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Abstract

Many important phenomena exhibit multiscale emergent behaviour that
currently cannot be accurately modelled (e.g., many turbulent flows, floods,
tsunamis, weather, sediment transport) due to the high computational effort
to capture all the details spread over a large range of scales. To address
this issue, many multiscale modelling techniques have been developed
for dissipative systems. The flexible equation-free multiscale patch schemes
accurately model emergent macroscale spatial dynamics using a given
microscale model within small sparsely located coupled patches. Such
multiscale patch schemes have been developed successfully for dissipative
systems. But the small dissipation in wave-like systems poses significant
challenges for developing multiscale patch schemes, especially in multiple
dimensions. The recent works of Cao and Roberts (2013, 2015) extend the
patch scheme to 1D wave-like systems. This PhD thesis develops the equation-
free multiscale patch schemes for 2D wave-like systems (small dissipation) and
explores the schemes more thoroughly.

For high accuracy and to preserve much of the wave characteristics, we
extend the concept of staggered grids in the full-domain modelling to multiscale
modelling. In contrast to the usual collocated patch grid, using staggered
grids within the patches leads to many different arrangements of the patch
edge nodes. We considered 83 520 staggered patch grids that are geomet-
rically compatible for 2D wave-like systems. Almost all such staggered
grids lead to unstable and/or inaccurate patch schemes. We designed two
staggered patch grids that constitute stable and accurate patch schemes for linear
and nonlinear wave-like systems.

Patch coupling provides a two-way connection between two scales:
from microscale within patches to macroscale over the domain, and from
macroscale to microscale. Depending upon the patch coupling methods,
many variants of patch schemes are possible on a staggered patch grid;
many such patch schemes are unstable and/or inaccurate. We developed
two novel families of equation-free multiscale staggered patch schemes for accurate
large-scale simulation of wave-like systems: a spectral patch scheme, and four

ix



Chapter 0. Abstract x

polynomial patch schemes. The spectral patch scheme is the best for accuracy,
over simple geometry and periodic boundary conditions. Polynomial patch
schemes are best for complex geometry and boundary conditions.

We show that the staggered patch schemes accurately simulate general
linear waves, viscous shallow water flows, and turbulent shallow water
flows. For these three wave models, we establish the stability and con-
sistency of the staggered patch schemes for a wide range of physical and
grid parameters via analytic eigenvalue analysis and numerical von Neu-
mann analysis. The eigenvalues of the patch scheme macroscale modes converge
towards the corresponding eigenvalues of the full-domain model, with decreasing
macro-grid interval (inter-patch distance).

The staggered patch schemes are not sensitive to numerical roundoff errors, ex-
cept when the patches are too small relative to inter-patch distance, and/or
when the underlying microscale model is sensitive to numerical roundoff
errors. Even for very small patches, we confirm the consistency of the patch
schemes via arbitrary-precision floating-point implementation. We also
show the accuracy of the patch scheme time simulations by comparing
them with the full-domain simulation. Our work shows the robustness of
the patch scheme simulation by recovering emergent macroscale waves
from random initial perturbations.

Explicit analytic expressions quantify the computational complexity of
the staggered patch schemes. The staggered patch schemes accurately model
the macroscale waves with large computational savings, via detailed microscale
simulations only within the patches, that is, within a small fraction of the
whole space. The staggered patch schemes compute only for a small number of
dynamical state variables, as small as one-millionth of the number of state
variables in the corresponding full-domain model. The measured compute
times of the multiscale staggered patch schemes are up to 105 times smaller than the
corresponding full-domain model. Users can choose how much computational
savings to achieve depending on the scales of interest in the modelling. The
patch schemes’ ability to accurately model macroscale waves with large
computational savings is an enabling feature for accurate simulation and
prediction of large-scale waves like floods and tsunamis.

Keywords: equation-free multiscale modelling; patch schemes; emer-
gent dynamics; staggered grids; multiscale wave-like systems; large-scale
waves; weather; floods; tsunamis; general linear wave; viscous shallow
water flows; turbulent shallow water flows.



Chapter 1

Introduction

Many important phenomena exhibit multiscale emergent behaviour that
currently cannot be accurately modelled (e.g., many turbulent flows, floods,
tsunamis, weather, sediment transport) due to the high computational effort
required to capture all the details spread over a large range of scales in space
and time. Resolving a large range of scales requires very many degrees of
freedom from spatial discretisation and very many function evaluations
from time discretisation, leading to prohibitively high computational costs.
The challenges of multiscale modelling are major obstacles to progress
in many fields such as environmental and geosciences, climate, complex
materials, heterogeneous media, combustion, high energy density physics,
fusion, bioscience, and chemistry (e.g., see Dolbow et al. 2004).

To address this issue, many multiscale modelling techniques have been
developed. For example, mathematical homogenization (Berlyand and
Rybalko 2018; Mei and Vernescu 2010), renormalization group based meth-
ods (Chorin and Stinis 2005; Ei et al. 2000; Mudavanhu and O’Malley
2003), two-stage finite element method (FE2) of Feyel and Chaboche (2000)
and Raju et al. (2021), Multiscale Finite Element Methods (MsFEM) (Hou
and Efendiev 2009), generalized finite element methods (Babuška and Os-
born 1983), Generalized Multiscale Finite Element Methods (GMsFEM) of
Efendiev et al. (2013), variational multiscale (VMS) methods (Hughes et al.
1998), Localised Orthogonal Decomposition (LOD) of Målqvist and Peter-
seim (2014), wavelet-based numerical homogenization (Dorobantu and
Engquist 1998), and Heterogeneous Multiscale Method (HMM) (E and Björn
2003, 2005; E et al. 2003). Nearly all of these multiscale modelling methods
need to be specifically tailored for particular problems, within narrow ap-
plication areas, using specific underlying models; not readily applicable for
new problems. Several of those methods require a priori knowledge about
the macroscale model. For example, E and Björn (2005, pp.105–106, §5) state
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Chapter 1. Introduction 2

“. . . for the success of HMM, some information about the macroscale model
is crucial. Without them, a blind application of HMM can give wrong
results.”. Many such methods typically also require scale separation with a
large spectral gap in the dynamics, as opposed to a continuous spread of
scales which is the case in many turbulent and wave systems. On the other
hand, the equation-free multiscale patch scheme is a general framework
with high flexibility for many different application domains and different
kinds of problems, without strong dependence on the underlying micro-
scale model. Patch schemes are equation-free as connecting the scales is
done through generic interpolation instead of explicit equations as done in
homogenisation and similar other multiscale methods; that is, there is no
derived equation to describe the macroscale model, the only information
the macroscale model gets is the computational data (§1.1). Patch schemes
have been developed for dissipative systems; but the small dissipation in
wave-like systems poses significant challenges for developing multiscale
schemes for wave-like systems, especially in multiple dimensions (§1.2).
This PhD thesis develops the equation-free multiscale patch schemes for
2D wave-like systems (small dissipation).

Specifically, this work develops equation-free multiscale staggered
patch schemes that enable accurate simulation of macroscale waves for many
specific application areas over large space, yet computing only within small
sparsely located patches. As a concrete example, the current work mainly
focuses on water waves. For example, Fig. 1.0.1 shows the accurate patch
scheme simulation (colour-coded ribbons) in comparison with the full-
domain simulation (grey mesh) of a nearly discontinuous turbulent roll
wave; §5.5 of Chapter 5 gives further details. The regions where the colour-
coded ribbons cross are patches; the patches are much smaller than illustrated
in the figure for visual clarity. The staggered patch schemes compute only within
patches, a small fraction ranging from hundredths to several thousandths of
the area of the full domain (§3.7 quantifies the computational savings).

The objective of the multiscale patch schemes is accurate macroscale
simulation of a given microscale model/code. Hence, the main aim of this
work is to establish that the multiscale staggered patch schemes accurately
and efficiently simulate wave-like systems with small dissipation, using a
given microscale model. For the models demonstrated in this work, one could
reasonably accurately use a coarse spatial grid, without a strong need for
multiscale modelling. But the aim is to use whatever microscale code is
given, and anticipate the code to efficiently simulate where fine micro-grids
are essential (e.g., heterogeneities and turbulence). In the context of flows
in heterogeneous media, the multiscale behaviour is due to space-varying
coefficients of the PDEs. In turbulent flows, due to turbulent cascading the
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Figure 1.0.1. The emergent turbulent roll wave (height h at t = 31), from the
initial condition of a moving Gaussian hump (5.5.1), using Square-p6 patch
scheme (colour-coded ribbons, with N = 22, n = 6, and r = 0.1) agrees very
closely with that of the fine-grid full-domain model (grey mesh). Black
circles on h-centred patches show the discrepancy.
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dynamics span over a large range of scales in time and space; hence a direct
numerical simulation has to resolve a range of small length (sub-patch)
scales. The particular physics and the characteristics of the governing PDEs
and their coefficients are peripheral in this study.

1.1 Equation-free patch schemes offer a flexible
multiscale modelling approach

In the fluid dynamics of Earth’s atmosphere and oceans, the length scales
range from a few millimetres to several thousands of kilometres (Grooms
and Julien 2018, p. 3). We define the full-domain microscale simulation as the
detailed full-scale simulation (of all/most scales) over the complete simula-
tion domain. The main interest generally lies in the large-scale dynamics
only, yet the effect of the smallest scales that give rise to the emergent large-
scale dynamics needs to be accounted for. On the other hand, the detailed
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Figure 1.1.1. Schematic of a typical multiscale model that simulates only
within small coupled regions (grey squares) in the domain. Smooth waves
on the right, over the unsimulated nodes, are interpolated over the large
space without detailed simulation.
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full-domain microscale simulation (of the fluid dynamics, e.g.) over such
a large space is impractical. Hence, many multiscale modelling methods
(e.g., Emereuwa 2020; Grooms and Julien 2018; Welsh et al. 2018) aim to
accurately model the macroscale physics by computing only within small
coupled regions in the domain as depicted in Fig. 1.1.1. The unsimulated
nodes corresponding to the intermediate scales are interpolated from the
small number of simulated nodes that are located sparsely over a large
space. Hence, multiscale modelling of macroscale physics by computing
only within small coupled regions located sparsely over large space offers
enormous computational savings. Such large computational savings is an
enabling powerful feature of multiscale modelling.

The patch scheme is an equation-free multiscale framework. A patch
scheme performs detailed microscale simulations within small patches
and couples the patches (patch coupling) via interpolation over the macro-
scale space (Hyman 2005; Kevrekidis et al. 2004; Kevrekidis and Samaey
2009). One can achieve arbitrarily high order of macroscale consistency for
patch schemes via appropriate high order interpolation for patch coupling
(Roberts and Kevrekidis 2005, 2007).

• Patch schemes are equation-free as connecting the scales is done through
generic interpolation instead of explicit equations as done in ho-
mogenisation and similar other multiscale methods; that is, there is
no derived equation that describes the macroscale model. The only in-
formation we obtain about the macroscale model is the computational
data (Kevrekidis and Samaey 2009).

• A patch scheme, as a framework, is generally agnostic of the un-
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derlying microscale model. One can use microscale mesh-based
models (Bunder et al. 2020, 2017; Maclean et al. 2021b; Roberts and
Kevrekidis 2007) like finite difference, finite volume, finite element
or its recent variant of particle finite element (Franci et al. 2020); or
meshless models (Cisternas et al. 2004; Kevrekidis et al. 2003; Makeev
and Kevrekidis 2004; Siettos et al. 2012; Tsoumanis et al. 2010) like
smoothed particle hydrodynamics, lattice–Boltzmann, Monte–Carlo,
molecular dynamics, or other stochastic systems such as modelling of
evolving diseases, and agent-based models.

Thus, the patch scheme is a general framework with high flexibility for
many different application domains and different kinds of problems.

In patch schemes for stochastic systems, the patches contain stochastic
microscale states. A patch scheme starts with a macroscale initial condi-
tion over the simulation domain. Then, a macroscale to microscale (lifting)
operator gives stochastic sub-patch microscale states whose distribution
is consistent with the macroscale variation over the simulation domain
(Kevrekidis et al. 2004, p.1348; Samaey et al. 2009, pp. 4–5). Then, the
microscale model evolves the sub-patch microscale states for one time step
as dictated by some governing rules. Then, a microscale to macroscale
(restriction) operator gives a macroscale value for a patch which is an aggre-
gate statistic of the microscale states within that patch, typically low-order
moments (Kevrekidis et al. 2004, p.1348; Samaey et al. 2009, p. 5). For the
next iteration, the lifting operator gives new sub-patch microscale values,
then the microscale states evolve, and then the cycle continues.

In patch schemes for grid-based discrete models of continuum problems
(e.g., numerically solving PDEs over a finite grid of discrete points in space
and time), the patches contain deterministic interior node values—the
sub-patch microscale states (Bunder et al. 2020, 2017; Maclean et al. 2021b;
Roberts and Kevrekidis 2007). A patch scheme starts with a microscale
initial condition over the simulation domain, which assigns the values of
all the sub-patch microscale nodes. Then, an aggregation function gives a
macroscale value for a patch which is based on the sub-patch microscale
states, typically the patch centre value or mean of all the sub-patch node
values. This aggregation function for grid-based systems is analogous
to the restriction operator of the patch schemes for stochastic systems
in that it carries information from microscale to macroscale dynamics;
but in terms of how it works aggregation is different from the restriction
operator. Then, the patch coupling gives the values of the patch edge nodes
by interpolating over the macroscale values of the neighbouring patches.
This patch coupling macroscale interpolation for grid-based systems is
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analogous to the lifting operator of the patch schemes for stochastic systems
in that it carries information from macroscale to microscale dynamics; but
in terms of how it works the patch coupling is different from the restriction
operator. For example, Fig. 2.1.2 of §2.1.2 illustrates the process of patch
coupling and aggregation. Then, the microscale model evolves the sub-
patch microscale states (interior node values) for one time step, typically
via discrete approximations of PDEs. For the next iteration, the aggregation
function gives new macroscale values for the patches, and then the cycle
continues.

1.2 Patch schemes for wave-like systems are
challenging

Patch schemes have been developed and applied successfully for dissi-
pative systems (Bunder et al. 2017; Maclean et al. 2021b; Roberts and
Kevrekidis 2005, 2007). The weak inherent dissipation in wave-like systems
poses significant challenges for developing patch schemes that are stable
and accurate for wave-like systems, especially in multiple dimensions. The
recent works of Cao and Roberts (2013, 2015) extend the patch scheme to
1D wave-like systems. This PhD thesis develops the equation-free multiscale
patch schemes for 2D wave-like systems (small dissipation) and explores the
schemes more thoroughly. The developed 2D staggered patch schemes
should generalise straightforwardly to higher spatial dimensions.

Chapter 2 explains the challenges of the numerical schemes for wave-
like (near Hamiltonian) systems with negligible dissipation in the context
of both the full-domain and multiscale modelling. Section 2.1 introduces
the staggered grid, a common strategy used in full-domain numerical simu-
lation of wave-like systems. Section 2.1 extends the full-domain concept of
staggered grids to multiscale modelling. As §2.1.2 shows, a total of 83 520
staggered patch grids are possible as geometrically compatible 2D discreti-
sations for simulating multiscale wave physics. Yet, as §3.5.1 shows, the
staggered patch schemes on very many such staggered grids are unstable
and/or inaccurate. We designed two staggered patch grids that constitute stable
and accurate staggered patch schemes for wave-like systems.

Patch coupling provides a two-way connection between two scales:
from microscale within patches to macroscale over the domain, and from
macroscale to microscale. Depending upon the patch coupling methods,
many variants of patch schemes are possible on a staggered patch grid;
many such patch schemes are unstable and/or inaccurate. We developed two
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novel families of equation-free multiscale staggered patch schemes for accurate large-
scale simulation of wave-like systems: a spectral patch scheme, and four polynomial
patch schemes. A spectral patch scheme couples the patch edge values via
macroscopic global 2D spectral interpolation. A family of polynomial patch
schemes couple the patch edge values via macroscopic local 2D polynomial
interpolations. A basic pilot study and an example implementation of the
2D staggered patch schemes developed in this thesis is published in the
article by Bunder et al. (2020).

1.3 Staggered patch schemes are stable, accurate,
consistent, and efficient for waves

The detailed analysis in Chapters 3 to 5 establishes that the developed five
staggered patch schemes (a spectral patch scheme, and four polynomial
patch schemes) are stable, accurate, consistent with the given microscale
model for increasingly finer patch grids, and computationally efficient for
simulating macroscale wave-like systems (e.g., general linear wave, viscous
shallow water flows, turbulent shallow water flows).

Chapter 3 shows that the staggered patch schemes accurately simu-
late the macroscale dynamics of the 2D general (dissipative) linear wave-like
systems, with linear drag and viscous diffusion. Chapter 3 interprets the
variables in the general linear waves in the context of water waves, but all
the discussions and outcomes are generally applicable for many 2D linear
wave phenomena. Section 3.1 derives a discrete full-domain microscale
model and a generic staggered patch scheme corresponding to the general
linear wave PDEs. Section 3.2 shows that the developed five staggered
patch schemes are accurate for the general linear wave by comparing the
eigenvalues of the staggered patch schemes with the eigenvalues of the
full-domain microscale model. Sections 3.2.1 to 3.2.5 derives the eigen-
values of the general linear wave PDEs, full-domain microscale model, and
that of the staggered patch schemes. Section 3.2.6 illustrates the structure
of the patch scheme eigenvalues in the complex plane and explains the
corresponding dynamical modes via eigenvector plots. The eigenvalue
analysis in §3.2.6 visually demonstrates the accuracy (in the complex plane
eigenvalue plots) for a representative subset of the physical parameters and
grid parameters. Section 3.4 shows that the staggered the patch schemes
are not sensitive to numerical roundoff errors for the general linear wave.
Section 3.5 demonstrates the stability of the staggered patch schemes and
explores the dependence of the patch scheme stability on various aspects
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like grid symmetry, physical parameters, and grid parameters. Section 3.5.1
shows that among the 83 520 possible 2D staggered patch grids for wave-
like systems, almost all lead to unstable and/or inaccurate patch schemes.
Section 3.6 shows that the staggered patch schemes are consistent with the
given microscale model for increasingly finer patch grids. Section 3.7 quan-
tifies and demonstrates the large computational savings of the staggered
patch schemes for the general linear wave. Section 3.7.5 demonstrates the
accuracy and effectiveness of the patch schemes via time simulation of the
general dissipative linear waves for two example cases (simple progressive
wave and moving Gaussian hump). Via random perturbation to the initial
condition, §3.7.5 also demonstrates the robustness of the patch schemes.

The impactful utility of the multiscale staggered patch schemes lies
in modelling wave-like systems possessing complex physical processes
such as nonlinear waves, turbulence, sediment transport etc. Nonlinear
waves exhibit rich and complex characteristics (superposition does not
hold, sensitive dependence on initial conditions, discontinuous solutions,
etc.) that are not present in the linear waves, and pose additional challenges
to the patch grid geometry and to the accuracy, stability and consistency
of the patch schemes. First, as a prototype of nonlinear waves, Chapter 4
explores the multiscale patch scheme simulation of laminar viscous shallow
water flows. Specifically, Chapter 4 shows that the staggered patch schemes
accurately simulate the macroscale dynamics of viscous shallow water
flows, using the PDEs derived by Roberts and Li (2006) as the microscale
model within the patches. The nonlinearity in these viscous shallow water
flows is primarily due to the advection and the height-dependent bed
drag. Roberts and Li (2006) demonstrate the utility of their derived viscous
shallow water PDEs for various thin-fluid flows such as drop formation on
cylindrical fibres, wave transitions, three-dimensional instabilities, Faraday
waves, viscous hydraulic jumps, flow vortices in a compound channel and
flow down and up a step.

Sections 4.1.2 and 4.1.3 derive a discrete full-domain microscale model
and a generic staggered patch scheme respectively, corresponding to the
viscous shallow water PDEs. Section 4.2 shows that the developed five
staggered patch schemes are accurate for viscous shallow water flows
by comparing the eigenvalues of the staggered patch schemes with the
eigenvalues of the full-domain microscale model. Sections 4.2.1 to 4.2.5
derives the eigenvalues of the viscous shallow water PDEs, full-domain
microscale model, and that of the staggered patch schemes. Section 4.2.6
illustrates the structure of the patch scheme eigenvalues in the complex
plane and explains the corresponding dynamical modes via eigenvector
plots.
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For the linear waves, due to superposition, it is sufficient to study
the stability, accuracy and consistency for one initial condition. Due to
nonlinearity in the viscous shallow water flows, Chapter 4 establishes the
stability, accuracy and consistency of the staggered patch schemes for a
range of linearisation points (i.e., different mean flows). The eigenvalue
analysis in §4.2.6 visually demonstrates the accuracy (in the complex plane
eigenvalue plots) for a representative subset of the physical parameters
and grid parameters. Section 4.5 on the consistency of the patch schemes
establishes the accuracy over a wider range of parameters. Section 4.3
shows that the staggered patch schemes are not sensitive to numerical
roundoff errors for viscous shallow water flows.

In contrast to the general linear wave in Chapter 3, the viscous shallow
water flows have inherent physical instability. Hence, a good patch scheme
must be stable as well as unstable in correspondence to the physical system
depending upon the physical parameters (Reynolds number, mean flow),
but without any additional/artificial instability. Section 4.4 shows that the
staggered patch schemes do not have any artificial instability for appropri-
ate patch grids and explores the dependence of the patch scheme stability
on various aspects like grid symmetry, physical parameters, and grid pa-
rameters. Section 4.5 shows that the staggered patch schemes are consistent
with the given microscale model for increasingly finer patch grids. Sec-
tion 4.7 quantifies and demonstrates the large computational savings of
the staggered patch schemes for viscous shallow water flows. Section 4.7.5
demonstrates the accuracy and effectiveness of the patch schemes via time
simulation of a viscous roll wave. Section 4.7.6 establishes the accuracy
of the staggered patch scheme time simulations more quantitatively and
explains some subtle details of the practical issues in the patch scheme
simulations.

Nonlinear models are essential in the accurate simulation of environ-
mental water waves and also for their pressure-based underwater mea-
surements (e.g., Constantin 2017). As the second prototype of nonlinear
waves, Chapter 5 explores the multiscale patch scheme simulation of highly
nonlinear turbulent shallow water flows using the PDEs derived by Cao
and Roberts (2016) as the microscale model within the patches. There is
a significant increase in the physical complexity of the turbulent shallow
water PDEs of Cao and Roberts (2016), compared to the viscous shallow
water PDEs of Roberts and Li (2006) in Chapter 4. The viscous shallow
water PDEs of Roberts and Li (2006) have only relatively weak nonlinearity
primarily due to the advection and the height dependent bed drag. But in
the turbulent shallow water PDEs, due to the rate dependent eddy viscosity,
the strong nonlinearity arises in almost all terms. This strong nonlinearity
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and the increased physical complexity in the turbulent shallow water flows pose
even more challenges for the development of the multiscale patch schemes.
For example, for viscous shallow water flows the minimal six sub-patch
micro-grid intervals are generally sufficient, but turbulent shallow water
flows require a minimum of ten sub-patch micro-grid intervals to avoid
artificial instabilities for many parameter combinations. Unlike viscous
shallow water flows, turbulent shallow water flows exhibit steeper dis-
continuities in solution (e.g., steeper roll waves) and stronger physical
instabilities. Such issues lead to more pronounced artificial instabilities of
the patch schemes, requiring more careful choices for the patch grid param-
eters. Chapter 5 establishes that the patch schemes accurately simulate the
macroscale dynamics of turbulent shallow water flows for appropriate grid
parameters.

Section 5.1 derives a discrete full-domain microscale model and a
generic staggered patch scheme corresponding to the turbulent shallow
water PDEs. Section 5.2 shows that the developed five staggered patch
schemes are accurate for turbulent shallow water flows by comparing the
eigenvalues of the staggered patch schemes with the eigenvalues of the
full-domain microscale model. Sections 5.2.1 to 5.2.3 derive the eigenvalues
of the turbulent shallow water PDEs, full-domain microscale model, and
that of the staggered patch schemes respectively. Section 5.2.4 illustrates
the structure of the patch scheme eigenvalues in the complex plane and
explains the corresponding dynamical modes via eigenvector plots. The
eigenvalue analysis in §5.2.4 visually demonstrates the accuracy (in the
complex plane eigenvalue plots) for a representative subset of the physical
parameters and grid parameters. Section 5.4 on the consistency of the patch
schemes establishes the accuracy over a wider range of parameters. Sec-
tion 5.3 shows that the staggered patch schemes do not have any artificial
instability for appropriate patch grids and explores the dependence of the
patch scheme stability on various aspects like grid symmetry, physical pa-
rameters, and grid parameters. Section 5.4 shows that the staggered patch
schemes are consistent with the given microscale model for increasingly
finer patch grids. Section 5.5 demonstrates the accuracy and effectiveness
of the patch schemes via time simulation of a turbulent roll wave.

Chapter 6 presents the conclusive summary and discusses the further
research directions. Section 6.1 concludes with some key details that the
developed multiscale staggered patch schemes enable accurate large-scale
simulation of wave-like systems. Section 6.2 lists several impactful further
research directions.



Chapter 2

Extend staggered grids to
multiscale modelling

The numerical schemes for wave-like systems with negligible dissipation
are often inaccurate and unstable due to truncation errors and numerical
roundoff errors. Hence, numerical simulations of wave-like systems that
ignore these numerical issues often fail to represent the physical character-
istics of wave phenomena. This challenge gets even more intricate for the
multiscale patch schemes, especially in multiple dimensions. The recent
works of Cao and Roberts (2013, 2015) extend the patch scheme to 1D
wave-like systems using staggered grids (§2.1 explains the staggered grids).
This PhD thesis develops the equation-free multiscale staggered patch schemes
for 2D wave-like systems (small dissipation) and explores the schemes more
thoroughly.

Section 2.1 first introduces one of the common strategies used in full-
domain numerical simulation of wave-like systems known as the staggered
grid that gives accurate and robust numerical schemes for wave-like sys-
tems. Section 2.1 then extends the full-domain concept of staggered grids
to multiscale modelling. We expect most characteristics of a staggered grid
also hold for the multiscale wave-like simulations, which is established for
three different wave-like systems each in separate subsequent chapters.

As §2.1.2 explains, a patch scheme’s patch coupling provides a two-way
connection between two scales: from microscale within patches to macro-
scale over the domain, and from macroscale to microscale. Section 2.2
explains two kinds of patch coupling which lead to two families of stag-
gered patch schemes: a spectral patch scheme, and four polynomial patch
schemes.

11
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2.1 Staggered patches of staggered micro-grid for
multiscale modelling

Section 2.1.1 introduces one of the common strategies used in full-domain
numerical simulation of wave-like systems known as the staggered grid
that gives accurate and robust numerical schemes for wave-like systems.

Section 2.1.2 explains how our research extends the full-domain concept
of staggered grids to multiscale modelling, using staggered patches of a
staggered “micro-grid” (fine microscale grid within the patches).

The discussion in §2.1.2 is for systems with only first-order derivatives
in their governing equations. Section 2.1.3 explains extending the staggered
grid to multiscale modelling for systems with higher order derivatives in
their governing equations.

2.1.1 Staggered grids are best for full-domain waves-like
systems

For wave-like (near Hamiltonian) systems with little or no dissipation,
accurate numerical simulation is challenging for the usual full-domain
numerical simulation itself, especially over long time, which gets even
more intricate for the multiscale modelling. The numerical schemes for
wave-like systems with negligible dissipation are often inaccurate and
unstable due to numerical dissipation and numerical dispersion caused by
truncation and numerical roundoff errors (Hinch 2020, p.136; Zikanov 2010,
pp. 70–73; Anderson 1995, pp. 232–243). Hence, numerical simulations
of wave-like systems without proper handling of these numerical issues
often fail to represent the physical characteristics of wave phenomena. This
subsection introduces one of the common strategies used in full-domain
numerical simulation of wave-like systems known as the staggered grid
which gives accurate and robust numerical schemes for wave-like systems.

Consider a generic 2D wave-like system over the macroscale periodic
spatial domain [0, L] × [0, L]. Such systems in terms of h(x, y, t), u(x, y, t)
and v(x, y, t) are modelled as non-dimensional PDEs,

∂h

∂t
= −

∂u

∂x
−

∂v

∂y
+ f0(h, u, v), (2.1.1a)

∂u

∂t
= −

∂h

∂x
+ f1(h, u, v), (2.1.1b)

∂v

∂t
= −

∂h

∂y
+ f2(h, u, v), (2.1.1c)
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Figure 2.1.1. Schematic of the full-
domain microscale staggered grid where
variables are simulated only on stag-
gered/alternating discrete points, nodes,
• h for height, • u, • v for horizontal ve-
locities along x and y directions respec-
tively. Here we draw n = 6 grid inter-
vals in the green grid, both in x and y

directions. Transparent filled circles on
the boundaries indicate the discrete n-
periodic boundary values.
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with the boundary conditions that the three non-dimensional fields h, u,
and v are L-periodic in both x and y, and an appropriate initial condi-
tion h(x, y, 0), u(x, y, 0), and v(x, y, 0). In the generic wave PDEs (2.1.1), the
explicitly written terms (excluding the functions fm) models the essence
of wave phenomena. The functions fm in PDEs (2.1.1) indicate other
application-specific terms, potentially nonlinear and/or involving higher
derivatives. The functions fm could model additional physics in addition
to the wave phenomena, such as bed drag, viscous/turbulent diffusion
and surface tension. In the generic wave PDEs (2.1.1), dropping the addi-
tional terms denoted by fm gives the PDEs for ideal wave. The dependent
variables in PDEs (2.1.1) let us interpret the PDEs as a model of water wave
with h as height and u, v as horizontal velocities along x and y directions
respectively. But it is a generic model of many 2D wave phenomena.

In staggered grids, the state variables are interspersed at alternate discrete
points (nodes) where green grid lines intersect. For example, in Fig. 2.1.1,
the h, u nodes are horizontally alternating and the h, v nodes are vertically
alternating. In contrast, the usual collocated grids, store all state variables at
each and every discrete point. In the classification of Arakawa and Lamb
(1977, Fig. 3, p.181), these collocated and staggered grids are A-grid and C-
grid respectively. The staggered grid was first used in the Marker and Cell
(MAC) method of Harlow and Welch (1965). The staggered grids were later
used in the SIMPLE (Semi Implicit Method for Pressure Linked Equations)
method of Patankar and Spalding (1972) and many others. For wave-
like systems, staggered grids such as depicted in Fig. 2.1.1 lead to higher
accuracy compared to that of a same-order scheme in collocated grids.
Staggered grids preserve much of the wave characteristics (Fornberg and
Ghrist 1999, Figs. 8 and 9; Fornberg 1990). Even though a central difference
scheme on a collocated grid gives a second-order accuracy, the same second-
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order accurate central difference scheme on a staggered grid is significantly
less dispersive (Lauritzen et al. 2011, p. 46, §3.2; Ólafsson and Bao 2021,
p. 55, §2.2.1). Also, the group velocity of the energy propagation in the
numerical waves on a staggered grid is in the correct direction. Whereas
for collocated grid schemes the group velocities for large wavenumbers are
in the opposite direction to that of the correct solution (Lauritzen et al. 2011,
p. 46, §3.2; Ólafsson and Bao 2021, p. 55, §2.2.1). Hence, staggered grids
(e.g., Fig. 2.1.1) are simple and robust for full-domain numerical simulation
of waves.

Figure 2.1.1 depicts a full-domain microscale staggered grid over the
square domain [0, L]× [0, L], with microscale grid interval δ, for illustration
shown with a very small number of grid intervals n = 6. Approximating
the spatial derivatives in the generic wave PDEs (2.1.1) by central finite
differences on the nodes (filled circles) in Fig. 2.1.1, gives the full-domain
microscale model corresponding to the generic wave-like system (2.1.1)

• dhi,j

dt
= −

ui+1,j − ui−1,j

2δ
−

vi,j+1 − vi,j−1

2δ
+ fµ0,i,j (2.1.2a)

for i, j ∈ {0, 2, 4, . . . , n− 2} ,

• dui,j

dt
= −

hi+1,j − hi−1,j

2δ
+ fµ1,i,j (2.1.2b)

for i ∈ {1, 3, 5, . . . , n− 1} , j ∈ {0, 2, 4, . . . , n− 2} ,

• dvi,j

dt
= −

hi,j+1 − hi,j−1

2δ
+ fµ2,i,j (2.1.2c)

for i ∈ {0, 2, 4, . . . , n− 2} , j ∈ {1, 3, 5, . . . , n− 1} .

Analogous to the PDEs (2.1.1), the three fields h, u, v are n-periodic in both
i and j where n = L/δ, with an appropriate initial condition hi,j(0), ui,j(0),
and vi,j(0). The terms fµm,i,j indicate full-domain discretisation of the addi-
tional application-specific terms fm in the PDEs (2.1.1). The coloured bullets
•, •, • in the full-domain microscale model (2.1.2) indicate respectively the
h, u, and v nodes.

The PDEs (2.1.1) inspire the microscale computational model (2.1.2).
Hence occasionally we aim to compare the characteristics of the staggered
patch scheme and full-domain microscale model with the characteristics
of the PDEs. But, it is the microscale computational model that the staggered
patch scheme seeks to predict accurately, not the solutions of the PDEs. Thus, how
well the full-domain microscale model (2.1.2) predicts the solutions of the
PDEs (2.1.1) is peripheral in this study.



§2.1 Staggered patches of staggered micro-grid for multiscale modelling 15

Arranging the state variables of (2.1.2) that are defined over the stag-
gered grid in Fig. 2.1.1, into a vector gives the state vector of the full-domain
microscale model

x = ( h0,0, h0,2, h0,4, . . . , h2,0, h2,2, h2,4, . . . ,

. . . , u1,0, u1,2, u1,4, . . . , u3,0, u3,2, u3,4, . . . , (2.1.3)

. . . , v0,1, v0,3, v0,5, . . . , v2,1, v2,3, v2,5, . . . ) .

For a full-domain staggered grid with n× n micro-grid intervals, the size
of x is 3n2/4. For example, for the staggered grid in Fig. 2.1.1 with n = 6, the
state vector has 27 elements. In terms of the state vector x, the full-domain
microscale model (2.1.2) is represented as a dynamical system by the ODEs

dx

dt
= f (x) , (2.1.4)

where the microscale model f is a vector function encapsulating the same
finite difference discrete model as (2.1.2) for the generic wave-like sys-
tem (2.1.1). The components of f (x) in ODEs (2.1.4) are the same as the
RHS of the explicit ODEs (2.1.2), just listed in the index-order of the state
vector x (2.1.3).

A full-domain microscale simulation is performed by numerical time-
integration of the ODEs (2.1.2) on the nodes (filled circles in Fig. 2.1.1) of
the full-domain microscale grid.

All the time simulations for this thesis (both the full-domain microscale
model and the staggered patch scheme) are performed using the ODE inte-
grator BS3 provided by DifferentialEquations.jl package (Rackauckas
and Nie 2017) in the Julia programming language (Bezanson et al. 2017).
BS3 is a non-stiff ODE integrator based on Bogacki–Shampine (2, 3) pair,
similar to ode23 of MATLAB (DifferentialEquations.jl 2021; L. F. Shampine
and Reichelt 1997). We chose BS3 after a detailed exploration of various
ODE solvers based on the accuracy and computation speed. We find that
various higher order ODE integrators take significantly longer computa-
tional time yet provide only a small improvement in the time solutions.
We use relative and absolute error tolerances of respectively 10−3, 10−6 for
all time simulations using the BS3 ODE integrator; higher error tolerances
only increase the computational time with only negligible change in the
computed solution.

2.1.2 Extend the staggered grid to multiscale patch scheme

This subsection explains how our research extends the full-domain concept
of staggered grids to multiscale modelling, using staggered patches of a
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Figure 2.1.2. Usual (collocated) patch grid, filled circles represent interior
nodes and unfilled circles represent edge nodes that are computed by patch
coupling (compute macroscale patch values, and compute microscale edge
values). Patches are enlarged here for visual clarity, in practice patch size l

is a few orders of magnitude smaller than the inter-patch distance ∆; δ is
sub-patch microscale grid interval.

∆ ∼ 103 m

l ∼ 10−3 m
δ

staggered “micro-grid” (fine microscale grid within the patches). We expect
most characteristics of the full-domain staggered grid also hold for the
multiscale staggered patch grid for the multiscale modelling of wave-like
systems and also for any other multiscale modelling in general. But the
particular focus of this thesis is on staggered patch schemes for accurate
simulation of wave-like systems.

We adapt the usual (collocated) patch scheme for the dissipative systems
(Fig. 2.1.2) to wave-like systems by appropriately incorporating the essential
“wave-friendly” features of the staggered grids (§2.1.1). Fig. 2.1.2 shows the
usual (collocated) patch grid, a non-staggered grid, with square patches.
The following list defines the parameters for both collocated and staggered
patch grids containing square patches over the square domain.

• Number of macro-grid intervals N is the number of violet grid intervals
in the periodic domain x- and y-directions. In the rest of this thesis,
for brevity, the “a patch grid with N macro-grid intervals” means “a
patch grid with N macro-grid intervals in the x- and y-directions”,
similarly for the other following parameters ∆, l, r, and n.

• Inter-patch distance ∆ is the distance between two adjacent patch cen-
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Figure 2.1.3. Possible micro-grids and the chosen staggered patch grid
(patch size l, inter-patch distance ∆, sub-patch microscale grid interval δ).
The nodes use the same colour coding as the full-domain microscale stag-
gered grid in Fig. 2.1.1: • h for height, • u, • v for horizontal velocities along
x and y directions respectively.

(a) All 16 possible staggered micro-
grids compatible for PDEs of wave-
like systems (2.1.2). The names in-
dicate edge node type.

hhhh

hhhv

hhvh

hhvv

huhh

huhv

huvh

huvv

uhhh

uhhv

uhvh

uhvv

uuhh

uuhv

uuvh

uuvv

(b) Chosen staggered patch grid uses
micro-grids uuvv, hhvv and uuhh, for sta-
ble and accurate patch schemes with min-
imal computational effort.

δ

∆

∆l

tres (size of the violet grid intervals) in x- and y-directions (uniformly
spaced patches over a square domain is our focus).

• Patch size l is the side length of the square patch in x- and y-directions.

• Patch scale ratio r = l/(2∆) quantifies the ratio of the simulated to
the unsimulated space for each spatial dimension in a rectangular
simulation domain.

• Number of sub-patch micro-grid intervals n is the number of green grid
intervals within a patch in x- and y-directions.

• Sub-patch micro-grid interval δ is the distance between two adjacent
micro-grid nodes (size of the green grid intervals) in x- and y-directions
(uniformly spaced micro-grid nodes over a square patch is our focus).

In a patch scheme, at each time step, the edge values (by coupling
the patches) and the interior node initial values (from previous time step)
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are known. Given the edge values and the interior values at the current
time step, an ODE integrator such as BS3 of DifferentialEquations.jl
(Rackauckas and Nie 2017), computes the interior values at the next time
step by computing time derivatives from the governing ODEs (2.1.2). In an
usual patch scheme over the collocated patch grid, constructing and using
a micro-grid within a patch is straightforward as there is only one way
to arrange patch edge nodes, as depicted in Fig. 2.1.2. But when we use
a staggered grid (depicted in Fig. 2.1.1) as the micro-grid within a patch,
the heterogeneous nodes lead to different arrangements of the patch edge
nodes. To have all the necessary edge nodes for calculating the required
spatial derivatives at all the interior nodes for wave-like systems using
ODEs (2.1.2), a total of 16 different kinds of micro-grid are possible within a
2D patch (Fig. 2.1.3a). We denote each micro-grid by the type of nodes on
left, right, bottom and top edges respectively. For example, as illustrated in
the left-bottom of Fig. 2.1.3a, uuvv means that the micro-grid has u-edge
nodes on the left and right edges, and v-edge nodes on the bottom and top
edge nodes. Among the 16 possible types, only three patch micro-grids
uuvv, hhvv and uuhh (green highlighted in Fig. 2.1.3a) have a node at the
centre of the patch, these types of patches are called h-centred, u-centred and
v-centred patches respectively.

Consider a possible 2D staggered patch grid to be designed, comprising
the cells (orange squares in Fig. 2.1.3b) each containing 2× 2 = 4 patches
(purple squares in Fig. 2.1.3b). Each of the four patches within a cell could
be either empty or contain one of the 16 possible micro-grids of Fig. 2.1.3a.
Thus the total number of possible 2D staggered patch grids (in a 2× 2 cell
configuration) is (16+ 1)4 − 1 = 83 520, excluding the all-empty case.

We define a staggered patch grid to be geometrically compatible when the
patches have all the necessary edge nodes to calculate spatial derivatives
of all the interior nodes using the governing ODEs (2.1.2). For example,
the uhvv micro-grid (second in the bottom row of Fig. 2.1.3a) would not
be compatible if the right edge contains v-nodes instead of h-nodes, as the
h-nodes are necessary on the right edge to compute ∂h/∂x on the right
most interior u-nodes.

Whereas all the possible 83 520 staggered patch grids are geometrically
compatible 2D discretisations for simulating multiscale wave physics, most
of them constitute unstable patch schemes (§3.5.1). As discussed in §3.5.1,
patch grids containing any sub-patch micro-grid without a centre node
(i.e., micro-grids other than the green highlighted ones in Fig. 2.1.3a), lead
to unstable patch schemes. Among the staggered patch grids that have a
centre node in each of the patches, from the stability analysis we found
only two staggered patch grids over which the staggered patch schemes are
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stable, they are plotted in Figs. 2.1.3b and 3.5.1b. From the two staggered
patch grids that constitute stable patch schemes, we find the staggered
patch grid depicted in Fig. 2.1.3b to be the best in terms of computational
effort and accuracy (§3.5.1 discusses the details). Except §3.5.1, which
discusses the choosing of the patch grid in Fig. 2.1.3b, all other discussions
in this thesis are based on the staggered patch grid in Fig. 2.1.3b, with one
or more layers of edge nodes (§2.1.3).

The chosen staggered patch grid in Fig. 2.1.3b, in addition to having the
reflective symmetry, also has self-similarity among the micro- and macro-
scales: just as •-• and •-• nodes are staggered (alternating) along the x- and
y-directions (horizontal and vertical in Fig. 2.1.3b) within the micro-grid,
•-• and •-• centred patches are staggered for the macroscale.

Fig. 2.1.4 illustrates the following three kinds of indices we use to iden-
tify the patches and sub-patch micro-grid nodes in Fig. 2.1.3b:

• the pair I, J ∈ {0, 1, . . . , N− 1} is the global (macroscale) patch index;

• the pair p, q with p= Imod 2 , q= Jmod 2, is the local (macroscale) sub-
cell patch index, that is, p, q ∈ {0, 1} within each macro-cell (orange
squares in Fig. 2.1.4b);

• (i, j) is the sub-patch micro-grid node index with i, j ∈ {1, . . . , n − 1}

for interior nodes (filled circles • , • , • in Figs. 2.1.4a and 2.1.5a) and
i, j ∈ {0, n} for patch edge nodes (unfilled circles ◦ , ◦ , ◦ in Figs. 2.1.4a
and 2.1.5a).

Using the microscale model (2.1.2) within the patches in a staggered
patch grid (Fig. 2.1.3b) with N macro-grid intervals (i.e., total of N/2 ×
N/2 macro-cells with each macro-cell containing 3 patches h-centred, u-
centred and v-centred), where each patch consists of n sub-patch micro-grid
intervals (e.g., Fig. 2.1.3b shows a staggered patch grid with n = 6), gives
the staggered patch scheme for the microscale model (2.1.2) of a generic wave-
like system as

• d

dt
hI,J
i,j (t) = −

uI,J
i+1,j − uI,J

i−1,j

2δ
−

vI,Ji,j+1 − vI,Ji,j−1

2δ
+ fp0,i,j(h, u, v) ,

(2.1.5a)
i ∈ {1, 3, 5, . . . , n− 1} , j ∈ {1, 3, 5, . . . , n− 1} for p = 0 , q = 0 ,
i ∈ {1, 3, 5, . . . , n− 1} , j ∈ {2, 4, . . . , n− 2} for p = 0 , q = 1 ,
i ∈ {2, 4, . . . , n− 2} , j ∈ {1, 3, 5, . . . , n− 1} for p = 1 , q = 0 ,

• d

dt
uI,J
i,j (t) = −

hI,J
i+1,j − hI,J

i−1,j

2δ
+ fp1,i,j(h, u, v) , (2.1.5b)



Chapter 2. Extend staggered grids to multiscale modelling 20

Figure 2.1.4. Index convention for the staggered patch grid with N = 6

macro-grid intervals in the violet grid, containing staggered patches of
staggered micro-grids with n = 6 micro-grid intervals in the green grid.

(a) Sub-patch micro-grid node in-
dex i, j ∈ {1, 2, . . . , n − 1} for the inte-
rior nodes (filled circles •, •, •) and
i, j ∈ {0, n} for patch edge nodes (un-
filled circles ◦, ◦, ◦).
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(b) Global (macroscale) patch in-
dex I, J ∈ {0, 1, . . . , N− 1}; local sub-cell
patch index p, q ∈ {0, 1} within each
macro-cell (orange squares).
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i ∈ {2, 4, . . . , n− 2} , j ∈ {1, 3, 5, . . . , n− 1} for p = 0 , q = 0 ,
i ∈ {2, 4, . . . , n− 2} , j ∈ {2, 4, . . . , n− 2} for p = 0 , q = 1 ,
i ∈ {1, 3, 5, . . . , n− 1} , j ∈ {1, 3, 5, . . . , n− 1} for p = 1 , q = 0 ,

• d

dt
vI,Ji,j (t) = −

hI,J
i,j+1 − hI,J

i,j−1

2δ
+ fp2,i,j(h, u, v) , (2.1.5c)

i ∈ {1, 3, 5, . . . , n− 1} , j ∈ {2, 4, . . . , n− 2} for p = 0 , q = 0 ,
i ∈ {1, 3, 5, . . . , n− 1} , j ∈ {1, 3, 5, . . . , n− 1} for p = 0 , q = 1 ,
i ∈ {2, 4, . . . , n− 2} , j ∈ {2, 4, . . . , n− 2} for p = 1 , q = 0 ,

and a patch coupling (e.g., Square-p4) to compute the edge values
◦hI,J

i,j , ◦uI,J
i,j , ◦ vI,Ji,j for

i ∈ {0, n}, j ∈ {1, 2, . . . , n− 1} for left and right edges and
i ∈ {1, 2, . . . , n− 1}, j ∈ {0, n} for bottom and top edges, (2.1.5d)

I ∈ {0, 2, 4, . . . , N− 2} for h, v, I ∈ {1, 3, 5, . . . , N− 1} for u,
J ∈ {0, 2, 4, . . . , N− 2} for h, u, J ∈ {1, 3, 5, . . . , N− 1} for v.

Analogous to the full-domain microscale model (2.1.2), the three fields h, u,
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v are macroscale N-periodic in both I and J where N = L/∆, with an appro-
priate initial condition hI,J

i,j (0), u
I,J
i,j (0), and vI,Ji,j (0). The functions fpm,i,j indi-

cate patch grid discretisation of the additional application-specific terms
corresponding to the terms fµm,i,j in the full-domain microscale model (2.1.2).
A specific patch coupling method computes patch edge nodes (◦hI,J

i,j , ◦uI,J
i,j ,

◦ vI,Ji,j in Fig. 2.1.5a) from the interior nodes of the neighbouring patches
(•hI,J

i,j , •uI,J
i,j , • vI,Ji,j with i = j = n/2 in Fig. 2.1.5a), and provides the mecha-

nism whereby patches influence each other. Section 2.2 discusses details of
different patch coupling.

Arranging the patch interior values of (2.1.5), which are over the stag-
gered patch grid in Fig. 2.1.4, into a vector gives the state vector xI of the
staggered patch scheme, which is a dynamic state variable evolving in
time. The superscript ( · )I is not an index or exponent, instead, a qualifier
denoting the patch interior nodes. The general form of a staggered patch
scheme state vector xI of size nI

p containing all the interior values of all the
patches is,

xI =
(
h0,0
1,1, h

0,0
1,3, . . . , u

0,0
2,1, u

0,0
2,3, . . . , v

0,0
1,2, v

0,0
1,4, . . . ,

h0,1
1,2, h

0,1
1,4, . . . , u

0,1
2,2, u

0,1
2,4, . . . , v

0,1
1,1, v

0,1
1,3, . . . ,

h0,2
1,1, h

0,2
1,3, . . . , u

0,2
2,1, u

0,2
2,3, . . . , v

0,2
1,2, v

0,2
1,4, . . . ,

h1,0
2,1, h

1,0
2,3, . . . , u

1,0
1,1, u

1,0
1,3, . . . , v

1,0
2,2, v

1,0
2,4, . . . ,

h1,2
2,1, h

1,2
2,3, . . . , u

1,2
1,1, u

1,2
1,3, . . . , v

1,2
2,2, v

1,2
2,4, . . . ,

h0,2
1,1, h

0,2
1,3, . . . , u

0,2
2,1, u

0,2
2,3, . . . , v

0,2
1,2, v

0,2
1,4, . . .

)
.

(2.1.6)

The total number of patch interior nodes, that is the size of the state vec-
tor xI,

nI
p = (N2/4)(9n2/4− 4n+ 2) , (2.1.7)

where N is the number of macro-grid intervals and n is the number of
sub-patch micro-grid intervals. For example, for N = 6, 10, 14, 18, 22, 26

macro-grid intervals with n = 6 sub-patch micro-grid intervals, nI
p =

531, 1475, 2891, 4779, 7139, 9971 respectively.
Arranging the patch edge values of (2.1.5) with i, j ∈ {0, n} (Fig. 2.1.4)

into a vector gives the edge vector xE of size nE
p containing all the edge

values of all the patches. The edge vector xE is computed by the patch
coupling xE(xI) of a particular patch scheme. The expressions (3.2.14) of
§3.2.3 are some examples of the elements of the edge vector xE. For the



Chapter 2. Extend staggered grids to multiscale modelling 22

general linear wave with drag and viscous diffusion (i.e., with second-
order spatial derivatives), a staggered patch grid needs two layers of edge
nodes in the normal direction to the edges (§2.1.3) as in Fig. 2.1.5a. For the
staggered patch grid in Fig. 2.1.5a, the total number of patch edge nodes,
that is the size of the edge vector xE,

nE
p = (N2/4)(18n− 16) , (2.1.8)

where N is the number of macro-grid intervals and n is the number of
sub-patch micro-grid intervals. For example, for the staggered patch grid
in Fig. 2.1.5a with N = 6, 10, 14, 18, 22, 26 and n = 6, nE

p = 828, 2300, 4508,

7452, 11132, 15548 respectively.
In terms of the state vector xI and the edge vector xE, the staggered

patch scheme (2.1.5) is represented as a dynamical system by the ODEs

dxI

dt
= F

(
xI; xE(xI)

)
. (2.1.9)

The F
(
xI; xE(xI)

)
in the staggered patch scheme dynamical system (2.1.9)

corresponds to the f (x) in the full-domain microscale model (2.1.4). The
functions F and f encode the same microscale model for the generic wave-
like system (2.1.1), except for the following difference:

• the only argument of f is the nodal values x in the full-domain micro-
scale grid;

• the two arguments of F are the patch interior values xI and the patch
edge values xE in the staggered patch grid.

The ODEs (2.1.9) of the patch scheme represent a reduced-order approxi-
mation of the ODEs (2.1.4) of full domain microscale model. The expres-
sion (3.7.1) (p. 134 of §3.7.2) gives the ratio of the dimension of xI (2.1.9) to
the dimension of x (2.1.4).

Patch scheme simulation is performed by numerical time-integration
of the ODEs (2.1.5) on the interior nodes of the patch grid (filled circles
in Fig. 2.1.3b). Evaluating the time derivatives in the staggered patch
scheme (2.1.5) is done in two steps:

1. Macroscale patch coupling (§2.2) to compute the patch edge nodes
(unfilled circles in Fig. 2.1.5a);

2. Computing time derivative of the interior nodes (filled circles in
Fig. 2.1.5a) for the microscale model (2.1.2) using both interior and
edge values of the patches, which is expressed in complete detail by
the staggered patch scheme (2.1.5).
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Figure 2.1.5. Staggered patch grids with multi-layer edge nodes, for a given
number of sub-patch micro-grid intervals (n = 6 here), contain the same
number of interior nodes •hI,J

i,j , •uI,J
i,j , • vI,Ji,j for i, j ∈ {1, . . . , n − 1}. But the

number of edge values ◦hI,J
i,j , ◦uI,J

i,j , and ◦ vI,Ji,j depend on the number of
layers of edge nodes.

(a) Two layers of edge nodes in normal
direction to the edges, no edge nodes in
tangential direction to the edges (e.g., no
• node on corners of •-centred patch).

0

21

(b) Three layers of edge nodes in nor-
mal direction to the edges, one layer of
edge nodes in tangential direction to the
edges.

2 31

1

2.1.3 Multi-layer edge nodes for higher order spatial
derivatives

Section 2.1.2 explains extending the staggered grid to multiscale modelling
for systems with only first-order derivatives in their governing equations.
This subsection explains extending the staggered grid to multiscale mod-
elling for systems with higher order derivatives in their governing equa-
tions.

The patch grid in Fig. 2.1.3b is used for staggered patch scheme simula-
tions of an ideal wave (PDEs (2.1.1) with only the terms that are explicitly
written, that is, without the additional terms denoted by fm) and other
wave PDEs involving only first-order spatial derivatives. Finite difference
discrete approximations for higher order spatial derivatives (such as second
spatial derivative for viscous diffusion) use more surrounding nodes. More
surrounding nodes participating in the calculation of higher order spatial
derivatives is not an issue for most of the interior nodes, but the interior
nodes closest to the edges of a patch need values of nodes that lie outside
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the patches shown in Fig. 2.1.3b. We explored the following two cases of
handling this situation.

• We first used the staggered patch grid Fig. 2.1.3b also for calculat-
ing higher order spatial derivatives (e.g., second order derivative
for viscous diffusion); whenever the finite difference approximation
involves nodes outside the patch edges, we extrapolated the required
additional nodes using the nearest edge and interior nodes (we tried
constant values, linear and quadratic extrapolation). But such extrap-
olations make many variants of the staggered patch schemes unstable
(i.e., the solutions blow up in time).

• A second alternative is to append an additional layer of edge nodes to
the staggered patch grid as in Figs. 2.1.5a and 2.1.5b and calculate their
values at each iteration by macroscale patch coupling interpolation
(similar to how the edge nodes in Fig. 2.1.3b are calculated). Because
this way of calculating higher order spatial derivatives does not cause
any instability for the staggered patch scheme, we use multi-layer
edge nodes for the calculation of any higher order spatial derivatives
(e.g., computing second spatial derivatives of viscous diffusion).

Figure 2.1.5 shows two examples of staggered patch grids with addi-
tional layers of edge nodes compared to Fig. 2.1.3b (which has one layer
of edge nodes in the normal direction and no edge nodes in the tangential
direction to the edges).

1. Irrespective of the number of layers of the edge nodes, the staggered
patch grids contain the same number of interior nodes for a given
number of sub-patch micro-grid intervals (n = 6 in Fig. 2.1.5). That is,
the interior values are •hI,J

i,j , •uI,J
i,j , • vI,Ji,j for i, j ∈ {1, . . . , n− 1}.

2. Total number of edge nodes depends on the number of layers of the
edge nodes. For Fig. 2.1.5a with two layers of edge nodes in normal
direction to the edges and no edge nodes in tangential direction to
the edges, the left and right edge values are ◦hI,J

i,j , ◦uI,J
i,j , ◦ vI,Ji,j , for

i ∈ {−1, 0, n, n+ 1} and j ∈ {1, 2, . . . , n− 1}. Similarly the bottom and
top edge value indices are i ∈ {1, 2, . . . , n− 1} and j ∈ {−1, 0, n, n+ 1}.
For Fig. 2.1.5b with three layers of edge nodes in normal direction
to the edges and one layer of edge nodes in tangential direction to
the edges, the left and right edge values are ◦hI,J

i,j , ◦uI,J
i,j , ◦ vI,Ji,j , for

i ∈ {−2,−1, 0, n, n + 1, n + 2} and j ∈ {0, 1, 2, . . . , n − 1, n}. Similarly
the bottom and top edge value indices are i ∈ {0, 1, 2, . . . , n− 1, n} and
j ∈ {−2,−1, 0, n, n+ 1, n+ 2}.
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2.2 Patch coupling connects the scales

As explained in §2.1.2, a patch scheme simulation is performed in two
steps:

1. Macroscale patch coupling to compute the patch edge nodes;

2. Computing time derivative of the interior nodes from the microscale
model using both interior and edge values.

This section explains two kinds of patch coupling that lead to two families
of staggered patch schemes: a spectral patch scheme, and four polynomial
patch schemes. Section 2.2.1 details the method of patch coupling using the
global spectral interpolation for the spectral patch scheme. Section 2.2.2 de-
tails four methods of patch coupling using local polynomial interpolations
of different order for the polynomial patch schemes.

Computing patch edge values via patch coupling consists of two steps:

1. first, compute the macroscale patch value (a representative aggregate
value, also called amplitude or order parameter) for each patch from
their respective microscale interior values;

2. next, compute the microscale edge values of each patch by interpolat-
ing from the macroscale values of the neighbouring patches across
the relatively large inter-patch distances.

Thus, patch coupling provides a two-way connection between the micro-
scale and macroscale.

The staggered patch schemes that we design essentially provide a re-
duced order multiscale model of the given corresponding full-domain
microscale model, where the macroscale (aggregate) values of patches
are state variables in a slow manifold of reduced state space dimension
(Roberts 2003, §5.3, p. 302; Kevrekidis et al. 2004, p.1349; Zagaris et al. 2009;
Roberts 1988; Foias et al. 1988a; Lorenz 1986; Foias et al. 1988b; Temam
1990). The simple approach of taking the centre node value of a patch as
the macroscale value of that patch is adopted in this work. Whereas many
of the patch micro-grids in Fig. 2.1.3a do not have a node at their centre, all
three types of patches in the chosen staggered patch grid in Fig. 2.1.3b each
have one centre node—h, u or v node. So the simple approach of taking the
centre node value of a patch as the macroscale value is particularly suitable
for the chosen staggered patch grid (Fig. 2.1.3b). Hence we define the centre
values H, U, V as the macroscale (aggregate) values of respectively the h-,
u- and v-centred patches.
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We have three macroscale values H, U- and V per macro-cell, correspond-
ing to the h-, u- and v-centred patches within each macro-cell in the chosen
staggered patch grid (orange square Fig. 2.1.3b). Hence with N macro-grid
intervals in the domain, we have three N/2 × N/2 arrays of h, u, and v

macroscale values of all the patches in the staggered patch grid. Many
choices of multivariate interpolations could be used for the patch coupling
to compute the microscale patch edge values from the three N/2 × N/2

arrays of h, u, and v macroscale values.
We use global spectral interpolation in §2.2.1 and local polynomial

interpolations §2.2.2 for a family of staggered patch schemes.

2.2.1 Global spectral interpolation for patch coupling

For a staggered patch grid with N macro-grid intervals (N is even) across the
square domain, we have three N/2×N/2 arrays of H, U and U macroscale
values of all the patches, which are patch centre node values of h-, u- and
v-centred patches. The inter-patch distance, between patches with the same
centre nodes, is the same as the inter-cell distance 2∆, that is h-centred
patches are equally spaced among themselves and similarly the u- and v-
centred patches. Hence, the spectral patch scheme we describe in this section
uses the spectral interpolation to compute the microscale patch edge values
h, u, and v from the equispaced patch macroscale values h, u, and v.

This subsection illustrates spectral interpolation patch coupling for
calculating h edge values, the calculations of u and v edge values follow
the same procedure. Consider the 2D discrete Fourier transform (DFT) of
an N/2×N/2 array H containing h-patch aggregate values,

H̃kx,ky
= DFT(H) =

N/2∑
I,J=1

HI,J exp[− i(kx xI + ky yJ)] (2.2.1)

where the wavenumbers kx, ky ∈ {−(N/2− 1)/2, . . . , (N/2− 1)/2}.
The 2D inverse semi-discrete Fourier transform of the discrete Fourier

transform H̃ (N/2×N/2 array) gives a continuous function Ĥ(x, y), which is
the macroscale field at any arbitrary position (x, y). That is, the macroscale
variation of the microscale field h is,

Ĥ(x, y) = ISDFT(H̃) =
1

(N/2)2

∑
kx,ky

H̃kx,ky
exp[i(kx x+ ky y)] . (2.2.2)

When the size N/2 is even (e.g., the number of macro-grid intervals N is a
multiple of four), special handling is required due to the presence of the
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Algorithm 1 Patch coupling for •-nodes by global spectral interpolation

1: H← GETALLAGGREGATESTATES(‘h’) “N/2×N/2 array”
“Gets aggregate values of all the •-centred patches.”

2: H̃← FFT(H)

3: for all offsets (ξ, η) (w.r.t centre node of left-bottom •-centred patch), of
all • edge nodes of left-bottom •-centred patch do

4: H̃e
m,n = H̃ exp[i(kx,mξ+ ky,nη)] “N/2×N/2 array”

“Fourier shift of patch centre node values of all •-centred patches,
by • edge node offset (ξ, η).”

5: He = IFFT(H̃e) “N/2×N/2 array”
“Interpolated (ξ, η)-offset • edge value for all •-centred patches.”

6: Assign He to (ξ, η)-offset • edge node of all •-centred patches
7: end for

8: for all offsets (ξ, η) (w.r.t centre node of left-bottom •-centred patch), of
all • edge nodes of left-bottom •-centred patch do

9: H̃e
m,n = H̃ exp[i(kx,mξ+ ky,nη)]

10: He = IFFT(H̃e)

11: Assign He to (ξ, η)-offset • edge node of all •-centred patches
12: end for

13: for all offsets (ξ, η) (w.r.t centre node of left-bottom •-centred patch), of
all • edge nodes of left-bottom •-centred patch do

14: H̃e
m,n = H̃ exp[i(kx,mξ+ ky,nη)]

15: He = IFFT(H̃e)

16: Assign He to (ξ, η)-offset • edge node of all •-centred patches
17: end for

Nyquist frequency component—as we consider only even N where N/2 is
odd, that is, N ∈ {6, 10, 14, 18, . . .}, this is not an issue here.

The Fast Fourier transform FFT provides efficient calculation of the trans-
forms (2.2.1) and (2.2.2). Using FFT, one edge value of all the h/u/v-centred
patches (e.g., left-bottom h nodes of all u-centred patches in Fig. 2.1.3b),
are calculated in one pass (one FFT, Fourier shift and one inverse fast
Fourier transform IFFT) as in Algorithm 1. We use the left-bottom h/u/v-
centred patches as reference patches in Algorithm 1 for the edge node
offsets (Fourier shifts); but any patch with the same type of centre node as
the edge node being coupled could be used as the reference patch.

By capturing all the global information from wave components, spectral
interpolation achieves high accuracy (Bunder et al. 2020); but the spectral
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interpolation also imposes strict restrictions for its use such as equispaced
patches and periodic macroscale boundary conditions. On the other hand,
a local polynomial interpolation (§2.2.2) is more widely applicable for
non-uniform complex geometries and boundary conditions.

2.2.2 A family of local polynomial interpolations for patch
coupling

The requirements of spectral interpolation based patch coupling (namely,
equispaced patches and periodic macroscale boundary conditions) pose
restrictions for the practical use of patch schemes. Using 2D polynomial
interpolation in the patch coupling to compute patch edge values avoids
such restrictions. So, we developed four polynomial staggered patch schemes,
namely Square-p2, Square-p4, Square-p6, and Square-p8, whose patch
coupling is based on 2D Lagrangian polynomial interpolation over a near-
square region where the parameter p in the name is the interpolation
polynomial order. As opposed to the global spectral interpolation which
uses the macroscale values of all patches to interpolate the edge values of a
patch, local polynomial interpolation computes the edge values of a patch
using macroscale values of only its near neighbouring patches.

The neighbourhood of a patch, characterised by the interpolation stencil,
could be of different sizes leading to different order p of the interpolating
polynomial. For example, Fig. 2.2.1 shows one individual interpolation
stencil for each of the four polynomial staggered patch schemes, for in-
terpolating v edge values of h-, u-, v-centred patches, using macroscale
values of v-centred patches in the square stencil. Table 2.2.1 explains the
meaning of the visual elements in the stencil plots. Figs. 2.2.2 to 2.2.5 show
all the individual interpolation stencils (for coupling h/u/v edge values of
h/u/v-centred patches) for each of the four polynomial schemes. Each of
Figs. 2.2.2 to 2.2.5 shows the interpolation stencils for coupling h,u,v edge
values on left-right and bottom-top edge nodes of h-,u-,v-centred patches
in one cell.

• The square shape of the stencil is only in an approximate and qualita-
tive sense. But depending upon the type of edge nodes (h/u/v) being
interpolated and the type of the patch (h/u/v-centred) for which edge
nodes are interpolated, some of the individual stencils of a staggered
patch scheme take rectangular shape. For example, for all the four
polynomial staggered patch schemes in Fig. 2.2.1, all the left-most
stencils for interpolating the v edge nodes of h-centred patches take a
rectangular shape.
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Figure 2.2.1. Example interpolation stencils of the four polynomial stag-
gered patch schemes, for interpolating • node values on edges of •-, •-,
•-centred patches (indicated respectively by , , and ), using macroscale
values of •-centred patches (indicated by ) in the stencil.
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Table 2.2.1. Meaning of visual elements of interpolation stencil plots.
Figs. 2.2.2 to 2.2.5, each presents the interpolation stencils for comput-
ing the edge values of •-, •-, •-centred patches in one macro-cell illustrated

as . For example interpolating • node values on edges of •-, •-, •-centred
patches (indicated respectively by , , and ), uses macroscale values of
•-centred patches (indicated by ) in the stencil.

Edge node being interpolated
• edge nodes • edge nodes • edge nodes

For •-centred patch

For •-centred patch

For •-centred patch

Interpolating patches
•-centred patch •-centred patch •-centred patch

For • edge nodes

For • edge nodes

For • edge nodes

• All the four polynomial staggered patch schemes have roughly the
same square-shaped interpolation stencils, but differ in size and hence
have different polynomial interpolation orders p ∈ {2, 4, 6, 8}, indi-
cated respectively in their names by p2, p4, p6 and p8.

We define the polynomial interpolation order p as the maximum degree
of the variables in the 2D Lagrangian basis polynomials of all the interpola-
tion stencils of a staggered patch scheme. For example, for the Square-p2

staggered patch scheme the maximum degree of ξ, η in Tables 2.2.2 to 2.2.4
is two (Fig. 2.2.2 shows all the individual stencils), hence the polynomial
interpolation order p = 2. But the maximum degree of ξ, η is one in Ta-
ble 2.2.3 of the Square-p2 (for interpolating the • edge values of •-centred
patch). Thus, not all the individual stencils of a staggered patch scheme
have the same interpolation order. The maximum degree of ξ, η of indi-
vidual stencils of a staggered patch scheme is either p or p− 1, hence the
number of points in the interpolating stencils in ξ, η directions are either p
or p+ 1 as in Figs. 2.2.2 to 2.2.5.
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In realistic uses of the patch schemes, the patch size l is much smaller
than the inter-patch spacing ∆ (patch scale ratio r ≪ 1), hence we expect
that the stencil points (centre nodes of the interpolating patches) that lie on
the two coordinate lines passing through the current patch (whose edge
nodes are interpolated) are the dominant influence on the patch coupling
interpolation. In contrast to the square or rectangle stencils, using a few
different shaped stencil shapes such as a plus and cruciform shape, we
also found that patches that lie on a line perpendicular to the patch edge
being interpolated have a stronger influence on the patch coupling than the
patches that lie on a line parallel to the patch edge being interpolated. So
interpolation stencils with fewer stencil points such as a plus or cruciform
shape compared to the square or rectangle stencils could be a more efficient
alternative and may be worth investigating in the future.

We perform the standard bivariate Lagrange interpolation (e.g., Gupta
2019, §10.10; Jain et al. 2004, §3.6; Fletcher 2020, §10.1) in patch local coordi-
nate (ξ, η), using following coordinate transformation from global coordi-
nate (x, y),

ξ = (x− xI)/∆, (2.2.3a)
η = (y− yJ)/∆, (2.2.3b)

where, ∆ is inter-patch spacing and the patch local coordinate system
origin (xI, yJ) is the centre of the current patch (the patch whose edge
values are being interpolated). For example, Tables 2.2.2 to 2.2.4 show the
local coordinates of interpolation stencils of Square-p2 staggered patch
scheme, for coupling • edge nodes respectively for •-, •-, •-centred patches.

Let’s assign a stencil index S ∈ {0, 1, . . . , nS − 1} for each of the nS patches
in a polynomial patch coupling interpolation stencil (e.g., Tables 2.2.2
to 2.2.4). Let the stencil coordinate sets

X = {ξS : S = 0, 1, . . . , nS − 1}, (2.2.4a)
Y = {ηS : S = 0, 1, . . . , nS − 1}, (2.2.4b)

each contain the patch local coordinates ξS and ηS respectively of all the
stencil points (i.e., interpolating patch centres shown by in Fig. 2.2.1). All
the stencil points {(ξS, ηS) : S = 0, 1, . . . , nS − 1} = X × Y. The expressions
we use for the 2D Lagrangian basis polynomials for every stencil index S ∈
{0, 1, . . . , nS − 1} are

BS(ξ, η) =


 ∏

ξk∈X\{ξS}

ξ− ξk

ξS − ξk





 ∏

ηk∈Y\{ηS}

η− ηk

ηS − ηk


 . (2.2.5)
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Tables 2.2.2 to 2.2.4 illustrate the local coordinates, stencil indices and the
corresponding 2D Lagrangian basis polynomials (2.2.5) of the interpolation
stencils for Square-p2 staggered patch scheme, for coupling • edge nodes
respectively for •-, •-, •-centred patches. The Lagrangian basis polyno-
mials (2.2.5) are the standard 2D Lagrangian basis polynomials (Gupta
2019, §10.10; Jain et al. 2004, §3.6; Fletcher 2020, §10.1) but defined in terms
of the stencil index S, for a regular grid of points with a spacing of 2∆,
over the square or rectangular stencil. Section 2.2.2.1 discusses these basis
polynomials for the four polynomial staggered patch schemes.

In terms of the basis polynomials (2.2.5) and the known values fS, the
bivariate Lagrange interpolation polynomial, generic for the patch coupling
of all the four polynomial staggered patch schemes is

L(ξ, η) =

nS−1∑
S=0

BS(ξ, η) fS. (2.2.6)

Algorithm 2 shows the key steps in coupling the patches using bivariate
Lagrange interpolation polynomial (2.2.6).
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Figure 2.2.2. Stencils of Square-p2 scheme (maximum order of basis poly-
nomials p = 2), for interpolating h,u,v values on left-right and bottom-top
edge nodes of h-,u-,v-centred patches in one cell (orange square).
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Figure 2.2.3. Stencils of Square-p4 scheme (maximum order of basis poly-
nomials p = 4), for interpolating h,u,v values on left-right and bottom-top
edge nodes of h-,u-,v-centred patches in one cell (orange square).
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Figure 2.2.4. Stencils of Square-p6 scheme (maximum order of basis poly-
nomials p = 6), for interpolating h,u,v values on left-right and bottom-top
edge nodes of h-,u-,v-centred patches in one cell (orange square).
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Figure 2.2.5. Stencils of Square-p8 scheme (maximum order of basis poly-
nomials p = 8), for interpolating h,u,v values on left-right and bottom-top
edge nodes of h-,u-,v-centred patches in one cell (orange square).
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Algorithm 2 Patch coupling by 2D Lagrangian polynomial interpolation

1: stencil← <stencilName> “for example Stencil← ‘Cruciform2-p4’ ”

2: for all patch P in patch grid do
3: for all node type T in [‘h’, ‘u’, ‘v’] do “to interpolate •/•/• edge nodes”
4: for all edge side S in [‘left-right’, ‘bottom-top’] do
5: NbrsT,S ← GETNEIGHBOURPATCHES(P, stencil, T , S)

“For patch P, gets neighbouring T -centred patches within the speci-
fied stencil for interpolating S side edge nodes of type T .”

6: MacrosT,S ← GETSTENCILMACROSCALEVALUES(NbrsT,S)
“Gets macroscale values for all the patches in the set of neighbour-
ing patches NbrsT,S.”

7: L(ξ, η)← MAKEINTERPFUNCTION(NbrsT,S, MacrosT,S)
“Constructs 2D Lagrangian interpolating polynomial L (2.2.6) in
terms of the basis polynomials BS (2.2.5) for centre positions of the
stencil patches NbrsT,S and their macroscale values MacrosT,S.”

“L(ξ, η) interpolates T -node values at any input position ξ, η rela-
tive to the centre of patch P.”

8: for all edge node E of type T on the S side of patch P do
9: Compute position ξE, ηE of edge nodes

“Patch local coordinate relative to the centre of patch P, using
the coordinate transformation (2.2.3).”

10: Assign edge node E of type T with a value L(ξE, ηE)

11: end for
12: end for
13: end for
14: end for
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Table 2.2.2. 2D Lagrangian basis polynomials for Square-p2 patch coupling,
for interpolating • edge node values of •-centred patch (indicated by ).
Stencil index S ∈ {0, 1, . . . nS − 1=5}. Global coordinate (x, y) corresponds to
patch local coordinate (ξ, η) with origin (xI, yJ)

−8 −6 −4 −2 0 2 4 6 8

ξ = (x− xI,J)/∆

−8

−6

−4

−2

0

2

4

6

8

η
=

(y
−
y
I
,J
)/
∆

4

1

3 5

0 2

S Basis polynomials BS(ξ, η)

0 −ξ−2
4
· ξ
2
· η−1

2

1 ξ−2
2
· ξ+2

2
· η−1

2

2 −ξ
2
· ξ+2

4
· η−1

2

3 ξ−2
4
· ξ
2
· η+1

2

4 −ξ−2
2
· ξ+2

2
· η+1

2

5 ξ
2
· ξ+2

4
· η+1

2

Sum: 1
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Table 2.2.3. 2D Lagrangian basis polynomials for Square-p2 patch coupling,
for interpolating • edge node values of •-centred patch (indicated by ).
Stencil index S ∈ {0, 1, . . . nS − 1=3}. Global coordinate (x, y) corresponds to
patch local coordinate (ξ, η) with origin (xI, yJ)

−9 −7 −5 −3 −1 1 3 5 7

ξ = (x− xI,J)/∆

−8

−6

−4

−2

0

2

4

6

8

η
=

(y
−
y
I
,J
)/
∆

2 3

0 1

S Basis polynomials BS(ξ, η)

0 ξ−1
2
· η−1

2

1 −ξ+1
2
· η−1

2

2 −ξ−1
2
· η+1

2

3 ξ+1
2
· η+1

2

Sum: 1
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Table 2.2.4. 2D Lagrangian basis polynomials for Square-p2 patch coupling,
for interpolating • edge node values of •-centred patch (indicated by ).
Stencil index S ∈ {0, 1, . . . nS − 1=8}. Global coordinate (x, y) corresponds to
patch local coordinate (ξ, η) with origin (xI, yJ)

−8 −6 −4 −2 0 2 4 6 8

ξ = (x− xI,J)/∆
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−5

−3

−1
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6 8
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2.2.2.1 Comparison of patch coupling for the four polynomial
staggered patch schemes

Tables 2.2.5 to 2.2.8 list the leading order terms of the interpolation errors
L(ξ, η) − f(ξ, η) for a set of binomial terms as test function f respectively
for the four polynomial staggered patch schemes. As our definition of the
interpolation order p allows basis polynomials whose maximum degree is
p− 1 (e.g., Square-p2 staggered patch scheme has linear basis polynomials
in Table 2.2.3), hence a pth order staggered patch scheme has the inter-
polation error of O(ξp + ηp), which is evident in the interpolation errors
in Tables 2.2.5 to 2.2.8 for each of the four polynomial staggered patch
schemes.

As the basis polynomials (2.2.5) are the standard 2D Lagrangian basis
polynomials, the basis polynomials (2.2.5) possess all the properties of
the standard Lagrangian basis polynomials (Gupta 2019, §10.10; Jain et al.
2004, §3.6; Fletcher 2020, §10.1). Following are some of the key properties
of the Lagrangian basis polynomials (2.2.5) that are common to all the
four polynomial staggered patch schemes, namely Square-p2, Square-p4,
Square-p6, and Square-p8.

1. BS(ξT , ηT ) = 1 at the stencil index T = S, as evident from the basis
polynomials in Tables 2.2.2 to 2.2.4.

2. BS(ξT , ηT ) = 0 at the stencil index T ̸= S, also as evident from the basis
polynomials in Tables 2.2.2 to 2.2.4.

3. Sum of all the basis polynomials of a stencil
∑nS−1

S=0 BS(ξ, η) = 1,
as listed Tables 2.2.2 to 2.2.4. This property ensures that constant
functions are interpolated exactly, holds for all the four polynomial
staggered patch schemes, for example the constant function c in
Table 2.2.5 for Square-p2 staggered patch scheme.

4.
∑nS−1

S=0 BS(ξ, η) · ξS = ξ and
∑nS−1

S=0 BS(ξ, η) · ηS = η. This property
ensures that linear functions are interpolated exactly, holds for all
the four polynomial staggered patch schemes, for example the linear
functions ξ, η in Table 2.2.5 for Square-p2 staggered patch scheme.
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Table 2.2.5. Leading order terms of interpolation errors L(ξ, η) − f(ξ, η), of
Square-p2 patch scheme, for coupling h/u/v edge nodes (each in two rows
respectively for left-right and bottom-top edges) of h/u/v-centred patches.
Interpolation errors are O(ξ2 + η2).
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Table 2.2.6. Leading order terms of interpolation errors L(ξ, η) − f(ξ, η), of
Square-p4 patch scheme, for coupling h/u/v edge nodes (each in two rows
respectively for left-right and bottom-top edges) of h/u/v-centred patches.
Interpolation errors are O(ξ4 + η4). Functions f = ξa · ηb with a+ b < 3 are
interpolated exactly.

