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these methods to result in a further improvement. . . . . . . . . . . 129

https://github.com/airsplay/R2R-EnvDrop


xviii

5.3 Evaluation metrics for EQA navigation. . . . . . . . . . . . . . . . 131



xix

Abstract
Effective and efficient interactions with humans in real environments is an appealing

though challenging task for an artificial agent. Despite recent advances in deep

learning, especially in the branch of vision and language learning, there are still

unsolved issues in the way of reaching such an ambitious agent. Three critical

aspects of the interactions between human and machine via natural language (e.g.

to create intelligent assistants) are: (1) for the model to understand and anticipate

human intents to consistently participate in conversations, (2) to learn from a small

set of instances and seek information the model needs to accurately achieve its goals

and (3) to generalise with those small number of observations obtained under the

supervision of humans so that the agent can be practically used. As for human intent

perception, we propose an inclusive model for the visual negotiation task, where the

intelligent agent needs to anticipate human intent while communicating via natural

language. Our model exploits online resources in search of similar items for the

estimation of a fair agreement price humans might set as their goals. Considering

the estimated agreement price of the advertised item as well as its visual and textual

features (i.e. images and textual descriptions), we build competitive and consistent

language and price generation policies that negotiate significantly better than other

baselines. For the information-seeking aspect, we propose an effective active learning

(AL) method that facilitates learning with less labelled data by seeking a small subset

of unlabelled instances that, when labelled and used for the model training, the highest

test accuracy can be achieved. We propose efficient interpolations in the feature space

between unlabelled and labelled samples to identify unlabelled instances that have

inconsistent class predictions in their neighbourhood. After requesting labels of the

selected subset from the human expert, we achieve the highest performance boost

in the retrained model in comparison to other AL methods. More specifically, our

method achieves remarkable results in the low-data regimes on high-dimensional data,

where the performances of other AL methods are unsatisfactory. Finally, regarding
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the generalisation, we equipped the agent with the capability of reasoning about

counterfactual scenarios, which discourages the model’s propensity for focusing on

spurious features or memorising seen environments. For that, we let the model to

intervene in the visual and textual features of the input in a causal model and create

counterfactual samples that together with the real observations are used for the training

of the model. Hence, the trained model is more resilient to the effect of spurious

features and biases in the data and better generalises to unseen situations. Additionally,

to increase the generalisation to unseen environments in more interactive applications,

we propose a novel approach to generate counterfactual environments and enforce

the agent to learn from both the observations and actions in those counterfactual

environments. After formalising the supervised and reinforcement learning objectives

to include both real and counterfactual environments, our trained agent generalises

significantly better than other baselines to unseen environments in two challenging

vision-and-language navigation tasks.
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Chapter 1

Introduction

1.1 Motivations

The emergence of Deep Learning has embarked the resurgence of hope for having

an artificial agent able to communicate effectively and efficiently with humans in

interactive environments. Since an agent needs the visual and linguistic capabilities to

interact with humans in the real world, the study of interactive artificial intelligence

lies in the intersection of computer vision, natural language processing (NLP) and

interactive learning. Recent advances in deep neural networks have enabled a machine

to see the visual inputs in the form of images (Zhao et al. 2019; Minaee et al. 2021),

videos (Yao et al. 2020) and point clouds (Guo et al. 2021); understand and generate

natural language (Devlin et al. 2018; Radford et al. 2019); and interact with either

environments or humans (Andrychowicz et al. 2017; Fang et al. 2019; Kiran et

al. 2021; Arora and Doshi 2021). Figure 1.1 demonstrates some of the prominent

applications introduced in each of the aforementioned areas and provides examples of

tasks defined in their intersections.

Combining vision and language in a single but complex task, researchers have

taken initial steps towards building an agent capable of interacting with humans via

natural language while utilising visual inputs. With the help of advanced attention

mechanisms (Chaudhari et al. 2021), language grounding approaches (Anderson et al.

2018b; Huang et al. 2019), and transformer-based joint pre-training of vision and

language models (Lu et al. 2019), magnificent improvements have been achieved
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Visual Understanding

• Image Classification

• Video Classification

• Object Detection

• Object Segmentation

NLP

• Text Classification

• Question Answering

• Text Summarisation

• Machine Translation

Interactive Learning

• Active Learning

• Reinforcement Learning

• Alpha-Go

• Chess

• Atari

Vision and Language
• Image Captioning

• Visual Question Answering

• Caption-Based Image Retrieval

• Referring Expression

Interactive NLP
• Open-Domain Dialogue

• Goal-Oriented Dialogue

Interactive Vision
• Autonomous Driving

• Map Reconstruction

• Atari

Interactive Vision and Language
• Visual Dialogue

• Vision and Language Navigation

• Vision and Dialogue Navigation

FIGURE 1.1: Interactive agents and the corresponding research areas and applications. The
main focus of this thesis is interactive vision and language learning which lies in the intersec-

tion of all the three areas.

in some of the critical vision and language learning problems like image caption-

ing (You et al. 2016), visual question answering (VQA) (Wu et al. 2017a), referring

expressions (Kazemzadeh et al. 2014), and caption-based image retrieval (Hu et al.

2016). However, most of these advancements have been occurred in static environ-

ments or during single-round interactions between humans and machines. Promising

progresses in learning a policy that enables an agent to perform in an interactive

environment Kiran et al. 2021, especially in deep reinforcement learning (RL) Mnih

et al. 2015; Kiran et al. 2021, have given the hope that the combination of vision and

language approaches with the interactive learning methods can lead to agents that

communicate with humans in interactive environments.

Inspired by animal behaviours (Thorndike and Bruce 2017), RL is a learning

methodology (different from supervised and unsupervised learning) that finds an

optimised control policy for mapping various situations in an environment to actions

in a way that a reward signal is maximised (Sutton and Barto 2018). The introduction
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of deep neural networks to RL has facilitated the learning of policies for making

sequential decisions in environments with high-dimensional input signals (e.g. Atari)

at performance levels close to human ones (Mnih et al. 2015; Kiran et al. 2021). More

specifically, deep learning has eased the optimisation of complex action-value func-

tions, policy functions, value functions and world models based on high-dimensional

inputs in various model-based RL approaches (Ha and Schmidhuber 2018; Kaiser

et al. 2020) and model-free ones (Mnih et al. 2015; Andrychowicz et al. 2017; Mnih

et al. 2016a; Schulman et al. 2017).

Despite endeavours towards developing interactive vision and language models

using RL in new tasks such as visual dialogue systems (Vries et al. 2017; Das et al.

2017a; Kottur et al. 2019), vision-and-language navigation (Anderson et al. 2018c;

Savva, Manolis et al. 2019; Hong et al. 2021), and vision-and-dialogue-navigation

(Thomason et al. 2020; Nguyen and Daumé III 2019), there are still some critical

challenges that have not been addressed well in the literature. Specifically, current

methods suffer from inconsistencies in their predicted actions during a conversation

with humans due to the misunderstanding of human intents, lack of efficient algo-

rithms for extracting useful information from the human counterpart, and considerable

drop in their performance when confronting unseen situations or performing in new

environments. Figure. 1.2 demonstrates these challenges in an example where a

conversational navigation agent has to perceive human behaviours and in some cases

predict their underlying intentions to execute their commands consistently in an in-

house environment. Additionally, the agent can efficiently ask its human partner for

feedback and more information for the sake of better future performance (e.g. request-

ing desired labels for a small informative subset of collected samples). Moreover,

not only should this agent be robust to the visual changes in the given house (e.g.

the colour of the refrigerator or the decoration of the living room), but it also should

perform well in unseen houses. In this thesis, by focusing on the aforementioned

challenges we take some steps towards training ideal interactive agents that:
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Unlabeled Set

Labelled set

Training the model

Selecting the most 

informative samples

- Hello!

- I need a drink.

- No, it’s been really hot today!

Requesting the labels of the selected samples

Providing the labels

- Hi. What can I do for you?

- Would you like a cup of coffee?

- Then, I’ll bring you a cold beverage.

•What is the intention of the human counterpart?

•How to perform the new commands well?

•How to perform well in unseen environments?

•How to efficiently get help from human experts?

FIGURE 1.2: An example of an interactive vision and language learning problem and the
corresponding challenges that the agent faces.

1. Comprehend and anticipate human intents and perform consistently during a

multi-round conversation.

2. Encourage learning with fewer examples by efficiently seeking information that

contributes to the agent’s performance improvement.

3. Generalise well to unseen visuals and new environments given a limited set of

observations.

The rest of this section, describes the mentioned challenges and our proposed solutions

to tackle each one.

1.1.1 Human Intent Understanding

To interact reasonably and consistently with humans, an artificial agent not only must

understand human commands as well as the context of multi-round conversations, but

it also should infer humans’ underlying goals. Comprehending contextual information

from various visual and textual sources as well as the history of the dialogue is an

essential, though challenging skill that an artificial agent must possess to respond

effectively in a conversation with human. While various modular and end-to-end
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learning frameworks have been suggested for dialogue understanding in the litera-

ture (Lewis et al. 2017; He et al. 2018; Xing et al. 2018), most of these approaches

focus on textual resources and neglect the importance of visual inputs.

Another controversial aspect of human-machine interactions through the natural

language is the apprehension of humans’ underlying intents. This is a crucial and

challenging task, especially in conversations to achieve a goal, where human intentions

could be conveyed ambiguously or, in some cases, kept as secrets. Neglecting or

misunderstanding the human intent during a conversation towards a goal leads to

inconsistent actions, which is not desirable in practice.

To highlight this aspect of interactive vision and language learning, we focus on

visual negotiation, one of the most challenging goal-oriented dialogue systems, where

the anticipation of underlying intents of sellers and buyers is challenging as they

attempt to conceal their budgets as well as their estimations about a fair agreement

price. Additionally, extracting various negotiation features from multiple resources

(images, texts, and numerals) is another challenging aspect of negotiations, which

its omission hinders the agent’s ability of consistent language generation and price

suggestion. Generally, to address the mentioned challenges, we propose an effective

way for multi-modal context understanding and human intent prediction, which leads

to a model able to consistently and effectively take part in negotiations for selling or

buying an advertised item. Specifically, we let the agent analyse online resources in

search of similar advertised items, which assists the agent to have a clear estimation

of the actual value of the item and the final goal of a human negotiator. Additionally,

using a hierarchical recurrent encoder, we enable the agent to consider all the visual

and textual information, prices, and the dialogue history for both language generation

and offer adjustment during the negotiation. Our final negotiation model, trained

in supervised and reinforcement learning settings, enjoys a competitive negotiation

policy with fluent language generation and consistent price suggestion skills and

surpasses all other baseline models in terms of various linguistic and pricing metrics.
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1.1.2 Information Seeking

While the prime purpose of an interactive agent is to provide reliable services, the

agent could also benefit from their interactions with humans by looking for useful

information that, with the supervision of the human counterpart, can improve the

agent’s performance in achieving their goals. Reinforcement learning tackles the

information–seeking aspect of interactive learning without any supervision from

humans by encouraging the agent to explore the environment while learning the policy,

which is known as the exploration–exploitation dilemma in the literature (Sutton and

Barto 2018; Kiran et al. 2021). While exploration strategies in RL, which are in the

form of adding noisy actions to the policy rollout during the training, are effective for

the generalisation of the model, they may not be applicable to human interactions as

asking random questions from humans is not desirable.

In two-way relationships between humans and machines, the agent can efficiently

seek information from its human counterpart either by asking about ambiguous and/or

controversial aspects of the task or by requesting feedback on good and bad decisions.

While the former concept helps the agent improve its performance level by asking

optimal questions (Misra et al. 2018), the latter one, which we cover in this thesis,

facilitates the efficient improvement of the model using a limited set of examples

labelled under the supervision of humans. One major issue regarding the latter concept

is that, provided with a large pool of samples gathered during interactions, an agent

cannot demand feedback for numerous instances due to the limited time and efforts

humans might be willing to spend. Therefore, constructing a strategy with which the

agent can select a small subset of informative and valuable samples from a large pool

of unknown instances is essential for efficiently benefiting from the limited number of

human guides.

Active Learning (AL) is a solution in which instead of passively spending the

limited labelling budget, the agent can actively select a small, informative subset

from a large pool of unlabelled ones and label them through a repetitive interaction
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with a human expert (i.e. oracle). Originally, deep AL has been proposed as an

interactive solution for the data exhaustiveness of the deep neural networks (Ren

et al. 2021). However, most AL strategies fail to perform well when applied to high-

dimensional data (e.g. image and video) in low-data regimes. In this thesis, we provide

a novel AL approach based on interventions in the latent representations of unlabelled

instances. We propose an efficient interpolation mechanism to mix features of an

unlabelled instance with general features of each class (extracted from the labelled set)

to discover inconsistencies in label predictions in the vicinity of the unlabelled sample.

We select a diverse set of unlabelled instances with observed inconsistencies during

the interpolation process. After labelling these selected instances by oracle and adding

them to the training set, the highest improvements in the test accuracy can be gained in

comparison to other AL approaches. We demonstrate the efficiency and effectiveness

of our approach in various AL settings, especially in low-data regimes, on a wide

range of classification tasks on high-dimensional image, video and non-visual data.

1.1.3 Generalisation

Generalisation to new situations using a limited set of observations, is an essential

though challenging aspect of interactive vision and language learning. Two critical

issues that impede the generalisation of these interactive agents to unseen situations

are (1) the model’s tendency towards extracting some biases or spurious features from

the small training set and (2) environmental shifts to which the model is not resilient.

Learning generalisable features from a small and sometimes biased training set is

one of the major challenges in the context of vision and language learning. In spite

of remarkable recent success in tasks involving data from multiple modalities (e.g.

visual question answering and image captioning), it has been shown that a part of this

success comes from the exploitation of biases and statistical regularities in the data

(Johnson et al. 2017; Ramakrishnan, Agrawal, and Lee 2018; Hudson and Manning

2019; Agrawal et al. 2018). Consequently, rather than learning the actual reasoning
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required for the fulfilment of the task, the model relies on some spurious features or

biases in the data that may not generalise well beyond the provided dataset.

In this thesis, by considering the basic causal model of the training data, we pro-

pose the usage of counterfactuals as a solution for the raised issue. More specifically,

we empower the model to find the minimum alteration (i.e. intervention) to the inputs

from different modalities that could change the outcome. By defining an additional

loss for the intervened instances, we enforce the model to perform well on both factual

and counterfactual cases. We demonstrate the effectiveness of our simple approach on

a wide range of uni-modal and multi-modal vision and language tasks.

Additionally, complying with the variability of the visual signals from the surround-

ing environment is another challenging requirement that an agent able to interact with

humans in the real world should meet. While domain adaptation approaches (Wang

and Deng 2018) ease the adaptation of the model to distribution and domain shifts

(e.g. expecting a model that has been trained with samples in the day to perform well

at night or to generalise well to an unseen set of classes), they may not be directly

applicable to a practical interactive agent. An ideal interactive agent requires to

perform well in new environments without any requirement for further training and

tuning. For instance, a domestic agent trained to take the in-house commands from

humans not only should be robust to the changes in the furniture arrangements and

wall textures in those seen houses, but they also should perform well when they are

taken to an unseen house (Figure 1.2). Despite some interesting approaches proposed

for the improvement of the robustness to environmental changes in interactive vision

and language tasks (Fried et al. 2018; Tan, Yu, and Bansal 2019; Savva, Manolis

et al. 2019), there is still a big gap between the model’s performance in seen and

unseen environments. The complexity and biases in the multi-modal input data and

the intricacy of the proposed neural networks increases the model’s propensity to

either memorise the training samples instead of reasoning about them or focus on

some spurious characteristics in the environment instead of generalisable features.
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To address the environment generalisation aspect of interactive vision and lan-

guage learning, we show that enforcing the agent to reason about counterfactual

scenarios in interactive environments can play an influential role in learning more

generalisable features. Having that, the model’s susceptibility to over-fitting to the

seen environments or focusing on spurious features decreases significantly. In our

approach, in the context of vision-and-language navigation (VLN), we propose an

effective method to build counterfactual environments on the fly in a simple mixing

process of two training environments. Additionally, we formalise the training objec-

tives (i.e. both imitation learning and reinforcement learning) to consider the agent’s

performance in both real environments and counterfactual ones. We demonstrate the

significant improvements gained from our approach on two challenging VLN tasks.

1.2 Main Contributions

The main contributions of this thesis are:

• With regard to the human intent prediction, in a competitive negotiation setting,

we introduce an effective visual negotiator that by solving various content un-

derstanding, human behaviour understanding, and intent anticipation challenges,

interactively negotiates for selling or buying an advertised item. For that, firstly,

the agent searches through the online shopping resources and finds similar items

to be used as a reference for reasoning a fair agreement price. The predicted

price resembles the final goal the human counterpart would have in mind and

helps the agent to better understand the behaviour of the opponent during the

upcoming challenge. Additionally, our method creates a comprehensive repre-

sentation of the dialogue state that helps the agent to understand the intentions of

the opponent during the dialogue and then act reasonably and consistently based

on that. In general, not only our approach follows a consistent and competitive

pricing strategy, but it also outperforms all the baselines in terms of language

quality and agreement price.



10 Chapter 1. Introduction

• Concerning the information–seeking aspect of an interactive agent, we propose

an innovative active learning method based on mixing features of the known

and unknown instances to identify novel features in the unlabelled set of sam-

ples. We propose a closed-form solution to find optimum interventions in the

latent space to efficiently find unlabelled samples with inconsistent predicted

labels in their neighbourhood. By employing our AL approach, the agent can

significantly reduce the labelling effort needed for the training in an interactive

connection with the human expert and increase the model’s performance using

fewer labelled instances.

• To improve the model’s generalisation, we introduce counterfactuals to tackle

two major issues in the interactive vision and language learning:

– To combat the model’s tendency to biases and spurious features in the

data, we suggest the usage of counterfactuals. For that, we formalise the

vision and language task in a causal model and propose a simple way for

the interventions in the input modalities. By encouraging the model to

reason about both observational and counterfactual instances, we improve

the generalisation of the model in a wide range of vision and language

applications.

– We propose an environment augmentation approach based on counter-

factual reasoning that helps the agent to generalise well to unseen en-

vironments. We enforce the agent to imagine itself in a counterfactual

environment, a mixture of two training environments, and learn from

the execution of the command in those environments. Our experiments

over two challenging vision-and-language navigation tasks reveals the

effectiveness of our approach in improving the model’s generalisation to

unseen environments significantly.
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1.3 Thesis Structure

Chapter. 2 focuses on the challenges of the human intent understanding in the

context of visual negotiation, one the most challenging tasks in the area of interactive

vision and language learning. Chapter. 3 presents our new active learning approach

that effectively and efficiently reduces the model’s demand for enormous labelled

data. In chapter. 4, we provide our novel approach, based on the employment of

counterfactuals, to improve the generalisation of vision and language models and

avoid the model’s reliance on spurious features. We extend the generalisation problem

to chapter. 5, where we demonstrate the significance of counterfactuals for the

resilience of interactive vision and language agents to the changes in the surrounding

environment. We provide a summary of the thesis in chapter. 6 and discusses some

of the future directions for having an interactive vision and language agent able to

efficiently and effectively communicating with humans in real environments.
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Chapter 2

Show, Price and Negotiate: A

Negotiator with Online Value

Look-Ahead

In this chapter, we focus on the human intent anticipation challenges of an interactive

vision-and-language agent. In the context of visual negotiation, we propose our

comprehensive model to handle some issues that have not been addressed well in

other baselines.

2.1 Overview
Negotiation, as an essential and complicated aspect of online shopping, is still chal-

lenging for an intelligent agent. To that end, we propose the Price Negotiator, a

modular deep neural network that addresses the unsolved problems in recent studies

by (1) considering images of the items as a crucial, though neglected, source of

information in a negotiation, (2) heuristically finding the most similar items from

an external online source to predict the potential value and an acceptable agreement

price, (3) predicting a general price-based “action" at each turn which is fed into the

language generator to output the supporting natural language, and (4) adjusting the

prices based on the predicted actions. Empirically, we show that our model, that is

trained in both supervised and reinforcement learning setting, significantly improves

negotiation on the CraigslistBargain dataset, in terms of the agreement price, price

consistency, and dialogue quality.
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 <accept> 
 

Here is one prime example of a clean 2004 Lexus RX 330. 

The car is never smoked in and no pets. As clean as they come for 

the year. 

Just serviced 20 miles ago, has brand-new tires on. Fresh battery 

and all fluids. 

Has all available options, including GPS navigation, backup 

camera, premium sound system.  HID headlights. Roof rails for 

your racks, sunroof/moonroof and, all operational. Power liftgate 

and all other power options obviously. 

Hi, I’m interested in the car you have for sale. 

I see you are asking $7,500 but I was hoping 

to get a little more than $5,700. 

  
I can do $6,600 if you deliver it. 
  

Hello. 

Great! It’s a great car. 
  

I am willing to negotiate but I can’t go that 

low. I can go down to $7,050. 

  

 <offer: $6,420> 

 

Title: 2004 Lexus RX 300 Listing Price: $7,500 

I can do $6,600 if you pick it up. 

  I can do $6,420. 

  

FIGURE 2.1: An example scenario of our Price Negotiator from supervised and RL training.
Two agents play the role of sellers and buyers in a visually-grounded bargaining game over an
item. The agents need to uncover the underlying value of the item and the attributes of their

counterpart (e.g. their assertiveness) to succeed.

2.2 Introduction

Negotiation is an integral part of human interactions. It is a complex task that

requires reasoning about the attitudes of the counterpart, mutual interests, and uttering

convincing arguments and potentially appealing to sympathy. The prevalence of

online shopping provides a test-bed for negotiation ability of artificial agents as

human’s advocate for the best deals. This artificial agent has to assess the photos of

the advertised item, understand the textual content, estimate its true value compared

to the others in the market, and conduct a dialogue with its counterpart to reach an

agreement.

Recently, Lewis et al. 2017 pioneered negotiation as a specific form of dialogue

systems in a DealOrNoDeal game where two artificial agents negotiate splitting of

three items. Subsequently, He et al. 2018 used real human dialogues on Craigslist

advertisements to learn a dialogue model of negotiations. In both cases, in par with



2.2. Introduction 15

other dialogue systems, various sequence-to-sequence (Seq-Seq) encoder-decoders are

utilised to model negotiations. Seq-Seq models or more complex alternatives (Devlin

et al. 2018; Luong, Pham, and Manning 2015) for that matter are effective tools for

learning the correlation between words (e.g. co-occurrences) and potentially the goal.

However, negotiation presents a unique set of challenges beyond word correlation

that distinguishes it to that of the conventional dialogue systems. Subsequently, these

methods struggle to attain some indispensable aspects of a negotiation including: (1)

extracting and utilising information from multiple sources (e.g. photos, texts, and

numerals), (2) predicting a suitable price for the products to reach the best possible

agreement, (3) expressing the intention conditioned on the price in natural language,

and (4) offering consistent prices.

In this chapter, we propose a price negotiator to address the aforementioned

problems. Our negotiator, inspired by the modular needs of a negotiating agent,

comprised of five main units particularly tailored for shopping: (1) online value

estimator (OVE), (2) hierarchical recurrent negotiation encoder (HRNE), (3) action

predictor controller, (4) price adjuster and (5) language decoder (see Figure 2.2 for

details). For OVE, motivated by human behaviour, before starting negotiation we find

similar items in online stores–simulating market evaluation. This is done by learning

an embedding for the textual (title and description) and visual content of the listings

and using a matching network to choose the most similar ones to the current item in

the negotiation. Hence, an estimate of how much the item valued is prognosticated

that allows the agent to uncover how demanding an item is and whether it’s worth the

listing price.

Subsequently, in HRNE the counterpart’s dialogue is encoded conditioned on the

content of the advertisement and the agent’s belief of its value. This is a significant

and distinguishing aspect of our approach since OVE and HRNE effectively disen-

tangle the value of an item from the language model. The output of this step is a

dialogue state representation (encoding a combination of dialogue history representa-

tion, last prices proposed by the agents, textual and visual inputs and the estimated
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value) from which action predictor decides on the next step for the negotiation. In

a nutshell, action predictor decides on continuing with the intention of convincing

the counterpart, conceding, offering a price, accepting their terms or quitting. If the

decision is to change the offer, then our price adjuster proposes a new price. From

the state representation and the predicted action, our language decoder generates

the appropriate language to convey the intentions of the agent. In any case, we use

copy mechanism (Luong et al. 2015) to combine the new offered price to that of the

appropriate negotiating words to utter.

