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Abstract 

Water quality monitoring is an essential element of the water quality management 

system and water treatment process. Conventional water quality monitoring relies on 

grab sampling and laboratory analysis, which is unable to provide quick responses to 

water quality events as it often takes hours and even days to transport and analyse 

water samples. Online water quality monitoring measures water quality continuously 

and allows quick responses to water quality events by providing real-time water quality 

data. In recent years, the online UV-Vis spectrophotometer has been reported as a 

promising technology for continuous water quality monitoring and process control. It 

reveals the real-time water quality changes and enables the development of surrogate 

parameters for online water quality monitoring and process control. However, there 

are some technic and data processing issues with using the online instruments for water 

quality monitoring. Besides, limited knowledge and research were reported on the 

utilisation of the online UV-Vis spectrophotometers for water quality management.  

This thesis project uses advanced data analytics to enhance the UV-Vis 

spectrophotometer for real-time water quality monitoring and treatment process 

control. Laboratory investigations were conducted to explore the impact of water 

matrix and suspended particles on the online water quality measurements using a 

submersible UV-Vis spectrophotometer, and to assess the water quality monitoring 

performance for different water sources. Both particle types and particle 

concentrations were found to have significant impacts on the UV254 measurements, 

showing that water quality data measured by the submersible UV-Vis 

spectrophotometer varied when the water matrix changes. These findings provide 

evidence that the particle influence on the UV-Vis measurements is source-water 

dependent.  

Surrogate models were developed as software techniques to eliminate particle impact 

from the measurements. Various software particle compensation techniques (surrogate 

models) including single wavelength compensation, linear regression compensation 

and multiplicative scatter correction methods were developed for online UV-Vis 

measurements of water quality. Moreover, cost-effective simple UV-Vis instruments 



 

could be employed in the field to monitor water quality instead of using sophisticated 

full-spectrum UV-Vis instruments. 

The real-time water quality measurement technology, UV-Vis spectrophotometer, was 

used for water treatment process control. Surrogate modelling approaches were used 

for the first to build coagulant dose determination models using only online UV-Vis 

spectra of raw water quality combined with chemometrics to determine coagulant 

doses and control the coagulation process for a drinking water treatment plant. The 

results revealed that an online UV-Vis spectrophotometer combined with a software 

surrogate model is a promising technology that determinates coagulant doses for real-

time process control. 
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Chapter 1     Introduction 

 

   Research Questions:  

• Why and how particles in the water affect the measurements of 

water quality using online UV-Vis instruments? 

• How to obtain accurate measurements using online UV-Vis 

instruments? 

• Can we use only UV-Vis spectra for water treatment process 

control? 
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1. 1 Background and Significance 

Water quality management is an important task carried out by the water industry to 

ensure the delivery of a safe drinking water supply service. Climate change has 

affected source water quality in many ways. One of the most relevant to the water 

industry is through increased frequencies of extreme hydrological events [1, 2]. These 

result in more frequent and larger variations of water quality of water sources caused 

by unstable weather conditions such as floods and droughts [3]. Source water quality 

change with increased turbidity and organic content is a challenging issue for the 

operation of water treatment plants. This adds stress to many water treatment facilities 

as they may reach their design capacity and cannot handle the situations [4]. It is 

expected to become a more challenging task to manage water quality from catchment 

to tap due to climate change for the supply of safe and clean drinking water [5]. 

Therefore, it is essential to have robust and advanced process control systems to 

improve the treatment performance which can handle the large changes in source water 

quality. Water quality management systems are developed specifically by water 

utilities to manage their own drinking water supply according to their local situations 

and must comply with drinking water quality guidelines established by the World 

Health Organization. Water quality monitoring and treatment process control are two 

vital aspects of the water quality management systems to detect events and manage 

risks that can compromise the supplied water quality [6]. Both aspects provide 

operational control and preventive measures for assuring safe and reliable drinking 

water to consumers.  

There are several commercial or in-house water quality monitoring and treatment 

process control options, and solution packages available for treatment operators, 

including feedback control, employing empirical models, and more recently applying 

advanced control algorithms based on machine learning [7, 8]. Modelling is one of the 

most commonly used methods that can be applied in process control to improve water 

treatment plant performance [9, 10]. Studies have shown that the operation of water 

treatment facilities can be improved through modelling methods [7, 11, 12]. Models 

can be developed and applied to simulate the drinking water treatment processes for 
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predictions of process behaviours under changing conditions and the determination of 

water quality [13, 14]. Water treatment process control knowledge would be 

accumulated via years of experience which can be considered as the human version of 

data analytics. The most recent development of control strategies is based on advanced 

data analyses of online water quality measurements using advanced computing to 

extract useful control information [9, 15]. Data analytics is a process of extracting 

valuable information from raw data using the computational power of computer 

systems, which can be used to improve the operational efficiencies of water utilities. 

Data analytics has been proved to improve water treatment plants performance by data 

visualisation (graphically showing water quality trends) and data analytics (identifying 

potential instrument problems, and discovering relationships between process 

parameters, process train anomalies and unusual patterns) [16-18]. 

Online water quality monitoring can provide two parallel functions for water treatment 

process control, which can assist in treatment process improvement with the 

simultaneous assessment of water quality by identification of contaminant sources and 

determination of the corrective actions to control the treatment processes. Monitoring 

of water quality can occur at many locations of the supply system and mostly at the 

inlets and outlets of the water treatment plants, as well as locations within the treatment 

train to monitor the treatment processes, which is considered fundamental to water 

treatment. Conventional water quality monitoring relies on the laboratory analysis of 

grab samples which has great limitations in terms of process control purpose. 

Laboratory analytic data may not represent the true variances of water quality 

conditions as the data may have a low temporal resolution. Furthermore, the laboratory 

data are unable to provide quick responses to water quality changes, as it generally 

takes hours or even days to transport and analyse water samples in the laboratory [19, 

20]. There is a high possibility that the conventional monitoring method may miss 

major water events which leads to negative impacts on process management and thus 

water quality [21, 22] In contrast, online water quality monitoring measures water 

quality continuously which allows real-time measurements and process control to be 

carried out simultaneously [9, 23]. Online water quality monitoring has been proved 

useful in improving treatment process performance via real-time, source water 
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contaminant detection and control of the treatment process [8, 24]. In other words, 

online water quality monitoring allows quicker responses to water quality events and 

treatment process optimisation, as well as provides real-time data for the development 

and refinement of online surrogate water quality parameters [22, 25]. Further process 

optimisation development trend within water treatment plants is predicated on the 

transformation of online water quality data for the real-time evaluation of water 

treatment systems to enable process optimisation [22, 26].  

Under this development trend, smart analytics will play a major role in advanced 

approaches for water treatment control. Smart analytics utilises advanced computer 

techniques to analyse a large volume of data for the improvement of process control. 

A surrogate parameter is an example of how an indictor can be developed from smart 

analytics. The use of surrogate parameters is a well-established practice for monitoring 

water quality and controlling the water treatment processes. Surrogate measurement 

represents a practical alternative to the detection and quantification of specific 

contaminants that require sophisticated and expensive laboratory-based analytical 

techniques [27]. Surrogate parameters can also function as a valuable screening tool 

for the evaluation of raw water quality [28] and can be used to rapidly determine 

changes in water quality caused by individual processes and overall treatment 

processes [17, 29]. The surrogate parameters can be generated from empirical 

modelling and/or advanced computing techniques. Simple surrogate parameters such 

as turbidity, colour, and UV254 have been commonly used for water quality indicators 

by estimating concentrations of organic matter to monitor and control treatment plant 

operations for the removal of particulate matter [30, 31]. Other more complex 

surrogate parameter examples using UV-Vis absorbance measurements for real-time 

monitoring of chlorine demand [32, 33], DBPs [34], and alum dose [35]. It is believed 

that these online surrogate parameters can provide valuable information to assist the 

water treatment operators and inform decisions. However, as in other technology 

development cases, it requires long term investigation and validations of these 

surrogates at full scales. The water industry worldwide continually searches for better 

ways for water quality monitoring and process control. Using surrogate water quality 
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parameters may be the most promising option. A few existing online surrogate 

parameters can be applied to substitute for the traditional water quality parameters. 

There are many cases of successful use of water quality sensors with great practical 

benefits. Water quality sensors have been widely used for source water protection, 

automated operation of drinking water treatment and many other examples. The online 

UV-Vis spectrophotometer is a useful instrument for developing a simple and effective 

measuring device for real-time water quality monitoring that can fulfil the industry 

requirements as a real-time monitoring tool. Currently, UV-Vis spectrophotometers 

are commonly used in the laboratory for water quality analysis, which is operated by 

multiple technic steps, including sample pre-treatment filtration and chemical 

reagents. In recent years, online UV-Vis spectrophotometers have been used for 

continuous water quality monitoring and process control by several water utilities [36, 

37]. However, there are many technical issues involved in water sample treatment and 

data analysis, such as the high frequency of changing filters for instruments that 

required physical filtrations and measurement difficulties [32, 38, 39]. It is not 

practical to use a spectrophotometer with physical filtration in the field for continuous 

online water quality monitoring [40]. Yet, submersible UV-Vis spectrophotometers 

with smart analytics to determine water quality parameters have gained attention and 

are suitable for continuous online water quality monitoring as they do not require water 

sample pre-treatments and are adaptable with a selectable range of pathlengths for 

various applications. These UV-Vis spectrophotometers usually have built-in particle 

compensation algorithms that can mathematically analyse and automatically minimise 

the particle effects from measurements by the onboard computer, which are able to 

determine commonly used water quality parameters as so-called calculated equivalents 

(surrogate) including UV254, colour, nitrate and dissolved organic carbon (DOC).  

Submersible UV-Vis spectrophotometers have been used widely for surface water 

quality monitoring, drinking water quality monitoring and process control [38, 41, 42]. 

It allows to measure real-time changes in water quality [43] and enables the 

development of alarm parameters to detect unusual changes in water compositions. 

Some studies have been conducted using submersible UV-Vis spectrophotometers to 
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carry out in-situ measurements using surrogate parameters for water treatment process 

control [44, 45]. However, there is still limited knowledge and research on the 

utilisation of the submersible UV-Vis spectrophotometers for online water quality 

monitoring and process control, particularly for drinking water supply. Therefore, it is 

necessary to obtain in-depth knowledge of the utilisation of the online water quality 

data and the development of surrogate parameters for water quality monitoring and 

process control based on online UV-Vis spectral data and advanced computing 

techniques. This is an important development of water measurement technology 

towards the online water quality monitoring for process control in real-time for the 

proactive management of drinking water supply.  

In this thesis study, time series spectral water quality data measured by UV-Vis 

instruments from industrial water treatment plants were analysed using advanced data 

analytics.  Case studies for this project were selected based on ten years’ water quality 

data from a local water utility in South Australia (SA). Water sources in these treatment 

plants include stormwater, drinking water, wastewater and recycled water. The 

selected online UV-Vis instrument for this study has been used by the water industry 

for about 15 years. Moreover, rigid data selection process was conducted to ensure the 

good quality of data used in this study. This will allow better utilisation of online water 

quality and operational data for decision-making that will improve the efficiency of 

water treatment processes and result in better water quality management. 

1. 2 Research Objectives 

This project aimed to develop the next generation process optimisation and decision 

support tools to improve the efficiency of the water treatment plant operations. The 

research approach was to develop and use surrogates with advanced computing 

techniques utilising operations data from industrial water treatment plants combined 

with water quality measurements using online UV-Vis instruments. 

The research objectives of this thesis study were: 
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1.  To explore the potential of applications of UV-Vis sensors for online water 

quality monitoring. 

2.  To provide in-depth knowledge of the impact of suspended particles on the 

measurements of water quality using online UV-Vis spectrophotometers. 

3.  To identify and provide solutions to overcome the challenges of using 

submissible UV-Vis instruments for online water quality measurements. 

4.  To develop and evaluate software particle compensation techniques for 

accurate measurements of water quality parameters (surrogates) using online 

UV-Vis spectral data. 

5.  To extend the application of time series UV-Vis spectral data for water 

treatment process control. 

6.  To develop surrogate models using UV-Vis spectra of raw water to predict 

chemical dosing for water treatment process control. 

 

1. 3 Thesis Outline 

This thesis reports the research outcomes of my PhD study, which is presented in the 

form of journal publications. Each chapter states specific research objectives that are 

related to the aim of this study. The chapters in this thesis are presented in the following 

sequence: 

• Chapter 1 introduces the background to the research, the significance of the 

project and, outlines the research objectives and key contributions in the field of 

online water quality monitoring and process control using UV-Vis 

spectrophotometers. 

• Chapter 2 reviews the progress of applying online UV-Vis spectrophotometers 

for drinking water quality management in the last two decades. This chapter also 

discusses the issues and potential solutions related to the application of online 

instruments. At the end of Chapter 2, it identifies research gaps and provides a 

background for the following chapters. One aspect of the research gap is that there 

is a lack of studies on the utilisation of the water quality data from the online UV-

Vis spectrophotometers and the development of surrogate parameters for water 
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quality monitoring and process control. In Chapters 3 to 5, further specific 

literature reviews are presented that are related to the research objective in each 

chapter. 

• To develop in-depth knowledge of the online water quality monitoring with the 

employment of UV-Vis sensors, Chapter 3 investigates the impact of suspended 

particles in the water on the measurements of a submersible UV-Vis 

spectrophotometer and the performance of the factory built-in algorithms under 

laboratory-controlled conditions. This Chapter provides essential knowledge of the 

particle impacts on the water quality measurements which is fundamental to the 

surrogate development from online UV-Vis spectrophotometers. 

• To overcome the measurement issue of online UV-Vis sensors and obtain reliable 

and accurate measurements, the study in Chapter 4 develops various alternative 

particle compensation techniques (Surrogate models) for online water quality 

monitoring using water quality data collected from three selected water sources in 

two drinking water treatment plants. UV254 as a surrogate is used as an illustration 

of the development of water quality surrogate parameters using UV-Vis spectra. 

• To assist the water treatment process control, the study in Chapter 5 develops 

surrogate models to determine coagulant dosages for process control using online 

UV-Vis spectra of raw water from a water treatment plant. This study might be the 

first to build coagulation dose perdition models (surrogate model) with the 

utilisation of only online raw water quality data. 

• Chapter 6 presents the conclusions of this research project and perspectives for 

further work on the application of online UV-Vis spectrophotometers for drinking 

water supply. 
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1. 5 Supporting Information 

I co-authored a technical article, entitled ‘Stormwater monitoring using on-line UV-

Vis spectroscopy’, which was published in the journal of Environmental Science and 

Pollution Research, as shown in the Appendix A. Stormwater is a type of water source 

for the drinking water supply, thus this article is relevant to this PhD research project. 

My contributions to the article were data analysis, writing and editing of the 

manuscript. However, the data analysis for the article was standard methods, not 

advanced, which is beyond the scope of this research project. 
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Water quality management is essential to water utilities for the drinking water supply 

from catchment to tap. Water quality monitoring is a vital component of the water 

quality management system. Online UV-Vis spectrophotometers are simple but 

effective tools to provide continuous measurements of water quality parameters to 

allow quicker responses to water quality changes compared to conventional water 

quality monitoring [1, 2]. Studies of online water quality monitoring have shown that 

online UV-Vis spectrophotometers have the potential for real-time water quality 

monitoring and process control [3, 4]. Due to a limited number of published research 

that was related to online monitoring of using UV-Vis spectrophotometers, there is a 

need to expand the literature search to cover not only journal articles and books, but 

also existing guidance documents and industry reports in applications of online UV-

Vis instruments, which are necessary to identify the knowledge gaps [3, 4]. Besides, 

there were only several published reviews on the industry applications of UV-Vis 

spectrophotometers [5-7]. These reviews either presented a broad view, concluded the 

principles of the instruments, or focused on a particular water quality parameter. 

Therefore, this chapter covers the practical aspects by reviewing the research progress 

of online UV-Vis spectrophotometers for water quality monitoring and process control 

in terms of drinking water supply, particularly, techniques for industrial applications 

that could make the UV-Vis instruments more acceptable. Various methods of 

anomaly detection and early warning were also discussed for drinking water quality 

monitoring at the source or in the distribution system. As most studies of online UV-

Vis instruments in the drinking water field were conducted in the lab- and pilot- scale, 

future work is needed for industrial-scale applications. Issues and potential solutions 

associated with online instruments for water quality monitoring have been provided. 

Based on the industry feedbacks of the current technique development, future research 

and development work are needed for the integration of early warning and real-time 

water treatment process control systems for water quality management. 

Chapter 2 provides updated research achievements and outcomes which are beneficial 

for identifying the research gaps to determine research objectives for Chapters 3-5. 

One large aspect of the knowledge gaps is limited studies on the research of online 

UV-Vis spectrophotometers for water quality monitoring and process control. The 



 

20 

 

project structures and arrangements of Chapters 3 to 5 are shown in Figure 2-1. Firstly, 

research is needed to expand the knowledge of implementation of the online 

instruments for water quality monitoring in the field. The study in Chapter 3 presents 

systematic investigations to discover the influence of suspended particles in the water 

on the online measurements of a submersible UV-Vis spectrophotometer, which is 

fundamental to the surrogate development from online UV-Vis spectrophotometers. 

To overcome the challenges of using online UV-Vis sensors for accurate water quality 

measurements, research in Chapter 4 is conducted to develop surrogate parameters as 

alternative particle compensation techniques for online water quality monitoring based 

on UV-Vis spectra. The study in Chapter 5 reports the research approach and outcomes 

for the development of surrogate models of coagulation dose determinations and 

predictions for process control using UV-Vis spectra.  

 

Figure 2-1 Flow chart of arrangements of Chapters 3 to 5. 

 

The following content of this chapter is presented as a review paper that has been 

published by the journal of Sensors, as shown in appendix B. 
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2.1 Introduction 

Drinking water quality is a key performance indicator for water utilities and is 

important to public health. Water utilities are committed to drinking water quality 

management to ensure that the supplied water meets the drinking water standards. 

Water quality management systems have been developed by water utilities to manage 

the water supply from catchment to tap, covering source water transportation, water 

treatment and distribution systems, for the safe supply of drinking water. Most 

drinking water quality management systems followed the World Health Organization 

drinking water quality guidelines. Water quality monitoring and treatment are two 

main water quality management systems to detect hazards and events that can 

compromise water quality and provide operational control for assuring safe and 

reliable drinking water as preventive measures.  

Water quality monitoring is needed to ensure that the supplied water to the consumers 

meets the standards. Conventionally, water quality monitoring for drinking water 

treatment plants relies on a regular sampling program (collection, transportation, 

followed by laboratory analysis) which only captures small snapshots over a period of 

time and may not represent the true variances of water quality. It also frequently suffers 

from feedback delay and is unable to provide rapid responses to water incidents [8]. 

Water analysis using standard laboratory methods requires long sample preparation 

and analysis processing time such as sample pre-treatment or adding reagents. There 

is also a higher risk that the conventional monitoring method may miss water events 

that could lead to negative impacts on water quality and treatment process 

management. In contrast, online monitoring measures water quality continuously 

which allows real-time water quality measurements and process control [9]. In 

summary, online water quality monitoring can improve the treatment process with 

real-time assessment of both source and treated water quality, identification of 

contaminants and control of the treatment process [10]. It is also useful during the 

period of rapid water quality changes when quick responses are needed to optimise the 

process [11].  
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There are many well-established online water quality sensors, including chlorine, total 

organic carbon (TOC), turbidity, conductivity, temperature and pH sensors, which are 

able to only measure one water quality parameter. Biosensors and optical sensors have 

received a lot of attention in recent years for online water quality monitoring [8, 12]. 

Biosensors are mainly based on fluorescence and are used for the detection of 

microorganisms such as bacteria and viruses. Optical sensors measure light absorption, 

light scattering, or fluorescence. A classic example of an optical sensor is a turbidity 

meter. More advanced optical sensors are infrared, fluorescence, and UV-Vis 

spectrophotometers. Infrared optical sensors can continuously measure organic 

compounds at wavelengths greater than 760 nm and can analyse water samples at 

liquid or gas phases [13]. The infrared sensors are not commonly used for online water 

quality for water treatment processes. Fluorescence sensors can continuously 

determine dissolved organic matter. Microorganisms could be determined as microbial 

indicators of water quality by analysing fluorescence from a molecule according to its 

fluorescent properties. UV-Vis sensors can continuously measure water quality 

parameters by determining the amount of light absorbed by compounds, such as TOC 

and dissolved organic carbon (DOC), colour, nitrate and specialist parameters. Both 

fluorescence and UV-Vis sensors do not require sample pre-treatment, reagent free, 

and allow fast measurements [12]. UV-Vis sensors can measure multiple parameters 

for water quality monitoring and treatment process control. 

Water quality analysis using UV-Vis spectrophotometers is a simple but effective 

method to measure water quality. In conventional laboratory water quality analysis 

using spectrophotometers, sample pre-treatment is needed, physical filtration using 

0.45 m filters is to eliminate particle interference for measuring UV254 and reagents 

are used for nitrate determinations. Some commercial online UV-Vis 

spectrophotometers have built-in particle compensation and other algorithms to 

eliminate sample pre-treatment and can provide calculated equivalents of water quality 

parameters such as UV254, colour, nitrate, DOC, and TOC [14].  

In recent years, additional parameters have been included in water quality monitoring 

using online UV-Vis spectrophotometers [15] such as measurements of dissolved 
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organic matter [2], chemical oxygen demand (COD) in water [16], and disinfectant in 

drinking water [17]. It has gradually been applied for process control of water 

treatment, particularly for the coagulation process [18]. However, it could be 

challenging to obtain accurate water quality measurements for those online UV-Vis 

instruments with built-in algorithms. Main technique issues include under-

compensation, over-compensation, and failure to generate reasonable measurements 

for real-time monitoring and process control [3, 6, 7, 19]. In contrast, reliable 

measurements were also reported using the online UV-Vis instruments for water 

quality detection and water treatment process control [20-22]. Various studies have 

been conducted to develop algorithms based on certain wavelengths (regions) of UV-

Vis spectra to determine water quality such as the use of absorbance ratios to monitor 

the variation of DOC in the water and multiple linear regression to estimate the total 

carbon contents in water [23, 24]. 