ξ3 ηξ2 η2ξ η3 ξ4 ηξ3 η2ξ2 η3ξ η4 ξ5 ηξ4 η2ξ3 η3ξ2 η4ξ

h
-c

en
tr

ed
pa

tc
h h
-n

od
es

0 0 0 0 0 0 0 0 0 −64ξ 0 0 0 0

0 0 0 0 0 0 0 0 0 −64ξ 0 0 0 0

u
-n

od
es

0 0 0 0 −9 0 0 0 0 −9ξ 10ηξ2 − 9η 0 0 0

0 0 0 0 −9 0 0 0 0 −9ξ 10ηξ2 − 9η 0 0 0

v
-n

od
es

0 0 0 0 0 0 0 0 −9 −64ξ 0 0 0 10η2ξ− 9ξ

0 0 0 0 0 0 0 0 −9 −64ξ 0 0 0 10η2ξ− 9ξ

u
-c

en
tr

ed
pa

tc
h h
-n

od
es

0 0 0 0 −9 0 0 0 0 −9ξ 10ηξ2 − 9η 0 0 0

0 0 0 0 −9 0 0 0 0 −9ξ 10ηξ2 − 9η 0 0 0

u
-n

od
es

0 0 0 0 0 0 0 0 0 −64ξ 0 0 0 0

0 0 0 0 0 0 0 0 0 −64ξ 0 0 0 0

v
-n

od
es

0 0 0 0 −9 0 0 0 −9 −9ξ 10ηξ2 − 9η 0 0 10η2ξ− 9ξ

0 0 0 0 −9 0 0 0 −9 −9ξ 10ηξ2 − 9η 0 0 10η2ξ− 9ξ

v
-c

en
tr

ed
pa

tc
h h
-n

od
es

0 0 0 0 0 0 0 0 −9 −64ξ 0 0 0 10η2ξ− 9ξ

0 0 0 0 0 0 0 0 −9 −64ξ 0 0 0 10η2ξ− 9ξ

u
-n

od
es

0 0 0 0 −9 0 0 0 −9 −9ξ 10ηξ2 − 9η 0 0 10η2ξ− 9ξ

0 0 0 0 −9 0 0 0 −9 −9ξ 10ηξ2 − 9η 0 0 10η2ξ− 9ξ

v
-n

od
es

0 0 0 0 0 0 0 0 0 −64ξ 0 0 0 0

0 0 0 0 0 0 0 0 0 −64ξ 0 0 0 0



Chapter 2. Extend staggered grids to multiscale modelling 44

Table 2.2.7. Leading order terms of interpolation errors L(ξ, η) − f(ξ, η), of
Square-p6 patch scheme, for coupling h/u/v edge nodes (each in two rows
respectively for left-right and bottom-top edges) of h/u/v-centred patches.
Interpolation errors are O(ξ6 + η6). Functions f = ξa · ηb with a+ b < 5 are
interpolated exactly.
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Table 2.2.8. Leading order terms of interpolation errors L(ξ, η) − f(ξ, η), of
Square-p8 patch scheme, for coupling h/u/v edge nodes (each in two rows
respectively for left-right and bottom-top edges) of h/u/v-centred patches.
Interpolation errors are O(ξ8 + η8). Functions f = ξa · ηb with a+ b < 7 are
interpolated exactly.
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Chapter 3

Staggered patch schemes
accurately simulate general linear
waves

This chapter shows that the staggered patch schemes accurately simulate
the macroscale dynamics of the general linear wave PDEs as the microscale
model within the patches. Specifically, this chapter focuses on the accurate
macroscale simulation of the non-dimensional general dissipative linear
wave PDE, with linear drag and viscous diffusion respectively characterised
by the coefficients cD, cV ,

∂h

∂t
= −

∂u

∂x
−

∂v

∂y
, (3.0.1a)

∂u

∂t
= −

∂h

∂x
− cDu+ cV

∂2u

∂x2
+ cV

∂2u

∂y2
, (3.0.1b)

∂v

∂t
= −

∂h

∂y
− cDv + cV

∂2v

∂x2
+ cV

∂2v

∂y2
, (3.0.1c)

with the boundary conditions that the three fields h, u, and v are L-periodic
in both x and y, and an appropriate initial condition h(x, y, 0), u(x, y, 0),
and v(x, y, 0). The case cD = cV = 0 corresponds to the ideal wave, that is
without any dissipation (Dean and Dalrymple 1991, pp. 136–137; Mehaute
1976, p. 260).

Section 3.1 derives a discrete full-domain microscale model and a
generic staggered patch scheme corresponding to the general linear wave
PDEs (3.0.1). Throughout this chapter, we use this full-domain microscale
model as a reference to assess various characteristics (accuracy, stability,
consistency, etc.) of the multiscale staggered patch schemes we develop.
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Section 3.2 shows that the developed five staggered patch schemes are
accurate for the general linear wave. Section 3.2 establishes the accuracy of
the staggered patch schemes in general (as opposed to one specific initial
condition) by comparing the eigenvalues of the staggered patch schemes
with the eigenvalues of fine- and coarse-grid full-domain microscale model.
Sections 3.2.1 to 3.2.5 derive the eigenvalues of the general linear wave PDEs,
full-domain microscale model, and that of the staggered patch schemes.
Section 3.2.6 illustrates the structure of the patch scheme eigenvalues in
the complex plane and explains the corresponding dynamical modes via
eigenvector plots. The eigenvalue analysis in §3.2.6 visually demonstrates
the accuracy (in the complex plane eigenvalue plots) for a representative
subset of the physical parameters and grid parameters. Section 3.6 on the
consistency of the patch schemes establishes the accuracy over a wider
range of parameters.

We quantitatively establish the consistency and stability of the patch
schemes by comparing the specific macroscale eigenvalues (defined in p. 52
of §3.2) of the patch schemes with the corresponding eigenvalues of the
full-domain microscale model. This comparison requires separating the
microscale and macroscale patch scheme eigenvalues. Section 3.3 explains
a method to perform wavenumber-wise classification and separation of
microscale and macroscale patch scheme eigenvalues.

Despite the attractive characteristics, if the staggered patch schemes
are very sensitive to numerical roundoff errors, then they would not be
suitable for practical numerical simulations using finite precision floating-
point representations. From both qualitative arguments and quantitative
evidence, §3.4 shows that the staggered patch schemes are not sensitive to
numerical roundoff errors for the general linear wave. The quantitative
evidence in §3.4 comes from comparing the eigenvalues of analytic and
numerical Jacobians of a patch scheme.

Section 3.5 demonstrates the stability of the staggered patch schemes
and explores the dependence of the patch scheme stability on various
aspects like grid symmetry, physical parameters, and grid parameters.

Section 3.6 shows that the staggered patch schemes are consistent with
the given microscale model. Section 3.6 establishes the consistency of the
patch schemes for the general linear wave by comparing the macroscale
eigenvalues of the patch scheme with the corresponding eigenvalues of
the full-domain microscale model for increasingly finer patch grids. Sec-
tion 3.6.1 shows that the Spectral patch scheme is uniformly accurate with
little dependence on the macro-grid interval ∆. Section 3.6.2 shows that the
polynomial patch schemes are consistent to the order of the polynomial
interpolation with decreasing macro-grid interval ∆.
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Section 3.7 quantifies and demonstrates the large computational savings
of the staggered patch schemes for the general linear wave. Section 3.7.1
shows the computational savings of the 2D staggered patch schemes the-
oretically in terms of the ratio of the space over which the patch schemes
and the full-domain model computes. Section 3.7.2 shows the computa-
tional savings of the patch schemes in terms of the ratio of the number of
state variables for which the patch schemes and the full-domain model
computes. Section 3.7.4 demonstrates the computational savings of the 2D
staggered patch schemes by measuring the elapsed time taken to compute
the time derivative of the state vector (one time iteration) using a specific
implementation.

Section 3.7.5 demonstrates the accuracy and effectiveness of the patch
schemes via time simulation of the general dissipative linear waves for
two example cases. Section 3.7.5, first compares the time simulation of a
patch scheme with that of the fine-grid full-domain model for a simple
progressive wave, second demonstrates the patch scheme time simulation
for a moving Gaussian hump. Via random perturbation to the initial
condition, §3.7.5 also demonstrates the robustness of the patch schemes.

3.1 Full-domain microscale model and staggered
patch schemes

This subsection derives a discrete full-domain microscale model corre-
sponding to the general linear PDEs (3.0.1). Subsequently using the derived
full-domain microscale model within the patches, this subsection also de-
rives a generic staggered patch scheme. Throughout this chapter, we use
this full-domain microscale model as a reference to assess various charac-
teristics (accuracy, stability, consistency, etc.) of the multiscale staggered
patch schemes we develop.

Approximating the spatial derivatives in the general dissipative linear
wave PDEs (3.0.1) by central finite differences on the staggered grid nodes
(filled circles in Fig. 2.1.1 of §2.1.1), gives the full-domain microscale model
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corresponding to the general dissipative linear wave PDEs (3.0.1) as

• dhi,j

dt
= −

ui+1,j − ui−1,j

2δ
−

vi,j+1 − vi,j−1

2δ
(3.1.1a)

for i, j ∈ {0, 2, 4, . . . , n− 2} ;

• dui,j

dt
= −

hi+1,j − hi−1,j

2δ
− cDui,j

+ cV
ui−2,j − 2ui,j + ui+2,j

4δ2
+ cV

ui,j−2 − 2ui,j + ui,j+2

4δ2
(3.1.1b)

for i ∈ {1, 3, 5, . . . , n− 1} , j ∈ {0, 2, 4, . . . , n− 2} ;

• dvi,j

dt
= −

hi,j+1 − hi,j−1

2δ
− cDvi,j

+ cV
vi−2,j − 2vi,j + vi+2,j

4δ2
+ cV

vi,j−2 − 2vi,j + vi,j+2

4δ2
(3.1.1c)

for i ∈ {0, 2, 4, . . . , n− 2} , j ∈ {1, 3, 5, . . . , n− 1} .

Analogous to the PDEs (3.0.1), the three fields h, u, v are n-periodic in both
i and j where n = L/δ, with an appropriate initial condition hi,j(0), ui,j(0),
and vi,j(0). As a dynamical system, the full-domain microscale model (3.1.1)
in vector notation, for the general dissipative linear wave (3.0.1) is

dx

dt
= f (x) , (3.1.2)

where x is the same state vector (2.1.3) of the full-domain microscale model
for generic wave-like system in §2.1.1.

A full-domain microscale simulation is performed by numerical time-
integration of the ODEs (3.1.1) on the nodes of the microscale staggered
grid (filled circles in Fig. 2.1.1), with the discrete macroscale n-periodic
boundary conditions in i, j.

Now let’s consider the patch scheme for the system (3.1.1), over a stag-
gered patch grid with N×N macro-grid intervals and each patch containing
n × n sub-patch micro-grid intervals. To use the finite difference equa-
tions (3.1.1) as the microscale model within the patches, a staggered patch
grid with one layer of edge nodes, such as in Fig. 2.1.3b of §2.1.2, is not
sufficient. For example, in equation (3.1.1b), to compute the time deriva-
tive dui,j/dt for the bottom left u node of the u-centred patch, the second
spatial derivative in viscous diffusion term needs the value of ui−2,j, which
is outside to the left of the u-centred patch and not available in Fig. 2.1.3b.
The additional layer of edge nodes in Fig. 2.1.5a of §2.1.3 provides the
ui−2,j for the bottom left u node of the u-centred patch. Hence, a staggered
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patch scheme with the 2D general dissipative linear wave (3.1.1) as the
underlying microscale model within the patches, requires a patch grid with
two layers of edge nodes as in Fig. 2.1.5a of §2.1.3.

Using the full-domain microscale model (3.1.1) within the patches of a
suitable staggered patch grid (e.g., the patch grid of Fig. 2.1.5a with n = 6),
gives the staggered patch scheme

• d

dt
hI,J
i,j (t) = −

uI,J
i+1,j − uI,J

i−1,j

2δ
−

vI,Ji,j+1 − vI,Ji,j−1

2δ
, (3.1.3a)

• d

dt
uI,J
i,j (t) = −

hI,J
i+1,j − hI,J

i−1,j

2δ
− cDuI,J

i,j (3.1.3b)

+ cV
uI,J
i−2,j − 2uI,J

i,j + uI,J
i+2,j

4δ2
+ cV

uI,J
i,j−2 − 2uI,J

i,j + uI,J
i,j+2

4δ2
,

• d

dt
vI,Ji,j (t) = −

hI,J
i,j+1 − hI,J

i,j−1

2δ
− cDvI,Ji,j (3.1.3c)

+ cV
vI,Ji−2,j − 2vI,Ji,j + vI,Ji+2,j

4δ2
+ cV

vI,Ji,j−2 − 2vI,Ji,j + vI,Ji,j+2

4δ2
,

and a patch coupling (e.g., Square-p4) to compute the edge values
◦hI,J

i,j , ◦uI,J
i,j , ◦ vI,Ji,j for

i ∈ {−1, 0, n, n+ 1}, j ∈ {1, 2, . . . , n− 1} for left and right edges and
i ∈ {1, 2, . . . , n− 1}, j ∈ {−1, 0, n, n+ 1} for bottom and top edges,

for the same interior indices i, j and patch indices I, J in (2.1.5) of §2.1.1,
separately for each equation.

Analogous to the full-domain microscale model (3.1.1), the three fields h,
u, v in the patch scheme (3.1.3) are macroscale N-periodic in both I and J

where N = L/∆, with an appropriate initial condition hI,J
i,j (0), u

I,J
i,j (0), and

vI,Ji,j (0). As a dynamical system, the staggered patch scheme (3.1.3) in vector
notation, corresponding to the full-domain microscale model (3.1.1) of
dissipative linear wave is

dxI

dt
= F

(
xI; xE(xI)

)
. (3.1.4)

with the same state vector xI (2.1.6) and a similar edge vector xE as those
of the patch scheme in §2.1.2 for generic wave-like system. To distinguish
from the analytic one-cell staggered patch scheme (3.2.15) (in p. 61 of §3.2.3),
we call equation (3.1.4) as the full-size staggered patch scheme.



§3.2 Staggered patch schemes are accurate 51

The F
(
xI; xE(xI)

)
in the staggered patch scheme dynamical system (3.1.4)

corresponds to the f (x) in the full-domain microscale model (3.1.2). The
functions F and f encode the same microscale model for the general dissi-
pative linear wave PDEs (3.0.1), except for the two differences that §2.1.2 of
§2.1.2 explains for the generic wave-like system.

As in the patch scheme (2.1.5) of §2.1.2, a specific patch coupling (for
example, Square-p2) computes patch edge values (◦hI,J

i,j , ◦uI,J
i,j , ◦ vI,Ji,j in

Fig. 2.1.5a) from the centre values of neighbouring patches (•hI,J
i,j , •uI,J

i,j ,
• vI,Ji,j with i = j = n/2 in Fig. 2.1.5a). The patch coupling provides a mecha-
nism whereby patches influence each other, §2.2 gives various details of
different patch couplings.

Patch scheme simulation is performed by numerical time-integration
of the ODEs (3.1.3) on the interior nodes of the staggered patch grid (filled
circles in Fig. 2.1.3b), with the discrete macroscale N-periodic boundary
conditions in both I and J. As in §2.1.2, evaluating the time derivatives in the
staggered patch scheme (3.1.3) is done in two steps: first, edge values xE(xI)

are computed via patch coupling; second, using both interior and edge
values of each patch in the staggered patch grid, the time derivatives of xI

are computed for the staggered patch scheme (3.1.3) of dissipative linear
wave.

3.2 Staggered patch schemes are accurate

This section shows that the developed five staggered patch schemes are
accurate for the general dissipative linear waves. We establish the accuracy
of the staggered patch schemes in general (as opposed to just one initial
condition) by comparing the eigenvalues of the staggered patch schemes
with the eigenvalues of fine- and coarse-grid full-domain microscale model,
and for completeness also compare with the eigenvalues of the general
dissipative linear wave PDEs (3.0.1). But, for assessing the accuracy of the
patch schemes, as p. 14 of §2.1.1 explains, the eigenvalues of the full domain
microscale model are the reference eigenvalues, not that of the PDEs. The
eigenvalue analysis for accuracy in this section is done for representative
subsets of macro-grid intervals N ∈ {6, 10, 14} and sub-patch micro-grid
intervals n ∈ {6, 10}; Section 3.6 studies the consistency of the staggered
patch schemes over various number of macro-grid intervals. The follow-
ing paragraphs introduce the approach to studying the accuracy of the
staggered patch schemes and discuss the conventions adopted.
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Time-dependent solutions of linear/linearised ODEs are linear combi-
nations of the spatial modes (i.e., eigenvectors) where the initial condition
gives the amplitudes of the modes (Manneville 2004, p. 37–38; Cain and
Reynolds 2010, Prop. 2.1.21, p. 28; Edwards et al. 2017, p.386; Maruskin
2018, general solution, p. 17). To characterise the patch scheme dynamics at
micro- and macro-scales, we define the following patch scheme modes.

• Macroscale modes are those patch scheme modes (eigenvectors) that
have pure macroscale structure (spatial variation) with negligible
microscale structure. The eigenvalues corresponding to these macro-
scale modes are macroscale eigenvalues.

• Microscale modes are those patch schemes modes that have significant
microscale structure irrespective of whether they also have macro-
scale structure. That is, a microscale mode can either be of pure micro-
scale structure with negligible macroscale structure or can have a
microscale structure modulated over the macroscale. The eigenvalues
corresponding to these microscale modes are microscale eigenvalues.

Throughout this thesis, the phrase microscale structure modulated over the
macroscale means that the microscale structure (spatial variation) is modu-
lated over some nonnegligible macroscale structure.

Due to spatial homogeneity in the macroscale dynamics, the macro-
scale spatial structure of the full-domain model and the patch schemes
are effectively the same. Hence, effectively there is no error in the macro-
scale modes (eigenvectors) of the patch schemes. The only error in the
macroscale dynamics of the patch schemes is in the eigenvalues. Thus,
when the macroscale eigenvalues of a patch scheme agree closely with
the corresponding eigenvalues of the full-domain microscale model, the
patch scheme simulation is accurate in general for every initial condition that
only involves macroscale modes. We aim to design the multiscale stag-
gered patch schemes to accurately simulate the large-scale waves that are
characterised by the macroscale eigenvalues. A staggered patch scheme
is accurate when the macroscale eigenvalues of that patch scheme agree
closely with the corresponding macroscale eigenvalues of the full-domain
microscale model. Thus, we aim to design the staggered patch schemes
with the macroscale eigenvalues as close as possible to the correspond-
ing macroscale eigenvalues of the full domain microscale model (3.1.1).
Hence, the eigenvalue analysis for accuracy in this section compares the
eigenvalues of the staggered patch schemes with the eigenvalues of the
full-domain microscale model.
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Sections 3.2.1 to 3.2.5 describe the methods of analytically deriving and
numerically computing the eigenvalues for

1. the 2D general dissipative linear wave PDEs (3.0.1),

2. the full-domain microscale model (3.1.1), and

3. the staggered patch scheme (3.1.3).

Following a standard approach of substituting an arbitrary Fourier mode
into the PDEs/ODEs, §§3.2.1 and 3.2.2 derive the analytic eigenvalues of
general dissipative linear wave PDEs (3.0.1) and the corresponding discrete
full-domain microscale model (3.1.1). Similarly §3.2.3 derives the analytic
eigenvalues of a staggered patch scheme. To numerically compute the
eigenvalues of the numerical staggered patch scheme, which includes
any instabilities and inaccuracies due to the numerical roundoff errors,
§§3.2.4 and 3.2.5 numerically computes the Jacobians of the evolution
functions f (x) in the full-domain model (3.1.2), and F

(
xI; xE(xI)

)
in the

patch scheme (3.1.4) respectively.
Section 3.2.6 compares and contrasts various eigenvalues (e.g., analytic

and numerical eigenvalues of the PDEs, full-domain microscale model, and
patch schemes). We use the following notational convention to identify the
various eigenvalues.

• Eigenvalue subscripts in λ
()
p , λ

()
mδ, λ

()
m∆, λ

()
PDE denote the system.

– λ
()
p are for staggered patch schemes (e.g., λNE1

p of §3.2.3 and λN
p

of §3.2.5).

– λ
()
mδ are for fine-grid full domain microscale model with same

grid-spacing as sub-patch micro-grid interval δ (e.g., λA
mδ of §3.2.2

and λN
mδ of §3.2.4).

– λ
()
m∆ are for fine-grid full domain microscale model with same

grid-spacing as the inter-patch distance ∆ (e.g., λA
m∆ of §3.2.2 and

λN
m∆ of §3.2.4).

– λ
()
PDE are for the general linear wave PDE (e.g., λA

PDE of §3.2.1).

• Eigenvalue superscripts in λN
(), λ

NE1
() , λA

() denote the method of comput-
ing numerical eigenvalues values.

– λN
() are computed from the numerical Jacobian of the system (e.g.,

λN
mδ, λN

m∆ of §3.2.4 and λN
p of §3.2.5).
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– λNE1
() are computed from numerically evaluated analytic one-cell

Jacobian of the system (e.g., λNE1
p of §3.2.3).

– λA
() are computed from the closed-form analytic expressions for

the eigenvalues (e.g., λA
PDE of §3.2.1 and λA

mδ, λA
m∆ of §3.2.2).

3.2.1 Eigenvalue analysis of the PDEs

This subsection derives the eigenvalues of the 2D general dissipative linear
wave PDEs (3.0.1) to compare with the eigenvalues of the full-domain
microscale model (3.1.1) and the various staggered patch schemes for a
sanity check.

One of the standard analytic approaches to derive the eigenvalues of a
linear PDE (e.g., Hinch 2020, pp. 138–139; G. W. Griffiths and Schiesser 2011)
is to substitute an arbitrary Fourier mode into the PDE, derive an eigen-
system in terms of a system matrix that characterises the time evolution,
and subsequently compute the eigenvalues of the system matrix which
characterises both the stability and accuracy of the system. Following this
standard approach, consider an arbitrary Fourier mode of the general dissi-
pative linear wave PDE (3.0.1), with real wavenumber (kx, ky) and complex
growth rate λ,

h(x, y, t) = H exp[i(kxx+ kyy) + λt] , (3.2.1a)
u(x, y, t) = U exp[i(kxx+ kyy) + λt] , (3.2.1b)
v(x, y, t) = V exp[i(kxx+ kyy) + λt] . (3.2.1c)

Substituting the Fourier mode (3.2.1) into the general dissipative linear
wave PDEs (3.0.1) gives the eigensystem



0 − ikx − iky

− ikx −cD − cV
(
k2
x + k2

y

)
0

− iky 0 −cD − cV
(
k2
x + k2

y

)





H

U

V


 = λ



H

U

V


 . (3.2.2)

The three eigenvalues of the 3× 3 Jacobian in eigensystem (3.2.2) are (one
real and a complex conjugate pair),

λA
PDE =

−cD − cV
(
k2
x + k2

y

)
,

−cD

2
− cV

2

(
k2
x + k2

y

)
±

√[
cD

2
+ cV

2

(
k2
x + k2

y

)]2
−
(
k2
x + k2

y

)
.

(3.2.3)
With no dissipation, that is with cD = cV = 0 in expression (3.2.3),

the three eigenvalues of the ideal wave are (0,± iω0), where the nonzero
frequency of this ideal (undamped) wave ω0 =

√
k2
x + k2

y.
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Rewriting the eigenvalues (3.2.3) in terms of the ideal wave frequency ω0

gives the alternative expression

λA
PDE =

−
(
cD + cVω

2
0

)
,

−
(
cD + cVω

2
0

)
/2±

√
[(cD + cVω

2
0) /2]

2
−ω2

0 .
(3.2.4)

Expressions (3.2.3) and (3.2.4) give eigenvalues of the 2D general dissipative
linear wave PDEs (3.0.1) with linear drag cD and viscous diffusion cV .

With dissipation, that is with cD, cV > 0, the real parts of all three
eigenvalues (3.2.4) are negative, meaning that the wave solutions decay
over time.

• For high dissipation (large positive values of cD and/or cV), the
square root in expression (3.2.4) gives a real value, making all three
eigenvalues real, which correspond to an overdamped system where
any initial condition or disturbance will quickly decay to zero, which
is not our interest.

• For low dissipation (small positive values of cD and/or cV ), the square
root in expression (3.2.4) gives an imaginary component, that is the
damped frequency, so any initial wave will oscillate and decay slowly
to zero.

We numerically evaluate eigenvalue expression (3.2.3) or (3.2.4) for vari-
ous macroscale wavenumbers, and compare (for a sanity check) with the
eigenvalues of the full-domain microscale model and the various staggered
patch schemes in §3.2.6.

3.2.2 Eigenvalue analysis of staggered grid full-domain
model

This subsection derives the eigenvalues of the staggered grid full-domain
microscale model (3.1.1) for the general dissipative linear wave PDEs (3.0.1).
Comparing these eigenvalues of the full-domain model with the eigen-
values of the staggered patch schemes, §3.2.6 studies the accuracy of the
patch schemes and §3.5 studies stability of the patch schemes.

We follow the same standard analytic approach (e.g., Hinch 2020, pp. 138–
139; G. W. Griffiths and Schiesser 2011), as done for the 2D general dis-
sipative linear wave PDE in §3.2.1, but over a discrete infinite microscale
staggered grid (number of grid intervals n→∞ in Fig. 2.1.1). Consider an
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arbitrary Fourier mode of the full-domain microscale model (3.1.1), with
real wavenumber (kx, ky) and complex growth rate λ,

• hi,j(t) = H exp[i(kxiδ+ kyjδ) + λt] (3.2.5a)
for i, j ∈ {0, 2, 4, . . . , n− 2} ,

• ui,j(t) = U exp[i(kxiδ+ kyjδ) + λt] (3.2.5b)
for i ∈ {1, 3, 5, . . . , n− 1} , j ∈ {0, 2, 4, . . . , n− 2} ,

• vi,j(t) = V exp[i(kxiδ+ kyjδ) + λt] (3.2.5c)
for i ∈ {0, 2, 4, . . . , n− 2} , j ∈ {1, 3, 5, . . . , n− 1} .

Throughout this thesis, i denotes the micro-grid index in x-direction (for
both full-domain and sub-patch micro-grids), whereas i =

√
−1 is the

imaginary unit. Substituting the Fourier mode (3.2.5) into the full-domain
microscale model (3.1.1), some algebraic simplifications, and arranging in
matrix form give the eigensystem

J



H

U

V


 = λ



H

U

V


 , (3.2.6)

where the Jacobian

J=




0 − i sin (kxδ)
δ

−
i sin (kyδ)

δ

− i sin (kxδ)
δ

−cD−cV

(
sin2 (kxδ)

δ2 +
sin2 (kyδ)

δ2

)
0

−
i sin (kyδ)

δ
0 −cD−cV

(
sin2 (kxδ)

δ2 +
sin2 (kyδ)

δ2

)


 .

The three eigenvalues of the 3× 3 Jacobian J in the eigensystem (3.2.6) are
(one real and a complex conjugate pair),

λA
m =

−
(
cD + cVω

2
m,0

)
,

−
(
cD + cVω

2
m,0

)
/2±

√
[(cD + cVω

2
m,0) /2]

2
−ω2

m,0 ,
(3.2.7)

where
ωm,0 =

√
sin2 (kxδ)/δ2 + sin2 (kyδ)/δ2 (3.2.8)

is the frequency of the full-domain microscale model for ideal wave (i.e.,
undamped with cD = cV = 0). When we numerically evaluate these
eigenvalues λA

m of the full-domain microscale model,

• for the same grid-spacing δ as the sub-patch micro-grid interval (also
called δ), we call the eigenvalues λA

mδ,



§3.2 Staggered patch schemes are accurate 57

• for the same grid-spacing ∆ as the inter-patch distance ∆, we call the
eigenvalues λA

m∆.

Comparing eigenvalue expression (3.2.7) with the eigenvalue expres-
sion (3.2.4) of the PDE, the full-domain microscale eigenvalues converge to
the eigenvalues of the 2D general dissipative linear wave PDEs (3.0.1) when
ω2

m,0 → ω2
0 = k2

x + k2
y. Expanding ω2

m,0 as power series in either (kx, ky) or
δ we get,

ω2
m,0 = k2

x + k2
y − 1

3

(
k4
x + k4

y

)
δ2 + 2

45

(
k6
x + k6

y

)
δ4

− 1
315

(
k8
x + k8

y

)
δ6 + O

(
(k10

x + k10
y )δ8

)
.

(3.2.9)

The series expansion (3.2.9) shows that the eigenvalues of the full-domain
microscale model converge to the analytic eigenvalues of the PDEs (3.0.1)
as we decrease the grid interval δ and/or wavenumber (kx, ky).

For assessing the accuracy and stability, §3.2.6 and §3.5 numerically eval-
uate the eigenvalue expression (3.2.7) for various macroscale wavenumbers
and compare with the eigenvalues of the general linear wave PDEs and the
patch schemes.

3.2.3 Analytic eigenvalue analysis of staggered patch
schemes

This subsection explains a method of deriving analytic eigenvalues of a
generic staggered patch scheme (3.1.3) over a staggered patch grid, for
the 2D general dissipative linear wave PDEs (3.0.1). This subsection also
gives example expressions for a specific patch coupling among the various
staggered patch schemes. We use the patch scheme eigenvalues to assess
accuracy (§3.2.6), stability (§3.5), and consistency (§3.6) of the staggered
patch schemes.

We follow a similar analytic approach as in analytic eigenvalue analysis
of the staggered grid full-domain microscale model in §3.2.2, but over an
infinite staggered patch grid (number of macroscale grid intervals N→∞ in
Fig. 2.1.5a). Section 2.1.3 explains why the staggered patch grid in Fig. 2.1.5a
with such edge node arrangement is required for the current consideration
of the 2D general dissipative linear wave.

Unlike the analysis of a staggered grid full-domain microscale model
in §3.2.2, the dynamics of a staggered patch scheme that we aim to anal-
yse via their eigenvalues has an emergent behaviour due to the coupled
dynamics at two different length scales. One length scale is due to the
microscale interactions within the patches, and another length scale is due
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to the different macroscale patch coupling across the patches (Spectral,
Square-p2, Square-p4, etc.). Hence, for eigenvalue analysis of a staggered
patch scheme, our arbitrary Fourier mode needs to include spatial struc-
tures of the two scales: microscale within a patch and macroscale across
the patches.

Our aim is to study the macroscale behaviour of the staggered patch
scheme, which is manifested by the microscale behaviour within the patches.

1. To capture the macroscale behaviour the staggered patch scheme
Fourier mode must include microscale spatial structure within the
patches. Hence, in contrast to the full-domain microscale Fourier
mode (3.2.5) with constant amplitudes H,U, V one each respectively
for h, u, v, the staggered patch scheme Fourier mode must cater for a
microscale spatial structure hp,q

i,j , up,q
i,j , vp,qi,j for the interior nodes of

all three patches within a macro-cell (orange squares in Fig. 2.1.4b);
here p, q ∈ {0, 1} is the local sub-macro-cell patch index (Fig. 2.1.4b).

2. The microscale spatial structure hp,q
i,j , up,q

i,j , vp,qi,j within a macro-cell
must be independent of the macroscale across the macro-cells. That
is, the microscale structure in the staggered patch scheme mode must
be invariant to translations in space by multiples of 2∆. Hence, the
staggered patch scheme Fourier mode must include the macroscale
spatial structure as complex exponential factor exp[i(kxI∆ + kyJ∆)],
where the indices I, J increment by two for each variable (•hI,J

i,j , •uI,J
i,j ,

and • vI,Ji,j in Fig. 2.1.4b).

Thus, for the eigenvalue analysis of a staggered patch scheme, let us con-
sider an arbitrary staggered patch scheme Fourier mode with the macroscale
real wavenumber (kx, ky), over an infinite staggered patch grid (N→∞ in
Fig. 2.1.5a of §2.1.3),

• hI,J
i,j (t) = hp,q

i,j (t) exp[i(kxI∆+ kyJ∆)] , (3.2.10a)

• uI,J
i,j (t) = up,q

i,j (t) exp[i(kxI∆+ kyJ∆)] , (3.2.10b)

• vI,Ji,j (t) = vp,qi,j (t) exp[i(kxI∆+ kyJ∆)] , (3.2.10c)

for the same interior indices i, j and global macroscale patch indices I, J

in (2.1.5) of §2.1.1, separately for each equation. We define the indices p, q ∈
{0, 1} as the local sub-macro-cell patch index with p = I mod 2 and q =

J mod 2. Figure 2.1.4 of §2.1.2 illustrates these indices for the case of finite
number of macro-grid intervals N where the global macroscale patch in-
dex I, J ∈ {0, 1, . . . , N − 1} as illustrated in Fig. 2.1.4 of §2.1.2. But for our
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present case of N→∞ for analytic eigenvalue analysis, we use the global
macroscale patch index I, J ∈ {. . . ,−1, 0, 1, . . .}.

In the patch scheme Fourier mode (3.2.10), the time-dependent micro-
scale structure hp,q

i,j (t), up,q
i,j (t), vp,qi,j (t) is modulated over the macroscale wave

form exp[i(kxI∆+kyJ∆)]. So, the microscale structure hp,q
i,j (t), up,q

i,j (t), vp,qi,j (t)

depends only on the sub-macro-cell patch index p, q and the sub-patch
micro-grid node index i, j, but not on the global patch index I, J due to the
2∆-translational symmetry in the Fourier shift. For example, substituting
I → I + 2 for the h-component in the arbitrary staggered patch scheme
Fourier mode (3.2.10),

hI+2,J
i,j = hp,q

i,j (t) exp[i(kx(I+ 2)∆+ kyJ∆)]

= hp,q
i,j (t) exp[i(kxI∆+ kyJ∆)] exp[i(kx2∆)] .

That is, the microscale structure within the patch (I± 2, J) are 2∆-Fourier
shifts of the microscale structure within the patch (I, J); similarly the micro-
scale structure within the patch (I, J± 2) are also 2∆-Fourier shifts of the
microscale structure within the patch (I, J).

In §3.2.2 for analytic eigenvalue analysis of the full-domain microscale
model, the constant amplitudes (H,U, V) in the full-domain microscale
Fourier mode (3.2.5) correspond to the three nodes (h,u,v nodes) of one
micro-cell in the full-domain microscale grid (large filled circles in Fig. 2.1.1
of §2.1.1). Hence the eigensystem (3.2.6) has a state vector (H,U, V) of size
three, leading to the 3× 3 one-cell Jacobian of the full-domain microscale
model. In analytic eigenvalue analysis of a patch scheme, the time-dependent
microscale structure hp,q

i,j (t), up,q
i,j (t), vp,qi,j (t) in the staggered patch scheme

Fourier mode (3.2.10) corresponds to the interior nodes of all three patches
(h-, u-, v-centred patches) in any one macro-cell which we name the centre
macro-cell illustrated by the orange square in Fig. 2.1.5a of §2.1.3. Collecting
the interior values of all three patches in the centre macro-cell into a vector
gives the state vector xi; the superscript ( · )i is not an index or exponent,
instead, a qualifier denoting the patch interior nodes for the one-cell system
(we use ( · )I to denote the interior nodes of the full system (2.1.9)). The
total number of patch interior nodes per macro-cell, that is the size of xi,

ni
p = 9n2/4− 4n+ 2, (3.2.11)

where n is the number of sub-patch grid intervals. For example, for the
cases of n = 6, 10, 14 sub-patch micro-grid intervals, ni

p = 59, 187, 387

respectively.
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For example, for the staggered patch grid in Fig. 2.1.5a of §2.1.3, with n =

6 sub-patch grid intervals, the state vector containing 59 elements is

xi =
(
h0,0
1,1 , h

0,0
1,3 , h

0,0
1,5 , h

0,0
3,1 , h

0,0
3,3 , h

0,0
3,5 , h

0,0
5,1 , h

0,0
5,3 , h

0,0
5,5 ,

u0,0
2,1 , u

0,0
2,3 , u

0,0
2,5 , u

0,0
4,1 , u

0,0
4,3 , u

0,0
4,5 ,

v0,01,2 , v
0,0
1,4 , v

0,0
3,2 , v

0,0
3,4 , v

0,0
5,2 , v

0,0
5,4 ,

h0,1
1,2 , h

0,1
1,4 , h

0,1
3,2 , h

0,1
3,4 , h

0,1
5,2 , h

0,1
5,4 ,

u0,1
2,2 , u

0,1
2,4 , u

0,1
4,2 , u

0,1
4,4 , (3.2.12)

v0,11,1 , v
0,1
1,3 , v

0,1
1,5 , v

0,1
3,1 , v

0,1
3,3 , v

0,1
3,5 , v

0,1
5,1 , v

0,1
5,3 , v

0,1
5,5 ,

h1,0
2,1 , h

1,0
2,3 , h

1,0
2,5 , h

1,0
4,1 , h

1,0
4,3 , h

1,0
4,5 ,

u1,0
1,1 , u

1,0
1,3 , u

1,0
1,5 , u

1,0
3,1 , u

1,0
3,3 , u

1,0
3,5 , u

1,0
5,1 , u

1,0
5,3 , u

1,0
5,5 ,

v1,02,2 , v
1,0
2,4 , v

1,0
4,2 , v

1,0
4,4

)
.

Applying a specific patch coupling (Spectral, Square-p2, Square-p4,
etc.) gives edge values of all the patches in a macro-cell, in terms of the
substituted Fourier mode. That is, patch coupling gives the edge values of
each patch in the centre macro-cell from the centre-node values of patches
in other macro-cells, which are Fourier shifted centre-node values (by mul-
tiples of 2∆) of the centre macro-cell. Collecting the edge values of all three
patches in the centre macro-cell into a vector gives the edge vector xe; the
superscript ( · )e is not an index or exponent, instead, a qualifier denoting
the edge nodes of the one-cell system (we use E to denote the edge nodes
of the full system (2.1.9)). The total number of patch edge nodes per macro-
cell for the compatible staggered patch grid (Fig. 2.1.5a) for general linear
dissipative wave, that is the size of xe,

ne
p = 18n− 16, (3.2.13)

where n is the number of sub-patch grid intervals. For example, for the
cases of n = 6, 10, 14 sub-patch micro-grid intervals, ne

p = 92, 164, 236

respectively.
For example, for the sub-cell patch index (p, q) = (0, 0) (Fig. 2.1.4b),

the simplest staggered patch scheme Square-p2 for n = 6, with the patch
coupling stencil in Fig. 2.2.2, gives the edge values near the left-bottom of
the h-centred patch,

h0,0
−1,1 = h0,0

3,3(t)

[
4r4

81
−

5r2

9
+ 1

+

(
−
2r4

81
+

r3

27
+

2r2

9
−

r

3

)
e2 ikx∆ +

(
−
2r4

81
−

r3

27
+

2r2

9
+

r

3

)
e−2 ikx∆
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+

(
−
2r4

81
+

2r3

27
+

r2

18
−

r

6

)
e2 iky∆ +

(
−
2r4

81
−

2r3

27
+

r2

18
+

r

6

)
e−2 iky∆

+

(
r4

81
−

r3

18
+

r2

18

)
e2 i(kx∆+ky∆) +

(
r4

81
+

r3

18
+

r2

18

)
e−2 i(kx∆+ky∆)

+

(
r4

81
+

r3

54
−

r2

18

)
e2 i(kx∆−ky∆) +

(
r4

81
−

r3

54
−

r2

18

)
e−2 i(kx∆−ky∆)

]
,

(3.2.14a)

u0,0
0,1 = u1,0

3,3(t)

[
r3

18
−

r2

18
−

r

2
+

1

2
+

(
−
r3

18
−

r2

18
+

r

2
+

1

2

)
e−2 ikx∆

+

(
−
r3

36
+

r2

9
−

r

12

)
e2 iky∆ +

(
−
r3

36
−

r2

18
+

r

12

)
e−2 iky∆

+

(
r3

36
−

r2

18
−

r

12

)
e2 i(−kx∆+ky∆) +

(
r3

36
+

r2

9
+

r

12

)
e−2 i(kx∆+ky∆)

]
,

(3.2.14b)

v0,01,0 = v0,13,3(t)

[
r3

18
−

r2

18
−

r

2
+

1

2
+

(
−
r3

18
−

r2

18
+

r

2
+

1

2

)
e−2 iky∆

+

(
−
r3

36
+

r2

9
−

r

12

)
e2 ikx∆ +

(
−
r3

36
−

r2

18
+

r

12

)
e−2 ikx∆

+

(
r3

36
−

r2

18
−

r

12

)
e2 i(kx∆−ky∆) +

(
r3

36
+

r2

9
+

r

12

)
e−2 i(kx∆+ky∆)

]
.

(3.2.14c)

For other staggered patch schemes such as Spectral, Square-p4, Square-p6,
and Square-p8, the patch coupling expressions (3.2.14) are longer and more
complicated.

For one macro-cell, substituting into the staggered patch scheme (3.1.3),
the Fourier mode (3.2.10) and the coupled patch edge values (e.g., (3.2.14))
computed by a specific patch coupling, and cancelling the exponential
factors on both sides, gives the time evolution of a staggered patch scheme
as a dynamical system

dxi

dt
= F(xi; xe(xi)), (3.2.15)

only for the specific modes of macroscale wavenumber (kx, ky). The dy-
namical system (3.2.15) is in the same form as the full-size staggered patch
scheme dynamical system (3.1.4) (in p. 50 of §3.1). The state vector xI of the
full-size staggered patch scheme dynamical system (3.1.4) contain interior
values of all the patches in a staggered patch grid, but the state vector xi of
the staggered patch scheme dynamical system (3.2.15) for one macroscale
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wavenumber (kx, ky) contain interior values of only one macro-cell. Hence,
we call equation (3.2.15) as the one-cell staggered patch scheme dynamical
system.

The one-cell staggered patch scheme dynamical system (3.2.15), written
separately for h,u, and v is in the same form as the corresponding full-size
staggered patch scheme (3.1.3) of §3.1 with one difference: state variables
h,u, and v are only from one macro-cell expressed in sub-macro-cell patch
index p, q as opposed to the state variables from all the macro-cells ex-
pressed in the global patch index I, J.

For the general dissipative linear waves, the one-cell staggered patch
scheme dynamical system (3.2.15) is a linear system with the one-cell Ja-
cobian J = ∂F/∂x. Hence the one-cell staggered patch scheme dynamical
system (3.2.15) is written equivalently as

dxi

dt
= Jxi . (3.2.16)

The ni
p × ni

p one-cell Jacobian J not only depends on the physical pa-
rameters cD, cV , discretisation parameters n, δ, but also on the macroscale
wavenumber (kx, ky). The one-cell Jacobian of the staggered patch schemes
is useful in giving insights about the staggered patch schemes and for
parametric studies, especially to compute eigenvalues corresponding to
a macroscale wavenumber (kx, ky) for a patch grid of any size N. Via
all macroscale wavenumbers, the one-cell Jacobian provides a complete
solution for all initial conditions applied to the patch scheme.

For example, for n = 6 sub-patch grid intervals, the one-cell Jacobian J
is a 59 × 59 sparse matrix with at most only 318 of the 3481 elements are
nonzero. This sparsity pattern holds irrespective of the particular patch
coupling interpolation of the staggered patch schemes (i.e., same sparsity
for both spectral scheme and polynomial patch schemes). For some par-
ticular combination of numerical values of the parameters, the sparsity
could be higher. The 318 nonzero elements of the one-cell Jacobian of a
staggered patch scheme (for n = 6) contain all the information about the
underlying microscale model and the patch coupling for the macroscale
waves of wavenumber (kx, ky). A few elements of the one-cell Jacobian of
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the simplest staggered patch scheme Square-p2 are,

J1,1 = 0, J1,16 = −
1

2δ
, J4,10 =

1

2δ
, J12,11 =

cV

4δ2
,

J16,16 = −cD −
cV

δ2
, J18,36 =

(
cV

8δ2
+

3cV

8∆δ

)
e−2∆ iky +

cV

8δ2
−

3cV

8∆δ
,

J46,36 =

(
−

1

8δ
−

1

2∆
−

3δ

8∆2

)
e2∆ ikx +

(
−

1

8δ
+

1

2∆
−

3δ

8∆2

)
e−2∆ iky

+

(
−

1

8δ
+

1

4∆
+

3δ

8∆2

)
e2∆ ikx−2∆ iky −

1

8δ
−

1

4∆
+

3δ

8∆2
,

J50,51 =
(
−

cV

4∆δ
+

cV

2∆2

)
e2∆ iky +

( cV

4∆δ
+

cV

2∆2

)
e−2∆ iky +

cV

2δ2
−

cV

∆2
.

The example expressions for J1,16, J4,10, J12,11 and J16,16 are independent
of the macroscale wavenumber (kx, ky) and macro-grid interval ∆ and
hence characterise the microscale flow physics:

• J1,16, J4,10 characterise the microscale flow physics;

• cV in J12,11 characterise the microscale viscous diffusion;

• cD, cV in J16,16 characterise the microscale drag and viscous diffusion.

All the Jacobian elements containing cD are precisely the same and
occur only as diagonal elements of the Jacobian. That is, all the nonzero
diagonal elements

Ji,i = −cD − cV/δ
2 (3.2.17)

for i ∈ {10, 11, . . . , 21, 28, 29, . . . , 40, 47, 48, . . . , 59} .

The drag terms −cD uI,J
i,j and −cD vI,Ji,j in the patch scheme (3.1.3b) and (3.1.3c),

involve only the drag coefficient and the respective velocities, leading to
cD appearing only in the diagonal of the Jacobian, without depending on
macro-grid interval ∆, patch scale ratio r and the patch coupling.

The example expressions for J18,36, J46,36 and J50,51 depend on the
macroscale wavenumber (kx, ky) and macro-grid interval ∆ and hence
characterise the macroscale flow physics:

• Expressions for J18,36 and J50,51 characterise macroscale wave with
only viscous diffusion;

• J46,36 characterises a macroscale wave without any dissipation.
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The 2∆ in the argument of the exponential factors in J18,36, J46,36, and J50,51
indicates the patch coupling influence by the patches in surrounding macro-
cells which are 2∆ away from the centre macro-cell. Compared to the listed
example Jacobian elements of the simple patch coupling Square-p2, more
surrounding macro-cells influence the Jacobian elements for the cases of
patch coupling with higher order interpolations (Square-p4, Square-p6,
and Square-p8). Hence the corresponding expressions in the one-cell Jaco-
bian elements are much longer than the listed example expressions.

We attempted to derive closed-form expressions for the eigenvalues of
the one-cell Jacobian J, through various algebraic simplification strategies,
in various Computer Algebra Systems (CAS) such as SymPy, Reduce and
Maple. Even for the simplest staggered patch scheme Square-p2, all the
CAS packages we tried fail (no results in 48 hours) to compute the analytic
eigenvalues of the 59 × 59 Jacobian (n = 6) for the general macroscale
wavenumber (kx, ky). For the special case of the undamped ideal wave
(cD = cV = 0) with kx = ky = 0, which corresponds to a constant macroscale
solution, SymPy derives the characteristic equation of the one-cell Jacobian
J as

λ19
(
λ2 + 1/δ2

)4 (
λ2 + 2/δ2

)3 (
λ2 + 3/δ2

)4
(
λ2 + 4/δ2

)6 (
λ2 + 6/δ2

)3
= 0 .

(3.2.18)

The nineteen zero eigenvalues in the characteristic equation (3.2.18) are
due to the microscale and macroscale vortex modes and a constant (flat,
non-wave) macroscale mode. The forty pure imaginary eigenvalues λ ∈
{± i /δ,± i

√
2/δ,± i

√
3/δ,± i

√
4/δ,± i

√
6/δ} are due to pure sub-patch micro-

scale wave modes (i.e., contained within the patches).
Our aim is to assess all the macroscale eigenvalues of the staggered

patch schemes including those that correspond to nonzero wavenum-
bers (kx, ky), so we numerically evaluate the one-cell Jacobian for numerical
values of ∆, δ, cD, cV , kx, ky and compute the eigenvalues λNE1

p . For exam-
ple, for n = 6 sub-patch micro-grid intervals, such one-cell 59× 59 Jacobian
of a staggered patch scheme gives 59 eigenvalues λNE1

p . For each value
of (kx, ky), three among the 59 eigenvalues λNE1

p characterise macroscale
modes (two wave modes and one vortex mode), and the remaining 56

eigenvalues characterise microscale modes corresponding to sub-patch
microscale waves and sub-patch vortex modes.

Section 3.2.6 and §3.5 assess the accuracy and stability of the patch
schemes, by comparing their eigenvalues λNE1

p of the numerically evaluated
one-cell Jacobian, with the eigenvalues of the full domain microscale model
and the eigenvalues of the general dissipative linear wave PDEs.
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3.2.4 Compute numerical Jacobian of the full-domain
model

This subsection explains the method of computing numerical eigenvalues
of the full-domain microscale model (3.1.2) in p. 49 for all the resolved
wavenumbers of the finite grid, as opposed to the analytic eigenvalues of
one wavenumber for the full-domain model over an infinite grid.

The 3×3 analytic Jacobian (3.2.6) gives the closed form expression (3.2.7)
for the eigenvalues λA

m of the full-domain microscale model, for one par-
ticular wavenumber (kx, ky). A full-domain staggered grid (e.g., Fig. 2.1.1)
with n × n grid intervals, has n/2 × n/2 = n2/4 cells, each containing
three nodes. Hence the total number of nodes is nm = 3n2/4, which is the
same as the number of dynamical variables, and hence the same as the
number of eigenvalues. For example, the full-domain staggered grid in
Fig. 2.1.1 with 6× 6 grid intervals (n = 6), has 3n2/4 = 27 eigenvalues. To
compute all the 3n2/4 eigenvalues λA

m of a full-domain grid with n×n grid
intervals, we evaluate the analytic eigenvalue expression for all the n2/4

wavenumbers corresponding to the n2/4 cells (i.e., expression (3.2.7) gives
three eigenvalues per wavenumber).

In practice, the full-domain microscale simulation is performed using
the full-size numerical scheme, which is subject to the practical issue of
numerical roundoff errors. The eigenvalues of the numerical full-size Jaco-
bian J characterise the accuracy and stability of the numerical staggered
grid full-domain microscale model over a particular finite-sized domain
(i.e., number of grid intervals n is finite as opposed to the case of 3 × 3

Jacobian for an infinite staggered grid). Hence we also compute the eigen-
values λN

m for a nm × nm numerical Jacobian of the full-domain microscale
model as discussed in this subsection.

Consider the full-domain microscale model (3.1.2) in p. 49 of §3.1 (i.e.,
dx/dt = f (x)) where x is the state vector (2.1.3), for the general linear
wave, over a full-domain staggered grid (e.g., Fig. 2.1.1) with n × n grid
intervals. The linear system (3.1.2) is equivalent to dx/dt = Jx, where
J is a nm × nm full-size Jacobian, in contrast to the 3 × 3 Jacobian in the
eigensystem (3.2.6), of the full-domain microscale model. The full-size
Jacobian J of the staggered grid full-domain microscale model, depends
only on the physical parameters cD, cV and discretisation parameters n, δ, ∆,
not on the wavenumber. That is the full-size numerical Jacobian J encodes
all the information about the time evolution, for all the wavenumbers.

As the physical parameters cD, cV and discretisation parameters n, δ are
not varying with time, the system dx/dt = Jx (and the corresponding full-
domain dynamical system (3.1.2)) is a linear time invariant system. That is
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the system f in (3.1.2) is completely characterised by the full-size Jacobian J
whose columns are responses to unit impulses. Hence, we compute the ith
column of the full-size Jacobian J, by evaluating f for a complete set of unit
state vectors x̂i as

J =
[
f (x̂1), f (x̂2), . . . , f (x̂nm

)
]

(3.2.19)

where the unit state vectors x̂i are vectors of size nm whose ith element is
one and all other elements are zero.

Section 3.2.6 uses the eigenvalues of the numerical Jacobian of the full-
domain microscale model, for comparing with the eigenvalues of the patch
scheme. For example, Figs. 3.2.1 and 3.2.2 of §3.2.6, show the trend of
the eigenvalues of the full-domain model for all the resolved wavenum-
bers. We verified that the analytic eigenvalues λA

mδ of expression (3.2.7)
and numerical eigenvalues λN

mδ of the full-domain microscale model agree
within numerical roundoff errors. On the other hand, as p. 73 of §3.2.6
explains, the computational effort for computing the numerical eigenvalues
is very large for fine-grid full-domain model (with grid interval same as
sub-patch grid interval δ). Hence, to avoid large computational effort and
as the primary focus is on the macroscale eigenvalues (not all wavenum-
bers), all other studies in this thesis use eigenvalues λA

mδ from the analytic
expression (3.2.7) of the analytic Jacobian (§3.2.2).

3.2.5 Compute numerical Jacobian of the staggered patch
schemes

The ni
p × ni

p one-cell Jacobian of the staggered patch scheme in §3.2.3, is
useful in giving insights about the staggered patch schemes and to compute
eigenvalues corresponding to a small macroscale wavenumber (kx, ky) for
a patch grid of any size N. But, in practice, the staggered patch scheme
numerical time simulation is performed using the full-size evolution equa-
tion (3.1.4) in p. 50 of §3.1. To confirm that the full-size staggered patch
scheme (3.1.4) is stable, accurate, consistent, and not too sensitive to nu-
merical roundoff errors, this subsection explains a method to compute the
numerical eigenvalues λN

p of the staggered patch schemes.
Consider the full-size staggered patch scheme dynamical system (3.1.4)

in p. 50 of §3.1 as a linear system

dxI

dt
= JxI (3.2.20)

for general dissipative linear wave, similar to the one-cell patch scheme
system (3.2.16). The nI

p×nI
p Jacobian J is the full-size numerical Jacobian of
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the staggered patch scheme (3.1.4). For the full-size patch scheme system,
the number of state variables nI

p = (N2/4)(9n2/4 − 4n + 2) as in expres-
sion (2.1.7). In contrast to the one-cell Jacobian, the full-size Jacobian J
of the numerical staggered patch scheme depends only on the physical
parameters cD, cV and discretisation parameters N,n, δ, not on a specific
wavenumber (kx, ky). The eigenvalues λN

p of the numerical staggered patch
scheme Jacobian J characterise the accuracy and stability of the numerical
staggered patch schemes over a particular finite sized domain (i.e., N is
finite as opposed to infinite staggered patch grid for the one-cell Jacobian).

As the physical parameters cD, cV and discretisation parameters N,n, δ

are not varying with time, the system dxI/dt = JxI (and the corresponding
staggered patch scheme dynamical system (3.1.4)) is a linear time invariant
system. Hence, we compute the ith column of the staggered patch scheme
Jacobian J by evaluating F for a complete set of unit state vectors x̂I

i as

J =
[
F(x̂I

1; x
E(x̂I

1)), F(x̂
I
2; x

E(x̂I
2)), . . . , F(x̂

I
nI

p
; xE(x̂I

nI
p
))
]

(3.2.21)

where the unit state vectors x̂I
i are vectors of size nI

p whose ith element is
one and all other elements are zero.

Sections 3.2.6, 3.5 and 3.4 assess the accuracy, stability, and consistency
of the patch schemes, by comparing the eigenvalues λN

p of the staggered
patch scheme numerical Jacobian with the eigenvalues of the full domain
microscale model.

3.2.6 Staggered patch schemes are accurate for macroscale
waves

This section explains the qualitative structure of the staggered patch scheme
eigenvalues and eigenvectors, and qualitatively demonstrates the accuracy
of the staggered patch schemes for the general linear wave for a few cases
(e.g., N ∈ {6, 10}, n = 6, r = 0.1). Section 3.6 on the consistency of the stag-
gered patch schemes, quantitatively establishes the patch scheme accuracy
in more detail, over a much broader range of parameters.

This section demonstrates the accuracy of the developed five stag-
gered patch schemes (Spectral, Square-p2, Square-p4, Square-p6, and
Square-p8) by comparing the following eigenvalues in the complex plane
plots.

1. Eigenvalues λN
p of the numerical Jacobian of a staggered patch scheme

on a finite domain (§3.2.5).
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2. Eigenvalues λNE1
p of the numerically evaluated one-cell Jacobian in

linear system (3.2.16) in §3.2.3, of a staggered patch scheme on an
infinite domain.

3. Eigenvalues λA
mδ from the analytic expression (3.2.7) in §3.2.2, of fine-

grid full-domain microscale model, with micro-grid interval equal to
the sub-patch micro-grid interval δ. That is, δmδ ≡ L/nmδ = δ ≡ l/n ≡
2Lr/(Nn) as r = l/(2∆) and ∆ = L/N, where nmδ is the number of full-
domain microscale grid intervals and n is the number of sub-patch
micro-grid intervals. When the context is clear we drop the subscript
mδ in nmδ and δmδ for the fine-grid full-domain microscale model.

4. Eigenvalues λA
m∆ from the analytic expression (3.2.7) in §3.2.2 of coarse

grid version of the full-domain microscale model, with δ = ∆. That is,
δm∆ ≡ L/nm∆ = ∆ ≡ L/N, where nm∆ is the number of full-domain
microscale grid intervals and n is the number of sub-patch micro-grid
intervals. When the context is clear we drop the subscript m∆ in nmδ

and δm∆ for the coarse-grid full-domain microscale model.

5. Eigenvalues λA
PDE from the analytic expression (3.2.3) of the 2D general

dissipative linear wave PDEs (3.0.1) (§3.2.1). Comparison with the
eigenvalues λA

PDE is only for completeness.

All the analytic eigenvalues (λNE1
p , λA

mδ, λA
m∆, λA

PDE) are numerically evalu-
ated for all the N2/4 macroscale wavenumbers (kx, ky) resolved on a corre-
sponding finite staggered patch grid with N×N macro-grid intervals. To
illustrate the complete structure of eigenvalues (i.e, for all wavenumbers)
of the full-domain microscale model and to cross-verify analytic and nu-
merical computation of the full-domain microscale model eigenvalues, we
also compute the eigenvalues of the numerical Jacobian of the full-domain
microscale model for few cases (e.g., Fig. 3.2.1).

The sets of eigenvalues (e.g., λN
p , λNE1

p , λN
mδ, λN

m∆, λA
PDE), in all the complex

plane plots, are numbered in the legend entries on the left. In all the
complex plane plots, physical parameters for each of these eigenvalues are
listed in groups below the legend entries. For example, the following listing
explains the parameters specifically for Fig. 3.2.1 with N = 6, n = 6, and
similarly for other plots.

• The group labelled by (3) (in the left, below the legend entries) says
that the third listed eigenvalues λN

mδ correspond to a fine full-domain
micro-grid with 180× 180 grid intervals (n = 180).
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Figure 3.2.1. Spectral staggered patch scheme (N = 6, n = 6) eigen-
values (λN

p , λNE1
p ) on complex plane (linear scale) for general linear wave.

Due to large range of magnitudes of eigenvalues, details of eigenvalues for
macroscale modes (mid-right clusters 1, 2, 3) are not discernable.
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• The group labelled by (4) says that the fourth listed eigenvalues λN
m∆

correspond to a full-domain micro-grid with coarse grid interval δ =

L/N = 2π/6 = ∆.

• The group labelled by (1, 2) lists all the parameters common to the
first and second listed eigenvalues λN

p , λNE1
p of the staggered patch

scheme.

• The group labelled by (1, 2, 4) says that n = 6 for the first, second,
and the fourth listed eigenvalues. We use the same symbol n for the
number of grid intervals for both the full-domain micro-grid and the
sub-patch micro-grid. That is, the eigenvalues λN

p , λNE1
p correspond

to a staggered patch grid where each patch contains 6× 6 sub-patch
micro-grid intervals (n = 6), and the eigenvalues λN

m∆ correspond to a
coarse full-domain micro-grid with 6× 6 grid intervals (n = 6).

• The group labelled by (1, 2, 3) says that δ = 2π/180 for the first, sec-
ond, and the third listed eigenvalues. We use the same symbol δ for
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Figure 3.2.2. Spectral staggered patch scheme (N = 6, n = 6) eigen-
values (λN

p , λNE1
p ) on complex plane (arcsinh nonlinear scale) for general

linear wave. The arcsinh scaling zooms out the eigenvalues of macroscale
modes (mid-right clusters 1, 2, 3 in Fig. 3.2.1 to clusters 1–5 here).
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the grid interval for both the full-domain micro-grid and the sub-
patch micro-grid. That is, the eigenvalues λN

p , λNE1
p correspond to a

staggered patch grid with sub-patch micro-grid interval δ = 2π/180,
and the eigenvalues λN

mδ correspond to a fine full-domain micro-grid
interval δ = 2π/180.

• The group Common parameters lists the parameters common to all the
listed eigenvalues.

Figures 3.2.1 and 3.2.2 plot the eigenvalues (λN
p , λNE1

p ) of the Spectral

patch scheme on a staggered patch grid with 6 × 6 macro-grid intervals
(N = 6) and each patch containing 6 × 6 sub-patch micro-grid intervals
(n = 6). Also plotted are the eigenvalues λN

mδ, λN
m∆ of respectively the fine-

and coarse-grid versions of the full-domain microscale model (3.1.1) and
the eigenvalues λA

PDE of the PDE (3.0.1). Similar to Figs. 3.2.1 and 3.2.2, in
all the complex plane eigenvalue plots, eigenvalues are grouped within
clusters based on eigenvalues λNE1

p of the staggered patch scheme Jacobian.
Each cluster is annotated with the number of eigenvalues λNE1

p in the cluster
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and the cluster number in the superscript.
Figure 3.2.1 presents the complex plane plot on a linear scale. Hence,

due to the large range of magnitude of the eigenvalues, details of the
eigenvalues for macroscale modes (mid-right clusters 1, 2, 3) are not dis-
cernable. The details of the eigenvalues for macroscale modes are of
primary interest. On the other hand, the arcsinh scaling in Fig. 3.2.2
aptly zooms out the eigenvalues of macroscale modes (mid-right clus-
ters 1, 2, 3 in Fig. 3.2.1 to clusters 1–5). That is, the nonlinear arcsinh scaling
has a quasi-log nature, which empowers us to see very small (positive
and negative) as well as large magnitude of eigenvalues, all together
in the same plot. Hence, most complex plane eigenvalue plots in this the-
sis are on arcsinh scaling. Specifically, the complex plane plots on arcsinh
scaling, plot an eigenvalue λ as a point on a 2D space with coordinates
(arcsinh{Sh [ℜ(λ) −Oh]}/Sh +Oh, arcsinh[Sv ℑ(λ)]/Sv), where Sh, Sv are the
horizontal and vertical scale factors and (Oh, 0) is the centre of zoom. In
this chapter, most plots on arcsinh scaling use the scale factors Sh = 5 · 106,
Sv = 100 and the centre of zoom (Oh, 0) = (−5 · 10−7, 0).

This paragraph explains the general qualitative structure of the patch
scheme eigenvalues for the general linear wave, using as reference the
complex plane plot of Fig. 3.2.2 for the Spectral staggered patch scheme.
Figure 3.2.2 is for a staggered patch grid with 10× 10 macro-grid intervals
(N = 10) and each patch containing 6 × 6 sub-patch micro-grid intervals
(n = 6). The following points are based on the Spectral patch scheme
eigenvalues in Fig. 3.2.2 and the eigenvectors (the patch scheme modes) in
Figs. 3.2.13 to 3.2.18. But these points hold in general for the eigenvalues
of the PDE, full-domain microscale model, and all the five (Spectral and
four polynomial) patch schemes. The number just next to each cluster is
the number of eigenvalues in that cluster. The cluster numbers referred to
below are indicated on the plots by the superscript of the number just next
to each cluster. For the general linear wave, we find that the patch scheme
eigenvalues typically form eight clusters as in Fig. 3.2.2 (clusters 1–8).

• Cluster 1 consisting of one zero eigenvalue corresponds to the macro-
scale mode of stagnant water (zero eigenvalue, hence temporally
constant) with uniform height and no flow (i.e., u = v = 0) (e.g.,
eigenvector in Fig. 3.2.13). This mode is due to the conservation of
mass/height of water with nonzero mean height (mean height is zero
for the other modes).

• Cluster 2 consisting of two real eigenvalues −cD, corresponds to the
macroscale mode of decelerating (negative real part) uniform mean flow
(e.g., eigenvector in Fig. 3.2.14) due to drag in two directions.
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• Clusters 3, 4 together consisting of sixteen complex conjugate eigen-
values with small negative real parts, correspond to slowly decaying
macroscale wave modes with small wavenumber (e.g., eigenvector in
Fig. 3.2.15).

• Cluster 5 consisting of eight small real negative eigenvalues, corre-
sponds to slowly decaying macroscale vortex modes (e.g., eigenvector
in Fig. 3.2.16).

• Clusters 6, 7 together consisting of 360 complex conjugate eigenvalues
with large negative real parts, correspond to fast decaying sub-patch
microscale wave modes with large wavenumber (e.g., eigenvector in
Fig. 3.2.17).

• Cluster 8 consisting of 144 large real negative eigenvalues, corre-
sponds to fast decaying sub-patch microscale vortex modes (e.g., eigen-
vector in Fig. 3.2.18).

• As the clusters 1–5 correspond to macroscale modes, we call their
eigenvalues macroscale eigenvalues (as defined in p. 52 of §3.2).

• As the clusters 6–8 correspond to microscale modes, we call their
eigenvalues microscale eigenvalues (as defined in p. 52 of §3.2).

The previous paragraph shows that the clusters 1–5 (on the right) con-
tain eigenvalues of the macroscale modes and the clusters 6–8 (on the left)
contain eigenvalues of the microscale modes. As Figs. 3.2.1 and 3.2.2 show,
a patch scheme contains only the small wavenumber macroscale modes (on
the right) and large wavenumber microscale modes (on the left), not the
modes of the intermediate scale. On the other hand, the eigenvalues λN

mδ

of the full-domain microscale model, span the eigenvalue plot nearly uni-
formly from left to right, corresponding to all the wavenumbers resolved
on the full-domain microscale staggered grid. Figures 3.2.1 and 3.2.2 show
a good qualitative agreement of the structure of microscale and macroscale patch
scheme eigenvalues λN

p and the complete structure of the eigenvalues λN
mδ (i.e,

for all wavenumbers) of the full-domain microscale model. For the accurate
multiscale modelling of the macroscale waves, the agreement between the
macroscale eigenvalues of the patch scheme and those of the full-domain
model is the primary focus. Figure 3.2.2 shows that, within the clusters 1–5,
the numerical macroscale eigenvalues λN

p of the patch scheme (large ma-
genta circles) and the numerical macroscale eigenvalues λN

mδ (small red
circles) visually agree.
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As Fig. 3.2.2 shows, for both microscale and macroscale modes, the patch
scheme eigenvalues λNE1

p of the numerically evaluated one-cell analytic
Jacobian (§3.2.3) and the patch scheme eigenvalues λN

p of the numerical
Jacobian (§3.2.5), agree (i.e., the large magenta and blue circles). Hence,
all other complex plane plots in this subsection §3.2.6 use eigenvalues λNE1

p of
the numerically evaluated one-cell analytic Jacobian (§3.2.3), as opposed to the
numerical eigenvalues λN

p .
For a staggered patch grid with 6× 6 macro-grid intervals (N = 6) and

each patch containing 6× 6 sub-patch micro-grid intervals (n = 6), the total
number of nodes and hence the total number of eigenvalues λN

p is nI
p = 531.

The corresponding number of eigenvalues λN
mδ of the fine-grid full-domain

microscale model (with patch scale ratio r = 0.1) is (3/16)(Nn/r)2 = 24300,
whose numerical Jacobian (§3.2.4) is of size 24300×24300 containing 5.9 ·108
elements. For patch grids with N ⩾ 10 and/or r < 0.1, the corresponding
numerical Jacobians of the fine-grid full-domain microscale model, rapidly
increase in size requiring substantially larger computational effort and
memory (e.g., larger than 64 GB). For the accurate multiscale modelling of
the macroscale waves, the agreement between the macroscale eigenvalues
of the patch scheme and those of the full-domain model is the primary
focus, not the eigenvalues corresponding to all the wavenumbers. That
is, to assess the patch scheme accuracy, as in Fig. 3.2.3 it suffices to com-
pare only the patch scheme macroscale eigenvalues with the macroscale
eigenvalues λA

mδ of the full-domain microscale model (by evaluating the
analytic expression (3.2.7) only for macroscale wavenumbers resolved on
a staggered patch grid). Hence, to avoid large computational effort and
as the primary focus is on the macroscale eigenvalues, all other complex
plane plots in this subsection §3.2.6 use eigenvalues λA

mδ from the analytic expres-
sion (3.2.7) of the analytic Jacobian (§3.2.2), as opposed to the numerical
eigenvalues λN

mδ.
The specific location of eigenvalues on the complex plane plot of Fig. 3.2.2,

for the Spectral staggered patch scheme, change with the physical param-
eters cD, and cV , but the above cluster structure is typical.

• When the drag tends to zero with nonzero viscous diffusion (i.e.,
cD → 0, cV ̸= 0), the two eigenvalues of the decelerating uniform
mean flow mode (cluster 2) move to right in the complex plane and
merge with cluster 1 of steady uniform mode as in Fig. 3.2.3.

• When the viscous diffusion tends to zero with nonzero drag (i.e.,
cV → 0, cD ̸= 0), two notable structural changes occur:

1. the eigenvalues of the wave modes (clusters 3,4,7,8 in Fig. 3.2.2)
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move to the right to take constant real part value of −cD/2 (clus-
ters 2,3,4,5 in Fig. 3.2.4);

2. the eigenvalues of the vortex modes (clusters 5,8 in Fig. 3.2.2)
move to the right in the complex plane and merge with cluster 2
of the decelerating uniform mean flow mode, which is cluster 6
in Fig. 3.2.4.

• When both the drag and the viscous diffusion tend to zero, (i.e.,
cD, cV → 0), two notable structural changes occur:

1. the eigenvalues of the wave modes (clusters 3,4,7,8 in Fig. 3.2.2)
move to the right to take zero real part (clusters 1,2,4,5 in Fig. 3.2.5);

2. the eigenvalues of the vortex modes (clusters 5,8 in Fig. 3.2.2) and
decelerating uniform mean flow modes (cluster 2 in Fig. 3.2.2)
move to the right in the complex plane and merge with cluster 3
of the zero eigenvalues in Fig. 3.2.5.

The structure of eigenvalues and its qualitative dependence on the
dissipation parameters (cD, cV) for the Spectral staggered patch scheme,
explained in the preceding paragraph, also hold for all the four polynomial
staggered patch schemes of the general linear wave (e.g., the eigenvalues
of the polynomial staggered patch schemes in Figs. 3.2.9 to 3.2.12).

The number of wave modes (clusters 3, 4, 6, 7 in Fig. 3.2.2), and the num-
ber of vortex modes (clusters 5, 8 in Fig. 3.2.2), depend on N, n of a patch
scheme for general linear wave (over a staggered patch grid containing
N × N macro-grid intervals and each patch containing n × n sub-patch
micro-grid intervals). The following listing explains the number of various
modes (number of eigenvalues λN

p ) of a staggered patch scheme for the
general linear wave with nonzero drag and the viscous diffusion. For example,
Figs. 3.2.2, 3.2.6 and 3.2.7 plot eigenvalues of the Spectral staggered patch
scheme respectively for (N,n) = (6, 6), (6, 10), (10, 6).

• There is one macroscale mode for the stagnant water (cluster 1) irre-
spective of N, n.

• There are two macroscale modes for the decelerating uniform mean
flow (cluster 2) irrespective of N, n.

• The total number of macroscale wave modes (in clusters 3, 4), is
2(N2/4 − 1), which does not depend on the number of sub-patch
micro-grid intervals n.



§3.2 Staggered patch schemes are accurate 75

Figure 3.2.3. Spectral staggered patch scheme (N = 6, n = 6) eigenvalues
for general linear wave with no drag and nonzero viscous diffusion (cD =

0, cV ̸= 0). The macroscale eigenvalues λNE1
p agree with the macroscale

eigenvalues λA
mδ of the fine-grid full-domain microscale model.
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• The number of macroscale vortex modes (in cluster 5), is N2/4 − 1,
which does not depend on n.

• The total number of microscale sub-patch wave modes (in clusters 6, 7),
is (N2/2)(3n2/4− n− 1).

• The number of microscale sub-patch vortex modes (in cluster 8), is
(N2/4)(3n2/4− 2n+ 1).

• The total number of macroscale modes is 3N2/4, which is the same
as the number of patches in the staggered patch grid with N × N

macro-grid intervals (each of the (N/2)2 macro-cells contains three
patches).

• The total number of microscale sub-patch modes is (N2/4)(9n2/4 −

4n− 1).

• The total number of staggered patch scheme modes (number of eigen-
values λN

p ) is nI
p = (N2/4)(9n2/4−4n+2), which is same as the number
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Figure 3.2.4. Spectral staggered patch scheme (N = 6, n = 6) eigenvalues
for general linear wave with nonzero drag and no viscous diffusion (cD ̸=
0, cV = 0). The macroscale eigenvalues λNE1

p agree with the macroscale
eigenvalues λA

mδ of the fine-grid full-domain microscale model.
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Figure 3.2.5. Spectral staggered patch scheme (N = 6, n = 6) eigenvalues
for general linear wave with no drag and no viscous diffusion (ideal wave,
cD = cV = 0). The macroscale eigenvalues λNE1

p agree with the macroscale
eigenvalues λA

mδ of the fine-grid full-domain microscale model.
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Figure 3.2.6. Spectral staggered patch scheme (N = 6, n = 10) eigenvalues
for general linear wave with drag and viscous diffusion. The macroscale
eigenvalues λNE1

p agree with the macroscale eigenvalues λA
mδ of the fine-

grid full-domain microscale model.
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Figure 3.2.7. Spectral staggered patch scheme (N = 10, n = 6) eigenvalues
for general linear wave with drag and viscous diffusion. The macroscale
eigenvalues λNE1

p agree with the macroscale eigenvalues λA
mδ of the fine-

grid full-domain microscale model.
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of patch interior nodes (2.1.7) in p. 21 of §2.1.2.

The preceding paragraph explains the number of eigenvalues λN
p of

the full-size numerical Jacobian of the staggered patch scheme (§3.2.5),
this paragraph explains the number of eigenvalues λNE1

p of the one-cell
analytic Jacobian of the staggered patch scheme (§3.2.3). The total number
of eigenvalues λNE1

p of the numerically evaluated one-cell Jacobian of a
staggered patch scheme for one wavenumber (kx, ky), is ni

p = (9n2/4 −

4n + 2). The number of eigenvalues ni
p is same as the total number of

state variables, and the number of patch interior nodes (3.2.11) in p. 59 of
§3.2.3, for a one-cell analytic description of a staggered patch scheme for
one macroscale wavenumber (kx, ky). For example, as in p. 59 of §3.2.3, for
n = 6, 10, 14 sub-patch micro-grid intervals, ni

p = 59, 187, 387 respectively.
The numerical eigenvalues λN

p correspond to all the macroscale wavenum-
bers (kx, ky) resolved by a patch grid. But the analytic one-cell eigen-
values λNE1

p correspond to only one macroscale wavenumber. For how
many macroscale wavenumbers, one must compute the one-cell eigen-
values λNE1

p towards one-to-one comparison with the full-size numerical
eigenvalues λN

p ? A staggered patch grid with 6 × 6 macro-grid intervals
N = 6 (with each of the (N/2)2 macro-cells containing three patches), re-
solves a total of (N/2)2 = 9 macroscale modes with macroscale wavenum-
bers kx, ky ∈ {−1, 0, 1}. To compare the one-cell eigenvalues λNE1

p with the
eigenvalues λN

p of the numerical Jacobian for a staggered patch scheme
on a patch grid with 6× 6 macro-grid intervals, we numerically evaluate
the one-cell Jacobian of a staggered patch scheme for all the nine macro-
scale wavenumbers. Hence the total number of one-cell eigenvalues λNE1

p

is 59 × 9 = 531, matching the total number of numerical eigenvalues λN
p .

The number of wavenumbers for which the one-cell eigenvalues λNE1
p are

computed, is indicated in the eigenvalue plots next to the legend entry for
λNE1
p . For example, the “(9k)” in Fig. 3.2.2 indicates the nine wavenum-

bers (kx, ky) (i.e., kx, ky ∈ {−1, 0, 1}) and the “(25k)” in Fig. 3.2.7 indicates
the 25 wavenumbers (i.e., kx, ky ∈ {−2,−1, 0, 1, 2}).

Similar to the case of the λNE1
p in the preceding paragraph, in contrast

to plotting all the eigenvalues of the coarse- and fine-grid full-domain
microscale model, such as the numerical eigenvalues λN

m∆, λN
mδ in Figs. 3.2.1

and 3.2.2, all other eigenvalue plots plot the analytic full-domain eigen-
values λA

mδ, λA
m∆ only for the macroscale wavenumbers. For example, for a

patch grid with 6× 6 macro-grid intervals, the analytic expression (3.2.7) is
evaluated only for the (N/2)2 = 9 macroscale wavenumbers (i.e., kx, ky ∈
{−1, 0, 1}). For each wavenumber (kx, ky), expression (3.2.7) gives three
eigenvalues, one real and a pair of complex conjugate eigenvalues. Hence
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the total number of macroscale eigenvalues λA
mδ is 3× 9 = 27, matching the

total number of macroscale staggered patch scheme eigenvalues λN
p and

λNE1
p in Fig. 3.2.6 (the “(9k)” next to the legend entry for λA

mδ, λA
m∆ indicates

the nine wavenumbers).
Comparing the number of eigenvalues in the complex plane plots of

the Spectral staggered patch scheme for different sizes of the patch grid
(e.g., Figs. 3.2.2, 3.2.6 and 3.2.7 respectively for (N,n) = (6, 6), (6, 10), (10, 6)),
reveal the following.

1. Keeping the domain size L, patch scale ratio r, and the number of
sub-patch micro-grid intervals n the same, increasing the number of
macro-grid intervals N of a patch grid increases both the macroscale modes
and the microscale modes. For example,

• a patch grid with 6×6 macro-grid intervals, computes 3N2/4 = 27

macroscale modes and (N2/4)(9n2/4− 4n− 1) = 504 microscale
modes (clusters 1–5 and clusters 6–8 in Fig. 3.2.2), whereas

• a patch grid with 10 × 10 macro-grid intervals, computes 75

macroscale modes and 1400 microscale modes (clusters 1–5 and
clusters 6–8 in Fig. 3.2.7).

2. On the other hand, keeping L, r, and N the same, increasing the number
of sub-patch micro-grid intervals n of a patch grid increases only the micro-
scale modes without any change in the number of macroscale modes. For
example,

• a patch grid containing 6 × 6 sub-patch micro-grid intervals
in each patch, computes 504 microscale modes (clusters 6–8 in
Fig. 3.2.2), whereas

• a patch grid containing 10 × 10 sub-patch micro-grid intervals
in each patch, computes 1656 microscale modes (clusters 6–8 in
Fig. 3.2.7), but

• there are 27 macroscale modes in both cases.

