fixed schedule, and a 

dynamic scenario where their personalized algorithm was implemented to adjust the temperature set 

points dynamically. On average, the total number of uncomfortable reports were reduced by as much as 

53.7% on average after implementing their framework. 

Jazizadeh et al. (2014b) conducted a study in a real building setting using the comfort profiles of 

six participants. After the personalized comfort profiles were obtained, each new request from occupants 

triggered the calculation of the desired temperature using the customized scale of each user’s comfort 

profile, which was then passed to the HVAC controller. Using interviews at different stages of the 

experiments, the researchers assessed the comfort consequences of the framework and found that the 

average of participants’ comfort rating was 4.7 out of 10 before enabling the framework; 6 during training; 

and 8.4 after model training. Additionally, the study showed an overall 39% reduction in daily average 

airflow when the desired temperatures were applied by the HVAC system, compared to the legacy HVAC 

system operations with predefined temperature set points. As airflow can be considered proportional to 

HVAC systems’ energy consumption, the study also indicated an improvement in the energy efficiency 

of the building analyzed.  

3.4. Discussion and future research directions 

This systematic literature review has shown a plurality of approaches and frameworks to develop 

and evaluate personal thermal comfort models. Although some aspects can be considered similar in all 

studies, there seems to be an overall lack of a unified modeling approach that takes into account not only 

the methodology used, but also the performance evaluation tool that enables easy comparison across 

studies. 

3.4.1. Considerations on data collection 

Disparities begin from the data collection stages of the studies. While controlled climate chamber 

experiments allowed many of the studies to reach a larger size of datasets and a greater variability of 

thermal sensations recorded from participants, studies that used data from real scenarios appear more 

transferable to real applications, as discussed in Section 3.3.7. The recommendation for data collection 

on real scenarios, thus, lies on increasing the dataset size by encouraging more occupants to engage 

and interact with the surveys and the systems’ controls. Studies that used wearable sensors with 
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accessible feedback platforms, or that used occupants’ behavior through personal comfort systems’ 

operation as a proxy for thermal preference, are possible options to obtain a continuous data stream to 

enlarge datasets in real-world contexts. 

In that regard, although larger dataset sizes are normally expected when dealing with more 

complex classification tasks and higher number of features (Raudys and Jain, 1991), the review also 

proves that individual dataset sizes can vary greatly. When machine learning models are used with 

insufficient training data, techniques such as transfer learning, where a pre-trained model is reused on a 

new problem, can be applied (Tan et al., 2018). In addition, although not treated in depth by all studies 

reviewed, the way the data is pre-processed is another key aspect to avoid data loss before model 

training. Properly dealing with noisy or missing data points, highly heterogeneous datasets in terms of 

granularity of raw features, or highly imbalanced datasets that might misrepresent the observed data is 

essential to maintain sufficient data size and avoid losing relevant information for prediction. Future 

research on personal thermal comfort models should, therefore, address the specificities of thermal 

comfort datasets and the challenges of data preparation associated with them. 

3.4.2. Considerations on participants involved 

Despite the low number of participants in most of the studies reviewed being coherent with the aim 

of personalizing comfort models for each individual, the generalization of the results, that is, the potential 

that personal comfort models will be applicable to anyone, is still debatable. This is because not only do 

the studies deal with small numbers of building occupants, but they also select participants with relatively 

similar characteristics. Although males and females are present in almost all studies in a relatively 

balanced way, the presence of younger adults is more prevalent, leaving out other age groups (e.g., 

children or older people) who may also profit from individualized comfort predictions in their associated 

environments. In the same way, although the use of healthy adults is commonly preferred in traditional 

generalized thermal comfort studies to avoid the influence of illness or health conditions on the averaged 

thermal predictions, the observed trend to use only healthy participants in personal comfort model studies 

does not correspond to the goal of individualizing comfort models, which is to deal with people whose 

personal characteristics and thermal preferences fall outside the averages. In fact, continuous health 

status measurements or self-rated feedback could be added as personal inputs in the models, allowing 

an interesting investigation on the impacts of health on thermal comfort perception, sensitivity, or 

preference.  
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Likewise, collected data on diverse body compositions, sociodemographic characteristics and 

activity contexts are missing in the studies reviewed. Including more heterogeneous occupants would 

enable a broader analysis and consequently increase the generalization power of the studies. 

3.4.3. Considerations on climates, seasons and type of buildings involved 

Further explorations in more diverse climates are necessary to identify associated challenges of 

personal comfort models in different locations. Longitudinal studies that span through several consecutive 

seasons or years could, in the same way, allow a more comprehensive analysis than the ones conducted 

so far. In addition, residential settings are yet to be better represented in the studies. Not only do living 

environments provide more diverse thermal conditions, activity and clothing opportunities in comparison 

with office environments, they also allow more possibilities for user intervention than the HVAC-controlled 

work environments. This includes considering easier or unrestrained window or blinds operations as well 

as refurbishment or layout modifications. Although this issue may add another level of complexity to the 

personalized models, adding diversity to the studies’ environments can help, once again, create more 

balanced thermal preference datasets when collecting data, and expand the application of the 

personalized models to other settings. 

3.4.4. Considerations on model input and output variables 

When it comes to model input features used in the reviewed studies, the explorations are again 

coherent with the aim of investigating possible individual differences affecting thermal comfort. Both 

environmental and personal characteristics are used, although personal features using physiological 

sensing could still be explored further, especially in light of the rapid advances seen today in wearable 

sensors technologies. Personal comfort systems, including heated chairs or personal fans, are promising 

tools not only to collect larger datasets but also to reduce the need for occupants’ long-term feedback. 

Personal comfort systems could also help avoid the potential misinterpretations caused by the nuances 

in the thermal comfort, sensation or preference scales used, which vary greatly across studies and 

approaches. 

3.4.5. Considerations on modeling algorithm and performance indicators 

When analyzing the modeling methodology applied so far, it is evident that the field lacks a more 

unified and systematic framework. As already highlighted by Kim et al. (2018a) and confirmed by this 

literature review, instead of developing a structured and ultimately transferable approach to apply the 

models in real scenarios, the main studies on personal thermal comfort models are focused on the final 
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predictive accuracy of specific modeling techniques. This is clear in the plurality of modeling techniques 

and performance evaluators used in the publications reviewed. Model evaluation, especially, needs 

uniformity to allow a clear comparison between studies and approaches, and consequently to enable a 

more straightforward decision-making process. Kim et al. (2018a) highlighted three main criteria that 

could help the model evaluation process: prediction accuracy, prediction consistency, and model 

convergence. Although the metrics used in each of these criteria may differ depending on the technique 

used (e.g., deterministic or probabilistic), they represent a more systematic way of assessing model 

performance. 

3.4.6.  Considerations on model interpretation, input parsimony and redundancy 

With the majority of the studies using different forms of machine learning techniques, it becomes 

important to highlight the presence of “black box” models among them and acknowledge their challenges. 

The term black box refers to models that, although open to inspection of isolated components, are less 

interpretable, in the sense that their complexity and sometimes recursive mathematical nature are not 

easily comprehensible by humans (Rudin, 2019). Generally, the main objective of predictive modeling is 

to generate accurate predictions, leaving interpretation of the models and understanding of why they 

work as secondary objectives (Kuhn and Johnson, 2013). When prediction accuracy is the primary goal, 

increasing performance is normally derived from increasing models’ complexity, and likely decreasing 

their parsimony (i.e., increasing number of parameters involved), which, in turn, renders models’ 

interpretation more difficult. This trade-off between accuracy/performance and interpretability/parsimony 

is a common issue discussed in many fields using predictive modeling. 

Less interpretable models can have negative implications, especially in situations where feature 

interactions matter more than the final outcomes. In the field of thermal comfort in general, being able to 

understand the underpinning laws between variables as well as distinguish between relevant, irrelevant, 

and redundant input parameters is undeniably beneficial to enhance the current knowledge on human 

thermal comfort. Nevertheless, the tradeoff between the cost of comfort and energy use associated with 

thermal comfort model’s lower predictive accuracy and the reward of interpretability has not been 

addressed in the field, let alone in the studies reviewed here.     

Nonetheless, although still frequently debated (Castelvecchi, 2016; Rudin, 2019; Lipton, 2018; 

Barredo Arrieta et al., 2020), explainable artificial intelligence is an emerging topic in many sectors 

(Barredo Arrieta et al., 2020) and aims to produce more interpretable models while maintaining high 

performance levels. Techniques such as the use of Input Feature Selection Algorithms are also 
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alternatives to measure predictor importance in thermal comfort research, decreasing input redundancy, 

increasing performance and lowering computational efforts (Kwak and Choi, 2002). Lastly, some machine 

learning models are intrinsically resistant to redundant predictors, such as Tree- and rule-based models 

(Kuhn and Johnson, 2013), comprising a middle ground between easily interpretable models (like linear 

regression) and opaque methods (such as neural networks). 

3.5. Conclusion 

This chapter has presented a systematic review of personal thermal comfort models based on the 

literature published in the last two decades. Thirty-seven publications have been selected for screening 

and subsequently analyzed regarding: (1) their data collection approach and dataset size; (2) the number 

and type of participants involved; (3) the climate, seasons and building types in which the studies were 

undertaken; (4) the model inputs and outputs features utilized; (5) the modeling techniques used; (6) the 

performance indicators used; and, finally, (7) the application of the proposed model. 

The review highlights a number of issues of personal comfort models: 

• The field still lacks a more unified and systematic modeling framework. Model evaluation, 

especially, needs to allow for clear comparison between studies and approaches, thus enabling 

a more straightforward decision-making process.  

• The generalization of the results is still debatable as many studies deal with small numbers of 

participants sharing relatively similar characteristics. Diversity needs to be introduced, 

considering different age groups, health status, body compositions, sociodemographic 

characteristics, and activity contexts. 

• Diversity in climates, seasons and building types is not represented in many of the studies. 

Addressing these can help create more balanced datasets and expand the application of the 

personalized models into other types of environments. 

• With the majority of the studies analyzed using different forms of machine learning techniques, 

it is important to understand “black box” models’ challenges in the field of thermal comfort, 

investigating the tradeoffs between inherently interpretable models and less transparent 

techniques. 
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• Although both environmental and personal characteristics have been used in most studies, 

personal features gathered through physiological sensing technologies could be further 

explored, especially in light of the rapid advances in wearable sensor technologies. Personal 

comfort systems are promising tools to complement data collection, enlarge data sizes and 

reduce the need for occupants’ long-term feedback periods.  

Future research can, therefore, profit from the topics highlighted above and advance the 

knowledge on personal thermal comfort models from a uniform and holistic perspective. 
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Chapter 4. Research Methodology 

The research design adopts a quantitative framework and methodology that draws on a 

multidisciplinary approach, comprising the fields of architectural sciences, gerontology and public health, 

as well as computer sciences. This chapter presents an overview of the materials and methods chosen 

according to the thesis’ three research objectives. Specific and detailed methods are presented within 

the results in Chapters 5, 6, 7 and 8. 

4.1. Methods to achieve Objective (1) 

Objective (1) To investigate older South Australians’ thermal environment, thermal 

preferences, behaviours, and physiological responses during hot and cold weather. 

In order to investigate the thermal environments of older people in South Australia, two datasets 

were used. The first dataset was collected from 71 older people (23 males and 48 females) from 57 

households located in South Australia7 who participated in the research project ARC DP180102019 - 

Improving the thermal environment of housing for older Australians  (Soebarto et al., 2019a; van Hoof et 

al., 2019), recruited through press releases in various media formats (e.g., newspaper and radio calls for 

volunteers and tear-off posters). All participants were aged 65 years or above, lived independently, and 

were required to be able to communicate in English. The project had approval from The University of 

Adelaide’s Human Research Ethics Committee (approval H-2018-042) (Appendix B). Participants 

consented to the use of the data collected through a Consent Form (Appendix C) and were informed 

about the research details through a Participant Information Sheet (Appendix D). 

Their dwellings were located in hot dry (BSk), warm temperate (Csa) and cool temperate (Csb) 

climate zones, according to the Köppen–Geiger climate classification system, or Climate Zones 4, 5 and 

6, respectively, according to the Australian National Construction Code (Australian Building Codes Board, 

2019) (Figure 4-1). The data collection started in mid-January 2019 and lasted 9 months until mid-

 
7 While this data collection was part of the broader research project ARC DP180102019 - Improving the thermal environment of housing 

for older Australians, the author of this thesis acted as a research assistant at the project, participated actively in and co-managed the 

data collection. 
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October 2019, comprising both hot/warm and cold/cool seasons, which provided the range of variations 

in environmental conditions necessary for a comprehensive analysis. 

 

Figure 4-1 - Climate Zones of South Australia, where the monitored houses were located. 

The dwellings included in the research represented common construction typologies in housing of 

older people in South Australia. These included double brick, brick veneer (also known as masonry 

veneer) and timber or steel framed constructions (insulated and uninsulated); detached and 

semidetached layouts; from 1 to more than 100 years old; and 1 or 2 storeys high. Samples of the 

buildings involved are shown in Figure 4-2. 
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Figure 4-2 - Sample of the 57 houses involved in the study. Source: Photographed by the author. 

The data collection process involved visiting each house at least twice. In the first visit, the following 

tools were used to collect data about the participants and their houses: 

(a) A questionnaire about individual socio-economic information, as well as chronic disease and 

symptoms, behaviours, preferences and responses during hot and cold weather, applied by 

the project team. A copy of the questionnaire is presented in Appendix E. 

(b) An open-ended interview about the house details (directed by a checklist), including the 

collection of energy bills, building plans, elevations, and photos, applied by the candidate. A 

copy of the check-list is presented in Appendix G. 

(c) The installation of indoor environment data loggers (Figure 4-3), which allowed the 

subsequent environmental monitoring of each house’s main living room and bedroom, every 

30 minutes and whenever a participant answered a thermal comfort survey, for 9 months. 

(d) The installation of a thermal comfort survey tablet (Figure 4-3), which allowed the participants 

to answer thermal comfort surveys electronically at any time, across 9 months. 
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The indoor environment data logger included sensors that measured the dry-bulb temperature, 

globe temperature, air speed, relative humidity, CO2 and VOCs in the houses’ main living area. The 

logger coordinated measurements from the sensors, undertaken at 30-minute intervals and when a 

participant completed a comfort survey. The data were automatically sent to a web-based server via radio 

and were accessed remotely.  

The thermal comfort survey tablet included questions about participants’ clothing level, activity 

level (later converted to metabolic rates), thermal sensations and preferences, window and door 

operations, as well as heating/cooling/fan operations. The survey also included questions about 

perceptions of indoor environment quality, as well as health/wellbeing perception. The survey’s tablet 

screens, corresponding to each question, are presented in Appendix H. Participants also received a 

printed booklet to aid with the navigation of the tablet and the understanding of the survey answer choices 

(see Appendix I). 

 

Figure 4-3 - Indoor environment data logger and thermal comfort survey tablet 

Further details on the data logger and tablet, as well as on the sensors’ accuracy, testing and 

calibration were previously published by Soebarto et al. (2020). 
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The dry-bulb temperature and relative humidity were also measured in 30-minute intervals in the 

houses’ main bedroom, using a HOBO® U12-013, with data downloaded at the end of the monitoring 

period and merged with the overall data for the surveys answered in the bedroom.  

The second visits to participants’ houses were carried out to finalise the data acquisition, retrieve 

the logger and tablet and collect any missing information needed.  

Upon a preliminary analysis of the data collected and a further literature review, other factors that 

affect thermal comfort of older adults were identified as relevant for the study. Therefore, the second 

visit also included: 

(e) A body composition assessment, conducted by the candidate, using a Tanita Inner Scan 

RD-953 scale (Tanita Corporation, 2016; Volgyi et al., 2008) and a tape measure tool for 

measuring body height. 

(f) An additional questionnaire, conducted by the candidate, to assess frailty status using the 

Modified Reported Edmonton Frailty Scale (Rose et al., 2018), as well as the participants’ 

use of outdoor spaces. A copy of the additional questionnaire is presented in Appendix F. 

All data collection tools were designed to gather a wide range of variables and factors that were 

relevant in the context of the architectural science, gerontology and public health fields of study to 

influence and affect thermal comfort. More details of this specific data collection process are described 

in Chapters 5 and 6. 

After the conclusion of the first data collection period, a preliminary analysis of the data and further 

literature investigations highlighted a lack of physiological factors being investigated in the first stage of 

the study. Therefore, a second collection was conducted, involving 11 of the original 71 participants. Only 

a portion of the monitoring participants were willing to participate in this follow-up monitoring study due 

to the time commitment required for the activities. In addition, in this second data collection process, the 

survey tablet was modified to include a non-contact infra-red temperature sensor to measure the skin 

temperature of the back of participants’ non-dominant hand after they completed each point-in-time 

survey (Figure 4-4). Since this equipment modification was only possible in a single pair of logger-tablet, 

the number of participants involved, as well as the length of the monitoring period, had to be reduced.  

Each house was monitored during 2 consecutive weeks, one house after the other, between the 

months of September 2020 and February 2021. The other environmental measurements and the comfort 



81 

 

survey questions remained the same from the first collection period. Frailty and body composition 

assessments were retaken to check variations between the two data collection periods. 

 

Figure 4-4 - Thermal comfort survey tablet with infra-red skin temperature sensor and indoor 

environment data logger (left), and back of hand skin temperature measurement being taken (right). 

Human hands are known to contain a high number of arteriovenous anastomoses (AVAs), which 

are valves that influence heat loss by changing the body’s peripheral blood flow (Hales, 1985). This 

makes the skin temperature of hands a possible indicator of a person’s thermal state (Wang et al., 2007). 

The skin temperature of the back of the hand (i.e., the dorsal side of the hand) was chosen for this study 

in line with previous research that correlated thermal sensation to this specific body part (Soebarto et al., 

2019b; Wang et al., 2007; Katić et al., 2020; Childs et al., 2020) and according to ISO9886:2004 (ISO, 

2004). Details of this specific methodology, including the skin temperature sensor’s details, are described 

in Chapters 5 and 7. 

Statistical analyses, including descriptive and regression analyses, were subsequently conducted 

to investigate the factors influencing the cohort’s thermal sensations and preferences. These analyses 

were conducting using IBM SPSS Versions 26 and 27 (IBM Corp., 2020). 

4.2. Methods to achieve Objective (2) 

Objective (2) To develop personal thermal comfort models for older people from the data 

collected, considering their personal and behavioural characteristics as well as the 

conditions of their thermal environments, and compare the results with the predictions by 

established models such as the PMV model. 
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In order to develop personal thermal comfort models for the older adults involved in the study, 

deep learning (also known as artificial neural networks) (Goodfellow et al., 2016) was applied. Deep 

learning is a class of machine learning technology, based on the representation-learning method (LeCun 

et al., 2015). It solves tasks such as classification, regression or anomaly detection by introducing multiple 

layers of representations, or features, expressed in terms of other, simpler representations. By learning 

from previously seen data, this method avoids the need for a human engineer to formally specify these 

multiple layers of representations (Goodfellow et al., 2016). Justifications for the use of this class of 

machine learning are presented in Chapters 6 and 7. 

The overall modelling process was based on the framework for personal thermal comfort model 

development described by Kim et al. (2018a) and the framework for machine learning model development 

described by Raschka (2018). The overall steps involved are shown in Figure 4-5. 

 

Figure 4-5 - Overall modelling process steps. *Model deployment and continuous learning, although 

present in the referenced frameworks, were beyond the scope of this study. 

After initial data collection, the general dataset was separated into the 71 individual datasets to be 

analysed. The chosen modelling process, however, required that each participant voted at least 6 times 

in at least one of the three thermal preference classes (wanting to be cooler, no change, warmer), to 

allow a minimum of 5-fold stratified cross-validation during model training, plus a minimum of 1 vote per 

category for testing (Raschka, 2018). Further details of the cross-validation procedure are explained in 

Chapter 6. Excluding the participants who did not meet this requirement resulted in 28 individual datasets 

out of the 71 participants to be selected for modelling.  

The input features were then selected to cover a combination of the environmental factors 

traditionally used in aggregate models such as the PMV (i.e., dry bulb temperature, radiant temperature, 

relative humidity, air speed), in addition to a selection of the personal factors captured in the study (i.e., 

clothing, metabolic rate and health perception), according to the outcomes of Objective (1). Other 

personal characteristics such as age and sex were incorporated into a corrected version of the metabolic 

rates, which were also used as input variables.  
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Data were subsequently pre-processed, involving undersampling (i.e., a balancing technique) and 

normalization. The datasets were then randomly split into training, validation and testing sets to allow 

data cross-validation and avoid drawbacks such as overfitting (i.e., when the model fits well against its 

training data, including its noise, thus performing poorly when tested against new data). 

The models were then scripted and their hyperparameters were tuned and selected according to 

their predictive performance, measured using Accuracy (Ferri et al., 2009), Cohen’s Kappa Coefficient 

(Cohen, 1960) and the Area Under the Receiver Operating Characteristics Curve (Ben-David, 2008).  

The models were programmed to perform a multiclass classification task. This meant that their 

task was to specify to which of the k categories an example (or data point) belongs. In general terms, 

deep learning models are shown an example and follow a set of non-linear mathematical expressions 

between hidden layers of representation units (or “neurons”) to produce an output in the form of a 

probability for each classification category. A function then measures the error between the outputs and 

the desired probability patterns and the model modifies its internal parameters to reduce the error. The 

model is then shown a never-before-seen set of data points (i.e., the testing set) and produces a new 

and final set of probability outputs (Goodfellow et al., 2016; LeCun et al., 2015). 

Therefore, in this study, the models are programmed to classify occupants’ thermal preference 

(TPV) on a 3-point-scale (“preferring to be cooler”, “preferring no change” or “preferring to be warmer”) 

using up to 7 input variables8. The survey’s TPV was used as the ground truth to train and validate the 

models and later evaluate the predicted values using the testing set. The models have an input layer, a 

hidden layer, and an output layer, and use Rectified Linear Unit (ReLU) (Agarap, 2018) as the activation 

function between the input layer and the hidden layer, and Softmax as the activation function between 

the hidden layer and the output layer. The Cross Entropy function was used to measure the error of the 

classification rounds and the Stochastic Gradient Descent was used as the optimiser algorithm to 

minimise the loss. Anaconda version 2019.3 (Anaconda, 2019) was utilised as the package management 

platform and Jupyter Notebook (Thomas Kluyver, 2016) was used as the scripting and computing 

platform for the development of all models, using Python version 3.7 and PyTorch tensor library (Paszke 

et al., 2017). 

The models’ final performance indicators were then compared with the PMV model, converted 

from the 7-point thermal sensation scale to the 3-point thermal preference scale. Further details on the 

 
8 Further details on the choice of output and input variables are presented in Chapters 6 and 7. 
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terminology used and the specifics of this methodology are described in Chapter 6. A further exploration 

was conducted by adding skin temperature as one of the input features of the personal models, and the 

specific methodology for the inclusion of this new variable is described in detail in Chapter 7. 

4.3. Methods to achieve Objective (3) 

Objective (3) To investigate the application of personal thermal comfort models in 

managing the thermal environment of older people’s dwellings and the health and 

wellbeing of older people in general. 

In order to investigate possible application opportunities of the personal thermal comfort models 

for older adults developed to address Objective (2), two explorations were conducted. The first 

exploration demonstrated how the models can be used to calculate preferred HVAC (Heating, Ventilation 

and Air Conditioning) thermostat settings, which can subsequently be used as inputs in building 

performance simulations to predict heating and cooling energy use more accurately. From the 28 

participants whose personal thermal comfort models were developed in the previous phase of the study, 

2 were selected for this assessment based on the quality of information about their houses and other 

details. Their houses were first modelled in Design Builder/Energy Plus Version 7.0.0.088 (Design Builder 

Software Ltd, 2021) according to the construction details, house operation trends and other relevant 

information collected during the monitoring period. The building models were then calibrated using the 

measured data from the monitoring period, based on the calibration framework by Soebarto (1997), and 

the International Performance Measurement and Verification Protocol (Efficiency Valuation Organization, 

2012) and the ASHRAE Guideline 14 (ASHRAE, 2002). 

In order to assess whether the new heating and cooling set points calculated from the personal 

thermal comfort models accurately represented participants’ real preferences, the study conducted a 

comparison between the simulated energy loads for heating and cooling using the new personal set 

points and the actual energy loads for heating and cooling of the participants’ households. Actual 

household energy use for at least a 3-year period was obtained for each house from the bills provided 

from their appropriate electricity retailers. Following the work by Williamson et al. (2006), heating and 

cooling related energy consumption was disaggregated from the total consumption data using a least 

squares methodology, and later converted into energy loads according to each house’s HVAC system 

coefficient of performance.  
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Once the personal heating and cooling temperature set points were determined using the personal 

models, they were inserted as inputs in the building simulation models to predict the HVAC energy loads 

to achieve and maintain such temperatures throughout the year. The simulated energy loads were then 

compared with the actual disaggregated HVAC energy loads to assess the error and accuracy of the 

personal set points. Figure 4-6 presents the steps of this first exploration. Weather data from the 

Australian Bureau of Meteorology were used not only in the building model calibration procedure, but 

also in the energy data disaggregation process and in the final simulation assessments. Details of these 

specific methodologies are described in Chapter 8, Section 8.1. 

 

Figure 4-6 - Building simualtion application steps 

The second application investigation explored the use of the personal models in a web-based 

smart device application, which allows the automatic calculation of thermal preferences for older 

individuals, aimed at aiding the control and adaptation of older people’s environments to increase their 

comfort. The app interface and general concept are based on other, similar thermal comfort projects such 

as the CBE Thermal Comfort Tool (Tartarini et al., 2020) and the Arup Advanced Comfort Tool (Jones et 

al., 2021), as well as on evidence-based apps for caregivers and health care professionals. 

To develop the app, first the final state of each deep learning model was transferred from the 

Jupyter Notebook (Thomas Kluyver, 2016) to a spreadsheet in Microsoft Excel (Microsoft Corporation, 

2021), where the neural network was reconstructed using the functions described in Chapter 6. The 

spreadsheet was then imported to the online developing tool Open As App (Open As App GmbH, 2021), 

where a smart device interface was developed based on the personal model for one of the participants, 



86 

 

as an example (Figure 4-7). Details of these specific methodologies are described in Chapter 8, Section 

8.2. 

  

Figure 4-7 - Personal thermal comfort smart device tool development steps 

4.4. Summary 

This chapter has introduced a summary of the methodologies used to address the research 

questions outlined in this thesis. In-depth discussions of each of the methods are presented within the 

pertinent upcoming Chapters 5 to 8. 
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Chapter 5. Field study and initial analysis of 
factors associated with older people’s thermal 
comfort 

5.1. Introduction 

As discussed in the literature review presented in Chapter 2, ageing is generally associated with 

physiological changes that affect people’s thermal perception, sensitivity and regulation. The ability to 

respond effectively to temperature fluctuations is compromised with physiological ageing, upsetting the 

homeostatic balance of health in some. As a result, older people can become vulnerable at extremes of 

thermal conditions in their environment. With populations ageing globally, it is imperative that there is a 

comprehensive understanding of older people’s thermal needs and preferences so that their comfort and 

wellbeing in their living environment can be optimised and healthy ageing achieved.  

This chapter aims to answer research questions A and B: 

A. What thermal conditions exist in the houses occupied by the older people participating in the 

study, and what are their thermal preferences and sensations? 

B. What variables are significant in explaining the thermal preferences and sensations of the 

older people participating in the study? 

These questions are related to Objective (1): Investigate older South Australians’ thermal 

environment, thermal preferences, behaviours, and physiological responses during hot and cold weather. 

Therefore, the first step taken in this research was to investigate the thermal comfort and related 

requirements of a sample of older people in South Australia, through an in-depth field study. From the 

extensive data collected from this initial study, the quantitative analysis presented in this chapter provides 

new insights into older people’s thermal environments, thermal sensations, preferences, and behaviours, 

as well as physiological responses, through the lens of a range of underlying factors or variables.  

The investigation of these factors was divided into 4 parts. The first part presents the overall 

characteristics of the cohort analysed, their dwellings’ details and other related factors that could affect 

their thermal environments. The second part covers an investigation of traditionally assumed thermal 
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comfort predictors (i.e., indoor temperature, mean radiant temperature, relative humidity, air speed, 

clothing, and activity levels), in order to validate the continuing use of these predictors and to better 

understand them in the context of the cohort of older people involved. The third exploration introduces a 

new health/wellbeing indicator as a potential factor explaining the thermal sensations, preferences and 

behaviours of the cohort. Finally, the fourth investigation analysed the physiological factors of the sample 

as represented by their skin temperatures.  

Note that the analyses presented in this chapter are generalised (i.e., using the aggregate datasets 

from all participants) and serve as an initial analysis of the thermal environments and variables that will 

be later used for the development of personal thermal comfort models presented in Chapters 6, 7 and 

8. 

5.2. Methods 

5.2.1. Data collection 

To achieve the before-mentioned goals, two separate data collections were conducted.  

First data collection 

The first data collection involved a field study with 71 participants (23 males and 48 females) living 

in 57 households located in South Australia9. The participants were drawn from the first two stages of the 

research project ‘ARCDP180102019 - Improving the thermal environment of housing for older 

Australians’ (Soebarto et al., 2019a; van Hoof et al., 2019) and through press releases in media formats 

such as radio programs and local newspaper articles. All participants were aged 65 years or above and 

were living independently. Their dwellings were located in hot dry (BSk), warm temperate (Csa) and cool 

temperate (Csb) climate zones, according to the Köppen–Geiger climate classification system or Climate 

Zones 4, 5 and 6, respectively, according to the Australian National Construction Code (Australian 

Building Codes Board, 2019).  

The data collection process involved visiting the houses to apply questionnaires, conduct an open-

ended interview about the house details and install indoor environment data loggers in the house’s main 

 
9 While this data collection was part of the broader research project ‘ARCDP180102019 - Improving the thermal environment of housing 

for older Australians’, the author of this thesis was a research assistant on the project and participated actively in the collection of data. 



89 

 

living room and main bedroom, which would continuously monitor the environmental conditions of the 

houses for 9 months (from mid-January to mid-October 2019). A thermal comfort survey tablet was also 

provided to be used by the participants to answer point-in-time surveys about their thermal environment 

and their preferences and sensations throughout these 9 months. 

All data collection tools (e.g., questionnaire, interview, and environmental loggers) were designed 

to cover a wide range of variables and factors known in the architecture, science, gerontology and public 

health fields of study to influence and affect thermal comfort, sensation and preference. In addition, the 

results from a previous investigation with seven focus group sessions involving 49 older South Australians 

(van Hoof et al., 2019) also contributed to highlight less quantifiable aspects of older people’s thermal 

perceptions and responses, which are often overlooked in comfort studies (e.g., personal beliefs and 

experiences). Unique factors such as use of outdoor spaces, self-rated health, and habituation to climatic 

zones, which are also often ignored in thermal comfort studies or extremely hard to obtain, were included 

in the study as well. 

The one-time questionnaire covered participants’ personal data (e.g., sex, age, level of education, 

living arrangements, income level, and chronic diseases or conditions) and their general behaviour 

towards thermal comfort. It was conducted using a paper-based form (Appendix E), taking from 10 to 40 

minutes to complete. An additional questionnaire (Appendix F), applied at the end of the monitoring 

period, also included a frailty assessment, using the Modified Reported Edmonton Frail Scale (Rose et 

al., 2018) questions about the use of the outdoor spaces of the homes. Data from body composition 

assessments, using a Tanita Inner Scan RD-953 scale (Tanita Corporation, 2016; Volgyi et al., 2008) 

and a tape measure tool for height measurements were also recorded in this questionnaire. The body 

composition equipment uses principles of bioelectrical impedance (Peterson et al., 2011; Shaikh et al., 

2007) to measure several body variables (e.g., body water, fat, bone, muscle mass or percentages), 

which were automatically calculated and reported through the scale’s interface. 

An open-ended interview guided by a paper-based check-list (Appendix G) gathered information 

about participants’ houses (e.g., main envelope construction materials, air conditioning systems’ details 

and use, and blind and curtain materials and use) and took from 10 to 40 minutes, depending on the size 

of the house, complexity of systems used and level of detail shared by the participants. Building drawings, 

photos, and overall space measurements (including ceiling heights), as well as air conditioning and 

photovoltaic panels’ details (when present) were also collected. The audio of the interviews was also 
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recorded so it could be revisited in case details were not captured in the check-lists. Both questionnaire 

answers and house details check-lists were then compiled as MS Excel spreadsheets for analysis. 

The house monitoring and thermal comfort survey involved the use of indoor environment data 

loggers and a thermal comfort survey tablet in each house. The indoor environment data logger contained 

sensors that measured air temperature, globe temperature, air speed, relative humidity, CO2 and Volatile 

Organic Compounds (VOC). The logger was positioned in the main living area and coordinated 

measurements from the sensors, undertaken at 30-minute intervals and when a participant completed a 

comfort survey. Note that the loggers were positioned to allow a single measurement point, at 

approximately 1 m high from the floor, preferably close to where the participants were normally seated, 

and away from sources of heat or direct solar radiation.  

The logger and tablet were self-contained and did not require connection to the dwelling’s 

electricity or Internet systems. A radio component was incorporated in the logger, allowing communication 

with the tablet. Once survey answers were received by the logger, both the time-stamped environmental 

measurements and survey answers were stored locally on a Secure Digital (SD) card as a daily text file. 

Once per day, the text file was transmitted to an external web-based server through a 3G cellular modem 

present in the logger, allowing the data to be accessed remotely. The daily files were subsequently 

downloaded and aggregated as a single text file using batch scripts. Further details on the logger and 

tablet tools, including sensor accuracy and logger system architecture, have been previously published 

by Soebarto et al. (2020). 

The dry bulb temperature and relative humidity were also measured at 30-minute intervals in the 

houses’ main bedrooms using HOBO® U12-013 data loggers. Data were downloaded from them at the 

end of the monitoring period and merged to the final dataset for the comfort surveys answered in the 

bedroom. 

The thermal comfort survey tablet allowed participants to complete comfort surveys electronically, 

at any time, about their point-in-time thermal sensations, thermal preferences, thermal satisfaction, as 

well as their clothing, activity, curtains/blinds state, windows and doors state, and heating, cooling and 

fan states. The survey also included questions about the participant’s perceptions of the indoor 

environment quality as well as their self-reported health/wellbeing perceptions at that particular point in 

time. Further details on the survey questions have been previously published by Soebarto et al. (2020). 
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The thermal sensation vote (TSV) and the thermal preference vote (TPV) were answered by 

participants and later analysed using the 7-point ASHRAE scale and the 3-point McIntyre scale, 

respectively (Table 5-1). Although collected through the surveys, the participants’ thermal satisfaction 

votes, on a 5-point scale from “very satisfied” to “very dissatisfied”, are less commonly used in thermal 

comfort studies and were therefore not analysed in this thesis. 

Table 5-1 - Thermal sensation vote (TSV) and thermal preference vote (TPV) scales used in the study 

Thermal sensation vote 
scale 

Thermal preference vote 
scale 

Answer to survey question: 
“How do you feel right now?” 

Answer to survey question: 
“Would you prefer to be…?” 

7-point ASHRAE scale 3-point McIntyre scale 

-3 Cold   

-2 Cool   

-1 Slightly cool 3 Warmer 

0 Neutral 2 No change 

1 Slightly warm 1 Cooler 

2 Warm   

3 Hot   

Each survey took no more than a few minutes to complete, and, since the tablet could be carried 

easily, participants could choose whether to answer the survey in the main living area or in the main 

bedroom. The tablet could be used by up to 2 participants living in the same house. Participants were 

assigned as Person 1 or Person 2 at the beginning of the study and had to indicate their identification 

every time a survey was answered. The tablet survey screens, as well as the accompanying printed 

booklet with further instructions and explanations on the surveys’ answer choices, can be found in 

Appendix H and I. 

Second data collection 

After the conclusion of the first data collection period10, a preliminary analysis of the data and 

further literature investigations highlighted a lack of physiological factors being investigated in the first 

stage of the study. Therefore, a second collection was conducted, involving 11 (6 males and 5 females) 

of 71 participants from the first data collection period. In this second data collection, the survey tablet was 

modified to include a non-contact infra-red temperature sensor to measure the skin temperature of the 

back of the participants’ non-dominant hand after they completed each point-in-time survey. As 

highlighted in Chapter 4, since this equipment modification was only possible in a single logger-tablet 

 
10 The first data collection period was part of the broader research project ‘ARCDP180102019 - Improving the thermal environment of 

housing for older Australians’, in which the author of this thesis was a research assistant. The second data collection period was 

conducted separately by the author of this thesis. 
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pair, the number of participants involved, as well as the length of the monitoring period, had to be reduced. 

In addition, only a portion of the monitoring participants were willing to participate in this follow-up 

monitoring study due to the time commitment for participation, which required answering the thermal 

comfort surveys more frequently (i.e., at least 2 times a day). Therefore, for this second data collection, 

each house was monitored across 2 consecutive weeks, one house after the other, between the months 

of September 2020 and February 2021. The environmental measurements and the comfort survey 

questions remained the same from the first collection period. Frailty and body composition assessments 

were redone to check variations between the two data collection periods. Table 5-2 presents the data 

acquisition tools used in each of the collection periods. 

Table 5-2 - Data acquisition tools used in the 1st and 2nd data collection periods 

Data acquisition tool (data 
collected) 

1st data collection 
(9 months, Jan-2019 to Oct 2019) 

2nd data collection 
(2 weeks, Sept-2020 to Feb-2021) 

Questionnaire (socio-
demographics, chronic diseases, 
overall behaviours) 

✓ not collected* 

House construction check-list ✓ not collected* 

Additional questionnaire (use of 
outdoor spaces, frailty and body 
composition assessment) 

✓ 
✓ 

(except for use of outdoor spaces) 

Data logger (Indoor environment 
conditions) 

✓ ✓ 

Tablet (thermal comfort surveys) ✓ 
✓ 

(in addition to hand skin temperature 
measurements) 

✓ = collected; * considered not varying between October 2019 and February 2021. 

The skin temperature of the hands was chosen in this study as a possible indicator of people’s 

thermal sensation and preference because human hands are known to contain a high number of 

arteriovenous anastomoses (AVAs), valves that regulate vasoconstriction and vasodilatation, and 

therefore influence heat loss by changing the peripheral blood flow (Hales, 1985). The skin temperature 

of the dorsal side of the hand was chosen according to ISO9886:2004 (ISO, 2004) recommendations and  

in line with previous publications on the associations between this indicator and thermal sensation (Leijon-

Sundqvist et al., 2017; Soebarto et al., 2019b; Schellen et al., 2010). Since the back of one’s hand is 

more frequently exposed to the environment than other body parts, the choice of this skin area also 

reduced the intrusiveness of the method. In addition, the use of the dorsal side of the hand allowed the 

most comfortable position for older participants to take the measurements whilst seated. The non-

dominant hand was chosen to minimize the effect of frequent hand movements during the skin 

temperature measurements. 
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The skin temperatures were measured in degrees Celsius, using a non-contact infra-red 

temperature sensor (MLX90614-DCC). The sensor had a ±0.5°C precision of temperature measurement 

and a field of view (FOV) of 35 degrees. To measure a spot with a radius of approximately 1 cm in the 

back of participants’ non-dominant hand, participants positioned their hands at a maximum distance of 

1.5 cm from the sensor. In addition, a line trace sensor (LB-LR0005) was included in the modified tablet 

as a proximity sensor to allow measurements only when the participant’s hand was close enough to the 

infra-red sensor. To notify participants that a skin temperature measurement was successfully recorded, 

a buzzer was included in the equipment. The modified equipment and skin temperature measurement 

procedure were tested with 3 people (in their late fifties to mid-seventies) before deployment to ensure 

suitability for the cohort involved in the study. The accuracy of the setup was compared with a medical 

grade infra-red temperature device, presenting a ±0.5°C error range. 

5.2.2. Investigation parts, factors analysed and statistical methods 

The analysis presented in this Chapter is divided into four parts, investigating: 

(1) the characteristics of the dwellings and participants involved in the research, as well as their 

overall TSV and TPV distributions throughout the monitoring period; 

(2) whether the environmental conditions, clothing levels and metabolic rates (i.e., the well-known 

PMV/PPD model variables) remain as significant predictors of older adults’ thermal sensation 

and thermal preference (in an aggregate/generalised way); 

(3) whether health/wellbeing perception could be a predictor of the cohort’s thermal sensation 

and thermal preference (in an aggregate/generalised way); and 

(4) whether skin temperature could be a predictor of the cohort’s thermal sensation and 

preference (in an aggregate/generalised way). 

To conduct investigation 1, the data collected from the interviews and questionnaires were 

gathered, formatted, and analysed using graphical representation and descriptive statistics.  

To conduct investigations 2 to 4, first, the datasets comprising the environmental conditions 

measured and point-in-time survey answers were formatted, and experimental measurement errors were 

removed. Operative temperatures and mean radiant temperatures were then calculated from the 

measured dry bulb temperatures, globe temperatures and air speeds measurements applying the 

methods from ISO 7726:1998 (ISO, 1998). In addition, participants’ activity level answers in the surveys 
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were converted to metabolic rates, in MET units, according to the Compendium of Physical Activities 

(Ainsworth et al., 2011), and later corrected based on participants’ sex, height, weight and age, according 

to Byrne et al. (2005) and Kozey et al. (2010). This variable is termed the “Corrected Metabolic Rate” in 

this thesis. One MET is defined as 1 kcal/kg/hour and is roughly equivalent to the energy cost of sitting 

quietly. A MET can also be defined as oxygen uptake in ml/kg/min, with 1 MET equal to the oxygen cost 

of sitting quietly, equivalent to 3.5 ml/kg/min (Ainsworth et al., 2011). 

Furthermore, clothing levels (in the scale 1 = very light, 2 = light, 3 = moderate, 4 = heavy, 5 = very 

heavy) were used in this analysis, instead of clothing insulations in clo (as commonly used in thermal 

comfort studies), because these were not measured as continuous variables by the researchers and were 

rather reported by the participants as categorical approximations. Clothing levels were converted into 

averaged clothing insulations in clo only in Chapters 6 and 7 to calculate the PMV index used for 

comparison with the personal comfort models.  

Descriptive statistical indicators (e.g., mean, median, maximums, and minimums) were then 

calculated for the following factors: the operative temperature, dry-bulb temperature, mean radiant 

temperature, relative humidity, air speed, clothing level, metabolic rates and health/wellbeing perception. 

The variables were also checked for normality using the normal Q-Q Plots. 

Following this initial analysis, linear regression analysis was conducted to draw insights into these 

variables’ individual relationships with participants’ TSV and TPV recorded during the surveys. TSV and 

TPV were modelled as dependent variables and the other factors as individual independent variables. 

First, the independent variables were binned individually. Operative, dry bulb and mean radiant 

temperatures were binned in 0.5°C increments, air speed in 0.1m/s increments, relative humidity in 5% 

increments, corrected metabolic rates in 0.1 MET increments, and clothing level and health/wellbeing in 

their original 1 increment categories. The mean of the independent variables and corresponding TSVs 

and TPVs (dependent variables) were subsequently calculated for each bin. Once the independent data 

is binned, the mean of the dependent categorical variable is determined at each bin and can be treated 

as a continuous variable. Linear regression models were then fitted to the binned data points, weighted 

by the number of votes in each bin, using the weighted least squares regression method, which is widely 

used in thermal comfort field studies (Wang, 2006; Nakano et al., 2002; de Dear and Fountain, 1994; 

Wang et al., 2018). 

Finally, Mann-Whitney U tests were used to analyse the relationship between air speed (i.e., the 

dependent variable) and the use of fans, heating and cooling, and opening of windows (i.e., the 
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independent variables). This test was chosen specifically to this variable since air speed measurements 

are continuous variables and are not considered normally distributed from the normal Q-Q tests, in 

addition to the independent variables being categorical, with two independent groups and all 

measurements being independent. For all analysis in this thesis, statistical significance was assumed at 

p < 0.05. 

Note that the skin temperatures’ effects on thermal preference and sensation were analysed as a 

separate dataset, since only a limited number of participants were involved in the second data collection 

period when skin temperatures were measured. For this exploration, as in the previous exploration, point-

in-time skin temperature measurements were first binned in 0.5°C increments. Then, the means of the 

skin temperatures and corresponding TSVs and TPVs were calculated for each bin, until linear regression 

models could be fitted to the binned data points, weighted by the number of votes in each bin, using the 

weighted least squares regression method.  

All analyses in this chapter were conducted using the SPSS statistical package Versions 26.0.0 

and 27.0.0 (IBM Corp., 2020). 

5.3. Results 

The following subsections present the results of the four-part exploration conducted in this Chapter. 

5.3.1. First investigation: dwellings and participants’ characteristics and overall TSV and 

TPV 

The 71 participants involved in this study lived independently in 57 dwellings located in the State 

of South Australia, as presented in Figure 5-1. Their approximate location in the 3 main geographical 

areas studied (i.e., the Iron Triangle, the Adelaide Metropolitan Area + Adelaide Hills, and the Fleurieu 

Peninsula) are shown in Figure 5-2, Figure 5-3 and Figure 5-4. 
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Figure 5-1 - All dwellings' locations in South Australia 

 

Figure 5-2 - Dwellings' locations in the Iron Triangle (BSk climate zone) 
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Figure 5-3 - Dwellings' locations in the Adelaide Metropolitan area (Csa climate zone) and the Adelaide 

Hills (Csb climate zone) 

 

Figure 5-4 - Dwellings' locations in the Fleurieu Peninsula (Csb climate zone) 
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Table 5-3 presents a summary of the participants’ house characteristics. Among the dwellings 

monitored, most of them were either semidetached or detached houses. Only 3 were apartments in multi-

storey buildings and 1 was a “granny flat” (i.e., free-standing constructions built in the backyard of a 

family’s main house). Most houses were 1 storey high. They were mostly constructed with external walls 

of double brick or brick veneer, and roofs of corrugated steel sheeting. External walls were insulated in 

45% of the buildings, and 69% of dwellings had insulated ceilings and/or roofs. The dwellings’ age ranged 

from 1 to 169 years old, with areas ranging from 50m2 to 480m2. Older houses generally had suspended 

timber floors and the newer houses had concrete slab-on-ground construction.  

Most dwellings’ main living areas had heating (ranging from reverse cycle split or ducted systems, 

electric heaters, gas heaters, radiant panel heaters, wood fires and underfloor heating) and cooling 

(including reverse cycle split or ducted systems, ducted evaporative cooling systems, window-mounted 

or portable cooling devices), as shown in Table 5-3. The presence of ceiling or pedestal fans was also 

common among dwellings. In addition, internal blinds were present in all dwellings, while external blinds 

were present in 56% of the dwellings. 

It is worth noting that 12 of these 57 houses were located in retirement villages, which are housing 

developments targeted for people aged 65 or over, where they live independently in their own houses. 

Although some retirement villages provide services, they are considered examples of independent living. 

Table 5-3 - Summary of participants’ house characteristics 

Climate 
Zone 

Partici- 
pant ID 

House Type 
No. of 
floors 

Total 
area (m2) 

Age of 
dwelling 
(years) 

External Wall 
Construction 

Main Living 
area Cooling 
system3 

Main Living 
area Heating 
system3 

Csa 

1 Detached 1 113.9 169 Double brick RC-Split RC-Split 

2 Detached 1 134 60 Double brick Evap-Ducted Gas Heater 

3 Detached 1 129.5 115 Double brick2 Evap-Ducted Wood fire 

4 Detached 1 51.3 31 Brick-veneer2 None Wood fire 

5 Apartment 
On 1st 
floor 

56.4 3 
Prefabricated 
Concrete Panels 

RC-Split RC-Split 

8 Detached 2 158.9 24 Brick-veneer2 Evap-Ducted Gas heater 

11 
Semi-
detached 

2 234.2 10 
Reverse brick-
veneer2 

RC-Split 
RC-Split and 
underfloor 
heating 

12 Detached 1 68.9 25 Brick-veneer2 RC-Split RC-Split 

14 Granny-flat 1 53.45 5 Steel framed2 RC-Split RC-Split 

17 Detached 1 87.45 44 Brick-veneer2 RC-Ducted RC-Ducted 

18 Detached 1 172.4 104 Double brick 
Window-
mounted 

Gas heater 

20 Apartment 
On 2nd 
floor 

50 30 Double brick RC-Split RC-Split 

27 Semi-
detached 

1 230.6 17 Brick-veneer2 RC-Ducted RC-Ducted 
28 

33 
Semi-
detached 

2 138.7 40 Double brick 
Portable Air-
conditioner 

Gas heater and 
Wood Fire 

34 Detached 1 142.3 43 Double brick Evap-Ducted Gas heater 
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35 
Semi-
detached 

1 144.5 30 Double brick RC-Split RC-Split 

36 Detached 1 133 21 Brick-veneer2 Evap-Ducted Electric blanket 

38 Semi-
detached 

1 241.5 22 Brick-veneer2 Evap-Ducted 
Underfloor 
heating 39 

41 
Semi-
detached 

1 49.1 30 Double brick2 RC-Ducted RC-Ducted 

42 Apartment 
On 1st 
floor 

167.7 40 Double brick RC-Split Electric heater 

43 
Semi-
detached 

2 251.8 28 Double brick2 RC-Ducted RC-Ducted 

45 Detached 1 145.4 9 Brick-veneer2 Evap-Ducted None 

53 Detached 1 68 Not available Double brick RC-Split 
RC-Split and 
electric heater 

59 Detached 1 208.2 110 
Sold brick with 
sandstone 

RC-Ducted RC-Ducted 

62 
Detached 1 253.3 17 Brick-veneer2 RC-Ducted 

RC-Ducted and 
Gas heater 63 

66 
Detached 1 154.4 60 Double brick RC-Split RC-Split 

67 

68 
Detached 1 216.6 23 Brick-veneer2 Evap-Ducted Gas heater 

69 

71 Detached 1 143.9 12 Brick-veneer2 RC-Split 
RC-Split and 
electric heater  

Csb 

6 
Detached 1 103.4 15 Brick-veneer RC-Split RC-Split 

7 

9 
Semi-
detached 

1 60.1 45 Double brick RC-Split 
RC-Split and 
Fan heater 

13 Detached 2 191.6 26 Brick-veneer2 RC-Ducted RC-Ducted 

16 
Detached 
(elevated) 

1 121 19 Timber framed2 RC-Split RC-Split 

19 Detached 1 127.8 60 Brick-veneer RC-Split RC-Split 

21 Detached 1 66.4 63 Timber framed2  None Wood stove 

22 
Semi-
detached 

1 71.8 22 Brick-veneer RC-Split RC-Split 

23 Detached 1 128.7 40 Timber framed RC-Split RC-Split 

24 
Semi-
detached 

1 139.1 12 Brick-veneer2 RC-Split RC-Split 

25 
Detached 1 154.4 9 Brick-veneer RC-Ducted RC-Ducted 

26 

29 
Detached 1 137 8 Brick-veneer2 RC-Ducted RC-Ducted 

30 

31 Detached   257.6 15 Brick-veneer None Gas heater 

37 Detached 1 175.6 14 Brick-veneer2 RC-Split 
RC-Split and 
radiant panel 
heater 

40 Detached 1 94.8 16 Timber framed2 RC-Split 
RC-Split and 
Gas heater 

44 Detached 2 315.4 35 
Block work filled 
with concrete2 

Evap-Ducted 
and RC-Split 

Wood Slow 
Combustion 
Heater 

46 
Detached 2 483.6 30 Double brick None 

Wood Fire, 
Electric heater 47 

48 Semi-
detached 

1 169.5 2 SIP1 RC-Split RC-Split 
49 

50 
Semi-
detached 

1 198.8 1 SIP1 RC-Split RC-Split 

51 
Detached 1 159.9 20 Brick-veneer2 RC-Ducted RC-Ducted 

52 

56 
Detached 1 197.4 24 Brick-veneer2 RC-Ducted RC-Ducted 

57 

58 
Semi-
detached 

1 171.5 3 SIP1 RC-Split RC-Split 
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60 
Detached 
(elevated) 

1 125.7 20 Timber framed2 RC-Split 
RC-Split and 
electric heater 

61 
Semi-
detached 

1 163.6 5 SIP1 RC-Split RC-Split 

64 
Detached 1 171.3 8 Brick-veneer2 RC-Ducted RC-Ducted 

65 

70 Detached 1 149.2 27 Brick-veneer RC-Split RC-Split 

BSk 

10 
Semi-
detached 

1 51.4 33 Double brick RC-Split  
RC-Split and 
Fan heater 

15 Detached 1 117.2 103 Double brick RC-Split  
RC-Split and 
Gas Fire 

32 
Semi-
detached 

1 82 58 Double brick RC-Split Gas heater 

54 
Detached 1 210.8 80 Double brick RC-Split 

RC-Split and 
gas heater 55 

Obs.: Participants’ ID numbers were randomly assigned for each person. They are used for the personal thermal comfort models 

presented in Chapters 6, 7 and 8. 
1 SIP = Structural Insulated Panel 
2 Insulated 
3 RC-Ducted = Reverse Cycle Ducted System; RC-Split = Reverse Cycle Split System; Evap-Ducted = Ducted Evaporative Cooling 

As shown in Table 5-4, among the 71 participants involved in the study, 48 were females and 23 

were males. They were aged from 65 to more than 85 years old. Their body composition and frailty 

assessments showed wide individual differences in health-related factors. Although most were not 

considered frail, participants with mild to moderate frailty were present. Note that a few participants were 

not able or chose not to answer the additional questionnaire that involved body composition and frailty 

assessments. The averages, maximums and minimums showed in Table 5-4, therefore, do not take into 

account these cases. From the questionnaire on health and chronic diseases, 73% of participants 

reported at least one diagnosed chronic disease, with high blood pressure being the most reported (i.e., 

40 out of the 71 participants). 

Table 5-4 - Participants’ characteristics 

ID Sex Age 

Body Composition 

Frailty5 
(1 to 5) 

Height 
(cm) 

Weight 
(kg) 

BMI1 

(kg/m2) 

Body 
Fat 
(%) 

Muscle 
Mass2 
(kg) 

Physique 
Rating3  
(1 to 9) 

Bone 
Mass 

Visceral 
Fat Rate4  
(1 to 59) 

Body 
Water 

(%) 

1 F 71 157.2 78.9 32.0 40.3 44.7 3 2.4 12.0 41.1 1 

2 M 86 179.5 86.4 26.8 --- --- --- --- --- --- 1 

3 F 79 156.5 64.6 26.2 42.5 35.3 2 1.9 11.5 40.2 1 

4 F 81 163.0 58.2 21.9 32.4 37.4 5 2.0 9.0 44.5 2 

5 F 79 161.0 97.6 37.6 46.4 49.6 3 2.6 16.5 36.5 1 

6 M 76 175.5 88.5 28.6 29.4 59.4 2 3.1 17.5 48.4 1 

7 F 76 149.5 75.1 33.4 43.8 40.1 3 2.2 14.0 39.4 1 

8 M 82 174.0 89.9 29.7 36.4 54.4 2 2.9 22.0 52.4 2 

9 F 67 150.0 82.4 36.6 49.0 39.9 3 2.1 15.0 37.7 4 

10 F 86 151.0 110.4 48.4 58.6 43.4 3 2.3 25.0 31.4 4 

11 F 78 156.5 72.1 29.6 40.8 40.6 2 2.2 12.5 43.2 1 

12 F 75 149.0 62.2 28.0 --- --- --- --- --- --- 1 

13 M 90 173.0 94.5 31.6 35.9 57.5 2 3.0 24.0 49.2 1 

14 F 76 161.0 56.8 21.9 35.1 35.0 4 1.9 --- 46.0 1 

15 M 68 178.0 80.6 25.4 23.3 58.7 5 3.1 13.0 53.2 1 

16 F 72 151.5 63.1 27.3 37.5 37.4 2 2.0 10.5 45.4 1 

17 F 76 157.0 89.1 36.1 47.1 44.7 3 2.4 15.5 35.6 1 

18 F 73 179.5 101.8 31.6 --- --- --- --- --- --- 1 
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19 F 92 153.0 66.1 28.2 42.5 36.1 2 1.9 14.0 40.1 1 

20 F 75 160.0 61.6 24.1 33.5 38.9 5 2.1 9.0 45.1 1 

21 F 78 158.5 78.1 30.9 44.2 41.3 2 2.2 13.5 39.4 1 

22 F 69 160.0 70.9 27.7 39.3 40.8 2 2.2 10.5 41.8 1 

23 F 76 164.5 86.4 31.9 --- --- --- --- --- --- 2 

24 F 77 160.5 84.6 32.6 44.7 44.4 2 2.4 14.0 36.1 1 

25 M 88 168.0 83.6 29.6 --- --- --- --- --- --- 1 

26 F 81 154.5 76.1 32.1 46.8 38.4 2 2.1 14.5 43.0 1 

27 F 75-79 --- --- --- --- --- --- --- --- --- 2 

28 M 85 170.0 81.0 28.0 33.8 50.9 2 2.7 20.5 52.2 1 

29 F 65-69 --- --- --- --- --- --- --- --- --- --- 

30 M 72 173.0 118.2 39.5 41.3 66.0 3 3.4 27.5 41.9 2 

31 F 74 162.5 86.9 32.7 46.2 44.4 2 2.4 14.0 37.2 1 

32 F 82 145.0 64.0 30.4 47.0 32.2 2 1.7 14.5 42.1 2 

33 M 80 171.5 109.1 36.9 37.3 65.0 3 3.4 25.5 42.2 1 

34 F 66 162.5 79.5 29.9 38.8 46.1 2 2.5 10.5 37.5 1 

35 M 73 160.0 119.0 46.5 44.8 62.4 3 3.3 33.5 45.2 3 

36 F 74 160.5 95.4 37.0 --- --- --- --- --- --- 2 

37 F 75 168.5 85.7 30.0 42.8 46.6 2 2.5 12.5 36.4 1 

38 F 82 166.0 71.9 26.1 37.1 42.9 2 2.3 11.0 42.1 1 

39 M 84 173.0 99.1 33.1 32.5 63.6 2 3.3 22.0 46.7 1 

40 M 86 175.0 85.9 28.0 33.0 54.7 2 2.9 20.5 52.1 1 

41 F 71 159.0 78.3 31.0 --- --- --- --- --- --- 1 

42 F 75 156.5 75.9 31.0 --- --- --- --- --- --- 2 

43 M 73 172.0 66.3 22.4 24.4 47.6 4 2.6 13.5 52.1 1 

44 M 76 172.5 83.1 27.8 29.4 55.7 2 2.9 17.5 48.7 1 

45 F 74 152.0 79.7 34.5 46.3 40.7 3 2.2 14.5 37.7 1 

46 F 66 166.5 117.0 41.9 53.2 52.0 3 2.8 18.0 36.8 1 

47 M 65 183.0 56.5 16.9 11.1 47.7 7 2.6 7.0 78.9 1 

48 F 77 156.0 81.2 33.3 43.5 43.5 3 2.3 14.0 37.1 2 

49 M 83 163.5 68.6 25.8 28.0 46.9 2 2.5 17.5 50.9 1 

50 F 81 162.0 60.0 22.8 29.4 40.2 5 2.2 9.0 46.9 1 

51 F 72 150.5 64.6 28.3 39.6 37.0 2 2.0 11.0 41.6 2 

52 M 76 180.0 69.1 21.3 22.8 50.7 4 2.7 13.0 50.4 1 

53 F 82 153.5 45.8 19.3 37.4 27.2 1 1.5 9.5 49.0 4 

54 F 75-79 --- --- --- --- --- --- --- --- --- --- 

55 M 83 170.0 74.2 25.7 --- --- --- --- --- --- 3 

56 F 78 159.0 64.8 25.6 36.3 39.2 2 2.1 10.5 40.9 1 

57 M 79 177.5 77.9 24.6 24.1 56.2 5 3.0 15.0 50.2 1 

58 F 74 162.0 75.3 28.7 40.6 42.4 2 2.3 11.5 41.4 1 

59 F 75 161.0 57.6 22.2 34.6 35.8 4 1.9 9.0 43.6 1 

60 F 71 151.0 55.2 24.2 32.8 35.2 5 1.9 8.5 42.9 1 

61 F 81 164.0 75.3 28.0 43.0 40.8 2 2.2 12.5 41.8 1 

62 F 76 158.0 85.5 34.2 49.0 41.4 2 2.2 15.5 38.1 2 

63 M 80 167.5 79.8 28.3 29.4 53.5 2 2.8 18.5 49.8 1 

64 M 77 170.0 91.7 31.7 --- --- --- --- --- --- 1 

65 F 78 166.0 91.3 33.1 46.4 46.5 2 2.5 14.5 37.0 3 

66 F 72 151.5 70.2 30.4 39.4 40.4 3 2.2 11.5 40.7 1 

67 M 73 166.0 70.5 25.6 23.8 51.0 5 2.7 14.0 50.5 1 

68 F 77 156.0 77.4 31.8 41.6 42.9 3 2.3 13.0 41.7 1 

69 M 77 172.0 111.7 37.8 --- --- --- --- --- --- 1 

70 F 87 159.0 90.7 35.8 50.6 42.5 2 2.3 17.5 39.4 2 

71 F >85 --- --- --- --- --- --- --- --- --- --- 

Average 77 163.1 79.8 30.0 38.2 45.5 3 2.4 14.9 43.8 1 

Standard 
Deviation 

5.7 9.0 15.9 5.8 8.7 8.6 1.2 0.4 5.2 7.1 0.8 

Min 65 145.0 45.8 16.9 11.1 27.2 1 1.5 7.0 31.4 1 

Max 92 183.0 119.0 48.4 58.6 66.0 7 3.4 33.5 78.9 4 
1 BMI = Body Mass Index, calculated from height and weight measurements. 
2 Sum of skeletal muscle, smooth muscle and water in muscle, calculated by the Tanita scale (Tanita Corporation, 2016). 
3 Calculated according to the ratio between fat and muscle, by the Tanita scale (Tanita Corporation, 2016). 
4 Calculated according to the amount of fat that is in the internal abdominal cavity, surrounding the vital organs in the abdominal area, by 

the Tanita scale (Tanita Corporation, 2016). 



102 

 

5 Assessed according to the Modified Reported Edmonton Scale (MRES) (Rose et al., 2018), where 1 = not frail, 2 = apparent 

vulnerability, 2 = mild frailty, 3 = moderate frailty, 4 = severe frailty. 

In terms of income, 3 of the 71 older adults worked part time to complement either a part pension 

or a self-funded retirement; 39 received full pension, 9 received part pension in addition to self-funding 

themselves, and 20 were entirely self-funded. Their living arrangements comprised of 52% of the cohort 

living with a spouse, 42% living alone and 6% with their children or their spouse and children. A 

considerable proportion of the participants (50 out of 71) were born in Australia, with the rest born in the 

United Kingdom (19 out of 71), Ireland (1 out of 71) or Indonesia (1 out of 71).  

Furthermore, when asked about their general weather preference, 30% reported preferring hot 

weather, another 30% preferred cold weather, 18% reported disliking both types of weather, and 22% 

reported no preference, which indicates an interesting diversity within the group. 

When asked how concerned they were about the cost of running their air conditioning systems, 

69% of participants reported some level of concern (from somewhat to extremely concerned) about 

running their heating, and 66% reported some level of concern about running cooling. 