Applications of UV-Vis spectrophotometers for water quality analysis have been 

reported in several review articles. A brief product review on a submersible UV-Vis 

spectrophotometer (probe) was conducted in 2006 which summarised the typical 

applications for wastewater treatment, environmental monitoring, and drinking water 

applications [25]. The use of UV-Vis spectrophotometers for dissolved organic matter 

studies was reviewed, which summaries the use of derivatives and differential 

absorption spectra methods for DOC determinations in 2017 [2]. A recent publication 

reviews the advances of water quality detection by UV-Vis spectrophotometers in 

2020 [15]. In this work, the principle of the instruments and modelling methods for 

predicting water quality were outlined. These reviews validate the principles of UV-

Vis spectrophotometers and the general use of UV-Vis spectrophotometers. 

There were only several published reviews on the industry application of the UV-Vis 

spectrophotometers. These reviews either presented a broad view, concluded the 

principles of the instruments, or focused on particular water quality parameters. There 

is a lack of published research covering the practical aspect of using online UV-Vis 

spectrophotometers in drinking water supply applications. Therefore, it is necessary to 

expand the literature search to cover not only journal articles and books, but also 
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existing guidance documents and industry reports in applications of online UV-Vis 

instruments [3, 4]. This updated information on research and technology development 

is beneficial for identifying the knowledge gaps and research needs in this field. 

Therefore, this paper presents an overview of the status and research progress of the 

UV-Vis instruments for online water quality monitoring and process control. These 

updates are particularly important to provide practical knowledge that makes UV-Vis 

instruments more acceptable to the drinking water utilities. Firstly, an overview of 

online UV-Vis instrumentation is presented. Recent outcomes for the development of 

online water quality monitoring using UV-Vis spectrophotometers for anomaly 

detection and early warning are discussed in detail. Finally, field applications of online 

UV-Vis spectrophotometers and integration into the water quality management system 

are briefed and discussed. Challenges and solutions associated with the development 

and application of the online UV-Vis spectrophotometers for water quality monitoring 

are addressed. This paper also highlights perspectives for future research needs in the 

development and applications of online UV-Vis spectrophotometers. 

2.2 Online UV-Vis Spectrophotometers 

Online UV-Vis spectrophotometers can be effective and practically useful for 

continuously measuring water quality parameters. Particle influence on water quality 

measurement using UV-Vis spectrophotometers can be minimised using software 

particle compensation techniques. The water industry has deployed more online 

instruments to monitor water quality from catchment to tap for online and in-situ 

measurements as well as the treatment process control. However, the reputation of 

lacking reliability of the measurements is the general restriction to the use of these 

instruments for a wider range of water quality management applications. This section 

discusses those issues and limitations. 

2.2.1 Online UV-Vis Spectroscopic Instrumentation 

With the advancement of photodetector development, there is an increasing variety of 

online UV-Vis spectrophotometers. Various UV-Vis sensors developed from different 

detection technologies and instrument designs are available for water quality 
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monitoring and process control. The principle of UV-Vis spectrophotometry is based 

on the substance molecules in the water that can absorb UV-Vis light of a specific 

wavelength. Water quality can be determined by the correlation between the 

absorption spectrum and the concentration of the substance [15]. These sensing 

devices generally do not require sample filtrations (software particle compensation), 

are reagent free, and allow fast measurements of water quality. They also have low 

maintenance requirements for parameters such as UV254 and spectral absorption 

coefficient (SAC254). These instruments are equipped with automatic ultrasonic 

cleaning systems. However, regular / on-demand manual cleanings of the 

measurement ports are still required to ensure reliable measurements for turbid source 

waters. Commonly used commercially available online UV-Vis instruments are 

summarised in Table 2-1. There are mainly two categories of these online instruments: 

single wavelength (SW) and spectrum (full or partial).  

Online SW UV-Vis instruments determine concentrations of a particular parameter in 

water based on the absorbance of a selected single wavelength [5]. The SW UV-Vis 

instruments also called UV sensors are manufactured with a specific wavelength to 

measure UV254 or nitrogen as nitrate and nitrite. The most common SW instrument is 

UV254 sensors which measure the absorbance at 254 nm with the absorbance at 550 

nm for particle compensation. UV254 sensors can generate surrogate parameter - 

SAC254 to determine dissolved organics and provides measurements of correlated 

parameters such as DOC and COD [5]. These surrogate parameters determined by the 

sensors are generated based on the correlations (often linear) of UV254 absorbance and 

parameters which indicate organic matter in the water. This concept is used by some 

commercial instruments including the HACH UV probe [26], Burkert SAC254 sensor 

[27], and YSI UV-Vis sensor, which employ a single wavelength (absorbance at 550 

nm) to compensate for particle effect. These instruments are SW instruments, in many 

cases, that utilise absorbance at 254 nm to determine the concentrations of a particular 

parameter such as DOC. 

In comparison to the SW UV sensors, UV-Vis spectral or full-spectrum sensors record 

the absorbance of a certain band of wavelengths or full spectra. These sensors produce 
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fingerprints of spectra which are then employed to determine and calculate 

concentrations of water quality parameters based on built-in algorithms of the 

instruments. The spectral sensors can provide measurements for various parameters 

such as UV254, colour, DOC, and turbidity using the algorithms. These instruments are 

generally factory calibrated for the particular water quality parameters using their 

proprietary algorithms with site-specific re-calibration options. The instruments built-

in proprietary algorithms are first used to remove the particle effect on the 

measurements of the water to replace the physical filtration step [1]. Some instruments 

such as IQ Sensor NET provide surrogate parameters for DOC and COD. However, 

the results gained from these instruments are not comparable to standard laboratory 

methods without specific calibration. This is because the correlations between the 

surrogate and standard analytical methods depend on the compositions of the water 

[21]. Re-calibration is often needed if significant changes happen in the compositions 

of water [21, 28] which is different to the specific water type applied in the original 

algorithm development [1]. 

Comparing the performance of full-spectrum and SW sensors, SW sensors can provide 

measurements and trends of the parameters varied during certain periods. SW sensors 

may not be able to compensate for particle effect accurately, particularly when 

comparing the results with the standard laboratory procedures and measurements. The 

SW sensors may only provide a rough surrogate measurement of organic content, and 

total nitrogen content of nitrate and nitrite, but do not have accurate particle 

compensation for most surface waters. In comparison, the spectral sensors provide 

better particle compensation and can be calibrated to specific locations with higher 

accuracy. Spectral sensors are better for precise applications, such as real-time water 

monitoring and treatment process. In addition, calibrations of online sensors are based 

on the grab sample collected at the same time of the measurement compared to 

laboratory measurement of the same water sample. These calibration procedures are 

more susceptible to the errors of grab samples.  
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Table 2-1 Summary of common online UV-Vis instruments for water quality monitoring and process 

control. 

Sensor  Manufacturer 
Optical 

system 

Measured 

wavelength 

Measured 

parameter 
Advantages Accuracy 

Operating 

range 
Source 

AMI 

SAC254 

SWAN, 

Switzerland 

Two-

wavelength 

photometer 

with one 

optical 

channel, 

light-

emitting 

diode (LED) 

light 

254 nm Surrogate 

parameter 

to 

determine 

dissolved 

organics  

Measuring 

interval: 30 

sec to 3 min 

± 1% m-1 UV 

absorption: 0-

6 mg/L 

DOC, TOC: 

0-6 mg/L 

SAC254: 0 to 

300 m-1 

Temperature: 

5-30 oC 

[29] 

ProPS-UV 

Photometer 

Trios GmbH, 

Germany 

Dectector 

type: UV 

spectrometer, 

light source: 

deuterium 

lamp  

200 – 385 

nm 

nitrate, 

CODeq 

and TOCeq 

Customize 

path 

lengths,  

Spectral 

analysing 

software, 

Additional 

calibration 

functions 

± 0.01% 

mg/L 

Temperature 

0-30 oC, 32-

86 oC; 

Measuremnts: 

0.62 – 600 

mg/L 

[30] 

IQ Sensor 

NET 

WTW GmbH, 

Germany 

256 channel 

silicon 

photodiode 

array 

detector, 

deuterium 

lamp 

200 - 720 

nm 

A range of 

parameters, 

eg. SAC, 

UVT 

Data logger ± 3% 

mg/L 

SAC: 0.0-

3000m-1 

Temperature: 

0-45 oC 

[31] 

spectro::lyser s::can 

Messtechnik 

GmbH, Austria 

256-pixel 

photodiode 

array 

detector, 

xenon flash 

lamp 

200 - 720 

nm; 

220 - 390 

nm 

Various 

parameters 

Various 

parameters 

Differ path 

lengths 

± 2% 

mg/L 

Temperature: 

0-45 oC; 

TOC: 0 -180 

mg/L; NO2-

N: 0-40 

mg/L; NO3-

N: 0-100 

mg/L; UV254: 

0-500 abs/m 

[32] 

Real UV254 

probe 

RealTech, 

Germany 

Mercury UV 

lamp and 

LED lamp 

253.7 nm SAC254 Various 

parameters 

Various 

path length 

Field 

calibration 

± 5% m-1 Temperature: 

0 to 45°C 

 

UV254: 

0-20 abs/cm 

[33] 

UV 

absorption 

sensor 

Endress+Hauser, 

Switzerland 

Hotovoltatic 

cells 

detector, 

low-pressure 

mercury 

lamp 

254 nm SAC254 Data logger ± 3% m-1 0 - 2.5 abs/cm 

0 to 90 °C 

[34] 

IQ 

SensorNet 

system 

YSI, Germany Detector: 

LED and 

phtotdiode 

254 nm UVT-254 

and 

SAC254 

Has a 

controller 

± 2% m-1 Temperature 

0 to 45 °C; 

UVT-254: 0-

100; SAC254 

0- 3000 m-1 

[35] 

 

2.2.1 Water Quality Measurements with Proprietary Algorithms 

Some advanced full-spectrum online UV-Vis spectrophotometers can determine a 

range of water quality parameters including UV254, colour, DOC, turbidity and nitrate. 

The parameters can be computed through the instrument built-in proprietary 

algorithms. These algorithms were developed based on chemometrics techniques, such 

as partial least squares (PLS) and multiple linear regression, to establish the 



 

30 

 

relationship between UV-Vis spectra and laboratory measurements of water samples 

[14]. The algorithms were created by hundreds of global datasets containing both UV-

Vis spectra and reference laboratory data obtained from a wide range of water quality 

[14]. Instruments have default configurations to apply the generic calibration for 

particle compensation to the raw spectral data using the built-in algorithms.  

UV254 measures the amount of light absorbed by conjugated organic compounds. 

UV254 systems have been widely used as a rapid water quality measurement technique 

to control water treatment processes [36]. UV254 from the online UV-Vis instruments 

based on built-in algorithms generally performs well for the treated water as less 

interference exists [1]. However, site-specific calibrations may be needed if it is used 

for source water with a complex matrix. It is more difficult to judge the accuracy of 

the colour measurement using the online UV-Vis instruments, as the standard 

laboratory colour measurement method relies on SW measurement. Besides, the 

wavelength selected to measure colour may be different based on regions and water 

sources. For instance, 456nm is used in Australia and USA while 410 nm is applied in 

Russia to measure colour in natural water [37]. To measure the colour of water, the 

online instrument needs to be set up according to the required wavelength. DOC is 

used to monitor water quality from catchment to tap water. The measurement is usually 

carried out using the laboratory-based standard method. Online UV-Vis instruments 

with built-in algorithms can be applied as alternative measurements. However, they 

are frequently reported as water-specific and lacking accuracy. Thus, additional 

calibrations against different water matrices are needed [38]. Turbidity determined by 

the online UV-Vis spectrophotometers with the generic built-in algorithms is 

comparable to the turbidity results analysed in the laboratory [39, 40]. Nitrates 

generated from the online instruments with the generic built-in algorithms are 

generally not satisfactory [39]. It was reported that the results are comparable with 

laboratory analysis [40]. This could be related to the specific algorithm employed and 

the monitoring application.  

The measurements of water quality parameters using the online UV-Vis 

spectrophotometers are often source-water dependent. Thus, additional site-specific 



 

31 

 

calibrations are needed to improve the accuracy of measurements [14, 21, 41-43]. The 

site-specific calibration function provided to enter the laboratory determined values of 

the collected grab samples measured at the same time by the online instrument. The 

site-specific calibration process involves modifying the slope and intercept of the built-

in regression function using laboratory data from the reference grab samples [21, 41]. 

To achieve the best calibration results, grab samples are needed to be representative 

and cover the whole measurement range of the water. Measurement accuracies can be 

enhanced with the use of an increased number of grab samples for the calibrations of 

the online UV-Vis spectrophotometers. 

Applications of online UV-Vis instruments can reveal that the significant fluctuations 

in water quality could affect the accuracy of the measurements and long-term 

monitoring required regular calibration to compensate for the variation of particle 

character issue [1, 3, 41]. A site-specific calibration was conducted for a submersible 

UV-Vis instrument to monitor water quality in a forested catchment and comparable 

results were achieved [42]. In contrast, a site-specific calibration was performed for a 

UV-Vis submersible instrument to measure the water quality of stream water, but 

concentrations were overestimated because of inaccurate particle compensation [43]. 

Therefore, accurate site-specific calibration of the UV-Vis instrument is crucial to 

obtain measurements for water quality monitoring. 

Calibrations of online UV-Vis instruments should be performed as needed for 

situations such as new instruments, location changes, and poor accuracy. Routine 

calibration may not be necessary for monitoring less variable source water or stable 

water quality such as treated water. However, routine verification of the measurements 

using lab references is recommended to ensure the accuracy of the instruments [38]. 

Site-specific calibrations have been approved to achieve the desirable measurement 

outcomes and can adequately account for the differences in large water quality changes 

or between different types of water [6, 19, 44-46]. 
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2.2.2 User Developed Algorithms for Spectral Absorbance Measurements 

A water engineer may have difficulties obtaining accurate continuous measurements 

using online UV-Vis spectrophotometers with or without the instrument built-in 

algorithms, alternative particle compensation (calibration) techniques can be 

developed by end-users. To better utilise the online monitoring instruments with low 

maintenance costs, and more importantly gain in-house experience and knowledge of 

the instruments, researchers and water utilities want to seek alternative techniques for 

particle compensation to the built-in particle compensation methods. The particle 

compensation techniques based on the UV-Vis spectra can be categorised into direct 

subtraction compensation and chemometric modelling. Table 2-2 summarises particle 

compensation techniques from the literature for online water quality monitoring using 

the UV-Vis instruments.  

Direct subtraction compensation is based on the absorbance of wavelength 

characterised by the particles in the water [14, 59]. Wavelengths: 275 nm, 350 nm, 545 

nm, 546 nm and 550 nm have been utilised to characterise the particles in the water 

and to remove the particle effect from the UV-Vis measurements [47-49]. The 

absorbance at 546 nm was used to remove the particle effect on the COD in river water 

[48]. The wavelength at 545 nm was employed to reduce the particle influence on the 

UV for surface water [49]. The wavelength at 550 nm is commonly selected for SW 

particle compensation for individual water quality parameters and has been commonly 

applied for UV254 measurements [1]. UV at 350 nm has been utilised to compensate 

for the online measurements of COD using UV spectrophotometry to detect 

groundwater quality to remove the influence from particles [47]. Absorbance at 275 

nm was used in some case studies to compensate for nitrate at 220 nm. Figure 2-2 

shows an example of using a SW particle compensation method to remove the particle 

influence on a raw spectrum for surface water [1]. 
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Table 2-2 Summary of indirect particle compensation methods for online water quality 

monitoring. 

Methods Wavelengths  

(nm) 

Parameter Data 

type 

Sources Source 

SW 350 nm COD Lab Ground water [47] 

SW 546 nm COD Lab Simulated water 

samples 

[48] 

SW 545 nm UV254 Lab, 

field  

Surface water [49] 

SW, MSC 550 nm UV254 Field Surface water, 

treated water  

[1] 

Two 

wavelengths 

254, 340 nm DOC Field 

data 

Surface water [50] 

MSC Full spectra COD Lab Stream water, 

Simulated water 

[51] 

PLS 200-400 nm COD Lab Lake water [22] 

PLS Full spectra DOC  River water [52] 

PLS full Nitrate Lab Simulated water [53] 

PLS 380-750 nm Nitrate, TOC, 

COD 

Lab Seawater [54] 

PLS Full spectra assimilable 

organic carbon 

Pilot Simulated lake 

water 

[55] 

MSC, PLS, 

PCR 

250 -740 nm  DOC Field Surface water [21] 

PLS, lasso 

regression, and 

MSR 

Full spectra Nitrate, DOC Field  Brackish water [56] 

MSR 250, 290, 307.5, 

437.5, 447.5, 630, 

645 nm 

DOC, Fe Lab, 

Field  

Stream water [20] 

PLS, MSR, 

local and global 

250 – 740 nm DOC Field Surface water [57] 

Multiple linear 

regression 

260, 265, 280, and 

285 nm 

TOC Lab Drinking water, 

seawater, river 

water 

[24] 

SVM Full spectra Nitrate  Lab River water [58] 
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Figure 2-2 Illustration of particle compensation of a raw spectrum for surface water 

using a single-wavelength method. 

Multi-wavelength particle compensation techniques, also called chemometric 

modelling, include a selection of chemometrics such as multiple linear regression 

(MLR), multiple stepwise regression (MSR), support vector machine (SVM), support 

vector regression (SVR), multiplicative scatter correction (MSC), principal-

component analysis and PLS. The multi-wavelength particle compensation technique 

is based on relationships between the raw spectra and laboratory reference values of 

the water quality parameters. The MLR determines the linear relationship between a 

dependent variable (the laboratory values) and independent variables (wavelengths of 

the raw spectra) which can directly define the coefficient of each variable. MLR was 

employed to remove the particle effect on the UV-Vis spectra of brackish water for 

rapid measurement of water quality parameters [56]. Multiple linear regression was 

also used to quantify DOC content in the stream water [20] and TOC in the drinking 

water, seawater and river water [24]. Multiple stepwise regression was utilised to 

compensate for the particle effect on the DOC measurements for surface water [57]. 

SVM is a machine learning algorithm that can be used for classification, regression, 

and outlier detection. SVM was employed to determine the concentration of dissolved 

nutrients in surface water using the full spectral wavelengths and laboratory values and 

demonstrated the effectiveness of the approach [58]. SVR is a similar machine learning 
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method as SVM but works with continuous values instead of classification as SVM. 

SVR was applied to predict the combined nitrate and nitrite concentration for treated 

water samples using spectral features and the predicted values were matched with the 

standard laboratory values [60]. MSC is a normalization technique to correct particle 

effect on spectra by changing the scale and the offset based on the reference spectrum 

which is the mean of the spectra. The MSC method was applied to compensate for the 

particle effect on the COD in lake water [22], UV254 in reservoir water [1], simulated 

surface water [51], and DOC in drinking water production [52].  

PLS constructs components by projecting the predictor variables to a new space. Then 

the linear regression models were built between new predictors and responses. PLS 

can be utilised to extract important information from a large data matrix [61]. PLS 

regression is a commonly utilised method to remove the particle effect on the 

measurements of water quality parameters based on the multiple wavelength spectra. 

It has been used to remove the particle effect on the water quality multi-parameter such 

as COD in artificial seawater [62], suspended solid in brackish water [56], COD in 

lake water [63], COD and TOC in seawater [54], stream water [20], nitrate in water 

[53], nitrate and nitrite in seawater [64], DOC in surface water [57] and drinking water 

[52], ozone in drinking water [55].  

The use of a subtraction method for particle compensation generally works well for 

low and medium turbid source water and treated water, but may lead to less accurate 

measurements in some cases such as highly turbid water [50, 57]. The accuracies of 

the measurements such as DOC in the surface waters can be improved by using the 

multi-wavelength particle compensation methods. Water matrix specific particle 

compensation is frequently recommended for water quality monitoring. There are 

some benefits of using alternative particle compensation methods to the built-in 

algorithms. Firstly, it creates simplicity and flexibility of custom-made particle 

compensation methods for water quality measurements of particulate water matrix as 

the details of the built-in algorithms for the commercial online instruments are often 

not accessible to the users. Secondly, the employment of alternative particle 

compensation methods can lower the calibration costs of the instruments. Moreover, 
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cost-effective UV-Vis instruments with a single wavelength or short wavelength band 

could be employed in the field to monitor water quality instead of using full-spectrum 

UV-Vis instruments. 

2.3 Advanced Spectral Data Processing and Applications 

UV-Vis spectrophotometers can be used for real-time water quality monitoring and 

integrated with early warning systems to detect rapidly changing water quality. Water 

quality parameters including turbidity, SAC254, nitrate, TOC and DOC can be 

monitored and provide early warning. The warning occurs when the current 

measurements exceed limits that are specific to each parameter or anomalous patterns 

are detected [65], then the appropriate actions can be taken. One example is to monitor 

spring water. The spring water of concern would not be utilised for drinking water 

production when the measurements go beyond the limits of the measuring parameters 

[66]. The anomaly detection methods using the UV-Vis instruments can be easily 

configured for real-time monitoring of water pollution and early warning [24, 65, 67].  

UV-Vis spectra contain valuable information on the composition and quality of water 

and can be used as a fingerprint of the water matrix. The fingerprint can be utilised to 

derive specific parameters such as turbidity and DOC. Online UV-Vis instruments 

have fingerprint which can also be employed to monitor changes in the water 

composition and offers the possibility to set alarm levels based on the magnitude of 

the variations in the spectra and early warning systems by water utilities [25, 68]. It is 

an advanced spectral data processing and can be applied for early warning of anomaly 

detection and identification of contaminants. Online UV-Vis instruments have been 

used by some water utilities to develop early warning systems to monitor drinking 

water quality at the source or in the distribution system for water quality control as a 

component of the drinking water quality management system. It can detect not only 

natural contamination but also accidentally or intentional contamination.  
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2.3.1 Anomaly Detection of Water Quality 

Water utilities could face minor and major water quality incidents. Concerning major 

events can occur due to extreme concentrations of water quality contents or pollutants 

or accidents of pollutant events. Rapid fluctuations in source water quality could 

happen. For instance, turbidity and organic matter could be suddenly raised by storm 

events. Quick detection of the water quality in response to the contaminant events is 

essential to reduce risks when water quality events occur. The use of online UV-Vis 

instruments allows near- or real-time detection of anomalies and contaminations of 

drinking water systems. Early detections are vital for effective responses that reduce 

or prevent contamination events that compromise water quality and avoid possible 

failures of WTP operation [68]. The utilisation of water quality anomalies detection 

from UV-Vis spectra contributes to the safety of water quality. Detection using UV-

Vis spectra for water quality monitoring is mostly applied for organic contaminant 

monitoring as UV-Vis monitoring has the advantage reported earlier, without the need 

for sample preparation, regent-free, and low operational cost compared to standard 

laboratory analysis of organics [24, 69, 70]. 

