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“Believe you can and you’re halfway there.” — Theodore Roosevelt



Abstract

Water quality monitoring is an essential element of the water quality management
system and water treatment process. Conventional water quality monitoring relies on
grab sampling and laboratory analysis, which is unable to provide quick responses to
water quality events as it often takes hours and even days to transport and analyse
water samples. Online water quality monitoring measures water quality continuously
and allows quick responses to water quality events by providing real-time water quality
data. In recent years, the online UV-Vis spectrophotometer has been reported as a
promising technology for continuous water quality monitoring and process control. It
reveals the real-time water quality changes and enables the development of surrogate
parameters for online water quality monitoring and process control. However, there
are some technic and data processing issues with using the online instruments for water
quality monitoring. Besides, limited knowledge and research were reported on the

utilisation of the online UV-Vis spectrophotometers for water quality management.

This thesis project uses advanced data analytics to enhance the UV-Vis
spectrophotometer for real-time water quality monitoring and treatment process
control. Laboratory investigations were conducted to explore the impact of water
matrix and suspended particles on the online water quality measurements using a
submersible UV-Vis spectrophotometer, and to assess the water quality monitoring
performance for different water sources. Both particle types and particle
concentrations were found to have significant impacts on the UV2s4 measurements,
showing that water quality data measured by the submersible UV-Vis
spectrophotometer varied when the water matrix changes. These findings provide
evidence that the particle influence on the UV-Vis measurements is source-water

dependent.

Surrogate models were developed as software techniques to eliminate particle impact
from the measurements. Various software particle compensation techniques (surrogate
models) including single wavelength compensation, linear regression compensation
and multiplicative scatter correction methods were developed for online UV-Vis

measurements of water quality. Moreover, cost-effective simple UV-Vis instruments




could be employed in the field to monitor water quality instead of using sophisticated
full-spectrum UV-Vis instruments.

The real-time water quality measurement technology, UV-Vis spectrophotometer, was
used for water treatment process control. Surrogate modelling approaches were used
for the first to build coagulant dose determination models using only online UV-Vis
spectra of raw water quality combined with chemometrics to determine coagulant
doses and control the coagulation process for a drinking water treatment plant. The
results revealed that an online UV-Vis spectrophotometer combined with a software
surrogate model is a promising technology that determinates coagulant doses for real-

time process control.
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Chapter1 Introduction

Research Questions:

e Why and how particles in the water affect the measurements of

water quality using online UV-Vis instruments?

e How to obtain accurate measurements using online UV-Vis

instruments?

e Can we use only UV-Vis spectra for water treatment process

control?




1.1 Background and Significance

Water quality management is an important task carried out by the water industry to
ensure the delivery of a safe drinking water supply service. Climate change has
affected source water quality in many ways. One of the most relevant to the water
industry is through increased frequencies of extreme hydrological events [1, 2]. These
result in more frequent and larger variations of water quality of water sources caused
by unstable weather conditions such as floods and droughts [3]. Source water quality
change with increased turbidity and organic content is a challenging issue for the
operation of water treatment plants. This adds stress to many water treatment facilities
as they may reach their design capacity and cannot handle the situations [4]. It is
expected to become a more challenging task to manage water quality from catchment
to tap due to climate change for the supply of safe and clean drinking water [5].
Therefore, it is essential to have robust and advanced process control systems to
improve the treatment performance which can handle the large changes in source water
quality. Water quality management systems are developed specifically by water
utilities to manage their own drinking water supply according to their local situations
and must comply with drinking water quality guidelines established by the World
Health Organization. Water quality monitoring and treatment process control are two
vital aspects of the water quality management systems to detect events and manage
risks that can compromise the supplied water quality [6]. Both aspects provide
operational control and preventive measures for assuring safe and reliable drinking

water to consumers.

There are several commercial or in-house water quality monitoring and treatment
process control options, and solution packages available for treatment operators,
including feedback control, employing empirical models, and more recently applying
advanced control algorithms based on machine learning [7, 8]. Modelling is one of the
most commonly used methods that can be applied in process control to improve water
treatment plant performance [9, 10]. Studies have shown that the operation of water
treatment facilities can be improved through modelling methods [7, 11, 12]. Models

can be developed and applied to simulate the drinking water treatment processes for




predictions of process behaviours under changing conditions and the determination of
water quality [13, 14]. Water treatment process control knowledge would be
accumulated via years of experience which can be considered as the human version of
data analytics. The most recent development of control strategies is based on advanced
data analyses of online water quality measurements using advanced computing to
extract useful control information [9, 15]. Data analytics is a process of extracting
valuable information from raw data using the computational power of computer
systems, which can be used to improve the operational efficiencies of water utilities.
Data analytics has been proved to improve water treatment plants performance by data
visualisation (graphically showing water quality trends) and data analytics (identifying
potential instrument problems, and discovering relationships between process

parameters, process train anomalies and unusual patterns) [16-18].

Online water quality monitoring can provide two parallel functions for water treatment
process control, which can assist in treatment process improvement with the
simultaneous assessment of water quality by identification of contaminant sources and
determination of the corrective actions to control the treatment processes. Monitoring
of water quality can occur at many locations of the supply system and mostly at the
inlets and outlets of the water treatment plants, as well as locations within the treatment
train to monitor the treatment processes, which is considered fundamental to water
treatment. Conventional water quality monitoring relies on the laboratory analysis of
grab samples which has great limitations in terms of process control purpose.
Laboratory analytic data may not represent the true variances of water quality
conditions as the data may have a low temporal resolution. Furthermore, the laboratory
data are unable to provide quick responses to water quality changes, as it generally
takes hours or even days to transport and analyse water samples in the laboratory [19,
20]. There is a high possibility that the conventional monitoring method may miss
major water events which leads to negative impacts on process management and thus
water quality [21, 22] In contrast, online water quality monitoring measures water
quality continuously which allows real-time measurements and process control to be
carried out simultaneously [9, 23]. Online water quality monitoring has been proved

useful in improving treatment process performance via real-time, source water




contaminant detection and control of the treatment process [8, 24]. In other words,
online water quality monitoring allows quicker responses to water quality events and
treatment process optimisation, as well as provides real-time data for the development
and refinement of online surrogate water quality parameters [22, 25]. Further process
optimisation development trend within water treatment plants is predicated on the
transformation of online water quality data for the real-time evaluation of water

treatment systems to enable process optimisation [22, 26].

Under this development trend, smart analytics will play a major role in advanced
approaches for water treatment control. Smart analytics utilises advanced computer
techniques to analyse a large volume of data for the improvement of process control.
A surrogate parameter is an example of how an indictor can be developed from smart
analytics. The use of surrogate parameters is a well-established practice for monitoring
water quality and controlling the water treatment processes. Surrogate measurement
represents a practical alternative to the detection and quantification of specific
contaminants that require sophisticated and expensive laboratory-based analytical
techniques [27]. Surrogate parameters can also function as a valuable screening tool
for the evaluation of raw water quality [28] and can be used to rapidly determine
changes in water quality caused by individual processes and overall treatment
processes [17, 29]. The surrogate parameters can be generated from empirical
modelling and/or advanced computing techniques. Simple surrogate parameters such
as turbidity, colour, and UV2s4 have been commonly used for water quality indicators
by estimating concentrations of organic matter to monitor and control treatment plant
operations for the removal of particulate matter [30, 31]. Other more complex
surrogate parameter examples using UV-Vis absorbance measurements for real-time
monitoring of chlorine demand [32, 33], DBPs [34], and alum dose [35]. It is believed
that these online surrogate parameters can provide valuable information to assist the
water treatment operators and inform decisions. However, as in other technology
development cases, it requires long term investigation and validations of these
surrogates at full scales. The water industry worldwide continually searches for better

ways for water quality monitoring and process control. Using surrogate water quality




parameters may be the most promising option. A few existing online surrogate
parameters can be applied to substitute for the traditional water quality parameters.

There are many cases of successful use of water quality sensors with great practical
benefits. Water quality sensors have been widely used for source water protection,
automated operation of drinking water treatment and many other examples. The online
UV-Vis spectrophotometer is a useful instrument for developing a simple and effective
measuring device for real-time water quality monitoring that can fulfil the industry
requirements as a real-time monitoring tool. Currently, UV-Vis spectrophotometers
are commonly used in the laboratory for water quality analysis, which is operated by
multiple technic steps, including sample pre-treatment filtration and chemical
reagents. In recent years, online UV-Vis spectrophotometers have been used for
continuous water quality monitoring and process control by several water utilities [36,
37]. However, there are many technical issues involved in water sample treatment and
data analysis, such as the high frequency of changing filters for instruments that
required physical filtrations and measurement difficulties [32, 38, 39]. It is not
practical to use a spectrophotometer with physical filtration in the field for continuous
online water quality monitoring [40]. Yet, submersible UV-Vis spectrophotometers
with smart analytics to determine water quality parameters have gained attention and
are suitable for continuous online water quality monitoring as they do not require water
sample pre-treatments and are adaptable with a selectable range of pathlengths for
various applications. These UV-Vis spectrophotometers usually have built-in particle
compensation algorithms that can mathematically analyse and automatically minimise
the particle effects from measurements by the onboard computer, which are able to
determine commonly used water quality parameters as so-called calculated equivalents

(surrogate) including UV2s4, colour, nitrate and dissolved organic carbon (DOC).

Submersible UV-Vis spectrophotometers have been used widely for surface water
quality monitoring, drinking water quality monitoring and process control [38, 41, 42].
It allows to measure real-time changes in water quality [43] and enables the
development of alarm parameters to detect unusual changes in water compositions.

Some studies have been conducted using submersible UV-Vis spectrophotometers to




carry out in-situ measurements using surrogate parameters for water treatment process
control [44, 45]. However, there is still limited knowledge and research on the
utilisation of the submersible UV-Vis spectrophotometers for online water quality
monitoring and process control, particularly for drinking water supply. Therefore, it is
necessary to obtain in-depth knowledge of the utilisation of the online water quality
data and the development of surrogate parameters for water quality monitoring and
process control based on online UV-Vis spectral data and advanced computing
techniques. This is an important development of water measurement technology
towards the online water quality monitoring for process control in real-time for the

proactive management of drinking water supply.

In this thesis study, time series spectral water quality data measured by UV-Vis
instruments from industrial water treatment plants were analysed using advanced data
analytics. Case studies for this project were selected based on ten years’ water quality
data from a local water utility in South Australia (SA). Water sources in these treatment
plants include stormwater, drinking water, wastewater and recycled water. The
selected online UV-Vis instrument for this study has been used by the water industry
for about 15 years. Moreover, rigid data selection process was conducted to ensure the
good quality of data used in this study. This will allow better utilisation of online water
quality and operational data for decision-making that will improve the efficiency of

water treatment processes and result in better water quality management.

1. 2 Research Objectives

This project aimed to develop the next generation process optimisation and decision
support tools to improve the efficiency of the water treatment plant operations. The
research approach was to develop and use surrogates with advanced computing
techniques utilising operations data from industrial water treatment plants combined

with water quality measurements using online UV-Vis instruments.

The research objectives of this thesis study were:




1. To explore the potential of applications of UV-Vis sensors for online water
quality monitoring.

2. To provide in-depth knowledge of the impact of suspended particles on the
measurements of water quality using online UV-Vis spectrophotometers.

3. To identify and provide solutions to overcome the challenges of using
submissible UV-Vis instruments for online water quality measurements.

4. To develop and evaluate software particle compensation techniques for
accurate measurements of water quality parameters (surrogates) using online
UV-Vis spectral data.

5. To extend the application of time series UV-Vis spectral data for water
treatment process control.

6. To develop surrogate models using UV-Vis spectra of raw water to predict

chemical dosing for water treatment process control.

1. 3 Thesis Outline

This thesis reports the research outcomes of my PhD study, which is presented in the

form of journal publications. Each chapter states specific research objectives that are

related to the aim of this study. The chapters in this thesis are presented in the following

sequence:

Chapter 1 introduces the background to the research, the significance of the
project and, outlines the research objectives and key contributions in the field of
online water quality monitoring and process control wusing UV-Vis
spectrophotometers.

Chapter 2 reviews the progress of applying online UV-Vis spectrophotometers
for drinking water quality management in the last two decades. This chapter also
discusses the issues and potential solutions related to the application of online
instruments. At the end of Chapter 2, it identifies research gaps and provides a
background for the following chapters. One aspect of the research gap is that there
is a lack of studies on the utilisation of the water quality data from the online UV-

Vis spectrophotometers and the development of surrogate parameters for water
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quality monitoring and process control. In Chapters 3 to 5, further specific
literature reviews are presented that are related to the research objective in each
chapter.

To develop in-depth knowledge of the online water quality monitoring with the
employment of UV-Vis sensors, Chapter 3 investigates the impact of suspended
particles in the water on the measurements of a submersible UV-Vis
spectrophotometer and the performance of the factory built-in algorithms under
laboratory-controlled conditions. This Chapter provides essential knowledge of the
particle impacts on the water quality measurements which is fundamental to the
surrogate development from online UV-Vis spectrophotometers.

To overcome the measurement issue of online UV-Vis sensors and obtain reliable
and accurate measurements, the study in Chapter 4 develops various alternative
particle compensation techniques (Surrogate models) for online water quality
monitoring using water quality data collected from three selected water sources in
two drinking water treatment plants. UV2s4 as a surrogate is used as an illustration
of the development of water quality surrogate parameters using UV-Vis spectra.
To assist the water treatment process control, the study in Chapter 5 develops
surrogate models to determine coagulant dosages for process control using online
UV-Vis spectra of raw water from a water treatment plant. This study might be the
first to build coagulation dose perdition models (surrogate model) with the
utilisation of only online raw water quality data.

Chapter 6 presents the conclusions of this research project and perspectives for
further work on the application of online UV-Vis spectrophotometers for drinking

water supply.
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1.5 Supporting Information

| co-authored a technical article, entitled ‘Stormwater monitoring using on-line UV-
Vis spectroscopy’, which was published in the journal of Environmental Science and
Pollution Research, as shown in the Appendix A. Stormwater is a type of water source
for the drinking water supply, thus this article is relevant to this PhD research project.
My contributions to the article were data analysis, writing and editing of the
manuscript. However, the data analysis for the article was standard methods, not

advanced, which is beyond the scope of this research project.
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Water quality management is essential to water utilities for the drinking water supply
from catchment to tap. Water quality monitoring is a vital component of the water
quality management system. Online UV-Vis spectrophotometers are simple but
effective tools to provide continuous measurements of water quality parameters to
allow quicker responses to water quality changes compared to conventional water
quality monitoring [1, 2]. Studies of online water quality monitoring have shown that
online UV-Vis spectrophotometers have the potential for real-time water quality
monitoring and process control [3, 4]. Due to a limited number of published research
that was related to online monitoring of using UV-Vis spectrophotometers, there is a
need to expand the literature search to cover not only journal articles and books, but
also existing guidance documents and industry reports in applications of online UV-
Vis instruments, which are necessary to identify the knowledge gaps [3, 4]. Besides,
there were only several published reviews on the industry applications of UV-Vis
spectrophotometers [5-7]. These reviews either presented a broad view, concluded the
principles of the instruments, or focused on a particular water quality parameter.
Therefore, this chapter covers the practical aspects by reviewing the research progress
of online UV-Vis spectrophotometers for water quality monitoring and process control
in terms of drinking water supply, particularly, techniques for industrial applications
that could make the UV-Vis instruments more acceptable. Various methods of
anomaly detection and early warning were also discussed for drinking water quality
monitoring at the source or in the distribution system. As most studies of online UV-
Vis instruments in the drinking water field were conducted in the lab- and pilot- scale,
future work is needed for industrial-scale applications. Issues and potential solutions
associated with online instruments for water quality monitoring have been provided.
Based on the industry feedbacks of the current technique development, future research
and development work are needed for the integration of early warning and real-time

water treatment process control systems for water quality management.

Chapter 2 provides updated research achievements and outcomes which are beneficial
for identifying the research gaps to determine research objectives for Chapters 3-5.
One large aspect of the knowledge gaps is limited studies on the research of online

UV-Vis spectrophotometers for water quality monitoring and process control. The
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project structures and arrangements of Chapters 3 to 5 are shown in Figure 2-1. Firstly,
research is needed to expand the knowledge of implementation of the online
instruments for water quality monitoring in the field. The study in Chapter 3 presents
systematic investigations to discover the influence of suspended particles in the water
on the online measurements of a submersible UV-Vis spectrophotometer, which is
fundamental to the surrogate development from online UV-Vis spectrophotometers.
To overcome the challenges of using online UV-Vis sensors for accurate water quality
measurements, research in Chapter 4 is conducted to develop surrogate parameters as
alternative particle compensation techniques for online water quality monitoring based
on UV-Vis spectra. The study in Chapter 5 reports the research approach and outcomes
for the development of surrogate models of coagulation dose determinations and

predictions for process control using UV-Vis spectra.
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Figure 2-1 Flow chart of arrangements of Chapters 3 to 5.

The following content of this chapter is presented as a review paper that has been
published by the journal of Sensors, as shown in appendix B.
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2.1 Introduction

Drinking water quality is a key performance indicator for water utilities and is
important to public health. Water utilities are committed to drinking water quality
management to ensure that the supplied water meets the drinking water standards.
Water quality management systems have been developed by water utilities to manage
the water supply from catchment to tap, covering source water transportation, water
treatment and distribution systems, for the safe supply of drinking water. Most
drinking water quality management systems followed the World Health Organization
drinking water quality guidelines. Water quality monitoring and treatment are two
main water quality management systems to detect hazards and events that can
compromise water quality and provide operational control for assuring safe and

reliable drinking water as preventive measures.

Water quality monitoring is needed to ensure that the supplied water to the consumers
meets the standards. Conventionally, water quality monitoring for drinking water
treatment plants relies on a regular sampling program (collection, transportation,
followed by laboratory analysis) which only captures small snapshots over a period of
time and may not represent the true variances of water quality. It also frequently suffers
from feedback delay and is unable to provide rapid responses to water incidents [8].
Water analysis using standard laboratory methods requires long sample preparation
and analysis processing time such as sample pre-treatment or adding reagents. There
is also a higher risk that the conventional monitoring method may miss water events
that could lead to negative impacts on water quality and treatment process
management. In contrast, online monitoring measures water quality continuously
which allows real-time water quality measurements and process control [9]. In
summary, online water quality monitoring can improve the treatment process with
real-time assessment of both source and treated water quality, identification of
contaminants and control of the treatment process [10]. It is also useful during the
period of rapid water quality changes when quick responses are needed to optimise the

process [11].
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There are many well-established online water quality sensors, including chlorine, total
organic carbon (TOC), turbidity, conductivity, temperature and pH sensors, which are
able to only measure one water quality parameter. Biosensors and optical sensors have
received a lot of attention in recent years for online water quality monitoring [8, 12].
Biosensors are mainly based on fluorescence and are used for the detection of
microorganisms such as bacteria and viruses. Optical sensors measure light absorption,
light scattering, or fluorescence. A classic example of an optical sensor is a turbidity
meter. More advanced optical sensors are infrared, fluorescence, and UV-Vis
spectrophotometers. Infrared optical sensors can continuously measure organic
compounds at wavelengths greater than 760 nm and can analyse water samples at
liquid or gas phases [13]. The infrared sensors are not commonly used for online water
quality for water treatment processes. Fluorescence sensors can continuously
determine dissolved organic matter. Microorganisms could be determined as microbial
indicators of water quality by analysing fluorescence from a molecule according to its
fluorescent properties. UV-Vis sensors can continuously measure water quality
parameters by determining the amount of light absorbed by compounds, such as TOC
and dissolved organic carbon (DOC), colour, nitrate and specialist parameters. Both
fluorescence and UV-Vis sensors do not require sample pre-treatment, reagent free,
and allow fast measurements [12]. UV-Vis sensors can measure multiple parameters

for water quality monitoring and treatment process control.

Water quality analysis using UV-Vis spectrophotometers is a simple but effective
method to measure water quality. In conventional laboratory water quality analysis
using spectrophotometers, sample pre-treatment is needed, physical filtration using
0.45 um filters is to eliminate particle interference for measuring UV2s4 and reagents
are used for nitrate determinations. Some commercial online UV-Vis
spectrophotometers have built-in particle compensation and other algorithms to
eliminate sample pre-treatment and can provide calculated equivalents of water quality

parameters such as UV2s4, colour, nitrate, DOC, and TOC [14].

In recent years, additional parameters have been included in water quality monitoring

using online UV-Vis spectrophotometers [15] such as measurements of dissolved
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organic matter [2], chemical oxygen demand (COD) in water [16], and disinfectant in
drinking water [17]. It has gradually been applied for process control of water
treatment, particularly for the coagulation process [18]. However, it could be
challenging to obtain accurate water quality measurements for those online UV-Vis
instruments with built-in algorithms. Main technique issues include under-
compensation, over-compensation, and failure to generate reasonable measurements
for real-time monitoring and process control [3, 6, 7, 19]. In contrast, reliable
measurements were also reported using the online UV-Vis instruments for water
quality detection and water treatment process control [20-22]. Various studies have
been conducted to develop algorithms based on certain wavelengths (regions) of UV-
Vis spectra to determine water quality such as the use of absorbance ratios to monitor
the variation of DOC in the water and multiple linear regression to estimate the total

carbon contents in water [23, 24].

Applications of UV-Vis spectrophotometers for water quality analysis have been
reported in several review articles. A brief product review on a submersible UV-Vis
spectrophotometer (probe) was conducted in 2006 which summarised the typical
applications for wastewater treatment, environmental monitoring, and drinking water
applications [25]. The use of UV-Vis spectrophotometers for dissolved organic matter
studies was reviewed, which summaries the use of derivatives and differential
absorption spectra methods for DOC determinations in 2017 [2]. A recent publication
reviews the advances of water quality detection by UV-Vis spectrophotometers in
2020 [15]. In this work, the principle of the instruments and modelling methods for
predicting water quality were outlined. These reviews validate the principles of UV-
Vis spectrophotometers and the general use of UV-Vis spectrophotometers.

There were only several published reviews on the industry application of the UV-Vis
spectrophotometers. These reviews either presented a broad view, concluded the
principles of the instruments, or focused on particular water quality parameters. There
is a lack of published research covering the practical aspect of using online UV-Vis
spectrophotometers in drinking water supply applications. Therefore, it is necessary to

expand the literature search to cover not only journal articles and books, but also
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existing guidance documents and industry reports in applications of online UV-Vis
instruments [3, 4]. This updated information on research and technology development
is beneficial for identifying the knowledge gaps and research needs in this field.
Therefore, this paper presents an overview of the status and research progress of the
UV-Vis instruments for online water quality monitoring and process control. These
updates are particularly important to provide practical knowledge that makes UV-Vis
instruments more acceptable to the drinking water utilities. Firstly, an overview of
online UV-Vis instrumentation is presented. Recent outcomes for the development of
online water quality monitoring using UV-Vis spectrophotometers for anomaly
detection and early warning are discussed in detail. Finally, field applications of online
UV-Vis spectrophotometers and integration into the water quality management system
are briefed and discussed. Challenges and solutions associated with the development
and application of the online UV-Vis spectrophotometers for water quality monitoring
are addressed. This paper also highlights perspectives for future research needs in the

development and applications of online UV-Vis spectrophotometers.

2.2 Online UV-Vis Spectrophotometers

Online UV-Vis spectrophotometers can be effective and practically useful for
continuously measuring water quality parameters. Particle influence on water quality
measurement using UV-Vis spectrophotometers can be minimised using software
particle compensation techniques. The water industry has deployed more online
instruments to monitor water quality from catchment to tap for online and in-situ
measurements as well as the treatment process control. However, the reputation of
lacking reliability of the measurements is the general restriction to the use of these
instruments for a wider range of water quality management applications. This section

discusses those issues and limitations.
2.2.1 Online UV-Vis Spectroscopic Instrumentation

With the advancement of photodetector development, there is an increasing variety of
online UV-Vis spectrophotometers. Various UV-Vis sensors developed from different

detection technologies and instrument designs are available for water quality
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monitoring and process control. The principle of UV-Vis spectrophotometry is based
on the substance molecules in the water that can absorb UV-Vis light of a specific
wavelength. Water quality can be determined by the correlation between the
absorption spectrum and the concentration of the substance [15]. These sensing
devices generally do not require sample filtrations (software particle compensation),
are reagent free, and allow fast measurements of water quality. They also have low
maintenance requirements for parameters such as UVass and spectral absorption
coefficient (SAC254). These instruments are equipped with automatic ultrasonic
cleaning systems. However, regular / on-demand manual cleanings of the
measurement ports are still required to ensure reliable measurements for turbid source
waters. Commonly used commercially available online UV-Vis instruments are
summarised in Table 2-1. There are mainly two categories of these online instruments:

single wavelength (SW) and spectrum (full or partial).

Online SW UV-Vis instruments determine concentrations of a particular parameter in
water based on the absorbance of a selected single wavelength [5]. The SW UV-Vis
instruments also called UV sensors are manufactured with a specific wavelength to
measure UV2s4 Or nitrogen as nitrate and nitrite. The most common SW instrument is
UVa2s4 sensors which measure the absorbance at 254 nm with the absorbance at 550
nm for particle compensation. UV2s4 sensors can generate surrogate parameter -
SAC254 to determine dissolved organics and provides measurements of correlated
parameters such as DOC and COD [5]. These surrogate parameters determined by the
sensors are generated based on the correlations (often linear) of UV2s4 absorbance and
parameters which indicate organic matter in the water. This concept is used by some
commercial instruments including the HACH UV probe [26], Burkert SAC254 sensor
[27], and YSI UV-Vis sensor, which employ a single wavelength (absorbance at 550
nm) to compensate for particle effect. These instruments are SW instruments, in many
cases, that utilise absorbance at 254 nm to determine the concentrations of a particular
parameter such as DOC.

In comparison to the SW UV sensors, UV-Vis spectral or full-spectrum sensors record

the absorbance of a certain band of wavelengths or full spectra. These sensors produce
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fingerprints of spectra which are then employed to determine and calculate
concentrations of water quality parameters based on built-in algorithms of the
instruments. The spectral sensors can provide measurements for various parameters
such as UV2s4, colour, DOC, and turbidity using the algorithms. These instruments are
generally factory calibrated for the particular water quality parameters using their
proprietary algorithms with site-specific re-calibration options. The instruments built-
in proprietary algorithms are first used to remove the particle effect on the
measurements of the water to replace the physical filtration step [1]. Some instruments
such as 1Q Sensor NET provide surrogate parameters for DOC and COD. However,
the results gained from these instruments are not comparable to standard laboratory
methods without specific calibration. This is because the correlations between the
surrogate and standard analytical methods depend on the compositions of the water
[21]. Re-calibration is often needed if significant changes happen in the compositions
of water [21, 28] which is different to the specific water type applied in the original

algorithm development [1].

Comparing the performance of full-spectrum and SW sensors, SW sensors can provide
measurements and trends of the parameters varied during certain periods. SW sensors
may not be able to compensate for particle effect accurately, particularly when
comparing the results with the standard laboratory procedures and measurements. The
SW sensors may only provide a rough surrogate measurement of organic content, and
total nitrogen content of nitrate and nitrite, but do not have accurate particle
compensation for most surface waters. In comparison, the spectral sensors provide
better particle compensation and can be calibrated to specific locations with higher
accuracy. Spectral sensors are better for precise applications, such as real-time water
monitoring and treatment process. In addition, calibrations of online sensors are based
on the grab sample collected at the same time of the measurement compared to
laboratory measurement of the same water sample. These calibration procedures are

more susceptible to the errors of grab samples.
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Table 2-1 Summary of common online UV-Vis instruments for water quality monitoring and process
control.

Sensor Manufacturer Optical Measured Measured Advantages  Accuracy Operating Source
system wavelength ~ parameter range
AMI SWAN, Two- 254 nm Surrogate Measuring +1% m? uv [29]
SAC254 Switzerland wavelength parameter interval: 30 absorption: 0-
photometer to sec to 3 min 6 mg/L
with one determine DOC, TOC:
optical dissolved 0-6 mg/L
channel, organics SAC254: 0 to
light- 300 m*
emitting Temperature:
diode (LED) 5-30 °C
light
ProPS-UV Trios GmbH, Dectector 200 - 385 nitrate, Customize +0.01% Temperature [30]
Photometer Germany type: UV nm CODeq path mg/L 0-30 °C, 32-
spectrometer, and TOCeq  lengths, 86 °C;
light source: Spectral Measuremnts:
deuterium analysing 0.62 — 600
lamp software, mg/L
Additional
calibration
functions
1Q Sensor WTW GmbH, 256 channel 200 - 720 A range of Data logger +3% SAC: 0.0- [31]
NET Germany silicon nm parameters, mg/L 3000m*
photodiode eg. SAC, Temperature:
array uvT 0-45°C
detector,
deuterium
lamp
spectro::lyser  s:ican 256-pixel 200 - 720 Various Various +2% Temperature: [32]
Messtechnik photodiode nm; parameters parameters mg/L 0-45 °C;
GmbH, Austria array 220 - 390 Differ path TOC: 0-180
detector, nm lengths mg/L; NO2-
xenon flash N: 0-40
lamp mg/L; NOs-
N: 0-100
mg/L; UVasa:
0-500 abs/m
Real UV254 RealTech, Mercury UV 253.7 nm SAC254 Various +5% m? Temperature: [33]
probe Germany lamp and parameters 0to 45°C
LED lamp Various
path length Uv254:
Field 0-20 abs/cm
calibration
uv Endress+Hauser,  Hotovoltatic 254 nm SAC254 Data logger +3% m? 0-25abs/cm  [34]
absorption Switzerland cells 0to 90 °C
sensor detector,
low-pressure
mercury
lamp
1Q YSI, Germany Detector: 254 nm UVT-254 Has a +2% m? Temperature [35]
SensorNet LED and and controller 0to 45 °C;
system phtotdiode SAC254 UVT-254: 0-
100; SAC254
0- 3000 m'*

2.2.1 Water Quality Measurements with Proprietary Algorithms

Some advanced full-spectrum online UV-Vis spectrophotometers can determine a
range of water quality parameters including UV2s4, colour, DOC, turbidity and nitrate.
The parameters can be computed through the instrument built-in proprietary
algorithms. These algorithms were developed based on chemometrics techniques, such

as partial least squares (PLS) and multiple linear regression, to establish the
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relationship between UV-Vis spectra and laboratory measurements of water samples
[14]. The algorithms were created by hundreds of global datasets containing both UV-
Vis spectra and reference laboratory data obtained from a wide range of water quality
[14]. Instruments have default configurations to apply the generic calibration for

particle compensation to the raw spectral data using the built-in algorithms.

UV2s4 measures the amount of light absorbed by conjugated organic compounds.
UV2s4 systems have been widely used as a rapid water quality measurement technique
to control water treatment processes [36]. UV2s4 from the online UV-Vis instruments
based on built-in algorithms generally performs well for the treated water as less
interference exists [1]. However, site-specific calibrations may be needed if it is used
for source water with a complex matrix. It is more difficult to judge the accuracy of
the colour measurement using the online UV-Vis instruments, as the standard
laboratory colour measurement method relies on SW measurement. Besides, the
wavelength selected to measure colour may be different based on regions and water
sources. For instance, 456nm is used in Australia and USA while 410 nm is applied in
Russia to measure colour in natural water [37]. To measure the colour of water, the
online instrument needs to be set up according to the required wavelength. DOC is
used to monitor water quality from catchment to tap water. The measurement is usually
carried out using the laboratory-based standard method. Online UV-Vis instruments
with built-in algorithms can be applied as alternative measurements. However, they
are frequently reported as water-specific and lacking accuracy. Thus, additional
calibrations against different water matrices are needed [38]. Turbidity determined by
the online UV-Vis spectrophotometers with the generic built-in algorithms is
comparable to the turbidity results analysed in the laboratory [39, 40]. Nitrates
generated from the online instruments with the generic built-in algorithms are
generally not satisfactory [39]. It was reported that the results are comparable with
laboratory analysis [40]. This could be related to the specific algorithm employed and

the monitoring application.

The measurements of water quality parameters using the online UV-Vis

spectrophotometers are often source-water dependent. Thus, additional site-specific
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calibrations are needed to improve the accuracy of measurements [14, 21, 41-43]. The
site-specific calibration function provided to enter the laboratory determined values of
the collected grab samples measured at the same time by the online instrument. The
site-specific calibration process involves modifying the slope and intercept of the built-
in regression function using laboratory data from the reference grab samples [21, 41].
To achieve the best calibration results, grab samples are needed to be representative
and cover the whole measurement range of the water. Measurement accuracies can be
enhanced with the use of an increased number of grab samples for the calibrations of

the online UV-Vis spectrophotometers.

Applications of online UV-Vis instruments can reveal that the significant fluctuations
in water quality could affect the accuracy of the measurements and long-term
monitoring required regular calibration to compensate for the variation of particle
character issue [1, 3, 41]. A site-specific calibration was conducted for a submersible
UV-Vis instrument to monitor water quality in a forested catchment and comparable
results were achieved [42]. In contrast, a site-specific calibration was performed for a
UV-Vis submersible instrument to measure the water quality of stream water, but
concentrations were overestimated because of inaccurate particle compensation [43].
Therefore, accurate site-specific calibration of the UV-Vis instrument is crucial to

obtain measurements for water quality monitoring.

Calibrations of online UV-Vis instruments should be performed as needed for
situations such as new instruments, location changes, and poor accuracy. Routine
calibration may not be necessary for monitoring less variable source water or stable
water quality such as treated water. However, routine verification of the measurements
using lab references is recommended to ensure the accuracy of the instruments [38].
Site-specific calibrations have been approved to achieve the desirable measurement
outcomes and can adequately account for the differences in large water quality changes

or between different types of water [6, 19, 44-46].
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2.2.2 User Developed Algorithms for Spectral Absorbance Measurements

A water engineer may have difficulties obtaining accurate continuous measurements
using online UV-Vis spectrophotometers with or without the instrument built-in
algorithms, alternative particle compensation (calibration) techniques can be
developed by end-users. To better utilise the online monitoring instruments with low
maintenance costs, and more importantly gain in-house experience and knowledge of
the instruments, researchers and water utilities want to seek alternative techniques for
particle compensation to the built-in particle compensation methods. The particle
compensation techniques based on the UV-Vis spectra can be categorised into direct
subtraction compensation and chemometric modelling. Table 2-2 summarises particle
compensation techniques from the literature for online water quality monitoring using

the UV-Vis instruments.

Direct subtraction compensation is based on the absorbance of wavelength
characterised by the particles in the water [14, 59]. Wavelengths: 275 nm, 350 nm, 545
nm, 546 nm and 550 nm have been utilised to characterise the particles in the water
and to remove the particle effect from the UV-Vis measurements [47-49]. The
absorbance at 546 nm was used to remove the particle effect on the COD in river water
[48]. The wavelength at 545 nm was employed to reduce the particle influence on the
UV for surface water [49]. The wavelength at 550 nm is commonly selected for SW
particle compensation for individual water quality parameters and has been commonly
applied for UVas4 measurements [1]. UV at 350 nm has been utilised to compensate
for the online measurements of COD using UV spectrophotometry to detect
groundwater quality to remove the influence from particles [47]. Absorbance at 275
nm was used in some case studies to compensate for nitrate at 220 nm. Figure 2-2
shows an example of using a SW particle compensation method to remove the particle

influence on a raw spectrum for surface water [1].
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Table 2-2 Summary of indirect particle compensation methods for online water quality

monitoring.
Methods Wavelengths Parameter Data | Sources Source
(nm) type
SW 350 nm COoD Lab Ground water [47]
SW 546 nm COoD Lab Simulated water [48]
samples
SW 545 nm UVas4 Lab, Surface water [49]
field
SW, MSC 550 nm UVas4 Field | Surface water, [1]
treated water
Two 254, 340 nm DOC Field | Surface water [50]
wavelengths data
MSC Full spectra COD Lab Stream water, [51]
Simulated water
PLS 200-400 nm COD Lab Lake water [22]
PLS Full spectra DOC River water [52]
PLS full Nitrate Lab Simulated water [53]
PLS 380-750 nm Nitrate, TOC, Lab Seawater [54]
COD
PLS Full spectra assimilable Pilot Simulated lake [55]
organic carbon water
MSC, PLS, 250 -740 nm DOC Field | Surface water [21]
PCR
PLS, lasso Full spectra Nitrate, DOC Field | Brackish water [56]
regression, and
MSR
MSR 250, 290, 307.5, DOC, Fe Lab, Stream water [20]
437.5, 447.5, 630, Field
645 nm
PLS, MSR, 250 — 740 nm DOC Field | Surface water [57]
local and global
Multiple linear | 260, 265, 280, and | TOC Lab Drinking water, [24]
regression 285 nm seawater, river
water
SVM Full spectra Nitrate Lab River water [58]
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Figure 2-2 Illustration of particle compensation of a raw spectrum for surface water

using a single-wavelength method.

