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Abstract

Side channel attacks were first described on timing based information leakage
in 1996 by Paul Kocher. Similar leakage can also be observed through physical
properties such as electro-magnetic emanations, acoustics and power consumption.
Masking is a countermeasure that splits sensitive values into separate values called
shares. However, due to the existence of unintended interactions in hardware, masked
implementations may fail to reach their advertised security level. We propose
an emulation based approach to find and eliminate leakage caused by unintended
interactions.

This thesis presents three main contributions, ELMO*, Rosita and Rosita++.
ELMO* is a modified version of ELMO (McCann et al. USENIX Security 2017)
which can emulate leakage from unintended interactions realistically. Rosita and Ros-
ita++ are two code rewriting tools that can fix univariate and multivariate leakage
by using emulated leakage from ELMO*. We tested Rosita on first-order masked
implementations of AES, ChaCha and Xoodoo and the slowdown incurred by the
fixes were 21.3%, 75% and 32.3%. Rosita eliminated more than 90% of all observed
leakage on a STM32F030 Discovery Evaluation board. We evaluated Rosita++ on
second-order masked implementations of Boolean-to-arithmetic masking, PRESENT
and Xoodoo where it eliminated all leakage in Boolean-to-arithmetic and Xoodoo
implementations. The slowdown incurred by fixes applied were 36%, 29% and
189%. It was also evaluated on a third-order masked synthetic example using 30
million power traces recorded from the target device, where Rosita++ fixed all
detected leakage. Our contributions have been presented at NDSS 2021 and CCS
2021 conferences.
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Chapter 1

Introduction

The introduction of side-channel attacks by Kocher in 1996 ushered in a new wave
of attacks against cryptographic implementations. These attacks try to reveal the
secret values of cryptographic devices by targeting their implementation details. In
contrast, traditional attacks on cryptography focus on breaking the mathematical
properties that cryptographic algorithms were based on. Side-channel attacks can be
much more effective in breaking cryptographic implementations since they employ
additional information that is emitted from an implementation to break it. Such
information is gained from multiple avenues such as power consumption [Kocher
et al., 1999], electromagnetic emanations [Quisquater and Samyde, 2001; Gandolfi
et al., 2001] and acoustics [Genkin et al., 2014].

In the modern world, a large number of people depend on the security guarantees
offered in devices such as credit cards, mobile phones, car keys and electronic safes.
All such devices use some form of cryptographic implementation to offer security
guarantees. When these devices are not protected against the threats of side-channel
attacks, they become potentially unsafe to use. Therefore, the vendors of such devices
require methods of securing these devices. Securing devices involves converting
devices that leak side-channel information to ones that do not. This is a tedious
and costly manual process that involves running multiple physical experiments,
which require expertise in multiple fields such as computer science and electronics
engineering. Securing a device involves multiple evaluations and manual application
of code fixes such that the final implementation is leak-free. To this end, leakage
emulation has provided a satisfactory answer to securing a device by approximating
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leakage of hardware and software implementations.
Varying levels of success have been achieved by using emulators for detection of

leakage [Debande et al., 2012; McCann et al., 2017; Corre et al., 2018]. Counter-
measures for leakage have also been proposed in literature by introduction of noise
to the power rails [Das and Sen, 2020], code polymorphism [Amarilli et al., 2011;
Agosta et al., 2012] and information hiding [McEvoy et al., 2009; Tiri et al., 2002].
Masking is another type of countermeasure that was proposed by Messerges [2000].
It is a theoretical countermeasure that splits each intermediate value of a cipher into
separate values called shares using random values. Typically, the advertised security
level of masking is not reached in practice due to unintended interactions that happen
in the hardware [Renauld et al., 2011; Balasch et al., 2015]. We observed that there
existed a gap in research for automatically applying countermeasures to mitigate
unintended interactions that happen in masked software implementations. Therefore,
this work tries to answer the following problem,

Is it possible to automatically mitigate leakage present in theoretically masked
software implementations based on leakage emulation?

The core intuition of this work is based on the discovery of a methodology to
insert code segments that mitigates leakage while preserving the original functionality.
Another major finding is the usage of a linear regression based power model to discover
root causes for leakage. Regression based power models are particularly beneficial
due to their ease of adaptability to different hardware. Previously, regression based
profiled power models were only used to emulate the power values of a device. The
emulator that we base our work on is ELMO which was proposed by McCann et al.
[2017]. ELMO is a profiling based emulator that uses a power model based on linear
regression. We extended the leakage reproduction capabilities of ELMO’s power
model to match the realistic levels that are required to practically use it as an emulator
that drives detection of root causes for leakage. Our main contribution in this area
is the introduction of internal state-based leakage to the emulator. Internal states
are specific values that are held in the device a long time after an instruction has
been executed. Such states interact with newly executed instructions and end up
exposing sensitive values. We also implemented previously discovered effects such
as overwrite effects and memory bus related effects in ELMO* so that the emulated
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leakage is in par with the leakage of the real device.
This thesis presents two methods which can be used to find root causes for leakage

that depend only on emulated power values for their function. The first method
analyses the statistical significance of the individual leakage that is contributed from
each term of the power model. Although this method is efficient in detecting root
cause leakage in univariate evaluations, it is not efficient for multivariate leakage
evaluations. This lead us to introduce the second root cause detection method which
searches for terms that cause leakage by elimination. In this method, the power
values from the power model are evaluated while eliminating a single term from the
power model at a time.

We implemented these methods in two open-source code rewriting tools called Ros-
ita1 and Rosita++2. We evaluated both of these tools with practical cipher imple-
mentations which feature a diverse set of cryptographic primitives such as AES,
ChaCha, PRESENT and Xoodoo. Our evaluations show that all detected leakage
using ELMO* can be fixed by using the methods detailed in this thesis. However,
address-bus related leakage is not emulated by ELMO*. Address-bus related leakage
is caused by interactions that happen in the address bus of a device. These are
dependent on the different addresses that are used to address different parts of
memory. If these addresses contain sensitive values or use shares of a sensitive
intermediate value in such a way that they combine through the address bus, it will
lead to information leakage that will not be detected by our emulation. A generic fix
for such a leakage cannot be devised as the code rewrite engine requires additional
implementation specific information such as the amount of memory that is accessed
by the address bus related instructions. This is also not possible with the current
code rewrite system.

We do not propose Rosita and Rosita++ as replacements to real evaluation of a
device. Emulation based leakage evaluation will always be inferior to an evaluation of
a real device while having benefits like reduced cost, reduced noise and parallelised
evaluations. The aim of our work is to complement a leakage evaluator’s tool set by
introduction of automated code rewrites for detectable leakage using emulators.

1https://github.com/0xADE1A1DE/Rosita
2https://github.com/0xADE1A1DE/Rositaplusplus

https://github.com/0xADE1A1DE/Rosita
https://github.com/0xADE1A1DE/Rositaplusplus
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Roadmap and main contributions of thesis
The main contributions of this thesis are in the areas of leakage emulation and
automatic application of countermeasures. The rest of this thesis is structured as
follows:

Chapter 2 Background. This chapter introduces preliminaries required to under-
stand the contributions featured in this thesis. It introduces the reader to topics
such as power analysis-based leakage, statistical leakage evaluation and past
literature on leakage emulators and countermeasures for power-analysis-based
leakage.

Chapter 4 Towards better leakage emulation. This chapter presents ELMO*, which
is an extended version of the profiling based leakage emulator ELMO [McCann
et al., 2017]. This chapter also presents a methodology of finding specific
leakage types for a given Instruction Set Architecture (ISA) depending on the
micro-architecture of the device. The effectiveness of the new power models
are evaluated using nested model evaluation using F-tests.

Chapter 5 Automatic mitigation of univariate leakage. Presents Rosita, a tool
that can find and eliminate univariate leakage detected by ELMO*. Rosita
introduces a novel root cause detection method for univariate leakage using
only emulated traces. Additionally, this chapter presents a methodology for
finding new countermeasures that can be used as code rewrite patterns. The
countermeasures that were generated through this methodology are used to fix
leaky code segments found by Rosita. A discussion of the implementation
details of Rosita follows. Finally, Rosita is evaluated using code blocks
of first order masked implementations of AES [Daemen and Rijmen, 2002],
ChaCha [Bernstein, 2008] and Xoodoo [Daemen et al., 2018a].

Chapter 6 Automatic mitigation of multivariate leakage. Presents Rosita++, a
tool that can fix multivariate leakage. Multivariate leakage is leakage that
stems from multiple sample points. Reasons why Rosita cannot be used
to detect root causes for multivariate leakage are discussed in this chapter.
We present a new root cause detection method called elimination of terms
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in Rosita++. Rosita++ is evaluated with code segments from two 3-share
implementations of PRESENT [Bogdanov et al., 2007] and Xoodoo [Daemen
et al., 2018a] and a 3-share cryptographic primitive for converting between
Boolean and arithmetic masking [Goubin, 2001].

Chapter 7 Conclusions. Concludes this thesis by discussing the limitations and
future work in the area of emulation based automatic countermeasures for
power analysis-based leakage.



Chapter 2

Background

2.1 Cryptology background
Cryptology is the study of secretive communication and storage methods and their
design. Cryptology encapsulates the fields of cryptography and cryptanalysis.
Cryptography deals with the design and implementation of methods used for
transforming legible data (i.e. plaintext) to non-legible data called ciphertext and
vice-versa. Cryptanalysis studies methods of breaking cryptographic methods so
that adversaries can recover messages. Until the 20th century, cryptology remained
a field that was predominantly used by governments and military establishments.
Towards the latter part of the 20th century, cryptography found more adoption in
personal electronic device such as personal computers and mobile phones, mainly
due to the wide adoption of the Internet.

2.1.1 Cryptography
Earliest known uses of cryptographic algorithms are reported from 4000 years ago
from Egypt. Julius Caesar (100 BC–44 BC) introduced the now famous shifted
alphabet cipher. The Caesar cipher is a substitution cipher based on substituting letters
from a mapping which is held secret [Kahn, 1996]. Following the major contributions
of Marian Rejewski [Rejewski, 1981] and Alan Turing in breaking encrypted Nazi
German communications [Turing and Copeland, 2004], cryptology was widely
adopted as a field of great value that demonstrates the power of modern nations.
Further developments such as electronic-fund transfer, authenticated messages and

6
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internet services have made cryptography into a field that the modern world cannot
function without.

Ciphers were placed on solid mathematical foundations following major improve-
ments done in mid 20th century [Kahn, 1996]. Modern cryptographic algorithms
depend on mathematical proofs for their security. The secrecy levels offered by
cryptographic algorithms are mainly divided into two types called perfect secrecy
and provable secrecy.

Perfect secrecy. A cipher has perfect secrecy, if given any ciphertext, no additional
information is gained about the plaintext. This means that if the cipher has the same
number of valid keys as the number of all possible plaintexts for each ciphertext, it is
a cipher with perfect secrecy. Even if an adversary attacks this cipher with unlimited
computational power through a brute-force approach, all possible messages will
have the same probability. Therefore, ciphers with perfect secrecy are protected
against adversaries with unlimited computational power. In 1949, Claude Shannon
proved that the one-time pad does not provide any information regarding the plaintext
other than its length and that this property makes it a cipher which offers perfect
secrecy [Shannon, 1949].

Provable secrecy. Some algorithms depend on problems that are known to be
mathematically hard to solve such as the discrete-logarithm problem. For sufficiently
large input values, the calculation of an answer to the discrete-logarithm problem
takes an impractically long time. If a cryptographic scheme is built on top of such a
problem, then adversaries will have to solve the yet unsolved mathematical problem
behind it. This guarantees the cryptographic scheme a certain level of secrecy which
is called provable secrecy. However, such schemes are relative to the current state
of knowledge and require replacement when such hard-problems become easier to
solve following new discoveries. One such discovery is the discovery of quantum
computers. A quantum computer would easily break cryptographic algorithms based
on discrete-logarithm as they can solve it within practically achievable time limits
compared to classical computers [Shor, 1994]. Post-quantum cryptography deals with
cryptographic algorithms that are still harder to solve even using quantum computers.
At the time of writing, all of this is under experimentation and current state-of-art
quantum computers need to be developed significantly to achieve the performance
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levels that are required to attack pre-quantum cryptographic schemes. For example,
the quantum algorithm that can be used to attack the integer factorisation problem
of RSA (Rivest Shamir Adleman) requires 2n+ 2 quantum bits to attack RSA keys
of n bit length. In practice, the recommended minimum key length for RSA is
2048 [National Institute of Standards and Technology, 2015b]. The latest quantum
computer at time of writing is only capable of operating at a quantum bit length of
76 [Zhong et al., 2020].

2.1.1.1 Symmetric key cryptography

Symmetric key ciphers use the same key for encryption and decryption operations.
Examples for some symmetric ciphers include One-time pad, DES (Data Encryption
Standard), AES (Advanced Encryption Standard), ChaCha, RC4 and all classical
cryptographic algorithms. Symmetric ciphers can be classified as stream ciphers
or as block ciphers. Stream ciphers operate on a single symbol at a time and block
ciphers operate at a set of symbols at a time. If the length of the message is not a
multiple of the block size, it may be padded with symbols before the encryption
according to a given mode of operation.

A limitation with symmetric ciphers is that they must be paired with a secure
key-exchange protocol to be useful. Otherwise, the key itself would have to be
communicated in a secure channel. This is a recent requirement, as modern
communication channels such as radio communication and wired communication
networks are inherently public. It is easy for a remote eavesdropper, who has access
to the communication medium, to extract such messages.

2.1.1.2 Asymmetric key cryptography

Asymmetric key cryptography, or public-key cryptography uses different keys for
encryption and decryption operations. The key generation sequence for an asymmetric
cipher always generates two keys. One is used for the encryption and the other for
decryption. Popular examples include RSA and elliptic Curve cryptography based
algorithms.

In addition to encryption and decryption of messages, asymmetric ciphers are
used to offer authentication to messages similar to a signature. The signing party
would sign a message with a key and keeps it private while publishing the verification
key. The private key is held secret by the signing party and the public key is accessible
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to anyone. This lets a receiver verify a message with the public key, it is impossible
for them to impersonate the original sender as they cannot derive or have access to
the privately held key.

2.1.2 Cryptanalysis
Cryptanalysis is dedicated to the analysis of cryptographic algorithms and protocols.
Specifically, cryptanalysis focuses on methods for breaking ciphers. The first
known cryptanalysis method is frequency analysis and was introduced by Al-Kindi
around 800. Frequency analysis uses the relative frequencies of the appearance of
letters in a language to break substitution ciphers. Traditionally, cryptanalysis was
limited only to mathematical and statistical methods. With the increasing use of
machines for carrying out cryptographic workloads, the information leaked as result
of implementation weaknesses help drive attacks against them. Side-channel and
fault injection attacks are examples of exploiting weaknesses in implementations.
Side-channel attacks exploit a cryptographic device’s interactions with its operating
environment. The correlation between sensitive information and the recorded
measurements aids in revealing the sensitive information that is processed by a device.
Examples for recorded measurements include sound, electromagnetic emanations,
power consumption and latency measurements. Fault injection attacks exploit
weaknesses by operating a device at unusual operating conditions. These conditions
lead the device to act differently to what it is designed for. For example, Choukri and
Tunstall [2005] demonstrated that the number of AES rounds could be reduced to
one by introducing a glitch on the microprocessor of a smart card. This significantly
reduces the security offered by AES.

Cipher implementations that restrict access to the details of how they operate
(e.g. source code) are said to offer security through obscurity. If a cipher is designed
with the assumption of secrecy of the algorithm and or implementation details are
preserved, this in turn becomes a weakness of the cipher when an adversary gets hold
of the implementation details. Therefore, this is an inferior design technique to be
used for implementing ciphers. In the 19th century Auguste Kerckhoffs formulated
a principle which states that the key should be the only part of a cryptosystem that
should be private. This method of designing a cryptosystem concentrates all secrecy
to the key. Especially in the information age where computers operate on code that
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could trivially be reverse engineered, this design pattern is regarded as the standard
way of designing ciphers.

2.1.3 Side-channel based attacks
In 1996, Kocher demonstrated that RSA keys and Diffie-Hellman exponents could
be revealed through measuring the time required to perform private key operations.
Such side-channels can leak information about the internal state of the computation,
leading to a potential collapse of the security of a cryptographic implementation.

Since then, significant effort has been invested in researching side-channel attacks.
Attacks have been demonstrated against various types of primitives, including sym-
metric ciphers [Bernstein, 2005; Moradi et al., 2013], public key systems [Messerges
et al., 1999; Genkin et al., 2016] post quantum cryptography [Aysu et al., 2018],
and non-cryptographic implementations [Batina et al., 2019; Yan et al., 2020;
Shahverdi et al., 2020; Shusterman et al., 2019]. These attacks exploit various
side-channels, such as power consumption [Kocher et al., 1999] electromagnetic
emanations [Quisquater and Samyde, 2001; Gandolfi et al., 2001], micro-architectural
state [Ge et al., 2018; Lou et al., 2021; Bertoni et al., 2005], and even acoustic and
photonic emissions [Genkin et al., 2014; Krämer et al., 2013]. Side-channel attacks
work by correlating the recorded measurements of phenomena with the intermediate
values of cryptographic algorithm that is executed within a device. This is done
through the statistical analysis of recorded measurements.

2.1.4 Countermeasures against side-channel attacks
Proposals have been put forward for hardware designs that reduce emissions [Chen
and Zhou, 2006], software solutions that ensure secret-independent execution [Ge
et al., 2018], adding noise to hide the signal [Moradi and Mischke, 2013; Das
and Sen, 2020], code polymorphism [Amarilli et al., 2011; Agosta et al., 2012],
information hiding [McEvoy et al., 2009; Tiri et al., 2002] and information masking
techniques [Chari et al., 1999; Nikova et al., 2006] where secret values are split to
multiple unrelated values.

Full mitigation of such attacks is not possible as there always can be some other
phenomenon that the implementers of the cryptographic system did not implement
mitigations for or were aware of. However, a significant level of protection can be
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gained by implementing defences for known side-channel attacks.

2.2 Statistical background
This section introduces statistical concepts that are used in this work. Throughout
the rest of this work, we use upper case Latin letters to denote random variables and
lower case of the same letter to denote a value that the random variable may take. A
bar over a random variable denotes the mean of the random variable, for example, X
denotes sample mean of X . Some common functions that are defined over random
variable(s) are the expected value E(X), the variance Var(X) and the covariance
Cov(X, Y ). Population mean and standard deviation is denoted by µ and σ.

2.2.1 Probability distributions

2.2.1.1 Normal distribution

A normal distribution is characterised by its probability density function (ϕ(x))
shown in Equation 2.1, where the population mean is µ, population variance is σ2 and
x is a value of a continuous random variable. A random variable X , being normally
distributed is denoted as X ∼ N(µ, σ2).

ϕ(x) =
1

σ
√
2π
e−

1
2(

x−µ
σ )

2

(2.1)

2.2.1.2 Student’s t-distribution

A Student’s t-distribution with v degrees of freedom is defined by its probability
density function ψv in Equation 2.2, where Γ is the gamma function.

ψv(x) =
Γ
(
v+1
2

)
√
πvΓ

(
v
2

) (1 + x2

v

)− v+1
2

(2.2)

The Gamma function is defined as shown in Equation 2.3 for all complex numbers
(z) except when the real part is 0 or negative.

Γ(z) =

∫ ∞

0

xz−1e−x dx (2.3)

The Cumulative Distribution Function (CDF) of the Student’s t-distribution ψv is



CHAPTER 2. BACKGROUND 12

given by CDFt as depicted in Equation 2.4.

