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We study the application of SU(3) gauge field smoothing methods to Zð3Þ-projected center-vortex gauge
fields. Due to the proportionality of the vortex links to the identity, naive applications of these methods are
either ineffectual or limited in scope, containing subtle issues that are not obviously manifest. To overcome
these issues, we introduce centrifuge preconditioning, a novel method applied prior to smoothing that
rotates the links away from the center while preserving the fundamental structure of the vortex field.
Additionally, the concept of vortex-preserved annealed smoothing is formulated to ensure the smoothing
procedure maintains the underlying vortex structure. The application of these newmethods in the context of
annealed smoothing applied to vortex fields is shown to successfully achieve the desired smoothness
condition required for the study of more advanced operators.
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I. INTRODUCTION

Center vortices—topological structures of the QCD vac-
uum ground-state fields—are the prime candidate thought to
underpin low-energy, nonperturbative QCD, in particular, its
two key features: confinement and dynamical chiral sym-
metry breaking [1–26]. On the lattice, center vortices are
revealed by projecting each gauge link to an element of the
center ZðNÞ of SUðNÞ, where

ZðNÞ≡ fg ∈ SUðNÞjgh ¼ hg ∀ h ∈ SUðNÞg
¼ fei2πn=N1jn ∈ ZNg ð1Þ

is the set of elements in SUðNÞ, which commute with every
other element of the group. To obtain the center-projected
links, the gauge field is fixed to maximal center gauge
(MCG) by choosing the gauge transform UμðxÞ → UG

μ ðxÞ,
which maximizes the functional [27],

X
x;μ

jTrUG
μ ðxÞj2; ð2Þ

as outlined in Refs. [28,29]. Each link is then projected to the
nearest element of Zð3Þ, such that

UG
μ ðxÞ → PZð3ÞfUG

μ ðxÞg≡ ZμðxÞ ¼ ei
2π
3
nμðxÞ1; ð3Þ

where

nμðxÞ ¼

8>><
>>:

0; if arg TrUG
μ ðxÞ ∈ ð− π

3
;þ π

3
Þ;

þ1; if arg TrUG
μ ðxÞ ∈ ðþ π

3
;þπÞ;

−1; if arg TrUG
μ ðxÞ ∈ ð−π;− π

3
Þ:

ð4Þ

The projected links ZμðxÞ define a center-vortex configura-
tion in MCG. The elementary plaquette PμνðxÞ is given by
the product of links U around a unit square,

PμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ: ð5Þ

Center vortices are identified by the vortex flux through each
vortex-projected plaquette, where

PμνðxÞ ¼ ZμðxÞZνðxþ μ̂ÞZ†
μðxþ ν̂ÞZ†

νðxÞ
¼ ei

2π
3
pμνðxÞ1 ð6Þ

corresponds to a vortex flux value pμνðxÞ ∈ f−1; 0; 1g.
A plaquette with vortex flux pμνðxÞ ¼ �1 is identified as
pierced by a vortex with center charge �1.
Composed only of links which are elements of Zð3Þ,

projected center-vortex gauge fields are rough, and natu-
rally, violate the smoothness condition of the overlap Dirac
operator [30–33]. The vortex field must be smoothed.
Previous pure-gauge center-vortex studies using overlap
fermions [34,35] have employed cooling to this end. While
cooling suffices for vortex fields derived from pure gauge
backgrounds, it is not ideal for smoothing fields derived
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from dynamical backgrounds. In the dynamical case, an
ideal smoothing algorithm would not only be analytical,
but also preserve the underlying vortex structure. The
constrained cooling algorithm [36] gives an example of
the importance of structure-preserving smoothing.
While there has been a successful, novel approach to

smoothing Zð2Þ center-vortex gauge fields [37], this has
not been generalized to Zð3Þ. As such, this work focuses on
applying existing SU(3) gauge field smoothing algorithms
to Zð3Þ center-vortex gauge fields, with the goal of
smoothing the vortex field such that the smoothness
condition of the overlap Dirac operator is satisfied.
Section II examines the behavior of analytic smoothing

methods on vortex fields, specifically stout smearing,
gradient flow, and APE-smearing with analytic projection.
Section III looks at update-based smoothing, in particular
the MaxReTr reuniterization process and its application to
cooling and annealing. Section IV offers a novel precon-
ditioning method—centrifuge preconditioning—for Zð3Þ
center-vortex gauge fields as a solution to the shortfalls
and limitations of the traditional smoothing algorithms
encountered in the previous sections. Section V presents
the results of the Wilson flow and annealed U-link
smearing (AUS) [38] applied to a centrifuge precondi-
tioned gauge field. Section VI introduces a vortex pres-
ervation step into the annealing process. Section VII
compares three viable approaches to smoothing Zð3Þ
center vortices arrived at over the course of the work
presented herein. Section VIII summarizes the findings of
this work.

II. ANALYTIC SMOOTHING

When smoothing Monte Carlo generated gauge fields,
the use of analytic smoothing methods is inherently
desirable. There are a number of such methods, the most
commonly used being stout link smearing [39] and the
related gradient flow [40,41]. Through the use of a unitary
projection method, it is also possible to apply APE-style
blocking techniques while preserving analyticity [42]. The
differentiability of such smoothing methods is advanta-
geous as it means that they can be applied within the
molecular dynamics integration component of the hybrid
Monte Carlo algorithm [42,43]. More importantly, in the
context of this work, the use of an analytic smoothing
process implies that there is a parameterizable path within
the gauge manifold that connects the original gauge links
with the smoothed links.
The full SU(3) gauge group is described by eight real

parameters, whereas the center group Zð3Þ consists of three
discrete elements. The discrete nature of the center group
presents significant challenges when attempting to apply
standard smoothing techniques, as we demonstrate below.
First, we define a quantity that is relevant to all the methods
considered herein, namely the sum of the staples orthogo-
nal to a link UμðxÞ,

ΣμðxÞ ¼
X
ν≠μ

½UνðxÞUμðxþ ν̂ÞU†
νðxþ μ̂Þ

þ U†
νðx − ν̂ÞUμðx − ν̂ÞUνðx − ν̂þ μ̂Þ�: ð7Þ

Related to the above, we also introduce the sum of the
corresponding plaquettes (by closing the path of the staples
via link multiplication) as

ΩμðxÞ ¼ ΣμðxÞU†
μðxÞ: ð8Þ

A. Stout link smearing

Stout link smearing [39] provides the simplest case to
show the difficulties of analytic smearing of center-vortex
projected fields. A single iteration of stout link smearing
with isotropic smearing parameter ρ is defined by

ŨμðxÞ ¼ exp ðρQμðxÞÞUμðxÞ; ð9Þ

where QμðxÞ is the traceless anti-Hermitian projection of
ΩμðxÞ onto the Lie algebra suð3Þ,

QμðxÞ ¼
1

2
½ΩμðxÞ −Ω†

μðxÞ� − 1

6
Tr½ΩμðxÞ −Ω†

μðxÞ�: ð10Þ

In the case of a vortex field, as each of the center elements
ZμðxÞ ∝ 1 is proportional to the identity matrix, we can
parameterize any sum of vortex link paths as reiθ1 where
r; θ ∈ R. Consequently, we have that

QμðxÞ¼
1

2
½reiθ−re−iθ�1−1

6
Tr½ðreiθ−re−iθÞ1�1¼0: ð11Þ

AsQμðxÞ vanishes when derived from a center-vortex field,
it immediately follows from Eq. (9) that ŨμðxÞ ¼ ZμðxÞ.
That is stout link smearing leaves the vortex field
unchanged. This result remains true in the presence of a
gauge transformation GðxÞ, as we have in general that

ΣμðxÞ → ΣG
μ ðxÞ ¼ GðxÞΣμðxÞG†ðxþ μ̂Þ; ð12Þ

ΩμðxÞ → ΩG
μ ðxÞ ¼ GðxÞΩμðxÞG†ðxÞ: ð13Þ

In the case of a vortex field, as the center group commutes
with all other elements by definition, then we have that

ΩG
μ ðxÞ → reiθGðxÞG†ðxÞ ¼ reiθ1; ð14Þ

proving that a gauge transformed center-vortex field is also
invariant under stout smearing.