Multi-wavelength particle compensation techniques, also called chemometric
modelling, include a selection of chemometrics such as multiple linear regression
(MLR), multiple stepwise regression (MSR), support vector machine (SVM), support
vector regression (SVR), multiplicative scatter correction (MSC), principal-
component analysis and PLS. The multi-wavelength particle compensation technique
is based on relationships between the raw spectra and laboratory reference values of
the water quality parameters. The MLR determines the linear relationship between a
dependent variable (the laboratory values) and independent variables (wavelengths of
the raw spectra) which can directly define the coefficient of each variable. MLR was
employed to remove the particle effect on the UV-Vis spectra of brackish water for
rapid measurement of water quality parameters [56]. Multiple linear regression was
also used to quantify DOC content in the stream water [20] and TOC in the drinking
water, seawater and river water [24]. Multiple stepwise regression was utilised to
compensate for the particle effect on the DOC measurements for surface water [57].
SVM is a machine learning algorithm that can be used for classification, regression,
and outlier detection. SVM was employed to determine the concentration of dissolved
nutrients in surface water using the full spectral wavelengths and laboratory values and

demonstrated the effectiveness of the approach [58]. SVR is a similar machine learning
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method as SVM but works with continuous values instead of classification as SVM.
SVR was applied to predict the combined nitrate and nitrite concentration for treated
water samples using spectral features and the predicted values were matched with the
standard laboratory values [60]. MSC is a normalization technique to correct particle
effect on spectra by changing the scale and the offset based on the reference spectrum
which is the mean of the spectra. The MSC method was applied to compensate for the
particle effect on the COD in lake water [22], UV2s4 in reservoir water [1], simulated

surface water [51], and DOC in drinking water production [52].

PLS constructs components by projecting the predictor variables to a new space. Then
the linear regression models were built between new predictors and responses. PLS
can be utilised to extract important information from a large data matrix [61]. PLS
regression is a commonly utilised method to remove the particle effect on the
measurements of water quality parameters based on the multiple wavelength spectra.
It has been used to remove the particle effect on the water quality multi-parameter such
as COD in artificial seawater [62], suspended solid in brackish water [56], COD in
lake water [63], COD and TOC in seawater [54], stream water [20], nitrate in water
[53], nitrate and nitrite in seawater [64], DOC in surface water [57] and drinking water

[52], ozone in drinking water [55].

The use of a subtraction method for particle compensation generally works well for
low and medium turbid source water and treated water, but may lead to less accurate
measurements in some cases such as highly turbid water [50, 57]. The accuracies of
the measurements such as DOC in the surface waters can be improved by using the
multi-wavelength particle compensation methods. Water matrix specific particle
compensation is frequently recommended for water quality monitoring. There are
some benefits of using alternative particle compensation methods to the built-in
algorithms. Firstly, it creates simplicity and flexibility of custom-made particle
compensation methods for water quality measurements of particulate water matrix as
the details of the built-in algorithms for the commercial online instruments are often
not accessible to the users. Secondly, the employment of alternative particle

compensation methods can lower the calibration costs of the instruments. Moreover,
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cost-effective UV-Vis instruments with a single wavelength or short wavelength band
could be employed in the field to monitor water quality instead of using full-spectrum

UV-Vis instruments.

2.3 Advanced Spectral Data Processing and Applications

UV-Vis spectrophotometers can be used for real-time water quality monitoring and
integrated with early warning systems to detect rapidly changing water quality. Water
quality parameters including turbidity, SAC254, nitrate, TOC and DOC can be
monitored and provide early warning. The warning occurs when the current
measurements exceed limits that are specific to each parameter or anomalous patterns
are detected [65], then the appropriate actions can be taken. One example is to monitor
spring water. The spring water of concern would not be utilised for drinking water
production when the measurements go beyond the limits of the measuring parameters
[66]. The anomaly detection methods using the UV-Vis instruments can be easily
configured for real-time monitoring of water pollution and early warning [24, 65, 67].

UV-Vis spectra contain valuable information on the composition and quality of water
and can be used as a fingerprint of the water matrix. The fingerprint can be utilised to
derive specific parameters such as turbidity and DOC. Online UV-Vis instruments
have fingerprint which can also be employed to monitor changes in the water
composition and offers the possibility to set alarm levels based on the magnitude of
the variations in the spectra and early warning systems by water utilities [25, 68]. It is
an advanced spectral data processing and can be applied for early warning of anomaly
detection and identification of contaminants. Online UV-Vis instruments have been
used by some water utilities to develop early warning systems to monitor drinking
water quality at the source or in the distribution system for water quality control as a
component of the drinking water quality management system. It can detect not only

natural contamination but also accidentally or intentional contamination.
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2.3.1 Anomaly Detection of Water Quality

Water utilities could face minor and major water quality incidents. Concerning major
events can occur due to extreme concentrations of water quality contents or pollutants
or accidents of pollutant events. Rapid fluctuations in source water quality could
happen. For instance, turbidity and organic matter could be suddenly raised by storm
events. Quick detection of the water quality in response to the contaminant events is
essential to reduce risks when water quality events occur. The use of online UV-Vis
instruments allows near- or real-time detection of anomalies and contaminations of
drinking water systems. Early detections are vital for effective responses that reduce
or prevent contamination events that compromise water quality and avoid possible
failures of WTP operation [68]. The utilisation of water quality anomalies detection
from UV-Vis spectra contributes to the safety of water quality. Detection using UV-
Vis spectra for water quality monitoring is mostly applied for organic contaminant
monitoring as UV-Vis monitoring has the advantage reported earlier, without the need
for sample preparation, regent-free, and low operational cost compared to standard

laboratory analysis of organics [24, 69, 70].

An anomaly detection method may have three components: data analysis, event
detection and performance assessment, which are able to provide a reliable indication
of contamination by analysing the real-time water quality data [69]. The first step is to
establish a baseline of the stable water quality in the normal condition. Data analysis
is to remove the particle effect, instrument noise, and drifting from the water quality
measurements. Event detection is to analyse the real-time water quality data by
comparing the pattern of new data with the pattern of normal data based on machine
learning and chemometrics. Performance assessment is to evaluate the detection

method to meet the required accuracy [69].

A proximate entropy approach was applied to measure UV-Vis spectra and
differentiate normal and abnormal spectra of water in distribution systems. This
method had a good detention outcome [57]. In addition, the fitness measure combined

both Pearson correlation and Euclidean distance was assessed as a technique to identify
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contaminated water from drinking water using a submersible UV-Vis instrument in a
controlled study [71]. The method was flexible to identify the source of water and
distinguish the contaminated water. This method was further tested to cope with
various backgrounds with changing proportions of water from different sources using
a combination of UV-Vis spectral data from both laboratory experiments and an
operational water supply system [67]. The detections were based on combinational
changes in water sources, operational, and maintenance actions. Contaminants at low

concentrations were detected.

2.3.2 Early Warning Systems for Water Supply

An early warning system integrated with a UV-Vis spectrophotometer has been
extensively tested in a lab-scale and achieved robust results. The early warning system
is able to detect and quantify specific compounds, but also detects unknown
compounds that do not fit in the normal fluctuation of the water matrix [72]. Alarm
parameters can be developed from the spectral data. Abrupt spectral signals can be
extracted by using anomaly detection techniques. The process of alarm development
of water quality monitoring includes a learning period, abnormality definition, alarm
level definition and sensitivity definition [73]. Various methods have been employed
to identify anomaly events, such as probabilistic principal component analysis
(PPCA), Bayesian algorithm, principal component analysis, and Euclidean distance
method [65, 74, 75]. A PPCA based method was used to identify anomaly events with
the employment of online UV-Vis instruments. PPCA algorithm was utilised to
simplify the large number of spectra data and retain the essential spectral information.
It was tested for online water quality monitoring in a small-scale water distribution
system [75]. The PPCA method was combined with a multivariate monitoring chart to
provide a reliable and flexible alarm system. Bayesian algorithm combined with a UV-
Vis spectrometry probe along with a message-passing schedule was applied to analyse
patterns for event classification. It was conducted for long-term online monitoring of
the water distribution system in a pilot-scale [76]. Water quality anomalies were
detected using the integration of principal component analysis and chi-square

distribution combined with UV-Vis sensors for a distribution system. It was conducted
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in a pilot-scale and proved to be a promising method [74]. In addition, an early warning
system was employed for remote river water quality monitoring for COD content and

early detection, which had real-time display and storage and warning functions [35].

Early warning systems need to be able to identify whether variation in sensor
measurements is caused by equipment noise, and presence of contamination or high
levels of concentrations. Pearson correlation Euclidean distance-based method,
multivariate Euclidean distance method and linear prediction filters method have been
applied to detect changes in water quality and differentiate between fluctuations
caused by equipment noise and those due to contamination [77]. This method was able
to detect 95% of contamination events correctly with a 2% false alarm rate from a
contaminant injection experiment [77]. The Pearson correlation Euclidean distance
method was applied to a real contamination accident study, the results showed that this
method has better potential to be used in the field [76].

Various water quality detection methods based on UV-Vis spectral data have been
developed and assessed. However, the evaluation of detection performance is mainly
based on simulation or laboratory study. Reported evaluation of detection performance
was rarely based on real contamination events. There are arguments that lab- and pilot-
scaled studies may not cover the variation of water quality that occurs in the actual
water systems as real water quality data may contain more background noise and
fluctuations [76]. Therefore, it is important to test the detection method in a real water

event situation.
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Figure 2-3 Structure of an early warning system.

2.3.3 Integrated Early Warning and Real-time Control System

An integrated early warning and real-time control system for drinking water combines
the functions of water quality monitoring, early warning system and decision making.
It is an integrated approach to detect and respond to water quality events that use
advanced monitoring technologies to provide warnings of potential contamination
incidents and quick responses [75]. An integrated early warning system should contain
an online monitoring system, supervisory control, and data acquisition (SCADA),
event detection system, and decision support system as shown in Figure 2-3. Event
detection provides indications of abnormal water conditions. Early warning systems
should be able to quickly detect water quality and contamination events with high
levels of accuracy, reliability, cost-effectiveness, user-friendly, and low maintenance
[78]. An integrated system with event-driven functions for detecting, reporting, and

handling water quality contamination events automatically in real-time.
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An integrated system can provide water quality monitoring and warning performances
to monitor hazard and forecast hazard evaluation, and issue timely and accurate
warnings of water quality anomalies. It fits well with the drinking water management
system. Online UV-Vis instruments have been employed as part of the integrated
system to continuously provide water quality data. Studies have been conducted by
deploying UV-Vis instruments for real-time online analysis of water quality and
anomaly detection, particularly in Europe and the United States [78]. A semi-
supervised learning model combined with UV-Vis spectra was used to detect organic
contamination events successfully in water distribution systems. This adaptive method
modified the baseline using dynamic orthogonal projection correction and adjusts the
support vector regression model in real-time [79]. Discrete wavelets transform and
principal component analysis can also be applied for detecting organic contamination
events from UV-Vis spectral data. This approach was tested online using a pilot-scale
setup and experimental data [65]. Abrupt changes in the spectra were captured, and an

alarm of contamination event was able to be identified.

Another event detection approach is based on UV-Vis signal processing and data-
driven techniques. Early warning systems combine automatic measurements with
automatic data evaluation and data transfer for water quality monitoring such as
surface water [80]. A web interface of the system works as a control centre constantly
checking for anomalies in water quality based on automatic data evaluation.

Maintenance can be reduced as remote checking of water quality is available [81].

2.4 UV-Vis Spectrophotometer Application and Integration of the
Water Quality Management System

The online UV-Vis spectrophotometers can continuously measure water quality online
in real-time. UV-Vis spectrophotometers have a broad application in drinking water
networks from monitoring source water quality, treatment processes and treated water
as part of the drinking water quality management system. Many reported studies of the
online instruments have been conducted in the lab-scale as shown in Table 2-2. It has

been widely recognised in the water industry that current applications of UV-Vis
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instruments in real-time for water quality monitoring remain limited. There is an
increasing trend of using online UV-Vis instruments, especially in water quality
monitoring and process control and as early warning systems [82]. The use of online
UV-Vis instruments for water quality monitoring allows for better water quality
management compared to conventional water quality monitoring, as it supports
continuous updating of water quality and can detect any potential water quality events
and provides timely decision support. The ability of online UV-Vis instruments to
detect issues in real-time to allow rapid response to any water quality event is valuable
to the water quality management system [83]. It also allows for real-time
understanding of operational causes which in turn contributes to the optimisation of

the water treatment processes.

2.4.1 Requirements and Supports of Using Online UV-Vis Spectrophotometers

in Real Operations

Online water quality monitoring using spectrophotometers allows fast and effective
responses to water quality events. Online UV-Vis instruments have been employed for
determinations of process upset or deterioration in water quality, as well as operation
and control of the drinking WTPs. Applications of the online UV-Vis instruments in
water treatment and distribution networks can identify water quality parameters such
as nitrate and organic pollutants rapidly, and measure and analyse the parameters
simultaneously. An illustration of applications of online UV-Vis sensors for real-time
water quality monitoring and process control is shown in Figure 2-4. Field applications
of online UV-Vis spectrophotometers were summarised in Table 2-3. Most field
applications of the online UV-Vis instruments were on water quality monitoring. Some
case applications were conducted on anomaly detection and early warning system.

Very few cases were employed for process control of drinking WTP.

The most important applications of UV-Vis instruments are monitoring of the source
water and treatment process control [25]. Field applications of UV-Vis instruments
showed that the instruments are suitable for the estimation of DOC concentration. A
study assessed the performance of a portable UV-Vis spectrometer in measuring DOC

42



concentrations of surface water under the field condition [57]. It demonstrates the
possibility of facilitating rapid, robust and continuous measurements. A contaminant
warning system was developed in Texas, USA to monitor the drinking water quality
in the distribution system [84]. This warning system consisted of online UV-Vis
instruments which provide continuous analysis at 16 checkpoints in the distribution
system. Anomalies are constantly checked for water quality parameters such as nitrate,
total chlorine turbidity, TOC, conductivity, UV2ss, DOC, pH, and free ammonia. All
the information is web-accessible to the operators for the detection of water quality

changes at treatment plants.

The operation of drinking water treatment plants is mainly based on laboratory analysis
data of grab samples and the experiences of operators. In recent years, there is an
increasing need of using model-based monitoring for the optimisation and control of
water treatment plants. However, most studies were conducted in lab- or pilot- scale.
The use of model-based monitoring has shifted the operation of drinking WTPs from
experience-driven to knowledge-based [28]. Modelling in combination with online
monitoring and real-time control can improve the treatment operation, leading to better
control of more stable water quality [85]. An online UV-Vis instrument was used for
feed-forward coagulant dose prediction to avoid the increase in turbidity of settled
water and support the operation of a WTP. The predicted coagulant doses were used
as inputs of the plant control system to automatically control the coagulant dose in

response to the online measurements of raw water quality [86].

The online UV-Vis instruments combined with advanced data analysis techniques
such as machine learning allow real-time water quality monitoring and provide
valuable tools for effective water quality management. The combination of real-time
water quality data and advanced data analysis techniques can be efficient for the
management of water quality. The recent advances in technologies enable the
application of web-based data platforms for analysing real-time data for water quality
management. Efficient and real-time monitoring of water quality as a key component
of water quality management can predict future trends of water quality and enable

rapid response to water quality events [83].
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Table 2-3 Summary of field applications of online UV-Vis spectrophotometers.

Water type Application Measurement Location Reference
Surface water Rea-time Monitor DOC, TOC Danuba Island, [87]
testfilters Austria
River water Real-time Monitor water  Nitrate, DOC, TSS  Kervidy-Naizi, [88]

quality West France
Stream water  In-situ Monitor stream DOC South Korea [89]
DOC
Drinking Online monitoring and Surrogate Agzsa, SA Water, South [90]
water process control Az02, Azeo, Asio, Australia
Asso,
Drinking Early warning system in  Nitrate, TOC, Bratislava Water [91]
water the drinking water SAC254 Company Austria
supply
Drinking Coagulant control Turbidity, alum Morgan WTP, [86]
water dose South Australia
Drinking Measure dissolved Assailable organic  Vienna [55]
water ozone and AOC carbon Waterworks,
concentrations Austria
Filtered Real-time Monitor water UV254 SA Water, South [19]
water quality Australia
Lake water Monitor variation of DOC using Lake Ipé, MS, [23]
carbon content Absorbance at 285  Brazil
nm
Surface water Measure DOC contentin  DOC Europe [21]
situ
River water Monitor water quality in  DOC, Fe Krycklan river, [20]
situ Sweden
Surface water Monitor dissolved Nitrate Windsor, Canada [58]
nutrients in real-time
Groundwater High-resolution Nitrate Southwest [41]
monitoring Ireland
Stream water  Monitor storm events DOC Haean Basin, [43]
South Korea
River water Real-time Monitor of NO3-N, DOC Saarland [46]
water quality
Spring water  Online monitoring SAC254, Nitrate, Vienna [66]
TOC, DOC Waterworks,
Austria
Treated In situ anomaly Spectra Hangzhou, China  [92]
water detection
Drinking Online monitoring Spectra Hangzhou, China [75]
water anomaly in water
distribution systems
River water Real-time monitoring COD Jialing River, [35]
China
Groundwater  Early warning Nitrate, nitrite Vienna, Austria [80]
Drinking Contamination warning  Spectra Dallas, US [84]
water system
Fresh water Simultaneous nitrate and nitrite UK [30]
determination of nitrate
and nitrite
Spring water  Online Water-Quality SAC254 NW Switzerland  [34]

Monitoring
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2.4.2 Challenges and Solutions of Using Online UV-Vis Spectrophotometers

Many studies have shown that online UV-Vis spectroscopy can detect water quality
changes, such as rapid detection of changes in the raw water quality, and allow for
real-time adjustment of process. There are still challenges remaining for the practical
applications. There is a lack of harmonisation of standards and regulatory practices in
using online instruments for water quality monitoring [3]. Some regulatory guidelines
of drinking water only mention online instruments in general terms. It is important to
highlight the need for accurate measurements and recommend online continuous
monitoring of water where possible. One of the main issues is the detection limit as
the field environment is complex. Another issue is the difficulty to detect the UV-Vis
spectra of some pollutants in the water, such as suspended solids, dissolved inorganic
substances, and pathogenic microorganisms. Most of the difficulties in using the online
instrument are caused by the highly challenging nature of the source water. Solutions
were developed to allow realisable monitoring of the source water, including

determining appropriate manual cleaning intervals.

UV-Vis instruments generally work well for real-time monitoring of treated drinking
water as fewer interferences exist [58]. However, it has experienced measurement
issues in field applications for source water quality monitoring, particularly surface
water that has complex chemical compositions. Field experience shows that the path
lengths of the UV-Vis instruments had a significant influence on the sensitivity and
the range of water quality parameters [41]. The selection of path length is related to
the water matrix. The sensitivity increases with the path length. A longer path length
leads to a higher sensitivity but a reduced maximum concentration level at which the
instrument can operate [82]. The typical path length is within 0.5 - 100 mm. Normally,
a path length of 100 mm is suitable for drinking water, 35 mm and 10 mm for surface
water and 5 mm for wastewater applications. The natural variation occurrence can be
determined, which requires measurements of the fingerprint spectrum across several

months for training and local calibration of the instruments.
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In the absence of site-specific calibration, the determination of DOC concentration can
be inaccurate due to varying absorbance strengths of the interference of other elements
in the water [57]. For instance, absorbance measurements can be influenced by
changes in the source water [1]. The accuracy of the water quality measurements can
be affected if the content such as turbidity or organic matter varies after the instrument
has been calibrated to a particular water matrix [41]. Corresponding laboratory data
should cover the seasonal variations of the site-specific water source for calibrating
the instruments. Regular validations of the online measurements are needed to
eliminate temporal drifts and maintain accuracy. The re-calibration of particle
compensation could be complicated if the water matrix varies significantly and lacks

support from experts.

Water operators may face various challenges in the use of the online UV-Vis
instrument, including instrument maintenance, installation, data processing, and
variability in parameter performance. Typical issues and solutions associated with the
online UV-Vis spectrophotometers are summarised in Table 2-4. An example of
installation issues of the online instrument is the accelerated probe corrosion issue
caused by the jetty cathodic protection system in monitoring river water [82]. The
solution to this problem was to use an ‘on-demand’ pump sampling system to protect
the instrument from corrosion, reduce fouling by silt and biofilm, and reduce the

maintenance requirements.

Potential data storage and processing could be problematic in the online monitoring
using the UV-Vis instruments. Online instruments can collect and store some acquired
data but are not able to collate the data for easy access and interpretation. Pre-
processing of the UV-Vis spectra data is required to assure the data quality, including
the removal of faulty spectra and outliers, as well as the performance of particle
compensation. The issue of data processing is that standard data storage and analysis
programs such as Microsoft Excel cannot handle the large volume and high
dimensional complexity of the UV-Vis spectra data. Development has been made in
data processing with specialised tools to tackle the challenges [78]. An example of the

specialised software, Visual Basic 6.0, has functions such as selective display of water
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quality parameters, automatic detection of invalid data, automatic deletion of invalid
data, the exportation of data from selective periods, and also data resolution options
that allows easier plotting of long-term data [38]. Advanced systems need to be
suitable for instrument operation in the long term. Expertise is needed to design and
troubleshoot the program, and the data analytic system is needed to link with the
control system, such as SCADA. An open-source Python toolbox called
‘AbspectroscoPY’ was developed for pre-processing and analysis of the large volume
of raw UV-Vis absorbance time-series data [10]. The toolbox has the functions of
automated outlier detection and removal based on the interquartile range. Some online
UV-Vis Spectrophotometers only provide water quality parameter data, in which case
a simple data logger can be built to manage data collections. For example, a web data
extraction was built with a Python library and data store to automatically monitor the

water quality of reservoirs [31].

Table 2-4 Challenges and solutions of using the online UV-Vis spectrophotometers.

Challenges Causes Solutions Source
Installation issues | Probe corrosion issue | Use ‘on-demand’ pump [38]
sampling system
Measurement Missing calibrations Proper calibration in-situ and [93]
accuracy Low water level maintenance,
Pump water to the instrument
Detection difficulty | Challenging nature of | Site-specific compensation, [41, 82, 90]
the source water Regular maintenance,

Select the correct pathlength,
Develop surrogate parameters

Data processing Large volume of data, | Use or develop specialised [10, 38, 78, 90]
Data type, tools,
Faulty data Expertise

Maintenance cost Calibration issue Use alternative particle [38]

compensation method,
Provide training for
maintenance skills

To achieve the best outcomes of water quality monitoring and process control using
online UV-Vis sensors, the following operation steps are needed: (1) the instruments
should be calibrated for new sites or source water change over, (2) pre-treatment of

the UV-Vis spectra should be performed to eliminate the errors and particle effect, and
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(3) forecast methods should be developed to employ the online monitoring in real-time
for water quality monitoring and water treatment process control. There are two
approaches to applying the online UV-Vis instruments for water quality
measurements: direct water quality parameter measurements from the built-in
algorithms and indirect measurements through the combinations of chemometrics and
UV-Vis absorbance time series from the instruments.

2.4.3 Future Research of Online UV-Vis Spectrophotometers

The future trend of the application of online UV-Vis instruments is that the instrument
will be a key component for water quality monitoring as a part of drinking water
quality management. As most of the reported studies on the use of online UV-Vis
instruments were conducted in lab- or pilot-scale, future work is needed particularly
for large-scale applications such as field applications. To have correct measurements,
it is necessary to have trials when the instruments are used for new sites. A site-specific
particle compensation (calibration) may be needed. The difference in the methods of
determination of various water quality parameters is also a challenge for practical
applications. Further studies are necessary to find out the best solutions for the specific
applications. A possible solution is the detection of water quality parameters based on
multiple data fusion technology. It evaluates the analysis of different water quality
parameters data and extracts more completed information than a single data source
[15].

Future research needs to include the progress in the field application of UV-Vis
instruments. Real-time monitoring using UV-Vis instrument combined with advanced
data processing can provide real-time measurements for rapid data analysis, which in
turn, contributes to the real-time water quality management system. Integration of the
instrument and data analytics for data pre-treatment and processing is a key factor for
measuring UV-Vis spectra in real-time [15], allowing anomaly detection and building
early warning systems. Data analytics of water quality data using the UV-Vis
instruments combined with data platforms have capabilities to automatically analyse

and correct data in real-time, then predict to improve water quality monitoring and

49



process control. Since each water quality detection method based on the UV-Vis
spectra has its strengths and drawbacks, multiple methods should be conducted to
assess their performance and analyse which methods can be used to construct decision
support tools for the optimisation of a particular WTP [81]. The future application of
the UV-Vis instrument also includes exploring the use of raw spectra as inputs to
determine the measurements of other water quality parameters. With the assistance of
chemometrics such as PLS and artificial neural networks [61], more accurate

measurements can be obtained [2].

2.4 Conclusions

This review covers the practical aspects of the employment of online UV-Vis
spectrophotometers for water quality monitoring and process control, particularly,
techniques for industrial applications. The recent studies on online UV-Vis
spectrophotometers for drinking water quality management have been discussed.
Commonly employed online UV-Vis instruments for drinking water were briefly
introduced. Water quality parameters, including UV2s4, colour, DOC, turbidity and
nitrate, can be directly generated from the built-in algorithms of the online UV-Vis
instruments. Site-specific calibrations can be conducted to improve the accuracies of
the measurements if the generic built-in algorithms are under-performing for a water
source. Alternative particle compensation methods to the built-in particle
compensation method were detailed. These methods are based on the UV-Vis spectra
of water and chemometrics which offer simplicity and flexibility in removing particle
effects from the measurements. Various techniques of anomaly detection and early
warning were also discussed to monitor water quality at the source or in the distribution
system for water quality control as a part of the drinking water quality management
system. As most studies of online UV-Vis instruments in the drinking water area were
in the lab- and pilot- scale, future work is needed particularly for industrial-scale
applications. Issues and potential solutions to using the online instruments were
provided. Future research also needs to work towards the integration of early warning

and real-time water process control systems for water quality management.
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Chapter 3
Evaluation of the Impact of Suspended Particles on Water Quality
Measurements Using A Submersible UV-Vis Spectrophotometer

«  Software particle compensation is an alternative to physical

filtration

. Particle concentrations and character can affect software

compensation accuracy

. Correlations were determined between measurements of lab and

field instruments
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Online water quality monitoring systems are progressively used by water utilities to
manage water treatment operations. Online water quality monitoring using a UV-Vis
spectrophotometer is one of the popular options as it does not require sample pre-
treatment or reagents [1]. Some submersible UV-Vis spectrophotometers have built-
in generic particle compensation algorithms to remove the physical filtration step [2].
However, industrial applications of using online instruments have experienced
underperformance of the built-in algorithms and difficulty to obtain accurate
measurements of water quality [3-7]. The study of this chapter explores the influence
of suspended particles on the measurements of a submersible UV-Vis
spectrophotometer as well as the performance of the built-in particle compensation

technique under laboratory-controlled conditions.

This chapter provides in-depth knowledge to understand the impact of suspended
particles on the measurements of water quality with a submersible UV-Vis
spectrophotometer. Particle contributions to the UV2s4 measurements of water samples
varied differently when particle types or concentrations changed. The results indicated
that the performance of built-in generic compensation algorithms of the submersible
UV-Vis spectrophotometer depends on the water matrix. Particle contributions to the
UV-Vis measurements vary when particle type or particle concentration changes.
These findings from this research provide evidence that the particle influence on the
UV-Vis measurements is source-water dependent. It helps users to understand the
behaviour of submersible UV-Vis spectrophotometers and why the built-in generic

calibration does not generate comparable measurements in most cases.

The following content of this chapter was published as a technical paper in the Journal
of Environmental Science and Pollution Research, 28(10), pp.12576-12586, as shown
in Appendix C.

62



Statement of Authorship

Title of Paper

Evaluation of the impact of suspended particles on the UV
absorbance at 254 nm (UV2s4) measurements using a submersible
UV-Vis spectrophotometer

Publication Status

[+ Published
[~ Accepted for Publication

[ Submitted for Publication

Unpublished and Unsubmitted w ork w ritten in
manuscript style

Publication Details

Shi, Z., Chow, C.W., Fabris, R., Zheng, T., Liu, J. and Jin, B.,
2021. Environmental Science and Pollution Research, 28(10),
pp.12576-12586

Principal Author

Name of  Principal
Author (Candidate)

Zhining Shi

Contribution to the Paper

Conceptualization, Methodology, Writing - Original draft
preparation

Overall percentage (%)

75

Certification:

This paper reports on original research | conducted during the
period of my Higher Degree by Research candidature and is not
subject to any obligations or contractual agreements with a third
party that would constrain its inclusion in this thesis. | am the
primary author of this paper.

Signature

\ Date \ 26 March 2022

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

2 the candidate’s stated contribution to the publication is accurate (as detailed above);
3 permission is granted for the candidate in include the publication in the thesis; and
4 the sum of all co-author contributions is equal to 100% less the candidate’s stated

contribution.

Name of Co-Author

Christopher Chow

Contribution to the Paper

Conceptualization, Methodology,
Reviewing and Editing.

Supervision, Writing -

Signature

\ Date ] 28" March 2022

Name of Co-Author

Bo Jin

Contribution to the Paper

Methodology, Supervision, Writing - Reviewing and Editing

Signature

Date | 5" April 2022

63




Name of Co-Author Rolando Fabris

Contribution to the Paper | Supervision, Methodology, Writing - Reviewing and Editing

Signature Date | 30" March 2022

Name of Co-Author Jixue Liu

Contribution to the Paper | Visualization, Supervision, Writing - Reviewing and Editing

Signature Date | 8™ April 2022

Name of Co-Author Tianlong Zheng

Contribution to the Paper | Visualization, Writing - Reviewing and Editing

Signature | Date | 27" March 2022

64



3.1 Introduction

Water utilities are progressively using online water quality monitoring systems to
manage the operations of water treatment plants (WTPs) because of the increasingly
strict regulations and advances in technologies. Online water quality monitoring
eliminates chemical contaminants due to minimising sample handling and allows
continuous monitoring in real-time. Online water quality monitoring may provide
decision-making information for early warning responses [8, 9]. The online UV-Vis
spectrophotometer is a popular choice for water utilities to monitor water quality as it
does not require sample pre-treatment or chemical reagents [10]. There are several
commercially available systems, such as submersible UV-Vis spectrophotometers.
Some submersible instruments provide generic calibrations with built-in particle
compensation algorithms [11]. These algorithms were developed using advanced
computing techniques, such as partial least squares, to establish the relationship
between UV-Vis spectra and laboratory measurements of water samples. They
extracted information from the spectra to determine measurements of certain water
quality parameters such as UV2s4, colour and dissolved organic carbon (DOC). The
algorithms were developed based on hundreds of datasets containing both UV-Vis
spectra and reference laboratory data [11]. However, the details of the algorithms are

proprietary and are not provided by the manufacturers.

Peer-reviewed studies have documented various methods of compensating particle
effect on the UV-Vis measurements of water quality using the submersible UV-Vis
spectrophotometer. Algorithms were built in the spectrophotometer based on the
chemical compositions and the morphology features of UV-Vis spectra obtained from
wastewater samples, which were used to eliminate measurement derivation [7]. The
fourth derivative spectrum was used to eliminate the interference of particles in the
measurements of total organic carbon for seawater [12]. Additionally, partial least
squares regression was employed to eliminate the particle effect on measuring water
quality in urban drainage systems [13]. Moreover, a multiple linear regression method
was adapted to remove the particle effect on the UV-Vis spectra of brackish water for

rapid measurements of multiple material concentrations [14].
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Some research findings showed that particle compensation of submersible UV-Vis
spectrophotometers is source water dependent and site-specific calibrations are
required to obtain accurate measurements [11, 15-19]. A study on the determination
of water quality for wastewater samples concluded that the calibration of the
submersible instrument needs to be matched with the specific wastewater type in some
situations [16]. Comparable water quality results were gained from a study on
monitoring water quality of surface waters in the field using a submersible instrument
with a multilinear calibration method. It was found that the calibration was water
matrix dependent and recommended to use site-specific calibration to improve the
accuracy of the quantification. Another field study using submersible UV-Vis
spectrophotometers to monitor groundwater revealed that the significant fluctuations
of water quality could affect the accuracy of the water quality measurements and long-
term monitoring could be limited by particle compensation [17]. A customised
calibration was conducted for a submersible spectrophotometer to measure water
quality in a forested catchment and comparable results were achieved [19]. A site-
specific calibration was performed for a submersible instrument using the built-in
compensation algorithms to measure the water quality of stream water but
concentrations were overestimated because of inaccurate turbidity compensation [18].

Thus, accurate site-specific calibration is important for water quality monitoring.

To obtain accurate water quality measurements using submersible UV-Vis
spectrophotometers can be challenging and it depends on their application, particularly
for real-time monitoring and process control. Submersible UV-Vis spectrophotometers
have been implemented at some water utilities to monitor water quality online for the
assistance of water treatment process control [20-22]. However, measurement issues
tend to occur to the submersible instruments when water quality changes dramatically
or water source changes [4]. Industrial applications of the submersible instruments
have encountered particle compensation issues such as under-compensation or over-
compensation or even failure to generate reasonable measurements [4-7, 22]. Industrial
experience and peer-reviewed studies show that the impact of particles is source water
specific and generic calibrations could not adequately account for the differences in

large water quality changes or between different types of water [5, 6, 23-25].
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Even though there are studies on improving the accuracies of submersible UV-Vis
spectrophotometers with site-specific calibrations, the studies of characterised particle
impact on the measurements are limited. There is only one reported study of particle
effect on the measurements of a UV spectrophotometric nitrate sensor [26, 27]. This
chapter provides a systematic study utilising six types of stimulated water samples
with both artificial and natural water particles for each type of water. The research aim
was to study the particle effect on the measurements of a submersible UV-Vis
spectrophotometer. This work also determines whether the built-in compensation
method can generate comparable measurements as the physical filtration method or
not under lab-controlled conditions

3.2 Materials and Methods

3.2.1 Materials

Three types of particles were chosen including, kaolin clay (P1), Myponga silt (P2),
and Hope Valley silt (P3). Py particles are clay minerals (Chem-Supply Pty Ltd,
Australia) that were chosen because they are standardised particles. P, particles are
silica-based and were collected from the catchment of the Myponga Reservoir in South
Australia (SA). P2 particles were selected as they represented the typical particles from
an enclosed water catchment of reservoirs in SA. Ps particles are clay-based, which
were sediment from Hope Valley WTP in SA. Pz particles were selected as they
represented particles of a surface water catchment of a chain of reservoirs in SA. P>
and Ps were dried in an oven at 40 °C overnight before use.

Two types of water, Mill-Q water (W1) and Myponga treated water (W>), were selected
as water-bases for making up the simulated water samples. W1 was collected from a
Milli-Q Gradient system (Millipore, France) with a conductivity of 0.10 uS/cm at
25°C. Myponga WTP utilises dissolved air flotation and filtration process (DAFF)
with free chlorine disinfection, to treat source water into drinking water. W> was
collected from Myponga WTP after the filtration process and before the chlorination

process. W1 was pure water that was used to eliminate interference from other solutes.
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W> contains residual UV-absorbing material. 1t was used to assess any additional
matrix effects that may confound accurate particle compensation.

3.2.2 Preparation of Water Samples

Six types of concentrated stock solutions were prepared: 5 g of P1, P2 and P3 particles
were suspended in 1 L of W1 water-base, respectively; 5 g of P1, P> and P3 particles
were also suspended in 1 L of W> water-base, respectively. Each type of the stock
solution was diluted with W1 or W> water-base to generate five different levels of
turbidity to make up 1 L of each sample, which was defined as A, B, C, D and E. The
turbidity of the water samples was within 2 - 110 NTU, which was based on the
turbidity range of water sources in South Australia [28]. Six types of water samples,
which were made up with three kinds of particles (P1, P2, and P3) and two types of
waters (W1 and W), are defined as P1W1, P2W1, P3W1, P1\W2, P2W> and P3W> based
on their combinations. The water samples were organised into unfiltered and filtered
water samples. Water samples with P1 were considered the control as P1 particles were
composed of pure inorganics. Water samples with P> and P3 were simulated natural

surface waters, containing both organic and inorganic solids.

The selected six types of simulated water samples, in the combinations of different
particles and water-bases, represent different types of water quality. All measurements
of water samples were made in triplicate and averaged. Water samples containing P1
were used as reference samples as they were highly reproducible. The simulated water

samples with P2 or Pstype particles were used to represent local surface source waters.

3.2.3 Sample Analysis

Water quality parameters, particle size distribution, and inorganic chemical analysis
were conducted in laboratories accredited by the National Association of Testing
Authorities (NATA), Australia. All the water samples were analysed at room

temperature.

Water guality

68



Turbidity was measured in NTU without physical filtration using a turbidimeter
(2100AN, Hach, USA). Prior to UV2s4, colour at wavelength 456 nm (true colourase)
and dissolved organic carbon (DOC) measurements, water samples were filtered
through 0.45 um polyethersulfone (PES) membrane filters (ANPEL Laboratory
Technologies, China) to remove all the non-dissolved particles under a constant
vacuum. 100 ml of water samples were filtered each time to minimise the effects of
membrane fouling [29]. UV2s4 and coloursss were analysed with a bench-top UV-Vis
spectrophotometer (Evolution 60, Thermo Scientific, USA) using a standard method
[30]. DOC was determined using a total organic carbon analyser (900, Sievers
Instruments Inc., USA) with a standard method [30].

Particle size distribution

Particle size distributions of the three types of particles in the Milli-Q water were
analysed using a LISST-Portable particle counter (Sequoia, USA). Particle size
distribution data were collected by following the operational instruction of the
manufacturer. The particle distributions were analysed as particle volume

concentration based on the particle size increment.

Inorganic chemicals

Chemical compositions of three types of particles in Milli-Q water (2g/L) including
metals and silica were analysed using Inductively Coupled Plasma - Mass
Spectrometer (Agilent ICP-MS, 7500cx) instruments following the standard method
[30]. Nitrogen as nitrate and nitrite were analysed using a discrete analyser according
to the standard method [30].