It is worth noting that, when asked about the first thing they do to stay thermally comfortable on 

hot and cold days, the participants reported using an adaptive behaviour by first adjusting their clothing 

layers, as seen in Figure 5-5. To keep cool on a very hot day, reducing clothing layers was participants’ 

most frequent first action (23% of participants) followed by turning on the cooling system (20%). Likewise, 

to keep warm in very cold days, adding clothing layers was the main answer (68%), followed by turning 

on heating systems (15%). Noticeably, changing clothing insulation is a more frequent priority on cold 

days than on hot days. 
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Figure 5-5 - First thing participants do to keep cool on a hot day and warm in a cold day 

This initial investigation on participants’ characteristics also analysed their overall thermal 

sensations and preferences throughout the 9-month monitoring period. Up to the end of the monitoring 

period, 10,787 votes (i.e., complete survey answers) were recorded from the occupants’ survey and more 

than 600,000 indoor environmental conditions sets were recorded in the loggers. Some participants 

answered surveys more frequently than others, with an average of 152 votes per participant in the 9 

months of monitoring, a maximum vote count of 672 votes and a minimum of 18 votes in the period. 

Survey answers occurred throughout the 24 hours of the day, with the highest frequency of votes 

occurring between 4 and 5pm (Figure 5-6). Only one house (House 4) opted to withdraw from the study 
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for personal reasons. This house’s data were removed from the datasets, although the houses were not 

renumbered after this withdrawal. 

 

Figure 5-6 - Number of survey answers per hour of the day 

From the 10,787 survey answers, the thermal sensation and thermal preference votes were 

normally distributed, although a slight skewness was observed on the cooler side of the TSV scale and 

in the preference to be on the warmer side of the TPV scale, as seen in Figure 5-7. 

 

Figure 5-7 - Total number of votes cast for each TSV category and TPV category  

The cross-tabulation of the thermal preferences versus the thermal sensation vote count is shown 

in Table 5-5. Although a preference for no change was more frequently matched to a neutral thermal 

sensation, the data show a considerable proportion of occupants reporting other than neutral thermal 
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sensations without the preference for change, as highlighted in grey in the table. Figure 5-8 visually 

illustrates the same conclusion. This contradicted the notion of “neutrality seeking”, as explained in 

Chapter 2, and has also been evidenced in previous studies with the general Australian population 

(Williamson et al., 1995). Saman et al. (2013), in a study with a cohort of the general South Australia 

population, and Bills (2019), on a study involving another cohort of older South-Australians, reported 

similar distributions between thermal sensations and preferences.  

Table 5-5 - Cross-tabulation of thermal preference and thermal sensation vote count 

 Thermal preference  

Thermal sensation 
Prefer to be 
cooler (1) 

Prefer no 
change (2) 

Prefer to be 
warmer (3) 

Total Count 

Cold (-3) 0 1 116 117 

Cool (-2) 6 270 403 679 

Slightly cool (-1) 16 1446 1230 2692 

Neutral (0) 53 5519 168 5740 

Slightly warm (+1) 297 804 50 1151 

Warm (+2) 126 215 15 356 

Hot (+3) 51 1 0 52 

Total Count 549 8256 1982 10787 

 

 

Figure 5-8 - Percentage of survey answers in each thermal sensation category for each thermal 

preference category 
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5.3.2. Second investigation: environmental factors, clothing level and corrected 

metabolic rate 

With an overall understanding of the dwellings and participants involved in the monitoring study, 

as well as their general thermal sensations and preferences throughout the 9 months, the related 

environmental conditions, clothing levels and corrected metabolic rates were analysed and the results 

are presented in the subsections below. 

Indoor temperatures 

The hourly indoor operative temperatures recorded in the main living area and main bedroom of 

the houses, throughout the 9-month monitoring period, showed considerable variation among the houses. 

The recorded maximum and minimum hourly operative temperatures, per day, in each house, as well as 

the average among the houses, are shown in Figure 5-9 and Figure 5-10 for the three climate zones. 

The figures also highlight that the variation in maximum and minimum hourly operative temperatures 

among the monitored buildings was especially evident during colder periods of the year (from mid-May 

until mid-September). This reflects not only the external weather variations within climate zones, but also 

factors such as the occupants’ behaviour, their use of heating appliances, as well as diverse aspects of 

the house design and construction details that influence the thermal environment.  

Hourly operative temperatures reached as high as 40.71°C and hourly indoor temperatures 

reached as low as 5.01°C, when considering all houses. Extreme indoor operative temperatures, 

however, might indicate times when the houses were not occupied and, therefore, when heating or 

cooling was off or windows or blinds were shut or not operated. 
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Figure 5-9 - Maximum hourly indoor operative temperatures, per day, for houses located in Climate 5 

(Csa), Climate 6 (Csb) and Climate Zone 4 (BSk), thoughought the 9-month monitoring period 
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Figure 5-10 - Minimum hourly indoor operative temperatures, per day, for houses located in in Climate 

5 (Csa), Climate 6 (Csb) and Climate Zone 4 (BSk), thoughought the 9-month monitoring period 
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The box plots presented in Figure 5-11 emphasise the different thermal environments to which 

the participants might have been exposed during the monitoring study. The operative temperature 

spreads among the houses’ plots show that while some houses (e.g., House 12) had narrow temperature 

variability and possibly more controlled environments, some others (e.g., Houses 9 or 18) had 

considerably more variable temperatures throughout the period. This reiterates differences in house 

design and house operations by participants. The box plots also show a slight skewness in some of the 

temperature distributions, such as the case of houses 41 and 42, where the medians and means are not 

aligned. In general, the plots also show that most of the outliers in the houses’ indoor temperature 

distributions are located after the upper whisker limit (and not the lower whisker limit), which could indicate 

a tendency to find lower temperatures inside the majority of these houses. Outliers in this study are 

considered as datapoints located further than 1.5 times the interquartile range from each box end. Note 

that experimental measurement errors in the dataset had already been removed. 

 

Figure 5-11 - Box plot of the hourly recorded indoor operative temperatures in each house throughout 

the monitoring period 

When looking into participants’ thermal sensation (TSV) and thermal preference (TPV) votes 

recorded from the point-in-time thermal comfort surveys, and the corresponding measured indoor 

temperatures, it is possible to observe strong correlations. Figure 5-12 highlights the significant 

relationship between participants’ TSV and TPV with operative temperatures. This was indicated by 

higher R-squared values (i.e., the coefficient of determination, indicating the percentage of the TSV and 
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TPV variance that the independent variable explains) of the weighted linear regression model, a 

statistically significant independent variable coefficient (i.e., regression coefficient B has p < 0.05) and a 

general visual indication in the raw data scatter plots. Although the variances (R-squared value) were 

inflated as a result of binning, they still serve as an indicator of comparison between models for 

exploratory analysis. 

 

Figure 5-12 - Raw and binned correlations of operative temperatures for thermal sensantion votes (left) 

and thermal preference votes (right) 

Solving the thermal sensation regression equation for a neutral sensation (y = 0) resulted in a 

“neutral indoor operative temperature” of 24.4°C for the older adults analysed. Separating the dataset for 

the hot/warm season (considered to be from January until March) and following the same regression 

procedure yielded a higher neutral sensation of 25.1°C. In contrast, the regression analysis on the 

dataset of the cool/cold season (considered from June to August) resulted in a lower neutral temperature 

of 23.5°C. This could indicate important seasonal adaptations from the cohort analysed. 

Similar relationships are observed when exploring the TSV and TPV relationship with the dry-bulb 

temperature and mean radiant temperature. These variables, can, therefore, be considered good 

predictors for the thermal sensations and preferences of the older cohort analysed, and will be used for 

further analysis in Chapters 6 and 7. 

Relative humidity 

The hourly relative humidity recorded in the houses varied between 15.6% and 78.9%, with an 

average of 53.11% throughout the 9-month period, for houses located in climate zone 4 (BSk). For the 

ones located in climate zone 5 (Csa), the hourly relative humidity measurements were naturally slightly 

higher, varying between 19.6% and 90%, with an average of 57.17%. Likewise, houses located in climate 
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zone 6 (Csb) recorded hourly relative humidity between 16.7% and 95.8%, with an average of 58.7%. 

Similar to the measured temperatures, the relative humidity measurements presented significant 

variations across the houses, indicating diverse combinations of house design, construction details, and 

operation. 

Considering the relative humidity measurements taken when participants recorded the thermal 

sensation and preference votes, the data show significant correlations, although not as visually evident 

as the ones observed in the temperature analysis, as seen in Figure 5-13. While cooler sensations and 

preferences for warmer conditions tended to be perceived when the relative humidity increased, and vice-

versa, a stronger influence of indoor temperatures is clear. 

 

Figure 5-13 - Raw and binned correlations of relative humidity with thermal sensation votes (left) and 

thermal preference votes (right) 

Air speed 

Hourly air speed measurements throughout the monitoring period varied between 0.09 and 4.90 

m/s in the houses, although air speeds higher than 2.5 m/s were considerably less frequently recorded 

(1.29% of the hourly measurements). High air speeds could be associated with the use of fans, the use 

of cooling and heating appliances or the opening of windows. When analysing participants ’ survey 

answers and corresponding air speed measurements, the Mann-Whitney U test showed that air speeds 

were significantly higher when fans were reported on, compared with when fans were reported off (U = 

2041091, p = 0.000). The same test showed the same conclusion when heating (U = 6745047, p = 

0.0000) or cooling (U = 3389531, p = 0.000) were on in comparison with off, or when windows were 

reported all opened in comparison with all closed (U = 4132001, p = 0.000). 
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Fitting a weighted linear regression model to participants’ TSV and TPV against the air speed 

measurements presented statistically significant independent variable coefficients (i.e., p < 0.05). The 

correlation between the variables, however, is less strong than for the cases of indoor temperatures and 

relative humidity, indicated by lower R-squares (Figure 5-14). When considering the relationship between 

TPV and air speeds, Figure 5-14 shows a tendency for preferring to be cooler with the increase of air 

speeds. This could mean that, instead of air speeds influencing the thermal preferences, air speeds were 

the result of said preferences and, therefore, an indication of participants’ adaptive behaviours, such as 

the increase in air movement by using fans or opening windows. In other words, participants’ air speeds 

were higher because participants preferred to be cooler and not the other way around (participants 

preferred to be cooler because air speeds were higher). 

 

Figure 5-14 - Raw and binned correlation of air speeds with thermal sensation votes (left) and thermal 

preference votes (right) 

Clothing 

The clothing level reported by participants when answering the thermal comfort surveys varied 

throughout the entire scale (from 1 to 5) with an average of 2.86. Interestingly, the linear regression 

analysis (Figure 5-15) showed that cooler thermal sensations and a preference for wanting to be warmer 

were more sensitive to clothing than the opposite thermal sensations and preferences. This could indicate 

that changing clothing levels is a more common adaptive behaviour when a preference for being warmer 

is higher, than when a preference for being cooler is higher. Similarly, lighter clothing levels were not as 

common in lower thermal sensations (e.g., cold, cool, slightly cool) than higher clothing levels were in 

higher thermal sensations (e.g., hot, warm, slightly warm). 
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Figure 5-16 reiterates this conclusion. While heavier clothing was more frequently linked to cooler 

sensations, lighter clothing was more frequently matched with neutral sensations (and not warmer 

sensations). This is clear as the graphs in Figure 5-16 are not visually symmetrical around the middle 

clothing level category. Likewise, most of the times that participants reported heavier clothing were linked 

to preferences to being warmer, but most of the times lighter clothing was associated with preferences 

for no change (and not a preference to be cooler). 

 

Figure 5-15 - Correlation of clothing levels with thermal sensation votes (left) and thermal preference 

votes (right) 

 

Figure 5-16 - Percentages of survey answers for each clothing level for each thermal sensation 

category (left) and for each thermal preference category (right) 
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This assumption was already partially indicated in Figure 5-5 (in Section 5.3.1 of this chapter), 

where changing clothing insulation was reported as the first action to keep warm by 68% of participants, 

but as the first action to keep cool by only 23% of them, in the initial questionnaire. Further insights into 

clothing levels were made evident once individual datasets (in the context of personal comfort models) 

were analysed and a discussion about these can be found in Chapter 8. 

Corrected metabolic rates 

Corrected metabolic rates related to the activity levels reported by participants throughout the 

surveys were not normally distributed, with lower corrected metabolic rates more frequent than higher 

corrected metabolic rates. They presented an average of 1.72 MET, a minimum of 0.66 MET and a 

maximum of 4.84 MET. This could indicate a tendency for a lower level of activity among the participants, 

as well as a combination of age, sex, body composition and activity levels that resulted in lower metabolic 

rates. 

Although less than the environmental variables, the corrected metabolic rates showed correlations 

with TSV and TPV, as shown in Figure 5-17, with lower metabolic rates linked to cooler thermal 

sensations (and a preference to be warmer) and with higher metabolic rates corresponding to warmer 

thermal sensations (and a preference to be cooler). 

 

Figure 5-17 - Raw and binned correlation of corrected metabolic rates with thermal sensation votes 

(left) and thermal preference votes (right) 

5.3.3. Third investigation: health/wellbeing perception 

The third part of the investigation presented in this Chapter introduces health/wellbeing perception 

– a variable often overlooked in architectural sciences and building engineering research studies − as a 
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potentially significant variable to be taken into consideration when understanding thermal sensation and 

preference of older adults.   

Overall, the participants’ point-in-time health/wellbeing perception answers throughout the 9-month 

monitoring period ranged from 1 to 5 (on the scale 1 = very good, 2 = good, 3 = reasonable, 4 = poor and 

5 = very poor), with a mean of 2.25 (between good and reasonable). When analysing the binned 

health/wellbeing perception answered in relation to TSV, the data showed a tendency for poor health to 

be perceived in cooler sensations, although a statistical significance of the weighted linear regression 

coefficient was not observed. Likewise, participants’ health was perceived as poorer with a thermal 

preference for being warmer, as shown in Figure 5-18. 

 

Figure 5-18 - Correlation of health/wellbeing perception with thermal sensation votes (left) and thermal 

preference votes (right) 

This relationship can be seen Figure 5-19, which indicates the percentages of survey answers 

in each health/wellbeing perception for each thermal sensation category and for each thermal preference 

category. Thermal sensations for cold, cool and slightly cool were more frequent within the poor and very 

poor health/wellbeing perceptions. Similarly, preferences for warmer were more frequent with the poorer 

health/wellbeing perception answers. 
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Figure 5-19 - Percentages of survey answers in each health/wellbeing perception for each thermal 

sensation category (left) and for each thermal preference category (right) 

A strong correlation between indoor temperatures and health/wellbeing perception was also found 

through the analysis of this dataset, and the implications and details of this analysis have been published 

separately by Hansen et al. (2022). 

5.3.4. Fourth investigation: skin temperatures 

The last exploration conducted in this study, based on a separate dataset from the second data 

collection period, investigated the aggregate/generalised relationship between participants’ back of the 

hand skin temperatures and their corresponding thermal sensation and preference votes. 

From the 565 survey answers and environmental and skin temperature measurements derived 

from the 11 participants of the second monitoring period, the measurements errors, missing values, and 

evident outliers were removed, resulting in 470 valid datapoints. From these, the skin temperatures 

measured ranged from 22.10°C - 35.23°C, with a mean of 30.58°C among the participants. Note 

however, that this data collection was conducted only during warm/hot weather in South Australia, which 

might have resulted in a higher average than if a longer data collection had been conducted to include a 

cooler season. The limitations of this analysis are acknowledged in this chapter’s limitations section.  

As shown in Figure 5-20, the weighted linear regression analysis showed that cooler thermal 

sensations were associated with lower hand skin temperatures, and that warmer sensations 

corresponded with an increase in hand skin temperatures. Similarly, a preference to be warmer was 

associated with lower hand skin temperatures, while a preference to be cooler was related to higher skin 

temperatures. Further explorations on the general skin temperature dataset are presented in Chapter 7. 
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Figure 5-20 - Raw and binned correlation of skin temperatures with thermal sensation votes (left) and 

thermal preference votes (right). Note that the skin temperature is measured at the back of participants’ 

non-dominant hand. 

5.4. Discussion 

Overall, the investigation of the participants and dwellings involved in the study yielded a number 

of new insights on the thermal conditions of the living environments of older adults and their 

corresponding thermal sensations, preferences and behaviours towards thermal adaptation. 

5.4.1. First investigation 

From the first part of the investigation, it became evident that the houses investigated had a certain 

homogeneity as a group, in terms of external wall, roof and floor construction. The age and size of the 

buildings, however, varied greatly, which could result in a considerable difference in the way the 

environments performed in terms of thermal comfort. In addition, the lack of wall insulation and external 

blinds/shading in half of the homes could lead to greater variations in indoor thermal conditions. Similar 

results have been found in a previous study involving telephone surveys about older adults’ thermal 

environments involving 250 participants in South Australia (Soebarto et al., 2019a). 

The study also confirmed the increasingly widespread use of heating and cooling devices in 

Australia, with all houses in the study having at least one mechanical device for either cooling or heating. 

In terms of types of air conditioning, the households in the study also presented reverse cycle air 

conditioning as the main system of cooling, which again is in line with the general Australian figures, as 

reported by the  Australian Bureau of Statistics (2014). 
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When looking into participants’ personal characteristics, although most of them were assessed as 

not frail, the body composition indicators showed great variability that could result in diverse health 

characteristics that could potentially influence thermal sensations and responses. Body fat percentages 

in the study, for instance, varied from 11 to 58%, while weight varied from 45 to 119kg. Although this 

study was not able to measure a direct association between these body indicators and thermal comfort 

responses, several studies have considered, among numerous aging-related physiological parameters, 

weight, height and body fat percentage as closely related to thermoregulation in older adults (Ma et al., 

2017; Shibasaki et al., 2013; Tsuzuki and Ohfuku, 2002). 

Participants’ first action to keep cool in hot days or warm in cold days showed a variety of practices, 

although more varied actions were taken to keep cool in hot weather than to keep warm in cold weather. 

This range of actions was in line with a similar survey with older adults in South Australia by Hansen et 

al. (2015) (for hot weather) and Soebarto et al. (2019a) (for both kinds of weather). Nevertheless, while, 

in this study, increasing clothing level was the most frequent action taken by participants to keep warm 

in cold weather (68% of participants), in the study by Soebarto et al. (2019a) of a larger cohort, the first 

action taken by the respondents to keep warm was divided between turning on the heater (41%) and 

adjusting clothing level (40%). When analysing participants’ first action to keep cool on hot days, the 

results of this study showed that adjusting clothing level (23% of respondents) and turning on cooling 

systems (20% of respondents) were the two most frequent actions taken by the cohort. Interestingly, 

Soebarto et al. (2019a) reported turning on the air-conditioner (32%), and closing indoor blinds and 

curtains during the day (23%) as the most frequent answers in this case, with adjusting clothing as only 

the 4th most answered option. Noticeably, changing clothing insulation was especially important as an 

adaptive behaviour for the cohort analysed in this study, and will be analysed in further detail in the 

subsequent chapters. 

Considering the participants’ overall thermal preference and sensation answers throughout the 

monitoring study, this investigation also highlighted that a preference for non-neutral thermal sensations 

is possible, and that low and high thermal sensation values do not always represent a state of discomfort 

for a relevant number of older adults. This indicates the need for careful consideration of the scales used 

for thermal comfort modelling, not only for younger adults, as highlighted in Chapter 2, but for older adults 

as well. Depending on the objectives of the models developed, thermal sensation might not be the ideal 

scale to guide actuation systems. 
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Furthermore, as already highlighted by Schweiker et al. (2018), several recent research studies 

have pointed to the health benefits resulting from experiencing dynamic thermal conditions beyond those 

temperature ranges regarded as neutral or comfortable (Lichtenbelt et al., 2014; Hanssen et al., 2016; 

Johnson et al., 2011). These studies have shown that the exposure to non-neutral thermal sensation 

could enhance thermoregulatory capabilities, which opens the field of thermal comfort to interesting new 

research opportunities. Nevertheless, further studies are needed to understand the links between these 

health benefits and dynamic thermal conditions in the context of older adults.   

5.4.2. Second investigation 

The second investigation presented in this study indicated that the six main variables traditionally 

used to explain and/or predict thermal sensation and preference for the general population were also 

significant in explaining the results for the participating cohort. The investigation also showed that the 

variables related to the thermal conditions of the dwellings analysed presented a wide range of variation 

among houses, probably related to differences in design, orientation, presence of insulation, use of 

shading/blinds, climatic variations within climate zones, or occupants’ heating and cooling use 

behaviours. These differences in thermal performance among houses could indicate the need for a more 

granular analysis, either through the individual occupant-centric level or through clustering cases 

according to building types or occupant behaviour profiles.  

The investigation into the neutral temperatures of the older adults analysed showed interesting 

differences when compared with similar studies. While the cohort in this study presented a neutral 

temperature of 24.4°C when considering data for the entire monitoring period (comprising both summer 

and winter months), a similar study with older South Australians by Bills (2019) reported an almost 2 K 

lower neutral temperature of 22.5°C. Similarly, when considering only the winter months, while this study 

yielded a 23.8°C neutral temperature, Bills (2019) reported a 19.4°C neutral temperature. The neutral 

temperatures for summer were also considerably different between studies: 25.1°C in this study and 

22.0°C in the study by Bills (2019). Furthermore, when comparing the neutral temperature of this study 

for the summer period (i.e., 25.1°C) with the neutral temperature of younger adults in a study in Adelaide 

in summer months (i.e., 22.7°C) (Saman et al., 2013), a 2.4 K difference can be observed. This indicates 

that the older cohort, at the population level, tend to feel neutral at higher temperatures than younger 

populations. Similar observations were drawn from a study by Schellen (2012). In this work, during 

climate chamber sessions with a stable temperature condition (21.5°C) with both younger and older 

adults, the older group preferred a higher temperature, while the younger adults requested no change in 
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temperature. Nevertheless, since these are aggregate analyses, individual differences could be masked 

under the averaged values and further investigation into individual thermal sensations and, more 

importantly, individual thermal preferences, is required. 

5.4.3. Third investigation 

Among the factors that might affect thermal comfort, health and wellbeing related parameters such 

as body composition, diseases or illness symptoms, physical disabilities and fitness status have been 

identified in many studies (Bluyssen, 2019; Schweiker et al., 2018; Wang et al., 2018; Zhang et al., 2001). 

Although they seem to be considered important factors explaining human thermal comfort responses and 

perceptions, health and wellbeing indicators are still rarely included as input variables in predictive 

modelling for architectural sciences or building engineering use. This might be a result of the difficulties 

in acquiring such data as varying point-in-time series, especially in long-term field studies. Therefore, the 

introduction of health/wellbeing perception in the surveys was a way found by this study to comprise an 

often-overlooked health-related personal factor that might affect how older people perceive their 

environments.  

The previously-mentioned study by Bills (2019) analysed older South Australians’ 256 thermal 

sensation votes that included reported health symptoms in the 24 hours before each vote was cast (e.g., 

headache, dizziness, tiredness, sleeplessness, joint pain). The study indicated an increase in symptoms 

at slightly warm to hot sensations, as well as at times of cool to cold sensations. The analysis, however, 

while interesting, focussed on the impact of thermal conditions and sensations on health conditions, 

instead of the effects of health conditions on thermal sensation, perception and/or preference. The study 

presented in this thesis, therefore, investigated the latter hypothesis, exploring the point-in-time 

health/wellbeing indicator as a possible predictor of thermal preference and sensation.  

Although the general findings presented in this chapter showed that thermal sensations for cold, 

cool and slightly cool were more frequent when poor and very poor health/wellbeing were perceived, the 

relationships were not as statistically strong as hypothesised, and further analysis at the individual level 

might prove more beneficial, especially for individuals experiencing extremes in health conditions. 

5.4.4. Fourth investigation 

The fourth investigation present in this Chapter aimed at introducing a physiological indicator in 

the list of factors analysed as potential predictors of thermal sensation and preference. As expected, the 

results showed that cooler thermal sensations were associated with lower hand skin temperatures, and 
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that warmer sensations corresponded with an increase in hand skin temperatures. Similarly, a preference 

to be warmer was associated with lower hand skin temperatures, while a preference to be cooler was 

related to higher hand skin temperatures. These results are in line with recent work on 22 older people’s 

thermal sensations by Soebarto et al. (2019b), which showed significant correlations between thermal 

sensations and hand, neck, scapula and shin skin temperatures, with the highest correlation with thermal 

sensation being with the hand's skin temperatures. The mean hand skin temperatures among participants 

in the study varied depending on the environmental conditions and clothing levels whilst undergoing the 

experiment in a climate chamber, but remained similar to the average hand skin temperature measured 

in the present study (i.e., 30.58°C). 

A study by Childs et al. (2020) with sixty-nine older adults, with and without dementia, living in 

residential care in the UK, in mean ambient temperatures of 21.4 to 26.6°C, revealed slightly higher hand 

skin temperatures: a mean finger-tip temperature of 30.9°C, wrist temperature of 31.9°C (the closest 

position to the one used in the current study) and a forearm temperature of 31.9°C. The study also 

observed that while older adults had lower mean skin temperatures and were in lower indoor 

temperatures than studies with younger adults in work environments, a comparable percentage of 

residents rated their thermal sensation as neutral, which might indicate a decline in thermosensitivity. 

Similarly, a tendency for lower thermal sensations and higher neutral temperatures than younger adults 

has been observed in the current study. The work of Childs et al. (2020) also highlighted how varied the 

thermal comfort responses of older people were, even under the same environmental temperature, which 

once again reinforces the need for more individualised analysis. In addition, a significant difference in 

thermal sensation votes was noted between residents with and without dementia, which confirms the 

need to analyse health-related indicators when understanding thermal comfort prediction.  

The variations in skin temperatures reported in the current study could be related to several factors, 

including the environments’ thermal conditions, participants’ activity levels and metabolic rates when 

answering the surveys, or their clothing insulation level. These relationships, as well as the skin 

temperature relationships with thermal preferences at the individual level, were further explored and 

presented in Chapter 7. 

5.5. Limitations 

The current study presents the following limitations. Firstly, the older adults involved in this 

research chose to participate voluntarily, introducing a self-selection bias to the analysis. Secondly, 
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despite the study including 3 different climate zones, it is still limited to a specific climatic context of older 

people in South Australia. Future research is required to advance knowledge of other scenarios and their 

related challenges. Likewise, although the older participants in this study represent a diverse cohort in 

terms of body composition, age, sex, health, frailty and living environment, other socio-cultural and 

economic factors that affect their thermal environments, as well as their thermal sensitivity and behaviour, 

still need to be addressed to build a more holistic image of their diversity. 

Furthermore, the environmental conditions were measured at a single point in each participant’s 

living area, which could mask relevant spatial temperature variations. A weighted average of multiple 

points could best represent the spaces; however, having multiple points of measurements in each of 57 

houses was not possible in this research due to practical and resource constraints.  

Moreover, given the nature of the study, only self-reported health/wellbeing perception was used, 

which might lack the accuracy of records from healthcare providers. 

Finally, the data collection involving skin temperature was conducted between the months of 

September and February, covering only a warm and hot season in South Australia. Further data collection 

periods in cool and cold seasons are required to allow a broader understanding of the effects of thermal 

exposure in skin temperatures of older adults.  

5.6. Summary 

This chapter presented the results of field studies conducted to gather information about the 

thermal environments of older people’s dwellings, as well as on this cohort’s general thermal sensations, 

preferences, and behaviours throughout different seasons. Although the buildings analysed presented 

similarities as a group in terms of overall construction details, they also showed considerable differences 

in terms of age, size, design and operation. In addition, participants’ personal characteristics also differed 

within the group, which could indicate the need for a more granular and individualised analysis. 

Furthermore, the study confirmed the continuing use of environmental measures, such as indoor 

air temperature, relative humidity and air speeds, as important variables when explaining thermal 

sensations and preferences. Varying clothing levels and metabolic rates were also found to be relevant 

in the analysis of older people’s thermal responses, and were identified as potential adaptive behaviours 

taken by participants in general to adjust thermal sensations and preferences. 
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Personal factors such as health and wellbeing perception were considered equally relevant for 

further analysis, although their relationships with the cohort’s general thermal sensation and thermal 

preference were not as statistically strong as hypothesised. Finally, skin temperatures, as a 

representation of participants’ physiological responses to thermal stimuli, are also found to be significant 

in explaining thermal sensations and preferences of older people. 

In conclusion, the analyses presented in this chapter have provided a greater understanding of the 

overall thermal environments and preferences of the older adults included in this research. Drawing from 

the significant variables explored in this chapter, the next step will comprise investigating each older 

adults’ dataset individually, through the lens of personal thermal comfort models. 
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Chapter 6. Personal thermal comfort models for 
older people using environmental, behavioural and 
health variables 

Building on the insights drawn from the initial analysis of the datasets and potential thermal 

preference predictors presented in Chapter 5, this chapter explores the development of 28 personal 

thermal comfort models for a subset of older adults included in this research and assesses the models’ 

performances compared with aggregate approaches. This chapter, along with Chapter 7, aims to answer 

research questions C and D: 

C. How will the accuracy of personal thermal comfort models be affected by individuals’ particular 

variables? 

D. How can the use of personal thermal comfort models lead to a more accurate prediction of 

older people’s thermal preferences, in comparison with the prediction by a generalised model 

such as PMV? 

These questions are related to Objective (2): Develop personal thermal comfort models for older 

people from the data collected, considering their personal and behavioural characteristics as well as the 

conditions of their thermal environments, and compare the results with the predictions made by 

established models such as the PMV model. 

This chapter has been produced as a journal article, published as: 

Arakawa Martins, L., Soebarto, V., Williamson, T., Pisaniello, D. (2021) “Personal thermal 

comfort models: a deep learning approach for predicting older people’s thermal 

preference”, Smart and Sustainable Built Environment, Vol. ahead-of-print, No. ahead-

of-print, https://doi.org/10.1108/SASBE-08-2021-0144 

The paper is presented here in a reformatted version for consistency of the thesis presentation. 

The accepted manuscript can be found in Appendix A. 
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Structured Abstract 

Purpose: This paper presents the development of personal thermal comfort models for older 

adults and assesses the models’ performance compared to aggregate approaches. This is necessary as 

individual thermal preferences can vary widely between older adults, and the use of aggregate thermal 

comfort models can result in thermal dissatisfaction for a significant number of older occupants. 

Personalised thermal comfort models hold the promise of a more targeted and accurate approach. 

Design/methodology/approach: Twenty-eight personal comfort models have been developed, 

using deep learning and environmental and personal parameters. The data were collected through a 9-

month monitoring study of people aged 65 and over in South Australia, who lived independently. 

Modelling comprised dataset balancing and normalisation, followed by model tuning to test and select 

the best hyperparameters’ sets. Finally, models were evaluated with an unseen dataset. Accuracy, 

Cohen’s Kappa Coefficient and Area Under the Receiver Operating Characteristic Curve (AUC) were 

used to measure models’ performance. 

Findings: On average, the individualised models present an accuracy of 74%, a Cohen’s Kappa 

Coefficient of 0.61 and an AUC of 0.83, representing a significant improvement in predictive performance 

when compared to similar studies and the ‘Converted’ Predicted Mean Vote (PMVc) model. 

Originality: While current literature on personal comfort models have focussed solely on younger 

adults and offices, this study explored a methodology for older people and their dwellings. Additionally, it 

introduced health perception as a predictor of thermal preference – a variable often overseen by 

architectural sciences and building engineering. The study also provided insights on the use of deep 

learning for future studies. 

 

Keywords: personal comfort models; machine learning; thermal comfort; older people; health; 

personalised comfort  
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6.1. Introduction 

International standards, such as ANSI/ASHRAE Standard 55 (ANSI/ASHRAE, 2020), adopt the 

Predicted Mean Vote/Predicted Percentage of Dissatisfied (PMV/PPD) model (Fanger, 1970) and the 

adaptive model (de Dear and Brager, 1998; Humphreys et al., 2016) as the bases to stablish the thermal 

requirements for human occupancy in the built environment. Both PMV/PPD and the adaptive models 

are aggregate models, which means they are designed to predict the average thermal comfort of groups 

of people. These models however have limitations when used to predict occupant’s comfort in real case 

scenarios, as individual thermal sensations and preferences can vary significantly (Wang et al., 2018; 

Schweiker et al., 2018; Shipworth et al., 2016).  Furthermore, these models’ inability to be calibrated with 

new feedback or to incorporate new input variables (e.g., age, health status, body mass index) other than 

their pre-defined factors (Kim et al., 2018a) prevent them to be updated for different individuals. In 

addition, the models used in standards have been developed based on data from either climate chambers 

(Fanger, 1970) or field studies in office buildings (de Dear and Brager, 1998; Humphreys et al., 2016). 

This can also be limiting when considering the diversity of thermal conditions and adaptive opportunities 

residential settings generally provide in comparison to controlled office environments (Karjalainen, 2009). 

To address these limitations, recent studies have shown an increasing number of strategies to 

develop personal thermal comfort models as an alternative to the conventional approaches (Kim et al., 

2018a). Instead of an average response from a large population, personalised models are designed to 

predict individuals’ thermal comfort responses, using a single person’s direct feedback and/or personal 

characteristics as calibration inputs. This represents a relevant paradigm shift in the field today, replacing 

the centralised and fixed-set points approach with occupant-centric thermal conditioning management in 

the built environment (Wang et al., 2018). In addition, with the rapid development of Internet of Things 

(IoT) and smart sensors, predicting individual’s needs directly from data collected in their everyday 

environment and acting upon these predictions has become substantially easier. 

Significant advances have been made in the last decades in the personalised models’ field, 

comprehending a plurality of approaches. A systematic literature review, conducted by the present 

authors, analysed 37 recent publications on personal thermal comfort models, emphasising current 

trends and future research directions in the field (Arakawa Martins et al., 2022a). The use of personal 

comfort systems (PCS), such as heated and cooled chairs or personal fans (Katić et al., 2020; Kim et al., 

2018b; André et al., 2020), for instance, has been highlighted as a promising option for individual data 

collection, leveraging integrated data acquisition techniques that can potentially replace occupant survey 

feedback as proxy for thermal comfort. In addition, there is an increasing body of research focusing on 
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personal comfort models driven by physiological variables, such as skin temperature or heart rate (Jung 

et al., 2019; Lee and Ham, 2020; Shan et al., 2020; Natarajan and Laftchiev, 2019). 

The review (Arakawa Martins et al., 2022a) pointed to a vast variety of modelling approaches 

explored in the field, such as Bayesian classification and inference (Jung and Jazizadeh, 2019a; 

Auffenberg et al., 2018; Lee et al., 2019), Fuzzy Classification using the Wang-Wendel model 

(Pazhoohesh and Zhang, 2018; Aguilera et al., 2019; Jazizadeh et al., 2014b), and Machine Learning 

techniques. The latter includes more interpretable approaches such as Classification Trees (Aryal and 

Becerik-Gerber, 2020), or less transparent but relatively more accurate techniques such as Gaussian 

Process Classification (Guenther and Sawodny, 2019; Fay et al., 2017), Gradient Boosting Method (Lee 

and Ham, 2020), Support Vector Machine (Aryal and Becerik-Gerber, 2019; Jung et al., 2019; Jiang and 

Yao, 2016; Lu et al., 2019), Random Forest (Jayathissa et al., 2020; Aryal et al., 2021; Lu et al., 2019), 

K-Nearest Neighbours (Aryal and Becerik-Gerber, 2019; Aryal et al., 2021) and Artificial Neural Networks 

(Kim, 2018b; Shan et al., 2020). Artificial Neural Networks (ANN), specifically, have shown promising 

results. Kim (2018b) reported an average MSE (Mean Squared Error) of 0.00298 across 24 personal 

models’ predictions, using ANN trained with environmental variables from an office setting. Similarly, 

Shan et al. (2020), on a study involving 3 people in offices, reported an average accuracy of 89.2%, an 

average MAE (Mean Absolute Error) of 0.16 and an average MSE of 0.06 across participants’ ANNs 

trained using skin temperature measurements. 

Nevertheless, although representing an important paradigm shift, studies on personal comfort 

models maintained the traditional trend to focus on office environments and younger adults. Studies on 

personal comfort models for older adults and dwellings are still absent in current literature (Arakawa 

Martins et al., 2022a). In addition, people with acute or chronic diseases or people with disabilities are 

not included in recent studies. These gaps in knowledge are especially relevant because, despite 

intragroup diversity being present in both younger and older cohorts, this heterogeneity tends to be 

greater in older than in younger ages. Older adults have been submitted to a greater range of cumulative 

social, economic and environmental factors across their individual life courses, which affect their health, 

needs and perceptions in significantly different ways (World Health Organization, 2015b). For this reason, 

understanding diversity in older age becomes crucial to target specific requirements more efficiently and 

support healthier and independent ageing. 

In addition, previous studies have emphasised the importance of smart technologies to help older 

people live independently (Kimberly Miller, 2013; van Hoof et al., 2017b). In this context, personal thermal 
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comfort models have the potential to be applied in automation systems for the control of windows, blinds, 

or air-conditioning, allowing older people to manage their environments with less reliance on others.  

Hence, this chapter explores the development of personal comfort models, using real feedback as 

well as environmental and personal characteristics as input variables, to accurately respond to older 

adults’ thermal needs in their own homes. In addition, this study aims to evaluate the modelling 

methodology proposed using deep learning as the engine behind the prediction of individual people’s 

thermal preferences. 

Focusing on South Australia, one of the Australian states with the largest proportion of people 

aged 65 years and over (Australian Bureau of Statistics, 2021b), data were first collected through 

environmental monitoring and thermal comfort surveys in dwellings of older people, excluding those who 

live in residential aged care facilities. Individual datasets were balanced and normalised and models were 

subsequently tuned by testing different hyperparameters combinations, which were subsequently 

selected according to their predictive performance. The models were then evaluated using an unseen 

testing dataset and compared with a ‘converted’ PMV model on the same testing datasets. Finally, 

recommendations for the application of the models in HVAC (Heating, Ventilation and Air Conditioning) 

systems’ control, as well as in diagnostic tools for design and retrofitting and in a broader public health 

context were discussed. 

6.2. Data collection 

The sample for this study derived from a research project that monitored 71 participants (23 males 

and 48 females) aged 65 years and over from 57 households located in South Australia, in 3 climate 

zones: hot dry (BSk), warm temperate (Csa) and cool temperate (Csb), according to the Köppen–Geiger 

Climate Classification System (Beck et al., 2018). All older adults who participated in the first two stages 

of the research project (van Hoof et al., 2019; Soebarto et al., 2019a) were invited to participate voluntarily 

in the house monitoring stage and further volunteer recruitment was done through press releases in 

various media formats (e.g., radio and newspaper calls for volunteers). The inclusion criteria were 

participants who: (1) were 65 years old or over; (2) lived independently in the State of South Australia; 

and (3) were able to communicate in English. Data were collected during a period of 9 months, from mid-

January to mid-October in 2019. 
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Each dwelling was visited at least twice. During the first visit, a questionnaire about 

sociodemographic information, health and overall thermal preferences was applied and an open-ended 

interview was conducted about buildings’ details. In addition, indoor environment data loggers were 

installed in each dwelling’s main living room and main bedroom. The indoor environment data logger 

contained sensors that measured air temperature, globe temperature, air speed, and relative humidity. 

The data logger coordinated measurements from the sensors, undertaken at 30-minute intervals and 

when a participant completed a comfort survey.  

A thermal comfort survey tablet was also installed to be used by the participants to answer a survey 

about their thermal environment and their preferences and sensations at least once a week, throughout 

the 9-month period. The thermal comfort survey tablet allowed participants to complete surveys 

electronically about their clothing, activity levels, window and door state, heating, cooling, and fan state, 

as well as their thermal sensation (TSV) and thermal preference (TPV). Thermal sensation was assessed 

using the question ‘How do you feel right now?’ with possible responses being ‘Cold’, ‘Cool’, ‘Slightly 

cool’, ‘Neutral’, ‘Slightly warm’, ‘Warm’ or ‘Hot’. Thermal preference was assessed using the question 

‘Would you prefer to be...’ with possible responses being ‘Cooler’, ‘No change’ or ‘Warmer’. The survey 

also included a question about their self-reported health and wellbeing perception at that point in time: 

‘How would you describe your health and wellbeing at the moment?’, with possible answers being ‘Very 

good’, ‘Good’, ‘Reasonable’, ‘Poor’ and ‘Very poor’. Participants were asked to answer the survey 

whenever possible, but no less than 2 times a week.  

Figure 6-1 shows the data loggers and user interface used. More details on the data acquisition 

tool, including its applicability for studies with older users, have been reported by Soebarto et al. (2020). 
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Figure 6-1 - Indoor environmental data logger and thermal comfort survey tablet 

During the second visit to each dwelling, conducted at the end of the monitoring period, an 

additional questionnaire was used to collect further information about the participants, including their 

frailty status according to the Modified Reported Edmonton Scale (Rose et al., 2018). Each participant’s 

body composition was also assessed to measure height, weight and body mass index (BMI), using a 

Tanita Inner Scan RD-953 scale (Tanita Corporation, 2016).  

6.3. Modelling methodology 

6.3.1. Learning technique and task 

This study applies artificial neural networks, also known as deep learning (Goodfellow et al., 2016), 

to develop personalised comfort models for a subset of the participants of the monitoring study. Deep 

learning is a class of machine learning technology, based on the representation-learning method (LeCun 

et al., 2015). It solves tasks such as classification, regression, and anomaly detection, by introducing 

multiple layers of representations, or features, expressed in terms of other simpler representations. By 

learning from previously seen data, this method avoids the need of a human engineer to formally specify 

these multiple layers of representations (Goodfellow et al., 2016). 

The models’ task is to specify to which of the k categories an example (or data point) belongs. In 

general terms, the model is shown an example and follows a set of mathematical expressions to produce 

an output in the form of a score (or probability) for each category. A function then measures the error 
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between the outputs and the desired patterns of scores and the model modifies its internal parameters 

(or weights) to reduce the error. The model is then shown a never-before-seen set of data points and 

produces a new and final set of probability outputs. 

In this study, the models were developed to perform a multiclass classification task of occupants’ 

thermal preference (TPV) on a 3-point-scale (preferring to be cooler, preferring no change or preferring 

to be warmer), and according to seven environmental and personal input features. The survey’s thermal 

TPV was used as the ground truth to train the models and later verify the predicted values. Instead of the 

thermal sensation vote (TSV) scale ― which is commonly used in thermal comfort studies ―, the TPV 

was used because it not only represents a measure of what ideal conditions would be for each person, 

but also suggests to which direction the change is desired, as already confirmed by Kim et al. (2018b). 

This is particularly relevant when considering the use of these models for the control of HVAC systems. 

In addition, using TPV rather than TSV avoids the assumption of associating comfort with neutral thermal 

sensation, which may not always be true (Humphreys and Hancock, 2007). 

In this study, following common practices in computer sciences’ studies (Kuhn and Johnson, 2013; 

Goodfellow et al., 2016; LeCun et al., 2015; Huang et al., 2019), the input variables are called ‘features’ 

and the thermal preferences classes corresponding to each of these combinations of input variables are 

called ‘labels’. Anaconda version 2019.3 (Anaconda, 2019) was used as the platform to run all models 

using Python version 3.7 and PyTorch tensor library (Paszke et al., 2017). 

6.3.2. Input features selected  

Both environmental and personal variables were used as input features for the personalised 

models. In total, 7 input variables were used, 4 of which representing the environmental conditions of 

participant’s rooms (i.e., dry bulb temperature, mean radiant temperature, relative humidity, and air 

speed) and 3 of which representing participant’s personal characteristics (i.e., corrected metabolic rate, 

clothing level and health perception).  

The corrected metabolic rate variable was calculated from participant’s activity level answers in 

the survey. These were first converted to MET values according to the Compendium of Physical Activities 

(Ainsworth et al., 2011), and then later corrected based on participants’ sex, height, weight and age, 

according to (Byrne et al., 2005) and (Kozey et al., 2010) studies. Table 6-1 shows the activity level scale 

points and corresponding MET values. 
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These 7 variables were selected to cover a wide range of variables and factors known in the 

architectural science, medicine, and public health fields of study to influence thermal comfort, sensation, 

and preference. Each input feature’s data collection tool and unit or scale is shown in Table 6-1. 

A second round of models was also developed with the same datasets and variables, except for 

health perception, to check the relevance of health as a predictor of thermal comfort for each individual 

participant. Independent-measures t-test was used to evaluate if there is a significant difference between 

the results with and without health perception as an input variable. 

It is important to note that personal characteristics such as height, weight, or health, although 

present in thermoregulation and physiology studies, are often overseen by architectural sciences and 

building systems engineering studies, hence the significance of their inclusion in the study. 

Table 6-1 - Input features and units or scales 

Type Input features Data collection tool Unit or scale 

Environmental Dry Bulb 
Temperature  

Thermometer in Data logger C 

Environmental Mean Radiant 
Temperature  

Calculated from the dry bulb temperature, globe 
temperature and air speed measurements 
according to ISO:7726:1998 (ISO, 1998) 

C 

Environmental Relative 
Humidity 

Hygrometer in Data logger % 

Environmental Air Speed Air speed sensor in Data logger m/s 

Personal Corrected 
Metabolic Rate 

Survey in Thermal Comfort Tablet – 
‘Describe your activity in the last 15 min in 
this space.’ 

Very relaxed activity = 1 MET 
Relaxed activity = 1.3 MET 
Light activity = 1.5 MET 
Moderate activity = 2.5 MET 
Active activity = 3.3 MET 

Personal Clothing Survey in Thermal Comfort Tablet – ‘How are 
you currently dressed?’ 

Very light = 1 
Light = 2 
Moderate = 3 
Heavy = 4 
Very heavy = 5 

Personal Health 
perception 

Survey in Thermal Comfort Tablet – ‘How 
would you describe your health and wellbeing 
at the moment?’ 

Very good = 1 
Good = 2 
Reasonable = 3 
Poor = 4 
Very poor = 5  

 

6.3.3. Participant selection and characteristics 

At the end the monitoring period, 10,787 survey votes were recorded from all 71 participants. 

Nonetheless, the classification task required that each participant voted at least 6 times in at least one of 

the three thermal preference classes, to allow a minimum of 5-fold cross-validation during model training, 

plus a minimum of 1 vote per category for testing. The cross-validation procedure is detailed in Section 



134 

6.3.5. Excluding the participants who did not meet this requirement resulted in 28 individual datasets 

selected for modelling.  

It is important to highlight the level of diversity among participants selected, comprehending 

different older-age groups, weights, heights, health and frailty status, and climate zones of the dwelling 

locations, all of which can provide relevant insights on the influence of personal parameters in thermal 

response. Table 6-2 presents each of the selected participants’ personal characteristics. 

Table 6-2 - Selected participants’ personal characteristics, organised by ID number 

ID1 Sex  
Age 
(years) 

Height 
(cm) 

Weight 
(kg) 

BMI 
(kg/m2) 

Frailty Score2 
Climate 
Zone 

1 F 71 157.0 78.9 31.9 Not Frail Csa 

2 M 86 179.5 86.4 26.8 Not Frail Csa 

3 F 79 156.5 64.6 26.4 Not Frail Csa 

4 F 81 163.0 58.2 21.9 Apparently vulnerable Csa 

5 F 79 161.0 97.6 37.6 Not Frail Csa 

6 M 76 175.5 88.5 28.7 Not Frail Csb 

7 F 76 149.5 75.1 33.6 Not Frail Csb 

8 M 82 174.0 89.9 29.7 Apparently vulnerable Csa 

10 F 86 151.0 110.4 48.4 Moderate Frailty BSk 

13 M 90 173.0 94.5 31.6 Not Frail Csb 

15 M 68 178.0 80.6 25.4 Not Frail BSk 

16 F 72 151.5 63.0 27.5 Not Frail Csb 

19 F 92 153.0 66.0 28.2 Not Frail Csb 

21 F 78 158.5 78.0 31.1 Not Frail Csb 

23 F 76 164.5 86.4 31.9 Apparently vulnerable Csb 

25 M 88 168.0 83.6 29.6 Not Frail Csb 

27 F 75-793 4 4  4 Apparently vulnerable Csa 

32 F 82 145.0 64.0 30.4 Apparently vulnerable BSk 

33 M 80 171.5 109.1 37.1 Not Frail Csa 

35 M 73 160.0 119.0 46.5 Mild Frailty Csa 

36 F 74 160.5 95.4 37.0 Apparently vulnerable Csa 

38 F 82 166.0 71.9 26.1 Not Frail Csa 

40 M 86 175.0 85.9 28.0 Not Frail Csb 

42 F 75 156.5 75.9 31.0 Apparently vulnerable Csa 

46 F 66 166.5 117.0 42.2 Not Frail Csb 

50 F 81 162.0 60.0 22.8 Not Frail Csb 

51 F 72 150.5 64.6 28.5 Apparently vulnerable Csb 

62 F 76 158.0 85.5 34.2 Apparently vulnerable Csa 
1 The IDs used in this chapter are the original used for the monitoring of the 71 participants. 
2 Assessed according to the Modified Reported Edmonton Scale (MRES) (Rose et al., 2018), on the scale ‘Not frail’, ‘Apparently 

vulnerable’, ‘Mild frailty’, ‘Moderate frailty’, ‘Severe frailty’. 
3 Participant answered only her age group.  
4 Not assessed. 

 

It should also be noted that the dwellings in this study represent a wide range of different 

construction typologies common in housing of older people in South Australia. These include double 

brick, brick veneer (also known as masonry veneer) or timber framed constructions (insulated and 

uninsulated); detached and semidetached layouts; 1 to more than 100 years old; and one or two stories 
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high. Although building construction and design as well as natural ventilation and window orientation can 

have significant impacts on thermal preference, this correlation was out of the scope of this chapter and 

will be the subject of future publications. 

6.3.4. Dataset balancing and pre-processing 

The individual datasets exhibited unequal distributions between thermal preferences classes, as 

seen in Figure 6-2. Therefore, the datasets were randomly resampled to obtain classes with the exact 

same number of data points. This procedure, called undersampling, consisted of sizing all majority 

classes according to the size of the minority class, by removing examples from the dataset that belong 

to the majority class. Final individual dataset sizes can be seen in Table 6-3. Classes were also assigned 

a code from 0 to 2, where 0 corresponded to the ‘preferring to be cooler’ class, 1 the ‘preferring no change’ 

class and 2 the ‘preferring to be warmer’ class. 

 

Figure 6-2 - Percentage of votes in each thermal preference class of each participant's original dataset 

Finally, the input variables were normalised to a single range from 0 to 1, using min-max 

normalisation (Equation 1). The minimums and maximums used for normalisation are predefined and the 

same for all participants, to avoid information from the training sets to be leaked to the testing sets (i.e., 

data leakage). This created new values for the datapoints but maintained the general distribution and 

ratios in the original data, avoiding the negative influence of the different scales of each variable in the 

performance of the models. 
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x’ =  
(x − min)

(max − min)
          ( 16 ) 

where x’ is the normalised variable; min is the predefined minimum for the variable in question; 

and max is its predefined maximum. 

6.3.5. Hyperparameters, model tuning, model selection and model evaluation 

Deep learning algorithms have hyperparameters, which are settings used to control the model’s 

behaviour and capacity. These settings cannot be directly estimated from the data and are not learned 

by the training process, but rather appropriately chosen by the model’s developer while tuning different 

model options to select the best performing one. 

To choose the best set of hyperparameters for a model, the first step was to divide the available 

dataset into three separate subsets, namely training set, validation set and test set. The training set is 

the subset of examples used for learning (i.e., fitting the internal coefficients or weights of the classifier). 

The validation set is the set of examples used to guide the selection of the hyperparameters of a classifier, 

a process also called model tuning. Lastly, the test set is an independent subset of examples used only 

to assess the performance of a fully trained classifier. The purpose of the test set is to simulate the model 

with data it has never seen before. This test performance is also called the generalisation performance 

(Ripley, 1996) .  

These three subsets of data were split as follows. First, each participants’ total datasets were 

randomly divided in two groups with at least 5 votes in each thermal preference class for training and at 

least 1 vote for each class for testing. The training set was then divided once again into two subsets to 

allow 5-fold cross validation, with at least 4 votes per class being used for the training set and at least 1 

vote per class for the validation set. 5-fold cross-validation was chosen such that each train/validation 

group of data samples were large enough to be a representative of the total dataset, while small enough 

to allow modelling for participants with low vote counts. Cross-validation was repeated 5 times to reduce 

the noise in the estimated model performance between different cross validations splits. The subsets’ 

splits were done in a stratified way, to maintain the balance of each subset, with the same number of 

data points for each classification category within the subsets. 

Although deep learning algorithms have multiple hyperparameters to be tuned, this study selected 

3 known to have a higher effect on the model’s behaviour: (1) the learning rate of the optimisation 

algorithm, (2) the number of hidden neurons in the neural network and (3) the batch size of each iteration. 

The learning rate was varied from 0.001 to 0.01 to 0.1. The number of hidden neurons in the hidden layer 



137 

of the model was varied between 4, 5 and 6. Lastly, the batch size varied between 2 and 8 data points. 

The varying ranges of the hyperparameters tuned were chosen according to common practice in 

computer science studies (Kuhn and Johnson, 2013; Goodfellow et al., 2016; Huang et al., 2019).  

Considering the low complexity of task undertaken by the neural network, the number of the hidden 

layers in the models was kept to minimal of 1. Therefore, a feedforward neural network was implemented 

including an input layer, a hidden layer, and an output layer. In order to go from one layer to the sequential 

one, the neurons compute a weighted sum of their inputs from the previous layer (Equations 2 and 4) 

and pass the result through a non-linear function, called activation function (LeCun et al., 2015). The 

models in this study used Rectified Linear Unit (ReLU) (Agarap, 2018) as the activation function between 

the input layer and the hidden layer (Equation 3) and Softmax as the activation function between the 

hidden layer and the output layer (Equation 5). The mathematical expressions of the models can be 

written in the following form: 

𝑧𝑗  =  ∑ 𝑤𝑖𝑗 ∙  𝑥𝑖 +  𝑏𝑗
7
𝑖=1      ( 17 ) 

𝑦𝑗 = 𝑓(𝑧𝑗) = max (0, 𝑧𝑗)    ( 18 ) 

𝑧𝑘  =  ∑ 𝑤𝑗𝑘 ∙  𝑦𝑗 +  𝑏𝑘
𝑁𝐽

𝑗=1
    ( 19 ) 

𝑓(𝑧)𝑘 =  
𝑒𝑧𝑘

∑ 𝑒𝑧𝑜3
o=1

      ( 20 ) 

where 𝑥𝑖  are the normalised data of the input variables, 𝑤𝑖𝑗 are the weights between the input 

and hidden neurons, 𝑏𝑗 are the bias values of the hidden neurons, and 𝑦𝑗  the output values of the 

activation functions (ReLU) in the hidden layer; while 𝑤𝑗𝑘 are the weights between the hidden and output 

neurons, 𝑏𝑘 are the bias values of the output neurons, 𝑁𝐽 is the number of hidden neurons, and 𝑓(𝑧)𝑘 

are the outputs of the activation functions (Softmax) in the output layer. 

Cross Entropy function was used to measure the loss (𝐿𝐶𝐸) – or error – of the classification rounds 

(Equation 6) and Stochastic Gradient Descent was used as the optimiser algorithm that aims to minimise 

the loss, with a learning momentum at 0.9. More details on the full optimiser algorithm can be found in 

Goodfellow et al. (2016). 

 𝐿𝐶𝐸 =  − ∑ 𝑡𝑘
3
𝑘=1 log 𝑓(�⃗�)

𝑘
     ( 21 ) 
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where 𝑡𝑘 is the ground truth label, and 𝑓(𝑧)𝑘 is the probability for the kth class. 

Figure 6-3 represents a simplified diagram of the neural network described. 

 

Figure 6-3 - Simplified diagram of the neural network used 

The following steps, based on the framework detailed by Raschka (2018) and represented in 

Figure 6-4, were used for the model tuning, selection and evaluation process of this study. 

• Step 1: Each participant’s total dataset was divided into three subsets, a training set for model 

fitting, a validation set for model selection, and a test set for model evaluation. 

• Step 2 (model tuning): The learning algorithm was then used for different hyperparameter 

settings to fit models to the training dataset. 

• Step 3 (model selection): These models’ performances were evaluated using the validation set. 

The performance estimates were then compared, and the hyperparameters settings associated 

with the best model performance were chosen. Each participant’s best performing model and 

hyperparameters can differ between each other, depending on individuals’ data sizes, personal 

patterns, and data quality. 

• Step 4: To increase the dataset and enhance the models’ performance, training and validation 

sets were then merged into one dataset and the best hyperparameter settings from the previous 

step were used to fit a new model to this larger dataset.  
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• Step 5 (model evaluation): Finally, the independent test set was used to estimate the 

generalisation performance of the model resulted from step 4. 

• Step 6: The final model could then be trained with the use of all the dataset. This final step was 

not performed in this study because the main objective was to test the model selection and 

evaluation rather than preparing for model deployment. 

 

Figure 6-4 - Model tuning, selection, and evaluation process 
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6.3.6. Performance indicators 

The performance indicators used in steps 3 and 5 of the modelling methodologies were the 

Accuracy, the Cohen’s Kappa Coefficient, and the Area Under the Receiver Operating Characteristic 

Curve (AUC). 

Accuracy was calculated as the percentage of correct predictions in relation to the total number of 

predictions. The Cohen’s Kappa Coefficient (К) (Cohen, 1960) is a measure of reliability for two classifiers 

that are rating the same thing, corrected to exclude the frequency in which the classifiers may agree by 

random chance. It is defined by Equation 7: 

К =  
(р𝑜 − р𝑒) 

(1 − р𝑒)
       ( 22 ) 

where р𝑜 is the relative agreement among classifiers, which is the same as the accuracy measure, 

and р𝑒 is the hypothetical probability of a chance agreement.  

The Cohen’s Kappa Coefficient ranges from negative values to 1, where 1 means perfect 

agreement, 0 means no agreement among the classifiers other than what would be expected by chance, 

and negative values mean the agreement is worse than random. According to Cohen (1960), a Cohen’s 

Kappa of 0.41 - 0.60 can be considered a moderate agreement between prediction and ground truth, 

0.61 - 0.80 as substantial, and 0.81 - 1.00 as a perfect agreement. 

The AUC is a measure frequently used in machine learning studies (Ben-David, 2008). First, the 

Receiver Operating Characteristic Curve (ROC) was built by plotting the probability of true positive rate 

(i.e., ‘successes’, also called sensitivity or recall) versus the probability of false positive rate (i.e., ‘false 

alarms’, also called fall-out) for all possible discrimination thresholds, for each of the three thermal 

preference classes using the ‘one versus the rest’ method. Equations 8 and 9 define true positive rate 

(𝑇𝑃𝑅) and false positive rate (𝐹𝑃𝑅): 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      ( 23 ) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
      ( 24 ) 

where 𝑇𝑃 (true positive) is the number of positive class correctly predicted in a binary classification 

model; 𝐹𝑃 (false positive) is the number of positive class incorrectly predicted; 𝑇𝑁 (true negative) is the 
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number of negative class correctly predicted; and 𝐹𝑁 (false negative) is the number of negative class 

incorrectly predicted. 

Finally, the area under the ROC was computed for each of the classes and averaged to obtain a 

single numeric performance indicator of the thermal preference model. AUC can vary between 0 and 1, 

where 0.5 denotes random guessing and 1 indicates perfect agreement.  

6.3.7. PMV scale conversion for comparison 

PMV was calculated according to ANSI/ASHRAE (2020), using the environmental parameters 

measured during the field study and the corresponding clothing and metabolic rate according to 

participants survey answers. As the PMV uses a 7-point scale to predict thermal sensation, the results 

were converted into 3 thermal preference categories to enable a comparison, in the same scale, with the 

personal comfort models developed in this study. Therefore, when the PMV model predicted values 

between 0.5 and −0.5 (i.e., normally considered a ‘neutral’ sensation), the votes were labelled as ‘no 

change’; when PMV > 0.5 (i.e., ‘slightly warm’, ‘warm’ and ‘hot’), the votes were labelled as ‘preferring to 

be cooler’; and when PMV < -0.5 (i.e., ‘slightly cool’, ‘cool’, ‘cold’), the votes were labelled as ‘preferring 

to be warmer’. These cut-offs were chosen to represent the recommended limits for a 10% Predicted 

Percentage of Dissatisfied (PPD). This conversion of the PMV model is referred in this chapter as 

‘Converted PMV’ or PMVC. The AUC of the PMVC was calculated using a single pair of probability of true 

positive rate versus probability of false positive rate, since the model is not a probabilistic classifier and 

does not allow plotting different discrimination thresholds. 

6.4. Results and discussion 

Table 6-3 presents a summary of the performance of each selected participant’s models in 

predicting thermal preference with and without the use of health perception as an input variable. The 

Accuracy, Cohen’s Kappa Coefficient and AUC shown in the table correspond to the model evaluation 

step (i.e., step 5 in Figure 6-4) and represent the generalisation performance of the personalised models 

when using the merged training and validation sets for learning, and the ‘never-before-seen’ test set for 

assessment. 
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Table 6-3 - Performance of personal comfort models (PCM) and Converted Predicted Mean Vote 

(PMVC) 

 Dataset size PMVC 
PCM 

without Health Perception 
PCM 

with Health Perception 

ID1 Original Balanced Accuracy 
Cohen’s 
Kappa 

AUC Accuracy 
Cohen's 
Kappa 

AUC Accuracy 
Cohen's 
Kappa 

AUC 

1 114 30 53.33 0.30 0.65 73.33 0.60 0.89 73.33 0.60 0.94 

2 77 24 55.56 0.33 0.67 66.67 0.50 0.73 66.67 0.50 0.84 

3 189 24 55.56 0.33 0.67 66.67 0.50 0.83 77.78 0.67 0.89 

4 78 27 58.33 0.38 0.69 83.33 0.75 0.82 75.00 0.63 0.86 

5 215 75 46.67 0.20 0.60 60.00 0.40 0.64 60.00 0.40 0.67 

6 242 27 58.33 0.38 0.69 58.33 0.38 0.76 91.67 0.88 0.92 

7 274 30 46.67 0.20 0.60 66.67 0.50 0.91 66.67 0.50 0.83 

8 234 30 40.00 0.10 0.55 66.67 0.50 0.78 80.00 0.70 0.91 

10 101 21 33.33 0.00 0.50 33.33 0.00 0.50 33.33 0.00 0.50 

13 107 21 50.00 0.25 0.63 100.0 1.00 1.00 100.00 1.00 1.00 

15 139 60 73.33 0.60 0.80 80.00 0.70 0.94 73.33 0.60 0.97 

16 108 51 66.67 0.50 0.75 76.19 0.64 0.85 61.90 0.43 0.81 

19 185 27 41.67 0.13 0.56 75.00 0.63 0.90 75.00 0.63 0.80 

21 149 27 58.33 0.38 0.69 66.67 0.50 0.66 66.67 0.50 0.80 

23 204 75 46.67 0.20 0.60 86.67 0.80 0.91 86.67 0.80 0.91 

25 190 30 40.00 0.10 0.55 46.67 0.20 0.65 46.67 0.20 0.51 

27 196 30 26.67 -0.10 0.45 46.67 0.20 0.70 46.67 0.20 0.58 

32 218 75 46.67 0.20 0.60 100.00 1.00 1.00 100.00 1.00 1.00 

33 181 30 46.67 0.20 0.60 73.33 0.60 0.84 73.33 0.60 0.88 

35 117 45 46.67 0.20 0.60 86.67 0.80 0.90 86.67 0.80 0.93 

36 73 21 50.00 0.25 0.63 100.00 1.00 1.00 100.00 1.00 1.00 

38 182 39 66.67 0.50 0.75 66.67 0.50 0.73 66.67 0.50 0.76 

40 153 18 66.67 0.50 0.75 100.00 1.00 1.00 100.00 1.00 1.00 

42 172 24 11.11 -0.33 0.33 66.67 0.50 0.78 66.67 0.50 0.69 

46 285 135 60.00 0.40 0.70 66.67 0.50 0.74 76.67 0.65 0.86 

50 174 18 33.33 0.00 0.50 100.00 1.00 1.00 100.00 1.00 1.00 

51 146 66 47.62 0.21 0.61 71.43 0.57 0.83 61.90 0.43 0.78 

62 163 30 60.00 0.40 0.70 66.67 0.50 0.76 66.67 0.50 0.75 

Average 49.52 0.24 0.62 72.87 0.59 0.82 73.98 0.61 0.83 
1 The IDs used in this chapter are the original used for the monitoring of the 71 participants. 

