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Editorial on the Research Topic

Structural bioinformatics and biophysical approaches for

understanding the plant responses to biotic and abiotic stress

Plants are exposed to a variety of environmental conditions that negatively impact

their physiology and yields (Rivero et al., 2022; Sharma et al., 2022; Zandalinas and

Mittler, 2022). Several studies identified mechanisms involving genes, proteins, and

metabolites that underlie plant responses to stress conditions (Chen et al., 2022; Hassan

et al., 2022; Huang et al., 2022; Mittler et al., 2022; Yang et al., 2022; Zhan et al.,

2022). Some of these molecules were used to improve plant responses to abiotic

and biotic stresses (Li et al., 2022; Mahto et al., 2022; Wang and Komatsu, 2022;

Zhao et al., 2022). However, the underlying structural and functional relationships of

these molecular mechanisms require more research. Computational and biophysical

approaches are viable options for analyses of target molecules to understand their

interactions and dynamics that initiate biochemical and physiological responses of

plants (Wan et al., 2015; Konda et al., 2018; Moffett and Shukla, 2018; Rayevsky et al.,

2019; Jha et al., 2022). These responses in turn control plant tolerance and resistance

to sub-optimal environmental conditions. Therefore, this Research Topic is aligned

with the current research trends and provides an update on the advances in structural

bioinformatics and biophysical approaches to understanding plant responses to biotic

and abiotic stresses at the molecular level. Here, we highlight some of the topics from the

following contributions.
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Biotic stress in plants involves the complex regulatory

networks of various sensory/signaling molecules (Tiwari et al.,

2022), including proteins that participate in plant defense

strategies. Three articles focused on the genetic characterization

of proteins involved in biotic stress resistance. First, Zheng

et al. identified protein-protein interactions (PPIs) between

rice and the fungus Magnaporthe oryzae, a causative agent

of rice blast, which is the most devastating disease affecting

rice production. A global PPI network consisted of 2,018

interacting protein pairs involving 1,344 rice proteins, where

418 blast fungus proteins showed enrichment for blast resistance

genes—these network-based predictions would now allow

discoveries of blast resistance genes in rice. Next, Sati et al.

investigated computationally the interaction of the PsoR

protein of plant-beneficial Pseudomonas spp. with various

root exudates to better understand inter-kingdom signaling

between plants and plant growth-promoting rhizobacteria

(PGPR). The PsoR protein produces a range of antifungal

and insecticidal secondary metabolites, making them useful

biocontrol agents and thus helping during plant growth.

A total of 59 different low molecular mass phytochemicals

were virtually screened with the PsoR protein by molecular

docking. Two root exudates, saponarin and 2-benzoxazolinone

(BOA), present in the root exudates of barley and wheat,

respectively, showed suitable binding with PsoR, likely showing

cross-kingdom interactions. Lastly, Yadav et al. performed a

wide-range analysis of Ca2+-sensing plant-specific calmodulin-

like proteins (CMLs) in soybean to identify 41 true CMLs.

Gene structural analysis and identifying conserved motifs and

cis-acting elements in these targets strongly support their

identity as the members of this family and involvement

in stress responses. Further insights into the differential

expression patterns of GmCMLs during Spodoptera litura-

feeding, wounding, and signaling together with 3D structure

prediction, identification of interacting domains, and docking

of Ca2+ ions in S. litura-inducible GmCMLs provided

evidence into their roles in Ca2+ signaling and plant defense

during herbivory.

Two articles focused on the genetic characterization of

proteins involved in abiotic stress tolerance and climate change

and their impacts, suggesting potential candidates that could

be targeted for plant breeding and genetic engineering. This is

aimed at developing food crops that could thrive in deteriorating

environmental conditions, and maintain or increase the crop

yields (Ku et al., 2018). First, Arabia et al. outlined the role of

the Universal Stress Protein (USP) gene family in rice (Oryza

sativa L. ssp. japonica) to uncover 44 genes and their domain

architecture that was key to the functional diversification

under multi-stress environmental challenges. Next, Chen et al.

described 33 Brassica napus L. CONSTANS-LIKE (COL) genes;

these clustered into three subfamilies and exhibited conserved

gene and protein structures, promoter motifs, and tissue-specific

expression. The latter study also clarified the role of each

gene subfamily during growth and development, flowering, and

circadian rhythms.

Understanding of how bioactive molecules interact with

their targets can help to explain their structure-activity

relationships. In particular, the computational analyses of

protein-ligand complexes can help to unravel these key

interactions (Anighoro, 2020), providing valuable insights

into the plant response to stress conditions. Two articles

applied X-ray crystallography, comparative modeling, and

molecular dynamics simulations to evaluate protein activity

and protein-ligand interactions. In the first study, Infantes

et al. outlined the importance of a single amino acid

residue variation (PYR/PYL/RCAR) in ABA receptors, which

promotes the transition of the latch and gate loops to active

conformation in ABA-dependent and independent modes.

Furthermore, the authors identified that the niacin molecule

can act as an in vivo antagonist of ABA. In the second

work, Maia et al. investigated the enzyme specificities of PR-

4 SUGARWINs in sugarcane defense against phytopathogens.

Based on experimental and computational methods, the

authors showed the crystal structure of SUGARWIN2, the

first PR-4 protein lacking an RNase activity. In addition,

the authors suggested that SUGARWIN2 is more relevant to

sugarcane defense against pathogenic fungi, as SUGARWIN2

showed higher expression levels after the Colletothricum

falcatum (Went) treatment compared to the expression

of SUGARWIN1.

Two additional articles focused on lipid barriers, which

play critical roles in plant biology by separating spaces and

generating compartments, and as biological barriers protect

cells and organelles from stress conditions (Guo et al., 2019). In

the review by Murray and Graether, these authors looked at the

biophysical mechanisms by which dehydrins, a group of plant

abiotic stress proteins, protect plants from cold damage. Despite

dehydrin’s lack of structure and low sequence conservation,

the lysine-rich K-segments stabilized model membranes by

maintaining fluidity and preventing membrane fusion. The

paper by Ingram et al. examined a very different kind of

lipid barrier—nanobubbles. The authors characterized the

recently discovered 10–1,000 nm bubbles surrounded by a

lipid monolayer, using molecular dynamics simulations. They

show that they were stable and avoided embolisms at radii of

35 nm and under pressures of 0 to −1.5 MPa. To reconcile

the presence of nanobubbles with the water transpiration

model, the authors proposed that nanobubbles continuously

expand and collapse into smaller bubbles, and reuse

the lipids.

Final comment

In summary, the work presented in this Research Topic

documents how structural bioinformatics and computational
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biophysical approaches could be effectively applied to study

the structure-function relationships of plant proteins and

the function of small molecules involved in biotic and

abiotic stresses. These molecules are at the core of the plant

defense mechanisms that allow plants to mitigate stresses

and enhance plant abilities to respond to unfavorable

environmental conditions.
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