Submersible UV-Vis spectrophotometer analysis

A submersible UV-Vis spectrophotometer (spectro::lyser; s::canGmbH, Austria) with
a 35 mm pathlength was used to analyse the unfiltered and filtered water samples. The
water samples were measured within a range of 200 - 750 nm with 2.5 nm intervals.

The submersible UV-Vis spectrophotometer was connected to a controller (con::stat)
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which had an installed data processing software (ana::pro). The submersible UV-Vis
spectrophotometer could measure the unfiltered water samples directly as the software
has built-in generic particle compensation algorithms. The software can also convert
the UV-Vis spectrum into water quality parameters such as compensated UV2s4. Zero
or baseline check was performed using Milli-Q water before use. The water samples
were measured by filling the sample waters in the measurement port of the submersible
instrument. The port and lens were cleaned before each measurement to make sure that
progressive fouling and sample carryover did not impact the measurements. The
outputs of the submersible instrument were stored in the controller and contained

uncompensated UV-Vis spectra and derived water quality parameters.

3.2.4 Data Processing

Particle contribution is the amount of particle impact on the measurements, using a
submersible UV-Vis spectrophotometer, which needs to be compensated to get
accurate measurements. The particle contribution to UVa2ss measurement of the
submersible instrument was calculated as a subtraction between the absorbance of
unfiltered and filtered same water samples. Particle contribution to the UV-Vis
spectrum of the submersible instrument was also calculated as a subtraction between
the absorbance of a spectrum for unfiltered and filtered water samples. An illustration
of the calculation of the particle contribution is shown in Figure 3-1.
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Figure 3-1 An illustration of particle contribution to the spectrum of a water sample.
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The UV2ss measurements of the filtered water samples using a bench-top
spectrophotometer were defined as lab UV2s4. The UV2s4 0f unfiltered water samples
measured by the submersible instrument with the built-in generic calibration were
referred to as compensated UV2s4. The compensated UV2s4 was compared with the lab
UV2s4 to evaluate the performance of built-in generic algorithms of the submersible

instrument.

3.3 Results and Discussion

3.3.1 Characteristics of Particles and Water Samples

Particle size distribution and chemical compositions of P, P2, and P3 in Milli-Q water
were analysed. The results are shown in Table 3-1 and Figure 3-2. Each type of particle
had distinguishable particle size distribution. P1 particles had the smallest mean
particle size of 2.20 um among the three types of particles. 90% of the P1 particle size
was 0.85 - 8.65 um. P2 particles had the largest mean size of 14.6 um, while the
majority (90%) of P, particle size varied from 2.27 to 103.72 um. Pz particles had a
mean size of 7.6 um and 90% of Pz particles had a size range between 2.30 and 32.55
pum. Thus, natural particles (P2, P3) generally had larger particle sizes than the standard

particle (P1).

Table 3-1 Particle size of Kaolin (P1), Myponga (P2) and Hope Valley (Ps) particles in the
water.

Particle Type | Mean Size | Std of particle size | Size range 90% size
(um) (um) (um) (um)
P1 2.2 21.8 0.37-14.22 0.85-8.65
P2 14.6 54.2 1.19-237.35 | 2.27 - 103.72
P3 7.6 16.2 1.01-63.11 2.3-32.55
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Figure 3-2 Particle size distributions of Kaolin, Myponga and Hope Valley particles.

Chemical contents of the particles in water are shown in Table 4-2. Each type of
particle sample was prepared in Milli-Q water with the same particle concentration of
2.0 g/L. For metal content, P1 particles contain only 0.03 mg/mg of Al. P2 particles did
not have any reportable amount of metals. Pz particles contain low levels of Al, Ca and
Fe which were less than 0.10 mg/mg. The nitrogen content of total nitrogen of nitrate
and nitrite for all three particles was below the detection limit. The low level of
nitrogen content is common in SA water sources [28]. Metal and nitrogen contents
were analysed because high concentrations of inorganic species such as iron and nitrate
could interfere with the UV absorbance of water [31]. However, there was no evidence
that metal and nitrogen at very low concentrations in the water samples can affect the
UV measurements in this work. Both water samples with P1 particles and water
samples with P2 particles had low alkalinity as CaCOz3 (<50mg/L), while water samples
with P3 particles had the highest alkalinity (200mg/L). A previous study used the UV-
Vis spectrophotometric method to determine water quality and achieved comparable
results. The instrument was robust in the high alkalinity condition with water alkalinity
up to 459 mg/L [32]. Therefore, the alkalinity of the water samples containing P1, P2

or P3 could not affect the measurements of UV-Vis spectrophotometers.
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Table 3-2 Inorganic chemistry of particles in Milli-Q water: Kaolin (P1), Myponga (P2) and
Hope Valley (P3).

Particle Type Metal N as (NOz + NOs') | Alkalinity as CaCOs

(mg/mg) (mg/mg) (mg/L)
P1 Al | 0.03 | 0.00 20
Ca | 0.00
Fe | 0.00
P | 0.00
Na | 0.00
Mg | 0.00
P, Al | 0.00 | 0.00 40
Ca | 0.00
Fe | 0.00
P | 0.00
Na | 0.00
Mg | 0.00
Ps Al | 0.07  0.00 200
Ca 0.01
Fe | 0.03
P | 0.00
Na | 0.00
Mg | 0.00

The water quality parameters include turbidity, lab UV2s4, true coloursss, DOC and
pH, of all simulated water samples were analysed using the laboratory standard
methods, and the results are shown in Table 3-3. In general, all six types of simulated
water samples had different lab UV2s4 responses. The lab UV2s4, true coloursss, and
DOC of P;W; water samples were close to zero as P1 is purely clay mineral. All the
P1W- samples had constant values of lab UV2s4, true coloursss, and DOC as W> water-

base contain natural organics.
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Table 3-3 Water quality characteristics of six types of simulated water samples that were made up of
three types of particles (P1, P2, and P3) and two base-waters (W1 and W5).

Water | Sample Particle Turbidity Lab UVazs4 True DOC pH

samples level Conc. (NTU) (m-) Coloursse (mg/L)
(m)

mg/L Unfiltered Filtered Filtered Filtered Unfiltered

mean SD | mean SD | mean SD | mean SD | mean SD

W; - 0 <0.1 0 <0.1 0 <0.1 0 <0.1 0 7.0 0

P;W1 A 2.5 23 0.2 0.1 0 <1 0 0.1 0 5.6 0

B 25 21 0.1 0.1 0 <1 0 0.1 0 56 0.1

C 50 43 0.9 0.1 0 <1 0 0.1 0 55 0.1

D 100 85 0.6 0.1 0 <1 0 0.1 0 56 0.1

E 125 105 1.0 0.1 0 <1 0 0.1 0 56 0.1

P,W1 A 25 23 0.1 0.1 0 <1 0 0.2 0 6.5 0.1

B 250 21 05 1.1 0 3 01 0.4 0 6.3 0.1

C 500 4 04 2.2 0 0.1 0.7 0 6.2 0.1

D 1000 86 1.1 4.3 0 7 0.1 1.2 0 6.1 0.1

E 1300 107 1.0 53 0 11 0.2 1.5 0 6.0 0.1

P3W3 A 5 24 0.1 0.0 0 <1 0 0.2 0 8.0 0

B 50 21 0.6 0.1 0 <1 0 0.3 0 82 0.1

C 100 43 0.7 0.3 0 2 01 0.5 0 83 0.1

D 200 85 1.1 0.8 0 3 01 0.7 0 82 0.1

E 250 106 1.0 1.0 0 5 02 0.8 0 83 0.2

W, - 0 0.2 0.0 10.7 0 6 0 5.1 0 7.1 0

P1W; A 5 23 0.0 11.3 0 6 0 5.2 0 7.1 0

B 50 21 0.3 11.3 0 6 0 5.2 0 7.1 0.1

C 100 44 0.5 11.3 0 6 0 5.2 0 72 01

D 175 86 0.4 11.3 0 6 0 5.3 0 71 01

E 225 107 1.0 11.3 0 6 0 5.2 0 7.1 0

P,W; A 25 24 0.1 11.2 0 7 0.1 5.2 0 6.7 0.1

B 250 21 0.2 11.6 0 8 0 5.3 0 6.6 0.1

C 500 43 0.7 121 0 9 0.2 5.4 0 6.8 0.1

D 875 85 0.5 13.1 0 10 0.1 5.7 0 6.7 0.1

E 1125 106 0.8 13.6 0 11 0. 5.8 0 70 0.1

PsW, A 5 23 0.1 11.4 0 7 0.1 5.2 0 7.1 01

B 50 21 0.3 11.6 0 7 0.1 5.3 0 7.2 0.1

C 100 4 0.7 11.8 0 8 0.1 5.5 0 73 0.1

D 175 86 0.9 12.3 0 8 01 5.8 0 73 01

E 225 107 0.8 12.5 0 9 0.2 5.9 0 72 01

Note: measurement error was shown as standard deviation (SD).

All the simulated natural water samples with P> and P3 particles contain organics. Lab
UV2s4 measurements of PaW1, PsW1, P2Wo, and PsW, samples were from 0.1t0 5.3 m’
10.0to 1.0 m?, 11.2 to 13.6 m™, and 11.4 to 12.5 m™, respectively. Water samples

with the W» water-base had higher values of lab UV2s4, true coloursss and DOC than
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the water samples with the W1 water-base. Myponga treated water was employed as
the W, water-base, which had a high DOC content that was in line with the historical
data [33].

Water quality results in Table 3-3 indicate that the pH of all the water samples was
within a range of 5.5 to 8.3, which is similar to the reported pH range (6 to 8.5) of most
surface water in SA [28]. There was no significant influence of water sample pH on
the lab UV2s4. Thus, the pH of the water samples was not adjusted. Weishaar et al. [31]
reported that the minor pH effect on UV absorbance measurements was observed for
river water samples. A study also concluded that only relatively high or low pH had

impacted on the UV absorbances of the lake water samples [34].
3.3.2 Relationships between Water Quality Parameters and UV Measurements

Particle compensation is also called turbidity compensation for the measurements of
water quality using UV-Vis spectrophotometers. Turbidity measures light scattering
which is interactions between light and suspended particles. Suspended particles can
cause light scattering and affect the light absorption of the water samples. Accordingly,
turbidity has a major and direct connection to the measurements of UV-Vis
spectrophotometers. UV2ss is commonly used as a surrogate to determine the
concentration of organic matter in water. Therefore, to understand the UV response of
water samples, we investigated relationships between water quality parameters, such
as turbidity and DOC, and UVa2ss measurements using a bench-top UV-Vis

spectrophotometer.

Lab UVassis plotted as a function of turbidity for all six types of simulated natural
water samples which is shown in Figures 3-3a and 3-3b. As the increase in turbidity
of P1W1 and P;W; water samples, lab UV2s4 measurements were constant (Table 3-3).
P1 particles were purely inorganics and insoluble in water which can be removed by
physical filtration. There were statistically robust linear relationships between
turbidity and lab UV2s4 for P2W1, P2W-, PsW4, and PsW, water samples with R2>0.99.
As the turbidity level increased, the lab UV2s4 of the water samples increased linearly.

The slopes and intercepts of the water samples with P> type particles were different

75



from that of water samples with Pz type particles. For water samples with P> and Ps3
particles, water samples with W1 water-base had intercepts of almost 0 m, whereas
the intercepts of water samples with the W- water-base were around 11 m™. It was

because the W, water-base contains high levels of dissolved organics.

UV2s4is also plotted against DOC for all the water samples, shown in Figures 3-3c and
3-3d. The relationship between DOC and UV2s4 of P1W1 and P1W, water samples was
not taken into consideration, as P1 type particles do not contain any organics. For all
P,W; and P,W, water samples, an increase in DOC leads to an increase in UV2s4. DOC
had linear correlations with the UVas4 for P2W1, P2Wo, PsW1 and P3W2 water samples
with R% of 1.00 and 0.99, respectively, with different slope and intercept for each water
type. The slopes of water samples containing particle type P3 were lower than the water
samples containing particle type P2, which could be explained by the UV of
supracolloidal particles having lower slopes than fine colloidal particles [35]. Thus,
different types of simulated natural waters had different linear relationships between
DOC and UV2s4.
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Figure 3-3 Correlations between turbidity and lab UV2s4 of simulated natural water samples
are shown in a) and b); relationships between DOC and lab UV, of simulated natural water
samples are shown in ¢) and d). P.W1, P2W,, PsW1, and PsW; were simulated water samples
that were made up of two types of particles (P2 and Ps), and two types of water-bases (W1 and

W), respectively.

Overall, different natural water samples had different lab UV2s4 responses using a
bench-top UV-Vis spectrophotometer combined with a physical filtration method. The
UV response of the turbidity for the filtered water samples was caused by DOC. In
general, particle characters that affect measurements of bench-top UV-Vis
spectrophotometers are mainly DOC. There were linear relationships between
turbidity and UV2ssas well as DOC and UV2s4 0f surface catchments water in SA, such
as river water and reservoir water. The findings were supported by two reported
studies. Mamane et al. [36] reported that with the increase of particle concentration in
the water, the associated UV absorbance increase linearly. UV2ss measured by the
bench-top UV-Vis instrument was changed directly with the change of DOC in the

river waters [37].
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3.3.3 Particle Contribution to Measurements of A Submersible UV-Vis

Spectrophotometer

Particle contribution was calculated based on the measurements of a submersible UV-
Vis spectrophotometer as mentioned in section 2.4. According to the results present in
Figure S3-1 in Supporting Information (Sl), the turbidity of all six types of water
samples increased when the particle concentrations increased. The particle
contribution to UV-Vis spectra and UV2s4 for the six types of water samples with five
different turbidity levels (A, B, C, D, E) are shown in Figures 3-4a, S3-2 and S3-3 in
Sl. As water turbidity increased, the particle contributions in P1W; also increased.
Similarly, an increase in turbidity was associated with the increase in the particle
contributions to P2W1, PsW1, P1Wa, P2W», and PsW» water samples. Thus, an increase
in the turbidity of water samples can lead to an increase in particle contribution. P3
particle had the highest contribution to the UV-Vis spectra and P2 had the least particle
contribution, among the three types of particles, for each turbidity level of water

samples: turbidity level A to turbidity level E.

For UV2ss measurement, the particle contribution of each water sample was
distinguished according to their absorbance values in Figures 3-4b and S3-3 (in Sl).
At the same turbidity level in the water samples with W1 water-base, P3 type particles
had the largest particle contribution to UV2s4 measurements, while P2 particles had the
lowest particle contribution to the UV2s4 measurements. Interestingly, in the water
samples prepared with W» water-base, P1 particles were found to demonstrate a
slightly higher particle contribution to the UV2s4 measurements than Ps particles. The
difference between P> had the lowest particle contribution to the UV2s4 measurements.
Thus, the influence of the particle contributions on the UV2s4 measurements could be

dependent on the water matrix.
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Figure 3-4 a) Particle contributions of PiW; water samples to spectra at five different
concentration levels; (b) Particle contribution of different types of waters to UVzss
measurements. Particle concentration levels were from low to high (water sample A to water

sample E).

Overall, the particle contribution to the UV-Vis measurements is dependent on the
particle type and particle concentration. As particle concentration increases, suspended
particles in the water cause light scattering. Particle contributions caused by the light
scattering of the suspended particles are common in natural waters. Light scattering
could significantly affect the UV-Vis measurements, which can be influenced by the

79



particle concentration, particle type and particle size [36-38]. For small particles, light
scattering has a linear relationship with particle concentration. Thus, an increase in the
particle concentration leads to an increase in particle contribution to the UV-Vis
measurement. Particle type influences the light scattering which can, in turn, affect the
particle contribution. Particle size could largely affect the intensity of the scattering
light. Increase of the small particle size, the intensity of the scattered light is likely to
increase. Py particle type was pure clay, P2 particle type was silica-based and Pz particle
type was clay-based. Both P, and Ps particles were collected from the natural surface
source water. Clay particle has 50% of light scatter away and particles from natural
waters have 20%-30% light scatter away [37]. The differences in particle sizes and
particle types contribute to the different light scattering effects, in turn, lead to the
difference in their particle contribution. It can be explained that P; and P3 had much

higher particle contributions to the UV-Vis measurements than Po.

Understanding the particle contribution caused by the particle types and
concentrations, which assists to discover the built-in compensation behaviour of
submersible UV-Vis spectrophotometers. The particle contribution to the
measurements of water samples could be determined by particle compensation, which
can be conducted to remove the particle interference in the measurements of water
quality [12]. The particle contributions can be varied with the water sources type and
concentration, thus leading to corresponding changes in measurements of a
submersible UV-Vis spectrophotometer. Thus, a universal particle compensation is not

always effective.

3.3.4 Evaluation of the Performance of A Submersible UV-Vis

Spectrophotometer

The performance of the built-in generic particle compensation algorithms of the
submersible instrument was evaluated in an offline mode, by comparing it with the
bench-top instrument. The UV2s4 of water samples measured by the submersible
instrument were compensated for the particle effect using the built-in generic

calibration (compensated UV2s4). The lab UV2s4 of the same water samples measured
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by the bench-top spectrophotometer were used as references. Compensated UV2s4 and
lab UV2s4 Of all the water samples were plotted as a bar chart and are shown in Figure
3-5 and Figure S3-4 (in SI). UV2s4 was used as it is an essential absorbance-based
water quality parameter for the concentrations of organic matter and disinfection by-

product precursors in the water.

According to Figure S3-4 in SI, the compensated UV2s4 was much lower than the lab
UV2s4 for P1W1 and P1W- water samples. The compensated UV2s4 of P1W; and P1W»
water samples were highly over-compensated by the built-in generic compensation
algorithms, which was probably because the P1 contained purely inorganics. The built-
in compensation algorithms were based on hundreds of natural water samples, which
may not be suitable for compensating water contains purely inorganics. For P2W1
water samples, the compensated UV2s4 was slightly lower than the lab UV2s4 as shown
in Figure 3-5, which indicates the submersible instrument slightly over-compensated
the UV2s4 measurements. For P,W, water samples, the compensated UV2s4 seemed
close to the values of lab UV2s4. This finding was agreed with the conclusion that the
submersible instrument was effective in compensating for the particle effect on the
measurements [26]. It was found that the compensated UV2ss4 had strong linear
correlations with lab UV2s4 with a slope of 1.34 and 1.71 and R? of 0.99 for P,W; and
P2W> (Figure S3-5 in SI). It is interesting to note that the compensated UV2s4 was
higher than lab UV2s4 for some types of water samples whereas was lower than lab
UVas4 for other types of water samples. There are also linear relationships between
compensated UV2s4 and lab UVass for water samples with Pz, An increasing linear
relationship was found for PsW; water samples whereas a decreasing linear
relationship was found for P3W, water samples.
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Figure 3-5 Comparisons between UV2s4 measurements of submersible and bench-top UV-Vis
instruments. Compensated UV3s, is obtained from the outputs of a submersible UV-Vis
spectrophotometer. Lab UV2ss is measured using a bench-top UV-Vis spectrophotometer.

P,W: and P,W, were water samples made up of P, type particles and W, or W, water-bases.

Overall, there were linear relationships between compensated UV2s4 and lab UV2s4 for
all the simulated natural water samples with P, or Ps particles. The built-in
compensation algorithms of a submersible UV-Vis spectrophotometer do not always
generate comparable compensated UV2s4 for natural water samples as the bench-top
UV-Vis instrument. For natural waters, the built-in generic particle compensation
methods may generate either under or over-compensated measurements. A previous
study also reported the incomparable measurements of UV measurements of the built-
in generic algorithms for waters [16]. This work shows that particle compensation is

source water specific and the site-specific particle compensation should be performed
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when using the submersible instrument to measure water quality. Some scientists also
believed that particle compensation based on the water matrix needs to be considered
to achieve comparable measurements using the submersible instrument [7, 11, 13, 15,
18, 39]. Industrial applications of using the submersible instrument to monitor water
quality had experienced those the generic compensation algorithms were unable to
generate accurate measurements for some water sources [4-7, 21, 22]. Particle
compensation is one of the barriers to online instrument implementation in industrial
applications. It is essential to perform site-specific particle compensation and establish
the frequency of the compensation to achieve accurate measurements [40-43].
Therefore, it is recommended that the evaluation of the accurate measurements of the

submersible instrument is conducted before using it to monitor water quality.

3.4 Conclusion

Laboratory-scale investigations were conducted to understand relationships between
turbidity and UV2ss, DOC and UVas4, and particle compensation behaviour of a
submersible UV-Vis spectrophotometer. Six kinds of simulated waters, in the
combinations of artificial standard particles, natural water particles, ultrapure water
and treated water from a drinking WTP. Both turbidity and DOC were linearly
correlated with UV 254 measurements with R?>0.99. Different types of simulated water
samples had different UV absorbance responses. Particle contributions to the UV-Vis
measurements not only vary when particle types changes but also particle
concentrations change. The compensated UV2ss, measured by a submersible
instrument with the build-in generic particle compensation algorithms, were compared
with the lab UV2s4, tested by the bench-top instrument with the physical filtration
method. The results showed that the built-in generic calibration compensation
algorithms of the submersible instrument tend to generate under-compensated or over-
compensated UV2s4 for surface waters. These findings provide evidence that the
particle influence on the measurements of the submersible instrument is source water
dependent. It helps users to understand the behaviour of submersible UV-Vis
spectrophotometers and why the built-in generic calibration does not generate

comparable results in many cases.
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Figure S3-1 The linear relationships between particle concentrations and turbidity of water

samples for six types of water samples: P1W1, P2Wa, PsW1, PAW2, PoW,, PsWo. The water

samples were made up of three kinds of particles (P1, P2, and P3) and two types of waters
(W1 and Wy).
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Figure S3-2 Particle contributions to the measurements of UV2s4 for six types of water
samples with five levels of concentrations for each type of water from low to high (water
samples A to E).
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Figure S3-3 Particle contributions of P1W», P.W1, P2Wo, P3sWi, PsW- water samples at five

different turbidity concentration levels from low to high (water samples A-E).
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Figure S3-4 Comparisons between the measurements of compensated UV2s4 and lab UV s,
measured by a submersible and the bench-top UV-Vis instrument, for P1W1, P1W>, PsW and
PsW- water samples.
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Figure S3-5 Comparisons between the measurements of a submersible and a bench-top UV-
Vis spectrophotometer: compensated UV2s4 and lab UVsa. P2W1, PoWo, PsW1, and PsW, were
simulated water samples that were made up of two types of particles (P2 and P3), and two types

of water-bases (W1 and W,), respectively.
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Chapter 4
Develop and Assess Particle Compensation Techniques for Online

Water Quality Monitoring Using UV-Vis Spectrophotometer

. Linear calibration methods can be used to correct different

compensation techniques

«  The utilised three compensation techniques are comparable to the

built-in compensation

«  The three compensation techniques are comparable to physical

filtration method
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This chapter presents research approach and progresses for the development of
software techniques (surrogate parameters) to eliminate particle impact on the
measurements. This is needed by the water industry as water utilities are suffering
from measurement issues of using UV-Vis spectrophotometers for online water quality
monitoring [1-5]. Particle compensation is a key component for online water quality
monitoring and process control [6]. Thus, software techniques that were investigated
and used for particle compensations, including single wavelength compensation, linear
regression compensation and multiplicative scatter correction method for online UV-

Vis measurements using time series spectra data from water treatment plants.

The results presented in this chapter reveal that these particle compensation techniques
can provide reliable UV2s4 measurements for online water quality monitoring for water
treatment. This chapter also shows the benefits of using the software compensation
technique for site-specific compensation instead of relying on the instrument built-in
algorithms for online water quality monitoring. The research explores the potential
benefits of using online UV-Vis instruments for water quality management by
improving online measurements using software compensations, which are able to
replace physical filtrations (needed in laboratory-based measurements) to minimize
maintenance requirements for both time and consumables. Moreover, it identifies that
cost-effective simple UV-Vis sensors could be employed in the field to monitor water
quality instead of using sophisticated full-spectrum UV-Vis instruments.

The following content of this chapter was published as a technical paper in the Journal
of Chemometrics and Intelligent Laboratory Systems, 204, p.104074, as shown in
Appendix D.
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4.1 Introduction

Absorbance using UV-Vis spectroscopy at a wavelength of 254 nm (UVa2s4) is an
important water quality parameter. UV2s4 measures the concentration of organic matter
and disinfection by-product precursors, which has been widely used by water treatment
plant operators as a quick water quality measurement to control water treatment
processes. Traditionally UV2s4 measurement relies on the laboratory analysis of water
samples collected from ecosystem sites. This laboratory process frequently suffers
from feedback delay and an inability to respond rapidly to water events through the
water sample collection, transportation, storage and preparation [7]. Whereas, online
water quality monitoring can provide quick responses to sudden water quality changes,
which has been employed by some water utilities in recent years to manage water

quality and assist water treatment process control [8].

Conventional laboratory UV2ss analysis requires a filtration step using membrane
filters to remove particles in the sample and eliminate the particle interference on the
ultra-violet and visible (UV-Vis) measurements. Mathematical algorithms are used to
eliminate particle interference for UVass measurements, adjusting the results
equivalent to conventional laboratory measurement using filtration. The use of
mathematical algorithms to eliminate the sample filtration step would be particularly
useful for online UV-Vis spectrophotometer. The mathematical algorithms are even
implemented into some commercial online spectrophotometers and these online UV-
Vis spectrometers can report UV2s4 as laboratory equivalent. However, the accuracy
of particle compensation is still a major concern in terms of how the results could be
comparable to analytical data using the conventional laboratory method for the

variable water samples under different conditions.

Particle compensation is called either solid compensation by some instrument
manufacturers or turbidity compensation, as turbidity measures light scattering which
is the interaction of light and suspended solids in the water. Suspended particles affect
the light absorption and consequently influence the whole UV-Vis spectrum which

leads to attenuation of the transmitted light intensity [9]. Studies show that there are
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two types of particle compensation algorithms which can be used to remove the
particle effect on the UV-Vis: compensation/subtraction technique and empirical
modelling technique. The compensation technique is defined as the direct subtraction
of absorbance of the single wavelength characterised by the particles in the water [10,
11]. Tang et al. concluded that individual single wavelengths including 275 nm, 350
nm, and 550 nm could be utilised to characterise the particles and successfully applied
the compensation technique to remove the particle effect [12]. The compensation
technique of correcting the turbidity by correlating with the blue shift was also reported
as an option to eliminate the deviation and improve the accuracy of UV-Vis

measurement in wastewaters [9].

Empirical modelling approaches can also be used as an alternative to the compensation
technique to obtain the laboratory equivalent results using the measured parameters
and the corresponding spectra. Hu and Wang developed surrogate parameters based
on the integration of spectra for different functional groups of compounds and then
eliminated the turbidity impact by deducting the turbidity component from surrogate
parameters [13]. A dynamic partitioning algorithm was used based on the fourth-order
derivative spectrum to analyse and predict the groups of contaminants. Hu et al.
analysed the impact of chemical compositions in wastewater samples and extracted
the morphology features of their absorptive spectra to eliminate the measurement
derivation [14]. Partial least square (PLS) calibration models have been computed with
the fourth derivative UV-Vis spectrum to remove the particle effect on the detection
of water quality multi-parameter in artificial seawater [15]. Torres and Bertrand-
Krajewski employed the partial least square to eliminate the particle effect on
measuring chemical oxygen demand and total particles in urban drainage systems
using Matlab software [16]. They commented that further tests for the application of
the PLS method are needed to evaluate the robustness and variation of the regression.
Empirical modelling using a multiple linear regression from the ‘lars’ package in the
R software was adapted to remove the particle effect on the UV-Vis spectra of brackish
water for rapid measurement of multiple material concentrations [17]. This study
indicated that site-specific compensation should be developed individually for future

applications. Besides, the instrument built-in compensation algorithm of some

99



commercial UV-Vis spectroscopy software is developed based on PLS to link the
spectra and laboratory data [10]. However, the details of the built-in algorithm method
and technique for these commercial online spectrophotometers are not accessible to
the users. Most of the reported compensation methods are relatively complex and may
need a long processing time to conduct the analysis, making these techniques
unsuitable for online water quality monitoring [13]. Due to the complexity and poor
adaptability of the aforementioned methods, a simple and easy technique for particle
compensation is needed for online water quality monitoring using UV-Vis

spectrometry.

In this study, software compensation techniques including single wavelength (single
point) and linear regression (multiple points) models were developed to remove the
particle effect on the UV2s4 measurements. In addition, a well-established software
compensation technique was also used to reduce the particle effect as a comparison.
Online UV-Vis measurement systems were set up in two industrial water treatment
plants with three water sources. The accuracies of the three compensation techniques
were assessed through comparison with the instrument built-in compensation method.
Bland-Altman analysis, a statistical analysis technique, was used to determine the
agreement limits of the three compensation techniques as a comparison against the

built-in algorithms.

4.2 Material and Methods

4.2.1 Water Sources

Water quality data were provided by two Water Treatment Plants (WTPs), Anstey Hill
WTP and Happy Valley WTP in South Australia for this study. Both WTPs employ
conventional water treatment practices comprising coagulation, flocculation,
sedimentation and filtration to produce drinking water for South Australia. Anstey Hill
WTP plant has a switchable water source system, taking water from Millbrook
Reservoir or River Murray water (via the Mannum-Adelaide pipeline). Happy Valley
WTP has a single water source from the Happy Valley Reservoir with water

originating from both the River Murray and local catchment areas. These two WTPs
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were selected because of the differences in the water quality of the water sources.
Three natural water matrices including Anstey Hill raw water (RW1), Happy Valley
raw water (RW2) and Happy Valley treated water (TW), were selected as they
represent different water qualities in terms of particle concentrations as determined by
turbidity (NTU) and dissolved organic content (DOC). RW1 contained high turbidity
(10 to 93 NTU) and moderate DOC (3.8 to 8.4 mg/L); RW2 had moderate turbidity (2
to 10 NTU) and high DOC (6.4 to 10.1 mg/L), and TW had low concentrations of both
turbidity (0.1 to 0.8 NTU) and DOC content (0.3 to 4.5 mg/L). Turbidity and DOC
ranges represent seasonal and water source variations between April and December
2013.

4.2.2 Instrument and Monitoring Locations

Three s::can spectro::lysers (s::can Messtechnik GmbH, Austria) were installed at
three locations in the two selected WTPs to monitor the real-time water quality of
RW1, RW2 and TW. The s::can spectro::lyser comprises a double beam photodiode
array 256 pixel UV-Vis spectrometer and uses a Xenon lamp as a light source. It
measures a UV-Vis spectrum at a wavelength range of 200-720 nm with a selectable
optical path length range between 5 and 100 mm for different applications based on
the required sensitivities. The installation locations were at the inlet of Anstey Hill
WTP and both inlet and outlet of Happy Valley WTP. The path length of the
spectro::lyser used was 5 mm, 5 mm and 100 mm for the inlet of Anstey Hill WTP
(RW1), the inlet of Happy Valley WTP (RW2) and the outlet of Happy Valley WTP
(TW), respectively. The instruments were first zero checked / baseline adjusted with
ultrapure water to ensure a zero baseline. The spectro::lysers were equipped with
automatic cleaning using compressed air before each measurement. Scheduled
maintenance (manual cleaning) of the instruments was conducted fortnightly to ensure
the cleanliness of the lens to eliminate drifting caused by fouling and that the sample
lines were unobstructed. The three water quality monitoring locations were also used
as sampling points for routine water quality monitoring (grab sampling), including
inlet at Anstey Hill WTP, inlet and outlet of Happy Valley WTP.
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4.2.3 Water Quality Monitoring Period

The three water sources were monitored between April and December 2013. Online
spectro::lyser data and standard laboratory UV absorbance at 254 nm (UV2s4) data
were utilised in this study. The spectro::lyser was set to monitor water quality at a two-
minute interval. Grab samples of raw water were collected for laboratory analyses
weekly and fortnightly for the treated water. Water quality parameters of grab samples
for routine monitoring including UV2s4, colour at 456 nm, turbidity, and DOC were
utilised to characterise the water quality. Prior to measuring UV2s4, colour and DOC,
the water samples were filtered using 0.45 pum PES membrane filters (ANPEL
Laboratory Technologies, China). UV2s4 and colour were determined with a UV-Vis
spectrophotometer (Evolution 60, Thermo Scientific, USA) using the method
described in published study [18]. Turbidity was measured using a turbidity meter
(2100AN, Hach, USA) and DOC using a total organic carbon analyser (900, Sievers
Instruments Inc., USA) and determined using the methods described in Standard
Methods [19].

4.2.3 Data Acquisition and Processing

The UV-Vis spectra were acquired by the s::can spectro::lyser, with the full UV-Vis
spectral data saved as fingerprint (FP) files stored in the instrument hard-drive. FP files
contain time-series data of spectral absorbance values which has a timestamp column
(first column) to record the time of each measurement for wavelengths ranging from
200 to 720 with a 2.5 nm interval. FP files contain raw non-compensated data. Initial
data pre-treatment was guided by the instrument integrated data diagnostic status (a
column in the data stream to flag instrument issues). Those UV-Vis spectral data
caused by known instrument issues or failure were manually eliminated. Further data
pre-treatment was conducted by a time resolution optimisation algorithm using R and
R-Studio [20, 21]. From the initial studies, the hourly average of the FP data did not
reduce the resolution. Thus, the hourly average was used in this study to reduce the
data volume for easier comparisons and without losing resolution. R scripts (codes)

were developed to handle the large volume of UV-Vis spectral data generated by the
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spectro::lyser and perform the required compensation calculations and statistical

analysis.

4.2.4 Particle Compensation Techniques

Four particle compensation techniques were used to remove the particle effect on the

UV2s4 for online water quality monitoring of three water sources: RW1, RW2 and TW.

1. Ana:pro is the acquisition software supplied for the s::can spectro::lyser by the
manufacturer (s::can Messtechnik, Austria). The compensation can be conducted
by the instrument integrated ana::pro software in the real-time or offline standalone
PC version. It contains algorithms using PLS based on the results of hundreds of
water sources [22]. In this study, ana::pro was used in offline mode to process the
raw spectral data (FP files) according to the procedures from the manual [23]. FP
files of the three selected water sources were imported separately into the ana::pro

software (offline mode) to generate compensated UV2s4 as an output parameter.

2. The single wavelength compensation (SWC) is a direct subtraction method.
However, as s::can spectro::lyser has a 2.5 nm resolution and absorbance of UV2s4
was not given in the raw FP, an interpolate algorithm (R-script) was first applied to
generate the spectral data in 1 nm resolution. Then the compensated UV2s4 was

determined by subtracting the absorbance between 254 nm and 550 nm.

3. The linear regression compensation (LC) technique is based on the visible region
of 380-750 nm which is the most impacted by particles given responses occur [15].
As explained previously, 1 nm resolution spectra (FPs) were generated first then an
R algorithm was used to perform the calculations. For each spectrum, a linear
regression (linear fit) was performed using a wavelength range of 550 to 580 nm as
the x-axis and their corresponding absorbance as the y-axis. The obtained linear
equation was then used to determine the particle absorbance at 254 nm.
Compensated UV2s4 Was a subtraction between UVa2s4 and particle contribution of
UV2sa.
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The multiplicative scatter correction (MSC) method is a normalization technique to
correct particle effect (light scattering) on spectra. MSC method can correct the
spectra by changing the scale and the offset based on the reference spectrum which
IS the mean of the spectra [24]. The hourly averaged UV-Vis spectra were processed
for MSC using the unscrambler X software (version 10.4, CAMO). Then

compensated UV2s4 Were extracted from the spectra for analysis purposes.

A Dbrief illustration of removing particle effect on the UVass using different
compensation methods is shown in Figure 4-1. Detailed explanations of these

compensation techniques are shown in the results and discussion.
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Figure 4-1 Illustration of particle compensation of UV2s. using a) laboratory method and b)
compensation techniques, i. single wavelength compensation (SWC), ii. instrument built-in

compensation algorithm (B), iii. linear regression compensation (LC), and iv. multiplicative
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scatter correction (MSC) method. 1, 2, 3 and 4 in Figure 4-1b represent the compensated
(Comp) UVass of SWC, B, LC and MSC, respectively.

4.2.5 Local Calibrations

The instrument built-in compensation algorithm (B) was developed using PLS based
on hundreds of water samples. This technique is also considered as a generic method
(average compensation) which may require a local calibration using grab samples [25].
The compensated UV2s4 of the built-in compensation method for the three water
sources were calibrated using a simulated local calibration method which conducted
the offline calibration using the laboratory grab sample measurements based on the
linear model. Similarly, the compensated UVas4 of three particle compensation

techniques were also conducted local calibrations based on the linear modes.

4.2.6 Statistical Analysis

Data sets in this study were assumed to be generated from a large number of water
samples from which the water quality data tend to follow normal distribution
regardless of the shape of the data [26]. The bland-Altman analysis was used to assess
the comparability of single wavelength and linear regression compensation techniques
against the instrument built-in algorithm for UV2s4 of RW1, RW2 and TW. Bland-
Altman analysis studies the difference of the compensation techniques by constructing
the limits of agreement, which is determined by the bias (mean of the differences) of
UV2s4 plus and minus 1.96 times its standard deviation of the differences between the
two compensation methods [27]. It defines that 95% of data points lie within the limits
of agreements. In this work, the differences between the two techniques were plotted
as percentages. Percentage differences were calculated using the difference between
the two methods divided by the means of the two methods and then multiplied by
100%. The Bland-Altman method only defines the intervals of agreements and does
not indicate whether the limits are acceptable or not. Therefore, the acceptable limits
need to be defined and compared with the limits of agreement generated by the Bland-
Altman analysis. The limit of the acceptable percentage difference of UVass

(compensated) was defined as plus/minus 10% of the instrument built-in compensation
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method. A flowchart of the data analysis procedure of particle compensation

techniques is shown in Figure 4-2.
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Figure 4-2 Flow chart to show the comparison procedures of single wavelength compensation
(SWC), linear regression compensation (LC) and multiplicative scatter correction (MSC)

techniques against the instrument algorithm (B) for UVsa.

