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Abstract

The Pierre Auger Observatory, the largest detector in the world for observing cos-

mic rays, is currently undergoing a significant upgrade. The addition of scintillator

detectors to the observatory’s ground array aims to improve our ability to determine

cosmic ray mass composition at the highest energies. One phenomenon which may

provide hints to mass composition is asymmetry, the systematic difference in signal

between detectors of equal perpendicular distance from the axis of an inclined ex-

tensive air shower at different azimuthal angles. In this work, the asymmetry in the

water Cherenkov and surface scintillator detectors of the Pierre Auger Observatory

is parameterised in simulations for proton and iron primaries. The largest difference

between the two parameterisations is found to be for the scintillator detector at

zenith angles > 50° and energies ∼ 2×1019 eV. The causes of asymmetry in particle

density are also investigated. For the electromagnetic component of extensive air

showers, atmospheric attenuation is shown to give a non-negligible contribution to

the overall asymmetry. A test of the understanding of these causes is demonstrated

via a basic model for the asymmetry in muon particle density. Finally, the asymme-

try parameterisations are utilised to improve upon the technique of reconstructing

Xmax from the slope parameters of lateral distribution functions in simulations.
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Introduction

Cosmic rays, the highest energy particles known in the universe, have been a frontier

of science ever since their discovery more than 100 years ago. Despite our best

efforts however, the origin, production mechanisms and composition of the highest

energy cosmic rays, those above 1018 eV, remain a mystery. Part of the difficulty in

studying cosmic rays of these energies is their low flux at Earth. This necessitates an

enormous collecting area for any experiment aiming to observe these particles. Such

experiments detect cosmic rays indirectly, measuring the properties of the cascade

of secondary particles that originates from their interaction with an air molecule,

known as an extensive air shower.

The largest cosmic ray detector in the world is the Pierre Auger Observatory,

located in the Mendoza province of Argentina. The observatory stretches across

some 3000 km2 and utilises a hybrid design consisting of over 1600 ground based

water Cherenkov detectors, overlooked by 27 fluorescence telescopes. The water

Cherenkov detectors sample the secondary particles from extensive air showers at

ground level, whilst the fluorescence telescopes detect the fluorescence light emitted

by atmospheric nitrogen molecules which have been excited by the particle cascade.

One of the key, unsolved questions regarding cosmic rays of the highest energies

is their composition. Whilst the most accurate and precise techniques of deter-

mining mass composition currently use fluorescence detectors, their low duty cycle

means there is limited capacity for measurement. This naturally leads to the idea

of using ground based arrays, which have duty cycles of nearly 100%, for mass com-

position studies. Improving the capabilities of its own ground array in this area is

the primary motivation for the upgrade currently taking place at the Pierre Auger

Observatory. Known as “Auger Prime”, the upgrade includes the deployment of

scintillator detectors on top of every water Cherenkov detector. The differing re-

sponse of each detector type to the components of extensive air showers aims to

open up more possibilities for determining the primary mass of the highest energy

cosmic rays.

Utilising an observable from extensive air showers known as asymmetry may al-

low mass composition information to be extracted from ground array measurements.

Asymmetry is a phenomenon where detectors of equal perpendicular distance from

the axis of an inclined extensive air shower have, on average, systematically differ-

ent signals depending on their location relative to the axis of the incoming shower.

In principle, the magnitude of asymmetry may depend on the composition of the
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primary cosmic ray. The extent, causes and possible applications of asymmetry and

how it relates to mass composition will be addressed in this thesis.

This thesis is organised as follows,

Chapter 1: Gives a brief description of the history of cosmic ray research and an

overview of significant observations and results.

Chapter 2: Details the main method used to detect high energy cosmic rays,

extensive air showers, and how the properties of these showers are measured. Also

describes a selection of past/current cosmic ray experiments.

Chapter 3: Provides a broad summary of the components of the Pierre Auger

Observatory, with the inner workings of the surface detector and its reconstruction

of extensive air shower properties addressed in greater detail.

Chapter 4: Introduces the concept of asymmetry and parameterises the amplitude

of the asymmetry in proton and iron showers for both the water Cherenkov and

scintillator detectors in simulations.

Chapter 5: Investigates and attempts to separate two of the main causes behind

the asymmetry in electromagnetic particle density, namely geometrical effects and

the attenuation of extensive air shower particles.

Chapter 6: Constructs a simple model for the production and propagation of

muons in an extensive air shower to test the understanding of asymmetry gathered

in Chapter 5.

Chapter 7: Applies the asymmetry parameterisations from Chapter 4 to improve

upon the technique of extracting Xmax from the fitted slope parameters of lateral

distribution functions.

Chapter 8 Concluding remarks.
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Chapter 1

Cosmic rays

Cosmic rays are extremely high energy particles originating outside of Earth. Their

energies can surpass even those from the largest man-made particle accelerators

by several orders of magnitude, making them an exciting frontier for the discovery

of new physics. To better understand cosmic rays, and in turn the most extreme

processes in the universe, three fundamental questions must be answered,

• Origin: Where do they come from?

• Composition: What are they made of?

• Sources: What astrophysical mechanisms are able to produce particles of such

high energy?

For cosmic rays with energies above 1018 eV, known as Ultra High Energy Cosmic

Rays (UHECRs), definitive answers to the above still largely elude us. However,

significant strides in our understanding have certainly been made since the field of

cosmic ray research began more than a century ago. The following chapter contains

a short overview of these discoveries along with a brief timeline of research.

1.1 A brief history of cosmic rays

Observations of the ionizing property of cosmic rays can be traced back to the 18th

century. In 1785 Charles-Augustin de Coulomb saw that when a metallic conductor

was placed in air it would gradually lose its charge [1]. The same phenomenon was

observed fifty years later by Michael Faraday and then again in 1887 by W. Linss

[2, 3]. In 1900, German scientists Elster and Geitel deduced that the leakage of

charge was caused by the presence of positively and negatively charged ions in the

atmosphere. The source of the ions however, remained unknown [3].

In the first decade of the 20th century, scientists conducted many experiments

to probe the origin of the mysterious ionization. Changes in altitude, pressure,

temperature and shielding were all investigated, yet no firm conclusions were drawn

[1]. One of the first to suggest an extra-terrestrial origin was Charles Thomas Rees

Wilson in 1901. He attempted to validate his theory by measuring the ionisation
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Figure 1.1: Results of Hess’ balloon flight in August 1912 (left) showing an in-
crease in ionisation with altitude. Results confirming Hess’ initial findings taken by
Kolhörster in 1913/1914 are shown on the right. From [5].

rate in tunnels, expecting to observe a decrease. Unfortunately for Wilson he saw

no change, leaving him to conclude that the ionisation was due to natural radiation

from the Earth [4].

The breakthrough came in 1912 from the balloon flights of Austrian physicist

Victor Hess. An amateur balloonist, Hess conducted several flights over the course

of roughly two years during which he measured the ionization rate as a function

of altitude [1]. The results of his flight in August 1912 and their confirmation in

the following years by Werner Kolhörster, are shown in Figure 1.1. The evidence

showed that, despite an initial decrease, above 2 km the ionization rate increased

with altitude [6]. Hess concluded that the ionization was of extraterrestrial origin,

winning him the 1936 Nobel Prize [1].

Follow up studies to determine the composition of cosmic rays found their make

up to be primarily positively charged nuclei, with this subset being mostly protons

[7]. Later, in the 1930’s, Pierre Auger and Roland Maze conducted an experiment to

investigate the phenomenon of separated detectors recording measurements almost

simultaneously. Auger’s conclusion was that primary particles above 1015 eV were

colliding with atmospheric molecules and initiating cascades of secondary particles

[8]. Since then, successively larger observatories have been constructed to measure

the cascades generated by these high energy cosmic rays.

4



Figure 1.2: An all particle cosmic ray energy spectrum. Each experiment listed
uses indirect methods to measure the primary energy. From [9].

1.2 Energy spectrum

The energy spectrum of cosmic rays provides hints to the origin, acceleration mech-

anisms and makeup of these astrophysical messengers. The spectrum describes how

many particles are observed at Earth as a function of energy, and takes the form of

a power law,

dN

dE
∝ E−γ m2s−1sr−1eV−1 (1.1)

In Equation 1.1, N is the flux of cosmic rays arriving at Earth, E is their energy

and -γ is known as the “spectral index”. The power-law nature of the spectrum

indicates that the acceleration processes are non-thermal [10]. On average, a value

of γ = 3 describes the spectrum fairly well, with small deviations from this value

giving insights into potential limits of and changes to acceleration mechanisms [7].

To highlight these features it is typical to multiply the flux by the energy raised to

some power, as done in Figure 1.2. The steepness of the spectrum makes observ-

ing UHECRs very difficult. For comparison, a flux of 1 particle/m2/second above

1014 eV drops to approximately 1 particle/km2/century above 1020 eV. Thus whilst

satellites and balloon flights are sufficient to study lower energy cosmic rays, studies

of those at the highest energy typically involve ground based arrays stretching across

tens, hundreds or even thousands of square kilometers.
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1.2.1 Features of the energy spectrum

For cosmic ray energies up to approximately 3 × 1015 eV, the value of γ is roughly

2.7. Past this energy the spectrum steepens to a value of γ ≈ 3.1. This steepening

is called the “knee”. In Hillas’ model [11], the knee indicates the end of galactic

cosmic rays accelerated by supernova remnants (SNRs), with the energy of the

break point being proportional to the charge of the species [9]. In an “all-particle”

spectrum (spectrum including cosmic rays of all masses) the knee is associated with

the maximum energies attainable by protons via this method. Another, possibly

connected cause, is that above 3×1015 eV the gyro-radius of protons in the galactic

magnetic field is comparable to the size of the galactic disc. Hence protons of this

energy can no longer be confined to the galaxy and thus are far less likely to reach

Earth [10].

The steepness of the spectrum increases again around 1017 eV, shifting to γ ≈
3.3. Known as the “second knee”, the origin of this feature is still unclear, though

recent measurements by the Pierre Auger Observatory have shown it to be a gradual

softening of the spectrum [12]. One theory is that the second knee corresponds to

heavy primaries, up to Z = 92 (uranium), reaching their energy limit via SNR

acceleration. This matches roughly with the location of the second knee being

E2nd ≈ 92 × Ek where Ek is the energy of the first knee [7]. Additionally, the

lowest energy extra-galactic cosmic rays may be contributing to the structure of the

second-knee [13].

At about 3 × 1018 eV the spectrum flattens back to γ ≈ 2.6. This part of the

spectrum is known as the “ankle” and is thought to have two possible explanations.

The first is that it represents a transition from primarily galactic cosmic rays to

those from extra-galactic sources. The second proposes that the ankle is generated

by a modification of the source spectrum of extra-galactic protons and that the

transition from galactic to extra-galactic cosmic rays actually occurs at a lower

energy. Specifically, these protons could interact with and lose energy to cosmic

microwave background (CMB) photons via [9, 14]

p+ γCMB → p+ e+ + e−

Finally, there is a suppression of flux above energies of 4×1019 eV. Shown by the

Pierre Auger Collaboration to be significant to more than 20σ [14], the suppression

could be due to the Greisen–Zatsepin–Kuz’min (GZK) effect. This effect involves

cosmic ray protons above ∼ 6 × 1019 eV losing energy via pion production when

interacting with CMB photons. The relevant processes are

p+ γCMB → n+ π+

p+ γCMB → p+ π0
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Figure 1.3: The reduction in energy experienced by cosmic ray protons as they
propagate due to the GZK effect. All higher energy protons converge to approxi-
mately 1020 eV after travelling roughly 100 Mpc. From [16].

As shown in Figure 1.3, these interactions would cause a rapid decrease in energy

for any cosmic ray with E > 1020 eV. This creates a cutoff where, after ≈ 100 Mpc,

any higher energy cosmic ray will converge to E ≈ 1020 eV.

An alternative, albeit far less interesting, explanation for the suppression is that

sources of cosmic rays cannot accelerate particles to higher energies [15].

1.3 Acceleration mechanisms

Many models have been proposed attempting to explain the acceleration of cosmic

rays to the energies we observe. One of particular importance is that of Fermi

acceleration, an idea proposed in 1949 by Enrico Fermi [17]. An improvement to

this model, called diffusive shock acceleration (DSA) [18], can be shown to provide

an energy spectrum which aligns closely with the measured spectrum .

1.3.1 Fermi acceleration

The original proposition by Fermi was that cosmic rays are accelerated through

elastic collisions with magnetized gas clouds in the interstellar medium (ISM). The

basic idea is that a cosmic ray will enter a cloud, be randomly scattered by the

associated magnetic field and then exit the cloud with, on average, a higher energy.
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Figure 1.4: Schematic of the original idea proposed by Fermi for the acceleration of
cosmic rays. An incoming cosmic ray with energy E1 and momentum p1 is scattered
by magnetic irregularities in a gas cloud before exiting the cloud with new energy
E2 and momentum p2. From [19].

A schematic of this process is shown in Figure 1.4. Quantitatively, consider a cosmic

ray of energy E1 incident on an ISM gas cloud travelling with velocity v. The cosmic

ray enters the cloud at an angle θ1 with respect to the velocity of the cloud and then

exits at an angle θ2 with energy E2. In the frame of reference moving with the

cloud, these quantities are denoted as E ′1, θ
′
1, θ

′
2 and E ′2 respectively. By the Lorentz

transformation laws we can write

E ′1 = γcloudE1(1− βcloud cos θ1) (1.2)

The energy of the cosmic ray after scattering in the lab frame is given by the reverse

Lorentz transformation as

E2 = γcloudE
′
2(1 + βcloud cos θ′2) (1.3)

Since the scattering is elastic E ′2 = E ′1. Substituting Equation 1.2 into 1.3 gives

E2 = γ2cloudE1(1− βcloud cos θ1)(1 + βcloud cos θ′2) (1.4)

Considering the fractional change in energy = ∆E/E1 = (E2 − E1)/E1, we find

∆E

E1

=
1− β cos θ1 + β cos θ′2 − β2 cos θ1 cos θ′2

1− β2
− 1 (1.5)

To calculate the average fractional energy change the average values of the

quantities cos θ′2 and cos θ1 must be determined. Since the cosmic ray is randomly
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scattered within the cloud its exit direction is random and thus

〈cos θ′2〉 = 0 (1.6)

The average value of cos θ1 will depend on the relative velocities of the incoming

cosmic rays compared to the cloud. Calculation gives

〈cos θ1〉 = −β/3 (1.7)

Substituting these values into Equation 1.5 leaves us with〈
∆E

E1

〉
=

1 + 1
3
β2

1− β2
− 1 ≈ 4

3
β2 (1.8)

where we have made the approximation that β � 1. This is valid as typical speeds

for these gas clouds are ∼ 15 km/s [19].

From Equation 1.8 the fractional change in energy is positive, showing that

cosmic rays could be accelerated to high energies through this process after many

scatterings. However, the dependence on β2 means this process is very slow, making

it an unlikely candidate for accelerating cosmic rays to the highest of energies.

Physically speaking, this is because the large velocity of the cosmic rays compared

to the cloud make head-on collisions only slightly more likely than tail-end collisions.

1.3.2 Diffusive shock acceleration

In diffusive shock acceleration Fermi’s original idea of cosmic rays scattering of

magnetized gas clouds is expanded to include the presence of an astrophysical shock,

such as a supernova. ISM clouds are present either side of the shock and scatter

cosmic rays back and forth across the shock front, as shown in Figure 1.5. In

crossing from one side of the shock to the other, the cosmic ray will gain energy

more efficiently due to experiencing head-on collisions more often.

The same fractional energy gain from Equation 1.5 applies to this method, how-

ever the average value will be different due to the new definitions of cos θ1 and cos θ′2.

The average values of these quantities are now

〈cos θ1〉 = −2/3 (1.9)

〈cos θ′2〉 = 2/3 (1.10)

Thus for diffusive shock acceleration we have〈
∆E

E1

〉
=

1 + 4
3
β + 4

9
β2

1− β2
− 1 ≈ 4

3
β (1.11)

9



Figure 1.5: Diagram depicting the process of diffusive shock acceleration. Cosmic
rays are scattered back and forth across a shock by ISM gas clouds. This process is
more efficient for gaining energy due to the higher probability of head-on collisions.
From [19].

The greater efficiency is shown quantitatively by the first order dependence on β,

as opposed to the second order dependence found in the original mechanism. Cal-

culation of the energy spectrum produced by DSA yields an E−2 dependence. This

spectrum would be further steepened by an energy dependent escape of cosmic rays

from the galaxy, bringing it roughly in line with the measured spectrum of E−2.7

below the knee [19].

1.4 Candidate sources

The energy spectrum and propagation mechanisms of cosmic rays provide useful

clues to the astrophysical sources which could produce them. For instance, if we

consider the origins of UHECRs, sources unable to accelerate particles to at least

1018 eV can be ruled out. Furthermore, if diffusive shock acceleration is the primary

method by which cosmic rays are accelerated, astrophysical shocks must be present

within the vicinity of any candidate source. Additional constraints can be placed on

the type of environment needed to confine cosmic rays to allow them to reach the

ultra high energies we observe at Earth.

One necessary, though not sufficient, constraint is for the candidate astrophysical

object to have a radius, R, larger than the gyro radius, rg, of the cosmic ray it is

accelerating. For a cosmic ray of momentum p and charge Ze, propagating in a

magnetic field of strength B, the gyro radius is given by

rg =
p

ZeB
(1.12)
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Figure 1.6: The classic Hillas plot, showing potential sources of cosmic rays based
on their size, R, and magnetic field strength, B. From [20].

Since the particles being accelerated are already highly relativistic, p ≈ E/c. Thus

for a cosmic ray to be contained by the source we require that

R >
E

cZeB
(1.13)

Equation 1.13 can be rearranged to give the maximum energy attainable by a cosmic

ray at a given source. Considering the case of diffusive shock acceleration we find

Emax ≈ 1018 eVZeβs

(
R

kpc

)(
B

µG

)
(1.14)

where βs is the shock velocity (units of c) [7, 21]. The containment requirements in

Equation 1.14 naturally give rise to what is known as the “Hillas Plot”, a diagram

displaying the dimensions and magnetic field required of an astrophysical source

to accelerate cosmic rays to an energy Emax. An example is shown in Figure 1.6.

Sources with properties which don’t extend above the red (blue) line cannot accel-

erate an iron (proton) primary to 1020 eV. The list of sites which may be able to

accelerate both primaries to this energy is quite small and does not include SNRs.

Possible sources are Active Galactic Nuclei (AGN) and their jets, Gamma Ray Burts

(GRBs), neutron stars, and Inter-Galactic Medium (IGM) shocks [20]. A detailed

discussion of the various sources can be found in [22].

It is important to stress again that the Hillas criterion (Equation 1.14) by itself

is not a sufficient requirement for an astrophysical object to be a candidate source
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of cosmic rays. Shocks, for example, must also be present. Moreover the energy

loss processes which occur at these extreme energies, such as interactions with low-

energy photons in the vicinity of the source, further complicate trying to identify

possible sources [21].

One piece of information the Hillas criterion does allow us to infer is that the lack

of measured galactic-plane anisotropy (see Section 1.6) indicates that cosmic rays of

the highest energies come from sources which are extra-galactic, such as AGN. This

is because protons accelerated to 1020 eV by a galactic source would have a gyro

radius of ∼ 100 kpc within the galaxy. This is considerably larger than the radius of

the Milky Way at ∼ 16 kpc. Therefore, these protons would be expected to travel

in nearly straight lines towards Earth, creating a clear “hotspot”. Since no evidence

of such an excess has been observed, the sources for such particles are assumed to

be located outside our galaxy.

1.5 Composition of cosmic rays

Determining what nuclei constitute the majority of cosmic rays at various energies

can provide information on what types of sources are producing these particles. At

lower energies, where direct detection methods are viable and the composition can

be accurately determined, it has been shown that the relative abundance of galactic

Figure 1.7: Relative abundance of nuclei in the solar system compared with the
abundance of galactic cosmic rays. From [23].
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Figure 1.8: Xmax means (left) and standard deviations (right) as a function of
energy measured by the Pierre Auger Observatory. From [25].

Figure 1.9: Xmax means (left) and standard deviations (right) as a function of en-
ergy measured by the Telescope Array experiment. The white points are predictions
from the QGSJet-II.04 model for a mixed composition (see text). From [26].

cosmic rays of different primaries matches closely with the abundance in the solar

system. This is shown in Figure 1.7. The small discrepancies are explained by

cosmic spallation, a process where larger nuclei are broken down into smaller nuclei

through collisions in the interstellar medium [24].

For higher energy cosmic rays, the flux is too low to measure the primary directly.

Thus indirect methods must be used to measure the properties of large particle

cascades initiated when a primary cosmic ray strikes an atmospheric molecule. These

cascades are known as extensive air showers (EASs) and are discussed in detail in

Chapter 2. For now it suffices to note that the fluctuations in the development of

EASs do not allow for the primary composition to be determined on an event by

event basis. However by looking at ensembles of showers and their average properties
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one can estimate the abundance of primaries in 4 mass groups, namely protons

(hydrogen), helium, nitrogen and iron. At the highest energies, this is typically done

using a shower parameter known as Xmax (see Section 2.1), essentially a measure of

where in a shower’s development the greatest number of particles is observed. The

key point is that the Xmax distributions of lighter primaries, such as proton, have

both larger means and standard deviations than heavier primaries like iron. Figure

1.8 shows measurements of the mean and standard deviation of Xmax distributions as

a function of energy from the Pierre Auger Observatory. The lines plotted indicate

predictions based on various hadronic interaction models. When compared with the

models, there is a clear change in behaviour around the “ankle” region, where the

average composition begins to become heavier [25].

Measurements of the Xmax moments have also been made by the Telescope Array

(TA) experiment, albeit over a smaller energy range, and are shown in Figure 1.9.

Whilst the data is not directly comparable due to different analysis methods, the

conclusions are. TA finds the mean and standard deviation of Xmax distributions

for cosmic rays between energies of 1018.2-1019.1 eV to be compatible with the Auger

result, however a lighter composition cannot be entirely ruled out [27]. The best fit

to their data consists of a mixture containing 57% proton, 18% helium, 17% nitrogen

and 8% iron using the QGSJet-II.04 hadronic interaction model [26].

1.6 Anisotropy

Deviations from an isotropic distribution are known as anisotropies. With regard

to cosmic rays, anisotropy in arrival directions is the third key observable, alongside

mass composition and the energy spectrum, which provide clues to sources and

acceleration mechanisms. Anisotropy studies are the only definitive method to reveal

the location of possible sources [28]. This is made difficult however by intervening

galactic and extra-galactic magnetic fields which cause charged particles, such as

cosmic rays, to take elaborate curved trajectories before arriving at Earth. Only

those of the highest energies travel in sufficiently straight lines to perform “cosmic

ray astronomy” [27].

Fortunately, the last decade has seen an unprecedented number of measurements

of high energy cosmic rays with which to perform searches for anisotropy. This is

thanks to the enormous exposure of the previously mentioned Pierre Auger Obser-

vatory and Telescope Array. Both experiments have performed searches for large

scale anisotropies and local hotspots. The most statistically significant discovery is

a large scale dipole anisotropy observed by Auger for events with a reconstructed

primary energy > 8 EeV. The result is shown in Figure 1.10. The amplitude of the

dipole is 6.5+1.3
−0.9% with a significance of 5.2σ. In galactic coordinates, the peak in

intensity is in the direction (l, b) = (233°,−13°), indicating an extra-galactic origin

for these UHECRs. [29].
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Figure 1.10: The large scale dipole anisotropy measured by the Pierre Auger
Observatory. Plot is in equatorial coordinates. The star denotes the galactic centre.
From [29].

Figure 1.11: Result from the follow up search for a large scale dipole anisotropy
by the Telescope Array experiment. In the common declination band with Auger,
the phase and amplitude of the fitted dipole support the result of an extra-galactic
origin for these cosmic rays [30].
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This observation motivated a similar search by TA. Their result is shown in

Figure 1.11. Overall, the smaller exposure and thus limited statistics of TA mean

their result is compatible with an isotropic distribution at the 2σ significance level.

However, in the region of sky able to be observed by both observatories, the fitted

dipole has an amplitude and phase in agreement with the Auger result [30]. When

the data from Auger and TA are combined, a full sky fit of the dipole can be

performed, as done in [31]. The fitted dipole is again compatible with the initial

results from Auger, but now with smaller uncertainties on the dipole components.

Other results from anisotropy searches include Auger’s finding of a correlation

between the position of nearby astrophysical objects and the arrival directions of

cosmic rays above energies of 20 EeV. The most significant result was the correlation

between cosmic rays above 38 EeV and starburst galaxies, with a significance level

of 4.5σ [32]. As for local hotspots, Auger observes an excess of cosmic rays above

37 EeV from the vicinity of Centaurus A, which incidentally coincides with the

positions of some starburst galaxies. The current significance level of the result is

3.9σ [32]. TA has also observed a hotspot, reporting an excess of UHECR above

57 EeV in the direction of the Ursa Major cluster at a significance level of 2.9σ [33].

Though none of these results can be considered discoveries, they are nonetheless

promising and have potential to be improved with further exposure.
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Chapter 2

Extensive air showers and

methods of detecting UHECRs

For cosmic rays with energies above roughly 1015 eV direct methods of detection

become infeasible. This is due to the nature of the cosmic ray energy spectrum

(see Section 1.2) and the significantly lower flux above this energy, less than 1

particle/m2/year. Instead, indirect methods must be utilised to infer the energy,

arrival direction and composition of these cosmic rays. Indirect techniques involve

measuring the properties of so called “extensive air showers” (EASs) and comparing

the predictions of simulations to real data [34]. This chapter will explain the basic

physics, terminology and primary methods of detecting EASs, as well as provide a

summary of UHECR experiments.

2.1 Extensive air showers

When a cosmic ray breaches Earth’s atmosphere, it inevitably collides with an at-

mospheric particle, usually a nucleus of nitrogen or oxygen [34]. This interaction

generates a cascade of further “secondary particles” collectively known as an ex-

tensive air shower. The secondary particles in an EAS consist primarily of elec-

trons/positrons, photons, muons and hadrons. These particles are concentrated

around what is known as the “shower axis”, defined as the path the original cosmic

ray would have taken if it had not interacted. The angle of the shower axis with re-

spect to the vertical is called the zenith angle of the shower and is typically labelled

θ. The “development” of an EAS is the variation in the total number of secondary

particles during the cascade. This is often referred to as the longitudinal develop-

ment of a shower. Since the production of new particles depends on interactions

with air nuclei the longitudinal development depends on the amount of matter tra-

versed. Thus a useful quantity to describe the level of development is atmospheric

slant depth, X. Typically measured as a column density in g cm−2, the atmospheric

slant depth at a particular height above ground, h, for a shower with zenith angle θ,

is the integral of the atmospheric density, ρ(z), from h to the top of the atmosphere
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Figure 2.1: Geometry of an EAS. From [35].

scaled by 1/ cos θ (assuming Earth’s surface is flat, valid for θ < 60°).