We evaluate our proposed model on CraigslistBargain (He et al. 2018) which

provides human-generated negotiations in various scenarios using Craigslist adver-

tisements. Our experiments show that not only the language quality of the generated

utterances from our approach outperforms the baselines, the prices are consistent and

the agreed price is more similar to that of humans. Moreover, we show reinforce-

ment learning (Williams 1992)–that has become increasingly popular with dialogue

systems–also improves our model’s performance. We also run several human studies

to evaluate our negotiator.

In summary, our main contributions are as follows:

1. We propose a novel AI agent that performs negotiation for the best price for

either a seller or a buyer. It utilises both visual and textual content for decision

making, follows a consistent and human-like pricing strategy and, as our experi-

ments show, outperforms the baselines on both language quality and agreement

price.

2. Our negotiator, unlike its counterparts, is able to find the relevant online items

to accurately predict its potential agreement price. This enables scalable and

commercially viable applications and reduces human bias and inconsistency.
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2.3 Related Work

2.3.1 Goal-Oriented Dialogue

Goal-oriented dialogue systems have a long history in natural language processing

(NLP). Recently, researchers suggested to define a goal in open-domain dialogues to

improve the consistency and engagement of the agent (Tang et al. 2019). Additionally,

multi-modal dialogue systems have gained strong interests in speech recognition

(Potamianos et al. 2007) and computer vision communities (Liao et al. 2018; Saha,

Khapra, and Sankaranarayanan 2018). Specifically, visual goal-oriented dialogue

systems have got the popularity by introducing miscellaneous tasks including “Guess-

What?!”(Vries et al. 2017; Lee et al. 2019), “Image Guessing” (Das et al. 2017b),

“MNIST Counting Dialogue” (Lee, Heo, and Zhang 2018), “Visual Dialogue” (Das

et al. 2017a) and “CLEVR-Dialogue” (Kottur et al. 2019). However, since the ma-

chine can play just one role (either questioner or answerer) in most applications, they

are Visual Question Answering problems by nature rather than two-way, interactive

dialogue systems (Wu et al. 2017b; Das et al. 2017a; Kottur et al. 2019). In this

chapter, we focus on Visual Negotiation where the model is evaluated interactively in

negotiations either with humans or with another model.

Generally, dialogue systems can be categorised into collaborative and competitive

systems. In a collaborative dialogue environment, agents can help each other to reach

a common goal. Applications include trip and accommodation reservation (El Asri

et al. 2017; Wei et al. 2018), information seeking (Reddy, Chen, and Manning 2018;

Abbasnejad et al. 2019; Ammicht, Fosler-Lussier, and Potamianos 2007), mutual

friend searching (He et al. 2017), navigation (Dušek and Jurcicek 2016; Vries et al.

2018), fashion product recommendation (Liao et al. 2018), disease diagnosis (Xu

et al. 2019), addressee detection (Tsai, Stolcke, and Slaney 2015), emotion detection

(Majumder et al. 2018), and even donation persuasion (Wang et al. 2019b). In contrast,

in a competitive dialogue environment, agents must negotiate to achieve an agreement
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based on their individual goals. Their goals are often opposite to each other. “Settlers

of Catan” (Cuayáhuitl, Keizer, and Lemon 2015) and DealOrNoDeal (Lewis et al.

2017) are two frontier tasks defined as competitive dialogues. Very recently, a new

negotiation dataset is introduced by crawling tangible negotiation scenarios from the

Craigslist website and collecting seller-buyer dialogues for each scenario (He et al.

2018). Although our work is built on top of the same dataset, there are significant

differences: (1) we propose to use the photos of the item as an important source of

knowledge which was neglected in (He et al. 2018); (2) before the negotiation, we

prognosticate an ideal agreement price by analysing other similar items on online

stores; (3) we aim to estimate and refine the price in a consistent manner, and produce

human-like dialogues.

2.3.2 Dialogue Systems Design

Goal-oriented dialogue systems can be designed in a component-based fashion or

end-to-end. In a component-based fashion, it typically has three separate modules:

(1) natural language understanding (NLU) unit that maps an utterance into semantic

slots to be understood and processed by the machine, (2) dialogue manager (DM)

which selects the best action according to the output of NLU, and (3) natural language

generator (NLG) which produces a meaningful response based on the action chosen

by DM, either by looking at a set of possible responses for that action or by using a

statistical machine learning language model (Chen et al. 2017; Zue and Glass 2000).

To overcome the complexity and bypass the reliance on human-crafted information

retrieval rules in component-based approaches, end-to-end systems have been pro-

posed in recent years (Wen et al. 2017; Bordes, Boureau, and Weston 2017; Dhingra

et al. 2017; Li et al. 2017b; Li et al. 2017a; Sordoni et al. 2015; Xing et al. 2018;

Dušek and Jurcicek 2016). These systems often use an Seq-Seq architecture consisting

of an encoder which receives the previous utterance(s) and encode them into a latent

representation based on which the decoder can predict and generate the next utterance.

In the end-to-end model proposed by He et al. 2018 for the negotiation, prices are
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embedded similar to other words in the utterance. Since the range of the prices are

broad and there is not any pre-trained embedding for them, their embedding is learned

through the model training. In addition, the generated prices are inconsistent since

they were produced based on the correlation with other words rather than the true

underlying value of the item. Furthermore, this way of embedding the prices adds

more complexity to the model and leads to weaker language model. In this research,

we show that eliminating the prices from the dictionary of the model, can help the

language model to generate better dialogues. We propose an end-to-end modular

approach in which we predict the price and the supportive language separately from

different heads of the network.

2.4 Price Negotiator

2.4.1 Problem Definition

The problem we consider is that of having two agents, namely a seller and a buyer,

negotiating on the price of an item which is identified by an image, textual title and

description. The items are classified into various categories as is the common practice

in the online shopping websites. The seller advertises an item with a listing price

and most likely agrees to offers closest to this value. The buyer on the other hand

has a target price which is lower than the seller’s listing. While the buyers know the

listing price, their target price is not revealed to the seller. It should be noted that a

negotiation may end without an agreement.

Each negotiation scenario consists of an advertised item i by providing its context

information Ci = {vi, ki,xi, ci, p0,i}, where vi represents its visual cue/feature

(i.e. photo), ki is the category in which the item has been advertised, xi is the

title of the advertisement, ci is the description provided for the item, and p0,i is

the listing price suggested by the seller. Additionally, at each dialogue turn t, a

sequence of utterances in previous turns is available as the dialogue history zi,t =

{ui,0,ui,1, . . . ,ui,t−1}. It is noticeable that each utterance is a sequence of words
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See Figure 2.4 for more details about multi-modal embeddings Ψ0, . . . ,Ψ3.

(tokens) ui,t = {ωi,t,0,ωi,t,1, . . . ,ωi,t,L−1}, where L represents the maximum length

of each utterance, and each word is represented as a d-dimensional vector.

At t-th round of negotiation, the agent generates the j-th token conditioned on

the context information Ci, the dialogue history zi,t, and the previously generated

tokens {ωi,t,0,ωi,t,1, . . . ,ωi,t,j−1}. The objective is to as closely as possible mimic

the behaviour of a human in negotiation. Consequently, the prices agreed upon by an

agent has to be as similar as possible to that of the human using convincing arguments.

2.4.2 Online Value Estimator

One of the essential skills in negotiation is to have a good estimation of the real

value of the item. Humans usually search through different shopping websites to find

similar items and compare their attributes and listing prices with those of the given

item. Motivated by this, we designed the online value estimator (OVE), a deep neural

network that can make a precise value prediction (Figure 2.3).
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Given the context information Ci of the item i, the OVE component predicts a

scalar value for the agreement price. This estimation is based on both visual features

of the item, extracted from its photo vi; its textual features extracted from its category

ki, title xi and description ci; and its listing price p0,i. Generally, the OVE component

aims at minimising the difference between the predicted price p̄i and the ground-truth

real agreed price pi. The ground-truth real price is calculated as the average of all

agreed prices in human-human negotiations over the given item in the dataset. To

predict a price we learn a deep neural network Φ parameterised by α through the

minimisation of the following loss:

ℓove =
N∑
i=1

|Φ(vi, ki,xi, ci, p0,i;α)− pi|, (2.1)

where N represents the number of items in the training set.

The price is predicted in a three-stage process. First, the extracted features of

the items are used to find the K-similar items from an online source of advertised

items. The similarity between two items is defined as a combination of cosine

similarities between their visual and textual features and the normalised abstract

similarity between their listing prices.

Second, the matching network, a deep neural network with a structure akin to

memory networks (Sukhbaatar et al. 2015), takes these items and measures their

importance in valuing the item. It worth mentioning that in contrast to (Sukhbaatar

et al. 2015), where they only embed text inputs, we propose multimodal embedding

(Figure 2.4) that embeds the visual and textual features of the given item i into

a d-dimensional representation ei. Specifically, our proposed matching network

consists of 3 attention layers and 4 multimodal embeddings. At each layer l the

the correlation between the previous representation of the given item oi,l−1 and

multimodal embeddings of related K similar items mi,l = [ei,l,1, . . . , ei,l,K ], which



2.4. Price Negotiator 23

∑ 
  

 
Resnet-152 

Title: 2004 Lexus RX 300 
Description: Here is …  

 
MLP 

 

MLP Text Embedding 
Embedding (𝒆) 

FIGURE 2.4: Multimodal Embedding. The sum of embeddings of the textual resources
(title and description) is concatenated with the down-sized visual features obtained from a
pre-trained network (ResNet-152 (He et al. 2016)). The concatenated vector is passed through

a 2-layer MLP with ReLU activation to create the multimodal embedding.

are extracted from (l − 1)-th multimodal embedding Ψl−1, is calculated as follows:

wi,l = Softmax(o⊺
i,l−1mi,l). (2.2)

Afterwards, the output of the layer (the item representation oi,l), is calculated based

on the following equation:

oi,l = oi,l−1 +
K∑
k=1

(wi,l,kei,l,k). (2.3)

Please note that the initial item representation oi,0 also comes from the first multimodal

embedding.

Finally, the correlation weights from the last layer of the network are multiplied

by the listing prices of the corresponding similar items to achieve an estimated value

p̄i for the given item. It worth to mention that since this value is calculated from the

listing prices and the target is the agreement price, we pass the output through another

fully connected layer, which we name it discount net, to estimate the final value for

the item.

2.4.3 Hierarchical Recurrent Negotiation Encoder

One of the problems in conventional negotiation models is that they include price

values (real numbers) in the vocabulary and treat them like ordinary words in the

dialogue. This deters the intelligent agent from understanding the numerical meaning
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of the prices, and entangles the strategies for generating words and prices together.

As a result, the prices generated in the dialogue, especially at final offering turn, are

inconsistent in most cases.

In our price negotiator we devise a novel hierarchical recurrent encoder in which

the prices in the utterances are replaced with a fix token (<price>) to be later

replaced with the generated ones. In a hierarchical structure (Sordoni et al. 2015; Xing

et al. 2018; Dušek and Jurcicek 2016), our model encodes utterances in two levels: a

word-level encoder that is an RNN network (fwe : RL×d → Rd) mapping the word

embedding of t-th utterance (a sequence of maximum L words) into a d-dimensional

vector (hwe
i,t ) as the word-level representation of the utterance; and a dialogue history

encoder that is another RNN network (fhe : R(t−1)×d → Rd) which at each turn t

receives word-level representation of the previous utterances as the input and maps

them to a d-dimensional vector (hhe
i,t). Since this representation should be conditioned

on the value estimation resulted from OVE, we feed the output of the last layer of the

matching network into this RNN as the initial hidden state.

Apart from the dialogue history representation, the last prices suggested by the

agent pai,t−1 and the opponent poi,t−1 and the estimated price p̄i are embedded into a

vector which represents the dialogue state si,t (more details in section 2.5.2). This

vector will then be used by other components to decide about action and prices that

should be considered.

2.4.4 Action Predictor

The action predictor module is a multi-layer perceptron (MLP) that predicts the next

action ai,t should be taken by the agent according to the dialogue state si,t at round t

of the negotiation. In contrast to (He et al. 2018) who tried to predict coarse intents

based on intent encoding, we suggested to predict extremely simpler actions, which

are based on the price. Actions defined in our framework are:

• Negotiate tells the agent that it should continue the negotiation without changing

the price.
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• Concede determines that the agent should make a concession on its previously

proposed price. In other words, the buyer should increase its suggested price

and the seller needs to decrease its asking price when this action is predicted.

• Offer suggests that the agent should propose a final offer and wait for the

response from its counterpart.

• Accept means that the agent should accept the official offer suggested by the

opponent and terminate the negotiation successfully.

• Reject clarifies that the agent should reject the proposed offer.

• Quit means the agent should abandon the negotiation.

In the supervised training setting, this neural network learns parameters δ that

better imitate human-like actions by minimising this loss function:

ℓap =
N∑
i=1

Ti∑
t=1

− log p(ai,t|si,t; δ), (2.4)

where N and Ti represent the number of training dialogues and the number of agent’s

turns in each dialogue respectively.

2.4.5 Price Adjuster

Proposing a reasonable price at each stage of the dialogue is fundamental for a

negotiation agent. Our price adjuster module can make consistent price suggestions

that lead the agent to reach the best possible agreement. This module is invoked

only if the action predictor decides to concede or make an offer. In either case, the

price adjuster, an MLP with parameters ϕ, predicts the ratio ri,t from which the agent

should concede. This prediction is based on the current state of the dialogue si,t and

the action predicted by the action predictor āi,t. We discretise the price change ratio

into six categories (more details in section 2.5.4) and optimise the network using this
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loss function:

ℓpa =
N∑
i=1

Ti∑
t=1

− log p(ri,t|si,t, āi,t;ϕ), (2.5)

2.4.6 Language Decoder

Language decoder is an RNN that generates a sequence of words as the next utterance

based on current dialogue state si,t and the predicted action āi,t. To that end, we

initialise its hidden state with the last hidden state from the dialogue history encoder.

Additionally, we condition the starting token on the selected action, by defining

different tokens for different actions. We then train an agent able to play both seller

and buyer roles by defining different start tokens for the buyer and the seller.

In order to encourage the output to pay more attention to the most important parts

of various available information sources, a global attention mechanism (Luong, Pham,

and Manning 2015; Gu et al. 2016) is applied to the outputs of the language decoder.

This helps the system to ask or answer questions for different sources including the

title, description and the outputs of word-level encoder for previous utterance.

To map the outputs of the model to a probability vector of our vocabulary size,

a linear function (generative layer) and a LogSoftmax is applied to the output of the

model. With language decoder we find the parameters θ of the RNN to maximise the

likelihood of each word,

ℓld =
N∑
i=1

Ti∑
t=1

L∑
j=1

− log p(ωi,t,j|Ci, zt,ωi,t,0, . . . ,ωi,t,j−1;θ). (2.6)

2.4.7 Copy Mechanism

We disentangle prices from other words during the encoding and decoding by replacing

prices in utterances with a fix token (<price>). While we encode the current

proposed prices separately, the decoder only predicts the price location in the generated

utterance. Similar to copy mechanism utilised in machine translation and question
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answering (Luong et al. 2015; Gu et al. 2016), we replace the price point predicted by

the language decoder module with the value calculated by the price predictor module

to create the final output.

2.4.8 Overall Objective

The final objective function for the price negotiator model is to minimise the combi-

nation of losses introduced for each component.

ℓ = ℓove + ℓap + ℓpa + ℓld. (2.7)

2.4.9 Reinforcement Learning

We use reinforcement learning to encourage our Price Negotiator agent to improve by

employing self-play (i.e. two instances of our model play buyer and seller roles and

negotiate with each other). Specifically, once supervised training of the network is

done, the action predictor and the price adjuster are fine-tuned using REINFORCE

algorithm. We assign a role to an agent (say seller) and let it negotiate against another

(e.g. buyer) for a given scenario (i.e. image, title, description, listing price). At the end

of negotiation, we evaluate the performance by providing a reward signal. Our reward

signal measures how successful the agent was according to the distance between the

agreed price and the estimated price p̄i predicted by the OVE. The motivation for the

reward signal is to intrigue the agent to mimic human’s strategy and achieve the same

agreement price. Thus, the action predictor network is updated by back propagating

the following signal:

N∑
i=1

Ti∑
t=1

log p(āi,t|si,t; δ)Gi, (2.8)

where Gi represents the total reward for negotiation i. The same update is applied on

price adjuster component, which is eliminated for the brevity.
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2.5 Implementation Details

2.5.1 Dataset

All the experiments are performed on the CraigslistBargain dataset (He et al. 2018). It

contains 4,219 training dialogues, 471 evaluation dialogues and 500 test dialogues

which are created based on 891, 103, and 134 different items respectively.

To make the training process of OVE simple and fast, we simulated an online

external data source. To that end, we scraped 10, 586 items advertised on Craigslist

website and made a local source accessible by our online value estimator. It is

notable that we set the number of selected items from the online source k to 32 in all

experiments.

2.5.2 Embeddings

In all the experiments, we use 300-dimensional vectors as the embedding for each

word from pre-trained GloVe embedding (Pennington, Socher, and Manning 2014).

In order to extract the features from the images, we utilised Resnet-152 (He et al.

2016) pre-trained on ImageNet dataset, which has shown exceptional performance

in various object detection problems. We simply replaced its last fully-connected

layer with another one to produce a 300-dimensional vector representing the image

features.

The hierarchical recurrent negotiation encoder maps prices (either the agent price,

the opponent price, or OVE estimated price) into a 7-dimensional one-hot vector

which will be concatenated with the last hidden state of its dialogue history encoder

to represent the dialogue state. To that end, similar to (He et al. 2018), prices are first

normalised separately for each agent so that 1 is the agent’s target price and 0 is their

bottom-line price. Defined in the negotiation scenario, the bottom-line price for the

seller is the lowest price he/she is supposed to sell the item while for the buyer it is the

highest value they should pay for the item. It worth mentioning that these bottom-line
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prices are not strict and agents can propose and agree on values outside of this range.

After the normalisation, price range between 0 and 1 is segmented equally to 5 parts

representing 5 classes and other two classes belong to values lower than 0 and higher

than 1. Please note that prices lower than the seller’s bottom-line price or higher than

buyer’s bottom-line price are represented as negative values for them.

2.5.3 Training Settings

All RNNs used as encoder or decoder are 2-layer LSTMs with 300-dimensional

hidden states. Action predictor and price decoder networks have the same network

architecture, a 4-layer fully-connected network with ReLU activation functions. We

also applied a dropout with a rate of 0.3 to all parts of our architecture.

Parameters of the models are optimised using Adam with the learning rate set to

1e-3 in first 20 epochs and then decayed to 1e-4 for another 320 epochs. The batch

size is set to 128 in all experiments.

It worth to mention that since the number samples for each class in both action

prediction and price decoding tasks are imbalanced, we used weighted Cross-Entropy

loss function where 1√
frequency(Ci)

are calculated for each class Ci and are used as the

weights after normalisation.

Except for hierarchical dialogue encoder and the language decoder which are

trained together, we trained other modules separately during the supervised learning

process. Afterwards, for RL, we only optimised the action predictor and price decoder

parameters for 5000 episodes using a learning rate of 1e-4.

2.5.4 Price Adjustment

In the experiments, the price adjuster branch of the negotiation model makes a multi-

class decision about the ratio with which the agent should retreat. Specifically, the

agent always begins from the listing price if it acts as the seller and 50%, 70%, or

90% of the listing price (depending on the scenario) if it acts as the buyer. Then, at

each turn, the price decoder decides how much the current price should be changed.
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Price changes are categorised into 6 classes representing the change ratio which is

0%, 20%, 40%, 60%, 80%, or 100% of either the listing price minus the target for the

buyer or listing minus the 70% of list for the seller. If the price decoder decides on

altering the price, and the generated utterance contains a price token, it decreases (if

being a seller) or increases (if being a buyer) the current price by the predicted ratio.

2.5.5 Evaluation Metrics

In this task, a negotiation is successful if the agents reach an agreement (by accepting

a final offer from the opponent). However, the successful rate is not a suitable

evaluation metric in this case because the ‘deal’ might be a bad one even it was

accepted. Instead, we defined various dialogue evaluation metrics which can be

categorised into three groups: (1) metrics that evaluate the language quality (human-

likeness) of the generated dialogue, (2) metrics that evaluate the pricing strategy of

the model, such as the difference between the machine agreed price and the ground

truth price, and (3) human studies.

Language Metrics. In addition to BLEU score that measures how similar are

the sequence of words generated in a machine-machine negotiation with those from

human dialogues, we introduce Intent-BLEU (IBLEU), a new metric to measure

the similarity of the intents taken by a machine with those taken by humans. More

specifically, we extract the intents of each dialogue turn in a machine generated

dialogue using the information retrieval approach introduced by (He et al. 2018). For

instance, the intent of saying “hello.” is intro and the intent of saying “I can’t go

that low. I can go down to $7,050.” is counter-price. Then, the extracted intents

are concatenated to create a sequence of intents that will be compared with those

extracted from human generated dialogues. This is basically done by calculating the

clipped n-gram precision (for a maximum order of 4) of the generated sequence. The

higher values of this metric shows the higher level of similarity with human.

Apart from IBLEU, we applied various word-level and sentence-level metrics to

show the richness of the generated dialogues. We calculate the number of distinct
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sentences produced by the model and scale them by the total number of sentences

as another new metric to show the language quality of the dialogue model. We also

calculate the same metric at word-level to show the diversity of the lexical used by

the model. And shorter dialogue length normally means the agent can make the deal

in a shorter time.

Pricing Metrics. Two important metrics that measure the mistake ratio of the

pricing are price inconsistency and offer inconsistency. When the seller proposes

a price that is higher than the price previously suggested by themselves or is lower

than the price offered by the seller, we consider it as an inconsistent pricing (see

Figure 2.5). We also calculate the average distance between the agreed prices from the

human’s agreed prices as another important measure to evaluate the pricing strategy

of the model.

Human Studies. Apart from automatic evaluation, we measured the performance of

our price negotiator model using human evaluations. We designed three experiments to

evaluate the human-likeness, language richness, and pricing quality of the negotiation

models based on both third-party and interactive human evaluation.

• Turing test: In this study, given a random dialogue generated from a negotiation

model, the participant is asked to clarify whether or not the dialogue is generated

by humans.

• Comparative test: During this test, two dialogues generated based on the same

scenario, one from our price negotiator and another from the baseline model,

are shown to the contributor. The participants are tasked with choosing the best

negotiation according to the language and pricing qualities.

• Interactive test: Similar to (He et al. 2018), we put our price negotiator model

along with the baseline model online and asked human volunteers to have

a negotiation with a randomly chosen agent. At the end, they are asked to

assess the quality of the agent in terms of human-likeness, language fluency

and coherency, and pricing competency.
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Category Averaging AVE O-KNN OVE

Bike $475 $422 $55 $27
Car $3,452 $3,887 $547 $495
Electronics $114 $69 $14 $6
Furniture $191 $167 $26 $20
Housing $433 $458 $205 $129
Phone $112 $125 $21 $20

Overall $993 $898 $155 $123

TABLE 2.1: Value estimation results. Values in the table demonstrate the average divergence
of the value estimations from the humans’ agreed prices in the test set.

In our experiments, we gathered 400 Turing test, 400 comparative, and 20 interac-

tive chat evaluations from 20 participants. It is worth noting that the scenarios and

generated chats are randomly selected from the test set.

2.6 Results

2.6.1 Value Estimation Experiments

To have a better understanding about the value estimation ability of our model, we

calculate the average normalised divergence of the value estimations from humans’

agreed prices in the test set, for each product category. Table 2.1 shows the results and

several baseline models that are implemented for comparison. The simplest method

is to use the average value of each category as the estimated value. We call this

approach averaging. We also train an attention neural network named attention value

estimator (AVE) that takes the visual and textual features of the item and outputs the

predicted value. The third baseline is the average price of the k-similar items found

from external online source and we name it online k-nearest neighbours (O-KNN).

Since O-KNN approach is using listing prices and to have a fair comparison with our

model which enjoys a discount network, we applied the average discount ratio from

the discount network (around 11%) over the estimated values of this approach.