4.3 Results and Discussion

4.3.1 Instrument Built-in Compensation and Calibration

UV-Vis spectral data of RW1, RW2 and TW monitored from April to December 2013
were processed using the ana::pro software. It should be noted that the water source
for Anstey Hill WTP was switched from Millbrook Reservoir water to River Murray
water in May and June 2013 as indicated in Figure 4-3. The three sets of data were
compensated using the built-in compensation algorithms in offline mode. The
compensated UV2s4 and calibrated UV2s4 (after calibrations using laboratory UVass

measurements) were plotted against time for the three water sources as shown in
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Figure 4-3 and Figure 4S-1 in Supporting Information (SI). The plots of the built-in
compensation for RW1 and RW2 water are shown in Figure 4-3.
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Figure 4-3 Comparisons between compensated UVas. and calibrated UV2ss measurements
against laboratory UV, for a) Anstey Hill raw water (RW1) and b) Happy Valley raw water
(RW2). Note: no data was recorded after August 2013 (Figure 4-3a), the instrument software

could not perform the calculation for compensated UV2s. due to the high turbidity of the water.

The water quality profiles as measured by UV2s4, turbidity and DOC are shown in
Figure 4-4a indicates that the turbidity of RW1 was dramatically increased when the
source water was switched from Millbrook Reservoir water to River Murray water.
The built-in compensation method was unable to generate the compensated UV2s4
measurements when the turbidity is higher than 60 NTU for Anstey Hill raw water,

which may be beyond the compensation limit. Therefore, this result indicates that it is
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important and necessary to seek alternative particle compensation methods for online
water quality measurements using UV-Vis spectroscopy, especially in highly variable

water sources.
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Figure 4-4 Laboratory results of water quality parameters of a) Anstey Hill raw water (RW1)
and b) Happy Valley raw water (RW2) and ¢) Happy Valley treated water (TW) from April
2013 to December 2013.
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Large differences were observed between the compensated UV2s4 and the UVas4 of the
grab samples for RW1 when the water source was switched from Millbrook Reservoir
water with a turbidity level of less than 40 NTU to River Murray water with a turbidity
level over 40 NTU. After the local calibration was applied (in simulated mode), the
compensated and laboratory analytical UV2s4 data were well matched with each other.
It indicates the results of the built-in compensation method are not comparable with
the laboratory filtration method for water such as RW1 with large turbidity changes.
However, with the adjustment of the local calibration, the built-in compensation is
comparable with the laboratory filtration method even when large turbidity changes
occur. Similar observations were obtained from the RW2 according to Figure 4-3.
There was a gradual increase in turbidity of the RW2 from July to October 2013,
during which much larger deviations between the UV2s4 of the built-in compensation
method and that of the laboratory method at medium turbidity level over 5 NTU could
be observed. Yet, after having performed the calibration, a good match between the
compensated and laboratory analytical UV2s4 data was found for RW2. A similar
observation can also be seen for the TW with a low turbidity level and low DOC
content (Figure 4S-1 in Sl). The DOC remained quite stable for all three water sources
in which the turbidity changed significantly for raw waters. Therefore, the built-in
compensation method with local calibration is comparable with the laboratory
filtration method. Local calibrations have been established by other researchers to
improve the accuracy of the online measurements of UV-Vis spectrometers [28, 29].
Therefore, our results reveal that with proper calibration, the built-in compensation
method can perform the same particle compensation as the laboratory filtration. Our
results reveal that the particle compensation techniques can assist the online UV
measurements to provide acceptable water quality results for raw water with high
turbidity and medium DOC content, raw water with medium turbidity and high DOC
content and treated water with low turbidity and low DOC content. The built-in
compensation method was used as a reference method to assess the two developed

compensation methods in this study.
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4.3.2 Software Compensation Techniques and Correction Methods

Nephelometric turbidity units (NTU) have been widely used as a surrogate measure of
suspended particles. The turbidity signal was determined by selecting the wavelength
range from 380-750 nm to eliminate the particle effects on the UV-Vis absorbance
measurements of water samples. Studies have shown that the wavelength at 550 nm is
the best for turbidity compensation in drinking water samples and has frequently been
used in conjunction with UV2s4 measurements [30]. Absorbance at 546 nm was
reported to eliminate the particle effect on the DOC for river water [31]. Mrkva used
wavelength 545 nm in an automatic UV analyser to deduct the absorbance of particles
for surface and wastewaters [32]. Some commercial instruments including the HACH
UV probe [33] and Burkert spectral absorption coefficient sensors compensate for
particle effect using a reference measurement at 550 nm [34]. Shimadzu UV
instruments include UV-probe Type LXG 139 and type LXG 144, which also
compensate for particle effect through a reference measurement at 550 nm. Thus, the
single wavelength compensation (SWC) technique in this study was developed by
direct subtraction between the absorbance of wavelength at 254 nm and 550 nm. The
second compensation method developed in this study was linear regression
compensation (LC) technique. It is based on the characteristic of particles between 550
- 580 nm to remove the particle effect on the UV-Vis spectra. A wavelength range of
550 - 580 nm was used in the LC technique as it represents the visible region most
impacted by particles given responses that occurs within the wavelength range of 380
- 750 nm [15]. The third particle compensation method, multiplicative scatter
correction (MSC), is a well-documented technique. The MSC is a transformation
method to compensate for the particle effect in spectral data. MSC method can be used
to reduce the particle effect by separating the chemical light absorption from the
physical light scatter [35]. MSC technique is a commonly used method for processing
NIR spectral data, however, it has not been widely used for processing UV-Vis spectra
data. Studies have shown the MSC method can reduce the particle effect on the spectra
[36-38].
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Figure 4-5 Comparison of calibrated UV2s4 of @) single wavelength compensation (SWC) and
b) linear regression compensation (LC) with laboratory UV2ss for Happy Valley raw water
(RW2).

SWC, LC, and MSC techniques were applied to determine UV2s4 by removing the
particle effect for RW1, RW2 and TW. It was observed that in a similar way as the
built-in compensation behaviour, SWC, LC and MSC have different compensated
results for different waters (Table S4-2 in Sl) because of the different particle contents.
Since the compensation is water source dependent, local calibration to compensate the
background water matrix is required. Well-fitted linear relationships are found
between the compensated UV2ss obtained from the compensation techniques and
laboratory UV2s4 measurements for all three water sources using the three
compensation techniques, except for TW using the MSC. There was no linear
correlation between the compensated UV2s4 and lab UV2ss after conducting MSC
could because all the compensated UV2s4 were very close to each other for different
data. MSC may not be suitable for compensating UV spectral data of clean water such
as treated water. This is because it was designed to remove large particle effects on
spectra. Linear regression has been commonly used as a calibration method to improve
the measurement accuracy for analytical methods and has been used for spectroscopy
[39]. The spectro::lyser also uses a linear calibration mode. Thus, the compensated

UV2ss readings were corrected based on the linear relationships between the
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compensated UV2ss of the developed techniques and laboratory UVoss. After
adjustment, the corrected UV2ss were plotted with their closest corresponding
laboratory UVa2s4 measurements, the slopes, y-intercepts and the coefficient of
determination (R?) from the linear regression line were determined for comparisons.
A linear plot of the corrected UV2s4 of SWC compared to laboratory UV2ss for RW2 is
shown in Figure 4-5. According to the trend, the slope between the corrected UV2s4
and laboratory UV2s4 is 1.00 and the y-intercept is 0.00 with R? of 0.93, which means
that SWC can generate the same compensated UV2s4 as the reference laboratory
method. The linear regression line of the calibrated UV2s4 of LC and laboratory UV2s4
has a slope of 0.96, intercept of 1.21 and R? of 0.96 for RW?2. It indicates that SWC
can also generate the same compensated UV2s4 as the laboratory method. After
adjustment, all the compensation methods including SWC, LC and MSC are
comparable to the laboratory filtration method for RW2. Similar interpretations can
also be stated for RW1 and TW according to Figure 4S-2 in SI. The results reveal that
linear regression models can be used to correct the compensation methods. The stable
level of DOC in each of the three water sources may contribute to the success of using
linear calibration to adjust the compensation techniques. Linear regression methods
have been employed by Torres and Bertrand-Krajewski to calibrate the particle
compensation method of an online UV-Vis spectrophotometer for different water
matrices [16]. Another study showed the linear curve fit was able to optimise the
performance of UV-Vis spectrophotometers [40]. Linear regression is proven as a
robust and sustainable adjustment method of UV-Vis spectrophotometers to estimate

concentrations of water quality parameters [3].
4.3.3 Evaluation of Particle Compensation Methods

In this study, SWC, LC and MSC techniques were investigated in comparison with the
instrument built-in compensation method using the Bland-Altman analysis, which was
used to assess the accuracies of the three techniques for raw (natural water quality) and

treated waters (drinking water quality).
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4.3.3.1 Assessment of Single Wavelength Compensation Technique

The SWC technique was assessed for the performance of compensating the particle
effects on the UV2s4, for RW1, RW2 and TW, against the instrument built-in algorithm
using Bland-Altman analysis. After adjustments of compensated UV2s4 measurements
(calibrated UV2s4) from the SWC technique and the built-in algorithm, the percentage
differences between corrected UV2s4 of these two methods were plotted against the
mean of the two methods, as Bland-Altman plots, for the three water sources,
respectively. Bias (mean of percentage difference) is represented by the space between
the x-axis and the zero percentage differences in the Bland-Altman plots. The
analytical results of the Bland-Altman analysis are shown in Table 4-1.

Table 4-1 Bland-Altman analysis of assessing single wavelength (SWC), linear regression
compensation (LC) and multiplicative scatter correction (MSC) techniques against the built-
in algorithm (B) for Anstey Hill (RW1) and Happy Valley raw waters (RW2), and Happy
Valley treated water (TW).

Water Methods Bland-Altman Analysis

sources  after Mean of Limit of agreement  Acceptable limit ~ Agreement
adjustment difference (%) of agreement between two

(%) (%) methods

RwW1 SWCvs. B 1.71 [-6.21, 9.62] [-10, 10] Yes
LCvs.B 1.45 [-5.37, 8.28] [-10, 10] Yes
MSC vs. Lab -0.94 [-8.33, 6.45] [-10, 10] Yes

RW2 SWCvs. B -1.14 [-7.32,5.04] [-10, 10] Yes
LCvs. B -0.77 [-5.18, 3.65] [-10, 10] Yes
MSC vs. Lab -1.52 [-9.81, 6.77] [-10, 10] Yes

T™W SWCvs. B 0.25 [-6.10, 6.67] [-10, 10] Yes
LCvs.B 0.30 [-5.82, 6.68] [-10, 10] Yes
MSC vs. Lab - - - -

The bias between the corrected UV2s4 of SWC technique and built-in compensation
was determined as 1.71% for RW1. Agreement limits of the corrected UV2s4 between
the two methods varied in a range of -6.21% and 9.62%. Compared to the pre-defined
acceptable agreement limits of the interval from -10% to 10% of the differences, the
SWC technique is comparable to the built-in compensation algorithm for
compensating the particle effect on UV2s4 for RW1. For RW2 as shown in Figure 4-6,

the bia between corrected UV2s4 of SWC technique and that of built-in compensation
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was -1.14%. Agreement limits between corrected UVass of the two methods were
found in the range of -7.32% and 5.04% for RW2. The percentage differences between
corrected UV2s4 using two methods varied from -7.32% to 5.04% when the average of
the corrected UV2s4 of these two methods increased. Compared to the pre-defined
acceptable agreement limits, the SWC technique can generate good results as those
using the built-in compensation algorithm for RW2. Similarly, for TW the agreement
limits between these two methods were relatively small and varied within the range of
the interval of -10% to 10% of the UV2s4 (Figure S4-3 Sl). The SWC technique
generated similar compensated UV2s4 measurements compared to that of the built-in
compensation algorithm for RW2. Statistically, it can be 95% confident that the SWC
technique is comparable to the built-in compensation method for removing the particle
effect on the UV2s4 0f raw and treated waters if the percentage differences between the

two methods are acceptable within the plus/minus 10%.
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dotted lines indicate upper (+1.96SD) and lower (-1.96SD) limits of agreement of the two

methods.

4.3.3.2 Assessment of Linear Regression Compensation Technique

After adjustments, the LC technique was evaluated in comparison with the built-in
algorithm in terms of the performance of compensating the particle effects on the
UV2s4, using Bland-Altman analysis for RW1, RW2 and TW. The differences between
corrected UV2s4 measurements using the LC technique and that of the built-in
algorithm were plotted against the mean of corrected UV2s4 of the two methods, as

Bland-Altman plots, for three water sources, respectively (Table 4-1).

Bias between the corrected UV2s4 of LC technique and the built-in compensation was
1.45% for RW1. Agreement limits between the two methods varied from -5.37% to
8.28%, which is within the acceptable limit of intervals. Hence the LC technique is
comparable to the built-in compensation method for RW1. For both RW2 and TW, the
bias between the corrected UV2ss of the LC technique and that of built-in
compensation was less than 1% in Figure 4-7 and Figure 4S-4 (SI). Agreement limits
between corrected UV2ss of the two methods were within the acceptable limit
agreement. Therefore, the LC technique generated similar compensated UVas4
compared to that of the built-in compensation algorithm for RW1, RW2 and TW.
Statistically, there is 95% certainty that the LC technique is comparable to the built-in
compensation method of raw and treated waters within a plus/minus 10% difference
between the two methods.

Along with adjustments, LC has similar particle compensation behaviour as the built-
in compensation method on the UV2s4 for different water sources. The LC technique
considers particle contribution on the UV2s4 within a wavelength range of 500-580 nm.
Similar to the SWC technique, the LC technique is also water source dependent and
linear adjustment methods can improve the accuracies of compensating the particle

effect on UVas4 Of raw and treated waters.

115



m 10 -

-

c

4+

(@)

- ...+1.96 5D
o 3.65
2

> Mean
?_ -0.77
<)

Y -1.96 SD
c

Q

o

£

=] T !
3 45

Mean of UV,s, of LC and B (Abs/m)

Figure 4-7 Bland-Altman plot of UV, after application of linear regression compensation
technique (LC) and the built-in algorithm (B) for Happy Valley raw water (RW2). The solid
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methods.

4.3.3.3 Assessment of Multiplicative Scatter Correction Technique

After performing local calibration of the multiplicative scatter correction (MSC)
method, the performance of the MSC method was evaluated by comparing with the
instrument built-in algorithm for RW1 and RW?2, using Bland-Altman analysis. The
percentage difference between the calibrated UV2s4 of MSC was plotted against the
mean of the two methods as shown in the Bland-Altman plots for RW1 and RW2
(Figure 4S-5 in Sl). The mean difference between the calibrated UV 254 of MSC and
the built-in compensation methods was -0.94% and -1.52% for RW1 and RW2,
respectively. The limit of agreement between the two methods was within the intervals
of acceptance limit. Hence, the MSC technique is comparable to the built-in
compensation method for RW1 and RW2. However, MSC is not comparable to the
built-in compensation method for TW. This could be because the nature of MSC is to
correct the light scattering of the particle in the water. TW contained a very low particle
content. It should be pointed out that MSC is commonly used for turbid solutions such

as wine and solid materials such as meat [24, 35].
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In the case of comparison of SWC, LC and MSC with the built-in compensation
method, all three particle compensation methods had different particle compensation
behaviour when compared to the built-in compensation method on UV2s4 for different
water types. SWC, LC and MSC techniques need to be adjusted for individual waters
to remove the particle effect. It shows that particle compensation is water source
dependent. This finding is in agreement with the previous studies [3]. This is probably
because compensation techniques generally cannot directly handle the large change in
water quality, particularly turbidity character changes [11] [13]. Water quality
characteristics are different for individual water sources. Variation of the water quality,
particularly turbidity can affect the compensation ability of the compensation method
on the UV2s4. Reported studies showed that it is difficult to compensate for the particle
effect when there is a large variation of turbidity [11] [13]. The industrial experience
of monitoring water quality also shows that compensating particle effect on the UV-
Vis absorbance measurement is difficult when water turbidity is fluctuating or the

water source changes [41].

Provided linear correction (local calibration) method with acceptable error, the
developed single wavelength compensation and linear regression compensation
techniques could be used as alternative methods to eliminate the particle effect on the
UV2ss measurements for raw and treated waters. Also, the multiplicative scatter
correction technique could be used as an alternative particle compensation method to

remove the particle effect for raw waters.

Overall, our results reveal that SWC, LC and MSC techniques with the linear
adjustment can be applied in practice for online water quality monitoring. SWC is a
relatively simple method to remove the particle effect on the UVas4 in the water.
Simple UV-Vis instruments with a single wavelength in the visible region (500nm)
could be employed in the field to monitor water quality instead of using sophisticated
full-spectrum UV-Vis instruments. These findings can assist water treatment plant
operators to monitor water quality more effectively because the utilization of software
compensation methods and local calibrations allow more accurate and reliable UV-Vis
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readings. Further research is necessary to investigate how these compensation methods
can be applied to the situation of real-time water quality monitoring.

4.4 Conclusion

Our results reveal that after applying a local calibration method, instrument built-in
compensation methods can be comparable to the reference laboratory methods for the
UV2s4 measurements for raw and treated waters from two drinking water WTPs. In the
same way as the built-in compensation method, the developed SWC and LC
techniques as well as the multiplicative scatter correction method are also water source
dependent. Linear correction methods as local calibrations are based on the linear
relationships of compensated UV2s4 of the developed techniques and the laboratory
UVa2s4 measurements of the grab samples. It could be applied for the development of
techniques to improve the accuracies of online measurements of water quality
monitoring. The bland-Altman analysis was employed to assess the calibrated UV 254
using developed SWC and LC as well as MSC techniques. The compensated UV2s4
generated from these two methods were found to be comparable with that of the built-
in compensation method using online UV-Vis spectral data from drinking water
treatment plants. According to the Bland-Altman analysis, with the assistance of the
linear correction (local calibration) method, both SWC and LC had very similar
compensation behaviours on the UVa2s4 as the built-in compensation algorithm for
varied raw and treated waters. MSC was comparable to the built-in compensation
method for raw waters. Potentially, along with the linear correction method, both the
single wavelength and the linear regression compensation, as well as the multiplicative
scatter correction methods could be used as alternatives to remove the particle effect
on the UVass for online water quality monitoring. The use of the alternative
compensation techniques may allow less maintenance of the instrument and possibly
improve the reliability and usability in online mode by WTP operators. Moreover,
simple UV-Vis instruments with a single wavelength in the visible region (500 nm)
could be employed in the field to monitor water quality instead of using sophisticated

full-spectrum UV-Vis instruments.
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4.6 Supporting Information

10 - « Compensated UV254 s Calibrated UV254 = Lab UV254
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Date
Figure S4-1 Laboratory equivalent UV2s4 after built-in compensation and local calibration, as

well as laboratory UV254 of Happy Valley, treated water (TW).

Table S4-1: Water quality characteristics of Anstey Hill raw water (RW1), Happy Valley raw
water (RW2) and Happy Valley treated water (TW) from April 2013 to December 2013.

Water quality RwW1 RW2 T™W
Parameters Min  Max  Ave Min Max Ave Min  Max Ave
UVass (Abs/m) 9.8 201 164 184  39.2 30.0 1.6 9.2 4.1
Colour (HU) 10.0 280 170 18.0 65.0 44 - - -
Turbidity 4.2 93.0 605 1.9 9.9 5.7 0.1 0.8 0.2
(NTU)

DOC (mg/L) 3.8 8.4 6.1 6.4 10.1 8.3 0.3 4,5 2.3
pH 7.4 7.8 7.6 7.6 8.4 8.0 7.1 7.8 75
Temperature 7 22 15.3 10 22 16.0 11.0 22 16.3
(°C)

Conductivity 198 547 385 520 592 559 207 670 41
(uS/cm)

Algae —total 84 4920 1256 2400 1200000 207275 - - -
(cells/mL)

Legend: DOC refers to dissolved organic carbon.
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Table S4-2: Calibration of single wavelength compensation (SWC), linear regression
compensation method (LC) and multiplicative scatter correction (MSC) based on their linear
regression with laboratory measurements for Anstey Hill raw water (RW1), Happy Valley raw
water (RW2) and Happy Valley treated water (TW).
Water sources  Methods Calibration based on linear regressions
Slope Intercept coefficient of determination (R?)

RW1 B &Lab -0.19 20.90 0.58
SWC & Lab  -0.09 19.68 0.65
LC & Lab -0.19 20.90 0.58
MSC & Lab  1.83 -59.76 0.88
RW2 B &Lab 0.67 -7.28 0.93
SWC & Lab  1.06 -0.75 0.96
LC & Lab 1.22 -0.98 0.96
MSC & Lab -156.13  4663.6 0.97
TW B&Lab 0.61 -0.13 0.24
SWC & Lab 0.42 0.93 0.21
LC & Lab 0.43 1.06 0.21
MSC & Lab - - -
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Figure S4-2 Comparisons between calibrated UV2ss of single wavelength compensation
(SWC) method, linear wavelength compensation (LC) and multiplicative scatter correction
(MSC) method against lab UV2s4 of laboratory filtration method for Anstey Hill raw water (au,
ay, a3), Happy Valley raw water (b) and Happy Valley treated water (cs, C2).
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Figure S4-3: Bland-Altman plot of calibrated UV of single wavelength compensation
technique (SWC) and the built-in algorithm (B) for a) Anstey Hill raw water and b) Happy
Valley treated water. The solid line represents the mean of percentage differences in UV2s4 Of
the two methods. Horizontal dotted lines indicate higher (+1.96SD) and lower (-1.96SD) limits

of agreement between the two methods.
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Chapter5 Development of Coagulant Dose Prediction Models for

Process Control using Online UV-Vis Spectra

« Raw water UV-Vis spectra can mimic operator decision to

determine coagulant dose

«  Multiple linear regression and partial least squares regression can

extract chemical signatures from spectra for coagulation control

«  Coagulant doses can be predicted using only raw water quality
data

129



Results presented in previous chapters indicate that UV-Vis spectrophotometers can
be used for online water quality monitoring, particularly for continuous monitoring
and early warning of water quality events. High accuracy of water quality
measurements using the UV-Vis instruments can be achieved using the developed
software compensation techniques. This online water quality measurement technique
can be a promising tool to control water treatment process. Conventional water
treatment is the most widely applied water treatment process which contains the
following steps: coagulation, flocculation, sedimentation and filtration [1]. The
majority of drinking water treatment plants employ the conventional water treatment
method. The coagulation process largely affects the processing efficiency of the water
treatment plants [2, 3]. It is essential to determine the optimal coagulant dosage as
under-dosing leads to poor drinking water quality, but over-dosing can result in
operational issues and increase the treatment cost [4, 5]. The conventional method for
controlling the coagulation process in drinking water treatment plants relies on water
quality data and operators’ experiences [6, 7]. Jar tests using raw water could be only
conducted once every two months or when sudden water change occurs in some cases
[8]. The coagulant dosage levels cannot be adjusted until a process upset occurs,
leading to under- or over- dosing. It can be challenging to determine appropriate
coagulant doses proactively for tight control of coagulation with the traditional method
as the increasingly stringent regulations for drinking water. However, modelling
approaches for determinations of coagulant dosages can demonstrate fast responses to
the raw water quality changes and allow more precise dosing control to achieve stable

treated water quality [7, 9].

This study presented in this chapter was to establish alternative approaches for
coagulation control. This may be the first investigation to build coagulant dose
determination models using online raw water quality data (UV-Vis spectra) combined
with chemometrics to determine coagulant doses for a drinking water treatment plant.
Online UV-Vis spectra of raw water were directly used to mimic operators' decisions
in the determination of coagulant dose for process control combined with advanced
computing. The results revealed spectral information that could be used as input for

the decision support tools. It demonstrates that an online UV—Vis spectrophotometer
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combined with a software model has the potential to be a decision-support tool for
real-time determination of coagulant doses for process control, under the fluctuation

of the raw water quality.

The following content of this chapter was published as a technical paper in the Journal

of Water Process Engineering, 45, p.102526, as shown in Appendix E.
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5.1 Introduction

Coagulation is an essential chemical process of the conventional water treatment
operation for water clarification and is particularly effective for removing natural
organic matter (NOM). NOM is a precursor for the formation of disinfection by-
products, which can have significant environmental and health risks in the water
distribution system. The traditional method for controlling the coagulation system in
water treatment plants (WTPs) relies on jar tests which require over six hours to carry
out depending on sample collection and analysis arrangement [7, 9, 10]. It may lead to
under- or over- dosing, particularly when a wide fluctuation of water quality occurs as
jar tests may not offer quick turnover time. Overdosing of coagulants for the
coagulation process may lead to higher operational costs and excessive sludge
production while underdosing may fail to meet the water quality targets [4, 5].
Determination of coagulant doses using modelling approaches can demonstrate fast
responses to the changes of raw water quality and allow more precise dosing control
to achieve stable treated water quality. Coagulant dosing predictions based on
mathematic modelling have been developed in recent years. A few models were even
employed to predict the coagulant doses and assist the water treatment processes [7,
11].

A variety of techniques have been used to develop the coagulation model and predict
coagulant doses for drinking water treatment based on raw water quality parameters,
including multiple linear regression (MLR), adaptive neuro-fuzzy inference system
(ANFIS), fuzzy weighting, partial least squares regression (PLS), and artificial neural
networks (ANNSs) [12-17]. Coagulant dose determination models were built using
ANNSs and regression equations for surface water treatment with raw water quality
parameters, including dissolved organic carbon (DOC), UV absorbance at 254 nm
(UV2s2), turbidity, alkalinity, dissolved oxygen and pH [9, 15, 18, 19].

Some studies have utilised PLS combined with UV-Vis spectral data to predict water
quality parameters in water [20, 21] and wastewater [22, 23]. Most of the reported

prediction models for coagulant doses are operated based on the water quality results
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provided from laboratory analysis. There were very few reported studies using PLS to
predict coagulant doses. PLS can extract information from a large volume of data
matrix which is suitable to apply when the matrix has more independent variables than
dependent variables and there is multicollinearity among the independent variables. In
comparison with PLS, ANNs is a popular prediction model for coagulant dose
prediction. ANNSs can also handle large datasets, detect complex relationships, learn
patterns and make decisions based on similar situations. Most of the prediction models
rely on the raw water quality data of grab samples as inputs to predict the coagulant
doses. It is unlikely to capture the rapid variations of the water quality to get correct
predictions based on the data of grab samples when water quality changes as there are
significant delays in obtaining the laboratory data. However, predictions based on the
online UV-Vis spectral data could be a promising approach, which can use continuous
water quality data to predict doses, with the ability to capture the rapid variations of
water quality to get the correct predictions. Colton [24] reported a unique method using
the online UV-Vis spectra to predict coagulant doses for WTPs. However, this was an
indirect method that first needs to quantify the water quality (turbidity, UV2s4 and
DOC) of the raw water using the spectra and then utilised the quantified water quality
data as inputs for an exponential model to determine the coagulant doses. Zhou and
Meng [25] conducted a lab-based study to use spectral data from a bench-top UV-Vis
instrument to determine optimal coagulant doses for the removal of dissolved organic
matter from a combined coagulation and ultrafiltration system. The optimal doses were
determined in their study based on the correlations between spectral data and fouling

behaviour.

This study was to establish an in-situ coagulation dosing prediction and control method
integrated with the online UV-Vis spectra monitoring technique. We employed online
UV-Vis spectral data of raw water from a municipal drinking WTP to build coagulant
dose determination models and to determine coagulant doses for coagulation process
control. This study also aimed at directly using raw water UV-Vis spectra to mimic
operators’ decisions in the determination of coagulant dose for process control. Three

different models with different levels of complexity were evaluated, including multiple
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linear regression (MLR), partial least squares (PLS) and artificial neural networks
(ANNSs).

5.2 Materials and Methods

5.2.1 Water Treatment Plant

Happy Valley (HV) WTP in South Australia was selected for this study. The HV WTP
employs conventional water treatment practices comprising coagulation, flocculation,
sedimentation, and filtration units. This WTP provides drinking water across the
metropolitan area in the capital city of South Australia (SA). The raw water for the
WTP is provided by the Happy Valley Reservoir with water originating from both the
River Murray and local catchment areas. The raw water is characterised by moderate
turbidity (0.1 to 10 NTU) and high DOC ranging from 6 to 10 mg/L. Turbidity and
DOC ranges represented seasonal variations between April and December 2013. The
HV WTP was selected as the source water is the representation of enclosed surface

water catchment of a reservoir in SA.

5.2.2 Monitoring Location and Instrument

The inlet of HV WTP was the sample point for real-time water quality monitoring with
a submersible UV-Vis spectrophotometer. The instrument, s::can spectro::lyser (s::can
Messtechnik GmbH, Austria), is a double beam photodiode array 256 pixel UV-Vis
spectrometer with an optical path of 5mm and spectral resolution of 2.5 nm. The online
instrument measures the absorbance of wavelengths within 220-720nm. The details of

the instrument and the maintenance can be found in the previous study [26].

5.2.3 Data Source

The water source was monitored between April and December 2013. Raw UV-Vis
spectra in the range of 220 -720 nm were acquired from the submersible instrument at
two-minute intervals. The plant alum dose record in the same period was also obtained

for this study. Alum, aluminium sulphate [Al2(SO4)3.18H20)], was used as the primary
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coagulant. WTP alum doses were determined by the operators, to achieve treated water
with DOC less than 5mg/L, under pH conditions of 6 (plant record). The WTP alum
doses were determined by WTP operators mainly based on jar tests of raw water and
operators’ experience, in some water quality event situations such as heavy rainfalls,
the operators may refer to the WTC-Coag software and the treated water quality [27].
Jar tests of raw water were conducted once every two months or when there were
sudden changes in the water quality. WTC-Coag is a mathematical model for real-time
prediction of optimal alum dose, which has been used in metropolitan WTPs in SA for
over 10 years including the HV WTP [11]. This software requires UV2s4, colour, and
turbidity of raw water as inputs to generate predicted alum doses. The operators can
select certain % removal of the total coagulable DOC and choose to refer to the
coagulant doses determined based on the 80-90% DOC removal using the WTC-Coag

software when they were deciding the dose levels.

Overall, UV-Vis spectral data of raw water quality and plant dose data of the HV WTP
were utilised in this study. The UV-Vis spectral data were collected from the online
instrument. The data of plant doses were extracted from an internal operational

database of SA Water Corporation (SA Water) with hourly extrapolation.

5.2.4 Data Pre-treatment

Initial data pre-treatment was based on the instrument operation status. The online UV-
Vis spectra related to the instrument issues and non-operational period of WTP were
excluded. Further data pre-treatment was conducted using a time resolution
optimisation algorithm and hourly average [26]. Particles in the water can affect the
online UV-Vis measurements [28]. Thus, the averaged UV-Vis spectra were processed
using a particle compensation method to remove particles. The baseline correction
method was based on the absorbance of particles is at a wavelength of 550 nm. Particle
compensation of source water using UVsso has been proved to be an effective method

to remove the particle effect on the online UV-Vis measurements [26].
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5.2.5 Data Processing

The data pre-treatment and processing were conducted in the workspace of R and R-
Studio [29]. Figure 5-1 shows a flow chart of modelling development and validation
of coagulant dose determinations. The online UV-Vis spectra of raw water quality data
of the HV WTP were utilised to determine the coagulant dose. Important wavelengths
of the online UV-Vis spectra were selected using variable selection methods. The
absorbances of the selected wavelengths were used as model inputs to predict plant
alum doses. The plant doses determined by operators were utilised as the model output.
The DOC level of treated water during the same period was under 5mg/L (Figure 5S-
1 in SI) which met the drinking water quality target. It indicates that the plant doses

were accurate for the coagulation control.

Online UV-Vis spectra raw water
(200 -750 nm)

1

Selected wavelengths Plant alum doses

N\ /

Train and test dataset (80:20) -

l l l i Model development
3

(Train dataset)
a. MLR || b PLS | c. ANNs |

Figure 5-1 Flow chart of modelling development and validation of coagulant dose

determinations.
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5.2.5.1 Input Variable Optimisation Methods

Three variable optimisation methods: Variable Importance in Projections (VIP),
Selectivity Ratio (SR) and correlation coefficient (R) were used to select the most
important wavelengths that influence the coagulant dose prediction models. These
methods are frequently used for variable selections in chemometrics [30]. These
methods for X variable (input) importance related to the explanation of Y variance
(output) are useful for prediction. The optimisation of spectral wavelengths (variables)
can enhance the predictive ability of the full spectrum [31-33]. First, the full spectra
of 220 - 720 nm were screened down to 250 - 600 nm as the absorbance at these
wavelengths show characteristics that indicate the matrix of water quality [34].
Organic and turbidity in the water are represented by the wavelengths between 250 -
370 nm and 370 - 600 nm.

VIP scores were obtained from the construction of the initial PLS model. A higher VIP
score indicates that the wavelength is more important to predict the alum doses, while
the wavelength having a lower VIP score has less impact on the prediction [30]. VIP
scores select the variables that contribute the most to the Y variance explanation.
Generally, the threshold score of a VIP is defined as 1.0. The threshold score can be
higher if the number of variables is large [30]. SR associates the statistical significance
based on target projections for variable selection. SRs are based on the calculations of
the ratio of explained to the residual variance of X obtained variance. An F-test (95%)
has been chosen to define the threshold value of SR with a F-value to determine the
significance. The pair-wise correlation coefficients (R) were the correlation between

absorbances of wavelengths for the raw water and alum doses of HV WTP.

5.2.5.2 Development Methods of Coagulant Dose Prediction
Three model development methods: multiple linear regression (MLR), partial least
squares (PLS) and artificial neural networks (ANNs) were used to determine alum
doses. MLR is used to model the linear relationship between a dependent variable and
independent variables which can directly define the coefficient of each parameter,
while PLS can indirectly reveal the functional relationships and define the coefficient
of each parameter. ANNSs learn to recognise patterns in data between inputs and
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outputs. These modelling methods were applied to capture and incorporate the
operators’ decisions in selecting the alum doses using the spectral data of the raw water

quality.

PLS constructs components (latent variables) by projecting the predictor variables to
a new space. The observation variables are also projected. Then the linear regression
models were built between new predictors and responses. PLS regression is
particularly suitable to use when the matrix of predictors has more variables than
observed variables and there is multicollinearity among the predictors. PLS can easily
extract relevant information from a large data matrix and generate reliable models.
Therefore, PLS was used to develop the coagulant prediction model in this study.
Package ‘pls’ was used in the R and R-Studio for the calculations of PLS models [35].
PLS was analysed with leave-one-out cross-validation to avoid under- or over- fitting
of the model. The optimal number of components (minimum number of latent
variables) is 6 for PLS.

ANNs are computational techniques based on biological neurons which can learn
complex patterns among the variables through training. ANNs employ a learning
process that is similar to the human brain process to solve problems [36]. One of the
commonly used ANNs is Multi-Layer Perceptron (MLP). MLP consists of three
layers: the input layer, hidden layer and output layer. The input layer contains the input
parameters. The hidden layer processes the data. And the output layer extracts the
results. Package ‘neuralnet’ is used for modelling alum dose predictions with MLP
ANNs [37]. The best ANNs architecture for this study is with one input layer, one
hidden layer and 3 nodes, and one output layer. The number of hidden layers and the

nodes are determined by the trial-and-error method.

The whole set of data, containing online UV-Vis spectral data of the raw water and
their corresponding plant alum dose data, was divided into train and test datasets using
a randomization method with a ratio of 80:20 to develop and validate the developed

models for coagulant dose determination. The datasets were scaled to ‘0 to 1’ using
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the formula: xi - minimum/ (maximum - minimum) before they were used to develop
PLS and ANNs models.

5.2.6 Evaluation of Coagulation Determination Model Performance

Coefficient of determination (R?) and root mean square error (RMSE) are commonly
used to evaluate the performance of models. R? is commonly used to assess the
‘goodness of fit” for regression models. R? close or equal to 1 is an indicator of a good
model. RMSE is commonly used to measure the differences between the predicted
values and the actual values. RMSE value is considered the most important criterion
for prediction model fit. The smaller the RMSE, the better the model. Another common
way of using RMSE to assess the developed model is to compare the RMSE values of
models for both train and test data; the model is good if the values are similar. RMSE

and R? were used to evaluate the performance of the models.