The generalisation accuracy of the personal comfort models (with health perception) ranges from 

33.33 to 100%, with a mean of 73.98%; the Cohen’s Kappa indicator ranges from 0.0 to 1.0, with a mean 

of 0.61; and the AUC ranges from 0.5 to 1.0, with a mean of 0.83. Although not optimal when considering 

individual performances of models such as ID 10 (33.33% accuracy, 0.0 Cohen’s Kappa, 0.5 AUC), the 

personal comfort models developed still show an overall improvement in performance when compared 

to other similar studies in the field. Liu et al. (2019), for instance, reported an average Cohen’s Kappa of 

0.24 when analysing personal comfort models of 14 younger adults using different algorithms and input 

feature sets, in both indoor and outdoor environments. Likewise, Kim et al. (2018b) reported a median 
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AUC of 0.73, when considering the best performing algorithm from each of the 34 individual models 

developed for younger adults. 

Table 6-3 also provides the prediction results of the PMVC model for each of the selected 

participants. On average, PMVC predicted individual preferences with an accuracy of 49.52%, a Cohen’s 

Kappa indicator of 0.24, and an AUC of 0.62 (i.e., slightly better than random guessing). In comparison, 

on average, the personal comfort models’ accuracy is 49% higher, the Cohen’s Kappa Coefficient is 

151% higher and the AUC is 34% than the respective PMVC model’s indicators. This shows a significant 

improvement in the predictive performance of the personalised models when compared to PMVC model. 

Additionally, the results suggest that the models’ generalisation performance may vary among 

participants, even after individual hyperparameter tuning. ID 32, for instance, reached the highest 

predictive performance with an accuracy of 100%, and a Cohen’s Kappa and an AUC of 1.0. ID 5, on the 

other hand, only reached an accuracy of 60%, a Cohen’s Kappa of 0.4 and an AUC of 0.67, even after 

multiple rounds hyperparameter tuning. Likewise, ID 10 represents a personal comfort model with 

considerably low performance and that was not able to provide any improvement when compared to the 

PMVC model. The poor performance of models such as these might have been a result of a low sample 

size for training, the presence of anomalous data points, or the absence of input features that might also 

be influencing this person’s thermal preference. Furthermore, when considering diverse individuals such 

as older people, it is expected that these other intrinsic characteristics play different roles for each person 

in different intensities and frequencies. In addition, as pointed out by Liu et al. (2019) and Katić et al. 

(2020), it is reasonable to expect that some individuals might be harder to predict than others. 

Figure 6-5 presents a visual representation of the confusion matrices of the personal comfort 

models (using health perception) for each of the participants selected. Each row of the matrices 

represents the true thermal preference votes in each class (i.e., participants’ survey answers), while each 

column represents the corresponding predictions. Not only do the matrices allow the visualisation of the 

overall performance of the models, but they also indicate the models’ performance in predicting each 

individual class. They are the basis for the calculation of the Cohen’s Kappa Coefficient and the AUC. 

Models such as ID 13, 32, 36, 40 and 50, for instance, clearly show a perfect agreement between the 

ground truth and the predictions, with classes predicted equally correct, and consequently identified as 

darker colours in the main diagonal of the confusion matrices. ID 21’s confusion matrix, in contrast, shows 

that this model was better at predicting classes 0 (i.e., preferring to be cooler) and 2 (i.e., preferring to be 

warmer) than class 1 (i.e., preferring no change). On the other hand, ID 42’s model, although having the 
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same accuracy as ID 21’s model, predicts class 2 (i.e., preferring to be warmer) better than classes 0 

(i.e., preferring to be cooler) and 1 (i.e., preferring no change). 

 

Figure 6-5 - Confusion matrix for PCMs with health perception, where 0 = preferring to be cooler, 1 = 

preferring no change, and 2 = preferring to be warmer 
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The Receiver Operating Curves (ROC) and respective Areas Under the Curve (AUC) can also 

help the visualisation of models’ performance in predicting each individual class. Figure 6-6 shows the 

ROC curve of each class, plotted using the ‘one versus the other’ method, for ID 46’s model (using health 

perception). As seen in the curves, and confirmed by the confusion matrix, this model is slightly better at 

predicting ‘preferring to be cooler’ and ‘preferring to be warmer’ categories than ‘preferring no change’. 

 

Figure 6-6 - Area Under the Receiver Operating Characteristic Curves of model for ID 46 (with health 

perception), for each thermal preference class, plotted using ‘one versus the rest’ method 

The confusion matrixes are equally relevant to visualise and analyse the cost of misclassification. 

In the case of thermal preference models, where the classes represent ordinal intensities, classifying a 

‘preferring to be warmer’ as a ‘preferring to be cooler’ (and vice-versa) is more problematic than 

classifying a ‘preferring no change’ as ‘preferring to be cooler´ or ‘preferring to be warmer’ (and vice-

versa). ID 5 and 42 are examples of models that have similar performance indicators but have different 

misclassification patterns that might incur different costs when deploying the model. While ID 42 

incorrectly classifies ‘preferring to be cooler’ as ‘preferring no change’, ID 5 misclassifies it as ‘preferring 

to be warmer’. If both models were deployed in real scenarios for automatic heating and cooling control, 

for instance, ID 5 would have her system activated in the opposite direction of the change expected, 

incurring higher energy use and lower comfort levels than ID 42’s system, which would similarly not meet 

its demand, but would not cause higher energy use than it should either. Although not addressed in depth 

this study, the misclassification cost of personal thermal comfort categories is a relevant topic in the field 

and an interesting area for future research. 

The lower performance of the models can also be explained by examining the model training and 

testing procedures. Overfitting, for instance, can be identified in some of the individual models. Observing 

the training learning curves of these models, which represent the training and testing loss by epoch (i.e., 

the number of passes of the entire dataset through the model), the gap between the training loss and the 

testing loss was significantly large in some cases. This means that the model has learned the training 
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dataset too well, including errors in the data and possible statistical noise. As a result, the fit obtained 

was not able to produce accurate estimates on new observations that were not part of the original training 

dataset (James et al., 2013). Figure 6-7 exemplifies this hypothesis. When observing the learning curve 

from ID 5 − who yielded a 60% accuracy, 0.4 Cohen’s Kappa and an AUC of 0.67 −, the gap between 

the training and testing loss is vastly larger compared to ID 35’s model − who reached an 86.67% 

accuracy, 0.8 Cohen’s Kappa and a 0.93 AUC. Possible reasons for overfitting could be related to the 

small data size, the input features used, or the cross-validation procedure applied. Moreover, overfitting 

might be a result of using a test set that does not represent well the entire dataset. Although strategies 

for preventing overfitting were used in this study, such as early stopping, these models would still benefit 

from further explorations. 

 

Figure 6-7 - Training learning curves for ID 5 and for ID 35 

Furthermore, Table 6-3 presents the performance of the models developed without health 

perception as one of the input variables. On average, the performance of models without the use of health 

perception as a predictor was slightly lower than the performance of the ones using this predictor. The 

difference between the two groups of results, however, was not statistically significant (i.e., p > 0.05) 

according to the independent-measures t-test.  

Nevertheless, when examining individual models’ results, it is still worth analysing the examples of 

models that performed better without the health perception indicator, such as ID 7, 16, 19, 25, 27, 42 and 

51 are, as presented in Figure 6-8. In most of these cases, this could be a result of the low variability of 

the health perception input, which remained between ‘good’ and ‘reasonable’ regardless of the thermal 

preference or the other input variables. In other cases, where variability in health perception was indeed 

present, such as for ID 19, a possible cause for a lower performance might be the absence of clear 
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correlation between health perception and thermal preference, as indicated by ID 19’s box plots in Figure 

6-9. 

 

Figure 6-8 - AUC of PMVC and PCM with and without health perception as one of the input variables 

 

Figure 6-9 - Box plot of the health perception variable (normalised from 0 to 1, where 0 = ‘very good’ 

and 1 = ‘very poor’) according to the thermal preference classes, for ID 19 

Similarly, Figure 6-10 can indicate possible reasons why adding health perception as one of the 

input variables for ID 19 did not allow higher predictive performance to the personalised model. The figure 

shows the probability density of the distributions of the thermal preference classes depending on the 
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seven input variables used, built using Kernel Density Estimation (KDE) (Zielinski et al., 2018). The 

overlapping areas of the three thermal preference classes could indicate that ID 19 is likely to prefer 

different thermal conditions while having the same health perception. This is also more evident for air 

speed and metabolic rate for ID 19. It is possible to imply, therefore, that adding these variables as 

predictors of thermal preference might not be ideal for this person and could potentially compromise 

models’ predictive performance. 

 

Figure 6-10 - Density plot of distributions of thermal preference votes against the seven input variables 

(normalised from 0 to 1) for ID 19 

Although the minimum dataset size required for personal models to reach maximum predictive 

performance can vary for each participant, larger sample sizes might allow a better statistical 

representation of the data. The data collected in this study, however, were not sufficient to allow the 

testing of larger datasets. Nonetheless, other similar studies on personal thermal comfort models have 

calculated the predictive performances of individual models increasing training datasets incrementally. 

Most of them reported minimum datasets of 30 to 90 datapoints for maximum predictive performance 

(Daum et al., 2011; Jazizadeh et al., 2014a; Kim et al., 2018b; Lee et al., 2019; Li et al., 2017), which is 

in line with the average dataset sizes used in this study, as seen in Table 6-3. 
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6.5. Recommended applications 

Three main implementation pathways are recommended through this study. The first, called 

automation pathway, uses the predictions yielded from personal comfort models for live control strategies 

of the HVAC temperature set points. Jung and Jazizadeh (2019a), for instance, proposed an HVAC agent 

that decided the optimal temperature set point according to different personalised thermal profiles, using 

3 different strategies, namely thermal vote-based predictions, thermal preference-based and the thermal 

preference and sensitivity-based. Likewise, Auffenberg et al. (2018) developed an HVAC control 

algorithm using personalised models to retain user comfort while also minimising energy consumption. 

These models can also be integrated into personal comfort systems (PCS), allowing the conditioning of 

individuals in a more cost-effective scenario. Although control automation can benefit all individuals, 

personal models can be especially important as assistive tools for older adults with lower thermal 

sensitivity or with disabilities. 

The second implementation pathway, called diagnostic pathway, relies on the use of the 

information gathered from personal datasets as a tool to quantify individual preferences, and identify 

possible design improvements to meet these preferences, especially considering buildings without air-

conditioning. If, for instance, an individual model reveals that comfort preferences are more sensitive to 

air movement than indoor temperatures for a specific occupant, then investing on strategies related to 

ventilation would be more effective than investing in adding insulation materials only. This diagnostic 

information would aid not only designers but also older adults in the decision-making process to redesign 

their thermal environments to improve comfort satisfaction.  

The third pathway, called public health pathway, is based on inserting individual models in 

regulations and standards to be used in a broader sense, without, however, disregarding personal 

preferences. Since extensive monitoring of new occupants may not be feasible for all settings, personal 

models from individuals with similar characteristics and preferences would be used to create a set of 

‘profiles’ or ‘personas’ according to trends between their statistically significant variables, allowing them 

to be applied to other individuals, thus requiring a smaller set of relevant information and reduced or no 

monitoring period. Nevertheless, since this roadmap involves a broader application scenario, the 

consolidation of the individualised approach as a reliable and reproduceable technique needs to be 

further tested, and this depends on a collective research effort on the subject. A protocol will be required 

to prescribe the optimal data collection, processing, and management procedures and to guide the 

training, evaluation and reporting of models depending on the application. Finally, the standards should 
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prescribe a set of initial models as common bases for each type of application, which can be used as a 

starting point for re-learning and updating for new and specific occupants and environments. 

It is important to highlight that the modelling methodology, learning algorithms and input variables 

may differ depending on the complexity required for each sort of application envisioned. Using the models 

for HVAC control with live model-tuning when new data is available (i.e., automation pathway), for 

instance, may require less computational heavy models, lower training time and higher accuracy to 

provide immediate user satisfaction. On the other hand, models used in a more analytical sense, or when 

the relationship between features is more relevant than comfort predictions (i.e., diagnostic pathway), 

may require more transparent and interpretable modelling techniques rather than optimum performance. 

6.6. Limitations 

The current study presents the following limitations. Firstly, the use of undersampling as a strategy 

for balancing individual datasets has resulted in a reduction of the data size that can influence the model’s 

predictive performance. In addition, undersampling can cause the loss of potentially useful data points. 

Possible alternatives are oversampling or SMOTE (Synthetic Minority Oversampling Technique) or 

increasing sample sizes with longer monitoring periods that allow more diverse thermal preference 

responses. Both strategies, however, have drawbacks. Oversampling can, on one hand, lead to model 

overfitting and an increase in learning time. Longer monitoring periods, on the other hand, can be intrusive 

for the participants, increase study cost and time, and add bias to participants’ answers after repetitive 

tasks. The use of personal comfort systems is equally interesting to allow bigger sample sizes, since the 

system’s control patterns can be collected continuously and later used as proxy for thermal comfort. 

Secondly, the use of field studies instead of climate chamber experiments also poses challenges 

to dataset size and distribution. When monitoring real thermal environments, where conditions vary 

without the influence of researchers, extremes in thermal perception are naturally less often captured, 

making final imbalanced datasets almost unavoidable. Nevertheless, field studies provide an accurate 

representation of reality and its underlying conditions that controlled climate chamber experiments are 

rarely able to capture. 

Thirdly, despite the study including 3 different climate zones, it is still limited to a specific climatic 

context of older people in South Australia. Future research is required to advance the knowledge on other 

scenarios and their related challenges. Likewise, although the older participants in this study represent a 
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diverse cohort in terms of body composition, age, sex, health, frailty and living environment, other socio-

cultural and economic factors that affect their thermal environments, as well as their thermal sensitivity 

and behaviour, still need to be addressed to build a more holistic image of their diversity. 

Furthermore, this study is limited to the analysis of 7 features that might affect thermal preference 

for older people. Other potentially relevant input variables might include time of day and seasonal thermal 

expectation, physiological data, such as skin temperature or heart rate, and more accurate 

representations of metabolic rate, such as accelerometery measured with wearable sensors or activity 

captured using image recognition. 

Finally, it is important to point out that the PMV conversion used in this study poses limitations in 

the comparisons. This is because thermal sensation and thermal preference scales cannot be considered 

interchangeable for all individuals. While several people might experience neutral sensation and thermal 

preference for no change at the same time, it is still necessary to account for preferred sensations other 

than neutral. Although not applicable to all participants in this study because of insufficient and highly 

unbalanced sample sizes, an alternative to this conversion would be analysing different conversion rules 

and cut-offs for each individual participant depending on their thermal sensation and thermal preference 

answers, instead of a single scale conversion method for all. 

6.7. Conclusion 

Responding accurately to older people’s thermal preferences in their dwellings is essential to 

enable comfort and support healthy ageing. In this chapter, personal comfort models have been 

developed for 28 older people as an alternative to the traditional aggregate comfort modelling approaches 

used in the field that often disregard diversity in thermal preferences, living environments and health 

statuses.  

Using deep learning as the modelling technique and both environmental and personal 

characteristics as model inputs, the study has demonstrated that: 

• On average, the individualised models present an accuracy of 74%, a Cohen’s Kappa 

Coefficient of 0.61 and an Area Under the Receiver Operating Characteristic Curve of 0.83, 

representing an overall improvement in performance when compared to other similar studies 

in the field and the PMVC model. 
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• On average, the performance of models without the use of health perception as an input 

variable was slightly lower than the performance of the ones using this predictor, although the 

difference between the results was not statistically significant.  

• The models’ generalisation performance may vary among participants. Poor performance can 

be related to low sample sizes for training, the presence of anomalous data points, or the 

absence of input features that might also be influencing this person’s thermal preference. 

Overfitting was also identified as a possible cause of low performance when testing the models. 

• Personal comfort models for older adults are recommended as HVAC control automation 

strategies, as diagnostic tools for design decision-making, and as the basis for the development 

of thermal comfort profiles in the broader public health scenario.  

The next step for this study includes expanding the models to take into account other physiological 

parameters such as skin temperatures, and testing the models’ capabilities and feasibility by deploying 

them in real life scenarios. 
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Chapter 7. Personal thermal comfort models for 
older people using skin temperature and 
environmental, behavioural and health variables 

Building on the findings of the personal comfort models presented in Chapter 6, this chapter 

provides further evidence of the exploration of 4 personal thermal comfort models for older adults using 

skin temperature data combined with previously used thermal comfort predictors. This chapter, therefore, 

similar to Chapter 6, aims to answer research questions C and D: 

C. How will the accuracy of personal thermal comfort models be affected by individuals’ particular 

variables? 

D. How can the use of personal thermal comfort models lead to a more accurate prediction of 

older people’s thermal preferences, in comparison with the prediction by a generalised model 

such as PMV? 

These questions are related to Objective (2): Develop personal thermal comfort models for older 

people from the data collected, considering their personal and behavioural characteristics as well as the 

conditions of their thermal environments, and compare the results with the predictions by established 

models such as the PMV model. 

This chapter has been published as a journal article: 

Arakawa Martins, L., Soebarto, V., Williamson, T (2022) “Performance evaluation of 

personal thermal comfort models for older people based on skin temperature, health 

perception, behavioural and environmental variables”, Journal of Building Engineering, 

Vol. 51, https://doi.org/10.1016/j.jobe.2022.104357 

The paper is presented here in a reformatted version for consistency of the thesis presentation. 

The accepted manuscript can be found in Appendix A. Note that the original Participant’s IDs were 

renumbered in this chapter to aid the manuscript readability when published as a stand-alone document: 

Manuscript ID (as presented in 
this Chapter) 

Original ID (as presented 
in Chapter 5, 6 and 8) 

1 5 

2 35 

https://doi.org/10.1016/j.jobe.2022.104357
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3 33 

4 46 

5 47 

6 8 

7 38 

8 39 

9 51 
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Performance evaluation of personal thermal comfort models for older people based on skin 

temperature, health perception, behavioural and environmental variables 

Authors and affiliations: 
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a School of Architecture and Built Environment, The University of Adelaide, 5000, Australia 

Abstract: Personal thermal comfort models hold the promise of a more accurate way to predict 

thermal comfort and therefore a more reliable approach for managing indoor thermal environments. They 

can be especially relevant as an assistive tool for people with lower thermal sensitivity or with limitations 

to thermal management and adaptation, such as older people. Nonetheless, although in constant 

development, studies on personal comfort models continue to focus on office environments and younger 

adults. This paper explores the development of personal comfort models to predict older people’s thermal 

needs in their homes and evaluates the models’ predictive performances in comparison with conventional 

generalised approaches. Machine learning and environmental, behavioural, health and skin temperature 

measurements were used to develop individual models for a set of older adults in South Australia. The 

results show that, on average, the personal thermal comfort models using all studied inputs, except for 

health perception, presented an optimal accuracy of 66.72%, a Cohen’s Kappa of 50.08% and AUC of 

0.77, a superior performance when compared with generalised approaches. Results have also 

highlighted the need for further research on combining physiological sensing, individualised predictive 

modelling and wearable comfort systems, as well as on defining thermal preference misclassification 

costs in the context of older people. 

Keywords: Thermal comfort, personal comfort model, skin temperature, older people, machine 

learning  
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7.1. Introduction 

Over the last two decades, the field of thermal comfort modelling has been going through an 

important paradigm shift. Studies on thermal comfort that focus on aggregated responses from a group 

of people, such as the PMV (Predictive Mean Vote) (Fanger, 1970) and adaptive models (Humphreys et 

al., 2016; de Dear and Brager, 1998), are being called into question by individualised and occupant-

centric modelling alternatives (Kim et al., 2018a; Čulić et al., 2021; Xie et al., 2020; André et al., 2020; 

Arakawa Martins et al., 2022a). To predict specific comfort requirements more accurately, instead of an 

average condition calculated from the responses of a group of people, the new personalised approach 

relies solely on thermal assessments from a single person. By absorbing individual diversity into thermal 

comfort management, this new modelling approach offers the potential to increase both occupant 

acceptability and related energy benefits in the built environment. As discussed in works by Kim et al. 

(2018a) and Arakawa Martins et al. (2022a), by using the individual as the unit of analysis, personal 

comfort models help unmask and quantify the differences between individuals in an environment, 

enabling a better understanding of specific comfort needs and requirements, such as acceptable 

temperature limits for a given space, and collecting diagnostic information to identify problems. This 

information, in turn, aids the decision-making process involved in optimizing thermal environments to 

improve both comfort and energy efficiency. If, for instance, the acceptable temperature limits diagnosed 

are greater than the default HVAC (Heating, Ventilation and Air Conditioning) temperature set point 

ranges, energy savings can be expected by widening the set point temperatures. If HVAC systems are 

used in shared spaces and individual control is not possible, personal comfort models can still be used 

as the basis for consensus-based solutions (Jazizadeh et al., 2014b), or the development of thermal 

comfort profiles for general use (Kim et al., 2018a; Arakawa Martins et al., 2022c). In single-occupant 

spaces where individual control is possible, personal comfort models can help automate any type of 

conditioning systems with higher precision. Although automatic control might not be a priority for some 

individuals, the automation provided by personal comfort models can be especially relevant as assistive 

tools for people with lower thermal sensitivity, such as older people, for those with more limitations to 

thermal management and adaptation, such as people with disabilities, or for those with less means to 

afford the cost of HVAC fuel consumption. Examples of energy savings resulting from the use of 

individualised thermal comfort models were experimentally demonstrated by Jazizadeh et al. (2014b) and 

Ghahramani et al. (2014). 

 Personalised models have been the subject of multiple recent research studies. They have been 

developed through a plurality of frameworks, varying data collection approaches, model inputs and output 

variables and the modelling algorithms used (Arakawa Martins et al., 2022a). When analysing the models’ 
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input variables specifically, environmental factors, such as indoor air temperature (Shan et al., 2018; 

Konis and Annavaram, 2017; Ghahramani et al., 2015b; Daum et al., 2011; Pazhoohesh and Zhang, 

2018; Aguilera et al., 2019), relative humidity (Zhao et al., 2014a), air speed (Liu et al., 2007), mean 

radiant temperature (Zhao et al., 2014b) and outdoor air temperature (Kim, 2018b; Fay et al., 2017), are 

most frequently used as single or combined predictors in these studies. There is, however, an increasing 

body of research focusing on personal comfort models driven by physiological variables, such as skin 

temperature or heart rate (Aryal and Becerik-Gerber, 2019; Aryal and Becerik-Gerber, 2020; Jung et al., 

2019; Katić et al., 2020; Li et al., 2017; Li et al., 2018; Li et al., 2020; Liu et al., 2019; Lu et al., 2019; Sim 

et al., 2016). Powered by the recent development of wearable devices and the Internet of Things (IoT), 

this area of research is advancing towards novel ways to monitor and predict individual thermal responses 

in increasingly more accurate and less intrusive ways.  

Nonetheless, although in constant development, studies on personal comfort models continue to 

focus on office environments and younger adults. While the literature contains multiple studies on thermal 

comfort for older adults (Jiao et al., 2017; Yang et al., 2016; Bills et al., 2016; Wong et al., 2009; Childs 

et al., 2020) and age-related differences in thermal sensation and preferences (Soebarto et al., 2019b; 

Schellen et al., 2010; Hwang and Chen, 2010), the studies focus on generalised conclusions in specific 

contexts. Studies on the development of personal comfort models that focus on older people, their 

specific physiological responses, and their living environments are still absent in the current literature 

(Arakawa Martins et al., 2022a). This is despite the fact that the proportion of older people (i.e., those 

aged 65 years old and over) worldwide is increasing rapidly, projected to grow from 9% in 2019 to 16% 

by 2050, due to historically low birth rates combined with increased life expectancy (United Nations 

Department of Economic and Social Affairs Population Division, 2019a). Furthermore, this research gap 

is especially relevant because heterogeneity in personal capabilities and needs tends to be greater in 

older than younger people, as older adults have likely experienced a greater range of cumulative social 

and environmental factors during their individual lifetime (World Health Organization, 2015b). Using a 

generalised thermal comfort model for older adults could result in a great proportion of them being 

exposed to unacceptable indoor thermal environments. Such thermal exposures can, in turn, interact with 

multiple comorbidities, leading to adverse health outcomes (Hansen et al., 2011; Nitschke et al., 2011; 

Hajat et al., 2007) and possibly premature institutional care. Personal comfort models thus hold the 

promise of a much more accurate approach to thermal environment management, which could potentially 

prevent both heat and cold related illnesses across a more diverse and vulnerable population. 

Furthermore, the human-in-the-loop (HITL) (Jung and Jazizadeh, 2019b) automation enabled by the 

integration of these models with heating and cooling control systems may be especially relevant as an 
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assistive tool for people with lower thermal sensitivity or for those with more limitations to thermal 

management and adaptation, such as people with disabilities. 

Therefore, this chapter explores the development of personal comfort models, using different 

combinations of environmental, behavioural, health and physiological (i.e., hand skin temperature) input 

variables, to predict older South Australians’ thermal needs in their homes, and evaluates the models’ 

predictive performances in comparison with conventional generalised approaches. Considering that 

approximately 80% of households in Australia have heating devices and 74% have cooling devices 

(Australian Bureau of Statistics, 2014), the opportunities for the use of personal thermal comfort models 

for possible HVAC or personal comfort systems automation in the Australian context become especially 

relevant. 

The structure of the chapter is organized as follows. The following Subsection 7.1.1 presents 

related works on personal thermal comfort models using both environmental and physiological features. 

Section 7.2 details the field study process and tools used for data collection, as well as the two modelling 

methodologies applied, a conventional generalised approach and a new personalised alternative. 

Section 7.3 explores the performance results of the two models while Section 7.4 discusses the main 

topics highlighted by the study’s outcomes. Section 7.5 presents the study’s limitations as well as future 

study opportunities, and Section 7.6 concludes this chapter. 

7.1.1. Related literature on personal comfort models using environmental and 

physiological input variables 

The recent literature on personal comfort models employing environmental and physiological 

variables as predictors for thermal comfort indicates that the models’ predictive performance increases 

when a combination of both types of inputs are used. Aryal and Becerik-Gerber (2019), for instance, 

monitored 20 participants, in their late teens to mid-thirties, through experimental sessions in an office 

building, and compared the accuracy of individual models using both environmental measurements and 

wrist and face skin temperatures. According to these researchers, using data from the environmental 

sensors for predicting thermal comfort resulted in a higher accuracy compared with using physiological 

data alone. However, combining data from both environmental and physiological sensors led to a slightly 

increased accuracy (3% - 4%) over using environmental sensors alone. A further study from the same 

authors (Aryal and Becerik-Gerber, 2020), involving 15 participants in their late teens to mid-twenties, 

also in experimental sessions in an office environment, confirmed similar results.  
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Jung et al. (2019) indicated a much greater increase in prediction performance when including 

physiological features as input parameters for personal thermal preference models. In a climate chamber 

study involving 18 participants, the research used skin heat exchange via a heat flux gauge, skin 

temperature, indoor temperatures and humidity to infer personal thermal preferences. According to their 

results, the use of the heat exchange rate from the skin resulted in higher performance indicators than 

using skin temperature and indoor temperature as factors. The study’s best performing modelling 

algorithm presented a median accuracy of 71% when using air temperature as a sole feature, 93% with 

the addition of skin temperature and 97% with the addition of heat flux, highlighting that the best 

performance was observed when skin temperature and heat flux were used along with ambient 

temperature.  

Likewise, Lu et al. (2019) conducted experimental sessions in an open-plan office with 2 healthy 

participants in their mid-twenties. The personal models predicted thermal sensations using three different 

feature sets, involving both environmental and physiological parameters. The models were trained using 

linear kernel Support Vector Machine, and the recall score (i.e., the proportion of all actual positive cases 

that were correctly predicted as positive), the precision score (i.e., the ratio between true positives and 

all predicted positives) and the F1 score (i.e., the harmonic mean of recall and precision) were used as 

the performance indicators (Lu et al., 2019). The combination of indoor air temperature, relative humidity, 

skin temperature and clothing surface temperature achieved a 100% recall, precision and F1 score for 

the female subject and a 96.1%, 97.5% and 95% recall, precision and F1 score, respectively, for the male 

subject.  

Li et al. (2017) also reported that the combination of both environmental and human data (i.e., 

activity level, clothing, heart rate, skin temperature) can significantly improve the performance of 

personalised comfort prediction models. Through two field studies, involving 3 and 7 participants in both 

office and residential environments, their research showed that the combined feature set achieved 

approximately 80% accuracy, improving the classification accuracy by 24% and 39% when compared 

with the use of environmental features only and physiological factors only, respectively. A subsequent 

study by the same authors (Li et al., 2018) explored personal comfort modelling using skin temperatures 

collected from different facial regions using thermal cameras. Through a series of experiments in an office 

environment with 12 participants in their early to mid-twenties, the researchers not only indicated that 

ears, nose, and cheeks skin temperatures are most indicative of thermal comfort, but also that their 

proposed framework can achieve an average accuracy of 85%. Building on these previous works, Li et 

al. (2020) proposed the Human Embodied Autonomous Thermostat (HEAT) tool, where facial skin 
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temperature and room air temperature were used to directly communicate with and control HVAC 

operations in multi-occupancy spaces. 

Similarly, Liu et al. (2019) collected physiological responses including skin temperature and heart 

rate, as well as environmental parameters such as air temperature and relative humidity, of 14 

participants, through a series of wearable sensors, in both indoors and outdoors environments. Through 

the use of 14 different machine learning algorithms, the personal thermal comfort models presented a 

median Cohen’s Kappa indicator of 24%, accuracy of 78% and Area Under the Receiver Operating 

Characteristic Curve of 0.79 (details on these performance indicators are presented in Section 7.2.7 of 

this chapter). These results showed a significant improvement of predictive performance when compared 

with the PMV and adaptive models. A follow-up study by the same research group (Das et al., 2021) used 

deep learning to develop personal thermal preference models for 7 of the original 14 participants, 

successfully testing transfer learning techniques in order to decrease data collection periods and test the 

generalisation of the models to other building occupants.  

A recent study by Jung et al. (2022) also explored the use of deep learning algorithms to optimize 

both thermal comfort and energy consumption of 4 young individuals in climate chamber experiments. 

Both environmental and physiological data were used as inputs. The results showed that the proposed 

optimization system could reduce by 10.9% the thermal discomfort of the occupants while maintaining 

their respective energy consumptions. 

The literature review, however, confirms a lack of studies where older adults are involved, as well 

as a limited amount of research in residential settings. Furthermore, as pointed out by Arakawa Martins 

et al. (2022a), although a general idea of trends in outcomes can be extracted from previous studies, a 

direct comparison of different physiological sensing and modelling approaches among these studies is 

difficult. As seen above, multiple performance indicators (e.g., accuracy, recall, Cohen’s Kappa and Area 

Under the Receiver Operating Characteristic Curve) and different experimental settings (e.g., climate 

chambers or field experiments, different body parts being monitored, and multiple types of sensing 

equipment) are used, making immediate conclusions on predictive performance difficult to draw. This 

study, therefore, aims to investigate an individualised modelling approach for older adults and their living 

environments, as well as a reproduceable modelling and evaluation methodology. 
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7.2. Study design and methodology 

7.2.1. Data collection periods 

The dataset used in this study is derived from two separate data collection periods, involving 11 

participants (6 males and 5 females) who lived in 8 households located in 3 climate zones (hot dry (BSk), 

warm temperate (Csa) and cool temperate (Csb), according to the Köppen–Geiger Climate Classification 

System) in South Australia. The participants were volunteers who met the following criteria: (1) be 65 

years old or over; (2) live independently, and (3) be able to communicate in English. These participants 

were part of a larger research project that investigated the thermal qualities of older adults’ living 

environments (Soebarto et al., 2021). While this research project involved 71 participants in 57 

households, only 11 participants agreed to be involved in the further data collection, which involved 

measuring their skin temperature, as explained below. The study received approval from The University 

of Adelaide Human Research Ethics Committee (approval number H-2018-042). 

In the first data collection period, indoor environment data were collected simultaneously in all 

houses, across a period of 9 months, from mid-January to mid-October in 2019. The sensors and data 

loggers were placed in each house’s main living room and main bedroom and a portable electronic tablet 

was left for participants to answer a point-in-time survey about their thermal environment and their 

preferences and sensations at least twice a week. The indoor environment loggers recorded data from 

measurements of dry bulb temperature, globe temperature, air speed, and relative humidity, at 30-minute 

intervals and when a participant completed a survey. Mean radiant temperature was later calculated from 

the measured dry bulb temperature, globe temperature and air speed measurements applying the 

method from ISO 7726:1998 (ISO, 1998). Participants were able to choose whether to answer the 

surveys in the living room or the bedroom, since the tablet was portable and could be carried between 

the rooms. The survey’s first question asked participants to indicate in which room the survey was being 

conducted and the loggers’ measurements were later sorted to match the corresponding rooms. 

While the indoor environmental parameters were being recorded, each participant was asked to 

periodically respond to a thermal comfort survey through an electronic tablet. The survey comprised of 

questions about participants’ clothing level, activity level, health/wellbeing perception (for which the 

answer scales are further detailed in Table 7-2), thermal sensation (TSV) and thermal preference (TPV). 

TSV was assessed using the question ‘How do you feel right now?’ with possible responses being ‘Cold’, 

‘Cool’, ‘Slightly cool’, ‘Neutral’, ‘Slightly warm’, ‘Warm’ or ‘Hot’. TPV was assessed using the question 

‘Would you prefer to be...’ with possible responses being ‘Cooler’, ‘No change’ or ‘Warmer’. Details of the 

loggers and thermal comfort survey tablet have been reported by Soebarto et al. (2020). 
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A questionnaire about sociodemographic information and an open-ended interview about house 

details were administered at the start of the monitoring period. Furthermore, frailty status (using the 

Modified Reported Edmonton Scale (MRES) (Rose et al., 2018)) and participants’ height, weight and 

body mass index (BMI) (using a Tanita Inner Scan RD-953 scale (Tanita Corporation, 2016)) were 

assessed at the end of the monitoring period. 

After the conclusion of the first data collection period, a preliminary analysis of the data and further 

literature investigations highlighted a lack of physiological factors being investigated in the first stage of 

the study. Therefore, a second data collection was conducted with the same participants. Each house 

was monitored across 2 consecutive weeks, one house after the other, between the months of September 

2020 and February 2021.  

In this second data collection, the survey tablet, as detailed below, was modified to include a non-

contact infra-red temperature sensor to measure the skin temperature of the back of participants’ non-

dominant hand after they completed each point-in-time survey. The other environmental measurements 

and the comfort survey questions remained the same as for the first collection period. Frailty and body 

composition assessments were redone and, after analysis, variations between the two data collection 

periods were considered minimal (i.e., maximum 1 unit change in the frailty score and a weight change 

under 5 kg). In addition, through new photographic documentation and interviews with participants, 

researchers ensured that the environments had not undergone major changes that could compromise 

the merging of the two collected datasets. 

7.2.2. Hand skin temperature measurement tool 

Human hands are known to contain a high number of arteriovenous anastomoses (AVAs), valves 

that regulate vasoconstriction and vasodilatation, and therefore influence heat loss by changing the 

peripheral blood flow (Hales, 1985). This makes the skin temperatures of hands a possible indicator of a 

person’s thermal state (Wang et al., 2007). The skin temperature of the back of the hand (i.e., dorsal side 

of the hand) was chosen for this study in line with previous research that correlated thermal sensation to 

this specific body part (Soebarto et al., 2019b; Wang et al., 2007; Katić et al., 2020; Childs et al., 2020) 

and according to ISO:9886:2004 (ISO, 2004). The measurement of the back of hand also reduced the 

intrusiveness of the method since this skin surface is more frequently exposed to the environment than 

other body parts. In addition, the use of the dorsal side of the hand, in combination with the space and 

position available for the new sensors in the original tablet enclosure, allowed the most comfortable 

position for older participants to take the measurements whilst seated. The non-dominant hand was 

chosen to minimize the effect of frequent hand movements in the skin temperature measurements. 
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To include skin temperature measurements in the study, the original tablet and logger were 

modified to record and store data from a non-contact infra-red temperature sensor (model MLX90614-

DCC). The sensor has a ±0.5°C precision of temperature measurement and a field of view (FOV) of 35 

degrees. To measure a spot with a radius of approximately 1 cm on the back of participants’ non-dominant 

hand, participants positioned their hands at a maximum distance of 1.5 cm from the sensor. 

An Arduino line trace sensor (model LB-LR0005) was also included in the modified version of the 

equipment, serving as a proximity sensor to allow measurements only when the participants’ hand was 

close enough to the infra-red sensor. In addition, a dark coloured upright partition was attached in front 

of the sensors to avoid accidental measurements triggered by surrounding reflective surfaces, and to 

guide participants’ hand positioning. A buzzer was also included as an audible indication that a 

measurement had been taken by the skin temperature sensor and recorded by the tablet. Recorded 

measurements, however, could contain irregularities that were later analysed individually, as described 

in the next sections of this chapter. The modified equipment and skin temperature measurement 

procedure was tested with 3 people (in their late fifties to mid-seventies) before deployment to ensure 

suitability for the cohort involved in the study. The accuracy of the setup was compared with a medical 

grade infra-red temperature device, presenting a ±0.5°C error range. 

Figure 7-1 shows the indoor environmental data logger and thermal comfort survey tablet with 

infra-red skin temperature sensor used in the second data collection period and demonstrates how the 

skin temperature measurements were taken. 
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Figure 7-1 - Thermal comfort survey tablet with infra-red skin temperature sensor and indoor 

environment data logger (left), and back of hand skin temperature measurement being taken (right). 

7.2.3. Participants and datasets 

Table 7-1 presents the characteristics of the 11 participants. The exploration presented in this 

chapter is divided in two parts, the first comprising of a conventional generalised modelling method 

(detailed in Section 7.2.4) and the second contemplating a new individualised modelling approach using 

machine learning (detailed in Section 7.2.5). The first exploration was developed from the full dataset 

from the second data collection period of the 11 participants. The second exploration is based on the 

individual datasets of 4 of the 11 participants involved. Only 4 participants were evaluated individually 

because the modelling methodology required that each participant voted at least 6 times in at least one 

of the three thermal preference (TPV) classes, to allow a minimum of 5-fold cross-validation during model 

training, plus a minimum of 1 vote per category for testing. Seven participants did not meet these criteria 

and therefore were excluded from the second exploration. The cross-validation procedure is based on 

common practice in the field of machine learning (Raschka, 2018) and on similar thermal comfort studies 

(Aryal and Becerik-Gerber, 2020; Katić et al., 2020; Jiang and Yao, 2016; Liu et al., 2019).It is further 

detailed in Section 2.5.2. Since dealing with individual datasets reduced the dataset sizes for modelling, 

records from the first and second collection periods were merged to increase the number of data points 

for each of the 4 participants. In this case, k-Nearest-Neighbours technique was used to impute the 

missing values of skin temperature in the first data collection set. These 4 participants are highlighted in 

bold in Table 7-1. 
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Table 7-1 - Participants’ characteristics. Participants whose personal thermal comfort models were 

developed are highlighted in bold. 

ID 
Climate 
Zone 

Sex 
(Female or 
Male) 

Age 
(years) 

Height 
(cm) 

Weight 
(kg) 

BMI 
(kg/m²) 

Frailty Score 
(MRES scale) 

1 Csa Female 80 161.0 103.4 39.9 Not Frail 

2 Csa Male 74 160.0 120.6 47.1 Mild Frailty 

3 Csa Male 81 171.5 111.1 37.8 Not Frail 

4 Csb Female 67 166.5 115.6 41.7 Not Frail 

5 Csb Male 66 183.0 68.3 20.4 Not Frail 

6 Csa Male 83 174.0 92.35 30.5 Apparently vulnerable 

7 Csa Female 83 166.0 72.85 26.4 Not Frail 

8 Csa Male 85 173.0 98.95 33.1 Not Frail 

9 Csb Female 73 150.5 62.95 27.8 Apparently vulnerable 

10 Csb Male 77 180.0 69.15 21.3 Not Frail 

11 Csa Female 82 163.0 61.5 23.2 Apparently vulnerable 

It is important to note that, in the case of personal thermal comfort modelling, the number of data 

points for each participant (i.e., the number of thermal preference votes in each individual dataset) is 

more relevant for each model’s robustness than the total number of participants involved in the overall 

study, as already pointed out by Li et al. (2020). In addition, the range and number of votes in each of the 

thermal preference categories is of great importance for model’s predictive performance and reliability, 

especially when dealing with highly unbalanced datasets such as the ones commonly produced by field 

studies. 

7.2.4. First exploration method: weighted least squares regression model 

One of the most common methods to calculate thermal comfort predictions is through weighted 

regression models (Wang et al., 2018). Therefore, the first exploration in this study is based on the 

following steps.  

From 565 survey answers and environmental and skin temperature measurements derived from 

all 11 participants, 500 contained valid data for skin temperature (i.e., no measurement error or missing 

values). This valid dataset was first analysed for outlier detection in the skin temperature measurements, 

which may have been the result of issues such as accidental triggering of the sensor or moisture on the 

back of the hand. Outliers were considered as any data value that lay outside the range between the 3rd 

quartile plus 1.5 times the interquartile range and the 1st quartile minus 1.5 times the interquartile range. 

The outliers were then excluded from the dataset, resulting in a final dataset of 470 datapoints. 



167 

Next, the skin temperature measurements (i.e., the independent variable) were binned in 0.5°C 

increments. The mean of the skin temperatures and corresponding thermal preference votes (i.e., the 

dependent variable) were then calculated for each bin. With binning, the ordinal thermal preference vote 

(TPV), assuming equal intervals, may be considered an interval variable and therefore amenable to 

inferential statistical analysis. A linear regression model was then fitted to the binned data points, 

weighted by the number of votes in each bin, using the weighted least squares regression method, which 

is widely used in thermal comfort field studies (Wang, 2006; Nakano et al., 2002; de Dear and Fountain, 

1994; Wang et al., 2018). 

Further relationships between skin temperature and the other environmental (i.e., dry bulb 

temperature, radiant temperature, air speed, and relative humidity) and behavioural/physiological 

measurements (i.e., clothing level, health perception and metabolic rate) were also analysed, using a 

similar method, with skin temperature as the dependent variable and the other factors as independent 

variables. In this case, dry bulb and radiant temperatures were binned in 0.5°C increments, air speed in 

0.1m/s increments, relative humidity in 5% increments, metabolic rates in 0.1 MET increments and 

clothing level and health perception in their original 1 increment categories. This analysis was developed 

using IBM SPSS Version 27.0.0 (IBM Corp., 2020). 

7.2.5. Second exploration method: personal thermal comfort model 

The second exploration conducted in this study investigates thermal preference predictions at an 

individualised level, using personal thermal comfort models. In this case, instead of the single dataset 

containing the thermal preference votes for all participants involved, individual datasets were used to 

develop personal models targeted for each participant.  

Artificial neural networks (ANN), also known as deep learning (Goodfellow et al., 2016), were used 

to develop these personalised comfort models. Although other high-performance machine learning 

techniques could have been used (e.g., Random Forests or Support Vector Machine) for thermal 

preference prediction, an extensive review of personal thermal comfort models highlighted a lack of 

exploration of artificial neural networks (Arakawa Martins et al., 2022a). Furthermore, ANNs have the 

advantage of not imposing prior assumptions about data distribution before learning, unlike other 

conventional techniques, which significantly leverages the use of ANNs in different applications (Thach 

et al., 2021). 

The models were developed to perform a multiclass classification task of occupants’ TPV on a 3-

category-scale (i.e., ‘prefer to be cooler’, ‘prefer no change’ or ‘prefer to be warmer’). The survey’s TPV 
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were used as the ground truth to train the models and were later compared to the predicted values. It is 

important to highlight that, TPV was deemed more appropriate than TSV ― which is commonly used in 

thermal comfort studies ―  because, as pointed out by Kim et al. (2018b), the thermal preference scale 

not only represents the ideal condition desired by each person, but also suggests in which direction a 

change may be desired. 

In total, 8 input variables were used, 4 of which represented the environmental conditions of the 

participant’s room (i.e., dry bulb temperature, radiant temperature, relative humidity, and air speed) and 

4 of which represented the participant’s personal, physiological, or behavioural characteristics (i.e., 

corrected metabolic rate, clothing level, self-reported health perception and hand skin temperature). 

These 8 variables were selected to cover factors known in the architectural science, medicine, and public 

health fields to influence thermal responses (Arakawa Martins et al., 2020; Bluyssen, 2019). Table 2 

shows each input’s data collection tool and unit or scale. 

Participants’ activity answers in the survey were converted to MET values according to the 

Compendium of Physical Activities (Ainsworth et al., 2011), and later corrected based on participants’ 

sex, height, weight and age, according to Byrne et al. (2005) and Kozey et al. (2010). Table 7-2 shows 

the activity scale points and corresponding MET values. 

Table 7-2 - Input variables used 

Type Input variable Data collection tool Unit or scale 
Min and max 
used in 
normalization 

Environmental Dry Bulb Temperature  Thermometer in Data logger C 
Min 5°C 
Max 45°C 

Environmental 
Mean Radiant 
Temperature  

Calculated from globe 
thermometer, thermometer, and 
air speed sensor measurements 
in Data logger 

C 
Min 5°C 
Max 45°C 

Environmental Relative Humidity Hygrometer in Data logger % 
Min 0% 
Max 100% 

Environmental Air Speed Air speed sensor in Data logger m/s 
Min 0 m/s 
Max 4m/s 

Personal Skin Temperature 
Infra-red temperature sensor in 
Thermal Comfort Tablet 

°C 
Min 20°C 
Max 40°C 

Personal Metabolic Rate 
Survey in Thermal Comfort Tablet 
– ‘Describe your activity in the last 
15 min in this space.’ 

Very relaxed activity = 1 MET 
Relaxed activity = 1.3 MET 
Light activity = 1.5 MET 
Moderate activity = 2.5 MET 
Active activity = 3.3 MET 

Min 1 
Max 3.3 

Personal Clothing Level 
Survey in Thermal Comfort Tablet 
– ‘How are you currently 
dressed?’ 

Very light = 1 
Light = 2 
Moderate = 3 
Heavy = 4 
Very heavy = 5 

Min 1 
Max 5 
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Personal Health Perception 

Survey in Thermal Comfort Tablet 
– ‘How would you describe your 
health and wellbeing at the 
moment?’ 

Very good = 1 
Good = 2 
Reasonable = 3 
Poor = 4 
Very poor = 5  

Min 1 
Max 5 

 

To compare the impact of different types of input on models’ predictive performance, three different 

combinations of input variables were tested: 

(1) Skin temperature; 

(2) Skin temperature plus the “6PMV” variables, namely dry bulb temperature, radiant 

temperature, relative humidity, air speed, clothing and metabolic rate; 

(3) Skin temperature plus the “6PMV” variables plus the participant’s perception about their health. 

The modelling process involved the following stages: (A) dataset pre-processing and balancing 

and (B) model tuning, selection, and evaluation. Anaconda version 2019.3 (Anaconda, 2019) was used 

as the package manager to script and run all models using Python version 3.7 and PyTorch tensor library 

(Paszke et al., 2017). 

7.2.5.1. Dataset pre-processing and balancing 

In the 4 individual datasets, the middle category (i.e., ‘prefer no change’) was more frequently 

voted for than the extreme categories, resulting in highly imbalanced thermal preference distributions, as 

seen in Figure 7-2. Therefore, undersampling was conducted, by randomly removing votes from the 

majority classes until reaching the size of the minority class. Final individual dataset sizes can be seen 

in Table 3. The use of undersampling as a balancing strategy has resulted in a reduction of the datasets’ 

sizes. Although other balancing strategies such as oversampling or SMOTE (Synthetic Minority 

Oversampling Technique) (Mishra, 2017) could have avoided the decrease in sample size, they are more 

likely to lead to model overfitting (Branco et al., 2015), and were, therefore, not chosen in the current 

study. 
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Figure 7-2 - Percentage of total number of votes of each thermal preference category, for each 

participant’s original dataset 

Nevertheless, although larger sample sizes might allow a better statistical representation of the 

data, other similar studies on personal thermal comfort models using machine learning techniques have 

reported minimum datasets of 30 to 90 datapoints for maximum predictive performance (Daum et al., 

2011; Jazizadeh et al., 2014a; Kim et al., 2018b; Lee et al., 2019; Li et al., 2017), which is in line with the 

average dataset sizes used in this study, as seen in Table 7-3. Considering personal models using ANNs 

specifically, Shan et al. (2018) reported an average accuracy of 89.2%, and an average MSE (Mean 

Standard Error) of 0.06 using 150 datapoints per model, while Kim (2018b) reported an average MSE of 

0.0029 using 26 to 133 datapoints per model, supporting the data sizes of the current study. Furthermore, 

k-fold cross validation, detailed in the next section, was used to avoid the drawbacks due to limited sample 

sizes. 

The categories were also coded from 0 to 2, where 0 corresponded to the ‘prefer to be cooler’ 

class, 1 the ‘prefer no change’ class and 2 the ‘prefer to be warmer’ class. Finally, the input variables 

were normalized to a single range from 0 to 1, using minimum and maximum values according to Table 

7-2. 

7.2.5.2. Model tuning, selection, and evaluation 

Hyperparameters are settings used to control the model’s behaviour and capacity (Goodfellow et 

al., 2016). To choose the optimal set of hyperparameters, model tuning was conducted. The first step of 

model tuning consisted of dividing the datasets into three separate subsets. The training set is the subset 

of data points used for learning (i.e., fitting the internal coefficients of the classifier). The validation set is 
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the dataset used to guide the selection of the hyperparameters. The testing set is an independent subset 

of examples used to assess the performance of a fully trained model, evaluating the model with data it 

has never seen before (Ripley, 1996) .  

First, each participant’s total datasets were randomly split into training and testing sets, with at 

least 5 votes in each thermal preference class for training and at least 1 vote for each class for testing. 

The training set was then divided into two subsets to allow 5-fold cross validation, with at least 4 votes 

per class for the training set and at least 1 vote per class for the validation set. Five-fold cross-validation 

was chosen such that each training/validation group of data samples were large enough to be a 

representative of the total dataset, while small enough to allow modelling for participants with low vote 

counts. Stratified cross-validation was repeated 5 times to reduce the noise in the model performance 

between different cross validation splits. 

After the validation-train-test split, the next step involved the imputation of missing values for skin 

temperature. This involved inputting values to substitute outliers and measurement errors from the 

second data collection period as well as missing values from the first data collection period. The K-

Nearest-Neighbours technique was used due to its low complexity, robustness and frequent use in 

machine learning related approaches (Kuhn and Johnson, 2013; Beretta and Santaniello, 2016). An 

optimal value of k=5 was used for the imputation. 

The next step of model tuning involved training the models, varying three main hyperparameters 

according to common practice in machine learning studies (Kuhn and Johnson, 2013). The learning rate 

was varied from 0.001 to 0.01 to 0.1. The number of hidden neurons in the hidden layer of the model was 

varied between 4, 5 and 6. Lastly, the batch size was varied between 2 and 8 data points.  

The models were trained using an input layer, a single hidden layer, and an output layer. In order 

to go from one layer to the next, the neurons compute a weighted sum of their inputs from the previous 

layer (Equations 1 and 3) and pass the result through a non-linear function, called the activation function 

(LeCun et al., 2015). The models in this study used Rectified Linear Unit (ReLU) (Agarap, 2018) as the 

activation function between the input layer and the hidden layer (Equation 2) and Softmax as the 

activation function between the hidden layer and the output layer (Equation 4). The mathematical 

expressions of the models can be written in the following form: 

𝑧𝑗  =  ∑ 𝑤𝑖𝑗 ∙  𝑥𝑖 +  𝑏𝑗
8
𝑖=1       ( 25 ) 

𝑦𝑗 = 𝑓(𝑧𝑗) = max (0, 𝑧𝑗)    ( 26 ) 
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𝑧𝑘  =  ∑ 𝑤𝑗𝑘 ∙  𝑦𝑗 +  𝑏𝑘
𝑁𝐽

𝑗=1
    ( 27 ) 

𝑓(𝑧)𝑘 =  
𝑒𝑧𝑘

∑ 𝑒𝑧𝑜3
𝑜=1

      ( 28 ) 

where 𝑥𝑖  are the normalised data of the input variables, 𝑤𝑖𝑗 are the weights between the input and hidden 

neurons, 𝑏𝑗 are the bias values of the hidden neurons, and 𝑦𝑗  the output values of the activation functions 

(ReLU) in the hidden layer; while 𝑤𝑗𝑘 are the weights between the hidden and output neurons, 𝑏𝑘 are 

the bias values of the output neurons, 𝑁𝐽 is the number of hidden neurons, and 𝑓(𝑧)𝑘 are the outputs 

of the activation functions (Softmax) in the output layer (as probability distributions from 0 to 1 for each 

class). 

The Cross Entropy function was used to measure the error (𝐿𝐶𝐸) of each classification rounds 

(Equation 5): 

𝐿𝐶𝐸 =  − ∑ 𝑡𝑘 log 𝑓(�⃗�)
𝑘

3
𝑘=1      ( 29 ) 

where 𝑡𝑘 is the target probability for each class, and 𝑓(𝑧)𝑘 is the predicted probability for each class.  

Stochastic Gradient Descent was used as the optimizer algorithm to minimize 𝐿𝐶𝐸, with a 

momentum at 0.9 (Goodfellow et al., 2016). 

After each training round, the models’ performances were evaluated using the validation set. The 

performance indicators (detailed in Section 7.2.7) were then compared, and the hyperparameters 

associated with the best model performance were chosen (model selection). Next, training and validation 

sets were merged into one dataset and the best hyperparameter settings from the previous step were 

used to fit a new model to this larger dataset. Finally, the test set was used to estimate the generalization 

performance of the model resulted from the previous step (model evaluation) (Raschka, 2018). More 

details of the modelling methodology used have been previously published (Arakawa Martins et al., 

2022b). 

7.2.6. Conversion of the PMV model for comparison 

To allow a further comparison between generalised and individualised models, the PMV index was 

calculated according to ASHRAE Standard 55-2020 (ANSI/ASHRAE, 2020) using each participants’ 

testing set. The PMV predictions on a thermal sensation 7-point-scale were transformed to a 3-point 

thermal preference scale to enable a direct comparison with the personal thermal preference models. 
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When PMV < -0.5 (i.e., less than ‘slightly cool’ to ‘cold’), the votes were labelled as ‘preferring to be 

warmer’; when -0.5 < PMV < 0.5 (i.e., ‘neutral’), the votes were labelled as ‘no change’; and when PMV 

> 0.5 (i.e., more than ‘slightly warm’ to ‘hot’), the votes were labelled as ‘preferring to be cooler’. The ±0.5 

cut-offs represent the recommended limits for a 10% Predicted Percentage of Dissatisfied (PPD), as 

prescribed by ASHRAE Standard 55-2020 (ANSI/ASHRAE, 2020). The transformed PMV index is 

referred to in this chapter as PMVC. 

7.2.7. Performance indicators 

The performance indicators used during the personal comfort models’ tuning and evaluation, as 

well as when comparing them with the weighted linear regression model and the PMVC model, were the 

Accuracy, the Cohen’s Kappa Coefficient, and the Area Under the Receiver Operating Characteristic 

Curve (AUC). 

Accuracy was calculated by dividing the number of correct predictions by the total number of 

predictions. The Cohen’s Kappa Coefficient (К) (Cohen, 1960) was calculated using Equation 6 and 

compensates the measurement of accuracy, by taking into account the agreements that can be attributed 

to random chance. It ranges from negative values to 1, where 1 means perfect agreement, 0 means no 

agreement other than what would be expected by chance, and negative values mean the agreement is 

worse than random. In this chapter, the accuracy and the Cohen’s Kappa Coefficients are presented in 

percentages. 

К =  
(р𝑜 − р𝑒) 

(1 − р𝑒)
       ( 30 ) 

where р𝑜 is the accuracy measure, and р𝑒 is the hypothetical probability of a chance agreement.  

To calculate the AUC, first, the Receiver Operating Characteristic Curve (ROC) was built by 

plotting the probability of a true positive versus the probability of a false positive rate for all possible 

discrimination thresholds, for each of the three thermal preference classes using the ‘one versus the rest’ 

method. Equations 7 and 8 define the true positive rate (𝑇𝑃𝑅) and the false positive rate (𝐹𝑃𝑅): 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      ( 31 ) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
      ( 32 ) 

where 𝑇𝑃 (true positive) is the number of positive class correctly predicted in a binary classification 

model; 𝐹𝑃 (false positive) is the number of positive class incorrectly predicted; 𝑇𝑁 (true negative) is the 
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number of negative class correctly predicted; and 𝐹𝑁 (false negative) is the number of negative class 

incorrectly predicted. 

Then, the area under the ROC was computed for each of the classes and averaged to obtain a 

single performance indicator. AUC is a measure frequently used in machine learning studies (Ben-David, 

2008) and can vary between 0 and 1, where 0.5 denotes random guessing and 1 indicates perfect 

agreement. It is important to highlight, however, that the AUC for the weighted linear regression model 

and for the PMVC model was calculated using a single pair of probability of true positive rate versus 

probability of false positive rate, since these models are not probabilistic classifiers and do not allow 

plotting of more than one discrimination threshold. 

The differences between the models’ performance, for each model type, were tested for statistical 

significance using Independent Samples t-tests. The level of statistical significance was set at p < 0.05. 

7.3. Results 

7.3.1. Weighted least squares regression analysis 

Figure 7-3 presents the histogram of hand skin temperature measurements collected during the 

second monitoring period of the 11 participants. Data outliers were found to be lower than or equal to 

22.10°C, and the mean hand skin temperature after the outliers were removed was 30.58°C. 

 

Figure 7-3 - Histogram of skin temperature measurements with indication of outliers identified 
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According to the regression analysis, among the independent variables tested against skin 

temperature as the dependent variable, significant relationships were identified between skin temperature 

and dry bulb temperature, radiant temperature, clothing level and health perception. This was indicated 

by higher R-squared values (i.e., the coefficient of determination, indicating the percentage of the skin 

temperature variance that the independent variable explains), statistically significant independent 

variable coefficients (i.e., p < 0.05) and a general visual indication in the raw data scatter plots. The R-

squared values, p-values, and raw data scatters, as well as the binned means and corresponding 

weighted linear regression lines and equations for each analysis are shown in Figure 7-4.  The variance 

(R-squared values) of the binned data have increased (because they are now based on the bin-mean 

values) but still serve as an indicator of comparison between models for exploratory analysis. 

When fitting a weighted least squares linear regression model for thermal preference prediction 

using skin temperature as the predictor, the independent variable coefficient remained statistically 

significant (p = 0.001), validating the model for further analysis. Figure 7-5 presents the model fit. The 

performance of this model in predicting individuals’ thermal preferences using the selected participants’ 

testing datasets is presented in Section 7.3.2. 

The box plot of skin temperatures for each of the thermal preference categories, presented in 

Figure 7-6, illustrates the same relationship between skin temperature and thermal preference for the 

general sample of 11 participants. Nevertheless, when analysing participants’ individual box plots, 

presented in Figure 7-7, not only does this relationship differ among individuals, but it is also less evident 

than the case of the general sample, suggesting that an individualised analysis is required. Among the 

participants selected for the personal comfort models’ analysis, highlighted in grey in Figure 7-7, ID11 

presents the most evident correlation between skin temperature and thermal preference. This is indicated 

by skin temperature medians and means for each thermal preference category at distinctively different 

levels and in a linear descending order from ‘prefer to be cooler’ through to ‘prefer to be warmer’. The 

plots also show considerable range variations in skin temperatures across participants, emphasizing once 

again a need for a more individualised level of analysis. 
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Figure 7-4. Regression analysis between skin temperature and dry bulb temperature, radiant 

temperature, air speed, relative humidity, clothing level, corrected metabolic rate and health perception 
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Figure 7-5 - Weighted Least Squares Regression model for thermal preference prediction using skin 

temperature 

 

Figure 7-6 - Box plot of skin temperature for each thermal preference category, for all participants 

(n=470) 
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Figure 7-7 - Box plots of skin temperatures for each thermal preference category, for each individual 

participant. Selected participants for personal thermal comfort modelling are highlighted in grey 
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7.3.2. Personal thermal comfort models and comparison between approaches 

Table 7-3 presents a summary of the predictive performance of the weighted least squares 

regression model (WLS), the converted predicted mean vote model (PMVC) and the personal comfort 

models (PCM) using the 3 different input combinations. The predictive performance is presented as the 

Accuracy, Cohen’s Kappa Coefficient and AUC for the testing dataset (i.e., the ‘never-before-seen’ 

dataset) of each participant. 

Table 7-3 - Predictive performance of Weighted Least Squares Regression (WLS), Converted 

Predicted Mean Vote (PMVC) and Personal Comfort Models (PCM) with different input variables. The 

best AUCs (Area Under the Receiver Operating Characteristic Curve) for each participant across model 

types are highlighted in bold. 

 
Dataset size  
(balanced) 

WLS* PMVC * PCM* 

Input variables: 
Skin Temp. 

Input variables: 
6PMV* 

Input variables: 
Skin Temp. 

Input variables: 
6PMV* + Skin Temp. 

Input variables: 
6PMV* + Health + 
Skin Temp. 

ID 
Train
ing 

Testin
g 

Total 
Acc* 
(%) 

Cohen’s 
Kappa 
(%) 

AUC* 
Acc* 
(%) 

Cohen’s 
Kappa 
(%) 

AUC* 
Acc* 
(%) 

Cohen’s 
Kappa 
(%) 

AUC* 
Acc* 
(%) 

Cohen’s 
Kappa 
(%) 

AUC* 
Acc* 
(%) 

Cohen’s 
Kappa 
(%) 

AUC* 

1 90 27 117 33.33 00.00 0.50 48.15 22.22 0.61 55.56 33.33 0.71 59.26 38.89 0.69 48.15 22.22 0.69 

4 120 39 159 43.59 15.38 0.58 53.85 30.77 0.65 43.59 15.38 0.50 71.79 57.69 0.87 74.36 61.54 0.84 

9 60 24 84 33.33 00.00 0.50 50.00 25.00 0.63 33.33 00.00 0.50 62.50 43.75 0.72 54.17 31.25 0.71 

11 30 15 45 46.67 20.00 0.60 53.33 30.00 0.65 66.67 50.00 0.75 73.33 60.00 0.79 73.33 60.00 0.77 

 Mean 39.23 8.85 0.54 51.33 27.00 0.63 49.79 24.68 0.62 66.72 50.08 0.77 62.50 43.75 0.75 

* WLS = Weighted Least Squares Regression; PMVC = Converted Predicted Mean Vote; PCM = Personal Comfort Model; 6PMV = dry 

bulb temperature, radiant temperature, relative humidity, air speed, metabolic rate, and clothing level; Acc = accuracy; AUC = Area Under 

the Receiver Operating Characteristic Curve. 

The accuracy of the personal thermal comfort models using skin temperature alone as the single 

predictor ranged from 33.33% to 66.67%, with a mean of 49.79%. The Cohen’s Kappa indicator ranged 

from 0.00% to 50.00%, with a mean of 24.68%, and the AUC ranged from 0.5 to 0.75, with a mean of 

0.62. These indicators suggest a relatively low performance, especially when considering individual AUC 

performances lower than 0.5 (i.e., worse than random guessing).  