VIRGILI, KAMLEH, and LEINWEBER PHYS. REV. D 106, 014505 (2022)

014505-2



B. Gradient flow

The gradient flow [40,41] is defined by the equations,

d
dτ

Uμðx; τÞ ¼ QμðxÞ½UðτÞ�Uμðx; τÞ; ð15Þ

Uμðx; 0Þ ¼ UμðxÞ; ð16Þ

where τ is dimensionless flow time, and QμðxÞ½UðτÞ� ∈
suð3Þ is the generator of the infinitesimal field trans-
formation,

U → U þ ϵQðUÞU þOðϵ2Þ: ð17Þ

In particular, the Wilson flow is generated by

QμðxÞ½U� ¼ Ta
∂
a
x;μ

X
x;μ≠ν

Tr½PμνðxÞ½U��; ð18Þ

where Ta are the generators of SU(3) (see Appendix A),
and

∂
a
x;μfðUÞ ¼ d

ds
fðesXa

UÞ
����
s¼0

; ð19Þ

Xaðy; νÞ ¼
�
Ta if ðy; νÞ ¼ ðx; μÞ
0 otherwise:

ð20Þ

The explicit formula for the generator QμðxÞ½U� is identical
to that for stout smearing given in Eq. (10). In fact, noting
that

lim
n→∞

ð1þ ϵQÞnU ¼ expðϵQÞU; ð21Þ

we can map ϵ → ρ and see that the stout-smeared link is the
finite transformation generated by the Wilson flow process
for sufficiently small smearing parameters.
It trivially follows that for a center-vortex field

Uμðx; 0Þ ¼ ZμðxÞ, we have

d
dτ

Uμðx; τÞ ¼ 0 ∀ x; μ; τ: ð22Þ

Hence, independent of the initial gauge or the integration
method, the Wilson flow of a center-vortex gauge field is
invariant.

C. APE smearing with analytic projection

We now consider APE smearing [44,45] with the
analytic projection method defined in Ref. [42], which
we refer to as unit circle projection. The APE smearing
process starts with a blocking step, where the original link
UμðxÞ is mixed with the sum of the staples in proportion to
the smearing parameter α to define the blocked matrix,

V½UμðxÞ�≡ VμðxÞ ¼ ð1 − αÞUμðxÞ þ
α

6
ΣμðxÞ: ð23Þ

This construction of VμðxÞ is gauge equivariant, which is to
say, under a gauge transformation,

UμðxÞ → UG
μ ðxÞ ¼ GðxÞUμðxÞG†ðxþ μ̂Þ; ð24Þ

that

V½UG
μ ðxÞ� ¼ GðxÞV½UμðxÞ�G†ðxþ μ̂Þ: ð25Þ

Setting Uð0Þ
μ ðxÞ ¼ UμðxÞ, the APE smearing update is then

defined by

UðnÞ
μ ðxÞ → Uðnþ1Þ

μ ðxÞ ¼ PfVðnÞ
μ ðxÞg; ð26Þ

where the blocked matrix VðnÞ
μ ðxÞ≡ V½UðnÞ

μ ðxÞ� ∉ SUð3Þ
must be returned back to the gauge group. This may be
performed in an analytic manner by first performing a
unitary projection,

WμðxÞ ¼ VμðxÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V†
μðxÞVμðxÞ

q ; ð27Þ

such that the eigenvalues of W lie on the unit circle. The
final step in the unit circle projection is multiplying by the
appropriate phase in order to return to SU(3),

PucpfVμðxÞg ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detWμðxÞ3

p WμðxÞ: ð28Þ

As shown in Ref. [42], the unit circle projection is gauge
equivariant such that the smeared links share the same
gauge transformation properties as the original link,

UðnÞ
μ ðxÞ → GðxÞUðnÞ

μ ðxÞG†ðxþ μ̂Þ: ð29Þ

In standard APE smearing, the staples term ΣμðxÞ is defined
as per Eq. (7), but other choices are possible, in particular,
the overimprovement formalism [46–48] outlined in
Eq. (53). For the purposes of the following discussion,
we generalize ΣμðxÞ to sum over any combination of
operators constructed from paths originating at lattice site
x and terminating at xþ μ̂.
When APE smearing is applied to a center-vortex gauge

field in an arbitrary gauge [noting that ZμðxÞ ∝ 1], we can
use gauge equivariance to write

Vð0Þ
μ ðxÞ ¼ reiθGðxÞG†ðxþ μ̂Þ: ð30Þ

Applying the unitary projection in Eq. (27) gives
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WμðxÞ ¼ reiθGðxÞG†ðxþ μ̂Þ 1ffiffiffiffiffi
r2

p

¼ eiθGðxÞG†ðxþ μ̂Þ: ð31Þ

Noting that detWμðxÞ ¼ ei3θ, we have that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detWμðxÞ3

q
¼ eiðθþ

2kπ
3
Þ; ð32Þ

where k ∈ f0; 1; 2g is chosen to correspond to the principal
cube root, i.e., such that

−
π

3
< θ þ 2kπ

3
<

π

3
: ð33Þ

Hence, the projected link is given by

Zð1Þ
μ ðxÞ ¼ 1

eiðθþ2kπ
3
Þ e

iθGðxÞG†ðxþ μ̂Þ

¼ e−i
2kπ
3 GðxÞG†ðxþ μ̂Þ; ð34Þ

where e−i
2kπ
3 1 ∈ Zð3Þ.

The key result here is that it is only possible to project to
another element of Zð3Þ. That is, applying APE smearing
with unit circle projection to a vortex link results in either
the original link remaining unchanged or selecting a
completely different center element and thereby radically
altering the vortex structure such that it no longer resembles
its original form. As the method is gauge equivariant, this is
true regardless of whether we are in maximal center gauge
or not.

III. UPDATE-BASED SMOOTHING

Having determined that none of the analytic smearing
techniques considered above can smoothly deform a
vortex field away from the center group, we consider an
nonanalytic alternative. Specifically, we examine APE-
style blocking coupled with the update-based reuniteriza-
tion method, maximizing the real part of the trace
(MaxReTr) of the plaquette. This process is based on
the Cabibbo-Marinari pseudo-heat-bath algorithm [49],
which iteratively updates a candidate SUðNÞ matrix
UμðxÞ to maximize the following:

max ReTr½UμðxÞV†
μðxÞ�; ð35Þ

where VμðxÞ is the sum of link paths defined in Eq. (23).
MaxReTr reuniterization is fundamentally connected with
cooling [47], as if we set the smearing fraction α ¼ 1, then
we have VμðxÞ ∝ ΣμðxÞ and then the MaxReTr update
selects the link which minimizes the local action in a way
that does not depend on the original link.
Due to the nonanalytic nature of the MaxReTr update

process, it is able to shift the vortex fields away from the

center group in a way that the differentiable smoothing
methods above cannot. It will prove useful to review the
specific details of the MaxReTr method as applied to
SU(3), which involves iterating over SU(2) subgroups in
order to achieve the optimization specified by Eq. (35).
First, define the matrix L1 by