An anomaly detection method may have three components: data analysis, event 

detection and performance assessment, which are able to provide a reliable indication 

of contamination by analysing the real-time water quality data [69]. The first step is to 

establish a baseline of the stable water quality in the normal condition. Data analysis 

is to remove the particle effect, instrument noise, and drifting from the water quality 

measurements. Event detection is to analyse the real-time water quality data by 

comparing the pattern of new data with the pattern of normal data based on machine 

learning and chemometrics. Performance assessment is to evaluate the detection 

method to meet the required accuracy [69].  

A proximate entropy approach was applied to measure UV-Vis spectra and 

differentiate normal and abnormal spectra of water in distribution systems. This 

method had a good detention outcome [57]. In addition, the fitness measure combined 

both Pearson correlation and Euclidean distance was assessed as a technique to identify 
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contaminated water from drinking water using a submersible UV-Vis instrument in a 

controlled study [71]. The method was flexible to identify the source of water and 

distinguish the contaminated water. This method was further tested to cope with 

various backgrounds with changing proportions of water from different sources using 

a combination of UV-Vis spectral data from both laboratory experiments and an 

operational water supply system [67]. The detections were based on combinational 

changes in water sources, operational, and maintenance actions. Contaminants at low 

concentrations were detected. 

2.3.2 Early Warning Systems for Water Supply 

An early warning system integrated with a UV-Vis spectrophotometer has been 

extensively tested in a lab-scale and achieved robust results. The early warning system 

is able to detect and quantify specific compounds, but also detects unknown 

compounds that do not fit in the normal fluctuation of the water matrix [72]. Alarm 

parameters can be developed from the spectral data. Abrupt spectral signals can be 

extracted by using anomaly detection techniques. The process of alarm development 

of water quality monitoring includes a learning period, abnormality definition, alarm 

level definition and sensitivity definition [73]. Various methods have been employed 

to identify anomaly events, such as probabilistic principal component analysis 

(PPCA), Bayesian algorithm, principal component analysis, and Euclidean distance 

method [65, 74, 75]. A PPCA based method was used to identify anomaly events with 

the employment of online UV-Vis instruments. PPCA algorithm was utilised to 

simplify the large number of spectra data and retain the essential spectral information. 

It was tested for online water quality monitoring in a small-scale water distribution 

system [75]. The PPCA method was combined with a multivariate monitoring chart to 

provide a reliable and flexible alarm system. Bayesian algorithm combined with a UV-

Vis spectrometry probe along with a message-passing schedule was applied to analyse 

patterns for event classification. It was conducted for long-term online monitoring of 

the water distribution system in a pilot-scale [76]. Water quality anomalies were 

detected using the integration of principal component analysis and chi-square 

distribution combined with UV-Vis sensors for a distribution system. It was conducted 
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in a pilot-scale and proved to be a promising method [74]. In addition, an early warning 

system was employed for remote river water quality monitoring for COD content and 

early detection, which had real-time display and storage and warning functions [35]. 

Early warning systems need to be able to identify whether variation in sensor 

measurements is caused by equipment noise, and presence of contamination or high 

levels of concentrations. Pearson correlation Euclidean distance-based method, 

multivariate Euclidean distance method and linear prediction filters method have been 

applied to detect changes in water quality and differentiate between fluctuations 

caused by equipment noise and those due to contamination [77]. This method was able 

to detect 95% of contamination events correctly with a 2% false alarm rate from a 

contaminant injection experiment [77]. The Pearson correlation Euclidean distance 

method was applied to a real contamination accident study, the results showed that this 

method has better potential to be used in the field [76]. 

Various water quality detection methods based on UV-Vis spectral data have been 

developed and assessed. However, the evaluation of detection performance is mainly 

based on simulation or laboratory study. Reported evaluation of detection performance 

was rarely based on real contamination events. There are arguments that lab- and pilot-

scaled studies may not cover the variation of water quality that occurs in the actual 

water systems as real water quality data may contain more background noise and 

fluctuations [76]. Therefore, it is important to test the detection method in a real water 

event situation. 
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Figure 2-3 Structure of an early warning system. 

2.3.3 Integrated Early Warning and Real-time Control System 

An integrated early warning and real-time control system for drinking water combines 

the functions of water quality monitoring, early warning system and decision making. 

It is an integrated approach to detect and respond to water quality events that use 

advanced monitoring technologies to provide warnings of potential contamination 

incidents and quick responses [75]. An integrated early warning system should contain 

an online monitoring system, supervisory control, and data acquisition (SCADA), 

event detection system, and decision support system as shown in Figure 2-3. Event 

detection provides indications of abnormal water conditions. Early warning systems 

should be able to quickly detect water quality and contamination events with high 

levels of accuracy, reliability, cost-effectiveness, user-friendly, and low maintenance 

[78]. An integrated system with event-driven functions for detecting, reporting, and 

handling water quality contamination events automatically in real-time. 



 

41 

 

An integrated system can provide water quality monitoring and warning performances 

to monitor hazard and forecast hazard evaluation, and issue timely and accurate 

warnings of water quality anomalies. It fits well with the drinking water management 

system. Online UV-Vis instruments have been employed as part of the integrated 

system to continuously provide water quality data. Studies have been conducted by 

deploying UV-Vis instruments for real-time online analysis of water quality and 

anomaly detection, particularly in Europe and the United States [78]. A semi-

supervised learning model combined with UV-Vis spectra was used to detect organic 

contamination events successfully in water distribution systems. This adaptive method 

modified the baseline using dynamic orthogonal projection correction and adjusts the 

support vector regression model in real-time [79]. Discrete wavelets transform and 

principal component analysis can also be applied for detecting organic contamination 

events from UV-Vis spectral data. This approach was tested online using a pilot-scale 

setup and experimental data [65]. Abrupt changes in the spectra were captured, and an 

alarm of contamination event was able to be identified. 

Another event detection approach is based on UV-Vis signal processing and data-

driven techniques. Early warning systems combine automatic measurements with 

automatic data evaluation and data transfer for water quality monitoring such as 

surface water [80]. A web interface of the system works as a control centre constantly 

checking for anomalies in water quality based on automatic data evaluation. 

Maintenance can be reduced as remote checking of water quality is available [81].  

2.4 UV-Vis Spectrophotometer Application and Integration of the 

Water Quality Management System 

The online UV-Vis spectrophotometers can continuously measure water quality online 

in real-time. UV-Vis spectrophotometers have a broad application in drinking water 

networks from monitoring source water quality, treatment processes and treated water 

as part of the drinking water quality management system. Many reported studies of the 

online instruments have been conducted in the lab-scale as shown in Table 2-2. It has 

been widely recognised in the water industry that current applications of UV-Vis 
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instruments in real-time for water quality monitoring remain limited. There is an 

increasing trend of using online UV-Vis instruments, especially in water quality 

monitoring and process control and as early warning systems [82]. The use of online 

UV-Vis instruments for water quality monitoring allows for better water quality 

management compared to conventional water quality monitoring, as it supports 

continuous updating of water quality and can detect any potential water quality events 

and provides timely decision support. The ability of online UV-Vis instruments to 

detect issues in real-time to allow rapid response to any water quality event is valuable 

to the water quality management system [83]. It also allows for real-time 

understanding of operational causes which in turn contributes to the optimisation of 

the water treatment processes.  

2.4.1 Requirements and Supports of Using Online UV-Vis Spectrophotometers 

in Real Operations 

Online water quality monitoring using spectrophotometers allows fast and effective 

responses to water quality events. Online UV-Vis instruments have been employed for 

determinations of process upset or deterioration in water quality, as well as operation 

and control of the drinking WTPs. Applications of the online UV-Vis instruments in 

water treatment and distribution networks can identify water quality parameters such 

as nitrate and organic pollutants rapidly, and measure and analyse the parameters 

simultaneously. An illustration of applications of online UV-Vis sensors for real-time 

water quality monitoring and process control is shown in Figure 2-4. Field applications 

of online UV-Vis spectrophotometers were summarised in Table 2-3. Most field 

applications of the online UV-Vis instruments were on water quality monitoring. Some 

case applications were conducted on anomaly detection and early warning system. 

Very few cases were employed for process control of drinking WTP.  

The most important applications of UV-Vis instruments are monitoring of the source 

water and treatment process control [25]. Field applications of UV-Vis instruments 

showed that the instruments are suitable for the estimation of DOC concentration. A 

study assessed the performance of a portable UV-Vis spectrometer in measuring DOC 
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concentrations of surface water under the field condition [57]. It demonstrates the 

possibility of facilitating rapid, robust and continuous measurements. A contaminant 

warning system was developed in Texas, USA to monitor the drinking water quality 

in the distribution system [84]. This warning system consisted of online UV-Vis 

instruments which provide continuous analysis at 16 checkpoints in the distribution 

system. Anomalies are constantly checked for water quality parameters such as nitrate, 

total chlorine turbidity, TOC, conductivity, UV254, DOC, pH, and free ammonia. All 

the information is web-accessible to the operators for the detection of water quality 

changes at treatment plants.  

The operation of drinking water treatment plants is mainly based on laboratory analysis 

data of grab samples and the experiences of operators. In recent years, there is an 

increasing need of using model-based monitoring for the optimisation and control of 

water treatment plants. However, most studies were conducted in lab- or pilot- scale. 

The use of model-based monitoring has shifted the operation of drinking WTPs from 

experience-driven to knowledge-based [28]. Modelling in combination with online 

monitoring and real-time control can improve the treatment operation, leading to better 

control of more stable water quality [85]. An online UV-Vis instrument was used for 

feed-forward coagulant dose prediction to avoid the increase in turbidity of settled 

water and support the operation of a WTP. The predicted coagulant doses were used 

as inputs of the plant control system to automatically control the coagulant dose in 

response to the online measurements of raw water quality [86]. 

The online UV-Vis instruments combined with advanced data analysis techniques 

such as machine learning allow real-time water quality monitoring and provide 

valuable tools for effective water quality management. The combination of real-time 

water quality data and advanced data analysis techniques can be efficient for the 

management of water quality. The recent advances in technologies enable the 

application of web-based data platforms for analysing real-time data for water quality 

management. Efficient and real-time monitoring of water quality as a key component 

of water quality management can predict future trends of water quality and enable 

rapid response to water quality events [83].  
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Figure 2-4 Applications of online UV-Vis sensors for real-time water quality 

monitoring and process control. 
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Table 2-3 Summary of field applications of online UV-Vis spectrophotometers. 

Water type Application Measurement Location  Reference  

Surface water Rea-time Monitor 

testfilters 

DOC, TOC Danuba Island, 

Austria  
[87] 

River water  Real-time Monitor water 

quality  

Nitrate, DOC, TSS Kervidy-Naizi, 

West France  
[88] 

Stream water In-situ Monitor stream 

DOC  

DOC South Korea [89] 

Drinking 

water  

Online monitoring and 

process control 

Surrogate A254, 

A202, A290, A310, 

A350, 

SA Water, South 

Australia 
[90] 

Drinking 

water 

Early warning system in 

the drinking water 

supply 

Nitrate, TOC, 

SAC254 

Bratislava Water 

Company Austria  
[91] 

Drinking 

water 

Coagulant control  Turbidity, alum 

dose  

Morgan WTP, 

South Australia 
[86] 

Drinking 

water 

Measure dissolved 

ozone and AOC 

concentrations  

Assailable organic 

carbon  

Vienna 

Waterworks, 

Austria  

[55] 

Filtered 

water 

Real-time Monitor water 

quality 

UV254 SA Water, South 

Australia 
[19] 

Lake water Monitor variation of 

carbon content 

DOC using 

Absorbance at 285 

nm 

Lake Ipê, MS, 

Brazil 
[23] 

Surface water Measure DOC content in 

situ 

DOC Europe [21] 

River water Monitor water quality in 

situ 

DOC, Fe Krycklan river, 

Sweden 
[20] 

Surface water Monitor dissolved 

nutrients in real-time 

Nitrate Windsor, Canada [58] 

Groundwater High-resolution 

monitoring 

Nitrate Southwest 

Ireland 
[41] 

Stream water Monitor storm events DOC Haean Basin, 

South Korea 
[43] 

River water Real-time Monitor of 

water quality 

NO3-N, DOC Saarland [46] 

Spring water Online monitoring SAC254, Nitrate, 

TOC, DOC 

Vienna 

Waterworks, 

Austria 

[66] 

Treated 

water 

In situ anomaly 

detection 

Spectra Hangzhou, China [92] 

Drinking 

water 

Online monitoring 

anomaly in water 

distribution systems 

Spectra Hangzhou, China [75] 

River water Real-time monitoring  COD Jialing River, 

China 
[35] 

Groundwater Early warning Nitrate, nitrite Vienna, Austria [80] 

Drinking 

water 

Contamination warning 

system 

Spectra Dallas, US [84] 

Fresh water Simultaneous 

determination of nitrate 

and nitrite 

nitrate and nitrite UK [30] 

Spring water Online Water-Quality 

Monitoring 

SAC254 NW Switzerland [34] 
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2.4.2 Challenges and Solutions of Using Online UV-Vis Spectrophotometers 

Many studies have shown that online UV-Vis spectroscopy can detect water quality 

changes, such as rapid detection of changes in the raw water quality, and allow for 

real-time adjustment of process. There are still challenges remaining for the practical 

applications. There is a lack of harmonisation of standards and regulatory practices in 

using online instruments for water quality monitoring [3]. Some regulatory guidelines 

of drinking water only mention online instruments in general terms. It is important to 

highlight the need for accurate measurements and recommend online continuous 

monitoring of water where possible. One of the main issues is the detection limit as 

the field environment is complex. Another issue is the difficulty to detect the UV-Vis 

spectra of some pollutants in the water, such as suspended solids, dissolved inorganic 

substances, and pathogenic microorganisms. Most of the difficulties in using the online 

instrument are caused by the highly challenging nature of the source water. Solutions 

were developed to allow realisable monitoring of the source water, including 

determining appropriate manual cleaning intervals. 

UV-Vis instruments generally work well for real-time monitoring of treated drinking 

water as fewer interferences exist [58]. However, it has experienced measurement 

issues in field applications for source water quality monitoring, particularly surface 

water that has complex chemical compositions. Field experience shows that the path 

lengths of the UV-Vis instruments had a significant influence on the sensitivity and 

the range of water quality parameters [41]. The selection of path length is related to 

the water matrix. The sensitivity increases with the path length. A longer path length 

leads to a higher sensitivity but a reduced maximum concentration level at which the 

instrument can operate [82]. The typical path length is within 0.5 - 100 mm. Normally, 

a path length of 100 mm is suitable for drinking water, 35 mm and 10 mm for surface 

water and 5 mm for wastewater applications. The natural variation occurrence can be 

determined, which requires measurements of the fingerprint spectrum across several 

months for training and local calibration of the instruments.  
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In the absence of site-specific calibration, the determination of DOC concentration can 

be inaccurate due to varying absorbance strengths of the interference of other elements 

in the water [57]. For instance, absorbance measurements can be influenced by 

changes in the source water [1]. The accuracy of the water quality measurements can 

be affected if the content such as turbidity or organic matter varies after the instrument 

has been calibrated to a particular water matrix [41]. Corresponding laboratory data 

should cover the seasonal variations of the site-specific water source for calibrating 

the instruments. Regular validations of the online measurements are needed to 

eliminate temporal drifts and maintain accuracy. The re-calibration of particle 

compensation could be complicated if the water matrix varies significantly and lacks 

support from experts.  

Water operators may face various challenges in the use of the online UV-Vis 

instrument, including instrument maintenance, installation, data processing, and 

variability in parameter performance. Typical issues and solutions associated with the 

online UV-Vis spectrophotometers are summarised in Table 2-4. An example of 

installation issues of the online instrument is the accelerated probe corrosion issue 

caused by the jetty cathodic protection system in monitoring river water [82]. The 

solution to this problem was to use an ‘on-demand’ pump sampling system to protect 

the instrument from corrosion, reduce fouling by silt and biofilm, and reduce the 

maintenance requirements. 

Potential data storage and processing could be problematic in the online monitoring 

using the UV-Vis instruments. Online instruments can collect and store some acquired 

data but are not able to collate the data for easy access and interpretation. Pre-

processing of the UV-Vis spectra data is required to assure the data quality, including 

the removal of faulty spectra and outliers, as well as the performance of particle 

compensation. The issue of data processing is that standard data storage and analysis 

programs such as Microsoft Excel cannot handle the large volume and high 

dimensional complexity of the UV-Vis spectra data. Development has been made in 

data processing with specialised tools to tackle the challenges [78]. An example of the 

specialised software, Visual Basic 6.0, has functions such as selective display of water 
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quality parameters, automatic detection of invalid data, automatic deletion of invalid 

data, the exportation of data from selective periods, and also data resolution options 

that allows easier plotting of long-term data [38]. Advanced systems need to be 

suitable for instrument operation in the long term. Expertise is needed to design and 

troubleshoot the program, and the data analytic system is needed to link with the 

control system, such as SCADA. An open-source Python toolbox called 

‘AbspectroscoPY’ was developed for pre-processing and analysis of the large volume 

of raw UV-Vis absorbance time-series data [10]. The toolbox has the functions of 

automated outlier detection and removal based on the interquartile range. Some online 

UV-Vis Spectrophotometers only provide water quality parameter data, in which case 

a simple data logger can be built to manage data collections. For example, a web data 

extraction was built with a Python library and data store to automatically monitor the 

water quality of reservoirs [31].  

Table 2-4 Challenges and solutions of using the online UV-Vis spectrophotometers. 

Challenges Causes Solutions Source 

Installation issues 

 

Probe corrosion issue Use ‘on-demand’ pump 

sampling system  

[38] 

Measurement 

accuracy 

Missing calibrations 

Low water level 

Proper calibration in-situ and 

maintenance, 

Pump water to the instrument 

[93] 

Detection difficulty Challenging nature of 

the source water 

Site-specific compensation,  

Regular maintenance, 

Select the correct pathlength, 

Develop surrogate parameters 

[41, 82, 90]  

Data processing Large volume of data, 

Data type, 

Faulty data 

Use or develop specialised 

tools, 

Expertise 

[10, 38, 78, 90] 

Maintenance cost Calibration issue Use alternative particle 

compensation method, 

Provide training for 

maintenance skills 

[38] 

 

To achieve the best outcomes of water quality monitoring and process control using 

online UV-Vis sensors, the following operation steps are needed: (1) the instruments 

should be calibrated for new sites or source water change over, (2) pre-treatment of 

the UV-Vis spectra should be performed to eliminate the errors and particle effect, and 
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(3) forecast methods should be developed to employ the online monitoring in real-time 

for water quality monitoring and water treatment process control. There are two 

approaches to applying the online UV-Vis instruments for water quality 

measurements: direct water quality parameter measurements from the built-in 

algorithms and indirect measurements through the combinations of chemometrics and 

UV-Vis absorbance time series from the instruments. 

2.4.3 Future Research of Online UV-Vis Spectrophotometers 

The future trend of the application of online UV-Vis instruments is that the instrument 

will be a key component for water quality monitoring as a part of drinking water 

quality management. As most of the reported studies on the use of online UV-Vis 

instruments were conducted in lab- or pilot-scale, future work is needed particularly 

for large-scale applications such as field applications. To have correct measurements, 

it is necessary to have trials when the instruments are used for new sites. A site-specific 

particle compensation (calibration) may be needed. The difference in the methods of 

determination of various water quality parameters is also a challenge for practical 

applications. Further studies are necessary to find out the best solutions for the specific 

applications. A possible solution is the detection of water quality parameters based on 

multiple data fusion technology. It evaluates the analysis of different water quality 

parameters data and extracts more completed information than a single data source 

[15].  

Future research needs to include the progress in the field application of UV-Vis 

instruments. Real-time monitoring using UV-Vis instrument combined with advanced 

data processing can provide real-time measurements for rapid data analysis, which in 

turn, contributes to the real-time water quality management system. Integration of the 

instrument and data analytics for data pre-treatment and processing is a key factor for 

measuring UV-Vis spectra in real-time [15], allowing anomaly detection and building 

early warning systems. Data analytics of water quality data using the UV-Vis 

instruments combined with data platforms have capabilities to automatically analyse 

and correct data in real-time, then predict to improve water quality monitoring and 
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process control. Since each water quality detection method based on the UV-Vis 

spectra has its strengths and drawbacks, multiple methods should be conducted to 

assess their performance and analyse which methods can be used to construct decision 

support tools for the optimisation of a particular WTP [81]. The future application of 

the UV-Vis instrument also includes exploring the use of raw spectra as inputs to 

determine the measurements of other water quality parameters. With the assistance of 

chemometrics such as PLS and artificial neural networks [61], more accurate 

measurements can be obtained [2]. 

2.4 Conclusions 

This review covers the practical aspects of the employment of online UV-Vis 

spectrophotometers for water quality monitoring and process control, particularly, 

techniques for industrial applications. The recent studies on online UV-Vis 

spectrophotometers for drinking water quality management have been discussed. 

Commonly employed online UV-Vis instruments for drinking water were briefly 

introduced. Water quality parameters, including UV254, colour, DOC, turbidity and 

nitrate, can be directly generated from the built-in algorithms of the online UV-Vis 

instruments. Site-specific calibrations can be conducted to improve the accuracies of 

the measurements if the generic built-in algorithms are under-performing for a water 

source. Alternative particle compensation methods to the built-in particle 

compensation method were detailed. These methods are based on the UV-Vis spectra 

of water and chemometrics which offer simplicity and flexibility in removing particle 

effects from the measurements. Various techniques of anomaly detection and early 

warning were also discussed to monitor water quality at the source or in the distribution 

system for water quality control as a part of the drinking water quality management 

system. As most studies of online UV-Vis instruments in the drinking water area were 

in the lab- and pilot- scale, future work is needed particularly for industrial-scale 

applications. Issues and potential solutions to using the online instruments were 

provided. Future research also needs to work towards the integration of early warning 

and real-time water process control systems for water quality management. 
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Chapter 3                                                                                                 

Evaluation of the Impact of Suspended Particles on Water Quality 

Measurements Using A Submersible UV-Vis Spectrophotometer 

 

• Software particle compensation is an alternative to physical 

filtration 

• Particle concentrations and character can affect software 

compensation accuracy 

• Correlations were determined between measurements of lab and 

field instruments 
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Online water quality monitoring systems are progressively used by water utilities to 

manage water treatment operations. Online water quality monitoring using a UV-Vis 

spectrophotometer is one of the popular options as it does not require sample pre-

treatment or reagents [1]. Some submersible UV-Vis spectrophotometers have built-

in generic particle compensation algorithms to remove the physical filtration step [2]. 