CDFt(x, v) =

∫ x

−∞
ψv(x) dx (2.4)

Relation to the normal distribution. Given a random variable X , µ and σ are
population mean and standard deviation. The quantity q in Equation 2.5 follows a
normal distribution when n samples are sampled from the population.

q =
X − µ
σ/
√
n

(2.5)

Student’s t-distribution arises when the population variance (σ2) is approximated
by a sample variance (s2). The quantity t in Equation 2.6 follows a Student’s
t-distribution with n− 1 degrees of freedom. As shown in Figure 2.1, a Student’s
t-distribution gets closer to the standard normal distribution as its degrees of freedom
increases.
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Figure 2.1: Student’s t-distributions with differing degrees of freedom compared to
the standard normal distribution.
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t =
X − µ
s/
√
n

(2.6)

2.2.2 Hypothesis testing
Hypothesis testing is a process used to test the truth of some supposition or a
proposed explanation made with limited evidence. The explanation must be testable
and falsifiable. The process of hypothesis testing uses the experiment data to prove
either that a research hypothesis holds or not without a reasonable doubt.

The default decision of this test is called the null hypothesis. The null hypothesis
(H0) states that any difference shown in the experiment data that shows that the
research hypothesis is true is due to statistical error and that there is no significant
difference between the data collected when the research hypothesis is true or false.
In contrast, the alternative hypothesis (H1) states that there is significant evidence
that the research hypothesis is true.

When using hypothesis testing with experiment data, the evidence is acquired
by sampling values (i.e. measurements) from different distributions. The standard
method of performing such a test is to sample values from the same random variable
of two instances of the same experiment namely, control and test. The control
experiment represents the null hypothesis. In other words, this experiment represents
what happens when nothing special is done. The test experiment represents the
alternative hypothesis. Alterations to the experiment dictated by the research
hypothesis are applied to the test experiment. This must be done in such a way that
the test experiment is minimally different from the control experiment otherwise
measurements will include effects other than the ones that the evaluator is interested
to observe. The result of the experiment depends on the evaluation of the two
distributions of data collected from the above explained experiments. A standard
way of comparing two distributions is to compare their means. This is referred to as
the testing of means [Hardle et al., 2015, Chapter 9.4].

2.2.2.1 Student’s t-test

The Student’s t distribution can be used to measure the significance of the difference
of means. There are three main configurations in which means are tested, they are
known as two-sided, right-sided and left-sided tests.
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Two-sided test.
H0 : X = µ0, H1 : X ̸= µ0 (2.7)

The null hypothesis for a two-sided test states that the two distributions are the
same. We assume that the sample under test is a part of a hypothetical population.
X is the sample mean and s is the sample variance and the hypothetical population
has mean µ0. Under above conditions, the quantity t in Equation 2.8 is Student’s
t-distributed. Value of t quantity is referred to as the t-value of the t-test. It is
assumed that the population data is normally distributed and that the variances
are homogeneous which means that the variances of different samples from the
population are equal.

t =
X − µ0

s/
√
n

(2.8)

The rejection of the null hypothesis is done in favour of the alternative hypothesis
under a maximum allowable p-value. This is referred to as the significance level and
is denoted by α. The p-value of a given statistic (i.e. t-test value) is the probability of
observing a statistic at least as extreme or more extreme than the given statistic.

The p-value of a t-test is given by the area under the curve when the t-value
is larger than the t-value at significance level α. This t-value is denoted by tα. If
the p-value is smaller, an evaluator is more confident (1 − p) in rejecting the null
hypothesis. Therefore, at a significance level of α the respective confidence level
is 1− α.

For a two-tailed t-test, the regions under the curve that are considered for the
significance level are situated at ends of the Student’s t-distribution curve. These are
analogous to X > µ0 and X < µ0 as shown by Figure 2.2a. For the two-sided test,
the confidence and p-value probabilities are split equally. Therefore, the respective
t-value at a significance level of α for the two-sided test is tα/2.

Right-sided test.
H0 : X ≤ µ0, H1 : X > µ0 (2.9)

In a right-sided t-test, as the sample mean (X) gets larger, probability of observing
an even more extreme statistic reduces. Therefore, only the right tail of the t-
distribution is considered in the right-sided test. This is depicted by the right side tail
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(c) Left-sided t-test.

Figure 2.2: Different configurations of a t-test.

of Figure 2.2b.

Left-sided test.
H0 : X ≥ µ0, H1 : X < µ0 (2.10)

In contrast, in the left-sided test, only the left tail of the t-distribution is considered.
As the sample mean gets smaller, probability of observing an even more extreme
statistic reduces. This is depicted by the left side tail of Figure 2.2c.

2.2.2.2 Welch’s t-test

Welch’s t-test extends the mean comparison methodology used in Student’s t-test for
testing samples from two different populations. D is an estimator which is the mean
difference of two samples from respective populations, X1 and X2.

D = X1 −X2

The comparison is done againstD and a hypothetical population mean difference,
ω0. Therefore, the null hypothesis and the alternative hypothesis for the two-sided
test changes as follows,

H0 : D = ω0, H1 : D ̸= ω0 (2.11)

The variance of the hypothetical mean difference population is derived from
the two populations. The two populations are assumed to be normally distributed
and independent of each other. When n1 and n2 are population sizes, the following
quantity of t has a Student’s t-distribution with n1+n2−2 degrees of freedom [Hardle
et al., 2015].
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t =
X1 −X2 − ω0√

σ2
1

n1
+

σ2
2

n2

Bernard Lewis Welch proposed approximating the population variances by using
sample variances. Then, t can be approximated by a Student’s t-distribution given by,

t =
X1 −X2 − ω0√

s21
n1

+
s22
n2

with v degrees of freedom, where,

v =

(
s21
n1

+
s22
n2

)2

1
n1−1

(
s21
n1

)2

+ 1
n2−1

(
s22
n2

)2 .

2.2.2.3 Two One-Sided t-tests

The Two One-Sided t-test (TOST) is used to test for the equivalence between two
populations with lower (ωl) and upper (ωu) boundaries of population mean differences.
Similar to Welch’s t-test, it introduces an estimate (D) as the difference of sample
means,

D = X1 −X2.

Given that ωl < ωu, null and the alternative hypotheses used in TOST are defined as
follows,

H0 : D ≤ ωl or ωu ≤ D ,

H1 : ωl < D and D < ωu.

The null hypothesis covers the scenarios where the difference of means lie outside
the boundaries and the alternative hypothesis covers the scenario of it lying within
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the boundaries, which is interpreted as the two distributions are equivalent. We use
the following t quantities as discussed earlier in Section 2.2.2.2, but here we use the
boundary values instead of mean difference of the hypothetical population.

t =
X1 −X2 − ωl√

σ2
1

n1
+

σ2
2

n2

(2.12)

t =
X1 −X2 − ωu√

σ2
1

n1
+

σ2
2

n2

(2.13)

Similar to the Student’s t-test and Welch’s t-test, we now have two individual
t-tests that both of which need to pass with a high confidence such that we can reject
the null hypothesis with high confidence.

2.3 Power analysis based side-channel leakage
This section discusses side-channel attacks and mitigations for power analysis attacks.
Power analysis is the methodology in which power consumption values of devices are
recorded and analysed. In a side-channel leakage related context, power analysis is
performed with the intention of retrieving internally processed sensitive information
from a device. This section discusses side-channel attacks and evaluation methods
based on power analysis.

2.3.1 Sources of information leakage through power consumption
Power consumption of a single bit. Contemporary computational electronic
devices store intermediate values in memory units called registers during execution.
Each bit in a register is stored in a digital sequential circuit called a latch. In a
nutshell, a latch includes digital circuitry that enables it to store one of two stable
states. These states can be switched from one to the other by sending a specific signal
to the latch. The current state of a latch depends on its previous and current inputs.
The Figure 2.3 shows a Set Reset (SR) latch, a type of latch that is commonly used to
implement registers in computational devices. When the Set (S) input is set to high,
the SR latch’s output (Q) sets to high and stays latched in high level until high input
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is received at Reset (R) input. The latched state is used for storage of a single bit.
The current technology used to implement these devices is called Complementary

Metal Oxide Semiconductor (CMOS). CMOS is a fabrication process that uses Metal
Oxide Semiconductor Field Effect Transistors (MOSFET) to build integrated circuit
chips. Latches too are CMOS devices that have MOSFET transistors in them. Any
changes done to the state of a latch translate to switching some transistors on or
off. Therefore, the states that a latch stores (i.e. 0 or 1 bit) represent distinct power
consumption levels.

Q

Q

R

S

Figure 2.3: SR Latch.

Power consumption of a register. The power consumption of a register is the total
consumption of all the bits of the register. This value is proportional to the number
of bits that are set in a register which is the Hamming weight of the value that is set
in the register. It also depends on the Hamming distance of new and old values when
new values are being written to the register.

Glitching effects in logic cells. Glitching effects are observed at unstable states of
logic cells. Due to propagation delays it takes some time for a logic cell to stabilise
its output logic levels. In the meantime, it may output values that are glitchy. These
values may combine input values of the logic cell in unnecessary ways and some of
these combinations may also end up in information leakage.

Acquisition of power traces. The acquisition of power traces refers to the collection
of power consumption measurements from a physical device. The power consumption
of a device can be measured either by directly measuring the current through a current
probe, voltage across a shunt resistor or indirectly by measuring the electromagnetic
field intensity near to the device. Since we are interested in the power consumption
while some computation is carried out on the device, the measurements need to
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be collected within the time frame which the computation takes place. This can
be done by using an oscilloscope that supports recording measurement traces to
storage or sends the measurements to a separate acquisition device [Mangard et al.,
2007, Section 3.4]. A description of the physical experiment setup that we used is
in Section 3.2.

2.3.2 Simple power analysis attack
Power traces are power consumption measurements recorded within a given time
frame. When observing a power trace recorded from a device that had run dif-
ferent code segments, the difference between each code segment could be easily
distinguished visually. This is due to the nature of the time dependent patterns that
are present in the power consumption signal. Whenever a different code segment
is executed, it is reflected in the power traces. This effect can be used to break
implementations of ciphers that have input dependent branches in them. This is
referred to as a Simple Power Analysis (SPA) attack.

2.3.3 Differential power analysis attack
In contrast to SPA, Differential Power Analysis (DPA) involves analysis of a collection
of power traces from code that has a constant control flow (i.e. code with no conditional
branches dependent on input). It exploits the biases between the power consumption
values when the processor executes the same operations in each run of a cipher with
different values. This methodology was first used to extract sensitive data from a
cipher by Kocher et al.. They demonstrated their attack on the Data Encryption
Standard (DES) cipher. The key idea behind DPA is the exploitation of the power
consumption of a single bit. A DPA attack exploits the correlation between the
power consumption and the value of a specific bit in multiple executions of the same
operation with different inputs.

The first step of conducting a DPA attack is to collect power values for different
inputs (i.e. plaintexts) at a point of time when the selected bit is operated on. Second,
the value of the selected bit is calculated for a set of all possible subkeys and for
all inputs used for the previous test. A subkey is a part of the key which is then
enumerated through all possible values to generate all possible hypothetical values
for the selected bit. The subkey that generates the hypothetical bit values with the
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highest correlation to the observed power values is the correct subkey. This process
can be extended to other subkeys depending on the cipher to reveal the full key.

2.3.4 Correlation power analysis attack
Correlation Power Analysis (CPA) extends the understanding of the power consump-
tion of a device by introducing better approximations through power models. Two
such models are Hamming weight model and Hamming distance model [Messerges,
2000]. Hamming weight is the number of set bits of a binary number and the
Hamming distance is the number of corresponding bits that are different between
two binary values that have the same bit count.

CPA employs the Pearson’s correlation coefficient (r) shown in Equation 2.14
to determine the correlation between the power traces and the hypothetical power
values from a specific power model (e.g. Hamming weight or Hamming distance).
Here, xi and yi denote individual power samples and the hypothetical values. x and
y denote the mean of each distribution of samples. n is the number of samples.

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(2.14)

2.3.5 Test Vector Leakage Assessment
In previous sections, multiple methods of attack were discussed in the context of
attacking power side-channel leakage of cipher implementations. However, such
methods only allow specific attacks on a given implementation. The assessment of
the security of a given device can only be done by a generic evaluation methodology
that does not limit itself to exploitation based on a certain model or intermediate
values. One such method is Test Vector Leakage Assessment (TVLA).

Test Vector Leakage Assessment (TVLA) was first introduced in Goodwill et al.
[2011] as a methodology for measuring power analysis side-channel leakage of a
given device. An advantage of TVLA is that it can be used both with or without a
power model. When used with a power model, the test is said to be run on a specific
configuration and the result shows whether the leakage can be exploited or not. In a
non-specific configuration, a power model is not used, and the result gives a level
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of confidence that helps the evaluator conclude whether the device under test emits
leakage. This method does not offer insight into how this leakage can be exploited or
whether it can be exploited at all [Schneider and Moradi, 2015].

TVLA is based on statistical hypothesis testing using a two-sided Welch’s t-test,
discussed in Section 2.2.2. The quantity t in Equation 2.15 follows a Student’s
t-distribution with v degrees of freedom when X1 and X2 are sample distributions
with their means following a normal distribution and when ω0 is a constant value.
The standard deviations of X1 and X2 are s1 and s2, and the number of samples in
each sample distribution is n1 and n2.

t =
X1 −X2 − ω0√

s21
n1

+
s22
n2

(2.15)

v =

(
s21
n1

+
s22
n2

)2

1
n1−1

(
s21
n1

)2

+ 1
n2−1

(
s22
n2

)2 (2.16)

Recall that in hypothesis testing using two-sided t-tests, the null hypothesis of
X1 −X2 = ω0 is rejected in favour of the alternative hypothesis (X1 −X2 ̸= ω0)
when the absolute value of t is above a certain t-value threshold that is set according
to a given significance level, α. The t-test is used with ω0 set to 0 on both specific
and non-specific configurations of TVLA. In other words, this means that the t-test
tests for the inequality of means of X1 and X2.

The Cumulative Distribution Function (CDF) for the Student’s t-distribution,
which is the area under the curve is calculated from Equation 2.17, where ψv(t) is the
Probability Density Function (PDF) for a t-distribution with v degrees of freedom
(see Section 2.2.1.2 for details).

CDF t(t0, v) =

∫ t0

−∞
ψv(t) dt (2.17)

For a two-sided t-test, the p-value is given by Equation 2.18.

p = 2(1− CDF t(|t|, v)) (2.18)
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If the p-value is less than or equal to a certain significance level (α), the null
hypothesis is rejected at significance level α. The t-value at significance level α can
be inferred from the inverse of the CDF as CDF−1

t (1− α/2, v). Typically, TVLA
uses a threshold value t = 4.5 under the assumption of a significance level (α) of
0.00001 and v > 1000 [Schneider and Moradi, 2015].

On a specific t-test, the two sample distributions (X1 and X2) are selected
according to an intermediate value calculated from a model. If the t-test value shows
statistical significance, then a suitable DPA attack can be carried out to extract the
key.

In contrast, a non-specific t-test has no explicit model. In a non-specific t-test,
the sample distributions are grouped based on the kind of input supplied to the cipher.
Mainly, two such input types exist, one is fixed vs. random input where a set of power
traces are recorded while fixed input is processed and the same number of traces are
recorded while the device processes random inputs. The other input kind is fixed
vs. fixed where power traces are recorded while the device processes two different
fixed inputs. Example t-test values generated from 10000 power traces (5000 with
fixed input and 5000 with random input) collected in the fixed vs. random input
configuration for an unprotected AES implementation is shown in Figure 2.4, which
shows significant leakage around the SubBytes procedure.
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Figure 2.4: t-values for the first round of AES.

There are a number of things to be concerned when conducting a power analysis
experiment to record samples that will be used for TVLA. First, the input for each run
of the cipher’s code segment must be chosen from a random coin flip. This is done
in order to remove any bias that stems from the order of execution and to minimise
the effects of persisted state left over from the previous run of the code segment.
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Therefore, the inputs should be sent to the target device in an non-deterministic and
randomly-interleaved fashion [Schneider and Moradi, 2015].

Second, the analysis of TVLA should also be done with care as both false-
positives and false-negatives could be present. As TVLA is not an exhaustive test, it
cannot guarantee that a certain implementation does not leak sensitive information. It
depends on the number of power traces recorded and the inputs used as fixed inputs.

The amount of statistical error for rejecting the null hypothesis increases as
the number of observed sample points increase. This increases the number of
false-positives. Therefore, increasing the t-test threshold accordingly has been
suggested in many studies [Balasch et al., 2015; Ding et al., 2017]. Ding et al.
suggest updating the significance level for a t-test for a single sample point to α′

where the significance level for all sample points is α. The new significance level (α′)
is given by, 1− (1−α) 1

m . Therefore, the new threshold (tα′) is CDFt
−1(1−α′/2, v).

2.3.6 Modelling leakage from multiple probes
Usually, a single probe is used to sample power consumption values. As deeper and
more fine-grained information is revealed from the processor, it becomes increasingly
hard to defend against such attacks. To reason about the security of a processor,
a theoretical model was required where an attacker’s strength could be evaluated
with respect to a given implementation. Such a model was first presented in Ishai
et al. [2003]. This model assumes that an attacker has access to power values from
only t wires of a Boolean circuit. This is called the t-probing model. By dividing
the information of each wire in the circuit into t+ 1 or wires, the implementation
can be made secure under the t-probing model. The reason behind the enhanced
security is that the attacker is now required to gather information from t+ 1 or more
wires and should combine all of them to gain the original value. The combination is
done through a predetermined combination function. Commonly used combination
functions are the product or difference between mean centred power samples [Prouff
et al., 2010; Schneider and Moradi, 2015]. The t-probing model can be applied
to software implementations by assuming that an attacker is limited to observe the
combined values at t sample points of a power trace. For example, dth-order Boolean
masked implementations split each of their secret intermediate values into d+1 parts
called shares using random values (see Section 2.3.7 for details). An attacker needs
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to observe all shares to reconstruct the original secret value.

2.3.7 Countermeasures for power analysis attacks
One of the earliest methods used against side-channel attacks is the introduction of
noise to the emitted signals. This was achieved in many forms including hardware
noise injection [Das and Sen, 2020] and code polymorphism [Amarilli et al., 2011;
Agosta et al., 2012]. Another approach is to make the leakage independent of
the intermediate values. Changes to the underlying logic circuit implementations
significantly lowers the correlation between the emitted signal and the intermediate
values that are being processed. This is referred to as balancing [McEvoy et al.,
2009; Tiri, 2010]. Masking [Messerges, 2000] is another type of countermeasure
that can be applied in hardware and software implementations. It is an established
method for mitigating power analysis side-channel attacks on ciphers [Rivain and
Prouff, 2010; Balasch et al., 2015]. In masking, a sensitive value is split into two or
more parts called shares [Messerges, 2000; Chari et al., 1999]. One of the methods
of splitting sensitive values is called Boolean masking. The Boolean masking scheme
splits a secret value (s) into k + 1 shares, s0, s1, ..., sk where for 1 ≤ i ≤ k, si is
chosen uniformly at random and s0 is chosen such that s0 = s⊕ s1 ⊕ s2 ⊕ · · · ⊕ sk.
This scheme ensures that the sensitive value can be only recovered by observing all
shares. Another method is to use addition in modulo 2k for some k ∈ Z+ instead
of the exclusive or operator. This is referred to as arithmetic masking [Messerges,
2000]. However, practical masking based implementations often fail to offer their
advertised theoretical levels of security due to unintended interactions that breach an
assumption called the Independent Leakage Assumption (ILA).

The Independent Leakage Assumption states that manipulation of each share
must be separate from all other shares [Balasch et al., 2015; Renauld et al., 2011].
The existence of glitches and register overwrites reduce the effective number of
shares by combining subsets of shares. As these breaches happen unintentionally,
they are referred to as unintentional ILA breaches.