X =
1

cos θ

∫ ∞
h

ρ(z)dz [gcm−2] (2.1)

A closely related quantity is the rate of energy deposited by EAS particles into the

atmosphere with respect to atmospheric slant depth, dE
dX

. The value of X at which
dE
dX

is a maximum is called Xmax and is an important parameter for mass composition

studies.

The point of intersection between the shower axis and the ground is the “shower

core”, whilst the plane that is perpendicular to the shower axis is known as the

“shower plane”. The shower plane is a useful construct as the density of secondary

particles in a cosmic ray air-shower depends mainly on the distance to the shower

axis, which differs from the distance to the core in non-vertical (θ > 0°) showers.

Thus positions on the ground are usually projected parallel to the shower axis onto

the shower plane. Points in the shower plane are expressed in polar coordinates,

with r the distance from the shower axis and ζ the azimuth. Convention is to take

ζ = 0° to be directly beneath the shower axis and for ζ to lie in the range (−π, π).

Figure 2.1 shows a basic diagram of the geometry of an EAS.

The types of secondary particles that make up an EAS can be split into three

main components; electromagnetic, hadronic and muonic. A basic depiction of how

the three components arise from the initial interaction of a cosmic ray with an air

molecule is shown in Figure 2.2. The electromagnetic and hadronic components will

now be discussed in detail.
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Figure 2.2: Schematic of how the different components of an extensive air shower
are produced from the interaction of a cosmic ray with an air molecule. From [36].

2.1.1 Electromagnetic cascades

The simplest theory of electromagnetic (EM) cascades was described by Heitler

in 1954 [38]. Though he and others went on to introduce further complexity to

their models, only the simplest case will be outlined here. Importantly, this simple

case still describes the most critical aspects of these showers, and clearly shows

the physics involved in the shower development [37]. It should be noted that the

following explanation of the Heitler model is derived largely from Matthews [37],

who explores it in greater detail.

The Heitler model considers the interactions of electrons, positrons and photons

within a cascade. In the model, each particle travels a distance d = λr ln 2 before

“splitting” into two new particles. Here, λr is the radiation length in the medium,

approximately 37 g cm−2 in dry air [34]. For e− and e+, a “splitting” involves radi-

ation of a photon via bremsstrahlung,

N + e→ N + e+ γ (2.2)
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Figure 2.3: A diagram of Heitler’s model of an electromagnetic cascade. Explana-
tion of the model is provided in the text. From [37].

where N is an air nucleus. Photons on the other hand split into an electron and

positron via pair production, again in the presence of an air nucleus,

N + γ → e+ + e− (2.3)

Figure 2.3 shows a schematic view of this process. After splitting, the outgoing par-

ticles are assumed to have half the energy of the incoming particle. For n splittings

the EM shower travels a depth

x = nλr ln 2 (2.4)

and consists of N = 2n particles. However, the production of particles is not indefi-

nite and halts at a critical energy, Ee
c , where energy losses due to collisions become

greater than radiative losses. In Earth’s atmosphere Ee
c ≈ 85 MeV.

Now consider an EM particle with energy E0 initiating a cascade. After some

critical number of splittings, nc, all particles in the cascade will have an energy E =

Ee
c and thus the number of particles in the cascade will be a maximum, N = Nmax.

Hence,

E0 = Ee
cNmax (2.5)

To determine the atmospheric slant depth corresponding to the maximum number

of particles, Xmax, note that Nmax = 2nc and so nc = ln(Nmax)/ ln 2. Applying

Equation 2.5,

nc = ln(E0/E
e
c )/ ln 2 (2.6)
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Using Equations 2.4 and 2.6 we find

Xmax = ncλr ln 2 = λr ln
E0

Ee
c

(2.7)

Note this value for Xmax only applies to purely electromagnetic showers. To describe

how Xmax changes with initial energy E0, a quantity called the elongation rate is

used. It is defined as

Λ ≡ dXmax

d log10E0

(2.8)

From Equation 2.7 and using the value of λr=37 g cm−2,

Λ = ln(10)λr ≈ 85 g cm−2

Though simplistic, the Heitler model’s predictions of Λ ≈ 85 g cm−2 and a propor-

tional relationship between the natural log of the primary energy and maximum

shower size (Equation 2.7) are verified by simulations and experiments [37].

2.1.2 Hadronic component

A generalisation of the Heitler model by Matthews provides a basic understanding

of hadronic cascades [37]. In Matthews’ model, hadrons interact after traversing

a fixed distance λI ln 2 where λI ≈ 120 g cm−2 is the interaction length of pions in

air. Two thirds of the particles produced in each interaction are charged pions,

with the remaining third being neutral pions. The neutral pions will decay to two

photons, sparking EM cascades, whilst the charged pions will continue to traverse

the atmosphere and interact until their energy falls below some critical value, Eπ
c .

A diagram of this process is shown in Figure 2.4. Upon reaching Eπ
c , all charged

pions are assumed to decay into muons via

π+ → µ+ + νµ and π− → µ− + νµ

Suppose now a cosmic ray proton of energy E0 interacts with an atmospheric

molecule, producing a hadronic shower. The number of charged pions, Nπ, after n

interactions is given by Nπ = (Nch)n, where Nch is the number of charged particles

produced in a typical hadronic interaction. If each interaction divides the energy

amongst the produced particles equally, each of these pions would have an energy

Eπ =
(2
3
)nE0

(Nch)n
(2.9)

For a primary particle with E0 = 1017 eV, it takes approximately six interactions for

Eπ to fall below the critical energy, at which point 90% of the energy of the shower

has been converted to electromagnetic particles [34, 37]. At this point the number

of charged pions is a maximum and since the charged pions decay to muons at the

critical energy we have Nµ = Nπ,max.
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Figure 2.4: A depiction of the hadronic version of the Heitler model developed by
Matthews. The neutral pions, represented by dashed lines, do not re-interact, but
decay to photons. From [39].

Analogous to Equation 2.5, the energy of the primary particle is simply given

by the maximum shower size for each component multiplied by the associated crit-

ical energy. Matthews takes the critical energies to be 85 MeV and 20 GeV for

the EM and hadronic component respectively. Note in Matthews’ model only elec-

trons/positrons contribute to the energy in the EM component. This is corrected

for with an order of magnitude estimate, Ne = Nmax/10. Altogether, this gives the

following parameterisation for the initial energy,

E0 = 0.85 GeV(Ne + 24Nµ) (2.10)

The structure and coefficients of Equation 2.10 have been shown to agree closely

with simulations [37]. Matthews also provides a formula for the Xmax of a proton

primary with energy E0,

Xmax = 470 + 58 log10(E0/1 PeV) [gcm−2] (2.11)

Although Equation 2.11 is a systematic underestimation of Xmax, due to only con-

sidering the first generation of photon showers arising from π0 decays, the predicted

elongation rate of 58 g cm−2 per decade of energy agrees very closely with simulations

[37].
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Figure 2.5: The lateral distributions of photons (green), electrons/positrons (red)
and muons (blue) in a simulated 1019 eV proton shower. The left plot shows the
density of particles at ground level, whilst the right plot shows the particle density
convolved with the response of a 1.2 m deep water Cherenkov detector. From [40].

2.2 Detection methods

There are several methods of detecting extensive air showers, each with its own

advantages and disadvantages. The two most common techniques for UHECR de-

tection are surface detector arrays and fluorescence detection.

2.2.1 Surface detector arrays

Surface detector arrays are the oldest method of studying high energy cosmic rays

and have the advantage of being able to operate constantly. The basic principle is

that several detectors are spread over a large area to measure the secondary particle

density at ground. The majority of particles detected are either photons, electrons

or muons, due to their broad lateral distributions. Figure 2.5 shows an example of

these distributions for a 1019 eV proton shower.

To reconstruct the properties of the original cosmic ray, at least three detectors

are required to trigger. With three detectors the location of the shower core can be

reconstructed. The direction of the shower is then calculated based on the timing of

the signal pulses in each of the three detectors. With the shower core and direction

known, the measured signals can be plotted as a function of radius in the shower

plane, to which a lateral distribution is then fit. The parameters of the fit allow

for the energy of the primary particle to be estimated based on simulation models.

Naturally the greater number of detectors triggered in an event, the more precise

these reconstructed parameters become. The number of detectors which trigger

largely comes down to the spacing of the array. For a given number of detectors,
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decreasing the spacing will allow for more detectors to be triggered in each event.

However this sacrifices a larger collecting area, meaning fewer showers overall will be

detected. Balancing these two considerations is critical for ground arrays to obtain

the desired precision and statistics for meaningful analysis.

The two most common types of detector used in ground arrays are scintillation

detectors and water Cherenkov detectors. Scintillation detectors utilize the property

of luminescence. When the scintillating material is struck by ionizing radiation,

such as the secondary particles within an EAS, optical light is produced. This light

is detected by a photomultiplier tube (PMT) and subsequently converted to an

electrical signal. Scintillation detectors are equally sensitive to muons and electrons

and can detect photons if they pair-produce in the scintillating medium.

The other common detector type is the water Cherenkov detector. As the name

suggests, these detectors rely on Cherenkov light to detect EAS particles. Cherenkov

light is produced when a charged particle passes through a medium faster than the

speed of light in that medium. Since the refractive index of water is 1.33, parti-

cles must travel faster than 0.75c in the detector to produce Cherenkov light. The

majority of electrons and muons in an EAS satisfy this requirement. For EAS pho-

tons to be detected they must undergo pair-production to produce electrons with

the velocity required to produce Cherenkov light. One bias of water Cherenkov

detectors is an increased sensitivity to muons. This is because muons are far more

energetic, allowing them to pass through the entirety of the detector whilst produc-

ing Cherenkov light. Electrons on the other hand do not have enough energy to

penetrate through the entire volume of water, thus they only emit Cherenkov light

for a short period of time [41].

The reliance on hadronic models to estimate the primary energy, particularly

when these models do not have access to the ultra-high energy range being consid-

ered, is a significant disadvantage of the surface detector array method. Additionally,

estimating mass composition is difficult and often requires isolating different com-

ponents of the air-shower. Examples of surface array layouts are given in Section

2.3.

2.2.2 Fluorescence detection

When a cosmic ray initiates an EAS its energy is converted into secondary particles.

One method of estimating the energy of the primary particle is to measure the

energy deposited by these secondary particles into the atmosphere. This type of

measurement is known as a “calorimetric measurement” as the atmosphere is acting

as a calorimeter. EAS particles deposit energy into the atmosphere by ionising or

exciting air molecules, predominantly nitrogen. When nitrogen molecules transition

back to their ground state a common mode is via emission of fluorescence light.

The emission is isotropic and mainly between 300 nm and 400 nm in wavelength,

as shown in Figure 2.6. As the number of fluorescence photons is proportional to
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Figure 2.6: Fluorescence spectrum of nitrogen in dry air. Measurements taken at
800 hPa and 293 K. From [43].

the energy deposited, measuring the emitted light can determine the energy of the

primary particle. Current equipment is sensitive enough to measure the fluorescence

light produced by showers greater than 1017 eV in energy [42].

The challenge of fluorescence detection can be likened to trying to observe a

100 W light bulb travelling at the speed of light 30 km away, all amidst sources

of background noise [42]. Hence detectors must possess high temporal resolution

and be extremely sensitive to ultraviolet (UV) light. This is typically achieved by

filtering out non-UV light sources and using a large mirror to focus the fluorescence

light onto a grid of PMTs. Each PMT is called a “pixel”. As the EAS develops the

fluorescence light will pass through several pixels. This trace and the timing of the

pulses in each pixel can be used to reconstruct the direction of the shower. From the

reconstructed geometry and fluorescence emission measurements, an energy deposit

profile can be made. Integrating this profile gives the total energy of the shower,

whilst the maximum value of the profile gives Xmax . The reconstruction of each

parameter can be improved by having the same shower seen by multiple telescopes,

called a stereo event. This removes dependency on the timing of pixel pulses for the

geometry reconstruction, improving the accuracy of the estimated core location and

shower direction. In turn, better measurements of the total energy and Xmax can

be made.

Using a surface detector array in conjunction with fluorescence telescopes, known

as hybrid detection, can also enhance geometry reconstruction. This typically in-

volves using a ground array to estimate the time at which the shower front reaches

the ground, removing possible degeneracy in the timing fit from a single fluorescence

telescope. Hybrid reconstruction has the additional benefit of being able to calibrate
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the energy measurements of the surface detector with the calorimetric readings from

the fluorescence detector.

A fraction of secondary particles in an EAS will not deposit their energy into the

atmosphere. Some of these particles will be detected by surface arrays at ground level

whilst others are largely undetectable, such as neutrinos. Thus, for a fluorescence

detector, corrections to the energy estimate of the primary cosmic ray must be made.

The correction factor for this “invisible energy” varies between 1.07 to 1.17 and is

dependent on the primary mass and the hadronic interaction model used to describe

the shower development. An additional correction must be made for the (typically)

small fraction of Cherenkov light scattered towards the detector [42].

A significant downside to the fluorescence detection method is the low duty cycle

of approximately 10−15%, as measurements can only me made on clear nights with

little or no moon. This means a set of fluorescence detectors will observe far fewer

events than a surface detector array with the same effective area. However, the

methods of determining the primary energy and Xmax are far more direct with

fluorescence detection. The hybrid detection approach is one way of compensating

for the weaknesses of either detection technique. This method is utilised by the

two largest cosmic ray detectors in the world, the Telescope Array experiment (see

Section 2.3.6) and the Pierre Auger Observatory (see Chapter 3).

2.3 UHECR experiments

2.3.1 Volcano Ranch

Volcano Ranch was a cosmic ray observatory located near Albuquerque, New Mexico,

that operated from 1959 to 1978. The project was headed by John Linsley from

the Massachusetts Institute of Technology and consisted of nineteen 3.3 m2 plastic

scintillators measuring secondary particles from cosmic ray air showers [44]. The

scintillators were arranged in a hexagonal pattern with an initial spacing of 442 m,

enclosing an area of 2 km2. The spacing was later increased to 884 m giving an

enclosed area of 8.1 km2. The comparatively large size of the array at the time

allowed for the extension of the cosmic ray energy spectrum above 1018 eV [45].

The highest energy event recorded at Volcano Ranch was 1020 eV [46]. This was

evidence of cosmic rays originating from extra-galactic sources as no objects within

our galaxy were believed to be able to accelerate a proton to such an energy at the

time. Figure 2.7 shows the layout of the experiment and the estimated location of

the highest energy event recorded.

2.3.2 Haverah Park

Situated in Haverah Park, England, this ground array made use of water Cherenkov

detectors to detect extensive air showers. The array was a collaborative effort by
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Figure 2.7: Layout of the Volcano Ranch array in 1962. The small circles are
scintillators with the adjacent numbers representing the estimated particle density
(particles/m2) from the highest energy event recorded. A indicates the estimated
core location of the event. From [46].

the Universities of Durham, Leeds and London, and collected data from 1962-1987.

The array initially consisted of just 4 detectors, with a central detector surrounded

by 3 others arranged in a triangle formation [47]. In 1968 the number of detectors

was increased by placing several sub-arrays of 4 detectors roughly 2 km from the

original site. Haverah Park demonstrated that water Cherenkov detectors were a

viable method for the long term detection of cosmic ray air-showers, as evidenced by

its 20+ year run time. The measured energy spectrum showed a flattening around

1019 eV [48] i.e. just above the region of the now well measured “ankle”.

2.3.3 SUGAR

The Sydney University Giant Air-shower Recorder (SUGAR) was the first large scale

cosmic ray detector in the southern hemisphere and measured the muon content in

extensive air-showers. The experiment was located near the town of Narrabri in New

South Wales, Australia, and operated between 1968 and 1979. The array consisted of

54 underground detector stations arranged in a rectangular grid spread over 70 km2.

These stations were autonomous and consisted of two liquid-scintillators, each with

an area of 6 m2, separated by 50 m in the north-south direction. The majority of

stations were spaced by 1600 m to detect high energy showers. However smaller

grids with 800 m and 400 m spacing were utilised for recording smaller showers [49].

To reconstruct the primary energy of an EAS, SUGAR invoked models relating the
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number of muons recorded to the energy [50]. Data from SUGAR also showed a

flattening in the energy spectrum around the ankle region, in agreement with other

experiments at the time [49].

2.3.4 AGASA

The Akeno Giant Air Shower Array (AGASA) was built in 1990 and operated until

2004. During this period, it was the largest cosmic ray observatory in the world.

Located 120 km west of Tokyo in Akeno, Japan, the array was spread over 100 km2

and consisted of 111 scintillation detectors, each with an area of 2.2 m2. In addition

there were 27 muon detectors of various sizes [51]. The size of the array allowed

it to probe the highest energy cosmic rays. Initial results from AGASA showed a

surprising lack of a GZK cutoff in the energy spectrum. However this result was

later retracted in 2006 after an error in the analysis process was found, bringing the

results more in line with experiments of similar collecting area, such as HiRes [52].

2.3.5 Fly’s Eye and HiRes

The Fly’s Eye detector and the subsequent upgraded version, HiRes, both utilised

the fluorescence detection technique to analyse the properties of EASs. The Fly’s

Eye operated between 1982 and 1992 and was located at Dugway, Utah [52]. The

first detection site, known as Fly’s Eye I, consisted of 67 spherical mirrors, each

with a diameter of 1.5 m and focusing light onto 12 or 14 PMTs. With a total

of 880 PMTs, each covering a region of sky 5.5° in diameter, Fly’s Eye I was able

to image the entire night sky. A second detector, Fly’s Eye II, was completed in

1986 and situated 3.4 km away. This detector had only 36 mirrors, all pointing

towards the direction of Fly’s Eye I and covering half the night sky. This allowed

for stereo detection and improved the geometry reconstruction for showers seen by

both detectors [53].

The Fly’s Eye stereo energy spectrum showed a clear dip at 3 × 1018 eV, the

location of the “ankle”. Direct measurements of Xmax allowed Fly’s Eye to show a

change in composition with energy around this region. Starting from predominantly

heavy primaries at ∼ 0.1 EeV, the composition was observed to gradually transition

towards lighter nuclei up to 15 EeV. The results were explained by a model where

galactic cosmic rays were primarily heavy nuclei and extra galactic cosmic rays were

primarily light nuclei. The highest energy event ever recorded by a cosmic ray

experiment was also observed at Fly’s Eye, with an energy of 3.2×1020 eV [54]. The

profile of the event is shown in Figure 2.8.

Completed in 1997, the High Resolution Fly’s Eye I (HiRes I) was a significant

upgrade to the original Fly’s Eye experiment, improving resolution and sensitivity.

This was achieved by using 5.1 m diameter mirrors focusing light onto 256 PMTs,

each viewing a roughly 1° by 1° region of sky. HiRes I was located at the same site
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Figure 2.8: Profile of the highest energy cosmic ray event ever recorded with
E ≈ 3.2× 1020 eV. The event was observed by the Fly’s Eye experiment on the 15th

of October, 1991. From [54].

as the original Fly’s Eye I, and consisted of 22 telescopes covering 360° in azimuth

and 3-17° coverage in elevation. A second site, HiRes II, was established in 1999.

It was located 12.6 km away from HiRes I and had 42 detectors. Similar to Fly’s

Eye II, this site was able to provide stereo reconstruction when used in conjunction

with HiRes I. HiRes II also possessed full 360° coverage in azimuth but with an

extended range in elevation, from 3-31°[52, 55]. The improvements in HiRes allowed

it to observe the suppression in flux predicted by the GZK cutoff [52]. HiRes also

showed predominantly light composition at the highest cosmic ray energies [56].

2.3.6 Telescope Array

The Telescope Array experiment (TA) is a current experiment designed to study

UHECRs. The observatory is located in Millard County, Utah, and began data

acquisition in 2008. TA utilises the hybrid detection technique, with 38 fluores-

cence telescopes distributed over 3 sites overlooking a ground array of 507 plastic

scintillators. The scintillators have an area of 3 m2 and consist of two 12 mm layers

of scintillating material, separated by 1 mm of stainless steel. The ground array is

spread over 678 km2 with a grid spacing of 1.2 km between detectors. Each fluores-

cence detection site has a coverage of 108° in azimuth (114° for the Middle Drum
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site) and 3-33° in elevation. Every telescope is equipped with a 3.3 m diameter mir-

ror and a grid of 256 PMTs [57]. Examples of results from TA on the cosmic ray

energy spectrum, mass composition and anisotropy can be found in Chapter 1.

2.3.7 FAST

The Fluorescence detector Array of Single-pixel Telescopes (FAST) is a next gener-

ation cosmic ray detector. The goal of FAST is to observe cosmic ray air showers

above energies of 1019.5 eV with unprecedented statistics. To achieve the enormous

collecting area required, whilst also minimising costs, the FAST collaboration has

designed a simplified, cost-effective fluorescence telescope. These telescopes have a

smaller light collecting area and far fewer pixels compared to current designs, al-

lowing many more units to be produced for the same cost. The telescopes consist

of a mirror 1.6 m in diameter focusing fluorescence light onto four PMTs. The field

of view of each telescope is 30° by 30°, such that a station of 12 FAST telescopes

would cover 360° in azimuth. Simulations of the detector suggest the optimal spac-

ing between stations to be 20 km, with stations arranged in a hexagonal pattern.

An example layout is shown in Figure 2.9.

Currently, there are three prototype FAST telescopes installed at TA and one

prototype installed at the Pierre Auger Observatory. Shower reconstruction is

achieved via a two step process. First, a neural network provides a first guess at

the true shower parameters. This guess is then passed to a top-down reconstruction

method where the measured PMT traces are compared to simulated ones and the

best fit shower parameters are found [58].
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Figure 2.9: Schematic of a proposed layout for FAST. The sizes of TA and the
Pierre Auger Observatory are shown for reference. Results from a simulation of a
cosmic ray with energy 57 EeV incident on the detector is also shown. From [59].

31





Chapter 3

The Pierre Auger Observatory

The Pierre Auger Observatory, located near the city of Malargüe in the Mendoza

province of Argentina, is currently the largest detector in the world designed to

study cosmic rays. After initial conception by Jim Cronin and Alan Watson in 1991,

construction of the observatory began in 2002 and was completed in 2008 [60]. The

goal of the observatory is to study the energy spectrum, arrival directions and mass

composition of UHECRs with high statistics [61]. To achieve this, the observatory

utilises a hybrid detection system consisting of a fluorescence detector (FD) and

a surface detector (SD) array. The layout of these detectors is shown in Figure

3.1. The following chapter will discuss the main components of the observatory,

primarily focusing on the SD as it is this detector around which much of the work

in this thesis is based.

3.1 Communications and CDAS

The sheer size of the SD array and large amounts of data needed to be sent and re-

ceived requires a robust communication system. Two complementary networks are

currently employed for this purpose. The first is a microwave network which oper-

ates in the 7 GHz band and is responsible for transferring data from communications

towers at each FD site to the Central Data Acquisition System (CDAS), located at

a central campus in Malargüe. Each communications tower holds 8 “base” stations,

each of which is responsible for coordinating communications to and from SD sta-

tions in a given section of the array. The second network, a wireless Local Area

Network (LAN), is what allows each SD station to communicate with their associ-

ated base station. This network operates in the 902–928 MHz range. By dividing

the array into sectors, the processing load across the array is distributed efficiently

and the failure of a single base station does not cause data loss from the rest of the

observatory [62].

The purpose of these communication systems is to provide array-wide connection

with the CDAS. The CDAS plays a number of critical roles including storing SD

data, processing SD-only and hybrid event triggers, monitoring SD performance and

providing configuration/control tools for the SD. The CDAS is completely separate
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Figure 3.1: Layout of the Pierre Auger Observatory. Each black dot represents
one of the 1660 stations that make up the SD. The 4 housings for the fluorescence
telescopes are shown in blue, with each telescope having a 30° field of view in az-
imuth. Other components shown include the infill array and HEAT upgrades to the
observatory, along with the central and extreme laser facilities (CLF & XLF) in the
middle of the array. From [61].

from the FD data acquisition system, only receiving alerts for the purpose of hybrid

triggering [62].

3.2 The surface detector

The SD array of the Pierre Auger Observatory is spread across 3000 km2 of semi-

desert terrain and consists of 1660 water Cherenkov detectors (WCDs). Shown to

be a robust method of detecting cosmic rays by previous experiments (see Section

2.3.2), WCDs were chosen for their durability, low cost and nearly uniform exposure

to primary cosmic rays with zenith angles < 60°. The elevation of each tank above

sea level ranges between 1340 m and 1610 m, with an average elevation of roughly

1400 m. This equates to ∼ 880 g cm−2 of atmospheric overburden [63].
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Figure 3.2: Image of a water Cherenkov detector with the component parts la-
belled. From [63].

An initial design goal for the SD was to have 5 triggered stations for any shower

with energy above 1019 eV. This requirement was met by arranging the tanks in a

triangular grid pattern with a spacing of 1.5 km. A desirable outcome of such spacing

is that measured data from the observatory overlaps with existing data from other

experiments, allowing for useful comparisons and cross-checks. For showers with

zenith angles < 60° the current threshold for full efficiency of the regular SD array

is 3×1018 eV, slightly lower than that of the FD [63].

3.2.1 WCD design

Each water Cherenkov detector is a cylindrical, polyethylene tank 1.2 m high and

3.6 m in diameter. This particular height was chosen to enhance the muon signal in

the detectors. On the interior, the tanks have a sealed liner with a reflective inner

surface, whose purpose is to diffusely reflect Cherenkov light. Each tank contains 12

tons of purified water and three 9-inch photomultiplier tubes. The PMTs are located

at the top of the tank, oriented downwards to look through clear polyethylene into

the purified water. The large dynamic range of the PMTs allows them to measure

signals close to and far away from the shower core. These signals are digitised by

a flash analog to digital converter (FADC) operating at 40 MHz. A solar panel is

attached to the tank to provide power to the PMTs and electronics [63]. A photo

of a tank with labelled components is shown in Figure 3.2.
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Figure 3.3: Histograms of the charge and pulse height from the summed signal of
all 3 PMTs in an SD station. The black lines represent background muons and the
dashed red lines show central, vertical muons selected with a muon telescope. From
[64].

3.2.2 Calibration of the SD

To ensure the signals from an extensive air shower are accurately recorded, every

WCD automatically records the parameters required for calibration every minute.

Upon an event trigger, the previous minute of calibration data is sent to the CDAS.

There, the primary signals measured by the detectors are converted into a station

independent unit known as a vertical equivalent muon (VEM). This corresponds to

the average “charge” measured by a PMT from the Cherenkov light emitted by a

muon passing vertically through the centre of the tank. Note that “charge” refers

to the integrated PMT pulse over time [64].

In normal operation the WCDs are not able to isolate a single vertical muon, thus

the charge histogram of background muons passing through the detector is used to

determine the conversion. An example of such a histogram is shown in the left panel

of Figure 3.3. The solid black line is a histogram of the sum of the charges measured

by the 3 PMTs, whilst the dashed red line has been produced outside of regular data

taking by using a muon telescope to select only central, vertical muons. The charge

value of the central peak in the vertical muon charge histogram, QVEM, corresponds

to 1 VEM and hence is the value needed for calibration. The second peak in the

charge histogram of background muons, Qpeak
VEM, has been shown to correspond to

approximately 1.09QVEM. Thus any integrated FADC signal can be converted to

VEM units by simply dividing by Qpeak
VEM/1.09. In practice, Qpeak

VEM is found by fitting

a polynomial to the second peak. The accuracy of the conversion is about 3% [64].