L1 ¼ UμðxÞV†
μðxÞ: ð36Þ

From L1, another matrix, T1 ∈ SUð2Þ ⊂ SUð3Þ, given by

T1 ¼
1

2

2
664
L1
11 þ ðL1

22Þ� L1
12 − ðL1

21Þ� 0

L1
21 − ðL1

12Þ� ðL1
11Þ� þ L1

22 0

0 0 2

3
775; ð37Þ

is constructed, where L1
ij is element ði; jÞ of L1. Setting

k ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
detT1

p
, this matrix is cooled such that

½Tc
1�2×2 ¼

1

k
½T†

1�2×2 ∈ SUð2Þ; ð38Þ

within the embedded 2 × 2 subgroup, and the full matrix Tc
1

is the embedding of the resulting submatrix into SU(3). The
original link is then updated by

UμðxÞ → U0
μðxÞ ¼ Tc

1UμðxÞ: ð39Þ

This process is typically repeated for the other two diagonal
SU(2) subgroups, which together, comprehensively cover
SU(3), such that

L2 ¼ U0
μðxÞV†

μðxÞ ¼ Tc
1UμðxÞV†

μðxÞ; ð40Þ

L3 ¼ U00
μðxÞV†

μðxÞ ¼ Tc
2T

c
1UμðxÞV†

μðxÞ; ð41Þ

and

T2 ¼
1

2

2
664
2 0 0

0 L2
22 þ ðL2

33Þ� L2
23 − ðL2

32Þ�
0 L2

32 − ðL2
23Þ� ðL2

22Þ� þ L2
33

3
775; ð42Þ

T3 ¼
1

2

2
664
L3
11 þ ðL3

33Þ� 0 L3
13 − ðL3

31Þ�
0 2 0

L3
31 − ðL3

13Þ� 0 ðL3
11Þ� þ L3

33

3
775: ð43Þ

The updated link Uð1Þ
μ ðxÞ after one loop over the SU(2)

subgroups is given by

Tc
3T

c
2T

c
1UμðxÞ: ð44Þ

In principle, one loop over the subgroups is considered
sufficient with regard to approaching the maximum defined
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by Eq. (35). Here, we choose to perform three iterations
over the subgroups as multiple loops provide an advantage
in converging to the optimal link [47].
Let us now explore how the MaxReTr reuniterization

algorithm applies to a center-vortex gauge field that has
undergone an arbitrary gauge transformation,

ZμðxÞ → GðxÞZμðxÞG†ðxþ μ̂Þ: ð45Þ

Using the gauge equivariance of VμðxÞ, L1 has the gauge
invariant form,

L1 ¼ GðxÞZμðxÞG†ðxþ μ̂ÞGðxþ μ̂ÞV†
μðxÞG†ðxÞ

¼ GðxÞreið2πn3 −θÞG†ðxÞ
≡ reiϕ1; ð46Þ

where VμðxÞ ¼ reiθ is in MCG, and we have defined

ϕ≡ 2πn
3
− θ for ZμðxÞ ¼ ei

2πn
3 1 also in MCG. Hence, T1 is

given by

T1 ¼
1

2

2
664
rðeiϕ þ e−iϕÞ 0 0

0 rðeiϕ þ e−iϕÞ 0

0 0 2

3
775

¼

2
664
r cosϕ 0 0

0 r cosϕ 0

0 0 1

3
775: ð47Þ

It follows then that

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
detT1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 cos2 ϕ

q
¼ jr cosϕj; ð48Þ

and

Tc
1 ¼

2
664
sgnðr cosϕÞ 0 0

0 sgnðr cosϕÞ 0

0 0 1

3
775: ð49Þ

If r cosϕ > 0 ⇒ Tc
1 ¼ 1 and

Z0
μðxÞ ¼ Tc

1ZμðxÞ ¼ ZμðxÞ; ð50Þ

it is straightforward to see that Tc
1 ¼ 1 ⇒ Tc

i ¼ 1 ∀ i, and
hence,

Zð1Þ
μ ðxÞ ¼ ZμðxÞ: ð51Þ

By induction,

ZðnÞ
μ ðxÞ ¼ ZμðxÞ ∀ n; ð52Þ

and the center-vortex field is unchanged.
As such, in order to perturb the vortex field, we require

r cosϕ < 0, or equivalently, jϕj > π
2
. This necessarily

places a condition on the smearing parameter α. We
consider this condition within the context of the over-
improvement formalism [48], for which the staples term is
given by the diagrammatic equation,

ð53Þ

where the solid dot represents the point x, the open dot
represents the point xþ μ̂, and the links in the positive
orthogonal direction ν̂ are shown as pointing vertically up
the page. Note also that we have illustrated the link paths as
oriented for the Hermitian conjugate Σ†

μðxÞ which enters
into Eq. (35).
The overimprovement formalism encapsulates standard

APE smearing at overimprovement term ϵ ¼ 1. To ensure
r cosϕ < 0, we require that

α > αmin ¼
−6

2ϵ − 11þ 3
2
ðϵ−1u2

0

Þ ; ð54Þ

for ϵ ∈ ½− 5
2
; 1�, where u0 is the mean link. See Appendix B

for a derivation.

In Fig. 1, all possible values of reiϕ originating from a
center-vortex configuration for ϵ ¼ −0.25 and u0 ¼ 1,
at α ¼ 0.4 and α ¼ 0.7, respectively, are plotted on the
complex plane. At α ¼ 0.7, there are many combinations of
links which yield jϕj > π

2
, but none at α ¼ 0.4. In fact, from

Eq. (54), αminðϵ ¼ −0.25; u0 ¼ 1Þ ≈ 0.4486. Of course,
this is the limit to have any combination of links yield
jϕj > π

2
. In a practical sense, we require something more

like α > 0.6 to achieve effective smearing.
Figure 2 presents the proportion pin of link combinations

for which jϕj > π
2
in the β → 0 limit where each link in the

construction of L1 has an equal probability to be one of the
center phase elements. Each combination is weighted by its
multiplicity. These do not reflect the true probabilities that
would be encountered on an actual Zð3Þ center-vortex
gauge field but suffice for demonstrative purposes.
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A. Cooling and annealing

While smearing algorithms update all links simultane-
ously, smoothing via a cooling or annealing process
updates each link individually. These updates can be done
in parallel with appropriate masking so as to preserve the
validity of the cooling or annealing process [50]. The
Wilson flow can be considered as an annealed version
of stout link smearing with small smearing parameter.
Annealed U-link smearing (AUS) [38] is similarly related
to APE smearing in that the update process uses APE-style
blocking and reuniterization but applied to individual links
rather than all links. In particular, at α ¼ 1.0, the form of
AUS with MaxReTr reuniterization at the individual link
level reduces to that of cooling [51–55]—up to choice of
operators in the staples term.
Our analysis with regard to vortex smoothing above

extends to the annealed form of the various methods and
also to cooling in the special case of α ¼ 1.0. With regard
to cooling, it should be noted that it is possible to encounter
some numerical issues when smoothing center-vortex
fields. From Eqs. (36) and (46), we can write L1 in
arbitrary gauge as

L1 ¼ ð1 − αÞ þ α

6
ZμðxÞΣ†

μðxÞ; ð55Þ

which reduces to

L1 ¼ 1

6
ZμðxÞΣ†

μðxÞ ð56Þ

for cooling (α ¼ 1.0), where ZμðxÞ and ΣμðxÞ are in MCG;
i.e., they are proportional to 1.
Since ΣμðxÞ is a sum of elements of Zð3Þ, each

multiplied by some real factor, there exists combinations
of links for which ΣμðxÞ ¼ is1 and s ∈ R, which is to say
that the nonzero (diagonal) elements of ΣμðxÞ are purely
imaginary. For example, consider the six operators com-
prising the staples term in standard Wilson cooling. In the
cases where these operators are split two-to-four between I
and e�i2π

3 , the staples term is given by

ΣμðxÞ ¼ 21þ 4e�i2π
3 ¼ is ≈�i3.464…: ð57Þ

Without loss of generality, choose ZμðxÞ ¼ 1. Then

L1 ¼ ZμðxÞV†
μðxÞ

¼

2
64
−is 0 0

0 −is 0

0 0 −is

3
75: ð58Þ

Constructing T1 according to Eq. (37),

FIG. 2. log10ðpinÞ as a function of ϵ and α, at u0 ¼ 1 fixed in the
limit β → 0. The shaded region illustrates the admissible values
of α and ϵ where the proportion of acceptable link combinations,
pin, exceeds zero. The red line is αminðϵÞ.