From the Table 2.1, we can see the model proposed for online value estimation

(OVE) can prognosticate an accurate agreement price for an item and beats all other
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baselines significantly. Using external sources and comparing item features with other

items is useful, as the divergence of the predicted prices with the real agreement

ones drop significantly in O-KNN approach. More importantly, the divergences drop

extremely when similar items are matched with the given item using OVE model.

2.6.2 Negotiation Dialogue Evaluation

In order to compare our negotiator with other baseline models, we train three state-

of-the-art methods that treat the prices as words. The first two models are trained to

match the method proposed in (He et al. 2018) on CraigslistBargain. The first one is

a simple sequence-to-sequence model, SL(word), and the second one is a modular

approach (SL(act)+rule) which has applied various human-crafted rules to repeat

utterances produced by humans. Additionally, a Hierarchical Recurrent Encoder-

Decoder (HRED), as a widely-used end-to-end approach for dialogue systems, has

been trained as another baseline model. Moreover, we have done several ablation

studies to show the importance of each module in our proposed model.

Language Evaluation Results. Table 4.5 demonstrates the fact that price elim-

ination from the language vocabulary improves the language quality. Especially,

compared with SL(word) and HRED which are not based on human-crafted rules, dia-

logues generated from both price negotiator models enjoy remarkably more language

diversity both in word level and sentence level, as the ratio of repetitive sentences,

which has been encountered as a common problem in dialogue generation, has in-

creased significantly in both variations of the proposed framework. Additionally, the

dialogue and utterance length of the dialogues generated from these models is large

enough to show the richness of the generated dialogues. Although it can be inferred

from the results that SL(act)+rule is generating linguistically better dialogues as the

sentence and vocabulary diversity of this model is larger than the proposed model, it

should be mentioned that this diversity is due to heuristic rules that select templates

from the dataset that are different from the previously selected ones.
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Model Turing
Test

Comparison Test Interactive Test

Human-
likeness

Language Pricing Human-
likeness

Language Pricing

SL(word) 35% 37% 34% 31% 2.2 3.2 2.6
Price Negotiator+RL 49% 63% 66% 69% 3.8 4.0 4.3

TABLE 2.3: Human study results. Turing test shows the rates at which dialogues generated
from each model has been identified as human generated negotiations. Comparison results
reveal the ratio of preferring the dialogues generated from each model over those from the
other one. The last three columns demonstrate the average scores provided by humans after

interactive negotiations with models.

Category Price Negotiator Price Negotiator+RL

Bike $43 $40
Car $712 $607
Electronics $8 $7
Furniture $23 $22
Housing $135 $117
Phone $20 $19

Overall $151 $131

TABLE 2.4: The table shows the average distance of agreed prices by our price negotiator
models from their understanding about the value of the item (from OVE). The smaller value

indicates the model’s ability to insist on achieving its initially estimated value.

Furthermore, a brief look at the IBELU scores demonstrates the superior perfor-

mance of price negotiator model in comparison to all other ones. It means that this

model acts most similarly to humans in different situations. Interestingly, a noticeable

improvement in IBLEU score by applying reinforcement learning illuminates that RL

pushes the agent to take more human-like decisions in different situations to persuade

the opponent and receive the best reward.

Last but not least, the language assessment metrics in Table 2.3–including the

Turing test and both human-likeness and language rates for both comparison and

interactive tests–indicate that our proposed model has been accepted as a considerably

more fluent and human-like negotiator by human participants.

Pricing Evaluation Results. Table 4.5 demonstrates results of calculating the

pricing metrics. It is noticeable that both versions of the price negotiator models learn

to propose consistent prices while maintaining the language quality. Besides, these

models never make a mistake in offering prices which are in conflict with the prices

discussed and agreed upon during the dialogue.
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More importantly, the proposed price negotiator model understands the suitable

agreement price for an item precisely. Table 4.5 shows remarkable decrease in agreed

price divergence (the difference between the prices agreed by the model with those

agreed by humans) resulted from price negotiator in comparison to those from other

models. In other words, the proposed model can learn the value of items by an online

value estimation and reach agreement on prices very close to those agreed by humans

by taking human-like actions both in generating utterances and in proposing prices.

Finally, human pricing assessment results in Table 2.3 show our proposed price

negotiator model consistently performs well in comparison to its counterpart.

Results from RL. In Table 4.5 and 2.4 we observe that using RL generally im-

proves the performance. In particular, in Table 2.4 when RL is used, our approach

learns to insist on the prior value estimated by OVE more effectively and utilise the

language better to achieve its goal (i.e. buying/selling with minimal compromise to

that estimated by OVE).

Ablation Study Results. Table 4.5 summarises the effect of each module indepen-

dently. Simply adding online value estimator to the HRED model (OVE+HRNE+LD)

results in a slight improvement in both IBLEU and human divergence metrics imply-

ing the agent’s ability to better imitate human behaviour. Once the action predictor

(AP) is added we observe significant improvement in negotiation, both linguistically

and in agreement prices. It is worth noting that action predictor controls the decisions

of the agent and leads to reaching agreements that are remarkably closer to those

by humans. Furthermore, having price adjuster (PA) and putting all of the modules

together, not only the language quality is enhanced, but crucially the gap between

machine and human agreed prices decreased considerably. This is due to the agent’s

capability to use a specialised module that handles the prices. Finally, applying

reinforcement learning (RL) helps the agent to make considerably better performance

linguistically and price-wise. It should be stated that since the language decoder

(LD) is an obligatory component and has the same architecture as other baselines, the

ablation study over this component is not been considered.
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2.7 Conclusion and Future Works

In this chapter, we proposed a visual goal-oriented dialogue model for the seller-buyer

negotiation. Our model, Price Negotiator is a modular framework for negotiation

that utilises insights from human’s behaviour for disentangling various parts. In

particular, we are the first model to incorporate a matching network for evaluating the

underlying value of an item by consulting online stores in negotiation. Experiments

on CraigslistBargain dataset show the superior performance of the proposed model

both linguistically and in reaching a human-like agreement price in various scenarios.

For future we consider improving the current approach by: (a) adding external

knowledge about the cost and the availability of side-offers, like free delivery; and (b)

applying pre-trained language models, such as BERT (Devlin et al. 2018), that may

improve the understanding and generation performance.
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Chapter 3

Active Learning by Feature Mixing

The main focus of the chapter is active learning (AL), a framework with which an

artificial agent interactively seeks more information by selecting the most informative

subset of unlabelled samples and asking their labels from human experts. This can

efficiently improve the agent’s performance using a small labelled set of examples.

We describe our proposed AL method that effectively decreases the labelling costs for

training a deep neural model to achieve a certain level of performance.

3.1 Overview

The promise of active learning (AL) is to reduce labelling costs by selecting the

most valuable examples to annotate from a pool of unlabelled data. Identifying

these examples is especially challenging with high-dimensional data (e.g. images,

videos) and in low-data regimes. In this chapter, we propose a novel method for

batch AL called ALFA-Mix. We identify unlabelled instances with sufficiently-

distinct features by seeking inconsistencies in predictions resulting from interventions

on their representations. We construct interpolations between representations of

labelled and unlabelled instances then examine the predicted labels. We show that

inconsistencies in these predictions help discovering features that the model is unable

to recognise in the unlabelled instances. We derive an efficient implementation based

on a closed-form solution to the optimal interpolation causing changes in predictions.

Our method outperforms all recent AL approaches in 30 different settings on 12
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FIGURE 3.1: We propose to form linear combinations (i.e. interpolations or mixing) of
the features of an unlabelled instance (middle image) and of labelled ones (top and bottom
images). The interpolated features are passed through the current classifier. We show that
inconsistencies in the predicted labels indicate that the unlabelled instance may have novel

features to learn from.

benchmarks of images, videos, and non-visual data. The improvements are especially

significant in low-data regimes and on self-trained vision transformers, where ALFA-

Mix outperforms the state-of-the-art in 59% and 43% of the experiments respectively.

3.2 Introduction

The success of machine learning applications depends on the quality and volume

of the annotated datasets. High quality data annotations can be slow and expensive.

Active learning (AL) aims to actively select the most valuable samples to be labelled

in the training process iteratively, to boost the predictive performance. A popular

setting called batch AL (Settles 2009) fixes a budget on the size of the batch of

instances to be sent to an oracle for labelling. The process is repeated over multiple

rounds, allowing the model to be updated iteratively. The core challenge is therefore

to identify the most valuable instances to be included in this batch at each round,

depending on the current model.

Various AL strategies have been proposed differing in predicting (1) how infor-

mative a particular unlabelled instance will be (i.e. uncertainty estimation (Roth and
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(A) ALFA-Mix (ours) (B) CDAL (ECCV 2020)

(C) BADGE (ICLR 2020) (D) GCNAL (CVPR 2021)

(E) CoreSet (ICLR 2018) (F) BALD (ICML 2017)

(G) Entropy (H) DFAL
FIGURE 3.2: Visualization of sample selection behaviours of various AL methods in the
latent space (see the Appendix for additional methods). The larger dots represent the selected
samples to label; smaller dots represent unlabelled ones. Our approach finds a candidate
set (demonstrated by stars in 3.2a) of unlabelled instances with inconsistencies in their label
prediction when interpolated with labelled representations. It selects a diverse set of samples
lying close to the all four borders for the labelling (with three zoom-in windows). The
demonstration problem is that of identifying 4 classes from MNIST (illustrated above by 4
colours) using a MLP. An initial training set of 200 randomly selected points and their labels
was provided, with each method given a budget of 200 additional labels. The features are

projected to two-dimensions for visualization.
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Small 2006; Wang and Shang 2014; Gal, Islam, and Ghahramani 2017; Ducoffe and

Precioso 2018)) or (2) how varied a set of instances will be (i.e. diversity estima-

tion (Yang et al. 2015; Sener and Savarese 2018)), or both (Huang, Jin, and Zhou

2010; Hsu and Lin 2015; Agarwal et al. 2020). Recent deep learning based AL

techniques include, for example, the use of an auxiliary network to estimate the loss of

unlabelled instances (Yoo and Kweon 2019), the use of generative models like VAEs

to capture distributional differences (Sinha, Ebrahimi, and Darrell 2019; Kim et al.

2021), and the use of graph convolutional networks to relate unlabelled and labelled

instances (Caramalau, Bhattarai, and Kim 2021).

Despite much progress made, current AL methods still struggle when applied to

deep neural networks, with high-dimensional data, and in a low-data regime. We

hypothesised that the representations learned within deep neural networks may be

leveraged to reason about the model’s uncertainty while alleviating the challenges

associated with high-dimensional data. Some existing methods only consider the

model’s output, but we believe that this cannot convey a complete picture of the

model’s current state. Assessing the uncertainty in the model is particularly important

in a low-data regime since the number of available training examples is small. This

motivation has led to methods like BADGE (Ash et al. 2020) which uses gradients

through the classifier layer of the network. Besides its relatively poor performance in

lo-data regimes (Ash et al. 2020), the drawback is a high computational cost due to

the high dimensionality of the gradient embeddings, making the method impractical

for deep models with latent representations of high dimensions, large datasets, and

large numbers of classes.

In this chapter, we present a novel and efficient AL method, named Active

Learning by FeAture Mixing (ALFA-Mix), based on the manipulation of latent

representations of the data. We identify informative unlabelled instances by evaluating

the variability of the labels predicted for perturbed versions of these instances. These

perturbed versions are instantiated in feature space as convex combinations of unla-

belled and labelled instances (see Figure 3.1). This approach effectively explores the
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neighbourhood surrounding an unlabelled instance by interpolating its features with

those of previously-labelled ones. Convex combinations of features have been already

used in other contexts such as data augmentation, using random interpolations (Zhang

et al. 2018a; Verma et al. 2019a; Verma et al. 2019b; Zhou et al. 2021) or actual

solutions to an optimisation problem (Abbasnejad et al. 2020; Parvaneh et al. 2020).

We provide a theoretical support for the method. In particular, under a norm-

constraint on the interpolation ratio, we show that the interpolation is equivalent to

considering (1) the difference between the features of the unlabelled instance and the

labelled ones and (2) the gradient of the model w.r.t the features at the unlabelled

point. Discovering new features considering (1) and (2) leads us to finding an optimal

interpolated point deterministically, at a minimal computing cost. Rather than using

all the labelled data for these interpolations, we choose a subset we call anchors to

capture the common features for each class. Subsequently, we construct a candidate

set by choosing the instances from the unlabelled set that when mixed with these

anchors lead to a change in the model’s prediction for those instances. Then, to ensure

selected instances are diverse, we perform a simple clustering in the candidate set and

choose their centroids as the points to be queried.

The contributions of this chapter are as follows.

• Instead of interrogating an unlabelled instance directly, we interpolate its repre-

sentation features from the labelled instances to uncover its hidden traits. To the

best of our knowledge, it is the first of its kind in AL. Unlike existing methods that

reply solely on the predicted output, we harness useful information from the feature

representations as an indication of which features are novel for the model.

• We show that optimal interpolation/mixing for each instance that underscores the

novel features with which the model could change prediction, has a closed-form

solution making our approach efficient and scalable.

• We show that our approach outperforms its counterparts over 9 image, 2 OpenML,

and one video datasets in various settings of architecture, network initialisation, and

budget choice. Our approach consistently achieves higher accuracy than existing
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methods, with particularly significant gains in a low-data regime.

• We provide the first investigation into using AL in vision transformers: we demon-

strate the effectiveness of ALFA-Mix on a self-trained vision transformer (Caron

et al. 2021), performing better than random selection in all tests, and 43% better

than the state-of-the-art. In addition, our approach performs significantly better that

its counterparts for video classification using transformers (Fan et al. 2021).

3.3 Related Work

Active learning strategies can be broadly categorised into three types: diversity-based,

uncertainty-based, and hybrid sampling, according to the nature of their acquisition

function. Diversity-based approaches aim to select samples that best represent the

whole of the available unlabelled set. A variety of approaches have been proposed

that cluster the unlabelled samples based on feature representations (Yang et al. 2015),

or construct a core-set over the latent features to identify a suitably diverse set of

samples (Sener and Savarese 2018).

Uncertainty-based methods seek to identify the unlabelled samples that are most

ambiguous to the current model that has been trained over the present labelled set based

on the target objective function. The assumption here is that having these uncertain

samples labelled will add the most value to the next model training round. Entropy

and the confidence of the predictions (Wang and Shang 2014), the margin between

the confidence of the highest and second highest predicted classes (Roth and Small

2006), the information gain in the model parameters in a Bayesian framework (Gal,

Islam, and Ghahramani 2017), and the variance between the predicted probabilities

within the ensemble (Beluch et al. 2018) have all been proposed as measures of

uncertainty. These methods favour points that lie close to the decision boundary, but

as they rely entirely on the predicted class likelihoods they ignore the value of the

feature representation itself. The closest method to that which we propose here is the

deep fool attack learning (DFAL) approach (Ducoffe and Precioso 2018) where the
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distance to the decision boundary is approximated by perturbation, using techniques

originally developed for adversarial attacks (Moosavi-Dezfooli, Fawzi, and Frossard

2016). Adversarial examples may expose vulnerability of the network architecture

to particular patterns in the input rather than the distribution of the labels over latent

space. That may lead to incorrect selection of instances that have patterns that are

easily manipulated rather than helping to shape a more consistent decision boundary.

Random perturbations are unlikely to lie within the true data distribution, and thus

risk wasting labelling cost on feature values that can never arise in practice. Rather

than repeatedly adding random noise in the input space, the method we propose

here (ALFA-Mix) interpolates in latent space. ALFA-Mix is not only faster, it also

significantly outperforms the DFAL approach.

Recently, a series of model-based active learning have been developed whereby

a separate model is trained for active instance selection. Various objectives, either

task-agnostic (e.g. variational adversarial active learning (Sinha, Ebrahimi, and Darrell

2019), graph convolutional active learning (Caramalau, Bhattarai, and Kim 2021)) or

task-aware (e.g. target loss prediction (Yoo and Kweon 2019)), have been proposed as

for training these models. Additionally, (Choi et al. 2021) has married model-based

algorithms with conventional ones by combining a variational Bayes network with

feature representations from the target model. In addition to sensitivity to hyper-

parameters and additional computational cost, these AL methods do not consider the

diversity of the selected samples and are prone to selecting samples with repetitive

patterns. Moreover, our experiments show their poor performances in low-data regime.

Hybrid AL methods exploit both diversity and uncertainty in their sample selection

methodologies. A mini-max strategy was proposed in (Huang, Jin, and Zhou 2010),

for example, that maximises both the informativeness and representativeness of the

samples. Interestingly, a method that learns to combine different AL strategies was

presented in (Hsu and Lin 2015). Additionally, (Agarwal et al. 2020) exploits the

predicted probabilities in images to select samples from diverse contexts (i.e. images

of objects with varied backgrounds). Recently, (Ash et al. 2020) proposed to cluster
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the gradients of the final output layer of the target model as the features of the

unlabelled samples that implicitly encompass the uncertainty information. Despite

their state-of-the-art results on some image and non-image datasets, their approach is

not scalable to larger tasks with numerous number of classes. Our approach not only

consistently outperforms their method by a large margin in different settings, but it

also is extremely efficient and scalable to large tasks.

3.4 Methodology

3.4.1 Problem Definition

Without loss of generality, we consider our learning objective to be training a super-

vised multiclass classification problem with K classes. A learner is actively trained

in iterations of interactions with an oracle. At each iteration, this active learner has

access to a small set of labelled data

Dl = {(xi, yi)}Mi=1 xi ∈ X , yi ∈ {1, . . . , K},

where xi represents the input (e.g. an image or a video clip) and yi stands for the

associated class label. The learner also has access to a set of unlabelled data Du from

which B number of instances are chosen to be labelled by the oracle. The labelled

samples are then added to Dl to update the model. The performance of the model is

evaluated on an unseen test dataset.

The learner is a deep neural network f = fc ⊙ fe parameterised by θ = {θe,θc}.

Here, fe : X → RD is the backbone which encodes the input to a D-dimensional rep-

resentation in a latent space, i.e. z = fe(x;θe). Further, fc : RD → RK is a classifier

e.g. multi-layer perceptron (MLP) that maps the instances from their representations

to their corresponding logits which can be converted to class likelihoods by:

p(y | z;θ) = softmax(fc(z;θc)).
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We optimise the parameters end-to-end by minimising the cross-entropy loss over the

labelled set: E(x,y)∼Dl [ℓ(fc ⊙ fe(x;θ), y)]. The prediction of the label (i.e. pseudo-

label) for an unseen instance is y∗z = argmaxy f
y
c (z;θc) where z = fe(x;θe) and

f y
c is the logit output for class y. Additionally, the logit of the predicted label is

denoted as f ∗
c (z) := f

y∗z
c (z)*. We also denote Zu = {fe(x), ∀x ∈ Du} the set for

representations of the unlabelled data and Z l its labelled counterpart. We compute

the average representation z⋆ of the labelled samples per class, and call it anchor. The

anchors for all classes form the anchor set Z⋆, and serve as representatives of the

labelled instances.

3.4.2 Feature Mixing

The characteristics of the latent space plays a crucial role in identifying the most

valuable samples to be labelled. Our intuition is that the model’s incorrect prediction

is mainly due to novel "features" in the input that are not recognisable. Thus, we

approach the AL problem by first probing the features learned by the model. To

that end, we use a convex combination (i.e. interpolation) of the features as a way to

explore novel features in the vicinity of each unlabelled point. Formally, we consider

our interpolation between the representations of the unlabelled and labelled instances,

zu and z⋆ respectively (we use the labelled anchor here for efficiency) as

z̃α = αz⋆ + (1−α)zu, α ∈ [0, 1)D, (3.1)

where α represents the interpolation ratio. This process can be seen as a way of

sampling a new instance without explicitly modelling the joint probability of the

labelled and unlabelled instances (Zhang et al. 2018a; Lesniak, Sieradzki, and Podolak

2019; Abbasnejad et al. 2020; Parvaneh et al. 2020), i.e.

z ∼ p(z | zu,Z⋆,α) ≡ αz⋆ + (1−α)zu, z⋆ ∼ Z⋆. (3.2)

*For brevity, when the parameters θe and θc are clear from the context, we refrain from explicitly
including them.
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We consider interpolating an unlabelled instance with all the anchors representing

different classes to uncover the sufficiently distinct features by considering how the

model’s prediction changes. For that, we investigate the change in the pseudo-label

(i.e. y∗) for the unlabelled instance and the loss incurred with the interpolation. We

expect that a small enough interpolation with the labelled data should not have a

consequential effect on the predicted label for each unlabelled point.

Using a first-order Taylor expansion† w.r.t. zu, the model’s loss for predicting the

pseudo-label of an unlabelled instance at its interpolation with a labelled one can be

written as:

ℓ (fc (z̃α) , y
∗) ≈ ℓ (fc(z

u), y∗) + (z̃α − zu)⊺ .∇zuℓ (fc (z
u) , y∗) . (3.3)

We also know that considering z̃α = αz⋆ + (1−α)zu, we will have

z̃α − zu = (αz⋆ + (1−α)zu)− zu

= αz⋆ + zu −αzu − zu

= αz⋆ −αzu

= α(z⋆ − zu) . (3.4)

By replacing this in Eq. (3.3), the loss of the model for predicting the pseudo-label

at an interpolation point between a pair of unlabelled and labelled instances can be

re-written as‡

ℓ (fc (z̃α) , y
∗) ≈ ℓ (fc(z

u), y∗) + (α(z⋆ − zu))⊺ .∇zuℓ (fc (z
u) , y∗) , (3.5)

†We use the first-order Taylor expansion for its simplicity and efficiency. In practice, one can use
higher orders to get a more accurate approximation.

‡This statement is true for any given instance and any convex combination of points in the latent
space. For AL, we particularly focus on unlabelled instances though.
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which for a sufficiently small α, e.g. ∥α∥ ≤ ϵ is almost exact. Consequently, for the

full labelled set, by choosing the max loss from both sides we have:

max
z⋆∼Z⋆

[ℓ (fc (z̃α) , y
∗)]− ℓ (fc(z

u), y∗) ≈ (3.6)

max
z⋆∼Z⋆

[(α(z⋆ − zu))⊺ .∇zuℓ (fc (z
u) , y∗)] .

Intuitively, when performing interpolation, the change in the loss is proportionate

to two terms: (a) the difference of features of z⋆ and zu proportionate to their

interpolation α, and (b) the gradient of the loss w.r.t the unlabelled instance. The

former determines which features are novel and how their value could be different

between the labelled and unlabelled instance. On the other hand, the later determines

the sensitivity of the model to those features. That is, if the features of the labelled and

unlabelled instances are completely different but the model is reasonably consistent,

there is ultimately no change in the loss, and hence those features are not considered

novel to the model.

The choice of α is input specific and determines the features to be selected. As

such, in Sec 3.4.3 we introduce a closed form solution for finding a suitable value

for α. Finally, we note that the interpolations utilised here have some interesting

properties that are further discussed in the supplements.

3.4.3 Optimising the Interpolation Parameter α

Since manually choosing a value for α is non-trivial, we devise a simple optimisation

approach to choose the appropriate value for a given unlabelled instance. To that end,

we note that, as observed from Eq. (3.6), the worst case of maximum change in the

loss is when we choose α that maximises the loss at the interpolation point. However,

using the right-hand-side of the Eq. (3.6), we devise the objective for choosing α as:

α∗ =argmax
∥α∥≤ϵ

(α(z⋆ − zu))⊺ .∇zuℓ(fc(z
u), y∗), (3.7)
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where ϵ is a hyper-parameter governing the magnitude of the mixing. Intuitively, this

optimisation chooses the hardest case of α for each unlabelled instance and anchor.

Using a 2-norm constraint on α in Eq. 3.7, we approximate the optimum interpo-

lation ratio as

α∗ =argmax
∥α∥2≤ϵ

(α(z⋆ − zu))⊺ .∇zuℓ(fc(z
u), y∗). (3.8)

By multiplying both sides of the constraint in Eq. 3.8 by ∥(z⋆ − zu)∥2, we have

∥α∥2 ∥(z⋆ − zu)∥2 ≤ ϵ∥(z⋆ − zu)∥2.