When adding dry bulb temperature, radiant temperature, relative humidity, and air speed (i.e., 

environmental factors) and the metabolic rate and clothing level (i.e., behavioural factors) − the 

combination called in this chapter the 6PMV variables −, the individual models’ performance increased, 

especially for ID04 and ID09, but not for ID01. The average accuracy increased to 66.72%, the average 

Cohen’s Kappa to 50.08% and the average AUC to 0.77. These results are also similar to related studies, 

such as the work of Liu et al. (2019), which reported an average Cohen’s Kappa indicator of 24%, 

accuracy of 78% and AUC of 0.79 among a set personal models using physiological and environmental 

data. 
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Including health perception produces a slight decline in the average and individual models’ 

performance indicators. This difference in averages, however, is not statistically significant (p > 0.05). 

With the inclusion of health perception as a predictor, the personal comfort models presented an average 

accuracy of 62.50%, an average Cohen’s Kappa Coefficient of 43.75% and an average AUC of 0.75. 

From these results, the best performing personal thermal comfort models were the ones using 

physiological, environmental, and behavioural input variables. 

When analysing the generalised models, on average, the PMVC model predicted individual thermal 

preferences with an accuracy of 51.33%, a Cohen’s Kappa indicator of 27.00%, and an AUC of 0.63. The 

WLS model presented an even lower performance, with a mean accuracy of 39.23%, a mean Cohen’s 

Kappa of 8.85%, and a mean AUC of 0.54 (i.e., slightly better than random guessing). On average, 

therefore, this represents a superior predictive performance of the individualised models using both 

environmental and personal variables when compared with the generalised approaches, as represented 

by Figure 7-8. These differences in mean predictive performance are statistically significant (p < 0.05). 

 

Figure 7-8 - Comparison between AUC for different models 

It is also evident in Figure 7-8 that ID04 and ID09’s personal thermal models using only skin 

temperature underperformed, even when compared with the generalised models. Exploring in more detail 

these lower performances, Figure 7-9 shows the probability density of the distributions of the thermal 

preference categories depending on the 8 input variables involved in the study, built using Kernel Density 

Estimation (KDE) (Zielinski et al., 2018). When thermal preference categories have overlapping areas in 

these density plots, it suggests a participant is likely to prefer different thermal conditions when 
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experiencing the same environmental conditions or having the same skin temperatures. Therefore, 

overlapping areas can represent the presence of events that are harder for the models to distinguish and 

predict. When analysing the density plots for skin temperature for ID04 and ID09, it is evident from the 

overlapping areas that adding this single variable as a predictor of thermal preference might not be ideal 

for them and could potentially compromise the models’ predictive performance. ID11, on the other hand, 

has many fewer overlapping density regions for skin temperature, which could explain the higher 

performance of the personal model using this predictor. The skin temperature influence on thermal 

preference for ID11 has already been indicated by the box plot in Figure 7-7.  

The density plots can also help explain the relatively low impact that the health perception variable 

had on all individual models. Furthermore, it is noted that the four participants analysed in detail, although 

having varying health perception throughout the monitoring study, were either not frail or had low levels 

of frailty (as presented in Table 7-1), which could have limited the range and variability of the data 

collected related to health and wellbeing perception. The quality of data could also have been affected 

by the self-reported nature of the health assessment. Finally, although health perception could have 

impacted these participants’ thermal preference, the weight of the other input variables certainly 

prevailed. This is evident for ID04 and ID09, for which the environmental factors played a much more 

distinguishable role in the models. In addition, it is possible to extract from the plots the reason for the 

higher impact that adding environmental factors such as dry bulb and radiant temperatures had for ID04 

and ID09 than it had for ID01. 

When analysing how well the personal comfort models and generalised alternatives predict each 

of the three thermal preference categories, shown in Figure 7-10, the results suggest different 

misclassification patterns for each modelling method. The personal comfort models tended to present a 

higher predictive performance for ‘prefer to be cooler’ and ‘prefer to be warmer’ than for ‘prefer to be 

neutral’. This meant that a preference for no change was being misclassified as preferring change more 

frequently than other possible misclassification options, which, in real scenarios where the models are 

used to control cooling and heating systems, would mean increasing the probability of unnecessarily 

cooling or heating the occupant’s space. The generalised WLS model, however, presented the opposite 

tendency. This model’s power for predicting the central category (‘prefer no change’) was generally better 

than its power for predicting the extremity classes (‘prefer to be cooler’ and ‘prefer to be warmer’). This 

meant that a preference for change was misclassified as either preferring no change or preferring change 

in the wrong direction, more frequently than other possible misclassification options, which, in real 

scenarios, would mean leaving occupants either unattended during extreme events, or even more 

dissatisfied. 
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Figure 7-9 - Density plots for input variables used, for each thermal preference category, for each participant. Variables are normalized from 0 to 1, according to 

maximums and minimums presented in Table 7-2.
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Figure 7-10 - Models' predictive performance for each thermal preference category, for each participant 

7.4. Discussion 

The results of this study show that personal thermal comfort models can be considered appropriate 

tools to predict older people’s thermal preferences, outperforming generalised approaches such as the 

PMVC or a weighted regression model driven by skin temperature. It is also evident that, although to 

different degrees for each individual, hand skin temperature can be an indicator of thermal preferences 

for the cohort analysed. In addition, combining this physiological measurement with other environmental 

factors, especially air temperature and radiant temperature, along with behavioural factors, such as 
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clothing level, has been proven to be beneficial for the model’s predictive performance, although the best 

predictor combination may differ across individual older adults.  

The key next step would be merging the following elements: 

(1) physiological sensing technologies for data collection; 

(2) individualised predicting models for evaluation and decision-making; 

(3) and wearable comfort systems for autonomous and automatic action.  

As physiological sensing could collect real-time proxy for comfort without the need for occupant 

feedback, individualised models could use this real-time proxy to allow more reliable predictions for 

change, and pass them to wearable actuators, which, in turn, could enable direct conditioning without the 

need for any manual activation. Although it could be beneficial for all ages, this automation process would 

particularly be relevant for older adults, enabling thermal comfort management without reliance on others, 

which is key for older people maintaining independence in their own homes.  

Physiological sensing devices have been researched extensively over the last decades, with a 

wide range already available on the market. Sensors mounted on smart watches are one of the main 

solutions for physiological and environmental sensing in real time (Reeder and David, 2016; Sim et al., 

2018). On the other hand, heated clothing (e.g., gloves, socks, vests), neck and shoulder fans (also called 

wearable air-conditioning) (Knecht et al., 2016), or heating or cooling wrist-bands (Lopez et al., 2016) are 

common options for wearable actuators. Nevertheless, although hypothesized (Liu et al., 2019), 

combining the 3 facets, i.e., wearable sensing (data collection), prediction (evaluation) and conditioning 

(autonomous and automatic action), in a single solution is yet to be explored. In addition, these 

independent products tend to target a general and relatively homogeneous population, without 

considering the specific thermal comfort requirements and associated physiological responses of older 

people. 

Nevertheless, it is important to highlight that the use of personal thermal comfort models, using not 

only physiological variables but also any type of input variable, requires non-interrupted and ideally infinite 

data collection, as well as constant update and re-learning to maintain accuracy and relevance through 

time for each individual. Furthermore, a wide range of thermal and situational conditions are essential to 

create enough deviations in the data collected to allow a balanced dataset and a statistically accurate 

and reliable analysis. Although real-time thermal comfort proxy data collection is currently being explored 

in studies involving personal comfort systems (PCS) (Kim et al., 2018b), these requirements involving 
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data size and structure, related directly to how data is collected, remain the main challenge of personal 

comfort models. Further efforts on solving these data collection requirements are needed in order to move 

personal comfort models from a mere research methodology paradigm to a real practical solution, 

feasible to be deployed. 

Another point of consideration is that the monitoring of physiological factors, either through the use 

of wearable devices or non-contact sensors such as the ones used in this study, poses additional cost 

and data privacy concerns in comparison with stand-alone environmental sensors, as already highlighted 

by Aryal and Becerik-Gerber (2019). Choosing the best combination of inputs for the personal models 

relies, therefore, not only on the type of measurements’ impact on predictive performance, but also on 

individuals’ capability to afford the sensing and privacy costs. In addition, despite recent efforts to 

decrease the intrusiveness of sensor data collection by using wearable devices or PCS (Katić et al., 2020; 

Kim et al., 2018b; Liu et al., 2019), personalised modelling would still require initial occupant feedback 

on their thermal preferences to allow minimum model training. Although the disruptions caused by 

monitoring would be an issue for all age cohorts, they may introduce additional barriers for frailer older 

adults’ participation.  

Furthermore, this study highlighted an important modelling limitation, still not entirely explored by 

studies on personal thermal comfort, which is the misclassification cost of thermal preference in general 

and specifically for older adults. The misclassification of each thermal preference category may represent 

different application consequences in real scenarios. While unnecessarily cooling or heating an 

occupant’s space by misclassifying a preference for no change may result in an increase in energy use, 

leaving occupants unattended during extreme events by misclassifying a preference for change could 

result in heat related illnesses. In this context, not only are these misclassification costs complex to 

estimate, but they also involve different domains (e.g., energy use costs versus health costs). Applying 

different weights for each type of misclassification is potentially a more appropriate way to measure 

thermal preference models’ performance than any of the indicators used so far (e.g., accuracy, Cohen’s 

Kappa Coefficient or AUC). Lee et al. (2019), for instance, have presented an alternative for generic 

metrics. Although they did not determine the exact cost for each case of misclassification, they estimated 

the cost ratio between cases. By assessing three cost matrices, a thermal satisfaction oriented, an 

energy-saving oriented and an equally weighted cost matrix, the authors explored different domains of 

cost (i.e., energy cost versus comfort cost) and highlighted that, apart from predictive performances, 

selecting the optimal model would depend on the intended application. The principles applied by the 

authors are in line with a sub-field of machine learning called cost-sensitive learning (Elkan, 2001), and 
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could be further investigated in future studies to deal with the un-even costs of thermal preference 

misclassification. Moreover, further studies should analyse whether the thermal preference 

misclassification costs differ between younger and older adults, considering the health, living and financial 

arrangements of each cohort. 

7.5. Limitations and future studies 

It is important to highlight that this study has limitations. Firstly, the data collection involving skin 

temperature was conducted between the months of September and February, covering only a warm and 

hot season in South Australia. Further data collection periods in cool and cold seasons are required to 

allow a broader understanding of the effects of thermal exposures on the skin temperature of older adults.  

Secondly, although field studies provide a more accurate representation of reality than controlled 

climate chamber experiments, their use in this study also posed challenges to dataset sizes and 

distributions. Monitoring real thermal environments, where conditions vary without the influence of 

researchers, naturally resulted in imbalanced datasets, impacting the dataset sizes available for 

modelling, especially once undersampling was conducted. The authors, therefore, acknowledge the 

relevance of exploring the development of personal thermal comfort models under imbalanced dataset 

scenarios, especially considering the likelihood of these scenarios in thermal comfort field research. 

Furthermore, future studies by the authors plan to address other balancing strategies and overfitting 

reduction (e.g., dropout or batch regularization) in order to investigate the effectiveness of different 

sampling techniques in this specific context. 

It is also noteworthy that the first data collection period was concluded in October 2019, before the 

declaration of COVID-19 as a pandemic in March 2020, and was not affected by the pandemic. The 

second data collection period, on the other hand, happened between September 2020 and February 

2021. During this period, however, the State of South Australia implemented a strict response plan, which 

resulted in a relative low number of reported COVID-19 cases. In addition, none of the participants 

reported contracting the disease during or before this data collection. Normal activities, including research 

visits within the State were largely unaffected. Hence, the impacts of the pandemic on the data size or 

quality (especially related to health perception) were considered minimal by the authors. Nevertheless, 

an in-depth analysis of the effects of the pandemic on the cohort could be part of the scope of future 

studies. 
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Furthermore, although the older participants involved in this study represent a diverse cohort in 

terms of body composition, health and living environment, other socio-cultural and economic factors need 

to be addressed to build a more holistic image of their diversity. Moreover, the four participants whose 

individual dataset sizes allowed the development of personal thermal comfort models happened to be all 

female. The development of individual models for males is, therefore, required in future studies. In 

addition, although the models involve different environmental and personal inputs, other relevant input 

variables could be explored, such as seasonal thermal expectations or other physiological data, such as 

heart rates. Moreover, given the nature of the study, only self-reported health perceptions were used as 

inputs, which might lack the accuracy of records from healthcare providers. 

Regarding the modelling methodology, it is important to highlight that the binning approach used 

for continuous variables in the weighted regression estimation can result in loss of information, depending 

on the granularity of the increments chosen. In addition, the use of k-Nearest-Neighbours for missing 

value imputation can impact the overall data structure and further studies are required to analyse the risk 

of distorting estimates despite an apparent optimal performance on other quality metrics. The impact of 

missing value imputation using data across two separate collection periods, although considered minimal 

in this study, should also be further analysed. Furthermore, other normalization techniques and 

standardization techniques could have been applied to determine the central tendency of the ordinal (and 

discrete) variables used in the models. Further studies will be developed by the authors to comprise not 

only different pre-processing techniques according to variable type, but also other methods for ordinal 

variable encoding.  

Finally, the PMV scale conversion conducted in this study poses limitations in the comparisons, 

since thermal sensation and thermal preference scales cannot be considered interchangeable for all 

individuals. While neutral sensation and thermal preference for no change can be experienced 

simultaneously, it is still necessary to account for preferred sensations other than neutral. An alternative 

could be analysing different conversion rules for each individual participant, depending on their thermal 

sensation and thermal preference answers. 

7.6. Conclusion 

This chapter presents an individualised modelling approach to predict older adults’ thermal 

preferences in their living environments, based on environmental, physiological, and behavioural data, 
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comparing the models’ predictive performance with conventional aggregate modelling methods. From 

the analysis conducted, the study has pointed to the following findings and future pathways: 

• When analysing the aggregate dataset, strong relationships were identified between skin 

temperature and dry bulb temperature, radiant temperature, clothing level and health 

perception for the older adults involved. 

• Fitting a weighted least squares regression model for thermal preference prediction using skin 

temperature as the single predictor resulted in a R-squared value of 0.346 and a statistically 

significant independent variable coefficient (p = 0.001). 

• On average, the PMVC model predicted individual thermal preferences with an accuracy of 

51.33%, a Cohen’s Kappa indicator of 27.00%, and an AUC of 0.63. The WLS model 

presented a lower performance, with a mean accuracy of 39.23%, a mean Cohen’s Kappa of 

8.85%, and a mean AUC of 0.54. 

• On average, the personal thermal comfort models using skin temperature as the single 

predictor showed an accuracy of 49.79%, a Cohen’s Kappa indicator of 24.68%, an AUC of 

0.62. 

• When skin temperature data are combined with dry bulb temperature, radiant temperature, 

relative humidity, air speed (i.e., environmental factors), metabolic rate and clothing level (i.e., 

behavioural factors), the average accuracy of the prediction increased to 66.72%, the average 

Cohen’s Kappa to 50.08% and the average AUC to 0.77. This represents a superior predictive 

performance of the individualised models, using both environmental and personal variables, 

when compared with the generalised approaches. 

• Including health perception as an input variable represents a slight decline in the average 

model’s performance, but this difference is not statistically significant (p > 0.05). 

• The results suggested different misclassification patterns for each modelling method and 

require further investigation into thermal preference misclassification costs in the context of 

older adults. 

The key next step would be to combine physiological sensing technologies, individualised 

predicting models and wearable comfort systems. Although it would be beneficial for all ages, this 
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automation process could be particularly relevant to assist older adults to maintain independence in their 

own homes. 
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Chapter 8. Applications of personal thermal 
comfort models for older people 

8.1. Introduction 

By analysing datasets at the individual level, personal thermal comfort models help to unmask the 

differences between individuals in an environment, enabling a better understanding of specific comfort 

needs and collecting diagnostic information to identify user acceptability problems, as already highlighted 

in Chapter 3. This information, in turn, can be applied in the decision-making process involved in 

designing and optimising thermal environments to improve comfort satisfaction and energy efficiency.  

Therefore, drawing from the exploration on personal comfort models conducted in Chapters 6 and 

7, the next and final natural step of this research was to investigate possible application opportunities and 

their benefits in older people’s contexts and real settings. Hence, this chapter aims to answer research 

questions E and F: 

E. Can personal comfort models for older people be used to determine heating and cooling set 

points more accurately? 

F. How can personal comfort models for older people be used to aid the control and adaptation 

of older people’s environments to increase comfort and health and wellbeing? 

These questions are related to Objective (3): Investigate the application of personal thermal 

comfort models in managing the thermal environment of older people’s dwellings and the health and 

wellbeing of older people in general. 

Two types of application for the personal thermal comfort models developed in this thesis are 

explored in this chapter. The first exploration assesses the possibility of using the models to predict a set 

of new personal temperature thermostat set points for HVAC systems, in order to predict energy loads 

more accurately than pre-determined assumptions commonly used in the field of building performance 

simulation. The second investigation explores the use of the models in a web-based smart device tool, 

that allows the automatic calculation of thermal preferences for older individuals, aimed at aiding their 

control and adaptation for older people’s environments, to increase levels of comfort. The app is destined 

to be used by designers, caregivers or health care professionals, and was developed using, as 
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references, a series of user-interfaces and smart device apps in the related fields. The methodology used 

in each application, as well as the corresponding results and limitations are described in detail below. 

8.2. Building Simulation application 

Two participants and their respective houses were selected (based on the quality of information 

about their houses and other details) to assess whether new heating and cooling temperature set points 

(i.e., HVAC thermostat settings) calculated from their personal thermal comfort models could accurately 

represent their real preferences. To conduct this evaluation, a comparison was made between the 

simulated energy loads11 for heating and cooling using the new personal temperature set points and the 

actual energy loads for heating and cooling of the participants’ households, based on actual energy use 

records.  

Participant ID27, who lived in House 08 located in the Adelaide Metropolitan Area, and participant 

ID32, who lived in House 53 located in Whyalla, were selected to represent not only different thermal 

preferences, but also different house types, climate zones and HVAC system types. The participants’ full 

personal characteristics are presented in Chapter 5. 

Design Builder/Energy Plus Version 7.0.0.088 Design Builder Software Ltd (2021) was used to 

model, calibrate and simulate the buildings.  

8.2.1. Building simulation model calibration method 

To ensure that the simulation models reflected the actual houses and thus could be used to explore 

the heating and cooling energy loads in an accurate way, the first step was to calibrate the simulation 

models. The calibration procedure included the following steps:  

(1) initial model development according to building drawings and site visits; 

(2) actual 2019 weather data acquisition from the nearest Australian Bureau of Meteorology 

station;  

 
11 The term “energy load” is used in this thesis as the amount of energy needing to be added or extracted from a building’s space, in order 

to maintain its indoor temperature within a pre-defined range. The heating energy load is the amount of energy that would need to be added 

to a space, and the cooling load is the amount of energy that would need to be removed from a space. 
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(3) compilation of the actual measured hourly indoor temperatures in the selected houses from 

the monitoring stage of the project, for at least 14 consecutive days (during the hot/warm 

season and the cool/cold season), during which cooling and/or heating was not in use;  

(4) initial simulation (using actual weather data) and comparison between simulated and 

measured indoor temperatures using graphical tools and the Coefficient of Variance of the 

Root Mean Square Error (CV(RMSE)) and the Normalised Mean Bias Error (NMBE); and  

(5) iterative revision of the simulation input parameters to minimise the CV(RMSE) and the NMBE 

between the simulated and measured indoor temperatures. 

Three types of input parameters were considered during calibration, based on the methodology by 

Soebarto (1997). The first one, called “basic data”, included the parameters confirmed through building 

drawings and visits, such as the building orientation, dimensions of all envelope surfaces, position of 

openings and shading devices. The second, “estimated data”, included parameters only determined by 

estimation, namely the thickness of envelope material layers, the materials’ thermal properties, and the 

building infiltration rates. The third, “measured data”, included parameters obtained through the 

monitoring and survey of participants, such as occupancy and building operation levels and schedules.  

Among the three types of inputs, however, the basic data and the measured data were not revised 

during calibration, as they were based on specific information collected from the participants, on-site 

measurements, and the architectural drawings (construction drawings were not available). The iterative 

revision of the simulation parameters involved individually adjusting, in successive increments, the 

estimated data until acceptable CV(RMSE) and NMBE were achieved. All adjustments were made within 

a likely or credible range of values. Firstly, the thickness of each layer in the external walls, roof, ceiling, 

and floor was adjusted one by one, followed by adjusting the materials’ thermal properties (thermal 

conductivity, specific heat, and density) until acceptable matches were achieved. Finally, the building 

infiltration rates were incrementally revised, when necessary. All adjustment increments and directions 

were determined according to expert knowledge and common practice in the field (Roberti et al., 2015; 

Spitz et al., 2012; Abrahams et al., 2020).  

The International Performance Measurement and Verification Protocol (Efficiency Valuation 

Organization, 2012) and the ASHRAE Guideline 14 (ASHRAE, 2002) define the acceptance criteria for 

the CV(RMSE) and the NMBE indicators in terms of energy consumption (i.e., NMBE within ±10% and 

CV(RMSE) lower than 30% for hourly calibration data). There are, however, no standards that determine 

the adequate acceptance criteria for these indicators for models calibrated using indoor air temperatures 
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(Roberti et al., 2015). This study, therefore, determined the acceptance criteria as NMBE within ±10% 

and CV(RMSE) lower than 10%. This was based on other studies that used indoor temperatures in 

degrees Celsius to calibrate simulation models, such as the work of Royapoor and Roskilly (2015) (which 

observed a CV(RMSE) of 1.96% and an MBE of 0.74%), Saleh (2015) (who reported a CV(RMSE) lower 

than the 30% and NMBE lower than the 10%) and Abrahams et al. (2020) (which reported a CV(RMSE) 

of 3% and an MBE of -1%). 

8.2.2. Energy disaggregation method 

In order to assess whether the new heating and cooling set points calculated from the personal 

thermal comfort models accurately represented participants’ real preferences, the study conducted a 

comparison between the simulated energy use for heating and cooling using the new personal set points 

and the actual energy consumption for heating and cooling of the participants’ households. Actual 

household energy consumption for at least a 3-year period was obtained for each house from the bills 

provided from their appropriate electricity retailers. This data included details on the total electricity 

consumption, date of issue, bill period, units used, and off-peak units used, where applicable. 

The actual energy consumption data, however, represented the total energy consumption 

regardless of type of use and thus did not allow direct comparison with the isolated heating and cooling 

energy simulation results. Therefore, the next step consisted of disaggregating the actual total energy 

use into 3 components: (1) actual energy used for heating, (2) actual energy used for cooling and (3) 

actual energy used for all other appliances and lighting.  

Following the work by Williamson et al. (2006), heating and cooling related energy consumption 

was disaggregated from total consumption data using a least squares methodology. For a household 

where electricity supplies both heating and cooling energy, the following overdetermined system of 

equations (i.e., sets of equations in which there are more equations than unknowns), was written: 

𝑎1𝑥 + 𝑏1 𝑦 + 𝑐1 𝑧 =  𝑑1   (1) 

𝑎2𝑥 + 𝑏2 𝑦 + 𝑐2 𝑧 =  𝑑2    (2) 

𝑎3𝑥 + 𝑏3 𝑦 + 𝑐3 𝑧 =  𝑑3    (3) 

… 

𝑎𝑖𝑥 + 𝑏𝑖 𝑦 + 𝑐𝑖 𝑧 =  𝑑𝑖     (x) 
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where 𝑥 is the total consumption for the household attributable to heating over all periods of analysis; 𝑦 

is the total consumption for the household attributable to cooling over all periods of analysis; 𝑧 is the total 

other household electricity consumption (e.g., lighting, appliances) over all periods of analysis; 𝑎, 𝑏 and 

𝑐 are the coefficients expressing the fraction of the relevant components 𝑥, 𝑦 and 𝑧 for each individual 

bill period; and 𝑑 is the total electricity consumption for individual bill periods. 

To estimate the coefficients 𝑎 and 𝑏, it was assumed that the heating and cooling use of the 

building is climate dependent and a function of the heating degree-days and cooling degree-days, 

respectively. The mean outdoor temperatures for each day for each billing period (i.e., around 90 days), 

collected from the Australian Bureau of Meteorology database for the corresponding locations, were used 

to calculate the heating and cooling degree-days as the sum of the differences between the outdoor 

temperature and different possible base temperatures over the specified time period (CIBSE, 2006). The 

beforementioned overdetermined system of equations formed from this data was then reduced to a 

defined set of normal equations with three variables (i.e., 𝑥, 𝑦 and 𝑧) by least squares best fit (Rao et 

al., 2008). 

A range of possible heating and cooling base temperatures were tested with the chosen values 

being the combination that provided the highest R2 solution. The solution values of 𝑥, 𝑦 and 𝑧 were then 

converted to annual values of energy consumption by multiplying them by 365 days and dividing them by 

the total number of days in all periods of analysis. 

For the buildings with photovoltaic panels installed, the standard South Australian energy retailers 

only measure and provide the amount of solar energy fed back into the grid system (i.e., net value), which 

means that the solar energy produced and used in the buildings is not reported in the occupants’ bills. 

Therefore, it was necessary to first calculate the total solar energy production, considering the area of 

the panels installed, a 15% system efficiency and the daily solar radiation, extracted from the Australian 

Bureau of Meteorology databases, at the location for each billing period. The actual solar energy 

consumption was then calculated by subtracting the feed-in energy from the total produced. This was 

then added to the total energy consumption of the bill. 

Details on the consumption of other non-metered fuels used for heating, such as bottled LPG 

(liquefied petroleum gas), were also collected from participants through interviews and added to the final 

annual heating energy consumption. The heating and cooling energy consumption were then converted 

to energy loads by multiplying them by the COP (Coefficient of Performance) and EER (Energy Efficiency 

Ratio), respectively, of the actual HVAC systems installed in each house. The COPs and EERs of the 
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systems were obtained according to each manufacturer’s information and assumptions according to the 

Australia Greenhouse and Energy Minimum Standards Registration Database (Greenhouse and Energy 

Minimal Standards Regulator, 2021) and the Australian Gas Association Certified Products (The 

Australian Gas Association, 2021). 

8.2.3. HVAC set point calculation method using personal thermal comfort models 

The next step consisted of calculating the heating and cooling temperature set points for each 

participant using their personalised thermal comfort model, developed, and detailed in Chapter 5 of this 

thesis (with dry bulb temperature, mean radiant temperature, relative humidity, air speed, clothing level 

and corrected metabolic rate as input variables).  

The personal models developed in this study are probabilistic models. Unlike deterministic models, 

which give a single exact outcome for a prediction, probabilistic models provide a solution as a probability 

distribution to account for uncertainty in the events analysed. As discussed in Chapter 3, probabilistic 

methods are especially relevant when analysing systems that are inherently stochastic and/or highly 

uncertain due to insufficient data (Ghahramani, 2015; Murphy, 2012; Goodfellow et al., 2016), which is 

in line with the nature of thermal comfort modelling in general. 

Therefore, the set points were determined considering the model’s probability prediction for each 

thermal preference category (i.e., “preferring to be cooler”, “preferring no change”, “preferring to be 

warmer”). The cooling temperature set point was determined as the indoor dry bulb temperature at which 

the probability of “preferring to be cooler” equalled 50%, representing the exact moment when a 

participant’s thermal preference moves from “preferring no change” to “preferring to be cooler”. Likewise, 

the heating temperature set point was determined as the indoor dry bulb temperature in which the 

probability of “preferring to be warmer” equalled 50%, representing the moment when a participant’s 

thermal preference moves from “preferring no change” to “preferring to be warmer”.  

Microsoft Excel (Microsoft Corporation, 2021) Iterative Solver add-in was used, with the 

Generalized Reduced Gradient (GRG) solving method, to achieve these probabilities by changing the 

dry bulb temperature variable. In these calculations, the mean radiant temperature was assumed to be 

equal to the dry bulb temperature in order to simplify the calculations. The other variables were kept 

constant. For the cooling set point calculation, the relative humidity variable was kept constant at the 

average measured indoor relative humidity plus 1 standard deviation in the hot/warm months (i.e., from 

January to March) at the specific person’s house, to account for 85% of the cases. Note that relative 

humidity was normally distributed. Likewise, for the heating set point calculation, the relative humidity 
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variable was kept constant at the average measured indoor relative humidity minus 1 standard deviation 

in the cold/cool months (i.e., from June to August) at the specific person’s house. The air speed was 

assumed constant at 0.1 m/s, in accordance with common practice in the field to represent a stand still 

air velocity (CIBSE, 2017; CIBSE, 2013). The clothing level was kept constant at the specific person’s 

average monitored clothing levels when “preferring to be cooler” and when “preferring to be warmer”, for 

cooling and heating set points calculations respectively. Similarly, the corrected metabolic rate was kept 

constant at the specific person’s average monitored corrected metabolic rates when “preferring to be 

cooler” and when “preferring to be warmer”, for cooling and heating set points calculations respectively. 

Once the personal heating and cooling temperature set points were determined, they were inserted 

as inputs in the building energy simulation models to predict the HVAC energy loads to achieve and 

maintain such temperatures throughout the year. The energy loads were then compared with the actual 

disaggregated HVAC energy loads to assess the accuracy of the personal set points. In addition, the 

simulated HVAC energy loads derived from the personal set points were compared with the simulated 

energy loads resulting from using a 21°C set point for heating and a 24°C set point for cooling. These 

temperatures not only represent common set point approximations used in building simulation studies 

(Chen, 2016), but also represent a theoretical range of temperatures calculated by a previous study by 

Bills (2018) and recommended as beneficial to minimize the presence of health symptoms for older 

people living at home. This exploration, therefore, aims to investigate whether this recommended range, 

derived from an aggregate and generalised calculation approach, remains the best solution when 

assuming occupants’ set points in building simulations. 

8.2.4. Results: House 08 – Participant ID27 

House 08 (Figure 8-1) is a traditional brick-veneer house, 10 to 20 years old, semi-detached, in a 

long, narrow layout. Calibration was conducted using the data from the main living area of the house 

where the logger was placed, highlighted in red in Figure 8-1. Figure 8-1 also shows the surrounding 

buildings and shading devices. 



197 

 

Figure 8-1 - House 08’s photo, axonometric representation and Design Builder building model 

8.2.4.1. Building simulation model calibration results 

Figure 8-2 shows the comparison between the simulated and measured indoor temperatures in 

House 08 (Participant ID27) and the corresponding CV(RMSE) and NMBE, for the calibration period. 

House 8 was only calibrated for the hot/warm season because it did not have any consecutive days 

during which heating was not in use in the cool/cold season.  
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Figure 8-2 - Calibration Results for House 08 – ID27 

Table 8-1 presents the calibrated houses’ characteristics in more detail. The initial thermophysical 

properties of the building materials were obtained from Design Builder/Energy Plus databases (Design 

Builder Software Ltd, 2021). Table 8-2 presents the other relevant building simulation inputs for House 

08, according to the specificities of the building and its occupants. The distance between the building and 

chosen weather station was less than 10km. The impact of appliances and equipment as internal heat 

sources was considered minimal for the specific building (no heavy use of computers or inefficient 

equipment), and thus not included in the simulation models. 

Table 8-1 - House 08's characteristics 

 Construction layers 
R-value  
(U-value)1 

Floor Material (outside to inside) 
120 mm concrete slab-on-ground, 
10 mm timber flooring 

0.388 
(2.580) 

Internal Wall Material 
10 mm plasterboard, 
100 mm air gap, 
10 mm plasterboard 

0.482 
(2.075) 

External Wall Material (outside to inside) 

110 mm brickwork, 
40 mm air gap, 
90 mm glass fibre board, 
10 mm plasterboard 

3.021 
(0.331) 

Ceiling Material (inside to outside) 12 mm plasterboard 
0.322 
(3.106) 

Roof Material (inside to outside) 
90 mm glass fibre batt 
Metal roofing 

2.661 
(0.376) 

Window Material single clear glazing (3 mm) (5.894) 

Total Floor Area (m²) 230.60 

 
Main Living Area External Wall 
Orientations 

North and West 

Main Living Area Window-floor Ratio 0.26 
1 R-value in m2.K/W and U-value in W/m2.K 
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Table 8-2 - Other building simulation inputs for House 08 

Parameters Assumptions 

Number of occupants  2 

Occupancy schedule in the living area 7 am to 10 pm 

Lighting schedule in the living area 5 pm to 10 pm 

Lighting in the living area 1W/m2 – 100 lux 

Mechanical ventilation  None 

Natural ventilation None (windows closed) 

Heating and Cooling schedule on 24/7 according to set points 

Weather file 
Calibration – Adelaide Airport weather station, year 2019 
Energy assessment – Adelaide Airport weather station, year 2018, 2017 
and 2016 

 

8.2.4.2. Energy disaggregation results 

The energy consumption data from House 08 comprised the period between 24th of September 

2016 and 17th of December 2018. Through the energy disaggregation method described in Section 8.2.2, 

the total annual energy consumption was broken down into heating, cooling and other uses, as shown in 

Table 8-3. It is important to highlight that this building was operated using auxiliary solar energy input 

from photovoltaic panels, with approximate total area of 16.3 m2. The effect of the panels on energy 

consumption was taken into consideration, using the methodology detailed in Section 8.2.2. 

Table 8-3 - House 08’s disaggregated annual energy use (electricity) 

 
Annual 

Energy Use (kWh) 

Total 10383.6 

Other 4093.9 

Heating 3401.7 

Cooling 2888.1 

House 08 is equipped with a ducted reverse cycle air-conditioning system, which has an assumed 

heating COP of 3.5 and a cooling EER of 2.7, according to the manufacturer’s information (Temperzone 

Limited, 2005) and assumptions according to the Australian Greenhouse and Energy Minimum Standards 

Registration Database (Greenhouse and Energy Minimal Standards Regulator, 2021). The conditioned 

zones include the kitchen/meal area (i.e., main living area), all bedrooms, the corridor, the lounge/dining 

room and a study room, accounting for 82% of the building’s total area. Figure 8-3 presents the photos 

of the outdoor unit of the system and the controls located in the building’s main living area. The annual 

energy loads for heating and cooling were then calculated by multiplying the actual heating and cooling 

energy use by the corresponding COP/EERs of the system. As presented in Table 8-4, this resulted in a 
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total actual annual energy load for heating of 11905.8 kWh and a total actual annual energy load for 

cooling of 7797.8 kWh. 

 

Figure 8-3 - House 08’s HVAC system and controls. Source: Photographed by the author. 

Table 8-4 - House 08’s heating and cooling energy use and load (electricity) 

 HVAC System type/model 
Annual  

Energy Use (kWh) 
COP/EER 

Annual  
Energy Load (kWh) 

Heating 
Ducted Reverse Cycle 

Temperzone ISD181Q/OSA181R 
3401.7 3.5 11905.8 

Cooling 
Ducted Reverse Cycle 

Temperzone ISD181Q/OSA181R 
2888.1 2.7 7797.8 

 

8.2.4.3. HVAC set point determination using the Personal Comfort Model 

Using the personal thermal comfort model developed for ID27 (presented in Chapter 6) and the 

methodology described in Section 8.2.3, the set points for heating and cooling for House 08 were 

determined. Table 8-5 presents the inputs used to reach the dry-bulb temperature threshold that 

represents a 50% probability of “preferring to be warmer”, resulting in the heating temperature set point, 

and the inputs used to reach the dry-bulb temperature threshold that represents a 50% probability of 

“preferring to be cooler”, resulting in the cooling temperature set point. Therefore, the resulting set points 

are: 22.8°C for heating and 23.8°C for cooling. 
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Table 8-5 - Personal comfort model inputs used to determine the heating and cooling set points for 

Participant ID27 

 
Dry bulb temperature 
(°C) = Mean radiant 
temperature (°C)  

Relative 
Humidity (%) 

Air speed 
(m/s) 

Metabolic 
Rate (MET) 

Clothing 
level 

Heating 22.8 41 0.1 1.0 3 

Cooling  23.8 55 0.1 1.0 2 

 

8.2.4.4. Comparison between real and simulated HVAC energy load 

Using the beforementioned set points, the buildings were simulated. Three simulation runs were 

conducted utilising the weather data from the years of 2016, 2017 and 2018, as these were the years 

covered by the actual energy data provided by the occupant. As seen in Table 8-6, the difference between 

the actual and simulated heating loads (i.e., the error) ranged from 12.3% to 19.1% of the actual energy 

load, which can be seen as acceptable considering the limitations of the methodology proposed 

(discussed further in Section 8.2.7). The errors for cooling loads, however, were higher and ranged from 

-44.1% to -54.9%. Although the individual heating and cooling results are not optimal, the differences 

between the actual and simulated total loads are relatively lower, between -8.0% and -10.2%. 

Table 8-6 - Energy loads’ comparison for House 08 - ID27, using new personal set points 

   2016 weather file 2017 weather file 2018 weather file 

Set 
point 
(°C) 

  
Actual 
(kWh) 

Simulated 
(kWh) 

Error 
(kWh) 

Error 
(%) 

Simulated 
(kWh) 

Error 
(kWh) 

Error 
(%) 

Simulated 
(kWh) 

Error 
(kWh) 

Error 
(%) 

22.8 
Heating 
Load 

11905.8 14182.1 2276.3 19.1% 13758.0 1852.2 15.6% 13364.5 1458.7 12.3% 

23.8 
Cooling 
Load 

7797.8 3514.4 -4283.4 -54.9% 4365.8 -3432.0 -44.0% 4356.0 -3441.7 -44.1% 

 Total 
load 

19703.6 17696.5 -2007.1 -10.2% 18123.7 -1579.8 -8.0% 17720.5 -1983.1 -10.1% 

When simulating House 08, assuming a 21°C set point for heating and a 24°C for cooling, the 

difference between actual and simulated energy loads is larger than when using the new preferred set 

points, as presented in Table 8-7.  

Table 8-7 - Energy loads’ comparison for House 08 - ID27, using 21-24°C set points 

   2016 weather file 2017 weather file 2018 weather file 

Set 
point 
(°C) 

  
Actual 
(kWh) 

Simulated 
(kWh) 

Error 
(kWh) 

Error 
(%) 

Simulated 
(kWh) 

Error 
(kWh) 

Error 
(%) 

Simulated 
(kWh) 

Error 
(kWh) 

Error 
(%) 

21.0 
Heating 
Load 

11905.8 7587.6 -4318.2 -36.3% 7478.7 -4427.1 -37.2% 7157.2 -4748.7 -39.9% 

24.0 
Cooling 
Load 

7797.8 3022.7 -4775.1 -61.2% 3840.2 -3957.6 -50.8% 3829.1 -3968.6 -50.9% 
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 Total 
load 

19703.6 10610.3 -9093.3 -46.2% 11318.9 -8384.7 -42.6% 10986.3 -8717.3 -44.2% 

 

8.2.5. Results: House 53 – Participant ID32 

House 53 (Figure 8-4) is an example of an older house, semi-detached, with double-brick external 

walls. Calibration was conducted using the data from the main living area of the house where the logger 

was placed, highlighted in red in Figure 8-4. Figure 8-4 also shows the surrounding buildings, shading 

devices, and vegetation. 

 

Figure 8-4 - House 53’s photo, axonometric representation and Design Builder building model 

8.2.5.1. Building simulation model calibration results 

Figure 8-5 shows the comparison between the simulated and measured indoor temperatures in 

House 53 (Participant ID32) and the corresponding CV(RMSE) and NMBE, for the calibration periods 

(warm/hot season and cool/cold season).  
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Figure 8-5 - Calibration Results for House 53 – ID32 

Table 8-8 presents the calibrated house’s characteristics in more detail. Similar to House 08, the 

initial thermophysical properties of the building materials of House 53 were obtained from Design 

Builder/Energy Plus databases (Design Builder Software Ltd, 2021). Table 8-9 presents the other 

relevant building simulation inputs for House 53, according to the specificities of the building and the 

occupant. The distance between the building and chosen weather station was less than 10km. The impact 

of appliances and equipment as internal heat sources was considered minimal for the specific building 

(no heavy use of computers or inefficient equipment), and thus not included in the simulation models. 

Table 8-8 - House 53's characteristics 

 Construction layers 
R-value  
(U-value)1 

Floor Material (outside to inside) 
400 mm ventilated cavity, 
20 mm timber flooring, 
3 mm linoleum 

2.384 
(0.420) 

Internal Wall Material 

15 mm plasterboard, 
110 mm brickwork, 
10 mm air gap, 
110 mm brickwork, 
15 mm plasterboard 

0.838 
(1.193) 

External Wall Material (outside to inside) 

110 mm brickwork, 
50 mm air gap, 
110 mm brickwork, 
13 mm plasterboard 

0.740 
(1.351) 

Ceiling Material (inside to outside) 
13 mm plasterboard, 
200 mm glass-fibre board 

4.843 
(0.206) 

Roof Material (inside to outside) Metal roofing 
0.140 
(7.117) 

Window Material single clear glazing (3 mm) (5.894) 

Total Floor Area (m²) 81.95 

 Main Living Area External Wall Orientations East and West 

Main Living Area Window-floor Ratio 0.082 
1 R-value in m2.K/W and U-value in W/m2.K 
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Table 8-9 - Other building simulation inputs for House 53 

Parameters Assumptions 

Number of occupants  1 

Occupancy schedule in the living area 7 am to 10 pm 

Lighting schedule in the living area 5 pm to 10 pm 

Lighting in the living area 1W/m2 – 100 lux 

Mechanical ventilation  None 

Natural ventilation None (windows closed) 

Heating and Cooling schedule on 24/7 according to set points 

Weather file 
Calibration – Whyalla weather station, year 2019 
Energy assessment – Whyalla weather station, year 2018, 2017 and 2016 

 

8.2.5.2. Energy disaggregation results 

The energy consumption data from House 53 comprised the period between 29th of September 

2016 and 19th of December 2018. Through the energy disaggregation method described in Section 

8.2.2, the total annual energy consumption was broken down into heating, cooling and other uses, as 

shown in Table 8-10. 

Table 8-10 - House 53’s disaggregated annual energy (electricity) use 

 
Annual  

Energy Use (kWh) 

Total 2375.0 

Other appliances 1833.0 

Heating 113.8 

Cooling 428.2 

House 53 is equipped with a split reverse cycle air-conditioning system, which has an assumed 

heating COP of 3.55 and a cooling EER of 3.63, according to the manufacturer’s information (Mitsubishi 

Electric, 2021). The only conditioned zone of the house is the main living area. Figure 8-6 presents the 

photos of the outdoor and indoor units of the system. Apart from the split system, the building has a gas 

heater fuelled by bottled LPG, as seen in Figure 8-7. The occupant reported using 1.5 LPG bottles per 

year for heating, which corresponds to 67.5 kg of gas, and a total of 918.0 kWh of energy. The COP of 

the gas heater was estimated as 0.9, considering the model’s Energy Star Rating (i.e., 6) reported in the 

Directory of the Australian Gas Association Certified Products (The Australian Gas Association, 2021). 

The annual energy loads for heating and cooling were then calculated by multiplying the actual 

heating and cooling energy use by the corresponding COP/EERs of the systems. As presented in Table 

8-11, this resulted in a total actual annual energy load for heating of 1230.2 kWh and a total actual annual 

energy load for cooling of 1554.4 kWh. 
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Figure 8-6 - House 53’s Split Reverse Cycle system. Source: Photographed by the author 

 

Figure 8-7 - House 53’s LPG heater and LPG tank. Source: Photographed by the author 

Table 8-11 - House 53’s heating and cooling energy use and energy load (electricity and LPG) 

 HVAC System type/model 
Annual 

Energy Use (kWh) 
COP/EER 

Annual 
Energy Load (kWh) 

Heating 

LPG Flued Radiant/Convection 
Heater 

Lancer Everdure 15MJ 
918.0 

1031.8 

0.90 826.2 

1230.2 
Split Reverse Cycle 

Mitsubishi  
MSZ-GE50VA-A1 

113.8 3.55 404.0 

Cooling 
Split Reverse Cycle 

Mitsubishi  
MSZ-GE50VA-A1 

428.2 3.63 1554.4 
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8.2.5.3. HVAC set point determination using Personal Comfort Model 

Using the personal thermal comfort model developed for ID32 (presented in Chapter 6) and the 

methodology described in Section 8.2.3, the set points for heating and cooling for House 53 were 

determined. Table 8-12 presents the inputs used to reach the dry-bulb temperature threshold that 

represents a 50% probability of “preferring to be warmer”, resulting in the heating temperature set point, 

and the inputs used to reach the dry-bulb temperature threshold that represents a 50% probability of 

“preferring to be cooler”, resulting in the cooling temperature set point. Therefore, the resulting set points 

are: 18.4°C for heating and 23.3°C for cooling. 

Table 8-12 - Personal comfort model inputs used to determine the heating and cooling set points for 

Participant ID32 

 
Dry bulb temperature 
(°C) = Mean radiant 
temperature (°C)  

Relative Humidity 
(%) 

Air speed 
(m/s) 

Metabolic Rate 
(MET) 

Clothing 
level 

Heating 18.4 52 0.1 2.0 4 

Cooling  23.3 66 0.1 1.3 3 

 

8.2.5.4. Comparison between real and simulated HVAC energy use 

The results of the simulations using the new preferred heating and cooling set points for ID32 in 

House 53 are presented in Table 8-13. Similar to the exploration for ID27 in House 08, three simulation 

runs were conducted using the weather files from the years 2016, 2017 and 2018, since these cover the 

analysis periods used for the actual energy consumption disaggregation. The results show a good 

agreement between the actual and simulated energy loads, for both heating and cooling. The cooling 

load errors across the three simulations ranged from -4.5% to 16.4% of the actual energy load, while the 

heating load errors ranged from 4.8% to 26.5%. The total loads represent an even greater agreement, 

with errors ranging from -2.0% to 11.6%. 

Table 8-13 - Energy loads’ comparison for House 53 - ID32, using new personal set points 

   2016 weather file 2017 weather file 2018 weather file 

Set 
point 
(°C) 

  
Actual 
(kWh) 

Simulated 
(kWh) 

Error 
(kWh) 

Error 
(%) 

Simulated 
(kWh) 

Error 
(kWh) 

Error 
(%) 

Simulated 
(kWh) 

Error 
(kWh) 

Error 
(%) 

18.4 
Heating 
Load 

1230.2 1101.3 -128.9 -10.5% 1174.9 -55.3 -4.5% 1028.6 -201.6 -16.4% 

23.3 
Cooling 
Load 

1554.4 1628.5 74.1 4.8% 1933.7 379.3 24.4% 1965.7 411.2 26.5% 

 Total 
load 

2784.7 2729.8 -54.9 -2.0% 3108.6 324.0 11.6% 2994.3 209.6 7.5% 
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Comparing these error ratios with the ones resulting from simulations assuming a 21°C set point 

for heating and a 24°C for cooling, a considerable increase in the errors is observed. As seen in Table 

8-14, the heating loads are overestimated by as much as 106.4%, in the case of the year 2017. Although 

cooling loads estimation errors are lower than when using the preferred personal thermostat settings, the 

total load error remains higher. 

Table 8-14 - Energy loads’ comparison for House 53 – ID32, using 21-24°C set points 

   2016 weather file 2017 weather file 2018 weather file 

Set 
point 
(°C) 

  
Actual 
(kWh) 

Simulated 
(kWh) 

Error 
(kWh) 

Error 
(%) 

Simulated 
(kWh) 

Error 
(kWh) 

Error 
(%) 

Simulated 
(kWh) 

Error 
(kWh) 

Error (%) 

21.0 
Heating 
Load 

1230.2 2530.8 1300.6 105.7% 2539.0 1308.8 106.4% 2383.8 1153.6 93.8% 

24.0 
Cooling 
Load 

1554.4 1274.5 -279.9 -18.0% 1536.8 -17.6 -1.1% 1586.1 31.6 2.0% 

 Total 
load 

2784.7 3805.4 1020.7 36.7% 4075.8 1291.1 46.4% 3969.9 1185.2 42.6% 

 

8.2.6. Discussion 

This section of the study aimed to explore opportunities for application of the personal thermal 

comfort models developed in this thesis. Through the analysis of two case studies, the exploration 

demonstrates how the models can be used to calculate preferred HVAC thermostat settings, which can 

subsequently be used as inputs in building performance simulations to predict heating and cooling energy 

use more accurately.  

Given the uncertainties surrounding these analyses (highlighted in Section 8.2.7.), overall, the set 

points based on the personal comfort models provide a better estimate of energy use compared with the 

“standard” inputs. Further work, not within the scope of this research, involving sensitivity analysis could 

be employed to improve the accuracy of estimates based on the comfort model derived set points. 

A number of studies have investigated different ways to determine thermostat set points for HVAC 

systems in building simulations, not only considering daily changes in weather conditions, but also 

different potential occupant behavioural tendencies. In a recent study by Han et al. (2019), for instance, 

a derivation method was explored to calculate the optimal cooling set point temperature of a HVAC 

system in an office environment. Through the use of measured indoor and outdoor temperatures, sky 

types (cloud cover), and time data as inputs, the authors proposed a new daily set point temperature 

equation shown to improve thermal comfort by 38.5% in building simulation results. The study, however, 

did not evaluate thermal comfort through real occupant feedback, and the analysis of comfort was 
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conducted at the generalised level, using the PMV model as the basis for possible occupants’ thermal 

sensation and acceptability. 

Ouf et al. (2020), on the other hand, explored a different approach to estimate an office’s optimal 

thermostat set point and its potential to decrease energy use. Their building simulation model was 

integrated into logistic regression models that predicted the probability of a set point decrease or increase 

based on the indoor temperature in the next simulation timestep and potential occupants’ behavioural 

tendencies (i.e., sensitive or tolerant behaviour). Similar to the exploration in this thesis, the authors 

observed significant variations in the proposed control performance under different occupant behaviours 

and tendencies. Nevertheless, although promising, the study was limited to synthetic occupant behaviour 

models (i.e., not real occupant feedback), in which the assumptions of tolerant and sensitive behaviours 

were arbitrarily assigned to represent extreme scenarios, as pointed out by the authors. The use of real 

participant feedback, as highlighted in this thesis’ simulation exploration, becomes essential to validate 

actual behaviours and energy consumptions. In addition, the studies have so far relied on younger 

potential occupants in an office environment and are yet to investigate different scenarios, such buildings 

designed for older people. 

It is also important to consider that, although increasing cooling set points and decreasing heating 

set points can be beneficial for energy savings (Hoyt et al., 2015; Ghahramani et al., 2015a), the 

assumption that thermal comfort levels can be maintained by widening temperature set point ranges 

cannot be considered universal. While an individual might prefer or tolerate wider ranges, such as 

participant ID32 in this study, others could experience considerable discomfort, as would be the case for 

participant ID27. The exploration presented in this chapter, therefore, reiterates the importance of 

analysis at an individual level, especially when considering residential settings and heterogeneous 

cohorts. 

8.2.7. Limitations and future research opportunities 

The investigation presented in this chapter, nonetheless, presented shortcomings. The results for 

the validation of the preferred set points of participant ID27 (House 08), as highlighted previously, showed 

limited agreement with real scenarios. This can be explained, firstly, by this individual’s personal thermal 

comfort model predictive performance. As presented in Chapter 6, this model presented an accuracy of 

46.67%, a Cohen’s Kappa Coefficient of 0.2, and an AUC of 0.7, which, although higher than the PMVC 

results, are not optimal. This lower performance could have impacted the model’s ability to provide 

accurate preferred set points, which, in turn, compromised the heating and cooling energy loads 
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agreement between simulated and actual values. In addition, it is noteworthy that participant ID27 lives 

in House 08 with her partner, who, despite having a similar socio-economic background and age, has a 

different sex, body composition, as well as different frailty and health status. These different personal 

characteristics could result in each occupant controlling the heating and cooling set points of the house 

differently throughout the year, which means that the actual energy consumption of this house is not 

solely dependent on ID27’s preference, but also on her partner’s preference. Future investigations are 

necessary to analyse validation scenarios in shared spaces where occupants differ in thermal 

preferences and behaviours. 

Other general limitations of the present exploration should be noted. The energy disaggregation 

method used in this study is based on the assumption that the heating and cooling use intensity of the 

building is solely climate dependent. The drivers of heating and cooling use intensity in buildings, 

however, can also be related to the number of occupants living in the households or their socio-

demographic and contextual scenarios. Other energy load disaggregation methods such as extraction of 

appliance level data from energy signals and smart meters, however, were beyond the scope of this 

study. It is also important to highlight that the energy data used in the disaggregation process was limited 

to a 2.5-year period for both case studies (i.e., the middle of 2016 until the end of 2018). A higher data 

sample of energy consumption could have increased the reliability of the method. In addition, the use of 

non-metered energy fuel, such bottled gas in House 53, meant adding further inaccuracies to the actual 

energy estimation, related to approximations reported by the occupant. 

Regarding the building energy simulation methods used in this study, other points should be 

considered. The calibration methodology used in this study relied on manually identifying the most 

influential model parameters and correcting discrepancies according to expert knowledge and related 

references in the field. Although valid, the methodology could have been conducted using automated 

optimization algorithms (Roberti et al., 2015). Furthermore, it is important to highlight that the data used 

for calibration was measured in a single point in each participant’s living area, which could have relevant 

spatial temperature variations. A weighted average of multiple points could better represent the spaces 

for calibration. Furthermore, other assumptions related to the HVAC system’s COP, static occupancy and 

HVAC operation schedules, and static clothing and activity levels in the set point calculations should also 

be considered as potential causes of inaccuracies in the final results. 

Nevertheless, the current study has created important opportunities for future research. Apart from 

personal seasonal set points, daily set point calculation strategies can potentially generate better 

solutions for accurate energy use prediction. This could be achieved through incorporating personal 
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comfort models in the building simulation workflow, using components such as the Energy Management 

System (EMS) object within EnergyPlus (Gunay et al., 2015) or co-simulation methods (Kontes et al., 

2018; Peng and Hsieh, 2017). This would enable a dynamic calculation of personal thermal preferences 

and instant HVAC control that can more realistically represent occupant behaviour and reduce model 

inaccuracies due to static assumptions, thus enhancing overall model reliability. 

8.3. Smart device application 

A smart device application was explored as a second opportunity for the implementation of the 

personal thermal comfort models developed in this thesis. The aim was to provide an online user interface 

for personal thermal comfort prediction, as well as a catalogue of text-based strategies related to personal 

actions, technology, building operation and design, which could aid control and adaptation for each 

individual older person’s environment to increase their comfort. Although potentially useful for other 

demographics, the personalised apps can be especially relevant for designers, caregivers and health 

professionals.  

8.3.1. Similar tools 

A number of applications and interfaces have been developed with similar concepts. Considering 

interfaces on thermal comfort predictions specifically, the Center for the Built Environment (CBE) Thermal 

Comfort Tool (available at https://comfort.cbe.berkeley.edu/), for instance, is a free online tool that allows 

the calculation and evaluation of thermal comfort according to the ASHRAE Standard 55 (Tartarini et al., 

2020). It includes models such as the PMV and the adaptive comfort model, as well as visualization 

features involving psychrometric and temperature-humidity charts. The developers aimed to address the 

field’s lack of tools that could be used to calculate thermal comfort indices without prior coding skills. The 

tool’s end users comprise of engineers, architects, researchers, educators, facility managers and policy 

makers (Schiavon et al., 2013). Applying a simple and accessible interface, users can input their own 

measured or simulated data and automatically visualise outcomes in the same browser screen, as seen 

in Figure 8-8. 
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Figure 8-8 - The CBE Thermal Comfort Tool. Source: https://comfort.cbe.berkeley.edu/ 

The Arup Advanced Comfort Tool (available at https://comfort.arup.com/) is a similar free web-

based interface that allows the prediction of thermal comfort under changing and non-uniform thermal 

environmental conditions, including stratification, radiant asymmetry, and effects of personal 

environmental controls. Based on human psychophysiological models, the tool also provides the option 

of individual thermal comfort calculation based on personal characteristics such as sex, age, and body 

fat percentile values, displaying the comfort indices on a thermal sensation timeline, as shown in Figure 

8-9 (Jones et al., 2021; Jones et al., 2020). 
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Figure 8-9 - Arup Advanced Comfort Tool. Source: https://comfort.arup.com/ 

In the context of older people’s health, several other interfaces are aimed at caregivers and health 

professionals to provide them with information and strategies to increase health and wellbeing, as well 

as to monitor vitals and symptoms of specific diseases. For caregivers, for instance, a review by Wozney 

et al. (2018) gathered references for eight commercially-available apps addressing Alzheimer’s disease 

or other related dementias (ADRD) caregivers. The apps are generally static, providing text-based 

informational resources to understand and deal with older adults’ symptoms or specific behaviours. Two 

examples are the Dementia Caregiver Solutions app (Figure 8-10) (Personalized Dementia Solutions 

Inc., 2021) and the Alzheimer's Daily Companion app (Figure 8-11) (Home Instead Senior Care, 2021). 

Resources and tools for caregivers to manage thermal comfort of older adults in the form of smart device 

applications are, however, non-existent in the market today. 

 

Figure 8-10 - Dementia Caregiver Solutions app. Source: Personalized Dementia Solutions Inc. (2021) 
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Figure 8-11 - Alzheimer's Daily Companion. Source: Home Instead Senior Care (2021) 

Furthermore, health care professionals have a number of applications commercially available that 

provide tools to aid decision-making in a systematic and objective way, such as well-known evidence-

based apps palliMEDS for palliative care medicine guidelines (Figure 8-12) (NPS MedicineWise and 

caring@home, 2021), UpToDate for general clinical decision support resources (Figure 8-13) (UpToDate 

Inc., 2021) or MDCalc for medical equation calculation and guidelines (Figure 8-14) (MDCalc, 2021). 

The latter, for instance, has relevant calculation capabilities in a user-friendly interface that allow quick 

and accurate estimations for a number of health indices. 

 

Figure 8-12 - palliMEDS app. Source: NPS MedicineWise and caring@home (2021). 
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Figure 8-13 - UpToDate app. Source: UpToDate Inc. (2021). 

 

Figure 8-14 - MEDCalc app. Source: MDCalc (2021). 

Other related health apps, aimed at the general public, deliver relevant functionalities and features, 

such as personal data recording, tracking and visualising. The PainScale app (Figure 8-15) (Boston 

Scientific Corporation, 2021), for instance, allows users to log and track chronic pain in order to identity 

triggers, minimize related daily disruptions, and get personalised reports and insights to better manage 

health conditions. It is commonly used for the management of Fibromyalgia syndrome among older 

people. 
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Figure 8-15 - PainScale app. Source: Boston Scientific Corporation (2021). 

8.3.2. Personal Thermal Comfort App development 

Considering the beforementioned references, the personal thermal comfort Apps were developed 

to cover a calculator feature, such as the ones present in the CBE Thermal Comfort Tool, the Arup 

Advanced Comfort Tool or the MDCalc app. In addition, the App was developed to deliver evidence-

based information and strategies to help users act upon the predictions, similar to the guidelines present 

in the beforementioned apps for caregivers and health professionals. Additionally, a feature that allows 

users to save input data was added to provide the ability to track environmental conditions, which, in turn, 

can give insights into a building’s performance, issues and possible causes. 

To develop the calculator feature of the App, first the final state of each neural network model, 

which includes all final calculated weights and biases, were transferred from the Jupyter Notebook 

(Thomas Kluyver, 2016) (i.e., the computing environment used), developed in Python language, to a 

spreadsheet in Microsoft Excel (Microsoft Corporation, 2021), where the neural network was 

reconstructed using the functions described in Chapter 6. The spreadsheet was then imported to the 

online developing tool Open As App (Open As App GmbH, 2021), where a smart device interface was 

developed based on the personal models. The App, therefore, allows an easy and automatic way to 

calculate personal thermal comfort predictions without prior knowledge of Python or Excel. 

The application allows users to input values to the six variables used in the models (i.e., dry bulb 

temperature, radiant temperature, relative humidity, air speed, metabolic rate and clothing level). The 

models’ equations are then solved automatically according to these inputs, and the app provides the 

thermal preference prediction according to the calculated probabilities for each thermal preference 
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category. The App displays that the older person in question prefers to be warmer when the probability 

of “preferring to be warmer” is equal to or higher than 50%; it displays that they want to be cooler when 

the probability of “preferring to be cooler” is equal to or higher than 50%; and it displays that they want 

no change when both probabilities of preferring to be warmer and cooler are lower than 50%. This is only 

possible because simultaneous non-null probabilities of “preferring to be cooler” and “preferring to 

warmer” are not possible in these specific models’ predictions. This means that, when the probability of 

preferring to be warmer is higher than 50%, the probability of preferring to be cooler is always 0%, and 

vice-versa. The app also displays these three probabilities below the main prediction, to allow the users 

to assess the urgency or risks associated with different probability breakdowns.  

The app was designed to be used by designers, caregivers or healthcare professionals. Each user 

type might profit from specific features of the app, as shown in Figure 8-16: 

For designers 

• Aids the decision-making process; 

• Can be used in combination with measured data or building performance simulation tools. 

For caregivers or health professionals 

• Guides the control and adaptation of environments according to the older person’s 

preferences, without disturbing them; 

• Helps track and record data. 
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Figure 8-16 - Smart device app’s user interface and user types 

8.3.3. Results: app screen, features and functionalities 

The Personal Thermal Comfort app has a single screen to allow easy access to the information 

provided. Users are first asked to fill out the input fields to calculate the older person’s thermal preference 

at that moment. The temperature, radiant temperature, relative humidity and air speed inputs can be 

logged using the toggle buttons (i.e., “+” or “-”) or by typing the values using an on-screen, automatically-

activated number keyboard, as shown in Figure 8-17. The activity and clothing levels can be inserted by 

using sliders or the number keyboard. Note that the activity level is internally converted to the metabolic 

rate (as detailed in Chapter 6) to be used as an input in the thermal preference calculation.  
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Figure 8-17 - Personal Thermal Comfort app calculator screen 

Once the inputs are inserted, the thermal preference prediction is displayed automatically below 

the inputs. As previously mentioned, the app also displays the thermal preference categories’ probabilities 

below the main prediction, as seen in Figure 8-18, to allow the users to assess the urgency or risks 

associated with different probability breakdowns. In case the predictions are “prefer to be warmer” or 

“prefer to be cooler”, the app displays, below the probability predictions, a set of thematic strategies and 

guidelines to help increase comfort. By tapping on the themes, the app displays an overlay screen with 

more details on specific strategies. These evidence-based strategies were derived from “Thermal 

Comfort at Home: A guide for older South Australians” (Soebarto et al., 2021), which is one of the results 

of the ARC Discovery Project ‘ARCDP180102019 - Improving the thermal environment of housing for 

older Australians’ from which this PhD thesis has stemmed. The strategies relate to personal and 

behavioural themes, as well as design and technology oriented guidelines. Tapping the “back” arrow on 

the top left-hand corner allows the user to return to the main screen. No strategies are shown when the 

prediction is “preferring no change”. 