(a)

(b)

FIG. 1. The complex plane showing all possible values of reiϕ

for overimprovement term ϵ ¼ −0.25 at smearing parameters
(a) α ¼ 0.7 and (b) α ¼ 0.4.
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T1 ¼
1

2

2
64
−isþ is 0 0

0 þis − is 0

0 0 2

3
75

¼

2
64
0 0 0

0 0 0

0 0 1

3
75; ð59Þ

which implies k ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
detT1

p ¼ 0, and thus,

½Tc
1�2×2 ¼

1

k
½T†

1�2×2; ð60Þ

is undefined.
In practice, the diagonal elements of T1 are not precisely

0 due to floating-point artifacts. From these artifacts, the
algorithm is able to generate an essentially random SU(3)
link without breaking or resulting in any obvious errors.
This is apparent in Table I, where at α ¼ 1.0, the number of

links for which Zð1Þ
μ ðxÞ ≠ ZμðxÞ, ndiff , is greater than nin,

the number of links for which jϕj > π
2
. While this situation

is rare (12 of 1,280,000 links in Table I), the link, generated
essentially from random noise, contaminates neighboring
links on the next iteration when it contributes to the staples
term. The noise contamination continues to propagate
throughout the lattice after each successive sweep, as the
contaminated neighbors then contaminate their neighbors.

IV. CENTRIFUGE PRECONDITIONING

The issues and limitations, outlined in previous sections,
which arise when applying traditional smoothing methods
to center-vortex gauge fields, are all, at root, due to the
proportionality of the links to the identity. As such, we
introduce a method to break this symmetry without altering
the fundamental vortex structure of the field. The key idea
is to rotate the vortex links away from the center elements

before applying smoothing, and hence, we call this new
method centrifuge preconditioning.
We start with the original center-vortex gauge field in

MCG and denote

ZμðxÞ ¼

2
64
eiλ

1
μðxÞ 0 0

0 eiλ
2
μðxÞ 0

0 0 eiλ
3
μðxÞ

3
75; ð61Þ

where initially the diagonal entries λiμðxÞ ¼ λμðxÞ are all
equal. Noting that we are now within the diagonal subgroup
of SU(3), which is isomorphic to Uð1Þ × Uð1Þ × Zð3Þ, we
can work with the phases directly in the noncompact
representation. Define the staple phase as

σμðxÞ ¼
1

6

X
ν≠μ

½λνðxÞ þ λμðxþ ν̂Þ − λνðxþ μ̂Þ

− λνðx − ν̂Þ þ λμðx − ν̂Þ þ λνðx − ν̂þ μ̂Þ�: ð62Þ

A pair of indices ðj; kÞ ∈ fð1; 2Þ; ð2; 3Þ; ð3; 1Þg are selected
randomly for each link, and then the corresponding phases
of each original link are updated according to

λjμðxÞ → ð1 − ωÞλμðxÞ þ ωσμðxÞ; ð63Þ

λkμðxÞ → ð1þ ωÞλμðxÞ − ωσμðxÞ; ð64Þ

where ω ∈ R specifies the centrifugal rotation angle,
noting that the centrifuge update above corresponds to a
phase rotation by ∓ ωðλ − σÞ. This leaves the sum of the
three phases invariant. Hence, as the sum of the three
phases of each center element is distinct,X

j

λjμðxÞ ¼ n2π; n ∈ f−1; 0; 1g; ð65Þ

after centrifuge preconditioning, it is possible to uniquely
identify the original center element by this sum.

A. Preservation of vortex structure

Recall from Eqs. (3) and (4) that the center-vortex links
are obtained by projecting the untouched link in maximal
center gauge UG

μ ðxÞ to the center element with phase
nearest to arg TrUG

μ ðxÞ. Since we seek to break the
diagonal symmetry of the center-vortex links in such a
way that preserves the underlying vortex structure, we
restrict ω in Eqs. (63) and (64) such that arg Tr ZμðxÞ ¼
2πnμðxÞ=3 is preserved.
Let Z0

μðxÞ denote the preconditioned center-vortex link

with updated phases λjμðxÞ and λkμðxÞ. It is simple to see that

Tr½Z0
μðxÞ� ¼ eiλ

j
μðxÞ þ eiλ

k
μðxÞ þ ei

2πn
3 : ð66Þ

TABLE I. The number of links of a Zð3Þ pure gauge field
configuration satisfying various conditions. nin counts the links
that satisfy jϕj > π

2
. ndiff counts the links for which

Zð1Þ
μ ðxÞ ≠ ZμðxÞ. npass counts the links satisfying the preservation

condition given Zð1Þ
μ ðxÞ ≠ ZμðxÞ. The 203 × 40 lattice has

1,280,000 links.

α nin ndiff npass

0.4 0 0 0
0.5 0 0 0
0.6 527 527 0
0.7 535 535 0
0.8 1635 1635 0
0.9 1636 1636 0
1.0 4570 4582 0
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We then define

Λ� ¼ 1

2
ðλjμðxÞ � λkμðxÞÞ: ð67Þ

Utilizing polar form eiA ¼ cosAþ i sinA, and the follow-
ing trigonometric properties,

cosAþ cosB ¼ 2 cos
Aþ B

2
cos

A − B
2

; ð68Þ

sinAþ sinB ¼ 2 sin
Aþ B

2
cos

A − B
2

; ð69Þ

we obtain

eiλ
j
μðxÞ þ eiλ

k
μðxÞ ¼ 2 cosΛþ cosΛ− þ i2 sinΛþ cosΛ−

¼ 2 cosΛ−ðcosΛþ − i sinΛþÞ
¼ 2 cosΛ−ei

2πn
3 : ð70Þ

Hence,

Tr½Z0
μðxÞ� ¼ ð2 cosΛ− þ 1Þen2πi3 ; ð71Þ

and the phase of the trace is preserved,

arg Tr ½ZμðxÞ� ¼ arg Tr Z0
μðxÞ ¼ n2π=3; ð72Þ

provided

2 cosΛ− þ 1 > 0: ð73Þ

For the above condition to hold, we must have

−
2π

3
< Λ− <

2π

3
: ð74Þ

Explicitly, this implies that

−
2π

3
< ω½σμðxÞ − λμðxÞ� <

2π

3
; ð75Þ

where we have used Eqs. (63) and (64). Since

λμðxÞ ¼ n
2π

3
; n ∈ f−1; 0; 1g; ð76Þ

σμðxÞ ¼ m
2π

6 · 3
; m ∈ ½−18; 18� ⊂ Z; ð77Þ

we can rewrite Eq. (75) as

−
2π

3
< ω

�
m

2π

6 · 3
− n

2π

3

�
<

2π

3
; ð78Þ

which, for ω > 0, simplifies to

ωjm − 6nj < 6: ð79Þ

Considering the extrema where m ¼ �18 and n ¼∓ 1,
we require that

ω <
1

4
: ð80Þ

In practice, we always choose small ω ≪ 1
4
.