As the comparison in Fig. 3.2.2 shows, the staggered patch scheme
eigenvalues comprise the microscale eigenvalues on the left and the macro-
scale eigenvalues on the right but not the intermediate scales. To quantify
this spectral gap in the scales, we define the spectral gap factor as the ratio
of the maximum real part of the microscale eigenvalues (on the left) to the
minimum real part of the macroscale eigenvalues (on the right). All the
complex plane eigenvalue plots with arcsinh scaling indicate the spectral
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gap by a grey arrow annotated with the spectral gap factor. When there is
no gap, that is when the microscale eigenvalues and macroscale eigenvalues
overlap, to quantify the overlap, we compute the spectral gap as negative
of the ratio of the minimum real part of the macroscale eigenvalues to the
maximum real part of the microscale eigenvalues.

Keeping the domain size L, patch scale ratio r, and number of sub-
patch micro-grid intervals n the same, increasing the number of macro-grid
intervals N resolves more macroscale modes with progressively higher
wavenumbers (e.g., Figs. 3.2.2 and 3.2.7). Hence, increasing N for the same
patch scale ratio r, leads to decreasing spectral gap between the microscale and
macroscale eigenvalues, approaching the full-domain microscale model. On
the other hand, keeping L, r, and N the same, increasing the number of
sub-patch micro-grid intervals n increases the spectral gap (e.g., Figs. 3.2.2
and 3.2.6).

The clusters 4–6 in Fig. 3.2.1 and the clusters 6–8 in Fig. 3.2.2 correspond
to sub-patch microscale modes (e.g., Figs. 3.2.17 and 3.2.18 show such
modes). All the five staggered patch schemes have such sub-patch micro-
scale modes. When the viscous diffusion is nonzero, the large negative real
parts of these microscale modes mean that they decay rapidly and only
the accurate macroscale modes dominate the long time solution, which are
of primary interest for accurate macroscale modelling. The spectral gap
(indicated by a grey arrow) in the eigenvalue plots, quantifies how rapidly
the microscale modes are dissipated relative to macroscale dynamics. That
is, the spectral gap quantifies how rapidly the patch scheme macroscale solution
emerges from the underlying microscale dynamics.

Our objective is to design the staggered patch schemes to resolve the
macroscale physics as accurately as possible compared to the corresponding
fine-grid full-domain microscale model. Hence, we define a staggered patch
scheme to be accurate when the macroscale eigenvalues (e.g., λN

p , λNE1
p ) of

the staggered patch schemes are close to the macroscale eigenvalues (e.g.,
λA
mδ) of the corresponding fine-grid full-domain microscale model with the

same grid interval as the sub-patch micro-grid interval.
Figures 3.2.2 to 3.2.7 present the eigenvalue plots for the Spectral stag-

gered patch schemes, for different dissipation parameters (cD ∈ {0, 10−6},
cV ∈ {0, 10−4}), and for different sizes of the patch grid (N ∈ {6, 10}, n ∈
{6, 10}) with the patch scale ratio r = 0.1. The macroscale eigenvalues λNE1

p

(large blue circles) of the Spectral staggered patch scheme agree exactly
(within numerical roundoff errors) with the corresponding macroscale
eigenvalues λA

mδ (small red circles) of the fine-grid full-domain microscale
model. That is, the Spectral staggered patch scheme accurately resolves the
macroscale modes of the general linear wave, for these combinations of the
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parameters (§3.6 shows the accuracy for larger range of parameters).
Similar to the Spectral staggered patch scheme, the accuracy of the

four polynomial patch schemes (Square-p2, Square-p4, Square-p6, and
Square-p8) do not depend on the physical parameters (cD ∈ {0, 10−6},
cV ∈ {0, 10−4}) or the number of sub-patch micro-grid intervals n; for brevity
we omit the corresponding plots. However, unlike the Spectral staggered
patch scheme which is exact, the polynomial patch schemes do have macro-
scale errors. Yet, the accuracy of the polynomial staggered patch schemes
increases with increasing the macro-grid intervals N. For example, compar-
ing Figs. 3.2.8 and 3.2.9 shows that for N = 10 (Fig. 3.2.9) the macroscale
eigenvalues λNE1

p (large blue circles), with small real parts, agree more
closely with the corresponding macroscale eigenvalues λA

mδ (small red
circles), compared to the macroscale eigenvalues for N = 6 (Fig. 3.2.8).
Section 3.6 on the consistency of the staggered patch schemes, quantifies
how the errors decrease with increasing N.

Each patch is effectively one node in the macroscale grid. Hence, com-
paring the macroscale eigenvalues λNE1

p of the staggered patch scheme with
the macroscale eigenvalues λA

m∆ of the coarse-grid full-domain microscale
model (with same grid interval as the inter-patch spacing ∆) reveals how ef-
fective a staggered patch scheme is, as a multiscale scheme coupling across
the scales. Figs. 3.2.9 to 3.2.12 plot the eigenvalues for the polynomial
staggered patch schemes (§2.2.2) Square-p2, Square-p4, Square-p6, and
Square-p8, on a patch grid with 10× 10 macro-grid intervals (N = 10) and
each patch containing 6×6 sub-patch micro-grid intervals (n = 6) and patch
scale ratio r = 0.1. Figs. 3.2.9 to 3.2.12 show that increasing polynomial
interpolation orders p = 2, 4, 6, 8 increases the accuracy of the polynomial
staggered patch schemes due to the increasing interpolation accuracy. That
is, the discrepancy, between the macroscale eigenvalues λNE1

p (large blue
circles) of the patch schemes and the corresponding eigenvalues λA

mδ (small
red circles) of the fine-grid full-domain microscale model, decreases with
increasing interpolation order p. As the interpolation accuracy increases
with increasing p, the macroscale eigenvalues λNE1

p of the patch scheme
shift from being close to the macroscale eigenvalues λA

m∆ (coarse-grid) to
being close to the macroscale eigenvalues λA

m∆ (fine-grid) of the full-domain
microscale model. Thus, depending upon the accuracy of the patch cou-
pling interpolation, the accuracy of the staggered patch schemes lies between the
accuracy of the coarse- and fine-grid full-domain microscale model (two extremes).

Figs. 3.2.13 to 3.2.18 plot one example eigenvector (mode shape) for each
of eigenvalue clusters 1, 2, 3, 5, 6, 8 in Fig. 3.2.12 for the Square-p8 staggered
patch scheme (with N = 10, n = 6, r = 0.1). These eigenvectors are com-
puted for the numerical Jacobian (§3.2.5) of the Square-p8 staggered patch
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Figure 3.2.8. Square-p2 staggered patch scheme (N = 6, n = 6) eigenvalues
for general linear wave with drag and viscous diffusion. Low accuracy inter-
polation leads to poor patch scheme accuracy; that is, large discrepancy
between λNE1

p (large blue circles) and λA
mδ (small red circles).
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Figure 3.2.9. Square-p2 staggered patch scheme (N = 10, n = 6) eigen-
values for general linear wave with drag and viscous diffusion. The patch
scheme accuracy with N = 10 is higher compared to Fig. 3.2.8 for N = 6;
that is, smaller discrepancy between λNE1

p and λA
mδ.
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Figure 3.2.10. Square-p4 staggered patch scheme (N = 10, n = 6) eigen-
values for general linear wave with drag and viscous diffusion. The fourth
order polynomial interpolation leads to higher patch scheme accuracy com-
pared to Fig. 3.2.9 for Square-p2, smaller discrepancy between λNE1

p and
λA
mδ.
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Figure 3.2.11. Square-p6 staggered patch scheme (N = 10, n = 6) eigen-
values for general linear wave with drag and viscous diffusion. The sixth
order polynomial interpolation leads to higher patch scheme accuracy com-
pared to Fig. 3.2.10 for Square-p4, smaller discrepancy between λNE1

p and
λA
mδ.
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Figure 3.2.12. Square-p8 staggered patch scheme (N = 10, n = 6) eigen-
values for general linear wave with drag and viscous diffusion. The eighth
order polynomial interpolation leads to higher patch scheme accuracy com-
pared to Fig. 3.2.11 for Square-p6, smaller discrepancy between λNE1

p and
λA
mδ.
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scheme. The qualitative shapes of the eigenvectors in Figs. 3.2.13 to 3.2.18
are the same for the Spectral (§2.2.1) and polynomial (§2.2.2) staggered
patch schemes Square-p2, Square-p4, Square-p6, and Square-p8.



§3.2 Staggered patch schemes are accurate 85

Figure 3.2.13. Eigenvector for eigenvalue λN
p = 0+0 i (cluster 1 in Fig. 3.2.12),

for Square-p8 staggered patch scheme with N = 10, n = 6, r = 0.1. The
macroscale mode of stagnant water with uniform height h and no flow (i.e.,
u = v = 0).
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Figure 3.2.14. Eigenvector for eigenvalue λN
p = −10−6 + 0 i (cluster 2 in

Fig. 3.2.12), for Square-p8 staggered patch scheme with N = 10, n = 6,
r = 0.1. One of the two macroscale modes of decelerating (negative real part
λN
p ) uniform mean flow (spatially constant velocities u and v).
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Figure 3.2.15. Eigenvector for eigenvalue λN
p = −5 · 10−5 + 1 i (cluster 3 in

Fig. 3.2.12), for Square-p8 staggered patch scheme with N = 10, n = 6, r =
0.1. A macroscale wave mode (only h and u are of significant magnitude)
with exchange of potential (h) and kinetic (u) energy.
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Figure 3.2.16. Eigenvector for eigenvalue λN
p = −0.0001 + 0 i (cluster 5 in

Fig. 3.2.12), for Square-p8 staggered patch scheme with N = 10, n = 6,
r = 0.1. A macroscale vortex mode (only u and v are of significant magnitude).
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Figure 3.2.17. Eigenvector for eigenvalue λN
p = −0.085 + 33.76 i (cluster 6

in Fig. 3.2.12), for Square-p8 staggered patch scheme with N = 10, n = 6,
r = 0.1. A sub-patch microscale wave mode (h, u, and v are of significant
magnitude) with exchange of potential energy (h) and kinetic energy (u, v).
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Figure 3.2.18. Eigenvector for eigenvalue λN
p = −0.17 + 0 i (cluster 8 in

Fig. 3.2.12), for Square-p8 staggered patch scheme with N = 10, n = 6,
r = 0.1. A sub-patch microscale vortex mode (only u and v are of significant
magnitude).
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3.3 A method of wavenumber-wise scale
separation for patch scheme eigenvalues

Section 3.6 quantitatively establishes the accuracy of the patch schemes by
comparing the eigenvalues of the patch schemes and that of the full-domain
microscale model corresponding to three specific macroscale wavenum-
bers (kx, ky) ∈ {(1, 0), (1, 1), (2, 1)}. Section 3.6 shows that the staggered
patch schemes are consistent with the given microscale model based on
the eigenvalue error defined for these three wavenumbers. Similarly,
quantitative study of the patch schemes, for the sensitivity to numerical
roundoff errors (§3.4) and the stability (§3.5) requires separation of micro-
scale and macroscale patch scheme eigenvalues for specific macroscale
wavenumbers. This subsection explains a heuristic method we name as
method of wavenumber-wise scale separation, that classifies the eigenvalues
wavenumber-wise and separates into microscale and macroscale patch
scheme eigenvalues. This method is robust without any assumption about
eigenvalue structure or dispersion relation and is heuristic only in the sense
that the wavenumber-eigenvalue association is established solely from the
eigenvalues without using the information from the eigenvectors.

The symbols λNE1
pM and λN

pM denote the analytic and numerical macro-
scale eigenvalues of a patch scheme respectively. Similarly, the sym-
bols λNE1

pµ and λN
pµ denote the analytic and numerical microscale eigen-

values of a patch scheme respectively. The required method of wavenumber-
wise scale separation has three goals:

1. classify the analytic and numerical eigenvalues (λNE1
p , λN

p ) of a patch
scheme based on all the N2/4 macroscale wavenumbers (kx, ky) where
kx, ky ∈ {. . . ,−1, 0, 1, . . .} resolved by a staggered patch grid;

2. separate the eigenvalues for each macroscale wavenumber (kx, ky)

into macroscale eigenvalues λNE1
pM , λN

pM (corresponding to pure macro-
scale modes defined in p. 52 of §3.2) and microscale eigenvalues λNE1

pµ ,
λN
pµ (corresponding to microscale modes with microscale structure

modulated over the macroscale of wavenumber (kx, ky), p. 52);

3. for each wavenumber, associate each of the three macroscale eigen-
values λA

mδ, λNE1
pM , λN

pM and associate each of the several microscale
eigenvalues λNE1

pµ , λN
pµ.

The method of wavenumber-wise scale separation identifies the corre-
spondence of the patch scheme eigenvalues (λNE1

p , λN
p ) to each macroscale

wavenumber resolved by a patch grid, and separates the eigenvalues into
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microscale and macroscale eigenvalues, via the following steps. In all the
following 3D arrays, the first two indices correspond to each macroscale
wavenumber resolved by a patch grid.

1. Compute and save the analytic eigenvalues λA
mδ of full-domain micro-

scale model (§3.2.2) as a 3D N/2×N/2× 3 array for each of the N2/4

macroscale wavenumbers (kx, ky) resolved by a staggered patch grid.
That is, three eigenvalues for each wavenumber.

2. Compute and save the analytic eigenvalues λNE1
p of a patch scheme

(§3.2.3) as a 3D N/2 × N/2 × ni
p array for each of the N2/4 macro-

scale wavenumbers (kx, ky) resolved by a patch grid. As in expres-
sion (3.2.11) (p. 59 of §3.2.3), there are ni

p = 9n2/4 − 4n + 2 eigen-
values λNE1

p for each wavenumber (e.g., 59 eigenvalues for N = 10).
For Spectral patch scheme with N > 14, as the analytic expressions
of the Jacobian elements become too long, we do not compute analytic
eigenvalues λNE1

p ; hence this step does not apply. Among the total ni
p

eigenvalues of the patch scheme per wavenumber, ni
pM = 3 eigen-

values (irrespective of N and n) correspond to the pure macroscale
modes, and ni

pµ = 9n2/4− 4n− 1 eigenvalues correspond to artificial
sub-patch microscale modes modulated over the macroscale.

3. Compute and save the numerical eigenvalues λN
p of a patch scheme

(§3.2.5) as an 1D array of size nI
p. As in expression (2.1.7) (p. 21 of

§2.1.2), there are nI
p = (N2/4)(9n2/4− 4n+ 2) eigenvalues λN

p , which
include nI

pM = 3N2/4 eigenvalues corresponding to the macroscale
modes and nI

pµ = (N2/4)(9n2/4−4n−1) sub-patch microscale modes.
Comparing with the number of patch scheme eigenvalues λNE1

p in
step 2, nI

pM = ni
pM(N2/4), nI

pµ = ni
pµ(N

2/4), nI
p = ni

p(N
2/4). Thus,

the 3D array of λNE1
p (with size N/2×N/2× ni

p) in step 2 contain all
the eigenvalues corresponding to the 1D array of λN

p with size nI
p.

4. The task of this step is to split the N/2 ×N/2 × ni
p array of analytic

patch scheme eigenvalues λNE1
p in step 2 into N/2 × N/2 × 3 array

of macroscale eigenvalues λNE1
pM (corresponding to the N/2×N/2× 3

array of λA
mδ in step 1) and N/2×N/2× (ni

p − 3) array of microscale
eigenvalues λNE1

pµ . For this task, loop over each of the N2/4 macroscale
wavenumbers (kx, ky) with index i, j and do the following sub-steps.

(a) To hold the microscale and macroscale analytic patch scheme
eigenvalues λNE1

pµ , λNE1
pM create two arrays of size N/2×N/2× 3

and N/2×N/2× (ni
p − 3) respectively.
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(b) Within the N/2×N/2×ni
p array of λNE1

p (in step 2), among the ni
p

eigenvalues with indices i, j and k = 1, 2, . . . , ni
p, find three eigen-

values that are closest to the three eigenvalues λA
mδ (in step 1).

These three among the ni
p eigenvalues are macroscale eigen-

values λNE1
pM for this (kx, ky), the remaining ni

p − 3 eigenvalues
are microscale eigenvalues λNE1

pµ for this (kx, ky).

(c) Assign the three macroscale eigenvalues λNE1
pM to the elements

of N/2 × N/2 × 3 array of macroscale analytic patch scheme
eigenvalues λNE1

pM (in step 4a) to indices i, j and k = 1, 2, 3. As-
sign the ni

p − 3 microscale eigenvalues λNE1
pµ to the elements of

N/2×N/2× (ni
p − 3) array of microscale analytic patch scheme

eigenvalues λNE1
pµ (in step 4a) to indices i, j and k = 1, 2, . . . , ni

p−3.

5. The task of this step is to split the 1D array of numerical patch scheme
eigenvalues λN

p (in step 3) with size nI
p = N/2 · N/2 · ni

p into N/2 ×
N/2× 3 array of macroscale eigenvalues λN

pM (corresponding to the
N/2×N/2×3 array of λNE1

p in step 4) and N/2×N/2×(ni
p−3) array of

microscale eigenvalues λN
pµ (corresponding to the N/2×N/2×(ni

p−3)

array of λNE1
p in step 4). For this task, loop over each of the N2/4

macroscale wavenumbers (kx, ky) with index i, j and do the following
sub-steps.

(a) To hold the microscale and macroscale numerical patch scheme
eigenvalues λN

pµ, λN
pM, create two arrays of size N/2 ×N/2 × 3

and N/2×N/2× (ni
p − 3) respectively.

(b) Among the 1D array of eigenvalues λN
p (in step 3), find three

eigenvalues that are closest to the three analytic eigenvalues
with indices i, j and k = 1, 2, 3 within the N/2×N/2× 3 array of
λNE1
p (in step 4). These three eigenvalues are macroscale eigen-

values λN
pM for this (kx, ky). Assign these three eigenvalues λN

pM

to the elements of N/2×N/2× 3 array of macroscale numerical
patch scheme eigenvalues λN

pM (in step 5a) for indices i, j and
k = 1, 2, 3. Remove these three eigenvalues from the 1D array of
eigenvalues λN

p .

(c) Among the 1D array of remaining eigenvalues λN
p (in step 5b),

find ni
p−3 eigenvalues that are closest to the ni

p−3 analytic eigen-
values within the N/2×N/2× (ni

p − 3) array of λNE1
p (in step 4)

for indices i, j and k = 1, 2, . . . , ni
p − 3. These ni

p − 3 eigenvalues
are microscale eigenvalues λN

pM for this (kx, ky). Assign these
ni
p − 3 eigenvalues λN

pM to the elements of N/2×N/2× (ni
p − 3)
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array of microscale numerical patch scheme eigenvalues λN
pM

(in step 5a) for indices i, j and k = 1, 2, . . . , ni
p − 3. Remove these

ni
p − 3 eigenvalues from the 1D array of eigenvalues λN

p .

6. Do this step only when step 5 cannot be done due to unavailability of
analytic patch scheme eigenvalues λNE1

p (in step 2) (e.g., for Spectral
patch scheme with N > 14). The task of this step is to split the 1D
array of numerical patch scheme eigenvalues λN

p (in step 3) with
size nI

p = N/2 · N/2 · ni
p into N/2 × N/2 × 3 array of macroscale

eigenvalues λN
pM (corresponding to the N/2×N/2× 3 array of λNE1

p

in step 4) and a 1D array with size nI
pµ = ni

pµ(N
2/4) of microscale

eigenvalues λN
pµ (corresponding to the N/2×N/2× (ni

p − 3) array of
λNE1
p in step 4). As the analytic patch scheme eigenvalues λNE1

p are
not available, in contrast to step 5, this step cannot compute an N/2×
N/2× (ni

p−3) array of microscale eigenvalues λN
pµ. This step assumes

that the patch scheme is highly accurate and so the macroscale patch
scheme eigenvalues are very close to the eigenvalues λA

mδ of the full-
domain microscale model. For this task, loop over each of the N2/4

macroscale wavenumbers (kx, ky) with index i, j and do the following
sub-steps.

(a) To hold the macroscale numerical patch scheme eigenvalues λN
pM,

create an N/2×N/2× 3 array.

(b) Among the 1D array of eigenvalues λN
p (in step 3), find three

eigenvalues that are closest to the three eigenvalues with in-
dices i, j and k = 1, 2, 3 within the N/2×N/2× 3 array of eigen-
values λA

mδ of the full-domain microscale model (in step 1). These
three eigenvalues are the macroscale eigenvalues λN

pM for this (kx, ky).
Assign these three eigenvalues λN

pM to the elements of N/2 ×
N/2 × 3 array of macroscale numerical patch scheme eigen-
values λN

pM (in step 6a) for indices i, j and k = 1, 2, 3. Remove
these three eigenvalues from the 1D array of eigenvalues λN

p .

At the end of the loop over the macroscale wavenumbers (kx, ky),
having removed all the 3N2/4 macroscale eigenvalues λN

pM, the re-
maining nI

pµ = nI
p − nI

pM eigenvalues are the sub-patch microscale
eigenvalues.
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After the preceding steps 1 to 6, the method of wavenumber-wise scale
separation for the patch scheme eigenvalues gives the following arrays.

1. An N/2 ×N/2 × 3 array of analytic eigenvalues λA
mδ of full-domain

microscale model.

2. When the analytic patch scheme eigenvalues λNE1
p are available, both

the macroscale eigenvalues and microscale eigenvalues are classified
wavenumber-wise.

(a) An N/2 × N/2 × 3 array of macroscale analytic patch scheme
eigenvalues λNE1

pM .

(b) An N/2 ×N/2 × 3 array of macroscale numerical patch scheme
eigenvalues λN

pM.

(c) An N/2×N/2×(ni
p−3) array of microscale analytic patch scheme

eigenvalues λNE1
pM .

(d) An N/2 × N/2 × (ni
p − 3) array of microscale numerical patch

scheme eigenvalues λN
pM.

3. When the analytic patch scheme eigenvalues λNE1
p are not available

(e.g., for Spectral patch scheme with N > 14), only the macroscale
eigenvalues are classified wavenumber-wise.

(a) An N/2×N/2× 3 array of macroscale numerical patch scheme
eigenvalues λN

pM.

(b) An 1D array with size nI
pµ = nI

p − nI
pM of microscale numerical

patch scheme eigenvalues λN
pM, without any association toe he

wavenumbers.

The association among each of the three macroscale eigenvalues λA
mδ, λNE1

pM ,
λN
pM and association among each of the several microscale eigenvalues λNE1

pµ ,
λN
pµ is established by for each wavenumber through the index order in the

third dimension.

3.4 Staggered patch schemes are not sensitive to
numerical roundoff errors

Despite the attractive characteristics, if the staggered patch schemes are
very sensitive to numerical roundoff errors, then they will not be suitable
for practical numerical simulations using finite precision floating-point
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Table 3.4.1. Section 3.4 studies the sensitivity of the patch scheme eigen-
values to numerical roundoff errors for all the 1 944 combinations of the
listed parameters.

Patch schemes Spectral, Square-p2, Square-p4, Square-p6,
and Square-p8

Drag coefficient cD ∈ {0, 10−6, 0.001}

Viscous coefficient cV ∈ {0, 10−4, 0.01}

Macro-grid intervals N ∈ {6, 10, 14} for Spectral scheme,
N ∈ {6, 10, 14, 18, 22, 26} for polynomial schemes.

Sub-patch micro-grid
intervals n ∈ {6, 10}

Patch scale ratio r ∈ {0.0001, 0.001, 0.01, 0.1}

representations, for example, the common 64 bit format of IEE754 (Goldberg
1991). From both qualitative and quantitative arguments, this section shows
that the staggered patch schemes are not sensitive to numerical roundoff
errors for the general linear wave.

The staggered patch scheme eigenvalues λNE1
p (for both the microscale

and macroscale mdoes) of the numerically evaluated one-cell Jacobian
(§3.2.3) and the staggered patch scheme eigenvalues λN

p of the numerical
Jacobian (§3.2.5), visually agree in the complex plane eigenvalue plots of
§3.2.6 (i.e., the large magenta and blue circles in Fig. 3.2.2). That the nu-
merical and analytic eigenvalues (λN

p , λNE1
p ) of a patch scheme visually

agree indicates that the patch scheme is not sensitive to numerical roundoff
errors. This subsection first quantitatively compares the numerical and ana-
lytic eigenvalues of the staggered patch schemes to show that the staggered
patch schemes are not sensitive to numerical roundoff errors when the
sub-patch micro-grid interval is not too small (i.e., δ ≳ 10−5). The later part
of this subsection argues that even for very small sub-patch micro-grid
interval δ ≲ 10−5), the numerical roundoff errors are not due to the patch
schemes.

For the time simulations, how sensitive are the patch scheme computa-
tions to numerical roundoff errors? This section answers this question in
general for all the possible initial conditions by studying how sensitive the
patch scheme eigenvalues are to the numerical roundoff errors. Hence we
compare the eigenvalues λNE1

p of the analytically derived Jacobian (§3.2.3)
with the eigenvalues λN

p of the numerically computed Jacobian (§3.2.5) for
a total of 1 944 patch scheme cases as Table 3.4.1 lists.
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To quantitatively assess the sensitivity of the staggered patch schemes
to numerical roundoff errors, we show that the discrepancy |λN

p,i − λNE1
p,i | is

small separately for the microscale and macroscale eigenvalues. We define
the microscale and macroscale numerical roundoff errors for the staggered patch
scheme eigenvalues as

ϵNum
µ = max

i
|λN

pµ,i − λNE1
pµ,i| (3.4.1a)

for indices i of the microscale eigenvalues,

ϵNum
M = max

i
|λN

pM,i − λNE1
pM,i| (3.4.1b)

for indices i of the macroscale eigenvalues.

If the errors ϵNum
µ and ϵNum

M are negligibly small, that is, if the numerical and
analytic macroscale eigenvalues (λN

pM, λNE1
pM ) of a patch scheme agree very

closely, then the patch scheme is not sensitive to the numerical roundoff
errors.

The eigenvalues in the numerical roundoff errors (3.4.1a) and (3.4.1b)
require separating the microscale and macroscale patch scheme eigenvalues
and the association between the analytic and numerical eigenvalues. Sec-
tion 3.3 computes the required eigenvalues as the following 3D arrays
(analytic eigenvalues only for N ⩽ 14 for Spectral patch scheme)

1. An N/2 ×N/2 × 3 array of macroscale analytic patch scheme eigen-
values λNE1

pM .

2. An N/2×N/2× 3 array of macroscale numerical patch scheme eigen-
values λN

pM.

3. An N/2 × N/2 × (ni
p − 3) array of microscale analytic patch scheme

eigenvalues λNE1
pM .

4. An N/2×N/2× (ni
p − 3) array of microscale numerical patch scheme

eigenvalues λN
pM.

The microscale and macroscale numerical roundoff errors in (3.4.1)
are defined for the eigenvalues of a patch scheme for one specific set of
parameters. We define the peak microscale and macroscale numerical roundoff
errors as the maximum value of maxcD,cV

ϵNum
µ and maxcD,cV

ϵNum
M , over

the nine combinations of the coefficients cD ∈ {0, 10−6, 0.001} and cV ∈
{0, 10−4, 0.01} as Table 3.4.1 lists.
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Figure 3.4.1. Variation of the peak microscale numerical roundoff error with
the number of macro-grid intervals N, patch scale ratio r and the number of
sub-patch micro-grid intervals n. Each point is the peak ϵNum

µ for the nine
combinations of the coefficients cD, cV in Table 3.4.1, for a patch scheme
with particular patch grid parameters (N, r, n).
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Figure 3.4.2. Variation of the peak macroscale numerical roundoff error with
the number of macro-grid intervals N, patch scale ratio r and the number of
sub-patch micro-grid intervals n. Each point is the peak ϵNum

M for the nine
combinations of the coefficients cD, cV in Table 3.4.1, for a patch scheme
with particular patch grid parameters (N, r, n).
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Table 3.4.2. Maximum numerical roundoff errors over all the combinations
of the five patch schemes and cD, cV , and N in Table 3.4.1 for different patch
scale ratio r and n. Red colour highlights the largest value in each column
(based on full precision when values are same with two significant figures).

Patch scale ratio r

0.0001 0.001 0.01 0.1

max ϵNum
µ

n = 6 0.002 4 · 10−5 3 · 10−7 6 · 10−10

n = 10 0.001 0.0001 3 · 10−7 6 · 10−9

max ϵNum
M

n = 6 3 · 10−5 4 · 10−8 10−10 2 · 10−11

n = 10 0.0001 10−7 5 · 10−10 2 · 10−11

Nonnegligible numerical roundoff errors arise only for very small sub-patch
micro-grid intervals δ ≲ 10−5 (i.e., small r and large N, n). Figures 3.4.1
and 3.4.2 plot the peak microscale and macroscale numerical roundoff er-
rors for the five patch schemes, for the 1 944 combinations of the parameters
Table 3.4.1 lists. Table 3.4.2 presents the peak numerical roundoff errors
for different patch scale ratios r (i.e peak value for each r-slice in Figs. 3.4.1
and 3.4.2). The largest microscale and macroscale numerical roundoff errors
among the 1 944 cases are 0.0001 and 0.002 respectively, both corresponding
to the smallest patch scale ratio r = 0.0001 and largest number of macro-grid
intervals N = 26. The following are some key observations from Figs. 3.4.1
and 3.4.2 and Table 3.4.2.

1. For a given set of patch grid parameters N, n, r, the peak macroscale
numerical roundoff errors maxcD,cV

ϵNum
M are about ten to thousand

times smaller compared to the peak microscale numerical roundoff
errors maxcD,cV

ϵNum
µ . That is, the macroscale eigenvalues which are of

primary interest are relatively less sensitive to numerical roundoff errors
than the microscale eigenvalues.

2. Both the microscale and macroscale peak numerical roundoff errors
maxcD,cV

ϵNum
µ , maxcD,cV

ϵNum
M , monotonically increase with increasing

number of macro-grid intervals N and decreasing patch scale ratio r.
The numerical roundoff errors also increase with increasing number
of sub-patch micro-grid intervals n (blue and red colors in Figs. 3.4.1
and 3.4.2), except the off trend for maxcD,cV

ϵNum
µ in Fig. 3.4.1 for

N ∈ {22, 26} and r = 0.0001. For a staggered patch grid, increasing N,
decreasing r, and increasing n, all these lead to decreasing sub-patch
micro-grid interval δ = 2Lr/(Nn). For example, for r = 0.001, N = 26,
n = 10, sub-patch micro-grid interval δ ≈ 5 · 10−5 Thus, nonnegligible
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numerical roundoff errors arise only for very small sub-patch micro-grid
intervals δ ≲ 10−5 (i.e., small r and large N, n).

3. In general, except ϵNum
µ for N ≳ 22, r = 0.0001, the numerical roundoff

errors of all the five patch schemes are roughly the same. That is,
the numerical roundoff errors do not have a strong dependence on
the specific patch scheme. If the numerical roundoff errors were due
to the patch scheme, then the numerical roundoff errors must also
depend on the specific patch scheme, showing a clear trend. The lack
of such trends, among the patch schemes with different amounts of
numerical computations, indicates that the numerical roundoff errors are
not due to the patch schemes.

In Figs. 3.4.1 and 3.4.2 and Table 3.4.2, the large peak numerical roundoff
errors for small sub-patch micro-grid intervals δ (i.e., small r and large N,
n), have the following main sources.

1. The numerical roundoff errors due to the numerical computations in
a patch scheme due to the patch coupling.

2. The numerical roundoff errors due to the numerical computations of
the underlying microscale model (e.g., the finite difference computa-
tions).

3. The numerical roundoff errors in numerically computing the eigen-
values of the patch scheme numerical Jacobian.

We take the numerical roundoff errors in numerically computing the Jaco-
bian (§3.2.5) of a patch scheme, to be small compared to the much higher
number of numerical computations in the patch coupling, sub-patch micro-
scale model and the eigenvalue computation.

The dependence of the numerical roundoff errors on the physical pa-
rameters (drag and viscous diffusion) and the lack of dependence on the
specific patch schemes show that the numerical roundoff errors are due to the
underlying microscale model, not due to the staggered patch scheme. Tables 3.4.3
and 3.4.4 present the microscale numerical roundoff errors ϵNum

µ , ϵNum
M for

different coefficients of drag cD and viscous diffusion cV . Both the numer-
ical roundoff errors strongly depend on the viscous diffusion; both ϵNum

µ

and ϵNum
M increase with increasing cV , showing strong increase at small

patch scale ratio r. The microscale numerical roundoff errors ϵNum
µ in Ta-

ble 3.4.3 do not have strong dependence on the drag coefficient cD. But in
Table 3.4.4, the values of maximum ϵNum

M for cD = 10−6 (for cV = 0.01 and
small patch scale ratios r ∈ {0.0001, 0.001}), indicate some dependence of the
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Table 3.4.3. Maximum numerical roundoff errors ϵNum
µ in microscale eigen-

values over the five patch schemes and all the combinations of N, n in
Table 3.4.1, for different patch scale ratio r and coefficients of drag cD and
viscous diffusion cV . Large ϵNum

µ in each column corresponding to the
largest cV = 0.01 are red highlighted.

Patch scale ratio r

0.0001 0.001 0.01 0.1

cD = 0, cV = 0 7 · 10−5 10−6 3 · 10−7 7 · 10−10

cD = 0, cV = 0.0001 0.0001 7 · 10−7 7 · 10−9 7 · 10−10

cD = 0, cV = 0.01 0.002 0.0001 9 · 10−8 6 · 10−9

cD = 10−6, cV = 0 6 · 10−5 10−6 3 · 10−7 7 · 10−10

cD = 10−6, cV = 0.0001 0.0001 7 · 10−7 7 · 10−9 7 · 10−10

cD = 10−6, cV = 0.01 0.002 0.0001 9 · 10−8 6 · 10−9

cD = 0.001, cV = 0 0.0001 10−6 3 · 10−7 7 · 10−10

cD = 0.001, cV = 0.0001 0.0001 7 · 10−7 7 · 10−9 7 · 10−10

cD = 0.001, cV = 0.01 0.002 0.0001 9 · 10−8 6 · 10−9

Table 3.4.4. Maximum numerical roundoff errors ϵNum
M in macroscale eigen-

values over the five patch schemes and all the combinations of N, n in
Table 3.4.1, for different patch scale ratio r and coefficients of drag cD and
viscous diffusion cV . Large ϵNum

M in each column corresponding to the
largest cV = 0.01 are red highlighted.

Patch scale ratio r

0.0001 0.001 0.01 0.1

cD = 0, cV = 0 2 · 10−9 2 · 10−10 3 · 10−11 2 · 10−11

cD = 0, cV = 0.0001 4 · 10−8 8 · 10−10 2 · 10−11 2 · 10−11

cD = 0, cV = 0.01 9 · 10−5 9 · 10−8 5 · 10−10 2 · 10−11

cD = 10−6, cV = 0 2 · 10−9 2 · 10−10 3 · 10−11 2 · 10−11

cD = 10−6, cV = 0.0001 4 · 10−8 7 · 10−10 2 · 10−11 2 · 10−11

cD = 10−6, cV = 0.01 0.0001 10−7 5 · 10−10 2 · 10−11

cD = 0.001, cV = 0 2 · 10−9 2 · 10−10 3 · 10−11 2 · 10−11

cD = 0.001, cV = 0.0001 4 · 10−8 7 · 10−10 2 · 10−11 2 · 10−11

cD = 0.001, cV = 0.01 9 · 10−5 9 · 10−8 5 · 10−10 2 · 10−11
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macroscale numerical roundoff errors on the drag coefficient cD. In general,
the staggered patch schemes are largely agnostic of the underlying micro-
scale model. More specifically a discussion in §3.4 of this section, using
Figs. 3.4.1 and 3.4.2 show that the numerical roundoff errors do not have
strong dependence on the specific patch scheme. This lack of dependence
on the specific patch schemes despite the different amounts of numerical
computations indicates that the numerical roundoff errors are not due to
the patch schemes. Moreover, if the patch schemes were sensitive to nu-
merical roundoff errors, then the errors must have been large irrespective
of the physical parameters (drag and viscous diffusion). For example, ϵNum

µ

and ϵNum
M must have been large also for small cV , which is not the case in

Tables 3.4.3 and 3.4.4. Thus, the dependence of the numerical roundoff
errors on the physical parameters (cD and cV ) and the lack of dependence
of the specific patch schemes show that the numerical roundoff errors are due
to the underlying microscale model, not due to the staggered patch scheme. The
following two paragraphs detail the dependence of the numerical roundoff
errors on cV and cD respectively.

Scaling arguments on the general linear wave confirm the inherent sensitivity
of the microscale model to numerical roundoff errors. terms scale with the grid
interval δ. The wave term ∼ h/δ, the drag term ∼ cDu, and the viscous
diffusion terms ∼ cVu/δ

2. For example, for small δ = 10−5, the scales of the
wave, drag, and viscous diffusion terms are about 105h, cDu and 1010cVu

respectively. For small height h, when the viscous diffusion is not negligibly
small (e.g., cV ∼ 0.01), irrespective of cD, the addition (subtraction) of these
small and large values leads to the loss of floating-point precision while
lining up the decimal points in the finite precision arithmetic (Heister et al.
2019, p. 8; Goldberg 1991, pp. 16, 19). Hence, for nonnegligible viscous
diffusion (cV ≳ 0.001) both the full-domain microscale scheme and the
sub-patch microscale model, are inherently sensitive to numerical roundoff
errors, for small enough grid interval δ ≲ 10−5. This inherent sensitivity
of the microscale model to numerical roundoff errors is not severe for
the time simulation (§3.7.5) but impacts the eigenvalue computation for
both the full-domain microscale model and the patch scheme. Both the
microscale and macroscale roundoff errors (ϵNum

µ and ϵNum
µ ) are large for

large cV in Tables 3.4.3 and 3.4.4. Also, both ϵNum
µ and ϵNum

µ monotonically
increase with decreasing r (and hence decreasing δ), at an increasing rate
with increasing viscous diffusion cV . Whereas this inherent sensitivity
impacts both the microscale and macroscale eigenvalues, the macroscale
numerical roundoff errors ϵNum

M are in general ten to thousand times smaller
than the peak microscale numerical roundoff errors ϵNum

µ . We expect that
this relatively smaller ϵNum

M is due to the macroscale interpolation in the
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patch coupling, which acts as averaging/smoothing the inherent numerical
roundoff errors of the computations within the patches. Thus, for very
small grid interval δ ≲ 10−5 and large viscous diffusion (cV ≳ 0.001), the
nonnegligible numerical roundoff errors in both microscale and macroscale patch
scheme eigenvalues are due to the inherent sensitivity of the microscale model to
numerical roundoff errors.

A part of the numerical roundoff errors are due to numerical computation
of near-zero eigenvalues. The microscale numerical roundoff errors in Ta-
ble 3.4.3, in general remains independent of the drag coefficient cD, except
the change of about 10−5 for cD ∈ {0, 10−6, 0.0001} with cV = 0 and r = 0.0001.
But in Table 3.4.4, the maximum ϵNum

M for cD = 10−6 (for cV = 0.01 and small
patch scale ratios r ∈ {0.0001, 0.001}), suggest that the macroscale numerical
roundoff errors also depend on the drag coefficient cD. This paragraph
explains the dependence of macroscale numerical roundoff error ϵNum

M on
the drag coefficient cD. For nonzero drag and viscous diffusion, patch
schemes have one zero eigenvalue (cluster 1 in Fig. 3.2.2) corresponding to
the macroscale mode of stagnant water (Fig. 3.2.13), and two eigenvalues
(cluster 2 in Fig. 3.2.2) with −cD as their real part and zero imaginary part
corresponding to the macroscale mode of decelerating uniform mean flow
(Fig. 3.2.14). As cD → 0, the two eigenvalues λ = −cD + 0 i corresponding
to the decelerating uniform mean flow, tends to zero, merging with the
zero eigenvalue as in Fig. 3.2.3. Due to these near-zero repeated eigen-
values for small drag cD ≲ 10−6, numerical computation of the eigenvalues
is sensitive to the numerical roundoff errors, for both the patch scheme
and the full-domain microscale model. As we compute the analytic eigen-
values λNE1

p after evaluating the analytic Jacobian, both the analytic and
numeric eigenvalues λNE1

p , λN
p are sensitive to numerical roundoff errors.

Being random, the numerical roundoff errors in the eigenvalues λNE1
p and

λN
p , do not cancel in computing the difference in our definition (3.4.1).

Thus, for very small grid interval δ ≲ 10−5 and very small drag cD ≲ 10−6,
the sensitivity of numerical eigenvalue computation also leads to large
numerical roundoff errors in near-zero eigenvalues.

Numerical roundoff errors also arise due to near-zero repeated eigenvalues
for small nonzero drag As discussed in the paragraph before the previous
paragraph, the inherent sensitivity of the microscale model to numerical
roundoff errors is large for large viscous diffusion, leading to an increase in
both the microscale and macroscale numerical roundoff errors (ϵNum

µ and
ϵNum
M ). But, as the repeated near-zero eigenvalues due to small drag corre-

spond to the macroscale modes, the sensitivity of eigenvalue computation
leads to an increase in the macroscale numerical roundoff errors ϵNum

M only.
Hence, for small grid interval δ ≲ 10−5, due to both the inherent sensitivity



Chapter 3. Staggered patch schemes accurately simulate general linear waves 104

Figure 3.4.3. Eigenvalues of Square-p2 staggered patch scheme (N = 26,
n = 10, r = 0.0001) for general linear wave with large viscous diffusion cV =

0.01 and a small drag cD = 10−6. Large numerical roundoff errors are
evident from the large discrepancy among the near-zero eigenvalues λN

p ,
λNE1
p , and λA

mδ (clusters 1, 2, 3).
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of the microscale model (for nonnegligible viscous diffusion cV ≳ 0.001) and
the sensitivity of eigenvalue computation of near-zero repeated eigenvalues
(for small drag cD ≲ 10−6), the macroscale numerical roundoff errors ϵNum

M

are large. For example, the numerical roundoff errors in Table 3.4.4 for
macroscale eigenvalues has maximum values of ϵNum

M = 10−7, 0.0001 for
r = 0.0001, 0.001 for small nonzero drag cD = 10−6. Figure 3.4.3 shows the
large numerical roundoff errors in the near-zero eigenvalues due to small
drag. The numeric eigenvalues λN

p in clusters 1, 2, 3 have large numerical
roundoff errors, due to the microscale model’s inherent sensitivity (for
large cV = 0.01) and the sensitivity of eigenvalue computation of near-zero
repeated eigenvalues (for small cD = 10−6). The analytic eigenvalues λNE1

p

corresponding to λN
p in clusters 1, 2, 3, have relatively smaller numerical

roundoff errors, as the computation of the underlying microscale model is
derived analytically.
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Thus, for a very small grid interval δ ≲ 10−5, both the inherent sensitiv-
ity of the microscale model (for nonnegligible viscous diffusion cV ≳ 0.001)
and the sensitivity of eigenvalue computation of near-zero repeated eigen-
values (for very small drag cD ≲ 10−6), are the characteristic of the micro-
scale model. Hence, for very small grid interval δ the numerical eigenvalues
of the full-domain microscale model are also inaccurate. But this inaccuracy in
the eigenvalues of the full-domain microscale model system is not an issue
for us in most cases, as we only evaluate the analytic expression (3.2.7), to
compute the eigenvalues λA

mδ of the full-domain microscale model.
The following listing summarises the study of numerical sensitivity in

this subsection.

1. For patch scale ratios r ≳ 0.001 the patch scheme eigenvalue are not
sensitive to numerical roundoff errors (columns 2-4 in Table 3.4.2).

2. For smaller patch scale ratios r ≲ 0.001 the patch scheme eigenvalues
are a little sensitive to numerical roundoff errors (column 1 in Ta-
ble 3.4.2). But this sensitivity to numerical roundoff errors for small
grid interval δ ≲ 10−5 is due to both the inherent sensitivity of the
microscale model (for nonnegligible viscous diffusion cV ≳ 0.001)
and the sensitivity of eigenvalue computation of near-zero repeated
eigenvalues (for small drag cD ≲ 10−6). Hence, even for small patch
scale ratios, the computations of staggered patch schemes are not
sensitive to numerical roundoff errors.

3.5 Staggered patch schemes are stable

This section demonstrates the stability of the staggered patch schemes and
explains the dependence of the patch scheme stability on various aspects
like grid symmetry, physical parameters (cd, cV ), and grid parameters such
as the number of macro-grid intervals N, number of sub-patch micro-grid
intervals n and patch scale ratio r.

A (linear or nonlinear) dynamical system is defined to be stable or
Lyapunov stable, for both infinitesimally and finitely small perturbations
about equilibrium, if all solutions that start nearby an equilibrium stay
nearby over time (Chicone 2006, Dfn. 1.39, p. 21; Wiggins 2003, Dfn. 1.2.1,
p.7; Hirsch et al. 2013, p. 174; Lynch 2018, Dfn. 5, p. 55; Edwards et al. 2017,
p.507; Jordan and Smith 2007, Thm. 8.2, p. 268; Perko 2001, Dfn. 1, p. 129).
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A linear or linearised dynamical system describes the time evolution of
infinitesimal disturbances to an equilibrium solution (Marsden and Ratiu
1999, p. 32; D. F. Griffiths and Higham 2010, pp. 166-167). Hence, a Jaco-
bian J of a linear or linearised dynamical system dx/dt = Jx characterises
the stability only for infinitesimally small perturbations to equilibrium
solutions. Thus, a (linear or nonlinear) dynamical system is defined to
be linearly stable if infinitesimally small perturbations to equilibrium solu-
tions do not grow unbounded over time (Marsden and Ratiu 1999, p. 32;
Mellodge 2016, p. 176, §3.4.1.2).

This section shows that the staggered patch schemes are linearly stable
whenever the underlying full-domain microscale model is linearly sta-
ble. A dynamical system can be linearly stable (for infinitesimally small
perturbations about equilibrium) and yet nonlinearly unstable, for finite
perturbations about equilibrium. That is, linear stability does not imply stabil-
ity (Wiggins 2003, pp. 11–12; Marsden and Ratiu 1999, pp. 32–33; Strogatz
2018, pp. 130–131). We have not noticed any such nonlinear instabilities
in the staggered patch schemes from the time simulations for different
initial conditions with random finite perturbations. Section 3.7.5 shows
two examples of stable time simulations with initial random perturbation
(Fig. 3.7.15). Hence, this section focuses on the linear stability of the staggered
patch schemes.

A linear or linearised dynamical system dx/dt = Jx is defined to be
spectrally stable if all eigenvalues of the Jacobian J have nonpositive real
part (Marsden and Ratiu 1999, p. 32; Mellodge 2016, p. 176; Meiss 2017,
p. 53). A linear or linearised dynamical system with all eigenvalues having
nonpositive real part can still be unstable, that is, spectral stability does
not imply stability (Marsden and Ratiu 1999, pp. 32–34 ). For example, a
free particle with neutral stability described by dx/dt = Jx where the non-
diagonalisable Jacobian J = [ 0 1

0 0 ], has nonpositive eigenvalues yet is unstable
over time. Hence, for stability, it is also necessary that the Jacobian J is
diagonalisable/semisimple (Bullo and Lewis 2019, Thm. 6.6, p. 317; Hirsch
and Smale 1974, Prob. 4, p. 137, Prob. 3, p. 191; Perko 2001, Prob. 11,
p. 50). Thus, to show that the system dx/dt = Jx is linearly stable (for
infinitesimally small perturbations about equilibrium), one must show that
all eigenvalues of the Jacobian J have nonpositive real part and that the
Jacobian J is diagonalisable.

Throughout this thesis, by the term nonpositive real parts, we mean ef-
fectively nonpositive real parts within numerical roundoff errors, for all the
numerically computed eigenvalues, including the numerically evaluated
analytic eigenvalues.
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Practically, due to numerical round-off errors, almost all numerical
matrices are diagonalisable, hence the condition of diagonalisability is not
useful in assessing the stability. On the other hand, eigenvalues that are
highly sensitive to numerical round-off errors indicate a non-diagonalisable
Jacobian. That the patch scheme eigenvalues (in §3.4) are not sensitive
to numerical round-off errors indicates that the patch schemes Jacobians
are approximately diagonalisable. Hence, this section establishes the linear
stability of the staggered patch schemes via spectral stability by showing that the
patch schemes’ eigenvalues have nonpositive real part.

For nonnegative dissipation coefficients cD and cV , the real parts of
all three eigenvalues (3.2.7) of the full-domain microscale model are non-
positive (§3.2.2). That is, the wave solutions either decay over time when
ℜ(λA

m) < 0 or retain the same amplitude over time when ℜ(λA
m) = 0. Hence,

as the solutions remain bounded over time, the staggered full-domain
microscale model is stable. Similarly, we establish that the designed stag-
gered patch schemes are stable by showing that the real parts of their
eigenvalues are nonpositive. Hence, to assess the stability, we study the
maximum real parts of the eigenvalues of the staggered patch schemes.

Section 3.5.1 explains the requirements of geometric symmetry for a
staggered patch scheme to be stable and the constraints the symmetry
imposes on the arrangement of sub-patch nodes, the number of sub-patch
intervals, and the patch coupling.

Section 3.5.2 shows the trends of the maximum real parts of the Spectral
patch scheme over a wide range of physical parameters (coefficients of drag cD,
and viscous diffusion cV), for a fixed number of macro-grid intervals N,
sub-patch micro-grid intervals n.

Section 3.5.3 shows the trends of the maximum real parts of all the
five staggered patch schemes over a range of grid parameters (number of
macro-grid intervals N, sub-patch micro-grid intervals n, and patch scale
ratio r), for a fixed combinations of the physical parameters (cD, cV ).

3.5.1 Patch scheme stability requires geometric symmetry

This subsection explains the requirements of geometric symmetry for a
staggered patch scheme to be stable and the constraints the symmetry
imposes on the arrangement of sub-patch nodes, the number of sub-patch
intervals, and the patch coupling.

Section 2.1.2 shows the compatible staggered patch grids for wave-like
systems. Our implementation generates all the possible 83 520 compatible
staggered patch grids for the multiscale modelling of 2D wave-like systems.
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We studied the dependence of the patch scheme stability on the patch grid
geometry, the geometry-stability study, for about fifty patch grid patterns that
are representative of sub-families of the 83 520 compatible 2D staggered
patch grids for a given number of sub-patch micro-grid intervals n. We
omit the details of this geometry-stability study for brevity, instead, we
report the key outcomes of the study and focus on the patch grids that
constitute stable patch schemes. Our recent article (Divahar et al. 2022, §4.2)
gives more details. The geometry-stability study indicates that a patch grid
without a centre node does not constitute a stable staggered patch scheme. That
is, staggered patch grids containing micro-grids other than uuvv, hhvv and
uuhh (green highlighted in Fig. 2.1.3a) even in any one of the patches, lead to
unstable staggered patch schemes. For example, the patch grid in Fig. 3.5.1a
does not contain a centre node in any of its sub-patch micro-grid. In our
geometry-stability study, even when one patch in a macro-cell (orange
squares in Fig. 3.5.1a) does not contain a centre node, the eigenvalues of the
staggered patch schemes have large positive real parts. For patches without
a centre node, we compute the macroscale patch value by averaging over
the h/u/v values of the nodes closest to the patch centre.

From the geometry-stability study, we also find that the higher the
symmetry in the staggered patch grid, the better the accuracy and stability
of the staggered patch schemes. Thus, the dominant role of a centre node
in the patch scheme stability comes from the requirement of geometric
symmetry in the patch grids for stability. Among those staggered patch
grids that have a centre node in each of their patches, from the geometry-
stability study, we find only two staggered patch grids, those depicted in
Figs. 2.1.3b and 3.5.1b, over which stable patch schemes are possible.

The sub-patch micro-grids in Fig. 3.5.1a do not have reflective symmetry
about x and y axes (horizontal and vertical in Fig. 3.5.1a); for example the
edge nodes on left and right edges are not the same for any of the sub-
patch micro-grids. The geometry-stability shows that lack of such sub-patch
micro-grid reflective symmetry leads to unstable patch schemes.

The sub-patch micro-grids each with a centre node in Fig. 3.5.1b have
reflective symmetry about x and y axes; flipping any of the patches about x
or y axes does not change the sub-patch nodes. The h-, u- and v-centred
sub-patch micro-grids in Fig. 2.1.3b also have reflective symmetry about x
and y axes. Stable patch schemes are possible on both the staggered patch
grids in Figs. 3.5.1b and 2.1.3b. The patch grid Fig. 3.5.1b has three of the
patches same as in Fig. 2.1.3b, along with an additional h-centred patch
in place of the empty patch. The additional h-patch in Fig. 3.5.1b appears
to provide slightly higher accuracy compared to the staggered patch grid
with only three patches (Fig. 2.1.3b). But the staggered patch grid with
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Figure 3.5.1. Two staggered patch grids with and without a centre node in
each of the sub-patch micro-grids.

(a) A compatible but unstable staggered
patch grid using micro-grids without a
centre node (uhvh, huvh, uhhv, huhv in
Fig. 2.1.3a) within each macro-cell.

∆l

δ

(b) A stable staggered patch grid
with three of the patches same as in
Fig. 2.1.3b, and an additional h-centred
patch in place of the empty patch.

∆l

δ

only three patches (Fig. 2.1.3b) gives similar accuracy with roughly 25%
reduction in computational cost by avoiding the one additional h-patch
in Fig. 3.5.1b. Thus, among the two staggered patch grids (Figs. 3.5.1b
and 2.1.3b) that constitute stable patch schemes, we choose the staggered
patch grid depicted in Fig. 2.1.3b to be the best in terms of computational
effort and accuracy. From here on, all the discussions in this thesis are based
on the staggered patch grid in Fig. 2.1.3b, with one or more layers of edge
nodes (§2.1.3). The chosen staggered patch grid in Fig. 2.1.3b, in addition to
having the reflective symmetry, also has the self-similarity among the micro-
and macro-scales, as discussed in p. 19 of §2.1.2.

The requirement of grid symmetry for the stability of staggered patch
schemes, also constrain the number of sub-patch micro-grid intervals n

(the number of green grid intervals within a patch in x- and y-directions
in Fig. 3.5.1b), such the that n/2 is an odd number greater than one (i.e.,
n ∈ {6, 10, 14, 18, . . .}.

On the chosen staggered patch grid shown in Fig. 2.1.3b, the macroscale
coupling between the patches could be done in various possible ways. The
geometry-stability study of §3.5.1 also shows that similar to the geometric
asymmetry in patch grids causing the patch scheme instability, the asym-
metry in the patch coupling also causes patch scheme instability. The five
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staggered patch schemes we study in this thesis are a global spectral interpo-
lation based patch coupling and four local polynomial interpolation based
patch coupling (each with different order of interpolation) on a square
stencil. The spectral patch scheme and the polynomial patch schemes (on
square stencils) couple the patches symmetrically. Hence, the five staggered
patch schemes have good stability characteristics as discussed in §§3.5.2
and 3.5.3.

3.5.2 Spectral patch scheme is stable for a range of
physical parameters

This subsection shows that the Spectral staggered patch scheme is stable
for different physical parameters. Specifically, this subsection shows that
the Spectral staggered patch scheme is stable for different physical param-
eters cD, cV (dissipation coefficients), for four combinations of patch scale
ratios r, keeping fixed the number of macro-grid intervals N, sub-patch
micro-grid intervals n. We establish the patch scheme stability by showing
that the maximum real part of the patch scheme eigenvalues is nonposi-
tive, just as the maximum real part of the eigenvalues of the full-domain
microscale model. Figure 3.5.2 plots the maximum real parts of versus
dissipation coefficients (cD, cV), for the following eigenvalues, for each of
the 2646 combinations of the parameters listed in Table 3.5.1 (each subfigure
is for one patch scale ratio r).

1. Eigenvalues λN
p of the Spectral patch scheme on a staggered patch

grid with 10× 10 macro-grid intervals (N = 10) and each patch con-
taining 6× 6 sub-patch micro-grid intervals (n = 6).

2. Eigenvalues λA
mδ of full-domain microscale model with same value

of microscale grid interval δmδ as the sub-patch micro-grid interval δ.
That is, δmδ ≡ L/nmδ = δ ≡ l/n ≡ 2Lr/(Nn) as r = l/(2∆) and
∆ = L/N, where nmδ is the number of full-domain microscale grid
intervals and n is the number of sub-patch micro-grid intervals. When
the context is clear we drop the subscript mδ in nmδ and δmδ for the
fine-grid full-domain microscale model.

Figures 3.5.2a and 3.5.2b show that, for non-small values of the patch
scale ratios r ∈ {0.01, 0.1}, the Spectral patch scheme eigenvalues have the
maximum real part maxℜ(λN

p ) ≲ 10−11. Figures 3.5.2a and 3.5.2b also show
that the maxℜ(λ) is increasing in general for increasing viscous diffusion cV
for all values of drag cD. The detailed discussion in p. 103 of §3.4, shows
that for small grid interval δ the computations in the microscale model are
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Table 3.5.1. Section 3.5.2 studies the stability of the Spectral staggered
patch scheme using the eigenvalues for all the 1 764 combinations of the
listed parameters.

Drag coefficient cD ∈ {0} ∪ {10−j : j = 6, 5.8, 5.6, . . . , 2.2, 2}

Viscous coefficient cV ∈ {0} ∪ {10−j : j = 5, 4.8, 4.6, . . . , 1.2, 1}

Macro-grid intervals N = 10

Sub-patch micro-grid
intervals n = 6

Patch scale ratio r ∈ {0.0001, 0.001, 0.01, 0.1}

sensitive to numerical roundoff errors for large cV , leading to inaccurate
microscale and macroscale eigenvalues. Hence, the increase in maxℜ(λ) for
increasing cV in Figs. 3.5.2a and 3.5.2b, is due to the inaccurate eigenvalue
computation caused by the inherent sensitivity of the microscale model
to numerical roundoff errors. But Figs. 3.5.2a and 3.5.2b show that such
increase in maxℜ(λ) for increasing cV is not severe because of the non-
small patch scale ratios r ∈ {0.01, 0.1}. Thus, Figs. 3.5.2a and 3.5.2b show
that, for non-small patch scale ratios r ≳ 0.01, the maximum real parts of
the Spectral patch scheme eigenvalues maxℜ(λN

p ) ≲ 10−11. That is, for
non-small patch scale ratios r ≳ 0.01, the Spectral patch scheme is stable for
many combinations of the coefficients of drag cD and viscous diffusion cV as listed
in Table 3.5.1.

In this paragraph, we argue that the nonnegligible positive maximum
real parts (e.g., maxℜ(λN

p ) ∼ 10−5 in Fig. 3.5.2d) do not reflect an insta-
bility of the Spectral patch scheme. Figure 3.5.2d with nonnegligible
positive maximum real parts is for small patch scale ratio r = 0.0001. When
the patch scale ratio is small r ∼ 0.0001 the sub-patch micro-grid inter-
val δ = 2Lr/(Nn) ≈ 0.0002Lr/(Nn). For example, for the domain size L = 2π,
a patch grid with N = 10 macro-grid intervals, and n = 6 sub-patch micro-
grid intervals, has δ ≈ 0.0004π/60 ≈ 2 · 10−5. Figures 3.5.2d and 3.5.2c also
show that the peak values of the maximum real parts (blue plusses) corre-
spond to small cD and large cV . The discussion in p. 103 of §3.4, shows that,
for small grid interval δ ≲ 10−5, the combination of inherent sensitivity of
the microscale model (for nonnegligible viscous diffusion cV ≳ 0.0001) and
the sensitivity of eigenvalue computation of near-zero repeated eigenvalues
(for small cD ≲ 10−6), leads to inaccurate near-zero macroscale eigenvalues.
For example, Fig. 3.4.3 shows how the numerical roundoff errors in comput-
ing near-zero eigenvalues falsely give significantly positive real parts. Thus,
the nonnegligible maximum real parts of about 10−5 in Figs. 3.5.2d and 3.5.2c are
not a reflection of the patch scheme instability.
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Figure 3.5.2. Maximum real parts of the eigenvalues for different coeffi-
cients of drag cD and viscous diffusion cV . The eigenvalues λN

p (blue circles)
are for the Spectral patch scheme with N = 10, n = 6 for patch scale ra-
tios r ∈ {0.0001, 0.001, 0.01, 0.1} in each subfigure. The eigenvalues λA

mδ (red
mesh, all zeros) are for the corresponding full-domain microscale model.
Blue plusses mark the peak value for each subfigure. Black squares show
the chosen nine combinations of cD ∈ {0, 10−6, 0.0001}, cV ∈ {0, 10−4, 0.001}

for studying stability for different grid parameters in §3.5.3.

(a) For r = 0.1, the peak value of
maxℜ(λNp ) ≈ 5 · 10−13 at cD ≈ 0.0063,
cV = 0.1.
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(b) For r = 0.01, the peak value of
maxℜ(λNp ) ≈ 2 · 10−11 at cD = 0, cV =

0.1.
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(c) For r = 0.001, the peak value of
maxℜ(λNp ) ≈ 10−8 at cD = 0, cV = 0.1.
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(d) For r = 0.0001, the peak value of
maxℜ(λNp ) ≈ 5 · 10−5 (marked by blue
plus) at cD ≈ 4 · 10−6, cV = 0.1.
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As discussed in §3.4, for small grid intervals δ, the numerical eigen-
values of the full-domain microscale model are also sensitive to numerical
roundoff errors. Hence, for the full-domain microscale model with the
small grid interval δ (equal to the sub-patch grid interval), we expect that
the numerical eigenvalues λN

mδ also have such nonzero maximum real
parts. The computation of the numerical eigenvalues λN

mδ of the full-size
numerical Jacobian (§3.2.4) for a full-domain microscale model requires
huge computer memory. For example, on a 2π× 2π domain, a patch grid,
with 6 × 6 macro-grid intervals (N = 6) and each patch containing 6 × 6

sub-patch micro-grid intervals (n = 6) and patch scale ratio r = 0.1, has the
sub-patch micro-grid interval δ = 2Lr/(Nn) = 2π/180. The corresponding
full-domain microscale model with the same grid interval has 180 × 180

grid intervals (like the 6 × 6 staggred grid in Fig. 2.1.1), leading to the
24300× 24300 full-size numerical Jacobian (e.g., Fig. 3.2.1). For large N and
small patch scale ratio r, the corresponding full-domain microscale model
has a very large (3/16)(Nn/r)2× (3/16)(Nn/r)2 full-size numerical Jacobian.
So we do compute numerical eigenvalues λN

mδ corresponding to the same
sub-patch micro-grid interval δ for the cases of large N and small r. We only
evaluate the analytic expression (3.2.7) to compute the eigenvalues λA

mδ of
the full-domain microscale model. As the analytic eigenvalues (3.2.7) are
not sensitive to numerical roundoff errors, they do not have this nonzero
maximum real parts (the red mesh in Fig. 3.5.2).

The nonnegligible positive maximum real parts in Figs. 3.5.2d and 3.5.2c
appear nearly random without any trend with the cD, cV . There are also
maximum real parts as small as 10−10 around the regions of cD, cV of the
peak value of maxℜ(λ) (blue plusses), which suggests that when the nu-
merical roundoff errors are small, the maximum real parts of the Spectral

patch scheme are as small as 10−10. Hence we take that the eigenvalues of
the Spectral patch scheme has negligibly small maximum positive real
parts ∼ 10−10, also for the combination of large viscous diffusion, small
drag, and small patch scale ratio. Thus, the Spectral patch scheme is stable
for a wide range of physical parameters (cD, cV ) and for different patch scale ratios,
that is for all the combinations of the parameters in Table 3.5.1.

3.5.3 All five patch schemes are stable for a range of grid
parameters

Section 3.5.2 shows that the Spectral patch scheme is stable for a wide
range of physical parameters and patch scale ratios, for a staggered patch grid
with N = 10 macro-grid intervals, and n = 6 sub-patch micro-grid inter-
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Table 3.5.2. Section 3.5.3 studies the stability of the staggered patch schemes
using the eigenvalues for all the 4 374 combinations of the listed parameters.

Patch schemes Spectral, Square-p2, Square-p4, Square-p6,
and Square-p8

Drag coefficient cD ∈ {0, 10−6, 0.001}

Viscous coefficient cV ∈ {0, 10−4, 0.01}

Macro-grid intervals N ∈ {6, 10, 14} for Spectral scheme,
N ∈ {6, 10, 14, 18, 22, 26} for polynomial schemes.

Sub-patch micro-grid
intervals n ∈ {6, 10}

Patch scale ratio r ∈ {0.0001, 0.001, 0.01, 0.1}

vals. This subsection characterises the stability of all the five staggered patch
schemes (Spectral, Square-p2, Square-p4, Square-p6, and Square-p8), for
a range of grid parameters, macro-grid intervals N, sub-patch micro-grid
intervals n, and patch scale ratio r, for nine combinations of the physical
parameters cD, cV .

From the geometry-stability study (§3.5.1) we find the patch schemes
on many asymmetric patch grids to be unstable, with large positive real
parts in the order of tens and hundreds. Such instabilities may come
from the eigenvalues of either the macroscale modes or the microscale
modes. So, this subsection studies the maximum real parts of the numerical
eigenvalues of the five staggered patch schemes, separately for the micro-
scale and macroscale modes (maxℜ(λN

pµ) and maxℜ(λN
pM)), for the 4 374

combinations of the parameters listed in Table 3.5.2. The stability study
in this subsection is for the nine combinations of cD ∈ {0, 10−6, 0.0001},
cV ∈ {0, 10−4, 0.001} in Table 3.5.2, which we consider as a reasonable repre-
sentative of the wide range of cD and cV from §3.5.2 for the Spectral patch
scheme (black squares in Fig. 3.5.2).

Table 3.5.3 presents the peak maximum real parts of the patch scheme
eigenvalues over all the combinations of cD, cV and N in Table 3.5.2, for dif-
ferent number of sub-patch intervals n and patch scale ratios r. Table 3.5.3
shows that, for non-small values of the patch scale ratios r ∈ {0.01, 0.1}, both
the microscale and macroscale eigenvalues of all the five patch schemes
have the maximum real parts less than about 6 · 10−10. Thus, for non-small
patch scale ratios r ≳ 0.01, all the five patch schemes are stable for all the combina-
tions of the drag cD, viscous diffusion cV , number of macro-grid intervals N
and the number of sub-patch micro-grid intervals n listed in Table 3.5.2.

For smaller patch scale ratios r ∈ {0.0001, 0.001}, some of the patch
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Table 3.5.3. Overall maximum real parts of the microscale and macroscale
eigenvalues (λN

pµ, λN
pM) over the five patch schemes and all the combina-

tions of cD, cV and N in Table 3.5.2, for different number of sub-patch inter-
vals n and patch scale ratios r. Red colour highlights the largest value in
each column separately for microscale and macroscale eigenvalues (based
on full precision when the values are same with one significant figure).

Patch scale ratio r

0.0001 0.001 0.01 0.1

Overall maxℜ(λN
pµ)

n = 6 2 · 10−6 2 · 10−8 2 · 10−10 2 · 10−12

n = 10 5 · 10−6 7 · 10−8 6 · 10−10 7 · 10−12

Overall maxℜ(λN
pM)

n = 6 7 · 10−6 8 · 10−9 3 · 10−11 10−12

n = 10 3 · 10−5 2 · 10−8 2 · 10−10 3 · 10−12

schemes have nonnegligible maximum real parts of the order of 10−5 for
some combination of the physical parameters (cD, cV) and grid parame-
ters N, n, which is investigated in following paragraphs in this subsection.

Figure 3.5.3 plots the maximum real parts of the microscale and macro-
scale eigenvalues (maxℜ(λN

pµ) and maxℜ(λN
pM)) for the combinations of

the parameters in Table 3.5.2, with cD = 0. A similar figure for cD = 10−6 is
visually very similar to Fig. 3.5.3, hence we omit it here. Figure 3.5.4 plots
the maxℜ(λN

pµ) and maxℜ(λN
pM) for the combinations of the parameters

in Table 3.5.2, with cD = 0.001. Tables 3.5.4 and 3.5.5 separately present
the overall maximum real parts of the microscale and macroscale eigen-
values over the five patch schemes and all the combinations of N and n in
Table 3.5.2, for different patch scale ratios r.

Subfigures on the left of Figs. 3.5.3 and 3.5.4 and Table 3.5.4 show that
only for the case of cD = cV = 0 (ideal wave), the maximum real part of
the microscale eigenvalues are positive (all red highlighted values in Ta-
ble 3.5.4). These maximum positive real parts increase with the increasing
number of macro-grid intervals N and/or decreasing patch scale ratio r

(i.e., decreasing sub-patch micro-grid interval δ). As in Fig. 3.2.5, among the
eigenvalues for ideal there are N2(3n2/16−n/2+ 1/2) + 2 zero eigenvalues
(not just real part zero). For N = 6, 10, 14, 18, 22, 26 with n = 6, the number
of zero eigenvalues are 155, 427, 835, 1379, 2059, 2875 respectively. The de-
tailed discussions in p. 103 of §3.4, shows that, for small sub-patch grid
interval δ ≲ 10−5, the sensitivity of eigenvalue computation for near-zero
repeated eigenvalues (for small cD ≲ 10−6), leads to inaccurate eigenvalues.
Hence, for ideal waves, the computation of very many repeated zero eigen-
values of the patch schemes, for small patch scale ratios is inaccurate lead-
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Figure 3.5.3. The maximum real part of the microscale and macroscale
eigenvalues (maxℜ(λN

pµ) on left, maxℜ(λN
pM) on right) for the coefficients

cD = 0 and cV = 0, 0.0001, 0.01 (each row). Markers indicate different patch
schemes (Spectral, Square-p2, Square-p4, Square-p6, and Square-p8).
Colours indicate the different number of sub-patch intervals n.
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Figure 3.5.4. The maximum real part of the microscale and macroscale
eigenvalues (maxℜ(λN

pµ) on left, maxℜ(λN
pM) on right) for the coefficients

cD = 0.001 and cV = 0, 0.0001, 0.01 (each row). Markers indicate dif-
ferent patch schemes (Spectral, Square-p2, Square-p4, Square-p6, and
Square-p8). Colours indicate the different number of sub-patch intervals n.
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Table 3.5.4. Overall maximum real parts of the microscale eigenvalues λN
pµ

over the five patch schemes and all the combinations of N and n in Ta-
ble 3.5.2, for different patch scale ratios r. Red colour highlights the largest
value in each column (based on full precision when the values are same
with one significant figure).

Patch scale ratio r

0.0001 0.001 0.01 0.1

cD = 0, cV = 0 5 · 10−6 7 · 10−8 6 · 10−10 7 · 10−12

cD = 0, cV = 0.0001 −3000 −200 −2 −0.02

cD = 0, cV = 0.01 −3 −3 −3 −2

cD = 10−6, cV = 0 4 · 10−6 −4 · 10−7 −5 · 10−7 −5 · 10−7

cD = 10−6, cV = 0.0001 −3000 −200 −2 −0.02

cD = 10−6, cV = 0.01 −3 −3 −3 −2

cD = 0.001, cV = 0 −0.0005 −0.0005 −0.0005 −0.0005

cD = 0.001, cV = 0.0001 −3000 −200 −2 −0.02

cD = 0.001, cV = 0.01 −3 −3 −3 −2

ing to nonnegligible positive real parts. So, we take that the nonnegligible
positive real parts of 5 ·10−6, 4 ·10−6 and 7 ·10−8 in Table 3.5.4, are due to the
inaccurate eigenvalue computation of near-zero repeated eigenvalues for
small drag cD ≲ 10−6 and zero viscous diffusion. Thus, the microscale modes
of the five staggered patch schemes are stable for all the combinations of the
drag cD, viscous diffusion cV , number of macro-grid intervals N, number
of sub-patch micro-grid intervals n and the patch scale ratios r listed in
Table 3.5.2.

The following are key additional points from the subfigures on the left
of Figs. 3.5.3 and 3.5.4 and Table 3.5.4 for the microscale eigenvalues.

• Maximum positive real parts of the microscale eigenvalues λN
pµ of

all five patch schemes are approximately the same (all within the
same order of magnitude). For each combination of the parame-
ters N, r, cD, cV , we computed the standard deviation of maximum
positive real parts λN

pµ over the five patch schemes (i.e. vertical de-
viation of the points in Figs. 3.5.3 and 3.5.4 and Table 3.5.4). The
overall maximum standard deviation (i.e., variation among the patch
schemes) over all the parameter combinations in Table 3.5.2 is 3 · 10−7.
This maximum standard deviation corresponds to the largest N = 26

and the smallest r = 0.0001 in Table 3.5.2. As §3.4 shows, these varia-
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Table 3.5.5. Overall maximum real parts of the macroscale eigenvalues λN
pM

over the five patch schemes and all the combinations of N and n in Ta-
ble 3.5.2, for different patch scale ratios r. Red colour highlights the largest
value in each column (based on full precision when the values are same
with one significant figure).

Patch scale ratio r

0.0001 0.001 0.01 0.1

cD = 0, cV = 0 6 · 10−10 6 · 10−11 6 · 10−12 6 · 10−13

cD = 0, cV = 0.0001 2 · 10−8 2 · 10−10 5 · 10−12 3 · 10−13

cD = 0, cV = 0.01 2 · 10−5 2 · 10−8 2 · 10−10 3 · 10−12

cD = 10−6, cV = 0 3 · 10−11 2 · 10−12 2 · 10−13 4 · 10−14

cD = 10−6, cV = 0.0001 10−8 2 · 10−10 2 · 10−12 4 · 10−13

cD = 10−6, cV = 0.01 3 · 10−5 4 · 10−9 9 · 10−11 2 · 10−12

cD = 0.001, cV = 0 3 · 10−11 3 · 10−12 3 · 10−13 4 · 10−14

cD = 0.001, cV = 0.0001 10−8 10−10 2 · 10−12 7 · 10−13

cD = 0.001, cV = 0.01 6 · 10−7 6 · 10−9 2 · 10−10 10−12

tions are due to eigenvalue computation being affected by numerical
roundoff errors.

• For the same cD, increasing the viscous diffusion cV pushes real parts
of the microscale eigenvalues to larger negative values, increasing the
spectral gap. The increasingly large negative values of maxℜ(λN

pµ)

with increasing cV is also evident in the complex plane eigenvalue
plots. For example the microscale eigenvalues in the clusters 4, 5 in the
complex plane plot of Fig. 3.2.4 for cD = 10−6, cV = 0 move to the left
and become the clusters 6, 7 in Fig. 3.2.2 for cD = 10−6, cV = 0.0001.

• Decreasing the patch scale ratio r also leads to large negative values
of maxℜ(λN

pµ), leading to a large spectral gap.

Subfigures on the right of Figs. 3.5.3 and 3.5.4 and Table 3.5.5 show
that the macroscale eigenvalues have large maxℜ(λN

pµ ≳ 10−8), only for
the combinations of cV ≳ 0.0001, the small patch scale ratio r ≲ 0.001, and
large number of macroscale intervals N (i.e., for small sub-patch micro-grid
interval δ). For the same cD, increasing the viscous diffusion cV slightly
increases the maximum positive real parts of the macroscale eigenvalues.
The discussion in p. 103 of §3.4, shows that, for small grid interval δ ≲ 10−5,
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the combination of inherent sensitivity of the microscale model (for non-
negligible viscous diffusion cV ≳ 0.0001) and the sensitivity of eigenvalue
computation of near-zero repeated eigenvalues (for small cD ≲ 10−6), leads
to inaccurate near-zero macroscale eigenvalues. For example, Fig. 3.4.3
shows how the numerical roundoff errors in computing near-zero eigen-
values falsely give positive real parts. So, we take that the maximum real
parts of 5 · 10−6, 4 · 10−6 and 7 · 10−8 in Table 3.5.5 for small patch scale
ratios r ∈ {0.0001, 0.001}, are due to the inaccurate eigenvalue computation
due to the inherent sensitivity of the microscale model (for nonnegligible
viscous diffusion cV ≳ 0.0001) and the sensitivity of eigenvalue compu-
tation of near-zero repeated eigenvalues (for small cD ≲ 10−6). Thus,
the macroscale modes of the five staggered patch schemes are stable for all the
combinations of the drag cD, viscous diffusion cV , number of macro-grid
intervals N, number of sub-patch macro-grid intervals n and the patch
scale ratios r listed in Table 3.5.2.

The following are key additional points from the subfigures on the right
of Figs. 3.5.3 and 3.5.4 and Table 3.5.5 for the microscale eigenvalues.

• Maximum positive real parts of the macroscale eigenvalues λN
pM of

all five patch schemes are approximately the same (all within the
same order of magnitude). An analysis similar to that (in p. 118
of this subsection) for the microscale eigenvalues λN

pµ, based on the
overall maximum standard deviation (i.e., variation among the patch
schemes) confirms this trend. As discussed in §3.4 these discrepan-
cies are due to eigenvalue computation being affected by numerical
roundoff errors.

• For the same cD, increasing the viscous diffusion cV leads to large
maximum real parts of the macroscale eigenvalues. Decreasing the
patch scale ratio also leads to increasing maximum real parts. As dis-
cussed in p. 103 of §3.4 these increasing maximum real parts are due
to inherent sensitivity of the microscale model to numerical roundoff
errors, for nonnegligible viscous diffusion cV ≳ 0.0001 and for small
grid interval δ.

The previous paragraphs establish the stability of the five chosen stag-
gered patch schemes separately for the microscale and macroscale eigen-
values. Those detailed arguments show that the observed maximum real
parts of the eigenvalues are to due numerical round-off errors in the eigen-
value computations; that is, due to either the inherent sensitivity of the
microscale model, or the sensitivity of eigenvalue computation for near-
zero repeated eigenvalues, or both. Despite the different amount of patch
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coupling computations, all the five (Spectral and four polynomial) patch
schemes agree within the same order of magnitude. This agreement among
the patch schemes also shows that the maximum positive real parts do not
reflect any patch scheme instability. The insensitivity of the patch schemes
to numerical roundoff errors is also shown separately in §3.4. In addition,
the patch schemes are stable in our time simulations (§3.7.5) even for large
number macro-grid intervals N and small patch scale ratios r, and for finite
initial perturbations. Thus, all the five staggered patch schemes (Spectral,
Square-p2, Square-p4, Square-p6, and Square-p8) are stable.

3.6 Staggered patch schemes are consistent

This section shows that the staggered patch schemes are consistent with
the given microscale model. Subsections of this section establish the con-
sistency of the patch schemes by comparing the macroscale eigenvalues of
the patch scheme with the corresponding eigenvalues of the full-domain
microscale model for increasingly finer patch grids. Section 3.6.1 shows that
the Spectral patch scheme is uniformly accurate with little dependence on
the macro-grid interval ∆. Section 3.6.2 shows that the polynomial patch
schemes are consistent to the order of the polynomial interpolation with
decreasing macro-grid interval ∆.

