

The effect of gestational diabetes mellitus on

maternal and child health

Maleesa Pathirana

B. Med Sci., B. Health Med Sci (Hons)

Supervisors

Prof. Claire Roberts and Dr. Prabha Andraweera

Adelaide Medical School

Discipline of Obstetrics and Gynaecology

The University of Adelaide

2022

Table of Contents

Abstract		ii
Declarat	ion	v
Acknow	ledgments	vi
Publicati	ons arising from this thesis	viii
Publicati	ons to which I contributed towards the course of my PhD	ii
Presenta	tions	iv
List of ta	bles and figures	ii
List of su	upplementary tables and figures	v
SECTIO	ON 1: Introduction and context of thesis	1
Chapt	er 1	2
1. Int	oduction	2
1.1.	Summary	14
1.2.	Prevalence and definition of gestational diabetes mellitus	14
1.3.	Pathophysiology	15
1.4.	Inflammatory markers of insulin resistance	16
1.5.	Cardiovascular disease and metabolic syndrome	17
1.6.	GDM and cardiovascular disease	18
1.7.	Depression and anxiety	19
1.7.1.	Perinatal depression and anxiety and the effect on pregnancy	19
1.7.2.	Antenatal depression and the risk of GDM	20
1.8.	The fetal origins of adult disease hypothesis	20
1.8.1.	Gestational diabetes mellitus in the context of DoHAD	21
1.9.	Exposure to GDM in utero and risk of cardiovascular disease later in life	22
1.10.	Breastfeeding as a protective measure for cardiovascular disease in mothers and c	hildren -
1.11.	Exposure to GDM in utero and neurodevelopment in the offspring	23
Chapt	er 2	14
2. Con	itext of thesis	14
2.1.	The STOP study cohort	15
2.2.	Hypothesis and aims	16
SECTIO	ON 2: Systematic review and meta-analyses series	14
Chapt	er 3	16
3. Car	diovascular risk factors in women exposed to gestational diabetes mellitus: A	16
systema		16
3.1.	Statement of Authorship	17
Princi	pal Autnor	I7/

Co-author Contributions	17
3.2. Abstract	19
3.3. Introduction	20
3.4. Methods	22
3.4.1. Search strategy	22
3.4.2. Inclusion criteria	22
3.4.3. Statistical analysis	24
3.5. Results	25
3.5.1. Search results	25
3.5.2. Blood Pressure	112
3.5.3. Body Mass Index	112
3.5.4. Lipids	113
3.5.4.1. Total Cholesterol	113
3.5.4.2. LDL	113
3.5.4.3. HDL	114
3.5.4.4. Triglycerides	114
3.5.5. Blood glucose	115
3.5.6. Serum insulin	115
3.5.7. Subgroup analysis	116
3.6. Discussion	120
3.7. Conclusion	125
3.8. Supplementary Data	126
Chapter 4	156
4. Cardiovascular risk factors in offspring exposed to gestational diabetes	mellitus <i>in utero</i> : a
systematic review and meta-analysis	156
4.1. Statement of Authorship	157
Principal Author	157
Co-author Contributions	157
4.2. Abstract	159
4.3. Introduction	160
4.4. Methods	162
4.4.1. Search strategy	162
4.4.2. Inclusion criteria	162
4.4.3. Statistical analysis	164
4.5. Results	166
4.5.1. Search Results	166
4.5.2. Systolic Blood Pressure:	197
4.5.3. Diastolic Blood Pressure	198

4.5.4. BMI	198
4.5.5. Lipids	201
4.5.5.1. Total cholesterol	201
4.5.5.2. LDL	202
4.5.5.3. HDL	204
4.5.5.4. Triglycerides	205
4.5.6. Serum Insulin	206
4.5.7. Blood Glucose	208
4.6. Discussion	210
4.7. Conclusion	214
4.8. Supplementary data	215
Chapter 5	223
5. Author response: Cardiovascular risk factors in offspring exp	oosed to gestational diabetes
mellitus: a systematic review and meta-analysis (2020)	223
5.1. Statement of Authorship	224
Principal Author	224
Co-author Contributions	224
Abstract	226
Letter	227
Chapter 6	230
6. Author response: Cardiovascular risk factors in offspring exp mellitus: a systematic review and meta-analysis (2022)	oosed to gestational diabetes
6.1 Statement of Authorship	231
Principal Author	231
Co-author Contributions	231
Abstract	233
Letter	234
Chapter 7	236
7. Association between metabolic syndrome and gestational dial	etes mellitus in women and
their children: a systematic review and meta-analysis	236
7.1. Statement of Authorship	237
Principal Author	237
Co-author Contributions	237
7.2. Abstract	239
7.3. Introduction	241
7.4. Methods	243
7.4.1. Search strategy	243
7.4.2. Inclusion criteria	243

7.4.3. Statistical analysis	244
7.5. Results	247
7.5.1. Search results	247
7.5.2. Risk of MetS during pregnancy in women with GDM	256
7.5.3. Risk of MetS in women with a history of GDM	256
7.5.4. Risk of MetS in children exposed to GDM <i>in utero</i>	257
7.5.5. Subgroup analyses	258
7.6. Discussion	260
7.7. Conclusion	263
7.8. Supplementary Data	265
Chapter 8	271
8. Protective influence of breastfeeding on cardiovascular risk factors in won	nen with previous
gestational diabetes mellitus and their children: A systematic review and meta-	analysis 271
8.1. Statement of Authorship	272
Principal Author	272
Co-author Contributions	272
8.2. Abstract	274
8.3. Introduction	275
8.4. Methods	276
8.4.1. Search strategy	276
8.4.2. Inclusion criteria	277
8.4.3. Statistical analysis	278
8.5. Results	280
8.5.1. Search results	280
8.5.2. Breastfeeding in women with a history of GDM	287
8.5.2.1. Blood pressure	287
8.5.2.2. Body Mass Index	287
8.5.2.3. Lipids	287
8.5.2.3.1. Total cholesterol	287
8.5.2.3.2. Triglycerides	288
8.5.2.3.3. HDL and LDL cholesterol	288
8.5.2.4. Serum Insulin	289
8.5.2.5. Glucose	289
8.5.2.6. Incidence of type II diabetes mellitus	290
8.5.2.7. Sensitivity analyses	291
8.5.3. Effect of breastfeeding on cardiovascular risk factors among children ex<i>utero</i> 291	xposed to GDM in
8.5.3.1. BMI:	291

8.5.3.2. Type II diabetes mellitus:	291
8.6. Discussion	
8.7. Conclusion	296
8.8 Supplementary data	297
Discussion of systematic review series	299
SECTION 3: The STOP study and 3 year follow-up	304
Chapter 9	306
9. Anxiety and depression in early gestation and the association	with subsequent gestational
diabetes mellitus in a disadvantaged population	306
9.1. Statement of Authorship	307
Principal Author	307
Co-author Contributions	307
9.2. Abstract	310
9.3. Introduction	312
9.4. Methods	
9.4.1. Study population	314
9.4.2. Statistical analysis	315
9.5. Results	317
9.5.1. Participant demographics	317
9.5.2. Mental health in women in pregnancy	320
9.6. Discussion	323
9.7. Conclusion	326
Chapter 10	327
10. Gestational diabetes mellitus and cardio-metabolic risk fac	tors in women and children at
3 years postpartum	327
10.1. Statement of Authorship	328
Principal Author	328
Co-author Contributions	328
10.2. Abstract	332
10.3. Introduction	334
10.4. Methods	336
10.4.1. Study population	336
10.4.2. Statistical analysis	339
10.5. Results	341
10.5.1. Participant demographics	341
10.5.2. Cardiovascular risk factors during gestation and at 3 years	postpartum:345
10.5.2.1. Baseline (9-16 weeks' gestation)	345
10.5.2.2. 34 weeks' gestation	345

10.5.2.3	. 3 years postpartum	345
10.5.3.	Cardiovascular risk factors in children aged 3 years	350
10.5.4.	Effect of obesity in early pregnancy on CVD risk factors in women and children	351
10.5.4.1	. 9-16 weeks' gestation	351
10.5.4.2	. 34 weeks' gestation	351
10.5.4.3	. 3 years postpartum	351
10.5.4.4	. Children aged 3	352
10.6.	Discussion	353
10.7.	Conclusion	356
10.8.	Supplementary Data	358
Chapter	11	364
11. Th	e influence of breast feeding for at least 6 months on haemodynamic and metab	olic
health of v	vomen and their children aged 3 years	364
11.1. \$	Statement of Authorship	365
Principa	l Author	365
Co-auth	or Contributions	365
11.2. At	ostract	368
11.3.	Introduction	370
11.4.	Methods	372
11.4.1.	Study population	372
11.4.2.	Breastfeeding status	374
11.4.3.	Statistical analysis	375
11.5.	Results	376
11.5.1.	Participant demographics	376
11.5.2.	Women	379
11.5.3.	Children	381
11.6.	Discussion	383
11.7.	Conclusion	386
Chapter	12	387
12. Exj	posure to gestational diabetes mellitus <i>in utero</i> and neurodevelopment at 3 year	s of
12.1 S	Statement of Authorship	388
Principa	Author	388
Co-auth	or Contributions	388
12.2	Abstract	391
12.2.	Introduction	397
12.3.	Methods	395
12.4.1	Study population	395
1 - 1 1 1 1	Strady Population	575

12.4.2.	Statistical analysis	- 398
12.5.	Results	- 399
12.5.1.	Participant demographics	- 399
12.5.2.	Neurodevelopment in children at 3 years of age:	- 403
12.5.3.	Sex differences:	- 404
12.6.	Discussion	- 406
12.7.	Conclusion	- 408
SECTION	4: Discussion	-410
Final Dis	scussion	-410
Introduc	tion to discussion	- 411
Summar	y of thesis	- 411
Implicat	ions of findings	- 414
Hemody	namic profile of women who develop GDM	-414
Obesity	and SEI as mediators	-415
Obesity-		-415
SEI		-416
Breastfe	eding and reduced cardiovascular risk factors in those exposed to GDM	-417
Strength	s and limitations	- 419
Future d	irection and recommendations	- 421
Final rer	narks	- 422
References	:	- 424
Appendix 1 diabetes me	1: Publication for Cardiovascular risk factors in women with a history of gestational ellitus: a systematic review and meta-analysis	- 448
Appendix 2 mellitus <i>in</i>	2: Publication for Cardiovascular risk factors in children exposed to gestational diabete <i>utero</i> : a systematic review and meta-analysis	s - 451
Appendix 3 gestational	3: Publication for Author response: Cardiovascular risk factors in offspring exposed to diabetes mellitus <i>in utero:</i> a systematic review and meta-analysis	- 453
Appendix 4 mellitus in	4: Publication for Association between metabolic syndrome and gestational diabetes women and their children: a systematic review and meta-analyses	- 454
Appendix 5 with previo	5: Publication for Protective effect of breastfeeding on cardiovascular risk factors in we bus gestational diabetes mellitus and their children: a systematic review and meta-analy	omen vsis
		-455

Abstract

Introduction: Gestational diabetes mellitus (GDM) affects 1 in 7 pregnancies globally. Development of GDM can be influenced by antenatal factors, such as maternal BMI, metabolic syndrome and poor mental health. Furthermore, previous research suggests that GDM increases the risk of diabetes and coronary heart disease to the mother and child and is associated with impaired neurodevelopment in the child. Therefore, greater understanding of the lifestyle factors which influence GDM development, the trajectory of cardiovascular risk factor appearance in women and children and assessing neurodevelopment in the child will aid intervention strategies that can significantly reduce the risk of chronic disease later in life.

Methods: This thesis includes a comprehensive series of systematic reviews and meta-analyses to identify the cardiovascular risk factors seen in women with a history of GDM and their offspring exposed to GDM *in utero*. To complement the review series, an observational follow-up study of the Screening Tests to Predict Poor Outcomes of Pregnancy (STOP) cohort was undertaken with women and children being recruited at 3 years postpartum. The original STOP study recruited 1,363 nulliparous women from 2015 to 2018 primarily from the Lyell McEwin Hospital in South Australia. This hospital services patients from the Northern Adelaide region which statistically has some of the worst chronic health outcomes in metropolitan Australia due to significant socioeconomic disadvantage in the community. The follow-up study consisted of hemodynamic and metabolic assessments that were undertaken to determine the prevalence of cardiometabolic risk factors three years postpartum in women with a history of GDM 3 years later, and to determine whether the children also exhibited any cardiovascular risk factors or measures of poor neurodevelopment at 3 years of age.

Results: The systematic review and meta-analysis series identified that women who have a history of GDM have an increase in blood pressure, BMI lipids, serum glucose, and serum insulin and are at a higher risk of metabolic syndrome than those without a history of GDM.

Children exposed to GDM *in utero* exhibited higher blood pressure, BMI z-score, blood glucose and risk of metabolic syndrome than those who were not exposed to GDM *in utero*. Women with a history of GDM who breastfed had reduced serum glucose and reduced risk of type II diabetes mellitus than those who did not.

In the original STOP study, there was no difference in history of depression in women who developed GDM compared to those who did not. The latter comprised women with uncomplicated pregnancies, and one or more of the following complications: gestational hypertension, preeclampsia, and delivery of a preterm infant and/or a small for gestational age infant. A total of 281 women-children dyads attended a 3 year follow-up appointment. There were no significant differences in cardiometabolic variables between women with a history of GDM and those without a history of GDM at 3 years postpartum, nor in their offspring exposed to GDM in utero compared to unexposed offspring, when adjusted for BMI and socioeconomic index (SEI). Breastfeeding for at least 6 months postpartum provided some protection against cardiovascular risk factors in all women in the cohort at 3 years postpartum but this was attenuated by maternal BMI in first trimester and socioeconomic index. Anthropometric and hemodynamic outcomes were not different between children who were breastfed for at least 6 months compared to those who were not. Within the group of women with at least one pregnancy complication in their index pregnancy and their in utero exposed children, breastfeeding or being breastfed until at least 6 months old, was some protection against cardiovascular risk factors. Children who were exposed to GDM in utero had significantly reduced communication, gross motor and problem-solving skills than those who were not exposed to GDM in utero, even after adjustment for maternal history of depression during pregnancy. Three year old females who were exposed to GDM in utero appeared to be less able at problem solving than exposed males.

Conclusion: Based on the systematic review and meta-analyses conducted, women with a history of GDM are likely to exhibit an increase in conventional cardiovascular risk factors later in life. However, in our smaller cohort, this was not completely evident in women with a history of GDM at 3 years postpartum. Much of this association is largely mediated by covariates including SEI in this socioeconomically disadvantaged community. Breastfeeding may confer some protection to women with GDM but further studies are warranted to assess this association. Exposure to GDM *in utero* promotes an increase in some cardiovascular risk factors in the literature but this was not evident in our cohort. However, children who were exposed to GDM *in utero* appear to have impaired neurodevelopment. Interventions in pre-conception and in early pregnancy that target obesity may significantly reduce the risk of GDM and associated cardiovascular risk factors in the early years after delivery for both women and their children.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. I acknowledge the support I have received for my research through the provision of a University of Adelaide Faculty of Health and Medical Sciences Divisional Scholarship.

Signed

Maleesa Melanie Pathirana

Acknowledgments

I would first like to acknowledge the incredible work and support of my supervisors, Prof. Claire Roberts and Dr. Prabha Andraweera. I am fortunate to have been mentored by such powerful, intelligent women who are working hard to improve the lives of women and children.

Claire, a key lesson you have taught me our passion for research is for the health of women and children. You made sure I was doing a project that was not only important, but enjoyable. You allowed me to put my foot in the door to my career and for that I am very grateful.

Prabha, thank you for your constant support in every step of my PhD journey. There has never been a question I have asked that you have not been able to help me with! Without you this thesis would not have been written, thank you!

I would also like to acknowledge the mentorship and guidance I have received from A/Prof Margaret Arstall and Prof. Gus Dekker. Your clinical and patient centred perspective into research is something I value and has helped me grow as a researcher. Thank you to Dr Zohra Lassi and Dr Anna Ali for working with me to create important reviews to publish.

A special acknowledgment to Emily Aldridge for being my saviour at the Lyell McEwin. I am so fortunate to have been side by side together during our PhDs, and to have eaten lots of sweet treats with you along the way.

I would like to thank all the past and present members of the Pregnancy, Health and Beyond group, who have provided me with feedback and support throughout my PhD. I must acknowledge the assistance of Shalem, who has significantly helped me with the database for the STOP follow-up and with all of my statistical analysis. Thank you to my honours students Jade and Maddie for helping me complete the 3 year follow-up and bringing well needed optimism to my final months of my PhD! Thank you also to the Cardiology research team at the Lyell McEwin Hospital who I have had the pleasure of working with the past three years. This research would not have been possible without the mothers and children of the STOP study. Thank you all for generously giving up your time to participate in the follow-up study. I would like to acknowledge the financial support I received during my candidature from The University of Adelaide Faculty of Health and Medical Sciences. I would like to thank the Robinson Research Institute, Adelaide Medical School and The Hospital Research Foundation for the support I have received, including in regard to funding for conference travel.

Thank you to my friends (both high school, undergrad Medical Science, and Kmart) who have always been such an amazing support system throughout my PhD. Of course, I have to acknowledge the love I received from my pets (past and current), Biscuit, Blue and Bella. You all have provided me with so much support, love and motivation.

Thank you to my partner Nathan, for being such a pivotal pillar during my journey. Thank you to my family, Dilrini, Neil, Sujith (Buzzy), Catherine, Chanelle and Summer. I love you all so much, you always lift me up and push me to be the best person I can be. A special acknowledgment to my mother Dilrini, whose love for academia, research and cups of tea has been instilled in me. My path would not be shaped without your guidance.

Publications arising from this thesis

Chapter 3: Published in 2021 – Reviews in Endocrine and Metabolic Disorders

Pathirana MM, Lassi Z, Ali A, Arstall M, Roberts CT, Andraweera PH. Cardiovascular risk factors in women with previous gestational diabetes mellitus: A systematic review and meta-analysis. *Rev Endocr Metab Disord*. 2021;22(4):729-761. doi:10.1007/s11154-020-09587-0

Chapter 4: Published in 2020 – Journal of Developmental Origins of Health and Disease Pathirana MM, Lassi ZS, Roberts CT, Andraweera PH. Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus *in utero*: systematic review and meta-analysis. *J Dev Orig Health Dis*. 2020;11(6):599-616. <u>doi:10.1017/S2040174419000850</u>

Chapter 5: Published in 2020 – Journal of Developmental Origins of Health and Disease Pathirana MM, Lassi ZS, Roberts CT, Andraweera PH. Author response: cardiovascular risk factors in offspring exposed to gestational diabetes mellitus *in utero*: systematic review and meta-analysis. *J Dev Orig Health Dis*. 2020;11(3):244-245. doi:10.1017/S2040174420000185

Chapter 6: Accepted for publication 2022 – Journal of Developmental Origins of Health and Disease

Chapter 7: Published in 2021 – Endocrine

Pathirana MM, Lassi ZS, Ali A, Arstall MA, Roberts CT, Andraweera PH. Association between metabolic syndrome and gestational diabetes mellitus in women and their children: a systematic review and meta-analysis. *Endocrine*. 2021;71(2):310-320. doi:10.1007/s12020-020-02492-1

Chapter 8: Published in 2021 – Journal of Human Lactation

Pathirana MM, Ali A, Lassi ZS, Arstall MA, Roberts CT, Andraweera PH. Protective Influence of Breastfeeding on Cardiovascular Risk Factors in Women With Previous Gestational Diabetes Mellitus and Their Children: A Systematic Review and Meta-Analysis [published online ahead of print, 2021 Oct 5]. *J Hum Lact*. 2021;8903344211034779. <u>doi:10.1177/08903344211034779</u>

Chapter 9: Submitted for publication – Journal of Diabetes Research

Chapter 10: Submitted for publication – Acta Diabetologica

Chapter 11: Submitted for publication – International Breastfeeding Journal

Chapter 12: Submitted for publication – Paediatric Research

Publications to which I contributed towards the course of my PhD

Aldridge E, **Pathirana MM**, Wittwer M. Sierp S, Leemaqz SY, Roberts CT, Dekker G, Arstall MA. Prevalence of metabolic syndrome in women after maternal complications of pregnancy: an observational cohort analysis. *Accepted in Frontiers in Cardiovascular Medicine (online ahead of print)* <u>https://doi.org/10.3389/fcvm.2022.853851</u>

Aldridge E, **Pathirana MM**, Wittwer M. Sierp S, Leemaqz SY, Roberts CT, Dekker G, Arstall MA. Effectiveness of a nurse practitioner-led cardiovascular prevention clinic at reduction of metabolic syndrome following maternal complications of pregnancy: a preliminary analysis (*under review*).

Aldridge E, **Pathirana MM**, Leemaqz SY, Roberts CT, Arstall MA, Schubert K.O, Dekker G, Depression and anxiety screening scores of women with and without metabolic syndrome six months after complications of pregnancy *(under review)*.

Andraweera PH., Plummer MD, Garrett A, Leemaqz S, Wittwer MR, Aldridge E, **Pathirana MM**, Dekker GA, Roberts CT, Arstall MA. Early pregnancy cardio metabolic risk factors and the prevalence of metabolic syndrome 10 years after the first pregnancy (*under review*).

Andraweera PH, Lassi ZS, **Pathirana MM**, Plummer MD, Dekker GA, Roberts CT, Arstall MA. Pregnancy complications and cardiovascular disease risk perception: A qualitative study *(under review)*.

Andraweera PH, Lassi ZS, **Pathirana MM**, Ali A, Dekker GA, Roberts CT, Arstall MA. Offspring size at birth and maternal risk for cardiovascular disease: a systematic review and meta-analysis (*under review*).

Andraweera PH, **Pathirana MM**, Gamage A, Lassi ZL, Ali A, Wittwer MR, Aldridge E, Roberts CT, Arstall MA. Gestational hypertension and the risk of cardiovascular disease in women and offspring: a systematic review and meta-analysis *(in prep)*

Andraweera PH, **Pathirana MM**, Lassi ZS, Roberts CT, Arstall MA. Interpregnancy interval and the risk of cardiovascular disease: A systematic review and meta-analysis (in prep)

Khoja A, Andraweera PH, Lassi ZS, Zheng M, **Pathirana MM**, Ali A, Aldridge E, Wittwer MR, Chaudhuri DD, Tavella R, Arstall A. Risk factors for premature coronary artery disease (PCAD) in adults: a systematic review protocol. Accepted in F1000 Research: doi:10.12688/f1000research.74926.1

Khoja A, Andraweera PH, Lassi ZS, Zheng M, **Pathirana MM**, Ali A, Aldridge E, Wittwer MR, Chaudhuri DD, Tavella R, Arstall A. Risk factors for premature coronary artery disease (PCAD) between males and females: a systematic review and meta-analysis *(in prep)*

Khoja A, Andraweera PH, Lassi ZS, Zheng M, **Pathirana MM**, Ali A, Aldridge E, Wittwer MR, Chaudhuri DD, Tavella R, Arstall A. Differences in risk factors for premature coronary artery disease (PCAD) and coronary artery disease (CAD). A systematic review and meta-analysis. *(in prep)*

Presentations

Pathirana MM, Lassi ZS, Roberts CT, Andraweera PH. Cardiovascular risk factors in offspring exposed to GDM *in utero:* a systematic review and meta-analysis. *Accepted for oral presentation –Australian Society of Medical Research South Australian Conference, Adelaide, 2019.*

Pathirana MM, Lassi ZS, Roberts CT, Andraweera PH. Cardiovascular risk factors in offspring exposed to GDM *in utero:* a systematic review and meta-analysis. *Accepted for poster presentation and invited speaker for trainee symposium– DoHAD International Conference 2019, Melbourne, Australia.*

Pathirana MM, Ali A, Lassi ZS, Arstall MA, Roberts CT, Andraweera PH. Protective effect of breastfeeding on cardiovascular risk factors in women with previous gestational diabetes mellitus and their children: A systematic review and meta-analysis. *Accepted for poster presentation, DoHAD ANZ Trainee Virtual Conference, 2020.*

Pathirana MM, Lassi ZS, Ali A, Arstall MA, Roberts CT, Andraweera PH. Cardiovascular risk factors in women with previous gestational diabetes mellitus: a systematic review and meta-analysis. *Accepted for poster presentation. Endocrine Society Australia Virtual Conference 2020.*

Pathirana MM, Lassi ZS, Ali A, Arstall MA, Roberts CT, Andraweera PH. Cardiovascular risk factors in women with previous gestational diabetes mellitus and their children: a systematic review and meta-analysis. *Accepted for poster presentation. Florey Postgraduate Conference, The University of Adelaide, 2020.*

Pathirana MM, Lassi ZS, Ali A, Arstall MA, Roberts CT, Andraweera PH. Cardiovascular risk factors in women with previous gestational diabetes mellitus and their children: a

systematic review and meta-analysis. Accepted for poster presentation. Robinson Research Institute Symposium, November 2019.

Pathirana MM, Lassi ZS, Ali A, Arstall MA, Roberts CT, Andraweera PH. Cardiovascular risk factors in women with previous gestational diabetes mellitus and their children: a systematic review and meta-analysis. *Presentation at NALHN Research Meeting November Edition, 2019, Lyell McEwin Hospital.*

List of tables and figures

Table 1.2-1 Plasma glucose values (75g oral glucose tolerance test) used in the diagnosis of GDM	in
the Australian Diabetes in Pregnancy Study (2011) and International Association of Diabetes in	
Pregnancy study (IADPSG).	15
Table 3.5.1-1 Included Studies in Systematic Review and Meta-Analysis	27
Table 3.5.1-2 Findings of meta-analyses	.110
Table 3.5.7-1 Subgroup analysis for all cardiovascular outcomes in women with previous GDM	
compared to those with no previous GDM	.117
Table 4.5.1-1 Characteristics of the included studies	.168
Table 4.5.4-1 Sensitivity analysis for BMI Z-Score	. 199
Table 4.5.4-2 Sensitivity analysis for BMI (kg/m2)	.201
Table 4.5.6-1 Sensitivity analysis for serum insulin	.208
Table 4.5.7-1 Sensitivity analysis for serum glucose	.209
Table 7.5.1-1 Studies included in systematic review and meta-analyses	.249
Table 7.5.5-1 Subgroup analysis for metabolic syndrome in women with previous GDM stratified	by
time of MetS assessment	.258
Table 7.5.5-2 Subgroup analysis for metabolic syndrome in women with previous GDM stratified	by
MetS definition.	.259
Table 7.5.5-3 Ad-hoc analysis for metabolic syndrome in women with previous GDM stratified by	У
ethnicity.	.259
Table 8.5.1-1 Published studies of the effects of breastfeeding on cardiovascular disease risk facto	ors
among women with previous GDM and children exposed to GDM in utero	.281
Table 9.5.1-1 Characteristics of participants in early pregnancy	.319
Table 9.5.2-1 Association of mental health, likelihood of depression, stress perception and anxiety	/
status in women with gestational diabetes in pregnancy compared to women with a non-GDM	
pregnancy	.321
Table 9.5.2-2 Association between history of depression and high risk of mental health disorder w	vith
risk of GDM	.322
Table 10.5.1-1 Participant Demographics at 3 year follow-up in women who participated in the	
STOP study and STOP 3 year Follow-Up Study	.344
Table 10.5.2.3-1 Cardiovascular risk factors in women at baseline (9-16 weeks'), 34 weeks' gestar	tion
and at 3 years postpartum.	.347
Table 10.5.2.3-2 Linear regression to assess association between GDM in pregnancy compared to	
uncomplicated pregnancy and subsequent cardiometabolic risk factors in mothers and children at 3	3
years post-pregnancy	.349
Table 10.5.3-1 Cardiometabolic differences between children born to mothers with gestational	
diabetes mellitus compared to those who were not at 3 years postpartum	.350
Table 11.5.1-1 Baseline data from the woman-child dyads who participated in the STOP 3Y follow	w-
up study	.378
Table 11.5.2-1 Cardiovascular risk factors at 3 years postpartum in women who breastfed for at le	ast
6 months compared to those who did not with subgroup analysis of those who had at least one	
complication of pregnancy during index pregnancy	380
Table 11.5.2-2 Mean differences in maternal cardiovascular risk factors at 3 years postpartum in	
women who breastfed for at least 6 months compared to those who did not, assessed by linear	
regression.	.381

Table 11.5.3-1 Cardio metabolic outcomes for offspring who were breastfed for at least 6 months	S
compared to those who were not with subgroup analysis for those exposed to at least one	
complication of pregnancy in utero.	382
Table 12.5.1-1 Demographics of mothers participating in the STOP follow up study collected at	index
pregnancy and at 3 years postpartum.	402
Table 12.5.2-1 Differences in ASQ-3 domains between those exposed to GDM in utero and those	e
who are not Scores are Mean (SD) *adjusted for child age and gestational age	404
Table 12.5.2-2 Association between maternal GDM and communication score in children at age	3 4 0 4
Table 12.5.2-3 Differences in participants who scored below the threshold of the ASQ-3 *adjusted	d for
child age and gestational age	404
Table 12.5.3-1 Differences in ASQ-3 domains between male and females	405
Figure 3.5.1.1 Flow Chart of Study Selection.	26
Figure 4.5.1.1 PRISMA Flow diagram of study selection	16/
Figure 4.5.2.1 Mean difference in systolic blood pressure (mmHg) in those exposed to GDM in t	itero
and controls.	197
Figure 4.5.5.1 Mean difference in diastone blood pressure (mm Hg) in those exposed to GDM in	100
Figure 4.5.4.1 Mean difference in PMLz score in these expected to CDM in store and controls	100
Figure 4.5.4.1 Mean difference in BMI 2-score in those exposed to GDM in utero and controls	200
Figure 4.5.4.2 Mean difference in Serum blood total cholesterol in those exposed	200
GDM in utero and controls (B) Standard mean difference in cord blood total cholesterol in those	10
exposed to GDM in utero and controls	202
Figure 4.5.5.2.1 (A) Standard mean difference in serum blood total cholesterol in those exposed t	
GDM in utero and controls (B) Standard mean difference in cord blood total cholesterol in those	U
exposed to GDM in utero and controls	203
Figure 4.5.5.3.1: (A) Standard mean difference in serum blood HDL cholesterol in those exposed	d to
GDM in utero and controls (B) Standard mean difference in cord blood HDL cholesterol in those	;
exposed to GDM in utero and controls	205
Figure 4.5.5.4.1 (A) Standard mean difference in serum triglycerides in those exposed to GDM <i>i</i>	п
utero and controls (B) Standard mean difference in cord blood triglycerides in those exposed to C	JDM
in utero and controls	206
Figure 4.5.6.1 A) Standard mean difference in serum insulin in those exposed to GDM in utero a	ind
controls (B) Standard mean difference in cord blood insulin in those exposed to GDM in utero an	nd
controls	207
Figure 4.5.7.1 (A) Standard mean difference in fasting glucose in those exposed to GDM in utere	o and
controls (B) Standard mean difference in cord blood glucose in those exposed to GDM in utero a	nd
controls	209
Figure 7.5.1.1 Flow Chart of selected studies for systematic review and meta-analysis of metabolic	lic
syndrome in women with a history of gestational diabetes mellitus and their children	248
Figure 7.5.2.1 Meta-analysis showing the risk of developing MetS during pregnancy in women	with
GDM	256
Figure 7.5.3.1 Meta-analysis showing the risk of developing metabolic syndrome in women with	1
previous GDM	257
Figure 7.5.4.1 Meta-analysis showing the risk of developing GDM in those born to women with	.
	258
Figure 8.5.1.1 Flow chart of study selection	286
Figure 8.5.2.2.1 Mean difference in BMI (kg/m2) in women with previous GDM who did not	007
breastfeed compared to those who breastfed	

Figure 8.5.2.3.1.1 Standard mean difference in total cholesterol in women with previous GDM v	who
did not breastfeed compared to those who breastfed.	
Figure 8.4.3.2.2.1 Standard mean difference in serum triglycerides in women with previous GD	М
who did not breastfeed compared to those who breastfed Error! Bookmark not de	fined.
Figure 8.4.4.1 Standard mean difference in insulin in women with previous GDM who did not	
breastfeed compared to those who breastfed Error! Bookmark not de	fined.
Figure 8.5.2.4.1 Standard mean difference in insulin in women with previous GDM who did not	v
breastfeed compared to those who breastfed.	290
Figure 8.5.2.5.1 Difference in risk of developing type II diabetes mellitus in women with previo	us
GDM who did not breastfeed compared to those who breastfed	290
Figure 9.5.1.1 Flow chart of STOP study participants	318
Figure 10.5.1.1 Flow chart of participant recruitment	343
Figure 11.5.1.1 Flow chart of follow-up participant recruitment	377
Figure 12.5.1.1 Flow chart of woman-child dyads who participated in the STOP follow-up study	y401

List of supplementary tables and figures

Supplementary Table 3.8 1 Summary of studies not included in meta-analysis	126
Supplementary Table 3.8 2 Quality assessment of included studies using Newcastle Ottowa-Se	cale
	135
Supplementary Table 3.8 3 Sensitivity analysis for SBP (mmHg)	151
Supplementary Table 3.8 4 Sensitivity analysis for DBP (mmHg)	151
Supplementary Table 3.8 5 Sensitivity analysis for BMI (kg/m2)	151
Supplementary Table 3.8 6 Sensitivity analysis for total cholesterol	151
Supplementary Table 3.8 7 Sensitivity analysis for low-density lipoprotein	152
Supplementary Table 3.8 8 Sensitivity analysis for high-density lipoprotein	152
Supplementary Table 3.8 9 Sensitivity analysis for triglycerides	153
Supplementary Table 3.8 10 Sensitivity analysis for glucose	153
Supplementary Table 3.8 11 Sensitivity analysis for insulin	153
Supplementary Table 4.8 1 Studies not included in the meta-analysis	215
Supplementary Table 4.8 2 Quality assessment of studies included in systematic review	220
Supplementary Table 7.8 1 Studies not included in meta-analysis	265
Supplementary Table 7.8 2 Quality assessment of included studies using the National Institute	of
Health Quality Assessment for cohort and case-control studies	266
Supplementary Table 10.8 1 Differences in attendees and non-attendees for STOP 3 year follo	w-up
Supplementary Table 10.8 2 Subgroup analysis of obesity at index pregnancy on cardiovascul	ar risk
factors in women and children	359
Supplementary Figure 3.8.1 Meta-analysis of systolic blood pressure (mmHg) in wome	n with
previous gestational diabetes mellitus compared to women without a history of GDM	142
Supplementary Figure 3.8.2 Meta-analysis of diastolic blood pressure (mmHg) in women wit	1 12 h
previous gestational diabetes mellitus compared to women without a history of GDM	143
Supplementary Figure 3.8.3 Meta-analysis of body mass index (kg/m ²) in women with previo	0115
gestational diabetes mellitus compared to women without a history of GDM.	
Supplementary Figure 3.8 4 Meta-analysis of total cholesterol in women with previous gestat	ional
diabetes mellitus compared to women without a history of GDM	
Supplementary Figure 3.8 5 Meta-analysis of low density lipoprotein in women with previous	8
gestational diabetes mellitus compared to women without a history of GDM	146
Supplementary Figure 3.8 6 Meta-analysis of high-density lipoprotein in women with previou	15
gestational diabetes mellitus compared to women without a history of GDM	147
Supplementary Figure 3.87 Meta-analysis of triglycerides in women with previous gestationa	1
diabetes mellitus compared to women without a history of GDM	148
Supplementary Figure 3.8 8 Meta-analysis of blood glucose in women with previous gestation	nal
diabetes mellitus compared to women without a history of GDM	149
Supplementary Figure 3.89 Meta-analysis of insulin in women with previous gestational diab	etes
mellitus compared to women without a history of GDM	150
Supplementary Figure 3.8 10 Funnel plots for meta-analyses of cardiovascular risk factors in	
women with previous gestational diabetes mellitus compared to women without a history of GD	M (A)
systolic blood pressure; (B) diastolic blood pressure; (C) body mass index; (D) total cholesterol;	; (E)

low density lipoprotein; (F) high density lipoprotein; (G) triglycerides; (H) blood glucose; (I) blood insulin
Supplementary Figure 4.8 2 Funnel plots for (A) BMI (B) Blood glucose
Supplementary Figure 7.8 1 Sensitivity analysis of MetS after a GDM pregnancy omitting moderate quality studies
Supplementary Figure 7.8 2 Funnel plot analysis
Supplementary Table 8.8 1 Quality assessment of studies included in the systematic review and meta-analyses
Supplementary Table 8.8 2 Sensitivity analysis for the meta-analyses that assessed cardiovascular risk factors in women with previous GDM who did not breastfeed compared to those who breastfed
Supplementary Figure 10.8 1 Means of peripheral and central measures at 12 weeks' gestation, 34 weeks' gestation and 3 years postpartum for women with a history of gestational diabetes mellitus (GDM) and those without a history of gestational diabetes mellitus (nGDM). SBP – systolic blood pressure, DBP – diastolic blood pressure, cSBP – central systolic blood pressure, cDBP – central diastolic blood pressure

SECTION 1: Introduction and context of thesis

Chapter 1

1. Introduction

1.1. Summary

This introduction is a literature review of gestational diabetes mellitus (GDM) and how it affects maternal and child health postpartum. This review covers prevalence and pathophysiology of GDM and its relation with maternal metabolic syndrome, cardiovascular disease and antenatal mental health. This is followed by a review of on the developmental origins of health and disease (DOHaD), which underpins the association between GDM exposure *in utero* and subsequent poor chronic health in offspring later in life. There is discussion of exposure to GDM *in utero* and the risk of cardiovascular disease later in life, followed by a review of the literature on how breastfeeding may confer as a protective measure for both women with a history of GDM and their children exposed *in utero*. This is followed by discussion of the association between exposure to GDM *in utero* and poor neurodevelopment in offspring, and the literature spanning whether there are sex specific differences seen in these offspring. Following this is an explanation of the context of this thesis, introducing the Screening Tests to Predict Poor Outcomes of Pregnancy ¹ study and the observational 3 year follow-up of the women and children in this study to explore the gaps in literature underpinning the review.

1.2. Prevalence and definition of gestational diabetes mellitus

Gestational diabetes mellitus (GDM) is the fastest growing diabetes condition in Australia, affecting 15% of all pregnancies². It is defined as diabetes first diagnosed during pregnancy ³. It is thought that 1 in 7 pregnancies globally are affected by GDM⁴. In Australia, GDM is diagnosed between 24-28 weeks' gestation. However, prior risk factors in women such as obesity, known impaired glucose metabolism, history of gestational diabetes, Asian/Hispanic ethnicity and familial history of T2DM or having a mother or sister with a history of GDM warrant early screening⁵.

The prevalence of GDM in Australia has grown significantly between 1994-1996 and 2000-2002 by approximately 12% each year. In 2008, an observational multicentre study of over 25,000 pregnant women with GDM was conducted (the Hyperglycaemia and Adverse Pregnancy Outcomes, HAPO study)⁶. This study observed that maternal glucose levels in third trimester that were below the diagnostic threshold for GDM were associated with adverse maternal and neonatal outcomes, including primary caesarean delivery, neonatal hypoglycaemia and elevated cord blood serum c-peptide levels⁶. This led to a change in the diagnostic criteria for GDM (Table 1.2.1), which is expected to result in an increase in the number of women diagnosed with GDM.

Table 1.2-1 Plasma glucose values (75g oral glucose tolerance test) used in the diagnosis of GDM in the Australian Diabetes in Pregnancy Study (2011) and International Association of Diabetes in Pregnancy study (IADPSG).

OGTT test	ADIPS 2011 criteria	IADPSG criteria
Fasting	>5.5mmol/L	>5.1mmol/L
1-h	-	>10.0mmol/L
2-h	>7.8mmol/L	>8.5mmol/L

*ADIPS - Australian Diabetes in Pregnancy Study; IADPSG – International Association of Diabetes in Pregnancy Study Group

1.3. Pathophysiology

GDM represents glucose intolerance first diagnosed in pregnancy, and the underlying mechanism is elevated insulin resistance without sufficient compensatory insulin secretion ⁷. Placental hormones in pregnancy promote a diabetogenic state, whereby relative insulin resistance enables sufficient glucose transfer from the mother via the placenta to the growing fetus. The placenta and decidua secrete prolactin and promotes β -cell expansion⁸. If a woman's pancreatic function cannot adjust to this diabetogenic state, it leads to elevated blood glucose levels and thus development of GDM⁷. The inability of the pancreas to compensate

by increasing insulin secretion reflects an individual's pre-disposition to impaired β -cell function that was not apparent pre-pregnancy⁹. Differences in β -cell function may also dictate the severity of GDM. Other factors may also contribute to the pathogenesis of GDM. Insulin resistance is regulated by placental hormones such as placental growth hormone, and human placental lactogen¹⁰. Within normal physiological levels, these hormones stimulate insulin resistance and pancreatic β -cell expansion, particularly in the second half of pregnancy. However, aberrant secretion of these hormones may promote cellular insulin resistance and thus maternal hyperglycaemia^{10, 11}.

1.4. Inflammatory markers of insulin resistance

Insulin resistance is the key inflammatory process that underpins GDM, and it is influenced by different inflammatory markers that are highly involved in obese, pre-diabetic and diabetic states. Tumour necrosis factor alpha (TNF- α) is a pro-inflammatory mediator which induces tissue specific inflammation through activation of oxidative stress¹². It is heavily involved in reduction of glucose transporter type 4 (GLUT4), which is involved in insulin regulated glucose transfer in tissues such as adipocytes and skeletal muscle¹³. It decreases oxidation of fatty acids and elevation in plasma free fatty acid levels¹⁴. In individuals with obesity, TNF- α is elevated in the hepatocytes and adipocytes and is thought to promote obesity induced insulin resistance^{12, 15}. TNF- α causes inflammation of the pancreatic islets and subsequent apoptosis of the β -cells¹⁶.

Leptin is an adipo-cytokine involved in satiety and energy expenditure through direct signalling to the hypothalamus¹². It has a major role in insulin and glucose regulation, maintaining normal triglyceride levels in adipocytes ¹⁷, and influences pancreatic β -cell secretion¹⁸. In individuals with obesity, leptin resistance causes dysregulation of insulin leading to excess secretion of triglycerides into the bloodstream ¹⁹.

Adiponectin is an adipose specific protein, with a myriad of roles involving insulin sensitisation 20 . It is thought that adiponectin increases fatty acid oxidation and decreases triglyceride build up in skeletal muscle. Through AMP-kinase activated protein (AMPK), adiponectin is able to stimulate β -cell function and promote glucose uptake²¹. Women who are obese and overweight in pregnancy have reduced adiponectin levels, inversely correlating with insulin resistance²², which is in contrast to the inflammatory markers previously mentioned.

Dysregulation of the above inflammatory markers is associated with development of both GDM and insulin resistance ²³ ^{24, 25}. During pregnancy, there is placental and systemic regulation of adipokines in order to promote insulin resistance and increased glucose transfer to the fetus via the placenta⁷. It has been shown that genes regulating lipid transport and inflammation are highly expressed in the placenta of women with GDM²⁶. Therefore, obesity, in conjunction with regulatory placental hormones, can contribute to inflammation and increasing insulin resistance. If β -cell function is already impaired, then this can result in increased blood glucose and GDM⁹. In some cases, glucose levels will return to prenatal levels after delivery and the diabetogenic state is alleviated. However, due to the impairment of β -cell function, there may be long-lasting effects on maternal metabolic health²⁷.

1.5. Cardiovascular disease and metabolic syndrome

Cardiovascular disease (CVD) is a significant health problem and leading cause of mortality due to non-communicable diseases. In Australia, it is one of the most prevalent diseases and has caused approximately 26% of all deaths²⁸. There are many modifiable risk factors for CVD, including smoking, unhealthy diet, being overweight/obese and lack of exercise²⁹. All of these risk factors increase the risk of developing metabolic syndrome (MetS), a cluster of metabolic conditions that increases the risk of CVD, stroke and diabetes. The International Diabetes Federation (IDF)³⁰ has defined MetS as the presence of central adiposity (defined by waist

circumference which are ethnic specific (for women of all ethnicities, this is \geq 80cm) and/or an obese BMI \geq 30kg/m²) and at least two of the following:

- Raised systolic blood pressure ≥130mmHg or diastolic blood pressure >80mmHg or the treatment of previously diagnosed hypertension
- Raised serum triglycerides ≥1.7mmol/L or being on treatment for increased triglycerides
- Raised fasting plasma glucose ≥5.6mmol/L or previously diagnosed type 2 diabetes mellitus
- Reduced HDL cholesterol ≤ 1.29 mmol/L

Obesity is a risk factor for both GDM and CVD. There is an established relationship between weight gain and insulin resistance, which has been demonstrated by studies that have assessed increased adipose tissue growth and subsequent insulin resistance. Adipocyte hypertrophy as occurs with weight gain promotes insulin resistance ³¹. This is due to elevated blood sugar and dyslipidaemia in obesity that promotes an increase of free fatty acids and inflammatory markers (i.e. leptin, TNF-a) and a significant decrease in anti-inflammatory markers such as adiponectin³². These pro-inflammatory markers induce tissue specific inflammation, leading to development of insulin resistance and β -cell dysfunction. Metabolic syndrome is promoted by the same dysregulation of inflammatory and anti-inflammatory markers and is associated with insulin resistance³³.

1.6. GDM and cardiovascular disease

A study by Bellamy *et al.* (2014) has shown that women with previous GDM have a 7.5-fold increased risk of developing Type 2 Diabetes Mellitus (T2DM) after pregnancy. Approximately 50% of women with GDM will develop T2DM within one year postpartum³⁴. This is due to damage to pancreatic β -cells after a GDM pregnancy⁷. In a meta-analysis by

Kramer at al. (2019) based on more than one million participants, women with GDM have a 2fold increased risk of developing CVD, and this is irrespective of disease progression to T2DM³⁵. We conducted a comprehensive systematic review and meta-analyses (published in 2020) on cardiovascular risk factors in women with a history of GDM, which demonstrated that there is an increase in all conventional cardiovascular risk factors (i.e. systolic and diastolic blood pressure, BMI, lipids, serum glucose, serum insulin) in these women³⁶. This review comprises chapter 3 of this thesis.

1.7. Depression and anxiety

Major depressive disorder (MDD) is defined as at least a two week period of low mood or loss of interest or pleasure, associated with at least five main symptoms: appetite or weight change, psychomotor changes (i.e. slowed speech, thought, movement), fatigue or decrease in energy, sense of worthlessness or guilt, helplessness or hopelessness, inability to make decisions or concentrate, recurrent thoughts of death or suicide³⁷. Generalized anxiety disorder ³⁸ is often seen in parallel with other chronic and mental health disorders, and is associated with recurring intrusive thoughts or concerns and physical symptoms that may also be present such as sweating, trembling, dizziness or a rapid heart beat³⁷.

1.7.1. Perinatal depression and anxiety and the effect on pregnancy Depression affects 20% of young mothers in Australia, while 50% of women report being diagnosed with depression in the perinatal period (i.e. during pregnancy and up to their child's first birthday)³⁹. Significant predictors of antenatal depression include stressful life events (e.g. history of abuse), low social support and low income ^{39, 40}. Risk factors for antenatal depression (i.e. depression in pregnancy) include psychological disorders/current depression, stress and/or low social support during pregnancy ⁴¹. These risk factors are seen commonly in communities with low socioeconomic status ⁴². Psychosocial risk factors, along with metabolic risk factors

seen in such populations including poor diet, drug and alcohol use will promote inflammation and stress in the mother.

1.7.2. Antenatal depression and the risk of GDM

There is a known bi-directional association between T2DM and MDD, which is thought to be mediated by hyperactivity of the hypothalamic-pituitary-adrenal axis (HPA). The HPA promotes an increase in cortisol and inflammatory markers that lead to systemic insulin resistance ⁴³. Therefore, pre-disposition to depression may increase insulin resistance during pregnancy and further increase the risk of GDM.

1.8. The fetal origins of adult disease hypothesis

Pregnancy complications, such as GDM, are now known to have significant health implications for the offspring. The fetal origins of adult disease (FOAD) was first conceptualised by David Barker who, when assessing midwifery records of 16,000 individuals born in Hertfordshire from 1911 to 1930, found that low weight, head circumference and ponderal index recorded at birth were associated with increased risk of coronary heart disease in adulthood⁴⁴. The data from this cohort revealed that poor fetal growth was associated with hypertension, CAD and insulin resistance in adulthood. Analysis of data from the Dutch Famine in 1944-1945, which recorded a nutritional intake of pregnant women being reduced to 1000 calories or less, found that offspring in utero that were exposed to calorie restriction in mid or late gestation were lighter than those who were exposed in early gestation⁴⁵. The mothers who were malnourished in mid or late pregnancy had reduced glucose tolerance, and those exposed to famine during early pregnancy had dyslipidaemia and higher BMI later⁴⁵. Barker proposed that those "starved" in utero were more likely to become overweight and therefore develop diabetes and cardiovascular problems later in life⁴⁵. This association has been shown in generational and biobank studies of middle aged adults, such as the Birth Gene ⁴⁶ study with data from over 180,000 participants in 49 studies, whereby those who were born with a low birth weight were at greater risk of T2DM and coronary artery disease^{38, 47}. This work underpins the developmental origins of health and disease (DOHAD) hypothesis, which states that external influences on the intrauterine environment at critical stages of fetal growth have significant consequences on later life health, from infancy and throughout life⁴⁸. The FOAD theory evolved to DoHAD allowing a broader focus on preconception and the first 1000, sometimes 2000 days of development rather than purely the prenatal period.

1.8.1. Gestational diabetes mellitus in the context of DoHAD

The concept of DoHAD has transitioned from the effect of undernutrition in utero on later life health and expanded to consider all intrauterine exposures, including the effect of GDM and obesity on offspring health later in life. Elevated maternal insulin resistance during GDM allows for increased transplacental transfer of glucose to the growing fetus⁴⁹. Based on the DOHaD hypothesis, exposure to an adverse intrauterine environment (i.e. excess nutrients) promotes activation of genes as a compensatory mechanism.⁴⁸. In studies of Native American Pima populations, children who were exposed to a hyperglycaemic environment *in utero* have elevated blood glucose comparative to their siblings who were exposed to a normoglycemic environment⁵⁰. A study by Coles et al. (2020) found that children as young as 3 years of age who were exposed to GDM in utero were more likely to be insulin resistant based on the Homeostatic Model of Insulin Resistance (HOMA-IR), than those who were not ⁵¹. Therefore, while increased fetal β -cell activity was advantageous *in utero*, it may promote reduced β -cell capacity compared to those born to a normoglycemic pregnancy, which could lead to development of chronic metabolic diseases later in life.

1.9. Exposure to GDM in utero and risk of cardiovascular disease later in life

In a systematic review and meta-analysis from 2012, Aceti *et al.* showed that systolic blood pressure was 1.88mmHg higher in offspring exposed to GDM *in utero* compared to controls (95% CI 0.00-2.77)⁵². This finding is particularly important, as it has been shown in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, that having arterial stiffness during adolescence (17-24 years old) tracks into adulthood 7 years later⁵³. It is important to assess whether elevated blood pressure and increased stiffness are detected within a few years after birth and if this influences elevated blood pressure during this adolescent period and later in life. Children who are born to mothers who are diabetic are more likely to have impaired glucose tolerance and develop type II diabetes mellitus in early adolescence⁵⁴. Furthermore, obesity has been seen in children as early as 2 years of age in those exposed to GDM *in utero*⁵⁵. This is likely to contribute to poor metabolic health later in life and increase the risk of developing metabolic syndrome and CVD. Data from the PREOBE cohort have shown that maternal diabetic disorders have a significant effect on maternal cord blood metabolites such as elevated hexoses (primarily glucose) and L-asparagine and L-aspartic acid, which are associated with insulin resistance and hyperglycaemia during pregnancy⁵⁶.

We conducted a comprehensive systematic review and meta-analysis (published in 2020) on cardiovascular risk factors in children exposed to GDM *in utero*. This review showed that systolic blood pressure, BMI z-score and serum glucose are significantly higher in those exposed to GDM *in utero* than those who were not. This paper comprises chapter 4. The fifth chapter of this thesis is a comprehensive systematic review and meta-analysis on metabolic syndrome in women with a history of GDM and among children exposed to GDM *in utero*. This review found that children who are exposed to GDM *in utero* are more likely to develop metabolic syndrome.

1.10. Breastfeeding as a protective measure for cardiovascular disease in mothers and children

Breastfeeding is considered the best form of infant nutrition, whereby World Health Organization recommends at least 6 months of exclusive breastfeeding from the baby's birth⁵⁷. Breastmilk is composed of macronutrients, micronutrients, hormones, digestive enzymes and immune cells that support all facets of infant growth⁵⁸. It has been shown that breastfeeding reduces the risk of chronic diseases in women such as type II diabetes mellitus, obesity and cardiovascular disease⁵⁹. Furthermore, children who are exclusively breastfed as early as <3 months postpartum are less likely to be obese⁶⁰. Therefore, breastfeeding may affect the risk of developing type II diabetes and cardiovascular disease in mothers and offspring exposed to GDM *in utero*, later in life. Our systematic review and meta-analysis was published in 2021 assessing the effect of breastfeeding on cardiovascular risk factors in both women and children. It was found that women with a history of GDM who breastfeed had significantly lower serum glucose and lower risk of developing T2DM than women who did not breastfeed. This paper comprises chapter 7 of this thesis.

1.11. Exposure to GDM *in utero* and neurodevelopment in the offspring

During late gestation, major fetal neural networks affecting behaviour, emotion, structural development of neurons, dendritic arborisation and synaptogenesis develop. During normal gestation, docosahexaenoic acid, a major component of brain cell membranes and myelin, is taken up by the placenta and transferred for fetal neural development⁶¹. In a healthy pregnancy, cord blood DHA is elevated while maternal DHA is decreased. However, in a diabetic pregnancy, maternal-fetal transfer of DHA is altered, as it is significantly lower in cord blood of the babies exposed to *GDM in utero* compared to those who are not ^{62, 63}. This is thought to be due to down regulation of peroxisome proliferator activated receptor (PPAR)-alpha in the placenta in a GDM pregnancy, a nuclear receptor that promotes fatty acid metabolism such as
omega-3 fatty acids⁶⁴. Therefore reduced PPAR- α may contribute to reduced placental transfer of DHA⁶³. Furthermore, a hyperglycaemic environment *in utero* is thought to inhibit dendritic arborisation in the fetal brain ^{65, 66}. There is evidence to suggest that those exposed to GDM *in utero* are at a higher risk of having poor neurodevelopment, impaired brain function and mental disorders later in life than those who were not exposed^{67, 68}

There is emerging, but scant, evidence on the effect of fetal sex on different cognitive areas in the brain in those exposed to GDM *in utero*. Alves *et al.* (2020) found evidence that prepregnancy BMI was associated with total hippocampal volume in boys, but not girls, at age 7-11 years old⁶⁹. There is evidence from one study showing that children exposed to GDM *in utero* had reduced radial thickness in a small region of the hippocampus corresponding to the CA1 subfield. This association between GDM and reduced volume in this region was seen in boys only, but attenuated after controlling for age⁷⁰.

Chapter 2

2. Context of thesis

2.1. The STOP study cohort

The Screening Tests to Predict Poor Outcomes of Pregnancy¹ study began recruitment in March 2015 at the Lyell McEwin Hospital and the Women's and Children's Hospital in South Australia. Majority of participants were recruited at the Lyell McEwin Hospital, which serves a population with one of the lowest socioeconomic status scores in metropolitan Australia⁷¹. It has high rates of chronic disease, such as of obesity, cardiovascular disease and mental health disorders ⁷². Recruitment ended in December 2017, with a total of 1,383 nulliparous pregnant women, their partners and babies recruited. Detailed information was collected at 9-16 weeks' and 34 weeks' gestation and following delivery of the baby. The maternal data includes demography, medical history, fertility history, information on previous pregnancies, diet, exercise, work, smoking, intake of alcohol and recreational drugs, measures of stress, anxiety and depression. Physical measurements including height, weight, waist and hip circumference, BMI and haemodynamic measurements were performed. Women were screened for gestational diabetes at 28 weeks' gestation by a 75g Oral Glucose Tolerance Test (OGTT). Data collected at birth included newborn weight, length, arm circumference, birthweight centile, and complications during the neonatal period and type of feeding at discharge from hospital. A sample of cord blood and/or saliva was collected at birth.

The STOP study complements the Screening Outcomes of Pregnancy Endpoints (SCOPE) study, an international multicentre prospective cohort study aimed to develop screening tests to predict the development of pregnancy complications. The Adelaide arm of the SCOPE cohort was also recruited at the Lyell McEwin Hospital. The data collected reflected the socioeconomic status of the population, showing higher rates of obesity, smoking, poor quality diet and pregnancy complications compared to the national average. This cohort has been

described previously⁷³. Women in Adelaide were followed up 8-10 years after delivery of their SCOPE baby, showing that those with hypertensive disorder of pregnancy (HDP) had higher BMI and blood pressure compared to controls. The children of these pregnancies also showed significantly higher augmentation indices (i.e. a marker of arterial stiffness) compared to those born to controls⁷⁴. Children who were born after a preeclamptic pregnancy had poorer executive functioning, and those born small for gestational age had poorer working memory compared to controls of uncomplicated pregnancies⁷⁵. The SCOPE follow-up showed evidence of impaired cardiovascular function in women who developed pregnancy complications, and poorer metabolic health and neurodevelopmental outcomes in their offspring. However, SCOPE and many other prospective cohort studies did not examine the associations between pregnancy and health parameters at an earlier follow-up. Information collected earlier may be particularly useful because it may identify women and children who could benefit from early intervention and changes in lifestyle and health management.

In this thesis, systematic reviews and meta-analyses on long term consequences of GDM in women and their children were performed. In addition, STOP women and children were followed up at 3 years after the STOP pregnancy.

2.2. Hypothesis and aims

Based on evidence in the literature, we hypothesise that:

- Risk factors for CVD and metabolic disease will be increased within a few years after pregnancy among women who experienced GDM compared to those who did not.
- Women with poor mental health status (i.e. depression, anxiety, high perceived stress) are more likely to develop GDM
- Offspring of GDM pregnancies will demonstrate an adverse anthropometric and hemodynamic profile compared to those who were not exposed to GDM *in utero*

- Offspring of women who experience GDM will demonstrate poorer neurodevelopment and cognitive function compared to those who were born to a non-GDM pregnancy
- Breastfeeding will result in reductions in cardiovascular disease risk factors in both the mother and children exposed to pregnancy complications, including GDM.

The aims of this thesis are:

- 1. To investigate the association between gestational diabetes mellitus and risk of cardiovascular disease in women with previous GDM;
- 2. To determine if there is an association between poor mental health outcomes (i.e. depression, anxiety, perceived stress on the risk of developing GDM;
- 3. To investigate the association between exposure to GDM *in utero* and poor anthropometric and hemodynamic outcomes, as early as age 3 years;
- 4. To determine if exposure to GDM *in utero* influences cognition, behaviour and neurodevelopment in offspring at 3 years of age;
- 5. To ascertain if there is a protective effect of breastfeeding on cardiovascular risk factors in both women and children exposed to pregnancy complications *in utero*

SECTION 2: Systematic review and meta-analyses series

This section encompasses the series of systematic reviews and meta-analyses completed investigating cardiovascular risk factors in women with a history of GDM and children exposed to GDM *in utero*. All reviews have been published, therefore the methodology sections across chapters may be repetitive.

Chapter 3

3. Cardiovascular risk factors in women exposed to gestational diabetes mellitus: A systematic review and meta-analysis

Maleesa M Pathirana, Zohra Lassi, Anna Ali, Margaret Arstall, Claire T Roberts, Prabha

H Andraweera

3.1. Statement of Authorship

Title of Paper	Cardiovascular risk factors in women with a history of GDM: a
	systematic review and meta-analysis
Publication Status	Published – 2021
Publication Details	Pathirana MM, Lassi Z, Ali A, Arstall M, Roberts CT, Andraweera PH.
	Cardiovascular risk factors in women with previous gestational diabetes
	mellitus: A systematic review and meta-analysis. Rev Endocr Metab
	Disord. 2021 Dec;22(4):729-761. doi: 10.1007/s11154-020-09587-0.
	Epub 2020 Oct 27. PMID: 33106997.

Principal Author

Name of Principal Author (Candidate)	Maleesa Pathirana				
Contribution to the Paper	Acquiring data, knowledge, analysis, drafting				
Overall Percentage (%) 70%					
Certification	This paper reports on original research I conducted during the period of my Higher Degree by Research candidature and is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in this thesis. I am the primary author of this paper.				
Signature	Date				

Co-author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. The candidate's stated contribution to the publication is accurate (as detailed above);
- ii. Permission is granted for the candidate to include the publication in the thesis; and
- iii. The sum of all co-author contributions is equal to 100% less the candidate's stated contribution

Name of Co-Author	•	Zohra S Lassi				
Contribution to the	Paper	Conceptualisation, ac	quiring data, analysis, drafting			
Signature			Date 14 Feb 2022			

Name of Co-Author	Anna Ali
Contribution to the Paper	Acquiring data, analysis
Signature	Date 14 Feb 2022

Name of Co-Author	Margaret Arstall
Contribution to the Paper	Conception, knowledge, drafting
_	
Signature	Date 28/02/2022

Name of Co-Author	С	Claire Roberts				
Contribution to the Paper	С	Conception, knowledge, drafting				
Signature		Date 28/02/2022				

Name of Co-Author	Prabha Andraweera				
Contribution to the Paper	Conception, acquiring data, knowledge, drafting				
-					
Signature	Date 28/02/2022				

3.2. Abstract

Aims: This systematic review and meta-analysis aimed to synthesize evidence on conventional cardiovascular disease (CVD) risk factors among women with previous Gestational Diabetes Mellitus (GDM).

Methods: The review protocol is registered with PROSPERO (CRD42019118149). PubMed, CINAHL, SCOPUS, and EMBASE databases were searched. Studies reporting on CVD risk factors in women with previous GDM compared to women without previous GDM were selected.

Results: A total of 139 studies were eligible, of which 93 were included in the meta-analyses. Women with previous GDM have significantly higher systolic blood pressure (2.47mmHg 95% CI 1.74 to 3.40, n=48, 50,118 participants) diastolic blood pressure (1.89mmHg 95% CI 1.32 to 2.46, n=48, 49,495 participants), BMI (1.54 kg/m² 95% CI 1.32 to 2.46, n=78, 255,308 participants), total cholesterol (0.26 SMD 95% CI 0.15 to 0.37, n=48, 38,561 participants), LDL cholesterol (0.19 SMD 95% CI 0.08 to 0.30, n=44, 16,980 participants), triglycerides (0.56 SMD 95% CI 0.42 to 0.70, n=46, 13,175 participants), glucose (0.69 SMD 95% CI 0.56 to 0.81, n=55, 127,900 participants), insulin (0.41 SMD 95% CI 0.23 to 0.59, n=32, 8,881 participants) and significantly lower HDL cholesterol (-0.28 SMD 95% CI -0.39 to -0.16, n=56, 35,882 participants), compared to women without previous GDM. The increased blood pressure, total cholesterol, triglycerides and glucose are seen as early as <1 year postpartum.

Conclusions/interpretation: Women with previous GDM have a higher risk of CVD based on significant increases in conventional risk factors. Some risk factors are seen as early as <1 year postpartum. Women with GDM may benefit from early screening to identify modifiable CVD risk factors.

3.3. Introduction

Cardiovascular disease (CVD) is a major global health burden. There are 17.9 million deaths annually, accounting for 31% of global mortality⁷⁶. CVD is also a leading cause of death in women⁷⁷. Research over the past decade has shown an association between the major pregnancy complications including preeclampsia, intrauterine growth restriction, preterm birth and gestational diabetes mellitus and increased risk of CVD, with each pregnancy complication incurring a 2-fold increased risk of developing CVD later in life⁷⁸.

Gestational diabetes mellitus (GDM) is defined as glucose intolerance, which is first recognised in pregnancy, hence different from both type I and type II diabetes mellitus. GDM is estimated to affect one in seven pregnancies⁷⁹. Women with previous GDM are more likely to be obese, have dyslipidaemia and hypertension postpartum⁷⁸. These women have an approximately seven-fold increased risk of developing type II diabetes mellitus (T2DM) later in life³⁴. The definition of GDM changed in 2013, following a study by the Hyperglycaemia Adverse Pregnancy Outcomes (HAPO) cohort, which showed that adverse perinatal outcomes were seen even in women whose glycaemic levels were below the conventional GDM criteria ⁸⁰. This meant that women, who were not diagnosed with GDM based on previous guidelines, were still at risk for these adverse outcomes. With the implication of the new international guidelines for GDM, the rate of women classified as having GDM is expected to increase.

A recent meta-analysis by Kramer *et al.* (2019) based on more than a million participants, showed that women with GDM have a 2-fold increased risk of developing CVD, irrespective of the disease progression of T2DM³⁵. Thus, impaired glucose tolerance postpartum does not appear to be the only cardiovascular risk factor in women who experience GDM to warrant screening for CVD. A major mechanism that underlies the risk of CVD is metabolic syndrome, which is a collection of vascular derangements including obesity, dyslipidaemia, insulin resistance and hypertension⁸¹. Therefore, early identification of these modifiable risk factors is

pertinent in order to offer targeted interventions/lifestyle modification advice to reduce the subsequent risk for CVD. It has been shown that minimal decreases in risk factors including systolic blood pressure, total cholesterol and adiposity can significantly reduce the risk of ischemic heart disease later in life ^{82, 83}.

There has not been a systematic review and meta-analysis that has comprehensively evaluated all conventional CVD risk factors simultaneously in women with previous GDM, and none that has assessed the timeline of development of risk factors for CVD. This is particularly important as Kramer *et al.* (2019) showed an association between previous GDM and increased risk of CVD events as early as one year postpartum⁸¹.

Therefore, our primary aim was to conduct a systematic review and meta-analysis on the association between GDM and major risk factors for CVD including blood pressure (BP), body mass index (BMI), fasting glucose, insulin and lipids using data from all eligible studies. Our secondary aim was to assess the risk factor profile based on the time elapsed postpartum at which assessments were conducted.

3.4. Methods

3.4.1. Search strategy

All studies describing the association between GDM and risk factors for CVD in women were identified by searching the following electronic databases: PubMed, CINAHL, SCOPUS and EMBASE with an end of search date of 5th November 2018. Subsequently, we updated the literature search to include all relevant articles published until 10th Jan 2020. The search was conducted by ZL. The review protocol is registered in PROSPERO (CRD42019118149).

The review was undertaken with reference to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines⁸⁴. The search strategy was as follows: ("gestational diabetes*" OR "pregnancy induced diabetes" OR "diabetic pregnancy") AND (pregnan* OR mother OR women OR woman) AND ("blood pressure" OR diabetes OR cardiovascular OR metabolic OR hypertension OR BMI or "body mass index" OR obesity OR overweight OR lipids OR lipid OR cholesterol OR triglyceride* OR glucose OR insulin OR vascular).

We included case-control studies, cross-sectional and cohort studies. Previous systematic reviews and meta-analyses on closely related topics, and references from eligible studies were checked for additional studies. All identified studies were assessed for relevance by four authors (MP, PA, AA, ZL). Data were independently extracted by two authors (MP, AA). Discrepancies were resolved by discussion with ZL and PA.

3.4.2. Inclusion criteria

Studies were selected if they compared CVD risk factors in women with a previous history of GDM compared to women with no history of GDM. We included studies that defined GDM based on the International Association of Diabetes and Pregnancy Study

Groups (IADPSG)⁸⁵. However, since the diagnostic criteria have been revised recently, we included studies that used prior recommended diagnostic criteria of GDM including the 1999 World Health Organization definition, and other regional definitions. The definitions of GDM of included studies are detailed in Table 1. Studies that did not include a definition of GDM, those that did not define the case and control groups and those that compared women with GDM to another risk group were excluded.

Data were extracted independently and in duplicate for outcomes, systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), lipid levels (total cholesterol, low density lipoprotein (LDL) high density lipoprotein (HDL), and triglycerides), blood glucose, and fasting insulin. We analysed all studies collectively as an overall analysis, and subsequently stratified into subgroups based on the time of follow up postpartum as: <1 year, 1-5 years, 5-10 years and 10+ years from the index pregnancy. Studies that did not provide details on when the follow up assessment was conducted, were only included in the overall analysis. When the same cohort was assessed at multiple times postpartum, the study with the largest sample size was used in the overall analysis and in the relevant subgroup analyses. When outcome measures of the same cohort at one follow up time point were reported in multiple publications, the one with the largest sample size was used in the overall analysis.

We considered studies published in English, and studies that could be translated to English. We contacted authors via email to obtain missing data and clarifications when required. We included abstracts of cohort studies, but only abstracts which provided data for relevant outcomes were included in the meta-analysis and non-meta-analysis table (Supplementary Table 3.8.1).

3.4.3. Statistical analysis

The following data were collected from each included study: definition of GDM, time of postpartum follow up (number of years since index pregnancy), number of cases (those who experienced GDM) and controls (those who did not experience GDM), child birthweight, and gestational age at delivery of cases and controls, and data on the variables considered in any adjusted analyses/variables used to match cases with controls.

The meta-analysis was performed using RevMan software (Review Manager Version 5.3) based on an inverse variance method. As per protocol, the random-effects model was selected to account for the differences in diagnostic criteria of GDM. For each outcome measure, unadjusted mean and standard deviation (SD) were used in meta-analyses. When mean and SD were not reported, Standard Error of Mean (SEM) was converted to SD using RevMan software. The Standard Mean Difference (SMD) was used when the outcome was measured in different units across studies and Mean Difference (MD) when units were consistent.

Substantial heterogeneity was considered when I² statistic exceeded 50%, and the Chi² P value was less than 0.1. The studies that reported on outcome measures using median and IQR are detailed in Supplementary Table 3.1. To assess publication bias, funnel plots were used for the primary outcomes. The methodological quality was assessed using the Newcastle - Ottawa Quality Assessment Scale (NOS) and graphically illustrated in the supplementary data (Supplementary Figure 1)⁸⁶. Sensitivity analyses were performed to evaluate heterogeneity for outcomes after excluding low quality studies (i.e. scored 1-3 on the NOS) and excluding abstracts that were included in the meta-analyses.

3.5. Results

3.5.1. Search results

The literature search identified 12,248 articles. Four hundred and thirteen (413) articles were eligible for full text review. Of these, 139 were included in the review and 93 were included in the meta-analyses. The reasons for excluding 274 studies are detailed in Figure 3.5.1-1. We contacted 24 authors for additional data; we received a 17% response rate (n=4 studies). Of the included studies, 33 were of high quality (scored 7-8), 79 were of moderate quality (scored 4-6), and 28 were of low quality (scored 1-3) (Supplementary Table 3.8-2). The results of the overall meta-analyses for all CVD risk factors in women with previous GDM compared to those without previous GDM are shown in Table 3.5.7-2.

CVD risk factors among women exposed to GDM

Figure 3.5.1.1 Flow Chart of Study Selection

Author and	Study design	Country	Exposed/	Non-exposed	Birthweight of	Parity cases/	Gestational	Years follow	Outcome	Adjusted
year			Definition of	(n=)	offspring	controls	age of	up	measure	analysis CVD
			GDM (n=)		cases/controls (g)		delivery	postpartum	considered	outcomes
							cases/control			
	I		I	I	< 1 year postpar	tum	1	I	I	I
Albareda	Prospective	Spain	696/50g,	70	NR	446/694	NR	6 weeks and 5	Blood pressure	Independent
2004			1h GCT-			(64.3)		year	BMI,	predictors of
									Serum Lipids	GDM: previous
									Blood Glucose	hyperglycaemi
									Insulin	a, 4 abnormal
										values in
										diagnostic
										OGTT or overt
										diabetes
										during
										pregnancy, 2h
										blood glucose

 Table 3.5.1-1 Included Studies in Systematic Review and Meta-Analysis

										in diagnostic
										OGTT
										11/7mmol/L,
										gestational age
										at diagnosis,
										pre-pregnancy
										BMI.
										Accumulates
										to 49.3% risk
										of diabetes in
										GDM women
Anastasiou	Case-control	Greece	33/ADA	19	NR	Mean (SD)	NR	3-6 months	Serum Lipids	Endothelium
1998						Normal: 1.6				dependant
						±0.6, Non-				dilation not
						obese: 1.4				associated
						±0.6,				with diagnosis
						Obese:1.7				of GDM
						±0.8				
					1					

Berglund	Cohort	Spain	331/ NDDG or	132	NR	Parity>1 (n=):	NR	At birth	BMI	NR
2016			IDF			Normal				
						weight: 55				
						Overweight:				
						24				
						Obese: 28				
						GDM:35				
Bowes 1996	Prospective	UK	7/75g OGTT	5	NR	NR	Mean (SD)	2-3 months	BMI	NR
			2h blood				30.9 + 0.8		Blood glucose	
			glucose						Fasting Plasma	
			> 9 mmol/1.						Insulin	
Bozkurt	Cross-	Italy	62/ 4th	29	NR	NR	NR	3–6	BMI,	NR
2010 -	sectional		International					months	Triglycerides	
abstract (2)			Workshop							
			conference on							
			GDM							

Bozkurt	Cross-	Vienna	54/4th	29	NR	NR	NR	3–6	Blood pressure,	NR
2012 (2)	sectional		International					months	Triglycerides,	
			Workshop						Blood Glucose	
			conference on							
			GDM							
Cellina 1983	Observational	Italy	20/ O'Sullivan	15	NR	NR	NR	5 weeks	Blood pressure	NR
	Cohort		and Mahan							
Chan 1992	Retrospective	UK	15/ 75g OGTT:	15	NR	NR	NR	60 and 120	Serum insulin	NR
			120 minutes					minutes after	Glucose	
			venous plasma					delivery		
			glucose >7.8							
			mmol/l.							
Davis 1999	Cross-	USA	21/medical	39	NR	NR	NR	3-18 months	Blood pressure	MANOVA
	sectional		records						BMI	adjusting for
									Serum Lipids	insulin
									Blood glucose	metabolic
									Fasting Insulin	syndrome
										variables - all
										significant for

										glucose sum,
										triglycerides,
										BMI and
										diastolic BP.
	Prospective	Turkey	36/ Abnormal	33	Cases: 3308±401,	Parity: Cases:	NR	10–15 months	BMI,	NR
Eroglu 2006			3h 100g OGTT		Control:3334	1.3±0.7		after delivery	Serum Lipids	
			at 24–28		±	Control:			Blood glucose,	
			weeks'		373	1.4±0.			Fasting insulin	
			gestation							
Ferrada	Case-control	Chile	58/GDM	58	NR	NR	NR	End of	Blood pressure,	NR
2007			definition not					puerperal	BMI	
			explained					period	Serum Lipids	
Friere 2006	Cross-	Brazil	13/ Carpenter	13	NR	NR	NR	8 weeks	Blood pressure	NR
	sectional		and Coustan.						BMI	
Homko	Cross-	USA	7/ Carpenter	8	NR	NR	NR	3 months	Blood Glucose	NR
2001	sectional		and Coustan					postpartum	Fasting insulin	

Kjos 1991	Prospective	USA	6-12 weeks	6-12 week	NR	Mean (SD):	NR	6-12 weeks,	BMI	Women with
			(n=1340), 1	(n=43) 1 year		GDM 3 (2)/			Serum Lipids	DM had
			year (n=157)/	(n=36)		Control: 3 (2)				significantly
			NDDG (1979)							elevated TG
										and reduced
										HDL than
										those who
										remained non-
										diabetic.
Ko 1999	Case-control	Hong	19/ 75g OGTT	10	NR	NR	NR	6 weeks	Blood pressure	GDM women
		Kong							BMI, SBP, DBP,	had
									Serum Lipids	significantly
									Blood Glucose	higher risk of
									Fasting Plasma	developing
									Insulin (uU/mL)	obesity,
										hypertension,
										hypercholester
										olemia,
										dyslipidaemia,
		1	1				1			

										diabetes, and
										IGT (after
										excluding
										those with DM)
Lee 2008	Cross-	Korea	620/ NDDG	868	NR	NR	NR	Median 2.1	Blood Pressure	Logistic
	sectional		after two step					years	BMI	regression:
			OGTT						Serum Lipids	T2DM risk
									Blood glucose	higher for
										women with
										GDM risk
										compared to
										general
										population
										(stratified by
										race status).
										GDM status
										interpedently
										and
										significantly
1	1		1	1	1	1		1		

										associated
										with diabetes
										development
										(3.7-fold
										increase risk)
Lee 2015	Cross-	Korea	36/75g oral	19	NR	NR	NR	6–8 weeks	Blood Pressure	Multiple
	sectional		glucose					after delivery,	BMI	regression: b-
			tolerance						Serum Lipids	cell function
			test (OGTT)						Blood glucose	significantly
									Fasting Insulin	associated
										with parental
										diabetes
										history and
										waist-hip ratio
										after
										adjustment for
										age, BMI, BP
										and visceral
										adiposity in
		1	1				1			1

										previous GDM
										women
Maghbooli	Case-control	Iran	92/50g	100	NR	1.4 +/- 0.03	NR	6-12 weeks	Serum Lipids	NR
2010			O'Sullivan and			0.38 +/- 0.59			Blood glucose	
			Mahan criteria							
			after two step							
			OGCT							
McLachlan	Case-control	Australia	19/ 75-g	19	NR	NR	NR	3–6 weeks	BMI,	NR
2005			OGTT						Blood glucose	
			(ADIPS)							
Morbiducci	Methodology	Italy	122/ Not	19	NR	NR	NR	4-6 months	BMI	NR
2009 (1)	study		specified							
Noujah	Population	Iran	176/ IADPSG	86	NR	NR	NR	6-12 weeks	Serum Lipids	Univariate
2017	Based Cohort		criteria, or							analysis – pre-
	Study		medical							pregnancy BMI
			records							> 35 and GDM
										history in first
										relatives
1	1	1	1	1			1			

										associated
										with
										dyslipidaemia
										in GDM
										women.
										Multivariate
										analysis
										showed
										significance for
										BMI > 25 only
Noujah	Population	Iran	176/ IADPSG	86	NR	NR	NR	6-12 weeks	Blood pressure	Backward
2018	Based		criteria, or						BMI,	linear
	Prospective		medical						Blood Glucose	regression -
	Cohort Study		records							gravidity > 2,
										pre-pregnancy
										overweight or
										obesity,
										systolic BP,
										and metformin

										or insulin use in pregnancy risk factors for MetS in univariate analysis.
Pacini 2012 (2)	Retrospective	Austria	104/Not specified	35	NR	NR	NR	6 months	BMI (kg/m2), Blood Glucose Fasting Plasma Insulin	NR
Retnakaran 2009*	Observational Study	Canada	137/NDDG (1979)	259	NR	Nulliparous: (GDM 50.4%/CON: 46.7%)	Median (IQR) 29 (28- 31)/30(28-32)	3 months	BMI Blood Glucose	Meta- regression analysis –IR postpartum associated with adiponectin levels in pregnancy

										after
										adjustment for
										various
										covariates
Retnakaran	Observational	Canada	107/NDDG	73	NR	NR	NR	3 months	Blood Pressure	AUC
2010*	Study		(1979)						BMI	associated
									Blood Glucose	with total
										cholesterol,
										LDL, HDL,
										triglycerides in
										adjusted model
										for age
										ethnicity and
										diabetes
										history
Retnakaran	Prospective	Canada	136/NDDG	87	NR	NR	34.4	3 months	Blood Pressure	Multiple linear
2010*	observational		(1979)				(4.3)/		BMI	regression:
	Study						34.0			GDM was
							(4.4)			negative

										predictor of
										change in beta
										cell function
										between 3-12
										months
										postpartum,
										after
										adjustment for
										age, ethnicity,
										familial history
										of diabetes,
										breastfeeding
										and b-cell
										function.
Retnakaran	Observational	Canada	137/NDDG	259	NR	NR	NR	3 months	Blood Pressure	Multiple linear
2011*	Study		(1979)						BMI	regression
									Serum Lipids	performed for
										effect on
										adiponectin in
1			1	1		1	1		1	1

										metabolic
										status in GDM
										women
										adjusted for
										various
										covariates.
Roca-	Case-control	Spain	41/NDDG	21	NR	NR	NR	≤1 year		Changes at 3
Rodrigeuz			(1979)						Blood Pressure	and 12 months
2012*									BMI,	postpartum not
									Serum Lipids	significant after
									Blood glucose	adjusting for
									Fasting plasma	waist
									insulin	circumference,
										weight, insulin
										sensitivity and
										b-cell function
										adjusted for
										baseline
										values.
	1	I	1	1	1	1	1	1	1	1

Roca-	Case-control	Spain	41/NDDG	21	NR	NR	NR	≤1 year	Blood Pressure	Relationship
Rodrigeuz			(1979)						BMI	between AUC
2014*									Serum Lipids	glucose and
									Blood glucose	lipids adjusted
									Fasting plasma	for age,
									insulin	ethnicity and
										familial
										diabetes.
Sartore	Retrospective	Italy	21/Carpenter	21	NR	NR	NR	6 months	Serum Lipids,	Adjusted p-
2011	cohort		and Coustan						Blood Glucose	value reported,
			(1982)							specified for
										age and waist
										circumference
										(based on
										Kruskall Wallis
										test)
Seck 2018	Case-control	Sengal	20/ Not	20	NR	NR	NR	After delivery	Serum Lipids	NA
			specified						Blood Glucose	

Sokup	Prospective	Poland	85/ WHO 1999	40	NR	NR	NR	2-24 months	BMI	NR
2012*	cohort								Serum Lipids	
									Blood glucose	
									Fasting plasma	
									insulin	
Sokup	Prospective	Poland	125/WHO 1999	40	NR	NR	NR	2-24 months	BMI	NR
2012*	cohort								Serum Lipids	
									Blood glucose	
									Fasting plasma	
									insulin	
Shen 2018	Observational	China	1263/WHO	705	NR	NR	NR	3.65	Serum Lipids,	NR
	Study		1999						Blood Glucose	
Shen 2019	Observational	China	1263/WHO	705	NR	NR	NR	3.65	Serum Lipids,	Women with
	Study		1999						Blood Glucose	GDM had
										higher risk of
										postpartum
										metabolic
										syndrome by

					NCEP ATPIII					
					criteria (2.79,					
					95% CI 2.00 to					
					3.89) even with					
					adjustment for					
					various					
					covariates:					
					(central					
					obesity					
					hypertriglycerid					
					emia, high					
					blood					
					pressure,					
					low HDL					
					cholesterol					
					hyperglycaemi					
					а					
Sung 2008	Cohort	South	140/ Third	17	NR	NR	NR	2 months	Blood Pressure	NR
-----------	---------------	---------	---------------	----	----	----	----	------------	----------------	-----------------
		Korea	International						BMI	
			Workshop						Serum Lipids	
			Conference on						Blood glucose	
			GDM							
Todoric	Retrospective	Austria	10/Universal	6	NR	NR	NR	6-12 weeks	Blood Pressure	Adjusted p-
2012			GDM						BMI	values for BMI:
			Screening						Serum Lipids	Fasting plasma
									Fasting plasma	glucose
									insulin	(mmol/L):
										p=0.000; TC
										(mmol/L):
										p=0.9940;
										HDL-C
										(mmol/L)
										p=0.0027,
										LDL-C
										p=0.4022; TG
										p=0.0006
			1							

										Fasting plasma
										glucose: HDL-
										C p=0.0049,
										TG p= <0.0001
Tura 2006	Prospective	Austria	24/4th	23	NR	Mean (SE)	NR	4-6 months	BMI,	NR
(2)	cohort		Workshop			1.26			Blood glucose	
			Conference on			(0.11)/1.48			Fasting plasma	
			GDM			(0.18)			insulin	
Ueland	Population		48/ IADPSG	225	NR	NR	NR	5 years	Blood Pressure	Adiponectin
2018	based	Norway	2010						BMI	significantly
	prospective									lower in
	cohort study									women with
										GDM than
										controls even
										after
										adjustment for
										BMI, age,
										parity, diabetes

										in family and
										C- Reactive
										Protein
Vitoratos	Retrospective	Greece	24/ Carpenter	19	NR	NR	Case: 38.6	6 weeks	BMI	NR
2001			and Coustan				(38-39.5)/			
			(1982)				Control39.4			
							(39-40)			
Wang 2019	Retrospective	China	30/ 75g OGTT	15	3,445.67/	NR	NR	After delivery	BMI	NA
					3,362.85					
Weisnagel	Abstract	Canada	20/ Not	27	NR	NR	NR	2 months	Total cholesterol,	NR
2013			reported						HDL,	
abstract									Triglyceride,	
									Fasting glucose,	
									Fasting Insulin	
									(not specified)	
Winzer	Cross-	Austria	89/4th	19	NR	NR	NR	3 months	BMI	Adiponectin
2004 (1)	sectional		Workshop						Serum Lipids	unadjusted is
			Conference of							negatively

		-								
			Gestational						Blood glucose	associated
			Diabetes						Fasting plasma	with fasting
									insulin	glucose,
										triglycerides
										and positively
										associated
										with HDL
										cholesterol in
										pGDM and
										healthy control
										subjects, this
										correlation
										stays after
										adjustment for
										BFM, WHR
										and SI
Zajdenverg	Cross-	Brazil	25/ADA criteria	20	NR	2.3 (1.22)/	NR	≤ 1 year	Blood Pressure	NR
2014	sectional					2.4 (1.4)			BMI	
	analysis								Serum Lipids	
	1			1	1	1	1	1		1

									Blood glucose	
					1-5 years	postpartum				
Akinci 2008	Cross-	Turkey	46/ 50g-	30	NR	NR	NR	3 years	Blood Pressure	Multiple
	sectional		OGTT, ADA						BMI	regression
									Serum Lipids	analysis:
									Fasting plasma	Plasma PAI-1
									insulin	antigen
										significantly
										correlated with
										BMI fasting
										and post load
										glucose, total
										cholesterol,
										triglyceride,
										HDL and LDL.
Akinci 2011*	Cross-	Turkey	195/ 50g-	71	NR	NR	NR	3 years	Blood Pressure	No association
	sectional		OGTT, ADA						BMI	was seen
									Serum Lipids	between pre-
										pregnancy
1										1

									Blood glucose	obesity (BMI
									Fasting plasma	>30 kg/m2)
									insulin	and
										postpartum
										diabetes
										association
										was
										weak,
										controlled for
										age, parity and
										gestational
										week at the
										diagnosis of
										GDM.
Akini 2011*	Cross-	Turkey	128/ 50g	67	NR	NR	NR	3 years	Serum Lipids	NR
	sectional		OGTT, ADA						Blood glucose	
	case-control								Fasting plasma	
	study								insulin	
				1	1	1				

	Akini 2013*	Prospective	Turkey	141/ 50 g	49	NR	NR	NR	3 years	Serum Lipids	Fasting
				OGTT, ADA						Blood glucose	glucose, post-
										Fasting plasma	load glucose -
										insulin	separate
											models run
											along with age,
											postpartum
											duration,
											smoking, BMI,
											waist
											circumference
											and HOMA
											index.
	Albareda	Prospective	Spain	696/ 50g, 1h	70	NR	NR	NR	6 weeks and 5	Blood Glucose	Independent
	2003 (3)			glucose					year		predictors of
				challenge test							GDM: previous
											hyperglycaemi
											a, 4 abnormal
											values in
J				1	1	1	1	1	1	1	1

diagnostic						
OGTT or overt						
diabetes						
during						
pregnancy, 2h						
blood glucose						
in diagnostic						
OGTT						
11/7mmol/L,						
gestational age						
at diagnosis,						
pre-pregnancy						
BMI.						
Accumulates						
to 49.3% risk						
of diabetes in						
GDM women						
			1	1	1	

Albareda (3)	Prospective	Spain	262/50-g,	66	NR	NR	NR	5 years	Blood Pressure	Logistic
			1h glucose						BMI	regression:
			challenge test						Serum Lipids	Metabolic
									Blood glucose	syndrome
									Fasting plasma	significantly
									insulin	associated
										with all
										independent
										variables age,
										GDM/control
										status, obesity
										were
										independent
										variables.
										Second model
										included
										HOMA-IR,
										insulin
			1	1		1	1			

										secretion and
										resistance
Banerjee	Prospective	UK	8/75g OGTT at	8	NR	NR	NR	2 years	Blood Pressure	BMI directly
2012			28 weeks						BMI	correlated with
			pregnancy -						Serum Lipids	arterial
			WHO defined						Blood glucose	stiffness,
			GDM (Fasting							inversely
			glucose							related to
			>7mmol/L or							maximum
			2h >7.8							endothelium
			mmol/L)							dependant and
										independent
										dilation
Bently	Cohort	USA	96/ Carpenter	96	Normal GT:	Nulliparous:	≥37 weeks	4.1 years	Blood Pressure	NR
Lewis 2015*			Coustan		3455±464,	GDM: 245			BMI	
			criteria		GDM:3571±525	(47.0).			Serum Lipids	
						Multiparous				
						GDM: 273				
						(52.4)				

Bently	Cohort	USA	51/ Carpenter	1810	Same as 2015	Same as 2015	≥37 weeks	4.1 years	Blood Pressure	Risk of
Lewis			Coustan						BMI	essential
2016^^*			criteria							hypertension
										higher in
										women with
										GDM adjusted
										for
										demographic
										(age, race
										gravidity,
										parity) +
										clinical
										features (SBP,
										BMI, GWG,
										BW and GA
										percentile) +
										SES (smoking
										status,
										breastfeeding
1					1	1				1

										as discharge,
										marital status,
										education
										years)
Cocilovo	Cohort	Italy	41/ 3h OGTT	25	NR	NR	NR	1 year	BMI	NR
1990			O'Sullivan							
			criteria.							
Davenport	Prospective	Canada	10/ Canadian	10	NR	NR	NR	2 months	Blood Pressure	NR
201			Diabetes					postpartum	BMI	
			Association						Serum Lipids	
Davis 1999	Cross-	USA	21/medical	39	NR	NR	NR	3-18 months	Blood Pressure	MANOVA 2:
	sectional		records						BMI	Insulin and
									Serum Lipids	metabolic
									Blood glucose	syndrome
									Fasting plasma	variables - all
									insulin	significant
										adjusting for
										glucose sum,
										triglycerides,
	1	1	1	1		1	1	1	1	1

										BMI and
										diastolic BP.
										MACOVA:
										Insulin
										metabolic
										variables,
										significant for
										glucose,
										triglycerides,
										BMI and
										diastolic blood
										pressure
Demir 2016	Cohort study	Turkey	80/Carpenter	40	NR	NR	NR	3-4 years	Blood Pressure	NR
			Coustan						BMI	
			criteria;						Serum Lipids	
									Blood glucose	
Eroglu 2006	Prospective	Turkey	36/ 3h 100g	33	3308±401/	1.3±0.7/	NR	10–15 months	BMI	NR
			OGTT		3334±373	1.4±0.		after delivery	Serum Lipids	

			O'Sullivan and						Blood glucose	
			Mahan						Fasting plasma	
									insulin	
Fakhrzadeh	Retrospective	Iran	O'Sullivan and	20	NR	1.45±0.76/	NR	4 years	Blood Pressure	Logistic
2012			Mahan			1.95 ± 1.05			BMI	regression
									Serum Lipids	Stratified
									Fasting plasma	analysis
									insulin	showed
										association of
										CVD with GDM
										was only seen
										among women
										with BMI > 25,
										but only
										women with
										BMI < 30
										accounted for
										the increased
										risk.
1	1	1	1	1			1	1	1	1

Hakkariaine	Hospital	Finland	489/	385	NR	NR	NR	≤5	BMI	NR
n 2015**	register base		Fasting, 1h, 2h						Blood glucose	
	cohort study		capillary whole						Fasting plasma	
			blood glucose						insulin	
			values 4.8,							
			10.0 and							
			8.7mmol/L							
			respectively							
			before Sept							
			2001.							
			Values							
			changed to							
			11.2 and 9.9							
			mmol/l for 1h							
			and 2h							
			respectively							
			after Sept 2001							

Hakkariaine	Hospital	Finland	489/	385	GDM (1) 3637±571,	Primiparity	Days: GDM	≤5	Blood Pressure	NR
n 2016**	register base		Fasting, 1h, 2h		GDM (2) 3671±531/	(%):	(1) 278±10 (2)		BMI	
	cohort study		capillary whole		Control:	GDM (1) 35.9	278±10/		Serum Lipids	
			blood glucose		3581±571	(2) 37.9/ 54.7	Control279±1		Blood glucose	
			values 4.8,				1			
			10.0 and							
			8.7mmol/L							
			respectively							
			before Sept							
			2001.							
			Values							
			changed to							
			11.2 and 9.9							
			mmol/l for 1h							
			and 2h							
			respectively							
			after Sept 2001							

Hu 1998	Cross-	Sweden	17/ 75g OGTT	20	NR	NR	NR	2	Blood Pressure	NR
	sectional		capillary blood						BMI	
			glucose						Serum Lipids	
			> 9 mmol/UL						Blood glucose	
Kjos 1991	Prospective	USA	6-12 weeks	6-12 week	Not reported	3 (2)/	Not reported	1	BMI	N/A
	cohort		(n=1340), 1	(n=43) 1 year		3 (2)			Serum Lipids,	
			year (n=157)/	(n=36)						
			NDDG (1979)							
Kousta	Retrospective	UK	34/ 75g-	44	NR	Median (IQR)	NR	2 years	BMI	NR
2003			OGTT, WHO			2 (1-3)/			Serum Lipids	
			(1999)			2 (1-3)			Blood glucose	
									Fasting plasma	
									insulin	
Krishnaveni	Prospective	India	35/ Diagnosis	489	NR	Parity 2+	30 weeks	>5 years	Blood Pressure	NR
2007	cohort		made based on			:GDM: NGT: 1			BMI	
			Carpenter and			(9%) IGT: 2			Serum Lipids	
			Coustan			(18%) DM:3			Blood glucose	
			criteria			(23%)			Fasting plasma	
									insulin	

r	-	1		1						
						No GDM:				
						NGT:65 (16%)				
						IGT:14				
						(19%)DM: 4				
						(50%)				
Levka 2015*	Prospective	Norway	50(IADPSG)	234 (IADPSG)	Mean (SD):	Primipara (%)	Median (IQR):	5	Blood Pressure	Adjusted p-
	Cohort		and 31 (WHO)	and 253 (WHO)	IADPSG: 3832	IADPSG:	IADPSG: 40.4		Serum Lipids	value for age,
			/IADPSG and		(530)/ 3588 (502)	44%/60%	(39.0-41.3)/			smoking
			WHO 1999		WHO: 3740 (455)/	WHO:	40.4 (39.3-			frequency and
					3640 (520)	60.0%/48.6	41.1)			BMI
										HDL-C
										(mmol/L)
										p=0.058
										LDL-C
										(mmol/L)
										p=0.405
										TG (mmol/L)
										p=0.261
										Multivariate
	1	1	1	1		1				1

										analysis: Pulse
										Wave Velocity
										at 5 years is
										associated
										with age, GDM
										systolic blood
										pressure.
										TG/HDL-C
										ratio is
										associated
										with BMI, GDM
										status, SBP
Levka 2016*	Prospective	Norway	50(IADPSG)	234 (IADPSG)	NR	IADPSG: 6		5	Blood Pressure	NR
	Cohort		and 31 (WHO)	and 253 (WHO)		(12.0)/26			BMI	
			/IADPSG and			(11.1)				
			WHO 1999			WHO: 6				
						(19.3)/26	NR			
						(10.3)				
			1	1	1	1		1	1	1

Levka 2017*	Prospective	Norway	50(IADPSG)	234 (IADPSG)	NR	IADPSG: 6		5	Blood Pressure	Univariate
	Cohort		and 31 (WHO)	and 253 (WHO)		(12.0)/26			BMI	analysis
			/IADPSG and			(11.1)			Serum Lipids	showed LDL at
			WHO 1999			WHO: 6			Fasting plasma	5 years
						(19.3)/26	NR		insulin	postpartum
						(10.3)				negatively
										associated
										with insulin
										sensitivity and
										resistance, b-
										cell function
Lim 2007	Cohort	Korea	81/ Third	17	NR	NR	NR	1 year	Blood Pressure	
			International						BMI	
			Workshop-						Serum Lipids	
			Conference on						Blood glucose	
			GDM						Fasting plasma	
									insulin	
			1			1				

Madarasz	Retrospective	Hungary	68/WHO 1985	39	NR	NR	NR	3.5	Blood Pressure	Adjusted p-
2009									BMI	value specified
									Serum Lipids	for age and
									Blood glucose	BMI:
									Fasting plasma	Systolic blood
									insulin	pressure p=
										0.40
										Diastolic blood
										pressure
										p=0.017
										HDL-C: p=0.68
										LDL-C: p=0.18
Magenheim	Prospective	Germany	66/Not	26	NR	Cases with	NR	38.2(5.4)	BMI	NR
(2010) -			specified			Normal				
Abstract						Glucose: 2.5				
						± 1.4, Cases				
						with IGT: 2.7				
				1			1		1	1
						± 1.3				

1						Control 2.3 ±				
						1.2,				
Mai 2014	Case-control	China	190/ ADA 2004	80	NR	Mean (SD)	NR	2.5	Blood Pressure	NR
						2.5 (1.8)/2.6			Serum Lipids	
						(1.9)			Blood glucose	
									Fasting plasma	
									insulin	
Noctor	Prospective	Ireland	265/ modified	378	NR	NR	NR	≤3	Blood Pressure	BMI > 30, first
2015**	Cohort study		WHO 1999						BMI	degree relative
	(Based on		(based on						Serum Lipids	with GDM,
	Noctor 2013)		Noctor 2016)						Blood glucose	macrosomic
										baby in
										previous
										pregnancy
										associated
										with GDM
Noctor 2015**	Prospective Cohort study (Based on Noctor 2013)	Ireland	265/ modified WHO 1999 (based on Noctor 2016)	378	NR	2.5 (1.8)/2.6 (1.9)	NR	≤3	Serum Lipids Blood glucose Fasting plasma insulin Blood Pressure BMI Serum Lipids Blood glucose	BMI > 30, degree rela with GDM macrosor baby in previous pregnand associate with GDI

Noctor	Prospective	Ireland	270/WHO 1999	388	NR	NR	NR	≤3	Blood Pressure	Abnormal
2016**	Cohort study								BMI	glucose
	(Based on								Serum Lipids	tolerance at
	Noctor 2013)								Blood glucose	any time 5
										years
										postpartum
										associated
										with fasting
										glucose, 1-h
										glucose values
										on pregnancy
										OGTT, and
										family history
										of diabetes.
										BMI >30 at
										follow-up
										associated
										with abnormal
1		1			1	1			1	

										glucose
										tolerance
Ozuguz	Prospective	Turkey	61/Carpenter	40	NR	Mean (SD)	Mean (SD)	1	Serum Lipids	
2011	case control		and Coustan			2.63 (1.36)/	26.23		Blood glucose	
			(1982)			2.64 (1.13)	(1.73)/26.54		Fasting plasma	
							(1.81)		insulin	
Perrson	Retrospective	Sweden	111/Not	333	NR	Mean (SD)	NR	4	BMI	NR
2015			reported			1.3 (0.8)/1.3				
						(1.3)				
Pimenta	Prospective	Brazil	20/ NDDG	20	NR	Median (IQR):	NR	5	Serum Lipids	NR
2004			(1979)			2 (1)/ 2 (2)			Blood glucose	
									Fasting plasma	
									insulin	
Prikoszovic	Retrospective	Austria	23/Fourth	8	NR	NR	NR	3 to 5	BMI	Adjustment for
h 2011			Workshop						Serum Lipids	Body Fat Mass
			Conference of						Blood glucose	attenuated
			Gestational						Fasting plasma	after adjusting
			Diabetes						insulin	for HDL-C in
										pGDM

compared to										
control										
Adjusted p-	Blood Pressure	1	NR	NR	NR	150	115/Medical	Finland	Multicentre	Rauito 2014
value for age,	BMI						records		Prospective	
outcome	Serum Lipids								cohort	
variable and										
BMI at										
baseline										
Area under	Blood Pressure	3 months	NR	NR	NR	Not reported	107/NDDG	Canada	Observational	Retnakaran
curve	BMI						(1979)		Study	2010*
associated	Blood glucose									
with total										
cholesterol,										
LDL, HDL,										
triglycerides in										
adjusted model										
for age										
ethnicity and										
A a cl tric adj et	Blood Pressure BMI Blood glucose	3 months	NR	NR	NR	Not reported	107/NDDG (1979)	Canada	Observational Study	Retnakaran 2010*

										diabetes
										history
Ruksasakul	Case control	Thailand	56/Carpenter	51	NR	NR	NR	≤3	Blood Pressure	Metabolic
2016			and Coustan						BMI	syndrome
			(2007)						Serum Lipids	associated
									Fasting plasma	significantly
									insulin	with BMI >25
										and age > 35,
										but not
										previous GDM
Ryan 1995	Cross-	Canada	14/ Hospital	14	NR	NR	NR	≤4.9	BMI	NR
	sectional		based						Blood glucose	
			definition							
Shen 2018	Observational	China	1263/WHO	705	NR	NR	NR	3	BMI	pGDM women
	Study		1999						Blood Glucose	have 13.fold
	Study		1999						Blood Glucose	have 13.fold multivariable
	Study		1999						Blood Glucose	have 13.fold multivariable adjusted risk
	Study		1999						Blood Glucose	have 13.fold multivariable adjusted risk for diabetes

Sokup	Prospective	Poland	85/ WHO 1999	40	NR	NR	NR	2-24 months	BMI	Adjusted p-
2012^	cohort								Serum Lipids	values for BMI
									Blood glucose	reported
									Fasting plasma	
									insulin	
Sokup	Prospective	Poland	125/WHO 1999	40	NR	NR	NR	2-24 months	BMI	hsCRP
2012^	cohort								Serum Lipids	associated
									Blood glucose	with BMI,
									Fasting plasma	serum e-
									insulin	selectin
										associated
										with TG,
										Serum TC and
										HDL
										associated
										with LDL
Stuebe	Longitudinal	USA	16/ Carpenter	461	NR	(n=)GDM P1=	NR	3	BMI	Adjusted
2011	cohort		and Coustan			7; P2= 6, P3=			Serum Lipids	analyses
						3/ CON:				performed for

						P1=131;			Blood glucose	age, parity,
						P2=227; P3+=			Fasting plasma	race, parental
						112			insulin	history of
										diabetes and
										maternal BMI
										at 3 years
										postpartum
Verma 2002	Prospective	USA	58/Carpenter	51	NR	P1 (n=) 42/49	NR	4 to 5	Blood Pressure	Risk of
	cohort		and Coustan			P2 (n=) 64/52			BMI	developing
			modification of			>= P3 (n=) 23			Serum Lipids	MetS in
			NDDG			(22)/16 (16)			Blood glucose	subsequent 2
									Fasting plasma	years was 26
									insulin	times higher in
										women with
										GDM with PPO
										(cumulative
										HR: 1.3)
										compared to
										controls
1	1		1	1	1	1	1	1		1

										without PPO
										(cumulative
										HR: 0.05)
Vigneault	Retrospective	Canada	216/Medical	83	NR	Normal	NR	≤4	BMI	NR
2015			Records			Weight <i>(Mean</i>			Blood glucose	
						(SD))			Fasting plasma	
						2.14			insulin	
						(0.89)/2.12				
						(0.13)				
						Overweight				
						1.93				
						(0.11)/2.38				
						(0.17)				
						Obese:				
						3.57				
						(0.25)/2.85				
						(0.51)				

Vilmi-Kerala	Cross-	Finland	120/ Finnish	120	NR	Nulliparous:	NR	≤4	Blood Pressure	Previous GDM
2016	sectional		Current			(GDM 23			BMI	is not an
			Guidelines			(19.2%)/CON:			Serum Lipids	important
			(2013)			23 (19.2%)			Blood glucose	influencing
									Fasting plasma	factor for the
									insulin	primary
										outcome
										measurements
										in study.
Wang 2015	Cross-	China	48/ ADA (2013)	48	NR	NR	NR	1	Blood Pressure	NR
	sectional								BMI	
									Serum Lipids	
Winhofer	Prospective	Austria	62/ ADA	10	NR	NR	NR	5	Blood Pressure	pGDM group
2013* (1)	Longitudinal		(based on Tura						BMI	had increased
	Follow-Up		2008)						Serum Lipids	waist
										circumference
										, HBA1C and
										increased
										fasting glucose

										but was
										attenuated
										after adjusting
										for BMI
										(Values not
										shown)
Winhofer	Longitudinal	Austria	43/ADA (based	10	NR	NR	NR	5	HDL-C (mg/dl),	NR
2013	Follow-Up		on Tura 2008)							
abstract* (1)										
Winhofer	Prospective	Austria	45/ (ADA	18	NR	NR	NR	5	BMI	NR
2014* (1)	longitudinal		based on Tura						Blood Glucose	
	follow-up		2008)							
Winzer	Cross	Austria	89/4th	19	NR	NR	NR	1	BMI	Fasting
2004 (1)	sectional		Workshop						Serum Lipids	glucose
			Conference of						Blood glucose	adjusted
			Gestational						Fasting plasma	Mean:
			Diabetes						insulin	89.00/82.33 -
										adjusted for
										waist

										circumference
										Mean:
										89.93/81.36 -
										adjusted for
										body fat mass
Xiang 2012	Abstract	USA	76/Based on	88	NR	NR	NR	≤5	BMI	Plasma
	Longitudinal		medical							glucose and
			records							insulin not
			(Watanabe							significantly
			2007)							different
										between GDM
										and controls
										for adjusted
										values
										(Adjusted age,
										age at first
										pregnancy,
										baseline
										percentage
	1	1	1	1	1	1	1	1		1

									body fat,
									baseline
									calorie intake
									and physical
									activity,
									additional
									pregnancy).
Case control	USA	19/ACOG	20	NR	Nulliparous	NR	1.9	Blood glucose	NR
					(n=):			Fasting plasma	
					2 (10.5%)/			insulin	
					4(20%)				
					Multiparous(n				
					=):				
					17 (89.5%) 16				
					(80.0%)				
Observational	USA	93/ Based on	142	NR	Mean (SD)	NR	>10	BMI	NR
longitudinal		medical			3.1(1.3)/2.9			Fasting plasma	
		records			(1.2)			glucose	
	Case control Observational longitudinal	Case control USA Observational USA longitudinal	Case control USA 19/ACOG Case control USA 19/ACOG Observational USA 93/ Based on longitudinal medical records records	Case control USA 19/ACOG 20 Observational USA 93/ Based on 142 Iongitudinal medical records 142	Case control USA 19/ACOG 20 NR Observational USA 93/ Based on 142 NR Iongitudinal medical records I Image: Control of the second s	Case control USA 19/ACOG 20 NR Nulliparous Case control USA 19/ACOG 20 NR Nulliparous (n=): 2 (10.5%)/ 2 (10.5%)/ 4(20%) Multiparous(n =): 17 (89.5%) 16 (80.0%) Wean (SD) Iongitudinal medical 3.1(1.3)/2.9 (1.2) records (1.2)	Case control USA 19/ACOG 20 NR Nulliparous NR (n=): 2 (10.5%)/ 2 (10.5%)/ 4(20%) Multiparous(n = <td>Case control USA 19/ACOG 20 NR Nulliparous (n=): 2 (10.5%)/ 4(20%) Multiparous(n =): 17 (89.5%) 16 (80.0%) NR 1.9 Observational longitudinal USA 93/ Based on medical records 142 NR Mean (SD) 3.1(1.3)/2.9 (1.2) NR >10</td> <td>Case control USA 19/ACOG 20 NR Nulliparous (r=): 2 (10.5%)/ 4(20%) NR 1.9 Blood glucose Observational USA 19/ACOG 20 NR NR 1.9 Fasting plasma insulin USA 19/ACOG 20 NR NR 1.9 Blood glucose (r=): 2 (10.5%)/ 4(20%) 2(10.5%)/ Multiparous(n =): 17 (89.5%) 16 (80.0%) NR >10 EMI Observational USA 93/ Based on nedical records 142 NR Mean (SD) (1.2) NR >10 EMI</td>	Case control USA 19/ACOG 20 NR Nulliparous (n=): 2 (10.5%)/ 4(20%) Multiparous(n =): 17 (89.5%) 16 (80.0%) NR 1.9 Observational longitudinal USA 93/ Based on medical records 142 NR Mean (SD) 3.1(1.3)/2.9 (1.2) NR >10	Case control USA 19/ACOG 20 NR Nulliparous (r=): 2 (10.5%)/ 4(20%) NR 1.9 Blood glucose Observational USA 19/ACOG 20 NR NR 1.9 Fasting plasma insulin USA 19/ACOG 20 NR NR 1.9 Blood glucose (r=): 2 (10.5%)/ 4(20%) 2(10.5%)/ Multiparous(n =): 17 (89.5%) 16 (80.0%) NR >10 EMI Observational USA 93/ Based on nedical records 142 NR Mean (SD) (1.2) NR >10 EMI

									Fasting plasma	
									insulin	
					5-10 years postpa	rtum				
				1						
Ajala 2011	Cohort	UK	n=95/ GDM	Not specified	NR	NR	NR	10	Blood Pressure	NR
(abstract)			diagnosis not	(total n=95)					BMI	
			specified						Serum Lipids	
				-						
Ajala 2015	Cohort	Canada	90/ Canadian	59	NR	NR	NR	4 to 10 year	BMI	After
			Diabetes						Serum Lipids	controlling for
			Association						Blood glucose	adiposity, BP,
										lipids, CRP
										glycaemic
										status did not
										contribute to
										vascular
										function.
Benjamin	Case-control	India	47/O'Sullivan	47	NR	Mean:	NR	9 years	BMI	NR
1993			and Mahan			GDM, 3.2 Non				
						GDM: 3.4				

Bian 2000	Retrospective	China	45/>2	39	NR	NR	NR	5-10 years	Rate of T2DM	T2DM is higher
			abnormal							in GDM
			FPG > 5.8							women with
			mmol/L, at 1							antepartum
			hour > 10.6							BMI < 25kgm/2
			mmol/L, at 2							and >25kg/m2
			hours > 9.2							
			mmol/L, at 3							
			hours > 8. 1							
			mmol/L.							
Bo 2007	Cohort	Italy	82/ 50g GCT	113	NR	Mean:	NR	6.5year	Blood Pressure	Multiple
			Carpenter and			Control: 1.6			BMI	regression
			Coustan			GDM: 1.9			Serum Lipids	analysis
									Blood glucose	showed e-
									Fasting plasma	selectin, ICAM-
									insulin	1, IL-6 and
										hsCRP
										associated
										with Mean IMT
	1	1	1		1	1	1		1	1

										after
										adjustment for
										BMI, waist
										circumference,
										blood pressure
										and blood
										glucose
Caliskan	Case-control	Turkey	62/ Medical	33	NR	NR	NR	6 years	Blood Pressure	Carotid intima
2014			history						BMI	medial
									Serum Lipids	thickness
									Blood glucose	(cIMT), total
									Fasting plasma	cholesterol,
									insulin	BMI, HBA1C,
										and HOMA-IR
										independently
										correlated with
										epicardial fat
										thickness
	1		1	1		1	1			1
Da 2016	Retrospective	Poland	199/ Based on	50	NR	NR	NR	5-12 years	BMI	NR
-------------	---------------	--------	-----------------	-----	----	-----------	----	------------	----------------	---------------
(Abstract)			OGTT values						Serum Lipids	
			(not specified						Blood glucose	
			further)							
Donhorst		UK	56/	23	NR	Recurrent	NR	6-12 years	BMI	NR
1990	Cohort		modification of			GDM:1-4.				
			O'Sullivan and			Known				
			Mahan			diabetics				
						DM:2-8,				
						IGT:2-6,				
						NGT:1-5				
Ferraz 2007	Cohort	Brazil	70/ 75-g	108	NR	NR	NR	6.2 years	Blood Pressure	Average of
			OGTT, (WHO)						BMI	CRP levels
									Serum Lipids	were
									Blood glucose	statistically
									Fasting plasma	high in
									insulin	subjects with
										previous GDM
										and abdominal

										obesity and
										elevated
										fasting
										glucose.
Hakkariaine	Hospital	Finland	489/ Fasting,	385	NR	NR	NR	≤5	BMI	NR
n 2015**	register base		1h, 2h capillary						Blood glucose	
	cohort study		whole blood						Fasting plasma	
			glucose values						insulin	
			4.8, 10.0 and							
			8.7mmol/L							
			respectively							
			before Sept							
			2001.							
			Values							
			changed to							
			11.2 and 9.9							
			mmol/l for 1h							
			and 2h							

			respectively							
			after Sept 2001							
Hakkariaine	Hospital	Finland	489/ Fasting,	385	Mean (SD)	Primiparity	Days: GDM	≤5	Blood Pressure	NR
n 2016**	register base		1h, 2h capillary		GDM (1) 3637±571,	(%): GDM (1)	(1) 278±10 (2)		BMI	
	cohort study		whole blood		GDM (2) 3671±531/	35.9 (2) 37.9/	278±10/		Serum Lipids	
			glucose values		3581±571	54.7	279±11		Blood glucose	
			4.8, 10.0 and							
			8.7mmol/L							
			respectively							
			before Sept							
			2001.							
			Values							
			changed to							
			11.2 and 9.9							
			mmol/l for 1h							
			and 2h							
			respectively							
			after Sept 2001							

Hunger	Cohort	Germany	132/medical	50	NR	NR	NR	6 years	Blood Pressure	NR
Dathe 2006			history						BMI	
									Blood glucose	
Lauenborg	Long term	Denmark	481/Based on	1,000	NR	NR	Median (IQR)	9.8	Blood Pressure	NR
2005	follow-up		3h 75g OGTT -				227 (197-		BMI	
			Damm et al.				249)/ 227		Fasting plasma	
			(1993)				(197-249)		insulin	
Meier	Case-	Germany	15/ OGTT	20	Mean (SD)	NR	26±6	4.1±6.5	Blood pressure	Multivariate
(2005).	control/experi		based on		3,615±661/		(mean±SD).		Blood glucose	analysis
	mental		fasting glucose		3,165±289					adjusted for
										age and BMI
Modela	Retrospective	Poland	199/OGTT	50	NR	NR	Not reported	7	Blood Pressure	NR
2016*	cohort study								BMI	
									Serum Lipids	
									Blood glucose	
									Fasting plasma	
									insulin	

Osei 1998	Case-control	USA	15/ O'Sullivan	15	Not reported	Parity similar	NR	7	BMI	NR
			criteria adapted			between			Blood glucose	
			by NDDG			groups			Fasting plasma	
									insulin	
Pimenta	Prospective	Brazil	20/NDDG	20	Not reported	Mean (SD):	NR	5-8	BMI	NR
2004			(1979)			2(1)/2(2)			Serum Lipids	
									Blood glucose	
									Fasting plasma	
									insulin	
Ryan 2013	Case-control	USA	20/History	26	NR	NR	NR	≤5	Blood Pressure	NR
			confirmed by						BMI	
			health care						Serum Lipids	
			provider						Blood glucose	
									Fasting plasma	
									insulin	
Seghiri	Retrospective	Italy	43/Carptenter	22	NR	Mean (SD): 2	NR	7.5	BMI	NR
2007			and Coustan			(1)/ 1.6 (0.8)				
			(1992)							

Sriharan	Retrospective	Brazil	46/1999 WHO	50	NR	Mean (SD):	NR	6.8	Blood Pressure	Multiple logistic
2002						1.8 (2.2)/2.2			BMI	analysis
						(1.8)			Serum Lipids	adjusted for
									Blood glucose	age, time from
										previous
										pregnancy,
										BMI, and
										family history
										of diabetes
Tam 2007*	Prospective	Hong	67/1999 WHO	136	Mean (SD): 3230 ±		Mean (SD):	8	Blood Pressure	Triglyceride in
	cohort	Kong			485/3272 ± 429	Nulliparous	39.3 ± 2.1		BMI	linear
						(n=) 40/74	/39.5 ± 1.6		Serum Lipids	regression
										model adjusted
										for age, race,
										school years,
										metabolic
										syndrome

Tam 2012**	Prospective	Hong	94/WHO 1999	44	Mean (SD): 3230	NR	Mean (SD):	8	BMI	NR
	cohort	Kong			(485)/ 3272(429)		39.3 (2.1)		Serum Lipids	
							/39.5 (1.6)			
Tam 2013**	Prospective	Hong	94/WHO 1999	45	Mean (SD): 3230	NR	Mean (SD):	8	BMI Serum	Relative and
	cohort	Kong			(485)/ 3272(429)		39.3 (2.1)		Lipids	absolute risk
							/39.5 (1.6)			for subgroups
										of various
										glycaemic
										indices mid-
										gestation -
										adjusted for
										various factors
Tehrani	Nested	Iran	29/WHO 1999	n=58 (Group 1)	NR	Mean (SD)	NR	9	Blood Pressure	Relative and
2012	longitudinal			n=570 (Group		30.0 (1.7)/			BMI	absolute risk
	case control			2)		Control 1 2.8			Serum Lipids	for subgroups
	study					(1.5) Control 2			Blood glucose	of various
						4.6 (2.3)				glycaemic
										indices mid-

										gestation -
										adjusted for
										various factors
Tobias 2017	Prospective	USA	5292/Self-	84,187	NR	Mean (SD)	NR	6 to 8 ^	BMI	Adjusted
	cohort		reported GDM			1.9 (1.2)/ 1.8				analysis for
	analysis		(validated			(1.1)				baseline
			method)							parameters
Tutino 2014	Nested Case	Hong	124/ Self-	372	NR	NR	NR	8	Blood Glucose	Multivariable
	Control -	Kong	reported GDM							models for
	Abstract									CVD risk:
										Adjusted for
										age, years
										since
										pregnancy,
										menopausal
										status,
										hormone use,
										white
		1	1						1	

										race/ethnicity,
										family history
										of MI, or
										stroke, history
										of pregnancy
										hypertensive
										disorders, BMI
										and parity
Verma 2002	Prospective	USA	58/Carpenter	51	NR	P1 (n=) 42/49	NR	6, 7, 8, 9	Blood Pressure	NR
	cohort		and Coustan			P2 (n=) 64/52			BMI	
			modification of			>= P3 (n=) 23			Serum Lipids	
			NDDG			(22)/16 (16)			Blood glucose	
									Fasting plasma	
									insulin	
Wender-	Prospective	Poland	153/Hospital	155	NR	NR	NR	6	Blood Pressure	NR
Ozegowska	cohort		records						BMI	
2007									Serum Lipids	
					>10 years postpa	artum				
					· · · · · · · · · · · · · · · · · · ·	·				

Behboudi- Gandevani	Long term longitudinal	Iran	801/WHO (1998)	2594	NR	NR	NR	13 years	Serum Lipids	NA
Carr 2006	Cross-	US	662/ Self-	332	NR	NR	NR	29.9 vears	Blood Pressure	CVD and
0011 2000	sectional	00	reported	002				20.0 youro	BMI	coronary heart
									Serum Lipids	disease
									Blood glucose	specifically
									Fasting plasma	higher in
									insulin	women with
										prior GDM
										compared to
										no GDM.
										Adjusted for
										age,
										menopausal
										status and
										proband
										clustering.
					1		1			1

Charwat-	Cross-	Vienna	55/ WHO	32	NR	NR	Mean (SD)	16 years	Blood Pressure	NR
Resl 2017	sectional		(1998)				16.2 ± 5.2/		BMI	
							14.2 ± 4.8		Serum Lipids	
	Prospective	Austria	120/ 75g	40	NR	NR	NR	10 years	Serum Lipids	Fasting
Gobl 2011			OGTT, Fourth						Blood Glucose	glucose,
(1)			International							fasting insulin:
			Workshop							Various
			conference on							models
			GDM							adjusted for
										age, age at
										first
										pregnancy,
										baseline
										percentage
										body fat
										baseline
										calorie intake
										and physical
			1						1	

ſ											activity, %
											body fat and
											additional
											pregnancy
											during follow-
											up
	Gobl 2014	Cross-	Austria	108/75g	41	NR	NR	NR	10 years	BMI	2-hour OGTT
	(1)	sectional		OGTT, Fourth							>140mg/dL,
				International							age >35 and
				Workshop							HDL
				conference on							cholesterol
				GDM							<50mg/dL
											were best
											predictors of
											metabolic
											syndrome up
											to 10 years
											follow-up
				1	1	1	1				1

Gobl 2014	Cross-	Austria	77/75g OGTT,	41	NR	NR	NR	10 years	BMI	Moderate
(1)	sectional,		Fourth						Fasting plasma	associations of
	prospective		International						insulin	HbA1c with
			Workshop							measurements
			conference on							of
			GDM							plasma
										glucose during
										the OGTT.
Gunderson	Longitudinal	Canada	119/ Self-	364	NR	Mean (SD):	NR	20	Blood Pressure	Adjusted and
2014^	observational		reported GDM:			2.3 (0.95)/ 2.2			BMI	unadjusted
	study		confirmed by			(1.1)			Serum Lipids	mean (95% CI)
			OGTT results						Blood glucose	for cIMT by
			from							GDM history
			prenatal							stratified by
			records to							women with
			match							diabetes or
			definition by							metabolic
			Diabetes Care							syndrome. No
			1997							significant

										differences
										seen in
										adjusted
										models.
Hakkariaine	Hospital	Finland	489/ abnormal	385	NR	NR	NR	≤5	BMI	NR
n 2015** ⁸⁷	register base		fasting, 1h, 2h						Blood glucose	
	cohort study		capillary whole						Fasting plasma	
			blood glucose						insulin	
			values 4,8,							
			10.0 and							
			8.7mmol/l							
			respectively							
			(Until Sept							
			2001)							
			Values							
			changed to							
			11.2 and							
			9.9mmol/l for							
			1h and 2h							

			respectively							
			after Sept 2001							
Hakkariaine	Hospital	Finland	489/ Fasting,	385	GDM (1) 3637±571,	Primiparity	Days: GDM	≤5	Blood Pressure	NR
n 2016** ⁸⁸	register base		1h, 2h capillary		GDM (2) 3671±531/	(%): GDM (1)	(1) 278±10 (2)		BMI	
	cohort study		whole blood		3581±571	35.9 (2) 37.9/	278±10/		Serum Lipids	
			glucose values			54.7	279±11		Blood glucose	
			4.8, 10.0 and							
			8.7mmol/L							
			respectively							
			before Sept							
			2001.							
			Values							
			changed to							
			11.2 and 9.9							
			mmol/l for 1h							
			and 2h							
			respectively							
			after Sept							
			20019.9mmol/l							

			for 1h and 2h							
			after Sept 2001							
Heida 2015	Prospective	Dutch	1089/ Self-	15,560	NR	No of	NR	Mean 29 years	Blood Pressure	GDM
89	cohort study		reported			pregnancy: 1:		since index	Serum Lipids	associated
			questionnaire			Not exposed:		pregnancy		with increased
						1781 (11.5)				OR of having
						HDP: 572				CVD, IHD,
						(9.3)GDM:				stroke or T2D.
						106 (9.7). 2:				Model III
						5977 (38.4)				adjusted for
						2226 (36.2)				cohort, HDP,
						360 (33.1),				age, BMI,
						3/>:7802				current
						(50.1) 3359				smoking and
						(54.5) 623				alcohol
						(57.2)				consumption at
										study
										enrolment,

										total
										cholesterol/HD
										L ratio,
										prevalent
										hypertension,
										and T2D (for
										stroke, IHD
										and CVD
										outcomes
										only).
King 2009	Case-control	USA	20/Self-report	20	NR	GDM: 2.45	NR	15 years	BMI	Adjusted
			of having GDM			(0.9) No		(based on	Blood Pressure	results shown
			and OGTT			GDM:		child's index	Serum Lipids	for age, current
						2.25(0.6)		age)		use of
										estrogen, BMI
										before first
										child, current
										BMI

Lee 2007)	Retrospective	Australia	5,740/	783	NR	GDM: 2 (2–3)	GDM 38.4	15 years	BMI, fasting	NR
			75g OGTT and			Control :3 (2–	(2.7)		glucose	
			50g			3),	Control39.2			
			OGTT. FPG:				(3.4)			
			5.5 mmol/l							
			and/or a 2h							
			plasma							
			glucose> 8.0							
			mmol/							
Linne 2002	Retrospective	Stockhol	28/ 2- hour oral	52	NR	NR	NR	15 years	BMI	NR
		m	glucose							
			tolerance test							
			(OGTT) with 75							
			g glucose, 2h							
			value over							
			>9.0mmol/L							
Minoee	Prospective	Iran	476/ WHO	1982	NR	Mean (SD):	NR	15	Blood Pressure	T2DM
2017^	population		(1998)			2.7 ±			BMI	progression is
	follow-up								Blood glucose	2.15-fold

						1.45/2.25 ±				higher in GDM
						1.24				women than
										controls after
										adjustment for
										age, BMI and
										family history
										of diabetes.
Minoee	Prospective	Iran	476/ WHO	1982	NR	Mean (SD):	NR	15	Serum Lipids	NR
2017^	population		(1998)			2.7 ±				
	follow-up					1.45/2.25 ±				
						1.24				
Pirkola 2010	Population	Finland	124/ 2h 75g	5342	NR	NR	NR	20	BMI	GDM causes
	based study		OGTT one							increased risk
			abnormal value							of diabetes in
			-							normal weight
			Fasting >							and overweight
			5.5mmol/l, 1h							women, and
										hypertension in

			>11.0mmol/ 2h							women who
			> 8mmol/l							are overweight
										pre-pregnancy.
										In women with
										normal OGTT
										during
										pregnancy,
										hypertension
										and diabetes
										risk didn't differ
										between GDM
										women
										compared to
										women with no
										risk factors for
										GDM
Tam 2012^	Prospective	Hong	45/ WHO 1999	94	NR	P1 (n=) 10/9,	NR	15	Total cholesterol	Insulin
	follow-up	Kong	(Tam 2007)			>=P2			(mmol/L)	sensitivity
						(n=)84/36				indices are

independent						
predictors of						
diabetes and						
metabolic						
syndrome at						
15 years						
postpartum						
even with						
adjustment for						
b-cell function						
or abnormal						
glucose						
tolerance						
status at 8						
years						
postpartum.						
History of GDM						
at index						
pregnancy						
	1	1	1	1		

										increased the
										odds of
										progression to
										abnormal
										glucose
										tolerance,
										T2DM and
										hypertension.
Tam 2013^^	Prospective	Hong	67/WHO 1999	136	Baseline:	NR	Mean (SD):	15	BMI	All glycaemic
	follow-up	Kong			Mean (SD): 3230		39.3 (2.1)		Serum Lipids	indices were
					(485)/ 3272(429)		/39.5 (1.6)			predicative of
										abnormal
										glucose
										tolerance,
										diabetes
										mellitus and
										hypertension,
										but 2-h plasma
										glucose and
1		1	1	1	1	1	1			

										glucose
										challenge
										tolerance are
										predictive of
										hypertension
										at 8 and 15
										years
										postpartum.
										Metabolic
										syndrome at
										15 years
										postpartum
										risk predicted
										by fasting
										plasma
										glucose
Verma 2002	Longitudinal	USA	58/Carpenter	51	NR	P1 (n=) 42/49	NR	11	Blood Pressure	Fasting plasma
	follow-up		and Coustan			P2 (n=) 64/52			BMI	glucose risk
	study								Serum Lipids	adjusted for
			1		1					

			modification of			>= P3 (n=) 23			Blood glucose	maternal age,
			NDDG			(22)/16 (16)			Fasting plasma	BMI at
									insulin	booking, AGT
										at 8 years,
										familial history
										of DM,
										gestational
										hypertension,
										preeclampsia
										during index
										pregnancy and
										subsequent
										term
										pregnancy (n=)
Wang 2012	Longitudinal	USA	1142/ICD-9	18,856	NR	Parity > 1:	NR	13-50	Blood Pressure	Metabolic
	database					GDM			BMI	syndrome
						53.5%/Non				increased in
						GDM: 36.1%				women with
			1				1			

										GDM with
										increasing age.
Winhofer	Prospective	Austria	35/4th	14	NR	NR	NR	10	Blood Pressure	NR
0014 (1)	f-11		Markakan						DMI	
2014 (1)	follow-up		Workshop						BMI	
			Conference of						Serum Lipids	
			Gestational						Blood glucose	
			Diabetes							
			(Based on							
			Winzer 2004)							
Xiang 2013	Observational	USA	93/ Based on	142	NR	Mean (SD)	NR	>10	BMI	NR
	longitudinal		medical			3.1(1.3)/2.9			Blood glucose	
			records			(1.2)			Fasting plasma	
									insulin	
					I No specified postpartur	n follow-up				
Couch 1998	Cross-	Ohio	20/ O'Sullivan	20	NR	NR	NR	NR	Serum Lipids	NR
	sectional		and NDDG							
			criteria used							

	Gadgil 2017	Cross-	USA	13/ Self-	13	NR	GDM: 2.2	NR	NR	Blood Pressure	Adjustment for
		sectional		reported			(0.6), no			BMI	age and weight
							GDM:2.1 (0.8)			Serum Lipids	at 40. Women
											with GDM
											history have
											3.3-fold
											increased risk
											of having
											diabetes
	Gunderson	Longitudinal	Canada	154/ Self-	1,655	NR	NR	NR	NR	Blood Pressure	Pre-pregnancy
	2010	observational		reported						BMI	cardiometaboli
				confirmed with						Serum Lipids	c risk factors
				OGTT						Blood glucose	adjusted for
										Fasting plasma	familial
										insulin	diabetes parity
											at conception,
											births during
											interval, time to
											first
J				1	1	1	1	1	1		

										conception,
										smoking age at
										preconception
										examination
										and race
Han 2018	Retrospective	South	4,970/	97,930	NR	NR	NR	NR	BMI	NA
	cohort study	Korea	diagnosed						Blood Glucose	
			based on ICD-							
			10 codes							
Shostrom	Population	USA	555/Self-	7.572	NR	NR	NR	NR	BMI	GDM is
2017	base study		reported	, -						associated
										with higher risk
										of CVD
										compared to
										women without
										CVD as a
										reference for
										all models
										(Adjusted for
1	1		1			1	1		1	

										age,
										race/ethnicity,
										education,
										family income-
										poverty ratio,
										smoking/drinki
										ng, physical
										activity, total
										energy, BMI).
Simmons	Follow-up	New	52/ Self-	2582	NR	NR	NR	NR	Blood Pressure	NR
2017	study	Zealand	reported						BMI	
									Serum Lipids	
									Blood glucose	
Thomann	Case control	Switzerla	18/ ADA (2004)	19	NR	NR	NR	NR	Blood Pressure	Difference
2008 ⁹⁰		nd							BMI	shown
									Serum Lipids	between
									Blood glucose	groups in fat
									Fasting plasma	distribution,
									insulin	estimates of
		1	1	1		1	1	1		1

					insulin
					resistance,
					serum levels of
					lipids and
					parameters of
					low-grade
					chronic
					inflammation
					after adjusting
					for age and
					percent body
					fat.

Abbreviations = OGTT = oral glucose tolerance test, GCT = glucose challenge test, OGCT = oral glucose tolerance test. FPG: Fasting plasma glucose. BMI (body mass index), SBP (Systolic blood pressure), DBP (diastolic blood pressure), TC (total cholesterol), HDL (high density lipoprotein-cholesterol), LDL (low density lipoprotein-cholesterol), TG (triglycerides)

ADA: American Diabetes Association, ADIPS: Australian Diabetes in Pregnancy Society, IADPSG – International Association of Diabetes in Pregnancy Society

(+)BMI kg/m2, SBP/DBP mmHg units , all other units specified each study

Lipids collectively refers to study including total cholesterol, HDL, LDL and triglycerides.

a - abstract

* - papers of same author are the same study

** - paper looked at two different time points

(1) Studies with this subscript part of the same cohort but Winzer 2004 was used in overall meta-analysis, Winzer <1 year postpartum, Winhofer +10 years

(2) Studies with this subscript part of the same cohort but Bozkurt 2012 used in overall meta-analysis and <1-year postpartum subgroup

Table 3.5.1-2 Findings of meta-analyses

Outcome	Odds Ratio	95% CI	n= (studies)	n= (GDM/control)	n= (total)	Heterogeneity
	MD/SMD					
Systolic Blood	MD 2.47	1.74, 3.40	48	7,332/42,786	50,118	l ² = 79%
Pressure (mmHg)						P< 0.00001
Diastolic Blood	MD 1.89	1.32, 2.46	48	7,025/42,470	49,495	l ² = 83%
Pressure (mmHg)						P< 0.00001
BMI (kg/m²)	MD 1.54	1.17, 1.91	78	26,689/ 228,619	255,308	l ² = 97%
						P< 0.00001
Total cholesterol	SMD 0.26	0.15, 0.37	48	6,817/31,744	38,561	l ² = 89%
(SMD)						P< 0.00001

Low density	SMD 0.19	0.08, 0.30	44	5,846/11,134	16,980	l ² = 83%
Lipoprotein (SMD)						P< 0.00001
High density	SMD	-0.39, -0.16	56	7,203/28,679	35,882	l ² = 89%
lipoprotein (SMD)	-0.28					P< 0.00001
Triglycerides	SMD 0.56	0.42, 0.70	45	4 110/9 065	13 175	12 = 88%
(SMD)						P< 0.00001
Glucose	SMD 0.69	0.56, 0.81	55	17,180/110,720	127,900	l ² = 94%
(SMD)						P< 0.00001
Insulin	SMD 0.41	0.23, 0.59	32	2,994/5,887	8,881	l ² = 90%
(SMD)						P< 0.00001

Abbreviations: MD – mean difference, 95% CI – 95% Confidence Interval Bold MD (95% CI) highlights significant result

3.5.2. Blood Pressure

Systolic blood pressure (SBP) and diastolic blood pressure (DBP) data were available from 60 studies, of which 48 were included in the overall meta-analysis. Quantitative summary measures showed that women with previous GDM have 2.47 mmHg (95% CI 1.74 to 3.40) higher mean SBP compared to controls (n (total)=50,118; heterogeneity: Chi² P<0.00001, I²=80%) (Table 3.5.1-1) (Supplementary Figure 3.8 1)⁸⁸⁻¹³⁰. Of the 12 studies with data not included in the meta-analysis^{126, 131-141}, eight reported higher SBP in women with previous GDM compared to the control group^{126, 131-134, 137, 138, 141}, with five studies showing statistical significance^{126, 131, 134, 138, 140} (Supplementary Table 3.8.1). Sensitivity analysis after excluding the low-quality studies showed a marginal increase in heterogeneity (Chi² P< 0.00001, I²=82%). (Supplementary Table 3.8.3)

Women with previous GDM have 1.89 mmHg (95% CI 1.32 to 2.46) higher DBP compared to women without previous GDM (n=49,495, heterogeneity: Chi² P<0.00001, I²=83%) (Table 3.5.1-1) (Supplementary Figure 3.8.2)⁸⁸⁻¹³⁰. Of the 12 studies not included in the meta-analysis^{77, 126, 131-141}, six reported higher DBP in women with previous GDM compared to the control group^{126, 131, 132, 134, 137}, with three studies showing statistical significance ^{131, 134, 135}. Sensitivity analysis after excluding low quality studies showed a marginal increase in heterogeneity (Chi² P<0.00001, I²=85%). (Supplementary Table 3.8.4)

3.5.3. Body Mass Index

 ^{113, 114, 116-118, 120, 121, 123-127, 129, 130, 132, 142-178} (Table 3.5.1-1) (Supplementary Figure 3.8.3). Of the 24 studies not included in the meta-analysis^{112, 126, 131, 133-135, 137-141, 174, 179-191}, 12 studies reported that women with previous GDM had significantly higher BMI or were more obese than women without previous GDM^{112, 126, 134, 135, 138, 140, 141, 143, 174, 180, 182-185, 188-191} (Supplementary Table 3.8.1). Sensitivity analysis after excluding low quality studies showed a decrease in heterogeneity (Chi² P<0.00001, I^2 =95%) (Supplementary Table 3.8.5)

3.5.4. Lipids

3.5.4.1. Total Cholesterol

Total cholesterol data were available from 59 studies, 48 studies were included in the overall meta-analysis. Women with previous GDM had 0.26 SMD higher total cholesterol compared to women without previous GDM, (95% CI 0.15 to 0.37; n=38,561, heterogeneity: Chi² P<0.00001, I²=89%)^{89, 91, 93, 96, 97, 99-102, 106, 108, 110, 111, 113, 116, 117, 119, 121, 122, 124, 126, 127, 129, 130, 138, 143, 144, 149, 151, 152, 160, 171, 174, 175, 192-196 (Table 3.5.1-1) (Supplementary Figure 3.8.4). Of the 11 studies not included in the meta-analysis^{126, 131, 133, 134, 139, 148, 174, 187, 189, 190, 197}, three reported that women with previous GDM had significantly higher total cholesterol compared to the control group^{126, 174, 190}. Sensitivity analysis after excluding low quality studies showed a marginal increase in heterogeneity (Chi² P<0.00001, I²=90%). (Supplementary Table 3.8.6)}

3.5.4.2. LDL

Low density lipoprotein (LDL) cholesterol data were available from 57 studies, of which 44 were included in the overall meta-analysis. Women with previous GDM had 0.19 SMD higher LDL compared to women without previous GDM (95% CI 0.08 to 0.30; n=16,980, heterogeneity: Chi² P<0.00001, I²=83%)(Table 3.5.1-1)

(Supplementary Figure 3.8.5). ^{81, 91, 92, 95-97, 99-102, 105, 106, 108, 111-114, 116-120, 122, 124, 126, 128, 130, 132, 138, 142, 144, 149, 152, 160, 171, 174, 192, 194-196, 198. Of the 13 studies not included in the meta-analysis ^{126, 131, 133, 136, 139, 148, 174, 187, 189, 190, 196, 197, 199}, four reported that women with previous GDM had significantly higher LDL compared to the control group^{126, 136, 174, 190}. Sensitivity analysis after excluding low quality studies showed an increase in heterogeneity (Chi² P<0.00001, I²=85%). (Supplementary Table 3.8.7)}

3.5.4.3. HDL

High density lipoprotein (HDL) cholesterol data were available from 70 studies, of which 56 were included in the overall meta-analysis. Women with previous GDM had lower HDL compared to those without previous GDM, a -0.28 SMD (95% CI - 0.39 to -0.16; n=35,882, heterogeneity: Chi² P<0.00001, I²=89%)^{88, 89, 92, 93, 95-97, 99-103, 106, 108, 110-114, 116-123, 126, 129, 132, 138, 144, 149, 151-153, 160, 161, 173-175, 192, 194-196 (Table 3.5.1-}

1) (Supplementary Figure 3.8.6). Of the 14 studies not included in the metaanalysis^{109, 124, 126, 131, 133, 135, 136, 139, 148, 158, 174, 187, 189, 196}, five reported that women with previous GDM had significantly lower HDL than the control group^{91, 126, 135, 189, 190,} ¹⁹⁶. Sensitivity analysis after excluding low quality studies showed a marginal increase in heterogeneity (Chi² P<0.0001, I²=90%). (Supplementary Table 3.8.8)

3.5.4.4. Triglycerides

Triglyceride data were available from 64 studies, of which 45 were included in the overall meta-analysis. Women with previous GDM had 0.56 SMD higher triglycerides compared to those without previous GDM (95% CI 0.42 to 0.70; n=13,175, heterogeneity: Chi² p<0.00001, I²=88%)^{88, 91-93, 96, 97, 99-102, 106, 110, 111, 114, 116, 117, 119-122, 129, 132, 142, 144, 146, 149, 151-153, 160, 161, 173-175, 177, 192, 194 (Table 3.5.1-1) (Supplementary Figure 3.8.7). Of the 19 studies not included in the meta-analysis ⁹⁰,}

^{109, 126, 131, 133-136, 139, 148, 171, 174, 187, 189, 190, 195-197}, seven studies reported that women with previous GDM had significantly higher triglycerides than those without previous GDM^{90, 126, 135, 174, 182, 189, 190}. Sensitivity analysis after excluding low quality studies showed no difference in heterogeneity (Chi² P<0.00001, I²=88%). (Supplementary Table 3.8.9)

3.5.5. Blood glucose

Blood glucose data were available from 72 studies, of which 55 were included in the overall meta-analysis. Women with previous GDM had 0.69 SMD higher blood glucose compared to those without previous GDM (95% CI 0.56 to 0.81; n=127,900, heterogeneity: Chi² P<0.00001, I²=94%) ^{81, 88, 90, 93, 95-97, 99, 101, 102, 105-108, 110, 111, 113, 116-124, 126-128, 130, 142, 145, 146, 149, 151, 153, 154, 157, 159, 166, 169, 175, 192-195, 198, 200-203 (Table 3.5.1-}

1) (Supplementary Figure 3.8.8). Of the 17 studies not included in the metaanalysis^{109, 112, 126, 131, 133-135, 137, 152, 165, 180, 187, 189, 190, 196, 204, 205}, 10 studies reported that women with previous GDM had significantly higher glucose than those without previous GDM^{109, 126, 131, 135, 138, 189, 190, 196, 204, 205}. Sensitivity analysis after excluding low quality studies showed no difference in heterogeneity (Chi² P<0.00001, I^2 =94%). (Supplementary Table 3.8.10)

3.5.6. Serum insulin

Serum insulin data were available from 44 studies, of which 32 were included in the overall meta-analysis. Women with previous GDM had 0.41 SMD higher insulin compared to those without previous GDM (95% CI 0.23 to 0.59; n=8,881, heterogeneity: Chi² P<0.00001, I²=90%)^{88, 92, 99, 101, 102, 106, 111, 113, 116, 120, 121, 127, 130, 144, 145, 149, 151, 159, 169, 173, 175, 192, 193, 198, 200-202. (Table 3.5.1-1) (Supplementary Figure 3.8.9). Of the 12 studies not included in the meta-analysis^{90, 97, 107, 112, 124, 126, 135, 138, 149, 151, 159, 169, 173, 175, 192, 193, 198, 200-202.}}
^{160, 187, 189, 190}, five studies reported that women with previous GDM had significantly higher glucose than those without previous $GDM^{97, 107, 112, 126, 135, 181}$. Sensitivity analysis after excluding low quality studies showed no difference in heterogeneity (Chi² P<0.00001, I²=90%). (Supplementary Table 3.8.11)

3.5.7. Subgroup analysis

We conducted subgroup analyses based on the time of postpartum follow up (<1 year postpartum, 1-5 years postpartum, 5-10 years postpartum and >10 years postpartum). The results are shown in Table 3. Systolic blood pressure, diastolic blood pressure, triglycerides and blood glucose were higher in women with previous GDM compared to those without previous GDM as early as <1 year postpartum. Triglycerides and blood glucose remained significantly elevated at 1-5 years, 5-10 years and >10 years postpartum (Table 3.5.7.1).