V. CENTRIFUGE PRECONDITIONED
SMOOTHING

We consider a center-vortex configuration projected from
a 203 × 40 Luscher-Weisz Oða2Þ mean-field-improved
action pure-gauge configuration with lattice spacing
a ¼ 0.125 fm. This same configuration is used throughout
the rest of the paper. It is expected that the total action will
increase after the vortex links have experienced centrifuge
preconditioning. In general, we desire the centrifugal rota-
tion angle ω to be small as we only wish to minimally
perturb the vortex links.
In Figs. 3 and 4 the action density SðxÞ and topological

charge density qðxÞ of the center-vortex gauge field are
compared before and after the centrifuge preconditioning at
ω ¼ 0.02 has been applied. This value of ω was chosen to
sufficiently rotate the links away from the center while
keeping the increase in the total action to an acceptable
level. Shown are the standard Wilson action density,

SðxÞ ¼ β

2ncndðnd − 1Þ
X
μ;ν
μ≠ν

ReTr½1 − PμνðxÞ�; ð81Þ

and the one-loop topological charge density,

qðxÞ ¼ 1

32π2
ϵμνρσ Tr½FμνðxÞFρσ�; ð82Þ

where

FμνðxÞ ¼
1

2ig
½CμνðxÞ − C†

μνðxÞ�; ð83Þ

and CμνðxÞ is the 1 × 1 clover term. We denote the
integrated topological charge as Q, where

Q ¼
X
x

qðxÞ: ð84Þ

Both the action and the topological charge densities
appear invariant with only a few pixels in each respective
image changing. This is reflected in the near-perfect
correlation between the initial and precondition densities
for both the action (CS

IP ¼ 0.99986) and topological charge
(Cq

IP ¼ 0.99870), where

VIRGILI, KAMLEH, and LEINWEBER PHYS. REV. D 106, 014505 (2022)

014505-8



CS
IP ¼ hSIðxÞSPðxÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hS2I ðxÞi
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hS2PðxÞi
p ; ð85Þ

Cq
IP ¼ hqIðxÞqPðxÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hq2I ðxÞi
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hq2PðxÞi
p ; ð86Þ

and the subscripts I and P denote initial and precondi-
tioned, respectively. This suggests that we have success-
fully broken the diagonal symmetry without significantly
altering the underlying center-vortex structure of the
gauge field.

In general, we would consider the topological charge
density to have physical meaning when the gauge field is
smooth enough for the Atiyah-Singer index theorem to be
satisfied [56], such that the gluonic definition of the
integrated topological charge is approximately an integer
and also agrees with the fermionic definition measured by
the difference of left- and right-handed zero modes of the
overlap-Dirac operator [57]. Previous studies show that two
to three sweeps of standard stout-link smoothing at ρ ¼ 0.1
is required for the lattice operators to become good
approximations to the physical charge [58–60]. The
extremely rough nature of the projected vortex fields do
not satisfy this condition. However, we do note that on a

FIG. 4. Topological charge density qðxÞ of a single time slice of a Zð3Þ center-vortex gauge field before (left) and after (right)
centrifuge preconditioning at ω ¼ 0.02. The initial integrated topological charge QI ¼ 0.75282, the preconditioned integrated
topological charge QP ¼ 0.76792, and the correlation of the respective topological charge densities Cq

IP ¼ 0.99870.

FIG. 3. Action density SðxÞ of a single time slice of a Zð3Þ center-vortex gauge field before (left) and after (right) centrifuge
preconditioning at ω ¼ 0.02. The initial mean action density hSIi ¼ 0.046859, the preconditioned mean action density
hSPi ¼ 0.049082, and the correlation of the respective action densities CS

IP ¼ 0.99986.
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center-vortex field, the topological charge density neces-
sarily correlates with the singular points of the dual vortices
[61] and that after, smoothing vortex fields can generate
instantonlike structures [23]. Hence, the topological charge
density remains of interest.

A. Smoothness condition

As a measure of smoothness, we compare the mean
densities of the standard Wilson action and the recon-
structed Wilson action [62], given by

hSi ¼ 1

nlat

X
x

SðxÞ; ð87Þ

and

hSRi ¼
β

2ncndðnd − 1Þ
1

nlat

X
x;μ;ν

Tr½FμνðxÞFμνðxÞ�; ð88Þ

respectively.
The standard and reconstructed Wilson actions differ by

Oða6Þ terms and perturbative renormalization factors. As
the gauge field becomes smoother, the perturbative con-
tributions are suppressed, and the renormalization factors
tend toward 1. Thus, the difference between the standard
and reconstructed action can be used as a measure of the
smoothness of the gauge field. We consider the gauge field
sufficiently smoothed when hSi ≈ hSRi.

B. Smoothing in MCG

We examine centrifuge-preconditioned vortex fields that
have been smoothed in MCG, starting with the Wilson
flow. The Euler method for numerically integrating the
Wilson flow [40] updates links according to

Uμðx; τÞ → Uμðx; τ þ ϵÞ ¼ eϵQμðxÞ½U�Uμðx; τÞ: ð89Þ

In effect, this is an annealed implementation of stout-link
smearing [39], where links are updated one at a time rather
than simultaneously, and the smearing parameter ρ corre-
sponds to the integration step size ϵ. It follows then that
flow time τ ¼ nρ after n sweeps of smearing. While more
sophisticated Runge-Kutta methods exist and have been
used, we restrict our initial investigation to the Euler method.
Figure 5 shows the mean densities hSi and hSRi of the

centrifugal preconditioned gauge field as a function of
Wilson flow time τ computed with Euler integration step
sizes ϵ ¼ 0.06, 0.02, 0.01, 0.005. The flow is no longer
invariant and smooths the gauge field; however, the direct
smearing of centrifuge preconditioned vortex fields is
insufficient to bring hSi and hSRi into agreement. The
field remains rough and does not satisfy the smoothness
condition above, required for the overlap-Dirac operator to
be well-defined.

In the spirit of gradient flow, we now turn to annealed
U-link smearing (AUS) with small α ¼ 0.02. As mentioned
previously, AUS is identical in form to APE smearing, but
the links are effectively updated one at a time rather than
simultaneously. We employ the overimprovement formal-
ism where the staples term is given in Eq. (53). We choose
ϵ ¼ −0.25 as per Ref. [48]. We can consider AUS coupled
with either unit circle projection (AUSþ UCP) or
MaxReTr reuniterization (AUSþMaxReTr).
Figure 6(a) shows the results for AUS with unit circle

projection. Again, (as with the Wilson flow above) on
centrifugal preconditioned vortex fields, the gauge field is
smoothed but insufficiently to bring hSi and hSRi into
agreement and satisfy the required smoothness condition.
We find similar results in Fig. 6(b) where the MaxReTr
reuniterization has been used instead.
In all three of the cases above, the smeared links remain

diagonal. This is in some sense expected, as taking a linear
combination of the diagonal matrices will result in a
diagonal matrix for the staples, such that the smoothed
link will also remain within the diagonal subgroup of
SU(3). This means that the smoothing process is unable to
form links that encompass the full manifold of the special
unitary group.
The inability of these algorithms to smear the diagonal

elements of a particular link into its off-diagonal elements
appears to present a fundamental limitation to the amount
of smoothing that can be achieved. As such, it seems
necessary to employ an algorithm that is able to mix the
diagonal and nondiagonal elements of a link. To this end,
rather than starting from maximal center gauge, we con-
sider the addition of a random gauge transformation.