Verification of masked implementations can help identify weakly masked im-
plementations and fix them. Such issues have been previously demonstrated to be
automatically verifiable by using tools such as SLEUTH [Bayrak et al., 2013]. How-
ever, as SLEUTH depends only on data and control flow, it is not aware of additional
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micro-architectural interactions that may take place. It has been demonstrated that
due to the inherent resource sharing of hardware, there can be combinations of shares
that cannot be deduced from the assembly code alone [Meyer et al., 2020].

A number of studies have demonstrated application of countermeasures to fix
leakage caused by ILA breaches [Papagiannopoulos and Veshchikov, 2017; Meyer
et al., 2020]. Studies that do not model or depend on physical power traces cannot
effectively mitigate ILA breaches as such effects depend on physical characteristics
of devices and vary significantly between different devices. For example, Wang et al.
[2019] demonstrate a methodology that checks for register overwrites but does not
include checking of interactions at the micro-architecture level. Micro-architectural
operations within a microprocessor such as overwriting of internal pipeline registers
have been found to cause ILA breaches [McCann et al., 2017; Corre et al., 2018].
Seuschek and Rass found that no-op instructions caused accesses to the register
file which leads to leakage of secret values in an Atmel AVR microcontroller unit.
They observed that even instructions that do not change the processor state such as
no-op instructions can cause leakage due to the internal architecture of a CPU. The
analysis of a bit-sliced implementation of AES S-box in Seuschek et al. [2017] show
leakage leakage on an ARM Cortex-M0 CPU. Their analysis revealed significant
leakage as the authors of the AES S-box [Schwabe and Stoffelen, 2016] had not taken
micro-architectural effects into account. It is evident from these studies that detailed
leakage characteristics cannot be exposed by only analysing software machine code
without some description about the hardware it runs on.

2.3.7.1 Automatic application of countermeasures

Application of masking to an unprotected cipher implementation mitigates the risk
of mistakes due to human error and saves development and testing times for large
cipher implementations. Compiler assisted masking [Moss et al., 2012] introduces a
code repair system that is based on heuristics. A known set of inconsistencies are
replaced with secure alternatives. SC-Masker [Eldib and Wang, 2014] is another
tool that can automatically apply masking to an unprotected cipher. It achieves this
by replacing code segments with functionally equivalent masked code segments.
The masked code segments are generated straightforwardly when the functionality
of a code segment is linear. When it is non-linear, an SMT solver based inductive
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synthesis is used to find an optimal masked code segment.
Recall from the earlier discussion in this section that even theoretically secure

masked implementations can still leak due to ILA breaching effects in hardware.
Therefore, effective means of eliminating ILA breaches are needed. One such method
is to use code rewrites that block the leaky interaction. Another method is to write
software in an extended ISA that supports masking at an instruction level [Gao et al.,
2021a]. Methods such as register reallocation and random precharging has been
used in past literature [Bayrak et al., 2011; Tillich and Großschädl, 2007] for code
rewrites. Random precharging repeats an instruction that is already a part of a leaky
interaction with randomly selected operand values such that the overall program
functionality is not affected. This resets the internal state that was stored earlier in
the microprocessor [Tillich and Großschädl, 2007]. Seuschek et al. [2017] proposes
leakage aware scheduling and register allocation, where instructions are scheduled
so that the transition-based leakage between them are eliminated. FENL [Gao et al.,
2020b] extends the ISA by additional instructions that clear internal states when
called. However, such instructions need to be manually applied to an implementation.

2.4 Emulation based power analysis leakage evalua-
tion

Emulation is the reproduction of exact or approximate output for a certain process
without actually depending on it. An emulator is expected to produce the exact
output or a similar one by any means possible. On other hand, simulation involves
in modelling the internal states of the original process. Emulation and simulation
are both used in modelling circuits due to the excessive costs in creating prototype
circuits for each iteration of design changes. The cost reductions can also be applied
to power analysis due to the physical experiments that are costly and tedious to
perform without expertise in multiple fields. Simulation of electronic components
can be done with a simulator called Simulation Program with Integrated Circuit
Emphasis (SPICE) [Nagel and Pederson, 1973]. Although such a simulator can
produce accurate power consumption for smaller circuits efficiently based on analog
simulations [Regazzoni et al., 2009; Tiri and Verbauwhede, 2005; Kamel et al., 2014;
Arribas et al., 2018], simulating larger circuits can become considerably slower. This
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makes SPICE simulations comparably slower to their digital simulator counterparts.
Software leakage emulators generate power traces directly from the machine code

and additionally from a description of the hosting hardware, albeit not as descriptive
as what SPICE may require. The first such emulator was PINPAS [den Hartog et al.,
2003] which was capable of emulating power traces for code that ran on smart-
cards. Emulators based on profiling [Debande et al., 2012] emerged following the
introduction of stochastic models for profiling based attacks by Schindler et al. [2005].
SILK was presented by Veshchikov [2014] as a leakage emulator based on high-level
abstraction of the source code. This approach is ineffective in emulating ILA
breaching effects because it only operates on the source code level. Architectural and
micro-architectural effects that cause ILA breaches are not exposed in such emulations.
Unlike SILK, SAVRASCA [Veshchikov and Guilley, 2017] is an emulator based
on machine code and thus does not suffer from this issue. Additionally, it supports
detection of register overwrite based leakage through Hamming distance leakage
model for the new and old values for registers. SLEAK [Walters et al., 2014] is a
leakage simulator based on the Gem51 simulator which simulates information leakage
through Hamming weights of values stored in registers. ASCOLD [Papagiannopoulos
and Veshchikov, 2017] successfully emulates micro-architectural effects of reading
from and writing to memory. Although ASCOLD can be used to detect ILA breaches
dependent on a micro-architecture, it is not an emulator based on a profiled model.
Due to this, its results may include false positive leakages that are not observed in
a real device. Additionally, it also requires the sensitive values to be tagged for its
operation. ELMO [McCann et al., 2017] is a profiling based leakage emulator that
was introduced for the ARM Cortex-M0 and M4 CPUs based on an existing ARM
instruction emulator2. ELMO can emulate micro-architectural leakage based on
neighbouring instructions. This kind of emulation can mimic micro-architectural
effects of internal CPU pipeline register overwriting and generates power traces that
closely match physical observations. ELMO is discussed in detail in Section 2.4.1.
MAPS [Corre et al., 2018] extends this idea further by basing its power model entirely
on the Hardware Description Language (HDL) source code for the ARM Cortex-M3
CPU core. This means that MAPS can track all values stored in internal registers

1https://www.gem5.org/
2https://github.com/dwelch67/thumbulator

https://www.gem5.org/
https://github.com/dwelch67/thumbulator
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during the execution of a program binary. Although not portable to other CPU
architectures with unknown CPU core implementations, MAPS provides insight to
the level of leakage information that could be extracted if processor implementation
details were known. Gao and Oswald [2021] introduce a completeness test for
leakage models aiming to improve accuracy of leakage emulators. This test uses
collapsed models to determine if a certain model captures all leakage present in
power traces. This completeness test can be carried out without access to hardware
descriptions of a particular device. ABBY [Bazangani et al., 2021] is a Multi-Layer
Perceptron (MLP) based power emulation model which is capable of generating
comparable and even better results when compared to regression based emulation
models such as ELMO. Recently introduced COCO [Gigerl et al., 2021] makes
use of a hardware simulator to emulate leakage for software. It accomplishes this
by emulating the software on hardware using Verilator [Snyder]. When supplied
with the hardware description netlist, Verilator creates a software counterpart for
it. This software counterpart can be compiled and run to simulate hardware that
simulates a device made with the netlist. When Verilator is used with netlists of
CPU cores, it is possible to simulate the entire functionality of a CPU. COCO feeds
the masked software cipher implementation as input to this simulator along with
annotated registers in the netlist. The annotations mark the registers which initially
hold the shares. Another tool called REBECCA was used to determine whether the
simulation leaked information or not. REBECCA [Bloem et al., 2018] is a formal
verifier that can determine whether masked hardware implementations are insecure.
ACA [Yao et al., 2020], SCRIPT [Nahiyan et al., 2020] and CASCADE [Sijacic et al.,
2020] are similar tools that were recently introduced that use hardware descriptions
as input.

2.4.1 ELMO
ELMO is a leakage emulator for the ARM Cortex family of processors [McCann
et al., 2017]. In a nutshell, ELMO uses a power model that is based on Multiple
Linear Regression (MLR) to emulate power traces of a given program that is executed
on an ARM Cortex core. The profiling stage of ELMO adapts the model to the
target device that it is supposed to emulate. Therefore, profiling should be performed
before emulating any code on a new device. Afterwards, the profiled model is used to
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generate the power traces for any given binary that is run through an ARM emulator.
The specific emulator that is used in ELMO limits itself to the ARM Thumb 16 bit
ISA.

ELMO’s power model. The power model of ELMO is a linear expression that
evaluates to the value of the differential voltage between the two terminals of a
shunt resistor fitted across the power supply terminal of a certain microprocessor.
This expression contains independent variables that take values of intermediate
values from a running instance of the target program. The coefficients of this linear
expression are determined by a linear regression using the Ordinary Least Squares
(OLS) estimate. The measurement data is fitted to Equation 2.19 where y is a
column vector of dependent variables (i.e. voltage across the shunt resistor), δ is a
column vector of constant terms (i.e. intercept terms) X is the matrix of independent
variables (i.e. linearised3 intermediate values from program) and ϵ is a column vector
of error terms. The estimated values in β and δ are used in the final power model to
estimate a value for the differential voltage.

y = δ +Xβ + ϵ (2.19)

Profiling the model. The experiments conducted in the profiling stage provide
measurements for the regression process. Empirically based classes of instructions
were used instead of the actual instructions to reduce the number of actual instructions
that are needed for the experiments. A reduced set of five representative instructions
have been selected based on statistical evidence from empirical data. All triplet
combinations of these five instructions (53 = 125) are used to gather measurements
to profile the model. Each combination is run with 1000 different inputs. Five
acquisitions for each input are averaged to lower independent noise [McCann et al.,
2017].

The independent variables included in X are determined by the evaluation of
nested models using the F-test. This process prevents the model from including terms

3In accordance with the assumptions of MLR, the independent variables are required to have a
linear relationship to the dependent variable. When this is not the case, the independent variables are
adjusted so that a linear relationship is formed
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that do not have a significant contribution to the dependent variable (y). It starts
with a power model that has a few terms and is then tested against larger models
by adding terms one by one. Observe that the nested model can be obtained by
removing the newly added term. A basic model is listed in Equation 2.20 where Oi

refers to ith operand value of the currently executing instruction and Ti refers to the
bit transitions between ith operand values of the current instruction and previous
instruction. The intuition behind starting with this base model is based on empirical
evidence [McCann et al., 2016].

y = δ + [O1|O2|T1|T2]β + ϵ (2.20)

Improving the model using nested models. The power model is further expanded
to the model shown in Equations 2.21 and 2.22 by evaluation of nested models. The
final ELMO power model depends on previous and subsequent instructions of the
currently executing instruction. Two power model equations are used in ELMO due
to different classes of instructions cluster their behaviour to two models. ELMO
internally uses five different power models based on Equations 2.21 and 2.22 with
constant terms and coefficients obtained for the five different instruction classes
through MLR.
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Ai,Bi,Ci : Row vectors of ith operand of the previous,

current, and subsequent instructions (i ∈ {1, 2})

Ip, Is : Row vectors of dummy variables for representing the type

of previous and subsequent instruction

ei : Column vector with ith row element set to 1

and all other values set to 0

y : Differential voltage

β : Column vector of linear regression coefficients

δ : Intercept

HW (x) : Hamming weight of x

[X|Y ] : Concatenation of X and Y

Ti = Ai ⊕Bi

Hi,j = [B1ei ×B1ej|B2ei ×B2ej|T1ei × T1ej|T2ei × T2ej]

D = [B1|B2|T1|T2]

Dk = [HW (B1)Ik|HW (B2)Ik|HW (T1)Ik|HW (T2)Ik] , (k ∈ {s, p})

H = [H1,2|H1,3|H2,4| . . . |H1,32|

H2,3|H2,4| . . . |H2,32|

. . . |Hi,i+1| . . . |Hi,32|

. . . |H32,32]

y = δ + [Ip|Is|D|Dp|Ds]β (2.21)

y = δ + [Ip|Is|D|Dp|Ds|H ]β (2.22)



Chapter 3

Overview

This chapter presents a high-level design for the leakage mitigation workflow and
the physical experiment setup used in experiments done in this thesis. The leakage
mitigation workflow is intended to be used by side-channel leakage evaluators find
and fix power analysis based leakage.

3.1 Design
We suggest an automated emulator driven workflow that augments an evaluator’s
tool set in producing secure cipher implementations. Traditionally, leaky cipher
implementations were secured through a manual process where human effort was
required in both evaluation and implementation of countermeasures.

Our workflow is shown in Figure 3.1. It aims to eliminate leakage stemming
from unintentional ILA breaching effects in masked implementations. ELMO* is a
modified version of ELMO presented in McCann et al. [2017]. We selected ELMO
as the basis of our work since ELMO had the most realistic reproduction of leakage
effects with comparison other solutions at the start of our project. ELMO* can
emulate leakage from additional effects such as memory bus and register overwrite
leakage that were missing from ELMO. Rosita and Rosita++ are code rewriting
frameworks presented in Chapters 5 and 6 which can detect root causes of leakage
and apply code fixes to mitigate them automatically. The code fixes are applied until
all detected leakage converges to zero at a specified trace count level. Although
the final implementation has a significantly reduced amount of leakage, the final
implementation is required to be evaluated on hardware due to differences between

32
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emulated leakage and the leakage from the real device.

          Simulation-based        

          leakage analysis 
ELMO* 

Rule-based code 

rewrite 

Original masked 

cipher 

Reduced-leakage 

cipher 

ROSITA/ 

ROSITA++ 

Assess any 

remaining leakage 

on real hardware 

Figure 3.1: Rosita and Rosita++ workflow.

3.2 Experiment setup
We detail the steps we used for setting up an experiment for evaluation of a real
device in this section. Single core devices are preferred to multicore devices as their
power consumption could be trivially mapped to what happens on the CPU core at
a given time. However, this does not mean that power analysis cannot be used on
multicore devices. Memory caches, CPU pipelines and out-of-order execution affect
power analysis negatively by making it harder to reveal what is executing on the CPU
at a given time. Therefore, by choosing a simpler embedded system, many of the
technical difficulties are mitigated.

First, a measurement probe should be attached into the power rail of the CPU to
collect power consumption samples. The most common method of achieving this
is through a shunt resistor. To measure the voltage across the resistor, we used a
specialised probe called a differential probe. Differential probes are active devices
that detect the voltage at their input and produce a proportional voltage difference
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at their output. A non-invasive current measuring probe could also be used for the
same purpose.

Second, we used an oscilloscope collect the power samples. The differential
probe was fitted to the oscilloscope. The trigger of the oscilloscope was set up such
that it triggers right before the code segment under test is executed. As we had
control of the software that ran on the device under test, the trigger was introduced
from the code. Otherwise, a repeating power value pattern should be found so that
the start of the code segment can be determined. We set the sampling rate of the
oscilloscope to a value several times higher than the clock rate of the device under
test to capture a detailed signal. The captured signals are referred to as power traces.

Figure 3.2 shows a photograph of the measurement setup used for the experiments
described in this work. The physical device used for all tests in this work is the
STM32F030 Discovery evaluation board by ST Microelectronics. The ARM Cortex-
M0 CPU in the STM32F030 can run at a clock rate of 48 MHz. To capture detailed
signals at a moderate speed, we reduced it to 8 MHz as was used by McCann et al.
[2017]. Similarly, we disconnected one of the two power inputs of the System on Chip
(SoC) and attached a 330 Ω shunt resistor to the second power input, following the
experiment setup in McCann et al. [2017]. Additionally, to avoid switching noise, we
used batteries to power the evaluation board. A PicoScope 6404D oscilloscope was
used with a Pico Technology TA046 differential probe connected to the oscilloscope
via a Langer PA 303 preamplifier, to measure the voltage drop across the shunt
resistor as a proxy for the power consumption of the SoC. We sampled every 12.8 ns,
which, with a clock rate of 8 MHz, is roughly 9.77 samples per clock cycle. The
samples are 8 bit wide and our PicoScope can store up to two billion samples before
running out of memory.

To orchestrate the experiments we used a PC that controls both the oscilloscope
and the evaluation board. The PC generated all of the randomness needed by the
experiments and communicated it to the evaluation board via a serial connection.
Communication was carried out in batches to speed up the process. A diagram of this
setup is shown in Figure 3.3. Ci and Pi denote the flow of ciphertexts and plaintexts.
All randomness used in the experiments was taken from /dev/urandom, which is
considered to be cryptographically secure. The GPIO pins of the evaluation board
were used to trigger the collection of traces and adequate padding was added near
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the triggers to improve the signal.

Figure 3.2: The measurement setup used in this work.
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Figure 3.3: A diagram of the measurement setup.



Chapter 4

Towards better power analysis leakage
emulation

ELMO [McCann et al., 2017] emulates the voltage between the terminals of a
shunt resistor fitted across the power pin of an ARM CPU for a given software
implementation based on the input values of three consecutive instructions at a time.
The generated power traces were analysed with TVLA to generate leakage traces
that were used to localise the leaky instructions. This offers a mechanism to correct
leakage in cipher implementations free of physical experiments. However, the model
must be able to reliably emulate leakage observed in a real device so that it could
be effectively used in leakage detection. Our experiments with ELMO showed
discrepancies between the emulated and the real leakage. Our experiment setup is
based on the STM32F030 Discovery Evaluation board and details of the experiment
setup are discussed at Section 3.2. Figure 4.1 shows the t-values from a fixed vs.
random t-test for the code segment shown in Listing 4.1 that implements a 2-share
Boolean masking scheme. r1 and r4 were initialised with one share each. r2 was
initialised with a writable memory location. r3 and r7were initialised with unrelated
values. The results in Figure 4.1 show that ELMO’s power model is insufficient to
model leakage between str and eors instructions.

1 str r1, [r2]

2 movs r7, r7

3 movs r7, r7

37
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4 movs r7, r7

5 movs r7, r7

6 movs r7, r7

7 eors r3, r4

Listing 4.1: Evaluating interactions between the str and the eors instructions.
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Figure 4.1: t-test results for Listing 4.1.

As evident from Figure 4.1, the CPU leaks information through interactions
between instructions that have executed many cycles before and the currently executed
one. Experiments showed that such effects prevailed even when the gap between the
instructions were larger than the CPU pipeline size. Further experimentation showed
that many instructions (e.g. ALU and load/store instructions) interacted in a similar
way.

This section discusses the causes for discrepancies between ELMO and results
from the real device. We then propose modifications to ELMO such that these
missing leakages are emulated realistically. Finally, we evaluate the new additions
using the F-test based nested model evaluations that were also used in McCann et al.
[2017].
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4.1 Leakage causes
Information leakage happens due to the following leakage causes as demonstrated in
previous literature. Most prominent leakage types are value-based and transition-
based leakages [Balasch et al., 2015].

4.1.1 Value-based leakage
Value-based leakage is observed when the power consumption of a device at a single
sample point correlates with a single intermediate value. The Hamming weight of
an intermediate value is an example for value-based leakage. The value of a single
intermediate value is what leaks.