Table 3.5.7-1 Subgroup analysis for all cardiovascular outcomes in women with previous GDM compared to those with no previous GDM

Outcome	<1 year postpartum	1-5 years postpartum	5-10 years postpartum	>10 years postpartum
	(95% CI)	(95% CI)	(95% CI)	(95% CI)
Systolic Blood Pressure	3.47 (1.26-5.68)	2.26 (0.27, 4.25)	3.96 (2.36, 5.56)	2.58 (1.05, 4.11)
(mmHg)	n(total)=1,826	n(total)=19,701; n=2,567 l ² =	n(total)=1,965; n(exposed)=805	n(total)=4,941;
	n=1,237 l²= 50%, p=0.02	93%, p<0.00001	l²= 17%, p=0.27	n(exposed)=1,157
				l²= 23%, p=0.23
Diastolic Blood Pressure	2.48 (0.58-4.37)	1.37 (0.20-2.54)	7.17 (-1.69-16.03)	1.23 (1.03-1.96)
(mmHg)	n(total)=1,749	n(total)=19,676	n(total)=2,184	n(total)=4,948
	n(exposed)= 1,137	n(exposed)=2,428 I ² = 89%,	n(exposed)=916	n(exposed)=1,122
	l²= 64%, p=0.01	p<0.0001	I²= 99%, p<0.00001	l²= 97%, p<0.00001
BMI (kg/m²)	1.56 (-0.28-3.41)	2.01 (1.24, 2.79)	0.73 (0.22, 1.27)	1.39 (1.05, 1.73)
	n(total)=2,534	n(total)=22,326; n(exposed)=,4,329	n(total)=91,844 n(exposed)=6,161	n(total)=13,989;
	n(exposed)=1,640 I²= 98%,	l²= 96%, p<0.00001	l²= 91%, p<0.00001	n(exposed)=8,015
	p<0.00001			l²= 0%, p=0.64

Total Cholesterol (SMD)	0.41 (-0.02,0.84)	0.42 (0.21,0.64)	0.04 (-0.13, 0.20)	0.04 (-0.09, 0.17)
	n(total)=1,722	n(total)=3,836; n(exposed)=1,886	n(total)=907; n(exposed)=485	n(total)=6,469; n(exposed)=1,555
	n(exposed)=1,149 l²= 84%,	I²= 86%, p<0.00001	l²= 24%, p=0.24	l²= 51%, p=0.02
	p<0.00001			
LDL (SMD)	0.33 (0.06-0.60)	0.25 (-0.05,0.55)	0.05 (-0.08-0.19)	0.09 (-0.02, 0.19)
	n(total)=2,458	n(total)=1,780	n(total)=989	n(total)=5,546
	n(exposed)= 1,534	n(exposed)=1062 I ² = 87%,	n(exposed)=520	n(exposed)=1,383
	l²= 84%, p<0.0001	p<0.00001	l²=0%, p=0.47	l²= 28%, p=0.10
HDL (SMD)	-0.18 (-0.23-0.59)	-0.49 (-0.73, -0.24)	-0.40 (-0.80-0.01)	-0.14 (-0.25, -0.03)
	n(total)=1,788	n(total)=4,506	n(total)=2164	n(total)=6,805
	n(exposed)= 1,146	n(exposed)=2,327 I ² = 92%,	n(exposed)=810	n(exposed)=1,647
	l²= 87%, p=<0.00001	p<0.00001	l²=93%, p=<0.00001	l²= 49%, p=0.02
Triglycerides (SMD)	0.53 (0.16-0.91)	0.65 (0.42,0.89)	0.56 (0.04-1.08)	0.31 (0.16, 0.46)
	n(total)=706	n(total)=4,334	n(total)=1,086	n(total)=3,520
	n(exposed)= 459	n(exposed)=2,234	n(exposed)=561	n(exposed)=865
	l²= 76%, p<0.00001	l²= 90%, p<0.00001	l²=94%, p<0.00001	I²= 53%, p-0.02
Glucose (SMD)	1.12 (0.62,1.62)	0.67 (0.45, 0.90)	0.75 (0.20, 1.30)	0.58 (0.44, 0.72)
	n(total)=2,187	n(total)=6,233; n(exposed)=3,457	n(total)=1,152	n(total)=8,807 n(exposed)=6,234
		l²= 92%, p<0.00001		l²= 62%, p=0.002

	n(exposed)=1,461 I ² = 93%,		n(exposed)=606	
	p<0.00001		I²= 94%, p<0.00001	
Insulin (SMD)	1.10 (-0.37, 2.57)	0.53 (0.08-0.99)	0.22 (0.06, 0.37)	0.28 (0.07, 0.50)
	n(total)=293	n(total)=1762 n(exposed)=1,073	n(total)=1,036	n(total)=817 n(exposed)=308
	n(exposed)=191	l²= 94%, p<0.00001	n(exposed)=542	l²= 45%, p=0.10
	I²= 95%, p<0.00001		l²= 24%, p=0.24	

Units as specified in above table

Abbreviations: 95% CI – 95% Confidence Interval

Bold value highlights significant result

3.6. Discussion

CVD is a global concern and contributes to the majority of deaths due to non-communicable disease (NCDs) (approximately 17.9 million deaths annually) ²⁰⁶. Early detection, prevention and treatment of risk factors are critical in reducing the incidence of CVD. Pregnancy complications, such as preeclampsia and GDM are now identified as risk factors for NCDs including T2DM and CVD⁷⁸. Women may be susceptible to long-life CVD, due to a genetic predisposition or poor lifestyle choices or a combination. Thus, pregnancy may act as a second hit for CVD in these women who already have a predisposition to metabolic syndrome, before phenotypic expression⁷⁸. Furthermore, it is known that exposure to gestational diabetes mellitus *in utero* increases the risk of cardiovascular risk factors in offspring²⁰⁷. Therefore, we sought to determine the CVD risk factors and well as the timeline for manifestation of risk factors among women with previous GDM. Synthesizing the published evidence on conventional CVD risk factors in women with previous GDM and assessing the timeline for manifestation of risk factors, thus, provide strong evidence to plan screening strategies to identify those at risk for CVD. This review also signifies the importance of considering pregnancy complications in CVD risk stratification, thus providing an opportunity for primordial prevention. Women with previous GDM have an increase in all conventional CVD risk factors. Blood pressure (both systolic and diastolic), serum triglycerides and blood glucose are also higher in women with GDM compared to those without GDM as early as <1 year postpartum.

Our meta-analysis showed that women with previous GDM have an increase in systolic and diastolic blood pressure. It has been shown that GDM increases the risk of developing hypertension in different populations ^{185, 208, 209}. Daly *et al.* (2018) showed that the cumulative incidence of hypertension and ischemic heart disease was higher in women with previous GDM compared with controls, and that this difference persisted over a 25-year study period¹⁸³.

Our analysis showed that BMI was 1.57kg/m² higher in women with previous GDM compared to controls based on a sample size of nearly 300,000 women. While we do not know whether the women with previous GDM were obese prior to pregnancy and during pregnancy, it is likely the case for many of these women. A large scale meta-analysis showed that the unadjusted ORs of developing GDM were 2.14 (CI% 1.82 to 2.53), 3.56 (3.05-4.21) and 8.56 (5.07-16.04) for overweight, obese and severely obese women respectively, compared to normal weight pregnant women ²¹⁰.Obese women have substantially higher liver fat content, and this is consistent with the impairment of fat sequestration by adipocytes in individuals developing GDM ⁷.

Women with previous GDM were also demonstrated to have higher total cholesterol, LDL, triglycerides and a decrease in HDL demonstrating an "at risk phenotype" compared to women without previous GDM. During the third trimester of pregnancy, women with GDM show an exaggerated elevation in serum lipids, and this may result in transient metabolic disease. ^{7, 211}. Studies have shown that triglycerides are significantly elevated in women with GDM compared to controls across each trimester. It has also been shown that elevated first trimester maternal triglyceride level (adjusted for BMI) is a strong predictor for future GDM ²¹¹. Consistent with these finding, our study showed that triglycerides were elevated as early as <1 year postpartum.

We also observed a significant increase in glucose and insulin in women with previous GDM compared to controls. GDM results in a dysregulation of cytokines (particularly a reduction in adiponectin, and elevation in interleukin-6 and tumour necrosis factor-alpha) and an increase in free fatty acids which promote insulin resistance (IR) and a state of metabolic dysfunction ⁷. The study by Daly *et al.* (2018) also showed that women with GDM are more likely to develop T2DM later in life over a 25-year period. In some populations, 50% of women with GDM progress to T2DM²¹², and approximately one third of women with T2DM have had previous GDM²¹³.

This systematic review and meta-analyses are the first to observe all conventional CVD risk factors in women who experienced GDM. Our study provides robust evidence that women who experience GDM have an increase in all CVD risk factors compared to controls, based on evidence from 139 studies. Furthermore, subgroup analysis demonstrated that blood pressure, glucose and triglycerides are already elevated as early as <1 year postpartum, thereby highlighting the importance of early screening for CVD risk factors after a pregnancy complicated by GDM.

There are limitations to our findings that need acknowledgement. Firstly, GDM is a multifactorial disease, with many environmental and genetic components contributing to disease risk. Both obesity and GDM share the same causal pathway of elevated FFAs and dysregulation of cytokines leading to insulin resistance ^{7, 214}. Common risk factors such as advanced maternal age, familial history of T2DM or GDM in a first-degree relative (mother or sister) and Asian ethnicity contribute to a higher risk of GDM ²¹⁵. There are certain candidate genes that are associated with type II diabetes mellitus and GDM, mainly influencing insulin secretion²¹⁶. Therefore, it is difficult to elucidate whether CVD in obese/overweight women with previous GDM is attributed to GDM alone or other pre-existing predispositions. Another limitation was the inability to adjust for important confounders such as BMI, age, and sex. Due to non-availability of data on adjusted mean values and the differences in the confounders used in studies, we were not able to use adjusted values in our meta-analyses. However, our supplementary data demonstrates various regression analyses used in studies that are adjusted for these important covariates. Secondly, substantial heterogeneity was seen for most overall outcomes, based on I² and Chi² P values. Observational studies may be subject to publication bias, although visual analysis of funnel plots showed no heterogeneity (Supplementary Figure 9A-9I). Heterogeneity was further explored through subgroup analysis, however for some subgroups heterogeneity was still evident. After sensitivity analysis of overall outcomes after

excluding low quality studies, heterogeneity was increased for most outcomes (Supplementary Table 3A, 3B, 3D, 3E, 3F). It is difficult to elucidate the reasons for heterogeneity for aggregate data. It is conventionally explained by significant differences between studies, which in our study can include definition of GDM, time of postpartum screening, methodology and study design. We can only attribute the heterogeneity seen due to genetic and environmental factors that could not be adjusted for, and recommend that more longitudinal, large scale studies are conducted to contribute to this evidence and reduce the overall heterogeneity.

Our findings signify the importance of early postpartum CVD risk screening for women who experience GDM. Metabolic syndrome is defined as a cluster of conditions including hypertension, dyslipidaemia, dysglycemia and obesity that significantly increases the risk of type II diabetes and cardiovascular disease. Our study demonstrates that women with GDM in pregnancy show clinical phenotypes that can contribute to metabolic syndrome and type II diabetes as early as within one year postpartum. Approximately 10% of women with GDM are known to develop diabetes soon after delivery. Therefore, it is necessary to implement interventions and treatment strategies as early as practical in these women in order to significantly reduce the risk of CVD later in life. A study in the UK in 2013, showed that risk factors such as SBP and total cholesterol decreased in those who attended such CVD screening, with an overall CVD risk reduction of 6.8%²¹⁷.

While the values seen in our meta-analysis for blood pressure are within a normal range, increase in blood pressure poses a continuous risk of CVD. It has been shown that a 10 mmHg increase in systolic blood pressure is associated with a 30% higher risk of ischemic heart disease⁸³. We demonstrated that at <1 year postpartum, SBP in women with previous GDM was nearly 4mmHg higher than in controls. This suggests that women with previous GDM may benefit from monitoring of blood pressure as early as <1 year postpartum to reduce the risk of subsequent hypertension.

Persistence of high BMI in women with previous GDM is likely due to postpartum behaviours, and it may be beneficial to target reduction of obesity prior to gestation. A meta-analysis by Baptise-Roberts et al. showed that for every 1kg increase in pre-pregnancy weight, the increased odds of developing type II diabetes mellitus increased by 40%²¹⁸. The Diabetes Prevention Program, a multi-centre randomized controlled trial, showed that intensive lifestyle changes, targeting a 7% reduction in enrolment weight, and increased physical activity in women with previous GDM, reduced the risk of diabetes incidence by 50% at 12 years postpartum²¹⁹. Interestingly, it was shown that women with GDM lost the most amount of weight at 6 months post randomization, and increased weight again afterwards. These weight patterns correlated with a decrease in physical activity (women in the active GDM group were achieving 1.5 hours of exercise from baseline in the first year, but by the third year, they were reporting less than 30 minutes of physical activity a week, correlating with a mean weight loss of only 1.6kg). In our subgroup analysis, there was no difference in BMI between women with previous GDM and controls at <1 year postpartum, and then for the subsequent subgroups, there were significant differences in BMI²¹⁹. Therefore, it appears that lifestyle guidance during pregnancy promotes weight loss in the first year postpartum, and compliance decreases beyond this point. Strategies to maintain a healthy weight in women with previous GDM beyond the first postpartum year, may significantly reduce their overall CVD risk.

Women with GDM experience insulin resistance (IR) and hypertriglyceridemia, which are both promoted by elevated free fatty acids (FFAs) in response to increased adiposity ⁷. IR is a marker of essential hypertension, as it promotes a pro-atherogenic state through marked dyslipidaemia and elevation in inflammatory markers ²²⁰. Atherosclerosis is also promoted by elevations in any non-HDL cholesterols. ²²¹ The higher total cholesterol and triglycerides and the lower HDL cholesterol evident in women with previous GDM suggest an adverse serum lipid profile and as such, women with previous GDM may be at higher risk for CVD. While the values seen in

this meta-analysis are minimal, it is important to recognize that serum lipids are strong predictors of hypertension and IHD mortality, with total cholesterol/HDL ratio being the strongest predictor of IHD mortality overall ^{222, 223}. In our meta-analysis we observed a minimal but significant increase in non-HDL cholesterols and a decrease in HDL cholesterol, therefore suggesting that women with GDM are likely to exhibit a poor lipid profile and may benefit from regular monitoring of serum lipids.

Women with previous GDM will also benefit from regular screening of blood glucose and insulin. Towards the end of the second trimester, insulin resistance is elevated to facilitate the delivery of glucose to the fetus down a concentration gradient via placental transfer. Women who are normoglycemic during this period, have adequate β -cell function through compensatory hyperplasia of the beta cells, which causes increased insulin release upon glucose stimulation ²¹⁴. However, in women with GDM, there is a failure of β -cell compensation to protect against the increased insulin resistance and as such blood glucose is significantly elevated. This insulin resistance may not resolve after delivery and blood glucose remains elevated postpartum ²¹⁴. Therefore, monitoring and screening women for type II diabetes mellitus is very important.

3.7. Conclusion

Women with previous GDM have a higher risk for CVD as evidenced by an increase in risk factor profile compared to women with no history of GDM. Most of these risk factors are seen as early as <1 year postpartum. Therefore, women who experience GDM may benefit from CVD risk screening commencing in the early postpartum period to enable detection of modifiable risk factors.

3.8. Supplementary Data

Supplementary Table 3.8 1 Summary of studies not included in meta-analysis

Study	GDM group	Control group	Significance (p-value)
Systolic Blood Pressure (mmHg)			
Alberada 2004 (Median IQR)	120 (85-180)	110 (80-140)	<0.05
Bently-Lewis 2015 (Mean SD)	116±11	115±9	0.29
Hannemann 2002	118 (109–144)	113 (99–133)	NS
Hu 1998 (Median IQR)	116 (95-128)	108 (97-120)	0.04
Laurenborg 2005 (Median IQR)	119 (111–126)	120 (110–125)	0.206
Levka 2015 (Reported in 2016, 2017)	IADSPG criteria: 110 (110-130)	IADSPG criteria: 110 (110-120)	NS
(Median IQR)	WHO criteria: 110 (110-130)	WHO criteria: 110 (110-120)	
Retnakaran 2010 (Median [IQR])	3 months: 111 (105-118)	3 months: 108 (101–113)	NR
(Similarly reported in 2011)	12 months: 110 (103-119)	12 months: 109 (100-115)	
Rukasaskul 2016 (Median [IQR])	120 (100-155)	110 (100-140)	0.002
Todoric 2012 (Median IQR)	106 (95–120)	118 (110–125)	NS
Ueland 2018 (Median IQR)	120 (100, 130)	110 (100, 120)	NS
Verma 2002 (Mean SD)	5 years: 121.6 ± 10.8 (88)	5 years: 119.2 ± 9.7 (79)	0.10
	6 years: 121.8 ± 11.8 (87)	6 years: 117.9 ± 10.4 (79)	0.03
	9 years: 122.2 ± 11.9 (57)	9 years: 117.5 ± 13.2 (50)	0.06
Wang 2012 (Mean SD) (adjusted for age)	131 (0.6)	128 (0.1)	< 0.001
Diastolic Blood Pressure (mmHg)			

Albereda 2004 (Median IQR)	78 (50-100)	70 (50-100)	<0.05
Bently Lewis 2015 (Mean SD)	73±8	71±7	0.09
Hanneemann 2002 (median IQR)	74 (64–92)	74 (53–92)	NS
Hu 1998 (Median IQR)	78 (55-84)	68 (56-81)	0.02
Laurenborg 2005 (Median IQR)	73 (66–78)	75 (70–80)	<0.0005
Levka 2015 (Reported in 2016, 2017)	IADPSG: 70 (65-75)	IADPSG: 70 (60-75)	NS
(Median IQR)	WHO: 70 (65-80)	IADPSG: 70 (65-75)	
Retnakaran 2010 (Median [IQR]	3 months: 66 [60–72]	3 months: 66 (60–70)	
(Similarly reported in 2011)	12 months: 66 (60–71)	12 Months: 64 (59–70)	
Rukasaskul 2016 (Median [IQR])	70 (50-91)	60 (60-80)	0.092
Todoric 2012 (Median IQR)	65 (60–70)	73 (65–80)	NS
Ueland 2018 (Median IQR)	70 (65, 74)	70 (65,75)	NS
Verma 2002 (Mean SD)	5 years: 72.3 ±10.6 (88)	5 years: 70.8 ± 10.4 (79)	0.36
	6 years: 72.0 ± 11.1 (87)	6 years: 68.9 ± 9.3 (79)	0.07
	9 years: 72.4 ± 8.8 (57)	9 years: 69.9 ± 11.2 (50)	0.20
Wang 2012 (Mean SD) (Adjusted for age)	76 (0.4)	76 (0.1)	0.2
BMI (kg/m2)			
Albereda 2004 (Median IQR)	24.8 (17.9-40.2)	24.4 (18.3-38.4)	NS
Benjamin 1993 (units unknown)	30.2 (21-44)	30.1 (23-42)	
Bently Lewis 2014	28.2±6.3	28.5±4.7	0.70
Cheung 2015 (median IQR)	32.8 (28.9–37.1)	27.8 (24.7–35.7)	0.04
Daly 2018 (Subgroups) (n) (%)	Normal: 2,338 (26%)	Normal: 18,514 (50%)	<0.001 for all subgroups
(Normal <25kg/m ² , Overweight 25-	Overweight: 2,220 (24%)	Overweight: 7,943 (21%)	
30kg/m ² , Obese >30kg/m ²)	Obese: 3,458 (39%)	Obese: 5,217 (14%)	
		05 (40, 20)	NO
Hannemann 2002 (Median IQR)	25 (21–46)	25 (19–38)	NS
Hu 1998 (Median IQR)	24.6 (20.0-36.1)	22.0 (18.7-26.6)	0.002

Kios 1991 (Mean SD)	6_{-12} weeks: 30 7 + 5 8	268 + 37	NS
	3.11 months: $32 \pm 7^*$	20.0 ± 0.1	<0.001 compared to 6.12 week
	$12.23 \text{ months}: 32 \pm 6^*$		< 0.001 compared to 6.12 week
Lauraphare 2005 (Madian IOD)	$12-25$ monutes. 52 ± 0		
	27.9 (24.1–32.9)	24.6 (22.2–27.9)	<0.0005
Madarasz 2009 (Median IQR)	26.1 [7.7]	22.9 (4.8)	Crude: 0.001
Perrson 2015 (%)	Underweight: 2 (1.9%)	Underweight: 4 (1.3%)	<0.001
	Normal weight: 48 (45.7%)	Normal weight: 229 (72.0%)	
	Overweight: 26 (24.8%)	Overweight: 62 (19.5%)	
	Obesity: 29 (27.6%)	Obesity: 23 (7.2%)	
Pirkola 2010 (Geometric Mean, 95% CI)	Normal Weight: 21.2 (20.8, 21.7)	Normal Weight: 21.2 (21.1, 21.3)	<0.001
	Overweight: 30.2 (29.0, 31.4)	Overweight: 28.8 (28.4, 29.2)	
Stuebe 2011 (n= unknown) (Mean (SD))	27 (7)	25 (5)	NR
Retnakaran 2010 (Median [IQR])	26.6 (23.7-31.1)	25.4 (23.0-28.9)	0.0701
Retnakaran 2010 (Median [IQR])	3 months: 26.7 (23.5–30.7)	3 months: 25.1 (22.6–28.5)	NR
(Similarly reported in 2011)	12 months: 26.4 (22.5–30.5)	12 months: 24.2 (21.5–27.8)	
Ruksasakul 2016 (Median [IQR])	35.5 (17.0-35.0)	22.4 (18.3-31.7)	0.003
Shostrom 2017 (weighted SE)	31.7 (0.36)	29.1 (0.12)	<0.001
Sokup 2012 (Median IQR)	23.68 (20.96, 27.54)	22.00 (20.31, 24.33)	0.00098
Sokup 2012 (Median IQR)	24.45 (21.48–27.61)	22.00 (20.31–24.33)	0.001
Tam 2013	23.7 ± 3.5	24.4 ± 4.6	0.24
Todoric 2012 (8 years) (Median IQR)	27.9 (26.1–31.2)	26.6 (25–29.6)	NS
Tura 2006 (Mean	22.3 (0.4)	22.0 (0.5)	
(SE)			
Ueland 2018 (Median IQR)	24.8 (22.6, 27.9)*	22.6 (20.8, 24.5)	<0.05
Verma 2002 (Mean SD)	5 years: 27.2 ± 6.7 (88)	5 years: 25.0 ± 5.5 (79)	0.02
	6 years: 26.3 ± 5.8 (87)	6 years: 25.4 <u>+</u> 5.6 (79)	0.31
	9 years: 27.5 ± 5.8 (57)	9 years: 27.4 ± 8.4 (50)	0.90
Wang 2019 (Mean only)	28.97	27.27	0.21
Wang 2012 (Mean SD) adjusted for age	48.2 (1.7)	41.1 (0.4)	< 0.001

Cholesterol			
Serum			
Albereda 2004 (Median IQR)	5.2 (3.8-8.2)	5.1 (3.7-7.0)	
Couch 1998 (Mean SD) (adjusted values*)	221.50 (44.93)	232.46 (76.58)	NS
Hannemann 2002 (Median IQR)	4.4 (3.0–5.8)	4.8 (3.1–6.1)	NS
Hu 1998 (Median IQR)	5.1 (3.7-8.1)	5.0 (3.6-6.8)	0.6
Kjos 1991 (Mean SD)	6-12 weeks: 5.82 ± 1.27	5.10 ± 0.99	< 0.001 compared to 6-12 week
	3-11 months: 5.12 ± 0.99		< 0.001 compared to 6-12 week
	12-23 months: 5.04 ± 0.75		< 0.001 compared to 6-12 week
Retnakaran 2011 (mmol/L)	5.31 [4.78-5.87]	4.92 [4.35-5.61]	NR
Sokup 2012 (Median IQR) (mmol/L)	5.04 (4.55–5.51)	4.56 (4.27–5.09)	0.9940 (adjusted for BMI)
Sokup 2012 (Median IQR) (mmol/L)	5.06 (4.53–5.53)	4.56 (4.27–5.09)	0.001
Steube 2011 (n= unknown) (Mean (95%	Unadjusted: 164.0 (138.1-189.9	Unadjusted: 176.8 (171.9-181.6)	NR
CI)) (mg/dL)	Adjusted: 165.9 (136-194.9)	Adjusted: 175.8 (166.6-185.0)	
Todoric 2012 (Median IQR) (mg/dl)	203 (183–215)	204 (175–235)	NS
Verma 2002	6 years:4.90 ± 1.23(87)	6 years: 4.33 ± 0.94	0.0006
	9 years: 5.31 ± 0.83 (57)	9 years 4.93 ± 1.01	0.04
LDL			
Serum			
Albereda 2004 (Median IQR)	3.4 (2.1-6.4)	3.2 (2.2-5.3)	NS
Couch 1998 (adjusted values*)	96.46 (45.59)	101.28 (49.72)	NS
Hannemann 2002 (median IQR)	2.46 (1.43–3.60)	2.94 (1.29–4.30)	NS
Kjos 1991 (Mean SD)	6-12 weeks: 3.61 ± 1.12	6-12 weeks:	P < 0.001, vs. paired 6- to 12-wk
	3-11 months: 3.12 ± 0.65*	3-11 months:	P < 0.001, vs. paired 6- to 12-wk
	12-23 months: 2.94 ± 0.68*	12-23 months:	P < 0.001, vs. paired 6- to 12-wk
Levka 2015 (Reported in 2017)	IADPSG: 2.66 (2.15, 3.20)	IADPSG: 2.50 (2.09, 3.00)	Crude=0.007, Adjusted=0.058
(Median IQR) (mmol/L)	WHO: 2.61 (2.10, 3.11)	WHO: 2.52 (2.10, 3.02)	Crude < 0.001, Adjusted 0.001
Retnakaran 2011 (Median IQR) (mmol/L)	3.85 [3.36-4.64]	3.47 [2.88-4.18]	
Sokup 2012 (Median IQR) (mmol/L)	3.10 (2.79–3.54)	2.57 (2.30–3.05)	0.4022 (adjusted for BMI)
Sokup 2012 (Median IQR) (mmol/L)	3.17 (2.77–3.62)	2.57 (2.30–3.05)	0.001

Steube 2011 (n= unknown) (Mean (95%	Unadjusted: 90.9 (67.1-114.8)	Unadjusted: 106.2 (101.7-110)	NR
CI)) (mg/dL)	Adjusted: 92.8 (66.6-119)	Adjusted: 102.7 (94.4-111)	
Tam et al. 2013 (8 year)	2.75 ± 0.64	2.74 ± 0.78	0.94
Todoric 2012 (Median IQR)(mg/dl)	110 (100–144)	129 (113.4–136)	NS
Verma 2002 (mean SD)	6 years: 3.15 _ 0.98 (87)	6 years: 2.76 _ 0.77 (79)	0.03
	9 years:3.44 _ 0.77 (57)_	9 years 3.15 _ 0.76 (50)	0.07
HDL			
Serum			
Albereda 2004 (Median IQR)	1.4 (0.8-2.6)	1.5 (0.8-2.2)	
Couch 1998	70.65 (16.96)	69.88 (21.31)	NS
Hannemann 2002 (Median IQR)	1.27 (0.93–3.03)	1.40 (1.08–2.29)	NS
Kjos 1991 (Mean SD)	6-12 weeks: 1.22 ± 0.31	1.22 ±0.26	NS
	3-11 months: 1.14 ± 0.26		NS
	12-23 months: 1.20 ±0.26		NS
Krishnaveni 2007 (Median IQR)	NGT: 1.15 (0.1) IGT/IFG: 1.14 (0.2)	NGT: 1.14 (0.2)	0.7
	DM:0.98 (0.2)	IGT/IFG: 1.0.9 (0.2)	
		DM:1.11 (0.2)	
Laurenborg 2005 (Median IQR)	1.4 (1.2–1.7)	1.5 (1.3–1.8)	<0.0005
Levka 2015 (Reported in 2017)	IADPSG: 1.40 (1.20, 1.73)	IADPSG: 1.54 (1.36, 1.82)	Crude= 0.123 Adjusted=0.405
(Median IQR) (mmol/L)	WHO: 1.30 (1.08, 1.52)	WHO: 1.54 (1.36, 1.83)	Crude=0.614, Adjusted 0.909
Retnakaran 2011 (Median IQR) (mmol/L)	1.35 [1.15-1.54]	1.43 [1.24-1.65]	
Sokup 2012 (Median IQR) (mmol/L)	1.53 (1.28–1.73)	1.73 (1.56–1.82)	0.0027 (adjusted for BMI)
			0.0449 (adjusted for fasting glucose)
Sokup 2012 (Median IQR) (mmol/L)	1.53 (1.27–1.73)	1.73 (1.56–1.82)	0.001
Steube 2011 (n= unknown) (Mean (95%	Unadjusted: 41.8 (31.3-52.3)-54.5	Unadjusted: 54.5 (52.5-56.4)	NR
CI)) (mg/dL)	(52.5-56.4)	Adjusted: 55.8 (52.2-59.3)	
	Adjusted: 44.7 (33.6-55.8)		
Sung 2008 (Median IQR) (mmol/L)	pGDM-NGT1.22, 0.80–2.12	1.30, 1.17–2.05	NR
	pGDM-IGT 1.17, 0.75–5.18		

	pGDM-DM 1.19, 0.75–5.18		
Tam et al. 2013 (8 Years)	1.43 (0.29)	1.64 (0.36)	0.001
Todoric 2012 (Median IQR) (mg/dl)	62 (46–72)	65 (51–71)	NS
Verma 2002 (mean SD)	6 years: 1.23 ± 0.36 (87)	6 years: 1.15 ± 0.32	0.03
	9 years: 1.37 ± 0.32 (57)	9 years 1.31 ± 0.32	0.41
Cord Blood			
Couch 1998	19.47 (8.78)	15.06 (5.87)	NS
Triglycerides			
Serum			
Albereda 2004 (Median IQR)	0.85 (0.4-4.0)	0.69 (0.33-2.17)	NS
Behboodi-Gandevani 2019 (Mean SD)	0.51 (0.55)	0.33 (0.53)	0.001
Couch 1998 (adjusted values)	236.38 (73.37)	177.96 (50.61)	NS
Hannemann 2002 (median IQR)	0.92 (0.50–1.70)	1.10 (0.40–1.75)	NS
Hu 1998 (Median IQR)	1.1 (042.5)	0.9 (044.3)	0.22
Kjos 1991 (Mean SD)	6-12 weeks: 2.12 ± 1.15	1.32 ±0.73	<0.03 compared to control
	3-11 months: 1.86 ± 0.95		<0.03 compared to control
	12-23 months: 1.81 ± 1.22§		<0.03 compared to control
Laurenborg 2005 (Median IQR)	1.3 (0.9 –1.9)	1.0 (0.7–1.3)	<0.0005
Krishnaveni 2007 (Median IQR)	NGT: 0.9 (0.8, 1.4) IGT/IFG:1.3 (0.7,	NGT: 1.0 (0.7, 1.4)	0.8
	1.8)	IGT/IFG: 1.1 (0.8, 1.5)	
	DM:1.8 (1.2, 3.4)	DM:1.5 (0.9, 2.2)	
Levka 2015 (reported in 2017)	IADPSG: 0.78 (0.66, 0.95)	IADPSG:0.72 (0.58, 0.91)	Crude: 0.012, Adjusted 0.109
	WHO: 0.87 (0.67, 1.17)	WHO: 0.73 (0.58, 0.91)	Crude 0.001, Adjusted 0.004
Retnakaran 2011 (Median IQR) (mmol/L)	1.12 [0.74-1.63]	0.90 [0.66-1.26]	
Sokup 2012 (Median IQR) (mmol/L)	0.97 (0.78–12.83)	0.86 (0.67–1.05)	0.0006 (Adjusted for BMI)
			<0.0001 (Adjusted for Fasting
			Glucose)
Sokup 2012 (Median IQR) (mmol/L)	1.02 (0.78–1.50)	0.86 (0.67–1.05)	0.012

Steube 2011 (n= unknown) (Mean (95%	Unadjusted: 133.3 (92.0-193.2)	Unadjusted: 73.6 (68.6-78.9)	NR
CI)) (mg/dL ²)	Adjusted: 136.1 (90.3-205.2)	Adjusted: 78.3 (68.7-89.2)	
Tam et al. (2013) (8-year follow-up)	1.17 ± 1.16	0.96 ± 0.49	0.08
Tehrani et al. (Median IQR)	137.2 (95–173.1)	130.5 (99–167.2)	NS
Thomann 2008 (Median IQR)	0.8 (0.6–1.3)	0.8 (0.6–1.0)	0.01
Todoric 2012 (Median IQR)	111 (56–182)	77 (68–91)	NS
Wang 2015 (Median IOR)	1.5 (1.2–2.0)	1.3 (1.2–1.8)	0.442
Verma 2002 (mean SD)	6 years: 1.60 ± 1.46 (87)	6 years: 1.04 ± 0.85 (79)	0.01
	9 years: 1.11 ± 0.81 (57)	9 years 0.89 ± 0.50 (50)	0.11
Insulin			
Serum			
Carr et al. 2006 (Median IQR)	102 (15–1656.7)	83.5 (7.6–566.4)	0.005
			Adjusted:0.001
Hunger Dathe 2006	7.5 (3.0-70)	6.0(1.5-21.9)	<0.03
Lauenborg 2005 (Median IQR)	53.8 (34.9 - 78.3)	31.0 (23.0–48.0)	<0.0005
Madarasz 2009 (Median IQR) (uIU/mL)	229 (111)	111 (97)	Crude: 0.0001, adjusted 0.001
Pimenta (Median IQR semi-range)	66 (30)	48 (24)	0.27
Ruksasakul (2016) (Median IQR)	5.4 (2.0-46.6)	4.4 (2.0-28.8)	0.495
(uIU/mL)			
Sokup 2012 (Median IQR) (pmol/L)	54.87 (41.67–80,56)	63.20 (54.87–71.53)	0.1755(adjusted for BMI)
Sokup 2012 (Median IQR) (pmol/L)	48.00 (36.00–69.60)	54.60 (47.40–61.80)	0.260
Steube 2011 (n= unknown) (Mean (95%	Unadjusted: 15.3 (8.8-26.7)	Unadjusted: 7.5 (6.8-8.4)	NR
CI)) (u/mL ²)	Adjusted: 12.1 (7.1 -20.8)	Adjusted: 6.8 (5.8-8.1)	
Sung 2008 (Median IQR) (pmol/L)	pGDM-NGT:0.99 (0.41–3.49)	0.80, (0.50–1.68)	NR
	pGDM-IGT:1.15, (0.42–6.69)		
	pGDM-DM: 1.27, (0.61–2.16)		
Thomann 2009 (Median IQR)	51.7 (33.4–61.5)	45.4 (34.6–60.5)	0.1
Verma 2002 (Mean SD) (n=)	Postprandial 4 years: 288.91 ±148.62	Postprandial 4 years:236.82 ± 93.06	0.004
	(n=106)	(101)	0.05
	Postprandial 5 years: 219.46 ± 205.57	Postprandial 5 years:164.60 ± 92.37	0.71

	(88)	(79)	0.005
	Postprandial 6 years: 122.93 ± 110.43	Postprandial 6 years: 116.68 ± 86.81	
		(79)	
	Fasting 9 years: $4.51 \pm 2.13(57)$	Fasting 9 years: 3.63 ± 0.37 (50)	
Glucose			
Serum			
Akinci 2011 (n=, % IFG)	57 (29.3%)	2 (2.8%)	0.001 Adjusted for prepregnancy BMI and history of T2D :0.02
Albereda 2004 (% IFG)	6.5%	0%	0.048
Gadgil 2017 (%)	Normal 37.5	Normal 49.7	
	Prediabetes (IFG) 27.5	Prediabetes 30.8	
	Diabetes 35.0	Diabetes 19.5	
Hannemann 2002 (Median IQR)	4.5 (4.0–5.0)	4.4 (3.9–5.0)	NS
Hu 1998 (Median IQR)	4.5 (3.8-5.7)	4.2 (1.8-6.4)	0.46
Krishnaveni 2007 (Median IQR)	NGT:5.3 (5.2, 5.8)	NGT:5.2 (4.9, 5.6)	0.02
	IGT/IFG:6.0 (5.8, 6.1)	IGT/IFG:6.1 (5.8, 6.4)	
	DM:10.6 (7.2, 14.3)	DM:7.5 (6.0, 9.5) 0.02	
Laurenborg 2005 (% (n= case/control)	11.0% (53/481)	4.3% (39/910)	<0.0005
Madarasz 2009 (% impaired FG)	5.9%	0	
Retnakaran 2010 (Median [IQR] mmol/L)	4.7 (4.4-5.0)	4.4 (4.2-4.7)	
Retnakaran 2010 (Median [IQR]mmol/L)	3 months: 4.7 (4.3–5.0)	3 months: 4.4 (4.1–4.6)	NR
	12 months: 4.8 (4.5–5.2)	12 months: 4.5 (4.4–4.7)	
Rukasaskul 2016 (Median [IQR] mg/dL)	90.5 (69-306)	73.6 (65-107)	<0.001
Seghieri (C-Peptide/FPG) (Mean (SD)	0.08 ± 0.04	0.12 ± 0.04	0.009
Sokup 2012 (Median IQR) (mmol/L)	4.50 (4.61–5.33)	4.72 (4.50–4.78)	0.0001 (adjusted for BMI)

Sokup 2012 (Median IQR) (mmol/L)	4.83 (4.61–5.27)	4.72 (4.50–4.78)	0.015
Steube 2011 (n= unknown) (Mean (95%	Unadjusted: 82.8 (70.8-94.8)	Unadjusted: 72.6 (70.3-74.8)	NR
CI)) (mg/dL)	Adjusted: 89.0 (75.8-102.3)	Adjusted: 76.5 (72.3-80.6)	
Tam et al. 2013 (8 year and 15 year) (n=	8 year:	8 year:	
(%))	NGT: 40 (59.7)	NGT: 112 (82.3)	0.001
	IFG and/or IGT: 21 (31.3)	IFG and/or IGT:21 (15.4)	
	DM: 6 (9.0)	DM:3 (2.2)	
	15 year:	15 years:	III0.001
	NGT: 22 (48.9)	NGT: 75 (79.8)	
	IFG and/or IGT: 12 (26.6	IFG and/or IGT:14 (14.9)	
	DM: 11 (24.4)	DM:5 (5.3)	
Tutino (sample size unknown) (Mean (SD)	8.6±2.9 mmol/L vs	7.9±2.6 mmol/L	, <i>p</i> = 0.014
Verma 2002 (Mean SD)	Postprandial 4 years: 5.85 ± 2.08	Postprandial 4 years: 4.95 ± 0.72 (101)	0.0001
	(n=106)	Postprandial 5 years: 4.36 ± 0.73 (79)	0.0001
	Postprandial 5 years: 5.20 ± 1.27 (88)	Postprandial 6 years: 4.39 ± 0.70 (79)	0.02
	Postprandial 6 years: 4.96 ± 1.84 (87)	Fasting 9 years: 3.63 ± 0.37 (50)	0.005
	Fasting 9 years: 4.51 ± 2.13 (57)		

Quality assessment	Selection				Comparability	E	xposu	re	Total Score
	1	2	3	4	1	1	2	3	
Ajala 2011	С	а	С	а	NA	d	а	С	3
Ajala 2015	а	а	b	а	age-matched	d	а	С	4
Akini 2008	а	b	b	а	30 age-matched	d	а	С	4
Akini 2010	а	а	b	а	age-matched, had a pregnancy at the same	d	а	С	5
					period				
Akini 2011 (A)	а	а	b	а	age-matched, had a pregnancy at the same	d	а	с	5
					period				
Akini 2011 (B)	а	а	b	а	age-matched, had a pregnancy at the same	d	а	С	5
					period				
Akini 2013	а	а	b	а	age and BMI	d	а	b	5
Albareda 2003	а	а	b	а	NA	d	а	b	4
Albareda 2004	а	а	b	а	NA	b	а	С	4
Anastasiou 1998	а	b	b	а	NA	d	а	С	3
Anastasiou 2015	а	а	Ν	Ν	NA	d	Ν	Ν	2
			Α	Α			Α	Α	
Banerjee 2012	а	а	b	а	NA	d	а	С	4
Behboodi 2019	а	а	а	а	*	е	а	С	6
Benjamin 1993	а	а	b	а	delivered during the same time period	d	а	С	5
Bently Lewis 2015	а	а	b	а	matched 1:1 to women with NGT	d	b	С	4
					(n=96) by age, BMI, gravidity and parity				
Bently Lewis 2016	а	а	b	а	NA	d	а	С	4
Bian 2000	а	а	b	а	NA	d	а	b	4
Bo 2006	а	а	b	а	NA	d	а	b	4

Supplementary Table 3.8 2 Quality assessment of included studies using Newcastle Ottowa-Scale

Bowes 1996	а	b	b	а	NA	d	а	С	3
Bozcurt 2010	а	а	b	а	NA	d	а	С	4
Bozcurt 2012	а	а	b	а	NA	d	а	С	4
Caliskan 2014	b	а	b	а	age- and sex-matched controls	d	а	С	4
Carpenter 1988	а	а	b	а	NA	d	а	С	4
Carr 2006	а	а	b	а	NA	С	а	С	4
Chan 1992	а	b	b	а	individually matched for race age	d	а	С	4
					and body mass index were Included				
Charwat-Resl 2017	а	а	b	а	NA	d	а	b	3
Cheung 2015	b	b	b	а	NA	d	а	С	2
Cocilovo 1989	а	b	b	а	NA	d	а	С	3
Couch 1998	а	b	b	а	NA	е	а	С	3
Crowe 2012	а	b	b	а	not adjusted	d	а	С	3
Da 2016	а	b	b	а	NA	d	а	С	3
Daly 2018	а	а	b	а	age and timing	d	а	С	5
					of pregnancy (up to 3 months				
Davenport 2012	а	а	b	а	NA	d	а	С	4
Davis, 1999	а	b	b	а	NA	d	а	С	3
Dinglas 2017	а	а	b	а	NA	d	а	b	4
Donhorst 1990	а	а	b	а	NA	d	а	b	4
Egeland 2010	а	а	b	а	age and geographic	d	а	b	5
Eroglu 2006	а	а	b	а	age- and gravidity matched	d	а	С	5
					patients with				
		1							

Fakhrzadeh 2012	a	а	b	а	body mass index (BMI), age and follow-up period from the index pregnancy	d	а	C	5
Ferrada 2007	а	а	b	а	NA	е	а	С	4
Ferraz 2007	а	а	b	а	NA	d	а	С	4
Friere 2006	а	b	b	а	NA	d	а	С	3
Gadgil 2017	а	а	а	а	NA	d	а	С	5
Gobl 2011	а	а	С	а	NA	е	b	С	3
Gobl 2013	а	а	С	а	NA	d	b	С	3
Gobl 2014 (A)	а	а	С	а	NA	d	b	С	3
Göbl 2014 (B)	а	а	С	а	NA	d	b	С	3
Goueslard 2016	b	b	b	а	NA	d	а	С	1
Gunderson 2010	b	а	а	b		а	а	С	3
Gunderson 2014	b	а	а	b		а	а	b	4
Han 2018	b	а	а	b		b	b	а	4
Hakkariainen 2015	а	а	а	а		а	а	а	7
Hakkariainen 2016	а	а	а	а		а	а	а	7
Heida 2015	а	а	а	а	NA	d	а	b	4
Homko 2001	а	b	b	а	age- and weight-matched nondiabetic pregnant women	d	а	С	4
Hu 1998	a	b	b	а	age	d	а	С	4
Hunger Dathe 2006	а	b	b	а	NA	c/d	а	С	3
Kessous 2013	b	а	b	а	NA	d	а	С	3

King 2009	а	b	b	а	age, body mass index, and time since GDM- affected pregnancy	С	а	С	4
Kjos 1991	а	а	а	а		а	а	С	6
Ко 1999	а	а	b	а	age-matched	d	а	С	5
Kousta 2003	а	а	b	а	ethnicity, parity and time since delivery	d	а	С	5
Krishnaveni 2007	а	а	b	а	NA	d	а	С	4
Lauenborg 2005	а	а	а	b	**	а	b	b	5
Lee, A. J., <i>et al.</i> (2007)	а	а	b	а	NA	d	а	С	4
Lee, H., <i>et al.</i> (2008)	а	а	b	а	age-matched	d	а	С	5
Lee, Y. P., <i>et al.</i> (2015)	а	а	b	а	age and weight	d	а	С	5
Levka 2015	а	а	а	b		а	а	С	5
Levka 2016	а	а	а	b		а	а	С	5
Levka 2017	а	а	а	b		а	а	b	5
Lim 2007	а	а	b	а	age- and BMI-matched women	d	а	b	5
Linn 2002	а	а	b	а	NA	d	а	С	4
Ma, Y., <i>et al.</i> (2018).	а	b	b	а	NA	d	а	С	3
Madarasz 2009	а	а	b	а	**	а	а	b	5
Magenheim, R., <i>et al.</i> (2010).	а	b	b	а	NA	d	а	С	3
Maghbooli, Z., <i>et al.</i> (2010).	а	b	b	а	NA	d	а	С	3
Mai 2014	а	а	а	а		а	а	С	5

McKenzie- Sampson 2018	b	а	b	а	NA	d	а	С	3
McLachlan 2005	а	b	b	а	19 age- and BMI-matched	d	а	С	4
Meier, J. J., <i>et al.</i> (2005).	а	b	b	а	NA	d	а	С	3
Minoee 2017	а	а	а	а	*	е	а	С	5
Minoee 2017	а	а	а	а		е	а	С	5
Modela 2016	а	b	а	а	**	е	а	а	6
Morbiducci 2009	С	а	а	а		е	а	а	5
Noctor 2015	а	а	а	а		а	а	С	5
Noctor 2016	а	а	а	а		а	а	С	5
Noujah 2017	а	а	а	b		а	а	С	5
Noujah 2018	а	а	а	b		а	а	С	5
Osei 1998	а	а	а	а	**	а	а	а	8
Ozuguz 2011	а	а	а	а		а	а	С	5
Pacini 2012	С	С	е	а		е	а	а	3
Perrson 2015	b	а	а	а		а	b	С	4
Pimenta 2004	а	а	а	а	**	а	а	С	7
Pirkola 2010	а	а	а	а	**	а	а	С	7
Prikoszovich 2011	а	а	а	а	**	а	а	а	8
Rauito 2014	а	а	а	а		d	b	а	5
Rawal 2018	b	а	а	а		а	а	С	5
Retnakaran 2009	а	а	а	а		а	а	а	7
Retnakaran 2010	а	а	а	а		а	а	а	7
Retnakaran 2010	а	а	а	а		а	а	а	7
Retnakaran 2011	а	а	а	а		а	а	а	7
Rivas 2010	а	а	а	а		а	а	а	7

Roca-Rodrigeuz 2012	а	а	а	а	**	а	а	а	8
Roca-Rodrigeuz 2014	а	а	а	а	**	а	а	а	8
Ruksasakul 2016	а	а	а	а	**	а	а	а	8
Ryan 1995	С	а	С	а		е	а	а	4
Ryan 2013	а	а	а	а		d	а	а	5
Sartore 2011	а	а	а	а		а	а	а	7
Seck 2019	а	а	а	а		а	а	а	7
Seghiri 2007	а	а	а	а		а	а	С	6
Shen 2018	а	а	а	а		а	а	С	6
Shen 2019	а	а	а	а		а	а	С	6
Shostrom 2017	b	b	а	а		е	а	С	3
Simmons 2017	b	а	а	а		d	а	а	5
Sokup 2012	а	а	а	а	**	а	а	а	8
Sokup 2012	а	а	а	а	**	а	а	а	8
Sriharan 2002	а	а	а	а		а	а	а	6
Steube 2011	а	а	а	а		а	а	С	6
Sung 2008	а	а	а	а	**	а	а	С	7
Tam 2007	а	а	а	а	**	а	а	а	7
Tam 2012	а	а	а	а	**	а	а	а	8
Tam 2013	а	а	а	а	**	а	а	а	8
Tehrani 2012	а	а	а	а	**	а	а	С	7
Ueland 2018	а	а	а	b	*	а	а	а	6
Thomann 2008	а	а	а	а	**	а	а	а	8
Tobias 2007	b	а	а	b		d	а	С	3
Todoric 2012	а	а	а	а	**	а	а	С	7
Tura 2006	а	а	а	а	**	а	а	С	7
Verma 2002	а	а	а	а	*	а	а	С	7

Vigneault 2015	b	а	а	а		d	а	С	4
Vilmi-Kerala 2016	а	а	а	а	**	а	а	а	8
Vitoratos 2001	а	b	а	а		а	а	а	6
Wang 2012	а	b	b	а		а	а	а	5
Wang 2015	а	а	а	а	**	а	а	а	8
Wang 2019	С	а	b	а		а	а	d	4
Wender-Ozegowska 2007	b	а	а	а		d	а	С	4
Winhofer 2013	а	а	а	а	**	а	а	а	8
Winhofer 2014	а	а	а	а	**	а	а	а	8
Winofer 2014	а	а	а	а	**	а	а	а	8
Winzer 2004	а	а	а	а	**	а	а	а	8

Study of Subgroup	Maan	GDM	Total	No	n-GDM	Total	Woight	Mean Difference	Mean Difference
Akinci 2008 (3 years PP)	113.91	1.31	46	111.5	1.32	30	3.2%	2.41 [1.80, 3.02]	IV, Random, 95% Ci
Anastasiou 1998 (3-6 months PP) (1) Anastasiou 1998 (3-6 months PP) (2)	116.3 106.5	12.6 11.1	16 17	109.1 109.1	8.9 8.9	9 10	0.7% 0.9%	7.20 [-1.28, 15.68] -2.60 [-10.23, 5.03]	
Banerjee 2012 (2 year PP) Bentivul ewis 2015 (no specific pp)	114.5 116	5.92 11	8 99	108.2	5.92 a	8 89	1.3%	6.30 [0.50, 12.10] 1 00 F1 84 3 841	<u>⊢</u>
Bently-Lewis 2016 (4 years PP)	113	12	521	110	11	15056	3.1%	3.00 [1.95, 4.05]	-
Bo 2006 (6.5 years PP) (3) Bo 2006 (6.5 years PP) (4)	117.8	12.2	21	111	12.4	56	1.7%	-3.60 [-9.41, 2.21]	
Caliskan 2014 (6 years pp) Carr 2006 (29 9 years)	119.1 127.9	9.3 20	62 332	115.8 127.9	12.7 20.6	33 662	1.5% 2.4%	3.30 [-1.61, 8.21] 0.00 [-2.66, 2.66]	
Celina 1983 (5 weeks postpartum)	121	13.42	20	119	15.5	15	0.6%	2.00 [-7.80, 11.80]	+-
Davenport 2012 (2 month pp) (5)	119	17	55 10	116	15	32	1.0%	3.00 [-3.87, 9.87] 11.00 [6.45, 15.55]	Τ-
Davenport 2012 (2 month pp) (6) Davis1999 (3-18 months pp)	127 111 6	4 75	10 21	125 108.9	3 10	5 18	2.0%	2.00 [-1.61, 5.61] 2.70 [-2.92, 8.32]	-
Fakhrzadeh 2012 (4 years pp)	121.26	9.21	20	115.05	8.01	7	1.0%	6.21 [-0.97, 13.39]	
Ferrada 2007 (end of pureperal period) Ferraz 2007 (6.2 years pp)	119.25	89.86 1.83	31 70	117.14 118.19	123.8	/ 108	0.0%	4.24 [3.75, 4.73]	•
Friere 2006 (8 weeks pp) Gaadil 2017 (7)	111.9 124.9	11.1 16.5	13 40	113.9 122.3	11.2 16.6	13 374	0.7% 1.4%	-2.00 [-10.57, 6.57] 2.60 [-2.78, 7.98]	
Gunderson 2010 (no specified pp) (8)	106.2	10.6	154	105	9.5	1655	2.8%	1.20 [-0.54, 2.94]	<u>_</u>
Hakkariainen 2016 (9)	114.2	12	220	121	14.9	67	2.0%	3.00 [-0.71, 6.71]	-
Hakkariainen 2016 (10) Heida 2015 (27-29 years pp)	125 127	12 21	48 1089	121 127	14 20	67 15560	1.6% 3.0%	4.00 [-0.77, 8.77] 0.00 [-1.29, 1.29]	
Hunger-Dathe 2006 (6 year pp) King 2009 (15 years postnartum)	121.1	17.2	173	118.2 110.4	7	50 20	2.2%	2.90 [-0.31, 6.11]	<u></u>
Ko 1999 (6 weeks pp)	112.9	13.6	801	107.2	12.6	431	2.9%	5.70 [4.18, 7.22]	-
Krishnaveni 2007 (+5 years pp) (11) Krishnaveni 2007 (+5 years pp) (12)	121.1 125.4	22.5 19.1	13 11	117.7 112.8	14.1 12.1	8 75	0.3% 0.4%	3.40 [-12.25, 19.05] 12.60 [0.99, 24.21]	
Krishnaveni 2007 (+5 years pp) (13) Lee 2008 (Median 2.1 year pp)	106.7	103	11 620	107.2	9.8 11.6	406 969	0.0%	-0.50 [-61.38, 60.38]	
Lee 2015 (6-8 weeks pp) (14)	110	8.9	19	108.9	9.6	9	0.9%	1.10 [-6.34, 8.54]	<u>+</u>
Lee 2015 (6-8 weeks pp) (15) Lim 2007 (1 year postpartum) (16)	111.4 114.8	8.9 10.3	17 60	108.9 108.4	9.6 7.7	10 17	0.9% 1.7%	2.50 [-4.80, 9.80] 6.40 [1.91, 10.89]	
Lim 2007 (1 year postpartum) (17) Madarasz 2009 (3 5 years pp)	114.4	8.6 13	21 68	108.4	7.7	17 39	1.4%	6.00 [0.81, 11.19] 6.00 [1.37, 10.63]	<u> </u>
Mai 2014 (2.5 years pp)	109.9	15.3	190	105	10.2	80	2.2%	4.90 [1.78, 8.02]	-
Meler 2005 (4.1 Mean years pp) Minoee 2017 (15 years pp)	114 111.86	15 12.78	20 476	110 109.6	10 12.6	20 1982	0.8%	4.00 [-3.90, 11.90] 2.26 [0.98, 3.54]	~
Moleda 2016 (7 years pp) Noctor 2016 (3 years pp)	123.2	17.3 15.4	199 270	118.8 116.1	14.8 13.4	50 388	1.6% 2.6%	4.40 [-0.35, 9.15] 8.60 [6.33, 10.87]	
Noujah 2018 (6-12 weeks pp)	106.05	11.83	176	102.87	17.87	86	1.8%	3.18 [-0.98, 7.34]	+-
Rauito 2014 (1 year pp) Roca-Rodriguez 2014 (1 year pp)	125 122.6	12.7	109	134 116.7	15.7 12.4	149	2.1%	-9.00 [-12.47, -5.53] 5.90 [-0.77, 12.57]	
Ryan 2013 (5 years pp) (18) Ryan 2013 (5 years pp) (19)	123 129	5 4	11 20	134 134	3	13 13	2.1% 2.6%	-11.00 [-14.37, -7.63] -5.00 [-7.39, -2.61]	-
Simmons 2017 (20)	130	16	44	126	18	1643	1.6%	4.00 [-0.81, 8.81]	
Simmons 2017 (21) Sriharan 2002 (6.8 years postpartum)	120.9	15.2	8 46	118.8	24 14.9	939 50	1.2%	2.10 [-3.93, 8.13]	+
Sriharan 2002 (6.8 years postpartum) Sung 2008 (2 months pp) (22)	120.9 108	15.2 11	46 72	118.8 109	14.9 7	50 6	1.2% 1.2%	2.10 [-3.93, 8.13] -1.00 [-7.15, 5.15]	
Sung 2008 (2 months pp) (23)	110	11	60	109	7	6	1.1%	1.00 [-5.25, 7.25]	+
Tehrani 2012 (9 years pp)	111.6	10.9	29	110.6	12.1	58	1.5%	1.00 [-4.04, 6.04]	+
Thomann 2008 Verma 2002 (25)	117 121.6	16 10.8	18 106	110 119.2	14 9.7	19 101	0.6% 2.4%	7.00 [-2.71, 16.71] 2.40 [-0.39, 5.19]	-
Verma 2002 (26) Vilmi-Kerala 2016 (4 years nn)	121.6	10.8 12.5	106 120	119.2 119	9.7 11.5	101	2.4%	2.40 [-0.39, 5.19]	~
Vilmi-Kerala 2016 (4 years pp)	122.4	12.5	120	119	11.5	120	2.3%	3.40 [0.36, 6.44]	-
Wang 2015 (1 year pp) Winhofer 2014 (10 years postpartum) (27)	130	13	48 6	119	15	48 5	1.3%	4.00 [-17.97, 25.97]	
Winhofer 2014 (10 years postpartum) (28) Winhofer 2014 (10 years postpartum) (29)	111 126	9 15	9 20	119 119	15 15	5	0.3%	-8.00 [-22.40, 6.40] 7.00 [-9.10, 23.10]	
Zajdenverg 2014 (1 year)	114.5	17.9	20	110.8	16.5	25	0.6%	3.70 [-6.47, 13.87]	
Total (95% CI)			7332			42786	100.0%	2.57 [1.74, 3.40]	
Heterogeneity: Tau ² = 5.56; Chi ² = 304.73, df = 6 Test for overall effect: Z = 6.05 (P < 0.00001)	64 (P < 0.0	10001); I	²= 799	6					-100 -50 0 50 100
Footpotes									NOII-GDM GDM
(1) Obese GDM									
(2) Nonobese GDM (3) pGDM-BMI > 25, any MS components									
(4) pGDM-BMI < 25, no MS components (5) pGDM-Hyperglycemic									
(6) pGDM-Normoglycemic									
(7) no specific postpartum follow-up (8) Follow-up at 0, 7 10 and 15 years pp									
(9) <5 years pp -GDM with 1 abnormal OGTT									
(11) DM									
(12) IGT/IFG (13) GDM-NGT									
(14) GDM-NGT (15) GDM-IGT									
(16) GDM-NGT									
(18) Premenopasual GDM									
(19) Postmenopausal GDM (20) < 50 years									
(21) > 50 years (22) Previous CDM with Normal Chucasa Talars	nce								
(23) Previous GDM with Impaired Glucose Toler	rance								
(24) Previous GDM with DM (25) 4 years postpartum									
(26) 4 years postpartum (27) pGDM-IGR									
(28) pGDM-NGT									
(29) pGDM-12DM									

Supplementary Figure 3.8 1 Meta-analysis of systolic blood pressure (mmHg) in women with previous gestational diabetes mellitus compared to women without a history of GDM

		GDM		N	on-GDM			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Akinci 2008 (3 years PP) Anastasiou 1998 (3-6 months PP) (1)	70 62.9	0.75	46	68.2	7.3	30 10	3.8%	-5.30 [-11.37, 0.77]	
Anastasiou 1998 (3-6 months PP) (2)	73.4	7.5	16	68.2	7.3	9	0.7%	5.20 [-0.82, 11.22]	
Banerjee 2012 (2 year PP)	73.1	3.41	8	66.1	5.2	8	1.2%	7.00 [2.69, 11.31]	
Bently-Lewis 2015 (no specific pp) Bently-Lewis 2016 (4 years PP)	73	8	96 521	/1 68	8	96 15056	2.5%	2.00 [-0.13, 4.13]	L.
Bo 2006 (6.5 years PP) (3)	69.7	7.6	21	71.4	8.6	57	1.3%	-1.70 [-5.64, 2.24]	-
Bo 2006 (6.5 years PP) (4)	76.4	9.2	61	71.4	8.6	56	1.7%	5.00 [1.77, 8.23]	-
Caliskan 2014 (6 years pp)	75.2	4.9	62	73.7	8	33	1.9%	1.50 [-1.49, 4.49]	T
Carr 2006 (29.9 years) Celina 1983 (5 weeks postpartum)	76	8.94	297	76.4	7.75	15	3.8% 0.8%	2.00 [-3.54, 7.54]	<u> </u>
Charwat-Resi 2017 (14-16 years postpartum)	75	10	55	74	10	32	1.2%	1.00 [-3.36, 5.36]	+
Davenport 2012 (2 month pp) (5)	78	4	10	70	3	5	1.5%	8.00 [4.39, 11.61]	-
Davenport 2012 (2 month pp) (6)	72	77	10	07 60 0	77	10	1.9%	2.00 [-0.91, 4.91]	
Fakhrzadeh 2012 (4 years pp)	78.21	7.43	20	72.72	8.22	20	1.0%	5.49 [0.63, 10.35]	
Ferrada 2007 (end of pureperal period)	74.83	35.67	31	66.57	39.61	7	0.0%	8.26 [-23.66, 40.18]	
Ferraz 2007 (6.2 years pp)	89.64	8.93	70	81.94	1.07	108	2.5%	7.70 [5.60, 9.80]	
Friere 2006 (8 weeks pp) Gadoil 2017	71.9	8.1 Q	13	74.Z 69.5	10	374	0.6%	-2.30 [-9.30, 4.70] 3 30 [0 34 6 26]	
Gunderson 2010 (no specified pp) (7)	68	7.8	154	66.4	8.9	1655	3.2%	1.60 [0.30, 2.90]	•
Gunderson 2014 (20 years pp)	72.5	12.4	119	70.1	10.9	779	2.3%	2.40 [0.04, 4.76]	~
Hakkariainen 2016 (8) Hakkariainen 2016 (8)	80	9	220	78	10	67 67	1.6%	2.00 [-1.50, 5.50]	
Heida 2015 (27-29 years pp)	78	11	1089	77	10	15560	3.6%	1.00 [0.33, 1.67]	
Hunger-Dathe 2006 (6 year pp)	78.6	11.1	173	72.8	7.9	50	2.0%	5.80 [3.06, 8.54]	-
King 2009 (15 years postpartum)	68.8	7.2	20	67.6	11.1	20	0.8%	1.20 [-4.60, 7.00]	+
Ko 1999 (6 weeks pp) Krishnaveni 2007 (+5 years nn) (10)	73.1	9.5	801	68.6 64.9	9.4 g g	431	3.3%	4.50 [3.40, 5.60]	_
Krishnaveni 2007 (+5 years pp) (10) Krishnaveni 2007 (+5 years pp) (11)	73.5	15.9	11	68.6	10	400	0.3%	4.90 [-4.76, 14.56]	+
Krishnaveni 2007 (+5 years pp) (12)	72.5	11.5	13	68.2	11.9	8	0.3%	4.30 [-6.05, 14.65]	
Lee 2008 (Median 2.1 year pp)	71.4	8.2	620	70.3	9.3	868	3.5%	1.10 [0.21, 1.99]	
Lee 2015 (6-8 weeks pp) (13)	68.2	6 96	17	70	5	10	1.2% n.a%	-1.80 [-6.01, 2.41]	
Lim 2007 (1 year postpartum) (15)	70.7	7.2	60	67.6	6.2	17	1.6%	3.10 [-0.36, 6.56]	-
Lim 2007 (1 year postpartum) (16)	70.1	8.2	21	67.6	6.2	17	1.1%	2.50 [-2.08, 7.08]	+
Madarasz 2009 (3.5 years pp)	74	9	68	68	7	39	1.8%	6.00 [2.93, 9.07]	
Mai 2014 (2.5 years pp) Meier 2005 (4.1 Mean years nn)	70.9	10.8	20	08.9 71	1.8	80 20	2.4%	2.00 [-0.30, 4.30]	
Minoee 2017 (15 years pp)	75.39	9.46	476	73.83	9.38	1982	3.5%	1.56 [0.62, 2.50]	•
Moleda 2016 (7 years pp)	81.4	12	199	79	9.9	50	1.7%	2.40 [-0.81, 5.61]	-
Noctor 2016 (3 years pp)	73.6	10.4	270	68.8	9.2	388	3.0%	4.80 [3.26, 6.34]	~
Rauito 2014 (1 vear pp)	65.13 80	9.91	109	87	9.65	149	2.5%	-7.00[-9.46-4.54]	-
Roca-Rodriguez 2014 (1 year pp)	76.3	8	41	71.4	9.1	21	1.1%	4.90 [0.30, 9.50]	
Ryan 2013 (5 years pp) (17)	77	2	20	82	2	13	3.1%	-5.00 [-6.40, -3.60]	-
Ryan 2013 (5 years pp) (18) Cimmono 2017 (10)	80	4	11	82	2	13	2.1%	-2.00 [-4.60, 0.60]	-
Simmons 2017 (19) Simmons 2017 (20)	95 90	12	44	93	14	1643	0.4%	2.00 [-0.36, 10.36]	-
Sriharan 2002 (6.8 years postpartum)	80.4	11.4	46	78.2	12.8	50	1.0%	2.20 [-2.64, 7.04]	+-
Sung 2008 (2 months pp) (21)	73	9	60	67	7	6	0.7%	6.00 [-0.05, 12.05]	
Sung 2008 (2 months pp) (22) Sung 2008 (2 months pp) (22)	71	8	72	67 67	7	6	0.7%	4.00 [-1.90, 9.90] 4.00 [-4.27, 12.27]	
Tehrani 2012 (9 years pp)	90.1	13.1	29	89.4	7.8	58	0.9%	0.70 [-4.47, 5.87]	+
Thomann 2008	72	11	18	71	9	19	0.6%	1.00 [-5.50, 7.50]	+
Verma 2002 (24)	71.7	9.7	106	71.1	9.4	101	2.1%	0.60 [-2.00, 3.20]	t
Viimi-Kerala 2016 (4 years pp) Wang 2015 (1 year pp)	73.5	9	120	71.8	8.7	120	2.4%	1.70[-0.54, 3.94]	-
Winhofer 2014 (10 years postpartum) (25)	74	9	20	79	10	5	0.3%	-5.00 [-14.61, 4.61]	
Winhofer 2014 (10 years postpartum) (26)	79	8	9	79	10	4	0.2%	0.00 [-11.11, 11.11]	
Winhofer 2014 (10 years postpartum) (27)	81	13	6	79	10	5	0.2%	2.00 [-11.60, 15.60]	
zajdenverg zo14 (1 year)	76.5	11.0	20	12.0	12	25	0.0%	3.70 [-3.29, 10.69]	-
Total (95% CI)			7025			42470	100.0%	1.89 [1.32, 2.46]	
Heterogeneity: Tau ² = 2.18; Chi ² = 349.14, df =	61 (P < 0	.00001);	l² = 83	%					-100 -50 0 50 100
Test for overall effect: $Z = 6.54$ (P < 0.00001)									Non-GDM GDM
Footnotes									
(1) Nonobese GDM									
(2) Obese GDM (2) pCDM_RML< 25, pp.MS components									
(4) pGDM- BMI > 25, any MS components									
(5) pGDM-hyperglycemic									
(6) pGDM-Normoglycemic									
(7) Follow-up at 0, 7 10 and 15 years pp (8) <5 year pp -CDM with 2 Abnormal OCTT									
(9) <5 year postpartum-GDM with 1 abnormal C	OGTT								
(10) NGT									
(11) IGT/IFG (12) DM									
(12) DM (13) GDM-IGT									
(14) GDM-NGT									
(15) GDM-NGT									
(16) GDM-IGT (17) Postmenorousal CDM									
(18) Premenopausal GDM									
(19) > 50 years old									
(20) < 50 years old									
(21) Previous GDM with Impaired Glucose Tole (22) Previous GDM with Normal Glucose Toler	ance								
(23) Previous GDM with DM									
(24) 4 years postpartum									
(25) pGDM-T2DM									

(26) pGDM-12DM (26) pGDM-NGT (27) pGDM-IGR

Supplementary Figure 3.8 2 Meta-analysis of diastolic blood pressure (mmHg) in women with previous gestational diabetes mellitus compared to women without a history of GDM.

Study or Subgroup	Mean	GDM	Total	Mean	Non-GDM	Total	Weight	Mean Difference	Mean Difference
Ajala 2015 (4-10 Years PP) Akinci 2008 (3 years PP)	28.9 27.59	6.6 0.82	90 46	26.6 22.87	6.9 0.55	59 30	1.0% 1.5%	2.30 [0.07, 4.53] 4.72 [4.41, 5.03]	
Akinci 2014 (3 years PP) Anastasiou 1998 (3-6 months PP) (1) Anastasiou 1998 (3-6 months PP) (2)	26.82 31.7 24	4.25 3.6 2	141 16 17	26.5 24.2 24.2	2.66 2.6 2.6	49 9 10	1.3% 0.9% 1.1%	0.32 [-0.70, 1.34] 7.50 [5.05, 9.95] -0 20 [-2 07 1 67]	1-
Banerjee 2012 (2 year PP) Behboudi- Gandevani 2019 (13 years postpartum)	32.1 29.23	1.43 4.75	8 801	21.9 27.34	1.07	8 2594	1.3% 1.5%	10.20 [8.96, 11.44] 1.89 [1.52, 2.26]	-
Bently-Lewis 2016 (4 years PP) Bo 2006 (6.5 years PP) (3) Do 2006 (6.5 years PP) (4)	28.9 20.9	7 1.9	521 21	25.3 23.1	5.2 3.8	15056 57	1.4%	3.60 [2.99, 4.21] -2.20 [-3.48, -0.92]	-[
Bowes 1996 (2-3 months pp) Bozkurt 2012 (3-6 months pp) (5)	30.6 30.4	1.5 5.4	25	27.7	1.3 6.4	5	1.2%	2.90 [1.31, 4.49] 5.00 [1.04, 8.96]	-
Bozkurt 2012 (3-6 months pp) (6) Caliskan 2014 (6 years pp)	25.4 26.9	4.1 3.9	37 62	25.4 26.1	6.4 2.7	15	0.6%	0.00 [-3.50, 3.50] 0.80 [-0.54, 2.14]	Ī
Carr 2006 (29.9 years) Charwat-Resi 2017 (14-16 years postpartum) Cocilovo 1990 (1 year pp) (7)	27.7	21.9 5.1 2.9	332 55 41	25.9 23.2	15.4 5.9 3.4	32 13	0.8%	1.80 [-0.65, 4.25] -0.90 [-2.95, 1.15]	Į.
Cocilovo 1990 (1 year pp) (8) Couch 1998 (No specific pp)	25.8 25.4	4.4 4.8	48 20	23.2 23.7	3.4 3.8	12 20	0.9% 0.8%	2.60 [0.31, 4.89] 1.70 [-0.98, 4.38]	÷
Davenport 2012 (2 month pp) (9) Davenport 2012 (2 month pp) (10) Davis1999 (3-18 months pp)	31.6 27.6 29.7	4.2 2.5 5.3	10	26 26 25 9	1.1 1.1 4.2	5	0.8%	5.60 [2.82, 8.38] 1.60 [-0.22, 3.42] 3.80 [0.82, 6.78]	
Demir 2016 (3-4 years postpartum) Dornhorst 1990 (11)	28.3 30.9	6.5 5.0269	80 7	22.7 30.2	2.6 5.0269	40 7	1.1% 0.4%	5.60 [3.96, 7.24] 0.70 [-4.57, 5.97]	+-
Domhorst 1990 (12) Domhorst 1990 (13) Eroqlu 2006 (10-15 months pp)	26.2 33.4 25.7	7.8339 5.4083 3.01	17 13 36	27.8 32.6 24.5	6.1847 6.49 3.6	17 13 33	0.4% 0.4% 1.2%	-1.60 [-6.34, 3.14] 0.80 [-3.79, 5.39] 1.20 [-0.37, 2.77]	
Fakhrzadeh 2012 (4 years pp) Ferrada 2007 (end of pureperal period)	27.63 31.77	3.52 21.79	20 31	27.33 26.07	5.64 4.95	20 7	0.8% 0.2%	0.30 [-2.61, 3.21] 5.70 [-2.80, 14.20]	‡
Ferraz 2007 (6.2 years pp) Friere 2006 (8 weeks pp) Gaddail 2017	26.34 24.8 26.7	0.59 4.3	70 13	25.33 24.2	0.44 4.3	108 13 274	1.5%	1.01 [0.85, 1.17] 0.60 [-2.71, 3.91] 0.70 [0.66, 1.96]	÷
Gunderson 2010 (no specified pp) (14) Gunderson 2014 (20 years pp)	26.7 31.3	7.5 7.6	154 119	24.1 28.9	5.3 7.4	1655 779	1.3%	2.60 [1.39, 3.81] 2.40 [0.94, 3.86]	-
Hakkariainen 2016 (15) Hakkariainen 2016 (16)	29.9 28.1	5.6 5.4	48 220	27.2	4.7	67 67	1.0%	2.70 [0.76, 4.64] 0.90 [-0.43, 2.23]	
Heida 2015 (27-29 years pp) Hunger-Dathe 2006 (6 year pp)	20.98	2.74 5.2 6.5	1089	25.7	6.74 4.1 2.9	15560 50	1.5%	1.20 [0.88, 1.52] 4.40 [3.14, 5.66]	-
King 2009 (15 years postpartum) Kjos 1991 (1 year pp) (17)	29.2 32	6.4 7	20 60	28.5 26.8	7.7	20 36	0.5%	0.70 [-3.69, 5.09] 5.20 [3.06, 7.34]	+-
Ko 1999 (6 weeks pp) Kousta 2003 (2 years pp) Krishnaveni 2007 (≁5 vears pp) (18)	24.8 25.4 26.7	3.4 4.59 4.6	801 34 13	22.7 23.1 28.9	3.3 4.28 4.9	431 44 8	1.4% 1.0% 0.5%	2.10 [1.71, 2.49] 2.30 [0.31, 4.29] -2.20 [-6.42, 2.02]	-
Krishnaveni 2007 (+5 years pp) (19) Krishnaveni 2007 (+5 years pp) (20)	26.1 23.6	3 4.4	11 11	24.8 23.2	4.4 4.4	75 406	1.0% 0.8%	1.30 [-0.73, 3.33] 0.40 [-2.24, 3.04]	÷.
Lee 2007 (15 years pp) Lee 2008 (Median 2.1 year pp) Lee 2015 (5-9 weeks pp) (21)	26.9 23.5 23.7	4.9 3.5 3.2	5740 620 17	25.8 22.5 22.7	3.6 3.2	783 868 10	1.5%	1.10 [0.82, 1.38] 1.00 [0.65, 1.35] 1.50 [0.90, 3.90]	Ļ
Lee 2015 (6-8 weeks pp) (22) Lim 2007 (1 year postpartum) (23)	23	3.7 3.3	19 21	22.2 21.8	3 2.4	9 17	0.9%	0.80 [-1.77, 3.37] 1.50 [-0.31, 3.31]	t t
Lim 2007 (1 year postpartum) (24) Linne 2002 (15 years pp)	22.5 25.7	2.8 1.11	60 28	21.8 24.7	2.4 2.01	17 52	1.2% 1.4%	0.70 [-0.64, 2.04] 1.00 [0.32, 1.68]	Ĩ.
Madarasz 2009 (3.5 years pp) Magenheim 2010 (25) Magenheim 2010 (26)	24.8 28.2	4 7.9	44	24.5 24.5	4	13 13	0.9%	0.30 [-2.17, 2.77] 3.70 [-0.25, 7.65]	+
Mai 2014 (2.5 years pp) McLachlan 2005 (3-6 weeks pp)	22.7 27.8	3.5 4.36	190 19	21.5 28	2.7 4.36	80 19	1.4% 0.8%	1.20 [0.43, 1.97] -0.20 [-2.97, 2.57]	÷
Meier 2005 (4.1 Mean years pp) Moleda 2016 (7 years pp) Nortor 2016 (7 years pp)	25.9 22.4 29.7	5.1 3.4 6.9	20 47 270	22.2 26.5 26.1	3.2 4.9 4.9	20 119 388	0.8%	3.70 [1.06, 6.34] -4.10 [-5.41, -2.79] 3.60 [2.64, 4.56]	- [
Noujah 2018 (6-12 weeks pp) Osel 1998 (7 years pp)	28.3	4.43 5.8	176	27.31 34	4.51 7.75	86 15	1.3%	0.99 [-0.17, 2.15] -0.80 [-5.70, 4.10]	+
Pacini 2012 (6 months pp) Pimenta 2004 (5 year pp) Pimenta 2004 (5 year pp)	27.3 26.7	0.5 4.3	104 20	31.8 26.3	0.9 3.8	35 20	1.5%	-4.50 [-4.81, -4.19] 0.40 [-2.11, 2.91]	-1
Raulo 2014 (1 year pp) Rawal 2018 (12 year pp)	20.3 30.3 29.2	6.64 69	114	33.7 24.9	6.3 7.4	149 619	1.2%	-3.40 [-4.98, -1.82] 4.30 [-1.22, 9.82]	~
Rivas 2010 Roca-Rodriguez 2014 (1 year pp)	32.32 27.4	8.38 5.6	88 41	24.84 23.9	5.55 3.6	100 21	1.0% 0.9%	7.48 [5.42, 9.54] 3.50 [1.20, 5.80]	
Ryan 1995 (4.9 years pp) Ryan 2013 (5 years pp) (27) Ryan 2013 (5 years pp) (28)	24.9 33.3 31.4	4.49 0.8 1.2	14 20 11	24.4 33.2 33.2	5.24 1 1	14 13 13	0.6% 1.4% 1.4%	0.50 [-3.11, 4.11] 0.10 [-0.55, 0.75] -1.80 [-2.69, -0.91]	Ī
Seghieri 2007 (75 years pp) Shen 2018 (3 years pp)	23.6 24.3	3.5 3.96	43 1263	23.7 22.9	4.8 3.68	22 705	0.9% 1.5%	-0.10 [-2.36, 2.16] 1.40 [1.05, 1.75]	†
Simmons 2017 Simmons 2017 (29) Sribaran 2002 (6.8 years postpartum)	37.5 35.6 27	11 6.7 4.6	8 44 46	33.4 32.4 26.2	7.9 7.7 5 3	939 1643 50	0.2%	4.10 [-3.54, 11.74] 3.20 [1.19, 5.21] 0.80 [-1.18, 2.78]	T T
Sung 2008 (2 months pp) (30) Sung 2008 (2 months pp) (31)	22.1 22.5	3.5	8	21.8 21.8	2.4	5	0.7%	0.30 [-2.91, 3.51] 0.70 [-1.32, 2.72]	‡
Sung 2008 (2 months pp) (32) Tam 2013 (33) Tam 2012 (21)	23.1 24.4	3.2 4.6	60 67	21.8	2.4 3.5	6 136	1.0%	1.30 [-0.78, 3.38] 0.70 [-0.55, 1.95]	Ī
Tahrani 2013 (34) Tehrani 2012 (9 years pp) Thomann 2008	24.7 30 27.1	4.5	45 29 18	29.8 25	4.7 4.5	94 58 19	1.0%	0.20 [-1.19, 1.79] 0.20 [-1.90, 2.30] 2.10 [-2.03, 6.23]	<u>+</u>
Tobias 2017 (6-8 years pp) Verma 2002 (35)	21.5 26.9	3.6 6.4	5292 106	21 25.4	3 6.1	84187 101	1.5%	0.50 [0.40, 0.60] 1.50 [-0.20, 3.20]	÷
Vigneault 2015 (4 years pp) (38) Vigneault 2015 (4 years pp) (38)	27.3 36 22.1	5.47	61 86	33.9 21.9	5.42 1.94	15 42	0.7%	2.10 [-0.97, 5.17] 0.20 [-0.51, 0.91]	†
Vilmi-Kerala 2016 (4 years pp) Vitoratos 2001 (6 weeks pp)	28.3 27.2	5 0.3	120 24	27.5 24.86	5.4 5.91	120 19	1.2% 0.8%	0.80 [-0.52, 2.12] 2.34 [-0.32, 5.00]	
Wang 2015 (1 year pp) Wender-Ozegowska 2007 (6 years pp) Winhofer 2014 (10 years postpartum) (39)	26.8 26.6 28.9	3.2 6 5.7	48 153 6	26.3 21.7 26.1	2.9 2.3 2.5	48 155 5	1.3% 1.3% 0.4%	0.50 [-0.72, 1.72] 4.90 [3.88, 5.92] 2.80 [-2.26, 7.86]	<u> </u>
Winhofer 2014 (10 years postpartum) (40) Winhofer 2014 (10 years postpartum) (41)	28.5 27.3	4.5 5.4	20 9	26.1 26.1	2.5 2.5	4	0.7% 0.5%	2.40 [-0.75, 5.55] 1.20 [-2.95, 5.35]	÷
Winzer 2004 (1 year pp) Xiang 2013 Zaldeware 2014 (1 year)	26.9 31.1	0.5 5.5	89 93	23.7 29.8	0.9 5.6	19 142 25	1.4%	3.20 [2.78, 3.62] 1.30 [-0.15, 2.75]	É
Total (95% CI)	23.7	5.8	26689	20.5	0.13	20 228619	100.0%	1.54 [1.17, 1.91]	
Heterogeneity: Tau ² = 2.37; Chi ² = 2933.42, df = 98 (f Test for overall effect: $Z = 8.23$ (P < 0.00001)	P < 0.00	001); I ⁼ = !	37%						-100 -50 0 50 100 Non-GDM GDM
<u>Footnotes</u> (1) Obese GDM									
(2) Nonobese GDM (3) pGDM-BMI <25, no MS components									
(4) pGDM-BMI> 25, any MS components (5) pGDM-IR (6) pGDM-IS									
(7) BG exceeded 2nd SD for glucose values of O'Sul (8) OGTT exceeded 3rd SD for O'Sullivan Values	livan								
(9) pGDM-hyperglycemic (10) pGDM-normoglycemic (11) pCDM diabatia									
(12) pGDM-NGT (13) pGDM-IGT									
(14) Follow-up at 0, 7 10 and 15 years pp (15) < 5 year pp -GDM with 2 abnormal OGTT									
(17) 3-11 months postpartum (18) GDM-DM									
(19) GDM-IGT/IFG (20) GDM-NGT									
(21) GDM-IGT (22) GDM-IGT (23) GDM IGT									
(24) GDM-NGT (25) pGDM-NGT									
(26) pGDM-AGT (27) Postmenopausal GDM (28) Premenopausal GDM									
(29) <50 years (30) Previous GDM with DM									
(31) Previous GDM with Normal Glucose Tolerance (32) Previous GDM with Impaired Glucose Tolerance (33) 8 years follow-	Ð								
(34) 15 years follow-up (35) 4 years postpartum									
(36) Overweight (37) Obese (22) Nermel Maight									
(39) pGDM-IGR (40) pGDM-T2DM									
(41) pGDM-NGT									

Supplementary Figure 3.8 3 Meta-analysis of body mass index (kg/m2) in women with previous gestational diabetes mellitus compared to women without a history of GDM.

		GDM		No	n-GDM			Std. Mean Difference	Std. Mean	Difference
Study or Subgroup	Mean	SD	lotal	Mean	SD	lotal	Weight	IV, Random, 95% CI	IV, Rando	m, 95% Cl
Akinci 2008 (3 years PP) Akinci 2014 (2 years PP)	187.9	6.64	46	166.83	5.98	30	1.3%	3.26 [2.56, 3.97]		1
Anactaciou 1998 (3-6 months PP) (1)	5.07	0.90	141	4.09	0.62	49	2.170	0.01 [0.16, 0.64]		ļ
Anastasiou 1998 (3-6 months PP) (1)	5.0	0.9	17	1.9	0.0	10	1.1.70	0.24 [-0.56, 1.00]		L
Reparation 1996 (3-0 months FF) (2)	4.5	0.0	16	4.0	0.7	10	0.0%	0.27 60 72 1 251		1
Behhoudi- Gandevani 2019 (13 years nostnartum)	5 35	1.1	801	514	1.1	2594	2.5%	0.19[0.11_0.27]		
Bently I ewis 2015 (no specific nn)	5.00	1.1	90	52	0.6	2004	2.0.0	0.21 6.007 0.491		
Caliskan 2014 (6 years nn)	188.7	27.1	62	181.8	32.1	33	1.8%	0.24 [-0.01, 0.43]		
Carr 2006 (20 9 vears)	5.05	1 09	212	101.0	1 20	631	2.4%	0.24 [-0.13, 0.00]		1
Chanyat-Reel 2017 (14-16 years nostnartum)	196	1.03	55	195	1.23	32	1.9%	0.03 L0.41 0.461		1
Davennort 2012 (2 month nn) (3)	52	0.59	10	4 59	1 04	5	0.7%	0.76 - 0.36 1 881		ļ
Davenport 2012 (2 month pp) (3)	510	0.33	10	4.55	1.04	5	0.7%	0.62 - 0.48 1 73		ļ
Davis1999 (3-18 months nn)	183.3	28.3	21	170.5	36.7	18	1 / 96	0.39 - 0.25 - 1.021		ļ
Demir 2016 (3-4 years nostnartum)	188.7	40.1	21	169.3	27.9	40	1 0 %	0.53[-0.23, 1.02]		ļ
Erodu 2006 (10-15 months nn)	195.6	30.0	36	151.1	10.1	22	1.6%	1 31 [0 79 1 84]		L
Eakhradeh 2012 (4 veare nn)	179.1	32.02	20	171.25	20.26	20	1 / 96	0.22 E0.40 0.941		l
Forraz 2007 (6 2 voore nn)	4.72	0.12	70	4.75	23.30	109	2.1%	-0.19 [-0.40, 0.04]		1
Goddil 2017	4.rJ 6.1	0.13	40	4.75	0.03	274	2.170	0.13[0.43, 0.12]		1
Gunderson 2010 (no specified nn)	170	30	154	174 4	30.7	1655	2.1%	0.15 60.02 0.321		
Gunderson 2014 (20 years nn)	185.6	31.8	110	18/ 9	31.6	779	2.4%	0.02 - 0.17 0.22		1
Heida 2015 (27-29 vears pp)	5.7	1.2	1090	5.8	1.1	15560	2.5%	-0.09 [-0.17, 0.22]		1
King 2009 (15 years nostnartum)	178.6	23.3	20	186.1	22.4	20	1 4 %	-0.32 -0.95 0.301		4
King 1991 (1 year nn) (6)	5.02	0.86	20	5.1	n aa	36	1.9%	-0.09 -0.54 0.371		
Ko 1999 (6 weeks nn)	5.47	1	801	4.66	0.83	431	2 4 %	0.86 (0.74, 0.98)		ļ
Knusta 2003 (2 years pp)	4.5	4 07	34	4.3	4.03	44	1.8%	0.05 1-0.40 0.501		4
Lee 2008 (Median 21 year pp)	5.1	1	620	4.5	0.8	868	2.4%	0.67 (0.57 0.78)		ļ
Lee 2015 (6-8 weeks pp) (7)	4.4	0.9	17	4.3	0.7	10	1.1%	0.12 (-0.67, 0.90)		ł
Lee 2015 (6-8 weeks pp) (8)	4.7	0.7	19	4.3	0.7	9	1.1%	0.55 [-0.25, 1.36]		ļ
Lim 2007 (1 year postpartum) (9)	4.9	0.7	21	5	0.8	21	1.5%	-0.13 [-0.74, 0.48]		4
Lim 2007 (1 year postpartum) (10)	4.7	0.7	60	5	0.8	21	1.7%	-0.41 [-0.91. 0.09]		4
Mai 2014 (2.5 years pp)	4.7	0.8	190	4.4	0.77	80	2.2%	0.38 [0.11, 0.64]		4
Meier 2005 (4.1 Mean years pp)	5.02	0.68	20	5.05	0.8	20	1.4%	-0.04 [-0.66, 0.58]		4
Moleda 2016 (7 vears pp)	4.93	1	199	4.99	0.88	50	2.1%	-0.06 (-0.37, 0.25)		4
Noctor 2016 (3 vears pp)	5	1	270	4.7	0.8	388	2.4%	0.34 [0.18, 0.49]		4
Ozuguz 2011 (1 vear pp)	218.8	55.1	21	185.2	34.7	34	1.5%	0.76 (0.20, 1.32)		•
Pimenta 2004 (5 year pp)	4.63	1.11	20	4.53	0.72	20	1.4%	0.10 [-0.52, 0.73]		4
Pokropek 2015	246	145	285	230	149	4161	2.4%	0.11 [-0.01, 0.23]		4
Rauito 2014 (1 year pp)	4.75	0.77	94	5.04	0.84	137	2.2%	-0.36 [-0.62, -0.09]		4
Roca-Rodriquez 2014 (1 year pp)	4.9	0.8	41	4.7	0.6	21	1.6%	0.27 1-0.26, 0.801		ł
Ruksasakul 2016 (3 year pp)	205.3	42	56	186.8	36.5	51	1.9%	0.47 [0.08, 0.85]		ł
Ryan 2013 (5 years pp) (11)	4.96	0.21	11	5.14	0.16	13	1.0%	-0.94 [-1.80, -0.09]		4
Ryan 2013 (5 years pp) (12)	5.31	0.24	20	5.14	0.16	13	1.2%	0.78 [0.05, 1.51]		ł
Sartore 2011 (6 months pp)	203.4	38.1	21	204.7	36.1	21	1.5%	-0.03 [-0.64, 0.57]		4
Seck 2018 (after delivery)	2.33	0.68	20	0.64	0.29	20	0.9%	3.17 [2.21, 4.13]		-
Simmons 2017 (13)	5.2	0.5	8	5.4	1	939	1.3%	-0.20 [-0.90, 0.50]		4
Simmons 2017 (14)	4.9	0.9	44	4.8	1	1643	2.1%	0.10 [-0.20, 0.40]		4
Sung 2008 (2 months pp) (15)	4.53	0.72	72	4.97	0.8	6	1.1%	-0.60 [-1.44, 0.24]		4
Sung 2008 (2 months pp) (16)	4.74	0.69	60	4.97	0.8	6	1.0%	-0.33 [-1.17, 0.52]		4
Sung 2008 (2 months pp) (17)	4.47	0.55	8	4.97	0.8	5	0.7%	-0.71 [-1.88, 0.45]		4
Tam 2012 (18)	4.8	1.1	19	4.7	0.6	14	1.3%	0.11 [-0.59, 0.80]		ł
Tam 2012 (19)	4.7	0.6	25	4.7	0.8	80	1.8%	0.00 [-0.45, 0.45]		1
Tehrani 2012 (9 years pp)	196.4	26.4	29	201.9	40.1	58	1.8%	-0.15 [-0.60, 0.30]		1
Verma 2002 (20)	4.9	1.23	87	4.33	0.94	79	2.1%	0.52 [0.21, 0.82]		ł
Verma 2002 (21)	1.27	1.22	58	0.75	0.39	51	1.9%	0.56 [0.17, 0.94]		t
Verma 2002 (22)	5.03	1.33	81	4.58	1.23	79	2.1%	0.35 [0.04, 0.66]		1
Vilmi-Kerala 2016 (4 years pp)	4.7	0.9	120	4.6	0.8	120	2.2%	0.12 [-0.14, 0.37]		1
Wang 2015 (1 year pp)	6.2	1	48	4.8	0.8	48	1.8%	1.53 [1.08, 1.99]		ł
Winhofer 2014 (10 years postpartum) (23)	200	23.1	6	224.7	29.2	5	0.6%	-0.87 [-2.14, 0.40]		1
Winhofer 2014 (10 years postpartum) (24)	202.5	37.7	9	224.7	29.2	4	0.6%	-0.58 [-1.79, 0.63]		1
Winhofer 2014 (10 years postpartum) (25)	205.2	63.7	20	224.7	29.2	4	0.8%	-0.31 [-1.39, 0.76]		†
Zajdenverg 2014 (1 year)	194	33.8	20	185.6	43.8	25	1.5%	0.21 [-0.38, 0.80]		t
T () (0.5) (0)										
Total (95% CI)		743.17	0817			31/44	100.0%	0.20 [0.15, 0.57]		
Test for overall effect: 7 = 4.63 (P < 0.00001)	< 0.000i	JT), I*=	0970						-100 -50 I	Ö 50 100'
									Non-GDM	GDM
Footnotes										
(1) Obese GDM										
(2) Nonobese GDM										
(3) pGDM-normoalvcemic										
(4) pGDM-hyperglycemic										
(5) Follow-up at 0, 7,10 and 15 years pp										
(6) 24-35 month										
(7) GDM-IGT										
(8) GDM-NGT										
(9) GDM IGT										
(10) GDM NGT										
(11) Premenopausal GDM										
(12) Postmenopausal GDM										
(13) > 50 years										
(14) < 50 years										
(15) Previous GDM with Normal Glucose Tolerance										
(16) Previous GDM with Impaired Glucose Tolerand	e									
(17) Previous GDM with DM										
(18) AGT										
(19) NGT										
(20) 6 years postpartum										
(20) 6 years postpartum (21) 11 years postpartum										
(20) 6 years postpartum (21) 11 years postpartum (22) 7 years postpartum										
(20) 6 years postpartum (21) 11 years postpartum (22) 7 years postpartum (23) pGDM-IGR										
(20) 6 years postpartum (21) 11 years postpartum (22) 7 years postpartum (23) pGDM-IGR (24) pGDM-NGT										
 (20) 6 years postpartum (21) 11 years postpartum (22) 7 years postpartum (23) pGDM-IGR (24) pGDM-NGT (25) pGDM-DM 										

Supplementary Figure 3.8 4 Meta-analysis of total cholesterol in women with previous gestational diabetes mellitus compared to women without a history of GDM

Supplementary Figure 3.8 5 Meta-analysis of low-density lipoprotein in women with previous gestational diabetes mellitus compared to women without a history of GDM

		GDM		N	on-GDM		s	td. Mean Difference	Std. Mean Difference
Aiala 2015 (4-10 Years PP)	3.93	1.21	10tai 90	3.21	0.82	10tai 89	1.8%	0.69.00.39.0.991	IV, Random, 95% CI
Akinci 2008 (3 years PP)	58.54	2.37	46	65.7	3.19	30	1.2%	-2.60 [-3.23, -1.98]	←
Akinci 2014 (3 years PP)	1.34	0.34	141	1.49	0.39	49	1.7%	-0.42 [-0.75, -0.09]	
Anastasiou 1998 (3-6 months PP) (1) Anastasiou 1998 (3-6 months PP) (2)	1.9	0.3	17	1.6	0.4	10	1.0%	0.86 [0.04, 1.68]	
Baneriee 2012 (2 year PP)	1.2	0.54	8	1.5	0.12	8	0.7%	-0.73 [-1.75, 0.30]	
Behboudi- Gandevani 2019 (13 years postpartum)	1.12	0.28	801	1.15	0.29	2594	2.0%	-0.10 [-0.18, -0.02]	-
Bently-Lewis 2015 (no specific pp)	1.6	0.3	96	1.7	0.4	96	1.8%	-0.28 [-0.57, 0.00]	
Bo 2006 (6.5 years PP) (3) Caliskan 2014 (6 years nn)	1.6	0.2 G /	21	1.6	0.3	57	1.4%	0.00 [-0.50, 0.50] 0.02 [-0.40, 0.44]	
Carr 2006 (29.9 years)	1.09	0.36	313	1.09	0.26	663	2.0%	0.00 [-0.13, 0.13]	
Charwat-Resl 2017 (14-16 years postpartum)	58	17	55	62	14	32	1.5%	-0.25 [-0.69, 0.19]	
Davenport 2012 (2 month pp) (4)	1.34	0.32	10	1.34	0.24	5	0.7%	0.00 [-1.07, 1.07]	
Davenport 2012 (2 month pp) (5) Davis1999 (3-18 months nn)	1.24	0.17	10	1.34	0.24	15	0.7%	-0.48 [-1.58, 0.61] -0.24 [-0.91, 0.43]	
Demir 2016 (3-4 years postpartum)	58.8	17.1	80	66.1	17.2	40	1.6%	-0.42 [-0.81, -0.04]	
Eroglu 2006 (10-15 months pp)	53.7	9.3	36	51.5	9.5	33	1.5%	0.23 [-0.24, 0.71]	
Fakhrzadeh 2012 (4 years pp)	51.9	12.06	20	50.65	11.49	20	1.2%	0.10 [-0.52, 0.72]	
Ferrada 2007 (end of pureperal period)	37.35	37.1	31	43.42	74.95	7	1.0%	-0.13 [-0.95, 0.69]	
Gadgil 2017	1.4	0.03	40	1.4	0.03	374	1.7%	0.00 [-0.33, 0.33]	·
Gunderson 2010 (no specified pp) (6)	52.1	14.3	154	56.1	13.1	1655	1.9%	-0.30 [-0.47, -0.14]	
Gunderson 2014 (20 years pp)	56.5	15.1	119	59.9	16.6	779	1.9%	-0.21 [-0.40, -0.01]	
Hakkariainen 2016 (7) Hakkariainen 2016 (9)	1.4	0.4	220	1.5	0.3	67	1.8%	-0.26 [-0.54, 0.01]	
Heida 2015 (27-29 years pp)	1.3	0.3	40	1.5	0.5	15560	2.0%	-0.26 [-1.04, -0.28]	~
King 2009 (15 years postpartum)	52.3	11.7	20	55.5	8	20	1.2%	-0.31 [-0.94, 0.31]	
Kjos 1991 (1 year pp) (9)	1.17	0.26	39	1.22	0.26	36	1.5%	-0.19 [-0.64, 0.26]	
Kjos 1991 (1 year pp) Kjos 1991 (1 year pp)	1.17	0.26	39	1.22	U.26	36	1.5%	-0.19 [-0.64, 0.26]	
Ko 1999 (6 weeks pp)	1.37	0.20	39 801	1.54	0.26	431	2.0%	-0.50 [-0.62]-0.381	-
Kousta 2003 (2 years pp)	1.2	0.29	34	1.3	0.32	44	1.5%	-0.32 [-0.77, 0.13]	+
Krishnaveni 2007 (+5 years pp) (10)	0.98	0.2	13	1.11	0.2	8	0.9%	-0.62 [-1.53, 0.28]	
Krishnaveni 2007 (+5 years pp) (11)	1.14	0.2	11	1.09	0.2	75	1.2%	0.25 [-0.39, 0.88]	
Ensinaveni zuuz (+oyears pp) (12) Lee 2008 (Median 2.1 vear nn)	1.15	0.1 D 4	11 620	1.14	0.Z 0.3	406 868	1.3%	0.05 (-0.55, 0.65) 0.29 (0.19, 0.39)	
Lee 2015 (6-8 weeks pp) (13)	1.3	0.3	19	1.2	0.2	9	1.0%	0.36 [-0.44, 1.15]	
Lee 2015 (6-8 weeks pp) (14)	1.4	0.9	17	1.2	0.2	10	1.0%	0.27 [-0.52, 1.05]	
Lim 2007 (1 year postpartum) (15)	1.3	0.3	21	1.5	0.3	17	1.2%	-0.65 [-1.31, 0.01]	
Lim 2007 (Tyear postpartum) (16) Madarasz 2009 (3.5 years nn)	1.4	0.3	68	1.5	0.3	39	1.4%	-0.33 [-0.87, 0.21] -0.35 [-0.74, 0.05]	
Mai 2014 (2.5 years pp)	1.2	0.2	190	1.3	0.3	80	1.8%	-0.43 [-0.69, -0.16]	
Meier 2005 (4.1 Mean years pp)	1.21	0.49	20	1.53	0.43	20	1.2%	-0.68 [-1.32, -0.04]	
Moleda 2016 (7 years pp)	1.78	0.47	199	1.71	0.47	50	1.7%	0.15 [-0.16, 0.46]	
Nocior 2016 (3 years pp) Nouiah 2018 (6-12 weeks pp)	51.77	9.76	176	50.13	10.83	300	1.9%	-0.25 [-0.41, -0.09]	·
Ozuguz 2011 (1 year pp)	44.3	7.6	21	50.4	11	34	1.3%	-0.61 [-1.17, -0.05]	
Pimenta 2004 (5 year pp)	1.14	0.54	20	0.98	0.28	20	1.2%	0.36 [-0.26, 0.99]	
Prikoszovich 2011 (3-5 year pp)	55.6	12.5	23	64.5	10.1	107	1.0%	-0.72 [-1.55, 0.10]	
Radito 2014 (1 year pp) Roca-Rodriguez 2014 (1 year pp)	1.44	0.4	90 41	1.32	0.31	21	1.0%	0.04 (0.08, 0.01)	
Ruksasakul 2016 (3 year pp)	54.3	13	56	57.1	12.8	51	1.6%	-0.22 [-0.60, 0.17]	+
Ryan 2013 (5 years pp) (17)	1.33	0.14	11	1.25	0.06	13	0.9%	0.74 [-0.09, 1.58]	
Ryan 2013 (5 years pp) (18)	1.2	0.06	20	1.25	0.06	13	1.1%	-0.81 [-1.54, -0.08]	
Sanore 2011 (6 months pp) Seck 2018 (after delivers)	00.5	13.3	21	05.8	14.7	21	1.3%	-0.37 [-0.98, 0.24]	
Simmons 2017 (19)	1.2	0.3	44	1.3	0.3	1643	1.8%	-0.33 [-0.63, -0.03]	
Simmons 2017 (20)	1.4	0.3	8	1.5	0.4	939	1.1%	-0.25 [-0.95, 0.45]	
Sriharan 2002 (6.8 years postpartum)	1.2	0.4	46	1.3	0.4	50	1.6%	-0.25 [-0.65, 0.15]	
Tam 2013 (21) Tam 2013 (22)	1.43	0.29	67	1.64	0.36	136	1.8%	-0.62 [-0.92, -0.32]	(
Tam 2013 (23)	1.59	0.35	45	1.49	0.33	94	1.7%	0.30 [-0.06, 0.65]	<u> </u>
Tehrani 2012 (9 years pp)	44	11.8	29	43.6	11.8	58	1.5%	0.03 [-0.41, 0.48]	
Thomann 2008	1.6	0.4	18	1.7	0.2	19	1.2%	-0.31 [-0.96, 0.34]	
Verma 2002 (24) Wang 2015 (1 year nn)	1.2	0.28	48	1.15	0.27	/9 48	1.7%	-0.66 [-0.13, 0.49]	[
Winhofer 2014 (10 years postpartum) (25)	66.4	17.6	9	72.1	16.9	5	0.7%	-0.31 [-1.41, 0.79]	
Winhofer 2014 (10 years postpartum) (26)	55.8	12.7	6	72.1	16.9	5	0.5%	-1.01 [-2.31, 0.29]	
Winhofer 2014 (10 years postpartum) (27)	48.3	12.3	20	72.1	16.9	4	0.6%	-1.76 [-2.97, -0.56]	
Zaidenverg 2014 (1 vear)	46.5	11.5	20	53.5	3.2	25	1.0%	-4.34 [-5.11, -3.57] -0.62 [-1.22 -0.01]	·
Lotal (95% CI)	× 0.0001	11)-17-	7203			28679	100.0%	-0.28 [-0.39, -0.16]	
Test for overall effect: Z = 4.83 (P < 0.00001)	- 0.0000	n), r=	5970						-2 -1 0 1 2
									NON-GDM GDM
Footnotes									
(1) Nonobese GDM (2) Obese CDM									
(2) Obese GDM (3) nCDM-RMI < 25, no MS components									
(4) pGDM-normoglycemic									
(5) pGDM-hyperglycemic									
(6) Follow-up at 0, 7 10 and 15 years pp									
(7) <5 year pp -GDM with 1 Abnormal OGTT									
(9) 24-35 months									
(10) pGDM-DM									
(11) pGDM-IGT/IFG									
(12) pGDM-NGT (13) GDM-NGT									
(14) GDM-IGT									
(15) GDM IGT									
(16) GDM NGT									
(17) Premenopausal GDM (18) Premenopausal CDM									
(19) <50 years									
(20) >50 years									
(21) 8 years postpartum									
(ZZ) 8 years postpartum (Z3) 15 years postpartum									
(24) 7 years postpartum									
(25) pGDM-NGT									
(26) pGDM-IGR									
(27) pGDM-12DM									

Supplementary Figure 3.8 6 Meta-analysis of high-density lipoprotein in women with previous gestational diabetes mellitus compared to women without a history of GDM

		GDM		N	on-GDM		:	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD 0.50	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Akinci 2008 (3 vears PP)	138.48	20.46	90 46	82.93	6.38	30	2.1%	3.34 [2.63, 4.06]	
Akinci 2014 (3 years PP)	1.35	0.75	141	1.01	0.65	49	2.1%	0.47 [0.14, 0.80]	+
Anastasiou 1998 (3-6 months PP) (1)	0.96	0.35	17	0.84	0.47	10	1.4%	0.29 [-0.49, 1.08]	t t
Anastasiou 1998 (3-6 months PP) (2)	1.62	0.94	16	0.84	0.47	9	1.3%	0.93 [0.07, 1.80]	
Bently-Lewis 2012 (2 year FF)	2.2	0.24	96	1.3	0.3	96	2.2%	0.77 [0.47, 1.06]	
Bozkurt 2012 (3-6 months pp) (3)	119.5	51.1	25	89.7	44.8	14	1.6%	0.60 [-0.07, 1.26]	-
Bozkurt 2012 (3-6 months pp) (4)	106.4	68.4	37	89.7	44.8	15	1.7%	0.26 [-0.34, 0.86]	1
Caliskan 2014 (6 years pp)	130.7	44.5	62	125.4	58.4	33	2.0%	0.11 [-0.32, 0.53]	1
Carr 2006 (29.9 years) Davennort 2012 (2 month nn) (5)	1.732	1.75	313	1.669	1.75	5	2.4% N 9%	0.04 [-0.10, 0.17]]
Davenport 2012 (2 month pp) (6)	1.51	1.07	10	0.73	0.35	5	1.0%	0.81 [-0.32, 1.93]	ł
Davis1999 (3-18 months pp)	141.6	79.7	21	94.7	31.5	17	1.6%	0.73 [0.07, 1.39]	
Demir 2016 (3-4 years postpartum)	128.2	113.7	80	79.9	29.5	40	2.1%	0.51 [0.12, 0.89]	t
Erogiu 2006 (10-15 months pp) Fakhrzadeh 2012 (4 years pp)	89.8 109.3	31 58.46	20	105.95	41.32	33 20	1.8%	0.061-0.56-0.681	
Ferrada 2007 (end of pureperal period)	159.7	2,590.39	31	98.05	1,260.89	7	1.3%	0.02 [-0.80, 0.85]	+
Ferraz 2007 (6.2 years pp)	1.48	0.14	70	1.25	0.07	108	2.1%	2.22 [1.84, 2.60]	· · · · · · · · · · · · · · · · · · ·
Gadgil 2017 Cunderson 2010 (no enceified nn) (7)	1.4	0.6	40	1.3	0.6	374	2.1%	0.17 [-0.16, 0.49]	
Gunderson 2010 (no specified pp) (7) Gunderson 2014 (20 years pp)	100.3	48.3	104	89.5	32.1 51	779	2.3%	0.41 [0.25, 0.58]	
Hakkariainen 2016 (8)	1.2	0.6	48	1	0.6	67	2.1%	0.33 [-0.04, 0.70]	
Hakkariainen 2016 (9)	1.1	0.5	220	1	0.6	67	2.2%	0.19 [-0.08, 0.46]	
King 2009 (15 years postpartum)	138.5	88.4	20	94.9	38.4	20	1.6%	0.63 [-0.01, 1.26]	Ţ
Kjus 1991 (1 year pp) (10) Kousta 2003 (2 years pp)	1.41	0.43	34	0.7	0.73	44	1.9%	0.79 [0.32, 1.25]	
Lee 2008 (Median 2.1 year pp)	3.2	2	620	2.7	1.6	868	2.4%	0.28 [0.18, 0.38]	
Lee 2015 (6-8 weeks pp) (11)	1.3	1.2	19	1.7	0.9	9	1.4%	-0.35 [-1.15, 0.45]	1
Lee 2015 (6-8 weeks pp) (12)	1.6	1.6	17	1.7	0.9	10	1.4%	-0.07 [-0.85, 0.71]	1
Lim 2007 (1 year postpartum) (13)	1.2	0.6	21	0.9	0.4	17	1.6%	0.53 [-0.02, 1.07]	
Mai 2014 (2.5 years pp)	1.3	0.9	190	0.9	0.5	80	2.2%	0.50 [0.23, 0.76]	+
Meier 2005 (4.1 Mean years pp)	1.29	0.56	20	0.95	0.57	20	1.6%	0.59 [-0.04, 1.22]	1
Moleda 2016 (7 years pp) Nactor 2016 (2 years pp)	1.11	0.69	199	1.06	0.97	50	2.2%	0.07 [-0.24, 0.38]	1
Noujah 2018 (6-12 weeks pp)	115.64	73.74	176	93.09	53.84	86	2.4%	0.33 [0.07, 0.59]	
Ozuguz 2011 (1 year pp)	171.1	113.9	21	83.7	43	34	1.7%	1.11 [0.52, 1.69]	ł
Pimenta 2004 (5 year pp)	1.14	0.54	20	0.99	0.34	20	1.7%	0.33 [-0.30, 0.95]	t
Prikoszovich 2011 (3-5 year pp) Rauito 2014 (1 year pp)	85.Z 1.74	38.0 0.61	23	97	37.5	8 137	1.4%	-0.30 [-1.11, 0.51] -0.39 [-0.65 -0.12]	1
Roca-Rodriguez 2014 (1 year pp)	1.2	0.5	41	0.9	0.4	21	1.8%	0.63 [0.09, 1.17]	-
Ruksasakul 2016 (3 year pp)	136.38	144	56	89.52	54.4	51	2.1%	0.42 [0.04, 0.80]	1
Ryan 2013 (5 years pp) (15)	1.69	0.47	11	1.3	0.11	13	1.3%	1.15 [0.27, 2.03]	
Ryan 2013 (5 years pp) (16) Sartore 2011 (6 months pn)	1.41	0.13 24.6	20	1.3	0.11	13	1.5%	-0.12[-0.72_0.49]	
Seck 2018 (after delivery)	1.47	0.31	20	0.51	0.19	20	1.0%	3.66 [2.61, 4.71]	-
Simmons 2017 (17)	1.3	0.5	8	1.5	0.9	939	1.5%	-0.22 [-0.92, 0.47]	1
Simmons 2017 (18)	1.3	0.7	44	1.3	0.7	1643	2.2%	0.00 [-0.30, 0.30]	
Tam 2013 (19)	1.33	1.16	40	0.96	0.57	94 136	2.1%	0.27 [-0.02, 0.56]	
Verma 2002 (20)	1.94	2.4	81	1.03	0.5	79	2.2%	0.52 [0.20, 0.83]	+
Winhofer 2014 (10 years postpartum) (21)	232.6	220.9	20	91.7	20.3	5	1.1%	0.68 [-0.32, 1.68]	Ť
Winhofer 2014 (10 years postpartum) (22) Winhofer 2014 (10 years postpartum) (22)	107.1	40.9	y 6	91.7	20.3	5	1.0%	0.41 [-0.70, 1.51]	1
Winzer 2004 (1 year pp)	104.9	20.1	89	71.8	7.3	19	1.4%	4.66 [3.86, 5.46]	-
Zajdenverg 2014 (1 year)	87	38.1	20	88.1	63.1	25	1.7%	-0.02 [-0.61, 0.57]	
Total (95% CI)			4110			9065	100.0%	0.56 [0.42, 0.70]	
Heterogeneity: Tau ² = 0.22; Chi ² = 448.57, d	f= 56 (P <	0.00001);	I² = 889	х.				,,	
Test for overall effect: Z = 7.69 (P < 0.00001))								Non-GDM GDM
Footnotes									
(1) Nonobese GDM									
(2) Obese GDM									
(3) pGDM-IR									
(4) pGDM-IS (5) pGDM-hyperalycemic									
(6) pGDM-normoglycemic									
(7) Follow-up at 0, 7 10 and 15 years pp									
(8) <5 year pp - GDM with 2 Abnormal OGTT									
(a) S year pp - GDM with T Abhormal OGTI (10) 24-35 months									
(11) GDM-NGT									
(12) GDM-IGT									
(13) GDM NGT (14) GDM IGT									
(15) Premenopausal GDM									
(16) Postmenopausal GDM									
(17) >50 years									
(3) <50 years (19) 8 years postnartum									
(20) 7 years postpartum									
(21) pGDM-T2DM									

(22) pGDM-12DM (22) pGDM-NGT (23) pGDM-IGR

Figure

Supplementary Figure 3.87 Meta-analysis of triglycerides in women with previous gestational diabetes mellitus compared to women without a history of GDM

		GDM		1	Non-GDM			Std. Mean Difference	s	td. Mean Differend	ce
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	I	V, Random, 95% C	1
Ajala 2015 (4-10 Years PP) Banariaa 2012 (2 year PP)	4.99	U.6 0.78	90	4.64	0.45	59	1.8%	0.64 [0.30, 0.97]		l	
Bo 2006 (6.5 years PP) (1)	5.1	0.5	21	4.8	0.4	57	1.5%	0.69 [0.18, 1.21]			
Bo 2006 (6.5 years PP) (2)	5.3	0.6	61	4.8	0.4	56	1.7%	0.97 [0.58, 1.35]			
Bowes 1996 (2-3 months pp)	5.7	0.2	7	5	0.2	5	0.3%	3.23 [1.28, 5.18]		-	
Bozkurt 2012 (3-6 months pp) (3) Bozkurt 2012 (3-6 months pp) (4)	95.8	16.2	25	83.8	8.3	14	1.3%	0.84 [0.16, 1.53]		[
Caliskan 2014 (6 years pp)	92.3	6.9	62	92.9	4.5	33	1.7%	-0.10 [-0.52, 0.33]			
Carr 2006 (29.9 years)	9.39	4.37	302	8.04	3.86	620	2.0%	0.33 [0.20, 0.47]		1	
Charwat-Resi 2017 (14-16 years postpartum)	104	55.3	55	84.6	6.5	32	1.6%	0.43 [-0.01, 0.88]		t	
Davis1999 (3-18 months pp)	5.3	11.5	21	70 1	0.5	18	1.3%	0.65 [0.01, 1.30]			
Erodu 2006 (10-15 months pp)	93.4	12.8	36	83.5	9.2	40	1.7%	0.87 [0.38, 1.37]			
Fakhrzadeh 2012 (4 years pp)	92.25	9.35	20	87.6	7.82	20	1.3%	0.53 [-0.10, 1.16]		+	
Ferraz 2007 (6.2 years pp)	5.55	0.21	70	5.14	0.06	108	1.6%	2.93 [2.50, 3.36]		•	
Gunderson 2010 (no specified pp) (5)	83.9	10.9	154	81.6	8	1655	2.0%	0.28 [0.11, 0.44]		1	
Hakkariainen 2016 (6)	104.2	29.3	220	92.4	18.8	67	1.9%	0.58 [0.38, 0.77]		1	
Hakkariainen 2016 (7)	5.8	1.4	48	5.4	0.4	67	1.7%	0.42 [0.04, 0.79]		ł	
Han 2018 (no pp specified)	85.99	20.97	4970	85.09	17.44	97930	2.0%	0.05 [0.02, 0.08]		1	
Hunger-Dathe 2006 (6 year pp)	4.8	0.6	132	4.4	0.3	50	1.8%	0.74 [0.41, 1.08]		1	
King 2009 (15 years postpartum) Ko 1999 (6 weeks pp)	92.6 5.48	14	20	89.1	10.7	20 431	1.4%	0.28 [-0.35, 0.90]		I	
Kousta 2003 (2 years pp)	5.3	0.43	34	5.1	0.49	44	1.6%	0.43 [-0.03, 0.88]		+	
Lee 2007 (15 years pp)	5.2	1.1	5470	4.5	0.6	783	2.0%	0.67 [0.59, 0.74]		ł	
Lee 2008 (Median 2.1 year pp)	5.8	1.8	620	5.2	0.7	868	2.0%	0.47 [0.36, 0.57]		t	
Lee 2015 (6-8 weeks pp) (8) Lee 2015 (6-8 weeks pp) (9)	5.2 4 P	U.5 0 A	17	4.6 1 P	U.5 0.5	10 0	1.1%	1.16 [0.31, 2.01]		1	
Lim 2007 (1 year postpartum) (10)	4.0 5.4	0.4	21	4.0	0.4	17	1.3%	0.67 [0.01, 1.33]		-	
Lim 2007 (1 year postpartum) (11)	5.3	0.6	60	5	0.4	17	1.5%	0.53 [-0.02, 1.07]		ł	
Mai 2014 (2.5 years pp)	5.2	1.2	190	4.7	0.5	80	1.9%	0.48 [0.21, 0.74]		t	
MoLachian 2005 (3-6 weeks pp) Moleda 2016 (7 years pp)	5.11	0.741	19	4.54	0.4795	19	1.3%	0.89 [0.22, 1.56]		1	
Noctor 2016 (3 vears pp)	5.07	0.7	270	4.9	0.6	388	2.0%	0.61 [0.45, 0.77]		Į	
Noujah 2018 (6-12 weeks pp)	91.81	18.25	186	82.19	9.68	86	1.9%	0.60 [0.34, 0.86]		ł	
Osei 1998 (7 years pp)	96.4	30.9839	15	83.7	7.36	15	1.2%	0.55 [-0.18, 1.28]		t	
Ozuguz 2011 (1 year pp)	104.1	20.2	21	81.2	10.3	34	1.4%	1.52 [0.90, 2.14]		t_	
Pimenta 2004 (5 year pp)	5.00	0.08 N 4	20	4.02	0.00	20	1.1%	0.00[0.24, 0.07]			
Pokropek 2015	126	65	135	106	33	2005	2.0%	0.56 [0.38, 0.73]		+	
Rauito 2014 (1 year pp)	5.41	0.47	86	5.7	0.64	109	1.8%	-0.51 [-0.79, -0.22]		1	
Roca-Rodriguez 2014 (1 year pp)	5.4	0.6	41	4.9	0.2	21	1.5%	0.98 [0.43, 1.54]		Ĺ	
Ryan 2013 (5 years pp) (12) Ryan 2013 (5 years pp) (13)	5.9	0.2	20	5.5	0.1	13	1.0%	2.32 [1.40, 3.23]		Ţ	
Sartore 2011 (6 months pp)	88.2	9.1	21	83.9	20.5	21	1.4%	0.27 [-0.34, 0.87]		ł	
Seck 2018 (after delivery)	1.26	0.24	20	0.7	0.23	20	1.1%	2.34 [1.51, 3.16]		-	
Shen 2018 (3 years pp)	5.43	0.99	1263	5.23	0.52	705	2.0%	0.23 [0.14, 0.33]		1	
Simmons 2017 (14) Simmono 2017 (15)	5.4	0.9	8	5.4	0.8	939	1.3%	0.00 [-0.70, 0.70]		1	
Sinihions 2017 (15) Sriharan 2002 (6.8 years postpartum)	5.5	0.9	44	5.5	0.0	1043	1.0%	0.50 [0.20, 0.80]			
Sung 2008 (2 months pp) (16)	4.9	0.4	72	5	0.4	6	1.1%	-0.25 [-1.08, 0.59]		-	
Sung 2008 (2 months pp) (17)	5.5	0.6	60	5	0.4	6	1.1%	0.84 [-0.01, 1.69]		t	
Sung 2008 (2 months pp) (18)	6.7	1.1	8	5	0.4	5	0.6%	1.74 [0.36, 3.11]		r -	
Tenrani 2012 (9 years pp) Thomann 2008	90.1	13.1	29	89.4 4.7	7.8 0.4	58	1.0%	0.07 [-0.38, 0.52]		1	
Tura 2006 (4-6 months pp)	40.1	17.6	24	48.7	18.7	23	1.4%	-0.47 [-1.05, 0.11]		-	
Verma 2002 (19)	4.51	2.13	57	3.63	0.37	50	1.7%	0.55 [0.17, 0.94]		ł	
Vigneault 2015 (4 years pp) (20)	5.58	0.63	86	5.18	0.65	42	1.7%	0.62 [0.25, 1.00]		t	
Vigneault 2015 (4 years pp) (21) Vigneault 2015 (4 years pp) (22)	5.63	0.7	10 89	5.38	0.66	15	1.4%	0.96 [0.37, 1.54]		1	
Vilmi-Kerala 2016 (4 years pp)	5.6	0.6	120	5.3	0.3	120	1.9%	0.63 [0.37, 0.89]		+	
Winhofer 2014 (10 years postpartum) (23)	86.9	10	20	89.3	7.5	4	0.8%	-0.24 [-1.32, 0.84]		+	
Winhofer 2014 (10 years postpartum) (24)	136.5	56.2	6	89.3	7.5	5	0.6%	1.02 [-0.28, 2.32]		t	
Winhofer 2014 (10 years postpartum) (25) Winter 2004 (1 year pp)	102	18.2	9	89.3	7.5	10	0.8%	0.77 [-0.38, 1.91]		Ī.	
Xiang 2013	5.31	0.59	93	4.93	0.5	142	1.9%	0.11 [5.14, 7.08]			
Xiong 2013 (1.9 years pp)	6.85	1.97	20	11.37	1.91	19	1.1%	-2.28 [-3.11, -1.46]		-	
Zajdenverg 2014 (1 year)	83.2	13	20	71.6	9.4	25	1.3%	1.02 [0.40, 1.65]		ł	
Total (95% CI)			17180			110720	100.0%	0.69 [0.56, 0.81]			
Heterogeneity: Tau ² = 0.20; Chi ² = 1153.40, df =	67 (P < I	0.00001); P	² = 94%				1001070	0100 [0100] 010 1]	400 50	<u>_</u>	
Test for overall effect: Z = 10.74 (P < 0.00001)									-100 -50 N	Ion-GDM GDM	50 100
Footpotes											
(1) pGDM- BMI < 25 no MS components											
(2) pGDM- BMI > 25 some MS components											
(3) pGDM-IR											
(4) pGDM-IS											
(5) FOIIOW-up at 0, 7 10 and 15 years pp (6) <5 years pp -GDM with 1 Abnormal OGTT											
(7) <5 years pp -GDM with 2 Abnormal OGTT											
(8) GDM-IGT											
(9) GDM-NGT											
(10) GDM IGT (11) GDM NGT											
(12) Postmenopausal GDM											
(13) Premenopausal GDM											
(14) >50 years											
(15) <50 years (16) Previous CDM with Normal Chucasa Talari	ance										
(17) Previous GDM with Impaired Glucose Tole	rance										
(18) Previous GDM with DM											
(19) 9 years postpartum											
(20) Normal Weight (21) Obese											
(22) Overweight											
(23) nGDM-T2DM											

(23) pGDM-T2DM (24) pGDM-IGR (25) pGDM-NGT

Supplementary Figure 3.8 8 Meta-analysis of blood glucose in women with previous gestational diabetes mellitus compared to women without a history of GDM

		GDM		No	n-GDM			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Akinci 2008 (3 years PP)	16.28	2.83	46	7.25	0.78	30	1.8%	3.95 [3.16, 4.75]	·
Akinci 2014 (3 years PP)	7.44	5.51	141	6.06	3.26	49	2.6%	0.27 [-0.05, 0.60]	1
Bowes 1996 (2-3 months pp)	19.4	5.3	~ ~	8.7	1.5	5	0.9%	2.34 [U.72, 3.96]	Γ
Charwat Roci 2017 (14 16 years postnartum)	0.11	42	65	10.5	4.1 20 0	33	2.070	0.23[-0.19, 0.00]	
Davis1999 (3-18 months nn)	114	42 QQ	21	40.5	24	18	2.470	0.24 [-0.00, 0.13]	L
Demir 2016 (3-4 years postpartum)	13.7	11.9	80	7	3.9	40	2.5%	0.67 [0.28, 1.06]	Ļ
Eroqlu 2006 (10-15 months pp)	7.5	3.1	36	8.6	5.7	33	2.4%	-0.24 [-0.71, 0.23]	4
Fakhrzadeh 2012 (4 years pp)	10.19	5.04	20	6.44	4.52	20	2.1%	0.77 [0.12, 1.41]	
Ferraz 2007 (6.2 years pp)	51.95	4.02	70	49.98	4.43	108	2.6%	0.46 [0.15, 0.76]	ł
Gunderson 2010 (no specified pp) (1)	14	10.1	154	10.8	6.9	1655	2.8%	0.44 [0.28, 0.61]	t
Hakkariainen 2015 (2)	12.2	7.4	48	9.3	4.6	134	2.6%	0.53 [0.19, 0.86]	t
Hakkariainen 2015 (3)	9.8	5.6	26	8.6	5.3	132	2.5%	0.22 [-0.20, 0.64]	
Hakkarlainen 2015 (4)	11.7	9.4	220	9.3	4.6	134	2.7%	0.30 [0.09, 0.52]]
Hakkarlainen 2015 (5)	10.1	0.9	92	9.4	8.1 4.6	119	2.7%	0.10[-0.18, 0.37]	
Hakkariainen 2015 (0)	12.2	5.4 7.4	48	9.3 Q 3	4.0	134	2.770	0.50 [0.09, 0.52]	Ļ
Hakkariainen 2015 (8)	12.9	5.8	47	9.4	8.1	119	2.6%	0.46 [0.12, 0.80]	Ļ
Hakkariainen 2015 (9)	11.4	6.3	56	8.6	5.3	132	2.6%	0.50 [0.18, 0.81]	ł
King 2009 (15 years postpartum)	13.1	5.4	20	11.4	5.2	20	2.1%	0.31 [-0.31, 0.94]	ł
Kousta 2003 (2 years pp)	63	70.2	34	30	34.5	44	2.4%	0.62 [0.16, 1.07]	t
Lee 2015 (6-8 weeks pp) (10)	19.1	10.8	19	60.3	38.9	9	1.6%	-1.71 [-2.64, -0.78]	-
Lee 2015 (6-8 weeks pp) (11)	22	22.7	17	60.3	38.9	10	1.7%	-1.26 [-2.12, -0.39]	1
Lim 2007 (1 year postpartum) (12)	91.5	61	21	56.2	11.4	17	2.1%	0.75 [0.09, 1.41]	
Lim 2007 (1 year postpartum) (13)	11.2	35.5	5U 400	56.2	11.4	17	2.3%	0.65 [0.10, 1.20]	I
Malada 2016 (Z.o years pp)	9.2	0.Z	190	127	3.5 0.6	80 60	2.7%	0.46 [0.20, 0.72]	
Moleua zoto (7 years pp) Ocei 1998 (7 years nn)	12.7	0.7	199	13.7	4.23	15	2.0%	-0.12[-0.31, 0.31]	
Ozuguz 2011 (1 vear pp)	13.5	31	21	7.3	3.4	34	2.0%	1 86 [1 21 2 51]	-
Pacini 2012 (6 months pp)	60	4	104	57	5	35	2.5%	0.70 [0.31, 1.09]	ł
Pokropek 2015	16	13	134	14	12	1972	2.8%	0.17 [-0.01, 0.34]	
Roca-Rodriguez 2014 (1 year pp)	96.1	58.1	41	60.3	30.8	21	2.3%	0.70 [0.16, 1.24]	ł
Ryan 2013 (5 years pp) (14)	90	11	20	71	5	13	1.7%	2.02 [1.15, 2.90]	ł
Ryan 2013 (5 years pp) (15)	70	15	11	71	5	13	1.8%	-0.09 [-0.89, 0.71]	1
Seck 2018 (after delivery)	17.02	0.24	20	3.59	2.25	20	0.6%	8.23 [6.23, 10.22]	
Tura 2006 (4-6 months pp)	4.54	0.24	24	4.55	0.29	23	2.2%	-0.04 [-0.61, 0.53]]
Verma 2002 (16) Vignepult 2015 (4 veore pp) (17)	89.99 77.00	22.2	10	78.48	47.92	0C 26	2.5%	0.20 [-0.18, 0.98]]
Vigneault 2015 (4 years pp) (17)	77.55 59.49	22.2 29.7	86	84.66	22.2 29.9	42	2.470	-0.33 [-0.33, -0.00]	-
Vigneault 2015 (4 years pp) (19)	123.44	56.3	61	128.07	55.4	15	2.2%	-0.08 [-0.65, 0.48]	
Vilmi-Kerala 2016 (4 years pp)	5.2	3.6	120	4.6	3.6	120	2.7%	0.17 [-0.09, 0.42]	
Winzer 2004 (1 year pp)	61.2	4.2	89	50.4	3.6	19	2.1%	2.61 [2.00, 3.22]	-
Xiang 2013	75	55.6	93	48.6	56.3	142	2.7%	0.47 [0.20, 0.73]	ł
Xiong 2013 (1.9 years pp)	6.85	1.97	20	11.37	1.91	19	1.8%	-2.28 [-3.11, -1.46]	*
T-4-1 (05% CI)			2004			6007	400.0%	0 44 50 22 0 501	
listere reneity Tev2 = 0.20; Obi2 = 44.0.20, df = .	40 /D - 0 0	00043-1	2994			5887	100.0%	0.41 [0.23, 0.59]	
Heterogeneity: Tau ⁺ = 0.30; Chi ⁺ = 410.28, df = 4 Tact for everall effect: $7 = 4.46$ (B < 0.00001)	43 (P < 0.0	0001);1	-= 90%)					-100 -50 Ó 50 100
$1 = 511010 \text{ over all effect. } \Sigma = 4.40 (F < 0.00001)$									Non-GDM GDM
Footnotes									
(1) Follow-up at 0, 7 10 and 15 years pp									
(2) <5 year pp -GDM with 2 Abnormal OGTT									
(3) 10 year pp -GDM with 1 Abnormal OGTT									
(4) <5 year pp -GDM with 1 Abnormal OGTT									
(5) 5-10 year pp -GDM with 1 Abnormal OGTT									
(6) <5 year pp -GDM with 1 Abnormal OGTT									
(7) <5 year pp -GDM with 2 Abnormal OGT									
(8) 5-10 year pp -GDM with 2 Abnormal OCTT									
(0) O year pp - 00 m with 2 Abronnar OGT									
(11) GDM-IGT									
(12) GDM IGT									
(13) GDM NGT									
(14) Postmenopausal GDM									
(15) Premenopausal GDM									
(16) 9 years postpartum									
(17) Overweight									
(18) Normal Weight									
(19) Obese									

Supplementary Figure 3.8 9 Meta-analysis of insulin in women with previous gestational diabetes mellitus compared to women without a history of GDM

Analysis	Studies	Participants	MD	95% CI	Chi ² P=	l² (%)
All Studies	46	49,963	2.47	1.61, 3.32		80%
					P< 0.00001	
After	39	47,687	2.53	1.61, 3.44	P< 0.00001	82%
Sensitivity						
analysis						

Supplementary Table 3.8 3 Sensitivity analysis for SBP (mmHg)

Supplementary Table 3.8 4 Sensitivity analysis for DBP (mmHg)

Analysis	Studies	Participants	MD	95% CI	Chi ² P=	l² (%)
	10	10				
All Studies	46	49,580	1.87	1.30, 2.44		83%
					P< 0.00001	
After	39	47,064	1.83	1.22, 2.44	P< 0.00001	85%
Sensitivity						
analysis						

Supplementary Table 3.8 5 Sensitivity analysis for BMI (kg/m2)

Analysis	Studies	Participants	MD	95% CI	Chi ² P=	l² (%)
All Studies	78	255,308	1.54	1.17, 1.91		97%
					P< 0.00001	
After	65	163,156	1.52	1.14, 1.90		95%
Sensitivity					P< 0.00001	
analysis						

Supplementary Table 3.8 6 Sensitivity analysis for total cholesterol
Analysis	Studies	Participants	SMD	95% CI	Chi ² P=	l² (%)
All Studies	48	38,561	0.26	0.15, 0.37	P< 0.00001	89%
After	/3	36 53/	0.26	0 1/ 0 39	P< 0.00001	90%
Sensitivity	45	50,554	0.20	0.14, 0.35	F < 0.00001	9078
analysis						

Supplementary Table 3.8 7 Sensitivity analysis for low-density lipoprotein

Analysis	Studies	Participants	SMD	95% CI	Chi ² P=	l² (%)
All Studies	44	16,980	0.19	0.08, 0.30		83%
					P< 0.00001	
After	39	14,957	0.19	0.07, 0.31	P< 0.00001	85%
Sensitivity						
analysis						

Supplementary Table 3.8 8 Sensitivity analysis for high-density lipoprotein

Analysis	Studies	Participants	SMD	95% CI	Chi ² P=	l² (%)
All Studies	56	35,882	-0.28	-0.39, -0.16		89%
					P< 0.00001	
After	51	33,859	-0.28	-0.405,-0.17		90%
Sensitivity					P< 0.00001	
analysis						

Supplementary Table 3.8 9 Sensitivity analysis for triglycerides

Analysis	Studies	Participants	SMD 95% CI		Chi ² P=	l² (%)
All Studies	46	13,175	0.56	0.42, 0.70		88%
					P< 0.00001	
After	43	13,045	0.56	0.41, 0.70	P< 0.00001	88%
Sensitivity						
analysis						

Supplementary Table 3.8 10 Sensitivity analysis for glucose

Analysis	Studies	Participants	SMD	95% CI	Chi ² P=	l² (%)
All Studios	55	127 000	0.60	0.56, 0.82		01%
All Studies	55	127,900	0.03	0.30, 0.02		5470
					P< 0.00001	
After	40	105 620	0.60	0.50, 0.75	D< 0.00001	0.49/
Aller	49	125,052	0.02	0.50, 0.75	P< 0.00001	94%
Sensitivity						
analysis						

Supplementary Table 3.8 11 Sensitivity analysis for insulin

Analysis	Studies	Participants	SMD	95% CI	Chi ² P=	l² (%)
All Studies	32	8,881	0.41	0.23, 0.59		90%
					P< 0.00001	
After	27	6,795	0.41	0.20, 0.61	P< 0.00001	90%
Sensitivity						
analysis						

Supplementary Figure 3.8 10 Funnel plots for meta-analyses of cardiovascular risk factors in women with previous gestational diabetes mellitus compared to women without a history of GDM(A) systolic blood pressure; (B) diastolic blood pressure; (C) body mass index; (D) total cholesterol; (E) low density lipoprotein; (F) high density lipoprotein; (G) triglycerides; (H) blood glucose; (I) blood insulin

Chapter 4

4. Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus *in utero*: a systematic review and meta-analysis

Maleesa M Pathirana, Zohra Lassi, Claire T Roberts, Prabha H Andraweera

4.1. Statement of Authorship

Title of Paper	Cardiovascular risk factors in offspring exposed to gestational diabetes
	mellitus in utero: A systematic review and meta-analysis
Publication Status	Published – 2020
Publication Details	Pathirana MM, Lassi ZS, Roberts CT, Andraweera PH. Cardiovascular
	risk factors in offspring exposed to gestational diabetes mellitus in utero:
	systematic review and meta-analysis. J Dev Orig Health Dis. 2020
	Dec;11(6):599-616. doi: 10.1017/S2040174419000850. Epub 2020 Jan 6.
	PMID: 31902382.

Principal Author

Name of Principal Author (Candidate)	Maleesa Pathirana				
Contribution to the Paper	Acquiring data, knowledge, analysis, drafting				
Overall Percentage (%)	70%				
Certification	This paper reports on original research I conducted during the period of my Higher Degree by Research candidature and is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in this thesis. I am the primary author of this paper				
Signature	Date				

Co-author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. The candidate's stated contribution to the publication is accurate (as detailed above);
- ii. Permission is granted for the candidate to include the publication in the thesis; and
- iii. The sum of all co-author contributions is equal to 100% less the candidate's stated contribution

Name of Co-Author	Zohra S Lassi		
Contribution to the Paper	Conceptualisation, acquiring data, analysis, drafting		
_			
Signature	Date 14 Feb 2022		

Name of Co-Author		Claire Roberts			
Contribution to the Paper		Conception, knowledge, drafting			
Signature				Date 28/02/2022	

Name of Co-Author	Prabha Andraweera			
Contribution to the Paper	Conception, acqui	Conception, acquiring data, knowledge, drafting		
		1		
Signature		Date 28/02/2022		

4.2. Abstract

Gestational diabetes mellitus is a pregnancy complication that affects 1 in 7 pregnancies. Emerging evidence demonstrates that children born of pregnancies complicated by GDM may be at increased risk of cardiovascular disease (CVD) in adulthood. Therefore, the aim of this study was to determine cardiovascular factors in offspring exposed to GDM in utero. PubMed, CINAHL, SCOPUS, and EMBASE databases were searched. Information was extracted on established CVD risk factors including blood pressure, lipids, blood glucose, fasting insulin, body mass index (BMI) and endothelial/microvascular function. The review protocol is registered in PROSPERO (CRD42018094983).Prospective and retrospective studies comparing offspring exposed to GDM compared to controls (non-GDM pregnancies) were considered. We included studies which defined GDM based on the IADPSG definition, or prior definitions. The PRISMA guidelines were followed in conducting this systematic review. Methodological quality was assessed using the Newcastle – Ottawa Quality Assessment Scale. Study selection, data extraction and quality assessment were done by two independent reviewers. The data were pooled using a random-effects model. Of 59 eligible studies, 24 were included in the meta-analysis. Offspring exposed to GDM had higher systolic blood pressure (mean difference (MD): 1.75 mmHg, 95% CI 0.57-2.94; eight studies, 7,264 participants), BMI z-score (MD: 0.11 (95% CI 0.02- 0.20; 9 studies, 8,759 participants) and glucose (standard MD (SMD) 0.43, 95%CI 0.08-0.77; 11 studies, 6,423 participants) than control participants. In conclusion, offspring exposed to GDM have elevated systolic blood pressure, BMI and glucose. Those exposed to GDM in utero may benefit from early childhood blood pressure measurements

4.3. Introduction

The incidence of cardiovascular disease (CVD) has shown a rapid increase over the last decade. In 2012, there were an estimated 17.6 million deaths from CVD, accounting for 31.43% of global mortality ²²⁴. Emerging evidence demonstrates an association between gestational diabetes mellitus (GDM) and CVD with risk factors for CVD being more prevalent among women who experienced gestational diabetes (GDM) compared to those who did not^{34, 224}

Prevalence of GDM varies between populations, but it is estimated to affect 1 in 7 pregnancies⁷⁹. The definition of GDM has changed over recent years, as it has become apparent that mild glucose intolerance in pregnancy which was not formerly considered as GDM increases the risk of developing type 2 diabetes mellitus (T2DM) and CVD in later life²²⁵. A recent meta-analysis showed a 7.5-fold increase in the risk of T2DM among women who experience GDM³⁴.

Emerging evidence also suggests that children born after pregnancies complicated by GDM may also be at increased risk of CVD in adult life. Tam *et al.* (2017) showed that for every 1-SD (standard deviation) increase in maternal glycaemic level, there was an increase in the adjusted Odds Ratio for impaired glucose tolerance in the offspring²²⁶. A meta-analysis conducted by Aceti *et al.* and colleagues demonstrated that systolic blood pressure was higher in offspring of women who experienced GDM than controls⁵².

At present there is no systematic review comparing the main conventional CVD risk factors between offspring exposed to GDM *in utero* compared to controls. Both vascular and metabolic CVD risk factors constitute metabolic syndrome which is a well-established risk factor for CVD²²⁷. Therefore, synthesising evidence on all CVD risk factors will provide important information that can guide preventive strategies to reduce the global burden of CVD.

The primary objective of this study was to conduct a comprehensive systematic review and meta-analyses of all relevant studies published until October 2018 to assess conventional CVD risk factors including systolic and diastolic blood pressure, body mass index, lipids, blood glucose and insulin levels. As a secondary objective, we aimed to assess all relevant studies that assessed microvascular function.

4.4. Methods

4.4.1. Search strategy

All studies describing the association between GDM and offspring cardiovascular disease risks were identified by searching the following electronic databases: PubMed CINAHL, SCOPUS and EMBASE with an end of search date of April 18, 2018. Subsequently we updated the literature search to include all relevant articles published until October 17, 2018. The review protocol is registered in PROSPERO (CRD42018094983). No amendments have been made to the current protocol.