However, industrial applications of using online instruments have experienced 

underperformance of the built-in algorithms and difficulty to obtain accurate 

measurements of water quality [3-7]. The study of this chapter explores the influence 

of suspended particles on the measurements of a submersible UV-Vis 

spectrophotometer as well as the performance of the built-in particle compensation 

technique under laboratory-controlled conditions.  

This chapter provides in-depth knowledge to understand the impact of suspended 

particles on the measurements of water quality with a submersible UV-Vis 

spectrophotometer. Particle contributions to the UV254 measurements of water samples 

varied differently when particle types or concentrations changed. The results indicated 

that the performance of built-in generic compensation algorithms of the submersible 

UV-Vis spectrophotometer depends on the water matrix. Particle contributions to the 

UV-Vis measurements vary when particle type or particle concentration changes. 

These findings from this research provide evidence that the particle influence on the 

UV-Vis measurements is source-water dependent. It helps users to understand the 

behaviour of submersible UV-Vis spectrophotometers and why the built-in generic 

calibration does not generate comparable measurements in most cases. 

The following content of this chapter was published as a technical paper in the Journal 

of Environmental Science and Pollution Research, 28(10), pp.12576-12586, as shown 

in Appendix C. 
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3.1 Introduction 

Water utilities are progressively using online water quality monitoring systems to 

manage the operations of water treatment plants (WTPs) because of the increasingly 

strict regulations and advances in technologies. Online water quality monitoring 

eliminates chemical contaminants due to minimising sample handling and allows 

continuous monitoring in real-time. Online water quality monitoring may provide 

decision-making information for early warning responses [8, 9]. The online UV-Vis 

spectrophotometer is a popular choice for water utilities to monitor water quality as it 

does not require sample pre-treatment or chemical reagents [10]. There are several 

commercially available systems, such as submersible UV-Vis spectrophotometers. 

Some submersible instruments provide generic calibrations with built-in particle 

compensation algorithms [11]. These algorithms were developed using advanced 

computing techniques, such as partial least squares, to establish the relationship 

between UV-Vis spectra and laboratory measurements of water samples. They 

extracted information from the spectra to determine measurements of certain water 

quality parameters such as UV254, colour and dissolved organic carbon (DOC). The 

algorithms were developed based on hundreds of datasets containing both UV-Vis 

spectra and reference laboratory data [11]. However, the details of the algorithms are 

proprietary and are not provided by the manufacturers.  

Peer-reviewed studies have documented various methods of compensating particle 

effect on the UV-Vis measurements of water quality using the submersible UV-Vis 

spectrophotometer. Algorithms were built in the spectrophotometer based on the 

chemical compositions and the morphology features of UV-Vis spectra obtained from 

wastewater samples, which were used to eliminate measurement derivation [7]. The 

fourth derivative spectrum was used to eliminate the interference of particles in the 

measurements of total organic carbon for seawater [12]. Additionally, partial least 

squares regression was employed to eliminate the particle effect on measuring water 

quality in urban drainage systems [13]. Moreover, a multiple linear regression method 

was adapted to remove the particle effect on the UV-Vis spectra of brackish water for 

rapid measurements of multiple material concentrations [14].   
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Some research findings showed that particle compensation of submersible UV-Vis 

spectrophotometers is source water dependent and site-specific calibrations are 

required to obtain accurate measurements [11, 15-19]. A study on the determination 

of water quality for wastewater samples concluded that the calibration of the 

submersible instrument needs to be matched with the specific wastewater type in some 

situations [16]. Comparable water quality results were gained from a study on 

monitoring water quality of surface waters in the field using a submersible instrument 

with a multilinear calibration method. It was found that the calibration was water 

matrix dependent and recommended to use site-specific calibration to improve the 

accuracy of the quantification. Another field study using submersible UV-Vis 

spectrophotometers to monitor groundwater revealed that the significant fluctuations 

of water quality could affect the accuracy of the water quality measurements and long-

term monitoring could be limited by particle compensation [17]. A customised 

calibration was conducted for a submersible spectrophotometer to measure water 

quality in a forested catchment and comparable results were achieved [19]. A site-

specific calibration was performed for a submersible instrument using the built-in 

compensation algorithms to measure the water quality of stream water but 

concentrations were overestimated because of inaccurate turbidity compensation [18]. 

Thus, accurate site-specific calibration is important for water quality monitoring.  

To obtain accurate water quality measurements using submersible UV-Vis 

spectrophotometers can be challenging and it depends on their application, particularly 

for real-time monitoring and process control. Submersible UV-Vis spectrophotometers 

have been implemented at some water utilities to monitor water quality online for the 

assistance of water treatment process control [20-22]. However, measurement issues 

tend to occur to the submersible instruments when water quality changes dramatically 

or water source changes [4]. Industrial applications of the submersible instruments 

have encountered particle compensation issues such as under-compensation or over-

compensation or even failure to generate reasonable measurements [4-7, 22]. Industrial 

experience and peer-reviewed studies show that the impact of particles is source water 

specific and generic calibrations could not adequately account for the differences in 

large water quality changes or between different types of water [5, 6, 23-25].  
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Even though there are studies on improving the accuracies of submersible UV-Vis 

spectrophotometers with site-specific calibrations, the studies of characterised particle 

impact on the measurements are limited. There is only one reported study of particle 

effect on the measurements of a UV spectrophotometric nitrate sensor [26, 27]. This 

chapter provides a systematic study utilising six types of stimulated water samples 

with both artificial and natural water particles for each type of water. The research aim 

was to study the particle effect on the measurements of a submersible UV-Vis 

spectrophotometer. This work also determines whether the built-in compensation 

method can generate comparable measurements as the physical filtration method or 

not under lab-controlled conditions 

3.2 Materials and Methods 

3.2.1 Materials 

Three types of particles were chosen including, kaolin clay (P1), Myponga silt (P2), 

and Hope Valley silt (P3). P1 particles are clay minerals (Chem-Supply Pty Ltd, 

Australia) that were chosen because they are standardised particles. P2 particles are 

silica-based and were collected from the catchment of the Myponga Reservoir in South 

Australia (SA). P2 particles were selected as they represented the typical particles from 

an enclosed water catchment of reservoirs in SA. P3 particles are clay-based, which 

were sediment from Hope Valley WTP in SA. P3 particles were selected as they 

represented particles of a surface water catchment of a chain of reservoirs in SA. P2 

and P3 were dried in an oven at 40 oC overnight before use.  

Two types of water, Mill-Q water (W1) and Myponga treated water (W2), were selected 

as water-bases for making up the simulated water samples. W1 was collected from a 

Milli-Q Gradient system (Millipore, France) with a conductivity of 0.10 µS/cm at 

25°C. Myponga WTP utilises dissolved air flotation and filtration process (DAFF) 

with free chlorine disinfection, to treat source water into drinking water. W2 was 

collected from Myponga WTP after the filtration process and before the chlorination 

process. W1 was pure water that was used to eliminate interference from other solutes. 
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W2 contains residual UV-absorbing material. It was used to assess any additional 

matrix effects that may confound accurate particle compensation. 

3.2.2 Preparation of Water Samples 

Six types of concentrated stock solutions were prepared: 5 g of P1, P2 and P3 particles 

were suspended in 1 L of W1 water-base, respectively; 5 g of P1, P2 and P3 particles 

were also suspended in 1 L of W2 water-base, respectively. Each type of the stock 

solution was diluted with W1 or W2 water-base to generate five different levels of 

turbidity to make up 1 L of each sample, which was defined as A, B, C, D and E. The 

turbidity of the water samples was within 2 - 110 NTU, which was based on the 

turbidity range of water sources in South Australia [28]. Six types of water samples, 

which were made up with three kinds of particles (P1, P2, and P3) and two types of 

waters (W1 and W2), are defined as P1W1, P2W1, P3W1, P1W2, P2W2 and P3W2 based 

on their combinations. The water samples were organised into unfiltered and filtered 

water samples. Water samples with P1 were considered the control as P1 particles were 

composed of pure inorganics. Water samples with P2 and P3 were simulated natural 

surface waters, containing both organic and inorganic solids.  

The selected six types of simulated water samples, in the combinations of different 

particles and water-bases, represent different types of water quality. All measurements 

of water samples were made in triplicate and averaged. Water samples containing P1 

were used as reference samples as they were highly reproducible. The simulated water 

samples with P2 or P3 type particles were used to represent local surface source waters.  

3.2.3 Sample Analysis 

Water quality parameters, particle size distribution, and inorganic chemical analysis 

were conducted in laboratories accredited by the National Association of Testing 

Authorities (NATA), Australia. All the water samples were analysed at room 

temperature.  

Water quality 
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Turbidity was measured in NTU without physical filtration using a turbidimeter 

(2100AN, Hach, USA). Prior to UV254, colour at wavelength 456 nm (true colour456) 

and dissolved organic carbon (DOC) measurements, water samples were filtered 

through 0.45 μm polyethersulfone (PES) membrane filters (ANPEL Laboratory 

Technologies, China) to remove all the non-dissolved particles under a constant 

vacuum. 100 ml of water samples were filtered each time to minimise the effects of 

membrane fouling [29]. UV254 and colour456 were analysed with a bench-top UV-Vis 

spectrophotometer (Evolution 60, Thermo Scientific, USA) using a standard method 

[30]. DOC was determined using a total organic carbon analyser (900, Sievers 

Instruments Inc., USA) with a standard method [30].  

Particle size distribution  

Particle size distributions of the three types of particles in the Milli-Q water were 

analysed using a LISST-Portable particle counter (Sequoia, USA). Particle size 

distribution data were collected by following the operational instruction of the 

manufacturer. The particle distributions were analysed as particle volume 

concentration based on the particle size increment. 

Inorganic chemicals 

Chemical compositions of three types of particles in Milli-Q water (2g/L) including 

metals and silica were analysed using Inductively Coupled Plasma - Mass 

Spectrometer (Agilent ICP-MS, 7500cx) instruments following the standard method 

[30]. Nitrogen as nitrate and nitrite were analysed using a discrete analyser according 

to the standard method [30].  

Submersible UV-Vis spectrophotometer analysis 

A submersible UV-Vis spectrophotometer (spectro::lyser; s::canGmbH, Austria) with 

a 35 mm pathlength was used to analyse the unfiltered and filtered water samples. The 

water samples were measured within a range of 200 - 750 nm with 2.5 nm intervals. 

The submersible UV-Vis spectrophotometer was connected to a controller (con::stat) 
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which had an installed data processing software (ana::pro). The submersible UV-Vis 

spectrophotometer could measure the unfiltered water samples directly as the software 

has built-in generic particle compensation algorithms. The software can also convert 

the UV-Vis spectrum into water quality parameters such as compensated UV254. Zero 

or baseline check was performed using Milli-Q water before use. The water samples 

were measured by filling the sample waters in the measurement port of the submersible 

instrument. The port and lens were cleaned before each measurement to make sure that 

progressive fouling and sample carryover did not impact the measurements. The 

outputs of the submersible instrument were stored in the controller and contained 

uncompensated UV-Vis spectra and derived water quality parameters. 

3.2.4 Data Processing 

Particle contribution is the amount of particle impact on the measurements, using a 

submersible UV-Vis spectrophotometer, which needs to be compensated to get 

accurate measurements. The particle contribution to UV254 measurement of the 

submersible instrument was calculated as a subtraction between the absorbance of 

unfiltered and filtered same water samples. Particle contribution to the UV-Vis 

spectrum of the submersible instrument was also calculated as a subtraction between 

the absorbance of a spectrum for unfiltered and filtered water samples. An illustration 

of the calculation of the particle contribution is shown in Figure 3-1.  

 

Figure 3-1 An illustration of particle contribution to the spectrum of a water sample. 
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The UV254 measurements of the filtered water samples using a bench-top 

spectrophotometer were defined as lab UV254. The UV254 of unfiltered water samples 

measured by the submersible instrument with the built-in generic calibration were 

referred to as compensated UV254. The compensated UV254 was compared with the lab 

UV254 to evaluate the performance of built-in generic algorithms of the submersible 

instrument.  

3.3 Results and Discussion 

3.3.1 Characteristics of Particles and Water Samples 

Particle size distribution and chemical compositions of P1, P2, and P3 in Milli-Q water 

were analysed. The results are shown in Table 3-1 and Figure 3-2. Each type of particle 

had distinguishable particle size distribution. P1 particles had the smallest mean 

particle size of 2.20 µm among the three types of particles. 90% of the P1 particle size 

was 0.85 - 8.65 µm. P2 particles had the largest mean size of 14.6 µm, while the 

majority (90%) of P2 particle size varied from 2.27 to 103.72 µm. P3 particles had a 

mean size of 7.6 µm and 90% of P3 particles had a size range between 2.30 and 32.55 

µm. Thus, natural particles (P2, P3) generally had larger particle sizes than the standard 

particle (P1).  

Table 3-1 Particle size of Kaolin (P1), Myponga (P2) and Hope Valley (P3) particles in the 

water. 

 

Particle Type Mean Size 

(µm) 

Std of particle size 

(µm) 

Size range 

(µm) 

90% size 

(µm) 

P1 2.2 21.8 0.37- 14.22 0.85 – 8.65 

P2 14.6 54.2 1.19 - 237.35 2.27 - 103.72 

P3 7.6 16.2 1.01-63.11 2.3 - 32.55 
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Figure 3-2 Particle size distributions of Kaolin, Myponga and Hope Valley particles. 

Chemical contents of the particles in water are shown in Table 4-2. Each type of 

particle sample was prepared in Milli-Q water with the same particle concentration of 

2.0 g/L. For metal content, P1 particles contain only 0.03 mg/mg of Al. P2 particles did 

not have any reportable amount of metals. P3 particles contain low levels of Al, Ca and 

Fe which were less than 0.10 mg/mg. The nitrogen content of total nitrogen of nitrate 

and nitrite for all three particles was below the detection limit. The low level of 

nitrogen content is common in SA water sources [28]. Metal and nitrogen contents 

were analysed because high concentrations of inorganic species such as iron and nitrate 

could interfere with the UV absorbance of water [31]. However, there was no evidence 

that metal and nitrogen at very low concentrations in the water samples can affect the 

UV measurements in this work. Both water samples with P1 particles and water 

samples with P2 particles had low alkalinity as CaCO3 (<50mg/L), while water samples 

with P3 particles had the highest alkalinity (200mg/L). A previous study used the UV-

Vis spectrophotometric method to determine water quality and achieved comparable 

results. The instrument was robust in the high alkalinity condition with water alkalinity 

up to 459 mg/L [32]. Therefore, the alkalinity of the water samples containing P1, P2 

or P3 could not affect the measurements of UV-Vis spectrophotometers. 
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Table 3-2 Inorganic chemistry of particles in Milli-Q water: Kaolin (P1), Myponga (P2) and 

Hope Valley (P3). 

Particle Type Metal 

(mg/mg) 

N as (NO2
- + NO3

- ) 

(mg/mg) 

Alkalinity as CaCO3 

(mg/L) 

P1 Al 

Ca 

Fe 

P 

Na 

Mg 

0.03 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 20 

P2 Al 

Ca 

Fe 

P 

Na 

Mg 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 40 

P3 Al 0.07 0.00 200 

 Ca 0.01 

Fe 0.03 

P 0.00 

Na 0.00 

Mg 0.00  

 

The water quality parameters include turbidity, lab UV254, true colour456, DOC and 

pH, of all simulated water samples were analysed using the laboratory standard 

methods, and the results are shown in Table 3-3. In general, all six types of simulated 

water samples had different lab UV254 responses. The lab UV254, true colour456, and 

DOC of P1W1 water samples were close to zero as P1 is purely clay mineral. All the 

P1W2 samples had constant values of lab UV254, true colour456, and DOC as W2 water-

base contain natural organics.  
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Table 3-3 Water quality characteristics of six types of simulated water samples that were made up of 

three types of particles (P1, P2, and P3) and two base-waters (W1 and W2).     

Water 

samples  

 

Sample 

level 

Particle 

Conc. 

Turbidity  

(NTU) 

Lab UV254  

(m-1) 

True 

Colour456  

(m-1) 

DOC 

(mg/L) 

pH  

mg/L Unfiltered Filtered Filtered Filtered Unfiltered 

 mean SD mean SD mean SD mean SD mean SD 

W1 - 0 <0.1 0 <0.1 0 <0.1 0 <0.1 0 7.0 0 

P1W1 A 2.5 2.3  0.2 0.1   

0.1  

0.1 

0.1 

0.1 

0 <1 

<1 

<1 

<1 

<1 

0 0.1 0 5.6 0 

B 25 21  0.1 0 0 0.1 0 5.6 0.1 

C 50 43  0.9 0 0 0.1 0 5.5 0.1 

D 100 85  0.6 0 0 0.1 0 5.6 0.1 

E 125 105  1.0 0 0 0.1 0 5.6 0.1 

P2W1 A 25 2.3 0.1 0.1 

1.1 

0 <1 0 0.2 0 6.5 0.1 

B 250 21 0.5 0 3 0.1 0.4 0 6.3 0.1 

C 500 44 0.4 2.2 0 4 0.1 0.7 0 6.2 0.1 

D 1000 86 1.1 4.3 0 7 0.1 1.2 0 6.1 0.1 

E 1300 107 1.0 5.3 0 11 0.2 1.5 0 6.0 0.1 

P3W1 A 5 2.4 0.1 0.0 0 <1 0 0.2  0 8.0 0 

B 50 21 0.6 0.1 0 <1 0 0.3 0 8.2 0.1 

C 100 43 0.7 0.3 0 2 0.1 0.5 0 8.3 0.1 

D 200 85 1.1 0.8 0 3 0.1 0.7 0 8.2 0.1 

E 250 106 1.0 1.0 0 5 0.2 0.8 0 8.3 0.2 

W2 - 0 0.2 0.0 10.7 0 6 0 5.1 0 7.1 0 

P1W2 A 5 2.3 0.0 11.3 0 6  0 5.2 0 7.1 0 

B 50 21 0.3 11.3 0 6 0 5.2 0 7.1 0.1 

C 100 44 0.5 11.3 0 6 0 5.2 0 7.2 0.1 

D 175 86 0.4 11.3 0 6 0 5.3 0 7.1 0.1 

E 225 107 1.0 11.3 0 6 0 5.2 0 7.1 0 

P2W2  A 25 2.4 0.1 11.2 0 7 0.1 5.2 0 6.7 0.1 

B 250 21 0.2 11.6 0 8 0 5.3 0 6.6 0.1 

C 500 43 0.7 12.1 0 9 0.2 5.4 0 6.8 0.1 

D 875 85 0.5 13.1 0 10 0.1 5.7 0 6.7 0.1 

E 1125 106 0.8 13.6 0 11 0. 5.8 0 7.0 0.1 

P3W2 A 5 2.3 0.1 11.4 0 7 0.1 5.2 0 7.1 0.1 

B 50 21 0.3 11.6 0 7 0.1 5.3 0 7.2 0.1 

C 100 44 0.7 11.8 0 8 0.1 5.5 0 7.3 0.1 

D 175 86 0.9 12.3 0 8 0.1 5.8 0 7.3 0.1 

E 225 107 0.8 12.5 0 9 0.2 5.9 0 7.2 0.1 

         

Note: measurement error was shown as standard deviation (SD). 

All the simulated natural water samples with P2 and P3 particles contain organics. Lab 

UV254 measurements of P2W1, P3W1, P2W2, and P3W2 samples were from 0.1 to 5.3 m-

1, 0.0 to 1.0 m-1, 11.2 to 13.6 m-1, and 11.4 to 12.5 m-1, respectively. Water samples 

with the W2 water-base had higher values of lab UV254, true colour456 and DOC than 
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the water samples with the W1 water-base. Myponga treated water was employed as 

the W2 water-base, which had a high DOC content that was in line with the historical 

data [33]. 

Water quality results in Table 3-3 indicate that the pH of all the water samples was 

within a range of 5.5 to 8.3, which is similar to the reported pH range (6 to 8.5) of most 

surface water in SA [28]. There was no significant influence of water sample pH on 

the lab UV254. Thus, the pH of the water samples was not adjusted. Weishaar et al. [31] 

reported that the minor pH effect on UV absorbance measurements was observed for 

river water samples. A study also concluded that only relatively high or low pH had 

impacted on the UV absorbances of the lake water samples [34].  

3.3.2 Relationships between Water Quality Parameters and UV Measurements 

Particle compensation is also called turbidity compensation for the measurements of 

water quality using UV-Vis spectrophotometers. Turbidity measures light scattering 

which is interactions between light and suspended particles. Suspended particles can 

cause light scattering and affect the light absorption of the water samples. Accordingly, 

turbidity has a major and direct connection to the measurements of UV-Vis 

spectrophotometers. UV254 is commonly used as a surrogate to determine the 

concentration of organic matter in water. Therefore, to understand the UV response of 

water samples, we investigated relationships between water quality parameters, such 

as turbidity and DOC, and UV254 measurements using a bench-top UV-Vis 

spectrophotometer.  

Lab UV254 is plotted as a function of turbidity for all six types of simulated natural 

water samples which is shown in Figures 3-3a and 3-3b. As the increase in turbidity 

of P1W1 and P1W2 water samples, lab UV254 measurements were constant (Table 3-3). 

P1 particles were purely inorganics and insoluble in water which can be removed by 

physical filtration. There were statistically robust linear relationships between 

turbidity and lab UV254 for P2W1, P2W2, P3W1, and P3W2 water samples with R2 ≥ 0.99. 

As the turbidity level increased, the lab UV254 of the water samples increased linearly. 