4.1.2 Transition-based leakage
Leakage caused due to interaction between two intermediate values are called
transition-based leakage. Transition-based leakage is also important for leakage emu-
lation as their existence further reduces the security order of a cipher implementation.
Balasch et al. [2015] theoretically proved that existence of transition-based leakage
reduces the security of an implementation from dth-order to ⌊d

2
⌋-order. Additionally,

recent practical evaluations done by Gao et al. [2020a] show that the reduction can be
much larger than just a factor of two. Such effects drastically reduce the work that an
attacker needs to carry out to recover sensitive information. The reason for this is that
a single sample point holds information from multiple intermediate values when run
on a CPU with transitional interactions. If run on a hypothetical CPU without such
interactions, an attacker needs to combine power values from all individual sample
points to gain the same information. We note that ELMO does support a specific
type of transitional effect based leakage through its three consecutive instruction
based model as it considers the Hamming distance between the operands of previous
and current instructions.

We describe below in detail the types of transition-based leakage that we found
to be not supported by ELMO. We later continue to modify ELMO so that these
effects are adequately emulated.
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4.1.2.1 Internal state related leakage

When registers that hold intermediate values that are not cleared when new inter-
mediates are processed, they contribute to transition-based leakage between the
two intermediates. Updating the value of a register causes power consumption
that correlates with the Hamming distance between the two intermediate values, as
explained in Section 2.3.3. Such interactions happen through the internal registers
within the CPU pipeline, or through any other means of holding intermediate values
from previously executed instructions. Generally, this work refers to such leakage
as internal state related leakage.

We designed an experiment to search for such leakage on our test device. In
this experiment, we selected two instructions from the instruction set and tried to
find interactions between them. The experiment runs the example test code segment
shown in Listing 4.1. Prior to running the code segment, registers r1, r3, r4 and
r7 were loaded with unrelated random values and r2 was loaded with an address
that pointed to a random value. A set of padding instructions were used to guarantee
separation of the instructions so that any leakage that is observed is not related to
known interactions that happen within the CPU pipeline (i.e. interactions between
instructions that run on consecutive cycles). movs r7, r7 was used as the padding
instruction. We used a custom no-op instruction because it takes the same time
to execute as any other movs instruction. All inputs (i.e. all register values) to the
device were recorded and 10000 power traces were collected. The experiment setup
is detailed in Section 3.2. Then, a Correlation Power Analysis (CPA) attack was
run against the measurement values that were gathered. We evaluated Hamming
distances of different pairs of inputs. We observed a high correlation was observed
between the Hamming distance of values set to r4 and r1 and the power samples
collected at the eors instruction. The correlation graph shown in Figure 4.2 shows
highest correlation at cycle 25, this is when the eors instruction was executed.

This experiment confirms that some internal state has been set by the str
instruction and when the eors instruction ran, and that its second operand interacted
with the previously set internal state. By changing the two instructions at top and
bottom of the code segment listed at Listing 4.1 we confirmed that such effects are
widely prevalent in ALU instructions and in instructions related to memory bus
operations. We continued running a fixed vs. random t-tests based on the same code
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Figure 4.2: Pearson correlation coefficient for the internal state test.

segment on all possible pairs of instructions between a subset of the ARM Thumb
instruction set. Table 4.1 shows the results that we obtained for these experiments
(i.e. whether the leakage was significant or not), the column wise instructions are
the first instruction and row wise ones are the second instruction with respect to
the code listing at Listing 4.1. We initially used 10000 power traces for this TVLA
procedure. The tests that result in no significant leakage were retested with 50000
traces to increase the confidence of the lack of leakage.

These observations lead us to believe that state related effects are predominantly
happening due to a small subset of internal registers that are shared by several
instructions. For example, all ALU instructions show similar leakage characteristics
with other instructions. Different versions of str and ldr also showed similar
characteristics. We recognised that there are at least four distinct state interaction
types as highlighted in Table 4.1. The colours for highlighting were selected according
to the interactions that an instruction from each row participates in. Through this
method, we recognise that there are four distinct classes of internal state setting
instructions which are eors (representative of all ALU instructions), str, ldr
and mov.

4.1.2.2 Effects related to the memory bus

When loading from or storing to memory, the value of the storage element is
overwritten internally, leaking the Hamming distance between the previous and the
new value. Consequently, when consecutively writing to or reading from memory,
care should be taken to only access non-secret values or unrelated secret values. We
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Table 4.1: State interactions between the second operands of instruction pairs. The
circles which pairs of instructions interacted through internally stored state.

note that the storage element could be the contents of the addressed memory itself,
where the power leakage correlates with changing the contents of the memory bus.

It is important to note that the storage element always stores a 32 bit word. Thus,
when loading or storing a byte, the whole 4 byte aligned 32 bit word that contains the
byte is moved to the storage element. This may create memory interaction between
memory operations that seem completely unrelated. For example, consider the code
in Listing 4.2. In this example we assume that memory locations 0x300 and 0x400
both contain one share each from a 2-share Boolean masked implementation. The
code in this example performs two memory operations, the first stores a byte into
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1 movs r3, 0x303
2 movs r4, 0x402
3 movs r7, r7
4 movs r7, r7
5 movs r7, r7
6 movs r7, r7
7 movs r7, r7
8 strb r5, [r3]
9 movs r7, r7
10 movs r7, r7
11 movs r7, r7
12 movs r7, r7
13 movs r7, r7
14 ldrb r6, [r4]

Listing 4.2: Example of word interaction

address 0x303 and the second reads a byte from location 0x402. We note that none
of these locations contains secret data, and the data stored is also not secret. However,
the store operation loads the 32 bit word in memory locations 0x300–0x303 into the
memory bus, and the following load operation replaces the contents with the 32 bit
word in memory location 0x400–0x403. This causes an interaction between the
data in memory locations 0x300 and 0x400, leaking the Hamming distance between
the values stored in these locations. We believe that this behaviour is explained by
glitching effects in the ARM memory system. Since individual bytes are combined
to make the requested data word in the ARM memory system, glitching effects in the
combination circuitry may cause them to interfere with each other [Furber, 2000,
Figure 8.1].

Value-based leakage in memory operations. Another issue found in the memory
bus is the interaction between the bytes of words loaded from or stored to memory.
Specifically, our analysis shows that when memory data is accessed, consecutive
bytes in the word interact with each other. Thus, if a word contains multiple bytes
that are all masked with the same mask, loading it from or storing it to memory
will leak the Hamming distance between consecutive bytes. We note that due to the
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memory bus storage element described above, the leakage occurs even if the memory
access operations access a single byte of a 32 bit word.

Store Latch. We also found that storing a value of a register to memory results in
potential interactions between the value of that register and the second argument of
subsequent ALU instructions, such as eors. However, if the contents of the register
changes between the str and the ALU instruction, the second argument of the ALU
instruction interacts with the updated value of the register rather than with its original
value.

1 str r5, [r3]

2 movs r7, r7

3 movs r7, r7

4 movs r7, r7

5 movs r7, r7

6 movs r7, r7

7 movs r5, r2

8 movs r7, r7

9 movs r7, r7

10 movs r7, r7

11 movs r7, r7

12 movs r7, r7

13 eors r1, r4

Listing 4.3: Store latch example.

For example, the code in Listing 4.3 stores the value of r5 to memory (Line 1).
It then updates the value of r5, moving the contents of r2 to it (Line 7). Finally, it
calculates the exclusive-or of r1 and r4. Our experiments show leakage at Line 13,
which correlates with the Hamming distance between the original values of r2 and
r4. Interestingly, we note that the update of the interacting register takes one cycle to
become effective. That is, removing Lines 8–12 in Listing 4.3 removes the interaction
between the original values of r2 and r4, but leaves an interaction between the
original values of r5 and r4.
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1 ...
2 movs r7, r7
3 movs r7, r7
4 movs r1, r3
5 movs r7, r7
6 movs r7, r7
7 ...

Listing 4.4: Code segment with overwrite effects

We believe that the processor maintains a reference to the most recently stored
register. This reference is used as an input to a multiplexor that selects the contents
of the referenced register. We believe that a glitch on the bus causes interference
between the contents of referenced register and the second argument of subsequent
instructions, explaining the leakage we observe [Furber, 2000, Figure 4.6].

Overwrite effects. When register values are being overwritten with new values
the Hamming distance between the old value and the new value is leaked [Papa-
giannopoulos and Veshchikov, 2017]. It was possible to reproduce these effects in
our experimental setup by conducting a CPA attack on 1 million power traces that
were gathered from our experiment setup (see Section 3.2 for details on setup). The
code segment in Listing 4.4 was used as the victim. r1 and r3 were loaded with one
share each from a 2-share Boolean masked scheme. The CPA attack was carried out
on the Hamming distance between the two shares which would mean that the two
shares were combined. The resulting Pearson’s correlation coefficients plot is shown
in Figure 4.3.

Inter-bus effects in the CPU pipeline. According to ELMO’s power model, it
is known that the register values of two neighbouring instructions interact in order
(i.e. the neighbouring instructions’ operand values interact when they use the same
bus) which results in the leakage of their Hamming distance. Our tests show that
inter-bus related interactions can also happen. We conducted a CPA attack on the
code segment in Listing 4.5 by collecting 50000 power traces on our experiment
setup (see Section 3.2 for details on setup). We loaded r3 and r1 with the shares of
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Figure 4.3: Pearson correlation coefficient for overwrite effect tests.

1 ...
2 movs r7, r7
3 movs r7, r7
4 ands r4, r3
5 ands r1, r2
6 movs r7, r7
7 movs r7, r7
8 ...

Listing 4.5: Code segment with potential interbus interaction

a 2-share Boolean masking scheme. r4 and r2 were initialised with unrelated values.
The Pearson’s correlation coefficient graph is shown in Figure 4.4. Hence, the first
operand of the first instruction also interacts with the second instruction’s second
operand and vice-versa. Therefore we conclude that all possible combinations of the
operand values of two neighbouring instructions can lead to leakage.
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Figure 4.4: Pearson correlation coefficient for the cross operand test.

4.2 Extending the ELMO power model
The previous section discusses limitations of ELMO. This section aims to ex-
tend ELMO so it can be modified to increase its accuracy. Recall from Section 2.4.1
that ELMO’s power emulation is based on a Multiple Linear Regression (MLR)
model that is profiled initially by a set of real traces. The model is profiled on five
representative instructions instead of running the test for all possible combinations
of instructions. The five representative instructions (i.e. eors, lsls, str, ldr and
muls) are used to create combinations of three consecutive instruction triplets. The
six operands used in all of them are set with random values in the profiling stage. It
is assumed that all instructions are two operand instructions to ease model building.
The power traces gathered from running these code segments on the real device are
used to profile the ELMO model.

The power model of ELMO is built by adding new terms to a base model. The new
models are evaluated with the F-tests based nested model evaluation methodology to
guarantee that the newly added terms are more explanatory than a previous model.
The original ELMO model shown in Equations 4.1 and 4.2, is profiled by only using
five distinct instructions to generate the real traces. These are eors, lsls, str, ldr
and muls. This was done to reduce the huge number of combinations of instructions
if all 21 instructions have been used. These representative instructions have been
selected by conducting statistical clustering of the leakage that is shown by each
instruction [McCann et al., 2017]. The model that is fitted to eors, str and ldr is
shown in Equation 4.1, and the model that is fitted to lsls and muls is Equation 4.2.
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Matrices and row vectors are denoted by uppercase Latin letters and column vectors
by lowercase letters.

Ai,Bi,Ci : Row vectors of ith operand of the previous,

current, and subsequent instructions (i ∈ {1, 2})

Ip, Is : Row vectors of dummy variables for representing the type

of previous and subsequent instruction

ei : Column vector with ith row element set to 1

and all other values set to 0

y : Differential voltage

β : Column vector of linear regression coefficients

δ : Intercept

HW (x) : Hamming weight of x

[X|Y ] : Concatenation of X and Y

Ti = Ai ⊕Bi

Hi,j = [B1ei ×B1ej|B2ei ×B2ej|T1ei × T1ej|T2ei × T2ej]

D = [B1|B2|T1|T2]

Dk = [HW (B1)Ik|HW (B2)Ik|HW (T1)Ik|HW (T2)Ik] , (k ∈ {s, p})

H = [H1,2|H1,3|H2,4| . . . |H1,32|

H2,3|H2,4| . . . |H2,32|

. . . |Hi,i+1| . . . |Hi,32|

. . . |H32,32]

y = δ + [Ip|Is|D|Dp|Ds]β (4.1)

y = δ + [Ip|Is|D|Dp|Ds|H ]β (4.2)
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Below we describe a set of new terms that extend Equations 4.1 and 4.2 so that
the effects discussed in Section 4.1.2 are emulated by the ELMO power model.

O = [HW (B1 ⊕B2)] (4.3)

X = [HW (A1 ⊕B2)|HW (A2 ⊕B1)] (4.4)

S = [B2 ⊕ S0|B2 ⊕ S1|B2 ⊕ S2|B2 ⊕ S3] (4.5)

We introduced terms for overwrite effects related leakage (O), inter-bus effects
leakage (X) and set of four new terms for state related leakage (Si, i ∈ [0, 3]) as
shown in Equations 4.3 to 4.5. The value for Si is set according to the last instruction
that had set some internal state (see Section 4.1.2.2). Empirical testing showed that
the leakage from the state set by the first operand (B1) was insignificant. Therefore,
only the second operand (B2) is considered for the power model.

Representing movs in the model. Our experiments showed that the movs instruc-
tion is not adequately represented in ELMO even though it is quite frequently used
in cipher implementations. movs is represented as lsls rd, rn, 0x0 in ARM
Thumb 16 bit ISA. In the original ELMO model, this instruction is not emulated. Due
to the significant overwrite effects observed in movs instruction (shown in Figure 4.3),
it is required to be emulated. However, adding a new instruction group will increase
the total number of distinct instructions to six and the total number of combinations
would be 63 = 216. This nearly doubles the number of combinations that need
to be considered. Therefore, we used a separate instruction group for movs by
moving muls to the eors instruction group. This was done primarily to reduce
modelling overhead while keeping a reasonable approximate for muls.

Changes in the profiling stage. The introduction of new terms necessitated
some changes in the profiling stage. Originally, ELMO was profiled by collecting
measurements for runs of combinations of three consecutive instructions. There are
125 such combinations as discussed in Section 2.4.1. Since a term for internal state
(S) is added, these 125 combinations are required to be collected once per each kind
of state that was detected in Table 4.1. This means any previous state should be
reset and specific state should be set before running each of the 125 combinations
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of instructions. Originally, 1000 inputs were used with each repeated for five times
and then averaged to reduce effects of noise. Data was collected under all possible
state configurations with the four different kinds of state discovered from Table 4.1.
The MLR is then profiled using the measurements as input to the dependent variable
and the register values from the instruction emulator as input to the independent
variables.

Nested model evaluations. From earlier discussion it follows that the effects
in Equations 4.3 to 4.5 should be added to Equations 4.1 and 4.2. We use the F-test
based nested model evaluations to measure increases or decreases of the explanatory
power of these equations after adding new terms. Considering two models where a
reduced model (R) is nested within the full model (F ), the F-statistic is calculated as
follows,

F =

(
RSSR−RSSF

pF−pR

)
(

RSSF

n−pF

)
Where RSSx is the residual sum of squares of the model x, px is the number of

parameters of model x (pR < pF ) and n is the sample size used to profile the model.
The null hypothesis for the F-test is that the added terms have no effect. Therefore,
the quantity F follows an F-distribution with (pF − pR, n− pF ) degrees of freedom.
The original power model of ELMO proposed Equation 4.1 to emulate power for
eors, str and ldr instructions and Equation 4.2 to emulate power for lsls and
muls instructions1. The results we obtained for nested F-tests are shown in Table 4.2
and Table 4.3. We used a significance level of α = 0.05 similar to McCann et al.
[2017]. The first column of Tables 4.2 and 4.3 describes the added parameters
for each F-test. A comma separates the reduced model and the full model. The
common parameters for both reduced and full models are not shown to increase
clarity. Table 4.2 shows the F-test results for extending Equation 4.1 and Table 4.3
shows results of F-tests done for extending Equation 4.2.

Extending Equation 4.1 results in two equations due to the addition of X failing
to reject the null hypothesis for ldr at a significance level of α = 0.05. The null
hypothesis is rejected for eors and str instructions with high significance. This

1https://github.com/sca-research/ELMO/blob/master/ModelBuildingCode/
ReleaseModelMethod.m

https://github.com/sca-research/ELMO/blob/master/Model Building Code/ReleaseModelMethod.m
https://github.com/sca-research/ELMO/blob/master/Model Building Code/ReleaseModelMethod.m
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results in Equation 4.6 for emulating power for ldr instruction and Equation 4.7
emulating power for eors and str instructions.

Tested effects (df1,df2) eors str ldr

,S (128,624703) 219.857 244.238 213.403
S,S|O (1,624702) 186.313 146.995 9.733
S|O,S|O|X (2,624700) 559.864 78.991 2.653

Table 4.2: F-statistics for nested model evaluations on Equation 4.1.

Extending Equation 4.2 results in the rejection of the null hypothesis for all tested
effects with high significance as shown in Table 4.3. Therefore lsls and movs
instructions are emulated by Equation 4.8.

Tested effects (df1,df2) lsls movs

,S (128,623711) 207.857 275.540
S,S|O (1,623710) 120.799 33.424
S|O,S|O|X (2,623708) 490.775 1400.513

Table 4.3: F-statistics for nested model evaluations on Equation 4.2.

y = δ + [Ip|Is|D|Dp|Ds|S|O]β (4.6)

y = δ + [Ip|Is|D|Dp|Ds|S|O|X]β (4.7)

y = δ + [Ip|Is|D|Dp|Ds|H|S|O|X]β (4.8)

Figure 4.5 shows that ELMO* is capable of emulating leakage realistically
for Listing 4.1.
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Figure 4.5: t-test results for Listing 4.1 with ELMO*.



Chapter 5

Mitigation of univariate leakage

This chapter aims to eliminate univariate leakage by automatically applying code
fixes such that unintended ILA breaches are eliminated. In doing so, we introduce a
methodology to find root causes of univariate leakage. This lets our code rewriting
tool Rosita know where and how to apply code fixes.

Univariate leakage is leakage that can be explained using univariate statistical
analysis. Univariate statistics model data using a single variable [Kachigan, 1986].
Explanation of leakage is typically done under a hypothetical power model. A power
model describes the relation between some input value(s) and the instantaneous
power consumed by a device when processing those inputs [Mangard et al., 2005].
This means that the cause(s) for a leakage can only be described relative to the inputs
used in a specific power model. Given that an evaluator has access to where in code
specific information is originating from, they are able to apply corrective fixes such
that the leakage is eliminated.

TVLA can be used to detect specific points of leakage that produce leakage
through the power traces generated from a power model such as ELMO*. Given that
all input for ELMO* is supplied through an ARM instruction emulator that executes
a masked program, the flow of information through register values to the power
model can be traced back to code. By combining knowledge from the instruction
emulator and ELMO* we claim that it is possible to find root causes for leakage
using only the emulator’s execution trace and the TVLA results.

We further claim that detected leakage can be fixed by using code patterns from
a library of patterns only if the leakage is caused by unintended interactions. We

53
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define unintended interactions in the context of masked software implementations
as interactions between the register values of a masked software implementation
which are not part of the algorithm. Specifically, the intention in this context is
defined by the functionality of the assembly code of an implementation, rather than
the intention of the programmer. This means that the values stored in registers by an
implementation must contain at least one share less than the total number of shares of
the masked implementation. If any such value contains all the shares, it means that
the implementation is an insecure masked implementation. Possible causes for such
scenarios are programmer error and compiler optimisations. This chapter discusses
how to find root causes for univariate leakage through the use of ELMO* and how to
apply countermeasures to such leakage.