 



219 

 

Figure 8-18 - Personal Thermal Comfort app prediction output and guidelines screen 

The App also provides a “Help” button, which activates an overlay “Help” screen with the definition 

of each input and how to access or measure it. For each participant, the average of each indoor 

environmental input from the monitoring datasets, for each season, will be included in the “Help” screen 

to aid the calculation when right-here-right-now measurements are not available. To exit this screen, the 

user must press “OK” at the end of the screen. An “Upload” button is also included to save the inputs 

inserted by the user in a server, which can be accessed by developers for analysis and sent back to 

users by request. Figure 8-19 presents these features. 
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Figure 8-19 - Personal Thermal Comfort app “Help” and “Upload” buttons, and “Help” screen  

An example of the app was developed for Participant ID32 (House 53). As mentioned previously, 

this personal model has optimal accuracy, thus being chosen as an example. The app can be accessed 

via a smart device, by first downloading and installing the Open As App application. After installing, ID32 

app can be accessed by scanning the QR Code below (Figure 8-20). A web-browser version of the app 

can also be accessed through the link https://oaa.app.link/launch-app-f65992fc-4e0a-4a01-ab93-

fb32ac94266b. 

 

Figure 8-20 - QR Code to acess the app for Participant ID32 

 

https://oaa.app.link/launch-app-f65992fc-4e0a-4a01-ab93-fb32ac94266b
https://oaa.app.link/launch-app-f65992fc-4e0a-4a01-ab93-fb32ac94266b
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8.3.4. Discussion 

Overall considerations 

The conversion of the selected personal thermal comfort model into a web-based smart phone 

App proved to be successful in allowing the accessible and automatic calculation of thermal preferences 

for the selected participant. Although still not validated by the end users, the App showed potential to aid 

designers in the decision-making process, as well as to guide caregivers to anticipate needs and control 

thermal environments independently. 

In terms of use of this web tool by designers, the tool could be integrated into building performance 

simulation workflows, such as the ones already highlighted in Section 8.2.6. The Energy Management 

System (EMS) component in EnergyPlus (Gunay et al., 2015) or co-simulation methods (Kontes et al., 

2018; Peng and Hsieh, 2017) are recent research topics that could aid the integration of predictive models 

and related databases with simulation tools used for validating design and construction options in specific 

and individual scenarios. In addition, when measured data is used as inputs in the model (instead of 

assumptions or approximations), the web tool has enhanced reliability to be used by designers when 

testing an environment’s possibilities. Consequently, improving building design, construction and 

operation could also result in a decrease in reliance on heating and cooling systems and related fuel 

consumption. 

From the health care perspective, web tools such as the one presented in this study can be 

considered practical contributions to the worldwide trend and interest in high-performing person-centred 

approaches for health care delivery (Santana et al., 2018; Godfrey et al., 2018; Health Innovation Network 

South London, 2017). As accurately described by the Health Innovation Network South London (2017): 

“Person-centred care is not just about giving people whatever they want or providing 

information. It is about considering people’s desires, values, family situations, social 

circumstances and lifestyles; seeing the person as an individual, and working together to 

develop appropriate solutions.”  

Australian health care organizations have also recognised person-centred care as the basis for 

achieving better health outcomes and experiences for patients, carers and families. The National Safety 

and Quality Health Service (NSQHS) Standards, for instance, identify seven main attributes that are 

important to achieve “person-centredness”: (1) comprehensive care delivery; (2) clear purpose, strategy 

and strong leadership; (3) people, capability and a person-centred culture; (4) person-centred 
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governance systems; (5) strong external partnerships; (6) person-centred technology and built 

environments; and (7) measurement for improvement. The work developed using personal thermal 

comfort models and web-tools could be considered a contribution for principle 6, providing technology 

that enhances patient experiences and outcomes and aiding person-centred design principles in the built 

environment, as prescribed by the Australian Comission on Safety and Quality in Health Care (2018) 

documentation on the topic. 

Other terms used in the same realm as “person-centred care” are “precision health”, “precision 

medicine” and “precision public health” (Bilkey et al., 2019), which are all related to contemporary 

applications of strategies aimed at disease prediction, treatment and prevention, as well as health 

promotion, tailored for the individual. According to the U.S.A. Office of Genomics and Precision Public 

Health, precision health can be achieved through the use of a series of tools including personal smart 

devices, which can, for instance, monitor behaviours (e.g., diet or sleeping habits), help medication 

management, or even guide mindfulness practice (Office of Genomics and Precision Public Health, 

2020). Once again, the work developed using personal thermal comfort models and web-tools could be 

inserted in the same context. “Precision Thermal Comfort” could become, therefore, a new concept to be 

explored in the future of health care. 

Considerations on clothing levels 

Apart from potential practical contributions to the field of thermal comfort, design and health care, 

the development of the personal models and their application on a smart device tool highlighted important 

insights into the use of clothing level as one of the input variables for the models, as well as the way this 

data should be interpreted in future field studies. As observed in the example of Participant ID32’s model, 

the higher the clothing level, the higher the probability of the participant preferring to be warmer because 

a higher clothing level indicates a cool or cold thermal sensation. This represents a rather counterintuitive 

correlation between these variables, since it is commonly expected that one would prefer to be warmer 

when they are less clothed. 

This relationship between variables emphasizes three main insights. Firstly, it appears that the 

"clothing level" collected through survey answers from participants represents an adaptive behaviour 

taken by them to act upon their thermal preference at the moment, rather than representing their static 

clothing insulation status (i.e., the “clo” input in many traditional models). This means that, in this study, 

increasing clothing level is a result of feeling cold and preferring to be warmer, rather than the cause of 

a warm sensation and a preference to be cooler, which is what is normally expected in models such as 
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the PMV. In other words, in the personal model, people wear more clothing layers because they feel cold; 

whereas in the PMV, people are predicted to vote ‘cool’ or ‘cold’ because they wear fewer clothing layers 

Therefore, not only is the dependent/independent relationship reversed (i.e., the cause-and-effect 

relationship), but the correlation is also negative in the personal models and positive in the PMV model. 

Consequently, for the smart device app to accurately predict the person’s thermal preference at the 

moment, the clothing level has to be considered as an adaptive behaviour already taken by the person 

in question before the prediction is made. This relationship is also observed when analysing the data 

from the entire cohort, as presented in Chapter 5, Section 5.3.2, Figure 5-17. 

This leads to a second consideration on the subject. This difference between how clothing levels 

interact in the current study’s models and in the PMV model can partially explain the errors found in the 

PMV predictions when compared with participants’ actual thermal sensation votes. In addition to the 

generalisation limitations of the PMV model, already discussed in this thesis, using the field work surveys’ 

"clothing level" as a representation of clo in the PMV model equation is likely to result in the wrong PMV 

prediction. This highlights an important difference between field study and experimental (i.e., climate 

chamber) data collection procedures, which require especial considerations depending on the final 

application envisaged.  

Thirdly, the explorations emphasised how the thermal preference for wanting to be warmer was 

more sensitive to clothing than other thermal preferences. Changing clothing levels appeared to be a 

more common adaptive behaviour when temperatures decreased and the probability of preference for 

warmer was higher, than when temperatures increased and the probability of preference for cooler was 

higher. This can be seen for the whole cohort dataset, as already discussed in Chapter 5, Figure 5-17, 

where lighter clothing levels are not as common in lower thermal sensations (e.g., cool, slightly cool) than 

higher clothing levels are in higher thermal sensations (e.g., warm, slightly warm). This is also observed 

for the example of ID32, as shown by the Clothing Level probability density distributions in Figure 8-21. 

The Clothing Level graph shows that higher clothing levels are more likely to be related to “preferring to 

be warmer” than lower clothing levels are to the other two thermal preference categories. Adaptive 

clothing behaviours and their relationship with environmental conditions and seasonal sensitivity, 

however, can vary among participants, and should be analysed at the individual level to aid the correct 

use of applications such as the app envisioned here. 
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Figure 8-21 - Probability density distributions for the personal models' inputs, according to each 

thermal preference category, for ID32. Inputs are normalised from 0 to 1. 

It is advised, therefore, that future studies on modelling and tool development consider clothing 

insulation and/or clothing level as a behavioural and adaptational thermal comfort variable, whose use 

differs from traditional applications in aggregate models such as the PMV. 

8.3.5. Limitations and future research opportunities 

Although basing this smart device application in the beforementioned references, the app 

presented here is an exploration of the models’ application only, and still requires further testing in real 

scenarios, considering usability, readability, and accessibility (e.g., appropriate font and button size, 

colours and contrast) (Lidwell et al., 2010). It is also noteworthy that the development platform Open As 

App, despite numerous feature possibilities, still poses limitations in user-experience design. 

In addition, although the strategies provided in the tool are evidence-based, derived from the 

“Thermal Comfort at Home: A guide for older South Australians” (Soebarto et al., 2021), resulting from 

the ARC Discovery Project ‘ARCDP180102019 - Improving the thermal environment of housing for older 

Australians’, the language and level of detail might still require validation from designers and caregivers, 

since the document was originally developed with the input of older people only.  
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It is also important to highlight that each individual person is required to be monitored for data 

collection before the personal model is developed and then later converted into an individual App by a 

researcher/developer. This could result in limitations for deployment of the tool. Future research is, 

therefore, required for the development of a method that allows the end-user to upload their own data 

and train a model automatically. Similar conceptual system architecture and frameworks for data 

collection and automatic (or continuous) model training have been previously envisaged by Kim et al. 

(2018a). 

8.4. Summary 

This chapter presented two types of application for the personal thermal comfort models developed 

in this thesis. The first exploration assessed the opportunity to use the models to predict a set of new 

personal temperature thermostat set points for HVAC systems. Two case studies demonstrated how the 

personal set points can provide more accurate heating and cooling energy loads for older adults’ 

environments than assumptions commonly used in the field of building performance simulation. The 

limitations of the analysis and further future investigation opportunities were highlighted. Among these 

opportunities, validation of the methodology for older adults in shared spaces is still required. In addition, 

a dynamic calculation of personal thermal preferences and instant HVAC control in building simulations 

could add even more realistic representations of occupant behaviours and reduce the models’ 

inaccuracies. 

The second investigation explored the use of the personal models in a web-based smart device 

tool, which allows automatic calculation of thermal preferences for older individuals. Although still not 

validated for usability and accessibility, the app has the potential to aid designers in the decision-making 

process and can be used in combination with building simulation results. Caregivers can also profit from 

the app, which can guide the control of environments without disturbing patients and helps track and 

record events for future consultation. Finally, users can profit from the app as a resource for information 

and guidelines on personal, technological and design strategies that can help increase comfort and 

decrease heating and cooling energy use. 
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Chapter 9. Main findings and conclusions 

Through the lens of person-centred thermal comfort models, the research proposed in this thesis 

contributed to a better understanding of older people’s diversity and unique characteristics as well as 

their complex effects on these individuals’ thermal comfort, health and wellbeing. The outcomes of the 

research are summarised in this chapter, leading to the projects’ main implications, contributions and 

recommendations. 

Since the detailed discussions on each exploration developed in this thesis have been presented 

in each of Chapters 5 to 8, this chapter focusses only on the final outcomes and remarks, emphasising 

and aligning the knowledge building process driven throughout the thesis. 

9.1. Main research findings 

The main outcomes of this research are outlined below: 

(a) The literature review presented in Chapter 2 highlighted the importance of understanding 

people’s intrinsic capacities (i.e., personal, genetic and health characteristics) to develop 

relevant plans and policies that foster healthy ageing. The chapter shows the strong links 

between environmental conditions, individual ageing trajectories and health, supported by 

several research studies developed throughout the past decades. In addition, the chapter 

presented an overview of the main thermal comfort modelling approaches to date, culminating 

in the current paradigm shift that, much like the one experienced by global health services 

today, thermal comfort studies are going through: moving from averaged population level 

analysis to a person-centred and individualising perspective.   

(b) Drawing from the fundamental limitations of the current thermal comfort models presented in 

the previous chapter, Chapter 3 introduced, through a systematic review of the literature 

published over the last two decades, the concept and modelling details of personal thermal 

comfort models. Developed with the aim to absorb individual differences in thermal comfort 

responses, the studies on personal comfort models have showed promising comfort and 

energy related results so far. Nevertheless, the review also highlighted issues such as the 

lack of a unified modelling framework and a lack of diversity in study settings, participants 
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involved, and climates and buildings analysed. In addition, with most of the studies using 

machine learning techniques, the review has pointed to the challenges of “black box” models 

in the field. Finally, the review has indicated that personal input features using physiological 

sensing technologies could be further explored, especially considering the rapid advances 

seen today in wearable sensor technologies. 

(c) Following the review of the literature (Chapters 2 and 3) and the summary of the quantitative 

methodologies chosen to address the research objectives (Chapter 4), Chapter 5 responded 

to research questions (A) What thermal conditions exist in the houses occupied by the older 

people participating in the study, and what are their thermal preferences and sensations? and 

(B) What variables are significant in explaining the thermal preferences and sensations of the 

older people participating in the study?. Although the buildings analysed presented similarities 

as a group in terms of overall construction details, they also showed considerable differences 

in terms of age, size, design and operation, which could have contributed to diverse indoor 

thermal conditions profiles. In addition, participants’ personal characteristics also differed 

within the group, indicating the need for a further individualised analysis. Furthermore, the 

study confirmed the use of environmental measures, such as indoor air temperature, relative 

humidity and air speeds, as important variables when explaining thermal sensations and 

preferences for the cohort studied. Varying clothing levels and metabolic rates were also 

found to be relevant in the analysis of the group’s thermal responses, and were identified as 

potential adaptive behaviours taken by participants in general to adjust thermal sensations 

and preferences. Personal factors such as health/wellbeing perception were considered 

equally relevant for further analysis, although their relationship with the cohort’s general 

thermal sensations and thermal preferences were not as statistically strong as hypothesised. 

Finally, skin temperatures were also found to be significant in explaining the thermal 

sensations and preferences of the older adults analysed. 

(d) From the insights drawn from the initial analysis of the datasets and potential predictors 

presented in Chapter 5, Chapter 6 responded to research questions (C) How will the accuracy 

of personal thermal comfort models be affected by individual’s input variables? and (D) How 

can the use of personal thermal comfort models lead to a more accurate prediction of older 

people’s thermal preferences, in comparison with the prediction by a generalised model such 

as PMV?. From the exploration of 28 personal thermal comfort models for older adults, the 

study found that the models developed using dry bulb temperature, radiant temperature, 
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relative humidity, air speed (i.e., environmental variables), clothing level, metabolic rate and 

health/wellbeing perception (i.e., personal variables) as input variables presented, on 

average, an accuracy of 74%, a Cohen’s Kappa Coefficient of 61% and an AUC of 0.83. This 

represented a significant improvement in predictive performance when compared with the 

generalised ‘Converted’ Predicted Mean Vote (PMVc) model, which presented an average 

accuracy of 50%, an average Cohen’s Kappa Coefficient of 24%, and an average AUC of 

0.62. 

(e) Building on the findings of the personal comfort models presented in Chapter 6, Chapter 7 

provided further evidence to respond to research questions (C) and (D). The exploration of 4 

personal thermal comfort models for older adults using skin temperature data combined with 

dry bulb temperature, radiant temperature, relative humidity, air speed, clothing level and 

metabolic rate as input variables resulted in an average accuracy of 67%, an average Cohen’s 

Kappa Coefficient to 50% and an average AUC to 0.77. This represented a superior predictive 

performance of the individualised models when compared with the PMVc model, which 

predicted individual thermal preferences with an average accuracy of 51%, an average 

Cohen’s Kappa Coefficient of 27%, and an average AUC of 0.63. 

(f) Potential applications for the personal thermal comfort models developed in Chapters 6 and 

7 were investigated in the following Chapter 8. This chapter was divided into two parts, with 

the first part responding to research question (E) Can personal comfort models for older 

people be used to determine heating and cooling set points more accurately?. Two case-

studies were selected from the participants and corresponding buildings monitored in the 

project. The results for the first case-study showed a good agreement between the actual and 

simulated energy loads, for both heating and cooling energy loads. The heating load errors 

ranged from 4.8% to 26.5% of the actual energy load, while the cooling load errors ranged 

from -4.5% to 16.4%, depending on the weather data used. For the second case, however, 

the difference between the actual and simulated heating loads ranged from 12.3% to 19.1% 

of the actual energy load, while the cooling load errors ranged from -44.1% to -54.9%. 

Although the individual heating and cooling results were not optimal, the difference between 

the actual and simulated total loads were lower, between -8.0% and -10.2%. When comparing 

these error ratios with the ones resulting from simulations assuming a 21°C set point for 

heating and a 24°C for cooling, the study showed that personal set points significantly 

outperformed the traditional generalising assumptions. 
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(g) The second part of Chapter 8 extends the use of the personal comfort models presented in 

Chapters 6 and 7 into a web-based smart phone App. The chapter responded to research 

question (F) How can personal comfort models for older people be used to aid the control and 

adaptation of older people’s environments to increase comfort, and health and wellbeing?. 

The conversion of the selected personal model in a web-based smart phone’s App proved to 

be successful and allowed the accessible and automatic calculation of thermal preferences 

for the selected participant. Although still not validated for usability and accessibility, the App 

showed potential to aid designers in the decision-making process, as well as guide caregivers 

to control thermal environments without disturbing patients or track and record events for 

future consultation. 

From the summary of findings presented above, three potential implementation pathways are 

drawn for the personal thermal comfort models in the context of older adults, as seen in Figure 9-1. The 

first, called automation pathway, is based on the use of the predictions yielded from personal comfort 

models to control either HVAC systems, PCS or wearable comfort systems automatically. Although 

control automation can benefit all individuals, in different levels, it can be especially relevant as assistive 

tools for older adults with lower thermal sensitivity or with lower capacities to manually operate or adjust 

environments. 

The second application pathway, called diagnostic pathway, relies on the use of the information 

gathered from personal datasets and the predictions yielded from personal thermal comfort models as 

tools to quantify individual preferences, and identify possible design improvements to meet these 

preferences, especially considering buildings without air-conditioning. This diagnostic information would 

aid not only designers but also older adults, as consumers, in the decision-making process to redesign 

their thermal environments to improve comfort, health and wellbeing. The combined use of personal 

comfort models with either building performance simulation tools or online smart device tools are inserted 

in this pathway. 

The third pathway, identified as the public health pathway, is based on using the models in a 

broader sense to advise carers or health professionals on individual preferences. The app proposed in 

this thesis could be one of the possible tools to be implemented in this pathway. In addition, since 

extensive monitoring of new occupants may not be feasible for all settings, personal models from 

individuals with similar characteristics and preferences would be used to create a set of “clusters”, 

“profiles” or “personas” according to trends among individuals, allowing a broader use with little or no 

monitoring period.  
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Figure 9-1 - Summary of the three potential application pathways drawn from the research 

It is important to highlight, however, as already stated in Chapter 6, that a protocol will be required 

to prescribe the optimal data collection and processing techniques, as well as the modelling procedures, 

depending on different types of application. The modelling methodology, learning algorithms and input 

variables may differ depending on the complexity required for each sort of application envisioned. Using 

the models for HVAC control with live model-tuning (i.e., automation pathway) may require less 

computational-heavy models and higher accuracy to provide fast responses. On the other hand, models 

used in a more analytical sense (i.e., diagnostic pathway), may require more transparent and 

interpretable modelling techniques rather than optimum performance. 

9.2. Implications of findings 

The research indicates that, compared with aggregated models, personal models provide superior 

utility in predicting an individual’s preferred thermal environment, which therefore offers potential for more 

accurate methods and tools to design, control and improve older people’s living environments, so that 

comfort and wellbeing are optimised, healthy ageing is fostered and autonomy while ageing is prolonged. 

Consequently, improving building design, construction and operation could also result in a decrease in 

the reliance on heating and cooling systems and related fuel consumption. 
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9.3. Novelty and contributions 

The novelty of this research lies in three areas. Firstly, while literature on personal comfort models 

has focussed solely on younger adults in office environments, this research has explored a methodology 

for predicting thermal comfort of older people in their dwellings. It therefore contributed to filling the current 

gap in the literature and to promoting the importance for future research and knowledge of the field of 

thermal comfort. Secondly, this research has novel methodological contributions. It introduced 

health/wellbeing perception as a predictor of thermal preference – a variable often overlooked in 

architectural sciences and building engineering. In addition, the research provided insights into a novel 

use of deep learning for future studies on thermal comfort. Finally, in addition to contributing to the existing 

literature, the findings of this research provided practical contributions to the worldwide novel trend and 

interest in precision public health and increasingly more person-centred approaches for healthcare 

delivery. The new concept “precision thermal comfort” could, therefore, be further explored as a new facet 

for future multidisciplinary research on architecture sciences, medicine and public health. 

9.4. Limitations 

This research presents limitations, which were explained in more detail in each of Chapters 5 to 

8. The following list presents a summary of the main limitations of the study as a whole. 

Firstly, the older adults involved in this research chose voluntarily to participate, introducing a self-

selection bias to the analysis. In addition, despite the study including 3 different climate zones, it is still 

limited to a specific climatic context of South Australia. Likewise, although the older participants in this 

study represent a diverse cohort in terms of personal factors, other socio-cultural and economic factors 

that affect their thermal environments and perception still need to be addressed to build an holistic image 

of their diversity. 

This study is limited to the analysis of 8 features that might affect thermal preference for older 

people. Other potentially relevant input variables might include: seasonal thermal expectations, other 

physiological data, more accurate representations of metabolic rates, and other socio-economic factors, 

which may influence people's thermal behaviours and preferences. Furthermore, given the nature of the 

study, only self-reported health/wellbeing perceptions were used, which might lack the accuracy of 

records from healthcare providers. 



232 

The second data collection involving skin temperature was conducted between the months of 

September and February. Further data collection periods in cool and cold seasons are required to allow 

a broader understanding of the effects of thermal exposure on skin temperatures of older adults. 

Regarding the PMV scale conversion conducted in this research, it is acknowledged that thermal 

sensation and thermal preference scales cannot be considered interchangeable for all individuals. While 

neutral sensation and thermal preference for no change can be experienced simultaneously, it is still 

necessary to account for preferred sensations other than neutral. An alternative would be analysing 

different conversion rules for each individual participant depending on their thermal sensation and thermal 

preference answers. 

Finally, the energy disaggregation method used in this study is based on the assumption that the 

heating and cooling use intensity of the building is solely climate dependent. The drivers of heating and 

cooling use intensity in buildings, however, can also be related to the number of occupants living in the 

households or their socio-demographic and contextual scenarios. In addition, other assumptions related 

to building model calibration, the HVAC systems’ COP and EER, static occupancy and HVAC operation 

schedules, and static clothing and activity levels in the set point calculations should also be considered 

as potential causes of inaccuracies. 

9.5. Recommendations and next steps 

Through this research, several questions and topics have been raised which represent 

opportunities for future research and application. These have been detailed in each of the results chapters 

(5 to 8). The following list summarizes the main recommendations. 

For researchers 

(a) Future research is still required to advance the knowledge of other climatic scenarios and their 

related challenges, as well as of older people from other socio-cultural and economic 

backgrounds to build a more holistic image of their diversity. 

(b) In order to insert the individualised modelling approach in standards and regulations, the 

consolidation of the technique needs to be further tested, and this depends on a unified 

modelling framework across the field. A protocol is recommended to prescribe the optimal data 
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collection, processing, and management procedures and to guide the training, evaluation and 

reporting of models, depending on the application.  

(c) It is recommended that the standards prescribe a set of initial models as common bases for 

each type of application, which can be used as a starting point for re-learning and updating for 

new and specific occupants and environments. 

(d) The research also points to future research on combining physiological sensing, individualised 

predictive modelling and wearable personal comfort systems.  

(e) Defining the thermal preference misclassification costs in the context of older people is also 

recommended in further studies on personal thermal comfort models. 

(f) Regarding the application of personal comfort models for HVAC temperature set point 

calculations, daily set point calculation strategies can potentially generate better solutions for 

accurate energy use prediction. This could be achieved through incorporating personal 

comfort models in the building simulation workflow, using components such as the Energy 

Management System (EMS) object within EnergyPlus or co-simulation methods.  

(g) Future investigations are necessary to validate personal HVAC temperature set points in 

shared spaces where occupants differ in thermal preferences and behaviours. 

For designers, care givers and older adults 

(a) The use of web-based tools is recommended for better control of building systems and 

consequently more accurate management of thermal environments in the context of older 

adults. 

9.6. Closing remarks 

In conclusion, the research has demonstrated that, as a concept, personal comfort models have 

the ability to absorb older people’s diversity in the context of their living environmental conditions, and 

could, therefore, represent an important step towards providing knowledge aimed at enhancing health 

and wellbeing, promoting energy efficiency, and improving the overall resilience of the built environment. 
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A B S T R A C T   

Personal comfort models have shown to predict specific thermal comfort requirements more accurately than 
aggregate models, increasing occupant acceptability and associated energy benefits in both shared and single- 
occupant built environment. Although advances in the field of personal thermal comfort models are undeni-
able, there is still a lack of thorough and critical reviews of the current state of research in this field, especially 
considering the details of the predictive modeling process involved. This study has systematically reviewed 37 
papers from over 100 academic publications on personal comfort models from the last two decades, and 
examined: (1) the data collection approach and dataset size, (2) number and type of participants involved, (3) 
climate, seasons and type of building involved, (4) model input and output variables, (5) modeling algorithm 
used, (6) performance indicator used, and (7) model final application. The review has identified a lack of di-
versity in building types, climates zones, seasons and participants involved in developing personal comfort 
models. It has also highlighted a lack of a unified and systematic framework for modeling development and 
evaluation, which currently hinders comparisons between studies. With most of the studies using machine 
learning techniques, the review has pointed to the challenges of “black box” models in the field. Finally, the 
review has indicated that personal input features using physiological sensing technologies can be further 
explored, especially considering the rapid advances seen today in wearable sensor technologies.   

1. Introduction 

International standards [1–3] adopt the PMV (Predicted Mean Vote) 
model [4] and the adaptive model [5,6] as the basis from which to 
establish the thermal requirements for human occupancy in the built 
environment. The PMV model, originally developed in the second half of 
the 1960s by Fanger, is an index that represents the mean value of the 
thermal sensation votes of a group of people occupying a specific 
environment, on a 7-point thermal sensation scale from − 3 (cold) to 3 
(hot). Based on data obtained through climate chamber studies and a 
selection of heathy adults, the model calculates thermal comfort sen-
sations according to the heat dynamics occurring between the body and 
the environment. The model defines the thermal neutrality as the con-
dition wherein a group of people does not feel either hot or cold in an 
environment. Furthermore, the PPD (Predicted Percentage of Dissatis-
fied) index, calculated as a function of the PMV index, quantifies the 
expected percentage of thermally dissatisfied people in an environment. 
The standards recommend that the optimal indoor temperature is 
defined when PPD is lower than 10%, which corresponds to a PMV index 

between − 0.5 and 0.5. Hence, the application of this model results in the 
maintenance of a single optimal constant indoor temperature without 
any variations throughout an entire day or season. 

Nevertheless, numerous studies on thermal comfort have considered 
it unreasonable to expect everyone to be satisfied within a centrally 
controlled environment. Non-neutral thermal preferences are common, 
questioning the thermal neutrality proposed as the only optimal thermal 
condition for people. In addition, very low and very high PMV values do 
not always represent a state of discomfort [7–9]. 

The adaptive comfort approach, developed by Humphreys et al. 
(2016) [6] and de Dear and Brager (1998) [5], analyzed field-study data 
from naturally-ventilated buildings. Through empirical models that 
correlate the comfortable indoor temperatures and the outdoor tem-
peratures, they discovered that indoor temperatures considered to be 
most comfortable increased significantly in warmer climates and 
decreased in colder contexts. This indicates that people have an intrinsic 
ability to adapt to seasonal variations in environmental conditions, thus 
revealing that satisfaction with the thermal environment does not 
necessarily result in an environment restrained to an invariable indoor 
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temperature [6,7,9,10]. 
Nonetheless, both PMV and the adaptive models are aggregate 

models, which means they are designed to predict the average thermal 
comfort of large populations. Other researchers have argued that pre-
dicting comfort at the population level presents limitations in real case 
scenarios. In fact, many studies have already pointed out to the high 
levels of thermal dissatisfaction among occupants in office buildings 
where the standard prescriptions are used for heating and air condi-
tioning setpoint controls [11–14]. In addition, according to the pivotal 
work of authors Kim et al. (2018) [10], these aggregate models are also 
limited by (1) the difficult and costly attainment of input variables, (2) 
their inability to be calibrated, i.e., adapting to feedback and 
re-learning, and (3) their inability to incorporate new, relevant, input 
variables (such as age, health status, body mass index and contextual 
features) beyond their pre-defined factors. 

“Personal comfort models” were created to overcome most of the 
restrictions that the PMV and adaptive models present. Instead of an 
average response calculated from the data of a group of people, a 
personalized model is based solely on thermal data from one single 
person. By analyzing individual datasets, this approach helps to unmask 
and quantify the differences between individuals in an environment, 
enabling a better understanding of specific comfort needs and re-
quirements and collecting diagnostic information to identify problems 
[10]. This information, in turn, aids the decision-making process 
involved in designing and optimizing thermal environments to improve 
comfort satisfaction and energy efficiency. When HVAC (Heating, 
Ventilation and Air Conditioning) systems are used in shared spaces and 
an individual HVAC control is not possible, personal comfort models can 
be used as the basis for (1) consensus-based solutions [15–17], (2) 
personal comfort system’s control automation [18,19] or (3) develop-
ment of thermal comfort profiles (or personas) for general use (as 
conceptually indicated by Kim et al. (2018) [10]). In single-occupant 
spaces where individual control is possible, personal comfort models 
can be used to automate, with high precision, any type of conditioning 
systems. Although different levels of control automation can benefit all 
individuals [17,20,21], personal comfort models can be especially 
relevant as assistive tools for people with lower thermal sensitivity, such 
as older people, or for those with more limitations to thermal manage-
ment and adaptation, such as people with disabilities [22]. Furthermore, 
these models can be calibrated and adapted according to new feedback 
and accommodate different types of variables depending on each per-
son’s specific comfort-driving characteristics. Addressing the issue of 
individual differences in an innovative way and empowered by the rapid 
developments in technology, this change of approach provides relevant 
comfort and energy related benefits [23] and allows more dynamic and 
flexible possibilities to absorb individual thermal comfort diversity and 
enhance model reliability [24]. 

The development of personal comfort models has been addressed 
using multiple frameworks, including different modeling architectures, 
diverse input variables and distinct data collection approaches. Never-
theless, although advances in the field are undeniable, a thorough and 
critical review to map the similarities and discrepancies between the 
predictive modeling details involved is still lacking. A structured review 
and compilation of the gaps and limitations will help facilitate and guide 
future investigations in the field. 

This paper presents a systematic review on personal comfort models 
based on the literature published in the last two decades. It aims to 
provide a complete and unified overview of personal thermal comfort 
models, focusing specifically on the predictive modeling details. To the 
best of the authors’ knowledge, there has not been a comprehensive, 
systematic and critical review specifically targeted at the predictive 
modeling specifics of personal thermal comfort models that rely solely 
on individuals as the unit of model analysis. A review by Čulić et al. 
(2021) [25], for instance, focused specifically on the smart technologies 
for data collection, drawing insights on sensing tools used and variables 
measured rather than modeling processes. Zhang and Tzempelikos 

(2021) [26], on the other hand, focused on the final stages of the pro-
cess, namely the application or integration of personalized models into 
building control system. Xie et al. (2020) [27] brought forth a more 
comprehensive overview than the aforementioned studies but remained 
non-specific when addressing modeling details, disregarding the dif-
ferences in models’ dataset sizes, the experimental settings used (i.e., 
climate chambers or field studies) and the benefits of different modeling 
performance indicators. Similarly, Lee and Karava (2020) [28] provided 
a general overview of the topic without discussing details such as type of 
participants, climates, seasons and building settings involved, which can 
all affect modeling in different degrees. André et al. (2020) [29] targeted 
the details of personal comfort systems (PCS), i.e., the hardware 
effecting the comfort control, but not modeling details. Finally, although 
the pivotal work of Kim et al. (2018) [10] exposed 14 relevant papers on 
the subject, it does not constitute a systematic review. 

This paper discusses research to date on personal comfort models and 
critically reviews: (1) the data collection approach and dataset size, (2) 
number and type of participants involved, (3) climate, seasons and type 
of building involved, (4) model input and output variables, including 
comfort scales used, (5) modeling algorithm used, (6) performance in-
dicators used, and (7) model final application (when available). 

The structure of this review is organized as follows. Section 2 dis-
cusses the research methodology. Section 3 presents the review results, 
highlighting the different aspects of the current efforts regarding per-
sonal comfort models’ development. Section 4 discusses the gaps of 
knowledge and future research directions, and Section 5 concludes this 
review. 

2. Research methodology 

The selection process of academic publications in this study draws on 
the methodology adopted in manuals such as the JBI Manual for Evidence 
Synthesis [30]. The commonly adopted literature selection processes 
involve several steps: (1) scope delimiting, (2) identification of alter-
native terminology and creation of a logic grid, (3) defining the litera-
ture database, search rules and screening criteria, (4) database search, 
(5) final screening. 

2.1. Scope delimiting 

The main purpose of the review is to investigate the current state of 
research into personal thermal comfort prediction for the establishment 
of thermal requirements for human occupancy in buildings. Therefore, 
this review will focus on:  

(a) buildings, excluding other built environments such as outdoor 
spaces or vehicles (e.g., cars or aircrafts);  

(b) thermal comfort in buildings, excluding other forms of comfort, 
such as visual, acoustic or ergonomic comfort;  

(c) predictive modeling of thermal comfort in buildings, excluding 
studies that only present descriptive statistical analysis, such as 
general distributions, dispersions, means, medians, variances, 
etc., of the data; 

(d) and personal predictive modeling of thermal comfort in build-
ings, excluding aggregate or population-based prediction 
approaches. 

Predictive modeling, in this paper, is termed as “the process of 
developing a mathematical tool or model that generates an accurate 
prediction”, as defined by Kuhn and Johnson (2013) [31]. 

Fig. 1 illustrates the scope delimiting steps. 

2.2. Identification of alternative terminology and creation of a logic grid 

After delimiting the scope, a logic grid of key words was created. 
Table 1 presents the logic grid, highlighting the main key words, 
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followed by the respective alternative terms. The logic grid was 
formatted considering basic search boolean operators (e.g., OR) and 
modifiers (e.g., asterisks for truncation, when different forms of the 
word are valid, and quotation marks, indicating when to keep phrases 
together). 

2.3. Defining the literature databases, search rules and screening criteria 

Scopus®, Web of Science® and Compendex® were the databases 
used in this study, as they cover architecture, engineering and computer 
science literature and allow a robust search of topics and fields. In terms 
of search rules, this study only reviewed literature published in peer- 
reviewed academic journals, as these were considered to be of higher 
quality than grey literature and conference papers. In addition, only 
publications written in English from 2000 to 2021 were included to filter 
the most recent studies on personal comfort models. 

To select papers that strictly address personal comfort models, this 
systematic review only includes studies that:  

(a) focus on individual occupants as a unit of model analysis;  
(b) use real (non-synthetic) feedback from individuals;  
(c) propose models that predict either thermal preference, sensation, 

acceptability, discomfort or dis/satisfaction; and  
(d) present details on the development of the models. 

2.4. Database search 

The database search was conducted between January 2020 and 
September 2021. Using the keywords from the logic grid in titles, 

keyword lists and abstracts of publications, 1115 papers were initially 
identified in Scopus®, 1276 in Web of Science®, and 783 in Compen-
dex®. These results, however, included duplicates, which were subse-
quently removed. Using the screening criteria mentioned in Section 2.3., 
all abstracts from the search results were read and selected for full-text 
screening if they met the criteria above. This process resulted in 109 
papers chosen. 

2.5. Final screening 

Full-text screening involved a thorough analysis of the entire content 
of these 109 publications (i.e., not only title, keywords and abstract, but 
also the full content of the papers), filtering papers once again according 
to the screening criteria mentioned in Section 2.3. This process removed 
the papers that, although appearing to have the inclusion criteria in the 
titles, keywords and abstracts, upon a further analysis of the entire 
content, presented evidence for exclusion. This process also involved a 
second search through the selected publications’ reference lists, to 
identify related papers that had not appeared in the first database 
search. This resulted in 7 papers being added to the list for full-text 
screening. 

The final full-text screening resulted in 37 publications selected, 
which are described and analyzed in the next sections. Fig. 2 illustrates 
the research procedure of this study. 

3. Results 

Table 2 summarizes the 37 studies on personal comfort models 
reviewed for this paper. 

3.1. Data collection approach and dataset size 

From the papers that reported a total dataset size for all models 
developed (i.e., the sum of all individual models’ dataset sizes), nearly 
half of them used up to 1000 data points. The smallest dataset reported 
was 321 data points presented in the study by Zhao et al. (2014) [66]. 
The other half of the studies had total datasets ranging from 1017 [59] to 
nearly 7000 points [43]. These total set sizes, however, were divided, in 
each study, into different numbers of individual datasets, according to 
the number of participants involved in each analysis. The smallest in-
dividual datasets ranged from 5 points per model [34,42] to slightly 
more than 400 points [45,58,59]. Such a wide range of dataset sizes is, 
however, expected as these studies used different modeling methods 
(explained in Section 3.5). 

The data collection approach can highly influence the number of 
data points available for the individual personal comfort models. Studies 
that used either climate chambers or office rooms treated as structured 
experiments, and of which sessions lasted longer hours over multiple 
weeks, seemed to have higher survey response frequencies, and, 
consequently, higher individual datasets for each participant involved. 
Lu et al. (2019) [58], for instance, collected data through 14 2-h ses-
sions, where participants answered a thermal comfort survey every 
5-min. This resulted in relatively large datasets for the individual models 
(i.e., 362 to 413 points) although the study only involved two partici-
pants. Studies that used freely operated office rooms (i.e., not treated as 
structured experiments) reached similar individual dataset sizes by 
prompting thermal comfort votes from participants with frequent re-
minders. This was the case of Zhao et al. (2014) [65], who required 
participants to answer the thermal comfort surveys every hour, by 
sending online reminders to users’ computers while they were working 
in the office environment. Similarly, Jayathissa, et al. (2020) [45] 
reached on average 416 data points per participant through the use of a 
smartwatch, which not only served as the main data collection tool and 
user interface, but also prompted the occupants with a small vibration 
requesting feedback from them at different timed points in the day. 

Similar to the influence of the data collection approaches on the final 

Fig. 1. Review’s scope delimiting steps.  

Table 1 
Logic grid of keywords.  

PERSONAL THERMAL COMFORT MODEL 

personal* OR individual* 
OR occupant-cent* OR 
human-cent* OR 
customi* OR occupant- 
aware OR occupant- 
driven 

"thermal comfort" OR 
“thermal discomfort” OR 
"thermal sensation" OR 
"thermal preference" OR 
"thermal behavior" OR 
"thermal behaviour" OR 
"thermal control" OR 
"thermal management" OR 
“thermal acceptability” OR 
“thermal satisfaction” OR 
“thermal complaint” OR 
“thermal dissatisfaction” 

model* OR predict* 
OR data-driven OR 
smart OR "machine 
learning"  
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dataset size, the impact of data pre-processing in the final data size is 
highlighted in some of the papers analyzed. Missing, anomalous or un-
likely data points, as well as highly unbalanced datasets, need to either 
be discarded, decreasing the final data point count, or dealt with by 
oversampling in order to avoid low dataset sizes. K-Nearest Neighbors, 
for instance, was used by Liu et al. (2019) [56] to fill in missing data and 
avoid discarding relevant data points. Kim et al. (2018) [19] also used 
oversampling as a pre-processing tool to deal with unbalanced datasets 
(i.e., where one of the classification categories surpasses the other in 
number). Unlike undersampling, which discards data points until all 
classification categories match the minority category, oversampling 
avoids losing data points with the drawback of possible model 
overfitting. 

Predicting thermal comfort without needing a large number of sur-
vey answers per user is, nevertheless, still possible. Natarajan and 
Laftchiev (2019) [59], for example, developed an Active Transfer 
Learning Framework to reach larger dataset sizes, at the same time 
avoiding disturbing participants with long monitoring periods. The 
framework uses knowledge from prior users to add to new users’ data-
sets, reducing considerably the necessary size of individual labelled 
datasets. 

3.2. Number and type of participants involved 

The selected reviewed studies involved 2 to 576 participants to 
develop personal comfort models. It is noticeable that more than half of 
the studies had up to 10 participants, as seen in the histogram presented 
in Fig. 3. This can be partially explained by the common limitations of 
thermal comfort data collection processes, such as long monitoring pe-
riods or relatively intrusive data collection tools (e.g., repetitive survey 
and feedback required or continuous sensing), which might have 
affected subjects’ willingness to participate. 

The intrusiveness of thermal comfort prediction is, in fact, a recur-
rent topic throughout the studies analyzed, especially the ones involving 
human physiological parameters’ sensing. Aryal and Becerik-Gerber 
(2019) [41], for instance, emphasized that not only can wearing de-
vices discourage participant engagement because of the intrusiveness 
and privacy concerns, but it can also cost considerably more than using 
environmental sensors alone. Hence, in their study, they evaluated the 
accuracy trade-offs between using a wrist-worn wearable device, a 
thermal camera, and an environmental sensor to predict the individual 
thermal comfort of 20 participants. Likewise, Lee, et al. (2020) [53] 
recognized the impracticability of long-term collection of occupant 
feedback through participatory interfaces. In their study, both voluntary 
and requested feedback data were explicitly incorporated as types of 
behavior into the thermal preference learning models, to analyze 

differences in the model accuracy for 5 participants. Similarly, Li, et al. 
(2018) [54], Shan, et al. (2020) [61] and Lu et al. (2019) [58] tested 
different options for collecting skin temperature as inputs for personal 
comfort models using less intrusive and more accurate approaches. 
Their number of participants in each of those studies, however, was low 
(12, 3 and 2, respectively), and could have benefitted from further ex-
plorations, especially considering the diversity of subjects involved. 
Nevertheless, since the main objective of these studies was to analyze 
subjects at the individual level, having lower counts of participants is 
not necessarily negative. 

From the 2 studies with more than 100 participants, Auffenberg, 
et al. (2018) [42] were able to reach the highest number of participants 
− 576 people – by using the ASHRAE RP-884 dataset [67], plus their 
own experimental period. The dataset was then divided into subsets for 
each participant who answered at least 5 thermal comfort votes. 

Although not all studies reported further details about the partici-
pants, it is still clear from the analysis that such studies involved younger 
adults in their twenties considered to be healthy and maintained an 
overall balance of female and male participants (Table 3). This is in line 
with the traditional approach of thermal comfort studies to select 
younger healthy adults [4], possibly to avoid individual influences of 
age, health conditions, intellectual or physical impairment or medica-
tion use in thermal sensation and sensitivity [9,68]. Participants who 
were office workers and students were also common in the studies 
analyzed, as seen in Table 3. Weight, height and BMI (Body Mass Index) 
were reported by few of the studies selected and deemed more relevant 
when considering personal and physiological parameters, such as skin 
temperature or heart rate, as inputs for the personal comfort models [18, 
56,61]. 

3.3. Climate, seasons and type of building involved 

As presented in Table 2, nearly all reviewed studies used office en-
vironments to collect data for the personal comfort models developed. 
When climate chambers were used or office spaces were treated as an 
experimental setting, the activities simulated were mainly sedentary (e. 
g., sitting down, working on computer, reading), which means activities 
undertaken in residential settings (e.g., eating, cooking, walking) were 
not explored. This can be limiting when considering the diversity of 
thermal conditions in residential environments in comparison with more 
controlled office environments. Likewise, while in offices the activity 
and clothing levels are normally similar throughout the year, in home 
environments they often change, providing more diverse thermal con-
ditions [43]. 

Nevertheless, considering the application aimed for in these studies, 
focusing on office environments is an expected trend. This is because 

Fig. 2. Research procedure of this study.  
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Table 2 
Studies on personal comfort models and their characteristics.  

Authors, year and 
Ref. 

First author 
affiliation 
location 

Data 
collection 
location 

Dataset 
size1 (total 
in the 
study) 

Dataset size1 

(in individual 
models) 

No. of 
participants 

Type of 
Building 

Period of monitoring Modeling 
Algorithm2 

Train-test 
split and/or 
cross- 
validation 

Inputs 
Personal3 

Inputs 
Environmental4 

Outputs Model 
Predictive 
Performance5 

Aguilera et al. (2019) 
[39] 

Denmark Denmark 465 
(assumed 
from graph 
in study) 

50 to 110 7 Office 3 weeks, March–April 
2018 

FC not 
mentioned 

0 Ti Thermal 
preference 

29% of 
occupants’ 
thermal 
comfort 
improved with 
occupant- 
driven HVAC 
control 

Aryal and Becerik- 
Gerber (2020) [40] 

USA USA 1276 85 (average) 15 Office6 July–August 2019 RF, KNN, SVM, 
DT 

5-fold cross- 
validation 

STemp (wrist, 
forehead, nose, 
left cheek, and 
right cheek) 7 

Ti, RH, ASp, mTr, 
Heater state, Fan 
state 5 

Thermal 
sensation and 
thermal 
satisfaction 

Average 
accuracy across 
participants: 
Thermal 
sensation: 
72–90%8 

Thermal 
satisfaction: 
69–94% 

Aryal and Becerik- 
Gerber (2019) [41] 

USA USA 543 27 (approx.) 20 Office4 June–August 2018 RF, SVM, KNN, 
Subspace KNN, 
Subspace LDA 

5-fold cross- 
validation 

STemp (wrist 
and 4 points in 
face) 9 

Ti 6 Thermal 
comfort, 
thermal 
satisfaction 
and 
combination 
of both 

Average 
accuracy across 
participants: 
Thermal 
sensation: 
72–85%8 

Thermal 
satisfaction: 
85%–94% 
Combination 
thermal 
sensation and 
satisfaction: 
62–76% 

Aryal et al. (2021) 
[21] 

USA USA not 
mentioned 

125.1 average 
(phase 1) and 
224.8 average 
(phase 2) 

14 Office 15 weeks, 
October–March 2020 

RF, KNN 5-fold cross- 
validation 

Clo Ti, RH, Tr, To, 
Rho, ApT 10, 
Time, Heater 
state, Fan state 

Thermal 
sensation and 
thermal 
satisfaction 

Average 
accuracy across 
participants: 
Thermal 
sensation: 
74–77%8 

Thermal 
satisfaction: 
81–86% 

Auffenberg et al. 
(2018) [42] 

UK Pakistan, 
Greece, 
USA, UK 

not 
mentioned 

5 to 150 576 Office and 
residential 

from 5 to 60 days BI Cross- 
validation 
mentioned 
but not 
detailed, 
increasing 
training 
observations 
in steps of 1 

Seasonal 
adaptation 

To, OpT, RH Optimal 
comfort 
temperature, 
Thermal 
preference 
(desired 
change), 
Thermal 
sensation, 
Thermal 
sensitivity 

Average 
accuracy gains, 
across 
participants: 
Compared to 
PMV: 25.8% 
Compared to 
adaptive 
model: 13.2% 

(continued on next page) 
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Table 2 (continued ) 

Authors, year and 
Ref. 

First author 
affiliation 
location 

Data 
collection 
location 

Dataset 
size1 (total 
in the 
study) 

Dataset size1 

(in individual 
models) 

No. of 
participants 

Type of 
Building 

Period of monitoring Modeling 
Algorithm2 

Train-test 
split and/or 
cross- 
validation 

Inputs 
Personal3 

Inputs 
Environmental4 

Outputs Model 
Predictive 
Performance5 

Daum et al. (2011) 
[43] 

Switzerland Switzerland 6851 not 
mentioned 

28 Office 2006 to 2009 MLR not 
mentioned 

0 Ti Thermal 
sensation 

not mentioned 

Fay et al. (2017) [34] UK/Ireland Ireland 477 5 to 227 78 Office 4–306 days per user GPM 5 data points 
for testing, 
randomly 
repeated 50 
times 

0 Ti, RH, To Thermal 
sensation 

Average RMSE 
across 
participants: 
0.71 
Standard 
deviation of 
RMSE across 
participants: 
0.28 
Average PSE 
across 
participants: 
34.1 

Ghahramani et al. 
(2015) [44] 

USA USA 2393 19 to 202 33 Office several months in 
2012, 2013 and 2014, 
different seasons, 5–90 
days per person 

BI not 
mentioned 

0 Ti Thermal 
sensation 

Average 
accuracy across 
participants: 
70.14% 
Average 
specificity 
across 
participants: 
76.74% 

Guenther and 
Sawodny (2019) 
[33] 

Germany/ 
Singapore 

Singapore not 
mentioned 

not 
mentioned 

18 Office 10 months GPM and 
Polynomial Basis 
Function 

Cross- 
validation 
mentioned 
but not 
detailed 

0 Ti, Supply T at 
the outlet of the 
fan coil units, 
Fan level, To, 
GSR, Time, Day 
of week, 
Variation of each 
parameter 
(except for day 
and time) 

Thermal 
sensation 

Average RMSE 
across 
participants: 
0.68 
Median RMSE 
across 
participants: 
0.58 
Right tendency 
across 
participants: 
74% 

Jayathissa et al. 
(2020) [45] 

Singapore Singapore 4378 416 average 30 Office 2 weeks RF 60-40 split NBTemp, HR, 
PrefH, Room 

Time, Lighting, 
Noise, Ti, RH 

Thermal, 
visual and 
aural comfort 
preference 

Average F1- 
micro-score 
across 
participants, 
for thermal 
preference: 
0.60–0.668 

Jazizadeh et al. 
(2014) [16] 

USA USA 328 61 to 114 4 Office4 3 weeks, autumn FC 10-fold cross- 
validation for 
different 
numbers of 
fuzzy sets 
between 1 
and 100, 
increasing 
training 

0 Ti Thermal 
sensation 

Average11 

error between 
true and 
predicted 
temperatures 
associated with 
each thermal 
sensation, 
across 

(continued on next page) 
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Table 2 (continued ) 

Authors, year and 
Ref. 

First author 
affiliation 
location 

Data 
collection 
location 

Dataset 
size1 (total 
in the 
study) 

Dataset size1 

(in individual 
models) 

No. of 
participants 

Type of 
Building 

Period of monitoring Modeling 
Algorithm2 

Train-test 
split and/or 
cross- 
validation 

Inputs 
Personal3 

Inputs 
Environmental4 

Outputs Model 
Predictive 
Performance5 

observations 
in steps of 10 

participants: 
1.165 ◦C 

Jazizadeh et al. 
(2014) [15] 

USA USA not 
mentioned 

not 
mentioned 

6 Office October–December 
2012 and April and 
June 2013 

FC not 
mentioned 

0 Ti Thermal 
sensation 

Average 
thermal 
comfort rating 
after using 
personalized 
HVAC control, 
across 
participants: 
8.4 on 1–10 
scale (10 being 
most 
comfortable) 

Jiang and Yao (2016) 
[46] 

UK China 1199 38 to 63 20 Climate 
chamber 

Summer 2008 to 2010 SVM 50-50 split 
5-fold cross- 
validation 

MET, Clo Ti, MTr, aSp, RH Thermal 
sensation 

Average 
accuracy across 
participants: 
89.82% 

Jung and Jazizadeh 
(2019) [47] 

USA USA and 
Switzerland 

not 
mentioned 

not 
mentioned 

6 Office Varies, depending on 
the dataset 

BI not 
mentioned 

0 Ti Thermal 
sensation 

not mentioned 

Jung et al. (2019) 
[48] 

USA USA not 
mentioned 

not 
mentioned 

18 Climate 
chamber 

not mentioned RF, SVM, LR 3 scenarios 
for train-test 
split12 

Heat flux, 
STemp (wrist) 

Ti Thermal 
preference 

Median 
accuracy across 
participants: 
Scenario 1: 
42.6–61.2%8 

Scenario 2: 
44.8–72.9% 
Scenario 3: 
68.7–97% 

Katić et al. (2020) 
[18] 

The 
Netherlands/ 
Denmark 

The 
Netherlands 

476 238 2 Climate 
chamber 

January–February and 
November–December 
2017 

SVM, DT 
Ensembles 
(Bagged trees, 
Boosted trees 
and RUSBoosted 
trees) 

5-fold cross- 
validation 

PCS Control 
Intensity, 
STemp (mean 
and hand) 

Time, Ti, RH, 
MTr 

Thermal 
sensation 

Average 
accuracy across 
participants11: 
Approach 113: 
59.45–95.6%8 

Approach 2: 
62.4–85.55% 
Average ROC 
AUC, across 
participants: 
Approach 1: 
0.5–0.848 

Approach 2: 
0.645–0.8 

Kim et al. (2018) 
[19] 

USA USA 4743 123 (average) 34 Office April–October 2016 DT, GPM, GB, 
SVM, RF, 
Regularized LR 

2-fold cross- 
validation, 
repeated 150 
times 

PCS Control 
Intensity, PCS 
Heating/ 
cooling 
Location, PCS 
Occupancy 
Status, PCS 
Occupancy 
Frequency, 

Ti, OpT, RH, Ti 
slope, HVAC 
control settings, 
HVAC 
Thermostat 
reading (TI, aSp, 
Damper position, 
Heating output, 
Discharge T), To, 

Thermal 
preference 

Average ROC 
AUC across 
participants: 
0.61–0.718 

(continued on next page) 
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Table 2 (continued ) 

Authors, year and 
Ref. 

First author 
affiliation 
location 

Data 
collection 
location 

Dataset 
size1 (total 
in the 
study) 

Dataset size1 

(in individual 
models) 

No. of 
participants 

Type of 
Building 

Period of monitoring Modeling 
Algorithm2 

Train-test 
split and/or 
cross- 
validation 

Inputs 
Personal3 

Inputs 
Environmental4 

Outputs Model 
Predictive 
Performance5 

Ratio of PCS 
Control 
Duration over 
Occupancy 
Duration, PCS 
Control 
Frequency, Clo 

Sky Cover, 
Weighted Mean 
Monthly T, 
Precip, Day of 
week, Hour of 
day 

Kim (2018) [49] South Korea Not 
mentioned 
for first data 
set and USA 

2480 26 to 133 24 Office March–August 2017 
and July 2012–August 
2013 

ANN not 
mentioned 

0 Time, Ti, To Thermal 
discomfort 

Average11 MSE 
across 
participants: 
0.002975 

Konis and 
Annavaram (2017) 
[50] 

USA USA 1490 8 to 80 45 Office 2 weeks LR not 
mentioned 

0 Ti Thermal 
satisfaction 
separated for 
heating and 
for cooling 

Percentage of 
incorrect 
predictions 
<10%: met for 
16 of 16 
heating models 
and for 19 of 21 
cooling models 

Lee and Ham (2020) 
[51] 

USA USA 953 63 to 115 10 Office 4 weeks, 
August–September 
2019 

KNN, GB, LVQ, 
SVM, RF 

10-fold cross- 
validation 

STemp, SCond, 
HR, MET 

Ti, RH Thermal 
sensation 

Average11 

accuracy across 
participants: 
71–77%8 

Average 
Cohen’s Kappa 
across 
participants: 
0.216–0.4418 

Lee et al. (2017) [38] USA North 
America 

1712 - first 
phase, not 
mentioned 
- last phase 

from 10 11 Office not mentioned BI 8 data points 
for training 
and 
remaining for 
testing 

MET, Clo Ti, MTr, ASp, RH Thermal 
preference 

Logistic loss of 
− 28.5 when 
compared to 
− 30 from 
another study 
(assumed from 
graph in study) 

Lee et al. (2019) [52] USA not 
mentioned 

432 48 9 Office4 8 days in October and 
November 2017 

Variational BI 2 to 8-fold 
cross- 
validation, 
increasing 
training 
dataset in 
steps of 6 

MET, Clo Ti, mTr, RH, ASp Thermal 
preference 

ROC AUC of 
approx. 0.8 
(assumed from 
graph in paper) 

Lee et al. (2020) [53] USA USA not 
mentioned 

48 (assumed 
for requested 
phase), not 
mentioned 
(for 
participatory 
phase) 

5 Office4 March–April 2019 Linear OP, BI not 
mentioned 

0 Ti Thermal 
preference 

Median 
Expected 
Squared Error, 
for each 
participant14: 
approx. 10–308 

Li et al. (2017) [14] USA USA 271 - first 
case study, 
362 - 
second case 
study 

31 to 57 3 and 7 Office and 
residential 

June–July 2016 and 3 
weeks in 
November–December 
2016 

RF 10-fold cross- 
validation 

Act, Clo, HR, 
STemp 

Ti, RH, Window 
State, To, RHo 

Thermal 
preference 

Average11 

accuracy across 
participants: 
First case 
study, 
mechanical 
ventilation: 

(continued on next page) 
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Table 2 (continued ) 

Authors, year and 
Ref. 

First author 
affiliation 
location 

Data 
collection 
location 

Dataset 
size1 (total 
in the 
study) 

Dataset size1 

(in individual 
models) 

No. of 
participants 

Type of 
Building 

Period of monitoring Modeling 
Algorithm2 

Train-test 
split and/or 
cross- 
validation 

Inputs 
Personal3 

Inputs 
Environmental4 

Outputs Model 
Predictive 
Performance5 

62.5–80.2%8 

First case 
study, natural 
ventilation: 
53.3–78.4% 
Second case 
study: 
54–81.8% 

Li et al. (2018) [54] USA USA 720 
(assumed 
according 
to vote 
frequency) 

60 (assumed 
according to 
vote 
frequency) 

12 Office4 December 
2017–February 2018 

RF 10-fold cross- 
validation 

STemp max. 
measurement 
of face15, 
STemp gradient 
(forehead, 
nose, cheeks, 
ears, mouth, 
and neck) 

0 Thermal 
preference, 
for cooling, 
heating and 
both phases 

Average 
accuracy across 
participants: 
Cooling phase: 
91.6% 
Heating phase: 
92.7% 
Both phases: 
85.0% 

Li et al. (2020) [55] USA USA 1800 180 10 Office4 December 
2017–February 2018 

LR 10-fold cross- 
validation 

STemp (cheeks) 0 Thermal 
comfort 

Average11 

accuracy across 
participants: 
67.4% 

Liu et al. (2019) [56] USA USA 3848 275 (average) 14 Anywhere, 
indoor and 
outdoor 

2–4 weeks, March to 
May 2017 and 
November to 
December 2016 

LDA, LR, ANN, 
SVM, KNN, NB, 
CART, J48, DT, 
RBC, C5.0, 
Bagged DT, RF, 
RF by 
Randomization, 
GB 

80-20 split, 
5-fold cross- 
validation, 
repeated 20 
times 

STemp (wrist 
and ankle), 
NBTemp, HR, 
Wrist Acc 16 

To, RH, ASp, SR Thermal 
preference 

Average11 

accuracy across 
participants: 
64.7–72.9%8 

Cohen’s Kappa 
across 
participants: 
0.16–0.278 

ROC AUC 
across 
participants: 
0.6–0.768 

Liu et al. (2007) [57] China China not 
mentioned 

not 
mentioned 

113 Office4 June to October 2004 ANN 20 datapoints 
for training 
and 4 for 
testing 

0 Ti, RH, ASp, MTr Thermal 
sensation 

Veracity17 of 
approx. 80% 
after replacing 
the first 20 
datapoints 
(paper only 
shows 1 
participant’s 
results) 

Lu et al. (2019) [58] USA China 775 362 to 413 2 Office4 6 days, March 2018 RF, SVM 80-20 split, 
5-fold cross- 
validation 

Clo SurfTemp, 
STemp (cheek), 
STemp 
difference 
between 
consecutive 
measurements 

Ti, RH Thermal 
sensation 

Average11 

precision 
across 
participants: 
37.9–98.75%8 

Average recall 
across 
participants: 
42.75–97.5%8 

Average F1- 
score across 
participants: 
38.5–98.05%8 

USA USA 1017 97 to 400 5 Office4 Average 14 days per 
user 

Ti, RH, ASp 10 Thermal 
sensation 

Average RMSE 
across 

(continued on next page) 
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Table 2 (continued ) 

Authors, year and 
Ref. 

First author 
affiliation 
location 

Data 
collection 
location 

Dataset 
size1 (total 
in the 
study) 

Dataset size1 

(in individual 
models) 

No. of 
participants 

Type of 
Building 

Period of monitoring Modeling 
Algorithm2 

Train-test 
split and/or 
cross- 
validation 

Inputs 
Personal3 

Inputs 
Environmental4 

Outputs Model 
Predictive 
Performance5 

Natarajan and 
Laftchiev (2019) 
[59] 

LinR with Active 
and Transfer 
Learning 

50-50 split, 
5-fold cross- 
validation 

HR, STemp, 
CBTemp, 
PrefTemp 18 

participants: 
0.818 

Pazhoohesh and 
Zhang (2018) [60] 

UK/China not 
mentioned 

not 
mentioned 

not 
mentioned 

9 Office November 
2016–January 2017 

FC not 
mentioned 

0 Ti Thermal 
preference 

Average 
margin of error 
across 
participants: 
12.95% 
Percentage of 
occupants 
rating “Just 
Right” when 
model is used 
for HVAC 
control: 73% 

Shan et al. (2020) 
[61] 

China China 450 150 3 Office4 June–August ANN 10-fold cross- 
validation, 
repeated 10 
times 

STemp (wrist, 
neck, of the 
point 2 mm 
above the 
wrist) 

0 Thermal 
sensation 

Average 
accuracy across 
participants: 
89.2% 
Average MAE 
across 
participants: 
0.16 
Average MSE 
across 
participants: 
0.06 

Shan et al. (2018) 
[62] 

Singapore/ 
Australia 

Singapore not 
mentioned 

not 
mentioned 

22 Office4 not mentioned LDA not 
mentioned 

EEG 19 0 (Thermal) 
Mental state 

Average 
accuracy 
(classification 
rate) across 
participants: 
In Resting 
state: 98% 
In Task state: 
99% 

Sim et al. (2016) [63] South Korea South Korea 840 not 
mentioned 

8 Climate 
chamber 

not mentioned Stepwise LinR not 
mentioned 

STemp 
(fingertip, 
radial artery, 
ulnar artery, 
upper wrist 
temperature) 20 

0 Thermal 
sensation 

Average RMSE 
across 
participants: 
0.95–1.248 

Xu et al. (2018) [64] China China not 
mentioned 

not 
mentioned 

4 Office not mentioned MLR not 
mentioned 

0 Ti Thermal 
sensation 

Consumed 
power of the 
VAV system 
with proposed 
approach: 23% 
less than the 
traditional 
fixed set-point 
control 
strategy. 

Zhao et al. (2014) 
[65] 

China China 2679 300 (average) 9 Office November 
2009–January 2010 

LLS 67-33 split 0 Ti, RH, MTr Thermal 
sensation 

Average11 

across 
participants: 

(continued on next page) 
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Table 2 (continued ) 

Authors, year and 
Ref. 

First author 
affiliation 
location 

Data 
collection 
location 

Dataset 
size1 (total 
in the 
study) 

Dataset size1 

(in individual 
models) 

No. of 
participants 

Type of 
Building 

Period of monitoring Modeling 
Algorithm2 

Train-test 
split and/or 
cross- 
validation 

Inputs 
Personal3 

Inputs 
Environmental4 

Outputs Model 
Predictive 
Performance5 

Regression 
MSE: 0.4782 
Prediction 
MSE: 0.53373 
Regression 
Bias: 0.00188 
Prediction Bias: 
0.03382 

Zhao et al. (2014) 
[66] 

China China 321 not 
mentioned 

6 and 11 Climate 
chamber 

June–August 2011 and 
same period in 2012 

LLS leave-one-out 
validation 
method 

0 Ti, RH Thermal 
complaint 

Average11 FNR 
across 
participants: 
For Hot 
complaint: 
0.0783 
For Cold 
complaint: 
0.055 
Average FPR 
across 
participants: 
For Hot 
complaint: 
0.5245 
For Cold 
complaint: 
0.365  

1 “Dataset size” refers to the number of datapoints used in the studies, i.e., the total number of observations used for model training, validation and testing. 
2 FC = Fuzzy Classification, RF = Random Forest, KNN = K-Nearest Neighbors, SVM = Support Vector Machine, DT = Decision Tree, LDA = Linear Discriminant Analysis, BI = Bayesian Inference/Classification, MLR =

Multinomial Logistic Regression, GPM = Gaussian Process Model, LR = Logistic Regression, ANN = Artificial Neural Network, GB = Gradient Boosting, LVQ = Learning vector quantization, OP = Ordered Probit, LinR =
Linear Regression, NB = Naive Bayes, RBC = Rule-Based Classifier, CART = Classification and Regression Trees, LLS = Least-squares linear estimation, J48 = J48 Decision Tree. 