The review was undertaken with reference to the PRISMA guidelines²²⁸. The search strategy is ("gestational diabetes*" OR "pregnancy induced as follows: diabetes" OR "diabetic pregnancy") AND (offspring OR newborn OR baby OR babies OR children OR infant OR neonat* OR adolescen* OR adult) AND ("blood pressure" OR diabetes OR cardiovascular OR metabolic OR hypertension OR BMI or "body mass index" OR obesity OR overweight OR lipids OR lipid OR cholesterol OR triglyceride* OR glucose OR insulin OR vascular). We included case-control studies, cohort studies and clinical trials. Conference abstracts were also screened. Previous systematic reviews and meta-analyses on relevant topics were identified, and references from eligible reviews were checked for additional studies. All identified studies were assessed for relevance by two independent authors (MP, PA). Data were independently extracted by two authors (MP, PA). Discrepancies were resolved by discussion.

4.4.2. Inclusion criteria

The population of interest and exposure were offspring at any follow up visit born to women who experienced GDM during pregnancy. We selected studies that assessed conventional CVD risk factors in offspring exposed to GDM *in utero* compared to offspring not exposed to GDM *in utero*. The CVD risk factor outcomes were blood pressure, BMI, serum and cord blood lipids, and serum and cord blood insulin and glucose.

We included studies that defined GDM based on the International Association of Diabetes and Pregnancy Study Groups (IADPSG). However, as diagnostic criteria have recently changed, we included studies that used prior diagnostic criteria of GDM including the 1999 World Health Organization definition, and other regional definitions. The definitions of GDM of included studies are detailed in Table 1. Studies that did not have the above definition/s of GDM, those that did not define study groups and those that compared GDM and another risk group collectively were excluded. Studies that compared offspring exposed to GDM with offspring exposed to impaired glucose tolerance *in utero* were included, in the review but were not included in the meta-analysis. The data from these studies are presented in Table 2.

Data were extracted independently and in duplicate for outcomes systolic blood pressure, diastolic blood pressure, body mass index (BMI), serum and cord lipid levels (total cholesterol, low density lipoprotein (LDL) high density lipoprotein (HDL), non-HDL and triglycerides), blood glucose, fasting insulin and measures of vascular/endothelial function. When the same cohort was reported in multiple publications at different ages, the study reporting on the older age group was included in the meta-analysis. We considered both studies published in English, and studies that could be translated to English. We contacted authors via email for missing information or data clarification if necessary, and if authors did not respond then any relevant data from their respective studies were included in Supplementary Table S1.

4.4.3. Statistical analysis

The following data were collected from each included study: definition of GDM, age of offspring at follow-up, number of cases/exposed to GDM *in utero* and controls/not-exposed to GDM *in utero*, birthweight and gestational age at birth of cases and controls. For each outcome measure, mean and standard deviation (SD) were used in meta-analyses. When mean and SD were not reported, Standard Error of Mean (SEM) and 95% CI was converted to SD via statistical software²²⁹. For studies reporting using Median and IQR, the results are detailed in Supplementary Table S1. The Standard Mean Difference (SMD) or Mean Difference (MD) and the 95% CI were calculated using a random-effects model. SMD was used when the outcome was measured in different units across trials and MD when units were consistent.

The meta-analysis was performed using Cochrane Collaborations RevMan software (Review Manager Version 5.1.1) based on an inverse variance method. As per protocol, the random-effects model was selected to account for the variation in different criteria used to diagnose GDM among the studies. However, to ensure that the results were not influenced by the choice of model, each analysis was repeated using a fixed-effects model. No difference in results was seen between the two models (results not shown). Substantial heterogeneity was considered when I² statistic exceeded 50%, and the Chi² P value was less than 0.1. To assess publication bias, funnel plots were used. The methodological quality and risk of bias was assessed using Newcastle - Ottawa Quality Assessment Scale (Supplementary Table S2) ²³⁰. Sensitivity analyses were performed to evaluate heterogeneity for outcomes when omitting low quality

studies. Two authors (MP, PA) independently assessed the quality of each study included in the review. The discrepancies were resolved through discussions.

4.5. **Results**

4.5.1. Search Results

A total of 4,359 articles were identified from the literature search. One hundred and twelve articles were eligible for full text review. Of these, 59 were included in the review and 25 were included in the meta-analyses. The reasons for excluding 53 studies are detailed in Figure 4.5.1.1. We contacted nine authors for additional data, with responses from four authors (44.4% response), however the authors of these four studies did not have data that could be used in the meta-analyses and hence are included in Supplementary Table 4.8.1.

CVD risk factors among those exposed to GDM in utero

Figure 4.5.1.1 PRISMA Flow diagram of study selection

Table 4.5.1-1 Characteristics of the included studies

Author	Year	Study	Country	Definition of GDM	Exposed/N	Birthweight	Gestational age	Follow up	Outcome
		design			on-	cases/Control(g)	cases/control	(years)	measure
					exposed		(weeks)		considered
					(n=)				
Kaseva	2018	Multi-	Finland	(Both cohorts):	191/547	ESTER cohort:	ESTER cohort:	23-25	BMI (kg/m ²)
		cohort		OGTT at 26-28 weeks: Indications for screening:		3651 (601)/ 3519	39.0 (1.8)/ 39.8	years after	
		study		glycosuria, prior GDM, suspected fetal macrosomia,		(466)	(1.5)	delivery	
				previous macrosomic infant (birth weight 44500 g),		ALYS cohort:	ALYS cohort:		
				maternal pre-pregnancy BMI \ge 25 kg m ⁻ 2, and		3881 (648)/ 3555	39.0 (1.5)/ 40.0		
				maternal age ≽40 years.		(462)	(1.3)		
				Overnight fasting by using a 75-g oral glucose load.					
				Cutoff limits for GDM were used for venous blood					
				glucose: 45.5 mmol I – 1 at fasting, 411.0 mmol I –					
				1 and 48.0 mmol I – 1, 1 and 2 h after the glucose					
				load, respectively. A diagnosis of GDM was made					
				with one abnormal value in the OGTT.					

Kearny	2018	Cohort	USA	Based on hospital records from two major hospitals	56/ 30	3346 ± 442/ 3267 ±	38.8 ± 1.4/ 39.5	Between	BMI (kg/m ²)
		study		with a neonatal care unit in the metropolitan area of		558	± 1.2	3-12 years	BMI-z score
				Quebec City (Hospital Saint-François d'Assise,				after	
				Centre Hospitalier de l'Université Laval – CHUL) or				delivery	
				according to administrative data from the provincial					
				health plan registry (Régie de l'assurance maladie du					
				Québec)					
Le	2018	Cohort	France	Confirmed based on hospital, medical records with	600/600	3183 ± 563/ 3047 ±	Not reported	Average 6	BMI centile
Moullec		study		following criteria:		500		years after	
				Positive screening for GDM based on a OGTT (1-hr				delivery	
				post load 50-g plasma glucose, 11.1 mmol/l), had a					
				diagnosis of GDM based on a 100-g OGTT (OGTT					
				with at least two pathologic values defined as:					
				fasting, _ 5.3 mmol/l; 1-hr, 10.0 mmol/l; 2-hr, 8.6					
				mmol/l; 3-hr, 7.8 mmol/l), and/or had received					
				insulin treatment during pregnancy. A small number					
				of participants (< 0.5%; n = 6) with no available data					

				were also classified into the GDM group if they					
				combined high fasting (or postprandial) glycaemic					
				values with intense medical monitoring during					
				pregnancy.					
Mietten	2018	Cohort	Finland	An oral 75 g 2-hr glucose tolerance test	15/13	3500 ± 120/ 3540 ±	39.8 ± 0.33/	After birth	Cord blood
		study		(OGTT)was performed for all subjects at weeks 22-		130	40.54.7 ± 0.32		total
				29 of pregnancy, with the exception of 3 subjects					cholesterol,
				with OGTT performed at weeks 31- 33. OGTT was					Lipids
				considered diagnostic for GDM if any of the					(mmol/L)
				measures were pathological. The following					
				diagnostic thresholds were used: fasting plasma					
				glucose >5.3 mmol/L, 1 h plasma glucose (10.0					
				mmol/L) or 2 h plasma glucose (8.6 mmol/L)					
Wang	2018	Popula-	China	Based on American diabetes association	1,500/ 23,	Not reported	39.1 ± 1.1/ 39.3 ± 1.1	6 years	BMI z-score
		tion			471				
		based							

		cohort							
		study							
Hammou	2017	Cohort	The	75-gram oral glucose tolerance test or elevated	24/	3,582±576/	39±2.0/	5 years	Overweight/o
-nd		study	Netherla	fasting glucose (exact cut offs not shown)	T1D: 27	T1D: 3,506±556, T2D:	T1D: 37±1.3,	after	bese
			nds		T2D: 22	3,701±509	T2D: 38±1.7	delivery	
Li	2017	Prospecti	USA	Self-reported questionnaire	756/14,253	No mean reported	Not reported	11 years	BMI
		ve cohort						after	
		study						delivery	
Tam	2017	Longitudi	Hong	All women underwent a standard 75-g oral glucose	132/ 794	Not reported	Not reported	7 years	BMI (kg/m ²)
		nal cohort	Kong	tolerance test (OGTT) between 24 and 32 weeks of				after	BMI
		study		gestation, GDM diagnosed based on HAPO criteria				delivery	Percentile
									SBP (mmHg)
									DBP (mmHg)
									Glucose
									(mmol/L)
									Lipids
									(mmol/L).
		1	1		1	1	1	1	1

Bozkurt	2016	Descripti	Austria	4th International Workshop Conference on GDM	32/	63.0 ± 24.0/	not reported	Average 6	BMI-SDS,
Ω		ve Study		criteria	DM (26)	DM: 71.3 ± 29.3)		years after	Insulin
					Control:	Control:66.6 ± 22.1)⁺		birth	(µU/mI)
					(18)				
Hakanen	2016	Longitudi	Finland	Diagnosed by hospital records	520/	3600 (600)/	39.4 (2.5)/	Average 1-	BMI Peak
		nal study			T1D: 67,	Control 3500 (500)	Control: 39.7	12 after	(kg/m²)
					Ctrl:6316	T1D 3700 (700)	(2.4)	delivery	
							T1D: 38.5 (2.0)		
Lopez	2016	Cross	Spain	Diagnosed in medical records	38/ Women	not reported	not reported	Infant	Cord blood
Morales		Sectional			with normal			(after birth)	glucose
					gestation				(mg/dl)
					(still				Cord blood
					pregnant)				insulin (U/ml)
					=38				Cord blood
									lipids (mg/dl)

Zhao	2016	Cross	Multicent	Varied between international centres but included	206/4.354	3,415 (623)/ 3,274	38.3 (2.1)/ 38.6	9-11 years	BMI
		Sectional	re(Austra	WHO, ADA, modified ADA and modified WHO		(576)	(2.2)	after	
			lia, Brazil,	definitions - women would self-report GDM and the				delivery	
			Canada,	research team confirmed the diagnostic criteria at the					
			China	time of diagnosis					
			Colombia						
			-а,						
			Finland,						
			India,						
			Kenya,						
			Portugal,						
			South						
			Africa,						
			UK,						
			USA).						
Chang	2015	Retrospe	China	American Diabetes Association: Women with	356/ 500	3700 ±120 / 3200 ±	Not reported	6 years	BMI (kg/m2)
		ctive		abnormal 50g OGTT (>7.8mmol/L) underwent further		800		after birth	SBP (mmHg)
					1				

		cohort		fasting 3h 75g OGTT. GDM diagnosed with criteria:					
		study		(BG > 5.3mmol/L at baseline, > 10mmol/L at 1h,					
				>8.6mmol/L at 2h, 7.8mmol/L at 3h.					
Krishnav	2015	Cohort	India	Carpenter and Coustan: two or more plasma	26/ CTRL:	not reported	not reported	13.5 years	BMI (kg/m2)
eni		study		glucose concentrations 5.3 (fasting), 10.0 (60 min),	165			after	SBP and DBP
				8.7 (120 min), and 7.8 mmol/l (180 min) (reported in	Offspring of			delivery	(mmHg)
				2005 study)	diabetic				Glucose
					fathers: 22				(mmol/L)
									Insulin
									(pmol/L)
									Lipids
									(mmol/L)
Page ^	2015	Cohort	USA	Based on protocol Page 2012	10/ 9	not reported	not reported	Average 9-	BMI (kg/m²)
		study						10 years	BMI
								after	percentile
								delivery	

Putowsk	2015	Prospecti	Poland	Not specified	261/153	3330 + 53/ 3/20 + 5/	not reported	Approx 3	BMI
TULOWSK	2013	гозреса	Fulatio		201/ 100	5550 ± 55/ 5420 ± 54	not reported	Appiox. 3	DIVII
a ^		ve Cohort						years after	percentile
								delivery	
Wilk	2015	cohort	Poland	Hospital records	50/ 46	not reported	not reported	7-15 years	BMI SDS
		study						after	BMI
								delivery	percentile
									Glucose
									(mg/dL),
									Insulin
									(mg/dL)
Zhao	2015	cohort	China	Women with risk factors for GDM underwent 85-g	LGA:	GDM (followed) 3256 ±	GDM (followed)	5-10 years	BMI
		study		OGTT at <12 weeks gestation, OGTT repeated at 24-	149/284	405, GDM (not	38.9 ± 0.9 (not	after	percentile
				28 weeks if normal results. All women with low risk	AGA:	followed) 3172 ± 509/	followed) 38.4 ±	delivery	
				for GDM did normal 24-32 weeks gestation. 1999	771/1401	Control followed: 3261	1.5/ Control		
				WHO diagnostic criteria for GDM since January 1	SGA:	± 391, Control not	followed:39.5 ±		
				2003. GDM diagnosis based on IGT (fasting blood	148/180	followed: 3254 ± 417	1.0, Control not		
						1			

				glucose <7.0 mmol/l and 2-h postprandial blood			followed:39.1 ±		
				glucose ≥7.8–11.0 mmol/l) or DM (fasting blood			0.7		
				glucose ≽7.0 mmol/l or 2-h postprandial blood					
				glucose \ge 11.1 mmol/l) positive results					
Holder	2014	Cohort	USA	Self-reported	45/ 210	3,242.54±959.59/3,29	not reported	Average	BMI (kg/m ²)
		study				7.93±603.99		15 years	BMI-Z Score
								after	Plasma
								delivery	glucose
									(mmol/L)
Koing	2014	Retrospe	Germany	Three women were diagnosed with Hesse Diabetes	130/77	3 406.62 ± 463.69/3	not reported	6 months	BMI (kg/m2)
		ctive		Society diagnosis: Fasting: ≥ 90 mg/dl, 1 h		456.09 ± 463.25		after	BMI
		case-		postprandial: \geq 160 mg/dl, 2 h postprandial \geq 140				delivery	percentile
		control		mg/dl in venous plasma. Some women were					
				diagnosed who exceeded only one of these 3					
				threshold values in a venous blood specimen. Other					
				women referred to by clinicians, based on DDG and					
				AGA values: GDM was diagnosed if at least 2					

				measured values exceeded the limits of Carpenter					
				and Coustan after ingestion of 75 g glucose, only					
				one exceeded value was declared as impaired					
				glucose tolerance. GDM can also be diagnosed if					
				only one of the predetermined cut-offs is exceeded,					
				whereas these values - based on the results of the					
				HAPO-Study – differ slightly from the former criteria:					
				Fasting: \geq 92 mg/dl, 1 h postprandial: \geq 180 mg/ dl,					
				2 h postprandial ≥ 153 mg/dl.					
Page	2014	Cohort	USA	Based on protocol Page 2012	37/ 25	3186 ± 113/ 3454 ± 79	not reported	5-16 years	BMI (kg/m ²)
		study						old	BMI-z score
								(average	BMI
								7-9 years	percentile
								after	
								delivery)	
1		1	1				1	1 1	

Davis	2013	Longitudi	USA	Self-reported	47/163	3900 (800)/3700 (600)	not reported	Average	BMI (kg/m2)
		nal						10-11	BMI
		Cohort						years after	percentile
								birth	BMI z-score
									Glucose
									(mg/dl)
									Insulin
									(µU/ml)
Eslamain	2013	Cohort	Iran	World Health Organization, diagnosed as either:	112/ 159	3336.07±630/3259.75	37.72±1.7/39.1.3	Infant	BMI (kg/m2)
		study		Fasting plasma glucose 5.1-6.9 mmol/L or: 1-hour		±490	3	(after birth)	Cord blood
				plasma glucose 10.0 mmol/L. Following a 75 g oral					glucose
				glucose load 2-hour plasma glucose 8.5-11.0					(mg/dL)
				mmol/L following a 75 g oral glucose load					Cord blood
									insulin
									(µU/ml)
									Cord blood

									Lipids (mg/dL)
Farfel [^]	2013	Cohort	Israel	159 males, 113 females/ Diagnosed by hospital	Female	Male 3423±537	Not reported	17 years	BMI >85th
		study		records	(113)	Female 3230±510/		after	percentile
					Male (159)/	PGDM Male		delivery	
					PDGM,	3451±535, Female			
					Male (34)	3210±364.			
					Female (23)	CTRL Male 3344±372,			
					Control,	Female 3228±324			
					Male (198)				
					Control				
					(147)				
Nehring	2013	Retrospe	Germany	GDM cases found from medical records	195/ 7,160	3479 (3417–3540)/	3413 (3403–	Average	BMI (kg/m²)
		ctive				3413 (3403–3424)	3424)/ 39.4	5.8 years	
							(39.3–39.4)		

		cohort						after	
		study						delivery	
Nielsen	2013	Populatio	Denmark	Rigshospitalet University Hospital modification	34/	3803 (780) / PreGDM:	38.9 (1.9)/	18-20	BMI (kg/m ²)
		n based		of the White classification: Oral glucose challenge	PreGDM	3327 (648), control:	PREGDM: 36.5	years after	
		cohort		test (OGTT) in gestational weeks 24–26 if they met	(185),	3482 (551)	(1.8) control:	delivery	
		study		one of the following criteria: (1) previous birth of a	control		38.8 (2.0)		
				baby with birthweight >4500 g; (2) maternal	(737)				
				overweight >130%; (3) family history of diabetes; (4)					
				glycosuria or (5) previous obstetrical complications					
				or late miscarriage. (Diagnostic values not					
				specified)					
Page [^]	2013	Cohort	USA	Based on protocol Page 2012	10/ 19	not reported	not reported	Average 9	BMI-z score
		study						years after	SBP(mmHg)
								delivery	Glucose
									(mg/dL)
									Insulin
									(uLu/ml)

Pham	2013	Retrospe	USA	Normal screening at 24-28 weeks (unless considered	459/ 2,185	3,406	±496 /3,404	39.3 ±1.0/ 39.6	2-4 years	BMI
		ctive		at risk, tested in first trimester). 50g- 1-hour glucose		±442		±0.9	after	percentile
		cohort		challenge test of greater/equal to 140 mg/dL, then					delivery	
		study		given a 100-g 3-hour glucose tolerance test if 1-h						
				challenge was positive. Needed 1/4 of the possible						
				measurements to be diagnosed. Diagnosis followed						
				National Diabetes Data Group prior to April 2007,						
				then changed to Carpenter and Coustan criteria						
				after April 2007.						
Retnakar	2013	Sub	Canada	Those with and without an abnormal 50g glucose	36/ 68	3411	[3110-3635]/	not reported	1 year after	BMI z-score
-an Ω		study of		challenge screening test undergo 3-h 100g OGTT for		3415 [3	3144-3628]		delivery	Fasting
		prospecti		ascertainment of antepartum glucose intolerance						glucose
		ve		status (i.e. either GDM or non-GDM) based on						(mmol/L)
		observati		National Diabetes Data Group (NDDG),						Lipids
		onal		measurements at 20 minutes- 1h, 2h and 3h.						(mmol/L)
		study								

Baptise-	2012	Prospecti	USA	All women provided fasting blood specimen if it was	484/ 27,874	3302 ±	: 584/3190 ±	not reported	7 years	BMI (kg/m ²)
Roberts		ve Cohort		120 mg/dL or higher, or if it rose to over 175 mg/dL		484			after birth	BMI z-score
				at the end of 1 h and did not return to normal in the						BMI
				2- and 3-h specimens. GDM diagnosed based on						Percentile
				these criteria: (1) she was newly diagnosed with						
				diabetes during pregnancy; (2) she initiated insulin						
				during pregnancy; (3) she displayed an abnormal						
				glucose tolerance test result; or (4) she had a blood						
				glucose level of 200 mg/dL or more at any time during						
				pregnancy.						
Borogon-	2012	Prospecti	Canada	National Diabetes Data Group criteria	36/68	3,411	[3,110–3,635]	not included	1 year after	Fasting
0		ve Cohort				3,415 [3	,144–3,628]		birth	glucose
										(mmol/L)
										Fasting
										insulin
										(pmol/L)

Chandler	2012	Cohort	USA	Self-reported, confirmed with hospital records	Normal	not reported	not reported	Average 7-	BMI
Laney		study			weight:			8 years	percentile
					(11),			after birth	Glucose
					Overweigh-t				(mg/dL)²,
					(13)/				Insulin
					Normal				(mg/dL) ²
					weight (19)				
					Overweigh-t				
					(8)				
Page ^	2012	Cohort	USA	Not reported in abstract (Based on protocol): Fasting	35/ 14	not reported	not reported	Average 8	BMI (kg/m ²)
		study		glucose <126 mg/dl (7 mM) from families of a				years after	BMI z-score
				proband with GDM diagnosed within the previous 5				delivery	
				years)					
Patel	2012	prospecti	England	GDM was defined as any record of a diagnosis of	27/Control:	1.45 (1.28)/ Control:	38.6 (1.48)/	15 years	BMI z-score
		ve		gestational diabetes at any time during the	(4384),	0.038 (0.97), existing	Control: 39.4	after	SBP and
		populatio		pregnancy in women without existing diabetes at the	existing	diabetes: 0.28 (1.32),	(1.85), existing	delivery	DBP(mmHg)
		n-based		start of pregnancy. (At time of study recruitment: all	diabetes	glycosuria: 0.18 (1.04)	diabetes: 37.5		Glucose

			cohort		pregnant women to have urine tested for glycosuria	(23),		(1.86),		(mmol/L)
			study		and proteinuria at every antenatal clinic visit.	glycosuria		glycosuria: 39.7		Insulin (IU/L)
					Glycosuria was defined as a record of at least ++	(154)		(1.63)		Lipids
					(equal to 13.9 mmol/l or 250 mg/100 ml) on at least					(mmol/L)
					two occasions at any time during the pregnancy.)					
					GDM was tested further to these results, diagnosed					
					in the medical records as GDM with no history of					
					existing diabetes.					
ľ	Jahan	2011	Cohort	Banglade	Diagnosed with fasting blood glucose, and 2 h after	30/ DM	3000 (2100-4500)/ DM:	not reported	Infant	Insulin
			study	sh	75 g oral glucose tolerance test (OGTT). Women	(n=45)	3100 (1700-4800),		(after birth)	(mmol/L)
					who had repeatedly elevated fasting (>7.0 mmo1/L)	control	NDM: 2700 (2000-			
					or postprandial (9 mmol/L) blood glucose values.	(n=30)	3800)			
	Tsadok	2011	Populatio	Israel	Reported on hospital records	293/ 59,499	3411 ± 616/ 3301 ±	not reported	17 years	BMI (kg/m²)
			n based				483		after	SBP and DBP
			cohort						delivery	
			1	1		1			1	1

Boersch-	2010	Prospecti	Germany	German Diabetes Association - an oral glucose	77/148	Not reported	Not reported	11	BMI
mann		ve cohort		tolerance test (OGTT) with a 75-g glucose load.					percentile
2010				Women were considered to have GDM if two of three					
				capillary blood glucose values exceeded the					
				following limits: _5 mmol/l (fasting) before an oral					
				glucose tolerance test,_10.0 mmol/l after 60 min, and					
				8.6 mmol/l after 120 min.					
Krishnav-	2010	Cohort	India	Carpenter and Coustan: two or more plasma	Female (23)	not reported	not reported	9.5 years	BMI (kg/m ²)
eni		study		glucose concentrations 5.3 (fasting), 10.0 (60 min),	Male (12)/			after	BMI
				8.7 (120 min), and 7.8 mmol/l (180 min)	Control:			delivery	percentile
					Female				SBP and DBP
					(191) male				(mmHg)
					(190),				Glucose
					Offspring of				(mmol/l)
					diabetic				Insulin
					fathers				(pmol/l)
		1	1	1	1		1	1	

					Male: (20),				Lipids
					Female (19)				(mmol/l)
Lawlor	2010	Longitudi	England	GDM was defined as any record of a diagnosis of	53/	3,711 (655)/ Control:	38.2 (1.9)/	Average 9-	BMI z-score
		nal		gestational diabetes at any time during the	Control:	3,416 (536), existing	Control: 39.5	11 years	
		Cohort		pregnancy in women without existing diabetes at the	(10,126)	diabetes: 3,248 (787),	(1.9) Existing	after	
				start of pregnancy. (At time of study recruitment: all	Existing	glycosuria: 3,511 (534)	diabetes: 37.5	delivery	
				pregnant women to have urine tested for glycosuria	diabetes		(2.6), Glycosuria:		
				and proteinuria at every antenatal clinic visit.	(40)		39.5 (1.8)		
				Glycosuria was defined as a record of at least ++	Glycosuria				
				(equal to 13.9 mmol/l or 250 mg/100 ml) on at least	(372)				
				two occasions at any time during the pregnancy.)					
				GDM was tested further to these results, diagnosed					
				in the medical records as GDM with no history of					
				existing diabetes.					
Pirokla	2010	Longitudi	Finland	GDM risk factors; 40 years, BMI 25 kg/m2, prior	Normal	Overweight:	Overweight: 38.5	16 years	BMI (kg/m ²)
		nal cohort		GDM, previous delivery of a macrosomia infant (birth	weight	3700 (3490–3920)	(37.8–39.1),	after	
		study		weight 4,500 g), glycosuria, and suspected fetal	(n=49),	Normal 3670 (3530–	Normal 39.0	delivery	
1		1		1	1	1			1

				macrosomia in the current pregnancy.	Overweight	3820)/	(38.6–39.5)/		
				Glucose tolerance testing, performed after an	(n=35)/	Overweight=3780	Overweight 39.4		
				overnight fast, conducted by administering a 2-h, 75-	Control total	(3680–3880), Normal	(39.1–39.6),		
				g oral glucose tolerance test (OGTT): 5.5, 11.0, and	(??) Normal	weight: 3690 (3640-	Normal weight		
				8.0 mmol/l at fasting and at 1 h and 2 h after the	weight:	3740), Total:	39.5 (39.4–39.7)		
				glucose load, respectively. Diagnosis of GDM was	(503),	3480(3460-3500).	Total 39.5(39.4-		
				set after one abnormal value in the OGTT, according	Overweight		39.5)		
				to prevailing national guidelines	(n=154)				
Tam	2010	Longitudi	Hong	GDM defined based on WHO criteria: Gestational	42/87	3,248 (351)/3,273	Based on Tam et	15 years	BMI (kg/m ²)
		nal cohort	Kong	impaired glucose tolerance (IGT) (i.e., fasting PG		(454)	<i>al.</i> 2008 with	after	SBP and DBP
				level of 7.0 mmol/L and 2-hour PG level of 7.8–11.1			larger (n=):	delivery	(mmHg)
				mmol/L, and GDM (i.e., fasting PG level of 7.0			39.6±0.2/		Glucose
				mmol/L and/or 2-hour PG level of 11.1 mmol/L).			39.5±0.2		(mmol/L),
				WHO criteria states that "pregnant women who meet					Lipids
				WHO criteria for diabetes mellitus of IGT are					(mmol/L)
				classified as having GDM."					
Catalano	2009	Prospecti	USA	National Diabetes Data Group (NDDG)	25/38	3,373 ± 532/3,376 ±	38.7 ± 1.3/ 39.4	Average	BMI(kg/m2)
----------	------	-----------	---------	---	-----------	---------------------	------------------	-------------	-------------
		ve Cohort				496	± 1.2	8.8 years	BMI z-score
								after birth	SBP and DBP
									(mmHg)
									Glucose
									(mmol/L)
									Insulin
									(pmol/L)
									HOMA-IR
									Lipids
									(mmol/L)
Vaarasm	2009	Prospecti	England	Risk factors: glycosuria, prior gestational diabetes,	96/ 3,909	3,727 (577)/ 3,517	38.8 (1.7)/ 39.5	16 years	BMI
-aki		ve cohort		suspected foetal macrosomia (birth weight 4500 g) in		(471)	(1.5)	after	SBP and DBP
		study		the current pregnancy, previous delivery of a				delivery	(mmHg),
				macrosomic infant, body mass index (BMI) 25 kg/m2					Glucose
				and age more than 40 yr. A history of prior gestational					(mmol/L)
				diabetes or glycosuria in the current pregnancy					Insulin
1	1	1	1			1			1

				warrants an earlier OGTT. Diagnosed with 2-h, 75-g					(milliunits/L)
				oral glucose tolerance test (OGTT) usually at 26-28					Lipids
				week of gestation: one or more abnormal OGTT					(mmol/L),
				values (cut-off values for venous blood samples are					
				4.8 mmol/L at 0 min, 10.0 mmol/L at 60 min and 8.7					
				mmol/L at 120 min).					
Wright	2009	Cohort	USA	Screening at 26-28 weeks with non-fasting 50-g 1h	51/ Control	3510 (52)/ control=	not reported	3 years	BMI (kg/m2)
		study		oral glucose challenge. If test result was abnormal	n=1035,	3510/52, IGT 3600 (52)		after	BMI
				(i.e. blood glucose value of >140 mg/dl) then women	IGT n=152			delivery	percentile
				were referred for fasting 3-h 100 OGTT. Two or more					BMI z-score
				abnormal results were a diagnosis for GDM: a blood					SBP (mmHg)
				glucose>95 mg/dl at baseline, >180 mg/dl at 1 h,					
				>155 mg/dl at 2 h, or >140 mg/dl at 3 h.					
Buzinaro	2008	Cohort	Brazil	Based on OGTT Values (cut-offs not specified)	23/	not reported	not reported	average	BMI (kg/m2),
		study			Control (17)			12- 16	SBP and DBP
					Hyperglyca			years after	(mmHg)
					emia (23)			birth	Glucose
1		1	1						

									(mg/dL)
									Lipids
									(mg/dL)
Clausen	2008	Retrospe	Denmark	OGTT - GDM was based on risk indicators: family	168/128	3410 (530)/ 3474 (481)	273 (247–284)//	18-27	Glucose
		ctive		history of diabetes, overweight (20%) prepregnancy,			280 (253–298)	years after	(mmol/L)
		cohort		prior GDM, delivery of macrosomic baby, glycosuria.				delivery	
		study		Women with these risk indicators and two capillary					
				blood glucose measurements > 4.1 mmol/L were					
				offered a 3h 50g OGTT. OGTT was abnormal if more					
				than two of seven values during the test exceeded					
				mean 3 SDs for a reference group of normal weight					
				non-pregnant women without family history of					
				diabetes (Until Sep 1982 venous plasma used for					
				OGTT, after then capillary whole blood)					
Pirokla	2008	Cohort	Finland	Risk factors for diagnosis: glycosuria, prior	22/ T1D: 16,	3.708 (3.538–3.886)/	39.2 (38.7–39.7)/	Mean 4.9	SBP and DBP
		Study		gestational diabetes, suspected foetal macrosomia	control: 25	T1D: 3.818 (3.482-	T1D: 37.5 (36.8–	years after	(mmHg)
				(birth weight .4500 g) in the current pregnancy,				delivery	Cord blood
		1	1		1				

				previous delivery of a macrosomic infant, body mass		4.185), Control: 3.666	38.2), 39.3		insulin
				index (BMI) 25 kg/m ² and age more than 40 yr. A		(3.452–3.893)	(38.8–39.8)		(pmol/L)
				history of prior gestational diabetes or glycosuria in					
				the current pregnancy warrants an earlier OGTT.					
				Diagnosed with 2-h, 75-g oral glucose tolerance test					
				(OGTT) usually at 26–28 week of gestation: one or					
				more abnormal OGTT values (cut-off values for					
				venous blood samples are 4.8 mmol/L at 0 min, 10.0					
				mmol/L at 60 min and 8.7 mmol/L at 120 min).					
Tam	2008	Longitudi	Hong	DM defined based on WHO criteria: Gestational	63/ 101	3292±52/ 3245±45	39.6±0.2/	Average 7-	BMI (kg/m²)
		nal cohort	Kong	impaired glucose tolerance (IGT) (i.e., fasting PG			39.5±0.2	8 years	BMI
		study		level of 7.0 mmol/L and 2-hour PG level of 7.8–11.1				after	percentile
				mmol/L, and GDM (i.e., fasting PG level of 7.0				delivery	SBP (mmHg)
				mmol/L and/or 2-hour PG level of 11.1 mmol/L).					and DBP
				WHO criteria states that "pregnant women who meet					(mmHg)
									Glucose
						1			

				WHO criteria for diabetes mellitus of IGT are					(mmol/L)
				classified as having GDM."					Insulin
									(pmol/L)
									Lipids
									(mmol/L)
Lee	2007	Cohort	South	National Diabetes Data Group: 50 g glucose	202 / 96	3344.6 ± 585.0/ 3286.6	38.6 ± 1.5/ 38.7	Average 4	BMI (kg/m ²)
		study	Korea	challenge test was performed; if the 1 h plasma		± 612.4	± 2.2	years after	SBP and DBP
				glucose value was 130 mg/dL (7.2 mmol/L), a 3 h				delivery	(mmHg)
				oral glucose tolerance test (OGTT) was performed					Lipids
				during 28–32 weeks of gestation.					(mmol/L)
									Glucose
									(mmol/L)
									Insulin
									(mg/mL).
Boney	2005	Longitudi	USA	National Diabetes Data Group criteria described by	LGA: 42/43	LGA: 4107 (386)/ 4132	not reported	11 years	BMI
		nal		Carpenter and Coustan	AGA: 52/42	(285)		after birth	percentile
		Cohort							BP >90th

						AGA: 3316 (310)/			percentile (BP
						3370 (282)			Is either SBP
									or DBP)
									(mmHg)
									Glucose
									(mmol/L)
									Lipids
									(mmol/L)
Jaber	2005	Cohort	Saudi	Venous fasting glucose concentration of >5.5 mol/L	26/ Control	3640 ± 690/ CTRL:	37.38 ± 0.64/	Approxima	BMI (kg/m ²)
		study	Arabia	or of >8.0 mmol/L 2 hours after a 75g oral glucose	(n=32),	3.30 ± 0.59 FDM: 3.18	CTRL:37.28 ±	tely 2	Glucose
				load or both.	FDM (n=21)	± 0.86	0.73, FDM: 37.48	weeks	range(mmol/L
							± 0.60	after)
								delivery	Insulin range
									(pmoL/L)
Krishnav-	2005	Cohort	India	Carpenter and Coustan: two or more plasma	41/ Control:	3344 ± 421/ CTRL:	39.1 ±1.2/CTRL	1 and 5	Fasting
eni		study		glucose concentrations 5.3 (fasting), 10.0 (60 min),	588	2973 ± 408, ODF:	39.0 ± 1.8,	years after	plasma
				8.7 (120 min), and 7.8 mmol/l (180 min)	Offspring of	2869 ± 305	ODF:39.1 ± 1.2	delivery	glucose

					diabetic				(pmol/l)
					fathers: 41				
Gillman	2003	Prospecti	USA	Self-reported questionnaire	Female	Female: 3.55 (0.56)	Not reported	Average 9-	BMI
		ve Cohort			(246), Male	Male 3.68 (0.61)/		14 years	Percentile
					(219)/	Female 3.44 (0.48)		after	
					Female	Male 3.58 (0.51)		delivery	
					(n=7735),				
					Male				
					(n=6681),				
Vohr	1999	Prospecti	USA	24-28 weeks screening, GDM diagnosis made on	LGA: 47/46	LGA: 4100 ± 3800/	LGA: 39.4 ± 1/	4-7 years	BMI (kg/m ²)
		ve		initial 1h 50-g glucose screen >130 mg/dl, followed	AGA: 59/55	4200 ± 2900	40.0± 1, AGA:	after	
		observati		by two abnormal values in a 100-g oral glucose		AGA: 3300 ± 300/	39.4 ± 1/ 39.7 ±	delivery	
		onal		tolerance test. Criteria of O'Sullivan et al. modified		3400 ± 3000	1		
		study		by Carpenter and Coustan (recent 1999): fasting					
				plasma glucose >95 mg/dl and 1-h >180 mg/dl, 2-h					
				>155 mg/dl, and 3-h ^140 mg/dl.					

Silverma-	1998	long term	USA	Unclear - from hospital records (From Silverman et	Unclear	not reported	not reported	14-17	BMI (kg/m ²)
n †		prospecti		<i>al.</i> 1995)				years after	
		ve cohort						delivery	
Whitaker	1998	Cohort	USA	24-32 weeks screening, 1-h 50-g oral glucose load -	63/	not reported	Not reported	5-10 years	BMI z-score
		study		glucose screening values >7.77mmol/L (140mg/dL)	Control=25			after	BMI
				called back for 3-h 100-g OGTT. GDM diagnosed	7, Normal			delivery	percentile
				based on calculations Carpenter and Coustan	OGTT=159,				
				(recent 1998)	No				
					OGTT=45				
Plagema-	1997	Retrospe	Germany	Diagnosed 26-28 weeks gestation by Furmann: a	57/ 156	3500.8 ±50.8 (117)/	not reported	Average 1-	Plasma
nn		ctive		50-g OGTT using the following criteria (two or more		3443.5 ± 45.5 (200)		9 years	insulin
		study		abnormal values): fasting venous blood glucose over				delivery	(mIU/ml)
				5.55 mmol/l, 1-h value over 8.88 mmol/l, 2-h value					
				over 7.22 mmol/l					
Plagema-	1997	Cohort	Germany	Diagnosed 26-28 weeks gestation by Furmann: a	69/ 129	3460.1 ± 50.7/ 3411.2	not reported	Average 1-	Glucose
nn		study		50-g OGTT using the following criteria (two or more		± 56.8		9 years	(mmol/l),
				abnormal values): fasting venous blood glucose over					

				5.55 mmol/l, 1-h value over 8.88 mmol/l, 2-h value				after	Insulin
				over 7.22 mmol/l	delivery	(pmol/l)			
Vohr	1995	Prospecti	USA	Screening 24-28 weeks, GDM diagnosis made on	LGA: 57/74	LGA: 4,064 ±	LGA: 39 ± 1/40 ±	20 hours	BMI (kg/m ²)
		ve cohort		initial 1h 50-g glucose screen >130 mg/dl, followed	AGA: 62/69	305/:4,095 ± 267	1 AGA: 39 ± 1/	after	
		study		by two abnormal values in a 100-g oral glucose		AGA: 3,301 ± 280/	39 ± 1	delivery	
				tolerance test. Criteria of O'Sullivan et al. modified		3,282 ± 238			
				by Carpenter and Coustan: fasting plasma glucose					
				>95mg/dl and 1-h >180 mg/dl, 2-h >155 mg/dl, and					
				3-h ^140 mg/dl.					
Teng		Longitudi	India	IADPSG criteria: 75 g Oral Glucose Tolerance Test	123/ 80	not reported	not reported	14 years	Glucose
2017		nal cohort		(OGTT) and if serum glucose level was over 1mmol/l				after	(mmol/L)
				at 0 h, or 10.0 mmol/l at 1 h, or 8.5 mmol/l at 2 h,				delivery	Lipids(mmol/L
				GDM was diagnosed)

^ - abstract only

+ - birthweight centiles used rather than birthweight

 $^{\dagger \text{-}}$ (n=) not known for GDM or non-GDM group

The assessment of methodological quality identified 25 studies of high quality (scored 7-8), 25 studies of moderate quality (scored 4-6), and 9 studies of low quality (scored 1-3) (Supplementary Table 4.8.2). No publication bias was evident for relevant outcomes. Studies were found for all relevant outcomes, except microvascular function and therefore we could not report on this outcome in the review.

4.5.2. Systolic Blood Pressure:

Systolic blood pressure (SBP) data were available from 15 studies, of which eight were included in the meta-analysis. The age of follow-up of offspring ranged from three years to 16 years of age. Based on quantitative summary measures, the meta-analysis demonstrated that offspring exposed to GDM *in utero* have 1.75mmHg (95% CI 0.57-2.94) higher SBP compared to controls (n(total)=7,309, n(exposed to GDM)=584; p=0.33, $I^2 = 13\%$) (Figure 4.5.2-1)²³¹⁻²³⁸. Sensitivity analyses was not performed as no low-quality studies were included in the analysis. Of the seven studies not included in the meta-analysis ^{226, 239-244} four reported a significant increase in SBP among offspring exposed to GDM compared to controls. (Supplementary Table 4.8.1). ^{226, 239, 242, 243}

	(GDM		No	n-GDN	1		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Buzinaro 2009 (12-16 years of age)	102	13	23	101	11	27	3.0%	1.00 [-5.74, 7.74]	
Catalano 2009 (8.8 years of age)	110	11	37	108	12	52	5.7%	2.00 [-2.82, 6.82]	
Chang 2015 (6 years of age)	92.5	10.2	356	90.3	9.8	500	41.8%	2.20 [0.84, 3.56]	│ — ∎ —
Krishnaveni 2015 (15 years of age)	110.5	8.1	26	109	8.3	165	11.0%	1.50 [-1.86, 4.86]	
Patel 2012 (15 years of age)	123.8	10.3	27	123.1	10.8	4834	8.5%	0.70 [-3.20, 4.60]	
Pirkola 2008 (4.9 years of age)	98	5.6	22	101	8.5	25	7.8%	-3.00 [-7.07, 1.07]	
Tam 2010 (15 years of age)	113	10	42	111	10	87	9.4%	2.00 [-1.68, 5.68]	
Wright 2009 (3 years of age)	96	11	51	92	10	1035	12.8%	4.00 [0.92, 7.08]	
Total (95% CI)			584			6725	100.0%	1.75 [0.57, 2.94]	-
Heterogeneity: Tau ² = 0.40; Chi ² = 8.02, df = 7 (P Test for overall effect: $Z = 2.89$ (P = 0.004)			.33); I ² :	= 13%					-4 -2 0 2 4 CDM_Non-CDM

Figure 4.5.2.1 Mean difference in systolic blood pressure (mmHg) in those exposed to GDM *in utero* and controls

4.5.3. Diastolic Blood Pressure

Diastolic blood pressure (DBP) data were available from 13 studies of which six were included in the meta-analysis. The age at follow-up ranged between eight to 16 years of age. The meta-analysis demonstrated no difference in DBP among GDM-exposed offspring and controls (MD: -0.24 (95% CI -2.33-1.85; (n(total)= 5,367, n(exposed to GDM)=177; p=0.08, I² = 50%^{231, 232, 234-236}; (Figure 4.5.3.1). Sensitivity analyses was not performed as no low-quality studies were included in the analysis. Seven studies were not included in the meta-analysis^{226, 238-244}, of which two reported a significantly higher DBP in GDM offspring compared to controls (Supplementary Table 4.8.1)^{242, 243}

Figure 4.5.3.1 Mean difference in diastolic blood pressure (mm Hg) in those exposed to GDM *in utero* and controls

4.5.4. BMI

BMI data (i.e. BMI-z score, BMI (kg/m²), and/or BMI-percentile, BMI peak, BMI SD) were available from 48 studies. BMI z-score and BMI (kg/m²) are reported in the metaanalysis and other BMI data are reported in the non-meta-analysis (Supplementary Table 4.8.1) BMI z-score data were reported in 14 studies, of which nine were included in the metaanalysis. The age at follow-up ranged from three years to 15 years of age. Offspring exposed to GDM *in utero* showed an increase in BMI z-score compared to controls (MD 0.11 95% CI 0.02-0.20; n(total)=31,485, n(exposed to GDM)=1,858; p=0.14, I^2 $= 34\%)^{232, 235, 237, 245-249}$ (Figure 4.5.4.1). Five studies were not included in the metaanalysis^{241, 250-253}, with two reporting significantly higher BMI z-scores in GDMexposed offspring compared to controls^{250, 252} (Supplementary Table 4.8.1).

Figure 4.5.4.1 Mean difference in BMI z-score in those exposed to GDM *in utero* and controls.

		GDM		No	n-GDN	1		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Catalano 2009 (8.8 years follow-up)	0.9	1.4	37	0.31	1.16	52	4.6%	0.59 [0.04, 1.14]	
Davis 2013 (10-11 years follow-up)	2.2	0.4	47	2.1	0.4	163	26.8%	0.10 [-0.03, 0.23]	+
Holder 2014 (15 years follow-up)	2.37	0.46	45	2.3	0.5	210	24.4%	0.07 [-0.08, 0.22]	+
Kearney 2018 (3-12 years follow-up)	0.33	1.02	56	0.03	0.81	30	8.1%	0.30 [-0.09, 0.69]	+
Page 2014 (7-9 years follow-up)	0.95	1.2166	37	0.25	1	25	4.6%	0.70 [0.15, 1.25]	_ _
Patel 2012 (15 years follow-up)	0.37	1.11	27	0.02	0.97	4384	7.3%	0.35 [-0.07, 0.77]	+
Whitaker 1998 (8-10 years follow-up)	0.39	0.94	58	0.45	0.93	257	14.0%	-0.06 [-0.33, 0.21]	
Wright 2009 (3 years follow-up)	0.47	1.2	51	0.44	1.02	1035	10.3%	0.03 [-0.31, 0.37]	+
Total (95% CI)			358			6156	100.0%	0.15 [0.02, 0.27]	◆
Heterogeneity: Tau ² = 0.01; Chi ² = 11.4 Test for overall effect: Z = 2.29 (P = 0.02	8, df = 7))	(P = 0.12	:); I ² = 3	9%				-	

Sensitivity analysis showed no difference in heterogeneity when removing low quality

studies (Table 4.5.4.1).

Table 4.5.4-1 Sensitivity analysis for BMI Z-Score

Analysis	Studies	N=	SMD	95% CI	Chi ² P=	l² (%)
Normal	9	31,485	0.11	0.02,0.20	0.15	34
Sensitivity	8	31,275	0.13	0.01,0.25	0.10	42

BMI (kg/m²) data were available from 31 studies. Sixteen studies were included in the meta-analysis, with the age at follow up ranging broadly from <48 hours after birth to 25 years of age. Quantitative summary measures obtained through meta-analysis showed a 1.06 kg/m² increase in BMI among those exposed to GDM *in utero* compared

to controls (95% CI 0.40- 1.73; n(total)= 23,864, n(exposed to GDM)=2,154; p<0.00001, I² = 95%; Figure 4.5.2)^{231-234, 236, 237, 245-248, 254-258}. Sensitivity analysis showed no difference in heterogeneity when removing low quality studies (Table 4.3). Fifteen studies were not included in the meta-analysis^{226, 239, 240, 242, 244, 250, 252, 257, 259-265}, of which seven studies showed significantly higher BMI among offspring exposed to GDM compared to controls ^{239, 243, 250, 252, 257, 259, 263} (Supplementary Table 4.8.1).Krishnaveni *et al.* (2010) reported a significant association between females exposed to GDM *in utero* compared to female controls (p<0.001)²³⁹. One study which showed statistical significance did not report on the sample size for either GDM or control groups²⁶³.

		GDM		No	on-GDI	И		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Buzinaro 2009 (12-16 years follow-up)	23.1	3.6	23	20.3	1.7	27	4.7%	2.80 [1.20, 4.40]	
Chang 2015 (6 years follow-up)	15.8	1.9	356	12.3	2.4	500	6.3%	3.50 [3.21, 3.79]	-
Davis 2013 (10-11 years follow-up)	28.8	6	47	28.7	5.5	163	4.3%	0.10 [-1.81, 2.01]	
Eslamian 2013 (after birth)	13.48	2.02	112	12.95	1.58	159	6.2%	0.53 [0.08, 0.98]	
Holder 2014 (15 years follow-up)	37.79	8.62	45	36.79	9.21	210	3.1%	1.00 [-1.81, 3.81]	
Jaber 2006 (2 weeks follow-up)	12.12	1.68	26	11.57	1.5	32	5.8%	0.55 [-0.28, 1.38]	+
Kasvea 2018 (23-25 years follow-up) (1)	23.9	4.2	72	23.2	4.4	143	5.3%	0.70 [-0.51, 1.91]	
Kasvea 2018 (23-25 years follow-up) (2)	26.2	4.8	82	25.5	3.6	138	5.3%	0.70 [-0.50, 1.90]	
Kasvea 2018 (23-25 years follow-up) (3)	25.7	4.4	15	22.8	4.1	146	3.7%	2.90 [0.58, 5.22]	
Kasvea 2018 (23-25 years follow-up) (4)	24.7	4.6	22	24.1	3.8	120	4.1%	0.60 [-1.44, 2.64]	
Kearney 2018 (3-12 years follow-up)	16.6	2.9	56	16	1.7	30	5.7%	0.60 [-0.37, 1.57]	+
Konig 2014 (6 months follow-up)	17.07	1.48	130	16.59	1.39	77	6.3%	0.48 [0.08, 0.88]	
Krishnaveni 2015 (15 years follow-up)	20.1	3.4	26	17.4	2.6	165	5.1%	2.70 [1.33, 4.07]	
Li 2017 (11 years follow-up) (5)	19.9	4.1	360	19.2	3.5	6703	6.2%	0.70 [0.27, 1.13]	
Li 2017 (11 years follow-up) (6)	19.4	3.6	396	19.1	3.5	7550	6.3%	0.30 [-0.06, 0.66]	
Page 2014 (7-9 years follow-up)	20.3	4.8662	37	16.9	3	25	4.2%	3.40 [1.44, 5.36]	
Tam 2010 (15 years follow-up)	21.4	3.7	42	20.8	3.8	87	5.1%	0.60 [-0.77, 1.97]	
Wright 2009 (3 years follow-up)	16.6	1.77	51	16.5	1.47	1035	6.2%	0.10 [-0.39, 0.59]	+
Zhao 2016 (10 years follow-up)	19.1	3.6	206	18.4	3.4	4354	6.2%	0.70 [0.20, 1.20]	
Total (95% CI)			2104			21664	100.0%	1.15 [0.46, 1.83]	◆
Heterogeneity: Tau ² = 1.89; Chi ² = 338.92,	df = 18 (P < 0.000	001); P	= 95%				_	
Test for overall effect: Z = 3.29 (P = 0.0010))								-4 -2 U 2 4
	•								GDM NOT-GDM

Footnotes

(1) ESTER cohort (female) (2) ESTER Cohort Male (3) AYLS Cohort (female)

(4) AYLS Cohort (male)

(5) Male

(6) Female

Figure 4.5.4.2 Mean difference in BMI (kg/m2) in those exposed to GDM in utero and controls

Analysis	Studies	N=	SMD	95% CI	Chi ² P=	l² (%)
Normal	16	23,768	1.15	0.46,1.83	<0.00001	95
Sensitivity	15	23,654	1.10	0.42, 1.78	<0.00001	95

 Table 4.5.4-2 Sensitivity analysis for BMI (kg/m2)

BMI percentiles were reported in 21 studies, of these, five reported a higher BMI within obese/overweight BMI percentiles among those exposed to GDM *in utero* compared to controls (i.e \geq 85th centile) ^{226, 250, 266-268} (Supplementary Table 4.8.1.).

4.5.5. Lipids

Studies on cord blood and serum lipids (i.e. total cholesterol, LDL, HDL and triglycerides) were included.

4.5.5.1. Total cholesterol

Total cholesterol data were available from 12 studies (nine serum cholesterol, three cord blood cholesterol). Five studies on total serum cholesterol were included in the meta-analysis. The age of follow-up ranged from 8 to 16 years. There was no significant difference in total serum cholesterol between GDM and control groups. (SMD -0.01 95% CI -0.28-0.25; n(total)= 662 n(exposed to GDM)=251; p=0.07, $I^2 = 54\%$; Figure 4.5A) ^{231, 232, 234, 236, 269}. The four studies that were not included in the meta-analysis showed no difference in total cholesterol between those exposed to GDM and controls (Supplementary Table 4.8.1).^{226, 240, 242, 244}. Sensitivity analyses was not performed as no low-quality studies were included in the analysis.

Three studies on cord blood total cholesterol were included in the meta-analysis. Quantitative summary measures did not show a significant difference in total cord blood cholesterol between GDM and control groups. (SMD -0.90 95% CI -2.41- 0.61, n(total)=374, n(exposed to GDM)=164; p<0.00001, I² = 96%; Figure 4.5.5.1.1B)^{254, 270}. Sensitivity analyses was not performed as no low-quality studies were included in the analysis.

(A)

Study or Subaroup	Mean	GDM	Total	N Mean	on-GDM SD	Total	Weight	Std. Mean Difference	Std. Mean Difference
study of subgroup	moun	50	Total	moun	50	Total	reight	14,14414011,00% 01	
Eslamian 2013 (newborn)	66	4.88	111	67	6.13	159	34.7%	-0.18 [-0.42, 0.07]	
Lopez Morales 2016 (newborn)	261	139	38	551	79	38	33.1%	-2.54 [-3.15, -1.93]	_
Mietten 2018 (newborn)	1.55	0.3873	15	1.55	0.3966	13	32.2%	0.00 [-0.74, 0.74]	
Total (95% CI)			164			210	100.0%	-0.90 [-2.41, 0.61]	
Heterogeneity: Tau ² = 1.69; Chi ² =	51.10, (df = 2 (P	< 0.000	i01); I² =	96%				
Test for overall effect: Z = 1.17 (P	= 0.24)								-2 -1 0 1 2 Non-GDM GDM

	(GDM		No	n-GDN	1		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Buzinaro 2009 (12-16 years follow-up)	156	30	23	156	30	27	14.0%	0.00 [-0.56, 0.56]	
Catalano 2009 (8.8 years follow-up)	3.86	0.49	37	4.17	0.62	52	18.7%	-0.54 [-0.97, -0.11]	-
Krishnaveni 2015 (15 years follow-up)	3.7	0.7	26	3.6	0.6	165	19.4%	0.16 [-0.25, 0.58]	
Tam 2010 (15 years follow-up)	3.9	0.6	42	3.9	0.6	87	21.6%	0.00 [-0.37, 0.37]	_
Teng 2017 (14 years follow-up)	3.7	0.58	123	3.58	0.54	80	26.2%	0.21 [-0.07, 0.49]	+
Total (95% CI)			251			411	100.0%	-0.01 [-0.28, 0.25]	-
Heterogeneity: Tau ² = 0.05; Chi ² = 8.76, (Test for overall effect: Z = 0.11 (P = 0.92)	∜f = 4 (P	= 0.07	'); I² = 5	4%				-	-1 -0.5 0 0.5 1 GDM Non-GDM

Figure 4.5.5.1.1 (A) Standard mean difference in serum blood total cholesterol in those exposed to GDM *in utero* and controls (B) Standard mean difference in cord blood total cholesterol in those exposed to GDM *in utero* and controls

4.5.5.2. LDL

LDL cholesterol data were available from 10 studies (eight serum LDL cholesterol, two cord blood cholesterol).

Four studies on serum LDL cholesterol were included in the meta-analysis.

The age of follow-up ranged from eight to 16 years of age. There was no

difference in serum LDL cholesterol between those exposed to GDM and

controls (SMD -0.03 95% CI -0.44-0.38; n(total)= 5,129, n(exposed to

GDM)=129; p=0.01, $I^2 = 73\%$; Figure 4.5.5.2.1A)^{231, 232, 235, 236}. Four studies that were not included in the meta-analysis showed no difference in LDL between GDM and control groups^{226, 242, 244, 253} (Supplementary Table 4.8.1). Sensitivity analyses was not performed as no low-quality studies were included in the analysis.

Two studies on cord blood LDL were included in the meta-analysis. Quantitative summary measures did not show a significant difference in cord blood LDL between GDM and control groups (SMD -0.60 95% CI -1.57-0.38; n(total)= 298, n(exposed to GDM)=126; p=0.01, $I^2 = 84\%$; Figure $4.5.5.2.1B)^{270, 271}$. Sensitivity analyses was not performed as no low-quality studies were included in the analysis.

A:

		GDM		No	n-GDN			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Buzinaro 2009 (12-16 years follow-up)	86	23	23	87	25	27	21.1%	-0.04 [-0.60, 0.52]	
Catalano 2009 (8.8 years follow-up)	2.38	0.54	37	2.69	0.49	52	25.0%	-0.60 [-1.03, -0.17]	_
Patel 2012 (15 years follow-up)	2.25	0.48	27	2.08	0.55	4834	26.8%	0.31 [-0.07, 0.69]	
Tam 2010 (15 years follow-up)	2.1	0.5	42	2	0.6	87	27.1%	0.17 [-0.19, 0.54]	- +
Total (95% CI)			129			5000	100.0%	-0.03 [-0.44, 0.38]	-
Heterogeneity: Tau ² = 0.12; Chi ² = 10.91, Test for overall effect: Z = 0.14 (P = 0.89)	df= 3 (f	° = 0.0	1); I² =	73%					-1 -0.5 0 0.5 1 GDM Non-GDM
В:									
							_		

		GDM		N	on-GDM			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD.	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Eslamian 2013 (after birth)	41.36	3.21	111	46.21	5.46	159	56.3%	-1.04 [-1.29, -0.78]	- B
Mietten 2018 (after birth)	0.78	0.3098	15	0.79	0.3245	13	43.7%	-0.03 [-0.77, 0.71]	
Total (95% CI)			126			172	100.0%	-0.60 [-1.57, 0.38]	
Heterogeneity: Tau ² = 0.42; C Test for overall effect: Z = 1.2	°hi² = 6.2 0 (P = 0.	28, df = 1 23)	(P = 0.0	01); I² =	84%				-1 -0.5 0 0.5 1 Non-GDM GDM

Figure 4.5.5.2.1(A) Standard mean difference in serum blood total cholesterol in those exposed to GDM *in utero* and controls (B) Standard mean difference in cord blood total cholesterol in those exposed to GDM *in utero* and controls

4.5.5.3. HDL

HDL cholesterol data were available from 15 studies (12 serum HDL cholesterol, three cord blood HDL cholesterol).

Six studies on serum HDL cholesterol were included in the meta-analysis. The age of follow-up ranged from eight to 16 years. Quantitative summary measures showed no significant difference in serum HDL cholesterol between those exposed to GDM and controls (SMD 0.08 95% CI (-0.07-0.24); n(total)= 5,073 n(exposed to GDM)=278; p=0.77, $I^2 = 0\%$; Supplementary Figure 4.5.5.3.1B)^{231, 232, 234-236, 269}. Sensitivity analyses was not performed as no low-quality studies were included in the analysis. Six studies were not included in the meta-analysis^{226, 239, 240, 242, 244, 253}. Of these, one reported lower serum HDL cholesterol in the GDM group compared to controls (Supplementary Table 4.8.1).²⁴². Three studies on cord blood HDL were included in the meta-analysis. Quantitative summary measures showed no difference in cord blood HDL between GDM and controls groups. (SMD -0.13 95% CI -0.84-0.59; n(total)= 374 n(exposed to GDM)=164; p=0.0006, $I^2 = 87\%$; Supplementary Figure 4.5.5.3.1B)^{254, 270, 271}. Sensitivity analyses was not performed as no low-quality studies were included to GDM)=164; p=0.0006, $I^2 = 87\%$; Supplementary Figure 4.5.5.3.1B)^{254, 270, 271}. Sensitivity analyses

7A:

		GDM		No	n-GDN	1		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Buzinaro 2009 (12-16 years follow-up)	53	15	23	51	13	27	7.7%	0.14 [-0.42, 0.70]	
Catalano 2009 (8.8 years follow-up)	1.22	0.26	37	1.22	0.26	52	13.5%	0.00 [-0.42, 0.42]	
Krishnaveni 2015 (15 years follow-up)	1.08	0.2	26	1.1	0.2	165	14.0%	-0.10 [-0.51, 0.31]	
Patel 2012 (15 years follow-up)	1.37	0.31	27	1.28	0.29	4384	16.8%	0.31 [-0.07, 0.69]	
Tam 2010 (15 years follow-up)	1.4	0.2	42	1.4	0.3	87	17.7%	0.00 [-0.37, 0.37]	
Teng 2017 (14 years follow-up)	0.99	0.45	123	0.94	0.48	80	30.3%	0.11 [-0.17, 0.39]	
Total (95% CI)			278			4795	100.0%	0.08 [-0.07, 0.24]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 2.55, d	if = 5 (P	= 0.77); l² = 0	%					
Test for overall effect: Z = 1.03 (P = 0.30)									GDM Non-GDM

7B:

	(GDM		No	n-GDM			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Mietten 2018 (newborn)	0.57	0.23	15	0.55	0.18	13	27.9%	0.09 [-0.65, 0.84]	
Lopez Morales 2016 (newborn)	21.3	3.1	38	23.9	3.67	38	34.1%	-0.76 [-1.22, -0.29]	←
Eslamian 2013 (newborn)	36.8	2.48	111	36	3.12	159	38.1%	0.28 [0.03, 0.52]	
Total (95% CI)			164			210	100.0%	-0.13 [-0.84, 0.59]	
Heterogeneity: Tau ² = 0.34; Chi ² = Test for overall effect: Z = 0.35 (P =	: 14.88, i = 0.73)	df = 2 (P = 0.0	006); I²	= 87%				-1 -0.5 0 0.5 1 Non-GDM GDM

Figure 4.5.5.3.1: (A) Standard mean difference in serum blood HDL cholesterol in those exposed to GDM *in utero* and controls (B) Standard mean difference in cord blood HDL cholesterol in those exposed to GDM *in utero* and controls

4.5.5.4. Triglycerides

Triglyceride data were available from 14 studies (11 serum triglycerides, three cord blood triglycerides). Six studies on serum triglycerides were included in the metaanalysis. The age at follow-up ranged from seven to 16 years of age. Quantitative summary measures showed no difference in the level of serum triglycerides between GDM and control groups (SMD 0.50 95% CI -0.14-1.14; n(total)=5,523n(exposed to GDM)=278; p<0.00001, I² = 93%; Figure 4.5.5.4.1A^{231, 232, 234-236, 269}. Sensitivity analyses was not performed as no low-quality studies were included in the analysis. Five studies that were not included in the meta-analysis also showed no significant difference in serum triglycerides in GDM and control groups (Supplementary Table 4.8.1).^{226, 239, 240, 242, 244}. Three studies on cord blood triglycerides were included in the meta-analysis. There was no difference in cord blood triglycerides in the GDM group compared to controls. (SMD 0.02 95% CI - 0.67- -0.71; n(total)=374 n(exposed to GDM)=164; p=0.001, I² = 86%; Figure 4.5.5.4.1B)^{254, 270, 271}. Sensitivity analyses was not performed as no low-quality

studies were included in the analysis.

8A:

8B:

		GDM		No	n-GDN	Λ		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Eslamian 2013 (newborn)	75.1	7.5	111	77.4	4.61	159	38.4%	-0.38 [-0.63, -0.14]	
Lopez Morales 2016 (newborn)	242	103	38	186	79	38	34.2%	0.60 [0.14, 1.06]	
Mietten 2018 (newborn)	0.44	0.19	15	0.47	0.21	13	27.4%	-0.15 [-0.89, 0.60]	
Total (95% CI)			164			210	100.0%	0.02 [-0.67, 0.71]	
Heterogeneity: Tau ² = 0.30; Chi ² = Test for overall effect: Z = 0.05 (P	= 13.81, i = 0.96)	df = 2 ((P = 0.0	01); I²=	86%				

Figure 4.5.5.4.1 (A) Standard mean difference in serum triglycerides in those exposed to GDM *in utero* and controls (B) Standard mean difference in cord blood triglycerides in those exposed to GDM *in utero* and controls

4.5.6. Serum Insulin

Data for fasting serum insulin were collected for 20 studies (16 serum insulin, four cord

blood insulin).

Four studies on serum insulin were included in the meta-analysis. The age at follow-up ranged from eight to 15 years of age. The meta-analysis showed no difference in insulin between the two groups (SMD -0.02 95% CI -0.70-0.67, n(total)=5,136 n(exposed to GDM)=131; p<0.00001, I² = 89%; Figure 4.5.6.1A)^{232, 235, 245, 272}. Sensitivity analyses showed no difference in heterogeneity when poor quality studies were omitted (Table 4.5.6.1)

Twelve studies were not included in the meta-analysis^{226, 234, 239-242, 244, 255, 272-276}, of which five reported significantly elevated insulin levels in the GDM group compared to controls ^{234, 239, 255, 275, 276} (Supplementary Table 4.8.1). Two of these studies showed a significant difference in fasting insulin between offspring exposed to pre-GDM (i.e. diabetes diagnosed before pregnancy) and GDM^{275, 276}. Two studies were included in a meta-analysis on cord blood insulin, however there was no difference between GDM and control groups (SMD -4.74 95% CI (-14.99-5.51), n(total)= 123 n(exposed to GDM)=60; p<0.00001, $I^2 = 99\%$; 4.5.6.1B)^{238, 270}. Sensitivity analyses was not performed as no low-quality studies were included in the analysis.

A:

	G	DM		Non-G	DM		Std. Mean Diff	erence		Std. Me	an Differe	ence	
Study or Subgroup	Mean	SD To	otal Me	an s	SD Total	Weight	IV, Random	, 95% CI		IV, Rai	ndom, 95%	6 CI	
Catalano 2009 (8.8 years of age)	69	42	37	52	25 52	21.8%	0.51 [0.0	08, 0.94]					
Chandler-Laney (2012) (7-8 years of age) (1)	9 3	2.66	11	6.2 2.	65 7	15.6%	1.00 [-0.0	01, 2.02]					
Chandler-Laney (2012) (7-8 years of age) (2)	3.2	2.4	9	3.4 2.	38 16	17.8%	-0.08 [-0.9	30, 0.74]		-	-		
Davis 2013 (10-11 years of age)	15.9	8.8	47 1	7.2 10).2 96	22.5%	-0.13 [-0.4	48, 0.22]			-		
Patel 2012 (15 years of age)	8.5 (0.51	27 9	.03 0.	49 4834	22.2%	-1.08 [-1.4	6,-0.70]		-			
Total (95% CI)		1	31		5005	100.0%	-0.02 [-0.7	70, 0.67]			•		
Heterogeneity: Tau ² = 0.51; Chi ² = 36.88, df = 4 Test for overall effect: Z = 0.05 (P = 0.96)	(P < 0.00)	001); I² =	: 89%					-	-4	-2 GE	0 M Non (2 GDM	4
<u>Footnotes</u> (1) Overweight (2) Normal Weight													
В:													
GDI	N	No	n-GDM			Std. Mea	n Difference		St	td. Mean D	ifference	,	
Study or Subgroup Mean	SD Total	Mean	SD	Total	Weight	IV, Rai	ndom, 95% Cl		ľ	V, Randor	n, 95% Cl		
Lopez Morales 2016 (newborn) 14.5 4.1	79 38	79.3	7.7	38	49.7%	-10.00 [[-11.70, -8.31]						
Pirkola 2008 (4.9 years of age) 24.6 18	3.3 22	16.8	15.3	25	50.3%	0.4	6 [-0.12, 1.04]			•			
Total (95% CI)	60			63	100.0%	-4.74	[-14.99, 5.51]			-			
Heterogeneity: Tau ² = 54.29; Chi ² = 131.07, d	lf=1 (P <	0.0000	1); I² = 9	9%				-100	-50			50	100

Test for overall effect: Z = 0.91 (P = 0.36)

Figure 4.5.6.1 A) Standard mean difference in serum insulin in those exposed to GDM *in utero* and controls (B) Standard mean difference in cord blood insulin in those exposed to GDM in utero and controls

Favours [experimental] Favours [control]

Table 4.5.6-1 Sensitivity analysis for serum insulin

Analysis	Studies	N=	SMD	95% CI	Chi ² P=	I ² (%)
Normal	4	5136	-0.02	-0.70,0.67	< 0.00001	89
Sensitivity	3	5093	-0.24	-1.11,0.63	< 0.00001	94

4.5.7. Blood Glucose

Glucose data were available from 25 studies (23 serum glucose, two cord blood glucose). Eleven studies on serum glucose were included in the meta-analysis, in which the age at follow-up ranged from eight to 27 years of age. Based on quantitative summary measures, the meta-analysis showed an increase in glucose in offspring exposed to GDM in utero compared to controls, demonstrating a 0.43 standard mean difference (95% CI 0.08-0.77; $n(\text{total}) = 6,423 n(\text{exposed to GDM}) = 608; p=0.00001, I^2$ = 89% (Figure 4.5.7.1A)^{231, 232, 234-236, 245, 246, 269, 272, 277, 278} Sensitivity analysis showed no difference in heterogeneity when removing low quality studies (Table 4.5.7.1). Twelve studies were not included in the meta-analysis^{226, 239-242, 244, 253, 255, 259, 265, 273}. One study reported significantly higher serum glucose in the GDM group than controls²⁴¹. One study reported a significantly lower serum glucose value in those exposed to GDM compared to controls²⁵⁵. Two studies assessed cord blood glucose with both newborn cohorts^{254, 270} however no difference was seen between GDM and non-GDM groups (MD: -2.69 95% CI -5.80-0.42; n(total)= 346 n(exposed to GDM)=149; p=0.19, $I^2 = 42\%$; Figure 4.5.7.1B)^{254, 270}. Sensitivity analyses was not performed as no low-quality studies were included in the analysis.

А

		GDM		N	on-GDM			Std. Mean Differend	ce Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95%	CI IV, Random, 95% CI
Buzinaro 2009 (12-16 years follow-up)	5.2	0.39	23	5	0.39	27	7.8%	0.50 [-0.06, 1.0	07] +
Catalano 2009 (8.8 years follow-up)	4.9	0.3	37	4.8	0.2	52	8.6%	0.40 [-0.02, 0.3	83] +
Chandler-Laney (2012) (7-8 years follow-up) (1)	93.2	7.6282	11	92.2	7.4081	7	5.6%	0.13 [-0.82, 1.)	07]
Chandler-Laney (2012) (7-8 years follow-up) (2)	95.1	7.5	9	94.2	7.6	16	6.3%	0.12 [-0.70, 0.9	93] —
Clausen 2008 (18-27 years follow-up)	5.5	0.9	168	5.1	0.4	128	9.5%	0.55 (0.31, 0.1	78] +
Davis 2013 (10-11 years follow-up)	89.9	6.8	47	89	6.2	163	9.1%	0.14 [-0.18, 0.4	47] +
Holder 2014 (15 years follow-up)	5.27	0.5	45	5.11	0.5	210	9.1%	0.32 [-0.00, 0.0	64]
Krishnaveni 2015 (15 years follow-up)	5.1	0.4	26	5.1	0.5	165	8.6%	0.00 [-0.41, 0.4	41] +
Patel 2012 (15 years follow-up)	5.4	0.47	27	5.21	0.38	4834	8.8%	0.50 [0.12, 0.3	88]
Tam 2010 (15 years follow-up)	4.6	0.3	42	4.7	0.3	87	8.9%	-0.33 [-0.70, 0.1	04]
Teng 2017 (14 years follow-up)	5.86	0.51	123	4.91	0.49	80	9.0%	1.88 [1.55, 2.:	22]
Wilk 2015 (10 years follow-up)	88	6.38	50	82	10.77	46	8.7%	0.68 [0.27, 1.)	09]
T-4-1 (05% CI)						5045	400.00	0 40 50 00 0	
10tal (95% CI)			608			5815	100.0%	0.43 [0.08, 0.1	
Heterogeneity: Tau* = 0.31; Chi* = 98.14, df = 11	(P < 0.00	001); I*=	89%						-4 -2 0 2 4
Test for overall effect: Z = 2.44 (P = 0.01)									GDM Non-GDM
<u>Footnotes</u> (1) Overweight (2) Normal Weight									
В	CDM		N					Difference	Man Difference
Study or Subgroup Moar		Total	Moan	וועט-ווי הם	Total	Moia	bt IV	Pandom 05% CL	Wean Difference
study of subgroup mean	1 30	Total	Weall	30	Total	weig	nt iv,	Kanuom, 95% Ci	IV, Kalidolli, 95% Cl
Eslamian 2013 (newborn) 61.8	6 8.25	159	63.2	11.4	111	67.9	% -	1.60 [-4.08, 0.88]	_
Lopez Morales 2016 (newborn) 74.3	3 12.6	38	79.3	7.68	38	32.1	% -6	5.00 [-9.69, -0.31]	-
Total (05% CI)		107			140	100.0	06	2 60 1 5 90 0 421	A
		191			149	100.0	/0 -/	2.03 [-3.00, 0.42]	· · ·
Heterogeneity: Tau* = 2.12; Chi* = 1.58, i	ат = 1 (P	= 0.21)	; if = 3	1%					-100 -50 0 50 100
Test for overall effect: Z = 1.70 (P = 0.09)									GDM Non-GDM

Figure 4.5.7.1 (A) Standard mean difference in fasting glucose in those exposed to GDM *in utero* and controls (B) Standard mean difference in cord blood glucose in those exposed to GDM *in utero* and controls

Table 4.5.7-1	Sensitivity	analysis	for	serum	glucose	

Analysis	Studies	N=	SMD	95% CI	Chi ² P=	I ² (%)
Normal	11	6,423	0.43	0.08,0.77	< 0.00001	89
Sensitivity	9	6,380	0.47	0.09,0.84	< 0.00001	91

1 4.6. Discussion

2

This systematic review aimed to assess the prevalence of conventional cardiovascular 3 4 risk factors in those exposed to GDM *in utero* compared to those not exposed to GDM. 5 There is an established link between pregnancy complications and vascular outcomes such as elevated markers of inflammation and impaired fetal aortic intimal media 6 thickness (aim)^{279, 280}. Many reviews on GDM focus on cardiovascular endpoints 7 8 including myocardial infarction and coronary heart disease. Identifying risk factors for CVD is vital in planning screening strategies to identify those at risk of future CVD 9 10 with the aim of targeting preventive interventions. Hence, this review is a 11 comprehensive synthesis of evidence from published studies comparing the main 12 conventional cardiovascular risk factors in those born after pregnancies complicated by GDM compared to controls and includes outcomes that have not been recently reviewed 13 14 in the literature such as serum and cord blood lipids.

Our meta-analysis showed that offspring exposed to GDM *in utero* have 1.75 mmHg higher systolic blood pressure than controls (95% CI 0.57-2.94, n=7,309, eight studies). Aceti *et al.* (2012) showed a similar association for offspring of GDM pregnancies (1.39 mmHg 95% CI, 0.00-2.77); 10 studies p=0.05)⁵². They also showed a smaller, nonsignificant increase in diastolic blood pressure for GDM offspring (0.75 mmHg (95% CI -0.47, 1.97); 9 studies p=0.23)⁵².

This meta-analysis primarily consists of adolescent cohorts (i.e 10-19 years) with one 3 year old cohort. Therefore, the existing literature is not sufficient to show the trend in blood pressure throughout childhood and adolescence. These trends have been previously reported in a few large cohort studies. Krishnaveni *et al.*, demonstrated that systolic blood pressure remains elevated in those exposed to GDM compared to unexposed controls throughout ages 5, 9.5 and 13.5 years^{234, 239, 259}. A similar association
was seen in another cohort at ages 8 and 15. ^{236, 242}. Therefore, it is important to assess
childhood cohorts to affirm any trends seen in long term cohort studies.

Blood pressure that is elevated in childhood and adolescence is predictive of adult 29 hypertension²⁸¹. Raitakari et al. found a positive correlation between systolic blood 30 pressure at 12-16 years with carotid artery intima medial thickness (C-IMT), which is a 31 predictive factor of future CVD²⁸². The association was weaker in males at 3-9 years age, 32 but not among females. In a study by Oikonen et al., two abnormal child or youth blood 33 pressure observations were shown to predict risk for hypertension in adulthood²⁸³. While 34 the effect size is our meta-analysis is small and blood pressure for all studies is generally 35 within normal reference range, it is known that even a 2mmHg increase in systolic blood 36 37 pressure is associated with 10% higher mortality from stroke, and 7% higher mortality from ischemic heart disease in middle age²⁸⁴. Therefore, offspring exposed to GDM may 38 39 benefit from frequent blood pressure monitoring throughout childhood and adolescence. Dietary interventions during gestation, such as implication of a low GI diet, may benefit 40 offspring and reduce the risk of high blood pressure. It has been demonstrated that 41 42 children at 12 months old born to mothers at risk of GDM with a low GI diet have significantly thinner aortic IMT than those children whose mothers had a standard high 43 fibre diet²⁸⁵. 44

Among 31,485 participants it was shown that BMI Z-score is marginally higher in those exposed to GDM offspring compared to controls (MD: 0.11 95% CI 0.02-0.20, n=31,485, nine studies). We also observed a higher BMI in those exposed to GDM compared to controls (Supplementary Figure S2), however BMI is not an accurate predictor of childhood obesity. As an indicator of adiposity, BMI varies greatly based on fat and muscle mass, hence it may be accurate for fatter children but not those who are lean²⁸⁶. 51 The findings of this meta-analysis on BMI z-scores are consistent with the findings 52 reported in the review by Kawasaki *et al.* (pooled MD: 0.14 95% CI: 0.04–0.24, seven 53 studies)²⁸⁷.

Higher BMI in youth is associated with dyslipidaemia, hypertension and reduced insulin 54 sensitivity²⁸⁸. Jago *et al.* showed that a change in BMI z-score at ages 11-14 was 55 associated in a change in cardiovascular risk factors including an increase in systolic 56 and diastolic blood pressure, HDL-C, LDL-C and triglycerides at the same age²⁸⁸. The 57 results of this meta-analysis, support previous findings of higher BMI in those exposed 58 to GDM in utero compared to controls.^{226, 245, 266} Gestational diabetes mellitus is 59 associated with newborn fat mass, indicative of the intrauterine environment in the final 60 trimester of pregnancy. 289, 290 Higher birthweight is associated with markers of 61 subclinical atherosclerosis such as mean carotid IMT.²⁹¹ Therefore, those who are 62 exposed to GDM in utero appear to have risk factors for CVD very early in life. We 63 could not assess the age distribution in very young children as majority of published 64 studies were in adolescence. Hence, more studies among young children are required to 65 support the association between gestational diabetes and increasing BMI z-score in 66 67 offspring.

Our meta-analysis demonstrated that those exposed to GDM *in utero* have marginally 68 69 higher fasting blood glucose levels (SMD 0.43 95% CI 0.08-0.77, n=6,423, 11 studies), 70 but not fasting insulin compared to controls. Kawasaki et al. (2018) showed no difference in fasting plasma glucose among 7-10 and 15 year olds exposed to GDM 71 compared to controls ²⁸⁷. Plasma glucose was significantly higher at age 20 years among 72 those exposed to GDM compared to controls (MD: 0.4 mmol/L; 95% CI: 0.25-0.55 73 seven studies) ²⁸⁷. Our meta-analysis showed a similar association in predominantly 74 childhood-adolescent cohorts, with one cohort during adulthood. We can support an 75

association between exposure to GDM *in utero* and impaired glucose tolerance in
 offspring, however as the effect size is minimal, further studies are required to support
 this association.

79 Abnormal plasma glucose is a requisite for pre-diabetes, and if untreated and coupled with increasing obesity may lead to early onset T2DM, which progresses at a faster rate 80 in children and adolescence than in adults²⁹². Adolescents diagnosed with T2DM are 81 predicted to lose 15 years from their life expectancy compared to those without T2DM²⁹³. 82 83 Hence, frequent fasting blood glucose monitoring in those exposed to GDM *in utero* may reduce the risk of T2DM in the future. Also, interventions during pregnancy may be 84 beneficial as evidenced by studies showing that infants born to mothers with diet or 85 insulin controlled GDM have lower fasting blood glucose than controls²⁵⁵. 86

87 We acknowledge some limitations of our analyses. Both GDM and CVD are multifactorial diseases, influenced by genetic and environmental factors. Smoking during 88 pregnancy is shown to have significant effects on childhood adiposity and elevated blood 89 pressure^{294, 295}. High pre-pregnancy BMI is associated with elevated systolic and diastolic 90 blood pressure in offspring²⁹⁶. GDM is shown to cluster in families, and variants of 91 different genes are associated with increased risk of GDM²⁹⁷. We could not adjust for 92 such important covariates due to limitations in the data that was available. We were 93 unable to examine female and male subgroups due to lack of power, however it may be 94 95 of interest for future studies to consider this as Li et al. (2017) showed that male offspring of GDM pregnancy had higher BMI than male controls and an increased risk of obesity, 96 while there was no significant association in the cohort of females exposed to GDM 97 compared to female controls²⁵⁸. 98

213

We did not identify any studies that looked at microvascular function in offspring of
GDM. West and colleagues (2011) found offspring of diabetic pregnancies had increased
levels of circulating cellular adhesion molecules such as E-selectin and VCAM1, even
when adjusted for maternal pre-pregnancy BMI²⁹⁸. Therefore, further studies on this
topic are required.

- Most of the studies that we assessed in the meta-analysis are follow-up at adolescence, there were few studies that conducted follow-up during early childhood as well as in adulthood, therefore, we are unable to show age distributions in outcomes assessed.
- 107 Observational studies may be subject to publication bias, although visual analysis of 108 funnel plots for BMI and glucose showed a low chance of publication bias 109 (Supplementary Figure S9). However, these outcomes showed high heterogeneity based 110 on I^2 , and hence need to be interpreted with caution. We performed sensitivity analysis 111 for relevant outcomes, however we observed no difference in heterogeneity for the 112 outcomes assessed (Supplementary Table S3, S4, S5).

113 **4.7. Conclusion**

114

Offspring exposed to gestational diabetes mellitus *in utero*, demonstrate risk factors for 115 cardiovascular disease in childhood and adolescence, including elevated systolic blood 116 pressure, BMI z-score and fasting plasma glucose that are evident from early life. These 117 outcomes at a young age, if not monitored, can lead to adverse vascular and metabolic 118 119 health parameters resulting in CVD in adulthood. Regular blood pressure monitoring 120 and weight control from a young age may benefit offspring exposed to GDM. Further 121 long-term cohort studies also need to be established, which can adjust for important covariates and allow for affirmation of effect size. 122

4.8. Supplementary data

Study	Results in GDM group	Results in control group	Р
SBP (mmHg)			
Krishnaveni 2010 [†]	5 years (Girls): Mean (99.0) SD (8.2)	5 years (Girls): Mean (95.0) SD (8.1)	0.08
	5 years (Boys): Mean (95.4) SD (9.4)	5 years (Boys): 97.2 SD (8.9)	0.1
	9.5 years (Girls): Mean (103.8) SD (8.0)	9.5 years (Girls): Girls: Mean (99.4) SD (8.5)	0.02
	9.5 years (Boys): Mean (106) SD (12)	9.5 years (Boys): Mean (101.9) SD (8.9)	0.2
Lee 2007	Mean (93.3) SD (9.3)	IGT: Mean (92.3) SD (8.7)	NS
Page 2013 :• Ω	Mean (105.0) SEM (10.0)	Mean (100.0) SEM (10.0)	0.15
Tam 2008†	Mean (94) SD (9.5)	Mean (88) SD (8.9)	< 0.001
Tam 2017Ω	Mean (104) SD (8.7)	Mean (102) SD (8.9)	0.01
Tsadok 2011 Ω	Mean (121.56) SD (12.30)	Mean (119.84) SD (12.06)	< 0.05
Vaarasmaki 2009	Median 117 IQR (111–125)	Median 115 IQR (106–123)	NS
DBP (mmHg)			
Krishnaveni 2010†	Girls: Mean (59.8) SD (4.8)	Girls: Mean (57.9) SD (6.6)	0.09
	Boys: Mean (60.3) SD (7.6)	Boys: Mean (58.6) SD (6.9)	0.4
Lee 2007	Mean (59.6) SD (8.5)	IGT: Mean (59.0) SD (7.5)	NS
Page 2013 ↔ Ω	Mean (60) SEM (6)	Mean (60) SEM (9)	0.62
Tam 2008†	Mean (62) SD (6.3)	Mean (57) SD (6.0)	< 0.001
Tam 2017 Ω	Mean (63) SD (8.1)	Mean (62) SD (7.9)	0.06
Tsadok 2011 Ω	Mean (75.12) SD (7.44)	Mean (73.47) SD (8.30)	< 0.05
Vaarasmaki 2009	Median (68) IQR (65-73)	67 (62-72)	NS
BMI (kg/m2)			
Baptise-Roberts 2012#	Age 3: Mean (15.5) SD (1.65)	Age 3: Mean (15.4) SD (3.0)	0.721
	Age 4 Mean (15.67) SD (1.91)	Age 4: Mean (15.36) SD (3.54)	0.31
	Age 7: Mean (16.35) SD (2.57)	Age 7: Mean (15.64) SD (1.99)	< 0.001
Krishnaveni 2005 *	1 year: Mean (15.6) SD (1.7)	1 year: Mean (15.7) SD (1.4)	0.9
	5 years: (14.0) SD (1.2)	5 years: Mean (13.6) SD (1.2)	0.03
Krishnaveni 2010 *	Girls: Median (16.4) IQR (14.8-17.8)	Girls: 14.3 (13.13-15.4)	< 0.001
	Boys: Median (15.2) IQR (13.8-16.6)	Boys: Median (14.2) IQR (13.4-15.4)	0.07
Lee 2007	Mean (16.1) SD (1.9)	IGT: Mean (16.1) SD (1.7)	NS
Nehring 2013 Ω	Mean (16.1) 95% CI (15.8- 16.4)	Mean (15.5) 95% CI (15.5- 15.5)	NS
Nielsen Ω	Mean (26.2) SD (5.6)	Mean (23.3) SD (4)	NR
Page 2012⊹ Ω	Mean (20.8) SD (1.3)	Mean (16.1) SD (1.4)	0.004

Supplementary Table 4.8 1 Studies not included in the meta-analysis

Pirokla 2010	Normal weight: Mean (24.3)	Control: Mean (23.7) 95% CI	NR
	Overweight: Mean (26 7) 95%	(23.0-23.8)	
	CI (25.3-28.1)		
Silverman 1998#	Mean (26.0) SD (5.5)	Mean (20.9) SD (3.4)	< 0.001
Tam 2008†	Mean (16.2) SD (3.1)	Mean (16.2) SD (3.0)	0.86
Tam 2017 Ω	Mean (15.3) SD (2.1)	Mean (15.0) SD (2.3)	0.04
Tsadok 2011 Ω	Mean (22.47) SD (3.86)	Mean (21.18) SD (3.11)	< 0.05
Vaarasmaki 2009	Median (20.8) IQR (19.4-23.8)	Mean (20.2) (18.8-22.1)	NS
Vohr 1995	AGA: Mean (12.5) SD (0.9)	AGA: Mean (12.6) SD (0.9)	NS
	LGA: Mean (14.1) SD (1.2)	LGA: Mean (14.2) SD (1.0)	NS
Vohr 1999	AGA: Mean (12.8) SD (1)	AGA: Mean (13.0) SD (1)	NS
	LGA: Mean (14.7) SD (1)	LGA: Mean (14.8) SD (1)	NS
BMI percentiles (Centiles hi	ghlighted next to author name)		
Boney 2005 (>85 th)	LGA: 13/39 (33%)	LGA: 11/41 (27%)	NS
	AGA: 7/49 (14%)	AGA: 9/41 (22%)	NS
Baptise-Roberts 2012 (>85 th)	Age 3: Mean (15) SD (11.7)	Age 3: Mean (724) SD (7.0)	0.041
	Age 4: Mean (29) SD (21.2)	Age 4: Mean (1063) SD (9.0)	< 0.001
	Age 7: Mean (90) SD (23.3)	Age 7: Mean (2795) SD (12.6)	< 0.001
Boerschmann 2010 (≥	Pre-pregnancy BMI	24/71	NR
90 th)	Overweight (BMI 25-29.9		
	kg/m^2): 18/49 Pre pregnancy BMI Obese (>		
	BMI 30 kg/m ²): 24/57		
	Normal weight: Mean (55.3)	Normal weight: Mean (49.1)	NS
Chandler Laney 2012 $(\geq 95^{\text{th}})$	SEM (5.3)	SEM (4.0)	
	Overweight: Mean (96.1) SEM (4.9)	Normal weight: Mean (94.2) SEM (6.2)	NS
Davis 2013 (≥85 th)	Mean (97.3) SD (3.0)	Mean (97.3) SD (3.4)	NS
Gillman 2003(85 th -95 th)	Female: 35 (15.2%)	Female: 966 (13.1%)	NR
	Male: 37 (19.5%)	Male: 951 (15.6%)	NR
Farfel 2013 (≥85 th)	Female (15.9%)	Female (15.6%)	< 0.01
	Male (27.0%)	Male (16.1%)	0.01
Koing 2014 (>50 th)	Female 40 (67.8%)	Female: 17 (53%)	0.18
Hammound 2017 (based	4/24 (17%)	T1D: 2/27 (7%)	NR
on International Obesity		T2D: 8/22 (36%)	
	Male: 20 (55 56%)	Male: 13 (50%)	0.8
Lee 2007 (> 95th)	17 (8 5%)	4 (4 3%)	NS
Le Moullec 2018 (based	25.5	14.2	<0.001
on International Obesity			
Task Force cut-offs)			
Page 2014† (NR)	Mean (73.7) SEM (5)	Mean (52.5) SEM (6)	0.61
Page 2015† (NR)	Mean (63) SD (30)	Mean (61) SD (36)	0.87
Pham 2013 (>85 th or >95 th)	Mean (51.8) SD (33.1)	Mean (55.2) SD (30.6)	0.12
Rutwoska 2015 (>90 th)	54.80%	29.00%	0.04

Tam 2008† (≥85 th)	Mean (19) SEM (30.2)	Mean (26) SEM (25.5)	0.86
Tam 2017 (≥85 th)	30 (22.7%)	121 (15.3%)	0.03
Wilk 2015 (≥85 th)	38%	41%	0.19
Whitaker 1998 (≥85 th)	11/58 (19%)	62/257 (24%)	NR
Wright 2009 (>95 th obese,	Obese: 7 (14%)	Obese: 91 (9%)	
>85 th -95 th overweight)	Overweight: 9 (18%)	Overweight: 169 (17%)	NR
Zhao 2015Boys: Obese			
$(\geq 82nd)$ Overweight	Obese: 115 (10.7%)	Obese: 212 (12.0%)	ND
(≥ 96.3) Girls: Obasa (>87.4)	Overweight: 1/8 (16.6%)	Overweight: 222 (12.6%)	NK
Ohese $(>98th)$			
BMI Z-Scores			
Baptise-Roberts 2012	Age 3: Mean (-0.51) SD (1.30)	Age 3: Mean (-1.29) SD	0.892
		(65.11)	01072
	Age 4 Mean (-0.13) SD (1.44)	Age 4: Mean (-0.42) SD	0.05
		(1.71)	
	Age 7: Mean (0.16) SD (1.16)	Age 7: Mean (-0.17) SD	< 0.001
Lamlar 20104	Magn (0.202) SD (1.225)	(1.16)	ND
	Mean (0.302) SD (1.223)	Mean (-0.000) SD (0.991)	
Page 2012†	Mean (0.9) SD (0.4)	Mean (0.3) SD (0.4)	0.04
Page 2013†	Mean (0.7) SD (1)	Mean (0.4) SD (1)	0.37
Retnakaran 2013	Median (0.28) IQR (-0.37- 0.75)	Median (-0.08) IQR (-0.58- 0.55)	0.2
BMI SDS			
Bozkurt 2016	Mean (0.05) SD (1.1)	Mean (0.32) SD (1.0)	NR
BMI Peak			
Hakanen 2016	417 (17.9)	5688 (17.7)	NR
Total Cholesterol			
Serum			
Lee 2007	Mean (4.4) SD (0.7)	IGT: Mean (4.2) SD (0.8)	NS
Tam 2008†	Mean (0.83) SD (0.48)	Mean (4.6) SD (0.8)	0.62
Vaarasmaki 2009	Median (4.20) IQR (3.90–	Median (4.20) IQR (3.70-	NS
	4.75)	4.70)	
Tam 2017 Ω	Mean $(4.52)^{238-244, 250}$ SD (0.68)	Mean (4.47) SD (0.74)	0.41
LDL			
Cord Blood			
Elsamain 2013 Ω	Mean (2.3) SD (0.18)	Mean (2.6) SD (0.3)	0.08
Serum			
Retnakaran 2013	Median (2.60) IQR (2.15-3.15)	Median (2.60) IQR (2.30- 3.20)	0.58
Tam 2008†	Mean (2.7) SD (0.8)	Mean (2.5) SD (0.8)	0.08
Tam 2017 Ω	Mean (2.53) SD (0.61)	Mean (2.47) SD (0.64)	0.33
Vaarasmaki 2009	Median (2.20) IQR (2.00-	Median (2.20) IQR (1.90-	NS
	2.70)	2.60)	
HDL			
Serum			
Krishnaveni 2010†	Girls: Mean (1.0) SD (0.2)	Girls: Mean (1.1) SD (0.1)	0.2
	Boys: Mean (1.2) SD (0.3)	Boys: Mean (1.1) SD (0.2)	0.4

Lee 2007	Mean (1.4) SD (0.3)	IGT: Mean (1.4) SD (0.3)	NS
Retnakaran 2013	Median (1.10) IQR (1.00-1.30)	Median (1.10) IQR (0.90- 1.30)	0.54
Tam 2008†	Mean (1.58) SD (0.32)	Mean (1.71) SD (0.30)	0.019
Tam 2017 Ω	Mean (1.65) SD (0.31)	Mean (1.66) SD 0.35	0.73
Vaarasmaki 2009	Median (1.33) IQR (1.17– 1.56)	Median (1.39) IQR (1.20– 1.60)	NS
Triglycerides (mmol/L)			
Serum			
Krishnaveni 2010 [†]	Girls: Mean (1.1) SD (0.5)	Girls: Mean (1.0) SD (0.4)	0.2
	Boys: Mean (0.8) SD (0.3)	Boys: Mean (0.8) SD (0.3)	0.6
Lee 2007	Mean (0.8) SD (0.3)	Mean (0.9) SD (0.4)	NS
Tam 2008†	Mean (0.83) SD (0.48)	Mean (0.92) Mean (0.4)	0.27
Tam 2017 Ω	Mean (0.78) SD (0.34)	Mean (0.74) SD (0.33)	0.24
Vaarasmaki 2009	Median (0.79) IQR (0.63– 0.97)	Median (0.72) IQR (0.57– 0.96)	NS
Glucose			
Cord blood			
Lopez Morales 2016	Mean (74.28) SD (12.58)	Mean (79.28) SD (7.68)	0.04
Serum			
Borgono 2012 ∞	Median (4.5) IQR (4.2–4.8)	Median (4.5) IQR (4.3–4.8)	0.67
Jaber 2006	Diet: Mean (2.82) SD (0.92)	Control: Mean (4.03) SD (0.35)	< 0.001
	Insulin: Mean (3.23) SD (1.00)		< 0.05
Krishnaveni 2005 *†	Mean (4.8) SD (0.5)	Mean (4.8) SD (0.5)	0.8
Krishnaveni 2010 *†	Girls: Mean (4.6) SD (0.4)	Girls: Mean (4.7) SD (0.4)	0.7
	Boys: Mean (4.7) SD (0.4)	Boys: Mean (4.7) SD (0.4)	0.6
Lee 2007	Mean (4.8) SD (0.5)	IGT: Mean (4.7) SD (0.5)	NS
Plagermann 1997	Mean (4.90) SD (0.20)	PreGDM: Mean (4.57) SD (0.09)	NS
Page 2013 $\therefore \Omega$	Mean (93) SEM (6)	Mean (86) SEM (5)	< 0.001
Retnakaran 2013 ∞	Median (4.5) IQR (4.2-4.8)	Median (4.5) IQR (4.3-4.8)	0.67
Tam 2008†	Mean (4.7) SD (0.48)	Mean (4.7) SD (0.4)	0.78
Tam 2017 Ω	Mean (4.64) SD (0.49)	Mean (4.57) SD (0.35)	0.12
Vaarasmaki 2009	Median (5.30) IQR (5.00– 5.50)	Median (5.10) IQR (4.90– 5.40)	NS
Vohr 1999	LGA: 95 ± 11	NR	NR
	AGA: 96 ± 15	NR	NR
Insulin			
Cord blood			
Jahan 2011	Mean (21) IQR (2.6-67.0)	Mean (8.03) IQR (2.1-29.7)	NR
Serum			
Borgono 2012	Median (7.5) IQR (5.0–14.0)	Median (7.5) IQR (3.5–13.5)	0.67
Bozkurt 2016	Median (4.1) IQR (2.1-5.9)	Median (3.15) IQR (1.0-4.7)	NR
Jaber 2006	Diet: Mean (6.23) SD (5.98)	Mean (4.65) SD (4.72)	< 0.05
	Insulin: Mean (7.84) SD (5.45)		< 0.05

Krishnaveni 2010 *	Girls: Median (35) IQR	Girls: Median (25) IQR (18-	0.003
	(25048)	37)	
	Boys: Median (25) IQR (18-	Boys: Median (26) IQR (18-	0.95
	37)	34)	
Krishnaveni 2015 *	Median (54.3) IQR (37.0,	Median (42.5) IQR (30.7,	0.02
	73.3)	53.2)	
Lee 2007	Mean (4.2) SD (1.1)	IGT: Mean (6.8) SD (3.5)	NS
Page $2013 \div \Omega$	Mean (10) SEM (7)	Mean (12) SEM (10)	0.78
Plagermann 1997	Mean (64.2) SD (19.2)	PreGDM: Mean (118.3) SD	< 0.005
		(15.4)	
Plagermann 1997	Mean (40.3) SD (5.47)	PreGDM: Mean (78.1) SD	< 0.001
		(5.95)	
Tam 2008†	Mean (66.4) SD (52.5)	Mean (64.7) SD (51.2)	0.84
Tam 2017 Ω	Mean (3.77) SD (3.57)	Mean (4.07) SD (5.33)	0.53
Vaarasmaki 2009	Median (10.20) IQR (8.45–	Median (9.30) IQR (7.30–	NR
	14.30)	11.90)	

^- Lawlor and Patel studies of same cohort

NR - not reported for a direct comparison between GDM and non-GDM exposed offspring NS - not significant

- *- Krishnaveni studies of same cohort ∴ - Page studies of the same cohort
- *†* the study with the oldest cohort was included in the meta-analysis
- *# sample size unknown for outcome*
- Ω adjusted values
- ∞ Retnakaran study is a substudy of Borgono study

Quality assessment		Sele	ction		Comparability	E	Expos	ure	Total Score
	1	2	3	4	1	1	2	3	
Baptise-Roberts	a	а	а	a	a	а	a	b	7
Boney	a	b	b	a	a	a	b	b	3
Borgono	a	a	a	a	a	а	a	с	7
Bozkurt	a	a	b	a	a	a	a	а	7
Boerschermann	a	a	с	b	a	а	a	с	5
Buzinaro	a	a	с	b	a	а	а	b	5
Catalano	a	a	a	a	a	а	а	а	8
Chandler-Laney	b	b	с	b	b	d	а	с	1
Chang	a	a	a	a	a	а	а	с	6
Clausen	a	a	a	a	a	а	а	b	7
Davis	b	b	a	b	not adjusted	d	a	а	3
Elsamian	а	а	b	а	a	а	a	а	7
Farfel	а	а	а	а	a	а	a	а	7
Gilliman	b	a	с	a	a+b	d	а	с	4
Hakanen	a	b	b	a	a	а	а	а	5
Holder	b	b	a	a	a	d	а	а	5
Jaber	a	a	a	a	a	а	а	а	8
Jahan	a	a	a	a	a+b	а	а	а	8
Kavesa	a	a	a	a	a	а	а	b	7
Kearney	a	b	a	a	a	а	а	с	6
Koing	a	b	a	a	a	а	a	а	7
Krishnaveni (2005)	a	а	а	a	a	а	а	b	7
Krishnaveni (2010)	a	a	a	a	a	а	а	с	7
Krishnaveni (2015)	a	a	a	a	a	а	а	b	7
Lawlor	a	a	a	a	a	a	a	с	7
Lee	a	a	с	a	a	а	а	b	6
Le Moullec	a	b	b	a	a	a	a	b	5
Li	b	а	с	а	a+b	d	a	с	b
Lopes-Morales	a	a	a	a	a+b	a	a	а	8
Mietten	а	a	a	а	а	а	a	b	7
Nehring	а	b	a	b	а	а	а	а	5
Nielsen	a	a	b	a	a	a	a	с	6
Page 2012	а	a	с	а	not adjusted	d	а	с	3
Page 2013	a	a	с	a	not adjusted	d	a	с	3
Page 2014	a	a	с	a	not adjusted	d	a	с	3
Page 2015	а	a	с	а	not adjusted	d	а	с	3
Patel	a	a	a	a	a	a	a	b	7
Pham	a	a	a	a	not adjusted	a	a	с	6
Pirkola (2008)	а	a	b	а	a	а	a	b	6
Piroka (2010)	a	b	a	a	a	a	a	b	6
Plagemann 1997	a	b	a	a	a	a	a	с	6

Supplementary Table 4.8 2 Quality assessment of studies included in systematic review

Plagemann 1997	а	b	a	a	a	a	a	с	6
Retnakaran	а	а	a	а	а	a	a	с	6
Rutowska	с	b	с	а	not known	e	b	а	2
Silverman	с	b	с	а	а	e	?	с	2
Tam (2008)	а	а	a	а	а	a	a	с	7
Tam (2010)	а	а	a	а	a	a	a	с	7
Tam (2017)	а	a	a	a	a	a	a	b	7
Teng	а	a	a	b	not adjusted	a	a	с	5
Tsadok	а	b	a	а	а	a	a	с	6
Vaarsamarki	а	a	a	a	a	a	a	с	7
Vohr 1995	а	а	a	а	not adjusted	a	a	а	6
Vohr 1999	а	а	a	а	not adjusted	a	a	с	6
Whitaker	а	a	a	a	a	a	a	b	6
Wang 2018	а	а	a	а	а	a	a	а	8
Wilk	а	а	a	а	not adjusted	a	a	а	7
Wright	а	а	a	a	a	a	a	b	7
Zhao	а	а	a	b	a	a	a	b	6
Zhao (2016)	а	b	a	b	not adjusted	a	a	b	4

Supplementary Figure 4.8 1 Funnel plots for (A) BMI (B) Blood glucose

Chapter 5

5. Author response: Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus: a systematic review and meta-analysis (2020)

Maleesa M Pathirana, Zohra Lassi , Claire T Roberts , Prabha H Andraweera
5.1. Statement of Authorship

Title of Paper	Author Response: Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus <i>in utero</i> : A systematic review and meta-analysis
Publication Status	Published – 2020
Publication Details	Pathirana MM, Lassi ZS, Roberts CT, Andraweera PH. Author response: cardiovascular risk factors in offspring exposed to gestational diabetes mellitus <i>in utero</i> : systematic review and meta-analysis. J Dev Orig Health Dis. 2020 Jun;11(3):244-245. doi: 10.1017/S2040174420000185. Epub 2020 Apr 13. PMID: 32279699.

Principal Author

Name of Principal Author (Candidate)	Maleesa Pathirana	
Contribution to the Paper	Knowledge, drafting	
Overall Percentage (%)	70%	
Certification	 This paper reports on original research I conducted during the period of my Higher Degree by Research candidature and is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in this thesis. I am the primary author of this paper. 	
Signature	Date 14 Feb 2022	

Co-author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. The candidate's stated contribution to the publication is accurate (as detailed above);
- ii. Permission is granted for the candidate to include the publication in the thesis; and
- iii. The sum of all co-author contributions is equal to 100% less the candidate's stated contribution

Name of Co-Author	Zohra S Lassi
Contribution to the Paper	Knowledge, drafting
Signature	Date 14 Feb 2022

Name of Co-Author	Claire Roberts
Contribution to the Paper	Conception, knowledge, drafting
Signature	Date 28/02/2022

Name of Co-Author	Prabha Andraweera	
Contribution to the Paper	Conception, knowledge, drafting	
Signature	Date 28/02/2022	

Abstract

This commentary is an author response to Lu and Wang, regarding the manuscript entitled "Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus *in utero*: Systematic review and meta-analysis". We address their concern regarding duplication of studies in the meta-analysis and the quality of included studies

Letter

Dear editor,

We thank Dr. Lu and Dr. Wang for their comments regarding our systematic review and metaanalysis on cardiovascular disease in offspring exposed to gestational diabetes mellitus *in utero*²⁰⁷. Their comments highlight important considerations regarding study quality in systematic review and meta-analyses, and statistical methods put in place to address low quality studies.

Although we have already specified our methodology regarding including publications of multiple cohorts in the meta-analysis, we appreciate the opportunity to provide further clarity. There has been the understanding that the cohort publications published by Krishnaveni *et al.*, Tam et al., and Vohr et al. that we have included in our systematic review, have been doubly reported in the meta-analysis^{226, 234, 236, 239, 242, 259, 264, 265}. In our methods under the 'included studies' header, it states that "when the same cohort was reported in multiple publications at different ages, the study reporting on the older age group was included in the meta-analysis." We only used the publications of Krishnaveni et al. (2015) and Tam et al. (2010) in our metaanalysis as these studies have data on the most recent follow-up (i.e. 15 years of age for both cohorts)^{236, 239}. The publications that have been mentioned in the previous commentary are only reported as supplementary data (Supplementary Table 1) but not in the meta analyses. The Vohr et al. studies are also only reported in the supplementary data. We included 59 studies from 54 cohorts in our systematic review, and only 25 studies were used in the meta-analysis (Figure 1). The reasons for not including 34 studies in the meta-analysis include but are not limited to; 1) reporting the cohort at an earlier follow-up and thus not being the most recent publication with the oldest follow-up age (in the case of Krishnaveni and Tam studies); 2) some studies not reporting a control group value (in the case of Vohr et al. 1999); 3) studies only including adjusted mean values that we could not incorporate in a meta-analysis due to

limitation in the number of studies; 4) being unable to include median and interquartile range values in the analysis. While we endeavoured to contact authors for unadjusted and unknown values in the meta-analysis, we received a 44% response rate. It would be counterintuitive to exclude these studies all together after trying to contact the authors for appropriate data, it seemed best to report this data in a supplementary table if it was not suitable for the analysis, thereby providing readers a more comprehensive review of the literature. Furthermore, in our protocol we were interested in subgroup analyses stratified by childhood, adolescence, and adulthood to determine if any of the cardiovascular risk factors appeared at certain points during the lifecourse in offspring exposed to GDM *in utero*. However, we did not have sufficient number of studies to complete any subgroup analyses. We have addressed this in our discussion.

The second point mentioned by Lu and Wang regarding using only high quality studies in a meta-analysis is an important one to address. While we have included studies of varying study quality, we must emphasize that our methods address how we handle low quality studies. All 59 included studies have been verified by two authors, and underwent quality assessment using the Newcastle-Ottawa Scale (NOS), which is a recommended quality assessment tool used for observational studies. The NOS broadly assesses study quality, including study selection, definition and comparability of cases and controls, assessment and reporting of outcome. We only found nine studies of low quality. We performed sensitivity analyses to omit all low quality studies from the meta-analysis, thereby assessing whether these studies would have influenced the effect size of the outcomes. Performing a quality assessment of studies and performing sensitivity analyses are common protocol for many meta-analyses ^{34, 52}. Sensitivity analyses were done for only four outcomes, as these were the only outcomes that included low quality studies. Our sensitivity analysis tables reported as supplementary data show that there was no significant difference between the effect estimates when removing the low quality

studies, based on I^2 and chi-square value. Therefore, the effect size of our meta-analysis are unaffected by these low quality studies. Henceforth, the heterogeneity in these analyses needs to be explored in other avenues, including through visual analysis of funnel plots for heterogeneity (which in our analysis were all standard), through performing analyses with values adjusted for important covariates, and subgroup analysis (both actions that we were unable to do).

Including all relevant studies and reporting them allows for an extensive scope of the literature, and it is important to assess and report which of this literature is high, moderate and low quality to ensure that clinical decision-making is based on the best quality evidence.

Chapter 6

6. Author response: Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus: a systematic review and meta-analysis (2022)

Maleesa M Pathirana, Zohra Lassi, Claire T Roberts, Prabha H Andraweera

6.1. Statement of Authorship

Title of Paper	Author Response: Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus <i>in utero</i> : A systematic review and meta-analysis
Publication Status	Accepted for publication in J Dev Orig Health (in press).
Publication Details	Pathirana MM, Lassi ZS, Roberts CT, Andraweera PH. Author response: cardiovascular risk factors in offspring exposed to gestational diabetes mellitus <i>in utero</i> : systematic review and meta-analysis. J Dev Orig Health Dis. 2020 Jun;11(3):244-245. doi: 10.1017/S2040174420000185. Epub 2020 Apr 13. PMID: 32279699.

Principal Author

Name of Principal Author (Candidate)	Maleesa Pathirana
Contribution to the Paper	Knowledge, drafting
Overall Percentage (%)	70%
Certification	This paper reports on original research I conducted during the period of my Higher Degree by Research candidature and is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in this thesis. I am the primary author of this paper.
Signature	Date 14 Feb 2022

Co-author Contributions

By signing the Statement of Authorship, each author certifies that:

- iv. The candidate's stated contribution to the publication is accurate (as detailed above);
- v. Permission is granted for the candidate to include the publication in the thesis; and
- vi. The sum of all co-author contributions is equal to 100% less the candidate's stated contribution

Name of Co-Author	Zohra S Lassi
Contribution to the Paper	Knowledge, drafting
Signature	Date 14 Feb 2022

Name of Co-Author	Claire Roberts	
Contribution to the Paper	Conception, knowledge, drafting	
Signature	Date 28/02/2022	

Name of Co-Author	Prabha Andraweera	
Contribution to the Paper	Conception, knowledge, drafting	
Signature		Date 28/02/2022

Abstract

This commentary is an author response to Yu and colleagues regarding the manuscript entitled "Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus *in utero*: Systematic review and meta-analysis". We address their concern regarding minor errors in our manuscript, our search strategy and assessment of heterogeneity.

Letter

Dear editor:

We thank Yu and colleagues for their comments regarding our systematic review and metaanalysis on cardiovascular disease in offspring exposed to gestational diabetes mellitus *in utero*²⁹⁹. Their comments highlight important considerations regarding study quality, statistical analyses, and search strategy for systematic reviews and meta-analyses.

Thank you for the recommendation on databases that can be used in the process of literature retrieval in the future update of this review. We used PubMed CINAHL, SCOPUS, and EMBASE with an end of search date of April 18, 2018. Subsequently, we updated the literature search to include all relevant articles published until October 17, 2018. Our systematic review only had peer-reviewed full-text published papers. However, we will search the recommended databases, particularly grey literature databases, in our future update of this systematic review.

We thank Yu and colleagues for identifying two typographical errors, and we acknowledge that the total number of participants in the BMI Z score analysis is 31485 instead of 8759 as stated in the manuscript and that the chi-squared p-value in figure 4 is <0.00001 instead of 0.00001.

The heterogeneity of the analyses was indeed significantly high, and we did report this in our discussion section as a significant limitation. We could not perform subgroup analyses based on age in this review as there were not enough studies with varying follow-up times to assess this. However, we did plan a subgroup analysis of time to follow-up at <1 year postpartum, 1-5 years postpartum, 5-10 years postpartum, and 10+ years postpartum to assess heterogeneity. We proposed to perform subgroup analyses in our PROSPERO registration (CRD42018094983). However, these analyses were also not undertaken as there were insufficient publications to conduct meaningful comparisons. It would be beneficial to complete other subgroup analyses for future updates of this review. Other meta-analyses

completed by our research group with a greater number of studies and sample size included subgroup analyses stratified by age, ethnicity, the definition of GDM, and metabolic syndrome ^{36, 300}. We have planned for meta-regression in our next update of this systematic review.

We did perform sensitivity analyses for all the outcomes in which we removed low-quality studies and reported the outcomes before and after the sensitivity analyses in Supplementary Tables S3 to S5. We found no significant difference based on the sensitivity analyses, and heterogeneity remained high but the effect size of the outcomes remained unaffected. In our future update of this systematic review, we will consider other avenues, including meta-regression to explore heterogeneity in the data, as mentioned in a previous letter to the editor³⁰¹.

We appreciate the comment from Yu *et al.* regarding the use of "Begg's Test" or "Egger's Test" for publication bias. We assessed publication bias using Egger's test and prepared funnel plots for all of our outcomes and they are provided in the supplementary file.

Chapter 7

7. Association between metabolic syndrome and gestational diabetes mellitus in women and their children: a systematic review and meta-analysis.

Maleesa M Pathirana, Zohra S Lassi, Anna Ali , Margaret A Arstall, Claire T Roberts,

Prabha H Andraweera

7.1. Statement of Authorship

Title of Paper	Association between metabolic syndrome and gestational diabetes
	mellitus in women and their children: a systematic review and meta-
	analysis
Publication Status	Published – 2021
Publication Details	Pathirana MM, Lassi Z, Ali A, Arstall M, Roberts CT, Andraweera PH.
	Association between metabolic syndrome and gestational diabetes
	mellitus in women and their children: a systematic review and meta-
	analysis. Endocrine. 2021 Feb;71(2):310-320. doi: 10.1007/s12020-020-
	02492-1. Epub 2020 Sep 15. PMID: 32930949.

Principal Author

(Candidate)	Maleesa Pathirana
Contribution to the Paper	Acquiring data, knowledge, analysis, drafting
Overall Percentage (%)	70%
Certification	This paper reports on original research I conducted during the period of my Higher Degree by Research candidature and is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in this thesis. I am the primary author of this paper.
Signature	Date

Co-author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. The candidate's stated contribution to the publication is accurate (as detailed above);
- ii. Permission is granted for the candidate to include the publication in the thesis; and
- iii. The sum of all co-author contributions is equal to 100% less the candidate's stated contribution

Name of Co-Author	Zohra S Lassi				
Contribution to the Paper	Conceptualisation, acquiring data, analysis, drafting				
Signature	Date 14 Feb 2022				

Name of Co-Author	Anna Ali
Contribution to the Paper	Acquiring data, analysis
Signature	Date 14/02/2022

Name of Co-Author	Margaret Arstall			
Contribution to the Paper	Conception, knowledge, drafting			
-				
Signature	Date 28/02/2022			

Name of Co-Author	Claire Roberts			
Contribution to the Paper	Conception, knowledge, drafting			
Signature	Date 28/02/2022			

Name of Co-Author	Prabha Andraweera				
Contribution to the Paper	Conception, acqui	iring data, knowledge, drafting			
	ļ	1			
Signature		Date 28/02/2022			

7.2. Abstract

Objective: The primary aim of this systematic review and meta-analysis was to determine the association between gestational diabetes mellitus (GDM) and metabolic syndrome (MetS) in women and children. Our secondary aim was to assess the development of MetS with respect to the elapsed time postpartum at which MetS was diagnosed.

Methods: This review is registered with PROSPERO (CRD42020173319). PubMed, CINHAL, SCOPUS, and EMBASE databases were searched. Studies reporting on the rate of MetS in pregnant women with GDM, the rate of MetS in women with a history of GDM, and the rate of MetS in offspring exposed to GDM *in utero* compared to healthy controls were selected.

Results: We identified 588 articles from the literature search. Fifty-one studies were included in the review and of those 35 were included in the meta-analysis. Quantitative summary measures showed that women with a history of GDM have an increased risk of developing MetS compared to those without a history of GDM (RR 2.36, 95% CI 1.77 to 3.14, 29 studies, 13,390 participants; heterogeneity: Chi² P < 0.00001; I² = 93%). Those exposed to GDM *in utero* have an increased risk of developing MetS compared to those not exposed to GDM *in utero*. (RR 2.07, 95% CI 1.26 to 3.42, three studies, 4,421 participants; heterogeneity: Chi² P = 0.33; I² = 12%). Women diagnosed with GDM have an increased risk of developing MetS during pregnancy (RR 20.51, 95% CI 5.04 to 83.55; three studies, 406 participants; heterogeneity: Chi² P =0.96; I² = 0%). Subgroup analysis revealed that MetS is diagnosed as early as <1 year postpartum in women with a history of GDM.

Conclusions/interpretation

Women with GDM in pregnancy have an increased risk of developing MetS during pregnancy. Women with a history of GDM and offspring exposed to GDM *in utero* have a higher risk of developing MetS compared to those with no history of GDM. Metabolic syndrome in women with a history of GDM is seen as early as <1 year postpartum.

7.3. Introduction

Gestational diabetes mellitus (GDM) is impairment of glucose that is first diagnosed during pregnancy, hence different from both type I and II diabetes mellitus. GDM is estimated to affect one in seven pregnancies ⁷⁹. Women with a history of GDM are more likely to be obese, have dyslipidaemia and hypertension during the postpartum period ⁷⁸. These women also have an approximately seven-fold increased risk of developing type II diabetes mellitus (T2DM) later in life ³⁴. The diagnostic criteria for GDM have changed as of recent, being defined as fasting glycaemia \geq 5.1mmol/L, or 1-h plasma glucose \geq 10.0mmol/L and 2-hour plasma glucose: \geq 8.5mmol/L with a 75g oral glucose tolerance test ³⁰².

Metabolic syndrome (MetS) is defined as a cluster of metabolic disorders, conventionally defined as three or more of the following: central obesity, reduced high-density lipoprotein cholesterol, hypertriglyceridemia, hyperglycaemia and hypertension. However, the cut-offs for these individual components of MetS are different between definitions ^{303, 304}. Both GDM and MetS share a similar aetiology and both increase the risk of chronic diseases such as T2DM and cardiovascular disease (CVD) ^{34, 35, 305, 306}.

GDM is promoted by an inability of β -cells to undergo expansion. Therefore, β -cells are unable to compensate for the highly insulin resistant state leading to the subsequent elevation of glucose during pregnancy ²¹⁴. Development of pregnancy complications, such as GDM is influenced by pre-pregnancy lifestyle and metabolic characteristics ³⁰⁷. Women with MetS are already in a state of pro-inflammation and insulin resistance ³⁰⁸, therefore it is possible that when they become pregnant, they are more susceptible to developing GDM ³⁰⁹. This association has not been explored in a systematic review and meta-analysis. Furthermore, GDM increases the risk of developing cardiovascular disease in later life and approximately 50% of women who develop GDM go on to develop T2DM later in life ²¹². Therefore, women who may not have MetS in pregnancy or only present with one or two components of MetS Chapter 7

may be at risk of developing MetS postpartum. A meta-analysis in 2014, showed that women who experience GDM have a higher risk of developing MetS than women with a normal pregnancy ³¹⁰. However, the studies included in the above meta-analysis were conducted before the implementation of the new International Association of Diabetes in Pregnancy Study Group (IADPSG) guidelines that recommended a lowering of the glucose threshold for the diagnosis of GDM ⁸⁰. As the new guidelines are known to increase the number of women diagnosed with GDM, it is possible that the number of metabolic risk factors in women who had GDM will also increase. Children exposed to GDM *in utero* may also be more susceptible to developing MetS, as it has been shown that they have higher systolic blood pressure (SBP), body mass index (BMI), and blood glucose than those not exposed to GDM *in utero* ²⁰⁷. To our knowledge, no systematic review has assessed the risk for MetS among children born to pregnancies complicated by GDM. Even small improvements in the components of metabolic syndrome such as hypertension and dyslipidaemia can significantly reduce the risk of ischemic heart disease in young and middle age adults ^{222, 311, 312} and reducing childhood adiposity can reduce the risk of CVD later in life ³¹³.

Therefore, the objective of our systematic review and meta-analysis was to evaluate the association between GDM and MetS by determining 1) the risk of MetS in pregnancy among women who are diagnosed with GDM, 2) the risk for postpartum MetS among women who experienced GDM, and 3) the risk of developing MetS in children born to pregnancies complicated by GDM

7.4. Methods

The review protocol is registered in PROSPERO (CRD42020173319). The review was undertaken with reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline ⁸⁴.

7.4.1. Search strategy

All studies describing the association between GDM and MetS were identified by searching the following electronic databases: PubMed, CINAHL, SCOPUS and EMBASE with an end search date of February 18th 2020. The search was conducted by ZL. The search strategy included the terms ("gestational diabetes*" OR "pregnancy induced diabetes") AND ("metabolic syndrome" OR "insulin resistance syndrome" OR "syndrome X") and is detailed in Appendix S1. We included observational studies (case-control, cross-sectional and cohort). Bibliographies of previously conducted systematic reviews and meta-analyses on closely related topics, and eligible studies were checked for additional studies. All identified studies were independently assessed for relevance by two authors (MP, AA). Two authors (MP, AA) independently extracted data, and discrepancies were resolved by discussion with ZL and PA.

7.4.2. Inclusion criteria

Studies were eligible for inclusion if they reported the number of cases of MetS in 1) pregnant women diagnosed with GDM, 2) women with a history of GDM, compared to women who did not experience/have a history of GDM 3) those exposed to GDM *in utero* compared to those not exposed to GDM *in utero*. We included studies that defined GDM based on the IADPSG guidelines ⁸⁵. However, since the diagnostic criteria have been revised recently, we included studies that used prior recommended diagnostic

criteria of GDM including the 1999 World Health Organization (WHO) definition ³⁰³, and other regional and study specific definitions as detailed in Table S1 ^{303, 314-321}. MetS was defined based on the definitions of the National Cholesterol Education Program – Adult Treatment Panel III (NCEP-ATP-III) ³⁰⁴, International Diabetes Federation ³²² ³²³, the WHO ³⁰³, or the American Heart Association ³²⁴. Because there is no validated definition of MetS in children and pregnant women, we accepted variations of current guidelines and study-specific definitions. The definitions of GDM and MetS of included studies are detailed in Table S1. Studies that did not include a definition of GDM or MetS, those that did not define the case and control groups, and those that compared women with GDM in pregnancy/postpartum, and those exposed to GDM *in utero* to another risk group were excluded.

7.4.3. Statistical analysis

Data were extracted independently and in duplicate for the number of MetS cases. We analysed all studies collectively as an overall analysis, and subsequently stratified into subgroups based on the time of follow up postpartum as: <1 year, 1-5 years, 5-10 years, and 10+ years from the index pregnancy. Some studies analysed the rate of MetS based on t multiple definitions. Therefore, when assessing data from those studies, the NCEP-ATP-III definition was used in the overall analysis as the majority of studies used this defined according to the NCEP-ATP-III, IDF, and WHO guidelines. We performed an ad-hoc analysis based on ethnicity, but only for Asian and Caucasian ethnicities, as these were the most commonly reported ethnicities. When the same cohort was assessed multiple times during the postpartum period, the study with the largest sample size was used in the overall analysis on offspring exposed to GDM *in utero*, the

Chapter 7 oldest cohort was used in the meta-analysis. We considered studies published in English. We did not need to contact any authors for additional information, as only one dichotomous outcome was evaluated, and only studies reporting on the outcome were eligible.

The following data were collected from each included study: definition of GDM, definition of MetS, time of postpartum follow up (number of years since index pregnancy for both women and children) *or* gestational age (week) at which MetS and GDM were diagnosed during pregnancy, number of cases (those who experienced GDM) and controls (those who did not experience GDM), birthweight of offspring and gestational age at delivery for both cases and controls.

The meta-analysis was performed using RevMan software (Review Manager Version 5.3) based on an inverse variance method. As per protocol, the random-effects model was selected to account for the differences in diagnostic criteria of GDM. For each outcome measure, the number of events and the total number of participants were used in the meta-analysis to analyse the risk difference. If the number was only reported as a percentage, then the number of participants/events was calculated based on the total sample size for each group. The analysis was cross-checked and discrepancies were resolved by discussion (PA, MP).

Substantial heterogeneity was considered when I² statistic exceeded 50%, and the Chi² P value was less than 0.1. Data from eligible studies that could not be included in the meta-analysis are included in Table S2. To assess publication bias, funnel plots were used for the primary outcome. The methodological quality was assessed using the National Heart, Lung and Blood Institute (NHLBI) Quality Assessment Tool for

Observational Cohort and Cross-Sectional Studies and are presented in the Chapter 7 supplementary data (Table S3) ³²⁵. Sensitivity analysis was performed to evaluate heterogeneity for outcomes after excluding low-moderate quality studies (i.e. studies that were considered of low-moderate quality in the NHLBI Quality assessment tool after discussion with authors).

7.5. Results

7.5.1. Search results

The literature search identified 588 articles. One hundred and ninety articles were eligible for full text review. Of these, 51 were included in the review and 35 were included in the meta-analyses (Figure 7.5.1.1) (Table 7.5.1.1). The reasons for excluding 139 studies are detailed in Figure 1. The quality assessment showed that all studies were of moderate to high quality (Supplementary Table 7.8.2)

Metabolic syndrome in women and children with GDM

Figure 7.5.1.1 Flow Chart of selected studies for systematic review and meta-analysis of metabolic syndrome in women with a history of gestational diabetes mellitus and their children.

Chapter 7

Study	Study	Country	Exposed/Definition of GDM (n=)	<pre>cposed/Definition of GDM (n=) Definition of MetS</pre>		Birthweight	Time of						
	design				(n=)		assessment						
Bo 2004	Cross Sectional	Italy	150/ 50g OGTT - positive result followed by 3h OGTT 100g - Carpenter and Coustan	One abnormal value or GDM or hyperinsulinemia (2 SD above the mean for the 100 women with negative OGCTs, used as controls)], plus at least two of the following secondary criteria: arterial blood pressure 140/90; plasma triglycerides 2 SD above the mean of the controls and/or low HDL-cholesterol (<1.0 mmol/l); BMI>30 kg/m2 or waist 2 SD above the mean of the controls.	100	3174 (0.51)/3319 (0.48)	24-28 weeks						
Chatzi 2009 +	Abstract - Prospective cohort	Greece	508 pregnant women without GDM diagnosis	NHLBI/AHA criteria	NA	Not reported	24-28 weeks gestation						
Dane 2011	Prospective	Turkey	20/ 2 or more high values in 100g OGTT	NCEP-ATP III, WHO	40	Not reported	32-33 weeks						
Grieger 2018 +	Prospective	Australia and New Zealand	410/WHO	IDF	681	39.6 ± 2.5 /39.3 ± 2.8 stratified by MetS status	MetS assessed at 15 weeks gestation						
Midga 2016 [†]	Prospective	Poland	124 (MetS)/ Polish Gynecology Society Recommendations	IDF	30	Not reported	11-13 weeks gestation						
Negrato 2008** [†]	Prospective	Brazil	50/ 100g OGTT - Carpenter and Coustan	Any one of the two primary criteria: Impaired glycemic profile and/or impaired OGTT, plus at least two of the following secondary criteria: hypertension (systolic blood pressure > 140 mmHg or a diastolic blood pressure > 90 mmHg on at least two occasions at least six hours apart); dyslipidaemia (plasma	46	Not reported	24-28 weeks						

				triglycerides ≥ 2 SD above the mean of the control group and/or low HDL-C < 39 mg/dl) and obesity (BMI ≥ 30 Kg/m2 and/or waist ≥ 2 SD above the mean of pregnant women in the control group			
Negrato 2009**	Prospective	Brazil	50/ 100g OGTT - Carpenter and Coustain	Same as Negrato 2008	46	Not reported	24-28 weeks
Retnakaran 2019 🕇	Abstract	Canada	49 (MetS)/Not specified	Not specified	1134 (No MetS)	Not reported	Not specified
Zaman 2018 🕇	Case control	Iran	260/IADPSG	NCEP-ATP-III	260	Not reported	First visit of pregnancy

Study	Study design	Country	Exposed/Definitio n of GDM (n=)	Definition of MetS	Non exposed (n=)	Birthweight cases/Controls (g)	Gestational age cases/control s (weeks)	Follow up (years)
	I		1	Risk of M	etS in women witl	n previous GDM		
Akinci 2010* [†]	Prospective	Turkey	165/ 50g 1h OGTT - Carpenter and Coustan	NCE-PATP III and IDF	65	3426(664)/3228(590) stratified by MetS status	Not reported	40.54 months
Akinci 2011*	Prospective	Turkey	195/ 50g 1h OGTT - Carpenter and Coustan	NCE-PATP III and IDF	71	Not reported	Not reported	3 years
Akinci 2011* [†]	Prospective	Turkey	128/ 50g 1h GCT, then 100g OGTT - Carpenter and Coustan	АНА	67	Not reported	Not reported	3 years
Albareda 2004	Prospective	Spain	262/50-g, 1h GCT	NCEP 2001	66	Not reported	Not reported	5 years
Bo 2006	Prospective	Italy	182/ 50g Oral Glucose Test - positive result followed by 3h OGTT 100g -	NCEP-ATP III	161	Not reported	Not reported	6 years

			Carpenter and Coustan					
Carr 2006	Cross Sectional	USA	332/Self -reported	NCEP-ATP III	662	Not reported	Not reported	29.9 years
Costacou 2008	Prospective	USA	22/American Diabetes Association	NCEP-ATP III	29	Not reported	Not reported	1-2 years
Dehmer 2018 +	Prospective	USA	101/ Self report of GDM validated by medical record	Any of the following three: waist circumference > 88 cm, TG \geq 150 mg/dl, HDL cholesterol < 50 mg/dl, SBP \geq 130 mm Hg or DBP \geq 85 mm Hg or use of antihypertensiv e medications, and fasting glucose \geq 100 mg/dl.	719	Not reported	Not reported	Over a period 25 years from baseline
Derbent 2011	Cross Sectional	Turkey	36/1979 NDDG	NCEP-ATP III	40	Not reported	Not reported	1-5 years
Di Canni 2007	Prospective	Italy	166/ Carpenter and Coustan	NCEP-ATPIII	98	Not reported	Not reported	16 months postpartum
Edalat 2013	Retrospective	Iran	77/ WHO	ATP III	67	Not reported	Not reported	2-3 years
Ferraz 2007 +	Prospective	Brazil	70/WHO	ATP III	108	Not reported	Not reported	6 years
Gunderson 2009^** [+]	Longitudinal	USA	259 (MetS)/Self report validated by medical records	NCEP-ATP III	1192 (non- cases)	Not reported	Not reported	0-7, 7-10, 10- 15, 15-20 years
Gunderson 2010**	Longitudinal	USA	120 (cases of MetS)/Self report validated by medical records	NCEP-ATP III	584 (non- cases)	Not reported	Not reported	0-7, 7-10, 10- 15, 15-20 years

Gunderson 2014*	Longitudinal	USA	119/ Self report validated by medical records	NCEP-ATP III	779	Not reported	Not reported	20 years
Hakkarainen 2016*	Cohort	Finland	489/ 2h OGTT (75g glucose after overnight fast) fasting, 1h, 2h capillary plasma glucose 4.8, 11.2 and 9.9 mmol/L	IDF	385	GDM 1 Abnormal OGTT 3637±571 GDM 2 Abnormal OGTT 3671±531/ 3581±571	GDM1 278±10 GDM 2 278±10/ 279±11	<5 years, 5- 10 years, 10 years
Hakkarainen 2018*	Cohort	Finland	AGA (376) LGA (68)/ 75g-2h OGTT Fasting, 1h, 2h capillary plasma glucose 4.8, 11.2 and 9.9 mmol/L	IDF	AGA (286), LGA (48)	AGA 3596 ± 406/ 3595 ± 385, LGA 4421 ± 370/4365 ± 424	AGA 279 ± 9/280 ± 11 LGA 278 ± 8/279 ± 11	Mean 7 years
Iljas 2013	Prospective	Finland	61/ At risk women performed 75g OGTT 2h - one or more abnormal values: Fasting, 1h, 2h capillary - 4.8, 10.0, 8.7 mmol/L	NCEP-ATP III	55	Not reported	Not reported	18 years
Kousta 2005	Retrospective	UK	368/WHO	IDF	482	Not reported	Not reported	20 years
Krishnaveni 2007	Prospective	India	35/100g 3h OGTT - Carpenter and Coustan	IDF criteria recommended for South Asian women	489	Not reported	Not reported	5 years
Lauenborg 2005	Prospective	Denmark	481/Danish Criteria	WHO, ATP III, EGIR	100	Not reported	Not reported	9.8 years
Li 2018	Prospective	Singapor e	123/1999 WHO	ATP-III	119	Not reported	Not reported	5 years
Madarasz 2009	Prospective	Hungary	68/ WHO	ATP III, WHO, IDF	39	Not reported	Not reported	4 years
Maghbooli 2010	Case Control	Iran	92/ Abnormal 50g OGCT prompting 100g OGTT,	WHO	100	Not reported	Not reported	6-12 weeks

			O'Sullivan and Mahan					
Mai 2014** [+]	Prospective	China	190/ADA	WHO	80	Not reported	Not reported	2.5 years
Mai 2015**	Prospective	China	453/ADA	WHO	1180	Not reported	Not reported	1.3 years postpartum
Noctor 2014	Prospective	Ireland	265/ 2h 75g OGTT IADPSG (WHO definition before 2010)	NCEP-ATP III	378	Not reported	Not reported	2-3 years
Noujah 2018	Population based prospective	Iran	176/IADPSG	NCEP-ATP-III, IDF	86	Not reported	Not reportd	6-12 weeks
Rukusakul 2016	Case Control	Thailand	56	AHA/NHLBI	51	Not reported	Not reported	3 years
Retnakaran 2010	Prospective	Canada	137/ NDDG	AHA/NHLBI, IDF	259	Not reported	Not reported	3 months postpartum
Roca-Rodriguez 2012	Case control	Spain	41/NDDG	WHO NCEP- ATP III	21	Not reported	Not reported	1 year
Shen 2019	Multi-centre	China	1263/ WHO	NCEP-ATP III, IDF	1263	Not reported	Not reported	3 years
Tam 2007 *	Prospective	Hong Kong	67/WHO	IDF	136	3230 ± 485 3272 ± 429	39.3 ± 2.1 39.5 ± 1.6	8 years
Tam 2012* [†]	Prospective	Hong Kong	45/WHO	IDF	94	3230 ± 485 3272 ± 429	39.3 ± 2.1 39.5 ± 1.6	15 years postpartum
Wender-Ozegowska 2007	Prospective	Poland	153/Polish Diabetic Society	NCEP-ATP-III	155	Not reported	Not reported	6 years study group 5.1 years control
Wijeyaratne 2006	Prospective	Sri-Lanka	274/ ACOG	IDF	168	Not reported	Not reported	3 years postpartum
Verma 2002	Longitudinal follow-up study	USA	58/Carpenter and Coustan modification of NDDG	NCEP-ATP-III	51	Not reported	Not specified	11 years
Vilmi- Kerala 2015	Hospital based cohort study	Finland	120/ Finnish Criteria	NCEP-ATP-III	120	Not reported	Not reported	2-6 years postpartum
Risk of MetS in those born to	women with GDM							·
Boney 2005	Observational Cohort	USA	LGA GDM (n=42) AGA GDM (n= 52)/ NDDG	NCEP-ATP III	LGA Control (n=43) AGA Control (n=42)	(LGA) 4107 (386)*† /4132 (285)*, (AGA)	Not reported	6, 7, 9, 11 years postpartum

Clausen 2009	Cohort	Denmark	168/ At risk women performed 3h 50g OGTT. Two consecutive fasting blood glucose	IDF 2006	141	3316 (310)† 3370 (282) 3410 (530)/3492 (497)	273 (247– 284)b,c 281 (254–302)	20 years postpartum
			4.1mmol/L tested					
Maslova 2019 T	Prospective	Norway	608/ ICD classification and self-reported	MetS z score based on BMI, waist circumference, fasting blood glucose, insulin, triglycerides, HDL, systolic blood pressure	626	Not reported	Not reported	9-16 years
Vaarasmaki 2009	Population-Based	Finland	95/75g OGTT – one or more values: Fasting, 1h, 2h: 5.5, 11.0, 8.0mmol/L	IDF	3,909	Not reported	Not reported	16 years postpartum

*- studies are part of same cohort

** - studies report the same data, only one is included in meta-analysis

+ - results included in the non-meta-analysis table (Supplementary Table 1)

OGTT – Oral Glucose Tolerance Test

GCT – Glucose Challenge Test

IADPSG – International Association of Diabetes in Pregnancy Study group

NDDG – National Diabetes Data Group

WHO - World Health Organization

LGA – large for gestational age AGA – average for gestational age

ICD - International Statistical Classification of Diseases and Related Health Problems

AHA/NHLBI – American Heart Association/National Heart Lung Blood Institute

ACOG – American College of Obstetrics and Gynaecology

NCEP-ATP-III - National Cholesterol Education Program expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III IDF – International Diabetes Federation

7.5.2. Risk of MetS during pregnancy in women with GDM

Eight studies were included in the assessment of this outcome ^{309, 326-332}, of which three studies were included in the meta-analysis ³²⁶⁻³²⁸. All three studies assessed GDM and MetS at the same time (i.e. approximately 24-32 weeks gestation). Pooled analysis showed that women diagnosed with GDM had an increased risk of MetS in pregnancy (RR 20.51, 95% CI 5.04 to 83.55; three studies, 406 participants; heterogeneity: Chi² P=0.96; I²=0%) (Figure 7.5.2.1). Five studies were not included in the meta-analysis ^{309, 329-332}, with four showing an increased risk of developing GDM in women who are diagnosed with MetS during pregnancy ^{330, 331, 333, 334} (Supplementary Table 7.8.1).

	GDN	Λ	Non-G	DM	Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Bo 2004	18	150	0	100	25.2%	24.75 [1.51, 406.04]	
Dane 2011	8	20	0	40	25.1%	33.19 [2.01, 547.58]	
Negrato 2009 (1)	12	33	0	23	25.6%	17.65 [1.10, 283.88]	
Negrato 2009 (2)	4	17	0	23	24.2%	12.00 [0.69, 208.93]	
Total (95% CI)		220		186	100.0%	20.51 [5.04, 83.55]	
Total events	42		0				
Heterogeneity: Tau ² =	0.00; Ch	i ^z = 0.23	8, df = 3 (P = 0.9	6); I ^z = 09	6	
Test for overall effect:	Z = 4.22	(P < 0.0	001)				No MetS MetS
Footnotes (1) Overt GDM (2) GDM							

Figure 7.5.2.1 Meta-analysis showing the risk of developing MetS during pregnancy in women with GDM

7.5.3. Risk of MetS in women with a history of GDM

Thirty-five studies were included in the assessment of this outcome ^{97, 118, 135, 322, 333, 335-365}, of which 29 studies were included in the meta-analysis ^{97, 118, 135, 320, 322, 333, 335-358}. Pooled analysis showed that women with a history of GDM had a significantly increased risk of developing MetS (RR 2.36, 95% CI 1.77 to 3.14; 29 studies, 13,390 participants; heterogeneity: Chi² P <0.00001; I²=93%)(Figure 7.5.3.1). Of the six studies that were not included in the meta-analysis ³⁵⁹⁻³⁶⁵, one showed an increase in prevalence of MetS among women with a history of GDM compared to controls ³⁴¹(Supplementary Table 7.8.1). Sensitivity analysis after excluding the studies of moderate quality resulted in a slight reduction in heterogeneity (Chi² P <0.00001; I²=78%) (Supplementary Figure 7.8.1). Assessment of the funnel plot of the meta-analysis revealed moderate publication bias (Supplementary Figure 7.8.2).