The other purpose of calibration is to set stable trigger thresholds. This is also

done using the flux of background muons, in this case with the pulse height or
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“current” histogram measured by the PMTs. An example is shown in the right

panel of Figure 3.3. The second peak in the pulse height histogram of background

muons, IpeakVEM, is used as the reference unit for threshold levels [64]. This value will

be referred to in the following section on the SD trigger system.

3.2.3 Trigger system of the SD

The SD uses a hierarchical trigger system to decide whether detected signals should

be classified as an event. The design of the system is such that the array is fully

efficient for the detection of EASs above energies of 3×1018 eV with zenith angles

between 0° and 60°. The first two triggers are performed locally by individual

stations and filter out the background particle flux. The lowest level trigger, T1,

has two modes. The first is a threshold (TH) trigger which looks for all 3 PMTs

to have signals above 1.75 IpeakVEM. The second mode is a time over threshold (ToT)

trigger and requires 2 out of the 3 PMTs to be above 0.2 IpeakVEM for a period of at

least 13 FADC bins (325 ns) in a 3 µs sliding window. The rate of triggering for each

mode is approximately 100 Hz and 2 Hz respectively.

If the requirements for a T1 trigger are met, the second level trigger, T2, is

checked. The T2 trigger also has two modes and reduces the rate of events per

detector to roughly 20 Hz. All ToT-T1 triggers automatically pass the T2 trigger,

whilst the TH-T1 triggers must pass a higher threshold of having all 3 PMTs above

3.2 IpeakVEM. Smaller signals between 1.75 IpeakVEM and 3.2 IpeakVEM are not immediately dis-

carded however, as they may be used if the criteria for the third level trigger, T3,

are met. If the T2 condition is passed, the timestamp and type of T2 is sent to the

CDAS for the preparation of an array level trigger [65].

The third level trigger, T3, looks for spatial and temporal coincidences of T2

triggers across the array. Similar to the T1 and T2 triggers, the T3 trigger has

two modes. The first requires at least 3 stations to pass the ToT condition, with

at least one of these stations having one of its closest and one of its second closest

neighbours triggered. The name for this type of trigger is “ToT2C1&3C2”, where

Cn represents the nth set of neighbours for a station. Thus the name states that

this trigger is a ToT trigger where 2 stations (including the central one) are within

C1 and 3 stations are within C2. Additionally, each station must trigger within

(6+5Cn) µs of the central one for this mode to be satisfied.

The second mode is a 4 fold coincidence of stations passing any T2 trigger mode.

The required spatial distribution of triggered stations is 2C1&3C2&4C4. The same

timing condition as in ToT2C1&3C2 is implemented for this mode. Example layouts

of the spatial requirements for each T3 trigger mode are shown in Figure 3.4. Upon

the formation of a T3, all stations passing either T1 or T2 level triggers within 30 µs

of the T3 send their data to the CDAS for storage. Combined, the T3 triggers select

roughly 3800 events per day [65].
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Figure 3.4: Examples of possible T3 spatial configurations. The left layout shows
an event passing the ToT2C1&3C2 trigger. The right layout is an example of the
4-fold 2C1&3C2&4C4 trigger. From [65].

(a) (b)

Figure 3.5: Possible configurations for events passing the T4 trigger. 3ToT trigger
layouts are shown in (a). 4C1 layouts are shown in (b). From [66].

The T4 or “physics” trigger is used to select real showers from stored T3 data.

Once again there are two sets of criteria. The “3ToT” mode requires 3 stations

passing the T2-ToT trigger to be arranged in a triangular pattern, as shown in

Figure 3.5a, whilst the “4C1” mode is satisfied if 4 stations passing any T2 trigger

are arranged in one of the configurations shown in Figure 3.5b. Both modes must

also meet a timing requirement, namely for the timing of the station signals to fit to

a plane shower front moving at the speed of light. Events which pass the T4 trigger

are able to have their arrival direction, core position and energy reconstructed 99.9%

of the time.

The last trigger level is T5. T5 is a fiducial trigger, selecting only events in which

the “hottest” station, that is the station with the greatest integrated signal in an

event, has all 6 of its neighbours working at the time of the event (not necessarily

triggered). This is known as a “6T5” trigger and the reason for employing it is to

remove events which land on the edge of the array or in an area with faulty stations.

Such events may have a biased reconstruction, affecting estimates of the shower

geometry and thus energy [65].
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(a) (b)

Figure 3.6: Diagrams of the plane shower front (a) and spherical shower front (b)
models used to estimate the shower geometry. From [68].

3.2.4 SD event reconstruction

The SD reconstruction of the properties of an EAS employed by the Pierre Auger

Observatory largely follows the outline given in Section 2.2.1. This section adds some

additional details and focuses only on “vertical showers”, that is showers with zenith

angles < 60°. Showers with greater zenith angles are known as “horizontal showers”

and must be reconstructed differently due to the large amount of atmosphere they

pass through [67].

The process to fully reconstruct the shower geometry and primary energy occurs

in a number of steps. The key components are outlined below, after which is a

description of how they combine to perform the complete reconstruction.

Shower geometry

Shower geometry refers to the location of the shower core and direction of the shower

axis. The initial estimate of the shower geometry is made using a plane shower front

model moving at the speed of light. Here, the shower core is given by the signal

weighted barycentre, ~xb, and the time of intersection between the shower core and

ground is given by the weighted bary-time, tb. Thus, for some shower axis direction

â, where â points from the ground towards the direction of the incoming shower,

the estimated trigger time, ti, for a station located at ~xi can be written as

cti = ctb − â · (~xi − ~xb) (3.1)

A schematic view is given in Figure 3.6a. From here, an analytical solution for â is

derived by using a “seed-triangle” - a set of 3 stations consisting of one station and

its two nearest neighbours all passing a station level trigger arranged in a triangle

pattern. The seed-triangle with the greatest sum of the three station signals is used

to find a first estimate of â [68].
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Using the values of ~xb and â as initial guesses for the shower core and shower axis

respectively, a spherical model is then used to obtain a more accurate approximation

of the shower geometry. A schematic for this model is shown in Figure 3.6b. The

estimated trigger time of a station is now

cti = ctc − | ~Rc − ~xi| (3.2)

where ~Rc is the virtual origin of the shower front and tc is the unknown time at

which the shower core intersects the ground. ~Rc can be written in terms of the

shower axis â as
~Rc = ~xc +Rcâ (3.3)

Here, Rc is the radius of curvature of the spherical front at the impact point (shower

core) ~xc. A chi-squared minimization procedure can be performed on the difference

in predicted and observed trigger times to find the best fit of the parameters âx, ây,

tc, and, in the case of 5 or more stations, Rc. Events with only 3 or 4 stations have

their Rc value fixed to a predefined parameterisation [68].

Lateral distribution

The lateral distribution function (LDF) describes how the signal measured by a

station changes with respect to the distance from the shower axis, r, as measured

in the shower plane. The current LDF fitted to WCD signals takes the form

S(r) = S(ropt)fNKG(r) (3.4)

where S(ropt) is a normalisation, often referred to as the “shower size”, and fNKG is

a modified Nishimura-Kamata-Greisen (NKG) function describing the shape of the

LDF. The functional form of fNKG is

fNKG(r) =

(
r

ropt

)β (
r + rs
rs + ropt

)β+γ
(3.5)

Regarding Equation 3.5, rs is fixed to be 700 m, ropt refers to the distance at which

the uncertainty in the LDF shape is minimised, and β and γ are variable shape

parameters. For the layout of Auger, ropt has been shown to be ≈ 1000 m. Thus

fNKG(1000) = 1 and so S(1000) is the measure of the shower size. The lateral distri-

bution of signals for a sample event is shown in Figure 3.7a, with the corresponding

fit to these signals shown in Figure 3.7b

For the majority of events, the multiplicity and spatial distribution of triggered

stations doesn’t allow for the shape of the LDF to be accurately determined. Hence,

an average LDF based on data-derived parameterisations of β and γ is usually fitted.

The parameterisations are in terms of S(1000) and zenith and come from subsets

of events with satisfactory lever-arms. Specifically, parameterisations of β are from

events which have 2, 3 or ≥4 stations in the range 400-1600 m, with two of the sta-

tions being separated by at least 900, 800 or 700 m respectively. Parameterisations
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of γ come from similarly restricted events, except the range in which the stations

must be distributed is 1000-2000 m [68].

When fitting the LDF, a maximum likelihood method is used to find the most

probable values of S(1000) and core position ~xc for the given event. β may also

be fitted if the station layout meets the lever-arm conditions outlined above. The

uncertainties on the station signals used in this method come from a signal un-

certainty model developed for the SD. This model has the baseline assumption of

Poisson statistics, where the uncertainty in signal scales with its square root. This

is because the uncertainties primarily arise from sampling fluctuations (variation in

the number of particles sampled at a fixed distance from the shower axis). How-

ever, a linear dependence on zenith is also present, attributed to the larger relative

fraction of muons detected by the WCDs at higher zenith angles. Further details on

the fitting procedure and signal uncertainties can be found in [68].

Fit process

A full reconstruction combines the results of the shower geometry and lateral distri-

bution fits as follows. First, an initial plane shower front is fit to the station timings,

with the core, ~xc, estimated by the station weighted barycentre. This gives a first

guess of the shower axis, â, which is subsequently improved using the spherical front

approximation. The shower axis is used to define the shower plane and hence give

the initial station radii in the fit to the lateral distribution of signals. An iterative

procedure is then performed, where the shower core and S(1000) (and possibly β)

are fit simultaneously. The resulting shower core location from the fit is then used to

re-estimate â, and thus the station distances, before performing the fit again. This

process converges quickly to optimal values of S(1000), ~xc and â [68]. The resolution

of these properties generally increases with station multiplicity. The uncertainty in

the shower axis direction, for example, goes from < 1.6° for more than 3 stations to

< 0.9° for more than 6 stations [61].

Energy reconstruction

To reconstruct the energy of the primary cosmic ray the S(1000) size estimator is

used. Since inclined showers have a significantly attenuated electromagnetic compo-

nent, S(1000) is zenith dependent and hence is first normalised to the value it would

have if the shower had arrived with a zenith angle of 38° (the median of the zenith

angle distribution between 0 and 60°). This value is known as S38. The conversion is

performed using the Constant Intensity Cut method which relies on the assumption

of an isotropic flux of cosmic rays [69]. For a given S(1000) and θ,

S38 =
S(1000)

1 + ax+ bx2 + cx3
(3.6)
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Figure 3.7: (a) An example lateral distribution of signals. Triggered stations are
coloured, with the color scale corresponding to the start time of the signal in each
station. The size of each circle is proportional to log(S) where S is the measured
signal. The black line indicates the projection of the shower axis onto the ground.
(b) A fit to the signals of the same event. The different possible states of stations are
shown in the legend. The red square indicates S(1000). Plots are from the Offline

EventBrowser.

42



Figure 3.8: Relationship between the FD energy and S38 used to calibrate the SD
energy. Measurements are from Golden Hybrid data. From [70].

where the parameters a, b and c come from the result of a fit to S(1000) as a function

of x = cos2 θ− cos2 38°. Hybrid data (see Section 3.3.1) is then used to calibrate the

value of S38 to the energy as measured by the FD. A plot of this calibration is shown

in Figure 3.8. The fitted function (red line) is a power law and takes the form [70],

ESD = 0.186

(
S38

VEM

)1.031

EeV (3.7)

The resolution of this estimate is roughly 15% above 1 EeV [14].

3.3 The fluorescence detector

The fluorescence detector of the Pierre Auger Observatory consists of 27 fluorescence

telescopes overlooking the SD array. Their purpose is to measure the fluorescence

light emitted by atmospheric nitrogen molecules which have been excited by charged

particles from an EAS. The first 24 telescopes deployed were spread evenly over

four sites: Los Leones, Los Morados, Loma Amarilla and Coihueco. Each of these

telescopes has a field of view of 30° × 30° in azimuth and elevation, giving full

180° coverage in azimuth at each site (see Figure 3.1). Three additional telescopes

were added to Coihueco in 2009 as one of the observatories first major upgrades,

HEAT (see Section 3.4).

When in operation, light collected by an FD telescope must first pass through

a UV filter, which accepts wavelengths between 290-410 nm, before being focused

by a 10 m2 spherical mirror onto a 440 pixel camera. Each camera pixel is the
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Figure 3.9: Schematic view of a fluorescence telescope of the Pierre Auger Obser-
vatory. From [43].

photo-cathode of a photomultiplier, with pulses in the PMTs digitised every 100 ns.

Similar to the SD, a hierarchical trigger system is utilised to decide whether these

pulses constitute a real air shower. Each telescope is housed in a climate controlled

room and has a shutter which can be closed to prevent damage to the equipment

[43]. A schematic view of an individual telescope is shown in Figure 3.9.

The reconstruction of FD events follows the description given in Section 2.2.2.

One extra detail worth mentioning is the functional form fit to the longitudinal

profile of the shower. In 2019, the Pierre Auger Collaboration modified the original

Gaisser-Hillas function [71] by recasting the shape parameters of the fit so as to

reduce their degeneracy. The current function is

dE

dX
(X) =

(
dE

dX

)
max

(
1 +

R

L
(X −Xmax)

)1/R2

exp

(
−X −Xmax

RL

)
(3.8)

In this function, L describes the width of the shower profile and R describes the

asymmetry of the shower profile. The X value which maximises Equation 3.8 is

Xmax , whilst the calorimetric energy is determined by integrating the function from

0 to ∞. Above 10 EeV, the energy estimate has a statistical uncertainty of 8%,
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with the total systematic uncertainty for energy measurements being 14% [72].

Xmax measurements have a resolution of approximately 20 g cm−2 [73].

A crucial component in obtaining an accurate measurement of the longitudinal

profile is the atmospheric monitoring that takes place across the observatory. Mea-

surements of the aerosol content are made by laser facilities located in the centre of

the array and cross-checked by LIDARs operating at each FD site. The pressure,

temperature and humidity of the atmosphere is provided at 3-hourly intervals by the

Global Data Assimilation System (GDAS). A cloud detection system is also present,

handled by the LIDARs and cloud cameras at each site, with complementary in-

formation obtained from satellites in geostationary orbit [74]. These systems allow

the effect of atmospheric fluctuations to be taken into account when reconstructing

showers with the FD.

Currently, the FD operates for 15% of the year, a small fraction compared to

the near 100% up-time of the SD [60]. This is because the FD cannot operate with

excessive background light or in poor weather conditions. Thus the presence of the

sun, nearly full moon, rain/snow or even high wind speeds contribute to the off time

of the FD. Because of these strict operational requirements, each detectors exposure

must be constantly monitored [43].

3.3.1 Hybrid detection

Events observed by both the SD and FD are referred to as hybrid events and are

the highest quality data the observatory measures. For this reason, hybrid data is

used for mass composition studies and for calibrating the energy measurements of

the SD array (see Section 3.2.4) to be used for studies of the cosmic ray energy

spectrum. Hybrid data is collected when satisfactory trigger levels for the FD are

met, initiating data acquisition from the SD. This information is sent to the CDAS

where it can be stored and later processed for hybrid reconstruction.

For a hybrid reconstruction, the shower geometry is reconstructed using the

timing information from both the SD and FD, giving uncertainties in the shower

direction and core location of 0.6° and 50 m respectively [43]. This is achieved by

first using the triggered pixels in the FD to define the plane in which the shower

axis lies. The orientation of the axis is then determined using the timing of the FD

pixels and the arrival time of the shower at ground as measured by the station with

the greatest signal. The energy reconstruction technique is the same as used for the

FD.

3.4 Early enhancements - AMIGA and HEAT

One of the fist enhancements to the Auger SD array was the Auger Muon and Infilled

Ground Array (AMIGA). It began construction in 2008, with the goal of gaining in-

sight into the cosmic ray energy spectrum between 1017 eV and 1018 eV. The AMIGA
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upgrade is embedded within the original 1.5 km array and stationed within the field

of view of the Coihueco FD site [75]. Currently, 71 additional identical WCD tanks

have been deployed with a spacing of 750 m, spanning approximately 27 km2. Re-

cently, 12 more tanks were embedded within the 750 m array with 433 m spacing

[76]. The AMIGA upgrade also plans to bury muon detectors with an area of 30 m2

underground, at a depth of ≈ 2.3 m, next to each 750 m tank. Their purpose is

to measure the muon component of detected EASs. This will allow for better re-

construction of the primary particle’s properties, particularly the mass composition

measurement [75].

In combination with AMIGA was a low energy extension to the FD in 2009; the

addition of High Elevation Auger Telescopes (HEAT). These telescopes were added

to the Coihueco site and are very similar to the original detectors in design, but with

the key ability to be tilted upwards by 29°. This enables them to see in the elevation

range 30° to 58° and allows for the hybrid detection of showers down to energies of

1017 eV. In addition, unbiased lower energy measurements of 〈Xmax〉 are possible

with this hybrid approach [61, 75]. The other significant difference between HEAT

and the original detectors is the electronics kit. With double the sampling rate,

HEAT telescopes are able to better track showers with higher angular velocities, a

necessary capability to study lower energy showers [61].

3.5 AugerPrime

The latest upgrade to the Pierre Auger Observatory is known as “AugerPrime”.

There are many motivations and goals for this upgrade, the primary one being

to further our understanding of the mass composition of UHECRs by having a

mass measurement for every event recorded. This may lead to insights into the

acceleration mechanisms and sources of cosmic rays.

Other notable objectives include discovering the origin of the flux suppression

seen in the energy spectrum, determining the fraction of proton cosmic rays at the

highest energies, and investigating hadronic multi-particle production at energies

unobtainable with current accelerator technology [60]. The upgrade consists of the

following,

• Scintillator detectors deployed on top of every WCD

• Each SD station, now comprising of a WCD and a scintillator, will have their

electronics board upgraded

• A duty cycle increase of the FD telescopes by 50%

• Finalising the installation of the underground muon detectors as part of AMIGA

Altogether, these upgrades will provide the observatory with more data, due

to the increase in FD duty cycle, higher quality measurements from the SD, and
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Figure 3.10: (Left) A top-down view of the 24 scintillator bars in the right-hand
module of a scintillator. The bars are interconnected with WLS fibres and transport
photons to a PMT, located in the bottom left of the picture. From [77]. (Right)
The final scintillator unit, equipped with a roof for protection. From [66].

enhanced sensitivity to the mass composition of primary cosmic rays. Regarding this

last point, the different responses to secondary particles produced in an EAS from

the WCDs and scintillator detectors will allow for the muonic and electromagnetic

components of the shower to be separated on an event by event basis. The addition

of scintillator detectors will also be useful for direct comparisons of data between

the Pierre Auger Observatory and the Telescope Array experiment in the northern

hemisphere.

3.5.1 The scintillator surface detector

The scintillator surface detector (SSD) will consist of scintillator detectors placed

on top of every WCD in the SD array. At the time of writing, more than 80% of

tanks have a scintillator installed, however only around 6% also have the upgraded

electronics board (also known as the upgraded unified board (UUB)) to service the

upgraded detectors [76]. The small section of the array with both the SSD and

UUB installed is called the pre-production array and is currently taking data with

the SSD.

The scintillators contain two modules, each with an area of roughly 2 m2 and

consisting of 24 plastic scintillator bars. Each bar is 160 cm long, 1 cm thick and

5 cm wide. Fluorescence photons produced in the scintillator have their wavelength

shifted to the visible range of the electromagnetic spectrum due to the materials used

to make each scintillator bar - polystyrene (Polystyrene Dow Styron 663 W) mixed

with dopants PPO (1%) and POPOP (0.03%). Inside, two small kidney shaped holes

run along the length of the bar and provide a path for optical fibres to transport

photons to the PMT [60]. The chosen optical fibers are Y-11 (300) MSY from

Kuraray [78] with a 1.00 mm diameter. These fibres are wavelength-shifting (WLS)

fibres and shift any blue light to green light. The two scintillator modules containing

the bars are placed inside an aluminium frame and covered with protective sheets of
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aluminium and polystyrene-aluminium for protection. Altogether, the final unit has

a scintillating area of 3.84 m2 [60]. Photos of the scintillator bars and final housed

detector are shown in Figure 3.10.

As for triggering and calibration, the SSD does not at-present have a triggering

system, instead relying on the trigger system of the SD to decide when to send data

to the CDAS. Calibration of the SSD is done in a similar fashion to the SD, relying on

the signal produced by vertical muons impinging on the detector. Currently, results

from simulations are being used for the calibration while the measurements required

for a data-driven calibration are being finalised. The unit for calibration is the

“Auger minimum ionising particle (MIP)”, defined as the average signal produced

by a vertical, through-going muon, randomly incident on the detector. In terms of

the number of photo-electrons (PE) produced at the photo-cathode of the PMT,

recent simulations have shown 1 Auger MIP = 31.3±0.3 PE [66].
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Chapter 4

Parameterising the signal

asymmetry in the Pierre Auger

Observatory’s surface detectors

As part of the “Auger Prime” upgrade to the Pierre Auger Observatory, scintillator

detectors are currently being installed on top of every water Cherenkov detector.

The primary reason for adding scintillators is to have two types of ground based

particle detectors with different responses to the components of extensive air show-

ers. Since different primary cosmic rays are believed to generate slightly different

distributions of secondary particles, the idea is to exploit these differences for mass

composition studies. One property of air showers which could be utilised to assist in

mass determination is “asymmetry” - a phenomenon where detectors equal distances

from the shower core (when projected into the shower plane) will, on average, have

systematically different signals for inclined showers. Specifically, stations located be-

tween −90 < ζ/° < 90 (the upstream or early region) will, on average, have greater

signals than stations located at |ζ/°| > 90 (the downstream or late region). Figure

4.1 shows a basic 2D diagram indicating the upstream and downstream regions for

an inclined shower. The magnitude and causes of asymmetry, and how these link to

mass composition, is the main focus of this thesis.

In the literature there are two main reasons often cited as the source of asymme-

try, namely the attenuation of air shower particles and geometrical effects related

to the inclination of the shower and shape of the detector. A detailed look into

some of these causes is the focus of Chapter 5. For now, it suffices to say that the

complete picture is rather complex and a detailed understanding isn’t needed to sim-

ply analyse the magnitude of the asymmetry. Parameterising the amplitude of the

asymmetry in both the water Cherenkov detector and scintillator detector signals is

the goal of this chapter. Note that from this point onwards, “WCD” will be used

to refer to both the entire collection of water Cherenkov detectors and individual

tanks where appropriate. Since we would like to know how the magnitude of asym-

metry differs with mass composition, the parameterisations will be done on a large

number of simulated extensive air showers of which the primary particle is known.

The software used to create the simulated air showers, COsmic Ray SImulations
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Figure 4.1: A 2D representation of the so called “upstream” and “downstream”
regions for an inclined extensive air shower. For a station located in the upstream or
downstream region, when its position is projected into the shower plane parallel to
the shower axis, the absolute value of its ζ coordinate is < 90° or > 90° respectively.

for KAscade (CORSIKA) and the Offline framework used to model the detector

response to air showers will now be briefly described.

4.1 CORSIKA

CORSIKA [79] is a program originally designed for simulating extensive air showers

for the KASCADE array experiment, located in Germany. Its utility has made it

a widespread tool for many cosmic ray studies, including those performed by the

Pierre Auger Observatory. CORSIKA is designed to simulate the interactions and

decay of secondary particles from air showers generated by cosmic rays of primary

energies between 1011 and 1020 eV. The secondary particles tracked include nuclei,

hadrons, electrons, muons and photons. The properties of these particles, such as

position, momentum, type and arrival time, are recorded any time they pass an

observation level set by the user. Whilst multiple observation levels can be set, it is

typical to only have one level, that being the height above sea level of the experiment

one is interested in simulating showers for.

CORSIKA provides many different options and functionalities to the user, one

of the most important being the option to choose different models to describe the

high and low energy interactions of particles. These models are updated when new

particle accelerator data are released. Another option, called “thinning”, assists in

the simulation of high energy showers. In such showers the total number of particles

may reach hundreds of billions, requiring an enormous amount of computational

effort to completely simulate. However by setting a threshold energy below which not

all particles which interact are tracked (based on the energy of the primary), only a

small fraction of particles need to be considered, with those that are assigned weights
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corresponding to their probability of having been selected. In general, particles with

higher energies are more likely to continue to be tracked. A de-thinning process,

where particles are restored to having unity weight, is necessary when considering

the detector response of a sparse ground array such as the SD of the Pierre Auger

Observatory.

All simulated air showers used for analysis in this thesis were generated with

CORSIKA. The specific details regarding the options used to simulate each set of

showers will be described as needed.

4.2 The Offline software framework

In order to analyse the data from both real and simulated events, the Pierre Auger

Collaboration has designed the Offline software framework [80]. The software is used

to reconstruct measured events and to simulate the response of the observatory’s

detectors to a simulated air shower. Offline is written in C++ and is modular in

its design, meaning the user can select which modules to run in order to perform a

certain task. The framework of Offline has 3 core components;

• Collection of modules: The modules are essentially self-contained algorithms

which constitute a single processing step in the analysis. A wide variety of

applications can be achieved by combining the various modules in different

ways. An XML-based language has been constructed to handle the sequencing

of the modules and the module options.

• Event data: The event data contains all raw, calibrated, reconstructed and

simulated data. Modules are able to read and write to the Event data, allowing

communication between different modules. The data is arranged in a collection

of classes, structured based on the hierarchy of the observatory instruments.

• Detector description: This data is read-only and is retrieved by modules to

provide information on the detector configuration and performance at any

particular time. Atmospheric conditions are also contained in the detector

description.

All CORSIKA showers used in this study have been reconstructed with the

Offline software.

4.3 Initial investigation

Before beginning a full scale parameterisation, the asymmetry in proton and iron

showers (for both the WCD and SSD) was investigated for a specific energy range

and radius. This was done as a check of the method and to gain some insight into

the level of difference in asymmetry that could be expected between proton/iron and
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Primaries Proton, Iron
log(E/eV) 19 - 19.5, flat in log(E/eV)
θ/◦ 0-60, flat in sin2 θ
φ/◦ 0 - 360, uniformly distributed
Had Int. Models QGSJet-II.04

Table 4.1: Properties of the showers used for this initial study. There were a total
of 417 unique proton showers and 500 unique iron showers.

Figure 4.2: A schematic of a dense ring on the ground containing 24 stations. All
stations are located at a distance of 1000 m from the shower core when projected
into the shower plane. The angles listed show the values of ζ the corresponding
coloured stations would have when projected into the shower plane. Modified from
[81].

between the WCD/SSD. Roughly 400 proton and 500 iron showers were simulated,

with energies between 19 <log(E/eV)< 19.5, zenith angles ranging from 0−60° and

a randomly assigned azimuth. The hadronic interaction model chosen was QGSJet-

II.04. The properties of this small library of showers is summarised in Table 4.1.