3 STemp = Skin Temperature, Clo = Clothing, NBTemp = Near Body Temperature, MET = Metabolic Rate, HR = Heart Rate, SCond = Skin conductance, Act = Activity level, SurfTemp = Surface Temperature, Acc =
Accelerometry, CBTemp = Core Body Temperature, PrefTemp = Preferred Temperature, EEG = Electroencephalogram, PrefH = Preference History. 

4 Ti = Indoor Air Temperature, RH = Relative Humidity, aSp = Air Speed, mTr = Mean Radiant Temperature, Tr = Radiant Temperature, RHo = Outdoor Relative Humidity, To = Outdoor Air Temperature, OpT =
Operative Temperature, ApT = Apparent Temperature, T = Temperature, GSR = Global Solar Radiation, SR = Solar Radiation, HVAC = Heating, Ventilation and Air Conditioning, PCS = Personal Comfort System, Precip 
= Precipitation. 

5 Definitions of Accuracy, Precision, Recall, Specificity, FNR, FPR, F1-score, ROC AUC can be found in Ref. [32]; Right tendency = average percentage of votes whose signs are predicted accurately, defined in Ref. [33]; 
PSE = percentage signed error, defined in Ref. [34]; RMSE = root mean squared error, MSE = mean squared error, MAE = mean absolute error, with further definitions found in Ref. [35]; Cohen’s Kappa = inter-rater 
agreement, further defined in Refs. [36,37]; Logistic loss = loss function for logistic regression, defined in Ref. [38]. 

6 Treated as an experiment. 
7 Instant measurement at the time of vote, min., max., average, std., overall change between first and last values in the time window, and average of the derivative of the measurements. 
8 Ranges indicate max. and min. across different input set combinations, phases and/or modeling techniques compared in the studies. 
9 Min., max., average, std. and median of measurements in the 5-min. window and of first derivative of the data stream; coef. obtained by fitting first degree and second degree polynomials to the measurements in the 5- 

min window; most recent measurement, average of last 10s, and average of first derivative for the last 10s. 
10 Average and changes in the last 1, 5, 10 and 30min. prior to a vote for all features. 
11 Average calculated by this review paper using available data from papers, to allow comparison between studies. 
12 Scenario1 = training on first half of the experiment and testing on second half of the experiment; scenario 2 = training on the second half of the experiment and testing on the first half of the experiment; scenario 3 =

cross validation on all the data points combined. 
13 Approach 1 = thermal preference in scale heating demand, neutral, cooling demand; Approach 2 = thermal preference in scale heating demand, slightly heating demand and no change. 
14 Average cannot be calculated from graph supplied by the paper. 
15 Measurement and its gradient, max., min. and average. 
16 Average and gradient for 5min and 60min prior to a vote. 
17 Term “veracity” not defined in the study. 
18 Average, variance, median, min., max., simple moving average between 2 and 9 samples immediately prior to a vote. 
19 42 frequency ranges (within 3–45 Hz range) for each of the 14 channels. 
20 Average, time differential, average power of a specific frequency band, temperature gradient between positions. 
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these studies mainly aimed to evaluate the application of personalized 
thermal comfort models as optimization and automation strategies for 
HVAC systems in highly controlled environments, which are more 
commonly found in office buildings. These studies will be discussed 
further in Section 3.7. 

The USA and China are the main locations reported by the selected 
studies, followed by Singapore and a small number of European 

countries, as seen in Fig. 4. The climate zones analyzed span from warm 
temperate (Cfa, Cfb, Csb) [15,16,18,19,21,34,39–41,43,44,46–51, 
56–59,61,64,69], to equatorial (Af) [33,45,62], to colder climates (Dfb 
and Dwa) [14,54,55,63,65,66], following the Köppen-Geiger Climate 
Classification. 

In general terms, the studies screened have diverse monitoring pe-
riods, shown in Table 2. Summer and winter periods are understandably 
more common than autumn and spring throughout all studies, as 
capturing extremes in environmental conditions can help create a more 
diverse dataset upon which to develop thermal comfort models. There is 
a tendency, however, to analyze a single season in the individual studies 
(i.e., either summer or winter months), which can be limiting when 
attempting to capture the entire range of thermal sensations and 
preferences. 

3.4. Model input and output variables 

The range of the number of input variables to develop personal 
comfort models varied widely across the studies analyzed. While several 
studies used one to fifteen variables as features to predict thermal 
comfort, some studies used more than 100 features [41,59,62]. In the 
latter, apart from the raw measurements collected for each input vari-
able, the researchers extracted other properties from the measurements, 
such as mean, variance, minimum, maximum or standard deviation, to 
create additional input variables that could represent intrinsic 

Fig. 3. Histogram of total number of participants in the studies selected.  

Table 3 
Participants details in each study analyzed.  

Ref. No. of 
participants 

M (male)/F 
(female) 

Age group Health Body Composition Other characteristics 

[39] 7 * * * * office workers 
[40] 15 11 M and 4 F 20s healthy H 168.9 ± 10.1 cm, W 65.4 ± 7.3 kg * 
[41] 20 12 M and 8 F 20s–30s healthy H 171.8 ± 10.9 cm, W 73.8 ± 16.1 kg * 
[21] 14 4 M and 10 F 20’ – 50s * * office workers, researchers, students 
[42] 576 * * * * office workers, students (partially) 
[43] 28 * * * * office workers, researchers 
[34] 78 * 20s–40s * * office workers, researchers, students, diverse 

international background 
[44] 33 * * * * office workers, researchers, students 
[33] 18 * * * * * 
[45] 30 15 M and 15 F * * * office workers 
[16] 4 * * * * office workers 
[15] 6 * * * * office workers 
[46] 20 * 20s healthy * * 
[47] 6 * * * * office workers, researchers 
[48] 18 12 M and 6 F * healthy * * 
[18] 2 2 F 20s healthy W 57 and 62 kg, BMI 26.7 and 22.9 kg/m2, Fat 34.9 and 

27.8%, BMR 38.2 and 38.6 W/m2 
* 

[19] 34 * * * * office workers 
[49] 24 * * * * office workers 
[50] 45 * * * * office workers, researchers 
[51] 10 6 M and 4 F 20s–30s * H 163–195 cm, W 51–100 kg office workers, white people and Asians 
[38] 11 * * * * office workers 
[52] 9 * 20s–40s * * * 
[53] 5 4 M and 1 F 20s–30s * * students 
[14] 3 and 7 ** * * * * office workers 
[54] 12 7 M and 5 F 20s healthy * students 
[55] 10 * 20s healthy * students 
[56] 14 8 M and 6 F 20s–40s healthy H 163–185 cm, W 52–86 kg, BMI 17.4–28.7 kg/m2 office workers, students 
[57] 113 65 M and 48 F 20s 

(average) 
healthy H 165 cm (average), W 55 kg (average) * 

[58] 2 1 M and 1 F 20s healthy * * 
[59] 5 3 M and 2 F 20s–30s * * * 
[60] 9 * * * * researchers 
[61] 3 3 M 20s healthy H 171–174 cm, W 62–78 kg, BMI 21–26.7 kg/m2 * 
[62] 22 14 M and 8 F * healthy * students 
[63] 8 6 M and 2 F 20′ healthy BMI 22.45 ± 2.63 kg/m2 * 
[64] 4 * * * * * 
[65] 9 * * * * researchers, students 
[66] 6 and 11 ** 2 M and 4 F, 7 M 

and 4 F 
20’ – 30s * * office workers, students 

*Not reported; ** Study had 2 phases. 
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properties of the data and increase the predictive performance of the 
models. This process is called feature engineering. Aryal and 
Becerik-Gerber (2019) [41], for instance, used not only direct values of 
indoor air temperature and skin temperature measured on the wrist and 
4 points on the face, but also the minimum, maximum, average, stan-
dard deviation and median of the measurements in the 5-min window; 
the minimum, maximum, average, standard deviation and median of the 
first derivative of the data stream; coefficients obtained by fitting first 
degree and second degree polynomials to the measurements in the 5-min 
window; and the most recent measurement value, average value of the 
last 10 s, and average of the first derivative for the last 10 s. By extracting 
108 features as input variables for the personal models, the researchers 
expected to capture overall values, trends, and patterns of changes in the 
data streams over time. 

Likewise, Shan, et al. (2018) [62] used a high number of input fea-
tures available. These, however, were extracted from 

electroencephalogram (EEG) measurements, where 42 frequency ranges 
for each of the 14 channels available from the measuring equipment 
resulted in the total number of 588 features available. It is important to 
highlight that, while the use of multiple input parameters can enhance 
the predictive power of models, it can also result in higher complexity 
and computational load when it comes to feature selection and model 
scalability [70]. In the case of EEG-based studies, it is also noteworthy 
that although this type of data can provide a wide range of input vari-
ables to explore, it is knowingly more susceptible to high levels of noise 
resulting from muscular activity [71,72], which can greatly impact 
model’s reliability especially in field studies. 

The input variables used can be divided into environmental and 
personal variables, as shown in Table 2. Environmental variables 
include traditionally used parameters such as indoor air temperature 
and relative humidity, mean radiant temperature, outdoor air temper-
ature and relative humidity and air speed. As presented in the Euler 

Fig. 4. Number of studies per data collection country.  

Fig. 5. Euler diagram of the number of studies that used personal and/or environmental inputs.  
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diagram in Fig. 5, 32 out of the 37 studies selected used at least one of 
these variables as inputs. Less frequently used environmental variables 
were solar radiation, time of day, day of the week, and window, fan, and 
the HVAC system operational states. The control setting of personal 
comfort systems (PCM), such as heated or cooled chairs, was also used in 
two studies as input parameters for individual thermal comfort models 
[18,19]. Both studies highlighted the importance of occupant behavioral 
attitudes and interactions with thermal control devices as a 
non-intrusive and practical method to understand individuals’ thermal 
needs and collect continuous streams of data. 

Personal variables, on the other hand, include people’s intrinsic 
characteristics, such as skin and body temperature, heart rate, clothing 
level, activity level and metabolic rate, or previous temperature pref-
erences or preference histories. From the studies selected, more than half 
used at least one personal feature, although most of the time this was 
combined with environmental inputs, as presented in Fig. 5. Among 
these features, skin temperature, captured by wearable sensors or 
thermal cameras, remained the main personal variable utilized [14,18, 
40,41,48,51,54–56,58,59,61,63]. 

The models’ predictive performance appeared to increase when a 
combination of both environmental and physiological variables was 
used as inputs. Aryal and Becerik-Gerber (2019) [19], for instance, re-
ported that using data from environmental sensors for predicting ther-
mal comfort resulted in a higher accuracy compared to using just 
physiological data. However, combining data from both environmental 
and physiological sensors led to a slightly higher accuracy (3%–4%) 
than using environmental sensors only. A further study from the same 
authors [20] confirmed similar results. Jung et al. (2019) [21] indicated 
a much greater increase in performance when including physiological 
features as input parameters to personal thermal preference models. The 
study’s best performing modeling algorithm presented a median accu-
racy of 71% when using air temperature as a sole feature, 93% with the 
addition of skin temperature and 97% with the addition of heat flux. 
Likewise, Li, et al. (2017) [23] reported that the combination of both 
environment and human data (i.e., activity level, clothing, heart rate, 
skin temperature) achieved approximately 80% accuracy, improving the 
classification accuracy by 24% and 39% when compared to using only 
environmental features and only physiological factors, respectively. 
Similarly, Katić, et al. (2020) [22] evaluated different combinations of 
occupants’ PCS heating behaviors, their mean and hand skin tempera-
tures, and environmental data, producing the lowest accuracy when 
using just environmental data. 

Although the impact of the input variables on the predictive per-
formance of the models is a significant criterion when selecting the best 
options among possible variables, the choice of model parameters can 
also be dictated by the cost of data collection [19]. As mentioned in 
Section 3.2, the cost and intrusiveness of the data collection process can 
affect not only the participants’ willingness to participate, but also the 
type of data available, their quantity and quality. 

In terms of the output variables, thermal sensation and preference 
were the main targets chosen for prediction in the studies selected. The 
sensation or preference scales used, however, differed greatly across 
studies, as seen in Table 4. They differed from binary to 100-point scales, 
from discrete to continuous scales and across different terms and cate-
gories of sensitivity used. In addition, many scales were converted to 
lower numbers of points, shown in Table 4, depending on the study’s 
approach, modeling technique and possible application. It should be 
noted that, in order to avoid incorrect interpretations of the studies and 
scales used, the outputs in Table 4 are presented as they were in the 
studies (e.g., “thermal comfort”, “thermal satisfaction”, “thermal pref-
erence”), although some can be considered interchangeable. 

Like the input variables, the choice of output variables and scales is 
subject to the cost of continuous survey feedback for both participants 
and researchers. According to studies by Katić et al. (2020) [18] and Kim 
et al. (2018) [19], a practical solution to collect this sort of data would 
be the use of PCS control behavior to act as potential replacements for 

Table 4 
Thermal scales used in the studies selected.  

Ref. Output Scale 

[62] Mental state Cool, Neutral, Warm 
[42] Thermal preference 

(“desired change”) 
Thermal sensation 

I want it to be much colder, to be colder, be a bit 
colder, stay as it is, be a bit warmer, be warmer, 
be much warmer 
Cold, Cool, Slightly Cool, Neutral, Slightly 
Warm, Warm, Hot 

[66] Thermal complaint Complaint or comfortable 
[55] Thermal comfort Uncomfortably cold, Comfortable, 

Uncomfortably hot 
[41] Thermal comfort 

Thermal satisfaction 
Combination of both 

Cold, Comfortable, Hot 
Satisfied, Dissatisfied 
Cold and satisfied, Cold and dissatisfied, 
Comfortable and satisfied, Comfortable and 
dissatisfied, Hot and satisfied, Hot and 
dissatisfied 

[49] Thermal discomfort Cold to hot on a − 6 to 6 scale (Normalized from 
a − 100 to 100 scale) 

[53] Thermal preference I prefer Warmer, I am Satisfied, I prefer Cooler 
[39] Much Warmer, Warmer, Slightly Warmer, No 

Change, Slightly Colder, Colder, Much Colder, 
as a Thermal Profile (from a 18-point scale 
converted in a 7-point scale) 

[48] Uncomfortably cool, No change, Uncomfortably 
warm (11-point scale converted to 3-point scale) 

[38] Want warmer, No change, Want cooler 
[14] Warmer, Neutral, Cooler 
[60] Warmer, Neutral, Cooler (from a scale from − 50 

to 50, 10 in 10) 
[19] Warmer, No Change, Cooler 
[54] Warmer, No Change, Cooler 
[56] Warmer, No Change, Cooler 
[52] Warmer, No Change, Cooler, as Thermal Profile 
[45] Prefer warmer, Comfy, Prefer Cooler 
[50] Thermal satisfaction Satisfied/Dissatisfied or Bothersome/Non- 

bothersome (from a 5-point scale converted to 
binary) 

[61] Thermal sensation Cold, Cool, Neutral, Warm, Hot (from a 7-point 
scale converted to a 5-point scale) 

[65] Cold, Cool, Neutral, Warm, Hot (on a continuous 
scale from − 3 to 3) 

[46] Cold, Cool, Slightly Cool, Neutral, Slightly 
Warm, Warm, Hot 

[34] Cold, Cool, Slightly Cool, Neutral, Slightly 
Warm, Warm, Hot (on a continuous scale) 

[57] Cool, Comfort, warm (from a 7-point scale 
converted to a 3-point-scale) 

[51] Cool, Neutral, Warm (from a 7-point scale 
converted to a 3-point scale) 

[18] Heating demand, neutral, cooling demand (from 
a 7-point thermal sensation scale) 

[33] Much too cool, Too Cool, Comfortably Cool, 
Comfortable, Comfortably Warm, Too Warm, 
Much too warm 

[43] Too Cold, Comfortable, Too Hot, as a Thermal 
Profile (from a 7-point scale converted in 3- 
point scale) 

[64] Uncomfortably Cold, Comfortable, 
Uncomfortably Hot (from a 7-point scale 
converted to a 3-point-scale) 

[44] Uncomfortably Cool, Comfortable, 
Uncomfortably Warm (from a 11-point scale 
converted in a 3-point scale) 

[47] Uncomfortably Cool, Comfortable, 
Uncomfortably Warm, as a Thermal Profile 
(from a 100-point scale converted in a 3-point 
scale) 

[59] Very Cold, Cold, Chilly, Comfortable, Warm, 
Hot, Very Hot 

[58] Very Cold, Cold, Cool, Neutral, Warm, Hot, Very 
Hot 

[63] Very Cold, Cold, Cool, Slightly Cool, Neutral, 
Slightly Warm, Warm, Hot, Very Hot 

[15] Very Cold, Cold, Neutral, Warm, Very Warm, as 
a Thermal Profile 

(continued on next page) 
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participants’ feedback, standing as the “ground truth” of personal 
comfort models. According to the aforementioned authors, PCS could 
learn occupants’ thermal preferences based on their control behavior 
and automatically activate heating or cooling according to the patterns 
recognized. Hence, user behavior could serve as a proxy for thermal 
comfort feedback so that long monitoring periods or experiments would 
not be necessary, data could be collected continuously in a practical 
way, and nuances in scale interpretations could potentially be avoided. 

3.5. Modeling algorithm used 

Overall, there seems to be a predominance of probabilistic modeling 
techniques among the studies selected. Unlike deterministic models, 
which give a single exact outcome for a prediction, probabilistic models 
provide a solution as a probability distribution to account for random-
ness and quantify uncertainty in the events analyzed [73,74]. 

Probabilistic methods are especially relevant when analyzing systems 
that are inherently stochastic and/or highly uncertain due to insufficient 
data [75]. This, therefore, is in line with the nature of thermal comfort 
modeling in general, as thermal comfort perception and variables (e.g., 
people’s behavior) are naturally uncertain, and data, especially when 
developing comfort models at the individual level, can be relatively 
scarce. 

As seen in Table 5, it is possible to identify a frequent use of (1) 
Bayesian classification and inference [38,42,44,47,52], (2) Fuzzy Clas-
sification (using the Wang-Wendel model to create Thermal Profiles) 
[15,16,39,60], and (3) common Machine Learning techniques, including 
Classification Trees [18,19,40,56], Gaussian Process Classification [18, 
19,33,34], Gradient Boosting Method [19,51,56], Support Vector Ma-
chine [18,19,40,41,46,48,51,56,58], Random Forest [14,19,21,40,41, 
45,48,51,54,56,58], K-Nearest Neighbors [19,21,40,41,51] and Artifi-
cial Neural Networks [49,56,57,61]. In fact, many of the studies tested 
and compared combinations of these techniques. Liu et al. (2019) [56], 
for instance, applied 14 commonly used machine learning classification 
algorithms, divided into 4 groups: linear methods, non-linear methods, 
trees and rules, and ensembles of trees. According to the authors, the 
selections of these algorithms balanced the prediction biases and avoi-
ded the over or underestimations that could result from specific pre-
diction systems. From the four algorithm categories used, the ensembles 
of Trees (e.g., Gradient Boosting, C5.0 and Random Forest) presented 
the best performance for the personal comfort models developed. 

Table 4 (continued ) 

Ref. Output Scale 

[16] Very Cold, Cold, Neutral, Warm, Very Warm, as 
a Thermal Profile (from a 7-point scale 
converted into a 5-point scale) 

[40] Thermal sensation 
Thermal satisfaction 

Cold, Comfortable, Hot 
Satisfied, Dissatisfied 

[21] Cold, Comfortable, Hot 
Satisfied, Dissatisfied  

Table 5 
Modeling technique of papers selected.  

Ref. FC RF KNN SVM DT LDA BI MLR GPM LR ANN GB LVQ OP LinR NB RBC CART LLS J48 C5.0 

[39] X                     
[40]  X X X X                 
[41]  X X X  X                
[21]  X X                   
[42]       X               
[43]        X              
[34]         X             
[44]       X               
[33]         X             
[45]  X                    
[16] X                     
[15] X                     
[46]    X                  
[47]       X               
[48]  X  X      X            
[18]    X X    X             
[19]  X  X     X X  X      X    
[49]           X           
[50]          X            
[51]  X X X        X X         
[38]       X               
[52]       X               
[53]       X       X        
[14]  X                    
[54]  X                    
[55]          X            
[56]  X X X X X    X X X    X X X  X X 
[57]           X           
[58]  X  X                  
[59]               X       
[60] X                     
[61]           X           
[62]      X                
[63]               X       
[64]        X              
[65]                   X   
[66]                   X   

* FC = Fuzzy Classification, RF = Random Forest, KNN = K-Nearest Neighbors, SVM = Support Vector Machine, DT = Decision Tree, LDA = Linear Discriminant 
Analysis, BI = Bayesian Inference/Classification, MLR = Multinomial Logistic Regression, GPM = Gaussian Process Model, LR = Logistic Regression, ANN = Artificial 
Neural Network, GB = Gradient Boosting, LVQ = Learning vector quantization, OP = Ordered Probit, LinR = Linear Regression, NB = Naive Bayes, RBC = Rule-Based 
Classifier, CART = Classification and Regression Trees, LLS = Least-squares linear estimation, J48 = J48 Decision Tree. 
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3.6. Performance indicators used 

The performance of the personal comfort models analyzed is 
measured by a variety of indicators. When reported, the choice of 
metrics in these studies depended, for instance, on the model technique 
applied, the nature of the datasets used (e.g., unbalanced or balanced) or 
the need for easy comparison between or across studies or models. 
Table 2 presents the studies’ performance indicators and respective 
predictive performances. 

Accuracy was one of the main performance meters used [14,18,21, 
40,41,44,46,48,51,54–56,61,62]. It represents the number of correct 
predictions (i.e., when the computed result is equal to the ground-truth 
from participants’ feedback) divided by the total number of predictions 
and is normally presented in percentage form. It was used in nearly half 
of the studies and sometimes accompanied by other less common met-
rics such as Cohen’s Kappa Coefficient and/or RMSE (Root Mean Square 
Error). Accuracy, as described by Ben-David (2008) [37], is a simple and 
straightforward indicator; however, it does not take into account the 
proportion of the correct predictions that result from random chance. 
When considering datasets in which thermal comfort categories are not 
evenly distributed, accuracy can be extremely misleading. Cohen’s 
Kappa Coefficient complements the measurement of accuracy as its 
scalar meter compensated for the agreements that can be attributed to 
chance. It is normally represented on a 0 to 1 scale, with 1 being perfect 
agreement. The selected studies by Lee and Ham (2020) [51] and Liu 
et al. (2019) [56] acknowledge this metric. 

Measuring error − the difference between the computed and the 
correct value − was also common among the studies, using diverse ap-
proaches [16,33,34,42,49,50,53,59,61,63,65]. The Root Mean Square 
Error, or the standard deviation of the prediction errors, was reported in 
many of the studies selected. Although it contains certain limitations, it 
is a common error measurement in many fields and recommended when 
the model errors follow a normal distribution [76]. Nevertheless, as 
stated by Chai and Draxler (2014) [76], as with accuracy, caution is 
always required when interpreting error measurements, as “any single 
metric provides only one projection of the model errors, and therefore 
only emphasizes a certain aspect of the error characteristics”. 

Although less used among the studies analyzed, the Area Under the 
Receiver Operating Characteristic Curve, or the Area Under the Curve 
(AUC), is frequently used in machine learning studies [37] and can be an 
interesting performance indicator for the personal comfort models. It 
was used by Katić et al. (2020) [18], Kim, et al. (2018) [19], Lee, et al. 
(2019) [52] and Liu et al. (2019) [56]. The Receiver Operating Char-
acteristic Curve provides a way of describing the predictive behavior of a 
binary classifier, by plotting the probability of true positive rate (i.e., 
“successes”, also called sensitivity or recall) over false positive rate (i.e., 
“false alarms”, also called fall-out) across all possible discrimination 
thresholds. By computing the area under this curve, it is possible to 
compare different models using a single performance indicator. The 
AUC can vary between 0 and 1, where 0.5 denotes random guessing and 
1 indicates perfect agreement. The measure is, however, conceptually 
not intuitive, especially when analyzing non-binary classification 
problems [37]. 

Regardless of the indicator used, k-fold cross-validation was reported 
in most studies as the resampling technique used to estimate models’ 
performance on unseen data, either during hyperparameter tuning (also 
known as model selection stage) or at the final model evaluation stage 
[77]. The most used values of k were 5 and 10, as seen in Table 2. 
Training, validation and testing dataset splits were normally chosen 
according to overall dataset size and modeling technique used. 

3.7. Model final application 

Automation and optimization of HVAC systems can be considered 
the main application for the personal comfort models in the papers 
selected. As already indicated by Jung and Jazizadeh (2019) [78], the 

research effort to explore the potential of personalization techniques in 
the control of HVAC systems has significantly increased, shifting the 
field towards Human-In-The-Loop (HITL) control strategies. By incor-
porating individual thermal comfort models in the system optimization, 
these studies investigate comfort-aware operation schedules and set-
tings to enable higher energy efficiency in buildings. 

Nevertheless, from the studies analyzed, most did not test the per-
sonal comfort models’ application in HVAC systems, focusing more on 
the modeling aspect of the process. From the studies that evaluated the 
models’ application, only a few evaluated tests in real environments −
treated as experiments or during normal daily activities. 

Zhao et al. (2014) [66] performed a validation experiment with 11 
participants in two test-beds, where the model learning procedure was 
incorporated into the control of an air conditioning system. In their test, 
the system sequentially updated the user’s complaint region after every 
feedback, using the method proposed, and updated the set-point of the 
control target. They applied a post-experiment questionnaire for each 
participant to capture their subjective evaluation of the thermal envi-
ronment of the test-bed. After 8 days of continuous experiments, the 
participants’ evaluation scores tended to achieve a higher and steadier 
level and their number of complaints per day decreased from 3 to less 
than 1, on average. 

Aguilera et al. (2019) [39] incorporated the personalized models of 
seven participants into a user-driven HVAC control system and tested it 
in a real open-plan office scenario. Thermal preferences were used to 
create individual thermal discomfort profiles, which were later aggre-
gated to calculate a single set point for the entire office. The results 
showed that only 29% of the occupants’ thermal comfort improved. The 
performance of the control strategy was found to be influenced by 
insufficient and imbalanced data and the effect of thermal expectations 
on occupants’ thermal responses across different times of day and after 
repeated thermal stimuli. 

Li et al. (2017) [14] used two real-life scenarios to demonstrate their 
framework to improve thermal comfort in single and multi-occupancy 
spaces. Their HVAC control loop included two algorithms: the Mode 
Selection Algorithm that chose the optimum conditioning mode and the 
Collective Decision Algorithm that evaluated the highest group comfort 
score that can be achieved in the mechanical conditioning mode. Par-
ticipants’ thermal preferences were continuously predicted to determine 
the optimum HVAC set point temperatures, adjusted by a programmable 
Wi-Fi enabled thermostat. They then compared a scheduled scenario 
where the thermostat followed a predefined fixed schedule, and a dy-
namic scenario where their personalized algorithm was implemented to 
adjust the temperature set points dynamically. On average, the total 
number of uncomfortable reports were reduced by as much as 53.7% on 
average after implementing their framework. 

Jazizadeh et al. (2014) [15] conducted a study in a real building 
setting using the comfort profiles of six participants. After the person-
alized comfort profiles were obtained, each new request from occupants 
triggered the calculation of the desired temperature using the custom-
ized scale of each user’s comfort profile, which was then passed to the 
HVAC controller. Using interviews at different stages of the experiments, 
the researchers assessed the comfort consequences of the framework and 
found that the average of participants’ comfort rating was 4.7 out of 10 
before enabling the framework; 6 during training; and 8.4 after model 
training. Additionally, the study showed an overall 39% reduction in 
daily average airflow when the desired temperatures were applied by 
the HVAC system, compared to the legacy HVAC system operations with 
predefined temperature set points. As airflow can be considered pro-
portional to HVAC systems’ energy consumption, the study also indi-
cated an improvement in the energy efficiency of the building analyzed. 

4. Discussion and future research directions 

This systematic literature review has shown a plurality of approaches 
and frameworks to develop and evaluate personal thermal comfort 
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models. Although some aspects can be considered similar in all studies, 
there seems to be an overall lack of a unified modeling approach that 
takes into account not only the methodology used, but also the perfor-
mance evaluation tool that enables easy comparison across studies. 

4.1. Considerations on data collection 

Disparities begin from the data collection stages of the studies. While 
controlled climate chamber experiments allowed many of the studies to 
reach a larger size of datasets and a greater variability of thermal sen-
sations recorded from participants, studies that used data from real 
scenarios appear more transferable to real applications, as discussed in 
Section 3.7. The recommendation for data collection on real scenarios, 
thus, lies on increasing the dataset size by encouraging more occupants 
to engage and interact with the surveys and the systems’ controls. 
Studies that used wearable sensors with accessible feedback platforms, 
or that used occupants’ behavior through personal comfort systems’ 
operation as a proxy for thermal preference, are possible options to 
obtain a continuous data stream to enlarge datasets in real-world 
contexts. 

In that regard, although larger dataset sizes are normally expected 
when dealing with more complex classification tasks and higher number 
of features [79], the review also proves that individual dataset sizes can 
vary greatly. When machine learning models are used with insufficient 
training data, techniques such as transfer learning, where a pre-trained 
model is reused on a new problem, can be applied [80]. In addition, 
although not treated in depth by all studies reviewed, the way the data is 
pre-processed is another key aspect to avoid data loss before model 
training. Properly dealing with noisy or missing data points, highly 
heterogeneous datasets in terms of granularity of raw features, or highly 
imbalanced datasets that might misrepresent the observed data is 
essential to maintain sufficient data size and avoid losing relevant in-
formation for prediction. Future research on personal thermal comfort 
models should, therefore, address the specificities of thermal comfort 
datasets and the challenges of data preparation associated with them. 

4.2. Considerations on participants involved 

Despite the low number of participants in most of the studies 
reviewed being coherent with the aim of personalizing comfort models 
for each individual, the generalization of the results, that is, the poten-
tial that personal comfort models will be applicable to anyone, is still 
debatable. This is because not only do the studies deal with small 
numbers of building occupants, but they also select participants with 
relatively similar characteristics. Although males and females are pre-
sent in almost all studies in a relatively balanced way, the presence of 
younger adults is more prevalent, leaving out other age groups (e.g., 
children or older people) who may also profit from individualized 
comfort predictions in their associated environments. In the same way, 
although the use of healthy adults is commonly preferred in traditional 
generalized thermal comfort studies to avoid the influence of illness or 
health conditions on the averaged thermal predictions, the observed 
trend to use only healthy participants in personal comfort model studies 
does not correspond to the goal of individualizing comfort models, 
which is to deal with people whose personal characteristics and thermal 
preferences fall outside the averages. In fact, continuous health status 
measurements or self-rated feedback could be added as personal inputs 
in the models, allowing an interesting investigation on the impacts of 
health on thermal comfort perception, sensitivity, or preference. 

Likewise, collected data on diverse body compositions, sociodemo-
graphic characteristics and activity contexts are missing in the studies 
reviewed. Including more heterogeneous occupants would enable a 
broader analysis and consequently increase the generalization power of 
the studies. 

4.3. Considerations on climates, seasons and type of buildings involved 

Further explorations in more diverse climates are necessary to 
identify associated challenges of personal comfort models in different 
locations. Longitudinal studies that span through several consecutive 
seasons or years could, in the same way, allow a more comprehensive 
analysis than the ones conducted so far. In addition, residential settings 
are yet to be better represented in the studies. Not only do living envi-
ronments provide more diverse thermal conditions, activity and clothing 
opportunities in comparison with office environments, they also allow 
more possibilities for user intervention than the HVAC-controlled work 
environments. This includes considering easier or unrestrained window 
or blinds operations as well as refurbishment or layout modifications. 
Although this issue may add another level of complexity to the 
personalized models, adding diversity to the studies’ environments can 
help, once again, create more balanced thermal preference datasets 
when collecting data, and expand the application of the personalized 
models to other settings. 

4.4. Considerations on model input and output variables 

When it comes to model input features used in the reviewed studies, 
the explorations are again coherent with the aim of investigating 
possible individual differences affecting thermal comfort. Both envi-
ronmental and personal characteristics are used, although personal 
features using physiological sensing could still be explored further, 
especially in light of the rapid advances seen today in wearable sensors 
technologies. Personal comfort systems, including heated chairs or 
personal fans, are promising tools not only to collect larger datasets but 
also to reduce the need for occupants’ long-term feedback. Personal 
comfort systems could also help avoid the potential misinterpretations 
caused by the nuances in the thermal comfort, sensation or preference 
scales used, which vary greatly across studies and approaches. 

4.5. Considerations on modeling algorithm and performance indicators 

When analyzing the modeling methodology applied so far, it is 
evident that the field lacks a more unified and systematic framework. As 
already highlighted by Kim et al. (2018) [10] and confirmed by this 
literature review, instead of developing a structured and ultimately 
transferable approach to apply the models in real scenarios, the main 
studies on personal thermal comfort models are focused on the final 
predictive accuracy of specific modeling techniques. This is clear in the 
plurality of modeling techniques and performance evaluators used in the 
publications reviewed. Model evaluation, especially, needs uniformity 
to allow a clear comparison between studies and approaches, and 
consequently to enable a more straightforward decision-making process. 
Kim et al. (2018) [10] highlighted three main criteria that could help the 
model evaluation process: prediction accuracy, prediction consistency, 
and model convergence. Although the metrics used in each of these 
criteria may differ depending on the technique used (e.g., deterministic 
or probabilistic), they represent a more systematic way of assessing 
model performance. 

4.6. Considerations on model interpretation, input parsimony and 
redundancy 

With the majority of the studies using different forms of machine 
learning techniques, it becomes important to highlight the presence of 
“black box” models among them and acknowledge their challenges. The 
term black box refers to models that, although open to inspection of 
isolated components, are less interpretable, in the sense that their 
complexity and sometimes recursive mathematical nature are not easily 
comprehensible by humans [81]. Generally, the main objective of pre-
dictive modeling is to generate accurate predictions, leaving interpre-
tation of the models and understanding of why they work as secondary 
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objectives [31]. When prediction accuracy is the primary goal, 
increasing performance is normally derived from increasing models’ 
complexity, and likely decreasing their parsimony (i.e., increasing 
number of parameters involved), which, in turn, renders models’ 
interpretation more difficult. This trade-off between accu-
racy/performance and interpretability/parsimony is a common issue 
discussed in many fields using predictive modeling. 

Less interpretable models can have negative implications, especially 
in situations where feature interactions matter more than the final 
outcomes. In the field of thermal comfort in general, being able to un-
derstand the underpinning laws between variables as well as distinguish 
between relevant, irrelevant, and redundant input parameters is unde-
niably beneficial to enhance the current knowledge on human thermal 
comfort. Nevertheless, the tradeoff between the cost of comfort and 
energy use associated with thermal comfort model’s lower predictive 
accuracy and the reward of interpretability has not been addressed in 
the field, let alone in the studies reviewed here. 

Nonetheless, although still frequently debated [81–84], explainable 
artificial intelligence is an emerging topic in many sectors [84] and aims 
to produce more interpretable models while maintaining high perfor-
mance levels. Techniques such as the use of Input Feature Selection 
Algorithms are also alternatives to measure predictor importance in 
thermal comfort research, decreasing input redundancy, increasing 
performance and lowering computational efforts [85]. Lastly, some 
machine learning models are intrinsically resistant to redundant pre-
dictors, such as Tree- and rule-based models [31], comprising a middle 
ground between easily interpretable models (like linear regression) and 
opaque methods (such as neural networks). 

5. Conclusion 

This paper has presented a systematic review of personal thermal 
comfort models based on the literature published in the last two de-
cades. Thirty-seven publications have been selected for screening and 
subsequently analyzed regarding: (1) their data collection approach and 
dataset size; (2) the number and type of participants involved; (3) the 
climate, seasons and building types in which the studies were under-
taken; (4) the model inputs and outputs features utilized; (5) the 
modeling techniques used; (6) the performance indicators used; and, 
finally, (7) the application of the proposed model. 

The review highlights a number of issues of personal comfort models: 

• The field still lacks a more unified and systematic modeling frame-
work. Model evaluation, especially, needs to allow for clear com-
parison between studies and approaches, thus enabling a more 
straightforward decision-making process.  

• The generalization of the results is still debatable as many studies 
deal with small numbers of participants sharing relatively similar 
characteristics. Diversity needs to be introduced, considering 
different age groups, health status, body compositions, sociodemo-
graphic characteristics, and activity contexts.  

• Diversity in climates, seasons and building types is not represented in 
many of the studies. Addressing these can help create more balanced 
datasets and expand the application of the personalized models into 
other types of environments.  

• With the majority of the studies analyzed using different forms of 
machine learning techniques, it is important to understand “black 
box” models’ challenges in the field of thermal comfort, investigating 
the tradeoffs between inherently interpretable models and less 
transparent techniques.  

• Although both environmental and personal characteristics have been 
used in most studies, personal features gathered through physio-
logical sensing technologies could be further explored, especially in 
light of the rapid advances in wearable sensor technologies. Personal 
comfort systems are promising tools to complement data collection, 

enlarge data sizes and reduce the need for occupants’ long-term 
feedback periods. 

Future research can, therefore, profit from the topics highlighted 
above and advance the knowledge on personal thermal comfort models 
from a uniform and holistic perspective. 
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Abstract

Purpose – This paper presents the development of personal thermal comfort models for older adults and
assesses the models’ performance compared to aggregate approaches. This is necessary as individual thermal
preferences can vary widely between older adults, and the use of aggregate thermal comfort models can result
in thermal dissatisfaction for a significant number of older occupants. Personalised thermal comfort models
hold the promise of a more targeted and accurate approach.
Design/methodology/approach – Twenty-eight personal comfort models have been developed, using deep
learning and environmental and personal parameters. The data were collected through a nine-month
monitoring study of people aged 65 and over in SouthAustralia, who lived independently.Modelling comprised
dataset balancing and normalisation, followed by model tuning to test and select the best hyperparameters’
sets. Finally, models were evaluated with an unseen dataset. Accuracy, Cohen’s Kappa Coefficient and Area
Under the Receiver Operating Characteristic Curve (AUC) were used to measure models’ performance.
Findings –On average, the individualised models present an accuracy of 74%, a Cohen’s Kappa Coefficient of
0.61 and an AUC of 0.83, representing a significant improvement in predictive performance when compared to
similar studies and the “Converted” Predicted Mean Vote (PMVc) model.
Originality/value – While current literature on personal comfort models have focussed solely on younger
adults and offices, this study explored a methodology for older people and their dwellings. Additionally, it
introduced health perception as a predictor of thermal preference – a variable often overseen by architectural
sciences and building engineering. The study also provided insights on the use of deep learning for future
studies.

Keywords Personal comfort models, Machine learning, Thermal comfort, Older people, Health,

Personalised comfort

Paper type Research paper

1. Introduction
International standards, such as ANSI/ASHRAE Standard 55 (ANSI/ASHRAE, 2020), adopt
the Predicted Mean Vote/Predicted Percentage of Dissatisfied (PMV/PPD) model (Fanger,
1970) and the adaptive model (de Dear and Brager, 1998; Humphreys et al., 2016) as the bases
to stablish the thermal requirements for human occupancy in the built environment.
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Both PMV/PPD and the adaptive models are aggregate models, which means they are
designed to predict the average thermal comfort of groups of people. These models
however have limitations when used to predict occupant’s comfort in real case scenarios, as
individual thermal sensations and preferences can vary significantly (Wang et al., 2018;
Schweiker et al., 2018; Shipworth et al., 2016). Furthermore, these models’ inability to be
calibrated with new feedback or to incorporate new input variables (e.g. age, health status,
body mass index) other than their pre-defined factors (Kim et al., 2018a) prevent them to be
updated for different individuals. In addition, the models used in standards have been
developed based on data from either climate chambers (Fanger, 1970) or field studies in office
buildings (de Dear and Brager, 1998; Humphreys et al., 2016). This can also be limiting when
considering the diversity of thermal conditions and adaptive opportunities residential
settings generally provide in comparison to controlled office environments
(Karjalainen, 2009).

To address these limitations, recent studies have shown an increasing number of
strategies to develop personal thermal comfort models as an alternative to the conventional
approaches (Kim et al., 2018a). Instead of an average response from a large population,
personalised models are designed to predict individuals’ thermal comfort responses, using a
single person’s direct feedback and/or personal characteristics as calibration inputs. This
represents a relevant paradigm shift in the field today, replacing the centralised and fixed-
set-points approach with occupant-centric thermal conditioning management in the built
environment (Wang et al., 2018). In addition, with the rapid development of Internet of
Things (IoT) and smart sensors, predicting individual’s needs directly from data collected in
their everyday environment and acting upon these predictions has become substantially
easier.

Significant advances have been made in the last decades in the personalised models’
field, comprehending a plurality of approaches. A systematic literature review, conducted
by the present authors, analysed 37 recent publications on personal thermal comfort
models, emphasising current trends and future research directions in the field (Arakawa
Martins et al., 2022). The use of personal comfort systems (PCS), such as heated and cooled
chairs or personal fans (Kati�c et al., 2020; Kim et al., 2018b; Andr�e et al., 2020), for instance,
has been highlighted as a promising option for individual data collection, leveraging
integrated data acquisition techniques that can potentially replace occupant survey
feedback as proxy for thermal comfort. In addition, there is an increasing body of research
focusing on personal comfort models driven by physiological variables, such as skin
temperature or heart rate (Jung et al., 2019; Lee and Ham, 2020; Shan et al., 2020; Natarajan
and Laftchiev, 2019).

The review (Arakawa Martins et al., 2022) pointed to a vast variety of modelling
approaches explored in the field, such as Bayesian classification and inference (Jung and
Jazizadeh, 2019; Auffenberg et al., 2018; Lee et al., 2019), Fuzzy Classification using theWang-
Wendel model (Pazhoohesh and Zhang, 2018; Aguilera et al., 2019; Jazizadeh et al., 2014b), and
Machine Learning techniques. The latter includes more interpretable approaches such as
Classification Trees (Aryal and Becerik-Gerber, 2020), or less transparent but relatively more
accurate techniques such as Gaussian Process Classification (Guenther and Sawodny, 2019;
Fay et al., 2017), Gradient Boosting Method (Lee and Ham, 2020), Support Vector Machine
(Aryal and Becerik-Gerber, 2019; Jung et al., 2019; Jiang and Yao, 2016; Lu et al., 2019),
Random Forest (Jayathissa et al., 2020; Aryal et al., 2021; Lu et al., 2019), K-Nearest
Neighbours (Aryal and Becerik-Gerber, 2019; Aryal et al., 2021) and Artificial Neural
Networks (Kim, 2018; Shan et al., 2020). Artificial Neural Networks (ANNs), specifically, have
shown promising results. Kim (2018) reported an average MSE (Mean Squared Error) of
0.00298 across 24 personal models’ predictions, using ANN trained with environmental
variables from an office setting. Similarly, Shan et al. (2020), on a study involving three people
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in offices, reported an average accuracy of 89.2%, an averageMAE (Mean Absolute Error) of
0.16 and an average MSE of 0.06 across participants’ ANNs trained using skin temperature
measurements.

Nevertheless, although representing an important paradigm shift, studies on personal
comfort models maintained the traditional trend to focus on office environments and
younger adults. Studies on personal comfort models for older adults and dwellings are still
absent in current literature (ArakawaMartins et al., 2022). In addition, people with acute or
chronic diseases or people with disabilities are not included in recent studies. These gaps
in knowledge are especially relevant because, despite intragroup diversity being present
in both younger and older cohorts, this heterogeneity tends to be greater in older than in
younger ages. Older adults have been submitted to a greater range of cumulative social,
economic and environmental factors across their individual life courses, which affect
their health, needs and perceptions in significantly different ways (World Health
Organization, 2015). For this reason, understanding diversity in older age becomes crucial
to target specific requirements more efficiently and support healthier and independent
ageing.

In addition, previous studies have emphasised the importance of smart technologies to
help older people live independently (Kimberly Miller, 2013; van Hoof et al., 2017). In this
context, personal thermal comfort models have the potential to be applied in automation
systems for the control of windows, blinds, or air-conditioning, allowing older people to
manage their environments with less reliance on others.

Hence, this paper explores the development of personal comfort models, using real
feedback as well as environmental and personal characteristics as input variables, to
accurately respond to older adults’ thermal needs in their own homes. In addition, this study
aims to evaluate the modelling methodology proposed using deep learning as the engine
behind the prediction of individual people’s thermal preferences.

Focusing on South Australia, one of the Australian states with the largest proportion of
people aged 65 years and over (Australian Bureau of Statistics, 2021), data were first collected
through environmental monitoring and thermal comfort surveys in dwellings of older people,
excluding those who live in residential aged care facilities. Individual datasets were balanced
and normalised and models were subsequently tuned by testing different hyperparameters
combinations, which were subsequently selected according to their predictive performance.
The models were then evaluated using an unseen testing dataset and compared with a
“converted” PMV model on the same testing datasets. Finally, recommendations for the
application of the models in HVAC (Heating, Ventilation and Air Conditioning) systems’
control, as well as in diagnostic tools for design and retrofitting and in a broader public health
context were discussed.

2. Data collection
The sample for this study derived from a research project that monitored 71 participants
(23 males and 48 females) aged 65 years and over from 57 households located in South
Australia, in three climate zones: hot dry (BSk), warm temperate (Csa) and cool temperate
(Csb), according to the K€oppen–Geiger Climate Classification System (Beck et al., 2018). All
older adults who participated in the first two stages of the research project (van Hoof et al.,
2019; Soebarto et al., 2019) were invited to participate voluntarily in the house monitoring
stage and further volunteer recruitment was done through press releases in various media
formats (e.g. radio and newspaper calls for volunteers). The inclusion criteria were
participants who: (1) were 65 years old or over; (2) lived independently in the State of South
Australia; and (3) were able to communicate in English. Datawere collected during a period of
9 months, from mid-January to mid-October in 2019.
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Each dwelling was visited at least twice. During the first visit, a questionnaire about
sociodemographic information, health and overall thermal preferences was applied and an
open-ended interview was conducted about buildings’ details. In addition, indoor
environment data loggers were installed in each dwelling’s main living room and main
bedroom. The indoor environment data logger contained sensors that measured air
temperature, globe temperature, air speed, and relative humidity. The data logger
coordinated measurements from the sensors, undertaken at 30-min intervals and when a
participant completed a comfort survey.

A thermal comfort survey tablet was also installed to be used by the participants to
answer a survey about their thermal environment and their preferences and sensations at
least once a week, throughout the 9-month period. The thermal comfort survey tablet allowed
participants to complete surveys electronically about their clothing, activity levels, window
and door state, heating, cooling, and fan state, as well as their thermal sensation (TSV) and
thermal preference (TPV). Thermal sensation was assessed using the question “How do you
feel right now?” with possible responses being “Cold”, “Cool”, “Slightly cool”, “Neutral”,
“Slightly warm”, “Warm” or “Hot”. Thermal preference was assessed using the question
“Would you prefer to be . . . ” with possible responses being “Cooler”, “No change” or
“Warmer”. The survey also included a question about their self-reported health andwellbeing
perception at that point in time: “How would you describe your health and wellbeing at the
moment?”, with possible answers being “Very good”, “Good”, “Reasonable”, “Poor” and “Very
poor”. Participants were asked to answer the survey whenever possible, but no less than 2
times a week.

Figure 1 shows the data loggers and user interface used. More details on the data
acquisition tool, including its applicability for studies with older users, have been reported by
Soebarto et al. (2020).

During the second visit to each dwelling, conducted at the end of themonitoring period, an
additional questionnaire was used to collect further information about the participants,
including their frailty status according to the Modified Reported Edmonton Scale (Rose et al.,
2018). Each participant’s body composition was also assessed to measure height, weight and
body mass index (BMI), using a Tanita Inner Scan RD-953 scale (Tanita Corporation, 2016).

Figure 1.
Indoor environmental
data logger and
thermal comfort
survey tablet
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3. Modelling methodology
3.1 Learning technique and task
This study applies artificial neural networks, also known as deep learning (Goodfellow et al.,
2016), to develop personalised comfort models for a subset of the participants of the
monitoring study. Deep learning is a class of machine learning technology, based on the
representation-learning method (LeCun et al., 2015). It solves tasks such as classification,
regression, and anomaly detection, by introducing multiple layers of representations, or
features, expressed in terms of other simpler representations. By learning from previously
seen data, this method avoids the need of a human engineer to formally specify thesemultiple
layers of representations (Goodfellow et al., 2016).

The models’ task is to specify to which of the k categories an example (or data point)
belongs. In general terms, the model is shown an example and follows a set of mathematical
expressions to produce an output in the form of a score (or probability) for each category. A
function then measures the error between the outputs and the desired patterns of scores and
the model modifies its internal parameters (or weights) to reduce the error. The model is then
shown a never-before-seen set of data points and produces a new and final set of probability
outputs.

In this study, the models were developed to perform a multiclass classification task of
occupants’ thermal preference (TPV) on a 3-point-scale (preferring to be cooler, preferring no
change or preferring to bewarmer), and according to seven environmental and personal input
features. The survey’s thermal TPV was used as the ground truth to train the models and
later verify the predicted values. Instead of the thermal sensation vote (TSV) scale –which is
commonly used in thermal comfort studies – the TPVwas used because it not only represents
a measure of what ideal conditions would be for each person, but also suggests to which
direction the change is desired, as already confirmed byKim et al. (2018b). This is particularly
relevant when considering the use of these models for the control of HVAC systems. In
addition, using TPV rather than TSV avoids the assumption of associating comfort with
neutral thermal sensation, which may not always be true (Humphreys and Hancock, 2007).

In this study, following common practices in computer sciences’ studies (Kuhn and
Johnson, 2013; Goodfellow et al., 2016; LeCun et al., 2015; Huang et al., 2019), the input
variables are called “features” and the thermal preferences classes corresponding to each of
these combinations of input variables are called “labels”. Anaconda version 2019.3
(Anaconda, 2019) was used as the platform to run all models using Python version 3.7 and
PyTorch tensor library (Paszke et al., 2017).

3.2 Input features selected
Both environmental and personal variables were used as input features for the personalised
models. In total, seven input variables were used, 4 of which representing the environmental
conditions of participant’s rooms (i.e. dry bulb temperature, mean radiant temperature,
relative humidity, and air speed) and 3 of which representing participant’s personal
characteristics (i.e. corrected metabolic rate, clothing level and health perception).

The corrected metabolic rate variable was calculated from participant’s activity level
answers in the survey. These were first converted to MET values according to the
Compendium of Physical Activities (Ainsworth et al., 2011), and then later corrected based on
participants’ sex, height, weight and age, according to Byrne et al. (2005) and Kozey et al.
(2010) studies. Table 1 shows the activity level scale points and corresponding MET values.

These seven variables were selected to cover a wide range of variables and factors known
in the architectural science, medicine, and public health fields of study to influence thermal
comfort, sensation, and preference. Each input feature’s data collection tool and unit or scale
is shown in Table 1.
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A second round of models was also developed with the same datasets and variables, except
for health perception, to check the relevance of health as a predictor of thermal comfort for
each individual participant. Independent-measures t-test was used to evaluate if there is a
significant difference between the results with and without health perception as an input
variable.

It is important to note that personal characteristics such as height, weight, or health,
although present in thermoregulation and physiology studies, are often overseen by
architectural sciences and building systems engineering studies, hence the significance of
their inclusion in the study.

3.3 Participant selection and characteristics
At the end the monitoring period, 10,787 survey votes were recorded from all 71 participants.
Nonetheless, the classification task required that each participant voted at least 6 times in at
least one of the three thermal preference classes, to allow aminimum of 5-fold cross-validation
during model training, plus a minimum of 1 vote per category for testing. The cross-
validation procedure is detailed in Section 3.5. Excluding the participants who did not meet
this requirement resulted in 28 individual datasets selected for modelling.

It is important to highlight the level of diversity among participants selected,
comprehending different older-age groups, weights, heights, health and frailty status, and
climate zones of the dwelling locations, all of which can provide relevant insights on the

Type Input features Data collection tool Unit or scale

Environmental Dry bulb
temperature

Thermometer in data logger 8C

Environmental Mean radiant
temperature

Calculated from the dry bulb temperature,
globe temperature and air speed
measurements according to ISO:7726:1998
(ISO, 1998)

8C

Environmental Relative
humidity

Hygrometer in data logger %

Environmental Air speed Air speed sensor in data logger m/s
Personal Corrected

metabolic rate
Survey in thermal comfort tablet – “describe
your activity in the last 15 min in this space.”

Very relaxed
activity 5 1 MET
Relaxed
activity 5 1.3 MET
Light activity 5 1.5
MET
Moderate
activity 5 2.5 MET
Active activity 5 3.3
MET

Personal Clothing Survey in thermal comfort tablet – “how are
you currently dressed?”

Very light 5 1
Light 5 2
Moderate 5 3
Heavy 5 4
Very heavy 5 5

Personal Health
perception

Survey in thermal comfort tablet – “howwould
you describe your health and wellbeing at the
moment?”

Very good 5 1
Good 5 2
Reasonable 5 3
Poor 5 4
Very poor 5 5

Table 1.
Input features and
units or scales
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influence of personal parameters in thermal response. Table 2 presents each of the selected
participants’ personal characteristics.

It should also be noted that the dwellings in this study represent a wide range of different
construction typologies common in housing of older people in South Australia. These include
double brick, brick veneer (also known as masonry veneer) or timber framed constructions
(insulated and uninsulated); detached and semidetached layouts; 1 tomore than 100 years old;
and one or two stories high. Although building construction and design as well as natural
ventilation and window orientation can have significant impacts on thermal preference,
this correlation was out of the scope of this paper and will be the subject of future
publications.

3.4 Dataset balancing and pre-processing
The individual datasets exhibited unequal distributions between thermal preferences classes,
as seen in Figure 2. Therefore, the datasets were randomly resampled to obtain classes with
the exact same number of data points. This procedure, called undersampling, consisted of
sizing all majority classes according to the size of the minority class, by removing examples

ID1 Sex
Age

(years)
Height
(cm)

Weight
(kg)

BMI
(kg/m2) Frailty score2 Climate zone

1 F 71 157.0 78.9 31.9 Not frail Csa
2 M 86 179.5 86.4 26.8 Not frail Csa
3 F 79 156.5 64.6 26.4 Not frail Csa
4 F 81 163.0 58.2 21.9 Apparently vulnerable Csa
5 F 79 161.0 97.6 37.6 Not frail Csa
6 M 76 175.5 88.5 28.7 Not frail Csb
7 F 76 149.5 75.1 33.6 Not frail Csb
8 M 82 174.0 89.9 29.7 Apparently vulnerable Csa
10 F 86 151.0 110.4 48.4 Moderate frailty BSk
13 M 90 173.0 94.5 31.6 Not frail Csb
15 M 68 178.0 80.6 25.4 Not frail BSk
16 F 72 151.5 63.0 27.5 Not frail Csb
19 F 92 153.0 66.0 28.2 Not frail Csb
21 F 78 158.5 78.0 31.1 Not frail Csb
23 F 76 164.5 86.4 31.9 Apparently vulnerable Csb
25 M 88 168.0 83.6 29.6 Not frail Csb
27 F 75–793 4 4 4 Apparently vulnerable Csa
32 F 82 145.0 64.0 30.4 Apparently vulnerable BSk
33 M 80 171.5 109.1 37.1 Not frail Csa
35 M 73 160.0 119.0 46.5 Mild frailty Csa
36 F 74 160.5 95.4 37.0 Apparently vulnerable Csa
38 F 82 166.0 71.9 26.1 Not frail Csa
40 M 86 175.0 85.9 28.0 Not frail Csb
42 F 75 156.5 75.9 31.0 Apparently vulnerable Csa
46 F 66 166.5 117.0 42.2 Not frail Csb
50 F 81 162.0 60.0 22.8 Not frail Csb
51 F 72 150.5 64.6 28.5 Apparently vulnerable Csb
62 F 76 158.0 85.5 34.2 Apparently vulnerable Csa

Note(s): 1 The IDs used in this paper are the original used for the monitoring of the 71 participants
2 Assessed according to the Modified Reported Edmonton Scale (MRES) (Rose et al., 2018), on the scale “Not
frail”, “Apparently vulnerable”, “Mild frailty”, “Moderate frailty”, “Severe frailty”
3 Participant answered only her age group
4 Not assessed

Table 2.
Selected participants’

personal
characteristics,
organised by ID

number
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from the dataset that belong to themajority class. Final individual dataset sizes can be seen in
Table 3. Classes were also assigned a code from 0 to 2, where 0 corresponded to the
“preferring to be cooler” class, 1 the “preferring no change” class and 2 the “preferring to be
warmer” class.

Finally, the input variables were normalised to a single range from 0 to 1, using min-
max normalisation Equation (1). The minimums and maximums used for normalisation
are predefined and the same for all participants, to avoid information from the training sets
to be leaked to the testing sets (i.e. data leakage). This created new values for the
datapoints but maintained the general distribution and ratios in the original data, avoiding
the negative influence of the different scales of each variable in the performance of the
models.

x’ ¼ ðx�minÞ
ðmax�minÞ (1)

where x’ is the normalised variable; min is the predefined minimum for the variable in
question; and max is its predefined maximum.

3.5 Hyperparameters, model tuning, model selection and model evaluation
Deep learning algorithms have hyperparameters, which are settings used to control
the model’s behaviour and capacity. These settings cannot be directly estimated from the
data and are not learned by the training process, but rather appropriately chosen by
the model’s developer while tuning different model options to select the best
performing one.

To choose the best set of hyperparameters for a model, the first step was to divide the
available dataset into three separate subsets, namely training set, validation set and test set.
The training set is the subset of examples used for learning (i.e. fitting the internal coefficients
orweights of the classifier). The validation set is the set of examples used to guide the selection
of the hyperparameters of a classifier, a process also calledmodel tuning. Lastly, the test set is
an independent subset of examples used only to assess the performance of a fully trained

Figure 2.
Percentage of votes in
each thermal
preference class of each
participant’s original
dataset
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classifier. The purpose of the test set is to simulate themodelwith data it has never seen before.
This test performance is also called the generalisation performance (Ripley, 1996).

These three subsets of data were split as follows. First, each participants’ total datasets
were randomly divided in two groups with at least 5 votes in each thermal preference class
for training and at least 1 vote for each class for testing. The training set was then divided
once again into two subsets to allow 5-fold cross validation, with at least 4 votes per class
being used for the training set and at least 1 vote per class for the validation set. 5-fold
cross-validation was chosen such that each train/validation group of data samples were
large enough to be a representative of the total dataset, while small enough to allow
modelling for participants with low vote counts. Cross-validation was repeated 5 times to
reduce the noise in the estimated model performance between different cross validations
splits. The subsets’ splits were done in a stratified way, to maintain the balance of each
subset, with the same number of data points for each classification category within the
subsets.

Although deep learning algorithms have multiple hyperparameters to be tuned,
this study selected 3 known to have a higher effect on the model’s behaviour: (1) the
learning rate of the optimisation algorithm, (2) the number of hidden neurons in the neural
network and (3) the batch size of each iteration. The learning rate was varied from 0.001 to
0.01 to 0.1. The number of hidden neurons in the hidden layer of the model was
varied between 4, 5 and 6. Lastly, the batch size varied between 2 and 8 data points. The
varying ranges of the hyperparameters tuned were chosen according to common practice
in computer science studies (Kuhn and Johnson, 2013; Goodfellow et al., 2016; Huang
et al., 2019).

Considering the low complexity of task undertaken by the neural network, the number of
the hidden layers in the models was kept to minimal of 1. Therefore, a feedforward neural
network was implemented including an input layer, a hidden layer, and an output layer. In
order to go from one layer to the sequential one, the neurons compute a weighted sum of their
inputs from the previous layer Equations (2) and (4) and pass the result through a non-linear
function, called activation function (LeCun et al., 2015). The models in this study used
Rectified LinearUnit (ReLU) (Agarap, 2018) as the activation function between the input layer
and the hidden layer Equation (3) and Softmax as the activation function between the hidden
layer and the output layer Equation (5). The mathematical expressions of the models can be
written in the following form:

zj ¼
X7

i¼1
wij$xi þ bj (2)

yj ¼ f ðzjÞ ¼ maxð0; zjÞ (3)

zk ¼
XNJ

i¼1
wjk$yj þ bk (4)

yk ¼ f ðzkÞ ¼ ezk
P3

k¼1e
zk

(5)

where xi are the normalised data of the input variables, wij are the weights between the input
and hidden neurons, bj are the bias values of the hidden neurons, and yj the output values of
the activation functions (ReLU) in the hidden layer; while wjk are the weights between the
hidden and output neurons, bk are the bias values of the output neurons, NJ is the number of
hidden neurons, and yk are the outputs of the activation functions (Softmax) in the
output layer.

Cross Entropy function was used to measure the loss (LCE) – or error – of the classification
rounds Equation (6) and Stochastic Gradient Descent was used as the optimiser algorithm

SASBE



that aims to minimise the loss, with a learning momentum at 0.9. More details on the full
optimiser algorithm can be found in Goodfellow et al. (2016).

LCE ¼
X3

k¼1
tk log yk (6)

where tk is the ground truth label, and yk is the probability for the kth class.
Figure 3 represents a simplified diagram of the neural network described.
The following steps, based on the framework detailed by Raschka (2018) and represented

in Figure 4, were used for the model tuning, selection and evaluation process of this study.

(1) Step 1: Each participant’s total dataset was divided into three subsets, a training set
for model fitting, a validation set for model selection, and a test set for model
evaluation.

(2) Step 2: (model tuning): The learning algorithm was then used for different
hyperparameter settings to fit models to the training dataset.

(3) Step 3: (model selection): These models’ performances were evaluated using the
validation set. The performance estimates were then compared, and the
hyperparameters settings associated with the best model performance were
chosen. Each participant’s best performing model and hyperparameters can differ
between each other, depending on individuals’ data sizes, personal patterns, and data
quality.

(4) Step 4: To increase the dataset and enhance the models’ performance, training and
validation sets were then merged into one dataset and the best hyperparameter
settings from the previous step were used to fit a new model to this larger dataset.

(5) Step 5: (model evaluation): Finally, the independent test set was used to estimate the
generalisation performance of the model resulted from step 4.

(6) Step 6: The final model could then be trained with the use of all the dataset. This final
step was not performed in this study because themain objective was to test themodel
selection and evaluation rather than preparing for model deployment.

INPUT 
LAYER HIDDEN

LAYER

OUTPUT
LAYER

PREFERRING TO BE COOLER

PREFERRING NO CHANGE

PREFERRING TO BE WARMER

DRY BULB TEMPERATURE

RADIANT TEMPERATURE

RELATIVE HUMIDITY

AIR SPEED

CORRECTED METABOLIC RATE

CLOTHING LEVEL

HEALTH PERCEPTION 

Figure 3.
Simplified diagram of

the neural
network used

Personal
thermal

comfort models
for older people



3.6 Performance indicators
The performance indicators used in steps 3 and 5 of the modelling methodologies were the
Accuracy, the Cohen’s Kappa Coefficient, and the Area Under the Receiver Operating
Characteristic Curve (AUC).