5.3 Results and Discussion

5.3.1 Optimisation of Input Variables

The best representative wavelengths of the pre-processed UV-Vis spectral data of HV
raw water that impact on the alum determination models were evaluated by three
variable optimisation methods, VIP, SR and R. The high-dimensional data of original
spectra contain a proportion of redundant and irrelevant information for building
coagulant models. This is because parts of the spectra collect unnecessary water
quality information and the absorbance measured at some wavelengths may represent
noise rather than the real water quality. Optimisation of input variables reduces the
complexity and calculation time for modelling while enhancing the extraction of
essential information [38]. Wavelength optimisation methods have been used by other
researchers to determine the water quality parameters using UV-Vis spectra [21, 32,
39]. Application of these variable selection methods before modelling could lead to

better and less complex prediction models [34].
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VIP and SR were performed with partial least squares regressions. Online UV-Vis
spectral data of wavelength range from 250 to 600 nm were X variables (model input)
and the corresponding alum doses were Y variables (model output). Both variables
were normalised from 0 to 1 to make sure they had an equal influence on the model.
An initial PLS regression model was built with leave-one-out cross-validation. VIP
scores and SR values were obtained from the results of the PLS regression model. Pair-
wise correlation coefficients (R) between the absorbances of the UV-Vis spectra for
the raw water quality and alum doses for the WTP with their level of significance (p-
value) were calculated. The results of wavelength optimisation from the online UV-
Vis spectra using VIP, SR and R approaches are presented in Table 5-1.

Table 5-1 Selection of important variables for models using three methods, including VIP, SR
and R.

Model | Model | Variables VIP SR Correlation
Input Output scores coefficient
scores F-value Significant | R p-value
Online 250 2.42 1.51 1.06 Yes 0.77 <0.001
UV-Vis 252.5 2.34 1.50 0.77
Spectra 255 2.13 1.51 0.77
257.5 2.05 1.52 0.77
Plant 260 2.01 1.51 0.77
dose 262.5 1.93 1.50 0.77
265 1.86 1.49 0.76
267.5 1.84 1.49 0.76
270 1.82 1.48 0.76
272.5 1.77 1.47 0.76
275 1.71 1.46 0.76
277.5 1.67 1.45 0.76
280 1.65 1.44 0.76

First, important wavelengths were selected based on VIP and SR, and R for modelling
alum dose determination associated with the spectral data as X variables (inputs) and
plant alum doses as Y variables (outputs). Due to a large number of filtered variables
and the strength of influence of the variables, a trial-and-error method was also
applied. The most important wavelengths were determined based on the overlapping
variables of the three selection methods and the trial-and-error method. The trial-and-

error results showed that wavelengths within 250-270 nm are the most important
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variables that influence the modelling of the plant coagulant dose determination and
lead to the improved prediction performance of the models. More detailed results are
given in Table 5S-1 in Supplementary Information (SI). The selected wavelengths are
determined in a range of 250-270 nm with a 2.5 nm interval, including nine
wavelengths: 250, 252.5, 255, 257.5, 260, 262.5, 265, 267.5 and 270 nm. The
corresponding thresholds of the selected wavelengths were 1.82 and 1.48 for VIP
scores and SR (F-test, 95%). When the correlation coefficient of X variables and Y
variables were considered, variables with R of 0.76-0.77 were the same as the variable
selected by the VIP and SR methods.

The nine selected wavelengths were considered to have significant contributions to the
model development for alum dose determinations for the HV WTP. All the important
wavelengths are in the UV spectral region. It is shown that the determination of
coagulant doses of HV WTP is mainly characterised in the UV region. A major
purpose of coagulation is to remove the natural organic matter from the raw water. The
natural organic matter of the raw water is characterised within a wavelength range of
250 - 300 nm [32, 40], In addition, UV2s4 is a preferred indicator for selecting alum
dosing for WTPs [11, 41]. The selected wavelengths in this study also contained UV2s4
for modelling coagulant dose determination. These studies supported that the selected
wavelengths are the important variables that influence the modelling of the alum dose
determinations and result in improved model interpretation and performance [30, 33,
42]. Literature has shown that the variable selections can extract the most important

variables and led to enhanced performance of models [21, 34, 38].

5.3.2 Coagulant Determination Using UV-Vis Spectra with MLR

The absorbances of selected nine wavelengths were also used as inputs to build MLR
determination models of plant doses for the HV WTP. MLR has been used to predict
water quality [43, 44] and coagulant dose using water quality parameters [14, 15]. A
train dataset was used to build the calibration MLR. Then a test dataset was used to
validate the developed model.
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The results of MLR were shown in Figure 5-2. The coefficients of the MLR model
were obtained and the MLR model can expressed as below:

Y (alum dose) = 200.69 * X250 - 335.33 * X252.5 -58.91 * X255 + 185.27 * X257.5
+12.68 * X260 + 140.26 * X262.5 -154.85 * X265 + 312.20* X267.5 - 305.24* X270
-34.41

In the MLR model equation, X refers to the absorbance at a certain wavelength. For
instance, X250 indicates the absorbance at wavelength 250 nm. According to R? and
RMSE of MLR presented in Figure 5-2, the predicted alum doses of MLR and actual
plant doses were strongly correlated. For the calibration model, RMSE and R? for plant
alum doses were 4.19 mg/L and 0.90, respectively. For the validation model, RMSE
and R?for plant alum doses were 4.31 mg/L and 0.90, respectively. RMSE values of
the MLR were small compared to that the plant alum doses were between 40 and 90
mg/L. It is confirmed that the MLR model with online UV-Vis spectral data as inputs

can be used to determine the alum doses for WTPs.
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Figure 5-2 Summary of the best models developed for alum dose determination using UV-Vis

spectra of raw water.

Modelling results shown in Table 5-2 and Figure 5-2 reveal a minor difference
between the predicted alum doses using the MLR method and their corresponding

observed (plant) alum doses. MLR can be used to model the alum dose determination
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using online UV-Vis spectral data because the correlations are high between the
variables and the alum doses. This indicates that the determination of alum doses using
online UV-Vis spectral data combined with MLR is comparable to the plant dose
determination method (jar tests and operator experience). MLR results could mimic
the operators’ decisions in selecting the appropriate alum doses. This seems
contradictory to an argument that MLR is unable to provide a high-level relation
between water quality variables and coagulant doses because of the high nonlinearity
and the multiple factors affecting the coagulation process [45]. However, MLR has
been used to predict coagulant doses with physico-chemical water quality parameters
and was recognised as an appropriate approach to predict coagulant doses to assist
water [14, 15, 46] and wastewater treatment operations [47]. In this work, the online
UV-Vis spectra instead of water quality parameters of raw water were used to build a
coagulant dose prediction model with MLR under the optimal coagulation pH of 6 to
achieve a target DOC level of less than 5 mg/L for treated water quality.

5.3.3 Coagulant Determination Using UV-Vis Spectra with PLS

PLS was also used to build the coagulant determination models for the HV WTP using
the selected wavelengths in the UV range of 250-270 nm of raw water. PLS is a popular
modelling method for spectral analysis which also has been used to generate water
quality parameters [21, 22, 48] and coagulant dose prediction [49]. The absorbances
of the 9 wavelengths were used as model inputs and plant alum doses of HV WTP
were used as model outputs. The optimal number of components (minimum number
of latent variables) of the PLS model was established by the cross-validation, leaving
one sample at a time, to avoid under- or over- fitting of the model.

The RMSE of the PLS model was plotted against the rank of the number of the
components, as shown in Figure 5-3. The optimal number of components for the model
is that the lowest number of components gives the lowest RMSE. The results indicate
that 6 was the optimal number component for the PLS calibration model. The

established PLS model was assessed with the test dataset. The PLS results for plant
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alum determination using train and test datasets are shown in Figure 5-2. RMSE of the
PLS based on the train dataset was 4.19 mg/L and the corresponding R? was 0.90. The
RMSE of the validation was 4.30 mg/L and the corresponding R? was 0.90. Both
RMSE values of the PLS models are small compared to the alum doses which ranged
from 40 to 90 mg/L. Therefore, a good PLS model of determination of plant alum
doses was obtained based on the online spectral data of a submersible UV-Vis
instrument. Our results reveal that UV-Vis spectral data can be used to determine the
alum doses and model the operators’ decisions in the selection of the suitable doses

using PLS.

RMSEP
E=

0 2 4 6 8
Number of components

Figure 5-3 Optimal number of components for PLS model with UV-Vis spectra to predict

alum doses.

Our results reveal that PLS is effective in modelling alum doses using the UV-Vis
spectra and is capable of capturing the operator experience in the determination of
alum dose. This statement is supported by the following two reasons. Firstly, PLS was
used to develop coagulant dosage predictions with water quality parameters as inputs.
PLS regression analysis was used for the development of coagulant dosage prediction
models using water quality parameters to remove phosphate from wastewater. PLS

was proven to be an efficient tool for coagulant dose prediction [23]. PLS was also
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used to develop a decision support system for control of the coagulant dosage at a
drinking WTP, using water quality parameters including UV, colour, chemical oxygen
demand, TOC and conductivity. Thus, PLS could be recognised as a promising and
useful estimation tool for coagulant dosing prediction [49]. Furthermore, PLS
combined with UV-Vis spectra has also been employed to determine water quality
parameters such as TOC in Karst water [20], TOC in wastewater [22] and COD in
water [21]. Therefore, UV-Vis spectra of the raw water combined with PLS is able to
determine the coagulant dose in the WTPs under the optimal pH of 6 to achieve a target

DOC level of less than 5 mg/L for the treated water quality.

5.3.4 Coagulant Determination Using UV-Vis Spectra with ANNs

ANNSs were used to build the coagulant determination models for the plant doses. The
absorbances of the selected nine wavelengths (250-270 nm) were also used as the
model inputs and the plant alum doses were used as the model outputs. ANNs have
been applied successfully for coagulant dose prediction based on water quality
parameters [1, 2, 31, 32]. A Multi-Layer Perceptron (MLP) ANNSs, equipped with the
feed-forward back-propagation algorithm was used for building ANN models. Back-
propagation is a widely used algorithm for training feedforward neural networks to
speed up the convergence rate and its robustness [50]. Feedforward ANN provides a
flexible way for generalizing linear regression and non-linear functions. Dataset of the
selected variables and their corresponding plant alum doses was randomly shuffled
before ANNSs training to avoid the seasonality effect. There is no precise approach to
obtain the optimal number of hidden layers of MLP. A few hidden layers of ANNs
have been proven to be sufficient for modelling coagulant dosage based on the reported
studies [18, 51, 52]. The optimal number of hidden layers was determined by the trial-
and-error method [53]. The best ANNs model is selected for its lowest RMSE with
one hidden layer and 3 nodes, as shown in Figure 5-4. Thus, the best ANN architecture
for plant dose determination was obtained with one input layer with 9 neurons (nodes),

one hidden layer with 3 nodes, and one output layer with a single node.
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Figure 5-4 Optimal number of hidden layer and nodes.

ANNs of the coagulant model had RMSE of 5.25 mg/L and 5.26 mg/L for train and
test datasets. The best ANN showed satisfactory R? of 0.75 for both train and test
datasets. The RMSE of optimal ANN performance indicates the small discrepancies
between the predicted and actual alum doses as the actual alum doses were between
40 and 90 mg/L. B1 and B2 in Figure 5-5 are two stages of biases. The bias of B2 to
01, Bl to H1, B1 to H2, B1 to H3 is -2.32, 4.58, 3.45, 2.17, respectively, which are

small errors. These indicate the viability of using ANNs to predict alum doses for

WTPs using UV-Vis spectral data.
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Figure 5-5 Optimal ANNSs architecture for alum dose prediction.

ANNSs have been applied to predict coagulant doses for WTPs by other researchers
based on raw water quality parameters [7, 50-52, 54]. It is a well-known pattern
recognition technique for solving complex problems. ANNs was used to determine
alum doses for surface water treatment based on physio-chemical parameters of the
raw water [15, 19]. There are also software sensors using ANNSs for online prediction
of coagulant doses with the raw water quality parameters [7, 11]. A study incorporated
the operators’ experience in coagulant dose determination using a time consistent
mode [9]. All the above support that UV-Vis combined with ANNs could mimic the
operators’ experience in the determination of coagulant dose for WTPs under the
optimal pH condition to achieve target DOC level of less than 5 mg/L for the treated

water quality.
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5.3.5 Assess Coagulant Determination Model Performance

Three modelling techniques, MLR, PLS and ANNSs were applied to determine the alum
dose using the selected UV spectra (250-270 nm) of raw water at HV WTP. According
to the modelling performance indicators (RMSE and R?), as shown in Figure 5-2, all
three methods can be used to predict plant alum doses with the UV-Vis spectra. The
use of UV-Vis spectra combined with PLS or ANNs has been studied for the
determination of TOC, DOC and water quality index [20, 21, 55]. ANNs are the most
commonly used technique to predict coagulant dose with the employment of the water
quality parameters [7, 9, 15, 18] as inputs. Our results revealed that ANNs may not be
the best modelling tool for alum dose predictions with the UV-Vis spectral data. MLR
and PLS methods showed almost identical performance in terms of prediction of plant
alum doses with small values of RMSE and high R2. MLR and PLS had better
performance with smaller RMSE and high R? values than ANNs in modelling of alum
dose using UV-Vis spectra. MLR is a simple method that can directly define the
coefficient of each parameter for coagulation determination. The developed three
coagulant dose determination models can well adapt to the variations in raw water
quality (Figure S5-2 in Sl). The results indicate that the utilisation of UV-Vis spectra
of raw water combined with MLR or PLS can mimic operator decisions in the selection
of alum doses. There is a potential for using a portable UV-Vis spectrophotometer
combined with chemometrics (MLR and PLS) to assist operators for real-time
coagulant dose prediction, especially when there is an unexpected change in raw water
quality.

Coagulant doses for water treatment were typically determined by the operators based
on multiple factors for process control. This study shows that coagulant doses can be
determined for a WTP using only the UV-Vis spectra of raw water under the optimal
pH condition to achieve the target DOC level for the treated water quality and
comparable results were achieved. This study may be the first that directly utilises
online UV-Vis spectra of raw water quality to determine plant doses. The combination
of online UV-Vis spectra of raw water and coagulation dose determination models will

allow better control of the coagulation process, particularly for sudden water quality
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change events such as heavy rainfalls. Potentially, an online submersible instrument
combined with a chemometric model (MLR or PLS) can predict coagulant doses and

provide decision support information for coagulation process control at WTPs.

5.4 Conclusion

This study may be the first that present plant doses model can be built based on online
UV-Vis spectra of raw water quality. Modelling techniques with different levels of
complexity, including MLR, PLS and ANNSs, and variable selection methods were
employed to build coagulant doses models for the HV WTP. Important variables that
influence the modelling of the alum dose determination were selected using VIP, SR
and R methods from the UV-Vis spectra of raw water. The selected variables were
determined as nine wavelengths within 250 -270 nm which revealed that the
determination of coagulant doses of the HV WTP is mainly characterized in the UV
region. The selected variables were used as inputs and plant doses were used as the
outputs for modelling coagulant dose determinations.

Results show that all three techniques can model the alum dose prediction with the
selected variables. MLR and PLS methods had an almost identical performance in
predicting plant alum doses with small RMSE and high R?. This study shows the
feasibility of predicting coagulant doses based on the UV-Vis spectral data of raw
water combined with a chemometric model and the ability to mimic the operator
decisions in selecting the appropriate doses for process control, under the optimal pH
condition to achieve a target DOC level of less than 5 mg/L for the treated water
quality. It is concluded that a submersible UV-Vis spectrophotometer combined with
a chemometric model (MLR or PLS) has the potential to support operators effectively
for real-time determination of coagulant doses for process control, under the

fluctuation of the raw water quality.
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5.6 Supporting Information

Table 5S-1 Trial and error (examples) of determination of the best wavelength range for

modelling plant does using the UV-Vis spectral data.

Wavelength | Train data Test data
range
RMSE R? RMSE R?
250-260 5.96 0.81 5.89 0.81
250-262.5 5.38 0.84 5.42 0.84
250-270 2.80 0.96 2.80 0.96
250-275 4.11 0.92 4.23 0.92
250-280 421 0.92 4.13 0.92
250-305 431 0.92 4.26 0.91
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Figure 5S-1 DOC level of treated water quality of the HV WTP based on grab sampling (data

was extracted from the internal database of the water utility).
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Figure 5S-2 Raw water quality data of HV WTP based on grab sampling (data was extracted

from the internal database of the water utility).
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Chapter 6 Conclusions and Perspectives

Alternative compensation techniques may improve the reliability

and usability of online instruments

Developed models could be used as an additional tool for decision

making at water treatment plants for process control

Future research is needed on integration of early warning and real-

time process control systems for water quality management
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6.1 Conclusions

This thesis provides an overview of using online UV-Vis instruments for drinking
water quality monitoring and process control. A summary of this thesis has been
published, as shown in Appendix F. It also highlights the challenges and potential
solutions of real-time applications of online UV-Vis spectrophotometers for the
management of drinking water supplies. A study of particle impact on the
measurements of a submersible UV-Vis spectrophotometer was conducted under
laboratory-controlled conditions. The performance of the instrument built-in particle
compensation technique was assessed. In-depth knowledge of the online
measurements of UV-Vis instruments was obtained to the understand the influence of
different types and various levels of concentrations of particles in the water on the UV-
Vis measurements. The relationships between particle types and concentrations and
the UV-Vis measurements were revealed. It also explained why the built-in generic
compensation algorithms of the submersible UV-Vis spectrophotometer may generate

under-compensated or over-compensated measurements for various source water.

Novel software compensation models were developed, including single wavelength
compensation, linear regression compensation and multiplicative scatter correction
method, using time series UV-Vis spectra data from water treatment plants in South
Australia. The results show that these particle compensation techniques can improve
the reliability of the UV-Vis sensors for online water quality monitoring. It also
demonstrated the benefits of using software compensation methods to establish site-
specific calibration models instead of relying on the instrument built-in generic
calibrations. Furthermore, simple UV-Vis instruments with a single wavelength or a
short wavelength band could be employed in the field to monitor water quality instead
of using sophisticated full-spectrum UV-Vis instruments. The use of alternative
compensation techniques may allow less maintenance of the instruments and possibly

improve the reliability and usability in real-time by water treatment plant operators.

The utilisation of time series UV-Vis spectra was further explored by developing

coagulant dose determination models. Modelling techniques with different levels of
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complexity, including multiple linear regression, partial least squares, and artificial
neural works, were employed to build coagulant doses models for a water treatment
plant in South Australia. Results show the feasibility of predicting coagulant doses
based on the UV-Vis spectral data of raw water combined with a chemometric model.
This model enables mimics operators' decisions in the determination of coagulant
doses with a pH target of 6 to achieve a target DOC level of less than 5 mg/L for treated
water quality. It is concluded that a submersible UV-Vis spectrophotometer combined
with a chemometric model has the potential to be a decision support tool for real-time
determination of coagulant doses for process control, under the fluctuation of the raw

water quality.
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6.2 Perspectives

This research and the outcomes show that the accuracy of the surrogate parameters,
UV2s4, can be obtained from the UV-Vis spectra of water by applying different particle
compensation methods. Future research on the validations of this work can be done
through implementing the developed methods for real-time measurements of water
quality at a water treatment plant. The performance of the online UV-Vis instrument
combined with software compensation techniques could be assessed by comparing it
with the laboratory analytical methods to have a side-by-side field trial. The suitability
of the software compensation techniques can be tested for real-time water quality
monitoring through the direct comparison of online measurements and the laboratory
results of the same water. In addition, this project also shows the feasibility of
predicting coagulant doses based on the UV-Vis spectral data of raw water combined
with a chemometric model. Future work is needed on implementing the developed
coagulant models in a water treatment plant for real-time predictions of coagulant
doses to evaluate the performance of the models. Accuracies and reliability of the
developed models can be tested for the coagulation process control, ideally, over a
period of 12 months. The online instruments can be located at raw water intake and
linked to the supervisory control and data acquisition system for trailing direct online

coagulation control.

Moreover, future research can be on the development of more surrogate parameters
for water quality measurements using the UV-Vis spectra of water. VVarious surrogates
of water quality measurements can be developed based on the correlations between the
UV-Vis spectra and the standard laboratory measurements such as DOC, TOC and
chlorine demand. Methods including PCA, PLS, ANNs could be employed to develop
surrogate parameters for water quality measurements [1-3]. Future research also needs
to work towards the integration of early warning and real-time water process control
systems for water quality management. Figure 2 shows the integration of early warning
for water quality anomaly detection and process control for water treatment plants.
Online UV-Vis sensors can be placed at different locations of a water treatment plant
to monitor water quality, particularly at the inlet to monitor source water quality.
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Online UV-Vis measurements of water quality from the sensors connect to the
Supervisory Control and Data Acquisition (SCADA) system. Particle compensation
of the online UV-Vis measurements may be performed automatically using a selected
technique such as a single wavelength compensation to remove the particle effects [4].
Then, the online UV-Vis measurements can be analysed to detect any unusual
measurements based on the magnitude of the variations in the spectra and provide an
early warning of rapidly changing water quality [5, 6]. In addition, coagulant doses
can be determined and predicted using the combination of online UV-Vis
measurements and chemometrics in real-time [7]. It can support operators for real-time
determination of coagulant doses for water treatment process control when water

quality change events occur.

SCADA System Early Warning and Process
Online UV-Vis Control System
«1~~~ Sensor
&l
Data
. Particle Water Quality
Acquisition . -
Compensation Measurements
L Subsystem
Drinking
Water Monitoring data
System Early Warning Anomaly
1. o, Detection
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Coagulant dose Sy Predicted dose oaguian
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Subsystem prediction

Figure O-1Integration of early warning of water quality anomaly detection and water treatment

process control.
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Abstract

Stormwater runoft contains a myriad of pollutants, including faecal microbes, and can pose a threat to urban water sup-
plies, impacting both economic development and public health. Therefore, it is a necessity to implement a real-time hazard
detection system that can collect a substantial amount of data, assisting water authorities to develop preventive strategies
to ensure the control of hazards entering drinking water sources. An on-line UV-Vis spectrophotometer was applied in the
field to collect real-time continuous data for various water quality parameters (nitrate, DOC, turbidity and total suspended
solids) during three storm events in Mannum, Adelaide, Australia. This study demonstrated that the trends for on-line and
comparative laboratory-analysed samples were complimentary through the events. Nitrate and DOC showed a negative cor-
relation with water level, while turbidity and total suspended solidsindicated a positive correlation with water level during
the high rainfall intensity. The correlations among nitrate, DOC, turbidity, total suspended solids and water level are the
opposite during low rainfall intensity. Nitrate, one of the main pollutants in stormwater, was investigated and used as a sur-
rogate parameter for microbial detection. However, the microbiological data (Escherichia coli) from captured storm events
showed poor correlations to nitrate and other typical on-line parameters in this study. Thisis possibly explained by the nature
of the stormwater catchment outside of rain events, where the sources of bacteria and nutrients may be physically separated
until mixed during surface runoff as a result of rainfall. In addition, the poor correlations among the microbiological data
and on-line parameters could be due to the different sources of bacteria and nutrients that were transported to the stormwater
drain where sampling and measurement were conducted.

Keywords Stormwater - Real-time monitoring - UV-vis spectrophotometer - Surrogate parameter - Nitrate - E. coli

Introduction paratyphoid fevers, are commonly found and reported in the

less-developed areas of the world (Bricker 2007, Petney and
Access to a safe and reliable water supply is necessary for Taraschewski 2011, WHO 2006). Wastewater is one of the
economic development and public health. Water-borne dis-  main pollutants of water resources and sources of enteric
eases, including cholera, amoebic dysentery, typhoid and  diseases (Petney and Taraschewski 2011). With increasing
populations, the availability of good quality freshwater in
urban areas is becoming an urgent issue (Hamilton et al.
2005, Thayanukul et al. 2013). Additionally, expanding
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of integrated water resource management to minimise both
environmental and public health risks.

In Australia, many policies have been developed to
regulate wastewater discharges, but the same is not true
for stormwater, and stormwater has remained as one of
the main sources of pollution to urban freshwaters. Urban
stormwater contains dissolved, colloidal and solid constitu-
ents in a heterogeneous mixture, which includes nutrients,
heavy metals and organic and inorganic compounds (Bricker
2007, Gnecco et al. 2005). Additionally, urban stormwater
runoff has been shown to contain large quantities of faecal
microbes, such as Escherichia coli (E. coli) (Selvakumar
and Borst 2006). Stormwater Quality Improvement Devices
(SQIDs) have been applied to trap rubbish and pollutants
that end up in stormwater drains, preventing large quanti-
ties of pollutants entering the stormwater drainage system
(Hamilton et al. 2005). However, SQIDs are not effective
in removing all contaminants; for instance, soluble nutri-
ents, heavy metals, organics, suspended solids and faecal
microbes can still flow from streets and gutters into creeks,
streams and rivers, contaminating the surface water and pos-
ing a threat to our urban water supply (Eriksson et al. 2007,
Greenway et al. 2002).

Microbial fate and transport in aquatic environments can
be affected by various physical, chemical and biological fac-
tors, which include season, temperature, nutrient availabil-
ity, adsorption/desorption processes, hydrologic processes,
predation and others (Ferguson et al. 2003, McCarthy et al.
2007, Selvakumar and Borst 2006). The fate and transport
of these contaminants, especially those microbiological,
have received high attention recently due to public health
concern. Studies have shown an increased concentration of
microorganisms during storm flows, indicating a relation-
ship between flow magnitude and microorganism transport
(Daviset al. 1977, Olivieri 1977). Other studies presented a
significant relationship between microbes and the incidence
of rainfall and rainfall intensity (Davies and Bavor 2000,
Haydon and Deletic 2006, Kelsey et al. 2004). Davis et al.
(1977) presented the correlations between microorganisms
and both discharge and suspended solids for stormwater
runoft. Duncan (1999) reported that faecal coliforms were
strongly correlated with some stormwater quality param-
eters, such as total phosphorus and turbidity. Kelsey et al.
(2004) and Mallin et al. (2009) evaluated the relationships
between land use and faecal coliform bacterial pollution.
However, most of these studies have been conducted in
streams, rivers and/or estuaries (Ferguson et al. 2003, Kelsey
et al. 2004, Mallin et al. 2009, Selvakumar and Borst 2006).
Also, analyses are mainly performed on single grab samples,
which tend to have a relatively low resolution to identify
the inter-event trends (Mallin et al. 2009, McCarthy et al.
2012, McCarthy et al. 2007, Selvakumar and Borst 2006).
Therefore, an alternative monitoring technique that can

@ Springer

capture real-time data, such as nutrients, dissolved organic
carbon, turbidity and total suspended solids, for stormwater
will provide a better understanding of variations in microbe
concentrations related to different water quality parameters.
This information will be useful for decision-making to per-
form rapid corrective actions regarding water management
and public health.

On-line monitoring systems have been identified as useful
tools with the introduction of UV spectroscopic techniques
for wastewater and stormwater quality monitoring, such as
total suspended solids and turbidity (Brito et al. 2014, Car-
reres-Prieto et al. 2020, Gruber et al. 2006, Ly et al. 2019,
Moin 2021, Torres and Bertrand-Krajewski 2008). Addi-
tionally, the application of UV spectroscopic techniques
for qualitative and quantitative analyses of organic pollut-
ants has been extensively investigated, although it may be
limited for the survey of non-absorbing compounds, i.e.
saturated hydrocarbons and carbohydrates, and almost all
mineral species except oxyanions such as nitrite and nitrate
(El Khorassani et al. 1998). Mrkva (1975) suggested that
the UV absorbance at a certain wavelength is proportional
to the content of dissolved organic matter present in the sur-
face waters and in some types of effluents with predominant
organic compounds of aromatic character. This is based on
a basic interaction between UV light and unsaturated ionic
or molecular structures (chromophores) (Thomas et al.
1999). For instance, the absorbance value at 254 nm has
long been used for the estimation of non-specific parameters,
i.e. COD and BODy, in water and wastewater (Briggs and
Melbourne 1968, Brito et al. 2014, Lepot et al. 2016, Torres
and Bertrand-Krajewski 2008), while the presence of nitrate
was found to increase absorbance intensity for wavelengths
around 210 nm etc. (Causse et al. 2017, van den Broeke
2007).

South Australia depends heavily on the River Murray
water as a source water supply. The 60-km-long Man-
num-Adelaide Pipeline (MAPL) is one of the major pipe-
lines supplying raw water from Mannum (a country town
along the River Murray) to Adelaide, acity of over 1 million
residents. Stormwater from the Mannum township enters
the River Murray close to the pipeline intake with conse-
quent potential water quality risks. In addition, there are
other potential hazards, such as agricultural activities from
upstream of the intake. It is, therefore, a necessity to imple-
ment a real-time hazard detection system and use this system
to collect a substantial amount of data, helping water author-
ities to develop preventive strategies to ensure the control
of hazards potentially entering downstream drinking water
sources (Chow et al. 2009).

This paper describes a stormwater monitoring study
using an on-line UV-Vis spectrophotometer in the Mannum
township near the Mannum-Adelaide Pipeline (MAPL).
A key component of this study was to investi gate the use of
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on-line monitoring technique to identify the chemical and
microbiological signatures of water samples using on-line
spectral data with the aims of determining the relationships
among various parameters, during rainfall events. The
knowledge gained will be used to evaluate the feasibility of
implementing future early warning systems to develop hazard
analysis and critical control point (HACCP) approach for water
quality incidents (including stormwater runoff) as part of a
decision support system for water supply operations.

Materials and methods

On-line monitoring instrumentation and sampling
system

An on-line UV-Vis spectrophotometer, s::can spectro::lyser,
with optical path length of 0.5 cm was installed in a storm-
water drain at the Mannum township (population c. 2,500),
aresidential area on the west bank of the Murray River in
South Australia, equipped with an automatic carousel sam-
pler (24 samples) with a flow proportional campsite sam-
pling (FPCS) system. The autosampler was programmed
to capture event samples. Spectro::lyser with different
path lengths can be purchased; a path length of 0.5 cm was
selected from previous stormwater measurement experience
for the balance between sensitivity and dynamic range. This
spectrophotometer was designed based upon the principle of
a photodiode array (PDA) spectrophotometer, which hasno
moving parts and has the advantage of reagent-free opera-
tion. Full spectrum absorbance (200-720 nm) was measured,
and calculated equivalents, such as nitrate (NO;™), dissolved
organic carbon (DOC), turbidity and total suspended solids
(TSS), were determined.

The spectrophotometer was set up to record the full spectrum
every 5 min, along with corresponding parameter values
(calculated equivalents). During rain events, the level sensor
was used to measure the water level in the stormwater drain
at 5-min intervals, the autosampler was tri ggered by the flow
condition; the collection of water samples was initiated by the
FCPS system when the water level was above a threshold of
25 mm which is designed to collect individual samples during
an event based upon the flow. The samples were collected
based on representative distribution across the flow profile
of the stormwater event, obtained from the storm drain water
level sensor. Samples were collected more frequently at larger
fluctuations of water level changes or during rapid changes of
water level and less frequently at smaller fluctuation. Samples
fromthe three storm events, (1) July 29th, 2010 (18 samples); (2)
August 19th, 2010 (13 samples); and (3) November 25th, 2010
(24 samples), were captured and analysed. The collected water
samples were kept at less than 4 °C while being transported
to the laboratory and filtered within 24 h for microbiological

analysis. The first event (Event 1) and the second event (Event
2) were conducted during the wet season (July to September)
in South Australia (supported by rainfall data in 2010 provided
by the Bureau of Meteorology). The last event (Event 3) was
carried out to capture the stormwater quality after a period of
the dry season to study the impact of seasonal change. The
three events reported in this study were thus carefully selected
to obtain the maximum amount of relevant information.

Laboratory analytical methods
Chemical

To validate the accuracy of the calculated equivalent results
from the on-line UV-Vis instrument, 18, 13 and 24 grab water
samples collected by the autosampler from Events 1, 2 and
3, respectively, at corresponding times, were analysed in the
laboratory for NO;~, DOC and turbidity. NO;~ was analysed
using a discrete analyser according to the standard method
(Federation and APH Association 2007). DOC was determined
using a total organic carbon analyser (900, Sievers Instruments
Inc., USA) with the standard method (Federation and APH
Association 2007). Turbidity was measured in NTU without
physical filtration using a turbidimeter (2100AN, Hach, USA).

Microbiological

According to the results of water quality parameters from the
autosampler, samples (9, 10 and 9 samples from Event 1, 2 and
3, respectively) with differences were selected for Escherichia
coli measurement. E. coli numbers were estimated using Coli-
lert-18 (Defined Substrate Technology, IDEXX Laboratories
Pty. Ltd., Sydney) as previously described (Adcock and Saint,
1997, AS 4276.21-2005).

Statistical analyses

Statistical analyses were performed using Microsoft Excel and
SPSS Statistics 24 (IBM). Differences between the on-line and
laboratory measurement for various water quality parameters
were tested using Passing-Bablok regression. Pearson corre-
lation was applied to evaluate any correlations among water
quality parameters, water level and E. coli. Both correlation
factor (r) and probability (p) values were used to determine
significance.

Results and discussion
Validation of on-line stormwater quality monitoring

Several water quality parameters (NO;~, DOC, turbidity
and TSS) were determined by the on-line spectrophotometer
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during the three rainfall events using partial least square
method (Shi et al. 2020). The grab samples were also col-
lected by the autosampler from the three events at corre-
sponding times and analysed in the laboratory (Event 1, 18
samples; Event 2, 13 samples; and Event 3, 24 samples).
NO,~, DOC and turbidity were measured in the laboratory.
In the case of TSS, a volume of 300-500 mL of water sam-
ple is required for analysis, and the autosampler was not able
to provide sufficient volume for all the analyses. The TSS
calculated equivalent value was used as an alternative. The
other calculated equivalent results from the on-line spec-
trophotometer were compared with the laboratory results.
These parameters have been validated previously for surface
water samples, in good agreement with results obtained from
laboratory analyses (Chow et al. 2007, Chow et al. 2008),
but have not been validated for stormwater samples. Part
of this study was to validate these parameters for storm-
water samples. The calculated equivalent parameters were
determined using the built-in algorithms with raw spectral
data of water quality provided by an acquisition software,
ana::pro, with a global calibration. The built-in algorithms
of this acquisition software were built with the partial least
squares regression based on hundreds of water sources.

In this study, the numerical values (concentrations) of
stormwater quality parameters were obtained from both the
on-line spectrophotometer and laboratory measurements.
Passing-Bablok regression was used to compare the two
methods. The results from Table 1 showed that the slope
values (b values) from NO;~ data were close to 1 and most
of the intercept values (a values) were close to 0, indicating
the on-line and laboratory measurements were comparable
within the investigated concentration range. For turbidity
results, the intercept values were negative and far from 1,
while the slope values were close to 1 except for Event 2,
indicating there is a systematic difference (the on-line spec-
trophotometer overestimated the results) but no proportional
difference between the two methods. However, neither the

Table1 Differences and correlations between the on-line and labora-
tory measurements

Water quality Passing—Bablok regres- Pearson correla-

parameters sion (y = a + bx) tion cocflicients
(r)
Event | NO;~ y=093774 1015x 0.789%*
DOC y=-=5.009 +0.6887x 0.971%%*
Turbidity y=-=7581+1071x  0.835%*
Event2 NO;~ y=x 0.990%*
DOC = 0.259
Turbidity y=—4669 +3999x  0.603*
Event3 NO;~ y=x 1.00%**
DOC y=-3.157 +0.6483x  0.985%*
Turbidity y=-9938+1.047 0.941%%
@ Springer

intercept values or slope values for DOC was close to 1, indi-
cating the systematic and proportional difference between
the two methods. This difference could be caused due to
several reasons. One is due to the aromatic substances in
stormwater. Aromatic substances have strong absorption
in low wavelength region, especially below 220 nm, which
could cause interference for the DOC measurement. The sec-
ond reason is we only applied global calibration in this study.
The project team did not conduct local calibration during the
monitoring period. This procedure requires entering the lab-
oratory result of a sample to the on-line spectrophotometer
control unit, and then the software adjusts the calibration by
matching the on-line spectral signature of that sample with
laboratory results. If the local calibration was conducted,
it would allow the determination of the concentrations of
stormwater quality using the spectrophotometer in real-
time. Instead, a post data analysis on the collected data was
conducted for the evaluation to determine the feasibility of
applying the on-line instrument as a routine monitoring tool.

Although differences were shown for the on-line and lab-
oratory measurements, good correlations of the water quality
parameters were observed across all the events (Table 1).
The Pearson correlation coefficients were also applied, and
the results showed significantly positive correlation between
the two measurements (on-line and laboratory), with the r
values ranging from 0.603 to 1 and most p < 0.05 except
DOC for Event 2. Overall, the calculated equivalent param-
eters obtained via the on-line UV-Vis instrument showed
comparable results with the laboratory analyses of storm-
water samples for NO;~, DOC and turbidity. These results
provide support for the application of the real-time monitor-
ing system for detecting chemical contaminants present in
stormwater discharges (Richter and Tranckner 2019).

Passing-Bablok regression, y scale is for laboratory grab
sample and x scale is for on-line sample. Pearson correla-
tion coefficients, ** means the correlation is significant at
p < 0.01 level. * means the correlation is significant at p <
0.05 level

Evaluation of correlation among on-line and lab
surrogate parameters for storm events

The detailed information of on-line surrogate parameters
during rainfall events are presented in Figures 1, 2 and 3,
and the monitored storm events are summarised in Table 2.

The data obtained from the Bureau of Meteorology con-
tained total rainfall, rainfall duration and antecedent dry
period. Table 2 showed that Events 1 and 2 happened dur-
ing the wet and winter season in Adelaide, and Event 3 was
conducted during the dry and summer season.

Event 1 was captured after a long antecedent dry period
of 14 days, while both Event 2 and 3 were captured after 7
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Table2 Summary of monitored storm events ( modified from Huang
ctal. (2016))

Rainfall event (m/day) Rainfall (mm) Rainfall Antecedent

duration dry period
(min) (days)
Event | (29/07) 10 420 14
Event 2 (19/08) 8 755 7
Event 3 (25/11) 14 655 7

days of dry period. Additionally, the data shows that Event 3
had the highest rainfall of 14 mm and medium rainfall dura-
tion of 655 min, Event 1 had medium rainfall of 10 mm and
the shortest duration of 420 min, and Event 2 had the lowest
rainfall of 8 mm and the longest rainfall period of 755 min
(Huang et al. 2016).