When simulating the detector response to one of these showers, the spacing of

the regular Auger SD array didn’t allow for signals at equal distances in the shower

plane, for many different values of ζ, to be measured. Thus these simulations made

use of “dense rings”. A dense ring of tanks is simply a set of tanks simulated on the

ground which, when their positions are projected into the shower plane, are at an

equal distance from the shower core and spaced evenly in ζ. A schematic diagram

is shown in Figure 4.2. For our case, a ring of 12 tanks at 1000 m in the shower

plane was used to obtain a profile of the signal asymmetry at this distance for every

individual shower. The first tank was placed directly beneath the shower axis, at

ζ = 0°, with subsequent tanks separated by 30°.
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Signal fluctuations within the dense rings were too large for the asymmetry in

any individual shower to be accurately measured. As such the showers were binned

in zenith, specifically 7 bins equally spaced in sin2 θ, so as to give roughly equal

statistics in each bin. Additionally, because each shower had a different energy and

thus different value of S(1000), the average signal in each dense ring was used to

normalise the individual signals of each of the 12 tanks/scintillators. In each zenith

bin, the average relative signal and corresponding standard error for every value of

ζ (0°, -30°, 30°, ..., -150°, 150°, -180°) was found for both detectors, before a cosine

function of the form

S(1000, ζ)/ 〈S(1000, ζ)〉 = 1 + b cos ζ (4.1)

was fit to each set of points. Here, S(1000, ζ) is the recorded signal in VEM (or

MIP) at 1000 m in the shower plane as a function of ζ and b is the asymmetry

amplitude, a fitted parameter which will be fully parameterised in the following

section. If a shower did not trigger all 12 tanks in the dense ring then it was not

included in the average relative signal calculations. This is because the true signal in

the non-triggered tanks may have been above 0 VEM but still less than the trigger

threshold. Example plots which include the results for both detectors are shown

in Figure 4.3 for proton (top panel) and iron (bottom panel). The b values for the

proton WCD/SSD fits in this example were 0.220 ± 0.008 and 0.39 ± 0.01, whilst

the iron WCD/SSD values were 0.175± 0.007 and 0.30± 0.01.

The amplitude of the asymmetry, b, in each zenith bin for both the proton

and iron showers is summarised in Figure 4.4. From this plot, we see a clear in-

crease in the magnitude of the asymmetry with zenith angle (in both detectors)

for both proton and iron primaries up to the second to last bin, which corresponds

to ∼ 50°. The noticable drop in the asymmetry amplitude in the final bin for

each primary/detector type is possibly due to these showers “running out” of elec-

tromagnetic particles, which are generally considered to be the primary cause of

asymmetry. This may be because of the large amount of atmospheric depth needed

to be traversed at large zenith angles. Another observation is that the asymmetry

in the SSD signals is larger than the WCD signals. This is likely due to muons,

which typically show less asymmetry than electromagnetic particles, contributing a

larger fraction of the overall signal in the WCD than the SSD. Regarding the ampli-

tude of the asymmetry for the WCD, it is evident that the asymmetry is somewhat

greater when measuring showers initiated by proton primaries than iron primaries

for zenith angles & 30° (sin2 θ & 0.3). Again this is probably because of muons,

specifically that they constitute a larger portion of the total number of particles in

an iron shower than a proton shower.

Finally, iron showers measured by the SSD show a slightly larger asymmetry

than proton showers for zenith angles below ∼ 40° (sin2 θ ∼ 0.4). The reason for

this is not immediately obvious, however it may be related to the average Xmax of
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Figure 4.3: The normalised signal of a dense ring of WCD/SSD detectors at 1000 m
in the shower plane, averaged over many showers, for proton primaries (top) and
iron primaries (bottom). The magnitude of the asymmetry in the SSD signals is
larger for both primaries
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iron showers being shallower (higher in the atmosphere) than proton showers, which

would allow the electromagnetic component of the iron showers to develop more,

potentially increasing the asymmetry induced from attenuation based effects (see

Chapter 5). The reason we may not be observing this for the WCD is the stronger

response to muons which show less asymmetry.

Having demonstrated the method of calculating signal asymmetry for a particular

choice of energy bin and radius, along with gaining a basic understanding of the level

of asymmetry to be expected from different primaries/detector types, we now move

on to a full parameterisation for b.

4.4 Parameterising WCD and SSD signal asym-

metry

The parameterisation of the amplitude of the signal asymmetry, b, was performed in

bins of log(S(1000)), sin2 θ (θ=zenith angle) and radius. Note for the sake of clarity
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and ease of reading the standard notation to describe the signal at 1000 m, S(1000),

will be replaced with S1000 throughout the remainder of the chapter. The reason for

choosing log(S1000) was that it can be directly measured or inferred from SD data,

whereas the estimate of the energy of a primary cosmic ray requires a calibration

to be performed with the fluorescence detectors (see Section 3.2.4). The binning

decided upon was

• 4 equally sized bins in log(S1000) between 1 ≤log(S1000) ≤ 2.5

• 7 equally sized bins in sin2 θ between 0 ≤ sin2 θ ≤ 0.75

• 16 equally sized bins in radius between 450≤ r/m≤ 2050

To obtain enough statistics in each bin, approximately 3000 proton and 3000 iron

showers ranging between 18.5 ≤ log(E/eV) ≤ 20 in energy and 0 − 60° in zenith

were simulated and reconstructed through Offline . To accommodate the number

of radius bins required, the Offline simulation was made to contain a set of dense

rings every 100 m from 500 m to 2000 m, with 12 tanks in each ring. The properties

of this set of showers is summarised in Table 4.2.

Primaries Proton, Iron
log(E/eV) 18.5 - 20, flat in log(E/eV)
θ/◦ 0-60, flat in sin2 θ
φ/◦ 0 - 360, uniformly distributed
Had Int. Models QGSJet-II.04

Table 4.2: Properties of the showers used for the parameterisation of b, the am-
plitude of the asymmetry. Approximately 3000 unique proton showers and 3000
unique iron showers were used.

The first step in determining a parameterisation for b was to produce the funda-

mental asymmetry plots for every bin of log(S1000), sin2 θ and radius, similar to those

in Figure 4.3. One important note is that not every shower in a particular log(S1000)

and zenith bin would trigger all 12 tanks in every dense ring out to 2000 m. This was

especially the case with lower energy showers. As done in the initial investigation, if

a shower did not trigger all 12 tanks in a dense ring then the data from the tanks in

the ring which were triggered was not used. For this reason, several bins were filled

with little to no data. To avoid fitting to these cases, which may be biased towards

only including showers with deeper Xmax values, a cut was applied. The cut was,

for a bin of log(S1000) and sin2 θ, if a radius bin did not have 80% of all possible

showers in that bin triggering all 12 tanks then it would not be fit to and thus not

be used in the subsequent parameterisation of b.

The values and errors in b for each bin were then able to be plotted as functions

of zenith or radius to see what kind of functional form would be needed for the
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parameterisation. Fortunately, similar work had already been performed by another

member of the Pierre Auger Collaboration, Quentin Luce. Luce has parameterised

the asymmetry in the WCD in simulations, and used it to correct the estimate of

the shower core location [82]. However at the time of writing the exact values of his

parameterisation have not been published. As such, in this work we aim to provide

an eventual cross check for his results as well as parameterise the asymmetry in the

new scintillator detectors.

For Luce’s parameterisation, he used the following function for the signal LDF

S(r, ζ) = S1000fLDF[1 + b(r, θ, log(S1000)) cos ζ] (4.2)

to describe the signal measured in the shower plane at some radius, r, and azimuth,

ζ. We can see this is identical to the regular LDF but with the addition of a

(1 + b(r, θ, log(S1000)) cos ζ) term. It is the function b(r, θ, log(S1000)) which we must

parameterise. The form used by Luce was

b(r, θ, log(S1000)) = k(θ, log(S1000)) erf

(
r

r0(θ, log(S1000))

)
(4.3)

where

k(θ, log(S1000)) =
k0 + k1 sin2 θ

1 + exp
(
− sin2 θ−k2(log(S1000))

k3(log(S1000))

) (4.4)

and

r0(θ, log(S1000)) = r1(log(S1000)) + r2(log(S1000)) sin4 θ (4.5)

Note the parameters k2, k3, r1 and r2 are all functions of log(S1000). To see where

this functional form comes from, consider Figure 4.5, which shows the asymmetry

amplitude of the SSD plotted as a function of sin2 θ for r = 1000 m and for different

bins of log(S1000). The functional form of k(θ, log(S1000)) has been fit to each set of

points, with each of the ki parameters freely fit. The shape and magnitude of each

series of points is similar to what we observed in Figure 4.4, and the functional form

appears to fit quite well, capturing the initial increase at low zenith angles as well

as the turnover at larger zenith angles. Moreover, the turnover point of the function

seems to shift to the right with energy, giving some justification for the parameters

of the fit to be energy dependent.

The necessity of the r0(θ, log(S1000)) part of the parameterisation for b can be

seen when b is plotted against radius for different bins of sin2 θ. An example is shown

in Figure 4.6 for the energy range 2.125 ≤log(S1000/MIP)≤ 2.5. Here we have fit

the function

k0 erf

(
x

r1

)
(4.6)

with free parameters k0, which acts like k(θ, log(S1000)), and r1. The value of k0
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Figure 4.5: The SSD asymmetry amplitude, b, plotted as a function of sin2 θ for
the different energy bins. The function k(θ, log(S1000)) has been fit to each set of
data points, with the color of the fit set to the same color as the corresponding data.

naturally increases with zenith. Also note how the flattening off point, which is

dependent on r1, decreases with zenith angle. This is the reason for including the

r2(log(S1000)) sin4 θ term in r0(θ, log(S1000)).

Finally, we can consider how the shape of the radial profile of b varies with energy.

The example shown in Figure 4.7 is for the zenith angle range 0.43 ≤ sin2 θ ≤ 0.54.

Overall, there does not appear to be any clear differences between each set of data

points. Also notice the aforementioned lack of data points in the lower energy bins

for some of the larger radii. Despite this, the r1 and r2 parameters will still be

allowed to vary with log(S1000) in order to get the best overall fit for each log(S1000)

bin.

After this analysis and some further testing, some slight modifications to Equa-

tion 4.3 were made in order to simplify the fitting process. The function we used to

parameterise the asymmetry is identical to Equation 4.3 but with

k(θ, log(S1000)) =
k0(log(S1000))(1− sin2 θ)

1 + exp
(
− sin2 θ−k2(log(S1000))

k3(log(S1000))

) (4.7)
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These changes were made because allowing k0 to vary with energy improved the

overall fits and k1 was found to be very close to the negative of k0. From here,

the values of b for each energy bin were plotted as a function of sin2 θ and radius

in a 3 dimensional graph. An example is shown in Figure 4.8. This example is

for proton primaries in the energy bin 2.125 ≤log(S1000) ≤ 2.5 for the SSD. The

points are coloured such that the white/black points represent the points which lie

above/below the fitted surface respectively. Having analysed the 2D projections of

such a graph it is clear to see how the surface combines the changes in shape of b with

sin2 θ and radius. The residuals of the fit to the data are shown using a histogram in

Figure 4.9. Considering the empirical nature of the function, the mean and RMS of

this distribution is quite good. However, for other choices of detector and primary

(WCD/iron), these residual distributions have larger RMS values. Upon inspection

of all the fits performed, it was found that, for the WCD, there was tendency for the

fits to overestimate/underestimate the data at low/high radii, indicating that the

functional form may not have been entirely correct. This issue wasn’t as obvious

for the SSD fits however, signalling that the errors on the asymmetry amplitudes

may have been too small. It is likely a combination of these effects causing the wide

residual distributions. The residual distributions for each primary and detector type

can be found in Appendix A.

After fitting 2D surfaces to each energy bin, as in Figure 4.8, the parameters of

the fit were extracted and plotted as a function of log(S1000) (taking the middle of

each bin of log(S1000)). The results for proton and iron showers as detected by the

SSD are shown in Figures 4.10 and 4.11 respectively. The equivalent WCD results

can be found in Appendix A. Polynomial functions of the form a + bx + cx2 have

been fit to each parameter plot, with the choice of degree dependent on the shape

of the graphs. Despite the seemingly curved nature of some of these plots, using a

quadratic fit was generally avoided as it would have over-fitted the data. Only the

r1 and r2 parameters of the iron WCD parameterisation utilised a quadratic fit.

Special mention must be made regarding Figure 4.11, the parameterisation of

the iron SSD fit parameters. The best possible fit parameter values are those shown

in black. Taking these as correct however would have implied the shape of the

data for each parameter to be noticeably different to both the proton SSD fits and

those for the proton/iron WCD parameterisations. We didn’t believe this should

be the case. Thus, before fitting, we decided to manually fix the value and error

of the r2 parameter in the third log(S1000) bin to values more consistent with the

other parameterisations. The r2 value chosen was -1000, with an error of 80 (similar

error bar to the other points in the graph). This had the effect of forcing the other

parameters to shift in a direction consistent with the shape of the data in the other

parameterisations. This implies there are probably compensating/degenerate effects

between the parameters, one aspect which should be improved upon in future, more

robust parameterisations. To obtain our final parameterisation of the iron SSD
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and sin2 θ. Black points lie below the fit, white points lie above it.
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Figure 4.10: Parameterisations of the parameters of the function b(r, θ, log(S1000))
for proton showers as measured by the SSD.
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Figure 4.11: Parameterisations of the parameters of the function b(r, θ, log(S1000))
for iron showers as measured by the SSD. The points fit to are the 1st, 2nd and 4th
black points, and the single red point. See the text for explanation.
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Figure 4.12: Plots comparing the best possible fit (black) and the manually ad-
justed fit (red) to the iron SSD asymmetry amplitude data. The comparisons are
made for different radial bins, namely 500, 600, 1000, 1100, 1500 and 1600 m.
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parameters, we fitted to the data shown excluding the black point in the third

log(S1000) bin.

To compare how different the fit results were using the best possible black point

or the adjusted red point, several radial slices were taken from the corresponding

log(S1000) plot and the b values plotted as a function of sin2 θ. The two possible

fits have been overlayed and the results are shown in Figure 4.12. The black line is

the best fit to the data and the red fit is the adjusted fit. We can see that at early

radii the best possible fit captures the larger value at sin2 θ ≈ 0.59. Around 1000 m

the two fits are very similar. Further out there seems to be a systematic shift of

the red fit to the right. Overall though, these differences are quite small and the

red line captures much of the same behaviour and to similar accuracy around the

distance which is often of interest, 1000 m. Therefore, we feel reasonably confident

that manually adjusting the fit, allowing us to get a reasonable parameterisation,

was a valid decision.

Tables 4.3, 4.4, 4.5 and 4.6 show our final results for the parameters which make

up the parameterisation of the asymmetry amplitude for the proton SSD/WCD and

iron SSD/WCD respectively.

Parameter a b c χ2/NDF
k1 0.5±0.1 0.56±0.07 0 0.4
k2 0.37±0.03 0.08±0.02 0 0.56
k3 0.123±0.008 0.018±0.005 0 0.57
r1 700±100 270±70 0 3.0915
r2 -1580±80 0 0 0.68

Table 4.3: Table of the parameterisations for the fit parameters of b as a function
of log(S1000) for proton showers detected by the SSD.

Parameter a b c χ2/NDF
k1 0.27±0.03 0.25±0.02 0 0.84
k2 0.25±0.02 0.10±0.01 0 0.96
k3 0.096±0.007 0.029±0.004 0 2.3
r1 700±100 150±50 0 0.25
r2 -1400±400 -300±200 0 0.042

Table 4.4: Table of the parameterisations for the fit parameters of b as a function
of log(S1000) for proton showers detected by the WCD.
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Parameter a b c χ2/NDF
k1 0.30±0.03 0.35±0.02 0 5.1
k2 0.26±0.02 0.081±0.009 0 0.92
k3 0.121±0.006 0.013±0.003 0 7.8
r1 610±80 190±40 0 2.4
r2 -1170±50 0 0 2.7

Table 4.5: Table of the parameterisations for the fit parameters of b as a function
of log(S1000) for iron showers detected by the SSD.

Parameter a b c χ2/NDF
k1 0.195±0.009 0.132±0.005 0 12
k2 0.17±0.01 0.096±0.005 0 0.79
k3 0.098±0.005 0.021±0.003 0 1.5
r1 3000±300 -2600±300 700±90 2.009
r2 -6000±2000 5000±2000 -1400±500 0.2899

Table 4.6: Table of the parameterisations for the fit parameters of b as a function
of log(S1000) for iron showers detected by the WCD.

4.5 Finding the maximum difference between the

asymmetry parameterisations

We conclude this chapter by using the parameterisations from the previous section

to find the phase space in which the difference in the amplitude of the asymmetry

between proton and iron primaries (for both detector types) is a maximum. The

reason for doing this is that, if these parameterisations match reality, then measur-

ing the asymmetry in cosmic ray air showers in this phase space may allow us to

distinguish whether the primaries being detected are lighter (proton-like) or heavier

(iron-like). Unfortunately, additional work by Luce has shown that the asymmetry

in real WCD signals is significantly less than that measured in simulations [83]. This

doesn’t necessarily mean the phase space which maximises the difference in asym-

metry between proton and iron signals measured by the WCD is different for real

data, nor that the magnitude of the asymmetry in the SSD is different in simulations

than it is in reality. However it is far beyond the scope of this work to formally check

these points. For this reason, we will simply present our findings for data derived

from simulations, in the hope that either the results or the principle behind them

can be utilised in future studies.

The simplest solution to the task was to use the inbuilt functionality of the

analysis software ROOT to find the values of log(S1000), sin2 θ and radius which

maximised/minimised the difference between the 3 dimensional functions describing

the amplitude of the asymmetry for proton, bp, and iron, bi. The results for both the
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WCD and SSD are given in Table 4.7 below. The values of bp for the given phase

space values are shown for reference.

Detector (Min/Max) bp − bi bp log(S1000) sin2θ Radius (m)
WCD (Minimum) -0.019 0.086 1.9 0.29 500
WCD (Maximum) 0.065 0.21 2.0 0.65 1500
SSD (Minimum) -0.019 0.14 2.0 0.32 620
SSD (Maximum) 0.11 0.36 1.7 0.69 1900

Table 4.7: Table of the maximum/minimum values of the difference between the
proton and iron asymmetry parameterisations (bp − bi) and the phase space values
where they occur. The values of bp are shown for reference.

In terms of magnitude, the largest difference occurs in the SSD, where proton

showers with S1000=56 MIP, θ=56° and radius = 1900 m have an asymmetry ampli-

tude ≈ 0.11 greater than iron showers in the same phase space. The minimum value

of bp − bi for the SSD is -0.19 and occurs at S1000=100 MIP, θ = 34° and radius =

600 m. In this region iron showers have an asymmetry amplitude slightly larger than

proton showers. Probing the phase space associated with the maximum difference

for the SSD may be difficult in reality, due to a possible lack of triggered stations at

the large radial distance required. This is demonstrated by our parameterisations

not having a data point at 1900 m for log(S1000) <2.125. Restricting the search space

for the maximum value to within r≤1500 m yields identical results when rounded to

2 significant figures, with the maximum occurring at 1500 m. This seems to suggest

the maximum difference does not depend significantly on the radius, only on the

zenith angle and log(S1000).

The maximum value for the WCD shows proton showers have an asymmetry

amplitude ≈ 0.65 greater than iron showers in the phase space corresponding to

S1000 = 100 VEM, θ = 54° and radius = 1500 m. This region is within the range

of the data used to create the parameterisations. The minimum value of bp − bi
for the WCD and the phase space in which it occurs is very similar to the SSD.

Additionally, we see that our initial findings in Section 4.3 are reaffirmed, in that

the maximum difference between proton and iron is occurring at large zenith angles.

This may be due to the different Xmax distributions of either primary and how these

affect the electromagnetic component of the showers (the main contributing factor

to asymmetry) which reach ground at these zenith angles.

All that being said, for the array spacing of Auger, it would be ideal to have the

maximum difference occurring close to 1000 m. Hence we found the maximum value

of the difference between the proton and iron parameterisations at this distance.

The results are given in Table 4.8. We see that, rounded to 2 significant figures,

the results for the maximum are the same, with identical phase space values. This

further supports our initial hypothesis that the difference in asymmetry, at least

at large zenith angles and values of S1000, is largely independent of the radius.
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Detector bp − bi bp log(S1000) sin2θ
WCD (Maximum) 0.065 0.21 2.0 0.65
SSD (Maximum) 0.11 0.36 1.7 0.69

Table 4.8: Table of the maximum values of the difference between the proton
and iron asymmetry parameterisations at 1000 m, with the phase space values of
log(S1000) and sin2θ where they occur.

To check this point, we have plotted the difference between the proton and iron

parameterisations as a function of energy and radius for sin2 θ=0.65 for the WCD,

and sin2 θ=0.69 for the SSD. The results are shown as 2D histograms in Figure 4.13.

We observe that, for the WCD at this particular value of sin2 θ, the difference does

not depend on radius, and only slightly on log(S1000), as indicated by the small

range of values in the color bar. For the SSD the result is largely the same, however

at larger values of log(S1000) we do begin to see a non-trivial dependence on radius.

We have also plotted the difference between the parameterisations as a function

of zenith and energy for r=1000 m, to visualise which of the two variables affects

the difference the most. The resulting histograms are shown in Figure 4.14. For

both the WCD and SSD, changing the zenith angle yields the largest change in the

difference. Also note the difference in the sin2 θ values at which the WCD/SSD

difference switches from negative to positive, around 0.25 and 0.35 respectively.

There is a slight dependence on log(S1000) however, which may support our theory

about the differing Xmax distributions of the primaries causing the iron asymmetry

to be larger at lower zenith angles.

In summary, the regions of phase space we suggest using to attempt to distinguish

ensembles of showers as proton/iron-like with asymmetry alone are high zenith angle

showers (> 50°) with values of S1000 around 50 MIP (≈ 2 × 1019 eV) for the SSD

and 100 VEM (≈ 3× 1019 eV) for the WCD. From the WCD parameterisations, the

expected values of the asymmetry amplitude at the point of maximum difference for

an ensemble of proton showers is 0.21, whilst for iron showers it is 0.14. For the SSD

parameterisations, the expected asymmetry amplitudes are 0.35 for proton and 0.24

for iron. Note once again these values are for simulations - the differences in real data

will likely be smaller and harder to measure precisely due to the lack of dense rings.

The regions of phase space corresponding to the maximum difference in asymmetry

may also be different. Future investigations should focus on understanding the

difference between the asymmetry in simulated and real data, and seeing whether the

knowledge gained from simulations can be applied to reality to assist in determining

the mass composition of cosmic rays.
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4.6 Conclusions

In this chapter we have successfully parameterised the asymmetry in the water

Cherenkov and scintillator detectors of the Pierre Auger Observatory in simulations.

The parameterisations were performed on proton and iron showers with the ultimate

goal of determining if there was an exploitable difference between the two.

The amplitude of the asymmetry was found to be higher in the SSD than the

WCD for both primaries, a result believed to be caused by the equal sensitivity of

the scintillator to air shower particles, compared to the WCD bias towards muons.

The maximum difference between the proton and iron parameterisations was found

to be at very large zenith angles, above 50°, and not depend heavily on radius. At

1000 m, a convenient distance based on the size of the Auger ground array, results

showed a maximum difference for the WCD occurring for values of S1000 ≈ 100 VEM

and θ ≈ 54° (corresponding to an energy ≈ 3 × 1019 eV), with the asymmetry

amplitude being 0.14 for iron and 0.21 for proton. For the SSD, the maximum

difference in asymmetry was found to be in the phase space S1000 ≈ 56 MIP and

θ ≈ 56° (roughly translating to to an energy of 2 × 1019 eV), with the asymmetry

amplitudes of iron/proton being 0.24/0.35 respectively. Furthermore, at this radius,

the parameterisations showed the amplitude of the asymmetry in proton showers

to be greater than in iron showers for zenith angles above ∼ 30° for the WCD and

∼ 35° for the SSD.

With simulations and the accuracy of dense ring measurements, one could cer-

tainly distinguish an ensemble of proton showers from an ensemble of iron showers

at this radial distance based on the asymmetry amplitude. It may also be possi-

ble to distinguish individual showers as proton/iron, though this would need to be

formally checked. As for whether determining mass composition using asymmetry

alone is feasible with real data, and indeed whether the phase spaces of maximum

difference are the same, remains to be seen. Based on this study’s results, we believe

it would not be possible to determine the primary of real, individual shower using

this technique. The relatively low number of tanks in a real event compared to

using dense rings as well as signal fluctuations mean it is unlikely any adequate level

of precision in b could be obtained. However, with averages of showers in bins of

log(S1000) and θ it may be possible to achieve decent precision in the mean value of

b. The challenge then would be to interpret the result, especially in the likely event

of mixed composition. This will be made even more difficult due to the difference

in asymmetry Luce has shown is present between simulations and reality.

We hope the results of these parameterisations can be used as a cross check for

future work and be improved upon. Beyond a simple comparison of the asymmetry

amplitude to determine mass composition, the parameterisations have the potential

to be used for correcting the core location (as done by Luce [82]) or correcting the

signals in detectors to be the average value as would be measured by a dense ring
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in simulations. This would improve LDF fits which could impact many different

studies performed with the surface detector, including attempts to determine mass

composition (see Chapter 7). Seeing whether the same patterns which have been

found here hold in real data, and whether they are a viable method of determining

mass composition, is a recommendation for future studies.
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Figure 4.13: 2D histograms of the difference between the proton and iron parame-
terisations, evaluated at sin2 θ=0.65 for the WCD (top) and sin2 θ=0.69 for the SSD
(bottom). The color bar or z-axis represents the difference (proton-iron). In the
top plot we see that, for this zenith angle, the difference in asymmetry amplitude is
rather independent of both radius and log(S1000) (note the range of the color bar).
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the difference (proton-iron).
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Chapter 5

Causes of asymmetry in particle

density

In Chapter 4 the amplitude of the signal asymmetry in both the water Cherenkov and

scintillator detectors of the Pierre Auger Observatory was parameterised. A clear

difference was found between the two detectors, with the scintillator having a larger

asymmetry. Additionally, both detectors measured greater asymmetry in proton

showers than iron showers at larger zenith angles. The goal of this chapter is to better

understand this result. Specifically, we would like to know what factors contribute

to asymmetry and how, if at all, the relative contributions differ between proton and

iron primaries. If this can be understood, then perhaps a method of determining the

mass composition from asymmetry information can be found. Whilst the previous

chapter investigated the asymmetry in measured signals, this chapter will focus on

the asymmetry in pure particle numbers/particle density. This decision was made to

eliminate the response of a detector as a possible source of asymmetry, thus helping

to differentiate between other causes. Note that asymmetry effects related to how

particles impinge on a particular detector shape (i.e. the “detector response”) will

not be addressed in this thesis. See [84] for more information.

To begin, a co-ordinate system which can be used as a reference throughout the

remainder of the chapter will be outlined.