The slopes and intercepts of the water samples with P2 type particles were different 
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from that of water samples with P3 type particles. For water samples with P2 and P3 

particles, water samples with W1 water-base had intercepts of almost 0 m-1, whereas 

the intercepts of water samples with the W2 water-base were around 11 m-1. It was 

because the W2 water-base contains high levels of dissolved organics.  

UV254 is also plotted against DOC for all the water samples, shown in Figures 3-3c and 

3-3d. The relationship between DOC and UV254 of P1W1 and P1W2 water samples was 

not taken into consideration, as P1 type particles do not contain any organics. For all 

P2W1 and P2W2 water samples, an increase in DOC leads to an increase in UV254. DOC 

had linear correlations with the UV254 for P2W1, P2W2, P3W1 and P3W2 water samples 

with R2 of 1.00 and 0.99, respectively, with different slope and intercept for each water 

type. The slopes of water samples containing particle type P3 were lower than the water 

samples containing particle type P2, which could be explained by the UV of 

supracolloidal particles having lower slopes than fine colloidal particles [35]. Thus, 

different types of simulated natural waters had different linear relationships between 

DOC and UV254.  
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a.

 

b.

 

c.

 

d.

 

Figure 3-3 Correlations between turbidity and lab UV254 of simulated natural water samples 

are shown in a) and b); relationships between DOC and lab UV254 of simulated natural water 

samples are shown in c) and d). P2W1, P2W2, P3W1, and P3W2 were simulated water samples 

that were made up of two types of particles (P2 and P3), and two types of water-bases (W1 and 

W2), respectively. 

Overall, different natural water samples had different lab UV254 responses using a 

bench-top UV-Vis spectrophotometer combined with a physical filtration method. The 

UV response of the turbidity for the filtered water samples was caused by DOC. In 

general, particle characters that affect measurements of bench-top UV-Vis 

spectrophotometers are mainly DOC. There were linear relationships between 

turbidity and UV254 as well as DOC and UV254 of surface catchments water in SA, such 

as river water and reservoir water. The findings were supported by two reported 

studies. Mamane et al. [36] reported that with the increase of particle concentration in 

the water, the associated UV absorbance increase linearly. UV254 measured by the 

bench-top UV-Vis instrument was changed directly with the change of DOC in the 

river waters [37]. 
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3.3.3 Particle Contribution to Measurements of A Submersible UV-Vis 

Spectrophotometer 

Particle contribution was calculated based on the measurements of a submersible UV-

Vis spectrophotometer as mentioned in section 2.4. According to the results present in 

Figure S3-1 in Supporting Information (SI), the turbidity of all six types of water 

samples increased when the particle concentrations increased. The particle 

contribution to UV-Vis spectra and UV254 for the six types of water samples with five 

different turbidity levels (A, B, C, D, E) are shown in Figures 3-4a, S3-2 and S3-3 in 

SI. As water turbidity increased, the particle contributions in P1W1 also increased. 

Similarly, an increase in turbidity was associated with the increase in the particle 

contributions to P2W1, P3W1, P1W2, P2W2, and P3W2 water samples. Thus, an increase 

in the turbidity of water samples can lead to an increase in particle contribution. P3 

particle had the highest contribution to the UV-Vis spectra and P2 had the least particle 

contribution, among the three types of particles, for each turbidity level of water 

samples: turbidity level A to turbidity level E. 

For UV254 measurement, the particle contribution of each water sample was 

distinguished according to their absorbance values in Figures 3-4b and S3-3 (in SI). 

At the same turbidity level in the water samples with W1 water-base, P3 type particles 

had the largest particle contribution to UV254 measurements, while P2 particles had the 

lowest particle contribution to the UV254 measurements. Interestingly, in the water 

samples prepared with W2 water-base, P1 particles were found to demonstrate a 

slightly higher particle contribution to the UV254 measurements than P3 particles. The 

difference between P2 had the lowest particle contribution to the UV254 measurements.  

Thus, the influence of the particle contributions on the UV254 measurements could be 

dependent on the water matrix.  



 

79 

 

a.

 

b.

 

Figure 3-4 a) Particle contributions of P1W1 water samples to spectra at five different 

concentration levels; (b) Particle contribution of different types of waters to UV254 

measurements. Particle concentration levels were from low to high (water sample A to water 

sample E). 

Overall, the particle contribution to the UV-Vis measurements is dependent on the 

particle type and particle concentration. As particle concentration increases, suspended 

particles in the water cause light scattering. Particle contributions caused by the light 

scattering of the suspended particles are common in natural waters. Light scattering 

could significantly affect the UV-Vis measurements, which can be influenced by the 
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particle concentration, particle type and particle size [36-38]. For small particles, light 

scattering has a linear relationship with particle concentration. Thus, an increase in the 

particle concentration leads to an increase in particle contribution to the UV-Vis 

measurement. Particle type influences the light scattering which can, in turn, affect the 

particle contribution. Particle size could largely affect the intensity of the scattering 

light. Increase of the small particle size, the intensity of the scattered light is likely to 

increase. P1 particle type was pure clay, P2 particle type was silica-based and P3 particle 

type was clay-based. Both P2 and P3 particles were collected from the natural surface 

source water. Clay particle has 50% of light scatter away and particles from natural 

waters have 20%-30% light scatter away [37]. The differences in particle sizes and 

particle types contribute to the different light scattering effects, in turn, lead to the 

difference in their particle contribution. It can be explained that P1 and P3 had much 

higher particle contributions to the UV-Vis measurements than P2.  

Understanding the particle contribution caused by the particle types and 

concentrations, which assists to discover the built-in compensation behaviour of 

submersible UV-Vis spectrophotometers. The particle contribution to the 

measurements of water samples could be determined by particle compensation, which 

can be conducted to remove the particle interference in the measurements of water 

quality [12]. The particle contributions can be varied with the water sources type and 

concentration, thus leading to corresponding changes in measurements of a 

submersible UV-Vis spectrophotometer. Thus, a universal particle compensation is not 

always effective. 

3.3.4 Evaluation of the Performance of A Submersible UV-Vis 

Spectrophotometer 

The performance of the built-in generic particle compensation algorithms of the 

submersible instrument was evaluated in an offline mode, by comparing it with the 

bench-top instrument. The UV254 of water samples measured by the submersible 

instrument were compensated for the particle effect using the built-in generic 

calibration (compensated UV254). The lab UV254 of the same water samples measured 
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by the bench-top spectrophotometer were used as references. Compensated UV254 and 

lab UV254 of all the water samples were plotted as a bar chart and are shown in Figure 

3-5 and Figure S3-4 (in SI). UV254 was used as it is an essential absorbance-based 

water quality parameter for the concentrations of organic matter and disinfection by-

product precursors in the water.  

According to Figure S3-4 in SI, the compensated UV254 was much lower than the lab 

UV254 for P1W1 and P1W2 water samples. The compensated UV254 of P1W1 and P1W2 

water samples were highly over-compensated by the built-in generic compensation 

algorithms, which was probably because the P1 contained purely inorganics. The built-

in compensation algorithms were based on hundreds of natural water samples, which 

may not be suitable for compensating water contains purely inorganics. For P2W1 

water samples, the compensated UV254 was slightly lower than the lab UV254 as shown 

in Figure 3-5, which indicates the submersible instrument slightly over-compensated 

the UV254 measurements. For P2W2 water samples, the compensated UV254 seemed 

close to the values of lab UV254. This finding was agreed with the conclusion that the 

submersible instrument was effective in compensating for the particle effect on the 

measurements [26]. It was found that the compensated UV254 had strong linear 

correlations with lab UV254 with a slope of 1.34 and 1.71 and R2 of 0.99 for P2W1 and 

P2W2 (Figure S3-5 in SI). It is interesting to note that the compensated UV254 was 

higher than lab UV254 for some types of water samples whereas was lower than lab 

UV254 for other types of water samples. There are also linear relationships between 

compensated UV254 and lab UV254 for water samples with P3. An increasing linear 

relationship was found for P3W1 water samples whereas a decreasing linear 

relationship was found for P3W2 water samples.  
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Figure 3-5 Comparisons between UV254 measurements of submersible and bench-top UV-Vis 

instruments. Compensated UV254 is obtained from the outputs of a submersible UV-Vis 

spectrophotometer. Lab UV254 is measured using a bench-top UV-Vis spectrophotometer. 

P2W1 and P2W2 were water samples made up of P2 type particles and W1 or W2 water-bases. 

Overall, there were linear relationships between compensated UV254 and lab UV254 for 

all the simulated natural water samples with P2 or P3 particles. The built-in 

compensation algorithms of a submersible UV-Vis spectrophotometer do not always 

generate comparable compensated UV254 for natural water samples as the bench-top 

UV-Vis instrument. For natural waters, the built-in generic particle compensation 

methods may generate either under or over-compensated measurements. A previous 

study also reported the incomparable measurements of UV measurements of the built-

in generic algorithms for waters [16]. This work shows that particle compensation is 

source water specific and the site-specific particle compensation should be performed 
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when using the submersible instrument to measure water quality. Some scientists also 

believed that particle compensation based on the water matrix needs to be considered 

to achieve comparable measurements using the submersible instrument [7, 11, 13, 15, 

18, 39]. Industrial applications of using the submersible instrument to monitor water 

quality had experienced those the generic compensation algorithms were unable to 

generate accurate measurements for some water sources [4-7, 21, 22]. Particle 

compensation is one of the barriers to online instrument implementation in industrial 

applications. It is essential to perform site-specific particle compensation and establish 

the frequency of the compensation to achieve accurate measurements [40-43]. 

Therefore, it is recommended that the evaluation of the accurate measurements of the 

submersible instrument is conducted before using it to monitor water quality.  

3.4 Conclusion 

Laboratory-scale investigations were conducted to understand relationships between 

turbidity and UV254, DOC and UV254, and particle compensation behaviour of a 

submersible UV-Vis spectrophotometer. Six kinds of simulated waters, in the 

combinations of artificial standard particles, natural water particles, ultrapure water 

and treated water from a drinking WTP. Both turbidity and DOC were linearly 

correlated with UV254 measurements with R2 ≥ 0.99. Different types of simulated water 

samples had different UV absorbance responses. Particle contributions to the UV-Vis 

measurements not only vary when particle types changes but also particle 

concentrations change. The compensated UV254, measured by a submersible 

instrument with the build-in generic particle compensation algorithms, were compared 

with the lab UV254, tested by the bench-top instrument with the physical filtration 

method. The results showed that the built-in generic calibration compensation 

algorithms of the submersible instrument tend to generate under-compensated or over-

compensated UV254 for surface waters. These findings provide evidence that the 

particle influence on the measurements of the submersible instrument is source water 

dependent. It helps users to understand the behaviour of submersible UV-Vis 

spectrophotometers and why the built-in generic calibration does not generate 

comparable results in many cases.  
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3.5 Supporting Information 

a  

 

b  

 
 

c  

 
 

Figure S3-1 The linear relationships between particle concentrations and turbidity of water 

samples for six types of water samples: P1W1, P2W1, P3W1, P1W2, P2W2, P3W2. The water 

samples were made up of three kinds of particles (P1, P2, and P3) and two types of waters 

(W1 and W2). 
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Figure S3-2 Particle contributions to the measurements of UV254 for six types of water 

samples with five levels of concentrations for each type of water from low to high (water 

samples A to E). 
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Figure S3-3 Particle contributions of P1W2, P2W1, P2W2, P3W1, P3W2 water samples at five 

different turbidity concentration levels from low to high (water samples A-E). 
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Figure S3-4 Comparisons between the measurements of compensated UV254 and lab UV254, 

measured by a submersible and the bench-top UV-Vis instrument, for P1W1, P1W2, P3W1 and 

P3W2 water samples. 
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Figure S3-5 Comparisons between the measurements of a submersible and a bench-top UV-

Vis spectrophotometer: compensated UV254 and lab UV254. P2W1, P2W2, P3W1, and P3W2 were 

simulated water samples that were made up of two types of particles (P2 and P3), and two types 

of water-bases (W1 and W2), respectively. 
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Chapter 4                                                                                                      

Develop and Assess Particle Compensation Techniques for Online 

Water Quality Monitoring Using UV-Vis Spectrophotometer 

 

• Linear calibration methods can be used to correct different 

compensation techniques 

• The utilised three compensation techniques are comparable to the 

built-in compensation 

• The three compensation techniques are comparable to physical 

filtration method 
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This chapter presents research approach and progresses for the development of 

software techniques (surrogate parameters) to eliminate particle impact on the 

measurements. This is needed by the water industry as water utilities are suffering 

from measurement issues of using UV-Vis spectrophotometers for online water quality 

monitoring [1-5]. Particle compensation is a key component for online water quality 

monitoring and process control [6]. Thus, software techniques that were investigated 

and used for particle compensations, including single wavelength compensation, linear 

regression compensation and multiplicative scatter correction method for online UV-

Vis measurements using time series spectra data from water treatment plants.  

The results presented in this chapter reveal that these particle compensation techniques 

can provide reliable UV254 measurements for online water quality monitoring for water 

treatment. This chapter also shows the benefits of using the software compensation 

technique for site-specific compensation instead of relying on the instrument built-in 

algorithms for online water quality monitoring. The research explores the potential 

benefits of using online UV-Vis instruments for water quality management by 

improving online measurements using software compensations, which are able to 

replace physical filtrations (needed in laboratory-based measurements) to minimize 

maintenance requirements for both time and consumables. Moreover, it identifies that 

cost-effective simple UV-Vis sensors could be employed in the field to monitor water 

quality instead of using sophisticated full-spectrum UV-Vis instruments. 

The following content of this chapter was published as a technical paper in the Journal 

of Chemometrics and Intelligent Laboratory Systems, 204, p.104074, as shown in 

Appendix D. 
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4.1 Introduction 

Absorbance using UV-Vis spectroscopy at a wavelength of 254 nm (UV254) is an 

important water quality parameter. UV254 measures the concentration of organic matter 

and disinfection by-product precursors, which has been widely used by water treatment 

plant operators as a quick water quality measurement to control water treatment 

processes. Traditionally UV254 measurement relies on the laboratory analysis of water 

samples collected from ecosystem sites. This laboratory process frequently suffers 

from feedback delay and an inability to respond rapidly to water events through the 

water sample collection, transportation, storage and preparation [7]. Whereas, online 

water quality monitoring can provide quick responses to sudden water quality changes, 

which has been employed by some water utilities in recent years to manage water 

quality and assist water treatment process control [8].  

Conventional laboratory UV254 analysis requires a filtration step using membrane 

filters to remove particles in the sample and eliminate the particle interference on the 

ultra-violet and visible (UV-Vis) measurements. Mathematical algorithms are used to 

eliminate particle interference for UV254 measurements, adjusting the results 

equivalent to conventional laboratory measurement using filtration. The use of 

mathematical algorithms to eliminate the sample filtration step would be particularly 

useful for online UV-Vis spectrophotometer. The mathematical algorithms are even 

implemented into some commercial online spectrophotometers and these online UV-

Vis spectrometers can report UV254 as laboratory equivalent. However, the accuracy 

of particle compensation is still a major concern in terms of how the results could be 

comparable to analytical data using the conventional laboratory method for the 

variable water samples under different conditions.  

Particle compensation is called either solid compensation by some instrument 

manufacturers or turbidity compensation, as turbidity measures light scattering which 

is the interaction of light and suspended solids in the water. Suspended particles affect 

the light absorption and consequently influence the whole UV-Vis spectrum which 

leads to attenuation of the transmitted light intensity [9]. Studies show that there are 
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two types of particle compensation algorithms which can be used to remove the 

particle effect on the UV–Vis: compensation/subtraction technique and empirical 

modelling technique. The compensation technique is defined as the direct subtraction 

of absorbance of the single wavelength characterised by the particles in the water [10, 

11]. Tang et al. concluded that individual single wavelengths including 275 nm, 350 

nm, and 550 nm could be utilised to characterise the particles and successfully applied 

the compensation technique to remove the particle effect [12]. The compensation 

technique of correcting the turbidity by correlating with the blue shift was also reported 

as an option to eliminate the deviation and improve the accuracy of UV–Vis 

measurement in wastewaters [9].  

Empirical modelling approaches can also be used as an alternative to the compensation 

technique to obtain the laboratory equivalent results using the measured parameters 

and the corresponding spectra. Hu and Wang developed surrogate parameters based 

on the integration of spectra for different functional groups of compounds and then 

eliminated the turbidity impact by deducting the turbidity component from surrogate 

parameters [13]. A dynamic partitioning algorithm was used based on the fourth-order 

derivative spectrum to analyse and predict the groups of contaminants. Hu et al. 

analysed the impact of chemical compositions in wastewater samples and extracted 

the morphology features of their absorptive spectra to eliminate the measurement 

derivation [14]. Partial least square (PLS) calibration models have been computed with 

the fourth derivative UV-Vis spectrum to remove the particle effect on the detection 

of water quality multi-parameter in artificial seawater [15]. Torres and Bertrand-

Krajewski employed the partial least square to eliminate the particle effect on 

measuring chemical oxygen demand and total particles in urban drainage systems 

using Matlab software [16]. They commented that further tests for the application of 

the PLS method are needed to evaluate the robustness and variation of the regression. 

Empirical modelling using a multiple linear regression from the ‘lars’ package in the 

R software was adapted to remove the particle effect on the UV-Vis spectra of brackish 

water for rapid measurement of multiple material concentrations [17]. This study 

indicated that site-specific compensation should be developed individually for future 

applications. Besides, the instrument built-in compensation algorithm of some 
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commercial UV-Vis spectroscopy software is developed based on PLS to link the 

spectra and laboratory data [10]. However, the details of the built-in algorithm method 

and technique for these commercial online spectrophotometers are not accessible to 

the users. Most of the reported compensation methods are relatively complex and may 

need a long processing time to conduct the analysis, making these techniques 

unsuitable for online water quality monitoring [13]. Due to the complexity and poor 

adaptability of the aforementioned methods, a simple and easy technique for particle 

compensation is needed for online water quality monitoring using UV-Vis 

spectrometry. 

In this study, software compensation techniques including single wavelength (single 

point) and linear regression (multiple points) models were developed to remove the 

particle effect on the UV254 measurements. In addition, a well-established software 

compensation technique was also used to reduce the particle effect as a comparison. 

Online UV-Vis measurement systems were set up in two industrial water treatment 

plants with three water sources. The accuracies of the three compensation techniques 

were assessed through comparison with the instrument built-in compensation method. 

Bland-Altman analysis, a statistical analysis technique, was used to determine the 

agreement limits of the three compensation techniques as a comparison against the 

built-in algorithms.  

4.2 Material and Methods  

4.2.1 Water Sources  

Water quality data were provided by two Water Treatment Plants (WTPs), Anstey Hill 

WTP and Happy Valley WTP in South Australia for this study. Both WTPs employ 

conventional water treatment practices comprising coagulation, flocculation, 

sedimentation and filtration to produce drinking water for South Australia. Anstey Hill 

WTP plant has a switchable water source system, taking water from Millbrook 

Reservoir or River Murray water (via the Mannum-Adelaide pipeline). Happy Valley 

WTP has a single water source from the Happy Valley Reservoir with water 

originating from both the River Murray and local catchment areas. These two WTPs 
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were selected because of the differences in the water quality of the water sources. 

Three natural water matrices including Anstey Hill raw water (RW1), Happy Valley 

raw water (RW2) and Happy Valley treated water (TW), were selected as they 

represent different water qualities in terms of particle concentrations as determined by 

turbidity (NTU) and dissolved organic content (DOC). RW1 contained high turbidity 

(10 to 93 NTU) and moderate DOC (3.8 to 8.4 mg/L); RW2 had moderate turbidity (2 

to 10 NTU) and high DOC (6.4 to 10.1 mg/L), and TW had low concentrations of both 

turbidity (0.1 to 0.8 NTU) and DOC content (0.3 to 4.5 mg/L). Turbidity and DOC 

ranges represent seasonal and water source variations between April and December 

2013.    

4.2.2 Instrument and Monitoring Locations  

Three s::can spectro::lysers (s::can Messtechnik GmbH, Austria) were installed at 

three locations in the two selected WTPs to monitor the real-time water quality of 

RW1, RW2 and TW. The s::can spectro::lyser comprises a double beam photodiode 

array 256 pixel UV-Vis spectrometer and uses a Xenon lamp as a light source. It 

measures a UV-Vis spectrum at a wavelength range of 200-720 nm with a selectable 

optical path length range between 5 and 100 mm for different applications based on 

the required sensitivities. The installation locations were at the inlet of Anstey Hill 

WTP and both inlet and outlet of Happy Valley WTP. The path length of the 

spectro::lyser used was 5 mm, 5 mm and 100 mm for the inlet of Anstey Hill WTP 

(RW1), the inlet of Happy Valley WTP (RW2) and the outlet of Happy Valley WTP 

(TW), respectively. The instruments were first zero checked / baseline adjusted with 

ultrapure water to ensure a zero baseline. The spectro::lysers were equipped with 

automatic cleaning using compressed air before each measurement. Scheduled 

maintenance (manual cleaning) of the instruments was conducted fortnightly to ensure 

the cleanliness of the lens to eliminate drifting caused by fouling and that the sample 

lines were unobstructed. The three water quality monitoring locations were also used 

as sampling points for routine water quality monitoring (grab sampling), including 

inlet at Anstey Hill WTP, inlet and outlet of Happy Valley WTP.  
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4.2.3 Water Quality Monitoring Period 

The three water sources were monitored between April and December 2013. Online 

spectro::lyser data and standard laboratory UV absorbance at 254 nm (UV254) data 

were utilised in this study. The spectro::lyser was set to monitor water quality at a two-

minute interval. Grab samples of raw water were collected for laboratory analyses 

weekly and fortnightly for the treated water. Water quality parameters of grab samples 

for routine monitoring including UV254, colour at 456 nm, turbidity, and DOC were 

utilised to characterise the water quality. Prior to measuring UV254, colour and DOC, 

the water samples were filtered using 0.45 µm PES membrane filters (ANPEL 

Laboratory Technologies, China). UV254 and colour were determined with a UV-Vis 

spectrophotometer (Evolution 60, Thermo Scientific, USA) using the method 

described in published study [18]. Turbidity was measured using a turbidity meter 

(2100AN, Hach, USA) and DOC using a total organic carbon analyser (900, Sievers 

Instruments Inc., USA) and determined using the methods described in Standard 

Methods [19].  