The full-domain microscale model (3.1.1) is consistent, when the dis-
cretized equations (3.1.1) approach to the corresponding PDEs (3.0.1), as
the grid interval δ → 0 (on the full-domain grid Fig. 2.1.1). Such stan-
dard definition of consistency (e.g., Ferziger et al. 2020, p. 34) is useful
for analysing the full-domain discrete systems whose goal is to accurately
represent the corresponding PDEs. But the goal of our multiscale staggered
patch scheme (3.1.3) is to accurately represent the macroscale waves of the
corresponding discrete full-domain microscale model (§3.2.2). Hence we
define a staggered patch scheme to be consistent, when the macroscale char-
acteristics of the patch scheme (e.g., (3.1.3)) approach to the corresponding
macroscale characteristics of the full-domain microscale model (e.g., (3.1.1)),
as the macro-grid interval ∆→ 0 (on the patch grid Fig. 2.1.3b).

We show the consistency of the staggered patch schemes by demon-
strating that the macroscale eigenvalues λN

pM of the patch schemes converge
to the macroscale eigenvalues of the corresponding full-domain micro-
scale model as ∆→ 0. The eigenvalue spectra in Figs. 3.2.2 to 3.2.7, show
that the staggered patch scheme macroscale eigenvalues λNE1

pM (e.g., clus-
ters 1, 2, 3, 4, 5 in Fig. 3.2.9) are qualitatively similar, and visually close, to
the corresponding macroscale eigenvalues λA

mδ of the fine-grid full-domain
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Table 3.6.1. Section 3.6 studies the consistency of the patch schemes using
eigenvalues for all the 2 160 combinations of the listed parameters.

Patch schemes Spectral, Square-p2, Square-p4,
Square-p6, and Square-p8

Drag coefficient cD ∈ {0, 10−6, 0.001}

Viscous coefficient cV ∈ {0, 10−4, 0.01}

Macro-grid intervals N ∈ {6, 10, 14, 18, 22, 26}

Sub-patch micro-grid intervals n ∈ {6, 10}

Patch scale ratio r ∈ {0.0001, 0.001, 0.01, 0.1}

microscale model (by varying degrees depending upon the specific stag-
gered patch scheme, N, n, and r). To numerically quantify the discrepancy
between the macroscale eigenvalues λN

pM of staggered patch scheme and
the corresponding macroscale eigenvalues λA

mδ of fine grid full domain
microscale model, we define the eigenvalue error for the macroscale wave-
number (kx, ky) as

ϵkx,ky = ∥λN
pM(kx, ky) − λA

mδ(kx, ky)∥ / ∥λA
mδ(kx, ky)∥, (3.6.1)

where ∥ · ∥ is the Euclidean norm of the three element complex vectors of
eigenvalues λN

pM and λA
mδ (three macroscale eigenvalues for each macro-

scale wavenumber).
To assess the patch scheme consistency in this section (i.e., eigenvalue

convergence), we compute the three eigenvalue errors ϵ1,0, ϵ1,1 and ϵ2,1,
for the patch schemes on different staggered patch grids, corresponding to
the three macroscale (angular) wavenumbers (kx, ky) ∈ {(1, 0), (1, 1), (2, 1)}

over the 2π× 2π non-dimensional domain. The smallest wavenumber (1, 0)
corresponds to the largest wavelength of (2π, 0) over the chosen 2π× 2π do-
main. Specifically, to show the consistency of the staggered patch schemes,
this section computes the three macroscale eigenvalue errors ϵ1,0, ϵ1,1 and
ϵ2,1 for the 2 160 combinations of the parameters listed in Table 3.6.1.

Computing the three element vector of eigenvalues λA
mδ(kx, ky) in the

eigenvalue error (3.6.1), is straightforward, we evaluate the analytic expres-
sion (3.2.7) to get three eigenvalues for each macroscale wavenumber (kx, ky) ∈
{(1, 0), (1, 1), (2, 1)}. Among the numerical eigenvalues λN

p , finding which
three eigenvalues correspond to the three eigenvalues in λA

mδ(kx, ky) (for
the same macroscale wavenumber), is not straightforward. The method of
wavenumber-wise scale separation in §3.3 classifies the eigenvalues wavenumber-
wise and separates as microscale and macroscale patch scheme eigenvalues.
The method of wavenumber-wise scale separation in §3.3 gives the re-
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quired eigenvalues as the following 3D arrays (analytic eigenvalues only
for N ⩽ 14 for Spectral patch scheme)

1. An N/2×N/2× 3 array of analytic eigenvalues λA
mδ of the full-domain

microscale model.

2. An N/2 ×N/2 × 3 array of macroscale analytic patch scheme eigen-
values λNE1

pM .

3. An N/2×N/2× 3 array of macroscale numerical patch scheme eigen-
values λN

pM.

The third dimension of these three arrays establishes the wavenumber-
wise correspondence among the three eigenvalues λA

mδ, λNE1
pM and λN

pM. For
any macroscale wavenumber (kx, ky) resolved on a patch grid, each of the
three elements along the third dimension of the eigenvalues λA

mδ and λN
pM

gives the required three element vectors λA
mδ and λN

pM in the patch scheme
eigenvalue error (3.6.1).

A staggered patch grid with N ×N macro-grid intervals, irrespective
of which patch scheme, resolves 3N2/4 macroscale modes (p. 74 of §3.2.6).
That is, with increasing macro-grid intervals N, all the patch schemes
resolve an increasing number of macroscale modes of increasing wavenum-
bers. A patch grid with N = 6 macro-grid intervals resolves nine macroscale
wavenumbers such that kx, ky ∈ {−1, 0, 1}. For N = 6, there are no macro-
scale eigenvalues corresponding to wavenumber (kx, ky) = (2, 1), and so
the eigenvalue error ϵ2,1 is computed only for N ⩾ 10.

3.6.1 Spectral patch scheme is uniformly accurate

With the highly accurate global spectral interpolation (§2.2.1), we expect the
Spectral patch scheme to resolve the macroscale modes exactly (within numeri-
cal roundoff errors), irrespective of the number of macro-grid intervals N

(e.g., the complex plane eigenvalue plot in Figs. 3.2.6 and 3.2.7). That is,
the Spectral patch scheme is uniformly accurate without any dependence
on the macro-grid interval ∆. To confirm this exactness, this subsection
shows that the accuracy of the macroscale modes indeed does not deteri-
orate with decreasing macro-grid interval ∆ (increasing N). Specifically,
this subsection studies this exactness via the eigenvalue errors ϵ1,0, ϵ1,1

and ϵ2,1 of the Spectral patch scheme for all the 432 combinations of the
parameters cD, cV , N, n, r listed in Table 3.6.1.

Tables 3.6.2 to 3.6.4 shows the maximum eigenvalue errors ϵ1,0, ϵ1,1

and ϵ2,1 respectively, over six different number of macro-grid intervals N
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Table 3.6.2. Maximum logarithmic eigenvalue error maxN log10(ϵ
1,0) for

the Spectral staggered patch scheme over six different number of macro-
grid intervals N in Table 3.6.1. Red colour highlights ϵ1,0 > 10−8. Overall
maximum ϵ1,0 = 10−5.1.

Patch scale ratio r

0.0001 0.001 0.01 0.1

cD, cV n = 6 n = 10 n = 6 n = 10 n = 6 n = 10 n = 6 n = 10

0, 0 −10 −9.3 −12 −11 −12 −12 −12 −12

0, 0.0001 −9.4 −8.4 −11 −10 −12 −12 −12 −12

0, 0.01 −5.7 −5.3 −8.5 −8 −11 −10 −12 −12

10−6, 0 −9.9 −9.1 −11 −10 −12 −12 −12 −12

10−6, 0.0001 −9 −8.3 −11 −10 −12 −12 −12 −12

10−6, 0.01 −5.9 −5.2 −8.7 −8.2 −11 −10 −12 −12

0.001, 0 −10 −9.2 −11 −11 −12 −11 −12 −12

0.001, 0.0001 −9 −8.2 −11 −10 −12 −12 −12 −12

0.001, 0.01 −5.7 −5.1 −8.4 −8 −11 −10 −12 −12

Figure 3.6.1. Worst case eigenvalue errors ϵ1,0 (log scale) of the Spectral

staggered patch scheme (max log10(ϵ
1,0) ≈ −5.1 in Table 3.6.2), for cD =

0.001, cV = 0.01, n = 10, for different macro-grid intervals ∆ and patch scale
ratio r.
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Table 3.6.3. Maximum logarithmic eigenvalue error maxN log10(ϵ
1,1) for

the Spectral staggered patch scheme over six different number of macro-
grid intervals N in Table 3.6.1. Red colour highlights ϵ1,1 > 10−8. Overall
maximum ϵ1,1 = 10−4.9.

Patch scale ratio r

0.0001 0.001 0.01 0.1

cD, cV n = 6 n = 10 n = 6 n = 10 n = 6 n = 10 n = 6 n = 10

0, 0 −10 −9.6 −12 −11 −12 −12 −12 −12

0, 0.0001 −9.4 −8.2 −11 −10 −12 −11 −12 −12

0, 0.01 −5.6 −5.5 −8.7 −8.5 −11 −10 −12 −12

10−6, 0 −11 −9.7 −12 −11 −12 −12 −12 −12

10−6, 0.0001 −9.2 −8.5 −11 −10 −12 −12 −12 −12

10−6, 0.01 −5.5 −5.1 −8.6 −7.9 −11 −10 −12 −12

0.001, 0 −10 −9.6 −12 −11 −12 −12 −12 −12

0.001, 0.0001 −9.2 −8.2 −11 −11 −12 −12 −12 −12

0.001, 0.01 −5.8 −4.9 −8.6 −8.2 −11 −11 −12 −12

Figure 3.6.2. Worst case eigenvalue errors ϵ1,1 (log scale) of the Spectral

staggered patch scheme (max log10(ϵ
1,1) ≈ −4.9 in Table 3.6.3), for cD =

0.001, cV = 0.01, n = 10, for different macro-grid intervals ∆ and patch scale
ratio r.
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Table 3.6.4. Maximum logarithmic eigenvalue error maxN log10(ϵ
2,1) for

the Spectral staggered patch scheme over six different number of macro-
grid intervals N in Table 3.6.1. Red colour highlights ϵ2,1 > 10−8. Overall
maximum ϵ2,1 = 10−5.1.

Patch scale ratio r

0.0001 0.001 0.01 0.1

cD, cV n = 6 n = 10 n = 6 n = 10 n = 6 n = 10 n = 6 n = 10

0, 0 −11 −11 −12 −12 −12 −12 −12 −12

0, 0.0001 −9.2 −8.9 −11 −11 −12 −12 −12 −12

0, 0.01 −5.8 −5.3 −8.8 −8.3 −11 −11 −12 −12

10−6, 0 −11 −10 −12 −12 −12 −12 −12 −12

10−6, 0.0001 −9.6 −9 −11 −11 −12 −12 −12 −12

10−6, 0.01 −5.9 −5.1 −9 −8.4 −11 −11 −12 −12

0.001, 0 −11 −11 −12 −12 −12 −12 −12 −12

0.001, 0.0001 −9.4 −8.8 −11 −10 −12 −12 −12 −12

0.001, 0.01 −6 −5.3 −8.9 −8.4 −11 −11 −12 −12

Figure 3.6.3. Worst case eigenvalue errors ϵ2,1 (log scale) of the Spectral

staggered patch scheme (max log10(ϵ
2,1) ≈ −5.1 in Table 3.6.4), for cD =

10−6, cV = 0.01, n = 10, for different macro-grid intervals ∆ and patch scale
ratio r. No eigenvalue errors ϵ2,1 for N = 6 (p. 123 of §3.6).
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in Table 3.6.1. For the cases of the largest eigenvalue error in each table,
Figures 3.6.1 to 3.6.3 plot the variation of the eigenvalue errors ϵ1,0, ϵ1,1 and
ϵ2,1 respectively, with the number of macro-grid intervals N. Tables 3.6.2
to 3.6.4 show that, except the red highlighted values for the combination of
the small patch scale ratio r ∼ 0.0001, and large viscous diffusion cV = 0.01,
all the three eigenvalue errors are about 10−8 or smaller. Figures 3.6.1
to 3.6.3 show that the eigenvalue errors of about 10−8 corresponding to the
small patch scale ratios r ≲ 0.01 increase with increasing number of macro-
grid intervals N. Thus, Tables 3.6.2 to 3.6.4 and Figures 3.6.1 to 3.6.3 show
that the eigenvalues errors of the Spectral patch scheme are small (about
10−8 or smaller), except for the combination of the small patch scale ratio r,
large number of macro-grid intervals N and large viscous diffusion cV . Both
small patch scale ratio r and a large number of macro-grid intervals N lead
to small sub-patch micro-grid interval δ. Hence, these eigenvalue errors
(about 10−8 or larger) are due to numerical roundoff errors inherent to the
microscale model, for nonnegligible viscous diffusion cV ≳ 0.0001 and for
small grid interval δ (p. 103 of §3.4 discuss this sensitivity in more detail). So
we take that the high accuracy of the Spectral patch scheme eigenvalues
do not deteriorate with decreasing macro-grid interval ∆ (increasing N).
That is, the Spectral patch scheme itself is uniformly accurate without any
dependence on the macro-grid interval ∆.

3.6.2 The four polynomial patch schemes are consistent

Figures 3.2.8 and 3.2.9 of §3.2.6 present the eigenvalue spectra for the
Square-p2 patch scheme with N = 6, 10 respectively, keeping all other
parameters n, r, cD, cV the same. Comparing Figs. 3.2.8 and 3.2.9 suggest
that, keeping L, r, and n the same, increasing the number of macro-grid
intervals N (decreasing the macro-grid interval ∆) makes the macroscale
eigenvalues λNE1

p of the patch scheme become increasingly close to the
corresponding macroscale eigenvalues λA

mδ of the full-domain microscale
model. For the four polynomial patch schemes (Square-p2, Square-p4,
Square-p4, Square-p6, and Square-p8), to confirm that the accuracy of the
macroscale modes indeed increases with decreasing macro-grid interval ∆
(increasing N), we study the eigenvalue errors ϵ1,0, ϵ1,1 and ϵ2,1 of the
polynomial patch schemes for all the 1 728 combinations of the parameters
listed in Table 3.6.1.

As §2.2.2 describes, using interpolating polynomials of order p = 2, 4, 6, 8

for the patch coupling gives the four polynomial staggered patch schemes
Square-p2, Square-p4, Square-p4, Square-p6, and Square-p8 respectively
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In our implementation, the patch coupling for these four patch schemes
is based on 2D Lagrangian polynomial interpolation over a near-square
region (i.e., square stencil), hence the names of polynomial patch schemes
contain “Square” in them.

The macroscale eigenvalues λN
p for the wavenumber (kx, ky) = (1, 0) con-

verge to the macroscale eigenvalues λA
mδ of the full-domain microscale model.

Figures 3.6.4 and 3.6.5 show the best and the worst convergence plots for
the eigenvalue error ϵ1,0. Except for a few specific cases, in general, the
eigenvalues errors ϵ1,0 of all the four polynomial patch schemes, converge
to zero, closely following the power law curve fit ϵ̃1,0 = 0.3333 · (0.7 · ∆)p
(solid lines). The worst case convergence in Fig. 3.6.5 shows a slight dete-
rioration of the eigenvalue convergence for the combination of the small
patch scale ratio r = 0.0001, large interpolation order p = 8, large number of
macro-grid intervals N > 14 and large viscous diffusion cV = 0.01. That is,
for all the four polynomial patch schemes, except for the combination of pa-
rameters (the small r and large N,p, cV ), the macroscale eigenvalues λN

p for
the wavenumber (kx, ky) = (1, 0) converge to the corresponding macroscale
eigenvalues λA

mδ of the full-domain microscale model. Moreover, the expo-
nent p in the power law fit shows that this convergence of patch scheme
eigenvalues λN

p for the wavenumber (kx, ky) = (1, 0) with decreasing macro-
grid interval ∆ is to the same order of the polynomial interpolation p.

The macroscale eigenvalues λN
p for the wavenumber (kx, ky) = (1, 1) con-

verge to the macroscale eigenvalues λA
mδ of the full-domain microscale model. The

eigenvalue errors ϵ1,1 converge to zero following the same power law
curve fit for the eigenvalue errors ϵ1,0 in the previous paragraph. That
is, ϵ̃1,1 = ϵ̃1,0 = 0.3333 · (0.7 · ∆)p (solid lines in Figs. 3.6.6 and 3.6.7). The
best-case convergence plot for the eigenvalue errors ϵ1,1 are visually iden-
tical to Fig. 3.6.4. So, Figs. 3.6.6 and 3.6.7 show the moderately worse
and the worst convergence plots for the eigenvalue error ϵ1,1 respectively.
Similar to the case of the wave number (kx, ky) = (1, 0), for all the four
polynomial patch schemes, except for the combination of parameters (the
small r and large N,p, cV), the macroscale eigenvalues λN

p for the wave-
number (kx, ky) = (1, 1) converge to the corresponding macroscale eigen-
values λA

mδ of the full-domain microscale model. As for the case of the wave
number (kx, ky) = (1, 0), this convergence of patch scheme eigenvalues λN

p

for the wavenumber (kx, ky) = (1, 1) with decreasing macro-grid interval ∆
is to the same order of the polynomial interpolation p.

The macroscale eigenvalues λN
p for the wavenumber (kx, ky) = (2, 1) converge

to the macroscale eigenvalues λA
mδ of the full-domain microscale model. Fig-

ures 3.6.8 and 3.6.9 show the best and the worst convergence plots for the
eigenvalue error ϵ2,1. As discussed in p. 123 of §3.6, a patch grid with N = 6
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macro-grid intervals do not resolve the macroscale mode with wavenumber
(kx, ky) = (2, 1). Hence the convergence plots of the eigenvalue error ϵ2,1

do not have a data point corresponding to N = 6. The eigenvalue errors ϵ2,1

converge to zero following the power law curve fit ϵ̃2,1 = 0.3333 · (1.333 ·∆)p
(solid lines in Figs. 3.6.8 and 3.6.9). Figures 3.6.8 and 3.6.9 of the best and
worst convergence plots for the eigenvalue error ϵ2,1, are nearly the same
except for the largest polynomial order p = 8 with N = 22, r = 0.0001.
Unlike the case of the eigenvalue errors ϵ1,0 and ϵ1,1, the macroscale
eigenvalues corresponding to the wavenumber (kx, ky) = (2, 1) converge to
the corresponding macroscale eigenvalues of the full-domain microscale
model, without any exception for r,N, p, cV . As for the case of the wave
number (kx, ky) = (1, 0), (1, 1), this convergence of patch scheme eigen-
values λN

p for the wavenumber (kx, ky) = (2, 1) with decreasing macro-grid
interval ∆ is to the same order of the polynomial interpolation p.

All four polynomial staggered patch schemes are consistent with the corre-
sponding full-domain microscale model. In the eigenvalue convergence plots
of Figs. 3.6.4 to 3.6.9, all the nonnegligible deviations from the respective
power law fit (discrepancy between the solid and dashed lines) correspond
to the combination of the small r and large N,p, cV . Both small patch scale
ratio r and a large number of macro-grid intervals N lead to small sub-patch
micro-grid interval δ. Hence, as discussed in p. 103 of §3.4 the deviations
from the eigenvalue convergence are due to inherent sensitivity of the
microscale model to numerical roundoff errors, for nonnegligible viscous
diffusion cV ≳ 0.0001 and for small grid interval δ. So we take that the
eigenvalue convergence for the macroscale wavenumbers does not dete-
riorate with decreasing macro-grid interval ∆ (increasing N), due to any
deficiency of the four polynomial patch schemes. That is, all four polynomial
staggered patch schemes are consistent with the corresponding full-domain
microscale model with decreasing macro-grid interval ∆ to the same order of
the polynomial interpolation p.
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Figure 3.6.4. Best case convergence of ϵ1,0 (log scale) with macro-grid
interval ∆, for cD = 10−6, cV = 10−4, n = 6, for the four polynomial patch
schemes with interpolation orders p ∈ {2, 4, 6, 8} and patch scale ratio r.
Solid lines are the power law curve fit ϵ̃1,0 = 0.3333 · (0.7 · ∆)p.
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Figure 3.6.5. Worst case convergence of ϵ1,0 (log scale) with macro-grid
interval ∆, for cD = 0.001, cV = 0.01, n = 10, for the four polynomial patch
schemes with interpolation orders p ∈ {2, 4, 6, 8} and patch scale ratio r.
Solid lines are the power law curve fit ϵ̃1,0 = 0.3333 · (0.7 · ∆)p.
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Figure 3.6.6. Moderately worse case convergence of ϵ1,1 (log scale) with
macro-grid interval ∆, or cD = 0.001, cV = 0.01, n = 10, for the four
polynomial patch schemes with interpolation orders p ∈ {2, 4, 6, 8} and patch
scale ratio r. Solid lines are the power law curve fit ϵ̃1,1 = 0.3333 · (0.7 · ∆)p.
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Figure 3.6.7. Worst case convergence of ϵ1,1 (log scale) with macro-grid
interval ∆, for cD = 0.001, cV = 0.01, n = 10, for the four polynomial patch
schemes with interpolation orders p ∈ {2, 4, 6, 8} and patch scale ratio r.
Solid lines are the power law curve fit ϵ̃1,1 = 0.3333 · (0.7 · ∆)p.
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Figure 3.6.8. Best case convergence of ϵ2,1 (log scale) with macro-grid
interval ∆, for cD = 10−6, cV = 10−4, n = 10, for the four polynomial patch
schemes with interpolation orders p ∈ {2, 4, 6, 8} and patch scale ratio r.
Solid lines are the power law curve fit ϵ̃2,1 = 0.3333 · (1.333 · ∆)p.
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Figure 3.6.9. Worst case convergence of ϵ2,1 (log scale) with macro-grid
interval ∆, for cD = 0.001, cV = 0.01, n = 10, for the four polynomial patch
schemes with interpolation orders p ∈ {2, 4, 6, 8} and patch scale ratio r.
Solid lines are the power law curve fit ϵ̃2,1 = 0.3333 · (1.333 · ∆)p.
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3.7 Large computational savings in staggered
patch scheme time simulation

This section quantifies and demonstrates the potentially large computa-
tional savings of the staggered patch schemes for the general linear wave.
Section 3.7.1 shows the computational savings of the 2D staggered patch
schemes theoretically in terms of the ratio of the space over which the patch
schemes and the full-domain model computes. Section 3.7.2 shows the com-
putational savings of the patch schemes in terms of the ratio of the number
of state variables for which the patch schemes and the full-domain model
computes. Section 3.7.3 quantifies the computational complexity of the
staggered patch schemes and compares the compute times of the staggered
patch schemes to that of the full-domain microscale model. Section 3.7.4
demonstrates the computational savings of the 2D staggered patch schemes
by measuring the elapsed time taken to compute the time derivative of
the state vector (one time iteration) using a specific implementation. Sec-
tion 3.7.5 demonstrates the accuracy and the effectiveness of the staggered
patch schemes by numerically simulating the general dissipative linear
waves for two example cases: a simple progressive wave; and a moving
Gaussian hump.

3.7.1 Patch schemes compute only within a small fraction
of space

For large-scale problems, the primary interest is only the large-scale waves,
not the smallest details. To simulate such large-scale waves accurately, a
fine-grid full-domain microscale model (e.g., (3.1.1) for the general linear
wave) computes on the whole L × L domain. But the staggered patch
schemes compute only within small patches sparsely located within the
domain, occupying a much smaller fraction of the space in the full domain.
For example, Fig. 2.1.3b of §2.1.2 shows a staggered patch grid, where the
patches are enlarged for visual clarity.

Consider the staggered patch grid in Fig. 2.1.3b with macro-grid inter-
val ∆ and patch size l. In terms of the patch scale ratio r = l/(2∆), the area of
one patch is l2 = 4r2∆2. When a macro-cell contains three patches in a patch
grid (as in the chosen patch grid Fig. 2.1.3b), with N×N macro-grid inter-
vals, there are a total of 3N2/4 patches. Hence the total area occupied by the
patches is 3N2l2/4 = 3r2N2∆2 = 3r2L2 as the macro-grid interval ∆ = L/N.
That is, the total area of the simulated space in a patch scheme is 3r2L2

whereas the corresponding total area of the simulated space in a fine-grid
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full-domain microscale model is L2. For a small patch scale ratio r, the 2D
staggered patch schemes compute only within a small fraction 3r2 of the area of the
full domain. For example, for r = 0.1, 0.01, 0.001, 0.0001, the staggered patch
schemes compute over the fraction of area 0.03, 3 · 10−4, 3 · 10−6, 3 · 10−8

respectively. Similar 3D staggered patch schemes compute only within a
small fraction 4r3 of the volume in the full domain, where the computa-
tional saving is much more. Thus, the staggered patch schemes compute
only within a small fraction of the space in the full domain.

3.7.2 Patch schemes compute for a small number of state
variables

Section 3.7.1 shows that 2D staggered patch schemes compute only within
a small fraction 3r2 of the space in the full domain, which is a rough
indication of the computational savings of the staggered patch schemes.
This section quantifies the computational savings of the staggered patch
schemes, more concretely in terms of the number of the dynamical state
variables of the 2D staggered patch schemes and that of the corresponding
fine-grid full-domain microscale model.

For a staggered patch grid in Fig. 2.1.5a with N×N macro-grid intervals
and each patch containing n× n sub-patch micro-grid intervals, the total
number of patch interior nodes is nI

p = (N2/4)(9n2/4 − 4n + 2), which is
same as the number of state variables (p. 21 of §2.1.2). For a staggered
grid in Fig. 2.1.1 corresponding to a fine-grid full-domain model, with the
same grid interval as the sub-patch micro-grid interval δ, the total number
of interior nodes is nI

mδ = 3N2n2/(16r2). The ratio of the number of state
variables of the staggered patch scheme to that of the fine-grid full-domain
microscale model,

nI
p/n

I
mδ = 3r2

(
1−

16

9n
+

8

9n2

)
. (3.7.1)

With increasing n, the ratio nI
p/n

I
mδ tends to 3r2, which is the same fraction

of the space derived in §3.7.1 over which the patch schemes compute.
For example, for n = 6, 10, 14 sub-patch micro-grid intervals with a fixed
patch scale ratio r = 0.1, the ratio nI

p/n
I
mδ = 0.022, 0.025, 0.026 respectively.

For r = 0.1, 0.01, 0.001, 0.0001 with a fixed n = 6, the ratio of number of
nodes nI

p/n
I
mδ = 0.022, 2.2 · 10−4, 2.2 · 10−6, 2.2 · 10−8 respectively. Thus,

the staggered patch schemes compute only for a small number of dynamical state
variables compared to the corresponding fine-grid full-domain microscale
model with the same grid interval as the sub-patch micro-grid interval δ.
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3.7.3 Computational complexity of the staggered patch
schemes

This subsection quantifies the computational complexity of the staggered
patch schemes and compares the compute times of the staggered patch
schemes to that of the full-domain microscale model. To simplify and keep
the smaller uncertainties aside, for the patch schemes and the full-domain
microscale model this subsection assumes a similar level of vectorisation
and a similar pattern of cache and memory access.

Let the average compute time for computing the time derivative of one
state variable is TM for the fine-grid full-domain microscale model. We call
TM, the model compute time per interior node. There are nI

mδ = 3N2n2/(16r2)

state variables in the fine-grid full-domain microscale model. Hence, the
total compute time for computing the time derivative of the state vector
(i.e., the compute time for one iteration in time simulation),

Tmδ = nI
mδ TM = 3N2n2 TM/(16r2). (3.7.2)

The compute time Tp for computing the time derivative of the state
vector dxI/dt in the patch system (2.1.9) has two components: time for
computing the patch coupling; and time for computing the node values
using the microscale model.

• Let the average compute time for computing one patch edge node
from the patch coupling is TC. We call TC, the coupling compute time
per edge node. There are nE

p = (N2/4)(18n− 16) edge nodes (expres-
sion (2.1.8) in p. 22 of §2.1.2) in the staggered patch grid of Fig. 2.1.5a
for the general linear wave with drag and viscous diffusion. Hence,
the total compute time for computing the patch edge vector xE in the
patch system (2.1.9) (i.e., the patch coupling compute time for one
iteration in time simulation) is nE

p TC = (N2/4)(18n− 16) TC.

• Using the same microscale model within the patches as that of the full-
domain microscale model costs the same average compute time TM for
computing the time derivative of one state variable of a patch scheme.
There are nI

p = (N2/4)(9n2/4− 4n+ 2) state variables in the staggered
patch scheme (p. 21 of §2.1.2). Hence, using the known values of the
patch edge nodes xE and the patch interior nodes xI, the compute
time for computing the time derivative of the state vector dxI/dt in
the patch system (2.1.9) is nI

p TM = (N2/4)(9n2/4− 4n+ 2) TM.

Thus, the total compute time for computing the time derivative of the state
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vector dxI/dt in the patch system (2.1.9),

Tp = nE
p TC + nI

p TM = (N2/4)(18n− 16) TC + (N2/4)(9n2/4− 4n+ 2) TM.

(3.7.3)

The ratio of the compute time (3.7.3) for computing the time derivative
of the state vector of a patch scheme to the compute time (3.7.2) of the
fine-grid full-domain microscale model,

Tp/Tmδ = (nE
p TC + nI

p TM)/(nI
mδ TM) = (nE

p/n
I
mδ) (TC/TM) + nI

p/n
I
mδ.

(3.7.4)

From the expressions for the number of state variables in a fine-grid full-
domain microscale model nI

mδ = 3N2n2/(16r2) and the number of patch
edge nodes nE

p = (N2/4)(18n− 16), the ratio

nE
p/n

I
mδ = 24r2/n− 64r2/(3n2). (3.7.5)

Using the expressions (3.7.1) and (3.7.5), the ratio of compute time for
computing the time derivative of the state vector of a patch scheme to that
of the fine-grid full-domain microscale model (i.e., the compute time ratio
for one iteration in time simulation) is

Tp/Tmδ = (TC/TM)

(
24r2

n
−

64r2

3n2

)
+ 3r2

(
1−

16

9n
+

8

9n2

)
. (3.7.6)

The compute time ratio (3.7.6) for one iteration in time simulation,
describes the computational cost savings of the staggered patch schemes.
The ratio TC/TM of coupling compute time to model compute time, in the
compute time ratio (3.7.6), encapsulates the following:

1. the details of the specific patch scheme (Spectral or polynomial patch
scheme, interpolation order p of the polynomial patch scheme, etc.);

2. the details of the specific implementation (specific algorithmic choices,
data structures, serial or parallel computations, etc.).

In general, for modelling any reasonably complex physical process (e.g.,
non-hydrostatic nonlinear waves, sediment transport, etc), the model com-
pute time per interior node TM is greater than the coupling compute time
per edge node TC, with TC/TM ≲ 1. Hence, substituting TC/TM = 1 into
the compute time ratio (3.7.6) gives a rough indication of the possible
computational cost savings of the staggered patch schemes as

Tp/Tmδ ≲ 3r2 +
56r2

3n
−

56r2

3n2
. (3.7.7)
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3.7.4 Staggered patch schemes simulate with small
compute time

Sections 3.7.1 and 3.7.2 show the computational savings of the 2D staggered
patch schemes theoretically in terms of the ratio of the space and the ratio
of the number of state variables respectively. This section shows the com-
putational savings of the 2D staggered patch schemes by measuring the
elapsed time taken to compute the time derivative of the state vector (one
time iteration) using a specific implementation in the Julia programming
language.

This subsection measures the compute time ratio Tp/Tmδ for a specific
implementation and compares with expression (3.7.6) by empirically es-
timating the model compute time per interior node TM and the coupling
compute time per edge node TC. The compute times in this subsection
are measured on a custom assembled liquid-cooled workstation with Intel
i7-6900k processor and 6 4GB DDR4 RAM. Both the full-domain microscale
model and the patch schemes are implemented as serial programs.

Figure 3.7.1 plots the measured compute time Tmδ of the fine-grid full-
domain microscale model (3.1.1) (p. 49 of §3.1), for computing the time
derivative of the state vector (i.e., the compute time for one iteration in
time simulation) for the initial condition (3.7.8) of the simple progressive
wave (p. 146 of §3.7.5). Figure 3.7.1 plots the compute time Tmδ of the
fine-grid full-domain model with the same grid interval as the sub-patch
micro-grid interval δ of a staggered patch grid with different number of
macro-grid intervals N, sub-patch micro-grid intervals n, and patch scale
ratio r. We measured one hundred samples of compute times Tmδ for each
of the nine combinations of cD ∈ {0, 10−6, 0.0001}, cV ∈ {0, 10−4, 0.001}. Each
point in Fig. 3.7.1 is the mean over the nine combinations of cD, cV . For
the measured compute times Tmδ, fitting one common power law curve
(solid lines in Fig. 3.7.1) using expression (3.7.2), we estimate the model
compute time per interior node TM = 0.062 µs (same value for all n, r).
The measured compute times Tmδ reasonably closely follow the trend of
expression (3.7.2) (solid lines).

Figure 3.7.2 plots the measured compute time Tp of the five staggered
patch schemes for computing the time derivative of the state vector (i.e.,
the compute time for one iteration in time simulation), for different macro-
grid intervals N and sub-patch micro-grid intervals n. We measured one
hundred samples of compute times Tp for each of the nine combinations
of cD ∈ {0, 10−6, 0.0001}, cV ∈ {0, 10−4, 0.001}. Each point in Fig. 3.7.2 is
the mean over the nine combinations of cD, cV . For the measured com-
pute times Tp, fitting a power law curve for each patch scheme (solid
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Figure 3.7.1. Measured compute times Tmδ of the fine-grid full-domain
model (general linear wave) with the same grid interval as the sub-patch
micro-grid interval δ of a staggered patch grid with different N, n, and patch
scale ratio r. Solid lines represent expression (3.7.2) using the estimated
model compute time TM = 0.062 µs.
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Figure 3.7.2. Measured compute times Tp of the five staggered patch
schemes (general linear wave) with different N and n. Solid lines represent
expression (3.7.3) using the estimated model compute time TM = 0.062 µs
and the respective estimated coupling compute times TC for the five patch
schemes.
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lines in Fig. 3.7.2) using the model compute time TM = 0.062 µs in expres-
sion (3.7.3), we estimate the approximate coupling compute times per
edge node TC = 0.44, 1.8, 7.6, 24, 63 µs for the five staggered patch schemes
Spectral, Square-p2, Square-p4, Square-p6, and Square-p8 respectively.
The measured compute times Tp of all the five staggered patch schemes

reasonably closely follow the trend of expression (3.7.3) (solid lines).
The smallest coupling compute time TC = 0.44 µs for the spectral patch

scheme is because Algorithm 1 efficiently calculates the edge values for
all the h/u/v-centred patches in one shot using the fast Fourier transform
via the Fourier shift property. But for the polynomial patch schemes, Algo-
rithm 2 calculates looping over each of the h/u/v-centred patches individ-
ually. For the polynomial patch schemes, the coupling compute time per
edge node TC increases monotonically from 1.8 µs to 63µs with the increase
in the order p of interpolation from two to eight. This increasing TC with
increasing p is expected as there are more computations involved in higher
order interpolation.

The relatively simple microscale model of the general linear wave with
drag and viscous diffusion has small model compute time per interior
nodeTM = 0.062 µs from Fig. 3.7.1. The focus of the current patch scheme
implementation is on the flexibility to explore a large number of possible
designs of the patch grid and a large number of possible patch schemes.
So, the current patch scheme implementation, being not computationally
efficient, leads to large coupling compute times per edge node TC from
Fig. 3.7.2. Hence, the ratios of the coupling compute times to the model com-
pute times are TC/TM = 7, 29, 123, 381, 1020, for the five staggered patch
schemes Spectral, Square-p2, Square-p4, Square-p6, and Square-p8 re-
spectively.

Figure 3.7.3 plots the ratio Tp/Tmδ of the measured compute time of the
fine-grid full-domain model to that of the staggered patch schemes, for
different number of sub-patch micro-grid intervals n and patch scale ra-
tio r. Solid lines represent expression (3.7.6) for Tp/Tmδ using the estimated
model compute time TM = 0.062 µs and the respective estimated coupling
compute times TC for each patch scheme. A fine-grid for full-domain model
(with the same grid interval δ as the sub-patch micro-grid interval), has
very large number of interior nodes nI

mδ = 3N2n2/(16r2) corresponding
to a small patch scale ratio, requiring memory larger than 64 GB. Hence,
for r = 0.001 we compute Tp/Tmδ (plusses in Fig. 3.7.3) using the measured
Tp of the patch schemes and the estimated Tmδ of the full-domain model
using expression (3.7.6). The measured compute time ratio Tp/Tmδ reason-
ably closely follow the trend of expression (3.7.6) (solid lines) for the five
staggered patch schemes (with the respective TC).
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Figure 3.7.3. Ratio Tp/Tmδ of the measured compute time of the staggered
patch schemes (general linear wave) to that of the fine-grid full-domain
model, for different n, r. Solid lines represent expression (3.7.6) for Tp/Tmδ

using the estimated model compute time TM = 0.062 µs and the respective
estimated coupling compute times TC for each patch scheme.
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Figure 3.7.3 shows that despite the estimated large TC/TM (between 13

and 1031), for sufficiently small patch scale ratio r = 0.01, 0.001 the compute
time ratios Tp/Tmδ are about 10−2, 10−4. That is, despite the large TC/TM,
for small patch scale ratios, the compute times of the multiscale staggered patch
schemes are about 100 to 10 000 times smaller than the corresponding fine-grid
full-domain microscale model. A reduction of 10 000 times is equivalent to
reducing the computation time from one week to one minute.

For patch scheme simulations with fixed grid geometry, the patch cou-
pling coefficients can be precomputed as a sparse matrix, which gives the
patch edge values when multiplied by the patch centre values at each in-
stant in time. Such patch coupling via sparse matrix multiplication instead
of direct patch coupling reduces the coupling compute time TC, leading
to smaller TC/TM in (3.7.6), and hence larger computational savings of
the staggered patch schemes via smaller Tp/Tmδ. Using the sparse matrix
multiplication for the patch coupling of the five staggered patch schemes,
Fig. 3.7.4 plots the measured compute time Tp for computing the time
derivative of the state vector (i.e., the compute time for one iteration in
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Figure 3.7.4. Measured compute times Tp, with patch coupling via sparse
matrix multiplication, for the five staggered patch schemes with different N
and n. Solid lines represent expression (3.7.3) using the estimated model
compute time TM = 0.062 µs and the respective estimated coupling compute
times TC for the five patch schemes.
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Figure 3.7.5. Ratio Tp/Tmδ of the measured compute time of the staggered
patch schemes with patch coupling via sparse matrix multiplication to that of
the fine-grid full-domain model, for different n, r. Solid lines represent
expression (3.7.6) for Tp/Tmδ using the estimated TM = 0.062 µs and the
respective estimated coupling compute times TC for each patch scheme.
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time simulation), for different N and n. We measured 10 000 samples of
compute times Tp for each of the nine combinations of cD ∈ {0, 10−6, 0.0001},
cV ∈ {0, 10−4, 0.001}. Each point in Fig. 3.7.4 is the mean over the nine
combinations of cD, cV .

For the measured compute times Tp in Fig. 3.7.4, fitting a power law
curve (solid lines in Fig. 3.7.4) using the model compute time TM = 0.062 µs
in expression (3.7.3), we estimate the approximate coupling compute times
per edge node TC = 0.51, 0.27, 0.29, 0.32, 0.37 µs for the five staggered patch
schemes Spectral, Square-p2, Square-p4, Square-p6, and Square-p8 re-
spectively. The patch coupling via sparse matrix multiplication reduces
the coupling compute time TC by as large as 170 times compared to the
direct coupling compute times (TC = 0.44, 1.8, 7.6, 24, 63 µs computed from
Fig. 3.7.2). In contrast to the direct patch coupling, via sparse matrix
multiplication, the coupling compute time TC = 0.51 µs for the Spectral

patch scheme is not the smallest among the five patch schemes. The large
TC = 0.51 µs for the Spectral patch scheme, compared to TC = 0.27 µs
for the Square-p2 patch scheme, comes from the smaller sparsity of the
coupling matrix due to the global spectral interpolation, compared to the
larger sparsity of the quadratic interpolation of Square-p2 patch scheme.
Compared to the patch scheme compute times Tp in Fig. 3.7.2 via direct
coupling, the patch scheme compute times Tp in Fig. 3.7.4 with patch cou-
pling via sparse matrix multiplication, do not have strong dependence on
the specific patch schemes nor the number of sub-patch intervals n.

Compared to the direct patch coupling, the smaller coupling compute
time TC for the patch coupling via sparse matrix multiplication leads to
a smaller ratio of the coupling compute time to the model compute time.
Using TM = 0.062 µs, the ratio TC/TM = 8.1, 4.3, 4.7, 5.2, 5.9 for the patch
coupling via sparse matrix multiplication, is much smaller compared to
the ratio TC/TM = 7, 29, 123, 381, 1020 of the direct coupling, for the five
staggered patch schemes Spectral, Square-p2, Square-p4, Square-p6, and
Square-p8 respectively. As per expression (3.7.6), this smaller TC/TM also
results in smaller ratio Tp/Tmδ of the measured compute time of the stag-
gered patch schemes to that of the fine-grid full-domain model.

Figure 3.7.5 plots the ratio Tp/Tmδ of the measured compute time of the
staggered patch schemes with patch coupling via sparse matrix multiplication
to that of the fine-grid full-domain model, for different number of sub-
patch micro-grid intervals n and patch scale ratio r. Solid lines represent
expression (3.7.6) for Tp/Tmδ using the estimated TM = 0.062 µs and the
respective estimated coupling compute times TC for each patch scheme. As
discussed in the paragraph before (for direct coupling), the computation for
the fine-grid full-domain model corresponding to a patch grid with a small
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patch scale ratio, requires large memory. Hence, for r = 0.001 we compute
Tp/Tmδ (plusses in Fig. 3.7.5) using the measured Tp of the patch schemes
and the estimated Tmδ of the full-domain model using expression (3.7.6).
The measured compute time ratio Tp/Tmδ reasonably closely follow the
trend of expression (3.7.6) (solid lines) for the five staggered patch schemes
(through the respective TC). Compared to the compute time ratios Tp/Tmδ

in Fig. 3.7.3 via direct coupling, the compute time ratios Tp/Tmδ in Fig. 3.7.5
with patch coupling via sparse matrix multiplication, do not have strong
dependence on the specific patch schemes nor the patch scale ratio r. Com-
pared to the compute time ratios Tp/Tmδ in Fig. 3.7.3 via direct coupling,
the patch coupling via sparse matrix multiplication (for fixed grid) reduces the
compute time ratios Tp/Tmδ by about ten times as in Fig. 3.7.5, especially for
higher order patch schemes.

Figure 3.7.5 shows that despite TC/TM > 1 (between five and eight),
for sufficiently small patch scale ratio r = 0.01, 0.001 the compute time
ratios Tp/Tmδ are about 10−3, 10−5. That is, for small patch scale ratios, the
compute times of the multiscale patch schemes are about 1000 to 105 times smaller
than the corresponding fine-grid full-domain microscale model. A reduction of
105 times is equivalent to reducing the computation time from one week to
six seconds.

The demonstrated large computational savings of the patch schemes
via compute time ratio Tp/Tmδ in Figs. 3.7.3 and 3.7.5 are for the case of
large ratio of coupling compute time to model compute time, TC/TM > 1.
Even larger computational savings of the patch schemes are possible with
smaller ratio TC/TM in (3.7.6) in the following cases.

1. Compared to the current simple general linear wave, modelling more
complex physical processes (e.g., non-hydrostatic nonlinear waves,
sediment transport, etc) with a larger model compute time TM, leads
to smaller TC/TM in (3.7.6), and hence smaller Tp/Tmδ, that is larger
computational savings of the staggered patch schemes.

2. Compared to the current computationally not efficient implemen-
tation (with a focus on exploratory studies), a more efficient imple-
mentation (via code specialisation, code optimisation, parallelisation,
etc) with a smaller coupling compute time TC, leads to smaller TC/TM
in (3.7.6), and larger computational savings of the staggered patch
schemes. As discussed in the article by Bunder et al. (2020, p. 962), in
a parallel implementation, patch schemes require lesser communica-
tion across the compute nodes compared to the fine-grid full-domain
model, due shorter messages across the patches in different compute
nodes. This lesser communication across the compute nodes, leads
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to additional computational savings of the parallel implementation
of the staggered patch schemes compared to the current serial imple-
mentation.

3.7.5 Staggered patch scheme time simulations of general
linear waves

This subsection demonstrates the accuracy and the effectiveness of the
staggered patch schemes by numerically simulating the general dissipative
linear waves for two example cases: a simple progressive wave; and a
moving Gaussian hump. This subsection, first compares the time simula-
tion of a patch scheme with that of the fine-grid full-domain model for a
simple progressive wave, and second demonstrates the patch scheme time
simulation for a moving Gaussian hump. Via random perturbation to the
initial condition, this section also demonstrates the robustness of the patch
schemes.

For the patch scheme time simulations, first we need to choose a suitable
ODE integrator and an appropriate error tolerance. We use the package
DifferentialEquations.jl by Rackauckas and Nie (2017), a suite of vari-
ous ODE integrators in Julia programming language, to study various ODE
integrators suitable for the staggered patch scheme. Specifically, we study
nine ODE integrators for the suitability for the patch schemes, namely BS3,
DP5, Tsit5, Vern7, sp.RK45, sp.RK23, sp.Radau, sp.BDF and sp.LSODA as
detailed in DifferentialEquations.jl (2021). Equations (3.7.9) define the rela-
tive simulation errors ϵh

t , ϵu
t , ϵv

t to quantify the discrepancy between the
solutions of the patch scheme and the full-domain model at patch centres.
We compute the maximum of the mean of Spectral patch scheme simu-
lation errors ϵh

t , ϵu
t , ϵv

t over the time t ∈ (2π, 14π) for a simple progressive
wave (3.7.8) using the nine ODE integrators. Figures 3.7.6 to 3.7.8 plot the
mean simulation error, compute time for the ODE integration for t = 0 to
14π, and the memory used in the ODE integration, respectively, for the nine
ODE integrators and for different relative and absolute error tolerances. The
compute times in this subsection are measured on a custom assembled
liquid-cooled workstation with Intel i7-6900k processor and 6 4GB DDR4
RAM. The compute time typically increases with decreasing tolerance, due
to more time steps and function calls, as is the case for BS3, and sp.RK23

in Fig. 3.7.7. But due to adaptations and variations of specific algorithms
and their implementation, several other ODE integrators do not follow
such monotonic trends. Detailed characterisation of such trends is not the
current focus. Hence, considering the simulation error, compute time and
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Figure 3.7.6. Mean error ϵh
t (3.7.9) over time t ∈ (2π, 14π) for Spectral

patch scheme simulation of a simple progressive wave (3.7.8).
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Figure 3.7.7. Compute time for the Spectral patch scheme simulation for
time t = 0 to 14π for a simple progressive wave (3.7.8), for the nine ODE
integrators and for different relative and absolute error tolerances.
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Figure 3.7.8. Memory usage of the Spectral patch scheme simulation for
time t = 0 to 14π for a simple progressive wave (3.7.8), for the nine ODE
integrators and for different relative and absolute error tolerances.
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the memory usage in Figs. 3.7.6 to 3.7.8, we choose the BS3 ODE integrator and
the relative and absolute error tolerances of 10−3 and 10−6 respectively, for all the
time simulations in this thesis. The BS3 is a lower order Bogacki–Shampine
3/2 method (Bogacki and L. Shampine 1989; L. F. Shampine and Reichelt
1997), similar to the ode23 of MATLAB (DifferentialEquations.jl 2021).

Figures 3.7.9 to 3.7.11 compare the time evolution of the general linear
progressive wave with the coefficients cD = 10−6 and cV = 10−4, using
the Square-p4 staggered patch scheme (3.1.3) (colour-coded ribbons) with
that using the fine-grid full-domain model (3.7.2) (grey mesh), for height h,
velocities u, v respectively. The time simulation of both the patch scheme
and the fine-grid full-domain model are for the initial condition (plotted in
top left of Figs. 3.7.9 to 3.7.11) of the simple progressive wave

h0(x, y) = 0.2+ 0.1 sin(x+ y) , (3.7.8a)

u0(x, y) = 0.3+ (0.1/
√
2) sin(x+ y) , (3.7.8b)

v0(x, y) = 0 . (3.7.8c)

The Square-p4 patch scheme (fourth order polynomial interpolation patch
coupling) in Figs. 3.7.9 to 3.7.11 use N = 14 macro-grid intervals, n = 6
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Figure 3.7.9. Height h for time evolution of the progressive wave with
initial condition (3.7.8), using Square-p4 patch scheme (3.1.3) (colour-coded
ribbons, with N = 14, n = 6, and r = 0.01) agrees closely with that of the
fine-grid full-domain model (grey mesh). Black circles on h-centred patches
show small discrepancies. The patch scheme compute time is 1300 times smaller.
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Figure 3.7.10. Velocity u for time evolution of the progressive wave, for the
same patch scheme simulation detailed in Fig. 3.7.9 (colour-coded ribbons)
agrees closely with that of the fine-grid full-domain model (grey mesh).
Black circles on u-centred patches show that the discrepancy is small.
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Figure 3.7.11. Velocity v for time evolution of the progressive wave, for the
same patch scheme simulation detailed in Fig. 3.7.9 (colour-coded ribbons)
agrees closely with that of the fine-grid full-domain model (grey mesh).
Black circles on v-centred patches show that the discrepancy is small.
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sub-patch micro-grid intervals, and the patch scale ratio r = 0.01. The
fine-grid full-domain microscale model (3.7.2) (grey mesh) uses the same
micro-grid interval as the sub-patch micro-grid interval δ = 2Lr/(Nn) =

2π/4200 ≈ 0.0015. But the grey mesh of the full-domain model plots only
29× 29 grid instead of all the 4201× 4201 grid lines, skipping many lines for
visual clarity. The colour-coded ribbons of the patch scheme in Fig. 3.7.9
consist of all the lines (along the coordinate axes x and y) passing through
all the h nodes within all the patches; similarly Figs. 3.7.10 and 3.7.11 for u,
v nodes within all the patches respectively. The color ribbons in y direction
for u in Fig. 3.7.10 are narrower due to the smaller number of u nodes
in x direction in the h- and v-centred patches (e.g., Fig. 2.1.5a). Similarly
the color ribbons in x direction for v in Fig. 3.7.11 are narrower due to the
smaller number of v nodes in y direction in the h- and u-centred patches
(e.g., Fig. 2.1.5a). Although the patch scale ratio is r = 0.01, the patches are
enlarged here for visual clarity so that the ribbons appear wider.

Figures 3.7.9 to 3.7.11, plot time evolution of h, u, v from t = 0 to 10π

(five full cycles). In Figs. 3.7.9 to 3.7.11, the solutions h/u/v of fine-grid
full-domain microscale model are linearly interpolated using nearest four
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values to the centres of the respective h/u/v-centred patches, illustrated by
small black circles. The large circles are the patch scheme solution h/u/v.
Figures 3.7.9 to 3.7.11 visually show that the discrepancy between the patch
scheme and fine-grid full-domain model is small, non concentric black
circles are offset only slightly. Despite being small, the increasing error
(distance between centres of non-concentric black circles) with increasing
time is due to the accumulation of the ODE integrator error.

Figures 3.7.9 to 3.7.11 qualitatively show that the progressive wave time
simulation using Square-p4 patch scheme (3.1.3) (colour-coded ribbons)
with N = 14, n = 6, and r = 0.01, agrees closely with that of the fine-grid
full-domain model (3.7.2) (grey mesh). Next, we aim to numerically assess
how well the time simulations of the full-domain model compare with that
of the patch schemes for a different number of macro-grid intervals N and
patch scale ratio r. To numerically quantify the discrepancy, we compute
the solutions hc

mδ, uc
mδ, vcmδ of the fine-grid full-domain microscale model,

at the positions of the respective h/u/v-centred patches, by a bilinear in-
terpolation using the four nearest full-domain node values. For example,
Figs. 3.7.9 to 3.7.11 indicate the full-domain solutions at the respective patch
centres as small black circles. In terms of the full-domain solutions hc

mδ,
uc
mδ, vcmδ and the patch centre values hc

p, uc
p, vcp of a patch scheme (large

black circles Figs. 3.7.9 to 3.7.11), we define the relative simulation errors at
time t as

ϵh
t = ∥hc

mδ − hc
p∥ / ∥hc

mδ∥ , (3.7.9a)
ϵu
t = ∥uc

mδ − uc
p∥ / ∥uc

mδ∥ , (3.7.9b)
ϵv
t = ∥vcmδ − vcp ∥ / ∥vcmδ∥ . (3.7.9c)

The norm in the simulation errors (3.7.9) is the Euclidean norm over all
the patch centres of the same node type. For example, for a patch grid
with 14× 14 macro-grid intervals (N = 14), there are 7× 7 = 49 macro-cells
with each cell containing three patches namely h-, u- and v-centred patches.
Thus, for N = 14, there are 49 values of the full-domain solutions hc

mδ, uc
mδ,

vcmδ and the patch centre values hc
p, uc

p, vcp; hence the norm in (3.7.9) is the
Euclidean norm of the 49-element vectors.

Figures 3.7.12 to 3.7.14, the solution convergence plots, plot the simulation
errors ϵh

2π, ϵu
2π, ϵv

2π at t = 2π for progressive wave time evolution with initial
condition (3.7.8), for the general linear wave with the coefficients cD = 10−6

and cV = 10−4. Figures 3.7.12 to 3.7.14 show that the simulation errors are
small, about 10−3 for the Spectral patch scheme, without any dependence
on the macro-grid interval ∆. That is, the Spectral patch scheme macro-
scale solutions agree closely with the macroscale solutions of the fine-grid
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Figure 3.7.12. Convergence of patch scheme time solution h in terms of
simulation error ϵh

2π of (3.7.9a) for progressive wave time evolution with
initial condition (3.7.8). Solid lines are the power law curve fit given by
ϵ̃h
2π = 0.83 · (0.71 · ∆)p.
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Figure 3.7.13. Convergence of patch scheme time solution u in terms of
simulation error ϵu

2π of (3.7.9b) for progressive wave time evolution with
initial condition (3.7.8). Solid lines are the power law curve fit given by
ϵ̃u
2π = 0.65 · (0.65 · ∆)p.
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Figure 3.7.14. Convergence of patch scheme time solution v in terms of
simulation error ϵv

2π of (3.7.9c) for progressive wave time evolution with
initial condition (3.7.8). Solid lines are the power law curve fit given by
ϵ̃v
2π = 0.86 · (0.85 · ∆)p.
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full-domain model, without any dependence on the macro-grid interval ∆,
just as the eigenvalue convergence in §3.6.1. The solution convergence
plots Figs. 3.7.12 to 3.7.14 also show that the simulation errors converge to
zero for the polynomial patch schemes (Square-p2, Square-p4, Square-p6,
Square-p8) with decreasing macro-grid interval ∆ (increasing N). That
is, the polynomial patch scheme macroscale solutions converge to the
macroscale solutions of the fine-grid full-domain model with decreasing
macro-grid intervals ∆ (increasing N), just as the eigenvalue convergence
in §3.6.2. Thus, the staggered patch schemes accurately simulate the macro-
scale general linear waves.

Figure 3.7.15 plots the Square-p4 patch scheme simulation of height h
(colour-coded ribbons, with N = 14, n = 6, and r = 0.01) of the progressive
wave for the initial condition with uniform random perturbation

h0(x, y) = 0.2+ 0.1 [sin(x+ y) + 1.2 rand(−1, 1)] , (3.7.10a)

u0(x, y) = 0.3+ (0.1/
√
2)[sin(x+ y) + 1.2 rand(−1, 1)] , (3.7.10b)

v0(x, y) = 0 , (3.7.10c)
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Figure 3.7.15. Height h for Square-p4 patch scheme simulation (colour-
coded ribbons, with N = 14, n = 6, and r = 0.01) of the progressive wave
with initial uniform random perturbation (3.7.10) (compare with Fig. 3.7.9 with-
out the perturbation). The patch scheme robustly simulates the emergent
macroscale solution by rapidly dissipating the random perturbation.

x

−3
−2

−1
0

1
2

3
y

−3
−2

−1
0

1
2

3

h

0.10
0.15
0.20
0.25
0.30

t =
0

x

−3
−2

−1
0

1
2

3
y

−3
−2

−1
0

1
2

3

h

0.10
0.15
0.20
0.25
0.30

t =
10

x

−3
−2

−1
0

1
2

3
y

−3
−2

−1
0

1
2

3

h

0.10
0.15
0.20
0.25
0.30

t =
21

x

−3
−2

−1
0

1
2

3
y

−3
−2

−1
0

1
2

3

h

0.10
0.15
0.20
0.25
0.30

t =
31

where rand(−1, 1) generates a pseudo random number within [−1, 1) via
Mersenne Twister algorithm. The initial condition (3.7.10) is same as the
initial condition (3.7.8) except the added uniform random perturbation for
h0 and u0. Figure 3.7.9 plots the corresponding patch scheme simulation
without the random perturbation. Figure 3.7.15 shows that the patch scheme
robustly simulates the emergent macroscale solution where the viscous diffusion
rapidly dissipates the random perturbation (microscale waves). That is,
the slow manifold of the patch scheme solution space is exponentially
attracting.

For the time simulation in Figs. 3.7.9 to 3.7.11 from t = 0 to 10π, Ta-
ble 3.7.1 lists the total compute times of the fine-grid full-domain model
and that of the five staggered patch schemes. The compute times in this
subsection are measured on a custom assembled liquid-cooled workstation
with Intel i7-6900k processor and 6 4GB DDR4 RAM. The total function calls
by the BS3 ODE integrator to evaluate the derivative of the state vector for
the fine-grid full-domain model and that of the patch schemes are similar
(i.e., within 10%). But the ratio of the total compute time of the full-domain
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Table 3.7.1. Total compute times in minutes for the progressive wave
time simulation from t = 0 to 10π (e.g., Figs. 3.7.9 to 3.7.11) with initial
condition (3.7.8). Patch schemes use N = 14, n = 6, and r = 0.01. The fine-
grid full-domain model has the same grid interval as the sub-patch micro-
grid interval δ. The ratio of total compute time of the full-domain model to
that of the patch schemes, compute time gain, is on average about 1300.

Full-domain Spectral p2 p4 p6 p8

Total compute time [m] 2925 (48.75h) 2.10 1.82 2.22 2.18 2.24

Total function calls 45261 39432 40599 40503 40482 40437

Compute time gain
(full-domain / patch)

– 1390 1610 1316 1343 1305

model to that of a patch schemes, compute time gain, in Table 3.7.1 shows
that on average the patch scheme compute time is 1300 times smaller. This
computational savings by three orders of magnitude based on the total
compute time also agree with the computational savings in terms of the
compute time per iteration for r = 0.01 in Fig. 3.7.5 (crosses).

As another example, we demonstrate a higher order polynomial patch
scheme simulation on a finer patch grid for a moving Gaussian hump in x

direction with the initial condition

h0(x, y) = 0.2+ 0.4 exp[−(x+ 1.5)2 − y2/2.22] , (3.7.11a)
u0(x, y) = 0.3+ 0.5 exp[−(x+ 1.5)2 − y2/2.22] , (3.7.11b)
v0(x, y) = 0 . (3.7.11c)

For the general linear wave with coefficients cD = 10−6 and cV = 10−4,
Figs. 3.7.16 to 3.7.18 show the time simulation of a moving Gaussian hump
in x direction with the initial condition (3.7.11), using Square-p8 patch
scheme with N = 22, n = 6, and r = 0.001. For the patch scheme simulation
in Figs. 3.7.16 to 3.7.18 from t = 0 to 10π, the total compute time is 85min.
For the corresponding fine-grid full-domain model (i.e., with the same grid
interval as the sub-patch micro-grid interval δ) the compute time is about
105 times larger than the patch scheme (the plus marker in Fig. 3.7.5 for
n = 6 and r = 0.001). That is, for the similar grid resolution and accuracy
as in Figs. 3.7.16 to 3.7.18, the estimated compute time of a full-domain
simulation is about 16 years, but the measured patch scheme compute time
is only 85min.

Figure 3.7.19 plots the Square-p8 patch scheme simulation of height h
(with N = 14, n = 6, and r = 0.01) of a moving Gaussian hump in x direction
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Figure 3.7.16. Height h for time simulation of a moving Gaussian hump
in x direction with initial condition (3.7.11), using Square-p8 patch scheme
with N = 22, n = 6, and r = 0.001. Patch scheme compute time is 85min;
for the full-domain simulation with the same grid resolution the estimated
compute time is about 16 years (i.e., 105 times larger, from Fig. 3.7.5).
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Figure 3.7.17. Velocity u for time simulation of a moving Gaussian hump,
for the same patch scheme simulation detailed in Fig. 3.7.16.
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Figure 3.7.18. Velocity v for time simulation of a moving Gaussian hump,
for the same patch scheme simulation detailed in Fig. 3.7.16.
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Figure 3.7.19. Height h for time simulation of a moving Gaussian hump in
x direction with initial uniform random perturbation (3.7.12), using Square-p8

patch scheme with N = 22, n = 6, and r = 0.001 (compare with Fig. 3.7.16
without the perturbation). The patch scheme robustly simulates the emer-
gent macroscale solution.
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with uniform random perturbation

h0(x, y) = 0.2+ 0.4 exp[−(x+ 1.5)2 − y2/2.22] + 0.08 rand(−1, 1) , (3.7.12a)
u0(x, y) = 0.3+ 0.5 exp[−(x+ 1.5)2 − y2/2.22] + 0.1 rand(−1, 1) , (3.7.12b)
v0(x, y) = 0 . (3.7.12c)

where rand(−1, 1) generates a pseudo random number within [−1, 1) via
Mersenne Twister algorithm. The initial condition (3.7.12) is same as the
initial condition (3.7.11) except the added uniform random perturbation
for h0 and u0. Figure 3.7.16 plots the corresponding patch scheme sim-
ulation without the random perturbation. Figure 3.7.19 shows that the
patch scheme robustly simulate the emergent the macroscale solution for a
moving Gaussian hump.

Thus, the staggered patch schemes accurately simulate the macroscale
general linear waves, with large computational savings such as 105 times
smaller compute times compared to the fine-grid full-domain model.



Chapter 4

Patch schemes accurately simulate
viscous shallow water flows

This chapter shows that the staggered patch schemes of Chapter 2 accu-
rately simulate the macroscale dynamics of viscous shallow water flows,
using the PDEs derived by Roberts and Li (2006) as the microscale model
within the patches. Roberts and Li (2006) derived comprehensive viscous
shallow water PDEs in terms of the depth-averaged variables, but with-
out depth-averaging the PDEs. Instead, from the full incompressible 3D
Navier–Stokes equation, they derive the 2D viscous shallow water PDEs
using centre manifold theory, in terms of the depth-averaged variables.
The article by Roberts and Li (2006) demonstrates the utility of the vis-
cous shallow water PDEs by simulating various thin-fluid flows such as
drop formation on cylindrical fibres, wave transitions, three-dimensional
instabilities, Faraday waves, viscous hydraulic jumps, flow vortices in a
compound channel and flow down and up a step.

Section 4.1 first non-dimensionalises the viscous shallow water PDEs
of Roberts and Li (2006) slightly differently to facilitate extensive analy-
sis of the staggered patch schemes. Subsequently, §4.1 derives a discrete
full-domain microscale model and a generic staggered patch scheme cor-
responding to the viscous shallow water flows. Throughout this chapter,
we use this full-domain microscale model as the reference to assess various
characteristics (accuracy, stability, consistency, etc.) of the multiscale stag-
gered patch schemes we develop. Section 4.1.4 chooses a set of values for
the non-dimensional parameters towards exploration of patch schemes for
viscous shallow water PDEs.

Section 4.2 shows that the developed five staggered patch schemes are
accurate for viscous shallow water flows by comparing the eigenvalues of
the staggered patch schemes with the eigenvalues of the full-domain micro-
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scale model. Section 4.2 establishes the accuracy of the staggered patch
schemes in general (as opposed to one specific initial condition) by compar-
ing the eigenvalues of the staggered patch schemes with the eigenvalues of
fine- and coarse-grid full-domain microscale model. Sections 4.2.1 to 4.2.5
derives the eigenvalues of the viscous shallow water PDEs, full-domain
microscale model, and that of the staggered patch schemes. Section 4.2.6 il-
lustrates the structure of the patch scheme eigenvalues in the complex plane
and explains the corresponding dynamical modes via eigenvector plots.
The eigenvalue analysis in §4.2.6 visually demonstrates the accuracy (in the
complex plane eigenvalue plots) for a representative subset of the physical
parameters and grid parameters. Section 4.5 on the consistency of the patch
schemes establishes the accuracy over a wider range of parameters.

Despite the attractive characteristics, if the staggered patch schemes
are very sensitive to numerical roundoff errors, then they would not be
suitable for practical numerical simulations using finite precision floating-
point arithmetic. For viscous shallow water flows, from both qualitative
arguments and quantitative evidence, §4.3 shows that the staggered patch
schemes are not sensitive to numerical roundoff errors, except when the
patches are too small relative to inter-patch distance, and/or when the
underlying microscale model is sensitive to numerical roundoff errors. The
quantitative evidence in §4.3 comes from comparing the eigenvalues of
analytic Jacobian and numerical Jacobians of a patch scheme. Even for
very small patches, p. 250 of §4.5.1 confirms the consistency of the patch
schemes via arbitrary-precision floating-point implementation.

In contrast to the general linear wave in Chapter 3, the viscous shal-
low water flows over a sloping bed have a physical instability of roll
waves. Hence, a good patch scheme must reflect this physical instability
depending upon the physical parameters (Reynolds number Re, mean
flow hM, uM, vM), but without any additional/artificial instability. So, §4.4
shows that with an appropriate patch grid the staggered patch schemes are
not artificially unstable for a wide range of physical parameters by com-
paring the eigenvalues of the patch schemes with those of the full-domain
microscale model and the PDEs.

Section 4.5 shows that the staggered patch schemes are consistent with
the given microscale model. Section 4.5 establishes the consistency of the
patch schemes for the viscous shallow water flows by comparing the macro-
scale eigenvalues (defined in p. 52 of §3.2) of the patch scheme with the
corresponding eigenvalues of the full-domain microscale model for increas-
ingly finer patch grids. Section 4.5.1 shows that the Spectral patch scheme
is uniformly accurate with little dependence on the macro-grid interval ∆.
Section 4.5.2 shows that the polynomial patch schemes are consistent to
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the same order of the polynomial interpolation with decreasing macro-grid
interval ∆.

Almost all the key studies in this chapter are performed for a range of
parameters but keeping the horizontal mean velocity vM = 0. That is, most
results in this chapter correspond to flow angle α = arctan(vM/uM) = 0,
where the velocities are uM = q cos(α) and vM = q sin(α). Section 4.6 vali-
dates that assumption, by showing that the variation of the patch scheme
eigenvalue errors (discrepancy between the patch scheme and full-domain
model) are negligible with varying flow angles α. That is, §4.6 shows that
staggered patch schemes are invariant to flow direction.

Section 4.7 quantifies and demonstrates the large computational sav-
ings of the staggered patch schemes for the viscous shallow water flows.
Section 4.7.1 shows the computational savings of the 2D staggered patch
schemes theoretically in terms of the ratio of the space over which the patch
schemes and the full-domain model computes. Section 4.7.1 shows the
computational savings of the patch schemes in terms of the ratio of the
number of state variables for which the patch schemes and the full-domain
model computes. Section 4.7.3 demonstrates the computational savings of
the 2D staggered patch schemes by measuring the elapsed time taken to
compute the time derivative of the state vector (one time iteration) using a
specific implementation. Section 4.7.5 demonstrates the accuracy and the
effectiveness of the staggered patch schemes by numerically simulating a
localised nearly discontinuous macroscale viscous roll waves (e.g., Balm-
forth and Mandre 2004) emerging from the initial condition of a simple
progressive wave within the small sparsely located patches. Section 4.7.6
establishes the accuracy of the staggered patch scheme simulations more
quantitatively and explains some subtle details of the practical issues in the
patch scheme simulations.

4.1 PDEs, full-domain microscale model, and
staggered patch schemes

This section first non-dimensionalises the viscous shallow water PDEs of
Roberts and Li (2006) slightly differently to facilitate extensive analysis
of the staggered patch schemes. Subsequently, this section derives a dis-
crete full-domain microscale model and a generic staggered patch scheme
corresponding to the viscous shallow water flows.

Section 4.1.1 non-dimensionalises the viscous shallow water PDEs and
the boundary conditions derived by Roberts and Li (2006) using a refer-
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ence length in terms of domain size as opposed to the characteristic height
used by Roberts and Li (2006). Sections 4.1.2 and 4.1.3 derives a discrete
full-domain microscale model and a generic staggered patch scheme, cor-
responding to the viscous shallow water PDEs of §4.1.1. Throughout this
chapter, we use this full-domain microscale model as a reference to assess
various characteristics (accuracy, stability, consistency, etc.) of the multi-
scale staggered patch schemes we develop. Section 4.1.4 chooses a set of
values for the non-dimensional parameters towards exploration of patch
schemes for viscous shallow water PDEs.

4.1.1 Non-dimensionalise the PDEs to keep same domain
size

In deriving the viscous shallow water PDEs which we use as the microscale
model for patch scheme, Roberts and Li (2006) non-dimensionalise the
space by characteristic water height H. Such non-dimensionalisation by
characteristic water height H leads to different non-dimensional domain
sizes for different non-dimensional heights. We want to explore patch
schemes keeping the non-dimensional domain size the same, to reuse some of the
patch scheme computations. Hence, this subsection non-dimensionalises the
2D space by a reference length L/(2π); that is, x′ = 2π x/L, y′ = 2πy/L so
that the dimensional square domain [0, L] × [0, L] corresponds to the non-
dimensional square domain [0, 2π]× [0, 2π] irrespective of the characteristic
(dimensional) water height H.

The non-dimensional comprehensive viscous shallow water PDEs (64)–
(66) in the article by Roberts and Li (2006, pp.56–57) are, omitting the over
bar for dependent variables and using daggers for the non-dimensional
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dependent and independent variables h†, u†, v†, x†, y†, t†,

∂h†

∂t†
≈ −

∂h†u†

∂x†
−

∂h†v†

∂y† , (4.1.1a)
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In comprehensive viscous shallow water PDEs (4.1.1), the non-dimensional
parameters Reynolds number Re = ρUH/µ, Gravity number Gr = gρH2/(µU)

and Weber number We = σ/(µU) are in terms of the following dimensional
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quantities: gravitational acceleration g; density of water ρ; characteris-
tic mean velocity U; characteristic mean height H; kinematic viscosity ν;
surface tension σ. The grey-coloured terms in (4.1.1) are less significant
compared to the other terms.

The viscous shallow water PDEs (4.1.1) are written in the bed-attached
local coordinate system with the bed in xy-plane and height h perpendicu-
lar to the bed. The constants gx = sin(θ), gn = − cos(θ) are components of
the unit vector of gravitational acceleration, where θ is the bed inclination
angle relative to the local horizontal plane of earth (positive for downward
slopping bed along x axis). For example, for the horizontal flat bed, θ = 0,
hence gx = 0 and gn = −1.

The only difference between the non-dimensionalisation of Roberts and
Li (2006) in the non-dimensional comprehensive viscous shallow water
PDEs (4.1.1) and the non-dimensionalisation we aim to, is that their non-
dimensionalisation of lengths are

x = x† H , y = y† H , h = h† H , (4.1.2a)

⇒ ∂n

∂xn
= (1/H)n

∂n

∂x†n
,

∂n

∂yn
= (1/H)n

∂n

∂y†n , (4.1.2b)

using daggers for non-dimensional parameters, which is different from
our non-dimensionalisation of lengths, using primes for non-dimensional
parameters

x = x′ L/(2π) , y = y′ L/(2π) , h = h′ L/(2π) , (4.1.3a)

⇒ ∂n

∂xn
= (2π/L)n

∂n

∂x′n
,

∂n

∂yn
= (2π/L)n

∂n

∂y′n . (4.1.3b)

So, for converting the non-dimensional comprehensive viscous shallow
water PDEs (4.1.1) to use our non-dimensionalisation, we substitute the
following relations into the PDEs (4.1.1)

x† = x′ L/(2πH) , y† = y′ L/(2πH) , h† = h′ L/(2πH)

⇒ ∂n

∂x†n
= (2πH/L)n

∂n

∂x′n
,

∂n

∂y†n = (2πH/L)n
∂n

∂y′n ,

which we get by equating the dimensional quantities in the two different
non-dimensionalisations (4.1.2) and (4.1.3). Using the definition of the
characteristic mean non-dimensional height hM = 2πH/L, the substitutions
become

x† = x′/hM , y† = y′/hM , h† = h′/hM , (4.1.4a)

⇒ ∂n

∂x†n
= hn

M

∂n

∂x′n
,

∂n

∂y†n = hn
M

∂n

∂y′n . (4.1.4b)
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After substituting (4.1.4) into the non-dimensional comprehensive vis-
cous shallow water PDEs (4.1.1), we get the non-dimensional comprehensive
viscous shallow water PDEs with our non-dimensionalisation of space by the
reference length L/(2π) as

1
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In comprehensive viscous shallow water PDEs (4.1.5), neglecting the
grey coloured terms, that are less significant compared to the other terms,
gives the simplified viscous shallow water PDEs. Dropping grey coloured
terms and the primes, using “=” instead of “≈”, in the PDEs (4.1.5) and
dividing both sides of the momentum equations (4.1.5b) and (4.1.5c) by h2

M,
we get the non-dimensional simplified viscous shallow water PDEs, with our
non-dimensionalisation of space by the reference length L/(2π) as
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where dividing the dimensional velocities by the characteristic inviscid
wave velocity U =

√
gH gives the non-dimensional velocities u, v, and

dividing the dimensional spatial variables by reference length L/(2π) gives
the non-dimensional spatial variables x, y, h. The PDE (4.1.6a) represents
mass conservation, and the PDEs (4.1.6b) and (4.1.6c) represent momentum
balance in the x and y directions respectively.

We use the simplified viscous shallow water PDEs (4.1.6) as the micro-
scale model within the patches in our study of the staggered patch schemes.
In all our further use “viscous shallow water PDEs” means these simpli-
fied viscous shallow water PDEs (4.1.6). For the viscous shallow water
PDEs (4.1.6), throughout this chapter, we consider the boundary conditions
that the three fields h, u, and v are 2π-periodic in both x and y (for the non-
dimensional domain size 2π), and an appropriate initial condition h(x, y, 0),
u(x, y, 0), and v(x, y, 0).
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Figure 4.1.1. Same as Fig. 2.1.1 of §2.1.1
for general linear waves. Schematic of
the full-domain microscale staggered grid
where variables are simulated only on
staggered/alternating discrete points,
nodes, • h for height, • u, • v for horizon-
tal velocities along x and y directions
respectively. Here we draw n = 6 grid
intervals in the green grid, both in x and
y directions. Transparent filled circles
on the boundaries indicate the discrete
n-periodic boundary conditions in i, j.
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4.1.2 Full-domain microscale model for viscous shallow
water flows

This subsection derives a discrete full-domain microscale model for vis-
cous shallow water flows corresponding to the viscous shallow water
PDEs (4.1.6). Throughout this chapter, we use this full-domain microscale
model as the reference to assess various characteristics (accuracy, stability,
consistency, etc.) of the multiscale staggered patch schemes we develop.

Approximating the spatial derivatives in the viscous shallow water
PDEs (4.1.6) by central finite differences on the nodes of the full-domain
staggered grid (filled circles in Fig. 4.1.1) with the micro-grid interval δ gives
the full-domain microscale model (4.1.11) corresponding to the PDEs (4.1.6).
To compute the “missing” values on the staggered grid (e.g., h3,1, v3,1, and
v3,3 are missing in Fig. 4.1.1), the full-domain microscale model (4.1.11)
averages the nearest values. The following listing gives some examples.

• For computing [dh/dt]i,j at the locations of hi,j, the discretisation in
conservative form in (4.1.11a),

[∂(hu)/∂x]i,j ≈ [hi+1,jui+1,j − hi−1,jui−1,j] /(2δ)

= [(hi,j + hi+2,j)ui+1,j − (hi−2,j + hi,j)ui−1,j] /(4δ) ,

(4.1.7)

computes the missing h values at the locations of the u nodes on the
staggered grid (e.g., missing h3,2, h1,2 in Fig. 4.1.1), by averaging over
the two neighbouring values hi+1,j = (hi,j + hi+2,j) /2, and hi−1,j =

(hi−2,j + hi,j) /2.
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• For computing [du/dt]i,j at the locations of ui,j, the discretisation
in (4.1.11b),

[v∂u/∂y]i,j ≈ vi,j
ui,j+2 − ui,j−2

4δ

=
(vi−1,j−1 + vi+1,j−1 + vi−1,j+1 + vi+1,j+1)

4

ui,j+2 − ui,j−2

4δ
,

(4.1.8)

computes the missing v values at the locations of the u nodes on the
staggered grid (e.g., missing v3,2 in Fig. 4.1.1) by averaging over the
four neighbouring v values.

• For computing [du/dt]i,j at the locations of ui,j, the discretisation
in (4.1.11b),

u∂v/∂y ≈ ui,j (vi,j+1 − vi,j−1)/(2δ)

= ui,j

(vi−1,j+1 + vi+1,j+1)/2− (vi−1,j−1 + vi+1,j−1)/2

2δ
, (4.1.9)

computes the missing v values at the locations of the empty node on
the staggered grid (e.g., missing v3,3, v3,1 in Fig. 4.1.1) by averaging.

• For computing [dv/dt]i,j at the locations of vi,j, the discretisation
in (4.1.11c),
[
∂2u

∂x∂y

]

i,j

≈
(∂u/∂x)i,j+1 − (∂u/∂x)i,j−1

2δ

=
(ui+1,j+1 − ui−1,j+1)/(2δ) − (ui+1,j−1 − ui−1,j−1)/(2δ)

2δ
,

(4.1.10)

computes the missing u values at the locations of h nodes on the
staggered grid (e.g., missing u2,4, u2,2 in Fig. 4.1.1).