	GDN	1	Non-G	DM		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
Akinci 2011 (3 years postpartum)	49	195	4	71	2.8%	4.46 [1.67, 11.91]	
Alberada 2004 (5 years postpartum)	29	262	4	66	2.7%	1.83 [0.67, 5.01]	
Bo et al 2006 (6 years postpartum)	34	182	4	161	2.7%	7.52 [2.73, 20.73]	
Carr 2006 (29.9 Years)	241	278	423	575	4.1%	1.18 [1.10, 1.26]	+
Costacou 2008 (1-2 years postpartum)	10	22	8	29	3.2%	1.65 [0.78, 3.48]	
Derbent 2010 (1-5 years postpartum)	19	36	3	40	2.5%	7.04 [2.27, 21.81]	
Di Canni 2007 (16 months postpartum)	15	166	1	98	1.4%	8.86 [1.19, 66.01]	· · · · · · · · · · · · · · · · · · ·
Edalat 2013 (2-3 years postpartum)	7	77	21	67	3.1%	0.29 [0.13, 0.64]	
Gunderson 2010 (1)	3	61	30	515	2.5%	0.84 [0.27, 2.68]	
Hakkarainen 2018 (Mean 7 vears postpartum) (2)	37	68	9	48	3.5%	2.90 [1.55, 5.44]	
Hakkarainen 2018 (Mean 7 vears postpartum) (3)	164	376	70	286	4.0%	1.78 1.41, 2.25	
liäs 2013 (18 vears postpartum) (4)	8	26	4	34	2.6%	2.62 (0.88, 7.75)	
liäs 2013 (18 vears postpartum) (5)	30	35	12	18	3.9%	1.29 (0.90, 1.83)	+
Kousta 2006 (20 vears postpartum)	136	368	48	482	4.0%	3.71 [2.75, 5.01]	
Krishnaveni 2007 (5 vears postpartum) (6)	11	13	6	8	3.7%	1.13 [0.71, 1.79]	_
Krishnaveni 2007 (5 vears nostnartum) (7)	2	11	75	406	2.3%	0.98 (0.28, 3.51)	
Krishnaveni 2007 (5 vears nostnartum) (8)	ŝ	11	44	75	3.8%	1 24 [0 82 1 87]	_+
Lauenhorg 2005 (9.8 years postpartum)	199	457	146	987	41%	2 94 [2 45 3 53]	-
Li 2018 (5 years nostnartum)	12	123	4	119	2.6%	2 90 10 96 8 751	
Madarasz 2009 (4 years nostnartum)	18	68	3	36	2.5%	3 09 0 98 9 781	
Madhhooli 2010 (6-12 weeks nostnartum)	30	92	10	100	3.4%	3 26 [1 69 6 29]	
Mai 2015 (1 year nostnartum)	26	453	20	1180	3.6%	3 39 [1 91 6 00]	
Noctor 2014 (2-3 years nostnartum)	67	265	25	378	3.8%	3 82 [2 48 5 89]	
Nouhish 2018 (6-12 weeks nostnartum)	37	176	10	96	3.4%	1 56 [0 91 3 03]	
Retnakaran 2010 (3 months nostnartum)	27	137	26	259	3 7 %	1 96 [1 19 3 23]	
Roca-Rodriguez 2012 (1 year nostnartum)	 	41	20	200	0.8%	9 95 10 61 163 111	→
Rukasasakul 2016 (3 years nostnartum)	15	56	4	51	2 7 96	3 42 11 21 9 621	
Chop 2010 (2 years postparturn) (0)	266	1262	40	706	4.0%	2 09 [2 22 4 00]	
Tam 2007 (9 years postpartum)	200	67	11	126	2 7 96	0.0210.22, 4:00]	
Vormo 2002 (10)	2	106	'	101	2.7 %	6 67 10 25 127 501	
Venna 2002 (10) Vilmi Korolo 2015 (2.6 veore poetportum)	10	120		120	2.2%	2 2014 00 5 241	
Wonder Otegeweise 2007 (6 veers postpartum)	47	162		166	2.2%	5 05 (2 01 12 17)	
Wijepuerotne 2006 (2 upero postportum)	70	147		133	3.3%	0.00 (2.01, 12.17)	
wijeliyaratile 2000 (3 years postpatturii)	72	147	4	07	2.0 %	0.20 [3.13, 21.32]	
Total (95% CI)		5911		7479	100.0%	2.36 [1.77, 3.14]	◆
Total events	1640		1093				
Heterogeneity: Tau ² = 0.51; Chi ² = 433.79, df = 32 (F	° < 0.0000	I1); I⁼ =	93%				
Test for overall effect: Z = 5.87 (P < 0.00001)							U.U1 U.1 1 1U 100
							No metabolic Syndrome - metabolic Syndrome
Footnotes							
(1) 10-15 years postpartum							
(2) LGA							
(3) AGA							
(4) BMI < 25							
(5) BMI > 25							
(6) GDM-DM							
(7) GDM-NGT							

- (8) GDM-IFG/IGT

```
(9) NCEP
(10) 4 years postpartum
```

Figure 7.5.3.1 Meta-analysis showing the risk of developing metabolic syndrome in women with previous GDM

7.5.4. **Risk of MetS in children exposed to GDM** *in utero*

Four studies were included in the assessment of this outcome ³⁶⁶⁻³⁶⁹, of which three studies were included in the meta-analysis ³⁶⁶⁻³⁶⁸. Pooled analysis showed that offspring exposed to GDM in utero had a significantly increased risk of developing MetS (RR 2.07, 95% CI 1.26 to 3.42; three studies, 4,421 participants; heterogeneity: Chi² P 0.33; I²=12%) (Figure 7.5.4.1). The study that was not included in the meta-analysis showed an increased MetS severity Z-score in those exposed to GDM in utero compared to controls ³⁶⁹. (Supplementary Table 7.8.1).

	GDM Non-GDM		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Boney 2005 (11 years old) (1)	2	38	1	24	4.4%	1.26 [0.12, 13.18]	
Boney 2005 (11 years old) (2)	3	20	1	26	5.0%	3.90 [0.44, 34.74]	
Clausen 2009 (22 years postpartum)	40	168	21	141	64.5%	1.60 [0.99, 2.58]	⊢∎
Vaarsamarki 2009 (16 years old)	5	95	54	3909	26.0%	3.81 [1.56, 9.31]	
Total (95% CI)		321		4100	100.0%	2.07 [1.26, 3.42]	◆
Total events	50		77				
Heterogeneity: Tau ² = 0.04; Chi ² = 3.40,	df = 3 (P :	= 0.33)	; I ^z = 12%	5			
Test for overall effect: Z = 2.87 (P = 0.00	4)						No Metabolic Syndrome Metabolic Syndrome
Footnotes							
(2) LGA							

Figure 7.5.4.1 Meta-analysis showing the risk of developing GDM in those born to women with GDM

7.5.5. Subgroup analyses

We conducted subgroup analyses based on the time of postpartum follow up among women with a history of GDM. The results are shown in Table 7.5.5.1. The risk of developing MetS was significantly increased in women with a history of GDM at <1 year postpartum (RR 1.95, 95% CI 1.15 to 3.28, three studies, 850 participants; heterogeneity Chi² P=0.09 I²=59%), 1-5 years postpartum (RR 2.99, 95% CI 2.14 to 4.18, eighteen studies, 7.328 participants; heterogeneity Chi² P <0.00001 I² = 70%), 5-10 years postpartum (RR 2.29, 95% CI 1.62 to 3.25, nine studies, 4,518 participants; heterogeneity Chi² P<0.0001 I²=79%), and >10 years postpartum (RR 2.07 95% CI 1.22 to 3.50, six studies, 3,037 participants; heterogeneity Chi² P<0.00001 I²=94%).

Table 7.5.5-1 Subgroup analysis for metabolic syndrome in women with previous GDM stratified by time of MetS assessment.

Time of MetS assessment	RISK DIFFERENCE (RR M-H, 95% CI)	(N=) Studies	(N=) GDM	(N=) TOTAL	HETEROGENEITY
<1 YEAR	1.95 (1.15-3.28)	3	405	850	P= 0.09 l ² = 59%
1-5 YEARS	2.99 (2.14-4.18)	18	3,716	7,328	P<0.00001 2 = 70%
5-10 YEARS	2.29 (1.62-3.25)	9	1,595	4,518	P<0.00001 2 = 79%
10+ YEARS	2.07 (1.22-3.50)	6	966	3,037	P<0.00001 2 = 94%

We conducted a subgroup analysis to evaluate the risk of developing MetS in women with a history of GDM based on the three most common definitions of MetS (i.e. NCEP-ATP-III, IDF, and WHO). A significantly increased risk of MetS was demonstrated for women with a history of GDM compared to women without a history of GDM, irrespective of the definition used to diagnose MetS (NCEP-ATP-

III: RR 2.58 95% CI 1.72 to 3.87, 20 studies, 8,768 participants; heterogeneity $Chi^2 P < 0.00001$ I²=94%; IDF: RR 2.15 95% CI 1.60 to 2.90, 11 studies, 5,615 participants; heterogeneity $Chi^2 P < 0.00001$ I²=79%; WHO: RR 2.99 95% CI 2.51 to 3.57, 5 studies, 3,433 participants; heterogeneity $Chi^2 P=0.69$ I²=0%) (Table 7.5.5.2).

Table 7.	5.5-2 Subgroup	analysis for me	tabolic syndrome	in women with previous	s GDM stratified by I	MetS definition
----------	----------------	-----------------	------------------	------------------------	-----------------------	-----------------

Definition of MetS	RISK DIFFERENCE (RR M-H, 95%	(N=) Studies	(N=) GDM	(N=) TOTAL	HETEROGENEITY
	CI)				
NCEP-ATP-III	2.58 (1.72-	20	4,145	8,768	P<0.00001 l ² =
	3.87)				94%
IDF	2.15 (1.60-	11	2,922	5,615	P<0.00001 l ² =
	2.90)				79%
WHO	2.99 (2.51-	5	1,107	3,433	P=0.69 l ² = 0%
	3.57)				

We performed ad-hoc analysis based on ethnicity (Asian and Caucasian) and found that there was a similar increased risk of MetS for women with a history of GDM for both ethnicities. (Table 7.5.5.3).

 Table 7.5.5-3 Ad-hoc analysis for metabolic syndrome in women with previous GDM stratified by ethnicity.

Ethnicity	RISK DIFFERENCE	(N=)	(N=) GDM	(N=) TOTAL	HETEROGENEITY
	(RR M-H, 95% CI)	Studies			
Asian	2.15 (1.32-3.51)	7	2,144	4,891	P<0.0001 l ² =81%
Caucasian	2.72 (2.04-3.63)	11	2,232	4,549	P<0.0001 l ² = 70%
7.6. **Discussion**

Our meta-analysis revealed that women with a history of GDM are at a significantly increased risk of developing MetS later in life, and that this risk is seen as early as <1 year postpartum. Our results also demonstrate that the risk for MetS in pregnancy is higher among women diagnosed with GDM and that children born to women who experience GDM have an increased risk of developing metabolic syndrome in later life.

This systematic review and meta-analysis was a comprehensive review of the literature on the association between gestational diabetes mellitus and metabolic syndrome, among women and their offspring. There has not been a systematic review and meta-analysis that investigated the association between GDM and MetS in pregnant women and offspring, and no review has evaluated the association between GDM and MetS in women with a history of GDM after the change of guidelines in 2013³¹⁰.

Many environmental and genetic factors contribute to the risk for GDM. There are certain candidate genes that are associated with T2DM and GDM, that mainly influence insulin secretion ²¹⁶. Obesity and GDM share the same causal pathway, through elevation of free fatty acids and dysregulation of cytokines to promote insulin resistance ^{7, 370}. Common risk factors such as advanced maternal age, familial history of T2DM or GDM in a first-degree relative (either mother or sister) also contribute to a higher risk for GDM ³⁷¹. Therefore, it is unclear whether MetS in overweight/obese women with a history of GDM is due to the disease phenotype, or due to a pre-existing predisposition. Asian ethnicity is a significant risk factor for GDM ³⁷¹ and diagnosis of MetS can also vary based on ethnicity. Therefore, we assessed the influence of ethnicity through an ad-hoc analysis and found that both Caucasian and Asian ethnicities conferred similar increased risks for MetS in women with a history of GDM. Women and men have different CVD risks, particularly with regard to obesity, as men generally have greater muscle mass and women have higher fat mass. Research into a modified

female definition of metabolic syndrome may be important, considering the differences in body composition and conventional risk factors between males and females and the higher risk of CVD among women who experience major pregnancy complications ³⁷².

Our results on the risk for MetS among women with a history of GDM showed substantial heterogeneity However, when we performed subgroup analyses based on the time of diagnosis of MetS, definition of MetS and ethnicity, heterogeneity was substantially reduced. Sensitivity analysis also showed a reduction in heterogeneity after removing studies of moderate quality. Funnel plot assessment revealed a moderate degree of publication bias. It is difficult to elucidate the reason for heterogeneity in aggregate data, but it is typically due to differences in study design, differences in definitions (i.e. MetS and GDM definitions), years of postpartum follow-up and study populations. The heterogeneity that was observed in our analysis could also be attributed to genetic and environmental factors . Large, well characterised longitudinal cohort studies will contribute to further evidence and help reduce overall heterogeneity.

Our meta-analysis revealed that women with a history of GDM are at significantly increased risk for developing MetS later in life (RR 2.48). Women who experience GDM have a reduction in insulin sensitivity in the third trimester, to support an increase in glucose transfer to the fetus. This is promoted by an increase in fetal and placental factors ^{7, 373}. However, if women are insulin resistant prior to pregnancy and fail to increase β -cell capacity during pregnancy, maternal glucose levels are unlikely to return to normal after pregnancy ³⁷⁴. Considering the increased risk for cardiovascular risk factors and T2DM in women with a history of GDM ^{34, 307}, it is not surprising that these women are at a higher risk for developing MetS later in life. Intervention trials to reduce the development of T2DM are known to be successful during the early period after pregnancy, but compliance in exercise and weight loss are shown to decrease over time ^{219, 375, 376}. This is likely due to the difficulty in changing behavioural patterns and individual circumstances. It may be more beneficial to intervene

before a diagnosis of GDM, as both diet and physical activity changes have been shown to result in an 18% reduction in the risk for GDM among women with a pre-pregnancy BMI <25kgm² as well as ≥ 25 kgm²; and this intervention was shown to be most effective before 15 weeks' gestation ³⁷⁷. The prevalence of obesity in women of reproductive age is around 15-18% in Australian women ³⁷⁸. Therefore, it is necessary to identify women who are at increased risk of developing GDM and implement interventions as soon as practical (either during preconception planning or in early pregnancy) with the aim of reducing the risk of development of GDM. This is especially important, as our results showed that women who experience GDM are at increased risk of being diagnosed with MetS, as early as <1 year postpartum.

Our study also demonstrated that offspring exposed to GDM in utero have a two-fold increased risk of developing MetS. GDM promotes a hyperinsulinemic environment to allow increased nutrient delivery to the fetus, thereby increasing fetal growth and body mass resulting in macrosomia which may persist as obesity throughout childhood and adolescence ³⁷³. This idea pertains to "The Barker Hypothesis" which states that adverse nutrition in early life increases the likelihood of developing metabolic risk factors ³⁷⁹. We have recently shown in a metaanalysis that those exposed to GDM in utero have higher SBP, BMI z-score, and blood glucose compared to those not exposed to GDM in utero ²⁰⁷. Previous studies have also shown that juvenile T2DM is significantly associated with exposure to GDM in utero ^{380, 381}, therefore highlighting the need for weight management and lifestyle guidance throughout childhood and adolescence for this group. It is important to note that there were only four eligible studies for the meta-analysis on offspring of pregnancies complicated by GDM. We believe this is influenced by the lack of consensus on a definition of MetS in childhood. An IDF recommended definition for the diagnosis of MetS in children older than six years of age does exist, but this definition is not universally used ³⁸². Furthermore, obesity as measured by BMI is not an accurate measure, as BMI varies greatly based on the muscle mass and fat mass, hence it is accurate for fatter children but not for those who are lean. BMI z-score is a more appropriate measure as it adjusts for age and gender²⁸⁶. Only one study assessed the metabolic syndrome z-score, which adjusts for age and gender³⁶⁹. Considering the increasing rate of childhood obesity, a clear definition of MetS is required that can accurately account for childhood adiposity and adjust for important factors such as age, gender, weight distribution, and puberty.

We also observed that the risk for MetS in pregnancy was increased among women who were diagnosed with GDM compared to normoglycaemic women (RR 20.51). There are studies that have investigated the association between individual components of MetS including dyslipidaemia and obesity and the risk of developing GDM ³⁸³⁻³⁸⁵. Gunderson *et al.*. (2010) showed that BMI and waist circumference were associated with increased risks for GDM after adjusting for lipids, fasting glucose and insulin ³⁸⁵. Studies by Grieger and Chatzi showed a 3-fold increased risk of GDM for women diagnosed with MetS in early pregnancy ^{309, 330}. It is difficult to diagnose metabolic syndrome in pregnancy due to hemodynamic and inflammatory changes that occur during the first trimester of pregnancy, as SBP and maternal lipids decrease during this time ^{334, 386} Furthermore, placental and maternal hormones during pregnancy promote weight gain and also result in altered fat distribution in both healthy pregnancies and those complicated by GDM³⁸⁷. Therefore, these results signify a need for further research in large pregnancy cohorts.

7.7. Conclusion

Pregnant women with GDM are at a higher risk of developing MetS during pregnancy. Furthermore, women who experience GDM have an increased risk of developing MetS later in life. They may develop MetS as early as <1 year postpartum. Children born to pregnancies complicated by GDM are also at increased risk of developing MetS in later life. This review signifies the importance of considering GDM in CVD risk stratification, thus allowing an opportunity for primordial prevention. Based on our findings,, pre-conceptional management of cardio-metabolic risk factors may be useful to reduce the risk of both GDM and MetS. Furthermore, it will be beneficial to screen women who experience GDM and children born to pregnancies complicated by GDM to detect modifiable CVD risk factors

7.8. Supplementary Data Supplementary Table 7.8 1 Studies not included in meta-analysis

Study	Case	Control	Significance						
MetS and risk of GDM									
Chatzi 2009 (abstract) (GDM risk in MetS women) ³⁸⁸	Risk of GDM in MetS women – RR: 3.17, (95% CI: 1.06, 9.50)	-	-						
Migda 2016 (Rate of GDM in MetS participants) ³³¹	12/124 with MetS (9.6%)	0/30 without MetS	0.019						
Grieger 2018 (MetS assessed at 15 weeks, GDM assessed at 24-28 weeks) ³⁰⁹	50/410 Risk for GDM in women with MetS (RR 3.71 (95% 2.42 to 5.67)	314/681	-						
Zaman (MetS assessed at first pregnancy visit, GDM assessed at 24-32 weeks) ³²⁹	44/260 aOR: 2.34 (95% CI 1.03 to 5.30) p = 0.04	18/260	<0.001						
Retnakaran 2019 (abstract) (Rate of GDM in MetS participants) ³³²	2.0% (MetS n=49)	2.1% (No MetS n=1134)	0.99						
	MetS in women with GDM	postpartum							
Akinci 2010 (Rate of GDM in MetS participants) 359	6/43 GDM with MetS	11/121 GDM without MetS	0.389						
Akinci 2011 360	43 (33.59%)	0	-						
Dehmer 2018 (Metabolic Syndrome in GDM participants (HR 95%) ³⁶¹	Yes: 1.55 (0.55-4.35)	No: 2.50 (1.15-5.43)	0.5						
Ferraz 2007 (Mean SD) ³⁶²	1.71 (0.12)	1.50 (0.11)	0.1747						
Gunderson 2009 (Rate of GDM in MetS participants) ³⁶³	24/259 (9.3%)	64/1192 (5.4%)	.02						
Mai 2014 ³⁶⁴	38/190 (20%)	0/80	-						
Tam 2012 ³⁶⁵	10/45 (22.2%)	14/94 (14.9%)	0.41						
Verma 2002 ³⁵⁵	5 years postpartum: 3/88 (4.8%)	5 years postpartum: 1/79 (1.8%)	0.11						
	0 years postpartum. 8/87 (11.0%)	o years postpartum. 1779 (1.8%)	0.03						
	9 years postpartum: 8/57 (14.6%)	9 years postpartum: 2/50 (4.1%)	0.03						
			0.007						
	MetS in offspring exposed to (GDM in utero							
Maslova 2018 (Mets z-score) ³⁶⁹	1.3 (7.7)	-0.7 (3.7)	-						

Quality assessment	Q1	Q2	Q3	Q4	Q5	Q 6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	TOTAL
Akinci 2010* 359	\checkmark	NA	\checkmark	NA	\checkmark	Х	NR	Х	9						
Akinci 2011* 335	\checkmark	NA	\checkmark	NA	\checkmark	X	NR	\checkmark	10						
Akinci 2011* 360	\checkmark	NA	\checkmark	NA	\checkmark	Х	NR	\checkmark	10						
Albareda 2004 336	\checkmark	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	X	NR	\checkmark	9
Bo et al. 2004 ³²⁶	<	<	\checkmark	<	Х	X	\checkmark	NA	\checkmark	NA	\checkmark	\checkmark	\checkmark	X	9
Bo et al 2006 338	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	NA	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	12
Boney 2005 ³⁶⁶	~	~	\checkmark	X	\checkmark	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	X	X	\checkmark	9
Carr 2006 97	\checkmark	\checkmark	\checkmark	X	\checkmark	X	X	NA	\checkmark	NA	\checkmark	X	NR	\checkmark	7
Clausen 2009 367	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	X	X	\checkmark	9
Costacou 2008 333	~	~	\checkmark	\checkmark	X	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	X	X	\checkmark	9
Dane 2011 327	~	~	\checkmark	~	X	X	\checkmark	NA	\checkmark	NA	\checkmark	X	NR	X	7
Dehmer 2018 361	\checkmark	\checkmark	\checkmark	\checkmark	Х	Х	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	9
Derbent 2010 339	\checkmark	\checkmark	\checkmark	\checkmark	Х	Х	\checkmark	NA	\checkmark	NA	\checkmark	Х	NR	\checkmark	8
Di Canni 2007 340	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	10
Edalat 2013 337	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	9
Ferraz 2007 ³⁶²	<	<	\checkmark	<	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	X	\checkmark	\checkmark	10
Grieger 2018 309	\checkmark	\checkmark	\checkmark	\checkmark	Х	Х	\checkmark	NA	\checkmark	NA	\checkmark	X	NA	\checkmark	8
Gunderson 2010* 341	<	<	\checkmark	<	Х	X	\checkmark	NA	\checkmark	NA	\checkmark	X	\checkmark	\checkmark	9
Gunderson 2014 ^{* 389}	<	<	\checkmark	<	X	X	\checkmark	NA	\checkmark	NA	\checkmark	X	\checkmark	\checkmark	9
Hakkarainen 2016* 390	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	Х	\checkmark	8
Hakkarainen 2018* 342	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	Х	\checkmark	8
Iljas 2013 343	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark	NA	\checkmark	Х	Х	\checkmark	9
Kousta 2005 ³⁴⁴	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	X	\checkmark	\checkmark	10
Krishnaveni 2007 345	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	X	\checkmark	\checkmark	10
Lauenborg 2005 ¹³⁵	\checkmark	X	\checkmark	X	X	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	X	\checkmark	\checkmark	8

Supplementary Table 7.8 2 Quality assessment of included studies using the National Institute of Health Quality Assessment for cohort and case-control studies

Li 2018 ³⁴⁶	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	10
Madarasz 2009 ³⁴⁷	\checkmark	Х	Х	\checkmark	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	8
Maghbooli 2010 322	<	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	10
Mai 2014 ^{* 364}	\checkmark	\checkmark	>	\checkmark	X	\checkmark	\checkmark	NA	>	NA	\checkmark	X	\checkmark	\checkmark	10
Mai 2015* 348	<	\checkmark	\checkmark	>	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	10
Maslova 2019 369	<	\checkmark	Х	X	X	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	8
Midga 2016 331	<	\checkmark	\checkmark	>	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	Х	9
Negrato 2008** 391	\checkmark	\checkmark	\checkmark	\checkmark	Х	Х	\checkmark	NA	\checkmark	NA	\checkmark	Х	NR	Х	7
Negrato 2009** 328	<	\checkmark	\checkmark	>	\checkmark	X	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	Х	8
Noctor 2014* 349	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	9
Noujah 2018 118	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	10
Retnakaran 2010 350	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	10
Roca-Rodriguez 2012 351	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	10
Shen 2019 353	<	\checkmark	Х	>	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	9
Tam 2007 * ³⁵⁴	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	10
Tam 2012* ³⁶⁵	<	\checkmark	\checkmark	>	Х	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	10
Vaarasmaki 2009 368	<	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	10
Vilmi Kerala 2015 356	<	\checkmark	\checkmark	>	\checkmark	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	11
Verma 2002 355	<	\checkmark	\checkmark	>	\checkmark	\checkmark	\checkmark	NA	\checkmark	\checkmark	\checkmark	Х	X	\checkmark	11
Wender-Ozegowska 2007 ³⁹²	\checkmark	X	\checkmark	\checkmark	X	\checkmark	\checkmark	NA	\checkmark	NA	\checkmark	X	\checkmark	\checkmark	9
Wijeyaratne 2006 358	\checkmark	NA	\checkmark	NA	\checkmark	Х	\checkmark	\checkmark	11						
Zaman 2018 329	\checkmark	\checkmark	\checkmark	\checkmark	X	X	X	NA	\checkmark	NA	\checkmark	X	\checkmark	\checkmark	8

	GDM	4	Non-Gl	DM		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Akinci 2011 (3 years postpartum)	49	195	4	71	3.4%	4.46 [1.67, 11.91]	
Alberada 2004 (5 years postpartum)	29	262	4	66	3.3%	1.83 [0.67, 5.01]	
Bo et al 2006 (6 years postpartum)	34	182	4	161	3.3%	7.52 [2.73, 20.73]	
Carr 2006 (29.9 Years)	241	278	423	575	0.0%	1.18 [1.10, 1.26]	
Costacou 2008 (1-2 years postpartum)	10	22	8	29	4.1%	1.65 [0.78, 3.48]	
Derbent 2010 (1-5 years postpartum)	19	36	3	40	0.0%	7.04 [2.27, 21.81]	
Di Canni 2007 (16 months postpartum)	15	166	1	98	1.5%	8.86 [1.19, 66.01]	· · · · · · · · · · · · · · · · · · ·
Edalat 2013 (2-3 years postpartum)	7	77	21	67	3.9%	0.29 [0.13, 0.64]	
Gunderson 2010 (1)	3	61	30	515	2.9%	0.84 [0.27, 2.68]	
Hakkarainen 2018 (Mean 7 vears postpartum) (2)	37	68	9	48	0.0%	2.90 [1.55, 5.44]	
Hakkarainen 2018 (Mean 7 vears postpartum) (3)	164	376	70	286	0.0%	1.78 1.41. 2.25	
liäs 2013 (18 vears postpartum) (4)	8	26	4	34	3.1%	2.62 [0.88, 7.75]	
liäs 2013 (18 vears postpartum) (5)	30	35	12	18	5.2%	1.29 [0.90, 1.83]	+ - -
Kousta 2006 (20 vears postpartum)	136	368	48	482	5.4%	3.71 [2.75, 5.01]	
Krishnaveni 2007 (5 vears postnartum) (6)	11	13			5.0%	1 1 3 10 71 1 791	_ _
Krishnaveni 2007 (5 years nostnartum) (7)		11	44	75	5.1%	1 24 [0 82 1 87]	_ _
Krishnaveni 2007 (5 years nostnartum) (8)	2	11	75	406	2.6%	0.98 (0.28, 3.51)	
Lauenhorg 2005 (9.8 years nostnartum)	199	457	146	987	0.0%	2 94 [2 45 3 53]	
Li 2018 (5 years nostnartum)	12	123	4	119	3.0%	2 90 10 96 8 751	
Madaraez 2009 (4 years nostnartum)	18	68	3	36	0.0%	3 09 10 98 9 781	
Maghhooli 2010 (6-12 weeks nostnartum)	30	92	10	100	1 1 96	3 76 [1 69 6 79]	
Mai 2015 (1 year nostnartum)	26	453	20	1190	4.6%	3 39 [1 91 6 00]	
Noctor 2014 (2-3 years nostnartum)	67	265	20	379	5.0%	3 92 [2 49 5 99]	
Noubish 2019 (6-12 weeks nostnartum)	22	176	10	0,0	1 296	1 56 [0 91 2 02]	
Rotnokoron 2010 (2 months postpartum)	32	127	26	260	4.370	1.00 [0.01, 3.03]	
Retriakaran 2010 (3 montris postparturn)	27	1.57	20	208	4.9%	0.05/0.61 162.141	
Roca-Rounguez 2012 (1 year postpartum)	9	41	0	21	0.9%	3.35 [0.01, 103.11]	
Rukasasakui 2010 (3 years postpartum)	10	4060	4	205	5.270	3.42[1.21, 9.62]	
Shen 2019 (3 years postpartum) (9)	206	1203	48	105	3.4%	2.98 [2.22, 4.00]	
Varma 2002 (8 years postpanum)		400	''	130	3.3%	0.92 [0.33, 2.55]	
Verma 2002 (10) Véleci Verela 2015 (2. Successionante este esteve)	3	100	0	101	0.8%	0.07 [0.35, 127.59]	
Viimi Kerala 2015 (2-6 years postpartum)	19	120	8	120	3.9%	2.38 [1.08, 5.21]	
Wender-Ozegowska 2007 (6 years postpartum)	47	153	8	155	4.2%	5.95 [2.91, 12.17]	
Wijenyarathe 2006 (3 years postpartum)	72	147	4	67	3.4%	8.20 [3.13, 21.52]	
Total (95% CI)		4628		5508	100.0%	2.30 [1.74, 3.05]	•
Total events	962		439				
Heterogeneity: Tau ² = 0.36; Chi ² = 120.29, df = 26 (f	P < 0.0000)1): I [≥] =	78%				
Test for overall effect: $Z = 5.84$ (P < 0.00001)							0.01 0.1 1 10 100
							No Metabolic Syndrome Metabolic Syndrome
Footnotes							
(1) 10-15 years postpartum							
(2)1 GA							
(3) AGA							
(4) BMI < 25							
(5) BMI > 25							
(6) CDM-DM							
(7) CDM-EC/ICT							
(10) A vegra postportum							
(10) 4 years postpartum							

Supplementary Figure 7.8 1 Sensitivity analysis of MetS after a GDM pregnancy omitting moderate quality studies

Supplementary Figure 7.8 2 Funnel plot analysis

Chapter 7

Chapter 8

8. Protective influence of breastfeeding on cardiovascular risk factors in women with previous gestational diabetes mellitus and their children: A systematic review and meta-analysis

Maleesa M Pathirana, Anna Ali , Zohra S Lassi , Margaret A Arstall, Claire T Roberts,

Prabha H Andraweera

8.1. Statement of Authorship

Title of Paper	Protective influence of breastfeeding on cardiovascular risk factors in women with previous gestational diabetes mellitus and their children: A systematic review and meta-analysis
Publication Status	Published – 2021
Publication Details	Pathirana MM, Ali A, Lassi ZS, Arstall M, Roberts CT, Andraweera
	PH.
	Influence of Breastfeeding on Cardiovascular Risk Factors in Women
	With Previous Gestational Diabetes Mellitus and Their Children: A
	Systematic Review and Meta-Analysis. J Hum Lact. 2021 Oct

Principal Author

Name of Principal Author (Candidate)	Maleesa Pathirana
Contribution to the Paper	Acquiring data, knowledge, analysis, drafting
Overall Percentage (%)	70%
Certification	This paper reports on original research I conducted during the period of my Higher Degree by Research candidature and is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in this thesis. I am the primary author of this paper.
Signature	Date

Co-author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. The candidate's stated contribution to the publication is accurate (as detailed above);
- ii. Permission is granted for the candidate to include the publication in the thesis; and
- iii. The sum of all co-author contributions is equal to 100% less the candidate's stated contribution

Name of Co-Author	Anna Ali					
Contribution to the Paper	Acquiring data, a	Acquiring data, analysis				
	l					
Signature		Date 14/02/2022				

Name of Co-Author	Zohra S Lassi				
Contribution to the Paper	Conceptualisation, acquiring data, analysis, drafting				
Signature	Date 14 Feb 2022				

Name of Co-Author		Margaret Arstall	
Contribution to the H	Paper	Conception, knowledge, drafting	
Signature		Date 28/02/2022	

Name of Co-Author	Claire Roberts					
Contribution to the Paper	Conception, knowledge, drafting					
Signature	Date 28/02/2022					

Name of Co-Author	Prabha Andraweera				
Contribution to the Paper	Conception, acquiring data, knowledge, drafting				
Signature	Date 28/02/2022				

8.2. Abstract

Background: There is evidence that breastfeeding may provide protection against cardiovascular risk factors in mothers with a history of gestational diabetes mellitus and their children who were exposed *in utero*. We aimed to perform a systematic review and meta-analysis of observational studies to ascertain the effects of breastfeeding on cardiovascular risk factors in women with previous gestational diabetes mellitus and their children exposed *in utero*.

Methods: Studies assessing conventional cardiovascular risk factors in women with previous gestational diabetes mellitus and children exposed *in utero* stratified by breastfeeding/no breastfeeding or breastfed/not breastfed were included. Gestational diabetes mellitus was defined based on the International Association of Diabetes in Pregnancy Study Group definition or previous accepted definitions. Breastfeeding was defined as reported in each study.

Results: The literature search yielded 260 titles, of which 17 studies were selected to be in the review. Women with previous gestational diabetes mellitus who did not breastfeed had higher blood glucose (*SMD*: 0.32, 95% CI 0.12, 0.53) and a greater risk of developing type 2 diabetes mellitus (*RR*: 2.08 95% CI 1.44 to 3.00) compared to women with no history. There were not enough studies to conduct a meta-analysis on the effects of breastfeeding on risk factors for cardiovascular disease among children exposed to gestational diabetes mellitus *in utero*.

Conclusion: Breastfeeding appears to be protective against cardiovascular risk factors among women who experience gestational diabetes mellitus.

8.3. Introduction

Gestational diabetes mellitus (GDM) is defined as glucose intolerance that is initially diagnosed during pregnancy and affects one in seven pregnancies globally ³⁹³. Women with previous GDM have an approximately seven-fold increased risk of developing type II diabetes mellitus (T2DM) later in life ³⁴. Furthermore, women with previous GDM are more likely to be hypertensive, obese, and have dyslipidaemia postpartum³⁰⁰. These metabolic and vascular morbidities promote the development of metabolic syndrome, which is a significant global concern and important risk factor for CVD ³⁹⁴. It has been reported in a previous systematic review and meta-analysis, that women with a history of GDM are at a higher risk of developing metabolic syndrome later in life ³⁹⁵. Furthermore, women with a GDM history have a 2-fold- increased risk of developing cardiovascular disease (CVD), irrespective of disease progression to T2DM ³⁹⁶. It has also been reported that children exposed to GDM *in utero* also exhibit higher systolic blood pressure, obesity, and higher blood glucose throughout life compared to children born to non-GDM pregnancies; thereby significantly increasing their risk of T2DM and CVD at an earlier age ²⁰⁷. Therefore, preventative strategies are necessary to reduce CVD risk in both mothers and children exposed to GDM.

Human milk is "the gold standard for infant feeding", with lactation being mutually beneficial for both mother and child ³⁹⁷. Breastfeeding over 12 months promotes a significant reduction in both chronic hypertension and T2DM in women ⁵⁹. Furthermore, children who are breastfed are less likely to develop obesity and T2DM compared to those who are not breastfed ⁶⁰. Breastfeeding for 6 months exclusively, and for up to 2 years as complementary to other nutritional sources is encouraged in women ³⁹⁷. Two reviews have assessed breastfeeding and metabolic risk factor reduction in women with previous GDM ^{398, 399} but these studies have not reported on all conventional cardiovascular risk factors, such as blood pressure and lipids. Having a comprehensive assessment of the effects of breastfeeding on all major cardiovascular risk factors can aid treatment strategies and disease mitigation. These reviews also did not assess the effects of breast-feeding on all major CVD risk factors in children exposed to GDM *in utero*. Therefore, our aim was to perform a systematic review and meta-analysis to determine the effects of breastfeeding on cardiovascular risk factors in women with previous GDM and their exposed children.

Chapter 8

8.4. Methods

8.4.1. Search strategy

We undertook a systematic review of the literature and meta-analysis of observational studies in order to assess the effects of breastfeeding on cardiovascular risk factors in mothers with previous GDM and children exposed to GDM *in utero*. The review was undertaken with reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline ⁸⁴. The protocol of this review is registered in PROSPERO (CRD42020190529)

Studies eligible for the meta-analyses included women who had a history of GDM/those exposed to GDM *in utero*, the intervention assessed was breastfeeding/being breastfed compared to not breastfeeding/not being breastfed, and the outcomes of interest were conventional cardiovascular risk factors. Observational studies (i.e. cross-sectional, case-control and cohort) were included. Studies that did not include a definition of GDM, those that did not define the breastfeeding and non-breastfeeding groups or did not include participants with GDM, were excluded. We assessed the following in our review (1) CVD risk factors in women with previous GDM who breastfed compared to women with previous GDM who breastfed compared to women with previous GDM who breastfed compared to GDM *in utero* who were breastfed compared to those exposed to GDM *in utero* who were not breastfed. We included studies of CVD risk assessment at any point in the postpartum period. Key search terms included (gestational diabetes OR pregnancy-induced diabetes) AND (breast feeding OR breastfeeding OR breastfieding OR breastfied OR human milk OR lactat*) AND (formula fed OR infant formula) AND (blood pressure OR hypertension OR cholesterol OR lipids OR body mass index OR glucose OR diabetes OR metabolic syndrome).

As different definitions of breastfeeding were used among studies, breastfeeding was considered as exposure to human milk (either exclusive or mostly breastfed), as defined in the study or feeding at hospital discharge, and not breastfeeding was considered as feeding predominantly or exclusively using other sources (i.e. formula, animal milk, solids and other liquids) that were not human milk, as well as those reporting on "not breastfeeding at hospital discharge". The definitions of breastfeeding that were reported in the studies are specified in Table 1. GDM is currently defined based on the International Association of Diabetes in Pregnancy Study Group (IADPSG) guidelines⁴⁰⁰. However, since GDM diagnosis has been revised recently, we included studies defining GDM based on prior recommended diagnostic criteria such as the 1999 World Health Organization (WHO) definition ³⁰³, and other regional and study specific definitions. All GDM definitions reported for each study are detailed in table 1. The literature search generated 260 titles, of which 233 were identified through electronic search and 27 were found through bibliographic search of similar reviews ^{398, 399}. Of these, 39 papers were assessed in full text and 18 were found to be eligible. Figure 1 describes the reasons for excluding studies. Overall, nine studies were included in the meta-analysis. The 10 studies that were not included in the meta-analysis are reported in Table 8.4.4.1.

8.4.2. Inclusion criteria

All studies describing the effects of breastfeeding on conventional CVD risk factors in women with previous GDM and those exposed to GDM *in utero* were identified by searching electronic databases PubMed Medical Subject Headings ⁴⁰¹, CINAHL, and EMBASE, including all studies up until May 26th 2020. MP conducted the search. The complete search strategy is included in Appendix 1. Bibliographic search of previous observational studies, and systematic reviews and meta-analyses on similar topics were cross-checked for additional studies. All identified studies were independently assessed for relevance by two authors (MP, AA). Data was independently extracted by two authors (MP, AA) and discrepancies were resolved by discussion with ZL and PA.

For each study, the following data were extracted: author's last name, study year, country, study design, definition of GDM, assessment of breastfeeding (i.e. how breastfeeding was assessed and how breastfeeding and not breastfeeding were defined), number of women

breastfeeding/non-breastfeeding or children who were breastfed/not breastfed, years of postpartum follow-up/age at assessment, outcome measures, and significant findings.

Data extraction was completed independently and in duplicate for the following cardiovascular outcomes: systolic (SBP) and diastolic blood pressure (DBP), body mass index (BMI), serum lipid levels (low density lipoprotein (LDL) high density lipoprotein (HDL), total cholesterol, and triglycerides), blood glucose, fasting insulin and incidence of T2DM. If the same cohort was assessed in different studies, the meta-analysis would include the study with the largest sample size. The oldest cohort was used for the analysis of children born to pregnancies complicated by GDM. We considered studies published in English. Authors of studies were contacted for data clarification (i.e. any missing data) and additional data, when required. If missing or unclear data could be not clarified, these studies were included in the review and reported in Table 1 but not the meta-analysis.

The National Heart, Lung and Blood Institute ⁴⁰² Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies was used to assess the methodological quality of each study⁴⁰². Studies were assessed for internal validity and study quality was decided between authors. Two authors (MP and AA) assessed all eligible studies based on this criteria. Study quality (i.e. high, medium and low quality) was ascertained based on the authors scoring and after discussion. The quality assessment is graphically illustrated in the supplementary data.

8.4.3. Statistical analysis

All conventional cardiovascular risk factors were assessed including blood pressure, serum lipids, blood glucose, insulin, and type II diabetes mellitus. The random-effects model was selected as per protocol, in order to account for variability in GDM diagnosis, and differences in breastfeeding practices. For continuous outcomes, mean and standard deviation (SD) were reported in the meta-analyses. Standard Error of Mean ⁴⁰³ was converted to *SD* on RevMan software if Mean and *SD* were not reported. The Standardized Mean Difference (*SMD*) was used when individual studies reported outcome in different units, and Mean Difference ⁴⁰⁴ was

used when units were consistent. For dichotomous outcomes, the (n=) of events and (n=) of participants were used in the meta-analysis to analyse the Risk Ratio (RR) and the associated 95% confidence intervals (CI). The number of participants/events would be calculated based on the total sample size for breastfeeding and not breastfeeding groups, if the numbers were only reported as a percentage. All analyses were cross-checked and discrepancies were resolved by discussion (ZL, MP). The effects of breastfeeding compared to not breastfeeding for all outcomes were considered significant if there was a difference of p<0.05. All test values were two-tailed.

When the I² statistic exceeded 50%, and the *Chi² P* value was less than 0.1, substantial heterogeneity was considered. Data that was unable to be reported in the meta-analyses, but still reported an association between breastfeeding and CVD risk in women with GDM history and exposed children were included in Table 1 under significant findings. The meta-analysis was performed using Review Manager Version 5.3, based on inverse variance. Sensitivity analyses were conducted to ascertain heterogeneity for each outcome after excluding studies classified as of low to moderate quality in the NHLBI Quality assessment, as determined after author discussion. Five authors were contacted for additional data, of whom one responded (20% author response rate). Assessment of publication bias by funnel plot analysis was not required for any of the meta-analysis, as there was an inadequate amount of studies in the meta-analysis to perform a sufficient assessment.

8.5. Results

8.5.1. Search results

Table 8.4.4.1 highlights the details of each study. Overall, majority of studies defined GDM based on the previous criteria, only three studies in the review defined GDM based on definitions influenced by IADPSG guidelines. Most studies were conducted in Caucasian populations, with two studies conducted in Asian populations. The age range of participants across studies was wide, with participants as young as <25 years to >40 years of age. Follow-up assessment varied between less than one month postpartum to 24 years postpartum.

Quality assessment of studies based on the NHLBI tool revealed that nine studies were of high quality, ten studies were of moderate quality, and none of the studies were of poor quality (Supplementary Table 8.8.1).

Table 8.5.1-1 Published studies of the effects of breastfeeding on cardiovascular disease risk factors among women with previous GDM and children exposed to GDM *in utero*

Study	Study Design	Definition of GDM	Assessment and definition of breastfeeding	(n=) breastfed/not breastfed or did not breastfeed	Follow-up assessment time or age at follow up	Outcomes of interest	Significant findings
			Studies assessing offsprir	ng of mothers with prev	vious GDM		
Hui 2018 Hong Kong ⁴⁰⁵	Prospective cohort	Self-reported (WHO 1999 definition at time)	Self-administered questionnaire assessing formula feeding, mix feeding or breastfeeding only	464/4,143	0-3 months	BMI Z- Score, Glucose	Those exposed to GDM <i>in utero</i> who were breastfed had significantly lower BMI than those who were not breastfed at 3 months only. Infant glucose levels were lower in those who were breastfed than those who were not (3.17mmol/L (0.65) vs. 2.86 (0.57) p=0.03). Breastfed infants had higher mean blood glucose compared to those who were formula fed for their first feed (3.20(0.63) vs. 2.68mmol/L (0.58), p=0.002
Martens 2016** Canada ⁴⁰⁶	Retrospective database linkage	Hospital diagnosis at 21 weeks gestation	Medical records on breastfeeding	42,332/208,060	24 years	Type II Diabetes	Unadjusted pooled analysis showed that breastfeeding initiation was associated with a 17% reduced risk of youth onset type 2 diabetes in all offspring, including those exposed to GDM <i>in utero</i> (HR 0.83, CI 0.69–0.99, P5.038).
			Studies assessing m	nothers with previous (GDM	-	
Chamberlain 2015 Australia ⁴⁰⁷	Retrospective database linkage	ADIPS definition	Discharge medical records on breastfeeding fully, partially or never	Fully: 217 (75%) Partial: 51 (18%) Never: 17 (6%)	3, 5, 8 years postpartum	Type II Diabetes	Combined analysis (i.e. indigenous and non-indigenous women) showed that there was an increased rate of progression to type 2 diabetes among women who partially breastfed compared to those who fully breastfed at

Corrado	Retrospective	Italian Institute	Interviewed at OGTT about	81/16	3 months	BMI	discharge from hospital (HR 2.34 95% CI 1.23–4.47 p=0.009)
2019 Italy ⁴⁰⁸	cohort	of Health	frequency of breastfeeding			Lipids, Glucose Insulin	with breastfeeding (OR 0.370 95% CI 0.170-0.805 p <0.01)
Chouinard- Castonguay 2013 ⁴⁰⁹	Retrospective follow-up	Medical records	Self-reported through questionnaires. Total duration of lactation was sum of months of lactation, either exclusive or mixed.	116/28	4 years	BMI Glucose Insulin	Women who lactated had higher HOMA-IS than those who did not lactate (Mean (SD)) 0.064(0.044) vs. 0.045(0.021), p=0.01) Lactation duration is an independent predictor of insulin sensitivity indices (i.e. HOMA and Matsuda index (beta coefficient - 0.02 p=0.03 for both). However, it was not a predictor of fasting and 2- h post OGTT glucose concentrations, 2-h post OGTT insulin concentrations, AUC for insulin and secretion of insulin.
Dijigow 2015 ⁴¹⁰	Retrospective cohort	IADPSG	Medical records – yes/no to breastfeeding	114/18	40 days postpartum	Glucose	Breastfeeding was a protective factor against development of glucose intolerance in the postpartum OGTT (OR: 0.27)
Gunderson 2011** USA ⁴¹¹	Prospective Observational Cohort	Carpenter and Coustan	Self-reported at 6-9 weeks postpartum and based on previous telephone interaction and monthly questionnaires. Exclusive lactation: no formula food or liquid, mostly lactation, (0-6 oz of formula per 24h) Mostly formula: >17oz per 24 hours Mixed: (7-17 oz of formula per 24h) Exclusive formula: formula only, no breastfeeding or breastfeeding <3 weeks since birth	Exclusively BF: 211 Mostly: 99 Mixed: 77 Exclusively FF: 135	6-9 weeks	BMI, Glucose	Plasma glucose and insulin in unadjusted and fully adjusted means (95% CI) were significantly lower among exclusive breastfeeding compared to formula feeding. Glucose (Mean Difference -6.1 (- 9.0 to -3.1) p<0.001). Insulin (Mean Difference -6.3 (-10.1 to -2.4) p<0.001) Fully adjusted for race, baseline parity, age, BMI, education, weeks'

							postpartum and hours of fasting before test.
Gunderson 2015** USA ⁴¹²	Prospective Observational Cohort	Carpenter and Coustan	Same as 2011	Exclusively BF: 205 Mostly: 387 Mixed: 214 Exclusively FF: 153	Same as 2011	Same as 2011	Multivariable regression showed that higher lactation intensity and longer duration of lactation is associated with lower adjusted rates of incident diabetes. Exclusive lactation (HR 0.47 (95% CI 0.23-0.82) Exclusive formula (HR 0.72 (0.41- 1.28) Lactating 0-2 months (HR 0.48 95% CI (0.25-0.90), >2-5 months (HR 0.65 95% CI (0.33-1.24), >5-10 months (HR 0.65 95% CI (0.33- 1.24), > 10 months (HR 0.47 95% CI (0.24-0.91) Adjusted for age, maternal and perinatal risk factors, newborn outcomes and postpartum lifestyle behaviours
Kim 2011 South Korea ⁴¹³	Prospective Observational	Carpenter and Coustan	Self-reported	GDM-NGT: 52% BF 32.3% Mixed 15.6 Not BF GDM- prediabetes: 47% BF 44% mixed 8.3 % not BF GDM-T2DM: 50% BF 50% mixed 0% not	6-12 weeks	Type II diabetes	Lactation and duration of lactation have no significant effect on postpartum glucose status (beta coefficient -0.016 p=0.25)
Kjos 1993 U.S.A ⁴¹⁴	Prospective Observational	NDDG 1979	Self-reported 4-12 weeks after delivery "Are you nursing your infant?" (yes or no)	404/405	44-45 days postpartum	BMI, Lipids, Glucose Type II Diabetes mellitus	When stratified for diet and insulin treated GDM, women who lactated with either diet or insulin therapy had significantly lower fasting serum glucose and higher HDL cholesterol.

Martens 2016** Canada ⁴⁰⁶	Retrospective database linkage	Hospital diagnosis at 21 weeks gestation	Medical records on breastfeeding	7,510/3,040	5, 10, 15, 20, 24 years	Type II Diabetes	Initiating breastfeeding was inversely related to postpartum T2DM among mothers with and without GDM
McManus 2011 Canada ⁴¹⁵	Prospective Observational	ĀDA	Not specified	Lactation for 3 months: 14 Did not lactate past discharge: 12	3 months	Blood pressure BMI Lipids Glucose Insulin	Women with previous GDM who were lactating had higher β -cell function for the degree of insulin resistance based on disposition index (129.9 (SD 26.0) vs. 53.4 (SD 18.0 x 10^4 min^1 (p=0.03)
Nelson 2007 Niger ⁴¹⁶	Retrospective cohort	Not specified	Self-reported	36% of n=193 women in cohort were breastfeeding at 1 year	1 year postpartum	Blood glucose	Women who had normal glucose tolerance postpartum were more likely to be breastfeeding (p=0.005) but breastfeeding did not protect women from deteriorating glucose tolerance
Saucedo 2014 Mexico ⁴¹⁷	Prospective Observational	ADA	Not specified	Lactation < 6 weeks Lactation >6 weeks- 6 months	6 months postpartum:	Lipids, Glucose, Insulin	Women who lactated longer than 6 weeks had greater weight loss postpartum and lower leptin levels, even after adjustment for weight.
Shub 2019 Australia ⁴¹⁸	Secondary analysis of cohort study	ADIPS	Women were asked whether they exclusively BF, exclusively formula fed or a mixture of both methods.	GDM group: Exclusively BF: 106 Non-BF: 53 Controls: BF: 65 Non BF: 19	6-10 weeks postpartum	Lipids, Glucose	After adjusting for BMI, age and ethnicity, women with GDM that were breastfeeding had significantly lower fasting glucose 0.22 (95% CI 0.39 to 0.05, p=0.12). No difference was seen in fasting lipids (i.e. HDL, LDL, triglycerides) between women with previous GDM who breastfeed and those who did not.
Yashui 2017 Japan ⁴¹⁹	Retrospective	Japan Society of Obstetrics and Gynaecology	Posted questionnaire or telephone interview asking about breastfeeding practices at 6-8 weeks, 6 months and 12 months postpartum. High intensity breastfeeding defined as	High intensity: 70, non high intensity: 18	6-8 weeks, 6-8 months, 12-14 months	BMI, Glucose, Insulin	High intensity breastfeeding was significantly associated with abnormal glucose tolerance (crude OR 0.24, 95% CI 0.06 to 0.75; p=0.013). HOMA-IR is significantly

			infants being fed by breastfeeding alone or roughly 80% of volume at 6-8 weeks and 6 months postpartum, and if mothers continued to breastfeed at 12 months regardless of the volume. Non-high intensity was classified as not following this criterion.				lower in high intensity breastfeeding group than non-high-intensity breastfeeding group (unadjusted Mean (SD): 1.41 ± 1.02 vs. 2.28 ± 1.05 , p = 0.035). The difference was the same after adjusted for maternal age, pre-pregnancy BMI, familial diabetes history, 2-h plasma glucose at diagnosis of gestational diabetes, pregnancy weight gain and postpartum weight loss.
Ziegler 2012 Germany ⁴²⁰	Prospective Observational	German Diabetes Association	Self-reported questionnaire asking on lactation (yes/no) duration and full lactation at 9 months postpartum	201 women breastfed their child, 109 continued breastfeeding >3 months postpartum. Full breastfeeding was practiced by 62% of mothers	15 years postpartum	Type II diabetes	Lactation was associated with a marked delay in diabetes development in women who did lactate compared to those who did not breastfeed. Duration of lactation is inversely associated with postpartum diabetes risk (p=0.002) and longer diabetes free duration. However, lactation did not significantly affect the trend of post- pregnancy BMI.

Abbreviations: BMI – Body Mass Index; WHO – World Health Organisation IADPSG – International Association of Diabetes in Pregnancy Study Group; ADIPS – Australian Diabetes in pregnancy study; ADA – American Diabetes Association; NDDG – National Diabetes Data Group

Figure 8.5.1.1 Flow chart of study selection

8.5.2. Breastfeeding in women with a history of GDM

8.5.2.1. Blood pressure

Blood pressure data was reported in one study ^{415, 421}. The study showed that systolic and diastolic blood pressure was lower in women with a history of GDM that breastfed compared to those who did not (Table 8.4.41).

8.5.2.2. Body Mass Index

Body Mass Index (BMI) data was reported in five studies 408, 409, 411, 414, 415, 419, 421.

BMI was not different in women with previous GDM who did not breastfeed

compared to those who breastfed based on quantitative summary measures (Figure

8.4.2.2.1).

	Did no	ot breastf	eed	B	reastfed			Mean Difference		Mean Diff	erence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random	n, 95% CI	
Chouinard-Castonguay 2013 (4 years pp)	27.8	5.9	28	27.4	6.7	116	14.7%	0.40 [-2.10, 2.90]				
Corrado 2017 (3 months postpartum)	29.1	3.9	16	28.4	4.1	81	17.0%	0.70 [-1.41, 2.81]		-+•		
Gunderson 2011 (6-9 weeks postpartum)	32.7	7.8	135	29.4	5.7	211	20.8%	3.30 [1.78, 4.82]			—	
Kjos 1998 (44 days postpartum)	28.8	4.5	405	28.8	5.1	404	25.9%	0.00 [-0.66, 0.66]		+		
McManus 2001 (3 months postpartum)	30.7	7.2746	12	30	7.1091	14	5.2%	0.70 [-4.85, 6.25]				
Yashui 2017 (12-14 months postpartum)	23.9	5.6	42	21.8	4.2	35	16.5%	2.10 [-0.09, 4.29]		t		
Total (95% CI)			638			861	100.0%	1.25 [-0.16, 2.65]			•	
Heterogeneity: Tau ² = 1.86; Chi ² = 17.03, df =	: 5 (P = 0	0.004); I² =	: 71%						-10	-5 0	5	10
Test for overall effect: $Z = 1.74$ (P = 0.08)										Breastfed [Did not breast	feed

Figure 8.5.2.2.1 Mean difference in BMI (kg/m2) in women with previous GDM who did not breastfeed compared to those who breastfed.

8.5.2.3. Lipids

8.5.2.3.1. **Total cholesterol**

Total cholesterol data was reported in five studies ^{408, 414, 415, 421}. Total cholesterol

levels were not different between women with previous GDM who did not

breastfeed in comparison to those who did breastfed (Figure 8.4.2.3.1).

	Did no	ot breastf	eed	B	reastfed			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Corrado 2017 (3 months postpartum)	224.7	20.2	16	209.9	31.5	81	21.0%	0.49 [-0.05, 1.03]	-
Kjos 1998 (44 days postpartum)	213	42	405	219	42	404	47.8%	-0.14 [-0.28, -0.00]	•
McManus 2001 (3 months postpartum)	4.5	1.0392	12	5	1.4967	14	12.8%	-0.37 [-1.15, 0.41]	
Saucedo 2014 (6 months postpartum)	221.1	43.4	22	235	43	21	18.4%	-0.32 [-0.92, 0.29]	-
Total (95% CI)			455			520	100.0%	-0.07 [-0.39, 0.25]	•
Heterogeneity: Tau ² = 0.05; Chi ² = 5.79, d	f=3(P=	: 0.12); l² :	= 48%						-+
Test for overall effect: Z = 0.43 (P = 0.66)									Breastfed Did not breastfeed

Figure 8.5.2.3.1.1 Standard mean difference in total cholesterol in women with previous GDM who did not breastfeed compared to those who breastfed.

8.5.2.3.2. Triglycerides

Serum triglyceride data were available from five studies ^{408, 414, 415, 417, 418, 421}, Four studies were reported in the meta-analysis ^{408, 414, 415, 417, 421}. Serum triglycerides were not different between women who have a history of GDM who did not breastfeed compared to those who did breastfeed(*SMD* 0.23 *95% CI* -0.01 to 0.47, $p=.06 I^2 = 26\%$) (Figure 8.5.2.3.2.1). The authors of the one study not reported in the meta-analysis found that serum triglycerides were not significantly different between women who had a history of GDM who breastfeed compared to women with previous GDM who did not breastfeed ⁴¹⁸.

Figure 8.5.2.3.2.1 Standard mean difference in serum triglycerides in women with previous GDM who did not breastfeed compared to those who breastfed.

8.5.2.3.3. HDL and LDL cholesterol

Two studies reported on LDL and HDL cholesterol ^{414, 418, 421}. Both studies showed that serum LDL-C levels were not different between women who had a history of GDM who did not breastfeed compared to those who breastfed. However the study by Kjos *et al.*. 1993 demonstrated that HDL-C was lower in those with a history of GDM that were non-lactating compared to those were lactating (Table 8.5.1).

8.5.2.4. Serum Insulin

Fasting insulin data were available from five studies ^{408, 409, 415, 417, 419}. There was no significant difference in fasting insulin between women with previous GDM who did not breastfeed compared to those who breastfed, based on quantitative summary measures (Figure 8.5.2.4.1).

	Did not	breast	feed	Breastfed				Std. Mean Difference	Std. Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Rand	om, 95% (3	
Chouinard-Castonguay 2013 (4 years pp)	107.6	58.9	28	82.3	41.4	116	24.4%	0.56 [0.14, 0.97]			-		
Corrado 2017 (3 months postpartum)	16.8	4.3	16	16.7	3.7	81	20.4%	0.03 [-0.51, 0.56]			+		
McManus 2001 (3 months postpartum)	86.4	12	12	94.2	15.6	14	13.8%	-0.54 [-1.32, 0.25]			4		
Saucedo 2014 (6 months postpartum)	12.4	6.6	22	13	9.1	21	18.5%	-0.07 [-0.67, 0.52]		-	+		
Yashui 2017 (12-14 months postpartum)	7.7	4.7	42	5.4	2.7	35	23.0%	0.58 [0.12, 1.04]			-		
Total (95% CI)		(F), 17 (120			267	100.0%	0.19 [-0.19, 0.56]	1		•		
Heterogeneity: Tau*= 0.10; Chi*= 9.67, df = Test for overall effect: Z = 0.98 (P = 0.33)	4 (P = 0.0	15); if = 5	9%						-10	-5 Breastfed	0 Non-bre	5 astfed	10

Figure 8.5.2.4.1 Standard mean difference in insulin in women with previous GDM who did not breastfeed compared to those who breastfed.

8.5.2.5. Glucose

Serum glucose data were available from eleven studies ^{408-412, 414-419, 421}, of which eight were included in the meta-analysis ^{408-410, 412, 414, 415, 417, 419, 421}. Based on quantitative summary measures, there was a 0.34 SMD higher serum glucose level among women with previous GDM who did not breastfeed compared to those who breastfed (*SMD* 0.32 *95% CI* 0.12 to 0.57, $p=.003 I^2 = 66\%$) (Figure 8.5.2.5.1). The authors of two studies that were not included in the meta-analysis reported that women with previous GDM who breastfeed had significantly lower blood glucose compared to those who did not breastfeed in both unadjusted and adjusted models ^{411, 418}. However, Nelson *et al.* (2008) reported that breastfeeding was not protective against deteriorating glucose tolerance in women with previous GDM ⁴¹⁶.

	Did no	ot breastf	eed	B	reastfed			Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Chouinard-Castonguay 2013 (4 years pp)	5.8	0.7	28	5.8	0.7	116	12.9%	0.00 [-0.41, 0.41]	+	
Corrado 2017 (3 months postpartum)	80.6	9.7	16	74.8	9.2	81	9.8%	0.62 [0.08, 1.16]		
Dijigow 2015 (6-8 weeks postpartum)	91.3	8.7	18	86.5	9.3	114	10.7%	0.52 [0.02, 1.02]		
Gunderson 2015 (6-9 weeks postpartum)	97.8	9.1	153	92.2	7.9	205	18.9%	0.66 [0.45, 0.88]	•	
Kjos 1993 (44 days postpartum)	98	17	405	93	13	404	21.1%	0.33 [0.19, 0.47]	-	
McManus 2001 (3 months postpartum)	5.4	0.6928	12	5.3	1.1225	14	6.2%	0.10 [-0.67, 0.87]	- -	
Saucedo 2014 (6 months postpartum)	116.2	31.3	22	155.3	104.1	21	8.6%	-0.50 [-1.11, 0.10]		
Yashui 2017 (12-14 months postpartum)	96.9	10.9	42	91.2	8.4	35	11.8%	0.57 [0.12, 1.03]	-	
Total (95% CI)			696			990	100.0%	0.34 [0.12, 0.57]	•	
Heterogeneity: Tau ² = 0.06; Chi ² = 20.71, df	= 7 (P = (0.004); l² =	= 66%							+
Test for overall effect: Z = 2.98 (P = 0.003)									Breastfed Did not breastfeed	Č

Figure 8.5.2.5.1 Standard mean difference in insulin in women with previous GDM who did not breastfeed compared to those who breastfed.

8.5.2.6. Incidence of type II diabetes mellitus

Type II diabetes mellitus incidence was reported in seven studies ^{406, 407, 412-415, 420}, of which four were reported in the meta-analysis ^{407, 412, 414, 415}. Based on quantitative summary measures, women with previous GDM who did not breastfeed were at a significantly higher risk of developing T2DM compared to women who breastfed (*RR* 2.21 95% *CI* 1.50 to 3.27, *p*<.0001 $I^2 = 0\%$) (Figure 8.4.2.5.1). From the results of the three studies that were not reported in the meta-analysis, authors of two studies reported that breastfeeding was associated with a reduction in T2DM ^{406, 407,} ⁴²⁰. However, Kim *et al.* reported that lactation and duration of lactation had no significant effect on postpartum glucose status, including progression to T2DM ⁴¹³.

	Did not breas	tfeed	Breast	fed		Risk Ratio	Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95% Cl		
Chamberlain 2015 (no specific pp year)	3	17	30	217	11.6%	1.28 [0.43, 3.76]				
Gunderson 2015 (6-9 weeks postpartum)	27	153	17	205	41.6%	2.13 [1.20, 3.76]		∎		
Kjos 1993 (44 days postpartum)	38	405	17	404	43.8%	2.23 [1.28, 3.88]		∎		
McManus 2001 (3 months postpartum)	3	12	1	14	3.0%	3.50 [0.42, 29.39]				
Total (95% CI)		587		840	100.0%	2.08 [1.44, 3.00]		•		
Total events	71		65							
Heterogeneity: Tau ² = 0.00; Chi ² = 1.09, df = 3					- 1-					
Test for overall effect: Z = 3.90 (P < 0.0001)							0.05	Breastfeed Did not breastfeed		

Figure 8.5.2.6.1 Difference in risk of developing type II diabetes mellitus in women with previous GDM who did not breastfeed compared to those who breastfed.

8.5.2.7. Sensitivity analyses

The results of sensitivity analyses including moderate quality studies showed a significant decrease in heterogeneity for outcomes BMI, triglycerides and total cholesterol. However, there was an increase in heterogeneity for outcomes blood glucose and insulin. (Supplementary Table 8.8.1).

8.5.3. Effect of breastfeeding on cardiovascular risk factors among children exposed to GDM *in utero*:

Two studies were eligible for inclusion ^{405, 406}. The details for both studies are included in Table 1.

- 8.5.3.1. **BMI:** One study reported on BMI z-score. Hui *et al.*. in a prospective birth cohort reported that breastfeeding does not attenuate the association between GDM exposure *in utero* and BMI in the offspring at 3 months of age (Table 8.4.1.1)⁴⁰⁵.
- 8.5.3.2. Type II diabetes mellitus: Martens *et al.* reported that breastfeeding initiation before hospital discharge was associated with a reduced risk of T2DM at a 24 year follow up in those who were exposed to GDM *in utero*, (*overall HR*: 0.83, 95% CI 0.69–0.99, P=.038)⁴⁰⁶.

8.6. Discussion

This systematic review comprehensively assessed the effects of breastfeeding on all conventional risk factors for CVD in women with previous GDM, and among children born to pregnancies complicated by GDM. The results of the meta-analysis demonstrated that women with previous GDM who breastfed their infants at any stage had a decrease in some cardiovascular risk factors compared to those who did not breastfeed. There were not enough studies to conduct meta-analyses on the effects of breastfeeding on cardiovascular risk factors in children exposed to GDM *in utero*. Longitudinal studies with sufficient power are required to ascertain the effects of breastfeeding on cardiovascular risk factors in children exposed to GDM *in utero*.

Pregnancy complications, including GDM, may confer risk for development of CVD in women with a predisposition to poor life-long cardiovascular health, due to either genetics or poor lifestyle (or both) ³⁹⁶. GDM occurs when β -cells fail to undergo sufficient expansion resulting in inadequate compensation for placental induction of a hyperinsulinemic state, which promotes elevation of blood glucose ⁷. This may lead to long-lasting β -cell damage following pregnancy. The growing fetus is also affected as GDM causes an excess of nutrient transport from the maternal to fetal circulation via the placenta. The fetus adapts epigenetically in response to this adverse intrauterine environment and is said to be programmed, which affects growth and long term metabolic health ⁴²². Therefore, mothers and their children are at higher risk of metabolic and cardiovascular diseases later in life. Preventive strategies and treatments to reduce development of obesity are required to significantly reduce development of CVD in women with a history of GDM and their offspring.

Evidence strongly suggests that changes in body adipose tissue content and reducing hyperglycaemia can promote disease mitigation ⁴¹³. While lifestyle changes can promote a

significant risk reduction, compliance drops after one year postpartum ²¹⁹. Physiological preparation for breastfeeding occurs during pregnancy and initiation of breastfeeding after birth aids maternal recovery and is mutually beneficial for both mother and baby ⁴²³. Authors of various studies have reported that mothers who breastfeed for a period of 6-12 months are leaner with a lower BMI than those who do not⁴²⁴. Those who are breastfed are also less likely to be overweight or obese than those who are formula fed ^{60, 425}. Therefore, good quality evidence on the effects of breastfeeding on women with a history of GDM and their children is necessary to support updates to guidelines regarding breastfeeding in women with previous GDM and the benefits for long-term cardiovascular health.

Overall, women with previous GDM have a higher cumulative incidence of hypertension and ischemic heart disease compared with controls ⁴²⁶. Breastfeeding may mitigate the risk of hypertension in all mothers, as it has been reported that women who breastfed are less likely to be hypertensive in comparison to those who did not ⁵⁹. It is thought that the increase in oxytocin and prolactin in breastfeeding mothers influences blood pressure regulation and furthermore promote positive changes to vascular remodelling ⁴²⁷. This concept supports the hypothesis that breastfeeding may cause a physiological reset to the adverse effects that occur due to pregnancy ³⁹⁷. While our values are within a healthy range, it is important to note that a 1-2mmHg decrease in blood pressure is linked with a clinically relevant lower mortality from stroke and coronary heart disease ²⁸⁴. Further research are required to understand the effects of breastfeeding on systolic and diastolic blood pressure in women with a history of GDM

Women who breastfeed have a higher metabolic expenditure and increased rate of lipolysis than those who do not breastfeed ⁴²⁸. Previous studies have reported that breastfeeding duration is associated with a reduction of dyslipidaemia in young women, including a reduction in the level of serum triglycerides. Furthermore, triglycerides make up the majority of fats in human

milk ⁵⁸. Therefore, more research may be needed to investigate an association between breastfeeding and reduction in serum triglycerides in mothers.

There is strong evidence to suggesting that breastfeeding reduces the risk of T2DM ^{59, 429}. It has been reported that women who have never breastfed have a 50% higher risk for developing T2DM than women who breastfed for as little as 1-3 months postpartum ⁴³⁰. Our results support an association between breastfeeding and a reduced risk of T2DM in women with previous GDM. Considering the significantly higher risk of developing T2DM among women with previous GDM, many of who also exhibit a pre-diabetic phenotype ⁴³¹, breastfeeding should be highly encouraged in this population to reduce the risk of T2DM later in life.

The literature suggests that breastfeeding can reduce the risk of non-communicable disease in children. Human milk is composed of long-chain polyunsaturated fatty acids, which can promote blood pressure reduction, and changes in skeletal muscle allowing for protection against insulin resistance and development of T2DM ⁴²⁹. Whereas, formula fed or mixed fed infants are reported to present with higher levels of insulin resistance and atherosclerotic markers, and exhibit poor β -cell function ^{432, 433}. Breastfeeding may also promote a healthier diet, as those who are breastfed are more likely to have a higher intake of fruits and vegetables than those who are not ⁴³⁴. This may be also influenced by the fact that women who choose to breastfeed may be more likely to have a high quality diet and promote this lifestyle in their children. As obesity and metabolic risk factors manifest as young as 3 years old in offspring exposed to GDM *in utero* ²⁰⁷, breastfeeding may be protective against early life obesity. Only two studies in the review assessed cardiovascular risk factors in those exposed to GDM *in utero* who were and were not breastfeed. Based on current literature longitudinal studies that assess long-term cardiovascular benefits of breastfeeding among children exposed to GDM *in utero* are warranted

Based on the qualitative assessment, many of the studies were of high to moderate quality. Due to the observational and retrospective design of the studies included in the review, it was not possible for majority of authors of studies to assess the frequency and volume of human milk fed to infants exposed to GDM *in utero*. A qualitative study design renders it difficult to assess outcomes continuously; rather a randomised control trial design would be more effective to account for variables in a controlled manner. However, studies by Gunderson and Yashui utilized a design in which women were contacted via telephone over the study period and interviewed about their current breastfeeding routine, therefore enabling less change of recall bias.

Some outcomes in the meta-analysis exhibited higher heterogeneity. However, sensitivity analysis resulted in reduced heterogeneity on outcomes of BMI, total cholesterol and triglycerides but a moderate increase in heterogeneity for the other outcomes. Funnel plot analysis was not required, as the number of studies for each outcome did not exceed ten. Heterogeneity in aggregate data is hard to ascertain. It can be due to study specific differences, such as diversity in population, age of assessment, definition of disease etc. We attribute some heterogeneity in these analyses to the different definitions of breastfeeding, particularly as lactation was defined in some studies as >=6 months of exclusive breastfeeding, and in some others it was defined as breastfeeding at hospital discharge. Majority of the studies used definitions of GDM that were prior to the new IADPSG definition, which has a lower cut-off for GDM diagnosis, and thereby is thought to increase the number of women being diagnosed with GDM. Therefore this may affect the assessment of cardiovascular outcomes and representation of women with GDM as studies with the old definition were used primarily in the meta-analysis. Presentation of CVD risk factors in these women may be affected by the time of postpartum assessment. We were unable to complete subgroup analyses stratified by time of risk factor assessment due to the low number of available studies. However, previous
reviews we have completed have demonstrated that cardiovascular risk factors are seen as early as<1 year postpartum in women with previous GDM^{36, 395}.

8.7. Conclusion

Women with previous GDM should be encouraged to breastfeed to reduce their risk of CVD later in life. More research in this area is required in order to integrate it fully for clinical use and disease mitigation strategies. Lactation specialists should promote breastfeeding in women with previous GDM through integrating what is known about the benefits of breastfeeding on cardiovascular disease risk factors. More research is needed to determine the effects of breastfeeding on cardiovascular risk factors in children exposed to GDM *in utero*, but the limited literature reports protective effects

8.8 Supplementary data

Quality assessment	Q 1	Q 2	Q 3	Q 4	Q 5	Q	Q 7	Q 8	Q	Q1	Q1	Q1	Q1	Q1	TOT
Chamberlain 2015		<u> </u>	J ✓		J V	✓	✓	X		X		NA	NA		10
Chouinard- Castonguay 2013	~	~	~	✓	×	~	~	×	~	~	~	NA	~	~	11
Corrado 2019	~	~	X	✓	X	✓	✓	X	~	×	~	NA	✓	~	9
Dijigow 2015	✓	✓	✓	✓	×	✓	✓	×	✓	✓	✓	NA	✓	✓	11
Gunderson 2011	✓	✓	✓	✓	X	✓	✓	✓	✓	✓	~	NA	 ✓ 	✓	12
Gunderson 2015	✓	✓	~	✓	×	✓	✓	✓	✓	✓	✓	NA	✓	✓	12
Hui 2018	✓	✓	✓	✓	×	✓	✓	×	✓	✓	✓	NA	~	✓	11
Kim 2011	✓	✓	×	✓	×	✓	✓	✓	✓	X	✓	NA	✓	✓	10
Kjos 1998	✓	✓	✓	✓	X	✓	✓	×	✓	×	~	NA	✓	 ✓ 	10
Martens 2016	✓	✓	✓	✓	×	✓	✓	X	✓	X	✓	NA	NA	✓	9
McManus 2001	~	~	N R	~	×	~	~	×	~	×	~	NA	N R	~	8
Nelson 2008	~	~	✓	✓	X	✓	✓	×	~	✓	~	NA	×	~	10
Saucedo 2014	~	✓	✓	✓	X	✓	✓	×	✓	✓	✓	NA	✓	✓	11
Shub 2019	~	✓	X	✓	✓	✓	✓	×	✓	✓	~	NA	✓	✓	11
Yasuhi 2017	✓	✓	✓	✓	X	✓	✓	X	✓	✓	✓	NA	✓	✓	11
Ziegler 2012	~	✓	✓	✓	X	✓	✓	✓	~	~	~	NA	×	~	11

Supplementary Table 8.8 1 Quality assessment of studies included in the systematic review and meta-analyses

Supplementary Table 8.8 2 Sensitivity analysis for the meta-analyses that assessed cardiovascular risk factors in women with previous GDM who did not breastfeed compared to those who breastfed

Analysis	Studies	N=	MD	95% CI	Chi ² P=	$I^{2}(\%)$
BMI						
Normal	7	1,580	1.11	-0.13, 2.35	0.0009	65
Sensitivity	4	593	2.14	0.73, 3.55	0.0003	29
ТС						
Normal	5	1,056	-0.00	-0.30, 0.29	0.09	51
Sensitivity	2	69	-0.34	-0.81, 0.14	0.91	0
TG						
Normal	5	1,056	0.33	0.06, 0.61	0.12	45
Sensitivity	2	69	0.33	-0.14, 0.81	0.37	0
Insulin						
Normal	5	387	0.19	-0.19, 0.56	0.05	59
Sensitivity	4	290	0.21	-0.25, 0.68	0.03	65
Glucose						
Normal	9	1,767	0.32	0.12, 0.53	0.006	63
Sensitivity	6	780	0.27	-0.08, 0.63	0.002	74

Discussion of systematic review series

The findings of the systematic review and meta-analyses series have demonstrated an association between GDM and development of cardiovascular risk factors in both mothers and their offspring exposed to GDM *in utero*.

Women who are exposed to GDM are at an increased risk of developing high blood pressure, high BMI, impaired lipid profile, elevated blood glucose and elevated serum insulin. The risk of developing elevated blood pressure, impaired triglycerides, elevated blood glucose and overall risk of developing metabolic syndrome (MetS) is seen as early as <1 year postpartum. This finding is in line with research that suggests that 50% of women develop type II diabetes mellitus and are at risk of experiencing cardiovascular events within one year postpartum^{34, 35}. The elevation in systolic blood pressure seen as early as <1year postpartum reflects the vascular modifications that occur during gestation to women who experience GDM. Osman *et al.* have demonstrated that pregnant women at risk of GDM demonstrate increased augmentation index, which is an indicator of early arterial stiffness⁴³⁵. Therefore, investigation of supra-systolic vascular markers during early and late gestation may be important to ascertain what vascular changes during pregnancy promote ongoing vascular dysfunction in women during the postpartum period. Furthermore, while it is clear that peripheral blood pressure is elevated in women with a history of GDM throughout various timepoints, it is less understood whether these supra-systolic vascular markers are also seen during the postpartum as well. Mean arterial pressure is the average pressure through one cardiac cycle. Women with GDM during pregnancy have higher mean arterial pressure compared to women without GDM in pregnancy⁴³⁶, however there is less evidence on whether it remains after pregnancy. In individuals with type II diabetes mellitus, there is

an increased in arterial stiffness due to vascular damage from pro-inflammatory markers insulin growth factor-1 (IGF-1) and a reduction in adiponectin⁴³⁷. Furthermore, a study by Yu and colleagues in 2016 found that mean arterial pressure was a predictive marker of CVD hospitalisation in patients with T2DM. There is inflammation of these markers in women with GDM, and therefore it may be likely that vascular damaging is occurring during gestation that leads to long-term arterial stiffness in the postpartum.⁴³⁸

The systematic review and meta-analyses of offspring risk for cardiovascular disease in those exposed to GDM *in utero* revealed that GDM exposed offspring present with higher blood pressure, BMI z-score, and blood glucose compared to those who were not exposed. Offspring who are exposed to GDM *in utero* are also more likely to develop childhood metabolic syndrome compared to children who were not exposed to GDM *in utero*.

An elevation in blood pressure throughout childhood may indicate vascular changes *in utero*. It has been shown that those born large for gestational age to diabetic mothers demonstrate a higher aortic intima medial thickness (aIMT) to birthweight ratio than those born both large for gestational age to uncomplicated pregnancies, and those born a normal birth weight⁴³⁹. It has been shown that children aged 5-16 who are obese have higher aIMT than non-obese controls. Covariates such as serum glucose, BMI and systolic blood pressure influenced this association⁴⁴⁰. As offspring exposed to GDM *in utero* are already at a higher risk of developing MetS at a younger age, and have been shown to have higher systolic blood pressure, it will be necessary to understand whether there are any markers of vascular dysfunction, particularly at a young age. This may indicate that exposure to GDM *in utero* could cause intrauterine changes providing a

structural vascular foundation for early onset atherosclerosis and heart disease later in life.

It has been established that offspring born to mothers with GDM are more likely to exhibit neonatal outcomes such as hyperglycaemia and hyperinsulinemia at birth. These offspring are more susceptible to juvenile type II diabetes and obesity⁴⁴¹. Furthermore, an elevation in BMI z-score is indicative of changes in adiposity, however BMI as a measure in children and adolescence may not be as predicative of changes in total body fat²⁸⁶. Abdominal obesity, measured by waist circumference, can indicate many markers of poor metabolic health, such as poor physical inactivity, insulin resistance, elevation in cytokines etc⁴⁴². Therefore, assessing abdominal obesity in tie with adjusted BMI may provide a clearer indication of risk of metabolic disorders and insulin resistance in offspring exposed to GDM *in utero*, later in life.

The findings of the systematic review and meta-analysis on the effect of breastfeeding on cardiovascular risk factors in women with a history of GDM and offspring exposed to GDM *in utero* revealed that breastfeeding in women with a history of GDM reduced the risk of developing both elevated serum glucose and T2DM. However, there was not enough evidence throughout the literature to support an association for other cardiovascular risk factors, and there were no observational studies seen that showed an association between better metabolic health in children who were exposed to GDM *in utero* who were breastfed.

Therefore, the findings of these systematic reviews and meta-analysis will form a basis into investigating the effect of gestational diabetes mellitus on vascular

302

and metabolic health at 3 years postpartum in the STOP cohort of women and their children.

SECTION 3: The STOP study and 3 year follow-up

This section begins with observational analysis of anxiety and depression in women in the STOP cohort during pregnancy. The following chapters have been written on the STOP 3 year follow-up study in women and children. All of the papers have been submitted for consideration of publication. Therefore, there may be repetition in the methodology sections across chapters.

Chapter 9

9. Anxiety and depression in early gestation and the association with subsequent gestational diabetes mellitus in a disadvantaged population

Maleesa M Pathirana, Prabha H Andraweera, Shalem Leemaqz, Emily Aldridge,

Margaret A Arstall, Gustaaf A Dekker, Claire T Roberts.

9.1. Statement of Authorship

Title of Paper	Anxiety and depression in early gestation and the association with
	subsequent gestational diabetes mellitus in a disadvantaged population.
Publication Status	Submitted for publication in Journal of Diabetes Research
Publication Details	

Principal Author

Name of Principal Author	Maleesa Pathirana				
(Candidate)					
Contribution to the Paper	Ethics submission, recruitment, site specific				
	administration, undertaking assessments with				
	participants, data collection, analysis of results,				
	interpretation of results, writing of manuscript.				
Overall Percentage (%)	80%				
Certification	This paper reports on original research I conducted				
	during the period of my Higher Degree by Research				
	candidature and is not subject to any obligations or				
	contractual agreements with a third party that would				
	constrain its inclusion in this thesis. I am the primary				
	author of this paper.				
Signature	Date				

Co-author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. The candidate's stated contribution to the publication is accurate (as detailed above);
- ii. Permission is granted for the candidate to include the publication in the thesis; and
- iii. The sum of all co-author contributions is equal to 100% less the candidate's stated contribution

Name of Co-Author	Prabha H Andraweera				
Contribution to the Paper	Designed protocol, ethics submission, contributed to manuscript and supervision				
Signature		Date 28/02/2022			

Name of Co-Author		Emily Aldridge			
Contribution to the Paper		Recruitment of participants, undertaking assessments with participants, data collection, contributed to manuscript and technical advice.			
Signature			Date 14/02/2022		

Name of Co-Author	Shalem Leemaqz			
Contribution to the Paper	Statistical analysis assistance, contributed to manuscrip and technical advice.			
Signature	Date 23/02/2022			

Name of Co-Author	Margaret A Arstall		
Contribution to the Paper	Conceived and designed protocol, assisted with data interpretation, contribute to manuscript and technical advice.		
Signature	Date 28/02/2022		

Name of Co-Author	Gustaaf A Dekker.

Contribution to the Paper	Conceived and designed protocol, recruited women into original STOP study, contributed to manuscript.		
Signature	Date 28/02/2022		

Name of Co-Author	Claire Roberts	Claire Roberts			
Contribution to the Paper	Conceived and designed study, contributed intell supervised.	Conceived and designed protocol and original STOP study, contributed intellectually to manuscript and supervised.			
Signature		Date 28/02/2022			

9.2. Abstract

Objective: Evaluate the association between poor mental health and risk of developing gestational diabetes mellitus (GDM) in a cohort of women from a socioeconomically disadvantaged community.

Methods: This is a cohort study of nulliparous women with singleton pregnancies recruited to the Screening Tests to Predict Poor Outcomes of Pregnancy study in Adelaide, Australia. Women were assessed for mental health in the first trimester, including likelihood of depression, high functioning anxiety, perceived stress and risk of developing a mental health disorder. GDM was diagnosed based on the International Association of Diabetes in Pregnancy Study Group (IADPSG) criteria. Socioeconomic status of women was measured using the New Zealand Socioeconomic Index (SEI).

Results: There were 1,363 participants in the STOP study, with complete mental health data for 1,281 participants. There were 196 women diagnosed with GDM and 1,085 women who experienced a non-GDM pregnancy, encompassing women with an uncomplicated pregnancy and participants experiencing other major pregnancy complications. Over a quarter of women in the cohort had a history of depression, and nearly 50% were at high risk of developing a mental health disorder during pregnancy. There was no statistically significant difference in SEI, depression, risk of mental health issues, high functioning anxiety and perceived stress between women who developed GDM and those who did not. There was no difference in history of depression nor risk of developing a high mental health disorder in first trimester after adjusting for SEI, BMI in first trimester, smoking status in first trimester and maternal age between women with a GDM pregnancy and those who did not.

Conclusion: There was no difference in markers of poor mental health in early pregnancy between women who subsequently did or did not develop GDM. Cohort participants were

310

socioeconomically disadvantaged, potentially contributing to the lack of apparent differences in depression observed between groups.

9.3. Introduction

Gestational diabetes mellitus (GDM) is defined as hyperglycaemia in pregnancy, which is first diagnosed during pregnancy and affects 1 in 7 pregnancies in Australia^{307, 443}. GDM poses a myriad of risks to both mother and child both during the perinatal period (macrosomia, birth injury, caesarean section, neonatal hypoglycaemia) and later in life when it is associated with poor metabolic and cardiovascular health^{36, 207, 300, 307}. Women with previous GDM are at a 7.5 fold increased risk of developing type 2 diabetes mellitus compared to those with no history of GDM³⁴. Conventional risk factors for GDM include, but are not limited to, family history, age and ethnicity²¹⁵. While these risk factors are not modifiable, other conventional risk factors such as obesity and hypertension are primary targets for GDM prevention strategies.

Common mental disorders (CMD) including anxiety and depression are significant maternal health problems. It has previously been shown that 7-20% of women in high-income countries experience antenatal depression, and 20-25% of women have an anxiety disorder during pregnancy ⁴⁴⁴. Previous systematic reviews and meta-analyses have demonstrated a bidirectional association between type 2 diabetes mellitus and major depressive disorder^{445, 446}. This association is thought to be instigated by hyperactivity of the hypothalamic-pituitaryadrenal axis (HPA), which causes an increase in circulating cortisol and insulin resistance ^{43, 447}. However, evidence in the literature is inconsistent regarding an association between CMD and development of GDM⁴⁴⁸⁻⁴⁵⁰. Furthermore, pertinent studies have not assessed this association against important covariates such as obesity and low socioeconomic status (SES), which contribute to both depression and diabetes ⁴⁵¹. Socioeconomic status is important in the context of understanding the association between maternal depression and GDM. In Australia SES significantly impacts burden of mental health disorders, and those who are disadvantaged often experience difficulty finding effective help for their mental health problems which may lead to poor physical health outcomes overall⁴⁵². Hence, understanding whether there is an association between depression and pregnancy complications may aid in improving access to clinical services for disadvantaged pregnant women.

Therefore, the aim of our study was to determine the association between markers of poor mental health and subsequent development of GDM in a cohort of pregnant women from a metropolitan socioeconomically disadvantaged community.

9.4. Methods

9.4.1. Study population

The Screening Tests to predict poor Outcomes of Pregnancy¹ study was a prospective cohort study, where 1,383 nulliparous women with singleton pregnancies were recruited from three major hospitals in Adelaide, Australia. Ethics approval was obtained from the Women's and Children's Hospital Human Research Ethics Committee (HREC/14/WCHN/90). Majority of the participants were recruited from the Lyell McEwin Hospital, which serves one of the lowest socioeconomic regions in urban Australia. Residents in this region experience some of the highest levels of chronic disease and mental illness across urban Australia⁴⁵³. Women were excluded if they were at high risk for preeclampsia or delivering a small for gestational age baby or delivering preterm due to gynaecological history or underlying medical conditions (including known pre-existing chronic hypertension, being on hypertensive medication or having blood pressure >160/100 mmHg at 15 weeks' gestation) or if they had three or more miscarriages or terminations. Couples who received medical or surgical interventions that could modify pregnancy outcome were also excluded. These exclusions enabled assessment of novel risk factors for pregnancy complications in a cohort of healthy, young women without known predisposing risk factors.

Consenting pregnant women were recruited into the STOP study between 2015 and 2017. Research and clinical midwives collected information from women including demographics, smoking status, and family, medical and gynaecological history. At the first antenatal visit (between 9-16 weeks' gestation) anthropometric data including height, weight and waist circumference were collected. Socioeconomic status was ascertained using the New Zealand Socioeconomic Index (SEI), calculated based on

the participant's occupation, producing a score between 10 and 90, with a lower score reflecting greater disadvantage. Smoking status was classified as a binary variable both in the 3 months prior to pregnancy and in the first trimester (yes/no).

As part of routine clinical care, women completed the following questionnaires to ascertain their mental health status at the first trimester visit:

- Antenatal (psychosocial) Risk Questionnaire (ANRQ)⁴⁵⁴
- Edinburgh Postnatal Depression Score (EPDS)⁴⁵⁵
- Perceived Stress Questionnaire (PSS) ⁴⁵⁶
- State and Trait Anxiety score-6 (STAI-6)⁴⁵⁷

GDM was diagnosed at 24-28 weeks of gestation according to the International Association of Diabetes in Pregnancy Study Group (IADPSG) criteria (i.e. one or more values equal to or exceeding: fasting plasma glucose of 5.1mmol/L, and/or a 2h plasma glucose level of 8.5mmol/l following a 75g Oral Glucose Tolerance Test (OGTT)⁴⁰⁰. We also included women who, due to pre-existing risk factors, were diagnosed with GDM at 12 weeks' gestation. This decision was made as descriptive analysis showed no difference in baseline parameters and mental health markers when excluding women diagnosed with GDM earlier than 24 weeks' (data not shown).

9.4.2. Statistical analysis

Anxiety in pregnancy was defined using the STAI-6 score, where a score below 30 was defined as "low to no anxiety", 31-49 "normal level of anxiety" and a score of 45-80 was defined as a participant having an "elevated state of anxiety". Likelihood of depression was assessed using the EPDS, where "low risk" of depression was scored 0-9, "moderate risk" of depression in the following year score 10-12, and "likely depressed" score 13-30. Risk of perinatal mental health morbidity was assessed using the ANRQ, with a score >22. Women were considered at high risk when answering yes

to any of the following questions: 2A ("have you ever had 2 weeks or more where you felt particularly worried, miserable or depressed?), 2B (do you have any other history of mental health problems?) 8 (were you emotionally abused growing up?), 9 (have you ever been sexually or physically abused?). Stress was assessed using the PSS, whereby a score between 0-13 was considered "low" stress, 14-26 "moderate" stress and 27-40 "high" perceived stress. History of depression was defined as variable coded 'yes' to the question "do you have a history of depression?". Medication history was reported and data was analysed according to which participants were taking antidepressants.

Data were analysed using IBM SPSS Version 26. Univariate analyses were undertaken to assess women with GDM compared to women with non-GDM pregnancies for baseline variables, using Chi-squared test for categorical variables and *t*-test for continuous variables. Logistic regression analyses assessed the effect of having a history of depression (dichotomous grouping i.e. yes or no) on the risk of GDM, and having a high risk of having a mental health disorder (i.e. scoring high risk on the ANRQ) controlling for maternal age, BMI in first trimester, smoking status in first trimester and SEI, with data presented as odds ratio (95% CI). Variables were selected for logistic regression based on stepwise regression analysis and whether the variable was clinically associated with both depression and GDM. Data are presented as Mean (SD) or N (%).

9.5. Results

9.5.1. Participant demographics

The STOP study recruited 1,383 pregnant women from 2015 to 2018. Some women were excluded from this analysis due to miscarriage, loss to follow-up, or twin pregnancy. Of those recruited, there are data available and analysed for 1,300 with known pregnancy and birth outcomes. (Figure 9.5.1.1). Of these, 198 women were diagnosed with GDM and 1,102 experienced a non-GDM pregnancy. The participants in the latter group were women with an uncomplicated pregnancy and those who experienced pregnancy complications (but not including GDM) such as gestational hypertension, preeclampsia, spontaneous preterm birth and delivery of a small for gestational age (SGA) baby.

Descriptive statistics are highlighted in Table 9.5.1.1. Caucasian ethnicity was lower in women diagnosed with GDM than those with a non-GDM pregnancy. Furthermore, BMI in first trimester was significantly higher in women later diagnosed with GDM compared to women with a non-GDM pregnancy. There was no significant difference in maternal age, SEI nor smoking status between women diagnosed with GDM and those with a non-GDM pregnancy. The mean age, BMI and SEI score were similar for the cohort overall (Table 9.5.1.1). There was no significant difference in history of depression nor use of antidepressants between women diagnosed with GDM compared to those with a non-GDM pregnancy. History of depression was reported in 27.3% of the whole cohort, and antidepressant use was recorded for 13.5% (Table 9.5.1.1).

Figure 9.5.1.1 Flow chart of STOP study participants

	Total (n=1300)	GDM (n=198)	Non-GDM (n=1102)	P-value
Caucasian ethnicity (N (%))	1077 (82.8%)	142 (71.9%)	935 (84.8%)	0.000
Maternal age (Median years range)	30 (15-45)	26.1 (5.1)	26.1 (5.1)	0.627
Maternal Education (N (%))* Did not complete year 10 Year 10 Year 12 Certificate Bachelor Higher degree	27 (2.1%) 247 (19%) 295 (22.7%) 462 (35.5%) 193 (14.8%) 72 (5.5%)	4 (2.0%) 27 (13.6%) 42 (21.1%) 76 (38.2%) 20 (20.1%) 10 (5%)	23 (2.1%) 220 (20%) 253 (23.0%) 386 (35.0%) 153 (13.9%) 62 (5.6%)	0.127
*NZSEI (Median and IQR) BMI in first trimester (Median and range)	29 (24) 26.3 (15.8- 61.4)	34.1 (13.5) 31.7 (8.7)	32.4 (13.6) 27.3 (6.6)	0.262
***Other pregnancy complications (n=) (%) Preeclampsia Gestational Hypertension Small for gestational age	121 (9.4%) 88 (6.8%) 153 (11.9%)	18 (9.1%) 21 (10.7%) 20 (10.1%)	103 (9.4%) 67 (6.1%) 133 (12.2%)	0905 0.020 0.420
Maternal tobacco smoking (N (%)) <i>First trimester</i> History of depression (N (%))	265 (20.4%)	38 (19.1%)	227 (20.6%)	0.923
History of antidepressant use for CMD (N (%)) Yes	175 (13.5%)	37 (18.7%)	138 (12.5%)	0.065

Table 9.5.1-1 Characteristics of participants in early pregnancy

**NZSEI a scale of 10-90 based on occupation. A lower score indicates increasing disadvantage.

***Pregnancy complications are not mutually exclusive and one woman can experience more than one pregnancy complication. Missing data for 10 participants.

9.5.2. Mental health in women in pregnancy

Associations of mental health markers in early pregnancy between women later diagnosed with GDM and those with a non-GDM pregnancy are shown in Table 9.5.2.1. More women had a high risk of mental health disorder assessed by ANRQ and later developed GDM than those who did not (47.2% vs. 42.3%) but this was not statistically significant. Of the total cohort, 42.2% were at high risk of developing a mental health disorder. There was no statistically significant difference between groups for a higher likelihood of depression and perception of stress as assessed by PSS. There was a greater proportion of women in the GDM group who experienced an elevated state of anxiety in early pregnancy (14.4%) compared to those with a non-GDM pregnancy (10%) but this was not statistically significant.

Table 9.5.2-1 Association of mental health, likelihood of depression, stress perception and anxiety status in women with gestational diabetes in pregnancy compared to women with a non-GDM pregnancy

	Whole cohort N (%)	Gestational Diabetes N (%)		Non-GDM N (%)			P-value	
	High	Low	Moderate	High	Low	Moderate	High	
Risk of mental health disorder (ANRQ)*^	548 (42.2%)	103 (52.3%)	-	94 (47.5%)	638 (57.9%)	-	455 (41.3%)	0.243
Likelihood of depression (EPDS)* **	101 (7.8%)	170 (85.9%)	13 (6.6%)	14 (7%)	910 (82.6%)	93 (8.4%)	87 (7.9%)	0.646
Stress perception (PSS)* ***	38 (3.1%)	91 (48.9%)	89 (47.7%)	6 (3.2%)	573 (54.1%)	454 (42.9%)	32 (3%)	0.424
		None-low anxiety	Normal level of anxiety	Elevated state of anxiety	None-low anxiety	Normal level of anxiety	Elevated state of anxiety	
Anxiety Status (STAI)* ***	139 (10.8)	129 (66.2%)	3 8 (19.5%)	28 (14.4)	783 (71.8%)	1 <mark>97</mark> (18.1%)	111 (10.2%)	0.165

*High risk of mental health disorder was based on an ANRQ score > 22 or answering yes to questions 2A, 2B, 8 or 9 (specified in methods). Low risk of depression was scored 0-9, moderate risk of depression was scored 10-12, likely to be depressed scored 13-30. Low perceived stress was scored as 0-13, moderate perceived stress was scored 14-26 and high perceived stress was scored 27-40. A score below 30 denotes "low to no anxiety", 31-49 "normal level of anxiety" and 48-80 an "elevated state of anxiety"

^ANRQ assessed as high or low risk only.

** EPDS missing data for 13 participants

*** PSS missing for 15 participants, STAI missing for 15 participants

We performed a logistic regression analysis to determine the association between having a history of depression or having a high risk of developing a mental health disorder in first trimester and the risk of subsequent development of GDM, adjusting for SEI, BMI in first trimester, smoking status in first trimester, and maternal age. There was no significant association between having a history of depression and GDM after adjusting for covariates [aOR 0.15 (-0.2 to 0.5)]. Having a high risk for a mental health disorder in first trimester was not associated with GDM after adjustment for covariates [aOR -0.4 (-1.5 to 0.6))] (Table 9.5.2.2). **Table 9.5.2-2** Association between history of depression and high risk of mental health disorder with risk of GDM

	Unadjusted	Adjusted [#]
History of depression	-1.0 (-1.1 to -0.9)	0.15 (-0.2 to 0.5)
High risk of mental health	-0.14 (-0.42 to 0.71)	-0.4 (-1.5 to 0.6)
disorder		

#Adjusted for SEI, BMI in first trimester, smoking status in first trimester, and maternal age

9.6. Discussion

In this cohort study in a socioeconomically disadvantaged population, we did not find a statistically significant association between parameters of women's mental health during pregnancy and development of GDM. Furthermore, the prevalence of a history of depression, and that of being at high risk for mental health disorders, were not significantly different between women in the GDM and non-GDM groups after adjustment for covariates.

Approximately 50% of women with GDM in pregnancy scored at high risk of developing a mental health disorder in their first trimester. This was also similar in the non-GDM group. The ANRQ assesses an individual's psychosocial risk. A score of 23 or more is considered to be a clinically significant predictor of postpartum depression ⁴⁵⁸. We sought to determine if there was an association between a high ANRQ score and risk of developing GDM. However, after adjusting for covariates such as age, BMI, smoking status and SEI there was no difference between groups.

Women from the STOP cohort were recruited from a community that is among the most severely disadvantaged in urban Australia⁴⁵². Mean SEI, as assessed on the basis of occupation, confirmed the high level of deprivation among many women in the cohort. Reports of psychological distress in the northern Adelaide region (i.e. a score of >= 10 or more on the K10 depression scale) are 20% higher than the national average, and mental health and behavioural problems are 5% higher than the national average⁷². Women in this community predominantly have low levels of formal education, social support and income which all contribute to a higher risk of mental health disorders. Individuals with low social support and low SES have been shown to have a higher EPDS score, and higher rates of antepartum and postpartum depression than those who received adequate social support in a community of higher SES⁴⁵⁹. The majority of the literature that has found an association between antenatal depression and risk of GDM

assessed women from communities with an average or high SES. This is likely due to the difficulty in engaging those from low SES populations in clinical research. However, a very pertinent study that assessed women from an area of severe disadvantage found that depression was not associated with GDM. Therefore, it is likely that any association between depression and subsequent GDM in a low SES community is masked due to the high risk of mental health disorders across all pregnant women in that community. Furthermore, associations between depression and GDM may be more confounded in our cohort because rates of obesity and other factors such as smoking, alcohol consumption, reduced exercise and diabetes are higher than the state and national averages⁷².

The northern Adelaide region experiences higher rates of domestic violence and other offences than other regions of Adelaide⁴⁶⁰. The ANRQ assesses health history and social determinants of health such as physical, sexual and/or emotional abuse, and emotional and or practical support from a partner. It is quite likely that an association between mental health risk status and GDM could be masked in our cohort due to the high rate of poor social support seen in both GDM and non-GDM groups. Furthermore, psychosocial risk affects both physical health and diet, which would place these women at risk of obesity and development of diabetes ⁴⁶¹.

Reports in the literature are inconsistent regarding the association between depression and subsequent GDM. Depression alters metabolism, specifically by elevating oxidative stress and cortisol which drive insulin resistance and elevations in blood glucose⁴⁶². Similar to depression, anxiety and stress can promote increased HPA activity, thereby promoting higher cortisol and arginine vasopressin secretion which subsequently impact insulin levels in the body and promote insulin resistance ⁴⁶³. Some studies suggest an association, while others do not. Hinkle *et al.* assessed depression scores based on the EPDS in first trimester and found that depression in early pregnancy was associated with a two-fold increased risk of developing GDM after adjusting for relevant covariates ⁴⁶⁴. Wilson *et al.* found no evidence of an association between

common mental disorders in the pre-natal period and GDM, for which depression and anxiety were diagnosed based on ICD diagnostic scoring ⁴⁵⁰. However, Byrn *et al.* (2015) showed a significant association between depression/mood disorder and subsequent GDM in multivariate analyses ⁴⁶⁵. A very recent meta-analysis also showed that GDM is associated with depressive symptoms. However, the analysis was highly heterogeneous due to variation of how depression and anxiety were diagnosed⁴⁶⁶. In our study, depression was self-reported and not clinically assessed. Therefore, the severity of depression between participants may vary. Other studies assessed depression in different ways including retrospective data linkage and EPDS ^{465, 467, 468}. It may be important to consider severity of depression for future studies, as this may influence the severity of maternal metabolic dysfunction and insulin resistance and thereby influence glucose tolerance in pregnancy.

There is still discrepancy in the literature regarding the association between anxiety and GDM. Our study showed that high functioning anxiety was more common, but not statistically significant, in women with GDM compared to non-GDM. Mishra *et al.*, found a significant association between high-perceived stress and GDM⁴⁶³ while Silveria *et al.* showed no association between perceived stress during early or mid-pregnancy and subsequent GDM ⁴⁶⁹. However, these studies did not find a direct correlation between perceived stress and diagnostic OGTT glucose levels. Therefore, it may be important to examine glycaemic levels and perceived stress, particularly as the HAPO study has shown that glucose levels below conventional diagnostic criteria at the time for GDM were associated with poor antenatal maternal and neonatal outcomes²²⁵.

The strengths of our study include the large cohort with 15% of women with GDM, which is comparable to the national average of approximately 15% of pregnant women⁴⁷⁰. Our study also captures one of the lowest socioeconomic urban regions of Australia, where chronic diseases such as type 2 diabetes and cardiovascular disease are highly prevalent. We assessed

many risk factors, such as stress perception, anxiety and risk of common mental disorders. Our limitations include not having a clinical diagnosis of depression. In our cohort, nearly half of the participants were considered at high risk of developing a mental health disorder at their antenatal booking visit. Furthermore, the prevalence of antenatal depression is significantly higher in disadvantaged communities. In this cohort, we report low social support, lower education status and psychological factors such as stigma attached to mental health disorders that impact maternal mental health.

Furthermore, as this population is very disadvantaged (median SEI score of 29) it may be difficult to detect differences between GDM and non-GDM participants regarding mental health outcomes. Our population was primarily Caucasian. Therefore, our results may not be generalizable to women of other ethnicities.

9.7. Conclusion

We did not find a significant difference between women with GDM in pregnancy and women with a non-GDM pregnancy for history of depression and markers of depression, anxiety and stress in early pregnancy. This may be due in part to the low SES in our cohort. Future research should aim to assess risk of GDM in women with clinically diagnosed depression and assess different levels of obesity and socioeconomic disadvantage to explore these associations further

Chapter 10

10. Gestational diabetes mellitus and cardio-metabolic risk factors in women and children at 3 years postpartum

Maleesa M Pathirana, Prabha H Andraweera, Emily Aldridge, Shalem Y Leemaqz,

Madeline Harrison, Jade Harrison, Petra E Verburg, Margaret A Arstall, Gustaaf A

Dekker, Claire T Roberts

10.1. Statement of Authorship

Title of PaperGestational diabetes mellitus and cardio-metabolic risk factors in	
	and their children at 3 years postpartum
Publication Status	Submitted for publication in Acta Diabetologica
Publication Details	

Principal Author

Name of Principal Author	Maleesa Pathirana		
(Candidate)			
Contribution to the Paper	Ethics submission, recruitment, site specific		
	administration, undertaking assessments with		
	participants, data collection, analysis of results,		
	interpretation of results, writing of manuscript.		
Overall Percentage (%)	Percentage (%) 80%		
Certification	This paper reports on original research I conducted		
	during the period of my Higher Degree by Research		
	candidature and is not subject to any obligations or		
	contractual agreements with a third party that would		
	constrain its inclusion in this thesis. I am the primary		
	author of this paper.		
Signature	Date		

Co-author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. The candidate's stated contribution to the publication is accurate (as detailed above);
- ii. Permission is granted for the candidate to include the publication in the thesis; and
- iii. The sum of all co-author contributions is equal to 100% less the candidate's stated contribution

Name of Co-Author	Prabha H Andraweera	
Contribution to the Paper	Designed protocol, ethics submission, contributed to manuscript and supervision	
Signature		Date 28/02/2022

Name of Co-Author		Emily Aldridge	
Contribution to the Paper		Recruitment of participants, undertaking assessments with participants, data collection, contributed to manuscript and technical advice.	
Signature			Date 14/02/2022

Name of Co-Author	Shalem Leemaqz	
Contribution to the Paper	Statistical analysis assistance, contributed to m and technical advice.	nanuscript
Signature	Date 23/02/2022	

Name of Co-Author	Madeline Harrison	
Contribution to the Paper	Recruitment of participants, undertaking assessments with participants, data collection, reviewed manuscript	
Signature	Date 15/02/2022	

Name of Co-Author	Jade Harrison
Contribution to the Paper	Recruitment of participants, undertaking assessments with participants, data collection, reviewed manuscript

	Date 15/02/2022

Name of Co-Author	Petra E Verburg	
Contribution to the Paper	Conceived and designed protocol, recruited women into original STOP study, contributed to manuscript and provided technical advice.	
Signature	Date 15/02/2022	

Name of Co-Author	Margaret A Arsta	11
Contribution to the Paper	Conceived and designed protocol, assisted with data interpretation, contribute to manuscript and technical advice. Provided clinical guidance from cardiology perspective	
Signature		Date 28/02/2022

Name of Co-Author		Gustaaf A Dekker.	
Contribution to the Paper		Conceived and designed protocol, recruited women into original STOP study, contributed to manuscript and provided clinical guidance from obstetrics perspective	
Signature			Date 28/02/2022

Name of Co-Author	Claire Roberts	
Contribution to the Paper	Conceived and designed protocol and original STOP study, contributed intellectually to manuscript and supervised.	

Signature	Date 28/02/2022
10.2. Abstract

Introduction: Gestational diabetes mellitus (GDM) is thought to be associated with future development of cardio-metabolic risk factors in women and their children, with evidence of these risk factors seen in the early postpartum period and early childhood. We hypothesized that women with a history of GDM, and their children exposed to GDM *in utero*, would exhibit an increase in persistent abnormal cardiovascular and metabolic risk factors three years after the pregnancy, compared to women with normoglycemic pregnancies and those with uncomplicated pregnancies within the same cohort.

Methods: Women from the Screening Tests to Predict Poor Outcomes of Pregnancy study were invited to attend a follow-up with the child from their index pregnancy at 3 years postpartum. Women and children were assessed for anthropometric measures and haemodynamic function non-invasively with the USCOM BP+ device. Fasting blood samples were obtained from women to assess lipid and glucose status.

Results: Of the 1,363 STOP study participants recruited in pregnancy from 2015 to 2017 with complete pregnancy data, 281 woman-child dyads participated in the 3 year follow-up, of whom 40 women had developed GDM during their index pregnancy. At 3 years postpartum, fasting serum insulin was significantly higher in women with a history of GDM compared to those with an uncomplicated pregnancy. However, this association was mediated by BMI in early index pregnancy and socioeconomic index ⁴⁷¹. The rate of metabolic syndrome at 3 years postpartum was significantly higher in the GDM group than in those who had an uncomplicated pregnancy (65% vs 2% p=0.000). A history of GDM was associated with elevated maternal fasting serum triglycerides at 3 years after adjustment for BMI in index pregnancy and SEI [aMD 0.30 (0.07 to 0.6)]. At age 3 years, children exposed to GDM *in utero* had higher waist

circumference compared to children born after an uncomplicated pregnancy. However, this was also mediated by maternal early pregnancy BMI and SEI.

Conclusion: Exposure to GDM is associated with elevated serum triglycerides in women at 3 years postpartum but other perturbed cardiometabolic outcomes in women and their offspring at this time appear to be mediated largely by early pregnancy BMI and SEI.

10.3. Introduction

Cardiovascular disease (CVD) is the number one cause of global mortality, with 17.9 million deaths in 2016, representing 31% of all global deaths in that year⁴⁷². The Australian Institute of Health and Welfare reported that 78% of CVD burden for females in 2015 was considered 'fatal' death due to premature death⁴⁷⁰. Therefore, it is important to understand causes and risk factors for CVD that put women at an increased risk.

Gestational diabetes mellitus (GDM) is defined as *de novo* diagnosis of diabetes during pregnancy⁴⁷³. It is commonly diagnosed at 24-28 weeks' gestation but prior risk factors including family history and obesity can qualify a woman to be tested earlier³. Having GDM increases risk of developing type 2 diabetes mellitus (T2DM) by 50% within five years post pregnancy, placing young women at increased risk of premature coronary heart disease³⁴. Understanding the absolute cardiovascular risk (where T2DM is one of these risk factors) for this group of women allows for early intervention and merits further research. A recent meta-analysis showed that women with a history of GDM have an increased risk of developing cardiovascular risk factors in the future. Elevated blood pressure, serum triglycerides, blood glucose, which together are part of the diagnostic criteria for metabolic syndrome, have been detected within the first 12 months postpartum³⁶. Furthermore, metabolic syndrome (MetS), which is a risk factor for CVD is seen in women and children exposed to GDM³⁰⁰. Elevated peripheral blood pressure very early after pregnancy, may indicate that permanent physiological and vascular changes have already occurred, thereby increasing the risk of hypertension and premature atherosclerosis.

Offspring who are exposed to GDM *in utero* exhibit higher systolic blood pressure than their counterparts who were not exposed²⁹⁹. Staley *et al.* demonstrated blood pressure differences between offspring of women who developed hypertensive disorders of pregnancy compared to

those from normotensive mothers consistently throughout childhood and adolescence⁴⁷⁴. Therefore, offspring exposed to GDM *in utero* may exhibit anthropometric and/or cardiovascular changes at an earlier age.

Our primary aim was to assess cardiovascular risk factors in women with and without a history of GDM recruited from a socioeconomically disadvantaged community. Our secondary aim was to assess these risk factors in their children at age 3. As an exploratory aim, we assessed the effect of maternal early pregnancy obesity on these cardiovascular risk factors in both women with a history of GDM and their children at 3 years postpartum.

10.4. Methods

10.4.1. Study population

The study participants included women and their children from the Screening Tests to Predict Poor Outcomes of Pregnancy¹ study recruited in pregnancy in 2015 to 2017^{1} . The STOP study was a prospective cohort study that aimed to assess and predict the risk for pregnancy complications. A total of 1,363 nulliparous women, their partners and babies were originally recruited. Majority of the participants were recruited from the Northern Adelaide Local Health Network which serves a community resident in one of the most socioeconomically disadvantaged regions in metropolitan Australia⁴⁵². This community harbours some of the highest rates of chronic disease including diabetes, heart disease and mental illness. Women of the STOP follow-up study were contacted using phone numbers provided during the STOP study, or from hospital records. If women could not physically attend an appointment, an external participation package was posted to their address and returned via prepaid postage. Ethics approval was granted by the Central Adelaide Local Health Network, and site-specific ethics approval was received by the Northern Adelaide Local Health Network (STOP study: (HREC/14/WCHN/90) (ACTRN12614000985684), STOP follow-up study: HREC 18/CAHLN/318).

STOP study included data of only nulliparous women collected at 9-16 and 32-36 (mean 34) weeks' gestation and following delivery of the baby. The maternal data included demography, medical history, fertility history, information on previous pregnancies, diet, exercise, work, smoking, intake of alcohol and recreational drugs, measures of stress, anxiety and depression. Socioeconomic index (SEI) was assessed using the New Zealand Socioeconomic Index (NZSEI)⁴⁷⁵. Physical measurements including height, weight, waist and hip circumference, BMI and haemodynamic measurements were performed. GDM was diagnosed at 24-28 weeks' gestation according to the International Association of Diabetes in Pregnancy Study Group (IADPSG) criteria [i.e. one or more values equal to or exceeding: fasting plasma glucose of 5.1mmol/L, and/or a 2h plasma glucose level of 8.5mmol/l following a 75g Oral Glucose Tolerance Test (OGTT)]⁴⁰⁰. Women who were at high risk of GDM also completed a 75g OGTT in their first trimester. Data collected at birth included newborn weight, length, arm circumference, birthweight centile, and data on complications during the neonatal period and type of feeding at discharge from hospital.

Women were recruited into the STOP follow-up study within 3 months (either side) of when their first child turned 3 years old. Women who lived regionally or interstate were able to consent remotely to participating in the follow-up study, with the option to complete anthropometric, haemodynamic and serum biochemistry through their general practitioner. Appointments were completed at the Clinical Trials Unit at the Lyell McEwin Hospital. Height of women and children was measured with a stadiometer to the nearest 0.1cm. Children's weight was measured with a standard balance beam scale to the nearest 100g. Body composition in women was assessed using the TANITA SC-330 bioimpedance scale (Tokyo, Japan) which measured fat mass to the nearest 0.1kg, fat percentage, fat mass, fat free mass and BMI. Body composition in children was assessed by standardized BMI score based on the Centre for Disease Control (CDC) growth charts for children and teenagers aged 2 to 19 years of age⁴⁷⁶. Waist circumference was measured in both women and children

to the nearest 0.5cm⁴⁷⁷. Peripheral systolic, diastolic and mean arterial blood pressure was assessed using the USCOM BP+ (USCOM, Sydney, Australia) using appropriately sized cuffs for arm circumference, while participants were rested for at least 20 minutes and seated. The USCOM BP+ was used to perform several non-invasive measures of cardiovascular function, including pulse rate, peripheral systolic and diastolic blood pressures, central systolic and diastolic blood pressures, which reflect blood pressure in the aorta and functionality of the heart, and augmentation index (AIx) which is an indicator of arterial stiffness and tone. The USCOM BP+ has been validated for use in adults, pregnant women, and children⁴⁷⁸⁻⁴⁸⁰. Recruited participants were excluded if the signal to noise ratio, a quality control measure of cuff reading quality was $< 6^{479}$. Women provided fasting blood samples to assess blood glucose, insulin, non-HDL lipids, HDL-cholesterol, and C-reactive protein. Insulin resistance was calculated using the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) using fasting blood glucose and fasting insulin values⁴⁸¹. Metabolic syndrome status at 3 years postpartum was defined based on the International Diabetes Federation (IDF) definition³⁰, which requires presence of central adiposity (defined by waist circumference which are ethnicity specific (for women of all ethnicities, this is \geq 80cm) and/or an obese BMI \geq 30kg/m²) and at least two of the following:

- Raised systolic blood pressure ≥130mmHg or diastolic blood pressure ≥80mmHg or treatment of previously diagnosed hypertension
- Raised serum triglycerides ≥1.7mmol/L or being on medication for increased triglycerides

- Raised fasting plasma glucose ≥5.6mmol/L or previously diagnosed type 2 diabetes mellitus
- Reduced HDL cholesterol ≤ 1.29 mmol/L

10.4.2. Statistical analysis

Data was analysed using IBM SPSS Version 26. Women who were diagnosed with GDM in their index pregnancy were compared to those who were not (normoglycemic). Similarly, children who were born to mothers with GDM were compared for CVD risk factors with children who were born to mothers without GDM. Univariate analysis was used to compare anthropometric and baseline variables between GDM and normoglycemic pregnancies, with data presented as mean (SD) or n (%). Child variables were adjusted for child age, with the exception of BMI SDS as this has been adjusted for child age and sex already. As obesity is a significant predictor of both GDM and $CVD^{27, 482}$, secondary subgroup analysis was undertaken and both GDM and normoglycemic groups were stratified by obesity in early pregnancy (i.e. $BMI \ge 30 \text{kg/m}^2$) or non-obese (i.e. $BMI \le 29.9 \text{kg/m}^2$). As the normoglycemic group includes women with other pregnancy complications that influence cardiovascular and metabolic health, to rule out any effect of these complications on the outcomes, exploratory analyses of cardiometabolic outcomes in pregnancy and 3 years postpartum were also performed in women with uncomplicated index pregnancies and their offspring.

For hemodynamic measures, blood pressure was measured in pregnant women who attended the study as per protocol. A proportion of women (n=22, 7.8%) were pregnant at the time of follow-up and these women were excluded from the descriptive analysis of hemodynamic outcomes at 3 years postpartum. Linear regression analysis was undertaken to assess the association between developing GDM in the index pregnancy, and exposure

to GDM *in utero*, and hemodynamic measurements compared to those with an uncomplicated pregnancy, with data presented as mean difference (95% CI). Adjustment was made for SEI and BMI in early pregnancy as both of these parameters influence both GDM and CVD development.

10.5. Results

10.5.1. Participant demographics

There were 1,363 women who participated in the STOP study. Figure 10.5.1.1. demonstrates the flow chart of participation in the follow-up study. There were 281 woman-child dyads who consented and participated in the follow-up study from January 2019 until June 2021. In the index pregnancy, 241 participants had a normoglycemic pregnancy and 40 participants experienced GDM. The participants who did not experience GDM (i.e. had a normoglycemic pregnancy) were comprised of women who had an uncomplicated pregnancy, or evidence of a maternal placental syndrome manifest as hypertensive disorder of pregnancy (i.e. preeclampsia or gestational hypertension), delivered preterm (<37 weeks' gestation) and/or delivered a small-for-gestational-age infant (below 10th customised percentile).

There was no significant difference in BMI at 9-16 weeks' gestation nor in percentage GDM during the index pregnancy between women who participated in the follow-up study compared to those who did not. Socioeconomic index during index pregnancy was also not significantly different between all participants in the follow-up study compared to those who did not participate. However, those who attended the follow-up study who had GDM in their index pregnancy had significantly higher SEI than those with GDM who did not attend (37.1 \pm 16.8 vs. 33.4 \pm 12.5 p=0.001, on a scale of 10-90) (Supplementary Table 10.8.1).

Demographics of the participants who attended the 3 year follow-up are presented in Table 10.5.1.1. Of these women, those who had developed GDM had significantly higher SEI than those who did not have GDM in the index pregnancy (37.1 ± 16.8 vs. 33.3 ± 13.6 p=0.016). More women with a history of GDM had a bachelor's degree than those without GDM (p=0.001). BMI in early pregnancy was significantly higher

in the GDM participants than normoglycemic participants (30.8 \pm 8.2 vs. 27.4 \pm 6.8 p=0.013) (Table 10.5.1.1).

Figure 10.5.1.1 Flow chart of participant recruitment

Characteristic*	GDM (n=40)	Non-GDM	p-value
		(n=241)	
	Index pregna	ncy	
Mean BMI (kg/m²)	30.8 (8.2)	27.4 (6.8)	0.013
Gravidity	1.85 (0.8)	2.05 (1.0)	0.924
SEI**	37.1 (16.8)	33.3 (13.6)	0.016
Caucasian ethnicity (n=)	35 (87.5%)	217 (89.3%)	0.731
Education Status (n=)			0.001
Did not complete year 10	2 (5%)	3 (1.2%)	
Year 10	2 (5%)	17 (7%)	
Year 12	9 (22.5%)	31 (12.8%)	
Certificate	15 (37.5%)	92 (37.9%)	
Bachelor	10 (25%)	41 (16.9%)	
Higher degree	2 (5%)	7 (10%)	
Pregnancy complications			
experienced			
Uncomplicated	0	151 (62.1%)	0.000
Gestational hypertension	5 (12.5%)	13 (5.3%)	0.086
Preeclampsia	4 (10%)	25 (10.3%)	0.956
Preterm Birth	4 (10%)	10 (4.1%)	0.112
Small for gestational age	8 (20%)	29 (11.9%)	0.161
Child gestational age (weeks)	38.6 (2.1)	39.5 (1.7)	0.621
Child birthweight (g)	3202.8 (600)	3364.6 (501)	0.221
	3 years postpa	rtum	
Maternal age (years)	33 (5.6)	31 (4.9)	0.164
BMI (kg/m ²)	29.7 (7.4)	29.1 (8.5)	0.891
Waist circumference(cm)	95 (21.1)	90 (19.4)	0.463

Table 10.5.1-1 Participant Demographics at 3 year follow-up in women who participated in the STOP study and STOP 3 year Follow-Up Study

*data are presented as Mean (SD) or n=(%)

**SEI is the New Zealand Socioeconomic Index on a scale of 10-90 with the lowest score indicating the person lives with the greatest disadvantage

^pregnancy complications are not mutually exclusive and participants may have experienced more than one pregnancy complication in index pregnancy

10.5.2. Cardiovascular risk factors during gestation and at 3 years postpartum:

10.5.2.1. Baseline (9-16 weeks' gestation)

Women with GDM during their pregnancy, had higher mean systolic blood pressure, diastolic blood pressure, mean arterial pressure, central systolic blood pressure and central diastolic blood pressure at 9-16 weeks' gestation compared to those who did not develop GDM in the index pregnancy (Table 10.5.2.3-1) (Supplementary Figure 10.8.1). Exploratory analysis of GDM vs. uncomplicated pregnancy showed that at 9-16 weeks' gestation, mean systolic blood pressure diastolic blood pressure mean arterial pressure central systolic blood pressure and central diastolic blood pressure were higher in those with GDM in index pregnancy compared to those with uncomplicated pregnancies (Table 10.5.2.3-1). As per protocol, fasting glucose at 28 weeks' gestation was significantly higher in women with GDM compared to those with a normoglycemic pregnancy and those with an uncomplicated pregnancy (Table 10.5.2.3-1). Metabolic syndrome was more common in women with an uncomplicated pregnancy in early pregnancy than those who developed GDM (Table 10.5.2.3-1).

10.5.2.2. 34 weeks' gestation

At 34 weeks' gestation, compared to women with uncomplicated pregnancies, women with GDM in their index pregnancy had significantly higher mean diastolic blood pressure, mean arterial pressure, central systolic blood pressure and central diastolic blood pressure (Table 10.5.2.3-1).

10.5.2.3. 3 years postpartum

Central systolic blood pressure was higher in women with a history of GDM than in those with a normoglycemic pregnancy. There were only 126 participants who completed blood collection in the follow-up study. Circulating insulin was significantly higher in those with a history of GDM in pregnancy than those with an uncomplicated pregnancy (Table 10.5.2.3-1). There were more women with a history of GDM with elevated triglycerides (i.e. >=1.7mmol/L) compared to those without a history of GDM but this difference was not statistically significant. The percentage with metabolic syndrome was significantly higher in women with a history of GDM compared to those with an uncomplicated index pregnancy. Only one participant who had hypertension at the time of the follow-up was taking antihypertensive medication. A history of GDM was associated with a 0.3mmol/L increase in serum triglycerides at 3 years postpartum compared to history of uncomplicated pregnancy, after adjustment for covariates (Table 10.5.2.3-2).

Table 10.5.2.3-1 Cardiovascular risk factors in women at baseline (9-16 weeks'), 34 weeks' gestation and at 3 years postpartum.

	Ba	seline visit (9-16 wee	ks' gestation		
Variable	GDM (n=40)	Normoglycemic pregnancy (n=241)	p-value	Uncomplicated pregnancy (n=149)	
Peripheral systolic blood pressure (mmHg)	120.9 (14.8)	114.6 (12.2)	0.056	112.3 (11.3)	0.013
Peripheral diastolic blood pressure (mmHg)	72.4 (10.9)	67.7 (8.2)	0.012	66.3 (7.7)	0.004
Mean arterial pressure (mmHg)	85.9 (12.1)	80.7 (9.0)	0.002	79 (8.2)	0.000
Augmentation Index (%)	36.5 (20.2)	32.0 (14.5)	0.125	47.6 (18.1)	0.160
Central systolic blood pressure (mmHg)	111.2 (13.7)	105.5 (11.2)	0.051	103.9 (11)	0.036
Central diastolic blood pressure (mmHg)	76.4 (9.7)	70.7 (7.6)	0.030	69.1 (7.8)	0.009
	GDM (n= 38)	Normoglycemic pregnancy (n= 219)	p-value	Uncomplicated pregnancy (n=142)	p-value
Total cholesterol (mmol/L)	4.5 (0.7)	4.6 (0.7)	0.864	4.6 (0.7)	0.811
Triglycerides(mmol/L)	1.3 (0.5)	1.2 (0.4)	0.282	1.2 (0.5)	0.778
HDL-C(mmol/L)	1.6 (0.3)	1.6 (0.3)	0.890	1.6 (0.3)	0.784
CRP	4.8 (4.1)	5.2 (8.3)	0.383	4.3 (4.4)	0.895
Metabolic Syndrome rate	13 (35%)	48 (78.7%)	0.084	24 (64.9%)	0.024
	Th	ird trimester (34 wee	ks' gestation)		
	GDM (n=18)	Normoglycemic pregnancy (n=130)	p-value	Uncomplicated pregnancy (n=77)	p-value
Peripheral systolic blood pressure (mmHg)	125.9 (11.8)	117.8 (11.1)	0.519	114.3 (9.5)	0.117
Peripheral diastolic blood pressure (mmHg)	76.4 (9.7)	70.7 (7.6)	0.251	68.7 (6.1)	0.030
Mean arterial pressure (mmHg)	90.9 (10.1)	83.3 (8.3)	0.271	80.9 (6.7)	0.032
Augmentation Index (%)	49.6 (15.4)	48.0 (17.7)	0.065	30.5 (15.4)	0.091

Central systolic blood	113.8 (13)	106.0 (10.2)	0.168	102.9 (8.9)	0.028
pressure (mmHg)					
Central diastolic blood	79.6 (9.8)	73.9 (7.8)	0.260	71.9 (6.4)	0.045
pressure (mmHg)					
		3 years postpa	rtum		
	GDM (n=34)	Normoglycemic	p-value	Uncomplicated	p-value
		pregnancy (n=202)		pregnancy (n=138)	
Peripheral systolic blood pressure (mmHg)	121.2 (15.3)	120.6 (13.2)	0.270	119.4 (13.8)	0.487
Peripheral diastolic blood pressure (mmHg)	70.6 (12.3)	67.3 (11.2)	0.428	66.8 (12.3)	0.947
Mean arterial pressure (mmHg)	85 (14.4)	82.5 (11.7)	0.078	81.6 (12.3)	0.250
Augmentation Index (%)	52.5 (15.1)	55.3 (23.1)	0.076	53.5 (24.1)	0.078
Central systolic blood pressure (mmHg)	110.2 (16.6)	110.6 (12.4)	0.046	109.5 (13.2)	0.174
Central diastolic blood pressure (mmHg)	73.3 (12.7)	70.7 (10.6)	0.231	70 (11.5)	0.714
	GDM (n= 16)	Normoglycemic pregnancy (n= 66)	p-value	Uncomplicated (n=44)	p-value
Fasting alucose(mmol/L)	4.8 (0.4)	4.6 (0.4)	0.995	4.4 (0.9)	0.686
Insulin (mU/L)	13.2 (9.5)	9.4 (6.1)	0.660	8.6 (5.0)	0.022
HOMA-IR	2.80 (2.2)	1.97 (1.3)	0.065	2.7 (6.4)	0.692
Triglycerides(mmol/L)	1.2 (0.6)	1.1 (0.6)	0.851	0.89 (0.4)	0.055
HDL-C(mmol/L)	1.4 (0.4)	1.4 (0.4)	0.638	2.6 (0.5)	0.722
LDL-C(mmol/L)	2.7 (0.5)	2.7 (0.7)	0.141	2.6 (0.5)	0.085
Total Cholesterol/HDL ratio	3.6 (1.0)	4.0 (3.9)	0.400	3.2 (0.7)	0.115
Non-HDL Cholesterol	3.3 (0.5)	3.1 (0.8)	0.067	3.1 (0.9)	0.686
Total	4.7 (0.6)	5.2 (0.5)	0.367	4.5 (0.9)	0.174
Cholesterol(mmol/L)					
CRP (mmol/L)	4.02 (3.6)	6.52 (19.1)	0.311	6.7 (20.9)	0.323
Assessme	nt of metabolic	syndrome compone	nts in women a	t 3 years postpartu	m
	GDM (n=16)	Normoglycemic	p-value	Uncomplicated	p-value
		pregnancy (n=66)		(n=44)	
Abdominal obesity**	25 (62.5%)	128 (54%)	0.270	75 (53.1%)	0.738
Hypertension***	13 (32.5%)	53 (22.3%)	0.147	32 (21.9%)	0.137
Dysglycaemia [^]	1 (2.5%)	2 (0.8%)	0.341	0	0.159
Triglycerides >= 1.7mmol/L	3 (7.5%)	6 (2.5%)	0.096	4 (2.7%)	0.721
Reduced HDL < 1.29mmol/L	6 (15%)	28 (11.8%)	0.487	16 (10.9%)	0.759

Metabolic syndrome	26 (61%)	130 (50.1%)	0.192	3 (6%)	0.000
rate					

NB: Postpartum numbers for blood results and metabolic syndrome cases are reduced due to noncompliance or being pregnant during follow-up.

*results are reported as mean (SD) unless stated otherwise

**Abdominal obesity was waist circumference >=80cm and/or obese BMI >=30kg/m²)

***Hypertension was defined as raised systolic blood pressure >=130mmHg or diastolic blood pressure or treatment of previously diagnosed hypertension)

^Dysglycaemia was defined as raised fasting plasma glucose >=5.6mmol/L or previously diagnosed type 2 diabetes mellitus

Normoglycemic pregnancy includes those with other pregnancy complications including preeclampsia, gestational hypertension, spontaneous preterm birth and small for gestational age

Table 10.5.2.3-2 Linear regression to assess association between GDM in pregnancy compared to uncomplicated pregnancy and subsequent cardiometabolic risk factors in mothers and children at 3 years post-pregnancy

Outcomes	Adjusted Mean Difference (95% CI)*
Child waist circumference at 3 years**	1.9 (0.41 to 3.3)
Maternal Serum triglycerides at 3 years	0.3 (0.07 to 0.6)
postpartum	
Maternal Serum insulin at 3 years postpartum	1.9 (-1.5 to 5.2)

*adjusted for maternal BMI at booking and SEI

**also adjusted for child age

Bold indicates statistical significance

10.5.3. Cardiovascular risk factors in children aged 3 years

Waist circumference was significantly greater in children exposed to GDM *in utero* compared to those who were born to mothers with a normoglycemic pregnancy and those born to mothers with an uncomplicated pregnancy. However, this was attenuated by maternal BMI and SEI at early pregnancy. Peripheral and central blood pressures and vascular stiffness were similar in all groups of children (Table 10.5.3.1).

Table 10.5.3-1 Cardiometabolic differences between children born to mothers with gestational diabetes mellitus compared to those who were not at 3 years postpartum

3 years follow-up							
	Children born to mothers with GDM (n=33)	Children born to mothers with normoglycemic pregnancy (n=198)	p-value*	Children born to mothers with uncomplicated pregnancies (n=144)	p- value*		
BMI SDS [^]	67 (28.7)	56.5 (30.7)	0.192	50.8 (32.6)	0.097		
Waist circumference (cm)	53.6 (5)	51 (3.7)	0.001	51.2 (3.5)	0.02		
	(n=18)	(n=107)		(n=94)			
Systolic blood	96.3	99.4 (14.0)	0.649	101.2 (13.1)	0.521		
pressure (mmHg)	(18.6)						
Diastolic blood	56.1	57.7 (12)	0.905	57.0 (12.4)	0.826		
pressure (mmHg)	(10.9)						
Mean arterial pressure	69.0	71.3 (14.9)	0.842	72 (15.2)	0.889		
(mmHg)	(14.1)						
Augmentation Index	89.6	82.5 (30.7)	0.979	89.1 (45)	0.914		
(Alx) (%)	(56.9)						
Central systolic blood	89.6	92.5 (15.2)	0.521	95.1 (15.6)	0.329		
pressure (mmHg)	(15.3)						
Central diastolic blood	61.3	60.8 (11.1)	0.430	61.2 (12.0)	0.318		
pressure (mmHg)	(10.4)						

Reduced numbers for hemodynamic assessment due to non-compliance

Results are mean (SD) unless reported otherwise

*all outcomes except BMI SDS are corrected for child age

^BMI SDS is adjusted for child age and sex

10.5.4. Effect of obesity in early pregnancy on CVD risk factors in women and children

10.5.4.1. 9-16 weeks' gestation

Amongst those who had a normoglycemic pregnancy, obese women had higher systolic blood pressure and mean arterial pressure than those who were not obese (Supplementary Table 10.8.2).

10.5.4.2. **34 weeks' gestation**

Augmentation Index was significantly higher at 34 weeks' gestation in the obese women in the GDM group than in non-obese women with GDM. For those with a normoglycemic pregnancy, women who were obese had significantly higher systolic blood pressure, diastolic blood pressure, and mean arterial pressure, than those who were non-obese (Supplementary Table 10.8.2).

10.5.4.3. **3 years postpartum**

Augmentation index at 3 years postpartum in women with uncomplicated pregnancies was higher in those who were obese in early pregnancy compared to those who were not obese at the same timepoint. Those who were obese in the GDM group had significantly higher serum insulin, insulin resistance (HOMA-IR), LDL-C, and CRP, than those who were not obese. For those with a normoglycemic pregnancy, women who were obese in early pregnancy had significantly higher serum insulin, insulin resistance, total cholesterol/HDL ratio, and CRP than those who were not obese in early pregnancy. For women with an uncomplicated index pregnancy, those who were obese had significantly higher serum insulin, insulin resistance, and CRP levels at 3 years postpartum than women who were not obese in early pregnancy (Supplementary Table 10.8.2).

10.5.4.4. Children aged 3

Children born to obese mothers with a normoglycemic pregnancy had higher diastolic blood pressure than those who were born to non-obese mothers. Children born to obese mothers with a normoglycemic pregnancy had a significantly higher waist circumference than children born to non-obese mothers with a normoglycemic pregnancy. Children born to obese mothers with an uncomplicated pregnancy had significantly higher BMI-SDS and waist circumference than those children born to non-obese mothers with an uncomplicated pregnancy at 3 years of age (Supplementary Table 10.8.2).

10.6. Discussion

Our observational follow up study revealed that women with a history of GDM had higher serum insulin and triglycerides at 3 years postpartum compared to those with no history of GDM. However, the association between GDM and insulin was attenuated by maternal BMI and SEI in early pregnancy. Children exposed to GDM *in utero* had significantly higher waist circumference than children born to women with uncomplicated pregnancies but this was attenuated for the same covariates. There were more women with a history of GDM who had metabolic syndrome at 3 years postpartum than those with uncomplicated pregnancy. Our subgroup analysis showed differences in hemodynamic and serum values between participants who were and were not obese in pregnancy at 3 years postpartum in women with a history of GDM, a history of normoglycemic pregnancy and a history of uncomplicated pregnancy.

Obesity promotes development of insulin resistance and increases in free fatty acids and inflammatory markers ^{7, 483}. In mid to late pregnancy, placental inflammatory hormones together with inflammation due to obesity, increase oxidative stress in pancreatic beta cells which impairs compensatory insulin secretion that counteracts elevated insulin resistance leading to GDM ^{7, 483}. There is discrepancy between studies regarding whether serum insulin levels are higher in women with previous GDM ^{471, 484} or if it is similar to controls ^{485, 486 487}. A previous study assessed obese and non-obese women at 1 year postpartum and found that the relationship between GDM and serum insulin postpartum was mediated by obesity⁴⁸⁴. Our subgroup analysis showed that obese women in GDM, normoglycemic and uncomplicated groups had elevated CRP, an inflammatory marker and insulin resistance. Therefore, being obese, together with history of GDM, may actually worsen metabolic health at an earlier time postpartum.

The elevation of serum triglycerides at 3 years postpartum in women with a history of GDM supports that found in other studies. It has previously been shown that women at 3.5 years postpartum following GDM, had increased adjusted odds ratios for hypertriglyceridemia compared to those without a history of GDM⁴⁸⁸. Furthermore, our 2020 systematic review found that serum triglycerides were elevated as early as <1 year postpartum in women who had been diagnosed with GDM³⁶. Elevated serum triglycerides can be apparent 10 years before diagnosis of T2DM⁴⁸⁹ and therefore may identify women who will develop T2DM later as glucose intolerance is associated with altered uptake of fatty acids. Our data support the need for early follow-up of metabolic health including serum lipids and glucose tolerance in women with a history of GDM.

We found that 3 year old children who were exposed to GDM *in utero* exhibit higher waist circumference than those whose mothers had an uncomplicated pregnancy; however, this was mediated by maternal BMI and SEI during early pregnancy. Previous literature has shown an association between maternal GDM and childhood obesity. A recent report showed that maternal glucose levels and BMI during pregnancy were independently associated with BMI, body fat and waist circumference in their exposed children at 11 years of age ⁴⁹⁰. However, combined exposure *in utero* increased the risk of obesity in the offspring further. If there is an effect of GDM on childhood adiposity at 3 years of age, it is likely that our study was underpowered to assess this and further studies are required to look at this association.

This observational follow-up study has some strengths. The inclusion and exclusion criteria of the original STOP study were quite strict. Including only nulliparous women in the cohort allowed us to assess the effect of pregnancy complications without confounding by greater parity. Furthermore, women with serious medical conditions or at high risk for pregnancy complications due to underlying conditions were also excluded. Therefore, the effect of pregnancy complications on maternal health could be assessed in young women. This cohort of women is generally overlooked in cardiovascular risk assessment. Risk for heart attack statistical models are usually targeted to an older age group and based primarily on risk factors common in men. We were able to assess haemodynamic and metabolic risk factors non-invasively in women in both early and late pregnancy and at 3 years postpartum, allowing a complete assessment of cardio-metabolic health from conception to the early postpartum period. Furthermore, we were able to assess haemodynamics in their children at 3 years of age. These non-conventional vascular assessments have seldom been reported in the literature for women, and particularly in early childhood. Our data, despite coming from a small cohort, contribute to the growing evidence on vascular health, and how it can be perturbed by pregnancy complications, in young mothers and their children.

Cohort studies often include participants with moderate to high SES. Our study assessed women and children from a hospital servicing a disadvantaged population. As for all populations studied, elevated BMI reduces cardio-metabolic health. Our study has highlighted the impact of socioeconomic disadvantage on cardiovascular risk factors in young women and their children. The high incidence of obesity in early pregnancy in participants in the STOP Study makes it possible that many of these women may have entered pregnancy with undiagnosed insulin resistance and glucose intolerance making a diagnosis of GDM more likely. We recommend future larger studies in women and young children in disadvantaged communities to confirm or refute our findings. If socioeconomically disadvantaged women with GDM are shown to be at higher risk of cardio-metabolic disorders in the early postpartum period, non-invasive haemodynamic and simple biochemical screening could be a means to identify those who would benefit from early intervention.

Our study has some limitations. Approximately one quarter of participants from the original STOP study attended the 3-year follow-up. Majority of this loss is due to loss of contact. Indeed 42% of the women who were contactable agreed to participate. The difficulties associated with

living with disadvantage, reduce the likelihood that such a population will participate in clinical research⁴⁹¹. Therefore, there may be risk of selection bias in our study. Although we have shown statistically significant differences in some parameters these are relatively small. This may simply reflect the fact that 3 years postpartum may be very early in the progression to CVD. Nevertheless, these small metabolic changes may amplify over time.

We were unable to assess any potential paternal effects on child development and metabolic health. It is well established that paternal obesity mediates epigenetic programming through transmission of epigenetic factors through sperm⁴⁹². It has been shown that high fat diets in mice promoted hyperglycaemia in female pups, due to epigenetic changes in germ cells, specifically of methylation of insulin growth factor 2 (IGF-2)/H19 loci and imprinting. Therefore, future studies should assess both epigenetic and lifestyle factors from both parents to ascertain child metabolic health⁴⁹³.

Furthermore, the observational nature of the study means that we cannot infer causality. Although we recruited 281 participants, there were only 82 women who completed a fasting blood test, and some data are missing for anthropometric and hemodynamic measures in the offspring due to non-compliance. Missing data for fasting serum parameters may mean that the rate of metabolic syndrome in the cohort could be underreported. Some women who attended the follow-up were pregnant (n=22, 7.8%) and therefore 3 years postpartum data were missing for these participants. We recommend further longitudinal assessments in a larger, better powered cohort to determine whether anthropometric, haemodynamic and metabolic changes exacerbate in the long term.

10.7. Conclusion

Cardiovascular risk factors in women with a history of GDM and their offspring are present at 3 years after delivery, with maternal BMI and SEI in early pregnancy either mediating or

attenuating these associations. Our data warrant larger, more highly powered and longitudinal studies of cardiometabolic health in women and children exposed to GDM. Our study suggests that early interventions for socioeconomically disadvantaged young women and children may be important to improving long term health in communities that are known to have high rates of chronic diseases.