5.1 Discovery of root causes using ELMO*
ELMO* emulates the power consumption of a target device at the execution of each
instruction of a program. The differential voltage (v) across a shunt resistor across
the power rail of a CPU is approximated by the following simplified multiple linear
regression model shown in Equation 5.1. Independent variables, and coefficients are
represented by xi, βi for 0 < i < n. β0 is the intercept. The independent variables
xi take values from the emulator that executes the program code. Equation 5.1 is a
simplified version of the more complex multiple linear regression model that was
introduced in Chapter 4. This simplified version is used as a replacement for the
more complex one.

v = β0 + β1x1 + β2x2 + ...+ βn−1xn−1 (5.1)

We claim that univariate TVLA evaluations of individual terms (i.e. βixi) will
give us information about which individual independent variable(s) are causing the
leakage. The intuition behind this claim is based on the fact that leakage observed
from the sum of terms can be explained by leakage of at least one term. A limitation
of this method is that there exist scenarios where TVLA of v values would show
leakage and that no individual TVLA of βixi would show leakage. Consider the
scenario where the sum of two or more terms are leaky and the individual terms
themselves are not. Even-though hypothetical, the existence of such cases limits the
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discovery of all causes for leakage. The cost of computation for this method can be
reduced through parallelisation since each individual TVLA evaluation can be run
independently of others.

Unintentional ILA breaches. ILA breaches happen when shares of a masked
implementation are combined. Given a theoretically masked implementation written
in assembly with care to keep all shares separate, unintentional ILA breaches may
originate from unintended interactions between the intermediate values. Such
interactions are superfluous and do not affect the functionality of a program in any
way. We claim that these are the only leakages that will be present in a correctly
masked assembler implementation. The reasoning behind this claim is as follows.
Considering that each register value in the program is at least one share less than the
total number of shares, any leakage detected must be caused due to the interaction
between two or more of the register values. As long as this combination is not stored
in a register (i.e. never used in the algorithm), such leakage can be removed without
affecting the functionality of a program.

5.2 Countermeasures for ILA breaching
Protection of masked cipher implementations can be improved by changing code
segments such that the leakage is removed without affecting the code’s functional-
ity [Papagiannopoulos and Veshchikov, 2017]. However, the limitations in synthesis
of such code segments are not well understood. Usually, the synthesis is limited to a
few example cases that practical evaluations can be performed for [Papagiannopoulos
and Veshchikov, 2017; Bayrak et al., 2011, 2015]. In contrast, we suggest generating
code patterns based on dominating instructions discussed in detail in Section 5.2.1
which can overwrite state set by previously executed operations.

Power analysis side-channel leakage can be observed in both protected and
unprotected implementations. Even though it is obvious why an unprotected
implementation may leak, the reasons why already protected implementations leak
are not straightforward. A theoretically protected implementation, for example a
dth order masked implementation is not expected to leak below order d under the
ISW probing model [Ishai et al., 2003]. In other words, if a sensitive value has
been split into d+ 1 shares (i.e. in dth order masking), any number of observations
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below d+ 1 should not leak information (see Section 2.3.6). However, it is evident
from our discussion in Section 2.3.7 that unintended interactions inside a CPU may
inadvertently combine certain shares, resulting in a breach of the ILA. Therefore, a
theoretical dth-order masked implementation will no longer be fully protected under
dth-order attacks.

Unintended interactions end up combining shares that are assumed to be separately
operated on by a masked cipher implementation. Such leakage stem from transition-
based effects (see Section 4.1.2). As any ILA breaching interaction is not part of the
cipher algorithm, rewriting such code segments without the ILA breaches will not
affect the functionality of the cipher.

Value-based leakage is another type of leakage that can be observed in a masked
implementation. In value-based leakage, a single intermediate value is the cause of
the leakage. This means that, if value-based leakage is observed at orders below
d for a dth-order masked implementation, there must exist a point in time when a
register is loaded with an intermediate value that has at least two shares combined.
Due to any single intermediate value being part of the algorithm, there exists no
simple rewrite that would remove leakage without major changes to the algorithm.
Due to above reasons, Rosita only protects against ILA breaching effects that are
not part of the masked cipher implementation.

The information needed to distinguish between transition-based and value-based
leakage is already available from the power model. It follows from discussion of root
cause analysis in Section 5.1 that root causes for each observed leakage from emulated
power traces can be traced back to individual terms in the power model. Since the
power model is evaluated on intermediate values generated from the execution of the
assembly code, the root cause can be further traced back to the exact intermediate
values in the assembly implementation of the cipher. Individual statistics of the
values of each term reveal their participation for a particular leakage observed at a
sample point. By tagging each of the participating terms with a label that uniquely
identifies each term, it is possible to distinguish the kind of leakage that a specific
leak belongs to.
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5.2.1 Dominating instructions
It is possible for the internal state discussed in Section 4.1.2.1 to be overwritten by
the same operations being executed later with the same registers which have different
values in them. Thus far, the investigations conducted do not disprove this hypothesis.
To test whether there is any interaction between the state types, we conducted the
same fixed vs. random t-test that was carried out for Table 4.1 with the code segment
shown in Listing 5.1. Similar to the previous experiment, registers r2 and r4 were
initialised with one share each from a masked 2-share Boolean masking scheme.
All other registers were initialised with unrelated random values. Without Line 6,
the two str instructions would interact with each other through the memory bus
(See Section 4.1.2.2 for details). In this experiment we were interested in whether
the introduction of unrelated random values through the eors instruction at Line 6
would be able to erase the internal state that interacts with Line 11. We observed that
eors was unable to stop the interaction between the two str instructions. We then
continued to use different instruction pairs in place of str and eors.

The results obtained not only show that the states interact with each other, but
also some instructions set stronger state that can erase previously set state. We
designate these instructions as dominating instructions. The results we obtained are
depicted in Table 5.1. The circles show equivalent instructions that fail to overwrite
the internal state set by the other instruction. The triangles point to the instruction
that is capable of overwriting the internal state. In other words, the triangles point
to the dominant instruction. The interaction between ALU instructions show that
none of the internal state set by them persists beyond any other ALU instruction.
But str, pop and push instructions are capable of overwriting state set by any
ALU instruction. Similarly, between str and ldr instructions, str is the dominant
instruction.

1 str r1, [r2]

2 movs r7, r7

3 movs r7, r7

4 movs r7, r7

5 movs r7, r7

6 eors r5, r6
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7 movs r7, r7

8 movs r7, r7

9 movs r7, r7

10 movs r7, r7

11 str r3, [r4]

Listing 5.1: Evaluating interactions between the str and the eors instructions.

eo
rs

ad
ds

an
ds

bi
cs

cm
ps

m
ov

or
rs

su
bs

lsl
s

ro
rs

lsr
s

m
ul

s
str str

b
str

h
ld

r
ld

rb
ld

rh
po

p
pu

sh

eors
adds
ands
bics

cmps
mov
orrs
subs
lsls
rors
lsrs

muls
str

strb
strh
ldr

ldrb
ldrh
pop

push

Table 5.1: State interactions between the second operands of instruction pairs.
Triangles point to the dominating instruction. Circles indicate instruction pairs which
overwrite internal state set by each other.
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5.3 Synthesis of protective code segments
According to the results shown in Table 5.1, it is clear that dominating instructions
or instructions that set equivalent state can be used to reset internal state by using
random operands. Therefore, new instructions with random values can be used to
reset internal states set by previous instructions. However, this modification must be
done with care so that the register values are preserved after the new instruction is
added.

Note that we assume that the CPU executes instructions in-order rather than
possibly, out-of-order. In an out-of-order CPU, the order of the execution of
instructions is not guaranteed. Therefore, ordering of the machine code is not
strictly adhered. We also assume that each run of the same instruction uses the same
internal components, this may not hold for CPUs that support speculative execution.
Therefore, the fixes proposed in this work cannot be used on such CPUs. The simple
ARM Cortex-M0 CPU that is used in this work is a non-speculative, in-order CPU.

The insertion of instructions with random data brings some technical challenges.
First, a free register needs to be reserved to hold the new random value. Optimally,
multiple random values may be used, but as a proof-of-concept, this work only uses
a single random value that refreshes on each round of cipher invocation. Reserving a
free register needed for this process is done manually for assembly implementations.
For C implementations, we use dedicated flags, such as -ffixed-register in
GCC1 to generate code that does not use the reserved register. Reserving only one
register minimises the performance impact due to memory spills.

Second, instructions that require destination registers (e.g. adds, eors) need an
additional output register for the output to be written without affecting the dummy
random value. Using the same register for input and output means that the random
value needs to be reloaded from memory. Otherwise, registers that are already in use
need to be spilled over to memory making the code segment modification complex.
Additionally, such code segments will have a lower performance due to the use of
additional instructions.

1https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html#Code-Gen-
Options

https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html#Code-Gen-Options
https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html#Code-Gen-Options
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5.3.1 CPU pipeline leakage
Consider the code segment before fixes in Listing 5.2 where r1 and r3 each hold
a single share of a 2-share Boolean masked implementation. r0 and r2 have been
set to 0 before execution of Listing 5.2. The combination of the values of r1
and r3 causes leakage that is detectable through a CPA attack. The reason for
this unintended interaction is the overwriting of internal pipeline registers that hold
operand values [Gao et al., 2021b]. This results in a transition-based leakage where
power consumption is correlated to the Hamming distance between the two shares
in r1 and r3. Such leakage can be mitigated by introducing a dummy random value
(e.g. movs r7, r7 where r7 is preloaded with some random value) that breaks the
overwrite between the two share values. It is introduced in between the leaky two
instructions. With the dummy random value’s introduction, the power draw will
be correlated with the Hamming distances between dummy random value and r1,
and r3 individually.

Another kind of leakage that can be detected from the CPU pipeline is leakage
from inter-bus interactions. An example inter-bus leakage with the same inputs used
for the earlier example (shown in Listing 5.2) is shown in Listing 5.3. In this example
code segment, the same two registers, r1 and r3 shows significant leakage when
those two registers hold one share each. The same kind of leakage was also observed
when the pair of registers that hold the shares and registers that hold unrelated values
(r0 and r2) were swapped. Our tests showed that inter-bus leakage can also be
mitigated by introducing a dummy instruction with random values.

In a nutshell, transition-based leakage observed in the CPU pipeline is eliminated
by introducing instructions that process random values. This results in a power
draw that correlates with the Hamming distance with the random value instead of
a sensitive intermediate value. This kind of protection is referred to as random
precharging in literature [Tillich and Großschädl, 2007; Bayrak et al., 2011, 2015;
Papagiannopoulos and Veshchikov, 2017].

5.3.2 Overwrite effects based leakage
Consider the before fixes code segment in Listing 5.4 where the shares of a Boolean
masked implementation are stored in r1 and r3. Due to overwriting of r3, the power
draw will correlate with the Hamming distance between the two shares. As a fix for
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movs r0, r1
movs r2, r3

(a) Before.

movs r0, r1

movs r7, r7

movs r2, r3

(b) After.

Listing 5.2: Example leakage from internal pipeline registers and fix

movs r1, r0
movs r2, r3

(a) Before.

movs r1, r0

movs r7, r7

movs r2, r3

(b) After.

Listing 5.3: Example inter-bus leakage from CPU pipeline and fix.

such leakage, the original value at the destination register can be replaced by a random
value. The fix is shown highlighted in Listing 5.4. As the destination register’s value
is not important to the result of movs r3, r1, the leakage is mitigated while the
functionality of the code segment is preserved.

Similarly, the same effect can be observed in code segment in Listing 5.5 where
a register value of r0 and memory pointed to by r1 interacts. Similar to the previous
case, writing a random value over the memory that holds the share can mitigate such
leakage.

movs r3, r1

(a) Before.

movs r3, r7

movs r3, r1

(b) After.

Listing 5.4: Overwrite effects related to movs and fix.
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str r0, [r1]

(a) Before.

str r7, [r1]

str r0, [r1]

(b) After.

Listing 5.5: Overwrite effects related to str and fix.

5.3.3 Arithmetic and Logic Unit leakage
Leakage that originate from state set by Arithmetic and Logic Unit (ALU) instructions
can be fixed as shown in Listings 5.6 and 5.7.

We propose using rors instruction to fix this kind of leakage. The reasoning
is as follows. As mentioned in Section 5.3, under the assumptions of in-order and
non-speculative execution by the CPU, using the same instruction with random values
as operands will clear internal state set by the previous instruction. Through results
observed from Table 5.1 it follows that the internal state set by all ALU instructions
are equivalent. The only remaining constraint is that the destination register should
not destructively modify the random value. Therefore, we selected ror as a suitable
instruction to be used to fix ALU state leakage.

lsls r0, r1, #8
...
...
...
lsls r2, r3, #8

(a) Before.

lsls r0, r1, #8
...

ror r7, r7

...
lsls r2, r3, #8

(b) After.

Listing 5.6: Example lsls leakage and fix.

5.3.4 Memory subsystem leakage
The leakage stemming from the memory subsystem manifest themselves mainly
through state and overwrite based interactions. Similar to how state related leakage
was fixed in Section 5.3.3, state related leakage from the memory subsystem can
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eors r0, r1
...
...
...
eors r2, r3

(a) Before.

eors r0, r1
...

ror r7, r7

...
eors r2, r3

(b) After

Listing 5.7: Example eors leakage and fix.

be fixed by inserting dominating instructions that do not destructively modify the
input random value. Suitable candidates according to Table 5.1 are str and a pair
of push and pop. If str is used, a temporary variable is required to write the random
value from r7. Since registers are limited, the address of this temporary variable is
required to be loaded from memory using a ldr instruction. Due to restrictions in
the architecture it takes even more instructions to guarantee this address is loaded
from a point that is reachable within offset limits of ldr [Furber, 2000, Section 3.2].
Therefore, the most convenient code pattern to use is push and pop instructions with
a random value. Both instructions are such that the stack pointer is preserved in the
code that surrounds them.

An example usage of a similar fix is shown in Listing 5.8. In the before fixes
code segment shown in Listing 5.8, state set by the first ldr instruction interacts
with the state set by the second ldr instruction. r1 and r3 hold addresses of two
distinct memory locations which hold the two shares of a 2-share Boolean masked
implementation. r0 and r2 have been initialised to zero prior to running the code
segment. Optionally, if overwrite based leakage is detected between r2 (i.e. when r2
holds a share) and the value pointed to by r3, the r2 register can be used with pop
instruction instead of r7 to clear both leakages from addition of single code segment.
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ldr r0, [r1]
...
...
...
...
ldr r2, [r3]

(a) Before.

ldr r0, [r1]
...

push {r7}

pop {r7}

...
ldr r2, [r3]

(b) After.

Listing 5.8: Example leakage and fix for ldr state.

5.4 Applying code fixes to masked code
The procedure of applying of code fixes is depicted in Figure 5.8. The procedure
starts by emulating a masked cipher implementation at some arbitrary number of
traces. Then, the code fixes for mitigation of detected leakages are applied by Rosita.
If there is no leakage observed at a higher number of power traces, then the process
stops. Otherwise, it continues to apply fixes until the leaky points count is zero.

Even with a wide range of code patterns it is still possible to find leakage that
does not match any pattern in the library. In such a situation, Rosita will warn about
consecutive fixes failing to eliminate leakage. Manual intervention may then be
needed to introduce new code fixing patterns. However, our evaluations performed
on Rosita with AES, Xoodoo and ChaCha showed such failures are rare after the
pattern library is complete with code patterns for first two implementations.

The level of protection offered by the code fixes is defined with respect to the
number of traces that were used for the emulated experiments. Rosita does not offer
any protection above the number of traces that have been emulated. Further, due to
the intricacies of the fixed vs. random t-test, multiple fixed inputs are required to
guarantee that the coverage of detected leakage is increased.

Rosita cannot fix leakages that are value-based. Such leakage can be detected
by the label that the leaky terms are associated with, if the label belongs to one of the
value-based terms then the masked implementation needs to be modified through
other means to guarantee that each intermediate value only contains at most d− 1

shares in a d-share masked implementation.
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Figure 5.8: Rosita mitigation application flow.
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5.5 Implementation
The functionality of Rosita is divided across a set of three executables. These are as
follows,

1. elmo - Hosts the emulator from the original ELMO project by McCann et al.
[2017] and the modifications listed in this work to facilitate ELMO*.

2. emulatetraces - Handles building the software implementation and invoca-
tion of elmo.

3. rosita - Handles application of code fixes after the analysis of the t-test
values generated in earlier step.

Rosita requires an evaluator to present the code to be evaluated as a project.
A Rosita project is a bundle of files which are required for the successful production
of an executable. Rosita also requires the project to hold information related to
the execution of non-specific TVLA (see Section 2.3.5 for details). This includes
information such as the total number of experiments (i.e. number of emulated traces)
and build flags for the compiler.

The block diagram in Figure 5.9 shows the data flow within Rosita. The Project
Builder component in the emulatetraces program is responsible for building an
executable binary file from a Rosita project. Rosita currently only supports C
and assembly source code files. The setup code for an experiment must be written
in C and the segment of code under test can be written in either assembly or in
C. However, C compilers might break masked implementations as a byproduct of
code optimisations. The leakage stemming from such breakage can be detected, but
cannot be fixed by Rosita. Care must be taken such that C implementations are
either compiled with masking aware compilers [Moss et al., 2012] or to rewrite in
assembly.

The Project Builder first updates the number of traces listed in the C source
files. This is done through a reserved format of C style comments. An example
is shown in Listing 5.9. The Project Builder component updates the content
within each @NTRACES{ and } comment with the trace count that is governed by
emulatetraces. A similar method is used to introduce arbitrary fixed inputs to the
masked implementation.
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Figure 5.9: Diagram of data flow across the Rosita tool set.

#define NTRACES /*@NTRACES{*/ 10000 /*}*/

static const uint8_t fixedinput[PLT_SZ] = {

/*@FIXED_INPUT{*/ 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b,

0x4b, 0x0d, 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18,

0x90/*}*/ };

Listing 5.9: Example C source comment

A project in Rosita consists of a JSON (JavaScript Object Notation) file that
describes all other files of the project and build configurations. This file lists compiler
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flags that are needed to build a project along with some key value pairs required
for Rosita’s functionality. The field c_tmpl_files is where an evaluator should
list the C file(s) that include the comment format listed in Listing 5.9. This file also
includes the reserved register’s name and the flag that needs to be used for the C
compiler for explicit reservation of it. The reserved register must not be used in hand
written assembly code. Examples of such build files can be found in the test project
directories in the open source repository of Rosita2.

Once the project is built, the resulting executable is emulated with elmo. elmo is
a modified version of the emulator that is shipped with ELMO3. We applied a few
modifications to the emulator to facilitate the operation of ELMO*. Similar to the
original implementation of elmo, the code segment under test needs to be surrounded
with function calls to starttrigger and endtrigger. These functions signal the
start and end of the code segment under test. Once the emulation is completed,
an emulator execution trace and a file with all the t-values for the code segment
under test are generated by elmo. The t-values file holds the t-values for final
differential voltages and t-values for individual terms as discussed in Section 5.1.
emulatetraces program exits once the emulation is done.
rosita can be used with the flag -a to list the emulator’s execution trace and

the t-values generated from the fixed vs. random t-tests. This output highlights any
significantly leaky instructions (i.e. |t| > 4.5) if found. Rosita works on the assembly
code that is produced from the Project Builder. All C code is converted to assembly
code first by execution of gcc with -S flag and then the GNU Assembler (as) is used
to create object files from assembly files. Assembly Parser component is a custom
parser that parses each line of assembly code by using regular expressions to split
each assembly code line into instruction mnemonic and operands. The parser logic
is implemented separately from the specialised logic required to parse the assembly
of a particular ISA. We implemented ARM ISA parsing logic in ARMParseMode.py
as the device that we used of our evaluation is based on the ARM ISA. The common
parser logic is implemented in ASMParser.py. The Instruction Visitor component
combines information from the emulator execution trace with the code from assembly
files. This is required as the code fixes are applied to the assembly files and Rosita

2https://github.com/0xADE1A1DE/Rosita
3https://github.com/sca-research/ELMO

https://github.com/0xADE1A1DE/Rosita
https://github.com/sca-research/ELMO
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needs to know where the leaky instructions are located in assembly files.
An invocation of rosita with -m flag is shown at the bottom part of Figure 5.9.