4.2.3 Data Acquisition and Processing 

The UV-Vis spectra were acquired by the s::can spectro::lyser, with the full UV-Vis 

spectral data saved as fingerprint (FP) files stored in the instrument hard-drive. FP files 

contain time-series data of spectral absorbance values which has a timestamp column 

(first column) to record the time of each measurement for wavelengths ranging from 

200 to 720 with a 2.5 nm interval. FP files contain raw non-compensated data. Initial 

data pre-treatment was guided by the instrument integrated data diagnostic status (a 

column in the data stream to flag instrument issues). Those UV-Vis spectral data 

caused by known instrument issues or failure were manually eliminated. Further data 

pre-treatment was conducted by a time resolution optimisation algorithm using R and 

R-Studio [20, 21]. From the initial studies, the hourly average of the FP data did not 

reduce the resolution. Thus, the hourly average was used in this study to reduce the 

data volume for easier comparisons and without losing resolution. R scripts (codes) 

were developed to handle the large volume of UV-Vis spectral data generated by the 
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spectro::lyser and perform the required compensation calculations and statistical 

analysis. 

4.2.4 Particle Compensation Techniques  

Four particle compensation techniques were used to remove the particle effect on the 

UV254 for online water quality monitoring of three water sources: RW1, RW2 and TW.  

1. Ana::pro is the acquisition software supplied for the s::can spectro::lyser by the 

manufacturer (s::can Messtechnik, Austria). The compensation can be conducted 

by the instrument integrated ana::pro software in the real-time or offline standalone 

PC version. It contains algorithms using PLS based on the results of hundreds of 

water sources [22]. In this study, ana::pro was used in offline mode to process the 

raw spectral data (FP files) according to the procedures from the manual [23]. FP 

files of the three selected water sources were imported separately into the ana::pro 

software (offline mode) to generate compensated UV254 as an output parameter. 

 

2. The single wavelength compensation (SWC) is a direct subtraction method. 

However, as s::can spectro::lyser has a 2.5 nm resolution and absorbance of UV254 

was not given in the raw FP, an interpolate algorithm (R-script) was first applied to 

generate the spectral data in 1 nm resolution. Then the compensated UV254 was 

determined by subtracting the absorbance between 254 nm and 550 nm. 

 

3. The linear regression compensation (LC) technique is based on the visible region 

of 380-750 nm which is the most impacted by particles given responses occur [15]. 

As explained previously, 1 nm resolution spectra (FPs) were generated first then an 

R algorithm was used to perform the calculations. For each spectrum, a linear 

regression (linear fit) was performed using a wavelength range of 550 to 580 nm as 

the x-axis and their corresponding absorbance as the y-axis. The obtained linear 

equation was then used to determine the particle absorbance at 254 nm. 

Compensated UV254 was a subtraction between UV254 and particle contribution of 

UV254.  
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4. The multiplicative scatter correction (MSC) method is a normalization technique to 

correct particle effect (light scattering) on spectra. MSC method can correct the 

spectra by changing the scale and the offset based on the reference spectrum which 

is the mean of the spectra [24]. The hourly averaged UV-Vis spectra were processed 

for MSC using the unscrambler X software (version 10.4, CAMO). Then 

compensated UV254 were extracted from the spectra for analysis purposes.  

A brief illustration of removing particle effect on the UV254 using different 

compensation methods is shown in Figure 4-1. Detailed explanations of these 

compensation techniques are shown in the results and discussion.  

a) 

 
 

b) 

 
Figure 4-1  Illustration of particle compensation of UV254 using a) laboratory method and b) 

compensation techniques, i. single wavelength compensation (SWC), ii. instrument built-in 

compensation algorithm (B), iii. linear regression compensation (LC), and iv. multiplicative 



 

105 

 

scatter correction (MSC) method. 1, 2, 3 and 4 in Figure 4-1b represent the compensated 

(Comp) UV254 of SWC, B, LC and MSC, respectively.  

4.2.5 Local Calibrations 

The instrument built-in compensation algorithm (B) was developed using PLS based 

on hundreds of water samples. This technique is also considered as a generic method 

(average compensation) which may require a local calibration using grab samples [25]. 

The compensated UV254 of the built-in compensation method for the three water 

sources were calibrated using a simulated local calibration method which conducted 

the offline calibration using the laboratory grab sample measurements based on the 

linear model. Similarly, the compensated UV254 of three particle compensation 

techniques were also conducted local calibrations based on the linear modes. 

4.2.6 Statistical Analysis 

Data sets in this study were assumed to be generated from a large number of water 

samples from which the water quality data tend to follow normal distribution 

regardless of the shape of the data [26]. The bland-Altman analysis was used to assess 

the comparability of single wavelength and linear regression compensation techniques 

against the instrument built-in algorithm for UV254 of RW1, RW2 and TW. Bland-

Altman analysis studies the difference of the compensation techniques by constructing 

the limits of agreement, which is determined by the bias (mean of the differences) of 

UV254 plus and minus 1.96 times its standard deviation of the differences between the 

two compensation methods [27]. It defines that 95% of data points lie within the limits 

of agreements. In this work, the differences between the two techniques were plotted 

as percentages. Percentage differences were calculated using the difference between 

the two methods divided by the means of the two methods and then multiplied by 

100%. The Bland-Altman method only defines the intervals of agreements and does 

not indicate whether the limits are acceptable or not. Therefore, the acceptable limits 

need to be defined and compared with the limits of agreement generated by the Bland-

Altman analysis. The limit of the acceptable percentage difference of UV254 

(compensated) was defined as plus/minus 10% of the instrument built-in compensation 
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method. A flowchart of the data analysis procedure of particle compensation 

techniques is shown in Figure 4-2. 

 
Figure 4-2 Flow chart to show the comparison procedures of single wavelength compensation 

(SWC), linear regression compensation (LC) and multiplicative scatter correction (MSC) 

techniques against the instrument algorithm (B) for UV254. 

4.3 Results and Discussion 

4.3.1 Instrument Built-in Compensation and Calibration 

UV-Vis spectral data of RW1, RW2 and TW monitored from April to December 2013 

were processed using the ana::pro software. It should be noted that the water source 

for Anstey Hill WTP was switched from Millbrook Reservoir water to River Murray 

water in May and June 2013 as indicated in Figure 4-3. The three sets of data were 

compensated using the built-in compensation algorithms in offline mode. The 

compensated UV254 and calibrated UV254 (after calibrations using laboratory UV254 

measurements) were plotted against time for the three water sources as shown in 
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Figure 4-3 and Figure 4S-1 in Supporting Information (SI). The plots of the built-in 

compensation for RW1 and RW2 water are shown in Figure 4-3.  

a) 

 
 

b) 

 
 

Figure 4-3 Comparisons between compensated UV254 and calibrated UV254 measurements 

against laboratory UV254 for a) Anstey Hill raw water (RW1) and b) Happy Valley raw water 

(RW2). Note: no data was recorded after August 2013 (Figure 4-3a), the instrument software 

could not perform the calculation for compensated UV254 due to the high turbidity of the water.  

The water quality profiles as measured by UV254, turbidity and DOC are shown in 

Figure 4-4a indicates that the turbidity of RW1 was dramatically increased when the 

source water was switched from Millbrook Reservoir water to River Murray water. 

The built-in compensation method was unable to generate the compensated UV254 

measurements when the turbidity is higher than 60 NTU for Anstey Hill raw water, 

which may be beyond the compensation limit. Therefore, this result indicates that it is 
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important and necessary to seek alternative particle compensation methods for online 

water quality measurements using UV-Vis spectroscopy, especially in highly variable 

water sources.  

a) 

 

b) 

 

c) 

 
 

Figure 4-4 Laboratory results of water quality parameters of a) Anstey Hill raw water (RW1) 

and b) Happy Valley raw water (RW2) and c) Happy Valley treated water (TW) from April 

2013 to December 2013. 
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Large differences were observed between the compensated UV254 and the UV254 of the 

grab samples for RW1 when the water source was switched from Millbrook Reservoir 

water with a turbidity level of less than 40 NTU to River Murray water with a turbidity 

level over 40 NTU. After the local calibration was applied (in simulated mode), the 

compensated and laboratory analytical UV254 data were well matched with each other. 

It indicates the results of the built-in compensation method are not comparable with 

the laboratory filtration method for water such as RW1 with large turbidity changes. 

However, with the adjustment of the local calibration, the built-in compensation is 

comparable with the laboratory filtration method even when large turbidity changes 

occur. Similar observations were obtained from the RW2 according to Figure 4-3. 

There was a gradual increase in turbidity of the RW2 from July to October 2013, 

during which much larger deviations between the UV254 of the built-in compensation 

method and that of the laboratory method at medium turbidity level over 5 NTU could 

be observed. Yet, after having performed the calibration, a good match between the 

compensated and laboratory analytical UV254 data was found for RW2. A similar 

observation can also be seen for the TW with a low turbidity level and low DOC 

content (Figure 4S-1 in SI). The DOC remained quite stable for all three water sources 

in which the turbidity changed significantly for raw waters. Therefore, the built-in 

compensation method with local calibration is comparable with the laboratory 

filtration method. Local calibrations have been established by other researchers to 

improve the accuracy of the online measurements of UV-Vis spectrometers [28, 29]. 

Therefore, our results reveal that with proper calibration, the built-in compensation 

method can perform the same particle compensation as the laboratory filtration. Our 

results reveal that the particle compensation techniques can assist the online UV 

measurements to provide acceptable water quality results for raw water with high 

turbidity and medium DOC content, raw water with medium turbidity and high DOC 

content and treated water with low turbidity and low DOC content. The built-in 

compensation method was used as a reference method to assess the two developed 

compensation methods in this study.  
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4.3.2 Software Compensation Techniques and Correction Methods 

Nephelometric turbidity units (NTU) have been widely used as a surrogate measure of 

suspended particles. The turbidity signal was determined by selecting the wavelength 

range from 380-750 nm to eliminate the particle effects on the UV-Vis absorbance 

measurements of water samples. Studies have shown that the wavelength at 550 nm is 

the best for turbidity compensation in drinking water samples and has frequently been 

used in conjunction with UV254 measurements [30]. Absorbance at 546 nm was 

reported to eliminate the particle effect on the DOC for river water [31]. Mrkva used 

wavelength 545 nm in an automatic UV analyser to deduct the absorbance of particles 

for surface and wastewaters [32]. Some commercial instruments including the HACH 

UV probe [33] and Burkert spectral absorption coefficient sensors compensate for 

particle effect using a reference measurement at 550 nm [34]. Shimadzu UV 

instruments include UV-probe Type LXG 139 and type LXG 144, which also 

compensate for particle effect through a reference measurement at 550 nm. Thus, the 

single wavelength compensation (SWC) technique in this study was developed by 

direct subtraction between the absorbance of wavelength at 254 nm and 550 nm. The 

second compensation method developed in this study was linear regression 

compensation (LC) technique. It is based on the characteristic of particles between 550 

- 580 nm to remove the particle effect on the UV-Vis spectra. A wavelength range of 

550 - 580 nm was used in the LC technique as it represents the visible region most 

impacted by particles given responses that occurs within the wavelength range of 380 

- 750 nm [15]. The third particle compensation method, multiplicative scatter 

correction (MSC), is a well-documented technique. The MSC is a transformation 

method to compensate for the particle effect in spectral data. MSC method can be used 

to reduce the particle effect by separating the chemical light absorption from the 

physical light scatter [35]. MSC technique is a commonly used method for processing 

NIR spectral data, however, it has not been widely used for processing UV-Vis spectra 

data. Studies have shown the MSC method can reduce the particle effect on the spectra 

[36-38]. 
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a) 

 

b) 

 

Figure 4-5 Comparison of calibrated UV254 of a) single wavelength compensation (SWC) and 

b) linear regression compensation (LC) with laboratory UV254 for Happy Valley raw water 

(RW2). 

SWC, LC, and MSC techniques were applied to determine UV254 by removing the 

particle effect for RW1, RW2 and TW. It was observed that in a similar way as the 

built-in compensation behaviour, SWC, LC and MSC have different compensated 

results for different waters (Table S4-2 in SI) because of the different particle contents. 

Since the compensation is water source dependent, local calibration to compensate the 

background water matrix is required. Well-fitted linear relationships are found 

between the compensated UV254 obtained from the compensation techniques and 

laboratory UV254 measurements for all three water sources using the three 

compensation techniques, except for TW using the MSC. There was no linear 

correlation between the compensated UV254 and lab UV254 after conducting MSC 

could because all the compensated UV254 were very close to each other for different 

data. MSC may not be suitable for compensating UV spectral data of clean water such 

as treated water. This is because it was designed to remove large particle effects on 

spectra.  Linear regression has been commonly used as a calibration method to improve 

the measurement accuracy for analytical methods and has been used for spectroscopy 

[39]. The spectro::lyser also uses a linear calibration mode. Thus, the compensated 

UV254 readings were corrected based on the linear relationships between the 
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compensated UV254 of the developed techniques and laboratory UV254. After 

adjustment, the corrected UV254 were plotted with their closest corresponding 

laboratory UV254 measurements, the slopes, y-intercepts and the coefficient of 

determination (R2) from the linear regression line were determined for comparisons. 

A linear plot of the corrected UV254 of SWC compared to laboratory UV254 for RW2 is 

shown in Figure 4-5. According to the trend, the slope between the corrected UV254 

and laboratory UV254 is 1.00 and the y-intercept is 0.00 with R2 of 0.93, which means 

that SWC can generate the same compensated UV254 as the reference laboratory 

method. The linear regression line of the calibrated UV254 of LC and laboratory UV254 

has a slope of 0.96, intercept of 1.21 and R2 of 0.96 for RW2. It indicates that SWC 

can also generate the same compensated UV254 as the laboratory method. After 

adjustment, all the compensation methods including SWC, LC and MSC are 

comparable to the laboratory filtration method for RW2. Similar interpretations can 

also be stated for RW1 and TW according to Figure 4S-2 in SI. The results reveal that 

linear regression models can be used to correct the compensation methods. The stable 

level of DOC in each of the three water sources may contribute to the success of using 

linear calibration to adjust the compensation techniques. Linear regression methods 

have been employed by Torres and Bertrand-Krajewski to calibrate the particle 

compensation method of an online UV-Vis spectrophotometer for different water 

matrices [16]. Another study showed the linear curve fit was able to optimise the 

performance of UV-Vis spectrophotometers [40]. Linear regression is proven as a 

robust and sustainable adjustment method of UV-Vis spectrophotometers to estimate 

concentrations of water quality parameters [3]. 

4.3.3 Evaluation of Particle Compensation Methods 

In this study, SWC, LC and MSC techniques were investigated in comparison with the 

instrument built-in compensation method using the Bland-Altman analysis, which was 

used to assess the accuracies of the three techniques for raw (natural water quality) and 

treated waters (drinking water quality).  
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4.3.3.1 Assessment of Single Wavelength Compensation Technique  

The SWC technique was assessed for the performance of compensating the particle 

effects on the UV254, for RW1, RW2 and TW, against the instrument built-in algorithm 

using Bland-Altman analysis. After adjustments of compensated UV254 measurements 

(calibrated UV254) from the SWC technique and the built-in algorithm, the percentage 

differences between corrected UV254 of these two methods were plotted against the 

mean of the two methods, as Bland-Altman plots, for the three water sources, 

respectively. Bias (mean of percentage difference) is represented by the space between 

the x-axis and the zero percentage differences in the Bland-Altman plots. The 

analytical results of the Bland-Altman analysis are shown in Table 4-1.  

Table 4-1 Bland-Altman analysis of assessing single wavelength (SWC), linear regression 

compensation (LC) and multiplicative scatter correction (MSC) techniques against the built-

in algorithm (B) for Anstey Hill (RW1) and Happy Valley raw waters (RW2), and Happy 

Valley treated water (TW). 

Water 

sources 

Methods  Bland-Altman Analysis 

after 

adjustment 

Mean of 

difference 

(%) 

Limit of agreement 

(%) 

Acceptable limit 

of agreement 

(%) 

Agreement 

between two 

methods 

RW1  SWC vs. B 1.71 [-6.21, 9.62] [-10, 10] 

[-10, 10] 

Yes 

LC vs. B 1.45 [-5.37, 8.28] Yes 

 MSC vs. Lab -0.94 [-8.33, 6.45] [-10, 10] Yes 

RW2 

 

SWC vs. B -1.14 [-7.32, 5.04] [-10, 10] Yes 

LC vs. B -0.77          [-5.18, 3.65] [-10, 10] Yes 

 MSC vs. Lab -1.52 [-9.81, 6.77] [-10, 10] Yes 

TW SWC vs. B 0.25 [-6.10, 6.67] [-10, 10] Yes 

LC vs. B 0.30 [-5.82, 6.68] [-10, 10] Yes 

 MSC vs. Lab - - - - 

 

The bias between the corrected UV254 of SWC technique and built-in compensation 

was determined as 1.71% for RW1. Agreement limits of the corrected UV254 between 

the two methods varied in a range of -6.21% and 9.62%. Compared to the pre-defined 

acceptable agreement limits of the interval from -10% to 10% of the differences, the 

SWC technique is comparable to the built-in compensation algorithm for 

compensating the particle effect on UV254 for RW1. For RW2 as shown in Figure 4-6, 

the bia between corrected UV254 of SWC technique and that of built-in compensation 
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was -1.14%. Agreement limits between corrected UV254 of the two methods were 

found in the range of -7.32% and 5.04% for RW2. The percentage differences between 

corrected UV254 using two methods varied from -7.32% to 5.04% when the average of 

the corrected UV254 of these two methods increased. Compared to the pre-defined 

acceptable agreement limits, the SWC technique can generate good results as those 

using the built-in compensation algorithm for RW2. Similarly, for TW the agreement 

limits between these two methods were relatively small and varied within the range of 

the interval of -10% to 10% of the UV254 (Figure S4-3 SI). The SWC technique 

generated similar compensated UV254 measurements compared to that of the built-in 

compensation algorithm for RW2. Statistically, it can be 95% confident that the SWC 

technique is comparable to the built-in compensation method for removing the particle 

effect on the UV254 of raw and treated waters if the percentage differences between the 

two methods are acceptable within the plus/minus 10%.  

 
Figure 4-6  Bland-Altman plot of UV254 after application of single wavelength compensation 

technique (SWC) and the built-in algorithm (B) for Happy Valley raw water (RW2). The solid 

line represents the mean of percentage differences in UV254 of the two methods. Horizontal 
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dotted lines indicate upper (+1.96SD) and lower (-1.96SD) limits of agreement of the two 

methods.      

 

4.3.3.2 Assessment of Linear Regression Compensation Technique 

After adjustments, the LC technique was evaluated in comparison with the built-in 

algorithm in terms of the performance of compensating the particle effects on the 

UV254, using Bland-Altman analysis for RW1, RW2 and TW. The differences between 

corrected UV254 measurements using the LC technique and that of the built-in 

algorithm were plotted against the mean of corrected UV254 of the two methods, as 

Bland-Altman plots, for three water sources, respectively (Table 4-1).  

Bias between the corrected UV254 of LC technique and the built-in compensation was 

1.45% for RW1. Agreement limits between the two methods varied from -5.37% to 

8.28%, which is within the acceptable limit of intervals. Hence the LC technique is 

comparable to the built-in compensation method for RW1. For both RW2 and TW, the 

bias between the corrected UV254 of the LC technique and that of built-in 

compensation was less than 1% in Figure 4-7 and Figure 4S-4 (SI). Agreement limits 

between corrected UV254 of the two methods were within the acceptable limit 

agreement. Therefore, the LC technique generated similar compensated UV254 

compared to that of the built-in compensation algorithm for RW1, RW2 and TW. 

Statistically, there is 95% certainty that the LC technique is comparable to the built-in 

compensation method of raw and treated waters within a plus/minus 10% difference 

between the two methods. 

Along with adjustments, LC has similar particle compensation behaviour as the built-

in compensation method on the UV254 for different water sources. The LC technique 

considers particle contribution on the UV254 within a wavelength range of 500-580 nm. 

Similar to the SWC technique, the LC technique is also water source dependent and 

linear adjustment methods can improve the accuracies of compensating the particle 

effect on UV254 of raw and treated waters.  
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Figure 4-7 Bland-Altman plot of UV254 after application of linear regression compensation 

technique (LC) and the built-in algorithm (B) for Happy Valley raw water (RW2). The solid 

line represents the mean of percentage differences in UV254 of the two methods. Horizontal 

dotted lines indicate upper (+1.96SD) and lower (-1.96SD) limits of agreement of the two 

methods.      

4.3.3.3 Assessment of Multiplicative Scatter Correction Technique 

After performing local calibration of the multiplicative scatter correction (MSC) 

method, the performance of the MSC method was evaluated by comparing with the 

instrument built-in algorithm for RW1 and RW2, using Bland-Altman analysis. The 

percentage difference between the calibrated UV254 of MSC was plotted against the 

mean of the two methods as shown in the Bland-Altman plots for RW1 and RW2 

(Figure 4S-5 in SI). The mean difference between the calibrated UV254 of MSC and 

the built-in compensation methods was -0.94% and -1.52% for RW1 and RW2, 

respectively. The limit of agreement between the two methods was within the intervals 

of acceptance limit. Hence, the MSC technique is comparable to the built-in 

compensation method for RW1 and RW2. However, MSC is not comparable to the 

built-in compensation method for TW. This could be because the nature of MSC is to 

correct the light scattering of the particle in the water. TW contained a very low particle 

content. It should be pointed out that MSC is commonly used for turbid solutions such 

as wine and solid materials such as meat [24, 35].  
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In the case of comparison of SWC, LC and MSC with the built-in compensation 

method, all three particle compensation methods had different particle compensation 

behaviour when compared to the built-in compensation method on UV254 for different 

water types. SWC, LC and MSC techniques need to be adjusted for individual waters 

to remove the particle effect. It shows that particle compensation is water source 

dependent. This finding is in agreement with the previous studies [3]. This is probably 

because compensation techniques generally cannot directly handle the large change in 

water quality, particularly turbidity character changes [11] [13]. Water quality 

characteristics are different for individual water sources. Variation of the water quality, 

particularly turbidity can affect the compensation ability of the compensation method 

on the UV254. Reported studies showed that it is difficult to compensate for the particle 

effect when there is a large variation of turbidity [11] [13]. The industrial experience 

of monitoring water quality also shows that compensating particle effect on the UV-

Vis absorbance measurement is difficult when water turbidity is fluctuating or the 

water source changes [41].  