10.8. Supplementary Data

All participants		
	Mean (SD)	P value
NZSEI	Attended: 33.8 (14.0)	0.172
	Did not attend: 32.7 (13.9)	
Age (years)	Attended: 31.2 (5.0)	0.387
	Non attendee: 29.6 (6.7)	
Booking BMI (kg/m2)	Attended: 27.8 (7.2)	0.648
	Did not attend: 28 (7.1)	
GDM participants only		
NZSEI	Attended: 36.9 17.3	0.002
	Non attendee: 33.4 12.5	
Booking BMI (kg/m2)	Attended 31 8.3	0.697
	Did not attend: 32.1 8.8	

Supplementary Table 10.8 1 Differences in attendees and non-attendees for STOP 3 year follow-up

			Bas	eline visit (9-10	6 weeks' gestation)				
Variable		GDM (n=40)		Normog	lycemic pregnancy (n=2	Ur	ncomplicated (n=	151)	
	Obese (n=21)	Non-obese (n=19)	p-value	Obese (n=62)	Non-obese (n=179)	p- value	Obese (n=27)	Non-obese (n=124)	p-value
Peripheral systolic blood pressure (mmHg)	127.5 (13.8)	113.6 (12.6)	0.173	122.4 (12.8)	111.8 (10.8)	0.034	119.0 (11.7)	110.9 (10.6)	0.425
Peripheral diastolic blood pressure (mmHg)	77.5 (11.1)	66.9 (7.7)	0.124	72.5 (9.3)	66.1 (7.2)	0.052	71 (8.5)	65.3 (7.1)	0.512
Mean arterial pressure (mmHg)	91.6 (11.8)	79.5 (9.0)	0.214	86.6 (10.2)	78.6 (7.7)	0.014	85 (8.3)	77.7 (7.6)	0.463
Augmentation Index (%)	50.1 (16.7)	49.2 (14.3)	0.344	43.8 (16.1)	49.5 (18)	0.101	43.2 (18.1)	48.6 (17.9)	0.584
Central systolic blood pressure (mmHg)	117.2 (12.7)	104.5 (11.6)	0.610	111.6 (11.4)	103.4 (10.4)	0.161	109 (10.9)	102.2 (10.7)	0.696
Central diastolic blood pressure (mmHg)	80.4 (10.9)	69.8 (7.6)	0.148	75.7 (9.4)	69 (7.4)	0.106	73.4 (8.5)	67.8 (7.2)	0.557
	Obese (n=20)	Non-obese (n=17)	p-value	Obese (n=25)	Non-Obese (n=117)	p- value	Obese (n=25)	Non-obese (n=117)	p-value
Total cholesterol (mmol/L)	4.7 (0.8)	4.4 (0.6)	0.446	4.7 (0.5)	4.6 (0.8)	0.055	4.7 (0.5)	4.6 (0.8)	0.055
Triglycerides(mmol/L)	1.4 (0.6)	1.3 (0.4)	0.119	1.2 (0.4)	1.2 (0.5)	0.509	1.2 (0.4)	1.2 (0.5)	0.509
HDL-C(mmol/L)	1.5 (0.3)	1.7 (0.3)	0.671	1.5 (0.3)	1.6 (0.3)	0.537	1.5 (0.3)	1.6 (0.3)	0.537
			Thi	rd trimester (34	weeks' gestation)				
		GDM (n=18)		Normog	lycemic pregnancy (n=1	30)	U	ncomplicated (n=	=77)
	Obese (n=11)	Non-obese (n=7)	p-value	Obese (n=35)	Non obese (n=95)	p- value	Obese (n=14)	Non-obese (n=63)	p-value

Supplementary Table 10.8 2 Subgroup analysis of obesity at index pregnancy on cardiovascular risk factors in women and children

Peripheral systolic blood pressure (mmHg)	129.8 (9.6)	119.9 (13)	0.699	126.4 (11.1)	114.6 (9.3)	0.042	122.3 (9.3)	112.6 (8.7)	0.595	
Peripheral diastolic blood pressure (mmHg)	77.6 (7.8)	74.6 (12.6)	0.350	74.5 (9.3)	69.3 (6.4)	0.004	71.6 (6.5)	68.1 (5.9)	0.483	
Mean arterial pressure (mmHg)	92.4 (8.2)	88.7 (13)	0.589	88.5 (9.8)	81.4 (6.9)	0.012	84.9 (7.5)	80 (6.3)	0.322	
Augmentation Index (%)	34.9 (14.2)	39 (28.5)	0.049	33.9 (16.1)	31.3 (14)	0.674	28.4 (14.5)	(31 (14.7)	0.844	
Central systolic blood pressure (mmHg)	117.3 (10)	108.6 (15.9)	0.673	113.6 (10.3)	103.3 (8.8)	0.065	109.9 (8.7)	101.4 (8.2)	0.841	
Central diastolic blood pressure (mmHg)	81.0 (8.1)	77.4 (12.3)	0.483	78.1 (9.3)	72.3 (6.6)	0.006	75.2 (6.8)	71.1 (6.2)	0.496	
				3 years postpa	artum (women)					
		GDM (n=38)		Normog	lycemic pregnancy (r	n=202)	Uncomplicated (n=137)			
		••••				· /				
	Obese (n=20)	Non-obese (n=14)	p-value	Obese (n=53)	Non-obese (n=149)	p- value	Obese (n=26)	Non-obese (n=111)	p-value	
Peripheral systolic blood pressure (mmHg)	Obese (n=20) 127.0 (15.7)	Non-obese (n=14) 113 (10.6)	p-value 0.251	Obese (n=53) 125.9 (14.8)	Non-obese (n=149) 118.7 (12.2)	p- value 0.268	Obese (n=26) 125.8 (16.3)	Non-obese (n=111) 117.3 (12.1)	p-value 0.127	
Peripheral systolic blood pressure (mmHg) Peripheral diastolic blood pressure (mmHg)	Obese (n=20) 127.0 (15.7) 74.5 (13.1)	Non-obese (n=14) 113 (10.6) 65.5 (8.9)	p-value 0.251 0.203	Obese (n=53) 125.9 (14.8) 72 (12.1)	Non-obese (n=149) 118.7 (12.2) 66.2 (10.5)	p-value 0.268 0.217	Obese (n=26) 125.8 (16.3) 71.5 (12.8)	Non-obese (n=111) 117.3 (12.1) 65.3 (11.4)	p-value 0.127 0.562	
Peripheral systolic blood pressure (mmHg) Peripheral diastolic blood pressure (mmHg) Mean arterial pressure (mmHg)	Obese (n=20) 127.0 (15.7) 74.5 (13.1) 91.2 (14.6)	Non-obese (n=14) 113 (10.6) 65.5 (8.9) 76.3 (8.9)	p-value 0.251 0.203 0.090	Obese (n=53) 125.9 (14.8) 72 (12.1) 88 (12.8)	Non-obese (n=149) 118.7 (12.2) 66.2 (10.5) 80.5 (10.6)	p- value 0.268 0.217 0.135	Obese (n=26) 125.8 (16.3) 71.5 (12.8) 88.6 (12.1)	Non-obese (n=111) 117.3 (12.1) 65.3 (11.4) 79.5 (11.3)	p-value 0.127 0.562 0.691	
Peripheral systolic blood pressure (mmHg) Peripheral diastolic blood pressure (mmHg) Mean arterial pressure (mmHg) Augmentation Index (%)	Obese (n=20) 127.0 (15.7) 74.5 (13.1) 91.2 (14.6) 56.1 (13.1)	Non-obese (n=14) 113 (10.6) 65.5 (8.9) 76.3 (8.9) 47.2 (16.7)	p-value 0.251 0.203 0.090 0.511	Obese (n=53) 125.9 (14.8) 72 (12.1) 88 (12.8) 58.9 (29.3)	Non-obese (n=149) 118.7 (12.2) 66.2 (10.5) 80.5 (10.6) 54.0 (20.5)	p- value 0.268 0.217 0.135 0.150	Obese (n=26) 125.8 (16.3) 71.5 (12.8) 88.6 (12.1) 59.4 (35.7)	Non-obese (n=111) 117.3 (12.1) 65.3 (11.4) 79.5 (11.3) 52.1 (20.5)	p-value 0.127 0.562 0.691 0.040	
Peripheral systolic blood pressure (mmHg) Peripheral diastolic blood pressure (mmHg) Mean arterial pressure (mmHg) Augmentation Index (%) Central systolic blood pressure (mmHg)	Obese (n=20) 127.0 (15.7) 74.5 (13.1) 91.2 (14.6) 56.1 (13.1) 115.7 (18.2)	Non-obese (n=14) 113 (10.6) 65.5 (8.9) 76.3 (8.9) 47.2 (16.7) 102.8 (10.7)	p-value 0.251 0.203 0.090 0.511 0.274	Obese (n=53) 125.9 (14.8) 72 (12.1) 88 (12.8) 58.9 (29.3) 115.5 (13.5)	Non-obese (n=149) 118.7 (12.2) 66.2 (10.5) 80.5 (10.6) 54.0 (20.5) 108.9 (11.6)	p- value 0.268 0.217 0.135 0.150 0.356	Obese (n=26) 125.8 (16.3) 71.5 (12.8) 88.6 (12.1) 59.4 (35.7) 115.1 (15.3)	Non-obese (n=111) 117.3 (12.1) 65.3 (11.4) 79.5 (11.3) 52.1 (20.5) 107 (11.9)	p-value 0.127 0.562 0.691 0.040 0.280	

		GDM (n= 16)		Normoglycemic pregnancy n= 69) Uncomplicate			complicated (n=4	1)			
Characteristic	Obese (n=10)	Non-obese (n=6)	p-value	Obese (n=24)	Non-Obese (n=45)	Ē	p- value	Obese (n=9)		Non-obese (n=32)	p-value
Insulin (mU/L)	16.7 (10.9)	7.9 (2.8)	0.022	13.5 (7.11)	7.4 (3.9)	0.004	14.3 (7.2	2)	7.1 ²⁶	0.000	
HOMA-IR	3.6 (2.5)	1.7 (0.6)	0.032	4.7 (8.8)	1.5 (0.9)	0.009	7.4 (13.3	3)	1.4 (0.6)	0.000	
Triglycerides(mmol/L)	1.4 (0.4)	1.3 (0.6)	0.385	1.4 (0.8)	0.87 (0.4)	0.000	1.2 (0.4)		0.8 (0.3)	0.815	
HDL-C(mmol/L)	1.3 (0.4)	1.5 (0.4)	0.968	1.3 (0.8)	1.4 (0.3)	0.238	1.3 (0.3)		1.4 (0.3)	0.803	
LDL-C(mmol/L)	2.7 (0.6)	2.7 (0.1)	0.046	2.9 (0.6)	2.6 (0.7)	0.476	3.1 (0.9)		2.5 (0.7)	0.640	
Total Cholesterol/HDL	3.8 (1.1)	3.3 (0.7)	0.437	5.1 (5.8)	3.3 (0.8)	0.015	3.6 (0.6)		3.1 (0.7)	0.631	
ratio											
Non-HDL Cholesterol	3.4 (0.7)	3.2 (0.2)	0.071	3.6 (0.9)	3.0 (0.8)	0.676	3.8 (1)		2.9 (0.8)	0.329	
Total	4.7 (0.6)	4.8 (0.4)	0.396	5.1 (5.8)	3.2 (0.9)	0.634	5.0 (1.2)		4.3 (0.8)	0.389	
Cholesterol(mmol/L)											
CRP (mmol/L)	5.4 (4)	1.9 (1.2)	0.048	11.7 (29.8)	3.4 (5.5)	0.026	19.5 (43)	2.5 (2.6)	0.001	
			3	years post preg	nancy (childr	en)					
	Children bo	rn to mothers v	vith GDM	Children born	to mothers with))	Childre	n born t	o mother	s with uncomplie	cated
	(n=33)			normoglycem	ic pregnancy (n:	=220)	pregnar	ncy (n=′	121)	·	
	Obese	Non-obese	p-value*	Obese	Non-obese	p-	Obese		Non-ob	ese p-valu	9*
	(n=18)	(n=18)		(n=56)	(n=164)	value*	(n=22)		(n=99)	-	
BMI SDS ^	70.5 (32.4)	58.3 (27.4)	0.221	64.7 (30)	50.8 (31.3)	0.209	65.2 (32	.3)	48 (32.1) 0.005	
Waist circumference	55.4 (5.4)	52.1 (4.1)	0.079	52.5 (3.8)	50.6 (3.7)	0.01	53.4 (3.7	7)	50.7 (3.3	3) 0.001	
	(n=8)	(n=14)		(n=43)	(n=113)		(n=16)		(n=73)		
Systolic blood	100.3	98.2 (18.3)	0.929	101.6 (14.2)	100.1 (14.6)	0.666	102.50		100.7 (1	3.4) 0.579	
pressure (mmHg)	hi(14.3)						(12.4)				
Diastolic blood	59 (7.6)	58 (14)	0.739	60.3 (13)	57.1 (16.2)	0.171	58.2 (10	.5)	57.7 (12	8) 0.836	
pressure (mmHg)											
Mean arterial	79.3 (19.1)	68.9 (15)	0.152	75.1 (15.6)	70.4 (15)	0.108	73.6 (12	.8)	71.6 (15	i) 0.575	
pressure (mmHg)											
Augmentation Index (%)	86.4 (33.6)	89.7 (62.5)	0.934	84.4 (46.1)	90.1 (39.7)	0.540	91.9 (61	.8)	59.4 (41	.6) 0.756	

Central systolic blood	91.2 (12.8)	92.1 (15.2)	0.894	95.3 (15.2)	93.3 (15.2)	0.512	98.8 (22.5)	94.3 (13.8)	0.294
pressure (mmHg)									
Central diastolic blood	65.8 (15.2)	63.3 (13.3)	0.986	66.2 (14.5)	60 (11.8)	0.010	63.2 (13.4)	60.7 (11.8)	0.482
pressure (mmHg)									

Results are mean (SD) unless otherwise stated

Supplementary Figure 10.8 1 Means of peripheral and central measures at 12 weeks' gestation, 34 weeks' gestation and 3 years postpartum for women with a history of gestational diabetes mellitus (GDM) and those without a history of gestational diabetes mellitus (nGDM). SBP – systolic blood pressure, DBP – diastolic blood pressure, cSBP – central systolic blood pressure, cDBP – central diastolic blood pressure

Chapter 11

11. The influence of breast feeding for at least 6 months on haemodynamic and metabolic health of women and their children aged 3 years

Maleesa M Pathirana, Prabha H Andraweera, Emily Aldridge, Madeline Harrison, Jade

Harrison, Shalem Leemaqz, Margaret A Arstall, Gustaaf Dekker, Claire T Roberts

11.1.Statement of Authorship

Title of Paper	The effect of breast feeding on haemodynamic and metabolic health of
-	women who experience major pregnancy complications and their children
Publication Status	Submitted for consideration of publication in International Breastfeeding
	Journal
Publication Details	

Principal Author

Name of Principal Author	Maleesa Pathirana		
(Candidate)			
Contribution to the Paper	Ethics submission, recruitment, site specific		
	administration, undertaking assessments with		
	participants, data collection, analysis of results,		
	interpretation of results, writing of manuscript.		
Overall Percentage (%)	80%		
Certification	This paper reports on original research I conducted		
	during the period of my Higher Degree by Research		
	candidature and is not subject to any obligations or		
	contractual agreements with a third party that would		
	constrain its inclusion in this thesis. I am the primary		
	author of this paper.		
Signature	Date		

Co-author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. The candidate's stated contribution to the publication is accurate (as detailed above);
- ii. Permission is granted for the candidate to include the publication in the thesis; and
- iii. The sum of all co-author contributions is equal to 100% less the candidate's stated contribution

Name of Co-Author	Prabha H Andraweera	
Contribution to the Paper	Designed protocol, ethics submission, contributed to manuscript and supervision	
Signature	Date 28/02/2022	

Name of Co-Author		Emily Aldridge	
Contribution to the Pa	aper	Recruitment of participants, undertaking assessments with participants, data collection, contributed to manuscript and technical advice.	
Signature			Date 14/02/2022

Name of Co-Author	Shalem Leemaqz	
Contribution to the Paper	Statistical analysis assistance, contributed to manuscript and technical advice.	
Signature	Date 23/02/2022	

Name of Co-Author	Madeline Harrison	
Contribution to the Paper	Recruitment of participants, undertaking assessments with participants, data collection, reviewed manuscript	
Signature	Date 15/02/2022	

Name of Co-Author	Jade Harrison	
Contribution to the Paper	Recruitment of participants, undertaking assessments with participants, data collection, reviewed manuscript	

Signature		Date 15/02/2022

Name of Co-Author	Margaret A Arstall	
Contribution to the Paper	Conceived and designed protocol, assisted with data interpretation, contribute to manuscript and technical advice. Provided clinical guidance from cardiology perspective	
Signature	Date 28/02/2022	

Name of Co-Author	Gustaaf A Dekker.	
Contribution to the Paper	Conceived and designed protocol, recruited women into original STOP study, contributed to manuscript and provided clinical guidance from obstetrics perspective	
Signature	Date 28/02/2022	

Name of Co-Autho	or	Claire Roberts	Claire Roberts	
Contribution to the Paper		Conceived and desistudy, contributed is supervised.	Conceived and designed protocol and original STOP study, contributed intellectually to manuscript and supervised.	
Signature			Date 28/02/2022	
11.2. Abstract

Introduction: Breastfeeding has mutual benefits for both mother and child in reducing risk of future cardiovascular disease. Pregnancy complications, which affect nearly 1/3 of Australian pregnancies, increase the risk of type 2 diabetes mellitus and cardiovascular disease in both mothers and children. The aim of this study was to assess the influence of breastfeeding for at least 6 months on cardiovascular and metabolic risk among women and their children 3 years postpartum. A secondary aim was to assess whether there was a difference in these cardiometabolic outcomes in women who experienced at least one pregnancy complication in their index pregnancy.

Methods: Women were recruited to the Screening Tests to Predict Poor Outcomes of Pregnancy study from 2015 to 2017. These women and their children were invited to attend a health check-up at 3 years postpartum. Women's breastfeeding status for at least 6 months postpartum was ascertained through their child health record. Anthropometric measurements were taken from women and children. USCOM BP+ was used to assess haemodynamic parameters non-invasively in women and children. A fasting blood sample was taken from women to measure blood glucose and lipids.

Results: A total of 160 woman-child dyads were assessed in this study. Women in their index pregnancy experienced an uncomplicated pregnancy or a complicated pregnancy (comprised of complications including gestational diabetes mellitus, preeclampsia, and gestational hypertension, delivering preterm or delivery of a small for gestational age baby). Data from 160 women who had an adequate child health record were analysed for this study. Women who breastfed for at least 6 months had significantly lower serum insulin (8.1 mU/L \pm 6.6 vs. 13.2mU/L \pm 7 p=0.001), insulin resistance (HOMA-IR 1.7 \pm 0.6 vs. 2.8 \pm 02.1 p=0.000) compared to those who did not breastfeed for at least 6 months. However, this association was

attenuated for BMI and socioeconomic index in early pregnancy. There were no differences in child anthropometric or hemodynamic variables at 3 years of age between those children who had been breastfed for at least 6 months and those who had not been. Subgroup analysis on women who had one or more pregnancy complications during the index pregnancy demonstrated that women who breastfed for at least 6 months had significantly lower insulin (7.5mmol/L \pm 2.1 vs. 16.5 \pm 10.2 p=0.001), insulin resistance (1.6 \pm 0.5 vs. 3.5 \pm 2.2 p=0.001) and triglycerides (1.0mmol/L \pm 0.5 vs. 1.6mmol/L \pm 0.8 p=0.004) than those who did not. Among children exposed to at least one pregnancy complication *in utero*, those who were breastfed for at least 6 months had significantly lower standardized BMI score (BMI-SDS) than those who were not (58.8 \pm 27.3 vs. 56.2 \pm 32, p=0.046).

Conclusion: Breastfeeding for at least 6 months may reduce some cardiovascular risk factors in women at 3 years postpartum, in particular in those who have experienced a complication of pregnancy. Breastfeeding for at least 6 months may be beneficial for offspring of mothers who experienced a pregnancy complication.

11.3. Introduction

Pregnancy complications, such as gestational diabetes mellitus (GDM), preeclampsia, gestational hypertension, spontaneous preterm birth (sPTB), and small-for-gestational-age delivery, affect approximately 30% of all pregnancies in Australia. There is ample evidence suggesting that major pregnancy complications, including preeclampsia and gestational diabetes, confer increased risk for later life cardiovascular disease (CVD) ^{35, 227, 494}. Pregnancy complications also have long lasting implications for the offspring, likely through epigenetic changes in response to an adverse intrauterine environment ⁴⁹⁵⁻⁴⁹⁷. These changes, which may be protective *in utero*, confer risk in the postnatal environment, and increase risk for development of components of the metabolic syndrome at an earlier age in offspring ⁴⁸.

Breastfeeding is mutually beneficial for both mother and child, with human milk considered "the gold standard for infant feeding" ³⁹⁷. The World Health Organisation recommends breastfeeding exclusively for up to 6 months ⁴⁹⁸. It has been shown that breastfeeding for over 12 months promotes a significant reduction in both chronic hypertension and diabetes in women ⁵⁹. Breastfeeding also provides adequate nutrition to children and decreases the risk of developing obesity and T2DM compared to those who are not breastfeed ⁴²⁹.

A recent systematic review and meta-analysis demonstrates that women with a history of GDM who breastfeed have reduced blood glucose and decreased risk of developing type 2 diabetes mellitus ⁴⁹⁹. Despite the benefits shown for women with a history of GDM, there were not enough studies that directly assessed cardiovascular risk factors in offspring exposed to GDM *in utero* who were breastfed compared to those that were not breastfed. Furthermore, there is still minimal evidence on whether breastfeeding is beneficial for both women and children who have been exposed to other pregnancy complications such as hypertensive disorders of

pregnancy. One systematic review in 2019 found that breastfeeding was beneficial in reducing metabolic and cardiovascular risk in offspring born small for gestational age ⁵⁰⁰.

Therefore, the aim of this study is to assess the influence of breastfeeding for at least 6 months on cardiovascular and metabolic risk factors in mothers and their children at 3 years postpartum. Our secondary aim is to assess the same cardiometabolic outcomes and the influence of breastfeeding in a subgroup of women who experienced at least one pregnancy complication in their index pregnancy.

11.4. Methods

11.4.1. Study population

The study participants included women and their children from the Screening Tests to Predict Poor Outcomes of Pregnancy¹ study. The STOP study was a prospective cohort study that aimed to assess women's risk for pregnancy complications. A total of 1,383 nulliparous women, their partners and babies were originally recruited during the period 2015-2017. Majority of the participants were recruited from The Lyell McEwin Hospital in northern Adelaide, which services one of the most socioeconomically disadvantaged regions in metropolitan Australia. This area harbours some of the highest rates of chronic disease, diabetes, heart disease and mental illness in Australia/South Australia^{72, 452}. For the STOP follow-up study, women were contacted using phone numbers provided during the STOP study, or from hospital records. If women could not physically attend an appointment, an external participation package was posted to their address and returned via paid postage. Ethics approval was granted by the Central Adelaide Local Health Network (STOP study: HREC/14/WCHN/90; STOP follow-up: HREC 18/CAHLN/318) (ACTRN12614000985684).

In the original STOP study, detailed information was collected at 9-16 weeks' (average 11 weeks'), and 34 weeks' gestation and after delivery of the baby. Gestational hypertension was defined as systolic blood pressure \geq 140 mm Hg and/or diastolic blood pressure \geq 90 mm Hg on two or more measurements 6 hours apart after 20 weeks' gestation. Preeclampsia was defined using the revised International Society for the Study of Hypertension in Pregnancy definition of gestational hypertension or postpartum hypertension with proteinuria (24-hour urinary protein of 300 mg or spot urine protein/creatinine ratio of \geq 30 mmol/L creatinine or urine dipstick protein \geq ++)

or any multisystem complication of preeclampsia or utero-placental dysfunction as evidenced by intrauterine growth restriction (9). Small-for-gestational-age-delivery was defined as a birth weight below the 10th customized centile adjusted for maternal height, weight, parity and ethnicity, gestational age at delivery, and infant sex. sPTB was defined as spontaneous preterm labour or preterm premature rupture of membranes resulting in a preterm birth at < 37 weeks of gestation. Gestational diabetes mellitus is screened at 24-28 weeks' gestation in Australia. GDM was diagnosed at 24-28 weeks' gestation according to the International Association of Diabetes in Pregnancy Study Group (IADPSG) criteria (i.e. one or more values equal to or exceeding: fasting plasma glucose of 5.1mmol/L, and/or a 2h plasma glucose level of 8.5mmol/l following a 75g Oral Glucose Tolerance Test (OGTT)⁴⁰⁰. Women who were at high risk of GDM completed a 75g OGTT in their first trimester and, if normal, the OGTT was repeated at 24-28 weeks' gestation. Data collected after delivery included newborn weight, length, arm circumference, birthweight centile, and data on complications during the neonatal period and type of feeding at discharge from hospital.

Women were recruited into the STOP follow-up study within 3 months of when their first child reached 3 years of age. Appointments were completed at the Clinical Trials Unit at the Lyell McEwin Hospital or completed externally as a postage paid package. Heights of women and children were measured with a stadiometer to the nearest 0.1cm. Children's weights were measured with a standard balance beam scale to the nearest 100g. Body composition in women was assessed using the TANITA SC-330 bioimpedance scale (Tokyo, Japan), which measured fat to the nearest 0.1kg, fat percentage, fat mass, fat free mass and body mass index (BMI). Those who participated in the study externally, self-reported weight and height only. Body composition in children was assessed by standardized BMI score (BMI-SDS) based on the centre for

disease control (CDC) growth charts for children and teenagers aged 2 to 19 years of age ⁵⁰¹. Waist circumference was measured in both women and children to the nearest 0.1cm, based on the World Health Organisation guidelines ⁵⁰². Peripheral systolic and diastolic blood pressures were assessed using the USCOM BP+ (USCOM, Sydney, Australia) using appropriately sized cuffs for arm circumference while participants were seated. The USCOM BP+ was also used to perform a non-invasive measure of cardiovascular function, such as central systolic and diastolic blood pressure, peripheral blood pressure, arterial stiffness and tone [assessed as augmentation index (AIx)], pulse rate variability and ventricular contractility (assessed as dP/dt max)⁴⁸⁰. The USCOM BP+ has been validated for use in children ⁴⁷⁸. Cases were excluded if the signal to noise ratio, an indicator of blood pressure recording quality, was < 6. Fasting blood samples were collected from women to assess glucose, HbA1C, insulin, non-HDL lipids, HDL-cholesterol, and C-reactive protein. Insulin resistance was calculated using the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) using fasting blood glucose and fasting insulin values ⁴⁸¹. Some fasting blood data are missing due to some participants being pregnant or due to non-compliance. These numbers are reported in the results. Some children's data are missing due to non-compliance and numbers are reported accordingly in the results.

11.4.2. Breastfeeding status

Duration of breastfeeding was ascertained by collecting information on breastfeeding at 1-4 weeks, 6-8 weeks, 6-9 months, and 18-24 months of age from the child's "blue book" (i.e. Child Health record) which is given to all parents of newborns in South Australia. This data is collected by a child health nurse or their GP who record the selfreport of the mother at the time of assessment.

11.4.3. Statistical analysis

Data were analysed using IBM SPSS Version 26. Women who breastfed for at least 6 months were compared to those who did not. Similarly, children who had been breastfed for at least 6 months were compared to those who had not. The justification to select this time point for breastfeeding status is based on the World Health Organisation recommendation that children should be exclusively breastfeed up until 6 months postpartum.

Subgroup analysis was undertaken assessing women who experienced a complicated index pregnancy (i.e. diagnosis of one or more of the following: preeclampsia, gestational hypertension, GDM, delivery of a small for gestational age infant, delivery of a preterm infant, sPTB). Univariate analysis was used to compare anthropometric and haemodynamic variables between the two groups with data presented as mean (SD), n (%) or median (IQR). Associations between breastfeeding/being breastfed for at least 6 months postpartum and maternal or child metabolic risk factors were analysed using linear regression, adjusted for BMI and socioeconomic index (SEI), which was defined by the New Zealand Socioeconomic Index (NZSEI) at index pregnancy. SEI is scored between a value of 10 to 90; with a lower score reflecting greater socioeconomic disadvantage.

11.5. Results

11.5.1.Participant demographics

A total of 1,373 women were recruited to the STOP pregnancy study. Figure 1 demonstrates the flow chart of participant selection. Of these women, 1,007 agreed to be contacted for future studies at the time of their index pregnancy. However, only 674 were contactable at the time of follow-up. Of these, 257 woman-child dyads consented and participated in the follow-up study from January 2019 until June 2021. Of these participants, 160 women had adequate child health data with information on breastfeeding, therefore data for these participants were analysed in this study (Figure 11.1). Seventy women (46.9%), reported breastfeeding at 1-4 weeks postpartum, 56 women (35%) reported breastfeeding at 6-9 weeks' postpartum, 38 women (23.8%) reported breastfeeding at 6-9 months postpartum and 13 women (8.1%) reported breastfeeding at 12-18 months postpartum. Educational status at baseline was significantly different between those who breastfed and those who did not (p=0.001). There was no significant difference in BMI in early pregnancy between women who participated in the follow-up study compared to those who did not. Socioeconomic status (SES) during index pregnancy was also not significantly different between the participants in the follow-up study compared to those who did not participate (data not shown).

Figure 11.5.1.1 Flow chart of follow-up participant recruitment

Demographics of the participants who attended the 3-year follow-up are presented in Table 11.5.1.1. There were no differences in baseline parameters such as maternal age, SEI, BMI at booking, child birthweight, gestational age at delivery, nor waist circumference at 3 years postpartum between women who breastfed for at least 6 months and those who did not.

Variable	Breastfed for at least 6 months	Did not breastfeed for at least 6 months	p-value
	(n= 74)	(n= 86)	
Socioeconomic Index (Mean (SD))	33.2 (13.7)	34.3 (15)	0.141
Caucasian ethnicity	61 (82.4%)	80 (93.0%)	0.144
Education Status			0.001
Did not complete year 10	0	1 (1.2%)	
Year 10	4 (5.4%)	12 (14.0%)	
Year 12	14 (18.9%)	25 (29.1%)	
Certificate	30 (40.5%)	33 (38.4%)	
Bachelor	23 (31.1%)	11 (12.8%)	
Higher Degree	3 (4.1%)	4 (4.7%)	
BMI at 9-16 weeks' gestation	27.4 (7.3)	29.1 (8.0)	0.332
Pregnancy Complications*			
Gestational Diabetes	14 (18.9%)	14 (16.3%)	0.077
Gestational Hypertension	5 (6.8%)	7 (8.1%)	0.741
Preeclampsia	6 (8.1%)	9 (10.5%)	0.610
Small for gestational age baby	12 (16.2%)	9 (10.5%)	0.283
Spontaneous preterm birth	4 (5.4%)	3 (3.5%)	0.554
Gestational age (weeks)	39.5 (1.7)	39.4 (1.7)	0.754
Child birthweight (g)	3265.3 (491.2)	3360 (531.9)	0.612
Current Maternal Age (Mean (SD))	31.8 (5.0)	31.4 (5.2)	0.655

 Table 11.5.1-1 Baseline data from the woman-child dyads who participated in the STOP 3Y followup study

*pregnancy complications are not mutually exclusive and one woman can have multiple pregnancy complications

11.5.2. Women

Data for fasting blood sample were available for 61 women (Table 11.5.2.1). At 3 years postpartum, women who breastfed for at least 6 months postpartum had significantly lower serum insulin and insulin resistance compared to those who did not breastfeed for at least 6 months. When adjusting for BMI and SEI in early pregnancy, the association between both serum insulin and insulin resistance at 3 years with breastfeeding for at least 6 months was attenuated (Table 11.5.2.2). At 3 years postpartum, there was no significant difference in BMI, fat mass and waist circumference in those who breastfed for at least 6 months vs those who did not. There were no differences in hemodynamic parameters including peripheral systolic and diastolic blood pressures, mean arterial pressure, augmentation index, pulse rate and central systolic and diastolic blood pressures between the two groups (Table 11.5.2.1).

Table 11.5.2-1 Cardiovascular risk factors at 3 years postpartum in women who breastfed for at least
6 months compared to those who did not with subgroup analysis of those who had at least one
complication of pregnancy during index pregnancy

			1			1
	Breastfed for at least 6 months (n=70)	Did not breastfeed for at least 6 months (n=74)	p- value	Women with complicated pregnancies who breastfed for at least 6 months (n=34)	Women with complicated pregnancies who did not breastfeed for at least 6 months (n=35)	p- value
BMI (kg/m2)	28.4 (8)	31.6 (10.2)	0.116	28.4 (7.8)	33.0 (8.9)	0.909
Fat mass (kg)	29.1 (17.3)	36.4 (19.3)	0.213	27.6 (16.3)	40.2 (20.3)	0.312
Waist circumference (cm)	88.6 (20.6)	95.9 (20.5)	0.175	89.2 (21.5)	102.8 (23.4)	0.484
Systolic blood	119.0	122.5	0.336	121.2 (12.1)	124.5 (15.6)	0.141
pressure (mmHg)	(12.7)	(14.6)				
Diastolic blood pressure (mmHg)	66.9 (9.3)	70.2 (11.3)	0.370	67.7 (9.5)	72.5 (11.1)	0.503
Mean arterial	80.8 (9.8)	85.1 (14.1)	0.101	81.6 (9.8)	88.3 (14.5)	0.106
pressure (mmHg)						
Augmentation Index (%)	53.1 (18)	56.7 (22.8)	0.118	52.2 (16.6)	61 (22.1)	0.205
Central systolic blood	109.4	111.9	0.476	111.2 (12)	115.4 (14.7)	0.211
pressure (mmHg)	(11.9)	(13.9)				
Central diastolic	69.6 (9.4)	73.1 (11.8)	0.215	70.9 (9.5)	75.3 (11.4)	0.407
blood pressure						
(mmHg)						
	(n=24)	(n=30)	p- value	(n=13)	(n=19)	p- value
Fasting glucose (mmol/L)	4.7 (0.5)	4.7 (0.5)	0.168	4.8 (0.5)	4.7 (0.5)	0.677
Insulin (mU/L)	8.1 (3.1)	13.2 (9.2)	0.001	7.5 (2.1)	16.5 (10.2)	0.001
HOMA-IR	1.7 (0.6)	2.8 (2.1)	0.000	1.6 (0.5)	3.5 (2.2)	0.001
Triglycerides(mmol/L)	0.9 (0.4)	1.3 (7.5)	0.006	1.0 (0.5)	1.6 (0.8)	0.04
HDL-C(mmol/L)	1.4 (0.8)	1.4 (0.4)	0.605	1.3 (0.3)	1.2 (0.3)	0.404
LDL-C(mmol/L)	1.2 (0.3)	2.6 (0.7)	0.974	2.7 (0.5)	2.7 (0.5)	0.870
Total	3.2 (0.8)	4.8 (5.3)	0.100	3.4 (0.8)	6.2 (7.2)	0.091
Cholesterol/HDL ratio						
Non-HDL Cholesterol	3.1 (0.8)	3.2 (0.8)	0.761	3.1 (0.6)	2.5 (0.6)	0.849
Total	4.3 (0.9)	4.4 (0.8)	0.935	4.4 (0.5)	4.6 (0.6)	0.308
Cholesterol(mmol/L)						
C-Reactive Protein	3.8 (4.8)	3.4 (2.5)	0.080	3.0 (4)	3.8 (2.5)	0.687

Data reported as mean (SD)

*reduction in serum blood results due to noncompliance

٦

Table 11.5.2-2 Mean differences in maternal cardiovascular risk factors at 3 years postpartum in women who breastfed for at least 6 months compared to those who did not, assessed by linear regression.

	*Adjusted Mean Difference (95% CI)
Insulin (mg/dL)	-1.7 (-4.6 to 1.2)
HOMA-IR^	-1.4 (-7.7 to 4.8)

*adjusted for BMI at booking, SEI at booking. ^log transformed variable

11.5.3. Children

Of the 160 children who attended for follow-up, anthropometric data were available for 139 children at 3 years of age. Hemodynamic data were available for just 72 children due to poor USCOM BP+ readings or non-compliance of children. There was no difference in anthropometric or hemodynamic parameters between children who were breastfed for at least 6 months compared to those who were not (Table 11.5.3.1). Subgroup analysis demonstrated that children who were exposed to a pregnancy complication *in utero* had significantly higher BMI-SDS compared to those born to an uncomplicated pregnancy.

Table 11.5.3-1 Cardio metabolic outcomes for offspring who were breastfed for at least 6 months compared to those who were not with subgroup analysis for those exposed to at least one complication of pregnancy *in utero*.

			3 years of age			
	Offspring who were breastfed for at least 6 months (n=68)	Those who were not breastfed for at least 6 months (n=71)	p-value	Offspring exposed to pregnancy complication(s) <i>in utero</i> that were breastfed for at least 6 months (n=34)	Offspring exposed to uncomplicated pregnancy <i>in</i> <i>utero</i> that were breastfed for at least 6 months (n=35)	p-value
BMI SDS*	55.6 (29.8)	58.4 (31.7)	0.314	58.8 (27.3)	56.2 (32)	0.046
Waist circumference*	51.1 (3.5)	51.8 (4.5)	0.378	52 (2.7)	50.9 (2.8)	0.918
٨٨	(n=38)*	(n=34)*		(n=20)*	(n-15)*	
Systolic blood pressure (mmHg)	101.9 (12.1)	96.1 (18.5)	0.097	99.6 (11.0)	91.9 (24.6)	0.169
Diastolic blood pressure (mmHg)	58.8 (10.5)	58.1 (15.8)	0.833	58.7 (11.8)	55.8 (17.5)	0.421
Mean arterial pressure (mmHg)	73.1 (13.3)	71.1 (18.3)	0.584	73.1 (14.9)	67.2 (18.8)	0.220
Augmentation Index (%)	87.2 (38.4)	98.3 (52.5)	0.643	97.8 (45.9)	81.9 (28.7)	0.179
Central systolic blood pressure (mmHg)	94.2 (12.4)	91.6 (20.3)	0.471	91.2 (13.1)	85.2 (21.2)	0.181
Central diastolic blood pressure (mmHg)	62.6 (10.1)	61.2 (13.0)	0.616	62.1 (11.8)	60 (17.8)	0.506

*BMI SDS is adjusted for age and sex⁵⁰¹, all other outcomes are adjusted for child age.

^^ The sample size for hemodynamic variables is smaller due to noncompliance with the USCOM BP+

11.6. Discussion

The primary aim of this observational study was to assess whether breastfeeding for at least 6 months promotes a reduction in cardiovascular risk factors in women and their children at 3 years postpartum. Women who breastfed for at least 6 months demonstrated a reduction in serum insulin and insulin resistance at 3 years postpartum compared to those who did not. This association was attenuated by maternal BMI and SEI early in the index pregnancy.

Subgroup analysis of women with at least one pregnancy complication during the index pregnancy revealed that serum insulin, insulin resistance and serum triglycerides were significantly higher in those who did not breastfeed for at least 6 months postpartum. There was no difference in cardio metabolic outcomes at 3 years of age between children who were breastfed for at least 6 months and those who were not. However, when stratifying by exposure *in utero* to at least one pregnancy complication, children who were breastfed for at least 6 months had significantly lower BMI-SDS than those who were not.

Our previous systematic review and meta-analysis on breastfeeding after a GDM pregnancy did not show a difference in serum insulin between women with a history of GDM who breastfed compared to those who did not but there was a reduction in the risk of developing T2DM later ⁵⁰³. Women who are diagnosed with pregnancy complications such as preeclampsia and GDM are generally more likely to be insulin resistant in the postpartum period compared to those with an uncomplicated pregnancy ^{487, 504}.

In our study, breastfeeding for at least 6 months reduced serum triglyceride levels in women who experienced at least one pregnancy complication. A study by Blair *et al.* (2021) found that among those with a history of GDM, breastfeeding for as little as 8 weeks had significantly lower triglycerides at 8 weeks than those who were not breastfeeding ⁵⁰⁵. Yu and colleagues found the same association in a cohort of women with a history of pregnancy complications

who were breastfeeding at 6 months postpartum ⁵⁰⁶. Both studies found that the risk of metabolic syndrome was also significantly reduced. Therefore, breastfeeding could be encouraged in women diagnosed with a pregnancy complication to reduce their risk of developing cardiovascular risk factors and metabolic syndrome.

Our study showed that there was no difference in anthropometric or hemodynamic parameters in children who were breastfed until at least 6 months of age compared to those who were not. However, when stratified by children who were or were not exposed to at least one pregnancy complication, BMI SDS score was significantly reduced in offspring who were breastfed for at least 6 months compared to those who were not. There is minimal evidence on the effect of breastfeeding on cardiovascular risk in children exposed to a pregnancy complication in utero. Hui et al. 2018 showed that breastfeeding did not attenuate the association between GDM exposure in utero and BMI in offspring during infancy and childhood ⁴⁰⁵. Exclusive breastfeeding for a mean time of 180 days of children born small for gestational age promoted a healthy weight in these children at pre-school age ⁵⁰⁷. Breastfeeding promotes good health outcomes in general populations of children. Breastfeeding for greater than 6 months was associated with increased intake in fruits and vegetables, specifically an increased frequency and variety of vegetables and higher frequency of fruit intake in offspring at age 7, including after adjustment for demographic variables ⁴³⁴. Evidence shows pregnancy complications associate with increased cardiovascular risk factors in exposed offspring ^{74, 508}. Further studies are warranted to understand the mechanisms by which an adverse intrauterine environment confers cardiovascular risk for offspring and to define how breastfeeding may ameliorate risk.

There were many strengths in this observational study. We were able to assess nonconventional markers of cardiovascular risk in women and children such as augmentation index and mean arterial pressure. Our cohort was recruited from a hospital servicing a low SES population enabling our findings, if replicated in larger studies, to be generalizable to disadvantaged communities. Due to the difficulties in recruiting disadvantaged participants in research, many studies report on participants in moderate to high SES communities who generally tend to have fewer cardio-metabolic risk factors and better health.

There are limitations to address in this study. Due to the low SES community, it was difficult to recruit and maintain engagement in the cohort with a high percentage unable to be contacted for follow-up. Just one quarter of participants from the original STOP study attended the 3 year follow-up, albeit 50% of those who consented to follow-up and were contactable. The women recruited into the STOP study are from an area of severe disadvantage, where engagement in exercise is much lower than the national average and the rate of diabetes is 22% higher than the national average ⁵⁰⁹. Therefore, finding an association between breastfeeding and metabolic risk factors in this cohort may be confounded by the poorer health in the local population compared to state and national averages. It is known that low socioeconomic status has a significant impact on breastfeeding practices, which therefore may have also a significant effect on our results ⁴⁹¹. As the study is observational in nature, there are variables that we cannot fully control for. Some women were pregnant at the time of follow-up so they were excluded from these analyses as anthropometric and hemodynamic variables are not comparable between pregnant and non-pregnant states. The child health data recorded in the child's blue book (health record) were incomplete for a significant number of women. This is because blue book completion is not mandatory. Many women take their children for check-ups to their general practitioner rather than a child nurse who would normally enter data in the book. Other studies undertook detailed questionnaires on lactation via telephone or in person at the time of infant follow-up, which detailed frequency of lactation and addition of formula or solid foods ⁵¹⁰. These would provide a better profile of breastfeeding status. Although we recruited 257 participants, there were only blue book data available for 160, of whom only 54 women

presented for fasting blood sampling. Furthermore, there were adequate hemodynamic data for just 72 children. Therefore, future studies will require a larger sample size.

11.7. Conclusion

Women with previous GDM should be encouraged to breastfeed to reduce their risk of CVD later in life. More research in this area is required in order to integrate it fully for clinical use and disease mitigation strategies. Lactation specialists should promote breastfeeding in women with previous GDM through integrating what is known about the benefits of breastfeeding on cardiovascular disease risk factors. More research is needed to determine the effects of breastfeeding on cardiovascular risk factors in children exposed to GDM *in utero*, but the limited literature reports protective effects.

Chapter 12

12.Exposure to gestational diabetes mellitus *in utero* and neurodevelopment at 3 years of age

Maleesa M Pathirana, Prabha H Andraweera, Emily Aldridge, Madeline Harrison, Jade Harrison,

Shalem Leemaqz, Margaret A Arstall, Gustaaf Dekker, Claire T Roberts

12.1. Statement of Authorship

Title of Paper	Exposure to gestational diabetes mellitus in utero and neurodevelopment
	at 3 years of age
Publication Status	Submitted to Paediatric Research
Publication Details	

Principal Author

Name of Principal Author	Maleesa Pathirana		
(Candidate)			
Contribution to the Paper	Ethics submission, recruitment, site specific		
	administration, undertaking assessments with		
	participants, data collection, analysis of results,		
	interpretation of results, writing of manuscript.		
Overall Percentage (%)	80%		
Certification	This paper reports on original research I conducted during the period of my Higher Degree by Research candidature and is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in this thesis. I am the primary author of this paper.		
Signature	Date		

Co-author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. The candidate's stated contribution to the publication is accurate (as detailed above);
- ii. Permission is granted for the candidate to include the publication in the thesis; and
- iii. The sum of all co-author contributions is equal to 100% less the candidate's stated contribution

Name of Co-Author	Prabha H Andraweera	
Contribution to the Paper	Designed protocol, ethics submission, contributed to manuscript and supervision	
Signature	Date 28/02/2022	

Name of Co-Author		Emily Aldridge	
Contribution to the	Paper	Recruitment of participants, undertaking assessments with participants, data collection, contributed to manuscript and technical advice.	
Signature			Date 14/02/2022

Name of Co-Author		Shalem Leemaqz	
Contribution to the	Paper	Statistical analysis assistance, contributed to manusca and technical advice.	
Signature			Date 23/02/2022

Name of Co-Author	Madeline Harrison	n
Contribution to the Paper	Recruitment of participants, undertaking assessments with participants, data collection, reviewed manuscript	
Signature		Date 15/02/2022

Name of Co-Author	Jade Harrison
Contribution to the Paper	Recruitment of participants, undertaking assessments with participants, data collection, reviewed manuscript

Signature	 Date 15/02/2022

Name of Co-Author	Margaret A Arstall	
Contribution to the Paper	Conceived and designed protocol, assisted with data interpretation, contribute to manuscript and technical advice.	
Signature	Date 28/02/2022	

Name of Co-Author	Gustaaf A Dekker.	
Contribution to the Paper	Conceived and designed protocol, recruited women into original STOP study, contributed to manuscript.	
Signature	Date 28/02/2022	

Name of Co-Author	Claire Roberts	
Contribution to the Paper	Conceived and designed protocol and original STOP study, contributed intellectually to manuscript and supervised.	
Signature	Date 28/02/2022	

12.2. Abstract

Introduction: Gestational diabetes mellitus affects 1 in 7 pregnancies globally. It is thought that there is an association between exposure to GDM *in utero* and poor neurodevelopment in the offspring. The aim of this study was to determine whether there is an association between exposure to GDM *in utero* with child neurodevelopment at three years of age in a community of women and children with socioeconomic disadvantage. Our secondary aim was to determine whether there are sex specific differences in neurodevelopment in offspring exposed to GDM *in utero*.

Methods: Of the 1,300 participants who participated in the pregnancy study between 2015 to 2017, there were 223 woman-child dyads who attended the 3 year follow-up and completed the ASQ-3. There were only two children who were diagnosed with ASD at time of the 3 year follow-up. Communication scores in the ASQ-3 were significantly lower in children exposed to GDM *in utero* compared to unexposed children [49.2 (12.3) vs. 53.4 (7.8) p=0.010]. This was also observed after adjustment for maternal history of depression, current child age and gestational age. There were more children exposed to GDM *in utero* who scored below the threshold indicating developmental delay and need for clinical assessment in the communication, problem solving and personal social domains than those not exposed to GDM *in utero*. There were more children who scored below the threshold for communication between those exposed to GDM *in utero* had a lower mean problem solving score than females exposed to GDM *in utero* [42 (13) vs. 50 (16) p=0.026].

Conclusion: Children exposed to GDM *in utero* have reduced communication skills at 3 years of age compared to those not exposed to GDM *in utero* independent of covariates. Males exposed to GDM *in utero* have lower problem solving score than females. Children exposed to GDM *in utero* may benefit from neurodevelopmental screening by age 3 years.

12.3. Introduction

Early to mid-childhood is a critical period for neurodevelopment. It is established that children who have not achieved key neurodevelopmental milestones by the age of 5 years are more likely to have academic and socio-emotional problems by the time they commence primary school⁵¹¹. Impaired early childhood neurodevelopment is associated with poor social functioning, chronic disease, mental illness and reduced economic productivity later ^{511, 512}. It is thought that maternal stress during pregnancy plays a critical role in disrupting early brain development, through inflammatory processes ⁵¹³⁻⁵¹⁵. In particular, exposure to inflammation *in utero* can perturb attainment of key neurodevelopmental milestones from birth to age 3 years ⁵¹². Inflammation is also associated with oxidative stress that is thought to contribute to neurodevelopmental disorders like autism spectrum disorder (ASD) ⁵¹⁶. Maternal pre-pregnancy obesity is associated with an increased risk of developmental delay and emotional/behavioural problems in offspring due to increased inflammation ^{514, 515}. Therefore, it is necessary to understand what early life exposures influence childhood neurodevelopment.

Gestational diabetes mellitus (GDM) affected 15% of all pregnancies in Australia in 2016-2017, and is defined as diabetes that is first diagnosed in pregnancy⁴. Evidence suggests that exposure to GDM *in utero* increases the risk of developing cardiovascular risk factors in the offspring later in life²⁹⁹. However, there is also evidence to suggest that the same inflammatory processes that promote poor metabolic health also have a significant impact on brain development *in utero*. Higher circulating beta-hydroxybutyrate, which is involved in various metabolic processes during pregnancy, is associated with psychomotor development in offspring of diabetic mothers at age 2 ⁵¹⁷. In women with GDM, long-chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), which are necessary for fetal neurodevelopment, cannot be effectively transferred to the placenta due to excess glucose levels, and this is thought to decrease cognitive function in the offspring ⁶²

Studies have shown an association between exposure to GDM *in utero* and poor neurodevelopment in the offspring during childhood^{68, 518, 519}. Children of school age who are born to mothers with GDM have diminished attention span and motor skills compared to those whose mothers did not have GDM ⁵²⁰. A recent study also reported that maternal GDM was associated with child developmental delay demonstrated in the communication domain of the Ages and Stages Questionnaire-3 (ASQ-3) at age 1. For every 1 SD increase in the glycaemic value, there was a higher risk of being below the threshold for the personal social domain of ASQ-3 at age 1⁵²¹.

Many of these studies have focused on cohorts in high or middle socioeconomic communities, and there has not been a specific focus on disadvantaged communities. This is particularly important as the latter are the populations that are more likely to have a higher prevalence of obesity, diabetes and higher rates of psychological distress⁷². Maternal wellbeing during pregnancy is important to consider for child health as it is thought that maternal perinatal depression is associated with child socioemotional problems⁵²².

It has been established in clinical and animal studies that fetal sex influences vulnerability to adverse pregnancy complications *in utero*. Women carrying male fetuses are more likely to experience early spontaneous preterm birth and potentially GDM, while women carrying female fetuses are more likely to experience early onset preeclampsia ⁵²³Na. While the biological processes underlying these associations are still being understood, it is important to determine whether these sex differences are observed in the association between exposure to GDM *in utero* and neurodevelopment.

Therefore, the primary aim of our study is to determine whether there is an association between exposure to GDM *in utero* with child neurodevelopment at three years of age, assessed in five domains from the Ages and Stages Questionnaire-3 at 36 months. Our secondary aims are to

393

assess whether this association is influenced by maternal depression, and to determine if there are sex-specific differences in neurodevelopment among offspring exposed to GDM *in utero*.

12.4. Methods

12.4.1. Study population

The study participants included women and their children from the Screening Tests to Predict Poor Outcomes of Pregnancy¹ study from 2015 to 2017. The STOP study was a prospective cohort study of nulliparous pregnant women that aimed to predict the risk of pregnancy complications. A total of 1,363 nulliparous women, their partners and babies were originally recruited. The great majority of the participants were recruited from the Lyell McEwin Hospital in northern Adelaide, which serves one of the most socioeconomically disadvantaged regions in metropolitan Australia ⁵²⁴. For the STOP follow-up study, women were contacted using phone numbers provided during the STOP study, or from hospital records. If women could not physically attend an appointment, an external participation package was posted to their address and returned via pre-paid postage. In the original STOP study, detailed information was collected at 9-16 weeks' gestation (average 12 weeks') and 34 weeks' gestation and at time of delivery of the baby. The maternal data included demography, medical history, fertility history, information on previous pregnancies, diet, exercise, employment, smoking, intake of alcohol and recreational drugs, measures of stress, anxiety and depression. Physical measurements including height, weight, waist and hip circumference, BMI and haemodynamic measurements were also obtained at 9-16 weeks' gestation during the first pregnancy. GDM was assessed at 24-28 weeks' gestation, and diagnosed according to the International Association of Diabetes in Pregnancy Study Group (IADPSG) criteria (i.e. one or more values equal to or exceeding: fasting plasma glucose of 5.1mmol/L, and/or a 2h plasma glucose level of 8.5mmol/l following a 75g Oral Glucose Tolerance Test (OGTT) ⁴⁰⁰. Women who were considered at high risk for GDM were also asked to complete a 75g OGTT in first trimester and, if negative then, another at 24-28 weeks of gestation. Data collected following birth include newborn weight, length, arm circumference, birthweight centile, and complications during the neonatal period and type of feeding at discharge from hospital.

During early pregnancy, depression was assessed using the Edinburgh Postnatal Depression Score (EDPS), with a score of \geq 13 indicating a need to follow-up for diagnosis of antenatal depression⁴⁵⁵. Likelihood of depression was assessed using the EPDS, where "low risk" of depression was scored 0-9, "moderate risk" of depression in the following year score 10-12, and "likely depressed" score 13-30. Anxiety in pregnancy was defined using the STAI-6 score, where a score below 30 was defined as "low to no anxiety", 31-49 "normal level of anxiety" and a score of 45-80 was defined as a participant having an "elevated state of anxiety". Socioeconomic index (SEI) was assessed using the New Zealand Socioeconomic Index (NZSEI)⁴⁷⁵ with a scale of 10-90 where a lower score indicates more disadvantage.

Women were recruited into the STOP follow-up study within 3 months prior to and 3 months after their first child turned 3 years old. The appointment involved an update of demographic, obstetric and medical history. Anthropometric and hemodynamic measures were made for both mothers and children. Women were asked whether their child had a diagnosis of autism spectrum disorder (ASD) or attention deficit hyperactive disorder (ADHD). Assessment of depression and anxiety in mothers at 3 years postpartum was evaluated using the Patient Health Questionnaire-9 (PHQ9) and General Anxiety Disorder-7

(GAD7) tools, respectively. Neurodevelopment in the children was assessed using the Ages and Stages Questionnaire-3 at 36 months (ASQ-3-36)⁵²⁵. The ASQ-3 is a screening instrument devised to assess developmental delay in children, with various versions for different age groups targeting age-specific ASQ-3 developmental milestones. The assesses five areas of neurodevelopment: communication, gross motor, fine motor, problem solving and personal-social behaviour. Each area has six questions in which children are assessed on whether they are able to perform certain tasks reflecting each domain, scored from 0 (never), 5 (sometimes) and 10 (always). A total score of 60 can be achieved for each domain and cut-offs have been determined for each area as recommended in the ASQ-3 manual⁵²⁶. Scoring below the cut-off score is based on the threshold scores used for developmental delay in the ASQ-3 at 36 months. These were calculated according to the ASQ-3 manual, as 2 standard deviation scores below the mean score of the population sample of the ASQ- 3^{526} . This cohort is described in more detail in the ASQ-3 technical manual. Scoring equal to or below the cut off was transformed into a binary outcome (below cut off = yes or no). A score equal to or below the cut-off indicates a potential developmental delay and requires follow-up by a health professional for further assessment.

The ASQ-3 was assessed either at the appointment by a trained researcher, or mothers were able to complete the questionnaire at home, in a safe, comfortable environment for their child. The ASQ-3 has been designed for parents to complete in a home setting, with assistance of family members if required. Analysis was only performed for children who were aged between 2.9 years to 3.2 years old as per the ASQ-3 at 36 month age criteria for assessment.

12.4.2. Statistical analysis

Data were analysed using IBM SPSS Version 26. Children who were exposed to GDM *in utero* were compared to those who were not exposed to GDM *in utero*. Univariate analysis was used to compare developmental areas in the ASQ-3 and baseline variables between offspring exposed to GDM *in utero* and those not exposed to GDM *in utero*, with data presented as mean ⁵²⁷, or n (%). Linear regression analysis was used to assess the association between GDM exposure *in utero* and facets of the ASQ-3, with data presented as adjusted mean difference (95% CI). Associations between GDM and ASQ-3 scoring in children were adjusted for maternal history of depression ascertained in pregnancy, child age and gestational age. These were selected based on whether they were associated with both GDM and neurodevelopment in offspring.

12.5. Results

12.5.1.Participant demographics

There were 1,300 women who participated in the STOP study for whom pregnancy outcome data are available (Figure 12.5.1.1). Of these women, 1,000 agreed to be contacted for future studies at the time of their index pregnancy but only 674 were contactable. Of these participants, 257 woman-child dyads consented and participated in the follow-up study from January 2019 until March 2021. Of the women who attended the follow-up, 219 participants had not experienced GDM in the first pregnancy, and 38 had experienced a pregnancy complicated by GDM. However, there were 192 participants from the non-GDM group and 31 from the GDM group who completed the Ages and Stages questionnaire at the follow-up appointment. The participants who did not experience GDM were comprised of women who had an uncomplicated pregnancy, or hypertensive disorder of pregnancy (i.e. preeclampsia or gestational hypertension) or delivered preterm and/or birthed a small-for-gestational-age infant.

There was no significant difference in BMI in early pregnancy between women who participated in the follow-up study compared to those who did not, nor in the proportion of GDM participants in the follow-up study and of those with GDM who did not participate in the follow-up. SEI during index pregnancy was also not significantly different between all participants in the follow-up study compared to those who did not participate. However, those who attended the follow-up study who had GDM in their index pregnancy had significantly higher SEI than those who had GDM and did not participate (Mean 36.7 SD (17.3) vs 33.4 SD (12.5) p=0.003).

Demographics data for the participants who attended the 3-year follow-up are presented in Table 12.5.1.1. Of the women who attended the 3-year follow-up, those with GDM had significantly higher SEI than those who did not have GDM in the index pregnancy ((Mean 36 SD (17.4) vs 33 SD (13.9) p=0.019). BMI in early pregnancy was significantly higher in the GDM participants than in non-GDM participants (30.1 SD (8.4. vs. 27.4 SD (6.9) p=0.012). There was no difference in smoking status in first trimester or at 3 years postpartum, nor in waist circumference at 3 years postpartum between GDM participants and non-GDM participants (Table 12.5.1.1). There was no difference in anxiety and depression rates in women with GDM in the index pregnancy compared to those with a non-GDM pregnancy. Risk of mental health disorder in early pregnancy was similar between the groups who attended the 3-year visit. However, risk of depression was higher in those in the non-GDM group than in the GDM group in early pregnancy (5.64 (5.1) vs. 5.5 (3.7)) p=0.033).

Figure 12.5.1.1 Flow chart of woman-child dyads who participated in the STOP follow-up study

Variable	GDM (n= 38)	Non-GDM (n=219)	p-			
			value			
Index pregnancy						
BMI (m²/kg)	30.1 (8.4)	27.4 (6.9)	0.012			
SEI *	36 (17.4)	33 (13.9)	0.019			
Caucasian ethnicity	34 (89.5%)	198 (89.6%)				
Education Status*			0.001			
Did not complete year 10	2 (5.3%)	2 (0.9%)				
Year 10	2 (5.3%)	29 (13.1%)				
Year 12	8 (21.1%)	56 (25.3%)				
Certificate	14 (36.8%)	81 (36.7%)				
Bachelor	10 (26.3%)	39 (17.6%)				
Higher degree	2 (5.3%)	14 (6.3%)				
Early pregnancy EPDS	5.5 (3.7)	5.64 (5.1)	0.033			
Smoking at 1 st trimester	7 (18.4%)	36 (16.3%)	0.744			
Smoking at 3Y	3 (7.9%)	26 (11.8%)	0.087			
Uncomplicated pregnancy	-	133 (60.2%)	-			
Preeclampsia**	4 (10.5%)	22 (10.0%)	-			
Gestational hypertension**	4 (10.5%)	12 (5.4%)	-			
Small for gestational age**	8 (21.1%)	28 (12.7%)	-			
Spontaneous preterm birth**	4 (10.5%)	10 (4.5%)	-			
Gestational Age (weeks)	38.5	39.4	0.334			
Birthweight (g)	3173 (595)	3352 (511)	0.822			
3 years postpartum						
Maternal Age	33.2 (5.4)	30.9 (4.87)	0.182			
BMI (kg/m ²)	29.5 (7.5)	29 (8.7)	0.888			
Waist circumference (cm)	94.8 (21.7)	89.1 (21.6)	0.673			
GAD-7 Score	3.2 (3.7)	4.8 (4.4)	0.084			
PHQ-9 Score	4.9 (5.4)	5.2 (4.5)	0.578			

Table 12.5.1-1 Demographics of mothers participating in the STOP follow up study collected at index pregnancy and at 3 years postpartum.

Data is reported as either mean (SD) or n= (%)

P-value was not obtained for these outcomes

*SEI is scored between 10-90 with a lower score indicating lower disadvantage

**pregnancy complications are not mutually exclusive and one woman can experience multiple pregnancy complications

12.5.2. Neurodevelopment in children at 3 years of age:

There were only two children who had been diagnosed with ASD by the 3-year followup, one in the GDM group and one in the non-GDM group (data not shown). Table 2 highlights the differences in developmental areas assessed in the ASQ-3. Children aged 3 years who were exposed to GDM *in utero* had significantly lower scores for communication skills than those who were not exposed to GDM *in utero* (Table 12.5.2.1). The adjusted mean difference for communication in these children remained the same after adjusting for maternal history of depression during early pregnancy, child age and gestational age at birth (Table 12.5.2.2). There was no difference in ASQ-3 communication scores between children born to a GDM pregnancy and those born to an uncomplicated pregnancy (Table 12.5.2.1). There was a higher percentage of children who scored below the threshold (indicating developmental delay) in communication, problem-solving and personal social domains of the ASQ-3 in the GDM group than the non-GDM group (Table 12.5.2.3). More children exposed to GDM *in utero* were below the threshold for communication and problem solving domains than children exposed to an uncomplicated pregnancy *in utero*.
Table 12.5.2-1 Differences in ASQ-3 domains between those exposed to GDM *in utero* and those who are not

ASQ-3 Variable	GDM (n=31)	Non-GDM (n=192)	p-value	Uncomplicated (n=131)	p- value
Communication	49.2 (12.3)	53.4 (7.8)	0.010	52.9 (8.7)	0.085
Gross Motor	52.3 (13.4)	55.7 (7.7)	0.075	55.8 (7.7)	0.106
Fine Motor	42.6 (16)	45.7 (14.2)	0.208	45.6 (13.9)	0.536
Problem Solving	50 (12.9)	53.9 (8.4)	0.060	53.7 (8.2)	0.309
Personal Social	49.4 (11.1)	51.8 (7.8)	0.179	52 (7.9)	0.284

Scores are Mean (SD)

*adjusted for child age and gestational age

Table 12.5.2-2 Association between maternal GDM and communication score in children at age 3

ASQ-3 Variable	*Adjusted mean difference
Communication	-4.4 (-7.7 to -1.1)

*adjusted for maternal history of depression, child age and gestational age

Table 12.5.2-3 Di	fferences in partic	ipants who scored	d below the thresh	old of the ASQ-3

ASQ-3 Variable	GDM (n=31)	Non-GDM (n=190)	p-value	Uncomplicated (n=131)	p-value
Communication	7 (18.4%)	9 (4.1%)	0.000	7 (5.2%)	0.017
Gross Motor	4 (10.5%)	9 (4.1%)	0.177	4 (9.5%)	0.221
Fine Motor	3 (7.9%)	8 (3.7%)	0.154	3 (7.1%)	0.265
Problem Solving	5 (13.2%)	5 (2.3%)	0.001	2 (1.5%)	0.002
Personal Social	5 (13.2%)	9 (4.1%)	0.018	6 (4.4%)	0.071

*adjusted for child age and gestational age

12.5.3.Sex differences:

There were 6 males and 16 females who were exposed to GDM *in utero*. Males who were exposed to GDM *in utero* exhibited lower scores for problem solving skills compared to females after adjusting for child age and gestational age at birth (Table 12.5.3.1)

 Table 12.5.3-1 Differences in ASQ-3 domains between male and females

ASQ-3 Variable	Male (n=6)	Female (n=16)	p-value*
Communication	43.3 (10.3)	47.5 (16.3)	0.187
Gross Motor	59 (2.2)	48.6 (15)	0.208
Fine Motor	35 (21.2)	43.7 (16.8)	0.340
Problem Solving	42 (13)	50 (16.0)	0.026
Personal Social	45 (15.2)	50.6 (10.1)	0.216

12.6. Discussion

Our study showed that offspring exposed to GDM *in utero* had lower scores for communication skills at 3 years of age compared to those who were not exposed to GDM *in utero*. Furthermore, the percentage of children who scored below the threshold indicating developmental delay for communication, problem solving and personal social skills was higher for those exposed to GDM *in utero* compared to those who were not so exposed. In addition, male children had a lower mean score for problem solving than female children. Importantly, our research has identified 3 year old children who would benefit from further clinical assessment of their neurodevelopment who would not otherwise have been identified in routine care.

Previous studies have shown an association between exposure to GDM *in utero* and a delay in achieving neurodevelopmental milestones. A similar recent study found greater externalising and internalising behaviours in 2 year old children exposed to GDM *in utero*. These were attenuated for covariates including maternal depression at 12 months postpartum and prenatal maternal diet ⁶⁸.

GDM and socioeconomic disadvantage have been shown to have a synergistic effect that impairs neurodevelopment. Both exposure to GDM *in utero* and disadvantage are associated with a 2-fold increased risk of attention deficit hyperactive disorder (ADHD) at age 6 ⁵¹⁸. Communication scores in our study were lower in children exposed to GDM *in utero*, and reduced communication ability is often seen in offspring with ADHD. In our study there were no children who were clinically diagnosed with ADHD by age 3 years. However, it is not likely that we would have seen a child with a diagnosis of ADHD at age 3 because the median age of diagnosis for children with current ADHD is 6 years, and severe cases are seen as early as 4 years ⁵²⁸. In the Northern Adelaide region, where this study was conducted, there are higher rates of mental illness, low income, accommodation insecurity and poor diet ⁴⁵².

Socioeconomic disadvantaged children have shown reduced cognitive and behavioural function compared to those living with socioeconomic advantage ⁵²⁹.

The association between maternal GDM and reduced communication score in the ASQ-3 remained after adjusting for child age and maternal history of depression. There have been many studies that have shown that poor maternal mental health in pregnancy affects neurodevelopment in the infant, such as delayed cognition, behavioural and motor differences in childhood, brain development and connectivity ⁵³⁰. Exposure to GDM *in utero* appears to add to this risk. As the ASQ-3 has a high specificity and sensitivity for detecting neurodevelopmental disorders ⁵³¹, it may be important to assess neurodevelopment in this cohort at an early age to enable early intervention to reduce the risk of neurodevelopmental delay.

We found that female children exposed to GDM *in utero* had a reduced mean problem solving score than male children exposed to GDM *in utero*. This finding is particularly interesting as, despite the fact that our sample size is small, it agrees with the literature that suggests that males are affected more by intrauterine stress than females ^{523, 532}. It is thought that the gene encoding o-linked n-acetylglucosamine transferase (OGT) that occurs on the X chromosome, and plays a role in neurodevelopment and metabolism, escapes X inactivation. Therefore, males have reduced expression of this gene in the brain and thus may be more vulnerable to intrauterine stressors ⁵³³. Hyperactivity is observed at a younger age in males and may only become apparent in females as they get older ⁵³⁴. A recent study found that male offspring exposed to a higher level of maternal glucose *in utero* were more likely to have lower scores in the personal social domain of the ASQ-3 than females ⁵²¹. We saw a lower mean score for males but this was not significant.

The percentage of women with previous GDM who participated in this 3-year follow-up reflects the national average (approximately 15%)⁴. From conception to 3 years of age, there is a significant increase in neural synapses and myelination that can be affected by nutrition and inflammation ⁵¹². Assessing offspring at a young age aids early intervention, which evidence shows reduces neurodevelopmental disorders in children ⁵³⁵. The women and children recruited from this population are from a socioeconomically disadvantaged community, therefore our results are generalisable to similar cohorts.

We acknowledge the following limitations in this study. Only approximately one quarter of participants from the original STOP study attended the 3-year follow-up. Due to the disadvantage in this community, it is difficult to engage the population in clinical research. Approximately 58% of the original STOP Study participants who were contactable either declined to be part of the study, were noncompliant with attendance or were not contactable after first contact. As the study is observational in nature, there are variables for which we could not fully control. Our population was primarily Caucasian. Therefore, our results may not be generalizable to women and children of other ethnicities. Furthermore, we compared offspring exposed to GDM *in utero* to those without GDM *in utero*, but this group encompassed women with different pregnancy complications such as preeclampsia. As preeclampsia can severely impair placental perfusion and reduce nutrient flow to the fetus, it has been shown to also be associated with impaired neurodevelopment⁵³⁶. Therefore, it may be that in our non-GDM group other pregnancy complications may have contributed to reduced neurodevelopment masking the full magnitude of effects of GDM.

12.7. Conclusion

We found that exposure to GDM *in utero* was associated with reduced communication skills in 3-year-old children compared to unexposed children after adjustment for maternal history of depression, child age and gestational age at birth. In addition, exposure to GDM was also associated with a higher percentage of children scoring below the threshold for communication, problem solving and personal social skills, indicating developmental delay. Furthermore, males exposed to GDM *in utero* have reduced problem solving skills compared to their female counterparts. Clinical neurodevelopmental assessment of young children exposed to GDM *in utero* may be beneficial to identify those who would benefit from early intervention. It may be important to investigate the association between GDM and sexual dimorphism in neurodevelopment further.

SECTION 4: Discussion Final Discussion

Introduction to discussion

The overarching aim of this thesis was to investigate the association between gestational diabetes mellitus (GDM), and antenatal and postpartum health of women with a history of GDM, and the health of their children exposed to GDM *in utero*, three years following birth in a cohort of women and children with low socioeconomic status (SES).

Summary of thesis

In chapters 3, 4 and 6 we completed comprehensive reviews of the literature to elucidate the effect of GDM on subsequent maternal and child cardiovascular health and a detailed investigation of associated risk factors. Women with a history of GDM demonstrate an increase in systolic blood pressure, diastolic blood pressure, body mass index (BMI), total cholesterol, serum triglycerides, low density lipoprotein (LDL), fasting blood glucose, fasting insulin and a decrease in high density lipoprotein (HDL) cholesterol and risk of developing metabolic syndrome compared to those who do not have a history of GDM. These differences were seen as early as <1 year postpartum. Children exposed to GDM *in utero* had significantly higher systolic blood pressure, BMI z-score and serum glucose than those who were not exposed.

Based on the findings of the previous reviews, we sought to determine whether breastfeeding conferred a protective influence on cardiovascular risk factors in women with a history of GDM and children exposed to GDM *in utero*. Our systematic review and meta-analysis revealed that, among women with a history of GDM, breastfeeding was associated with lower serum glucose and lower risk of developing type 2 diabetes mellitus compared to women who did not breastfeed. However, there were not enough studies to complete a meta-analysis on the effect of breastfeeding on cardiovascular risk factors in children exposed to GDM *in utero*.

We were interested in understanding the effect of antenatal maternal health on development of GDM. Chapter 8 is an observational cohort analysis of the STOP study participants to determine whether antenatal mental health was associated with development of GDM. Risk of developing a mental health disorder, history of depression, antenatal depression, high functioning anxiety and high perceived stress were not associated with development of GDM. Socioeconomic status of the participants may have contributed to the lack of difference between GDM and non-GDM participants.

To complement our systematic review and meta-analysis series and to understand the impact of GDM on cardiovascular disease in a cohort from a socioeconomically disadvantaged background, we completed an observational follow-up of women and their children from the Screening Tests to Predict Poor Outcomes of Pregnancy (STOP) study at 3 years postpartum. In chapter 8, we assessed whether women with a history of GDM and their children exposed to GDM *in utero* exhibited cardiovascular disease risk factors as early as 3 years postpartum. We found that fasting serum insulin was significantly higher in women with a history of GDM compared to those with an uncomplicated pregnancy but this association was mediated by BMI in early index pregnancy and socioeconomic index (SEI). A history of GDM was associated with elevated maternal fasting serum triglycerides at 3 years postpartum after adjustment for the same covariates. Children exposed to GDM *in utero* had greater waist circumference than those born after an uncomplicated pregnancy at 3 years of age. However, this was also attenuated by maternal early pregnancy BMI and SEI.

412

To determine whether breastfeeding was beneficial for women from a socioeconomically disadvantaged background and their children, we assessed whether breastfeeding for at least 6 months postpartum reduced cardiovascular risk factors in women and children from the STOP cohort at 3 years postpartum in chapter 10. Serum insulin and insulin resistance were significantly lower in women who breastfed for at least 6 months postpartum compared to those who did not but this was attenuated by BMI and SEI. There were no differences in child anthropometric or hemodynamic variables at 3 years of age among those who were breastfed for at least 6 months compared to those who were not. However, subgroup analysis of women who only experienced one or more pregnancy complications showed that women who breastfed for at least 6 months had reduced serum insulin, insulin resistance and serum triglycerides. Their children who were breastfed for at least 6 months had reduced BMI-SDS.

In chapter 11, we undertook an observational analysis of the children of the STOP 3 year follow-up cohort to determine whether children exposed to GDM *in utero* had impaired neurodevelopment compared to children who were not exposed to GDM *in utero*, based on the Ages and Stages Questionnaire at 36 months. There was a reduction in scores for communication, gross motor and problem-solving domains in children exposed to GDM *in utero* compared to children who were not. There were higher rates of failure for the communication, problem solving and personal social domains for children with exposure to GDM *in utero*. When stratified by GDM status and gender, girls exposed to GDM *in utero* had fewer problem solving skills than boys at 3 years of age.

Implications of findings

Hemodynamic profile of women who develop GDM

This study on cardiovascular risk factors in women with a history of GDM revealed that the women who attended the 3 year follow-up had significantly higher systolic and diastolic blood pressure, mean arterial pressure, central systolic and diastolic blood pressure in early gestation compared to those with a non-GDM pregnancy. There is some evidence to suggest that at the time of diagnosis of GDM, women have increased arterial stiffness and changes in hemodynamic function ^{537, 538}. Mecacci *et al.* 2021 found that women who developed GDM had lower cardiac output and systolic volume than controls at 26-30 weeks' gestation ⁵³⁹. In this study, differences in diastolic blood pressure, mean arterial pressure, central systolic and diastolic blood pressure in women at 34 weeks' gestation were observed but only when women with GDM were compared with women who had an uncomplicated pregnancy.

There is limited evidence available on hemodynamic changes in early pregnancy preceding GDM. Khalil *et al.* (2012) found that at 11-13 weeks' gestation, women who went on to develop GDM had significantly higher systolic blood pressure and augmentation index (an indicator of arterial stiffness) compared to non-GDM pregnancies ⁵⁴⁰. The association between arterial stiffness and development of diabetes is thought to be due to a few different mechanisms. Hyperglycaemia, hyperinsulinemia, oxidative stress and inflammation are thought to alter extracellular matrix and arterial remodelling, hence vascular tone ^{539, 540}. Women who develop GDM are likely to have poor preconception metabolic health and are more likely to be obese⁵⁴¹. Therefore, while there may already be metabolic dysfunction pre-pregnancy, the hemodynamic changes that occur during pregnancy may place additional stress on maternal physiology, leading to accelerated vascular damage and β -cell dysfunction that promote

GDM. Hence, GDM status may be a sensitive indicator of poor cardiometabolic health in young women who would not conventionally be assessed for CVD at such an early stage in life.

Obesity and SEI as mediators

Obesity

We found that the associations between GDM in pregnancy and cardiovascular risk factors in women and their children were mediated by obesity. This is an important mediator of developing GDM in women who are young without history of familial diabetes. GDM has been associated with an increased risk of CVD in overweight women (BMI 25-29) but not in women with healthy weight ⁵⁴². Women who develop GDM are likely to have entered pregnancy obese/overweight and these women are more likely to exhibit components of metabolic syndrome ⁵⁴³. In the SCOPE international study which included 5,530 low risk nulliparous women recruited in early pregnancy, women who had MetS in early pregnancy were at increased risk of developing preeclampsia and GDM even with adjustment for lifestyle factors⁵⁴⁴.

It has been shown that offspring exposed to GDM *in utero* had higher rates of abnormal glucose tolerance, overweight or obesity, higher blood pressure compared to those who were not exposed to GDM *in utero*, measured at 7 and 11 years' of age, even when adjusted for maternal obesity ²²⁶. At 15 years old, they were more likely to develop metabolic syndrome regardless of maternal obesity ⁵⁴⁵. Furthermore, offspring who were born large for gestational age and exposed to either GDM or maternal obesity *in utero* were at higher risk of developing metabolic syndrome in childhood ⁵⁴⁶. Children as young as two years old born to mothers who did not have GDM but were obese were more likely to be overweight or obese themselves ⁵⁴⁷.

415

Therefore, the association between maternal GDM and child cardio-metabolic outcomes may, at least in part, be attributed to maternal obesity, as well as dietary and exercise habits of the mother which would be similar in the children.

Tam *et al.* showed that offspring exposed to GDM *in utero* had higher rates of abnormal glucose tolerance, overweight or obesity, higher blood pressure compared to those who were not exposed to GDM *in utero*, measured at 7 and 11 years' of age, even when adjusted for maternal obesity ²²⁶. At 15 years old, they were more likely to develop metabolic syndrome regardless of maternal obesity ⁵⁴⁵. Boney *et al.* (2005) found that offspring who were born large for gestational age and exposed to either GDM or maternal obesity *in utero* were are a higher risk of developing metabolic syndrome in childhood ⁵⁴⁶. Zou *et al.* found that children as young as two years old born to mothers who did not have GDM but were obese were more likely to be overweight or obese themselves ⁵⁴⁷. Therefore, the association between maternal GDM and child cardiometabolic outcomes may be attributed by maternal obesity, as well as dietary and exercise habits of the mother which would be similar in the children.

SEI

Our cohort resides in one of the lowest socioeconomic local government areas in metropolitan Australia, with the mean SEI score 29 (SEI is calculated between 10 and 90 with 10 being the lowest). This cohort reports 10% higher rates of smoking, 21.2% higher rates of mental health and behavioural problems and 6.3% higher rates of diabetes than the Australia average ⁷². Therefore, it may be difficult to detect differences between groups due to their low SEI. The association between SEI and CVD is likely influenced by a combination of biological, behavioural and psychosocial risk factors. It has been shown that low to middle SES groups have a higher rate of CVD mortality even after adjustment for medications and CVD risk factors. Cullinan *et al.* (2012)

found that there was a high prevalence of GDM in women from the lowest socioeconomic group compared to the highest ⁵⁴⁸. Alvarez-Galvez *et al.* found that poverty influences the effect of BMI on depression in European cohorts and suggested that the relationship between obesity and depression is worsened by SES ⁵⁴⁹. Therefore, while it is difficult to engage low socioeconomic cohorts in clinical research, it is valuable to investigate the effect of GDM on maternal and child health in our STOP cohort and similarly disadvantaged communities as they will likely benefit from early screening and targeted preventive measures.

Breastfeeding and reduced cardiovascular risk factors in those exposed to GDM

The findings of this thesis reveal that breastfeeding may be beneficial for women with history of a pregnancy complication, including women with a history of GDM. Development of pregnancy complications may be mediated by genetic and lifestyle factors, including poor lifestyle and diet which contributes to poor metabolic health before pregnancy. When women with poor metabolic health become pregnant, this acts as a 'second hit' for CVD in these women even prior to phenotypic expression of symptoms ²²⁷. However, it is thought that breastfeeding could promote a reduction in the metabolic changes that occur during pregnancy, including a reduction in triglycerides, serum insulin and glucose, which are all precursors for T2DM ⁵⁵⁰. Lactation is known to improve insulin sensitivity and glucose tolerance. Women from the SWIFT cohort who experienced GDM but breastfed for at least 6 months had decreased triglycerides and reduced lipogenesis and an improvement in glycolysis at 1-2 years postpartum even with adjustment for maternal BMI and other covariates⁵⁵¹. The increased energy expenditure during lactation facilitates weight loss and healthy weight retention, therefore benefiting both women with GDM and those who are

overweight/obese ⁵⁵¹⁻⁵⁵³. Therefore, it will be beneficial to promote breastfeeding in these women to reduce risk of CVD later in life.

Strengths and limitations

The fact that this thesis includes both a series of systematic reviews and meta -analyses and original research is an important strength. The systematic review and meta-analyses series is the first to observe all conventional CVD risk factors in women who experienced GDM and their children exposed to GDM *in utero*, rather than focusing on a few risk factors. The analysis on cardiovascular risk factors in women with a history of GDM is robust, based on evidence from 139 studies. Furthermore, subgroup analysis demonstrated that blood pressure, fasting glucose, triglycerides and risk of metabolic syndrome are already elevated as early as <1 year postpartum, thereby highlighting the importance of early screening for CVD risk factors after a pregnancy complicated by GDM. This timeline of risk factor stratification may be beneficial in preventative treatment for cardiovascular disease, especially in young women. Our analysis of BMI z-score in children with a history of GDM *in utero* includes 31,485 participants. Furthermore, it also included an analysis of cord blood metabolites such as cholesterol, LDL, HDL and glucose, which provide an understanding of the intrauterine environment to which the fetus is exposed.

However, there are limitations. Both GDM and CVD are multifactorial diseases which are influenced by genetic and environmental factors. Therefore, it was not possible to adjust for such important variables due to the limitations in the data that were available. In particular, for the analyses on children exposed to GDM *in utero*, subgroup analyses for sex and age were not possible due to limited data. Substantial heterogeneity was seen for some outcomes throughout all meta-analyses, based on I² and Chi² values. Heterogeneity was explored through subgroup analyses where practical. However, we attribute any heterogeneity in analyses due to differences in study design such as definition of GDM, time of postpartum screening and methodology.

Our observational follow-up study had some strengths. The original STOP cohort comprised only nulliparous women without serious medical conditions or high-risk pregnancy due to underlying conditions. The socioeconomic profile of the community and study participants render the findings valuable and generalizable to other communities with low socioeconomic status. Importantly, as the STOP study is longitudinal, spanning back to early in the index pregnancy, we were able to assess conventional and non-conventional cardiovascular risk factors in both women in early gestation, late gestation and at 3 years postpartum to allow for a more complete assessment of cardiovascular health from conception to 3 years. We were able to assess hemodynamic and anthropometric markers in STOP children at a young age, including hemodynamic variables that are seldom reported in the literature for this cohort.

A weakness of the STOP follow-up study is the participant loss to attrition. Only approximately ¹/₄ of participants from the original STOP study attended the 3 year follow-up. Majority of this loss was due to loss of contact (primarily due to the low SES community). Hence, there may be risk of selection bias, particularly as those who attended the 3 year follow-up had significantly higher SEI, albeit still relatively low, than those who did not. The small sample size likely attributes to the relatively small, but statistically significant, differences seen in the analyses. As argued earlier this may also be attributable to the SES of the cohort. However, it may be that 3 years postpartum may be very early in the progression to cardiovascular disease making it more difficult to detect differences between pregnancy outcome groups. However, the data provide a baseline from which to assess these women in future to ascertain whether these small differences increase in magnitude over time. Furthermore, as pregnancy complications are not mutually exclusive, both GDM and non-GDM groups consisted of women who experienced other pregnancy complications, such as preeclampsia, gestational hypertension, small for gestational age delivery, and preterm delivery. These pregnancy complications confer their own individual risk of developing cardiovascular disease and

metabolic syndrome ^{74, 227, 494}. We were unable to control for any variance in this, other than conducting an exploratory analysis assessing women with a history of GDM and their children exposed to GDM *in utero* compared to those who were exposed to an uncomplicated pregnancy at index pregnancy.

Future direction and recommendations

To validate the findings of this thesis, a larger cohort is required. We were able to find small, albeit significant differences, throughout our analyses. The study needs replication in a larger population, ideally across socioeconomic strata, to identify a true association between maternal GDM and subsequent cardiovascular outcomes.

Future research should focus on risk factors that are apparent in young women who are planning pregnancy, such as obesity, in order to mitigate risk of developing GDM. There are no guidelines in Australia for CVD risk factor assessment in individuals younger than 30 years. Therefore, implementing guidelines for CVD risk in young women which incorporate risk mitigation and management of pregnancy complications should be considered. These guidelines should also educate on child health after being exposed to a pregnancy complication *in utero*.

It has previously been shown that postpartum diabetes screening in Australian women with a history of GDM was undertaken in just 66% which was even lower for women who were indigenous (approximately 30%)⁵⁵⁴. Evidence suggests that postpartum lifestyle interventions (i.e. diet and exercise) for women with a history of GDM within 3 years postpartum can reduce the development of diabetes by 43%⁵⁵⁵. Therefore, it is necessary to educate women on the importance of regular oral glucose tolerance testing every 2-3 years after a GDM pregnancy and maintaining a healthy lifestyle to significantly reduce their risk of CVD. A nurse practitioner led postpartum outpatient clinic for women after severe pregnancy complications

(including women who developed GDM in pregnancy who were on insulin or metformin therapy) is now provided through the Lyell McEwin Hospital for women who are referred for counselling at 6 months, 1 year and 5 years postpartum. This service provides a comprehensive assessment of maternal demographics, medical history and biochemical testing to ascertain cardiovascular risk status and provide advice on how to reduce this risk through healthy lifestyle change and further referral to GP and nutritional planning⁵⁵⁶.

Final remarks

Pregnancy complications, including GDM, signal risk for future cardio-metabolic disease in both women and children. Preconception planning and assessing metabolic health, particularly mitigation of obesity and poor lifestyle factors, may reduce risk of developing GDM. Postpartum intervention for women with pregnancy complications is necessary to reduce the risk of cardio-metabolic disease later in life. This should be offered through postpartum interventions such as women's heart health clinics and regular monitoring provided by the GP, including educating women on the importance of a healthy lifestyle for a happy, fulfilling life for both mother and child.

References:

- 1. CHU SY, CALLAGHAN WM, KIM SY, et al. Maternal Obesity and Risk of Gestational Diabetes Mellitus. Diabetes Care 2007;30:2070-76.
- 2. WELFARE AIOHA. Incidence of gestational diabetes in Australia. Canberra: AIHW, 2019.
- 3. NANKERVIS A MH, MOSES R, ROSS G, CALLAWAY L, PORTER C ET AL. ADIPS consensus guidelines for the testing and diagnosis of gestational diabetes mellitus in Australia. In: Society. ADiP, ed. Sydney, 2014.
- 4. AIHW. Incidence of gestational diabetes in Australia. Canberra: AIHW, 2019 (vol CVD 85
-).
- 5. BUCHANAN TA, XIANG AH, PAGE KA. Gestational diabetes mellitus: risks and management during and after pregnancy. Nature reviews Endocrinology 2012;8:639-49.
- 6. GROUP HSCR. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: associations with neonatal anthropometrics. Diabetes 2009;58:453-59.
- 7. ABELL SK, DE COURTEN B, BOYLE JA, TEEDE HJ. Inflammatory and Other Biomarkers: Role in Pathophysiology and Prediction of Gestational Diabetes Mellitus. Int J Mol Sci 2015;16:13442-73.
- 8. NAPSO T, YONG HEJ, LOPEZ-TELLO J, SFERRUZZI-PERRI AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front Physiol 2018;9:1091.
- 9. FASSHAUER M, BLÜHER M, STUMVOLL M. Adipokines in gestational diabetes. Lancet Diabetes Endocrinol 2014;2:488-99.
- 10. BUTLER AE, CAO-MINH L, GALASSO R, et al. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia 2010;53:2167-76.
- 11. CATALANO PM, DRAGO NM, AMINI SB. Longitudinal changes in pancreatic beta-cell function and metabolic clearance rate of insulin in pregnant women with normal and abnormal glucose tolerance. Diabetes Care 1998;21:403-8.
- 12. DA ROCHA AF, LIBONI TF, KURAUTI MA, et al. Tumor necrosis factor alpha abolished the suppressive effect of insulin on hepatic glucose production and glycogenolysis stimulated by cAMP. Pharmacol Rep 2014;66:380-5.
- 13. OLSON AL. Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN Mol Biol 2012;2012:856987.
- 14. RUAN H, LODISH HF. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factoralpha. Cytokine Growth Factor Rev 2003;14:447-55.
- 15. SOLOMON SS, ODUNUSI O, CARRIGAN D, et al. TNF-alpha inhibits insulin action in liver and adipose tissue: A model of metabolic syndrome. Horm Metab Res 2010;42:115-21.
- 16. REHMAN K, AKASH MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci 2016;23:87.
- 17. IQBAL J, MASCARENO E, CHUA S, HUSSAIN MM. Leptin-mediated differential regulation of microsomal triglyceride transfer protein in the intestine and liver affects plasma lipids. J Biol Chem 2020;295:4101-13.
- 18. KARPICHEV IV, CORNIVELLI L, SMALL GM. Multiple regulatory roles of a novel Saccharomyces cerevisiae protein, encoded by YOL002c, in lipid and phosphate metabolism. J Biol Chem 2002;277:19609-17.
- 19. CONSIDINE RV, SINHA MK, HEIMAN ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996;334:292-5.
- 20. YAMAUCHI T, KAMON J, WAKI H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7:941-6.
- 21. YAMAUCHI T, KAMON J, MINOKOSHI Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002;8:1288-95.
- 22. NAYAK M, EEKHOFF ME, PEINHAUPT M, HEINEMANN A, DESOYE G, VAN POPPEL MN. Cytokines and their association with insulin resistance in obese pregnant women with different levels of physical activity. Cytokine 2016;77:72-8.
- 23. KORKMAZER E, SOLAK N. Correlation between inflammatory markers and insulin resistance in pregnancy. J Obstet Gynaecol 2015;35:142-5.
- 24. GEORGIOU HM, LAPPAS M, GEORGIOU GM, et al. Screening for biomarkers predictive of gestational diabetes mellitus. Acta Diabetol 2008;45:157-65.

- 25. LOWE LP, METZGER BE, LOWE WL, JR., DYER AR, MCDADE TW, MCINTYRE HD. Inflammatory mediators and glucose in pregnancy: results from a subset of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. J Clin Endocrinol Metab 2010;95:5427-34.
- 26. CHALLIS JR, LOCKWOOD CJ, MYATT L, NORMAN JE, STRAUSS JF, 3RD, PETRAGLIA F. Inflammation and pregnancy. Reprod Sci 2009;16:206-15.
- 27. KIM C. Maternal outcomes and follow-up after gestational diabetes mellitus. Diabet Med 2014;31:292-301.
- 28. AIHW. Cardiovascular diseases. Canberra, 2020 (vol CVD 83).
- 29. HAJAR R. Risk Factors for Coronary Artery Disease: Historical Perspectives. Heart views : the official journal of the Gulf Heart Association 2017;18:109-14.
- 30. FORD ES. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 2005;28:2745-9.
- 31. MCLAUGHLIN T, LAMENDOLA C, LIU A, ABBASI F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab 2011;96:E1756-60.
- 32. JUNG UJ, CHOI MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014;15:6184-223.
- 33. TAN HW, LIU X, BI XP, et al. IL-18 overexpression promotes vascular inflammation and remodeling in a rat model of metabolic syndrome. Atherosclerosis 2010;208:350-7.
- 34. BELLAMY L, CASAS JP, HINGORANI AD, WILLIAMS D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 2009;373:1773-9.
- 35. KRAMER CK, CAMPBELL S, RETNAKARAN R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia 2019;62:905-14.
- 36. PATHIRANA MM, LASSI Z, ALI A, ARSTALL M, ROBERTS CT, ANDRAWEERA PH. Cardiovascular risk factors in women with previous gestational diabetes mellitus: A systematic review and meta-analysis. Rev Endocr Metab Disord 2020.
- 37. *Diagnostic and statistical manual of mental disorders : DSM-5.* Washington, DC: American Psychiatric Association; Number of pages.
- 38. HUANG T, WANG T, ZHENG Y, et al. Association of Birth Weight With Type 2 Diabetes and Glycemic Traits: A Mendelian Randomization Study. JAMA Netw Open 2019;2:e1910915.
- 39. AIHW. Perinatal depression: data from the 2010 Australian National Infant Feeding Survey. Canberra: AIHW, 2012 (vol PHE 161).
- 40. OGBO FA, EASTWOOD J, HENDRY A, et al. Determinants of antenatal depression and postnatal depression in Australia. BMC Psychiatry 2018;18:49.
- 41. MÍGUEZ MC, VÁZQUEZ MB. Risk factors for antenatal depression: A review. World J Psychiatry 2021;11:325-36.
- 42. ISAACS AN, ENTICOTT J, MEADOWS G, INDER B. Lower Income Levels in Australia Are Strongly Associated With Elevated Psychological Distress: Implications for Healthcare and Other Policy Areas. Frontiers in psychiatry 2018;9:536-36.
- 43. MOULTON CD, PICKUP JC, ISMAIL K. The link between depression and diabetes: the search for shared mechanisms. Lancet Diabetes Endocrinol 2015;3:461-71.
- 44. OSMOND C, BARKER DJ. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ Health Perspect 2000;108 Suppl 3:545-53.
- 45. BARKER DJ. Fetal origins of coronary heart disease. BMJ 1995;311:171-4.
- 46. LANDON MB, RICE MM, VARNER MW, et al. Mild gestational diabetes mellitus and long-term child health. Diabetes care 2015;38:445-52.
- 47. FANG J, MADHAVAN S, ALDERMAN MH. The influence of maternal hypertension on low birth weight: differences among ethnic populations. Ethn Dis 1999;9:369-76.
- 48. BARKER DJ. The origins of the developmental origins theory. J Intern Med 2007;261:412-7.
- MITANCHEZ D, YZYDORCZYK C, SIDDEEK B, BOUBRED F, BENAHMED M, SIMEONI U. The offspring of the diabetic mother – Short- and long-term implications. Best Practice & Research Clinical Obstetrics & Gynaecology 2015;29:256-69.
- 50. PETTITT DJ, NELSON RG, SAAD MF, BENNETT PH, KNOWLER WC. Diabetes and Obesity in the Offspring of Pima Indian Women With Diabetes During Pregnancy. Diabetes Care 1993;16:310-14.

- 51. COLES N, PATEL BP, BIRKEN C, HANLEY AJ, RETNAKARAN R, J KH. Determinants of insulin resistance in children exposed to gestational diabetes in utero. Pediatr Diabetes 2020;21:1150-58.
- 52. ACETI A, SANTHAKUMARAN S, LOGAN KM, et al. The diabetic pregnancy and offspring blood pressure in childhood: a systematic review and meta-analysis. Diabetologia 2012;55:3114-27.
- 53. AGBAJE AO, BARKER AR, TUOMAINEN TP. Arterial stiffness in adolescence predicts elevated blood pressure in young adulthood: the ALSPAC study. European Heart Journal 2021;42.
- 54. BLOTSKY AL, RAHME E, DAHHOU M, NAKHLA M, DASGUPTA K. Gestational diabetes associated with incident diabetes in childhood and youth: a retrospective cohort study. Canadian Medical Association Journal 2019;191:E410-E17.
- 55. BIDER-CANFIELD Z, MARTINEZ MP, WANG X, et al. Maternal obesity, gestational diabetes, breastfeeding and childhood overweight at age 2 years. Pediatr Obes 2017;12:171-78.
- 56. SHOKRY E, MARCHIORO L, UHL O, et al. Impact of maternal BMI and gestational diabetes mellitus on maternal and cord blood metabolome: results from the PREOBE cohort study. Acta Diabetol 2019;56:421-30.
- 57. ORGANISATION WH. Exclusive breastfeeding for six months best for babies everywhere. Geneva: WHO, 2011.
- 58. MARTIN CR, LING PR, BLACKBURN GL. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients 2016;8.
- 59. RAMEEZ RM, SADANA D, KAUR S, et al. Association of Maternal Lactation With Diabetes and Hypertension: A Systematic Review and Meta-analysis. JAMA Netw Open 2019;2:e1913401.
- 60. YAN J, LIU L, ZHU Y, HUANG G, WANG PP. The association between breastfeeding and childhood obesity: a metaanalysis. BMC Public Health 2014;14:1267.
- 61. LAURITZEN L, BRAMBILLA P, MAZZOCCHI A, HARSLØF LB, CIAPPOLINO V, AGOSTONI C. DHA Effects in Brain Development and Function. Nutrients 2016;8.
- 62. ZORNOZA-MORENO M, FUENTES-HERNÁNDEZ S, CARRIÓN V, et al. Is low docosahexaenoic acid associated with disturbed rhythms and neurodevelopment in offsprings of diabetic mothers? Eur J Clin Nutr 2014;68:931-7.
- 63. THOMAS BA, GHEBREMESKEL K, LOWY C, OFFLEY-SHORE B, CRAWFORD MA. Plasma fatty acids of neonates born to mothers with and without gestational diabetes. Prostaglandins Leukot Essent Fatty Acids 2005;72:335-41.
- 64. DEVARSHI PP, GRANT RW, IKONTE CJ, HAZELS MITMESSER S. Maternal Omega-3 Nutrition, Placental Transfer and Fetal Brain Development in Gestational Diabetes and Preeclampsia. Nutrients 2019;11:1107.
- 65. DEVARSHI PP, GRANT RW, IKONTE CJ, HAZELS MITMESSER S. Maternal Omega-3 Nutrition, Placental Transfer and Fetal Brain Development in Gestational Diabetes and Preeclampsia. Nutrients 2019;11.
- 66. TALGE NM, NEAL C, GLOVER V. Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry 2007;48:245-61.
- 67. WANG T, LIU K, LI Z, et al. Prevalence of attention deficit/hyperactivity disorder among children and adolescents in China: a systematic review and meta-analysis. BMC Psychiatry 2017;17:32.
- 68. KRZECZKOWSKI JE, LAU A, FITZPATRICK J, et al. Maternal Metabolic Complications in Pregnancy and Offspring Behavior Problems at 2 Years of Age. Matern Child Health J 2019;23:746-55.
- 69. ALVES JM, LUO S, CHOW T, HERTING M, XIANG AH, PAGE KA. Sex differences in the association between prenatal exposure to maternal obesity and hippocampal volume in children. Brain Behav 2020;10:e01522.
- 70. LYNCH KM, ALVES JM, CHOW T, et al. Selective morphological and volumetric alterations in the hippocampus of children exposed in utero to gestational diabetes mellitus. Human brain mapping 2021;42:2583-92.
- 71. PHIDU. Social Health Atlas: 2021 Census data by Socioeconomic Disadvantage of Area. . In: PHIDU, ed. Adelaide: Torrens University, 2021.
- 72. PHN. Northern Adelaide:Undesrtanding the Health of the Adelaide Reigion *Undesrtanding the Health of the Adelaide Reigion* Adelaide: Primary Health Network, 2018.
- 73. ANDRAWEERA PH, DEKKER G, LEEMAQZ S, et al. Effect of Birth Weight and Early Pregnancy BMI on Risk for Pregnancy Complications. Obesity (Silver Spring) 2019;27:237-44.
- 74. PLUMMER MD, ANDRAWEERA PH, GARRETT A, et al. Hypertensive disorders of pregnancy and later cardiovascular disease risk in mothers and children. J Dev Orig Health Dis 2020:1-6.
- 75. GARRETT A. The impact of intrauterine exposures on neurodevelopmental outcomes in 8–10 year old children within a disadvantaged population: The University of Adelaide, 2019.
- 76. ORGANIZATION WH. Cardiovascular diseases (CVD)*Cardiovascular diseases*. Geneva: World Health Organization, 2017.
- 77. Cardiovascular disease in women—a snapshot of national statistics. In: AIHW, ed. Canberra: AIHW, 2019.

- 78. ANDRAWEERA PH, DEKKER GA, ARSTALL M, BIANCO-MIOTTO T, ROBERTS CT. Complications of Pregnancy and Future Cardiovascular Risk. *Encylopedia of Cardiovascular Research and Medicine*. Netherlands: Oxford, 2018 (vol 1).
- 79. FEDERATION ID. IDF Diabetes Atlas. Belgium, Brussels: International Diabetes Federation, 2017 (vol 8th Edition).
- 80. COUSTAN DR, LOWE LP, METZGER BE, DYER AR, INTERNATIONAL ASSOCIATION OF D, PREGNANCY STUDY G. The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: paving the way for new diagnostic criteria for gestational diabetes mellitus. American journal of obstetrics and gynecology 2010;202:654.e1-54.e6546.
- 81. ZIMMET PZ, ALBERTI KG, SHAW JE. Mainstreaming the metabolic syndrome: a definitive definition. Med J Aust 2005;183:175-6.
- 82. CHEN Z, IONA A, PARISH S, et al. Adiposity and risk of ischaemic and haemorrhagic stroke in 0.5 million Chinese men and women: a prospective cohort study. Lancet Glob Health 2018;6:e630-e40.
- 83. LACEY B, LEWINGTON S, CLARKE R, et al. Age-specific association between blood pressure and vascular and nonvascular chronic diseases in 0.5 million adults in China: a prospective cohort study. Lancet Glob Health 2018;6:e641-e49.
- 84. MOHER D, LIBERATI A, TETZLAFF J, ALTMAN DG. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. BMJ 2009;339:b2535.
- 85. METZGER BE, GABBE SG, PERSSON B, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes care 2010;33:676.
- 86. WELLS G. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non randomised studies in metaanalyses. <u>http://www</u> ohri ca/programs/clinical_epidemiology/oxford asp 2001.
- 87. HAKKARAINEN H, HUOPIO H, CEDERBERG H, PAAKKONEN M, VOUTILAINEN R, HEINONEN S. Post-challenge glycemia during pregnancy as a marker of future risk of type 2 diabetes: a prospective cohort study. Gynecol Endocrinol 2015;31:573-7.
- 88. HAKKARAINEN H, HUOPIO H, CEDERBERG H, PAAKKONEN M, VOUTILAINEN R, HEINONEN S. The risk of metabolic syndrome in women with previous GDM in a long-term follow-up. Gynecol Endocrinol 2016;32:920-25.
- 89. HEIDA KY, FRANX A, VAN RIJN BB, et al. Earlier Age of Onset of Chronic Hypertension and Type 2 Diabetes Mellitus After a Hypertensive Disorder of Pregnancy or Gestational Diabetes Mellitus. Hypertension (0194911X) 2015;66:1116-22.
- 90. THOMANN R, ROSSINELLI N, KELLER U, et al. Differences in low-grade chronic inflammation and insulin resistance in women with previous gestational diabetes mellitus and women with polycystic ovary syndrome. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology 2008;24:199-206.
- 91. ANASTASIOU E, LEKAKIS JP, ALEVIZAKI M, et al. Impaired endothelium-dependent vasodilatation in women with previous gestational diabetes. Diabetes Care 1998;21:2111-15.
- 92. AKINCI B, CELTIK A, YENER S, YESIL S. Is fasting glucose level during oral glucose tolerance test an indicator of the insulin need in gestational diabetes? Diabetes Res Clin Pract 2008;82:219-25.
- 93. BANERJEE M, ANDERSON SG, MALIK RA, AUSTIN CE, CRUICKSHANK JK. Small artery function 2 years postpartum in women with altered glycaemic distributions in their preceding pregnancy. Clin Sci (Lond) 2012;122:53-61.
- 94. BENTLEY-LEWIS R, CLAGGETT B, LIU J, et al. Baseline characteristics and cardiovascular outcomes in women with a history of gestational diabetes in the evaluation of lixisenatide in acute coronary syndrome trial. Diabetes 2016;65:A356.
- 95. BO S, VALPREDA S, MENATO G, et al. Should we consider gestational diabetes a vascular risk factor? Atherosclerosis 2007;194:e72-9.
- 96. CALISKAN M, CAKLILI OT, CALISKAN Z, et al. Does gestational diabetes history increase epicardial fat and carotid intima media thickness? Echocardiography (Mount Kisco, NY) 2014;31:1182-7.
- 97. CARR DB, UTZSCHNEIDER KM, HULL RL, et al. Gestational diabetes mellitus increases the risk of cardiovascular disease in women with a family history of type 2 diabetes. Diabetes Care 2006;29:2078-83.
- 98. CELLINA G, LO CICERO G, BRINA A, ZANCHETTI A. Reversible alteration of myocardial function in gestational diabetes. Eur Heart J 1983;4:59-63.
- 99. CHARWAT-RESL S, YARRAGUDI R, HEIMBACH M, et al. Microvascular function in women with former gestational diabetes: A cohort study. Diabetes and Vascular Disease Research 2017;14:214-20.

- 100. DAVENPORT MH, GOSWAMI R, SHOEMAKER JK, MOTTOLA MF. Influence of hyperglycemia during and after pregnancy on postpartum vascular function. Am J Physiol Regul Integr Comp Physiol 2012;302:R768-75.
- 101. DAVIS CL, GUTT M, LLABRE MM, et al. History of gestational diabetes, insulin resistance and coronary risk. J Diabetes Complications 1999;13:216-23.
- 102. FAKHRZADEH H, ALATAB S, SHARIFI F, et al. Carotid intima media thickness, brachial flow mediated dilation and previous history of gestational diabetes mellitus. J Obstet Gynaecol Res 2012;38:1057-63.
- 103. FERRADA C, MOLINA M, CID L, RIEDEL G, FERRADA C, AREVALO R. [Relationship between gestational diabetes and metabolic syndrome]. Rev Med Chil 2007;135:1539-45.
- 104. FREIRE CM, NUNES MDO C, BARBOSA MM, et al. Gestational diabetes: a condition of early diastolic abnormalities in young women. J Am Soc Echocardiogr 2006;19:1251-6.
- 105. GUNDERSON EP, CHIANG V, PLETCHER MJ, et al. History of gestational diabetes mellitus and future risk of atherosclerosis in mid-life: the Coronary Artery Risk Development in Young Adults study. Journal of the American Heart Association 2014;3:e000490.
- 106. GUNDERSON EP, JACOBS DR, JR., CHIANG V, et al. Duration of lactation and incidence of the metabolic syndrome in women of reproductive age according to gestational diabetes mellitus status: a 20-Year prospective study in CARDIA (Coronary Artery Risk Development in Young Adults). Diabetes 2010;59:495-504.
- 107. HUNGER-DATHE W, MOSEBACH N, SAMANN A, WOLF G, MULLER UA. Prevalence of impaired glucose tolerance 6 years after gestational diabetes. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association 2006;114:11-7.
- 108. KO GTC, CHAN JCN, TSANG LWW, LI CY, COCKRAM CS. Glucose intolerance and other cardiovascular risk factors in Chinese women with a history of gestational diabetes mellitus. Australian and New Zealand Journal of Obstetrics and Gynaecology 1999;39:478-83.
- 109. KRISHNAVENI GV, HILL JC, VEENA SR, et al. Gestational diabetes and the incidence of diabetes in the 5 years following the index pregnancy in South Indian women. Diabetes Research & Clinical Practice 2007;78:398-404.
- 110. LEE H, JANG HC, PARK HK, METZGER BE, CHO NH. Prevalence of type 2 diabetes among women with a previous history of gestational diabetes mellitus. Diabetes Research & Clinical Practice 2008;81:124-29.
- 111. LEE V, BURWICK R, PILLIOD R, SHAFFER B, CHENG Y, CAUGHEY A. Outcomes of late preterm pregnancies complicated by gestational diabetes mellitus and polyhydramnios. American Journal of Obstetrics and Gynecology 2015;212:S352.
- 112. MADARÁSZ E, TAMÁS G, TABÁK AG, KERÉNYI Z. Carbohydrate metabolism and cardiovascular risk factors 4 years after a pregnancy complicated by gestational diabetes. Diabetes Research & Clinical Practice 2009;85:197-202.
- 113. MAI C, WANG B, WEN J, LIN X, NIU J. Lipoprotein-associated phospholipase A2 and AGEs are associated with cardiovascular risk factors in women with history of gestational diabetes mellitus. Gynecological Endocrinology 2014;30:241-44.
- 114. MEIER JJ, GALLWITZ B, ASKENAS M, et al. Secretion of incretin hormones and the insulinotropic effect of gastric inhibitory polypeptide in women with a history of gestational diabetes. Diabetologia 2005;48:1872-81.
- 115. MINOOEE S, RAMEZANI TEHRANI F, RAHMATI M, MANSOURNIA MA, AZIZI F. Diabetes incidence and influencing factors in women with and without gestational diabetes mellitus: A 15year population-based follow-up cohort study. Diabetes Research & Clinical Practice 2017;128:24-31.
- 116. MOLEDA P, FRONCZYK A, SAFRANOW K, MAJKOWSKA L. IS Uric Acid a Missing Link between Previous Gestational Diabetes Mellitus and the Development of Type 2 Diabetes at a Later Time of Life? PLoS One 2016;11:e0154921.
- 117. NOCTOR E, CROWE C, CARMODY LA, et al. Abnormal glucose tolerance post-gestational diabetes mellitus as defined by the International Association of diabetes and Pregnancy Study Groups criteria. European Journal of Endocrinology 2016;175:287-97.
- 118. NOUHJAH S, SHAHBAZIAN H, SHAHBAZIAN N, et al. Early postpartum metabolic syndrome in women with or without gestational diabetes: Results from Life after Gestational Diabetes Ahvaz cohort study. Diabetes and Metabolic Syndrome: Clinical Research and Reviews 2018;12:317-23.
- 119. RAUTIO N, JOKELAINEN J, KORPI-HYOVALTI E, et al. Lifestyle intervention in prevention of type 2 diabetes in women with a history of gestational diabetes mellitus: one-year results of the FIN-D2D project. J Womens Health (Larchmt) 2014;23:506-12.

- 120. ROCA-RODRIGUEZ MM, LOPEZ-TINOCO C, MURRI M, et al. Postpartum development of endothelial dysfunction and oxidative stress markers in women with previous gestational diabetes mellitus. J Endocrinol Invest 2014;37:503-9.
- 121. RYAN AS, MCLENITHAN JC, ZIETOWSKI GM. Accelerated metabolic susceptibility to type 2 diabetes in older women with a history of gestational diabetes. Endocrine Connections 2013;2:79-86.
- 122. SIMMONS D, KUMAR S, CROOK N, RUSH E. Diabetes among Māori women with self-reported past gestational diabetes mellitus in a New Zealand Māori community. Australian & New Zealand Journal of Obstetrics & Gynaecology 2017;57:599-603.
- 123. SRIHARAN M, REICHELT AJ, OPPERMAN MLR, et al. Total sialic acid and associated elements of the metabolic syndrome in women with and without previous gestational diabetes. Diabetes Care 2002;25:1331-35.
- 124. SUNG HC, SOO HK, YOUN BS, et al. High plasma retinol binding protein-4 and low plasma adiponectin concentrations are associated with severity of glucose intolerance in women with previous gestational diabetes mellitus. Journal of Clinical Endocrinology and Metabolism 2008;93:3142-48.
- 125. RAMEZANI TEHRANI F, HASHEMI S, HASHEMINIA M, AZIZI F. Follow-up of women with gestational diabetes in the Tehran Lipid and Glucose Study (TLGS): A population-based cohort study. Journal of Obstetrics & Gynaecology Research 2012;38:698-704.
- 126. VERMA A, BONEY CM, TUCKER R, VOHR BR. Insulin resistance syndrome in women with prior history of gestational diabetes mellitus. Journal of Clinical Endocrinology and Metabolism 2002;87:3227-35.
- 127. VILMI-KERALA T, PALOMAKI O, KANKKUNEN P, JUURINEN L, UOTILA J, PALOMAKI A. Oxidized LDL, insulin resistance and central blood pressure after gestational diabetes mellitus. Acta Obstet Gynecol Scand 2016;95:1425-32.
- 128. WINHOFER Y, KRSSAK M, WOLF P, et al. Hepatic rather than cardiac steatosis relates to glucose intolerance in women with prior gestational diabetes. PLoS One 2014;9:e91607.
- 129. ZAJDENVERG L, RODACKI M, FARIA JP, PIRES MLE, OLIVEIRA JEP, HALFOUN VLC. Precocious markers of cardiovascular risk and vascular damage in apparently healthy women with previous gestational diabetes. Diabetology and Metabolic Syndrome 2014;6.
- 130. LIM S, CHOI SH, PARK YJ, et al. Visceral fatness and insulin sensitivity in women with a previous history of gestational diabetes mellitus. Diabetes Care 2007;30:348-53.
- 131. ALBAREDA M, DE LEIVA A, CORCOY R. Reproducibility of diabetes mellitus diagnosis (WHO 1999 criteria) in women. Acta Diabetol 2004;41:14-7.
- 132. BENTLEY-LEWIS R, HUYNH J, XIONG G, et al. Metabolomic profiling in the prediction of gestational diabetes mellitus. Diabetologia 2015;58:1329-32.
- 133. HANNEMANN MM, LIDDELL WG, SHORE AC, CLARK PM, TOOKE JE. Vascular function in women with previous gestational diabetes mellitus. Journal of Vascular Research 2002;39:311-19.
- 134. HU J, BJÖRKLUND A, NYMAN M, GENNSER G. Mechanical properties of large arteries in mother and fetus during normal and diabetic pregnancy. Journal of Maternal-Fetal Investigation 1998;8:185-93.
- 135. LAUENBORG J, MATHIESEN E, HANSEN T, et al. The prevalence of the metabolic syndrome in a Danish population of women with previous gestational diabetes mellitus is three-fold higher than in the general population. Journal of Clinical Endocrinology and Metabolism 2005;90:4004-10.
- 136. LEKVA T, BOLLERSLEV J, GODANG K, et al. β-cell dysfunction in women with previous gestational diabetes is associated with visceral adipose tissue distribution. European Journal of Endocrinology 2015;173:63-70.
- 137. RETNAKARAN R, QI Y, CONNELLY PW, SERMER M, HANLEY AJ, ZINMAN B. The graded relationship between glucose tolerance status in pregnancy and postpartum levels of low-density-lipoprotein cholesterol and apolipoprotein B in young women: implications for future cardiovascular risk. J Clin Endocrinol Metab 2010;95:4345-53.
- 138. RUKSASAKUL R, THARAVANIJ T, SRITIPSUKHO P. Metabolic syndrome in Thai women previously diagnosed with gestational diabetes. Journal of the Medical Association of Thailand 2016;99:S195-S202.
- 139. TODORIC J, HANDISURYA A, PERKMANN T, et al. Circulating progranulin levels in women with gestational diabetes mellitus and healthy controls during and after pregnancy. European Journal of Endocrinology 2012;167:561-67.
- 140. WANG Y, CHEN L, HORSWELL R, et al. Racial differences in the association between gestational diabetes mellitus and risk of type 2 diabetes. J Womens Health (Larchmt) 2012;21:628-33.

- 141. UELAND T, MICHELSEN AE, AUKRUST P, HENRIKSEN T, BOLLERSLEV J, LEKVA T. Adipokines and macrophage markers during pregnancy-Possible role for sCD163 in prediction and progression of gestational diabetes mellitus. Diabetes Metab Res Rev 2019;35:e3114.
- 142. AJALA O, JENSEN LA, RYAN E, CHIK C. Women with a history of gestational diabetes on long-term follow up have normal vascular function despite more dysglycemia, dyslipidemia and adiposity. Diabetes Research & Clinical Practice 2015;110:309-14.
- 143. AKINCI B, CELTIK A, GENC S, et al. Evaluation of postpartum carbohydrate intolerance and cardiovascular risk factors in women with gestational diabetes. Gynecological Endocrinology 2011;27:361-67.
- 144. AKINCI B, CELTIK A, TUNALI S, et al. Circulating apelin levels are associated with cardiometabolic risk factors in women with previous gestational diabetes. Archives of Gynecology & Obstetrics 2014;289:787-93.
- 145. BOWES SB, HENNESSY TR, UMPLEBY AM, et al. Measurement of glucose metabolism and insulin secretion during normal pregnancy and pregnancy complicated by gestational diabetes. Diabetologia 1996;39:976-83.
- 146. BOZKURT L, GOBL CS, TURA A, et al. Fatty liver index predicts further metabolic deteriorations in women with previous gestational diabetes. PLoS One 2012;7:e32710.
- 147. COCILOVO G, TOMASI F, GUERRA S, ZAMPINI A, COCURULLO A. Risk factors associated with persistence of glucose intolerance one year after gestational diabetes. Diabete Metab 1990;16:187-91.
- 148. COUCH SC, PHILIPSON EH, BENDEL RB, WIJENDRAN V, LAMMI-KEEFE CJ. Maternal and cord plasma lipid and lipoprotein concentrations in women with and without gestational diabetes mellitus: Predictors of birth weight? Journal of Reproductive Medicine for the Obstetrician and Gynecologist 1998;43:816-22.
- 149. DEMIR T, AKINCI B, YENER S, ARGUN L, ÖZCAN M, ERASLAN S. Endothelium-Dependent Hemostatic Factors in Women with Previous Gestational. Turkish Journal of Endocrinology and Metabolism 2016;20.
- 150. DORNHORST A, BAILEY PC, ANYAOKU V, ELKELES RS, JOHNSTON DG, BEARD RW. Abnormalities of glucose tolerance following gestational diabetes. The Quarterly journal of medicine 1990;77:1219-28.
- 151. EROGLU D, ZEYNELOGLU HB. Metabolic disorders in patients with recent gestational diabetes mellitus. J Obstet Gynaecol Res 2006;32:408-15.
- 152. GADGIL MD, OZA-FRANK R, KANDULA NR, KANAYA AM. Type 2 diabetes after gestational diabetes mellitus in South Asian women in the United States. Diabetes/Metabolism Research and Reviews 2017;33.
- 153. KOUSTA E, LAWRENCE NJ, GODSLAND IF, et al. Insulin resistance and β-cell dysfunction in normoglycaemic European women with a history of gestational diabetes. Clinical Endocrinology 2003;59:289-97.
- 154. LEE AJ, HISCOCK RJ, WEIN P, WALKER SP, PERMEZEL M. Gestational diabetes mellitus: clinical predictors and longterm risk of developing type 2 diabetes: a retrospective cohort study using survival analysis. Diabetes Care 2007;30:878-83.
- 155. LINNE Y, BARKELING B, ROSSNER S. Natural course of gestational diabetes mellitus: long term follow up of women in the SPAWN study. BJOG : an international journal of obstetrics and gynaecology 2002;109:1227-31.
- 156. MAGENHEIM R, EL HADJ OTHMANE T, SCHÄFER-GRAF UM, et al. Arterial stiffness of young women with previous gestational diabetes. Archives of Gynecology and Obstetrics 2010;282:S146-S47.
- 157. MCLACHLAN KA, ALFORD FP. The impact of acute elevation of non-esterified fatty acids on insulin sensitivity and secretion in women with former gestational diabetes. Clinical Endocrinology 2005;62:79-84.
- 158. MORBIDUCCI U, DI BENEDETTO G, KAUTZKY-WILLER A, DERIU MA, PACINI G, TURA A. Identification of a model of nonesterified fatty acids dynamics through genetic algorithms: The case of women with a history of gestational diabetes. Computers in Biology and Medicine 2011;41:146-53.
- 159. OSEI K, GAILLARD TR, SCHUSTER DP. History of gestational diabetes leads to distinct metabolic alterations in nondiabetic African-American women with a parental history of type 2 diabetes. Diabetes Care 1998;21:1250-57.
- 160. PIMENTA WP, CALDERON IMP, CRUZ NS, SANTOS ML, ARAGON FF, PADOVANI CR. Subclinical abnormalities of glucose metabolism in Brazilian women with a history of gestational diabetes mellitus. Acta Obstetricia et Gynecologica Scandinavica 2004;83:1152-58.
- 161. PRIKOSZOVICH T, WINZER C, SCHMID AI, et al. Body and liver fat mass rather than muscle mitochondrial function determine glucose metabolism in women with a history of gestational diabetes mellitus. Diabetes Care 2011;34:430-36.
- 162. RAWAL S, TSAI MY, HINKLE SN, et al. A longitudinal study of thyroid markers across pregnancy and the risk of gestational diabetes. Journal of Clinical Endocrinology and Metabolism 2018;103:2447-56.

- 163. RIVAS A, LANDON M, GAILLARD T, SCHUSTER D, OSEI K. Awareness of risk factors for type 2 diabetes in women with current and former gestational diabetes mellitus (GDM): Implications for future primary diabetes prevention. Diabetes and Metabolic Syndrome: Clinical Research and Reviews 2010;4:89-94.
- 164. RYAN EA, IMES S, LIU D, et al. Defects in insulin secretion and action in women with a history of gestational diabetes. Diabetes 1995;44:506-12.
- 165. SEGHIERI G, TESI F, BIANCHI L, et al. Taurine in women with a history of gestational diabetes. Diabetes Research & Clinical Practice 2007;76:187-92.
- 166. SHEN Y, WANG P, WANG L, et al. Gestational diabetes with diabetes and prediabetes risks: a large observational study. Eur J Endocrinol 2018;179:51-58.
- 167. SIMMONS D, KUMAR S, CROOK N, RUSH E. Diabetes among Maori women with self-reported past gestational diabetes mellitus in a New Zealand Maori community. Aust N Z J Obstet Gynaecol 2017;57:599-603.
- 168. TOBIAS DK, STUART JJ, SHANSHAN L, et al. Association of History of Gestational Diabetes With Long-term Cardiovascular Disease Risk in a Large Prospective Cohort of US Women. JAMA Internal Medicine 2017;177:1735-42.
- 169. VIGNEAULT J, LEMIEUX S, GARNEAU V, WEISNAGEL SJ, TCHERNOF A, ROBITAILLE J. Association between metabolic deteriorations and prior gestational diabetes according to weight status. Obesity (Silver Spring) 2015;23:345-50.
- 170. VITORATOS N, SALAMALEKIS E, KASSANOS D, et al. Maternal plasma leptin levels and their relationship to insulin and glucose in gestational-onset diabetes. Gynecol Obstet Invest 2001;51:17-21.
- 171. WANG YM, ZHAO LH, SU JB, et al. Glycemic variability in normal glucose tolerance women with the previous gestational diabetes mellitus. Diabetology and Metabolic Syndrome 2015;7.
- 172. WENDER-OZEGOWSKA E, SPORNA M, ZAWIEJSKA A, SPORNA A, BRAZERT J. Components of metabolic syndrome in women after gestational diabetes. Polskie Archiwum Medycyny Wewnetrznej 2007;117:457-62.
- 173. WINZER C, WAGNER O, FESTA A, et al. Plasma adiponectin, insulin sensitivity, and subclinical inflammation in women with prior gestational diabetes mellitus. Diabetes Care 2004;27:1721-27.
- 174. KJOS SL, BUCHANAN TA, MONTORO M, COULSON A, MESTMAN JH. Serum lipids within 36 mo of delivery in women with recent gestational diabetes. Diabetes 1991;40:142-46.
- 175. FERRAZ TB, MOTTA RS, FERRAZ CL, CAPIBARIBE DM, FORTI AC, CHACRA AR. C-reactive protein and features of metabolic syndrome in Brazilian women with previous gestational diabetes. Diabetes Research & Clinical Practice 2007;78:23-29.
- 176. SECK A, HICHAMI A, DOUCOURE S, et al. Th1/Th2 Dichotomy in Obese Women with Gestational Diabetes and Their Macrosomic Babies. J Diabetes Res 2018;2018:8474617.
- 177. BEHBOUDI-GANDEVANI S, RAMEZANI TEHRANI F, RAHMATI M, AMIRI M, AZIZI F. Trend of various adiposity indices in women with and without history of gestational diabetes: a population-based cohort study. BMC Endocr Disord 2019;19:24.
- 178. HAN KT, CHO GJ, KIM EH. Evaluation of the Association between Gestational Diabetes Mellitus at First Pregnancy and Cancer within 10 Years Postpartum Using National Health Insurance Data in South Korea. Int J Environ Res Public Health 2018;15.
- 179. BENTLEY-LEWIS R, POWE C, ANKERS E, WENGER J, ECKER J, THADHANI R. Effect of race/ethnicity on hypertension risk subsequent to gestational diabetes mellitus. The American journal of cardiology 2014;113:1364-70.
- 180. RETNAKARAN R, QI Y, SERMER M, CONNELLY PW, HANLEY AJ, ZINMAN B. Beta-cell function declines within the first year postpartum in women with recent glucose intolerance in pregnancy. Diabetes Care 2010;33:1798-804.
- 181. BENJAMIN E, WINTERS D, MAYFIELD J, GOHDES D. Diabetes in pregnancy in Zuni Indian women: Prevalence and subsequent development of clinical diabetes after gestational diabetes. Diabetes Care 1993;16:1231-35.
- 182. CHEUNG NW, LIH A, LAU SM, PARK K, PADMANABHAN S, MCELDUFF A. Gestational diabetes: a red flag for future Type 2 diabetes in pregnancy? A retrospective analysis. Diabetic Medicine 2015;32:1167-71.
- 183. DALY B, TOULIS KA, THOMAS N, et al. Increased risk of ischemic heart disease, hypertension, and type 2 diabetes in women with previous gestational diabetes mellitus, a target group in general practice for preventive interventions: A population-based cohort study. PLoS Medicine 2018;15.
- 184. PERSSON M, WINKVIST A, MOGREN I. Lifestyle and health status in a sample of Swedish women four years after pregnancy: A comparison of women with a history of normal pregnancy and women with a history of gestational diabetes mellitus. BMC Pregnancy and Childbirth 2015;15.

- 185. PIRKOLA J, POUTA A, BLOIGU A, et al. Prepregnancy overweight and gestational diabetes as determinants of subsequent diabetes and hypertension after 20-year follow-up. The Journal of clinical endocrinology and metabolism 2010;95:772-8.
- 186. TURA A, BENEDETTO GD, MORBIDUCCI U, et al. Non-esterified fatty acids dynamics during an oral glucose tolerance test in women with a history of gestational diabetes. Diabetologia 2009;52:S32-S33.
- 187. STUEBE AM, MANTZOROS C, KLEINMAN K, et al. Gestational glucose tolerance and maternal metabolic profile at 3 years postpartum. Obstet Gynecol 2011;118:1065-73.
- 188. SHOSTROM DCV, SUN Y, OLESON JJ, SNETSELAAR LG, BAO W. History of gestational diabetes mellitus in relation to cardiovascular disease and cardiovascular risk factors in US women. Frontiers in Endocrinology 2017;8.
- 189. SOKUP A, GÓRALCZYK B, GÓRALCZYK K, ROSC D. Triglycerides as an early pathophysiological marker of endothelial dysfunction in nondiabetic women with a previous history of gestational diabetes. Acta Obstetricia et Gynecologica Scandinavica 2012;91:182-88.
- 190. SOKUP A, RUSZKOWSKA B, GÓRALCZYK B, et al. Elevation of sE-selectin levels 2-24 months following gestational diabetes is associated with early cardiometabolic risk in nondiabetic women. International Journal of Endocrinology 2012;2012.
- 191. WANG H, SHE G, ZHOU W, LIU K, MIAO J, YU B. Expression profile of circular RNAs in placentas of women with gestational diabetes mellitus. Endocr J 2019;66:431-41.
- 192. OZUGUZ U, ISIK S, BERKER D, et al. Gestational diabetes and subclinical inflammation: evaluation of first year postpartum outcomes. Diabetes Res Clin Pract 2011;94:426-33.
- 193. Рокпорек C, Sobolewski P, Getachew R, Paul A, Boura J, Ogunyemi D. Dietary intake patterns and insulin resistance in women with a history of gestational diabetes in the National Health and Nutrition Examination Survey (NHANES) 2000-2010. American Journal of Obstetrics and Gynecology 2015;212:S308.
- 194. SARTORE G, DALFRÀ M, BARISON A, et al. Plasma phospholipid fatty acid composition and desaturases indices in women with gestational diabetes mellitus before and after delivery. Diabetologia 2011;54:S481-S82.
- 195. TEHRANI FR, HASHEMI S, HASHEMINIA M, AZIZI F. Follow-up of women with gestational diabetes in the Tehran Lipid and Glucose Study (TLGS): A population-based cohort study. Journal of Obstetrics and Gynaecology Research 2012;38:698-704.
- 196. TAM WH, MA RC, YANG X, et al. Prediction of women's long-term cardiometabolic risks using glycemic indices during pregnancy. J Obstet Gynaecol Res 2013;39:484-91.
- 197. RETNAKARAN R, QI Y, SERMER M, CONNELLY PW, HANLEY AJ, ZINMAN B. The postpartum cardiovascular risk factor profile of women with isolated hyperglycemia at 1-hour on the oral glucose tolerance test in pregnancy. Nutr Metab Cardiovasc Dis 2011;21:706-12.
- 198. KING KB, GERICH JE, GUZICK DS, KING KU, MCDERMOTT MP. Is a history of gestational diabetes related to risk factors for coronary heart disease? Research in nursing & health 2009;32:298-306.
- 199. TAM WH, MA RC, YANG X, et al. Cardiometabolic risk in Chinese women with prior gestational diabetes: a 15year follow-up study. Gynecol Obstet Invest 2012;73:168-76.
- 200. PACINI G, TURA A, WINHOFER Y, KAUTZKY-WILLER A. Incretin effect in women with former gestational diabetes within a short period after delivery. International Journal of Endocrinology 2012;2012.
- 201. TURA A, MARI A, WINZER C, KAUTZKY-WILLER A, PACINI G. Impaired beta-cell function in lean normotolerant former gestational diabetic women. Eur J Clin Invest 2006;36:22-8.
- 202. XIANG AH, TAKAYANAGI M, BLACK MH, et al. Longitudinal changes in insulin sensitivity and beta cell function between women with and without a history of gestational diabetes mellitus. Diabetologia 2013;56:2753-60.
- 203. XIONG X, ELKIND-HIRSCH KE, XIE Y, et al. Periodontal disease as a potential risk factor for the development of diabetes in women with a prior history of gestational diabetes mellitus. Journal of Public Health Dentistry 2013;73:41-49.
- 204. AKINCI B, CELTIK A, YUKSEL F, et al. Increased osteoprotegerin levels in women with previous gestational diabetes developing metabolic syndrome. Diabetes Research & Clinical Practice 2011;91:26-31.
- 205. TUTINO GE, TAM WH, YANG X, CHAN JC, LAO TT, MA RC. Diabetes and pregnancy: perspectives from Asia. Diabet Med 2014;31:302-18.
- 206. ORGANIZATION WH. Noncommunicable diseases. Geneva World Health Organization 2018 (vol 2018).
- 207. PATHIRANA MM, LASSI ZS, ROBERTS CT, ANDRAWEERA PH. Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: systematic review and meta-analysis. J Dev Orig Health Dis 2020:1-18.

- 208. KAUL P, SAVU A, NERENBERG KA, et al. Impact of gestational diabetes mellitus and high maternal weight on the development of diabetes, hypertension and cardiovascular disease: a population-level analysis. Diabet Med 2015;32:164-73.
- 209. PACE R, BRAZEAU A-S, MELTZER S, RAHME E, DASGUPTA K. Conjoint Associations of Gestational Diabetes and Hypertension With Diabetes, Hypertension, and Cardiovascular Disease in Parents: A Retrospective Cohort Study. American journal of epidemiology 2017;186:1115-24.
- 210. CHU SY, CALLAGHAN WM, KIM SY, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 2007;30:2070-6.
- 211. RYCKMAN KK, SPRACKLEN CN, SMITH CJ, ROBINSON JG, SAFTLAS AF. Maternal lipid levels during pregnancy and gestational diabetes: a systematic review and meta-analysis. BJOG : an international journal of obstetrics and gynaecology 2015;122:643-51.
- 212. KJOS SL, PETERS RK, XIANG A, HENRY OA, MONTORO M, BUCHANAN TA. Predicting future diabetes in Latino women with gestational diabetes. Utility of early postpartum glucose tolerance testing. Diabetes 1995;44:586-91.
- 213. CHEUNG NW, BYTH K. Population health significance of gestational diabetes. Diabetes Care 2003;26:2005-9.
- 214. PLOWS JF, STANLEY JL, BAKER PN, REYNOLDS CM, VICKERS MH. The Pathophysiology of Gestational Diabetes Mellitus. Int J Mol Sci 2018;19.
- 215. PONS RS, ROCKETT FC, DE ALMEIDA RUBIN B, OPPERMANN MLR, BOSA VL. Risk factors for gestational diabetes mellitus in a sample of pregnant women diagnosed with the disease. Diabetology & Metabolic Syndrome 2015;7:A80-A80.
- 216. WU L, CUI L, TAM WH, MA RC, WANG CC. Genetic variants associated with gestational diabetes mellitus: a meta-analysis and subgroup analysis. Sci Rep 2016;6:30539.
- 217. ALAGEEL S, WRIGHT AJ, GULLIFORD MC. Changes in cardiovascular disease risk and behavioural risk factors before the introduction of a health check programme in England. Preventive medicine 2016;91:158-63.
- 218. BAPTISTE-ROBERTS K, BARONE BB, GARY TL, et al. Risk factors for type 2 diabetes among women with gestational diabetes: a systematic review. The American journal of medicine 2009;122:207-14 e4.
- 219. RATNER RE, CHRISTOPHI CA, METZGER BE, et al. Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions. J Clin Endocrinol Metab 2008;93:4774-9.
- 220. SEMENKOVICH CF. Insulin resistance and atherosclerosis. The Journal of clinical investigation 2006;116:1813-22.
- 221. RAFIEIAN-KOPAEI M, SETORKI M, DOUDI M, BARADARAN A, NASRI H. Atherosclerosis: process, indicators, risk factors and new hopes. International journal of preventive medicine 2014;5:927-46.
- 222. DI ANGELANTONIO E, SARWAR N, PERRY P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009;302:1993-2000.
- 223. MØRKEDAL B, ROMUNDSTAD PR, VATTEN LJ. Informativeness of indices of blood pressure, obesity and serum lipids in relation to ischaemic heart disease mortality: the HUNT-II study. Eur J Epidemiol 2011;26:457-61.
- 224. ANDRAWEERA PH, DEKKER GA, ARSTALL M, BIANCO-MIOTTO T, ROBERTS CT. Complications of Pregnancy and Future Cardiovascular Risk. *Encyclopedia of Cardiovascular Research and Medicine*, 2018.
- 225. METZGER BE, LOWE LP, DYER AR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 2008;358:1991-2002.
- 226. TAM WH, MA RCW, OZAKI R, et al. In Utero Exposure to Maternal Hyperglycemia Increases Childhood Cardiometabolic Risk in Offspring. Diabetes Care 2017;40:679-86.
- 227. ANDRAWEERA P, DEKKER, G., ARSTALL, M., BIANCO-MIOTTO, T., & ROBERTS, C. Complications of pregnancy and future cardiovascular risk. In: Sawyer IRVD, ed. *Encyclopedia of Cardiovascular Research and Medicine*. Netherlands: Oxford:Elsevier Inc., 2018.
- 228. MOHER D, LIBERATI A, TETZLAFF J, ALTMAN DG. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. PLoS medicine 2009;6:e1000097.
- 229. DRAHOTA ABE. RevMan Calculator: Cochrane.
- 230. WELLS GA SB, O'CONNELL D, PETERSON J, WELCH V, LOSOS M. Newcastle-Ottawa quality assessment scale. Ottawa Hospital Research Institute 2013.
- 231. BUZINARO EF, BERCHIERI CB, HADDAD AL, PADOVANI CR, PIMENTA WDE P. [Overweight in adolescent offspring of women with hyperglycemia during pregnancy]. Arq Bras Endocrinol Metabol 2008;52:85-92.
- 232. CATALANO PM, FARRELL K, THOMAS A, et al. Perinatal risk factors for childhood obesity and metabolic dysregulation. Am J Clin Nutr 2009;90:1303-13.

- 233. CHANG Y, CHEN X, ZHANG ZK. Intrauterine Exposure to Maternal Diabetes is Associated with Adiposity in Children at 6 Years of Age in China. Biomed Environ Sci 2015;28:140-2.
- 234. KRISHNAVENI GV, VEENA SR, JONES A, et al. Exposure to maternal gestational diabetes is associated with higher cardiovascular responses to stress in adolescent indians. J Clin Endocrinol Metab 2015;100:986-93.
- 235. PATEL S, FRASER A, SMITH GD, et al. Associations of gestational diabetes, existing diabetes, and glycosuria with offspring obesity and cardiometabolic outcomes. Diabetes care 2012;35:63-71.
- 236. TAM WH, MA RCW, YANG X, et al. Glucose intolerance and cardiometabolic risk in adolescents exposed to maternal gestational diabetes: A 15-year follow-up study. Diabetes care 2010;33:1382-84.
- 237. WRIGHT CS, RIFAS-SHIMAN SL, RICH-EDWARDS JW, TAVERAS EM, GILLMAN MW, OKEN E. Intrauterine exposure to gestational diabetes, child adiposity, and blood pressure. Am J Hypertens 2009;22:215-20.
- 238. PIRKOLA J, VAARASMAKI M, LEINONEN E, et al. Maternal type 1 and gestational diabetes: postnatal differences in insulin secretion in offspring at preschool age. Pediatr Diabetes 2008;9:583-9.
- 239. KRISHNAVENI GV, VEENA SR, HILL JC, KEHOE S, KARAT SC, FALL CH. Intrauterine exposure to maternal diabetes is associated with higher adiposity and insulin resistance and clustering of cardiovascular risk markers in Indian children. Diabetes care 2010;33:402-4.
- 240. LEE H, JANG HC, PARK HK, CHO NH. Early manifestation of cardiovascular disease risk factors in offspring of mothers with previous history of gestational diabetes mellitus. Diabetes Res Clin Pract 2007;78:238-45.
- 241. PAGE KA, ROMERO A, ENRIQUEZ F, XIANG AH, BUCHANAN TA. Increased fasting glucose levels in children exposed to gestational diabetes in utero. Diabetes 2013;62:A364.
- 242. TAM WH, MA RCW, YANG X, et al. Glucose intolerance and cardiometabolic risk in children exposed to maternal gestational diabetes mellitus in utero. Pediatrics 2008;122:1229-34.
- 243. TSADOK MA, FRIEDLANDER Y, PALTIEL O, et al. Obesity and blood pressure in 17-year-old offspring of mothers with gestational diabetes: insights from the Jerusalem Perinatal Study. Exp Diabetes Res 2011;2011:906154.
- 244. VÄÄRÄSMÄKI M, POUTA A, ELLIOT P, et al. Adolescent manifestations of metabolic syndrome among children born to women with gestational diabetes in a general-population birth cohort. American Journal of Epidemiology 2009;169:1209-15.
- 245. DAVIS JN, GUNDERSON EP, GYLLENHAMMER LE, GORAN MI. Impact of gestational diabetes mellitus on pubertal changes in adiposity and metabolic profiles in Latino offspring. J Pediatr 2013;162:741-5.
- 246. HOLDER T, GIANNINI C, SANTORO N, et al. A low disposition index in adolescent offspring of mothers with gestational diabetes: a risk marker for the development of impaired glucose tolerance in youth. Diabetologia 2014;57:2413-20.
- 247. KEARNEY M, PERRON J, MARC I, WEISNAGEL JS, TCHERNOF A, ROBITAILLE J. Association of prenatal exposure to gestational diabetes with offspring body composition and regional body-fat distribution. Diabetes 2017;66:A368.
- 248. PAGE KA, ROMERO A, BUCHANAN TA, XIANG AH. Gestational diabetes mellitus, maternal obesity, and adiposity in offspring. J Pediatr 2014;164:807-10.
- 249. WHITAKER RC, PEPE MS, SEIDEL KD, WRIGHT JA, KNOPP RH. Gestational diabetes and the risk of offspring obesity. Pediatrics 1998;101:E9.
- 250. BAPTISTE-ROBERTS K, NICHOLSON W, WANG N-Y, BRANCATI F. Gestational Diabetes and Subsequent Growth Patterns of Offspring: The National Collaborative Perinatal Project...[corrected] [published erratum appears in MATERN CHILD HEALTH J 2012; 16(1):266]. Maternal & Child Health Journal 2012;16:125-32.
- 251. LAWLOR DA, FRASER A, LINDSAY RS, et al. Association of existing diabetes, gestational diabetes and glycosuria in pregnancy with macrosomia and offspring body mass index, waist and fat mass in later childhood: findings from a prospective pregnancy cohort. Diabetologia 2010;53:89-97.
- 252. PAGE KA, ROMERO A, ENRIQUEZ I, CHIRIKIAN V, BUCHANAN TA, XIANG A. Increased central adiposity in hispanic children exposed to gestational diabetes in utero. Diabetes 2012;61:A517.
- 253. RETNAKARAN R, YE C, HANLEY A, et al. Effect of maternal gestational diabetes on the cardiovascular risk factor profile of infants at 1 year of age. Nutr Metab Cardiovasc Dis 2013;23:1175-81.
- 254. ESLAMIAN L, AKBARI S, MARSOOSI V, JAMAL A. Association between fetal overgrowth and metabolic parameters in cord blood of newborns of women with GDM. Minerva Med 2013;104:317-24.
- 255. JABER SM. Metabolic hormones profile in 2 weeks old healthy infants of diabetic mothers. Saudi Med J 2006;27:1338-45.