Thus, corresponding to the viscous shallow water PDEs (4.1.6), the full-
domain microscale model is

• 1

hM

dhi,j

dt
= −

(hi,j + hi+2,j)ui+1,j − (hi−2,j + hi,j)ui−1,j

4δ

−
(hi,j + hi,j+2) vi,j+1 − (hi,j−2 + hi,j) vi,j−1

4δ
(4.1.11a)

for i, j ∈ {0, 2, 4, . . . , n− 2} ,
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2δ
(4.1.11b)

for i ∈ {1, 3, 5, . . . , n− 1} , j ∈ {0, 2, 4, . . . , n− 2} ,

• Re

h2
M

dvi,j

dt
= −

π2

4

vi,j

[(hi,j−1 + hi,j+1) /2]
2
+

π2

12

Re

h2
M

[
gy + gn

hi,j+1 − hi,j−1

2δ

]

−
Re

hM

[
1.5041 vi,j

vi,j+2 − vi,j−2

4δ

+ 1.3464
(ui−1,j−1 + ui+1,j−1 + ui−1,j+1 + ui+1,j+1)

4

vi+2,j − vi−2,j

4δ

+ 0.1577 vi,j
(ui+1,j−1 + ui+1,j+1)/2− (ui−1,j−1 + ui−1,j+1)/2

2δ

]

+ 4.093
vi,j−2 − 2vi,j + vi,j+2

4δ2
+

vi−2,j − 2vi,j + vi+2,j

4δ2

+ 3.093
(ui+1,j+1 − ui−1,j+1)/(2δ) − (ui+1,j−1 − ui−1,j−1)/(2δ)

2δ
(4.1.11c)

for i ∈ {0, 2, 4, . . . , n− 2} , j ∈ {1, 3, 5, . . . , n− 1} .

Analogous to the PDEs (4.1.6), the three fields h, u, v are n-periodic in both
i and j where n = 2π/δ (for the non-dimensional domain size 2π), with an
appropriate initial condition hi,j(0), ui,j(0), and vi,j(0).

Substituting the solution of a steady uniform flow h = hM, u = uM, v =

vM with mean height hM and horizontal mean velocity uM, vM into the
full-domain microscale model (4.1.11) and setting the time derivatives to
zero gives the fixed points or the equilibrium solution

h = hM, u = Regx/3, v = Regy/3, (4.1.12)

for the full-domain microscale model (4.1.11). The equilibrium solution (4.1.12)
is also the equilibrium solution for the viscous shallow water PDEs (4.1.6).
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For a bed with a positive slope (downward inclination along x), the viscous
shallow water flows reach the equilibrium velocity of the fixed point (4.1.12)
when the bed drag and gravitational force are in balance. That is, larger
the downward inclination, larger the components gx, gy and hence larger
the equilibrium velocity is; for a horizontal bed, the fixed point is stagnant
water with u = 0, v = 0.

As a dynamical system, the full-domain microscale model (4.1.11) in vec-
tor notation, for the viscous shallow water PDEs (4.1.6) is of the autonomous
form

dx

dt
= f (x) , (4.1.13)

where the state vector of the system

x = ( h0,0, h0,2, h0,4, . . . , h2,0, h2,2, h2,4, . . . ,

. . . , u1,0, u1,2, u1,4, . . . , u3,0, u3,2, u3,4, . . . , (4.1.14)

. . . , v0,1, v0,3, v0,5, . . . , v2,1, v2,3, v2,5, . . . ) ,

is the same as the state vector (2.1.3) of the full-domain model for generic
wave-like system in §2.1.1

A full-domain microscale simulation is performed by numerical time-
integration of the ODEs (4.1.11) on the nodes of the microscale staggered
grid (filled circles in Fig. 4.1.1), with the discrete macroscale n-periodic
boundary conditions in i, j.

4.1.3 Staggered patch scheme for viscous shallow water
flows

This subsection derives a generic staggered patch scheme for viscous shal-
low water flows, using the derived full-domain microscale model (4.1.11)
within the patches.

Fig. 4.1.2 shows two staggered patch grids with different number of
layers of edge nodes. The patch grid in Fig. 4.1.2a (with two layers of
edge nodes in the normal direction to the edges and no edge nodes in the
tangential direction to the edges), is sufficient for the general linear wave
with viscous diffusion in Chapters 2 and 3. But, to use the finite difference
equations (4.1.11) of the viscous shallow water flows as the microscale
model within the patches, a staggered patch grid requires two layers of
edge nodes in the normal direction to the edges, and one layer of edge
nodes in the tangential direction to the edges, as in Fig. 4.1.2b.

1. A discussion in p. 49 of §3.1 shows that for computing the second
spatial derivative of velocities (e.g., ∂2u/∂x2 in the viscous diffusion)
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Figure 4.1.2. For viscous shallow water flows microscale model (4.1.15),
a staggered patch grid requires two layers of edge nodes in the normal
direction to edges, and one layer of edge nodes in the tangential direction
to edges, as in Fig. 4.1.2b.

(a) Same as Fig. 2.1.5a for general linear
wave. Two layers of edge nodes in nor-
mal direction to edges, no edge nodes in
tangential direction to edges.

0

21

(b) Two layers of edge nodes in nor-
mal direction to the edges, one layer of
edge nodes in tangential direction to the
edges.

21

1

within the patches requires a staggered patch grid with two layers
of edge nodes in normal direction to the edges as in both Figs. 4.1.2a
and 4.1.2b.

2. Computing the term (4.1.9) at the top-right interior u node (solid red
filled circle) of the u-centred patch in Fig. 4.1.2b, requires the v edge
value at the right-top patch corner, which does not exist in Fig. 4.1.2a.
Similarly, computing the term (4.1.10) at the top-right interior v node
(solid blue filled circle) of the v-centred patch in Fig. 4.1.2b, requires
the u edge value at the right-top patch corner, which does not exist in
Fig. 4.1.2a. Hence, a staggered patch scheme with the 2D viscous shal-
low water PDEs (4.1.11) as the underlying microscale model within
the patches, requires a patch grid with one layer of edge nodes in the
tangential direction to the edges as in Fig. 4.1.2b.

Throughout this chapter, for the viscous shallow water flows, the staggered
patch schemes use the patch grid in Fig. 4.1.2b, with two layers of edge nodes
in the normal direction to the edges, and one layer of edge nodes in the
tangential direction to the edges. For the staggered patch grid in Fig. 4.1.2b,
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the left and right edge values are ◦hI,J
i,j , ◦uI,J

i,j , ◦ vI,Ji,j , for i ∈ {−1, 0, n, n+ 1}

and j ∈ {0, 1, 2, . . . , n−1, n}. Similarly the bottom and top edge value indices
are i ∈ {0, 1, 2, . . . , n− 1, n} and j ∈ {−1, 0, n, n+ 1}.

Using the full-domain microscale model (4.1.11) within the patches of
a suitable staggered patch grid (e.g., Fig. 4.1.2b with n = 6), gives the
staggered patch scheme (notationally same as the full-domain microscale
model (4.1.11) with patch index I, J in the superscript)

• 1

hM

dhI,J
i,j

dt
= −

(
hI,J
i,j + hI,J

i+2,j

)
uI,J
i+1,j −

(
hI,J
i−2,j + hI,J

i,j

)
uI,J
i−1,j

4δ

−

(
hI,J
i,j + hI,J

i,j+2

)
vI,Ji,j+1 −

(
hI,J
i,j−2 + hI,J

i,j

)
vI,Ji,j−1

4δ
, (4.1.15a)

• Re

h2
M

duI,J
i,j

dt
= −

π2

4

uI,J
i,j[(

hI,J
i−1,j + hI,J

i+1,j

)
/2

]2 +
π2

12

Re

h2
M

[
gx + gn

hI,J
i+1,j − hI,J

i−1,j

2δ

]

−
Re

hM

[
1.5041uI,J

i,j

uI,J
i+2,j − uI,J

i−2,j

4δ

+ 1.3464

(
vI,Ji−1,j−1 + vI,Ji+1,j−1 + vI,Ji−1,j+1 + vI,Ji+1,j+1

)

4

uI,J
i,j+2 − uI,J

i,j−2

4δ

+ 0.1577uI,J
i,j

(vI,Ji−1,j+1 + vI,Ji+1,j+1)/2− (vI,Ji−1,j−1 + vI,Ji+1,j−1)/2

2δ

]

+ 4.093
uI,J
i−2,j − 2uI,J

i,j + uI,J
i+2,j

4δ2
+

uI,J
i,j−2 − 2uI,J

i,j + uI,J
i,j+2

4δ2

+ 3.093
(vI,Ji+1,j+1 − vI,Ji+1,j−1)/(2δ) − (vI,Ji−1,j+1 − vI,Ji−1,j−1)/(2δ)

2δ
,

(4.1.15b)
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4δ2
+

vI,Ji−2,j − 2vI,Ji,j + vI,Ji+2,j

4δ2
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+ 3.093
(uI,J

i+1,j+1 − uI,J
i−1,j+1)/(2δ) − (uI,J

i+1,j−1 − uI,J
i−1,j−1)/(2δ)

2δ
,

(4.1.15c)

and a patch coupling (e.g., Square-p6) to compute the edge values
◦hI,J

i,j , ◦uI,J
i,j , ◦ vI,Ji,j for

i ∈ {−1, 0, n, n+ 1}, j ∈ {0, 1, . . . , n} for left and right edges and
i ∈ {0, 1, . . . , n}, j ∈ {−1, 0, n, n+ 1} for bottom and top edges,

for the same interior indices i, j and patch indices I, J in (2.1.5) of §2.1.1,
separately for each equation.

Analogous to the full-domain microscale model (4.1.11), the three fields
h, u, v in the patch scheme (4.1.15) are macroscale N-periodic in both I

and J where N = 2π/∆ (for the non-dimensional domain size 2π), with an
appropriate initial condition hI,J

i,j (0), u
I,J
i,j (0), and vI,Ji,j (0). A specific patch

coupling (e.g., Square-p6) computes patch edge values (◦hI,J
i,j , ◦uI,J

i,j , ◦ vI,Ji,j

in Fig. 2.1.5a) from the centre values of neighbouring patches (•hI,J
i,j , •uI,J

i,j ,
• vI,Ji,j with i = j = n/2 in Fig. 2.1.5a). The patch coupling provides a mecha-
nism whereby patches influence each other, §2.2 discusses various details
of different patch couplings.

Arranging the patch interior values of (4.1.15), (with the same index
convention as in Fig. 2.1.4 of §2.1.2), into a vector gives the state vector xI of
the staggered patch scheme, which is a dynamic state variable evolving in
time. As in §2.1.2, the superscript ( · )I is not an index or exponent, instead,
a qualifier denoting the patch interior nodes. For the viscous shallow water
flows, the general form of a staggered patch scheme state vector xI of size
nI
p containing all the interior values of all the patches is same as the state

vector (2.1.6) of §2.1.2 for the general linear wave. That is, the number of
patch interior nodes which is also the size of the state vector xI is (same as
expression (2.1.7) of §2.1.2),

nI
p = (N2/4)(9n2/4− 4n+ 2) , (4.1.16)

where N is the number of macro-grid intervals and n is the number of
sub-patch micro-grid intervals. For example, for N = 6, 10, 14, 18, 22, 26

macro-grid intervals with n = 6 sub-patch micro-grid intervals, size of the
state vector nI

p = 531, 1475, 2891, 4779, 7139, 9971 respectively.
For the staggered patch grid in Fig. 4.1.2b, the left and right edge values

are ◦hI,J
i,j , ◦uI,J

i,j , ◦ vI,Ji,j , for i ∈ {−1, 0, n, n + 1} and j ∈ {0, 1, 2, . . . , n − 1, n}.
Similarly the bottom and top edge value indices are i ∈ {0, 1, 2, . . . , n− 1, n}

and j ∈ {−1, 0, n, n + 1}. Arranging these patch edge values of all the
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patches into a vector gives the edge vector xE of size nE
p. The edge vector xE

is computed by the patch coupling function xE(xI) that encodes a particular
patch scheme. For the staggered patch grid in Fig. 4.1.2b, the total number
of patch edge nodes, that is the size of the edge vector xE,

nE
p = (N2/4)(18n+ 16) , (4.1.17)

where N is the number of macro-grid intervals and n is the number of sub-
patch micro-grid intervals. Compared to expression (2.1.8) (p. 22 of §2.1.2)
for the general linear wave, expression (4.1.17) for the viscous shallow
water flows has 32 more edge nodes per macro-cell. For example, for the
staggered patch grid in Fig. 4.1.2b with N = 6, 10, 14, 18, 22, 26 and n = 6,
nE
p = 1116, 3100, 6076, 10044, 15004, 20956 respectively.

As a dynamical system, the staggered patch scheme (4.1.15) in vector
notation, corresponding to the full-domain microscale model (4.1.11) of
viscous shallow water flows is

dxI

dt
= F

(
xI; xE(xI)

)
, (4.1.18)

with the same state vector xI (2.1.6) and a similar edge vector xE as those of
the patch scheme for generic wave-like system in §2.1.2. The F

(
xI; xE(xI)

)

in the staggered patch scheme dynamical system (4.1.18) corresponds to
the f (x) in the full-domain microscale model (4.1.13). The functions F and
f encode the same full-domain microscale model for the viscous shallow
water PDEs (4.1.6); Section 2.1.2 explains this difference for the generic
wave-like system.

Patch scheme simulation is performed by numerical time-integration of
the ODEs (4.1.15) on the interior nodes of the staggered patch grid (filled
circles in Fig. 4.1.2b), with the discrete macroscale N-periodic boundary
conditions in both I and J. As in §2.1.2, evaluating the time derivatives
in the staggered patch scheme (4.1.15) is done in two steps: first, edge
values xE(xI) are computed via patch coupling; second, using both interior
and edge values of each patch in the staggered patch grid, the time deriva-
tives of xI are computed for the full-domain microscale model (4.1.11) of
viscous shallow water flows.
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Table 4.1.1. Dimensional parameter ranges relevant for the exploration of
viscous shallow water PDEs. Height H is within the shallow water regime
such that (H/L ∈ [1/100, 1/20]). Range of density ρ and dynamic viscosity µ

are from Haynes et al. (2016, p.6-7–6-8, p.6-247).

Parameter Range of values
domain size L 0.5 to 100 cm
wavelength λ 0.5 to 100 cm
characteristic mean water
height H 0.005 to 5 cm (H/L ∈ [1/100, 1/20])

inviscid wave velocity U =
√
gH 10 to 70 cm/s

density ρ 992 to 1000 kg/m3

dynamic viscosity µ 0.65 to 1.8 m Pa s
kinematic viscosity ν = µ/ρ 0.0066 to 0.018 cm2/s
bed inclination angle θ −10◦ to 10◦

4.1.4 Selection of parameter regime for patch scheme
exploration

Table 4.1.1 lists the dimensional parameter ranges we choose in order to
explore the patch schemes for viscous shallow water flows:

• Height H is within the shallow water regime such that H/L ∈ [1/100, 1/20];

• Range of density ρ and dynamic viscosity µ are from Haynes et al.
(2016, p.6-7–6-8, p.6-247) for the temperature range from 0◦ C to 40◦ C
at standard atmospheric pressure.

The non-dimensional parameter ranges within the dimensional parameters
in Table 4.1.1 are listed in Table 4.1.2:

• Characteristic mean non-dimensional mean height hM = 2πH/L for
the H and L values listed in Table 4.1.2;

• We heuristically choose uM = u/U around the midpoint of the range
of U in Table 4.1.2;

• Reynolds number Re is limited to be within the regime of laminar
flow.

Based on the eigenvalues of Spectral patch scheme (§4.4.1) for different
combinations of the parameter values in Table 4.1.2, we select the sets of
parameters listed in Table 4.1.3 for exploring the patch schemes for the
simplified viscous shallow water flows. The key reasons for this choice are
the following.
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Table 4.1.2. Non-dimensional parameter ranges for viscous shallow water
PDEs corresponding to the dimensional parameters in Table 4.1.1.

Parameter Range of values
Mean height hM = 2πH/L 0.025 to 0.4

Mean velocity uM = u/U 0 to 1

Reynolds number Re 5 to 2000

Table 4.1.3. Chosen parameters for patch scheme convergence study using
viscous shallow water PDEs.

Parameter Values

Linearisation points
(Non-dimensional)

{(hM, uM, vM)} where
hM ∈ {0.025, 0.05, . . . , 0.035, 0.4},
uM ∈ {0, 0.05, . . . , 0.95, 1},
vM = 0

Reynolds number Re ∈ {10, 50, 250, 1250}

Bed inclination angle θ = 0, i.e., gx = 0, gy = 1

• Extent and spacing of the parameters are such that they cover signifi-
cant variations in the structure of patch scheme eigenvalues.

• For Re ≲ 10 there are no wave modes in the patch scheme as viscosity
dominates the physical system.

4.2 Staggered patch schemes are accurate

This section shows that the developed five staggered patch schemes are
accurate for the viscous shallow water flows. We establish the accuracy
of the staggered patch schemes in general (as opposed to just one initial
condition) by comparing the eigenvalues of the staggered patch schemes
with the eigenvalues of fine- and coarse-grid full-domain microscale model,
and for completeness also compare with the eigenvalues of the viscous
shallow water PDEs (4.1.6). The objective of the staggered patch scheme is to
perform reduced order multiscale modelling of the underlying microscale
model. Hence, as p. 14 of §2.1.1 explains, the reference eigenvalues for us
are the eigenvalues of the full domain microscale model, not that of the
PDEs. The eigenvalue analysis for accuracy in this section is done for a
representative subset of the physical parameters (Reynolds number Re and
mean flow hM, uM, vM) and the grid parameters (macro-grid intervals N,
sub-patch micro-grid intervals n, patch scale ratio r). Section 4.5 on the
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consistency of the patch schemes establishes the accuracy over a wider
range of parameters. The following paragraphs introduce the approach
to studying the accuracy of the staggered patch schemes and discuss the
conventions adopted.

Time-dependent solutions of linear/linearised ODEs are linear combi-
nations of the spatial modes (i.e., eigenvectors) where the initial condition
gives the amplitudes of the modes (Manneville 2004, p. 37–38; Cain and
Reynolds 2010, Prop. 2.1.21, p. 28; Edwards et al. 2017, p.386; Maruskin
2018, general solution, p. 17). Due to spatial homogeneity in the macroscale
dynamics, the macroscale spatial structure of the full-domain model and the
patch schemes are effectively the same. Hence, effectively there is no error
in the macroscale modes (defined in p. 52 of §3.2) of the patch schemes. The
only error in the macroscale dynamics of the patch schemes is in the eigen-
values. Thus, when the macroscale eigenvalues (defined in p. 52 of §3.2) of
a patch scheme agree closely with the corresponding eigenvalues of the full-
domain microscale model, the patch scheme simulation is accurate in general
for every initial condition that only involves macroscale modes, provided it is
near enough to the reference equilibrium for the linearisation to be valid.
We aim to design the multiscale staggered patch schemes to accurately
simulate the large-scale waves that are characterised by the macroscale
eigenvalues. Thus, we aim to design the staggered patch schemes with the
macroscale eigenvalues as close as possible to the corresponding macro-
scale eigenvalues of the full domain microscale model (4.1.11). Hence, in
the eigenvalue analysis for accuracy in this section, we compare in the
complex plane the eigenvalues of the staggered patch schemes with the
eigenvalues of the full-domain microscale model.

Sections 4.2.1 to 4.2.5 describe the methods of analytically deriving and
numerically computing the eigenvalues for

1. the 2D viscous shallow water PDEs (4.1.6),

2. the full-domain microscale model (4.1.11), and

3. the staggered patch scheme (4.1.15).

Following a standard approach of substituting an arbitrary Fourier mode
into the PDEs/ODEs, §§4.2.1 and 4.2.2 derive the analytic eigenvalues of
the viscous shallow water PDEs (4.1.6) and the corresponding discrete full-
domain microscale model (4.1.11). Similarly, §4.2.3 derives the analytic
eigenvalues of a staggered patch scheme. To numerically compute the
eigenvalues of the numerical staggered patch scheme, which includes
any instabilities and inaccuracies due to the numerical roundoff errors,
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§§4.2.4 and 4.2.5 numerically differentiate the evolution functions f (x) in the
full-domain model (4.1.13), and F

(
xI; xE(xI)

)
in the patch scheme (4.1.18)

respectively.
Section 4.2.6 compares and contrasts various eigenvalues (e.g., analytic

and numerical eigenvalues of the PDEs, full-domain microscale model, and
patch schemes). We use the following notational convention to identify the
various eigenvalues.

• Eigenvalue subscripts in λ
()
p , λ

()
mδ, λ

()
m∆, λ

()
PDE denote the system.

– Eigenvalues λ()
p are for staggered patch schemes (e.g., λNE1

p of §4.2.3
and λN

p of §4.2.5).

– Eigenvalues λ
()
mδ are for fine-grid full domain microscale model

with same grid-spacing as sub-patch micro-grid interval δ (e.g.,
λA
mδ of §4.2.2 and λN

mδ of §4.2.4).

– Eigenvalues λ
()
m∆ are for fine-grid full domain microscale model

with same grid-spacing as the inter-patch distance ∆ (e.g., λA
m∆

of §4.2.2 and λN
m∆ of §4.2.4).

– Eigenvalues λ
()
PDE are for the viscous shallow water PDE (e.g., λA

PDE

of §4.2.1).

• Eigenvalue superscripts in λN
(), λ

NE1
() , λA

() denote the method of comput-
ing numerical eigenvalues values.

– Eigenvalues λN
() are computed from the numerical Jacobian of

the system (e.g., λN
mδ, λN

m∆ of §4.2.4 and λN
p of §4.2.5).

– Eigenvalues λNE1
() are computed from numerically evaluated

analytic one-cell Jacobian of the system (e.g., λNE1
p of §4.2.3).

– Eigenvalues λA
() are computed from the closed-form analytic

expressions for the eigenvalues (e.g., λA
PDE of §4.2.1 and λA

mδ, λA
m∆

of §4.2.2).

4.2.1 Eigenvalue analysis of the PDEs

This subsection discusses a method of computing the eigenvalues of the
2D viscous shallow water PDEs (4.1.6). For a sanity check, we compare
the eigenvalues of the PDEs (4.1.6) with the eigenvalues of the full-domain
microscale model (4.1.11) and the various staggered patch schemes.

We want to characterise the accuracy and stability of the patch schemes
for the non-trivial nonlinear evolution of the viscous shallow water flows,
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apart from the mean flow and any constant drift over time in the solution
h, u, v. Hence, in contrast to the arbitrary Fourier mode for the solution of
general linear wave in §3.2.1, we consider an arbitrary Fourier mode for
linear perturbation about hM, uM + a1t and vM + a2t of the nonlinear viscous
shallow water PDE (4.1.6), where hM is the mean height, uM, vM are the
mean velocities, and a1, a2 are the constant mean accelerations. That is,
for the viscous shallow water PDE (4.1.6), we consider an arbitrary Fourier
mode for linear perturbation about the mean accelerating flow, with real
wavenumber (kx, ky) and complex growth rate λ,

h(x, y, t) = hM +H exp[i(kxx+ kyy) + λt] , (4.2.1a)
u(x, y, t) = uM + a1t+U exp[i(kxx+ kyy) + λt] , (4.2.1b)
v(x, y, t) = vM + a2t+ V exp[i(kxx+ kyy) + λt] , (4.2.1c)

where H, U, V are small enough so the linearisation is valid.
With zero perturbation H = U = V = 0, taking time derivative of

the Fourier mode (4.2.1b) and (4.2.1c) about the mean flow state xM =

(hM, uM, vM), [
∂u

∂t

]

xM

= a1 ;

[
∂v

∂t

]

xM

= a2 . (4.2.2)

Substituting h(x, y, t) = hM, u(x, y, t) = uM, and v(x, y, t) = vM, into the
momentum equations (4.1.6b) and (4.1.6c) and comparing with the equa-
tion (4.2.2) gives the constant mean accelerations for the viscous shallow
water PDE (4.1.6)

[
∂u

∂t

]

xM

= a1 =
π2gx

12
−

π2uM

4Re
, (4.2.3a)

[
∂v

∂t

]

xM

= a2 =
π2gy

12
−

π2vM

4Re
. (4.2.3b)

Substituting the Fourier mode (4.2.1) into the viscous shallow water
PDE (4.1.6), neglecting the terms that are nonlinear in H, U, V gives the
eigensystem

J(xM)



H

U

V


 = λ



H

U

V


 , (4.2.4)

where the nine elements of the 3× 3 Jacobian J(xM) are

J1,1 = − ihMuMkx − ihMvMky , (4.2.5a)
J1,2 = − ih2

Mkx , (4.2.5b)
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J1,3 = − ih2
Mky , (4.2.5c)

J2,1 = i
π2gn

12
kx +

π2uM

2RehM

, (4.2.5d)

J2,2 = −1.5041 ihMuMkx − 1.3464 ihMvMky

−
4.093h2

M

Re
k2
x −

h2
M

Re
k2
y −

π2

4Re
, (4.2.5e)

J2,3 = −0.1577 ihMuMky −
3.093h2

M

Re
kxky , (4.2.5f)

J3,1 = i
π2gn

12
ky +

π2vM

2RehM

, (4.2.5g)

J3,2 = −0.1577 ihMvMkx −
3.093h2

M

Re
kxky , (4.2.5h)

J3,3 = −1.3464 ihMuMkx − 1.5041 ihMvMky (4.2.5i)

−
h2
M

Re
k2
x −

4.093h2
M

Re
k2
y −

π2

4Re
. (4.2.5j)

In contrast to the Jacobian of the general linear wave PDEs which de-
pends only on the physical parameters and the wavenumber (kx, ky), this
Jacobian J(xM) for the nonlinear viscous shallow water flows depends on

1. the physical parameters Re, gn,

2. the wavenumber (kx, ky),

3. and also on the linearisation point xM = (hM, uM, vM), which is the
mean flow state.

Section 3.2.2 derives analytic expression (3.2.3) for the eigenvalues of
the general linear wave. Similarly, using SymPy CAS, we derived the
analytic expression for the eigenvalues of the Jacobian J(xM) in the eigen-
system (3.2.2), for the viscous shallow water PDEs (4.1.6). The analytic
expression for the eigenvalues of the viscous shallow water flows is too
long to be useful. Hence, we compute the eigenvalues λNE1

PDE of the nu-
merically evaluated Jacobian J(xM) in the eigensystem (3.2.2) for specific
physical parameters, wavenumber and the linearisation point xM.

We compare (for a sanity check) the eigenvalues λNE1
PDE with the eigen-

values of the full domain microscale model and the various staggered patch
schemes in §4.2.6.
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4.2.2 Eigenvalue analysis of staggered grid full-domain
model

This subsection discusses a method of computing the eigenvalues of the
staggered grid full-domain microscale model (4.1.11) for the 2D viscous
shallow water PDEs (4.1.6). Comparing these eigenvalues of the full-domain
model with the eigenvalues of the staggered patch schemes, §4.2.6 studies
the accuracy of the patch schemes and §4.4 studies stability of the patch
schemes.

We follow the same analytic approach in §4.2.1 for the 2D viscous
shallow water PDEs in §4.2.1, but over a discrete infinite staggered grid
(number of grid intervals n → ∞ in Fig. 4.1.1). We consider an arbitrary
Fourier mode for the perturbation about hM, uM + a1t and vM + a2t of
the full-domain microscale model (4.1.11) for the viscous shallow water
flows. That is, for the full-domain microscale model (4.1.11), we consider
an arbitrary Fourier mode of the perturbation about the mean accelerating
flow, with real wavenumber (kx, ky) and complex growth rate λ,

• hi,j(t) = hM +H exp[i(kxiδ+ kyjδ) + λt] (4.2.6a)
for i, j ∈ {0, 2, 4, . . . , n− 2} ,

• ui,j(t) = uM + a1t+U exp[i(kxiδ+ kyjδ) + λt] (4.2.6b)
for i ∈ {1, 3, 5, . . . , n− 1} , j ∈ {0, 2, 4, . . . , n− 2} ,

• vi,j(t) = vM + a2t+ V exp[i(kxiδ+ kyjδ) + λt] (4.2.6c)
for i ∈ {0, 2, 4, . . . , n− 2} , j ∈ {1, 3, 5, . . . , n− 1} .

Throughout this thesis, i denotes the micro-grid index in x-direction (for
both full-domain and sub-patch micro-grids), whereas i =

√
−1 is the

imaginary unit.
Substituting the Fourier mode (4.2.1) into the full-domain microscale

model (4.1.11), and neglecting the terms that are nonlinear in H, U, V gives
the eigensystem

J(xM)



H

U

V


 = λ



H

U

V


 , (4.2.7)

where the elements of the 3× 3 Jacobian J(xM) are

J1,1 = − ihMuM

sin(2δkx)

2δ
− ihMvM

sin(2δky)

2δ
, (4.2.8a)

J1,2 = − ih2
M

sin(δkx)

δ
, (4.2.8b)
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J1,3 = − ih2
M

sin(δky)

δ
, (4.2.8c)

J2,1 = i
π2gn

12

sin(δkx)

δ
+

π2uM

2RehM

cos(δkx) , (4.2.8d)

J2,2 = −1.5041 ihMuM

sin(2δkx)

2δ
− 1.3464 ihMvM

sin(2δky)

2δ

−
4.0930h2

M

Re

[
sin(δkx)

δ

]2
−

h2
M

Re

[
sin(δky)

δ

]2
−

π2

4Re
, (4.2.8e)

J2,3 = −0.1577 ihMuM

sin(δky)

δ
cos(δkx) −

3.0930h2
M

Re

sin(δkx)

δ

sin(δky)

δ
,

(4.2.8f)

J3,1 = i
π2gn

12

sin(δky)

δ
+

π2vM

2RehM

cos(δky) , (4.2.8g)

J3,2 = −0.1577 ihMvM
sin(δkx)

δ
cos(δky) −

3.0930h2
M

Re

sin(δkx)

δ

sin(δky)

δ
,

(4.2.8h)

J3,3 = −1.3464 ihMuM

sin(2δkx)

2δ
− 1.5041 ihMvM

sin(2δky)

2δ

−
h2
M

Re

[
sin(δkx)

δ

]2
−

4.0930h2
M

Re

[
sin(δky)

δ

]2
−

π2

4Re
. (4.2.8i)

As the grid interval δ→ 0 and/or the wavenumber (kx, ky)→ (0, 0), we
get following limits for the terms in the Jacobian elements (4.2.8)

sin(δkx)

δ
→ kx ,

sin(δky)

δ
→ ky ,

sin(2δkx)

2δ
→ kx ,

sin(2δky)

2δ
→ ky ,

cos(δkx)→ 1 , cos(δky) → 1 .

(4.2.9)

In the limits (4.2.9), the Jacobian elements (4.2.8) of the full-domain
microscale model converge to the Jacobian elements (4.2.5) of the viscous
shallow water PDEs. Hence, the eigenvalues of the full-domain microscale
model (4.1.11) converge to the analytic eigenvalues of the PDEs (4.1.6) as
we decrease the grid interval δ and/or wavenumber (kx, ky).

We compute the eigenvalues λNE1
m of the numerically evaluated Ja-

cobian J(xM) in the eigensystem (4.2.7) for specific physical parameters,
wavenumber and the linearisation point xM. When we compute the eigen-
values λNE1

m of the full-domain microscale model,

• for the same grid-spacing δ as the sub-patch micro-grid interval (also
called δ), we call the eigenvalues λNE1

mδ ,
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• for the same grid-spacing ∆ as the inter-patch distance ∆, we call the
eigenvalues λNE1

m∆ .

For various macroscale wavenumbers, we compute the eigenvalues of
the numerically evaluated Jacobian J(xM), and compare with the eigen-
values of the viscous shallow water PDEs and the patch schemes for assess-
ing the accuracy (§4.2.6) and stability (§4.4) of the patch schemes.

4.2.3 Analytic eigenvalue analysis of staggered patch
schemes

This subsection discusses a method of deriving analytic eigenvalues of a
generic staggered patch scheme (4.1.15) over a staggered patch grid, for
the 2D viscous shallow water PDEs (4.1.6). Section 4.3 uses the analytic
patch scheme eigenvalues to assess the numerical roundoff errors in the
patch schemes. Section 3.3 uses the analytic patch scheme eigenvalues
to separate the microscale and macroscale eigenvalues and in establish-
ing the wavenumber-wise association of eigenvalues with the full-domain
model, the numerical eigenvalue error computations passively use ana-
lytic eigenvalues to establish this association. Hence, the analytic patch
scheme eigenvalues are used to assess accuracy (§4.2.6), stability (§4.4), and
consistency (§4.5) of the staggered patch schemes.

To derive the analytic one-cell Jacobian for the patch scheme (4.1.15),
we follow the same approach in §3.2.3 for the general linear wave, except
for the following two differences.

1. For viscous shallow water flows, we use a patch grid in Fig. 4.1.2b
with two layers of edge nodes in the normal direction to the edges, one
layer of edge nodes in the tangential direction to the edges. Page 168
of §4.1.3 discusses why the staggered patch grid in Fig. 4.1.2b with
such edge node arrangement is required for the viscous shallow water
flows.

2. We adapt the analytic approach in §4.2.1 for the staggered grid full-
domain microscale model (4.1.11), to an infinite staggered patch grid
(number of macroscale grid intervals N → ∞ in Fig. 4.1.2b). That
is, we use an arbitrary Fourier mode for the perturbation about hM,
uM+a1t and vM+a2t of the patch scheme (4.1.15). Thus, for the patch
scheme (4.1.15), we use an arbitrary Fourier mode of the perturbation
about the mean accelerating flow, with real wavenumber (kx, ky) and
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complex growth rate λ,

• hI,J
i,j (t) = hM + hp,q

i,j (t) exp[i(kxI∆+ kyJ∆)] , (4.2.10a)

• uI,J
i,j (t) = uM + a1t+ up,q

i,j (t) exp[i(kxI∆+ kyJ∆)] , (4.2.10b)

• vI,Ji,j (t) = vM + a2t+ vp,qi,j (t) exp[i(kxI∆+ kyJ∆)] , (4.2.10c)

for the same interior indices i, j and global macroscale patch indices I, J

in (2.1.5) of §2.1.1, separately for each equation. As defined in p. 58
of §3.2.3, the indices p, q ∈ {0, 1} are local sub-macro-cell patch in-
dex with p = I mod 2 and q = J mod 2. Figure 2.1.4 of §2.1.2 il-
lustrates these indices, for our present case of N → ∞ for analytic
eigenvalue analysis, we use the global macroscale patch index I, J ∈
{. . . ,−1, 0, 1, . . .}.

In contrast to the Fourier mode (3.2.10) for the state variables of the
general linear wave, the Fourier mode (4.2.10) are for perturbations of the
state variables of the viscous shallow water flows. As explained in §3.2.3,
in the patch scheme Fourier mode (4.2.10), the time-dependent microscale
structure hp,q

i,j (t), up,q
i,j (t), vp,qi,j (t) is modulated over the macroscale wave

form exp[i(kxI∆+kyJ∆)]. So, the microscale structure hp,q
i,j (t), up,q

i,j (t), vp,qi,j (t)

depends only on the sub-macro-cell patch index p, q and the sub-patch
micro-grid node index i, j, but not on the global patch index I, J due to the
2∆-translational symmetry in the Fourier shift.

As in §3.2.3, collecting the interior values of all three patches in the
centre macro-cell into a vector gives the state vector xi. For a given number
of macro-grid intervals N and sub-patch micro-grid intervals n, the number
of patch interior nodes ni

p per macro-cell, that is the size of xi, is same for
the different number of layers of the edge nodes. Hence, the ni

p is for the
viscous shallow water flows is same as expression (3.2.11) of §3.2.3 for the
general linear wave. That is, the total number of patch interior nodes per
macro-cell

ni
p = 9n2/4− 4n+ 2, (4.2.11)

where n is the number of sub-patch grid intervals. For example, for n =

6, 10, 14 sub-patch micro-grid intervals, ni
p = 59, 187, 387 respectively. The

state vector for the staggered patch grid in Fig. 4.1.2b for the viscous shallow
water flows, is the same as the state vector (3.2.12) for the general linear
wave.

Applying a specific patch coupling (Spectral, Square-p2, Square-p4,
etc.) gives edge values of all the patches in centre macro-cell, in terms
of the substituted Fourier mode. That is, patch coupling gives the edge
values of each patch in the centre macro-cell from the centre-node values of
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patches in other macro-cells, which are Fourier shifted centre-node values
(by multiples of 2∆) of the centre macro-cell. Collecting the edge values
of all three patches in the centre macro-cell into a vector gives the edge
vector xe. The total number of patch edge nodes per macro-cell for the
compatible staggered patch grid (Fig. 4.1.2b) for viscous shallow water
flows, that is the size of xe,

ne
p = 18n+ 8, (4.2.12)

where n is the number of sub-patch grid intervals. For example, for the
cases of n = 6, 10, 14 sub-patch micro-grid intervals, ne

p = 116, 188, 260

respectively. The expression (4.2.12) shows that the patch grid in Fig. 4.1.2b
for the viscous shallow water flows, has a larger number of edge nodes
compared to expression (3.2.13) of §3.2.3 for the staggered patch grid in
Fig. 4.1.2a for the general linear wave. Page 60 of §3.2.3 presents some
example coupling expressions (3.2.14) for the edge nodes using the simplest
staggered patch scheme Square-p2.

For one macro-cell, substituting into the staggered patch scheme (4.1.15),
the Fourier mode (4.2.10) and the coupled patch edge values (e.g., expres-
sions (3.2.14) in p. 60 of §3.2.3) computed by a specific patch coupling,
and cancelling the exponential factors on both sides, gives the time evolu-
tion of a macroscale Fourier component of a staggered patch scheme, as a
dynamical system

dxi

dt
= F(xi; xe(xi)), (4.2.13)

only for the specific modes of macroscale wavenumber (kx, ky). The dy-
namical system (4.2.13) is in the same form as the full-size staggered patch
scheme dynamical system (4.1.18). The state vector xI of the full-size
staggered patch scheme dynamical system (4.1.18) contain interior val-
ues of all the patches in a staggered patch grid, but the state vector xi of
the staggered patch scheme dynamical system (4.2.13) for one macroscale
wavenumber (kx, ky) contain interior values of only one macro-cell. Hence,
similar to the general linear wave, we call equation (4.2.13) as the one-cell
staggered patch scheme dynamical system for viscous shallow water flows.
Unlike the full-size staggered patch scheme dynamical system (4.1.18), the
one-cell staggered patch scheme dynamical system (4.2.13) is the evolution about
the mean accelerating flow.

The one-cell staggered patch scheme dynamical system (4.2.13), written
separately for h,u, and v is similar to the corresponding full-size staggered
patch scheme (4.1.15) of §4.1.3 with the following two differences.
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1. The state variables hI,J
i,j , u

I,J
i,j , v

I,J
i,j in xI of the full-size system (4.1.15)

are from all the macro-cells expressed in the global patch index I, J ∈
{. . . ,−1, 0, 1, . . .}. But the state variables hp,q

i,j , up,q
i,j , vp,qi,j in xi of the

one-cell system (4.2.13) are node values only from one macro-cell,
expressed in sub-macro-cell patch index p, q ∈ {0, 1}.

2. The state variables hI,J
i,j , u

I,J
i,j , v

I,J
i,j in xI of the full-size system (4.1.15)

are the values of h,u, and v. But the state variables hp,q
i,j , up,q

i,j , vp,qi,j

in xi of the one-cell system (4.2.13) are only perturbations about the
mean accelerating flow.

From the one-cell patch system (4.2.13), we aim to derive an eigensystem,
following an approach similar to deriving the eigensystem (4.2.7) of §4.2.2
for the full-domain model. The one-cell patch system (4.2.13) for the viscous
shallow water flows are nonlinear in the state variables hp,q

i,j , up,q
i,j , vp,qi,j .

Linearising the one-cell patch system (4.2.13) by neglecting the terms that
are nonlinear in the state variables hp,q

i,j , up,q
i,j , vp,qi,j gives the eigensystem

J(xM) xi = λ xi, (4.2.14)

where J(xM) =
[
∂F/∂xi

]
xM

is the ni
p × ni

p one-cell Jacobian of the staggered
patch scheme. The number of state variables ni

p = 9n2/4 − 4n + 2 for the
one-cell patch scheme system, as in expression (4.2.11).

Similar to the Jacobian of the viscous shallow water PDEs (p. 178 of
§4.2.1), the patch scheme one-cell Jacobian J(xM) in the eigensystem (4.2.14)
depends on the physical parameters Re, gx, gn, (kx, ky), xM = (hM, uM, vM).
In addition, the patch scheme Jacobian J(xM) also depends upon the patch
design parameters: total number of patch interior nodes ni

p, sub-patch
micro-grid interval δ, macro-grid interval ∆, and the specific patch coupling.

For example, similar to the case of general linear wave, for n = 6 sub-
patch grid intervals, the one-cell Jacobian J(xM) for the viscous shallow
water flows, is a 59× 59 sparse matrix generally with only 318 of the 3481

elements being nonzero irrespective of the particular patch coupling inter-
polation of the staggered patch schemes, even among the global Spectral
patch coupling and the local polynomial patch coupling. For some partic-
ular combinations of numerical values of the parameters, the sparsity is
higher. The 318 nonzero elements of the one-cell Jacobian of a staggered
patch scheme (for n = 6) contain all the information about the underlying
microscale model and the patch coupling, for the macroscale waves of
wavenumber (kx, ky). For example, a few elements of the one-cell Jacobian
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of the simplest staggered patch scheme Square-p2 are,

J1,1 = 0, J1,16 = −
h2
M

2δ
, J4,10 =

h2
M

2δ
,

J12,11 =
0.3366hMvM

δ
+

h2
M

4Re δ2
, J16,16 = −

2.4674

Re
−

2.5465h2
M

Re δ2
,

J18,36 =

(
0.188hMvM

δ
+

0.5116h2
M

Re δ2
+

0.564hMvM

∆
+

1.5349h2
M

∆Re δ

)
e−2∆ iky

+
0.188hMvM

δ
+

0.5116h2
M

Re δ2
−

0.564hMvM

∆
−

1.5349h2
M

∆Re δ
,

J46,36 =

(
−
h2
M

8δ
−

h2
M

2∆
−

3δh2
M

8∆2

)
e2∆ ikx +

(
−
h2
M

8δ
+

h2
M

2∆
−

3δh2
M

8∆2

)
e−2∆ iky

+

(
−
h2
M

8δ
+

h2
M

4∆
+

3δh2
M

8∆2

)
e2∆ ikx−2∆ iky −

h2
M

8δ
−

h2
M

4∆
+

3δh2
M

8∆2
,

J50,51 =

(
−
0.3366hMvM

∆
−

h2
M

4∆Re δ
+

0.6732δhMvM

∆2
+

h2
M

2∆2Re

)
e2∆ iky

+

(
0.3366hMvM

∆
+

h2
M

4∆Re δ
+

0.6732δhMvM

∆2
+

h2
M

2∆2Re

)
e−2∆ iky

+
h2
M

2Re δ2
−

1.3464δhMvM

∆2
−

h2
M

∆2Re
.

Compared to the above listed example Jacobian elements of the simple
patch coupling Square-p2, more surrounding macro-cells influence the
Jacobian elements for the cases of patch coupling with higher order inter-
polations (Square-p4, Square-p6, and Square-p8). Hence the expressions
for the one-cell Jacobian elements are much longer than the listed example
expressions.

Due to the large Jacobian size (e.g., 59× 59 for n = 6) and the long ex-
pressions in their elements, all the CAS packages we tried (SymPy, Reduce
and Maple) fail to compute the analytic eigenvalues of the one-cell Jaco-
bian, even for the simplest staggered patch scheme Square-p2 with n = 6

sub-patch micro-grid intervals. So we numerically evaluate the one-cell
Jacobian for numerical values of ∆, δ,Re, gx, gn, hM, uM, vM, kx, ky and com-
pute the eigenvalues λNE1

p . We compare with the eigenvalues λNE1
p of the

numerically evaluated one-cell Jacobian of the patch schemes, with the
eigenvalues of the full domain microscale model and the eigenvalues of the
general linear wave PDEs, for assessing the accuracy (§4.2.6) and stability
(§4.4) of the patch schemes.
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4.2.4 Compute numerical Jacobian of the full-domain
model

This subsection discusses a method to compute the numerical full-size
Jacobian of the staggered grid full-domain microscale model (4.1.15) in contrast
to the corresponding analytic 3 × 3 Jacobian in §4.2.2. Section 4.2.6 uses
the eigenvalues of the numerical Jacobian of the full-domain microscale
model, for comparing the eigenvalues of the staggered grid full-domain
model with the eigenvalues of the patch scheme for the viscous shallow
water flows.

Section 3.2.4 for the general linear wave, discusses some key differences
between the 3 × 3 analytic Jacobian and the corresponding full-size nu-
merical Jacobian for the full-domain model. In practice, the full-domain
microscale simulation is subject to the practical issue of numerical roundoff
errors. Hence we also compute the eigenvalues λN

m of the full-size nu-
merical Jacobian of the full-domain microscale model as discussed in this
subsection.

Consider the full-domain microscale model (4.1.13), dx/dt = f (x),
where x is the state vector (4.1.14), for the viscous shallow water flows,
over a full-domain staggered grid (e.g., Fig. 4.1.1) with n× n grid intervals.
We want to characterise the accuracy and stability of the staggered grid
full-domain model for the non-trivial nonlinear evolution of the viscous
shallow water flows, apart from the mean flow and any constant drift
with time in the solution x. Hence, consider the solution x(t) as a small
perturbation ϵ(t) for small t, about the mean accelerating flow, that is,

x(t) = xM + aM t+ ϵ(t), (4.2.15)

where the mean flow state xM = (hM, uM, vM) and the mean accelera-
tion aM = (0, a1, a2) as in equations (4.2.3). Substituting the solution
form (4.2.15) into the full-domain microscale model (4.1.13) (i.e., dx/dt =
f (x)) gives

aM +
dϵ

dt
= f (xM + aM t+ ϵ(t)) . (4.2.16)

The time derivative of the state vector dx/dt at the constant mean flow
state xM = (hM, uM, vM) is

[
dx

dt

]

xM

= aM = f (xM) . (4.2.17)
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Expanding the RHS of equation (4.2.16) as Taylor series about xM gives

aM +
dϵ

dt
= f (xM) +

[
∂f

∂x

]

xM

· (aM t+ ϵ) + O(∥aM t+ ϵ∥2) , as t, ∥ϵ∥ → 0

= aM + J(xM) · (aM t+ ϵ) + O(∥aM t+ ϵ∥2) , as t, ∥ϵ∥ → 0

⇒ dϵ

dt
= J(xM) · (aM t+ ϵ) + O(∥aM t+ ϵ∥2) , as t, ∥ϵ∥ → 0 .

Thus, for sufficiently small time t, we get the eigensystem

dϵ

dt
≈ J(xM) · ϵ =

[
∂f

∂x

]

xM

· ϵ , (4.2.18)

in terms of the perturbation ϵ(t) about the mean accelerating flow. In
the eigensystem (4.2.18), J(xM) is the numerical full-size Jacobian of the
staggered grid full-domain microscale model (4.2.15), in contrast to the
analytic 3× 3 Jacobian in the eigensystem (4.2.7) of §4.2.2. We calculate the
jth column of the Jacobian J(xM) by numerical differentiation to second
order approximation (error ∼ O(ε2)) as,

Jj(xM) =
f (xM + εej) − f (xM − εej)

2ε
, (4.2.19)

where ej is the jth canonical Euclidean basis vector of size nm whose jth
element is one and all other elements are zero. We use ε = 5 ·10−6 to balance
discretisation and roundoff errors in the calculation of numerical Jacobian.
For example, with ε = 5·10−6, the discretisation error in Jacobian calculation
is roughly about ε2 = 2.5 ·10−11 and the numerical roundoff error is roughly
about 10−16/(2ε) = 10−11 for 64 bit floating-point representation.

The full-size numerical Jacobian J(xM) of the staggered grid full-domain
microscale model, depends only on the physical parameters Re, gx, gn, and
discretisation parameters n, δ, and the mean state xM, not on the wave-
number. That is the full-size numerical Jacobian J(xM) encodes the infor-
mation for all the wavenumbers for the time evolution about the mean
accelerating flow.

Section 4.2.6 uses the eigenvalues of the numerical Jacobian of the full-
domain microscale model, for comparing the eigenvalues of the staggered
grid full-domain model with the eigenvalues of the patch scheme for the
viscous shallow water flows. For example, Figs. 4.2.1 and 4.2.2 of §4.2.6,
compares the eigenvalues λN

mδ, λN
m∆ of the numerical Jacobian of the full-

domain microscale model, with grid interval δ and ∆ respectively, of a
staggered patch grid.
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4.2.5 Compute numerical Jacobian of the staggered patch
schemes

The one-cell Jacobian of the staggered patch schemes in §4.2.3, is useful in
giving insights about the staggered patch schemes and to compute eigen-
values corresponding to every small macroscale wavenumber (kx, ky) for
a patch grid of any size N. But, in practice, the staggered patch scheme
numerical time simulation is performed using the full-size evolution equa-
tion (4.1.15). To confirm that full-size staggered patch scheme (4.1.18)
is stable, accurate, consistent, and not too sensitive to numerical round-
off errors, this subsection discusses a method to compute the numerical
eigenvalues λN

p of the staggered patch schemes for the full evolution equa-
tions (4.1.15).

The F
(
xI; xE(xI)

)
in the patch scheme dynamical system (4.1.18) cor-

responds to the f (x) in the full-domain microscale model (4.1.13). The
functions F and f encode the same full-domain microscale model for the
viscous shallow water PDEs (4.1.6); Section 2.1.2 explains this difference
for the generic wave-like system. Consider the full-size staggered patch
scheme dynamical system (4.1.18), dxI/dt = F

(
xI; xE(xI)

)
for viscous shal-

low water flows, with the same state vector xI (2.1.6) and a similar edge
vector xE as those of the patch scheme for generic wave-like system in §2.1.2.
We want to characterise the accuracy and stability of the patch schemes
for the non-trivial nonlinear evolution of the viscous shallow water flows,
apart from the mean flow and any constant drift with time in the solution xI.
Hence, consider the solution xI(t) as a small perturbation ϵ(t) for small t,
about the mean accelerating flow, that is,

xI(t) = xM + aM t+ ϵ(t), (4.2.20)

where the mean flow state xM = (hM, uM, vM) and the mean accelera-
tion aM = (0, a1, a2) as in equations (4.2.3). Substituting the solution
form (4.2.20) into the staggered patch scheme dynamical system (4.1.18),
dxI/dt = F

(
xI; xE(xI)

)
, and following the same steps described in §4.2.4

gives the eigensystem

dϵ

dt
≈ J(xM) · ϵ =

[
∂F

∂xI

]

xM

· ϵ , (4.2.21)

in terms of the perturbation ϵ(t) about the mean accelerating flow. In
the eigensystem (4.2.21), J(xM) is the numerical full-size nI

p × nI
p Jacobian

of the staggered patch scheme (4.1.15), in contrast to the analytic one-
cell Jacobian in the eigensystem (4.2.14) of §4.2.3. The number of state
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variables nI
p = (N2/4)(9n2/4− 4n+ 2) for the full-size patch scheme system,

as in expression (2.1.7). We calculate the columns of the numerical full-size
Jacobian J(xM) by numerical differentiation to second order approximation
(error is O(|ϵ|2)) as described in §4.2.4,

The full-size numerical Jacobian J(xM) of the staggered patch scheme,
depends on the physical parameters Re, gx, gn, patch discretisation param-
eters N,n, r, δ, ∆, and the mean state xM, but not on the wavenumber. That
is the full-size numerical Jacobian J(xM) encodes the information for all
wavenumbers in the finite domain for the time evolution about the mean
accelerating flow.

The eigenvalues λN
p of the numerical staggered patch scheme Jaco-

bian J(xM) characterises the accuracy and stability of the numerical stag-
gered patch schemes over a particular finite sized domain (i.e., N is finite
as opposed to infinite staggered patch grid for the one-cell Jacobian). Sec-
tions 4.2.6 and 4.4 compare the eigenvalues λN

p of the staggered patch
scheme numerical Jacobian, with the eigenvalues of the full domain micro-
scale model and the eigenvalues of the viscous shallow water PDEs, for
assessing the accuracy and stability of the patch schemes respectively.

4.2.6 Staggered patch schemes are accurate for macroscale
waves

Similar to §3.2.6 for the general linear wave, this section explains the qualita-
tive structure of the staggered patch scheme eigenvalues and eigenvectors,
and qualitatively demonstrates the accuracy of the staggered patch schemes
for the viscous shallow water flows for few representative cases. Section 4.5 on
the consistency of the staggered patch schemes, quantitatively establishes
the patch scheme accuracy in more detail, over a much broader range of
parameters.

Similar to §3.2.6, this section demonstrates the accuracy of the developed
five staggered patch schemes (Spectral, Square-p2, Square-p4, Square-p6,
and Square-p8) by comparing the following eigenvalues in the complex
plane plots.

1. Eigenvalues λN
p of the numerical Jacobian of a staggered patch scheme

on a finite domain (§4.2.5).

2. Eigenvalues λNE1
p of the numerically evaluated one-cell Jacobian in

eigensystem (4.2.14) in §4.2.3, of a staggered patch scheme on an
infinite domain.
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3. Eigenvalues λNE1
mδ of the numerically evaluated analytic Jacobian

in eigensystem (4.2.7) in §4.2.2, of fine-grid full-domain microscale
model, with micro-grid interval equal to the sub-patch micro-grid
interval δ. We use the same symbol δ for the grid interval for both the
full-domain micro-grid and the sub-patch micro-grid.

4. Eigenvalues λNE1
m∆ of the numerically evaluated analytic Jacobian in

eigensystem (4.2.7), of coarse grid version of the full-domain micro-
scale model, with δ = ∆.

5. Eigenvalues λNE1
PDE of the numerically evaluated analytic Jacobian in

eigensystem (4.2.4) in §4.2.1, of viscous shallow water PDEs (4.1.6).
Comparison with the eigenvalues λNE1

PDE is only for completeness.

All the analytic eigenvalues (λNE1
p , λNE1

mδ , λNE1
m∆ , λNE1

PDE ) are numerically eval-
uated for all macroscale wavenumbers resolved on a corresponding finite
staggered patch grid. To illustrate the complete structure of eigenvalues
(i.e, for all wavenumbers) of the full-domain microscale model and to cross-
verify analytic and numerical computation of the full-domain microscale
model eigenvalues, we also compute the eigenvalues of the numerical Ja-
cobian of the full-domain microscale model for few cases (e.g., Figs. 4.2.1
and 4.2.2).

The sets of eigenvalues (e.g., λN
p , λNE1

p , λN
mδ, λN

m∆, λNE1
PDE ), in all the com-

plex plane plots, are numbered in the legend entries on the left. In all the
complex plane plots, physical parameters for each of these eigenvalues are
listed in groups below the legend entries. Page 68 of §3.2.6 explains with an
example, the conventions of this parameter listing.

Figures 4.2.1 and 4.2.2 plot the eigenvalues (λN
p , λNE1

p ) of the Spectral

patch scheme on a staggered patch grid with 6 × 6 macro-grid intervals
(N = 6) and each patch containing 6 × 6 sub-patch micro-grid intervals
(n = 6). Also plotted are the eigenvalues λN

mδ, λN
m∆ of respectively the fine-

and coarse-grid versions of the full-domain microscale model (4.1.11) and
the eigenvalues λNE1

PDE of the PDE (4.1.6). Similar to Figs. 4.2.1 and 4.2.2, in
all the complex plane eigenvalue plots, eigenvalues are grouped within
clusters based on eigenvalues λNE1

p of the staggered patch scheme Jacobian.
Each cluster is annotated with the number of eigenvalues λNE1

p in the cluster
and the cluster number in the superscript.

Page 71 of §3.2.6 explains the rationale and utility of the arcsinh scaling.
For example, the clusters of macroscale eigenvalues on arcsinh scaling (i.e.,
clusters 1–6 in Fig. 4.2.2) reveal more details, compared to the clusters of
macroscale eigenvalues on linear scaling (i.e., cluster 1 in Fig. 4.2.1). Hence,
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Figure 4.2.1. Spectral staggered patch scheme (N = 6, n = 6) eigen-
values (λN

p , λNE1
p ) on complex plane (linear scale) for viscous shallow water

flows. Due to the large range of magnitudes of eigenvalues, details of
eigenvalues for macroscale modes (mid-right cluster 1) are not discernable.
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Figure 4.2.2. Spectral staggered patch scheme (N = 6, n = 6) eigen-
values (λN

p , λNE1
p ) on complex plane (arcsinh nonlinear scale) for viscous

shallow water flows. The arcsinh scaling zooms out the eigenvalues of
macroscale modes (mid-right cluster 1 in Fig. 4.2.1 to clusters 1–6 here).
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most complex plane eigenvalue plots in this thesis are on arcsinh scaling. Specif-
ically, the complex plane plots on arcsinh scaling, plot an eigenvalue λ as
2D points with coordinates (arcsinh[Shℜ(λ)]/Sh, arcsinh[Sv ℑ(λ)]/Sv), where
Sh, Sv are the horizontal and vertical scale factors and (0, 0) is the centre of
zoom. In this chapter, most plots on arcsinh scaling use the scale factors
Sh = 500, Sv = 104 (different from those in §3.2.6 for general linear wave).

As Figs. 4.2.1 and 4.2.2 show, a patch scheme contains only the small
wavenumber macroscale modes on the right (clusters 1–6 in Fig. 4.2.2)
and large wavenumber microscale modes on the left (clusters 7, 8, 9 in
Fig. 4.2.2), not the modes of the intermediate scale. On the other hand,
the eigenvalues λN

mδ of the full-domain microscale model, span the eigen-
value plot nearly uniformly from left to right, corresponding to all the
wavenumbers resolved on the full-domain microscale staggered grid. Fig-
ures 4.2.1 and 4.2.2 show a good qualitative agreement of the structure of
microscale and macroscale patch scheme eigenvalues λN

p and the complete structure
of the eigenvalues λN

mδ (i.e, for all wavenumbers) of the full-domain microscale
model. For the accurate multiscale modelling of the macroscale waves, the
agreement between the macroscale eigenvalues of the patch scheme and
those of the full-domain model is the primary focus. Figure 4.2.2 shows
that, within the clusters 1–6, the numerical macroscale eigenvalues λN

p of
the patch scheme (large magenta circles) and the numerical macroscale
eigenvalues λN

mδ (small red circles) visually agree.
As Fig. 4.2.2 shows, for both microscale and macroscale modes, the patch

scheme eigenvalues λNE1
p of the numerically evaluated one-cell analytic

Jacobian (§4.2.3) and the patch scheme eigenvalues λN
p of the numerical

Jacobian (§4.2.5), agree (i.e., the large magenta and blue circles). Hence,
all other complex plane plots in this subsection §4.2.6 use eigenvalues λNE1

p of
the numerically evaluated one-cell analytic Jacobian (§4.2.3), as opposed to the
numerical eigenvalues λN

p .
Figures 4.2.1 and 4.2.2 show the complete structure of eigenvalues λN

mδ

(i.e, for all wavenumbers) of the full-domain microscale model, for a full-
domain staggered grid with the same grid interval δ as the sub-patch
micro-grid interval of a patch grid with N = 6 and patch scale ratio r = 0.1.
As p. 71 of §3.2.6 explains, for patch grids with N ⩾ 10 and/or r < 0.1, the
corresponding full-size Jacobians of the fine-grid full-domain microscale
model, rapidly increase in size, requiring substantially larger computational
effort and memory. For the accurate multiscale modelling of the macroscale
waves, the agreement between the macroscale eigenvalues of the patch
scheme and those of the full-domain model is the primary focus, not the
eigenvalues corresponding to all the wavenumbers. That is, to assess the
patch scheme accuracy, as in Fig. 4.2.4 it suffices to compare only the patch
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scheme macroscale eigenvalues with the macroscale eigenvalues λNE1
mδ of

the full-domain microscale model (by numerically evaluating the analytic
Jacobian (§4.2.2) only for macroscale wavenumbers resolved on a staggered
patch grid). Hence, to avoid large computational effort and as the primary
focus is on the macroscale eigenvalues, all other complex plane plots in this
subsection §4.2.6 use eigenvalues λNE1

mδ of the numerically evaluated analytic
Jacobian (§4.2.2), as opposed to the numerical eigenvalues λN

mδ.
Figures 4.2.3 to 4.2.12 present the eigenvalue spectra for various param-

eter combinations. Figures 4.2.3 to 4.2.12 plot the Spectral patch scheme
eigenvalues, over a staggered patch grid with 10× 10 macro-grid intervals
(N = 10) and each patch containing 6 × 6 sub-patch micro-grid intervals
(n = 6). Figures 4.2.3 to 4.2.6 plot the eigenvalues for different linearisation
point (hM, uM, vM), where hM is the mean height and uM, vM are the mean
horizontal velocities. Figures 4.2.9 to 4.2.10 plot the eigenvalues for differ-
ent Reynolds numbers Re. Figures 4.2.11 and 4.2.12 plot the eigenvalues
for different patch scale ratios r. The number just next to each cluster is
the number of eigenvalues in that cluster. The cluster numbers referred to
below are indicated on the plots by the superscript of the number just next
to each cluster.

This paragraph explains the general qualitative structure of the patch
scheme eigenvalues for the viscous shallow water flows. The following
points are mainly based on the Spectral patch scheme eigenvalues in
Figs. 4.2.3 to 4.2.6 and the corresponding eigenvectors (the patch scheme
modes in Figs. 3.2.13 to 3.2.18 and Figs. 4.2.13 and 4.2.14). But these points
hold in general for the eigenvalues of, the PDE, full-domain microscale model, and
all the five (Spectral and four polynomial) patch schemes, for the viscous shallow
water flows.

• The macroscale clusters (containing macroscale eigenvalues) are identi-
fied in the caption for each of Figures 4.2.3 to 4.2.12. The eigenvalues
within all other clusters correspond to sub-patch microscale modes.
There are 3N2/4 macroscale modes and (N2/4)(9n2/4− 4n− 1) micro-
scale modes, same as those of the general linear wave in p. 75 of §3.2.6.
All the following points in this listing are about the patch scheme
macroscale modes for the viscous shallow water flows.

• As comparing Figs. 4.2.2 and 4.2.4 for N = 6, 10 shows, increasing N

computes more macroscale modes for larger wavenumbers. For ex-
ample, the clusters 2–6 in Fig. 4.2.2 extend to the left along the eigen-
values of the full-domain model (small red circles).

• Steady uniform flow mode. There is precisely one zero eigenvalue in
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Figure 4.2.3. Spectral staggered patch scheme (N = 10, n = 6) eigen-
values for viscous shallow water flows for (hM, uM, vM) = (0.2, 0, 0). The
macroscale eigenvalues λNE1

p in clusters 1–4 agree with the macroscale
eigenvalues λNE1

mδ of the fine-grid full-domain microscale model.
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Figure 4.2.4. Spectral staggered patch scheme (N = 10, n = 6) eigen-
values for viscous shallow water flows for (hM, uM, vM) = (0.2, 0.1, 0). The
macroscale eigenvalues λNE1

p in clusters 1–6 agree with the macroscale
eigenvalues λNE1

mδ of the fine-grid full-domain microscale model.
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Figure 4.2.5. Spectral patch scheme (N = 10, n = 6) eigenvalues for viscous
shallow water flows for (hM, uM, vM) = (0.2, 0.4, 0). Eigenvalues λNE1

p and
λNE1
mδ agree for macroscale modes in clusters 1–6. Minimum real parts

minℜ(λNE1
pµ ) = −156 (microscale), minℜ(λNE1

pM ) = −0.011 (macroscale).
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Figure 4.2.6. Spectral staggered patch scheme (N = 10, n = 6) eigenvalues
for viscous shallow water flows for (hM, uM, vM) = (0.2, 0.8, 0). Eigen-
values λNE1

p and λNE1
mδ agree for macroscale modes in clusters 1–8. Maximum

real parts maxℜ(λNE1
mδ ) = maxℜ(λNE1

p ) = 0.0021 indicate physical instability.
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the cluster 1 in all of Figures 4.2.3 to 4.2.12, that corresponds to the
macroscale mode of steady (zero eigenvalue, hence temporally constant)
uniform flow (spatially constant h, u, v). For example, the eigenvector
in Fig. 4.2.14 shows the macroscale mode of steady uniform flow
corresponding to the cluster 1 of Fig. 4.2.4. When the mean velocity is
zero uM = vM = 0, (e.g., cluster 1 of Fig. 4.2.3) this mode corresponds
to stagnant water of uniform height, which is qualitatively same as
the macroscale mode of the general linear wave (e.g., eigenvector in
Fig. 3.2.13).

• Decelerating uniform mean flow modes. Same as for the general linear
wave, two of the small real negative eigenvalues correspond to the
macroscale mode of decelerating uniform mean flow irrespective of N,n.
For example, two eigenvalues, among the 26 eigenvalues within the
cluster 4 of Fig. 4.2.3, and among the 6 eigenvalues within the cluster 4
of Fig. 4.2.4, are of the macroscale modes of decelerating uniform
mean flow. These modes of decelerating uniform mean flow are
qualitatively same as the modes of the general linear wave (e.g., the
eigenvector in Fig. 3.2.14 of §3.2.6).

• Macroscale wave modes. Some of the complex conjugate eigenvalues
with small negative real parts, correspond to slowly decaying macro-
scale wave modes with small wavenumber. These macroscale wave
modes are qualitatively same as the macroscale wave modes of the
general linear wave (e.g., the eigenvector in Fig. 3.2.15 of §3.2.6).
Such eigenvalues of macroscale wave modes are present in all of
Figures 4.2.3 to 4.2.12. For example, all the 24 eigenvalues in each
of the clusters 2, 3 in Figs. 4.2.3 and 4.2.4 are of macroscale wave
modes. There are 2(N2/4− 1) macroscale wave modes, same as those
of general linear wave in p. 74 of §3.2.6.

• Macroscale vortex modes. For zero mean velocities uM = vM = 0, as for
the general linear wave in p. 75 of §3.2.6, there are N2/4− 1 the small
real negative eigenvalues that correspond to slowly decaying macro-
scale vortex modes with small wavenumber. For example, for N = 10,
the 24 among the 26 eigenvalues within the cluster 4 of Fig. 4.2.3 cor-
respond to such macroscale vortex modes. These macroscale vortex
modes are qualitatively same as the macroscale vortex modes of the
general linear wave (e.g., the eigenvector in Fig. 3.2.16 of §3.2.6).
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• Advecting shear flow modes. When mean velocity is increased from
zero, uM > 0 or vM > 0, the N2/4 − 1 macroscale vortex modes (e.g.,
the 24 among the 26 eigenvalues within the cluster 4 of Fig. 4.2.3)
split into N/2− 1 macroscale vortex modes with real negative eigen-
values and N2/4−N/2 decaying macroscale advecting shear flow modes
with N2/8−N/4 pairs of complex conjugate eigenvalues. For exam-
ple, for N = 10, the four among the six eigenvalues in the cluster 4

of Fig. 4.2.4 are of the macroscale vortex modes, the ten eigenvalues
in each of the clusters 5, 6 are of the macroscale advecting shear flow
modes. For example, Fig. 4.2.13 shows the eigenvector of a macro-
scale advecting shear flow mode corresponding to an eigenvalue in
cluster 6 in Fig. 4.2.4. In Fig. 4.2.13, only v is nonzero, which indicates
that the wavy spatial v-profile is static (i.e., non-oscillatory), unlike the
wave modes with the dynamic energy exchange between the potential
(height h) and kinetic energy (velocity u, v). Specifically, the eigen-
vector in Fig. 4.2.13 corresponds to a shear flow in y-direction that is
being advected along in the x-direction by the mean flow uM = 0.1.
These advecting shear flow modes are not present in general linear wave.

• For small nonzero mean velocity uM ≲ 0.1, the eigenvalues of macro-
scale advecting shear flow modes form clearly distinguishable clus-
ters, as the clusters 5, 6 in Fig. 4.2.4. For larger mean velocity uM ≳ 0.4,
the eigenvalue clusters of the macroscale wave modes and clusters of
the macroscale advecting shear flow modes distort and overlap, as in
Figs. 4.2.5 to 4.2.10.

As Page 80 of §3.2.6 defines, a staggered patch scheme is accurate when
the macroscale eigenvalues (e.g., λN

p , λNE1
p ) of the staggered patch schemes

are close to the macroscale eigenvalues (e.g., λNE1
mδ ) of the corresponding

fine-grid full-domain microscale model with the same grid interval as the
sub-patch micro-grid interval. Comparing macroscale eigenvalues λNE1

p ,
λNE1
mδ the following paragraphs show that the staggered patch schemes are

accurate for macroscale viscous shallow water flows for different linearisa-
tion point hM, uM, vM and Reynolds number Re.

The staggered patch schemes are accurate for macroscale viscous shallow water
flows for different mean velocity uM, vM. In contrast to the eigenvalues of
the general linear wave in §3.2.6, due to the nonlinearity, the eigenvalues
of the viscous shallow water flows depend on the mean height hM and the mean
velocity hM, vM. That is, the eigenvalues of the viscous shallow water flows
depend on the linearisation point (hM, uM, vM). Figures 4.2.3 to 4.2.6 plot
the Spectral patch scheme (N = 10, n = 6) eigenvalues for different mean
velocity uM = 0, 0.1, 0.4, 0.8 respectively, keeping hM = 0.2 and vM = 0.



Chapter 4. Patch schemes accurately simulate viscous shallow water flows 198

The following points summarise the key dependence of the patch scheme
eigenvalues on increasing mean velocity uM. As §4.6 establishes, the patch
schemes are invariant (within discretisation errors) with different flow
angle α for macroscale waves, where q =

√
u2
M + v2M, uM = q cos(α) and

vM = q sin(α). Hence, whereas the following points are based on increas-
ing uM keeping vM = 0, they hold in general for increasing uM and/or
vM. All the characteristics in the following listing also hold for the four
polynomial patch schemes (§2.2.2).

• Figures 4.2.3 to 4.2.6 show that for the different mean velocity of uM =

0, 0.1, 0.4, 0.8, the macroscale eigenvalues λNE1
p of the Spectral patch

scheme (large blue circles within macroscale clusters identified in
figure caption), agree with the macroscale eigenvalues λNE1

mδ (small red
circles) of the fine-grid full-domain microscale model. This macroscale
agreement of eigenvalues λNE1

p , λNE1
mδ indicates that the patch schemes

are accurate for macroscale viscous shallow water flows of different mean
velocity.

• While increasing uM from zero to 0.8, as the previous paragraph
explains, first the vortex modes (cluster 4 in Fig. 4.2.3) split into
vortex modes and advecting shear flow modes (clusters 4 and clus-
ters 5, 6 respectively in Fig. 4.2.4), next the clusters of advecting shear
flow modes distort and overlap with the clusters of the (dynami-
cal/oscillatory) wave mode (clusters 5, 6 in Fig. 4.2.5 and clusters 7, 8

in Fig. 4.2.6).

• The spectral gap (between the microscale and macroscale patch scheme
eigenvalues) decreases with increasing mean velocity uM. For example, in
Figs. 4.2.3 to 4.2.6 for uM = 0, 0.1, 0.4, 0.8, the corresponding spectral
gaps are 1932, 1916, 1680, 1088. Physically, increasing uM, increases the
bed drag (macroscale eigenvalues move to the left), on the hand, the
viscous diffusion (microscale eigenvalues) remains roughly the same,
leading to decreasing spectral gap. This decreasing spectral gap with
increasing uM is the most prevalent trend among the various com-
binations of uM, Reynolds number Re, mean height hM, and patch
scale ratio r. But, for some combinations of the grid parameters (N,
n, r) and physical parameters (Re, hM, uM), increasing uM decreases
spectral gap due to artificial sub-patch microscale modes. In such
cases, a small subset of the microscale eigenvalues in the complex
plane move to the right with increasing uM, leading to decreasing the
spectral gap. For example, the clusters 5–7 in Fig. 4.2.10 contain such
eigenvalues of sub-patch microscale modes.
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• For large mean velocity uM ≳ 0.5, the viscous shallow water flows
have inherent physical instability, that is, the full-domain microscale
model itself is unstable. Such physical instability is evident from the
positive real part eigenvalues of the full-domain microscale model
in Fig. 4.2.6 (clusters 1, 2). Section 4.4.1 shows the detailed trends of
such physical instabilities as captured by the patch scheme for a wide
range of parameters hM, uM,Re, N, r, n.

The staggered patch schemes are accurate for macroscale viscous shallow wa-
ter flows for different mean height hM. Figures 4.2.7, 4.2.4 and 4.2.8 plot the
Spectral patch scheme (N = 10, n = 6) eigenvalues for different mean
heights hM = 0.1, 0.2, 0.3 respectively, keeping uM = 0.1 and vM = 0. The
following points summarise the key dependence of the patch scheme eigen-
values on increasing mean height hM. All the characteristics in the follow-
ing listing also hold for the four polynomial patch schemes (§2.2.2).

• Figures 4.2.7, 4.2.4 and 4.2.8 show that for the different mean heights
of hM = 0.1, 0.2, 0.3, the macroscale eigenvalues λNE1

p of the Spectral

patch scheme (large blue circles within macroscale clusters identi-
fied in figure caption), agree with the macroscale eigenvalues λNE1

mδ

(small red circles) of the fine-grid full-domain microscale model. This
macroscale agreement of eigenvalues λNE1

p , λNE1
mδ indicates that the

patch schemes are accurate for macroscale viscous shallow water flows for
different mean heights.

• While increasing hM from 0.1 to 0.3, both the microscale and macro-
scale eigenvalues move to the left, taking larger negative real parts.
That is, increasing hM increases both the microscale and macroscale
dissipation.

• Whereas both the microscale and macroscale dissipation increases
with increasing hM, the microscale dissipation increases at a larger
rate. That is, increasing hM decreases the real parts of microscale
eigenvalues (e.g., on the left most clusters in Figs. 4.2.7, 4.2.4 and 4.2.8)
at larger rate than increasing the real parts of macroscale eigenvalues,
resulting in increasing spectral gap. Hence, the spectral gap increases
with increasing mean height hM. For example, in Figs. 4.2.7, 4.2.4
and 4.2.8 for mean heights hM = 0.1, 0.2, 0.3, the corresponding spec-
tral gaps are 383, 1916, 2162. Similar to the deviation in the trend of
spectral gap with uM explained in p. 198, for some combinations
of the grid parameters (N, n, r) and physical parameters (Re, hM,
uM), increasing hM decreases spectral gap due to artificial sub-patch
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Figure 4.2.7. Spectral staggered patch scheme (N = 10, n = 6) eigenvalues
for viscous shallow water flows for (hM, uM, vM) = (0.1, 0.4, 0). Eigen-
values λNE1

p and λNE1
mδ agree for macroscale modes in clusters 1–6. Increasing

mean height hM increases spectral gap (Figs. 4.2.7, 4.2.4 and 4.2.8).
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Figure 4.2.8. Spectral staggered patch scheme (N = 10, n = 6) eigenvalues
for viscous shallow water flows for (hM, uM, vM) = (0.3, 0.4, 0). Eigen-
values λNE1

p and λNE1
mδ agree for macroscale modes in clusters 1–6. Increas-

ing mean height hM increases spectral gap (Figs. 4.2.7, 4.2.4 and 4.2.8).
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microscale modes. In general increasing hM increases or decreases spectral
gap depending upon the combinations of the grid parameters (N, n, r) and
physical parameters (Re, hM, uM).

The staggered patch schemes are accurate for macroscale viscous shallow water
flows for different Reynolds number Re. Figures 4.2.9, 4.2.10 and 4.2.5 plot the
Spectral patch scheme (N = 10, n = 6) eigenvalues for different Reynolds
numbers Re = 10, 50, 250 respectively. The following points summarise the
key dependence of the patch scheme eigenvalues on increasing Reynolds
numbers Re. All the characteristics in the following listing also hold for the
four polynomial patch schemes (§2.2.2).

• Figures 4.2.9, 4.2.10 and 4.2.5 show that for the different Reynolds
numbers of Re = 10, 50, 250, the macroscale eigenvalues λNE1

p of the
Spectral patch scheme (large blue circles within macroscale clus-
ters identified in figure caption), agree with the macroscale eigen-
values λNE1

mδ (small red circles) of the fine-grid full-domain microscale
model. This macroscale agreement of eigenvalues λNE1

p , λNE1
mδ indi-

cates that the patch schemes are accurate for macroscale viscous shallow
water flows of different Reynolds numbers.

• Increasing Reynolds number Re decreases the dissipation for both
macroscale and sub-patch microscale modes of the patch schemes.
Decreasing dissipation increases the real parts of the microscale and
macroscale patch scheme eigenvalues, moving to the right in the
complex plane plots. For example, in Figs. 4.2.9, 4.2.10 and 4.2.5
for Re = 10, 50, 250, the minimum real parts of the patch scheme for
microscale eigenvalues are minℜ(λNE1

pµ ) = −5785,−1147,−156, and
for macroscale eigenvalues are minℜ(λNE1

pM ) = −0.28,−0.056,−0.011

respectively.

• In general, for both zero and nonzero mean velocities uM, vM, the spec-
tral gap (between the microscale and macroscale patch scheme eigen-
values) increases with increasing Reynolds number Re. The Reynolds
number Re in the viscous shallow water PDEs (4.1.6) is defined based
on inviscid wave velocity U =

√
gH, not the flow velocity. Hence, the

Reynolds number Re is not necessarily zero when the mean velocity
is zero. For example, in Figs. 4.2.9, 4.2.10 and 4.2.5 for Re = 10, 50, 250,
the corresponding spectral gaps are 3.1, 65, and 1680. Except for some
combinations of the grid parameters (N, n, r), this increasing spectral
gap with increasing Re is the most prevalent trend among the vari-
ous combinations of mean height hM, mean velocity uM, Reynolds
number Re, and patch scale ratio r.
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Figure 4.2.9. Spectral staggered patch scheme (N = 10, n = 6) eigen-
values for viscous shallow water flows for Re = 10. Eigenvalues λNE1

p

and λNE1
mδ agree for macroscale modes in clusters 1–4. Minimum real parts

minℜ(λNE1
pµ ) = −5785 (microscale), minℜ(λNE1

pM ) = −0.28 (macroscale).
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Figure 4.2.10. Spectral staggered patch scheme (N = 10, n = 6) eigen-
values for viscous shallow water flows for Re = 50. Eigenvalues λNE1

p

and λNE1
mδ agree for macroscale modes in clusters 1–4. Minimum real parts

minℜ(λNE1
pµ ) = −1147 (microscale), minℜ(λNE1

pM ) = −0.056 (macroscale).