5.1 Co-ordinate system

When analysing the geometry of an air shower there are two frames of reference to

consider, the ground frame and the shower frame. Both frames share the same origin,

namely the shower core. Using CORSIKA conventions, the ground frame has co-

ordinates (x, y, z) where the positive x axis points in the direction of magnetic north

and the positive y axis points west. Positive z is upwards. For simplicity we will

assume all showers come from the positive x-direction. The shower frame is given co-

ordinates (x′, y′, z′) and is simply a rotation of the ground frame by the inclination of

the shower, θ, in the clockwise direction. Thus the z′ axis points upwards along the

shower axis and the x′ and y′ axes form the shower plane. Points in the shower plane

will also be referred to in polar coordinates, where r is the distance from the core and
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Figure 5.1: A schematic of the coordinate system which will be used throughout
the remainder of the chapter. As an example, the position of the light blue square
has been projected into the shower plane along the direction of the shower axis. Its
shower plane coordinates are given by r and ζ, shown on the diagram.

ζ the azimuthal angle ranging from 0 to ±180°. Zero degrees is defined to be beneath

the shower axis. Lastly, the ground region corresponding to positive/negative x

values is the upstream/downstream region respectively. A diagram of the co-ordinate

system is shown in Figure 5.1.

5.2 Sources of asymmetry

For a truly vertical shower, θ = 0°, the ground frame and shower frame are identical.

Thus by symmetry (about the shower axis), we expect equal particle density contours

on the ground to be circles centred on the shower core. Minor deviations from this

arise due to the deflection of muons by the geomagnetic field and shower to shower

fluctuations. However, these effects are minor and we generally refer to a shower

with θ = 0° as having no asymmetry.

For showers with zenith angles > 0°, one might expect the equal particle density

contours on the ground to be ellipses, again with the shower core as the centre.

This is in fact not quite true, as, whilst the contours are elliptical, their centres are

shifted in the upstream direction, towards where the shower came from. Thus if these

elliptical contours were to be projected into the shower plane along the direction of

the shower axis, the resulting circular contours would be offset towards the positive

x′ direction. This phenomenon is what we call asymmetry. Examples of the equal

particle density contours on the ground for a vertical and inclined shower are shown

in Figure 5.2. The change in shape and systematic shift upstream for all contours in

the inclined shower is clear, with the effect being greatest for the contours furthest

from the core, corresponding to lower densities. The common belief is that there

are two main causes for this observed shift (asymmetry in particle density);

74



x (km)
1− 0.5− 0 0.5 1

y
 (

k
m

)

1−

0.5−

0

0.5

1

Proton

QGSJet­II.04

log(E/eV)=19

°=0θ

x (km)
1− 0.5− 0 0.5 1

y
 (

k
m

)

1−

0.5−

0

0.5

1

Proton

QGSJet­II.04

log(E/eV) = 19

° = 50θ

Figure 5.2: Contours of equal particle density on the ground for a simulated
0° (left) and 50° (right) proton shower, both with energy 1019 eV. The contour levels
are identical for both showers. The simulations were performed with CORSIKA with
the geomagnetic field on. The inclined shower was made to arrive from magnetic
north i.e. the positive x direction (φ=0).

1. Geometrical effects related to the inclination of the shower

2. Attenuation of air shower particles

How these two factors contribute to asymmetry will now be described.

5.2.1 Geometrical effects

When trying to understand the geometrical causes of asymmetry it is necessary to

envision a geometrical model which approximates the shape and propagation of an

air shower. This allows one to consider the trajectories of air shower particles and

their subsequent contact point with the ground in a simple way. Ultimately, it is

the act of rotating what we assume to be an axis-symmetric shower which gives rise

to the geometrical effects causing asymmetry. This is demonstrated in the following

examples where the difference in density between two regions on the ground at the

same distance from the shower core is determined.

For an axis-symmetric or cylindrical shower geometry, where particles are sym-

metric about the shower axis and the size of the shower front remains constant,

one can assume that particles effectively travel parallel to the shower axis. This

assumption is only valid for showers at a point of development well past the shower

maximum. Schematics of this model for a vertical and inclined shower are shown

75



Figure 5.3: A cylindrical model for the geometry of an extensive air shower. Par-
ticles (red) effectively travel parallel to the shower axis (blue) and the size of the
shower front remains constant. The difference in flux through the light blue regions
is 0 in both the vertical and inclined cases.

in Figure 5.3. Comparing the flux of particles (red arrows) through the light blue

regions either side of the shower core, we see that there is no difference, thanks to

all particles travelling parallel to each other. This also means the equal particle

density contours produced on the ground are ellipses centred on the shower core,

which become circles centred around the shower axis when projected back into the

shower plane. Hence, in this model, there are no geometrical effects which give rise

to asymmetry.

Now consider a conical model of shower development where all the particles are

emitted from a single point on the shower axis, each with a random opening angle

uniformly distributed between 0 and α (measured with respect to the shower axis).

The particles are assumed to travel in straight lines to ground. This is slightly

more realistic than the previous model, with schematics of the vertical and inclined

versions shown in Figure 5.4. A clear difference in density (flux of red arrows)

between the two light blue regions appears when the vertical shower is rotated. This

is simply a result of the inverse square law and is an example of what we mean when

we refer to “geometrical effects”. When the densities of the regions are projected into

the shower plane the shower axis direction is used since, in reality, we do not have

any knowledge of the directions of the particles. Hence, upon projection, a purely

geometrical asymmetry arises. The contours of constant density on the ground for

this model are ellipses with their centres shifted upstream, a fact easily seen by

considering the points on the ground which are equal distances from the point of

production.

Another simple model one might consider is for particles to be continuously

emitted along the shower axis, each at some fixed angle. An example of the resulting

locations of particles on the ground for a vertical and inclined shower is shown in
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Figure 5.4: A conical model of shower development where all particles are emitted
from a single location with a range of opening angles between 0 and α. Inclining a
symmetric, vertical shower under this model causes there to be a greater density in
the light blue upstream region.

Figure 5.5: A simple air shower model where particles are emitted continuously
along the shower axis at a fixed angle. Like the conical model, rotating the vertical
version of the shower induces a greater density in the light blue upstream region.

Figure 5.5. Here, we see that once again the density of particles is higher in the blue

upstream region. In this case however, the reason is not the inverse square law but

simply the angle of incidence of the downstream particles being shallower. If the

flux of particles incident perpendicular to a surface is F then rotating the incident

particles by an angle β to the normal leaves a flux of F cos β through the surface.

This is another example of a “geometrical effect”, since an inclined shower will have

β greater on the downstream side, causing the density in the downstream light blue

region to be smaller. This leads to a geometrical asymmetry after projection into

the shower plane. For this model, the density in the upstream and downstream

regions differs by a constant amount.
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In reality, none of these models properly describe how particles in an air shower

propagate. Electrons and photons in particular do not travel in the straight lines

presented in these illustrations and are instead scattered multiple times between

their production point and ground. They also are not necessarily produced on the

shower axis. Furthermore, the opening angle distributions are not uniform and

change depending on the production height, another variable factor. However, these

models are useful for visualising how the geometry of an air shower affects asymmetry

and are reasonable first approximations, especially for muons which generally travel

away from the shower axis without scattering on their way to ground.

5.2.2 Asymmetry induced by attenuation

Asymmetry also arises from a difference in the level of attenuation experienced by

the flux of particles travelling downstream/upstream. No mater the geometrical

model one uses to describe a shower, particles landing in the downstream region at

a set distance from the shower core generally travel through more atmosphere to

reach the ground than particles landing in the upstream region at the same distance.

This means “downstream particles” lose more energy and are more likely to decay

or stop than “upstream particles”. The effect of this asymmetry is more striking for

the electromagnetic component of air showers than the muonic component, as the

electromagnetic component attenuates faster. Whilst conceptually understanding

how attenuation gives rise to asymmetry is relatively straightforward, when trying

to model asymmetry one must realise its effects are coupled with the geometry of the

shower i.e. how far and in what direction each particle must travel from production

point to ground.

5.3 Separating geometry and attenuation

With the basic understanding outlined in the previous section, the goal was to quan-

titatively separate the geometrical and attenuation effects underpinning asymmetry.

In searching for a method to differentiate the two, an internal paper to the Pierre

Auger Collaboration, written by former members Xavier Bertou and Pierre Billoir,

[85] was found. Published in 2000, the paper attempts to demonstrate that the

cause of asymmetry cannot purely be the attenuation of electromagnetic particles.

Whilst details of the procedures used are sparse, the ideas presented seemed worth

implementing, with the results they achieved providing a useful cross-check.

As a reference for the following analysis, a plot of the density of electromagnetic

air shower particles for a shower with the median zenith angle of 38° is shown in

Figure 5.6. The shower has an energy of 1019 eV and is from a proton primary. Here,

the density has been sampled in 12 segments on the ground, which, when projected

into the shower plane, are equally sized, spaced by 30° in azimuth, and form an

annulus with a central radius of 1000 m and width of 100 m. The weighted number
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Figure 5.6: The ground density of electromagnetic particles in a 38° shower, mea-
sured at 1000 m in the shower plane. The extreme upstream and downstream seg-
ments, centred at ±15° and ±165° respectively, show roughly a 5 fold difference in
density. The results from fitting Equation 5.1 are shown in the top right.

Figure 5.7: Results from [85] on the change in density of electromagnetic particles
(circles) as a function of atmospheric depth traversed.
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of particles in each ground segment has been counted before being divided by the

area of the segment on the ground i.e. A = (π(10502 − 9502)/12)× sec 38° m2. This

imitates what is done in real life where a signal, roughly equivalent to a density in

the case of a scintillator detector, is measured on the ground and then projected

into the shower plane. The errors, ei, for each bin of the histogram were calculated

as ei =
√

(
∑n

m=1w
2
m)/A where w1, w2, ..., wn were the weighted values used to fill

the ith bin. To keep a consistent measure of asymmetry across chapters, a function

similar to that used in Chapter 4 for estimating the asymmetry amplitude in signals

has been fit to the data, namely

ρ(ζ) = ρ̄(1 + k) cos ζ (5.1)

The fit result is shown in red. Here, k is a free parameter describing the asymmetry

amplitude in particle density and ρ̄ is the average value of the density. This slightly

modified form allows us to plot the absolute value of the density whilst also finding

the relative difference, k, between the average density and the density upstream or

downstream. In Figure 5.6 k = 0.69± 0.01.

5.3.1 Measuring the electromagnetic particle density in ver-

tical showers

The initial study presented in [85] was an investigation into the density of elec-

tromagnetic particles in vertical showers. The goal was to measure the density at

different stages of longitudinal development, thereby giving a quantitative answer to

how much attenuation contributes to asymmetry. By using vertical showers, no geo-

metrical effects relating to the inclination of the shower were present. Additionally,

the particles were extracted at atmospheric depths typically larger than the depth of

shower maximum, Xmax . Thus the electromagnetic component of the shower fronts

should have been decreasing in size with increasing atmospheric depth. Twenty

proton showers at 1019 eV and 1020 eV were simulated, though the paper does not

provide details on whether these showers had different values of Xmax , nor the lo-

cation or size of the region in which the density was sampled. The results from

the paper are shown in Figure 5.7. Although the limited information provided in

[85] means we do not fully understand what is being shown in this plot, we can at

least note the conclusion of Bertou and Billoir - that the density of electromagnetic

particles decreases by approximately 15% per 100 g cm−2 and that this value is too

small to explain the difference between the upstream and downstream densities in

simulated inclined showers.

Before checking their conclusion for ourselves, it is perhaps useful to compare

the Bertou/Billoir observations with the density measurements in Figure 5.6, which

utilises the modern air shower simulation program CORSIKA. For a 38° shower,

assuming the cylindrical model of air shower geometry, particles which land down-

stream in a segment corresponding to 1000 m in the shower plane will travel an
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extra 2× 1000 tan 38° ≈ 1560 m. This equates to roughly an additional 160 g cm−2,

which according to Figure 5.7 would only result in a decrease of roughly 25%. This

percentage can be converted to an estimate of the asymmetry amplitude in elec-

tromagnetic particle density for a 38° shower assuming the only contributing factor

is attenuation. Using Equation 5.1, we have that (1 + k)/(1 − k) = 0.25 and so

k=0.14. Measuring k for 25 showers of the same energy, zenith and primary as in

Figure 5.6, which include both geometrical and attenuation effects, and averaging

the result yields k = 0.70. This is significantly larger than the attenuation only esti-

mate of k=0.14, making Bertou and Billoir’s argument seem plausible. Nonetheless

we decided to repeat their analysis with the aim of being as transparent as possible

with the data sets and methods of measuring the particle density.

For the cross-check, a similar data set to that used by Bertou and Billoir was

simulated using CORSIKA. The data consisted of 20 vertical (θ = 0°) proton showers

and 20 vertical iron showers, each of energy 1019 eV with varying values of Xmax ,

simulated using the QGSJet-II.04 model with a thinning level of 10−6. Iron showers

were included to observe the dependence on primary mass. The particles in each

shower were sampled at observation levels corresponding to atmospheric depths of

900, 950, 1000, 1050, 1100, 1150 and 1200 g cm−2. Such extreme vertical depths

were obtained by modifying the atmospheric profile used by CORSIKA to that

which would be seen by a 30° shower incident on a ground height equal to sea

level. Details of this procedure can be found in Appendix B. At each observation

level, the density was sampled by counting the weighted number of electromagnetic

particles which landed in an annulus centred at 1000 m, with width 100 m, and then

dividing the total by the area of the annulus. Two example plots of the density

measurements versus the atmospheric depth of the observation levels are shown in

Figure 5.8. Both showers are from proton primaries, with the first shower having

an Xmax ≈ 705 g cm−2, whilst the second shower has an Xmax ≈ 850 g cm−2. In both

cases a simple Gaussian with no restrictions on its parameters has been fitted to the

data, allowing for interpolation between the data points.

As the observation levels are fixed, we see that different stages of development

are captured for each shower, due to their Xmax values being different. This means

the development we observe with fixed observation levels depends on Xmax and

so the estimated amount of attenuation between the levels will also depend on

Xmax , something not captured in the Billoir plot. Therefore, we decided to use the

Gaussian fits to provide an estimate of the asymmetry amplitude for a shower with

the median zenith angle of 38°. For a 38° shower the atmospheric slant depth at the

ground height of Auger is 880/ cos(38°) ≈ 1116 g cm−2. We can also estimate the

slant depths for points directly upstream (ζ = 0°) and downstream (ζ = ±180°) of

the shower core for such a shower which, when projected into the shower plane, are

at r = 1000 m. This is done by assuming a cylindrical geometry and then using the

atmospheric profile of a 38° shower to calculate the slant depth based on the height of

the point above/below the shower core as measured along the shower axis. Details
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Figure 5.8: The electromagnetic particle density at different stages of shower
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of this calculation can also be found in Appendix B. The upstream/downstream

values are 1035 and 1198 g cm−2 respectively. Using the Gaussian fits, Gi(x), for

i = 1...40 (including proton and iron showers), the ratio R = Gi(1035)/Gi(1198)

was calculated for each i and then converted into an asymmetry amplitude via

k = (R − 1)/(1 + R). The k values were plotted against the true Xmax of the

shower, obtained from CORSIKA, giving the result shown in Figure 5.9. The red

points represent proton showers, the blue points iron showers.

There is a clear decreasing linear trend between k and Xmax for both proton and

iron showers. This demonstrates that the rate of attenuation of the electromagnetic

component of air showers increases the further we are from Xmax (at least up until

1200 g cm−2). There also appears to be a small offset between the proton and iron

points, highlighted by the Xmax region which contains both types of showers. In this

region we see that, for the same Xmax , iron showers have a slightly lower asymmetry

amplitude. The effect is likely due to the additional muon content of iron showers.

The minimum amplitude for proton and iron primaries is around 0.24 and 0.36

respectively, whilst the maximum amplitude is around 0.45 for both. This is over

60% of the average value of 0.7 calculated for the electromagnetic component of

regular 38° proton showers (Figure 5.6). Altogether this may indicate an additional

contribution from geometrical effects is needed to push the estimated value of the
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asymmetry in line with the CORSIKA output. It also shows that attenuation could

be the dominant factor contributing to asymmetry in shallow showers at zenith

angles around 38°. In addition, although small, the difference in asymmetry for

proton and iron showers of the same Xmax may show a way to help distinguish

between the two primaries. Combining estimates of the asymmetry amplitude for the

SSD, whose signal is a closer proxy to particle density than the WCD, with accurate

measurements of Xmax from the fluorescence detector may help constrain the mass

composition of an ensemble of showers. Naturally many challenges would need to

be overcome to achieve this, not least of which is reconciling any differences between

asymmetry in real data and simulations. However the possibility of combining FD

and SD data in such a manner for mass composition studies may justify investigating

this point further in future work.

The main flaw in this analysis is the reliance on the cylindrical geometry as-

sumption to estimate how much less/extra atmospheric depth has to be travelled

by the upstream/downstream particles. Particles travelling upstream/downstream

in inclined showers actually experience slightly different atmospheric profiles, which

could mean we are underestimating the asymmetry amplitude. This is because

the details of scattering processes such as Coulomb scattering and Bremsstrahlung

depend on the local atmospheric density and for particles travelling downstream,

whose trajectories are usually more inclined, the slower this density will change.

This gives downstream travelling particles more chances to scatter and lose energy

than upstream going particles, potentially increasing the asymmetry. If the produc-

tion position, initial opening angle and scattering of electrons and photons could be

taken into account, then a more accurate estimate of the extra atmospheric depth

travelled through could be obtained, possibly leading to different estimates of the

asymmetry amplitude. This issue, whilst outside the scope of this work, could be

addressed in future studies.

Finally, without knowing exactly what is being shown in Bertou and Billoir’s con-

cluding plot (Figure 5.7), it is difficult to compare our results to theirs. However, our

results for the expected asymmetry amplitude in electromagnetic particle density,

based solely on attenuation, for 38° proton showers at 1000 m in the shower plane,

vary between roughly 0.24-0.44. This is noticeably larger than the corresponding

amplitude of the Bertou/Billoir estimate, k = 0.14 The results from this analysis

incline us to believe that, at least for showers around 38° in zenith, attenuation is a

significant, possibly the main, factor contributing to asymmetry in electromagnetic

particle density, especially for shallow showers. An extension to this analysis would

be to measure the densities at both smaller and larger atmospheric depths, allowing

showers of different zenith angles to have their attenuation component of asymmetry

extracted.
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5.3.2 Comparing regular and “rotated” showers

Having seen that electromagnetic attenuation could perhaps be the primary cause

of asymmetry, another method outlined in [85] for separating the geometric and

attenuation components was checked. Bertou and Billoir describe the method as

follows;

1. First, simulate an inclined shower with zenith angle θ, recording the secondary

particle positions at ground level. If the ground corresponds to a vertical

atmospheric depth Xg, then such a shower will have travelled through an

atmospheric slant depth of X = Xg sec θ g cm−2.

2. A vertical shower of the same energy and primary is then simulated and made

to travel through the same amount of accumulated atmosphere as the inclined

shower i.e. X g cm−2. This ensures the stage of development of the electro-

magnetic component of both air showers is similar at ground level, provided

the Xmax values are close to each other.

3. Next, the vertical shower is rotated clockwise in the x− z plane by θ. In other

words, the positions of all the particles are rotated such that the particles

appear to lie in the shower plane, with particles whose original x coordinate

was negative now above the ground and those whose original x coordinate

was positive below the ground. The momentum vector of each particle is also

rotated.

4. All the particles in the rotated ground plane (shower plane) are then propa-

gated back to the original ground along their own (rotated) direction, with no

simulation of particle attenuation.

In theory, the result is two showers of the same zenith, energy, primary and Xmax ,

with the particle list of each recorded at the same atmospheric depth. The only dif-

ference is that one shower has both geometrical and attenuation affects contributing

to the observed asymmetry (the original inclined shower), whereas the other should

only experience a pure geometrical asymmetry (the rotated vertical shower). By

propagating the final positions of the particles in both showers back into the shower

plane along the direction of the shower axis, the asymmetries can be compared. The

results achieved by Bertou and Billoir, who only tracked electromagnetic particles,

are shown in Figure 5.10. The asymmetries in their results are clearly very similar.

This implies that attenuation is not a significant effect. Thus Bertou and Billoir

concluded the primary cause of asymmetry to be geometry.

Whilst this result is in clear contradiction with our conclusion from the previous

section, the method appeared, at the time, worth trying. Hence the aim was to repli-

cate the above process and compare the result to Bertou and Billoir’s observations.

Unfortunately, the paper was again not specific in the details of what type of inclined

shower was used to give the results in Figure 5.10 i.e. neither energy nor primary nor

85



Figure 5.10: Results from [85] on the asymmetry in electromagnetic particle den-
sity observed in a simulated inclined shower (solid lines) to the prediction of a
vertical shower at the same depth, after rotation and projection (dashed lines). The
method by which the histograms have been normalised is not known.

Xmax were stated. Though this made reproducing their exact procedure impossible,

a proton shower of energy 1019 eV and zenith angle 30° was simulated for the “reg-

ular” shower with which to compare to. The Xmax of the shower was 792 g cm−2.

A plot of the electromagnetic density profile at 1000 m for this shower is shown in

Figure 5.11, with density calculations performed as explained for Figure 5.6. By

fitting Equation 5.1, the asymmetry amplitude was estimated to be k = 0.52±0.01.

Also note that CORSIKA was used for the shower simulations instead of AIRES,

the software used by Bertou and Billoir. Before moving on, we briefly mention that

the inclined shower profile (solid line) in the bottom left panel of Figure 5.10 has

a very similar shape and asymmetry amplitude as our example shower in Figure

5.11. Thus any differences between the simulations of regular inclined showers in

the old AIRES software and the current CORSIKA software shouldn’t cause major

discrepancies.

Simulating the vertical shower

The next step was to simulate a vertical shower travelling through the same slant

depth as the regular inclined shower. For the chosen 30° shower, this was 880/cos(30°)
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≈ 1016 g cm−2. To change the atmospheric slant depth traversed by the shower, one

option is to adjust the height of the observation level in CORSIKA. However this

is not sufficient for simulating vertical showers which travel through the same at-

mospheric depth as very high zenith angle showers (e.g. 50°). The solution is to

manually adjust the parameters which define the atmosphere in CORSIKA. For our

purposes, to make a vertical shower traverse the same depth as a shower of zenith

angle θ, incident on Auger ground at 1.452 km above sea level, the atmosphere as

seen by the inclined shower was modelled and given to CORSIKA to use for simulat-

ing the vertical shower. This ensured the same atmospheric profile for both showers.

Details of the method can be found in Appendix B.

Transforming the vertical shower

With the ability to generate inclined atmospheres, vertical showers passing through

an atmosphere which would be seen by a 30° shower were simulated with CORSIKA

until one was produced with a similar Xmax as the regular inclined shower. Using

this shower, the entire plane of ground particles was then rotated clockwise about

the y-axis by the zenith angle of the regular inclined shower (30° for this example).

Thus the following transformation

~x =

xy
0

→
xryr
zr

 =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

xy
z

 (5.2)

was applied to the positions of the particles, whilst the transformation

~p =

pxpy
pz

→
pxrpyr
pzr

 =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

pxpy
pz

 (5.3)

was applied to the momentum of each particle. Note that if, after the initial ro-

tation, a particle had a momentum vector pointing upward, it was discarded. The

particles in the rotated plane were then propagated back to the original ground

along their own (rotated) momentum vectors. This was achieved by parameterising

the trajectory of each particle as a line L,

L =

 xr + t

yr + pyr/pxr × t
zr + pzr/pxr × t

 (5.4)

and then finding t such that the z-component of L was zero i.e. when zr+pzr/pxr×t
= 0. This gave t = −zr × pxr/pzr and hence the new ground co-ordinates of each
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particle were given byxryr
zr

→
xgyg
zg

 =

 xr − zr × pxr/pzr
yr + pyr/pxr ×−zr × pxr/pzr

0

 (5.5)

The new positions of the electromagnetic particles at ground were then able to be

studied for asymmetry just as for a regular shower. The density profile for the

rotated vertical shower is shown in Figure 5.12.

Clearly our result is significantly different from the work of Bertou and Billoir.

The “asymmetry” is now in the complete opposite direction, with a greater density

of particles downstream. One possibility is that attenuation is even more important

than originally believed for producing asymmetry and that purely geometrical effects

actually cause the asymmetry to go in the opposite direction. However this goes

against the basic understanding of asymmetry developed in Section 5.2, indicating

a probable flaw in the method.

To gain insight into what could be causing this surprising result, the footprint of

the vertical shower and location of particles which end up in the sampled region in

the shower plane after transformation were plotted. The result is shown in Figure

5.13. The blue dots indicate the original location of the electromagnetic particles

in the vertical shower and the green dots show which particles ended up in the

orange ellipse after rotation and propagation back to ground. This orange region

corresponds to the annulus in the shower plane of width 100 m and central radius

1000 m. From this we see that particles with a wide range of negative x values

get transformed into the sampling region, whereas particles with positive x values

generally have to be around the ellipse originally to be selected. Although initially

surprising, considering what happens to a small subset of particles either side of the

original vertical axis reveals what may be happening, a schematic of which is shown

in Figure 5.14.

When the vertical shower is rotated, particles on what becomes the “upstream”

side (positive x in this example) are more likely to be transformed inwards after

rotation and projection. This is because it is more likely that particles have a

positive radial component of momentum. This is illustrated in Figure 5.15, which

shows a histogram of the radial components of the (x, y) momentum vectors for

each electromagnetic particle (ignoring the z-component). The opposite is true for

particles which end up downstream, in that they are more likely to be transformed

further from the shower core. This means the high density of particles close to the

core on the downstream side get transformed to a distance where they are within

the orange ellipse shown in Figure 5.13. Meanwhile on the upstream side, particles

near the orange region stay roughly where they are. This leads to the odd shaped

green section of Figure 5.13.
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Figure 5.11: Histogram of the density of electromagnetic particles in a 30° shower,
measured at 1000 m in the shower plane. The results from fitting Equation 5.1 are
shown in the top right.
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Figure 5.12: Histogram of the density of electromagnetic particles in the rotated
vertical shower. The density is measured in an annulus at 1000 m in the shower
plane as usual.
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Figure 5.13: (Blue) Footprint of the electromagnetic particles which reach ground
in the original vertical shower. (Green) The locations of the electromagnetic particles
which are transformed into the orange region after rotation and propagation back
to ground. It is these particles which are sampled for the density measurements
in Figure 5.12. (Red) Direction of the shower axis after rotation i.e. the vertical
shower is rotated to come from the positive x direction.
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Figure 5.14: Illustration of how particles either side of the shower axis
are shifted through the Bertou/Billoir transformations performed on a vertical
shower. Outwards going particles on the upstream/downstream side are shifted
inwards/outwards respectively.
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Figure 5.15: The radial component of the momentum vectors for each electromag-
netic particle in the vertical shower before rotation. Significantly more particles are
moving away from the shower axis.
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Figure 5.16: The radius of electromagnetic particles (on the ground) in a vertical
shower before and after applying the Bertou/Billoir transformations. (Top) Particles
with initially positive x co-ordinate. (Bottom) Particles with initially negative x co-
ordinate. The color bar or z-axis indicates the number of particles.
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To test this theory, the radii of the particles (on the ground) before and after

transformation were plotted. The particles were separated into two groups - those

with initially positive x values and those with initially negative x values. The results

are shown in Figure 5.16. We can see that although the upstream side particles stay

relatively close to their initial positions, the downstream particles almost always get

shifted further from the shower core. This supports our hypothesis and provides a

plausible reason as to what caused the “opposite asymmetry” effect seen in Figure

5.12.