C. Smoothing in random gauge

The Wilson flow and AUS with unit circle projection are
gauge equivariant, which is to say for some smoothing
process S and gauge transformation,

FIG. 5. hSi (solid) and hSRi (dashed) as a function of Wilson
flow time τ for integration step size ϵ ¼ 0.005, 0.01, 0.02, 0.06.
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UμðxÞ → UG
μ ðxÞ ¼ GðxÞUμðxÞG†ðxþ μ̂Þ; ð90Þ

that

SfUG
μ ðxÞg ¼ GðxÞSfUμðxÞgG†ðxþ μ̂Þ: ð91Þ

As the linear combination of two diagonal matrices remains
diagonal, this gauge equivariance prevents the analytic
smoothing algorithms from leaving the diagonal subgroup
of SU(3). This is not the case in general for AUS
with MaxReTr reuniterization. As such, we repeat the
AUSþMaxReTr calculation with identical parameters,
but this time, we have transformed the centrifuge precon-
ditioned gauge field to a random gauge before smoothing.
We see in Fig. 7 that now, the gauge field can be sufficiently
smoothed, achieving agreement between the action and
reconstructed action with enough (Nsweeps > 1000) sweeps

of smoothing. We find that this smoothness condition is
sufficient for the overlap-Dirac operator to be well-defined.

VI. VORTEX-PRESERVED ANNEALING

One of the stated goals of finding a method to smooth
center-vortex gauge fields was to preserve the underlying
vortex structure. To this end, we introduce vortex-preserved
annealed smoothing (VPAS) via an additional accept or
reject step, which, in principle, can be applied to any
iterative smoothing algorithm.
Let us first consider VPAS applied to center vortices in

MCG. The AUS algorithm is run as usual to produce a
candidate link in SU(3),

Z0
μðxÞ ¼ PSUð3ÞfVðnÞ

μ ðxÞg: ð92Þ

The updated link is then given by

Zðnþ1Þ
μ ðxÞ ¼

(
Z0
μðxÞ if PZð3ÞfZ0

μðxÞg ¼ ZμðxÞ;
ZðnÞ
μ ðxÞ otherwise;

ð93Þ

which is to say a candidate link is only accepted if it
projects back to the original center-vortex link using
Eq. (3). In the case where the original center-vortex link
has undergone an arbitrary gauge transformation,

ZμðxÞ → GðxÞZμðxÞG†ðxþ μ̂Þ; ð94Þ

the acceptance condition becomes

PZð3ÞfG†ðxÞZ0
μðxÞGðxþ μ̂Þg ¼ ZμðxÞ; ð95Þ

where the inverse of the original gauge transformation
is applied to the candidate link. Note that in either case,

FIG. 7. hSi and hSRi as a function of Nsweep iterations of
overimproved AUS at ϵ ¼ −0.25 and ω ¼ 0.02 using the
MaxReTr reuniterization applied to a centrifuge preconditioned
gauge field that has been transformed to a random gauge.

(a)

(b)

FIG. 6. hSi and hSRi as a function of Nsweep iterations of
overimproved AUS at ϵ ¼ −0.25 and ω ¼ 0.02 using (a) unit
circle projection and (b) MaxReTr reuniterization, applied to a
centrifuge preconditioned gauge field.
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the Zð3Þ projection test is performed directly without
reasserting the MCG condition in Eq. (2).
We now consider how VPAS with MaxReTr reuniteri-

zation applies to Zð3Þ center-vortex gauge field configu-
rations by studying the outcome of the first sweep. We first
examine the MCG case, where no centrifuge precondition-
ing has been applied. We study three quantities in our
analysis:

(i) pin (nin), the proportion (absolute number) of links
that satisfy jϕj > π

2
(required to perturb the vor-

tex link),
(ii) pdiff (ndiff ), the proportion (absolute number) of

links for which Zð1Þ
μ ðxÞ ≠ ZμðxÞ (accounting for the

possibility that although the ϕ condition is satisfied,
it is still possible the projected link could be the
same as the original), and

(iii) ppass (npass), the proportion (absolute number) of
candidate links that pass the vortex preservation

step, given Zð1Þ
μ ðxÞ ≠ ZμðxÞ.

These definitions necessitate the condition pin ≥ pdiff ≥
ppass holds.

1

In Fig. 8, we compute these values for all combination of
links, once again in the β → 0 limit where a given link has
an equal probability to be one of the three center phases
and weight each combination by its multiplicity. Most
strikingly, ppass ¼ 0 for all values of α. This implies that if
the updated link is different from the original, the phase of
its trace will always fall outside the sector, which center
projects to the original link.
We repeat this analysis on a true Zð3Þ projected gauge

field configuration. The proportions are presented in Fig. 9,

while the absolute values are tabulated at intervals of 0.1 for
α in Table I. Consistent with the analysis presented in Fig 8,
we see ppass ¼ 0 for all values of α and similar shaped
curves for pdiffðαÞ. However, unlike the previous analysis,
we have that pin ¼ pdiff for all α.
The same analysis is performed after centrifuge precon-

ditioning and presented in Fig. 10 and Table II, where pin
has been dropped as this condition only applies to an
unconditioned Zð3Þ gauge field where all links are propor-
tional to the identity. Here (aside from the trivial α ¼ 0
case), we see not only that every updated link is different
from the original at all values of α, but also that every
candidate link passes the vortex preservation step below
α ≈ 0.5 and almost all (> 99.5%) at larger values of α.

FIG. 8. The proportion of all possible combinations of links,
weighted by multiplicity, which satisfy jϕj > π

2
(pin), Z

ð1Þ
μ ðxÞ ≠

ZμðxÞ (pdiff ), and pass the vortex preservation step given

Zð1Þ
μ ðxÞ ≠ ZμðxÞ (ppass). Note ppass ¼ 0 for all α.

FIG. 9. The proportion of links of a Zð3Þ pure gauge field

configuration, which satisfy jϕj > π
2
(pin), Z

ð1Þ
μ ðxÞ ≠ ZμðxÞ (pdiff ),

and pass the vortex preservation step given Zð1Þ
μ ðxÞ ≠ ZμðxÞ

(ppass). Note ppass ¼ 0 for all α and pin ¼ pdiff for all α < 1.

FIG. 10. The proportion of links of a centrifuge preconditioned

Zð3Þ pure gauge field configuration, which satisfy Zð1Þ
μ ðxÞ≠ZμðxÞ

(pdiff ), and pass the vortex preservation step given Z
ð1Þ
μ ðxÞ ≠ ZμðxÞ

(ppass). Note that pin ¼ 1 for all α.

1See Sec. III A for an explanation of the apparent violation of
this condition at α ¼ 1.0 in Table I.
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While this suggests that a vortex-preservation step is not
required for α < 0.5, we note this is only for the first sweep
following centrifugal preconditioning. Eventually, the vor-
tex-preservation step does have an effect on the smoothing
process.
Performing the same one-sweep analyses after a random

gauge transform has been applied produces near-identical
results and, for the sake of brevity, will not be presented
herein. This is not unexpected, as we are only considering
the first sweep. As we can see, comparing Figs. 6 and 7, the
random gauge transformation only begins to have signifi-
cance after several sweeps.
Applying VPAS with MaxReTr reuniterization to a

centrifuge preconditioned gauge field, we find similar
results, presented in Fig. 11, to what we have seen with
regular AUS. Once again, applying a random gauge trans-
form to the field is necessary to achieve sufficient smoothing.