−
10
4

−
10
00

−
10
0

−
10 −
1

−
0.
1

−
0.
01

−
0.
00
2

−
0.
00
1 0

0.
00
2

<(λ)

−100

−1

−0.01

0

0.01

1

100

=
(λ
)

65

1162

343

344

1005

2006

2007

258

259

85010

(1) λNE1p [1475](25k)

(2) λNE1mδ [75](25k)

(3) λNE1m∆ [75](25k)

(1) Patch scheme
Scheme : Spectral
Grid : huvx-n2t1
N : 10
n : 6
δ : 2π/3000
r : 0.01

(2)
n : 3000
δ : 2π/3000

(3)
n : 10
δ : 2π/10

Common parameters
Model: vSwtrS
Domain L : 2π
hM,uM, vM :0.2, 0.4, 0
Re, θ : 50, 0◦



§4.2 Staggered patch schemes are accurate 203

The staggered patch schemes are accurate for macroscale viscous shallow
water flows for different patch scale ratio r. Figures 4.2.11 and 4.2.12 plot
the Spectral patch scheme (N = 10, n = 6) eigenvalues for patch scale
ratio r = 0.1, 0.001 respectively. The following points summarise the key
dependence of the patch scheme eigenvalues on decreasing patch scale
ratio r. All the characteristics in the following listing also hold for the four
polynomial patch schemes (§2.2.2).

• Figures 4.2.11 and 4.2.12 indicate that for the different patch scale
ratio r = 0.1, 0.001, the macroscale eigenvalues λNE1

p of the Spectral

patch scheme (large blue circles within macroscale clusters identi-
fied in figure caption), agree with the macroscale eigenvalues λNE1

mδ

(small red circles) of the fine-grid full-domain microscale model. This
macroscale agreement of eigenvalues λNE1

p , λNE1
mδ indicates that the

patch schemes are accurate for macroscale viscous shallow water flows for
different patch scale ratio r.

• As Figs. 4.2.11 and 4.2.12 show, decreasing the patch scale ratio r

dissipates the sub-patch microscale modes at a larger rate than, as
evident from the increasingly large negative real parts (the blue circles
move to the left); but the eigenvalues of the macroscale modes (small
red circles on the right) remains unchanged.

• In general, the spectral gap (between the microscale and macroscale
patch scheme eigenvalues) increases with decreasing patch scale ratio r.
For example, decreasing the patch scale ratio of r = 0.1, 0.001 in
Figs. 4.2.11 and 4.2.12 leads to increasing spectral gap from 5.88 to
2370. Except for some combinations of the grid parameters (N, n, r),
this increasing spectral gap with decreasing r is the most prevalent
trend among the various combinations of mean height hM, mean
velocity uM, Reynolds number Re, and patch scale ratio r.

The staggered patch schemes are accurate for different parameters. In Figs. 4.2.3
to 4.2.8 for different linearisation point hM, uM, vM, and in Figs. 4.2.9,
4.2.10 and 4.2.5 for different Reynolds number Re, the macroscale eigen-
values λNE1

p of the Spectral patch scheme (large blue circles within macro-
scale clusters identified in figure caption), agree with the macroscale eigen-
values λNE1

mδ (small red circles) of the fine-grid full-domain microscale model.
This agreement of the Spectral patch scheme macroscale eigenvalues with
those of the fine-grid full-domain model, is exact (within numerical round-
off errors). The polynomial patch scheme macroscale eigenvalues also
agree with those of the fine-grid full-domain model. Unlike the exact ac-
curacy of the Spectral patch scheme, the polynomial patch scheme error
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Figure 4.2.11. Spectral staggered patch scheme (N = 10, n = 6, r = 0.1)
eigenvalues for viscous shallow water flows for (hM, uM, vM) = (0.1, 0.1, 0).
Eigenvalues λNE1

p and λNE1
mδ agree for macroscale modes in clusters 1–6.

Decreasing r increases spectral gap (Figs. 4.2.11 and 4.2.12).
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Figure 4.2.12. Spectral staggered patch scheme (N = 10, n = 6, r = 0.001)
eigenvalues for viscous shallow water flows for (hM, uM, vM) = (0.1, 0.1, 0).
Eigenvalues λNE1

p and λNE1
mδ agree for macroscale modes in clusters 1–6.

Decreasing r increases spectral gap (Figs. 4.2.11 and 4.2.12).
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decreases with increasing polynomial interpolation order p and decreas-
ing macro-grid interval ∆ (§4.5 shows such parametric dependence of
the accuracy). Thus, from Figs. 4.2.3 to 4.2.12 and the discussions in the
previous paragraphs for a representative set of parameters, the staggered
patch schemes are accurate for macroscale viscous shallow water flows, about
different linearisation points, for different Reynolds numbers, and for different
patch scale ratios. Section 4.5 on the consistency of the staggered patch
schemes, quantitatively demonstrates the accuracy for a wider range of
parameters hM, uM,Re, N, r, n.

Figures 4.2.13 and 4.2.14 plot two patch scheme eigenvectors (modes)
for the viscous shallow water flows, that are qualitatively different from
the patch scheme modes of the general linear wave in Figs. 3.2.13 to 3.2.18.
These eigenvectors are computed for the numerical Jacobian (§3.2.5) of
the Spectral staggered patch scheme. The qualitative shapes of the eigen-
vectors in Figs. 4.2.13 and 4.2.14 are the same for the Spectral (§2.2.1)
and polynomial (§2.2.2) staggered patch schemes Square-p2, Square-p4,
Square-p6, and Square-p8. As p. 197 of this §4.2.6 explains, Fig. 4.2.13 plots
the macroscale advecting shear flow mode corresponding to an eigenvalue
in cluster 6 of Fig. 4.2.4. As p. 196 of this §4.2.6 explains, Fig. 4.2.14 plots
the steady uniform flow mode corresponding to the zero eigenvalues in
cluster 1 of Fig. 4.2.4.
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Figure 4.2.13. Eigenvector for eigenvalue λN
p = 0.0100 + 0.0269 i (cluster 6

in Fig. 4.2.4), for Spectral staggered patch scheme with N = 10, n = 6,
r = 0.01. Only v is nonzero, indicating advecting shear flow mode (static
spatial v-profile) without any dynamic energy exchange with height (h = 0).
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Figure 4.2.14. Eigenvector for eigenvalue λN
p = 0+0 i (cluster 1 in Fig. 4.2.4),

for Spectral staggered patch scheme with N = 10, n = 6, r = 0.01. For
uM = 0.1, the macroscale mode of steady (zero eigenvalue, hence temporally
constant) uniform flow (spatially constant height h and velocity u).
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4.3 Staggered patch schemes are not sensitive to
numerical roundoff errors

Despite the attractive characteristics, if the staggered patch schemes are
very sensitive to numerical roundoff errors, then they would not be suit-
able for practical numerical simulations using finite precision floating-point
arithmetic (Goldberg 1991). From both qualitative arguments and quanti-
tative evidence, this section shows that the staggered patch schemes are
not sensitive to numerical roundoff errors for the viscous shallow wa-
ter flows, except when the patches are too small relative to inter-patch
distance, and/or when the underlying microscale model is sensitive to nu-
merical roundoff errors. The quantitative evidence comes from comparing
the eigenvalues of analytic Jacobian and numerical Jacobians of a patch
scheme.

The staggered patch scheme eigenvalues λNE1
p (for both the microscale

and macroscale mdoes) of the numerically evaluated one-cell Jacobian
(§4.2.3) and the staggered patch scheme eigenvalues λN

p of the numerical
Jacobian (§4.2.5), visually agree in the complex plane eigenvalue plots of
§4.2.6 (i.e., the large magenta and blue circles in Fig. 4.2.2). That the nu-
merical and analytic eigenvalues (λN

p , λNE1
p ) of a patch scheme visually

agree indicates that the patch scheme is not sensitive to numerical roundoff
errors. This subsection first quantitatively compares the numerical and ana-
lytic eigenvalues of the staggered patch schemes to show that the staggered
patch schemes are not sensitive to numerical roundoff errors when the
sub-patch micro-grid interval is not too small (i.e., δ ≳ 10−5). The later part
of this subsection argues that even for very small sub-patch micro-grid
interval δ ≲ 10−5), the numerical roundoff errors are not due to the patch
schemes.

As in §3.4 for the general linear wave, this section for the viscous shallow
water flows assesses the sensitivity of the staggered patch scheme time
simulations to numerical roundoff errors, in general for all the possible
initial conditions by studying how sensitive the patch scheme eigenvalues are
to the numerical roundoff errors. Hence we compare the eigenvalues λNE1

p of
the analytically derived Jacobian (§4.2.3) with the eigenvalues λN

p of the
numerically computed Jacobian (§4.2.5) for a total of 7 776 patch scheme
cases as Table 4.3.1 lists.

This subsection uses the same definition (3.4.1) in p. 97 of §3.4 for the
microscale and macroscale numerical roundoff errors of the staggered patch
scheme eigenvalues. If the errors ϵNum

µ and ϵNum
M in (3.4.1) are negligibly

small, that is, if the numerical and analytic macroscale eigenvalues (λN
pM,
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Table 4.3.1. Section 4.3 studies the sensitivity of the patch scheme eigen-
values to numerical roundoff errors for all the 7 776 combinations of the
listed parameters.

Patch schemes Spectral, Square-p2, Square-p4, Square-p6,
and Square-p8

Mean height hM ∈ {0.1, 0.2, 0.3}

Mean velocity
uM ∈ {0, 0.4, 0.8}, vM = 0 (§4.6 shows that the
staggered patch schemes are invariant to flow
direction)

Reynold number Re ∈ {10, 50, 250, 1250}

Macro-grid intervals N ∈ {6, 10, 14} for Spectral scheme,
N ∈ {6, 10, 14, 18, 22, 26} for polynomial schemes.

Sub-patch micro-grid
intervals n ∈ {6, 10}

Patch scale ratio r ∈ {0.0001, 0.001, 0.01, 0.1}

λNE1
pM ) of a patch scheme agree very closely, then the patch scheme is not

sensitive to the numerical roundoff errors.
The eigenvalues in the numerical roundoff errors (3.4.1a) and (3.4.1b)

require separating the microscale and macroscale patch scheme eigenvalues
and the association between the analytic and numerical eigenvalues. In
the method of wavenumber-wise scale separation in §3.3, using the full-
domain microscale eigenvalues λNE1

mδ in place of the eigenvalues λA
mδ gives

the required eigenvalues as the following 3D arrays (analytic eigenvalues
only for N ⩽ 14 for Spectral patch scheme)

1. An N/2 ×N/2 × 3 array of macroscale analytic patch scheme eigen-
values λNE1

pM .

2. An N/2×N/2× 3 array of macroscale numerical patch scheme eigen-
values λN

pM.

3. An N/2 × N/2 × (ni
p − 3) array of microscale analytic patch scheme

eigenvalues λNE1
pM .

4. An N/2×N/2× (ni
p − 3) array of microscale numerical patch scheme

eigenvalues λN
pM.

The microscale and macroscale numerical roundoff errors in (3.4.1)
are defined for the eigenvalues of a patch scheme for one specific set of
parameters. We define the peak microscale and macroscale numerical roundoff
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Table 4.3.2. Maximum numerical roundoff errors over all the combinations
of the five patch schemes and hM, uM, Re and N in Table 4.3.1 for different
patch scale ratio r and n. The red colour highlights the largest value in each
column (based on full precision).

Patch scale ratio r

0.0001 0.001 0.01 0.1

max ϵNum
µ

n = 6 0.02 9 · 10−5 10−5 4 · 10−9

n = 10 0.07 0.0002 2 · 10−5 7 · 10−8

max ϵNum
M

n = 6 0.01 2 · 10−5 2 · 10−7 2 · 10−9

n = 10 0.01 2 · 10−5 10−8 2 · 10−10

errors as the maximum value of maxhM,uM
ϵNum
µ and maxhM,uM

ϵNum
M , over

the nine combinations of the mean flows hM ∈ {0.1, 0.2, 0.3} and uM ∈
{0, 0.4, 0.8} as Table 3.4.1 lists.

Nonnegligible numerical roundoff errors arise only for very small sub-patch
micro-grid intervals δ ≲ 10−5 (i.e., small r and large N, n). For each Reynolds
number Re ∈ {10, 50, 250, 1250}, 3D plots of peak numerical roundoff errors
maxhM,uM

ϵNum
µ and maxhM,uM

ϵNum
M versus (N, r), are qualitatively same as

Figs. 3.4.1 and 3.4.2 for general linear wave. Table 4.3.2 lists the maximum
peak numerical roundoff errors for different patch scale ratios r (i.e., peak
value for each r-slice in 3D plots similar to Figs. 3.4.1 and 3.4.2). The largest
microscale and macroscale numerical roundoff errors among the 7 776 cases
are 0.07 and 0.01 respectively, both corresponding to the smallest patch
scale ratio r = 0.0001. The trend in Table 4.3.2 and the omitted 3D plots
qualitatively agree with Table 3.4.2 and Figs. 3.4.1 and 3.4.2 of general
linear wave in that the combination of large N, large n and small r leads to
large numerical roundoff errors. For the viscous shallow water waves, the
largest numerical roundoff error for the macroscale eigenvalues is about
100 times larger than that of the general linear wave in Table 3.4.2. The
following are some key observations from Table 3.4.2 and 3D plots of peak
numerical roundoff errors versus (N, r) (omitted here as qualitatively same
as Figs. 3.4.1 and 3.4.2).

1. Both the microscale and macroscale peak numerical roundoff errors
maxhM,uM

ϵNum
µ , maxhM,uM

ϵNum
M , monotonically increase with increas-

ing number of macro-grid intervals N and decreasing patch scale
ratio r. For a staggered patch grid, increasing N, decreasing r, and
increasing n, all these lead to decreasing sub-patch micro-grid in-
terval δ = 2 (2π) r/(Nn) (for the non-dimensional domain size 2π).
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Table 4.3.3. Maximum numerical roundoff errors over all the combinations
of the five patch schemes and hM, uM, N and r in Table 4.3.1 for different
Reynolds number Re and n. The red colour highlights the largest value in
each column.

Patch scale ratio r

0.0001 0.001 0.01 0.1

max ϵNum
µ

Re = 10 0.07 0.0002 2 · 10−5 7 · 10−8

Re = 50 0.01 8 · 10−5 9 · 10−6 4 · 10−9

Re = 250 0.006 3 · 10−5 10−7 3 · 10−10

Re = 1250 0.001 5 · 10−6 2 · 10−7 4 · 10−10

max ϵNum
M

Re = 10 0.01 2 · 10−5 2 · 10−7 2 · 10−9

Re = 50 0.0003 10−6 2 · 10−8 2 · 10−10

Re = 250 9 · 10−6 5 · 10−8 10−9 3 · 10−11

Re = 1250 9 · 10−6 5 · 10−8 10−9 3 · 10−11

For example, for r = 0.001, N = 26, n = 10, sub-patch micro-grid
interval δ ≈ 5 · 10−5 Thus, as for the general linear wave, also for the
viscous shallow water flows, the nonnegligible numerical roundoff errors
arise only for very small sub-patch micro-grid intervals δ ≲ 10−5 (i.e., small
r and large N, n).

2. In general, except ϵNum
µ for N ≳ 22, r = 0.0001, the numerical roundoff

errors of all the five patch schemes are roughly the same, similar to
Figs. 3.4.1 and 3.4.2 for general linear wave. That is, the numerical
roundoff errors do not have a strong dependence on the specific
patch scheme. If the numerical roundoff errors were due to the patch
scheme, then the numerical roundoff errors must also depend on
the specific patch scheme, showing a clear trend. The lack of such
trends, among the patch schemes with different amounts of numerical
computations, indicates that the numerical roundoff errors are not due to
the patch schemes.

The numerical roundoff errors in the patch scheme eigenvalues decrease with
increasing Reynolds number. Table 4.3.3 lists the maximum numerical round-
off errors (max ϵNum

µ , max ϵNum
M ) for microscale and macroscale eigenvalues

over all the combinations of the five patch schemes and hM, uM, Re, N,
n and r that are listed in Table 4.3.1. In the columns of Table 4.3.3, the
decreasing numerical roundoff errors from top to bottom shows that the
numerical roundoff errors decrease with increasing Reynolds number Re.
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The numerical roundoff errors decrease roughly as ϵNum
µ , ϵNum

µ ∝ 1/Re. In
the rows of Table 4.3.3, the decreasing numerical roundoff errors from left
to right show that the numerical roundoff errors decrease with increasing
patch scale ratio r. The numerical roundoff errors decrease roughly as
ϵNum
µ , ϵNum

µ ∝ 1/r2. That is, the numerical roundoff errors decrease more
rapidly with increasing patch scale ratio than with increasing Reynolds
number. As Table 4.3.3 lists the maximum numerical roundoff errors for
all the combinations of the parameters in Table 4.3.3, even for large N ∼ 26

and n = 10, using appropriately large patch scale ratio removes the nonnegligible
numerical roundoff errors for small Reynolds number Re ≲ 10.

The patch scheme macroscale eigenvalues, which are of primary interest are
less sensitive to numerical roundoff errors than the corresponding microscale
eigenvalues. Based on Table 4.3.2, a preceding paragraph states that the
peak macroscale numerical roundoff errors maxhM,uM

ϵNum
M are about the

same as the peak microscale numerical roundoff errors maxhM,uM
ϵNum
µ (i.e.,

within the same order of magnitude). Table 4.3.3 shows that the maximum
numerical roundoff errors (over hM, uM, N) of microscale and macroscale
eigenvalues are about the same only for small Reynolds number Re ≲ 10.
Even for small Reynolds numbers, the numerical roundoff errors for macro-
scale eigenvalues are less than that of the microscale eigenvalues. Table 4.3.3
also shows that for large Reynolds number Re ≳ 250, the numerical round-
off errors for macroscale eigenvalues are ten to one hundred times smaller
than that of the microscale eigenvalues. Thus, the patch scheme macroscale
eigenvalues for viscous shallow water flows, despite being more sensi-
tive compared to the general linear wave, are less sensitive to numerical
roundoff errors than the corresponding microscale eigenvalues.

For shallow and/or slow viscous shallow water flows, patch scheme eigen-
values are less sensitive to numerical roundoff errors, than deep or fast flows. Ta-
bles 4.3.4 and 4.3.5 lists the maximum numerical roundoff errors (max ϵNum

µ ,
max ϵNum

M ) for microscale and macroscale eigenvalues respectively over
all the combinations of the five patch schemes and hM, uM, Re, N, n

and r that are listed in Table 4.3.1. Tables 4.3.4 and 4.3.5 show that the
maximum numerical roundoff errors for both microscale and macroscale
eigenvalues are the smallest for smallest mean height hM, for any Reynolds
number Re and mean velocity uM. Due to the dominance of nonlinearity,
shallow water flows are more challenging to simulate accurately. Being
least sensitive to numerical roundoff errors for shallow water flows, the stag-
gered patch schemes enable accurate multiscale simulation of the viscous shallow
water flows. Tables 4.3.4 and 4.3.5 show that for the smallest mean veloc-
ity uM ∼ 0, the maximum numerical roundoff errors are the smallest for all
large Reynolds number Re ∈ {10, 50, 250, 1250} (except for hM = 0.1, uM = 0
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Table 4.3.4. Maximum numerical roundoff errors max ϵNum
µ in microscale

eigenvalues over the five patch schemes and all the combinations of N, n, r
in Table 3.4.1, for different mean flow (hM, uM) and Reynolds number Re.
Red colour highlights the largest max ϵNum

µ in each column for each mean
height hM (based on full precision)

Reynolds number Re
10 50 250 1250

hM = 0.1, uM = 0 0.0007 0.0001 2 · 10−5 2 · 10−5

hM = 0.1, uM = 0.4 0.003 0.0005 0.0003 4 · 10−5

hM = 0.1, uM = 0.8 0.01 0.003 0.0006 0.0001

hM = 0.2, uM = 0 0.01 0.0005 10−5 2 · 10−5

hM = 0.2, uM = 0.4 0.02 0.006 0.0006 0.0001

hM = 0.2, uM = 0.8 0.02 0.005 0.002 0.0005

hM = 0.3, uM = 0 0.04 0.0008 0.0002 0.0002

hM = 0.3, uM = 0.4 0.07 0.01 0.001 0.0009

hM = 0.3, uM = 0.8 0.05 0.009 0.006 0.001

Table 4.3.5. Maximum numerical roundoff errors max ϵNum
M in macroscale

eigenvalues over the five patch schemes and all the combinations of N, n, r
in Table 3.4.1, for different mean flow (hM, uM) and Reynolds number Re.
Red colour highlights the largest max ϵNum

µ in each column for each mean
height hM (based on full precision)

Reynolds number Re
10 50 250 1250

hM = 0.1, uM = 0 0.0003 4 · 10−6 2 · 10−7 10−8

hM = 0.1, uM = 0.4 0.0001 3 · 10−6 3 · 10−7 5 · 10−8

hM = 0.1, uM = 0.8 0.0002 2 · 10−5 5 · 10−6 9 · 10−7

hM = 0.2, uM = 0 0.001 4 · 10−5 10−6 5 · 10−8

hM = 0.2, uM = 0.4 0.0007 5 · 10−5 10−5 10−6

hM = 0.2, uM = 0.8 0.002 0.0001 3 · 10−5 6 · 10−6

hM = 0.3, uM = 0 0.01 7 · 10−5 3 · 10−6 10−7

hM = 0.3, uM = 0.4 0.01 7 · 10−5 9 · 10−6 2 · 10−6

hM = 0.3, uM = 0.8 0.009 0.0003 5 · 10−5 9 · 10−6
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in Table 4.3.5). Thus, for shallow and/or slow viscous shallow water flows
(mean height hM ≲ 0.1 and/or mean velocity uM ≲ 0.4), patch schemes are
less sensitive to numerical roundoff errors than the deep or fast waves.

Similar to p. 100 of §3.4 for the general linear wave, the dependence
of the numerical roundoff errors on the physical parameters (Reynolds
number Re and mean flow hM, uM) and the lack of dependence of the
specific patch schemes show that the numerical roundoff errors are due to the
underlying microscale model, not due to the staggered patch scheme. Page 100
of §3.4 for general linear wave shows the strong dependence of numerical
roundoff errors in the patch scheme eigenvalues on the viscous diffusion
via the coefficient cV . The preceding paragraph in p. 211 using Tables 4.3.3,
4.3.4 and 4.3.5 shows that the numerical roundoff errors strongly depend
on the Reynolds number especially for Re ≲ 10 where viscous diffusion
is large. That is, similar to the general linear wave, the numerical roundoff
errors for the viscous shallow water strongly depends on the viscous diffusion.
Scaling arguments on the viscous shallow water flows confirm the inher-
ent sensitivity of the microscale model to numerical roundoff errors. For
example, the largest roundoff error is in the second derivative term con-
taining h2

M/(Re δ2). Thus, for small grid interval δ ≲ 10−5, large mean
height hM ≳ 0.2, and small Reynolds number Re ≲ 10, the nonnegligible
numerical roundoff errors in both microscale and macroscale patch scheme eigen-
values are due to the inherent sensitivity of the microscale model to numerical
roundoff errors. As in the discussion for the general linear wave in §3.4 of
§3.4, for viscous shallow water flows too a part of the numerical roundoff
errors are due to numerical computation of near-zero repeated eigenvalues.
The numerical roundoff errors in the numerical computation of near-zero
repeated eigenvalues are amplified by the microscale model’s sensitivity to
numerical roundoff errors.

As in §3.4 for the general linear wave, the numerical roundoff errors in
the patch scheme eigenvalues have the following main sources.

1. The numerical roundoff errors due to the numerical computations in
a patch scheme due to the patch coupling.

2. The numerical roundoff errors due to the numerical computations of
the underlying microscale model (e.g., the finite difference computa-
tions).

3. The numerical roundoff errors in numerically computing the eigen-
values of the patch scheme numerical Jacobian.

We take the numerical roundoff errors in numerically computing the Jaco-
bian (§3.2.5) of a patch scheme, to be small compared to the much higher
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number of numerical computations in the patch coupling, sub-patch micro-
scale model and the eigenvalue computation. The preceding paragraphs
establish the contribution of the following extreme parameters to the non-
negligible numerical roundoff errors (e.g., ϵNum

µ , ϵNum
M > 10−5) in the patch

scheme eigenvalues (in the order of roughly decreasing dominance):

1. very small sub-patch micro-grid intervals δ ≲ 10−5, due to combi-
nation of small patch scale ratio r ≲ 0.0001, many macroscale inter-
vals N ≳ 26, and many sub-patch micro-grid intervals n ≳ 10;

2. small Reynolds number Re ≲ 10;

3. large mean height hM ≳ 0.2.

The following listing summarises the study of numerical sensitivity in
this subsection.

1. For patch scale ratios r ≳ 0.001 the patch scheme eigenvalue are not
sensitive to numerical roundoff errors (columns 2-4 in Table 4.3.3).
Hence for large r the staggered patch schemes are not sensitive to
numerical roundoff errors.

2. For small patch scale ratios r ≲ 0.001 the patch scheme eigenvalues
are sensitive to numerical roundoff errors (column 1 in Table 4.3.3).
But this sensitivity to numerical roundoff errors for small sub-patch
micro-grid interval δ ≲ 10−5 is due to both the inherent sensitivity of
the microscale model (due to viscous diffusion Re ≲ 10) and the sen-
sitivity of eigenvalue computation of near-zero repeated eigenvalues.
Hence, even for small patch scale ratios, the computations of staggered
patch schemes are not sensitive to numerical roundoff errors.

4.4 Staggered patch schemes are not artificially
unstable for appropriate patch grids

In contrast to the general linear wave, the viscous shallow water flows
have physical instability, that is, the stability of the full-domain microscale
model depends upon the physical parameters (Reynolds number Re, mean
flow hM, uM, vM). Such physical instability is evident from the positive real
part eigenvalues of the full-domain microscale model in Fig. 4.2.6 (clus-
ters 1, 2) of §4.2.6. Thus, for viscous shallow water flows, a positive real part
of the patch scheme eigenvalue does not necessarily mean that the patch
scheme computations are erroneous or unphysical. That is, a good patch
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scheme must reflect the stability/instability of the underlying microscale
model depending upon the physical parameters (Re, hM, uM, vM), but with-
out any additional/artificial instability. Hence, we define artificial instability as
a characteristic of a patch scheme to be more unstable than the corresponding
full-domain microscale model. That is, a patch scheme is artificially unstable
when the maximum real part of the patch scheme eigenvalues is both positive and
larger than the maximum real part of the corresponding full-domain microscale
model. To quantitatively study the patch scheme artificial instability, we
define the condition of no artificial instability as

maxℜ(λN
p ) ⩽ maxℜ(λNE1

mδ ) , (4.4.1)

within a tolerance of 10−5.
As p. 197 of §4.2.6 states, in contrast to the eigenvalues of the general

linear wave in §3.2.6, due to the nonlinearity, the eigenvalues of the viscous
shallow water flows depend on the mean height hM and the mean velocity hM, vM.
That is, the eigenvalues and hence the stability of the viscous shallow water
flows depend on the linearisation point (hM, uM, vM). So, §4.4.1 shows that
for an appropriate patch grid the Spectral patch scheme is not artificially
unstable, for a wide range of physical parameters (Reynolds number Re, mean
height hM, and horizontal mean velocity (um, vM)) for a representative set
of patch grid parameters (number of macro-grid intervals N, number of sub-
patch micro-grid intervals n, patch scale ratio r).

Page 217 of §4.4.1 establishes that the patch scheme artificial instability
arises only for the sub-patch microscale modes. That is, the patch scheme
macroscale modes which are of primary interest, do not have artificial
instability. Section 4.4.2 more specifically shows that artificial instabilities of
the patch schemes are due to sub-patch microscale modes with microscale
structure modulated over the macroscale of large wavenumbers.

Section 4.4.3 shows that the five staggered patch schemes are not arti-
ficially unstable, for a wide range of patch grid parameters (macro-grid inter-
vals N, sub-patch micro-grid intervals n, and patch scale ratio r), for a repre-
sentative set of physical parameters (Reynolds number Re, mean height hM,
and horizontal mean velocity (um, vM) indicated by nine black squares in
Figs. 4.4.5 to 4.4.7 of §4.4.1). Section 4.4.3 also gives a heuristic general rule to
get rid of artificial instability, when a patch scheme has artificial instability
for some combinations of system and patch grid parameters.
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4.4.1 Spectral staggered patch scheme is not artificially
unstable for a range of physical parameters

This subsection shows that for an appropriate patch grid the Spectral

staggered patch scheme is not artificially unstable for a wide range of physical
parameters (Reynolds number Re, mean height hM, horizontal mean veloc-
ity uM) for a representative set of patch grid parameters (number of macro-grid
intervals N ∈ {10, 14}, number of sub-patch micro-grid intervals n ∈ {6, 10},
patch scale ratio (r ∈ {0.0001, 0.001}). That is, this subsection shows that for
a wide range of physical parameters and a representative set of patch grid
parameters, the condition of no artificial instability (4.4.1) holds (within a
tolerance of 10−5).

This subsection studies the presence or absence of artificial instability via
the Spectral patch scheme eigenvalues for a total of 21 504 cases consisting
of all the combinations of the physical parameters

1. mean height hM ∈ {0.025, 0.05, . . . , 0.035, 0.4},

2. mean velocity uM ∈ {0, 0.05, . . . , 0.95, 1}, vM = 0 (§4.6 shows that the
staggered patch schemes are invariant to flow direction),

3. Reynold number Re ∈ {10, 50, 250, 1250},

and the patch grid parameters

• number of macroscale intervals N ∈ {10, 14},

• number of sub-patch micro-grid intervals n ∈ {6, 10},

• patch scale ratio r ∈ {0.0001, 0.001, 0.01, 0.1}.

For some combinations of the physical parameters (Re, hM, (um, vM))
and the patch grid parameters (N, n, r), some patch scheme modes are artifi-
cially unstable. That is, some patch scheme modes are unstable (positive real
part eigenvalues) while the corresponding modes of the full-domain micro-
scale model are stable (no positive real part eigenvalues). For example, in
Figs. 4.4.1 and 4.4.2, the clusters 1, 2 and the clusters 1–4 (blue and magenta
circles on the right) respectively, contain the eigenvalues of artificial insta-
bility as for these clusters

[
ℜ(λNE1

p ) = ℜ(λN
p )

]
>

[
maxℜ(λNE1

mδ ) = 0
]
; that is,

the condition of no artificial instability (4.4.1) does not hold. Decreasing
the patch scale ratio r removes such artificial instability of the staggered patch
schemes, as evident from the nonpositive real part patch scheme eigenvalues
in Fig. 4.2.6 of §4.2.6 for r = 0.01, compared to those in Fig. 4.4.2 for r = 0.1,
keeping all other parameters the same.
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Figure 4.4.1. Spectral patch scheme (N = 10, n = 6, r = 0.1) has artificial
instability for viscous shallow water flows for (hM, uM, vM) = (0.2, 0.3, 0),
in contrast to Fig. 4.2.5 for same parameters except r = 0.01. Maximum real
parts maxℜ(λNE1

mδ ) = 0, maxℜ(λNE1
p ) = 0.062.
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Figure 4.4.2. Spectral patch scheme (N = 10, n = 6, r = 0.1) has artificial
instability for viscous shallow water flows for (hM, uM, vM) = (0.2, 0.8, 0),
in contrast to Fig. 4.2.6 for same parameters except r = 0.01. Maximum real
parts maxℜ(λNE1

mδ ) = 0.0021, maxℜ(λNE1
p ) = 0.62 (point d in Fig. 4.4.7c).
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The artificial instability of the patch schemes arises only for the sub-patch
microscale modes. That is, the patch scheme macroscale modes which are of
primary interest, do not have artificial instability. For example, consider the
patch scheme eigenvalues in Figs. 4.4.1 and 4.4.2. In Figs. 4.4.1 and 4.4.2,
the clusters 1, 2 and the clusters 1–4 respectively, contain the eigenvalues of
artificial instability. That is, for these clusters, the condition of no artificial
instability (4.4.1) does not hold as

[
ℜ(λNE1

p ) = ℜ(λN
p )

]
>

[
maxℜ(λNE1

mδ ) = 0
]
.

In Figs. 4.4.1 and 4.4.2, each of the patch scheme eigenvalues λNE1
p in

clusters 3–6 and clusters 5–12 respectively, agree with the corresponding
eigenvalues λNE1

mδ of the full-domain model that are evaluated for all the
N2/4 = 25 macroscale wavenumbers (kx, ky) where kx, ky ∈ {0,±1,±2} re-
solved by a patch grid. That is, in Figs. 4.4.1 and 4.4.2, the clusters 3–6
and clusters 5–12 respectively, contain the eigenvalues of all the nI

p = 75

macroscale modes (nI
p = 3N2/4 as in p. 193 of §4.2.6). Figure 4.4.1 shows

that the macroscale modes are not artificially unstable as for the eigen-
values in the clusters 3–6, maxℜ(λNE1

p ) = maxℜ(λNE1
mδ ) = 0. Figure 4.4.2

shows that the macroscale modes are not artificially unstable as for the
eigenvalues in the clusters 5–12, maxℜ(λNE1

p ) = maxℜ(λNE1
mδ ) = 0.0021. The

large imaginary parts of the artificially unstable modes, in clusters 1, 2 and
clusters 1–4 in Figs. 4.4.1 and 4.4.2 respectively, compared to the imaginary
parts of the corresponding macroscale eigenvalues in the clusters 3–6 and
clusters 5–12 respectively, also indicate that artificially unstable modes must
be microscale modes. The eigenvector plots in Figs. 4.4.3 and 4.4.4 show
the artificially unstable sub-patch microscale modes with microscale struc-
ture modulated over the macroscale of wavenumbers (kx, ky) = (1, 0), (2, 0)

respectively, for the Spectral staggered patch scheme. In the eigenvector
plot of Figs. 4.4.3 and 4.4.4, the grey curves connecting the patch centre
values (patch mean) indicate the unmodulated macroscale wave. The eigen-
vector plots in Figs. 4.4.3 and 4.4.4 corresponding to the eigenvalues of
the artificially unstable modes in cluster 2 of Fig. 4.4.2 definitively confirm
that the patch scheme artificially unstable modes are due to sub-patch microscale
modes with microscale structure modulated over the macroscale. More specifi-
cally, §4.4.2 shows that artificial instabilities of the patch schemes are due
to sub-patch microscale modes with microscale structure modulated over
the macroscale of large wavenumbers.
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Figure 4.4.3. Eigenvector for eigenvalue λNE1
p = λN

p = 0.52 − 4.3237 i (clus-
ter 1 in Fig. 4.4.2) corresponding to artificial instability of Spectral stag-
gered patch scheme (N = 10, n = 6, r = 0.1) with (kx, ky) = (1, 0) for viscous
shallow water flows with Re = 250, (hM, uM, vM) = (0.2, 0.8, 0).
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Figure 4.4.4. Eigenvector for eigenvalue λNE1
p = λN

p = 0.62 − 4.2439 i
(cluster 1 in Fig. 4.4.2) corresponding to maximum artificial instability
of Spectral patch scheme (N = 10, n = 6, r = 0.1) with (kx, ky) = (2, 0) for
viscous shallow water flows with Re = 250, (hM, uM, vM) = (0.2, 0.8, 0).
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Figure 4.4.5. Maximum real part of the eigenvalues for, λN
p of Spectral

patch scheme (N = 10, n = 6, r = 0.001), λNE1
mδ of full-domain microscale

model, and λNE1
PDE of the viscous shallow water PDE, about different mean

flow (hM, uM) with vM = 0 and bed inclination θ = 0◦. Increasing Re
decreases physical instability. No artificial instability for wide range of mean
flow {(hM, uM) : hM ∈ [0.025, 0.4], uM ∈ [0, 1]} and Re ∈ {10, 50, 250, 1250}.

(a) Reynolds number Re = 10. No ar-
tificial instability, as maxℜ(λNp ) = 0 or
maxℜ(λNp ) = maxℜ(λNE1

mδ ) > 0. Peak
values (blue plus and red circle) are
maxℜ(λNp ) = 0.059 = maxℜ(λNE1

mδ ).
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(b) Reynolds number Re = 50. No
artificial instability. Peak values are
maxℜ(λNp ) = 0.019 = maxℜ(λNE1

mδ ).
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(c) Reynolds number Re = 250. No
artificial instability. Peak values are
maxℜ(λNp ) = 0.0041 = maxℜ(λNE1

mδ ).
Points a–d hM = 0.2, uM= 0, 0.1, 0.4, 0.8.
Points e-c-f hM = 0.1, 0.2, 0.3, uM = 0.1.
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(d) Reynolds number Re = 1250. No
artificial instability. Peak values are
maxℜ(λNp ) = 0.00084 = maxℜ(λNE1

mδ ).
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Each subplot in Figs. 4.4.5 to 4.4.7 plot the maximum real part of
the following eigenvalues for viscous shallow water flows, linearising
about 336 cases of mean flow (hM, uM, vM), for 16 mean heights hM ∈
{0.025, 0.05, . . . , 0.035, 0.4}, and 21 mean velocities uM ∈ {0, 0.05, . . . , 0.95, 1}

with vM = 0 and bed inclination θ = 0◦.

1. Eigenvalues λN
p of the Spectral patch scheme.

2. Eigenvalues λNE1
mδ of full-domain microscale model with same value

of microscale grid interval δmδ as the sub-patch micro-grid interval δ.
That is, for the non-dimensional domain size 2π, the full-domain
micro-grid interval δmδ ≡ 2π/nmδ = δ ≡ l/n ≡ 2 (2π) r/(Nn) as
r = l/(2∆) and ∆ = 2π/N, where nmδ is the number of full-domain
microscale grid intervals and n is the number of sub-patch micro-grid
intervals. When the context is clear we drop the subscript mδ in nmδ

and δmδ for the case of full-domain microscale model.

3. Eigenvalues λNE1
PDE of the viscous shallow water PDE.

The analytic eigenvalues λNE1
mδ and λNE1

PDE are numerically evaluated for all
the N2/4 macroscale wavenumbers (kx, ky) resolved on a corresponding finite
staggered patch grid with N×N macro-grid intervals. The following listing
explains the various visual elements in Figs. 4.4.5 to 4.4.7.

• For each of the subplot, the blue plus shows the maximum value of
maxℜ(λN

p ) and the red circle shows the maximum value of maxℜ(λNE1
mδ ).

• The nine black squares show the chosen subset of the mean flow
{(hM, uM) : hM ∈ {0.1, 0.2, 0.3}, uM ∈ {0.0, 0.4, 0.8}} for further study of
stability (§4.4.1) and consistency (§4.5).

• The annotated points a–d in the subplots for Re = 250, correspond
to increasing mean velocity uM = 0, 0.1, 0.4, 0.8 keeping hM = 0.2,
vM = 0. For patch scale ratio r = 0.01, the complex plane eigenvalue
plots in Figs. 4.2.3 to 4.2.6 of §4.2.6 correspond to these four points a–d.
The annotated points e, c, f in the subplots for Re = 250, correspond
to increasing mean height hM = 0.1, 0.2, 0.3 keeping uM = 0.1, vM = 0.
For r = 0.01, the complex plane eigenvalue plots in Figs. 4.2.7, 4.2.4
and 4.2.8 of §4.2.6 correspond to these three points e, c, f.

• The four black lines at the bottom of the subplots for Re = 10, are
the set of equilibrium points (hM, uM) of the viscous shallow water
flows. For Reynolds number Re = 10 with v = vM = 0 and the bed
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inclination angles θ = 0, 5, 10, 15, the equilibrium solution (4.1.12)
gives the equilibrium velocity u = uM = Regx/3 ≡ Re sin(θ)/3 =

0, 0.29, 0.58, 0.86 respectively. The four lines in the subplots for Re =
10 correspond to these four equilibrium velocities. In the subplots
for Reynolds number Re ∈ {50, 250, 1250} there are no black lines of
equilibrium points (hM, uM), because equilibrium velocities are larger
than one and outside the plot limits uM ∈ [0, 1].

For small patch scale ratio r ≲ 0.001, the staggered patch schemes do not
have any artificial instability over a wide range of mean flow and Reynolds
numbers. Figure 4.4.5 plot the maximum real part of the eigenvalues
versus (hM, uM), for the Spectral staggered patch scheme with a small
patch scale ratio r = 0.001. The maximum real part of the eigenvalues
in Fig. 4.4.5 corresponds to a staggered patch grid with 10 × 10 macro-
grid intervals (N = 10) and each patch containing 6 × 6 sub-patch micro-
grid intervals (n = 6). Figure 4.4.5 shows that either maxℜ(λN

p ) = 0 or
maxℜ(λN

p ) = maxℜ(λNE1
mδ ) > 0 (within a tolerance of 10−5), over the chosen

wide range of mean flows (hM ∈ [0.025, 0.4], uM ∈ [0, 1]) and Reynolds
numbers (Re ∈ {10, 50, 250, 1250}). That is, the condition of no artificial
instability (4.4.1) holds. All the plots of the maximum real parts of the
Spectral patch scheme eigenvalues versus (hM, uM) are identical to Fig-
ure 4.4.5 number of macro-grid intervals N ∈ {10, 14}, number of sub-patch
micro-grid intervals n ∈ {6, 10}, patch scale ratio (r ∈ {0.0001, 0.001}. Thus,
for small patch scale ratio r ≲ 0.001, the Spectral staggered patch scheme does
not have any artificial instability over a wide range of mean flows and Reynolds
numbers. As §4.4.3 shows, this characteristic of no artificial instability for
small patch scale ratio holds also for the polynomial patch schemes.

To quantify the physical and artificial instability, we define the fol-
lowing two terms over 336 cases of mean flow (hM, uM, vM), for 16 mean
heights hM ∈ {0.025, 0.05, . . . , 0.035, 0.4}, and 21 horizontal mean veloci-
ties uM ∈ {0, 0.05, . . . , 0.95, 1}.

1. The peak physical instability is maxhM,uM

[
maxℜ(λNE1

mδ )
]
, that is, the

peak value of maxℜ(λNE1
mδ ) (red circle) for each of the subplots.

2. The peak artificial instability is maxhM,uM

[
maxℜ(λN

p ) −maxℜ(λNE1
mδ )

]
,

that is, the difference between the peak value of maxℜ(λN
p ) (blue

plus) and the peak value of maxℜ(λNE1
mδ ) (red circle) for each of the

subplots.
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Figure 4.4.6. Maximum real part of the eigenvalues for, λN
p of Spectral

patch scheme (N = 10, n = 6, r = 0.01), λNE1
mδ and λNE1

PDE of the viscous
shallow water flows, about different mean flow (hM, uM) with vM = 0 and
θ = 0◦. No artificial instability for Reynolds number Re ∈ {10, 50}. Increasing
Re increases the (hM, uM)-region of artificial instability for Re ∈ {250, 1250}.

(a) Reynolds number Re = 10. Identical
to Fig. 4.4.5a of r = 0.001 and Spectral

patch scheme has no artificial instability.
Peak values (blue plus and red circle)
are maxℜ(λNp ) = 0.059 = maxℜ(λNE1

mδ ).
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(b) Reynolds number Re = 50. Identical
to Fig. 4.4.5b of r = 0.001 and Spectral

patch scheme has no artificial instability.
Peak values (blue plus and red circle)
are maxℜ(λNp ) = 0.019 = maxℜ(λNE1

mδ ).
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(c) Re = 250. Artificial instability (i.e.,
maxℜ(λNp ) > maxℜ(λNE1

mδ ) ⩾ 0) for
very shallow mean flow hM ≲ 0.05 and
large uM ≳ 0.3; maxℜ(λNp ) = 0.52,
maxℜ(λNE1

mδ ) = 0.0041.
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(d) Re = 1250. Artificial instability (i.e.,
maxℜ(λNp ) > maxℜ(λNE1

mδ ) ⩾ 0) for
moderately shallow mean flow hM ≲ 0.25

and large uM ≳ 0.3; maxℜ(λNp ) = 2.66,
maxℜ(λNE1

mδ ) = 0.00084.
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Figure 4.4.7. Maximum real part of the eigenvalues for, λN
p of Spectral

patch scheme (N = 10, n = 6, r = 0.1), λNE1
mδ and λNE1

PDE of the viscous shallow
water flows, about different mean flow (hM, uM) with vM = 0 and θ = 0◦.
No artificial instability only for Re = 10. Artificial instability spreads to
smaller Re with increasing r, Figs. 4.4.5 to 4.4.7 for r = 0.001, 0.01, 0.1.

(a) Reynolds number Re = 10. Identical
to Fig. 4.4.5a of r = 0.001 and Fig. 4.4.6a
of r = 0.01; no artificial instability. Peak
values (blue plus and red circle) are
maxℜ(λNp ) = 0.059 = maxℜ(λNE1

mδ ).
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(b) Re = 50. Artificial instability (i.e.,
maxℜ(λNp ) > maxℜ(λNE1

mδ ) ⩾ 0) for
very shallow mean flow hM ≲ 0.1 and
large uM ≳ 0.3; maxℜ(λNp ) = 0.11,
maxℜ(λNE1

mδ ) = 0.019.
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(c) Re = 250. Artificial instability (i.e.,
maxℜ(λNp ) > maxℜ(λNE1

mδ ) ⩾ 0) for
nearly all mean height hM ∈ [0.025, 0.4]

and large uM ≳ 0.3; maxℜ(λNp ) = 0.75,
maxℜ(λNE1

mδ ) = 0.0041.
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(d) Re = 1250. Artificial instability
(i.e., maxℜ(λNp ) > maxℜ(λNE1

mδ ) ⩾ 0)

for all mean height hM ∈ [0.025, 0.4]

and large uM ≳ 0.3; maxℜ(λNp ) = 2,
maxℜ(λNE1

mδ ) = 0.00084.
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For patch scale ratio r ∼ 0.1, the staggered patch schemes are stable for
small mean velocity uM ≲ 0.3 where the underlying full-domain microscale
model is stable. Figures 4.4.6 and 4.4.7 plot the maximum real part of the
eigenvalues versus (hM, uM), for the Spectral staggered patch scheme
(N = 10, n = 6) with patch scale ratios r = 0.01, 0.1 respectively. Figures 4.4.6
and 4.4.7 show that the Spectral patch scheme is stable (maxℜ(λNE1

p ) ≯ 0)
even for non-small patch scale ratio r = 0.01, 0.1, for small mean veloc-
ity uM ≲ 0.3 where the underlying full-domain microscale model is stable
(maxℜ(λNE1

mδ ) ≯ 0). Similarly, for small mean velocity uM ≲ 0.3, all the
four polynomial staggered patch schemes are also stable for patch scale
ratio r ∈ {0.0001, 0.001, 0.01, 0.1} for hM ∈ [0.025, 4].

For patch scale ratio r ≳ 0.01, the staggered patch schemes have artificial
instability for some mean flows (hM, uM) for the combination of large mean
velocity uM and large Reynolds number Re. Figures 4.4.6 and 4.4.7 show
that the Spectral patch scheme (N = 10, n = 6, r = 0.01, 0.1) has arti-
ficial instability maxℜ(λNE1

p ) > maxℜ(λNE1
mδ ) (condition (4.4.1) does not

hold) for the combination of large mean velocity uM ≳ 0.3 and large
Reynolds number Re ≳ 10. For example, Figs. 4.4.1 and 4.4.2 show the
artificial instability in the complex plane plots for (hm, uM) = (0.2, 0.3) and
(hm, uM) = (0.2, 0.8) (the point d in Fig. 4.4.7c) respectively, with Reynolds
number Re = 250 for the Spectral patch scheme (N = 10, n = 6, r = 0.1).
The patch scheme artificial instability in Fig. 4.4.1 arises as maxℜ(λN

p ) =

maxℜ(λNE1
p ) = 0.062 > maxℜ(λNE1

mδ ) = 0. Figure 4.4.2 for r = 0.1 shows
patch scheme artificial instability, in contrast to Fig. 4.2.6 for the same
parameters except r = 0.01. Compared to the maxℜ(λNE1

p ) = 0.0021

(physical instability) in Fig. 4.2.6 for r = 0.01, Fig. 4.4.2 for r = 0.1 has
maxℜ(λNE1

p ) = 0.62 > maxℜ(λNE1
mδ ) = 0.0021 (artificial instability).

Figures 4.4.6 and 4.4.7 illustrate the following key trends about the patch
scheme stability. All the trends in the following listing also hold for the
four polynomial patch schemes (§2.2.2), we omit the corresponding figures
for brevity.

• For small Reynolds numbers Re ∼ 10, the Spectral patch scheme
does not have any artificial instability (condition (4.4.1) holds) for
hM ∈ [0.025, 0.4], uM ∈ [0, 1], and patch scale ratio r ∈ {0.001, 0.01, 0.1}.

• Increasing Reynolds number Re increases the peak artificial instabil-
ity. For example, Figs. 4.4.7a to 4.4.7d for patch scale ratio r = 0.1

show that for Reynolds number Re = 10, 50, 250, 1250 the peak artifi-
cial instability, maxhM,uM

[
maxℜ(λN

p ) −maxℜ(λNE1
mδ )

]
= 0, 0.11, 0.75, 2

respectively.
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Figure 4.4.8. Variation of Spectral patch scheme peak artificial instability
maxhM,uM

[
maxℜ(λN

p ) −maxℜ(λNE1
mδ )

]
(over hM ∈ [0.025, 0.4], uM ∈ [0, 1]),

with the Reynolds number Re and the patch scale ratio r. Artificial instabil-
ity increases with increasing sub-patch micro-grid intervals n for large r

and Re. Artificial instability decreases, with decreasing Reynolds num-
ber Re, and with decreasing patch scale ratio r.
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• Increasing Re from Re ≈ 10 causes a small region of artificial insta-
bility to develop for the Spectral patch scheme for the very shallow
flow (small hM) with large mean velocity uM (Figs. 4.4.6c and 4.4.7b).
Increasing Re further from Re ≈ 50 causes the region of artificial in-
stability to grow large towards larger values of mean height hM and
smaller values of mean velocity uM (Figs. 4.4.6d and 4.4.7d).

• Increasing Re also causes the hM for peak instability of the Spectral

patch scheme maxhM

(
maxℜ(λN

p )
)

to move towards larger values of
hM; but the uM for peak instability maxuM

(
maxℜ(λN

p )
)

remains the
same at uM ≈ 0.7 and unaffected by the Reynolds number.

The patch scheme artificial instability for large Reynolds numbers is removed
by appropriately decreasing the patch scale ratio r. Figures 4.4.6 and 4.4.7 show
that the Spectral patch scheme (N = 10, n = 6, r = 0.01, 0.1) has artificial
instability. Figures 4.4.5 to 4.4.7 show how the variation of maximum
real part of eigenvalues with hM, uM depend on Reynolds number Re ∈
{10, 50, 250, 1250} and patch scale ratio r ∈ {0.001, 0.01, 0.1}, for the Spectral

patch scheme (N = 10, n = 6). Figures 4.4.5 to 4.4.7 shows the following
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key trends about the stability of the Spectral patch scheme, all of which
also hold for the four polynomial patch schemes (§2.2.2).

• For small mean velocity uM ∈ [0, 0.3] where the underlying full-
domain microscale model is stable (maxℜ(λNE1

mδ ) ≯ 0), the Spectral

patch scheme is also stable for hM ∈ [0.025, 0.4], Reynolds num-
ber Re ∈ {10, 50, 250, 1250} and patch scale ratio r ∈ {0.001, 0.01, 0.1}.

• Similar to the trend with increasing Re, increasing patch scale ra-
tio r increases the peak artificial instability. For example, Figs. 4.4.5c,
4.4.6c and 4.4.7c for Reynolds number Re = 250 show that for increas-
ing patch scale ratio r = 0.001, 0.01, 0.1 the peak artificial instability,
maxhM,uM

[
maxℜ(λN

p ) −maxℜ(λNE1
mδ )

]
= 0, 0.52, 0.75 respectively.

• Similar to the trend with increasing Re, increasing r from r ≈ 0.001

causes a small region of artificial instability to develop for the Spectral
patch scheme for the very shallow flow (small hM) with large mean
velocity uM. Increasing r further from r ≈ 0.01 causes the region
of artificial instability to grow large for the Spectral patch scheme
towards larger values of mean height hM and smaller values of mean
velocity uM.

• Similar to the trend with increasing Re, increasing r also causes the hM

for peak instability of the Spectral patch scheme maxhM

(
maxℜ(λN

p )
)

to move towards larger values of hM; but the uM for peak instability
maxuM

(
maxℜ(λN

p )
)

remains the same at uM ≈ 0.7 and unaffected by
the Reynolds number.

In summary, both increasing Reynolds number Re and increasing patch
scale ratio r cause the patch scheme artificial instability to develop and
spread to larger regions of mean flow (hM, uM). In other words, increas-
ing Re causes artificial instability to develop and grow, but decreasing r

causes the artificial instability to shrink and disappear. Figure 4.4.8 also
shows this trend of artificial instability by plotting the peak artificial insta-
bility maxhM,uM

[
maxℜ(λN

p ) −maxℜ(λNE1
mδ )

]
(over hM ∈ [0.025, 0.4], uM ∈

[0, 1]), versus Reynolds number Re ∈ {10, 50, 250, 1250} and the patch scale
ratio r ∈ {0.0001, 0.001, 0.01, 0.01, 0.1}. Thus, the patch scheme artificial instabil-
ity for large Reynolds numbers is removed by appropriately decreasing the patch
scale ratio r.

Keeping the domain size 2π, patch scale ratio r, and the number of
macro-grid intervals N, increasing the number of sub-patch micro-grid inter-
vals n increases the artificial instability of the Spectral patch scheme for non-
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small patch scale ratio. The preceding two paragraphs show that both increas-
ing Reynolds number Re and increasing patch scale ratio r cause the patch
scheme artificial instability to develop and spread to larger regions of mean
flow (hM, uM). Figure 4.4.8 shows the same trend by plotting peak artificial
instability maxhM,uM

[
maxℜ(λN

p ) −maxℜ(λNE1
mδ )

]
(over hM ∈ [0.025, 0.4],

uM ∈ [0, 1]), with the Reynolds number Re ∈ {10, 50, 250, 1250} and the
patch scale ratio r ∈ {0.0001, 0.001, 0.01, 0.01, 0.1} for different number of
sub-patch micro-grid intervals n ∈ {6, 10}. Figure 4.4.8 shows that for patch
scale ratio r ≳ 0.01, increasing n increases the peak artificial instability of
the Spectral patch scheme. This trend of increasing peak artificial insta-
bility with increasing n, is large for large Reynolds numbers Re ≳ 250. But
p. 239 of §4.4.3 shows that increasing the number of sub-patch micro-grid
intervals to n = 10 removes the artificial instability of the polynomial patch
schemes due to small patch scale ratio r and/or large number macro-grid
intervals N.

Overall the following listing summarises the stability characteristics
of the Spectral patch scheme for viscous shallow water flows. All the
following characteristics also hold for all the four polynomial patch schemes
(§2.2.2).

1. For small mean velocity uM ∈ [0, 0.2] where the underlying full-
domain microscale model is stable (maxℜ(λNE1

mδ ) ⩽ 0), the Spectral

patch scheme is stable for a wide range of patch scale ratio r ∈
[0.001, 0.1] and Reynolds number Re ∈ [10, 1250].

2. For large mean velocity uM ≳ 0.2 and large Reynolds number Re > 10,
the Spectral patch scheme with patch scale ratio r ≳ 0.01 has artifi-
cial instability for both when the underlying full-domain microscale
model is stable and physically unstable.

3. For large mean velocity uM ≳ 0.2, the Spectral patch scheme with
patch scale ratio r ≳ 0.01 has artificial instability for when the under-
lying full-domain microscale model is both stable and physically un-
stable. Increasing the Reynolds number Re ≳ 10 causes artificial insta-
bility to develop and spread to larger regions of mean flow (hM, uM).
But decreasing patch scale ratio r ≲ 0.01 causes the artificial instability
to shrink and disappear.

4. The artificial instability of the patch schemes arises only for the sub-
patch microscale modes.

5. Keeping the domain size 2π, patch scale ratio r, and the number of
macro-grid intervals N, increasing the number of sub-patch micro-



§4.4 Staggered patch schemes are not artificially unstable for appropriate patch grids 231

grid intervals n increases the patch scheme artificial instability for
non-small patch scale ratio.

As §4.6 establishes, the patch schemes are invariant (within discretisa-
tion errors) with different flow angle α for macroscale waves, where q =√
u2
M + v2M, uM = q cos(α) and vM = q sin(α). Hence, whereas all the points

in the preceding summary are based on the Spectral patch scheme over a
wide range of mean height hM and the mean velocity uM keeping vm = 0,
they also hold for the resultant mean velocity q =

√
u2
M + v2M (uM, vM)

along any orientation. Thus, for an appropriate patch grid the Spectral

patch scheme is not artificially unstable, for a wide range of physical parame-
ters (Reynolds number Re, mean height hM, and horizontal mean veloc-
ity (um, vM)).

4.4.2 Dominant artificial instabilities are due to sub-patch
microscale structure modulated over non-small
macroscale wavenumbers

Page 217 of §4.4.1 establishes that an instability arises only for the sub-
patch microscale modes. This subsection shows the dependence of physical
and artificial instability on the macroscale wavenumbers and shows that
dominant artificial instabilities of the patch schemes are due to sub-patch
microscale whose microscale structure is modulated over non-small macro-
scale wavenumbers. The analysis in this subsection uses Spectral patch
scheme, but all qualitative characteristics in this subsection also hold for
other patch grid parameters (N,n, r) and for the four polynomial patch
schemes (§2.2.2).

Increasing the mean velocity uM increases monotonically the physical instabil-
ity of the viscous shallow water. Figure 4.4.9a plot wavenumber-wise contribu-
tion to the physical instability maxℜ(λNE1

mδ ) for the full-microscale domain sys-
tem, for the macroscale wavenumbers resolved by a patch scheme with N =

10 macro-grid intervals and each patch containing n = 6 sub-patch intervals.
Figure 4.4.9a shows that increasing mean velocity uM increases physical
instability monotonically, with two peaks at (kx, ky) = (±1, 0) to each side
of a valley at kx = 0 (for vM = 0). For nonzero vM, the valley is along the
line kx = −(vM/uM)ky. That is, the maximum physical instability is due to
large waves corresponding to two small macroscale wavenumbers (kx, ky)

on the domain moving along the mean velocity (uM, vM), with smallest two
macroscale wavenumber (kx, ky) on each side of the valley in Fig. 4.4.9a.

The physical instability monotonically increases with increasing mean
velocity uM. But, with increasing mean velocity uM, the patch scheme
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artificial instability first increases, then decreases, and then again increases.
Figure 4.4.9c plots wavenumber-wise variation of the artificial instabil-
ity maxℜ(λNE1

p ) −maxℜ(λNE1
mδ ) of the Spectral patch scheme with N = 10,

n = 6, r = 0.1, for all the N2/4 = 25 macroscale wavenumbers (kx, ky) where
kx, ky ∈ {0,±1,±2}. Figure 4.4.9c shows that increasing mean velocity uM

increases the patch scheme artificial instability for uM ≲ 0.6 (light red small
discs near top region) after which the artificial instability decreases (light
green and light blue small discs). But the artificial instability does not disap-
pear with a further increase, instead, the artificial instability increases again
with increasing mean velocity for uM ≳ 2. This increasing, decreasing and
then again increasing patch scheme artificial instability with increasing uM,
is also evident in the same trend along the line a-d in Fig. 4.4.7c.

Increasing the mean velocity uM increases monotonically the number of
physically unstable modes of the viscous shallow water. Figure 4.4.9b plot
wavenumber-wise contribution to the number of physically unstable modes
for the full-microscale domain system, for all the macroscale wavenumbers
resolved by a patch grid with N = 10 macro-grid intervals. Figure 4.4.9b
shows that increasing mean velocity uM increases the number of physically
unstable modes for the full-domain microscale model, symmetrically to
each side of a valley at kx = 0 (for vM = 0). For nonzero vM, the valley
is along line kx = −(vM/uM)ky. The small circles of dark red, dark green
and dark blue colours at the bottom of Fig. 4.4.9b shows that for mean
velocity up to uM = 0.4, there are no unstable modes. Two light red in-
ner circles in central region of Fig. 4.4.9b show that increasing the mean
velocity to uM = 0.6 leads to physical instability in two smallest wave-
number (kx, ky) = (±1, 0) on each side of the valley. With further increase
in uM = 0.8, 1, the initially developed physical instability for two small
wavenumbers spread to larger wavenumbers, and increase to four and
twelve artificially unstable microscale modes respectively. For example,
for uM = 0.8, the top four light green inner circles in Fig. 4.4.9b show that
the wavenumbers (kx, ky) ∈ {(−2, 0), (−1, 0), (1, 0), (2, 0)} each has one artifi-
cially unstable mode, corresponding to the four physically unstable modes
in clusters 5, 6 of Fig. 4.4.2.

Increasing the mean velocity uM increases the number of artificially unstable
microscale modes for the patch schemes. Figures 4.4.1 and 4.4.2 for uM =

0.3, 0.8 with ten and fifty artificially unstable microscale modes, suggest that
the number of artificially unstable microscale modes increases with mean
velocity uM. This increasing number of artificially unstable microscale
modes is due to two sources:

1. increasing mean velocity uM increases the number of wavenumbers
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Figure 4.4.9. Wavenumber-wise contribution to viscous shallow water
flows instability for different mean velocity uM (hM = 0.2, vM = 0, Re =

250): (a) and (b) plot physical instability and the number of unstable modes
of full-domain model; (c) and (d) plot artificial instability and number of
unstable modes of Spectral patch scheme (N = 10, n = 6, r = 0.1).

(a) Increasing uM increases physical in-
stability monotonically, with two peaks
at (kx, ky) = (±1, 0) to each side of a val-
ley at kx = 0. The valley is along the
line kx = −(vM/uM)ky.
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for which at least one mode is unstable;

2. increasing mean velocity uM also increases the number of artificially
unstable microscale modes of a particular macroscale wavenumber
over which the microscale structure is modulated.

Figure 4.4.9d plot wavenumber-wise contribution to the number of artifi-
cially unstable microscale modes of the Spectral patch scheme with N = 10,
n = 6, r = 0.1, for all the N2/4 = 25 macroscale wavenumbers (kx, ky)

where kx, ky ∈ {0,±1,±2}. Figure 4.4.9d shows that for increasing mean
velocity uM = 0.2, 0.3, 0.4, 0.6, 0.8, 1 (along the line a-d in Fig. 4.4.7c) the
number of artificially unstable microscale modes increases, symmetrically
to each side of a valley/ridge along ky-axis (for vM = 0). For nonzero vM,
the valley/ridge is along line kx = −(vM/uM)ky. Increasing the mean ve-
locity uM increases the number of wavenumbers for which a patch scheme
is unstable, for uM ≲ 0.4 after which a patch scheme is unstable for all
the 25 wavenumbers. For example, for uM = 0.2, 0.3, 0.4, Figure 4.4.9d
(dark red, dark green and dark blue circles near the bottom) shows that the
number of wavenumbers for which the Spectral patch scheme is unstable
are 0, 10, 25 respectively. The corresponding total number of artificially un-
stable microscale modes for uM = 0.2, 0.3, 0.4, 0.6, 0.8, 1 are 0, 10, 40, 50, 50, 50

respectively.

• The small dark red circles at the bottom of Fig. 4.4.9d show that for
mean velocity uM = 0.2, there are no artificially unstable microscale
modes.

• The small dark green circles near the bottom of Fig. 4.4.9d show that
increasing to uM = 0.3 triggers the patch scheme artificial instability,
but only for kx = ±2. That is the sub-patch microscale modes are
artificially unstable corresponding to the largest ten macroscale wave
modes moving along the mean velocity (uM, vM) (five on each side of
the green valley in Fig. 4.4.9d).

• The dark blue circles near the middle and top region of Fig. 4.4.9d
show that increasing to uM = 0.4 makes the patch scheme artificially
unstable for all 25 wavenumbers. There is one unstable microscale
mode for each of ten wavenumbers with kx = ±2 (corresponding to
the ten largest macroscale wave modes) and there are two unstable
microscale modes for each of fifteen wavenumbers with kx ∈ {0,±1}
(corresponding to thirty macroscale wave modes).
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• All the large circles of light red, light green, and light blue circles
at the of Fig. 4.4.9d show that for uM ≳ 0.6 the patch scheme is
artificially unstable for all 25 wavenumbers. There are two unstable
microscale modes for each of 25 wavenumbers with kx ∈ {0,±1}
(corresponding to all fifty macroscale wave modes). For example,
Fig. 4.4.2 for uM = 0.8 shows the fifty artificially unstable microscale
modes contained within the clusters 1–4.

From Fig. 4.4.2, the total number of maximum artificially unstable micro-
scale modes remain the same as fifty for uM = 0.6, 0.8, 1 (two unstable
modes for each of 25 wavenumbers). But this total number of maximum
artificially unstable microscale modes is not an upper bound. With a further
increase in mean velocity uM > 1, the total number of artificially unstable
microscale modes increases larger than fifty.

For moderate mean velocities uM, vM ≲ 0.3, only those sub-patch micro-
scale modes whose microscale structure is modulated over non-small macroscale
wavenumber are artificially unstable. Figures 4.4.10 and 4.4.11 show the
same complex plane plot as Fig. 4.4.1 of §4.4.1 (with artificial instability of
Spectral patch scheme for N = 10, n = 6, r = 0.1, and uM = 0.3) except one
difference:

• analytic eigenvalues λNE1
p and λNE1

mδ in Fig. 4.4.1 are evaluated for all
the N2/4 = 25 macroscale wavenumbers (kx, ky) resolved by a patch
grid where kx, ky ∈ {0,±1,±2};

• analytic eigenvalues λNE1
p and λNE1

mδ in Figs. 4.4.10 and 4.4.11 are eval-
uated for only one macroscale wavenumber (kx, ky) = (1, 0), (2, 0)

respectively.

In Fig. 4.4.10, the nonpositive real parts of the eigenvalues λNE1
p for wave-

number (kx, ky) = (1, 0) (blue circles) show that, the patch scheme does
not have artificial instability for this wavenumber. On the other hand, in
Fig. 4.4.11, the positive real part of the eigenvalue λNE1

p in cluster 1 for
wavenumber (kx, ky) = (2, 0) (blue circle) shows that, the patch scheme
has artificial instability for this wavenumber. Similarly, for the parameters
in Figs. 4.4.10 and 4.4.11, for all the resolved ky ∈ {0,±1,±2}, the patch
schemes modes for wavenumber kx = ±2 have artificial instability, but the
modes for wavenumber kx = 0,±1 do not have any have artificial instabil-
ity. That is, for moderate mean velocities uM, vM ≲ 0.3, only those sub-patch
microscale modes whose microscale structure is modulated over non-small macro-
scale wavenumber are artificially unstable. But as the previous paragraph
shows, increasing the mean velocity uM increases the number of artificially
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Figure 4.4.10. For wavenumber (kx, ky) = (1, 0), Spectral patch scheme (N =

10, n = 6, r = 0.1) does not have artificial instability (blue circles) for viscous
shallow water flows, for (hM, uM, vM) = (0.2, 0.3, 0). Same plot as Fig. 4.4.1,
but analytic eigenvalues λNE1

p and λNE1
mδ are evaluated only for (kx, ky) =

(1, 0).
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unstable microscale modes for the patch schemes. So, for a sufficiently
large mean velocity uM, all the modes become artificially unstable. For
example, in Fig. 4.4.9d, for uM ⩾ 0.4 the number of artificially unstable
modes is at least one for all the resolved wavenumbers. The wavenumber-
wise variation of the artificial instability in Fig. 4.4.9c confirms that only
non-small wavenumber modes are artificially unstable for uM ⩽ 0.3.

Dominant artificial instabilities are due to those sub-patch microscale modes
whose microscale structure is modulated over non-small macroscale wavenumber.
Figure 4.4.9c plots wavenumber-wise variation of the artificial instabil-
ity maxℜ(λNE1

p ) −maxℜ(λNE1
mδ ) of the Spectral patch scheme with N = 10,

n = 6, r = 0.1, for all the N2/4 = 25 macroscale wavenumbers (kx, ky)

where kx, ky ∈ {0,±1,±2}. Figure 4.4.9c (for vM = 0) shows that for all
mean velocity uM ∈ {0.2, 0.3, 0.4, 0.6, 0.8, 1}, the artificial instability is large
for large magnitudes of macroscale wavenumber |kx|, on both sides of the
valley at kx = 0. More generally, the artificial instability is large for those
sub-patch microscale modes whose microscale structure is modulated over
large macroscale waves moving along the mean velocity (uM, vM). Thus, ir-
respective of the mean velocities uM, vM, dominant artificial instabilities of
the patch schemes are due to sub-patch microscale modes whose microscale
structure is modulated over non-small macroscale wavenumber.

Overall the following listing summarises the characteristics of physically
unstable modes of the full-domain model and the artificially unstable
modes of the Spectral patch scheme for viscous shallow water flows.
Whereas all the following points are based on the Spectral patch scheme
with N = 10, n = 6, r = 0.1, they also hold for other patch grid parameters
(N,n, r) and for all the four polynomial patch schemes (§2.2.2).

• Increasing the mean velocity uM increases monotonically the physical
instability and the number of physically unstable modes of the viscous
shallow water.

• Increasing mean velocity uM, vM increases both the artificial instabil-
ity maxℜ(λNE1

p )−maxℜ(λNE1
mδ ) and the number of artificially unstable

microscale modes per wavenumber.

• The maximum physical instability is due to large waves correspond-
ing to two small macroscale wavenumbers (kx, ky) on the domain
moving along the mean velocity (uM, vM).

• The artificial instability of the sub-patch microscale modes depends
on the specific macroscale wavenumber (kx, ky) over which the micro-
scale structure is modulated. For moderate mean velocities uM, vM ≲
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0.3, only those sub-patch microscale modes whose microscale struc-
ture is modulated over non-small macroscale wavenumber are artifi-
cially unstable. Irrespective of the mean velocities uM, vM, dominant
artificial instabilities of the patch schemes are due to those sub-patch
microscale modes whose microscale structure is modulated over non-
small macroscale wavenumber.

4.4.3 No artificial instability among the five staggered
patch schemes for a range of grid parameters

Section 4.4.1 shows that for an appropriate patch grid the Spectral patch
scheme is not artificially unstable, for a wide range of physical parameters
for a representative set of patch grid parameters. This subsection shows that
the five staggered patch schemes are not artificially unstable, for a wide
range of patch grid parameters (macro-grid intervals N, sub-patch micro-
grid intervals n, and patch scale ratio r), for a representative set of physical
parameters (Reynolds number Re, mean height hM, and horizontal mean
velocity (um, vM) indicated by nine black squares in Figs. 4.4.5 to 4.4.7 of
§4.4.1). That is, this subsection shows that for a wide range of parameters,
the maximum real part of the patch scheme eigenvalues (analytic λNE1

p ,
numerical λN

p ) is not both positive and larger than the maximum real part
of the eigenvalues λNE1

mδ of the corresponding full-domain microscale model
(the condition of no artificial instability (4.4.1)). This subsection also gives a
general rule to get rid of artificial instability.

We expect the polynomial patch schemes to follow similar stability trend
with different mean flow (hM, uM) as the Spectral patch scheme for which
§4.4.1 studies in detail for 336 combinations of the mean flow (hM, uM).
So, as opposed to the many combinations (336) of linearisation points
{(hM, uM, vM)} in §4.4.1, this subsection limits the study of artificial stability
of patch schemes to the nine linearisation points {(hM, uM, vM)} where
hM ∈ {0.1, 0.2, 0.3}, uM ∈ {0, 0.4, 0.8}, vM = 0 (the black squares in Figs. 4.4.5
to 4.4.7 of §4.4.1). Thus, this subsection studies the artificial instability via
the patch scheme eigenvalues for a total of 7 776 cases consisting of all the
combinations of the Spectral and polynomial patch schemes (Square-p2,
Square-p4, Square-p6, and Square-p8) for the patch grid parameters

• number of macroscale intervals N ∈ {6, 10, 14, 18, 22, 26},

• number of sub-patch micro-grid intervals n ∈ {6, 10},

• patch scale ratio r ∈ {0.0001, 0.001, 0.01, 0.1},
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and the physical parameters

1. mean height hM ∈ {0.1, 0.2, 0.3},

2. mean velocity uM ∈ {0, 0.4, 0.8}, vM = 0 (§4.6 shows that the staggered
patch schemes are invariant to flow direction),

3. Reynold number Re ∈ {10, 50, 250, 1250}.

As opposed to the definition of peak artificial instability in p. 224 of
§4.4.1 over 336 cases, the term peak artificial instability throughout this sub-
section refers to maxhM,uM

[
maxℜ(λN

p ) −maxℜ(λNE1
mδ )

]
or using analytic

eigenvalues maxhM,uM

[
maxℜ(λNE1

p ) −maxℜ(λNE1
mδ )

]
, over the nine cases of

the mean height hM ∈ {0.1, 0.2, 0.3} and the mean velocity uM ∈ {0.0, 0.4, 0.8}.
For the small number of sub-patch micro-grid intervals n = 6, accurate

patch coupling interpolation removes the artificial instability for small patch scale
ratio r. For small number of sub-patch micro-grid intervals (Fig. 4.4.12
for n = 6), the artificial instability increases with increasing N. For patch
scale ratio r ≳ 0.1, increasing patch coupling error decreases the artificial
instability for large Reynolds number Re ≳ 250. For example, in the bottom
two subplots of Fig. 4.4.12 for Reynolds number Re = 250, 1250, for patch
scale ratio r = 0.1, going from Square-p2 to Spectral patch scheme the
increasing patch coupling error decreases the peak artificial instability (red
plus to magenta circle). The only way to remove artificial instability due to
the non-small patch scale ratio is to reduce the patch scale ratio to r ≲ 0.01. But
for small patch scale ratio r ≲ 0.01, the trend is the opposite, increasing
patch coupling accuracy decreases the artificial instability. For example,
in the subplots of Fig. 4.4.12 for Reynolds number Re = 50, 250, 1250, for
small patch scale ratio r ≲ 0.01, going from Square-p2 to Spectral patch
scheme the increasing patch coupling accuracy decreases the peak artificial
instability (red plus to magenta circle). For the highly accurate Spectral

staggered patch scheme there is no artificial instability for small patch scale
ratio r ≲ 0.01 in Fig. 4.4.12 for all Reynolds numbers Re ∈ {10, 50, 250, 1250}.
This effect of decreasing artificial instability with increasing patch coupling
accuracy decreases with increasing Reynolds number Re.

Sufficient number of sub-patch micro-grid intervals n remove the artificial
instability of the polynomial patch schemes for small patch scale ratio r and/or
large number macro-grid intervals N. For small number of sub-patch
micro-grid intervals (Fig. 4.4.12 for n = 6), all the polynomial staggered
patch schemes have varying degree of artificial instability which increases
with increasing N. A sufficient number of sub-patch micro-grid intervals,
which is n = 10 for viscous shallow water flows, removes such artificial
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Figure 4.4.12. Variation of the patch scheme peak (n = 6) artificial in-
stability maxhM,uM

[
maxℜ(λN

p ) −maxℜ(λNE1
mδ )

]
(over hM ∈ {0.1, 0.2, 0.3},

uM ∈ {0.0, 0.4, 0.8}), with patch scale ratio r and macro-grid intervals N,
for different Reynolds number Re ∈ {10, 50, 250, 1250}. Artificial instability
increases with increasing N for n = 6. Large artificial instability decreases,
with increasing accuracy of patch coupling interpolation, and decreasing r.
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instabilities of the polynomial patch schemes. For example, comparing
Figs. 4.4.12 and 4.4.13 shows that the sufficient number of sub-patch micro-
grid intervals n = 10 remove the artificial instability for small patch scale
ratio r ≲ 0.001 for all the Reynolds numbers Re ∈ {10, 50, 250, 1250} and
macro-grid intervals N ∈ {6, 10, 14, 18, 22, 26} for all the polynomial stag-
gered patch schemes. The maximum peak artificial instabilities in Fig. 4.4.13
for r ∈ {0.0001, 0.001} are 3.1·10−6, 3.9·10−7, 9.8·10−8, 1.5·10−8 corresponding
to the Reynolds numbers Re ∈ {10, 50, 250, 1250} respectively, all of which
satisfy the condition of no artificial instability (4.4.1) (within a tolerance
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Figure 4.4.13. Variation of the patch scheme (n = 10) peak artificial in-
stability maxhM,uM

[
maxℜ(λN

p ) −maxℜ(λNE1
mδ )

]
(over hM ∈ {0.1, 0.2, 0.3},

uM ∈ {0.0, 0.4, 0.8}), with patch scale ratio r and macro-grid intervals N,
for different Reynolds number Re. For r ≲ 0.01, except roundoff errors (e.g.,
Re = 10) artificial instability does not significantly increase with N compared to
n = 6 in Fig. 4.4.12. No artificial instability for r ∈ {0.001, 0.0001}.
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of 10−5). Thus, sufficient number of sub-patch micro-grid intervals n remove
the artificial instability of the polynomial patch schemes for small patch scale
ratio r ≲ 0.001 and/or large number macro-grid intervals N ≳ 10. On the
other hand, p. 229 of §4.4.1 shows that increasing the number of sub-patch
micro-grid intervals n increases the artificial instability of the Spectral

patch scheme for non-small patch scale ratio.
The preceding paragraph shows that increasing the number of sub-

patch micro-grid intervals from n = 6 to n = 10 removes the artificial
instability for small patch scale ratio r ≲ 0.001 and/or large number macro-
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Figure 4.4.14. Variation of the patch scheme (n = 10) peak artificial insta-
bility maxhM,uM

[
maxℜ(λNE1

p ) −maxℜ(λNE1
mδ )

]
, with patch scale ratio r and

macro-grid intervals N, for the same parameters in Fig. 4.4.13 but using ana-
lytic eigenvalues λNE1

p of the patch schemes. Numerical roundoff errors cause
the off-trend in artificial instability for small Re ≲ 10 for the combination of
small r ≲ 0.001 and a large number of macro-grid intervals N ≳ 14.
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grid intervals N ≳ 10. But any further increase in the number of sub-
patch micro-grid intervals n > 10 does not remove the remaining artificial
instability for patch scale ratio r ≳ 0.01 (e.g., the bottom-right subplot in
Fig. 4.4.13 for Re = 1250). On the other hand, expression (3.7.3) (in p. 136 of
§3.7.3) for patch scheme compute time shows that increasing the number of
sub-patch micro-grid intervals n quadratically increases the patch scheme
compute time.
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In the left-top subplot of Fig. 4.4.13 for Re = 10, the seemingly large
and off-trend artificial instability for small patch scale ratio r ≲ 0.001 (i.e.,
increasing artificial instability with increasing N and increasing patch cou-
pling accuracy) is due to floating-point numerical roundoff errors. Fig-
ure 4.4.14 shows a plot of variation of the patch scheme (n = 10) peak arti-
ficial instability maxhM,uM

[
maxℜ(λNE1

p ) −maxℜ(λNE1
mδ )

]
, with patch scale

ratio r and macro-grid intervals N, for the same parameters in Fig. 4.4.13 but
using analytic eigenvalues λNE1

p of the patch schemes. For the Spectral patch
scheme, Fig. 4.4.14 includes the analytic eigenvalues λNE1

p (magenta circles)
only for macro-grid intervals N ∈ {6, 10, 14} to avoid numerically evaluating
very long analytic expressions. Figure 4.4.14 shows that for small Reynolds
number Re = 10 (top-left subplot) the peak artificial instability of analytic
eigenvalues λNE1

p are different from the corresponding artificial instability
of numerical eigenvalues λN

p .
In many numerical simulations, the divergence of a numerical scheme

is a common issue for some combinations of the physical parameters and
discretisation/grid parameters. The patch scheme artificial instability leads
to such diverging time solution during ODE integration for numerical
simulation. Based on the discussions in the preceding paragraphs, when a
patch scheme has artificial instability for some combinations of system and
patch grid parameters, a general rule to get rid of artificial instability is to
take the following steps (in the order of large to small impact).