- 256. KÖNIG AB, JUNGINGER S, REUSCH J, LOUWEN F, BADENHOOP K. Gestational diabetes outcome in a single center study: Higher BMI in children after six months. Hormone and Metabolic Research 2014;46:804-09.
- 257. ZHAO P, LIU E, QIAO Y, et al. Maternal gestational diabetes and childhood obesity at age 9-11: results of a multinational study. Diabetologia 2016;59:2339-48.
- LI S, ZHU Y, YEUNG E, et al. Offspring risk of obesity in childhood, adolescence and adulthood in relation to gestational diabetes mellitus: a sex-specific association. International journal of epidemiology 2017;46:1533-41.
- 259. KRISHNAVENI GV, HILL JC, LEARY SD, et al. Anthropometry, glucose tolerance, and insulin concentrations in Indian children: relationships to maternal glucose and insulin concentrations during pregnancy. Diabetes care 2005;28:2919-25.
- 260. NEHRING I, CHMITORZ A, REULEN H, VON KRIES R, ENSENAUER R. Gestational diabetes predicts the risk of childhood overweight and abdominal circumference independent of maternal obesity. Diabet Med 2013;30:1449-56.
- 261. NIELSEN GL, DETHLEFSEN C, LUNDBYE-CHRISTENSEN S, PEDERSEN JF, MOLSTED-PEDERSEN L, GILLMAN MW. Adiposity in 277 young adult male offspring of women with diabetes compared with controls: a Danish population-based cohort study. Acta Obstet Gynecol Scand 2012;91:838-43.
- 262. PIRKOLA J, POUTA A, BLOIGU A, et al. Risks of overweight and abdominal obesity at age 16 years associated with prenatal exposures to maternal prepregnancy overweight and gestational diabetes mellitus. Diabetes care 2010;33:1115-21.
- 263. SILVERMAN BL, RIZZO TA, CHO NH, METZGER BE. Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diabetes care 1998;21 Suppl 2:B142-9.
- 264. VOHR BR, McGARVEY ST, GARCIA COLL C. Effects of maternal gestational diabetes and adiposity on neonatal adiposity and blood pressure. Diabetes care 1995;18:467-75.
- 265. VOHR BR, MCGARVEY ST, TUCKER R. Effects of maternal gestational diabetes on offspring adiposity at 4-7 years of age. Diabetes care 1999;22:1284-91.
- 266. FARFEL A, RABINOVITZ R, KAMPINO G, et al. Children of mothers with pre-gestational and gestational diabetes tend to be overweight at age 17. Hormone Research in Paediatrics 2013;80:414.
- 267. RUTKOWSKA J, BANDURSKA-STANKIEWICZ E, WIATR-BYKOWSKA D, MYSZKA-PODGÓRSKA K, KUGLARZ E, MATUSZEWSKI W. The growth patterns in children born to mothers with gestational diabetes mellitus. Diabetologia 2015;58:S488.
- 268. LE MOULLEC N, FIANU A, MAILLARD O, et al. Sexual dimorphism in the association between gestational diabetes mellitus and overweight in offspring at 5-7 years: The OBEGEST cohort study. PLoS ONE 2018;13:e0195531.
- 269. TENG ZJ, XIA MJ, QU CH, YU HX. Long-term risk of metabolic disorders in gestational diabetes mellitus mothers and offspring. Biomedical Research (India) 2017;28:4466-70.
- 270. LÓPEZ MORALES CM, BRITO ZURITA OR, GONZÁLEZ HEREDIA R, CRUZ LÓPEZ M, MÉNDEZ PADRÓN A, MATUTE BRISEÑO JA. Placental atherosclerosis and markers of endothelial dysfunction in infants born to mothers with gestational diabetes. Medicina Clinica 2016;147:95-100.
- 271. MIETTINEN HE, RONO K, KOIVUSALO SB, ERIKSSON JG, GYLLING H. Effect of gestational diabetes mellitus on newborn cholesterol metabolism. Atherosclerosis 2018;275:346-51.
- 272. CHANDLER-LANEY PC, BUSH NC, GRANGER WM, ROUSE DJ, MANCUSO MS, GOWER BA. Overweight status and intrauterine exposure to gestational diabetes are associated with children's metabolic health. Pediatr Obes 2012;7:44-52.
- 273. BORGOÑO CA, HAMILTON JK, YE C, et al. Determinants of insulin resistance in infants at age 1 year: impact of gestational diabetes mellitus. Diabetes care 2012;35:1795-97.
- 274. BOZKURT L, GÖBL CS, RAMI-MERHAR B, et al. The Cross-Link between Adipokines, Insulin Resistance and Obesity in Offspring of Diabetic Pregnancies. Hormone Research in Paediatrics 2016;86:300-08.
- 275. PLAGEMANN A, HARDER T, KOHLHOFF R, ROHDE W, DORNER G. Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int J Obes Relat Metab Disord 1997;21:451-6.
- 276. PLAGEMANN A, HARDER T, KOHLHOFF R, ROHDE W, DORNER G. Glucose tolerance and insulin secretion in children of mothers with pregestational IDDM or gestational diabetes. Diabetologia 1997;40:1094-100.
- 277. CLAUSEN TD, MATHIESEN ER, HANSEN T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes care 2008;31:340-6.

- 278. WILK M, HORODNICKA-JOZWA A, MOLEDA P, et al. Assessment of selected carbohydrate parameters in children exposed to gestational diabetes in utero. Neuro Endocrinol Lett 2015;36:504-10.
- 279. VISENTIN S, LONDERO AP, BELLAMIO B, et al. Fetal Endothelial Remodeling in Late-Onset Gestational Hypertension. Am J Hypertens 2016;29:273-9.
- 280. VISENTIN S, LAPOLLA A, LONDERO AP, et al. Adiponectin levels are reduced while markers of systemic inflammation and aortic remodelling are increased in intrauterine growth restricted mother-child couple. Biomed Res Int 2014;2014:401595.
- 281. CHEN X, WANG Y. Tracking of blood pressure from childhood to adulthood: a systematic review and metaregression analysis. Circulation 2008;117:3171-80.
- 282. RAITAKARI OT, JUONALA M, KÄHÖNEN M, et al. Cardiovascular Risk Factors in Childhood and Carotid Artery Intima-Media Thickness in AdulthoodThe Cardiovascular Risk in Young Finns Study. JAMA 2003;290:2277-83.
- 283. OIKONEN M, NUOTIO J, MAGNUSSEN CG, et al. Repeated Blood Pressure Measurements in Childhood in Prediction of Hypertension in Adulthood. Hypertension 2016;67:41-7.
- 284. LEWINGTON S, CLARKE R, QIZILBASH N, PETO R, COLLINS R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002;360:1903-13.
- 285. KIZIRIAN NV, KONG Y, MUIRHEAD R, et al. Effects of a low-glycemic index diet during pregnancy on offspring growth, body composition, and vascular health: a pilot randomized controlled trial. Am J Clin Nutr 2016;103:1073-82.
- 286. FREEDMAN DS, SHERRY B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics 2009;124 Suppl 1:S23-34.
- 287. KAWASAKI M, ARATA N, MIYAZAKI C, et al. Obesity and abnormal glucose tolerance in offspring of diabetic mothers: A systematic review and meta-analysis. PLoS One 2018;13:e0190676.
- 288. JAGO R, MENDOZA JA, CHEN T, BARANOWSKI T. Longitudinal associations between BMI, waist circumference, and cardiometabolic risk in US youth: monitoring implications. Obesity (Silver Spring, Md) 2013;21:E271-E79.
- 289. DISSANAYAKE HU, ANDERSON L, MCMULLAN RL, et al. Influence of maternal and placental factors on newborn body composition. J Paediatr Child Health 2019.
- 290. ENZI G, INELMEN EM, CARETTA F, VILLANI F, ZANARDO V, DEBIASI F. Development of adipose tissue in newborns of gestational-diabetic and insulin-dependent diabetic mothers. Diabetes 1980;29:100-4.
- 291. SKILTON MR, SIITONEN N, WÜRTZ P, et al. High birth weight is associated with obesity and increased carotid wall thickness in young adults: the cardiovascular risk in young Finns study. Arterioscler Thromb Vasc Biol 2014;34:1064-8.
- 292. D'ADAMO E, CAPRIO S. Type 2 diabetes in youth: epidemiology and pathophysiology. Diabetes care 2011;34 Suppl 2:S161-5.
- 293. RHODES ET, PROSSER LA, HOERGER TJ, LIEU T, LUDWIG DS, LAFFEL LM. Estimated morbidity and mortality in adolescents and young adults diagnosed with Type 2 diabetes mellitus.(Report)(Clinical report). Diabetic Medicine 2012;29:453.
- 294. LI L, PETERS H, GAMA A, et al. Maternal smoking in pregnancy association with childhood adiposity and blood pressure. Pediatr Obes 2016;11:202-9.
- 295. RIEDEL C, FENSKE N, MULLER MJ, et al. Differences in BMI z-scores between offspring of smoking and nonsmoking mothers: a longitudinal study of German children from birth through 14 years of age. Environ Health Perspect 2014;122:761-7.
- 296. GADEMAN MG, VAN EIJSDEN M, ROSEBOOM TJ, VAN DER POST JA, STRONKS K, VRIJKOTTE TG. Maternal prepregnancy body mass index and their children's blood pressure and resting cardiac autonomic balance at age 5 to 6 years. Hypertension 2013;62:641-7.
- 297. SHAAT N, GROOP L. Genetics of gestational diabetes mellitus. Curr Med Chem 2007;14:569-83.
- 298. WEST NA, CRUME TL, MALIGIE MA, DABELEA D. Cardiovascular risk factors in children exposed to maternal diabetes in utero. Diabetologia 2011;54:504-7.
- 299. PATHIRANA MM, LASSI ZS, ROBERTS CT, ANDRAWEERA PH. Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: systematic review and meta-analysis. J Dev Orig Health Dis 2020;11:599-616.

- 300. PATHIRANA MM, LASSI ZS, ALI A, ARSTALL MA, ROBERTS CT, ANDRAWEERA PH. Association between metabolic syndrome and gestational diabetes mellitus in women and their children: a systematic review and metaanalysis. Endocrine 2021;71:310-20.
- 301. PATHIRANA MM, LASSI ZS, ROBERTS CT, ANDRAWEERA PH. Author response: cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: systematic review and meta-analysis. J Dev Orig Health Dis 2020;11:244-45.
- 302. LORENZO-ALMORÓS A, HANG T, PEIRÓ C, et al. Predictive and diagnostic biomarkers for gestational diabetes and its associated metabolic and cardiovascular diseases. Cardiovasc Diabetol 2019;18:140.
- 303. ALBERTI KG, ZIMMET PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998;15:539-53.
- 304. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). Jama 2001;285:2486-97.
- 305. FAN J, SONG Y, CHEN Y, HUI R, ZHANG W. Combined effect of obesity and cardio-metabolic abnormality on the risk of cardiovascular disease: a meta-analysis of prospective cohort studies. Int J Cardiol 2013;168:4761-8.
- 306. WILSON PW, KANNEL WB, SILBERSHATZ H, D'AGOSTINO RB. Clustering of metabolic factors and coronary heart disease. Arch Intern Med 1999;159:1104-9.
- 307. ANDRAWEERA P, DEKKER, G., ARSTALL, M., BIANCO-MIOTTO, T., ROBERTS, C. . *Complications of pregnancy and future cardiovascular risk.* Netherlands: Oxford:Elsevier Inc.; Number of pages.
- 308. WELTY FK, ALFADDAGH A, ELAJAMI TK. Targeting inflammation in metabolic syndrome. Transl Res 2016;167:257-80.
- 309. GRIEGER JA, BIANCO-MIOTTO T, GRZESKOWIAK LE, et al. Metabolic syndrome in pregnancy and risk for adverse pregnancy outcomes: A prospective cohort of nulliparous women. PLoS Med 2018;15:e1002710-e10.
- 310. XU Y, SHEN S, SUN L, YANG H, JIN B, CAO X. Metabolic syndrome risk after gestational diabetes: a systematic review and meta-analysis. PLoS One 2014;9:e87863.
- 311. YANO Y, STAMLER J, GARSIDE DB, et al. Isolated systolic hypertension in young and middle-aged adults and 31year risk for cardiovascular mortality: the Chicago Heart Association Detection Project in Industry study. J Am Coll Cardiol 2015;65:327-35.
- 312. SON JS, CHOI S, KIM K, et al. Association of Blood Pressure Classification in Korean Young Adults According to the 2017 American College of Cardiology/American Heart Association Guidelines With Subsequent Cardiovascular Disease Events. JAMA 2018;320:1783-92.
- 313. UMER A, KELLEY GA, COTTRELL LE, GIACOBBI P, JR., INNES KE, LILLY CL. Childhood obesity and adult cardiovascular disease risk factors: a systematic review with meta-analysis. BMC Public Health 2017;17:683.
- 314. DEEROCHANAWONG C, PUTIYANUN C, WONGSURYRAT M, SERIRAT S, JINAYON P. Comparison of National Diabetes Data Group and World Health Organization criteria for detecting gestational diabetes mellitus. Diabetologia 1996;39:1070-73.
- 315. CARPENTER MW, COUSTAN DR. Criteria for screening tests for gestational diabetes. Am J Obstet Gynecol 1982;144:768-73.
- 316. ADA. 2. Classification and Diagnosis of Diabetes. Diabetes Care 2014;38:S8-S16.
- 317. RANI PR, BEGUM J. Screening and Diagnosis of Gestational Diabetes Mellitus, Where Do We Stand. J Clin Diagn Res 2016;10:QE01-4.
- 318. O'SULLIVAN JB, MAHAN CM. CRITERIA FOR THE ORAL GLUCOSE TOLERANCE TEST IN PREGNANCY. Diabetes 1964;13:278-85.
- 319. FMS. Current Care Guideline. Gestational Diabetes. . In: Association FMSaMABoFD, ed. Helsinki, 2008.
- 320. WENDER-OZEGOWSKA E, SPORNA M, SPORNA A, BRAZERT J, ZAWIEJSKA A. Components of metabolic syndrome (MS) in women after gestational diabetes (GDM). Journal of Diabetes 2009;1:A286-A87.
- 321. HANSEN T, VESTERGAARD H. Increasing Incidence of Diabetes After Gestational Diabetes. Diabetes Care 2004;27:1194-9.
- 322. MAGHBOOLI Z, HOSSEIN-NEZHAD A, MIRZAEI K, et al. Association between retinol-binding protein 4 concentrations and gestational diabetes mellitus and risk of developing metabolic syndrome after pregnancy. Reproductive Sciences 2010;17:196-201.

- 323. ALBERTI KGMM, ZIMMET P, SHAW J. The metabolic syndrome—a new worldwide definition. The Lancet 2005;366:1059-62.
- 324. GRUNDY SM, CLEEMAN JI, DANIELS SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005;112:2735-52.
- 325. HEALTH NIO. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies., 2014 (vol 2020).
- 326. BO S, MENATO G, GALLO ML, et al. Mild gestational hyperglycemia, the metabolic syndrome and adverse neonatal outcomes. Acta Obstet Gynecol Scand 2004;83:335-40.
- 327. DANE B, USTAOĞLU F, YILDIRIM Y, et al. Are the criteria of metabolic syndrome associated with pregnancy complications? Turk Jinekoloji ve Obstetrik Dernegi Dergisi 2011;8:100-06.
- 328. NEGRATO CA, JOVANOVIC L, RAFACHO A, et al. Association between different levels of dysglycemia and metabolic syndrome in pregnancy. Diabetol Metab Syndr 2009;1:3-3.
- 329. ZAMAN F, NOUHJAH S, SHAHBAZIAN H, SHAHBAZIAN N, LATIFI SM, JAHANSHAHI A. Risk factors of gestational diabetes mellitus using results of a prospective population-based study in Iranian pregnant women. Diabetes and Metabolic Syndrome: Clinical Research and Reviews 2018;12:721-25.
- 330. CHATZI L, PLANA E, PAPPAS A, et al. Metabolic syndrome in early pregnancy and risk of gestational diabetes mellitus. Diabetologia 2009;52:S457.
- 331. MIGDA M, MIGDA MS, MIGDA B, KRZYŻANOWSKA P, WENDER-OŻEGOWSKA E. Components of metabolic syndrome in the first trimester of pregnancy as predictors of adverse perinatal outcome. Ginekol Pol 2016;87:644-50.
- 332. RETNAKARAN R, WEN SW, TAN H, et al. Pregravid metabolic syndrome and risk of adverse outcomes in pregnancy: A preconception cohort study. Diabetes 2019;68.
- 333. COSTACOU T, BOSNYAK Z, HARGER GF, MARKOVIC N, SILVERS N, ORCHARD TJ. Postpartum adiponectin concentration, insulin resistance and metabolic abnormalities among women with pregnancy-induced disturbances. Prev Cardiol 2008;11:106-15.
- 334. SOMA-PILLAY P, NELSON-PIERCY C, TOLPPANEN H, MEBAZAA A. Physiological changes in pregnancy. Cardiovasc J Afr 2016;27:89-94.
- 335. AKINCI B, CELTIK A, GENC S, et al. Evaluation of postpartum carbohydrate intolerance and cardiovascular risk factors in women with gestational diabetes. Gynecol Endocrinol 2011;27:361-67.
- 336. ALBAREDA M, CABALLERO A, BADELL G, et al. Metabolic syndrome at follow-up in women with and without gestational diabetes mellitus in index pregnancy. Metabolism 2005;54:1115-21.
- 337. EDALAT B, SHARIFI F, BADAMCHIZADEH Z, et al. Association of metabolic syndrome with inflammatory mediators in women with previous gestational diabetes mellitus. J Diabetes Metab Disord 2013;12:8-8.
- 338. BO S, MENATO G, BOTTO C, et al. Mild gestational hyperglycemia and the metabolic syndrome in later life. Metab Syndr Relat Disord 2006;4:113-21.
- 339. DERBENT A, KARGILI A, KOCA C, et al. Serum platelet-activating factor acetylhydrolase activity: Relationship with metabolic syndrome in women with history of gestational diabetes mellitus. Gynecological Endocrinology 2011;27:128-33.
- 340. DI CIANNI G, LENCIONI C, VOLPE L, et al. C-reactive protein and metabolic syndrome in women with previous gestational diabetes. Diabetes Metab Res Rev 2007;23:135-40.
- 341. GUNDERSON EP, JACOBS JR DR, CHIANG V, et al. Duration of lactation and incidence of the metabolic syndrome in women of reproductive age according to gestational diabetes mellitus status: A 20-year prospective study in CARDIA (Coronary Artery Risk Development in Young Adults). Diabetes 2010;59:495-504.
- 342. HAKKARAINEN H, HUOPIO H, CEDERBERG H, VOUTILAINEN R, HEINONEN S. Future risk of metabolic syndrome in women with a previous LGA delivery stratified by gestational glucose tolerance: a prospective cohort study. BMC Pregnancy & Childbirth 2018;18:N.PAG-N.PAG.
- 343. IJÄS H, MORIN-PAPUNEN L, KERÄNEN AK, et al. Pre-pregnancy overweight overtakes gestational diabetes as a risk factor for subsequent metabolic syndrome. Eur J Endocrinol 2013;169:605-11.
- 344. KOUSTA E, EFSTATHIADOU Z, LAWRENCE NJ, et al. The impact of ethnicity on glucose regulation and the metabolic syndrome following gestational diabetes. Diabetologia 2006;49:36-40.
- 345. KRISHNAVENI GV, HILL JC, VEENA SR, et al. Gestational diabetes and the incidence of diabetes in the 5 years following the index pregnancy in South Indian women. Diabetes Res Clin Pract 2007;78:398-404.
- 346. LI LJ, ARIS IM, SU LL, et al. Effect of gestational diabetes and hypertensive disorders of pregnancy on postpartum cardiometabolic risk. Endocr Connect 2018;7:433-42.

- 347. MADARÁSZ E, TAMÁS G, TABÁK AG, KERÉNYI Z. Carbohydrate metabolism and cardiovascular risk factors 4 years after a pregnancy complicated by gestational diabetes. Diabetes Res Clin Pract 2009;85:197-202.
- 348. MAI C, HOU M, CHEN R, et al. Cardiovascular risk factors in Chinese women with a history of gestational diabetes mellitus. Int J Clin Exp Med 2015;8:21694-98.
- 349. NOCTOR E, CROWE C, CARMODY LA, et al. ATLANTIC-DIP: prevalence of metabolic syndrome and insulin resistance in women with previous gestational diabetes mellitus by International Association of Diabetes in Pregnancy Study Groups criteria. Acta Diabetol 2014.
- 350. RETNAKARAN R, QI Y, CONNELLY PW, SERMER M, ZINMAN B, HANLEY AJG. Glucose intolerance in pregnancy and postpartum risk of metabolic syndrome in young women. Journal of Clinical Endocrinology and Metabolism 2010;95:670-77.
- 351. ROCA-RODRÍGUEZ MM, LÓPEZ-TINOCO C, FERNÁNDEZ-DEUDERO A, et al. Adipokines and metabolic syndrome risk factors in women with previous gestational diabetes mellitus. Diabetes/Metabolism Research & Reviews 2012;28:542-48.
- 352. RUKSASAKUL R, THARAVANIJ T, SRITIPSUKHO P. Metabolic Syndrome in Thai Women Previously Diagnosed with Gestational Diabetes. J Med Assoc Thai 2016;99 Suppl 4:S195-202.
- 353. SHEN Y, LI W, LENG J, et al. High risk of metabolic syndrome after delivery in pregnancies complicated by gestational diabetes. Diabetes Res Clin Pract 2019;150:219-26.
- 354. TAM WH, YANG XL, CHAN JC, et al. Progression to impaired glucose regulation, diabetes and metabolic syndrome in Chinese women with a past history of gestational diabetes. Diabetes/Metabolism Research & Reviews 2007;23:485-89.
- 355. VERMA A, BONEY CM, TUCKER R, VOHR BR. Insulin resistance syndrome in women with prior history of gestational diabetes mellitus. J Clin Endocrinol Metab 2002;87:3227-35.
- 356. VILMI-KERÄLÄ T, PALOMÄKI O, VAINIO M, UOTILA J, PALOMÄKI A. The risk of metabolic syndrome after gestational diabetes mellitus a hospital-based cohort study. Diabetol Metab Syndr 2015;7:43-43.
- 357. ZAWIEJSKA A, WENDER-OZEGOWSKA E, BRAZERT J, SODOWSKI K. Components of metabolic syndrome and their impact on fetal growth in women with gestational diabetes mellitus. J Physiol Pharmacol 2008;59 Suppl 4:5-18.
- 358. WIJEYARATNE CN, WADUGE R, ARANDARA D, et al. Metabolic and polycystic ovary syndromes in indigenous South Asian women with previous gestational diabetes mellitus. BJOG: An International Journal of Obstetrics and Gynaecology 2006;113:1182-87.
- 359. AKINCI B, CELTIK A, YENER S, YESIL S. Prediction of developing metabolic syndrome after gestational diabetes mellitus. Fertil Steril 2010;93:1248-54.
- 360. AKINCI B, CELTIK A, YUKSEL F, et al. Increased osteoprotegerin levels in women with previous gestational diabetes developing metabolic syndrome. Diabetes Res Clin Pract 2011;91:26-31.
- 361. DEHMER EW, PHADNIS MA, GUNDERSON EP, et al. Association Between Gestational Diabetes and Incident Maternal CKD: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Kidney Dis 2018;71:112-22.
- 362. FERRAZ TB, MOTTA RS, FERRAZ CL, CAPIBARIBE DM, FORTI AC, CHACRA AR. C-reactive protein and features of metabolic syndrome in Brazilian women with previous gestational diabetes. Diabetes Res Clin Pract 2007;78:23-29.
- 363. GUNDERSON EP, JACOBS DR, CHIANG V, et al. Lactation and lower incidence of the metabolic syndrome in women of reproductive age by gestational diabetes mellitus: A 20-year prospective study of CARDIA women. Diabetes 2009;58.
- 364. MAI C, WANG B, WEN J, LIN X, NIU J. Lipoprotein-associated phospholipase A2 and AGEs are associated with cardiovascular risk factors in women with history of gestational diabetes mellitus. Gynecol Endocrinol 2014;30:241-44.
- 365. TAM WH, MA RCW, YANG X, et al. Cardiometabolic risk in Chinese women with prior gestational diabetes: A 15-year follow-up study. Gynecol Obstet Invest 2012;73:168-76.
- 366. BONEY CM, VERMA A, TUCKER R, VOHR BR. Metabolic syndrome in childhood: Association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005;115:e290-e96.
- 367. CLAUSEN TD, MATHIESEN ER, HANSEN T, et al. Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J Clin Endocrinol Metab 2009;94:2464-70.
- 368. VÄÄRÄSMÄKI M, POUTA A, ELLIOT P, et al. Adolescent manifestations of metabolic syndrome among children born to women with gestational diabetes in a general-population birth cohort. Am J Epidemiol 2009;169:1209-15.
- 369. MASLOVA E, HANSEN S, GRUNNET LG, et al. Maternal glycemic index and glycemic load in pregnancy and offspring metabolic health in childhood and adolescence—a cohort study of 68,471 mother–offspring dyads from the Danish National Birth Cohort. Eur J Clin Nutr 2019;73:1049-62.
- 370. PLOWS JF, STANLEY JL, BAKER PN, REYNOLDS CM, VICKERS MH. The Pathophysiology of Gestational Diabetes Mellitus. Int J Mol Sci 2018;19:3342.
- 371. PONS RS, ROCKETT FC, DE ALMEIDA RUBIN B, OPPERMANN MLR, BOSA VL. Risk factors for gestational diabetes mellitus in a sample of pregnant women diagnosed with the disease. Diabetol Metab Syndr 2015;7:A80.
- 372. JAROSZ E. Lifestyle behaviours or socioeconomic characteristics? Gender differences in covariates of BMI in Hungary. Obes Sci Pract 2018;4:591-99.
- 373. MITANCHEZ D, YZYDORCZYK C, SIDDEEK B, BOUBRED F, BENAHMED M, SIMEONI U. The offspring of the diabetic mother--short- and long-term implications. Best Pract Res Clin Obstet Gynaecol 2015;29:256-69.
- 374. BUCHANAN TA, XIANG AH, PETERS RK, et al. Response of pancreatic beta-cells to improved insulin sensitivity in women at high risk for type 2 diabetes. Diabetes 2000;49:782-8.
- 375. SHEK NW, NGAI CS, LEE CP, CHAN JY, LAO TT. Lifestyle modifications in the development of diabetes mellitus and metabolic syndrome in Chinese women who had gestational diabetes mellitus: a randomized interventional trial. Arch Gynecol Obstet 2014;289:319-27.
- 376. FERRARA A, HEDDERSON MM, ALBRIGHT CL, et al. A pregnancy and postpartum lifestyle intervention in women with gestational diabetes mellitus reduces diabetes risk factors: a feasibility randomized control trial. Diabetes Care 2011;34:1519-25.
- 377. SONG C, LI J, LENG J, MA RC, YANG X. Lifestyle intervention can reduce the risk of gestational diabetes: a metaanalysis of randomized controlled trials. Obes Rev 2016;17:960-9.
- 378. AIHW. A picture of overweight and obesity in Australia. Canberrra: Australian Institute of Health and Welbeing, 2017.
- 379. BARKER DJ. The developmental origins of adult disease. J Am Coll Nutr 2004;23:588S-95S.
- 380. BLOTSKY AL, RAHME E, DAHHOU M, NAKHLA M, DASGUPTA K. Gestational diabetes associated with incident diabetes in childhood and youth: a retrospective cohort study. CMAJ 2019;191:E410-E17.
- 381. HALIPCHUK J, TEMPLE B, DART A, MARTIN D, SELLERS EAC. Prenatal, Obstetric and Perinatal Factors Associated With the Development of Childhood-Onset Type 2 Diabetes. Can J Diabetes 2018;42:71-77.
- 382. FEDERATION ID. The IDF consensus definition of the metabolic syndrome in children and adolescents International Diabetes Federation 2007.
- 383. HAN ES, KRAUSS RM, XU F, et al. Prepregnancy Adverse Lipid Profile and Subsequent Risk of Gestational Diabetes. J Clin Endocrinol Metab 2016;101:2721-7.
- 384. WEI YM, YANG HX, ZHU WW, et al. Risk of adverse pregnancy outcomes stratified for pre-pregnancy body mass index. J Matern Fetal Neonatal Med 2016;29:2205-9.
- 385. GUNDERSON EP, QUESENBERRY CP, JR., JACOBS DR, JR., FENG J, LEWIS CE, SIDNEY S. Longitudinal study of prepregnancy cardiometabolic risk factors and subsequent risk of gestational diabetes mellitus: The CARDIA study. Am J Epidemiol 2010;172:1131-43.
- 386. BUTTE NF. Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr 2000;71:1256S-61S.
- 387. SMITH DE, LEWIS CE, CAVENY JL, PERKINS LL, BURKE GL, BILD DE. Longitudinal changes in adiposity associated with pregnancy. The CARDIA Study. Coronary Artery Risk Development in Young Adults Study. JAMA 1994;271:1747-51.
- 388. CHATZI L, PLANA E, PAPPAS A, et al. The metabolic syndrome in early pregnancy and risk of gestational diabetes mellitus. Diabetes Metab 2009;35:490-94.
- 389. GUNDERSON EP, CHIANG V, PLETCHER MJ, et al. History of gestational diabetes mellitus and future risk of atherosclerosis in mid-life: the Coronary Artery Risk Development in Young Adults study. J Am Heart Assoc 2014;3:e000490-e90.
- 390. HAKKARAINEN H, HUOPIO H, CEDERBERG H, PÄÄKKÖNEN M, VOUTILAINEN R, HEINONEN S. The risk of metabolic syndrome in women with previous GDM in a long-term follow-up. Gynecol Endocrinol 2016;32:920-25.

- 391. NEGRATO CA, JOVANOVIC L, TAMBASCIA MA, et al. Mild gestational hyperglycaemia as a risk factor for metabolic syndrome in pregnancy and adverse perinatal outcomes. Diabetes/Metabolism Research & Reviews 2008;24:324-30.
- 392. WENDER-OZEGOWSKA E, SPORNA M, ZAWIEJSKA A, SPORNA A, BRAZERT J. Carbohydrate disturbances among women after gestational diabetes mellitus. Ginekol Pol 2007;78:223-28.
- 393. IDF. The IDF consensus definition of the metabolic syndrome in children and adolescents International Diabetes Federation 2007.
- 394. RANASINGHE P, MATHANGASINGHE Y, JAYAWARDENA R, HILLS AP, MISRA A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: a systematic review. BMC Public Health 2017;17:101.
- 395. PATHIRANA MM, LASSI ZS, ALI A, ARSTALL MA, ROBERTS CT, ANDRAWEERA PH. Association between metabolic syndrome and gestational diabetes mellitus in women and their children: a systematic review and metaanalysis. Endocrine 2020.
- 396. ANDRAWEERA P, DEKKER, G., ARSTALL, M., BIANCO-MIOTTO, T., ROBERTS, C. . Complications of pregnancy and future cardiovascular risk. In: In R. Vasan DS, ed. *Encyclopedia of Cardiovascular Research and Medicine*. Netherlands: Oxford:Elsevier Inc., 2018 (vol 1).
- 397. LESSEN R, KAVANAGH K. Position of the academy of nutrition and dietetics: promoting and supporting breastfeeding. J Acad Nutr Diet 2015;115:444-9.
- 398. MA S, HU S, LIANG H, XIAO Y, TAN H. Metabolic effects of breastfeed in women with prior gestational diabetes mellitus: A systematic review and meta-analysis. Diabetes Metab Res Rev 2019;35:e3108.
- 399. FENG L, XU Q, HU Z, PAN H. Lactation and progression to type 2 diabetes in patients with gestational diabetes mellitus: A systematic review and meta-analysis of cohort studies. J Diabetes Investig 2018;9:1360-69.
- 400. METZGER BE, GABBE SG, PERSSON B, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010;33:676-82.
- 401. ORMESHER L, JOHNSTONE ED, SHAWKAT E, et al. A clinical evaluation of placental growth factor in routine practice in high-risk women presenting with suspected pre-eclampsia and/or fetal growth restriction. Pregnancy Hypertens 2018;14:234-39.
- 402. NHLBI. Study Quality Assessment Tools. In: <u>https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools</u>, ed. *Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies*, 2020 (vol 2020).
- 403. HAMMOUD NM, VISSER GHA, VAN ROSSEM L, BIESMA DH, WIT JM, DE VALK HW. Long-term BMI and growth profiles in offspring of women with gestational diabetes. Diabetologia 2018;61:1037-45.
- 404. LINGWOOD BE, HENRY AM, D'EMDEN MC, et al. Determinants of body fat in infants of women with gestational diabetes mellitus differ with fetal sex. Diabetes care 2011;34:2581-5.
- 405. HUI LL, LI AM, NELSON EAS, LEUNG GM, LEE SL, SCHOOLING CM. In utero exposure to gestational diabetes and adiposity: does breastfeeding make a difference? Int J Obes (Lond) 2018;42:1317-25.
- 406. MARTENS PJ, SHAFER LA, DEAN HJ, et al. Breastfeeding Initiation Associated With Reduced Incidence of Diabetes in Mothers and Offspring. Obstet Gynecol 2016;128:1095-104.
- 407. CHAMBERLAIN CR, OLDENBURG B, WILSON AN, et al. Type 2 diabetes after gestational diabetes: greater than fourfold risk among Indigenous compared with non-Indigenous Australian women. Diabetes Metab Res Rev 2016;32:217-27.
- 408. CORRADO F, GIUNTA L, GRANESE R, et al. Metabolic effects of breastfeeding in women with previous gestational diabetes diagnosed according to the IADPSG criteria. J Matern Fetal Neonatal Med 2019;32:225-28.
- 409. CHOUINARD-CASTONGUAY S, WEISNAGEL SJ, TCHERNOF A, ROBITAILLE J. Relationship between lactation duration and insulin and glucose response among women with prior gestational diabetes. Eur J Endocrinol 2013;168:515-23.
- 410. DIJIGOW FB, PAGANOTI CDE F, COSTA RA, FRANCISCO RP, ZUGAIB M. [The influence of breastfeeding in postpartum oral glucose tolerance test in women with recent gestational diabetes mellitus]. Rev Bras Ginecol Obstet 2015;37:565-70.
- 411. GUNDERSON EP, HEDDERSON MM, CHIANG V, et al. Lactation intensity and postpartum maternal glucose tolerance and insulin resistance in women with recent GDM: the SWIFT cohort. Diabetes Care 2012;35:50-6.
- 412. GUNDERSON EP, HURSTON SR, NING X, et al. Lactation and progression to type 2 diabetes mellitus after gestational diabetes mellitus a prospective cohort study. Annals of Internal Medicine 2015;163:889-98.

- 413. KIM SH, KIM MY, YANG JH, et al. Nutritional risk factors of early development of postpartum prediabetes and diabetes in women with gestational diabetes mellitus. Nutrition 2011;27:782-8.
- 414. KJOS SL, HENRY O, LEE RM, BUCHANAN TA, MISHELL DR, JR. The effect of lactation on glucose and lipid metabolism in women with recent gestational diabetes. Obstet Gynecol 1993;82:451-5.
- 415. MCMANUS RM, CUNNINGHAM I, WATSON A, HARKER L, FINEGOOD DT. Beta-cell function and visceral fat in lactating women with a history of gestational diabetes. Metabolism 2001;50:715-9.
- 416. NELSON AL, LE MH, MUSHERRAF Z, VANBERCKELAER A. Intermediate-term glucose tolerance in women with a history of gestational diabetes: natural history and potential associations with breastfeeding and contraception. Am J Obstet Gynecol 2008;198:699 e1-7; discussion 99 e7-8.
- 417. SAUCEDO R BL, GALVAN R, SANCHEZ J, HERNADEZ M, PUELLO E, ZARATE A. Duration of lactation is associated with lower leptin levels in patients with gestational diabetes mellitus. Instituto Mexican del Suguro Social 2014;06720.
- 418. SHUB A, MIRANDA M, GEORGIOU HM, MCCARTHY EA, LAPPAS M. The effect of breastfeeding on postpartum glucose tolerance and lipid profiles in women with gestational diabetes mellitus. Int Breastfeed J 2019;14:46.
- 419. YASUHI I, SODA T, YAMASHITA H, et al. The effect of high-intensity breastfeeding on postpartum glucose tolerance in women with recent gestational diabetes. Int Breastfeed J 2017;12:32.
- 420. ZIEGLER AG, WALLNER M, KAISER I, et al. Long-term protective effect of lactation on the development of type 2 diabetes in women with recent gestational diabetes mellitus. Diabetes 2012;61:3167-71.
- 421. MATTELL, COLATRELLA A, BITTERMAN O, et al. Long Lasting Effects of Breastfeeding on Metabolism in Women with Prior Gestational Diabetes. Journal of Diabetes Mellitus 2014;4:257-63.
- 422. HALES CN, BARKER DJ. The thrifty phenotype hypothesis. Br Med Bull 2001;60:5-20.
- 423. STUEBE AM, RICH-EDWARDS JW. The Reset Hypothesis: Lactation and Maternal Metabolism. Am J Perinatol 2009;26:081-88.
- 424. JIANG M, GAO H, VINYES-PARES G, et al. Association between breastfeeding duration and postpartum weight retention of lactating mothers: A meta-analysis of cohort studies. Clin Nutr 2018;37:1224-31.
- 425. HARDER T, BERGMANN R, KALLISCHNIGG G, PLAGEMANN A. Duration of breastfeeding and risk of overweight: a meta-analysis. Am J Epidemiol 2005;162:397-403.
- 426. DALY B, TOULIS KA, THOMAS N, et al. Increased risk of ischemic heart disease, hypertension, and type 2 diabetes in women with previous gestational diabetes mellitus, a target group in general practice for preventive interventions: A population-based cohort study. PLoS Med 2018;15:e1002488.
- 427. BURGESS A, MCDOWELL W, EBERSOLD S. Association Between Lactation and Postpartum Blood Pressure in Women with Preeclampsia. MCN Am J Matern Child Nurs 2019;44:86-93.
- 428. GUNDERSON EP, LEWIS CE, WEI GS, WHITMER RA, QUESENBERRY CP, SIDNEY S. Lactation and changes in maternal metabolic risk factors. Obstet Gynecol 2007;109:729-38.
- 429. HORTA BL, LORET DE MOLA C, VICTORA CG. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. Acta Paediatr 2015;104:30-7.
- 430. SCHWARZ EB, BROWN JS, CREASMAN JM, et al. Lactation and maternal risk of type 2 diabetes: a population-based study. Am J Med 2010;123:863 e1-6.
- 431. BUCHANAN TA, XIANG AH, PAGE KA. Gestational diabetes mellitus: risks and management during and after pregnancy. Nat Rev Endocrinol 2012;8:639-49.
- 432. Shoji H, Shimizu T. Effect of human breast milk on biological metabolism in infants. Pediatr Int 2019;61:6-15.
- 433. LUCAS A, SARSON DL, BLACKBURN AM, ADRIAN TE, AYNSLEY-GREEN A, BLOOM SR. Breast vs bottle: endocrine responses are different with formula feeding. Lancet 1980;1:1267-9.
- 434. Moss KM, DOBSON AJ, TOOTH L, MISHRA GD. Associations between feeding practices in infancy and fruit and vegetable consumption in childhood. Br J Nutr 2020:1-9.
- 435. OSMAN MW, NATH M, KHALIL A, WEBB DR, ROBINSON TG, MOUSA HA. Haemodynamic differences amongst women who were screened for gestational diabetes in comparison to healthy controls. Pregnancy Hypertens 2018;14:23-28.
- 436. MA RM, LAO TT. Maternal mean arterial pressure and oral glucose tolerance test results. Relationship in normotensive women. J Reprod Med 2001;46:747-51.
- 437. MIKAEL LR, PAIVA AMG, GOMES MM, et al. Vascular Aging and Arterial Stiffness. Arq Bras Cardiol 2017;109:253-58.

- 438. YU D, ZHAO Z, SIMMONS D. Interaction between Mean Arterial Pressure and HbA1c in Prediction of Cardiovascular Disease Hospitalisation: A Population-Based Case-Control Study. J Diabetes Res 2016;2016:8714745-45.
- 439. MCCLOSKEY K, VUILLERMIN P, PONSONBY AL, CHEUNG M, SKILTON MR, BURGNER D. Aortic intima-media thickness measured by trans-abdominal ultrasound as an early life marker of subclinical atherosclerosis. Acta Paediatr 2014;103:124-30.
- 440. YÜCEL O, CEVIK H, KINIK ST, TOKEL K, AKA S, DINC F. Abdominal aorta intima media thickness in obese children. J Pediatr Endocrinol Metab 2013;26:735-41.
- 441. DABELEA D, MAYER-DAVIS EJ, LAMICHHANE AP, et al. Association of intrauterine exposure to maternal diabetes and obesity with type 2 diabetes in youth: the SEARCH Case-Control Study. Diabetes Care 2008;31:1422-6.
- 442. LAHTI-PULKKINEN M, BHATTACHARYA S, WILD SH, et al. Consequences of being overweight or obese during pregnancy on diabetes in the offspring: a record linkage study in Aberdeen, Scotland. Diabetologia 2019;62:1412-19.
- 443. WHO. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization Guideline. Diabetes Res Clin Pract 2014;103:341-63.
- 444. HAMEL C, LANG E, MORISSETTE K, et al. Screening for depression in women during pregnancy or the first year postpartum and in the general adult population: a protocol for two systematic reviews to update a guideline of the Canadian Task Force on Preventive Health Care. Syst Rev 2019;8:27-27.
- 445. YU M, ZHANG X, LU F, FANG L. Depression and Risk for Diabetes: A Meta-Analysis. Can J Diabetes 2015;39:266-72.
- 446. NOUWEN A, ADRIAANSE MC, VAN DAM K, et al. Longitudinal associations between depression and diabetes complications: a systematic review and meta-analysis. Diabet Med 2019;36:1562-72.
- 447. MUSSELMAN DL, EVANS DL, NEMEROFF CB. The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment. Arch Gen Psychiatry 1998;55:580-92.
- 448. ARAFA A, DONG JY. Depression and risk of gestational diabetes: A meta-analysis of cohort studies. Diabetes Res Clin Pract 2019;156:107826.
- 449. BEKA Q, BOWKER S, SAVU A, KINGSTON D, JOHNSON JA, KAUL P. Development of Perinatal Mental Illness in Women With Gestational Diabetes Mellitus: A Population-Based Cohort Study. Can J Diabetes 2018;42:350-55.e1.
- 450. WILSON CA, SANTORELLI G, DICKERSON J, et al. Is there an association between anxiety and depression prior to and during pregnancy and gestational diabetes? An analysis of the Born in Bradford cohort. J Affect Disord 2020;276:345-50.
- 451. SCHMITZ N, DESCHÊNES SS, BURNS RJ, et al. Depression and risk of type 2 diabetes: the potential role of metabolic factors. Mol Psychiatry 2016;21:1726-32.
- 452. LIU D, DE CRESPIGNY C, PROCTER N, et al. Comorbidity Action in the North: a study of services for people with comorbid mental health and drug and alcohol disorders in the northern suburbs of Adelaide. Australas Psychiatry 2016;24:592-97.
- 453. PHDIU. An atlas of mental health conditions in South Australia: Population patterns of prevalence, risk factors, service use and treatment. Adelaide: Public Health Information Development Unit, 2016.
- 454. AUSTIN MP, COLTON J, PRIEST S, REILLY N, HADZI-PAVLOVIC D. The antenatal risk questionnaire (ANRQ): acceptability and use for psychosocial risk assessment in the maternity setting. Women Birth 2013;26:17-25.
- 455. COX JL, HOLDEN JM, SAGOVSKY R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br J Psychiatry 1987;150:782-6.
- 456. COHEN S, KAMARCK T, MERMELSTEIN R. A global measure of perceived stress. J Health Soc Behav 1983;24:385-96.
- 457. AUERBACH SM. Trait-state anxiety and adjustment to surgery. J Consult Clin Psychol 1973;40:264-71.
- 458. SLAVIN V, CREEDY DK, GAMBLE J. Single Item Measure of Social Supports: Evaluation of construct validity during pregnancy. J Affect Disord 2020;272:91-97.
- 459. AHMED A, BOWEN A, FENG CX, MUHAJARINE N. Trajectories of maternal depressive and anxiety symptoms from pregnancy to five years postpartum and their prenatal predictors. BMC Pregnancy Childbirth 2019;19:26.
- 460. ATTORNEY-GENERAL. Domestic Violence Discussion Paper. South Australia:: Goverment of South Australia, 2016.
- 461. GILBERT L, GROSS J, LANZI S, QUANSAH DY, PUDER J, HORSCH A. How diet, physical activity and psychosocial wellbeing interact in women with gestational diabetes mellitus: an integrative review. BMC Pregnancy Childbirth 2019;19:60.

- 462. RIGGIN L. Association Between Gestational Diabetes and Mental Illness. Can J Diabetes 2020;44:566-71.e3.
- 463. MISHRA S, SHETTY A, RAO CR, NAYAK S, KAMATH A. Effect of maternal perceived stress during pregnancy on gestational diabetes mellitus risk: A prospective case-control study. Diabetes Metab Syndr 2020;14:1163-69.
- 464. HINKLE SN, BUCK LOUIS GM, RAWAL S, ZHU Y, ALBERT PS, ZHANG C. A longitudinal study of depression and gestational diabetes in pregnancy and the postpartum period. Diabetologia 2016;59:2594-602.
- 465. BYRN M, PENCKOFER S. The relationship between gestational diabetes and antenatal depression. J Obstet Gynecol Neonatal Nurs 2015;44:246-55.
- 466. WILSON CA, NEWHAM J, RANKIN J, et al. Is there an increased risk of perinatal mental disorder in women with gestational diabetes? A systematic review and meta-analysis. Diabet Med 2020;37:602-22.
- 467. BEKA Q, BOWKER SL, SAVU A, KINGSTON D, JOHNSON JA, KAUL P. History of mood or anxiety disorders and risk of gestational diabetes mellitus in a population-based cohort. Diabet Med 2018;35:147-51.
- 468. BOWERS K, LAUGHON SK, KIM S, et al. The association between a medical history of depression and gestational diabetes in a large multi-ethnic cohort in the United States. Paediatr Perinat Epidemiol 2013;27:323-8.
- 469. SILVEIRA ML, WHITCOMB BW, PEKOW P, et al. Perceived psychosocial stress and glucose intolerance among pregnant Hispanic women. Diabetes Metab 2014;40:466-75.
- 470. AIHW. Cardiovascular disease in Australian women—a snapshot of national statistics.

. Canberra: Australian Institute of Health and Welfare, 2019. (vol CDK 10.).

- 471. FAKHRZADEH H, ALATAB S, SHARIFI F, et al. Carotid intima media thickness, brachial flow mediated dilation and previous history of gestational diabetes mellitus. Journal of Obstetrics and Gynaecology Research 2012;38:1057-63.
- 472. ORGANIZATION WH. Cardiovascular Diseases (CVD). Geneva: World Health Organisation 2021 (vol 2021).
- 473. FEDERATION ID. IDF Diabetes Atlas. In: IDF, ed. Belgium, 2017
- 2007.
- 474. STALEY JR, BRADLEY J, SILVERWOOD RJ, et al. Associations of blood pressure in pregnancy with offspring blood pressure trajectories during childhood and adolescence: findings from a prospective study. J Am Heart Assoc 2015;4.
- 475. FAHY K LA, MILNE BJ. New Zealand Socio-economic index 2013. Auckland: Compass Research Centre The University of Auckland, 2013 (vol 2021).
- 476. GRUMMER-STRAWN LM, REINOLD C, KREBS NF. Use of World Health Organization and CDC growth charts for children aged 0-59 months in the United States. MMWR Recomm Rep 2010;59:1-15.
- 477. WHO. Waist cirumference and Waist-hip ratio: report of a WHO expert Consultation In: organisation Wh, ed. Geneva: World Health Organisation, 2008 (vol 2021).
- 478. SAIKIA B, DERRICK G, FORDHAM T, BRIERLEY J. 117: Validation of USCOM BP+ In Children and Adolescents: A Preliminary Report. Critical Care Medicine 2015;43:30-31.
- 479. ALDRIDGE E, MOLLEN J, VERBURG PE, et al. Agreement of aneroid and oscillometric blood pressure devices used in pregnancy. Pregnancy Hypertens 2019;17:43-48.
- 480. RESHETNIK A, GOHLISCH C, ABOU-DAKN M, TÖLLE M, ZIDEK W, VAN DER GIET M. Validation of noninvasive oscillometric blood pressure 2020 up pressure upper arm blood pressure monitoring technology according to the European Society of Hypertension International Protocol revision 2010. Blood Press Monit 2019;24:99-101.
- 481. SARAFIDIS PA, LASARIDIS AN, NILSSON PM, et al. Validity and reproducibility of HOMA-IR, 1/HOMA-IR, QUICKI and McAuley's indices in patients with hypertension and type II diabetes. J Hum Hypertens 2007;21:709-16.
- 482. LAVIE CJ, ARENA R, ALPERT MA, MILANI RV, VENTURA HO. Management of cardiovascular diseases in patients with obesity. Nat Rev Cardiol 2018;15:45-56.
- 483. DENISON FC, ROBERTS KA, BARR SM, NORMAN JE. Obesity, pregnancy, inflammation, and vascular function. Reproduction 2010;140:373-85.
- 484. ROCA-RODRÍGUEZ MM, LÓPEZ-TINOCO C, MURRI M, et al. Postpartum development of endothelial dysfunction and oxidative stress markers in women with previous gestational diabetes mellitus. Journal of Endocrinological Investigation 2014;37:503-09.
- 485. CHARWAT-RESL S, YARRAGUDI R, HEIMBACH M, et al. Microvascular function in women with former gestational diabetes: A cohort study. Diab Vasc Dis Res 2017;14:214-20.

- 486. DAVIS CL, GUTT M, LLABRE MM, et al. History of Gestational Diabetes, Insulin Resistance and Coronary Risk. Journal of Diabetes and its Complications 1999;13:216-23.
- 487. VERMA A, BONEY CM, TUCKER R, VOHR BR. Insulin resistance syndrome in women with prior history of gestational diabetes mellitus. J Clin Endocrinol Metab 2002;87:3227-35.
- 488. SHEN Y, LI W, LENG J, et al. High risk of metabolic syndrome after delivery in pregnancies complicated by gestational diabetes. Diabetes Res Clin Pract 2019;150:219-26.
- 489. AHMAD S, MORA S, RIDKER PM, HU FB, CHASMAN DI. Gene-Based Elevated Triglycerides and Type 2 Diabetes Mellitus Risk in the Women's Genome Health Study. Arterioscler Thromb Vasc Biol 2019;39:97-106.
- 490. JOSEFSON JL, CATALANO PM, LOWE WL, et al. The Joint Associations of Maternal BMI and Glycemia with Childhood Adiposity. J Clin Endocrinol Metab 2020;105:2177-88.
- 491. BALDWIN MK, HART KD, RODRIGUEZ MI. Predictors for follow-up among postpartum patients enrolled in a clinical trial. Contraception 2018;98:228-31.
- 492. SHARP GC, LAWLOR DA. Paternal impact on the life course development of obesity and type 2 diabetes in the offspring. Diabetologia 2019;62:1802-10.
- 493. WU HY, CHENG Y, JIN LY, et al. Paternal obesity impairs hepatic gluconeogenesis of offspring by altering Igf2/H19 DNA methylation. Mol Cell Endocrinol 2021;529:111264.
- 494. WU P, HATHTHOTUWA R, KWOK CS, et al. Preeclampsia and Future Cardiovascular Health: A Systematic Review and Meta-Analysis. Circ Cardiovasc Qual Outcomes 2017;10.
- 495. RUCHAT S-M, HOUDE A-A, VOISIN G, et al. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics 2013;8:935-43.
- 496. HOUDE A-A, GUAY S-P, DESGAGNÉ V, et al. Adaptations of placental and cord blood ABCA1 DNA methylation profile to maternal metabolic status. Epigenetics 2013;8:1289-302.
- 497. KAZMI N, SHARP GC, REESE SE, et al. Hypertensive Disorders of Pregnancy and DNA Methylation in Newborns. Hypertension 2019;74:375-83.
- 498. WHO. Infant and you child feeding. Geneva, 2021.
- 499. PATHIRANA MM, ALI A, LASSI ZS, ARSTALL MA, ROBERTS CT, ANDRAWEERA PH. Protective Influence of Breastfeeding on Cardiovascular Risk Factors in Women With Previous Gestational Diabetes Mellitus and Their Children: A Systematic Review and Meta-Analysis. J Hum Lact 2021:8903344211034779.
- 500. SANTIAGO ACT, CUNHA L, VIEIRA NSA, et al. Breastfeeding in children born small for gestational age and future nutritional and metabolic outcomes: a systematic review. Journal de Pediatra 2019;95:264-74.
- 501. JÚLÍUSSON PB, ROELANTS M, NORDAL E, et al. Growth references for 0-19 year-old Norwegian children for length/height, weight, body mass index and head circumference. Ann Hum Biol 2013;40:220-7.
- 502. WHO. Waist cirumference and Waist-hip ratio: report of a WHO expert Consultation. Geneva, 2008.
- 503. PATHIRANA MM AA, LASSI ZL, ARSTALL MA, ROBERTS CT, ANDRAWEERA PH. Protective effect of breastfeeding on cardiovascular risk factors in women and children exposed to gestational diabetes mellitus: a systematic review and meta-analysis Journal of Human Lactation 2021 [In press].
- 504. WAGATA M, KOGURE M, NAKAYA N, et al. Hypertensive disorders of pregnancy, obesity, and hypertension in later life by age group: a cross-sectional analysis. Hypertens Res 2020;43:1277-83.
- 505. BLAIR RA, NEVES JS, NICKLAS JM, HORN CE, SKURNIK G, SEELY EW. Breastfeeding Associated with Lower Prevalence of Metabolic Syndrome in Women with Gestational Diabetes in the Very Early Postpartum Period. Am J Perinatol 2021.
- 506. YU J, PUDWELL J, DAYAN N, SMITH GN. Postpartum Breastfeeding and Cardiovascular Risk Assessment in Women Following Pregnancy Complications. J Womens Health (Larchmt) 2020;29:627-35.
- 507. SANTIAGO ACT, CUNHA L, COSTA ML, et al. Cardiometabolic evaluation of small for gestational age children: protective effect of breast milk. Nutr Hosp 2021;38:36-42.
- 508. LOWE WL, JR., SCHOLTENS DM, KUANG A, et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): Maternal Gestational Diabetes Mellitus and Childhood Glucose Metabolism. Diabetes Care 2019;42:372-80.
- 509. PHIDU. South Australia: Data by Population Health Area. In: University T, ed. *Social Health Atlas of Australia*: Torrens University, 2020.
- 510. GUNDERSON EP, GREENSPAN LC, FAITH MS, HURSTON SR, QUESENBERRY CP, JR. Breastfeeding and growth during infancy among offspring of mothers with gestational diabetes mellitus: a prospective cohort study. Pediatr Obes 2018;13:492-504.

- 511. SHONKOFF JP, GARNER AS. The lifelong effects of early childhood adversity and toxic stress. Pediatrics 2012;129:e232-46.
- 512. JOHN CC, BLACK MM, NELSON CA, 3RD. Neurodevelopment: The Impact of Nutrition and Inflammation During Early to Middle Childhood in Low-Resource Settings. Pediatrics 2017;139:S59-S71.
- 513. WALSH K, MCCORMACK CA, WEBSTER R, et al. Maternal prenatal stress phenotypes associate with fetal neurodevelopment and birth outcomes. Proc Natl Acad Sci U S A 2019;116:23996-4005.
- 514. ÁLVAREZ-BUENO C, CAVERO-REDONDO I, LUCAS-DE LA CRUZ L, NOTARIO-PACHECO B, MARTÍNEZ-VIZCAÍNO V. Association between pre-pregnancy overweight and obesity and children's neurocognitive development: a systematic review and meta-analysis of observational studies. Int J Epidemiol 2017;46:1653-66.
- 515. SANCHEZ CE, BARRY C, SABHLOK A, et al. Maternal pre-pregnancy obesity and child neurodevelopmental outcomes: a meta-analysis. Obes Rev 2018;19:464-84.
- 516. PANGRAZZI L, BALASCO L, BOZZI Y. Oxidative Stress and Immune System Dysfunction in Autism Spectrum Disorders. Int J Mol Sci 2020;21.
- 517. RIZZO TA, DOOLEY SL, METZGER BE, CHO NH, OGATA ES, SILVERMAN BL. Prenatal and perinatal influences on longterm psychomotor development in offspring of diabetic mothers. Am J Obstet Gynecol 1995;173:1753-8.
- 518. NOMURA Y, MARKS DJ, GROSSMAN B, et al. Exposure to gestational diabetes mellitus and low socioeconomic status: effects on neurocognitive development and risk of attention-deficit/hyperactivity disorder in offspring. Arch Pediatr Adolesc Med 2012;166:337-43.
- 519. XIANG AH, WANG X, MARTINEZ MP, et al. Maternal Gestational Diabetes Mellitus, Type 1 Diabetes, and Type 2 Diabetes During Pregnancy and Risk of ADHD in Offspring. Diabetes Care 2018;41:2502-08.
- 520. ORNOY A, RATZON N, GREENBAUM C, WOLF A, DULITZKY M. School-age children born to diabetic mothers and to mothers with gestational diabetes exhibit a high rate of inattention and fine and gross motor impairment. J Pediatr Endocrinol Metab 2001;14 Suppl 1:681-9.
- 521. WANG P, XIE J, JIAO XC, et al. Maternal Glycemia During Pregnancy and Early Offspring Development: A Prospective Birth Cohort Study. J Clin Endocrinol Metab 2021;106:2279-90.
- 522. MADIGAN S, OATLEY H, RACINE N, et al. A Meta-Analysis of Maternal Prenatal Depression and Anxiety on Child Socioemotional Development. J Am Acad Child Adolesc Psychiatry 2018;57:645-57 e8.
- 523. VERBURG PE, TUCKER G, SCHEIL W, ERWICH JJ, DEKKER GA, ROBERTS CT. Sexual Dimorphism in Adverse Pregnancy Outcomes - A Retrospective Australian Population Study 1981-2011. PLoS One 2016;11:e0158807.
- 524. NETWORK. APH. Northern Adelaide *Understanding the health of the Adelaide Reigion*. South Australia: Public Health Network Adelaide, 2020 (vol 2020).
- 525. SQUIRES J, & BRICKER, D. . Ages & Stages Questionnaires[®], Third Edition (ASQ[®]-3): A Parent-Completed Child Monitoring System. Baltimore: Brookes Publishing Co. Inc Number of pages.
- 526. SQUIRE J TM, BRICKER D, POTTER LW. . ASQ Technical Report. In: Publishing B, ed. Baltimore USA, 2009 (vol ASQ-3).
- 527. MARSDEN J, STEWART D, GOSSOP M, et al. Assessing Client Satisfaction with Treatment for Substance Use Problems and the Development of the Treatment Perceptions Questionnaire (TPQ). Addiction research 2000;8:455-70.
- 528. VISSER SN, DANIELSON ML, BITSKO RH, et al. Trends in the parent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003-2011. J Am Acad Child Adolesc Psychiatry 2014;53:34-46.e2.
- 529. HOSOKAWA R, KATSURA T. Effect of socioeconomic status on behavioral problems from preschool to early elementary school A Japanese longitudinal study. PLoS One 2018;13:e0197961.
- 530. KOUTRA K, CHATZI L, BAGKERIS M, VASSILAKI M, BITSIOS P, KOGEVINAS M. Antenatal and postnatal maternal mental health as determinants of infant neurodevelopment at 18 months of age in a mother-child cohort (Rhea Study) in Crete, Greece. Soc Psychiatry Psychiatr Epidemiol 2013;48:1335-45.
- 531. SCHONHAUT L, PÉREZ M, ARMIJO I, MATURANA A. Comparison between Ages & Stages Questionnaire and Bayley Scales, to predict cognitive delay in school age. Early Hum Dev 2020;141:104933.
- 532. MAY T, ADESINA I, MCGILLIVRAY J, RINEHART NJ. Sex differences in neurodevelopmental disorders. Curr Opin Neurol 2019;32:622-26.
- 533. NUGENT BM, O'DONNELL CM, EPPERSON CN, BALE TL. Placental H3K27me3 establishes female resilience to prenatal insults. Nat Commun 2018;9:2555.

- 534. MURRAY AL, BOOTH T, EISNER M, AUYEUNG B, MURRAY G, RIBEAUD D. Sex differences in ADHD trajectories across childhood and adolescence. Dev Sci 2019;22:e12721.
- 535. HADDERS-ALGRA M. Early Diagnostics and Early Intervention in Neurodevelopmental Disorders-Age-Dependent Challenges and Opportunities. J Clin Med 2021;10.
- 536. GUMUSOGLU SB, CHILUKURI ASS, SANTILLAN DA, SANTILLAN MK, STEVENS HE. Neurodevelopmental Outcomes of Prenatal Preeclampsia Exposure. Trends Neurosci 2020;43:253-68.
- 537. SAVVIDOU MD, ANDERSON JM, KAIHURA C, NICOLAIDES KH. Maternal arterial stiffness in pregnancies complicated by gestational and type 2 diabetes mellitus. American journal of obstetrics and gynecology 2010;203:274. e1-74. e7.
- 538. MOODLEY S, ARUNAMATA A, STAUFFER KJ, et al. Maternal arterial stiffness and fetal cardiovascular physiology in diabetic pregnancy. Ultrasound Obstet Gynecol 2018;52:654-61.
- 539. MECACCI F, OTTANELLI S, VANNUCCINI S, et al. Maternal hemodynamic changes in gestational diabetes: a prospective case-control study. Arch Gynecol Obstet 2021.
- 540. KHALIL A, GARCIA-MANDUJANO R, CHIRIAC R, AKOLEKAR R, NICOLAIDES KH. Maternal hemodynamics at 11-13 weeks' gestation in gestational diabetes mellitus. Fetal Diagn Ther 2012;31:216-20.
- 541. SU WJ, CHEN YL, HUANG PY, et al. Effects of Prepregnancy Body Mass Index, Weight Gain, and Gestational Diabetes Mellitus on Pregnancy Outcomes: A Population-Based Study in Xiamen, China, 2011-2018. Ann Nutr Metab 2019;75:31-38.
- 542. FADL H, MAGNUSON A, ÖSTLUND I, MONTGOMERY S, HANSON U, SCHWARCZ E. Gestational diabetes mellitus and later cardiovascular disease: a Swedish population based case-control study. BJOG : an international journal of obstetrics and gynaecology 2014;121:1530-36.
- 543. CATALANO PM. The impact of gestational diabetes and maternal obesity on the mother and her offspring. J Dev Orig Health Dis 2010;1:208-15.
- 544. GRIEGER JA, BIANCO-MIOTTO T, GRZESKOWIAK LE, et al. Metabolic syndrome in pregnancy and risk for adverse pregnancy outcomes: A prospective cohort of nulliparous women. PLoS Med 2018;15:e1002710.
- 545. TAM WH, MA RC, YANG X, et al. Glucose intolerance and cardiometabolic risk in adolescents exposed to maternal gestational diabetes: a 15-year follow-up study. Diabetes Care 2010;33:1382-4.
- 546. BONEY CM, VERMA A, TUCKER R, VOHR BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005;115:e290-6.
- 547. ZOU J, YANG Y, WEI Q, ZHANG Y, SHI H. Longitudinal Association of Maternal Pre-Pregnancy BMI and Third-Trimester Glycemia with Early Life Growth of Offspring: A Prospective Study among GDM-Negative Pregnant Women. Nutrients 2021;13.
- 548. CULLINAN J, GILLESPIE P, OWENS L, AVALOS G, DUNNE FP. Is there a socioeconomic gradient in the prevalence of gestational diabetes mellitus? Ir Med J 2012;105:21-3.
- 549. ALVAREZ-GALVEZ J, GOMEZ-BAYA D. Socioeconomic Context as a Moderator in the Relationship between Body Mass Index and Depression in Europe. Appl Psychol Health Well Being 2017;9:410-28.
- 550. NGUYEN B, JIN K, DING D. Breastfeeding and maternal cardiovascular risk factors and outcomes: A systematic review. PLoS One 2017;12:e0187923.
- 551. ZHANG Z, LAI M, PIRO AL, et al. Intensive lactation among women with recent gestational diabetes significantly alters the early postpartum circulating lipid profile: the SWIFT study. BMC medicine 2021;19:241-41.
- 552. LAMBRINOU CP, KARAGLANI E, MANIOS Y. Breastfeeding and postpartum weight loss. Curr Opin Clin Nutr Metab Care 2019;22:413-17.
- 553. NAM GE, HAN K, KIM DH, et al. Associations between Breastfeeding and Type 2 Diabetes Mellitus and Glycemic Control in Parous Women: A Nationwide, Population-Based Study. Diabetes Metab J 2019;43:236-41.
- 554. CHAMBERLAIN C, MCLEAN A, OATS J, et al. Low rates of postpartum glucose screening among indigenous and non-indigenous women in Australia with gestational diabetes. Matern Child Health J 2015;19:651-63.
- 555. LI N, YANG Y, CUI D, et al. Effects of lifestyle intervention on long-term risk of diabetes in women with prior gestational diabetes: A systematic review and meta-analysis of randomized controlled trials. Obes Rev 2021;22:e13122.
- 556. ALDRIDGE E, VERBURG PE, SIERP S, et al. A Protocol for Nurse-Practitioner Led Cardiovascular Follow-Up After Pregnancy Complications in a Socioeconomically Disadvantaged Population. Front Cardiovasc Med 2019;6:184.

Appendix 1: Publication for Cardiovascular risk factors in women with a history of gestational diabetes mellitus: a systematic review and metaanalysis

Cardiovascular risk factors in women with previous gestational diabetes mellitus: A systematic review and meta-analysis

Maleesa M. Pathirana^{1,2} · Zohra Lassi^{1,2} · Anna Ali^{2,3,4} · Margaret Arstall^{2,5} · Claire T. Roberts^{1,2,6} · Prabha H. Andraweera^{1,2,5}

Accepted: 26 August 2020 / Published online: 27 October 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

This systematic review and meta-analysis aimed to synthesize evidence on conventional cardiovascular disease (CVD) risk factors among women with previous Gestational Diabetes Mellitus (GDM). The review protocol is registered with PROSPERO (CRD42019118149). PubMed, CINAHL, SCOPUS, and EMBASE databases were searched. Studies reporting on CVD risk factors in women with previous GDM compared to women without previous GDM were selected. A total of 139 studies were eligible, of which 93 were included in the meta-analysis. Women with previous GDM have significantly higher systolic blood pressure (2.47 mmHg 95% CI 1.74 to 3.40, n = 48, 50,118 participants) diastolic blood pressure (1.89 mmHg 95% CI 1.32 to 2.46, n = 48, 49,495 participants), BMI $(1.54 \text{ kg/m}^2 95\% \text{ CI} 1.32 \text{ to } 2.46, n = 78, 255,308 \text{ participants})$, total cholesterol (0.26 SMD 95% CI 0.15 to 0.37, n = 48, 38,561 participants), LDL cholesterol (0.19 SMD 95% CI 0.08 to 0.30, n = 44, 16,980 participants), triglycerides (0.56 SMD 95% CI 0.42 to 0.70, n = 46, 13,175 participants), glucose (0.69 SMD 95% CI 0.56 to 0.81, n = 55, 127,900 participants), insulin (0.41 SMD 95% CI 0.23 to 0.59, n = 32, 8881 participants) and significantly lower HDL cholesterol (-0.28 SMD 95% CI -0.39 to -0.16, n = 56, 35,882 participants), compared to women without previous GDM. The increased blood pressure, total cholesterol, triglycerides and glucose are seen as early as <1 year post-partum.Women with previous GDM have a higher risk of CVD based on significant increases in conventional risk factors. Some risk factors are seen as early as <1 year post-partum. Women with GDM may benefit from early screening to identify modifiable CVD risk factors.

Keywords Gestational diabetes \cdot Women's health \cdot Cardiovascular disease \cdot Cardiovascular risk factors

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11154-020-09587-0) contains supplementary material, which is available to authorized users.

Prabha H. Andraweera prabha.andraweera@adelaide.edu.au

- ¹ Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- ² Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- ³ Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville, SA, Australia
- ⁴ Adelaide G-TRAC Centre & CRE Frailty & Healthy Ageing Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- ⁵ Department of Cardiology, Lyell McEwin Hospital, Elizabeth Vale, SA, Australia
- ⁶ Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia

Abbreviations

CVD cardiovascular disease GDM gestational diabetes mellitus

1 Introduction

Cardiovascular disease (CVD) is a major global health burden. There are 17.9 million deaths annually, accounting for 31% of global mortality [1]. CVD is also a leading cause of death in women [2]. Research over the past decade has shown an association between the major pregnancy complications including preeclampsia, intrauterine growth restriction, preterm birth and gestational diabetes mellitus and increased risk of CVD, with each pregnancy complication incurring a 2-fold increased risk of developing CVD later in life [3].

Gestational diabetes mellitus (GDM) is defined as glucose intolerance, which is first recognised in pregnancy, hence different from both type I and type II diabetes mellitus. GDM is estimated to affect one in seven pregnancies [4]. Women with previous GDM are more likely to be obese, have dyslipidaemia and hypertension post-partum [3]. These women have an approximately seven-fold increased risk of developing type II diabetes mellitus (T2DM) later in life [5]. The definition of GDM changed in 2013, following a study by the Hyperglycaemia Adverse Pregnancy Outcomes (HAPO) cohort, which showed that adverse perinatal outcomes were seen even in women whose glycaemic levels were below the conventional GDM criteria [6]. This meant that women, who were not diagnosed with GDM based on previous guidelines, were still at risk for these adverse outcomes. With the implication of the new international guidelines for GDM, the rate of women classified as having GDM is expected to increase.

A recent meta-analysis by Kramer et al. (2019) based on more than a million participants, showed that women with GDM have a 2-fold increased risk of developing CVD, irrespective of the disease progression of T2DM [7]. Thus impaired glucose tolerance post-partum does not appear to be the only cardiovascular risk factor in women who experience GDM to warrant screening for CVD. A major mechanism that underlies the risk of CVD is metabolic syndrome, which is a collection of vascular derangements including obesity, dyslipidaemia, insulin resistance and hypertension [8]. Therefore, early identification of these modifiable risk factors is pertinent in order to offer targeted interventions/lifestyle modification advice to reduce the subsequent risk for CVD. It has been shown that minimal decreases in risk factors including systolic blood pressure, total cholesterol and adiposity can significantly reduce the risk of ischemic heart disease later in life [9, 10].

There has not been a systematic review and meta-analysis that has comprehensively evaluated all conventional CVD risk factors simultaneously in women with previous GDM, and none that has assessed the timeline of development of risk factors for CVD. This is particularly important as Kramer et al. (2019) showed an association between previous GDM and increased risk of CVD events as early as one year postpartum [8].

Therefore, our primary aim was to conduct a systematic review and meta-analysis on the association between GDM and major risk factors for CVD including blood pressure (BP), body mass index (BMI), fasting glucose, insulin and lipids using data from all eligible studies. Our secondary aim was to assess the risk factor profile based on the time elapsed post-partum at which assessments were conducted.

2 Methods

2.1 Search strategy

All studies describing the association between GDM and risk factors for CVD in women were identified by searching the following electronic databases: PubMed, CINAHL, SCOPUS and EMBASE with an end of search date of 5th November 2018. Subsequently, we updated the literature search to include all relevant articles published until 10th Jan 2020. The search was conducted by ZL. The review protocol is registered in PROSPERO (CRD42019118149).

The review was undertaken with reference to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines [11]. The search strategy was as follows: ("gestational diabetes*" OR "pregnancy induced diabetes" OR "diabetic pregnancy") AND (pregnan* OR mother OR women OR woman) AND ("blood pressure" OR diabetes OR cardiovascular OR metabolic OR hypertension OR BMI or "body mass index" OR obesity OR overweight OR lipids OR lipid OR cholesterol OR triglyceride* OR glucose OR insulin OR vascular).

We included case-control studies, cross-sectional and cohort studies. Previous systematic reviews and meta-analyses on closely related topics, and references from eligible studies were checked for additional studies. All identified studies were assessed for relevance by four authors (MP, PA, AA, ZL). Data were independently extracted by two authors (MP, AA). Discrepancies were resolved by discussion with ZL and PA.

2.2 Inclusion criteria

Studies were selected if they compared CVD risk factors in women with a previous history of GDM compared to women with no history of GDM. We included studies that defined GDM based on the International Association of Diabetes and Pregnancy Study Groups (IADPSG) [12]. However, since the diagnostic criteria have been revised recently, we included studies that used prior recommended diagnostic criteria of GDM including the 1999 World Health Organization definition, and other regional definitions. The definitions of GDM of included studies are detailed in Table 1. Studies that did not include a definition of GDM, those that did not define the case and control groups and those that compared women with GDM to another risk group were excluded.

Data were extracted independently and in duplicate for outcomes, systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), lipid levels (total cholesterol, low density lipoprotein (LDL) high density lipoprotein (HDL), and triglycerides), blood glucose, and fasting insulin. We analysed all studies collectively as an overall analysis, and subsequently stratified into subgroups based on the

Author and year	Study design	Country	Exposed/Definition of GDM (n=)	Non exposed (n=)	Birthweight of offspring cases/controls (g)
< 1 year postpartum					
Albareda 2004 [57]	Prospective	Spain	696/50 g. 1 h GCT-	20	NR
Anastasiou 1998 [14]	Case-control	Greece	33/ADA	19	NR
Berolund 2016 [151]	Cohort	Snain	331/ NDDG or IDF	132	NR
Bowes 1996 [71]	Prosnective		7/75 o OGTT 2 h blood olucose >9 mmol/1		NR
Bozknirt 2010 -	Cross-sectional	Italv	62/4th International Workshon conference on GDM	50 29	NR
abstract (2) [152]		(m)		ì	
Bozkurt 2012 (2) [72]	Cross-sectional	Vienna	54/4th International Workshop conference on GDM	29	NR
Cellina 1983 [21]	Observational Cohort	Italy	20/ O'Sullivan and Mahan	15	NR
Chan 1992 [153]	Retrospective	ŮŘ,	15/75 g OGTT: 120 min venous plasma glucose	15	NR
	1		>7.8 mmol/l.		
Davenport 2012 [23]	Prospective	Canada	10/ Canadian Diabetes Association	10	NR
Davis 1999 [24]	Cross-sectional	USA	21/medical records	39	NR
Eroglu 2006 [77]	Prospective	Turkey	36/ Abnormal 3 h 100 g OGTT at 24-28 weeks'	33	Cases: 3308 ± 401 ,
			gestation		Control:3334 ± 373
Ferrada 2007 [26]	Case-control	Chile	58/GDM definition not explained	58	NR
Friere 2006 [154]	Cross-sectional	Brazil	13/ Carpenter and Coustan.	13	NR
Homko 2001 [155]	Cross-sectional	USA	7/ Carpenter and Coustan	8	NR
Kjos 1991 [100]	Prospective	USA	6–12 weeks ($n = 1340$), 1 year ($n = 157$)/ NDDG (1979)	6-12 wk. $(n = 43)$	NR
1	q		•	1 year $(n = 36)$	
Ko 1999 [33]	Case-control	Hong Kong	19/ 75 g OGTT	10	NR
Lee 2015 [36]	Cross-sectional	Korea	36/75 g oral glucose tolerance test (OGTT)	19	NR
Maghbooli 2010 [156]	Case-control	Iran	92/50 g O'Sullivan and Mahan criteria after two step	100	NR
1693 2000		V	100 = 100 = 100	10	
Michachian 2003	Case-control	Australia	(SAIUA) I UU B-C/ /4I	19	NK
Morbiducci 2009 (1) [84]	Methodology study	Italy	122/ Not specified	19	NK
Noujah 2017 [157]	Population Based Cohort Study	Iran	176/ IADPSG criteria, or medical records	86	NR
Noujah 2018 [43]	Population Based Prospective Cohort Study	Iran	176/ IADPSG criteria, or medical records	86	NR
Pacini 2012 (2) [126]	Retrospective	Austria	104/Not specified	35	NR
Retnakaran 2009* [158]	Observational Study	Canada	137/NDDG (1979)	259	NR
Retnakaran 2010 [*] [106]	Observational Study	Canada	107/NDDG (1979)	73	NR
Retnakaran 2010 [*] [106]	Prospective observational Study	Canada	136/NDDG (1979)	87	NR
Retnakaran 2010 [*] [106]	Observational Study	Canada	107/NDDG (1979)	Not reported	NR
Retnakaran 2011* [123]	Observational Study	Canada	137/NDDG (1979)	259	NR
Roca-Rodrigeuz 2012*	Case-control	Spain	41/NDDG (1979)	21	NR
Roca-Rodrigeuz 2014* [45]	Case-control	Spain	41/NDDG (1979)	21	NR
Sartore 2011 [120]	Retrospective cohort	Italy	21/Camenter and Constan (1082)	10	NR
Sect 2018	Case-control	Senal	20/ Not enerified	12	dN
Solum 2013* [115]	Direction cohort	Doland	20/ 1/01 5pc://	07	dN
Condition 2012* [115]	Discretize cohort	Doland	135/WHO 1000	04	DN
Suma 2008 [40]	Liberary conor	south South	120 WILO 1777 140/ Thind International Workshon		dN
[24] 0002 gunc	COMMIT	Korea	Conference on GDM	17	
Todoric 2012 [65]	Retrochective	Anetria	10/I Iniversal GDM Screening	۶	an
1 00010 2017 2017	n inndening	Unonta	10/ UIII VUSAI ULIM SULVIIII E	0	

🖄 Springer

731

Table 1 (continued)					
Tura 2006 (2) [127]	Prospective cohort	Austria	24/4th Workshop Conference on GDM	23	NR
Vitoratos 2001 [96]	Retrospective	Greece	24/ Carpenter and Coustan (1982)	19	NR
Wang 2019	Retrospective	China	30/ 75 g OGTT	15	3445.67/3362.85
Weisnagel 2013 abstract	Abstract	Canada	20/ Not reported	27	NR
Winzer 2004(1)[99]	Cross-sectional	Austria	89/4th Workshop Conference of	19	NR
			Gestational Diabetes		
Zajdenverg 2014 [55]	Cross- sectional analysis	Brazil	25/ADA criteria	20	NR
1-5 years post-partum					
Akinci 2008 [15]	Cross-sectional	Turkey	46/ 50 g-OGTT, ADA	30	NR
Akinci 2011* [130]	Cross-sectional	Turkey	195/ 50 g-OGTT, ADA	71	NR
Akini 2011* [130]	Cross-sectional case-control study	Turkey	128/ 50 g OGTT, ADA	67	NR
Akini 2013* [43]	Prospective	Turkey	141/ 50 g OGTT, ADA	49	NR
Albareda 2003 [57]	Prospective	Spain	696/ 50 g, 1 h glucose challenge test	70	NR
Albareda 2004 [57]	Prospective	Spain	262/50-g, 1 h glucose challenge test	99	NR
Banerjee 2012 [16]	Prospective	UK	8/75 g OGTT at 28 weeks pregnancy - WHO defined GDM (Fasting glucose >7 mmol/L	×	NR
			or 2 h >7.8 mmol/L)		
Bently Lewis 2015* [58]	Cohort	USA	96/ Carpenter Coustain criteria	96	Normal GT: 3455 ± 464, GDM:3571 ± 525
Bently Lewis 2016* [17]	Cohort	A SU	51/ Carnenter Constain criteria	1810	Same as 2015
Cocilovo 1990 [73]	Cohort	Italy	41/3 h OGTT 0'Sullivan criteria.	25	NR
Davis 1999 [24]	Cross-sectional	USA	21/medical records	39	NR
Demir 2016 [75]	Cohort study	Turkey	80/Carpenter Coustan criteria;	40	NR
Eroglu 2006 [77]	Prospective	Turkey	36/ 3 h 100 g OGTT O'Sullivan and Mahan	33	$3308 \pm 401/3334 \pm 373$
Fakhrzadeh 2012 [25]	Retrospective	Iran	O'Sullivan and Mahan	20	NR
Hakkariainen 2015** [161]	Hospital register base cohort study	Finland	489/ Fasting, 1 h, 2 h capillary whole blood	385	NR
			glucose values 4.8, 10.0 and 8.7 mmol/L		
			respectively before Sept 2001. Values		
			changed to 11.2 and 9.9 mmol/l for 1 h		
			and 2 h respectively after Sept 2001		
Hakkariainen 2016** [30]	Hospital register base cohort study	Finland	489/Fasting, 1 h, 2 h capillary whole blood	385	$GDM(1) 3637 \pm 571, GDM(2) 3637 \pm 521/$
			respectively before Sent 2001 Values		Control: 3581 ± 571
			changed to 11.2 and 9.9 mmol/l for 1 h		
			and $\overline{2}$ h respectively after Sept 2001		
Hu 1998 [60]	Cross-sectional	Sweden	17/75 g OGTT capillary blood	20	NR
			glucose > 9 mmol/UL		
Kjos 1991 [100]	Prospective cohort	USA	6–12 weeks (n = 1340), 1 year	6-12 wk. $(n = 43)$	Not reported
			(n = 157)/ NDDG (1979)	1 year $(n = 36)$	
Kousta 2003 [79]	Reterospective	UK	34/ 75 g- OGTT, WHO (1999)	44	NR
Krishnaveni 2007 [34]	Prospective cohort	India	35/ Diagnosis made based on Carpenter	489	NR
		5		070	
Lee 2008 [SS]	Cross-sectional	Nunos	020/ NDDU atter two step Out 1	808	XIV
		Norea			

Table 1 (continued)					
Levka 2015* [62]	Prospective Cohort	Norway	50(IADPSG) and 31 (WHO) /IADPSG and WHO 1999	234 (IADPSG) and 253 (WHO)	Mean (SD): IADPSG: 3832 (530)/ 3588 (502) WHO: 3740 (455)/ 3640 (520)
Levka 2016* [162]	Prospective Cohort	Norway	50(IADPSG) and 31 (WHO) /IADPSG and WHO 1999	234 (IADPSG) and 253 (WHO)	NR
Levka 2017* [163]	Prospective Cohort	Norway	50(IADPSG) and 31 (WHO) /IADPSG and WHO 1999	234 (IADPSG) and 253 (WHO)	NR
Madarasz 2009 [37] Mai 2014 [38]	Retrospective Case-control	Hungary China	68/WHO 1985 190/ ADA 2004	39 80	NR NR
Noctor 2015** [164]	Prospective Cohort study (Based on Noctor 2013)	Ireland	265/ modified WHO 1999 (based on Noctor 2016)	378	NR
Noctor 2016** [42]	Prospective Cohort study (Based on Noctor 2013)	Ireland	270/WHO 1999	388	NR
Ozuguz 2011 [118]	Prospective case control	Turkey	61/Carpenter and Coustan (1982)	40	NR
Perrson 2015 [110]	Retrospective	Sweden	111/Not reported	333 20	NR
Prinenta 2004 [80] Prikoszovich 2011 [87]	rrospective Retrospective	Brazii Austria	20/ NULUU (1979) 23/Feiurth Workshon Conference of	07 8	NR
			Gestational Diabetes	5	
Rauito 2014 [44]	Multicentre Prospective cohort	Finland	115/Medical records	150	NR
Ruksasakul 2016 [64]	Case control	Thailand	56/Carpenter and Coustan (2007)	51	NR
Ryan 1995 [<mark>90</mark>]	Cross-sectional	Canada	14/ Hospital based definition	14	NR
Ryan 2013 [46]	Case-control	USA	20/History confirmed by health care provider	26	NR
Shen 2018 [92]	Observational Study	China	1263/WHO 1999	705	NR
Shen 2018 [92]	Observational Study	China	1263/WHO 1999	705	NR
Shen 2019	Observational Study	China	1263/WHO 1999	705	NR
Sokup 2012 [115]	Prospective cohort	Poland	85/ WHO 1999	40	NR
Sokup 2012 [115]	Prospective cohort	Poland	125/WHO 1999	40	NR
Stuebe 2011 [113]	Longitudinal cohort	USA	16/ Carpenter and Coustan	461	NR
Ueland 2018	Population based prospective cohort study	Norway	48/ IADPSG 2010	225	NR
Verma 2002 [52]	Prospective cohort	USA	58/Carpenter and Coustain modification of NDDG	51	NR
Vigneault 2015 [95]	Retrospective	Canada	216/Medical Records	83	NR
Vilmi-Kerala 2016 [53]	Cross-sectional	Finland	120/ Finnish Current Guidelines (2013)	120	NR
Wang 2015 [97]	Cross-sectional	China	48/ ADA (2013)	48	NR
Winhofer 2013* (1) [165]	Prospective Longitudinal Follow-Up	Austria	62/ ADA (based on Tura 2008)	10	NR
Winhofer 2013 abstract*	Longitudinal Follow-Up	Austria	43/ADA (based on Tura 2008)	10	NR
(1) [100] Winhofer 2014* (1) [54]	Prospective longitudinal follow-up	Austria	45/ (ADA based on Tura 2008)	18	NR
Winzer 2004 (1) [99]	Cross sectional	Austria	89/4th Workshop Conference of Gestational Diabetes	19	NR
Xiang 2012 [167]	Abstract Longitudinal	USA	76/Based on medical records (Watanabe 2007)	88	NR
Xiong 2013 [129]	Case control	USA	19/ACOG	20	NR
5–10 years postpartum					
Benjamin 1993 [107]	Case-control	India	47/O'Sullivan and Mahan	47	NR

733

Table 1 (continued)					
Bian 2000 [169]	Retrospective C	China	45/ >2 abnormalFPG > 5.8 mmol/L, at 1 h > 10.6 mmol/L, at 2 h > 9.2 mmol/L, at 3 h > 8 1 mmol/L	39	NR
		-			
Bo 200/ [18]	Cohort	taly	82/ 50 g GC1 Carpenter and Coustan	113	NK
Caliskan 2014 [19]	Case-control	l urkey	62/ Medical history	55	NK
Da 2016 (Abstract) [170]	Retrospective	Poland	199/ Based on OGTT values (not specified further)	50	NR
Donhorst 1990 [76]	Cohort	NC N	56/ modification of O'Sullivan and Mahan	23	NR
Ferraz 2007 [101]	Cohort	3razi l	70/ 75-g OGTT, (WHO)	108	NR
Hakkariainen 2015** [161]	Hospital register base cohort study	Finland	489/ Fasting, 1 h, 2 h capillary whole blood glucose	385	NR
)		values 4.8, 10.0 and 8.7 mmol/L respectively		
			before Sept 2001.		
			Values changed to 11.2 and 9.9 mmol/l for 1 h and		
			2 h respectively after Sept 2001		
Hakkariainen 2016** [30]	Hospital register base cohort study F	Finland	489/ Fasting, 1 h, 2 h capillary whole blood glucose	385	Mean (SD) GDM
			values 4.8, 10.0 and 8.7 mmol/L		(1) 3637 ± 571 , GDM (2)
			respectively before		$3671 \pm 531/3581 \pm 571$
			Sept 2001. Values changed to 11.2 and 9.9 mmol/1 for 1 h and 2 h respectively after		
			Sept 2001		
Hunger Dathe 2006 [32]	Cohort C	Germany	132/medical history	50	NR
Lauenborg 2005 [61]	Long term follow-up	Denmark	481/Based on 3 h 75 g OGTT - Damm et al. (1993)	1000	NR
Meier	Case-control/experimental	Jermany	15/ OGTT based on fasting glucose	20	Mean (SD)
(2005). [39]	×	•)		$3615 \pm 661/3165 \pm 289$
Modela 2016* [41]	Retrospective cohort study P	oland	199/OGTT	50	NR
Osei 1998 [85]	Case-control	JSA	15/ O'Sullivan criteria adapted by NDDG	15	Not reported
Pimenta 2004 [86]	Prospective E	Brazil	20/NDDG (1979)	20	Not reported
Seghiri 2007 [91]	Retrospective	talv	43/Carotenter and Coustan (1992)	22	NR
Sriharan 2002 [48]	Retrospective E	Brazil	46/1999 WHO	50	NR
Tam 2007* [171]	Prosnective cohort	Jong Kong	0HM 6661/29	136	Mean (SD):
		0			$3230 \pm 485/3272 \pm 429$
Tam 2012** [125]	Prospective cohort F	Hong Kong	94/WHO 1999	44	Mean (SD): 3230 (485)/
1	٩)			3272(429)
Tam 2013** [122]	Prospective cohort F	Hong Kong	94/WHO 1999	45	Mean (SD): 3230 (485)/
Tahuani 2012 [121]	Mostod Ionaitridiaal aaa aantool atridiy				0212(429) ND
1 GILIALII 2014 [141]		Tall	22) WIO 1777	n = 570 (Group	
				2)	
Tobias 2017 [94]	Prospective cohort analysis	JSA	5292/Self-reported GDM (validated method)	84,187	NR
$1 \text{ utino } 2014 \left[\frac{1}{2} \right]$	Nested Case Control - Abstract	Hong Kong	124/ Self- reported GDM	372	NK
v erma 2002 [32] Wender-Ozegowska	Prospective conort Prospective cohort	Poland	28/Carpenter and Coustain modification of NULUC 153/Hospital records	15 155	NR
2007 [98]					
>10 years postpartum					
Ajala 2011 (abstract) [168]	Cohort	ЯC	n = 95/ GDM diagnosis not specified	Not specified	NR
				(いいal II - シン)	

Table 1 (continued)					
Ajala 2015 [68]	Cohort Ca	nada	90/ Canadian Diabetes Association	59	NR
Behboudi- Gandevani 2019	Long term longitudinal follow-up	u	801/WHO (1998)	2594	NR
Carr 2006 [20]	Cross-sectional US	S	662/ Self-reported	332	NR
Charwat-Resl 2017 [22]	Cross-sectional Vi	ienna	55/ WHO (1998)	32	NR
Gobl 2011 (1) [173]	Prospective At	ıstria	120/ 75 g OGTT, Fourth International Workshop	40	NR
			conference on GDM		
Gobl 2014 (1) [174]	Cross-sectional A1	ıstria	108/75 g OGTT, Fourth International	41	NR
			Workshop conference on GDM	:	
Gobl 2014 (1) [175]	Cross-sectional, prospective A1	ıstria	77/75 g OGTT, Fourth International Workshon conference on GDM	41	NR
Gunderson 2014 [28]	Longitudinal observational study Ca	nada	WOINSTOP CONTINUED ON CONTINUED OF CONTINUED	364	NR
-	0		OGTT results from prenatal records		
			to match definition by Diabetes Care 1997		
Hakkariainen 2015** [161]	Hospital register base cohort study Fi	nland	489/ abnormal fasting, 1 h, 2 h capillary	385	NR
			whole blood glucose values 4,8, 10.0		
			and 8.7 mmol/l respectively (Until Sept		
			2001) Values changed to 11.2 and		
			9.9 mmol/l for 1 h and 2 h respectively		
			after Sept 2001		
Hakkariainen 2016** [30]	Hospital register base cohort study Fi	nland	489/ Fasting, 1 h, 2 h capillary whole blood	385	$GDM(1) 3637 \pm 571, GDM$
			glucose values 4.8, 10.0 and		(2) $3671 \pm 531/3581 \pm 571$
			8.7 mmol/L respectively before Sept 2001.		
			Values changed to 11.2 and 9.9 mmol/l for		
			1 h and 2 h respectively after		
			Sept 20,019.9 mmol/l for 1 h and		
			2 h respectively after Sept 2001		
Heida 2015 [31]	Prospective cohort study Du	utch	1089/ Self- reported questionnaire	15,560	NR
King 2009 [124]	Case-control U	SA	20/Self-report of having GDM and OGTT	20	NR
Lee 2007 [80]	Retrospective	ustralia	5740/75 g OGTT and 50 g	783	NR
-	ч		OGTT. FPG: 5.5 mmol/l and/or a 2 h		
			plasma glucose>8.0 mmol/		
Linne 2002 [81]	Retrospective St	ockholm	28/ 2- h oral glucose	52	NR
			tolerance test (OGTT) with 75 g		
			glucose, 2 h value over >9.0 mmol/L		
Minoee 2017 [176]	Prospective population follow-up	u	476/ WHO (1998)	1982	NR
Minoee 2017 [176]	Prospective population follow-up	u	476/ WHO (1998)	1982	NR
Pirkola 2010 [111]	Population based study Fi	nland	124/ 2 h 75 g OGTT one abnormal	5342	NR
-	х м		value – Fasting >5.5 mmol/l,		
			1 h > 11.0 mmol/ 2 h > 8 mmol/l		
Tam 2012 [125]	Prospective follow-up He	ong Kong	45/ WHO 1999 (Tam 2007)	94	NR
Tam 2013 [122]	Prospective follow-up	ong Kong	67/WHO 1999	136	Baseline: Mean (SD): 3230 (485)/ 3272(429)
Verma 2002 [52]	Longitudinal follow-un study	A C	58/Carnentrr and Coustain modification	51	NR
			of NDDG	1	
Wang 2012 [66]	Longitudinal database US	SA	1142/ICD-9	18,856	NR
Winhofer 2014 (1) [54]	Prospective follow-up At	ıstria	35/4th Workshop Conference of Gestational	14	NR
			Diabetes (Based on Winzer 2004)		

🙆 Springer

Table 1 (continued)						
Xiang 2013 [128] Xiang 2013 [128]	Observational longitudinal Observational longitudinal	n	SA 93/ Based on m SA 93/ Based on m	redical records redical records	142 142	NR NR
No specified postpartum f	jollow-up					
Couch 1998 [74] Gadoil 2017 [78]	Cross-sectional Cross-sectional	0 =	hio 20/ O'Sullivan SA 13/ Self remorte	and NDDG criteria used	20 13	NR NR
Gunderson 2010 [28]	Longitudinal observational		anada 154/ Self renor	u ied confirmed with OGTT	1655	NP
Han 2018	Retrospective cohort study	N V	outh 4970/ diagnose	d based on ICD-10 codes	97,930	NR
Shostrom 2017 [114]	Population base study	D	Korea SA 555/Self report	pe	7572	NR
Simmons 2017 [93]	Follow-up study	Z	ew 52/ Self reporte	q	2582	NR
Thomann 2008 [51]	Case control	Š	vitzerland 18/ ADA (2002		19	NR
Author and year	Parity cases/controls	Gestational age of delivery cases/controls	Years follow up postpartum	Outcome measure considered	Adjusted analysis	for cardiovascular outcome
< 1 year postpartum						
Albareda 2004 [57]	446/694 (64.3)	NR	6 weeks and 5 year	Blood pressure BMI, Serum Lipids Blood Glucose Insulin	Independent pred hyperglycaemii diagnostic OG pregnancy, 2 h OGTT 11/7 m	ctors of GDM: previous 1, 4 abnormal values in CT or overt diabetes during blood glucose in diagnostic nol/L, gestational age at
					diagnosis, pre- Accumulates to in GDM wome	oregnancy BMI. • 49.3% risk of diabetes n
Anastasiou 1998 [14]	Mean (SD) Normal: 1.6 ± 0.6 , Non obsse: 1.4 ± 0.6 , Obsse: 1.7 ± 0.8	NR	3-6 months	Serum Lipids	Endothelium depe associated with	ndant dilation not diagnosis of GDM
Berglund 2016 [151]	Parity>1 (n=): Normal weight: 55 Overweight: 24 Obese: 28 GDM:45	NR	At birth	BMI	NR	
Bowes 1996 [71]	NR	Mean (SD) 30.9 + 0.8	2–3 months	BMI Blood glucose Fasting Plasma Insulin	NR	
Bozkurt 2010 - abstract (2) [152]	NR	NR	3–6 months	BMI, Triglycerides	NR	
Bozkurt 2012 (2) [72]	NR	NR	3-6months	Blood pressure, Triglycerides, Blood Glucose	NR	
Cellina 1983 [21]	NR	NR	5 weeks	Blood pressure	NR	
Chan 1992 [153]	NR	NR		Serum insulin Glucose	NR	

			60 and 120 min after delivery		
Davenport 2012 [23]	NR	NR	2 month	Blood Pressure BMI Serum	NR
Davis 1999 [24]	NR	NR	post-partum 3–18 months	Blood pressure BMI Serum Lipids Blood glucose Fasting Insulin	MANOVA adjusting for insulin metabolic syndrome variables - all significant for glucose sum, triglycerides, BMI and diastolic BP.
Eroglu 2006 [77]	Parity: Cases: 1.3 ± 0.7 Control: 14±0.	NR	10–15 months after delivery	BMI, Serum Lipids Blood glucose, Fasting insulin	NR
Ferrada 2007 [26]	NR	NR	End of puerperal period	Blood pressure, BMI Serum Lipids	NR
Friere 2006 [154]	NR	NR	8 weeks	Blood pressure BMI	NR
Homko 2001 [155]	NR	NR	3 months postpartum	Blood Glucose Fasting insulin	NR
Kjos 1991 [100]	Mean (SD): GDM 3 (2)/Control: 3 (2)	NR	6-12 weeks,	BMI Serum Lipids	Women with DM had significantly elevated TG and reduced HDL than those who remained non-diabetic.
Ko 1999 [33]	NR	NR	6 weeks	Blood pressure BMI, SBP, DBP, Serum Lipids Blood Glucose Fasting Plasma Insulin (uU/mL)	GDM women had significantly higher risk of developing obesity, hypertension, hypercholesterolemia, dyslipidaemia, diabetes, and IGT (after excluding those with DM)
Lee 2015 [36]	Х	N	6-8 weeks after delivery,	Blood Pressure BMI Serum Lipids Blood glucose Fasting Insulin	Multiple regression: b cell function significantly associated with parental diabetes history and waist-hip ratio after adjustment for age, BMI, BP and visceral adiposity in previous GDM women
Maghbooli 2010 [156]	$1.4\pm\ 0.03\ 0.38\pm\ 0.59$	NR	6-12 weeks	Serum Lipids Blood glucose	NR
McLachlan 2005 [83]	NR	NR	3-6 weeks	BMI, Blood glucose	NR
Morbiducci 2009 (1) [84]	NR	NR	4–6 months	BMI	NR
Noujah 2017 [157]	NR	NR	6-12 weeks	Serum Lipids	Univariate analysis – pre-pregnancy BMI > 35 and GDM history in first relatives associated with dyslipidaemia in GDM women. Multivariate analysis showed significance for BMI > 25 only
Noujah 2018 [43]	NR	NR	6-12 weeks	Blood pressure BMI, Blood Glucose	Backward linear regression - gravidity >2, pre-pregnancy overweight or obesity, systolic BP, and metformin or insulin use in pregnancy risk factors for MetS in univariate analysis.
Pacini 2012 (2) [126]	NR	NR	6 months	BMI (kg/m2), Blood Glucose Fasting Plasma Insulin	NR

Table 1 (continued)					
Retnakaran 2009* [158]	Nulliparous: (GDM 50.4%/CON: 46.7%)	Median (1QR) 29 (28–31)/30 (28–32)	3 month	BMI Blood Glucose	Meta-regression analysis –IR post-partum associated with adiponectin levels in pregnancy after adjustment for various covariates
Retnakaran 2010* [106]	NR	NR	3 month	Blood Pressure BMI Blood Glucose	AUC associated with total cholesterol, LDL, HDL, triglycerides in adjusted model for age ethnicity and diabetes history
Retnakaran 2010* [106]	NR	34.4 (4.3)/34.0 (4.4)	3 month	Blood Pressure BMI	Multiple linear regression: GDM was negative predictor of change in beta cell function between 3 and 12 months postpartum, after adjustment for age, ethnicity, familial history of diabetes, breastfeeding and b cell function.
Retnakaran 2010* [106]	NR	NR	3 month	Blood Pressure BMI Blood glucose	Area under curve associated with total cholesterol, LDL, HDL, triglycerides in adjusted model for age ethnicity and diabetes history
Retnakaran 2011* [123]	NR	NR	3 month	Blood Pressure BMI Serum Lipids	Multiple linear regression performed for effect on adiponectin in metabolic status in GDM women adjusted for various covariates.
Roca-Rodrigeuz 2012* [159]	NR	NR	≤1 ycar	Blood Pressure BMI, Serum Lipids Blood glucose Fasting plasma insulin	Changes at 3 and 12 months post-partum not significant after adjusting for waist circumference, weight, insulinsensitivity and b cell function adjusted for baseline values.
Roca-Rodrigeuz 2014* [45]	NR	NR	≤1 year	Blood Pressure BMI Serum Lipids Blood glucose Fasting plasma insulin	Relationship between AUC glucose and lipids adjusted for age, ethnicity and familial diabetes.
Sartore 2011 [120]	NR	NR	6 months	Serum Lipids, Blood Glucose	Adjusted <i>p</i> value reported, specified for age and waist circumference (based on Kruskall Wallis test)
Seck 2018	NR	NR	After delivery	Serum Lipids Blood Glucose	NA
Sokup 2012* [115]	NR	NR	2–24 months	BMI Serum Lipids Blood glucose Fasting nlasma insulin	NR
Sokup 2012* [115]	NR	NR	2–24 months	BMI Serum Lipids Blood glucose Faction alserna insulin	NR
Sung 2008 [49]	NR	NR	2 months	I about pressure BMI Serum I inids Blood glucose	NR
Todoric 2012 [65]	NR	NR	6-12 weeks		

				Blood Pressure BMI Serum Lipids Fasting plasma insulin	Adjusted <i>p</i> values for BMI: Fasting plasma glucose (mmol/L): $p = 0.000$; TC (mmol/L): $p = 0.9940$; HDL-C (mmol/L) $p = 0.0027$, LDL-C $p = 0.4022$; TG $p = 0.0006$ Fasting plasma glucose:HDL-C
Tura 2006 (2) [127]	Mean (SE) 1.26	NR	4–6 months	BMI, Blood glucose Fasting	p = 0.0049, 1G $p = <0.0001$
Vitoratos 2001 [96]	(0.11)/1.48 (0.18) NR	Case: 38.6 (38–39.5)/ Control39.4	6 weeks	plasma insulin BMI	NR
Wang 2019	NR	NR	After delivery	BMI	NA
Weisnagel 2013 abstract [160]	NR	NR	2 months	Total cholesterol, HDL, Triglyceride, Fasting glucose, Fastino Insulin (not snecrified)	NR
Winzer 2004(1)[99]	NR	NR	3 month	BMI Serum Lipids Blood glucose Fasting plasma insulin	Adiponectin unadjusted is negatively associated with fasting glucose, triglycerides and positively associated with HDL cholesterol in pGDM and healthy control subjects, this correlation stays after adjustment for BFM, WHR and SI
Zajdenverg 2014 [55] 1–5 vears post-partum	2.3 (1.22)/ 2.4 (1.4)	NR	≤1 year	Blood Pressure BMI Serum Lipids Blood glucose	NR
Akinci 2008 [15]	NR	NR	3 years	Blood Pressure BMI Serum Lipids Fasting plasma insulin	Multiple regression analysis: Plasma PAI-1 antigen significantly correlated with BMI fasting and post load glucose, total cholesterol, triglyceride, HDL and LDL.
Akinci 2011* [130]	NR	NR	3 years	Blood Pressure BMI Serum Lipids Blood glucose Fasting plasma insulin	No association was seen between pre-pregnancy obssity (BMI >30 kg/m2) and postpartum diabetes association wasweak, controlled for age, parity and gestational week at the diagnosis of GDM.
Akini 2011* [130]	NR	NR	3 years	Serum Lipids Blood glucose Facting plasma insulin	NR
Akini 2013* [43]	NR	NR	3 years	Fasting plasma insulin	Fasting glucose, post-load glucose - separate models run along with age,

Table 1 (continued)					
					postpartum duration, smoking, BMI, waist circumference and HOMA index.
Albareda 2003 [57]	NR	X	6 weeks and 5 year	Blood Glucose	Independent predictors of GDM: previous hyperglycaemia, 4 abnormal values in diagnostic OGTT or overt diabetes during pregnancy, 2 h blood glucose in diagnostic OGTT 11/7 mmol/L, gestational age at diagnosis, pre-pregnancy BMI. Accumulates to 49.3% risk of diabetes in GDM women
Albareda 2004 [57]	NR	NR	5 years	Blood Pressure BMI Serum Lipids Blood glucose Fasting plasma insulin	Logistic regression: Metabolic syndrome significantly associated with all independent variables age, GDM/control status, obesity were independent variables. Second model included HOMA-IR, insulin secretion and resistance
Banerjee 2012 [16]	NR	NR	2 years	Blood Pressure BMI Serum Lipids Blood glucose	BMI directly correlated with arterial stiffness, inversely related to maximum endothelium dependant and independent dilation
Bently Lewis 2015* [58]	Nulliparous: GDM: 245 (47.0). Multiparous GDM: 273 (52.4)	≥37 weeks	4.1 years	Blood Pressure BMI Serum Lipids	NR
Bently Lewis 2016* [17]	Same as 2015	≥37 weeks	4.1 years	Blood Pressure BMI	Risk of essential hypertension higher in women with GDM adjusted for demographic (age, race gravidity, parity) + clinical features (SBP, BMI, GWG, BW and GA percentile) + SES (smoking status, breastfeeding as discharge, marital status, education years)
Cocilovo 1990 [73]	NR	NR	1 year	BMI	NR
Davis 1999 [24]	NR	N	3–18 months	Blood Pressure BMI Serum Lipids Blood glucose Fasting plasma insulin	MANOVA 2: Insulin and metabolic syndrome variables - all significant adjusting for glucose sum, triglycerides, BMI and diastolic BP. MACOVA: Insulin metabolic variables, significant for glucose, triglycerides, BMI and diastolic blood pressure
Demir 2016 [75]	NR	NR	3-4 years		NR

		regression Stratified iis showed association of with GDM was only seen among n with BMI > 25, but only n with BMI < 30 accounted for the sed risk.							regression: T2DM risk higher for n with GDM risk compared to al population (stratified by race 0. GDM status indepdently and cantly associated with diabetes opment (3.7-fold increase risk)	I p value for age, smoking ancy and BMI HDL-C (mmol/L) 058 LDL-C (mmol/L) $p = 0.405$ mmol/L) $p = 0.261$ Multivariate iis: Pulse Wave Velocity at s is associated with age, GDM ic blood pressure. TG/HDL-C s associated with BMI, GDM SBP	
	NR	Logistic analys CVD wome wome increa	NR	NR	NR	N/A	NR	NR	Logistic wome genera status) signiff develo	Adjusted freque p = 0. TG (n analys 5 yean systol ratio is status,	NR
Blood Pressure BMI Serum Lipids Blood glucose	BMI Serum Lipids Blood glucose Fasting plasma insulin	Blood Pressure BMI Serum Lipids Fasting plasma insulin	BMI Blood glucose Fasting plasma insulin	Blood Pressure BMI Serum Lipids Blood glucose	Blood Pressure BMI Serum Lipids Blood glucose	BMI Serum Lipids,	BMI Serum Lipids Blood glucose	rasting plasma insuim Blood Pressure BMI Serum Lipids Blood glucose Fasting plasma insulin	Blood Pressure BMI Serum Lipids Blood glucose	Blood Pressure Serum Lipids	Blood Pressure BMI
	10–15 months after delivery	4 years	5-10 years	5-10 years	2 years	1 year	2 years	>5 years	Median 2.1 years	5 years	5 years
	NR	NR	NR	Days: GDM (1) 278 ± 10 (2) 278 ± 10/ Control 279 ± 11	NR	Not reported	NR	30 weeks	NR	Median (IQR): IADPSG: 40.4 (39.0–41.3)/ 40.4 (39.3–41.1)	NR
	$1.3 \pm 0.7/1.4 \pm 0.$	$1.45 \pm 0.76/$ 1.95 ± 1.05	NR	Primiparity (%): GDM (1) 35.9 (2) 37.9/ 54.7	NR	3 (2)/3 (2)	Median (IQR) 2	(1-3)/ 2 (1-3) Paity 2+: GDM: NGT: 1 (9%) IGT: 2 (18%) DM:3 (23%) No GDM: NGT:65 (16%) IGT:14 (19%)DM: 4 (50%)	NR	Primipara (%) IADPSG: 44%/60% WHO: 60.0%/48.6	IADPSG: 6 (12.0)/26 (11.1) WHO: 6 (19.3)/26 (10.3)
	Eroglu 2006 [77]	Fakhrzadeh 2012 [25]	Hakkariainen 2015** [161]	Hakkariainen 2016** [30]	Hu 1998 [60]	Kjos 1991 [100]	Kousta 2003 [79]	Krishnaveni 2007 [34]	Lee 2008 [35]	Levka 2015* [62]	Levka 2016* [162]

Table 1 (continued)					
Levka 2017* [163]	IADPSG: 6 (12.0)/26 (11.1) WHO: 6 (19.3)/26 (10.3)	NR	ر م	Blood Pressure BMI Serum Lipids Fasting plasma insulin	Univariate analysis showed LDL at 5 years postpartum negatively associated with insulin sensitivity and resistance, b cell function
Madarasz 2009 [37]	NR	NR	3.5 years	Blood Pressure BMI Serum Lipids Blood glucose Fasting plasma insulin	Adjusted p value specified for age and BMI: Systolic blood pressure $p = 0.40$ Diastolic blood pressure $p = 0.017$ HDL-C: $p = 0.68$ LDL-C: $p = 0.18$
Mai 2014 [38]	Mean (SD)2.5 (1.8)/2.6 (1.9)	NR	2.5 years	Blood Pressure Serum Lipids Blood glucose Fasting plasma insulin	NR
Noctor 2015** [164]	NR	NR	≤3 years	Blood Pressure BMI Serum Lipids Blood glucose	BMI > 30, first degree relative with GDM, macrosomic baby in previous pregnancy associated with GDM
Noctor 2016** [42]	NR	NR	≤3 years	Blood Pressure BMI Serum Lipids Blood glucose	Abnormal glucose tolerance at any time 5 years postpartum associated with fasting glucose, 1-h glucose values on pregnancy OGTT, and family history of diabetes. BMI >30 at follow-up associated with abnormal glucose tolerance
Ozuguz 2011 [118]	Mean (SD) 2.63 (1.36)/ 2.64 (1.13)	Mean (SD) 26.23 (1.73)/26.54 (1.81)	1 year	Serum Lipids Blood glucose Fasting plasma insulin	
Perrson 2015 [110]	Mean (SD) 1.3 (0.8)/1.3 (1.3)	NR	4 years	BMI	NR
Pimenta 2004 [86]	Median (IQR): 2 (1)/ 2 (2)	NR	5 years	Serum Lipids Blood glucose Fasting plasma insulin	NR
Prikoszovich 2011 [87]	NR	NR	3 to 5 years	BMI Serum Lipids Blood glucose Fasting plasma insulin	Adjustment for Body Fat Mass attenuated after adjusting for HDL-C in pGDM compared to control
Rauito 2014 [44]	NR	NR	1	Blood Pressure BMI Serum Lipids	Adjusted p value for age, outcome variable and BMI at baseline
Ruksasakul 2016 [64]	NR	NR	≤3 years	Blood Pressure BMI Serum Lipids Fasting plasma insulin	Metabolic syndrome associated significantly with BMI >25 and age > 35, but not previous GDM
Ryan 1995 [90]	NR	NR	≤4.9 years	BMI Blood glucose	NR
Ryan 2013 [46]	NR	NR	≤5 years	Blood Pressure BMI Serum Lipids Blood glucose Fasting plasma insulin	NR
Shen 2018 [92]	NR	NR	3.65 years	Serum Lipids, Blood Glucose	NR
Shen 2018 [92]	NR	NR	3 years	BMI Blood Glucose	pGDM women have 13.fold multivariable adjusted risk for diabetes
Shen 2019	NR	NR	3.65 years	Serum Lipids, Blood Glucose	Women with GDM had higher risk of postpartum metabolic syndrome by NCEP ATPIII criteria (2.79, 95% CI 2.00 to 3.89) even with adjustment for various covariates:

Fasting glucose adjusted Mean: 89.00/82.33 -adjusted	BMI Serum Lipids Blood glucose Fasting plasma insulin	1 years	NR	NR	Winzer 2004 (1) [99]
NR	BMI Blood Glucose	5 years	NR	NR	Winhofer 2014^* (1) [54]
NR	HDL-C (mg/dl),	5	NR	NR	Winhofer 2013 abstract*
HBA1C and increased fasting glucose but was attenuated after adjusting for BMI (Values not shown)					
pGDM group had increased waist circumference,	Blood Pressure BMI Serum Lipids	5 years	NR	NR	Winhofer 2013* (1) [165]
NR	Blood Pressure BMI Serum Lipids	1	NR	NR	Wang 2015 [97]
factor for the primary outcome measurements in study.	Blood glucose Fasting plasma insulin			(19.2%)/CON: 23 (19.2%)	
				(0.51)	
	insulin			(Mean (SD)) 2.14 (0.89)/2.12 (0.13) Overweight 1.93 (0.11)/2.38 (0.17) Obese: 3.57 (0.25)/2.85	
(cumulative HR: 1.3) compared to controls without PPO (cumulative HR: 0.05)					
was 26 times higher in women with GDM with PPO	Blood glucose Fasting plasma insulin			(n=) 64/52 >= P3 (n=) 23 (22)/16 (16)	
adjustment for BMI, age, parity, diabetes in family and C- Reactive Protein			Ę		
Adiponectin significantly lower in women with GDM than controls even after	Blood Pressure BMI	5 years	NR	P2 = 227; $P3 + = 112NR$	Ueland 2018
Adjusted analyses performed for age, parity, race, parental history of diabetes and maternal BMI at 3 years postpartum	BMI Serum Lipids Blood glucose Fasting plasma insulin	3 years	NR	(<i>n</i> =)GDM P1 = 7; P2 = 6, P3 = 3/ CON: P1 = 131:	Stuebe 2011 [113]
INSURT associated with DML, setum e-selectin associated with TG, Setum TC and HDL associated with LDL	DIVIL Secturi Liptus Diood glucose Fasting plasma insulin	2-24 III0IIIIS	X	NK	[c11] 2102 dnyoc
Adjusted <i>p</i> -values for BMI reported	BMI Serum Lipids Blood glucose Fasting plasma insulin	2–24 months	NR	NR	Sokup 2012 [115]
(central obesity hypertriglyceridemia, high blood pressure, low HDL cholesterol hyperglycaemia					

Table 1 (continued)					
Xiang 2012 [167]	NR	NR	≤5 years	BMI	for waist circumferenceMean: 89.93/81.36 - adjusted for body fat mass Plasma glucose and insulin not significantly different between GDM and controls for adjusted values (Adjusted age, age at first pregnancy, baseline percentage body fat, baseline calorie intake and physical activity. additional preenancy).
Xiong 2013 [129]	Nulliparous $(n=)$: 2 (10.5%)/ 4(20%) Multiparous(n=): 17 (89.5%) 16 (80.0%)	NR	1.9 years	Blood glucose Fasting plasma insulin	NR
5–10 years postpartum Benjamin 1993 [107]	Mean:GDM, 3.2 Non GDM: 3.4	NR	9 years	BMI	NR
Bian 2000 [169]	NR	NR	5-10 years	Rate of T2DM	T2DM is higher in GDM women with antepartum BMI < 25kgm/2 and > 25 kg/m2
Bo 2007 [18]	<i>Mean</i> : Control: 1.6 GDM: 1.9	NR	6.5 year	Blood Pressure BMI Serum Lipids Blood glucose Fasting plasma insulin	Multiple regression analysis showed e-selectin, ICAM-1, IL-6 and hsCRP associated with Mean IMT after adjustment for BMI, waist circumference, blood pressure and blood glucose
Caliskan 2014 [19]	NR	NR	6 years	Blood Pressure BMI Serum Lipids Blood glucose Fasting plasma insulin	Carotid intima medial thickness (cIMT), total cholesterol, BMI, HBA1C, and HOMA-IR independently correlated with epicardial fat thickness
Da 2016 (Abstract) [170]	NR	NR	5-12 years	BMI Serum Lipids Blood glucose	NR
Donhorst 1990 [76]	Recurrent GDM:1-4. Known diabetics DM:2-8, IGT:2-6, NGT:1-5	NR	6-12 years	BMI	NR
Ferraz 2007 [101]	NR	NR	6.2 years	Blood Pressure BMI Serum Lipids Blood glucose Fasting plasma insulin	Average of CRP levels were statistically high in subjects with previous GDM and abdominal obesity and elevated fasting glucose.
Hakkariainen 2015** [161]	NR	NR	>10 years	BMIBlood glucose Fasting plasma insulin	NR
Hakkariainen 2016** [30]	Primiparity (%): GDM (1) 35.9 (2) 37.9/ 54.7	Days: GDM (1) 278 ± 10 (2) $278 \pm 10/$ 279 ± 11	>10 years	Blood Pressure BMI Serum Lipids Blood glucose	NR

Table 1 (continued)					
Hunger Dathe 2006 [32]	NR	NR	6 years	Blood Pressure BMI Blood glucose	NR
Lauenborg 2005 [61]	NR	Median (IQR) 227 (197–249)/ 227 (197–249)	9.8 years	Blood Pressure BMI Fasting plasma insulin	NR
Meier (2005). [39]	NR	$26 \pm 6 (\text{mean} \pm \text{SD})$	4.1	Blood pressure Blood glucose	Multivariate analysis adjusted for age and BMI
Modela 2016* [41]	NR	Not reported	L	Blood Pressure BMI Serum Lipids Blood glucose Fasting plasma insulin	NR
Osei 1998 [85]	Parity similar between	NR	7 years	BMI Blood glucose Fasting plasma	NR
Pimenta 2004 [86]	groups Mean (SD): 2(1)/2(2)	NR	5–8 years	msuun BMI Serum Lipids Blood glucose Fasting plasma insulin	NR
Seghiri 2007 [91]	Mean (SD): 2 (1)/ 1.6 (0.8)	NR	7.5 years	BMI	NR
Sriharan 2002 [48]	Mean (SD): 1.8 (2.2)/2.2 (1.8)	NR	6.8 years	Blood PressureBMISerum Lipids Blood glucose	Multiple logistic analysis adjusted for age, time from previous pregnancy, BMI, and family history of diabetes
Tam 2007* [171]	Nulliparous (n=) 40/74	Mean (SD): 39.3 ± 2.1 (39.5 ± 1.6)	8 years	Blood Pressure BMI Serum Lipids	Triglyceride in linear regression model adjusted for age, race, school years, metabolic syndrome
Tam 2012** [125]	NR	Mean (SD): 39.3 (2.1) /39.5 (1.6)	8 years	BMI Serum Lipids	NR
Tam 2013** [122]	NR	Mean (SD): 39.3 (2.1) /39.5 (1.6)	8 years	BMI Serum Lipids	Relative and absolute risk for subgroups of various glycaemic indices mid-gestation - adjusted for various factors
Tehrani 2012 [121]	Mean (SD) 30.0 (1.7)/ Control 1 2.8 (1.5) Control 2 4.6 (2.3)	NR	9 years	Blood Pressure BMI Serum Lipids Blood glucose	Relative and absolute risk for subgroups of various glycatenic indices mid-gestation - adjusted for various factors
Tobias 2017 [94]	Mean (SD) 1.9 (1.2)/ 1.8 (1.1)	NR	6 to 8 years	BMI	Adjusted analysis for baseline parameters
Tutino 2014 [172]	N	NR	8 years	Blood Glucose	Multivariable models for CVD risk:Adjusted for age, years since pregnancy, menopausal status, hormone use, white race/ethnicity, family history of MI, or stroke, history of pregnancy hypertensive disorders, BMI and parity
Verma 2002 [52]	P1 (n=) $42/49$ P2 (n=) $64/52$ > = P3 (n=) 23 (72)/16.16	NR	6, 7, 8, 9 years	Blood Pressure BMI Serum Lipids Blood glucose Fasting alserna inculin	NR
Wender-Ozegowska 2007 [98]	NR	NR	6 years	a courte prestute Blood Pressure BMI Serum Lipids	NR

🖄 Springer

Table 1 (continued)					
>10years postpartum Ajala 2011 (abstract) [168] Ajala 2015 [68]	NR NR	NR NR	10 years 4 to 10year	Blood Pressure BMI Serum Lipids BMI Serum Lipids Blood glucose	NR After controlling for adiposity, BP, lipids, CRP glycaemic status did not contribute to vascular
Behboudi- Gandevani 2019 Carr 2006 [20]	NR NR	NR NR	13years 29.9years	Serum Lipids Blood Pressure BMI Serum Lipids Blood glucose Fasting	unction. NA CVD and coronary heart disease specifically higher in women with prior GDM compared to no GDM. Adjusted for age, menopausal status and proband clustering.
Charwat-Resl 2017 [22]	NR	Mean (SD) 16.2 ± 5.2/	16years	plasma msuin Blood Pressure BMI comm Linide	NR
Gobl 2011 (1) [173]	NR	NR NR	10years	secum Lipids Blood Glucose	Fasting glucose, fasting insulin: Various models adjusted for age, age at first pregnancy, baseline percentage body fat baseline calorie intake and physical activity, % body fat and additional megnancy during follow-un
Gobl 2014 (1) [174]	NR	NR	10years	BMI	2h OGTT >140mg/dL, age > 35 and HDL cholesterol <50mg/dL were best predictors of metabolic syndrome up to 10years fillow-un
Gobl 2014 (1) [175]	NR	NR	10years	BMIFasting plasma insulin	Moderate associations of HbA1c with measurements of basma oblosse during the OGTT
Gunderson 2014 [28]	Mean (SD): 2.3 (0.95)/ 2.2 (1.1)	NR	20	Blood Pressure BMI Serum Lipids Blood glucose	pressure geneococ during unc 00.11. Adjusted and unadjusted mean (95% CI) for cIMT by GDM history stratified by women with diabetes or metabolic syndrome. No significant differences seen in adjusted models.
Hakkariainen 2015** [161]	NR	NR	>10 years	BMI Blood glucose Fasting plasma insulin	NR
Hakkariainen 2016** [30]	Primiparity (%): GDM (1) 35.9 (2) 37.9/ 54.7	Days: GDM (1) 278 ± 10 (2) 278 ± 10/ 279 ± 11	>10 years	Blood Pressure BMI Serum Lipids Blood glucose	NR
Heida 2015 [31]	No of pregnancy: 1: Not exposed: 1781 (11.5) HDP: 572 (9.3)GDM: 106 (9.7). 2: 5977 (38.4) 2226 (36.2) 360 (33.1), 3/ >:7802 (50.1) 3359 (54.5) 623 (57.2)	NR	Mean 29years since index pregnancy	Blood Pressure Serum Lipids	GDM associated with increased OR of having CVD, IHD, stroke or T2D. Model III adjusted for cohort, HDP, age, BMI, current smoking and alcohol consumption at study enrolment, total cholesterol/HDL ratio, prevalent hypertension, and T2D (for stroke, IHD and CVD outcomes only).

Table 1 (continued)					
King 2009 [124]	GDM: 2.45 (0.9) No GDM: 2.25(0.6)	NR	15years (based on child's index age)	BMI Blood Pressure Serum Lipids	Adjusted results shown for age, current use of estrogen, BMI before first child, current BMI
Lee 2007 [80]	GDM: 2 (2–3) Control: 3 (2–3),	GDM 38.4 (2.7) Control39.2 (3.4)	15years	BMI, fasting glucose	NR
Linne 2002 [81]	NR (60) 37 1 16/376	NR	15years	BMI	NR TOTAL
Minoce 2017 [170]	Mean (5.2.2): 2.7 ± 1.43 , 2.22 ± 1.24	XV	stears	Blood Pressure BMI Blood glucose	1 ZUM progression is Z.15 rold nigher in GDM women than controls after adjustment for age, BMI and family history of diabetes.
Minoee 2017 [176]	Mean (SD): 2.7±1.45/2.25± 1.24	NR	15 years	Serum Lipids	NR
Pirkola 2010 [111]	NN	NR	20 years	BMI	GDM causes increased risk of diabetes in normal weight and overweight women, and hypertension in women who are overweight pre-pregnancy. In women with normal OGTT during pregnancy, hypertension and diabetes risk didn't differ between GDM women compared to women with no risk factors for
Tam 2012 [125]	P1 (n=) 10/9, >= P2 (n=)84/36	NR	15 years	Total cholesterol (mmol/L)	Insulin sensitivity indices are independent predictors of diabetes and metabolic syndrome at 15years postpartum even with adjustment for b cell function or abnormal glucose tolerance status at 8years postpartum. History of GDM at index pregnancy increased the odds of progression to abnormal glucose
Tam 2013 [122]	NR	Mean (SD): 39.3 (2.1) /39.5 (1.6)	15 years	BMI Serum Lipids	All glycaemic indices were predicative of abnormal glucose tolerance, diabetes mellitus and hypertension, but 2-h plasma glucose and glucose challenge tolerance is predictive of hypertension at 8 and 15years postpartum. Metabolic syndrome at 15years postpartum
Verma 2002 [52]	P1 (n=) 42/49P2 (n=) 64/52>= P3 (n=) 23 (22)/16 (16)	NR	11 years	Blood Pressure BMI Serum Lipids Blood glucose Fasting plasma insulin	Fasting protocor of manual protocor is adjusted for maternal age, BMI at booking, AGT at 8years, familial history of DM, gestational hypertension, preclampsia during indexpregnancy and enheavement form measurement (n)
Wang 2012 [66]	Parity >1: GDM 53.5%/Non GDM: 36.1%	NR	13–50 years	Blood Pressure BMI	Metabolic syndrome increased in women with GDM with increasing age.
Winhofer 2014 (1) [54]	NR	NR	10 years	Blood Pressure BMI Serum 1 inide Rhord almose	NR

Table 1 (continued)					
Xiang 2013 [128]	Mean (SD) 3 1/1 3/2 0/1 2)	NR	>10 years	BMI Blood glucose Facting alasma insulin	NR
Xiang 2013 [128]	S.1(1.2)/2:2 (1.2) Mean (SD) 3.1(1.3)/2.9 (1.2)	NR	>10 years	BMI Fasting plasma glucose Fasting plasma insulin	NR
No specified postpartum	follow-up			5	
Couch 1998 [74]	NR	NR	NR	Serum Lipids	NR
Gadgil 2017 [78]	GDM: 2.2 (0.6), no GDM:2.1 (0.8)	NR	NR	Blood Pressure BMI Serum Lipids	Adjustment for age and weight at 40. Women with GDM history have 3.3 fold increased
					risk of having diabetes
Gunderson 2010 [28]	NR	NR	NR	Blood Pressure BMI Serum	Pre-pregnancy cardiometabolic risk factors
				Lipids Blood glucose	adjusted for familial diabetes parity at
				Fasting plasma insulin	conception, births during interval, time to first conception, smoking age at
Han 2018	NR	NR	NR	RMI Rhood Ghicose	рієсопсерион сханинацон али тасс NA
Shostrom 2017 [114]	NR	NR	NR	BMI	GDM is associated with higher risk of CVD
					compared to women without CVD as a
					age, race/ethnicity, education, family
					income-poverty ratio, smoking/drinking, physical activity. total energy. BMD.
Simmons 2017 [93]	NR	NR	NR	Blood Pressure	NR
				BMI Serum Lipids Blood glucose	
Thomann 2008 [51]	NR	NR	NR	Blood Pressure	Difference shown between groups in fat
1				BMI	distribution, estimates ofinsulin resistance,
				Serum Lipids	serum levels of lipids and parameters of
				Blood glucose Fasting plasma insulin	low-grade chronic inflammation after adjusting for age and percent body fat.
Abbreviations = OGTT =	oral glucose tolerance test, GCT =	glucose challenge tes	t, OGCT = oral glucose tol	erance test. FPG: Fasting plasma glucose.	. BMI (body mass index), SBP (Systolic blood
pressure), DDF (utastoric ADA · American Diahetes	otoou pressure), 1 C (totat citoreste Association ADIPS: Australian I	aou), пил. (шёп ueus Diahetes in Pregnancy	society IADPSG – Interr	t), LDL (10W density hpoproteur-choicstei artional Association of Diabetes in Preons	rui), 10 (utgryceriues) ancy Society
(+)BMI kg/m2, SBP/DBI	mmHg units, all other units speci	fied each study			
Lipids collectively refers	to study including total cholesterol	, HDL, LDL and trig	ycerides		
* - papers of same author	are the same study				
** - paper looked at two	lifferent time points				
(1) Studies with this subs-	sript part of the same cohort but W	'inzer 2004 was used	in overall meta-analysis,W	'inzer < 1 year postpartum, Winhofer + 10) years
(2) Studies with this subs-	cript part of the same cohort but B	ozkurt 2012 used in c	verall meta-analysis and <	1 year postpartum subgroup	

time of follow up post-partum as: <1 year, 1–5 years, 5– 10 years and 10+ years from the index pregnancy. Studies that did not provide details on when the follow up assessment was conducted, were only included in the overall analysis. When the same cohort was assessed at multiple times post-partum, the study with the largest sample size was used in the overall analysis and in the relevant subgroup analyses. When outcome measures of the same cohort at one follow up time point were reported in multiple publications, the one with the largest sample size was used in the overall analysis.

We considered studies published in English, and studies that could be translated to English. We contacted authors via email to obtain missing data and clarifications when required. We included abstracts of cohort studies, but only abstracts which provided data for relevant outcomes were included in the meta-analysis and non-meta-analysis table (Supplementary Table 1).

2.3 Statistical analysis

The following data were collected from each included study: definition of GDM, time of post-partum follow up (number of years since index pregnancy), number of cases (those who experienced GDM) and controls (those who did not experience GDM), child birthweight, and gestational age at delivery of cases and controls, and data on the variables considered in any adjusted analyses/variables used to match cases with controls.

The meta-analysis was performed using RevMan software (Review Manager Version 5.3) based on an inverse variance method. As per protocol, the random-effects model was selected to account for the differences in diagnostic criteria of GDM. For each outcome measure, unadjusted mean and standard deviation (SD) were used in meta-analyses. When mean and SD were not reported, Standard Error of Mean (SEM) was converted to SD using RevMan software. The Standard Mean Difference (SMD) was used when the outcome was measured in different units across studies and Mean Difference (MD) when units were consistent.

Substantial heterogeneity was considered when I^2 statistic exceeded 50%, and the Chi² *P* value was less than 0.1. The studies that reported on outcome measures using median and IQR are detailed in Supplementary Table 1. To assess publication bias, funnel plots were used for the primary outcomes. The methodological quality was assessed using the Newcastle - Ottawa Quality Assessment Scale (NOS) and graphically illustrated in the supplementary data (Supplementary Fig. 1) [13]. Sensitivity analyses were performed to evaluate heterogeneity for outcomes after excluding low quality studies (i.e. scored 1–3 on the NOS) and excluding abstracts that were included in the meta-analyses. Two authors (MP, AA) independently assessed the quality of each study included in the review. The discrepancies were resolved through discussions with ZL and PA.

3 Results

The literature search identified 12,248 articles. Four hundred and thirteen (413) articles were eligible for full text review. Of these, 139 were included in the review and 93 were included in the meta-analyses. The reasons for excluding 274 studies are detailed in Fig. 1. We contacted 24 authors for additional data; we received a 17% response rate (n = 4 studies). Of the included studies, 33 were of high quality (scored 7–8), 79 were of moderate quality (scored 4–6), and 28 were of low quality (scored 1–3) (Supplementary Table 2). The results of the overall meta-analyses for all CVD risk factors in women with previous GDM compared to those without previous GDM are shown in Table 2.

Blood pressure Systolic blood pressure (SBP) and diastolic blood pressure (DBP) data were available from 60 studies, of which 48 were included in the overall meta-analysis. Quantitative summary measures showed that women with previous GDM have 2.47 mmHg (95% CI 1.74 to 3.40) higher mean SBP compared to controls (n (total) = 50,118; heterogeneity: Chi² P < 0.00001, $I^2 = 80\%$) (Table 1) (Supplementary Fig. 1A) [14–56]. Of the 12 studies with data not included in the meta-analysis [52, 57–67], eight reported higher SBP in women with previous GDM compared to the control group [52, 57–60, 63, 64, 67], with five studies showing statistical significance [52, 57, 60, 64, 66] (Supplementary Table 1). Sensitivity analysis after excluding the low quality studies showed a marginal increase in heterogeneity (Chi² P < 0.00001, $I^2 = 82\%$). (Supplementary Table 3A).

Women with previous GDM have 1.89 mmHg (95% CI 1.32 to 2.46) higher DBP compared to women without previous GDM (n = 49,495, heterogeneity: Chi² P < 0.00001, I² = 83%) (Table 2) (Supplementary Fig. 1B) [14–56]. Of the 12 studies not included in the meta-analysis [2, 52, 57–67], six reported higher DBP in women with previous GDM compared to the control group [52, 57, 58, 60, 63], with three studies showing statistical significance [57, 60, 61]. Sensitivity analysis after excluding low quality studies showed a marginal increase in heterogeneity (Chi² P < 0.00001, I² = 85%). (Supplementary Table 3B).

Body mass index Body Mass Index (BMI) data were available from 102 studies, of which 78 were included in the overall meta-analysis. BMI was 1.54 kg/m² higher in women with previous GDM compared to women without previous GDM (95% CI 1.17 to 1.91; n = 255,308, heterogeneity: Chi² P < 0.00001, I² = 97%) [14, 16, 18–20, 22, 23, 25, 26, 28, 29, 38, 39, 41–43, 45, 46, 48–53, 55, 56, 58, 68–104]

CVD risk factors among women exposed to GDM

Fig. 1 PRISMA flow chart of study selection

(Table 1) (Supplementary Fig. 2). Of the 24 studies not included in the meta-analysis [37, 52, 57, 59–61, 63–67, 100, 105–117], 12 studies reported that women with previous GDM had significantly higher BMI or were more obese than women without previous GDM [37, 52, 60, 61, 64, 66, 67, 69, 100, 106, 108–111, 114–117]. Sensitivity analysis after excluding low quality studies showed a decrease in heterogeneity (Chi² P < 0.00001, I² = 95%) (Supplementary Table 3C).

Lipids Total cholesterol data were available from 59 studies, 48 studies were included in the overall meta-analysis. Women

with previous GDM had 0.26 SMD higher total cholesterol compared to women without previous GDM, (95% CI 0.15 to 0.37; n = 38,561, heterogeneity: Chi² P < 0.00001, I² = 89%) [14, 16, 19, 20, 22–25, 29, 31, 33, 35, 36, 38, 41, 42, 44, 46, 47, 49, 52, 53, 55, 56, 64, 69, 70, 75, 77, 78, 86, 97, 100, 101, 118–122] (Table 1) (Supplementary Fig. 3). Of the 11 studies not included in the meta-analysis [52, 57, 59, 60, 65, 74, 100, 113, 115, 116, 123], three reported that women with previous GDM had significantly higher total cholesterol compared to the control group [52, 100, 116]. Sensitivity analysis after excluding low quality studies showed a marginal increase in

 Table 2
 Mean differences for cardiovascular outcomes overall in women with previous gestational diabetes mellitus compared to women without previous GDM

Outcome	Odds Ratio MD/SMD	95% CI	n = (studies)	n = (GDM/ control)	n = (total)	Heterogeneity
Systolic Blood Pressure (mmHg)	MD 2.47	1.74, 3.40	48	7332/42,786	50,118	$I^2 = 79\%$ P < 0.00001
Diastolic Blood Pressure (mmHg)	MD 1.89	1.32, 2.46	48	7025/42,470	49,495	$I^2 = 83\%$ P < 0.00001
BMI (kg/m ²)	MD 1.54	1.17, 1.91	78	26,689/228,619	255,308	$I^2 = 97\%$ P < 0.00001
Total cholesterol (SMD)	SMD 0.26	0.15, 0.37	48	6817/31,744	38,561	$I^2 = 89\%$ P < 0.00001
Low density Lipoprotein (SMD)	SMD 0.19	0.08, 0.30	44	5846/11,134	16,980	$I^2 = 83\%$ P < 0.00001
High density lipoprotein (SMD)	SMD -0.28	-0.39, -0.16	56	7203/28,679	35,882	$I^2 = 89\%$ P < 0.00001
Triglycerides (SMD)	SMD 0.56	0.42, 0.70	45	4110/9065	13,175	$I^2 = 88\%$ P < 0.00001
Glucose (SMD)	SMD 0.69	0.56, 0.81	55	17,180/110,720	127,900	$I^2 = 94\%$ P < 0.00001
Insulin (SMD)	SMD 0.41	0.23, 0.59	32	2994/5887	8881	$I^2 = 90\%$ P < 0.00001

Abbreviations: MD - mean difference, 95% CI - 95% Confidence Interval

Bold MD (95% CI) highlights significant result

heterogeneity (Chi² P < 0.00001, I² = 90%). (Supplementary Table 3D).

Low density lipoprotein (LDL) cholesterol data were available from 57 studies, of which 44 were included in the overall meta-analysis. Women with previous GDM had 0.19 SMD higher LDL compared to women without previous GDM (95% CI 0.08 to 0.30; n = 16,980, heterogeneity: Chi² P < 0.00001, I² = 83%) (Table 1) (Supplementary Fig. 4) [8, 14, 15, 18–20, 22–25, 28, 29, 33, 36–39, 41–45, 47, 49, 52, 54, 56, 58, 64, 68, 70, 75, 78, 86, 97, 100, 118, 120–122, 124]. Of the 13 studies not included in the meta-analysis [52, 57, 59, 62, 65, 74, 100, 113, 115, 116, 122, 123, 125], four reported that women with previous GDM had significantly higher LDL compared to the control group [52, 62, 100, 116]. Sensitivity analysis after excluding low quality studies showed an increase in heterogeneity (Chi² P < 0.00001, I² = 85%). (Supplementary Table 3E).

High density lipoprotein (HDL) cholesterol data were available from 70 studies, of which 56 were included in the overall meta-analysis. Women with previous GDM had lower HDL compared to those without previous GDM, a – 0.28 SMD (95% CI -0.39 to –0.16; n = 35,882, heterogeneity: Chi² P < 0.00001, I² = 89%) [15, 16, 18–20, 22–26, 29–31, 33, 35–39, 41–48, 52, 55, 58, 64, 70, 75, 77–79, 86, 87, 99–101, 118, 120–122] (Table 1) (Supplementary Fig. 5). Of the 14 studies not included in the meta-analysis [34, 49, 52, 57, 59, 61, 62, 65, 74, 84, 100, 113, 115, 122], five

reported that women with previous GDM had significantly lower HDL than the control group [14, 52, 61, 115, 116, 122]. Sensitivity analysis after excluding low quality studies showed a marginal increase in heterogeneity (Chi² P < 0.0001, I² = 90%). (Supplementary Table 3F).

Triglyceride data were available from 64 studies, of which 45 were included in the overall meta-analysis. Women with previous GDM had 0.56 SMD higher triglycerides compared to those without previous GDM (95% CI 0.42 to 0.70; n = 13,175, heterogeneity: Chi² p < 0.00001, I² = 88%) [14–16, 19, 20, 22–25, 29, 30, 35, 36, 39, 41, 42, 44–47, 55, 58, 68, 70, 72, 75, 77–79, 86, 87, 99–101, 103, 118, 120] (Table 1) (Supplementary Fig. 6). Of the 19 studies not included in the meta-analysis [34, 51, 52, 57, 59–62, 65, 74, 97, 100, 113, 115, 116, 121–123], seven studies reported that women with previous GDM had significantly higher triglycerides than those without previous GDM [51, 52, 61, 100, 108, 115, 116]. Sensitivity analysis after excluding low quality studies showed no difference in heterogeneity (Chi² P < 0.00001, I² = 88%). (Supplementary Table 3G).

Glucose Blood glucose data were available from 72 studies, of which 55 were included in the overall meta-analysis. Women with previous GDM had 0.69 SMD higher blood glucose compared to those without previous GDM (95% CI 0.56 to 0.81; n = 127,900, heterogeneity: Chi² P < 0.00001, I² = 94%) [8, 16, 18–20, 22, 24, 25, 28–30, 32, 33, 35, 36, 38, 41–49,

51–54, 56, 68, 71, 72, 75, 77, 79, 80, 83, 85, 92, 95, 101, 118–121, 124, 126–129](Table 1) (Supplementary Fig. 7). Of the 17 studies not included in the meta-analysis [34, 37, 52, 57, 59–61, 63, 78, 91, 106, 113, 115, 116, 122, 130, 131], 10 studies reported that women with previous GDM had significantly higher glucose than those without previous GDM [34, 52, 57, 61, 64, 115, 116, 122, 130, 131]. Sensitivity analysis after excluding low quality studies showed no difference in heterogeneity (Chi² P < 0.00001, I² = 94%). (Supplementary Table 3H).

3.1 Insulin

Serum insulin data were available from 44 studies, of which 32 were included in the overall meta-analysis. Women with previous GDM had 0.41 SMD higher insulin compared to those without previous GDM (95% CI 0.23 to 0.59; n = 8881, heterogeneity: Chi² P < 0.00001, I² = 90%) [15, 22, 24, 25, 29, 30, 36, 38, 41, 45, 46, 53, 56, 70, 71, 75, 77, 85, 95, 99, 101, 118, 119, 124, 126–128]. (Table 1) (Supplementary Fig. 8). Of the 12 studies not included in the meta-analysis [20, 32, 37, 49, 51, 52, 61, 64, 86, 113, 115, 116], five studies reported that women with previous GDM had significantly higher glucose than those without previous GDM [20, 32, 37, 52, 61, 107]. Sensitivity analysis after excluding low quality studies showed no difference in heterogeneity (Chi² P < 0.00001, I² = 90%). (Supplementary Table 3I).

Subgroup analyses We conducted subgroup analyses based on the time of post-partum follow up (<1 year post-partum, 1–5 years post-partum, 5–10 years post-partum and > 10 years post-partum). The results are shown in Table 3. Systolic blood pressure, diastolic blood pressure, triglycerides and blood glucose were higher in women with previous GDM compared to those without previous GDM as early as <1 year post-partum. Triglycerides and blood glucose remained significantly elevated at 1–5 years, 5–10 years and > 10 years post-partum (Table 2).

4 Discussion

CVD is a global concern and contributes to the majority of deaths due to non-communicable disease (NCDs) (approximately 17.9 million deaths annually) [132]. Early detection, prevention and treatment of risk factors are critical in reducing the incidence of CVD. Pregnancy complications, such as preeclampsia and GDM are now identified as risk factors for NCDs including T2DM and CVD [3]. Women may be susceptible to long-life CVD, due to a genetic predisposition or poor lifestyle choices or a combination. Thus, pregnancy may act as a second hit for CVD in these women who already have a predisposition to metabolic syndrome, before phenotypic expression [3]. Furthermore, it is known that exposure to gestational diabetes mellitus in utero increases the risk of cardiovascular risk factors in offspring [133]. Therefore, we sought to determine the CVD risk factors and well as the timeline for manifestation of risk factors among women with previous GDM. Synthesizing the published evidence on conventional CVD risk factors in women with previous GDM and assessing the timeline for manifestation of risk factors, thus, provide strong evidence to plan screening strategies to identify those at risk for CVD. This review also signifies the importance of considering pregnancy complications in CVD risk stratification, thus providing an opportunity for primordial prevention.

4.1 Key findings

Women with previous GDM have an increase in all conventional CVD risk factors. Blood pressure (both systolic and diastolic), serum triglycerides and blood glucose are also higher in women with GDM compared to those without GDM as early as <1 year post-partum.