Despite now having some intuition as to what is happening in the Bertou/Billoir

procedure, it is still not clear why their results are so different. Regardless, the

uncertainty as to whether the geometrical effects have been properly taken into

account through this method mean a quantitative value for either the attenuation

or geometrical component is not assigned here. Unfortunately this also means no

additional insight into how the components differ between primaries can be given.

Future variations of this study should, if possible, use the tools of modern air shower

simulation programs to simulate showers in which the attenuation effects are “turned

off” so to speak. Comparing the resulting asymmetry to that of normal shower would

be insightful.

5.3.3 Removing geometrical effects

To complement the Bertou/Billoir method of attempting to remove attenuation

based asymmetry effects, a method was devised to try and remove geometrical af-

fects from an inclined shower. In this case, particles in a regular inclined shower

were traced back to their position in the shower plane, the idea being this would

essentially leave the footprint of a vertical shower - except, there will be fewer parti-

cles coming from the downstream side thanks to attenuation effects. The resulting

asymmetry should then purely be the result of attenuation. Testing this method

on the 30° shower used in the Bertou/Billoir method yields the histogram in Figure

5.17. Note for the sake of direct comparison only electromagnetic particles were con-

sidered. Also the density measurements were performed for the same r = 1000 m,

width=100 m annulus as done previously, except the area divided by was the area

of each segment in the shower plane.

The shape of this distribution is noticeably narrower, and flatter for |ζ| > 100°,
than a normal asymmetry profile, such as in Figure 5.11. For this reason fitting

Equation 5.1 to the histogram was not a valid method of assigning an amplitude

to the observed asymmetry. Instead, we simply note that the ratio of the upstream

density to downstream density is approximately 9. This is considerably larger than

the corresponding ratio of the original 30° shower, roughly 3 (Figure 5.11). The

enormous asymmetry may actually agree with the results from the Bertou/Billoir

method, though this is probably due to the identical assumption that we can ignore

scattering effects and trace electromagnetic particles along their momentum direc-
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Figure 5.17: The electromagnetic particle density measured in the shower plane
for the same 30° shower as in Figure 5.11 after tracing particles back along their
own direction into the shower plane.

tion to some intersection point, whether that is the ground or the shower plane.

Another factor which may be contributing to the extreme results seen in both meth-

ods is ignoring the production of new particles from existing particles, however this

is difficult to check and will not be explored here. As trusting the output of this

technique would also imply a negative contribution from geometrical effects to asym-

metry, we again do not assign any values to the either the attenuation or geometrical

components.

5.4 Conclusions

This chapter has investigated two primary causes of asymmetry, namely geometri-

cal effects and attenuation effects, and tried to separate their contributions to the

asymmetry observed in electromagnetic particle density. A summary of the methods

used, their results and shortcomings is provided in the list of dot points below.

• Measuring the electromagnetic particle density in vertical showers

Of the methods used, only this technique, where electromagnetic particle den-

sities in vertical showers were sampled at different depths and used to predict

the asymmetry amplitude for a 38° shower, gave a reasonable, quantitative an-

swer to the problem. Specifically, the amplitude of the asymmetry for proton
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showers (in E.M. particle density) was found to range between 0.24-0.44 due

to attenuation alone. For iron showers, the range of amplitudes was between

0.36-0.45. For both primaries, greater asymmetry was observed for shallower

showers (smaller Xmax ). These asymmetry amplitudes were all lower than the

value of 0.7 calculated for a regular 38° proton shower. The remaining con-

tribution to asymmetry is believed to be from the geometrical effects outlined

at the beginning of the chapter. This study showed that attenuation may be

the dominant asymmetry causing effect in some cases. It also showed that

there may be a possibility for future studies to leverage asymmetry in combi-

nation with FD measurements of Xmax to help constrain the mass composition

of UHECRs, though several points will need to be checked and challenges

overcome for this to be a realistic prospect.

The primary flaws in this method were the cylindrical geometry assumption

made to estimate the atmospheric slant depths of the upstream/downstream

regions, not accounting for the different atmospheric profiles seen by up-

stream/downstream going particles, and ignoring scattering and off-axis pro-

duction.

• Comparing regular and “rotated” showers (i.e. the Bertou/Billoir

method)

This method aimed to produce an inclined shower with no attenuation effects,

via the rotation and propagation of particles in a vertical shower, and compare

the resulting asymmetry to that of a regular inclined shower. Performing the

method ourselves showed attenuation to be the dominant factor, however the

extent of this was so large that accepting the result would force one to con-

clude that geometrical effects actually cause asymmetry to go in the opposite

direction (greater density downstream). This goes against our fundamental

understanding and thus is indicating a problem/s with the method - possi-

bly that the assumptions of being able to track individual electromagnetic

particles along straight lines and ignoring particle production are not valid.

• Removing geometrical effects

The last technique attempted aimed to isolate the attenuation component of

asymmetry by tracing particles in an inclined shower back along their direction

into the shower plane. This yielded very similar results to the Bertou/Billoir

method, in that the resulting asymmetry was extremely large, to the extent

of implying the geometrical component has a negative effect.

The flaws in this technique are believed to be the same as in the Bertou/Billoir

method.

It is unlikely that any of the methods presented in this chapter completely sepa-

rated the two effects, given that attenuation relies on knowing the atmospheric depth

travelled through, which in turn is reliant on knowing the particle’s trajectory to

ground i.e. geometry. Regardless of this or the shortcomings of each of the methods
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tested, we feel confident in saying that the attenuation of electromagnetic particles

is a significant component of the observed asymmetry in particle density in simu-

lations. As such, the hypothesis stated in the previous chapter; that the difference

between proton and iron in asymmetry largely comes down to the difference in the

electromagnetic components, is supported. A natural extension to this work would

be to perform the study in Section 5.3.1 for a number of different zenith angles,

furthering our understanding of how the geometrical and attenuation components

of asymmetry interact.

The work in this chapter leads to the question of whether we can check our

understanding with a simple case. The following chapter looks to accomplish this

by considering the asymmetry in muon particle density.
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Chapter 6

Predicting the asymmetry in

muon particle density

In the previous chapter the causes of asymmetry in the density of electromagnetic

particles was investigated. The results indicated that, at least for showers around

38°, the difference in atmospheric attenuation experienced by particles travelling

upstream vs. downstream is a significant factor in shaping the asymmetry profile

of a shower. However, directly measuring the contribution of geometric effects to

the overall asymmetry was not able to be achieved, due to the shortcomings of

the techniques used. To clearly see how geometrical effects impact asymmetry a

simpler case is studied here, namely the asymmetry in muon particle density. The

trajectory of muons through the atmosphere is far more straightforward than that of

electromagnetic particles, and can be easily modelled with only a few assumptions.

These are that

(a) Muons travel in approximately straight lines from their production point to

ground. This is a reasonable approximation as muons generally experience

little scattering during propagation and, for zenith angles < 60°, the earth’s

magnetic field has only a small deflection on a muons original trajectory [86].

(b) Muons are produced on the shower axis. The pions from which muons decay

typically remain within ∼50 m of the shower axis. Hence, relative to the

several kilometer scale of air showers, it is justified to approximate a muons

production position as lying on the shower axis. [86].

These assumptions allow for both the production point and resulting ground posi-

tion of a muon to be estimated, provided one knows the original production height

and momentum of the muon. This means that the geometrical component of the

asymmetry in muon particle density can be predicted using a Monte Carlo (MC)

simulation where these parameters are sampled from known distributions. The goal

of this chapter is to use information from CORSIKA and the above assumptions to

create a simple Monte Carlo simulation which predicts the asymmetry in muon par-

ticle density with and without atmospheric attenuation. Our expectation is that,

due to the rate of attenuation in the muonic component of extensive air showers

being relatively low, geometrical effects should dominate any observed asymmetry.

To build the Monte Carlo model, the following distributions must be known,
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Figure 6.1: A 2D representation of how the muon model will operate. Starting
from the ground, the production histogram, illustrated by the black curve, will give
the number of muons to produce at some distance along the shower axis, h. For each
distance the opening angles and production energies of the simulated muons will be
given by sampling from the corresponding opening angle and energy distribution for
that particular distance. A mock distribution is shown to the left of the z axis. A
random value of φ between 0 and 2π will also be assigned, fully defining the outgoing
momentum vector of the muon.

1. The production of muons as a function of distance along the shower axis (0 m

is at the shower core)

2. The two-dimensional distribution of muon opening angles and production en-

ergies as a function of distance along the shower axis. The opening angle is

defined to be the angle the muons momentum vector makes with the shower

axis.

Naturally, this information varies depending on a shower’s energy, primary mass

and zenith angle. For this reason, the initial investigation only attempted to predict

the asymmetry in muon particle density for a single CORSIKA shower. The simu-

lated shower was generated using the CORSIKA options “MUPROD” and “EHIS-

TORY” to record the production positions and initial momenta of all muons pro-

duced in the shower (including those which didn’t reach the ground). This informa-

tion was then used to create the required distributions and subsequently a Monte
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Carlo program which would sample from these distributions to generate a new, muon

only, air shower. When generating the new shower, the number of muons produced

at each point along the shower axis was given by the production histogram, with

the opening angle and initial kinetic energy of each muon given by sampling from

the associated 2D-histogram so as to maintain the proper correlation. Figure 6.1

shows an example of this process. By following the particles in straight lines to the

ground, with and without the simulation of attenuation, the result of the Monte

Carlo would be two lists of muons and their properties at ground, similar to the

output of a CORSIKA simulation. These particle lists could then be analysed for

asymmetry as done in the previous chapter.

The method of forming the required distributions will now be described. Note

that plots of example distributions will be for a CORSIKA shower with proton

primary, hadronic interaction model QGSJet-II.04, thinning level 10−6, zenith angle

= 40°, energy = 1.0× 1019 eV and Xmax = 763 g cm−2.

6.1 Muon production curve

To build the production histogram of muons as a function of distance along the

shower axis, the point on the shower axis closest to the muon production location

was found and subsequently converted to a distance. For an individual muon, let

the production position be ~µ = (µx, µy, µz), and the closest position on the axis be

~p = (t sin θ, 0, t cos θ) for some yet to be determined value of t. Note that we have

assumed the shower is coming directly from east and has a zenith angle of θ. The

value of t here is the length of ~p and thus is the distance along the shower axis we

desire. To find t, consider the vector ~v = ~µ − ~p, which will be orthogonal to ~p.

Therefore

~v · ~p = (µx − t sin θ, µy, µz − t cos θ) · (t sin θ, 0, t cos θ) = 0 (6.1)

Upon rearranging we find that

t = µx sin θ + µz cos θ (6.2)

Thus µx sin θ + µz cos θ is the distance along the shower axis for the estimated

production point of the muon. An example histogram of the distribution of distances

is shown in Figure 6.2. The histogram has been filled using the weights of each

muon as given by CORSIKA. The number of muons used to fill the histogram

is represented by the “Entries” statistic, whilst the integral of the histogram (∼
1.9×108) corresponds to the total weighted number of muons. The same applies for

the subsequent histograms. We can see that the majority of muons are produced

at distances < 15 km from the ground as measured along the shower axis, with

the first muons produced at around 32 km. To check the approximation of muons

being produced on the shower axis, a histogram of the magnitude of ~v (the distance
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Figure 6.2: A histogram of the estimated number of muons produced in an exten-
sive air shower at different distances along the shower axis. 0 m is taken to be the
location of the shower core at Auger ground. Each bin is 50 m wide.
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Figure 6.3: A histogram of the distances between the muon production location
as given in CORSIKA and the closest point to this position on the shower axis i.e.
the estimated production point. The bin widths are 50 m.
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Figure 6.4: A histogram of the muon production curve in terms of atmospheric
slant depth. 0 g cm−2 refers to the top of the atmosphere. The bin widths are
5 g cm−2.

between the true production point from CORSIKA and the estimated production

point) is shown in Figure 6.3. Approximately 90% of muons are produced within

100 m of the shower axis. Muons further out than this are likely the result of sub-

showers initiated further away from the axis. Lastly, by converting the vertical height

of ~p, pz, to an atmospheric slant depth via

X = M(pz)/ cos θ g cm−2 (6.3)

we arrive at the production curve as a function of slant depth, shown in Figure 6.4.

Here, pz is being measured from sea level and M(pz) is the vertical atmospheric

depth above pz. The function M(h) is the atmospheric column density profile at

Malargüe, Argentina in April. Details on this function and atmospheric profiles in

general can be found in Appendix B. Although not used directly in the Monte Carlo

model, this figure is provided as a reference.

6.2 Opening angle and energy distributions

To accurately simulate the geometrical and attenuation effects in the Monte Carlo

model, the opening angle and kinetic energy at production for muons in each bin of

the histogram in Figure 6.2 were recorded. These components were calculated using

the momentum at production of each muon, ~P , and the vector defining the shower
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Figure 6.5: (Top) The 2D distribution of opening angles and production energies
for muons originating between 4000 m and 4050 m above the ground as measured
along the shower axis. (Bottom) The associated one dimensional histograms of each
axis of the 2D histogram. On the left is the production energies, on the right is the
opening angles.
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axis, ~S. The opening angle, α, of each muon was calculated using the dot product,

α = arccos

(
~P · ~S
|~P ||~S|

)
(6.4)

whilst the kinetic energy at production was calculated via

E =
√
~P · ~P +M2

µ −Mµ (6.5)

where Mµ is the mass of the muon in GeV/c2 and ~P is in units GeV/c. An ex-

ample 2D distribution is shown in Figure 6.5 together with the corresponding 1D

histograms of each axis. The number of entries shown for the 2D histogram again

represents the unweighted number of particles. The weighted number of particles

is given correctly by the integral of the 1D opening angle histogram as roughly

8.76 × 105 muons. The discrepancy between this value and the one stated in the

1D production energy histogram arises because there are muons which are produced

with energies greater than 100 GeV which are not shown.

From the 2D histogram note how high energy muons are only ever produced with

small opening angles, whilst low energy muons can be produced with a wide range

of opening angles. This behaviour arises from the fact that

sinα ≈ pt
E

(6.6)

where pt is the transverse momentum of the muon [86]. The 1D histogram of produc-

tion energies can give us an idea of what fraction of muons will reach the ground.

As a very rough approximation, if every muon was produced on the shower axis

at the mean slant depth ≈ 637 g cm−2 (as given in Figure 6.4) and travelled par-

allel to the shower axis until reaching ground, then the slant depth traversed by

each muon would be ≈ 510 g cm−2. Approximating the energy loss of each muon

as 2 MeV/g cm−2 means any muon produced with less than 1 GeV of kinetic energy

would not reach ground. This equates to the number of particles in the first bin of

the production energy histogram in Figure 6.5, roughly 5.5×105 muons. This is more

than 60% of the total number of muons produced at this position (4000-4050 m up

along the shower axis). Assuming other distance bins have similar production energy

distributions, we thus expect that when the Monte Carlo simulation is performed in

full a large fraction of muons will attenuate before reaching ground.

6.3 The Monte Carlo model

With the required distributions constructed for this single CORSIKA shower, it was

now possible to create a simple Monte Carlo simulation to study how geometrical

and attenuation effects contribute to the asymmetry in muon particle density. In
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all Monte Carlo simulations the “shower” was made to arrive from the positive x

direction (magnetic north in CORSIKA conventions) with a zenith angle equivalent

to that of the CORSIKA shower the distributions were from.

The Monte Carlo was performed as follows. Starting from the first bin in the

muon production histogram (Figure 6.2), the number of muons in each bin, Nµ(h),

was simulated to be produced at the distance along the shower axis corresponding

to the middle of that bin. For example, the first set of muons was simulated at

25 m from the ground as measured along the shower axis. Secondly, the 2D opening

angle and energy distribution for that bin was randomly sampled to assign to each

muon an opening angle, θµ, and kinetic energy, which together with the muon rest

mass made up the total energy, Eµ. Each muon was also given a random azimuthal

angle, φµ, between 0 and 2π. These properties were all that was needed to define

every muon’s direction and probability of hitting the ground. For a muon produced

at location ~p = (xµ, 0, zµ), measured in the ground frame with respect to the shower

core, and momentum vector ~P = (Px, Py, Pz), its ground location, ~gµ, was given by

~gµ = ~p− (zµ/Pz)~P (6.7)

To get ~P itself, the values of θµ and φµ were used to define the momentum vector

of the muon in spherical coordinates, with the θ axis in the same direction as the

shower axis. This vector was given by

~P ′ =

 1

π − θµ
φµ

 (6.8)

which can be expressed in Cartesian coordinates (of the shower plane coordinate

system) as

~P ′ =

sin (π − θµ) cos (φµ)

sin (π − θµ) sin (φµ)

cos (π − θµ)

 (6.9)

To transform this vector to the regular ground based coordinate system, the vector

was simply rotated about the y axis clockwise by the shower zenith,

~P =

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 ~P ′ (6.10)

At this stage the final ground position, ~gµ, was recorded for each muon. This

made up the list of particles at ground with no decay process implemented. In the

case of considering attenuation affects, the possible decay of each muon had to be

accounted for. This was done by first, finding the total distance, d, and total slant

depth, Xµ, the muon had to travel through to hit the ground (assuming a straight
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line trajectory),

d = |~p− ~gµ| (6.11)

Xµ =
M(1.452)−M(1.452 + zµ)

cos θµ
(6.12)

where again we have used the atmospheric profile of Malargue, M(h), to calculate

the slant depth. The value of 1.452 km corresponds to the height above sea level of

the observation level (ground) of the CORSIKA shower. The muon’s path was then

broken up into n intervals of length I = d/n. At the start of each interval, the total

energy of the muon at that point was used to define its gamma factor and hence

velocity,

γµ = Eµ/Mµ (6.13)

v = c
√

1− 1/γ2µ (6.14)

These values were then used to calculate the boosted lifetime of the muon, LB, and

the time needed to traverse the interval based on the muons velocity, TI ,

LB = τ × γµ = 2.2γµ × 10−6 s (6.15)

TI = I/v (6.16)

This allowed for the calculation of the number of lifetimes an individual muon would

need to survive in order to traverse the interval,

NL = TI/LB (6.17)

The probability the muon would survive traversing the interval was thus

P = e−NL (6.18)

The decay process was then simulated by generating a random number between 0

and 1. If the result was less than P then the muon continued to the next interval,

now with an energy

E ′µ = Eµ − aXI (6.19)

where XI is the slant depth traversed by the muon in the interval,

XI = Xµ −
M(1.452)−M(1.452 + zµ − niI cos θµ)

cos θµ
(6.20)

and the ionisation energy loss, a, is given by the Bethe-Bloch formula. We have

used the same parameterisation for a as in [86], where

a =

(
2.06 + 0.5453ξ +

0.0324

(ξ + 1.0312)2

)
× 10−3 GeV/g cm−2 (6.21)
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for ξ = log10(Eµ). Note in Equation 6.20 ni is simply referring to the interval

number, ni = 1, 2 . . . n. Also Xµ was updated to be the remaining slant depth,

X ′µ = Xµ − XI . Radiative losses were not included in the energy loss process as

these only appear above 50 GeV [86], an energy at which relatively few muons were

produced.

If the survival probability was less than the randomly generated number then

the muon was set to decay and its final intended ground position would not be

added to the list of particles surviving the attenuation Monte Carlo. The reason

for performing the decay process in a step-wise fashion rather than trying to come

up with an analytical expression was that such an expression would have only been

possible by making additional approximations regarding the atmospheric profile and

muon speed. Considering we were not accounting for other small effects such as

scattering and magnetic deflection, we continued with the above approach. An

example of an analytical expression is given in [86] and although faster, when we

tested it the results were no better than when using the step-wise method.

Weights were also incorporated into the Monte Carlo, for the purpose of reducing

run-time. This meant only some fraction 1/w of the particles in each bin were

simulated. Particles which survived and reached the ground would be assigned a

weight of w, which would be used when filling the relevant histograms. Using w = 10

allowed the run-time of the program to be sufficiently fast whilst also maintaining

enough statistics, provided the number of intervals the muon’s trajectory was broken

into, n, wasn’t overly large e.g. > 100.

6.4 Results

The results from CORSIKA directly and the Monte Carlo simulations (with and

without decay) for the asymmetry in muon particle density are shown in Figures

6.6 and 6.7 respectively. The asymmetry was measured for an annulus between

950 m and 1050 m in the shower plane, as per usual, and the decay process set

to 20 intervals. The density was also calculated as done previously, by dividing

the weighted number of muons by the area of the section on the ground which

corresponded to the annular region in the shower plane. To estimate the asymmetry

in CORSIKA truth and the results from our model, Equation 5.1 has been fit to

the histograms, as done in the previous chapter for EM particle density. The errors

bars on each bin were calculated using the method described in Section 5.3.

For this example shower, the histogram without a decay process shows a clear

asymmetry, with an asymmetry amplitude of roughly 0.170±0.002. This value is

slightly below the CORSIKA amplitude of 0.19±0.01. The shape of the profile is

close to symmetric about ζ = 0° and the absolute value of the density is roughly 4
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times larger than that from CORSIKA. This is not surprising as no decay process

has been implemented here.

For the asymmetry profile with attenuation, the shape appears slightly narrower

than without attenuation and the absolute value of the density is now nearly iden-

tical to that of the CORSIKA output. The asymmetry amplitude is larger than the

CORSIKA value however, with k = 0.216± 0.004. Although the values of k for the

attenuation MC and CORSIKA truth do not agree to within uncertainty, there is

only ∼ 10% difference between them. The discrepancy is likely due to the combina-

tion of assumptions/approximations made in both the geometrical and attenuation

aspects of our model. Taking the attenuation MC value of k as our final value, this

means geometrical effects alone are responsible for the initial 0.17 increase in asym-

metry amplitude, and attenuation effects responsible for a further (additive) 0.0416

increase. In short, geometrical effects are contributing 0.17/0.0416 ≈ 4 times more

to the final asymmetry than attenuation effects in this particular example. One

additional note is that the non-symmetric nature about ζ = 0° of the CORSIKA

result, in comparison to the Monte Carlo simulations, is probably due to the random

components of the additional factors that CORSIKA accounts for e.g. scattering

and off axis production. The use of larger weights, up to several thousand for some

muons, may also play a role.
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Figure 6.6: Asymmetry in muon particle density measured from the output of
CORSIKA ground particles. Results from fitting Equation 5.1 to the data are
shown in the top right.
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plot also includes attenuation. Results from fitting Equation 5.1 to the data are
shown in the top right of each plot.
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Figure 6.8: Measurements of the muon particle density from the attenuation Monte
Carlo for different numbers of intervals used in the decay calculation. The legend at
the bottom of the figure indicates which histogram corresponds to which number of
intervals, with the values of k alongside representing the asymmetry amplitude for
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To briefly investigate the discrepancy in the asymmetry amplitude between COR-

SIKA and our attenuation inclusive Monte Carlo, specifically whether it could be

decreased, we tried increasing the number of intervals in the decay simulation. Fig-

ure 6.8 shows the asymmetry in muon particle density, measured as before, for the

attenuation Monte Carlo run on the same shower with varying numbers of inter-

vals. The shower used is the same as in the previous plots, however due to the

random nature of the Monte Carlo the asymmetry amplitude for the n = 20 case is

slightly different to that shown in Figure 6.7. Also note that the properties of the

muons sampled in each histogram are exactly the same, meaning the only difference

between the histograms is the number of decay intervals used in the simulation of

attenuation. At the bottom of the figure the asymmetry amplitudes for the different

histograms are shown, with the number of intervals used in the decay simulation

given before each k value. We can see that the asymmetry amplitudes are all within

uncertainty of one another and the shapes of the histograms are largely the same,

the only noticeable difference being for the n = 10 histogram with increased densi-
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ties at ±15°. Collectively, this indicates that increasing the number of intervals in

the decay simulation beyond 20 should not give significantly different results, and

that the cause of the discrepancy between CORSIKA and our model lies elsewhere.

To see how the contributions of geometrical and attenuation effects differed with

zenith angle, 20 proton and 20 iron showers of the same energy, 1019 eV, and varying

zenith angles, 30-60°, were simulated with CORSIKA. For each shower, the same

process of generating the required distributions, sampling from these distributions

to simulate the muon component of the shower and then measuring the asymmetry

at ground with and without attenuation, was performed. In addition to checking

how the contributions varied with zenith angle, comparing the resulting asymmetry

amplitudes also provided checks of whether the discrepancy between our attenuation

Monte Carlo and CORSIKA was zenith dependent, and whether the magnitude

of the geometrical asymmetry would continue to be lower (as expected) than the

CORSIKA output. Figure 6.9 shows the three asymmetry amplitudes; CORSIKA,

no attenuation MC and attenuation MC, for the two sets of showers as a function

of zenith angle. All showers were simulated with the same incoming azimuthal

direction (magnetic north), with the number of intervals set to 20, based on the

results in Figure 6.8.

Both primaries show an increase in the magnitude of the asymmetry with zenith

angle up to approximately 50− 55° before dropping slightly. This is simply demon-

strating what was learnt in Chapter 4. The attenuation Monte Carlo overestimates

the asymmetry when compared to CORSIKA in nearly all cases, however the dis-

crepancy appears to decrease at larger zenith angles, particularly for iron primaries.

In fact the CORSIKA and attenuation MC values for k tend to be closer for iron pri-

maries overall. The reason for this is not clear and could very well be a coincidence,

considering the small number of showers analysed. As for the geometry only Monte

Carlo, the asymmetry amplitudes are generally lower than the CORSIKA result,

though in some cases they do agree to within uncertainty with both CORSIKA and

the attenuation MC. Again these instances occur at large zenith angles. It is not

known whether this is a success of the model or some cancelling out of factors which

haven’t been accounted for, such as scattering and off-axis production. Overall, it is

evident that geometrical effects are the dominant cause of asymmetry in the muon

component of extensive air showers.

For low zenith angles the additive contributions of geometry and attenuation to

the total asymmetry measured by the attenuation Monte Carlo are approximately

0.15 & 0.05, and 0.14 & 0.04 for proton and iron respectively. At zenith angles

between 50-55° these contributions change to roughly 0.23 & 0.035, and 0.2 & 0.02.

Taking the ratios of these pairs tells us the how much larger the contribution from

geometrical effects is to the asymmetry than attenuation effects. For proton showers,

the ratio of the geometrical contribution to attenuation contribution goes from being

roughly 3 times larger at 30° to 6-7 times larger around 50°. For iron showers, the
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MC with attenuation), plotted as a function of shower zenith angle.
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same ratio increases from ∼ 3.5 at 35° to ∼ 10 near 50°. Thus, in addition to being

the primary cause of asymmetry in muon particle density, geometrical effects appear

to become more dominant at larger zenith angles.