Based on Cauchy-Schwartz inequality, we know that ∥α(z⋆ − zu)∥2 ≤ ∥α∥2 ∥(z⋆ −

zu)∥2. Thus, we can infer

∥α(z⋆ − zu)∥2 ≤ ϵ∥(z⋆ − zu)∥2 = ϵ′.

Therefore, we can change the optimisation problem to

α∗ = argmax
∥α(z⋆−zu)∥2≤ϵ′

(α(z⋆ − zu))⊺ .∇zuℓ (fc(z
u), y∗) .

We can use the dual norm (Boyd and Vandenberghe 2004) of the above equation to

approximate the optimum value for u = α(z⋆ − zu), which is

u∗ = ϵ′
∇zuℓ (fc(z

u), y∗)

∥∇zuℓ (fc(zu), y∗) ∥2
. (3.9)

After replacing the actual values for u and ϵ′, we have

α∗ ≈ ϵ
∥(z⋆ − zu)∥2∇zuℓ(fc(z

u), y∗)

∥∇zuℓ(fc(zu), y∗)∥2
⊘ (z⋆ − zu), (3.10)

where ⊘ represents element-wise division. This approximation makes the optimisation

of the interpolation parameter efficient and our experiments show that it will not have
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significant detrimental effects on the final results compared to directly optimising for

α to maximise the loss.

3.4.4 Candidate Selection

For AL it is reasonable to choose instances to be queried whose loss substantially

change with interpolation according to Eq. (3.6). This corresponds to those instances

for which the model’s prediction change and have novel features. Intuitively, as

depicted in Figure. 3.2a, these samples are placed close to the decision boundary in

the latent space. Alternatively, we expect a small interpolation should not affect the

model’s loss when it is reasonably confident in its recognition of the features of the

input. We, then, create our candidate set as:

I =

{
zu ∈ Zu

∣∣∣∣∃z⋆ ∈ Z⋆, f∗
c (z̃α) ̸= y∗zu

}
. (3.11)

The size of the selected set I could potentially be larger than the budget B.

In addition, ideally we seek diverse samples since most instances in I could be

chosen from the same region (i.e. they might share the same novel features). To that

end, we propose to cluster the instances in I into B groups based on their feature

similarities and further choose the closest samples to the centre of each cluster to be

labelled by oracle. This ensures the density of the space represented by I samples,

is reasonably approximated using B instances. We simply use k-MEANS which is

widely accessible. Similar strategy is also used by (Ash et al. 2020) to encourage

diversity. Our approach is summarised in Algorithm 1.

3.4.5 Relations Between ALFA-Mix and Other Baselines

Using gradients in BADGE: From Eq. (3) in the main text we can understand

that when the prediction is accurate and confident, small movements of the latent

representation towards different directions (declared by anchors) should not change

the prediction. Otherwise, as per right-hand-side of the equation, either the surface has
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Algorithm 1: Our active learning algorithm.
Inputs: initial labelled set Dl; unlabelled pool Du; labelling budget at each
round B; mixing parameter ϵ;
for i = 1 to max_rounds do

Train the model f using the labelled data Dl.
Initialise Z⋆ based on the representations of Dl.
I = {}.
for xu ∈ Du do

zu = fe(x
u).

for z⋆ ∈ Z⋆ do
Calculate α∗ using ϵ and Eq. 3.10.
z̃ = α∗z⋆ + (1−α∗)zu.
if argmaxy(f

y
c (zu)) ̸= argmaxy(f

y
c (z̃) ) then

I = I ∪ (xu, zu).
Break

Cluster the samples in I into B clusters.
Select samples at the centre of each cluster (C).
Y new = Query(C).
Dl = Dl ∪ (C, Y new), Du = Du \ C.

changed dramatically or the unlabelled features is far from the labelled representations

(i.e. the features of the unlabelled instance are novel). This is one of the major

differences of our approach when compared with BADGE that only relies on the

gradients of the unlabelled instances (Figure. 3.3).

Adversarial perturbation of features: To show the importance of the feature in-

terpolations with labelled representations in our approach, we also considered using

adversarial noise as an alternative perturbation mechanism. For that, we examined

adding small values of noise δ to the latent representations of each unlabelled point

(instead of using interpolations with anchors) to find inconsistencies in their predicted

labels. Following Eq. (3) and Eq. (4) in the main text, we set the objective for finding

the optimum noise vector δ∗ as:

δ∗ = argmax
∥δ∥≤ϵ

ℓ(fc(z
u + δ), y∗). (3.12)
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FIGURE 3.3: A comparative depiction of our approach (ALFA-Mix) vs. BADGE vs. adver-
sarial in the latent space: Since ours considers interpolations in the direction of the anchor
points and proportional to their distance, it better evaluates the consistency of the predictions
in the latent space. When points are less consistent, it is more intuitive to consider them as
candidates to be queried (e.g. zu

2 in this figure is inconsistent after the interpolation, and hence
likely to be queried).

Similarly, using a first-order Taylor expansion w.r.t. zu and its dual norm, we can

approximate the optimum noise as

δ∗ ≈ ϵ
∇zuℓ(fc(z

u), y∗)

∥∇zuℓ(fc(zu), y∗)∥2
. (3.13)

After constructing a candidate set of unlabelled samples whose predicted labels are

not consistent after the adversarial feature perturbation, we conduct clustering to

sample a diverse set from the candidate set (similar to ALFA-Mix). Interestingly, as

depicted in Figure. 3.3b, although the adversarial approach shows better performance

in comparison to BADGE, it falls behind considerably when compared to ALFA-

Mix. We believe that the main advantage of ALFA-Mix is the consideration of both

the novelty of the features and the extent of gradient at each unlabelled point. It is

worth mentioning that ALFA-Mix is able to identify more inconsistencies all over the

decision boundary (Figure. (6c) in the main text).

Distribution matching. Denote ∆ = Ep(zl|Dl)

[
zl
]
− Ep(zu|Du) [z

u] if we had the dis-

tributions in the latent space. We know that based on the definition of the interpolation

between a pair of labelled and unlabelled samples (i.e. z̃α = αzl + (1−α)zu), we
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can have

zu =
1

1−α

(
z̃α −αzl

)
.

By taking the expectation from both side of the above equation for all the labelled

samples we have

zu = E
p(zl|Dl)

[
1

1−α

(
z̃α −αzl

)]
.

After replacing this in the definition of ∆, it is easy to show that:

∆ =
1

(1−α)

(
E

p(zl|Dl)

[
zl
]
− E

p(zu|Du)

[
E

p(zl|Dl)
[z̃α]

])
.

That is, the interpolation operation we used here only affects difference of the expec-

tation of distributions with a constant factor. When seen in light of Eq. (1) in the

main text, it acts as a simple surrogate for a divergence measure. In fact, this relates

our approach to other AL methods that their focus is on finding the distributional

difference between labelled and unlabelled samples Sinha, Ebrahimi, and Darrell

2019; Caramalau, Bhattarai, and Kim 2021.

Gradient-based interpolation optimisation. Following Abbasnejad et al. 2020;

Parvaneh et al. 2020, we could have utilised iterative gradient-based optimisation

to find the optimum interpolation ratios (instead of the closed-form solution used in

ALFA-Mix). For that, motivated by the condition in the Eq. (6) in the main text where

we are interested in instances whose predictions flip with an interpolation in the latent

space, we can choose α as a solution to the following:

α∗ = argmax
α∈ [0,αmax]D

ℓ(fc(αz⋆ + (1−α)zu), y∗), (3.14)

s.t. y∗ = argmax
k∈{1,...,K}

fk
c (z

u), ∀zu ∈ Zu, z⋆ ∈ Z⋆,
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where αmax is a hyper-parameter governing the feature mixing ratios. Intuitively, this

optimisation chooses the hardest case of α for each unlabelled instance and anchor.

We perform few iterations of projected gradient descent to optimise α. Our empirical

studies reveal similar performances when using this objective in comparison to the

closed-form one. However, the time required for the iterative gradient-based approach

is much more than the closed-form one (i.e. when using 5 iterations of gradient update,

it is 5x slower than ALFA-Mix).

3.5 Experiments and Results

3.5.1 Baselines

We compare ALFA-Mix with the following AL baselines:

– Random: a simple baseline that randomly selects B samples from the unla-

belled pool at each round.

– Entropy (Wang and Shang 2014): A conventional AL approach that picks

unlabelled instances with highest entropy.

– BALD (Gal, Islam, and Ghahramani 2017): An uncertainty model relying

on Bayesian approaches that selects a set of samples with the highest mutual

information between label predictions and posterior of the model approximated

using dropout (Figure 3.2f).

– Coreset (Sener and Savarese 2018): An approach based on the core-set tech-

nique that chooses a batch of diverse representative samples of the whole

unlabelled set (Figure. 3.2e).

– Adversarial Deep Fool (Ducoffe and Precioso 2018): An uncertainty method

that utilises deep fool attacks to select a batch of unlabelled samples whose

predictions flip with small perturbations.
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FIGURE 3.4: Test accuracy plots across some of the employed settings. Each experiment has
been repeated 5 times.

– GCNAL (Caramalau, Bhattarai, and Kim 2021): A model-based approach that

learns a graph convolutional network to measures the relation between labelled

and unlabelled instances (Figure. 3.2d)§.

– BADGE (Ash et al. 2020): A hybrid approach that queries the centroids ob-

tained from the clustering of the gradient embeddings (Figure. 3.2c).

– CDAL (Agarwal et al. 2020): A hybrid approach that exploits the contextual

information in the predicted probabilities to choose samples with varied contexts

(Figure. 3.2b)

§We employed CoreGCN variation in our experiments as results reported in (Caramalau, Bhattarai,
and Kim 2021) show its superiority over the UncertainGCN version.
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3.5.2 Experiment Settings

Setting and Datasets: We conducted a comprehensive set of experiments in 30

different settings on multiple datasets to evaluate how ALFA-Mix compares to its

counterparts. We define an AL setting as a combination of a specific dataset, a limited

set of initial labelled samples, a particular type of deep neural network, a limited

number of AL rounds, and a fixed labelling budget (batch) for each round.

Specifically, we experimented on MNIST (Lecun et al. 1998), EMNIST (Cohen

et al. 2017), CIFAR10 (Krizhevsky 2009), CIFAR100 (Krizhevsky 2009), Mini-

ImageNet (Sachin Ravi 2017), DomianNet-Real (Peng et al. 2019) as well as two

subsets of DomainNet-Real for image datasets. Additionally, we extended our experi-

ments to two more non-visual datasets from the OpenML¶ repository. Furthermore,

to reveal the effectiveness of each AL method in different data regimes, we utilised

both small (10×K ) and large (100×K) budget sizes. More importantly, the net-

work architecture and its initial parameters are two more factors that we considered

in our experiments. As for the choice of the architecture, we employed different

common deep neural networks; including Multi-Layer Perceptron (MLP) (Ash et al.

2020), ResNet-18 (He et al. 2016), DenseNet-121 (Huang et al. 2017), as well as

Vision Transformers (Dosovitskiy et al. 2021). Regarding the network initialisation,

we considered three scenarios where at the start of each AL round||, the parameters

are initialised randomly, from the model trained in the previous round (denoted as

"Continue" in the results), or using pre-trained models (either from supervised or

self-supervised (Caron et al. 2021) pre-training on ImageNet (Deng et al. 2009)).

Please find for more details in Table 3.1.

We followed the supervised training setting proposed in (Ash et al. 2020) and

optimised the network using all the labelled set (without any validation set) based on

a cross-entropy loss and an Adam optimiser with a learning rate of 1e− 3 and 1e− 4

¶https://www.openml.org
||After a new batch of samples are selected by AL method and added to the labelled set and before

the model training.

https://www.openml.org
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for image and non-image datasets, respectively. Similarly, we continued the training

using a batch size of 64 until the model reaches a certain early stopping condition (i.e.

reaching a training accuracy above 99% (Ash et al. 2020)).

We set the number of rounds for each setting to 10, except for DomainNet-Real

where we continue for 5 rounds. Additionally, to eliminate the effect of randomness

in the results, we repeated each experiment 5 times with different random seeds.

Comparison matrix We demonstrate the performance comparison between every

pair of AL methods over various settings in a penalty matrix proposed in (Ash et al.

2020). Each cell of the matrix reveals the number of settings in which the method

shown in the column is outperformed by the ones indicated in the row. It should be

noted that each setting consists of conducting R rounds of AL with a specific labelling

budget size B and using a particular model architecture on a single dataset. Since we

repeat each setting with 5 different random seeds, at each round r in the setting we

use t-score of the difference between the test performances (dri,j = ari − arj) of each

pair of AL methods (i, j) over the 5 repeats:

cri,j =

√
5µr

σr
, (3.15)

µr =
1

5

5∑
m=1

dri,j, σr =

√√√√1

5

5∑
m=1

(dri,j − µr)2,

where ari and arj are the test performances of methods i and j respectively at AL round

r. Similar to (Ash et al. 2020), we also used a threshold of 2.776 for this score to

decide if method i wins over method j. After clarifying the winner at each round of

the setting, we calculate Ci,j =
∑R

r=1 1cri,j>2.776/R as the final victory score of AL

method i over method j in that specific setting. Additionally, to compute the matrix

over multiple settings, we simply report the element-wise sum of all the individual

matrices.

Video classification: Since video classification is a more challenging task with higher

annotation cost, we compare the AL performance on video classification tasks. All
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FIGURE 3.5: Pairwise comparison (Ash et al. 2020) of different approaches. Lower values
shown at each column reveal the better performances of that AL method across all the
experiments. Maximum value of each cell is 30, which represents the number of experimental

settings.

the experiments are conducted on HMDB (Kuehne et al. 2011), a widely used dataset

consisting of 5,412 training videos belonging to 51 classes representing different

actions. For each video, we randomly sampled a video clip with 32 frames of size

224 × 224 using a temporal stride of 2. Regarding the network architecture, we

employed the state-of-the-art Multi-Scale Vision Transformer (MViT) backbone pre-

trained on Kinetics-600 (Carreira and Zisserman 2017). Starting with a labelled set

consisting of two labelled instances from each class (a total of 102 video clips), we

provide each AL method with budget of the varied sizes (2×K, 4×K, 7×K and

15×K) in the next AL rounds. At each AL round, we train the network for 50 epochs

with a batch size of 8 using AdamW (Loshchilov and Hutter 2018) optimiser with a

base learning rate of 1e − 4 that warms up linearly for the first 30 epochs and then

decays to 5e− 5 for the rest of the iterations using a cosine scheduler (Loshchilov and

Hutter 2017). We repeated each experiment twice to cancel out the effect of random

selection of the initial labelled set.

Interpolation optimisation: In our approach, we set ϵ = 0.2√
D

, where D is the
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AL Rounds

Method 204 408 765 1530

MViT (initial accuracy with 102 instances: 50.9±1.2)
Random 56.7±1.4 64.1±1.2 72.0±1.1 75.3±0.4

Entropy (Wang and Shang 2014) 55.5±0.6 65.5±0.3 70.2±2.0 76.5±0.7

BALD (Gal, Islam, and Ghahramani 2017) 56.7±0.4 65.5±0.6 72.4±1.3 76.6±1.8

CoreSet (Sener and Savarese 2018) 59.3±1.3 65.8±1.2 72.8±1.6 78.5±0.7

GCNAL (Caramalau, Bhattarai, and Kim 2021) 54.9±1.4 63.3±2.2 70.8±1.4 77.0±1.3

CDAL (Agarwal et al. 2020) 60.9±0.1 67.2±0.4 74.6±0.2 78.4±0.5

BADGE (Ash et al. 2020) 60.6±1.3 67.3±0.2 73.2±1.1 78.7±0.2

Ours 62.5±0.6 69.4±0.7 75.1±0.3 78.3±0.1

TABLE 3.2: Top-1 test accuracy of various AL methods on HMDB (Kuehne et al. 2011).
Values on top of each column reveal the size of the labelled set at the end of each round.

dimentionality of α vector. Considering the norm condition in Eq. 3.7, we relate the

scale of ϵ to D to easily utilise the same hyper-parameter across different networks

with representations of variable dimensions.

Implementation Details: All the experiments for small datasets were carried out on

a NVIDIA GEFORCE GTX 1080 Ti, while for larger datasets we used an NVIDIA

QUADRO RTX 8000. It is worth mentioning that for the video experiments, we

utilised two NVIDIA V100 GPUs in parallel.

We borrowed the implementations of the baselines from their publicly provided

codes. The MLP network we employed in our experiments follows the architecture

proposed in (Ash et al. 2020): a two-layer Perceptron with ReLU activations and

an embedding dimension of size 256 for image datasets (i.e. MNIST and EMNIST).

Similarly, we expanded the embedding dimensionality to 1024 for OpenML datasets.

3.5.3 Overall Results

Image and non-image results. In Figure. 3.5 we summarise all the results across

various datasets, budget sizes and architectures (30 different settings in total) for image

and non-image tasks into a matrix C. While each element Ci,j in the matrix reveals in

how many experiments the method shown in row i outperforms the one in column j in

terms of accuracy of an unseen test set (higher is better for the approach shown in the

row). The last row indicates the average number of experiments in which the method
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in the column has been outperformed by others (lower is better). The maximum value

for each cell in the matrix is 30. This matrix clearly shows the superior performance of

our approach compared to the baselines. In particular, we outperform CDAL (Agarwal

et al. 2020) and BADGE (Ash et al. 2020) in a significant number of experiments

(12.3 and 10.6 out of 30, respectively) but ours under-performed in only 0.3 of the

times. Generally as shown in the last column, our approach is rarely outperformed

(lower than 0.3). In other words, except in 3 AL rounds, for the rest of 282 ones

(around 99% of the rounds), our approach is capable of matching or outperforming

the best-performing baselines (BADGE and CDAL). In addition to visualising the

performance of each AL method in some of the settings in Figure. 3.4, we include the

accuracy curves over the unseen test set for all the settings at the end of this chapter.

Video Classification results. Table. 3.2 summarises the results for applying various

AL methods for the activity recognition in videos where our approach outperforms the

baselines. Interestingly, compared to the Random sampling, we are able to improve

the Top-1 test accuracy by more than 5% in the first two AL rounds and 3% in the

last ones. This signifies the effectiveness of our proposed approach in reducing the

labelling cost which is particularly an obstacle for video classification tasks. Moreover,

ALFA-Mix outperforms all other strong baselines with a large margin (more than 2%)

in the first three AL rounds. Interestingly, this is similar to what we observe from our

experiments on other data types and show the effectiveness of our approach when

applied to pre-trained transformers and/or in low-data regimes.

3.5.4 Ablation Study

Learning Ablations. Figure. 3.7 demonstrates the percentage of AL rounds where

ALFA-Mix performs better than the baselines considering input data type, network

architecture, network parameter initialisation and the budget size. The results indi-

cate our approach, irrespective of other factors, consistently outperforms other AL

baselines. Interestingly, when employing pre-trained networks, which is a common



3.5. Experiments and Results 65

2 4 6 8 10
AL Round

1000

2000

3000

4000

#
 F

lip
pe

d 
Sa

m
pl

es
w/o Parameter Learning
w/ Parameter Learning

(A) Number of unlabelled samples whose predic-
tions flip with and without learning the interpola-

tion parameter α.

2 4 6 8 10
AL Round

1000

2000

3000

4000

#
 F

lip
pe

d 
Sa

m
pl

es

w/o Anchors
w/ Random Samples
w/ Anchors

(B) The impact of anchors on identifying samples
whose labels flip during the interpolation.

200 400 600 800 1000
#Labels

70

75

80

85

90

95

T
e
st

 A
cc

u
ra

cy
 (

%
)

Norm
Symmetric-KL

Uniform

k-MEANS++

k-MEANS

(C) Diversity impact of the sample selection from
the candidate set (I). k-MEANS is our proposed

full model.

FIGURE 3.6: Ablations of our AL approach. Experiments are conducted on MNIST datasets
using an MLP model and a small AL budget.

practice for transferring learnt representations to new tasks, ALFA-Mix 99% of occa-

sions assists the model to generalise better than random sampling. Additionally, in

these settings, our approach surpasses the strongest baselines (CDAL and BADGE)

in more than 40% of the rounds. Above all, using Vision Transformer networks

pre-trained in a self-supervised manner, ALFA-Mix not only outperforms Random,

BALD, CoreSet and GCNAL in all the AL settings, it also significantly improves on

BADGE and CDAL in 60% and 43% of the rounds respectively.

Interestingly, we observe a significant advantage from our proposed AL method

when it is applied on small budget setting (Figure. 3.7). In fact, the test performance

of our approach exceeds BADGE (the best performing baseline) in 46% of the small

budget experiments. Moreover, we observe a more evident gap between our approach
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and others when it comes to AL in low-data regime. For that, we consider the

performance in the first 5 rounds of AL using a small budget; i.e. starting from 10×K

randomly selected labelled samples, each method queries for the maximum of 50×K

unlabelled samples overall during 5 AL iterations. Figure. 3.7 demonstrates the

dominance of our approach in this setting as it eclipses all other approaches in at least

60% of the experiments. When using a large budget, our approach is able to slightly

surpass BADGE which previously has shown great success in this setting.

Diversification. Figure. 3.6c illustrates the effectiveness of the batch diversification on

selecting final instances from the set of samples whose predictions have been changed

(I) during the interpolation process. In addition to uniformly sampling instances

from the candidate set, we consider two heuristics: (1) the norm of the interpolation

parameter ∥α∥2 in which a lower norm indicates with smaller intervention the model

changed prediction; and, (2) the symmetric KL-Divergence between the predicted

label distributions from the unlabelled instance p(y|zu;θc) and that of the interpolated

variant p(y|z̃α;θc). The latter evaluates the distributions change in the output (i.e.

prefers samples with highest values of symmetric KL-Divergence). Interestingly, both

heuristics show poor performances even in comparison with the uniform selection

from the candidate set. While this highlights how hard the candidate selection could

be, one explanation is that these approaches might use a considerable proportion of

the budget on samples that reside in a small region of the space. Consequently, the

selected batch does not carry the whole information obtained through the interpolation

process.

In addition to the heuristic measures, we considered k-MEANS++, a simpler

variation of k-MEANS that has shown better performance in (Ash et al. 2020), as

another contender. In contrast to what found in (Ash et al. 2020), in our experiments,

k-MEANS outperforms k-MEANS++ considerably as it better representations found

using interpolation.

Learning the Interpolation Parameter. As it is evident in Figure. 3.6a, skipping the

learning process for the interpolation parameter α (see section 3.4.3) significantly
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Time (seconds)

Method MNIST
(MLP)

SVHN
(DenseNet)

Entropy (Wang and Shang 2014) 1±0 169±44

BALD (Gal, Islam, and Ghahramani 2017) 16±4 1723±445

Coreset (Sener and Savarese 2018) 7±2 185±49

DFAL (Ducoffe and Precioso 2018) 242±69 –
GCNAL (Caramalau, Bhattarai, and Kim 2021) 12±4 187±65

CDAL (Agarwal et al. 2020) 5±2 179±52

BADGE (Ash et al. 2020) 50±13 523±135

Ours 5±7 210±50

TABLE 3.3: Label acquisition run times of different methods. Our approach is significantly
faster than BADGE and about 50x quicker than its Adversarial counterpart.

reduces the number of samples chosen in the candidate set. This can have detrimental

consequence on the diversity of samples that are selected during the clustering.

Anchors. Figure. 3.6b shows the impact of using different anchors Z⋆. Evidently, the

proposed method based on anchors outperforms other plausible alternatives including

picking random samples from the labelled set and removing z⋆ during the interpolation.

The latter resembles adding noise to the sample and is similar to applying adversarial

attack in the latent space.

Acquisition Time. We measured the time required to choose instances for labelling

during each AL round. As demonstrated in Table 3.3, using a simple MLP network or

a deep DenseNet-121, our approach performs competitive with the fastest baselines.

This is mainly because of the fact that we only back-propagates to a latent repre-

sentation layer (not the whole network). Additionally, our approaches reduces the

time required for BADGE (the best performing baseline) by a factor of more than 2

when applied to datasets with a small number of classes. We should note that running

BADGE on large-scale datasets with numerous classes requires a considerable time

and computing resources. The main reason is the large dimensionality of the gradient

embedding in tasks with large number of classes and instances. More importantly,

Table 3.3 shows the time needed for DFAL method for MNIST dataset, which makes

it impossible to apply to deep models and large datasets in a reasonable time.