Provided linear correction (local calibration) method with acceptable error, the 

developed single wavelength compensation and linear regression compensation 

techniques could be used as alternative methods to eliminate the particle effect on the 

UV254 measurements for raw and treated waters. Also, the multiplicative scatter 

correction technique could be used as an alternative particle compensation method to 

remove the particle effect for raw waters.  

Overall, our results reveal that SWC, LC and MSC techniques with the linear 

adjustment can be applied in practice for online water quality monitoring. SWC is a 

relatively simple method to remove the particle effect on the UV254 in the water. 

Simple UV-Vis instruments with a single wavelength in the visible region (500nm) 

could be employed in the field to monitor water quality instead of using sophisticated 

full-spectrum UV-Vis instruments. These findings can assist water treatment plant 

operators to monitor water quality more effectively because the utilization of software 

compensation methods and local calibrations allow more accurate and reliable UV-Vis 
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readings. Further research is necessary to investigate how these compensation methods 

can be applied to the situation of real-time water quality monitoring.  

4.4 Conclusion  

Our results reveal that after applying a local calibration method, instrument built-in 

compensation methods can be comparable to the reference laboratory methods for the 

UV254 measurements for raw and treated waters from two drinking water WTPs. In the 

same way as the built-in compensation method, the developed SWC and LC 

techniques as well as the multiplicative scatter correction method are also water source 

dependent. Linear correction methods as local calibrations are based on the linear 

relationships of compensated UV254 of the developed techniques and the laboratory 

UV254 measurements of the grab samples. It could be applied for the development of 

techniques to improve the accuracies of online measurements of water quality 

monitoring. The bland-Altman analysis was employed to assess the calibrated UV254 

using developed SWC and LC as well as MSC techniques. The compensated UV254 

generated from these two methods were found to be comparable with that of the built-

in compensation method using online UV-Vis spectral data from drinking water 

treatment plants. According to the Bland-Altman analysis, with the assistance of the 

linear correction (local calibration) method, both SWC and LC had very similar 

compensation behaviours on the UV254 as the built-in compensation algorithm for 

varied raw and treated waters. MSC was comparable to the built-in compensation 

method for raw waters. Potentially, along with the linear correction method, both the 

single wavelength and the linear regression compensation, as well as the multiplicative 

scatter correction methods could be used as alternatives to remove the particle effect 

on the UV254 for online water quality monitoring. The use of the alternative 

compensation techniques may allow less maintenance of the instrument and possibly 

improve the reliability and usability in online mode by WTP operators. Moreover, 

simple UV-Vis instruments with a single wavelength in the visible region (500 nm) 

could be employed in the field to monitor water quality instead of using sophisticated 

full-spectrum UV-Vis instruments.  
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4.6 Supporting Information 

 
Figure S4-1 Laboratory equivalent UV254 after built-in compensation and local calibration, as 

well as laboratory UV254 of Happy Valley, treated water (TW).  

 

Table S4-1: Water quality characteristics of Anstey Hill raw water (RW1), Happy Valley raw 

water (RW2) and Happy Valley treated water (TW) from April 2013 to December 2013.  

Water quality  RW1 RW2 TW 

Parameters  Min Max Ave  Min Max Ave Min Max Ave 

UV254 (Abs/m) 9.8 20.1 16.4 18.4 39.2 30.0 1.6 9.2 4.1 

Colour (HU) 10.0 28.0 17.0 18.0 65.0 44 _ _ _ 

Turbidity 

(NTU) 

4.2 93.0 60.5 1.9 9.9 5.7 0.1 0.8 0.2 

DOC (mg/L) 3.8 8.4 6.1 6.4 10.1 8.3 0.3 4.5 2.3 

pH 7.4 7.8 7.6 7.6 8.4 8.0 7.1 7.8 7.5 

Temperature 

(oC)  

7 22 15.3 10 22 16.0 11.0 22 16.3 

Conductivity  

(µS/cm) 

198 547 385 520 592 559 207 670 41 

Algae –total  

(cells/mL) 

84 4920 1256 2400 1200000 207275 _ _  _ 

Legend: DOC refers to dissolved organic carbon.  
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Table S4-2: Calibration of single wavelength compensation (SWC), linear regression 

compensation method (LC) and multiplicative scatter correction (MSC) based on their linear 

regression with laboratory measurements for Anstey Hill raw water (RW1), Happy Valley raw 

water (RW2) and Happy Valley treated water (TW).  

Water sources Methods Calibration based on linear regressions 

 Slope Intercept coefficient of determination (R2) 

RW1 B & Lab -0.19 20.90 0.58 

SWC & Lab -0.09 19.68 0.65 

LC & Lab -0.19 20.90 0.58 

MSC & Lab 1.83 -59.76 0.88 

 

RW2 B & Lab 0.67 -7.28 0.93 

SWC & Lab 1.06 -0.75 0.96 

LC & Lab 1.22 -0.98 0.96 

MSC & Lab -156.13 4663.6 0.97 

 

TW B & Lab 0.61 -0.13 0.24 

SWC & Lab 0.42 0.93 0.21 

LC & Lab 0.43 1.06 0.21 

MSC & Lab - - - 
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Figure S4-2 Comparisons between calibrated UV254 of single wavelength compensation 

(SWC) method, linear wavelength compensation (LC) and multiplicative scatter correction 

(MSC) method against lab UV254 of laboratory filtration method for Anstey Hill raw water (a1, 

a2, a3), Happy Valley raw water (b) and Happy Valley treated water (c1, c2).  
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Figure S4-3: Bland-Altman plot of calibrated UV254 of single wavelength compensation 

technique (SWC) and the built-in algorithm (B) for a) Anstey Hill raw water and b) Happy 

Valley treated water. The solid line represents the mean of percentage differences in UV254 of 

the two methods. Horizontal dotted lines indicate higher (+1.96SD) and lower (-1.96SD) limits 

of agreement between the two methods.       
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Figure S4-4 Bland-Altman plot of calibrated UV254 of linear regression compensation 

technique (LC) and the built-in algorithm (B) for a) Anstey Hill raw water and b) Happy Valley 

treated water. The solid line represents the mean of percentage differences in UV254 of the two 

methods. Horizontal dotted lines indicate higher (+1.96SD) and lower (-1.96SD) limits of 

agreement between the two methods.     
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Figure S4-5 Bland-Altman plot of calibrated UV254 of multiplicative scatter correction (MSC) 

technique and the instrument built-in algorithm (B) for a) Anstey Hill raw water and b) Happy 

Valley treated water. The solid line represents the mean of percentage differences in UV254 of 

the two methods. Horizontal dotted lines indicate higher (+1.96SD) and lower (-1.96SD) limits 

of agreement between the two methods.    
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Chapter 5     Development of Coagulant Dose Prediction Models for 

Process Control using Online UV-Vis Spectra 

 

• Raw water UV-Vis spectra can mimic operator decision to 

determine coagulant dose  

• Multiple linear regression and partial least squares regression can 

extract chemical signatures from spectra for coagulation control 

• Coagulant doses can be predicted using only raw water quality 

data 
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Results presented in previous chapters indicate that UV-Vis spectrophotometers can 

be used for online water quality monitoring, particularly for continuous monitoring 

and early warning of water quality events. High accuracy of water quality 

measurements using the UV-Vis instruments can be achieved using the developed 

software compensation techniques. This online water quality measurement technique 

can be a promising tool to control water treatment process. Conventional water 

treatment is the most widely applied water treatment process which contains the 

following steps: coagulation, flocculation, sedimentation and filtration [1]. The 

majority of drinking water treatment plants employ the conventional water treatment 

method. The coagulation process largely affects the processing efficiency of the water 

treatment plants [2, 3]. It is essential to determine the optimal coagulant dosage as 

under-dosing leads to poor drinking water quality, but over-dosing can result in 

operational issues and increase the treatment cost [4, 5]. The conventional method for 

controlling the coagulation process in drinking water treatment plants relies on water 

quality data and operators’ experiences [6, 7]. Jar tests using raw water could be only 

conducted once every two months or when sudden water change occurs in some cases 

[8]. The coagulant dosage levels cannot be adjusted until a process upset occurs, 

leading to under- or over- dosing. It can be challenging to determine appropriate 

coagulant doses proactively for tight control of coagulation with the traditional method 

as the increasingly stringent regulations for drinking water. However, modelling 

approaches for determinations of coagulant dosages can demonstrate fast responses to 

the raw water quality changes and allow more precise dosing control to achieve stable 

treated water quality [7, 9].  

This study presented in this chapter was to establish alternative approaches for 

coagulation control. This may be the first investigation to build coagulant dose 

determination models using online raw water quality data (UV-Vis spectra) combined 

with chemometrics to determine coagulant doses for a drinking water treatment plant. 

Online UV–Vis spectra of raw water were directly used to mimic operators' decisions 

in the determination of coagulant dose for process control combined with advanced 

computing. The results revealed spectral information that could be used as input for 

the decision support tools. It demonstrates that an online UV–Vis spectrophotometer 
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combined with a software model has the potential to be a decision-support tool for 

real-time determination of coagulant doses for process control, under the fluctuation 

of the raw water quality.  

The following content of this chapter was published as a technical paper in the Journal 

of Water Process Engineering, 45, p.102526, as shown in Appendix E. 
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5.1 Introduction 

Coagulation is an essential chemical process of the conventional water treatment 

operation for water clarification and is particularly effective for removing natural 

organic matter (NOM).  NOM is a precursor for the formation of disinfection by-

products, which can have significant environmental and health risks in the water 

distribution system. The traditional method for controlling the coagulation system in 

water treatment plants (WTPs) relies on jar tests which require over six hours to carry 

out depending on sample collection and analysis arrangement [7, 9, 10]. It may lead to 

under- or over- dosing, particularly when a wide fluctuation of water quality occurs as 

jar tests may not offer quick turnover time. Overdosing of coagulants for the 

coagulation process may lead to higher operational costs and excessive sludge 

production while underdosing may fail to meet the water quality targets [4, 5]. 

Determination of coagulant doses using modelling approaches can demonstrate fast 

responses to the changes of raw water quality and allow more precise dosing control 

to achieve stable treated water quality. Coagulant dosing predictions based on 

mathematic modelling have been developed in recent years. A few models were even 

employed to predict the coagulant doses and assist the water treatment processes [7, 

11].  

A variety of techniques have been used to develop the coagulation model and predict 

coagulant doses for drinking water treatment based on raw water quality parameters, 

including multiple linear regression (MLR), adaptive neuro-fuzzy inference system 

(ANFIS), fuzzy weighting, partial least squares regression (PLS), and artificial neural 

networks (ANNs) [12-17]. Coagulant dose determination models were built using 

ANNs and regression equations for surface water treatment with raw water quality 

parameters, including dissolved organic carbon (DOC), UV absorbance at 254 nm 

(UV254), turbidity, alkalinity, dissolved oxygen and pH [9, 15, 18, 19].  

Some studies have utilised PLS combined with UV-Vis spectral data to predict water 

quality parameters in water [20, 21] and wastewater [22, 23].  Most of the reported 

prediction models for coagulant doses are operated based on the water quality results 



 

135 

 

provided from laboratory analysis. There were very few reported studies using PLS to 

predict coagulant doses. PLS can extract information from a large volume of data 

matrix which is suitable to apply when the matrix has more independent variables than 

dependent variables and there is multicollinearity among the independent variables. In 

comparison with PLS, ANNs is a popular prediction model for coagulant dose 

prediction. ANNs can also handle large datasets, detect complex relationships, learn 

patterns and make decisions based on similar situations. Most of the prediction models 

rely on the raw water quality data of grab samples as inputs to predict the coagulant 

doses. It is unlikely to capture the rapid variations of the water quality to get correct 

predictions based on the data of grab samples when water quality changes as there are 

significant delays in obtaining the laboratory data. However, predictions based on the 

online UV-Vis spectral data could be a promising approach, which can use continuous 

water quality data to predict doses, with the ability to capture the rapid variations of 

water quality to get the correct predictions. Colton [24] reported a unique method using 

the online UV-Vis spectra to predict coagulant doses for WTPs. However, this was an 

indirect method that first needs to quantify the water quality (turbidity, UV254 and 

DOC) of the raw water using the spectra and then utilised the quantified water quality 

data as inputs for an exponential model to determine the coagulant doses. Zhou and 

Meng [25] conducted a lab-based study to use spectral data from a bench-top UV-Vis 

instrument to determine optimal coagulant doses for the removal of dissolved organic 

matter from a combined coagulation and ultrafiltration system. The optimal doses were 

determined in their study based on the correlations between spectral data and fouling 

behaviour. 

This study was to establish an in-situ coagulation dosing prediction and control method 

integrated with the online UV-Vis spectra monitoring technique. We employed online 

UV-Vis spectral data of raw water from a municipal drinking WTP to build coagulant 

dose determination models and to determine coagulant doses for coagulation process 

control. This study also aimed at directly using raw water UV-Vis spectra to mimic 

operators’ decisions in the determination of coagulant dose for process control. Three 

different models with different levels of complexity were evaluated, including multiple 
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linear regression (MLR), partial least squares (PLS) and artificial neural networks 

(ANNs). 

5.2 Materials and Methods 

5.2.1 Water Treatment Plant  

Happy Valley (HV) WTP in South Australia was selected for this study. The HV WTP 

employs conventional water treatment practices comprising coagulation, flocculation, 

sedimentation, and filtration units. This WTP provides drinking water across the 

metropolitan area in the capital city of South Australia (SA). The raw water for the 

WTP is provided by the Happy Valley Reservoir with water originating from both the 

River Murray and local catchment areas. The raw water is characterised by moderate 

turbidity (0.1 to 10 NTU) and high DOC ranging from 6 to 10 mg/L. Turbidity and 

DOC ranges represented seasonal variations between April and December 2013. The 

HV WTP was selected as the source water is the representation of enclosed surface 

water catchment of a reservoir in SA.  

5.2.2 Monitoring Location and Instrument 

The inlet of HV WTP was the sample point for real-time water quality monitoring with 

a submersible UV-Vis spectrophotometer. The instrument, s::can spectro::lyser (s::can 

Messtechnik GmbH, Austria), is a double beam photodiode array 256 pixel UV–Vis 

spectrometer with an optical path of 5mm and spectral resolution of 2.5 nm. The online 

instrument measures the absorbance of wavelengths within 220-720nm. The details of 

the instrument and the maintenance can be found in the previous study [26].  

 5.2.3 Data Source 

The water source was monitored between April and December 2013. Raw UV-Vis 

spectra in the range of 220 -720 nm were acquired from the submersible instrument at 

two-minute intervals. The plant alum dose record in the same period was also obtained 

for this study. Alum, aluminium sulphate [Al2(SO4)3.18H2O)], was used as the primary 
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coagulant. WTP alum doses were determined by the operators, to achieve treated water 

with DOC less than 5mg/L, under pH conditions of 6 (plant record). The WTP alum 

doses were determined by WTP operators mainly based on jar tests of raw water and 

operators’ experience, in some water quality event situations such as heavy rainfalls, 

the operators may refer to the WTC-Coag software and the treated water quality [27]. 

Jar tests of raw water were conducted once every two months or when there were 

sudden changes in the water quality. WTC-Coag is a mathematical model for real-time 

prediction of optimal alum dose, which has been used in metropolitan WTPs in SA for 

over 10 years including the HV WTP [11]. This software requires UV254, colour, and 

turbidity of raw water as inputs to generate predicted alum doses. The operators can 

select certain % removal of the total coagulable DOC and choose to refer to the 

coagulant doses determined based on the 80-90% DOC removal using the WTC-Coag 

software when they were deciding the dose levels.   

Overall, UV-Vis spectral data of raw water quality and plant dose data of the HV WTP 

were utilised in this study. The UV-Vis spectral data were collected from the online 

instrument. The data of plant doses were extracted from an internal operational 

database of SA Water Corporation (SA Water) with hourly extrapolation.  

5.2.4 Data Pre-treatment  

Initial data pre-treatment was based on the instrument operation status. The online UV-

Vis spectra related to the instrument issues and non-operational period of WTP were 

excluded. Further data pre-treatment was conducted using a time resolution 

optimisation algorithm and hourly average [26]. Particles in the water can affect the 

online UV-Vis measurements [28]. Thus, the averaged UV-Vis spectra were processed 

using a particle compensation method to remove particles. The baseline correction 

method was based on the absorbance of particles is at a wavelength of 550 nm. Particle 

compensation of source water using UV550 has been proved to be an effective method 

to remove the particle effect on the online UV-Vis measurements [26].  
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5.2.5 Data Processing 

The data pre-treatment and processing were conducted in the workspace of R and R-

Studio [29]. Figure 5-1 shows a flow chart of modelling development and validation 

of coagulant dose determinations. The online UV-Vis spectra of raw water quality data 

of the HV WTP were utilised to determine the coagulant dose. Important wavelengths 

of the online UV-Vis spectra were selected using variable selection methods. The 

absorbances of the selected wavelengths were used as model inputs to predict plant 

alum doses. The plant doses determined by operators were utilised as the model output. 

The DOC level of treated water during the same period was under 5mg/L (Figure 5S-

1 in SI) which met the drinking water quality target. It indicates that the plant doses 

were accurate for the coagulation control.  

 

Figure 5-1 Flow chart of modelling development and validation of coagulant dose 

determinations.  
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5.2.5.1 Input Variable Optimisation Methods 

Three variable optimisation methods: Variable Importance in Projections (VIP), 

Selectivity Ratio (SR) and correlation coefficient (R) were used to select the most 

important wavelengths that influence the coagulant dose prediction models. These 

methods are frequently used for variable selections in chemometrics [30]. These 

methods for X variable (input) importance related to the explanation of Y variance 

(output) are useful for prediction. The optimisation of spectral wavelengths (variables) 

can enhance the predictive ability of the full spectrum [31-33]. First, the full spectra 

of 220 - 720 nm were screened down to 250 - 600 nm as the absorbance at these 

wavelengths show characteristics that indicate the matrix of water quality [34]. 

Organic and turbidity in the water are represented by the wavelengths between 250 - 

370 nm and 370 - 600 nm.  

VIP scores were obtained from the construction of the initial PLS model. A higher VIP 

score indicates that the wavelength is more important to predict the alum doses, while 

the wavelength having a lower VIP score has less impact on the prediction [30]. VIP 

scores select the variables that contribute the most to the Y variance explanation. 

Generally, the threshold score of a VIP is defined as 1.0. The threshold score can be 

higher if the number of variables is large [30]. SR associates the statistical significance 

based on target projections for variable selection. SRs are based on the calculations of 

the ratio of explained to the residual variance of X obtained variance. An F-test (95%) 

has been chosen to define the threshold value of SR with a F-value to determine the 

significance. The pair-wise correlation coefficients (R) were the correlation between 

absorbances of wavelengths for the raw water and alum doses of HV WTP.   

5.2.5.2 Development Methods of Coagulant Dose Prediction 

Three model development methods: multiple linear regression (MLR), partial least 

squares (PLS) and artificial neural networks (ANNs) were used to determine alum 

doses. MLR is used to model the linear relationship between a dependent variable and 

independent variables which can directly define the coefficient of each parameter, 

while PLS can indirectly reveal the functional relationships and define the coefficient 

of each parameter. ANNs learn to recognise patterns in data between inputs and 
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outputs. These modelling methods were applied to capture and incorporate the 

operators’ decisions in selecting the alum doses using the spectral data of the raw water 

quality.  

PLS constructs components (latent variables) by projecting the predictor variables to 

a new space. The observation variables are also projected. Then the linear regression 

models were built between new predictors and responses. PLS regression is 

particularly suitable to use when the matrix of predictors has more variables than 

observed variables and there is multicollinearity among the predictors. PLS can easily 

extract relevant information from a large data matrix and generate reliable models. 

Therefore, PLS was used to develop the coagulant prediction model in this study. 

Package ‘pls’ was used in the R and R-Studio for the calculations of PLS models [35]. 

PLS was analysed with leave-one-out cross-validation to avoid under- or over- fitting 

of the model. The optimal number of components (minimum number of latent 

variables) is 6 for PLS.  

ANNs are computational techniques based on biological neurons which can learn 

complex patterns among the variables through training. ANNs employ a learning 

process that is similar to the human brain process to solve problems [36]. One of the 

commonly used ANNs is Multi-Layer Perceptron (MLP). MLP consists of three 

layers: the input layer, hidden layer and output layer. The input layer contains the input 

parameters. The hidden layer processes the data. And the output layer extracts the 

results. Package ‘neuralnet’ is used for modelling alum dose predictions with MLP 

ANNs [37]. The best ANNs architecture for this study is with one input layer, one 

hidden layer and 3 nodes, and one output layer. The number of hidden layers and the 

nodes are determined by the trial-and-error method.  

The whole set of data, containing online UV-Vis spectral data of the raw water and 

their corresponding plant alum dose data, was divided into train and test datasets using 

a randomization method with a ratio of 80:20 to develop and validate the developed 

models for coagulant dose determination. The datasets were scaled to ‘0 to 1’ using 
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the formula: xi - minimum/ (maximum - minimum) before they were used to develop 

PLS and ANNs models.  

5.2.6 Evaluation of Coagulation Determination Model Performance 

Coefficient of determination (R2) and root mean square error (RMSE) are commonly 

used to evaluate the performance of models. R2 is commonly used to assess the 

‘goodness of fit’ for regression models. R2 close or equal to 1 is an indicator of a good 

model. RMSE is commonly used to measure the differences between the predicted 

values and the actual values. RMSE value is considered the most important criterion 

for prediction model fit. The smaller the RMSE, the better the model. Another common 

way of using RMSE to assess the developed model is to compare the RMSE values of 

models for both train and test data; the model is good if the values are similar. RMSE 

and R2 were used to evaluate the performance of the models. 