This flag switches rosita into code rewrite mode. Code rewriting begins with the
same functionality as the listing of the leaky instructions but additionally, continues
to label the leaky instructions according to the individual terms with significant
t-values. Once the labels are applied, the code patterns for each label is matched
through a prioritised logic. This logic is called the matching logic and is listed in
separate code files for each micro-architecture. Matching logic is dependent on
micro-architecture of a device. Two devices based on different micro-architectures
may respond differently to the same code fixing pattern. Therefore, we opted to
introduce all such patterns related to a particular device in a single source file. This
helps Rosita to be easily adapted to different micro-architectures. The corresponding
file for the ARM architecture is ARMMatcher.py4. Once this process ends, the
assembly file that contains the code segment surrounded by starttrigger and
endtrigger will have the code fixes applied to it.

The final step is to check if the changes done to the masked implementation
actually reduced the leakage. This is done by emulation of the fixed version by running
emulatetraces with the —-from-asm option. This flag forces emulatetraces
not to rebuild the project from scratch. Therefore, the emulation run will use a binary
that is produced with the new assembly file. This process is repeated until all leakage
at a certain trace count is removed.

5.6 Evaluation
We evaluated Rosita on a range of ciphers which have different kinds of round
functions. First, selected code segments from a set of masked cipher implementations
were protected using the code fixes that were applied by Rosita. Then, the resulting
code segments were run on a physical device and the power traces collected from the
physical device was evaluated using TVLA in the same configuration as used by Ros-
ita to apply fixes. These evaluations were run on a STM32F030 Discovery evaluation
board by ST Microelectronics. Refer to Section 3.2 for a detailed description of the
experiment setup that was used. The resulting t-values from TVLA procedure were
finally used to draw the plots shown in Section 5.6.2.1. We used a desktop PC with

4https://github.com/0xADE1A1DE/Rosita/blob/master/ROSITA/ARMMatcher.py

https://github.com/0xADE1A1DE/Rosita/blob/master/ROSITA/ARMMatcher.py
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an Intel Core i9-10900K CPU and 32 GBs of RAM to run Rosita and the analysis of
the power traces from the real device.

5.6.1 Implementations under test
We selected masked implementations of AES, ChaCha and Xoodoo to conduct our
evaluations. Source code for these implementations is available under ./TESTS path
in the Rosita source code repository5.

5.6.1.1 AES

AES is a block cipher first introduced by Daemen and Rijmen [2002]. It is one
of the most commonly used ciphers in practice. We used the table-lookup based
Boolean masked cipher implementation of AES-128 by Yao et al. [2018] in our AES
tests. This implementation is closely related to the masked AES implementation
presented in Mangard et al. [2005, Figure 9.1]. Due to the inter-byte interactions that
we discussed in Section 4.1.2.2 (and also described by Gao [2019]), we modified the
implementation so that it used 32 bit random values to mask 32 bit values. The code
segment of interest was limited to the first round of AES-128.

5.6.1.2 ChaCha

ChaCha is a prominent example of an ARX (Addition-Rotation-Xor) stream ci-
pher [Bernstein, 2008]. This was the main reason for its selection as ChaCha’s
construction is significantly different to the other algorithms considered. ChaCha
is very efficient in software and widely used in TLS implementations. An efficient
masked version written in assembly for ARM Cortex-M3 and Cortex-M4 processors
was published by Jungk et al. [2018]. We ported their implementation into our
platform which is an ARM Cortex-M0. As this implementation was done in ARM
assembly, the code was rewritten in such a way that it never used r7 so that it could
be used as the reserved register for Rosita. This implementation has 20 rounds in it
and therefore is referred to as ChaCha20. The code segment that was used for our
evaluation only included the first quarter round of ChaCha20.

5https://github.com/0xADE1A1DE/Rosita

https://github.com/0xADE1A1DE/Rosita
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5.6.1.3 Xoodoo

Recent ciphers, mostly permutations, can be implemented efficiently with only
bitwise Boolean instructions and (cyclic) shifts, e.g., Keccak-p, the permutation
underlying SHA-3 [Dworkin], Ascon [Dobraunig et al., 2016], Gimli [Bernstein
et al., 2017] and Xoodoo [Daemen et al., 2018b]. They all have a nonlinear layer of
algebraic degree 2 and hence allow very efficient masking. Among those, we chose
Xoodoo because it is the simplest of all and it lends itself to efficient implementations
for 32 bit architectures.

Xoodoo was proposed recently by Daemen et al. [2018a] for use in authenticated
encryption modes [Daemen et al., 2018b]. We used the optimised and non-masked
implementation of Xoodoo from Bertoni et al. and we implemented the 2-share
Boolean masking scheme of the non-linear layer χ as suggested by Bertoni et al.
[2011]. In contrast to what Bertoni et al. [2011] mention, we initialised the state
with fresh randomness for each trace to keep it consistent with the implementation of
AES, even though this is not required.

5.6.2 Results

5.6.2.1 Univariate TVLA evaluation

The graphs in this section show the performance and effectiveness of Rosita. The
cipher implementations listed in Section 5.6.1 were protected using Rosita. This was
done by gradually increasing number of emulated traces from 50,000 to 1,000,000.
The number of leaky points discovered and the number of leaky points remaining
after fixes are shown in Figures 5.12, 5.16, 5.20 and in Figures 5.13, 5.17, 5.21.

The implementations were run before and after the fixes were applied on a
physical device, the Welch’s t-test results from these experiments are shown in
Figures 5.10, 5.14, 5.18 and in 5.11, 5.15, 5.19. Leakage detected using the Welch’s
t-test values calculated at each sample point from the power traces collected from
the physical device. One million power traces were gathered from each physical
experiment. Refer to Section 3.2 for more information on our experiment setup.

First round of AES-128. Significant leakage was observed around the ShiftRows
operation of masked AES in Figure 5.10 from one million power traces gathered
from our test device. We used one million emulated power traces to apply fixes to
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this implementation, the time spent on emulation and root cause detection is shown
in Figure 5.13. It took less than one hour to emulate find root causes for one million
power traces for the first round of masked AES. The number of leaky points and
remaining leaky points after applying fixes is shown in Figure 5.12. There were
no new leaky points found after 150,000 power traces. The t-test values observed
from the same code segment after application of code fixed by Rosita are shown
in Figure 5.11. We observed significant leakage that was not emulated by ELMO*.
We investigated the reason behind such leakage and found out that it is address bus
related leakage from the SubBytes section of AES. The leakage could be mitigated
by manually applying address bus resetting instructions that loaded values from
random points from the S-box. The level of knowledge that Rosita requires to apply
such a mitigation automatically is significantly higher than the level of knowledge it
currently has about a certain software implementation. Currently, Rosita does not
have an apparatus for tracking any buffer related memory operations. Rosita was
able to fix 93.1% of the observed significant leakage from the physical device at 1
million power traces.
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Figure 5.10: t-test values for AES before applying countermeasures.
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Figure 5.11: t-test values for AES after applying countermeasures.
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Figure 5.12: Number of leaky instructions before and after fixes for AES.

0

500

1000

1500

2000

2500

3000

50k 250k 500k 750k 1M

Ti
m

e
(s

)

Trace count

Figure 5.13: Time taken to emulate and analyse AES by elmo.

First quarter round of ChaCha. We detected the highest levels of leakage from all
three implementations in the first quarter round of ChaCha as shown in Figure 5.14.
Similar to the observations from the physical experiment, the emulated traces found
208 significant leaks. The time spent by Rosita on emulation and analysis of ChaCha
is shown in Figure 5.17. It took less than two hours to emulate and analyse leakage
from one million power traces. The number of leaky points and remaining leaky
points after applying fixes are shown in Figure 5.16. We found no new leaky points
after 150,000 traces. Rosita was able to fix 99.7% of the significant leakage detected
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from physical device at 1 million power traces.
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Figure 5.14: t-test values for ChaCha before applying countermeasures.
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Figure 5.15: t-test values for ChaCha after applying countermeasures.
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Figure 5.16: Number of leaky instructions before and after fixes for ChaCha.
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Figure 5.17: Time taken to emulate and analyse ChaCha by elmo.

First round of Xoodoo. Significant leakage was detected around the cycles that
executed the χ function of Xoodoo as shown in Figure 5.18. The time spent by Rosita
on emulation and analysis of Xoodoo is shown in Figure 5.21, and the number of
leaky points and remaining leaky points after applying fixes are shown in Figure 5.20.
It took less than an hour to emulate and analyse power traces from Xoodoo. Similar
to both AES and ChaCha implementations, there was no new leakage found beyond
150,000 power traces for Xoodoo. We then ran the fixed implementation on our test
device and gathered power traces from the physical experiment to draw Figure 5.19.
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The single leaky point that is left over in Figure 5.19 is due to a leaky point that
had multiple leaky terms which destructively interfered in the detection the leakage
in emulated traces. We believe that effects similar to a glitch may have exposed
this leakage. This means that each of the leaky terms that were found in emulation
manifest themselves individually in the real experiment. Rosita was able to fix
91.6% of the significant leakage detected from physical device at 1 million power
traces.
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Figure 5.18: t-test values for Xoodoo before applying countermeasures.
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Figure 5.19: t-test values for Xoodoo after applying countermeasures.
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Figure 5.20: Number of leaky instructions before and after fixes for Xoodoo.
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Figure 5.21: Time taken to emulate and analyse Xoodoo by elmo.

5.6.2.2 10 fixed-inputs TVLA univariate evaluation

The TVLA results in this section are combined results from multiple physical
experiments that were run with multiple fixed inputs. Using multiple fixed inputs
increases the coverage of the detected leakage. Therefore, the fixes applied are
more effective than using a single fixed input when using the same number traces.
Figures 5.22, 5.24, 5.26 show leakage from multiple fixed inputs before applying
code fixes by Rosita. Figures 5.23, 5.25, 5.27 show leakage after the fixes were
applied by Rosita. We used 10,000 power traces with 10 fixed-inputs to draw
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these plots. The overhead added to each of the masked implementations due to the
code fixes were 20.5% for AES, 65.1% for ChaCha and 35% for Xoodoo. The
address bus related leakage that was observed at one million traces in Figure 5.10
and Figure 5.11 have become less significant due to the lesser number of traces used
for drawing Figure 5.22 and Figure 5.23.
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Figure 5.22: Maximum t-test values of 10 fixed inputs for AES first round before
applying countermeasures.
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Figure 5.23: Maximum t-test values of 10 fixed inputs for AES first round after
applying countermeasures.
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Figure 5.24: Maximum t-test values of 10 fixed inputs for ChaCha first round before
applying countermeasures.
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Figure 5.25: Maximum t-test values of 10 fixed inputs for ChaCha first round after
applying countermeasures.
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Figure 5.26: Maximum t-test values of 10 fixed inputs for Xoodoo first round before
applying countermeasures.
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Figure 5.27: Maximum t-test values of 10 fixed inputs for Xoodoo first round after
applying countermeasures.
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5.6.3 Discussion
Rosita was capable of eliminating more than 91% of leakage observed from the
physical experiments in all masked cipher implementations that we tested. Xoodoo
ended up as the lowest performing implementation due to the fact that it initially had
comparatively lower number of leakages and the fact that due to the high significance
of the leakage it was detected on many cycles. The highest percentage of eliminated
leakage was observed in ChaCha which is 99.7%. Rosita only required less than
250,000 emulated traces to detect all practical leakage that were detected from one
million power traces. We highlight this as a major benefit of using emulation instead
of physical experiments where it significantly reduces the time that is required to
conduct experiments. It took us around four hours to collect one million power traces
from the physical experiment, in the worst case, the emulation of ChaCha took 35%
of that time to emulate and analysis of the same number of power traces (without the
the use of multi-threading). We also ran the same experiment in a multi-threaded
setting with 10 threads where each emulator instance emulated 1/10 of power traces.
This setup took 11.75% of the time that the physical experiment took to produce the
same number of traces. In this setting, the emulated traces were first written to disk
and then the analysis was done by a separate process. In contrast, the single-threaded
approach did not require disk usage as the first order univariate t-test could be run
online. Multi-threaded performance could be further improved by introducing single
pass first order univariate t-tests for multiple trace partitions [Schneider and Moradi,
2015]. We believe doing so will further improve the performance due to the removal
of the dependency on slow disk storage.

Table 5.2 shows the number of cycles in original implementations, number of
cycles in the fixed implementations and overhead added on each cipher implementation
due to Rosita’s code fixes. These results show that Rosita has been successful in
eliminating univariate leakage from practical masked cipher implementations. The
overheads shown in Table 5.2 come from additional instructions added by Rosita.
However, some initial overhead is added to the original implementations as they are
required to be compiled with a reserved register allocated to Rosita (i.e. r7). If all
registers were available, the resulting programs would be shorter. This limitation can
be resolved by introducing dedicated instructions to clear micro-architectural state
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as shown in Gao et al. [2020b]. The number of instructions added by disabling the
use of r7 was nine and two instructions for AES and Xoodoo. This was calculated
by compiling the C implementation source with and without the —-ffixed-r7 flag.
Since ChaCha was originally written in assembler without the use of r7, the overhead
for ChaCha implementation could not be determined. The results in Table 5.2 are
from emulations that used only a single fixed input, therefore it fails to eliminate all
leakage that is detected from the physical experiment. However, this can be mitigated
by using many fixed inputs for the emulation as shown in the results in Section 5.6.2.2.
We believe Rosita fails to discover all leaky points from a single fixed input due to
noise level differences in emulation and in the physical experiments.

In comparison with manually applied code fixes, Rosita’s code fixes do not
offer any globally optimised code generation. Rosita is only focused on eliminating
leakage from instructions with a limited local scope around the leaky instruction.
Globally optimised code generation would enable a reduction in overhead as register
allocation could be performed optimally considering the whole program.

Function Original Fixed Overhead Percentage of
Cycles Cycles eliminated leakage

AES 1285 1559 21.3% 93.1%
ChaCha 1322 2313 75% 99.7%
Xoodoo 637 843 32.3% 91.6%

Table 5.2: Results of running Rosita to automatically fix masked implementations
of AES, ChaCha, and Xoodoo.



Chapter 6

Mitigation of multivariate leakage

This chapter discusses methods that apply code fixes to eliminate multivariate
leakage. Rosita, which was introduced in Chapter 5 is capable of fixing leakage in
first-order masked implementations. To increase the security offered by masking,
cipher implementers often incorporate masking schemes of higher-orders [Rivain
and Prouff, 2010; Cnudde et al., 2015; Hutter and Tunstall, 2019]. The methods used
for root cause detection in Rosita take impractical amount of time if used to fix
higher-order leakage. In this chapter we present Rosita++ which solves this problem.

We first describe what multivariate leakage is, and how to assess it. Then we
discuss two new root cause detection algorithms that are orders more efficient than
the naive method used in Rosita. These are elimination of terms (Section 6.2)
and a Monte Carlo experiment based method (Section 6.3). Finally, we detail the
implementation of Rosita++ and evaluate it using second- and third-order masked
code.

6.1 Multivariate leakage assessment
Multivariate leakage assessment analyses information leakage from multiple sample
points simultaneously. In contrast, univariate leakage assessment only uses infor-
mation from a single sample point. Detection of multivariate leakage is useful in
evaluating higher-order masked implementations as higher-order leakage cannot be
detected by univariate methods. We require multivariate root cause detection to apply
code fixes based on multivariate leakage. In this section we introduce multivariate
leakage assessment and discuss why the naive root cause detection Rosita cannot be

85
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optimised to detect multivariate root causes.
Multivariate leakage is defined as leakage detected from the combination of

power values from a set of sample points. The normalised product of sample values
is the commonly used function for combining the sample values [Prouff et al., 2010].
The combined sample value from normalised d sample points, J = {j0, j1, ..., jd−1}
is given by q in Equation 6.1 where y(j) is the sample value at the jth sample point
and µ(j) is the mean of all sample values observed at sample point j.

q =
∏
j∈J

(
y(j) − µ(j)

)
(6.1)

Similar to the univariate case (see Chapter 5), y(j) takes values from the following
multiple linear regression model, where y(j) is the differential voltage across a shunt
resistor across the power rail. Independent variables and coefficients of the regression
model are xk and βk for 0 < k < n. β0 is the intercept.

y(i) = β0 + β1x1 + β2x2 + ...+ βn−1xn−1 (6.2)

What is different from the univariate case is that the values of y(j) from different
sample points are used as input to Equation 6.1 to create a combined power value q,
which is then evaluated using univariate TVLA. This means that if we follow the same
methodology as mentioned in Chapter 5, there will be nd total combinations between
the terms. This is due to each emulated power value at a different instruction (i.e.
sample point) is considered distinct. Given that ELMO* has 26 terms in total, running
such a number of t-tests is inefficient even for smaller values of d. Additionally,
due to the requirement of exponentially more power traces to detect leakage as d
increases in multivariate settings [Chari et al., 1999], this method becomes even
more impractical for multivariate root cause detection.

We introduce two methods for multivariate leakage root cause detection. The
first method depends on removing a single term from Equation 6.1 at a time and then
reevaluating the leakage trying to find instances where the removal of a term converts
leaky set of samples to a non-leaky set of samples. To alleviate the limitations of this
method, we also propose a second method for root cause detection based on Monte
Carlo experiments.
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6.2 Elimination of terms
Elimination of terms is a novel method for efficient root cause detection in multivariate
leakage that was introduced in Rosita++. A term is removed from all y(j) and µ(j)

where j ∈ J that participate in multivariate sample q and then the fixed and random
input power value distributions are tested for the absence of leakage. As only one
term is removed at a time from y(j), the number of statistical checks required drops
from nd to nd.

A core observation for this approach is that TVLA cannot be used for determining
the absence of leakage as it was used in detection of root causes in univariate leakage
(see Chapter 5). In elimination of terms, the null hypothesis states that the two
distributions are different (i.e. leaky). Therefore, the Welch t-test is not suitable for
testing the equivalence of two distributions because it is designed only to measure
statistical difference between distributions. Failure to show that two distributions
are different does not demonstrate that they are the same. Instead, we use the
Two One-Sided t-tests (TOST) procedure [Schuirmann, 1987] for testing whether
distributions are equivalent.

In a nutshell, TOST determines if the mean difference between two distributions
falls within two boundary values determined by a certain level of significance
(see Section 2.2.2.3 for a detailed description of TOST). The power values needed
for TOST are collected by running the same experiment as for the univariate case
which was run in a fixed vs. random input configuration. The two boundary values
used in TOST are determined from power samples collected from running the same
experiment in an all random input configuration. This is done by first recording all
term values separately with ELMO* in a fixed vs. random input setting and then again
when all inputs are random. The emulated traces for fixed vs. random and random
vs. random configurations result in emulated traces which are stored in a format we
refer to as the TermTraces format, as shown in Figure 6.1. L is a three dimensional
array with trace number, sample number and term number as its dimensions. We
refer to the trace array from the fixed vs. random input configuration as LFR and the
trace array from the random vs. random input configuration as LRR. Since we know
and are able to reset the internal state of the emulator between cipher invocations, the
order of the tests do not matter. Therefore, in fixed vs. random input configurations,
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the traces from fixed input tests are written to the file first and the traces from random
input trace are written after that.

Term values

Traces

Samples

y(i) = β0+β1x1+β2x2+...+βn−1xn−1

Figure 6.1: Mapping of term values to L.