Sampling Diversity and Uncertainty To have a better understanding with regards to

the effectiveness of our approach in selecting an uncertain and diverse set of samples
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FIGURE 3.8: Uncertainty and diversity of the selected samples for labelling. All experiments
are done on MNIST dataset using LeNet-5 model and a small budget of size 100.

for labelling, we compare some characteristics of the selected batch of instances at

each AL round comparing our method with those from BADGE Ash et al. 2020 and

Margin-Based Sampling** Roth and Small 2006 (Figure 3.8).

Comparing the confidence and Top-2 prediction margins of the selected unlabelled

samples, depicted in Figures 3.8a and 3.8b respectively, we can see that the uncertainty

level of the selected samples by our method is closer to the highest possible value in

comparison to BADGE sampling. Please note that in contrast to what Margin-Based

Sampling is doing, we do not explicitly enforce our approach to select samples close

to the decision boundaries. On the other hand, considering the higher entropy values

**Margin-Based Sampling is another AL method based on uncertainty. It selects samples with the
lowest distance between the predicted probabilities for the Top-2 classes (called margin). It should be
noted that BADGE has shown significantly better performance compared to Margin-Based Sampling
in prior works Ash et al. 2020.
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FIGURE 3.9: The t-SNE visualisation of the sample selection of our proposed method on
MNIST dataset using LeNet-5. The model is trained based on 500 random labelled set (shown

as triangles) and is provided with a budget of size 500 to (depicted as bold circles).

in the ground-truth labels of the selected set and their Top-2 predicted classes, we can

realise the capability of our proposed method in selecting a diverse set of unlabelled

samples in terms of their true class labels and their position with regard to the decision

boundaries. All in all, as depicted in Fig. 3.9, our method is able to exploit both

uncertainty and diversity concepts to select a diverse set of samples that lie close to

decision boundaries, which leads to significantly higher performances.

More Ablations In addition to providing the percentage with which our approach

outperforms others in each setting (Figure. 3.7), we report the pairwise comparison of

all the AL methods across various choices of data (Fig. 3.10), budget size (Fig. 3.12),

model architecture (Fig. 3.11) and network initialisation method (Fig. 3.13. Further, in

Figure 3.12c, we provide the pairwise comparisons in low-data regimes. Considering

the values in the rows and columns corresponding to our approach, we can infer that

our approach consistently outperforms all other baselines regardless of the architecture,

dataset selection, network initialisation and budget size and is rarely beaten by others.
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FIGURE 3.10: Pairwise comparison of different AL approaches based on the type of data.
The maximum value of each cell for each setting is also provided in the captions.

3.6 Conclusions and Limitations
In this chapter, we proposed a simple AL method based on the interpolation between

labelled and unlabelled samples. We effectively applied ALFA-Mix to a wide variety

of image, non-image and video datasets and demonstrate its state-of-the-art results

across various settings. Attractively, when the labelled set is small and the budget

is limited, our approach is able to gain the most performance boost–it surpassed all

other baselines in around 60% of all evaluated rounds.

Further, the feature representations are not generally disentangled (Locatello et al.

2020; Engelcke et al. 2020) and interpolation in the high dimensional space may yield

representations for unexpected inputs. Nevertheless, our approach indicates such

interpolations highlight reasonable variations in the input that may otherwise remain

unexplored. For future, we consider using disentangled representations to explore

novel factors of variations.

Limitations: AL consciously selects a small subset of a large pool of unlabelled

samples to be labelled and used to train a model. AL will be essential in catastrophes,

like pandemics, where the time to reach a model at a particular level of accuracy

becomes vital and would directly impact the lives of people. In spite of that, its a

common practice to evaluate AL in a simulated environment mainly due to financial
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FIGURE 3.11: Pairwise comparison of different AL approaches based on different model
architectures. The maximum value of each cell for each setting is also provided in the captions.
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FIGURE 3.12: Pairwise comparison of different AL approaches based on different sizes of
budget. The maximum value of each cell for each setting is also provided in the captions.

constraints. However, AL community at large and our approach in particular could

heavily benefit from real-world evaluations.
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FIGURE 3.13: Pairwise comparison of different AL approaches based on different sizes of
budget. The maximum value of each cell for each setting is also provided in the captions.
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FIGURE 3.14: Small Budget, ViT-Base, DomainNet-Real
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FIGURE 3.15: Small Budget, ViT-Small, Mini-ImageNet
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FIGURE 3.16: Small Budget, ViT-Small, CIFAR100
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FIGURE 3.17: Small Budget, MLP, MNIST
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FIGURE 3.18: Small Budget, MLP, MNIST, Continue
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FIGURE 3.19: Small Budget, MLP, EMNIST
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FIGURE 3.20: Small Budget, MLP, EMNIST, Continue
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FIGURE 3.21: Small Budget, LeNet-5, MNIST
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FIGURE 3.22: Small Budget, LeNet-5, MNIST, Continue
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FIGURE 3.23: Small Budget, LeNet-5, EMNIST
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FIGURE 3.24: Small Budget-ResNet-18, SVHN
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FIGURE 3.25: Small Budget, ResNet-18, CIFAR10
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FIGURE 3.26: Small Budget, ResNet-18, DomainNet-Real
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FIGURE 3.27: Small Budget, ResNet-18, DomainNet-Real-10
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FIGURE 3.28: Small Budget, ResNet-18, DomainNet-Real-20
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FIGURE 3.29: Small Budget, DenseNet-121, SVHN
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FIGURE 3.30: Small Budget, DenseNet-121, CIFAR10
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FIGURE 3.31: Small Budget, DenseNet-121, DomainNet-Real
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FIGURE 3.32: Small Budget, DenseNet-121, DomainNet-Real-10
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FIGURE 3.33: Small Budget, DenseNet-121, DomainNet-Real-20
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FIGURE 3.34: Large Budget, MLP, MNIST



82 Chapter 3. Active Learning by Feature Mixing

0 5000 10000 15000 20000 25000
#Labels

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Te
st

 A
cc

ur
ac

y 
(%

)

Random
Entropy
BALD
CoreSet

GCNAL
CDAL
BADGE
Ours

FIGURE 3.35: Large Budget,MLP, EMNIST
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FIGURE 3.36: Large Budget, LeNet-5, MNIST
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FIGURE 3.37: Large Budget, LeNet-5, EMNIST
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FIGURE 3.38: Large Budget, ResNet-18, SVHN
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FIGURE 3.39: Large Budget, ResNet-18, CIFAR10
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FIGURE 3.40: Large Budget, DenseNet-121, SVHN
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FIGURE 3.41: Large Budget, DenseNet-121, CIFAR10
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FIGURE 3.42: Small Budget, MLP, OpenML-6
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FIGURE 3.43: Small Budget, MLP, OpenML-155
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Chapter 4

Counterfactual Vision and Language

Learning

This chapter covers the problem of the model’s tendency towards extracting statistical

regularities instead of learning generalisable features in some vision and language

applications with limited training instances. We discuss our proposed approach based

on the counterfactuals, which leads to better generalisation of the model.

4.1 Overview

The ongoing success of visual question answering methods has been somewhat

surprising given that, at its most general, the problem requires understanding the

entire variety of both visual and language stimuli. It is particularly remarkable that

this success has been achieved on the basis of comparatively small datasets, given the

scale of the problem. One explanation is that this has been accomplished partly by

exploiting bias in the datasets rather than developing deeper multi-modal reasoning.

This fundamentally limits the generalisation of the method, and thus its practical

applicability. We propose a method that addresses this problem by introducing

counterfactuals in the training. In doing so we leverage structural causal models for

counterfactual evaluation to formulate alternatives, for instance, questions that could

be asked of the same image set. We show that simulating plausible alternative training

data through this process results in better generalisation.
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4.2 Introduction

Recent advances in computer vision and natural language understanding have paved

the way for a variety of tasks that combine visual and textual modalities (Kiros et al.

2015; Das et al. 2017a; Agrawal et al. 2017; Abbasnejad et al. 2019; Ramakrishnan,

Agrawal, and Lee 2018). Visual Question Answering (VQA) is one such task in which

the goal is to answer a question framed in natural language that relates to an image.

VQA thus requires a high-level understanding of the visual scene and the question,

and an ability to relate (or ground) the two. Much of the interest around VQA, and

the associated vision-and-language problems, stems from the fact that success might

represent a step toward artificial intelligence. A variety of real-world applications have

arisen also, including aiding the visually impaired, searching through large quantities

of visual data via natural language interfaces, and flexible tasking of robots.

Current end-to-end VQA models achieve high accuracies on most of the available

benchmarks and surpass human performance in a selection of cases (compositional

reasoning (Johnson et al. 2017), for example). It has been shown, however, that

these methods exploit statistical regularities and biases in the data to achieve this

performance (Johnson et al. 2017; Ramakrishnan, Agrawal, and Lee 2018; Hudson

and Manning 2019; Agrawal et al. 2018). In addition, although these approaches are

expected to merge information from multiple modalities, in practice they often exploit

unimodal biases and ignore the other modalities entirely. In addition, particular signals

in the input trigger specific answers; for instance, when the image contains a banana,

the answer is most likely to be yellow, irrespective of the remainder of the image, or

the question. This dependence on spurious correlations in the training data leaves

VQA methods vulnerable to a failure to generalise. In addition, this phenomenon

highlights the lack of high-level understanding of the input and its connection to other

modalities.

To remedy the weaknesses identified above and improve generalisation, we pro-

pose to utilize counterfactuals (Pearl 2009; Charles, Chickering, and Simard 2013)
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Observation 
Dataset

Exogenous Variable

Model Answer Update ERM

Counterfactual exogenous variable Generate 
Counterfactuals

Eq. (1)

Eq. (2)

Eq. (3)
Eq. (2)

Eq. (4)

FIGURE 4.1: The training process with counterfactuals. We infer the posterior on the
exogenous variables. Subsequently generate counterfactual samples using that variable and

evaluate its output.

in the learning process. In traditional causal inference counterfactuals are unobserved

scenarios, and are often used to estimate the effect of an intervention that is not

directly represented in the data. In machine learning they can equally represent a

potential training data element for which we do not have a label, or a data-label pair

for which we do not have a reward. This is particularly relevant in those supervised

learning settings where more than one true label might apply to each training data

element, yet only one true answer is typically observed. This is the case in many

vision-and-language problems, as the fact that the training set documents a particular

answer to a VQA question does not mean that every alternate answer is wrong. This

is referred to as bandit feedback (Johansson, Shalit, and Sontag 2016), and such

problems are labelled nonstochastic multiarmed bandit problems (Auer et al. 2002).

In the context of VQA, counterfactual analysis leads us to ask “what would have

happened if we observed a different image or asked a different question, given the

past observations”.

We consider the causal model underlying the training data, and introducing an

extra (exogenous) variable that governs the question and image generation (from which

the observed answers are produced). Then, we learn a distribution for that variable,

providing a model of how the observational data was generated. Subsequently, we ask

“what would be the minimum alteration to the question or image that could change

the answer”. To that end, we choose the exogenous variable such that the question

or image generated using that variable yields an incorrect answer, thus effectively

injecting an intervention into our causal model. Since the intervention can degrade the

model’s performance, we “reason” about these counterfactual instances by formulating
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an alternative to conventional empirical risk minimization, allowing the model to learn

both from observational and counterfactual instances. This implicitly forces the VQA

model to use both input modalities instead of relying on statistical regularities specific

to either of them. Further, training a model to both learn to answer and “reason” about

the intervention in questions and images, encourages generalisation. In Fig. 4.1, our

approach is summarized.

By effectively “asking the algorithm” what would have happened, we aim to

highlight the most interesting cases of disagreement between the counterfactuals and

the training observations, while also demonstrating implicitly why the learned model

is preferred.

We describe extensive experiments on VQA-CP (Agrawal et al. 2018), VQA

2.0 (Agrawal et al. 2017), Embodied QA (Das et al. 2018a) (where agent requires

navigation to answer questions) and Room-to-Room (R2R) Navigation (where the

agent should follow a natural language instruction to navigate) and demonstrate the

ability of our approach to improve generalisation. Our contributions in this chapter

are:

• We provide a counterfactual framework under which the interventions in the

inputs, either the question or image, are anticipated. We show that a simple

model of learning the distribution of an exogenous intervention variable of the

observational data, and subsequently counterfactual samples generated from

that variable improvs generalisation. We encourage the model to reason about

“what the answer could be about a counterfactual image or question”.

• We provide a theoretical analysis for the proposed approach to shed light on its

underlying working mechanism. In addition, we show a lower bound on the

likelihood of the counterfactuals based on the observations.

• Our extensive experiments show that our simple yet powerful approach is

capable of improving the generalisation ability of diverse multimodal and

unimodal vision and language tasks. In VQA-CP we observe more than 2%
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improvement over the baseline when using the full set and 7% when using a

fraction of the dataset. In both Embodied QA and R2R navigation, our approach

improves the state-of-the-arts by more than 2%.

4.3 Related Work

Counterfactuals (Charles, Chickering, and Simard 2013; Pearl 2009) have gained

recent interest in various areas in machine learning, in particular in applying insights

from causal inference to augment the training as in bandit settings (Johansson, Shalit,

and Sontag 2016; Abbasnejad, Domke, and Sanner 2015), reinforcement learning

(Buesing et al. 2019), recommendation (Swaminathan and Joachims 2015) and expla-

nation (Goyal et al. 2019b). Adversarial learning (Goodfellow, Shlens, and Szegedy

2015) is a prime instance of use of counterfactuals in learning and was shown to im-

prove performance (e.g. (Zhang et al. 2018b)). However, most of the state-of-the-art

in this area focus on the analysis of the outcome of an intervention of sorts, i.e. change

in the input or model. Our approach however, focuses on both proper generation

of the counterfactuals from intervention and ensuring the outcome is adjusted in an

alternative risk minimization.

Data Augmentation lies at the heart of successful machine learning where substantial

domain knowledge is leveraged to design suitable data transformations (e.g. rescaling,

rotation, etc) leading to improved generalisation. While learning these invariances,

using for instance generative models, can potentially alleviate the problem, their use

is nontrivial.

Recently, MixUp (Zhang et al. 2018a) was proposed as a simple means for

data augmentation and regularization which does not require significant domain

knowledge. Similar to label smoothing, the supervision of every example is not overly

dominated by the ground-truth label. Moreover, the augmented data is transformed

from training instances to establish a linear relationship between data augmentation

and the supervision signal. However, it requires sampling a mixing parameter that is
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not trivial to choose. Our approach on the other hand, learns to interpolate depending

on the difficulty of producing its output for the model and the landscape in the feature

space, hence harnessing the advantages of MixUp for sample generation.

Biases in VQA datasets and models are major pitfalls in current models where su-

perficial correlations between inputs from one modality and the answers are exploited

by models (Manjunatha, Saini, and Davis 2019; Goyal et al. 2019a; Ramakrishnan,

Agrawal, and Lee 2018). Unfortunately, biased models that exploit statistical short-

cuts from one modality usually reach impressive accuracy on most of the current

benchmarks. VQA-CP (Agrawal et al. 2018) is a recent diagnostic datasets containing

different answer distributions for each question-type leading to different distribution

of train and test splits. Consequentially, models biased towards one of the modality

often fail at this benchmark. Human provided additional balancing data, for instance

in the case of VQA v2 (Goyal et al. 2019a) has not resolved the issue. More elaborate

models to avoid biases such as Grounded VQA (Agrawal et al. 2018) introduces

additional submodules that are not trivial to be used with novel architectures. Simi-

larly, (Ramakrishnan, Agrawal, and Lee 2018) proposed a model-agnostic learning

strategy to overcome language priors in VQA models by directly penalizing the input

question-only bias. In (Damien Teney 2020), the authors cluster training questions

using to their prefix to prevent the model from relying on them as features.

Our method is model-agnostic, easy to implement and does not need an elaborate

parameter tuning or prior knowledge. In addition, our approach naturally leverages

inherent dependencies to improve generalisation and discourage simple exploitation of

the biases by the model. Our counterfactual training approach discourages learning the

biases by relying on the capacity to generate samples that can change the predictions.

4.3.1 Visual Question Answering

Visual Question Answering (VQA) is the task of answering previously unseen ques-

tions framed in natural language about a previously unseen image. For training, we
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are interested in learning a model from a training set made up of image v, question

q and answer a triplets D = {⟨qi,vi, ai⟩}ni=1. During test time, given an image and

question, the trained model predicts the correct answer. The classical approach for

VQA is to use an embedding of the questions eq = fq(q), an embedding of the image

ev = fv(v) and a fusion function of the two z = h(eq, ev) into what is known as the

joint space. We denote by θ all of the parameters of the deep models used to learn

these representations and generate answers. Using better embeddings yields better

joint space representations and consequently more accurate answers. For brevity

below we omit the parameters in the models, i.e. we use p(a|q,v) as a shorthand for

p(a|q,v,θ).

4.3.2 Counterfactuals

In the following we provide a background on counterfactuals that will form the basis

for the rest of this chapter. Interested readers are referred to (Pearl 2009) for further

details

Definition 1 (Structural Causal Model (SCM)). A structural causal model M con-

sists of a set of independent (exogenous) random variables u = {u1, . . . ,un} with

distribution P (u), a set of functions F = {f1, . . . , fn}, and a set of variables

X = {X1, . . . , Xn} such that Xi = fi(PAi,ui), ∀i, where PAi ⊆ X \ Xi is the

subset of X which are parents of Xi. As a result, the prior distribution P (u) and

functions determine the distribution PM.

An SCM defines the data generating process and the distribution of the observa-

tions. Using this model, we can investigate the consequences of intervention.

Definition 2 (Interventional Distribution). For an SCM M, a soft intervention I =

do
(
Xi := f̃i(P̃Ai,ui)

)
corresponds to replacing the structural mechanism fi(PAi,ui)

with f̃i(P̃Ai,ui). We simply write do(Xi = x) to denote the hard intervention that

substitutes the structural mechanism with a constant value. The resulting intervened

SCM is denoted MI , and the resulting interventional distribution is denoted PM;I .
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(C) Our SCM with Intervention

FIGURE 4.2: The difference between a typical VQA graphical model (in Fig. 5.2a), our
corresponding causal model (in Fig. 5.2b) and an example of intervention in the question
representation of this model (in Fig. 4.2c). In our model two exogenous variables uq and uv

are incorporated to learn and reason about the intervention caused by these variables.

We can also define the counterfactual distribution which tells us what might have

happened had we acted differently.

Definition 3 (Counterfactual Distribution). Given an SCM M and an observed

assignment X = x over any set of observed variables, the counterfactual distribution

PM|X=x;I corresponds to the distribution entailed by the SCM MI using the posterior

distribution P (u|X = x).

For an SCM M, the counterfactual distribution can be estimated by first inferring

the posterior over exogenous variables and then passing that distribution through

the modified structural model MI to obtain a counterfactual distribution over other

variables*.

4.4 Counterfactual Vision and Language (CVL)

Our intuition is that the functions that extract the features in a VQA system, either

from the image or the question, are prone to focusing on spurious correlations in the

data, which diverts them from modeling the deeper relations that generalise better.

Hence, we encourage the learning algorithm to consider counterfactuals–a set of

imaginary alternative samples. Training a model to both learn to answer, and “reason”

*Called abduction, action, and prediction in (Pearl 2009)
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about the intervention in the questions and images allows better generalisation. To

that end, we construct the SCM as shown in Fig. 5.2 where the functions for learning

the embeddings are conditioned on the exogenous variables.

As is the convention for intervention in counterfactual reasoning, we are interested

in replacing the embedding functions by their corresponding counterfactuals, that

is, fv is replaced by f̃v(v,u
v) or fq by f̃q(q,u

q) where uv and uq are exogenous

variables for image (vision module) and question (language module), respectively.

Note that f̃v(·, ·) and f̃q(·, ·) are the functions of the exogenous variables for a given

image and question pair. Effectively our approach reasons about the interventions

in the embedding extractions. We use u = [uv,uq] to denote both of the exogenous

variables. We denote by q̃ and ṽ the variables obtained after the intervention and

ẽq and ẽv as their corresponding embeddings. This intuitively allows our model to

answer image-based questions it has never observed. We are generally interested in

the following objectives: (1) the joint space of the question-image embedding must

lead to a low-error rate on the factual data; (2) the conditional distribution of the

factual and counterfactual data considering the exogenous distribution must be similar;

(3) the distribution of the exogenous variables must be obtained from the observations;

and (4) the embedding has to yield small error on the unobserved counterfactual

distribution (obtained from the intervention in the structural model).

The first objective is the same as any other vision and language task. The second

is a necessary constraint to ensure using a model from the observations we can predict

answers for counterfactuals. The third objective ensures the possible intervention

distribution from the exogenous variable is learned as part of the model. Lastly, our

approach should be able to reason about the answer to the counterfactual instances

(see Fig. 4.3 for an example). As such, we devise the following steps through which

our model is trained and the distribution of the exogenous variable is found:

1. Infer the predictive model for the observed data using one step of the conven-

tional risk minimization.
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What are those animals?

h(eq, ev)
<latexit sha1_base64="UavnuOles7kl8S5IiX1dYfd+iTo=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBahgpTEio9d0Y3LCvYBbSyT6aQdOpnEmUmhhG7c+CtuXCji1n9w5984SYPUx4GBM+fcy733uCGjUlnWp5Gbm19YXMovF1ZW19Y3zM2thgwigUkdBywQLRdJwigndUUVI61QEOS7jDTd4WXiN0dESBrwGzUOieOjPqcexUhpqWvuDkodH6mB68Vkcnt3OPMZHXTNolW2UsC/xM5IEWSodc2PTi/AkU+4wgxJ2batUDkxEopiRiaFTiRJiPAQ9UlbU458Ip04vWIC97XSg14g9OMKpupsR4x8Kce+qyuTJeVvLxH/89qR8s6cmPIwUoTj6SAvYlAFMIkE9qggWLGxJggLqneFeIAEwkoHV0hDOE9w8n3yX9I4KtuVcuX6uFi9yOLIgx2wB0rABqegCq5ADdQBBvfgETyDF+PBeDJejbdpac7IerbBDxjvX7R9mNg=</latexit>

h(eq, ẽv)
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FIGURE 4.3: Counterfactual examples that can be generated for a given image. The fusion
function h is used with the observational data as well as the counterfactual data to predict
the answer. For the counterfactual loss, we need to consider the relationship between the

predicted counterfactual answer and its observational counterpart.

2. Perform intervention I on M. This yields MI , which entails the counterfactual

distribution pdo(I)|q̃,ṽ.

3. Reason about the effect of that intervention on the answer and the loss that

incurs.

Intuitively, first we learn what distribution of the exogenous variable is obtained from

the observations, then model how the answer is affected by the intervention on this

variable.

4.5 Counterfactual Distribution

The counterfactual distribution is the posterior of the exogenous variables obtained

from the observations. Hence, using the training data we are interested in†

p(u|D) ∝ p(u)
n∏

i=1

p(ai|qi,vi)p(vi|uv)p(qi|uq). (4.1)

We use independent priors, i.e. p(u) = p(uq)p(uv) with Beta distributions for uv and

uq (i.e. uv ∼ Beta(α0, β0)). Although we could estimate p(vi|uv) and p(qi|uq) using

various methods (including autoencoders (Kingma and Welling 2013; Abbasnejad,

†We note that without loss of generality and for brevity we drop the dependence on the embedding
features p(ai|qi,vi) = p(ai|ev, eq)× δ(eq − fq(qi))× δ(ev − fv(vi)) where δ is the Dirac delta.
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Dick, and Hengel 2017) and GANs (Goodfellow et al. 2014; Abbasnejad et al. 2019;

Abbasnejad, Shi, and Hengel 2018)), we use a simple approach to model the question

or image’s conditional likelihood. To obtain the posterior, considering the generating

process of qi and vi for a given sample of the variable uq,uv and an arbitrary constant

0 ≤ ϵ < 1, we have

q ∼ p(q|uq) =


q uq ≥ 1− ϵ

uqq ⊕ (1− uq)q′, otherwise
, and

v ∼ p(vi|uv) =


v uv ≥ 1− ϵ

uvv ⊕ (1− uv)v′, otherwise
(4.2)

where q′ and v′ are uniformly sampled at random from the dataset and ⊕ denotes an

interpolation. It is easy to see that for ϵ → 0 we have more interpolated samples and

for ϵ → 1, we obtain samples that are independent of the prior. An advantage of this

approach of sampling the observations is that we effectively reduce the conditional

independence assumption of the training data allowing for the relation between

observations to be established.