Accuracy was calculated as the percentage of correct predictions in relation to the total
number of predictions. The Cohen’s Kappa Coefficient (L) (Cohen, 1960) is a measure of
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reliability for two classifiers that are rating the same thing, corrected to exclude the frequency
in which the classifiers may agree by random chance. It is defined by Equation (7):

K ¼ ðрo � рeÞ
ð1� рeÞ

(7)

where рo is the relative agreement among classifiers, which is the same as the accuracy
measure, and рe is the hypothetical probability of a chance agreement.

The Cohen’s Kappa Coefficient ranges from negative values to 1, where 1 means perfect
agreement, 0 means no agreement among the classifiers other than what would be expected
by chance, and negative values mean the agreement is worse than random. According to
Cohen (1960), a Cohen’s Kappa of 0.41–0.60 can be considered amoderate agreement between
prediction and ground truth, 0.61–0.80 as substantial, and 0.81–1.00 as a perfect agreement.

The AUC is a measure frequently used in machine learning studies (Ben-David, 2008).
First, the Receiver Operating Characteristic Curve (ROC) was built by plotting the probability
of true positive rate (i.e. “successes”, also called sensitivity or recall) versus the probability of
false positive rate (i.e. “false alarms”, also called fall-out) for all possible discrimination
thresholds, for each of the three thermal preference classes using the “one versus the rest”
method. Equations (8) and (9) define true positive rate (TPR) and false positive rate (FPR):

TPR ¼ TP

TP þ FN
(8)

FPR ¼ FP

FP þ TN
(9)

where TP (true positive) is the number of positive class correctly predicted in a binary
classification model; FP (false positive) is the number of positive class incorrectly predicted;
TN (true negative) is the number of negative class correctly predicted; andFN (false negative)
is the number of negative class incorrectly predicted.

Finally, the area under the ROC was computed for each of the classes and averaged to
obtain a single numeric performance indicator of the thermal preferencemodel. AUC can vary
between 0 and 1, where 0.5 denotes random guessing and 1 indicates perfect agreement.

3.7 PMV scale conversion for comparison
PMV was calculated according to ANSI/ASHRAE (2020), using the environmental
parameters measured during the field study and the corresponding clothing and metabolic
rate according to participants survey answers. As the PMV uses a 7-point scale to predict
thermal sensation, the results were converted into three thermal preference categories to
enable a comparison, in the same scale, with the personal comfort models developed in this
study. Therefore, when the PMV model predicted values between 0.5 and�0.5 (i.e. normally
considered a “neutral” sensation), the votes were labelled as “no change”; when PMV>0.5 (i.e.
“slightly warm”, “warm” and “hot”), the votes were labelled as “preferring to be cooler”; and
when PMV<�0.5 (i.e. “slightly cool”, “cool”, “cold”), the votes were labelled as “preferring to
be warmer”. These cut-offs were chosen to represent the recommended limits for a 10%
Predicted Percentage of Dissatisfied (PPD). This conversion of the PMV model is referred in
this paper as “Converted PMV” or PMVC. TheAUC of the PMVCwas calculated using a single
pair of probability of true positive rate versus probability of false positive rate, since the
model is not a probabilistic classifier and does not allow plotting different discrimination
thresholds.
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4. Results and discussion
Table 3 presents a summary of the performance of each selected participant’s models in
predicting thermal preference with and without the use of health perception as an input
variable. The Accuracy, Cohen’s Kappa Coefficient and AUC shown in the table correspond
to the model evaluation step (i.e. step 5 in Figure 4) and represent the generalisation
performance of the personalised models when using the merged training and validation sets
for learning, and the “never-before-seen” test set for assessment.

The generalisation accuracy of the personal comfort models (with health perception)
ranges from 33.33 to 100%, with a mean of 73.98%; the Cohen’s Kappa indicator ranges from
0.0 to 1.0, with a mean of 0.61; and the AUC ranges from 0.5 to 1.0, with a mean of 0.83.
Although not optimal when considering individual performances of models such as ID 10
(33.33% accuracy, 0.0 Cohen’s Kappa, 0.5 AUC), the personal comfort models developed still
show an overall improvement in performance when compared to other similar studies in the
field. Liu et al. (2019), for instance, reported an average Cohen’s Kappa of 0.24 when analysing
personal comfort models of 14 younger adults using different algorithms and input feature
sets, in both indoor and outdoor environments. Likewise, Kim et al. (2018b) reported a median
AUC of 0.73, when considering the best performing algorithm from each of the 34 individual
models developed for younger adults.

Table 3 also provides the prediction results of the PMVC model for each of the selected
participants. On average, PMVC predicted individual preferences with an accuracy of
49.52%, a Cohen’s Kappa indicator of 0.24, and an AUC of 0.62 (i.e. slightly better than
random guessing). In comparison, on average, the personal comfort models’ accuracy is 49%
higher, the Cohen’s Kappa Coefficient is 151%higher and theAUC is 34% than the respective
PMVC model’s indicators. This shows a significant improvement in the predictive
performance of the personalised models when compared to PMVC model.

Additionally, the results suggest that the models’ generalisation performance may vary
among participants, even after individual hyperparameter tuning. ID 32, for instance, reached
the highest predictive performance with an accuracy of 100%, and a Cohen’s Kappa and an
AUC of 1.0. ID 5, on the other hand, only reached an accuracy of 60%, a Cohen’s Kappa of 0.4
and an AUC of 0.67, even after multiple rounds hyperparameter tuning. Likewise, ID 10
represents a personal comfort model with considerably low performance and that was not
able to provide any improvement when compared to the PMVCmodel. The poor performance
of models such as these might have been a result of a low sample size for training, the
presence of anomalous data points, or the absence of input features that might also be
influencing this person’s thermal preference. Furthermore, when considering diverse
individuals such as older people, it is expected that these other intrinsic characteristics play
different roles for each person in different intensities and frequencies. In addition, as pointed
out by Liu et al. (2019) and Kati�c et al. (2020), it is reasonable to expect that some individuals
might be harder to predict than others.

Figure 5 presents a visual representation of the confusionmatrices of the personal comfort
models (using health perception) for each of the participants selected. Each row of the
matrices represents the true thermal preference votes in each class (i.e. participants’ survey
answers), while each column represents the corresponding predictions. Not only do the
matrices allow the visualisation of the overall performance of the models, but they also
indicate the models’ performance in predicting each individual class. They are the basis for
the calculation of the Cohen’s Kappa Coefficient and the AUC.Models such as ID 13, 32, 36, 40
and 50, for instance, clearly show a perfect agreement between the ground truth and the
predictions, with classes predicted equally correct, and consequently identified as darker
colours in the main diagonal of the confusion matrices. ID 21’s confusion matrix, in contrast,
shows that this model was better at predicting classes 0 (i.e. preferring to be cooler) and 2 (i.e.
preferring to be warmer) than class 1 (i.e. preferring no change). On the other hand, ID 42’s
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model, although having the same accuracy as ID 21’s model, predicts class 2 (i.e. preferring to
be warmer) better than classes 0 (i.e. preferring to be cooler) and 1 (i.e. preferring no change).

The Receiver Operating Curves (ROCs) and respective Areas Under the Curve (AUC) can
also help the visualisation of models’ performance in predicting each individual class.
Figure 6 shows the ROC curve of each class, plotted using the “one versus the other”method,
for ID 46’s model (using health perception). As seen in the curves, and confirmed by the
confusion matrix, this model is slightly better at predicting “preferring to be cooler” and
“preferring to be warmer” categories than “preferring no change”.

The confusion matrixes are equally relevant to visualise and analyse the cost of
misclassification. In the case of thermal preference models, where the classes represent
ordinal intensities, classifying a “preferring to be warmer” as a “preferring to be cooler” (and
vice-versa) is more problematic than classifying a “preferring no change” as “preferring to be
cooler” or “preferring to be warmer” (and vice-versa). ID 5 and 42 are examples of models that
have similar performance indicators but have different misclassification patterns that might
incur different costs when deploying the model. While ID 42 incorrectly classifies “preferring
to be cooler” as “preferring no change”, ID 5 misclassifies it as “preferring to be warmer”. If
both models were deployed in real scenarios for automatic heating and cooling control, for
instance, ID 5 would have her system activated in the opposite direction of the change
expected, incurring higher energy use and lower comfort levels than ID 42’s system, which
would similarly not meet its demand, but would not cause higher energy use than it should
either. Although not addressed in depth this study, the misclassification cost of personal
thermal comfort categories is a relevant topic in the field and an interesting area for future
research.

The lower performance of the models can also be explained by examining the model
training and testing procedures. Overfitting, for instance, can be identified in some of the
individual models. Observing the training learning curves of these models, which represent
the training and testing loss by epoch (i.e. the number of passes of the entire dataset through
the model), the gap between the training loss and the testing loss was significantly large in
some cases. This means that the model has learned the training dataset too well, including
errors in the data and possible statistical noise. As a result, the fit obtained was not able to
produce accurate estimates on new observations that were not part of the original training
dataset (James et al., 2013). Figure 7 exemplifies this hypothesis.When observing the learning
curve from ID 5�who yielded a 60% accuracy, 0.4 Cohen’s Kappa and an AUC of 0.67�, the
gap between the training and testing loss is vastly larger compared to ID 35’s model � who
reached an 86.67% accuracy, 0.8 Cohen’s Kappa and a 0.93 AUC. Possible reasons for
overfitting could be related to the small data size, the input features used, or the cross-
validation procedure applied. Moreover, overfitting might be a result of using a test set that
does not represent well the entire dataset. Although strategies for preventing overfittingwere
used in this study, such as early stopping, these models would still benefit from further
explorations.

Furthermore, Table 3 presents the performance of the models developed without health
perception as one of the input variables. On average, the performance of models without the
use of health perception as a predictor was slightly lower than the performance of the ones
using this predictor. The difference between the two groups of results, however, was not
statistically significant (i.e. p > 0.05) according to the independent-measures t-test.

Nevertheless, when examining individual models’ results, it is still worth analysing the
examples of models that performed better without the health perception indicator, such as ID
7, 16, 19, 25, 27, 42 and 51 are, as presented in Figure 8. In most of these cases, this could be a
result of the low variability of the health perception input, which remained between “good”
and “reasonable” regardless of the thermal preference or the other input variables. In other
cases, where variability in health perception was indeed present, such as for ID 19, a possible
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cause for a lower performance might be the absence of clear correlation between health
perception and thermal preference, as indicated by ID 19’s box plots in Figure 9.

Similarly, Figure 10 can indicate possible reasons why adding health perception as one of
the input variables for ID 19 did not allow higher predictive performance to the personalised
model. The figure shows the probability density of the distributions of the thermal preference
classes depending on the seven input variables used, built using Kernel Density Estimation
(KDE) (Zielinski et al., 2018). The overlapping areas of the three thermal preference classes
could indicate that ID 19 is likely to prefer different thermal conditions while having the same
health perception. This is also more evident for air speed and metabolic rate for ID 19. It is
possible to imply, therefore, that adding these variables as predictors of thermal preference
might not be ideal for this person and could potentially compromise models’ predictive
performance.

Although the minimum dataset size required for personal models to reach maximum
predictive performance can vary for each participant, larger sample sizesmight allow a better

Figure 7.
Training learning
curves for ID 5 and for
ID 35

Figure 8.
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PCM with and without
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statistical representation of the data. The data collected in this study, however, were not
sufficient to allow the testing of larger datasets. Nonetheless, other similar studies on
personal thermal comfort models have calculated the predictive performances of individual
models increasing training datasets incrementally. Most of them reported minimum datasets
of 30–90 datapoints for maximum predictive performance (Daum et al., 2011; Jazizadeh et al.,
2014a; Kim et al., 2018b; Lee et al., 2019; Li et al., 2017), which is in linewith the average dataset
sizes used in this study, as seen in Table 3.

5. Recommended applications
Three main implementation pathways are recommended through this study. The first, called
automation pathway, uses the predictions yielded from personal comfort models for live
control strategies of the HVAC temperature set points. Jung and Jazizadeh (2019), for
instance, proposed an HVAC agent that decided the optimal temperature setpoint according
to different personalised thermal profiles, using three different strategies, namely thermal
vote-based predictions, thermal preference-based and the thermal preference and sensitivity-
based. Likewise, Auffenberg et al. (2018) developed an HVAC control algorithm using
personalisedmodels to retain user comfort while alsominimising energy consumption. These
models can also be integrated into personal comfort systems (PCS), allowing the conditioning
of individuals in a more cost-effective scenario. Although control automation can benefit all
individuals, personal models can be especially important as assistive tools for older adults
with lower thermal sensitivity or with disabilities.

The second implementation pathway, called diagnostic pathway, relies on the use of the
information gathered from personal datasets as a tool to quantify individual preferences, and
identify possible design improvements to meet these preferences, especially considering
buildings without air-conditioning. If, for instance, an individual model reveals that comfort
preferences are more sensitive to air movement than indoor temperatures for a specific
occupant, then investing on strategies related to ventilation would be more effective than
investing in adding insulationmaterials only. This diagnostic informationwould aid not only
designers but also older adults in the decision-making process to redesign their thermal
environments to improve comfort satisfaction.

The third pathway, called public health pathway, is based on inserting individual models
in regulations and standards to be used in a broader sense, without, however, disregarding
personal preferences. Since extensive monitoring of new occupants may not be feasible for all
settings, personal models from individuals with similar characteristics and preferences
would be used to create a set of “profiles” or “personas” according to trends between their
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Figure 10.
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statistically significant variables, allowing them to be applied to other individuals, thus
requiring a smaller set of relevant information and reduced or no monitoring period.
Nevertheless, since this roadmap involves a broader application scenario, the consolidation of
the individualised approach as a reliable and reproduceable technique needs to be further
tested, and this depends on a collective research effort on the subject. A protocol will be
required to prescribe the optimal data collection, processing, and management procedures
and to guide the training, evaluation and reporting of models depending on the application.
Finally, the standards should prescribe a set of initial models as common bases for each type
of application, which can be used as a starting point for re-learning and updating for new and
specific occupants and environments.

It is important to highlight that themodellingmethodology, learning algorithms and input
variables may differ depending on the complexity required for each sort of application
envisioned. Using the models for HVAC control with live model-tuning when new data is
available (i.e. automation pathway), for instance, may require less computational heavy
models, lower training time and higher accuracy to provide immediate user satisfaction. On
the other hand, models used in a more analytical sense, or when the relationship between
features is more relevant than comfort predictions (i.e. diagnostic pathway), may require
more transparent and interpretable modelling techniques rather than optimum performance.

6. Limitations
The current study presents the following limitations. Firstly, the use of undersampling as a
strategy for balancing individual datasets has resulted in a reduction of the data size that can
influence the model’s predictive performance. In addition, undersampling can cause the loss
of potentially useful data points. Possible alternatives are oversampling or SMOTE
(Synthetic Minority Oversampling Technique) or increasing sample sizes with longer
monitoring periods that allow more diverse thermal preference responses. Both strategies,
however, have drawbacks. Oversampling can, on one hand, lead to model overfitting and an
increase in learning time. Longer monitoring periods, on the other hand, can be intrusive for
the participants, increase study cost and time, and add bias to participants’ answers after
repetitive tasks. The use of personal comfort systems is equally interesting to allow bigger
sample sizes, since the system’s control patterns can be collected continuously and later used
as proxy for thermal comfort.

Secondly, the use of field studies instead of climate chamber experiments also poses
challenges to dataset size and distribution. When monitoring real thermal environments,
where conditions vary without the influence of researchers, extremes in thermal perception
are naturally less often captured, making final imbalanced datasets almost unavoidable.
Nevertheless, field studies provide an accurate representation of reality and its underlying
conditions that controlled climate chamber experiments are rarely able to capture.

Thirdly, despite the study including three different climate zones, it is still limited to a
specific climatic context of older people in South Australia. Future research is required to
advance the knowledge on other scenarios and their related challenges. Likewise, although
the older participants in this study represent a diverse cohort in terms of body composition,
age, sex, health, frailty and living environment, other socio-cultural and economic factors that
affect their thermal environments, as well as their thermal sensitivity and behaviour, still
need to be addressed to build a more holistic image of their diversity.

Furthermore, this study is limited to the analysis of seven features that might affect
thermal preference for older people. Other potentially relevant input variables might include
time of day and seasonal thermal expectation, physiological data, such as skin temperature or
heart rate, and more accurate representations of metabolic rate, such as accelerometry
measured with wearable sensors or activity captured using image recognition.
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Finally, it is important to point out that the PMV conversion used in this study poses
limitations in the comparisons. This is because thermal sensation and thermal preference
scales cannot be considered interchangeable for all individuals. While several people might
experience neutral sensation and thermal preference for no change at the same time, it is still
necessary to account for preferred sensations other than neutral. Although not applicable to
all participants in this study because of insufficient and highly unbalanced sample sizes, an
alternative to this conversion would be analysing different conversion rules and cut-offs for
each individual participant depending on their thermal sensation and thermal preference
answers, instead of a single scale conversion method for all.

7. Conclusion
Responding accurately to older people’s thermal preferences in their dwellings is essential to
enable comfort and support healthy ageing. In this paper, personal comfort models have been
developed for 28 older people as an alternative to the traditional aggregate comfort modelling
approaches used in the field that often disregard diversity in thermal preferences, living
environments and health statuses.

Using deep learning as the modelling technique and both environmental and personal
characteristics as model inputs, the study has demonstrated that:

(1) On average, the individualised models present an accuracy of 74%, a Cohen’s Kappa
Coefficient of 0.61 and an Area Under the Receiver Operating Characteristic Curve of
0.83, representing an overall improvement in performance when compared to other
similar studies in the field and the PMVC model.

(2) On average, the performance of models without the use of health perception as an
input variable was slightly lower than the performance of the ones using this
predictor, although the difference between the resultswas not statistically significant.

(3) The models’ generalisation performance may vary among participants. Poor
performance can be related to low sample sizes for training, the presence of
anomalous data points, or the absence of input features that might also be influencing
this person’s thermal preference. Overfitting was also identified as a possible cause of
low performance when testing the models.

(4) Personal comfort models for older adults are recommended as HVAC control
automation strategies, as diagnostic tools for design decision-making, and as the
basis for the development of thermal comfort profiles in the broader public health
scenario.

The next step for this study includes expanding the models to take into account other
physiological parameters such as skin temperatures, and testing the models’ capabilities and
feasibility by deploying them in real life scenarios.
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A B S T R A C T   

Personal thermal comfort models hold the promise of a more accurate way to predict thermal 
comfort and therefore a more reliable approach for managing indoor thermal environments. They 
can be especially relevant as an assistive tool for people with lower thermal sensitivity or with 
limitations to thermal management and adaptation, such as older people. Nonetheless, although 
in constant development, studies on personal comfort models continue to focus on office envi-
ronments and younger adults. This paper explores the development of personal comfort models to 
predict older people’s thermal needs in their homes and evaluates the models’ predictive per-
formances in comparison with conventional generalised approaches. Machine learning and 
environmental, behavioural, health and skin temperature measurements were used to develop 
individual models for a set of older adults in South Australia. The results show that, on average, 
the personal thermal comfort models using all studied inputs, except for health perception, 
presented an optimal accuracy of 66.72%, a Cohen’s Kappa of 50.08% and AUC of 0.77, a su-
perior performance when compared with generalised approaches. Results have also highlighted 
the need for further research on combining physiological sensing, individualised predictive 
modelling and wearable comfort systems, as well as on defining thermal preference misclassifi-
cation costs in the context of older people.   

1. Introduction 

Over the last two decades, the field of thermal comfort modelling has been going through an important paradigm shift. Studies on 
thermal comfort that focus on aggregated responses from a group of people, such as the PMV (Predictive Mean Vote) [1] and adaptive 
models [2,3], are being called into question by individualised and occupant-centric modelling alternatives [4–8]. To predict specific 
comfort requirements more accurately, instead of an average condition calculated from the responses of a group of people, the new 
personalised approach relies solely on thermal assessments from a single person. By absorbing individual diversity into thermal 
comfort management, this new modelling approach offers the potential to increase both occupant acceptability and related energy 
benefits in the built environment. As discussed in works by Kim et al. (2018) [4] and Arakawa Martins et al. (2022) [8], by using the 
individual as the unit of analysis, personal comfort models help unmask and quantify the differences between individuals in an 
environment, enabling a better understanding of specific comfort needs and requirements, such as acceptable temperature limits for a 
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given space, and collecting diagnostic information to identify problems. This information, in turn, aids the decision-making process 
involved in optimizing thermal environments to improve both comfort and energy efficiency. If, for instance, the acceptable tem-
perature limits diagnosed are greater than the default HVAC (Heating, Ventilation and Air Conditioning) temperature setpoint ranges, 
energy savings can be expected by widening the setpoint temperatures. If HVAC systems are used in shared spaces and individual 
control is not possible, personal comfort models can still be used as the basis for consensus-based solutions [9], or the development of 
thermal comfort profiles for general use [4,10]. In single-occupant spaces where individual control is possible, personal comfort 
models can help automate any type of conditioning systems with higher precision. Although automatic control might not be a priority 
for some individuals, the automation provided by personal comfort models can be especially relevant as assistive tools for people with 
lower thermal sensitivity, such as older people, for those with more limitations to thermal management and adaptation, such as people 
with disabilities, or for those with less means to afford the cost of HVAC fuel consumption. Examples of energy savings resulting from 
the use of individualised thermal comfort models were experimentally demonstrated by Jazizadeh et al. (2014) [9] and Ghahramani 
et al. (2014) [11]. 

Personalised models have been the subject of multiple recent research studies. They have been developed through a plurality of 
frameworks, varying data collection approaches, model inputs and output variables and the modelling algorithms used [8]. When 
analysing the models’ input variables specifically, environmental factors, such as indoor air temperature [12–17], relative humidity 
[18], air speed [19], mean radiant temperature [20] and outdoor air temperature [21,22], are most frequently used as single or 
combined predictors in these studies. There is, however, an increasing body of research focusing on personal comfort models driven by 
physiological variables, such as skin temperature or heart rate [23–32]. Powered by the recent development of wearable devices and 
the Internet of Things (IoT), this area of research is advancing towards novel ways to monitor and predict individual thermal responses 
in increasingly more accurate and less intrusive ways. 

Nonetheless, although in constant development, studies on personal comfort models continue to focus on office environments and 
younger adults. While the literature contains multiple studies on thermal comfort for older adults [33–37] and age-related differences 
in thermal sensation and preferences [38–40], the studies focus on generalised conclusions in specific contexts. Studies on the 
development of personal comfort models that focus on older people, their specific physiological responses, and their living environ-
ments are still absent in the current literature [8]. This is despite the fact that the proportion of older people (i.e., those aged 65 years 
old and over) worldwide is increasing rapidly, projected to grow from 9% in 2019 to 16% by 2050, due to historically low birth rates 
combined with increased life expectancy [41]. Furthermore, this research gap is especially relevant because heterogeneity in personal 
capabilities and needs tends to be greater in older than younger people, as older adults have likely experienced a greater range of 
cumulative social and environmental factors during their individual lifetime [42]. Using a generalised thermal comfort model for older 
adults could result in a great proportion of them being exposed to unacceptable indoor thermal environments. Such thermal exposures 
can, in turn, interact with multiple comorbidities, leading to adverse health outcomes [43–45] and possibly premature institutional 
care. Personal comfort models thus hold the promise of a much more accurate approach to thermal environment management, which 
could potentially prevent both heat and cold related illnesses across a more diverse and vulnerable population. Furthermore, the 
human-in-the-loop (HITL) [46] automation enabled by the integration of these models with heating and cooling control systems may 
be especially relevant as an assistive tool for people with lower thermal sensitivity or for those with more limitations to thermal 
management and adaptation, such as people with disabilities. 

Therefore, this paper explores the development of personal comfort models, using different combinations of environmental, 
behavioural, health and physiological (i.e., hand skin temperature) input variables, to predict older South Australians’ thermal needs 
in their homes, and evaluates the models’ predictive performances in comparison with conventional generalised approaches. 
Considering that approximately 80% of households in Australia have heating devices and 74% have cooling devices [47], the op-
portunities for the use of personal thermal comfort models for possible HVAC or personal comfort systems automation in the Australian 
context become especially relevant. 

The structure of the paper is organized as follows. The following subsection 1.1 presents related works on personal thermal comfort 
models using both environmental and physiological features. Section 2 details the field study process and tools used for data collection, 
as well as the two modelling methodologies applied, a conventional generalised approach and a new personalised alternative. Section 
3 explores the performance results of the two models while Section 4 discusses the main topics highlighted by the study’s outcomes. 
Section 5 presents the study’s limitations as well as future study opportunities, and Section 6 concludes this article. 

1.1. Related literature on personal comfort models using environmental and physiological input variables 

The recent literature on personal comfort models employing environmental and physiological variables as predictors for thermal 
comfort indicates that the models’ predictive performance increases when a combination of both types of inputs are used. Aryal and 
Becerik-Gerber (2019) [23], for instance, monitored 20 participants, in their late teens to mid-thirties, through experimental sessions 
in an office building, and compared the accuracy of individual models using both environmental measurements and wrist and face skin 
temperatures. According to these researchers, using data from the environmental sensors for predicting thermal comfort resulted in a 
higher accuracy compared with using physiological data alone. However, combining data from both environmental and physiological 
sensors led to a slightly increased accuracy (3%–4%) over using environmental sensors alone. A further study from the same authors 
[24], involving 15 participants in their late teens to mid-twenties, also in experimental sessions in an office environment, confirmed 
similar results. 

Jung et al. (2019) [25] indicated a much greater increase in prediction performance when including physiological features as input 
parameters for personal thermal preference models. In a climate chamber study involving 18 participants, the research used skin heat 
exchange via a heat flux gauge, skin temperature, indoor temperatures and humidity to infer personal thermal preferences. According 
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to their results, the use of the heat exchange rate from the skin resulted in higher performance indicators than using skin temperature 
and indoor temperature as factors. The study’s best performing modelling algorithm presented a median accuracy of 71% when using 
air temperature as a sole feature, 93% with the addition of skin temperature and 97% with the addition of heat flux, highlighting that 
the best performance was observed when skin temperature and heat flux were used along with ambient temperature. 

Likewise, Lu et al. (2019) [31] conducted experimental sessions in an open-plan office with 2 healthy participants in their 
mid-twenties. The personal models predicted thermal sensations using three different feature sets, involving both environmental and 
physiological parameters. The models were trained using linear kernel Support Vector Machine, and the recall score (i.e., the pro-
portion of all actual positive cases that were correctly predicted as positive), the precision score (i.e., the ratio between true positives 
and all predicted positives) and the F1 score (i.e., the harmonic mean of recall and precision) were used as the performance indicators 
[31]. The combination of indoor air temperature, relative humidity, skin temperature and clothing surface temperature achieved a 
100% recall, precision and F1 score for the female subject and a 96.1%, 97.5% and 95% recall, precision and F1 score, respectively, for 
the male subject. 

Li et al. (2017) [27] also reported that the combination of both environmental and human data (i.e., activity level, clothing, heart 
rate, skin temperature) can significantly improve the performance of personalised comfort prediction models. Through two field 
studies, involving 3 and 7 participants in both office and residential environments, their research showed that the combined feature set 
achieved approximately 80% accuracy, improving the classification accuracy by 24% and 39% when compared with the use of 
environmental features only and physiological factors only, respectively. A subsequent study by the same authors [28] explored 
personal comfort modelling using skin temperatures collected from different facial regions using thermal cameras. Through a series of 
experiments in an office environment with 12 participants in their early to mid-twenties, the researchers not only indicated that ears, 
nose, and cheeks skin temperatures are most indicative of thermal comfort, but also that their proposed framework can achieve an 
average accuracy of 85%. Building on these previous works, Li et al. (2020) [29] proposed the Human Embodied Autonomous 
Thermostat (HEAT) tool, where facial skin temperature and room air temperature were used to directly communicate with and control 
HVAC operations in multi-occupancy spaces. 

Similarly, Liu et al. (2019) [30] collected physiological responses including skin temperature and heart rate, as well as environ-
mental parameters such as air temperature and relative humidity, of 14 participants, through a series of wearable sensors, in both 
indoors and outdoors environments. Through the use of 14 different machine learning algorithms, the personal thermal comfort 
models presented a median Cohen’s Kappa indicator of 24%, accuracy of 78% and Area Under the Receiver Operating Characteristic 
Curve of 0.79 (details on these performance indicators are presented in Section 2.7 of this paper). These results showed a significant 
improvement of predictive performance when compared with the PMV and adaptive models. A follow-up study by the same research 
group [48] used deep learning to develop personal thermal preference models for 7 of the original 14 participants, successfully testing 
transfer learning techniques in order to decrease data collection periods and test the generalisation of the models to other building 
occupants. 

A recent study by Jung et al. (2022) [49] also explored the use of deep learning algorithms to optimize both thermal comfort and 
energy consumption of 4 young individuals in climate chamber experiments. Both environmental and physiological data were used as 
inputs. The results showed that the proposed optimization system could reduce by 10.9% the thermal discomfort of the occupants 
while maintaining their respective energy consumptions. 

The literature review, however, confirms a lack of studies where older adults are involved, as well as a limited amount of research in 
residential settings. Furthermore, as pointed out by Arakawa Martins et al. (2022) [8], although a general idea of trends in outcomes 
can be extracted from previous studies, a direct comparison of different physiological sensing and modelling approaches among these 
studies is difficult. As seen above, multiple performance indicators (e.g., accuracy, recall, Cohen’s Kappa and Area Under the Receiver 
Operating Characteristic Curve) and different experimental settings (e.g., climate chambers or field experiments, different body parts 
being monitored, and multiple types of sensing equipment) are used, making immediate conclusions on predictive performance 
difficult to draw. This study, therefore, aims to investigate an individualised modelling approach for older adults and their living 
environments, as well as a reproduceable modelling and evaluation methodology. 

2. Study design and methodology 

2.1. Data collection periods 

The dataset used in this study is derived from two separate data collection periods, involving 11 participants (6 males and 5 fe-
males) who lived in 8 households located in 3 climate zones (hot dry (BSk), warm temperate (Csa) and cool temperate (Csb), according 
to the Köppen–Geiger Climate Classification System) in South Australia. The participants were volunteers who met the following 
criteria: (1) be 65 years old or over; (2) live independently, and (3) be able to communicate in English. These participants were part of a 
larger research project that investigated the thermal qualities of older adults’ living environments [50]. While this research project 
involved 71 participants in 57 households, only 11 participants agreed to be involved in the further data collection, which involved 
measuring their skin temperature, as explained below. The study received approval from The University of Adelaide Human Research 
Ethics Committee (approval number H-2018-042). 

In the first data collection period, indoor environment data were collected simultaneously in all houses, across a period of 9 months, 
from mid-January to mid-October in 2019. The sensors and data loggers were placed in each house’s main living room and main 
bedroom and a portable electronic tablet was left for participants to answer a point-in-time survey about their thermal environment 
and their preferences and sensations at least twice a week. The indoor environment loggers recorded data from measurements of dry 
bulb temperature, globe temperature, air speed, and relative humidity, at 30-min intervals and when a participant completed a survey. 
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Mean radiant temperature was later calculated from the measured dry bulb temperature, globe temperature and air speed measure-
ments applying the method from ISO 7726:1998 [51]. Participants were able to choose whether to answer the surveys in the living 
room or the bedroom, since the tablet was portable and could be carried between the rooms. The survey’s first question asked par-
ticipants to indicate in which room the survey was being conducted and the loggers’ measurements were later sorted to match the 
corresponding rooms. 

While the indoor environmental parameters were being recorded, each participant was asked to periodically respond to a thermal 
comfort survey through an electronic tablet. The survey comprised of questions about participants’ clothing level, activity level, 
health/wellbeing perception (for which the answer scales are further detailed in Table 2), thermal sensation (TSV) and thermal 
preference (TPV). TSV was assessed using the question ‘How do you feel right now?’ with possible responses being ‘Cold’, ‘Cool’, 
‘Slightly cool’, ‘Neutral’, ‘Slightly warm’, ‘Warm’ or ‘Hot’. TPV was assessed using the question ‘Would you prefer to be … ’ with 
possible responses being ‘Cooler’, ‘No change’ or ‘Warmer’. Details of the loggers and thermal comfort survey tablet have been re-
ported by Soebarto et al. (2020) [52]. 

A questionnaire about sociodemographic information and an open-ended interview about house details were administered at the 
start of the monitoring period. Furthermore, frailty status (using the Modified Reported Edmonton Scale (MRES) [53]) and partici-
pants’ height, weight and body mass index (BMI) (using a Tanita Inner Scan RD-953 scale [54]) were assessed at the end of the 
monitoring period. 

After the conclusion of the first data collection period, a preliminary analysis of the data and further literature investigations 
highlighted a lack of physiological factors being investigated in the first stage of the study. Therefore, a second data collection was 
conducted with the same participants. Each house was monitored across 2 consecutive weeks, one house after the other, between the 
months of September 2020 and February 2021. 

In this second data collection, the survey tablet, as detailed below, was modified to include a non-contact infra-red temperature 
sensor to measure the skin temperature of the back of participants’ non-dominant hand after they completed each point-in-time survey. 
The other environmental measurements and the comfort survey questions remained the same as for the first collection period. Frailty 
and body composition assessments were redone and, after analysis, variations between the two data collection periods were considered 
minimal (i.e., maximum 1 unit change in the frailty score and a weight change under 5 kg). In addition, through new photographic 
documentation and interviews with participants, researchers ensured that the environments had not undergone major changes that 
could compromise the merging of the two collected datasets. 

2.2. Hand skin temperature measurement tool 

Human hands are known to contain a high number of arteriovenous anastomoses (AVAs), valves that regulate vasoconstriction and 
vasodilatation, and therefore influence heat loss by changing the peripheral blood flow [55]. This makes the skin temperatures of 
hands a possible indicator of a person’s thermal state [56]. The skin temperature of the back of the hand (i.e., dorsal side of the hand) 
was chosen for this study in line with previous research that correlated thermal sensation to this specific body part [26,37,38,56] and 
according to ISO:9886:2004 [57]. The measurement of the back of hand also reduced the intrusiveness of the method since this skin 
surface is more frequently exposed to the environment than other body parts. In addition, the use of the dorsal side of the hand, in 
combination with the space and position available for the new sensors in the original tablet enclosure, allowed the most comfortable 
position for older participants to take the measurements whilst seated. The non-dominant hand was chosen to minimize the effect of 
frequent hand movements in the skin temperature measurements. 

To include skin temperature measurements in the study, the original tablet and logger were modified to record and store data from 
a non-contact infra-red temperature sensor (model MLX90614-DCC). The sensor has a ±0.5 ◦C precision of temperature measurement 
and a field of view (FOV) of 35◦. To measure a spot with a radius of approximately 1 cm on the back of participants’ non-dominant 
hand, participants positioned their hands at a maximum distance of 1.5 cm from the sensor. 

An Arduino line trace sensor (model LB-LR0005) was also included in the modified version of the equipment, serving as a proximity 

Fig. 1. Thermal comfort survey tablet with infra-red skin temperature sensor and indoor environment data logger (left), and back of hand skin temperature mea-
surement being taken (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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sensor to allow measurements only when the participants’ hand was close enough to the infra-red sensor. In addition, a dark coloured 
upright partition was attached in front of the sensors to avoid accidental measurements triggered by surrounding reflective surfaces, 
and to guide participants’ hand positioning. A buzzer was also included as an audible indication that a measurement had been taken by 
the skin temperature sensor and recorded by the tablet. Recorded measurements, however, could contain irregularities that were later 
analysed individually, as described in the next sections of this paper. The modified equipment and skin temperature measurement 
procedure was tested with 3 people (in their late fifties to mid-seventies) before deployment to ensure suitability for the cohort 
involved in the study. The accuracy of the setup was compared with a medical grade infra-red temperature device, presenting a 
±0.5 ◦C error range. 

Fig. 1 shows the indoor environmental data logger and thermal comfort survey tablet with infra-red skin temperature sensor used in 
the second data collection period and demonstrates how the skin temperature measurements were taken. 

2.3. Participants and datasets 

Table 1 presents the characteristics of the 11 participants. The exploration presented in this paper is divided in two parts, the first 
comprising of a conventional generalised modelling method (detailed in section 2.4) and the second contemplating a new individu-
alised modelling approach using machine learning (detailed in section 2.5). The first exploration was developed from the full dataset 
from the second data collection period of the 11 participants. The second exploration is based on the individual datasets of 4 of the 11 
participants involved. Only 4 participants were evaluated individually because the modelling methodology required that each 
participant voted at least 6 times in at least one of the three thermal preference (TPV) classes, to allow a minimum of 5-fold cross- 
validation during model training, plus a minimum of 1 vote per category for testing. Seven participants did not meet these criteria 
and therefore were excluded from the second exploration. The cross-validation procedure is based on common practice in the field of 
machine learning [58] and on similar thermal comfort studies [24,26,30,59].It is further detailed in Section 2.5.2. Since dealing with 
individual datasets reduced the dataset sizes for modelling, records from the first and second collection periods were merged to in-
crease the number of data points for each of the 4 participants. In this case, k-Nearest-Neighbours technique was used to impute the 
missing values of skin temperature in the first data collection set. These 4 participants are highlighted in bold in Table 1. 

It is important to note that, in the case of personal thermal comfort modelling, the number of data points for each participant (i.e., 
the number of thermal preference votes in each individual dataset) is more relevant for each model’s robustness than the total number 
of participants involved in the overall study, as already pointed out by Li et al. (2020) [29]. In addition, the range and number of votes 
in each of the thermal preference categories are of great importance for model’s predictive performance and reliability, especially 
when dealing with highly unbalanced datasets such as the ones commonly produced by field studies. 

2.4. First exploration method: weighted least squares regression model 

One of the most common methods to calculate thermal comfort predictions is through weighted regression models [60]. Therefore, 
the first exploration in this study is based on the following steps. 

From 565 survey answers and environmental and skin temperature measurements derived from all 11 participants, 500 contained 
valid data for skin temperature (i.e., no measurement error or missing values). This valid dataset was first analysed for outlier detection 
in the skin temperature measurements, which may have been the result of issues such as accidental triggering of the sensor or moisture 
on the back of the hand. Outliers were considered as any data value that lay outside the range between the 3rd quartile plus 1.5 times 
the interquartile range and the 1st quartile minus 1.5 times the interquartile range. The outliers were then excluded from the dataset, 
resulting in a final dataset of 470 datapoints. 

Next, the skin temperature measurements (i.e., the independent variable) were binned in 0.5 ◦C increments. The mean of the skin 
temperatures and corresponding thermal preference votes (i.e., the dependent variable) were then calculated for each bin. With 
binning, the ordinal thermal preference vote (TPV), assuming equal intervals, may be considered an interval variable and therefore 
amenable to inferential statistical analysis. A linear regression model was then fitted to the binned data points, weighted by the number 
of votes in each bin, using the weighted least squares regression method, which is widely used in thermal comfort field studies [60–63]. 

Further relationships between skin temperature and the other environmental (i.e., dry bulb temperature, radiant temperature, air 
speed, and relative humidity) and behavioural/physiological measurements (i.e., clothing level, health perception and metabolic rate) 

Table 1 
Participants’ characteristics. Participants whose personal thermal comfort models were developed are highlighted in bold.  

ID Climate Zone Sex (Female or Male) Age (years) Height (cm) Weight (kg) BMI (kg/m2) Frailty Score (MRES scale) 

1 Csa Female 80 161.0 103.4 39.9 Not Frail 
2 Csa Male 74 160.0 120.6 47.1 Mild Frailty 
3 Csa Male 81 171.5 111.1 37.8 Not Frail 
4 Csb Female 67 166.5 115.6 41.7 Not Frail 
5 Csb Male 66 183.0 68.3 20.4 Not Frail 
6 Csa Male 83 174.0 92.35 30.5 Apparently vulnerable 
7 Csa Female 83 166.0 72.85 26.4 Not Frail 
8 Csa Male 85 173.0 98.95 33.1 Not Frail 
9 Csb Female 73 150.5 62.95 27.8 Apparently vulnerable 
10 Csb Male 77 180.0 69.15 21.3 Not Frail 
11 Csa Female 82 163.0 61.5 23.2 Apparently vulnerable  

L. Arakawa Martins et al.                                                                                                                                                                                            



Journal of Building Engineering 51 (2022) 104357

6

were also analysed, using a similar method, with skin temperature as the dependent variable and the other factors as independent 
variables. In this case, dry bulb and radiant temperatures were binned in 0.5 ◦C increments, air speed in 0.1 m/s increments, relative 
humidity in 5% increments, metabolic rates in 0.1 MET increments and clothing level and health perception in their original 1 
increment categories. This analysis was developed using IBM SPSS Version 27.0.0 [64]. 

2.5. Second exploration method: personal thermal comfort model 

The second exploration conducted in this study investigates thermal preference predictions at an individualised level, using per-
sonal thermal comfort models. In this case, instead of the single dataset containing the thermal preference votes for all participants 
involved, individual datasets were used to develop personal models targeted for each participant. 

Artificial neural networks (ANN), also known as deep learning [65], were used to develop these personalised comfort models. 
Although other high-performance machine learning techniques could have been used (e.g., Random Forests or Support Vector Ma-
chine) for thermal preference prediction, an extensive review of personal thermal comfort models highlighted a lack of exploration of 
artificial neural networks [8]. Furthermore, ANNs have the advantage of not imposing prior assumptions about data distribution 
before learning, unlike other conventional techniques, which significantly leverages the use of ANNs in different applications [66]. 

The models were developed to perform a multiclass classification task of occupants’ TPV on a 3-category-scale (i.e., ‘prefer to be 
cooler’, ‘prefer no change’ or ‘prefer to be warmer’). The survey’s TPV were used as the ground truth to train the models and were later 
compared to the predicted values. It is important to highlight that, TPV was deemed more appropriate than TSV – which is commonly 
used in thermal comfort studies – because, as pointed out by Kim et al. (2018) [67], the thermal preference scale not only represents 
the ideal condition desired by each person, but also suggests in which direction a change may be desired. 

In total, 8 input variables were used, 4 of which represented the environmental conditions of the participant’s room (i.e., dry bulb 
temperature, radiant temperature, relative humidity, and air speed) and 4 of which represented the participant’s personal, physio-
logical, or behavioural characteristics (i.e., corrected metabolic rate, clothing level, self-reported health perception and hand skin 
temperature). These 8 variables were selected to cover factors known in the architectural science, medicine, and public health fields to 
influence thermal responses [68,69]. Table 2 shows each input’s data collection tool and unit or scale. 

Participants’ activity answers in the survey were converted to MET values according to the Compendium of Physical Activities [70], 
and later corrected based on participants’ sex, height, weight and age, according to Byrne et al. (2005) [71] and Kozey et al. (2010) 
[72]. Table 2 shows the activity scale points and corresponding MET values. 

To compare the impact of different types of input on models’ predictive performance, three different combinations of input var-
iables were tested:  

(1) Skin temperature; 

Table 2 
Input variables used.  

Type Input variable Data collection tool Unit or scale Min and max used in 
normalization 

Environmental Dry Bulb 
Temperature 

Thermometer in Data logger ◦C Min 5 ◦C 
Max 45 ◦C 

Environmental Mean Radiant 
Temperature 

Calculated from globe thermometer, thermometer, and air 
speed sensor measurements in Data logger 

◦C Min 5 ◦C 
Max 45 ◦C 

Environmental Relative Humidity Hygrometer in Data logger % Min 0% 
Max 100% 

Environmental Air Speed Air speed sensor in Data logger m/s Min 0 m/s 
Max 4 m/s 

Personal Skin Temperature Infra-red temperature sensor in Thermal Comfort Tablet ◦C Min 20 ◦C 
Max 40 ◦C 

Personal Metabolic Rate Survey in Thermal Comfort Tablet – ‘Describe your activity in 
the last 15 min in this space.’ 

Very relaxed activity 
= 1 MET 

Min 1 
Max 3.3 

Relaxed activity =
1.3 MET 
Light activity = 1.5 
MET 
Moderate activity =
2.5 MET 
Active activity = 3.3 
MET 

Personal Clothing Level Survey in Thermal Comfort Tablet – ‘How are you currently 
dressed?’ 

Very light = 1 Min 1 
Max 5 Light = 2 

Moderate = 3 
Heavy = 4 
Very heavy = 5 

Personal Health Perception Survey in Thermal Comfort Tablet – ‘How would you describe 
your health and wellbeing at the moment?’ 

Very good = 1 Min 1 
Max 5 Good = 2 

Reasonable = 3 
Poor = 4 
Very poor = 5  
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(2) Skin temperature plus the “6PMV” variables, namely dry bulb temperature, radiant temperature, relative humidity, air speed, 
clothing and metabolic rate;  

(3) Skin temperature plus the “6PMV” variables plus the participant’s perception about their health. 

The modelling process involved the following stages: (1) dataset pre-processing and balancing and (2) model tuning, selection, and 
evaluation. Anaconda version 2019.3 [73] was used as the package manager to script and run all models using Python version 3.7 and 
PyTorch tensor library [74]. 

2.5.1. Dataset pre-processing and balancing 
In the 4 individual datasets, the middle category (i.e., ‘prefer no change’) was more frequently voted for than the extreme cate-

gories, resulting in highly imbalanced thermal preference distributions, as seen in Fig. 2. Therefore, undersampling was conducted, by 
randomly removing votes from the majority classes until reaching the size of the minority class. Final individual dataset sizes can be 
seen in Table 3. The use of undersampling as a balancing strategy has resulted in a reduction of the datasets’ sizes. Although other 
balancing strategies such as oversampling or SMOTE (Synthetic Minority Oversampling Technique) [75] could have avoided the 
decrease in sample size, they are more likely to lead to model overfitting [76], and were, therefore, not chosen in the current study. 

Nevertheless, although larger sample sizes might allow a better statistical representation of the data, other similar studies on 
personal thermal comfort models using machine learning techniques have reported minimum datasets of 30–90 datapoints for 
maximum predictive performance [15,27,67,77,78], which is in line with the average dataset sizes used in this study, as seen in 
Table 3. Considering personal models using ANNs specifically, Shan, et al. (2018) [12] reported an average accuracy of 89.2%, and an 
average MSE (Mean Standard Error) of 0.06 using 150 datapoints per model, while Kim (2018) [21] reported an average MSE of 
0.0029 using 26 to 133 datapoints per model, supporting the data sizes of the current study. Furthermore, k-fold cross validation, 
detailed in the next section, was used to avoid the drawbacks due to limited sample sizes. 

The categories were also coded from 0 to 2, where 0 corresponded to the ‘prefer to be cooler’ class, 1 the ‘prefer no change’ class and 
2 the ‘prefer to be warmer’ class. Finally, the input variables were normalized to a single range from 0 to 1, using minimum and 
maximum values according to Table 2. 

2.5.2. Model tuning, selection, and evaluation 
Hyperparameters are settings used to control the model’s behaviour and capacity [65]. To choose the optimal set of hyper-

parameters, model tuning was conducted. The first step of model tuning consisted of dividing the datasets into three separate subsets. 
The training set is the subset of data points used for learning (i.e., fitting the internal coefficients of the classifier). The validation set is 
the dataset used to guide the selection of the hyperparameters. The testing set is an independent subset of examples used to assess the 
performance of a fully trained model, evaluating the model with data it has never seen before [79]. 

First, each participant’s total datasets were randomly split into training and testing sets, with at least 5 votes in each thermal 
preference class for training and at least 1 vote for each class for testing. The training set was then divided into two subsets to allow 5- 
fold cross validation, with at least 4 votes per class for the training set and at least 1 vote per class for the validation set. Five-fold cross- 
validation was chosen such that each training/validation group of data samples were large enough to be a representative of the total 
dataset, while small enough to allow modelling for participants with low vote counts. Stratified cross-validation was repeated 5 times 
to reduce the noise in the model performance between different cross validation splits. 

After the validation-train-test split, the next step involved the imputation of missing values for skin temperature. This involved 
inputting values to substitute outliers and measurement errors from the second data collection period as well as missing values from 
the first data collection period. The K-Nearest-Neighbours technique was used due to its low complexity, robustness and frequent use in 
machine learning related approaches [80,81]. An optimal value of k = 5 was used for the imputation. 

The next step of model tuning involved training the models, varying three main hyperparameters according to common practice in 
machine learning studies [80]. The learning rate was varied from 0.001 to 0.01 to 0.1. The number of hidden neurons in the hidden 

Fig. 2. Percentage of total number of votes of each thermal preference category, for each participant’s original dataset.  
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Table 3 
Predictive performance of Weighted Least Squares Regression (WLS), Converted Predicted Mean Vote (PMVC) and Personal Comfort Models (PCM) with different input variables. The best AUCs (Area Under the Receiver Operating 
Characteristic Curve) for each participant across model types are highlighted in bold.   

Dataset size (balanced) WLSa PMVC
a PCMa 

Input variables: Skin Temp. Input variables: 6PMVa Input variables: Skin Temp. Input variables: 6PMVa + Skin 
Temp. 

Input variables: 
6PMVa + Health + Skin Temp. 

ID Training Testing Total Acca 

(%) 
Cohen’s 
Kappa (%) 

AUCa Acca 

(%) 
Cohen’s 
Kappa (%) 

AUCa Acca 

(%) 
Cohen’s 
Kappa (%) 

AUCa Acca 

(%) 
Cohen’s 
Kappa (%) 

AUCa Acca 

(%) 
Cohen’s 
Kappa (%) 

AUCa 

1 90 27 117 33.33 00.00 0.50 48.15 22.22 0.61 55.56 33.33 0.71 59.26 38.89 0.69 48.15 22.22 0.69 
4 120 39 159 43.59 15.38 0.58 53.85 30.77 0.65 43.59 15.38 0.50 71.79 57.69 0.87 74.36 61.54 0.84 
9 60 24 84 33.33 00.00 0.50 50.00 25.00 0.63 33.33 00.00 0.50 62.50 43.75 0.72 54.17 31.25 0.71 
11 30 15 45 46.67 20.00 0.60 53.33 30.00 0.65 66.67 50.00 0.75 73.33 60.00 0.79 73.33 60.00 0.77  

Mean 39.23 8.85 0.54 51.33 27.00 0.63 49.79 24.68 0.62 66.72 50.08 0.77 62.50 43.75 0.75  
a WLS = Weighted Least Squares Regression; PMVC = Converted Predicted Mean Vote; PCM = Personal Comfort Model; 6PMV = dry bulb temperature, radiant temperature, relative humidity, air speed, metabolic rate, and 

clothing level; Acc = accuracy; AUC = Area Under the Receiver Operating Characteristic Curve. 
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layer of the model was varied between 4, 5 and 6. Lastly, the batch size was varied between 2 and 8 data points. 
The models were trained using an input layer, a single hidden layer, and an output layer. In order to go from one layer to the next, 

the neurons compute a weighted sum of their inputs from the previous layer (Equations 1 and 3) and pass the result through a non- 
linear function, called the activation function [82]. The models in this study used Rectified Linear Unit (ReLU) [83] as the activation 
function between the input layer and the hidden layer (Equation (2)) and Softmax as the activation function between the hidden layer 
and the output layer (Equation (4)). The mathematical expressions of the models can be written in the following form: 

zj =
∑8

i=1
wij · xi + bj (1)  

yj = f
(
zj
)
= max

(
0, zj

)
(2)  

zk =
∑NJ

j=1
wjk · yj + bk (3)  

f ( z→)k =
ezk

∑3
o=1ezo

(4)  

where xi are the normalized data of the input variables, wij are the weights between the input and hidden neurons, bj are the bias values 
of the hidden neurons, and yj the output values of the activation functions (ReLU) in the hidden layer; while wjk are the weights 
between the hidden and output neurons, bk are the bias values of the output neurons, NJ is the number of hidden neurons, and f( z→)k 
are the outputs of the activation functions (Softmax) in the output layer (as probability distributions from 0 to 1 for each class). 

The Cross Entropy function was used to measure the error (LCE) of each classification rounds (Equation (5)): 

LCE = −
∑3

k=1
tk log f ( z→)k (5)  

where tk is the target probability for each class, and f( z→)k is the predicted probability for each class. 
Stochastic Gradient Descent was used as the optimizer algorithm to minimize LCE, with a momentum at 0.9 [65]. 
After each training round, the models’ performances were evaluated using the validation set. The performance indicators (detailed 

in section 2.7.) were then compared, and the hyperparameters associated with the best model performance were chosen (model se-
lection). Next, training and validation sets were merged into one dataset and the best hyperparameter settings from the previous step 
were used to fit a new model to this larger dataset. Finally, the test set was used to estimate the generalization performance of the 
model resulted from the previous step (model evaluation) [58]. More details of the modelling methodology used have been previously 
published [84]. 

2.6. Conversion of the PMV model for comparison 

To allow a further comparison between generalised and individualised models, the PMV index was calculated according to ASHRAE 
Standard 55–2020 [85] using each participants’ testing set. The PMV predictions on a thermal sensation 7-point-scale were trans-
formed to a 3-point thermal preference scale to enable a direct comparison with the personal thermal preference models. When PMV <
− 0.5 (i.e., less than ‘slightly cool’ to ‘cold’), the votes were labelled as ‘preferring to be warmer’; when − 0.5 < PMV <0.5 (i.e., 
‘neutral’), the votes were labelled as ‘no change’; and when PMV >0.5 (i.e., more than ‘slightly warm’ to ‘hot’), the votes were labelled 
as ‘preferring to be cooler’. The ±0.5 cut-offs represent the recommended limits for a 10% Predicted Percentage of Dissatisfied (PPD), 
as prescribed by ASHRAE Standard 55–2020 [85]. The transformed PMV index is referred to in this paper as PMVC. 

2.7. Performance indicators 

The performance indicators used during the personal comfort models’ tuning and evaluation, as well as when comparing them with 
the weighted linear regression model and the PMVC model, were the Accuracy, the Cohen’s Kappa Coefficient, and the Area Under the 
Receiver Operating Characteristic Curve (AUC). 

Accuracy was calculated by dividing the number of correct predictions by the total number of predictions. The Cohen’s Kappa 
Coefficient (К) [86] was calculated using Equation (6) and compensates the measurement of accuracy, by taking into account the 
agreements that can be attributed to random chance. It ranges from negative values to 1, where 1 means perfect agreement, 0 means no 
agreement other than what would be expected by chance, and negative values mean the agreement is worse than random. In this paper, 
the accuracy and the Cohen’s Kappa Coefficients are presented in percentages. 

К=
(рo − рe)

(1 − рe)
(6)  

where рo is the accuracy measure, and рe is the hypothetical probability of a chance agreement. 
To calculate the AUC, first, the Receiver Operating Characteristic Curve (ROC) was built by plotting the probability of a true 

positive versus the probability of a false positive rate for all possible discrimination thresholds, for each of the three thermal preference 
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classes using the ‘one versus the rest’ method. Equations 7 and 8 define the true positive rate (TPR) and the false positive rate (FPR): 

TPR=
TP

TP + FN
(7)  

FPR=
FP

FP + TN
(8)  

where TP (true positive) is the number of positive class correctly predicted in a binary classification model; FP (false positive) is the 
number of positive class incorrectly predicted; TN (true negative) is the number of negative class correctly predicted; and FN (false 
negative) is the number of negative class incorrectly predicted. 

Then, the area under the ROC was computed for each of the classes and averaged to obtain a single performance indicator. AUC is a 
measure frequently used in machine learning studies [87] and can vary between 0 and 1, where 0.5 denotes random guessing and 1 
indicates perfect agreement. It is important to highlight, however, that the AUC for the weighted linear regression model and for the 
PMVC model was calculated using a single pair of probability of true positive rate versus probability of false positive rate, since these 
models are not probabilistic classifiers and do not allow plotting of more than one discrimination threshold. 

The differences between the models’ performance, for each model type, were tested for statistical significance using Independent 
Samples t-tests. The level of statistical significance was set at p < 0.05. 

3. Results 

3.1. Weighted least squares regression analysis 

Fig. 3 presents the histogram of hand skin temperature measurements collected during the second monitoring period of the 11 
participants. Data outliers were found to be lower than or equal to 22.10 ◦C, and the mean hand skin temperature after the outliers 
were removed was 30.58 ◦C. 

According to the regression analysis, among the independent variables tested against skin temperature as the dependent variable, 
significant relationships were identified between skin temperature and dry bulb temperature, radiant temperature, clothing level and 
health perception. This was indicated by higher R-squared values (i.e., the coefficient of determination, indicating the percentage of 
the skin temperature variance that the independent variable explains), statistically significant independent variable coefficients (i.e., p 
< 0.05) and a general visual indication in the raw data scatter plots. The R-squared values, p-values, and raw data scatters, as well as 
the binned means and corresponding weighted linear regression lines and equations for each analysis are shown in Fig. 4. The variance 
(R-squared values) of the binned data have increased (because they are now based on the bin-mean values) but still serve as an in-
dicator of comparison between models for exploratory analysis. 

When fitting a weighted least squares linear regression model for thermal preference prediction using skin temperature as the 
predictor, the independent variable coefficient remained statistically significant (p = 0.001), validating the model for further analysis. 
Fig. 5 presents the model fit. The performance of this model in predicting individuals’ thermal preferences using the selected par-
ticipants’ testing datasets is presented in Section 3.2. 

The box plot of skin temperatures for each of the thermal preference categories, presented in Fig. 6, illustrates the same relationship 
between skin temperature and thermal preference for the general sample of 11 participants. Nevertheless, when analysing partici-
pants’ individual box plots, presented in Fig. 7, not only does this relationship differ among individuals, but it is also less evident than 
the case of the general sample, suggesting that an individualised analysis is required. Among the participants selected for the personal 
comfort models’ analysis, highlighted in grey in Fig. 7, ID11 presents the most evident correlation between skin temperature and 
thermal preference. This is indicated by skin temperature medians and means for each thermal preference category at distinctively 
different levels and in a linear descending order from ‘prefer to be cooler’ through to ‘prefer to be warmer’. The plots also show 
considerable range variations in skin temperatures across participants, emphasizing once again a need for a more individualised level 
of analysis. 

Fig. 3. Histogram of skin temperature measurements with indication of outliers identified.  
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3.2. Personal thermal comfort models and comparison between approaches 

Table 3 presents a summary of the predictive performance of the weighted least squares regression model (WLS), the converted 
predicted mean vote model (PMVC) and the personal comfort models (PCM) using the 3 different input combinations. The predictive 
performance is presented as the Accuracy, Cohen’s Kappa Coefficient and AUC for the testing dataset (i.e., the ‘never-before-seen’ 

Fig. 4. Regression analysis between skin temperature and dry bulb temperature, radiant temperature, air speed, relative humidity, clothing level, corrected metabolic 
rate and health perception. 

L. Arakawa Martins et al.                                                                                                                                                                                            



Journal of Building Engineering 51 (2022) 104357

12

dataset) of each participant. 
The accuracy of the personal thermal comfort models using skin temperature alone as the single predictor ranged from 33.33% to 

66.67%, with a mean of 49.79%. The Cohen’s Kappa indicator ranged from 0.00% to 50.00%, with a mean of 24.68%, and the AUC 
ranged from 0.5 to 0.75, with a mean of 0.62. These indicators suggest a relatively low performance, especially when considering 
individual AUC performances lower than 0.5 (i.e., worse than random guessing). 

When adding dry bulb temperature, radiant temperature, relative humidity, and air speed (i.e., environmental factors) and the 
metabolic rate and clothing level (i.e., behavioural factors) − the combination called in this paper the 6PMV variables − , the individual 
models’ performance increased, especially for ID04 and ID09, but not for ID01. The average accuracy increased to 66.72%, the average 
Cohen’s Kappa to 50.08% and the average AUC to 0.77. These results are also similar to related studies, such as the work of Liu et al. 
(2019) [30], which reported an average Cohen’s Kappa indicator of 24%, accuracy of 78% and AUC of 0.79 among a set personal 
models using physiological and environmental data. 

Including health perception produces a slight decline in the average and individual models’ performance indicators. This difference 
in averages, however, is not statistically significant (p > 0.05). With the inclusion of health perception as a predictor, the personal 
comfort models presented an average accuracy of 62.50%, an average Cohen’s Kappa Coefficient of 43.75% and an average AUC of 
0.75. From these results, the best performing personal thermal comfort models were the ones using physiological, environmental, and 
behavioural input variables. 

When analysing the generalised models, on average, the PMVC model predicted individual thermal preferences with an accuracy of 
51.33%, a Cohen’s Kappa indicator of 27.00%, and an AUC of 0.63. The WLS model presented an even lower performance, with a mean 
accuracy of 39.23%, a mean Cohen’s Kappa of 8.85%, and a mean AUC of 0.54 (i.e., slightly better than random guessing). On average, 
therefore, this represents a superior predictive performance of the individualised models using both environmental and personal 
variables when compared with the generalised approaches, as represented by Fig. 8. These differences in mean predictive performance 
are statistically significant (p < 0.05). 

It is also evident in Fig. 8 that ID04 and ID09’s personal thermal models using only skin temperature underperformed, even when 
compared with the generalised models. Exploring in more detail these lower performances, Fig. 9 shows the probability density of the 
distributions of the thermal preference categories depending on the 8 input variables involved in the study, built using Kernel Density 

Fig. 5. Weighted Least Squares Regression model for thermal preference prediction using skin temperature.  

Fig. 6. Box plot of skin temperature for each thermal preference category, for all participants (n = 470).  
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Estimation (KDE) [88]. When thermal preference categories have overlapping areas in these density plots, it suggests a participant is 
likely to prefer different thermal conditions when experiencing the same environmental conditions or having the same skin tem-
peratures. Therefore, overlapping areas can represent the presence of events that are harder for the models to distinguish and predict. 
When analysing the density plots for skin temperature for ID04 and ID09, it is evident from the overlapping areas that adding this 
single variable as a predictor of thermal preference might not be ideal for them and could potentially compromise the models’ pre-
dictive performance. ID11, on the other hand, has many fewer overlapping density regions for skin temperature, which could explain 
the higher performance of the personal model using this predictor. The skin temperature influence on thermal preference for ID11 has 
already been indicated by the box plot in Fig. 7. 

The density plots can also help explain the relatively low impact that the health perception variable had on all individual models. 
Furthermore, it is noted that the four participants analysed in detail, although having varying health perception throughout the 
monitoring study, were either not frail or had low levels of frailty (as presented in Table 1), which could have limited the range and 
variability of the data collected related to health and wellbeing perception. The quality of data could also have been affected by the 
self-reported nature of the health assessment. Finally, although health perception could have impacted these participants’ thermal 
preference, the weight of the other input variables certainly prevailed. This is evident for ID04 and ID09, for which the environmental 
factors played a much more distinguishable role in the models. In addition, it is possible to extract from the plots the reason for the 
higher impact that adding environmental factors such as dry bulb and radiant temperatures had for ID04 and ID09 than it had for ID01. 

When analysing how well the personal comfort models and generalised alternatives predict each of the three thermal preference 
categories, shown in Fig. 10, the results suggest different misclassification patterns for each modelling method. The personal comfort 
models tended to present a higher predictive performance for ‘prefer to be cooler’ and ‘prefer to be warmer’ than for ‘prefer to be 
neutral’. This meant that a preference for no change was being misclassified as preferring change more frequently than other possible 
misclassification options, which, in real scenarios where the models are used to control cooling and heating systems, would mean 
increasing the probability of unnecessarily cooling or heating the occupant’s space. The generalised WLS model, however, presented 
the opposite tendency. This model’s power for predicting the central category (‘prefer no change’) was generally better than its power 
for predicting the extremity classes (‘prefer to be cooler’ and ‘prefer to be warmer’). This meant that a preference for change was 
misclassified as either preferring no change or preferring change in the wrong direction, more frequently than other possible 
misclassification options, which, in real scenarios, would mean leaving occupants either unattended during extreme events, or even 
more dissatisfied. 