Figures 1, 2, and 3 show the changes of water levelsin
the drain during each event. As can be seen, water levels for
Event | ranged from 9 to 150 mm with an average value of
48 + 37 mm. The water levels for Event 2 were from Othe
water levels in to 59 mm with the average result of 14 + 16
mm and Event 3 had the widest range for water levels from
1 to 194 mm with an average water level of 32 + 44 mm.
Although Event 3 had the highest water level which was
up to 194 mm, Event 1 had the highest average water level.
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This is because the rainfall intensities from Event 3 became
lower after the halfway mark of the event, leading to the
lower average water level for Event 3. Overall, Event 1 and
3 had higher rainfall intensity and presented larger dynamic
changes of the water flow conditions, while Event 2 had
lower rainfall intensity and a more stable and lower flow.
Pearson correlation was applied to evaluate if any cor-
relations existed among water quality parameters and water
level (Table 3) during the events. The results show that there
is a strong negative correlation between NO;~ and water
level for Event 1 and 3 which had hi gher rainfall intensities.
Event 2, which had low rainfall intensity and flow rate, pre-
sented a strong positive correlation to NO;™. In this study,
high rainfall intensity could lead to decreased NO;™ con-
centration in the drain as the water level increased, while
low rainfall intensity resulted in increased NO;~ concentra-
tion when the water level was subsiding. The decrease in
NO;™ concentration in the stormwater drain could be due to
the dilution effect from the high rainfall intensity. Another
possible reason why a negative correlation is shown between
NQ, concentrations and water level is because there is a
time delay between the two factors. McCarthy et al. (2012)
reported that rainfall intensity needed to be adjusted to
capture the time of concentration for each event. In MaC-
arthy’s study, the measured hydrologic data was “shifted”
(by + 15 min) to capture the inherent variability in the
timing of pollutographs with respect to hydrologic pattern
(McCarthy et al. 2012). The result from this study is differ-
ent from other studies but not contradictory. For instance,
Mallin et al. (2009) presented that there was not a corre-
sponding positive correlation between rainfall and NO;™.
Dillon and Chanton (2005) reported that NO;~ concentra-
tions were elevated in stormwater relative to rainwater in

an urbanised coastal environment, but this trend was not
statistically significant. In addition, the NO;™ results from
Events 1 and 3 indicate that the NO;~ levels were high in the
sump water before the event started, which could be due to
the impact of the fertiliser runofts from farming activities.
Furthermore, NO;~ showed a significantly positive correla-
tion with DOC, indicating NO;~ and DOC were discharged
into the system at the same time during the rainfall events.
Moreover, NO,™ indicated strong negative correlations with
turbidity and TSS through all events, although Nebbache
etal. (2001) revealed no clear correlation between turbidity
and NO,~ concentration, whether positive or negative during
the rainfall event. These negative correlations can suggest
different sources for NO;~, turbidity and TSS.
Additionally, there is a strong positive correlation
between water level and turbidity and TSS except Event 2
which indicates a weak negative relationship. In this study,
high rainfall intensity led to increased turbidity and TSS
in the drain as the water level increased, while low rainfall
intensity and flow rate resulted in increased turbidity and
TSS when the water level decreased. Mallin et al. (2009)
reported that turbidity was significantly higher during rain
events compared to non-rain periods and a positive correla-
tion occurred between rainfall and turbidity. Other studies
also discovered a significantly positive correlation between
the rainfall intensity and TSS concentrations (Mallin et al.
2009, McCarthy et al. 2012). Furthermore, turbidity was an
indication of the concentration of colloids and suspended
particulates (Huang et al. 2016). Our study indicated a sig-
nificantly positive relationship between turbidity and TSS
during the events. Furthermore, the correlations between
the water level and DOC were similar to NO;™. Event 2
with the lowest rainfall showed a strong positive correlation

Table3 Pcarson correlation

s NO;~ DOC Turbidity TSS Water level
coeflicients among water quality o
parameters and water level Event | NO;~ 0.828#k =021 1% —0.194% —0.572%%
DOC 0.828%% —0.046 -0.039 —0.263%*
Turbidity =0.211* —0.046 0.999## 0.435%%
TSS —0.194* —0.039 0.999#** 0.408%
Water level —0.572%* —0.263 %% 0.435%% 0.408%#
Event 2 NO;~ 0.81 ¥ —0.757%* —0.760%* 0.165%
DOC 0.81 1% —0.193%* —0.190%* 0.251%%
Turbidity =0.757%* —0.514%% 1.000%* —-0.052
TSS —0.760%* —0.510%* 1.000%* —0.049
Water level 0.165% 0.25] %% —0.052 —0.049
Event 3 NO;~ 0362k —0328%* —0364#% —0.206%*
DOC 0362%% 0.119 0.122 0.085
Turbidity —0.328%# 0.119 1.000%* 0.816%%*
TSS —0.364#* 0.122 1.000%* 0.814%%
Water level —0.206%* 0.085 0.816%% 0.814%#%

* means p < 0.05, and ** means p < 0.01
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with DOC and Event 1 with the highest rainfall intensity
indicated a strong negative correlation with DOC, although
a weak positive correlation for Event 3. Other studies indi-
cated that there was a significant increase in DOC concentra-
tions during storm events (Dalzell et al. 2005, Vidon et al.
2008). In addition, DOC also presents negative relationships
with the turbidity and TSS except for Event 3. Once again,
these negative correlations can suggest different origins
between DOC, turbidity and TSS.

The study indicated that the chemical and physical param-
eters were characteristic of changing water quality through
the drain that was not just related to the velocity of the flow.
The factors that are affecting the response of NO;~, turbidity
and TSS in this study are clearly more complex than just the
velocity of water passing through the sump. These changes
could include the rainfall intensity and the distance from
the stormwater drain affecting the time at which the peak
levels arrived at the detectors, time required to re-suspend
particles, the nature of the catchment area and the size and
character of the particles (clay, sand, soot, etc.).

Assessment of correlation among microbiological
and chemical parameters

Figure 4a, b and ¢ show the water levels in the stormwater
monitoring sump overlaid with the sample points analysed
for E. coli with counts as the most probable number (MPN)
per 100 mL. The results indicated the highest average con-
centrations of E. coli (93166 + 89283 count) were found
at Event 3, followed by Event 2 with 6442 + 3850 counts,
and Event 1 had the lowest average E. coli concentration of
4687 + 5684 counts. This could be due to a more intense
rainfall that occurred during the first 8 h of Event 3, intro-
ducing a larger amount of E. coli into the drain. Further-
more, temperature was another important factor for the E.
coli numbers. In Adelaide, the temperature was higher in
the dry season than in the wet season, and E. coli could be
persisting or growing in the aquatic environments during
periods of warmer temperature, contributing to higher initial
concentrations and peaks during subsequent runoff events.
But this is also different from Mallin et al. (2009) where
the authors reported that wet-period faecal coliform bacte-
ria counts were significantly higher than dry period counts
(no rainfall in the previous 72 h) for the individual creek in
Hanover County, North Carolina, USA, although the effect
of temperature was not discussed between the wet (defined
as any rainfall) and dry periods.

In the cases of Events 1 and 2, the distribution indicates
that bacterial numbers did not correlate with the water level,
with the highest values detected late in the event with no
increase due to water level rises. Other studies reported that
the incidence of rainfall and rainfall intensity were highly
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Figure 4 E. coli counts (cfu/100mL) versus nitrate in stormwater
determined as calculated equivalents in grab samples, a Event 1, b
Event 2 and ¢ Event 3

si gnificantly correlated with faecal coliform bacteria (Davies
and Bavor 2000, Haydon and Deletic 2006, Kelsey et al.
2004, Mallin et al. 2009). At the same time, McCarthy et al.
(2012) also reported E. coli was less correlated to hydrologic
parameters, such as rainfall and runoff variables, for urban
runoff. Event 3, with a different, more intense onset, did
exhibit the highest E. coli numbers with the first flush. Addi-
tionally, most of the timing of peak E. coli concentrations
was randomly scattered with respect to the timing of the
peak water level, indicating that E. coli did not consistently
experience a first flush and that concentrations were prob-
ably not affected solely by rainfall or catchment depletion
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processes. Many researchers have reported that pollutants
can exhibit higher levels in the first flush of a stormwater
runoft event, but these strategies may be deficient as the
first flush of typical stormwater pollutants, such as sediment,
nutrients and others, isnot always observed in urban runoft
(Duncan 1995, McCarthy 2009). McCarthy (2009) deter-
mined that cumulative mass versus volume curves related
to the first flush phenomenon was not consistently present;
the presence and magnitude of a first flush varied consid-
erably between each site and poor consistent correlations
were shown between E. coli and the first flush effect. This
could also explain the contradiction to the chemical param-
eter observations and introduces the likelihood that differ-
ent mechanisms of transport are operating in the stormwater
drain. Furthermore, while the chemical parameters poten-
tially enter the stormwater by rapid dissolution or dilution
of a concentrated source, bacterial transport may require re-
suspension before subsequent flows can flush the cells from
the catchment to the stormwater drain.

NO;~ isthe logical choice for surrogate microbial detec-
tion, asit is a representative of nutrient content (Whitehead
and Cole 2006) and therefore possible raw sewage contami-
nation. In addition, NO;™ is detected in the low wavelength
(< 220 nm), high-energy region giving excellent sensitiv-
ity to changes and the lowest detection limits. Thus, cal-
culated equivalent NO5™ concentration was the most likely
candidate as a surrogate for microbial numbers. The moni-
tored NO,~ concentrations during the captured flow events
in July, August and November are shown in Figure 4a, b
and c, respectively. Our study indicated a negative corre-
lation between NO;™ and E. coli numbers through all the
events, but this relationship was not significant (Table 3).
To confirm the relationships with E. coli, other calculated
equivalent parameters (DOC, turbidity and TSS) from the
time scale of the sample collection from all the captured
events were also plotted against E. coli counts. Correlation
factors were very low in almost all cases indicating very
little potential for relating these parameters to stormwater
microbial loadings (Table 4). A strong correlation was found

with turbidity (r = 0.916, p < 0.01) and TSS turbidity (r

=0.913, p < 0.01) but only within Event 3 indicating this
relationship may not be reproducible, although faecal bac-
teria were found frequently associated with turbidity and/or
TSS (Mallin et al. 2009). With NO;™, the direction of the
trend also indicated that if a relationship existed, it was the
reduction of the parameter that encouraged E. coli prolifera-
tion which is counter-intuitive if its role as a surrogate for
growth nutrients is considered. The possible reasons for this
lack of correlation are believed to be related to the nature
of the stormwater catchment rather than any failing of the
instrumentation or procedures. The water quality parameters
from the laboratory-analysed grab samples were also plotted
against E. coli counts within the three events. The disparity
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Table4 Pcarson corrclation cocfficients (1) among water quality
parameters and E. coli

Event | Event 2 Event 3
NO;™ —0.535 —0.143 —0.608
DOC -0.470 -0.119 0572
Turbidity —0.284 0.007 0916
TSS —0.286 0.010 0913%x
Water level —0.163 0.186 0.257

* means p < 0.05 and ** means p < 0.01

of trends between the chemical parameters (NO;~, DOC
and turbidity) and E. coli counts was visually apparent, and
the poor correlations were also present except for Event 3
(Table 2). Compared to calculated equivalent, limited results
were provided by the grab samples, and the strong correla-
tions among E. coli counts and NO;~, DOC and turbidity
for Event 3 might be coincident. Unlike a permanent water
body where solutes and nutrients are constantly accessi-
ble to water-borne organisms, the stormwater catchment is
typically dry until the onset of a rain event. As a result,
the bacteria and chemical nutrients are likely to be spatially
separated until they come into contact during the event, and
detection of either would therefore be unrelated. In addi-
tion, while NO;~ does promote bacterial proliferation, it is
not usually a growth-limiting nutrient, and its absence does
not preclude the detection of significant bacterial numbers.
Furthermore, faecal microbial contamination in urban and
peri-urban areas could come from various sources, including
livestock and domestic animals and urban wildlife including
pets, waterfowl, pigeons, rats and others (McCarthy 2009).
Additionally, NO,~ concentrations could be influenced by
non-point sources, especially for agriculture runofts. The
complicated sources from the urban and peri-urban areas
could contribute to a weak correlation between NO;~ and
E. coli (James and Joyce 2004).

Furthermore, temporal variations were apparent for the
detection of parameters in the stormwater flow events, with
the dissolved chemical parameters peaking early in the
first flush and decreasing rapidly throughout the monitored
event. Microbiological parameters such as E. coli count were
lower in the early period of the event and peaked during
subsequent increases in water flow, indicating that different
mechanisms of transport are exerting influence. It is believed
that while chemical species are easily dissolved and carried
with the primary flow, microorganisms require re-suspen-
sion from solid substrates before the later flow increases
can transport them through the catchment area and into the
stormwater drain (Etheridge et al. 2019). In addition, this
can be because the bacterial comes from animal faeces that
slowly dissolve in fields and on roads before entering the
stormwater system rather than an overflow of a domestic

175



Environmental Science and Pollution Research

sewerage system where it would be expected the presence
of E. coli and nitrate would be concomitant.

Conclusion

This study has applied an on-line UV-Vis spectrophotometer in
the field to collect real-time continuous data for various water
quality parameters (nitrate, DOC, turbidity and total suspended
solids) during three storm events in Mannum, Adelaide, Aus-
tralia. This study demonstrated that the trends for on-line and
comparative laboratory-analysed samples were complimentary
through the events. The study not only investigated the correla-
tions among various water quality parameters (nitrate, DOC,
turbidity and TSS) and water levels, but also investi gated the
potential correlations among water quality parameters and E.
coli. The results showed that water levels had a strong negati ve
correlation with NO;™ and DOC and a strong positi ve correla-
tion with turbidity and TSS during high rainfall intensity, while
water levels presented a positive correlation with NO;™ and
DOC and negative correlation with turbidity and TSS during
low rainfall intensity. Microbiological parameter — E. coli
counts, was lower in the early period of the event and peaked
during subsequent increases in water flow, indicating that di ffer-
ent mechanisms of transport are exerting influence. Our study
also indicated that NO;~, DOC, turbidity, TSS and water level
did not show strong correlations with E. coli. The poor correla-
tions among the microbiological data and on-line parameters can
be due to the nature of the stormwater catchment outside of rain
events or due to the different sources of bacteria and nutrients
that end up in the stormwater drain. This case study represented
a trial of technologies in a prototype self-contained monitoring
station for the ability to act as a hazard detection tool for storm-
water inputs into drinking water sources. While solutions to a
number of issues could not be resolved within the duration of
the project, the monitoring should be continued to collect more
valuable data which will help guide its future implementati on
for routine on-line monitoring of stormwater.
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Abstract

Water quality monitoring is an essential component of water quality management for water utilities for managing the drinking water
supply. Online UV-Vis spectrophotometers are becoming popular choices for online water quality monitoring and process control,
as they are reagent free, do not require sample pre-treatments and can provide continuous measurements. The advantages of the
online UV-Vis sensors are that they can capture events and allow quicker responses to water quality changes compared to
conventional water quality monitering. This review summarizes the applications of online UV-Vis spectrophotometers for drinking
water quality management in the last two decades. Water quality measurements can be performed directly using the built-in
generic algorithms of the online UV-Vis instruments, including absorbance at 254 nm (UV354). colour, dissolved organic carbon
(DOC), total organic carbon (TOC), turbidity and nitrate. To enhance the usability of this technique by providing a higher level of
operations intelligence, the UV-Vis spectra combined with chemometrics approach offers simplicity, flexibility and applicability. The
use of anomaly detection and an early warning was also discussed for drinking water quality monitoring at the source or in the
distribution system. As most of the online UV-Vis instruments studies in the drinking water field were conducted at the laboratory-
and pilot-scale, future work is needed for industrial-scale evaluation with ab appropriate validation methodology. Issues and
potential solutions associated with online instruments for water quality monitoring have been provided. Current technique
development outcomes indicate that future research and development work is needed for the integration of early warnings and
real-time water treatment process control systems using the online UV-Vis spectrophotometers as part of the water quality
management system.

Keywords: online UV-Vis spectrophotometer; real-time measurement; online water quality monitoring; drinking water

Figure A-1 Early access version of the review paper, entitled ‘application of online
UV-Vis spectrophotometer for drinking water quality monitoring and process control:
areview’, published by Sensors, MDPI.
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Abstract

There is an increasing need to use online instrumentation for continuous monitoring of water quality. However, industrial
applications using online instruments, such as submersible UV-Vis spectrophotometers, may require the use of alternative
techniques to remove particle effect rather than performing a physical filtration step. Some submersible UV-Vis spectrophotom-
eters have built-in generic particle compensation algorithms to remove the filtration step. This work studied the influence of
suspended particles on the measurements of a submersible UV-Vis spectrophotometer as well as the performance of the built-in
particle compensation technique under laboratory-controlled conditions. Simulated water samples were used in the combinations
of standard particles from laboratory chemical and natural particles extracted from water systems with ultrapure water and treated
water from a drinking water treatment plant. Particle contributions to the UV absorbance at 254 nm (UV,.;) measurements of
water samples varied differently when particle types or concentrations changed. The compensated UV,ss, measured by the
submersible instrument using the built-in generic particle compensation algorithms, was compared with laboratory UV,s4,
analysed by the bench-top instrument with the physical filtration method. The results indicated that the built-in generic com-
pensation algorithms of the submersible UV-Vis spectrophotometer may generate undercompensated UV;s, or overcompensated
UV,sy4 for various surface waters. These findings provide in-depth knowledge about the impact of suspended particles on the
measurements of submersible UV-Vis spectrophotometers; source water dependence; and why site-specific calibration is often
needed to get accurate measurements.

Keywords Particle effect - Particle compensation - UV5s4
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real-time. Online water quality monitoring may provide
decision-making information for early waming responses
(Dong et al. 2015; Hou et al. 2013). Online UV-Vis spectro-
photometer is a popular choice for water utilities to monitor
water quality as it does not require sample pretreatment or
chemical reagents (Zhang et al. 2017). There are several com-
mercially available systems, such as submersible UV-Vis
spectrophotometers. Some submersible instruments provide
generic calibrations with built-in particle compensation algo-
rithms (Langergraber et al. 2003). These algorithms were de-
veloped using advanced computing techniques, such as partial
least squares, to establish the relationship between UV-Vis
spectra and laboratory measurements of water samples. They
extracted information from the spectra to determine measure-
ments of certain water quality parameters such as UV, sy, col-
our and dissolved organic carbon (DOC). The algorithms
were developed based on hundreds of datasets containing both
UV-Vis spectra and reference laboratory data (Langergraber
et al. 2003). However, the details of the algorithms are propri-
etary and are not provided by the manufacturers.
Peer-reviewed studies have documented various
methods of compensating particle effect on the UV-Vis
measurements of water quality using the submersible
UV-Vis spectrophotometer. Algorithms were built based
on the chemical compositions and the morphology features
of UV-Vis spectra obtained from wastewater samples.
which were used to eliminate measurement derivation
(Hu and Wang 2017). The fourth derivative spectrum was
used to eliminate the interference of particles in the mea-
surements of total organic carbon for seawater (Hu et al.
2016). Additionally, partial least squares regression was
employed to eliminate the particle effect on measuring wa-
ter quality in urban drainage system (Torres and Bertrand-
Krajewski 2008). Moreover, a multiple linear regression
method was adapted to remove the particle effect on the
UV-Vis spectra of brackish water for rapid measurements
of multiple material concentrations (Etheridge et al. 2014).
Some research findings showed that particle compensa-
tion of submersible UV-Vis spectrophotometers are source
water dependent and site-specific calibrations were often
required to obtain accurate measurements (Avagyan et al.
2014; Drolc and Vrtoviek 2010; Huebsch et al. 2015;
Jeong et al. 2012; Langergraber et al. 2003; Strohmeier
et al. 2013). A study on the determination of water quality
for wastewater samples concluded that the calibration of
the submersible instrument needs to be matched with the
specific wastewater type in some situations (Drolc and
Vrtoviek 2010). Comparable water quality results were
gained from a study on monitoring water quality of surface
waters in the field using a submersible instrument with a
multilinear calibration method. It was found that the cali-
bration was water matrix dependent and recommended to
use site-specific calibration to improve the accuracy of the

@ Springer

quantification. Another field study using submersible UV-
Vis spectrophotometers to monitor groundwater revealed
that the significant fluctuations of water quality could af-
fect the accuracy of the water quality measurements and
long-term monitoring could be limited by particle compen-
sation (Huebsch et al. 2015). A customised calibration was
conducted for a submersible spectrophotometer to measure
water quality in a forested catchment, and comparable re-
sults were achieved (Strohmeier et al. 2013). A site-
specific calibration was performed for a submersible in-
strument using the built-in compensation algorithms to
measure the water quality of stream water, but concentra-
tions were overestimated because of inaccurate turbidity
compensation (Jeong et al. 2012). Thus, accurate site-
specific calibration is important for water quality
monitoring.

To obtain accurate water quality measurements using
submersible UV-Vis spectrophotometers can be challeng-
ing, and it depends on their application, particularly for
real-time monitoring and process control. Submersible
UV-Vis spectrophotometers have been implemented at
some water utilities to monitor water quality online for
the assistance of water treatment process control (Banna
et al. 2014: Byrne et al. 2014; Chow et al. 2007).
However, measurement issues often occur to the submers-
ible instruments when water quality changes dramatically
or water source changes (Waterra 2017). Industrial appli-
cations of the submersible instruments have encountered
particle compensation issues such as under-compensation
or overcompensation or even failure to generate reasonable
measurements (Chow et al. 2007; Chow et al. 2017: Hu
and Wang 2017: Lepot et al. 2016; Waterra 2017).
Industrial experience and peer-reviewed studies show that
the impact of particles is source water specific and generic
calibrations could not adequately account for the differ-
ences in large water quality changes or between different
types of water (Caradot et al. 2014; Chow et al. 2017;
Leigh et al. 2019; Lepot et al. 2016; Meyer et al. 2019).

Even though there are studies on improving the accura-
cies of submersible UV-Vis spectrophotometers with site-
specific calibrations, the studies of characterised particle
impact on the measurements are limited. There is only
one reported studies of particle effect on the measurements
of an UV spectrophotometric nitrate sensor (Snazelle 2016;
Van Eerdenbrugh et al. 2011)). This paper provides a sys-
tematic study utilising six types of stimulated water sam-
ples with both artificial and natural water particles for each
type of water. The aim was to study the particle effect on
the measurements of a submersible UV-Vis spectropho-
tometer. This work also determines whether the built-in
compensation method can generate comparable measure-
ments as the physical filtration method or not under lab-
controlled conditions.
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Materials and methods
Materials

Three types of particles were chosen including, kaolin clay
(P,), Myponga silt (P2), and Hope Valley silt (Ps). P, particles
are clay minerals (Chem-Supply Pty Ltd, Australia) which
were chosen because they are standardised particles. P, parti-
cles are silica-based and were collected from the catchment of
the Myponga Reservoir in South Australia (SA). P; particles
were selected as they represented the typical particles from an
enclosed water catchment of reservoirs in SA. P5 particles are
clay-based, which were sediment from Hope Valley WTP in
SA. P; particles were selected as they represented particles of
a surface water catchment of a chain of reservoirs in SA. P,
and P; were dried in an oven at 40 °C ovemight before use.

Two types of water, Mill-Q water (W;) and Myponga-
treated water (W,), were selected as water bases for making
up the simulated water samples. W, was collected from a
Milli-Q Gradient system (Millipore, France) with a conduc-
tivity of 0.10 uS/em at 25 °C. Myponga WTP utilises dis-
solved air flotation and filtration process (DAFF) with free
chlorine disinfection, to treat source water into drinking water.
W was collected from Myponga WTP after the filtration pro-
cess and before the chlorination process. W, was pure water
which was used to eliminate interference from other solutes.
W, contains residual UV-absorbing material. It was used to
assess any additional matrix effects that may confound accu-
rate particle compensation.

Preparation of water samples

Six types of concentrated stock solutions were prepared: 5 g of
P,, P, and P, particles were suspended in 1 L of W, water
base, respectively: 5 g of Py, P, and P; particles were also
suspended in 1 L of W2 water base, respectively. Each type
of the stock solution was diluted with W, or W> water base to
generate five different levels of turbidity to make up 1 L of
each sample, which was defined as A, B, C, D, and E. The
turbidity of the water samples was within 2-110 NTU, which
was based on the turbidity range of water sources in SA (SA
Water 2016). Six types of water samples, which were made up
with three kinds of particles (P, P, and P;) and two types of
waters (W, and W,), are defined as P;W,, P,W,, P;W,,
P,W,, P,W,, and P;W; based on their combinations. The
water samples were organised into unfiltered and filtered wa-
ter samples. Water samples with P, were considered the con-
trol as P, particles were composed of pure inorganics. Water
samples with P> and P; were simulated natural surface waters,
containing both organic and inorganic solids.

The selected six types of simulated water samples, in the
combinations of different particles and water bases, represent
different types of water quality. All measurements of water

samples were made in triplicate and averaged. Water samples
containing P, were used as reference samples as they were
highly reproducible. The simulated water samples with P, or
P; type particles were used to represent local surface source
waters.

Sample analysis

Water quality parameter, particle size distribution, and inor-
ganic chemical analysis were conducted in laboratories
accredited by the National Association of Testing
Authorities (NATA), Australia. All the water samples were
analysed at room temperature.

Water quality

Turbidity was measured in NTU without physical filtration
using a turbidimeter (2100AN, Hach, USA). Prior to UV;s4,
colour at wavelength 456 nm (true colouryss) and dissolved
organic carbon (DOC) measurements, water samples were
filtered through 045 pm polyethersulfone (PES) membrane
filters (ANPEL Laboratory Technologies, China) to remove
all the nondissolved particles under a constant vacuum. One
hundred milliliter of water samples were filtered each time to
minimise the effects of membrane fouling (Drikas etal. 2017).
UVass and coloursses were analysed with a bench-top UV-Vis
spectrophotometer (Evolution 60, Thermo Scientific, USA)
using a standard method (Rice et al. 2007). DOC was deter-
mined using a total organic carbon analyser (900, Sievers
Instruments Inc., USA) with a standard method (Rice et al.
2007).

Particle size distribution

Particle size distributions of the three types of particles in the
Milli-Q water were analysed using a LISST-Portable particle
counter (Sequoia, USA). Particle size distribution data were
collected by following the operational instruction of the man-
ufacturer. The particle distributions were analysed as particle
volume concentration based on the particle size increment.

Inorganic chemicals

Chemical compositions of three types of particles in Milli-Q
water (2 g/L) including metals and silica were analysed using
inductively coupled plasma-mass spectrometer (Agilent ICP-
MS, 7500cx) instruments following the standard method
(Rice et al. 2007). Nitrogen as nitrate and nitrite were analysed
using a discrete analyser according to the standard method
(Rice et al. 2007).

;@_ Springer
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Submersible UV-Vis spectrophotometer analysis

A submersible UV-Vis spectrophotometer (spectro::lyser:
s::canGmbH, Austria) with a 35-mm path length was used to
analyse the unfiltered and filtered water samples. The water
samples were measured within a range of 200-750 nm with
2.5-nm intervals. The submersible UV-Vis spectrophotometer
was connected to a controller (con::stat) which had an
installed data processing software (ana::pro). The submersible
UV-Vis spectrophotometer could measure the unfiltered water
samples directly as the software has built-in generic particle
compensation algorithms. The software can also convert the
UV-Vis spectrum into water quality parameters such as com-
pensated UV,s4. Zero or baseline check was performed using
Milli-Q water before use. The water samples were measured
by filling the sample waters in the measurement port of the
submersible instrument. The port and lens were cleaned be-
fore each measurement to make sure that progressive fouling,
and sample carryover did not impact on the measurements.
The outputs of the submersible instrument were stored in the
controller and contained uncompensated UV-Vis spectra and
derived water quality parameters.

Data processing

Particle contribution is the amount of particle impact on the
measurements, using a submersible UV-Vis spectrophotome-
ter, which needs to be compensated to get accurate measure-
ments. The particle contribution to UVass measurement of the
submersible instrument was calculated as a subtraction be-
tween the absorbance of unfiltered and filtered for the same
water samples. Particle contribution to the UV-Vis spectrum
of the submersible instrument was also calculated as a sub-
traction between the absorbance of a spectrum for unfiltered
and filtered water samples. An illustration of the calculation of
the particle contribution is shown in Fig. 1.

The UVass measurements of the filtered water samples
using a bench-top spectrophotometer were defined as lab
UV;s4. The UV;sy of unfiltered water samples measured by
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Fig. 1 An illustration of particle contribution to the spectrum of a water
sample
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the submersible instrument with the built-in generic calibra-
tion were referred to as compensated UV,s4. The compensat-
ed UVzsy was compared with the lab UV,s4 to evaluate the
performance of built-in generic algorithms of the submersible
instrument.

Results and discussion
Characteristics of particle type and water samples

Particle size distribution and chemical compositions of Py, P,
and P;, in Milli-Q water, were analysed, and the results are
shown in Table 1 and Fig. 2. Each type of particle had distin-
guishable particle size distribution. P type particles had the
smallest mean particle size of 2.20 pm among the three types
of particles. Ninety percent of the P, particle size was 0.85
8.65 um. P, type particles had the largest mean size of
14.6 pum and the majority (90%) of P, type particle size was
from 2.27 to 103.72 pum. P; had a mean size of 7.6 um and
90% of the particles were between 2.30 and 32.55 pum. Thus,
natural particles (P2, P3) generally had larger particle sizes
than the standard particle (P,).

The inorganic chemistry content of the particles in Milli-Q
water is shown in Table 2. Each type of particle had the same
particle concentration of 2 g/L as prepared. For metal content,
P, type particles contain only 0.03 mg/mg of AL P, type
particles did not have any reportable amount of metals. P; type
particles contain low levels of Al, Ca and Fe which were less
than 0.10 mg/mg. The nitrogen content of total nitrogen of
nitrate and nitrite for all three types of particles was below
the detection limit. The low level of nitrogen content is com-
mon in SA water sources (SA Water 2016). Metal and nitro-
gen contents were analysed because high concentrations of
inorganic species such as iron and nitrate could interfere with
the UV absorbance of water (Weishaar et al. 2003). However,
there was no evidence that metal and nitrogen at very low
concentration in the water samples can affect the UV measure-
ments in this work. Both water samples with P, particles and
water samples with P particles had low alkalinity as CaCOs
(< 50 mg/L), while water sample with Py particles had the
highest alkalinity (200 mg/L). A previous study using the
UV-Vis spectrophotometric method to determine water qual-
ity and achieved comparable results. The instrument was ro-
bust in the high alkalinity condition with water alkalinity up to
459 mg/L (Bowker 2011). Therefore, the alkalinity of the
water samples containing P,, P> or Py could not affect the
measurements of UV-Vis spectrophotometers.

The water quality parameters include turbidity, lab UVsa,
true coloursse, DOC and pH, of all simulated water samples
were analysed using the laboratory standard methods, and the
results are shown in Table 3. In general, all six types of sim-
ulated water samples had different lab UV,,, response. The
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Table 1 Particle size of Kaolin (P,), Myponga (P-) and Hope Valley (P5) particles in the water

Particle type Mean size (um) Std of particle size (um) Size range (1um) 909 size (um)
P, 22 21.8 0.37-14.22 0.85-8.65

P, 14.6 542 1.19-237.35 227-103.72
Py 7.6 16.2 1.01-63.11 2.3-32.55

lab UV,54, true colour,ss and DOC of P;W, water samples
were close to zero as P, is purely clay mineral. All the P,W,
samples had constant values of lab UV 44, true colourys, and
DOC as W, water-base containing natural organics.

All the simulated natural water samples with P, P; contain
organics. Lab UV,s4 measurements of PoW,, P3W,, P,W,
and P;W> samples were from 0.1 to 5.3 m™, 0.0to 1.0 m™,
112 to 13.6 m™ and 11.4 to 12.5 m’", respectively. Water
samples with W, water base had higher values of lab UVasy,
true colouryss and DOC than the water samples with Wy water
base. Myponga-treated water was employed as the W, water
base, which had a high DOC content which was in line with
the historical data (Fabris et al. 2012).

Water quality results in Table 3 indicate that the pH of all
the water samples was within a range of 5.5 to 8.3, which is
similar to the reported pH range (6 to 8.5) of most surface
water in SA (SA Water 2016). There was no significant influ-
ence of water sample pH on the lab UV 4. Thus, the pH of the
water samples was not adjusted. Weishaar et al. (2003) report-
ed that the minor pH effect on UV absorbance measurements
was observed for river water samples. A study also concluded
that only relatively high or low pH had impacted on the UV
absorbance of the lake water samples (Pace et al. 2012).

Relationships between water quality parameters and
UV measurements

Particle compensation is also called turbidity compensation
for the measurements of water quality using UV-Vis spectro-
photometers. Turbidity measures light scattering which is in-
teractions between light and suspended particles. Suspended
particles can cause light scattering and affect the light

10% Volume Distribution

8%

2%

0%

~
.
<

Fig. 2 Particle size distributions of Kaolin, Myponga, and Hope Valley
particles in the Milli-Q water

absorption of the water samples. Accordingly, turbidity has
amajor and direct connection to the measurements of UV-Vis
spectrophotometers. UV, is commonly used as a surrogate
to determine the concentration of organic matter in water.
Therefore, to understand the UV response of water samples,
we investigated relationships between water quality parame-
ters, such as turbidity and DOC and UV,s; measurements
using a bench-top UV-Vis spectrophotometer.

Lab UV3sq4 is plotted as a function of turbidity for all six
types of simulated natural water samples which is shown in
Fig. 3aand b. As the increase in turbidity of P; W, and P;W;
water samples, lab UV,ss measurements were constant
(Table 3). P, particles were purely inorganics and insoluble
in water which can be removed by physical filtration. There
were statistically robust linear relationships between turbidity
and lab UV, for P,W,, P.W,, P;W, and P;W, water sam-
ples with R? > 0.99. As the turbidity level increased, the lab
UV, of the water samples increased linearly. The slopes and
intercepts of the water samples with P, type particles were
different from that of water samples with Py type particles.
For water samples with P, and P; particles, water samples
with W, water base had intercepts of almost 0 m ', whereas
the intercepts of water samples with the W, water base were
around 11 m". It was because the W, water base contains
high levels of dissolved organics.

UV>s4 is also plotted against DOC for all the water sam-
ples, shown in Fig. 3¢ and d. The relationship between DOC
and UVass of PyW, and Py W, water samples was not taken
into consideration, as P, type particles do not contain any
organics. For all P,W, and P,W, water samples, an increase
in DOC leads to an increase in UV ,4;. DOC had linear corre-
lations with the UV254 for PgW], Psz. P3W| and P3W2 water
samples with R? of 1.00 and 0.99, respectively, with different
slope and intercept for each water type. The slopes of water
samples containing particle type P; were lower than the water
samples containing particle type P, which could be explained
by the UV of supracolloidal particles has lower slopes than
fine colloidal particles (Vaillant et al. 2002). Thus, different
types of simulated natural waters had different linear relation-
ships between DOC and UV>sa.

Overall, different natural water samples had different lab
UVas. responses using a bench-top UV-Vis spectrophotome-
ter combined with a physical filtration method. The UV re-
sponse of the turbidity for the filtered water samples was
caused by DOC. In general, particle characters that affect
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Table2 Inorganic chemistry of particles in Milli-Q water: Kaolin (P), Myponga (P,) and Hope Valley (P3)

Particle type Metal (mg/mg) Nas (NO, + NO; ) (mg/mg) Alkalinity as CaCO; (mg/L)
P, Al 0.03 0.00 20
Ca 0.00
Fe 0.00
P 0.00
Na 0.00
Mg 0.00
Py Al 0.00 0.00 40
Ca 0.00
Fe 0.00
P 0.00
Na 0.00
Mg 0.00
P Al 0.07 0.00 200
Ca 0.01
Fe 0.03
P 0.00
Na 0.00
Mg 0.00

measurements of bench-top UV-Vis spectrophotometers are
mainly DOC. There were linear relationships between
turbidity and UV,s4 as well as DOC and UV,s4 of surface
catchments water in SA, such as river water and reservoir
water. The findings were supported by two reported studies.
Mamane et al. (2006) reported that with the increase of parti-
cle concentration in the water, the associated UV absorbance
increase linearly. UV,s4 measured by the bench-top UV-Vis
instrument was changed directly with the change of DOC in
the river waters (Volk et al. 2005).

Particle contribution to measurements of a
submersible UV-Vis spectrophotometer

Particle contribution was calculated based on the measure-
ments of a submersible UV-Vis spectrophotometer as men-
tioned in the *Data processing™ section. According to the re-
sults present in SI Fig. 1, the turbidity of all six types of water
samples increased when the particle concentrations increased.
The particle contribution to UV-Vis spectraand UV,sy4 for the
six types of water samples with five different turbidity levels
(A, B, C, D, E) are shown in Fig. 4, and SI Figs. 2 and 3. As
water turbidity increased, the particle contributions in P,W,
also increased. Similarly, an increase in turbidity was associ-
ated with the increase in the particle contributions to PaWy,
P:W,;, P;W>, P.W>, and P;W, water samples. Thus, an in-
crease in the turbidity of water samples can lead to an increase
in particle contribution. P; particle had the highest contribu-
tion to the UV-Vis spectra, and P, had the least particle

@ Springer

contribution, among the three types of particles, for each tur-
bidity level of water samples: turbidity level A to turbidity
level E.