Since we use all conjugate priors, the posterior is also a Beta distribution with

parameters α, β where α = α0 +
∑

I[ai = argmax p(ai|qi,vi)] and β = β0 +∑
I[ai ̸= argmax p(ai|qi,vi)]. Intuitively, samples from the regions of the prior

that produce the correct answers are “successful” and encourage the posterior to

concentrate. Notice that the samples from the posterior are drawn from the regions

where the likelihood of the correct answer is higher (since the expectation of the

posterior is α/(α + β)).

4.5.1 Generating Counterfactuals

Once the posterior on the exogenous variables p(u|D) is obtained, we perform the

intervention. That is, we generate the counterfactuals and replace the v (or q) with

its alternative ṽ (or q̃) and anticipate the answer. This corresponds to replacing the
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function fv(·, ·) (or fq(·, ·)) with an alternative f̃v(·, ·) (or f̃q(·, ·)) which leads to a

different answer prediction.

In obtaining the counterfactual samples we are interested in the minimum inter-

ventions that will change the answer for a given question-image pair (q,v) to (q̃, ṽ)

when using the generating process in Eq. 5.9. This corresponds to a sample from the

posterior of the exogenous variable with high likelihood (minimum intervention) that

will alter the answer for (q,v) to an incorrect one. As such, we formalize the problem

as:

max
u

log(pdo(I)|q,v(q̃, ṽ|u))

s.t. ã = argmaxa′ pdo(I)|q,v(a′|q̃, ṽ),∀ã ̸= a

0 ≤ u < 1

Considering the generative process in Eq. 5.9, the minimum intervention (the mini-

mum edit of the factual (Qin et al. 2019; Goyal et al. 2019b)) is achieved when u is

largest. Since the constraint is not computationally feasible, we relax the objective

and choose the variable that has the minimum likelihood of having the same answer

as the observations. Thus, we choose u from the relaxed alternative (we project u to

be bounded in [0, 1))

max
u

∥u∥2 − λ log
(
pdo(I)|q,v(a|q̃, ṽ)

)
(4.3)

where λ is a hyper-parameter. We note that simply sampling from the posterior p(u|D)

and generating v (or q) to infer the answer, is not the counterfactual (alternating

between sampling the variable u and learning parameter θ resembles conventional

Gibbs sampling). Hence, this step is critical to obtain instances that are not merely

from the learned distribution, yet very likely. Consequently, enabling our approach to

generalise better beyond observations.
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4.5.2 Counterfactual Loss

We alternate between intervening in the inputs, and minimizing the risk on the

corresponding counterfactual along with the observations. As is common practice

in empirical risk minimization (ERM), the objective in using observational training

instances is minimizing Eq,vEp(a|q,v)[ℓ(fθ(q,v), a)] where ℓ(fθ(q,v)) is the loss of

the function predicting the answer. Note that in practice fθ and p(a|q,v,θ) may be

the same function or share architecture (e.g. p(a|q,v,θ) = softmax(fθ(q,v))). In

the case of using counterfactuals, we can rewrite the risk by changing the distribution

(Charles, Chickering, and Simard 2013):

R(θ) = Eq,vEp(a|q,v)[ℓ(fθ(q,v), a)]

= Eq,vEpdo(I)|q,v(a|q̃,ṽ)

[
ℓ(fθ(q,v), a)

p(a|q,v,θ)
pdo(I)|q,v(a|q̃, ṽ,θ)

]

Note that pdo(I)|q,v(a|q̃, ṽ,θ) has part of SCM altered. Intuitively, the counterfactuals

that have smaller scores are more penalized and conversely the over-confident ones

are discouraged. This subsequently adjusts the decision boundary to be discriminative

for both observations and counterfactuals. Furthermore, since this risk can have a

very high variance we can clip this value similar to (Charles, Chickering, and Simard

2013),

RM (θ) = Eq,vEp̃u(a|q,v)

[
ℓ(fθ(q,v), a)

×min
{
M,

p(a|q,v,θ)
pdo(I)|q,v(a|q̃, ṽ,θ)

}]
This is because we may have very low probability in predicting an output of an

intervened observation. Thus, the empirical counterfactual risk is,

R̂M (θ) =
1

n

n∑
i=1

ℓ(fθ(qi,vi), ai)× ωi(θ) (4.4)

where ωi(θ) = min
{
M,

p(ai|qi,vi,θ)

pdo(I)|q,v(a|q̃, ṽ,θ)
}
.

Here, ωi(θ) is the clipped ratio of evaluation of the factual sample i and its correspond-

ing counterfactual. We intentionally use a shorthand to underscore The fact that the

parameters are optimized with respect to θ in p. The objective of the counterfactual
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risk minimization for vision and language tasks is therefore

R̂M∗
= argmin

θ
R̂M(θ)

In practice, we alternate between the conventional ERM (i.e. when ω(θ) = 1) and the

counterfactual risk.

4.5.3 Further Analysis

When we generate samples in Eq. 5.9, q′ is likely to have a different answer to q (with

probability (1 − na/n) for na denoting the number of instances with answer a). As

such, interpolating between the questions and images will lead to samples for which

the answer is uncertain. In the case of the generated counterfactuals, however, such

interpolations are in fact close to the decision boundary. Hence, when weighted by the

confidence of the classifier in Eq. 4.4, the connection between samples in the fusion

space (i.e. the common semantic space) is adjusted to account for the sensitivity of

the representations to changes in the input.

Furthermore, one main question is how do we know that the interventions won’t

lead to divergence, or learning useless models. We can derive the bound on the risk

using the following theorem:

Theorem 4. Denote ui(θ) ≡ ℓ(fθ(qi,vi), ai)ωi(θ), u ≡ ∑n
i=1 u

i(θ)/n, V̂(u) ≡∑n
i=1 (u

i(θ)− u)
2
/(n− 1) and Qγ ≡ log (10 · ϵ/γ) for 0 < γ < 1 and ϵ the ϵ-cover

for the function class that predicts the answer. With probability at least 1 − γ for

n ≥ 16 we have

R(θ) ≤ R̂M (θ) +

√
18V̂(u)Qγ/n+ 15MQγ/(n− 1)

Proof. Follows the proof in Theorem 6 of Maurer and Pontil 2009.

This result implies that when we have the counterfactual risk minimized, we

achieve the minimum variance.
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We note that for counterfactuals, we have:

pdo(I)(q̃, ṽ) =

∫
pdo(I)(q̃, ṽ|u)pdo(I)(u)du

=

∫
pdo(I)(q̃, ṽ|u)p(u)du

=

∫
pdo(I)(q̃, ṽ|u)

(∫
p (q,v,u) dp (q,v)

)
du

=

∫∫
pdo(I)(q̃, ṽ|u)p (u|q,v) dp (q,v) du

= E(q,v)∼p

[∫
pdo(I)(q̃, ṽ|u)p (u|q,v) du

]
= E(q,v)∼p

[
pdo(I)|q,v (q̃, ṽ)

]
.

Therefore, we can compute the density of the counterfactuals based on the observa-

tions, i.e.

pdo(I)(q̃, ṽ) = E(q,v)∼p(q,v)

[
pdo(I)|q,v (q̃, ṽ)

]
(4.5)

This result shows that the density of intervened variables (q̃, ṽ) is the marginal

of the observations. Hence, the factual, counterfactual and exogenous variables are

connected with the following lemma:

Lemma 5. We have the following lower bound on the log-density of the counterfactu-

als:

log(pdo(I)(a, q̃, ṽ)) ≥ E(q,v)∼p(q,v)

[
log(pdo(I)|q,v(a|q̃, ṽ))

]
+Eu∼p(u)

[
log(pdo(I)(q̃, ṽ|u))

]
.

Proof. We have,

pdo(I)(a, q̃, ṽ) = pdo(I)(a|q̃, ṽ)pdo(I)(q̃, ṽ)

= E(q,v)∼p

[
pdo(I)|q,v(a|q̃, ṽ)pdo(I)|q,v (q̃, ṽ)

]
.
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Then using Jensen’s inequality we have,

log(E(q,v)∼p

[
pdo(I)|q,v(a|q̃, ṽ)pdo(I)|q,v (q̃, ṽ)

]
)

≥ E(q,v)∼p

[
log(pdo(I)|q,v(a|q̃, ṽ)pdo(I)|q,v (q̃, ṽ))

]
,

We have:

E(q,v)∼p

[
log(pdo(I)|q,v(a|q̃, ṽ)pdo(I)|q,v (q̃, ṽ))

]
= E(q,v)∼p

[
log(pdo(I)|q,v(a|q̃, ṽ)) + log(pdo(I)|q,v (q̃, ṽ))

]
= E(q,v)∼p

[
log(pdo(I)|q,v(a|q̃, ṽ)) + log(

∫
pdo(I)(q̃, ṽ|u)p (u|q,v) du)

]
= E(q,v)∼p

[
log(pdo(I)|q,v(a|q̃, ṽ)) + log(

∫
pdo(I)(q̃, ṽ|u)p (u|q,v) du)

]

which is then lower-bounded as

≥ E(q,v)∼p

[
log(pdo(I)|q,v(a|q̃, ṽ)) +

∫
log(pdo(I)(q̃, ṽ|u))p (u|q,v) du

]
= E(q,v)∼p

[
log(pdo(I)|q,v(a|q̃, ṽ))

]
+ E(q,v)∼p

[ ∫
log(pdo(I)(q̃, ṽ|u))p (u|q,v) du

]
= E(q,v)∼p

[
log(pdo(I)|q,v(a|q̃, ṽ))

]
+

∫
log(pdo(I)(q̃, ṽ|u))p (u) du

In fact we can show that even if u is not drawn from the true generating prior, we

can use an arbitrary distribution q and obtain an alternative lower bound to that of

Lemma 5:

log(pdo(I)(a, q̃, ṽ))≥ E(q,v)∼p(q,v)

[
log(pdo(I)|q,v(a|q̃, ṽ))

]
+ Eq[log(p

do(I)(q̃, ṽ|u))] (4.6)

+H(q)−Hq(p).

Effectively using Lemma 5, we know even if the distribution of the exogenous
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variable for generating the counterfactuals deviates from the true posterior obtained

from observations, we can lower-bound the marginal of the counterfactuals which

depends on the likelihood of predicting the correct answer, the difference of entropy

of the true prior versus the one used and the likelihood of the counterfactual examples.

4.6 Experiments

To evaluate the performance of our approach, we construct experiments on various

datasets. We note that our approach is agnostic to the base model used and as such

is widely applicable to a wide range of applications. To optimize the objective

in Eq. (4.3), we use a simple gradient ascent where we set the learning rate to a

constant. We use prior for the exogenous variable as Beta(0.1, 0.1) for the experiments

unless otherwise stated. We alternate between the observational training and the

counterfactuals.

4.6.1 Unimodal Problems

The motivation of our approach is multimodal problems, but it is equally effective for

problems involving only a single modality. In this case the description of the process

stands, with the exception that either uv or uq is inferred and used for counterfactual

generation.

Stanford Sentiment Treebank (SST) (Socher et al. 2013) is a natural language

dataset of movie reviews (neutrals are removed in our experiments). This dataset

contains 11855 instances with vocabulary size of 17836 and 5 classes. We follow the

implementation of (Tai, Socher, and Manning 2015) where a tree structured LSTM

is used with this dataset. We use two alternative baselines for embedding words

to be used when sampling in Eq. (5.9): random embedding and trainable GloVe

(Pennington, Socher, and Manning 2014) initialized word embeddings. We report

mean scores over 5 runs and use 10 epochs for training. Here we examine how

the change in the embedding representation effects the performance of the model.
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LSTM T LSTM+P T+P LSTM+C T+C
Random 84.4 82.0 84.53 85.21 85.61 85.56
GloVe 84.9 86.4 85.77 87.1 87.24 88.4

TABLE 4.1: Accuracy (%) obtained by the testing methods using LSTM (with randomly
initialized, trainable embeddings). Best results highlighted in Bold. T abbreviates TreeLSTM
(Tai, Socher, and Manning 2015); +P and +C indicate posterior and Counterfactuals respec-

tively.
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FIGURE 4.4: Training metrics in CIFAR experiments.

Since we don’t have the image input, we only infer uq with prior Beta(0.1, 0.1) and

the counterfactual learning rate is set to 0.01. As shown in Table 4.1 using either

the posterior (+P models) or the optimized exogenous variable (+C) from Eq. (4.3)

improves algorithm accuracy. As expected, when pretrained models are tuned, the

overall performance is better.

We further evaluate the generalisation performance of our approach when only the vi-

sual data is available on the CIFAR-10 and CIFAR-100 image classification datasets.

In particular, we compare the baseline architectures for: VGG-19 (Simonyan and

Zisserman 2014), ResNet-18 (He et al. 2016), ResNet-101 (He et al. 2016), and

DenseNet (Huang et al. 2017). All models are trained for 100 epochs on the training

set with 128 examples per minibatch and learning rate 0.1, using SGD and evaluated

on the test set. The learning rate is then reduced to 0.001 for an additional 150 epochs.

We use the interpolations in the input images for Eq. (5.9). In the experiments we

have not observed any noticeable difference. We set the prior of uv to Beta(0.1, 0.1)

and run the counterfactual optimizer for 10 iterations.

We summarize our results in Table 4.2. In both CIFAR-10 and CIFAR-100

classification problems, the models trained using our approach consistently improve
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FIGURE 4.5: CIFAR-10 results

Dataset Model Baseline Ours+P Ours+C

CIFAR-10

VGG-19 95.04 95.92 96.73

ResNet-18 93.02 94.2 94.91

ResNet-101 93.75 94.1 95.34

DenseNet-121 95.04 95.92 96.73

CIFAR-100

VGG-19 72.23 73.45 74.8

ResNet-18 75.61 76.5 77.75

ResNet-101 77.78 78.9 80.0

DenseNet-121 77.01 79.67 79.67

TABLE 4.2: Test errors for the CIFAR experiments.

on the baselines by a margin. As seen in Fig. 4.4, the variance is also reduced during

training which, as discussed in Theorem 4, is an indication of the convergence of

counterfactual training. As observed, the values of uv decreases over time to find the

samples that are harder to predict. Our experiments thus indicate that our approach

provides improvements to even unimodal problems.

4.6.2 Visual Question Answering

Visual Question Answering is used to evaluate our model with two datasets: VQA-CP

(Agrawal et al. 2018) and VQA v2 (Goyal et al. 2019a). VQA-CP is specifically

designed to measure the generalisation ability of VQA models. Since our model

learns how the data is generated, we expect it to be particularly robust towards bias.

We follow the same training and evaluation protocol as (Anderson et al. 2018b). For

each model, we report the standard VQA accuracy metric (Agrawal et al. 2017). In
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(B) Loss Variance PreResNet18-CIFAR10
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FIGURE 4.6: CIFAR results

this experiment, we interpolate the word/visual embeddings rather than actual inputs

to generate counterfactuals.

We implemented our approach on top of the original UpDn system (Anderson et al.

2018b). The base system utilizes a Faster R-CNN head in conjunction with a ResNet-

101 base network as the object detection module. For the VQA v2 experiment we

utilize the ResNet-152 for detection. The detection head is pre-trained on the Visual

Genome dataset. UpDn takes the final detection outputs and performs non-maximum

suppression (NMS) for each object category using an IoU threshold of 0.7. Then,

the convolutional features for the top 36 objects are extracted for each image as the

visual features. For question embedding, we perform standard text pre-processing

and tokenization. In particular, questions are first converted to lower case and then

trimmed to a maximum of 14 words, and the words that appear less than 5 times are

replaced with an “<unk>” token. We use GloVe embeddings and subsequently GRU

for VQA-CP and LSTM for VQA v2A to sequentially process the word vectors and

produce a sentential representation for the pre-processed question.
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Model Overall Yes/No Number Other

Question-Only (Agrawal et al. 2018) 15.95 35.09 11.63 7.11
RAMEN (Shrestha, Kafle, and Kanan 2019) 39.21 - - -
BAN (Kim, Jun, and Zhang 2018) 39.31 - - -
MuRel (Cadene et al. 2019) 39.54 42.85 13.17 45.04
UpDn (Anderson et al. 2018b) 39.74 42.27 11.93 46.05
UpDn+Q-Adv+DoE (Ramakrishnan, Agrawal, and Lee 2018) 41.17 65.49 15.48 35.48

UpDn+C Images 41.01 44.61 12.38 46.11
UpDn+C Questions 40.62 42.33 14.17 48.32

UpDn+C (Q+I) 42.12 45.72 12.45 48.34

TABLE 4.3: State-of-the-art results on VQA-CP test. UpDn+C indicates our approach based
on UpDn baseline. (Q+I) denotes both question and images are intervened.

Model Overall

Question-Only (Agrawal et al. 2018) 25.98
BAN (Kim, Jun, and Zhang 2018) 69.08
MuRel (Cadene et al. 2019) 65.14
UpDn (Anderson et al. 2018b) 63.48
UpDn+Q-Adv+DoE (Ramakrishnan, Agrawal, and Lee 2018) 62.75
Pythia (Singh et al. 2019) 68.49

Pythia+C 68.77

TABLE 4.4: Performance of our approach on VQA v2 validation. Pythia+C is our counterfac-
tual implementation of (Singh et al. 2019).

In Table 4.3, we compare our approach consisting of our baseline architecture trained

with additional counterfactual training on VQA-CP against the state-of-the-art. To

be fair, we only report approaches that use the visual features from (Anderson et al.

2018b). Our approach improves the baseline more than 2 percentage point beyond

UpDn+Q-Adv+DoE which regularizes the model for better performance. In addition,

our approach gains most from the “other” category that encompass the most valuable

improvement indicating better reasoning about the answers. We should note that since

our approach is architecture agnostic, we expect more against better baselines.

Ablation Study on Modality Intervention: In Table 4.3, we perform an ablation

study of learning to intervene in multimodal problems by only either inferring uq

(i.e. intervention in the question) or uv (intervention in the images). Even though

intervening in both uq,uv improves performance, counterfactual questions lead to

better “number” results indicating strong bias in the baseline for questions with

number answers.

Smaller Training Sets: As shown in Fig. 4.7, when the number of training instances
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FIGURE 4.7: The performance of our approach vs. the baseline using fraction of the training
data.

Is this in 
Australia?

1. Is the grass green?
2. Is there grass on the ground?
3. Are they standing on a green grass 
field?
4. Is the stop light green?

Question Image Counterfactual Questions Counterfactual Images

1. What color jacket is the girl 
wearing?
2. What color jacket is the person 
wearing?
3. What color is the jacket?
4. What color is the woman's jacket?

What color is 
the person's 
helmet?

Where did 
the shadow 
on the car 
come from?

1. What kind of dog is this?
2. What type of dog is this?
3. What kind of dog is shown?
4. What is the breed of dog?

FIGURE 4.8: Given the image-question pair in the first column, the closest instances of the
questions (in second column) and images (in the third column) are found from the VQA v2
test dataset corresponding to the generated counterfactuals (using the exogenous variables).

is smaller our approach achieves significantly better performance compared to the

baseline. This is due to our approach being able to exploit the alternative instances

with counterfactuals.

Impact on VQA v2: We use the standard VQA v2 dataset (Goyal et al. 2019a) by

following the implementation in (Singh et al. 2019; Singh et al. 2018). Since by ex-

ploiting statistical regularities in this dataset it is easier to achieve better performance,

large gains are not expected. As shown in this section, counterfactual samples improve

the accuracy in VQA-CP, while marginally improving in VQA v2 compared to its

baseline. It is interesting to note that in adversarial training in UpDn+Q-Adv+DoE,

the performance drops in VQA v2 indicating the same phenomenon.

In Fig. 4.8 we show samples of the counterfactuals for the given question-image pairs
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dT Lower is better d∆ Higher is better

Model T−10 T−30 T−50 T−10 T−30 T−50

PACMAN (Das et al. 2018a) 1.39 4.98 9.33 -0.45 0.49 1.66
GRU (Das et al. 2018a) 0.74 3.99 8.74 0.20 1.48 2.26

GRU+C 0.67 3.90 8.47 0.26 1.57 2.52

TABLE 4.5: Evaluation metrics for EQA navigation. Spawning the agent 10, 30, or 50 steps
away from the target location, d0 shows the distance between these initial locations and the
target location, while dT reveals the distance of the final locations and the target ones by
starting from these initial location and using the model for the maximum of 100 steps. Finally,
d∆ = dT − d0 measures the overall progress of the agent towards the target. GRU+C is ours.

from the test set. These samples are generated by following Eq. (5.9) (i.e. randomly

sampling another question-image pair and interpolating the embeddings using the

samples from the posterior) and subsequently finding the closest instances (either

question or image with smallest Euclidean distance in the embedding space) in the

test set. As observed, some of the questions are reasonable alternatives to the ones

asked and conversely, the given question can be asked of the counterfactual images

showing that our approach successfully generates alternatives.

4.6.3 Vision and Language Navigation

Embodied Question Answering (EQA) (Das et al. 2018a) is proposed as a novel

variant of VQA where an agent is spawned at a random location in a 3D environment

and asked a question for which the answer requires exploration in the environment.

We closely follow the instructions of (Das et al. 2018a) for the experimental setup.

Similar to VQA, the agent is tasked with utilizing both vision (i.e. the input ego-

centric RGB image from the robot’s camera) and language (i.e. the given instructions)

to answer questions. However, a distinct feature of this task is, unlike VQA, the final

answer is produced after the agent takes a finite number of intermediate actions (i.e.

navigation by choosing the action right, left, straight, stop at each step for which

we use a 2-layer GRU to predict). During training, each batch contains a random

environment, a question in that environment and its corresponding answer along with

the path to reach the corresponding location in the target room.
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Val Seen Val unseen

Model NL↓NE↓SR↑ SPL↑NL↓NE↓SR↑ SPL↑
Seq-to-Seq (Anderson et al. 2018c) 11.3 6.01 38.6 - 8.4 7.81 21.8 -
Speaker-Follower (Fried et al. 2018) - 4.86 52.1 - - 7.07 31.2 -
Co-Grounding (Ma et al. 2019a) - 3.65 65.0 0.56 - 6.07 42.0 0.28

BC (Tan, Yu, and Bansal 2019) 9.9 5.34 50.2 0.48 9.5 6.10 42.6 0.40
BC+C* 9.9 5.37 50.2 0.48 9.0 6.23 44.2 0.41

BC+RL (Tan, Yu, and Bansal 2019) 10.3 4.65 55.8 0.53 9.7 5.73 44.9 0.41
BC+RL+C* 10.4 4.43 57.1 0.55 9.5 4.42 48.1 0.45

TABLE 4.6: Evaluation metrics for R2R Navigation. Navigation Length (NL): The distance
(in meters) that the agent has travelled during an episode. Navigation Error (NE): The
difference (in meters) between the agent’s final position and the target location. Success Rate
(SR): The percentage at which the agent ends up less than 3 meters away from the target
location. Success weighted by Path Length (SPL): The success rate weighted by the inverse
ratio of the traversed trajectory length to the length of the shortest path.. ↑ shows higher
is better, while ↓ means lower is better.. Rows indicated by * our results from Behaviour
Cloning and Counterfactuals (BC+C) and Behaviour Cloning, Reinforcement Learning and

Counterfactuals (BC+RL+C).

In our approach, we intervene in both the image and question embeddings using a

randomly sampled environment and question to generate counterfactual instances in

Eq. (5.9). We set the prior for the exogenous variables uq and uv to Beta(0.75, 0.75).

We trained the model based on shortest path trajectories to target objects inside 640

houses (total 6,912 questions) for 30 epochs and then evaluated it on 57 unseen

environments during the inference. In particular we consider three cases which

correspond to being 10, 30 and 50 steps away from the target room, with the distance

corresponding to 0.94, 5.47 and 10.99 respectively. In this experiment we measure

the number of correct intermediate steps that the agent correctly takes to increase its

proximity to the room with the answer. The results are shown in Table 4.5. As is

shown, our approach of allowing the agent to contemplate counterfactual questions and

images enables the robot to travel closer to the target room and improves generalisation.