We then use the traces collected from the emulation tests to find leaky terms. This
process determines the set of terms that contribute to a leakage from each sample
point. The algorithm we use for finding leaky terms is shown in Algorithm 6.3.
The FLT algorithm removes a single term from a single sample point at a time and
calculates the differential voltage (y(i)) at that sample point. Differential voltage
values from d sample points are then combined to a single array of normalised power
values, Y . This is done through the NPS (Normalised Product of Samples) function
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shown in Algorithm 6.1. It calculates the normalised product from the power value
of reduced models at given set of sample points only using a given set of terms. The
corresponding combination of normalised power values at same sample points from
LRR results in X .

Algorithm 6.1 Normalised Product of Samples.
Normalise(Y ) Normalises Y array by subtracting the mean from all elements.
1: function NPS(L,S, T )
2: i← 0
3: V ← [|L[:, 0, 0]|, |S|]
4: for s ∈ S do
5: V [:, i]← 0
6: for t ∈ T do
7: V [:, i]← V [:, i] +L[:, s, t]
8: end for
9: V [:, i] = Normalise(V [:, i])

10: i← i+ 1
11: end for
12: W ← V [:, 0]
13: for j ← 1 to |S| do
14: W ←W ⊙ V [:, j]
15: end for
16: return W
17: end function

Given two distributions, X1 and X2, the TOST is used in IsEquivalent function
to test for equivalence. From the discussion in Section 2.2.2.3 it follows that when t0
and t1 from Equations 6.3 and 6.4 are both above a certain threshold value, tβ, the
two distributions X1 and X2 are determined to be equivalent. Here, s1 and s2 are
standard deviations of the two distributions, n1 and n2 are the number of samples in
each distribution and ωl and ωu are the boundary values for the TOST.

t0 =
X1 −X2 − ωl√

s21
n1

+
s22
n2

(6.3)
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Algorithm 6.2 Is Equivalent
Select(Y , g) Selects elements that belong to the group g. In case of TermTraces

format, the traces are divided as two halves for each input configu-
ration. Hence, first and second halves of traces are returned when
g = 0 and g = 1.

Mean(Y ) Mean of Y .
Std(Y ) Standard deviation of Y .

1: function IsEquivalent(XRR,XFR)
2: X1 = Select(XRR, 0)
3: X2 = Select(XRR, 1)
4: µ = Mean(X1 −X2)
5: w = Std(X1 −X2)
6: ωu = µ+ tαw/

√
|X1|

7: ωl = µ− tαw/
√
|X1|

8: Y1 = Select(XFR, 0)
9: Y2 = Select(XFR, 1)

10: s =
√

Std(Y1)2

|Y1| + Std(Y2)2

|Y2|
11: t0 = (Mean(Y1)−Mean(Y2)− ωl) /s
12: t1 = (ωu − (Mean(Y1)−Mean(Y2))) /s
13: return (tβ < t0) ∧ (tβ < t1)
14: end function

t1 =
ωu − (X1 −X2)√

s21
n1

+
s22
n2

(6.4)

Determining the boundary values to be used in a TOST is done primarily
according to two paradigms [Pardo, 2013]. The first is the bioavailability paradigm.
In the bioavailability paradigm, the boundaries are regarded as undesirable values for
rejecting the null hypothesis. The tests are constructed to fail (i.e. fail to reject the
null hypothesis) with a high probability when the mean differences are closer to the
boundary values. The second approach, quality engineering, considers the boundary
values as desirable values and therefore is less strict on the failure of the test when
mean differences are closer to boundary values. As their names suggest they are
used in their respective fields and are constructed towards the goals of each field.

We selected the quality engineering approach to determine boundary values for
our TOSTs as we do not regard the boundary values as undesirable. We calculate the
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Algorithm 6.3 Find Leaky Terms
LFR A TermTraces array that holds the traces from fixed vs. random test.

See Figure 6.1 for the mapping of term values from Equation 6.2.
LRR Same as LFR but holds traces from random vs. random test.
S Set of d sample points that participate in the leakage.
T Set of all terms that are in ELMO*.
⊙ Elementwise multiplication operator.

1: function FLT(LFR,LRR,S, T )
2: r ← {}
3: for s ∈ S do
4: W ← NPS(LFR,S \ s, T )
5: for t ∈ T do
6: u← T \ t
7: Z ← NPS(LFR, s, u)
8: X ← NPS(LRR,S, u)
9: Y ← Z ⊙W

10: if IsEquivalent(X,Y ) then
11: r ← r ∪ {(s, t)}
12: end if
13: end for
14: end for
15: return r
16: end function

boundary values for the TOST from the data collected in LRR trace set. The two
power value distributions from the random vs. random input configuration are used
because they are equivalent. The ideal distributions for this purpose are the ones that
are measured with the same inputs but without the leaky interactions. As these ideal
distributions are immeasurable, we use the non leaky power value distributions from
the random vs. random input configuration. The boundaries are calculated as shown
in Equations 6.5 and 6.6. The mean difference (µ) and the variance of differences (s)
are calculated from LRR power traces. n is the number of samples.

ωu = µ+ tα
s√
n

(6.5)

ωl = µ− tα
s√
n

(6.6)
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6.3 The Monte Carlo Method
While elimination of terms is efficient, it may sometimes fail. For example, if multiple
model terms leak the same share, removing any one term will not eliminate the leak.
In such cases the slower but more versatile method of Monte Carlo simulations is
used to find the terms that are responsible for the leakage.
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Figure 6.2: Effectiveness in removing leakage of Monte Carlo method for increasing
number of experiments.

Monte Carlo simulations are a class of algorithms that use repeated random
sampling to solve problems [Kroese et al., 2014]. In this approach, a preset number
of random experiments are run where in each experiment a random subset of the
model terms are evaluated using the t-test for leakage. We use the term reduced
model to refer to a model created from such a subset of the terms. A scoring system
awards a point for each term that participates in a reduced model that ends up being
leaky. After a preset number of experiments are done, the terms which have outlying
high scores are selected as terms that contribute most to the leakage.
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The preset number of random experiments were selected from a performance
analysis done for a code segment from a masked implementation of Xoodoo [Daemen
et al., 2018a] cipher by only using Monte Carlo method to detect and remove leakage.
After gathering 100,000 traces from this implementation and running the initial
t-test it had 45 total leakage points. Figure 6.2 shows the reduction of remaining
leaky points as the number of Monte Carlo experiments is gradually increased.
Higher number of experiments improves detection of root causes, but after 50 or
so experiments the reduction of leakage was nearly constant. After evaluation of
1000 experiments the improvements were minimal. Therefore, we selected 50 as the
optimal experiment number.

6.4 Implementation
The implementation of Rosita++ is similar to the implementation of Rosita as
detailed in Section 5.5. This section details the notable differences between the
implementations of Rosita and Rosita++. Similar to Rosita, Rosita++ also includes
the same set of executables elmo, emulatetraces and rosita (see Section 5.5 for
details).

Additions to the flow of data within Rosita are shown in green in Figure 6.3. A
significant difference in the output produced by emulatetraces is the additional
recording of all emulated power values with individual values for each term of the
power model. This means that the values of each term in Equation 6.2 is recorded.
In the root cause detection method of elimination of terms used in Rosita++, the
target executable is emulated twice in two different input configurations. One is
fixed vs. random and the other is random vs. random. The additional run of a test
with all random inputs is required by the elimination of terms algorithm discussed
in Section 6.2.

All emulated power traces are stored on disk by appending new ones to the end of
a trace file. These traces are processed sample-wise when root cause detection is done.
A single sample point from all traces are accessed at once. Using column-major
order when reading values that were written to disk in a row-major order incurs
significant penalties in performance [Thiyagalingam et al., 2003]. As a solution,
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we first transposed1 the power traces matrix2 offline and then used the resulting
transposed matrix for root cause detection with Rosita++. Transposing resulted in
a major performance gain for root cause detection with large numbers of emulated
traces (e.g. more than two million). This process is handled by the new addition of
the transposer component as shown in Figure 6.3.

The Leaky Term Searcher component in Rosita++ is in charge of conducting the
search for leaky terms where multivariate leakage is detected from the emulation of
power values in emulatetraces. This is done by either employing the method of
elimination of terms or employing the Monte Carlo method. This process is a CPU
intensive task with multiple read only references to the content of power value trace
files (one each from fixed vs. random and random vs. random experiments) that were
generated in the earlier step by emulatetraces. Therefore, we implemented this as
a multi-threaded component with read only access to memory mapped regions of the
two trace files.

The rosita program was modified to facilitate a second run as shown in the
bottom part of Figure 6.3. Two runs are required due to the nature of multivariate
root cause detection. The final result of multivariate root cause detection is not
finalised until all combinations of the power values from different sample points
have been analysed. Therefore, the labels that identify the leaky terms are stored in
a separate file that is read by rosita in the next run, finishing the code rewriting
operation by overwriting the leaky assembly code segments with the non-leaky code
patterns listed the pattern library (i.e. ARMMatcher.py3 for ARM ISA related code
patterns) similar to the same operation in Rosita.

Similar to how Rosita worked (see Section 5.4 for details), Rosita++ also
requires to be run in multiple iterations to guarantee that the leakage was actually
fixed. The reason behind this is that at some trace count levels, the t-test value for
the final differential voltage value remains leaky, but it is not enough for the root
cause detection procedure. Therefore, the trace count needs to be increased in later

1https://github.com/0xADE1A1DE/Rositaplusplus/blob/master/PWMODEL/src/
transposer.cpp

2We collapsed two dimensions (term and sample numbers) of the three dimensional array of power
trace described in Algorithm 6.3 to one dimension and treated it as a matrix

3https://github.com/0xADE1A1DE/Rositaplusplus/blob/master/ROSITAPP/
ARMMatcher.py

https://github.com/0xADE1A1DE/Rositaplusplus/blob/master/PWMODEL/src/transposer.cpp
https://github.com/0xADE1A1DE/Rositaplusplus/blob/master/PWMODEL/src/transposer.cpp
https://github.com/0xADE1A1DE/Rositaplusplus/blob/master/ROSITAPP/ARMMatcher.py
https://github.com/0xADE1A1DE/Rositaplusplus/blob/master/ROSITAPP/ARMMatcher.py
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iterations to facilitate the successful detection of root causes.
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Figure 6.3: Pearson correlation coefficient for the cross operand test.
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6.5 Evaluation
Rosita++’s evaluation was done on second order masked PRESENT and Xoodoo
ciphers, and on a cryptographic primitive for converting between Boolean masking
and arithmetic masking. For evaluation of third order masked implementations, we
used an example implementation that uses four shares in a Boolean masking scheme.
Before continuing with the multivariate evaluation, we tested all implementations for
possible first order leakage. PRESENT and Xoodoo were implemented as threshold
implementations. Note that threshold implementations with three shares provides
provable first-order security, but only limited protection against the second-order
attacks [Nikova et al., 2006]. The reason for this is that as many as two shares can
be used in a single operation in a three share threshold implementation due to the
non-completeness property of threshold implementations. Therefore, we can expect
that diminished second-order leakage may occur for both PRESENT and Xoodoo
implementations.

Increasing t-test threshold value. The typical t-test threshold used for TVLA is
4.5 [Goodwill et al., 2011]. However, as the number of sample points increase, the
false-positive rate also increases. This is due to the fact that we observe the results of
individual t-tests at each sample point. Therefore, as the number of observations
increases, the threshold would need to be increased [Balasch et al., 2015; Ding et al.,
2017]. We increased the t-test threshold for our tests following the method described
in Section 2.3.5.

6.5.1 Implementations under test
This section lists the implementations we used for testing the effectiveness of Ros-
ita++. All three share implementations were emulated for 500,000 power traces.
This number of emulated traces were enough to fix the code segments under test such
that that significant leakage was not observable at two million power traces from the
physical setup. This is a significantly lower number of traces than the power traces
we used to detect leakage the real device which was two million traces. The four
share example implementation described below was emulated for only 200,000 when
it detected the root causes for the leakage. It was possible to detect the leakage at
an even lower number of power traces, but more power traces were required for the
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root cause detection. This shows a significant reduction in noise from the emulated
traces. The source code for all the implementations listed in this section are available
in ./TESTS/ path at https://github.com/0xADE1A1DE/Rositaplusplus.

We used three cryptographic primitives, which represent different points in the
design space of symmetric cryptography. The choices were also limited as second
order masked implementations were scarce.

6.5.1.1 3-share Boolean-to-arithmetic conversion

Boolean-to-arithmetic mask conversion [Goubin, 2001] is a cryptographic building
block that converts a Boolean mask to an arithmetic mask. It is often used in side-
channel resistant implementations of cryptographic algorithms that mix Boolean and
arithmetic operations such as SHA-2 [National Institute of Standards and Technology,
2015a], ChaCha [Bernstein, 2008], Blake [Aumasson et al., 2009], Skein [Ferguson
et al., 2010], IDEA [Lai and Massey, 1991], and RC6 [Rivest et al., 1998]. We
implemented and evaluated the second-order Boolean-to-arithmetic masking of Hutter
and Tunstall [2019, Alg. 2].

The conversion procedure takes Boolean shares x′ = x⊕ r1 ⊕ r2, r1 and r2 as
input, where r1 and r2 are random inZ232 and x is the secret value. The procedure uses
three additional masks γ1, γ2, and α also random in Z232 for protecting the operation.
It computes x′′ = x+ s1 + s2, where x′′, s1, and s2 are the output arithmetic shares.
This implementation is proven to be second-order secure in Hutter and Tunstall
[2019] and therefore, we do not expect to see leakage in an implementation protected
with Rosita++. We implemented this algorithm in assembly taking care to keep the
shares separate.

6.5.1.2 3-share PRESENT

PRESENT is a block cipher based on a substitution permutation network, which was
proposed by Bogdanov et al. [2007]. It has a block size of 64 bit and the key can be
80 or 128 bits long. The non-linear layer is based on a single 4 bit S-box facilitating
lightweight hardware implementations.

We implemented PRESENT with side-channel protection in software based on
threshold implementations with three shares, as described by Sasdrich et al. [2018,
Alg. 3.2]. We used the code shown in Listing 6.1 that implements a part of the
PRESENT S-box, involving three shares x1, x2, x3 and the lookup table T . The table

https://github.com/0xADE1A1DE/Rositaplusplus
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t3 = T(x1, x2)

t2 = T(x3, x1)

t1 = T(x2, x3)

Listing 6.1: PRESENT code segment under test.

a0,0 = a0,0 ⊕ (¬a1,0 ∧ a2,0)⊕ (a1,0 ∧ b2,0)⊕ (b1,0 ∧ a2,0)

b0,0 = b0,0 ⊕ (¬b1,0 ∧ b2,0)⊕ (b1,0 ∧ c2,0)⊕ (c1,0 ∧ b2,0)

c0,0 = b0,0 ⊕ (¬c1,0 ∧ c2,0)⊕ (c1,0 ∧ a2,0)⊕ (a1,0 ∧ c2,0)

Listing 6.2: Xoodoo code segment under test.

is an 8 bit to 4 bit lookup table where the inputs are two 4 bit nibbles. Each table
lookup used to compute ti is repeated 16 times to cover the complete 64 bit shares.

6.5.1.3 3-share Xoodoo

Xoodoo was proposed by Daemen et al. [2018a] and a reference implementation
is available from Bertoni et al.. Xoodoo [Daemen et al., 2018a] is a modern
cryptographic primitive that underlies multiple higher-level primitives [Daemen et al.,
2018b]. We implemented a three-share version of Xoodoo, building on the non-linear
χ layer from Keccak.

Xoodoo’s state is 48 bytes in length. The state is divided into three equal blocks
called planes, each consisting of four 32 bit words. xi,j denotes the j th 32 bit word
of the ith plane of share x, where x ∈ {a, b, c}. Listing 6.2 shows the algorithm
segment that we evaluated, which forms part of the start of the Xoodoo χ function.
Our initial C implementation showed first-order leakage caused by the code optimiser
merging shares. We therefore manually implemented the code under test in assembly,
ensuring that shares were not merged.

6.5.1.4 4-share Synthetic Example

For an example third-order leakage analysis, we opted to use a four share synthetic
example, chosen to reduce the large computational overhead to a manageable level.
The example that we use is listed in Listing 6.3. All 32 bit shares are stored in the
array that is pointed to by r1. These are loaded into the registers r3–r6 using ldr
instructions. The push and pop pairs that are in Lines 2 and 6 separate the interaction
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between the ldr instructions. For more details about how we found out such effects,
see Section 5.2.1. The push and pop instructions act as a barrier to the interactions
that happen through the memory by resetting the internal state. Observe that there is
no such barrier between Lines 9 and 10. This results in a combination of all shares at
Line 10. In this evaluation we expect Rosita++ to first emulate this code segment
correctly and detect multivariate leakage at Line 10 and then detect the root causes
for the leakage and apply code fixes to remove it.

1 ldr r3, [r1, #0]

2 push {r7}

3 pop {r7}

4 ; nop padding

5 ldr r4, [r1, #4]

6 push {r7}

7 pop {r7}

8 ; nop padding

9 ldr r5, [r1, #16]

10 ldr r6, [r1, #20]

11 ; nop padding

Listing 6.3: Synthetic example.

6.5.2 Tools for leakage evaluation
We developed a high-performance, configurable set of tools for executing opera-
tions on signal trace files. These operations include online calculation of t-test
values [Schneider and Moradi, 2015], performing online CPA attacks [Pebay, 2008],
static alignment of signals using cross-correlation and application of filters to signal
trace files. We note that there have been analyses of even larger sets of power traces
than ours [Cnudde et al., 2015, 2016], but we failed to find any publicly available tools
that fulfil all our analysis needs. Publicly available tools such as Jlsca4, SCAred5,
Lascar6 only offered limited capabilities. Our tool set, TraceTools is publicly
available at https://github.com/0xADE1A1DE/tracetools.

4https://github.com/Riscure/Jlsca
5https://gitlab.com/eshard/scared
6https://github.com/Ledger-Donjon/lascar

https://github.com/0xADE1A1DE/tracetools
https://github.com/Riscure/Jlsca
https://gitlab.com/eshard/scared
https://github.com/Ledger-Donjon/lascar
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TraceTools is written in C++ and offers multi-threaded support for calculating
univariate and bivariate Welch’s t-test values. Our tool uses multiple passes when
required which are executed by reading the entire file from start to end. This
process is significantly sped up by using solid state drives for storing the trace
files. TraceTools was designed such that it acts as a library that offers utilities to
various trace processing applications. TraceTools Trace processing activities such
as Welch’s t-test analysis or application of filtering to each trace are implemented
as clients of the library. The design of TraceTools enables using command-line
arguments to specify the properties and ranges of samples which are to be processed
rather than using a script based approach used in commonly used SCA (Side Channel
Analysis) tools such as Jlsca, Lascar or SCAred. This saves time that analysts spend
on reading documentation and limits writing new code to when new functionality is
required. Operations like the creation of nth-order traces, normalisation of traces
and calculation of Pearson correlation coefficient for CPA attacks are implemented
as separate building blocks that can be used in different analysis pipelines. Due to
this, the creation of new workflows were made simpler.

We conducted a benchmarking test with a trace set containing 1,715,580 power
traces each having 1,000 samples gathered from the physical experiment of Boolean
to arithmetic mask conversion. All samples were stored in double precision floating
point in Riscure Inspector TRS format7 and as NumPy array on-disk format8 . The
time required to conduct univariate t-test by using each tool is shown in Table 6.1.
We chose the univariate t-test as a benchmark test since it was supported by all tools
with minimal adaption code. Jlsca was nearly as fast as TraceTools, taking only
1.5 times longer to conduct the univariate t-test results. Lascar and SCAred were
significantly slower and took 18.4 and 9.6 times longer than TraceTools for the
analysis. All tests were run in single-threaded mode in all tools as some do not
support multi-threaded operation.