VII. SMOOTHING METHOD COMPARISON

Throughout the previous sections, we have arrived at
three viable smoothing methods for Zð3Þ center-vortex
gauge fields. In Sec. II C, we showed that an APE-style
smearing algorithm can only alter a Zð3Þ vortex field
provided the smearing parameter α is sufficiently large.
Furthermore, in Sec. III, we found that the degree of
smoothing was only sufficient if the vortex field had
undergone a random gauge transformation and the
MaxReTr reuniterization was employed. Choosing also
to employ the overimprovement formalism at ϵ ¼ −0.25
with smearing parameter α ¼ 0.7 and, implementing the
algorithm in an annealed manner, we have arrived at our
first smoothing recipe, which we denote throughout this
section as AS for annealed smoothing.
In the spirit of approaching the gradient flow, we showed

in Sec. V that the use of a small smearing parameter

TABLE II. The number of links of a centrifuge preconditioned
Zð3Þ pure gauge field configuration, which satisfy jϕj > π

2
(pin),

Zð1Þ
μ ðxÞ ≠ ZμðxÞ (pdiff ), and pass the vortex preservation step

given Zð1Þ
μ ðxÞ ≠ ZμðxÞ (ppass). The lattice has 1280000 links.

α ndiff npass

0.1 1280000 1280000
0.2 1280000 1280000
0.3 1280000 1280000
0.4 1280000 1280000
0.5 1280000 1280000
0.6 1280000 1279473
0.7 1280000 1278853
0.8 1280000 1278363
0.9 1280000 1277673
1.0 1280000 1274937

(a)

(b)

FIG. 11. hSi and hSRi as a function of Nsweep iterations of
overimproved VPAS at ϵ ¼ −0.25 and ω ¼ 0.02 using the
MaxReTr reuniterization applied to a centrifuge preconditioned
gauge field (a) without and (b) with a random gauge trans-
formation applied after preconditioning and before smoothing.

FIG. 12. hSi (solid) and hSRi (dashed) as a function of αNsweep
for each smoothing algorithm. The stars denote the number of
sweeps chosen for algorithm comparison (Nsweep ¼ 20 for AS,
Nsweep ¼ 1190 for CP and VP).
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α < αmin is enabled by centrifuge preconditioning the
vortex field. A random gauge transformation is necessarily
applied after preconditioning to achieve the required level
of smoothing to define our second recipe, which we
denoted as CP for centrifuge preconditioning. We choose
an AUS smearing parameter of α ¼ 0.02 applied to a

FIG. 13. Integrated topological charge Q as a function of
αNsweep for each smoothing algorithm. The stars denote the
number of sweeps chosen for algorithm comparison (Nsweep ¼ 20

for AS, Nsweep ¼ 1190 for CP and VP).

TABLE III. Summary of smoothing recipes. Steps are applied
from left to right starting with the Zð3Þ center-vortex configu-
ration in MCG. C indicates centrifuge preconditioning with
rotation angle ω:R indicates the application of a random gauge
transformation. NAUS indicates the number of sweeps of AUS at
smearing parameter α:V indicates if a vortex-preservation step
was included in the AUS smearing.

Algorithm C ω R NAUS α V

VO ✗ � � � ✗ 0 � � � � � �
AS ✗ � � � ✓ 20 0.7 ✗
CP ✓ 0.02 ✓ 1190 0.02 ✗
VP ✓ 0.02 ✓ 1190 0.02 ✓

FIG. 14. Action density of a single time slice after smoothing. Clockwise from top left: VO, AS, CP, VP.
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random gauge transformed, centrifuge preconditioned
gauge field with rotation angle ω ¼ 0.02. Finally, in our
third recipe, denoted VP for vortex preservation, we
include the vortex preservation step in what is otherwise
identical to our second recipe.
In addition to the resultant gauge fields of each smoothing

recipe,wealso consider theoriginalZð3Þgauge field (denoted
VO for vortex-only) without any smoothing as a reference.
In summary, we have four gauge fields to compare:

VO original vortex-projected gauge field,
AS large α, APE-style, random-gauge-transformed an-

nealed smoothing,
CP as for AS except with small α and centrifuge

preconditioning,
VP as for CP but with vortex preservation step applied.
We present the mean action hSi and reconstructed action

hSRi densities for each algorithm as a function of αNsweep in
Fig. 12. Similarly, in Fig. 13, we present the integrated
topological charge Q for each algorithm as a function
of αNsweep. The reference value for the vortex-only field
(without any smoothing) is represented as a dashed
horizontal line.
The trajectories of the mean action density for CP and

VP are nearly identical, so as to be almost indistinguish-
able for the majority of the smoothing trajectory. A more
detailed analysis is necessary to elucidate any subtle dif-
ferences that exist between the respective algorithms.
Meanwhile, the trajectory for AS is roughly proportionate

TABLE IV. The correlation CS
XY of action densities SXðxÞ and

SYðxÞ of the gauge fields after respective smoothing algorithms X
and Y have been applied.

VO AS CP VP

VO 1.000 0.397 0.397 0.404
AS � � � 1.000 0.518 0.512
CP � � � � � � 1.000 0.943
VP � � � � � � � � � 1.000

FIG. 15. Topological charge density of a single time slice after smoothing. Clockwise from top left: VO, AS, CP, VP.
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to the CP, and VP curves for αNsweep < 6 but diverges
rapidly above that threshold.
The difference between the large-α AS algorithm and the

small-α CP and VP algorithms is most apparent in the
trajectories of the integrated topological charge. CP and
VP track relatively closely, with a small divergence from
αNsweep ∼ 7, after which, they appear to be converging on
the same integer value by αNsweep ∼ 30. By contrast, the AS
trajectory acutely diverges from the CP and VP curves at
around αNsweep ∼ 5.
In order to perform a more detailed analysis, we choose a

fixed number of AUS sweeps for each algorithm (20 for
AS, and 1190 for CP and VP) as a point of comparison,
such that the different gauge fields have approximately
matched total actions. The respective number of sweeps
chosen for each algorithm are marked by stars in Figs. 12
and 13. See Table III for a summary of each algorithm in
the context of the following discussion.
We present visualizations of the respective action den-

sities in Fig. 14 and compute their correlations where CS
XY

given by

CS
XY ¼ hSXðxÞSYðxÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hS2XðxÞi
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hS2YðxÞi
p ; ð96Þ

is the correlation between SXðxÞ and SYðxÞ for respective
smearing processes X and Y. These are presented in
Table IV.
Similarly, we present visualizations of the respective

topological charge densities in Fig. 15 and compute their
correlations where Cq

XY , given by

Cq
XY ¼ hqXðxÞqYðxÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hq2XðxÞi
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hq2YðxÞi
p ; ð97Þ

is the correlation between qXðxÞ and qYðxÞ for respective
smearing processes X and Y. These are presented in
Table V.
The superior similarity of the CP and VP action densities

to the original vortex field evident in the visualizations, as
compared to AS, indicates not only that the use of a small
smearing parameter is desirable, but it is fundamentally
important in preserving the underlying vortex structure.
With regard to the action density, the numerical correlation

of VP with the original vortex field is slightly higher (by
∼2%) as compared to AS and CP.
Visually, the topological charge density for VO is

qualitatively different from the three smoothed fields in
terms of the size and number of objects. The numerical
comparison of the topological charge densities indicates
they are essentially uncorrelated, with the exception of
CP and VP, which do show a strong positive numerical
correlation and similarity in their visualisations.