1. Decrease patch scale ratio r.

2. Increase the sub-patch micro-grid intervals n to a sufficient value (e.g.,
n = 10). Further increase in n is not beneficial.

3. Increase patch coupling interpolation accuracy, for example, choose a
higher order polynomial patch scheme.

4. Decrease the macro-grid interval ∆.

As §4.6 establishes, the patch schemes are invariant (within discreti-
sation errors) with different flow angle α where uM = q cos(α) and vM =

q sin(α). Hence, whereas all preceding discussions in this subsection §4.4.3
are based on the five patch schemes over a range of mean height hM and
the mean velocity uM keeping vm = 0, they also hold for the resultant mean
velocity q =

√
u2
M + v2M along any orientation. Thus, the five staggered patch

schemes are not artificially unstable, for a wide range of patch grid parameters
(macro-grid intervals N, sub-patch micro-grid intervals n, and patch scale
ratio r).
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4.5 Staggered patch schemes are consistent

This section shows that the staggered patch schemes are consistent with
the full-domain microscale model of viscous shallow water flows, with
decreasing macro-grid interval ∆, via the convergence of the patch scheme
eigenvalues. Similar to §3.6 for the general linear wave, subsections of
this section establish the consistency of the patch schemes for the viscous
shallow water flows by comparing the macroscale eigenvalues of the patch
scheme with the corresponding eigenvalues of the full-domain microscale
model. This eigenvalue comparison is done for increasingly finer patch
grids. Section 4.5.1 shows that the Spectral patch scheme is uniformly
accurate with little dependence on the macro-grid interval ∆. Section 4.5.2
shows that the polynomial patch schemes are consistent to the order of the
polynomial interpolation with decreasing macro-grid interval ∆.

The full-domain microscale model (4.1.11) is consistent, when the dis-
cretized equations (4.1.11) approach to the corresponding PDEs (4.1.6), as
the micro-grid interval δ→ 0 (on the grid in Fig. 4.1.1). Such standard defi-
nition of consistency (e.g., Ferziger et al. 2020, p. 34) is useful for analysing
the full-domain discrete systems whose goal is to accurately represent
the corresponding PDEs. But the goal of our multiscale staggered patch
scheme (4.1.15) is to accurately represent the macroscale waves of the cor-
responding discrete full-domain microscale model (§4.2.2). As defined in
§3.6, a staggered patch scheme is consistent, when the macroscale charac-
teristics of the patch scheme (e.g., (4.1.15)) approach to the corresponding
macroscale characteristics of the given full-domain microscale model (e.g.,
(4.1.11)), as the macro-grid interval ∆→ 0 (on the patch grid Fig. 2.1.3b).

As in §3.6 for the general linear wave, for viscous shallow water we
show the consistency of the staggered patch schemes by demonstrating
that the macroscale eigenvalues λN

pM of the patch schemes converge to
the macroscale eigenvalues of the corresponding full-domain microscale
model as ∆ → 0, to the same order p as the patch coupling interpolation. The
eigenvalue spectra in Figs. 4.2.2 to 4.2.10, show that the staggered patch
scheme macroscale eigenvalues λNE1

pM (e.g., clusters 1, 2, 3, 4, 5 in Fig. 4.2.6)
are qualitatively similar, and visually close, to the corresponding macro-
scale eigenvalues λA

mδ of the fine-grid full-domain microscale model (by
varying degrees depending upon the specific staggered patch scheme, N,
n, and r). To numerically quantify the discrepancy between the macroscale
eigenvalues λN

pM of staggered patch scheme and the corresponding macro-
scale eigenvalues λA

mδ of fine grid full domain microscale model, we use
the eigenvalue error defined in §3.6 for the macroscale wavenumber (kx, ky)
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Table 4.5.1. Section 4.5 studies the consistency of the patch schemes using
eigenvalues for all the 8 640 combinations of the listed parameters.

Patch schemes Spectral, Square-p2, Square-p4, Square-p6,
and Square-p8

Mean height hM ∈ {0.1, 0.2, 0.3}

Mean velocity
uM ∈ {0, 0.4, 0.8}, vM = 0 (§4.6 shows that the
staggered patch schemes are invariant to flow
direction)

Reynold number Re ∈ {10, 50, 250, 1250}

Macro-grid intervals N ∈ {6, 10, 14, 18, 22, 26}

Sub-patch micro-grid
intervals n ∈ {6, 10}

Patch scale ratio r ∈ {0.0001, 0.001, 0.01, 0.1}

which is

ϵkx,ky = ∥λN
pM(kx, ky) − λA

mδ(kx, ky)∥ / ∥λA
mδ(kx, ky)∥, (4.5.1)

where ∥ · ∥ is the Euclidean norm of the three element complex vectors of
eigenvalues λN

pM and λA
mδ (three macroscale eigenvalues for each macro-

scale wavenumber).
As in §3.6 for the general linear wave, to assess the patch scheme consis-

tency in this section (i.e., eigenvalue convergence) for the viscous shallow
water flows, we compute the three eigenvalue errors ϵ1,0, ϵ1,1 and ϵ2,1, for
the patch schemes on different staggered patch grids, corresponding to
the three macroscale (angular) wavenumbers (kx, ky) ∈ {(1, 0), (1, 1), (2, 1)}

over the 2π× 2π non-dimensional domain. The smallest wavenumber (1, 0)
corresponds to the largest wavelength of (2π, 0) over the chosen 2π × 2π

non-dimensional domain. Specifically, to show the consistency of the stag-
gered patch schemes, this section computes the three macroscale eigenvalue
errors ϵ1,0, ϵ1,1 and ϵ2,1 for the 8 640 combinations of the parameters listed
in Table 3.6.1.

Computing the three element vector of eigenvalues λA
mδ(kx, ky) in the

eigenvalue error (4.5.1), is straightforward. As explained in p. 180 of §4.2.2,
we numerically evaluate the Jacobian J(xM) in the eigensystem (4.2.7)
and then compute the three eigenvalues for each of the three macroscale
wavenumbers (kx, ky) ∈ {(1, 0), (1, 1), (2, 1)}. Among the numerical eigen-
values λN

p , finding which three eigenvalues correspond to the three eigen-
values in λA

mδ(kx, ky) (for the same macroscale wavenumber), is not straight-
forward. The method of wavenumber-wise scale separation in §3.3 classifies the
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eigenvalues wavenumber-wise and separates as microscale and macroscale
patch scheme eigenvalues. In the method of wavenumber-wise scale sepa-
ration in §3.3, using the full-domain microscale eigenvalues λNE1

mδ in place
of the eigenvalues λA

mδ gives the required eigenvalues as the following 3D
arrays (analytic eigenvalues only for N ⩽ 14 for Spectral patch scheme)

1. An N/2×N/2×3 array of analytic eigenvalues λNE1
mδ of the full-domain

microscale model.

2. An N/2 ×N/2 × 3 array of macroscale analytic patch scheme eigen-
values λNE1

pM .

3. An N/2×N/2× 3 array of macroscale numerical patch scheme eigen-
values λN

pM.

The third dimension of these three arrays establishes the wavenumber-wise
correspondence among the three eigenvalues λNE1

mδ , λNE1
pM and λN

pM. For
any macroscale wavenumber (kx, ky) resolved on a patch grid, each of the
three elements along the third dimension of the eigenvalues λNE1

mδ and λN
pM

gives the required three element vectors λA
mδ and λN

pM in the patch scheme
eigenvalue error (4.5.1). As explained in p. 123 of §3.6, for N = 6, there are
no macroscale eigenvalues corresponding to wavenumber (kx, ky) = (2, 1),
and so the eigenvalue error ϵ2,1 is computed only for N ⩾ 10.

4.5.1 Spectral patch scheme is uniformly accurate

With the highly accurate global spectral interpolation (§2.2.1), as in §3.6.1
for the general linear wave, we expect the Spectral patch scheme to resolve
the macroscale modes exactly (within numerical roundoff errors), irrespective
of the number of macro-grid intervals N (e.g., the spectra in Figs. 4.2.5
and 4.2.6). That is, the Spectral patch scheme is uniformly accurate with
the full-domain microscale model without any dependence on the macro-
grid interval ∆. To confirm this exactness, this subsection shows that
the accuracy of the macroscale modes indeed does not deteriorate with
decreasing macro-grid interval ∆ (increasing N). Specifically, this subsec-
tion studies this exactness via the eigenvalue errors ϵ1,0, ϵ1,1 and ϵ2,1 of
the Spectral patch scheme for all the 1 728 combinations of the parame-
ters hM, uM,Re, N, n, r listed in Table 4.5.1.

For large Reynolds number Re ≳ 250, Spectral patch scheme is uniformly
accurate. Figure 4.5.1 plots the eigenvalue errors ϵ1,0 versus macro-grid
intervals ∆ for the best case (with smallest errors) of large Reynolds number
Re = 1250, and mean flow (hM, uM) = (0.1, 0) for different patch scale
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Figure 4.5.1. Reynolds number Re = 1250, (hM, uM) = (0.1, 0). Best case
eigenvalue errors ϵ1,0 (log scale) of the Spectral staggered patch scheme for
different macro-grid intervals ∆ and patch scale ratio r (as in Table 4.5.2, for
r = 0.1, n = 6, min(maxN ϵ1,0) = 10−12.3 = 4.6 · 10−13).

2π/26 2π/22 2π/18 2π/14 2π/10 2π/6

Macro-grid interval ∆ = 2π/N

10−12

10−10

10−8

10−6

10−4

Er
ro

r
ϵ
1
,0

Spectral r 0.0001 r 0.001 r 0.01 r 0.1

Table 4.5.2. Reynolds number Re = 1250. Maximum logarithmic eigen-
value error maxN log10(ϵ

1,0) of the Spectral staggered patch scheme over
the number of macro-grid intervals N in Table 4.5.1. The grey box highlights
the largest error in each column. Eigenvalue errors ϵ1,0 ⩽ 10−5. Overall
min(maxN ϵ1,0) = 10−12.3 for (hM, uM) = (0.1, 0), r = 0.1, n = 6.

Patch scale ratio r

0.0001 0.001 0.01 0.1

hM, uM n = 6 n = 10 n = 6 n = 10 n = 6 n = 10 n = 6 n = 10

0.1, 0 −8.1 −7.5 −10 −9.3 −12 −11 −12 −12

0.1, 0.4 −6.6 −8.3 −8.6 −8.9 −11 −10 −11 −11

0.1, 0.8 −5.5 −7.9 −7.5 −8.5 −9.4 −9.1 −11 −11

0.2, 0 −7.6 −6.9 −9.7 −8.9 −11 −11 −12 −12

0.2, 0.4 −5.7 −7.8 −7.6 −8.3 −9.6 −9.4 −11 −11

0.2, 0.8 −5 −7.8 −7 −8.4 −9 −8.9 −11 −11

0.3, 0 −7.3 −6.7 −9.4 −8.9 −11 −11 −12 −12

0.3, 0.4 −6.2 −7.1 −8.2 −9.2 −10 −10 −12 −12

0.3, 0.8 −5.1 −7.8 −7.2 −8.7 −9.2 −9.2 −11 −11
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ratio r. Figure 4.5.1 shows that maximum eigenvalue error ϵ1,0 ≈ 8 ·
10−9 for smallest patch scale ratio r = 0.0001 and smallest macro-grid
interval ∆ = 2π/26 (for the non-dimensional domain size 2π). For larger
patch scale ratio r > 0.0001, the eigenvalue errors are smaller. That is, for
large Reynolds number Re ≳ 250, Spectral patch scheme is uniformly
accurate without any dependence on the macro-grid interval ∆.

For large Reynolds number Re ≳ 250, Spectral patch scheme is uniformly
accurate over a wide range of the mean flow (hm, uM). For a large Reynolds
number Re = 1250, for various mean flow (hM, uM), patch scale ratio r,
and the number of sub-patch micro-grid intervals n, Table 4.5.2 shows the
maximum eigenvalue errors ϵ1,0 of the Spectral patch scheme over six
different number of macro-grid intervals N in Table 4.5.1. Table 4.5.2 shows
that for a large Reynolds number Re = 1250, the maximum eigenvalue
error maxN,hM,uM

ϵ1,0 = 10−5 over the six different number of macro-grid
intervals N and nine different mean flows (hM, uM) in Table 4.5.1. This
small maximum eigenvalue error maxN,hM,uM

ϵ1,0 shows that for large
Reynolds number Re ≳ 250, Spectral patch scheme is uniformly accurate
over a wide range of the mean flow (hm, uM), without any dependence on
the macro-grid interval ∆.

For small Reynolds number Re ≲ 250 the seemingly large eigenvalue errors of
the Spectral patch scheme is due to numerical roundoff error. Page 214 of §4.3
shows that for small grid interval δ ≲ 10−5 (i.e., small r and/or small ∆),
large mean height hM ≳ 0.2 and small Reynolds number Re ≲ 10, the
numerically computed patch scheme eigenvalues have nonnegligible nu-
merical roundoff errors. Both from the parametric trends of the numerical
roundoff errors and from using scaling arguments on the viscous shallow
water flows, §4.3 shows that the nonnegligible numerical roundoff errors
in the patch scheme eigenvalues are due to the inherent sensitivity of the
underlying microscale model and the numerical computation of near-zero
repeated eigenvalues. As §4.3 shows, the numerical roundoff errors in the
patch scheme eigenvalues are nonnegligible only for small Reynolds Re.
Yet the onset of the effect of numerical roundoff errors is seen even for large
Reynolds number Re ∼ 1250. For example, in Fig. 4.5.1, for small patch
scale ratio r = 0.0001 the monotonically increasing eigenvalue error ϵ1,0 (ma-
genta circles) with decreasing macro-grid intervals ∆ is due to the numerical
roundoff errors. Except fluctuating small deviations, Table 4.5.2 shows that
in general the maximum eigenvalue error maxN ϵ1,0 increases with decreas-
ing patch scale ratio r and increasing mean height hM, which is also due to
numerical roundoff error. For small Reynolds number Re ≲ 250 the patch
scheme eigenvalues have large numerical roundoff errors. For example,
for a small Reynolds number Re = 10, Fig. 4.5.2 shows large eigenvalue
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Figure 4.5.2. Reynolds number Re = 10, (hM, uM) = (0.3, 0). Worst case
eigenvalue errors ϵ1,0 (log scale) of the Spectral staggered patch scheme for
different macro-grid intervals ∆ and patch scale ratio r (as in Table 4.5.3, for
r = 0.0001, n = 10, max(maxN ϵ1,0) = 10−2.5 = 0.0034).

2π/26 2π/22 2π/18 2π/14 2π/10 2π/6

Macro-grid interval ∆ = 2π/N
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Spectral r 0.0001 r 0.001 r 0.01 r 0.1

Table 4.5.3. Reynolds number Re = 10. Maximum logarithmic eigenvalue
error maxN log10(ϵ

1,0) for Spectral patch scheme over six different number
of macro-grid intervals N in Table 4.5.1. Grey box highlights largest error
in each column, red colour highlights ϵ1,0 > 10−5.

Patch scale ratio r

0.0001 0.001 0.01 0.1

hM, uM n = 6 n = 10 n = 6 n = 10 n = 6 n = 10 n = 6 n = 10

0.1, 0 −4.4 −3.6 −7.4 −6.7 −10 −9.6 −12 −11

0.1, 0.4 −4.7 −4.4 −7.1 −7.4 −9.1 −9.5 −9.5 −9.5

0.1, 0.8 −3.5 −4.7 −5.6 −7.8 −7.6 −9.3 −9.4 −9.4

0.2, 0 −3.5 −2.9 −6.6 −5.8 −9.5 −8.8 −11 −11

0.2, 0.4 −3.7 −4.1 −5.6 −6.9 −7.7 −9.7 −9.8 −10

0.2, 0.8 −2.9 −3.9 −4.8 −6.8 −6.9 −9.6 −8.9 −10

0.3, 0 −3 −2.5 −6.3 −5.5 −9.2 −8.6 −11 −11

0.3, 0.4 −3.8 −3.4 −6 −6 −8.3 −9.2 −10 −10

0.3, 0.8 −3 −3 −5 −6.5 −7 −9.4 −9 −10
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error ϵ1,0 = 0.0034. Figure 4.5.2 and Table 4.5.3 also show that the large
eigenvalues errors maxN ϵ1,0 correspond to small grid interval δ ≲ 10−5

(i.e., small r and/or small ∆) and large mean height hM ≳ 0.2, for which
the numerically computed patch scheme eigenvalues have nonnegligible
numerical roundoff errors (p. 214 of §4.3). That is, for small Reynolds
Re ≲ 250 the seemingly large eigenvalue error ϵ1,0 for the Spectral patch
scheme does not reflect the characteristic of the patch scheme, but an arti-
fact due to numerical roundoff errors in numerically computing the patch
scheme eigenvalues.

The preceding paragraph shows the evidence that the seemingly large
Spectral patch scheme eigenvalue errors ϵ1,0 for small Reynolds numbers
are due to numerical roundoff errors. The arbitrary-precision floating-point
arithmetic definitively confirms that the seemingly large eigenvalue errors ϵ1,0 for
small Reynolds number are indeed due to numerical roundoff errors in numerical
eigenvalue computation. Using the analytic patch scheme eigenvalues λNE1

pM

of the numerically evaluated analytic one-cell Jacobian (§4.2.3) in place
of the numerical eigenvalues λN

pM in the eigenvalue error (4.5.1), gives
about five times smaller eigenvalue error ϵ1,0 compared to the eigenvalue
error ϵ1,0 of the numerical patch scheme eigenvalues. For example, in
Fig. 4.5.2 for Reynolds number Re = 10, mean flow (hM, uM) = (0.3, 0) on a
patch grid with N = 10 macro-grid intervals, n = 6 sub-patch micro-grid
intervals and patch scale ratio r = 0.0001, the error ϵ1,0 = 7.5 · 10−5 for nu-
merical eigenvalue λN

pM, but the error ϵ1,0 = 1.5 · 10−5 for the analytic patch
scheme eigenvalues λNE1

pM . The analytic eigenvalues λNE1
p are still computed

numerically after evaluating the one-cell Jacobian for specific numeric val-
ues of the wavenumber (kx, ky) and physical parameters Re, hM, uM. So,
the analytic eigenvalues λNE1

p also have numerical roundoff errors due
to the numerical eigenvalue computation. As a further step to confirm
that the seemingly large eigenvalue errors of the Spectral patch scheme
is indeed due to numerical roundoff error, we resort to mpmath, a Python
library for arbitrary-precision floating-point arithmetic (Johansson et al.
2018). Specifically, we evaluate the one-cell analytic Jacobian (§4.2.3) using
the higher precision mpmath floating-point number format and compute
the eigenvalues using mpmath’s arbitray-precision eigenvalue function. For
the case of N = 10, r = 0.0001 in Fig. 4.5.2 with Re = 10, (hM, uM) = (0.3, 0),
analytic eigenvalues λNE1

p evaluated using mpmath with the precision of 80
decimal places gives the eigenvalue error ϵ1,0 = 6.8 · 10−8, compared to
the large ϵ1,0 = 7.5 · 10−5 of the numerical eigenvalues λNE1

p (four orders
of magnitude less error). This small eigenvalue error ϵ1,0 of the arbitrary-
precision floating-point arithmetic definitively confirms that the seemingly
large eigenvalue errors ϵ1,0 for small Reynolds number are indeed due to



§4.5 Staggered patch schemes are consistent 251

numerical roundoff errors in numerical eigenvalue computation. That is,
the accuracy of the Spectral patch scheme eigenvalues do not deteriorate
with decreasing macro-grid interval ∆ (increasing N).

The preceding paragraphs explore the eigenvalue errors maxN ϵ1,0 for
small and large Reynolds numbers Re ∈ {10, 1250} (i.e., the worst and
best-case errors). For various Reynolds number Re, patch scale ratio r, and
number of sub-patch micro-grid intervals n, Table 4.5.4 shows the maxi-
mum eigenvalue error maxN,hM,uM

ϵ1,0 of the Spectral patch scheme over
six different number of macro-grid intervals N and nine different mean
flows (hM, uM) in Table 4.5.1. Table 4.5.4 shows the progressively decreas-
ing maximum eigenvalue error maxN,hM,uM

ϵ1,0 with increasing Reynolds
number Re for both n = 6 and n = 10. Similarly, Tables 4.5.5 and 4.5.6 show

Table 4.5.4. Maximum logarithmic eigenvalue error maxN,hM,uM
log10(ϵ

1,0)

of the Spectral patch scheme over the number of macro-grid intervals N

and mean flows (hM, uM) in Table 4.5.1. Grey box highlights largest error
in each column, red colour highlights large ϵ1,0 > 10−5.

Patch scale ratio r

0.0001 0.001 0.01 0.1

Re n = 6 n = 10 n = 6 n = 10 n = 6 n = 10 n = 6 n = 10

10 −2.9 −2.5 −4.8 −5.5 −6.9 −8.6 −8.9 −9.4

50 −3.6 −4.1 −5.6 −7 −7.6 −9.5 −9.5 −9.6

250 −4.3 −5.4 −6.3 −8.4 −8.3 −9.1 −10 −10

1250 −5 −6.7 −7 −8.3 −9 −8.9 −11 −11

Table 4.5.5. Maximum logarithmic eigenvalue error maxN,hM,uM
log10(ϵ

1,1)

of the Spectral patch scheme over the number of macro-grid intervals N

and mean flows (hM, uM) in Table 4.5.1. Grey box highlights largest error
in each column, red colour highlights large ϵ1,1 > 10−5.

Patch scale ratio r

0.0001 0.001 0.01 0.1

Re n = 6 n = 10 n = 6 n = 10 n = 6 n = 10 n = 6 n = 10

10 −2.8 −2.8 −4.8 −5.7 −6.9 −8.5 −8.9 −9.4

50 −3.7 −4.1 −5.7 −7.2 −7.8 −9.4 −9.7 −9.7

250 −4.5 −5.5 −6.4 −8 −8.5 −9.3 −10 −10

1250 −5.2 −6.9 −7.1 −8.5 −9.2 −9 −11 −11
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Table 4.5.6. Maximum logarithmic eigenvalue error maxN,hM,uM
log10(ϵ

2,1)

of the Spectral patch scheme over the number of macro-grid intervals N

and mean flows (hM, uM) in Table 4.5.1. Grey box highlights largest error
in each column, red colour highlights large ϵ2,1 > 10−5.

Patch scale ratio r

0.0001 0.001 0.01 0.1

Re n = 6 n = 10 n = 6 n = 10 n = 6 n = 10 n = 6 n = 10

10 −3.1 −2.7 −5 −5.7 −7.1 −8.7 −9.1 −9.4

50 −3.9 −4.2 −5.9 −7.1 −7.9 −9.8 −9.8 −9.9

250 −4.6 −5.5 −6.6 −8.4 −8.7 −9.5 −10 −10

1250 −5.3 −7 −7.3 −8.7 −9.4 −9.2 −11 −11

the progressively decreasing maximum eigenvalue errors maxN,hM,uM
ϵ1,1

and maxN,hM,uM
ϵ2,1 (for wavenumbers (kx, ky) = (1, 1), (2, 1)) with increas-

ing Reynolds number Re for both n = 6 and n = 10. Both the magni-
tudes and the trends of the eigenvalue errors ϵ1,1 and ϵ2,1 are similar to
that of the eigenvalues errors ϵ1,0 in Figs. 4.5.1 and 4.5.2 and Tables 4.5.2
and 4.5.3. As the previous paragraphs show, the seemingly large eigen-
value errors ϵ1,0, ϵ1,1, ϵ2,1 for small Reynolds number Re ≲ 250 are due to
numerical roundoff errors in numerical eigenvalue computation, not due
to any inaccuracy/deficiency in the Spectral patch scheme. That is, for
all the explored Reynolds numbers Re ∈ {10, 50, 250, 1250}, the accuracy of
the Spectral patch scheme eigenvalues do not deteriorate with decreasing
macro-grid interval ∆ (increasing N). Hence, the Spectral patch scheme
itself is uniformly accurate with the full-domain microscale model without any
dependence on the macro-grid interval ∆.

4.5.2 The four polynomial patch schemes are consistent

As §3.6.2 for the general linear wave shows, also for the viscous shallow
water flows, the accuracy of the polynomial patch schemes (Square-p2,
Square-p4, Square-p6, Square-p8) increases with decreasing macro-grid
interval ∆ to the same order p as the patch coupling interpolation. This sub-
section shows this consistency of the polynomial patch schemes through the
converging eigenvalue errors ϵ1,0, ϵ1,1 and ϵ2,1 (corresponding to macro-
scale wavenumbers (kx, ky) = (1, 0), (1, 1), (2, 1)), for all the 6 912 combina-
tions of the parameters hM, uM,Re, N, n, r listed in Table 4.5.1.
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To establish the consistency of the polynomial patch schemes, this sub-
section studies the convergence of patch scheme eigenvalue errors with
decreasing macro-grid ∆, via convergence plots such as Figs. 4.5.4 and 4.5.3.
All the convergence plots also contain a power law curve fit (grey solid
lines) for the eigenvalue error of the form ϵ̃kx,ky = a(b∆)p. Each conver-
gence plot, contains an eigenvalue error (e.g., ϵ1,0 in Fig. 4.5.4) for a total
of 96 cases among the 6 912 cases listed in Table 4.5.1: four polynomial
patch schemes, one specific number of sub-patch micro-grid intervals n,
six macro-grid intervals ∆, four patch scale ratios r, for one set of physical
parameters (e.g., Re, hM, uM). Hence for each eigenvalue error (e.g., ϵ1,0),
the total of 6 912 cases listed in Table 4.5.1 lead to 72 convergence plots
such as Fig. 4.5.4; the three eigenvalue errors ϵ1,0, ϵ1,1, ϵ2,1 lead to a total
of 216 convergence plots. This subsection explicitly presents four such
convergence plots (Figs. 4.5.3 to 4.5.6) that are representative of the best
and worst eigenvalue convergence.

For large Reynolds number Re ≳ 250 the macroscale eigenvalues of all the
polynomial patch schemes converge as ∆ decreases to the same order p as the
interpolation for the patch coupling. For the eigenvalue error ϵ1,0 of the
macroscale wavenumber (kx, ky) = (1, 0), many among the 72 convergence
plots (each for different n, Re, hM, uM in Table 4.5.1) show good conver-
gence, where the eigenvalue error ϵ1,0 closely follows the power law curve
fit (grey solid lines). That is, the eigenvalue errors ϵ1,0 ≈ a(b∆)p, where p

is the interpolation order of the polynomial patch scheme (e.g., p = 4 for
the patch scheme Square-p4). For example, for the best-case convergence
of the eigenvalue error ϵ1,0, for Reynolds number Re = 1250, mean flow
(hM, uM) = (0.2, 0) over a patch grid with n = 6 sub-patch micro-grid inter-
vals, the convergence plot (not included) is visually identical to Fig. 3.6.4 of
§3.6.2 for the general linear wave; but with different coefficients a = 0.66,
b = 0.66 in the power law curve fit (i.e., ϵ1,0 ≈ 0.66 · (0.66 · ∆)p). Hence, for
brevity, we omit such best-case convergence plots throughout this subsec-
tion. As with the general linear wave, also for the viscous shallow water
flows, the best-case convergence plots of the eigenvalue error ϵ1,1 are iden-
tical to the best-case convergence plots of the eigenvalue errors ϵ1,0 both
visually and quantitatively. The best-case convergence plots of the eigen-
value error ϵ2,1 for the viscous shallow water flows, are visually identical to
Fig. 3.6.8 of §3.6.2 for the general linear wave, but with different coefficients
in the power law curve fit. For the general linear wave in §3.6.2 the coef-
ficients a, b in the power law curve fit are the same for different physical
parameters cD, cV . But for the nonlinear viscous shallow water flows, the
coefficients a, b in the power law curve fit are different for different physical
parameters Re, hM, uM.
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Figure 4.5.3. Reynolds number Re = 10, (hM, uM) = (0.3, 0), n = 10. Worst
case convergence of ϵ1,0 (log scale) with macro-grid interval ∆, for polynomial
patch schemes with interpolation orders p ∈ {2, 4, 6, 8} and different patch
scale ratio r. Except numerical roundoff errors for p ⩾ 4, r ⩽ 0.001, ϵ1,0

converge with power law curve fit ϵ̃1,0 = 0.66 · (0.66 · ∆)p (grey solid lines).
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Figure 4.5.4. Reynolds number Re = 1250, (hM, uM) = (0.2, 0.4), n = 6.
For small r ≲ 0.001, convergence of ϵ1,0 deteriorates for all macro-grid
interval ∆ due to numerical roudoff error, for all polynomial patch schemes
with interpolation orders p ∈ {2, 4, 6, 8}. Convergence deterioration is only
via coefficients in the power law ϵ1,0 ≈ 0.83 · (0.82 · ∆)p, not in the order p.
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The previous paragraph shows the eigenvalue convergence for large
Reynolds number Re ≳ 250. Also for small Reynolds number Re ≲ 250

the macroscale eigenvalues of all the polynomial patch schemes converge as ∆

decreases to the same order p as the interpolation for the patch coupling (except
the numerical roundoff errors for small patch scale ratio). Figure 4.5.3
shows the worst case convergence of the eigenvalue error ϵ1,0 among the
72 convergence plots (each for different n, Re, hM, uM in Table 4.5.1), for
the small Reynolds number Re = 10, mean flow (hM, uM) = (0.3, 0) over a
patch grid with n = 10 sub-patch micro-grid intervals. In Fig. 4.5.3, except
the numerical roundoff errors for higher order patch schemes with p ⩾ 4

and small patch scale ratio r ⩽ 0.01 (green, blue and light red circles),
the eigenvalue error ϵ1,0 of all the polynomial patch schemes converge
to the same order p as the patch coupling interpolation. That is, except
for p ⩾ 4, r ⩽ 0.01, eigenvalues converge as ϵ1,0 ≈ 0.66 · (0.66 · ∆)p. As in
§4.5.1 for the Spectral patch scheme, the seemingly large deterioration of
the eigenvalue convergence in Fig. 4.5.3, for higher order patch schemes
with p ⩾ 4 and small patch scale ratio r ⩽ 0.01 is due to numerical roundoff
errors for the small Reynolds number Re = 10; §4.3 shows the detailed
trends of the numerical rounoff errors in the patch scheme eigenvalues.
Hence, for all Reynolds numbers Re ∈ {10, 50, 250, 1250}, the macroscale
eigenvalues of all the polynomial patch schemes converge to the same
order p as the patch coupling interpolation.

For large Reynolds number Re ≳ 250, the numerical roundoff errors for small
patch scale ratio r ≲ 0.001 do not affect the order of convergence. Figure 4.5.3
shows that for small Reynolds number Re = 10, for higher order patch
schemes with p ⩾ 4 and small patch scale ratio r ⩽ 0.01, the eigenvalue con-
vergence deteriorates only for small ∆ ≲ 2π/14 due to numerical roudoff
error. On the other hand, Fig. 4.5.4 shows that for large Reynolds num-
ber Re = 1250, and uM = 0.2, for all the polynomial patch schemes with
small patch scale ratio r ⩽ 0.01, the eigenvalue convergence deteriorates for
all macro-grid interval ∆, which is also due to numerical roudoff error. But,
unlike for the small Reynolds number Re = 10 in Fig. 4.5.3, Fig. 4.5.4 shows
that for large Reynolds number Re = 1250 the eigenvalue convergence
deterioration is only via the coefficients a, b in the power law ϵ1,0 ≈ a(b∆)p.
This trend of eigenvalue convergence deterioration via coefficients a, b in
the power law due to numerical roundoff errors, also extends to other large
Reynolds numbers Re ≳ 250. That is, for large Reynolds number Re ≳ 250,
the numerical roundoff errors for small patch scale ratio r ≲ 0.01 do not
affect the order of convergence.
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Figure 4.5.5. Reynolds number Re = 10, (hM, uM) = (0.3, 0), n = 10. Worst
case convergence of ϵ1,1 (log scale) with macro-grid interval ∆, for polynomial
patch schemes with interpolation orders p ∈ {2, 4, 6, 8} and different patch
scale ratio r. Except numerical roundoff errors for p ⩾ 4, r ⩽ 0.001, ϵ1,1

converge with power law curve fit ϵ̃1,1 = 0.65 · (0.65 · ∆)p (grey solid lines).
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Figure 4.5.6. Reynolds number Re = 10, (hM, uM) = (0.3, 0), n = 10. Worst
case convergence of ϵ2,1 (log scale) with macro-grid interval ∆, for polynomial
patch schemes with interpolation orders p ∈ {2, 4, 6, 8} and different patch
scale ratio r. Except numerical roundoff errors for p ⩾ 4, r ⩽ 0.001, ϵ2,1

converge with power law curve fit ϵ̃2,1 = 0.64 · (1.2 · ∆)p (grey solid lines).
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All the qualitative characteristics of the preceding paragraphs in this
subsection about the convergence of eigenvalue error ϵ1,0 and the numerical
roundoff errors, also hold for the eigenvalue errors ϵ1,1 and ϵ2,1. For exam-
ple, Figs. 4.5.5 and 4.5.6 show the worst case convergence of the eigenvalue
errors ϵ1,1 and ϵ2,1 respectively. A patch grid with 6× 6 macro-grid inter-
vals resolves only the nine macroscale wavenumber (kx, ky) : kx, ky = 0,±1,
hence there are no data points of ϵ2,1 for ∆ = 2π/6 in Fig. 4.5.6. As
in Fig. 4.5.3 for the eigenvalue error ϵ1,0, the deterioration of the eigen-
value convergence of ϵ1,1 and ϵ2,1 in Figs. 4.5.5 and 4.5.6, for higher order
patch schemes with p ⩾ 4 and small patch scale ratio r ⩽ 0.01 is due
to numerical roundoff errors for the small Reynolds number Re = 10;
§4.3 shows the detailed trends of the numerical rounoff errors in the
patch scheme eigenvalues. Hence, as the macroscale eigenvalue of wave-
number (kx, ky) = (1, 0), also the macroscale eigenvalues of macroscale
wavenumbers (kx, ky) = (1, 1), (2, 1) of all the polynomial patch schemes
converge to the same order p as the patch coupling interpolation.

Except the numerical roundoff errors, the following listing gives two
global trends about the dependence of the eigenvalue errors ϵ1,0, ϵ1,1 and
ϵ2,1 on the mean height hM and mean velocity uM. The following points
hold for all the macro-grid interval ∆, for all the patch scale ratio r and for
the patch schemes of all interpolation order p.

1. For any fixed Reynolds number Re and any fixed mean height hM,
increasing the mean velocity uM increases the eigenvalue errors mono-
tonically. These increasing errors are still within worst convergence
shown in Figs. 4.5.3, 4.5.5 and 4.5.6 for the eigenvalue errors ϵ1,0, ϵ1,1

and ϵ2,1 respectively. This dependence of eigenvalue errors on mean
velocity uM remains the same for all mean height hM ∈ {0.1, 0.2, 0.3},
and all Reynolds numbers Re ∈ {10, 50, 250, 1250}.

2. For a fixed small Reynolds number Re ≲ 250 and any fixed mean
velocity uM, increasing the mean height hM increases the eigenvalue
errors up to about hM = 0.4 and then decreases. These increasing
errors are still within worst convergence shown in Figs. 4.5.3, 4.5.5
and 4.5.6 for the eigenvalue errors ϵ1,0, ϵ1,1 and ϵ2,1 respectively. This
dependence of eigenvalue errors on mean height hM decreases with
increasing mean velocity uM ∈ {0, 0.4, 0.8}, and is negligible for large
Reynolds number Re ≳ 250.

As the preceding listing explains, the change in the eigenvalue errors
with increasing hM, uM retains the same order of convergence p with macro-
grid interval ∆ as the order p of the patch coupling interpolation. Thus,
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for the viscous shallow water flows all the four polynomial patch schemes
are consistent with the full-domain microscale model to the same order p as the
patch coupling interpolation, and with the same order of convergence p for all the
physical parameters Re, hM, uM.

4.6 Staggered patch schemes are invariant to
flow direction

Almost all the key studies in this chapter are performed for a wide range of
parameters but keeping the horizontal mean velocity vM = 0. That is, most
results in this chapter correspond to flow angle α = arctan(vM/uM) = 0,
where the velocities are uM = q cos(α) and vM = q sin(α).

• Section 4.2.6 shows that the staggered patch schemes are accurate
showing the results for α = 0.

• Section 4.3 shows that the patch schemes are not sensitive to numeri-
cal roundoff errors based on a study over a range of velocities, but all
with vM = 0, that is with α = 0.

• Section 4.4 establishes that the staggered patch schemes are not ar-
tificially unstable showing the results over a range of velocities all
with α = 0.

• Section 4.5 establishes the consistency of the staggered patch scheme
showing the results for different velocities all with α = 0.

This section validates that assumption, by showing that the variation of the
patch scheme eigenvalue errors is negligible with varying flow angles α, or
equivalently for varying coordinate frame orientation.

To establish that the patch schemes are invariant (within discretisation
errors) with flow angle α = arctan(vM/uM), this subsection shows that the
eigenvalue errors ϵ1,0, ϵ1,1, and ϵ2,1 are small for all the flow angles α ∈
{0◦, 10◦, 20◦, . . . , 360◦}.

Patch scheme eigenvalue errors are small irrespective of the flow angles α and
the magnitude of velocity q. For Spectral and Square-p8 patch schemes,
Figs. 4.6.1 and 4.6.2 plot the variation of the eigenvalue error ϵ1,0 with the
flow angle α, for different magnitudes q =

√
u2
M + v2M of mean velocity. In

Figs. 4.6.1 and 4.6.2, the patch schemes use N = 22 macro-grid intervals,
n = 6 sub-patch micro-grid intervals, and the patch scale ratio r = 0.001,
for Reynolds number Re = 250 and mean height hM = 0.2. Figures 4.6.1
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Figure 4.6.1. Variation of Spectral patch scheme eigenvalue error ϵ1,0 with
flow angle α for different magnitudes q =

√
u2
M + v2M of mean velocity.

Grid parameters are N = 22 macro-grid intervals, n = 6 sub-patch micro-
grid intervals, patch scale ratio r = 0.001. physical parameters are Reynolds
number Re = 250, mean height hM = 0.2.
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Figure 4.6.2. Variation of Square-p8 patch scheme eigenvalue error ϵ1,0

with flow angle α for different magnitudes q =
√

u2
M + v2M of mean velocity

for the same grid and physical parameters in Fig. 4.6.1.
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and 4.6.2 show that the eigenvalue error ϵ1,0 are small irrespective of the
flow angles α ∈ {0◦, 10◦, 20◦, . . . , 360◦} and the magnitude of horizontal
velocity q ∈ {0.2, 0.4, 0.6, 0.8}; specifically, ϵ1,0 < 8 · 10−7 for the Spectral

and ϵ1,0 < 4 · 10−5 for the Square-p8 patch schemes.
Variation of the patch scheme eigenvalue errors with the flow angle α is neg-

ligibly small. As Figs. 4.6.1 and 4.6.2 show, the variation of the eigenvalue
error ϵ1,0 is small; specifically the eigenvalue error ϵ1,0 is within the same
order of magnitude. As the previous paragraph explains, the magnitude
of the error itself is small, so this small variation of the eigenvalue errors
with the flow angle is negligible. This trend of negligibly small variation of
the patch scheme eigenvalue error also holds for the eigenvalue errors ϵ1,1

and ϵ2,1, and also for other patch grid parameters (N,n, r). In general,
depending upon the specific patch scheme and the grid parameters, the
patch scheme eigenvalue errors vary. Yet, this trend of negligible varia-
tion of the patch scheme eigenvalue errors hold for all the five staggered
patch schemes (Spectral, Square-p2, Square-p4, Square-p6, Square-p8)
irrespective of the patch grid parameters.

The small variation of the patch scheme eigenvalue errors with the flow an-
gle α is due to discretisation error, not a deficiency of the patch schemes. Any
discrete grid including that of the full-domain model and a patch scheme,
introduces non-isotropy for any discrete numerical simulations. This non-
isotropy due to discretisation error leads to small changes in the solution
with a change in orientation of flow features (e.g., a wave in some direction),
or equivalently the orientation of the coordinate frame. Thus, the small
variation of the patch scheme eigenvalue errors with the flow angle α (e.g.,
in Figs. 4.6.1 and 4.6.2), is mainly due to the microscale and macroscale
discretisation error, not a deficiency of the patch schemes.

The previous three paragraphs in this section establish the following
three points respectively.

1. Patch scheme eigenvalue errors are small irrespective of the flow
angles α and the magnitude of velocity q.

2. Variation of the patch scheme eigenvalue errors with the flow angle α

is negligibly small.

3. The small variation of the patch scheme eigenvalue errors with the
flow angle α is due to discretisation error, not a deficiency of the patch
schemes.

These points together establish that any change in the patch scheme solution
with a change in orientation of flow features (e.g., a wave in some direction),
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or equivalently any change in the orientation of the coordinate frame, is
not due to the patch scheme, except the small discretisation errors. Thus, the
staggered patch schemes are invariant to flow direction.

4.7 Large computational savings via staggered
patch schemes

Following very closely §3.7 for the general linear wave, this section quan-
tifies and demonstrates the large computational savings of the staggered
patch schemes for the viscous shallow water flows. Section 4.7.1 shows the
computational savings of the 2D staggered patch schemes theoretically in
terms of the ratio of the space over which the patch schemes and the full-
domain model computes. Section 4.7.2 shows the computational savings
of the patch schemes in terms of the ratio of the number of state variables
for which the patch schemes and the full-domain model computes. Sec-
tion 4.7.3 quantifies the computational complexity of the staggered patch
schemes and compares the compute times of the staggered patch schemes
to that of the full-domain microscale model. Section 4.7.4 demonstrates the
computational savings of the 2D staggered patch schemes by measuring
the elapsed time taken to compute the time derivative of the state vector
(one time iteration) using a specific implementation. Section 4.7.5 demon-
strates the accuracy and the effectiveness of the staggered patch schemes
by numerically simulating a localised nearly discontinuous macroscale
viscous roll waves (e.g., Balmforth and Mandre 2004) emerging from the
initial condition of a simple progressive wave within the small sparsely
located patches. Section 4.7.6 establishes the accuracy of the staggered
patch scheme simulations more quantitatively and explains some subtle
details of the practical issues in the patch scheme simulations.

4.7.1 Patch schemes compute only within a small fraction
of space

As for the general linear wave, also for the viscous shallow water flows,
the staggered patch schemes compute only within a small fraction of the space in
the full domain. Section 3.7.1 for the general linear wave shows that for a
small patch scale ratio r = l/(2∆), the 2D staggered patch schemes compute
only within a small fraction 3r2 of the area in the full domain. As all the
discussions in §3.7.1 are based on only the area over which computations
are performed (i.e., disregarding the specific number of discrete nodes), all
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the discussions in §3.7.1 also hold for the viscous shallow water flows. That
is, the total area of the simulated space in a patch scheme is 3r2L2 whereas
the corresponding total area of the simulated space in a fine-grid full-
domain microscale model is L2. Thus, for the viscous shallow water flows,
the 2D staggered patch schemes compute only within a small fraction 3r2

of the space in the full domain.

4.7.2 Patch schemes compute for a small number of state
variables

The staggered patch schemes compute only for a small number of dynamical state
variables compared to the corresponding fine-grid full-domain microscale
model with the same grid interval as the sub-patch micro-grid interval δ.
Section 4.7.1 gives a rough indication of the computational savings of the
staggered patch schemes in terms of the space over which computation
happens. This subsection shows the computational savings of the staggered
patch schemes more concretely in terms of the number of the dynamical
state variables of the 2D staggered patch schemes and that of the corre-
sponding fine-grid full-domain microscale model. As in §4.1.3, for viscous
shallow water flows, a staggered patch grid requires two layers of edge
nodes in the normal direction to the edges, and one layer of edge nodes in
the tangential direction to the edges, as in Fig. 4.1.2b. Yet the patch grid in
Fig. 4.1.2a for the general linear wave and the patch grid in Fig. 4.1.2b for
the viscous shallow water flows have the same number of patch interior
nodes (the filled circles), nI

p = (N2/4)(9n2/4 − 4n + 2), which is same as
the number of state variables (p. 21 of §2.1.2). Similarly, for a staggered
grid in Fig. 4.1.1 corresponding to a fine-grid full-domain model, with the
same grid interval as the sub-patch micro-grid interval δ, the total number
of interior nodes is nI

mδ = 3N2n2/(16r2), same as that of the general linear
wave. Hence, all the discussions in §3.7.2 for the general linear wave also
hold for the viscous shallow water flows. Specifically, the ratio nI

p/n
I
mδ of

the number of state variables of the staggered patch scheme to that of the
fine-grid full-domain microscale model for viscous shallow water flows is
same as the expression (3.7.1) of §3.7.2 for general linear wave.

4.7.3 Computational complexity of the staggered patch
schemes

As §3.7.3 for the general linear wave, for viscous shallow water flows this
subsection quantifies the computational complexity of the staggered patch
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schemes and compares the compute times of the staggered patch schemes to
that of the full-domain microscale model. As in §3.7.3, to simplify and keep
the smaller uncertainties aside, for the patch schemes and the full-domain
microscale model this subsection assumes a similar level of vectorisation,
and a similar pattern of cache and memory access.

As §4.7.2 details, the total number of state variables nI
p of a patch scheme,

and the total number of state variables nI
mδ of a fine-grid full-domain model

for viscous shallow water flows are respectively the same as those of the
general linear wave. Hence, for patch scheme simulation of viscous shallow
water flows, the ratio nI

p/n
I
mδ is same as expression (3.7.1) of §3.7.2 for the

general linear wave.
A patch grid for simulating viscous shallow water flows requires a larger

number of edge nodes (Fig. 4.1.2b) compared to that of the general linear
wave (Fig. 4.1.2a). Hence, for patch scheme simulation of viscous shallow
water flows, with nI

mδ = 3N2n2/(16r2) as in §3.7.3, using expression (4.1.17)
for nE

p,

nE
p/n

I
mδ = 24r2/n+ 64r2/(3n2). (4.7.1)

Due to the larger number of edge nodes in the patch grid for the viscous
shallow water flows compared to the general linear wave, expression (4.7.1)
has + 64r2/(3n2) as opposed to − 64r2/(3n2) in the corresponding expres-
sion (3.7.5) of nE

p/n
I
mδ for the general linear wave (p. 136 of §3.7.3).

Using expression (3.7.1) of §3.7.2 for nI
p/n

I
mδ and expression (4.7.1) for

nE
p/n

I
mδ, the ratio of compute time for computing the time derivative of the

state vector of a patch scheme to that of the fine-grid full-domain microscale
model (i.e., the compute time ratio for one iteration in time simulation) is

Tp/Tmδ = (nE
p TC + nI

p TM)/(nI
mδ TM) = (nE

p/n
I
mδ) (TC/TM) + nI

p/n
I
mδ

⇒ Tp/Tmδ = (TC/TM)

(
24r2

n
+

64r2

3n2

)
+ 3r2

(
1−

16

9n
+

8

9n2

)
. (4.7.2)

Due to the larger number of edge nodes in the patch grid for the viscous
shallow water flows compared to the general linear wave, expression (4.7.2)
has + 64r2/(3n2) as opposed to − 64r2/(3n2) in the corresponding expres-
sion (3.7.6) of Tp/Tmδ for the general linear wave (p. 136 of §3.7.3).

Substituting TC/TM = 1 into the compute time ratio (4.7.2) gives a rough
indication of the possible computational cost savings of the staggered patch
schemes as

Tp/Tmδ ≲ 3r2 +
56r2

3n
+

24r2

n2
. (4.7.3)
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The expression (4.7.3) has + 24r2/(n2) as opposed to − 36r2/(3n2) in the
corresponding expression (3.7.7) for the general linear wave (p. 136 of
§3.7.3).

4.7.4 Staggered patch schemes simulate with small
compute time

Section 4.7.1 shows the computational savings of the 2D staggered patch
schemes theoretically in terms of the ratio of the space and the ratio of
the number of state variables respectively. As in §3.7.4 for the general
linear wave, this section shows the computational savings of the 2D stag-
gered patch schemes by measuring the elapsed time taken to compute
the time derivative of the state vector (one time iteration) using a specific
implementation in Julia programming language.

As in §3.7.4, this subsection measures the compute time ratio Tp/Tmδ

for a specific implementation and compares with expression (4.7.2) by
empirically estimating the model compute time per interior node TM and
the coupling compute time per edge node TC. As in §3.7.4, the compute
times in this subsection are measured on a custom assembled liquid-cooled
workstation with Intel i7-6900k processor and 6 4GB DDR4 RAM. Both the
full-domain microscale model and the patch schemes are implemented as
serial programs.

Figure 4.7.1 plots the measured compute time Tmδ of the fine-grid full-
domain microscale model (4.1.11) (p. 166 of §4.1.2), for computing the time
derivative of the state vector for the initial condition (3.7.8) of the simple
progressive wave (p. 146 of §3.7.5). Figure 4.7.1 plots the compute time Tmδ

of the fine-grid full-domain model with the same grid interval as the sub-
patch micro-grid interval δ of a staggered patch grid with different number
of macro-grid intervals N, sub-patch micro-grid intervals n, and patch
scale ratio r. We measured one hundred samples of compute times Tmδ for
each of the four Reynolds numbers Re ∈ {10, 50, 250, 1250}. Each point in
Fig. 4.7.1 is the mean over the four Reynolds numbers Re. For the measured
compute times Tmδ, fitting one common power law curve (solid lines in
Fig. 4.7.1) using expression (3.7.2) (in p. 135 of §3.7.3), we estimate the
model compute time per interior node TM = 0.19 µs (same value for all n,
r). The measured compute times Tmδ reasonably closely follow the trend of
expression (3.7.2) of §3.7.3 (solid lines). For the viscous shallow water flows,
the model compute time TM = 0.19 µs is about three times larger than the model
compute time TM = 0.062 µs of the general linear wave (p. 137 of §3.7.4). This
larger model compute time TM is due to the relatively larger complexity
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Figure 4.7.1. Measured compute times Tmδ of the fine-grid full-domain
model (viscous shallow water flows) with the same grid interval as the
sub-patch micro-grid interval δ of a staggered patch grid with different N,
n, and patch scale ratio r. Solid lines represent expression (3.7.2) (in p. 135
of §3.7.3) with the estimated model compute time TM = 0.19 µs.
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Figure 4.7.2. Measured compute times Tp of the five staggered patch
schemes (viscous shallow water flows) with different N and n. Solid lines
represent expression (3.7.3) (in p. 136 of §3.7.3) using the estimated model
compute time TM = 0.19 µs and the respective estimated coupling compute
times TC for the five patch schemes.
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and computations of the microscale model (4.1.11) for the viscous shallow
water flows (p. 166 of §4.1.2) compared to the microscale model (3.1.1) for
the general linear wave (p. 49 of §3.1).

Figure 4.7.2 plots the measured compute time Tp of the five staggered
patch schemes for computing the time derivative of the state vector (i.e.,
the compute time for one iteration in time simulation), for different macro-
grid intervals N and sub-patch micro-grid intervals n. We measured one
hundred samples of compute times Tp for each of the four Reynolds num-
bers Re ∈ {10, 50, 250, 1250}. Each point in Fig. 4.7.2 is the mean over the
four Reynolds numbers Re. For the measured compute times Tp, fitting
a power law curve for each patch scheme (solid lines in Fig. 4.7.2) using
the model compute time TM = 0.19 µs in expression (3.7.3) (in p. 136 of
§3.7.3), we estimate the approximate coupling compute times per edge
node TC = 0.58, 1.8, 7.4, 23, 63 µs for the five staggered patch schemes
Spectral, Square-p2, Square-p4, Square-p6, and Square-p8 respectively.
The measured compute times Tp of all the five staggered patch schemes
reasonably closely follow the trend of expression (3.7.3) of §3.7.3 (solid
lines).

Except the Spectral patch scheme, the estimated coupling compute
times TC = 0.58, 1.8, 7.4, 23, 63 µs for the viscous shallow water flows are
about the same as the coupling compute times TC = 0.44, 1.8, 7.6, 24, 63 µs
of the general linear wave (p. 139 of §3.7.4). There are additional layers of
edge nodes in the staggered patch grid for the viscous shallow water flows
(Fig. 4.1.2b) compared to the general linear wave (Fig. 4.1.2a). But as the
coupling compute times TC are average patch coupling compute time per
edge node, the TC of the viscous shallow water flows and that of the general
linear wave are about the same. Yet, as the total patch coupling time nE

p TC
depends on the number of edge nodes, the total compute time for one
iteration Tp in (3.7.3) (in p. 136 of §3.7.3) is larger for the viscous shallow
water flows compared to that of the general linear wave. For example,
the compute times for one iteration Tp in Fig. 4.7.2 for the viscous shallow
water flows are about 15 to 40% larger (depending upon the patch scheme)
compared to the Tp in Fig. 3.7.2 of §3.7.4 for the general linear wave.

As in §3.7.4 for the general linear wave, the smallest coupling compute
time TC = 0.58 µs for the spectral patch scheme is because Algorithm 1
efficiently calculates the edge values for all the h/u/v-centred patches in
one shot using the fast Fourier transform via the Fourier shift property. As
in §3.7.4, for the polynomial patch schemes, the coupling compute time per
edge node TC increases monotonically from 1.8 µs to 63 µs with increase in
the order p of interpolation from two to eight.
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Figure 4.7.3. Ratio Tp/Tmδ of the measured compute time of the staggered
patch schemes (viscous shallow water flows) to that of the fine-grid full-
domain model, for different n, r. Solid lines represent expression (4.7.2)
for Tp/Tmδ using the estimated model compute time TM = 0.19 µs and the
respective estimated coupling compute times TC for each patch scheme.
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The focus of the current patch scheme implementation is on the flexibil-
ity to explore a large number of possible designs of the patch grid and a
large number of possible patch schemes. So, the current patch scheme im-
plementation, being not computationally efficient, leads to large coupling
compute times per edge node TC from Fig. 4.7.2. Hence, the approximate
ratios of the coupling compute times to the model compute times are
TC/TM = 3, 9, 39, 120, 326, for the five staggered patch schemes Spectral,
Square-p2, Square-p4, Square-p6, and Square-p8 respectively. Compared
to the ratio TC/TM = 7, 29, 123, 381, 1020 in §3.7.4 for the general linear
wave, ratio TC/TM of the coupling compute times to the model compute times for
the viscous shallow water flows is about three times lesser. Compared to the
general linear wave, the smaller ratio TC/TM for the viscous shallow water
flows is because the coupling compute times TC are about the same as the
general linear wave but the model compute time is about three times larger
(due to relatively larger complexity and computations of the microscale
model as in p. 264 of this §4.7.4).
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Figure 4.7.3 plots the ratio Tp/Tmδ of the measured compute time of the
fine-grid full-domain model to that of the staggered patch schemes, for
different number of sub-patch micro-grid intervals n and patch scale ra-
tio r. Solid lines represent expression (4.7.2) for Tp/Tmδ using the estimated
model compute time TM = 0.19 µs and the respective estimated coupling
compute times TC for each patch scheme. As in §4.7.4, for r = 0.001 we
compute Tp/Tmδ (plusses in Fig. 4.7.3) using the measured Tp of the patch
schemes and the estimated Tmδ of the full-domain model using expres-
sion (4.7.2). The measured compute time ratio Tp/Tmδ reasonably closely
follow the trend of expression (4.7.2) (solid lines) for the five staggered
patch schemes (with the respective TC).

In Fig. 4.7.3, the compute time ratio Tp/Tmδ for the viscous shallow water
flows is about half of the compute time ratio Tp/Tmδ of the general linear wave in
Fig. 3.7.3 of §3.7.4. The preceding paragraph reports that the ratio TC/TM of
the coupling compute times to the model compute times for the viscous
shallow water flows is about three times lesser than that of the general linear
wave. Due to the additional layers of edge nodes in the staggered patch grid
for the viscous shallow water flows (Fig. 4.1.2b) compared to the general
linear wave (Fig. 4.1.2a), expression (4.7.2) for Tp/Tmδ has + 64r2/(3n2) as
opposed to − 64r2/(3n2) in the corresponding expression (3.7.6) of Tp/Tmδ

for the general linear wave (p. 136 of §3.7.3). Overall, the combined effect
of the three times lesser TC/TM and the more edge nodes for the viscous
shallow water flows, leads to a lesser compute time ratio Tp/Tmδ, which is
about half of the compute time ratio Tp/Tmδ of the general linear wave.

Figure 4.7.3 shows that despite the estimated large TC/TM (between
3 and 326 for the five patch schemes), for sufficiently small patch scale
ratio r = 0.01, 0.001 the compute time ratios Tp/Tmδ are about 10−2, 10−4.
That is, despite the large TC/TM, for small patch scale ratios, the compute
times of the multiscale patch schemes are about 100 to 10 000 times smaller than
the corresponding fine-grid full-domain microscale model. These patch scheme
computational savings for the viscous shallow water flows are about twice
as those for the general linear wave.

As in p. 140 of §4.7.4 for the general linear wave, for patch scheme
simulations with fixed grid geometry, the patch coupling coefficients can
be precomputed as a sparse matrix, which gives the patch edge values
when multiplied by the patch centre values at each instant in time. Using
the sparse matrix multiplication for the patch coupling of the five stag-
gered patch schemes, Fig. 4.7.4 plots the measured compute time Tp for
computing the time derivative of the state vector (i.e., the compute time
for one iteration in time simulation), for different N and n. We measured
10 000 samples of compute times Tp for each of the four Reynolds num-
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Figure 4.7.4. Measured compute times Tp, with patch coupling via sparse
matrix multiplication, for the five staggered patch schemes with different N
and n. Solid lines represent expression (3.7.3) (in p. 136 of §3.7.3) using the
estimated model compute time TM = 0.19 µs and the respective estimated
coupling compute times TC for the five patch schemes.
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Figure 4.7.5. Ratio Tp/Tmδ of the measured compute time of the staggered
patch schemes with patch coupling via sparse matrix multiplication to that of
the fine-grid full-domain model, for different n, r. Solid lines represent
expression (4.7.2) for Tp/Tmδ using the estimated TM = 0.19 µs and the
respective estimated coupling compute times TC for each patch scheme.
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bers Re ∈ {10, 50, 250, 1250}. Each point in Fig. 4.7.4 is the mean over the
four Reynolds numbers Re.

Similar to §3.7.4 for the measured compute times Tp in Fig. 3.7.4, fit-
ting a power law curve (solid lines in Fig. 3.7.4) using the model com-
pute time TM = 0.19 µs in expression (3.7.3) (in p. 136 of §3.7.3), we es-
timate the approximate coupling compute times per edge node TC =

0.62, 0.41, 0.4, 0.43, 0.47 µs for the five staggered patch schemes Spectral,
Square-p2, Square-p4, Square-p6, and Square-p8 respectively. The patch
coupling via sparse matrix multiplication reduces the coupling compute
time TC by as large as 170 times compared to the direct coupling compute
times.

Figure 4.7.5 plots the ratio Tp/Tmδ of the measured compute time of
the staggered patch schemes with patch coupling via sparse matrix multipli-
cation to that of the fine-grid full-domain model, for different number of
sub-patch micro-grid intervals n and patch scale ratio r. Solid lines repre-
sent expression (4.7.2) for Tp/Tmδ using the estimated TM = 0.19 µs and the
respective estimated coupling compute times TC for each patch scheme. As
discussed in the paragraph before (for direct coupling), the computation
for the fine-grid full-domain model corresponding to a patch grid with a
small patch scale ratio, requires large memory. Hence, for r = 0.001 we
compute Tp/Tmδ (plusses in Fig. 4.7.5) using the measured Tp of the patch
schemes and the estimated Tmδ of the full-domain model using expres-
sion (4.7.2). The measured compute time ratio Tp/Tmδ reasonably closely
follow the trend of expression (4.7.2) (solid lines) for the five staggered
patch schemes (through the respective TC). As in §3.7.4 for the general
linear wave, compared to the compute time ratios Tp/Tmδ in Fig. 4.7.3 via
direct coupling, the compute time ratios Tp/Tmδ in Fig. 4.7.5 with patch
coupling via sparse matrix multiplication, do not have strong dependence
on the specific patch schemes nor the patch scale ratio r. Compared to
the compute time ratios Tp/Tmδ in Fig. 4.7.3 via direct coupling, the patch
coupling via sparse matrix multiplication (for fixed grid) reduces the compute time
ratios Tp/Tmδ by about ten times as in Fig. 4.7.5, especially for higher order
patch schemes.

As for the direct coupling (p. 268 of this §4.7.4), in Fig. 4.7.5 the compute
time ratio Tp/Tmδ for the viscous shallow water flows with patch coupling via
sparse matrix multiplication is about half as that of the general linear wave in
Fig. 3.7.5 of §3.7.4. As for the direct coupling (p. 268 of this §4.7.4), the
combined effect of the lesser TC/TM and the more edge nodes for the viscous
shallow water flows leads to lesser compute time ratio Tp/Tmδ, which is
about half of the compute time ratio Tp/Tmδ of the general linear wave.
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As in the previous paragraph, due to the overall combined effect of the
larger complexity of the microscale model and the more edge nodes for the
viscous shallow water flows, the ratio TC/TM (of coupling compute time
to model compute time) for the viscous shallow water flows is about half
as that of the general linear wave. Yet, even for the viscous shallow water
flows, the ratio TC/TM > 1 (between two and three). Figure 4.7.5 shows that
despite TC/TM > 1, for sufficiently small patch scale ratio r = 0.01, 0.001 the
compute time ratios Tp/Tmδ are about 10−3, 10−5. That is, for small patch
scale ratios, the compute times of the multiscale patch schemes are about 1000 to
105 times smaller than the corresponding fine-grid full-domain microscale model.
This ratio of compute time is roughly about the same as for the general
linear wave in §3.7.4. Yet, the patch scheme computational saving for the
viscous shallow water flows is twice as that of the general linear wave
in §3.7.4.

The demonstrated large computational savings of the patch schemes via
compute time ratio Tp/Tmδ in Figs. 4.7.3 and 4.7.5 are for the case of ratio of
coupling compute time to model compute time TC/TM > 1. As explained
at the end of §3.7.4 for the general linear wave, even larger computational
savings of the patch schemes are possible with smaller ratio TC/TM.

4.7.5 Patch scheme time simulations of viscous shallow
water flows

This subsection demonstrates the accuracy and the effectiveness of the
staggered patch schemes by numerically simulating a viscous roll wave
(e.g., Balmforth and Mandre 2004). The patch schemes accurately simulate
the localised nearly discontinuous macroscale viscous roll wave emerging
from the initial condition of a simple progressive wave within the small
sparsely located patches.

As in §3.7.5 for the general linear wave, for the viscous shallow water
flows this subsection uses the BS3 ODE integrator (Bogacki and L. Shampine
1989; L. F. Shampine and Reichelt 1997) for all the time simulations with
the relative and absolute error tolerances of 10−3 and 10−6 respectively.

Figures 4.7.6 to 4.7.8 show the time evolution of a viscous roll wave
(height h and velocities u, v) for Reynolds number Re = 10 over a bed
inclined 10◦ downwards along positive x-direction, emerging from the
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Figure 4.7.6. Height h for time evolution of a roll wave for t = 0 to 10π,
emerging from the initial condition of simple progressive wave (4.7.4),
using Square-p4 patch scheme (colour-coded ribbons, with N = 14, n = 6,
and r = 0.1) agrees reasonably with that of the fine-grid full-domain model
(grey mesh). Black circles on h-centred patches show the discrepancy.
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Figure 4.7.7. Velocity u for the time evolution of a roll wave for t = 0 to
10π, for the same patch scheme simulation detailed in Fig. 4.7.6, agrees
reasonably with that of the fine-grid full-domain model (grey mesh). Black
circles on u-centred patches show the discrepancy.
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Figure 4.7.8. Velocity v for time evolution of a roll wave for t = 0 to 10π, for
the same patch scheme simulation detailed in Fig. 4.7.6, agrees reasonably
with that of the fine-grid full-domain model (grey mesh). Black circles on
h-centred patches show the discrepancy.
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initial condition of a simple progressive wave

h0(x, y) = 0.2+ 0.05 sin(x) exp[−y2/42] , (4.7.4a)

u0(x, y) = 0.6+ (0.05/
√
2) sin(x) exp[−y2/42] , (4.7.4b)

v0(x, y) = 0 , (4.7.4c)

which is superimposed over approximate equilibrium mean flow hM = 0.2,
uM = 0.6, vM = 0. In each of Figs. 4.7.6 to 4.7.8, the subfigures from top-left
sub-plot to bottom-right correspond to simulation time t = 0, 10, 21, 31. The
regions where the colour-coded ribbons cross are patches; the patches are
much smaller than illustrated in the figure for visual clarity. The staggered
patch schemes compute only within patches, a small fraction of the area of
the full domain (§4.7.1).

Figures 4.7.6 to 4.7.8 show that the time evolution using the Square-p4

patch scheme (colour-coded ribbons, with N = 14, n = 6, and r = 0.1)
agrees reasonably with that of the 420× 420 fine-grid full-domain model
(grey mesh) with the same full-domain grid interval as the sub-patch micro-
grid interval δ = 2 (2π) r/(Nn) = 2π/420 (for the non-dimensional domain
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size 2π). Despite the small number of macro-grid intervals (N = 14) and
a low order patch coupling (fourth order polynomial interpolation), the
Square-p4 patch scheme captures the localised nearly discontinuous macro-
scale roll wave. Figures 4.7.6 and 4.7.7 show that the lateral (i.e., along y

axis) local initial disturbance (4.7.4) to the mean flow spreads side-ways
while emerging as a roll wave.

In Figs. 4.7.6 to 4.7.8 for the viscous roll wave simulation, the fine-
grid full-domain microscale model (grey mesh) uses the same micro-grid
interval as the sub-patch micro-grid interval δ = 2 (2π) r/(Nn) (for the non-
dimensional domain size 2π). But the grey mesh of the full-domain model
plots only 27× 27 grid instead of all the 421× 421 grid lines, skipping many
lines for visual clarity. The colour-coded ribbons of the patch scheme in
Fig. 4.7.6 consist of all the lines (along the coordinate axes x and y) passing
through all the h nodes within all the patches; similarly Figs. 4.7.7 and 4.7.8
for u, v nodes within all the patches respectively. Although the patch scale
ratio is r = 0.1, the patches are enlarged here for visual clarity so that the
ribbons appear wider. In Figs. 4.7.6 to 4.7.8, the solutions h/u/v of fine-grid
full-domain microscale model are linearly interpolated using nearest four
values to the centres of the respective h/u/v-centred patches, illustrated by
small black circles. The large circles are the patch scheme solution h/u/v.

With a sufficient number of macro-grid intervals and accurate patch
coupling, patch schemes accurately simulate the viscous shallow water
flows. Figures 4.7.6 to 4.7.8 show that for small number of macro-grid
intervals (N = 14) and a low order patch coupling (fourth order polynomial
interpolation), the Square-p4 patch scheme reasonably accurately simu-
lates the localised nearly discontinuous macroscale roll wave. Figure 4.7.9
compares the Square-p4 patch scheme patch scheme solution for larger
N = 22 (n = 6, r = 0.1), with the full-domain solution for the same grid
interval as the sub-patch micro-grid interval δ = 2 (2π) r/(Nn) = 2π/660

(for the non-dimensional domain size 2π). Increasing the number of macro-
grid intervals sufficient enough to resolve the localised roll wave, leads
to a more accurate multiscale patch scheme simulation. Increasing the
order p of the patch coupling interpolation also increases the accuracy of
the patch scheme simulations. Figure 4.7.9 visually shows that the discrep-
ancy between the patch scheme and fine-grid full-domain model is small,
non concentric black circles are offset only slightly. This small discrepancy
at t = 31 (distance between centres of non concentric black circles) also
includes the accumulation of the ODE integrator error due to several time
iterations before t = 31. Thus, with a sufficient number of macro-grid
intervals and accurate patch coupling, patch schemes accurately simulate the
viscous shallow water flows.
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Figure 4.7.9. The emergent viscous roll wave (height h at t = 31), from the
initial condition of simple progressive wave (4.7.4), using Square-p6 patch
scheme (colour-coded ribbons, with N = 22, n = 6, and r = 0.1) agrees very
closely with that of the fine-grid full-domain model (grey mesh). Black
circles on h-centred patches show the discrepancy.
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4.7.6 Some practical issues in staggered patch scheme
simulations of viscous shallow water flows

Section 4.7.5 (e.g., Fig. 4.7.9) qualitatively shows that for sufficient number
of macro-grid intervals and accurate patch coupling, patch schemes accu-
rately simulate the viscous shallow water flows. This subsection establishes
the accuracy of the staggered patch scheme simulations more quantitatively
and explains some subtle details of the practical issues in the patch scheme
simulations.

As in §3.7.5 for the general linear wave, to numerically quantify the
discrepancy, we compute the solutions hc

mδ, uc
mδ, vcmδ of the fine-grid full-

domain microscale model, at the positions of the respective h/u/v-centred
patches, by a bilinear interpolation using the four nearest full-domain node
values. For example, Figs. 4.7.6 to 4.7.8 of §4.7.5 indicate the full-domain
solutions at the respective patch centres as small black circles.



Chapter 4. Patch schemes accurately simulate viscous shallow water flows 276

Figure 4.7.10. Convergence of patch scheme time solution h using BS3 non-
stiff ODE integrator, in terms of simulation error ϵh

2π of (3.7.9a) for the roll
wave (e.g., in Fig. 4.7.6) at t = 2π. With a sufficient number of macro-grid
intervals N and accurate patch coupling, patch schemes accurately simulate
the viscous shallow water flows.
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Figure 4.7.11. Patch scheme simulations using QNDF stiff ODE integrator
gives with almost the same accuracy as the BS3 non-stiff ODE integrator
(Fig. 4.7.10). For small patch scale ratio r ≲ 0.01, the QNDF stiff integrator
takes about ten to hundred times less compute time compared to the non-
stiff BS3 (Fig. 4.7.12) due to fewer function evaluations (Fig. 4.7.13).
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Figure 4.7.10 plots the solution convergence of the staggered patch schemes
with decreasing macro-grid interval ∆, for the relatively complex nearly
discontinuous roll wave simulation visualised in §4.7.5. Figure 4.7.10
shows the convergence via the relative simulation error (3.7.9a) (of §3.7.5) for
height h. In Fig. 4.7.10, except for the range of macro-grid intervals N and
patch scale ratio r, all other parameters are the same as in Figs. 4.7.6 to 4.7.9
of §4.7.5. Figure 4.7.10 shows that, in general, the simulation error ϵh

2π

decreases with decreasing macro-grid intervals ∆ = 2π/N (for the non-
dimensional domain size 2π) A smaller patch scale ratio (r ≲ 0.01) leads to
small degradation in accuracy (about 10–50%) compared to r = 0.1, yet the
solution errors decrease with decreasing number of macro-grid intervals N,
roughly with the same order p as the polynomial interpolation for patch
coupling. This decreasing simulation error with decreasing macro-grid
intervals, that is the solution convergence similar to the eigenvalue conver-
gence in §4.5, quantitatively establishes the accuracy of the staggered patch
scheme time simulations.

The accuracy of the Spectral patch scheme does not deteriorate for large
macro-grid interval ∆ for the viscous shallow water flows. Figures 3.7.12
to 3.7.14 (of §3.7.5) for the general linear wave show that the simulation
errors of the Spectral patch scheme are small (about 10−3), without any
dependence on the macro-grid interval ∆. In contrast to the general linear
wave, the convergence of the Spectral patch scheme solution for the vis-
cous roll wave in Fig. 4.7.10 shows that the simulation error of the Spectral
patch scheme increases with increasing macro-grid interval ∆. But, this
increasing error is not due to any deficiency of the Spectral patch scheme,
instead simulating this localised nearly discontinuous roll wave requires
resolving a large number of wavenumbers, which is achieved by a large
number of macro-grid intervals (small macro-grid interval ∆). For simula-
tion of macroscale smooth solutions, such as a simple progressive wave,
the simulation error of the Spectral patch scheme does not increase with
increasing macro-grid interval ∆. For example, Fig. 4.5.1 of §4.5.1 for the
Spectral patch scheme shows that the eigenvalue error corresponding to
the wavenumber (kx, ky) = (1, 0) is small for a range of macro-grid inter-
vals, with little dependence on the macro-grid intervals ∆. Similarly, the
Spectral patch scheme solution is exact (within numerical roundoff errors)
for all the wavenumbers resolved by a patch grid. Thus, the accuracy of
the Spectral patch scheme does not deteriorate for large macro-grid inter-
val ∆. On the other hand, increasing the number of macro-grid intervals
resolves increasingly large macroscale wavenumbers as required by any
specific simulation such as roll wave, leading to improving accuracy with
decreasing macro-grid interval ∆.
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Figure 4.7.12. Compute times of three ODE integrators (non-stiff BS3,
stiff CVODE BDF, and stiff QNDF) for Square-p6 patch scheme simulation in
Fig. 4.7.6 for different system dimension nI

p and patch scale ratio r. For
r ≲ 0.01, compute times of stiff integrators are about ten to hundred times
lesser than non-stiff BS3 due to fewer function evaluations (Fig. 4.7.13).
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Figure 4.7.13. Number of function evaluations of three ODE integrators
(non-stiff BS3, stiff CVODE BDF, and stiff QNDF) for Square-p6 patch scheme
simulation in Fig. 4.7.6 for different system dimension nI

p and patch scale
ratio r. For small patch scale ratio r ≲ 0.01, stiff integrators perform about
ten to hundred times less function evaluations than non-stiff BS3.
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Compute times of non-stiff ODE integrators for the patch scheme simulations
increase with decreasing patch scale ratio r. The solution convergence plot
in Fig. 4.7.10 does not have data points for patch scale ratio r ≲ 0.001 (no
plusses or circles). That is because the patch scheme simulation for small
patch scale ratio using non-stiff ODE integrators (e.g., BS3 in Fig. 4.7.10)
requires a large compute time. For N = 10, n = 6, keeping all other pa-
rameters the same as in Fig. 4.7.10, using BS3 non-stiff ODE integrator, the
roll wave patch scheme simulation with patch scale ratios r = 0.1, 0.01,
complete in about 0.1minute and 14min respectively. The same roll wave
patch scheme simulation with a patch scale ratio r = 0.001 (N = 10, n = 6)
using BS3 non-stiff ODE integrator does not complete even after five days.
On the other hand, the same roll wave patch scheme simulation (i.e.,
r = 0.001,N = 10, n = 6) using QNDF stiff ODE integrator completes in
1.2min. The QNDF stiff integrator of the Julia package DifferentialEqua-
tions.jl (2021) is a quasi-constant time step variable-order NDF (numerical
differentiation) method, roughly equivalent to the common variable-step,
variable-order (VSVO) ode15 integrator (L. F. Shampine and Reichelt 1997,
p. 4) of MATLAB (with the default option to use NDF).

For the patch scheme simulations with small patch scale ratio r ≲ 0.001,
stiff ODE integrators are much faster yet as accurate as the non-stiff ODE in-
tegrators. Figure 4.7.12 plots the compute times of three ODE integrators
(non-stiff BS3, stiff CVODE BDF, and stiff QNDF) for Square-p6 patch scheme
simulation in Fig. 4.7.6 for different system dimension nI

p (size of state
vector) and patch scale ratio r. A plot of compute times versus system
dimension nI

p for all the other four staggered patch schemes have identical
trend and approximately same magnitudes as in Fig. 4.7.12. Figure 4.7.12
shows that for both the stiff (BS3) and the non-stiff (CVODE BDF, and stiff
QNDF) ODE integrators, the compute times increase with decreasing patch
scale ratio r, for all system dimensions nI

p = (N2/4)(9n2/4− 4n+ 2) corre-
sponding to the macro-grid intervals N ∈ {6, 10, 14, 18, 22, 26}. Specifically,
comparing the red crosses with the green and blue crosses in Fig. 4.7.12
shows that for small patch scale ratio r ≲ 0.01, the compute times of stiff
integrators are about ten to hundred times lesser than non-stiff BS3. Fig-
ure 4.7.11 plots the solution convergence using the QNDF stiff ODE integrator
for the same relative and absolute error tolerances (10−3 and 10−6) and
other parameters as used by BS3 non-stiff ODE in Fig. 4.7.10. Comparing
Figs. 4.7.10 and 4.7.11 shows that both the stiff and non-stiff ODE integrators,
give same accuracy, except a small deviation for the Spectral patch scheme
for small macro-grid interval ∆ ≲ 2π/22 (for the non-dimensional domain
size 2π). With a smaller relative and absolute error tolerances of 10−7 and
10−6 respectively, a convergence plot using the QNDF stiff ODE integrator
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is identical to Fig. 4.7.10, also for the Spectral patch scheme for small
macro-grid interval ∆ ≲ 2π/22. That is, despite the large differences in the
compute times among the stiff and non-stiff ODE integrators, both give
reasonably the same accuracy. Especially, for the patch scheme simulations
with small patch scale ratio r ≲ 0.001, stiff ODE integrators are must faster
(ten to hundred times) yet as accurate as the non-stiff ODE integrators.