4.2 Comparison to other studies

Our meta-analysis showed that women with previous GDM have an increase in systolic and diastolic blood pressure. It has been shown that GDM increases the risk of developing hypertension in different populations [111, 134, 135]. Daly et al. (2018) showed that the cumulative incidence of hypertension and ischemic heart disease was higher in women with previous GDM compared with controls, and that this difference persisted over a 25-year study period [109].

Our analysis showed that BMI was 1.57 kg/m² higher in women with previous GDM compared to controls based on a sample size of nearly 300,000 women. While we do not know whether the women with previous GDM were obese prior to pregnancy and during pregnancy, it is likely the case for many of these women. A large scale meta-analysis showed that the unadjusted ORs of developing GDM were 2.14 (CI% 1.82 to 2.53), 3.56 (3.05–4.21) and 8.56 (5.07–16.04) for overweight, obese and severely obese women respectively, compared to normal weight pregnant women [136].Obese women have substantially higher liver fat content, and this is consistent with the impairment of fat sequestration by adipocytes in individuals developing GDM [137].

Women with previous GDM were also demonstrated to have higher total cholesterol, LDL, triglycerides and a decrease in HDL demonstrating an "at risk phenotype" compared to women without previous GDM. During the third trimester of pregnancy, women with GDM show an exaggerated elevation in serum lipids, and this may result in transient metabolic disease. [137, 138]. Studies have shown that triglycerides are significantly elevated in women with GDM

Table 3 Subgroup analy	sis for all cardiovascular outcomes in wom	nen with previous GDM compared to those with no previous	GDM	
Outcome		1–5 years postpartum (95% CI)	5–10 years postpartum (95% CI)	>10 years postpartum (95% CI)
Systolic Blood Pressure (mmHg)	3.47 (1.26–5.68) n(total) = 1826 n = 1237 1 ² = $50%$, $p = 0.02$	2.26 (0.27, 4.25) $n = 2567 I^2 = 93\%, p < 0.00001$	3.96 (2.36, 5.56) n(total) = 1965; n(exposed) = 805 $I^2 = 17\%$, $p = 0.27$	2.58 (1.05, 4.11) n(total) = 4941; n(exposed) = 1157 $I^2 = 23\%, p = 0.23$
Diastolic Blood Pressure (mmHg)	2.48 (0.58-4.37) n(total) = 1749 n(exposed) = 1137 $1^2 = 649\%$, $p = 0.01$	1.37 (0.20–2.54) n(total) = $19,676$ n(exposed) = 2428 I ² = 89% , $p < 0.0001$	7.17 ($-1.69-16.03$) n(total) = 2184 n(exposed) = 916 $1^2 = 99\%$, $p < 0.0001$	1.23 (1.03–1.96) n(total) = 4948 n(exposed) = 1122 $1^2 = 97\%$, $v < 0.0001$
BMI (kg/m²)	1.56 ($-0.28^{-3}.41$) n(total) = 2534 n(exposed) = 1640 I ² = 98%, $p < 0.00001$	2.01 (1.24, 2.79) n(total) = 22,326; n(exposed)=,4329 $I^2 = 96\%$, $p < 0.00001$	0.73 (0.22, 1.27) n(total) = 91,844 n(exposed) = 6161 $I^2 = 91\%, p < 0.00001$	1.39 (1.05, 1.73) n(total) = 13,989; n(exposed) = 8015 $I^2 = 0\%$, $p = 0.64$
Total Cholesterol (SMD)	0.41 (-0.02,0.84) n(total) = 1722 n(exposed) = $1149 I^2 = 84\%, p < 0.00001$	0.42 (0.21,0.64) n(total) = 3836; n(exposed) = 1886 $I^2 = 86\%$, $p < 0.00001$	$0.04 \ (-0.13, \ 0.20)$ $n(total) = 907; \ n(exposed) = 485$ $I^2 = 24\%, \ p = 0.24$	$0.04 \ (-0.09, \ 0.17)$ n(total) = 6469; n(exposed) = 1555 $I^2 = 51\%, p = 0.02$
LDL (SMD)	0.33 (0.06–0.60) n(total) = 2458 n(exposed) = 1534 $I^2 = 84\%$, $p < 0.0001$	0.25 (-0.05,0.55) n(total) = 1780 n(exposed) = 1062 I ² = 87% , $p < 0.00001$	0.05 (-0.08-0.19) n(total) = 989 n(exposed) = 520 $I^2 = 0\%, p = 0.47$	0.09 (-0.02, 0.19) n(total) = 5546 n(exposed) = 1383 $I^2 = 28\%, p = 0.10$
HDL (SMD)	-0.18 (-0.23-0.59) n(total) = 1788 n(exposed) = 1146 $I^2 = 87\%, p = <0.00001$	-0.49 (-0.73, -0.24) n(total) = 4506 n(exposed) = 2327 I ² = 92%, $p < 0.00001$	-0.40 (-0.80-0.01) n(total) = 2164 n(exposed) = 810 $I^2 = 93\%$, $p = <0.00001$	-0.14 (-0.25, -0.03) n(total) = 6805 n(exposed) = 1647 $I^2 = 49\%, p = 0.02$
Trigly cerides (SMD)	0.53 (0.16-0.91) n(total) = 706 n(exposed) = 459 $I^2 = 76\%, p < 0.00001$	0.65 (0.42,0.89) n(total) = 4334 n(exposed) = 2234 $I^2 = 90\%$, $p < 0.00001$	0.56 (0.04–1.08) n(total) = 1086 n(exposed) = 561 $\Gamma^2 = 94\%, p < 0.0001$	0.31 (0.16, 0.46) n(total) = 3520 n(exposed) = 865 $I^2 = 53\%, p-0.02$
Glucose (SMD)	1.12 (0.6.1.1.62) n(total) = 2187 n(exposed) = $1461 I^2 = 93\%$, $p < 0.00001$	0.67 (0.45, 0.90) n(total) = 6233; n(exposed) = $3457 I^2 = 92\%$, $p < 0.00001$	0.75 (0.20, 1.30) n(total) = 1152 n(exposed) = 606 $r^2 - otoc - 2.0 n0001$	0.58 (0.44, 0.72) n(total) = 8807 n(exposed) = 6234 $I^2 = 62\%$, $p = 0.002$
Insulin (SMD)	1.10 (-0.37, 2.57) n(total) = 293 n(exposed) = 191 $I^2 = 95\%$, $p < 0.00001$	0.53 (0.08–0.99) n(total) = 1762 n(exposed) = 1073 $I^2 = 94\%, p < 0.00001$	$1^{-2} = 24\%, p = 0.24$ n(total) = 1036 n(exposed) = 542 $1^{2} = 24\%, p = 0.24$	0.28 (0.07, 0.50) n(total) = 817 n(exposed) = 308 $I^2 = 45\%$, $p = 0.10$
Units as specified in abov	e table			

Abbreviations: 95% CI - 95% Confidence Interval

Bold value highlights significant result

🖄 Springer

compared to controls across each trimester. It has also been shown that elevated first trimester maternal triglyceride level (adjusted for BMI) is a strong predictor for future GDM [138]. Consistent with these finding, our study showed that triglycerides were elevated as early as <1 year post-partum.

We also observed a significant increase in glucose and insulin in women with previous GDM compared to controls. GDM results in a dysregulation of cytokines (particularly a reduction in adiponectin, and elevation in interleukin-6 and tumour necrosis factor-alpha) and an increase in free fatty acids which promote insulin resistance (IR) and a state of metabolic dysfunction [137]. The study by Daly et al. (2018) also showed that women with GDM are more likely to develop T2DM later in life over a 25-year period. In some populations, 50% of women with GDM progress to T2DM [139], and approximately one third of women with T2DM have had previous GDM [140].

4.3 Strengths and limitations

This systematic review and meta-analysis is the first to observe all conventional CVD risk factors in women who experienced GDM. Our study provides robust evidence that women who experience GDM have an increase in all CVD risk factors compared to controls, based on evidence from 139 studies. Furthermore, subgroup analysis demonstrated that blood pressure, glucose and triglycerides are already elevated as early as <1 year post-partum, thereby highlighting the importance of early screening for CVD risk factors after a pregnancy complicated by GDM.

There are limitations to our findings that need acknowledgement. Firstly, GDM is a multifactorial disease, with many environmental and genetic components contributing to disease risk. Both obesity and GDM share the same causal pathway of elevated FFAs and dysregulation of cytokines leading to insulin resistance [137, 141]. Common risk factors such as advanced maternal age, familial history of T2DM or GDM in a first-degree relative (mother or sister) and Asian ethnicity contribute to a higher risk of GDM [142]. There are certain candidate genes that are associated with type II diabetes mellitus and GDM, mainly influencing insulin secretion [143]. Therefore, it is difficult to elucidate whether CVD in obese/overweight women with previous GDM is attributed to GDM alone or other pre-existing predispositions. Another limitation was the inability to adjust for important confounders such as BMI, age, and sex. Due to non-availability of data on adjusted mean values and the differences in the confounders used in studies, we were not able to use adjusted values in our meta-analyses. However, Table 1 demonstrates various regression analyses used in studies that are adjusted for these important covariates. Secondly, substantial heterogeneity was seen for most overall outcomes, based on I² and Chi² P values. Observational studies may be subject to publication bias, although visual analysis of funnel plots showed no heterogeneity (Supplementary Fig. 9A-9I). Heterogeneity was further explored through subgroup analysis, however for some subgroups heterogeneity was still evident (Table 3). After sensitivity analysis of overall outcomes after excluding low quality studies, heterogeneity was increased for most outcomes (Supplementary Table 3A, 3B, 3D, 3E, 3F). It is difficult to elucidate the reasons for heterogeneity for aggregate data. It is conventionally explained by significant differences between studies, which in our study can include definition of GDM, time of post-partum screening, methodology and study design. We can only attribute the heterogeneity seen due to genetic and environmental factors that could not be adjusted for, and recommend that more longitudinal, large scale studies are conducted to contribute to this evidence and reduce the overall heterogeneity.

Future direction and clinical relevance Our findings signify the importance of early post-partum CVD risk screening for women who experience GDM. Metabolic syndrome is defined as a cluster of conditions including hypertension, dyslipidaemia, dysglycemia and obesity that significantly increases the risk of type II diabetes and cardiovascular disease. Our study demonstrates that women with GDM in pregnancy show clinical phenotypes that can contribute to metabolic syndrome and type II diabetes as early as within one year postpartum. Approximately 10% of women with GDM are known to develop diabetes soon after delivery. Therefore, it is necessary to implement interventions and treatment strategies as early as practical in these women in order to significantly reduce the risk of CVD later in life. A study in the UK in 2013, showed that risk factors such as SBP and total cholesterol decreased in those who attended such CVD screening, with an overall CVD risk reduction of 6.8% [144].

While the values seen in our meta-analysis for blood pressure are within a normal range, increase in blood pressure poses a continuous risk of CVD. It has been shown that a 10 mmHg increase in systolic blood pressure is associated with a 30% higher risk of ischemic heart disease [10]. We demonstrated that at <1 year post-partum, SBP in women with previous GDM was nearly 4 mmHg higher than in controls. This suggests that women with previous GDM may benefit from monitoring of blood pressure as early as <1 year post-partum to reduce the risk of subsequent hypertension.

Persistence of high BMI in women with previous GDM is likely due to post-partum behaviours, and it may be beneficial to target reduction of obesity prior to gestation. A metaanalysis by Baptise-Roberts et al. showed that for every 1 kg increase in pre-pregnancy weight, the increased odds of developing type II diabetes mellitus increased by 40% [145]. The Diabetes Prevention Program, a multi-centre randomized controlled trial, showed that intensive lifestyle changes, targeting a 7% reduction in enrolment weight, and increased physical activity in women with previous GDM, reduced the risk of diabetes incidence by 50% at 12 years post-partum [146]. Interestingly, it was shown that women with GDM lost the most amount of weight at 6 months post randomization, and increased weight again afterwards. These weight patterns correlated with a decrease in physical activity (women in the active GDM group were achieving 1.5 h of exercise from baseline in the first year, but by the third year, they were reporting less than 30 min of physical activity a week, correlating with a mean weight loss of only 1.6 kg). In our subgroup analysis, there was no difference in BMI between women with previous GDM and controls at <1 year post-partum, and then for the subsequent subgroups, there were significant differences in BMI [146]. Therefore, it appears that lifestyle guidance during pregnancy promotes weight loss in the first year post-partum, and compliance decreases beyond this point. Strategies to maintain a healthy weight in women with previous GDM beyond the first post-partum year, may significantly reduce their overall CVD risk.

Women with GDM experience insulin resistance (IR) and hypertriglyceridemia, which are both promoted by elevated free fatty acids (FFAs) in response to increased adiposity [137]. IR is a marker of essential hypertension, as it promotes a pro-atherogenic state through marked dyslipidaemia and elevation in inflammatory markers [147]. Atherosclerosis is also promoted by elevations in any non-HDL cholesterols. [148] The higher total cholesterol and triglycerides and the lower HDL cholesterol evident in women with previous GDM suggest an adverse serum lipid profile and as such, women with previous GDM may be at higher risk for CVD. While the values seen in this meta-analysis are minimal, it is important to recognize that serum lipids are strong predictors of hypertension and IHD mortality, with total cholesterol/HDL ratio being the strongest predictor of IHD mortality overall [149, 150]. In our meta-analysis we observed a minimal but significant increase in non HDL cholesterols and a decrease in HDL cholesterol, therefore suggesting that women with GDM are likely to exhibit a poor lipid profile and may benefit from regular monitoring of serum lipids.

Women with previous GDM will also benefit from regular screening of blood glucose and insulin. Towards the end of the second trimester, insulin resistance is elevated to facilitate the delivery of glucose to the fetus down a concentration gradient via placental transfer. Women who are normoglycemic during this period, have adequate β -cell function through compensatory hyperplasia of the beta cells, which causes increased insulin release upon glucose stimulation [141]. However in women with GDM, there is a failure of β -cell compensation to protect against the increased insulin resistance and as such blood glucose is significantly elevated. This insulin resistance may not resolve after delivery and blood glucose remains elevated postpartum [141]. Therefore, monitoring and screening women for type II diabetes mellitus is very important.

5 Conclusion

Women with previous GDM have a higher risk for CVD as evidenced by an increase in risk factor profile compared to women with no history of GDM. Most of these risk factors are seen as early as <1 year post-partum. Therefore, women who experience GDM may benefit from CVD risk screening commencing in the early post-partum period to enable detection of modifiable risk factors.

Funding ZSL is supported by a NHMRC Australia Public Health Early Career Fellowship (GNT1141382). MMP is supported by a Divisional Scholarship by The Faculty of Health Sciences, University of Adelaide.

Compliance with ethical standards

Conflict of interest The authors declare no conflicts of interest.

References

- Organization WH. Cardiovascular diseases (CVD). In: Cardiovascular diseases. World Health Organization, Geneva. 2017. https://www.who.int/en/news-room/fact-sheets/detail/ cardiovascular-diseases-(cvds). Accessed 20 Jan 2020.
- 2 Cardiovascular disease in women—a snapshot of national statistics. In: AIHW, editor. Canberra: AIHW; 2019.
- 3 Andraweera PH, Dekker GA, Arstall M, Bianco-Miotto T, Roberts CT. Complications of Pregnancy and Future Cardiovascular Risk. Encylopedia of Cardiovascular Research and Medicine. Netherlands: Oxford; 2018. p. 643–50.
- 4 Federation ID. IDF diabetes atlas. Vol 8th edition. International Diabetes Federation: Belgium, Brussels; 2017.
- 5 Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and metaanalysis. Lancet. 2009;373(9677):1773–9. https://doi.org/10.1016/ s0140-6736(09)60731-5.
- 6 Coustan DR, Lowe LP, Metzger BE, Dyer AR. International Association of D, Pregnancy Study G. The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: paving the way for new diagnostic criteria for gestational diabetes mellitus. Am J Obstet Gynecol. 2010;202(6):654.e1–654.e6546. https://doi.org/ 10.1016/j.ajog.2010.04.006.
- 7 Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia. 2019;62(6):905–14. https://doi. org/10.1007/s00125-019-4840-2.
- 8 Zimmet PZ, Alberti KG, Shaw JE. Mainstreaming the metabolic syndrome: a definitive definition. Med J Aust. 2005;183(4):175–6.
- 9 Chen Z, Iona A, Parish S, Chen Y, Guo Y, Bragg F, et al. Adiposity and risk of ischaemic and haemorrhagic stroke in 0.5 million Chinese men and women: a prospective cohort study. Lancet Glob Health. 2018;6(6):e630–e40. https://doi. org/10.1016/s2214-109x(18)30216-x.
- 10 Lacey B, Lewington S, Clarke R, Kong XL, Chen Y, Guo Y, et al. Age-specific association between blood pressure and vascular and non-vascular chronic diseases in 0.5 million adults in China: a prospective cohort study. Lancet Glob Health. 2018;6(6):e641– e9. https://doi.org/10.1016/s2214-109x(18)30217-1.
- 11 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA
statement. BMJ. 2009;339:b2535. https://doi.org/10.1136/bmj. b2535.

- 12 Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676– 82. https://doi.org/10.2337/dc09-1848.
- 13 Wells G. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non randomised studies in meta-analyses. http://www. ohrica/programs/clinical_epidemiology/oxford asp. 2001. Accessed 15 May 2019.
- 14 Anastasiou E, Lekakis JP, Alevizaki M, Papamichael CM, Megas J, Souvatzoglou A, et al. Impaired endothelium-dependent vasodilatation in women with previous gestational diabetes. Diabetes Care. 1998;21(12):2111–5.
- 15 Akinci B, Celtik A, Yener S, Yesil S. Is fasting glucose level during oral glucose tolerance test an indicator of the insulin need in gestational diabetes? Diabetes Res Clin Pract. 2008;82(2):219– 25. https://doi.org/10.1016/j.diabres.2008.07.023.
- 16 Banerjee M, Anderson SG, Malik RA, Austin CE, Cruickshank JK. Small artery function 2 years postpartum in women with altered glycaemic distributions in their preceding pregnancy. Clin Sci (London, England : 1979). 2012;122(2):53–61. https://doi.org/10.1042/cs20110033.
- 17 Bentley-Lewis R, Claggett B, Liu J, Maggioni AP, McMurray JJV, Tardif JC, et al. Baseline characteristics and cardiovascular outcomes in women with a history of gestational diabetes in the evaluation of lixisenatide in acute coronary syndrome trial. Diabetes. 2016;65:A356–60. https://doi.org/10.2337/db16-861-1374.
- 18 Bo S, Valpreda S, Menato G, Bardelli C, Botto C, Gambino R, et al. Should we consider gestational diabetes a vascular risk factor? Atherosclerosis. 2007;194(2):e72–9. https://doi.org/10.1016/j. atherosclerosis.2006.09.017.
- 19 Caliskan M, Caklili OT, Caliskan Z, Duran C, Ciftci FC, Avci E, et al. Does gestational diabetes history increase epicardial fat and carotid intima media thickness? Echocardiography (Mount Kisco, NY). 2014;31(10):1182–7. https://doi.org/10.1111/echo.12597.
- 20 Carr DB, Utzschneider KM, Hull RL, Tong J, Wallace TM, Kodama K, et al. Gestational diabetes mellitus increases the risk of cardiovascular disease in women with a family history of type 2 diabetes. Diabetes Care. 2006;29(9):2078–83.
- 21 Cellina G, Lo Cicero G, Brina A, Zanchetti A. Reversible alteration of myocardial function in gestational diabetes. Eur Heart J. 1983;4(1):59–63. https://doi.org/10.1093/oxfordjournals. eurheartj.a061372.
- 22 Charwat-Resl S, Yarragudi R, Heimbach M, Leitner K, Leutner M, Gamper J, et al. Microvascular function in women with former gestational diabetes: a cohort study. Diab Vasc Dis Res. 2017;14(3):214–20. https://doi.org/10.1177/1479164116683148.
- 23 Davenport MH, Goswami R, Shoemaker JK, Mottola MF. Influence of hyperglycemia during and after pregnancy on postpartum vascular function. Am J Phys Regul Integr Comp Phys. 2012;302(6):R768–75. https://doi.org/10.1152/ajpregu.00115. 2011.
- 24 Davis CL, Gutt M, Llabre MM, Marks JB, O'Sullivan MJ, Potter JE, et al. History of gestational diabetes, insulin resistance and coronary risk. J Diabetes Complicat. 1999;13(4):216–23.
- 25 Fakhrzadeh H, Alatab S, Sharifi F, Mirarefein M, Badamchizadeh Z, Ghaderpanahi M, et al. Carotid intima media thickness, brachial flow mediated dilation and previous history of gestational diabetes mellitus. J Obstet Gynaecol Res. 2012;38(8):1057–63. https://doi.org/10.1111/j.1447-0756.2011.01829.x.
- 26 Ferrada C, Molina M, Cid L, Riedel G, Ferrada C, Arevalo R. Relationship between gestational diabetes and metabolic syndrome. Rev Med Chil. 2007;135(12):1539–45.

- 27 Freire CM, Nunes Mdo C, Barbosa MM, Longo JR, Nogueira AI, Diniz SS, et al. Gestational diabetes: a condition of early diastolic abnormalities in young women. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2006;19(10):1251–6. https://doi.org/10. 1016/j.echo.2006.04.021.
- 28 Gunderson EP, Chiang V, Pletcher MJ, Jacobs DR, Quesenberry CP, Sidney S, et al. History of gestational diabetes mellitus and future risk of atherosclerosis in mid-life: the coronary artery risk development in Young adults study. J Am Heart Assoc. 2014;3(2): e000490. https://doi.org/10.1161/jaha.113.000490.
- 29 Gunderson EP, Jacobs DR Jr, Chiang V, Lewis CE, Feng J, Quesenberry CP Jr, et al. Duration of lactation and incidence of the metabolic syndrome in women of reproductive age according to gestational diabetes mellitus status: a 20-year prospective study in CARDIA (coronary artery risk development in Young adults). Diabetes. 2010;59(2):495–504. https://doi.org/10.2337/db09-1197.
- 30 Hakkarainen H, Huopio H, Cederberg H, Paakkonen M, Voutilainen R, Heinonen S. The risk of metabolic syndrome in women with previous GDM in a long-term follow-up. Gynecol Endocrinol : Off J Int Soc Gynecol Endocrinol. 2016;32(11): 920–5. https://doi.org/10.1080/09513590.2016.1198764.
- 31 Heida KY, Franx A, van Rijn BB, Eijkemans MJC, Boer JMA, Verschuren MWM, et al. Earlier Age of Onset of Chronic Hypertension and Type 2 Diabetes Mellitus After a Hypertensive Disorder of Pregnancy or Gestational Diabetes Mellitus. Hypertension (0194911X). 2015;66(6):1116–22. https://doi.org/ 10.1161/HYPERTENSIONAHA.115.06005.
- 32 Hunger-Dathe W, Mosebach N, Samann A, Wolf G, Muller UA. Prevalence of impaired glucose tolerance 6 years after gestational diabetes. Exp Clin Endocrinol Diabetes : Off J, German Soc Endocrinol German Diabetes Association. 2006;114(1):11–s. https://doi.org/10.1055/s-2005-873015.
- 33 Ko GTC, Chan JCN, Tsang LWW, Li CY, Cockram CS. Glucose intolerance and other cardiovascular risk factors in Chinese women with a history of gestational diabetes mellitus. Aust N Z J Obstet Gynaecol. 1999;39(4):478–83.
- 34 Krishnaveni GV, Hill JC, Veena SR, Geetha S, Jayakumar MN, Karat CL, et al. Gestational diabetes and the incidence of diabetes in the 5 years following the index pregnancy in south Indian women. Diabetes Res Clin Pract. 2007;78(3):398–404.
- 35 Lee H, Jang HC, Park HK, Metzger BE, Cho NH. Prevalence of type 2 diabetes among women with a previous history of gestational diabetes mellitus. Diabetes Res Clin Pract. 2008;81(1):124–9.
- 36 Lee V, Burwick R, Pilliod R, Shaffer B, Cheng Y, Caughey A. Outcomes of late preterm pregnancies complicated by gestational diabetes mellitus and polyhydramnios. Am J Obstet Gynecol. 2015;212(1):S352. https://doi.org/10.1016/j.ajog.2014.10.929.
- 37 Madarász E, Tamás G, Tabák AG, Kerényi Z. Carbohydrate metabolism and cardiovascular risk factors 4 years after a pregnancy complicated by gestational diabetes. Diabetes Res Clin Pract. 2009;85(2):197–202. https://doi.org/10.1016/j.diabres.2009.05. 001.
- 38 Mai C, Wang B, Wen J, Lin X, Niu J. Lipoprotein-associated phospholipase A2 and AGEs are associated with cardiovascular risk factors in women with history of gestational diabetes mellitus. Gynecol Endocrinol. 2014;30(3):241–4. https://doi.org/10.3109/ 09513590.2013.871522.
- 39 Meier JJ, Gallwitz B, Askenas M, Vollmer K, Deacon CF, Holst JJ, et al. Secretion of incretin hormones and the insulinotropic effect of gastric inhibitory polypeptide in women with a history of gestational diabetes. Diabetologia. 2005;48(9):1872–81. https://doi.org/ 10.1007/s00125-005-1863-7.
- 40 Minooee S, Ramezani Tehrani F, Rahmati M, Mansournia MA, Azizi F. Diabetes incidence and influencing factors in women with and without gestational diabetes mellitus: a 15year population-

based follow-up cohort study. Diabetes Res Clin Pract. 2017;128: 24–31. https://doi.org/10.1016/j.diabres.2017.04.003.

- 41 Moleda P, Fronczyk A, Safranow K, Majkowska L. Is uric acid a missing link between previous gestational diabetes mellitus and the development of type 2 diabetes at a later time of life? PLoS One. 2016;11(5):e0154921. https://doi.org/10.1371/journal.pone. 0154921.
- 42 Noctor E, Crowe C, Carmody LA, Saunders JA, Kirwan B, O'Dea A, et al. Abnormal glucose tolerance post-gestational diabetes mellitus as defined by the international association of diabetes and pregnancy study groups criteria. Eur J Endocrinol. 2016;175(4):287–97. https://doi.org/10.1530/EJE-15-1260.
- 43 Nouhjah S, Shahbazian H, Shahbazian N, Jahanfar S, Jahanshahi A, Cheraghian B, et al. Early postpartum metabolic syndrome in women with or without gestational diabetes: results from life after gestational diabetes Ahvaz cohort study. Diabetes Metab Syndr Clin Res Rev. 2018;12(3):317–23. https://doi.org/10.1016/j.dsx. 2017.12.027.
- 44 Rautio N, Jokelainen J, Korpi-Hyovalti E, Oksa H, Saaristo T, Peltonen M, et al. Lifestyle intervention in prevention of type 2 diabetes in women with a history of gestational diabetes mellitus: one-year results of the FIN-D2D project. J Women's Health (Larchmt). 2014;23(6):506–12. https://doi.org/10.1089/jwh.2013. 4520.
- 45 Roca-Rodriguez MM, Lopez-Tinoco C, Murri M, Fernandez-Deudero A, Garcia-Palacios MV, Garcia-Valero MA, et al. Postpartum development of endothelial dysfunction and oxidative stress markers in women with previous gestational diabetes mellitus. J Endocrinol Investig. 2014;37(6):503–9. https://doi. org/10.1007/s40618-013-0045-6.
- 46 Ryan AS, McLenithan JC, Zietowski GM. Accelerated metabolic susceptibility to type 2 diabetes in older women with a history of gestational diabetes. Endocr Connect. 2013;2(2):79–86. https:// doi.org/10.1530/EC-12-0072.
- 47 Simmons D, Kumar S, Crook N, Rush E. Diabetes among Māori women with self-reported past gestational diabetes mellitus in a New Zealand Māori community. Aust N Z J Obstet Gynaecol. 2017;57(6):599–603. https://doi.org/10.1111/ajo.12639.
- 48 Sriharan M, Reichelt AJ, Opperman MLR, Duncan BB, Mengue SS, Crook MA, et al. Total sialic acid and associated elements of the metabolic syndrome in women with and without previous gestational diabetes. Diabetes Care. 2002;25(8):1331–5. https://doi.org/10.2337/diacare.25.8.1331.
- 49 Sung HC, Soo HK, Youn BS, Lim S, Young JP, Lee H, et al. High plasma retinol binding protein-4 and low plasma adiponectin concentrations are associated with severity of glucose intolerance in women with previous gestational diabetes mellitus. J Clin Endocrinol Metab. 2008;93(8):3142–8. https://doi.org/10.1210/jc. 2007-1755.
- 50 Ramezani Tehrani F, Hashemi S, Hasheminia M, Azizi F. Followup of women with gestational diabetes in the Tehran lipid and glucose study (TLGS): a population-based cohort study. J Obstet Gynaecol Res. 2012;38(4):698–704. https://doi.org/10.1111/j. 1447-0756.2011.01767.x.
- 51 Thomann R, Rossinelli N, Keller U, Tirri BF, De Geyter C, Ruiz J, et al. Differences in low-grade chronic inflammation and insulin resistance in women with previous gestational diabetes mellitus and women with polycystic ovary syndrome. Gynecol Endocrinol: Off J Int Soc Gynecol Endocrinol. 2008;24(4):199–206. https://doi.org/10.1080/09513590801893398.
- 52 Verma A, Boney CM, Tucker R, Vohr BR. Insulin resistance syndrome in women with prior history of gestational diabetes mellitus. J Clin Endocrinol Metab. 2002;87(7):3227–35. https://doi.org/10. 1210/jc.87.7.3227.
- 53 Vilmi-Kerala T, Palomaki O, Kankkunen P, Juurinen L, Uotila J, Palomaki A. Oxidized LDL, insulin resistance and central blood

pressure after gestational diabetes mellitus. Acta Obstet Gynecol Scand. 2016;95(12):1425–32. https://doi.org/10.1111/aogs.13029.

- 54 Winhofer Y, Krssak M, Wolf P, Tura A, Anderwald CH, Kosi L, et al. Hepatic rather than cardiac steatosis relates to glucose intolerance in women with prior gestational diabetes. PLoS One. 2014;9(3):e91607. https://doi.org/10.1371/journal.pone.0091607.
- 55 Zajdenverg L, Rodacki M, Faria JP, Pires MLE, Oliveira JEP, Halfoun VLC. Precocious markers of cardiovascular risk and vascular damage in apparently healthy women with previous gestational diabetes. Diabetol Metab Syndr. 2014;6(1). https://doi.org/ 10.1186/1758-5996-6-63.
- 56 Lim S, Choi SH, Park YJ, Park KS, Lee HK, Jang HC, et al. Visceral fatness and insulin sensitivity in women with a previous history of gestational diabetes mellitus. Diabetes Care. 2007;30(2): 348–53.
- 57 Albareda M, de Leiva A, Corcoy R. Reproducibility of diabetes mellitus diagnosis (WHO 1999 criteria) in women. Acta Diabetol. 2004;41(1):14–7. https://doi.org/10.1007/s00592-004-0138-y.
- 58 Bentley-Lewis R, Huynh J, Xiong G, Lee H, Wenger J, Clish C, et al. Metabolomic profiling in the prediction of gestational diabetes mellitus. Diabetologia. 2015;58(6):1329–32. https://doi.org/10. 1007/s00125-015-3553-4.
- 59 Hannemann MM, Liddell WG, Shore AC, Clark PM, Tooke JE. Vascular function in women with previous gestational diabetes mellitus. J Vasc Res. 2002;39(4):311–9. https://doi.org/10.1159/ 000065543.
- 60 Hu J, Björklund A, Nyman M, Gennser G. Mechanical properties of large arteries in mother and fetus during normal and diabetic pregnancy. J Matern-Fetal Investig. 1998;8(4):185–93.
- 61 Lauenborg J, Mathiesen E, Hansen T, Glümer C, Jørgensen T, Borch-Johnsen K, et al. The prevalence of the metabolic syndrome in a Danish population of women with previous gestational diabetes mellitus is three-fold higher than in the general population. J Clin Endocrinol Metab. 2005;90(7):4004–10. https://doi.org/10. 1210/jc.2004-1713.
- 62 Lekva T, Bollerslev J, Godang K, Roland MCP, Friis CM, Voldner N, et al. β-Cell dysfunction in women with previous gestational diabetes is associated with visceral adipose tissue distribution. Eur J Endocrinol. 2015;173(1):63–70. https://doi.org/10.1530/EJE-15-0153.
- 63 Retnakaran R, Qi Y, Connelly PW, Sermer M, Hanley AJ, Zinman B. The graded relationship between glucose tolerance status in pregnancy and postpartum levels of low-density-lipoprotein cholesterol and apolipoprotein B in young women: implications for future cardiovascular risk. J Clin Endocrinol Metab. 2010;95(9): 4345–53. https://doi.org/10.1210/jc.2010-0361.
- 64 Ruksasakul R, Tharavanij T, Sritipsukho P. Metabolic syndrome in Thai women previously diagnosed with gestational diabetes. J Med Assoc Thail. 2016;99:S195–202.
- 65 Todoric J, Handisurya A, Perkmann T, Knapp B, Wagner O, Tura A, et al. Circulating progranulin levels in women with gestational diabetes mellitus and healthy controls during and after pregnancy. Eur J Endocrinol. 2012;167(4):561–7. https://doi.org/10.1530/ EJE-12-0060.
- 66 Wang Y, Chen L, Horswell R, Xiao K, Besse J, Johnson J, et al. Racial differences in the association between gestational diabetes mellitus and risk of type 2 diabetes. J Women's Health (Larchmt). 2012;21(6):628–33. https://doi.org/10.1089/jwh.2011.3318.
- 67 Ueland T, Michelsen AE, Aukrust P, Henriksen T, Bollerslev J, Lekva T. Adipokines and macrophage markers during pregnancypossible role for sCD163 in prediction and progression of gestational diabetes mellitus. Diabetes Metab Res Rev. 2019;35(3): e3114. https://doi.org/10.1002/dmrr.3114.
- 68 Ajala O, Jensen LA, Ryan E, Chik C. Women with a history of gestational diabetes on long-term follow up have normal vascular function despite more dysglycemia, dyslipidemia and adiposity.

Diabetes Res Clin Pract. 2015;110(3):309–14. https://doi.org/10. 1016/j.diabres.2015.10.004.

- 69 Akinci B, Celtik A, Genc S, Yener S, Demir T, Secil M, et al. Evaluation of postpartum carbohydrate intolerance and cardiovascular risk factors in women with gestational diabetes. Gynecol Endocrinol. 2011;27(5):361–7. https://doi.org/10.3109/09513590. 2010.492885.
- 70 Akinci B, Celtik A, Tunali S, Genc S, Yuksel F, Secil M, et al. Circulating apelin levels are associated with cardiometabolic risk factors in women with previous gestational diabetes. Arch Gynecol Obstet. 2014;289(4):787–93. https://doi.org/10.1007/s00404-013-3070-y.
- 71 Bowes SB, Hennessy TR, Umpleby AM, Benn JJ, Jackson NC, Boroujerdi MA, et al. Measurement of glucose metabolism and insulin secretion during normal pregnancy and pregnancy complicated by gestational diabetes. Diabetologia. 1996;39(8):976–83.
- 72 Bozkurt L, Gobl CS, Tura A, Chmelik M, Prikoszovich T, Kosi L, et al. Fatty liver index predicts further metabolic deteriorations in women with previous gestational diabetes. PLoS One. 2012;7(2): e32710. https://doi.org/10.1371/journal.pone.0032710.
- 73 Cocilovo G, Tomasi F, Guerra S, Zampini A, Cocurullo A. Risk factors associated with persistence of glucose intolerance one year after gestational diabetes. Diabetes Metab. 1990;16(3):187–91.
- 74 Couch SC, Philipson EH, Bendel RB, Wijendran V, Lammi-Keefe CJ. Maternal and cord plasma lipid and lipoprotein concentrations in women with and without gestational diabetes mellitus: predictors of birth weight? J Reprod Med Obstet Gynecologist. 1998;43(9):816–22.
- 75 Demir T, Akinci B, Yener S, Argun L, Özcan M, Eraslan S. Endothelium-Dependent Hemostatic Factors in Women with Previous Gestational. Turkish J Endocrinol Metab. 2016;20(2). https://doi.org/10.4274/tjem.3477.
- 76 Dornhorst A, Bailey PC, Anyaoku V, Elkeles RS, Johnston DG, Beard RW. Abnormalities of glucose tolerance following gestational diabetes. Q J Med. 1990;77(284):1219–28.
- 77 Eroglu D, Zeyneloglu HB. Metabolic disorders in patients with recent gestational diabetes mellitus. J Obstet Gynaecol Res. 2006;32(4):408–15. https://doi.org/10.1111/j.1447-0756.2006. 00418.x.
- 78 Gadgil MD, Oza-Frank R, Kandula NR, Kanaya AM. Type 2 diabetes after gestational diabetes mellitus in South Asian women in the United States. Diabetes/Metabolism Research and Reviews. 2017;33(5). https://doi.org/10.1002/dmrr.2891.
- 79 Kousta E, Lawrence NJ, Godsland IF, Penny A, Anyaoku V, Millauer BA, et al. Insulin resistance and β-cell dysfunction in normoglycaemic European women with a history of gestational diabetes. Clin Endocrinol. 2003;59(3):289–97. https://doi.org/10. 1046/j.1365-2265.2003.01820.x.
- 80 Lee AJ, Hiscock RJ, Wein P, Walker SP, Permezel M. Gestational diabetes mellitus: clinical predictors and long-term risk of developing type 2 diabetes: a retrospective cohort study using survival analysis. Diabetes Care. 2007;30(4):878–83. https://doi.org/10. 2337/dc06-1816.
- 81 Linne Y, Barkeling B, Rossner S. Natural course of gestational diabetes mellitus: long term follow up of women in the SPAWN study. BJOG : Int J Obstet Gynaecol. 2002;109(11):1227–31.
- 82 Magenheim R, El Hadj OT, Schäfer-Graf UM, Pálffy A, Papp M, Kovács M, et al. Arterial stiffness of young women with previous gestational diabetes. Arch Gynecol Obstet. 2010;282:S146–S7. https://doi.org/10.1007/s00404-010-1634-7.
- 83 McLachlan KA, Alford FP. The impact of acute elevation of nonesterified fatty acids on insulin sensitivity and secretion in women with former gestational diabetes. Clin Endocrinol. 2005;62(1):79– 84. https://doi.org/10.1111/j.1365-2265.2004.02177.x.
- 84 Morbiducci U, Di Benedetto G, Kautzky-Willer A, Deriu MA, Pacini G, Tura A. Identification of a model of non-esterified fatty

🖄 Springer

acids dynamics through genetic algorithms: the case of women with a history of gestational diabetes. Comput Biol Med. 2011;41(3):146–53. https://doi.org/10.1016/j.compbiomed.2011. 01.004.

- 85 Osei K, Gaillard TR, Schuster DP. History of gestational diabetes leads to distinct metabolic alterations in nondiabetic African-American women with a parental history of type 2 diabetes. Diabetes Care. 1998;21(8):1250–7. https://doi.org/10.2337/ diacare.21.8.1250.
- 86 Pimenta WP, Calderon IMP, Cruz NS, Santos ML, Aragon FF, Padovani CR. Subclinical abnormalities of glucose metabolism in Brazilian women with a history of gestational diabetes mellitus. Acta Obstet Gynecol Scand. 2004;83(12):1152–8. https://doi.org/ 10.1111/j.0001-6349.2004.00444.x.
- 87 Prikoszovich T, Winzer C, Schmid AI, Szendroedi J, Chmelik M, Pacini G, et al. Body and liver fat mass rather than muscle mitochondrial function determine glucose metabolism in women with a history of gestational diabetes mellitus. Diabetes Care. 2011;34(2): 430–6.
- 88 Rawal S, Tsai MY, Hinkle SN, Zhu Y, Bao W, Lin Y, et al. A longitudinal study of thyroid markers across pregnancy and the risk of gestational diabetes. J Clin Endocrinol Metab. 2018;103(7): 2447–56. https://doi.org/10.1210/jc.2017-02442.
- 89 Rivas A, Landon M, Gaillard T, Schuster D, Osei K. Awareness of risk factors for type 2 diabetes in women with current and former gestational diabetes mellitus (GDM): implications for future primary diabetes prevention. Diabetes Metab Syndr Clin Res Rev. 2010;4(2):89–94. https://doi.org/10.1016/j.dsx.2010.05.007.
- 90 Ryan EA, Imes S, Liu D, McManus R, Finegood DT, Polonsky KS, et al. Defects in insulin secretion and action in women with a history of gestational diabetes. Diabetes. 1995;44(5):506–12.
- 91 Seghieri G, Tesi F, Bianchi L, Loizzo A, Saccomanni G, Ghirlanda G, et al. Taurine in women with a history of gestational diabetes. Diabetes Res Clin Pract. 2007;76(2):187–92.
- 92 Shen Y, Wang P, Wang L, Zhang S, Liu H, Li W, et al. Gestational diabetes with diabetes and prediabetes risks: a large observational study. Eur J Endocrinol. 2018;179(1):51–8. https://doi.org/10. 1530/eje-18-0130.
- 93 Simmons D, Kumar S, Crook N, Rush E. Diabetes among Maori women with self-reported past gestational diabetes mellitus in a New Zealand Maori community. Aust N Z J Obstet Gynaecol. 2017;57(6):599–603. https://doi.org/10.1111/ajo.12639.
- 94 Tobias DK, Stuart JJ, Shanshan L, Chavarro J, Rimm EB, Rich-Edwards J, et al. Association of History of gestational diabetes with long-term cardiovascular disease risk in a large prospective cohort of US women. JAMA Intern Med. 2017;177(12):1735–42. https:// doi.org/10.1001/jamainternmed.2017.2790.
- 95 Vigneault J, Lemieux S, Garneau V, Weisnagel SJ, Tchernof A, Robitaille J. Association between metabolic deteriorations and prior gestational diabetes according to weight status. Obesity (Silver Spring, Md). 2015, 23(2):345–50. https://doi.org/10.1002/oby. 20940.
- 96 Vitoratos N, Salamalekis E, Kassanos D, Loghis C, Panayotopoulos N, Kouskouni E, et al. Maternal plasma leptin levels and their relationship to insulin and glucose in gestationalonset diabetes. Gynecol Obstet Investig. 2001;51(1):17–21. https://doi.org/10.1159/000052884.
- 97 Wang YM, Zhao LH, Su JB, Qiao HF, Wang XH, Xu F et al. Glycemic variability in normal glucose tolerance women with the previous gestational diabetes mellitus. Diabetology and Metabolic Syndrome. 2015;7(1). https://doi.org/10.1186/s13098-015-0077-5.
- 98 Wender-Ozegowska E, Sporna M, Zawiejska A, Sporna A, Brazert J. Components of metabolic syndrome in women after gestational diabetes. Pol Arch Med Wewn. 2007;117(10):457–62.

- 99 Winzer C, Wagner O, Festa A, Schneider B, Roden M, Bancher-Todesca D, et al. Plasma adiponectin, insulin sensitivity, and subclinical inflammation in women with prior gestational diabetes mellitus. Diabetes Care. 2004;27(7):1721–7.
- 100 Kjos SL, Buchanan TA, Montoro M, Coulson A, Mestman JH. Serum lipids within 36 mo of delivery in women with recent gestational diabetes. Diabetes. 1991;40(SUPPL. 2):142–6.
- 101 Ferraz TB, Motta RS, Ferraz CL, Capibaribe DM, Forti AC, Chacra AR. C-reactive protein and features of metabolic syndrome in Brazilian women with previous gestational diabetes. Diabetes Res Clin Pract. 2007;78(1):23–9.
- 102 Seck A, Hichami A, Doucoure S, Diallo Agne F, Bassene H, Ba A, et al. Th1/Th2 dichotomy in obese women with gestational diabetes and their Macrosomic babies. J Diabetes Res. 2018;2018: 8474617–7. https://doi.org/10.1155/2018/8474617.
- 103 Behboudi-Gandevani S, Ramezani Tehrani F, Rahmati M, Amiri M, Azizi F. Trend of various adiposity indices in women with and without history of gestational diabetes: a population-based cohort study. BMC Endocr Disord. 2019;19(1):24. https://doi.org/10. 1186/s12902-019-0348-5.
- 104 Han KT, Cho GJ, Kim EH. Evaluation of the Association between Gestational Diabetes Mellitus at First Pregnancy and Cancer within 10 Years Postpartum Using National Health Insurance Data in South Korea. Int J Environ Res Public Health. 2018;15(12). https://doi.org/10.3390/ijerph15122646.
- 105 Bentley-Lewis R, Powe C, Ankers E, Wenger J, Ecker J, Thadhani R. Effect of race/ethnicity on hypertension risk subsequent to gestational diabetes mellitus. Am J Cardiol. 2014;113(8):1364–70. https://doi.org/10.1016/j.amjcard.2014.01.411.
- 106 Retnakaran R, Qi Y, Sermer M, Connelly PW, Hanley AJ, Zinman B. Beta-cell function declines within the first year postpartum in women with recent glucose intolerance in pregnancy. Diabetes Care. 2010;33(8):1798–804. https://doi.org/10.2337/dc10-0351.
- 107 Benjamin E, Winters D, Mayfield J, Gohdes D. Diabetes in pregnancy in Zuni Indian women: prevalence and subsequent development of clinical diabetes after gestational diabetes. Diabetes Care. 1993;16(9):1231–5.
- 108 Cheung NW, Lih A, Lau SM, Park K, Padmanabhan S, McElduff A. Gestational diabetes: a red flag for future type 2 diabetes in pregnancy? A retrospective analysis. Diabet Med. 2015;32(9): 1167–71. https://doi.org/10.1111/dme.12723.
- 109 Daly B, Toulis KA, Thomas N, Gokhale K, Martin J, Webber J et al. Increased risk of ischemic heart disease, hypertension, and type 2 diabetes in women with previous gestational diabetes mellitus, a target group in general practice for preventive interventions: A population-based cohort study. PLoS Med. 2018;15(1). https://doi.org/10.1371/journal.pmed.1002488.
- 110 Persson M, Winkvist A, Mogren I. Lifestyle and health status in a sample of Swedish women four years after pregnancy: A comparison of women with a history of normal pregnancy and women with a history of gestational diabetes mellitus. BMC Pregnancy and Childbirth. 2015;15(1). https://doi.org/10.1186/s12884-015-0487-2.
- 111 Pirkola J, Pouta A, Bloigu A, Miettola S, Hartikainen AL, Jarvelin MR, et al. Prepregnancy overweight and gestational diabetes as determinants of subsequent diabetes and hypertension after 20-year follow-up. J Clin Endocrinol Metab. 2010;95(2):772–8. https://doi.org/10.1210/jc.2009-1075.
- 112 Tura A, Benedetto GD, Morbiducci U, Winhofer Y, Montevecchi F, Pacini G, et al. Non-esterified fatty acids dynamics during an oral glucose tolerance test in women with a history of gestational diabetes. Diabetologia. 2009;52(S1):S32–S3. https://doi.org/10. 1007/s00125-009-1445-1.
- 113 Stuebe AM, Mantzoros C, Kleinman K, Gillman MW, Rifas-Shiman S, Seely EW, et al. Gestational glucose tolerance and maternal metabolic profile at 3 years postpartum. Obstet Gynecol.

2011;118(5):1065-73. https://doi.org/10.1097/AOG. 0b013e3182325f5a.

- 114 Shostrom DCV, Sun Y, Oleson JJ, Snetselaar LG, Bao W. History of gestational diabetes mellitus in relation to cardiovascular disease and cardiovascular risk factors in US women. Frontiers in Endocrinology. 2017;8(JUN). https://doi.org/10.3389/fendo. 2017.00144.
- 115 Sokup A, Góralczyk B, Góralczyk K, Rosc D. Triglycerides as an early pathophysiological marker of endothelial dysfunction in nondiabetic women with a previous history of gestational diabetes. Acta Obstet Gynecol Scand. 2012;91(2):182–8. https://doi.org/ 10.1111/j.1600-0412.2011.01289.x.
- 116 Sokup A, Ruszkowska B, Góralczyk B, Góralczyk K, Szymański M, Grabiec M, et al. Elevation of sE-selectin levels 2-24 months following gestational diabetes is associated with early cardiometa-bolic risk in nondiabetic women. Int J Endocrinol. 2012;2012:1–6. https://doi.org/10.1155/2012/278050.
- 117 Wang H, She G, Zhou W, Liu K, Miao J, Yu B. Expression profile of circular RNAs in placentas of women with gestational diabetes mellitus. Endocr J. 2019;66(5):431–41. https://doi.org/10.1507/ endocrj.EJ18-0291.
- Ozuguz U, Isik S, Berker D, Arduc A, Tutuncu Y, Akbaba G, et al. Gestational diabetes and subclinical inflammation: evaluation of first year postpartum outcomes. Diabetes Res Clin Pract. 2011;94(3):426–33. https://doi.org/10.1016/j.diabres.2011.08. 024.
- 119 Pokropek C, Sobolewski P, Getachew R, Paul A, Boura J, Ogunyemi D. Dietary intake patterns and insulin resistance in women with a history of gestational diabetes in the National Health and nutrition examination survey (NHANES) 2000-2010. Am J Obstet Gynecol. 2015;212(1):S308. https://doi.org/10.1016/ j.ajog.2014.10.827.
- 120 Sartore G, Dalfrà M, Barison A, Marin R, Chilelli NC, Burlina S, et al. Plasma phospholipid fatty acid composition and desaturases indices in women with gestational diabetes mellitus before and after delivery. Diabetologia. 2011;54:S481–S2. https://doi.org/10. 1007/s00125-011-2276-4.
- 121 Tehrani FR, Hashemi S, Hasheminia M, Azizi F. Follow-up of women with gestational diabetes in the Tehran lipid and glucose study (TLGS): a population-based cohort study. J Obstet Gynaecol Res. 2012;38(4):698–704. https://doi.org/10.1111/j.1447-0756. 2011.01767.x.
- 122 Tam WH, Ma RC, Yang X, Ko GT, Lao TT, Sahota DS, et al. Prediction of women's long-term cardiometabolic risks using glycemic indices during pregnancy. J Obstet Gynaecol Res. 2013;39(2):484–91. https://doi.org/10.1111/j.1447-0756.2012. 01976.x.
- 123 Retnakaran R, Qi Y, Sermer M, Connelly PW, Hanley AJ, Zinman B. The postpartum cardiovascular risk factor profile of women with isolated hyperglycemia at 1-hour on the oral glucose tolerance test in pregnancy. Nutrition, Metab, Cardiovasc Dis : NMCD. 2011;21(9):706–12. https://doi.org/10.1016/j.numecd.2011.02. 010.
- 124 King KB, Gerich JE, Guzick DS, King KU, McDermott MP. Is a history of gestational diabetes related to risk factors for coronary heart disease? Res Nurs Health. 2009;32(3):298–306. https://doi. org/10.1002/nur.20325.
- 125 Tam WH, Ma RC, Yang X, Ko GT, Lao TT, Chan MH, et al. Cardiometabolic risk in Chinese women with prior gestational diabetes: a 15-year follow-up study. Gynecol Obstet Investig. 2012;73(2):168–76. https://doi.org/10.1159/000329339.
- 126 Pacini G, Tura A, Winhofer Y, Kautzky-Willer A. Incretin effect in women with former gestational diabetes within a short period after delivery. Int J Endocrinol. 2012;2012:1–4. https://doi.org/10.1155/ 2012/247392.

- 127 Tura A, Mari A, Winzer C, Kautzky-Willer A, Pacini G. Impaired beta-cell function in lean normotolerant former gestational diabetic women. Eur J Clin Investig. 2006;36(1):22–8. https://doi.org/10. 1111/j.1365-2362.2006.01587.x.
- 128 Xiang AH, Takayanagi M, Black MH, Trigo E, Lawrence JM, Watanabe RM, et al. Longitudinal changes in insulin sensitivity and beta cell function between women with and without a history of gestational diabetes mellitus. Diabetologia. 2013;56(12):2753– 60. https://doi.org/10.1007/s00125-013-3048-0.
- 129 Xiong X, Elkind-Hirsch KE, Xie Y, Delarosa R, Maney P, Pridjian G, et al. Periodontal disease as a potential risk factor for the development of diabetes in women with a prior history of gestational diabetes mellitus. J Public Health Dent. 2013;73(1):41–9. https://doi.org/10.1111/jphd.12004.
- 130 Akinci B, Celtik A, Yuksel F, Genc S, Yener S, Secil M, et al. Increased osteoprotegerin levels in women with previous gestational diabetes developing metabolic syndrome. Diabetes Res Clin Pract. 2011;91(1):26–31. https://doi.org/10.1016/j.diabres. 2010.09.028.
- 131 Tutino GE, Tam WH, Yang X, Chan JC, Lao TT, Ma RC. Diabetes and pregnancy: perspectives from Asia. Diabet Med. 2014;31(3): 302–18. https://doi.org/10.1111/dme.12396.
- 132 Organization WH. Noncommunicable diseases. World Health Organization Geneva 2018. Accessed 1 June 2018.
- 133 Pathirana MM, Lassi ZS, Roberts CT, Andraweera PH. Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: systematic review and meta-analysis. J Dev Orig Health Dis. 2020:1–18. https://doi.org/10.1017/ s2040174419000850.
- 134 Kaul P, Savu A, Nerenberg KA, Donovan LE, Chik CL, Ryan EA, et al. Impact of gestational diabetes mellitus and high maternal weight on the development of diabetes, hypertension and cardiovascular disease: a population-level analysis. Diabet Med. 2015;32(2):164–73. https://doi.org/10.1111/dme.12635.
- 135 Pace R, Brazeau A-S, Meltzer S, Rahme E, Dasgupta K. Conjoint associations of gestational diabetes and hypertension with diabetes, hypertension, and cardiovascular disease in parents: a retrospective cohort study. Am J Epidemiol. 2017;186(10):1115–24. https://doi. org/10.1093/aje/kwx263.
- 136 Chu SY, Callaghan WM, Kim SY, Schmid CH, Lau J, England LJ, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care. 2007;30(8):2070–6. https://doi.org/10.2337/dc06-2559a.
- 137 Abell SK, De Courten B, Boyle JA, Teede HJ. Inflammatory and other biomarkers: role in pathophysiology and prediction of gestational diabetes mellitus. Int J Mol Sci. 2015;16(6):13442–73. https://doi.org/10.3390/ijms160613442.
- 138 Ryckman KK, Spracklen CN, Smith CJ, Robinson JG, Saftlas AF. Maternal lipid levels during pregnancy and gestational diabetes: a systematic review and meta-analysis. BJOG : Int J Obstet Gynaecol. 2015;122(5):643–51. https://doi.org/10.1111/1471-0528.13261.
- 139 Kjos SL, Peters RK, Xiang A, Henry OA, Montoro M, Buchanan TA. Predicting future diabetes in Latino women with gestational diabetes. Utility of early postpartum glucose tolerance testing. Diabetes. 1995;44(5):586–91. https://doi.org/10.2337/diab.44.5. 586.
- 140 Cheung NW, Byth K. Population health significance of gestational diabetes. Diabetes Care. 2003;26(7):2005–9. https://doi.org/10. 2337/diacare.26.7.2005.
- 141 Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The Pathophysiology of Gestational Diabetes Mellitus. Int J Mol Sci. 2018;19(11). https://doi.org/10.3390/ijms19113342.
- 142 Pons RS, Rockett FC, de Almeida Rubin B, Oppermann MLR, Bosa VL. Risk factors for gestational diabetes mellitus in a sample of pregnant women diagnosed with the disease. Diabetol Metab

Syndr. 2015;7(Suppl 1):A80-A. https://doi.org/10.1186/1758-5996-7-S1-A80.

- 143 Wu L, Cui L, Tam WH, Ma RC, Wang CC. Genetic variants associated with gestational diabetes mellitus: a meta-analysis and subgroup analysis. Sci Rep. 2016;6:30539. https://doi.org/10. 1038/srep30539.
- 144 Alageel S, Wright AJ, Gulliford MC. Changes in cardiovascular disease risk and behavioural risk factors before the introduction of a health check programme in England. Prev Med. 2016;91:158– 63. https://doi.org/10.1016/j.ypmed.2016.08.025.
- 145 Baptiste-Roberts K, Barone BB, Gary TL, Golden SH, Wilson LM, Bass EB, et al. Risk factors for type 2 diabetes among women with gestational diabetes: a systematic review. Am J Med. 2009;122(3):207–14 e4. https://doi.org/10.1016/j.amjmed.2008. 09.034.
- 146 Ratner RE, Christophi CA, Metzger BE, Dabelea D, Bennett PH, Pi-Sunyer X, et al. Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions. J Clin Endocrinol Metab. 2008;93(12):4774–9. https://doi. org/10.1210/jc.2008-0772.
- 147 Semenkovich CF. Insulin resistance and atherosclerosis. J Clin Invest. 2006;116(7):1813–22. https://doi.org/10.1172/JCI29024.
- 148 Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014;5(8):927–46.
- 149 Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, et al. Major lipids, apolipoproteins, and risk of vascular disease. Jama. 2009;302(18):1993–2000. https://doi.org/10. 1001/jama.2009.1619.
- 150 Mørkedal B, Romundstad PR, Vatten LJ. Informativeness of indices of blood pressure, obesity and serum lipids in relation to ischaemic heart disease mortality: the HUNT-II study. Eur J Epidemiol. 2011;26(6):457–61. https://doi.org/10.1007/s10654-011-9572-7.
- 151 Berglund SK, Garcia-Valdes L, Torres-Espinola FJ, et al. Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: an observational cohort study (PREOBE). BMC Public Health. 2016;16:207.
- 152 Bozkurt L, Göbl CS, Tura A, et al. Assessment of fatty liver index (FLI) in relation to insulin sensitivity in women with prior gestational diabetes. In: Diabetes; 2010.
- [153 Chan SP, Gelding SV, McManus RJ, et al. Abnormalities of intermediary metabolism following a gestational diabetic pregnancy. Clin Endocrinol. 1992;36:417–20.
- Freire CM, Nunes Mdo C, Barbosa MM, et al. Gestational diabetes: a condition of early diastolic abnormalities in young women. J Am Soc Echocardiog. 2006;19:1251–6.
- [155 Homko C, Sivan E, Chen X, Reece EA, Boden G. Insulin secretion during and after pregnancy in patients with gestational diabetes mellitus. J Clin Endocrinol Metab. 2001;86:568–73.
- [156 Maghbooli Z, Hossein-Nezhad A, Mirzaei K, et al. Association between retinol-binding protein 4 concentrations and gestational diabetes mellitus and risk of developing metabolic syndrome after pregnancy. Reprod Sci. 2010;17:196–201.
- [157 Nouhjah S, Shahbazian H, Amoori N, et al. Postpartum screening practices, progression to abnormal glucose tolerance and its related risk factors in Asian women with a known history of gestational diabetes: A systematic review and meta-analysis. Diabetes Metab Syndr Clin Res Rev. 2017;11:S703–12.
- [158 Retnakaran R, Qi Y, Connelly PW, Sermer M, Hanley AJ, Zinman B (2009) Low adiponectin concentration in pregnancy predicts postpartum beta-cell dysfunction: Pathophysiologic implications for the link between gestational diabetes (GDM) and future type 2 diabetes (T2DM). Diabetes 58
- [159 Roca-Rodriguez MM, Lopez-Tinoco C, Fernandez-Deudero A, et al. Adipokines and metabolic syndrome risk factors in women

with previous gestational diabetes mellitus. Diabetes Metab Res Rev. 2012;28:542-8.

- Weisnagel SJ, Dubé MC, Morisset AS, Tchernof A. Prolactin, breastfeeding and the metabolic profile of women with or without previous gestational diabetes. Can J Diabetes. 2013;37:S80.
- 161. Hakkarainen H, Huopio H, Cederberg H, Paakkonen M, Voutilainen R, Heinonen S. Post-challenge glycemia during pregnancy as a marker of future risk of type 2 diabetes: a prospective cohort study. Gynecological endocrinology: the official journal of the International Society of. Gynecol Endocrinol. 2015;31:573–7.
- 162. Lekva T, Michelsen AE, Bollerslev J, et al. Low circulating pentraxin 3 levels in pregnancy is associated with gestational diabetes and increased apoB/apoA ratio: A 5-year follow-up study. Cardiovasc Diabetol. 2016;15.
- 163. Lekva T, Michelsen AE, Aukrust P, Henriksen T, Bollerslev J, Ueland T. Leptin and adiponectin as predictors of cardiovascular risk after gestational diabetes mellitus. Cardiovasc Diabetol. 2017;16:5.
- 164. Noctor E, Crowe C, Carmody LA, et al. ATLANTIC-DIP: prevalence of metabolic syndrome and insulin resistance in women with previous gestational diabetes mellitus by International Association of Diabetes in Pregnancy Study Groups criteria. Acta Diabetol. 2015;52:153–60.
- Winhofer Y, Tura A, Prikoszovich T, et al. The impact of recurrent gestational diabetes on maternal metabolic and cardiovascular risk factors. Eur J Clin Investig. 2013;43:190–7.
- 166. Winhofer Y, Tura A, Thomas A, et al. Metabolic characterisation of women with prior gestational diabetes maintaining normal glucose tolerance up to five years postpartum. Diabetologia. 2013;56: S510.
- 167. Xiang AH, Takayanagi M, Black MH, Trigo E, Watanabe RM, Buchanan TA. Women with recent gestational diabetes have faster decline in insulin sensitivity and beta-cell compensation than their normal parous siblings and cousins. Diabetes. 2012;61:A343.
- Ajala O, Stenhouse E, Shaw N, Carr S, Millward A. Cardiovascular risk following diagnosis of gestational diabetes:

Diabetes in Pregnancy Mother Baby Study 3. Diabet Med. 2011;28:173.

- Bian X, Gao P, Xiong X, Xu H, Qian M, Liu S. Risk factors for development of diabetes mellitus in women with a history of gestational diabetes mellitus. Chin Med J. 2000;113:759–62.
- Da PM, Fronczyk A, Safranow K, Majkowska L. Uric acid and glucose metabolism disorders in women with previous gestational diabetes mellitus. Diabetes. 2016;65:A590.
- 171. Tam WH, Yang XL, Chan JC, et al. Progression to impaired glucose regulation, diabetes and metabolic syndrome in Chinese women with a past history of gestational diabetes. Diabetes/ Metabolism Research & Reviews. 2007;23:485–9.
- 172. Tutino EG, Zhang YY, Luk A, et al. Metabolic profile of women with diabetes type 2 with and without a history of gestational diabetes mellitus - Hong Kong joint Asia diabetes evaluation (JADE). Diabetes Res Clin Pract. 2014;106:S77.
- 173. Gobl CS, Bozkurt L, Prikoszovich T, Winzer C, Pacini G, Kautzky-Willer A. Early possible risk factors for overt diabetes after gestational diabetes mellitus. Obstet Gynecol. 2011;118:71– 8.
- 174. Göbl CS, Bozkurt L, Prikoszovich T, Tura A, Pacini G, Kautzky-Willer A. Biomarkers of endothelial dysfunction in relation to impaired carbohydrate metabolism early after pregnancy with gestational diabetes mellitus. Diabetologia. 2014;57:S456.
- 175. Gobl CS, Bozkurt L, Yarragudi R, Tura A, Pacini G, Kautzky-Willer A. Is early postpartum HbA1c an appropriate risk predictor after pregnancy with gestational diabetes mellitus? Acta Diabetol. 2014;51:715–22.
- 176. Minooee S, Ramezani Tehrani F, Rahmati M, Mansournia MA, Azizi F. Dyslipidemia incidence and the trend of lipid parameters changes in women with history of gestational diabetes: a 15-year follow-up study. Endocrine. 2017;58:228–35.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Appendix 2: Publication for Cardiovascular risk factors in children exposed to gestational diabetes mellitus *in utero:* a systematic review and meta-analysis

Journal of Developmental Origins of Health and Disease

www.cambridge.org/doh

Review

Cite this article: Pathirana MM, Lassi ZS, Roberts CT, and Andraweera PH. (2020) Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus *in utero*: systematic review and meta-analysis. *Journal of Developmental Origins of Health and Disease* **11**: 599–616. doi: 10.1017/S2040174419000850

Received: 23 July 2019 Revised: 5 November 2019 Accepted: 10 November 2019 First published online: 6 January 2020

Keywords:

pregnancy; gestational diabetes mellitus; cardiovascular disease; child health

Address for correspondence:

Prabha Andraweera, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia. Email: prabha.andraweera@adelaide.edu.au

© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2020.

Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus *in utero*: systematic review and meta-analysis

CrossMark

Maleesa M. Pathirana, Zohra S. Lassi, Claire T. Roberts and Prabha H. Andraweera 💿

Adelaide Medical School, The Robinson Research Institute, The University of Adelaide, Adelaide, Australia

Abstract

Gestational diabetes mellitus (GDM) is a pregnancy complication that affects one in seven pregnancies. Emerging evidence demonstrates that children born of pregnancies complicated by GDM may be at increased risk of cardiovascular disease (CVD) in adulthood. Therefore, the aim of this study was to determine cardiovascular risk factors in offspring exposed to GDM in utero. PubMed, CINAHL, SCOPUS, and EMBASE databases were searched. Information was extracted on established CVD risk factors including blood pressure, lipids, blood glucose, fasting insulin, body mass index (BMI), and endothelial/microvascular function. The review protocol is registered in PROSPERO (CRD42018094983). Prospective and retrospective studies comparing offspring exposed to GDM compared to controls (non-GDM pregnancies) were considered. We included studies that defined GDM based on the International Association of Diabetes and Pregnancy Study Groups (IADPSG) definition, or prior definitions. The PRISMA guidelines were followed in conducting this systematic review. Methodological quality was assessed using the Newcastle-Ottawa Quality Assessment Scale. Study selection, data extraction, and quality assessment were done by two independent reviewers. The data were pooled using a random-effects model. Of 59 eligible studies, 24 were included in the meta-analysis. Offspring exposed to GDM had higher systolic blood pressure (mean difference (MD): 1.75 mmHg, 95% CI 0.57-2.94; eight studies, 7264 participants), BMI z-score (MD 0.11, 95% CI 0.02-0.20; nine studies, 8759 participants), and glucose (standard MD 0.43, 95% CI 0.08-0.77; 11 studies, 6423 participants) than control participants. In conclusion, offspring exposed to GDM have elevated systolic blood pressure, BMI, and glucose. Those exposed to GDM in utero may benefit from early childhood blood pressure measurements.

Introduction

The incidence of cardiovascular disease (CVD) has shown a rapid increase over the last decade. In 2012, there were an estimated 17.6 million deaths from CVD, accounting for 31.43% of global mortality.¹ Emerging evidence demonstrates an association between gestational diabetes mellitus (GDM) and CVD with risk factors for CVD being more prevalent among women who experienced gestational diabetes (GDM) compared to those who did not.^{1,2}

Prevalence of GDM varies between populations, but it is estimated to affect one in seven pregnancies.³ The definition of GDM has changed over recent years, as it has become apparent that mild glucose intolerance in pregnancy which was not formerly considered as GDM increases the risk of developing type 2 diabetes mellitus (T2DM) and CVD in later life.⁴ A recent meta-analysis showed a 7.5-fold increase in the risk of T2DM among women who experience GDM.²

Emerging evidence also suggests that children born after pregnancies complicated by GDM may also be at increased risk of CVD in adult life. Tam *et al.* showed that for every 1-SD (standard deviation) increase in maternal glycemic level, there was an increase in the adjusted odds ratio for impaired glucose tolerance in the offspring.⁵ A meta-analysis conducted by Aceti *et al.* and colleagues demonstrated that systolic blood pressure (SBP) was higher in offspring of women who experienced GDM than controls.⁶

At present, there is no systematic review comparing the main conventional CVD risk factors between offspring exposed to GDM *in utero* compared to controls. Both vascular and metabolic CVD risk factors constitute metabolic syndrome which is a well-established risk factor for CVD.¹ Therefore, synthesizing evidence on all CVD risk factors will provide important information that can guide preventive strategies to reduce the global burden of CVD.

The primary objective of this study was to conduct a comprehensive systematic review and meta-analyses of all relevant studies published until October 2018 to assess conventional CVD risk factors including SBP and diastolic blood pressure (DBP), body mass index (BMI), lipids,

blood glucose, and insulin levels. As a secondary objective, we aimed to assess all relevant studies that assessed microvascular function.

Methods

Search strategy

All studies describing the association between GDM and offspring CVD risks were identified by searching the following electronic databases: PubMed CINAHL, SCOPUS, and EMBASE with an end of search date of April 18, 2018. Subsequently, we updated the literature search to include all relevant articles published until October 17, 2018. The review protocol is registered in PROSPERO (CRD42018094983). No amendments have been made to the current protocol.

The review was undertaken with reference to the PRISMA guidelines.⁷ The search strategy is as follows: ("gestational diabetes*" OR "pregnancy induced diabetes" OR "diabetic pregnancy") AND (offspring OR newborn OR baby OR babies OR children OR infant OR neonate* OR adolescent* OR adult) AND ("blood pressure" OR diabetes OR cardiovascular OR metabolic OR hypertension OR BMI or "body mass index" OR obesity OR overweight OR lipids OR lipid OR cholesterol OR triglyceride* OR glucose OR insulin OR vascular). We included case-control studies, cohort studies, and clinical trials. Conference abstracts were also screened. Previous systematic reviews and meta-analyses on relevant topics were identified, and references from eligible reviews were checked for additional studies. All identified studies were assessed for relevance by two independent authors (MMP and PHA). Data were independently extracted by two authors (MMP and PHA). Discrepancies were resolved by discussion.

Inclusion criteria

The population of interest and exposure were offspring at any follow-up visit born to women who experienced GDM during pregnancy. We selected studies that assessed conventional CVD risk factors in offspring exposed to GDM *in utero* compared to offspring not exposed to GDM *in utero*. The CVD risk factor outcomes were blood pressure, BMI, serum and cord blood lipids, and serum and cord blood insulin and glucose.

We included studies that defined GDM based on the IADPSG. However, as diagnostic criteria have recently changed, we included studies that used prior diagnostic criteria of GDM including the 1999 World Health Organization definition, and other regional definitions. The definitions of GDM of included studies are detailed in Table 1. Studies that did not have the above definition/s of GDM, those that did not define study groups, and those that compared GDM and another risk group collectively were excluded. Studies that compared offspring exposed to GDM with offspring exposed to impaired glucose tolerance *in utero* were included in the review but were not included in the meta-analysis. The data from these studies are presented in Supplementary Table S1.

Data were extracted independently and in duplicate for outcomes SBP, DBP, BMI, serum and cord lipid levels (total cholesterol, low-density lipoprotein (LDL) high-density lipoprotein (HDL), non-HDL, and triglycerides), blood glucose, fasting insulin, and measures of vascular/endothelial function. When the same cohort was reported in multiple publications at different ages, the study reporting on the older age group was included in the meta-analysis. We considered both studies published in English and studies that could be translated to English. We contacted authors via email for missing information or data clarification if necessary, and if authors did not respond, then any relevant data from their respective studies are included in Supplementary Table S1.

Statistical analysis

The following data were collected from each included study: definition of GDM, age of offspring at follow-up, number of cases/exposed to GDM *in utero* and controls/not exposed to GDM *in utero*, and birthweight and gestational age at birth of cases and controls. For each outcome measure, mean and SD were used in meta-analyses. When mean and SD were not reported, standard error of mean and 95% CI were converted to SD via statistical software.⁸ For studies reporting using median and interquartile range, the results are detailed in Supplementary Table S1. The standard mean difference (SMD) or mean difference (MD) and the 95% CI were calculated using a random-effects model. SMD was used when the outcome was measured in different units across trials and MD when units were consistent.

The meta-analysis was performed using Cochrane Collaborations RevMan software (Review Manager, Version 5.3, The Nordic Cochrane Centre, Copenhagen) based on an inverse variance method. As per protocol, the random-effects model was selected to account for the variation in different criteria used to diagnose GDM among the studies. However, to ensure that the results were not influenced by the choice of model, each analysis was repeated using a fixed-effects model. No difference in results was seen between the two models (results not shown). Substantial heterogeneity was considered when I^2 statistic exceeded 50%, and the $\chi^2 P$ value was less than 0.1. To assess publication bias, funnel plots were used. The methodological quality and risk of bias were assessed using Newcastle-Ottawa Quality Assessment Scale (Supplementary Table S2).9 Sensitivity analyses were performed to evaluate heterogeneity for outcomes when omitting low-quality studies. Two authors (MMP, PHA) independently assessed the quality of each study included in the review. The discrepancies were resolved through discussions.

Results

A total of 4359 articles were identified from the literature search. One hundred and twelve articles were eligible for full-text review. Of these, 59 were included in the review and 25 were included in the meta-analyses. The reasons for excluding 53 studies are detailed in Fig. 1. We contacted nine authors for additional data, with responses from four authors (44.4% response); however, the authors of these four studies did not have data that could be used in the meta-analyses and hence are included in Supplementary Table S1.

The assessment of methodological quality identified 25 studies of high quality (scored 7–8), 25 studies of moderate quality (scored 4–6), and 9 studies of low quality (scored 1–3) (Supplementary Table S2). No publication bias was evident for relevant outcomes. Studies were found for all relevant outcomes, except microvascular function, and therefore, we could not report on this outcome in the review.

Systolic blood pressure

SBP data were available from 15 studies, of which 8 were included in the meta-analysis. The age of follow-up of offspring ranged from 3 to 16 years. Based on quantitative summary measures, the metaanalysis demonstrated that offspring exposed to GDM *in utero*

Study	Year	Study design	Country	Definition of GDM	Exposed/ nonexposed (<i>n=</i>)	Birthweight cases/control (g)	Gestational age cases/control (weeks)	Follow-up (years)	Outcome measure considered
Kaseva et al. ⁷⁹	2018	Multicohort study	Finland	 (Both cohorts): OGTT at 26–28 weeks: indications for screening: glycosuria, prior GDM, suspected fetal macrosomia, previous macrosomic infant (birthweight 4500 g), maternal prepregnancy BMI ≥25 kg/m², and maternal age ≥40 years Overnight fasting by using a 75-g oral glucose load. Cutoff limits for GDM were used for venous blood glucose: >5.5mmol/l at fasting, >11.0 mmol/l and >8.0mmol/l, 1 and 2 h after the glucose load, respectively. A diagnosis of GDM was made with one abnormal value in the OGTT 	191/547	ESTER cohort: 3651 (601)/3519 (466) ALYS cohort: 3881 (648)/3555 (462)	ESTER cohort: 39.0 (1.8)/39.8 (1.5) ALYS cohort: 39.0 (1.5)/40.0 (1.3)	23–25 years after delivery	BMI (kg/m²)
Kearney et al. ²⁶	2017	Cohort study	USA	Based on hospital records from two major hospitals with a neonatal care unit in the metropolitan area of Québec City (Hôpital Saint-François d'Assise, Centre Hospitalier de l'Université Laval – CHUL) or according to administrative data from the provincial health plan registry (Régie de l'assurance maladie du Québec)	56/30	3346 ± 442/3267 ± 558	38.8 ± 1.4/ 39.5 ± 1.2	Between 3 and 12 years after delivery	BMI (kg/m ²) BMI <i>z</i> -score
Le Moullec et al. ⁴⁷	2018	Cohort study	France	Confirmed based on hospital, medical records with following criteria: positive screening for GDM based on a OGTT (1-h postload 50-g plasma glucose, 11.1 mmol/l), had a diagnosis of GDM based on a 100-g OGTT (OGTT with at least two pathologic values defined as: fasting, -5.3 mmol/l ; 1 h, 10.0 mmol/l; 2 h, 8.6 mmol/l; 3 h, 7.8 mmol/l), and/or had received insulin treatment during pregnancy. A small number of participants (<0.5%; $n = 6$) with no available data were also classified into the GDM group if they combined high fasting (or postprandial) glycemic values with intense medical monitoring during pregnancy.	600/600	3183 ± 563/ 3047 ± 500	Not reported	Average 6 years after delivery	BMI centile
Miettinen et al. ⁵⁰	2018	Cohort study	Finland	An oral 75-g, 2-h glucose tolerance test (OGTT) was performed for all subjects at weeks 22–29 of pregnancy, with the exception of three subjects with OGTT performed at weeks 31–33. OGTT was considered diagnostic for GDM if any of the measures were pathological. The following diagnostic thresholds were used: fasting plasma glucose >5.3 mmol/ l, 1-h plasma glucose (10.0 mmol/l) or 2-h plasma glucose (8.6 mmol/l)	15/13	3500 ± 120/ 3540 ± 130	39.8 ± 0.33/ 40.54.7 ± 0.32	After birth	Cord blood total cholester lipids (mmol/l)

Study	Year	Study design	Country	Definition of GDM	Exposed/ nonexposed (<i>n=</i>)	Birthweight cases/control (g)	Gestational age cases/control (weeks)	Follow-up (years)	Outcome measure considered
Wang et al. ⁷⁸	2019	Population-based cohort study	China	Based on American diabetes association	1500/23,471	Not reported	39.1 ± 1.1/ 39.3 ± 1.1	6 years	BMI z-score
Hammoud <i>et al.⁸⁰</i>	2017	Cohort study	The Netherlands	75-g OGTT or elevated fasting glucose (exact cutoffs not shown)	24/T1D: 27, T2D: 22	3582 ± 576/T1D: 3506 ± 556, T2D: 3701 ± 509	39 ± 2.0/T1D: 37 ± 1.3, T2D: 38 ± 1.7	5 years after delivery	Overweight/obese
Li et al. ³⁷	2017	Prospective cohort study	USA	Self-reported questionnaire	756/14,253	No mean reported	Not reported	11 years after delivery	BMI
Tam et al. ⁵	2017	Longitudinal cohort study	Hong Kong	All women underwent a standard 75-g OGTT between 24 and 32 weeks of gestation, GDM diagnosed based on HAPO criteria	132/794	Not reported	Not reported	7 years after delivery	BMI (kg/m ²) BMI percentile SBP (mmHg) DBP (mmHg) Glucose (mmol/l) Lipids (mmol/l)
Bozkurt <i>et al.</i> ⁵³	2016	Descriptive study	Austria	Fourth International Workshop Conference on GDM criteria	32/DM: (26), Control: (18)	63.0 ± 24.0/DM: (71.3 ± 29.3), Control: (66.6 ± 22.1) ^a	Not reported	Average 6 years after birth	BMI-SDS, insulin (μU/ml)
Hakanen <i>et al.⁸¹</i>	2016	Longitudinal study	Finland	Diagnosed by hospital records	520/T1D: 67, Control: 6316	3600 (600)/Control: 3500 (500), T1D: 3700 (700)	39.4 (2.5)/Control: 39.7 (2.4), T1D: 38.5 (2.0)	Average 1–12 after delivery	BMI peak (kg/m ²)
López Morales <i>et al.</i> ⁴⁹	2016	Cross sectional	Spain	Diagnosed in medical records	38/women with normal gestation (still pregnant) = 38	Not reported	Not reported	Infant (after birth)	Cord blood glucose (mg/ Cord blood insulin (U/ml Cord blood lipids (mg/dl)
Zhao et al. ³⁶	2016	Cross-sectional	Multicenter (Australia, Brazil, Canada, China Colombia, Finland, India, Kenya, Portugal, South Africa, UK, USA)	Varied between international centers but included WHO, ADA, modified ADA, and modified WHO definitions – women would self-report GDM and the research team confirmed the diagnostic criteria at the time of diagnosis	206/4.354	3415 (623)/ 3274 (576)	38.3 (2.1)/ 38.6 (2.2)	9–11 years after delivery	BMI
Chang et al. ¹²	2015	Retrospective cohort study	China	American Diabetes Association: Women with abnormal 50-g OGTT (>7.8 mmol/l) underwent further fasting 3-h 75-g OGTT. GDM diagnosed with criteria: (BG > 5.3 mmol/l at baseline, >10 mmol/l at 1 h, >8.6 mmol/l at 2 h, 7.8 mmol/l at 3 h	356/500	3700 ± 120/3200 ± 800	Not reported	6 years after birth	BMI (kg/m²) SBP (mmHg)
Krishnaveni et al. ¹³	2015	Cohort study	India	Carpenter and Coustan: two or more plasma glucose concentrations 5.3 (fasting), 10.0 (60 min), 8.7 (120 min), and 7.8 mmol/l (180 min) (reported in 2005 study)	26/CTRL: 165, Offspring of diabetic fathers: 22	Not reported	Not reported	13.5 years after delivery	BMI (kg/m²) SBP and DBP (mmHg) Glucose (mmol/l) Insulin (pmol/l) Lipids (mmol/l)
Page et al. ^{82b}	2015	Cohort study	USA	Based on protocol ³¹	10/9	Not reported	Not reported	Average 9–10 years after delivery	BMI (kg/m²) BMI percentile
Rutkowska	2015	Prospective	Poland	Not specified	261/153	3330 ± 53/3420 ± 54	Not reported	Approximately	BMI percentile

Downloaded 1										
v e	Wilk et al. ⁵⁷	2015	Cohort study	Poland	Hospital records	50/46	Not reported	Not reported	7–15 years after delivery	BMI SDS BMI percentile Glucose (mg/dl) Insulin (mg/dl)
WW cambridge org/core liniversity of ADE	Zhao et al. ⁸³	2015	Cohort study	China	Women with risk factors for GDM underwent 85-g OGTT at <12-week gestation, OGTT repeated at 24–28 weeks if normal results. All women with low risk for GDM did normal 24- to 32-week gestation. 1999 WHO diagnostic criteria for GDM since January 1, 2003. GDM diagnosis based on IGT (fasting blood glucose <7.0 mmol/l and 2-h postprandial blood glucose ≥7.8– 11.0 mmol/l) or DM (fasting blood glucose ≥7.0 mmol/l or 2-h postprandial blood glucose ≥11.1 mmol/l) positive results	LGA: 149/284 AGA: 771/1401 SGA: 148/180	GDM (followed) 3256 ± 405, GDM (not followed) 3172 ± 509/ Control followed: 3261 ± 391, Control not followed: 3254 ± 417	GDM (followed) 38.9 \pm 0.9 (not followed) 38.4 \pm 1.5/Control followed: 39.5 \pm 1.0, Control not followed: 39.1 \pm 0.7	5–10 years after delivery	BMI percentile
	Holder et al. ²⁵	2014	Cohort study	USA	Self-reported	45/210	3242.54 ± 959.59/ 3297.93 ± 603.99	Not reported	Average 15 years after delivery	BMI (kg/m²) BMI z-score Plasma glucose (mmol/l)
P e	Köing et al. ³⁵	2014	Retrospective case-control	Germany	Three women were diagnosed with <i>Hesse</i> Diabetes Society diagnosis: Fasting: ≥90 mg/dl, 1-h postprandial: ≥160 mg/dl, 2-h postprandial ≥140 mg/dl in venous plasma. Some women were diagnosed who exceeded only one of these three threshold values in a venous blood specimen. Other women referred to by clinicians, based on DDG and AGA values: GDM was diagnosed if at least two measured values exceeded the limits of <i>Carpenter and Coustan</i> after ingestion of 75-g glucose, only one exceeded value was declared as impaired glucose tolerance. GDM can also be diagnosed if only one of the predetermined cutoffs is exceeded, whereas these values – based on the results of the <i>HAPO Study</i> – differ slightly from the former criteria: Fasting: ≥92 mg/dl, 1-h postprandial: ≥180 mg/dl, 2-h postprandial: ≥153 mg/dl	130/77	3406.62 ± 463.69/ 3456.09 ± 463.25	Not reported	6 months after delivery	BMI (kg/m²) BMI percentile
	Page et al. ²⁷	2014	Cohort study	USA	Based on protocol ³¹	37/25	3186 ± 113/ 3454 ± 79	Not reported	5–16 years old (average 7–9 years after delivery)	BMI (kg/m²) BMI z-score BMI percentile
Ε [Davis et al. ²⁴	2013	Longitudinal cohort	USA	Self-reported	47/163	3900 (800)/ 3700 (600)	Not reported	Average 10–11 years after birth	BMI (kg/m ²) BMI percentile BMI z-score Glucose (mg/dl) Insulin (μU/ml)

Study	Year	Study design	Country	Definition of GDM	Exposed/ nonexposed (n=)	Birthweight	Gestational age cases/control (weeks)	Follow-up (vears)	Outcome measure
Eslamian et al. ³³	2013	Cohort study	Iran	World Health Organization, diagnosed as either: fasting plasma glucose 5.1–6.9 mmol/l or: 1-h plasma glucose 10.0 mmol/l. Following a 75-g oral glucose load 2-h plasma glucose 8.5–11.0 mmol/l following a 75-g oral glucose load	112/159	3336.07 ± 630/ 3259.75 ± 490	37.72 ± 1.7/ 39.1.33	Infant (after birth)	BMI (kg/m ²) Cord blood glucose (mg/dl Cord blood insulin (μU/ml) Cord blood lipids (mg/dl)
Farfel et al. ^{45b}	2013	Cohort study	Israel	159 males, 113 females/diagnosed by hospital records	Female (113), male (159)/PGDM male (34) female (23) control, male (198), control (147)	Male 3423 ± 537, female 3230 ± 510, PGDM male 3451 ± 535, female 3210 ± 364. CTRL male 3344 ± 372, female 3228 ± 324	Not reported	17 years after delivery	BMI >85th percentile
Nehring et al. ³⁹	2013	Retrospective cohort study	Germany	GDM cases found from medical records	195/7160	3479 (3417–3540)/ 3413 (3403–3424)	3413 (3403–3424)/ 39.4 (39.3–39.4)	Average 5.8 years after delivery	BMI (kg/m²)
Nielsen et al. ⁴⁰	2012	Population-based cohort study	Denmark	Rigshospitalet University Hospital modification of the White classification: Oral glucose challenge test (OGTT) in gestational weeks 24–26 if they met one of the following criteria: (1) previous birth of a baby with birthweight >4500 g; (2) maternal overweight >130%; (3) family history of diabetes; (4) glycosuria; or (5) previous obstetrical complications or late miscarriage (diagnostic values not specified)	34/previous GDM (185), control (737	3803 (780)/PREGDM:) 3327 (648), control: 3482 (551)	38.9 (1.9)/PREGDM: 36.5 (1.8), control: 38.8 (2.0)	18–20 years after delivery	BMI (kg/m²)
Page et al. ^{20b}	2013	Cohort study	USA	Based on protocol ³¹	10/19	Not reported	Not reported	Average 9 years after delivery	BMI z-score SBP (mmHg) Glucose (mg/dl) Insulin (ulU/ml)
Pham et al. ⁸⁴	2013	Retrospective cohort study	USA	Normal screening at 24–28 weeks (unless considered at risk, tested in first trimester). 50-g, 1-h glucose challenge test of greater/equal to 140 mg/dl, then given a 100-g, 3-h glucose tolerance test if 1-h challenge was positive. Needed 1/4 of the possible measurements to be diagnosed. Diagnosis followed <i>National</i> <i>Diabetes Data Group</i> prior to April 2007, then changed to <i>Carpenter</i> <i>and Coustan</i> criteria after April 2007	459/2185	3406 ± 496/3404 ± 442	39.3 ± 1.0/ 39.6 ± 0.9	2–4 years after delivery	BMI percentile
Retnakaran et al. ³²	2013	Substudy of prospective observational study	Canada	Those with and without an abnormal 50-g glucose challenge screening test undergo 3-h, 100-g OGTT for ascertainment of antepartum glucose intolerance status (i.e., either GDM or non-GDM) based on NDDG, measurements at 20 min 1, 2, and 3 h	36/68	3411 (3110-3635)/ 3415 (3144-3628)	Not reported	1 year after delivery	BMI z-score Fasting glucose (mmol/l) Lipids (mmol/l)

Baptise- Roberts <i>et al.</i> ²⁹	2012	Prospective cohort	USA	All women provided fasting blood specimen if it was 120 mg/dl or higher, or if it rose to over 175 mg/dl at the end of 1 h and did not return to normal in the 2- and 3-h specimens. GDM diagnosed based on these criteria: (1) she was newly diagnosed with diabetes during pregnancy; (2) she initiated insulin during pregnancy; (3) she displayed an abnormal glucose tolerance test result; or (4) she had a blood glucose level of 200 mg/dl or more at any time during pregnancy	484/27,874	3302 ± 584/ 3190 ± 484	Not reported	7 years after birth	BMI (kg/m²) BMI <i>z-</i> score BMI percentile
Borgoño et al. ⁵²	2012	Prospective cohort	Canada	National Diabetes Data Group criteria	36/68	3411 (3110–3635)/ 3415 (3144–3628)	Not included	1 year after birth	Fasting glucose (mmol/l) Fasting insulin (pmol/l)
Chandler Laney <i>et al.</i> ⁵¹	2012	Cohort study	USA	Self-reported, confirmed with hospital records	Normal weight: (11), Overweight: (13)/Normal weight: (19), Overweight: (8)	Not reported	Not reported	Average 7–8 years after birth	BMI percentile Glucose (mg/dl) ² Insulin (mg/dl) ²
Page et al. ^{31b}	2012	Cohort study	USA	Not reported in abstract (based on protocol): Fasting glucose <126 mg/dl (7 mM) from families of a proband with GDM diagnosed within the previous 5 years)	35/14	Not reported	Not reported	Average 8 years after delivery	BMI (kg/m²) BMI <i>z-</i> score
Patel et al. ¹⁴	2012	Prospective population-based cohort study	England	GDM was defined as any record of a diagnosis of gestational diabetes at any time during the pregnancy in women without existing diabetes at the start of pregnancy. (At time of study recruitment: all pregnant women to have urine tested for glycosuria and proteinuria at every antenatal clinic visit. Glycosuria was defined as a record of at least ++ (equal to 13.9 mmol/l or 250 mg/100 ml) on at least two occasions at any time during the pregnancy.) GDM was tested further to these results, diagnosed in the medical records as GDM with no history of existing diabetes.	27/Control: (4384), existing diabetes: (23), glycosuria: (154)	1.45 (1.28)/Control: 0.038 (0.97), existing diabetes: 0.28 (1.32), glycosuria: 0.18 (1.04)	38.6 (1.48)/control: 39.4 (1.85), existing diabetes: 37.5 (1.86), glycosuria: 39.7 (1.63)	15 years after delivery	BMI <i>z-</i> score SBP and DBP (mmHg) Glucose (mmol/l) Insulin (IU/l) Lipids (mmol/l)
Jahan et al. ⁸⁵	2011	Cohort study	Bangladesh	Diagnosed with fasting blood glucose, and 2 h after 75-g OGTT. Women who had repeatedly elevated fasting (>7.0 mmol/l) or postprandial (9 mmol/l) blood glucose values.	30/DM: (<i>n</i> = 45), control: (<i>n</i> = 30)	3000 (2100-4500)/ DM: 3100 (1700-4800), NDM: 2700 (2000-3800)	Not reported	Infant (after birth)	Insulin (mmol/l)
Tsadok et al. ²²	2011	Population-based cohort	Israel	Reported on hospital records	293/59,499	3411 ± 616/3301 ± 483	Not reported	17 years after delivery	BMI (kg/m ²) SBP and DBP

https://www.ed

for Study	Year	Study design	Country	Definition of GDM	Exposed/ nonexposed (n=)	Birthweight	Gestational age cases/control (weeks)	Follow-up (vears)	Outcome measure
Boerschmann et al. ⁸⁶	n 2010	Prospective cohort	Germany	German Diabetes Association – an OGTT with a 75-g glucose load. Women were considered to have GDM if two of three capillary blood glucose values exceeded the following limits: >5 mmol/l (fasting) before an OGTT, >10 mmol/l after 60 min, and >8.6 mmol/l after 120 min	232	Not reported	Not reported	11	BMI percentile
Krishnaveni et al. ¹⁸	2010	Cohort study	India	<i>Carpenter and Coustan:</i> two or more plasma glucose concentrations 5.3 (fasting), 10.0 (60 min), 8.7 (120 min), and 7.8 mmol/l (180 min)	Female (23), Male (12)/Control: female (191) male (190), Offspring of diabetic fathers male: (20), female: (19)	Not reported	Not reported	9.5 years after delivery	BMI (kg/m ²) BMI percentile SBP and DBP (mmHg) Glucose (mmol/l) Insulin (pmol/l) Lipids (mmol/l)
Lawlor et al. ³⁰	2010	Longitudinal cohort	England	GDM was defined as any record of a diagnosis of gestational diabetes at any time during the pregnancy in women without existing diabetes at the start of pregnancy. (At time of study recruitment: all pregnant women to have urine tested for glycosuria and proteinuria at every antenatal clinic visit. Glycosuria was defined as a record of at least ++ (equal to 13.9 mmol/l or 250 mg/100 ml) on at least two occasions at any time during the pregnancy.) GDM was tested further to these results, diagnosed in the medical records as GDM with no history of existing diabetes	53/control: (10,126) Existing diabetes (40) Glycosuria (372)	3711 (655)/control: 3416 (536), existing diabetes: 3248 (787), glycosuria: 3511 (534)	38.2 (1.9)/control: 39.5 (1.9), existing diabetes: 37.5 (2.6), glycosuria: 39.5 (1.8)	Average 9–11 years after delivery	BMI z-score
Pirkola et al.41	2010	Longitudinal cohort study	Finland	GDM risk factors; 40 years, BMI 25 kg/m ² , prior GDM, previous delivery of a macrosomia infant (birthweight 4500 g), glycosuria, and suspected fetal macrosomia in the current pregnancy. Glucose tolerance testing, performed after an overnight fast, conducted by administering a 2-h, 75-g OGTT: 5.5, 11.0, and 8.0 mmol/l at fasting and at 1 h and 2 h after the glucose load, respectively. Diagnosis of GDM was set after one abnormal value in the OGTT, according to prevailing national guidelines	Normal weight: (n = 49), Overweight: (n = 35)/Control total: (657) Norma weight: (503), Overweight (n = 154)	Overweight: 3700 (3490-3920) Normal 3670 (3530-3820)/ Overweight = 3780 al (3680-3880), Normal weight: 3690 (3640-3740), Total: 3480 (3460-3500)	Overweight: 38.5 (37.8–39.1), Normal 39.0 (38.6–39.5)/ Overweight 39.4 (39.1–39.6), Normal weight 39.5 (39.4–39.7) Total 39.5 (39.4–39.5)	16 years after delivery	BMI (kg/m²)
5 5 et al. ¹⁵	2010	Longitudinal cohort	Hong Kong	GDM defined based on WHO criteria: Gestational IGT (i.e., fasting PG level of 7.0 mmol/l and 2-h PG level of 7.8–11.1 mmol/l, and GDM (i.e., fasting PG level of 7.0 mmol/l and/or 2-h PG level of 11.1 mmol/l). WHO criteria states that "pregnant women who meet WHO criteria for diabetes mellitus of IGT are classified as having GDM"	42/87	3248 (351)/ 3273 (454)	Based on Tam et al. ²¹ with larger $(n =): 39.6 \pm 0.2/$ 39.5 ± 0.2	15 years after delivery	BMI (kg/m²) SBP and DBP (mmHg) Glucose (mmol/l) Lipids (mmol/l)

Catalano <i>et al.</i> ¹¹	2009	Prospective cohort	USA	NDDG	25/38	3373 ± 532/ 3376 ± 496	38.7 ± 1.3/ 39.4 ± 1.2	Average 8.8 years after birth	BMI (kg/m ²) BMI z-score SBP and DBP (mmHg) Glucose (mmol/l) Insulin (pmol/l) HOMA-IR Lipids (mmol/
Vaarasmaki et al. ²³	2009	Prospective cohort study	England	Risk factors: glycosuria, prior gestational diabetes, suspected fetal macrosomia (birthweight 4500 g) in the current pregnancy, previous delivery of a macrosomic infant, BMI 25 kg/m ² and age more than 40 years. A history of prior gestational diabetes or glycosuria in the current pregnancy warrants an earlier OGTT. Diagnosed with 2-h, 75-g OGTT usually at 26–28 week of gestation: one or more abnormal OGTT values (cutoff values for venous blood samples are 4.8 mmol/l at 0 min, 10.0 mmol/l at 60 min, and 8.7 mmol/l at 120 min)	96/3909	3727 (577)/ 3517 (471)	38.8 (1.7)/ 39.5 (1.5)	16 years after delivery	BMI SBP and DBP (mmHg) Glucose (mmol/l) Insulin (milliunits/l) Lipids (mmol/l)
Wright <i>et al.</i> ¹⁶	2009	Cohort study	USA	Screening at 26–28 weeks with nonfasting 50-g 1-h oral glucose challenge. If test result was abnormal (i.e., blood glucose value of >140 mg/dl), then women were referred for fasting 3-h 100 OGTT. Two or more abnormal results were a diagnosis for GDM: a blood glucose >95 mg/dl at baseline, >180 mg/dl at 1 h, >155 mg/dl at 2 h, or >140 mg/dl at 3 h	51/control n = 1035, IGT n = 152	3510 (52)/ control = 3510/52, IGT 3600 (52)	Not reported	3 years after delivery	BMI (kg/m ²) BMI percentile BMI <i>z</i> -score SBP (mmHg)
Buzinaro et al. ¹⁰	2008	Cohort study	Brazil	Based on OGTT values (cutoffs not specified)	23/Control (17) Hyperglycemia (23)	Not reported	Not reported	Average 12–16 years after birth	BMI (kg/m²) SBP and DBP (mmHg) Glucose (mg/dl) Lipids (mg/dl)
Clausen et al. ⁵⁶	2008	Retrospective cohort study	Denmark	OGTT – GDM was based on risk indicators: family history of diabetes, overweight (20%) prepregnancy, prior GDM, delivery of macrosomic baby, glycosuria. Women with these risk indicators and two capillary blood glucose measurements > 4.1 mmol/l were offered a 3-h 50-g OGTT. OGTT was abnormal if more than two of seven values during the test exceeded mean 3 SDs for a reference group of normal weight nonpregnant women without family history of diabetes (Until September 1982 venous plasma used for OGTL ofter them capillory whole blood	168/128	3410 (530)/ 3474 (481)	273 (247–284)/ 280 (253–298)	18–27 years after delivery	Glucose (mmol/l)

ible 1. (Conti	nuea)								
Study	Year	Study design	Country	Definition of GDM	Exposed/ nonexposed (n=)	Birthweight cases/control (g)	Gestational age cases/control (weeks)	Follow-up (years)	Outcome measure considered
Pirkola et al. ¹⁷	2008	Cohort study	Finland	Risk factors for diagnosis: glycosuria, prior gestational diabetes, suspected fetal macrosomia (birthweight 4500 g) in the current pregnancy, previous delivery of a macrosomic infant, BMI 25 kg/m ² and age more than 40 years. A history of prior gestational diabetes or glycosuria in the current pregnancy warrants an earlier OGTT. Diagnosed with 2-h, 75-g OGTT usually at 26–28 week of gestation: one or more abnormal OGTT values (cutoff values for venous blood samples are 4.8 mmol/l at 0 min, 10.0 mmol/l at 60 min, and 8.7 mmol/l at 120 min)	22/T1D: 16, control: 25	3.708 (3.538-3.886)/ T1D: 3.818 (3.482- 4.185), Control: 3.666 (3.452-3.893)	39.2 (38.7-39.7)/ T1D: 37.5 (36.8-38.2), 39.3 (38.8-39.8)	Mean 4.9 years after delivery	SBP and DBP (mmHg) Cord blood insulin (pmo
Tam et al. ²¹	2008	Longitudinal cohort study	Hong Kong	DM defined based on <i>WHO criteria</i> : Gestational IGT (i.e., fasting PG level of 7.0 mmol/l and 2-h PG level of 7.8–11.1 mmol/l, and GDM (i.e., fasting PG level of 7.0 mmol/l and/or 2-h PG level of 11.1 mmol/l). WHO criteria states that "pregnant women who meet WHO criteria for diabetes mellitus of IGT are classified as having GDM"	63/101	3292 ± 52/3245 ± 45	39.6 ± 0.2/ 39.5 ± 0.2	Average 7–8 years after delivery	BMI (kg/m ²) BMI percentile SBP and DBP (mmHg) Glucose (mmol/l) Insulin (pmol/l) Lipids (mmol/l)
Lee et al. ¹⁹	2007	Cohort study	South Korea	National Diabetes Data Group: 50-g glucose challenge test was performed; if the 1-h plasma glucose value was 130 mg/dl (7.2 mmol/l), a 3-h OGTT was performed during 28–32 weeks of gestation	202/96	3344.6 ± 585.0/ 3286.6 ± 612.4	38.6 ± 1.5/ 38.7 ± 2.2	Average 4 years after delivery	BMI (kg/m²) SBP and DBP (mmHg) Lipids (mmol/l) Glucose (mmol/l) Insulin (mg/ml)
Boney et al. ⁸⁷	2005	Longitudinal cohort	USA	National Diabetes Data Group criteria described by Carpenter and Coustain	LGA: 42/43 AGA: 52/42	LGA: 4107 (386)/ 4132 (285) AGA: 3316 (310)/ 3370 (282)	Not reported	11 years after birth	BMI percentile BP >90th percentile (BP is either SBP or DBP) (mmHg) Glucose (mmol/l) Lipids (mmol/l)
Jaber et al. ³⁴	2006	Cohort study	Saudi Arabia	Venous fasting glucose concentration of >5.5 mol/l or of >8.0 mmol/l 2 h after a 75-g oral glucose load or both	26/Control (<i>n</i> = 32), FDM (<i>n</i> = 21)	3640 ± 690/CTRL: 3.30 ± 0.59, FDM: 3.18 ± 0.86	37.38 ± 0.64/CTRL: 37.28 ± 0.73, FDM: 37.48 ± 0.60	Approximately 2 weeks after delivery	BMI (kg/m²) Glucose range (mmol/l) Insulin range (pmoL/l)
Krishnaveni et al. ³⁸	2005	Cohort study	India	<i>Carpenter and Coustan:</i> two or more plasma glucose concentrations 5.3 (fasting), 10.0 (60 min), 8.7 (120 min), and 7.8 mmol/l (180 min)	41/Control: 588, Offspring of diabetic fathers: 41	3344 ± 421/CTRL: 2973 ± 408, ODF: 2869 ± 305	39.1 ± 1.2/CTRL 39.0 ± 1.8, ODF: 39.1 ± 1.2	1 and 5 years after delivery	Fasting plasma glucose (pmol/l)
Gillman et al. ⁸⁸	2003	Prospective Cohort	USA	Self-reported questionnaire	Female (246), male (219)/ female (<i>n</i> = 7735), male (<i>n</i> = 6681)	Female: 3.55 (0.56), male 3.68 (0.61)/ female 3.44 (0.48), male 3.58 (0.51)	Not reported	Average 9–14 years after delivery	BMI percentile

Pri f									
Vohr et al. ⁴⁴	1999	Prospective observational study	USA	24- to 28-week screening, GDM diagnosis made on initial 1-h 50-g glucose screen >130 mg/dl, followed by two abnormal values in a 100-g OGTT. <i>Criteria of</i> <i>O'Sullivan et al. modified by Carpenter</i> <i>and Coustan (recent 1999):</i> fasting plasma glucose >95 mg/dl and 1-h >180 mg/dl, 2- h >155 mg/dl, and 3-h >140 mg/dl	LGA: 47/46 AGA: 59/55	LGA: 4100 ± 3800/ 4200 ± 2900 AGA: 3300 ± 300/ 3400 ± 3000	LGA: 39.4 ± 1/ 40.0 ± 1, AGA: 39.4 ± 1/ 39.7 ± 1	4–7 years after delivery	BMI (kg/m²)
Silverman et al. ^{42c}	1998	Long-term prospective cohort	USA	Unclear – from hospital records (From Silverman <i>et al.</i> ⁸⁹)	Unclear	Not reported	Not reported	14–17 years after delivery	BMI (kg/m²)
Whitaker et al. ²⁸	1998	Cohort study	USA	24- to 32-week screening, 1-h 50-g oral glucose load – glucose screening values >7.77mmol/l (140mg/dl) called back for 3-h 100-g OGTT. GDM diagnosed based on calculations <i>Carpenter and</i> <i>Coustan (recent 1998)</i>	63/Control: (257), Normal OGTT = 159, No OGTT = 45	Not reported	Not reported	5–10 years after delivery	BMI <i>z</i> -score BMI percentile
Plagemann et al. ⁵⁵	1997	Retrospective study	Germany	Diagnosed 26- to 28-week gestation by Furmann: a 50-g OGTT using the following criteria (two or more abnormal values): fasting venous blood glucose over 5.55 mmol/l, 1-h value over 8.88 mmol/l, 2-h value over 7.22 mmol/l	57/156	3500.8 ± 50.8 (117)/ 3443.5 ± 45.5 (200)	Not reported	Average 1–9 years delivery	Plasma insulin (mIU/ml)
Plagemann et al. ⁵⁴	1997	Cohort study	Germany	Diagnosed 26- to 28-week gestation by Furmann: a 50-g OGTT using the following criteria (two or more abnormal values): fasting venous blood glucose over 5.55 mmol/l, 1-h value over 8.88 mmol/l, 2-h value over 7.22 mmol/l	69/129	3460.1±50.7/ 3411.2±56.8	Not reported	Average 1–9 years after delivery	Glucose (mmol/l) Insulin (pmol/l)
Vohr et al.43	1995	Prospective cohort study	USA	Screening 24–28 weeks, GDM diagnosis made on initial 1-h 50-g glucose screen >130 mg/dl, followed by two abnormal values in a 100-g OGTT. <i>Criteria of</i> <i>O'Sullivan</i> et al. <i>modified</i> <i>by Carpenter and Coustan:</i> fasting plasma glucose >95 mg/dl and 1 h >180 mg/dl, 2 h >155 mg/dl, and 3 h >140 mg/dl	LGA: 57/74 AGA: 62/69	LGA: 4064 ± 305/ 4095 ± 267 AGA: 3301 ± 280/ 3282 ± 238	LGA: 39 ± 1/40 ± 1, AGA: 39 ± 1/39 ± 1	20 h after delivery	BMI (kg/m²)
Teng et al. ⁴⁸	2017	Longitudinal cohort	India	IADPSG criteria: 75 g OGTT and if serum glucose level was over 1 mmol/l at 0 h, or 10.0 mmol/l at 1 h, or 8.5 mmol/l at 2 h, GDM was diagnosed	123/80	Not reported	Not reported	14 years after delivery	Glucose (mmol/l) Lipids (mmol/l)

² Generation of GDM or non-GDM group.

Fig. 1. PRISMA flow diagram of study selection.

		GDM		No	n-GDN	1		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight (%)	IV, Random, 95% CI	IV, Random, 95% Cl
Buzinaro etal.10 (12-16 years of age)	102	13	23	101	11	27	3.0	1.00 [-5.74, 7.74]	
Catalano etal." (8.8 years of age)	110	11	37	108	12	52	5.7	2.00 [-2.82, 6.82]	
Chang etal. ¹² (6 years of age)	92.5	10.2	356	90.3	9.8	500	41.8	2.20 [0.84, 3.56]	
Krishnaveni etal. ¹³ (15 years of age)	110.5	8.1	26	109	8.3	165	11.0	1.50 [-1.86, 4.86]	
Patel etal.14 (15 years of age)	123.8	10.3	27	123.1	10.8	4834	8.5	0.70 [-3.20, 4.60]	
Pirkola etal." (4.9 years of age)	98	5.6	22	101	8.5	25	7.8	-3.00 [-7.07, 1.07]	
Tam etal.15 (15 years of age)	113	10	42	111	10	87	9.4	2.00 [-1.68, 5.68]	
Wright etal. ¹⁶ (3 years of age)	96	11	51	92	10	1035	12.8	4.00 [0.92, 7.08]	
Total (95% CI)			584			6725	100.0	1.75 [0.57, 2.94]	+
Heterogeneity: $T^2 = 0.40$; $\chi^2 = 8.02$, dr	= 7 (P=	0.33)	/² = 13	%					
Test for overall effect: z = 2.89 (P = 0.0	04)								-4 -2 0 2 4
									GDM Non-GDM

Fig. 2. Mean difference in systolic blood pressure (mmHg) in those exposed to GDM in utero and controls.

have 1.75 mmHg (95% CI 0.57–2.94) higher SBP compared to controls (n(total) = 7309, n(exposed to GDM) = 584; P = 0.33, $I^2 = 13\%$) (Fig. 2).^{10–17} Sensitivity analyses were not performed as no low-quality studies were included in the analysis. Of the seven studies not included in the meta-analysis,^{5,18–23} four reported a significant increase in SBP among offspring exposed to GDM compared to controls (Supplementary Table S1).^{5,18,21,22}

Diastolic blood pressure

DBP data were available from 13 studies of which 6 were included in the meta-analysis. The age at follow-up ranged between 8 and 16 years. The meta-analysis demonstrated no difference in DBP among GDM-exposed offspring and controls (MD –0.24, 95% CI –2.33 to 1.85; n(total) = 5367, n(exposed to GDM) = 177; P = 0.08, $I^2 = 50\%^{10,11,13-15}$; Supplementary Fig. S1). Sensitivity analyses were not performed as no low-quality studies were included in the analysis. Seven studies were not included in the meta-analysis,^{5,17–23} of which two reported a significantly higher DBP in GDM offspring compared to controls (Supplementary Table S1).^{21,22}

Body mass index

BMI data (i.e., BMI z-score, BMI (kg/m²), and/or BMI percentile, BMI peak, BMI SD) were available from 48 studies. BMI z-score and BMI (kg/m²) are reported in the meta-analysis, and other BMI data are reported in the nonmeta-analysis (Supplementary Table S1).

BMI *z*-score data were reported in 14 studies, of which 9 were included in the meta-analysis. The age at follow-up ranged from 3 to 15 years. Offspring exposed to GDM *in utero* showed an

Fig. 3. Mean difference in BMI z-score in those exposed to GDM in utero and controls.

increase in BMI *z*-score compared to controls (MD 0.11, 95% CI 0.02–0.20; n(total) = 31,485, n(exposed to GDM) = 1858; P = 0.14, $I^2 = 34\%)^{11,14,16,24-28}$ (Fig. 3). Five studies were not included in the meta-analysis,^{20,29–32} with two reporting significantly higher BMI *z*-scores in GDM-exposed offspring compared to controls^{29,31} (Supplementary Table S1). Sensitivity analysis showed no difference in heterogeneity when removing low-quality studies (Supplementary Table S3A).

BMI (kg/m²) data were available from 31 studies. Sixteen studies were included in the meta-analysis, with the age at follow-up ranging broadly from <48 h after birth to 25 years. Quantitative summary measures obtained through meta-analysis showed a 1.06-kg/m² increase in BMI among those exposed to GDM in utero compared to controls (95% CI 0.40-1.73; n(total) = 23,864, n(exposed to GDM) = 2154; P < 0.00001, $I^2 = 95\%$; Supplementary Fig. S2).^{10-13,15,16,24-27,33-37} Sensitivity analysis showed no difference in heterogeneity when removing low-quality studies (Supplementary Table S3B). Fifteen studies were not included in the meta-analysis,^{5,18,19,21,23,29,31,36,38-44} of which seven studies showed significantly higher BMI among offspring exposed to GDM compared to controls18,22,29,31,36,38,42 (Supplementary Table S1). Krishnaveni et al. reported a significant association between females exposed to GDM in utero compared to female controls (P < 0.001).¹⁸ One study that showed statistical significance did not report on the sample size for either GDM or control groups.42

BMI percentiles were reported in 21 studies. Of these, five reported a higher BMI within obese/overweight BMI percentiles among those exposed to GDM *in utero* compared to controls (i.e., \geq 85th percentile)^{5,29,45-47} (Supplementary Table S1).

Lipids

Studies on cord blood and serum lipids (i.e., total cholesterol, LDL, HDL, and triglycerides) were included.

Total cholesterol

Total cholesterol data were available from 12 studies (9 serum cholesterol and 3 cord blood cholesterol). Five studies on total serum cholesterol were included in the meta-analysis. The age of follow-up ranged from 8 to 16 years. There was no significant difference in total serum cholesterol between GDM and control groups (SMD -0.01, 95% CI -0.28 to 0.25; n(total) = 662, n(exposed to GDM) = 251; P = 0.07, $I^2 = 54\%$; Supplementary Fig. S3A).^{10,11,13,15,48} The four studies that were not included in the meta-analysis showed no difference in total cholesterol between those exposed to GDM and controls (Supplementary Table S1).^{5,19,21,23} Sensitivity analyses were not performed as no low-quality studies were included in the analysis.

Three studies on cord blood total cholesterol were included in the meta-analysis. Quantitative summary measures did not show a significant difference in total cord blood cholesterol between GDM and control groups (SMD -0.90, 95% CI -2.41 to 0.61; n(total) = 374, n(exposed to GDM) = 164; P < 0.00001, $I^2 = 96\%$; Supplementary Fig. S3B).^{33,49} Sensitivity analyses were not performed as no low-quality studies were included in the analysis.

LDL cholesterol

LDL cholesterol data were available from 10 studies (8 serum LDL cholesterol, 2 cord blood cholesterol).

Four studies on serum LDL cholesterol were included in the meta-analysis. The age of follow-up ranged from 8 to 16 years. There was no difference in serum LDL cholesterol between those exposed to GDM and controls (SMD -0.03, 95% CI -0.44 to 0.38; n(total) = 5129, n(exposed to GDM) = 129; P = 0.01, $I^2 = 73\%$; Supplementary Fig. S4A).^{10,11,14,15} Four studies that were not included in the meta-analysis showed no difference in LDL between GDM and control groups^{5,21,23,32} (Supplementary Table S1). Sensitivity analyses were not performed as no low-quality studies were included in the analysis.

Two studies on cord blood LDL were included in the metaanalysis. Quantitative summary measures did not show a significant difference in cord blood LDL between GDM and control groups (SMD -0.60, 95% CI -1.57 to 0.38; n(total) = 298, n(exposed to GDM) = 126; P = 0.01, $I^2 = 84\%$; Supplementary Fig. S4B).^{49,50} Sensitivity analyses were not performed as no low-quality studies were included in the analysis.

HDL cholesterol

HDL cholesterol data were available from 15 studies (12 serum HDL cholesterol, 3 cord blood HDL cholesterol).

Six studies on serum HDL cholesterol were included in the meta-analysis. The age of follow-up ranged from 8 to 16 years. Quantitative summary measures showed no significant difference in serum HDL cholesterol between those exposed to GDM and controls (SMD 0.08, 95% CI -0.07 to 0.24; n(total) = 5073, $n(\text{exposed to GDM}) = 278; P = 0.77, I^2 = 0\%$; Supplementary Fig. S5A).^{10,11,13-15,48} Sensitivity analyses were not performed as no low-quality studies were included in the analysis. Six studies were not included in the meta-analysis.^{5,18,19,21,23,32} Of these, one reported lower serum HDL cholesterol in the GDM group compared to controls (Supplementary Table S1).²¹ Three studies on cord blood HDL were included in the meta-analysis. Quantitative summary measures showed no difference in cord blood HDL between GDM and controls groups (SMD -0.13, 95% CI -0.84 to 0.59; n(total) = 374, n(exposed to GDM) = 164; P = 0.0006, $I^2 = 87\%$; Supplementary Fig. S5B).^{33,49,50} Sensitivity analyses were not performed as no low-quality studies were included in the analysis.

		GDM		N	on-GDM		St	d. Mean Difference		Std. Me	an Diffe	rence		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight (%)	IV, Random, 95% CI		IV, Rar	ndom, 9	5% CI		
Buzinaro etal. ¹⁰ (12–16 years follow-up)	5.2	0.39	23	5	0.39	27	7.8	0.50 (-0.06, 1.07)			+	8		
Catalano et al." (8.8 years follow-up)	4.9	0.3	37	4.8	0.2	52	8.6	0.40 [-0.02, 0.83]			-			
Chandler-Laney etal.51 (7-8 years follow-up) (1)	93.2	7.6282	11	92.2	7.4081	7	5.6	0.13 [-0.82, 1.07]			+			
Chandler-Laney etal.51 (7-8 years follow-up) (2)	95.1	7.5	9	94.2	7.6	16	6.3	0.12 [-0.70, 0.93]			-			
Clausen etal.56 (18-27 years follow-up)	5.5	0.9	168	5.1	0.4	128	9.5	0.55 [0.31, 0.78]			+			
Davis etal.24 (10-11 years follow-up)	89.9	6.8	47	89	6.2	163	9.1	0.14 [-0.18, 0.47]			+			
Holder etal. ²⁵ (15 years follow-up)	5.27	0.5	45	5.11	0.5	210	9.1	0.32 [-0.00, 0.64]			+			
Krishnaveni etal.13 (15 years follow-up)	5.1	0.4	26	5.1	0.5	165	8.6	0.00 [-0.41, 0.41]			+			
Patel etal.14 (15 years follow-up)	5.4	0.47	27	5.21	0.38	4834	8.8	0.50 [0.12, 0.88]			-			
Tam etal. ¹⁵ (15 years follow-up)	4.6	0.3	42	4.7	0.3	87	8.9	-0.33 [-0.70, 0.04]			-			
Teng etal.48 (14 years follow-up)	5.86	0.51	123	4.91	0.49	80	9.0	1.88 [1.55, 2.22]				-		
Wilk etal. 57 (10 years follow-up)	88	6.38	50	82	10.77	46	8.7	0.68 [0.27, 1.09]			-			
Total (95% CI)			608			5815	100.0	0.43 [0.08, 0.77]			•			
Heterogeneity: T ² = 0.31; X ² = 98.14, df = 11 (P < 0.00001); / ³	= 89%											+		_
Test for overall effect: z = 2.44 (P = 0.01)									-4	-2	0	2	4	
										GE	M Nor	1-GDM		
Footnotes														
(1) Overweight														

(2) Normal Weight

Fig. 4. Standard mean difference in fasting glucose in those exposed to GDM in utero and controls.

Triglycerides

Triglyceride data were available from 14 studies (11 serum triglycerides and 3 cord blood triglycerides). Six studies on serum triglycerides were included in the meta-analysis. The age at follow-up ranged from 7 to 16 years. Quantitative summary measures showed no difference in the level of serum triglycerides between GDM and control groups (SMD 0.50, 95% CI -0.14 to 1.14; n(total) = 5523, n(exposed to GDM) = 278; P < 0.00001, $I^2 = 93\%$; Supplementary Fig. S6A).^{10,11,13–15,48} Sensitivity analyses were not performed as no low-quality studies were included in the analysis. Five studies that were not included in the meta-analysis also showed no significant difference in serum triglycerides in GDM and control groups (Supplementary Table S1).^{5,18,19,21,23} Three studies on cord blood triglycerides were included in the meta-analysis. There was no difference in cord blood triglycerides in the GDM group compared to controls (SMD 0.02, 95% CI -0.67 to -0.71; n(total) = 374, n(exposed to GDM) = 164; P = 0.001, $I^2 = 86\%$; Supplementary Fig. S6B).^{33,49,50} Sensitivity analyses were not performed as no low-quality studies were included in the analysis.

Insulin

Data for fasting serum insulin were collected for 20 studies (16 serum insulin and 4 cord blood insulin).

Four studies on serum insulin were included in the metaanalysis. The age at follow-up ranged from 8 to 15 years. The meta-analysis showed no difference in insulin between the two groups (SMD -0.02, 95% CI -0.70 to 0.67; n(total) = 5136, n(exposed to GDM) = 131; P < 0.00001, $I^2 = 89\%$; Supplementary Fig. S7A).^{11,14,24,51} Sensitivity analyses showed no difference in heterogeneity when poor-quality studies were omitted (Supplementary Table S4)

Twelve studies were not included in the metaanalysis,^{5,13,18–21,23,34,51–55} of which five reported significantly elevated insulin levels in the GDM group compared to controls^{13,18,34,54,55} (Supplementary Table S1). Two of these studies showed a significant difference in fasting insulin between offspring exposed to pre-GDM (i.e., diabetes diagnosed before pregnancy) and GDM.^{54,55} Two studies were included in a meta-analysis on cord blood insulin; however, there was no difference between the GDM and control groups (SMD –4.74 95%, CI –14.99 to 5.51; *n*(total) = 123, *n*(exposed to GDM) = 60; *P* < 0.00001, *I*² = 99%; Supplementary Fig. S7B).^{17,49} Sensitivity analyses were not performed as no low-quality studies were included in the analysis.

Glucose

Glucose data were available from 25 studies (23 serum glucose and 2 cord blood glucose). Eleven studies on serum glucose were included in the meta-analysis, in which the age at follow-up ranged from 8 to 27 years. Based on quantitative summary measures, the meta-analysis showed an increase in glucose in offspring exposed to GDM in utero compared to controls, demonstrating a 0.43 SMD (95% CI 0.08–0.77; n(total) = 6423 n(exposed to GDM) = 608; $P = 0.00001, I^2 = 89\%$ (Fig. 4).^{10,11,13-15,24,25,48,51,56,57} Sensitivity analysis showed no difference in heterogeneity when removing low-quality studies (Supplementary Table S5). Twelve studies were not included in the meta-analysis.^{5,18-21,23,32,34,38,44,52} One study reported significantly higher serum glucose in the GDM group than controls.²⁰ One study reported a significantly lower serum glucose value in those exposed to GDM compared to controls.³⁴ Two studies assessed cord blood glucose with both newborn cohorts;^{33,49} however, no difference was seen between the GDM and non-GDM groups (MD -2.69, 95% CI -5.80 to 0.42; n(total) = 346, n(exposed to GDM) = 149; P = 0.19, $I^2 = 42\%$; Supplementary Fig. S8).^{33,49} Sensitivity analyses were not performed as no low-quality studies were included in the analysis.

Discussion

This systematic review aimed to assess the prevalence of conventional cardiovascular risk factors in those exposed to GDM in utero compared to those not exposed to GDM. There is an established link between pregnancy complications and vascular outcomes such as elevated markers of inflammation and impaired fetal aortic intimal media thickness (aIMT).^{58,59} Many reviews on GDM focus on cardiovascular endpoints including myocardial infarction and coronary heart disease. Identifying risk factors for CVD is vital in planning screening strategies to identify those at risk of future CVD with the aim of targeting preventive interventions. Hence, this review is a comprehensive synthesis of evidence from published studies comparing the main conventional cardiovascular risk factors in those born after pregnancies complicated by GDM compared to controls and includes outcomes that have not been recently reviewed in the literature such as serum and cord blood lipids.

Our meta-analysis showed that offspring exposed to GDM *in utero* have 1.75 mmHg higher SBP than controls (95% CI 0.57–2.94, n = 7309, eight studies). Aceti *et al.* showed a similar association for offspring of GDM pregnancies (1.39 mmHg, 95% CI 0.00–2.77); 10 studies, P = 0.05).⁶ They also showed a smaller,

nonsignificant increase in DBP for GDM offspring (0.75 mmHg, 95% CI -0.47-1.97; nine studies, P = 0.23).⁶

This meta-analysis primarily consists of adolescent cohorts (i.e., 10–19 years) with one 3-year-old cohort. Therefore, the existing literature is not sufficient to show the trend in blood pressure throughout childhood and adolescence. These trends have been previously reported in a few large cohort studies. Krishnaveni *et al.* demonstrated that SBP remains elevated in those exposed to GDM compared to unexposed controls throughout ages 5, 9.5, and 13.5 years.^{13,18,38} A similar association was seen in another cohort at ages 8 and 15.^{15,21} Therefore, it is important to assess childhood cohorts to affirm any trends seen in long-term cohort studies.

Blood pressure that is elevated in childhood and adolescence is predictive of adult hypertension.⁶⁰ Raitakari et al. found a positive correlation between SBP at 12-16 years with carotid artery intima medial thickness (C-IMT), which is a predictive factor of future CVD.⁶¹ The association was weaker in males at 3-9 years age, but not among females. In a study by Oikonen et al., two abnormal child or youth blood pressure observations were shown to predict risk for hypertension in adulthood.⁶² While the effect size in our meta-analysis is small and blood pressure for all studies is generally within normal reference range, it is known that even a 2-mmHg increase in SBP is associated with 10% higher mortality from stroke, and 7% higher mortality from ischemic heart disease in middle age.63 Therefore, offspring exposed to GDM may benefit from frequent blood pressure monitoring throughout childhood and adolescence. Dietary interventions during gestation, such as implication of a low glycemic index (GI) diet, may benefit offspring and reduce the risk of high blood pressure. It has been demonstrated that children at 12 months old born to mothers at risk of GDM with a low GI diet have significantly thinner aIMT than those children whose mothers had a standard high fiber diet.⁶⁴

Among 31,485 participants, it was shown that BMI *z*-score is marginally higher in those exposed to GDM offspring compared to controls (MD 0.11, 95% CI 0.02–0.20, n = 31,485, nine studies). We also observed a higher BMI in those exposed to GDM compared to controls (Supplementary Fig. S2); however, BMI is not an accurate predictor of childhood obesity. As an indicator of adiposity, BMI varies greatly based on fat and muscle mass; hence, it may be accurate for fatter children but not those who are lean.⁶⁵ The findings of this meta-analysis on BMI *z*-scores are consistent with the findings reported in the review by Kawasaki *et al.* (pooled MD 0.14, 95% CI 0.04–0.24, seven studies).⁶⁶

Higher BMI in youth is associated with dyslipidemia, hypertension, and reduced insulin sensitivity.⁶⁷ Jago et al. showed that a change in BMI z-score at ages 11-14 was associated in a change in cardiovascular risk factors including an increase in SBP and DBP, HDL-C, LDL-C, and triglycerides at the same age.⁶⁷ The results of this meta-analysis support previous findings of higher BMI in those exposed to GDM in utero compared to controls.^{5,24,45} GDM is associated with newborn fat mass, indicative of the intrauterine environment in the final trimester of pregnancy.^{68,69} Higher birthweight is associated with markers of subclinical atherosclerosis such as mean carotid IMT.⁷⁰ Therefore, those who are exposed to GDM in utero appear to have risk factors for CVD very early in life. We could not assess the age distribution in very young children as majority of published studies were in adolescence. Hence, more studies among young children are required to support the association between gestational diabetes and increasing BMI z-score in offspring.

Our meta-analysis demonstrated that those exposed to GDM *in utero* have marginally higher fasting blood glucose levels (SMD

0.43, 95% CI 0.08–0.77, n = 6423, 11 studies), but not fasting insulin compared to controls. Kawasaki *et al.* showed no difference in fasting plasma glucose among 7–10 and 15 year olds exposed to GDM compared to controls.⁶⁶ Plasma glucose was significantly higher at age 20 years among those exposed to GDM compared to controls (MD 0.4 mmol/l, 95% CI 0.25–0.55, seven studies).⁶⁶ Our meta-analysis showed a similar association in predominantly childhood–adolescent cohorts, with one cohort during adulthood. We can support an association between exposure to GDM *in utero* and impaired glucose tolerance in offspring; however, as the effect size is minimal, further studies are required to support this association.

Abnormal plasma glucose is a requisite for prediabetes, and if untreated and coupled with increasing obesity may lead to early onset T2DM, which progresses at a faster rate in children and adolescence than in adults.⁷¹ Adolescents diagnosed with T2DM are predicted to lose 15 years from their life expectancy compared to those without T2DM.⁷² Hence, frequent fasting blood glucose monitoring in those exposed to GDM *in utero* may reduce the risk of T2DM in the future. Also, interventions during pregnancy may be beneficial as evidenced by studies showing that infants born to mothers with diet or insulin controlled GDM have lower fasting blood glucose than controls.³⁴

We acknowledge some limitations of our analyses. Both GDM and CVD are multifactorial diseases, influenced by genetic and environmental factors. Smoking during pregnancy is shown to have significant effects on childhood adiposity and elevated blood pressure.^{73,74} High prepregnancy BMI is associated with elevated SBP and DBP in offspring.⁷⁵ GDM is shown to cluster in families, and variants of different genes are associated with increased risk of GDM.⁷⁶ We could not adjust for such important covariates due to limitations in the data that were available. We were unable to examine female and male subgroups due to lack of power; however, it may be of interest for future studies to consider this as Li *et al.* showed that male offspring of GDM pregnancy had higher BMI than male controls and an increased risk of obesity, while there was no significant association in the cohort of females exposed to GDM compared to female controls.³⁷

We did not identify any studies that looked at microvascular function in offspring of GDM. West *et al.* found that offspring of diabetic pregnancies had increased levels of circulating cellular adhesion molecules such as E-selectin and VCAM1, even when adjusted for maternal prepregnancy BMI.⁷⁷ Therefore, further studies on this topic are required.

Most of the studies that we assessed in the meta-analysis are follow-up at adolescence, there were few studies that conducted follow-up during early childhood as well as in adulthood, therefore, we are unable to show age distributions in outcomes assessed.

Observational studies may be subject to publication bias, although visual analysis of funnel plots for BMI and glucose showed a low chance of publication bias (Supplementary Fig. S9). However, these outcomes showed high heterogeneity based on I^2 , and hence need to be interpreted with caution. We performed sensitivity analysis for relevant outcomes; however, we observed no difference in heterogeneity for the outcomes assessed (Supplementary Tables S3–S5).

Conclusion

Offspring exposed to GDM *in utero* demonstrate risk factors for CVD in childhood and adolescence, including elevated SBP, BMI *z*-score, and fasting plasma glucose that are evident from early life. These outcomes at a young age, if not monitored, can lead to

adverse vascular and metabolic health parameters resulting in CVD in adulthood. Regular blood pressure monitoring and weight control from a young age may benefit offspring exposed to GDM. Further long-term cohort studies also need to be established, which can adjust for important covariates and allow for affirmation of effect sizes.

Supplementary Material. To view supplementary material for this article, please visit https://doi.org/10.1017/S2040174419000850.

Acknowledgements. None.

Financial Support. Supported by the Faculty of Health Sciences Divisional Scholarship (MMP), NHMRC Australian Public Health and Health Services Fellowship (APP1141382) (ZSL), Lloyd Cox Professorial Research Fellowship (CTR), and NHMRC Peter Doherty Bio Medical Postdoctoral Fellowship (APP1090778).

Conflict of Interest. None.

References

- Andraweera PH, Dekker GA, Arstall M, Bianco-Miotto T, Roberts CT. Complications of pregnancy and future cardiovascular risk. *Encycl Cardiovasc Res Med.* 2018; 1, 643–650.
- 2. Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. *Lancet* 2009; 373, 1773–1779.
- 3. Federation ID. *IDF Diabetes Atlas*, 2017. International Diabetes Federation, Brussels, Belgium.
- Metzger BE, Lowe LP, Dyer AR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008; 358: 1991–2002.
- 5. Tam WH, Ma RCW, Ozaki R, *et al. In utero* exposure to maternal hyperglycemia increases childhood cardiometabolic risk in offspring. *Diabetes Care* 2017; 40, 679–686.
- Aceti A, Santhakumaran S, Logan KM, *et al.* The diabetic pregnancy and offspring blood pressure in childhood: a systematic review and meta-analysis. *Diabetologia* 2012; 55, 3114–3127.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009; 6, e1000097.
- 8. Drahota ABE. RevMan Calculator. Cochrane Handbook, Part 2. The Cochrane Collaboration.
- 9. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M. *Newcastle-Ottawa Quality Assessment Scale*, 2013. Ottawa Hospital Research Institute, Canada.
- Buzinaro EF, Berchieri CB, Haddad AL, Padovani CR, Pimenta Wde P. Overweight in adolescent offspring of women with hyperglycemia during pregnancy. *Arq Bras Endocrinol Metabol.* 2008; 52, 85–92.
- Catalano PM, Farrell K, Thomas A, et al. Perinatal risk factors for childhood obesity and metabolic dysregulation. Am J Clin Nutr. 2009; 90, 1303–1313.
- 12. Chang Y, Chen X, Zhang ZK. Intrauterine exposure to maternal diabetes is associated with adiposity in children at 6 years of age in China. *Biomed Environ Sci.* 2015; 28, 140–142.
- Krishnaveni GV, Veena SR, Jones A, *et al.* Exposure to maternal gestational diabetes is associated with higher cardiovascular responses to stress in adolescent Indians. *J Clin Endocrinol Metab.* 2015; 100, 986–993.
- 14. Patel S, Fraser A, Smith GD, *et al.* Associations of gestational diabetes, existing diabetes, and glycosuria with offspring obesity and cardiometabolic outcomes. *Diabetes Care* 2012; 35, 63–71.
- Tam WH, Ma RCW, Yang X, *et al.* Glucose intolerance and cardiometabolic risk in adolescents exposed to maternal gestational diabetes: a 15-year follow-up study. *Diabetes Care* 2010; 33, 1382–1384.
- Wright CS, Rifas-Shiman SL, Rich-Edwards JW, Taveras EM, Gillman MW, Oken E. Intrauterine exposure to gestational diabetes, child adiposity, and blood pressure. *Am J Hypertens*. 2009; 22, 215–220.

- 17. Pirkola J, Vaarasmaki M, Leinonen E, *et al.* Maternal type 1 and gestational diabetes: postnatal differences in insulin secretion in offspring at preschool age. *Pediatr Diabetes* 2008; 9, 583–589.
- Krishnaveni GV, Veena SR, Hill JC, Kehoe S, Karat SC, Fall CH. Intrauterine exposure to maternal diabetes is associated with higher adiposity and insulin resistance and clustering of cardiovascular risk markers in Indian children. *Diabetes Care* 2010; 33, 402–404.
- Lee H, Jang HC, Park HK, Cho NH. Early manifestation of cardiovascular disease risk factors in offspring of mothers with previous history of gestational diabetes mellitus. *Diabetes Res Clin Pract.* 2007; 78, 238–245.
- Page KA, Romero A, Enriquez F, Xiang AH, Buchanan TA. Increased fasting glucose levels in children exposed to gestational diabetes *in utero*. *Diabetes* 2013; 62, A364.
- 21. Tam WH, Ma RCW, Yang X, *et al.* Glucose intolerance and cardiometabolic risk in children exposed to maternal gestational diabetes mellitus *in utero. Pediatrics* 2008; 122, 1229–1234.
- 22. Tsadok MA, Friedlander Y, Paltiel O, *et al.* Obesity and blood pressure in 17-year-old offspring of mothers with gestational diabetes: insights from the Jerusalem Perinatal Study. *Exp Diabetes Res.* 2011; 2011, 906154.
- Vääräsmäki M, Pouta A, Elliot P, et al. Adolescent manifestations of metabolic syndrome among children born to women with gestational diabetes in a general-population birth cohort. Am J Epidemiol. 2009; 169, 1209–1215.
- 24. Davis JN, Gunderson EP, Gyllenhammer LE, Goran MI. Impact of gestational diabetes mellitus on pubertal changes in adiposity and metabolic profiles in Latino offspring. *J Pediatr.* 2013; 162, 741–745.
- Holder T, Giannini C, Santoro N, *et al.* A low disposition index in adolescent offspring of mothers with gestational diabetes: a risk marker for the development of impaired glucose tolerance in youth. *Diabetologia* 2014; 57, 2413–2420.
- Kearney M, Perron J, Marc I, Weisnagel JS, Tchernof A, Robitaille J. Association of prenatal exposure to gestational diabetes with offspring body composition and regional body-fat distribution. *Diabetes* 2017; 66, A368.
- 27. Page KA, Romero A, Buchanan TA, Xiang AH. Gestational diabetes mellitus, maternal obesity, and adiposity in offspring. *J Pediatr.* 2014; 164, 807–810.
- 28. Whitaker RC, Pepe MS, Seidel KD, Wright JA, Knopp RH. Gestational diabetes and the risk of offspring obesity. *Pediatrics* 1998; 101, E9.
- Baptiste-Roberts K, Nicholson W, Wang N-Y, Brancati F. Gestational diabetes and subsequent growth patterns of offspring: The National Collaborative Perinatal Project . . . [corrected] [published erratum appears in MATERN CHILD HEALTH J 2012; 16(1):266]. *Matern Child Health* J. 2012; 16, 125–132.
- 30. Lawlor DA, Fraser A, Lindsay RS, *et al.* Association of existing diabetes, gestational diabetes and glycosuria in pregnancy with macrosomia and offspring body mass index, waist and fat mass in later childhood: findings from a prospective pregnancy cohort. *Diabetologia* 2010; 53, 89–97.
- Page KA, Romero A, Enriquez I, Chirikian V, Buchanan TA, Xiang A. Increased central adiposity in hispanic children exposed to gestational diabetes *in utero*. *Diabetes* 2012; 61, A517.
- Retnakaran R, Ye C, Hanley A, *et al.* Effect of maternal gestational diabetes on the cardiovascular risk factor profile of infants at 1 year of age. *Nutr Metab Cardiovasc Dis.* 2013; 23, 1175–1181.
- Eslamian L, Akbari S, Marsoosi V, Jamal A. Association between fetal overgrowth and metabolic parameters in cord blood of newborns of women with GDM. *Minerva Med.* 2013; 104, 317–324.
- 34. Jaber SM. Metabolic hormones profile in 2 weeks old healthy infants of diabetic mothers. *Saudi Med J.* 2006; 27, 1338–1345.
- König AB, Junginger S, Reusch J, Louwen F, Badenhoop K. Gestational diabetes outcome in a single center study: higher BMI in children after six months. *Horm Metab Res.* 2014; 46, 804–809.
- Zhao P, Liu E, Qiao Y, *et al.* Maternal gestational diabetes and childhood obesity at age 9–11: results of a multinational study. *Diabetologia* 2016; 59, 2339–2348.
- Li S, Zhu Y, Yeung E, et al. Offspring risk of obesity in childhood, adolescence and adulthood in relation to gestational diabetes mellitus: a sex-specific association. Int J Epidemiol. 2017; 46, 1533–1541.

- Krishnaveni GV, Hill JC, Leary SD, et al. Anthropometry, glucose tolerance, and insulin concentrations in Indian children: relationships to maternal glucose and insulin concentrations during pregnancy. *Diabetes Care* 2005; 28, 2919–2925.
- Nehring I, Chmitorz A, Reulen H, von Kries R, Ensenauer R. Gestational diabetes predicts the risk of childhood overweight and abdominal circumference independent of maternal obesity. *Diabet Med.* 2013; 30, 1449–1456.
- Nielsen GL, Dethlefsen C, Lundbye-Christensen S, Pedersen JF, Molsted-Pedersen L, Gillman MW. Adiposity in 277 young adult male offspring of women with diabetes compared with controls: a Danish population-based cohort study. *Acta Obstet Gynecol Scand.* 2012; 91, 838–843.
- 41. Pirkola J, Pouta A, Bloigu A, *et al.* Risks of overweight and abdominal obesity at age 16 years associated with prenatal exposures to maternal prepregnancy overweight and gestational diabetes mellitus. *Diabetes Care* 2010; 33, 1115–1121.
- Silverman BL, Rizzo TA, Cho NH, Metzger BE. Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. *Diabetes Care* 1998; 21 (Suppl 2) B142–B149.
- Vohr BR, McGarvey ST, Garcia Coll C. Effects of maternal gestational diabetes and adiposity on neonatal adiposity and blood pressure. *Diabetes Care* 1995; 18, 467–475.
- Vohr BR, McGarvey ST, Tucker R. Effects of maternal gestational diabetes on offspring adiposity at 4–7 years of age. *Diabetes Care* 1999; 22: 1284–1291.
- 45. Farfel A, Rabinovitz R, Kampino G, et al. Children of mothers with pregestational and gestational diabetes tend to be overweight at age 17. *Horm Res Paediatr.* 2013; 80, 414.
- Rutkowska J, Bandurska-Stankiewicz E, Wiatr-Bykowska D, Myszka-Podgórska K, Kuglarz E, Matuszewski W. The growth patterns in children born to mothers with gestational diabetes mellitus. *Diabetologia* 2015; 58, S488.
- 47. Le Moullec N, Fianu A, Maillard O, *et al.* Sexual dimorphism in the association between gestational diabetes mellitus and overweight in offspring at 5–7 years: the OBEGEST cohort study. *PLoS One* 2018; 13, e0195531.
- Teng ZJ, Xia MJ, Qu CH, Yu HX. Long-term risk of metabolic disorders in gestational diabetes mellitus mothers and offspring. *Biomed Res (India)* 2017; 28, 4466–4470.
- López Morales CM, Brito Zurita OR, González Heredia R, Cruz López M, Méndez Padrón A, Matute Briseño JA. Placental atherosclerosis and markers of endothelial dysfunction in infants born to mothers with gestational diabetes. *Medicina Clinica*. 2016; 147, 95–100.
- Miettinen HE, Rono K, Koivusalo SB, Eriksson JG, Gylling H. Effect of gestational diabetes mellitus on newborn cholesterol metabolism. *Atherosclerosis* 2018; 275, 346–351.
- Chandler-Laney PC, Bush NC, Granger WM, Rouse DJ, Mancuso MS, Gower BA. Overweight status and intrauterine exposure to gestational diabetes are associated with children's metabolic health. *Pediatr Obes*. 2012; 7, 44–52.
- Borgoño CA, Hamilton JK, Ye C, *et al.* Determinants of insulin resistance in infants at age 1 year: impact of gestational diabetes mellitus. *Diabetes Care* 2012; 35, 1795–1797.
- Bozkurt L, Göbl CS, Rami-Merhar B, *et al.* The cross-link between adipokines, insulin resistance and obesity in offspring of diabetic pregnancies. *Horm Res Paediatr.* 2016; 86, 300–308.
- Plagemann A, Harder T, Kohlhoff R, Rohde W, Dorner G. Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. *Int J Obes Relat Metab Disord.* 1997; 21, 451–456.
- Plagemann A, Harder T, Kohlhoff R, Rohde W, Dorner G. Glucose tolerance and insulin secretion in children of mothers with pregestational IDDM or gestational diabetes. *Diabetologia* 1997; 40, 1094–1100.
- 56. Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. *Diabetes Care* 2008; 31, 340–346.