For UV,s; measurement, particle contribution of each wa-
ter sample was distinguished according to their absorbance
values in Fig. 4b and SI Fig. 3. At the same turbidity level in
the water samples with W, water base, P; type particles had
the largest particle contribution to UV,s, measurements, while
P particle had the lowest particle contribution to the UV s
measurements. Interestingly, in the water samples prepared
with Wa water base, P, particles were found to demonstrate
a slightly higher particle contribution to the UV1s: measure-
ments than Py particles. The difference between P had the
lowest particle contribution to the UV ;54 measurements.
Thus, the influence of the particle contributions on the
UVas, measurements could be dependent on the water matrix.

Opverall, the particle contribution to the UV-Vis measure-
ments is dependent on the particle type and particle concen-
tration. As particle concentration increases, suspended parti-
cles in the water cause light scattering. Particle contributions
caused by the light scattering of the suspended particles are
common in natural waters. Light scattering could significant-
ly affect the UV-Vis measurements, which can be influenced
by the particle concentration, particle type and particle size
(Bohren and Huffman 2008; Mamane et al. 2006; Volk et al.
2005). For small particles, light scattering has a linear rela-
tionship with particle concentration. Thus, an increase in the
particle concentration leads to an increase of particle contri-
bution to the UV-Vis measurement. Particle type influences
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Table3  Water quality characteristics of six types of simulated water samples that were made up of three types of particles (P,, P, and P5) and two
base-waters (W and W3)
Water samples  Sample level  Particleconc.  Turbidity (NTU) Lab UV, (m'1)  True colourysg (m'1) DOC (mg/L) pH
mg/L Unfiltered Filtered Filtered Filtered Unfiltered
Mean SD Mean SD Mean SD Mean SD  Mean SD
W, - 0 <0.1 0 <0.1 0 <0.1 0 <0.1 0 70 0
PW, A 25 23 02 0.1 0 <1 0 0.1 0 5.6 0
B 25 21 0.1 0.1 0 <l 0 0.1 0 56 0.1
C 50 43 09 0.1 0 <1 0 0.1 0 55 0.1
D 100 85 0.6 0.1 0 <1 0 0.1 0 5.6 0.1
E 125 105 1.0 0.1 0 <l 0 0.1 0 56 0.1
PaW, A 25 23 0.1 0.1 0 <1 0 02 0 6.5 0.1
B 250 21 0.5 1.1 0 3 0.1 04 0 6.3 0.1
€ 500 44 04 22 0 4 0.1 0.7 0 6.2 0.1
D 1000 86 1.1 43 0 7 0.1 12 0 6.1 0.1
E 1300 107 1.0 53 0 11 02 1.5 0 6.0 0.1
P;W, A 5 24 0.1 0.0 0 <1 0 02 0 8.0 0
B 50 21 0.6 0.1 0 <l 0 03 0 82 0.1
C 100 43 0.7 03 0 2 0.1 0.5 0 83 0.1
D 200 85 1.1 0.8 0 3 0.1 0.7 0 82 0.1
E 250 106 1.0 1.0 0 5 02 0.8 0 83 02
W, - 0 02 0.0 10.7 0 6 0 5.1 0 7.1 0
PW, A 5 23 0.0 113 0 6 0 52 0 7.1 0
B 50 21 03 113 0 6 0 52 0 7.1 0.1
100 44 0.5 113 0 6 0 52 0 72 0.1
D 75 86 04 113 0 6 0 53 0 7.1 0.1
E 225 107 1.0 113 0 6 0 52 0 7.1 0
P,W, A 2 24 0.1 11.2 0 7 0.1 52 0 6.7 0.1
B 250 21 02 116 0 8 0 53 0 6.6 0.1
C 500 43 0.7 121 0 9 02 54 0 6.8 0.1
D 875 85 0.5 13.1 0 10 0.1 5.7 0 6.7 0.1
E 1125 106 0.8 13.6 0 11 0. 58 0 7.0 0.1
P;W, A 5 23 0.1 11.4 0 7 0.1 52 0 7.1 0.1
B 50 21 03 116 0 7 0.1 53 0 72 0.1
(& 100 0.7 118 0 8 0.1 55 0 73 0.1
D 175 86 09 123 0 8 0.1 58 0 73 0.1
E 225 107 0.8 12.5 0 9 02 59 0 72 0.1

Measurement error was shown as standard deviation (SD)

the light scattering which can, in turn, affect the particle
contribution. Particle size could largely affect the intensity
of the scattering light. Increase of the small particle size, the
intensity of the scattered light is likely to increase. P, particle
type was pure clay, P> particle type was silica-based, and P
particle type was clay-based. Both P, and P; particles were
collected from the natural surface source water. Clay particle
has 50% of light scatter away, and particles from natural
waters have 20-30% light scatter away (Volk et al. 2005).
The differences in particle sizes and particle types contribute

to the different light scattering effect, in tum, lead to the
difference in their particle contribution. These can be ex-
plained that P, and P had much higher particle contribution
to the UV-Vis measurements than P».

Understanding the particle contribution caused by the par-
ticle types and concentrations, which assist to discover the
built-in compensation behaviour of submersible UV-Vis spec-
trophotometers. The particle contribution to the measurements
of water samples could be determined by particle compensa-
tion, which can be conducted to remove the particle
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Fig. 3 a, b Correlations between
turbidity and lab UV, of
simulated natural water samples;
¢, d relationships between DOC
and lab UV,s, of simulated
natural water samples. P,W,,
Pl\Vg, P3W1 and PjWg were
simulated water samples that were
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interference on the measurements of water quality (Hu et al.
2016). The particle contributions can be varied with the water
sources type and concentration, thus leading to corresponding
changes of measurements of a submersible UV-Vis spectro-
photometer. Thus, a universal particle compensation is not
always effective.

Evaluation of the performance of a submersible UV-
Vis spectrophotometer

The performance of the built-in generic particle compensation
algorithms of the submersible instrument was evaluated in an
offline mode, by comparing it with the bench-top instrument.
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Fig. 4 a Particle contributions of P\W, water samples to spectra at five
different concentration levels: b Particle contribution of different types of
waters to UV,s4 measurements. Particle concentration levels were from
low to high (water sample A to water sample E)
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The UV»ss of water samples measured by the submersible
instrument were compensated for the particle effect using
the built-in generic calibration (compensated UVass). The
lab UV,5, of the same water samples measured by the
bench-top spectrophotometer was used as references.
Compensated UV, and lab UV, of all the water samples
were plotted as a bar chart and are shown in Fig. 5 and SI Fig.
4.UV,s4 was used as it is an essential absorbance-based water
quality parameter for the concentrations of organic matter and
disinfection byproduct precursors in the water.

According to SI Fig. 4, the compensated UV,s4 was much
lower than the lab UV,s4 for P;W, and P, W, water samples.
The compensated UV,s4 of P;W; and P;W, water samples
were highly overcompensated by the built-in generic compen-
sation algorithms, which was probably because the P,
contained purely inorganics. The built-in compensation algo-
rithms were based on hundreds of natural water samples,
which may not suitable for compensating water contains pure-
ly inorganics. For P,W; water samples, the compensated
UV, was slightly lower than the lab UV,5, as shown in
Fig. 5, which indicates the submersible instrument slightly
overcompensated the UV,s4 measurements. For P,W» water
samples, the compensated UV,s4 seemed close to the values
of lab UV,sy4. This finding was agreed with the conclusion that
the submersible instrument was effective in compensating the
particle effect on the measurements (Snazelle 2016). It was
found that the compensated UV,s4 had strong linear correla-
tions with lab UV, with a slope of 1.34 and 1.71 and R®of
0.99 for P,W,; and P,W> (SI Fig. 5). It is interesting to note
that the compensated UVa2sq was higher than lab UVass for
some types of water samples whereas was lower than lab
UVazss for other types of water samples. There are also linear
relationships between compensated UV,5, and lab UV,s, for
water samples with Ps. An increasing linear relationship was
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Fig. 5 Comparisons between UV,sy measurements of submersible and
bench-top UV-Vis instruments. Compensated UV,s, is obtained from the
outputs of a submersible UV-Vis spectrophotometer. Lab UV,s, is

found for P;W, water samples whereas a decreasing linear
relationship was found for P;W, water samples.

Overall, there were linear relationships between compen-
sated UV,s4 and lab UV,sy4 for all the simulated natural water
samples with P> or P; particles. The built-in compensation
algorithms of a submersible UV-Vis spectrophotometer could
not always generate comparable compensated UV-sg4 for nat-
ural water samples as the bench-top UV-Vis instrument. For
natural waters, the built-in generic particle compensation
methods may generate either under or overcompensated mea-
surements. A previous study also reported that the incompa-
rable measurements of UV measurements of the built-in ge-
neric algorithms for waters (Drolc and Vrtovsek 2010). This
work shows that particle compensation is source water specif-
ic and the site-specific particle compensation should be per-
formed when using the submersible instrument to measure
water quality. Some scientists also believed that particle com-
pensation based on the water matrix needs to be considered to
achieve comparable measurements using the submersible in-
strument (Avagyan et al. 2014; Hu and Wang 2017; Jeong
et al. 2012; Langergraber et al. 2003; Shi et al. 2020; Torres
and Bertrand-Krajewski 2008). Industrial applications of
using the submersible instrument to monitor water quality
had experienced that the generic compensation algorithms
were unable to generate accurate measurements for some wa-
ter sources (Byme et al. 2014; Chow et al. 2007; Chow et al.
2017; Hu and Wang 2017: Lepot et al. 2016; Waterra 2017).
Particle compensation is one of the barriers for online instru-
ment implement in industry application. It is essential to per-
form site-specific particle compensation and establish the fre-
quency of the compensation to achieve accurate measure-
ments (Chow et al. 2014; Langergraber et al. 2004; Liu et al.
2014; Mussared et al. 2014). Therefore, it is recommended
that the evaluation of the accurate measurements of the sub-
mersible instrument is conducted before using it to monitor
water quality.

Conclusion

Laboratory-scale investigations were conducted to understand
relationships between turbidity and UV,y;, DOC and UV,

measured using a bench-top UV-Vis spectrophotometer. PaW, and
P,W, were water samples made up of P, type particles and W, or W,
water bases

and particle compensation behaviour of a submersible UV-
Vis spectrophotometer. Six kinds of simulated waters, in the
combinations of artificial standard particles, natural water par-
ticles, ultrapure water and treated water from a drinking WTP.
Both turbidity and DOC were linearly correlated with UV;s4
measurements with R > 0.99. Different type of simulated
water samples had different UV absorbance response.
Particle contributions to the UV-Vis measurements not only
vary when particle types changes but also particle concentra-
tions change. The compensated UVass, measured by a sub-
mersible instrument with the build-in generic particle compen-
sation algorithms, were compared with the lab UV,s,, tested
by the bench-top instrument with the physical filtration meth-
od. The results showed that the built-in generic calibration
compensation algorithms of the submersible instrument tend
to generate undercompensated or overcompensated UV,s4 for
surface waters. These findings provide evidence that the par-
ticle influence on the measurements of the submersible instru-
ment is source water dependent. It helps users to understand
the behaviour of submersible UV-Vis spectrophotometers and
why the built-in generic calibration often does not generate
comparable results in many cases.
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ARTICLE INFO

ABSTRACT

Keywords:

Partide compensation

Online water quality monitoring
UVase UV-Vis spectrophotometer

Particles in the water can significantly affect UV-Vis absorption measurements. There is a need for the water
industry to develop a reliable technique to eliminate particle impact on on-line water quality monitoring using
UV-Vis spectroscopy. This study aims to develop and use digital techniques for particle compensation: single
wavelength ion, linear regression comp ion and multiplicative scatter correction method for on-
line UV-Vis spectrophotometers. Water quality data were collected from three selected water sources in water
treatment plants which represent different water qualities in terms of particles and organic matters. UVasy
measurements were determined with these three software i hniques in o with the
proprietary instrument built-in compensation algorithm using Bland-Altman analysis. Linear correction methods
were found to be able to adjust the three comp ion techni to achieve bl d UVas,y

results, particularly for raw waters. UV,s4 measurements using single ion, linear reg on
compensation and multiplicative scatter correction techniques with the assistant of linear correction methods
were confirmed to be comparable to the instrument built-in compensation method. Our results reveal that these
particle compensation techniques can make the UV2s4 technology reliable for online water quality monitoring in
water treatment network. This paper demonstrated the advantage of using software compensation method to
establish local compensation and calibration models instead of relying on the predetermined global calibrations
for online water quality monitoring.

h
gth comp

1. Introduction

Absorbance using UV-Vis spectroscopy at a wavelength of 254 nm

(UV2ss) is an important water quality p

years to manage water quality and assist water treatment process con-
trol [2].

Conv ory UVjsy lysis requires a filtration step
using membrane filters to remove particles in the sample and eliminate

ional lab

UVass v the

concentration of organic matter and disinfection by-product precursors,
which has been widely used by water treatment plant operators as a
quick water quality measurement to control water treatment processes.
Traditionally UV,5,; measurement relies on the laboratory analysis of
water samples collected from ecosystem sites. This laboratory process
frequently suffers from feedback delay and an inability to respond
rapidly to water events through the water sample collection, trans-
portation, storage and preparation [1]. Whereas, online water quality
monitoring can provide quick response to sudden water quality
changes, which has been employed by some water utilities in recent

the particle interference on the ultra-violet and visible (UV-Vis) mea-
surements. Mathematical algorithms are used to eliminate particle
interference for UVas4 measurements, adjusting the equivalent results to
conventional laboratory measurements using filtration. The use of
mathematical algorithms to eliminate the sample filtration step would be
particularly useful for online UV-Vis spectrophotometer. The mathe-
matical algorithms are even implemented into some commercial online
spectrophotometers and these online UV-Vis spectrometers can report
UVass as laboratory equivalent. However, the accuracy of particle
compensation is still a major concern in term of how the results could be
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comparable to analytical data using the conventional laboratory method
for the variable water samples under different conditions.

Particle compensation is called either solid compensation by some
instrument manufacturers or turbidity compensation, as turbidity mea-
sures light scattering which is the interaction of light and suspended
solids in the water. Suspended particles affect the light absorption and
consequently influence the whole UV-Vis spectrum that leads to atten-
uation of the transmitted light intensity . Studies show that there are two
types of particle compensation algorithms which can be used to remove
the particle effect on the UV-Vis: compensation/subtraction technique
and empirical modelling technique [3]. Compensation technique is
defined as direct subtraction of absorbance of the single wavelength
characterised by the particles in the water [4,5]. Tang et al. concluded
that individual single wavelengths including 275 nm, 350 nm, and 550
nm could be utilised to characterise the particles and successfully applied
the compensation technique to remove particle effect [6]. Compensation
technique by correcting the turbidity after correlating with the blue shift
was also reported as an option to eliminate the deviation and improve the
accuracy of UV-Vis measurement in wastewaters [3].

Empirical modelling approaches can also be used as an alternative to
the compensation technique to obtain the laboratory equivalent results
using the measured parameters and the corresponding spectra. Hu and
Wang developed surrogate parameters based on the integration of
spectra for different functional groups of compounds and then eliminated
the turbidity impact by deducting the turbidity component from surro-
gate parameters [7]. Dynamic partitioning algorithm was used based on
the fourth-order derivative spectrum to analyse and predict the groups of
contaminants. Hu et al. analysed the impact of chemical compositions in
wastewater samples and extracted the morphology features of their
absorptive spectra to elimi the derivation [8]. Partial
least square (PLS) calibration models have been computed with the
fourth derivative UV-Vis spectrum to remove the particle effect on the
detection of water quality multi-parameter in artificial seawater [9].
Torres and Bertrand-Krajewski employed the partial least square to
eliminate the particle effect on measuring chemical oxygen demand and
total particles in urban drainage systems using Matlab software [10].
They commented that further tests for the application of the PLS method
are needed to evaluate the robustness and variation of the regression.
Empirical modelling using a multiple linear regression from the ‘lars’
package in the R software was adapted to remove the particle effect on
the UV-Vis spectra of brackish water for rapid measurement of multiple
material concentrations [11]. This study indicated that site-specific
compensation should be developed individually for future applications.
Besides, instrument built-in compensation algorithm of some commercial
UV-Vis spectroscopy software is developed based on PLS to link the
spectra and laboratory data [4]). However, the details of the built-in al-
gorithm method and technique for these commercial online spectro-
photometers are not accessible to the users. Most of the reported
compensation methods are relatively complex and may need long pro-
cessing time to conduct the analysis, making these techniques unsuitable
for online water quality monitoring [7]. Due to the complexity and poor
adaptability of the aforementioned methods, asimple and easy technique
for particle compensation is needed for online water quality monitoring
using UV-Vis spectrometry.

In this study, software compensation techniques include single
wavelength (single point) and linear regression (multiple points) models
were developed to remove the particle effect on the UVass measure-
ments. In addition, a well-established software compensation technique
was also used to reduce the particle effect as comparison. Online UV-Vis
measurement systems were set up in two industrial water treatment
plants with three water sources. The accuracies of the three compensa-
tion techniques were assessed through comparison with the instrument
built-in compensation method. Bland-Altman analysis, a statistical
analysis technique, was used to determine the agreement limits of the
three compensation techniques as a comparison against the built-in
algorithms.
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2. Material and methods
2.1. Water sources

Water quality data were provided by two Water Treatment Plants
(WTPs), Anstey Hill WTP and Happy Valley WTP in South Australia for
this study. Both WTPs employ conventional water treatment practice
comprising coagulation, flocculation, sedimentation and filtration to
produce drinking water for South Australia. Anstey Hill WTP plant has
switchable water source system, taking water from Millbrook Reservoir
or River Murray water (via the M 1-Adelaide pipeline). Happy
Valley WTP has a single water source from the Happy Valley Reservoir
with water originating from both the River Murray and local catchment
areas. These two WTPs were selected because of the differences in the
water quality of the water sources. Three natural water matrices
including Anstey Hill raw water (RW1), Happy Valley raw water (RW2)
and Happy Valley treated water (TW), were selected as they represent
different water qualities in terms of particle concentrations as deter-
mined by turbidity (NTU) and dissolved organic content (DOC). RW1
contained high turbidity (10-93 NTU) and moderate DOC (3.8-8.4 mg/
L); RW2 had moderate turbidity (2-10 NTU) and high DOC (6.4-10.1
mg/L), and TW had low concentrations of both turbidity (0.1-0.8 NTU)
and DOC content (0.3-4.5 mg/L). Turbidity and DOC ranges represent
seasonal and water source variations between April and December
2013.

2.2. Instrument and monitoring locations

Three s:can spectro::lysers (s:can Messtechnik GmbH, Austria) were
installed at three locations in the two selected WTPs to monitor the real-
time water quality of RW1, RW2 and TW. The s:can spectro::lyser com-
prises a double beam photodiode array 256 pixel UV-Vis spectrometer
and uses a Xenon lamp as a light source. It measures a UV-Vis spectrum at
a wavelength range of 200-720 nm with a selectable optical path length
range between 5 and 100 mm for different applications based on the
required sensitivities. The installation locations were at the inlet of
Anstey Hill WTP and both inlet and outlet of Happy Valley WTP. Path
length of the spectro::lyser used was 5 mm, 5 mm and 100 mm for the
inlet of Anstey Hill WTP (RW1), the inlet of Happy Valley WTP (RW2)
and outlet of Happy Valley WTP (TW), respectively. The instruments
were first zero checked/baseline adjusted with ultrapure water to ensure
a zero baseline. The spectro:lysers were equipped with automatic
cleaning using compressed air before each measurement. Scheduled
mai e ( 1 cleaning) of the instr was conducted fort-
nightly to ensure the cleanliness of the lens to eliminate drifting caused
by fouling and that the sample lines were unobstructed. The three water
quality monitoring locations were also used as sampling points for
routine water quality monitoring (grab sampling), including inlet at
Anstey Hill WTP, inlet and outlet of Happy Valley WTP.

2.3. Water quality monitoring period

The three water sources were monitored between April and December
2013. Online spectro:lyser data and standard laboratory UV absorbance
at 254 nm (UVy5,) data were utilised in this work. The spectro:lyser was
set to monitor water quality at a 2-min interval. Grab samples of raw
water were collected for laboratory analyses on a weekly basis and
fortnightly for the treated water. Water quality parameters of grab
samples for routine monitoring including UVas4, colour at 456 nm,
turbidity, and DOC were utilised to characterise the water quality. Prior
to measuring UVass, colour and DOC, the water samples were filtered
using 0.45 pm PES membrane filters (ANPEL Laboratory Technologies,
China). UVas4 and colour were determined with a UV-Vis spectropho-
tometer (Evolution 60, Thermo Scientific, USA) using the method
described in published work [12]. Turbidity was measured using a
turbidity meter (2100AN, Hach, USA) and DOC using a total organic
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carbon analyser (900, Sievers Instruments Inc., USA) and determined
using the methods described in Standard Methods [12](].

2.4. Data acquisition and processing

The UV-Vis spectra were acquired by the s:can spectro:lyser, with the
full UV-Vis spectral data saved as fingerprint (FP) files stored in the in-
strument hard-drive. FP files contain time series data of spectral absor-
bance values which has a timestamp column (first column) to record the
time of each n for wavelengths ranged from 200 to 720 with
a 2.5 nm interval. FP files contain raw non-compensated data. Initial data
pre-treatment was guided by the instrument integrated data diagnostic
status (a column in the data stream to flag instrument issues). Those
UV-Vis spectral data caused by known instrument issues or failure were
manually eliminated. Further data pre-treatment was conducted by a
time resolution optimisation algorithm using R and R-Studio [14,15].
From the initial studies, the hourly average of the FP data did not reduce
the resolution. Thus, the hourly average was used in this work to reduce
the data volume for easier comparisons and without losing resolution. R
scripts (codes) were developed to handle the large volume of UV-Vis
spectral data generated by the spectro:lyser and perform the required
compensation calculations and statistical analysis.

2.5. Particle compensation techniques

Four particle compensation techniques were used to remove particle
effect on the UV, for online water quality monitoring of three water
sources: RW1, RW2 and TW.

1. Ana::pro is the acquisition software supplied for the s:can spec-
tro:lyser by the turer (s:can M hnik, Austria). The
compensation can be conducted by the instrument integrated ana::pro
software in real-time or offline standalone PC version. It contains
algorithms using PLS based on the results of hundreds of water
sources [16]. In this work, ana:pro was used in offline mode to
process the raw spectral data (FP files) according to the procedures
from the manual [17]. FP files of the three selected water sources
were imported separately into the ana::pro software (offline mode) to
generate compensated UVass as an output parameter.

2. The single wavelength compensation (SWC) is a direct subtraction
method. However, as s:can spectro:lyser has a 2.5 nm resolution and
absorbance of UV2s4 was not given in the raw FP, an interpolate al-
gorithm (R-script) was first applied to generate the spectral data in 1
nm resolution. Then the compensated UVass was determined by
subtracting the absorbance between 254 nm and 550 nm.
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3. The linear regression compensation (LC) technique is based on the
visible region of 380-750 nm which is the most impacted by particles
given responses occurs [9]. As explained previously, 1 nm resolution
spectra (FPs) were generated first then an R algorithm was used to
perform the calculations. For each spectrum, a linear regression
(linear fit) was performed using a wavelength range of 550-580 nm
as x-axis and their corresponding absorbance as y-axis. The obtained
linear equation was then used to determine the particle absorbance at
254 nm. Compensated UVas4 was a subtraction between UVass and
particle contribution of UVjs,.

. The multiplicative scatter correction (MSC) method is a normaliza-
tion technique to correct particle effect (light scattering) on spectra.
MSC method can correct the spectra by changing the scale and the
offset based on the reference spectrum which is the mean of the
spectra [18]. The hourly averaged UV-Vis spectra were processed for
MSC using the unscrambler X software (version 10.4, CAMO). Then
compensated UV,s, were extracted from the spectra for analysis

purposes.

FS

A brief illustration of removing particle effect on the UVas54 using
different compensation methods is shown in Fig. 1. Detailed explanations
of these compensation techniques are shown in the results and
discussion.

2.6. Local cdlibrations

The instrument built-in compensation algorithm (B) was developed
using PLS based on hundreds of water samples. This technique is also
considered as a generic method (average compensation) which may
require a local calibration using grab samples [19]. The compensated
UVzs4 of the built-in compensation method for the three water sources
were calibrated using a simulated local calibration method which con-
ducted the offline calibration using the laboratory grab sample mea-
surements based on the linear model. Similarly, the compensated UVas4
of three particle compensation techniques were also conducted local
calibrations based on the linear modes.

2.7. Statistical analysis

Data sets in this work were assumed to be generated from a large
number of water samples from which the water quality data tend to
follow normal distribution regardless of the shape of the data [20]. The
bland-Altman analysis was used to assess the comparability of single

length, linear regression comp ion techniques and multiplica-
tive scatter correction method against the instrument built-in algorithm
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Fig. 1. Hlustration of particle compensation of UV2s4 using a) laboratory method and b) p ion techniq i. single length p ion (SWC), ii.

instrument built-in compensation algorithm (B), iii. linear regression compensation (LC), and iv. multiplicative scatter correction (MSC) method. 1, 2, 3 and 4 in
Fig. 1b represents the compensated (Comp) UVas4 of SWC, B, LC and MSC, respectively.
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for UVass of RW1, RW2 and TW. Bland-Altman analysis studies the dif-
ference of the compensation techniques by constructing the limits of
agreement, which is determined by the bias (mean of the differences) of
UVass plus and minus 1.96 times its standard deviation of the differences
between the two compensation methods [21]. It defines that 95% of data
points lie within the limits of agreements. In this work, the differences
between the two techniques were plotted as percentages. Percentage
differences were calculated using the difference between the two
methods divided by the means of the two methods then multiplying by
100%. The Bland-Altman method only defines the intervals of agree-
ments and does not indicate whether the limits are acceptable or not.
Therefore, the acceptable limits need to be defined and compared with
the limits of agreement generated by the Bland-Altman analysis. The
limit of the acceptable percentage difference of UVas4 (compensated) was
defined as plus/minus 10% of the instrument built-in compensation
method. A flowchart of the data analysis procedure of particle compen-
sation techniques is shown in Fig. 2.

3. Results and discussion
3.1. Instrument built-in compensation and calibration

UV-Vis spectral data of RW1, RW2 and TW monitored from April to
Dec 2013, were processed using the ana::pro software. It should be noted
that the water source for Anstey Hill WTP was switched from Millbrook
Reservoir water to River Murray water in May and June 2013 as indi-
cated on Fig. 3. The three sets of data were compensated using the built-
in compensation algorithms in offline mode. The compensated UVas4 and
calibrated UV,54 (after calibrations using laboratory UV,5, measure-
ments) were plotted against time for the three water sources as shown in
Figs. 3and 1S in Supplementary Information (SI). The plots of the built-in
compensation for RW1 and RW2 water are shown in Fig. 3.

The water quality profiles as measured by UV3ss, turbidity and DOC
are shown in Fig. 4aindicates that the turbidity of RW1 was dramatically
increased when the source water was switched from Millbrook Reservoir

B SW(
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water to River Murray water. The built-in compensation method was
unable to g the comp d UVass when the
turbidity is higher than 60 NTU for Anstey Hill raw water, which may be
beyond the compensation limit. Therefore, this result indicates that it is
important and necessary to seek alternative particle compensation
methods for online water quality measurements using UV-Vis spectros-
copy, especially in highly variable water sources.

Large differences were observed between the compensated UVas4 and
the UVass of the grab samples for RW1 when the water source was
switched from Millbrook Reservoir water with turbidity level less than 40
NTU to River Murray water with turbidity level over 40 NTU. After the
local calibration was applied (in simulated mode), the calibrated and
laboratory analytical UVas4 data were well matched with each other. It
indicates the results of the built-in compensation method is not compa-
rable with laboratory filtration method for water such as RW1 with large
turbidity changes. However, with the adjustment of the local calibration,
the builtin compensation is comparable with laboratory filtration
method even when large turbidity changes occur. Similar observations
were obtained from the RW2 according to Fig. 3. There was a gradual
increase in turbidity of the RW2 from July to October 2013, during which
much larger deviations between the UVas4 of the built-in compensation
method and that of the laboratory method at medium turbidity level over
5 NTU could be observed. Yet, after having performed the calibration, a
good match between the calibrated and laboratory analytical UV 54 data
was found for RW2. A similar observation can also be seen for the TW
with low turbidity level and low DOC content (Fig. 18 in SI). The DOC
remained quite stable for all three water sources in which the turbidity
changed significantly for raw waters. Therefore, the built-in compensa-
tion method with local calibration is comparable with the laboratory
filtration method. Local calibrations have been conducted by other re-
searchers to improve the accuracy of the online measurements of UV-Vis
spectrometers [10][22,23]. Therefore, our results reveal that with proper
calibration, the built-in compensation method can perform the same
particle compensation as the laboratory filtration. Our results reveal that
the particle compensation techniques can assist the online UV

Fig. 2. Flow chart to show the comparison procedures of single wavelength compensation (SWC), linear regression compensation (LC) and multiplicative scatter

correction (MSC) techniques against the instrument algorithm (B) for UVass.
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Fig. 3. Comparisons between compensated UV5s4 and calibrated UV,s4 measurements against laboratory UVas, for a) Anstey Hill raw water (RW1) and b) Happy
Valley raw water (RW2). Note: no data was recorded after August 2013 (Fig. 3a), the instrument software could not perform the calculation for compensated UVasy

due to the high turbidity of the water.

measurements to provide acceptable water quality results for raw water
with high turbidity and medium DOC content, raw water with medium
turbidity and high DOC content and treated water with low turbidity and
low DOC content. The built-in compensation method was used as a
reference method to assess the two developed compensation methods
and a well ion techniquein this work.

tahlichod
1 comp

and correction methods

3.2. Soft pensati hnig

Nephelometric turbidity units (NTU) have been widely used as a
surrogate measure of suspended particles. Turbidity signal was deter-
mined by selecting the wavelength range from 380 to 750 nm to elimi-
nate the particle effects on the UV-Vis absorbance measurements of
water samples. Studies have shown that the wavelength at 550 nm is the
best for turbidity compensation in drinking water samples and has often
been used in conjunction with UV354 measurements [24]. Absorbance at
546 nm was reported to eliminate the particle effect on the DOC for river
water [25]. Mrkva used wavelength 545 nm in an automatic UV analyser
to deduct the absorbance of particles for surface and wastewaters [26].
Some commercial instruments including HACH UV probe [27] and
Burkert spectral absorption coefficient sensors compensate particle effect
using a reference measurement at 550 nm [28]. Shimadzu UV in-
struments include UV-probe Type LXG 139 and type LXG 144, which also
compensate particle effect through a reference measurement at 550 nm.
Thus, the single wavelength compensation (SWC) technique in this study

was developed by direct subtraction between the absorbance of wave-
length at 254 nm and 550 nm. The second compensation method
developed in this study was linear regression compensation (LC) tech-
nique. It is based on the characteristic of particles between 550 and 580
nm to remove the particle effect on the UV-Vis spectra. A wavelength
range of 550-580 nm was used in the LC technique as it represents the
visible region most impacted by particles given responses occurs within
the wavelength range of 380-750 nm [9]. The third particle compensa-
tion method, multiplicative scatter correction (MSC), is a
well-documented technique. The MSC is a transformation method to
compensate for the particle effect in spectral data. MSC method can be
used to reduce the particle effect by separating the chemical light ab-
sorption from the physical light scatter [29]. MSC technique is a
commonly used method for processing NIR spectral data, however, it has
not been widely used for processing UV-Vis spectra data. Studies have
shown the MSC method can reduce the particle effect on the spectra
[30-32].

SWC, LC, and MSC techniques were applied to determine UVas4 by
removing the particle effect for RW1, RW2 and TW. It was observed that
in a similar way as the built-in compensation behaviour, SWC, LC and
MSC have different compensated results for different waters (Table 2S in
SI) because of the different particle contents. Since the compensation is
water source dependent, local calibration to compensate the background
water matrix is required. Well-fitted linear relationships are found be-
tween the cc d UVass ob d from the compensation
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and laboratory UVass is 1.00 and y-intercept is 0.00 with R? of 0.93,
which means that SWC can g the same comp d UV2s4 as the
reference laboratory method. The linear regression line of the calibrated
UVas4 of LC and laboratory UVass has a slope of 1, intercept of close to
zero and R? of 0.96 for RW2. It indicates that SWC can also generate the
same compensated UVasg as the laboratory method. After adjustment, all
the compensation methods include SWC, LC and MSC are comparable to
the laboratory filtration method for RW2., Similar interpretations can also
be stated for RW1 and TW according to Fig. 2S in SL The results reveal
that linear regression models can be used to correct the compensation
methods. The stable level of DOC in each of the three water sources
which may contribute to the success of using linear calibration to adjust
the compensation techniques. Linear regression methods have been
employed by Torres and Bertrand-Krajewski to calibrate the particle
comp ion method of online UV-Vis spectrophotometer for different

Fig. 4. Laboratory results of water quality parameters of a) Anstey Hill raw
water (RW1) and b) Happy Valley raw water (RW2) and c) Happy Valley treated
water (TW) from April 2013 to December 2013,

techniques and laboratory UVjss measurements for all three water

sources using the three compensation techniques, except for TW using
3

water matrices [10]. Another study showed the linear curve fit was able
to optimise the performance of UV-Vis spectrophotometers [34]. Linear
regression is proven as a robust and sustainable adjustment method of
UV-Vis spectrophotometers to estimate concentrations of water quality

of particle comp i thod:

In this work, SWC, LC and MSC techniques were investigated in
comparison with the instrument built-in compensation method using the
Bland-Altman analysis, which was used to assess the accuracies of the
three techniques for raw (natural water quality) and treated waters
(drinking water quality).
of single length comp technique

The SWC technique was assessed for the performance of compen-
sating the particle effects on the UVass, for RW1, RW2 and TW, against
the instrument built-in algorithm using Bland-Altman analysis. After
adjustments of compensated UVas4 measurements (calibrated UVass)
from SWC technique and the built-in algorithm, the percentage differ-
ences between corrected UVass of these two methods were plotted
against the mean of the two methods, as Bland-Altman plots, for the three
waters, respectively. Bias (mean of percentage difference) is represented
by the space between the x-axis and the zero percentage differences in
the Bland-Altman plots. The analytical results of the Bland-Altman
analysis are shown in Table 1.

The bias between the corrected UVzs4 of SWC technique and built-in
compensation was determined as 1.71% for RW1. Agreement limits of
the corrected UVass between the two methods varied in a range of
—6.21% and 9.62%. Compared to the pre-defined acceptable agreement
limits of the interval from —10% to 10% of the differences, SWC tech-
nique is comparable to the built-in compensation algorithm for
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the MSC. There was no linear correlation between the comp 1
UVys54 and lab UVys, after conducting MSC could because of all the
compensated UVas4 were very close to each other for different data. MSC
may not be suitable for compensating UV spectral data of clean water
such as treated water. This is because that it was designed to remove
large particle effects on spectra. Linear regression has been commonly
used as a calibration method to improve the measurement accuracy for
analytical methods and has been used for spectroscopy [32]. The spec-
tro:lyser also uses a linear calibration mode. Thus, the compensated
UVas4 readings were corrected based on the linear relationships between
the compensated UVass of the developed techniques and laboratory
UVass. After adjustment, the corrected UVass were plotted with their
closest corresponding laboratory UVass measurements, the slopes, y-in-
tercepts and the coefficient of determination (R?) from the linear
regression line were determined for comparisons. A linear plot of the
corrected UVas54 of SWC compared to laboratory UVass for RW2 is shown
in Fig. 5. According to the trend, the slope between the corrected UVass

comp ing the particle effect on UVzs4 for RW1. For RW2 as shown in
Fig. 6, the bias between corrected UVass of SWC technique and that of
built-in compensation were —1.14%. Agreement limits between cor-
rected UVass of the two methods were found in the range of —7.32% and
5.04% for RW2. The percentage differences between corrected UVysy
using two methods varied from —7.32% to 5.04% when the average of
the corrected UVyss of these two methods increased. Compared to the
pre-defined acceptable agreement limits, the SWC technique can
generate good results as those using the built-in compensation algorithm
for RW2. Similarly, for TW the agreement limits between these two
methods were relatively small and varied within the range of the interval
of —10%-10% of the UV,s54 (Fig. 28 in SI). The SWC technique generated
similar comp d UVass compared to that of the built-
in compensation algorithm for RW2. Statistically, it can be 95% confident
that the SWC technique is comparable to the built-in compensation
method for removing the particle effect on the UVas4 of raw and treated
waters if the percentage differences between the two methods are
acceptable within the plus/minus 10% .
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Fig. 5. Comparison of calibrated UVas4 of a) single wavelength compensation (SWC) and b) linear regression compensation (LC) with laboratory UVas, for Happy

Valley raw water (RW2).

Table 1

Bland-Altman analysis of assessing single wavelength (SWC), linear regression compensation (LC) and multiplicative scatter correction (MSC) techniques against the
built-in algorithm (B) for Anstey Hill (RW1) and Happy Valley raw waters (RW2), and Happy Valley treated water (TW).