As a simple, though certainly not comprehensive, check of whether or not ac-

counting for magnetic deflection alters our model’s result, a CORSIKA shower with

no magnetic field (magnetic field strength values set to 10−6) was simulated. The

CORSIKA asymmetry and attenuation Monte Carlo predicted asymmetry are shown

together in Figure 6.10. The difference in asymmetry amplitude is similar to what

has already been observed, indicating that the source of the difference between

CORSIKA and our Monte Carlo model is likely in the other factors not accounted

for e.g. scattering and off-axis production. On the whole, we are satisfied with our

Monte Carlo’s results as they match the initial expectation of the asymmetry in

muon particle density being predominantly caused by geometry and are not overly

dissimilar from CORSIKA truth.
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6.5 Conclusions

This chapter has attempted to separate the geometrical and attenuation components

of asymmetry in muon particle density. This was achieved by constructing a Monte

Carlo model of muon production and propagation, which assumed that muons are

produced on the shower axis and travel in straight lines, to produce two estimates

of the asymmetry - one based on solely geometrical effects and the other including

both geometrical and attenuation effects. The model took data from individual

CORSIKA showers as input and built distributions of production height (measured

along the shower axis) and opening angle/production energy to sample from to

generate the asymmetry profiles. Results from the model showed that geometry is

the primary factor in producing asymmetry in muon particle density. Quantitatively,

we showed that geometry can contribute anywhere from 3 to 10 times more than

attenuation for showers with zenith angles > 30°.

Regarding the attenuation inclusive Monte Carlo, it decreased the number of

muons which reached the ground significantly compared to the geometrical only

simulation. This brought the resulting particle density values very close to the

CORSIKA output, although there was generally a slightly larger asymmetry am-

plitude for our model. Tests using an increased number of intervals in the decay

simulation process and without magnetic fields to deflect muons in the CORSIKA

simulation did not alter the discrepancy. However the difference is small enough

that we are relatively confident that a more robust and thorough treatment of all

the factors entering the production and propagation of muons in air shower, as done

in [86], would bring the model results into agreement with CORSIKA. Moreover,

the purpose of this model was to be a simple and easy to understand method of

checking the contributions of geometry and attenuation to the asymmetry in muon

particle density - exact agreement was never expected. Effects such as scattering and

off axis production, if included in the model, may make it difficult to fully separate

geometry and attenuation. This is because these effects depend on the inclination

of the shower (large scale) and on the energy of individual muons involved in them

(small scale). Fully investigating these additions is beyond the scope of this thesis

but is certainly a recommendation for future work.

A natural extension to this study would be to average the distributions of pro-

duction height and opening angle/energy over many showers and use the results to

build a true model of muon propagation (rather than relying on individual COR-

SIKA showers as input). This could then be used to study how changing each

component of the model impacts the overall asymmetry. The first part of this sug-

gestion has already been accomplished in [86], so perhaps utilising that work would

be useful in further probing the underlying causes of asymmetry in muon particle

density.
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Chapter 7

Using asymmetry to improve

Xmax estimates from LDF slope

parameters

The previous chapters have focused on building an understanding of asymmetry and

how it could potentially be used for mass composition studies. However there are

other methods which utilise the ground detectors of the Pierre Auger Observatory to

learn about mass composition. These typically involve trying to indirectly measure

Xmax . Examples include,

• Applying machine learning algorithms, such as deep neural networks, to the

signals induced by secondary particles in the WCDs [87]

• Using the principles of air shower universality to decompose signal traces into

the contributions from different shower components [88]

• Using correlations between the risetimes of signals in the WCDs [89]

Another method is correlating the slope parameters of the lateral distribution func-

tion, or LDF (see Section 3.2.4), with Xmax , as done by Alex Hervé in his PhD

thesis [90] and Mary Diaz [91], another member of the Pierre Auger Collaboration.

The goal of this chapter is to use the parameterisations of the asymmetry magni-

tude found in Chapter 4 to improve event by event LDF fits, and then see whether

the corrected slope parameters provide better estimates of Xmax via this technique.

Since the asymmetry parameterisations were performed on simulations, the following

analysis will necessarily also rely on simulated data. Should the method be viable,

it could be applied to real data, assuming a parameterisation of the asymmetry in

real data could be found.

7.1 LDF slope parameters versus distance to Xmax

To understand the method of extracting Xmax from the slope parameter of an LDF,

simulations with dense rings placed every 100 m between 500-2500 m were initially

used to obtain the best possible estimate of the LDF for several showers. Using
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dense rings also eliminated any effects related to asymmetry. These simulations

were in fact a subset of the data used in Section 4.4 for the parameterisations of the

asymmetry amplitude. Specifically, we only used showers which had a Monte Carlo

energy between 19.1≤log(E/eV)≤ 19.4. This corresponded to 568 proton showers

and 508 iron showers.

For each dense ring the mean signal and standard error of the 12 stations was

found and plotted as a function of radius in the shower plane. Similar to the asym-

metry studies, only dense rings which had all 12 stations triggering were included in

the fit. Compared to an LDF which is fit using only stations triggered in the regular

Auger SD array, these “dense ring LDFs” were highly constrained, thanks to the

accuracy and precision of the mean signal measurements. To further simplify the

process, the function initially fitted to the distribution of signals was the original

Nishimura-Kamata-Greisen (NKG) function,

ρNKG (r, s,Ne) =
Ne

(rM)2
Γ (4.5− s)

2πΓ (s) Γ (4.5− 2s)
×
(
r

rM

)s−2(
1 +

r

rM

)s−4.5
(7.1)

which has only one slope parameter, s. This is in contrast to the modified NKG

function used in normal event reconstruction (see Section 3.2.4) which has two slope

parameters, β and γ. In Equation 7.1 s is a fitted slope parameter, known as the

“shower age”, Ne is a fitted normalisation parameter, approximately representing

the number of electrons at ground level, r is the distance from the detector to the

shower axis and rM is the radius inside which, on average, 90% of the shower’s energy

is deposited. This is known as the Moilre radius and in our case rM ≈ 100 m [92]. An

example LDF as measured by the dense rings with the original NKG function fitted

is shown in Figure 7.1. In order to get a good fit with the original NKG function

the Ne and s parameters were given initial guesses of 1010 and 1.5 respectively. Note

also that the Monte Carlo geometry was used for these fits, so that every station in

each dense ring had a radius r equal to an exact multiple of 100 m.

For our first attempt at trying to find a correlation between Xmax and the slope

parameter of the original NKG LDF, s was compared to the difference between

Xground and Xmax, where Xground is the atmospheric slant depth of the ground as

measured along the shower axis. This quantity is known as the distance to Xmax or

DX. The atmospheric profile used in the simulated showers was that of Malargüe

during April (parameters given in Table B.1 in Appendix B) where the average

vertical atmospheric depth Xvert ≈ 880 g cm−2. Thus, for our calculations, DX was

given by

DX = Xground −Xmax =
Xvert

cos θ
−Xmax =

880 g cm−2

cos θ
−Xmax (7.2)

The idea was that for some measured values of s and θ, from either the WCD or

SSD, one could estimate DX via s and then convert this value to Xmax via Equation
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Figure 7.1: The original NKG LDF fitted to the average signals measured by dense
rings at radii spaced by 100 m. The error bars are the standard error on the mean.
Past 1800 m, not all stations in each dense ring were triggered, thus they were not
used in the fit.

7.2. If this method was applied to real showers, then although Xvert at Auger does

vary day to day, as long as the correct value is measured at the time of the event,

the calibration between s and DX could still be used to determine Xmax .

Figure 7.2 shows s plotted against DX for every shower in the data set, for both

the WCD and SSD. No cuts have been applied to the quality of the LDF fits or the

geometry of the showers. The blue points represent iron showers and the red points

proton showers. There is considerable overlap between the two, however at low

values of DX there is a slight average separation, with iron showers generally having

a higher value of s (corresponding to a flatter LDF) for a given DX than proton

showers. At higher DX values the difference appears to reduce. The additional

muon content in iron showers relative to proton showers is likely responsible for this

effect, as the LDF of purely muons is flatter than the LDF of the electromagnetic

component of air showers. Another simple observation is that the uncertainties in

the values of s are larger for the SSD than the WCD. This is ultimately a result of

the smaller detecting area of the scintillator, resulting in greater signal fluctuations

and subsequently a more uncertain value for the slope parameter of the LDF.
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Figure 7.3: Plots checking the calibration in Figure 7.2 using the same data. The
top panels show, from left to right, a graph of the true Xmax against the estimated
Xmax and a histogram of the residuals ∆Xmax =(estimated Xmax - true Xmax ) for
the WCD. These residuals correspond to the difference between the data points and
the cyan line, representing the 1-1 correlation. In the left hand plots, the black line
is an overall linear fit to the set of red (proton) and blue (iron) points. In the right
hand plots, the black histogram is the sum of the red and blue histograms and has
its statistics shown. The bottom plots are the same but for the SSD.

If this calibration between s and DX is to be used in reality, then since we do

not know apriori the primary mass of a cosmic ray, the proton and iron points must

be fit to together. This has been done in Figure 7.2 with a sigmoid function of the

form

s(DX) =
a

1 + exp(−b×DX + c)
+ d (7.3)

where a, b, c and d are free parameters. This type of function was chosen as there

seemed to be a flattening off of the data at both low and high values of DX. These

flatter regions have little sensitivity to DX i.e. a single value of s could correspond to

many different values of DX, meaning there will be a greater spread in the estimated

value of Xmax for low/high values of s. Another consequence of the shape of this

correlation is that any functional form which adequately fits the data will necessarily
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have to flatten at extreme DX values. For the chosen function in Equation 7.3, this

manifests in the range of s(DX) being limited to within d and d + a. Therefore, s

values measured outside this range cannot be assigned a value of DX and in turn

Xmax . Additionally, s values that are very close to the horizontal asymptotes may

be assigned extremely low/high values of DX, leading to poor estimates of Xmax .

Performing a check of this calibration on the same data set yields the results

shown in Figure 7.3. On the left we have plotted the estimated Xmax against the

true Xmax to observe whether there is a bias as a function of true Xmax . This has

been done for both the WCD (top row) and SSD (bottom row). Once again the

red/blue points correspond to proton/iron respectively. The error bars on these

points come from the error in s and the error in the calibration to convert s to DX.

As the Monte Carlo shower parameters were used there was no uncertainty in the

zenith angle of the shower. A linear fit has been performed on the overall set of

points, shown in black, with a one to one line (cyan) plotted for reference. Also

shown are histograms of ∆Xmax = (estimated Xmax - true Xmax ). The individual

proton and iron histograms are shown in red/blue, with their sum shown in black.

The statistics box containing the number of entries, mean and RMS corresponds

to the black histogram. Note that to avoid extremely low/high values of DX being

transformed into poor estimates of Xmax we have placed a cut on the showers selected

in this checking process, namely that d+0.05a < s < (a+d)−0.05a for the respective

fit parameters of the WCD and SSD. Recall from Equation 7.3 that d is the value

of the lower asymptote and a is the difference between the high asymptote and low

asymptote. The cut removes around 10 points for the WCD and 68 points from the

SSD, the majority of these being proton points at low DX values.

Immediately we notice a bias is present in both the WCD and SSD cases, where

iron primaries generally have their Xmax underestimated and proton primaries have

their Xmax overestimated. This can be seen in the graphs via the misalignment

of the best fit line and 1-1 line, and in the histograms from the separation in the

central values of proton and iron, which are either side of 0. The bias is caused by

the original calibration having to “split the middle” between the proton and iron

points, meaning for a particular value of s the estimated DX for a proton shower

will generally be lower than the true value, and for an iron shower it will generally

be higher. The overall residual histograms (black) hide this offset, showing only a

small bias towards larger estimates for Xmax . A final note is the RMS of the WCD

histogram is roughly 25 g cm−2 smaller than the SSD, due to having less spread in

DX for any particular value of s.

These results are not ideal for taking this method to the next step - applying

the calibration to regular (simulated) showers, that is those without dense rings,

to estimate Xmax . Given that we are dealing with what is essentially the best

possible estimate of the LDF, we would like to be able to achieve a calibration

which is not biased based on the primary particle and has a somewhat tighter
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residual distribution (smaller RMS) when tested on the same data. To this end,

we re-performed the LDF fits to the dense ring data but now using the modified

NKG function. Our hope was that using different slope parameters would not give

the bias seen using the original NKG function. The initial test allowed β and γ

to be freely fit. However this resulted in no correlation between either β or γ and

DX, a result believed to be caused by the degeneracy in β and γ. To remove this

degeneracy, γ was set to a fixed value of zero and the fits performed once again.

The resulting calibration curves are shown in Figure 7.4.

The calibration is extremely similar to the previous result in terms of shape and

spread. The only real difference is the range of values taken by β compared to s.

Unfortunately the slight separation between proton and iron points at low values of

DX also remains, causing a similar bias issue as before. To solve this bias problem,

a different technique had to be used. In the following section we describe a slightly

more complicated method where Xmax and θ are used directly to parameterise the

slope parameter of the LDF. The resulting function is then used to estimate Xmax .

Importantly, we chose to advance using the modified NKG function with γ set to

zero as the LDF to fit. This decision was made primarily because the modified NKG

function is currently used in the Offline reconstruction of real and simulated events,

and performing the same check of the estimated Xmax using the calibration curves

in Figure 7.4 gave very similar results to Figure 7.3.

7.2 Parameterising β as a function of θ and Xmax

using dense rings

Let us start by taking a step back from our initial attempt at finding a correlation

between s and some variable associated with Xmax . We know that the slope of

the LDF will depend primarily on two things; the zenith angle of the shower and

Xmax itself. To understand why, first consider the case of a fixed Xmax and vary-

ing zenith angle. The greater the inclination of the shower, the more spread out

particles reaching the ground become, leading to a flatter LDF. For the modified

NKG function with γ set to 0, this corresponds to a larger value of β. This same

dependence was shown indirectly by the calibration curves of β against DX, as larger

values of DX typically corresponded to larger zenith angles. On the other hand, for

a given zenith angle, showers with deeper Xmax values will have a steeper LDF.

Both of these facts can be observed directly by plotting the value of β against

either sin2 θ for different bins of Xmax , or Xmax for different bins of sin2 θ. Example

plots for the SSD, using the same dense ring data as in the previous section, are

shown in Figures 7.5 and 7.6. In Figure 7.5, the data have been split into 7 equally

sized bins in sin2 θ. We can see that for a fixed Xmax , the more inclined the shower,

the greater the value of β. As for Figure 7.6, the data have been split into 4 equally

sized bins of Xmax , ranging from 680 to 880 g cm−2. This choice covered the majority
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Figure 7.7: Parameterisations of the parameters of the exponential fits (Equation
7.4) to β versus sin2 θ as a function of Xmax for the SSD.

of the Xmax data, as can be seen in Figure 7.5. Again, our initial intuition is shown

to be correct, as for a given zenith angle, greater Xmax values correspond to smaller

values of β. Each bin in this plot has also been fit to with an exponential of the

form

exp
(
a+ b sin2 θ

)
+ c (7.4)

where again a, b and c are free parameters. This is the method with which β was pa-

rameterised. Specifically, the parameters of the exponential fits were parameterised

as a function of Xmax . This meant an estimate of β could be obtained based solely

on a measurement of Xmax and θ. Of course though, our interest was in reversing

this relationship so that Xmax could be estimated from a measurement of β and θ.

By fitting to different Xmax regions, we naturally fit to different primaries, with low

values of Xmax being dominated by iron showers and larger values dominated by

proton showers. This allows for much more information to be captured about the

relationship between the LDF slope parameter and Xmax than in our initial cali-

bration using DX, where we fitted over the whole Xmax distribution. It should be

stated that there was no physical reason why an exponential was chosen, it sim-

ply appeared to fit the data reasonably well. In future studies involving a similar
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Figure 7.8: The same type of plots as in Figure 7.7 but for the WCD. Note the
fitting of a constant function to the c parameter, as opposed to the linear fit used
for the SSD.

method, a search for a more physically motivated function should be attempted.

For now, we continue with a demonstration of the technique.

Plotting the parameters of the exponential fit as a function of Xmax for the SSD

results in the plots shown in Figure 7.7. In these plots the data have been split into

10 bins of Xmax , each of size 20 g cm−2, ranging from 680 to 880 g cm−2. The smaller

sized bins were chosen so as to capture any small scale behaviour. Conveniently, the

parameters appear to follow simple linear trends, at least to a first approximation.

Similar parameterisation plots are shown for the WCD in Figure 7.8, the only dif-

ference being a constant function was fitted to the c parameter rather than a linear

one. Here, the y-axis scale has been kept similar to the c vs. Xmax graph for the

SSD. This is to emphasize the need for a linear relationship in the SSD plot, and

how the WCD appears “flat” in comparison.
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Figure 7.9: Results from checking the dense ring calibration of β, θ and Xmax on
the same data. Red/blue represents proton/iron. The top row shows results for the
WCD, the bottom row for the SSD. Linear fits have been applied to the combined
set of proton and iron points in the right hand plots. The black histogram is the
sum of the proton and iron histograms and has its statistics shown.

Thus, the functions

βWCD = exp
(
(5.4− 0.0107Xmax) + (−6.8 + 0.0135Xmax) sin2 θ

)
− 2.533 (7.5)

βSSD = exp
(
(6.2− 0.013Xmax) + (−7 + 0.016Xmax) sin2 θ

)
− 2.26− 0.00044Xmax

(7.6)

make up our new, two dimensional, calibration curves. These calibrations were

then tested similarly to before - by running over the same data set and calculating

Xmax from the measured β and θ. Note that when checking the calibration only

showers with an Xmax between the range used in the parameterisations were con-

sidered i.e. 680≤Xmax /g cm−2 ≤880. Also, any showers with an estimated value of

β < −2.51 for the WCD and β < −2.7 for the SSD were cut. This simply removed

some noticeably poor Xmax estimates, similar to what was done when checking the

initial DX versus s calibration. The cuts on β removed 14 data points from the WCD

and 8 data points from the SSD. Plotting the same graphs of true Xmax against esti-

126



mated Xmax and histograms of ∆Xmax for the WCD and SSD gave the results shown

in Figure 7.9. There is now no longer a bias in the estimated Xmax as a function of

true Xmax , in either the WCD or SSD. This is shown by the fitted linear functions

being consistent (or nearly consistent in the case of the SSD) with the 1-1 lines.

These results are reflected in the ∆Xmax histograms for proton and iron, both of

which now appear to be centred at 0. The RMS values of the overall histograms

are also significantly smaller, around 37 g cm−2 for the WCD and 44 g cm−2 for the

SSD. This level of quality is what we initially hoped to achieve with the dense ring

method.

There is a small anomaly in the SSD ∆Xmax histogram, namely the tail in the

proton ∆Xmax distribution stretching to the right. Ideally, the results should be

symmetric around 0. This can be achieved by increasing the severity of the β cut

for the SSD to be β < −2.6, removing the tail. This changes the mean of the

overall histogram to -0.4 and reduces the overall RMS to ≈ 36 g cm−2. Doing this

does introduce a small acceptance bias towards deeper proton showers, however. As

this work is primarily a demonstration utilising simulations rather than a practi-

cal application, no actions will be taken to correct/account for this. However, if the

calibration were to be applied to real data and a similar cut introduced, then the rel-

ative acceptance of the SSD to different Xmax values could in principle be estimated

and used to account for the acceptance bias in the reconstructed Xmax distributions.

7.3 Applying the dense ring calibration to regular

showers

With the check of the dense ring calibration on the same data being successful, the

calibrations were then tested on regular simulated showers, that is those without

dense rings. It is in this section where we attempt to correct the signals measured

by the WCD and SSD using our asymmetry parameterisations from Chapter 4.

Specifically, along with performing a standard LDF fit, we will correct the mea-

sured signals of each detector to the average signal which would be measured by

a dense ring at the detector’s radius, before fitting an LDF to the corrected data.

The Monte Carlo shower parameters were used when analysing these events. This

allowed us to select showers within the same energy, zenith angle and Xmax range

as used in the dense ring calibration. It also meant the correct core location and

station radii/azimuth could be used when performing our own LDF fits as well as

the asymmetry corrections, which were applied based on the type of detector and

primary particle being considered (WCD/SSD, proton/iron). Lastly, note that the

severity of the shower zenith angle cut was increased to θ < 55° for this test. This

was because above this zenith single events would occasionally give β values well

above those used to create the dense ring calibration, around -1.1.
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To ensure each LDF fit gave a reasonable value of β, strict cuts were placed on

the stations included in the fits. The stations included had to...

• Have an expected signal >10 VEM in the WCD. In other words, based on the

fit of the LDF performed by Offline , if the signal predicted by this LDF at the

radius of the station was < 10 VEM, then the station would not be included

in the fit. This was a conservative cut to avoid upward fluctuations. Note this

cut isn’t perfectly valid when using the Monte Carlo geometry, as the Offline

LDF fit uses the reconstructed core.

• Be identified by Offline as a “candidate” station (a station which is part of

the event). This cut excludes triggered stations which have no neighbouring

stations that triggered, known as lonely stations.

• Not be saturated, for both the WCD and SSD.

Additional criteria were required for the distribution of stations, namely the Billoir

criteria. These are the same criteria that were outlined in Section 3.2.4 which define

the showers with which β is parameterised (for real events). To reiterate, to pass

the Billoir criteria there must be at least 2, 3 or 4 stations in the range 400-1600 m,

with at least two of the stations separated by a distance of at least 900, 800 or 700 m

respectively. These conditions provide a satisfactory number of stations and lever

arm with which to fit β.

As for the asymmetry correction, it was performed as follows. A dense ring at

1000 m was simulated for each event and used to estimate log(S(1000)). Then, for

a station at a particular radius in an event with a certain log(S(1000)) and zenith

angle, our parameterisations of the asymmetry were used to estimate b for both the

WCD and SSD, depending on whether the primary was proton or iron. The value

of ζ for the station was then used to get the relative signal at this station position,

defined as per our original asymmetry fits, 1 + b cos ζ. Dividing the measured signal

by this value gave the asymmetry-adjusted signal.

Fitting LDFs to the showers which passed all these cuts, and then using the

fitted value of β to estimate Xmax via Equations 7.5 and 7.6 (done numerically

for Equation 7.6), yielded the ∆Xmax histograms in Figure 7.10. There is a clear

difference between the number of proton and iron showers present in these plots.

Since the total number of proton showers and iron showers which were analysed was

within 10% of each other, this must be due to the cuts implemented. A table of the

cuts for the shower criteria and how they affected the initial collection of proton and

iron showers is shown in Table 7.1. Follow up Tables 7.2 and 7.3 show the effect of

applying the same β cut that was used in the dense ring calibration check on the β

values for the uncorrected WCD/SSD LDF fits.

We can see that the cut on Xmax reduces the relative number of proton events

more than iron events. This is simply due to the inherent proton Xmax distribution.
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Figure 7.10: Histograms of ∆Xmax =(reconstructed Xmax - true Xmax ) using the
dense ring calibration for regular showers. The top row shows the results for the
WCD, with the Xmax estimates from the uncorrected LDF fits shown on the left and
the asymmetry-corrected fits shown on the right. The bottom row is the same but
for the SSD. The black histograms are the sum of the red and blue histograms, given
by proton and iron events respectively. Statistics are shown for the black histogram.

Cut Proton Events % remaining Iron Events % remaining

- 25,236 100% 27,384 100%
θ < 55° 20,664 82% 22,620 83%

680<Xmax <880 17,964 72% 20,700 76%
Billoir criteria 9,880 39% 11,925 44%

Table 7.1: A table showing the number of events analysed when checking the dense
ring calibration on regular showers and how the various cuts implemented reduced
the initial number. The % remaining columns show what percentage of the original
number of events (25,236 and 27,384) remained after each cut.
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Cut Proton WCD % remaining Iron WCD % remaining

β > −2.51 8567 34% 11555 42%

Table 7.2: An extension of Table 7.1 showing how many events were removed after
applying our β cut on the uncorrected WCD LDF fits for proton and iron showers.

Cut Proton SSD % remaining Iron SSD % remaining

β > −2.6 7432 29% 10699 39%

Table 7.3: The same as Table 7.2 but for the SSD.
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Figure 7.11: Histograms showing the fraction of events left after cutting events
with a fitted value of β < B (β from the uncorrected LDF fits). On the left is
the WCD, on the right is the SSD. The red and blue histograms correspond to
proton/iron showers respectively.

The cuts for θ < 55° and the Billoir criteria meanwhile do not appear to favour either

proton events or iron events. However, we do see a large difference in the relative

number of proton/iron events removed due to the cut on β, for both the WCD and

SSD. It has already been noted that for the SSD the acceptance to proton showers

would be lower due to this cut. However the fact we see the same phenomenon in the

WCD may indicate that the β values are, on average, more negative for the regular

event fits than the dense ring fits. For completeness, acceptance plots showing the

fraction of events left after requiring β values from the uncorrected LDF fits be

larger than some number B, measured with respect to the number of showers which

passed all the cuts in Table 7.1, are shown in Figure 7.11. The left/right hand

plot corresponds to the WCD/SSD, with the proton/iron histograms being coloured

red/blue as usual. These plots are effectively the normalised cumulative distribution

of fitted β values and show that for any given B a greater number of proton events

will be cut than iron events.

As for the shape of the distributions in Figure 7.10, there is a systematic shift

to underestimating Xmax in each instance, by roughly 15 g cm−2 for the WCD and
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Figure 7.12: Histograms of the difference in β when estimated using dense rings
vs. the regular number/distribution of triggered stations in a standard event (not
corrected for asymmetry). The left panel shows the result for the WCD, the right
for the SSD. The black histogram, with statistics shown in the upper right corner,
is the sum of the red (proton events) and blue (iron events) histograms.

44 g cm−2 for the SSD (taking the mean values of the asymmetry corrected his-

tograms). Comparing the left hand plots to the right hand plots, there is a notewor-

thy improvement in the alignment of the centres of the proton and iron distributions

when going from Xmax estimates from fits without the asymmetry correction to those

with it. The RMS values of the asymmetry corrected histograms are also noticeably

smaller, and a sizeable portion of the tails in the distributions are removed. The

improvements here are encouraging and perhaps indicate a potential application of

asymmetry for the improvement of LDF fits, similar to Luce’s work [82] correcting

the position of the shower core. Again though, this is all being performed in sim-

ulations where the asymmetry correction is based on the primary particle. In real

data the parameterisation would likely be to some unknown mixed composition, and

the correction would be affected by other imperfections in the reconstructed shower

parameters.

Regarding the bias in ∆Xmax , this is, at least in part, believed to be from the

different radial distributions of stations used in the calibration. Explicitly, for a

uniform array of stations, as is the case with Auger, the probability of finding a

station between r and r + dr is proportional to 2πrdr. Hence, for real events, the

radial distribution of tanks is proportional to r (up to some radius where stations

no longer trigger). Alternatively, for the dense ring calibration, where there were

exactly 12 stations every 100 m, the radial distribution of stations was flat in r.