VIII. SUMMARY

Throughout this work, we have studied the application
of a variety of SU(3) gauge field smoothing methods to
Zð3Þ center-vortex gauge fields, with an aim to achieve
sufficient smoothness so as to be able to meaningfully
evaluate the overlap-Dirac operator. An additional aim is
to preserve (as much as possible) the original vortex
structure identified in MCG. Due to the proportionality of
the vortex-field links to the identity, a naive application
of traditional smoothing algorithms is either ineffectual or
limited, containing subtle issues that are not obviously
manifest.
To overcome these issues, we introduced a novel

method, centrifuge preconditioning, which perturbs the
center elements from Zð3Þ into the Uð1Þ × Uð1Þ × Zð3Þ
diagonal subgroup of SU(3). The centrifuge precondition-
ing step is constructed in a manner that breaks the
proportionality of the links to the identity while preserving
the original vortex information.
Agreement between the action and reconstructed action

is set as the condition for sufficient smoothness in order to
employ overlap fermions on the smoothed vortex field. The
amount of smoothing that can be obtained with analytic
methods is fundamentally limited by the gauge equivariant
property of these methods, which, even with centrifuge
preconditioning, remain within the diagonal subgroup of
SU(3) (up to a gauge transformation).
It is only through the application of a random gauge

transform together with the MaxReTr reuniterization—an
update-based method that is not gauge equivariant—as part
of an APE-based annealed smoothing formalism, that it
becomes possible to depart from the diagonal subgroup and
expand the smoothed links to the greater part of the SU(3)
group manifold.
Additional to centrifuge preconditioning, to preserve the

vortex structure throughout the annealed smoothing proc-
ess, the concept of a vortex preservation step was intro-
duced. This consists of an accept or reject step within the
annealed smoothing process, where the update for a given
link is only accepted if the argument of the trace projects to
the same Zð3Þ element as the center phase identified in the
MCG of the original gauge field.
Based on the above, three smoothing recipes were

formulated (AS, CP, VP), which, along with the pure
vortex field (VO), were compared (refer to Table III for

TABLE V. The correlation Cq
XY of topological charge densities

qXðxÞ and qYðxÞ of the gauge fields after respective smoothing
algorithms X and Y have been applied.

VO AS CP VP

VO 1.000 0.010 −0.001 0.002
AS � � � 1.000 0.009 0.000
CP � � � � � � 1.000 0.886
VP � � � � � � � � � 1.000
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a summary). With regard to the action density, the
visualizations in Fig. 14 show the CP and VP algo-
rithms produce action densities resembling the original
vortex structure. Considering the quantitative measure
of Eq. (96), all three smoothing recipes were found to
have a similar correlation with the original field, with
VP having the highest of the three by a small margin.
On such rough fields, the microscopic structure of the
topological charge density appears to be volatile, and as
a result, there is essentially no correlation between three
of the four fields examined. The exceptional pair is CP
and VP, which produce highly correlated topological
charge densities, the only difference between these two
recipes being that VP includes the vortex-preserved
annealing step, ensuring that the argument of the trace
of the links projects to the original center element.
The conclusion is that the centrifuge preconditioning

and vortex-preserved annealing techniques enable the
successful smoothing of vortex fields and will be studied
further in future work.
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APPENDIX A: GENERATORS OF SU(3)

The eight traceless anti-Hermitian matrices Ta are the
generators of SU(3) and are proportional to the Gell-Mann
matrices. We choose the normalization condition
Tr½TaTb� ¼ − 1

2
δab to ensure the structure constants fabc

defined by ½Ta; Tb� ¼ fabcTc are real and totally antisym-
metric in the indices.
Up to a center phase factor, the diagonal subgroup of

SU(3) is spanned by the subset of generators fT3; T8g,
where T3 and T8 are diagonal. We can write an element of
the diagonal subgroup as

exp

�
n
2πi
3

�
exp ða3T3 þ a8T8Þ; ðA1Þ

where n ∈ f−1; 0; 1g, and a3; a8 ∈ R. The subgroup is
Abelian as ½T3; T8� ¼ 0, and it is straightforward to see that
it is isomorphic to Uð1Þ × Uð1Þ × Zð3Þ.

APPENDIX B: DERIVATION OF αmin FOR
MaxReTr REUNITERIZATION WITHIN THE

OVERIMPROVEMENT FORMALISM

Without loss of generality, let ZμðxÞ ¼ 1. Hence,
L1 from Eq. (55) becomes

L1 ¼ ð1 − αÞ þ α

6
Σ†
μðxÞ; ðB1Þ

which, explicitly within the overimprovement formalism, is

L1 ¼ ð1 − αÞ þ α

6

��
5 − 2ϵ

3

�
SμðxÞ þ

�
ϵ − 1

12u20

�
RμðxÞ

	
;

ðB2Þ

where SμðxÞ represents the three-link staple terms and
RμðxÞ represents the five-link rectangle terms in Eq. (53).
We restrict the overimprovement term such that ϵ ∈ ½− 5

2
; 1�

to ensure

5 − 2ϵ

3
≥ 0; ðB3Þ

and

ϵ − 1

12u20
≤ 0: ðB4Þ

Then, the minima of the real component of L1½ΣμðxÞ� for a
given α occur when all six terms contributing to SμðxÞ have
nontrivial phase (and hence, a real component equal to
−0.5). Replacing any term with the identity necessarily
increases the real component of SμðxÞ. Hence, the values of
SμðxÞ for which the real component of L1 is minimized are
given by

SμðxÞ ¼ neþi2π
3 þ ð6 − nÞe−i2π3

¼ 6 cos

�
2π

3

�
þ ið2n − 6Þ sin

�
2π

3

�

¼ −3þ ið2n − 6Þ sin
�
2π

3

�
; ðB5Þ

where n ∈ ½0; 6� ⊂ Z. As we are not concerned with the
imaginary component, for simplicity and without loss of
generality, we take n ¼ 3 for which the imaginary compo-
nent of SμðxÞ vanishes. Evaluating SμðxÞ for n ¼ 3, we
have SμðxÞ ¼ −3.
On the other hand, as the factor in front of RμðxÞ is

negative, the minima of L1 for a given α occur when the real

SMOOTHING ALGORITHMS FOR PROJECTED CENTER-VORTEX … PHYS. REV. D 106, 014505 (2022)

014505-17



component of RμðxÞ is maximized. This occurs when all
18 loops contributing to RμðxÞ are the identity with real
component equal to 1. Replacing any term with one that has
a nontrivial phase (and hence, a real component equal to
−0.5) necessarily reduces the real component of RμðxÞ.
Hence, the minima of L1 must occur when RμðxÞ ¼ 18.
Substituting into Eq. (B2), we have

L1 ¼ ð1 − αÞ þ α

6

��
5 − 2ϵ

3

�
ð−3Þ þ

�
ϵ − 1

12u20

�
ð18Þ

	
:

ðB6Þ

Recalling that we require ReL1 < 0, and simplifying, we
have

0 > ð1 − αÞ þ α

6

��
5 − 2ϵ

3

�
ð−3Þ þ

�
ϵ − 1

12u20

�
ð18Þ

	

0 > 1 − αþ α

�2ϵ − 5þ 3
2
ðϵ−1u2

0

Þ
6

	

−1 > α

�2ϵ − 11þ 3
2
ðϵ−1u2

0

Þ
6

	

α >
−6

2ϵ − 11þ 3
2
ðϵ−1u2

0

Þ : ðB7Þ

Let Σmin
μ ðxÞ denote a staples term that minimizes the real

component of L1 for ZμðxÞ ¼ 1. Then, for ZμðxÞ ¼ e�i2π
3 ,

the minima of the real component of L1 occur at
e∓i2π

3Σmin
μ ðxÞ, and the same derivation follows.
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