We also used the same trace set to run bivariate t-tests using TraceTools and
Jlsca. As shown in Table 6.2, TraceTools performed twice as fast as Jlsca in
single-threaded bivariate t-test analysis.

7https://github.com/Riscure/python-trsfile
8https://numpy.org/doc/stable/reference/generated/numpy.save.html

https://github.com/Riscure/python-trsfile
https://numpy.org/doc/stable/reference/generated/numpy.save.html
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Tool Wall Clock Time (s)
TRS NumPy

TraceTools 4 5
Lascar - 92
SCAred - 48
Jlsca 6 -

Table 6.1: Univariate t-test analysis time.

Tool Wall Clock Time

TraceTools 26:18
Jlsca 1:03:36

Table 6.2: Bivariate t-test analysis time.

We conducted CPA attacks based on the trace data from DPA Contest V29.
Table 6.3 shows the benchmark results we obtained for CPA attacks on the first
20,000 traces done using SCAred and TraceTools. SCAred is multi-threaded
and uses all available CPU cores (i.e. eight in our test machine) for the attack
whilst TraceTools only uses a single thread for CPA attacks. We listed both the
wall clock time and total CPU time (taken from /usr/bin/time) which show that
the total CPU usage of TraceTools’ CPA attack is less than SCAred’s.

Tool Wall Clock (s) CPU Time (s)

TraceTools 13.59 13.59
SCAred 6.43 22.32

Table 6.3: CPA attack time.

6.5.3 Results

6.5.3.1 Bivariate evaluation

This section lists the results gained from the evaluation of Rosita++. The bivariate
leakage analysis done in this section uses product between samples from two

9https://www.dpacontest.org/v2/download.php

https://www.dpacontest.org/v2/download.php
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sample points was used as the combination function and univariate Welch’s t-test
on the combined traces. The heatmaps shown in Figures 6.4, 6.5, 6.8, 6.9, 6.12
and 6.13 are mirrored across the axis through (0, 0). These were drawn from the
leakage that resulted from two million power traces each which were gathered
from the implementations listed in Section 6.5.1 run on a fixed vs. random input
configuration on a ST Microelectronics STM32F030 Discovery evaluation board.
We used TraceTools for the evaluation of the traces that were collected from our
physical test setup. Refer to Section 3.2 for details on our test setup. The wall clock
time that each analysis took with TraceTools is shown in Table 6.4. Each result
in Table 6.4 is from analysing two million power traces from the real device. We
used a desktop PC with an Intel Core i9-10900K CPU and 32 GBs of RAM to run
analysis using TraceTools and to run Rosita++. The massive increase in time
required for the bivariate t-test analysis is due to the large increase in combinations
when number of samples increase from 1000 to 3500 (i.e. 3500C2/

1000C2 ≊ 12 ).

Trace set Samples Wall Clock Time

Xoodoo original 1000 4:51
Xoodoo fixed 1400 33:50
PRESENT original 1400 28:31
PRESENT fixed 3500 7:02:00
Boolean-to-arithmetic original 1000 4:18
Boolean-to-arithmetic fixed 1200 8:51

Table 6.4: Bivariate analysis time.

Boolean-to-arithmetic mask conversion. We tested the entire implementation of
Boolean-to-arithmetic mask conversion algorithm as described in Section 6.5.1. The
heatmap in Figure 6.4 shows the univariate t-test values for the combined power traces
from the physical experiment before applying fixes using Rosita++. The absolute
peak t-test value observed from these values was 9.13 which meant that, despite our
efforts to keep shares separate, unintended interactions occurred in the assembly code
implementation of the Boolean-to-arithmetic conversion. We then used Rosita++ to
apply fixes to this implementation. The times taken to emulate and analyse the three
share Boolean-to-arithmetic implementations are shown in Figure 6.7 and Figure 6.6.
The analysis time is the time spent on root cause detection. The variations in time
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depicted in Figure 6.7 follows the number of leaky points detected at each trace
count level. The final heatmap in Figure 6.5 shows that Rosita++ was successful
in eliminating all detected leakage. This was evident from the absolute peak t-test
value of Figure 6.5 which was 3.91.
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Figure 6.4: t-test values for Boolean-to-arithmetic before applying code fixes, peak
t-test value: 9.13.
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Figure 6.5: t-test values for Boolean-to-arithmetic after applying code fixes, peak
t-test value: 3.91.
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Figure 6.6: Number of leaky instructions before and after fixes for Boolean-to-
arithmetic.
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Figure 6.7: Time taken to emulate Boolean-to-arithmetic by elmo.
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PRESENT. The part of the S-box look up of a three share PRESENT implementa-
tion listed in Section 6.5.1 was also tested by us on our test device. This resulted in
the heatmap shown in Figure 6.8. The maximum t-test value observed was 55.13.
This three share implementation was then fixed through Rosita++, the time taken
for emulation and analysis is shown in Figure 6.11 and the number of detected and
fixed leaks are shown in Figure 6.10. The time for analysis depicts the difference in
time spend on root cause detection when there are many leaky points versus when
there are a few leaky points.
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Figure 6.8: t-test values for PRESENT before applying code fixes, peak t-test value:
55.13.
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Figure 6.9: t-test values for PRESENT after applying code fixes, peak t-test value:
12.38.
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Figure 6.10: Number of leaky instructions before and after fixes for PRESENT.
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Figure 6.11: Time taken to emulate PRESENT by elmo.

We noticed several locations with significant remaining leakage in Figure 6.9
after evaluating the fixed version of PRESENT. Listing 6.4 shows the first leaky
segment of the code corresponding to sample point (700, 440). After investigating
the leaky points further we found out that this is due to the leakage in S-box of
PRESENT in addresses. We confirmed the exact values that participate in the leakage
through conducting CPA attack against the values of combined shares.

1 ldrb r2, [r4, #16]
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2 lsls r1, r1, #4

3 adds r1, r3, r1

4 ldrb r0, [r1, r2]

Listing 6.4: Leaky code segment of fixed PRESENT.

The registers used for addressing in the ldrb instruction at Line 4 carry one
share each. Our investigation showed that sample 440 originates from this point.
Additionally, the missing share is provided by the instruction that corresponds to
sample 700 (not shown in listing). Both points showed high correlation to the
corresponding share values. We confirmed this leakage pattern by reproducing the
same effect in a separate fixed vs. random experiment which had only two shares
used in a ldrb instruction for addresses. It showed significant first order leakage at
200,000 traces. This meant that some significant leakage was missed by Rosita++ as
it does not support fixing leakage that happens on the address-bus. However, when
comparing the leakage detected in the physical experiment against the ones that were
fixed by Rosita++, it had eliminated 99.03% of leakage.

χ function of Xoodoo. Figure 6.12 shows the leakage that was detected from the
power traces from our test device for the χ function of three share Xoodoo. The
highest value that was detected from this t-test was 70.32. Similar to before, we
used Rosita++ on this implementation. The time spent on emulation and analysis
is depicted in Figure 6.15 and the discovered and fixed number of leaks are shown
in Figure 6.14. The variations of time shown in Figure 6.15 follow the amount of
leaky points that were analysed at each trace count level. A single leak was left
over due to Rosita++ not having enough information for the root cause detection
at 500,000 power traces. However, the heatmap from the fixed version of the code
shows that all practically observed leakage has been eliminated.
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Figure 6.12: t-test values for Xoodoo before applying code fixes, peak t-test value:
70.32.
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Figure 6.13: t-test values for Xoodoo after applying code fixes, peak t-test value:
6.44.
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Figure 6.14: Number of leaky instructions before and after fixes for Xoodoo.
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Figure 6.15: Time taken to emulate Xoodoo by elmo.
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6.5.3.2 Trivariate evaluation

In trivariate evaluation, we limited ourselves to only evaluate the four share synthetic
example from Section 6.5.1 due to the high computational overhead of trivariate
analysis. We had to increase the trace count to 30 million traces so that it was
possible for us to detect significant leakage from the power traces from the test
device. We visualised the t-test results by a cube shown in Figure 6.16. This cube
was drawn by combining all samples from 50 samples ranges near the Lines 1, 5
and 10 in Listing 6.3 and by using the combined samples in an univariate t-test. Then
we fixed the four share synthetic example using Rosita++ it only took two million
emulated traces to detect and fix the leakage. We then ran the fixed version of code
on our device and drew Figure 6.17. The only difference between the procedure
used to draw the final cube was that we used 50 samples each from sample points
that corresponded to Lines 1, 5 and 13 from the fixed code listed in Listing 6.5.
We observed that none of the t-test values in Figure 6.17 were significant meaning
that Rosita++ successfully eliminated third order leakage that was detected at 30
million power traces by emulating only two million traces.

1 ldr r3, [r1, #0]

2 push {r7}

3 pop {r7}

4 ; nop padding

5 ldr r4, [r1, #4]

6 push {r7}

7 pop {r7}

8 ; nop padding

9 ldr r5, [r1, #16]

10 push {r7}

11 pop {r7}

12 movs r7, r7

13 ldr r6, [r1, #20]

14 ; nop padding

Listing 6.5: Synthetic example.



CHAPTER 6. MITIGATION OF MULTIVARIATE LEAKAGE 115

0 5 10 15 20 25 30 35 40 45

Sample Number 0
5
10
15
20
25
30
35
40
45

Sam
ple

Num
ber

0

5

10

15

20

25

30

35

40

45

50

Sa
m

pl
e

N
um

be
r

0

1

2

3

4

5

6

t-
te

st
va

lu
e

Figure 6.16: t-test results for Listing 6.3 before applying fixes.
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Figure 6.17: t-test results for Listing 6.3 after applying fixes.
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6.5.4 Discussion
In all of the tests we have carried out to evaluate Rosita++ it eliminated more
than 99% of all observed leakage on the physical experiment. Further, Rosita++
eliminated 100% of observed leakage in all but one implementation that we tested.
Similar to the univariate case, we only had to emulate power for a fraction of
the number of traces that were collected from the physical experiment. This was
highlighted in the synthetic example where we gathered 30 million power traces
from the real experiment, only two million emulated power traces were required
by Rosita++ to detect and fix the leakage. Similarly, in other tested implementations
we only emulated power for 500,000 traces where the we gathered two million power
traces from the real experiments.

Rosita++ used Monte Carlo method in one out of 15 root cause detections in the
Boolean-to-arithmetic conversion algorithm, 70 out of 262 in PRESENT and four out
of 16 in Xoodoo. All other root cause detections were done using elimination of terms.
The time spent by Rosita++ to emulate and detect root causes is listed in Table 6.5
and the overhead added by the addition of code fixes to an implementation is shown
in Table 6.6. Finally, we conclude that Rosita++ was able to eliminate almost all of
the multivariate leakage that it was presented with.

Implementation Emulation time Root Cause Det. time

Boolean to arithmetic 1:08:19 1:07
PRESENT 1:55:19 24:46
Xoodoo 1:35:41 3:12

Table 6.5: Time taken for emulation and root cause detection for Rosita++.

Implementation Unprotected Protected Increase
size (cycles) size (cycles)

Boolean to arithmetic 75 97 29%
PRESENT 114 330 189%
Xoodoo 56 76 36%

Table 6.6: Performance overhead of fixes applied by Rosita++.



Chapter 7

Conclusions

This thesis explores automatic application of countermeasures to masked software
implementations. These countermeasures aim to fix the effects of unintended
breaches of the Independent Leakage Assumption (ILA) that are detected using
leakage emulation. These are caused by unintended interactions in hardware that
end up combining the shares of masked implementations and reducing the effective
security. These effects are unique to hardware configurations and therefore, it is not
possible to define characteristics of such interactions without access to hardware
descriptions. However, such interactions can be modelled after empirical observa-
tions [Papagiannopoulos and Veshchikov, 2017]. One of the main contributions of
this work is to extend the capability of formulating such models without access to
exact hardware descriptions. It is important as the hardware descriptions of many
microprocessors are not available to evaluators due to commercial reasons. The
methodology presented in this work has been tested empirically in Sections 5.6
and 6.5. These evaluations show that the methods used were effective in eliminating
detected leakage. The contributions presented in this thesis were published in the
Network and Distributed System Security Symposium (NDSS) 2021 and in ACM
SIGAC Conference on Computer and Communications Security (CCS) 2021.

7.1 Contributions
We discovered a gap in research where investigation in to root cause detection methods
for power analysis based on emulated power traces was lacking. The obvious benefits
are the cost savings and the increases in efficiency for finding and fixing leakage.

118
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Many other methods of root cause detection existed before our work. Notably,
solving satisfiability equations [Wang et al., 2019] and static analysis [Bayrak et al.,
2015] were competing methods of root cause detection. However, they apply fixes
at a general level where specific leakages in different devices have not been taken
into consideration. Profiling based leakage emulation solves this by adapting a
power model to a certain device’s leakage in the profiling phase. After profiling, it
approximates the leakage of the device accurately. In this work, a profiling based
leakage emulator ELMO [McCann et al., 2017] was adapted for this purpose by
adding new features to its power model. These include leakage from memory bus
interactions, inter-bus effects and internal state interactions. The modifications that
were done to ELMO resulted in ELMO* which support a wider range of leakages. A
general methodology was developed in Section 4.1.2 to find internal state related
leakage in a given device.

Rosita focuses on applying countermeasures to fix unintentional ILA breaches
that result in univariate leakage with respect to first-order masked implementations.
Even-though memory bus related transition leakages have been observed in past
literature [Papagiannopoulos and Veshchikov, 2017] it has not been incorporated
to a profiling based emulator. Compared to ASCOLD [Papagiannopoulos and
Veshchikov, 2017], our approach of root cause detection reduces work for an
evaluator by only tasking them with the profiling of a new device. Additionally, our
system automatically applies fixes and keeps evaluating the new implementation until
all detected leakage from emulated traces have been fixed. Rosita was evaluated by
using it to fix detected leakage in several leaky code segments from AES, ChaCha
and Xoodoo. A discussion of these evaluations is in Section 5.6. The source code
of Rosita was published under an open source license1.

Next, we focused on solving the problem at a more general level by handling
multivariate leakage in Rosita++. This work is discussed in detail in Chapter 6. This
method employs a model agnostic approach to root cause detection. A discussion
of the evaluation of Rosita++ is in Section 6.5, where leaky code segments from
second order masked implementations of Xoodoo and PRESENT were protected
using Rosita++. Rosita++ was also able to fix third-order leakage detected from a
synthetic example.

1https://github.com/0xADE1A1DE/Rosita

https://github.com/0xADE1A1DE/Rosita
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Additionally, this work contributes a high-performance trace analysis framework
written in C++ that is fast enough to evaluate millions of power traces for second
and third order leakage in a few hours. This framework has been open sourced and
is available publicly2. Rosita++ was published in ACM SIGAC Conference on
Computer and Communications Security (CCS) 2021.

7.2 Limitations
Although Rosita and Rosita++ are effective in removing detected leakage in a given
masked cipher implementation, they do have some limitations, which we discuss
below.

Address based leakage. ELMO and by extension ELMO* do not regard the value
of address operands of instructions as part of their models. Instead, they rely only
on the value of the content that is pointed to by an address. For example, when
modelling str r0, [r2] the content that is at the memory location given by value
of r2 is considered instead of the value of r2. We found out in evaluations of the
AES and PRESENT ciphers in Sections 5.6 and 6.5 that leakage from addresses
are prominent in substitution boxes implemented using look up tables. The leakage
left unfixed in AES was due to state that was preserved in the address-bus. The
state of the address-bus requires to be refreshed between the loading or storing from
addresses that are dependent on values of shares. An automatic fix for such leakage
would need to have higher level knowledge of the range of the buffer that is accessed
by ldr and str instructions. Due to the current design of Rosita, this level of
information is not available. The code segment in PRESENT that was responsible
for the leakage cannot be fixed by using the countermeasures that we use due to
it combining shares when the address is calculated. This is value-based leakage
and is clearly not fixable by countermeasures designed to fix unintentional ILA
breaches based leakage. Rosita and Rosita++ uses a library of manually selected
code patterns that overwrite internal states to fix code leaky code segments. These
never affect the functionality of the code they are supposed to fix, all they do is
clear the internal states set by previous instructions so that they do not propagate and
cause leakage. Value-based leakage on the other hand, can only be fixed through

2https://github.com/0xADE1A1DE/tracetools

https://github.com/0xADE1A1DE/tracetools
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implementing masking properly. A single intermediate value must not include more
than one share.

Detecting combination of shares. The methods this work proposes to use for root
cause detection only detect leakage if all shares combine. Therefore, the combinations
of shares that do not expose a secret value are not detected. In other words, these are
partial combinations where the number of shares that are combined are less than or
equal to d in a dth-order masked implementation. Even-though these do not exhibit
leakage, they do reduce the level of security of a masked implementation.

Micro-architectures with longer pipelines. As discussed in Chapter 4, the pro-
filing stages of both ELMO and ELMO* depend on measurement traces that are
gathered from a target physical device. The amount of such traces required grow
exponentially when the number of stages in the CPU pipeline increases. The subset
of emulated instructions (21) is approximated by five representative instructions.
Therefore, the total number of combinations for the ARM Cortex-M0 is 53 = 125.
This is also not trivially changeable due to it being a fundamental building block of
the Multiple Linear Regression model that both ELMO and ELMO* depend on.

Input dependency of TVLA. The input dependence on the results of Test Vector
Leakage Assessment (TVLA) is a limiting factor with respect to detection of leakage.
The benefit of using TVLA for evaluation is that it can detect leakage only from the
measurement traces. However, when countermeasures are applied based a certain set
of fixed inputs, it does not mean that there would not be any leakage detected for any
other different input. Therefore, the leakage detection of Rosita and Rosita++ will
benefit from a more generic leakage assessment that is not dependent on the exact
fixed input values used.

Manual creation of replacement code patterns. The code patterns that are
used in both Rosita and Rosita++ are required to be synthesised manually by an
evaluator after going through the table of dominating instructions shown in Table 5.1.
Additionally, these code patterns are not portable to other ISAs.

7.3 Future work
We have recognised the following future works which would improve the effective-
ness Rosita and Rosita++ significantly.
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Machine learning based power models for root cause detection. Machine
learning based models can be used for emulation of leakage instead of the Multiple
Linear Regression based power model that ELMO* is based on. ABBY [Bazangani
et al., 2021] is a recent work that has proven the effectiveness of this approach. In a
machine learning based model, the terms of the model would not be as straightforward
as is in a Multiple Linear Regression model. Because of this the elimination of terms
in Rosita++’s root cause detection cannot continue its operation. The same issue
affects the Monte-Carlo method as discussed in Section 6.3. This challenge can be
overcome by replacing inputs with zeros in the prediction phase. Doing this will
have the same effect as removing terms from the base model.

Improving speed of code rewrites. The root cause detection system of both Rosita
and Rosita++ labels instructions that participate in leakage only considering local
leakage. This means that a certain set of d+1 power value samples that are leaky are
only considered for a leakage detection of dth-order masked implementation within a
single run. Due to this, there can be instances where the applied fixes are redundant.
This can be mitigated by globally optimising the fixes again after they have been
applied. A global optimisation will consider all leakage that is found in a certain
code segment and the effects of applied code fixes. This will reduce the redundant
application of code fixes and will improve the resulting code performance.

7.4 Summary
In summary, this work suggests improvements to leakage emulation, a general
methodology to find new internal state related leakage and algorithms to apply
countermeasures to masked implementations automatically. The evaluations carried
out in this work show that this framework can adequately fix leakage in any order of
masking. The thesis also introduces a high-performance trace processing tool-set
that can be easily configured to run commonly used tasks in power traces. Finally,
a discussion of the limitations and future work related to this work concludes this
thesis.
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