5.3 Results and Discussion  

5.3.1 Optimisation of Input Variables  

The best representative wavelengths of the pre-processed UV-Vis spectral data of HV 

raw water that impact on the alum determination models were evaluated by three 

variable optimisation methods, VIP, SR and R. The high-dimensional data of original 

spectra contain a proportion of redundant and irrelevant information for building 

coagulant models. This is because parts of the spectra collect unnecessary water 

quality information and the absorbance measured at some wavelengths may represent 

noise rather than the real water quality. Optimisation of input variables reduces the 

complexity and calculation time for modelling while enhancing the extraction of 

essential information [38]. Wavelength optimisation methods have been used by other 

researchers to determine the water quality parameters using UV-Vis spectra [21, 32, 

39]. Application of these variable selection methods before modelling could lead to 

better and less complex prediction models [34]. 
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VIP and SR were performed with partial least squares regressions. Online UV-Vis 

spectral data of wavelength range from 250 to 600 nm were X variables (model input) 

and the corresponding alum doses were Y variables (model output). Both variables 

were normalised from 0 to 1 to make sure they had an equal influence on the model. 

An initial PLS regression model was built with leave-one-out cross-validation. VIP 

scores and SR values were obtained from the results of the PLS regression model. Pair-

wise correlation coefficients (R) between the absorbances of the UV-Vis spectra for 

the raw water quality and alum doses for the WTP with their level of significance (p-

value) were calculated. The results of wavelength optimisation from the online UV-

Vis spectra using VIP, SR and R approaches are presented in Table 5-1. 

Table 5-1 Selection of important variables for models using three methods, including VIP, SR 

and R. 

Model 

Input 

Model 

Output 

Variables 

 

VIP  

scores 

SR Correlation 

coefficient 

  scores F-value Significant R p-value 

Online 

UV-Vis 

Spectra 

 

 

 

 

Plant 

dose 

250 2.42 1.51 1.06 Yes 0.77 <0.001 

252.5 2.34 1.50 0.77 

255 2.13 1.51 0.77 

257.5 2.05 1.52 0.77 

260 2.01 1.51 0.77 

262.5 1.93 1.50 0.77 

265 1.86 1.49 0.76 

267.5 1.84 1.49 0.76 

270 1.82 1.48 0.76 

272.5 1.77 1.47 0.76 

275 1.71 1.46 0.76 

277.5 1.67 1.45 0.76 

280 1.65 1.44 0.76 

 

First, important wavelengths were selected based on VIP and SR, and R for modelling 

alum dose determination associated with the spectral data as X variables (inputs) and 

plant alum doses as Y variables (outputs). Due to a large number of filtered variables 

and the strength of influence of the variables, a trial-and-error method was also 

applied. The most important wavelengths were determined based on the overlapping 

variables of the three selection methods and the trial-and-error method. The trial-and-

error results showed that wavelengths within 250-270 nm are the most important 
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variables that influence the modelling of the plant coagulant dose determination and 

lead to the improved prediction performance of the models. More detailed results are 

given in Table 5S-1 in Supplementary Information (SI). The selected wavelengths are 

determined in a range of 250-270 nm with a 2.5 nm interval, including nine 

wavelengths: 250, 252.5, 255, 257.5, 260, 262.5, 265, 267.5 and 270 nm. The 

corresponding thresholds of the selected wavelengths were 1.82 and 1.48 for VIP 

scores and SR (F-test, 95%). When the correlation coefficient of X variables and Y 

variables were considered, variables with R of 0.76-0.77 were the same as the variable 

selected by the VIP and SR methods. 

The nine selected wavelengths were considered to have significant contributions to the 

model development for alum dose determinations for the HV WTP. All the important 

wavelengths are in the UV spectral region. It is shown that the determination of 

coagulant doses of HV WTP is mainly characterised in the UV region. A major 

purpose of coagulation is to remove the natural organic matter from the raw water. The 

natural organic matter of the raw water is characterised within a wavelength range of 

250 - 300 nm [32, 40], In addition, UV254 is a preferred indicator for selecting alum 

dosing for WTPs [11, 41]. The selected wavelengths in this study also contained UV254 

for modelling coagulant dose determination. These studies supported that the selected 

wavelengths are the important variables that influence the modelling of the alum dose 

determinations and result in improved model interpretation and performance [30, 33, 

42]. Literature has shown that the variable selections can extract the most important 

variables and led to enhanced performance of models [21, 34, 38].  

5.3.2 Coagulant Determination Using UV-Vis Spectra with MLR 

The absorbances of selected nine wavelengths were also used as inputs to build MLR 

determination models of plant doses for the HV WTP. MLR has been used to predict 

water quality [43, 44] and coagulant dose using water quality parameters [14, 15]. A 

train dataset was used to build the calibration MLR. Then a test dataset was used to 

validate the developed model.  
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The results of MLR were shown in Figure 5-2. The coefficients of the MLR model 

were obtained and the MLR model can expressed as below: 

 Y (alum dose) = 200.69 * X250 - 335.33 * X252.5 -58.91 * X255 + 185.27 * X257.5 

+ 12.68 * X260 + 140.26 * X262.5 -154.85 * X265 + 312.20* X267.5 - 305.24* X270 

-34.41 

In the MLR model equation, X refers to the absorbance at a certain wavelength. For 

instance, X250 indicates the absorbance at wavelength 250 nm. According to R2 and 

RMSE of MLR presented in Figure 5-2, the predicted alum doses of MLR and actual 

plant doses were strongly correlated. For the calibration model, RMSE and R2 for plant 

alum doses were 4.19 mg/L and 0.90, respectively. For the validation model, RMSE 

and R2 for plant alum doses were 4.31 mg/L and 0.90, respectively. RMSE values of 

the MLR were small compared to that the plant alum doses were between 40 and 90 

mg/L. It is confirmed that the MLR model with online UV-Vis spectral data as inputs 

can be used to determine the alum doses for WTPs.  

 
Figure 5-2 Summary of the best models developed for alum dose determination using UV-Vis 

spectra of raw water. 

 

Modelling results shown in Table 5-2 and Figure 5-2 reveal a minor difference 

between the predicted alum doses using the MLR method and their corresponding 

observed (plant) alum doses. MLR can be used to model the alum dose determination 
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using online UV-Vis spectral data because the correlations are high between the 

variables and the alum doses. This indicates that the determination of alum doses using 

online UV-Vis spectral data combined with MLR is comparable to the plant dose 

determination method (jar tests and operator experience). MLR results could mimic 

the operators’ decisions in selecting the appropriate alum doses. This seems 

contradictory to an argument that MLR is unable to provide a high-level relation 

between water quality variables and coagulant doses because of the high nonlinearity 

and the multiple factors affecting the coagulation process [45]. However, MLR has 

been used to predict coagulant doses with physico-chemical water quality parameters 

and was recognised as an appropriate approach to predict coagulant doses to assist 

water [14, 15, 46] and wastewater treatment operations [47]. In this work, the online 

UV-Vis spectra instead of water quality parameters of raw water were used to build a 

coagulant dose prediction model with MLR under the optimal coagulation pH of 6 to 

achieve a target DOC level of less than 5 mg/L for treated water quality.  

5.3.3 Coagulant Determination Using UV-Vis Spectra with PLS 

PLS was also used to build the coagulant determination models for the HV WTP using 

the selected wavelengths in the UV range of 250-270 nm of raw water. PLS is a popular 

modelling method for spectral analysis which also has been used to generate water 

quality parameters [21, 22, 48] and coagulant dose prediction [49]. The absorbances 

of the 9 wavelengths were used as model inputs and plant alum doses of HV WTP 

were used as model outputs. The optimal number of components (minimum number 

of latent variables) of the PLS model was established by the cross-validation, leaving 

one sample at a time, to avoid under- or over- fitting of the model. 

The RMSE of the PLS model was plotted against the rank of the number of the 

components, as shown in Figure 5-3. The optimal number of components for the model 

is that the lowest number of components gives the lowest RMSE. The results indicate 

that 6 was the optimal number component for the PLS calibration model. The 

established PLS model was assessed with the test dataset. The PLS results for plant 
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alum determination using train and test datasets are shown in Figure 5-2. RMSE of the 

PLS based on the train dataset was 4.19 mg/L and the corresponding R2 was 0.90. The 

RMSE of the validation was 4.30 mg/L and the corresponding R2 was 0.90. Both 

RMSE values of the PLS models are small compared to the alum doses which ranged 

from 40 to 90 mg/L. Therefore, a good PLS model of determination of plant alum 

doses was obtained based on the online spectral data of a submersible UV-Vis 

instrument. Our results reveal that UV-Vis spectral data can be used to determine the 

alum doses and model the operators’ decisions in the selection of the suitable doses 

using PLS. 

 
Figure 5-3 Optimal number of components for PLS model with UV-Vis spectra to predict 

alum doses. 

 

Our results reveal that PLS is effective in modelling alum doses using the UV-Vis 

spectra and is capable of capturing the operator experience in the determination of 

alum dose. This statement is supported by the following two reasons. Firstly, PLS was 

used to develop coagulant dosage predictions with water quality parameters as inputs. 

PLS regression analysis was used for the development of coagulant dosage prediction 

models using water quality parameters to remove phosphate from wastewater. PLS 

was proven to be an efficient tool for coagulant dose prediction [23]. PLS was also 
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used to develop a decision support system for control of the coagulant dosage at a 

drinking WTP, using water quality parameters including UV, colour, chemical oxygen 

demand, TOC and conductivity. Thus, PLS could be recognised as a promising and 

useful estimation tool for coagulant dosing prediction [49]. Furthermore, PLS 

combined with UV-Vis spectra has also been employed to determine water quality 

parameters such as TOC in Karst water [20], TOC in wastewater [22] and COD in 

water [21]. Therefore, UV-Vis spectra of the raw water combined with PLS is able to 

determine the coagulant dose in the WTPs under the optimal pH of 6 to achieve a target 

DOC level of less than 5 mg/L for the treated water quality. 

5.3.4 Coagulant Determination Using UV-Vis Spectra with ANNs 

ANNs were used to build the coagulant determination models for the plant doses. The 

absorbances of the selected nine wavelengths (250-270 nm) were also used as the 

model inputs and the plant alum doses were used as the model outputs. ANNs have 

been applied successfully for coagulant dose prediction based on water quality 

parameters [1, 2, 31, 32]. A Multi-Layer Perceptron (MLP) ANNs, equipped with the 

feed-forward back-propagation algorithm was used for building ANN models. Back-

propagation is a widely used algorithm for training feedforward neural networks to 

speed up the convergence rate and its robustness [50]. Feedforward ANN provides a 

flexible way for generalizing linear regression and non-linear functions. Dataset of the 

selected variables and their corresponding plant alum doses was randomly shuffled 

before ANNs training to avoid the seasonality effect. There is no precise approach to 

obtain the optimal number of hidden layers of MLP. A few hidden layers of ANNs 

have been proven to be sufficient for modelling coagulant dosage based on the reported 

studies [18, 51, 52]. The optimal number of hidden layers was determined by the trial-

and-error method [53]. The best ANNs model is selected for its lowest RMSE with 

one hidden layer and 3 nodes, as shown in Figure 5-4. Thus, the best ANN architecture 

for plant dose determination was obtained with one input layer with 9 neurons (nodes), 

one hidden layer with 3 nodes, and one output layer with a single node. 
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Figure 5-4 Optimal number of hidden layer and nodes.  

 

ANNs of the coagulant model had RMSE of 5.25 mg/L and 5.26 mg/L for train and 

test datasets. The best ANN showed satisfactory R2 of 0.75 for both train and test 

datasets. The RMSE of optimal ANN performance indicates the small discrepancies 

between the predicted and actual alum doses as the actual alum doses were between 

40 and 90 mg/L. B1 and B2 in Figure 5-5 are two stages of biases. The bias of B2 to 

O1, B1 to H1, B1 to H2, B1 to H3 is -2.32, 4.58, 3.45, 2.17, respectively, which are 

small errors. These indicate the viability of using ANNs to predict alum doses for 

WTPs using UV-Vis spectral data.  
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Figure 5-5 Optimal ANNs architecture for alum dose prediction. 

 

ANNs have been applied to predict coagulant doses for WTPs by other researchers 

based on raw water quality parameters [7, 50-52, 54]. It is a well-known pattern 

recognition technique for solving complex problems. ANNs was used to determine 

alum doses for surface water treatment based on physio-chemical parameters of the 

raw water [15, 19]. There are also software sensors using ANNs for online prediction 

of coagulant doses with the raw water quality parameters [7, 11]. A study incorporated 

the operators’ experience in coagulant dose determination using a time consistent 

mode [9]. All the above support that UV-Vis combined with ANNs could mimic the 

operators’ experience in the determination of coagulant dose for WTPs under the 

optimal pH condition to achieve target DOC level of less than 5 mg/L for the treated 

water quality. 

Input Layer Hidden Layer Output Layer 
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5.3.5 Assess Coagulant Determination Model Performance  

Three modelling techniques, MLR, PLS and ANNs were applied to determine the alum 

dose using the selected UV spectra (250-270 nm) of raw water at HV WTP. According 

to the modelling performance indicators (RMSE and R2), as shown in Figure 5-2, all 

three methods can be used to predict plant alum doses with the UV-Vis spectra. The 

use of UV-Vis spectra combined with PLS or ANNs has been studied for the 

determination of TOC, DOC and water quality index [20, 21, 55]. ANNs are the most 

commonly used technique to predict coagulant dose with the employment of the water 

quality parameters [7, 9, 15, 18] as inputs. Our results revealed that ANNs may not be 

the best modelling tool for alum dose predictions with the UV-Vis spectral data. MLR 

and PLS methods showed almost identical performance in terms of prediction of plant 

alum doses with small values of RMSE and high R2. MLR and PLS had better 

performance with smaller RMSE and high R2 values than ANNs in modelling of alum 

dose using UV-Vis spectra. MLR is a simple method that can directly define the 

coefficient of each parameter for coagulation determination. The developed three 

coagulant dose determination models can well adapt to the variations in raw water 

quality (Figure S5-2 in SI). The results indicate that the utilisation of UV-Vis spectra 

of raw water combined with MLR or PLS can mimic operator decisions in the selection 

of alum doses. There is a potential for using a portable UV-Vis spectrophotometer 

combined with chemometrics (MLR and PLS) to assist operators for real-time 

coagulant dose prediction, especially when there is an unexpected change in raw water 

quality.  

Coagulant doses for water treatment were typically determined by the operators based 

on multiple factors for process control. This study shows that coagulant doses can be 

determined for a WTP using only the UV-Vis spectra of raw water under the optimal 

pH condition to achieve the target DOC level for the treated water quality and 

comparable results were achieved. This study may be the first that directly utilises 

online UV-Vis spectra of raw water quality to determine plant doses. The combination 

of online UV-Vis spectra of raw water and coagulation dose determination models will 

allow better control of the coagulation process, particularly for sudden water quality 
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change events such as heavy rainfalls. Potentially, an online submersible instrument 

combined with a chemometric model (MLR or PLS) can predict coagulant doses and 

provide decision support information for coagulation process control at WTPs. 

5.4 Conclusion 

This study may be the first that present plant doses model can be built based on online 

UV-Vis spectra of raw water quality. Modelling techniques with different levels of 

complexity, including MLR, PLS and ANNs, and variable selection methods were 

employed to build coagulant doses models for the HV WTP. Important variables that 

influence the modelling of the alum dose determination were selected using VIP, SR 

and R methods from the UV-Vis spectra of raw water. The selected variables were 

determined as nine wavelengths within 250 -270 nm which revealed that the 

determination of coagulant doses of the HV WTP is mainly characterized in the UV 

region. The selected variables were used as inputs and plant doses were used as the 

outputs for modelling coagulant dose determinations.  

Results show that all three techniques can model the alum dose prediction with the 

selected variables. MLR and PLS methods had an almost identical performance in 

predicting plant alum doses with small RMSE and high R2. This study shows the 

feasibility of predicting coagulant doses based on the UV-Vis spectral data of raw 

water combined with a chemometric model and the ability to mimic the operator 

decisions in selecting the appropriate doses for process control, under the optimal pH 

condition to achieve a target DOC level of less than 5 mg/L for the treated water 

quality. It is concluded that a submersible UV-Vis spectrophotometer combined with 

a chemometric model (MLR or PLS) has the potential to support operators effectively 

for real-time determination of coagulant doses for process control, under the 

fluctuation of the raw water quality. 
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5.6 Supporting Information 

Table 5S-1 Trial and error (examples) of determination of the best wavelength range for 

modelling plant does using the UV-Vis spectral data.  

Wavelength 

range 

Train data Test data 

 RMSE R2 RMSE R2 

250-260 5.96 0.81 5.89 0.81 

250-262.5 5.38 0.84 5.42 0.84 

250-270 2.80 0.96 2.80 0.96 

250-275 4.11 0.92 4.23 0.92 

250-280 4.21 0.92 4.13 0.92 

250-305 4.31 0.92 4.26 0.91 

 

 

 
Figure 5S-1 DOC level of treated water quality of the HV WTP based on grab sampling (data 

was extracted from the internal database of the water utility). 
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Figure 5S-2 Raw water quality data of HV WTP based on grab sampling (data was extracted 

from the internal database of the water utility). 



 

160 

 

 

 

Chapter 6   Conclusions and Perspectives 

 

• Alternative compensation techniques may improve the reliability 

and usability of online instruments 

• Developed models could be used as an additional tool for decision 

making at water treatment plants for process control 

• Future research is needed on integration of early warning and real-

time process control systems for water quality management 
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6.1 Conclusions 

This thesis provides an overview of using online UV-Vis instruments for drinking 

water quality monitoring and process control. A summary of this thesis has been 

published, as shown in Appendix F. It also highlights the challenges and potential 

solutions of real-time applications of online UV-Vis spectrophotometers for the 

management of drinking water supplies. A study of particle impact on the 

measurements of a submersible UV-Vis spectrophotometer was conducted under 

laboratory-controlled conditions. The performance of the instrument built-in particle 

compensation technique was assessed. In-depth knowledge of the online 

measurements of UV-Vis instruments was obtained to the understand the influence of 

different types and various levels of concentrations of particles in the water on the UV-

Vis measurements. The relationships between particle types and concentrations and 

the UV-Vis measurements were revealed. It also explained why the built-in generic 

compensation algorithms of the submersible UV-Vis spectrophotometer may generate 

under-compensated or over-compensated measurements for various source water. 

Novel software compensation models were developed, including single wavelength 

compensation, linear regression compensation and multiplicative scatter correction 

method, using time series UV-Vis spectra data from water treatment plants in South 

Australia. The results show that these particle compensation techniques can improve 

the reliability of the UV-Vis sensors for online water quality monitoring. It also 

demonstrated the benefits of using software compensation methods to establish site-

specific calibration models instead of relying on the instrument built-in generic 

calibrations. Furthermore, simple UV-Vis instruments with a single wavelength or a 

short wavelength band could be employed in the field to monitor water quality instead 

of using sophisticated full-spectrum UV-Vis instruments. The use of alternative 

compensation techniques may allow less maintenance of the instruments and possibly 

improve the reliability and usability in real-time by water treatment plant operators. 

The utilisation of time series UV-Vis spectra was further explored by developing 

coagulant dose determination models. Modelling techniques with different levels of 
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complexity, including multiple linear regression, partial least squares, and artificial 

neural works, were employed to build coagulant doses models for a water treatment 

plant in South Australia. Results show the feasibility of predicting coagulant doses 

based on the UV–Vis spectral data of raw water combined with a chemometric model. 

This model enables mimics operators' decisions in the determination of coagulant 

doses with a pH target of 6 to achieve a target DOC level of less than 5 mg/L for treated 

water quality. It is concluded that a submersible UV–Vis spectrophotometer combined 

with a chemometric model has the potential to be a decision support tool for real-time 

determination of coagulant doses for process control, under the fluctuation of the raw 

water quality. 
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6.2 Perspectives 

This research and the outcomes show that the accuracy of the surrogate parameters, 

UV254, can be obtained from the UV-Vis spectra of water by applying different particle 

compensation methods. Future research on the validations of this work can be done 

through implementing the developed methods for real-time measurements of water 

quality at a water treatment plant. The performance of the online UV-Vis instrument 

combined with software compensation techniques could be assessed by comparing it 

with the laboratory analytical methods to have a side-by-side field trial. The suitability 

of the software compensation techniques can be tested for real-time water quality 

monitoring through the direct comparison of online measurements and the laboratory 

results of the same water. In addition, this project also shows the feasibility of 

predicting coagulant doses based on the UV–Vis spectral data of raw water combined 

with a chemometric model. Future work is needed on implementing the developed 

coagulant models in a water treatment plant for real-time predictions of coagulant 

doses to evaluate the performance of the models. Accuracies and reliability of the 

developed models can be tested for the coagulation process control, ideally, over a 

period of 12 months. The online instruments can be located at raw water intake and 

linked to the supervisory control and data acquisition system for trailing direct online 

coagulation control.  

Moreover, future research can be on the development of more surrogate parameters 

for water quality measurements using the UV-Vis spectra of water. Various surrogates 

of water quality measurements can be developed based on the correlations between the 

UV-Vis spectra and the standard laboratory measurements such as DOC, TOC and 

chlorine demand. Methods including PCA, PLS, ANNs could be employed to develop 

surrogate parameters for water quality measurements [1-3]. Future research also needs 

to work towards the integration of early warning and real-time water process control 

systems for water quality management. Figure 2 shows the integration of early warning 

for water quality anomaly detection and process control for water treatment plants. 

Online UV-Vis sensors can be placed at different locations of a water treatment plant 

to monitor water quality, particularly at the inlet to monitor source water quality. 
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Online UV-Vis measurements of water quality from the sensors connect to the 

Supervisory Control and Data Acquisition (SCADA) system. Particle compensation 

of the online UV-Vis measurements may be performed automatically using a selected 

technique such as a single wavelength compensation to remove the particle effects [4]. 

Then, the online UV-Vis measurements can be analysed to detect any unusual 

measurements based on the magnitude of the variations in the spectra and provide an 

early warning of rapidly changing water quality [5, 6]. In addition, coagulant doses 

can be determined and predicted using the combination of online UV-Vis 

measurements and chemometrics in real-time [7]. It can support operators for real-time 

determination of coagulant doses for water treatment process control when water 

quality change events occur.  

 
Figure 0-1Integration of early warning of water quality anomaly detection and water treatment 

process control. 
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Appendix B 

 

 

Figure A-1 Early access version of the review paper, entitled ‘application of online 

UV-Vis spectrophotometer for drinking water quality monitoring and process control: 

a review’, published by Sensors, MDPI. 
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