We can see how this affects our estimate of β by plotting the difference between

the fitted β from sets of dense rings vs. that from regular stations in the Auger

array for the same simulated shower. This gives the histograms in Figure 7.12.

Note ∆β = βNormal − βDense ring. In both the WCD and SSD the estimate of β
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using the regular station distribution is larger than when utilising dense rings, by

approximately 0.065. This supports the earlier hypothesis made when observing

the larger than expected number of showers being cut based on their value of β.

The difference in β indicates the functional form being used is probably not correct.

If it were, then no matter the distribution of stations, the value of β, on average,

shouldn’t change.

To see whether this difference in fitted β could feasibly give the bias we see in Fig-

ure 7.10, Tables 7.4 and 7.5 below show the change in estimated Xmax when changing

initial values of β by the mean of the histograms in Figure 7.12, for different zenith

angles. These calculations were done using the dense ring calibration Equations 7.5

and 7.6. For example, for a starting (dense ring) value of β=-1.665, the difference

between the corresponding value of Xmax and the Xmax estimated using a β value of

-1.6 was found.

Starting β 0° 15° 30° 45°
-1.665 -6 -7 -10 -18
-1.865 -9 -9 -13 -24
-2.065 -12 -13 -18 -33
-2.265 -20 -22 -30 -55
-2.465 -63 -69 -92 -171

Table 7.4: A table showing the change in Xmax (all values in g cm−2) when increas-
ing β by 0.065 for different starting values of β and zenith angles. These results are
for the WCD calibration curve.

Starting β 0° 15° 30° 45°
-1.565 -5 -6 -7 -13
-1.815 -7 -7 -10 -16
-2.065 -10 -11 -14 -22
-2.315 -19 -20 -24 -33
-2.565 -66 -65 -62 -60

Table 7.5: The same as Table 7.4 but for the SSD

The values in the tables are all negative, which agrees with the systematic change

in underestimating Xmax . It isn’t immediately clear though whether the values

calculated match the expected bias, as this would depend on the relationship between

the dense ring and regular distributions of fitted β. However the larger spread in

the SSD ∆β histogram and lower β values overall may explain the difference in the

magnitude of the bias between the WCD and SSD seen in Figure 7.10. In the hope

of fixing the bias in ∆Xmax , we decided to attempt a new calibration which utilised

a more realistic radial distribution of stations.
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Figure 7.13: An example of an ensemble LDF, made with stations from 12 in-
stances of the same shower. Signals are from the SSD.

7.4 Calibrating using ensemble LDFs

To properly check our hypothesis that the bias seen is due to the different radial

distribution of stations used in the dense ring calibration, we formed a new cali-

bration made with the same radial distribution of stations as would be found in a

regular shower. This was achieved by simulating the same shower to be incident on

the Auger array 12 times, with each instance having a different core location, and

then using any stations which triggered from any instance in one large LDF fit. For

example, if 5 stations triggered in each of the 12 instances, then the LDF would be

fit to 60 stations, each at different radii and with different signals. Such LDFs will

be referred to as “ensemble LDFs”. An example is shown in Figure 7.13. These

ensemble LDFs give a distribution of station core distances that is similar to that in

a real event (but with a higher station multiplicity). The large number of stations

allows for an accurate and precise measure of β.

The same parameterisation steps performed in Section 7.2 were used to param-

eterise the parameters of the exponential fits (Equation 7.4) to the values of β

obtained from ensemble LDFs. Note that the same shower criteria listed in Table

7.1, excluding the Billoir criteria, were required for an ensemble LDF to be included

in the calibration (θ < 55°, 680 ≤Xmax /g cm−2 ≤ 880). Approximately 1500 proton

and 1700 iron ensemble LDFs were used in the calibration.
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Figure 7.14: Parameterisations of the parameters of the exponential fits to β versus
sin2 θ as a function of Xmax for the SSD. The values of β came from ensemble LDF
fits.

The parameterisation results for the SSD and WCD are given in Figures 7.14 and

7.15 respectively. Using the new calibration functions for our estimates of Xmax for

regular showers, we obtain the results in Figure 7.16. Initially, the cuts placed on the

allowed β values were the same as in the dense ring calibration. However these were

not strict enough to remove all of the unrealistic Xmax estimates e.g. >1800 g cm−2.

This, of course, is because the calibration had changed. To accommodate the change

in calibration and remove the majority of the bad estimates, the severity of the cuts

was increased, to β > −2.42 for the WCD and β > −2.55 for the SSD. This

corresponded to removing ∼25% of proton and ∼10% of iron showers for the WCD,

and ∼30% of proton and ∼15% of iron showers for the SSD. The showers removed

were predominantly those with large true Xmax values.

Focusing on the plots themselves, the bias is now much smaller for the SSD

and the WCD, with the mean of the overall histograms being around -1 g cm−2 for

both (taking the asymmetry-corrected results again). The asymmetry corrected

plots maintain their improved RMS and alignment of proton and iron histograms
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Figure 7.15: Parameterisations of the parameters of the exponential fits to β versus
sin2 θ as a function of Xmax for the WCD. The values of β came from ensemble LDF
fits.

over the uncorrected ones, as well as smaller tails. Overall, this is a significant

improvement and reinforces our point that the radial distribution of stations in the

LDF fit changes the values of β.

The obvious next step in this process would be to test the calibration on re-

constructed data from simulated events i.e. not using any Monte Carlo properties,

and subsequently real data. The asymmetry correction in this case would be more

difficult, due to not knowing the primary particle. One option may be to simply

take the average of the proton and iron correction, assuming a 50:50 mix. Here how-

ever we come to an issue with parameterising asymmetry in general. If we would

like to discern the primary particle based on asymmetry alone then the parame-

terisations must be done on different primaries and results compared. However if

we want to correct for asymmetry then the parameterisations must be done using

some mix of primaries. Tackling these issues is beyond the scope of this work, but

is certainly a potential for future studies. Another natural extension would be to
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Figure 7.16: Histograms of ∆Xmax =(reconstructed Xmax - true Xmax ) using the
ensemble LDF calibration for regular showers. The top row shows the results for the
WCD, with the Xmax estimates from the uncorrected LDF fits shown on the left and
the asymmetry corrected fits shown on the right. The bottom row is the same but
for the SSD. The black histograms are the sum of the red and blue histograms, given
by proton and iron events respectively. Statistics are shown for the black histogram.

perform the techniques demonstrated above for different energy bins and different

hadronic models.

7.5 Conclusions

In this chapter we have demonstrated a possible application of asymmetry, in this

case to the improvement of LDF fits with the goal of extracting mass composition

information. These fits were performed with LDFs which utilised only one slope

parameter. Specifically, we primarily utilised the modified NKG function with γ set

to 0, leaving β as the one fitted slope parameter. Initial results showed that fitting

to the whole Xmax distribution through an intermediate variable, DX, gave a bias

where the Xmax of proton showers would be underestimated and the Xmax of iron

showers overestimated. This was corrected by breaking down the zenith dependence
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of β into different Xmax bins and parameterising β directly with these variables.

Xmax was then able to be calculated based on a measurement of β and θ alone. This

method was shown to work well when making use of dense rings to measure the

LDF.

Checking the dense ring calibration on regular events showed a difference between

the fitted values of β when compared to dense rings and a subsequent bias in the

Xmax estimates. For normal showers, β was on average 0.065 units larger, with

the Xmax estimates of the WCD and SSD being underestimated by approximately

12 g cm−2 and 48 g cm−2 respectively. The magnitude of the bias did not change

significantly when correcting for asymmetry in the LDF fits, however the RMS

values of the distributions and the offset between the centres of the proton and

iron histograms were both reduced. This showed a definitive improvement for this

technique when correcting for asymmetry.

The calibration was then re-performed using the newly labelled “ensemble LDFs”.

These LDFs constituted a large number of stations from many instances of the same

shower, and importantly had the same radial distribution of stations as a regu-

lar event. Checking this new calibration removed the majority of the bias in the

∆Xmax plots. The asymmetry-corrected plots retained their improvements over the

uncorrected ones with this calibration. If these calibrations could be extended to

include additional realistic aspects and maintain an unbiased Xmax reconstruction

for both proton and iron primaries, then they may be sufficient for calculating the

mean Xmax as a function of energy. However the large RMS values in ∆Xmax , ap-

proximately 70 g cm−2 for the WCD and 95 g cm−2 for the SSD, even when using

Monte Carlo parameters, mean the calibrations are probably not appropriate for

studying the true Xmax RMS. This is clear when comparing these values to the reso-

lution obtained in other mass composition studies, such as 45 g cm−2 when utilising

the risetimes of signals in the WCDs [89], or around 20 g cm−2 at the same energy

as studied here when using hybrid data [25].

The natural next step is to perform this type of analysis on real events, with re-

constructed cores, zenith angles, energies etc. The calibrations performed here with

ensemble LDFs could certainly be used for such studies, at least as a first estimate.

However it will be a more challenging task and one where correcting for asymme-

try will be more difficult, due to not knowing the mass of the primary particle. If

asymmetry is to be corrected for, then a parameterisation of the asymmetry in real

data will be required.
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Chapter 8

Summary and outlook

This thesis has explored asymmetry in extensive air showers, a phenomenon where

detectors/regions of equal distance from the core of an inclined shower will have

different signals/particle densities depending on their azimuthal angle in the shower

plane, ζ. We have demonstrated that, at least in simulations, asymmetry has the

potential to be used in aiding the prediction of mass composition, whether this is

by using it directly or by correcting for it to improve the precision of other analyses.

In Chapter 4, the amplitude of the signal asymmetry in the water Cherenkov

and scintillator detectors of the Pierre Auger Observatory was parameterised in

simulations. It was found that the asymmetry differs in magnitude depending on

the detector type, primary, zenith angle, average signal at 1000 m in the shower

plane, and radius in the shower plane. The results of the parameterisations can be

found in Tables 4.3 - 4.6. The parameterisations showed the asymmetry in the SSD,

for both proton and iron primaries, to be larger than in the WCD. Another key

observation was that, for both the WCD and SSD, at r=1000 m, asymmetry was

seen to be primarily dependent on zenith angle, with changes in log(S(1000)) only

causing minor deviations in comparison. To see whether asymmetry could be used

for studying mass composition, the phase space in which the difference between

the proton and iron parameterisations at r=1000 m was a maximum was found.

The greatest difference was for the SSD at large zenith angles ≈ 55° and primary

energies around 2 × 1019 eV. The asymmetry amplitude, b, of proton/iron showers

in this phase space was calculated with the parameterisations to be 0.36 and 0.25

respectively.

This difference is certainly large enough to distinguish between simulated ensem-

bles of proton and iron showers in said phase space based on asymmetry alone. The

same however cannot necessarily be said for real data. Even if averages of showers

in bins of log(S(1000)) and θ were used to obtain decent precision in the mean value

of b, the challenge would be to interpret the result, given that the asymmetry in

real data has been shown by Luce [83] to be different to that of simulations, and in

reality the composition of UHECRs is likely some mix of light and heavy elements.

In order to use asymmetry directly for mass composition studies, it is recommended

that future work focus on understanding the differences between the asymmetry

measured in simulations and in real data.
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The causes of asymmetry in electromagnetic particle density were investigated

in Chapter 5. The goal was to understand how geometrical and attenuation effects

contributed to the overall asymmetry and whether differences in these contributions

could be exploited for mass composition studies. We found that, for showers with

a zenith angle of 38°, the electromagnetic attenuation of air shower particles is

a non-trivial component of asymmetry, and in the case of showers with shallow

Xmax values, it may be the dominant factor. This was shown by predicting the

asymmetry for a 38° shower based on density measurements at different vertical

atmospheric depths. Although no methods of determining mass composition were

discovered which directly utilised this result, performing the technique on a number

of proton and iron showers with varying Xmax values showed that proton showers of

the same Xmax as iron showers may have slightly higher asymmetry amplitudes. This

could point to a future method utilising asymmetry measurements from the SSD

(which, due to its shape and equal response to electromagnetic/muonic particles,

gives a signal closer to representing a density than the WCD) and FD to constrain

the mass composition of an ensemble of showers. Obviously many challenges would

have to be overcome to achieve this, such as addressing any discrepancies between

asymmetry in simulations and real data, as well as determining whether the same

effect is observed in the asymmetry of SSD signals. Extending the analysis to address

this second concern whilst also investigating different zenith angles and utilising a

greater number of simulated showers is recommended for future work.

The other techniques presented in Chapter 5 which attempted to separate ge-

ometrical and attenuation based asymmetry effects were unsuccessful, in so far as

neither a qualitative or quantitative measure for how each factor contributes to

asymmetry was assigned. This is because, if the results were to be taken as valid, it

would imply geometrical asymmetry effects actually cause there to be larger particle

densities downstream, which contradicts our fundamental understanding of how ge-

ometry contributes to asymmetry. We believe the main assumptions made in both

methods, that electromagnetic particles can be traced back along their momentum

vector to some intersection point (i.e. ignoring scattering), and that the possible

production of new particles can be ignored, are likely the cause of failure.

To check our understanding of the causes of asymmetry, a simple case was studied

in Chapter 6 - the asymmetry in muon particle density. This was achieved by using

individual CORSIKA simulations to extract the information required to build a

model of muon production and propagation. Specifically, the production profile of

muons as a function of height along the shower axis and the distributions of opening

angles and production energies for each bin of height was obtained from CORSIKA.

These were then used to simulate the production of muons, their propagation to

ground and their potential decay in flight. Results showed our full Monte Carlo

model, which included both attenuation and geometrical effects, overestimated the

true asymmetry given by CORSIKA. However the difference was small enough that

we believe it can be attributed to the assumptions made in the model, namely that

muons are produced on the shower axis and travel in straight lines. When the
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decay section of the simulation was not included in our Monte Carlo, removing any

attenuation-based asymmetry effects, it was found that the geometrical component

of asymmetry in muon particle density is by far the dominant factor, contributing

anywhere from 3 to 10 times more to the overall asymmetry than attenuation for

showers with θ > 30°. The difference in contribution may be even larger at zenith

angles approaching 60°, though at these angles contributions from the effects which

were not accounted for, such as off axis production and scattering, likely play a bigger

role in forming the final asymmetry. Thus, we believe a more robust muon model,

such as that in [86], should be used to properly analyse the different contributions

at these large zenith angles.

Finally, by applying the asymmetry parameterisations in Chapter 4 to correct

the station signals used in LDF fits (again in simulations), the technique of re-

constructing Xmax from LDF slope parameters was shown to improve. The initial

correlation found between DX and a single LDF slope parameter, either for the orig-

inal NKG function or the modified NKG function, was found to introduce a mass

dependent bias when reconstructing Xmax . This bias was removed by parameteris-

ing the modified NKG slope parameter β, fitted to the average signal obtained from

dense rings, in bins of θ and Xmax . Note that β was fitted with the second slope

parameter of the modified NKG function, γ, fixed to zero. However, when checking

the dense ring calibration on regular events, the reconstructed Xmax values were, on

average smaller than the true Xmax values. This was due to the radial distribution

of tanks in a real event being different to that when using dense rings. To fix this

issue, “ensemble LDFs” were constructed and used to calibrate the relationship be-

tween β, θ and Xmax . These ensemble LDFs were LDFs containing a large number

of stations coming from multiple simulations of the same shower incident on the

Auger array with different core locations. Using the new calibration to reconstruct

the Xmax values of the same set of regular events, which had an initial proton/iron

mix of ∼50:50, the majority of the bias in the combined ∆Xmax distributions was

corrected. Also, the asymmetry-corrected LDF fits were shown to give better re-

constructed Xmax values, with the RMS values of the combined ∆Xmax histograms

reducing from 90 and 110 g cm−2 to 70 and 95 g cm−2 for the WCD and SSD re-

spectively. The bias was also slightly improved, from -1 g cm−2 for the WCD and

-6 g cm−2 for the SSD to 1 g cm−2 for both.

Despite containing unrealistic elements, namely the inclusion of Monte Carlo

parameters and the use of a simulation based asymmetry-correction, the success

of both this method and that of Luce [82] demonstrates that asymmetry can be

used to improve different analyses, in this case for the purpose of determining mass

composition. Assuming a parameterisation of asymmetry in real data can be found,

then performing this type of analysis on real events with reconstructed parameters

could allow for the mean Xmax as a function of energy to be estimated. Future work

should investigate whether alterations to the parameterisation could improve the

resolution in reconstructed Xmax and how introducing reality affects the results.
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Appendix A

Residual/WCD asymmetry

parameterisation plots from

Chapter 4

Figures A.1 and A.2 show the residual distributions for the fits to the proton

SSD/WCD asymmetry data from Chapter 4 respectively. Figures A.3 and A.4

are the same but for iron. In these figures, labels containing log(S1000/MIP) for the

SSD and log(S1000/VEM) for the WCD have been replaced by simply log(S) for

readability. Finally, Figures A.5 and A.6 show the asymmetry parameterisations for

proton and iron showers detected by the WCD. Recall that polynomial functions of

the form a+ bx+ cx2 have been fit, where the polynomial degree is chosen based on

the shape of the data.
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Figure A.1: Residuals for the fits to the asymmetry data from proton showers
measured by the SSD.
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Figure A.2: Residuals for the fits to the asymmetry data from proton showers
measured by the WCD.
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Figure A.3: Residuals for the fits to the asymmetry data from iron showers mea-
sured by the SSD.
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Figure A.4: Residuals for the fits to the asymmetry data from iron showers mea-
sured by the WCD.
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Figure A.5: Parameterisations of the parameters of the function b(r, θ, log(S1000))
for proton showers as measured by the WCD.
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Figure A.6: Parameterisations of the parameters of the function b(r, θ, log(S1000))
for iron showers as measured by the WCD.
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Appendix B

Inclined atmospheres

When using CORSIKA to simulate an air shower the user must decide whether to

use one of the many predefined atmospheres or define their own. Each predefined

atmosphere typically corresponds to a different geographical location, with that

location possibly having a number of different predefined atmospheres depending on

the time of year, as is the case for Malargüe. Typically, each atmosphere contains

five layers of varying height ranges. The first four layers are defined by the functional

form

Ti(h) = ai + bie
−h/ci , (B.1)

where h is the vertical height above sea level, T (h) is the number of g cm−2 above h,

and ai, bi and ci (for i = 1 . . . 4) are fitted parameters . The fifth layer is described

by a linear function

T5(h) = a5 − b5 ×
h

c5
(B.2)

where b5 is set to 1. Thus the parameters ai, bi and ci define the layers of every

atmosphere. Note also that the functions Ti(h) are such that their piece-wise union,

T (h), which defines the entire atmosphere, is continuous and smooth. An example

parameter table for the atmosphere at Malargüe in April is shown in Table B.1.

Throughout this thesis M(h) represents the piece-wise function which combines the

parameters in Table B.1.

The ability to define one’s own atmosphere is particularly useful. Chapter 5 for

example contains multiple instances where the atmospheric profile of an inclined

Layer i Altitude h (km) ai (g cm−2) bi (g cm−2) ci (g cm−2)

1 0. . . 10.0 -129.9930412 1172.3291878 962396:5521
2 10.0. . . 14.9 -21.847248438 1250.2922774 711452.06673
3 14.9. . . 32.6 1.5211136484 1542.6248413 603480.61835
4 32.6. . . 100.0 3:9559055121×10−4 713.1008285 735460.83741
5 > 100.0 0.01128292 1. 109

Table B.1: Parameters describing the atmospheric column density profile in
Malargüe in April from GDAS [79].
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Figure B.1: Schematic showing how the layers for the inclined atmosphere are
defined. Also shown is an example sample point at height h above sea level. The
value of M(h)/ cos θ gives the slant depth above the red point along the shower axis.

shower is desired. In creating an inclined atmosphere, we are essentially trying to

answer the following question,

“If we begin at the shower core and move up along the shower axis of an inclined

shower, what are the parameters ai, bi and ci that define the atmosphere we see (as

we move up the axis)?”

To solve this problem we break the process down into two steps:

• Find the ranges along the shower axis corresponding to each layer in the ver-

tical profile of some predefined atmosphere. These ranges will form the layers

of the inclined atmosphere.

• For each inclined layer, find the parameters ai, bi and ci.

To find the layer altitudes for the inclined atmosphere consider Figure B.1. The

distance along the shower axis corresponding to the beginning height of each layer in

the vertical profile will be the height of the vertical layer multiplied by sec θ. From

the diagram,

li = hi × sec θ (B.3)
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Figure B.2: The function T (h) for the Malargue standard atmosphere (bottom
curve) and the atmospheric profile which would be seen by a shower inclined by
30° (top curve). “Axis” here refers to either the vertical axis (for the Malargüe
atmosphere) or the axis inclined by 30°. The different colours denote the separate
layers. The black points are fit to to generate the atmospheric parameters ai, bi and
ci for each inclined layer.

For a 30° shower, using the Malargüe standard atmosphere in April, the layer

heights for the inclined atmospheric profile are 0, 11.55, 17.21, 37.64 and 115.47 km.

To find the parameters ai, bi and ci which will define the atmosphere in each of

our inclined layers, each layer is split into 20 equally sized intervals. The vertical

height above ground of the endpoints of each interval is then calculated. This is

done by taking the distance along the shower axis to the endpoint and multiplying

by cos θ. Evaluating the Malargüe standard atmospheric profile at each of these

heights then gives the vertical atmospheric depth above that point. These values

can then be converted to slant depths along the shower axis by multiplying by sec θ.

Finally, for each layers set of 20 points, the functional forms in Equation B.1 (for the

first 4 layers) and B.2 (for the 5th layer) are fit, giving the ai, bi and ci parameters

for each layer of the inclined atmosphere.

An example of this process is shown in Figure B.2. The corresponding parameter

table is shown in Table B.2. The different coloured segments represent the different
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Layer i Altitude h (km) ai (g cm−2) bi (g cm−2) ci (g cm−2)

1 0. . . 11.547 -150.103 1353.69 1111280
2 11.547. . . 17.205 -25.2298 1443.7 821523
3 17.205. . . 37.6432 1.75642 1781.27 696839
4 37.6432. . . 115.47 3.89821×10−4 823.352 849245
5 >115.47 0.0130176 1. 100.076

Table B.2: The ai, bi and ci parameters which define the atmosphere a 30° shower
would see when incident on the Malargüe standard atmosphere in April. Values
are from the fits performed on the five different groups of black points (denoted by
different line colours for the fits) in Figure B.2.

layers. The bottom curve shows the standard Malargüe atmosphere in April, whilst

the top curve corresponds to the atmospheric profile as seen by a shower inclined

by 30° (incident on the same Malargüe atmosphere).

With this method, inclined atmospheres can be easily generated, with the only

input needed being a zenith angle θ. The parameters of each layer can then be

used to define a new atmosphere in CORSIKA by setting the ATMOS option in the

CORSIKA input file to a value of 10. This allows the user to provide CORSIKA

a list of beginning layer heights (excluding 0 km) and lists of the parameters ai, bi
and ci to generate a new atmosphere. An example of a CORSIKA input file with

this option utilised, using the parameters for a 30° inclined atmosphere, is shown in

Figure B.3.

B.1 Using an inclined atmosphere to calculate

slant depths

If one assumes that particles travel parallel to the shower axis, then an inclined

atmosphere can be used to estimate the atmospheric slant depth travelled through

by particles which land either side of the shower core in an inclined shower. Let G(h)

represent the function describing the atmosphere of an inclined shower, approaching

from the positive x direction, with zenith angle θ. If, for example, a particle lands

on the ground with x coordinate 1000 m, then compared to particles travelling along

the shower axis it will have travelled 1000 sin θm less. If hg is the height above sea

level, as measured along the shower axis, of the observation level then this particle

will have travelled through G(hg + 1000 sin θ) g cm−2. Similarly, for particles on the

downstream side at 1000 m they will travel through G(hg−1000 sin θ) g cm−2. Thus,

more generally, the difference in atmospheric slant depth travelled by two particles

landing upstream (0°) and downstream (180°) at the same distance r (measured on

the ground) from the shower core will be

G(hg − r sin θ)−G(hg + r sin θ) g cm−2 (B.4)
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These types of calculations are used in this thesis to estimate slant depths which

can be used when considering attenuation-based asymmetry effects.
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RUNNR 200000
NSHOW 1
PRMPAR 14
ESLOPE -1.0
ERANGE 1.00e+10 1.00e+10
SEED 200000 0 0
SEED 400000 0 0
SEED 600000 0 0
DIRECT /LocalHome/auger/corsika/100397/
THIN 1.000000E-06 10365 10000
THINH 1.000E+00 1.000E+02
THETAP 0. 180.
PHIP -180. 180.
ATMOD 10
ATMA -150.103 -25.2298 1.75642 0.000393821 0.0130284
ATMB 1353.69 1443.7 1781.27 823.352
ATMC 1111280. 821523. 696839. 849245. 1.00E+9
ATMLAY 1154700. 1720500. 3764320. 11547000.
OBSLEV 1.6766E+05
MAGNET 2.010E+01 -1.420E+01
ECUTS 1.000E-01 1.000E-01 2.500E-04 2.500E-04
MUADDI T
MUMULT T
ELMFLG F T
STEPFC 1.0
RADNKG 5.0E+05
LONGI T 5. T T
ECTMAP 2.5E+5
MAXPRT 1
DATBAS T
USER durso
PAROUT T T
EXIT

Figure B.3: Example of a CORSIKA input file with the ATMOD option set to
10 (user defined atmosphere). The commands ATMA, ATMB and ATMC are used
to define the parameters ai, bi and ci respectively, with the order of the values
corresponding to the layer number. The layer heights (excluding zero) are defined
by the ATMLAY command. Note the change to the regular observation level to
ensure the ground is located at the usual Auger height above sea level, 1.452 km.
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Acronyms

AGASA Akeno Giant Air Shower Array.

AGN Active Galactic Nuclei.

AMIGA Auger Muon and Infilled Ground Array.

CDAS Central Data Acquisition System.

CMB cosmic microwave background.

CORSIKA COsmic Ray SImulations for KAscade.

DSA diffusive shock acceleration.

EAS extensive air shower.

EM electromagnetic.

FADC flash analog to digital converter.

FAST Fluorescence detector Array of Single-pixel Telescopes.

FD fluorescence detector.

GDAS Global Data Assimilation System.

GZK Greisen–Zatsepin–Kuz’min.

HEAT High Elevation Auger Telescopes.

ISM interstellar medium.

LDF lateral distribution function.

MC Monte Carlo.

MIP minimum ionising particle.

NKG Nishimura-Kamata-Greisen.

PMT photomultiplier tube.
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SD surface detector.

SNR supernova remnant.

SSD scintillator surface detector.

SUGAR Sydney University Giant Air-shower Recorder.

TA Telescope Array.

ToT time over threshold.

UHECRs Ultra High Energy Cosmic Rays.

UUB upgraded unified board.

UV ultraviolet.

VEM vertical equivalent muon.

WCD water Cherenkov detector.

WLS wavelength-shifting.
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