Patch scheme simulations for small patch scale ratio r ≲ 0.001 require ODE
integrator that can handle stiff systems. Figure 3.7.7 of §3.7.5 for the general
linear wave shows that the compute times of the stiff ODE integrators
(sp.BDF, sp.Radau) are ten to hundred times larger compared the non-
stiff ode integrators (BS3, DP5, Tsit5, Vern7). Similarly, for an even simpler
linear system du/dt = Au+b, Maclean et al. (2021b, p. 1742, Fig.4) comment
that “The stiff integrator is fast and reasonably accurate at low system
dimension, but performs poorly at dimension 60 and above.” In contrast,
the preceding paragraph shows that for the patch scheme simulations with
a small patch scale ratio r ≲ 0.001, stiff ODE integrators are much faster yet
as accurate as the non-stiff ODE integrators. From Figs. 4.7.10 and 4.7.11 and
Fig. 4.7.12, it is evident that this trend of stiff ODE integrators being much
faster also holds for different system dimensions as small as about five
hundred to as large as ten thousand for viscous shallow water flows. Based
on study for a simple linear system du/dt = Au+ b, Maclean et al. (2021b,
§3.1.4) find that projective ODE integrator (Gear and Kevrekidis 2003) which
specifically utilises the spectral gap in a system outperforms the stiff ODE
integrator both in accuracy and compute times. A detailed comparative
study of different ODE integrators including the projective ODE integrator,
for complex viscous shallow water flows, is left as future work. The current
work shows that for nonlinear microscale models (e.g., viscous shallow
water flows) patch scheme simulations for small patch scale ratio r ≲ 0.01

require a ODE integrator that can handle stiff systems efficiently.
The following paragraphs investigate why the compute times (ODE

integration times) of the patch scheme simulations increase with decreasing
patch scale ratio r, and hence necessitating a ODE integrator that can handle
stiff systems efficiently.

For the patch scheme simulations, the increasing compute times with
decreasing patch scale ratio is not due to patch scheme computations, but due to the
need for non-stiff ODE integrators to take smaller time steps for stability. (Moler
2004, pp. 202–206; Quarteroni et al. 2014, pp. 319–325; Lomax et al. 2011,
pp. 149–150; Pulliam and Zingg 2014, p. 57; Schiesser and G. W. Griffiths
2009, p. 22–23). Such smaller time steps require correspondingly more
function evaluations. Figure 4.7.13 plots the number of function evaluations
to compute the time derivative of a patch system corresponding to the
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compute times in Fig. 4.7.12, for different system dimension nI
p and patch

scale ratio r. Figure 4.7.13 shows that, except some deviations, in general
the number of function evaluation increases with decreasing patch scale
ratio r. On the other hand, as §4.7.4 (e.g., Fig. 4.7.5) shows, the compute
time to compute the time derivative of a patch scheme system (one iteration
of simulation) is much smaller by several orders of magnitude compared
to the corresponding full-domain microscale model. That is, the increasing
total compute times of the patch scheme simulations are not due to the
patch schemes per iteration, but due to the ODE integrators calling the
function to compute the time derivative of a patch scheme many times.

The patch schemes become increasingly stiff with decreasing patch scale
ratio r. For a patch grid with a fixed number of macro-grid intervals N

and sub-patch micro-grid intervals n, decreasing the patch scale ratio r

leads to large wavenumber structures within the patches for the same
smooth macroscale structure in the solution. For example, consider the
patch scheme complex plane eigenvalue plot in Figs. 4.2.11 and 4.2.12 for
patch scale ratio r = 0.1, 0.001 respectively, keeping all other parameters
the same. Figures 4.2.11 and 4.2.12 show that with decreasing patch scale
ratio r, the microscale eigenvalues (blue circles on the left) both moves to
the left (taking larger negative real part values) and spreads up and down
(taking large magnitudes of imaginary parts) without any change to the
macroscale eigenvalues on the right. That is, decreasing the patch scale
ratio r leads to increasing wavenumber for the sub-patch microscale modes.
This intrinsic tendency of a patch scheme (for both the usual collocated and
the present staggered patch scheme) makes the system of ODEs increasingly
stiff with decreasing patch scale ratio, necessitating a ODE integrator that can
handle stiff systems efficiently.



Chapter 5

Patch schemes accurately simulate
turbulent shallow water flows

The multiscale staggered patch schemes’ ability to accurately model the
macroscale waves with large computational savings is an enabling feature
for accurate simulation and prediction of large-scale waves like floods and
tsunamis. This chapter shows that the staggered patch schemes accurately
simulate the macroscale dynamics of the Smagorinski-based turbulent
shallow water flows, using the PDEs derived by Cao and Roberts (2016) as
the microscale model within the patches.

For example, Fig. 1.0.1 shows the accurate patch scheme simulation
(colour-coded ribbons) in comparison with the full-domain simulation
(grey mesh) of a nearly discontinuous turbulent roll wave; §5.5 gives further
details. The regions where the colour-coded ribbons cross are patches; the
patches are much smaller than illustrated in the figure for visual clarity.
The staggered patch schemes compute only within patches, a small fraction
of the area of the full domain (e.g., §4.7.1).

Cao and Roberts (2016) derive Smagorinski-based turbulent 2D shallow
water PDEs, in terms of the depth-averaged variables, but without depth-
averaging the PDEs. Instead, from the 3D Reynolds averaged Navier–Stokes
(RANS) equation and the Smagorinski turbulence model, they derive the
2D turbulent shallow water PDEs using the centre manifold theory, in terms
of the depth-averaged variables.

Section 5.1 first non-dimensionalises the turbulent shallow water PDEs
of Cao and Roberts (2016) slightly differently to facilitate extensive analy-
sis of the staggered patch schemes. Subsequently, §5.1 derives a discrete
full-domain microscale model and a generic staggered patch scheme corre-
sponding to the turbulent shallow water flows. Throughout this chapter,
we use this full-domain microscale model as a reference to assess various
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characteristics (accuracy, stability, consistency, etc.) of the multiscale stag-
gered patch schemes we develop. Section 5.1.3 chooses a set of values for
the non-dimensional parameters towards exploration of patch schemes for
turbulent shallow water PDEs.

Section 5.2 shows that the developed five staggered patch schemes are
accurate for the turbulent shallow water flows by comparing the eigen-
values of the staggered patch schemes with the eigenvalues of the fine-grid
full-domain microscale model. Section 5.2 establishes the accuracy of the
staggered patch schemes in general (as opposed to one specific initial con-
dition) by comparing the eigenvalues of the staggered patch schemes with
the eigenvalues of fine- and coarse-grid full-domain microscale model.
Sections 5.2.1 to 5.2.3 derives the eigenvalues of the turbulent shallow wa-
ter PDEs, full-domain microscale model, and that of the staggered patch
schemes. Section 5.2.4 illustrates the structure of the patch scheme eigen-
values in the complex plane and explains the corresponding dynamical
modes via eigenvector plots. The eigenvalue analysis in §5.2.4 visually
demonstrates the accuracy (in the complex plane eigenvalue plots) for a
representative subset of the physical parameters and grid parameters. Sec-
tion 5.4 on the consistency of the patch schemes establishes the accuracy
over a wider range of parameters.

Section 5.3 shows that the staggered patch schemes do not have any
artificial instability for appropriate patch grids and explores the depen-
dence of the patch scheme stability on various aspects like grid symmetry,
physical parameters, and grid parameters. Section 5.4 shows that the
staggered patch schemes are consistent with the given microscale model
for increasingly finer patch grids. Section 5.5 demonstrates the accuracy
and effectiveness of the patch schemes via time simulation of a turbulent
roll wave.

5.1 PDEs, Full-domain microscale model, and
staggered patch schemes

This section first non-dimensionalises the turbulent shallow water PDEs of
Cao and Roberts (2016) slightly differently to facilitate extensive analysis
of the staggered patch schemes. Subsequently, this section derives a dis-
crete full-domain microscale model and a generic staggered patch scheme
corresponding to the turbulent shallow water flows.
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Figure 5.1.1. Shallow turbulent flow over an inclined smooth non-
flat bed. The non-dimensional gravity vector g′ = g/(g cos θ), that is,
g′ = (tan θ, 0, −1) where g is gravitational acceleration and θ is the mean
bed inclination angle.

g = (g sin θ, 0, −g cos θ)
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Section 5.1.1 non-dimensionalises the turbulent shallow water PDEs and
the boundary conditions using a reference length in terms of domain size
as opposed to the characteristic height used by Cao and Roberts (2016).
Section 5.1.2 derives a discrete full-domain microscale model and a generic
staggered patch scheme corresponding to the turbulent shallow water PDEs
of §5.1.1. Throughout this chapter, we use this full-domain microscale
model as a reference to assess various characteristics (accuracy, stability,
consistency, etc.) of the multiscale staggered patch schemes we develop.
Section 5.1.3 chooses a set of values for the non-dimensional parameters
towards exploration of patch schemes for turbulent shallow water PDEs.

5.1.1 Non-dimensionalise the PDEs to keep same domain
size

Consider the non-dimensional comprehensive Smagorinski-based turbulent
shallow water PDEs (27a)–(27c) in the article by Cao and Roberts (2016)
for the flow schematic in Figure 5.1.1. With the magnitude of horizon-
tal velocity q =

√
u2 + v2, the same PDEs, after dropping the over bar for

depth-averaged dependent variables, omitting the sediment concentra-
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tion c(x, y, t), and setting bed height b(x, y) = 0, are
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The PDEs (5.1.1) have been non-dimensionalised using the characteristic
height H and the long wave speed

√
gzH, which leads to different non-

dimensional domain sizes for different characteristic water heights. We
want to explore patch schemes for the same dimensional domain size with
different characteristic water height H, and in doing so we also want to keep
the non-dimensional domain size the same, to reuse some of the patch scheme com-
putations. Hence, following exactly the same non-dimensionalisation rescal-
ing as in §4.1.1 for the viscous shallow water flows, non-dimensionalising
the 2D space by a reference length L/(2π) gives our non-dimensional com-
prehensive Smagorinski-based turbulent shallow water PDEs

1

hM

∂h

∂t
≈ −

∂hu

∂x
−

∂hv

∂y
, (5.1.2a)

1

hM

∂u

∂t
≈ −0.003

uq

h
+

0.993

hM

[
tan θ−

∂h

∂x

]
−

[
1.030u

∂u

∂x
+ 1.020v

∂u

∂y

]

− 0.008

[
u2

h

∂h

∂x
−

uv

h

∂h

∂y

]
+ 0.094

q

h

[
∂

∂x

(
h2∂u

∂x

)
+

∂

∂y

(
h2∂u

∂y

)]

+ 0.084
u2 − v2

hq

[
∂

∂x

(
h2∂u

∂x

)
−

∂

∂y

(
h2∂u

∂y

)]
, (5.1.2b)

1

hM

∂v

∂t
≈ −0.003

vq

h
−

0.993

hM

∂h

∂y
−

[
−1.030v

∂v

∂y
− 1.020u

∂v

∂x

]
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− 0.008

[
uv

h

∂h

∂x
−

v2

h

∂h

∂y

]
+ 0.094

q

h

[
∂

∂x

(
h2∂v

∂x

)
+

∂

∂y

(
h2 ∂v

∂y

)]

+ 0.084
u2 − v2

hq

[
∂

∂x

(
h2∂v

∂x

)
−

∂

∂y

(
h2 ∂v

∂y

)]
. (5.1.2c)

As in §4.1.1 for the viscous shallow water flows, also for the turbulent shal-
low water PDEs (5.1.3), the dimensional domain [0, L]× [0, L] corresponds to
the non-dimensional domain [0, 2π]× [0, 2π] irrespective of the characteristic
height H.

Neglecting a few small terms in the comprehensive turbulent shallow
water PDEs (5.1.2), using “=” instead of “≈”, and simplifying, we get the
following simplified Smagorinski-based turbulent shallow water PDEs (with
magnitude of horizontal velocity q =

√
u2 + v2),

1

hM

∂h

∂t
= −

∂hu

∂x
−

∂hv

∂y
, (5.1.3a)

1

hM

∂u

∂t
= −0.003

uq

h
+

0.993

hM

[
tan θ−

∂h

∂x

]
− 1.030u

∂u

∂x
− 1.020v

∂u

∂y

+ 0.094qh∇2u , (5.1.3b)

1

hM

∂v

∂t
= −0.003

vq

h
−

0.993

hM

∂h

∂y
− 1.030v

∂v

∂y
− 1.020u

∂v

∂x
+ 0.094qh∇2v .

(5.1.3c)

The PDE (5.1.3a) represents the mass conservation, and the PDEs (5.1.3b)
and (5.1.3c) represent the momentum equations in the x and y directions
respectively. The PDEs represent the key physical mechanisms of quasi-
hydrostatic acceleration, advection, and nonlinear bed drag and eddy dif-
fusion. Simplified Smagorinski-based turbulent shallow water PDEs (5.1.3)
are equations (11a)–(11c) of Bunder et al. (2020), but non-dimensionalised
using L/(2π) as reference length scale instead of their reference length H.

We use the non-dimensional simplified Smagorinski-based turbulent
shallow water PDEs (5.1.3) as the microscale model within the patches in
our study of the staggered patch schemes. In all our further use “turbulent
shallow water PDEs” means these simplified Smagorinski-based turbulent
shallow water PDEs (5.1.3). For the turbulent shallow water PDEs (5.1.3),
throughout this chapter, we consider the boundary conditions that the three
fields h, u, and v are 2π-periodic in both x and y (for the non-dimensional
domain size 2π), and an appropriate initial condition h(x, y, 0), u(x, y, 0),
and v(x, y, 0).
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5.1.2 Full-domain microscale model and staggered patch
schemes

This subsection derives a full-domain microscale finite difference system
for the turbulent shallow water PDEs (5.1.3) of §5.1.1. In Fig. 1.0.1, the
full-domain simulation (grey mesh) of a the turbulent roll wave uses the
microscale model developed in this subsection.

Approximating the spatial derivatives in the turbulent shallow water
PDEs (5.1.3) by central finite differences on the nodes of the full-domain
staggered grid (filled circles in Fig. 4.1.1) with the micro-grid interval δ
gives the full-domain microscale model corresponding to the PDEs (5.1.3).

• 1

hM

dhi,j

dt
= −

(hi,j + hi+2,j)ui+1,j − (hi−2,j + hi,j)ui−1,j

4δ

−
(hi,j + hi,j+2) vi,j+1 − (hi,j−2 + hi,j) vi,j−1

4δ
(5.1.4a)

for i, j ∈ {0, 2, 4, . . . , n− 2} ,

• 1

hM

dui,j

dt
= −0.003ui,j

√
ui,j

2 + [(vi−1,j−1 + vi+1,j−1 + vi−1,j+1 + vi+1,j+1) /4]
2

(hi+1,j + hi−1,j) /2

+
0.993

hM

[
tan θ−

hi+1,j − hi−1,j

2δ

]
− 1.03ui,j

ui+2,j − ui−2,j

4δ

− 1.02 [(vi−1,j−1 + vi+1,j−1 + vi−1,j+1 + vi+1,j+1) /4]
(ui,j+2 − ui,j−2)

4δ

+ 0.094

√
ui,j

2 + [(vi−1,j−1 + vi+1,j−1 + vi−1,j+1 + vi+1,j+1) /4]
2

hi−1,j + hi+1,j

2

(
ui−2,j − 2ui,j + ui+2,j

4δ2
+

+ui,j−2 − 2ui,j + ui,j+2

4δ2

)

(5.1.4b)

for i ∈ {1, 3, 5, . . . , n− 1} , j ∈ {0, 2, 4, . . . , n− 2} ,

• 1

hM

dvi,j

dt
= −0.003 vi,j

√
vi,j2 + [(ui−1,j−1 + ui+1,j−1 + ui−1,j+1ui+1,j+1) /4]

2

(hi,j+1 + hi,j−1) /2

−
0.993

hM

(hi,j+1 − hi,j−1)

2δ
− 1.03 vi,j

(vi,j+2 − vi,j−2)

4δ

− 1.02 [(ui−1,j−1 + ui+1,j−1 + ui−1,j+1ui+1,j+1) /4]
(vi+2,j − vi−2,j)

4δ
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+ 0.094

√
[(ui−1,j−1 + ui+1,j−1 + ui−1,j+1ui+1,j+1) /4]

2
+ vi,j2

hi,j−1 + hi,j+1

2

(
vi−2,j − 2vi,j + vi+2,j

4δ2
+

vi,j−2 − 2vi,j + vi,j+2

4δ2

)

(5.1.4c)

for i ∈ {0, 2, 4, . . . , n− 2} , j ∈ {1, 3, 5, . . . , n− 1} .

Analogous to the PDEs (5.1.3), the three fields hi,j, ui,j, vi,j are n-periodic
in both i and j where n = 2π/δ (for the non-dimensional domain size 2π),
with an appropriate initial condition hi,j(0), ui,j(0), and vi,j(0). Due to the
“missing” nodes on the staggered grid (Fig. 4.1.1), some of the terms in the
full-domain microscale model (5.1.4) involves averaging the node values.
Section 4.1.2 for the viscous shallow water flows explains the discretisation
involving averaging on the staggered grids for some of the similar terms.

Substituting the solution of a steady uniform flow hi,j = hM, ui,j = uM,
vi,j = vM with mean height hM and horizontal mean velocity uM, vM into
the full-domain microscale model (5.1.4) and setting the time derivatives to
zero gives the fixed points or the equilibrium solution

hi,j = hM, ui,j =
√
0.993 tan θ/0.003, vi,j = 0, (5.1.5)

for the full-domain microscale model (5.1.4) for the turbulent shallow water
flows. The equilibrium solution (5.1.5) is also the equilibrium solution for
the turbulent shallow water PDEs (5.1.3). The velocity v = 0 in the fixed
point (5.1.5) is due to that the bed is sloping down only along x direction
(e.g., Fig. 5.1.1). For a bed with a positive slope (downward inclination
along x), the turbulent shallow water flows reach the equilibrium velocity
of the fixed point (5.1.5) when the bed drag and gravitational force are in
balance. The larger the inclination, larger the equilibrium velocity; for a
horizontal bed, the only fixed point is stagnant water with u = 0, v = 0.

A full-domain microscale simulation (e.g., the grey mesh Fig. 1.0.1) is
performed by numerical time-integration of the ODEs (5.1.4) on the nodes
of the microscale staggered grid (filled circles in Fig. 4.1.1 of §4.1.2), with
the discrete macroscale n-periodic boundary conditions in i, j.

Similar to the full-domain microscale model (4.1.11) of the viscous shal-
low water flows, the full-domain microscale model (5.1.4) of the turbulent
shallow water flows also has terms involving the average of the neighbour-
ing values on the staggered grid. Based on the terms in the full-domain
microscale model, p. 168 of §4.1.3 discusses the requirement of the number
of layers of the edge nodes for a staggered patch grid, for the viscous shal-
low water flows. A similar study shows that, to use the finite difference
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equations (5.1.4) of the turbulent shallow water flows as the microscale
model within the patches, a staggered patch grid requires two layers of
edge nodes in the normal direction to the edges, and one layer of edge
nodes in the tangential direction to the edges, as in Fig. 4.1.2b (same patch
grid required for the viscous shallow water flows). Throughout this chapter,
for the turbulent shallow water flows, the staggered patch schemes use the patch
grid in Fig. 4.1.2b.

Using the full-domain microscale model (5.1.4) within the patches of a
suitable staggered patch grid (e.g., the patch grid in Fig. 4.1.2b with n =

6), gives the staggered patch scheme on the patch interior nodes, whose
equations are same as (5.1.4) with patch index I, J as the superscript in
each of the terms (similar to the patch scheme (4.1.15) for viscous shallow
water flows). Analogous to the full-domain microscale model (5.1.4), the
three fields hI,J

i,j , uI,J
i,j , vI,Ji,j in the patch scheme are macroscale N-periodic in

both I and J where N = 2π/∆ (for the non-dimensional domain size 2π),
with an appropriate initial condition hI,J

i,j (0), u
I,J
i,j (0), and vI,Ji,j (0). For the

staggered patch grid in Fig. 4.1.2b, the left and right edge values are ◦hI,J
i,j ,

◦uI,J
i,j , ◦ vI,Ji,j , for i ∈ {−1, 0, n, n + 1} and j ∈ {0, 1, 2, . . . , n − 1, n}. Similarly

the bottom and top edge value indices are i ∈ {0, 1, 2, . . . , n − 1, n} and
j ∈ {−1, 0, n, n+ 1}. A specific patch coupling (e.g., Square-p4) computes
patch edge values (◦hI,J

i,j , ◦uI,J
i,j , ◦ vI,Ji,j in Fig. 4.1.2a) from the centre values

of neighbouring patches (•hI,J
i,j , •uI,J

i,j , • vI,Ji,j with i = j = n/2 in Fig. 4.1.2a).
The patch coupling provides a mechanism whereby patches influence each
other, §2.2 discusses various details of different patch couplings.

Patch scheme simulation is performed by numerical time-integration
of the ODEs (5.1.4) with patch index I, J in superscript for each term, on
the interior nodes of the staggered patch grid (filled circles in Fig. 4.1.2b),
with the discrete macroscale N-periodic boundary conditions in both I

and J. As in §2.1.2, evaluating the time derivatives in the staggered patch
scheme is done in two steps: first, edge values xE(xI) are computed via
patch coupling; second, using both interior and edge values of each patch
in the staggered patch grid, the time derivatives of xI are computed for the
full-domain microscale model (5.1.4) of turbulent shallow water flows.

5.1.3 Selection of parameter regime for patch scheme
exploration

Table 5.1.1 lists the dimensional parameter ranges we choose to explore
the patch schemes for turbulent shallow water flows. We propose that
large-scale turbulent waves of floods and tsunamis are important appli-
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Table 5.1.1. Approximate dimensional parameter ranges relevant for the
turbulent shallow water equations for simulating floods and tsunamis. The
domain size L is constrained to be within the shallow water regime H/L ∈
[1/100, 1/20].

Parameter Range of values
characteristic mean water height H 1 to 10m
characteristic flow velocity U 0.1 to 5m/s
domain size L, depending on H

(i.e., H/L ∈ [1/100, 1/20]) 20m to 1000m

cation areas of the multiscale staggered patch schemes. The characteristic
parameter values (such as the mean water height H, flow velocity U and the
bed inclination angle θ) of the floods are within the range of the parameters
of tsunamis; for example Cohen et al. (2019) gives a typical range of flood
water heights. Hence we choose the range of parameters primarily based
on the relevant parameters of tsunamis.

• Ghobarah et al. (2006) reports various the field investigations of the 26
December 2004 tsunami in Thailand and Indonesia. In page 314, they
list various wave run-up heights approximately ranging 1m to 49m.
Röbke and Vött (2017, p.298) and IOC (2014, p.4) present the various
depths (characteristic mean height H) and instantaneous velocities
relevant for the Tsunami wave shoaling from deep sea to the shore.
With our focus on the tsunami waves near the shore, and based on
the range of the heights in these articles (Ghobarah et al. 2006, p.314;
Röbke and Vött 2017, p.298; IOC 2014, p.4), we choose the range of
characteristic mean heights H from 1m to 10m.

• Based on the typical instantaneous velocity of the Tsunami wave near
the shore from Röbke and Vött (2017, p.298) and IOC (2014, p.4), our
focus is on the range of instantaneous velocities from 1m/s to 10m/s.
Hence we choose the range of characteristic mean velocities U to from
0.1m/s to 5m/s to cover both floods and tsunamis.

Table 5.1.1 lists the dimensional parameter ranges we choose for the turbu-
lent shallow water equations. The non-dimensional parameter ranges we
choose roughly corresponding to the dimensional parameters in Table 5.1.1
are listed in Table 5.1.2:

• Characteristic non-dimensional mean height hM = 2πH/L is so as to
be within the shallow water regime (H/L ∈ [1/100, 1/20]).
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Table 5.1.2. Approximate non-dimensional parameter ranges for the gen-
eral study of the patch schemes for turbulent shallow water equations
corresponding to the dimensional parameter ranges in Table 5.1.1.

Parameter Range of values
characteristic mean non-dimensional
mean height hM = 2πH/L

0.05 ≈ 2π/100 to 0.3 ≈ 2π/20

characteristic mean non-dimensional
velocity uM = U/

√
gzH

0.03 to 0.5

bed inclination angle θ −10◦ to 10◦

• Characteristic non-dimensional velocity uM = U/
√
gzH is computed

by non-dimensionalising using the long wave speed
√
gzH (Cao

and Roberts 2016, p.190) for the respective dimensional mean wa-
ter heights H.

• We choose the range of bed inclination angle θ (positive downwards)
to be from −10◦ to 10◦, mainly for exploring the patch scheme simula-
tions in the time domain. But, as θ enters into the turbulent shallow
water PDEs via a constant term, the Jacobian of the linearised turbu-
lent shallow water PDEs is independent of the bed inclination angle θ.
Hence, for our study of eigenvalues for stability and consistency of the
patch schemes, we use the simple case of a horizontal bed with θ = 0.

5.2 Staggered patch schemes are accurate

Following §4.2 for the viscous shallow water flows, this §5.2 shows that
the developed five staggered patch schemes are accurate for the turbu-
lent shallow water PDEs (5.1.3). As in §4.2, we establish the accuracy of
the staggered patch schemes in general (as opposed to one specific initial
condition) by comparing the eigenvalues of the staggered patch schemes
with the eigenvalues of fine- and coarse-grid full-domain microscale model,
and for completeness also compare with the eigenvalues of the turbu-
lent shallow water PDEs (5.1.3). The eigenvalue analysis for accuracy in
this section is done for a representative subset of the physical parameters
(mean flow hM, uM, vM) and the grid parameters (macro-grid intervals N,
sub-patch micro-grid intervals n, patch scale ratio r). Section 5.4 on the
consistency of the patch schemes establishes the accuracy over a wider
range of parameters.

The approach to studying the accuracy of the staggered patch schemes
and the conventions are the same as discussed in §4.2 for the viscous
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shallow water flows. As defined in §4.2, the staggered patch schemes are
accurate when the macroscale eigenvalues (defined in p. 52 of §3.2) of that
patch scheme agree closely with the corresponding macroscale eigenvalues
of the full-domain microscale model. Hence, in the eigenvalue analysis for
accuracy in this section, we compare in the complex plane the eigenvalues
of the staggered patch schemes with the eigenvalues of the full-domain
microscale model.

As in §4.2, we follow the method of substituting an arbitrary Fourier
mode into the governing partial/ordinary differential equations to derive
the eigenvalues in §§5.2.1 to 5.2.3. Sections 5.2.1 to 5.2.3 derive the eigen-
values for

1. the 2D turbulent shallow water PDEs (5.1.3),

2. the full-domain microscale model (5.1.4), and

3. the staggered patch scheme.

To numerically compute the eigenvalues of the numerical staggered patch
scheme, which includes any instabilities and inaccuracies due to the numer-
ical roundoff errors, we numerically differentiate the evolution function as
discussed in §§4.2.4 and 4.2.5 for the viscous shallow water flows.

Section 5.2.4 compares and contrasts various eigenvalues (e.g., analytic
and numerical eigenvalues of the PDEs, full-domain microscale model,
and patch schemes) to demonstrate the accuracy of the patch schemes.
We use the same notational convention as in §4.2 to identify the various
eigenvalues.

5.2.1 Eigenvalue analysis of the PDEs

Following the same approach of §4.2.1 for the viscous shallow water flows,
substituting the Fourier mode (4.2.1) with perturbations proportional to
exp[i (kxx+ kyy)], into the turbulent shallow water PDEs (5.1.3), followed by
linearisation and algebraic simplifications gives an eigensystem with the Ja-
cobian J(xM) about the linearisation point of mean flow xM = (hM, uM, vM).
The elements of the 3× 3 Jacobian J(xM) of the 2D turbulent shallow water
PDEs (5.1.3) are

J1,1 = − ihMuMkx − ihMvMky , (5.2.1a)
J1,2 = − ih2

Mkx , (5.2.1b)
J1,3 = − ih2

Mky , (5.2.1c)
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J2,1 = −0.993 ikx +
0.003uMqM

hM

, (5.2.1d)

J2,2 = −0.094h2
MqMk2

x − 0.094h2
MqMk2

y

− 1.030 ihMuMkx − 1.020 ihMvMky

− 0.003qM −
0.003u2

M

qM

, (5.2.1e)

J2,3 = −
0.003uMvM

qM

, (5.2.1f)

J3,1 = −0.993 iky +
0.003vMqM

hM

, (5.2.1g)

J3,2 = −
0.003uMvM

qM

, (5.2.1h)

J3,3 = −0.094h2
MqMk2

x − 0.094h2
MqMk2

y

− 1.020 ihMuMkx − 1.030 ihMvMky

− 0.003qM −
0.003v2M

qM

. (5.2.1i)

Similar to the Jacobian in the eigensystem (4.2.4) for the viscous shallow
water flows, the Jacobian J(xM) for the nonlinear turbulent shallow water
flows depends on the wavenumber (kx, ky) and the linearisation point xM =

(hM, uM, vM), which is the mean flow state.
We compute the eigenvalues λNE1

PDE of the numerically evaluated Jaco-
bian J(xM), and compare (for sanity check) with the eigenvalues of the full
domain microscale model and the patch schemes for assessing the accuracy
of the patch schemes in §5.2.4.

5.2.2 Eigenvalue analysis of staggered grid full-domain
model

Following the same approach of §4.2.2 for the full-domain microscale
model of the viscous shallow water flows, substituting the discrete Fourier
mode (4.2.6) with perturbations proportional to exp[i(kxiδ+ kyjδ)], into the
full-domain microscale model (5.1.4) of turbulent shallow water flows,
followed by linearisation and algebraic simplifications gives an eigen-
system with the Jacobian J(xM) about the linearisation point of mean
flow xM = (hM, uM, vM). The elements of the 3 × 3 Jacobian J(xM) of
the full-domain microscale model (5.1.4) are

J1,1 = − ihMuM

sin(2δkx)

2δ
− ihMvM

sin(2δky)

2δ
, (5.2.2a)
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J1,2 = − ih2
M

sin(δkx)

δ
, (5.2.2b)

J1,3 = − ih2
M

sin(δky)

δ
, (5.2.2c)

J2,1 = −0.993 i
sin(δkx)

δ
+

0.003uMqM

hM

cos(δkx) , (5.2.2d)

J2,2 = −0.094h2
MqM

[
sin(δkx)

δ

]2
− 0.094h2

MqM

[
sin(δky)

δ

]2

− 1.030 ihMuM

sin(2δkx)

2δ
− 1.020 ihMvM

sin(2δky)

2δ

− 0.003qM −
0.003u2

M

qM

, (5.2.2e)

J2,3 = −
0.003uMvM

qM

cos(δkx) cos(δky) , (5.2.2f)

J3,1 = −0.993 i
sin(δky)

δ
+

0.003vMqM

hM

cos(δky) , (5.2.2g)

J3,2 = −
0.003uMvM

qM

cos(δkx) cos(δky) , (5.2.2h)

J3,3 = −0.094h2
MqM

[
sin(δkx)

δ

]2
− 0.094h2

MqM

[
sin(δky)

δ

]2

− 1.020 ihMuM

sin(2δkx)

2δ
− 1.030 ihMvM

sin(2δky)

2δ

− 0.003qM −
0.003v2M

qM

. (5.2.2i)

As in §4.2.2, as the grid interval δ→ 0 and/or the wavenumber (kx, ky)→
(0, 0), the Jacobian elements (5.2.2) of the full-domain microscale model
converge to the Jacobian elements (5.2.1) of the turbulent shallow water
PDEs. Hence, the eigenvalues of the full-domain microscale model (5.1.4)
converge to the analytic eigenvalues of the PDEs (5.1.3) as we decrease the
grid interval δ and/or wavenumber (kx, ky).

We compute the eigenvalues λNE1
m of the numerically evaluated Jaco-

bian J(xM) for specific wavenumber and the linearisation point xM. As in
§4.2.2, when we compute the eigenvalues λNE1

m of the full-domain micro-
scale model,

• for the same grid-spacing δ as the sub-patch micro-grid interval (also
called δ), we call the eigenvalues λNE1

mδ ,

• for the same grid-spacing ∆ as the inter-patch distance ∆, we call the
eigenvalues λNE1

m∆ .
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For various macroscale wavenumbers, we compute the eigenvalues of
the numerically evaluated Jacobian J(xM), and compare with the eigen-
values of the turbulent shallow water PDEs and the patch schemes for
assessing the accuracy (§5.2.4) and stability (§5.3) of the patch schemes.

5.2.3 Analytic eigenvalue analysis of staggered patch
schemes

This subsection derives analytic eigenvalues of a generic staggered patch
scheme over a staggered patch grid, for the 2D turbulent shallow wa-
ter PDEs (5.1.3). We use the patch scheme eigenvalues to assess accu-
racy (§5.2.4), stability (§5.3), and consistency (§5.4) of the staggered patch
schemes.

The staggered patch schemes for turbulent shallow water flows use
the same patch grid as viscous shallow water flows, as in Fig. 4.1.2b, with
two layers of edge nodes in the normal direction to the edges, one layer
of edge nodes in the tangential direction to the edges. Page 168 of §4.1.3
discusses why the staggered patch grid with such edge node arrangement
is required for the viscous shallow water flows, the same arguments apply
for the turbulent shallow water flows.

Following the same approach of §4.2.3 for the viscous shallow water
flows, substituting the patch scheme Fourier mode (4.2.10) with pertur-
bations proportional to exp[i(kxI∆ + kyJ∆)], into the patch scheme (equa-
tions (5.1.4) with patch index I, J in superscript for each term) for the
turbulent shallow water flows, followed by linearisation and algebraic
simplifications gives an eigensystem (e.g., (4.2.14)) with the one-cell ana-
lytic Jacobian J(xM) for the patch scheme about the linearisation point of
mean flow xM = (hM, uM, vM). The only physical parameter in the patch
scheme for turbulent shallow water flows is the bed inclination angle θ. The
physical parameter θ occurs only as a the constant term 0.993 tan θ (without
being multiplied by a state value) in the equations (5.1.4b) and (5.1.4c).
Hence, none of the Jacobian elements depends on the physical parameter θ.

For example, similar to the case of general linear wave and viscous
shallow water flows, for n = 6 sub-patch grid intervals, the one-cell Jaco-
bian J(xM) for the turbulent shallow water flows, is a 59× 59 sparse matrix
generally with only 318 of the 3481 elements being nonzero irrespective of
the particular patch coupling interpolation of the staggered patch schemes
(i.e., same for both the spectral patch scheme and all the polynomial patch
schemes). For some particular combinations of numerical values of the
parameters, the sparsity is higher. The 318 nonzero elements of the one-cell
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Jacobian of a staggered patch scheme (for n = 6) contain all the information
about the underlying microscale model and the patch coupling, for the
macroscale wave of wavenumber (kx, ky). The elements of a staggered
patch scheme one-cell Jacobian for turbulent shallow water flows are sim-
ilar to the expressions in p. 185 of §4.2.3 for viscous shallow water flows,
with differences due to the different nonlinearities. In the one-cell Jacobian
elements for turbulent shallow water flows, the increasing complexity with
the order of interpolation is also the same as that of the viscous shallow
water flows.

Due to the large Jacobian size (e.g., 59× 59 for n = 6) and the long ex-
pressions in their elements, all the CAS packages we tried (SymPy, Reduce
and Maple) fail to compute the analytic eigenvalues of the one-cell Jaco-
bian, even for the simplest staggered patch scheme Square-p2 with n = 6

sub-patch micro-grid intervals. So we numerically evaluate the one-cell
Jacobian for numerical values of ∆, δ, hM, uM, vM, kx, ky and compute the
eigenvalues λNE1

p . We compare with the eigenvalues λNE1
p of the numeri-

cally evaluated one-cell Jacobian of the patch schemes, with the eigenvalues
of the full domain microscale model and the eigenvalues of the general
linear wave PDEs, for assessing the accuracy (§5.2.4) and stability (§5.3) of
the patch schemes.

5.2.4 Staggered patch schemes are accurate for macroscale
waves

Similar to §§3.2.6 and 4.2.6 for the general linear wave and viscous shallow
water flows, this section explains the qualitative structure of the staggered
patch scheme eigenvalues and eigenvectors, and qualitatively demonstrates
the accuracy of the staggered patch schemes for the turbulent shallow water
flows for few representative cases. Section 5.4 on the consistency of the stag-
gered patch schemes, quantitatively establish the patch scheme accuracy in
more detail, over a much broader range of parameters.

Similar to §§3.2.6 and 4.2.6, this section demonstrates the accuracy of the
developed five staggered patch schemes (Spectral, Square-p2, Square-p4,
Square-p6, and Square-p8) by comparing the following eigenvalues in the
complex plane plots.

1. Eigenvalues λN
p of the numerical Jacobian of a staggered patch scheme

on a finite domain (e.g., §4.2.5).

2. Eigenvalues λNE1
p of the numerically evaluated one-cell Jacobian in

§5.2.3, of a staggered patch scheme on an infinite domain.



§5.2 Staggered patch schemes are accurate 297

3. Eigenvalues λNE1
mδ of the numerically evaluated analytic Jacobian in

§5.2.2, of fine-grid full-domain microscale model, with micro-grid
interval equal to the sub-patch micro-grid interval δ.

4. Eigenvalues λNE1
m∆ of the numerically evaluated analytic Jacobian in

§5.2.2, of coarse grid version of the full-domain microscale model,
with δ = ∆.

5. Eigenvalues λNE1
PDE of the numerically evaluated analytic Jacobian in

§5.2.1, of turbulent shallow water PDEs (5.1.3). Comparison with the
eigenvalues λNE1

PDE is only for completeness.

All the analytic eigenvalues (λNE1
p , λNE1

mδ , λNE1
m∆ , λNE1

PDE ) are numerically eval-
uated for all the N2/4 macroscale wavenumbers (kx, ky) resolved on a corre-
sponding finite staggered patch grid with N×N macro-grid intervals. To
illustrate the complete structure of eigenvalues (i.e, for all wavenumbers)
of the full-domain microscale model and to cross-verify analytic and nu-
merical computation of the full-domain microscale model eigenvalues, we
also compute the eigenvalues of the numerical Jacobian of the full-domain
microscale model for few cases (e.g., Figs. 5.2.1 and 5.2.2).

The sets of eigenvalues (e.g., λN
p , λNE1

p , λN
mδ, λN

m∆, λNE1
PDE ), in all the com-

plex plane plots, are numbered in the legend entries on the left. In all the
complex plane plots, physical parameters for each of these eigenvalues are
listed in groups below the legend entries. Page 68 of §3.2.6 explains with an
example, the conventions of this parameter listing.

Figures 5.2.1 and 5.2.2 plot the eigenvalues (λN
p , λNE1

p ) of the Spectral

patch scheme on a staggered patch grid with 6 × 6 macro-grid intervals
(N = 6) and each patch containing 6 × 6 sub-patch micro-grid intervals
(n = 6). Also plotted are the eigenvalues λN

mδ, λN
m∆ of respectively the fine-

and coarse-grid versions of the full-domain microscale model (5.1.4) and
the eigenvalues λNE1

PDE of the PDE (5.1.3). Similar to Figs. 5.2.1 and 5.2.2, in
all the complex plane eigenvalue plots, eigenvalues are grouped within
clusters based on eigenvalues λNE1

p of the staggered patch scheme Jacobian.
Each cluster is annotated with the number of eigenvalues λNE1

p in the cluster
and the cluster number in the superscript.

Page 71 of §3.2.6 explains the rationale and utility of the arcsinh scaling
used in Fig. 5.2.2. For example, the clusters of macroscale eigenvalues
on arcsinh scaling (i.e., clusters 1–7 in Fig. 5.2.2) reveal more details, com-
pared to the clusters of macroscale eigenvalues on linear scaling (i.e., clus-
ter 1 in Fig. 5.2.1). Hence, most complex plane eigenvalue plots in this the-
sis are on arcsinh scaling. Specifically, the complex plane plots on arcsinh
scaling, plot an eigenvalue λ as a point on a 2D space with coordinates
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Figure 5.2.1. Spectral staggered patch scheme (N = 6, n = 6) eigen-
values (λN

p , λNE1
p ) on complex plane (linear scale) for turbulent shallow

water flows. Due to the large range of magnitudes of eigenvalues, details of
eigenvalues for macroscale modes (mid-right cluster 1) are not discernable.
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(arcsinh[Shℜ(λ)]/Sh, arcsinh[Sv ℑ(λ)]/Sv), where Sh, Sv are the horizontal
and vertical scale factors and (0, 0) is the centre of zoom. In this chapter,
most plots on arcsinh scaling use the scale factors Sh = 104, Sv = 5 · 104
(different from those in §3.2.6 for general linear wave and §4.2.6 for viscous
shallow water flows).

As Page 80 of §3.2.6 defines, a staggered patch scheme is accurate when
the macroscale eigenvalues (e.g., λN

p , λNE1
p ) of the staggered patch schemes

are close to the macroscale eigenvalues (e.g., λNE1
mδ ) of the corresponding

fine-grid full-domain microscale model with the same grid interval as
the sub-patch micro-grid interval. Figure 5.2.2 shows that, within the
clusters 1–7 on the right, the numerical macroscale eigenvalues λN

p of the
patch scheme (large magenta circles) and the numerical macroscale eigen-
values λN

mδ (small red circles) visually agree. That is the Spectral patch
scheme accurately resolves the macroscale waves.

As Fig. 5.2.2 shows, for both microscale and macroscale modes, the patch
scheme eigenvalues λNE1

p of the numerically evaluated one-cell analytic
Jacobian (§5.2.3) and the patch scheme eigenvalues λN

p of the numerical
Jacobian (e.g., §4.2.5), agree (i.e., the large magenta and blue circles). Hence,
to avoid large computational effort and as the primary focus is on the
macroscale eigenvalues, all other complex plane plots in this subsection §5.2.4
use eigenvalues λNE1

mδ of the numerically evaluated analytic Jacobian (§5.2.2), as
opposed to the numerical eigenvalues λN

mδ.
The qualitative structure of the eigenvalues (e.g., in Fig. 5.2.2) of the turbulent

shallow water flows are same as those of the viscous shallow water flows explained
in p. 193 of §4.2.6. The patch scheme eigenvectors of the turbulent shallow
water flows are also qualitatively same as the eigenvectors in Figs. 3.2.13
to 3.2.18 (general linear wave) and Figs. 4.2.13 and 4.2.14 (viscous shallow
water flows).

Sections 4.4 and 5.3 on patch scheme stability define artificial instability
as a characteristic of a patch scheme to be more unstable than the correspond-
ing full-domain microscale model. That is, a patch scheme is artificially
unstable when the maximum real part of the patch scheme eigenvalues
is positive and larger than the maximum real part of the corresponding
full-domain microscale model is stable. Unlike the general linear wave and
the viscous shallow water flows, for n = 6 sub-patch micro-grid intervals,
the staggered patch schemes for the turbulent shallow water flows have
artificial instability for many combinations of the mean height hM and
horizontal mean velocities uM, vM. Figure 5.3.4 in p. 308 of §5.3 shows that
n = 10 avoids such artificial instability. Hence, all the following complex
plane plots in this subsection use n = 10 sub-patch micro-grid intervals.

Comparing macroscale eigenvalues λNE1
p and λNE1

mδ the following two
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paragraphs show that the patch schemes are accurate for macroscale tur-
bulent shallow water flows for different linearisation points (hM, uM, vM),
assuming vM = 0 without loss of generality (§4.6 shows that the staggered
patch schemes are invariant to flow direction).

The staggered patch schemes are accurate for macroscale turbulent shallow
water flows of different mean velocity uM. Except for the quantitative parame-
ter dependence, all the following points about the qualitative dependence of the
turbulent shallow water flows on the mean velocity, are the same as those of the
viscous shallow water flows in p. 197 of §4.2.6. Figures 5.2.3 to 5.2.6 plot the
Spectral patch scheme (N = 10, n = 10) eigenvalues for different mean
velocity uM = 10−5, 0.05, 3, 5 respectively, keeping hM = 0.1 and vM = 0.
Whereas the following points are based on the Spectral patch scheme
eigenvalues, they also hold for the four polynomial patch schemes (§2.2.2).

• Figures 5.2.3 to 5.2.6 show that for the different mean velocity of uM =

10−5, 0.05, 3, 5, the macroscale eigenvalues λNE1
p of the Spectral patch

scheme (large blue circles within macroscale clusters identified in
figure caption), agree with the macroscale eigenvalues λNE1

mδ (small red
circles) of the fine-grid full-domain microscale model. This macroscale
agreement of eigenvalues λNE1

p , λNE1
mδ indicates that the patch schemes

are accurate for macroscale turbulent shallow water flows for different mean
velocity.

• While increasing uM from 10−5 to 5, as the previous paragraph ex-
plains, first the vortex modes (cluster 4 in Fig. 5.2.3) split into vor-
tex modes and advecting shear flow modes (clusters 4 and clus-
ters 5, 6 respectively in Fig. 5.2.4), next the clusters of advecting shear
flow modes distort and overlap with the clusters of the (dynami-
cal/oscillatory) wave mode (clusters 5, 6 in Figs. 5.2.5 and 5.2.6).

• The spectral gap (between the microscale and macroscale patch scheme
eigenvalues) decreases with increasing mean velocity uM. For example,
in Figs. 5.2.3 to 5.2.6 for mean velocities uM = 10−5, 0.05, 3, 5, the cor-
responding spectral gaps are 4841, 4661, 35, 11. Physically, increasing
uM, increases the bed drag (macroscale eigenvalues move to left)
faster than the eddy viscosity increases (microscale eigenvalues move
to left), leading to decreasing spectral gap. This decreasing spectral
gap with increasing uM is the most prevalent trend among the various
combinations of uM, mean height hM and patch scale ratio r. But, for
some combinations of the grid parameters (N, n, r) and physical pa-
rameters (Re, hM, uM), as for the viscous shallow water flows (p. 198
of §4.2.6), a small subset of the microscale eigenvalues in the complex
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Figure 5.2.3. Spectral staggered patch scheme (N = 10, n = 10)
eigenvalues λNE1

p for turbulent shallow water flows for (hM, uM, vM) =

(0.1, 10−5, 0). Eigenvalues λNE1
p and λNE1

mδ of the fine-grid full-domain micro-
scale model agree for macroscale wavenumbers in clusters 1, 2, 3.
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Figure 5.2.4. Spectral staggered patch scheme (N = 10, n = 10)
eigenvalues λNE1

p for turbulent shallow water flows for (hM, uM, vM) =

(0.1, 0.05, 0). Eigenvalues λNE1
p and λNE1

mδ of the fine-grid full-domain micro-
scale model agree for macroscale modes in clusters 1–6.
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Figure 5.2.5. Spectral staggered patch scheme (N = 10, n = 10) eigen-
values λNE1

p for turbulent shallow water flows for (hM, uM, vM) = (0.1, 3, 0).
Eigenvalues λNE1

p and λNE1
mδ agree for macroscale modes in clusters 1–6.

Physically unstable macroscale wave modes in clusters 1, 2.
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Figure 5.2.6. Spectral staggered patch scheme (N = 10, n = 10) eigen-
values λNE1

p for turbulent shallow water flows for (hM, uM, vM) = (0.1, 5, 0).
Eigenvalues λNE1

p and λNE1
mδ agree for macroscale modes in clusters 1–6.

Physically unstable macroscale wave modes in clusters 1, 2.
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plane move to the right with increasing uM, leading to decreasing
the spectral gap. For example, the clusters 7–9 in Figs. 5.2.5 and 5.2.6
contain such eigenvalues of sub-patch microscale modes.

• Compared to the viscous shallow water flows in p. 197 of §4.2.6,
increasing uM decreases the spectral gap more rapidly. This rapid de-
crease in spectral gap is due to increasing real parts of the eigenvalues
for some of the weakly dissipating microscale modes such as clusters 7, 8, 9
in Figs. 5.2.5 and 5.2.6

• For large mean velocity uM ≳ 2, the turbulent shallow water flows
have inherent physical instability, (i.e., the full-domain microscale
model itself is unstable). Such physical instability is evident from the
positive real part eigenvalues of the full-domain microscale model in
Figs. 5.2.5 and 5.2.6 (clusters 1, 2). Section 4.4.1 for viscous shallow
water flows, shows the detailed trends of similar physical instabil-
ities as captured by the patch scheme for a wide range of parame-
ters hM, uM, N, r, n.

The staggered patch schemes are accurate for macroscale viscous shallow
water flows for different mean height hM. Figs. 5.2.5, 5.2.7 and 5.2.8 plot
the Spectral patch scheme (N = 10, n = 10) eigenvalues for different
mean heights hM = 0.1, 0.2, 0.3 respectively, keeping uM = 3 and vM = 0.
The following points summarise the key dependence of the patch scheme
eigenvalues on increasing mean height hM. All the characteristics in the
following listing also hold for the four polynomial patch schemes (§2.2.2).

• Figures 5.2.5, 5.2.7 and 5.2.8 show that for the different mean heights
of hM = 0.1, 0.2, 0.3, the macroscale eigenvalues λNE1

p of the Spectral

patch scheme (large blue circles within macroscale clusters identi-
fied in figure caption), agree with the macroscale eigenvalues λNE1

mδ

(small red circles) of the fine-grid full-domain microscale model. This
macroscale agreement of eigenvalues λNE1

p , λNE1
mδ indicates that the

patch schemes are accurate for macroscale turbulent shallow water flows for
different mean heights.

• As with the viscous shallow water flows, while increasing hM from
0.1 to 0.3, both the microscale and macroscale eigenvalues move to the
left, taking larger negative real parts. That is, increasing hM increases
both the microscale and macroscale dissipation.

• In contrast to the viscous shallow water flows, the spectral gap decreases
with increasing mean height hM. Similar to the viscous shallow water
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Figure 5.2.7. Spectral staggered patch scheme (N = 10, n = 10) eigen-
values for turbulent shallow water flows for (hM, uM, vM) = (0.2, 1, 0). The
macroscale eigenvalues λNE1

p clusters 1–6 agree with macroscale eigen-
values λNE1

mδ . Increasing hM decreases spectral gap (Figs. 5.2.5, 5.2.7
and 5.2.8).
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Figure 5.2.8. Spectral staggered patch scheme (N = 10, n = 10) eigen-
values for turbulent shallow water flows for (hM, uM, vM) = (0.3, 1, 0).
The macroscale eigenvalues λNE1

p in clusters 1–6 agree with macroscale
eigenvalues λNE1

mδ . Increasing hM decreases spectral gap (Figs. 5.2.5, 5.2.7
and 5.2.8).

−
10
4

−
10
00

−
10
0

−
10 −
1

−
0.
1

−
0.
01

−
0.
00
1 0

0.
00
1

0.
01 0.
1 1

<(λ)

−5000

−100

−2

−0.05

−0.001

0

0.001

0.05

2

100

5000

=
(λ
)

5.6

11

62

343

344

2005

7006

7007

508

509

282010

4011

4012

(1) λNE1p [4675](25k)

(2) λNE1mδ [75](25k)

(3) λNE1m∆ [75](25k)

(1) Patch scheme
Scheme : Spectral
Grid : huvx-n2t1
N : 10
r : 0.01

(2)
n : 5000

(3)
δ : 2π/10

(1, 3)
n : 10

(1, 2)
δ : 2π/5000

Common parameters
Model: tSwtrSmgrS
Domain L : 2π
hM,uM, vM :0.3, 3, 0



§5.3 Staggered patch schemes are not artificially unstable for appropriate patch grids 305

flows, both the microscale and macroscale dissipation increase with
increasing hM; yet, the microscale dissipation increases at a larger rate.
This is possibly due to the increasing turbulent mixing with increas-
ing mean height hM, whereas the bed drag remains nearly constant.
But, increasing hM also pushes some of the microscale eigenvalues
(weakly dissipating microscale modes) to the right (e.g., clusters 5, 6, 7
in Figs. 5.2.7 and 5.2.8). Hence, the spectral gap decreases with in-
creasing mean height hM. For example, in Figs. 5.2.5, 5.2.7 and 5.2.8
for mean heights hM = 0.1, 0.2, 0.3, the corresponding spectral gaps
are 35, 12, 5.6.

The last two paragraphs demonstrate that for different linearisation
points (hM, uM, vM), the macroscale eigenvalues λNE1

p of the Spectral patch
scheme agree with the macroscale eigenvalues λNE1

mδ of the fine-grid full-
domain microscale model. This agreement of the Spectral patch scheme
macroscale eigenvalues with those of the fine-grid full-domain model, is
exact (within numerical roundoff errors). The polynomial patch scheme
macroscale eigenvalues also agree with those of the fine-grid full-domain
model, but to a varying degree of accuracy (§5.4 on consistency gives more
details). Thus, the staggered patch schemes are accurate for macroscale turbulent
shallow water flows, about different linearisation points. Section 5.4 on the
consistency of the staggered patch schemes, establishes the accuracy for
wider range of parameters hM, uM, N, r, n.

5.3 Staggered patch schemes are not artificially
unstable for appropriate patch grids

Similar to §4.4 for viscous shallow water flows, a detailed study of the
patch scheme eigenvalues shows that the staggered patch schemes are not
artificially unstable for appropriate grid parameters. This section explains
some notable trends.

For a sufficiently large number of sub-patch micro-grid intervals n ⩾ 10,
and a sufficiently small patch scale ratio r ≲ 0.01, the patch schemes do not
have any artificial instability.

• Figures 5.3.1 and 5.3.2 show the patch scheme eigenvalues for patch
scale ratio r = 0.01, 0.1 respectively, keeping all other parameters the
same. Figures 5.3.1 and 5.3.2 illustrate that using appropriately small
patch scale ratio removes artificial instability. With few exceptions,
the trend of decreasing artificial instability with decreasing patch
scale ratio r holds in general.
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Figure 5.3.1. Spectral staggered patch scheme (N = 10, n = 10, r = 0.01)
eigenvalues λNE1

p for turbulent shallow water flows for (hM, uM, vM) =

(0.1, 0.5, 0). Eigenvalues λNE1
p and λNE1

mδ agree for macroscale modes in
clusters 1–8. No artificial instability as in Fig. 5.3.2 for r = 0.1.

−
10
4

−
10
00

−
10
0

−
10 −
1

−
0.
1

−
0.
01

−
0.
00
1 0

0.
00
1

0.
01 0.
1 1

<(λ)

−5000

−100

−2

−0.05

−0.001

0

0.001

0.05

2

100

5000

=
(λ
)

1452

1162

343

344

7005

7006

507

508

31009

(1) λNE1p [4675](25k)

(2) λNE1mδ [75](25k)

(3) λNE1m∆ [75](25k)

(1) Patch scheme
Scheme : Spectral
Grid : huvx-n2t1
N : 10
r : 0.01

(2)
n : 5000

(3)
δ : 2π/10

(1, 3)
n : 10

(1, 2)
δ : 2π/5000

Common parameters
Model: tSwtrSmgrS
Domain L : 2π
hM,uM, vM :0.1, 0.5, 0

Figure 5.3.2. Spectral staggered patch scheme (N = 10, n = 10, r = 0.1)
eigenvalues λNE1

p for turbulent shallow water flows for (hM, uM, vM) =

(0.1, 0.5, 0). Artificially unstable sub-patch microscale wave modes in the
clusters 1, 2.
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• Unlike for the viscous shallow water flows in §4.4, for n = 6 sub-patch
micro-grid intervals, decreasing patch scale ratio r ∈ [0.0001, 0.1] does
not remove the artificial instability of staggered patch schemes. That
is, for the turbulent shallow water flows, the staggered patch schemes require
at least n = 6 sub-patch micro-grid intervals. For example, Fig. 5.3.3
for n = 6 shows the eigenvalues of the artificially unstable modes in
clusters 1–3; there is no such artificially unstable modes in Fig. 5.2.6
(of §5.2.4) for n = 10, keeping all other parameters the same.

The previous paragraph shows two examples of the stability trends of
the patch schemes for the turbulent shallow water flows via two specific
mean flows (linearisation points). Figure 5.3.4 plots the maximum real
parts of the Spectral patch scheme for n = 10 (left) and n = 6 (right)
for different mean flow (hM, uM) where hM ∈ {0.025, 0.05, . . . , 0.4} and
uM ∈ {0.05, 0.5, . . . , 6}. Figure 5.3.4 shows that the Spectral patch scheme
is artificially unstable for n = 6, that is, maxℜ(λN

p ) > maxℜ(λNE1
mδ ) ⩾ 0 for

uM ≳ 1.5; but there is no such artificial instability for n = 10. This trend of
being artificially unstable for n = 6, but not for n = 10, holds for different
patch scale ratio r ∈ {0.0001, 0.001, 0.01} and also for the polynomial patch
schemes. That is, for n ⩾ 10 and sufficiently small patch scale ratio r ≲ 0.01,
the staggered patch schemes do not have any artificial instability.
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Figure 5.3.3. Spectral staggered patch scheme (N = 10, n = 6, r = 0.01)
eigenvalues λNE1

p for turbulent shallow water flows for (hM, uM, vM) =

(0.1, 5, 0). Artificially unstable sub-patch microscale wave modes in clusters 1–
3; but Fig. 5.2.6 for n = 10 shows no such artificially unstable modes.
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Figure 5.3.4. Maximum real part of eigenvalues for, λN
p of Spectral patch

scheme (N = 10, r = 0.01), λNE1
mδ of full-domain model, and λNE1

PDE of the
turbulent shallow water PDEs, about mean flow hM, uM with vM = 0,
θ = 0◦. For n = 6 (right), patch scheme has artificial instability for uM ≳ 1.5.
Seven black lines along hM indicate equilibrium (5.1.5) for θ = 0, 1, . . . , 7.
§5.4 establishes patch scheme consistency for hM, uM indicated by black
squares. Points a-e correspond to complex plane plots Figs. 5.2.4 to 5.2.8.

(a) No artificial instability for n = 10;
that is, maxℜ(λNp ) ≈ maxℜ(λNE1

mδ ) ⩾ 0.
Peak values (blue plus and red circle)
are maxℜ(λNp ) = 0.027 = maxℜ(λNE1

mδ ).
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5.4 Staggered patch schemes are consistent

This section shows that the staggered patch schemes are consistent with
the full-domain microscale model of turbulent shallow water flows, with
decreasing macro-grid interval ∆, via the convergence of the patch scheme
eigenvalues. Similar to §4.5 for viscous shallow water flows, we performed
a detailed study of the eigenvalue convergence with decreasing macro-
grid interval ∆ using the eigenvalues for the 2 160 combinations of the
parameters listed in Table 5.4.1. Based on the detailed study, omitting the
eigenvalues convergence plots such as Fig. 4.5.3 in §4.5, the following two
paragraphs summarise the overall key characteristics.

The last two paragraphs in §5.2.4 show that for turbulent shallow water
flows about different linearisation points (hM, uM, vM), the macroscale
eigenvalues λNE1

p of the Spectral patch scheme agree with the macroscale
eigenvalues λNE1

mδ of the fine-grid full-domain microscale model. Except
for two extreme cases of very small patch scale ratio r ≲ 0.0001 and nearly
stagnant water with very small velocity uM ≲ 0.05, this agreement of
eigenvalues between λNE1

p and λNE1
mδ is exact (within numerical roundoff

errors), without any dependence on macro-grid interval ∆. That is, as in
§4.5.1 for viscous shallow water flows, also for the turbulent shallow water
flows, in general, the Spectral patch scheme is uniformly accurate with the
full-domain model, with little dependence on the macro-grid interval ∆.

Similar to the Spectral patch scheme, the four polynomial patch schemes’
macroscale eigenvalues also agree with those of the fine-grid full-domain
model but to a varying degree. That is, except for two extreme cases of very
small patch scale ratio r ≲ 0.0001 and nearly stagnant water with very small
velocity uM ≲ 0.05, the eigenvalues of the polynomial patch schemes are in-
creasingly accurate, that is, converge to the eigenvalues of the full-domain

Table 5.4.1. Section 5.4 establishes the consistency of the patch schemes
using eigenvalues for all the 2 160 combinations of the listed parameters.

Patch schemes Spectral, Square-p2, Square-p4, Square-p6,
and Square-p8

Mean height hM ∈ {0.1, 0.2, 0.3}

Mean velocity uM ∈ {0.05, 1, 5}, vM = 0

Macro-grid intervals N ∈ {6, 10, 14, 18, 22, 26}

Sub-patch micro-grid
intervals n ∈ {6, 10}

Patch scale ratio r ∈ {0.0001, 0.001, 0.01, 0.1}
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model, with decreasing macro-grid interval ∆. Specifically, as in §4.5.2 for
viscous shallow water flows, also for the turbulent shallow water flows, in
general, the four polynomial patch schemes are consistent with the full-domain
microscale model to the same order p as the patch coupling interpolation, and
with the same order of convergence p for all the physical parameters hM, uM.

5.5 Staggered patch scheme time simulations of
turbulent shallow water flows

This subsection demonstrates the accuracy and the effectiveness of the
staggered patch schemes by numerically simulating a turbulent roll wave.
The patch schemes accurately simulate the localised nearly discontinuous
macroscale turbulent roll wave emerging from the initial condition of a
moving Gaussian hump.

As in §§3.7.5 and 4.7.5 for the general linear wave and viscous shallow
water flows, also for the turbulent shallow water flows this subsection uses the
BS3 ODE integrator for the time simulation with the relative and absolute error
tolerances of 10−3 and 10−6 respectively. The BS3 is a lower order Bogacki–
Shampine 3/2 method (Bogacki and L. Shampine 1989; L. F. Shampine and
Reichelt 1997), similar to the ode23 of MATLAB (DifferentialEquations.jl
2021).

Figures 5.5.1 to 5.5.3 show the time evolution of a turbulent roll wave
(height h and velocities u, v) over a bed inclined 1◦ downwards along
downstream, emerging from the initial condition of a moving Gaussian
hump

h0(x, y) = 0.1+ 0.05 exp[−(x+ 1)2 − y2/42] , (5.5.1a)
u0(x, y) = 2.4+ 0.5 exp[−(x+ 1)2 − y2/42] , (5.5.1b)
v0(x, y) = 0 , (5.5.1c)

which is superimposed over approximate equilibrium mean flow hM = 0.1,
uM = 2.4, vM = 0. In each of Figs. 5.5.1 to 5.5.3, the subfigures from top-left
sub-plot to bottom-right correspond to simulation time t = 0, 18, 36, 54. The
regions where the colour-coded ribbons cross are patches; the patches are
much smaller than illustrated in the figure for visual clarity. The staggered
patch schemes compute only within patches, a small fraction of the area of
the full domain (e.g., §4.7.1).
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Figure 5.5.1. Height h for time evolution of a turbulent roll wave, emerg-
ing from the initial condition of a moving Gaussian hump (5.5.1), using
Spectral patch scheme (colour-coded ribbons, with N = 26, n = 10, and
r = 0.1) agrees reasonably with that of the fine-grid full-domain model (grey
mesh).
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Figure 5.5.2. Velocity u for time evolution of a turbulent roll wave, for the
same patch scheme simulation detailed in Fig. 5.5.1 (colour-coded ribbons)
agrees reasonably with that of the fine-grid full-domain model (grey mesh).
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Figure 5.5.3. Velocity v for time evolution of a turbulent roll wave, for the
same patch scheme simulation detailed in Fig. 5.5.1 (colour-coded ribbons)
agrees reasonably with that of the fine-grid full-domain model (grey mesh).
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Figures 5.5.1 to 5.5.3 show that the time evolution using the Spectral

patch scheme (colour-coded ribbons, with N = 26, n = 10, and r = 0.1)
agrees reasonably with that of the 1300× 1300 fine-grid full-domain model
(grey mesh). The fine-grid full-domain microscale model (grey mesh)
uses the same micro-grid interval as the sub-patch micro-grid interval δ =

2 (2π) r/(Nn) (for the non-dimensional domain size 2π). But the grey mesh
of the full-domain model plots only 32 × 32 grid instead of all the 1301 ×
1301 grid lines, skipping many lines for visual clarity. The colour-coded
ribbons of the patch scheme in Fig. 5.5.1 consist of all the lines (along the
coordinate axes x and y) passing through all the h nodes within all the
patches; similarly Figs. 5.5.2 and 5.5.3 for u, v nodes within all the patches
respectively. Although the patch scale ratio is r = 0.1, the patches are
enlarged here for visual clarity so the ribbons appear wider.

Figure 1.0.1 of Chapter 1 shows an enlarged snapshot of the same roll
wave as in left-bottom of Fig. 5.5.1 at t = 36, with more visual detail and clar-
ity. In Fig. 1.0.1, the solution h of the fine-grid full-domain microscale model
are linearly interpolated using nearest four values to the centres of the re-
spective h/u/v-centred patches, illustrated by small black circles. The large
circles are the patch scheme solution h/u/v. That the non-concentric large
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and small black circles are offset only slightly, shows that the discrepancy
between the solutions of the patch scheme and the fine-grid full-domain
model is small. The undulations in the patch scheme solution, away from
the steep rise of the roll wave are due to the nearly discontinuous jump
in the height. These undulations decrease with increasing the number of
patches (macro-grid intervals). In Fig. 1.0.1, the small discrepancy at t = 36

(distance between centres of non concentric black circles) also includes the
accumulation of the ODE integrator error. Thus, for a sufficient number of
macro-grid intervals and accurate patch coupling, patch schemes accurately
simulate the turbulent shallow water flows.

Patch scheme simulations of turbulent shallow water flows require a larger
number of sub-patch micro-grid intervals n, compared to the viscous shallow
water flows. As opposed to n = 6 sub-patch micro-grid intervals in the time
simulations of §§4.7.5 and 4.7.6 for the viscous shallow water flows, the time
simulation in the previous paragraphs of this subsection use n = 10 sub-
patch micro-grid intervals. This larger n = 10 is a necessity for the turbulent
shallow water flows for mean velocity uM ≳ 1.5 to avoid artificial instability
of the staggered patch schemes. Figure 5.3.4 in p. 308 of §5.3 shows the
artificial instability of the patch scheme for n = 6, via the maximum real
parts of the patch scheme eigenvalues.

The practical issues of patch scheme simulation explained in §4.4.1 for
the viscous shallow water flows also apply for the turbulent shallow water
flows, perhaps more strongly. For example, the patch schemes for the
turbulent shallow water flows are stiffer compared to the viscous shallow
water flows. The impacts of the stiffness and the artificial instability of the
patch schemes for the turbulent shallow water flows are relatively more
severe than the viscous shallow water flows, especially for small patch
scale ratio r ≲ 0.1.

Thus, for a broad range of parameters, this chapter shows that the
patch scheme can accurately and effectively simulate and predict the
Smagorinsky-based turbulent shallow water flows.



Chapter 6

Conclusion

Many important phenomena exhibit multiscale emergent behaviour. For
example, the length scales in the fluid dynamics of Earth’s atmosphere and
oceans range from a few millimetres to several thousands of kilometres.
The main interest generally lies in large-scale dynamics, yet the effect of the
smallest scales needs to be accounted for its emergent large-scale dynamics.
Detailed simulation over such a large space is impractical. To address
this issue, many multiscale modelling techniques have been developed for
dissipative systems. The equation-free multiscale modelling framework
is particularly attractive due to its flexibility. The equation-free multiscale
patch schemes accurately model emergent macroscale spatial dynamics using
a given microscale model within small sparsely located coupled patches.
Such patch schemes have been developed and applied successfully for
dissipative systems. The weak inherent dissipation in wave-like systems
poses significant challenges for developing patch schemes that are stable
and accurate for wave-like systems, especially in multiple dimensions. The
recent works of Cao and Roberts (2013, 2015) extend the patch scheme to 1D
wave-like systems. This PhD thesis develops the equation-free multiscale
staggered patch schemes for 2D wave-like systems (small dissipation) and
explores the schemes more thoroughly.

6.1 Multiscale staggered patch schemes enable
accurate large-scale simulation of wave-like
systems

We designed two staggered patch grids that constitute stable and accurate
staggered patch schemes for wave-like systems. Over a computationally
efficient patch grid, we developed two novel families of equation-free

314
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multiscale staggered patch schemes for accurate large-scale simulation of
wave-like systems: a spectral patch scheme, and four polynomial patch
schemes. The spectral patch scheme is the best for accuracy, requiring an eq-
uispaced patch grid over simple domain geometry and periodic boundary
conditions. Polynomial patch schemes are best suited for complex domain
geometry and boundary conditions.

The developed multiscale staggered patch schemes enable accurate simu-
lation of macroscale waves for many specific application areas over large space,
yet computing only within small sparsely located patches. As a concrete
example, the current work mainly focuses on water waves. This work
shows that the staggered patch schemes accurately simulate the macroscale
waves using three microscale models within the patches, namely, general
2D linear waves (Chapter 3), nonlinear viscous shallow water flows (Chap-
ter 4), and nonlinear turbulent shallow water flows (Chapter 5). The three
respective chapters (Chapters 3 to 5) show that the developed multiscale
staggered patch schemes

1. are accurate over a wide range of system and grid parameters,

2. do not have any artificial instabilities (for appropriate grid parame-
ters), and

3. are consistent with the full-domain microscale simulation (with de-
creasing macro-grid interval).

Despite the attractive characteristics, if the staggered patch schemes
are very sensitive to numerical roundoff errors, then they would not be
suitable for practical numerical simulations using finite precision floating-
point representations, for example, the common 64 bit format of IEE754.
From both qualitative and quantitative arguments, §§3.4 and 4.3 shows
that the staggered patch schemes are not sensitive to numerical roundoff
errors for the general linear wave.

The staggered patch schemes accurately model the macroscale waves with large
computational savings, via detailed microscale simulations only within the
patches, that is, within a small fraction (e.g., millionth) of the whole space.
The staggered patch schemes compute only for a small number of dynamical state
variables, for example, one-millionth of the number of state variables in the
corresponding full-domain model. For time-varying grid geometry, the
measured compute times of the multiscale patch schemes are up to 10 000

times smaller than the corresponding full-domain model. For fixed patch
grids, the measured compute times of the multiscale staggered patch schemes
are potentially 105 times smaller than the corresponding full-domain model. A
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reduction of 105 times is equivalent to reducing the compute time from
one week to six seconds. The user can choose how much computational
savings to achieve depending on the scales of interest in the modelling. The
patch schemes’ ability to accurately model the macroscale waves with large
computational savings is an enabling feature for accurate simulation and
prediction of large-scale wave phenomena like floods and tsunamis.

6.2 Further research directions

Study the staggered patch schemes for depth resolved turbulent microscale physics.
In shallow water waves, the back and forth material motion near the solid
bed (despite being small compared to the wave speed) reflects oscillating
pressure in the horizontal direction (Zirker 2013, p. 19). Towards a more re-
alistic application, applying the staggered patch schemes to depth-resolved
turbulent models such as the full Navier–Stokes equation is an important
further research.

A generic 3D staggered patch schemes. Extending the developed 2D stag-
gered patch schemes to full 3D-space simulations will expand the utility of
the staggered patch schemes more generically to a wide number of systems
such as general large-scale fluid dynamics.

Combine projective time integration with the staggered patch schemes. Sec-
tion 4.7.6 of Chapter 4 outlines some practical issues in integrating the
ODES of the staggered patch schemes for small patch scale ratios. One of
the major issues is the highly stiff ODEs of patch schemes, especially for
nonlinear waves. Based on study for a simple linear system du/dt = Au+b,
Maclean et al. (2021b, §3.1.4) find that projective ODE integrator (Gear and
Kevrekidis 2003) which specifically utilises the spectral gap in a system
outperforms the stiff ODE integrator both in accuracy and compute times.
Combining the projective time integration with the developed staggered
patch schemes will extend the practical applicability of the patch schemes
to wider parameter combinations. Such an extension is challenging because
of the long-lasting microscale waves.

Patch schemes for sediment transport. Another challenging multiscale prob-
lem closely related to the large-scale wave-like systems, is modelling the
sediment transport in environmental fluid dynamics. Extending and study-
ing the effectiveness of the staggered patch schemes will enable efficient
multiscale modelling of sediment transport in coastal engineering.

Patch schemes for flows and waves in heterogeneous media. There are two
classes of heterogeneity: macroscale and microscale. The smallest macro-
scale structures a staggered patch scheme can resolve is twice the inter-
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patch distance (Divahar et al. 2022, p.34, §4.3). Hence, we expect that
staggered patch schemes must cater for macroscale heterogeneity on scales
of about twice the inter-patch distance and larger. First, apply the equation-
free multiscale staggered patch schemes for flows and waves in heteroge-
neous media with slowly varying material properties (i.e, with slow spatial
variation of the coefficients in the governing PDEs). A patch scheme for
microscale heterogeneity, for example, with more rapid spatial variation
of material properties requires more careful treatment. Some recent works
(Bunder et al. 2021, 2017; Maclean et al. 2021a) have proven that the patch
scheme is accurate and efficient for microscale heterogeneity in dissipative
systems. Outstanding research is to prove similar properties for staggered
patch schemes of wave-like systems.

Adaptive and moving patch grids for unsteady and discontinuous problems.
The recent work of Maclean et al. (2021a) adaptively refines the patch grid
to accurately capture shock waves. Maclean et al. (2021a, p. 14) also discus
the utility of including moving meshes to adaptively both create and merge
patches. Extending the 2D staggered patch schemes to adaptive and mov-
ing meshes will improve both the accuracy and efficiency in the multiscale
patch schemes simulation of localised structures such as a turbulent bore.

Practically relevant complex macroscale boundary conditions for the multidi-
mensional patch schemes. All the studies in this work use simple periodic
boundary conditions (BCs). As Cao and Roberts (2015, §5.2, Fig.12) ex-
plain for the 1D space, there are at least two ways of imposing a simple
Dirichlet BCs: imposing on the patch edges (microscale); imposing on the
patch centre (macroscale). Boundary conditions in multiple dimensions,
and Neumann and other complex BCs require more careful treatment (e.g.,
patch edge alignment to the boundary, additional patches outside the do-
main, possible degradation of stability and consistency). As a next step,
extending the staggered patch schemes to complex macroscale boundary
conditions will enable solving challenging real-world practical problems.

Extend patch schemes to other continuum modelling methods. All the studies
of the 2D staggered patch schemes in this work use finite difference micro-
scale models within the patches. Extending the staggered patch schemes
to multidimensional finite volume, finite element, and other continuum
modelling methods will improve the flexibility and utility of the multiscale
patch schemes.

Develop wrappers of staggered patch schemes for industrial scale simulation
software. Implementing the staggered patch schemes as thin wrappers
for industrial scale simulation software such as OpenFOAM, Ansys, SU2,
FEniCS, deal.II is also a relevant next step. Such wrappers will enable quick
adaption and hence allow both solving and testing the patch schemes on
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multiscale modelling within various application areas.
Generalise staggered patch schemes to macroscale unstructured patch grids.

All the current works on the multidimensional multiscale patch schemes
(both the collocated and staggered) are based on structured patch grids both
in microscale and macroscale. Generalising the staggered patch schemes to
macroscale unstructured patch grids will enable multiscale patch scheme
simulation over complex real-world geometry such as simulating tsunami
over complex terrains.
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Quincy (1998). “The variational multiscale method—a paradigm for
computational mechanics”. In: Computer Methods in Applied Mechanics
and Engineering 166.1, pp. 3–24. DOI: 10.1016/S0045-7825(98)00079-6
(cit. on p. 1).

Hyman, J. M. (May 2005). “Patch dynamics for multiscale problems”. In:
Computing in Science Engineering 7.3, pp. 47–53. DOI: 10.1109/MCSE.
2005.57 (cit. on p. 4).

Intergovernmental Oceanographic Commission, International Tsunami
Information Centre (2014). Tsunami, The Great Waves, Revised Edition.
URL: http://itic.ioc-unesco.org/images/stories/awareness_
and_education/great_waves/great_waves_en_low_v14.pdf (cit. on
p. 290).

Jain, M.K., Iyengar S.R.K., and M.K. Jain (2004). Numerical Methods. Problems
and Solutions. 2nd ed. New Age International (cit. on pp. 31, 32, 41).

https://doi.org/10.1063/1.1761178
https://doi.org/10.1063/1.1761178
https://doi.org/doi:10.1515/9783110573329
https://doi.org/10.1017/9781108855297
https://doi.org/10.1016/B978-0-12-382010-5.00001-4
https://doi.org/10.1007/978-0-387-09496-0
https://doi.org/10.1016/S0045-7825(98)00079-6
https://doi.org/10.1109/MCSE.2005.57
https://doi.org/10.1109/MCSE.2005.57
http://itic.ioc-unesco.org/images/stories/awareness_and_education/great_waves/great_waves_en_low_v14.pdf
http://itic.ioc-unesco.org/images/stories/awareness_and_education/great_waves/great_waves_en_low_v14.pdf


Bibliography 325

Jordan, Dominic and Peter Smith (2007). Nonlinear Ordinary Differential
Equations. An introduction for Scientists and Engineers. Oxford University
Press, USA. ISBN: 9780199208258 (cit. on p. 105).

Kevrekidis, I. G., C. W. Gear, and G. Hummer (2004). “Equation-free: The
computer-aided analysis of complex multiscale systems”. In: AIChE
Journal 50.7, pp. 1346–1355. DOI: 10.1002/aic.10106 (cit. on pp. 4, 5,
25).

Kevrekidis, I. G., C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg, and
C. Theodoropoulos (2003). “Equation-free, coarse-grained multiscale
computation: enabling microscopic simulators to perform system-level
analysis”. In: Commun. Math. Sci. 1.4, pp. 715–762 (cit. on p. 5).

Kevrekidis, I. G. and G. Samaey (2009). “Equation-Free Multiscale Com-
putation: Algorithms and Applications”. In: Annual Review of Physical
Chemistry 60.1, pp. 321–344. DOI: 10 . 1146 / annurev . physchem . 59 .
032607.093610 (cit. on p. 4).

Lauritzen, Peter, Christiane Jablonowski, Mark Taylor, and Ramachandran
Nair (2011). Numerical Techniques for Global Atmospheric Models. Springer.
DOI: 10.1007/978-3-642-11640-7 (cit. on p. 14).

Lomax, Harvard, Thomas H Pulliam, and David W Zingg (2011). Funda-
mentals of computational fluid dynamics. 1st ed. Scientific Computation.
Springer-Verlag Berlin Heidelberg. DOI: 10.1007/9783662046548 (cit.
on p. 280).

Lorenz, E. N. (1986). “On the Existence of a Slow Manifold”. In: Journal
of the Atmospheric Sciences 43.15, pp. 1547–1558. DOI: 10.1175/1520-
0469(1986)043<1547:OTEOAS>2.0.CO;2 (cit. on p. 25).

Lynch, Stephen (2018). Dynamical Systems with Applications using Python.
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