Water sources Methods Bland-Altman Analysis
after adjustment Mean of difference(%) Limit of %) A le limit of %) between two methods
RW1 SWCvs. B 171 [-6.21, 9.62] [-10, 10] Yes
LCvs. B 1.45 [-5.37, 8.28] [-10, 10) Yes
MSC vs. B -0.94 [-8.33, 6.45) [-10, 10] Yes
RW2 SWC vs. B -1.14 [7.32, 5.04) [-10, 10] Yes
LCvs. B —0.77 [-5.18, 3.65] [-10, 10] Yes
MSC vs. B -1.52 [19.81, 6.77] [-10, 10] Yes
™ SWCvs. B 0.25 [-6.10, 6.67] [-10, 10) Yes
LCvs. B 0.30 [-5.82, 6.68] [-10, 10] Yes
MSC vs. B - - - -
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Fig. 7. BlnndAltman plot of UV»ss after application of linear regression

Fig. 6. Bland-Altman plot of UVys4 after application of single
compensation technique (SWC) and the built-in algorithm (B) for Happy Valley
raw water (RW2). The solid line represents the mean of percentage differences
in UV3s4 of the two methods. Horizontal dotted lines indicate upper (+1.96SD)
and lower (—1.96SD) limits of agreement of the two methods.

3.3.2. of linear reg

After adjustments, the LC techmque was evalua!ed in comparison
with the built-in algorithm in terms of the performance of compensating
the particle effects on the UV,54, using Bland-Altman analysis for RW1,

comp hnique (LC) and the built-in algorithm (B) for Happy Valley
raw water (RW2). The solid line represents the mean of percentage differences
in UVys, of the two methods. Horizontal dotted lines indicate upper (+1.96SD)

and lower (~1.96SD) limits of agreement of the two methods.

RW2 and TW. The differences between corrected UV,54 measurements
using the LC technique and that of the built-in algorithm were plotted
against the mean of corrected UVas4 of the two methods, as Bland-Altman
plots, for three waters, respectively (Table 1).

Bias between the corrected UVass of LC technique and the built-in
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compensation was 1.45% for RW1. Agreement limits between the two
methods varied from —5.37% to 8.28%, which is within the acceptable
limit of intervals. Hence the LC technique is comparable to the built-in
compensation method for RW1. For both RW2 and TW, the bias be-
tween the corrected UVyss of LC technique and that of built-in
compensation was less than 1% in Figs. 7 and 4S5 (SI). Agreement
limits between corrected UVass of the two methods were within the
acceptable limit agreement. Therefore, the LC technique generated
similar compensated UVas4 compared to that of built-in compensation
algorithm for RW1, RW2 and TW. Statistically, there is 95% certainty
that the LC technique is comparable to the built-in compensation method
of raw and treated waters within a plus/minus 10% difference between
the two methods.

Along with adjustments, LC has similar particle compensation
behaviour as the built-in compensation method on the UVas4 for different
water sources. The LC technique considers particle contribution on the
UV,s54 within a wavelength range of 550-580 nm. Similar to the SWC
technique, the LC technique is also water source dependent and linear
adjustment methods can improve the accuracies of compensating the
particle effect on UVass of raw and treated waters.

3.3.3. Assessment of multiplicative scatter correction technique

After performed local calibration of multiplicative scatter correction
(MSC) method, the performance of the MSC method was evaluated by
comparing with the instrument built-in algorithm for RW1 and RW2,
using the Bland-Altman analysis. The percentage difference between the
calibrated UVas4 of MSC were plotted against the mean of the two
methods as shown in the Bland-Altman plots for RW1 and RW2 (Fig. 58
in SI). The mean difference between the calibrated UV,5; of MSC and the
built-in compensation methods was —0.94% and —1.52% for RW1 and
RW2, respectively. Limit of agreement between the two methods was
within the intervals of acceptance limit. Hence, the MSC technique is
comparable to the built-in compensation method for RW1 and RW2.
However, MSC is not comparable to the built-in compensation method
for TW. This could be because the nature of MSC is to correct light
scattering of the particle in the water. TW contained a very low particle
content. It should be pointed out that MSC is commonly used for turbid
solutions such as wine and solid materials such as meat [18,29].

In the case of comparison of SWC, LC and MSC with the built-in
compensation method, all three particle compensation methods had
the different particle compensation behaviour when compared to the
built-in compensation method on UVzs4 for different water types. SWC,
LC and MSC techniques need to be adjusted for individual waters to
remove the particle effect. It shows that particle compensation is water
source dependent. This finding is in agreement with the previous studies
[35]). This is probably because compensation techniques often cannot
directly handle the large change of water quality, particularly turbidity
character changes [5,7]. Water quality characteristics are different for
individual water sources. Variation of the water quality, particularly
turbidity can affect the compensation ability of the compensation method
on the UVas4. Reported studies showed that it is difficult to compensate
for the particle effect when there is a large variation of turbidity [5,7].
Industrial experience of monitoring water quality also shows that
compensating particle effect on the UV-Vis absorbance measurement is
difficult when water turbidity is fluctuating or the water source changes
[36].

Provided linear correction (local calibration) method with acceptable
error, the developed single wa and linear
regression compensation techniques could be used as alternative
methods to eliminate the particle effect on the UV,54 measurements for
raw and treated waters. Also, multiplicative scatter correction technique
could be used as alternative particle compensation method to remove the
particle effect for raw waters.

Overall, our results reveal that SWC, LC and MSC techniques with the
linear adjustment can be applied in practice for online water quality
monitoring. SWC is a relatively simple method to remove particle effect
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on the UVass in the water. Simple UV-Vis instruments with a single
wavelength in the visible region (550 nm) could be employed in the field
to monitor water quality instead of using sophisticated full-spectrum
UV-Vis instruments. These findings can assist water treatment plant
operators to monitor water quality more effectively because the utiliza-
tion of software compensation methods and local calibrations allow more
accurate and reliable UV-Vis readings. Further research is necessary to
investigate how these compensation methods can be applied to the sit-
uation of real-time water quality monitoring.

4. Conclusion

Our results reveal that after applying local calibration methods, in-
strument built-in compensation methods can be comparable to the
reference laboratory methods for the UV,5, measurements of raw and
treated waters from two drinking water WTPs. In the same way as the
built-in compensation method, the developed SWC and LC techniques as
well as multiplicative scatter correction method are also water source
dependent. Linear correction methods as local calibrations are based on
the linear relationships of compensated UV,54 of the three techniques
and the laboratory UV254 measurements of the grab samples. It could be
applied for the development of techniques to improve the accuracies of
online measurements of water quality monitoring. The bland-Altman
analysis was employed to assess the calibrated UVas4 using developed
SWC and LC as well as MSC techniques. The compensated UV,54 gener-
ated from these three methods were found to be comparable with that of
the built-in compensation method using online UV-Vis spectral data from
drinking water treatment plants. According to the Bland-Altman analysis,
with the assistant of the linear correction (local calibration) method, both
SWC and LC had very similar compensation behaviours on the UVzs4 as
the built-in compensation algorithm for varied raw and treated waters.
MSC was comparable to the built-in compensation method for raw wa-
ters. Potentially, along with the linear correction method, both the single
wavelength and the linear regression compensation, as well as the mul-
tiplicative scatter correction methods could be used as alternatives to
remove the particle effect on the UV2s4 for online water quality moni-
toring. The use of the alternative compensation techniques may allow
less maintenance of the instrument and possibly improve the reliability
and usability in online mode by WTP operators. Moreover, simple
UV-Vis instruments with a single wavelength in the visible region (550
nm) could be employed in the field to monitor water quality instead of
using sophisticated full-spectrum UV-Vis instruments.
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Traditionally, coagulant doses are determined by the operators for the ccagulation process at water treatment
plants which is a muti-factor approach based on raw and treated water quality and in some situations relies
heavily on their decisions. It can be challenging to determine appropriate coagulant doses proactively for tight
coagulation control with the traditional method. Therefore, this study looked for alternative approaches for
coagulation control and maybe the first to build ccagulant dose determination model s using only online raw
water quality data (UV-Vis spectra) combined with chemometrics to determine coagulant doses for a drinking
water treatment plant (WTP). Online UV-Vis spectral data at the raw water intake and alum dose data from a
drinking WTP were used for building coaguant dose determination models. Three modelling techniques,
including multiple linear regression (MLR), partial least squares (PLS) and artificial neural networks (ANNs),
were applied in this work. The results show that MLR and PLS models had al most identical performances with
small toot mean square errors (RMSE) and high correlation ceefficients (R?). Both MLR and PLS had slighdy
better performance than the ANNs for alum dose predictions. This study shows that the combination of online
UV-Vis spectra and a chemometric method (MLR or PLS) was able to mimic operators’ decisions in the deter-
mination of coagulant doses with a pH target of 6 to achieve a target DOC level of less than 5 mg/L for treated
water quality.

1. Introduction production while underdosing may fail to meet the water quality targets

[4,5]. Determination of coagulant doses using modelling approaches can

Coagulation is an essential chemical process of the conventional
water treatment operation for water clarification and is particularly
effective for removing natural organic matter (NOM). NOM is a pre-
cursor for the formation of disinfection by-products, which can have
significant environmental and health risks in the water distribution
system. The traditional method for controlling the coagulation system in
water treatment plants (WTPs) relies on jar tests which require over six
hours to carry out depending on sample collection and analysis
arrangement [1-5], It may lead to under- or over- dosing, particularly
when a wide fluctuation of water quality occurs as jar tests may not offer
quick turnover time. Overdosing of coagulants for the coagulation pro-
cess may lead to higher operational costs and excessive sludge
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demonstrate fast responses to the changes of raw water quality and
allow more precise dosing control to achieve stable treated water
quality. Coagulant dosing predictions based on mathematic modelling
have been developed inrecent years. A few models were evenemployed
to predict the coagulant doses and assist the water treatment processes
[1,6].

A variety of techniques have been used to develop the coagulation
model and predict coagulant doses for drinking water treatment based
on raw water quality parameters, including multiple linear regression
(MLR), adaptive neuro-fuzzy inference system (ANFIS), fuzzy wei ghting,
partial least squares regression (PLS), and artificial neural networks
(ANNs) [7-12]. Coagulant dose determination models were built using
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ANN s and regression equations for surface water treatment with raw
water quality parameters, including dissolved organic carbon (DOC), UV
absorbance at 254 nm (UVygy), turbidity, alkalinity, dissolved oxygen
and pH [2,10,15,14].

Some studies have utilised PLS combined with UV-Vis spectral data
to predict water quality parameters in water [15,16] and wastewater
[17,15]. Most of the reported prediction models for coagulant doses are
operated based on the water quality results provided from laboratory
analysis. There were very few reported studies using PLS to predict
coagulant doses. PLS can extract information from a large volume of
data matrix which is suitable to apply when the matrix has more inde-
pendent variables than dependent variables and there is multi-
collinearity among the independent variables. In comparison with PLS,
ANN s is a popular prediction model for coagulant dose prediction. ANNs
can also handle large datasets, detect complex relationships, learn pat-
terns and make decisions based on similar situations. Most of the pre-
diction models rely on the raw water quality data of grab samples as
inputs to predict the coagulant doses. It is unlikely to capture the rapid
variations of the water quality to get correct predictions based on the
data of grab samples when water quality changes as there are significant
delays in obtaining the laboratory data. However, predictions based on
the online UV-Vis spectral data could be a promising approach, which
can use continuous water quality data to predict doses, with the ability
to capture the rapid variations of water quality to get the correct pre-
dictions. Colton [19] reported a unique method using the online UV-Vis
spectra to predict coagulant doses for WTPs. However, this was an in-
direct method that first needs to quantify the water quality (turbidity,
UVas4 and DOC) of the raw water using the spectra and then utilised the
quantified water quality data as inputs for an exponential model to
determine the coagulant doses. Zhou and Meng [20] conducted a lab-
based study to use spectral data from a bench-top UV-Vis instrument
to determine optimal coagulant doses for the removal of dissolved
organic matter from a combined coagulation and ultrafiltration system.
The optimal doses were determined in their study based on the corre-
lations between spectral data and fouling behaviour.

This study was to establish an in-situ coagulation dosing prediction
and control method integrated with the online UV-Vis spectra moni-
toring technique. We employed online UV-Vis spectral data of raw water
from a municipal drinking WTP to build coagulant dose determination
models and to determine coagulant doses for coagulation process con-
trol. This study also aimed atdirectly using raw water UV-Vis spectra to
mimic operators' decisions in the determination of coagulant dose for
process control, Three different models with different levels of
complexity were evaluated, including multiple linear re gression (MLR),
partial least squares (PLS) and artificial neural networks (ANNs).

2. Methods and materials
2.1. Water treatment plant

Happy Valley (HV) WTP in South Australia was selected for this
study. The HV WTP employs conventional water treatment practices
comprising coagulation, flocculation, sedimentation, and filtration
units. This WTP provides drinking water across the metropolitan area in
the capital city of South Australia (SA). The raw water for the WTP is
provided by the Happy Valley Reservoir with water originating from
both the River Murray and local catchment areas. The raw water is
characterised by moderate turbidity (0.1 to 10 NTU) and high DOC
ranging from 6 to 10 mg/L. Turbidity and DOC ranges represented
seasonal variations between April and December 2013. The HV WTP
was selected as the source water is the representation of enclosed surface
water catchment of a reservoir in SA.

2.2. Monitoring location and instrument

The inlet of HV WTP was the sample point for real-time water quality
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monitoring with a submersible UV-Vis spectrophotometer. The instru-
ment, s:can spectro::lyser (s:ican Messtechnik GmbH, Austria), is a
double beam photodiode array 256 pixel UV-vis spectrometer with an
optical path of 5 mm and spectral resolution of 2.5 nm. The online in-
strument measures the absorbance of wavelengths within 220-720 nm.
The details of the instrument and the maintenance can be found in the
previous study [21].

2.3. Data source

The water source was monitored between April and December 2013,
Raw UV-Vis spectra in the range of 220-720 nm were acquired from the
submersible instrument at two-minute intervals. The plant alum dose
record in the same period was also obtained for this study. Alum,
aluminium sulphate [Al;(S04)5.18H,0)], was used as the primary
coagulant. WTP alum doses were determined by the operators, to ach-
ieve treated water with DOC less than 5 mg/L, under pH conditions of 6
(plant record). The WTP alum doses were determined by WTP operators
mainly based on jar tests of raw water and operators' experience, in some
water quality event situations such as heavy rainfalls, the operators may
refer to the WTC-Coag software and the treated water quality [
tests of raw water were conducted once every two months or when there
were sudden changes in the water quality. WTC-Coagis a mathematical
model for real-time prediction of optimal alum dose, which has been
used in metropolitan WTPs in SA for over 10 years including the HV
WTP [6]. This software requires UVag4, colour, and turbidity of raw
water as inputs to generate predicted alum doses. The operators can
select certain % removal of the total coagulable DOC and choose to refer
to the coagulant doses determined based on the 80-90% DOC removal
using the WTC-Coag software when they were deciding the dose levels,

Overall, UV-Vis spectral data of raw water quality and plant dose
data of the HV WTP were utilised in this study. The UV-Vis spectraldata
were collected from the online instrument. The data of plant doses were
extracted from an internal operational database of SA Water Corpora-
tion (SA Water) with hourly extrapolation.

24, Data pre-treatment

Initial data pre-treatment was based on the instrument operation
status. The online UV-Vis spectra related to the instrument issues and
non-operational period of WTP were excluded. Further data pre-
treatment was conducted using a time resolution optimisation algo-
rithm and hourly average [21]. Particles in the water can affect the
online UV-Vis measurements [25]. Thus, the averaged UV-Vis spectra
were processed using a particle compensation method to remove parti-
cles. The baseline correction method was based on the absorbance of
particles is at a wavelength of 550 nm. Particle compensation of source
water using UVggp has been proved to be an effective method to remove
the particle effect on the online UV-Vis measurements [21].

2.5, Data processing

The data pre-treatment and processing were conducted in the
workspace of R and R-Studio [24]. Fig. | shows aflow chart of modelling
development and validation of coagulant dose determinations. The on-
line UV-Vis spectra of raw water quality data of the HV WTP were
utilised to determine the coagulant dose. Important wavelengths of the
online UV-Vis spectra were selected using variable selection methods.
The absorbances of the selected wavelengths were used as model inputs
to predict plant alum doses. The plant doses determined by operators
were utilised as the model output. The DOC level of treated water during
the same period was under 5 mg/L (Fig. S1 in SI) which met the drinking
water quality target. It indicates that the plant doses were accurate for
the coagulation control.
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Fig. 1. Flow chart of modelling development and validation of coagulant dose determinations.

2.5.1. Input variable optimisation methods

Three variable optimisation methods: Variable Importance in Pro-
jections (VIP), Selectivity Ratio (SR) and correlation coefficient (R) were
used to select the most important wavelengths that influence the coag-
ulant dose prediction models. These methods are frequently used for
variable selections in chemometrics [25]. These methods for X variable
(input) importance related to the explanation of Y variance (output) are
useful for prediction. The optimisation of spectral wavelengths (vari-
ables) can enhance the predictive ability of the full spectrum [26-25].
First, the full spectra of 220-720 nm were screened down to 250-600
nm as the absorbance at these wavelengths show characteristics that
indicate the matrix of water quality [29]. Organic and turbidity in the
water are represented by the wavelengths between 250 and 370 nm and
370-600 nm.

VIP scores were obtained from the construction of the initial PLS
model. A higher VIP score indicates that the wavelength is more
important to predict the alum doses, while the wavelength having a
lower VIP score has lessimpact on the prediction [25]. VIP scores select
the variables that contribute the most to the Y variance explanation.
Generally, the threshold score of a VIP is defined as 1.0. The threshold
score can be higher if the number of variables islarge [25]. SR associates
the statistical significance based on target projections for variable se-
lection. SRs are based on the calculations of the ratio of explained to the
residual variance of X obtained variance. An F-test (95%) has been
chosen to define the threshold value of SR with a F-value to determine
the significance. The pair-wise correlation coefficients (R) were the
correlation between absorbances of wavelengths for the raw water and
alum doses of HV WTP.

2.5.2. Development methods of coagulant dose prediction

Three model development methods: multiple linear regression
(MLR), partial least squares (PLS) and artificial neural networks (ANNs)
were used to determine alum doses. MLR is used to model the linear
relationship between a dependent variable and independent variables
which can directly define the coefficient of each parameter, while PLS

can indirectly reveal the functional relationships and define the coeffi-
cient of each parameter. ANNs learns to recognise patterns in data be-
tween inputs and outputs. These modelling methods were applied to
capture and incorporate the operators' decisions in selecting the alum
doses using the spectral data of the raw water quality.

PLS constructs components (latent variables) by projecting the pre-
dictor variables to a new space. The observation variables are also
projected. Then the linear regression models were built between new
predictors and responses. PLS regression is particularly suitable to use
when the matrix of predictors has more variables than observed vari-
ables and there is multicolline arity among the predictors. PLS caneasily
extract relevant information from a large data matrix and generate
reliable models. Therefore, PLS was used to develop the coagulant
prediction model in this study. Package ‘pls’ was used in the R and R-
Studio for the calculations of PLS models [30]. PLS was analysed with
leave-one-out cross-validation to avoid under- or over- fitting of the
model. The optimal number of components (minimum number of latent
variables) is 6 for PLS.

ANNs are computational techniques based on biological neurons
which canlearn complex patterns among the variables through training.
ANNs employ a learning process that is similar to the human brain
process to solve problems [31]. One of the commonly used ANNs is
Multi-Layer Perceptron (MLP). MLP consists of three layers: the input
layer, hidden layer and output layer. The input layer contains the input
parameters. The hidden layer processes the data. And the output layer
extracts the results. Package ‘neuralnet’ is used for modelling alum dose
predictions with MLP ANNs [52]. The best ANNs architecture for this
study is with one input layer, one hidden layer and 3 nodes, and one
outputlayer. The number of hidden layers and the nodes are determined
by the trial-and-error method.

The whole set of data, containing online UV-Vis spectral data of the
raw water and their corresponding plant alum dose data, was divided
into train and test datasets using a randomization method with a ratio of
80:20 to develop and validate the developed models for coagulant dose
determination. The datasets were scaled to ' 0 to 1" using the formula: x; -
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minimum/ (maximum - minimum ) before they were used to develop PLS
and ANNs models.

26. Evaluation of coagulation determination model performance

Coe fficient of determination (R*) and root mean square error (RMSE)
are commonly used to evaluate the performance of models. R* is
commonly used to assess the ‘goodness of fit’ for re gression models. R?
close or equal to 1 is an indicator of a good model. RMSE is commonly
used to measure the differences between the predicted values and the
actual values. RMSE value is considered the mostimportant criterion for
prediction model fit. The smaller the RMSE, the better the model.
Another common way of using RMSE to assess the developed model isto
compare the RMSE values of models for both train and test data; the
model is good if the values are similar, RMSE and R* were used to
evaluate the performance of the models.

3. Results and discussion
3.1. Optimisation of input variables

The best representative wavelengths of the pre-processed UV-Vis
spectral data of HV raw water that impact on the alum determination
models were evaluated by three variable optimisation methods, VIP, SR
and R. The high-dimensional data of original spectra contain a propor-
tion of redundant and irrelevant information for building coagulant
models. This is because parts of the spectra collect unnecessary water
quality information and the absorbance measured at some wavelengths
may represent noise rather than the real water quality. Optimisation of
input variables reduces the complexity and calculation time for model-
ling while enhancing the extraction of essential information [33].
Wavelength optimisation methods have been used by other researchers
to determine the water quality parameters using UV-Vis spectra
[16 1. Application of these variable selection methods before
modelling could lead to better and less complex prediction models [29].

VIP and SR were performed with partial least squares re gressions.
Online UV-Vis spectral data of wavelength range from 250 to 600 nm
were X variables (model input) and the corresponding alum doses were
Y variables (model output). Both variables were normalised from 0 to 1
to make sure they had an equal influence on the model. An initial PLS
regression model was built with leave-one-out cross-validation. VIP
scores and SR values were obtained from the results of the PLS regres-
sion model. Pair-wise correlation coefficients (R) between the absor-
bances of the UV-Vis spectra for the raw water quality and alum doses
for the WTP with their level of significance (p-value) were calculated.
The results of wavelength optimisation from the online UV-Vis spectra
using VIP, SR and R approaches are presented in Table 1.

Journal of Water Process Engincaring 45 (2022) 102526

First, important wavelengths were selected based on VIP and SR, and
R for modelling alum dose determination associated with the spectral
data as X variables (inputs) and plant alum doses as Y variables (out-
puts). Due to a large number of filtered variables and the strength of
influence of the variables, a trial-and-error method was also applied. The
most important wavelengths were determined based on the overlapping
variables of the three selection methods and the trial-and-error method.
The trial-and-error results showed that wavelengths within 250-270 nm
are the most important variables that influence the modelling of the
plant coagulant dose determination and lead to the improved prediction
performance of the models. More detailed results are given in Table S1
in Supplementary Information (SI). The selected wavelengths are
determined in a range of 250-270 nm with a 2.5 nm interval, including
nine wavelengths: 250, 252.5, 255, 257.5, 260, 262.5, 265, 267.5 and
270 nm. The corresponding thresholds of the selected wavelengths were
1.82 and 1.48 for VIP scores and SR (F-test, 95%). When the correlation
coefficient of X variables and Y variables were considered, variables
with R of 0.76-0.77 were the same as the variable selected by the VIP
and SR methods.

The nine selected wavelengths were considered to have significant
contributions to the model development for alum dose determinations
for the HV WTP. All the important wavelengths are in the UV spectral
region. It is shown that the determination of coagulant doses of HV WTP
is mainly characterised in the UV re gion. A major purpose of coagulation
is to remove the natural organic matter from the raw water. The natural
organic matter of the raw water is characterised within a wavelength
range of 250-300 nm [27,35], In addition, UVas4 is a preferred indicator
for selecting alum dosing for WTPs [6,56]. The selected wavelengths in
this study also contained UV,gy for modelling coagulant dose determi-
nation. These studies supported that the selected wavelengths are the
important variables that influence the modelling of the alum dose de-
terminations and results in improved model interpretation and perfor-
mance [25,25,57]. Literature has shown that the variable selections can
extract the most important variables and led to enhanced performance
of models [16,29,35].

3.2. Coagulant determination using UV-Vis spectra with MLR

The absorbances of selected nine wavelengths were also used as in-
puts to build MLR determination models of plant doses for the HV WTP.
MILR has been used to predict water quality [55,59] and coagulant dose
using water quality parameters [, 10]. A train dataset was used to build
the calibration MLR. Then a test dataset was used to validate the
developed model.

The results of MLR were shown in Fig. 2. The coefficients of the MLR
model were obtained and the MLR model can expressed as below:

Table 1
Selection of important variables for model s using three methods, including VIP, SRand R.
Model input Model output Variables VIP scores SR Correlation coefficient
scores F-value Significant R p-value
Oaline UV-Vis Spectra Plaat dose 250 2.4 151 077
2525 234 1.50 077
255 213 151 077
257.5 205 152 077
260 201 151 077
2625 193 1.50 077
265 186 1.49 106 Yes 0.76 <0.001
2675 154 1.49 0.76
270 182 1.4 0.76
2725 177 1.47 0.76
275 171 1.46 0.76
2775 167 1.45 0.76
20 165 144 0.76
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Fig. 2. Summary of the best models developed for alum dose determination using UV-Vis spectra of raw water.

Y (alum dose) = 200,69 *X250-335.33*X252.5-58 9 1 *X255
+185.27*X257.5+ 12.68*X260+14026%X262.5-154.85* X265
+312.20%X267.5-305.24*X270-34.41

In the MLR model equation, X refers to the absorbance at a certain
wavelength. For instance, X250 indicates the absorbance at wavelength
250 nm. According to R? and RMSE of MIR presented in Fig. 2, the
predicted alum doses of MLR and actual plant doses were strongly
correlated. For the calibration model, RMSE and R? for plant alumdoses
were 4.19 mg/L and 0.90, respectively. For the validation model, RMSE
and R? for plant alum doses were 4.31 mg/L and 0.90, respectively.
RMSE values of the MLR were small compared to that the plant alum
doses were between 40 and 90 mg/L. Itis confirmed that the MLR model
with online UV-Vis spectral data asinputscan be used to determine the
alum doses for WTPs,

Modelling results shown in Fig. 2 reveal a minor difference between
the predicted alum dose s using the MLR method and their corresponding
observed (plant) alum doses. MLR can be used to model the alum dose
determination using online UV-Vis spectral data because the correla-
tions are high between the variables and the alum doses. This indicates
that the determination of alum dose s using online UV-Vis spectral data
combined with MLR is comparable to the plant dose determination
method (jar tests and operator experience ). MLR results could mimic the
operator decisions in selecting the appropriate alum doses. This seems
contradictory to an argument that MLR is unable to provide a high-level
relation between water quality variables and coagulant doses because of
the high nonlinearity and the multiple factors affecting the coagulation
process [40]. However, MLR has been used to predict coagulant doses
with physico-chemical water quality parameters and was recognised as
an appropriate approach to predict coagulant doses to assist water
[9,10,41] and wastewater treatment operations [42]. In this work, the
online UV-Vis spectra instead of water quality parameters of raw water
were used to build a coagulant dose prediction model with MLR under
the optimal coagulation pHof 6 to achieve a target DOC level of less than
5 mg/L for treated water quality.

3.3. Coagulant determination using UV-Vis spectra with PLS

PLS was also used to build the coagulant determination models for
the HV WTP using the selected wavelengthsin the UV range 0of 250-270
nmofraw water. PLSis a popular modelling method for spectral analysis
which also has been used to generate water quality parameters

[16,17.45] and coagulant dose prediction [44]. The absorbancesof the 9
wavelengths were used as model inputs and plant alum dose s of HV WTP
were used as model outputs. The optimal number of components
(minimum number of latent variables) of the PLS model wasestablished
by the cross-validation, leaving one sample at a time, to avoid under- or
over- fitting of the model.

The RMSE of the PLS model was plotted against the rank of the
number of the components, as shown in Fig 5. The optimal number of
components for the model is that the lowest number of components
gives the lowest RMSE. The results indicate that 6 was the optimal
number component for the PLS calibration model. The established PLS
model was assessed with the test dataset. The PLS results for plant alum
determination using train and test datasets are shownin Fig. 2. RMSE of
the PLS based on the train dataset was 4.19 mg/L and the corresponding
R? was 0.90. The RMSE of the validation was 4.30 mg/L and the cor-
responding R? was 0.90. Both RMSE values of the PLS models are small
compared to the alum doses which ranged from 40 to 90 mg/L. There-
fore, a good PLS model of determination of plant alum doses was ob-
tained based on the online spectral data of a submersible UV-Vis
instrument. Our results reveal that UV-Vis spectral data can be used to
determine the alum doses and model the operators' decisions in the se-
lection of the suitable doses using PLS.

RMSEP
=

2

3 ® e o 4 o o

4
Number of components

Fig. 3. Optimal number of components for PLS mode with UV-Vis spectra to
predict alum doses.
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Our results reveal that PLS iseffective in modelling alum doses using
the UV-Vis spectra and is capable of capturing the operator experience
in the determination of alum dose. This statement is supported by the
following two reasons. Firstly, PLS was used to develop coagulant
dosage predictions with water quality parameters as inputs. PLS
regression analysis was used for the development of coagulant dosage
prediction models using water quality parameters to remove phosphate
from wastewater, PLS was proven to be an efficient tool for coagulant
dose prediction [15]. PLS was also used to develop a decision support
system for control of the coagulant dosage at a drinking WTP, using
water quality parameters including UV, colour, chemical oxygen de-
mand, TOC and conductivity. Thus, PLS could be recognised as a
promising and useful estimation tool for coagulant dosing prediction
[44]. Furthermore, PLS combined with UV-Vis spectra has also been
employed to determine water quality parameters such as TOC in Karst
water [15], TOC in wastewater [17] and COD in water [16]. Therefore,
UV-Vis spectra of the raw water combined with PLS is able to determine
the coagulant dose in the WTPs under the optimal pH of 6 to achieve a
target DOC level of less than 5 mg/L for the treated water quality.

3.4. Coagulant determination using UV-Vis spectra with ANNs

ANNS's were used to build the coagulant determination models for the
plant doses. The absorbances of the selected nine wavelengths (250-270
nm) were also used as the model inputs and the plant alum doses were
used as the model outputs. ANNs have been applied successfully for
coagulant dose prediction based on water quality parameters
[1,2,531,52]. A Multi-Layer Perceptron (MLP) ANNs, equipped with the
feed-forward back-propagation algorithm was used for building ANN
models. Back-propagation is a widely used algorithm for training feed-
forward neural networks to speed up the convergence rate and its
robustness [45]. Feedforward ANN provides a flexible way for gener-
alizing linear regression and non-linear functions. Dataset of the selected
variables and their corresponding plant alum doses was randomly
shuffled before ANNs training to avoid the seasonality effect. There isno
precise approach to obtain the optimal number of hidden layers of MLP.
A few hidden layers of ANNs have been proven to be sufficient for
modelling coagulant dosage based on the reported studies [15,46,47].
The optimal number of hidden layers was determined by the trial-and-
error method [45]. The best ANNs model is selected for its lowest
RMSE with one hidden layer and 3 nodes, as shown in Fig. 4. Thus, the
best ANN architecture for plant dose determination was obtained with
one input layer with 9 neurons (nodes), one hidden layer with 3 nodes,
and one output layer with a single node.

ANNG s of the coagulant model had RMSE of 5.25 mg/L and 5.26 mg/L
for train and test datasets. The best ANN showed satisfactory R® of 0.75
for both train and test datasets, The RMSE of optimal ANN performance
indicates the small discrepancies between the predicted and actual alum
doses as the actual alum dose s were between 40 and 90 mg/L. B1 and B2
in Fig 5 are two stages of biases. The biasof B2 to 01, Bl to Hl, Bl to
H2, Bl to H3 is —2.32, 4.58, 3.45, 2.17, respectively, which are small

9

RMSE

Hidden layer and nodes

Fig. 4. Optimal number of hidden layer and nodes.
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errors. These indicate the viability of using ANNs to predict alum doses
for WTPs using UV-Vis spectral data.

ANNs have been applied to predict coagulant doses for WTPs by
other researchers based on raw water quality parameters [1,45-47 497,
It is a well-known pattern recognition technique for solving complex
problems. ANNs was used to determine alum doses for surface water
treatment based on physio-chemical parameters of the raw water
[10,14], There are also software sensors using ANNs for online predic-
tion of coagulant doses with the raw water quality parameters [1,6]. A
study incorporated the operators' experience in coagulant dose deter-
mination using a time consistent mode [2]. All the above support that
UV-Vis combined with ANNs could mimic the operators' experience in
the determination of coagulant dose for WTPs under the optimal pH
condition to achieve target DOC level of less than 5 mg/L for the treated
water quality.

3.5. Assess coagulant determination model performance

Three modelling techniques, MLR, PLS and ANNs were applied to
determine the alum dose using the selected UV spectra (250-270 nm) of
raw water at HV WTP. According to the modelling performance in-
dicators (RMSE and R?) as shown in Fi 7 2, all three methodscanbe used
to predict plant alum doses with the UV-Vis spectra. The use of UV-Vis
spectra combined with PLS or ANNs has been studied for the determi-
nation of TOC, DOC and water quality index [15,16,50]. ANNs are the
most commonly used technique to predict coagulant dose with the
employment of the water quality parameters [1,2,10,15] as inputs. Our
results revealed that ANNs may not be the best modelling tool for alum
dose predictions with the UV-Vis spectral data. MLR and PLS methods
showed almost identical performance in terms of prediction of plant
alum doses with small values of RMSE and high R>. MLR and PLS had
better performance with smaller RMSE and high R? values than ANNs in
modelling of alum dose using UV-Vis spectra. MLR is a simple method
that can directly define the coefficient of each parameter for coagulation
determination. The developed three coagulant dose determination
models can well adapt to the variations of raw water quality (Fig. 52 in
SI). The results indicate that the utilisation of UV-Vis spectra of raw
water combined with MLR or PLS can mimic operator decisions in the
selection of alum doses. There is a potential of using a portable UV-Vis
spectrophotometer combined with chemometrics (MLR and PLS) to
assist operators for real-time coagulant dose prediction, especially when
there is an unexpected change in raw water quality.

Coagulant doses for water treatment were typically determined by
the operators based on multiple factors for process control. This study
shows that coagulant doses can be determined for a WTP using only the
UV-Vis spectra of raw water under the optimal pH condition to achieve
the target DOC level for the treated water quality and comparable results
were achieved. This study may be the first that directly utilities online
UV-Vis spectra of raw water quality to determine plant doses. The
combination of online UV-Vis spectra of raw water and coagulation dose
determination models will allow better control of the coagulation pro-
cess, particularly for sudden water quality change events such as heavy
rainfalls, Potentially, an online submersible instrument combined with a
chemometric model (MLR or PLS) can predict coagulant doses and
provide decision support information for coagulation process control at
WTPs.

4. Conclusion

This study may be the first that model plant doses based on online
UV-Vis spectra of raw water quality. Modelling techniques with
different levels of complexity, including MLR, PLS and ANNs, and var-
iable selection methods were employed to build coagulant doses models
for the HV WTP. Important variables that influence the modelling of the
alum dose determination were selected using VIP, SR and R methods
from the UV-Vis spectra of raw water. The selected variables were
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Fig. 5. Optimal ANNs architecture for alum dose prediction.

determined as nine wavelengths within 250-270 nm which revealed
that the determination of coagulant doses of the HV WTP is mainly
characterised in the UV region. The selected variables were used as in-
puts and plant doses were used as the outputs for modelling coagulant
dose determinations.

Results show that all three techniques can model the alum dose
prediction with the selected variables. MLR and PLS methods had an
almosst identical performance of predicting plant alum doses with small
RMSE and high R This study shows that the feasibility of predicting
coagulant doses based on the UV-Vis spectral data of raw water com-
bined with a chemometric model and the ability to mimic the operator
decisions in selecting the appropriate doses for process control, under
the optimal pHcondition to achieve a target DOC level ofless than S mg/
L for the treated water quality. It is concluded that a submersible UV-Vis
spectrophotometer combined with a chemometric model (MLR or PLS)
has the potential to support operators effectively for real-time deter-
mination of coagulant doses for process control, under the fluctuation of
the raw water quality.
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RESEARCH QUESTIONS FINDINGS TO DATE

*  Why and how suspended particles in the water Academic:
affect water quality measurements using online e New knowledge added in understanding the effect
UV-Vis instruments? of particle type and concentration on UV-Vis

* How to eliminate particle interference and obtain measurements and the compensation techniques.
accurate measurements of UV254 using online * Auniversal compensation algorithm has been
UV-Vis instruments? developed with better accuracy compared with the

e  Canwe use UV-Vis spectra directly orindirectly for generic algorithm which has suffered from
water treatment process control? undercompensated or overcompensated

measurements in some cases.

OBJ ECTIVES *  Confirmed _the use ol_‘ si_ngle wavelength
compensation with similar accuracy compared with
the multiple wavelength compensation for online

*  Provide in-depth knowledge of the impact of instruments as built-in compensation algorithms.
suspended particles on online UV-Vis Industry:
measurements. *  Simple UV-Vis instruments with a single

*  Develop software compensation techniques to wavelength could be employed in the field to
improve online measurement. monitor water quality.

*  Develop models using spectra information to e  Chemometric models based on UV-Vis spectra
predict chemical dosing for water treatment can be developed into decision support tools for
process control. water treatment process control.
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