This further illustrates our approach’s success in improving generalisation in various

tasks and input-output alternatives. Note that in this task the output is a sequence of

actions to be predicted (before the answer).

Room-to-Room (R2R) is one of the hottest tasks introduced recently in the area of

Vision and Language Navigation (VLN) (Anderson et al. 2018c). In this task, the
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agent, which is spawned in a random location inside a photo-realistic house, should

understand and follow a natural language instruction and reach a goal location by

sequentially choosing the right directions. Similar to EQA, the inputs are both vision

(here, panoramic views at each step) and language (a human-crafted instruction that

can lead the agent to the target location).

We applied our approach on this task by intervening both visual and textual embed-

dings. To that end, we generate counterfactual samples by choosing random instances

and following the Eq. (5.9) with exogenous variables set to Beta(0.75, 0.75). Follow-

ing the methods proposed in (Tan, Yu, and Bansal 2019), we applied our approach on

both Behavioural Cloning (BC) and Behavioural Cloning+Reinforcement Learning

(BC+RL) methods. The results exhibited in Table 5.1 show the superior performance

of our model, empowered with counterfactual observation and reasoning, in both seen

and unseen environments.

4.7 Conclusion

The tendency to focus on spurious correlations in the training data is one of the key

factors limiting the practical application of modern machine learning methods. We

have shown that this failure to generalise can, in part, be tackled by generating a

set of counterfactual examples to augment the training data. This is motivated by

the success that the counterfactual approach has had in causal reasoning. We have

demonstrated the effectiveness and generality of the proposed approach on a wide

variety of problems including multimodal vision-and-language tasks. An additional

advantage of the method is that the sample generation strategy relieves the conditional

independence assumption of the training data, which is too strong for most real

datasets.
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Chapter 5

Counterfactual Vision-and-Language

Navigation: Unravelling the Unseen

When interacting with humans through the language, the ideal agent is expected to

perform well regardless of the changes in the surrounding environment. Additionally,

the agent is supposed to perform in environments that have not been seen during

the training. In this chapter, we focus on this challenging aspect of training interac-

tive models in the context of vision-and-language navigation (VLN). We cover our

proposed approach based on counterfactuals that significantly improves the model’s

generalisation to unseen environments.

5.1 Overview

The task of vision-and-language navigation (VLN) requires an agent to follow text

instructions to find its way through simulated household environments. A prominent

challenge is to train an agent capable of generalising to new environments at test

time, rather than one that simply memorises trajectories and visual details observed

during training. We propose a new learning strategy that learns both from observations

and generated counterfactual environments. We describe an effective algorithm to

generate counterfactual observations on the fly for VLN, as linear combinations of

existing environments. Simultaneously, we encourage the agent’s actions to remain

stable between original and counterfactual environments through our novel training
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objective – effectively removing spurious features that would otherwise bias the

agent. Our experiments show that this technique provides significant improvements in

generalisation on benchmarks for Room-to-Room navigation and Embodied Question

Answering.

5.2 Introduction

Deep learning has generated significant advances in computer vision and natural

language processing. The most striking successes are witnessed on perceptual tasks

that essentially amount to pattern matching. A strength of deep learning is its ability

to pick up statistical patterns in large labeled datasets. As a flip side, this capacity

leads to models that indiscriminately rely on dataset biases and spurious correlations

as much as task-relevant features. This limits the generalisation capabilities of learned

models and restrict their applicability on complex tasks (e.g. (Geirhos et al. 2019; Jo

and Bengio 2017) with images and (Johnson et al. 2017; Ramakrishnan, Agrawal,

and Lee 2018; Hudson and Manning 2019; Agrawal et al. 2018) in multimodal

tasks). Most successful applications of deep learning rely on settings where the seen

training data and the unseen test data are statistically similar. Yet we argue that better

generalisation could be achieved with new training strategies. This is particularly

relevant to multimodal, high-level tasks where training examples can only cover a tiny

part of the input space.

In this chapter, we propose to consider the unseen to learn representations that

lead to better generalisation. The method is applied to the task of vision-and-language

navigation (VLN, (Thomason et al. 2020; Anderson et al. 2018c; Das et al. 2018a))

which requires relating complex inputs with observations of unseen environments.

In VLN, an agent receives instructions in natural language and it must decide on

a sequence of actions (e.g. turn left, move forward, ...) to reach a target location

while observing 2D images of its environment. The task is extremely ambitious:

the agent must learn to ground language with visual observations, to understand
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sequences of instructions and high-level actions (e.g. wait by the door), to generate

navigation plans, etc. The standard approach is to train an agent with a combination of

reinforcement learning (Wang et al. 2019a; Tan, Yu, and Bansal 2019) and imitation

learning with human-generated examples of instructions and trajectories. These agents

can memorise successful sequences of actions and grounding associations but they

often fail to apply their capabilities to unseen environments at test time (Tan, Yu,

and Bansal 2019). Our intuition is that a mechanism to reason about alternative

observations and trajectories during training could help learning robust navigation

strategies. We would like to consider, for example, what would happen if a desk were

observed instead of a chair ?

Various methods have been proposed to improve generalisation in VLN, such as

feature and environment dropout (Tan, Yu, and Bansal 2019), fine-tuning based on the

exploration of unseen environments (Wang et al. 2019a; Fried et al. 2018) or using

beam search (Fried et al. 2018; Ma et al. 2019a). The method we propose is inspired

by the framework of counterfactual reasoning (Pearl 2009). Counterfactuals serve

to reason about unobserved scenarios and to estimate the effect of an intervention

not represented in the data. In the context of VLN, we essentially want to consider

during training what if we observed a different environment. Throughout this chapter,

we call counterfactuals training environment examples that we could have observed.

We consider the causal model underlying the training environments and introduce an

exogenous variable that governs their visual features yet is unobserved. We utilise this

variable in generating counterfactuals. Intuitively, this exogenous variable captures

variations in visual features in the environments that are rather insignificant for the

decision making of the agent and can be ignored. At each training iteration, we

generate counterfactuals that represent the minimum edit of an existing training data

that causes the model to change its action. Thereafter, we formulate a novel objective

that encourages the agent to learn from both observed training data and their counter-

factuals by explicitly removing the effects of intervention in the agent’s policy (see

Fig. 5.1). By introducing additional variations in the observations during training, we
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FIGURE 5.1: We seek to improve a VLN agent’s capability to generalise to unseen envi-
ronments at test time. Agents are typically trained by reinforcement and imitation learning,
using ground-truth pairs of instructions/trajectories (“factual observations”, left). We propose
to generate alternative, counterfactual training observations with combinations of existing
environments. We determine the minimum intervention on the factual data that causes the
current model to produce different outputs. We then formulate our novel training objective to
best exploit these additional examples and improve its generalisation capabilities (right). The
generation process is formalised with a causal model of the data, in which we introduce the
interpolation coefficients as an exogenous variable u, effectively modelling an intervention on

the environment.

encourages the model to rely less on idiosyncrasies of a given environment, and rather

learn a policy that better generalises to unseen environments at test time.

The contributions of this chapter are summarized as follows:

• We propose a novel training strategy for VLN that generates counterfactuals on

the fly to account for unseen scenarios. Using both training data and their coun-

terfactuals, we improve agent’s capabilities to generalise to new environments

at test time.

• We formalise the new procedure with a causal generative view of the data, in

which we introduce an exogenous variable representing interpolation coeffi-

cients between original training examples. We derive an efficient algorithm to

generate counterfactual instances that represent minimum interventions over

original examples that cause the model to change its output.

• We implement the technique on top of a VLN agent for both reinforcement

and imitation learning. Experiments on benchmarks for Room-to-Room (R2R)

navigation (Anderson et al. 2018c) and Embodied Question Answering (Das

et al. 2018a) show significant improvements. We reduce the success rate gap

between seen and unseen environments in R2R from about 8% to less than

2.5%.
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5.3 Related Work

Vision and Language Navigation (VLN) has gained popularity in various forms

(instruction following (Anderson et al. 2018c; Chen et al. 2019), object or room

probing (Wu et al. 2018; Wortsman et al. 2019), embodied question answering (Das

et al. 2018a; Wijmans et al. 2019), vision and language dialogue (Thomason et al.

2020; Nguyen and Daumé III 2019)). Generalisation to unseen environments remains

an unsolved challenge, despite techniques like enhanced features and beam search,

panorama view (Fried et al. 2018), attention mechanisms (Ma et al. 2019a), and other

heuristics (Wang et al. 2019a; Wang et al. 2018; Ma et al. 2019b). Environment

Dropout (Tan, Yu, and Bansal 2019) randomly drops visual features to simulate varia-

tions in environments. Our approach does not require access to held-out trajectories,

which may not be available in other tasks (rather than R2R). Our method can be used

in a variety of tasks, as demonstrated with EQA in the experiments.

Principles of counterfactual reasoning (Pearl 2009; Charles, Chickering, and Simard

2013) have been applied beyond standard causal inference to augment training in

bandit settings (Johansson, Shalit, and Sontag 2016), and in recommendation (Swami-

nathan and Joachims 2015) and explanation systems (Goyal et al. 2019b). Kaushik et

al. (Kaushik, Hovy, and Lipton 2020) proposed a human-in-loop process to augment

datasets with counterfactual instances. In reinforcement learning (Buesing et al. 2019;

Oberst and Sontag 2019), counterfactuals are used in off-policy settings to improve

sample efficiency. Our technique is also related to adversarial training (Goodfellow,

Shlens, and Szegedy 2015; Hoffman, Roberts, and Yaida 2019; Xie et al. 2020; Woods,

Chen, and Teuscher 2019) in that we generate variations of training examples that

cause the current model to switch its predictions. The major difference is that our

approach provides alteration to the input, or rather its representations, by a variable

that is conditioned on the real training data rather than a simple perturbation.

Using counterfactuals for VLN was explored in Fu et al. 2019 in which adversarial

paths that are hard for the policy to navigate are generated. Our approach differs from
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their adversarial augmentation method in that intervene in visual features rather than

focusing on difficult trajectories. Our method, while being simpler, outperforms theirs

with almost 10% in success rate.

The closest work to this one is Abbasnejad et al. 2020. The authors generate

counterfactual data using interpolations for vision-and-language tasks, including visual

question answering. The differences with this work are that (1) we only intervene on

visual features, (2) we backpropagate the loss in counterfactual environments instead

of using it as a change ratio for factual loss calculation, and (3) we explicitly focus on

removing the effects of intervention. Our work also extensively focuses on VLN.

In comparison to standard data augmentation, our counterfactual instances do

not rely on handcrafted or domain-specific rules, and they are generated on the

fly. MixUp (Zhang et al. 2018a; Verma et al. 2019a) performs data augmentation with

interpolations and label smoothing. Mixup is not directly applicable to VLN since (1)

VLN is sequential in nature, (2) an interpolation of state-action from one trajectory to

another may lead to catastrophic difference in the objective. Our approach intervenes

in the visual features to simulate the agent’s behaviour in a counterfactual environment,

where the agent still has to follow the same instruction and sequence of actions

5.4 Background on Counterfactuals

We provide a brief background on counterfactuals. Further details can be found in

Pearl 2009.

Definition 6 (Structural Causal Model (SCM)). A structural causal model M over

variables X = {X1, . . . , Xn} consists of a set of independent (exogenous) random

variables U = {u1, . . . ,un} with prior distributions P (ui) and a set of functions

f1, . . . , fn such that Xi = fi(PAi,ui), where PAi ⊂ X are parents of Xi. Therefore,

the distribution of the SCM, which is denoted PM, is determined by the functions

and the prior distributions of exogenous variables.



5.4. Background on Counterfactuals 117

 

𝒖 𝒐𝑡 𝒛𝑡 

 𝑎𝑡 𝒔𝑡 

𝒄 

𝒔𝑡−1 

(A) VLN SCM

𝒖 𝒐𝑡 𝒛𝑡 

 𝑎𝑡 𝒔𝑡 

𝒄 

𝒔𝑡−1 

𝒛𝑡
𝑢  Intervention (𝑓𝑜 → 𝑓ሚ𝑜) 

 

(B) VLN SCM with interventions

FIGURE 5.2: Structural Causal Model (SCM) of the vision-and-language navigation (VLN).
We incorporate an exogenous variable in the SCM that is learned and utilised for reasoning

about interventions in the observation.

Inferring the exogenous random variables based on the observations, we can

intervene in the observations and inspect the consequences.

Definition 7 (Interventions in SCM). A soft intervention I = do
(
Xi := f̃i(P̃Ai,ui)

)
is defined as replacing some functions fi(PAi,ui) with f̃i(P̃Ai,ui). Additionally,

a hard intervention I = do(Xi = x) is defined as substituting the structural mecha-

nism of Xi with a constant value x. The intervened SCM is indicated as MI , and,

consequently, its distribution is denoted PM;I .

The counterfactual inference with which we can answer the “what if” questions

will be obtained in the following process:

1. Infer the posterior distribution of exogenous variable P (Ui|X = x), where x is

a set of observations.

2. Replace the prior distribution P (ui) with the posterior distribution P (ui|X = x)

in the SCM. We denote the resulted SCM as Mx and its distribution as PMx

3. Perform an intervention I on Mx to reach PMx;I .

4. Return the output of PMx;I as the counterfactual inference.

5.4.1 Counterfactual Vision and Language Navigation

We concentrate on the interventions on the visual observations to improve the gen-

eralisation of the model to the unseen environments. Our intuition is that the visual
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feature extractor functions in VLN usually focus on spurious features in the scene.

To that end, by constructing the SCM for VLN and introducing interventions in the

training environments, we train models that better generalise to unseen environments.

Fig. 5.2 shows the SCM for VLN at a time-step. The SCM consists of an exoge-

nous variable u (for observations) and a set of functions that transmit the observation

ot, language instruction c and previous state st−1 to the next state st and, subsequently,

to the next action at. We intervene in observations by replacing their embedding

function fo with f̃o. Specifically, after learning exogenous variable u, we replace the

latent representation of the observations zt, to z̃ut .

In Eq. (5) in the chapter, we effectively remove the effect of the intervention

leading to an agent that is less biased towards spurious features. For computing the

expectation, we could take samples from the posterior p(u | τ, c) and average using

multiple counterfactual trajectories (an MCMC approach). Instead, in the interest of

efficiency in Sec 3.3, we take only one instance from the mode of the posterior that

alters the navigation policy’s output.

5.5 Methodology

5.5.1 Problem Definition

Our task is to train an agent capable of grounding a command, in the form of natural

language, to the current visual view and taking suitable actions that lead to the target

location. Formally, the agent is given natural language instructions or commands

as a sequence of words c = [w1, w2, .., wL] to be executed in the environment E .

We consider all the instructions to be in a set C. The process can be viewed as a

Partially Observable Markov Decision Process (POMDP) where a trajectory is a

sequence of length T of observation ot, state st and action at for each time step t

i.e. τ = {o1, s1, a1, . . . ,oT , sT , aT}. The probability of each trajectory given the
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instruction is*

πθ(τ | c) =
T∏
t=1

p(at | st) p(st | st−1, zt, c) p(zt |ot) . (5.1)

Here, πθ is the agent’s policy (Unless explicitly mentioned otherwise, θ represents all

parameters which is omitted from the right-hand side probabilities for brevity). In the

visual navigation scenario we consider, ot as the visual observation of the scene in

which the agent is, st as a representation of the trajectory history† and at as the chosen

action at time t (e.g. turn left or stop for when the trajectory is finished). By

convention, s0 is a sample from the state prior (e.g. uniform). We denote a latent

representation of the visual scene by z and assume it is obtained using a function

z = fo(o), e.g. a pretrained CNN for the visual inputs, thus p(zt |ot) = δ(z− fo(o))

where δ is the Dirac delta.

Training with imitation learning and reinforcement learning. The common

practice in visual navigation is to use a training set D = {(τi, ci)}ni=1 containing

human-provided trajectories and instructions. This training set is used in supervised

learning to bootstrap the agent’ behaviour through cloning human’s actions. In

addition, reinforcement learning is used so that the agent learns from the environment’s

feedback. The training procedure optimises the following objective (Tan, Yu, and

Bansal 2019):

max
θ

E(τ,c)∼D
[
log πθ(τ | c)

]︸ ︷︷ ︸
GIL(θ)

+ λ Ec∼C
[
Eτ∼πθ(τ | c)[R(τ)]

]︸ ︷︷ ︸
GRL(θ)

. (5.2)

The first term GIL(θ) is a simple log-likelihood of human-provided examples using

Eq. (5.1) (imitation learning). The second term GRL(θ) corresponds to the execution

of the policy in the environment and receiving a reward R(τ). The hyperparameter λ

serves to balance the importance of imitation learning versus reinforcement learning.

*We model πθ as a recurrent model. For the language command, we use a separate recurrent
model.

†We consider the hidden state of the agent’s policy as st.
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The reward captures the agent’s success in navigating the environment. In a Room-

to-Room navigation task, the reward is a combination of a large positive number for

reaching the target location at the end of each episode, and a small positive/negative

number for reducing/increasing the distance to that location at each step. To update

the parameters of the policy during RL, we employ an on-policy algorithm such as

actor-critic (Mnih et al. 2016b).

5.5.2 Counterfactual Formulation in VLN

The state variable s ideally is the representation of the history of observations and

actions. The final decision of the agent is taken conditioned on this variable and as

such is of great importance. However, as is common with other multi-modal problems

(e.g. VQA (Agrawal et al. 2018; Ramakrishnan, Agrawal, and Lee 2018)) this variable

captures particular biases and regularities in the input and may even ignore important

patterns which significantly limits the generalisation ability of the agent. To remedy

the situation, we consider an exogenous variable that intervenes the observations. By

introducing and reasoning about this variable, the agent is encouraged to consider

alternative observations and representations. In addition, the agent obtains the capacity

to reason about “what if” the observations were different.

To that end, we consider the counterfactual distribution of the trajectory where

each observation is replaced by its intervened alternative z̃ut :

π̃θ(τ̃ | c, u) =
T∏
t=1

p(at | s̃t) p(s̃t | s̃t−1, z̃
u
t , c). (5.3)

In this distribution, the conditional dependence on the scene observations ot is sup-

pressed because of the intervention. We denote with τ̃ the trajectories obtained by

replacing a given embedding of the visual scene zt with its counterfactual z̃ut based

on the influence of u. Imagine that the agent observes a chair that represents an

obstacle to be avoided. A counterfactual situation would ask, for example “what if

the agent observed a table?”. The exogenous variable is conditioned on the factual
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trajectories observed in the training set. The expectation with respect to the exogenous

variable serves to consider a whole range of possible alternatives. The expected reward

for counterfactual trajectories G̃RL(θ) (to be compared with GRL(θ) of Eq. (5.2)), is

obtained from the states intervened based on the exogenous variable u:

G̃RL(θ) := E(τ,c)∼D

[
Eu∼p(u | τ, c)

[
Eτ̃∼π̃θ(τ̃ | c,u)[R(τ̃)]

] ]
(5.4)

G̃IL(θ) := E(τ, c)∼D

[
Eu∼p(u | τ, c)

[
log π̃θ(τ̃ | c, u)

] ]

We detail p(u | τ, c) and how to generate counterfactuals using π̃θ(τ̃ | c, u) in Sec-

tion 5.5.3.

The differences between GRL(θ) and G̃RL(θ) as well as between GIL(θ) and G̃IL(θ)

correspond to the Conditional Average Treatment Effect (CATE) (Johansson, Shalit,

and Sontag 2016). These differences reflect how the intervention influences the reward

and log-likelihood. They are defined as

∆d = GIL(θ)− G̃IL(θ) and ∆τ = GRL(θ)− G̃RL(θ) . (5.5)

We want to optimise our agent such that, after learning from the training set, performs

similarly when faced with unobserved alternative scenarios. In other words, we want

∆τ and ∆d to be small. This effectively reduces the influence of interventions and

as such discourages bias to spurious features. We add, to the objective of Eq. (5.2),

constraints on the magnitude of ∆d and ∆τ :

max
θ

GIL(θ) + λGRL(θ) s.t. ∆τ ≤ ϵτ and ∆d ≤ ϵd , (5.6)

with ϵd and ϵτ small constants. Introducing the Lagrange multipliers α and β, we have

max
θ

(1− α) GIL(θ) + α G̃IL(θ) + (λ− β) GRL(θ) + β G̃RL(θ) . (5.7)
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We assume β = αλ and (1− α) > 0 for simplicity, which gives the final objective:

max
θ

(
GIL(θ) + λGRL(θ)

)
︸ ︷︷ ︸

Original navigation

+ α
(1−α)

(
G̃IL(θ) + λ G̃RL(θ)

)
︸ ︷︷ ︸

Counterfactual navigation

. (5.8)

Technically, when increasing α/(1 − α), we choose to give more weight to what

could have been seen (variations in the environment) rather than maximising the gain.

Therefore, when the trajectories are longer we need smaller α/(1−α) which intuitively

allows the model to focus on correct actions at each state rather than variations that

could have been observed. Note, learning longer trajectories are generally harder and

a small mistake has more significant impact. This novel objective is used with the

counterfactuals, of which we next discuss the generation.

5.5.3 Counterfactual Distribution Learning and Generation

Computing Eq. (5.4) hinders on: (1) the distribution of the counterfactual trajectories

given the intervention by exogenous variable π̃θ(τ |u, c), (2) the conditional of the

exogenous p(u|τ, c) given the observed trajectory-instruction pair from data, and

(3) combining (1) and (2) to have the probability of the counterfactual trajectory as

π̃θ(τ | c) = Ep(u | τ, c)[π̃θ(τ | c, u)]. Here, u is marginalised out to remove the impact

of the intervention or spurious features.

1. Sampling from π̃θ(τ |c,u): To sample a counterfactual trajectory, we first sample a

pair of real trajectories from the observations such that at least one has the language

instruction, i.e. {(τ, c), (τ ′, c′)} ∼ D. Subsequently, we choose the counterfactual

visual features to be a linear interpolation. Given a sample u ∈ [0, 1]d (d being the

dimensionality of z) with slight abuse of notation, we have:

τ̃ ={z̃u0 , s̃0, a0, . . . , z̃uT , s̃T , aT} ∼ π̃θ(τ |u, c), z̃ut = u⊙ zt + (1− u)⊙ z′t,

with zt = fo(ot) , z′t = fo(o
′
t), ot ∈ τ , o′

t ∈ τ ′. (5.9)

We use ⊙ to represent an element-wise product. When the length of the second
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trajectory τ ′ is shorter, we choose to repeat its final visual features for interpolation.

Alternative approaches such as generative adversarial networks (Goodfellow et al.

2014) could be employed, albeit our simple option presents a clear advantage in

computational efficiency.

2. Exogenous variable’s distribution p(u | τ, c): Given the prior p(u), we have

p(u | τ, c) ∝ p(u)π̃θ(τ | c,u) as the posterior. It is easy to see that with our

definition in Eq. (5.9), when u = 1 we uncover πθ(τ | c) in Eq. (5.1). In other

words, u = 1 provides the max-likelihood since that gives rise to an observed

trajectory. We consider a Beta distribution for the prior.

3. Finding minimum interventions that change the agent’s decision: Having (1)

and (2) we can sample a counterfactual trajectory π̃θ(τ | c) (with u marginalised

out). One can resort to MCMC or a variational lower bound to sample the most

likely counterfactual. However, in the interest of efficiency and simplicity, we

choose the exogenous variable with the highest likelihood that produces the most

likely counterfactual. In other words, we seek the minimum intervention (i.e.

minimum edit) that changes the agent’s decision (remember, we want our coun-

terfactuals to be very different from observations). Since changing the agent’s

decision may lead to a different route in the environment, we additionally constrain

the counterfactual trajectory to have the same instructions. Given a training exam-

ple (c, τ), the following optimisation identifies such an intervention parametrised

by u (note τ̃ is the counterfactual of τ ):

max
u∈ [0,1]d

p(u | τ, c) + log p(c | τ̃ ,ϕ) (5.10)

s.t. a′t ̸= at ∀ t with a′t = argmax
at

p(at | s̃t) p(s̃t | s̃t−1, z̃
u
t , c) .

The second term in Eq. (5.10) measures how likely an instruction is for a trajectory

for which we utilise the speaker model of (Fried et al. 2018) with parameters

ϕ. The optimisation of Eq. (5.10) is too expensive to perform for every training
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Algorithm 2: Training of a VLN agent through IL and RL, with factual data
(original training set) and counterfactual observations (generated instances).