4. Discussion 

The results of this study show that personal thermal comfort models can be considered appropriate tools to predict older people’s 
thermal preferences, outperforming generalised approaches such as the PMVC or a weighted regression model driven by skin tem-
perature. It is also evident that, although to different degrees for each individual, hand skin temperature can be an indicator of thermal 
preferences for the cohort analysed. In addition, combining this physiological measurement with other environmental factors, espe-
cially air temperature and radiant temperature, along with behavioural factors, such as clothing level, has been proven to be beneficial 
for the model’s predictive performance, although the best predictor combination may differ across individual older adults. 

The key next step would be merging the following elements:  

(1) physiological sensing technologies for data collection;  
(2) individualised predicting models for evaluation and decision-making;  
(3) and wearable comfort systems for autonomous and automatic action. 

Fig. 7. Box plots of skin temperatures for each thermal preference category, for each individual participant. Selected participants for personal thermal comfort 
modelling are highlighted in grey. 

Fig. 8. Comparison between AUC for different models.  
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As physiological sensing could collect real-time proxy for comfort without the need for occupant feedback, individualised models 
could use this real-time proxy to allow more reliable predictions for change, and pass them to wearable actuators, which, in turn, could 
enable direct conditioning without the need for any manual activation. Although it could be beneficial for all ages, this automation 
process would particularly be relevant for older adults, enabling thermal comfort management without reliance on others, which is key 
for older people maintaining independence in their own homes. 

Physiological sensing devices have been researched extensively over the last decades, with a wide range already available on the 
market. Sensors mounted on smart watches are one of the main solutions for physiological and environmental sensing in real time [89, 
90]. On the other hand, heated clothing (e.g., gloves, socks, vests), neck and shoulder fans (also called wearable air-conditioning) [91], 
or heating or cooling wrist-bands [92] are common options for wearable actuators. Nevertheless, although hypothesized [30], 
combining the 3 facets, i.e., wearable sensing (data collection), prediction (evaluation) and conditioning (autonomous and automatic 
action), in a single solution is yet to be explored. In addition, these independent products tend to target a general and relatively 
homogeneous population, without considering the specific thermal comfort requirements and associated physiological responses of 
older people. 

Nevertheless, it is important to highlight that the use of personal thermal comfort models, using not only physiological variables but 
also any type of input variable, requires non-interrupted and ideally infinite data collection, as well as constant update and re-learning 
to maintain accuracy and relevance through time for each individual. Furthermore, a wide range of thermal and situational conditions 
are essential to create enough deviations in the data collected to allow a balanced dataset and a statistically accurate and reliable 
analysis. Although real-time thermal comfort proxy data collection is currently being explored in studies involving personal comfort 
systems (PCS) [67], these requirements involving data size and structure, related directly to how data is collected, remain the main 
challenge of personal comfort models. Further efforts on solving these data collection requirements are needed in order to move 
personal comfort models from a mere research methodology paradigm to a real practical solution, feasible to be deployed. 

Another point of consideration is that the monitoring of physiological factors, either through the use of wearable devices or non- 
contact sensors such as the ones used in this study, poses additional cost and data privacy concerns in comparison with stand-alone 
environmental sensors, as already highlighted by Aryal and Becerik-Gerber (2019) [23]. Choosing the best combination of inputs 
for the personal models relies, therefore, not only on the type of measurements’ impact on predictive performance, but also on 

Fig. 9. Density plots for input variables used, for each thermal preference category, for each participant. Variables are normalized from 0 to 1, according to maximums 
and minimums presented in Table 2. 
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individuals’ capability to afford the sensing and privacy costs. In addition, despite recent efforts to decrease the intrusiveness of sensor 
data collection by using wearable devices or PCS [26,30,67], personalised modelling would still require initial occupant feedback on 
their thermal preferences to allow minimum model training. Although the disruptions caused by monitoring would be an issue for all 
age cohorts, they may introduce additional barriers for frailer older adults’ participation. 

Furthermore, this study highlighted an important modelling limitation, still not entirely explored by studies on personal thermal 
comfort, which is the misclassification cost of thermal preference in general and specifically for older adults. The misclassification of 
each thermal preference category may represent different application consequences in real scenarios. While unnecessarily cooling or 
heating an occupant’s space by misclassifying a preference for no change may result in an increase in energy use, leaving occupants 
unattended during extreme events by misclassifying a preference for change could result in heat related illnesses. In this context, not 
only are these misclassification costs complex to estimate, but they also involve different domains (e.g., energy use costs versus health 
costs). Applying different weights for each type of misclassification is potentially a more appropriate way to measure thermal pref-
erence models’ performance than any of the indicators used so far (e.g., accuracy, Cohen’s Kappa Coefficient or AUC). Lee et al. (2019) 
[78], for instance, have presented an alternative for generic metrics. Although they did not determine the exact cost for each case of 
misclassification, they estimated the cost ratio between cases. By assessing three cost matrices, a thermal satisfaction oriented, an 
energy-saving oriented and an equally weighted cost matrix, the authors explored different domains of cost (i.e., energy cost versus 
comfort cost) and highlighted that, apart from predictive performances, selecting the optimal model would depend on the intended 
application. The principles applied by the authors are in line with a sub-field of machine learning called cost-sensitive learning [93], 
and could be further investigated in future studies to deal with the un-even costs of thermal preference misclassification. Moreover, 

Fig. 10. Models’ predictive performance for each thermal preference category, for each participant.  
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further studies should analyse whether the thermal preference misclassification costs differ between younger and older adults, 
considering the health, living and financial arrangements of each cohort. 

5. Limitations and future studies 

It is important to highlight that this study has limitations. Firstly, the data collection involving skin temperature was conducted 
between the months of September and February, covering only a warm and hot season in South Australia. Further data collection 
periods in cool and cold seasons are required to allow a broader understanding of the effects of thermal exposures on the skin tem-
perature of older adults. 

Secondly, although field studies provide a more accurate representation of reality than controlled climate chamber experiments, 
their use in this study also posed challenges to dataset sizes and distributions. Monitoring real thermal environments, where conditions 
vary without the influence of researchers, naturally resulted in imbalanced datasets, impacting the dataset sizes available for 
modelling, especially once undersampling was conducted. The authors, therefore, acknowledge the relevance of exploring the 
development of personal thermal comfort models under imbalanced dataset scenarios, especially considering the likelihood of these 
scenarios in thermal comfort field research. Furthermore, future studies by the authors plan to address other balancing strategies and 
overfitting reduction (e.g., dropout or batch regularization) in order to investigate the effectiveness of different sampling techniques in 
this specific context. 

It is also noteworthy that the first data collection period was concluded in October 2019, before the declaration of COVID-19 as a 
pandemic in March 2020, and was not affected by the pandemic. The second data collection period, on the other hand, happened 
between September 2020 and February 2021. During this period, however, the State of South Australia implemented a strict response 
plan, which resulted in a relative low number of reported COVID-19 cases. In addition, none of the participants reported contracting 
the disease during or before this data collection. Normal activities, including research visits within the State were largely unaffected. 
Hence, the impacts of the pandemic on the data size or quality (especially related to health perception) were considered minimal by the 
authors. Nevertheless, an in-depth analysis of the effects of the pandemic on the cohort could be part of the scope of future studies. 

Furthermore, although the older participants involved in this study represent a diverse cohort in terms of body composition, health 
and living environment, other socio-cultural and economic factors need to be addressed to build a more holistic image of their di-
versity. Moreover, the four participants whose individual dataset sizes allowed the development of personal thermal comfort models 
happened to be all female. The development of individual models for males is, therefore, required in future studies. In addition, 
although the models involve different environmental and personal inputs, other relevant input variables could be explored, such as 
seasonal thermal expectations or other physiological data, such as heart rates. Moreover, given the nature of the study, only self- 
reported health perceptions were used as inputs, which might lack the accuracy of records from healthcare providers. 

Regarding the modelling methodology, it is important to highlight that the binning approach used for continuous variables in the 
weighted regression estimation can result in loss of information, depending on the granularity of the increments chosen. In addition, 
the use of k-Nearest-Neighbours for missing value imputation can impact the overall data structure and further studies are required to 
analyse the risk of distorting estimates despite an apparent optimal performance on other quality metrics. The impact of missing value 
imputation using data across two separate collection periods, although considered minimal in this study, should also be further 
analysed. Furthermore, other normalization techniques and standardization techniques could have been applied to determine the 
central tendency of the ordinal (and discrete) variables used in the models. Further studies will be developed by the authors to 
comprise not only different pre-processing techniques according to variable type, but also other methods for ordinal variable encoding. 

Finally, the PMV scale conversion conducted in this study poses limitations in the comparisons, since thermal sensation and thermal 
preference scales cannot be considered interchangeable for all individuals. While neutral sensation and thermal preference for no 
change can be experienced simultaneously, it is still necessary to account for preferred sensations other than neutral. An alternative 
could be analysing different conversion rules for each individual participant, depending on their thermal sensation and thermal 
preference answers. 

6. Conclusion 

This paper presents an individualised modelling approach to predict older adults’ thermal preferences in their living environments, 
based on environmental, physiological, and behavioural data, comparing the models’ predictive performance with conventional 
aggregate modelling methods. From the analysis conducted, the study has pointed to the following findings and future pathways:  

• When analysing the aggregate dataset, strong relationships were identified between skin temperature and dry bulb temperature, 
radiant temperature, clothing level and health perception for the older adults involved.  

• Fitting a weighted least squares regression model for thermal preference prediction using skin temperature as the single predictor 
resulted in a R-squared value of 0.346 and a statistically significant independent variable coefficient (p = 0.001).  

• On average, the PMVC model predicted individual thermal preferences with an accuracy of 51.33%, a Cohen’s Kappa indicator of 
27.00%, and an AUC of 0.63. The WLS model presented a lower performance, with a mean accuracy of 39.23%, a mean Cohen’s 
Kappa of 8.85%, and a mean AUC of 0.54.  

• On average, the personal thermal comfort models using skin temperature as the single predictor showed an accuracy of 49.79%, a 
Cohen’s Kappa indicator of 24.68%, an AUC of 0.62.  

• When skin temperature data are combined with dry bulb temperature, radiant temperature, relative humidity, air speed (i.e., 
environmental factors), metabolic rate and clothing level (i.e., behavioural factors), the average accuracy of the prediction 
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increased to 66.72%, the average Cohen’s Kappa to 50.08% and the average AUC to 0.77. This represents a superior predictive 
performance of the individualised models, using both environmental and personal variables, when compared with the generalised 
approaches.  

• Including health perception as an input variable represents a slight decline in the average model’s performance, but this difference 
is not statistically significant (p > 0.05).  

• The results suggested different misclassification patterns for each modelling method and require further investigation into thermal 
preference misclassification costs in the context of older adults. 

The key next step would be to combine physiological sensing technologies, individualised predicting models and wearable comfort 
systems. Although it would be beneficial for all ages, this automation process could be particularly relevant to assist older adults to 
maintain independence in their own homes. 
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[7] M. André, R. De Vecchi, R. Lamberts, User-centered environmental control: a review of current findings on personal conditioning systems and personal comfort 

models, Energy Build. 222 (2020), https://doi.org/10.1016/j.enbuild.2020.110011. 
[8] L. Arakawa Martins, V. Soebarto, T. Williamson, A systematic review of personal thermal comfort models, Build. Environ. 207 (2022), https://doi.org/10.1016/ 

j.buildenv.2021.108502. 
[9] F. Jazizadeh, A. Ghahramani, B. Becerik-Gerber, T. Kichkaylo, M. Orosz, User-led decentralized thermal comfort driven HVAC operations for improved 

efficiency in office buildings, Energy Build. 70 (2014) 398–410, https://doi.org/10.1016/j.enbuild.2013.11.066. 
[10] L. Arakawa Martins, T. Williamson, H. Bennetts, V. Soebarto, The use of building performance simulation and personas for the development of thermal comfort 

guidelines for older people in South Australia, J. Build. Perform. Simul. 15 (2) (2022) 149–173, https://doi.org/10.1080/19401493.2021.2018498. 
[11] A. Ghahramani, F. Jazizadeh, B. Becerik-Gerber, A knowledge based approach for selecting energy-aware and comfort-driven HVAC temperature set points, 

Energy Build. 85 (2014) 536–548, https://doi.org/10.1016/j.enbuild.2014.09.055. 
[12] X. Shan, E.-H. Yang, J. Zhou, V.W.C. Chang, Human-building interaction under various indoor temperatures through neural-signal electroencephalogram (EEG) 

methods, Build. Environ. 129 (2018) 46–53, https://doi.org/10.1016/j.buildenv.2017.12.004. 
[13] K. Konis, M. Annavaram, The Occupant Mobile Gateway: a participatory sensing and machine-learning approach for occupant-aware energy management, 

Build. Environ. 118 (2017) 1–13, https://doi.org/10.1016/j.buildenv.2017.03.025. 
[14] A. Ghahramani, C. Tang, B. Becerik-Gerber, An online learning approach for quantifying personalized thermal comfort via adaptive stochastic modeling, Build. 

Environ. 92 (2015) 86–96, https://doi.org/10.1016/j.buildenv.2015.04.017. 
[15] D. Daum, F. Haldi, N. Morel, A personalized measure of thermal comfort for building controls, Build. Environ. 46 (1) (2011) 3–11, https://doi.org/10.1016/j. 

buildenv.2010.06.011. 
[16] M. Pazhoohesh, C. Zhang, A satisfaction-range approach for achieving thermal comfort level in a shared office, Build. Environ. 142 (2018) 312–326, https://doi. 

org/10.1016/j.buildenv.2018.06.008. 
[17] J.J. Aguilera, O.B. Kazanci, J. Toftum, Thermal adaptation in occupant-driven HVAC control, J. Build. Eng. 25 (2019), https://doi.org/10.1016/j. 

jobe.2019.100846. 
[18] Q. Zhao, Y. Zhao, F. Wang, Y. Jiang, Y. Jiang, F. Zhang, Preliminary study of learning individual thermal complaint behavior using one-class classifier for indoor 

environment control, Build. Environ. 72 (2014) 201–211, https://doi.org/10.1016/j.buildenv.2013.11.009. 
[19] W. Liu, Z. Lian, B. Zhao, A neural network evaluation model for individual thermal comfort, Energy Build. 39 (10) (2007) 1115–1122, https://doi.org/10.1016/ 

j.enbuild.2006.12.005. 

L. Arakawa Martins et al.                                                                                                                                                                                            

http://refhub.elsevier.com/S2352-7102(22)00370-9/sref1
http://refhub.elsevier.com/S2352-7102(22)00370-9/sref2
http://refhub.elsevier.com/S2352-7102(22)00370-9/sref3
https://doi.org/10.1016/j.buildenv.2018.01.023
https://doi.org/10.1016/j.jclepro.2021.127685
https://doi.org/10.1016/j.enbuild.2020.110392
https://doi.org/10.1016/j.enbuild.2020.110392
https://doi.org/10.1016/j.enbuild.2020.110011
https://doi.org/10.1016/j.buildenv.2021.108502
https://doi.org/10.1016/j.buildenv.2021.108502
https://doi.org/10.1016/j.enbuild.2013.11.066
https://doi.org/10.1080/19401493.2021.2018498
https://doi.org/10.1016/j.enbuild.2014.09.055
https://doi.org/10.1016/j.buildenv.2017.12.004
https://doi.org/10.1016/j.buildenv.2017.03.025
https://doi.org/10.1016/j.buildenv.2015.04.017
https://doi.org/10.1016/j.buildenv.2010.06.011
https://doi.org/10.1016/j.buildenv.2010.06.011
https://doi.org/10.1016/j.buildenv.2018.06.008
https://doi.org/10.1016/j.buildenv.2018.06.008
https://doi.org/10.1016/j.jobe.2019.100846
https://doi.org/10.1016/j.jobe.2019.100846
https://doi.org/10.1016/j.buildenv.2013.11.009
https://doi.org/10.1016/j.enbuild.2006.12.005
https://doi.org/10.1016/j.enbuild.2006.12.005


Journal of Building Engineering 51 (2022) 104357

19

[20] Q. Zhao, Y. Zhao, F. Wang, J. Wang, Y. Jiang, F. Zhang, A data-driven method to describe the personalized dynamic thermal comfort in ordinary office 
environment: from model to application, Build. Environ. 72 (2014) 309–318, https://doi.org/10.1016/j.buildenv.2013.11.008. 

[21] Y.-J. Kim, Optimal price based demand response of HVAC systems in multizone office buildings considering thermal preferences of individual occupants 
buildings, IEEE Trans. Ind. Inf. 14 (11) (2018) 5060–5073, https://doi.org/10.1109/tii.2018.2790429. 

[22] D. Fay, L. O’Toole, K.N. Brown, Gaussian Process models for ubiquitous user comfort preference sampling; global priors, active sampling and outlier rejection, 
Pervasive Mob. Comput. 39 (2017) 135–158, https://doi.org/10.1016/j.pmcj.2016.08.012. 

[23] A. Aryal, B. Becerik-Gerber, A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal 
camera and ambient temperature sensor, Build. Environ. 160 (2019), https://doi.org/10.1016/j.buildenv.2019.106223. 

[24] A. Aryal, B. Becerik-Gerber, Thermal comfort modeling when personalized comfort systems are in use: comparison of sensing and learning methods, Build. 
Environ. 185 (2020), https://doi.org/10.1016/j.buildenv.2020.107316. 

[25] W. Jung, F. Jazizadeh, T.E. Diller, Heat flux sensing for machine-learning-based personal thermal comfort modeling, Sensors 19 (17) (2019), https://doi.org/ 
10.3390/s19173691. 
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B. Ethics approval 

  



Our reference 32729

07 March 2018

Professor Veronica Soebarto  
School of Architecture & Built Environment

Dear Professor Soebarto

ETHICS APPROVAL No: H-2018-042
PROJECT TITLE: Improving the thermal environment of housing for older Australians

The ethics application for the above project has been reviewed by the Human Research Ethics Committee and is deemed
to meet the requirements of the National Statement on Ethical Conduct in Human Research (2007).

You are authorised to commence your research on: 07/03/2018
The ethics expiry date for this project is: 31/03/2021

NAMED INVESTIGATORS:

Chief Investigator: Professor Veronica Soebarto

Associate Investigator: Professor Dino Pisaniello

Associate Investigator: Dr Alana Hansen

Associate Investigator: Professor Terence Williamson

Associate Investigator: Associate Professor Jian Zuo

Associate Investigator: Professor Renuka Visvanathan

Associate Investigator: Dr Helen Bennetts

Associate Investigator: Professor Joost van Hoof

CONDITIONS OF APPROVAL: Thank you for the detailed response dated 23.2.18 and 2.3.18 to the matters raised by the
Committee.

Ethics approval is granted for three years and is subject to satisfactory annual reporting. The form titled Annual Report on
Project Status is to be used when reporting annual progress and project completion and can be downloaded at
http://www.adelaide.edu.au/research-services/oreci/human/reporting/. Prior to expiry, ethics approval may be extended for
a further period.

Participants in the study are to be given a copy of the information sheet and the signed consent form to retain. It is also a
condition of approval that you immediately report anything which might warrant review of ethical approval including:

serious or unexpected adverse effects on participants,
previously unforeseen events which might affect continued ethical acceptability of the project,
proposed changes to the protocol or project investigators; and
the project is discontinued before the expected date of completion.

Yours sincerely,

RESEARCH SERVICES 
OFFICE OF RESEARCH ETHICS, COMPLIANCE 
AND INTEGRITY 
THE UNIVERSITY OF ADELAIDE

LEVEL 4, RUNDLE MALL PLAZA 
50 RUNDLE MALL 
ADELAIDE SA 5000 AUSTRALIA

TELEPHONE +61 8 8313 5137
FACSIMILE +61 8 8313 3700
EMAIL hrec@adelaide.edu.au

CRICOS Provider Number 00123M



Professor Paul Delfabbro  
Convenor

The University of Adelaide
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Our reference 32729

31 July 2019

Professor Veronica Soebarto 
School of Architecture & Built Environment

Dear Professor Soebarto

ETHICS APPROVAL No: H-2018-042
PROJECT TITLE: Improving the thermal environment of housing for older Australians

Thank you for providing the amended application dated the 31st of July 2019. The request to include an
additional questionnaire and body composition testing with the consent of participants has been approved

The ethics amendment for the above project has been reviewed by the Human Research Ethics Committee
and is deemed to meet the requirements of the National Statement on Ethical Conduct in Human Research
2007 (Updated 2018).

You are authorised to commence your research on: 07/03/2018
The ethics expiry date for this project is: 31/03/2021

NAMED INVESTIGATORS:

Chief Investigator: Professor Veronica Soebarto

Associate Investigator: Professor Dino Pisaniello

Associate Investigator: Dr Alana Hansen

Associate Investigator: Professor Terence Williamson

Associate Investigator: Professor Jian Zuo

Associate Investigator: Professor Renuka Visvanathan

Associate Investigator: Dr Helen Bennetts

Associate Investigator: Professor Joost van Hoof

Student - Postgraduate
Doctorate by Research (PhD):

Miss Larissa Arakawa Martins

Ethics approval is granted for three years and is subject to satisfactory annual reporting. The form titled Annual
Report on Project Status is to be used when reporting annual progress and project completion and can be
downloaded at http://www.adelaide.edu.au/research-services/oreci/human/reporting/. Prior to expiry, ethics
approval may be extended for a further period.

RESEARCH SERVICES 
OFFICE OF RESEARCH ETHICS, COMPLIANCE
AND INTEGRITY
THE UNIVERSITY OF ADELAIDE

LEVEL 4, RUNDLE MALL PLAZA
50 RUNDLE MALL
ADELAIDE SA 5000 AUSTRALIA

TELEPHONE +61 8 8313 5137
FACSIMILE +61 8 8313 3700
EMAIL hrec@adelaide.edu.au

CRICOS Provider Number 00123M
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Participants in the study are to be given a copy of the information sheet and the signed consent form to retain.
It is also a condition of approval that you immediately report anything which might warrant review of ethical
approval including:

serious or unexpected adverse effects on participants,
previously unforeseen events which might affect continued ethical acceptability of the project,
proposed changes to the protocol or project investigators; and
the project is discontinued before the expected date of completion.

Yours sincerely,

The University of Adelaide



Our reference 32729

09 September 2020

Professor Veronica Soebarto 
School of Architecture & Built Environment

Dear Professor Soebarto

ETHICS APPROVAL No: H-2018-042
PROJECT TITLE: Improving the thermal environment of housing for older Australians

Thank you for the revised version of your amended ethics application, submitted on the 7th of September
2020, for the addition of a skin-temperature sensor test to be appended to the follow-up study. This
amendment has been approved.

The ethics amendment for the above project has been reviewed by the Human Research Ethics Committee
and is deemed to meet the requirements of the National Statement on Ethical Conduct in Human Research
2007 (Updated 2018).

You are authorised to commence your research on: 07/03/2018
The ethics expiry date for this project is: 31/03/2022

NAMED INVESTIGATORS:

Chief Investigator: Professor Veronica Soebarto

Associate Investigator: Professor Dino Pisaniello

Associate Investigator: Dr Alana Hansen

Associate Investigator: Professor Terence Williamson

Associate Investigator: Professor Jian Zuo

Associate Investigator: Professor Renuka Visvanathan

Associate Investigator: Dr Helen Bennetts

Associate Investigator: Professor Joost van Hoof

Student - Postgraduate
Doctorate by Research (PhD):

Miss Larissa Arakawa Martins

Ethics approval is granted for three years and is subject to satisfactory annual reporting. The form titled Annual
Report on Project Status is to be used when reporting annual progress and project completion and can be
downloaded at http://www.adelaide.edu.au/research-services/oreci/human/reporting/. Prior to expiry, ethics

RESEARCH SERVICES 
OFFICE OF RESEARCH ETHICS, COMPLIANCE
AND INTEGRITY
THE UNIVERSITY OF ADELAIDE

LEVEL 4, RUNDLE MALL PLAZA
50 RUNDLE MALL
ADELAIDE SA 5000 AUSTRALIA

TELEPHONE +61 8 8313 5137
FACSIMILE +61 8 8313 3700
EMAIL hrec@adelaide.edu.au

CRICOS Provider Number 00123M



approval may be extended for a further period.

Participants in the study are to be given a copy of the information sheet and the signed consent form to retain.
It is also a condition of approval that you immediately report anything which might warrant review of ethical
approval including:

serious or unexpected adverse effects on participants,
previously unforeseen events which might affect continued ethical acceptability of the project,
proposed changes to the protocol or project investigators; and
the project is discontinued before the expected date of completion.

Yours sincerely,

Professor Paul Delfabbro 
Convenor

The University of Adelaide
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C. Participant consent form 

  



 

 

CONSENT FORM 

1. I have read the attached Information Sheet and agree to take part in the following research 
project: 

Title: Improving the thermal environment of housing for older Australians 

Ethics Approval 
Number: 

 H-2018-042 

2. I have had the project, so far as it affects me, fully explained to my satisfaction by the research 
worker. My consent is given freely. 

3. I have been given the opportunity to have a member of my family or a friend present while the 
project was explained to me. 

4. Although I understand the purpose of the research project it has also been explained that 
involvement may not be of any benefit to me. 

5. I have been informed that, while information gained during the study may be published, I will not 
be identified and my personal results will not be divulged. 

6. I understand that I am free to withdraw from the project at any time. 

7. I agree to the discussion being audio recorded.  Yes  No  

8. I wish to receive a copy of the discussion.  Yes  No  

9. I agree to the interior and exterior of my house being photographed.  Yes  No  

10. I agree to provide my household’s energy use records.  Yes  No  

11. If I am unable to provide information about my household’s energy use I agree to give consent 
to the researcher to obtain such information from my utility company. 

  Yes  No  

12. I am aware that I should keep a copy of this Consent Form, when completed, and the attached 
Information Sheet. 

Participant to complete: 

Name:  _____________________ Signature: _______________________  Date: __________  

Researcher/Witness to complete: 

I have described the nature of the research to _______________________________________  
  (print name of participant) 

and in my opinion she/he understood the explanation. 

Signature:  __________________ Position: _________________________  Date: __________  
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D. Participant info sheet 



 

 

 

IMPROVING THE THERMAL ENVIRONMENT 

OF HOUSING FOR OLDER AUSTRALIANS - 

Household monitoring  

The 3-year project funded by 

the Austral ian Research 

Council ,  Improving the thermal 

environment of housing for 

older Austral ians  (ARC 

DP180102019) explores the 

connection between older 

people ’s  well-being and the 

thermal condit ions in  their  

homes.  

Main aims of project 

 To understand the qualities of 

the living environment of older 

South Australians. 

 To investigate the thermal 

environment of houses and the 

occupants’ responses and 

behaviours during hot and cold 

weather. 

 To understand the relationship 

between weather, the house 

construction and design, and 

the occupants’ comfort, well-

being and home energy use. 

 To develop planning, design 

and operational guidelines to  

 

achieve thermal comfort in 

homes to support older people 

living independently.  

(‘Older’ refers to those aged 65 or 

over) 

To help achieve these aims, we 

would like to know about the 

conditions of your house, how you 

achieve thermal comfort at home, 

your use of heating and cooling 

appliances, and how this impacts 

your energy use (and costs) as well 

as your health and well-being. 

The research team 

The project is being undertaken by 

the School of Architecture and 

Built Environment together with 

the School of Public Health from 

The University of Adelaide in 

conjunction with a Partner 

Investigator from The Hague 

University of Applied Sciences, The 

Netherlands, and the Director of 

the Aged and Extended Care 

Service at The Queen Elizabeth 

Hospital.  

The project has approval from the 

University of Adelaide Human 

Research Ethics Committee: 

Approval number H-2018-042. 

Household 

monitoring 

An important aspect of the 

research is gathering data about 

the internal conditions (humidity, 

temperature, air movement) in 60 

houses across SA where older 

people live independently.  

The conditions in the homes will 

be combined with data about the 

occupants’ comfort and their 

preferences, energy use and bills 

as well as information on their 

health and well-being. 

The information gathered will be 

used to recommend to authorities 

possible economical 

improvements to houses that 

allow people to happily age-in-

place.  



2 The University of Adelaide 

What will I be asked 

to do? 

Interview 

Two members of the research 

team will visit your home to install 

the data loggers and conduct an 

interview with you and other 

members of the household.  

The researchers will also collect 

information about the layout and 

construction of your house and, 

with your consent, take 

photographs of the house. 

The interview will take about 30 

minutes with questions about how 

you operate your house (e.g. use 

of heating and cooling, opening of 

windows) and your general health 

and well-being.  

With your permission, an audio 

recording will be made of the 

interview. Afterwards we can 

provide a transcribed copy of the 

interview if you wish. 

House monitoring 

Following the interview, the 

researchers will install small data 

loggers to monitor the thermal 

conditions in the main living room 

and main bedroom of your house.  

The loggers will record the 

conditions every 30 minutes, for 

up to 9 months covering a period 

of summer, winter and an in-

between season.  

 

 

 

 

Data loggers 

The data logger to be placed in 

your main living room will look like 

the one illustrated in Figure 1.  

The round ball (size of a ping pong 

ball) is to measure radiant 

temperature, and the small stick 

(as long as a pen) is to measure 

the air speed in the room. Other 

sensors will measure humidity, air 

temperature, VOC, CO and CO2.   

The loggers are battery operated 

and do not require any external 

connections and pose no health 

risks that we are aware of. To 

illustrate how small the data 

logger is relative to your furniture, 

please see Figure 2 for an 

example. The logger is the one on 

the corner table between the 

couches.  

This logger needs to stay in the 

living room for the entire 

monitoring period. In discussion 

with the researchers it will be 

placed in a location that suits you. 

A different data logger will be used 

in the bedroom (Figure 3) and is 

generally fixed to a vertical surface 

with tape. This one just measures 

air temperature and humidity. 

The researchers may need to 

come back to your house during 

the 9-month period to replace the 

batteries and they will return to 

collect the loggers at the end of 

the monitoring period 

 

 

 

.  

 

 

Figure 1: Living room data logger 
 
 

 

 

Figure 2. Data logger (on the corner 

table between the sofas)   

 

 

 

Figure 3: Bedroom data logger 
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Thermal comfort survey 

During the 9 month period that 

the data loggers are installed, you 

will be asked to answer a thermal 

comfort survey at least twice a 

week. The more you respond to 

the survey, the more information 

we can learn from you. The survey 

will be available on an electronic 

notepad/tablet that will be 

provided to you (see below).  

 

 
Figure 4. Survey tablet 

The survey tablet does not need to 

stay in the same location the 

whole time. It can be stored away 

and brought out when you are 

doing the survey.  

The survey will consist of about 12 

simple questions about how you 

are feeling and whether you are 

using heating or cooling at the 

time. You touch the screen to 

record your response.  

The survey tablet and the data 

logger will be synchronised to 

allow the researchers to match the 

conditions in the house with the 

time that the survey is done.  

The internal conditions in the 

house will also be matched with 

external weather data obtained via 

the Bureau of Meteorology to 

allow the researchers to 

investigate how the house 

performs in different weather 

conditions. 

Energy bills 

With your consent we will look at 

your energy bills for the previous 3 

years, if available, or at least for 

the previous year, to estimate how 

much energy has been used for 

heating and cooling. If you don’t 

have the bills we will ask your 

permission to get them from your 

utility company. 

What are the 

benefits for me? 

Your participation will contribute 

to the development of policies and 

guidelines that will directly affect 

older people. You will also have 

the opportunity to discuss any 

issues that you think are relevant 

to thermal comfort in housing for 

older people.  

Should you be interested, we will 

also send you regular brief 

summaries from the indoor 

monitoring results for your house. 

Can I withdraw from 

the project? 

Participation in this project is 

completely voluntary. Even if you 

agree to participate, you can with-

draw from the study at any time. 

What will happen to 

my information? 

Your personal information and 

data collected will be held 

confidentially and your name will 

not be used in any analysis and 

publication from the study.  

When the audio recording is 

transcribed, your name will be 

replaced by a code.  

Your house will be identified by a 

code and no information about 

the address of the house will be 

used in any data analysis or 

publication of results. 

Who do I contact if I 

have questions 

about the project? 

For any information regarding this 

project, contact: 

Professor Veronica Soebarto 

(Principal Investigator):  

Phone 8313 5695 / email: 

veronica.soebarto@adealaide.edu.au  

Or Dr Helen Bennetts:  

Phone 0466 552 071 / email: 

helen.bennetts@adelaide.edu.au 
 

If you wish to speak with an 

independent person regarding a 

concern or complaint, the 

University’s policy on research 

involving human participants, or 

your rights as a participant, please 

contact the Human Research Ethics 

Committee’s Secretariat:  

Phone: +618 8313 6028  

Email: hrec@adelaide.edu.au 

Post: Level 4, Rundle Mall Plaza, 50 

Rundle Mall, ADELAIDE SA 5000  

Any complaint or concern will be 

treated in confidence and fully 

investigated. You will be informed of 

the outcome. 

The University of Adelaide SA 5005 Australia 

TELEPHONE +6 8 8313 7335 

WEBSITE adelaide.edu.au 

CRICOS 00123M  

 

mailto:veronica.soebarto@adealaide.edu.au
mailto:helen.bennetts@adelaide.edu.au


 

 

 

IMPROVING THE THERMAL ENVIRONMENT 

OF HOUSING FOR OLDER AUSTRALIANS – 

Additional questionnaire and body 

composition assessment

Further information 

Since we started the house 

monitoring study, we have 

identified some additional factors 

that we think are important for 

understanding people’s thermal 

comfort and well-being. These are: 

 How people use outdoor spaces 

such as those around the house 

(e.g. gardens, courtyards, decks) 

and in the local neighbourhood; 

 People’s general health; 

 Individual body composition. 

What is body 

composition? 

Body composition is used to 

describe the amount and 

distribution of the body’s 

components including body water, 

fat, muscle and bone mass. 

Recent studies have suggested 

that body composition is an 

important aspect of the body’s 

ability to regulate temperature. 

Because of that, we are interested 

in whether this may influence 

people’s thermal sensations and 

perceptions. 

What will I be asked 

to do? 

At the end of the monitoring 

period, our researchers will visit 

your house to retrieve the 

equipment that was installed 

earlier this year. 

During this visit, with your 

consent, we will ask you to answer 

some questions about your use of 

outdoor spaces. We will also ask 

you to answer a quick 

questionnaire about your health 

that will allow us to calculate an 

individual’s Frailty Score. 

This will take approximately 15 

minutes. 

We would then like to measure 

your body composition. To do this, 

you will be asked to remove your 

shoes and socks and we will 

measure your height. You will then 

be asked to step on a scale, which 

quickly and automatically 

measures the body composition. 

The Body Composition Scale is 

similar to those used by athletes 

and in gyms by people 

undertaking regular exercise. It 

measures: 

 Body weight; 

 Body water percentage; 

 Body fat percentage; 

 Muscle mass; 

 Bone mass. 

If you have a pacemaker or any 

mechanical implants, we will only 

measure your height and weight. 

The body composition 

measurement will take less than 

10 minutes. 

 

Figure 1: Body Composition Scale



2 The University of Adelaide 

Main aims of project 

The 3-year project funded by the 

Australian Research Council, 

Improving the thermal 

environment of housing for older 

Australians (ARC DP180102019) 

explores the connection between 

older people’s well-being and the 

thermal conditions in their homes. 

The main objectives are: 

 To understand the qualities of 

the living environment of older 

South Australians. 

 To investigate the thermal 

environment of houses and the 

occupants’ responses and 

behaviours during hot and cold 

weather. 

 To understand the relationship 

between weather, the house 

construction and design, and 

the occupants’ comfort, well-

being and home energy use. 

 To develop planning, design 

and operational guidelines to 

achieve thermal comfort in 

homes to support older people 

living independently. 

The research team 

The project is being undertaken by 

the School of Architecture and 

Built Environment together with 

the School of Public Health from 

The University of Adelaide in 

conjunction with a Partner 

Investigator from The Hague 

University of Applied Sciences, The 

Netherlands, and the Director of 

the Aged and Extended Care 

Service at The Queen Elizabeth 

Hospital. 

The project has approval from the 

University of Adelaide Human 

Research Ethics Committee: 

Approval number H-2018-042. 

What are the 

benefits for me? 

Your participation at this last stage 

of the study will complement the 

information already collected 

through the house monitoring 

process. 

Ultimately, you are contributing to 

the development of policies and 

guidelines that will directly affect 

older people. You will also have 

the opportunity to discuss any 

issues that you think are relevant 

to thermal comfort in housing for 

older people. 

Should you be interested, we will 

also send you a brief summary of 

the information gathered in this 

additional phase of the study. 

Can I withdraw from 

the project? 

Participation in this last phase of 

the project is completely 

voluntary. Even if you agree to 

participate, you can withdraw from 

the study at any time. 

What will happen to 

my information? 

Your personal information and 

data collected will be held 

confidentially and your name will 

not be used in any analysis and 

publication from the study. 

When the audio recording is 

transcribed, your name will be 

replaced by a code. Your house 

will also be identified by a code 

and no information about the 

address of the house will be used 

in any data analysis or publication 

of results. 

Who do I contact if I 

have questions 

about the project? 

For any information regarding this 

additional stage of the project, 

contact: 

Professor Veronica Soebarto 

(Principal Investigator):           

Phone 8313 5695 / email: 

veronica.soebarto@adelaide.edu.au

Or Larissa Arakawa Martins   

Phone 0466 552 071 / email: 

larissa.arakawamartins@adelaide.ed

u.au 

If you wish to speak with an 

independent person regarding a 

concern or complaint, the 

University’s policy on research 

involving human participants, or 

your rights as a participant, please 

contact the Human Research 

Ethics Committee’s Secretariat:  

Phone: +618 8313 6028  

Email: hrec@adelaide.edu.au   

Post: Level 4, Rundle Mall Plaza, 50 

Rundle Mall, ADELAIDE SA 5000. 

Any complaint or concern will be 

treated in confidence and fully 

investigated. You will be informed 

of the outcome. 

The University of Adelaide SA 5005 Australia 

TELEPHONE +6 8 8313 7335 

WEBSITE adelaide.edu.au 

CRICOS 00123M  

 

mailto:veronica.soebarto@adelaide.edu.au
mailto:veronica.soebarto@adelaide.edu.au
mailto:larissa.arakawamartins@adelaide.edu.au
mailto:larissa.arakawamartins@adelaide.edu.au


 

 

 

IMPROVING THE THERMAL ENVIRONMENT 

OF HOUSING FOR OLDER AUSTRALIANS 

Skin Temperature Additional Study

Further information 

Since we finished the house 

monitoring study, we have identified 

some additional factors that we 

think are important to understand 

people’s thermal comfort and well-

being. One of those factors is skin 

temperature, which, recent studies 

show, has a significant correlation 

with thermal comfort. 

How are we 

measuring this? 

The same data loggers that we used 

to monitor the temperature in your 

house will be used again for this 

additional study. 

The only difference will be that the 

tablet that you used to answer the 

survey now has an infrared 

temperature sensor on the bottom 

(see Figure 1). The sensor is 

designed to measure the skin 

temperature of the back of your 

hand. The measurement is 

contactless, taking less than 1 

second, and does not pose any harm 

to your skin. 

What will I be asked 

to do? 

Two members of the research team 

will visit your home to install the 

data loggers and explain this 

additional study to you.  

The data logger will be placed in 

your main living room. It will 

measure, every 30 minutes, air 

temperature, radiant temperature, 

air speed and humidity. 

As you know, the logger is battery 

operated and does not require any 

external connections and poses no 

health risks that we are aware of. 

This logger needs to stay in the 

living room for the entire monitoring 

period. In discussion with the 

researchers it will be placed in a 

location that suits you. 

During a period of 2 weeks, you will 

be asked to answer the comfort 

survey on the tablet at least twice a 

day. The more you respond, the 

more information we can learn from 

you.  

The survey tablet does not need to 

stay in the same location the whole 

time. It can be stored away and 

brought out when you are doing the 

survey.  

The survey will consist of 12 simple 

questions about how you are feeling 

and whether you are using heating 

or cooling at the time. You touch the 

screen to record your response.  

After answering the last question of 

the survey, you will be asked to 

place the back of your non-

dominant hand close to the skin 

temperature sensor located at the 

bottom of the tablet. You will hear a 

buzzer to let you know the 

measurement has been recorded. 

Figure 2 shows you how to place 

your hand for this measurement. 

The survey tablet and data logger 

will be synchronised to allow the 

researchers to match the conditions 

in the house with the time that the 

survey and skin temperature 

measurement are completed. 

 

Figure 1: Tablet and skin temperature 

sensor on the bottom 

 

Figure 2: Placing the back of your hand 

close to the skin temperature sensor for 

measurement 



2 The University of Adelaide 

Main aims of project 

The 3-year project funded by the 

Australian Research Council, 

Improving the thermal environment 

of housing for older Australians (ARC 

DP180102019) explores the 

connection between older people’s 

well-being and the thermal 

conditions in their homes. 

The main objectives are: 

To understand the qualities of the 

living environment of older South 

Australians. 

To investigate the thermal 

environment of houses and the 

occupants’ responses and 

behaviours during hot and cold 

weather. 

To understand the relationship 

between weather, the house 

construction and design, and the 

occupants’ comfort, well-being and 

home energy use. 

To develop planning, design and 

operational guidelines to achieve 

thermal comfort in homes to 

support older people living 

independently. 

The research team 

The project is being undertaken by 

the School of Architecture and Built 

Environment together with the 

School of Public Health from The 

University of Adelaide in conjunction 

with a Partner Investigator from The 

Hague University of Applied 

Sciences, The Netherlands, and the 

Director of the Aged and Extended 

Care Service at The Queen Elizabeth 

Hospital. 

The project has approval from the 

University of Adelaide Human 

Research Ethics Committee: 

Approval number H-2018-042. 

What are the benefits 

for me? 

Your participation at this last stage 

of the study will complement the 

information already collected 

through the house monitoring 

process. 

Ultimately, you are contributing to 

the development of policies and 

guidelines that will directly affect 

older people. You will also have the 

opportunity to discuss any issues 

that you think are relevant to 

thermal comfort in housing for older 

people. 

Should you be interested, we will 

also send you a brief summary of the 

information gathered in this 

additional phase of the study. 

Can I withdraw from 

the project? 

Participation in this additional phase 

of the project is completely 

voluntary. Even if you agree to 

participate, you can withdraw from 

the study at any time. 

What will happen to 

my information? 

Your personal information and data 

collected will be held confidentially 

and your name will not be used in 

any analysis and publication from 

the study. 

Your house will be identified by a 

code and no information about the 

address of the house will be used in 

any data analysis or publication of 

results. 

Note about the 

researchers 

We strictly follow the SA 

Government instructions regarding 

COVID-19 restrictions and 

precautions. In addition, none of the 

researchers have been overseas or 

interstate in the past 6 months, and 

none have been exposed to people 

recently arrived from overseas or 

interstate. The researchers will only 

visit your house if they are in good 

health. 

Who do I contact if I 

have questions about 

the project? 

For any information regarding this 

additional stage of the project, 

contact: 

Larissa Arakawa Martins    

Phone 0466 552 071 / email: 

larissa.arakawamartins@adelaide.edu.au 

or Professor Veronica Soebarto 

(Principal Investigator):            

Phone 8313 5695 / email: 

veronica.soebarto@adelaide.edu.au 

 

If you wish to speak with an 

independent person regarding a 

concern or complaint, the 

University’s policy on research 

involving human participants, or 

your rights as a participant, please 

contact the Human Research Ethics 

Committee’s Secretariat:  

Phone: +61 8 8313 6028  

Email: hrec@adelaide.edu.au   Post: 

Level 4, Rundle Mall Plaza, 50 Rundle 

Mall, ADELAIDE SA 5000. 

Any complaint or concern will be 

treated in confidence and fully 

investigated. You will be informed of 

the outcome. 

 

The University of Adelaide SA 5005 Australia 

TELEPHONE +6 8 8313 7335 

WEBSITE adelaide.edu.au 

CRICOS 00123M  

 

mailto:larissa.arakawamartins@adelaide.edu.au
mailto:veronica.soebarto@adelaide.edu.au
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E. Questionnaire 



 

 
 

Improving the thermal environment of housing for older Australians:  

Thermal comfort questionnaire 
 

House number:  Date:     Interviewer: 

□ Person 1 

□ Person 2 

 

The information you provide will remain strictly confidential. If you have any questions or concerns about  

the questionnaire, please contact Helen Bennetts on 0466 552 071 or helen.bennetts@adelaide.edu.au 

A – About you 

A.1 Gender 

□  Male 

□  Female 
 

A.2 At your last birthday were you . . . 

□ 65-69 years  

□ 70-74 years  

□ 75-79 years  

□ 80-84 years  

□ 85 years or over 
 

A.3 In which country were you born?  

 

A.4 What is your highest education level? 

□ Primary school 

□ Secondary or high school 

□ TAFE 

□ University 

 

A.5 Are you (more than one may apply) 

□  Working part-time  

□  Receiving part or full pension  

□ Self-funded retiree  
 

A.6 Do you live … 

□ Alone 

□ With spouse/partner 

□ Other, please specify :     



 
 

 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Household Monitoring Questionnaire 

 

A – About you (cont) 

 

A.7 Which comment reflects you best? 

□  I generally prefer hot weather 

□  I generally prefer cold weather 

□  I do not like either hot or cold weather 

□  I have no preference 

□ Other, please specify:   
  

 

A.8 What is the FIRST thing you do to keep cool on a very hot day? ------------------------------------------------------------------ 

 ------------------------------------------------------------------------------------------------------------------------------------------------------ 

 ------------------------------------------------------------------------------------------------------------------------------------------------------  

A.9 What else do you do to keep cool? -------------------------------------------------------------------------------------------------------- 

 ------------------------------------------------------------------------------------------------------------------------------------------------------ 

 ------------------------------------------------------------------------------------------------------------------------------------------------------ 

 ------------------------------------------------------------------------------------------------------------------------------------------------------  

A.10 What is the FIRST thing you do to keep warm on a very cold day? -------------------------------------------------------------  

  --------------------------------------------------------------------------------------------------------------------------------------------------------------  

  --------------------------------------------------------------------------------------------------------------------------------------------------------------  

A.11 What else do you do to keep warm? ---------------------------------------------------------------------------------------------------- 

 ------------------------------------------------------------------------------------------------------------------------------------------------------ 

 ------------------------------------------------------------------------------------------------------------------------------------------------------ 

 ------------------------------------------------------------------------------------------------------------------------------------------------------  



 
 

 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Household Monitoring Questionnaire 

 

A – About you (cont) 

A.12 How concerned are you about the cost of running the heating in your home?  

□ Not at all concerned 

□ Somewhat concerned 

□ Concerned 

□ Very concerned 

□ Extremely concerned 
 

A.13 How concerned are you about the cost of running the cooling in your home?  

□ Not at all concerned 

□ Somewhat concerned 

□ Concerned 

□ Very concerned 

□ Extremely concerned 



 
 

 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Household Monitoring Questionnaire 

 
 

B – Housing and the household 

 

B.14 Approximately how old is this house? 

B.15 How long have you lived in this house?  

B.16 Is the home? 

□ Owned with mortgage 

□ Owned out-right 

□ Rented 

□ Other, please specify 

□ Prefer not to say 

 

B.17 Before tax is taken out, which category best describes your household income last year? 

□ Less than $30,000 

□ $30,000 - $70,000 

□ More than $70,000 

□ Prefer not to say 



 
 

 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Household Monitoring Questionnaire 

 

C – Quality of life 

Under each heading, please tick ONE box that best describes your health TODAY 

C.1 Mobility 

□ I have no problems walking about 

□ I have slight problems walking about 

□ I have moderate problems walking about 

□ I have severe problems walking about 

□ I am unable to walk about 

C.2 Self-care 

□ I have no problems washing or dressing myself 

□ I have slight problems washing or dressing myself 

□ I have moderate problems washing or dressing myself 

□ I have severe problems washing or dressing myself 

□ I am unable to wash or dress myself 

C.3 Usual activities (e.g. housework, family or leisure activities) 

□ I have no problems doing my usual activities 

□ I have slight problems doing my usual activities 

□ I have moderate problems doing my usual activities 

□ I have severe problems doing my usual activities 

□ I am unable to doing my usual activities 

C.4 Pain/discomfort 

□ I have no pain or discomfort 

□ I have slight pain or discomfort 

□ I have moderate pain or discomfort 

□ I have severe pain or discomfort 

□ I have extreme pain or discomfort 

C.5 Anxiety/depression 

□ I am not anxious or depressed 

□ I am slightly anxious or depressed 

□ I am moderately anxious or depressed 

□ I am severely anxious or depressed 

□ I am extremely anxious or depressed 

 



 
 

 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Household Monitoring Questionnaire 

 

 

C – Quality of life (cont) 

 

C.6 Do you have any health problems that require you to stay at home? 

□ Yes 

□ No 

C.7 In case of need can you count on someone close to you? 

□ Yes 

□ No 

C.8 To get about do you regularly use 

□ Nothing 

□ Walking stick 

□ Walking frame 

□ Wheelchair 

□ Gopher 

C.9 How often do people close to you tell you that you are forgetful? 

□ Never 

□ Rarely 

□ Sometimes 

□ Quite often 

□ All the time 



 
 

 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Household Monitoring Questionnaire 

 

D – Health 

D.1 We’d like to know how good your health is today. Imagine a scale of 0 to 100 where 100 is the best health 
you can imagine and 0 is the worst – where on the scale would you mark your health today?  Please indicate 
with a cross. 

 

D.2 In the last few years have you had any of the following symptoms during COLD weather? 

□ Colds and coughs 

□ Flu 

□ Shortness of breath or trouble breathing 

□ Painful joints 

□ Cold sores 

□ Numbness, pain or change of colour of fingers or toes 

□ Dry skin 

□ Diarrhoea 

□ Winter blues or worsening of depressive condition 

□ Other, please specify: 

□ None of the above 

D.3 In the last few years have you had any of the following symptoms during HOT weather? 

□ Dizziness 

□ Headaches 

□ Falls 

□ Fatigue or tiredness 

□ Increased thirst or dry mouth 

□ Low volume or urine or darker coloured urine 

□ Red or hot skin 

□ Reduced sweating despite the heat 

□ Muscle cramps or muscle weakness 

□ Nausea or vomiting 

□ Palpitations 

□ Breathlessness or shortness of breath 

□ Sleeplessness 

□ Other, please specify: 

□ None of the above 



 
 

 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Household Monitoring Questionnaire 

 

D – Health (cont) 

 

D.4 In the last few years, have you ever been told by a doctor that you have any of the following conditions? 

□ Asthma 

□ Chronic bronchitis, or other respiratory illnesses 

□ Coronary heart disease or angina 

□ Renal or kidney condition 

□ Dehydration or heat stroke 

□ Pneumonia 

□ High blood pressure (hypertension) 

□ Allergy, such as rhinitis, hay fever, eye inflammation, dermatitis, food allergy or other allergy (not asthma) 

□ None of the above 
 



 
 

 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Household Monitoring Questionnaire 

E – Information and advice  

E.1 In the last 12 months have you received or seen any information or advice about how hot and cold weather can affect 
your health? 

□  Don’t know 

□  No 

 Yes, from  

□ Local council 

□ Family or friends 

□ TV 

□ Newspaper/magazine 

□ Internet/social media 

□ Energy or utility company 

□ Other, please specify:  

E.2 In the last 12 months have you received or seen any information or advice about how to improve your comfort during 
hot or cold weather? 

□  Don’t know 

□  No 

Yes, from 

□ Local council 

□ Family or friends 

□ TV 

□ Newspaper/magazine 

□ Internet/social media 

□ Energy or utility company 

□ Other, please specify: 

E.3 In the last 12 months have you received or seen any information or advice about reducing energy consumption? 

□  Don’t know 

□  No 

 Yes, from 

□ Local council 

□ Family or friends 

□ TV 

□ Newspaper/magazine 

□ Internet/social media 

□ Energy or utility company 

□ Other, please specify: 
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F. Additional questionnaire 



 

 
 

Improving the thermal environment of housing for older Australians:  

Additional questionnaire 
 

House number:   Date:     Interviewer: 

 Person 1 

 Person 2 
 

The information you provide will remain strictly confidential. If you have any questions or concerns about the questionnaire, please contact 

Larissa Martins on 0466 552 071 or larissa.arakawamartins@adelaide.edu.au 

A – About your outdoor spaces and neighbourhood 

 

A.1 Do you spend time outdoors (e.g. in gardens, backyards, courtyards, decks or patios and around the 
neighbourhood)? 

□  Yes 

□  No 
 

A.2 What activities do you do outdoors? 

□ Eating 

□ Drinking 

□ Cooking 

□ Work/study 

□ Reading 

□ Sports and recreation 

□ Relaxing 

□ Sunbathing 

□ Playing with children 

□ Playing with pets 

□ Socializing 

□ Entertaining 

□ Undertaking hobbies 

□ Gardening 

□ Smoking 

□ Walking  

□ Walking the dog 

□ Jogging 

□ Cycling 

□ Swimming 

□ Other, please specify  _____________________________________________ 



 
 

 
 

Improving the thermal environment of housing for older Australians 

Additional questionnaire 
 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Additional Questionnaire 

A.3 How often do you spend time outdoors? 

 

Time of the year/day Frequency 

Summer hot days (>30C)  Never 

 Very rarely 

 Sometimes 

 Frequently 

 Always 

Summer hot nights (>30C)  Never 

 Very rarely 

 Sometimes 

 Frequently 

 Always 

Summer cool nights  Never 

 Very rarely 

 Sometimes 

 Frequently 

 Always 

spring/autumn days (20-30C)  Never 

 Very rarely 

 Sometimes 

 Frequently 

 Always 

spring/autumn nights  Never 

 Very rarely 

 Sometimes 

 Frequently 

 Always 

winter days (<20C)  Never 

 Very rarely 

 Sometimes 

 Frequently 

 Always 

winter nights  Never 

 Very rarely 

 Sometimes 

 Frequently 

 Always 

 
  



 
 

 
 

Improving the thermal environment of housing for older Australians 

Additional questionnaire 
 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Additional Questionnaire 

A.4 Do you use different areas of the outdoor space around your house depending on the season or weather 
conditions? 

□ Yes 

□ No 
 

If Yes, which areas and when? 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

 -------------------------------------------------------------------------------------------------------------------------------------------  

 

A.5 Do you use the outdoor spaces as a way to stay warm during cold days/nights? 

□ Yes 

□ No 
 

Comments 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

 -------------------------------------------------------------------------------------------------------------------------------------------  

 

A.6 Do you use the outdoor spaces as a way to stay cool during hot days/nights? 

□ Yes 

□ No 
 

Comments 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

 -------------------------------------------------------------------------------------------------------------------------------------------   



 
 

 
 

Improving the thermal environment of housing for older Australians 

Additional questionnaire 
 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Additional Questionnaire 

B – Reported Edmonton Frail Scale (REFS) 

 

B.1 Please imagine this pre-drawn circle is a clock. 

First, write all the numbers of the clock in the correct positions. 

Then, draw the hands of the clock to indicate a time of ‘ten after eleven’. 

 

 
  



 
 

 
 

Improving the thermal environment of housing for older Australians 

Additional questionnaire 
 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Additional Questionnaire 

B.2 In the past year, how many times have you been admitted to a hospital? 

□ 0 time 

□ 1 to 2 times 

□ More than 2 times 
 

B.3 In general, how would you describe your health? 

□ Excellent 

□ Very good 

□ Good 

□ Fair 

□ Poor 
 

B.4 Which of the following activities do you require assistance with (more than one may apply)? 

□ Meal preparation 

□ Shopping 

□ Transportation 

□ Telephone  

□ Housekeeping 

□ Taking medication 

□ Managing money 

□ Laundry 

□ None 
 

B.5 When you need help, can you count on someone who is willing and able to meet your needs? 

□ Always 

□ Sometimes 

□ Never 

 

B.6 Do you use five or more prescription medications on a regular basis? 

□ No 

□ Yes 
  



 
 

 
 

Improving the thermal environment of housing for older Australians 

Additional questionnaire 
 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Additional Questionnaire 

B.7 At times, do you forget to take your prescription medications? 

□ No 

□ Yes 

□ Not applicable 
 

B.8 Have you recently lost weight such that your clothes have become looser? 

□ No 

□ Yes 
 

B.9 Do you often feel sad or depressed? 

□ No 

□ Yes 
 

B.10 Do you have a problem with losing control of urine when you do not want to? 

□ Always 

□ Sometimes 

□ Never 
 

B.11 Two weeks ago, were you able to do heavy work around the house such as washing windows, walls or 
floors without help? 

□ No 

□ Yes 
 

B.12 Two weeks ago, were you able to walk up- and downstairs to a/the second floor without help? 

□ No 

□ Yes 
 

B.13 Two weeks ago, were you able to walk 1 km without help? 

□ No 

□ Yes 
  



 
 

 
 

Improving the thermal environment of housing for older Australians 

Additional questionnaire 
 

Improving the thermal environment of housing for older Australians: ARC DP 180102019: Additional Questionnaire 

C – About your body composition 

 

C.1 Do you have a pacemaker or other mechanical implants (e.g. hips and knees implants)? 

□ Yes 

□ No 
 

For participants who answered positive to question C1, use WEIGHT ONLY MODE. 
 
Ask participant to take off socks and jewellery (if any). 
 

Measurements Tanita RD-953 

Gender  

Age  

Ht   

W   

BMI   

BF   

MM   

MQ   

PR   

BM   

VF   

BMR   

MA   

TBW   
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G. House construction check-list 



  
 

Improving the thermal environment of housing for older Australians:  

Construction, heating and cooling checklist 
 
 

House Number --------------------------------------- Date  ------------------------------------------  

Researcher --------------------------------------------  

Logger & Tablet Number -----------------------------------------------------------------------------------------  

HOBO Number -----------------------------------------------------------------------------------------------------  

Type of dwelling: 

□ Separate house 

□ Semi-detached house, row or terrace house, townhouse 

□ Flat, unit or apartment 

□ Other, please specify:   
 

In a retirement village? 

□ Yes 

□ No 
 
Drawings? 

□ Provided 

□ We are doing 

□ Other, specify:  
 
Energy bills? 

□ Provided 

□ Consent obtained for us to source 
 

Utility company: -------------------------------------- Customer no. -------------------------------  
 
  



GENERAL CONSTRUCTION 

  Comment or enter thickness / colour / type / size/ value if known 
 

Roof   

Tile   

Metal   

Other   

Insulation   

Ext Wall   

Brick veneer   

Cavity brick   

Solid brick   

Stone   

Framed   

Other   

Insulation   

Int Wall   

Brick   

Framed   

Other   

Insulation   

Floor  Note floor coverings 

Concrete slab on ground   

Suspended concrete   

Timber   

Other   

Insulation   

Ceiling   

Plasterboard   

Timber   

Other   

Insulation   

  



  
 

3 
 

Windows   

Timber Frame   

Aluminium Frame   

Glass   

Skylight   

Timber Frame   

Aluminium Frame   

Glass/Other   

External blinds   

Material   

Which rooms   

Use schedule   

Internal blinds/ curtains   

Material   

Which rooms   

Use schedule   

Solar panels   

Hot water system   

Cook top (gas/electric)   

Oven (gas/electric)   

Leakiness that needs 

following up 

  

Air quality that needs 

following up 

  

Send copy of consent form       

post   

email   

text   

Send copy of audio file       

  



LIVING ROOM 

Logger Location: 

  

Heater Comments 

Type  

Location  

Capacity  

Thermostat  

Other rooms heated  

When used  

  

Problems/comments  

Cooler  

Type  

Location  

Capacity  

Thermostat  

Other rooms cooled  

When used  

  

Problems/comments  

Fan  

Type  

Location  

When used  

  

Problems/comments  

 
  



  
 

5 
 

BEDROOM 

HOBO Location: 

  

Heater Comments 

Type  

Location  

Capacity  

Thermostat  

Other rooms heated  

When used  

  

Problems/comments  

Cooler  

Type  

Location  

Capacity  

Thermostat  

Other rooms cooled  

When used  

  

Problems/comments  

Fan  

Type  

Location  

When used  

  

Problems/comments  

 
  



HEATING 

Heater Comments 

Type  

Location  

Capacity  

Thermostat  

Rooms heated  

When used  

  

Problems/comments  

  

Heater  

Type  

Location  

Capacity  

Thermostat  

Rooms heated  

When used  

  

Problems/comments  

  

Heater  

Type  

Location  

Capacity  

Thermostat  

Rooms heated  

When used  

  

Problems/comments  

  

 

  



  
 

7 
 

COOLING 

Air-con Comments 

Type  

Location  

Capacity  

Thermostat  

Rooms cooled  

When used  

  

Problems/comments  

  

Air-con  

Type  

Location  

Capacity  

Thermostat  

Rooms cooled  

When used  

  

Problems/comments  

  

Air-con  

Type  

Location  

Capacity  

Thermostat  

Rooms cooled  

When used  

  

Problems/comments  

  

 



 

FANS 

Fans Comments 

Type  

Location  

When used  

  

Problems/comments  

Fans  

Type  

Location  

When used  

  

Problems/comments  

Fans  

Type  

Location  

When used  

  

Problems/comments  

Fans  

Type  

Location  

When used  

  

Problems/comments  

 
Walk-through with owner with conversation recorded, photos of key factors & discussion of 

• Any changes to the house for thermal comfort 

• Reason for heating / cooling (other than their own thermal comfort) 

• Use of blinds, curtains 

• Use of doors & windows for ventilation 

• Whether / how the weather, heating & cooling affect their well-being 

• How comfortable their house is in summer and winter 

IMPORTANT: If necessary and the occupant gives consent, take photos of the rooms using the Infrared camera to identify 
cracks around the room. 
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H. Thermal comfort survey tablet screens 



NEXT

Welcome

NEXT

Identification

Person 1

Person 2

NEXT

Which room are you in?

Living room

Bedroom

NEXT

How are you currently 
dressed?

Very light

Light

Very heavy

Moderate

Heavy

1 2

3 4



NEXT

Describe your activity in 
the last 15 minutes in this 
space:

Very relaxed

Relaxed

Active

Light

Moderate

NEXT

How do you feel right now?

Cold

Cool

Slightly cool

Neutral

Slightly warm

Warm

Hot

NEXT

Would you prefer to be…

Cooler

No change

Warmer

NEXT

How satisfied are you with 
the temperature in this 
room?

Very satisfied

Satisfied

Very dissatisfied

Partially satisfied

Dissatisfied

5 6

7 8



NEXT

The air conditioner in the 
room is…

On

Off

NEXT

A heater in this room is…

On

Off

NEXT

A fan in this room is…

On

Off

NEXT

Curtains / blinds in this 
room are…

All open

Some open/ 
closed

All closed

9 10

11 12



NEXT

In this room, windows and 
door(s) to outside are:

All open

Some open/ 
closed

All closed

NEXT

In this room, door(s) to 
other room(s) are:

All open

Some open/ 
closed

All closed

NEXT

Do you think the air in this 
room is…

Stuffy

OK

Draughty 

NEXT

Do you feel that the air 
quality in this room is:

Very good

Good

Very poor

OK

Poor

13 14

15 16



NEXT

How would you describe 
your health and well-being 
at the moment?

Very good

Good

Very poor

Reasonable

Poor

NEXT

The conditions in this 
room influence my health 
and well-being:

Definitely yes

Probably yes

Definitely not

Unsure

Probably not

NEXT

Finished

Thank You

17 18

19
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I. Thermal comfort survey tablet booklet 
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