- 57. Wilk M, Horodnicka-Jozwa A, Moleda P, et al. Assessment of selected carbohydrate parameters in children exposed to gestational diabetes *in utero*. *Neuro Endocrinol Lett.* 2015; 36, 504–510.
- Visentin S, Londero AP, Bellamio B, et al. Fetal endothelial remodeling in late-onset gestational hypertension. Am J Hypertens. 2016; 29, 273–279.
- 59. Visentin S, Lapolla A, Londero AP, et al. Adiponectin levels are reduced while markers of systemic inflammation and aortic remodelling are increased in intrauterine growth restricted mother-child couple. Biomed Res Int. 2014; 2014, 401595.
- Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. *Circulation* 2008; 117, 3171–3180.
- 61. Raitakari OT, Juonala M, Kähönen M, *et al.* Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the cardiovascular risk in Young Finns Study. *JAMA* 2003; 290, 2277–2283.
- Oikonen M, Nuotio J, Magnussen CG, et al. Repeated blood pressure measurements in childhood in prediction of hypertension in adulthood. *Hypertension* 2016; 67, 41–47.
- 63. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. *Lancet* 2002; 360, 1903–1913.
- 64. Kizirian NV, Kong Y, Muirhead R, *et al.* Effects of a low-glycemic index diet during pregnancy on offspring growth, body composition, and vascular health: a pilot randomized controlled trial. *Am J Clin Nutr.* 2016; 103, 1073–1082.
- Freedman DS, Sherry B. The validity of BMI as an indicator of body fatness and risk among children. *Pediatrics* 2009; 124, Suppl 1, S23–34.
- Kawasaki M, Arata N, Miyazaki C, et al. Obesity and abnormal glucose tolerance in offspring of diabetic mothers: a systematic review and meta-analysis. PLoS One 2018; 13, e0190676.
- Jago R, Mendoza JA, Chen T, Baranowski T. Longitudinal associations between BMI, waist circumference, and cardiometabolic risk in US youth: monitoring implications. *Obesity (Silver Spring, Md)* 2013; 21, E271–E279.
- Dissanayake HU, Anderson L, McMullan RL, *et al.* Influence of maternal and placental factors on newborn body composition. *J Paediatr Child Health* 2019. doi: 10.1111/jpc.14565. [Epub ahead of print].
- Enzi G, Inelmen EM, Caretta F, Villani F, Zanardo V, DeBiasi F. Development of adipose tissue in newborns of gestational-diabetic and insulin-dependent diabetic mothers. *Diabetes* 1980; 29, 100–104.
- Skilton MR, Siitonen N, Wurtz P, et al. High birth weight is associated with obesity and increased carotid wall thickness in young adults: the cardiovascular risk in young Finns study. Arterioscler Thromb Vasc Biol. 2014; 34, 1064–1068.
- D'Adamo E, Caprio S. Type 2 diabetes in youth: epidemiology and pathophysiology. *Diabetes Care* 2011; 34, Suppl 2, S161–S165.
- Rhodes ET, Prosser LA, Hoerger TJ, Lieu T, Ludwig DS, Laffel LM. Estimated morbidity and mortality in adolescents and young adults diagnosed with type 2 diabetes mellitus. (Report) (clinical report). *Diabetic Med.* 2012; 29, 453.
- Li L, Peters H, Gama A, et al. Maternal smoking in pregnancy association with childhood adiposity and blood pressure. *Pediatr Obes.* 2016; 11, 202–209.
- Riedel C, Fenske N, Muller MJ, et al. Differences in BMI z-scores between offspring of smoking and nonsmoking mothers: a longitudinal study of German children from birth through 14 years of age. Environ Health Perspect. 2014; 122, 761–767.
- 75. Gademan MG, van Eijsden M, Roseboom TJ, van der Post JA, Stronks K, Vrijkotte TG. Maternal prepregnancy body mass index and their children's blood pressure and resting cardiac autonomic balance at age 5 to 6 years. *Hypertension* 2013; 62, 641–647.
- Shaat N, Groop L. Genetics of gestational diabetes mellitus. Curr Med Chem. 2007; 14, 569–83.

- West NA, Crume TL, Maligie MA, Dabelea D. Cardiovascular risk factors in children exposed to maternal diabetes *in utero*. *Diabetologia* 2011; 54, 504–547.
- 78. Wang J, Pan L, Liu E, *et al.* Gestational diabetes and offspring's growth from birth to 6 years old. *Int J Obes.* 2019; 43, 663–672.
- 79. Kaseva N, Vaarasmaki M, Matinolli HM, *et al.* Pre-pregnancy overweight or obesity and gestational diabetes as predictors of body composition in offspring twenty years later: evidence from two birth cohort studies. *Int J Obes (Lond).* 2018; 42, 872–879.
- Hammoud NM, De Valk HW, Biesma DH, Visser GHA. Intrauterine adiposity and BMI in 4- to 5-year-old offspring from diabetic pregnancies. *Neonatology*. 2017; 111, 177–181.
- Hakanen T, Saha MT, Salo MK, *et al.* Mothers with gestational diabetes are more likely to give birth to children who experience early weight problems. *Acta Paediatr Int J Paediatr.* 2016; 105, 1166–1172.
- Page KA, Wang X, Romero A, Buchanan TA, Xiang AH. Insulin sensitivity and β-cell function are reduced in children exposed to gestational diabetes in utero. *Diabetes*. 2015; 64, A94.
- Zhao YL, Ma RM, Lao TT, *et al.* Maternal gestational diabetes mellitus and overweight and obesity in offspring: a study in Chinese children. *J Dev Orig Health Dis.* 2015; 6, 479–484.

- Pham MT, Brubaker K, Pruett K, Caughey AB. Risk of childhood obesity in the toddler offspring of mothers with gestational diabetes. *Obstet Gynecol.* 2013; 121, 976–982.
- 85. Jahan S, Ahmed CM, Zinnat R, et al. Influence of maternal diabetes on serum leptinemic and insulinemic status of the offspring: a case study of selected patients in a tertiary care hospital in Bangladesh. *Diabetes Metab Syndr.* 2011; 5, 33–37.
- Boerschmann H, Pfluger M, Henneberger L, Ziegler AG, Hummel S. Prevalence and predictors of overweight and insulin resistance in offspring of mothers with gestational diabetes mellitus. *Diabetes Care.* 2010; 33, 1845–1849.
- Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. *Pediatrics*. 2005; 115, e290–e296.
- Gillman MW, Rifas-Shiman S, Berkey CS, Field AE, Colditz GA. Maternal gestational diabetes, birth weight, and adolescent obesity. *Pediatrics*. 2003; 111, e221–e226.
- Silverman BL, Metzger BE, Cho NH, Loeb CA. Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. *Diabetes Care*. 1995; 18, 611–617.

Appendix 3: Publication for Author response: Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus *in utero:* a systematic review and meta-analysis

Journal of Developmental Origins of Health and Disease

www.cambridge.org/doh

Commentary

Cite this article: Pathirana MM, Lassi ZS, Roberts CT, and Andraweera PH (2020) Author response: cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: systematic review and meta-analysis. *Journal of Developmental Origins of Health and Disease* **11**: 244–245. doi: 10.1017/S2040174420000185

Received: 26 February 2020 Accepted: 28 February 2020

Address for correspondence:

Prabha Andraweera, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, South Australia, Adelaide 5005, Australia. Email: prabha.andraweera@adelaide.edu.au

© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2020.

Author response: cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: systematic review and meta-analysis

Maleesa M. Pathirana, Zohra S. Lassi, Claire T. Roberts and

Prabha H. Andraweera 💿

Adelaide Medical School, The Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia

Abstract

This commentary is an author response to Lu and Wang, regarding the manuscript entitled 'Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: Systematic review and meta-analysis'. We address their concern regarding duplication of studies in the meta-analysis and the quality of included studies.

Dear editor,

We thank Dr. Lu and Dr. Wang for their comments regarding our systematic review and meta-analysis on cardiovascular disease in offspring exposed to gestational diabetes mellitus *in utero*.¹ Their comments highlight important considerations regarding study quality in systematic review and meta-analyses and statistical methods put in place to address low-quality studies.

Although we have already specified our methodology regarding including publications of multiple cohorts in the meta-analysis, we appreciate the opportunity to provide further clarity. There has been the understanding that the cohort publications published by Krishnaveni *et al.*, Tam et al. and Vohr et al., which we have included in our systematic review, have been doubly reported in the meta-analysis.²⁻⁹ In our methods under the 'included studies' header, it states that 'when the same cohort was reported in multiple publications at different ages, the study reporting on the older age group was included in the meta-analysis'. We only used the publications of Krishnaveni *et al.*⁴ and Tam *et al.*⁷ in our meta-analysis as these studies have data on the most recent follow-up (i.e., 15 years of age for both cohorts).^{3,7} The publications that have been mentioned in the previous commentary are only reported as supplementary data (Supplementary Table 1) but not in the meta-analyses. The Vohr et al. studies are also only reported in the supplementary data. We included 59 studies from 54 cohorts in our systematic review, and only 25 studies were used in the meta-analysis (Fig. 1). The reasons for not including 34 studies in the meta-analysis include but are not limited to: (1) reporting the cohort at an earlier follow-up and thus not being the most recent publication with the oldest follow-up age (in the case of Krishnaveni and Tam studies); (2) some studies not reporting a control group value (in the case of Vohr *et al.*⁹); (3) studies only including adjusted mean values that we could not incorporate in a meta-analysis due to limitation in the number of studies; (4) being unable to include median and interquartile range values in the analysis. While we endeavoured to contact authors for unadjusted and unknown values in the meta-analysis, we received a 44% response rate. It would be counter-intuitive to exclude these studies all together after trying to contact the authors for appropriate data; it seemed best to report these data in a supplementary table if it was not suitable for the analysis, thereby providing readers a more comprehensive review of the literature. Furthermore, in our protocol, we were interested in subgroup analyses stratified by childhood, adolescence and adulthood to determine if any of the cardiovascular risk factors appeared at certain points during the lifecourse in offspring exposed to Gestational diabetes mellitus in utero. However, we did not have sufficient number of studies to complete any subgroup analyses. We have addressed this in our discussion.

The second point mentioned by Lu and Wang regarding using only high-quality studies in a meta-analysis is an important one to address. While we have included studies of varying study quality, we must emphasise that our methods address how we handle low-quality studies. All 59 included studies have been verified by two authors and underwent quality assessment using the Newcastle–Ottawa Scale (NOS), which is a recommended quality assessment tool used for observational studies. The NOS broadly assesses study quality, including study selection, definition and comparability of cases and controls, assessment and reporting of outcome. We only found nine studies of low quality. We performed sensitivity analyses to omit all

low-quality studies from the meta-analysis, thereby assessing whether these studies would have influenced the effect size of the outcomes. Performing a quality assessment of studies and performing sensitivity analyses are common protocols for many meta-analyses.^{10,11} Sensitivity analyses were done for only four outcomes, as these were the only outcomes that included lowquality studies. Our sensitivity analysis tables reported as supplementary data show that there was no significant difference between the effect estimates when removing the low-quality studies, based on I^2 and chi-square value. Therefore, the effect size of our metaanalysis is unaffected by these low-quality studies. Henceforth, the heterogeneity in these analyses needs to be explored in other avenues, including through visual analysis of funnel plots for heterogeneity (which in our analysis were all standard), through performing analyses with values adjusted for important covariates and subgroup analysis (both actions that we were unable to do).

Including all relevant studies and reporting them allow for an extensive scope of the literature, and it is important to assess and report which of this literature is high, moderate and low quality to ensure that clinical decision-making is based on the best-quality evidence.

References

 Pathirana MM, Lassi ZS, Roberts CT, Andraweera PH. Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: systematic review and meta-analysis. J Dev Origins Health Dis. 2020, 1–18. doi:10.1017/s2040174419000850. 245

- Krishnaveni GV, Hill JC, Leary SD, *et al.* Anthropometry, glucose tolerance, and insulin concentrations in Indian children: relationships to maternal glucose and insulin concentrations during pregnancy. *Diabetes Care*. 2005; 28(12), 2919–2925.
- Krishnaveni GV, Veena SR, Hill JC, Kehoe S, Karat SC, Fall CH. Intrauterine exposure to maternal diabetes is associated with higher adiposity and insulin resistance and clustering of cardiovascular risk markers in Indian children. *Diabetes Care.* 2010; 33(2), 402–404.
- Krishnaveni GV, Veena SR, Jones A, et al. Exposure to maternal gestational diabetes is associated with higher cardiovascular responses to stress in adolescent Indians. J Clin Endocrinol Metab. 2015; 100(3), 986–993.
- Tam WH, Ma RCW, Ozaki R, *et al.* In utero exposure to maternal hyperglycemia increases childhood cardiometabolic risk in offspring. *Diabetes Care.* 2017; 40(5), 679–686.
- Tam WH, Ma RCW, Yang X, *et al.* Glucose intolerance and cardiometabolic risk in children exposed to maternal gestational diabetes mellitus in utero. *Pediatrics.* 2008; 122(6), 1229–1234.
- Tam WH, Ma RCW, Yang X, et al. Glucose intolerance and cardiometabolic risk in adolescents exposed to maternal gestational diabetes: a15-year follow-up study. *Diabetes Care.* 2010; 33(6), 1382–1384.
- Vohr BR, McGarvey ST, Garcia Coll C. Effects of maternal gestational diabetes and adiposity on neonatal adiposity and blood pressure. *Diabetes Care.* 1995; 18(4), 467–475.
- Vohr BR, McGarvey ST, Tucker R. Effects of maternal gestational diabetes on offspring adiposity at 4-7 years of age. *Diabetes Care*. 1999; 22(8), 1284–1291.
- Aceti A, Santhakumaran S, Logan KM, *et al.* The diabetic pregnancy and offspring blood pressure in childhood: a systematic review and meta-Analysis. *Diabetologia*. 2012; 55(11), 3114–3127.
- Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. *Lancet*. 2009; 373(9677), 1773–1779.

Appendix 4: Publication for Association between metabolic syndrome and gestational diabetes mellitus in women and their children: a systematic review and meta-analyses

META- ANALYSIS

Association between metabolic syndrome and gestational diabetes mellitus in women and their children: a systematic review and metaanalysis

Maleesa M. Pathirana^{1,2} · Zohra S. Lassi^{1,2} · Anna Ali^{3,4} · Margaret A. Arstall^{2,5} · Claire T. Roberts^{1,6} · Prabha H. Andraweera $\mathbb{D}^{1,5}$

Received: 10 July 2020 / Accepted: 3 September 2020 / Published online: 15 September 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Purpose The primary aim of this systematic review and meta-analysis was to determine the association between gestational diabetes mellitus (GDM) and metabolic syndrome (MetS) in women and children. Our secondary aim was to assess the development of MetS with respect to the elapsed time postpartum at which MetS was diagnosed.

Methods This review is registered with PROSPERO (CRD42020173319). PubMed, CINHAL, SCOPUS, and EMBASE databases were searched. Studies reporting on the rate of MetS in pregnant women with GDM, the rate of MetS in women with a history of GDM, and the rate of MetS in offspring exposed to GDM in utero compared to healthy controls were selected.

Results We identified 588 articles from the literature search. Fifty-one studies were included in the review and of those 35 were included in the meta-analysis. Quantitative summary measures showed that women with a history of GDM had an increased risk of developing MetS compared to those without a history of GDM (RR 2.36, 95% CI 1.77–3.14, 29 studies, 13,390 participants; heterogeneity: $\chi^2 p < 0.00001$; $l^2 = 93\%$). Offspring exposed to GDM in utero have an increased risk of developing MetS compared to those not exposed to GDM in utero. (RR 2.07, 95% CI 1.26–3.42, three studies, 4,421 participants; heterogeneity: $\chi^2 p = 0.33$; $l^2 = 12\%$). Women diagnosed with GDM have an increased risk of developing MetS during pregnancy (RR 20.51, 95% CI 5.04–83.55; three studies, 406 participants; heterogeneity: $\chi^2 p = 0.96$; $l^2 = 0\%$). Subgroup analysis revealed that MetS is diagnosed as early as <1 year postpartum in women with a history of GDM. **Conclusions/interpretation** Women with GDM have an increased risk of developing MetS during pregnancy. Women with a history of GDM and offspring exposed to GDM in utero have higher risks of developing MetS compared to those with no history of GDM. Metabolic syndrome in women with a history of GDM is seen as early as <1 year postpartum.

Keywords Gestational diabetes · Women's health · Metabolic syndrome · Childhood obesity

Supplementary information The online version of this article (https://doi.org/10.1007/s12020-020-02492-1) contains supplementary material, which is available to authorized users.

Prabha H. Andraweera prabha.andraweera@adelaide.edu.au

- ¹ Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
- ² Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- ³ Health Performance and Policy Research Unit, Basil Hetzel Institute, The University of Adelaide, Adelaide, SA, Australia

- ⁴ Adelaide G-TRAC Centre and CRE Frailty and Healthy Ageing Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- ⁵ Department of Cardiology, Lyell McEwin Hospital, Elizabeth Vale, SA, Australia
- ⁶ Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia

Abbreviations

MetS	metabolic syndrome
CVD	cardiovascular disease
GDM	gestational diabetes mellitus

Introduction

Gestational diabetes mellitus (GDM) is impairment of glucose that is first diagnosed during pregnancy, hence different from both type I and II diabetes mellitus. GDM is estimated to affect one in seven pregnancies [1]. Women with a history of GDM are more likely to be obese, have dyslipidaemia and hypertension during the postpartum period [2]. These women also have an approximately sevenfold increased risk of developing type II diabetes mellitus (T2DM) later in life [3]. The diagnostic criteria for GDM have changed as of recent, being defined as fasting glycaemia \geq 5.1 mmol/l, or 1-h plasma glucose \geq 10.0 mmol/l and 2-h plasma glucose: \geq 8.5 mmol/l with a 75 g oral glucose tolerance test [4].

Metabolic syndrome (MetS) is defined as a cluster of metabolic disorders, conventionally defined as three or more of the following: central obesity, reduced high-density lipoprotein cholesterol, hypertriglyceridemia, hyperglycemia, and hypertension. However, the cut-offs for these individual components of MetS are different between definitions [5, 6]. Both GDM and MetS share a similar etiology and both increase the risk of chronic diseases such as T2DM and cardiovascular disease (CVD) [3, 7–9].

GDM is promoted by an inability of β -cells to undergo expansion. Therefore, β -cells are unable to compensate for the highly insulin resistant state leading to the subsequent elevation of glucose during pregnancy [10]. Development of pregnancy complications, such as GDM, is influenced by prepregnancy lifestyle and metabolic characteristics [11]. Women with MetS are already in a state of proinflammation and insulin resistance [12], therefore it is possible that when they become pregnant, they are more susceptible to developing GDM [13]. This association has not been explored in a systematic review and meta-analysis. Furthermore, GDM increases the risk of developing CVD in later life and ~50% of women who develop GDM go on to develop T2DM later in life [14]. Therefore, women who may not have MetS in pregnancy or only present with one or two components of MetS may be at risk of developing MetS postpartum. A meta-analysis in 2014 showed that women who experience GDM have a higher risk of developing MetS than women with a normal pregnancy [15]. However, the studies included in the above metaanalysis were conducted before the implementation of the new International Association of Diabetes in Pregnancy Study Group (IADPSG) guidelines that recommended a lowering of the glucose threshold for the diagnosis of GDM [16]. As the new guidelines are known to increase the number of women diagnosed with GDM, it is possible that the number of metabolic risk factors in women who had GDM will also increase. Children exposed to GDM in utero may also be more susceptible to developing MetS, as it has been shown that they have higher systolic blood pressure (SBP), body mass index (BMI), and blood glucose than those not exposed to GDM in utero [17]. To our knowledge, no systematic review has assessed the risk for MetS among children born to pregnancies complicated by GDM. Even small improvements in the components of MetS such as hypertension and dyslipidaemia can significantly reduce the risk of ischemic heart disease in young and middle age adults [18–20] and reducing childhood adiposity can reduce the risk of CVD later in life [21].

Therefore, the objective of our systematic review and meta-analysis was to evaluate the association between GDM and MetS by determining (1) the risk of MetS in pregnancy among women who are diagnosed with GDM, (2) the risk for postpartum MetS among women who experienced GDM, and (3) the risk of developing MetS in children born to pregnancies complicated by GDM.

Methods

The review protocol is registered in PROSPERO (CRD42020173319). The review was undertaken with reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline [22].

Search strategy

All studies describing the association between GDM and MetS were identified by searching the following electronic databases: PubMed, CINAHL, SCOPUS, and EMBASE with an end search date of February 18, 2020. The search was conducted by Z.S.L. The search strategy included the terms ("gestational diabetes*" OR "pregnancy induced diabetes") AND ("metabolic syndrome" OR "insulin resistance syndrome" OR "syndrome X") and is detailed in Appendix S1. We included observational studies (casecontrol, cross-sectional, and cohort). Bibliographies of previously conducted systematic reviews and meta-analyses on closely related topics, and eligible studies were checked for additional studies. All identified studies were independently assessed for relevance by two authors (M.M.P. and A.A.). Two authors (M.M.P. and A.A.) independently extracted data, and discrepancies were resolved by discussion with Z.S.L. and P.H.A.

Studies were eligible for inclusion if they reported the number of cases of MetS in (1) pregnant women diagnosed

Fig. 1 Flow chart showing selection of eligable studies

with GDM, (2) women with a history of GDM, compared to women who did not experience/have a history of GDM, and (3) those exposed to GDM in utero compared to those not exposed to GDM in utero. We included studies that defined GDM based on the IADPSG guidelines [23]. However, since the diagnostic criteria have been revised recently, we included studies that used prior recommended diagnostic criteria of GDM including the 1999 World Health Organization (WHO) definition [5], and other regional and studyspecific definitions as detailed in Table S1 [5, 24–31]. MetS was defined based on the definitions of the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP-III) [6], International Diabetes Federation (IDF) [32], the WHO [5], or the American Heart Association [33]. Because there is no validated definition of MetS in children and pregnant women, we accepted variations of current guidelines and study-specific definitions. The definitions of GDM and MetS of included studies are detailed in Table S1. Studies that did not include a definition of GDM or MetS, those that did not define the case and control groups, and those that compared women with GDM in pregnancy/postpartum, and those exposed to GDM in utero to another risk group were excluded.

Statistical analysis

Data were extracted independently and in duplicate for the number of MetS cases. We analyzed all studies collectively as an overall analysis, and subsequently stratified into subgroups based on the time of follow up postpartum as: <1 year, 1–5 years, 5–10 years, and 10+ years from the index

pregnancy. Some studies analyzed the rate of MetS based on the multiple definitions. Therefore, when assessing data from those studies, the NCEP-ATP-III definition was used in the overall analysis as the majority of studies used this definition. However, we conducted subgroup analyses based on the rate of MetS defined according to the NCEP-ATP-III, IDF, and WHO guidelines. We performed an ad hoc analysis based on ethnicity, but only for Asian and Caucasian ethnicities, as these were the most commonly reported ethnicities. When the same cohort was assessed multiple times during the postpartum period, the study with the largest sample size was used in the overall analysis. For the analysis on offspring exposed to GDM in utero, the oldest cohort was used in the meta-analysis. We considered studies published in English. We did not need to contact any authors for additional information, as only one dichotomous outcome was evaluated, and only studies reporting on the outcome were eligible.

The following data were collected from each included study: definition of GDM, definition of MetS, time of postpartum follow up (number of years since index pregnancy for both women and children), or gestational age (week) at which MetS and GDM were diagnosed during pregnancy, number of cases (those who experienced GDM) and controls (those who did not experience GDM), birthweight of offspring and gestational age at delivery for both cases and controls.

The meta-analysis was performed using RevMan software (Review Manager Version 5.3) based on an inverse variance method. As per protocol, the random effects model was selected to account for the differences in diagnostic criteria of GDM. For each outcome measure, the number of events and the total number of participants were used in the meta-analysis to analyze the risk difference. If the number was only reported as a percentage, then the number of participants/events was calculated based on the total sample size for each group. The analysis was crosschecked and discrepancies were resolved by discussion (P.H.A. and M.M.P.).

Substantial heterogeneity was considered when I^2 statistic exceeded 50%, and the Chi² *p* value was <0.1. Data from eligible studies that could not be included in the metaanalysis are included in Table S2. To assess publication bias, funnel plots were used for the primary outcome. The methodological quality was assessed using the National Heart, Lung and Blood Institute (NHLBI) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies and are presented in the Supplementary data (Table S3) [34]. Sensitivity analysis was performed to evaluate heterogeneity for outcomes after excluding low-moderate quality studies (i.e., studies that were considered of lowmoderate quality in the NHLBI Quality assessment tool after discussion with authors).

Results

The literature search identified 588 articles. One hundred and ninety articles were eligible for full text review. Of these, 51 were included in the review and 35 were included in the meta-analyses (Table S1). The reasons for excluding 139 studies are detailed in Fig. 1. The quality assessment showed that all studies were of moderate to high quality (Table S3).

Risk of MetS in pregnancy among women diagnosed with GDM

Eight studies were included in the assessment of this outcome [13, 35–41], of which three studies were included in the metaanalysis [35–37]. All three studies assessed GDM and MetS at the same time (i.e., ~24–32 weeks gestation). Pooled analysis showed that women diagnosed with GDM had an increased risk of MetS in pregnancy (RR 20.51, 95% CI 5.04–83.55; three studies, 406 participants; heterogeneity: χ^2 p = 0.96; $I^2 = 0\%$) (Fig. 2a). Five studies were not included in the meta-analysis [13, 38–41], with four showing an increased risk of developing GDM in women who are diagnosed with MetS during pregnancy [39, 40, 42, 43] (Table S2).

Risk of MetS in women with a history of GDM

Thirty-five studies were included in the assessment of this outcome [42, 44–78], of which 29 studies were included in the meta-analysis [30, 42, 44–71]. Pooled analysis showed that women with a history of GDM had a significantly increased risk of developing MetS (RR 2.36, 95% CI 1.77–3.14; 29 studies, 13,390 participants; heterogeneity: $\chi^2 p < 0.00001$; $l^2 = 93\%$) (Fig. 2b). Of the six studies that were not included in the meta-analysis [72–78], one showed an increase in prevalence of MetS among women with a history of GDM compared to controls [51] (Table S2). Sensitivity analysis after excluding the studies of moderate quality resulted in a slight reduction in heterogeneity ($\chi^2 p < 0.00001$; $l^2 = 78\%$) (Fig. S1). Assessment of the funnel plot of the meta-analysis revealed moderate publication bias (Fig. S2).

Risk of MetS in offspring exposed to GDM in utero

Four studies were included in the assessment of this outcome [79–82], of which three studies were included in the meta-analysis [79–81]. Pooled analysis showed that offspring exposed to GDM in utero had a significantly increased risk of developing MetS (RR 2.07, 95% CI 1.26–3.42; three studies, 4421 participants; heterogeneity: $\chi^2 p$ 0.33; $I^2 = 12\%$) (Fig. 2c). The study that was not included in the meta-analysis showed an increased MetS severity Z-score in those exposed to GDM in utero compared to controls [82] (Table S2).

Subgroup analyses

We conducted subgroup analyses based on the time of postpartum follow up among women with a history of GDM. The results are shown in Table S4. The risk of developing MetS was significantly increased in women with a history of GDM at <1 year postpartum (RR 1.95, 95% CI 1.15–3.28, three studies, 850 participants; heterogeneity $\chi^2 \ p = 0.09$; $I^2 = 59\%$), 1–5 years postpartum (RR 2.99, 95% CI 2.14–4.18, 18 studies, 7.328 participants; heterogeneity $\chi^2 \ p < 0.00001$; $I^2 = 70\%$), 5–10 years postpartum (RR 2.29, 95% CI 1.62–3.25, nine studies, 4518 participants; heterogeneity $\chi^2 \ p < 0.0001$; $I^2 = 79\%$), and >10 years postpartum (RR 2.07 95% CI 1.22–3.50, six studies, 3037 participants; heterogeneity $\chi^2 \ p < 0.00001$; $I^2 = 94\%$).

We conducted a subgroup analysis to evaluate the risk of developing MetS in women with a history of GDM based on the three most common definitions of MetS (i.e., NCEP-ATP-III, IDF, and WHO). A significantly increased risk of MetS was demonstrated for women with a history of GDM compared to women without a history of GDM, irrespective of the definition used to diagnose MetS (NCEP-ATP-III: RR 2.58 95% CI 1.72-3.87, 20 studies, 8768 participants; heterogeneity $\chi^2 p < 0.00001$; $I^2 = 94\%$; IDF: RR 2.15 95% CI 1.60-2.90, 11 studies, 5615 participants; heterogeneity $\chi^2 p < 0.00001; I^2 = 79\%;$ WHO: RR 2.99 95% CI 2.51–3.57, five studies, 3433 participants; heterogeneity χ^2 p = 0.69; $I^2 = 0\%$) (Table S5). We performed an ad hoc analysis based on ethnicity (Asian and Caucasian) and found that there was a similar increased risk of MetS for women with a history of GDM for both ethnicities (Table S6).

Discussion

Main findings

Our meta-analysis revealed that women with a history of GDM are at a significantly increased risk of developing MetS later in life, and that this risk is seen as early as <1 year postpartum. Our results also demonstrate that the risk for MetS in pregnancy is higher among women diagnosed with GDM and that children born to women who experience GDM have an increased risk of developing MetS in later life.

Strengths and limitations

This systematic review and meta-analysis was a comprehensive review of the literature on the association between

A		GDM		Non-GDN	1			Risk	Ratio		Risk Ratio
	Study or Subgroup	Events	Total	Events T	otal	Weight	M-	H, Rand	om, 95% C	1	M-H, Random, 95% Cl
	Bo 2004	18	150	0	100	25.2%	2	24.75 [1.	51, 406.04	.]	
	Dane 2011	8	20	0	40	25.1%	3	33.19 [2.	01, 547.58]	_ →
	Negrato 2009 (1)	12	33	0	23	25.6%	1	17.65 [1.	10, 283.88]	
	Negrato 2009 (2)	4	17	0	23	24.2%	1	12.00 [0.	69, 208.93]	
	Total (95% CI)		220		186	100.0%		20.51 [5	5.04, 83.55]	
	Total events	42		0							
	Heterogeneity: I auf =	0.00; Chi≏ 7 – ∦ 22 /⊑	= 0.28 2 ~ 0 0	3, at = 3 (P = 001)	= 0.96); i*= 09	%			0.01	1 0.1 1 10 100
	rest for overall effect. 2	८ = 4.22 (⊢	r < 0.0	001)							No MetS MetS
	Footnotes										
	(1) Overt GDM										
	(2) GDM										
В				GDM		Non-GDN	1		Risk Rati	o	Risk Ratio
-	Study or Subgroup Akinci 2011 (3 years postpar	rtum)		Events 49	195	Events T 4	otal 71	2.8%	<u>4.46 [1.67</u>	, <mark>95% CI</mark> ', 11.91]	M-H, Random, 95% Cl
	Alberada 2004 (5 years post Bo et al 2006 (6 years postp	tpartum) artum)		29 34	262 182	4 4	66 161	2.7% 2.7%	1.83 [0.6 7.52 [2.73	67, 5.01] 6, 20.73]	
	Carr 2006 (29.9 Years) Costacou 2008 (1-2 years p	ostpartum)		241 10	278 22	423 8	575 29	4.1% 3.2%	1.18 [1.1 1.65 [0.7	0, 1.26] '8, 3.48]	
	Derbent 2010 (1-5 years por Di Canni 2007 (16 months p	stpartum) oostpartum)		19 15	36 166	3	40 98	2.5% 1.4%	7.04 [2.27 8.86 [1.19	, 21.81] , 66.01]	
	Edalat 2013 (2-3 years post Gunderson 2010 (1)	tpartum)		7	77 61	21 30	67 515	3.1% 2.5%	0.29 [0.1 0.84 [0.2	3, 0.64] 27, 2.68]	
	Hakkarainen 2018 (Mean 7 Hakkarainen 2018 (Mean 7	years postpa years postpa	rtum) (2 rtum) (3) 37) 164	68 376	70	48 286	3.5%	2.90 [1.6 1.78 [1.4	6, 5.44] 1, 2.25]	
	ljäs 2013 (18 years postpart ljäs 2013 (18 years postpart	tum) (4) tum) (5)		8 30	26 35	4	34 18	2.6%	2.62 [0.8 1.29 [0.9	88, 7.75] 10, 1.83]	
	Kousta 2006 (20 years post Krishnaveni 2007 (5 years p	partum) ostpartum) ((6)	136	13	48	482	4.0%	3.71 [2.7 1.13 [0.7	5, 5.01] 1, 1.79]	
	Krishnaveni 2007 (5 years p Krishnaveni 2007 (5 years p	ostpartum) (ostpartum) (l	7) 8)	2	11 11	44	406 75	2.3%	0.98 [0.2	28, 3.51] 32, 1.87]	
	Li 2018 (5 years postpartum	postpartum) I)		199	123	146	987 119	2.6%	2.94 [2.4	16, 8.75]	
	Maghbooli 2010 (4 years pos Maghbooli 2010 (6-12 week	stpartum) s postpartum	ר)	18	92 92	10	35 100	2.5%	3.09 [0.9	18, 9.78] 19, 6.29]	
	Noctor 2014 (2-3 years post Notice 2014 (2-3 years post	n) partum)		26 67	265	25	378	3.8%	3.82 [2.4	8, 5.89]	
	Retnakaran 2010 (3 months	postpartum))	27	137	26	259	3.7%	1.96 [1.1	9, 3.23	
	Rukasasakul 2016 (3 years Shop 2019 (2 years	postpartum)	9	15	56	4	51	2.7%	3.42 [1.2	1, 9.62]	·
	Tam 2007 (8 years postpart	um)		5	67	11	136	2.7%	0.92 [0.3	12, 4.00]	
	Vilmi Kerala 2015 (2-6 years Wender-Ozegowska 2007 (f	s postpartum) 5 vears postp) Jartum)	19 47	120	8	120	3.2%	2.38 [1.0	12 171	
	Wijenyaratne 2006 (3 years	postpartum)		72	147	4	67	2.8%	8.20 [3.13	8, 21.52]	
	Total (95% CI) Total events			1640	5911	7 1093	479	100.0%	2.36 [1.7	7, 3.14]	◆
	Heterogeneity: Tau ² = 0.51; (Test for overall effect: Z = 5.8	Chi ² = 433.79 37 (P < 0.000	9, df = 32 01)	2 (P ≺ 0.00001); I ^z = 9	3%					0.01 0.1 10 100 No Metabolic Syndrome Metabolic Syndrome
	Footnotes										
	(2) LGA (3) AGA										
	(4) BMI < 25 (5) BMI > 25										
	(6) GDM-DM (7) GDM-NGT										
	(8) GDM-IFG/IGT (9) NCEP										
	(10) 4 years postpartum										
С			GDN	Non-	GDM			Risk Ratio)		Risk Ratio
	Study or Subgroup Boney 2005 (11 years old) ((1)	Events 2	Total Events	Total	Weight	M-H	, Random,	95% CI 13.18]		M-H, Random, 95% Cl
	Boney 2005 (11 years old) ((2)	3	20 1	26	5.0%		3.90 [0.44,	34.74]		
	Clausen 2009 (22 years po Vaarsamarki 2009 (16 years	stpartum) s old)	40 5	168 21 95 54	141 3909	64.5% 26.0%		1.60 [0.9! 3.81 [1.5!	3, 2.58] 6, 9.31]		
	Total (95% CI)			321	4100	100.0%		2.07 [1.26	5, 3.42]		◆
	Total events	Chiz - 2.40 -	50 If = 2 /P	77	, 06				L		
	Test for overall effect: Z = 2.	oni= 3.40, d 87 (P = 0.004)	n = 3 (P :)	= 0.33); F= 12	70				0.01	No Meta	0.1 10 100 abolic Syndrome Metabolic Syndrome
	Footnotes										

⁽²⁾ LGA

Fig. 2 a Meta-analysis showing the risk of developing MetS during pregnancy in women with GDM. b Meta-analysis showing the risk of developing metabolic syndrome in women with previous GDM.

GDM and MetS, among women and their offspring. There has not been a systematic review and meta-analysis that investigated the association between GDM and MetS in ${\bf c}$ Meta-analysis showing the risk of developing GDM in those born to women with GDM

pregnant women and offspring, and no review has evaluated the association between GDM and MetS in women with a history of GDM after the change of guidelines in 2013 [15].

Many environmental and genetic factors contribute to the risk for GDM. There are certain candidate genes that are associated with T2DM and GDM that mainly influence insulin secretion [83]. Obesity and GDM share the same causal pathway, through elevation of free fatty acids and dysregulation of cytokines to promote insulin resistance [84, 85]. Common risk factors such as advanced maternal age, familial history of T2DM or GDM in a first-degree relative (either mother or sister) also contribute to a higher risk for GDM [86]. Therefore, it is unclear whether MetS in overweight/obese women with a history of GDM is due to the disease phenotype, or due to a preexisting predisposition. Asian ethnicity is a significant risk factor for GDM [86] and diagnosis of MetS can also vary based on ethnicity. Therefore, we assessed the influence of ethnicity through an ad hoc analysis and found that both Caucasian and Asian ethnicities conferred similar increased risks for MetS in women with a history of GDM (Table S6). Women and men have different CVD risks, particularly with regard to obesity, as men generally have greater muscle mass and women have higher fat mass. Research into a modified female definition of MetS may be important, considering the differences in body composition and conventional risk factors between males and females and the higher risk of CVD among women who experience major pregnancy complications [87].

Our results on the risk for MetS among women with a history of GDM showed substantial heterogeneity. However, when we performed subgroup analyses based on the time of diagnosis of MetS, definition of MetS and ethnicity, heterogeneity was substantially reduced (Tables S4 and S5). Sensitivity analysis also showed a reduction in heterogeneity after removing studies of moderate quality. Funnel plot assessment revealed a moderate degree of publication bias (Fig. S2). It is difficult to elucidate the reason for heterogeneity in aggregate data, but it is typically due to differences in study design, differences in definitions (i.e., MetS and GDM definitions), years of postpartum follow-up, and study populations. The heterogeneity that was observed in our analysis could also be attributed to genetic and environmental factors. Large, well-characterized longitudinal cohort studies will contribute to further evidence and help reduce overall heterogeneity.

Interpretation in light of other evidence

Our meta-analysis revealed that women with a history of GDM are at significantly increased risk for developing MetS later in life (RR 2.48). Women who experience GDM have a reduction in insulin sensitivity in the third trimester, to support an increase in glucose transfer to the fetus. This is promoted by an increase in fetal and placental factors [84, 88]. However, if women are insulin resistant prior to

pregnancy and fail to increase β -cell capacity during pregnancy, maternal glucose levels are unlikely to return to normal after pregnancy [89]. Considering the increased risk for cardiovascular risk factors and T2DM in women with a history of GDM [3, 11], it is not surprising that these women are at a higher risk for developing MetS later in life. Intervention trials to reduce the development of T2DM are known to be successful during the early period after pregnancy, but compliance in exercise and weight loss are shown to decrease over time [90-92]. This is likely due to the difficulty in changing behavioral patterns and individual circumstances. It may be more beneficial to intervene before a diagnosis of GDM, as both diet and physical activity changes have been shown to result in an 18% reduction in the risk for GDM among women with a prepregnancy BMI $<25 \text{ kgm}^2$ as well as $\ge 25 \text{ kgm}^2$; and this intervention was shown to be most effective before 15 weeks' gestation [93]. The prevalence of obesity in women of reproductive age is around 15–18% in Australian women [94]. Therefore, it is necessary to identify women who are at increased risk of developing GDM and implement interventions as soon as practical (either during preconception planning or in early pregnancy) with the aim of reducing the risk of development of GDM. This is especially important, as our results showed that women who experience GDM are at increased risk of being diagnosed with MetS, as early as <1 year postpartum.

Our study also demonstrated that offspring exposed to GDM in utero have a twofold increased risk of developing MetS. GDM promotes a hyperinsulinemic environment to allow increased nutrient delivery to the fetus, thereby increasing fetal growth and body mass resulting in macrosomia which may persist as obesity throughout childhood and adolescence [88]. This idea pertains to "The Barker Hypothesis" which states that adverse nutrition in early life increases the likelihood of developing metabolic risk factors [95]. We have recently shown in a meta-analysis that those exposed to GDM in utero have higher SBP, BMI z-score, and blood glucose compared to those not exposed to GDM in utero [17]. Previous studies have also shown that juvenile T2DM is significantly associated with exposure to GDM in utero [96, 97], therefore highlighting the need for weight management and lifestyle guidance throughout childhood and adolescence for this group. It is important to note that there were only four eligible studies for the meta-analysis on offspring of pregnancies complicated by GDM. We believe this is influenced by the lack of consensus on a definition of MetS in childhood. An IDF recommended definition for the diagnosis of MetS in children older than 6 years of age does exist, but this definition is not universally used [98]. Furthermore, obesity as measured by BMI is not an accurate measure, as BMI varies greatly based on the muscle mass and fat mass, hence it is accurate for fatter children but not for those who are lean. BMI *z*score is a more appropriate measure as it adjusts for age and gender [99]. Only one study assessed the MetS *z*-score, which adjusts for age and gender [82]. Considering the increasing rate of childhood obesity, a clear definition of MetS is required that can accurately account for childhood adiposity and adjust for important factors such as age, gender, weight distribution, and puberty.

We also observed that the risk for MetS in pregnancy was increased among women who were diagnosed with GDM compared to normoglycaemic women (RR 20.51). There are studies that have investigated the association between individual components of MetS including dyslipidaemia and obesity and the risk of developing GDM [100-102]. Gunderson et al. showed that BMI and waist circumference were associated with increased risks for GDM after adjusting for lipids, fasting glucose, and insulin [102]. Studies by Grieger and Chatzi showed a threefold increased risk of GDM for women diagnosed with MetS in early pregnancy [13, 39]. It is difficult to diagnose MetS in pregnancy due to hemodynamic and inflammatory changes that occur during the first trimester of pregnancy, as SBP and maternal lipids decrease during this time [43, 103]. Furthermore, placental and maternal hormones during pregnancy promote weight gain and also result in altered fat distribution in both healthy pregnancies and those complicated by GDM [104]. Therefore, these results signify a need for further research in large pregnancy cohorts.

Conclusion

Pregnant women with GDM are at a higher risk of developing MetS during pregnancy. Furthermore, women who experience GDM have an increased risk of developing MetS later in life. They may develop MetS as early as <1 year postpartum. Children born to pregnancies complicated by GDM are also at increased risk of developing MetS in later life. This review signifies the importance of considering GDM in CVD risk stratification, thus allowing an opportunity for primordial prevention. Based on our findings, pre-conceptional management of cardiometabolic risk factors may be useful to reduce the risk of both GDM and MetS. Furthermore, it will be beneficial to screen women who experience GDM and children born to pregnancies complicated by GDM to detect modifiable CVD risk factors.

Funding M.M.P. is funded by Faculty of Health and Medical Sciences Divisional Scholarship from the University of Adelaide. Z.S.L. is supported by an NHMRC Public Health Early Career Fellowship (GNT1141382).

Author contributions M.M.P., Z.S.L., M.A.A., C.T.R., and P.H.A. designed and conceptualized this particular study. Z.S.L. designed and performed the literature search. M.M.P., Z.S.L., A.A., and P.H.A. were

involved in screening and selecting the included studies. M.M.P. performed the meta-analysis with expert advice from Z.S.L. The original manuscript was drafted by M.M.P. All authors critically reviewed and revised the manuscript and approved the final version. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- 1. International Diabetes Federation, *IDF Diabetes Atlas* (International Diabetes Federation, Belgium, 2017)
- P.H. Andraweera, G.A. Dekker, M. Arstall, T. Bianco-Miotto, C. T. Roberts, Complications of pregnancy and future cardiovascular risk. in *Encylopedia of Cardiovascular Research and Medicine*, (eds D.B. Sawyer, R.S. Vasan) vol. 1 (Oxford, The Netherlands, 2018), pp. 643–650
- L. Bellamy, J.P. Casas, A.D. Hingorani, D. Williams, Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373(9677), 1773–1779 (2009). https:// doi.org/10.1016/s0140-6736(09)60731-5
- A. Lorenzo-Almorós, T. Hang, C. Peiró, L. Soriano-Guillén, J. Egido, J. Tuñón, Ó. Lorenzo, Predictive and diagnostic biomarkers for gestational diabetes and its associated metabolic and cardiovascular diseases. Cardiovasc. Diabetol. 18(1), 140 (2019). https://doi.org/10.1186/s12933-019-0935-9
- K.G. Alberti, P.Z. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15(7), 539–553 (1998). https:// doi.org/10.1002/(sici)1096-9136(199807)15:7<539::Aid-dia 668>3.0.Co;2-s
- Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP), Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285(19), 2486–2497 (2001). https://doi.org/10.1001/jama.285.19.2486
- C.K. Kramer, S. Campbell, R. Retnakaran, Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia 62(6), 905–914 (2019). https://doi.org/10.1007/s00125-019-4840-2
- J. Fan, Y. Song, Y. Chen, R. Hui, W. Zhang, Combined effect of obesity and cardio-metabolic abnormality on the risk of cardiovascular disease: a meta-analysis of prospective cohort studies. Int. J. Cardiol. **168**(5), 4761–4768 (2013). https://doi.org/10. 1016/j.ijcard.2013.07.230
- P.W. Wilson, W.B. Kannel, H. Silbershatz, R.B. D'Agostino, Clustering of metabolic factors and coronary heart disease. Arch. Intern. Med. **159**(10), 1104–1109 (1999). https://doi.org/10. 1001/archinte.159.10.1104
- J.F. Plows, J.L. Stanley, P.N. Baker, C.M. Reynolds, M.H. Vickers, The pathophysiology of gestational diabetes mellitus. Int. J. Mol. Sci. **19**(11) (2018). https://doi.org/10.3390/ ijms19113342
- P. Andraweera, G. Dekker, M. Arstall, T. Bianco-Miotto, C. Roberts, Complications of pregnancy and future cardiovascular risk. in *Encyclopedia of Cardiovascular Research and Medicine*,
(eds D.B. Sawyer, R.S. Vasan) vol. 1 (Elsevier, Oxford The Netherlands, 2018)

- F.K. Welty, A. Alfaddagh, T.K. Elajami, Targeting inflammation in metabolic syndrome. Transl. Res. 167(1), 257–280 (2016). https://doi.org/10.1016/j.trsl.2015.06.017
- J.A. Grieger, T. Bianco-Miotto, L.E. Grzeskowiak, S.Y. Leemaqz, L. Poston, L.M. McCowan, L.C. Kenny, J.E. Myers, J.J. Walker, G.A. Dekker, C.T. Roberts, Metabolic syndrome in pregnancy and risk for adverse pregnancy outcomes: a prospective cohort of nulliparous women. PLoS Med. 15(12), e1002710 (2018). https://doi.org/10.1371/journal.pmed.1002710
- S.L. Kjos, R.K. Peters, A. Xiang, O.A. Henry, M. Montoro, T.A. Buchanan, Predicting future diabetes in Latino women with gestational diabetes. Utility of early postpartum glucose tolerance testing. Diabetes 44(5), 586–591 (1995). https://doi.org/10. 2337/diab.44.5.586
- Y. Xu, S. Shen, L. Sun, H. Yang, B. Jin, X. Cao, Metabolic syndrome risk after gestational diabetes: a systematic review and meta-analysis. PLoS ONE 9(1), e87863 (2014). https://doi.org/ 10.1371/journal.pone.0087863
- D.R. Coustan, L.P. Lowe, B.E. Metzger, A.R. Dyer; International Association of Diabetes and Pregnancy Study Groups, The hyperglycemia and adverse pregnancy outcome (HAPO) study: paving the way for new diagnostic criteria for gestational diabetes mellitus. Am. J. Obst. Gynecol. 202(6), 654.e651–654. e6546 (2010). https://doi.org/10.1016/j.ajog.2010.04.006
- M.M. Pathirana, Z.S. Lassi, C.T. Roberts, P.H. Andraweera, Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: systematic review and meta-analysis. J. Dev. Orig. Health Dis. 1–18 (2020). https://doi.org/10.1017/ s2040174419000850
- E. Di Angelantonio, N. Sarwar, P. Perry, S. Kaptoge, K.K. Ray, A. Thompson, A.M. Wood, S. Lewington, N. Sattar, C.J. Packard, R. Collins, S.G. Thompson, J. Danesh, Major lipids, apolipoproteins, and risk of vascular disease. JAMA **302**(18), 1993–2000 (2009). https://doi.org/10.1001/jama.2009.1619
- Y. Yano, J. Stamler, D.B. Garside, M.L. Daviglus, S.S. Franklin, M.R. Carnethon, K. Liu, P. Greenland, D.M. Lloyd-Jones, Isolated systolic hypertension in young and middle-aged adults and 31-year risk for cardiovascular mortality: the Chicago Heart Association Detection Project in Industry study. J. Am. Coll. Cardiol. 65(4), 327–335 (2015). https://doi.org/10.1016/j.jacc. 2014.10.060
- 20. J.S. Son, S. Choi, K. Kim, S.M. Kim, D. Choi, G. Lee, S.M. Jeong, S.Y. Park, Y.Y. Kim, J.M. Yun, S.M. Park, Association of Blood Pressure Classification in Korean Young Adults According to the 2017 American College of Cardiology/American Heart Association Guidelines With Subsequent Cardiovas-cular Disease Events. JAMA 320(17), 1783–1792 (2018). https://doi.org/10.1001/jama.2018.16501
- A. Umer, G.A. Kelley, L.E. Cottrell, P. Giacobbi Jr., K.E. Innes, C. L. Lilly, Childhood obesity and adult cardiovascular disease risk factors: a systematic review with meta-analysis. BMC Public Health 17(1), 683 (2017). https://doi.org/10.1186/s12889-017-4691-z
- D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339, b2535 (2009). https://doi.org/10. 1136/bmj.b2535
- 23. B.E. Metzger, S.G. Gabbe, B. Persson, T.A. Buchanan, P.A. Catalano, P. Damm, A.R. Dyer, Ad. Leiva, M. Hod, J.L. Kitzmiler, L.P. Lowe, H.D. McIntyre, J.J.N. Oats, Y. Omori, M.I. Schmidt, International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33(3), 676 (2010). https://doi.org/10.2337/dc09-1848

- National Diabetes Data Group, Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28(12), 1039–1057 (1979). https://doi.org/10.2337/dia b.28.12.1039
- M.W. Carpenter, D.R. Coustan, Criteria for screening tests for gestational diabetes. Am. J. Obstet. Gynecol. 144(7), 768–773 (1982). https://doi.org/10.1016/0002-9378(82)90349-0
- American Diabetes Association, Standards of medical care in diabetes-2007. Diabetes Care **30**(Suppl 1), S4–S41 (2007). https://doi.org/10.2337/dc07-S004
- P.R. Rani, J. Begum, Screening and diagnosis of gestational diabetes mellitus, where do we stand. J. Clin. Diagn. Res. 10(4), QE01–QE04 (2016). https://doi.org/10.7860/jcdr/2016/17588. 7689
- J.B. O'Sullivan, C.M. Mahan, Criteria for the oral glucose tolerance test in pregnancy. Diabetes 13, 278–285 (1964)
- 29. Current Care Guidelines, Working group set up by the Finnish Medical Society Duodecim, the Medical Advisory Board of the Finnish Diabetes Association and the Finnish Gynecological Association. 2013. www.kaypahoito.fi
- E. Wender-Ozegowska, M. Sporna, A. Sporna, J. Brazert, A. Zawiejska, Components of metabolic syndrome (MS) in women after gestational diabetes (GDM). J. Diabetes 1, A286–A287 (2009). https://doi.org/10.1111/j.1753-0407.2009.00020.x
- T. Hansen, H. Vestergaard, Increasing incidence of diabetes after gestational diabetes. Diabetes Care 27(5), 1194–1199 (2004). https://doi.org/10.2337/diacare.27.5.1194
- K.G.M.M. Alberti, P. Zimmet, J. Shaw, The metabolic syndrome —a new worldwide definition. The Lancet 366(9491), 1059–1062 (2005). https://doi.org/10.1016/S0140-6736(05)67402-8
- 33. S.M. Grundy, J.I. Cleeman, S.R. Daniels, K.A. Donato, R.H. Eckel, B.A. Franklin, D.J. Gordon, R.M. Krauss, P.J. Savage, S. C. Smith Jr., J.A. Spertus, F. Costa, Diagnosis and management of the metabolic syndrome: an American Heart Association/ National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112(17), 2735–2752 (2005). https://doi.org/10.1161/ circulationaha.105.169404
- 34. National Institutes of Health, Quality assessment tool for observational cohort and cross-sectional studies (2014), https://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/ca rdiovascular-risk-reduction/tools/cohort. Accessed 14 Apr 2020
- 35. S. Bo, G. Menato, M.L. Gallo, C. Bardelli, A. Lezo, A. Signorile, R. Gambino, M. Cassader, M. Massobrio, G. Pagano, Mild gestational hyperglycemia, the metabolic syndrome and adverse neonatal outcomes. Acta Obstet. Gynecol. Scand. 83(4), 335–340 (2004). https://doi.org/10.1111/j.0001-6349.2004.00314.x
- 36. B. Dane, F. Ustaoğlu, Y. Yildirim, Y. Döventaş, C. Dane, A. Çetin, M. Yenigün, Are the criteria of metabolic syndrome associated with pregnancy complications? Turk Jinekoloji ve Obstetrik Dernegi Dergisi 8(2), 100–106 (2011)
- C.A. Negrato, L. Jovanovic, A. Rafacho, M.A. Tambascia, B. Geloneze, A. Dias, M.V. Rudge, Association between different levels of dysglycemia and metabolic syndrome in pregnancy. Diabetol. Metab. Syndr. 1(1), 3–3 (2009). https://doi.org/10. 1186/1758-5996-1-3
- 38. F. Zaman, S. Nouhjah, H. Shahbazian, N. Shahbazian, S.M. Latifi, A. Jahanshahi, Risk factors of gestational diabetes mellitus using results of a prospective population-based study in Iranian pregnant women. Diabetes Metab. Syndr. 12(5), 721–725 (2018). https://doi.org/10.1016/j.dsx.2018.04.014
- 39. L. Chatzi, E. Plana, A. Pappas, D. Alegkakis, P. Karakosta, V. Daraki, C. Tsatsanis, A. Kafatos, A. Koutis, M. Kogevinas, Metabolic syndrome in early pregnancy and risk of gestational diabetes mellitus. Diabetologia 52(S1), S457 (2009). https://doi.org/10.1007/s00125-009-1445-1

- M. Migda, M.S. Migda, B. Migda, P. Krzyżanowska, E. Wender-Ożegowska, Components of metabolic syndrome in the first trimester of pregnancy as predictors of adverse perinatal outcome. Ginekol. Pol. 87(9), 644–650 (2016). https://doi.org/10. 5603/GP.2016.0060
- R. Retnakaran, S.W. Wen, H. Tan, C. Ye, M. Shen, G.N. Smith, M.C. Walker, Pregravid metabolic syndrome and risk of adverse outcomes in pregnancy: a preconception cohort study. Diabetes 68 (2019). https://doi.org/10.2337/db19-1419-P
- T. Costacou, Z. Bosnyak, G.F. Harger, N. Markovic, N. Silvers, T.J. Orchard, Postpartum adiponectin concentration, insulin resistance and metabolic abnormalities among women with pregnancy-induced disturbances. Prev. Cardiol. 11(2), 106–115 (2008). https://doi.org/10.1111/j.1751-7141.2008.07512.x
- P. Soma-Pillay, C. Nelson-Piercy, H. Tolppanen, A. Mebazaa, Physiological changes in pregnancy. Cardiovasc. J. Afr. 27(2), 89–94 (2016). https://doi.org/10.5830/CVJA-2016-021
- 44. B. Akinci, A. Celtik, S. Genc, S. Yener, T. Demir, M. Secil, L. Kebapcilar, S. Yesil, Evaluation of postpartum carbohydrate intolerance and cardiovascular risk factors in women with gestational diabetes. Gynecol. Endocrinol. 27(5), 361–367 (2011). https://doi.org/10.3109/09513590.2010.492885
- 45. M. Albareda, A. Caballero, G. Badell, J. Rodríguez-Espinosa, J. Ordóñez-Llanos, A. de Leiva, R. Corcoy, Metabolic syndrome at follow-up in women with and without gestational diabetes mellitus in index pregnancy. Metabolism 54(8), 1115–1121 (2005). https://doi.org/10.1016/j.metabol.2005.03.017
- 46. B. Edalat, F. Sharifi, Z. Badamchizadeh, A. Hossein-Nezhad, B. Larijani, M. Mirarefin, H. Fakhrzadeh, Association of metabolic syndrome with inflammatory mediators in women with previous gestational diabetes mellitus. J. Diabetes Metab. Disord. 12(1), 8 (2013). https://doi.org/10.1186/2251-6581-12-8
- 47. S. Bo, G. Menato, C. Botto, I. Cotrino, C. Bardelli, R. Gambino, M. Cassader, M. Durazzo, A. Signorile, M. Massobrio, G. Pagano, Mild gestational hyperglycemia and the metabolic syndrome in later life. Metab. Syndr. Relat. Disord. 4(2), 113–121 (2006). https://doi.org/10.1089/met.2006.4.113
- D.B. Carr, K.M. Utzschneider, R.L. Hull, J. Tong, T.M. Wallace, K. Kodama, J.B. Shofer, S.R. Heckbert, E.J. Boyko, W.Y. Fujimoto, S.E. Kahn, Gestational diabetes mellitus increases the risk of cardiovascular disease in women with a family history of type 2 diabetes. Diabetes Care 29(9), 2078–2083 (2006)
- 49. A. Derbent, A. Kargili, C. Koca, I.I. Gümüş, S. Sevgili, S. Smavli, F. Karakurt, N.O. Turhan, Serum platelet-activating factor acetylhydrolase activity: relationship with metabolic syndrome in women with history of gestational diabetes mellitus. Gynecol. Endocrinol. 27(2), 128–133 (2011). https://doi.org/10. 3109/09513590.2010.487612
- G. Di Cianni, C. Lencioni, L. Volpe, A. Ghio, I. Cuccuru, G. Pellegrini, L. Benzi, R. Miccoli, S. Del Prato, C-reactive protein and metabolic syndrome in women with previous gestational diabetes. Diabetes Metab. Res. Rev. 23(2), 135–140 (2007). https://doi.org/10.1002/dmrr.661
- E.P. Gunderson, D.R. Jacobs Jr, V. Chiang, C.E. Lewis, J. Feng, C.P. Quesenberry Jr, S. Sidney, Duration of lactation and incidence of the metabolic syndrome in women of reproductive age according to gestational diabetes mellitus status: a 20-year prospective study in CARDIA (Coronary Artery Risk Development in Young Adults). Diabetes 59(2), 495–504 (2010). https://doi. org/10.2337/db09-1197
- 52. H. Hakkarainen, H. Huopio, H. Cederberg, R. Voutilainen, S. Heinonen, Future risk of metabolic syndrome in women with a previous LGA delivery stratified by gestational glucose tolerance: a prospective cohort study. BMC Pregnancy Childbirth 18 (1), N.PAG (2018). https://doi.org/10.1186/s12884-018-1958-z

- 53. H. Ijäs, L. Morin-Papunen, A.K. Keränen, R. Bloigu, A. Ruokonen, K. Puukka, T. Ebeling, T. Raudaskoski, M. Vääräsmäki, Pre-pregnancy overweight overtakes gestational diabetes as a risk factor for subsequent metabolic syndrome. Eur. J. Endocrinol. 169(5), 605–611 (2013). https://doi.org/10.1530/EJE-13-0412
- 54. E. Kousta, Z. Efstathiadou, N.J. Lawrence, J.A.R. Jeffs, I.F. Godsland, S.C. Barrett, C.J. Doré, A. Penny, V. Anyaoku, B.A. Millauer, E. Cela, S. Robinson, M.I. McCarthy, D.G. Johnston, The impact of ethnicity on glucose regulation and the metabolic syndrome following gestational diabetes. Diabetologia 49(1), 36–40 (2006). https://doi.org/10.1007/s00125-005-0058-6
- 55. G.V. Krishnaveni, J.C. Hill, S.R. Veena, S. Geetha, M.N. Jayakumar, C.L.S. Karat, C.H.D. Fall, Gestational diabetes and the incidence of diabetes in the 5 years following the index pregnancy in South Indian women. Diabetes Res. Clin. Pract. 78(3), 398–404 (2007). https://doi.org/10.1016/j.diabres.2007.06.002
- 56. J. Lauenborg, E. Mathiesen, T. Hansen, C. Glümer, T. Jørgensen, K. Borch-Johnsen, P. Hornnes, O. Pedersen, P. Damm, The prevalence of the metabolic syndrome in a Danish population of women with previous gestational diabetes mellitus is three-fold higher than in the general population. J. Clin. Endocrinol. Metab. 90(7), 4004–4010 (2005). https://doi.org/10.1210/jc.2004-1713
- L.J. Li, I.M. Aris, L.L. Su, Y.S. Chong, T.Y. Wong, K.H. Tan, J. J. Wang, Effect of gestational diabetes and hypertensive disorders of pregnancy on postpartum cardiometabolic risk. Endocr. Connect. 7(3), 433–442 (2018). https://doi.org/10.1530/EC-17-0359
- E. Madarász, G. Tamás, A.G. Tabák, Z. Kerényi, Carbohydrate metabolism and cardiovascular risk factors 4 years after a pregnancy complicated by gestational diabetes. Diabetes Res. Clin. Pract. 85(2), 197–202 (2009). https://doi.org/10.1016/j.dia bres.2009.05.001
- Z. Maghbooli, A. Hossein-Nezhad, K. Mirzaei, F. Karimi, A. Besharati, K. Omidfar, B. Larijani, Association between retinolbinding protein 4 concentrations and gestational diabetes mellitus and risk of developing metabolic syndrome after pregnancy. Reprod. Sci. **17**(2), 196–201 (2010). https://doi.org/10.1177/ 1933719109351097
- C. Mai, M. Hou, R. Chen, D. Duan, H. Xu, X. Lin, J. Wen, L. Lv, Q. Lei, J. Niu, Cardiovascular risk factors in Chinese women with a history of gestational diabetes mellitus. Int. J. Clin. Exp. Med. 8(11), 21694–21698 (2015)
- E. Noctor, C. Crowe, L.A. Carmody, B. Kirwan, A. O'Dea, L.G. Glynn, B.E. McGuire, P.M. O'Shea, F.P. Dunne, ATLANTIC-DIP: prevalence of metabolic syndrome and insulin resistance in women with previous gestational diabetes mellitus by International Association of Diabetes in Pregnancy Study Groups criteria. Acta Diabetol. (2014). https://doi.org/10.1007/s00592-014-0621-z
- 62. S. Nouhjah, H. Shahbazian, N. Shahbazian, S. Jahanfar, A. Jahanshahi, B. Cheraghian, Z.D. Mohammadi, N. Ghodrati, S. Houshmandi, Early postpartum metabolic syndrome in women with or without gestational diabetes: results from Life after Gestational Diabetes Ahvaz cohort study. Diabetes Metab. Syndr. 12(3), 317–323 (2018). https://doi.org/10.1016/j.dsx. 2017.12.027
- R. Retnakaran, Y. Qi, P.W. Connelly, M. Sermer, B. Zinman, A. J.G. Hanley, Glucose intolerance in pregnancy and postpartum risk of metabolic syndrome in young women. J. Clin. Endocrinol. Metab. 95(2), 670–677 (2010). https://doi.org/10.1210/jc. 2009-1990
- 64. M.M. Roca-Rodríguez, C. López-Tinoco, A. Fernández-Deudero, M. Murri, M.V. García-Palacios, M.A. García-Valero, F.J. Tinahones-Madueño, M. Aguilar-Diosdado, Adipokines and metabolic syndrome risk factors in women with previous

gestational diabetes mellitus. Diabetes Metab. Res. Rev. 28(6), 542–548 (2012). https://doi.org/10.1002/dmrr.2313

- R. Ruksasakul, T. Tharavanij, P. Sritipsukho, Metabolic syndrome in Thai women previously diagnosed with gestational diabetes. J. Med. Assoc. Thai. **99**(Suppl 4), S195–S202 (2016)
- 66. Y. Shen, W. Li, J. Leng, S. Zhang, H. Liu, W. Li, L. Wang, H. Tian, J. Chen, L. Qi, X. Yang, Z. Yu, J. Tuomilehto, G. Hu, High risk of metabolic syndrome after delivery in pregnancies complicated by gestational diabetes. Diabetes Res. Clin. Pract. 150, 219–226 (2019). https://doi.org/10.1016/j.diabres.2019.03.030
- 67. W.H. Tam, X.L. Yang, J.C. Chan, G.T. Ko, P.C. Tong, R.C. Ma, C.S. Cockram, D. Sahota, M.S. Rogers, Progression to impaired glucose regulation, diabetes and metabolic syndrome in Chinese women with a past history of gestational diabetes. Diabetes Metab. Res. Rev. 23(6), 485–489 (2007)
- A. Verma, C.M. Boney, R. Tucker, B.R. Vohr, Insulin resistance syndrome in women with prior history of gestational diabetes mellitus. J. Clin. Endocrinol. Metab. 87(7), 3227–3235 (2002). https://doi.org/10.1210/jcem.87.7.8684
- T. Vilmi-Kerälä, O. Palomäki, M. Vainio, J. Uotila, A. Palomäki, The risk of metabolic syndrome after gestational diabetes mellitus—a hospital-based cohort study. Diabetol Metab. Syndr. 7, 43–43 (2015). https://doi.org/10.1186/s13098-015-0038-z
- A. Zawiejska, E. Wender-Ozegowska, J. Brazert, K. Sodowski, Components of metabolic syndrome and their impact on fetal growth in women with gestational diabetes mellitus. J. Physiol. Pharmacol. 59(Suppl 4), 5–18 (2008)
- C.N. Wijeyaratne, R. Waduge, D. Arandara, A. Arasalingam, A. Sivasuriam, S.H. Dodampahala, A.H. Balen, Metabolic and polycystic ovary syndromes in indigenous South Asian women with previous gestational diabetes mellitus. BJOG **113**(10), 1182–1187 (2006). https://doi.org/10.1111/j.1471-0528.2006. 01046.x
- B. Akinci, A. Celtik, S. Yener, S. Yesil, Prediction of developing metabolic syndrome after gestational diabetes mellitus. Fertil. Steril. **93**(4), 1248–1254 (2010). https://doi.org/10.1016/j. fertnstert.2008.12.007
- B. Akinci, A. Celtik, F. Yuksel, S. Genc, S. Yener, M. Secil, M. A. Ozcan, S. Yesil, Increased osteoprotegerin levels in women with previous gestational diabetes developing metabolic syndrome. Diabetes Res. Clin. Pract. 91(1), 26–31 (2011). https://doi.org/10.1016/j.diabres.2010.09.028
- E.W. Dehmer, M.A. Phadnis, E.P. Gunderson, C.E. Lewis, K. Bibbins-Domingo, S.M. Engel, M. Jonsson Funk, H. Kramer, A. V. Kshirsagar, G. Heiss, Association between gestational diabetes and incident maternal CKD: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am. J. Kidney Dis. **71**(1), 112–122 (2018). https://doi.org/10.1053/j.ajkd.2017. 08.015
- T.B. Ferraz, R.S. Motta, C.L. Ferraz, D.M. Capibaribe, A.C. Forti, A.R. Chacra, C-reactive protein and features of metabolic syndrome in Brazilian women with previous gestational diabetes. Diabetes Res. Clin. Pract. 78(1), 23–29 (2007). https://doi.org/ 10.1016/j.diabres.2007.01.025
- E.P. Gunderson, D.R. Jacobs, V. Chiang, C.E. Lewis, J. Feng, C. P. Quesenberry, S. Sidney, Lactation and lower incidence of the metabolic syndrome in women of reproductive age by gestational diabetes mellitus: a 20-year prospective study of CARDIA women. Diabetes 58, 495–504 (2009)
- 77. C. Mai, B. Wang, J. Wen, X. Lin, J. Niu, Lipoprotein-associated phospholipase A2 and AGEs are associated with cardiovascular risk factors in women with history of gestational diabetes mellitus. Gynecol. Endocrinol. **30**(3), 241–244 (2014). https://doi. org/10.3109/09513590.2013.871522
- W.H. Tam, R.C.W. Ma, X. Yang, G.T.C. Ko, T.T.H. Lao, M.H. M. Chan, C.W.K. Lam, C.S. Cockram, J.C.N. Chan,

Cardiometabolic risk in Chinese women with prior gestational diabetes: a 15-year follow-up study. Gynecol. Obstet. Invest. **73** (2), 168–176 (2012). https://doi.org/10.1159/000329339

- C.M. Boney, A. Verma, R. Tucker, B.R. Vohr, Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115(3), e290–e296 (2005). https://doi.org/10.1542/peds.2004-1808
- T.D. Clausen, E.R. Mathiesen, T. Hansen, O. Pedersen, D.M. Jensen, J. Lauenborg, L. Schmidt, P. Damm, Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J. Clin. Endocrinol. Metab. 94(7), 2464–2470 (2009). https://doi.org/10. 1210/jc.2009-0305
- M. Vääräsmäki, A. Pouta, P. Elliot, P. Tapanainen, U. Sovio, A. Ruokonen, A.-L. Hartikainen, M. McCarthy, M.-R. Järvelin, Adolescent manifestations of metabolic syndrome among children born to women with gestational diabetes in a generalpopulation birth cohort. Am. J. Epidemiol. 169(10), 1209–1215 (2009). https://doi.org/10.1093/aje/kwp020
- 82. E. Maslova, S. Hansen, L.G. Grunnet, M. Strøm, A.A. Bjerregaard, L. Hjort, F.B. Kampmann, C.M. Madsen, A.C.B. Thuesen, B.H. Bech, T.I. Halldorsson, A.A. Vaag, C. Zhang, S.F. Olsen, Maternal glycemic index and glycemic load in pregnancy and offspring metabolic health in childhood and adolescence—a cohort study of 68,471 mother–offspring dyads from the Danish National Birth Cohort. Eur. J. Clin. Nutr. **73**(7), 1049–1062 (2019). https://doi.org/10.1038/s41430-018-0316-6
- L. Wu, L. Cui, W.H. Tam, R.C. Ma, C.C. Wang, Genetic variants associated with gestational diabetes mellitus: a metaanalysis and subgroup analysis. Sci. Rep. 6, 30539 (2016). https://doi.org/10.1038/srep30539
- S.K. Abell, B. De Courten, J.A. Boyle, H.J. Teede, Inflammatory and other biomarkers: role in pathophysiology and prediction of gestational diabetes mellitus. Int. J. Mol. Sci. 16(6), 13442–13473 (2015). https://doi.org/10.3390/ijms160613442
- J.F. Plows, J.L. Stanley, P.N. Baker, C.M. Reynolds, M.H. Vickers, The pathophysiology of gestational diabetes mellitus. Int. J. Mol. Sci. **19**(11), 3342 (2018). https://doi.org/10.3390/ ijms19113342
- R.S. Pons, F.C. Rockett, B. de Almeida Rubin, M.L.R. Oppermann, V.L: Bosa, Risk factors for gestational diabetes mellitus in a sample of pregnant women diagnosed with the disease. Diabetol. Metab. Syndr. 7(1), A80 (2015). https://doi.org/10.1186/1758-5996-7-S1-A80
- E. Jarosz, Lifestyle behaviours or socioeconomic characteristics? Gender differences in covariates of BMI in Hungary. Obes. Sci. Pract. 4(6), 591–599 (2018). https://doi.org/10.1002/osp4.316
- D. Mitanchez, C. Yzydorczyk, B. Siddeek, F. Boubred, M. Benahmed, U. Simeoni, The offspring of the diabetic mother-short- and long-term implications. Best Pract. Res. Clin. Obstet. Gynaecol. 29(2), 256–269 (2015). https://doi.org/10.1016/j. bpobgyn.2014.08.004
- T.A. Buchanan, A.H. Xiang, R.K. Peters, S.L. Kjos, K. Berkowitz, A. Marroquin, J. Goico, C. Ochoa, S.P. Azen, Response of pancreatic beta-cells to improved insulin sensitivity in women at high risk for type 2 diabetes. Diabetes 49(5), 782–788 (2000). https://doi.org/10.2337/diabetes.49.5.782
- 90. N.W. Shek, C.S. Ngai, C.P. Lee, J.Y. Chan, T.T. Lao, Lifestyle modifications in the development of diabetes mellitus and metabolic syndrome in Chinese women who had gestational diabetes mellitus: a randomized interventional trial. Arch. Gynecol. Obstet. 289(2), 319–327 (2014). https://doi.org/10. 1007/s00404-013-2971-0
- A. Ferrara, M.M. Hedderson, C.L. Albright, S.F. Ehrlich, C.P. Quesenberry Jr, T. Peng, J. Feng, J. Ching, Y. Crites, A pregnancy and postpartum lifestyle intervention in women with

gestational diabetes mellitus reduces diabetes risk factors: a feasibility randomized control trial. Diabetes Care **34**(7), 1519–1525 (2011). https://doi.org/10.2337/dc10-2221

- 92. R.E. Ratner, C.A. Christophi, B.E. Metzger, D. Dabelea, P.H. Bennett, X. Pi-Sunyer, S. Fowler, S.E. Kahn, Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions. J. Clin. Endocrinol. Metab. **93**(12), 4774–4779 (2008). https://doi.org/10.1210/jc. 2008-0772
- 93. C. Song, J. Li, J. Leng, R.C. Ma, X. Yang, Lifestyle intervention can reduce the risk of gestational diabetes: a meta-analysis of randomized controlled trials. Obes. Rev. 17(10), 960–969 (2016). https://doi.org/10.1111/obr.12442
- 94. AIHW, A picture of overweight and obesity in Australia (2017)
- D.J. Barker, The developmental origins of adult disease. J. Am. Coll. Nutr. 23(6 Suppl), 588S–595S (2004). https://doi.org/10. 1080/07315724.2004.10719428
- A.L. Blotsky, E. Rahme, M. Dahhou, M. Nakhla, K. Dasgupta, Gestational diabetes associated with incident diabetes in childhood and youth: a retrospective cohort study. CMAJ 191(15), E410–E417 (2019). https://doi.org/10.1503/cmaj.181001
- 97. J. Halipchuk, B. Temple, A. Dart, D. Martin, E.A.C. Sellers, Prenatal, obstetric and perinatal factors associated with the development of childhood-onset type 2 diabetes. Can. J. Diabetes 42(1), 71–77 (2018). https://doi.org/10.1016/j.jcjd.2017.04.003
- International Diabetes Federation, The IDF consensus definition of the metabolic syndrome in children and adolescents (2007). Accessed 5 May 2020

- D.S. Freedman, B. Sherry, The validity of BMI as an indicator of body fatness and risk among children. Pediatrics 124(Suppl 1), S23–S34 (2009). https://doi.org/10.1542/peds.2008-3586E
- 100. E.S. Han, R.M. Krauss, F. Xu, S.B. Sridhar, A. Ferrara, C.P. Quesenberry, M.M. Hedderson, Prepregnancy adverse lipid profile and subsequent risk of gestational diabetes. J. Clin. Endocrinol. Metab. **101**(7), 2721–2727 (2016). https://doi.org/ 10.1210/jc.2015-3904
- 101. Y.M. Wei, H.X. Yang, W.W. Zhu, X.Y. Liu, W.Y. Meng, Y.Q. Wang, L.X. Shang, Z.Y. Cai, L.P. Ji, Y.F. Wang, Y. Sun, J.X. Liu, L. Wei, Y.F. Sun, X.Y. Zhang, T.X. Luo, H.X. Chen, L.J. Yu, Risk of adverse pregnancy outcomes stratified for pre-pregnancy body mass index. J. Matern. Fetal. Neonatal. Med. **29** (13), 2205–2209 (2016). https://doi.org/10.3109/14767058. 2015.1081167
- 102. E.P. Gunderson, C.P. Quesenberry Jr., D.R. Jacobs Jr, J. Feng, C.E. Lewis, S. Sidney, Longitudinal study of prepregnancy cardiometabolic risk factors and subsequent risk of gestational diabetes mellitus: the CARDIA study. Am. J. Epidemiol. **172** (10), 1131–1143 (2010). https://doi.org/10.1093/aje/kwq267
- 103. N.F. Butte, Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am. J. Clin. Nutr. **71**(5 Suppl), 1256S–1261S (2000). https://doi.org/10. 1093/ajcn/71.5.1256s
- 104. D.E. Smith, C.E. Lewis, J.L. Caveny, L.L. Perkins, G.L. Burke, D. E. Bild, Longitudinal changes in adiposity associated with pregnancy. The CARDIA Study. Coronary Artery Risk Development in Young Adults Study. JAMA 271(22), 1747–1751 (1994)

Appendix 5: Publication for Protective effect of breastfeeding on cardiovascular risk factors in women with previous gestational diabetes mellitus and their children: a systematic review and meta-analysis

Review

Protective Influence of Breastfeeding on Cardiovascular Risk Factors in Women With Previous Gestational Diabetes Mellitus and Their Children: A Systematic Review and Meta-Analysis

Journal of Human Lactation I–15 © The Author(s) 2021 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/08903344211034779 journals.sagepub.com/home/jhl SAGE

Maleesa M. Pathirana, B. Med Sci (Hons)^{1,2}, Anna Ali, MSc, BDS^{1,2,3,4}, Zohra S Lassi, PhD^{1,2}, Margaret A. Arstall, MBBS, PhD, FRACP, FCSANZ^{1,5}, Claire T. Roberts, PhD^{1,6}, and Prabha H. Andraweera, MBBS, PhD^{1,2,6}

Abstract

Background: There is evidence that breastfeeding may provide protection against cardiovascular risk factors in mothers with a history of gestational diabetes mellitus and their children who were exposed in utero.

Research Aim: To perform a systematic review and meta-analysis of observational studies to ascertain the effects of breastfeeding on cardiovascular risk factors in women with previous gestational diabetes mellitus and their children exposed in utero.

Methods: Studies assessing conventional cardiovascular risk factors in women with previous gestational diabetes mellitus and children exposed in utero stratified by breastfeeding/no breastfeeding or breastfed/not breastfed were included. Gestational diabetes mellitus was defined based on the International Association of Diabetes in Pregnancy Study Group definition or previous accepted definitions. Breastfeeding was defined as reported in each study.

Results: The literature search yielded 260 titles, of which 17 studies were selected to be in the review. Women with previous gestational diabetes mellitus who did not breastfeed had higher blood glucose (*SMD*: 0.32, 95% CI [0.12, 0.53]) and a greater risk of developing Type 2 diabetes mellitus (*RR*: 2.08 95% CI [1.44, 3.00]) compared to women with no history. There were not enough studies to conduct a meta-analysis on the effects of breastfeeding on risk factors for cardiovascular disease among children exposed to gestational diabetes mellitus in utero.

Conclusion: Breastfeeding appears to be protective against cardiovascular risk factors among women who experience gestational diabetes mellitus.

Keywords

breastfeeding, breastfeeding benefits, cardiovascular risk, gestational diabetes mellitus, maternal health, meta-analysis

Background

Gestational diabetes mellitus (GDM) is defined as glucose intolerance that is initially diagnosed during pregnancy and affects 1 in 7 pregnancies globally (International Diabetes Federation [IDF], 2007). Women with previous GDM have an approximately 7-fold increased risk of developing Type 2 diabetes mellitus (T2DM) later in life (Bellamy et al., 2009). Furthermore, women with previous GDM are more likely to be hypertensive, obese, and have dyslipidaemia postpartum (Pathirana et al., 2021). These metabolic and vascular morbidities promote the development of metabolic syndrome, which is a significant global concern and important risk factor for CVD (Ranasinghe et al., 2017). It has been reported in a previous systematic review and meta-analysis, that women with a history of GDM are at a higher risk of developing metabolic syndrome later in life (Pathirana et al., 2020b). Furthermore, women with a GDM history have a 2-fold increased risk of developing cardiovascular disease (CVD), irrespective of disease progression to T2DM (Andraweera, 2018). It has also been reported that children exposed to GDM in utero also exhibit higher systolic blood pressure, obesity, and higher blood glucose throughout life compared to children born to non-GDM pregnancies, thereby significantly increasing their risk of T2DM and CVD at an earlier age (Pathirana et al., 2020). Therefore, preventative strategies are necessary to reduce CVD risk in both mothers and children exposed to GDM.

Human milk is "the gold standard for infant feeding," with lactation being mutually beneficial for both mother and child (Lessen & Kavanagh, 2015). Breastfeeding over 12 months promotes a significant reduction in both chronic hypertension and T2DM in women (Rameez et al., 2019). Furthermore, children who are breastfed are less likely to develop obesity and T2DM compared to those who are not breastfed (Yan et al., 2014). Breastfeeding for 6 months exclusively, and for up to 2 years as complementary to other nutritional sources is encouraged in women (Lessen & Kavanagh, 2015). Two reviews have assessed breastfeeding and metabolic risk factor reduction in women with previous GDM (Feng et al., 2018; Ma et al., 2019) but these studies have not reported on all conventional cardiovascular risk factors, such as blood pressure and lipids. Having a comprehensive assessment of the effects of breastfeeding on all major cardiovascular risk factors can aid treatment strategies and disease mitigation. These reviews also did not assess the effects of breastfeeding on all major CVD risk factors in children exposed to GDM in utero. Therefore, our aim was to perform a systematic review and meta-analysis to determine the effects of breastfeeding on cardiovascular risk factors in women with previous GDM and their exposed children.

Methods

Design: We undertook a systematic review of the literature and meta-analysis of observational studies in order to assess the effects of breastfeeding on cardiovascular risk factors in mothers with previous GDM and children exposed to GDM in utero. The review was undertaken with reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline (Moher et al., 2009). The protocol of this review is registered in PROSPERO (CRD42020190529)

Sample: Studies eligible for the meta-analyses included women who had a history of GDM/those exposed to GDM in utero, the intervention assessed was breastfeeding/being breastfed compared to not breastfeeding/not being breastfed, and the outcomes of interest were conventional cardiovascular risk factors. Observational studies (i.e., cross-sectional, case-control, and cohort) were included. Studies that did not

Key Messages

- Gestational diabetes mellitus increases the risk of cardiovascular disease in both mothers and children. Evidence has suggested that breastfeeding promotes good cardiovascular health in both mothers and children.
- Our meta-analysis revealed that breastfeeding for any length of time reduced diastolic blood pressure, serum triglycerides, blood glucose, and the risk of Type 2 diabetes mellitus in participants with a history of gestational diabetes mellitus.
- Our research demonstrated that participants with previous gestational diabetes mellitus should be encouraged to breastfeed to reduce their risk of cardiovascular disease later in life.

include a definition of GDM, those that did not define the breastfeeding and non-breastfeeding groups, or did not include participants with GDM, were excluded. We assessed the following in our review (1) CVD risk factors in women with previous GDM who breastfed compared to women with previous GDM who did not breastfeed; (2) CVD risk factors in those exposed to GDM in utero who were breastfed compared to those exposed to GDM in utero who were not breastfed. We included studies of CVD risk assessment at any point in the postpartum period. Key search terms included (gestational diabetes OR pregnancy-induced diabetes) AND (breast feeding OR breastfeeding OR breastmilk OR human milk OR lactat*) AND (formula fed OR infant formula) AND (blood pressure OR hypertension OR cholesterol OR lipids OR body mass index OR glucose OR diabetes OR metabolic syndrome).

As different definitions of breastfeeding were used among studies, breastfeeding was considered as exposure to human milk (either exclusive or mostly breastfed), as defined in the study or feeding at hospital discharge, and not breastfeeding was considered as feeding predominantly or exclusively using other sources (i.e., formula, animal milk, solids, and other liquids) that were not human milk, as well as those reporting on "not breastfeeding at hospital

³Health Performance and Policy Research Unit, Basil Hetzel Institute, University of Adelaide, Woodville South, SA, Australia

⁴Adelaide G-TRAC Centre & CRE Frailty & Healthy Ageing Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia

⁵Department of Cardiology, Lyell McEwin Hospital, Elizabeth Vale, SA, Australia

Date submitted: November 9, 2020; Date accepted: June 30, 2021.

Corresponding Author:

Dr. Prabha H Andraweera, MBBS, PhD, The Robinson Research Institute, and The Adelaide Medical School, The University of Adelaide, South Australia, Australia.

Email: prabha.andraweera@adelaide.edu.au

¹Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia

²Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia

⁶Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia

discharge." The definitions of breastfeeding that were reported in the studies are specified in Table 1. GDM is currently defined based on the International Association of Diabetes in Pregnancy Study Group (IADPSG) guidelines (Metzger et al., 2010). However, since GDM diagnosis has been revised recently, we included studies defining GDM based on prior recommended diagnostic criteria such as the 1999 World Health Organization (WHO) definition (Alberti & Zimmet, 1998), and other regional and study specific definitions. All GDM definitions reported for each study are detailed in Table 1. The literature search generated 260 titles, of which 233 were identified through electronic search and 27 were found through bibliographic search of similar reviews (Feng et al., 2018; Ma et al., 2019). Of these, 39 papers were assessed in full text and 18 were found to be eligible. Figure 1 describes the reasons for excluding studies. Overall, nine studies were included in the meta-analysis. The 10 studies that were not included in the meta-analysis are reported in Table 1.

Data Collection: All studies describing the effects of breastfeeding on conventional CVD risk factors in women with previous GDM and those exposed to GDM in utero were identified by searching electronic databases PubMed Medical Subject Headings (Ormesher et al., 2018), CINAHL, and EMBASE, including all studies up until May 26, 2020. MP conducted the search. The complete search strategy is included in Appendix 1. Bibliographic search of previous observational studies, and systematic reviews and meta-analyses on similar topics were crosschecked for additional studies. All identified studies were independently assessed for relevance by two authors (MP, AA). Data was independently extracted by two authors (MP, AA) and discrepancies were resolved by discussion with ZL and PA.

For each study, the following data were extracted: author's last name, study year, country, study design, definition of GDM, assessment of breastfeeding (i.e., how breastfeeding was assessed and how breastfeeding and not breastfeeding were defined), number of women breastfeeding/non-breastfeeding or children who were breastfed/not breastfed, years of postpartum follow-up/age at assessment, outcome measures, and significant findings.

Measurement: Data extraction was completed independently and in duplicate for the following cardiovascular outcomes: systolic (SBP) and diastolic blood pressure (DBP), body mass index (BMI), serum lipid levels (low density lipoprotein [LDL] high density lipoprotein [HDL], total cholesterol, and triglycerides), blood glucose, fasting insulin and incidence of T2DM. If the same cohort was assessed in different studies, the meta-analysis would include the study with the largest sample size. The oldest cohort was used for the analysis of children born to pregnancies complicated by GDM. We considered studies published in English. Authors of studies were contacted for data clarification (i.e., any missing data) and additional data, when required. If missing or unclear data could be not clarified, these studies were included in the review and reported in Table 1 but not the meta-analysis.

The National Heart, Lung, and Blood Institute (NHLBI) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies was used to assess the methodological quality of each study (NHLBI, 2020). Studies were assessed for internal validity and study quality was decided between authors. Two authors (MP and AA) assessed all eligible studies based on this criteria. Study quality (i.e., high, medium, and low quality) was ascertained based on the authors' scoring and after discussion. The quality assessment is graphically illustrated in the supplementary data (Supplementary Table 1).

Data Analysis: All conventional cardiovascular risk factors were assessed including blood pressure, serum lipids, blood glucose, insulin, and Type 2 diabetes mellitus. The random-effects model was selected as per protocol, in order to account for variability in GDM diagnosis, and differences in breastfeeding practices. For continuous outcomes, mean and standard deviation (SD) were reported in the meta-analyses. Standard Error of Mean (SEM) was converted to SD on RevMan software if Mean and SD were not reported. The Standardized Mean Difference (SMD) was used when individual studies reported outcome in different units, and Mean Difference (MD) was used when units were consistent. For dichotomous outcomes, the *n* of events and *n* of participants were used in the meta-analysis to analyze the Risk Ratio (RR) and the associated 95% CI. The number of participants/ events were calculated based on the total sample size for breastfeeding and not breastfeeding groups, if the numbers were only reported as a percentage. All analyses were crosschecked and discrepancies were resolved by discussion (ZL, MP). The significant differences of breastfeeding compared to not breastfeeding for all outcomes was a p of < .05. All test values were two-tailed.

When the I^2 statistic exceeded 50%, and the $X^2 p$ value was less than 0.1, substantial heterogeneity was considered. Data that were unable to be reported in the meta-analyses, but still reported an association between breastfeeding and CVD risk in women with GDM history and exposed children were included in Table 1 under significant findings. The meta-analysis was performed using Review Manager Version 5.3, based on inverse variance. Sensitivity analyses were conducted to ascertain heterogeneity for each outcome after excluding studies classified as of low to moderate quality in the NHLBI Quality assessment, as determined after author discussion. Five authors were contacted for additional data, of whom one responded (20% author response rate). Assessment of publication bias by funnel plot analysis was not required for any of the meta-analysis, as there was an inadequate number of studies in the meta-analysis to perform a sufficient assessment.

I st Author (date) Country	Design	Definition of GDM	Assessment and definition of BF	n = BF /not breastfed	F/U assessment time or age at f/u	Outcomes	Significant Findings
Studies assessing offsp Hui* (2018) Hong Kong	Prospective cohort	previous GDM Self-reported (WHO 1999)	Self-administered questionnaire: FF, mix feeding or BF only	464/4, 143	0-3 months	BMI Z-Score, Glucose	BF GDM <i>in utero</i> = lower BMI > not breastfed at 3 mos. only. Infant glucose levels = lower in BF > not BF infants > M blood glucose FF firtst feed
Martens* (2016) Canada Studies assessing moth	Retrospective databases ners with previous GD	Hospital diagnosis at 21 wks. GA M	Medical records	42,332/208,060	24 years	Type II DM	BF initiation was associated > 17% reduced risk of youth onset type 2 DM
Chamberlain (2015) Australia	Retrospective database	ADIPS	Discharge medical records	Fully BF = 217 (75%) Partial BF = 51 (18%) Never BF = 17 (6%)	3, 5, 8 years PP	Type II DM	Increased rate of progression to type 2 DM partially BF compared to those who fully Bf at discharge
Corrado (2019) Italy	Retrospective cohort	Italian Institute of Health	Interviewed at OGTT frequency of BF	81/16	3 months	BMI Lipids Glucose Insulin	HOMA-IR is associated with BF
Chouinard- Castonguay (2013) Canada	Retrospective follow-up	Medical records	Self-reported questionnaires. Sum of months of lactation, either exclusive or mixed.	l 1 6/28	4 years	BMI Glucose Insulin	BF Higher HOMA-IS than none. Lactation duration was an independent predictor of insulin sensitivity.
Dijigow (2015) Brazil	Retrospective cohort	IADPSG	Medical records BF =yes/no	114/18	40 days PP	Glucose	BF was a protective factor $>$ PP glucose intolerance
Gunderson* (2011) USA	Prospective Observational Cohort	Carpenter & Coustan	Self-reported at 6-9 wks. PP telephone & monthly questionnaires. EBF; Mostly BF, Mixed: EFF	EBF = 211 Mostly BF = 99 Mixed = 77 EFF = 135	6-9 weeks	BMI Glucose	EBF > lower plasma glucose & insulin than FF
Gunderson (2015) USA	Prospective Observational Cohort	Carpenter & Coustan	Same as 2011	EBF = 205 Mostly BF = 387 Mixed = 214 EFF = 153	Same as 2011	Same as 2011	Higher lactation intensity and longer duration is associated with lower adjusted rates of incident DM.
Kim* (2011) South Korea	Prospective Observational	Carpenter & Coustan	Self-reported	BF GDM-NGT = 52% Mixed = 32.3% Not BF GDM = 15.6% prediabetes BF = 47% mixed = 44% No BF GDM-T2DM = 8.3%	6-12 weeks	Type II DM	Lactation and duration of lactation have no significant effect on PP glucose status
Kjos (1993) USA	Prospective Observational	DDD	Self-reported 4-12 wks. after delivery "Are you nursing your infant?" (Yes or no)	404/405	44-45 days PP	BMI, Lipids Glucose Type II DM	HDL-C was lower in history of GDM in non-lactating compared lactating BF with either diet or insulin therapy had significantly lower fasting serum glucose and higher HDL cholesterol

(continued)

Table 1. Summary of Reviewed Studies (N = 17).

_
_
<u> </u>
4
d J
_
_
_
_
•
_
_
<u> </u>
-
0
-
()
•
ع
٣
٣
٣
<u>چ</u>
<u> </u>
ی ۲
-
∋ I. (0
e I. (6
le I. (
le I. (
ole I. (d
ble I. (d
uble I. (o
able I. (o
able I. (o
Fable I. (o
Table I. (o

I st Author (date) Country	Design	Definition of GDM	Assessment and definition of BF	n = BF /not breastfed	F/U assessment time or age at f/u	Outcomes	Significant Findings
Martens* (2016) Canada	Retrospective database	Hospital diagnosis at 21 wks. GA	Medical records	7,510/3,040	5, 10, 15, 20, 24 yrs.	Type II DM	Initiating BF inversely related to PP T2DM with & without GDM
McManus (2011) Canada	Prospective Observational	ADA	Not specified	BF 3 mos. = 14 Did not BF past discharge = 12	3 months	Blood pressure BMI Lipids Glucose Insulin	Previous GDM BF = lower systolic BP compared to non-BF DBP = was lower with previous GDM BF Women with a history of GDM BF = higher β-cell function for the degree of insulin resistance based on disposition index
Nelson* (2008) USA	Retrospective cohort	Not specified	Self-reported	BF I yr. = 36%	l year PP	Blood glucose	Normal GTT PP = more likely to BF BF did not protect women from deteriorating GTT
Saucedo (2014) Mexico	Prospective Observational	ADA	Not specified	BF < 6 wks. BF >6 wks 6 mos.	6 mos. PP	Lipids Glucose Insulin	BF > 6 wks. = > weight loss PP and lower leptin levels, after wgt. adjustment
Shub* (2019) Australia	Secondary analysis of cohort study	ADIPS	EBF, EFF or mixed	GDM group: EBF = 106 Non-BF = 53 Controls: BF = 65 Non-BF = 19	6-10 wks. PP	Lipids Glucose	Adjusting BMI, age and ethnicity, women with GDM BF = lower fasting glucose No difference > fasting lipids GDM BF and non-BF
Yashui (2017) Japan	Retrospective	Japan Society of Obstetrics & Gynaecology	Questionnaire or telephone interview BF practices at 6-8 wks., 6 mos. & 12 mos. PP. High intensity BF = infants fed by BF alone or roughly 80% at 6-8 wks. & 6 mos. PP	High intensity = 70, non- high = 18	6-8 wks. 6-8 mos. 12-14 mos.	BMI Glucose Insulin	High intensity BF associated with abnormal glucose tolerance HOMA-IR lower in high intensity BF
Ziegler* (2012) Germany	Prospective Observational	German Diabetes Association	Questionnaire BF (yes/no) duration full BF at 9 mos. PP	BF = 201 >3 mo. BF =109 Full BF = 62%	15 years PP	Type II DM	BF associated with a marked delay in DM BF Duration BF inversely associated with PP DM risk and longer DM free duration.

Note. Bf = breastfeeding: EBF = exclusive breastfeeding: FF = formula feeding: FV = follow-up; BMI-Z = Body Mass Index z-score; GA = gestational age; DM = diabetes mellitus; ADIPS = Australian Diabetes in Pregnancy Society; OGTT = Oral Glucose Tolerance Test; HOMA-IR = Homeostatic Model of Insulin Resistance; HOMA-IS = Homeostatic Model of Insulin Sensitivity; IADPSG = International Association of Diabetes in Pregnancy Study Group; NDDG = National Diabetes Data Group 1979; HDL-C = High-density lipoprotein – cholesterol; ADA = American Diabetes Association. Articles not included in the meta-analysis are noted with *.

Figure 1. Flow Chart.

Results

Effects of Breastfeeding on Cardiovascular Risk Factors in Women With Previous GDM

Characteristics of the Sample: Table 1 highlights the details of each study. Overall, the majority of studies defined GDM based on the previous criteria; only three studies in the review defined GDM based on definitions influenced by IADPSG guidelines. Most studies were conducted in Caucasian populations, with two studies conducted in Asian populations. The age range of participants across studies was wide, with participants as young as < 25 to > 40 years of age. Follow-up assessment varied between less than 1 month postpartum to 24 years postpartum.

Quality Assessment of Studies: Quality assessment of studies based on the NHLBI tool revealed that nine studies were of high quality, 10 studies were of moderate quality, and none of the studies were of poor quality (Supplementary Table 1).

Blood Pressure: Blood pressure data was reported in one study (McManus et al., 2001). The study showed that

systolic and diastolic blood pressure was lower in women with a history of GDM who breastfed compared to those who did not (Table 1).

Body Mass Index: Body Mass Index (BMI) data were reported in five studies (Chouinard-Castonguay et al., 2013; Corrado et al., 2019; Gunderson et al., 2012; Kjos et al., 1993; McManus et al., 2001; Yasuhi et al., 2017). BMI was not different in women with previous GDM who did not breastfeed compared to those who breastfed based on quantitative summary measures (Supplementary Figure 1).

Total Cholesterol: Total cholesterol data was reported in five studies (Corrado et al., 2019; Kjos et al., 1993; McManus et al., 2001; Saucedo, 2014). Total cholesterol levels were not different between women with previous GDM who did not breastfeed in comparison to those who did breastfed (Supplementary Figure 2).

Triglycerides: Serum triglyceride data were available from five studies (Corrado et al., 2019; Kjos et al., 1993; McManus et al., 2001; Saucedo, 2014; Shub et al., 2019). Four studies were reported in the meta-analysis (Corrado

		Did no	throastf	hool	Br	oastfod			Std Mean Difference		Std Mean Difference
A	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random. 95% CI		IV. Random, 95% Cl
	Chouinard-Castonguay 2013 (4 years pp)	5.8	0.7	28	5.8	0.7	116	12.9%	0.00 [-0.41, 0.41]		+
	Corrado 2017 (3 months postpartum)	80.6	9.7	16	74.8	9.2	81	9.8%	0.62 (0.08, 1.16)		-
	Dijigow 2015 (6-8 weeks postpartum)	91.3	8.7	18	86.5	9.3	114	10.7%	0.52 [0.02, 1.02]		-
	Gunderson 2015 (6-9 weeks postpartum)	97.8	9.1	153	92.2	7.9	205	18.9%	0.66 [0.45, 0.88]		•
	Kjos 1993 (44 days postpartum)	98	17	405	93	13	404	21.1%	0.33 [0.19, 0.47]		
	Mattei 2014 (30 months postpartum)	92.2	8.9	19	90.1	16.4	62	0.0%	0.14 [-0.38, 0.65]		
	McManus 2001 (3 months postpartum)	5.4	0.6928	12	5.3	1.1225	14	6.2%	0.10 [-0.67, 0.87]		+
	Saucedo 2014 (6 months postpartum)	116.2	31.3	22	155.3	104.1	21	8.6%	-0.50 [-1.11, 0.10]		
	Yashui 2017 (12-14 months postpartum)	96.9	10.9	42	91.2	8.4	35	11.8%	0.57 [0.12, 1.03]		-
	Total (95% CI)			696			990	100.0%	0.34 [0.12, 0.57]		•
	Heterogeneity: Tau ² = 0.06; Chi ² = 20.71, df =	7 (P = 0	.004); I ² =	= 66%						+	
	Test for overall effect: Z = 2.98 (P = 0.003)									-10	-5 U 5 1U Presetfed Did not breastfeed
											Breastied Did not breastieed
		Did no	ot breast	tfeed	Brea	stfed			Risk Ratio		Risk Ratio
	Study or Subgroup	EVe	ents	Total	Events	s Total	Weig	ht M-H,	, Random, 95% Cl		M-H, Random, 95% Cl
В	Chamberlain 2015 (no specific pp year)		3	17	30	0 217	11.6	%	1.28 [0.43, 3.76]		
	Gunderson 2015 (6-9 weeks postpartum)		27	153	17	7 205	41.6	%	2.13 [1.20, 3.76]		
	Kjos 1993 (44 days postpartum)		38	405	17	7 404	43.8	%	2.23 [1.28, 3.88]		
	McManus 2001 (3 months postpartum)		3	12	1	1 14	3.0	%	3.50 [0.42, 29.39]		
	Total (95% CI)			587		840	100 0	196	2 08 [1 44 3 00]		•
	Total quanta		74	007	64	5	100.0		2100 [1144, 0100]		•
	Hotorogonoity: Touã - 0.00: Chiã - 1.00. df -	2/0-0	1703-18-	. 004	0:	5				_	
	Therefore every that $T = 0.00$, $Chr = 1.09$, $dr = 1.0$	- 3 (F = I	o, in=	070					(D.05	0.2 1 5 20
	Test for overall effect. $Z = 3.90 (P < 0.0001)$										Breastfeed Did not breastfeed

Figure 2. (A) Meta-Analysis of Blood Glucose; (B) Meta-Analysis of T2DM.

et al., 2019; Kjos et al., 1993; McManus et al., 2001; Saucedo, 2014). Serum triglycerides were not different between women who had a history of GDM who did not breastfeed compared to those who did breastfeed (*SMD* = 0.23; 95% CI [-0.01, 0.47]; p = .06; $I^2 = 26\%$; Supplementary Figure 3). The authors of the one study not reported in the meta-analysis found that serum triglycerides were not significantly different between women who had a history of GDM who breastfed compared to women with previous GDM who did not breastfeed (Shub et al., 2019).

HDL and LDL Cholesterol: Two studies reported on LDL and HDL cholesterol (Kjos et al., 1993; Shub et al., 2019). Both studies showed that serum LDL-C levels were not different between women who had a history of GDM who did not breastfeed compared to those who breastfed. However the study by Kjos et al. 1993 demonstrated that HDL-C was lower in those with a history of GDM who were non-lactating compared to those who were lactating (Table 1).

Insulin: Fasting insulin data were available from five studies (Chouinard-Castonguay et al., 2013; Corrado et al., 2019; McManus et al., 2001; Saucedo, 2014; Yasuhi et al., 2017). There was no significant difference in fasting insulin between women with previous GDM who did not breastfeed compared to those who breastfed, based on quantitative summary measures (Supplementary Figure 4).

Glucose: Serum glucose data were available from 11 studies (Chouinard-Castonguay et al., 2013; Corrado et al., 2019; Dijigow et al., 2015; Gunderson et al., 2012; 2015; Kjos et al., 1993; McManus et al., 2001; Nelson et al., 2008; Saucedo, 2014; Shub et al., 2019; Yasuhi et al., 2017), of which eight were included in the meta-analysis (Chouinard-Castonguay et al., 2013; Corrado et al., 2019; Dijigow et al., 2015; Gunderson et al., 2015; Kjos et al., 1993; McManus et al., 2001; Saucedo, 2014; Yasuhi et al., 2017). Based on quantitative summary measures, there was a 0.34 *SMD* higher serum glucose level among women with previous GDM who did not breastfeed compared to those who breastfed (*SMD* 0.32; 95% CI [0.12, 0.57]; p = .003; $I^2 = 66\%$; Figure 2A). The authors of two studies that were not included in the meta-analysis reported that women with previous GDM who breastfed had significantly lower blood glucose compared to those who did not breastfeed in both unadjusted and adjusted models (Gunderson et al., 2012; Shub et al., 2019). However, Nelson et al. (2008) reported that breastfeeding was not protective against deteriorating glucose tolerance in women with previous GDM.

Incidence of Type 2 diabetes mellitus: Type 2 diabetes mellitus incidence was reported in seven studies (Chamberlain et al., 2016; Gunderson et al., 2015; Kim et al., 2011; Kjos et al., 1993; Martens et al., 2016; McManus et al., 2001; Ziegler et al., 2012), of which four were reported in the metaanalysis (Chamberlain et al., 2016; Gunderson et al., 2015; Kjos et al., 1993; McManus et al., 2001). Based on quantitative summary measures, women with previous GDM who did not breastfeed were at a significantly higher risk of developing T2DM compared to women who breastfed (RR 2.21; 95% CI [1.50, 3.27]; p < .0001; $I^2 = 0\%$; Figure 2B). From the results of the three studies that were not reported in the meta-analysis, authors of two studies reported that breastfeeding was associated with a reduction in T2DM (Chamberlain et al., 2016; Martens et al., 2016; Ziegler et al., 2012). However, Kim et al. (2011) reported that lactation and

duration of lactation had no significant effect on postpartum glucose status, including progression to T2DM.

Sensitivity Analyses: The results of sensitivity analyses including moderate quality studies showed a significant decrease in heterogeneity for outcomes BMI, triglycerides, and total cholesterol. However, there was an increase in heterogeneity for outcomes blood glucose and insulin. (Supplementary Table 2).

Effect of Breastfeeding on Cardiovascular Risk Factors Among Children Exposed to GDM in Utero

Two studies were eligible for inclusion (Hui et al., 2018; Martens et al., 2016). The details for both studies are included in Table 1.

BMI: One study reported on BMI z-score. Hui et al., in a prospective birth cohort, reported that breastfeeding does not attenuate the association between GDM exposure in utero and BMI in the offspring at 3 months of age (Table 1; Hui et al., 2018).

Type 2 diabetes mellitus: Martens et al. (2016) reported that breastfeeding initiation before hospital discharge was associated with a reduced risk of T2DM at a 24-year follow up in those who were exposed to GDM in utero, (overall HR = 0.83; 95% CI [0.69, 0.99]; p = .038).

Discussion

This systematic review comprehensively assessed the influences of breastfeeding on all conventional risk factors for CVD in women with previous GDM, and among children born to pregnancies complicated by GDM. The results of the meta-analysis demonstrated that participants with previous GDM, who breastfed their infants at any stage, had a decrease in some cardiovascular risk factors compared to those who did not breastfeed. There were not enough studies to conduct meta-analyses on the effects of breastfeeding on cardiovascular risk factors in children exposed to GDM in utero. Longitudinal studies with sufficient power are required to ascertain the effects of breastfeeding on cardiovascular risk factors in children exposed to GDM in utero.

Pregnancy complications, including GDM, may confer risk for the development of CVD in women with a predisposition to poor life-long cardiovascular health, due to either genetics or poor lifestyle (or both) Andraweera, 2018. GDM occurs when β -cells fail to undergo sufficient expansion resulting in inadequate compensation for placental induction of a hyperinsulinemic state, which promotes elevation of blood glucose (Abell et al., 2015). This may lead to long-lasting β -cell damage following pregnancy. The growing fetus is also affected as GDM causes an excess of nutrient transport from the maternal to fetal circulation via the placenta. The fetus adapts epigenetically in response to this adverse intrauterine environment and is said to be programmed, which affects growth and long term metabolic health (Hales & Barker, 2001). Therefore, mothers and their children are at higher risk of metabolic and cardiovascular diseases later in life. Preventive strategies and treatments to reduce development of obesity are required to significantly reduce development of CVD in women with a history of GDM and their offspring.

Evidence strongly suggests that changes in body adipose tissue content and reducing hyperglycaemia can promote disease mitigation (Kim et al., 2011). While lifestyle changes can promote a significant risk reduction, compliance drops after 1 year postpartum (Ratner et al., 2008). Physiological preparation for breastfeeding occurs during pregnancy and initiation of breastfeeding after birth aids maternal recovery and is mutually beneficial for both mother and baby (Stuebe & Rich-Edwards, 2009). Authors of various studies have reported that mothers who breastfeed for a period of 6-12 months are leaner with a lower BMI than those who do not (Jiang et al., 2018). Those who are breastfed are also less likely to be overweight or obese than those who are formula fed (Harder et al., 2005; Yan et al., 2014). Therefore, good quality evidence on the effects of breastfeeding on women with a history of GDM and their children is necessary to support updates to guidelines regarding breastfeeding in women with previous GDM and the benefits for long-term cardiovascular health.

Overall, study participants with previous GDM had a higher cumulative incidence of hypertension and ischemic heart disease compared with controls (Daly et al., 2018). Breastfeeding may mitigate the risk of hypertension in all mothers, as it has been reported that women who breastfed are less likely to be hypertensive in comparison to those who did not (Rameez et al., 2019). It is thought that the increase in oxytocin and prolactin in breastfeeding mothers influences blood pressure regulation and furthermore promotes positive changes to vascular remodeling (Burgess et al., 2019). This concept supports the hypothesis that breastfeeding may cause a physiological reset to the adverse effects that occur due to pregnancy (Lessen & Kavanagh, 2015). There were not enough studies to complete a meta-analysis on systolic and diastolic blood pressure in those with a history of GDM who breastfed. Therefore, further research is required to understand the effects of breastfeeding on systolic and diastolic blood pressure in women with a history of GDM.

Women who breastfeed have a higher metabolic expenditure and increased rate of lipolysis than those who do not breastfeed (Gunderson et al., 2007). Previously researchers have reported that breastfeeding duration was associated with a reduction of dyslipidaemia in young women, including a reduction in the level of serum triglycerides. Furthermore, triglycerides made up the majority of fats in human milk (Martin et al., 2016). We were unable to show a difference in serum triglycerides between those with a history of GDM who breastfed compared to those who did not breastfeed. Therefore, more research may be needed to investigate an association between breastfeeding and the reduction in serum triglycerides in mothers.

There is strong evidence to suggest that breastfeeding reduces the risk of T2DM (Horta et al., 2015; Rameez et al., 2019). It has been reported that women who have never breastfed have a 50% higher risk for developing T2DM than women who breastfed for as little as 1–3 months postpartum (Schwarz et al., 2010). Our results support an association between breastfeeding and a reduced risk of T2DM in women with previous GDM. Considering the significantly higher risk of developing T2DM among women with previous GDM, many of whom also exhibit a pre-diabetic phenotype (Buchanan et al., 2012), breastfeeding should be highly encouraged in this population to reduce the risk of T2DM later in life.

Researchers have suggested that breastfeeding can reduce the risk of non-communicable disease in children. Human milk is composed of long-chain polyunsaturated fatty acids, which can promote blood pressure reduction, and changes in skeletal muscle allowing for protection against insulin resistance and development of T2DM (Horta et al., 2015). Whereas, formula fed or mixed fed infants have been reported to present with higher levels of insulin resistance and atherosclerotic markers, and exhibit poor β-cell function (Lucas et al., 1980; Shoji & Shimizu, 2019). Breastfeeding may also promote a healthier diet, as those who are breastfed are more likely to have a higher intake of fruits and vegetables than those who are not (Moss et al., 2020). This may also be influenced by the fact that women who choose to breastfeed may be more likely to have a high quality diet and promote this lifestyle in their children. As obesity and metabolic risk factors manifest as young as 3 years old in offspring exposed to GDM in utero (Pathirana et al., 2020), breastfeeding may be protective against early life obesity. Only two studies in the review assessed cardiovascular risk factors in those exposed to GDM in utero who were and were not breastfed. Based on current literature, longitudinal studies that assess long-term cardiovascular benefits of breastfeeding among children exposed to GDM in utero are warranted.

Limitations: Based on the qualitative assessment, many of the studies were of high to moderate quality. Due to the observational and retrospective design of the studies included in the review, it was not possible for the majority of authors of studies to assess the frequency and volume of human milk fed to infants exposed to GDM in utero. A qualitative study design renders it difficult to assess outcomes continuously; rather, a randomized control trial design would be more effective to account for variables in a controlled manner. However, studies by Gunderson et al. (2015) and Yashui et al. (2017) utilized a design in which participants were contacted via telephone over the study period and interviewed about their current breastfeeding routine, therefore enabling less change of recall bias.

Some outcomes in the meta-analysis exhibited higher heterogeneity. However, sensitivity analysis resulted in reduced heterogeneity on outcomes of BMI, total cholesterol, and triglycerides (Supplementary Table 2) but a moderate increase in heterogeneity for the other outcomes. Funnel plot analysis was not required, as the number of studies for each outcome did not exceed 10. Heterogeneity in aggregate data is hard to ascertain. It can be due to study specific differences, such as diversity in population, age of assessment, definition of disease, and so forth. We attribute some heterogeneity in these analyses to the different definitions of breastfeeding, particularly as lactation was defined in some studies as > = 6months of exclusive breastfeeding, and in others as breastfeeding at hospital discharge. The majority of the studies used definitions of GDM that were prior to the new IADPSG definition, which has a lower cut-off for GDM diagnosis, and is therefore thought to increase the number of women being diagnosed with GDM. Therefore, this may affect the assessment of cardiovascular outcomes and representation of women with GDM as studies with the old definition were used primarily in the meta-analysis. Presentation of CVD risk factors in these women may be affected by the time of postpartum assessment. We were unable to complete subgroup analyses stratified by time of risk factor assessment due to the low number of available studies. However, previous reviews we have completed have demonstrated that cardiovascular risk factors are seen as early as < 1 year postpartum in women with previous GDM (Pathirana et al., 2020a; 2020b).

Conclusion

Women with previous GDM should be encouraged to breastfeed to reduce their risk of CVD later in life. More research in this area is required in order to integrate it fully for clinical use and disease mitigation strategies. Lactation specialists should promote breastfeeding in women with previous GDM through integrating what is known about the benefits of breastfeeding on cardiovascular disease risk factors. More research is needed to determine the effects of breastfeeding on cardiovascular risk factors in children exposed to GDM in utero, but the limited literature reports protective effects.

Appendix I

P – Women with history of GDM, children who are exposed to GDM *in utero*

- I Breastfeeding
- C Formula fed

O – Conventional Cardiovascular risk factors (BP, BMI/ BMI z-score, Glucose, Lipids, Insulin), T2DM, metabolic syndrome

I had a look on PubMed again – I don't think there will be many studies for this review except for studies looking at T2DM. I think it'll be pretty similar to the MetS review

GDM	Breastfeeding	Formula milk	Outcomes	Population
"Diabetes, Gestational"[MeSH] OR "gestational diabetes*" [tiab] OR "pregnancy induced diabetes" [tiab]	Breast Feeding [MeSH] OR milk, human [MeSH] OR "breastfeeding" [tiab] OR "breast milk" [tiab] OR "lactat*" [tiab] OR "breastfed" [tiab]	"infant formula" [MeSH] OR "animal milk" [tiab] OR "cow milk" [tiab] OR "goat milk" [tiab] OR "goat's milk" [tiab] OR "animal colostrum" [tiab] OR "infant formula" [tiab] OR "formula milk" OR "baby formula" [tiab]	<pre>"metabolic syndrome"[MeSH] OR "Diabetes, Gestational"[MESH] OR "Blood Pressure"[MESH] OR "hypertension"[MESH] OR "cholesterol"[MESH] OR "lipids"[MESH] OR "triglyceride"[MESH] OR "body mass index"[MESH] OR "insulin"[MESH] OR "body mass index"[MESH] OR "insulin"[MESH] OR "diabetes mellitus, type 2"[MeSH] OR "diabetes mellitus, type 2"[MeSH] OR "diabetes" [tiab] OR "BMI" [tiab] OR "cardiovascular" [tiab] OR "metabolic"[tiab] OR "lipid"[tiab] OR "hypertension"[tiab] OR "body mass index"[tiab] OR "oesity"[tiab] OR "oesity"[tiab] OR "overweight"[tiab] OR lipid*[tiab] OR "triglyceride*"[tiab] OR "glucose"[tiab] OR "insulin"[tiab] OR "vascular"[tiab] OR "vascular"[tiab] OR "wascular"[tiab] OR "metabolic syndrome"[tiab] OR "insulin resistance syndrome X"[tiab] OR</pre>	"pregnan*"[tiab] OR "mother"[tiab] OR "women"[tiab] OR "woman"[tiab] OR "kid"[tiab] OR "adult"[tiab] OR "offspring"[tiab] OR "neonate"[tiab] OR "infant"[tiab] OR "adult"[tiab]

PUBMED = 35 on PUBMED

("Diabetes, Gestational" [MeSH] OR "gestational diabetes" [tiab] OR "pregnancy induced diabetes" [tiab]) AND (Breast Feeding [MeSH] OR milk, human [MeSH] OR "breastfeeding" [tiab] OR "breast milk" [tiab] OR "breastfeed" [tiab] OR "lactat*" [tiab] OR "breastfed" [tiab]) AND ("infant formula" [MeSH] OR "animal milk" [tiab] OR "formula fed" OR "cow milk" [tiab] OR "cow's milk" [tiab] OR "goat milk" [tiab] OR "goat's milk" [tiab] OR "colostrum" [tiab] OR "infant formula" [tiab] OR "formula milk" OR "baby formula" [tiab]) AND ("metabolic syndrome" [MeSH] OR "Diabetes, Gestational" [MESH] OR "Blood Pressure" [MESH] OR "hypertension" [MESH] OR "triglyceride" [MESH] OR "body mass index" [MESH] OR "insulin" [MESH] OR "glucose" [MESH] OR "diabetes mellitus, type 2"[MeSH] OR "blood pressure"[tiab] OR "diabetes" [tiab] OR "BMI" [tiab] OR "cardiovascular" [tiab] OR "metabolic" [tiab] OR "lipid" [tiab] OR "hypertension" [tiab] OR "body mass index" [tiab] OR "obesity" [tiab] OR "overweight" [tiab] OR lipid* [tiab] OR "cholesterol" [tiab] OR "triglyceride" [tiab] OR "glucose"[tiab] OR "insulin"[tiab] OR "vascular"[tiab] OR "type 2 diabetes mellitus"[tiab] OR "T2DM"[tiab] OR "metabolic syndrome"[tiab] OR "insulin resistance syndrome"[tiab] "syndrome X"[tiab]) OR AND ("pregnan*"[tiab] OR "mother"[tiab] OR "women"[tiab] OR "woman"[tiab] OR "kid"[tiab] OR "adult"[tiab] OR "child*"[tiab] OR "offspring"[tiab] OR "neonate"[tiab] OR "infant"[tiab] OR "adult"[tiab])

EMBASE

GDM	Breastfeeding	Formula milk	Outcomes	Population
"Diabetes, Gestational"/ Ex OR "gestational diabetes*":ti,al OR "pregnancy induced diabetes" :ti,ab	Breast Feeding/ex OR mill human/ex OR "breastfeeding" :ti,ab OR "breastfeed" :ti,ab OR "lactat*":ti,ab OR "breastfed" :ti,ab	c,"infant formula"/ex OR "animal milk" :ti,ab OR "cow milk" :ti,ab OR "goat milk" :ti,ab OR "goat's milk" :ti,ab OR "infant formula" :ti,ab OR "infant formula" :ti,ab OR "formula milk" :ti,ab OR "baby formula" :ti,ab	"metabolic syndrome"/ ex OR "Diabetes, Gestational"/ex OR "Blood Pressure"/ex OR "hypertension"/ ex OR "cholesterol"/ ex OR "lipids"/ex OR "triglyceride"/ex OR "body mass index"/ ex OR "insulin"/ex OR "glucose"/ex OR "diabetes mellitus, type 2"/ex OR "blood pressure":ti,ab OR "diabetes":ti,ab OR "diabetes":ti,ab OR "BMI" :ti,ab OR "cardiovascular":ti,ab OR "lipid":ti,ab OR "hypertension" :ti,ab OR "body mass index" :ti,ab OR "obesity" :ti,ab OR "overweight" :ti,ab OR lipid*:ti,ab OR "triglyceride*":ti,ab OR "triglor :ti,ab OR "insulin resistance syndrome X":ti,ab	"pregnan*":ti,ab OR "mother" :ti,ab OR "woman":ti,ab OR "kid" :ti,ab OR "adult" :ti,ab OR "child*":ti,ab OR "offspring" :ti,ab OR "neonate" :ti,ab OR "infant" :ti,ab OR "adult" :ti,ab

EMBASE = 133

'diabetes, gestational'/exp OR 'gestational diabetes*':ti,ab OR 'pregnancy induced diabetes':ti,ab AND breast AND 'feeding'/exp milk, AND OR 'human'/exp OR 'breastfeeding':ti,ab OR 'breast milk':ti,ab OR 'breastfeed':ti,ab OR 'lactat*':ti,ab OR 'breastfed':ti,ab AND 'infant formula'/ exp OR 'animal milk':ti,ab OR 'cow milk':ti,ab OR 'cows milk':ti,ab OR 'goat milk':ti,ab OR 'colostrum':ti,ab OR 'infant formula':ti,ab OR 'formula milk':ti,ab OR 'baby formula':ti,ab AND 'metabolic syndrome'/exp OR 'diabetes, gestational'/exp OR 'blood pressure'/exp OR 'hypertension'/ exp OR 'cholesterol'/exp OR 'lipids'/exp OR 'triglyceride'/ exp OR 'body mass index'/exp OR 'insulin'/exp OR 'glucose'/ exp OR 'diabetes mellitus, type 2'/exp OR 'blood pressure':ti,ab OR 'diabetes':ti,ab OR 'bmi':ti,ab OR 'cardiovascular':ti,ab OR 'metabolic':ti,ab OR 'lipid':ti,ab OR 'hypertension':ti,ab OR 'body mass index':ti,ab OR 'obesity':ti,ab OR 'overweight':ti,ab OR lipid*:ti,ab OR 'cholesterol':ti,ab OR 'triglyceride*':ti,ab OR 'glucose':ti,ab OR 'insulin':ti,ab OR 'vascular':ti,ab OR 'type 2 diabetes mellitus':ti,ab OR 't2dm':ti,ab OR 'metabolic syndrome':ti,ab OR 'insulin resistance syndrome':ti,ab OR 'syndrome x':ti,ab AND 'pregnan*':ti,ab OR 'mother':ti,ab OR 'women':ti,ab OR 'woman':ti,ab OR 'kid':ti,ab OR 'child*':ti,ab OR 'offspring':ti,ab OR 'neonate':ti,ab OR 'infant':ti,ab OR 'adult':ti,ab

-			Α.	
	IN	н	Δ.	
_	1 1			

GDM	Breastfeeding	Formula milk	Outcomes	Population
MH "Diabetes, Gestational" + OR "gestational diabetes*" OR "pregnancy induced diabetes"	Breast Feeding [MeSH] "breastfeeding" OR "breast milk" OR "breastfeed" OR "lactat*" OR "breastfed"	"infant formula" +OR "animal milk" OR "cow milk" OR "cow's milk" OR "goat milk" OR "goat's milk" OR "animal colostrum" OR "infant formula" OR "formula milk" OR "baby formula"	 "metabolic syndrome" + OR "Diabetes, Gestational" + OR "Blood Pressure" + OR "hypertension" + OR "cholesterol" + OR "lipids" + OR "triglycerides" + OR "body mass index" + OR "body mass index" + OR "insulin" + OR "glucose" + OR "diabetes mellitus, type 2" + OR "blood pressure" OR "diabetes" OR "BMI" OR "cardiovascular" OR "metabolic" OR "lipid" OR "body mass index" OR "body mass index" OR "body mass index" OR "cholesterol" OR "glucose" OR "insulin" OR "triglyceride*" OR "glucose" OR "insulin" OR "vascular" OR "type 2 diabetes mellitus" OR "T2DM" OR "metabolic syndrome" OR "insulin resistance syndrome" OR 	"pregnan*"OR "mother" OR "women" OR "woman" OR "kid" OR "adult" OR "child*" OR "offspring" OR "neonate" OR "infant" OR "adult"

CINHAL -65

MH "Diabetes, Gestational" + OR TX ("gestational diabetes*" OR "pregnancy induced diabetes" AND

MH Breast Feeding+ OR TX ("breastfeeding" OR "breast milk" OR "breastfeed" OR "lactat*" OR "breastfed" AND

MH "infant formula" + OR TX ("animal milk" OR "cow milk" OR "cow's milk" OR "goat milk" OR "goat's milk" OR "animal colostrum" OR "infant formula" OR "formula milk" OR "baby formula") AND MH ("metabolic syndrome" + OR "Diabetes, Gestational" + OR "Blood Pressure" + OR "hypertension" + OR "cholesterol" + OR "lipids" + OR "triglycerides" + OR "body mass index" + OR "insulin" + OR "glucose" + OR "diabetes mellitus, type 2") OR TX ("blood pressure" OR "diabetes" OR "BMI" OR "cardiovascular" OR "metabolic" OR "lipid" OR "hypertension" OR "body mass index" OR "obesity" OR "overweight" OR lipid* OR "cholesterol" OR "triglyceride*" OR "glucose" OR "insulin" OR "vascular" OR "type 2 diabetes mellitus" OR "T2DM" OR "metabolic syndrome" OR "insulin resistance syndrome" OR "syndrome X") OR "blood pressure" OR "diabetes" OR "BMI" OR "cardiovascular" OR "metabolic" OR "lipid" OR "hypertension" OR "body mass index" OR "obesity" OR "overweight" OR lipid* OR "cholesterol" OR "triglyceride*" OR "glucose" OR "insulin" OR "vascular" OR "type 2 diabetes mellitus" OR "T2DM" OR "metabolic syndrome" OR "insulin resistance syndrome" OR "syndrome X" "pregnan*"OR "mother" OR "women" OR "woman" OR "kid" OR "adult" OR "child*" OR "offspring" OR "neonate" OR "infant" OR "adult"

Disclosures and Conflicts of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Claire T. Roberts (D) https://orcid.org/0000-0002-9250-2192 Prabha H. Andraweera (D) https://orcid.org/0000-0003-2434-8370

Supplemental Material

Supplementary Material may be found in the "Supplemental material" tab in the online version of this article.

References

- Abell, S. K., De Courten, B., Boyle, J. A., & Teede, H. J. (2015). Inflammatory and other biomarkers: Role in pathophysiology and prediction of gestational diabetes mellitus. *International Journal of Molecular Sciences*, *16*(6), 13442–13473. https:// doi.org/10.3390/ijms160613442
- Alberti, K. G., & Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. *Diabetic Medicine*, 15(7), 539–553. https://doi.org/10.1002/(sici)1096-9136(199807)15:7<539::Aid-dia668>3.0.Co;2-s
- Andraweera, P., Dekker, G., Arstall, M., Bianco-Miotto, T., & Roberts, C. (2018). Complications of pregnancy and future cardiovascular risk. In D. Sawyer & R. Vasan (Ed.), *Encyclopedia* of cardiovascular research and medicine (Vol. 1). Elsevier Inc.
- Bellamy, L., Casas, J. P., Hingorani, A. D., & Williams, D. (2009). Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. *Lancet*, 373(9677), 1773–1779. https://doi.org/10.1016/s0140-6736(09)60731-5
- Buchanan, T. A., Xiang, A. H., & Page, K. A. (2012). Gestational diabetes mellitus: Risks and management during and after pregnancy. *Nature Reviews Endocrinology*, 8(11), 639–649. https://doi.org/10.1038/nrendo.2012.96
- Burgess, A., McDowell, W., & Ebersold, S. (2019). Association between lactation and postpartum blood pressure in women with preeclampsia. *The American Journal of Maternal Child Nursing*, 44(2), 86–93. https://doi.org/10.1097/ nmc.000000000000502
- Chamberlain, C. R., Oldenburg, B., Wilson, A. N., Eades, S. J., O'Dea, K., Oats, J. J., & Wolfe, R. (2016). Type 2 diabetes after gestational diabetes: greater than fourfold risk among indigenous compared with non-indigenous Australian women. *Diabetes/Metabolism Research and Reviews*, 32(2), 217–227. https://doi.org/10.1002/dmrr.2715
- Chouinard-Castonguay, S., Weisnagel, S. J., Tchernof, A., & Robitaille, J. (2013). Relationship between lactation duration and insulin and glucose response among women with prior gestational diabetes. *European Journal of Endocrinology*, 168(4), 515–523. https://doi.org/10.1530/eje-12-0939
- Corrado, F., Giunta, L., Granese, R., Corrado, S., Micali, M., Santamaria, A., D'Anna, R., & Di Benedetto, A. (2019). Metabolic effects of breastfeeding in women with previous gestational diabetes diagnosed according to the IADPSG criteria. *Journal of Maternal–Fetal and Neonatal Medicine*, 32(2), 225–228. https://doi.org/10.1080/14767058.2017.1377175
- Daly, B., Toulis, K. A., Thomas, N., Gokhale, K., Martin, J., Webber, J., Keerthy, D., Jolly, K., Saravanan, P., & Nirantharakumar, K. (2018). Increased risk of ischemic heart disease, hypertension, and Type 2 diabetes in women with previous gestational diabetes mellitus, a target group in general practice for preventive interventions: A population-based cohort study. *PLoS Medicine*, 15(1), e1002488. https://doi.org/10.1371/journal. pmed.1002488
- Dijigow, F. B., Paganoti Cde, F., Costa, R. A., Francisco, R. P., & Zugaib, M. (2015). Influência da amamentação nos resultados do teste oral de tolerância à glicose pós-parto de mulheres com diabetes mellitusgestacional [The influence of breastfeeding in postpartum oral glucose tolerance test

in women with recent gestational diabetes mellitus]. *Revista Brasileira de Ginecologia e Obstetrícia*, *37*(12), 565–570. https://doi.org/10.1590/so100-720320150005488

- Feng, L., Xu, Q., Hu, Z., & Pan, H. (2018). Lactation and progression to Type 2 diabetes in patients with gestational diabetes mellitus: A systematic review and meta-analysis of cohort studies. *Journal of Diabetes Investigation*, 9(6), 1360–1369. https://doi.org/10.1111/jdi.12838
- Gunderson, E. P., Hedderson, M. M., Chiang, V., Crites, Y., Walton, D., Azevedo, R. A., Fox, G., Elmasian, C., Young, S., Salvador, N., Lum, M., Quesenberry, C. P., Lo, J. C., Sternfeld, B., Ferrara, A., & Selby, J. V. (2012). Lactation intensity and postpartum maternal glucose tolerance and insulin resistance in women with recent GDM: The SWIFT cohort. *Diabetes Care*, 35(1), 50–56. https://doi.org/10.2337/dc11-1409
- Gunderson, E. P., Hurston, S. R., Ning, X., Lo, J. C., Crites, Y., Walton, D., Dewey, K. G., Azevedo, R. A., Young, S., Fox, G., Elmasian, C. C., Salvador, N., Lum, M., Sternfeld, B., Quesenberry, C. P., Selby, J., Ferrara, A., & Chiang, V. (2015). Lactation and progression to Type 2 diabetes mellitus after gestational diabetes mellitus a prospective cohort study. *Annals of Internal Medicine*, *163*(12), 889–898. https://doi.org/10.7326/ M15-0807
- Gunderson, E. P., Lewis, C. E., Wei, G. S., Whitmer, R. A., Quesenberry, C. P., & Sidney, S. (2007). Lactation and changes in maternal metabolic risk factors. *Obstetrics and Gynecology*, 109(3), 729–738. https://doi.org/10.1097/01. Aog.0000252831.06695.03
- Hales, C. N., & Barker, D. J. (2001). The thrifty phenotype hypothesis. *British Medical Bulletin*, 60, 5–20. https://doi.org/10.1093/ bmb/60.1.5
- Harder, T., Bergmann, R., Kallischnigg, G., & Plagemann, A. (2005). Duration of breastfeeding and risk of overweight: A meta-analysis. *American Journal of Epidemiology*, 162(5), 397–403. https://doi.org/10.1093/aje/kwi222
- Horta, B. L., Loret de Mola, C., & Victora, C. G. (2015). Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and Type 2 diabetes: A systematic review and meta-analysis. *Acta Paediatrica*, 104(467), 30–37. https://doi. org/10.1111/apa.13133
- Hui, L. L., Li, A. M., Nelson, E. A. S., Leung, G. M., Lee, S. L., & Schooling, C. M. (2018). In utero exposure to gestational diabetes and adiposity: does breastfeeding make a difference? *International Journal of Obesity*, 42(7), 1317–1325. https:// doi.org/10.1038/s41366-018-0077-2
- International Diabetes Federation. (2007). *The IDF consensus definition of the metabolic syndrome in children and ado-lescents*. International Diabetes Federation. https://www.idf. org/e-library/consensus-statements/61-idf-consensus-definition-of-metabolic-syndrome-in-children-and-adolescents. html
- Jiang, M., Gao, H., Vinyes-Pares, G., Yu, K., Ma, D., Qin, X., & Wang, P. (2018). Association between breastfeeding duration and postpartum weight retention of lactating mothers: A metaanalysis of cohort studies. *Clinical Nutrition*, 37(4), 1224– 1231. https://doi.org/10.1016/j.clnu.2017.05.014
- Kim, S. H., Kim, M. Y., Yang, J. H., Park, S. Y., Yim, C. H., Han, K. O., Yoon, H. K., & Park, S. (2011). Nutritional risk factors of early development of postpartum prediabetes and diabetes in

women with gestational diabetes mellitus. *Nutrition*, 27(7–8), 782–788. https://doi.org/10.1016/j.nut.2010.08.019

- Kjos, S. L., Henry, O., Lee, R. M., Buchanan, T. A., & Mishell, D. R., Jr. (1993). The effect of lactation on glucose and lipid metabolism in women with recent gestational diabetes. *Obstetrics and Gynecology*, 82(3), 451–455.
- Lessen, R., & Kavanagh, K. (2015). Position of the academy of nutrition and dietetics: Promoting and supporting breastfeeding. *Journal of the Academy of Nutrition and Dietetics*, 115(3), 444–449. https://doi.org/10.1016/j.jand.2014.12.014
- Lewington, S., Clarke, R., Qizilbash, N., Peto, R., & Collins, R. (2002). Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. *Lancet*, 360(9349), 1903–1913. https://doi.org/10.1016/s0140-6736(02)11911-8
- Lucas, A., Sarson, D. L., Blackburn, A. M., Adrian, T. E., Aynsley-Green, A., & Bloom, S. R. (1980). Breast vs bottle: Endocrine responses are different with formula feeding. *Lancet*, 1(8181), 1267–1269. https://doi.org/10.1016/s0140-6736(80)91731-6
- Ma, S., Hu, S., Liang, H., Xiao, Y., & Tan, H. (2019). Metabolic effects of breastfeed in women with prior gestational diabetes mellitus: A systematic review and meta-analysis. *Diabetes/ Metabolism Research and Reviews*, 35(3), e3108. https://doi. org/10.1002/dmrr.3108
- Martens, P. J., Shafer, L. A., Dean, H. J., Sellers, E. A., Yamamoto, J., Ludwig, S., Heaman, M., Phillips-Beck, W., Prior, H. J., Morris, M., McGavock, J., Dart, A. B., & Shen, G. X. (2016). Breastfeeding initiation associated with reduced incidence of diabetes in mothers and offspring. *Obstetrics and Gynecology*, 128(5), 1095–1104. https://doi.org/10.1097/ aog.000000000001689
- Martin, C. R., Ling, P. R., & Blackburn, G. L. (2016). Review of infant feeding: Key features of breast milk and infant formula. *Nutrients*, 8(5). https://doi.org/10.3390/nu8050279
- McManus, R. M., Cunningham, I., Watson, A., Harker, L., & Finegood, D. T. (2001). Beta-cell function and visceral fat in lactating women with a history of gestational diabetes. *Metabolism*, 50(6), 715–719. https://doi.org/10.1053/ meta.2001.23304
- Metzger, B. E., Gabbe, S. G., Persson, B., Buchanan, T. A., Catalano, P. A., Damm, P., Dyer, A. R., Leiva, A., Hod, M., Kitzmiler, J. L., Lowe, L. P., McIntyre, H. D., Oats, J. J., Omori, Y., & Schmidt, M. I. (2010). International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. *Diabetes Care*, 33(3), 676–682. https://doi.org/10.2337/dc09-1848
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and metaanalyses: The PRISMA statement. *BMJ*, 339, b2535. https:// doi.org/10.1136/bmj.b2535
- Moss, K. M., Dobson, A. J., Tooth, L., & Mishra, G. D. (2020). Associations between feeding practices in infancy and fruit and vegetable consumption in childhood. *British Journal of Nutrition*, 1–9. https://doi.org/10.1017/s000711452000238x
- Nelson, A. L., Le, M. H., Musherraf, Z., & Vanberckelaer, A. (2008). Intermediate-term glucose tolerance in women with a history of gestational diabetes: natural history and potential associations with breastfeeding and contraception. *American Journal of Obstetrics and Gynecology*, 198(6), 699, e691–

697; discussion 699, e697–698. https://doi.org/10.1016/j. ajog.2008.03.029

- National Heart, Lung, and Blood Institute. (2020). *Study quality* assessment tools. https://www.nhlbi.nih.gov/health-topics/ study-quality-assessment-tools
- Ormesher, L., Johnstone, E. D., Shawkat, E., Dempsey, A., Chmiel, C., Ingram, E., Higgins, L. E., & Myers, J. E. (2018). A clinical evaluation of placental growth factor in routine practice in high-risk women presenting with suspected pre-eclampsia and/ or fetal growth restriction. *Pregnancy Hypertension*, 14, 234– 239. https://doi.org/10.1016/j.preghy.2018.03.007
- Pathirana, M. M., Lassi, Z., Ali, A., Arstall, M., Roberts, C. T., & Andraweera, P. H. (2020a). Cardiovascular risk factors in women with previous gestational diabetes mellitus: A systematic review and meta-analysis. *Reviews in Endocrine and Metabolic Disorders*. https://doi.org/10.1007/s11154-020-09587-0
- Pathirana, M. M., Lassi, Z. S., Ali, A., Arstall, M. A., Roberts, C. T., & Andraweera, P. H. (2020b). Association between metabolic syndrome and gestational diabetes mellitus in women and their children: A systematic review and meta-analysis. *Endocrine*. https://doi.org/10.1007/s12020-020-02492-1
- Pathirana, M. M., Lassi, Z. S., Ali, A., Arstall, M. A., Roberts, C. T., & Andraweera, P. H. (2021). Association between metabolic syndrome and gestational diabetes mellitus in women and their children: A systematic review and meta-analysis. *Endocrine*, 71(2), 310–320. https://doi.org/10.1007/s12020-020-02492-1
- Pathirana, M. M., Lassi, Z. S., Roberts, C. T., & Andraweera, P. H. (2020). Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: Systematic review and metaanalysis. *Journal of Developmental Origins of Health and Disease*, 1–18. https://doi.org/10.1017/s2040174419000850
- Rameez, R. M., Sadana, D., Kaur, S., Ahmed, T., Patel, J., Khan, M. S., Misbah, S., Simonson, M. T., Riaz, H., & Ahmed, H. M. (2019). Association of maternal lactation with diabetes and hypertension: A systematic review and meta-analysis. *JAMA Network Open*, 2(10), e1913401. https://doi.org/10.1001/jamanetworkopen.2019.13401
- Ranasinghe, P., Mathangasinghe, Y., Jayawardena, R., Hills, A. P., & Misra, A. (2017). Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: a systematic review. *BMC Public Health*, 17(1), 101. https://doi. org/10.1186/s12889-017-4041-1
- Ratner, R. E., Christophi, C. A., Metzger, B. E., Dabelea, D., Bennett, P. H., Pi-Sunyer, X., Fowler, S., & Kahn, S. E. (2008). Prevention of diabetes in women with a history of gestational diabetes: Effects of metformin and lifestyle interventions. *The Journal of Clinica Endocrinology & Metabolism*, 93(12), 4774–4779. https://doi.org/10.1210/jc.2008-0772
- Saucedo, R., B. L., Galvan, R., Sanchez, J., Hernadez, M., Puello, E., & Zarate, A. (2014). Duration of lactation is associated with lower leptin levels in patients with gestational diabetes mellitus. *Instituto Mexican del Suguro Social*, 06720. https://doi. org/10.1530/EJE-12-0939
- Schwarz, E. B., Brown, J. S., Creasman, J. M., Stuebe, A., McClure, C. K., Van Den Eeden, S. K., & Thom, D. (2010). Lactation and maternal risk of Type 2 diabetes: A population-based study. *American Journal of Medicine*, 123(9), 863 e861–866. https://doi.org/10.1016/j.amjmed.2010.03.016

- Shoji, H., & Shimizu, T. (2019). Effect of human breast milk on biological metabolism in infants. *Pediatrics International*, 61(1), 6–15. https://doi.org/10.1111/ped.13693
- Shub, A., Miranda, M., Georgiou, H. M., McCarthy, E. A., & Lappas, M. (2019). The effect of breastfeeding on postpartum glucose tolerance and lipid profiles in women with gestational diabetes mellitus. *International Breastfeeding Journal*, 14, 46. https://doi.org/10.1186/s13006-019-0238-5
- Stuebe, A. M., & Rich-Edwards, J. W. (2009). The reset hypothesis: Lactation and maternal metabolism. *American Journal of Perinatology*, 26(01), 081–088. https://doi. org/10.1055/s-0028-1103034
- Yan, J., Liu, L., Zhu, Y., Huang, G., & Wang, P. P. (2014). The association between breastfeeding and childhood obesity:

A meta-analysis. *BMC Public Health*, 14, 1267. https://doi. org/10.1186/1471-2458-14-1267

- Yasuhi, I., Soda, T., Yamashita, H., Urakawa, A., Izumi, M., Kugishima, Y., & Umezaki, Y. (2017). The effect of highintensity breastfeeding on postpartum glucose tolerance in women with recent gestational diabetes. *International Breastfeeding Journal*, 12, 32. https://doi.org/10.1186/ s13006-017-0123-z
- Ziegler, A. G., Wallner, M., Kaiser, I., Rossbauer, M., Harsunen, M. H., Lachmann, L., Maier, J., Winkler, C., & Hummel, S. (2012). Long-term protective effect of lactation on the development of Type 2 diabetes in women with recent gestational diabetes mellitus. *Diabetes*, 61(12), 3167–3171. https://doi. org/10.2337/db12-0393