Inputs: dataset D, initial policy parameters θ0, learning rate ξu, ξθ
for i = 1 to max_iterations do

Pick a sample from the dataset (τ, c) ∼ D
Generate exogenous variable from the prior: u0 ∼ p(u)
Pick another sample from the dataset (τ ′, c′) ∼ D
// use Eq. (5.11) to get the counterfactual trajectory

for j to N do
τ̃ = {z̃u0 , s̃0, a0, . . . , z̃uT , s̃T , aT}, z̃ut = u ⊙ zt + (1− u) ⊙ z′t

// Eq. (5.9)

uj+1 =

uj + ξu∇u

(
∥u∥+log p(c|τ̃ ,ϕ)−γ∑T

t=1

(
log p(at|s̃t)+log p(s̃t|s̃t−1, z̃

u
t , c)

))
gIL = log πθ(τ | c) + α

1−α
log π̃θ(τ̃ | c) // imitation learning gain

Given the instruction c, rollout trajectories τrl and τ̃rl from the current
navigation policy without and with interventions respectively

gRL = Eτrl∼πθ(τrl | c)[R(τrl)] +
α

1−α
Eτ̃rl∼π̃θ(τ̃rl | c)[R(τ̃rl)] // RL gain

θi = θi−1 + ξθ∇θ

(
gIL + λgRL

)
// update based on Eq. (5.8)

trajectory. We note that the first term is maximised when u is close to one, as such

a relaxed version by turning the constraint into an extra term in the objective is

devised:

max
u∈ [0,1]d

∥u∥ + log p(c | τ̃ ,ϕ)− γ
T∑
t=1

(
log p(at | s̃t) + log p(s̃t | s̃t−1, z̃

u
t , c)

)
,

(5.11)

where γ is a hyper-parameter. The first two terms in this equation ensure the

intervention is minimal and the counterfactual trajectory is most likely to follow

the same instructions. The constraint, on the other hand, finds the counterfactual

trajectory by fooling the current policy.

A summary of the whole training algorithm is provided in Algorithm 2.

5.6 Experiments

To show the effectiveness of our counterfactual contemplation approach we applied it

to both Room-to-Room (R2R) navigation and Embodied Question Answering (EQA).
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In all of our experiments, we only intervene in the visual features as discussed in

Sec. 5.5.3. We set the prior p(u) to Beta(0.75, 0.75), and use 5 interactions to optimise

Eq. (5.11) with the learning rate set to 0.1. Using grid search, we concluded γ = 0.1

provides best results.

Following Algorithm 2, the learning process of exogenous variables u for two

samples picked from the dataset ({(τ, c), (τ ′, c′)} ∼ D) is as follows:

1. Repeat the last observation of τ ′ to be the same length as τ .

2. Sample u from the prior distribution Beta(0.75, 0.75).

3. Generate counterfactual visual features using u and based on Eq. 5.9.

4. Feed the counterfactual trajectory into Speaker and Navigator.

5. Update u based on Eq. 5.11 with learning rate of 0.1.

6. Repeat steps 3 to 5 for N iterations (N = 5 in the experiments).

5.6.1 Room-to-Room Navigation

Dataset: Room-to-Room (R2R) (Anderson et al. 2018c) is a dataset of natural

language instructions for indoor navigation collected using Amazon Mechanical Turk

(AMT) and employing a simulator based on Matterport3D environments (Chang

et al. 2017). The training is based on 14, 025 pairs of instruction-visual path in 61

environments. The validation is done in two settings: (1) seen where the environment

is from the training set but the instructions are not and (2) unseen where both the

instructions and the visual observations are never seen by the agent.

Implementation details: We closely follow the experiment setup of (Tan, Yu, and

Bansal 2019) where the visual observations consists of the features extracted using

the pretrained ResNet-152 (He et al. 2016) from the egocentric panoramic view of

the agent. Following the approach proposed in (Fried et al. 2018), our speaker is a

sequence-to-sequence model which evaluates the likelihood of an instruction for a

trajectory.
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Our navigation policy is a attention encoder-decoder network that encodes the

navigation history conditioned on the instruction and decodes the next direction that

the agent should follow. To have a fair comparison and show the effectiveness of our

approach, we closely follow the implementation proposed by Fried et al. 2018 and

evolved in Tan, Yu, and Bansal 2019. Our encoder is a recurrent neural network:

he
i = f e(fw(wi),h

e
i−1), (5.12)

where fw represents an embedding layer, f e is a bidirectional LSTM and he
i is the

latent representation vector for word i in the instruction (he
i ∈ R512), which is obtained

from the concatenation of forward and backward layers of the LSTM.

We calculate the attention over a collection of V values (vi) with respect to a key

vector (k) as:

α, att = Attention(k, {vi}Vi=1), (5.13)

with αi = Softmax(v⊺
iWki), att =

V∑
i=1

αivi,

where W are the parameters to be learned, αi is the weight of i-th value item and att

is the attentive feature vector.

Our decoder is an attentive RNN:

_, ẑt = Attentionv(hd
t−1, {zti}36i=1), (5.14)

hd
t = fd

(
[fa(at−1); ẑt],h

d
t−1

)
, (5.15)

_, ĥ
d

t = Attentionl(hd
t , {he

i}Li=1), (5.16)

{pj}Nj=1, _ = Attentiond(ĥ
d

t , {ztj}Nj=1), (5.17)

where zti is the concatenation of 2048-dimensional visual feature vector (extracted

from a pretrained ResNetHe et al. 2016) and a 128-dimensional angle embedding

vector, fa is an embedding layer to embed the previous action into a 64-dimensional
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vector, fd is another LSTM, and ĥ
d

t ∈ R512 represents the language-grounded state

of the navigation. The action is chosen greedily or by sampling (in IL or RL setting

respectively) among the N possible movable directions based on their corresponding

weight pj . It worth mentioning that we apply a Dropout of 0.5 between all layers of

the network.

We optimise our models using RMSprop with a learning rate of 1 × 10−4 and

batch size of 64 for 80, 000 iterations in all of our experiments, except when indicated.

We set α ≈ 0.83 (i.e. α
(1−α)

= 5) by grid search in behavioural cloning setting

(without counterfactual learning) for all the experiments. Value of α balances the

factual and counterfactual and as shown in Fig. 5.3 increasing it (more weights for

counterfactuals) improves the performance in the unseen environments to a point.

Increasing it further reduces the generalisation since the agent forgets the factual

observations.

Reinforcement Learning: When using reinforcement learning, the reward func-

tion is measured based on both agent’s progress toward the target location and its final

success/failure. To that end, at each step we calculate the distance to the target location

(dt) and, based on that, we measure the progress reward (dt − dt−1). Additionally, at

the end of each episode (either by reaching the maximum number of steps or after

choosing the stop action), if dt is lower than 3 meters, we provide the agent with a

big reward of size +2. Otherwise, we punish the agent with a negative signal of −2.

Note that we set the discount factor to 0.9 in all experiments.

Baselines: To evaluate our approach, we conduct extensive experiments in dif-

ferent learning settings similar to that of (Tan, Yu, and Bansal 2019; Anderson et al.

2018c) for fair comparison: imitation learning (IL; λ = 0), with additional reinforce-

ment learning (IL+RL), and with additional data augmentation (IL+RL+Aug). We

employ behaviour cloning and advantage actor-critic (A2C) algorithm (Mnih et al.

2016b) when IL and RL are needed respectively. The reward is calculated based

on the agent’s progress toward the target and its final success/failure similar to the

baselines (details in the suppl.). In addition, in the augmented setting, similar to (Tan,
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Validation-Seen Validation-Unseen

Model NL↓NE↓SR↑ SPL↑NL↓NE↓SR↑ SPL↑
Seq-to-Seq (Anderson et al. 2018c) 11.3 6.01 38.6 - 8.4 7.81 21.8 -
Speaker-Follower (Fried et al. 2018) - 4.86 52.1 - - 7.07 31.2 -
Co-Grounding (Ma et al. 2019a) - 3.65 65.0 0.56 - 6.07 42.0 0.28

IL* (Tan, Yu, and Bansal 2019) 9.9 5.34 50.2 0.48 9.5 6.10 42.6 0.40
IL+Prior 9.9 5.17 50.5 0.48 9.2 5.89 45.5 0.43
IL+Counterfactuals 9.8 5.37 48.9 0.47 9.1 5.75 46.4 0.44

IL+RL* (Tan, Yu, and Bansal 2019) 10.3 4.65 55.8 0.53 9.7 5.73 44.9 0.41
IL+RL+Prior 11.2 4.78 54.0 0.51 14.9 5.52 48.5 0.44
IL+RL+Counterfactuals 10.7 4.75 53.6 0.51 11.8 5.42 49.4 0.46

IL+RL+Aug* (Tan, Yu, and Bansal 2019) 10.3 4.01 62.5 0.60 9.7 5.48 50.3 0.47
IL+RL+Aug+Prior 11.0 3.65 64.4 0.61 13.5 5.13 52.4 0.48
IL+RL+Aug+Counterfactuals 10.8 3.65 68.2 0.64 12.4 4.95 53.5 0.49

TABLE 5.1: Evaluation metrics for R2R Navigation. Navigation Length (NL) and Navigation
Error (NE) values are represented in meters, while Success Rate (SR) values are percentage. ↑
indicates higher is better, while ↓ shows lower is better. Results indicated by * are as reported

in the official implementation: https://github.com/airsplay/R2R-EnvDrop.

Yu, and Bansal 2019), we fine-tune our trained model from IL+RL for the maximum

of 200, 000 iterations with additional samples obtained from instructions sampled

from the speaker.

Evaluation metrics: Similar to (Anderson et al. 2018c; Tan, Yu, and Bansal

2019; Wang et al. 2018; Fried et al. 2018), we employ both the Navigation Error

(NE), the difference as measured in meters between the agent’s final position and the

target location, and the Success Rate (SR), the the portion of traversed trajectories

at which the NE is less than 3 meters, to evaluate the performance of a navigating

agent. However, Success weighted by Path Length (SPL) (Anderson et al. 2018a)

better represents the efficiency by taking into account the inverse ratio of the agent’s

Trajectory Length (TL)–the distance the agent travelled– to the ground-truth. We

demonstrate all of these metrics for both seen and unseen environments.

Results: We report the evaluation performance of the proposed approach in

Table 5.1. We indicate the use of counterfactual objective in Eq. (5.8) by +Coun-

terfactuals. We consider reporting the performance of our approach by simply

conditioning the interventions on the prior distribution of the exogenous variable

indicated by +Pior. Using the prior, compared to the one optimised in Eq. (5.11),

https://github.com/airsplay/R2R-EnvDrop
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Validation-Unseen Test-Unseen

Model NL↓NE↓SR↑ SPL↑ NL↓NE↓SR↑ SPL↑
Random (Anderson et al. 2018c) 9.8 9.23 16.3 - 9.9 9.79 13.2 0.12
Seq-to-Seq (Anderson et al. 2018c) 8.4 7.81 - 0.22 8.1 7.85 20.4 0.18
Speaker-Follower (Fried et al. 2018) - 6.62 35.5 - 14.8 - 35.0 0.28
Self-Monitoring (Ma et al. 2019a) - 5.41 47.0 0.34 18.0 5.67 48.0 0.35
Reinforced Cross-Modal (Wang et al. 2019a) 11.5 6.09 50.1 0.43 12.0 6.12 43.0 0.38
Tactical-Rewind (Ke et al. 2019) 21.2 4.97 56.0 0.43 22.1 5.14 54.0 0.41
Counterfactual VLN (Fu et al. 2019) - 5.40 47.7 0.43 - 5.80 45.1 0.41
Environment Dropout (Tan, Yu, and Bansal 2019) 10.7 5.22 52.2 0.48 11.7 5.23 51.5 0.47

Ours 12.4 4.95 53.5 0.49 13.0 4.90 54.9 0.50

PRESS* (Li et al. 2019) 10.4 5.28 49.0 0.45 10.8 5.49 49.0 0.45
PREVALENT* (Hao et al. 2020) 10.2 4.71 58.0 0.53 10.5 5.30 54.0 0.51

TABLE 5.2: The comparison of our results with others in unseen environments. Test-unseen
results are reported on the task’s leaderboard in single-run setting. The methods indicated by
* are taking advantage of self-supervised pre-training. Our method can be applied on top of

these methods to result in a further improvement.

evaluates the value of estimating the posterior. As shown, by incorporating the coun-

terfactuals the navigation performance of the imitating agent, in particular for the

unseen environments, improves significantly. We particularly observe around 4%

improvement in SR and SPL compared to the baseline.

More importantly, our method improves the generalisation by decreasing the SR

gap between the seen and unseen environments from around 8 to 2.5%–a significant

improvement indeed.

Once the reinforcement signal is added (i.e. λ = 5), our proposed policy’s

performance improves further by more than 3% for SR compared to its IL counterpart.

Furthermore, our method enjoys about 5% improvement in SR and SPL in unseen

environments, and, more importantly, an approximately 6.7% drop in the seen versus

unseen performance gap. Further, using augmentations, our model enjoys another 4%

boost in both SR and SPL.

Finally, we submitted our proposed model to the leaderboard for the evaluation

on the test set–a hold-out dataset of 18 environments for a fair challenge‡. Table 5.2

demonstrates the superior performance of our model in comparison to other baselines.

‡Our evaluation on the test set is available at: https://evalai.cloudcv.org/web/
challenges/challenge-page/97/leaderboard/270

https://evalai.cloudcv.org/web/challenges/challenge-page/97/leaderboard/270
https://evalai.cloudcv.org/web/challenges/challenge-page/97/leaderboard/270
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FIGURE 5.3: The effect of α on the results inside unseen environments. α
(1−α) = 0 means no

counterfactual is used (conventional training).

Interestingly, our model outperforms the EnvDrop model (Tan, Yu, and Bansal 2019),

the most similar model to ours, by a significant margin of 3.4 percent in SR and 3

points in SPL. Besides, our agent surpasses self-supervised pre-training of (Hao et al.

2020), in terms of success rate and navigation error–a model that we believe can

further benefit from our approach.

5.6.2 Embodied Question Answering

Dataset: Embodied Question Answering (EQA) (Das et al. 2018a) is a challenging

variant of Vision and Language Navigation where in contrast to R2R task, the agent is

given a general question about an object in the environment, e.g. “what colour is the

car?”. Spawning in a random location in an unseen environment at test time, the agent

must first navigate to the proximity of the desired object and subsequently answer

the given question. The dataset consists of 6, 912 tuples of route-question-answer

in 645 distinct training environments and a collection of 898 tuples in 57 unseen

environments for the test set. At each step, the agent is provided with an egocentric

RGB image based on which the agent should choose the next action among a set of 4

discrete choices (forward, turn-left, turn-right and stop). We treat the

question as the instructions of the R2R dataset.

Implementation details: To attend the visual features of the egocentric RGB

image in House3D environments, we utilise the pre-trained CNN proposed in Das et al.

2018a. The network consist of 4 convolutional blocks in which a 5× 5 convolution
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dT↓ d∆↑
Model T−10 T−30 T−50 T−10 T−30 T−50

PACMAN (Das et al. 2018a) 1.39 4.98 9.33 -0.45 0.49 1.66
Neural Modular Control (Das et al. 2018b) 0.85 4.32 9.29 0.09 1.15 1.70

GRU 0.74 3.99 8.73 0.20 1.48 2.26
GRU+Prior 0.73 3.95 8.50 0.21 1.52 2.49
GRU+Counterfactuals 0.71 3.88 8.46 0.23 1.59 2.53

TABLE 5.3: Evaluation metrics for EQA navigation.

layer is followed by BatchNorm, ReLU and 2× 2 MaxPool layers. The network is

trained in a multi-task learning setting where the outputs of the last convolutional block

are fed into three separate decoder heads for RGB image reconstruction, pixel-wise

semantic segmentation and semantic classification. In our experiments, we extract

the outputs of the last convolutional block (R3200) and downsize its dimension to 128

using a fully-connected layer to reach latent observation representations z.

We train all of the models for 30 epochs (more than 10, 000 iterations) in a

behavioural cloning setting with a batch size of 20 and learning rate set to 1× 10−3

using Adam optimiser. It should be noted that since there is no instructions to be

followed (just the question here) we disregard the second term in Eq. (5.11) for this

task.

Evaluation metrics: For the evaluation, we spawn the agent in 10, 30, or 50

steps away from the target location in terms of the shortest path (similar to (Das et al.

2018a)). The main metric for the evaluation is the distance (in meters) between the

location where the agent stops and the ground-truth target denoted by dT . Additionally,

we consider d∆ = dT − d0 as another critical metric measuring the overall progress

of the agent from its initial position d0 towards the target. In contrast to dT , higher

values of d∆ show better performance. The agent is constrained to a maximum of 100

steps at each episode.

Results: As shown in Table 5.3, almost 10% increase in generalisation to unseen

environments is achieved by letting the agent contemplate the unseen. Finally, not

only our approach improves the performance of the agent in reaching short-term goals

(T−10), but it also enhances its accuracy in finding distant objects (T−50).
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EQA is more complex than R2R (long trajectories and high-level language in-

structions) for which the scores are generally low and the agent learns trivial actions,

e.g. going through the door. We found correspondingly using grid search, the best

performance is when α ≈ 0.29 (i.e. α
(1−α)

= 0.4)–a considerably smaller value to

that of R2R. This supports our hypothesis for using longer trajectories in Eq. (5.8)

in which, when the gain is low, the agent must primarily focus on maximising gain

(even if that leads to trivial actions) rather than variations. Nevertheless, using coun-

terfactuals even for such a difficult task improves performance of our agent to achieve

state-of-the-art results.

5.7 Conclusions

Generalisation ability is paramount for developing a practical VLN in robots that

can operate in the wild, yet many overfit the instructions to the visual stimuli in the

training. More importantly, current approaches fail to incorporate any mechanism for

reasoning about the likelihood of alternative trajectories – a crucial skill for the task.

To remedy the issue, we turned to the counterfactuals as a principled approach for

reasoning about unobserved scenarios for estimating the effect of an intervention that

is not directly represented in the data. We formulated the new learning objective to

incorporate both the real data as well as the counterfactuals obtained conditioned on

the exogenous variable. This implicitly forces the navigation policy and the internal

state representation to learn semantics and high-level relations rather than relying

on statistical regularities specific to either visual observations or instructions. The

effectiveness of our approach has been illustrated in two challenging VLN tasks.

Crucially, our method is a general model that can be implemented not only in any

VLN task but also in complex multi-modal problems where high-level reasoning is

required and generalisation is paramount; thus, we consider exploring this avenue

further in future.
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Instruction: Walk forward up the set of three stairs. Enter the room at the end of the hallway. Walk o the 

massage table, and stop.

STOP

STOP

𝑡 = 1

𝑡 = 2

𝑡 =4

𝑡 =3

𝑡 =5

𝑡 =6

𝑡 =7

Baseline (IL+RL+Aug) Ours (IL+RL+Aug+Conterfactuals)Step

Success

Failure

FIGURE 5.4: Trajectory Sample. The baseline agent (left trajectory) follows the language
instruction until step 4, where instead of moving towards the massage table, it goes into the
next hallway. We argue that since there are limited massage tables in the training set, the
baseline method does not consider this one as a variant of table and continues searching to
stop at the end of the next hallway (6 meters away from the target position). On the other
hand, our agent (at the right side), succeeds in identifying the massage table and ends up at

the target location without any navigation error.
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Instruction: Walk through double doors into the house. Continue around the dining table and through the entry 

way to the next room. Walk up to the couch and armchairs surrounding a coffee table. 

STOP

𝑡 = 1

𝑡 = 2

𝑡 =4

𝑡 =3

𝑡 =5

𝑡 =6

Baseline (IL+RL+Aug) Ours (IL+RL+Aug+Conterfactuals)Step

STOP SuccessFailure

FIGURE 5.5: Trajectory Sample. Both agents follow the same path until step 3, where they
need to identify and reach the coffee table that is surrounded by the couch and armchairs. In
contrast to the baseline model that looks for typical tables in the environment and overlooks
the couch from the back view, our model, recognises them and attends the target position

successfully.



5.7. Conclusions 135

Instruction: 'Exit the room then go straight and turn left. Go straight until you pass an eye chart picture frame

on the left wall then wait there. 

STOP

STOP

𝑡 = 1

𝑡 = 2

𝑡 =4

𝑡 =3

𝑡 =5

𝑡 =6

Baseline (IL+RL+Aug) Ours (IL+RL+Aug+Conterfactuals)Step

Success

Failure

FIGURE 5.6: Trajectory Sample. The baseline model neglects a part of the instruction, and it
seems that it has presumed the picture frame in step 2 as the one mentioned in the guidance
improperly. Biased by the great number of trajectories in the training set, it decides to go into
the door at the opposite side, which costs the agent to end up unsuccessfully (7 meters away
from the target). On the contrary, our approach executes the instruction precisely, finds the eye
chart picture frame correctly, and stops at the vicinity of the goal location (1 meter error).
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Instruction: Walk straight past the bar through the doorway. Turn right at the picture and enter the bedroom. 

Stop and wait by the closet. 

STOP STOP

𝑡 = 1

𝑡 = 2

𝑡 =4

𝑡 =3

𝑡 =5

𝑡 =6

Baseline (IL+RL+Aug) Ours (IL+RL+Aug+Conterfactuals)Step

SuccessFailure

FIGURE 5.7: Trajectory Sample. From the pictures it is evident that the baseline approach
cannot find the right path, that is identifiable with the picture clue in the instruction, and,
consequently, ends up about 13 meters away from the target. On the other hand, our approach
succeeds in correlating the language instruction to the correct path and reaching the target

location (less than 1 meter error).



137

Chapter 6

Conclusion

Training an intelligent agent able to interact with humans in interactive environments

is suffering from some limitations, from which we addressed three major ones in this

thesis. Firstly, we proposed a consistent and fluent visual negotiation model that is

able to compete with humans over selling/buying an item. For that, we empowered

the agent to go through the online shops in search of similar items with the purpose

of understanding the real value of the item, which plays an essential role in human

behaviour understanding. Moreover, in a hierarchical recurrent model, we enabled

the agent to comprehend all the influential information in a negotiation from various

modalities to later build competent and reasonable pricing and language generation

policies. One potential improvement that we consider in our further research is the

integration of transformer-based pre-trained models that have shown astonishing

results recently (Devlin et al. 2018; Radford et al. 2019; Hong et al. 2021).

Secondly, to supply an interactive agent with the ability to efficiently seek more

information from humans, we focused on active learning (AL), which aims at de-

creasing the labelling cost during a human-in-the-loop process. For that, we propose

a novel AL method based on interpolations in the feature space that finds the most

informative subset of unlabelled instances carrying distinctive features, which, after

labelling and using for training, the model’s performance would increase significantly.

In our AL approach, we offer an efficient and scalable mixing algorithm between the

features of an unlabelled sample and salient features of each class (extracted from the

labelled set) to find unlabelled instances with novel features in their neighbourhood.
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Extensive experiments on a wide range of image, video and non-visual data classifica-

tion tasks revealed the superiority of our approach in comparison with state-of-the-art

AL methods. We set the investigation of the applicability of our AL approach on

interactive vision and language problems as a future direction of study.

Finally, to prevent the model’s tendency towards learning biased correlations in

the data and memorising features of seen environments, which are major limitations

for the generalisation of interactive vision and language models, we proposed coun-

terfactuals as a form of data augmentation. As for the biased correlation problem,

we suggest to extend the training set to include counterfactual instances generated

from the minimum interventions in the features of actual samples that affect their

related output. We showed the effectiveness of our approach for the generalisation

enhancement of various unimodal and multimodal applications in the area of vision

and language. Regarding the later issue, we further expanded the utilisation of counter-

factuals in interactive environments in a way that the agent can create counterfactual

environments on the fly and learn from the interactions in those environments. This

way, in the context of two challenging vision and language navigation tasks, we

significantly enhanced the model’s generalisation to unseen environments. One fur-

ther extension of this work would be to apply it on interactive tasks where the agent

is constantly in connection with humans and can ask for further guides during the

execution of the policy (i.e. Vision and Dialogue Navigation).
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